wireess

wore

AUGUST 1976 35p

The inventors

And now, a clever signal source.

Thenew Gould Advance SG200.

Advance Electronics were a big name in RF signal sources.
And. now we've become Gould Advance, we're coming back into the business in a major way.
Beginning with a product that costs little and offers a lot

For the new Advance 'SIG GEN' SG200 is a bargain.
It's gat an extraordinary stable frequency and output level $(160 \mathrm{KHz}$ -

230 MHz and $2 \mu \mathrm{~V}-200 \mathrm{mV}$)
And it's truly portable in a dual mains/battery operation. With ease of use enhanced by the panoramic linear scale.

Finally, the SG200 was built with simple, reliable circuitry to ensure that it won't let you down.

Do ask for data
Because you'll see the SG200 is a signal achievement.

[^0]
LOW COST TESTERS

PORTABLE INSTRUMENTS

INSULATION TESTER

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV . $1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V .
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale
Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre. Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$. Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA

CURRENT RANGE

100pA to $100 \mu A$ on 6 decade logarithmic scale
Accuracy of current measurement $\pm 15 \%$ of indicated value. Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
Maximum safe continuous overload is 50 mA .

MEASUREMENT TIME

<3 s for resistance on all ranges relative to CAL position.
<10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V . Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position

RECORDER OUTPUT

1 V per decade $\pm 2 \%$ with zero output at scale centre. Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

TRANSISTOR TESTER

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $\mathrm{I}_{\mathrm{c}} / 1_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is powered by a 9 V battery.

TRANSISTOR RANGES (PNP OR NPN)

${ }^{\prime}$ C B O \& $I_{\text {E B O }}: 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$, $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$, 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
$B V_{\text {CBO }} \quad 10 \mathrm{~V}$ or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
$I_{B}: \quad 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} . .10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu A, 10 \mu A, 100 \mu A$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and 100 mA acc. $\pm 1 \%$.
$h_{\text {FE }} \quad 3$ inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I_{B} into $h_{\text {FE }}$ readings.
$V_{B E}: \quad 1 \mathrm{Vf.s.d}$.acc. $\pm 20 \mathrm{mV}$ measured at conditions on het test.
$V_{C E}$ (sat): \quad Vf.s.d. acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or $30 \mathrm{acc} . \pm 20 \%$.
DIODE \& ZENER DIODE RANGES
${ }^{1} D R: \quad A s I_{E B O}{ }^{\text {transistor ranges. }}$
$V_{Z}: \quad B r e a k d o w n$ ranges as $B V_{C B O}$ for transistors.
$V_{D F}: \quad 1 \mathrm{Vf.s.d}$ acc. $\pm 20 \mathrm{mV}$ at I \quad of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN5 5SD Tel : 01-4495028/440 8686

Prices include batteries and U.K. delivery, V.A.T. extra. Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

TYPICAL
TRANSIPACK U.P.S.
FOR COMPUTER
APPLICATIONS

iilINDUSTRIAL
INSTRUMENTS LIMITED tramsipack ${ }^{\text {P }}$

ISOPHON

How do you advertise a Horn Tweeter?

 We had thought of showing a picture of a French Horn-aesthetically more pleasing than a Horn Tweeter-but instead decided just to proudly include a photograph of ourNEW HORN TWEETER

We are excited about this new addition to the product line and feel sure that you will be too, when you examine the specification and listen to the souncl.
We are confident it will not be long before this Horn Tweeter joins our other successful products like the Dome Tweeters KK7, KK8 and KK10. There are, of course, many other drive units to choose from in the Isophon range including bass units, dome midrange units and assembly kits.

Why not send for the Isophon catalogue containing 28 pages of useful information, which we will be happy to send you, free of charge, on receipt of the cut-out coupon.

Hayden Laboratories Ltd

Churchfield Road,
Chalfont St. Peter, Bucks. SL9 9EW
Tel: Gerrards Cross (02813) 88447

ENGLAND

WW-056 FOR FURTHER DETAILS

AMCRON POWER AMPLIFIERS

The AMCRON range of DC-coupled power amplifiers are used by Government, and University Research Departments as well as by Industry for a variety of applications ranging from Shaker, and Vibrator driving, to driving both $A C$ and DC Motors, providing variable frequency power supply, or high voltage material testing. All models are DC-coupled throughout, with Intermodulation, and Harmonic Distortion below 0.05\%, damping factor of at least 400 from $D C$ to 1 kHz , and the ability to operate into load impedances from 1 ohm to infinity even into highly reactive loads.

M600
RMS power out
Power bandwidth Phase response Slew rate Hum \& noise Dimensions

750 watts into 8 ohms 1,350 watts into 4 ohms DC to $20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db}$ $+0^{\prime}-15^{\prime} \mathrm{DC}-20 \mathrm{kHz}$ $16 \mathrm{~V} / \mathrm{usecond}$
120 db below 600 Watts $19^{\prime \prime}$ std rack. $8^{3 / 4^{\prime \prime}} \mathrm{H} ; 16^{1 / 2^{\prime \prime}}$ Deep

DC 300A

500 watts rms into 2.5 ohms (1 chan) 200 watts into 2.5 ohms (1 chan) $\mathrm{DC}-20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db} \quad \mathrm{DC}-20 \mathrm{kHz}+1 \mathrm{db},-0 \mathrm{db}$ $+0,-15^{\prime} \mathrm{DC}$ to 20 kHz 8 volts per microsecond At least 110 db below 150 watts
19" Rackmount, 7" High, 93/4/" Deep

D150A $+0^{\prime},-15^{\prime} \mathrm{DC}$ to 20 kHz
6 volts per microsecond
At least 115 db below 90 watts $19^{\prime \prime}$ Rackmount, $51 / 4^{\prime \prime} \mathrm{H}, 8^{33 / 4^{\prime \prime} \mathrm{D}}$

MACINNES LABORATOBIES LTD.
Macinnes House, Cartion Park Industrial Gstate
Saxmundham, Suffolk IP 17 2NL. Tel: (0728) 22622615

MACINNES FRANGE
45 Rue Fessart
Paris 75019, France
Tel: 203-30-01

You needa flash tube?

Get to the Quickly with ANTEX Model X25

Point 1

Near-perfect insulation. Ereakdown voltage 1500 A.C. Leakage current 3.5 uA.

Point 2

Top-efficiency in heat transfer. Element slides inside the soldering bit. 25 watts but equivalent in heat capacity to 60 watts.

Point 3

High grade phenolic handle (own moulding!) Stainless steel shaft. -3 core 0.4 mm . Flexible lead.

Point 4

Iron-coated bits that do not stick to the shaft but slide on and off easily. 3 tip sizes 2.4, 3.2 and 4.7 mm .
Point 5
Price with standard $(3.2 \mathrm{~mm}$.) bit £3.20(P+P 0.22) each Spare elements $£ 1.52$ Spare bits $£ 0.50$ each

Point 6

A well balanced :ool -
length 22 cm .
weight 50 gr .
Prices include VAT Postage + Packing extra as shown in brackets.

breadboard powersource

The Farnell Triple Output Power Supply-TOPSis an ideal utility power source for 'breadboarding' IC and Op. Amp circuitry.

- $5 \mathrm{~V}, 1 \mathrm{~A}$ and $15-0-15 \mathrm{~V}, 200 \mathrm{~mA}$
- Adjustable outputs
- Output protection

- LED indication of overload - Low cost, good performance - Ideal utility IC/Op. Amp power source for bench use

Funell

 FARNELL INSTRUMENTS LIMITED SANDBECK WAY, WETHERBY, WESTYORKSHIRE, LS 2240 - TELEPHONE 09373541 or $01-8647433$ TELEXX 557294 WW - 041 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery Other Ranges and special scales can be made to order

Full Information from:

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

Remembertoask EEV.

At EEV we make solder seal and bright seal flash tubes.

In linear, helical and circular shapes.

For laser pumping, photography, strobing and beacons.

We can make the exact flash tube you want - whatever the quantity, shape or application.

Since 1963we have manufactured flash tubes to rigorous mechanical
and electrical specifications.
EEV knowhow on electrode design and production ensures reliability and longer life - up to one thousand million shots.

New Free Brochure. Send for full data and our new free brochurein English, French and German- on what's newest in flash tubes.

Write,'phoneor telex Chelmsford for your copy.

EEVand M-OV know how.

THIS IS IT!

Fully built and tested for immediate use in ANY tuner using Vari-cap control

TOUCH TUNE PRE-SELECT UNIT

Shown here with meter drive components from Kit K 12 mounted on same P.C.B

NOW IS THE TIME TO BUY!

Our prices were reduced in April. Now VAT has been halved. Will things ever be quite this good again? Make use of your credit card and buy now with confidence.
We give full after-sales service and guarantee with all parts and kits.

6 cnannels plus manual.
Illuminated touch buttons
20 volts supply
Full instructions for use
Fully built and tested
Available now, post free
Introductory price E16.71 inc. V.A.T
See May's advertisement for full lists and prices, or write to

Our Tuner is now fully updated and improved. If you intend to build, you must buy our new booklet fully describing our updated tuner
(50 p post free, retundable on orders over $£ 10$)

33 Restrop View Purton, WILTS SN5 9DG

ANAMDMENOL THSODEIUG

Iso-Tip Cordless Soldering Iron

Ideal for factory, field servicing, laboratory or home, the Iso-Tip Cordless offers a great advance in soldering. It is completely portable, heats in 5 seconds and recharges automatically in its own stand

The Iso-Tip is powered by long-life nickel cadmium batteries giving tip performance up to 50 watts with a temperature of $370^{\circ} \mathrm{C}$. Tips are available in five different sizes ranging from Micro to Heavy Duty to meet all soldering requirements.

Greenwood Electronics

Portman Rd, Reading RG3 INE, England
Telephone: Reading (0734) 595844 Telex: 848659.

WW-624 FOR FURTHER DETAILS

[^1]

CRYSTALOVEN
OPERATING MAN
TWO TONE BI LEE CASE
${ }_{50} 1.2 \mathrm{cmm}$ 5 parts $10 .^{10}$

301 M	32 MHz 5 Digit £82	401	32MH́z 6 Digit £121
501	32 MHz 8 Digit £ 178	701A	80MHz 8 Digit £195
801A/M	300MHz 8 Digit £305	901 M	520MHz 8 Digigit £375
801B/M	250MHz 8 Digil £262	1001M	1.2 GHz 8 Digit £670
	p versions plus £12	Memor suffixe	ons available if not £25 extra

Type 1011 MHz 100 KHz 10 KHz Crystal Standard $£ 85$ Type 103 Off/Air Standard $£ 85$
sUPPLIERS TO: Ministry of Defence, G.P.O., B.B.C., Government Dept., Crystal Manufacturers and Electronic Laboratories world-wide
R.C.S. ELECTRONICS 6 WैOLSEY ROAD, ASHFORD HOUNSLOW, MIDDX. TW4 7EE Telephone: Ashford (Code 69) 53661/2

The easy woy to 4 PGB... the Seno 33 system!

$£ 53.70$
plus VAT and P\&P

GHIMPEDANCE AC/DC MILLIVOLT METER (The Modern equivalent of the Valve Voltmeter) an $A C / D C$ wide range meter with 20 scales covering 1.2 mV to 400 voles FSO incorporating a power incorporating a p
scale in decibels.
253.70

Plus VAT and P\&P

MANUFACTURING
CO
LTD
ROSLYN ROAD, LONDON N15 5JB. TEL. 01-802 5144

To: Linstead Manufacturing Co. Ltd
Roslyn Road, London N15 5JB. Tel. 01-802 5144
Please supply
G5 @ $£ 5970$ each inc. VAT and P\&P
M2B@C59.70 each inc VAT and P\&P
I enclose Cheque/P O./or Official Order for E
(Delivery 14-21 days)
Name
Address

Reg. No. 767209

BULK ERASURE PROBLEMS?

LR71
LR70
MAX REEL SIZE $11^{1 / 2 \prime \prime}$ MAX REEL SIZE $81 / 4^{\prime \prime}$
If it's personal we can only advise a diet or joining weightwatchers If it's to do with tape, then why not consider the LR70/71 bulk tape erasers. They are simple to operate and will erase cassettes cartridges and reels of tape up to a maximum reel size of $11 / 2^{\prime \prime}$ and tape width of $1^{\prime \prime}$, quickly and efficiently within the time it takes to read this advertisement

The LR70/71 bulk erasers are currently used in Broadcast Companies, Recording Studios Government Departments Educational Establishments and the Computer Industry Moderately priced and available from.
LEEVERS-RICH EQUIPMENT LIMITED
INCORP. BIAS ELECTRONICS
319 Trinity Road, Wandsworth, London SW18 3SL Telephone 01-874 9054
Cables: Leemag London SW18. Telex 923455 Wembley
WW-032 FOR FURTHER INFORMATION
> gearboxes and control systems Stock ists for IIIFSK Motors

Better Performance than any Graphic Equaliser on the market Summerfield KidderminsterDY11 7RE Tel Kidderminster 64027

Everyone just says ...

Good job we know what they mean

The MK. 3 Selectest
has every facility you need built into it, accuracy, sensitivity and robustness.
The case is made of wipe-clean, tough, lightweight melamine. Terminals accept 4 mm push-in plugs on the front panel, enabling the Selectest to be used horizontally or vertically.
The scale incorporates an inset mirror and kniferedge pointer.

SALFORD ELECTRICAL INSTRUMENTS LIMITED

Peel Works. Barton Lane, Eccles, Manchester M30 OHL Telephone 061-7895081 Telex 667711
A member company of GEC Electrical Components Ltd.

WW-073 FOR FURTHER DETAILS

TURNER-
STEREO POWER AMPLIFIERS (from 100 watts to 500 watts)

Professional Stereo Power Amplifiers designed and manufactured to the very highest standard.
TURNER POWER is setting a new standard in the studios for ultra-clean monitoring, and with bands on the road for ruggedness and reliability.
Customers include: Air Studios, Wessex Studios, Gooseberry Studios, Lansdowne Studios, Decibel Studios, Queen and leading hire companies.

TURNER ELECTRONIC INDUSTRIES LTD.
175 Uxbridge Road, London W7 3TH
Tel. 01-567 8472

WW - 068 FOR FURTHER DETAILS

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.	Our product range comprises: Low profile (flatform) Timing - Miniature - Low contact capacity. Hermetically sealed Stepping Mains switching Latching Contact stacks Solenoids
	Impulse Latching Relay AZ 340 Make contacts: Resistive load 10A/240V AC. Lamp load: $8 \mathrm{~A} / 240 \mathrm{~V}$ AC. Compensated fluorescent tubes: $3.7 \mathrm{~A} / 240 \mathrm{~V}$ AC. Break contacts: Resistive load: $8 \mathrm{~A} / 240 \mathrm{~V}$ AC. Lamp load: 5 A/240 V AC. Compensated fluorescent tubes: $3.7 \mathrm{~A} / 240 \mathrm{VAC}$.

We resolve your switching problems rapidly and expertly. Please contact us for further details.

Zettler
UK Division
Brember Road
Harrow. Middx HA2 8AS. Tel. (01) 4220061
A member of the worldwide ZETTLER electrical engineering group. est 1877

WW-030 FOR FURTHER DETAILS

Red \& Green LED applied Logic Level Indicator MODEL 320 LOGIC PROBE

* Wrong polarity and overload protectors provided
* Detection of the peak value of input waveform
* Open circuit or faulty IC can be detected
* All logic levels are visible at a glance
* Powered from circuit under test

I RADFORD

NOISE MEASUREMENT STANDARDS for Consumer Audio Equipment

The signal-to-noise ratio in an audio frequency system is conventionally measured by, noting the signal output voltage at a defined reference output level and comparing it with the output voltage with no signal input. In practical systems the figures obtained without bandwidth restriction may be meaningless. When it is desired to compare one system with another then the bandwidth and rolloff characteristics must be specified. Such a characteristic is defined in the DIN specification 45.500 April, 1975 - High Fidelity Standard as "Audio Band". It is a maximally flat band pass filter with 3 dB points at 22 Hz and 22 kHz . The rolloff specified is 36 dB /octave outside the pass band. This filter makes no allowance, however, for the characteristics of the ear at perceived noise levels or the irritation factor of the noise itself. The IEC/DIN curve " A " (also specified in DIN. 45.500) has a "weighted" frequency response contour to correlate the measured signal-to-noise ratio with the aural effect. Curve " A " has been in use for some time. Recently a new weighting characteristic (CCIR) has been introduced which is said to have a better correlation between the measured signal-to-noise ratio and the subjective value. It has been widely accepted and will probably become a world standard for professional use for audio noise measurement.

Meters which respond to peak, average and r.m.s. values of the waveform are in use. Dolby Laboratories published a report (see below)* in August, 1972, on noise measurement on consumer equipment. It stresses the advantage of the CCIR filter and the adequacy of an average sensing meter (ordinary millivoltmeter) and recommended its standardisation for published specifications on consumer equipment. For those who wish to use their own millivoltmeter a CCIR filter is now available in addition to the ANM1 and ANM2 complete noisemeters.

ANM 1

High Sensitivity Audio Noisemeter
ANM2
High Sensitivity Audio Noisemeter, True r.m.s. reading

ANF1

Audio Noisefilter, CCIR weighting

Write or telephone for descriptive leaflet and Dolby Laboratories Bulletin 19/2 Noise Measurements on Consumer Equipment*.

RADFORD LABORATORY INSTRUMENTS LTD.
Ashton Vale Road, Bristol BS3 $\mathbf{2 H Z}$, Avon
Telephone: 0272662301

2-Valume

 RB/ DATR BOOHS The newest, most up \cdot to date SOLID STATE DATABOOKSPre-publication
$\left.\begin{array}{l}\text { Price per Set } \\ \text { (Incl. Post \& Pack) }\end{array}\right]$ (Standard price: $£ 8.50$ per set) ORDER NOW from
$\rightarrow 5$
REL Equipment 8 Components Limited
Croft House, Bancroft, Hitchin, Herts., SG5 1BU
Tel: (0462) 56576.50551/2/3.52202.52776/7/8
The Integrated Circuits book covers linear types, MOS/FETs, COS/MOS digital types, high-reliability types, andfor the first time....memories and microprocessors.

The Power Device book covers power transistors, rf/microwave devices, thyristors (SCRs, triacs), silicon rectifiers and highreliability types.

Both books include selection charts, crossreference guides, terms and symbols, maximum ratings, electrical characteristics, design curves and abstracts of application notes.

UNIQUE STEREO ELECTRONIC CLOCK RADIO

£39.95
inc. VAT P\&P $\mathbb{P} 1$

THE REALTONE E4 AM/FM-FM STEREO CLOCK RADIO has a unique design. It features an accurate digitron (green) clock incorporating a dimmer control which can be used as a night light or adjusted to a pleasant soft glow. It has a stop watch facility and can be set to display HRS/MINS or MINS/SECS and can be programmed to wake you up to the alarm and/or stereo music. The radio has an FM multiplex stereo system with AFC (automatic frequency control) which allows drift free reception and incorporates two balanced high-fidelity speakers. The wake-up/sleep control has its own memory and can
be set for up to 59 mins. duration ALSO THESE SCIENTIFIC CALCU
ALSO THESE SCIENTIFIC CALCULATORS AVAILABLE: T.I.SR56@ §70.95. SR52 @
 £64.25C@ $155.25 @ 1107$ S.A.E for full details and quantity prices.
C.W.O. TO: KRAMER \& CO., 9 October Place, Holders Hill Road

London NW4 1EJ 01-203 2473
Registered Number: 1797716

OVER 2,000 ELECTRONIC COMPONENTS INA

We know of only one other Power Amplifier Module superior to our JPS50 The JPS 150
 For starters, JPS Power Amplifier Modules are designed, manufactured and tested in

 England, yet sold throughout the world.Incorporating comprehensive protection circuits including, mismatch, short and open circuits, impedance and thermal protection, these Modules will ensure a high standaid of both reliability and top performance.

Unlike other modules, they offer an indefinite life - span! Should thev ever require any attention or repair, all components on both Modules are easily replaceable. And, what's more, they both also carry a full two year guarantee. That's confidence for you!

	JPS 50	JPS 150
Powerer Output Frequency Response	65 watts RMS 7.5 orms $10.22 \mathrm{kHz}=-0.508$	170 watts RMS 7.5 ohms $10.3 \mathrm{kHz}+\mathrm{O} \pm 8-0.50 \mathrm{~B}$
Power Bandwidth	$10.22 \mathrm{kHz} 2-0.5 \mathrm{~dB}$	${ }^{10} 10.22 \mathrm{kHz}+\mathrm{OdE}=0.5 \mathrm{SdB}$
Slewing Rate Total Harmonic Distortion		8. ${ }^{8.2}$ Volis per microsecond
Hum and Noise	115 dB below 60 watts	${ }^{115088}$ below 150 watts
Damping Factor		
- Inputit Impedance		
Power Requirements	35 volts	$\pm{ }^{10} 55$ Votts
Transistor Complement Module Dimensions		
Modile Dimensions Guarantee	Full 2 year	Full' y year

- Parameters can be changed to suit your requirements. Power Supplies are also available.

I herewith enclose Cheque/Postal Order for £........... (Made payable to JPS Associates) PLEASE SUPPLY
JPS 50 @ $£ 17.78$ ($+8 \%$ VAT) JPS $150 @ £ 29.65$ ($+8 \%$ VAT) LED Display @ $£ 16.65$ ($+8 \%$ VAT)

Test Equipment

 Multimeters
 The Eagle range of multimeters covers every possible need of the electrical or electronic engineer. They cost from about $£ 6$ to $£ 58$ (inc V.A.T.). There's at least one which suits your job precisely.

We have a lot of other test equipment too
Send the coupon and we'll send you our

WW-027 FOR FURTHER DETAILS

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals. Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case. Probe and internal $11 / 2$ volt standard size battery.
Model "Mini-2 $1^{\prime \prime}$ ' measures from- $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Model "Mini-Z 2" measures from-5 ${ }^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Model "Mini-on Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$
PRICE E20.00 each [VAT 8\% EXTRA]
Write for further details to
HARRIS ELECTRONICS (LONDON),
138 GRAY'S INN ROAD, LONDON. WC1X $8 A X$
('Phone 01-837 7937)
\square
Barr \& Stroud are pleased to announce a further advance in the continued development of their acclaimed EF3 Electronic Filter System. The new Now 6 Modules for the EF3
modules 05 and 06 so extend the capabilities of the system that it could well meet all your filtering requirements.

EF3-01 High Pass
Cut-off frequency variable from 0.01 Hz to 10 kHz

EF3-02 Low Pass
Cur-off frequency variable from. 0.01 Hz to 10 kHz

Cut-off frequency variable from 0.1 Hz to 100 kHz

Write for technical literature giving full specifications.

Barr \& Stroud Limited
1 Pall Mall East, London SW1 Y 5AU Telephone 01-930 1541 Telex 261877.

EF3-04 LowPass Cut-off frequency variable from 0.1 Hz to 100 kHz

EF3-05 High Pass Cut-off frequency variable from 1 Hz to 1 MHz

EF3-06 Low Pass
Cut-off fequency varrable from 1 Hz to 1 MHz

	LCD MODEL TLC4 CONTINUOUS READOUT UTILISING LIQUID CRYSTAL DISPLAY WITH BACKLIGHT FOR NIGHT READING FEATURES - * HOURS * SECONDS * DATE вновіим $£ 39.95$ gold $£ 41.50$ mo vat	LED MODEL TLE5
ELECTRONIC DIGITAL ALARM CLOCK MODEL EC3 * LARGE 4 DIGIT DISPLAY * AM/PM INDICATOR - 5 MINUTE REPEATING SNOOZE		FEATURES - HOURS * MINUTES - SECONDS - DAY OF WEEK $£ 29.50$ nc. vat
THE "MISTRAL" I DIGITAL CLOCK		GOID OR RHODIUM PLATED
	We are proud to announce the opening of our new showroom in which you available in the UK so why not call in and see us?	
	ELECTROTIME, DEPT. i/8, 11 SHEPLEY'S YARD CHESTERFIELD, DERBYSHiRE. TEL. (0246) 35804 PLEASE SUPPLY ENCLOSE CHEQUE/POSTAL ORDER NAME ADDRESS	

-PA 50 - D Sp
Fower Output
Freq Response
100 watts rms into 4 ohms 65 watts rms into 15 ohms

Total harmonic cistortion $\pm 0.1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 KHz into 15 ohms. 1 dB at 150 KHz

Input sensitivity Less than 0.04% at all levels up to 50 watts rms into 15 ohm's

Moise OdBm

Rise time -100dB

Frice
2 u seconds
100 V Line (C.T.) and balanced inputs available.
For full technical information contact:

H|HELECTRONIC

CAMBRIDGE ROAD, MILTON, CAMBS TELEPHONE CAMBRIDGE 65945/6/7

WW-021 FOR FURTHER DETAILS

Greenwood Eectronics

Greenwood Electronics, Fortman Road, Reading, RG3 INE Telephone: 073\$-595844. Telex 848659 WW-023 FOR FURTHER DETAILS

Series 7 Amplifier Equipment -sound investment

Since Grampian introduced the Series 7 range in 1971 hundreds of satisfied customers all over the world have found it to be a sound investment. The high technical specification has set a new standard in engineering and reliability and the modular construction offers the most comprehensive and flexible system available.
Series 7 - Sound investment

GRAMPIAN REPRODUCERS LTD

Hanworth Trading Estate, Feltham, Middx. TEL: 01-8949141

DO YOU KNOW

WHAT COUNTS UP TO 200 MHz has a Crystal controlled clock AN INPUT SENSITIVITY OF 20 mV high intensity 7 SEGMENT READOUTS. $1 \mathrm{MHz}, 100 \mathrm{KHz}$ and 10 KHz CALIBRATION OUTPUT SOCKETS
STABILISED PROTECTED MAINS PSU ATTRACTIVE PROFESSIONAL STYLING FULLY BUFFERED DISPLAY A 12-MONTHS' GUARANTEE COSTS ONLY £130 OR £155 WITH CRYSTAL OVEN

THE TC12

For further details contact:
TELFORD COMMUNICATIONS
78B HIGH STREET, BRIDGNORTH, SALOP WV16 4DS TEL. 074624082

ELECTRONORGTECHNICA

carbon film

RESISTORS
$1 / 8$ and $1 / 4 \mathrm{w} 70^{\circ} \mathrm{C} 5 \%$ tol. E. 12 EX-STOCK

Contact John Gingell

AERO SERVICES LTD.
44A Westbourne Grove London W2 5SF
TEL: 01-7275641 TELEX 261306
WW-045 FOR FURTHER DETAIL

Hatfield's versafile Test Team
 Well established instruments from the Hatfield range include:

WW - 067 FOR FURTHER DETAILS

PRECISION PETITE LTD.

119 HIGH STREET, TEDDINGTON, MIDDX.
TEL. 01-9770878

Now with the
-NEVV MK. II DRILL•
10,000 r.p.m., 120 cmg .

"MORE POWER MORE TORQUE"

$12 v-14 v . D C$
DRILL ONI.Y £8.00 (P.P. 35p)

STAND £4.00 (P.P.35p) Incl VAT
(Together 50p P.P.)
SAE for illustrated
leaflet and order form

Bench size ultrasonic cleaners from - ? 0 合 cleaned any other way. Cleans in minutes without scrubbing, rubbing or disassembly.

For example - suitable for electronic components and assemblies, intricate glassware, camera parts, lenses and other optical items.

Cleans by means of high frequency sound waves $-50-55,000 \mathrm{cycles}$ per second. Solid state circultry. Completely self contained - NO EXTERNAL GENERATOR required. Portable the smallest is a 5 cube.
Largest capacity is $\mathbf{1}$ gallon (US). Virtually indestructible transducer. Long life - low cost.

Catalogue of cleaners, accessories and prices from:
Special Products Distributors Ltd., 81 Piccadilly, London W1V OHL Telephone: 01-6299556.

- P.A. SYSTEMS FOR AIRPORT. HOTEL. FACTORY.
- THEATRE AND LECTURE THEATRE AUDIO SYSTEMS
- AUDIO MIXING EQUIPMENT
- SIMULTANEOUS TRANSLATION SYSTEMS
- RADIO AND T.V. BROADCAST SOUND CONTROL EQUIPMENT
- marine intercommunication and entertainment equipment
- System design, manufacture and installation.

EIMEOAFD

Stop Ruining Your I.C.'s And Wasting Time Soldering Plug Into The Revolutionary New BIMBAARD
The Only Professional Quality Breadboard That Accepts All DIL Packages With 6 To 40 Pins Incorporates Bus Strips For Vcc And Ground Includes A Component Support Bracket Has Over 500 Individual Sockets

And Allows You To Use And Re-Use IC's, Transistors, LED's, 7 Segment Displays, Diodes, Resistors, Capacitors

Only $£ 9.72$ (cheque with order) Including VAT and P.P. Special Quantity Discounts Available For Radio Clubs, Retail Outlets, Distributors EOSS INDUSTRIAL MOULDINGS LID Higgs Industrial Estate, 2 Herne Hill Road, London. SE24 OAU, England Telephone 01-737 2383

DATA AND COMMUNICATIONS TERMINALS

Teletype $28,32,33,35,40$
TermiNet 30, 300 \& 1200 (30 and 120 cps)
Teleterm 1030 \& 1132 (portable 30 cps with integral coupler and RS 232C) Other page printers (by Siemens, ITT Creed, etc.) TermiNet 120 line printer

* Spares, repairs, overhauls and maintenance
* Other types and models available
\star Refurbished units also available
\star Short and long period rentals
* Minicomputer interfaces * Quantity discounts * Immediate delivery

TELEPRINTER EQUIPMENT LTD.
70-80 AKEMAN STREET, TRING, HERTS., U.K.

Telephone 0442-82-4011 Cables RaHNO Tring Telex 82362
A/B Batelcom Tring

WW-010 FOR FURTHER DETAILS

fault finding no fiddle

With the AVO TT 169 in-circuit transistor tester Co/No Co tests almost any transistor, diode or thyristor without de-soldering, without damage. Find out how it can save you time, save you monéy.
You'll find the price is no fiddle either. Contact your local wholesaler, or us:

AVO Limited, Dover, Kent CT17 9EN
Telephone: Dover (0304) 202620 n

For further information write or telephone FITCH TAPE MECHANISMS 7a Balham Grove London SW12 01-673 1362

NEW FROM COMPUTER APPRECIATION!

PDP $118 k$ Memory Module, type MM11L, £625.00
PDP 8L, 12 k with Teletype, £1,300. PDP 8L, 4 k without Teletype, $£ 650.00$
ASR 33 Teletype, with 20 mA current-loop interface and reader control, $£ 325.00$
MELCOM Model 84 Minicomputer with $12 k$ fixed head disk, paper tape reader and punch, I/O typewriter and two V.D.U. units, $£ 925.00$.
ITEL Paper Tape golfball typewriter, ex-demo, £275.00
FRIDEN Model 2305 FLEXOWRITER, ASCII coded, suitable for n / c tape prep., £575.00.
GENERAL ELECTRIC P1 12/V1 25 Punches and Verifiers for card orientated data-prep. Per pair, £125.00.
EKCO M5183 TTL Timer Counters. These units have very versatile switching, and will count frequency to 10 MHz . A wide range of external control and outputs are provided. NEW, £48.00
PRINTEC Model 100 High Speed (100 cps) printer. Very compact unit with several alternative interfaces available, EX-DEMO, £395.00
FACIT Model 4001 High Speed (capacitative) paper tape reader, £375.00.
HONEYWELL High Speed punched card SORTER, £195.00
GENERAL ELECTRIC 7-Track Magnetic tape units. With electronics and documentation, £75.00 each, or 2 for $£ 100.00$.

Computer Appreciation, Castle Street, Bletchingley, Surrey RH1 4NX 088384 (Godstone) 3106

WW-034 FOR FURTHER DETAILS

RADFORD HD250
 High Definition Stereo Amplifier
 A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250.
 Rated power output: 50 watts av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven.
 Maximum power output: 90 wetts av: per channel into 5 ohms.
 Distortion preamplifier: Virtually zero (cannot be identified or measured as it is below inherent circuit noise.)
 Distortion, power amplifier: Typically 0.006% at 25 watts, less than 0.02% at rated output (Typically 0.01% at $1 \mathbf{K h z}$)
 Hum and noise: Disc, - 83 dBV measured flat with noise band width 23 Khz (re! 5 mV); -88 dBV " A " weighted (ref. 5 mv)
 Line -85 dBV measured flat (ref 100 v) $-88 d \mathrm{BV}$ " A " weighted (ref 100 v)
 Hear the HD250 at

 SWIFT OF WILMSLOW

 SWIFT OF WILMSLOW}

5 Swan Street, Wilmslow, Cheshire (Tel. 26213) Mail Order and Personal Export enquiries: Wilmslow Audio, Swan Works, Bank Square, Wilmslow (Tel. 29599)
Also in stock: All Radford speaker drive units and crossovers, ZD 22 preamp, Low
Distortion oscillator LD03 and Distortion Messuring set DMS3.
WW-011FOR FURTHER DETAILS

EXPO DRILLS LTD.

LONDON

A TITAN DRILL mounted in a MULTI PURPDSE STAND
This drill is a powerful 1001 running on $12 v$ DC at approx 9000 rpm with a torque of 350 grm gm . Chuck capacity $3.00 \mathrm{~m} / \mathrm{m}$.
The multi-purpose stand is robustly constructed of steel and aluminium. The base and bracket are finished in hammer blue. Also available for use in the stand is the RELIANT DRILL which is a smaller version of the Titan. Approx speed 9000 $\mathrm{rpm}, 12 \mathrm{v} \mathrm{DC}$. torque $35 \mathrm{grm} . \mathrm{cm}$. Capacity $2.4 \mathrm{~m} / \mathrm{m}$

TITAN DRILL

$\mathbf{£ 9 . 6 1 + 3 5 p p}$ \& pinc. VAT

RELIANT DRILL

ONLY Cat. No. 0150
$£ 5.64+18 p p \& p$ inc. VAT
MULTI-PURPOSE STAND ONLY Cat. No. 0200
$£ 11.44+75 p p \& p$ inc. VAT
ADAPTOR COLLAR
FOR RELIANT DRILL
$\mathbf{£ 0 . 4 3 + 1 1 p p \& p i n c . ~ V A T ~}$ These are only two examples of the extensive range of power tools designed to meet the workers, model makers and others requiring small precision production aids.
To back up the power tools Expo Ltd offer a comprehensive selection of Drills, Grinding

SEND S.A.E (foolscap) for full detalls to main distributors

A. D. BAYLISS \& SON LTD.

Pfera Works. Redmarley. Glos GL19 3 JU
Tel: Bromesberrow (STD 053 181) 273 and 364
Stockists: Richards Electric. Worcester and Gloucester; Hoopers of Ledbury

The easy to use, easy to buy, general purpose scope the D61a

D61adualtrace Lightweight Oscilloscope

The so Milz 'seope that makes others seem expensive at ant price!
It took years of 'lelequipment experience and imensice design eflom to arrive at that unigue combination of effortess higher pertormance and remarkahle low cost which makes the I (t): so outstanding for gemeral pupose domes in the laboratory, the elassmom and the 'I' service department.

 widh, Pl.I Samomatically suitehed, chopped

 or 10 coll display driven an s.jht and the chone of single trace dual lrate or \triangle -
presentation?
And whow will send you full details on reyuses ? Who dse but Telequipment

Fid: Harpenden 031+1 Dede: 25559
Telequipment
< >

Versatile~that's our scope

wireless world

Electronics, Television, Radio, Audio

AUGUST 1976 Vol 82 No 1488
Contents
Broadcasting from on highSatellite broadcasting developments
Teletext at Heda. H.F. predictionsThe inventors by John Dwyer
News of the month
Dolby f.m. up-date
Mobile radio consortium formed
Citizens' Band radio association
Surface acoustic wave devices by J. Heighway
44 Letters to the editor
Low-noise cassette deck
Phase - Amos and Moir
Communication theory
47 Self-setting time-code clock by N. C. Helsby
52
Circuit ideas
Tone burst generator for testing p.p.ms
Fast modulo 3 counter
Direct reading transistor tester
Low noise, low-cost cassette deck - 3 by J. L.' Linsley Hood
Announcements. Sixty years ago
Surround-sound decoders - 3 by David Heller
Electronics in measurement
Characteristics and load lines by S. W. Amos
World of amateur radio
Earthing, shielding and filtering problems by R. C. Marshall
Optical fibre communications
Digital colour TV via satellite
New products
APRS exhibition notesReal and imaginary by "Vector"APPOINTMENTS VACANTINDEX TO ADVERTISERS

Photographer Paul Brierley
Front cover this month shows part of a high voltage generating circuit for an electron microscope made by the General Electric Company.

IN OUR NEXT ISSUE

Citizens' Band radio. How CB has developed in the USA, how it is being used, and how the industry and FCC are coping with demand for equipment and channels.

Projection television.

Technical survey of principles of optical systems used for projection and descriptions of equipment now on the market.

Non-linear characteristics. Circuits which need non-linearity for their action. Part 2 of series on characteristics and load lines.

SIXTY-SIXTH YEAR OF PUBLICATION

Does your present radio test equipment measure up to this?

The Solartron Schlumberger 4010A 4011

Time was when radio testing meant a clutter of space-consuming instruments, complex inter-connections, and out-of-phase calibrations.

We've changed all that. We've built a complete range of radio test equipment into a single compact unit - the
Solartron/Schlumberger Manual Radio Test Set. It comes in two models: 4010A and 4011.

Features include a synthesizer covering the range 0.01 to 480 MHz , depending on model, with decade manual and remote control facilities; $F M, \Phi M$, and AM modulation; frequency counter; RF power meter: AF millivoltmeter; AF generator; and a distortion meter and filter for noise weighting

The Solartron/Schlumberger 4010A/4011. The compact unit that measures everything in manual radio testing. Simply. Reliably. Quickly.

The Solartron Electronic Group Ltd., Farnborough, Hants. England.

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors:
MIKE SAGIN
Phone 01-261 8429
RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043

Production:
D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)

1 NIGEL LITTERICK
Phone 01-261 8037
LEO KEMBERY
Phone 01-261 8515
O. BAILEY (Classified Advertisements) Phone 01-261 8508 or 01-261 8423

JOHN GIBBON (Make-up and copy) Phone 01-261 8353

Publishing Director: GORDON HENDERSON

Broadcasting from on high

Direct broadcasting from geo-stationary satellites - for which we are now witnessing the first experiments - will certainly be a boon to the broadcasters. In the first place it allows coverage of enormous land areas, of a million or more square miles, at low cost from a single, sun-powered r.f. source of only 100 watts or so; and this is particularly economical when the population is dotted about in small isolated communities. It eliminates reception problems for people who live in mountain valleys or other places which are in the shadows for terrestrial broadcasting. And in countries which already have highly developed systems of terrestrial broadcasting it offers the possibility of additional services. In the last-mentioned situation, of course, the satellite broadcasting stations must use frequencies which do not interfere with the established terrestrial u.h.f. or v.h.f. transmissions used for existing services, and an article in this issue mentions how the 12 GHz bands allocated by the ITU for satellite broadcasting will come into play here. A great advantage of such centimetre wavelengths is that they allow very selective coverage: satellite transmitter aerials of reasonable size can send very narrow beams to illuminate small areas.
One of the interesting, and difficult, problems that has yet to be faced with broadcasting satellites is interference - both in the frequency sense and in the political/social sense. Already there is a possibility of frequency interference occurring between synchronous communications satellites stationed above the Indian Ocean. With broadcasting satellites it is theoretically possible for country A maliciously to send programme signals to a satellite belonging to country B and so attempt to broadcast the programmes to country B, but in practice, of course, this would be pointless because both country A's programmes and country B's programmes would be made unintelligible by mutual interference. But malicious jamming could take place on this principle.
More innocent, but nevertheless potentially troublesome, is the possibility of overlapping service areas. We have already seen that India's television programmes can be received via the ATS-6 satellite in Northern Europe (March 1976 issue, pp.68-70) - though this might be dismissed as a DX-ing activity. A particular problem arises where there are adjacent countries with widely differing political/social/economic systems (e.g. Western Europe and Eastern Europe), and the sustaining of the different ideologies relies partly on the control of broadcast programmes. In such a situation the overlapping of service areas of broadcasting satellites may be seen as adding something new to the techniques of propaganda, even though it is not different in principle to the overlapping that occurs in conventional broadcasting. This problem of "overspill" in satellite broadcasting has already been discussed at the United Nations. For such reasons the development of satellite broadcasting services can never remain purely in the realm of engineering.

Satellite broadcasting developments

After India, first steps by Canada, Japan, Russia and Europe

The undoubted technical success of the Indian experiment in direct television broadcasting from a satellite (see March 1976, p.68, Dec. 1975, p.549, Dec. 1973, p.609) has been a great encouragement to all engineers and administrators working in this field of direct broadcasting from synchronous satellites. The social results have yet to be assessed and the indications are that things are not as rosy as on the technical side - we have been told, for example, that the ATS-6 broadcasting experiment in 1975 for isolated communities in North America was considered a failure.
Meanwhile three more such experiments are going ahead, in Canada, Japan and the USSR. The Canadians have built a satellite, the CTS (Communications Technology Satellite) which was launched by NASA in January 1976, and among other things it is hoped to use the high power 12 GHz transmitter of this to test experimental receivers for satellite broadcasting. Then in 1978 the Japanese will be broadcasting from a satellite built in the USA and also launched by NASA. The interesting point about these two experiments is that they are the first to attempt to use the 12 GHz band allocated by the International Telecommunication Union for satellite broadcasting* and a new era of microwave television receiver technology is about to be ushered in. (D. B. Spencer and K. G. Freeman gave some indication of the nature of this receiver technology in their article "Television broadcasting from satellites" in our March 1974

[^2]issue.) Also, in January 1977, the International Telecommunication Union will be holding a planning conference for satellite broadcasting in the 12 GHz band. A consultative group of the European Broadcasting Union for this type of service has in fact already stated that within the European broadcasting area it is possible to establish a plan for channel assignment, signal polarisations and positions of satellites in synchronous orbit that will allow each country to have a service of four television programmes and about 15 high-quality sound channels without causing unacceptable interference.
But why 12 GHz ? One basic reason for the choice of this allocation in the developed countries (e.g. Europe, Japan, North America) is that most of these countries already have estab-

Ancient and modern materials are combined in this receiving antenna used in India for the ATS-6 satellite television broadcasting experiment. Wire mesh dish is supported in a mud and brick structure built to face the satellite
lished terrestrial broadcasting networks working on u.h.f. and the use of the ITU's satellite broadcasting allocation at u.h.f. would cause intolerable interference with these. By contrast the undeveloped countries (e.g. India, Brazil) have no such u.h.f. terrestrial broadcasting systems. A second reason for the use of the 12 GHz band is that the small wavelengths in this frequency region, a few centimetres, make possible narrow beamwidths from the satellite transmitters - about 1° - so that small countries or small regions can be separately "illuminated" without too much overlapping or interference between transmissions. Also, small; receiving aerials are possible (e.g. 75 cm , diameter with a satellite transmitter power of about 500 W).
The Canadian CTS satellite actually Canada's eighth satellite was built at the Communications Research Centre near Ottawa, with subcontractors Spar Aerospace for the structure and RCA for electronics. It is in synchronous orbit above the equator at $116^{\circ} \mathrm{W}$ longitude and is maintained in station to an accuracy of $\pm 0.2^{\circ}$, with comparable pointing accuracy, using

three-axis stabilization (to which it was transferred from spin stabilization). Electrical power of about 1 kW is provided by 27,000 solar cells carried on a pair of $22 \mathrm{ft} \times 4 \mathrm{ft}$ "sails". The transmitter's maximum r.f. output of 200 W at 12 GHz is provided by a travel-ling-wave tube, supplied by NASA, but unfortunately the associated power-supply switching system developed a fault soon after launching. It is hoped nevertheless that the high-power tube can be operated satisfactorily for certain periods. Also on board is a 20 watt 12 GHz travelling-wave tube, contributed by the European Space Agency, which can be directly connected to the antenna to provide a lowerpower transmission. Signals are sent up to the CTS in the 14 GHz communications satellite band.

There are two gimballed antennas on the spacecraft, each being used simultaneously for transmission and reception. Each antenna provides a beam coverage area corresponding to that of a 2.5° circular beam, and can be positioned by command from the ground so that the beam can be aimed at any point within a 15° cone. In the transmission bands (11.843-11.928 GHz and $12.038-12.123 \mathrm{GHz}$) the effective isotropic radiated power (e.i.r.p.) capability is 60 dBW (compared with 51 dBW for ATS-6) when using the 200-watt tube.

Although initiated by Canada, the CTS project is a co-operative Canadian/USA experiment and the satellite is being shared by the two countries on a $50-50$ basis. The main purpose of the project is to try out various methods of broadcasting and communication to remote areas, and it will act as a relay for over 20 experiments, some of which will be purely engineering and some for social, administrative, scientific, educational, medical, entertainment and other such purposes. One of the broadcasting experiments, conducted by the Canadian Broadcasting Corporation will be to evaluate reception of 12 GHz television signals in a metropolitan environment, using a 2 -metre diameter dish antenna and a professional receiver. Another is planned to test direct satellite-to-home television broadcasting using a 1 -metre dish and ordinarydomestic television sets with 12 GHz front ends made in Japan and Europe. A further experiment will be in sound broadcasting - sending the programme signals from studios via the CTS satellite to individual sound broadcasting stations. British made 12 GHz receiving equipment has already been set up in Canada for evaluation with the transmissions.

Canada's main ground control station for the CTS is in Ottowa and uses a 9 -metre diameter dish antenna. The expected life of the CTS itself is about two years.

The Japanese experimental direct broadcasting satellite, called BSE
(Broadcasting Satellite Experiment) and made by General Electric in the USA with sub-system by Toshiba, will be launched by NASA in February 1978. It will be placed into synchronous orbit over the equator at about $110^{\circ} \mathrm{E}$, approximately over Borneo, and will keep in station with an accuracy of $\pm 0.1^{\circ}$ and have a pointing accuracy of $\pm 0.2^{\circ}$. The 12 GHz transmitter will have two travelling-wave tubes, each with an r.f. output power of 100 W , and the shaped beam from the satellite's antenna, which has an elliptical reflector, will be adapted as closely as possible to include the Japanese outer islands but to reduce the radiation impinging on China, Korea and Siberia. The maximum e.i.r.p. will be 58dBW. Power for the electronic equipment is provided by two solar cell "sails" with nickelcadmium secondary batteries, giving a power of about 800 watts.

This experiment will provide two frequency modulated colour television channels, each with a channel bandwidth of 25 MHz , and a number of sound channels. Again the signals will be sent up to the satellite in the 14 GHz communications band. Expected life of the experimental satellite is three years.

One of the reasons why Japan needs a broadcasting satellite is that about a million households are located in mountainous areas (about 22% of the population), in remote islands, or in shadowed positions in cities, where normal terrestrial television reception is poor. Also, the Japanese expect an increasing demand for educational television channels in their country, and these could well be provided by a satellite.

As part of this Japanese experiment, four types of ground terminal will be tested. The largest will be a transportable station with a 4.5 -metre dish antenna and two-way transmission of television and sound signals. Next in size will be a mobile station with 2.5 m antenna and also with two-way television and sound transmission. The third type of terminal will be for reception only with antennas of 2.5 m and 4.5 m ; while the fourth type will be for high quality community reception, using a very rigid, carefully oriented 1.6 m antenna and a high quality television receiver. For s.h.f. reception a very neat 12 GHz front end has been developed by NHK, the Japanese broadcasting organization, with a very low noise figure $(500 \mathrm{~K}$ noise temperature over a bandwidth of 180 MHz), only one down-conversion frequency change, and housed in a small box of about $\operatorname{3in} \times$ lin. There is also a simplified f.m. to a.m. modulation converter for use with the television receiver.

The service area of the satellite is envisaged as being in two parts. There will be an inner part, including the four main islands of Japan, and for this a medium power electromagnetic flux density ($-99 \mathrm{dBW} / \mathrm{m}^{2}$) will be provided,
allowing the use of the 1.6 m diameter receiving antennas and 500 K noisetemperature receiver front ends. The outer part of the service area will extend over the remainder of the country, including the remote islands (such as the Sakishima Islands) and will receive a low power electromagnetic flux density ($-110 \mathrm{dBW} / \mathrm{m}^{2}$) requiring the use of the 4.5 m diameter antennas. The possibility of signal attenuation due to rainfall at 12 GHz has been studied, but this proves not to be too serious. Investigations made in Tokyo show attenuations of 1 dB for 1% of the time and 7 dB for 0.01% of the time.

In Russia a synchronous satellite called Statsionar T for television broadcasting within the territory of the USSR is being launched this year. It will be placed above the equator at $99^{\circ} \mathrm{E}$ longitude, above the eastern part of the Indian Ocean and will transmit in the official ITU u.h.f. satellite band at 714 MHz . Signals will be sent up to it on 6.2 GHz from a ground terminal at Gus-Khrustalnyi near Moscow. The first receiving stations will be community reception centres in Siberia, eastern. regions beyond the Urals and places in the extreme north of the USSR. Distribution of sound and television programmes will be handled by a second Russian satellite, a synchronous communications type named Statsionar 2, which will be stationed at $35^{\circ} \mathrm{E}$ longitude over East Africa near to the ATS-6, and this will operate in the well established 4 GHz and 6 GHz communications bands.

Europe seems to be lagging behind with 12 GHz broadcasting satellites, in so far as the broadcasting and other organizations are still only at the talking stage. The EBU consultative group in fact reports that an experimental, pre-operational broadcasting satellite, probably developed by the European Space Agency, could be launched in about 1980. There is less urgency in this part of the world because the European countries are already well served by terrestrial broadcasting systems. As the consultative group says: "It is becoming more and more evident that satellites will in the future form the best means for the broadcasting of national programmes to countries with relatively large surface areas, the terrestrial networks being better adapted to regional local and special programmes (for which there is an increasing need) as well as, naturally, national programmes in smaller or more-easily covered countries." The consultative group points out, however, that it may be advantageous for EBU countries to change eventually to satellite systems for national programmes, in place of the present terrestrial networks. However, even if this were to be done, conventional terrestrial transmitters are still likely to be needed to fulfil requirements for local programmes.

Teletext at Heda

The appearance at the Birmingham Home Electronics and Domestic Appliances exhibition of a large number of television receivers with teletext and Viewdata decoders built in may have deceived the casual onlooker into thinking that this type of set is almost in the shops. Conversation with the exhibitors, however, made it plain that this is not the case and that most of the equipment on view was not even of pre-production status.
Many teletext receivers shown use the Tifax decoder made by Texas Instruments, for the very good reason that it is the only one available which employs large-scale integrated circuits to achieve a small and reasonably inexpensive unit. Some manufacturers said that they were using their own design of decoder, employing t.t.l. small or medium-scale integration (around 80 packages) but were "considering" Tifax or the Mullard i.s.i. module, when it appears. Most recent or new receivers can cope with teletext, but Rank Bush Murphy have used an acoustic surface wave filter in their i.f. amplifier for improved phase response. Degradation of signal down to the point where eye height (W.W. p.59, Mar. 1976) is $15-20 \%$ can be tolerated, according to most of the set makers we questioned.
All but one of the teletext demonstrations were by means of integral decoders, many using ultrasonic keypads combined with the ordinary receiver controls in a hand-held unit, but one company - Labgear - were

Tifax 14-package teletext decoder by Texas Instruments
showing an "add-on" decoder which can be placed in the aerial lead. To do this, the signal is processed by lownoise u.h.f. tuner and i.f. strip, passed to a Tifax decoder and the teletext characters (not the data signal) modulated onto a u.h.f. carrier. The performance of the i.f. amplifier in this kind of system should be better than that of the amplifier in a normal receiver, since the character clocking rate is $7 \mathrm{Mbit} / \mathrm{s}$. The data bits normally received are also at $7 \mathrm{Mbit} / \mathrm{s}$, but are of "raised-cosine" form and in a non-re-turn-to-zero code, which gives a bandwidth of 3.5 MHz . The Labgear display was not as sharp as that normally seen and it was explained that the response of the amplifiers was such as to turn the rectangular character waveform into a rounded shape.

Decca's teletext receiver uses the Texas X887 r.o.m., which forms part of the Tifax unit, in a decoder of their own design. Facilities provided by Decca include the display of channel number, date and time when changing channels and the possibility of a doubling in height of parts of the display.

Viewdata was shown by most of the manufacturers, who use the r.a.ms and character generators already present in teletext decoders and use a universal asynchronous receiver/transmitter (u.a.r.t.) or a Post Office modem and microprocessor for the signal-conditioning and organisation of the data. Manufacturers seemed optimistic about the future of teletext and Viewdata, although Michael Butler of Philips did think that more tests of the system in Europe were needed.

HF predictions

There is still no sign that solar activity is moving away from the low level experienced for the past two years. Comparison with previous sunspot minimum periods shows that it will be unusual if an increase has not started by the end of August. Sunspot numbers for the next six months are required to confirm that a distinct upward trend exists, but once this has been established a long-range sunspot number forecast using an increase of five per month for the following eighteen months can then be made with confidence.

The inventors

Britain never had greater need of innovation and original ideas. Yet, when they do appear, how do we treat the innovators?

by John Dwyer

The traditional picture of the inventor is of one who is bald, bespectacled, and irredeemably dotty. However accurate that may be, it is usually true that the inventor refuses to listen to sensible advice, even that offered by those generally accepted as knowing far more about his chosen field of invention than he does.

But while his deafness may be an embarrassment to the new Royal Chartered aristocracy, the rest of us should be grateful for it. When D. E. Hughes demonstrated, with a telephone earpiece and what would now be described as a primitive copper-oxide rectifier, that he could hear the interruptions in a circuit located hundreds of yards away, the Royal Society were not impressed. He had walked up and down Great Portland Street, London, one day early in 1880 and the clicks in his earpiece could be heard 500 yards from where his "interrupter" was operating, but Sir George Stokes, president of the Royal Society, said the phenomenon was due to induction. ${ }^{1,2}$

Another example of "misguided" persistence was Edwin Armstrong's advocacy of frequency modulation. In .this case, Armstrong had a proven record - he had already invented the superheterodyne and had several feedback patents to his credit. He patented f.m. in 1933, but he met with opposition from the radio companies, many of whom were motivated less by any consideration of the technical merit of the system than by avarice, since they and the set manufacturers already had a stake in a.m. According to one account; ${ }^{3}$ Armstrong's idea was finally taken up by a rich friend, John Shepard, who owned the Yankee network. Shepard built a station for the new type of broadcasting and public demand did the rest. According to another ${ }^{4}$ Jack Hogan of Radio WQXR, which was owned by the New York Times, co-operated with Armstrong, allowing him to present the first regularly scheduled programme on f.m. radio, using music from WQXR on July 18, 1939.

The demand for static-free radio was immediate, large and lasting. By December, 1941, f.m. receivers were
being produced at the rate of $1,500 \mathrm{a}$ day.

Despite the evidence available on the other side of the Atlantic it was May, 1955, before an f.m. service began in Britain. Field trials with low powered transmitters had begun ten years before, although, as Geddes ${ }^{5}$ puts it, "The results were encouraging, but did not yield a conclusive answer to the question 'a.m. or f.m.?'" Wrotham transmitter was built as an experimental high power transmitter broadcasting both a.m. and f.m. signals. It started that broadcast in July 1950. The official f.m. service began five years later, 22 years after Armstrong's patent.

It is easy now to be critical of the American stations and the BBC because, with hindsight, we know that f.m. was a good idea. Many ideas aren't so good. Eric Laithwaite, professor of heavy electrical engineering at Imperial College, London, and developer of the linear motor used in the Hovertrain, commented: "For every exploitable invention that is. worthy there are a thousand that are not, and if you sit in the corridors of power trying to decide, how shall you decide whether there is genius when you yourself are not a genius?"

An inventive nation

As a nation we seem to have become used to the idea that we will invent the thing and the Americans will make money out of it. The Hovercraft seems a good example, but Britons invented the electric motor, the electromagnet, the telegraph, the computer, radio telegraphy, the radio valve, probably television, certainly radar and the cavity magnetron, to name just those things of direct interest to Wireless World readers. Others include Terylene, Rayon, polyethylene, stainless steel, foam rubber, Perspex, silicones, the electric vacuum cleaner(!), the disc brake, the carburettor, various forms of bicycle, Celluloid, the refrigerator, linoleum, the deck chair and the export-spinning miniskirt.
We don't always show inventors the door. Guglielmo Marconi had performed a series of successful experi-
ments in his native Bologna but could 'extract no help from the Italian Government. So he came to England, and went to see A. A. Campbell Swinton at his home in Victoria Street, London. Swinton gave him a letter of introduction to Sir William Preece, Engineer-in-Chief of the Post Office and himself an experimenter in wireless. Thereafter Marconi prospered.

The site of the house Marconi visited in Victoria Street is now occupied by the offices of the National Research and Development Corporation, a govern-ment-backed body set up in 1948 to develop and exploit inventions from universities, companies, government research establishments or private individuals. The NRDC has come in for a great deal of criticism. Its position is, in many ways, untenable; either it is accused of rejecting too many ideas, largely by inventors who have approached the NRDC with an idea and been rejected, or it is accused of spending money on projects that are not a commercial success. In answer to the first, Roland Rosser, who deals with private inventions for the. NRDC, echoed what Professor Laithwaite had said. Of all the inventions dealt with by the Corporation about three per cent were those of private individuals, he estimated, and "about $21 / 2$ per cent of 'private inventions are worth looking. at." Many good inventions were snapped up by industry for develop-: ment straight away, so that they never: reached the NRDC.

Perhaps the most famous, and certainly the most expensive, private invention sponsored by the NRDC was the Hovercraft, and its sister the Hovertrain. Christopher Cockerell was an electronics engineer at Marconi's for 15 years after he began his career in 1935. Twenty years later he invented the Hovercraft and in January 1959 the NRDC set up a subsidiary, Hovercraft Development Ltd, to exploit the invention. Although the original amphibious vehicle still has the aura of a missed opportunity, perhaps a worse example of official blindness was the abandonment of the Hovertrain. NRDC set up another subsidiary in 1967, Tracked

Hovercraft Ltd, to develop it, but two years after doing so they discovered that the amount of money required to make the train commercially viable was beyond its means.

The Department of Trade and Industry told the National Research and Development Corporation later that no further funds would be advanced, with the result that the Hovertrain project was wound up in $1973 .{ }^{6}$ Yet the amount needed was small, particularly when compared with the amounts spent on Concorde.

The NRDC does not have a free hand. It cannot supply money for the setting up of plant or machinery to make a product commercially. Their concern is to develop an invention from an embryo stage to the point at which it is ready for commercial production. Neither is it interested in the development of what it calls gadgets. The excuse is that it is spending public money and so must use. the money for projects which they consider will be of public benefit.

The corporation finances itself, and pays off the money the government put in to start it off, by taking over the patents in a project, licensing them to industry and paying the inventor a royalty. The NRDC wishes that more private inventions would prove worthy of exploitation, but the apparent restrictions on the kinds of ideas that the NRDC can involve itself in make it unlikely that the number of exploitable submissions from private inventors will increase.

Backers lacking

These restrictions have another effect. Mr A. L. T. Cotterell, secretary of the Institute of Patentees and Inventors, said that the total income of his Institute, including a DTI grant of under $£ 2,000$ was $£ 18,000$ a year. Most of it came from subscriptions. "The institute would like to back inventions but we don't have enough money. The government say the NRDC is there for that."

Tomorrow's World have done a survey showing that only one in five out of 2,350 published items ever saw production at all and of those only one in five hadn't "bitten the dust". These figures also have to be seen in the light of the rejection rate before the programme goes on the air. Many of the letters asking for an appearance on the programme do not reach Michael Blakstad, the editor, and of those that do about one in ten goes on the air, though other items appear which the Tomorrow's World team search out for themselves. The individual inventor usually has preference in the choice between two comparable items. Of the organisations that exist to help inventors he said: "My feeling generally is that it's not a very well organised field and that a really slick entrepreneur could make a lot of money." He also thought too few patent holders tried the simple expedient of advertising for backers in journals.

Professor Laithwaite was in no doubt about one cause of the problem: "Industry won't take on a half-baked project. Industry wants it presented to them on a plate, because their accountants say that it has to be that way."

But Mr Cotterell of the IPI was less critical of manufacturers. "You get inventors who claim that they have something important which nobody seems to be interested in. Usually the idea has no commercial viability or it may be unsuitable for some other reason." I asked him how the IPI could help: "We can hold their hands, and this is particularly important in the beginning." He gave the example of a man who had mortgaged his house and borrowed money from the bank to meet the cost of tooling up for the production of his invention. He ran into trouble with the tooling firm and eventually ended up in the courts. "We could have advised him so that he could avoid all that."

A characteristic of individual, as opposed to corporate, invention has. been that some highly unlikely people have been responsible for the innovating. Legend has it that the dial telephone was invented by an undertaker, the hermetically-sealed refrigerator by a French monk, and the kodachrome process by two music students. Gillette was a travelling salesman in crown corks, Mr Biro, who invented the ballpoint pen, was a painter, and Dunlop was a vet. The parking meter was invented by a journalist, and all the various type of automatic gun that have come into use over the years have come from individual inventors who were also civilians. The phenomenon has led Christopher Cockerell to remark: "I sometimes think that if some competent electronics engineers got into the treasury and challenged their conventional wisdom, we'd probably
have an end to stop-go in the economy."

Pinch or pigeonhole?

No matter how complex your idea it is little use relying on the astuteness of civil servants to perceive its value. Eric Laithwaite's comments about Whitehall would have seemed more than apt to Christopher Cockerell as he tried to persuade various government departments to promote the hovercraft. Were he dealing with anyone else, one would hardly believe the difficulties he faced: "The Admiralty, on the grounds that it was not a proper boat, shuffled the device on to the Minstry of Supply. A demonstration was held in a basement in Whitehall where the little hovercraft, belching diesel fumes, buzzed around the floor at such a speed that one anxious civil servant jumped on to a chair." ${ }^{7}$ The craft was put on the secret list, and Cockerell became convinced that officials were trying to pigeonhole the idea.
Sometimes officials seem to be doing rather more pinching than pigeonholing. For example, a tribunal of enquiry was appointed to look into the case of John Hargrave, who has conducted an eight year battle to win recognition for his development of a moving map navigational aid similar to that used in Concorde.

Hargrave, now 81, has documented the history of his autonavigator meticulously. On the afternoon of June 13, 1937, he was invited to Hatfield aerodrome to meet an RAF officer friend, Squadron Leader McKinley Thompson. He was appalled by the primitive way pilots were expected to navigate. The pilot had to draw a pencil line for his course and fold his maps over and over, all the time controlling the aircraft. He thought anout the problem and, according to his own account, the way round it suddenly came to him one evening, seven weeks later. "I stayed up all night," he told me, "and made a model out of bits of cardboard and paper and a child's magic lantern, and it worked." When his wife appeared at breakfast the following morning, July 31, it was ready.

The purpose of the instrument, which in its later form looks rather like a CRO, was to show a map of the land over which the aircraft was flying, with the position of the plane at the centre of the display. The map moved across the screen as the plane travelled. The display rotated as the plane changed direction, and wind-drift was allowed for.

Hargrave and Williams demonstrated the model to Smiths Instruments on February 9, 1939. They wanted Smiths to produce a gyro-controlled model, but Smiths wanted to know the attitude of the Air Ministry before they would do so. At a subsequent meeting with the, head of the Air Ministry's navigation' , department, Wing-Commander P. H. Mackworth, D.F.C. they were told the air ministry had "failed so far to solve
the problem of constructing an effective air navigation instrument in the form of a moving map . . . during the last 14 years." He was greatly interested in the instrument and asked that a written specification be submitted "so that the principals and mechanism can be carefully studied by the Air Ministry technical staff and the whole idea be thrashed out between them and my own department."
Next, the head of research department, Squadron Leader May, flight tested the Model II and reported that, in spite of the crudities of the hand-controlled, clockwork driven model the invention was, in his opinion, worth going on with. On the strength of this Hargrave applied for an air ministry development contract, but the war prevented this going further. On May 31, 1940 the device was used on a routine bomber run with the ordinary maps locked away. The pilot reported that he thought the instrument a practical form of moving map and suitable for use in his aircraft.
In October 1941, Hargrave received a letter from the director of technical development of the Ministry of Aircraft Production saying that there was no chance that the autonavigator could be put into production as there was not enough spare production capacity. Nevertheless, Hargrave and Williams pressed ahead. They demonstrated the Model II, in the following months, to an impressive list of defence top brass including Winston Churchil, Lord Beaverbrook and Air Marshall Sir Philip Joubert. As the Sunday Times reported in 1973, 'Of the 27 people who were given details of the Hargrave instrument, 23 were either officers or officials of the Crown, a vital point in Hargrave's claim." ${ }^{8 .}$
In May, 1942 Hargrave received a letter of agreement from instrument makers E. R. Watts \& Son of Camberwell, London, to develop the mark III fully automatic model, and to pay a royalty of not less than 10 per cent on each one sold when the model was produced. The agreement was never carried out. According to the Sunday Times account, Hargrave never heard from Watts again. Four months later, however, he received a letter from a Group Captain Peter Stewart, who wrote to him from the War Office saying "I cannot too strongly urge you to continue development of this instru ment. . . ." Hargrave says this is the most important of the 19 official communications in his files. By the end of the war, however, his patents lapsed owing to non-payment of the yearly renewal fees.

Over twenty years later, the cover of the February 10, 1967, edition of the Daily Telegraph Magazine carried a photograph of the cockpit of Concorde The prototype of the plane had not yet fully appeared, and the first flight was not to take place until March, 1969, but the photograph showed a section of the

instrument panel to which the text referred as follows: ". . . There is even a moving map display, which continuously indicates the aircraft's position in relation to the earth below.".

There are two main pillars to his case. He realises that his legal rights to the invention ceased with the lapse of his patents in November, 1946. He claims, however, that he is entitled to an ex-gratia payment, and cites the example of Sir Frank Whittle, whose patent on the jet engine expired in 1935, but who subsequently received $£ 100,000$ from the government.

The more substantial basis of his claim, however, is contained in the Report of the Royal Commission on Awards to Inventors (Use of Inventions and Designs by Government Departments). Paragraph 117 states that "where the claimant had shown that his invention was communicated to the appropriate Government Department and where in addition it was proved or admitted that an invention similar to that suggested by the claiment had been used in the service of the crown . . . the crown was required to show that the claimant's communication had not contributed to the Crown use
Unless it could be shown by the Crown beyond all reasonable doubt that this subsequent development was wholly uninfluenced by the claimant's communication, this residuum of doubt should weigh in the scale in favour of the claimant."*

Whose transistor?

It often happens that an inventor doesn't get the credit for an idea he has thought up, though we must allow that whenever an invention is made public a horde of innovators descends yelling "I thought of it first." In conversation with Professor Laithwaite, for example, you discover that although Wheatstone invented the concertina, he didn't invent the Wheatstone bridge. He was responsible for producing the first linear motor, the second being made by Henry

[^3]Fox Talbot, the father of modern photography, of all people, but it was Wheatstone's assistant who devised the bridge; Wheatstone merely gave the lectures.

If you asked most engineers who invented the transistor they will reply "Shockley". Shockley's own detailed account ${ }^{9}$ of the discovery seems to confirm that view. "On 29th December 1939 I wrote a disclosure of what in principle was a sound concept of a semiconductor amplifier . . . Research in my notebook entries show that experiment based on the 1939 disclosure were carried out before Feb 6, 1940. However, :my disclosure waited nearly two months, until $27 / 2 / 40$, before it was witnessed by J. A. Becker, Walter Brattain, supervisor. Two days later on leap year day of 1940, Walter Brattain and I both signed a modification of the earlier disclosure. This disclosure . . . shows a more or less standard copper oxide varistor unit with two lines of metal forming electrodes on the surface of the oxide. It would today be called a Schottky-barrier, field effect transistor. It was prophetic of developments that were to come 20 years later as parts of integrated circuits using field effect transistors."

If Shockley was aware of any previous work he doesn't acknowledge it. The fact that he details the structure of a device which he did not make, and the principles of which he had later to abandon, suggests that he thought the idea original.

So did Oskar Heil. A recent article in $\mathrm{Hi}-\mathrm{Fi}$ News ${ }^{10}$ drew attention to the possibility that Shockley had not been first to think up a solid state device which might replace the valve. Heil took out his patent, British Patent Number 439457 in 1935, a year after the German application. "This invention," states the second paragraph of the specification, "relates to electrical amplifiers and the like and provides novel apparatus adapted to effect alternating current amplification and to perform other functions, e.g. general control functions such as have usually been performed hitherto by thermionic valves. In general terms the present invention, which, as will be seen later, embodies a principle which is believed to be new and is based upon a discovery believed to be new - may be stated to provide a substitute for thermionic valves."

The device Heil describes is based on the theory that "if a semi-conductor be arranged as to form part of a condenser which is subjected to a varying voltage charge the resistance thereof will vary as a function of the said varying voltage and according to this invention this phenomenon or effect is utilised for amplifying or other control purposes." The device is nothing if not an insulated gate field effect transistor. Although the production techniques needed to make the device efficient were not available when Heil devised it, he says in the
patent that the best way to form the electrodes is by vaporising metal or by depositing metal by cathode dispersion.
The most likely explanation is that Shockley didn't know about Heil's. work, and it may well be that more detailed researches would reveal pre-Heil devices which differed little from that which he patented. It is just strange that a patented device should so have been overlooked. "The things that humans are worst at doing is communicating with one another," said Professor Laithwaite. "I would not be aware of what my opposite number is doing in Newcastle. He might be doing something which is just the thing I want, I may never know . . . Our communicatiopn is our very worst feature as animals on this planet."

Laithwaite is the model of a good communicator, perhaps because he knows how important communication is. A close associate told me he was always in trouble for saying the wrong things in public, and one acquaintance said he was in danger of becoming 'a bit of a bore', but he seems to thrive on battles with the scientific establishment. "It's like the theatricals will tell you: only no publicity is bad publicity." He has less relish for personal criticisms directed at him by the press, and perhaps the wounds inflicted by the New Scientist after a discourse he delivered to the Royal Institution still hurt.

Jones the gyroscope

To discover what all the fuss was about you have to examine the claims of one of a most remarkable character. Laithwaite, no intellectual slouch himself, described him to me as "a rare man," and said that some of the things he had written showed "the absolute hallmark of a genius." He did admit to grave reservations about the man's experimental method, however, and added that to touch the gems of genius in his correspondence you had to wade through a lot of things which were erroneous and inconsequential.
He speaks of Alex Jones, whose background as a heating and ventilation engineer has served only to allow him the great inventor's traditional freedom from too great a knowledge of his subject. Whatever the value of his thoughts, Jones is a highly original thinker, someone who can take nothing on trust. Conversation with him is stimulating, perplexing and, at times, disturbing.
He says that what set him off was a friend's asking, "Does gravity pull or push?" From that unpropitious beginning he has formulated a theory which, if generally adopted, would turn gravitational physics on its head, and has build a machine which, he thinks, defies gravity itself.
He questions all kinds of assumptions, the most basic being the usual interpretation of Newton's laws of motion. The second law, in particular,
he says, has been misinterpreted. Newton's Latin phrase 'mutationem motus' "is alteration of motion; it mentions nothing of momentum."

Further, he questions the usual account of the Michelson-Morley experiment, which was designed to determine the speed of the earth through the ether. The result, we are told, was null, and it was therefore concluded that the ether didn't exist and, later, that the speed of light was independent of the motion of the observer. This in turn led to the theory of relativity. Altogether the experiment is a crucial one in modern physics, but Jones says we've built the tower on sand. 'The result was very firmly other than null.' He says that the difference or displacement involved was about 0.02λ, where λ is the wavelength of light. The reason the experiment was first thought to fail was that they were using a closed system, they measured phase displacement, and they took no account of Dòppler effect. The ether, he postulates, does exist: "I know the shape of it, and what its structure is, even."

Alex Jones, thinker.
The existence of the ether is crucial to his theory, which is that gravitation "is a sort of pressure created by the motion of a mass which is going in a straight line." The masses moving through the ether produce a longitudinal displacement wave, he says. Two bodies moving relative to one another experience a mutually repulsive force proportional to their relative speed.
The next step was to demonstrate the theory. "How can I make a machine which has one part of it always moving faster on one side than on the other, which brings you to the gyroscope." A gyroscope spinning on its own axis. exhibits no odd effects when its axis is stationary but, when the gyroscope axis is made to precess, the conditions he outlines above, assuming the existence of an ether, are fulfilled.
He devised and built a machine which was shown on Tomorrow's World two years ago. It is explained in a description of the experiment which he wrote in August, 1973. An electrically driven flywheel is mounted at the end of a
pendulum hung by a universal joint from a frame which is then mounted on ball bearings. The spinning flywheel is moved to one side of the frame so that the pendulum is at an angle to the vertical. When the flywheel is released it precesses around the point of suspension but there is no reaction on the pivot. Not only that, but the frame in which the apparatus is mounted moves to follow the flywheel, not to go in the opposite direction. The experiment demonstrated, he thought, the creation of a force which could counteract gravity.
He took the experiment to Roland Rosser of the NRDC, who according to Jones saw it move across the floor in the way I've described. "I said 'Did it translate?', and he said 'Yes', and then proceeds to tell me why it didn't work." He also quotes Rosser as saying "My job is much easier if I reject everything." Rosser, naturally enough, is not prepared to discuss this or any other individual case.
Jones had arranged a meeting with Laithwaite and, in Laithwaite's private laboratory, had shown him a machine he had made, though not the one he had shown Rosser which, by this time, had gone to Hawker Siddeley.
Laithwaite has described Jones's experiments to me as "bogus". He told me the floor in his laboratory was not level, it has turned out, and so the experiment proved nothing. "He has made a number of machines and not one of them works. It is not that. his experiments are wrong, it's the interpretation he puts on it. He makes the experiment appear to do what he wants it to do ... Alex has yet to show me the first piece of convincing evidence that an object can lose weight."
I quoted to Jones what professor Laithwaite had said. Had the floor been uneven? "Yes, but he knows damn well that we've shown the machines go uphill because we always run them both ways on his desk."
What about none of the machines working: "Ah, but he accepts the one I showed Rosser." Laithwaite had not actually seen the Rosser machine, which ended up at Hawkers, but Jones had submitted a new explanation to Laithwaite as to why the machine worked and, according to Jones, Laithwaite said "Ah, we have at last a machine which could work." Jones admitted that he hadn't understood, at the time, why the machine did what it did, "But by God I understand now."

What about the "bogus" description? "But it wasn't, you see. Eric is now coming round to this in his maths. I can see it happening now and I know that in a year's time there's going to be one very surprised Eric."
Truth to tell, he may not be far out, though Laithwaite may remain unconvinced about gravitation. "The important thing," said Laithwaite, "is that Alex communicated with me... I tried to isolate the effect he'd got and one day

I came across an effect which was readily reproducible which was totally unacceptable to me in terms of conventional physics. And that set me on a road from which I have never turned back."

On the evening of November 8, 1974, Laithwaite gave a discourse at the end of which he presented a machine which he said violated gravity and produced lift without any external reaction. The machine was mounted on a set of kitchen scales. It consisted of two electrically driven spinning tops. The precession of the tops would cause them to rise were it not for a track attached to the frame of the machine. The tops followed the track and caused the machine to move up and down. Laithwaite said there was more upward movement than downward. Gyroscopes of the type used in navigation and direction finding were adequately described by Newton's laws, he said, being supported through their centres of gravity. But the child's spinning top, spinning on a point on its base, was not.

He maintained that the angular momentum of precession about a vertical axis was created out of nothing, so angular momentum about the axis was not conserved about that axis as suggested in Newton's laws.

He also said that the precession was not accompanied by any centrifugal force, that no force was needed to stop the precession, and that if the precession speed were increased the tops rise without there being any corresponding downward reaction at the point of spin.

The needle on the kitchen scales "swing violently between its upper limits and 15 pounds," said the New Scientist. The machine weighed 20 pounds at rest, they reported, and if the weight of the apparatus had oscillated between 15 and 25 pounds, showing no average change in weight, it would not have shown on the scales because the pointer had reached the end of its travel at 20 lbs .

Laithwaite replies that if you examined any set of kitchen scales the pointer will travel one and.a quarter turns before it reaches its full deflection. "There were pulses of loss of weight," he insists, and adds that he knew a great deal more about it now. The machine had been finished at three o'clock that day, with the discourse due to start six hours later. He saw then that it oscillated. "I knew at once what I'd done wrong but there was no time to change it."

But a greater controversy arose when, a few weeks later, he said more about the subject in a televised Christmas lecture for children. His words were more guarded, but they reached more people. "I'm not saying Newton's laws of motion are wrong. I am merely pointing out that they are restricted to motion in straight lines, and to motion where there is no change of acceleration, just as there is no rate of change of
current in Ohm's law . . . Gyroscopes do not exhibit a new force. They show the lack of a force where there should have been one." The force lacking, was centrifugal force.
To show this he made his eight year old son, Dennis, hold a pole, at the other end of which a flywheel rotated. Dennis stood on a turntable and, as the flywheel was speeded up, the boy turned round. The further he held the flywheel out the faster he precessed, but the flywheel did not fly out of his hands, and he had no difficulty holding the machine lightly from the very far end of the pole.
The lecture attracted sceptical comment from the New Scientist and 800 letters to Laithwaite himself. "They're from amateur, armchair inventors, and about a dozen of them proposed systems for loss of weight that worked . . ."

The NRDC's annual report for last year says: ". . . Gyroscopic anti-gravity devices have been arousing interest in the press and on television, and we have received a larger than usual number of proposals of this kind.

Roland Rosser said there were about a dozen gyroscope devices on the files which had been received during the year. "It's a very common submission. People think there's something odd about gyroscopes but they're not really peculiar. Lots of them come up to us with a gyroscope and say something strange is happening but it's all to do with the conservation of angular momentum."

Alex Jones said he could not demonstrate his machine as it was in pieces. I leave readers to sift for themselves through the snags with which his theories seem to abound, but they should note that his exploration of the gravitational mechanism has a number of historical parallels. During our conversation he made frequent references to a scientist called Le Sage, who had written a paper in 1782 which asserted that gravitation was caused by the impacts of streams of atoms.

In 1950, 20 years before Jones began to expound his beliefs, Paul G H Voigt, the inventor of the modern loudspeaker, was convalescing from an illness. He began to while the time by thinking about gravitation. As he admitted in the notes he completed three years later, he was not a physicist. He said recently that he had not heard of Le Sage even by 1957, in September of which year a speech he had recorded on tape in Canada was played to a gathering of the British Sound Recording Association. In the speech he stated what he had come to believe about gravitation.

Elther again?

Voigt's idea is that all matter is penetrated by sub-atomic particles travelling at or near the speed of light. They are so small that they may pass easily through the atomic lattice of which all matter is said to be composed yet, unlike Le Sage's particles, which
were said to have a mean free path of some 10,000 miles, the Voigt particles are so numerous that they bump into atoms and into one another in a constant exchange of kinetic energy.

Gravity, he says, is the result of an imbalance of forces between those particles acting on a body from space and those that act on it having passed though the earth or another body. The gravitational effect will be proportional to the energy the particles have lost in passing through other bodies, that in turn being a function of what we have called mass. One body, in other words casts a gravitational shadow upon another.

The Voigt particles are travelling in all directions completely randomly. The gravitational shadow will vary as the distance between the bodies in accordance with the inverse square law: If the distance between two bodies is doubled the solid angle is halved and the subtended area reduced to a quarter.

These particles, if they exist, pervade all matter. They swarm through and over everything, and they are the ideal medium for the transmission of light and radio waves. Voigt's particles, in order words, suggest the stuff of which the ether is composed. All we may say with certainty is that none of us knows enough about gravitation to say that Voigt or Jones is wrong.

Almost as certain is that some day someone will build a machine that will demonstrably defy gravity. It may even be Jones or Laithwaite. Whoever it is it will not make them rich. Sir Christopher Cockerell knows more about that side of things than most people. He received a taxable $£ 150,000$ for inventing the Hovercraft, about the amount of a modest transfer fee for a professional footballer. "Inventing," he said, "isn't a way of making money. If you want to do that it's better to be a Beatle or an ice-cream salesman."

References

1 W. M. Dalton, The Story of Radio, Vol. 1, p. 83 (May, 1975)

2 J. G. Crowther, Discoveries and Inventions of the Twentieth Century, p. 351 (Routledge and Keegan Paul, 1966)
3 John Jewkes, David Sawers, Richard Stillerman, The Sources of Invention, p. 354. (Macmillan, 1958)
4 Elliott M. Sanger, Rebel in Radio, The Story of the New York Times "Commercial" Radio Station, p. 50 (Focal Press, 1973)
5 Keith Geddes, Broadcasting in Britain, 1922-72, p. 44 (HMSO, 1972)
6 P.S. Johnson, The Economics of Invention and Innovation, p. 149 (Martin Robertson, 1975)

7 Peter Grosvenor, James McMillan, The British Genius, p. 268 (Dent, 1973)
8 The Sunday Times, February 11, 1973
9 William Shockley, The Invention of the Transistor, an Example of Creative-Failure Methodology, Proceedings of conference on the Public Need and the Role of the Inventor, Monterey 11-14 June, 1973.
10 Hi -Fi News, Vol. 20, No. 11, November 75, p.l10.

Dolby f.m. up-date

Dolby Laboratories Inc., report that German stations have been broadcasting encoded B-type signals sincel mid-1975 with reportedly no adverse comments. As a result they expect full-time Dolby f.m. transmissions in Germany to start in the near future.
Last year, the Institut für Rundfunktechnik (IRT) in Hamburg carried out tests on Dolby B-encoded transmissions both in-house and on-air using the NDR transmitters in Hamburg. With a $50 \mu \mathrm{~s}$ pre-emphasis time constant, listeners complained of a change in sound quality; when altered to $25 \mu \mathrm{~s}$ - that recommended by Dolby Laboratories no listener reaction was reported. Further tests, at RIAS Berlin, SR Saarbrucken and WDR Cologne, using a $25 \mu \mathrm{~s}$ time constant and B-type encoding have not resulted in any adverse reactions, according to Dolby Laboratories. Results of a re-broadcast test from RIAS were said to be highly impressive, in which a professional receiver in Hof, 250 km away, picked up the broadcast, and retransmitted it after decoding. In the WDR test transmissions the same programme (light music) was broadcast from two transmitters, one intermittently encoded and the other non-encoded, to enable direct comparisons to be made. Signal-tonoise ratio was studied in the service area and a report on these measurements is under preparation. The German broadcast authority, ARD, and IRT in Munich have also been making on-air television sound tests using B-type encoding, $25 \mu \mathrm{~s}$ time constant and an increased modulation level.
Following FCC authorization of Dolby encoded f.m. transmissions in May 1974, there are now 130 stations using the system in the USA. In changing from 75 to 25μ s pre-emphasis, these stations are able to increase their modulation by an average of 4 dB , or reduce compression or h.f. limiting by a similar amount. In Canada, the Department of Communications gave approval for B-type transmissions in October last
year and five stations have been equipped. Mexico approved the transmissions in 1974, while Brazil have six stations equipped with encoders. Tests are under way in other countries Australia, Denmark, Ireland, Luxembourg, Norway, Sweden and Thailand.
In the UK off-air tests were undertaken last year by the IBA and authorization for further, on-air, tests is being sought from the Home Office. One proposal is to transmit the same programme from co-sited transmitters working on different frequencies in the London area.
There are now 27 products on the market with capability for receiving and decoding Dolby f.m. transmissions with the 25μ s time constant, and 112 products that allow decoding with the $25 \mu \mathrm{~s}$ time constant in conjunction with conventional tuners, including the Wireless World noise reducer.

Sound broadcasting in Band I?

The possibility of broadcasting wideband high quality sound programmes in Band I is suggested by the BBC in a submission to the Annan Committee on the future of broadcasting. Hitherto it has been assumed that when the present 405 -line television transmissions in v.h.f. Bands I and III are closed down (now expected to be in the 1980s) both these bands would be "re-engineered" for $625-$ line tv with 8 MHz channels, as on u.h.f. The BBC's proposal, however, published in edited form in the April 1976 issue of the EBU Review (Technical), points out that Band I could provide only a limited national coverage for tv . Band III, if extended to 222 MHz , could provide a comprehensive national 625 -line service in six channels.
For sound broadcasting, the BBC say, Band I could accommodate 12 or more wideband channels providing national or regional coverage for three or more programme services. Modulation could be either f.m., with $\pm 300 \mathrm{kHz}$ deviation using 650 kHz channels, or a digital system - p.c.m. with four phase p.s.k. modulating the carrier and channels of 250 kHz or 500 kHz width. A strong point in favour of four-phase p.s.k. is that it does not require such a high field strength - actually estimated as $27 \mathrm{~dB}(\mu \mathrm{Vm})$ - as other possible systems to give good national coverage.
Another interesting idea put forward is that part of Band I could be made available for a "dedicated" teletext service with a channel width of 5 MHz . All 625 lines would be filled with teletext data instead of just the four non-picture lines as at present. Also, the BBC recommend that extension of Band II to at least 104 MHz should be considered.

TI report world semiconductor slump

The world semiconductor market has dropped by over $\$ 900$ million from the 1974 level to $\$ 4,100$ million dollars in 1975, according to the annual report of the chairman of Texas Instruments, Mark Shepherd jr.' The US market had declined by $\$ 500$ million dollars in 1975, but total figures were expected to reach the former figure during 1976 and the semiconductor market would achieve $\$ 22$ billion by 1980 .
Semiconductor memory stores continued to displace magnetic stores because of further reductions in cost, the fastest growing component being the 4 k random-access memory, demand for which tripled in 1975 and was expected to double again this year. The leading memory component by 1980 , said Mr Shepherd, in terms of bits shipped would be the 16 k r.a.m., samples of 'which were now being delivered. "The development by TI of a new, simplified structure for a charge-coupled device (c.c.d.) has made possible a significant increase in memory cell density. This has the potential of reducing memory costs below that of m.o.s. r.a.ms, enhancing the prospects for c.c.ds to serve in auxiliary memory systems." Pilot production of magnetic bubble devices, which need longer access times than c.c.ds but are nonvolatile, has started at TI and samples are being evaluated for their equipment applications. A 100 kbit magnetic bubble device was demonstrated last year packaged with bias magnets and drive coils.

Sales chief calls for import curbs

A call for import controls on consumer electronics has come from the sales manager of Fidelity Radio. Mr Arthur Banford, in a statement issued in May, said that if controls were not introduced on Japanese and Far Eastern imports then large sectors of the industry would go bankrupt. He pointed to the Japanese invasion of the American market, which had forced many American firms out of business. "Now US businesses are beginning to argue, unsuccessfully, that Japanese firms are using their very strong base - over $10,000,000$ a year - to cut prices so as to get a stranglehold on the north American market. The irony is that Japan operates one of the most effective import control systems in the world."
Of the one and a half million colour sets and tubes exported to Europe by the Japanese last year, he said, 600,000 came to the UK, even though it was a
bad year for colour tv sales. In the year 170,000 music centres were sold in Britain and half were made in Japan. The radio market was worth $£ 30$ million last year nearly 85 per cent of which was imported. The Japanese share of the audio market had risen from $£ 58$ million out of $£ 131$ million in 1973 to $£ 72$ million out of $£ 135$ million last year. With the market picking up again and at a lower VAT rate, without controls, the Japanese share would increase further.

Post Office backs large scale integration

The Post Office have approved General Instrument Microelectronics Corporation as the first m.o.s., l.s.i. microcircuit manufacturer to supply m.o.s., l.s.i. microcircuits in their equipment. Their D400 test procedure, under which the m.t.n.s. (metal thick-oxide nitride) process at GIM's factory at Glenrothes, Fife, has been approved, requires a service life for m.o.s., l.s.i. devices of 20 years with no more than 2 per cent cumulative failures. The Post Office has approved the use of the process for telephone exchange equipment.
In a speech at the beginning of the Communications 76 exhibition Professor James Merriman, Post Office Board member for Technology and Senior director, Development, Telecommunications Headquarters, said that by 1980 the British telephone service would be one of the country's largest users of microelectronics. Use of microelectronic devices will grow from four to 12 million devices a year in the next four years, accounting for ten per cent of the country's total consumption.

- Sales of 1.s.i. test equipment will be worth over $\$ 2.25$ million during the next year, according to l.s.i. Instrumentation Ltd, UK representative of the Macrodata Corporation. "Rapid growth in the use of microprocessors is making an l.s.i. test capability almost essential."

Mobile radio research:
 Possible solution to fading

A major advance in mobile radio system design was claimed by W. Gosling of Bath University when he presented his paper "A feasibility study for a voice plus data mobile radio system of the future", at the Communications 76 conference held at Brighton in June. Professor Gosling said that since writing his paper, they had succeeded in producing a system which greatly reduced the loss of intormation due to mobile fading. The system, which used
a method called sideband diversity, required two or more fixed stations transmitting the same information but with the modulations phase-shifted relative to each other, using wideband phase-difference networks. This resulted in the peaks and troughs of the upper and lower sidebands occurring in different places, enabling the mobile receiver to hunt at all times for the sideband with the heaviest peak, thus ensuring that the signal was always greater than zero. He stressed that phase-shift angles were not critical and could be as much as $\pm 30^{\circ}$. The system developed for the Bath University project employed three 12 W v.h.f. transmitters, sited on a 15 mile triangle, operating in the s.s.b. mode for speech and the d.s.b. mode for data. Sideband diversity is claimed to reduce errors sufficiently for error correcting codes and systems to be used to increase the accuracy still further.

Professor Gosling's lecture created much interest among the conference delegates, and when R. C. French of Mullard Research Laboratories claimed similar results with error-correcting systems only, he pointed out that unlike the diversity system they did not help stationary vehicles located in bad reception areas.
Professor Gosling told Wireless World that Britain was certainly ahead of America and Europe in the field of mobile research, and this was a direct result of the Home Office sponsoring work at universities since 1969. "For this we are very grateful", he added (see also Mobile Radio Consortium formed).

Mobile radio consortium formed

Bath, Birmingham and Bradford universities are to spend $£ 100,000$ a year on research into better mobile radio telephones and into linking them with teleprinter machines and visual display panels. The universities, which have been co-operating since 1974, have now, formed the Universities Mobile Radio' Research Consortium 1976 (UMRRC) to pool information and equipment and make sure their work is not duplicated. The research is backed by the Home Office Directorate of Telecommunications, the Science Research Council, the fuel and power industries and the Ministry of Defence.
The consortium is investigating ways of reducing fading and interference. .Birmingham is developing techniques by which aerials on different parts of a vehicle pick up the same signal at different parts of the pattern formed when an incident and a reflected wave cross, so that loss of reception at one place is compensated at the other. They have built an add-on unit no bigger than

E D. R. Shearman (foreground) and J. D. Parsons of Birmingham University engaged in on-site measurements of the effects of car ignition interference on data communication to vehicles. The work is part of joint research carried out by the Mobile Radio Consortium formed with Bath and Bradford Universities.
a small portable radio for v.h.f. amplitude-modulated equipment and a prototype u.h.f. f.m. version. Bradford is examining interference at mobile radio base stations from other co-sited transmitters and from the interference produced by radiation reflected off rusty metal structures.

UMRRC says that the number of installations has grown from 1500 in Great Britain in 1950 to 176,000 in April this year. "At this rate", it says in a statement, "there will soon be no vacant channels in our larger cities unless the consortium can succeed in compressing more channels into existing wavebands. This will be one of its prime tasks." Mobile radio presently uses $70-170 \mathrm{MHz}$ (v.h.f.) and $425-470 \mathrm{MHz}$ (u.h.f.) and with the coming of improved crystal oscillators and synthesizers the Home . Office have been able to reduce the intervals between channel allocations from 25 kHz to 12.5 kHz . The ultimate interval could be as little as 5 kHz .

Computer-aided radio surveillance

A commission placed by the British government four years ago has resulted in the development of CERES, a family of computer-enhanced radio emission surveillance systems. CERES, produced by Redifon Telecommunications Ltd, was first demonstrated at Communications 76 in June.

The operator has complete control over the equipment and, with real-time computer aid, the modular systems enable him to monitor communications
traffic with greater efficiency. A typical system could consist of six operatorcontrolled consoles, each with facilities for remote-manual or computer control' of four receivers. Associated equipment; includes antenna selection units, two four-channel tape recorders, visual tuning aids for each receiver, and audio selection and control circuits. The receivers, aerial switching, receiver memories, computer, tape recorders, time-code generator and a disc store are all located in a suitable remote environment and can be automatically controlled by the computer. A v.d.u. provides the operator with control instructions and transcribes the received information. This facility enables the equipment to be used by relatively untrained operators. Specific frequencies may be monitored either continuously or at specified times and several frequencies within a selected band may be monitored in sequence at a chosen rate. It is claimed that the main advantage of these systems are that each operator is given the freedom to monitor as many as four frequencies simultaneously, transcribing one transmission in real time and, if necessary, recording other transmissions for subsequent replay and transcription. It is envisaged that these systems will find applications in the monitoring of distress frequencies and in channel utilisation, and in particular in defence and surveillance communication systems.

Medical scanner prospects

EMI are expected to launch an improved medical scanner at the Radio Society of North America Radiological conference in Chicago at the end of November. Since EMI launched their brain scanner in 1972 with a scan time of four and a half minutes rival companies have tried hard to better the performance of the original design and some prototype scan times have now come down to 5s. Last year in Chicago EMI launched a 20 s scanner and it is expected that this year they will unveil a unit with a scan time well below that.

EMI shares went up on the Stock Exchange in mid-June after a report in the Evening Standard claiming that EMI were about to launch a "new generation of scanners which use harmless ultra-high-frequency radio waves instead of potentially dangerous X-rays." EMI hastily issued a denial and pointed out that they and their associate companies, particularly Nuclear Enterprises, had been using ultrasonic techniques in medicine for many years now.

An EMI statement in May said it had sold $£ 105 \mathrm{~m}$ worth of scanners to date, 90 per cent for export. It has sold 538 systems: 384 brain and 154 body scanners. One million patients, they say,
have been scanned by the 265 scanners: in hospitals and clinics throughout the world. North America is the biggest customer having ordered 400 units, Japan have installed or ordered 37 and the UK 32. EMI won a 1976 Queen's award for exports of the systems, and another for technological achievement.

Citizens' Band Association formed

A Citizens' Band Association has been formed by Mr James Bryant "to help establish a v.h.f. f.m. Citizens' Band in the UK'. As Mr Bryant said in a letter in the June issue, he is opposed to the use of 27 MHz on a.m. for CB because of excessive television interference, audio breakthrough, the disruption of radio controlled models and co-channel interference during high sunspot activity.
The Home Office is still likely to adhere to the view that frequencies are so short that even a small Citizens' Band could not be contemplated. Despite the change in emphasis from 27 MHz a.m. on the part of those advocating CB , the Home Office is still worried that a flood of cheap foreign transceivers would ruin communications in that band, but it might be happier about a CB system which allowed a carefully monitored high quality home market to develop for British made equipment. All the same, potential British CB-ers face an uphill struggle. Home Office decisions will still be based on what they regard as the economic and efficient use of the existing available frequencies.

James Bryant's address is: The Citizens' Band Association, 16 Church Road, St Marks, Cheltenham GL51 7AN,

Ortofon takeover

Harman International are in the final stages of acquiring the majority of shares in Ortofon, previously jointly owned by David Hafler of Dynaco and his partner Newton Chanin. Harman's announcement at the Chicago Electronics Show on June 14 coincided with news that Ortofon would no longer make loudspeakers. Only a year ago Ortofon took over the Danish ScanSpeak loudspeaker factory, which may now close. Although Harman says there is no connection between the two events, the possible closure may have been precipitated by Harman's reluctance to take on the factory, coupled with a prospective change in the terms of a contract Scan-Speak had with ITT. Since Ortofon took over Scan-Speak in July 1975 it has produced ITT and Pioneer speakers for sate in Denmark.

The discontinuation of Ortofon speakers came as a surprise to Metrosound, Ortofon's UK agents, who issued a statement on June 19 saying they had
just received the news from Denmark. A month earlier they and other agents had attended a launch of Ortofon speaker products in Denmark. Unaware that the new range would be dropped, Metrosound showed it at HEDA at the end of May preparatory to launching an autumn advertising campaign.

Harman already own JBL and Tannoy and had no need of the as yet unknown Ortofon range, but for some time they have felt that the acquisition of a pickup manufacturer would be a logical extension of their list of subsidiaries. Newton Chanin was reported to have wanted to withdraw from Ortofon and Harman - said they would take over his half if Hafler would surrender some, ideally all, of his shares to give them a majority holding. Some reports have said that the deal, which should be concluded well before the end of Harman's financial year on August 31, may involve a 20 per cent holding for Hafler.
Both Metrosound and Feldon Audio, who now handle Ortofon disc-cutting equipment, have said that they will continue to market Ortofon products. Harman's marketing policy varies, though some have noticed a tendency towards their doing their own marketing. Highgate Acoustics, agents for Harman Kardon electronic products, have just signed a contract to import Altec Lansing speakers, and from August 1 Harman will begin to market Harman Kardon from Tannoy's headquarters in South London instead of through Highgate. On the other hand, last year Harman transferred the JBL agency from Feldon to Colin Hammond.

Hargrave loses on moving map display

Mr John Hargrave has lost his claim for an ex-gratia payment from the Ministry of Defence who, he said, had stolen his invention of a moving map display device eventually used in Concorde and the MRCA. The president of the tribunal of enquiry into the claim, $\mathrm{Mr} \mathrm{T} . \mathrm{H}$. Bingham QC, said in his report that two of the necessary seven conditions for granting the payment had not been fulfilled. The two were that a causal connection had to be established between the communication of the details of the invention to the Crown and the subsequent use of the invention; and that before the invention was developed by the Crown there had to be no public disclosure of the information communicated to the Crown.
Mr Bingham added that even had all seven conditions been met the payment would have been in line with awards made by the Royal Commissions on Awards to Inventors, rather than the $£ 1.5$ million Hargrave and his colleague Cedric Williams were claiming. The case is described in "The inventors". article on p31.

'Surface acoustic wave devices

Basic principles and applications as filters, delay lines and oscillators

by J. Heighway, B.Sc., Ph.D., M.Inst.P. The Plessey Company Ltd

The basic phenomena of the propagation of waves in materials have been understood for many years. Longitudinal sound waves and transverse waves are familiar enough, but surface wave modes are less well known except, of course, when they propagate on the sea. Surface wave modes are a combination of longitudinal and transverse particle motion and, in the context of occurrence in solids, were explained by Lord Rayleigh in 1885 in relation to earthquakes. Since then, the state of knowledge remained static for nearly eighty years until researchers in the USA achieved efficient generation of surface waves on piezoelectric solids:
This discovery produced an upsurge of interest in the research field, and, more recently, effort has been devoted to systems applications of the devices. Several properties of the devices are of interest to systems designers:

- the devices are of a planar structure and are therefore readily fabricated by establishments with i.c. production facilities
- the wave velocity is non-dispersive (independent of frequency) so linear phase devices can be readily made - the device performance is almost entirely determined by the geometry of the electrodes, whose structures can be readily and accurately produced by computer-controlled drawing machines - the waves are accessible over the whole length of the device, hence tapping is straightforward
- the substrates can be chosen to be stable, reproducible, and highly temperature invariant.
Surface acoustic wave (s.a.w.) devices have been under investigation at the Allen Clark Research Centre of Plessey for five years and units have been typically used as bandpass filters,

Fig. 2. Physical operation of the s.a.w. device. Voltages applied to interleaved metal electrodes (black, one set; white, other set) cause disturbances in piezoelectric material surface which travel outwards as waves.
dispersive delay lines, oscillators and discriminators. This article discusses the basic operation of the devices but more particularly highlights their use in systems and their potential. To this end, a number of specific examples will be given.

Principle of operation

The basic s.a.w. device is shown schematically in Fig. 1. It comprises a carefully orientated and polished piezoelectric substrate onto which have been deposited an input electrode and

Fig. 1. Simplified schematic of the basic surface acoustic wave device. Note angled ends of substrate.
an output electrode in the form of a thin film of a good conductor $(0.1 \mu \mathrm{~m}$ of aluminium is standard). The ends of the crystal substrate are covered with an acoustic absorber and are "angled" slightly to prevent coherent edge reflections. The electrodes are in the form of interleaving metal fingers.

The physical operation of the device relies on efficient use of the piezoelectric effect. In piezoelectric materials the application of a positive voltage to the surface causes a physical expansion and, conversely, a negative voltage causes a contraction. Hence by applying alternately positive and negative voltages to the surface a "corrugation" of the surface is produced (Fig. 2). If the

Fig. 3. (a) Vertical plane coverage of a radar equipment resulting from the frequency sweep shown in (b).
applied voltage is time varying then the physical disturbance travels both forward and backward along the surface. The acoustic absorbers remove the backward travelling wave and the forward wave is intercepted by the receiving transducer. The action of reception again relies on the piezoelectric effect. In this case the travelling physical disturbance has associated with it a travelling electric field. On passing under the interleaving metal fingers the charges induced on the surface are sensed by the fingers. A signal appears across the load that is the sum of the induced charges in the electrodes.
It is instructive to consider two of the analogous wave motions that are more familiar. For example the waves that are seen on the sea are exactly the same type of motion that is being utilised in the surface wave device. Many swimmers will have observed that gravity waves on the sea are a surface phenomenon and in fact 90% of their total energy is contained within one wavelength of the surface. A second and more sinister example was the recent earthquake damage in Europe where a distinct surface wave effect was detected. It was in fact from early studies of earthquakes by Lord Rayleigh that the wave motion got its name and it is worth emphasising that the surface of the crystal buckles and shakes (in a periodic manner) in an exactly analogous fashion to that experienced in earthquakes.

The basic design of the transducer is such that:

- the width of each finger and the gap

Table 1

Application	f_{0} $(M \mathrm{~Hz})$	Δf (MHz)	Sidelobes (dB)	Shape	Insertion loss (dB)
TV vision carrier	39.5	1	-30	symmetric	20
TV transmission	37.5	8	-40	square	20
Radar	30	6	-25	symmetric	24
Radar	250	80	-25	flat symmetric	30
Oscillator	1000	single mode	-20	symmetric	symmetric
Communications	23.5	0.08	-40	sym	15

between them is one quarter of an acoustic wavelength (typically $8 \mu \mathrm{~m}$ at 100 MHz)

- the length of the fingers (overlap) is determined by the power of the source to which the device has to be connected - the number of fingers depends on the device function.
This demonstrates the fundamental control that the device designer has over the function through its geometrical shape. It also shows clearly that not only is the device highly reproducible but that it cannot be changed once
produced - if it does not function correctly it must be redesigned.

Dispersive delay lines. The simple design procedure for a s.a.w. delay line readily lends itself to the design of a

Fig. 4. Dispersive delay line design: (a) pattern of finger spacing and overlap; (b) frequency/time characteristics of the device and amplitude/time characteristics achieved by (c) variation in finger spacing and/or overlap.

Fig. 5. (a) Band-pass responses for a UK television i.f. filter: upper curve, amplitude/frequency response; lower curve, group delay response with 250 ns interval of time scale marked.
(b) Band-pass responses for a PAL i.f. filter: upper curve
amplitude/frequency; lower curve, group delay. In both (a) and (b) the shaded areas show tolerances.
dispersive delay line. It was soon realized at Caswell and the Radar Research Centre that the s.a.w. technology could contribute directly to the development of an advanced radar system. In a previous article' on the Plessey AR3D radar, mention was made of the s.a.w. equalizer application. Here the important parameters are stability, linearity of response, and the precision of the response over a relatively large bandwidth.

The s.a.w. devices are sophisticated dispersive delay lines not only because the phase/time characteristic is determined accurately by the device but because the required amplitude/frequency characteristic is provided. The characteristics of the devices for the AR3D are the conjugate of the frequency/time characteristic of the transmitter which is determined by the required coverage diagram of the radar. A typical example is given in Fig. 3 and the plots of the finger overlap weighting required for the two transducers are given in Fig. 4. It is worth noting that the dispersive delay is achieved by the transducer structure and not by the nature of the wave - pairs of fingers close together generate high frequencies, large separations generate low frequencies.

The design of devices to fit given input data is now a completely com-puter-oriented process. A set of pro grammes exists, and from inputs of the required phase law, time length, and amplitude/frequency response, the transducer design is produced on magnetic tape and in the correct format for a computer-controlled drawing machine. .The programmes include correction routines for a number of second-order effects, including the highly significant diffraction correction. In addition, the basic finger geometry is chosen to minimize inter-electrode interactions and mechanical loading of the wave path.

The type of performance that can be achieved using these techniques is as follows:

Time-bandwidth product range 4 to 100σ Time length
$0.25 \mu \mathrm{~s}$ to $50 \mu \mathrm{~s}$
Bandwidth
1 MHz to 50 MHz
(at 75 MHz)
The control of both the amplitude and phase characteristics is sufficient to give 31 dB close-in sidelobes. The use of this approach has made temperaturestable dispersive delay lines readily achievable and devices are now fully engineered.

Bandpass filters. The successful operation of a dispersive delay line - which is, in some ways, a bandpass filter with a particular phase/frequency characteristic - naturally leads to the design of more complex filter shapes. One range of filters is that comprising the television receiver i.f. filters for the UK, USA and Europe. In this application, the important parameters are:

- cost, as first and foremost the tv industry expects low-cost devices
- no tuning or adjustment - which also reduces cost
- small size
- electrical performance.

In fact, the performance requirements, can be quite stringent for such systems as cable tv and data transmission.
The electrical characteristics are best illustrated by diagram, as in Figs. 5 (a) and (b). Here the experimental responses of two devices are shown the first is the UK tv filter which has linear phase, and the other is the European PAL filter which has a controlled non-linear phase.
The design of these devices is an extremely involved process but basically follows the scheme used for the dispersive delay line. The required input data consists of the amplitude and phase of the filter and, since cost is a parameter, the maximum time length allowed must be an input (the time length relates directly to the physical length because of the non-dispersive nature of the wave). In addition, the tolerancing on both the amplitude and phase must be inserted, and is shown in Fig. 5. In this way, for example, the 6 dB point of the vision carrier and the 25 dB value of the in-channel sound can be set exactly.

In general, the synthesis of a given filter shape is more difficult than for a dispersive device, but only because the time length has to be minimized. The resulting transducer structures are extremely involved and a typical example is shown in Fig. 6.

These tv filters are now marketed through the consumer division of

Fig. 6. Bandpass i.f. filter for television using a s.a.w. device.

Fig. 8. Example of a 490 MHz s.a.w. oscillator.

Plessey Microsystems under the numbers SW150, SW170 and SW200 ${ }^{\text {. }}$. The devices can be packaged in either a standard TO8 housing or a Plessey design of plastic flat pack.

The tv filters are just one example of the type of filter that can be produced by s.a.w. techniques. A whole range of professional filters is possible and Table . 1 lists some examples of typical parameters.
Oscillators. The inclusion of a simple bandpass filter in the feedback loop of an amplifier can provide a highly stable oscillator. A schematic of this arrangement is shown in Fig. 7, and Fig. 8 shows a typical device.

A number of advantages is offered to the system designer by these devices:

- high fundamental frequency operation - the device can operate at any frequency within the range of the s.a.w. delay line, namely, $10-1500 \mathrm{MHz}$
- quartz short-term stability - typical figures using the Avantek GPD series amplifiers show 1 part in $10^{\prime \prime}$ over 1 second
- a frequency modulation capability that exceeds 1 per cent - which is a significant improvement over existing alternatives
- a fast warm-up time to reach an operating temperature - the device uses its package as an integral heat-sink - small, robust and potentially cheap. A disadvantage of the technique is its medium to long-term drift of, typically, 2 p.p.m./month. It should, however, be attractive to have the short-term stability of the s.a.w. device combined with its f.m. capability and to use this in conjunction with a locking system, either to a bulk wave crystal (normal phase lock loop) or to an atomic standard. Also, there should be a significant market application where cheap, stable oscillators are required for short-term use - for example, in sonobuoys or marine distress beacons.

S.a.w. sub-systems

The s.a.w. devices discussed above have been used mainly in retrofit applications. The wide bandwidth capability of the devices has been exploited by their
incorporation into radar systems, and their reproducibility and low production costs have been used in tv applications. But in a more general way, the devices can be incorporated into novel sub-systems to take advantage of their versatility and, of greater import, may generate new system configurations.
A few of the more significant ideas incorporating s.a.w. devices, and cur-

Fig. 7. Simplified schematic of a s.a.w. oscillator.

Fig. 9. Coherent pulse compression system. The blocks with shading around them use s.a.w. devices.
rently available, are briefly outlined in the following paragraphs.
Coherent pulse compression units. The block diagram of a complete unit is shown in Fig. 9. This is an example of how much can be done using s.a.w. techniques rather than of how much should be done. The shaded units in the diagram use s.a.w. devices. The incorporation of both passive generation and matched pulse compression into a small unit has the advantage of temperature tracking of the devices and ensures a good match over the whole temperature range.
Compressive receiver. For a linear frequency/time dispersive delay line the relationship between the delay of the output and the frequency of the input: can be used as a fast spectrum analyzer. The relative ease of fabrication of the s.a.w. device has meant that compact units can be fabricated that enable users to identify the frequency components of an incoming pulse after mixing down. The principle is simple and is illustrated in Fig. 10.

The s.a.w. expander is continuously impulsed (and therefore scans a fre'quency range), the start of the impulse being the reference. If two signals f, and

f_{2} come into the system at the same instant of time, the frequencies will be resolved by the system into two compressed and distinct pulses. These processes have been discussed in detail by Grasse and Gañdolfo in an article ${ }^{3}$, in which they conclude that the s.a.w. implementation of the technique offers the best potential for future development.
Variable time delay. The dispersive delay line (d.d.l.) can be used very simply to provide a variable analogue delay line'. This system, outlined in Fig. 11, operates by delaying the input signal by an amount proportional to the local oscillator frequency. The output from d.d.1.1. is distorted by the phase characteristic of the delay line, but this distortion is readily removed by mixing with the doubled local oscillator output and again convolving the output with d.d.l.2.

The delay can be varied by simply varying the local oscillator frequency, and units have been made which operate over a range of 4 to $60 \mu \mathrm{~s}$, continuously variable. A neat extension of this approach is to vary rapidly the frequency of the local oscillator in such a way that the time length of the input information can be changed and hence

Fig. 11. Variable delay line. Shaded blocks are those containing s.a.w. devices.
data rate modifications made. These techniques are currently undergoing intensive research and show promise in particular applications.
Synthesizer. The s.a.w. oscillator has been mainly used in single-mode operation but multi-mode operation has always been possible. In practice, the mode separation is the reciprocal of the time delay, and hence for a 500 kHz spacing a $2 \mu \mathrm{~s}$ delay is required. What has always been difficult has been the selection of the required mode, but a particularly elegant solution has been proposed and demonstrated by Maines at the Royal Radar Establishment, using a number of the s.a.w. device properties discussed above.
The basic principle is that the s.a.w. oscillator can be injected. The signal for use in this is provided by a voltage controlled oscillator and the system operates as shown in Fig. 12. This synthesizer offers a very economic

Fig. 12. Use of s.a.w. device (shaded blocks) in a frequency synthesizer.

Fig. 10. (a) Schematic of compressive receiver; the shaded blocks contain s.a.w. devices. (b) Principle of operation of compressive receiver; the bulbous areas in broken line represent the pulse shape after mixing.
substitute for what is currently an .expensive item. It provides the properties of short-term stability and f.m. capability inherent in a s.a.w. oscillator, outweighing any s.a.w. device disadvantages for systems such as radar where frequency agility is attractive and short-term stability is required.

Conclusion

To sum up, within the last two years surface acoustic wave technology has progressed from being an interesting research project to full system realization in various capacities:

- pulse compression units are being incorporated into advanced radar systems
- television filters are being produced in reasonable volume and gaining acceptance in the industry
- professional filters and oscillators can be designed and are available on a custom-design basis
- novel sub-systems are being developed which should impinge on system design within the next few years.

References

1. D. L. Motkin. "Three-dimensional air surveillance radar", Plessey Systems Technology, No. 21, p. 29 (June 1975).
2. J. M. Deacon and J. Heighway. IEEE Spring Conference 1975 (Chicago) on television receivers.
3. C. L. Grasse and D. A. Gandolfo. Ultra. Symp., Boston 1972.
4. J. M. Deacon et al. Electronics Letters, No. 10, 1973.

American CB boom

More than 200 stands at the recent US Consumer Electronics Show in Chicago displayed Citizens' Band radio equipment. CB is now a $£ 300 \mathrm{M}$ market in the States. It is estimated that four million units were sold in 1975, which is 25% up on the previous year, and that now about half a million units are being sold each month. This volume of sales has created a licensing jam at the FCC. Sources in the US electronics industry forecast that the sales value of CB equipment will surpass all other consumer electronic products except colour television by 1980. Wireless World will be publishing an article on the CB "scene" in the States later this year.

LOW
NOISE CASSETTE DECK

We should like to take the eminent Mr J . Linsley Hood to task for advising the use of the $70 \mu \mathrm{~s}$ equalisation characteristic for use with normal low-noise ferric cassettes. This is most misleading because one of the most serious problems with these cassettes is their lack of response to high-level, high-frequency signals; the $120 \mu \mathrm{~s}$ post-emphasis was adopted to try to alleviate this. Even this results in a fully-saturated recorded level of about 10 dB below Dolby level at 10 kHz . Adopting the $70 \mu \mathrm{~s}$ equalisation characteristic reduces the h.f. overload figure by almost another 5 dB which makes an already bad situation intoler-: able. This would produce severe h.f. intermodulation distortion when recording typical musical material at "normal" mid-band modulation levels.
The reason that the 70μ s equalisation is adopted for chrome cassettes is simply that they are much less susceptible to h.f. overload because of the smaller particle size and higher coercivity of the oxide formulation.
We would, however, endorse Mr Linsley Hood's suggestions for optimising bias and equalization settings. In our opinion too many manufacturers align their machines to attain the ultimate in frequency response (or "specmanship") to the detriment of other aspects of the reproduced quality. One notable exception to this is the British manufacturer NEAL, who quite deliberately align their machines to be -2 dB down at 12 kHz on ferric tapes. This compromise produces a similar result to that obtained using Mr Linsley Hood's square wave technique.
C. J. Evans,
J. Dawson,
$A \& R$,
Cambridge.

The author replies:

The original Philips recommendation for the equalisation of the "Musicassette" was for time constants of 1590 and $120 \mu \mathrm{~S}$, of which the first was to compensate for anticipated inade-
quacies in the l.f. response and hum pick-up problems with the circuitry, and the second was to remedy the known shortcomings of recording head and tape characteristics. Improvements in system design have led to the universal adoption of the $3180 \mu \mathrm{~s}$ low-frequency equalisation time constant, to bring the cassette system into line with other reel to reel, recording systems, and the advent of chromium dioxide cassette tapes has prompted the adoption of a 70 $\mu \mathrm{s}$ h.f. time-constant in order to secure some of the advantages which these improved tape types can offer.

As a consequence of this, most modern cassette recorders will offer a choice of h.f. time constants, whose use is at the discretion of the user, when he is making recordings for himself.

However, the design of recording heads and cassette tape materials has not stood still in the intervening years, and it is my belief that there are many ferric tapes which will give an improved signal to noise ratio, without any significant penalty in terms of h.f. overload on typical programme material when used with the "chrome" ($70 \mu \mathrm{~s}$) equalising time constant, and it was this belief, based on a quite substantial number of tests, which led me to make the recommendation to which Mr Evans and Mr Dawson object.
A shrewd friend once observed to me that rules were made for the guidance of the wise, and the blind obedience of fools, so, in this context I would urge, even in the light of hind-sight, which is said to be an exact science, that users try out the available options, and judge the issue for themselves.
J. L. Linsley Hood

WAS BAIRD FOOLING THE PUBLIC?

In reference to the article on John Logie Baird in the January issue, my letter in April and subsequent readers' letters in June, I would reply as follows:
D. B. Pitt. Looking back only to the 1925/1928 period there are many published references to demonstration successes. Claims were supported by unconvincing details. From the journals of the time it is clear that editors were pressed to give publication to reports in the terms of Baird associates. When the 30 -line test transmissions commenced (September 1930) both Post Office and BBC disclaimed responsibility for the results. No amateur activity ensued. There were no dealer demonstrations, no receiver sales and no public reaction to the service.

Dr P. Waddell. Here is a report of an event, a 3D, 1,000-line, colour demonstration of November 1943. My letter commented only on the earlier
claims made in the Falkirk Transmitter article. Other irrelevant events are cited (1938/1939) concerning large screen colour. Much could be said in the context of what was happening at this later time, including the adoption of the Marconi system at the Alexandra Palace now mentioned.

Space was given by the original authors claiming the application of fibre optics to television. This I considered was in no way usefully related to the Baird single channel objective. To digress, therefore, optical cables, with maybe a thousand critically related separate paths, serve to produce small, high definition images over short distances. Contrary to Dr Waddell's advice the video cable is not usually associated with scanning and synchronising devices, particularly of mechanical type.

Prof G. D. Dawson. The "Televisor" test report, a single page, did not appear until 12th March 1930, a full six months after the transmissions had started. Styled for domestic use, the "Televisor" was not acceptable for home entertainment and could only be handled by an expert, to doubtful effect. With the transmissions taking place a receiver was described at length in Wireless World of 18th December 1929. The normal circuit of lamp and sync winding connected in series, which I believe Dr Dawson implies by his comment, was changed over to a shunt arrangement. This allowed of brightness control and so avoiding the silhouette image caused by the lamp cut-off when adjusting for synchronisation. Without this modification sync arose from random white to black picture changes. Synchronisation was not due to any intended pulse and came accidentally, in the main, from the framing barriers and depending on whether the image background was dark or light at the start or finish of a line scan. The necessary intentional gap of zero signal (blacker than black) was not provided on the completion of each line.
H. W. Barnard. My compliments to H.W.B. Baird's use of the "bits and pieces of unrelated discoveries" is apt comment from the writings of P. P. Eckersley (the BBC's first chief engineer). Those fascinating toys of a Victorian physics laboratory, the Kerr elec-tro-optic shutter, the phonic wheel, the Nipkov disc, all developed before the turn of the century, in no way serve as the basic components for the invention of television as Baird clearly proved. To him the thermionic valve was non-existent. It is a matter of wonder that some, who by distinction might have disregarded the Baird adventure, allowed themselves to be sponsors to his plans.
F. H. Haynes,

Overleat,
Bovey Tracey,
Devon

PHASE-AMOS AND MOIR

The question of whether the end always justifies the means is one that has engaged mankind in perennial dispute. Even education in its most respectable forms, must be admitted to be "a process of diminishing deception." But, with respect, I hold that Fig. 1 in Mr Amos's article "Antiphase or 180° phase shift?" (June, p.47) is an inadmissible deception for the purpose of reaching his legitimate conclusion, viz., that a distinction should be maintained between inversion and 180° phase shift.
Fig. 1 (b) is stated to show the result of phase-shifting Fig. 1 (a) by 180°. But (a) is "a sine wave together with some second harmonic." In (b) the sine wave has truly been shifted 180°, but the harmonic has been shifted 360° ! It was to avoid this kind of thing that the British Standards Institution definitions relating to phase* all took care to specify sinusoidal waveforms, of the same frequency.
When inversion and 180° phase shift respectively are applied, as they should be for a true comparison, to sine waves, as in Mr Amos's Fig. 2, no difference can be seen between the results. What really matters is which part of the treated waveform corresponds, as effect to cause, to the original. In the case of inversion these coincide in time; in the case of phase shift they differ in time by half a cycle.

Few of your readers are likely to have handy for reference your issues of May and June 1948, in which I went into the whole matter at considerable length, but copies of "Second thoughts on radio theory," in which a revised version appears as Chap. 9, are still to be found in some libraries.
I'm sure it would gratify our curiosity, as well perhaps as emphasizing Mr Amos's point, if he could be persuaded to disclose the nature of the equipment that failed to work because its designer did not distinguish between inversion and phase shift.
"Cathode Ray"

* BS.4727; Part 1: Group 01:1971, definitions 101 1031-1036.

Articles and correspondence about phase have appeared in the last six months issues of Wireless World and elsewhere. I am unable to resolve my own understanding of phase with the viewpoints put forward by James Moir and S. W. Amos. If phase is dimensionless (and all the equations I have seen have it so) then it cannot properly be a measure of time.

There is a clear error in Fig. 1(b) of Amos' article. What he describes as a 180° phase shift is, in my view, a time delay of half the period of the fundamental component of waveform (a). Such a delay might be produced by a suitably long piece of lossless transmission line. He asserts that Fig. 1(c) is not
a 180° phase shift but concedes that in the case of a symmetrical waveform the result would be indistinguishable. Since my understanding of Fourier analysis is that an unsymmetrical, but zero average, waveform can be constructed by summing symmetrical sine waves then I am sure that his distinction is incorrect.
That referring to phase in terms of time is incorrect is shown by Fig. 3 of James Moir's article in the March issue. Again, Fig. 3 has nothing to do with phase and not even really time. What he shows is the result of feeding his input signal to a dispersive propagating medium. If it were simply a time delay, as he says, then the input waveform would be reproduced exactly.

The debate about linear-phase loudspeakers will undoubtedly go on but perhaps the correspondents could clarify their ideas first.
John Newell,
Workingham,

Berks.

Mr Amos replies:

Cathode Ray will, I know, agree that phase shift in reactance-resistance networks is invariably accompanied by signal delay. There is a danger, therefore, that if the signal inversion of an amplifier is interpreted as 180° phase shift, someone will try to make use of the associated (non-existent) delay: this is what happened to my unfortunate designer. In my article I was trying to distinguish between the phase shift in networks (which gives delay) from signal inversion in amplifiers (which doesn't). To highlight the difference I used Fig. 1 to distinguish between the response of a signal-inverting amplifier (c) and the response (b) of a typical network (with 180° phase shift at the fundamental frequency and phase shift proportional to frequency). It is true that I did not mention the 360° phase shift at the second harmonic frequency. In my opinion this omission was justified because it simplified the presentation and clarified the argument e.g. by avoiding any need to introduce considerations of delay and group delay. But Cathode Ray, is of course, entitled to his opinion.
I cannot reply adequately to Mr Newell without introducing delay. To set up a magnetic field around an inductor or to charge a capacitor takes a finite time which is measured approximately by the time constant of the circuit. The phase shift ϕ in the circuit is also measured by the time constant and hence phase shift is inexorably associated with signal delay. There is a simple relationship between them: in fact the delay is given by ϕ / ω which has the dimensions of time. Phase shift itself, as Mr Newell says, is dimensionless. To avoid distortion of a wave passing through a network the delay must be constant for all its components and must thus be independent of frequency. Thus for distortionless
transmission phase shift must be directly proportional to frequency.
Mr Newell is quite right in his statement about Fourier analysis and it is also true that the effect of inverting each component of an asymmetrical waveform is the same as phase shifting it by 180°. It would not be possible, however, to create an inverted wave such as that of Fig. 1(c) by phase shifting each component by 180° (even if a network could be found which would do it) because the components would be subjected to different delays and therefore would not produce the required result when added. This difficulty does not arise if the components are inverted because there is no delay in this process.
Comments have also been received from Messrs Jefferies, Stancliffe, Evans, Rossiter, Bulmer and no doubt others. The points I would make in reply are all included in my answers to Cathode Ray and Mr Newell above. The fundamental issue is that it is misleading to refer to the signal inversion of an amplifier as 180° phase shift because there is no signal delay. Phase shift in networks (even phase advance) is always associated with-signal delay and it is not unreasonable therefore (but quite wrong) to assume that the 180° phase shift of an amplifier is also accompanied by signal delay. Hence my deprecation of the use of the word "phase" to describe signal inversion.
I am grateful to Mr Sargent for his support and for reminding me that. phase shift can occur as a result of transit-time effects.
S. W. Amos..

Mr Moir replies:

I think that it is unfortunate for communications engineers that the concept of phase was introduced by power supply engineers operating a system at a fixed frequency. As I showed in the contribution in the March issue, in the context of single frequency working a specification of phase shift between two waves can be unambiguous specification of the time difference. In communication circuits the same concept cannot meaningfully be applied. We should be thinking in terms of the differential time delay, the difference between the time of propogation at some reference frequency in the middle of the band and the time of propagation at the extremes of the audio frequency band. It is this differential time delay that produces waveform distortions.

It should be fairly clear that a circuit that has a phase shift of say 360 degrees (one complete cycle) at a frequency of 100 Hz ., a phase shift of 720 degrees at 200 Hz (two complete cycles) and a phase shift that continues to increase linearly with frequency will not introduce any differential time delay and is therefore non-distorting, (in phase) because all frequency components are
delayed by exactly the same time interval (10 ms). In consequency waveforms are transmitted without distortion.

The tenor of my March contribution was that waveform distortions due to phase shift (propagation time differences) do not appear to be of any significance in determining the quality of sound signals, provided that the time delays are kept within the CCIF limits which in simple phase shift terms are absolutely enormous.
The waveform shown in Fig. 3 of the March issue certainly shows that the signal is delayed, the start of the 'received' signal occuring 0.0109 secs after the start of the 'sent' signal. The oscillograms were obtained by passing the signal through a simple band pass filter and not in the complicated way Mr Newell suggests. The input waveform would have been delayed and not distorted if the phase characteristics of the filter had met the requirements outlined earlier, but obtaining a linear phase characteristic for such a filter requires the addition of many more elements. The filter used exhibited the usual characteristics, minimum time delay in the middle of the pass band and a delay that increased towards both ends of the pass band. It is this characteristic that results in the amplitude variation and the final "overhang". James Moir.

THE CONSULTANTS

As one of the consultants included in John Dwyer's article "The Consultants" in the November 1975 edition of Wireless World, I have of course been following the subsequent comment with some interest. Whilst I have been tempted to comment upon the original article and the subsequent correspondence before, Roger Driscoll's letter in June 1976 cannot be left to pass without reply.

In my opinion there are three classes of consultants. There are the variety described by Raymond Cooke, who own "an AVO with a bent needle". There are a few of us who like myself have considerable experience in industry, and have then "gone it alone" and set up their own laboratory facilities. Thirdly there are those like Roger DriscoH who are professional academics, but do some spare time consulting work.
Clearly these three classes of consultants work in very different circumstances - just what has each class to offer? The "AVO with the bent needle" type is clearly to be avoided, but what about the others? The academic type is probably appropriate where a theoretical problem alone is involved, but just how can someone who spends his life in an academic world have experience in practical designs; that is, unless he learns at his clients' expense? I have no
disagreement with academic institutions undertaking research projects on behalf of industry on a profit making basis, but individuals making free use of instrumentation and facilities which are public property, for their own benefit is a different issue. Any reasonable labor-. atory will have at least $£ 50,000$ of equipment. If we look at the cost of employing this amount of capital it is at least $£ 5,000$ per annum, to which we must add the cost of replacements which allowing for inflation is at least $£ 10,000$ per annum and also add overheads at say a minimum of $£ 2,000$ per annum. This shows that in the order of $£ 17,000$ per annum is involved in purely maintaining a good laboratory - why shouldn't some of this be recovered when academic staff use the laboratory for their personal gain? After all it's the public who own the equipment.

This of course leads to the question of fees. John Dwyer suggested that $£ 100$ per day was too high a fee. Well, $£ 17,000$ per annum operating cost is about $£ 350$ per week which does not leave a $£ 100$ per day consultant all that rich! Hugh Ford,
Sunbury-on-Thames,
Middx.

CITIZENS' BAND RADIO

In reply to Mr Webber in March "Letters", I am in complete agreement with him as to the practicality and usefulness of CB radio but as to the "Smokey Bear" messages, I fear I must take an opposite stand. Being a professional technician in the music business, I find myself travelling a great deal in America frequently travelling with private and professional CB users, and because of this familiarity I must make two relevant points. Firstly, Mr Webber says "offenders could be charged ..."; to this I must say that it is "illegal" for police to listen to and act upon any of the CB channels (other than the emergency bands) and also it is common knowledge that a speed violator with a CB unit is liable to higher fines than a speed violator without (the reasoning being than an operator with CB knows about the existence of police patrols/ speed traps, and travels over the limit regardless).
One further point regarding Mr Webber's letter re: " . . . impeding the police in the execution of their duty ..." About a year ago a motorist, being very annoyed about being caught in a police radar trap, positioned himself about a mile from radar trap and posted a sign warning other motorists of its existence. He was apprehended and charged. When brought before the magistrate, the case was dismissed as the court ruled that the motorist was doing more to stop speed limit violators than the police could accomplish by ticketing the occasional offender. W. T. Penman,

London, W.6.

COMMUNICATION THEORY

Professor D. A. Bell's excellent article concerning redundancy included an unfortunate half-truth which I feel to be misleading. I refer to the statement on page 75 of Wireless World May issue in which are the words "with a sub-carrier placed exactly half-way between line harmonics."

If the sub-carrier was so placed, the interference pattern would build up a vertical bar system which the eye would see. In practice the sub-carrier is placed in a carefully controlled manner, just off this exact half-way position. This results in a more complicated pattern which, while it does in fact repeat, looks like random interference as the repeating time is too long for the eye to realise it.
Another detail, yet an important one, is that the subcarrier is divided into two components, basically in quadrature, and each of these is then modulated, by the I and Q components, in balanced modulators such that only side-frequency components are left. In the absence of colour information, no sub-carrier component is present.
R. L. Hackworth,

The City University,
London

The author replies:
The point I wanted to make was that the basic picture signal has most of its energy in sidebands clustered around the line harmonics (and a bias towards the lower frequencies) so that one puts the colour information between a pair of line harmonics. When the frequency of colour sub-carrier is 4433.61875 kHz , it is clearly not exactly in the centre of the gap. But if it were exactly in the centre it would not produce a vertical bar system. Simple Fourier analysis shows that any vertical bar is represented only by exact harmonics of line frequency, the horizontal position of the bar being represented by the phase of the harmonics. Since the separation between line harmonics is a multiple of 25 Hz ., the centre point between two of them must be a multiple of 12.5 Hz . The pattern (not bar) produced would be reversed on alternate frames and so minimised by persistence of vision. It would, however, be a stationary pattern and in practice it has proved advantageous to use a frequency which is not related simply to the scanning frequencies. The form of modulation is also of practical value; and if one is going into detail one should include the point that the I component in NTSC has only a vestigial upper sideband, so that the distance between colour sub-carrier and top edge of video band can be less than the maximum colour bandwidth. PAL, however, is different.
D. A. Bell.

Self-setting time code clock

Constructional design suitable for domestic use

by N. C. Helsby M.A. University of Essex

To meet the demand for a fully constructional time-code clock this article describes a modular design comprising five basic functional units. The full circuit receives a time-coded transmission from Rugby MSF and uses this to drive a six-digit display. An optional GMT / BST converter accounts for the one hour discrepancy which exists during the UK summer.

Self-setting digital clocks using coded radio signals have recently been made possible in this country by the introduction of a time-of-day code into the 60 kHz transmissions from Rugby, call sign MSF. Until recently only second and minute markers were transmitted in addition to the call sign. This service is maintained as before but the transmission now carries a 13 -bit b.c.d. code giving hours and minutes in the UTC time scale.

Receiver

Various receiver designs were considered including a phase-locked loop version. However, it was desired to keep the circuitry simple and a receiver with two tuned stages of amplification followed by a detector was found to work well with a pre-set gain control.

With this conventional design it was difficult to obtain more than 12 dB extra gain over that required at 100 miles from the transmitter. To obtain extra sensitivity without the danger of regeneration, a low-level detection system was designed using a multiplier as shown in Fig. 1. By operating the multiplier as a frequency doubler a d.c. output is obtained in addition to the double frequency which is removed by filtering. Most of the gain is required at audio frequencies and is provided by amplifier IC_{2} : Using this system, no high levels of 60 kHz are present in the receiver which eliminates pick up by the ferrite rod aerial. Although the signal strength has been found consistent, inclusion of a.g.c. and a precision Schmitt-trigger level detector enables best use to be made of the available
signal at any moment. The signal strength meter is a useful addition and allows optimum positioning of the aerial.
The multiplier is preceded by a common-emitter gain stage with a tuned collector load, the input of which is fed by the aerial. Current in this stage is set by the a.g.c. amplifier, and reaches a maximum of about 1 mA under no signal conditions. Resistors R_{1} to R_{4} set the multiplier tail currents, signal and carrier input bias levels via centre tapped windings, the a.g.c. amplifier reference, and a reference for the Schmitt-trigger comparator circuit. Half a milliamp flows in each of the multiplier loads under no signal conditions. Output of IC_{2} is set to 4.3 V by R_{5} when no signal exists (shorted aerial). When a signal is applied to the input of

Fig. 1. Receiver using a multiplier as a frequency doubler to produce a d.c. output. Most of the gain is at a.f. which eliminates aerial interference from high levels of 60 kHz .

Fig. 2. Typical break in carrier relative to the Schmitt-trigger levels.

the receiver the negative differential output of the multiplier is amplified and filtered by IC_{2} (if output is not negative either of T_{1} secondary windings: may be reversed). The a.g.c. amplifier IC_{3} produces a level of 2.9 V at the output of IC_{2} by controlling the gain of Tr_{1}. The long time constant formed by R_{6} and C_{1} ensures that the gain does not change much during the 0.1 to 0.5 second breaks which occur in the carrier. This slow response causes $a^{\text {a }}$ delay after switch-on for the signal to
appear. Schmitt-trigger IC_{4} has a 0.29 V hysteresis and the thresholds are 3.88 and 3.59 V . These levels were chosen because most of the noise appears when the carrier is present. A typical break in the carrier relative to the Schmitt-trigger levels is shown in Fig. 2.

The receiver is required to respond to a 60 kHz carrier modulated by pulses, the shortest of which is 5 ms . Because single tuned stages are used there is no overshoot in the response and the rise time of a stage is $0.7 / B$ where B^{\prime} is the bandwidth in Hz between the 3 dB points. This expression accounts for the two sidebands of the modulated wave occupying a frequency band that is twice the modulating frequency. If the response determining stages have similar rise times the exponential output of the receiver $V=V_{0}\left(1-e^{-t / \tau}\right)$ where t is the time after a step of carrier is applied, V_{0} is the final output after a long period and τ is the response time constant.

Fig. 3. (a) Minimum input voltage at aerial to produce a low output from I_{4}. (b) Frequency response of receiver.

The rise time (T) is the time taken for V in this equation to rise from $0.1 V_{0}$ to $0.9 V_{0}$ and can be expressed as 2.2 T . Therefore, $V=V_{0}\left(1-e^{-2.2 t / R T}\right)$. From this equation the overall rise time which will allow V to reach 99% of V_{0} in a specified time t may be found; $0.99=1-e^{-2.2 t / R T}$ therefore $t / R T=2.0$. Thus if $t=5 \mathrm{~ms}$ the overall time required is 2.5 ms . Two tuned circuits in the receiver define $R T$ in addition to the filtering capacitor. The transmitter rise time may also be taken into account in this approximate analysis if it is considered to have the same rise time as one of the receiver stages. The overall rise time is approximately proportional to the square root of the number of stages. For these four response determining stages to give an overall rise time of 2.5 ms , each stage should have a rise time of $2.5 / \sqrt{ } 4=$ 1.25 ms .

For the single tuned stage, rise time is $0.7 / B$ hence B is $0.7 / 1.25 \times 10^{-3}=$ 560 Hz . The loaded Q's of the aerial and the amplifier tuned circuits should be
adjusted to give a 3 dB bandwidth of this order of magnitude, requiring a loaded Q of $110(60,000 / 560)$ at 60 kHz . Note that if two single tuned stages have bandwidths of 560 Hz the overall bandwidth, which is given by $B=B_{0} \sqrt{2^{1 / 2}-1}$ where B_{0} is the bandwidth of each stage, is $0.64 \times 560 \mathrm{~Hz}=360 \mathrm{~Hz}$.,
The aerial pick-up coil design involves a compromise between Q and output voltage. Tuning is accomplished by means of a fixed capacitor and a trimmer across the primary coil. It was found that 36 s.w.g. single silk-covered wire gave a Q of about 140 with the coil spread over 2 in . A signal generator connected across the aerial primary produced the results shown in Fig. 3(a). The minimum level of signal required to register as a low from the Schmitt trigger is $160 \mu \mathrm{~V}$ r.m.s. across the aerial primary. The maximum signal picked up from Rugby, 100 miles from the transmitter, was equivalent to 3.5 mV r.m.s. which gave about 26 dB reserve gain. Inside a reinforced concrete
building the signal was 10 dB lower which still left 16 dB of gain. Frequency response of the receiver is shown in Fig. 3(b). The a.g.c. was removed and Tr_{1} was operated at a current which would normally give the correct output level from a signal of about 1 mV r.m.s. across the aerial primary. It should be noted that the step-down ratio of the aerial transformer is $380: 16$ or 27 dB in terms of signal strength. By buffering the input stage, so that this ratio can be reduced or eliminated, greater sensitivity can be obtained.

Decoder

The receiver output detector, which appears typically as an inverted form of waveform A in Fig. 5, is fed into the buffer stage Tr_{2} in Fig. 4. This is

Fig. 4. Decoder circuit, the charge and discharge action of C_{2} provides heavy filtering and increases the noise immunity.

Fig. 5. Waveforms for various points throughout the decoder circuit.
followed by Schmitt trigger $\mathrm{IC}_{6 \mathrm{a}}$ to improve noise rejection in the conversion to t.t.l. levels. The output of this gate feeds a circuit which charges and discharges capacitor C_{2} to produce waveform B in Fig. 5. Transistors Tr_{5} and Tr_{6} form a double emitter follower to drive Schmitt trigger $\mathrm{IC}_{6 \mathrm{~b}}$.

Resistor R_{8} is adjusted so that if point A is low for more than 22 ms , the positive threshold on the second Schmitt trigger is reached, to produce a low as shown by waveform D, Fig. 5. The output from $\mathrm{IC}_{6 \mathrm{~b}}$ triggers monostable IC_{7} which is adjusted by R_{9} to give a pulse length of 27 ms . Output D is required to be high with output C in

Fig. 6. Seconds counter using a phase-locked-loop tone decoder.

order to clear $\mathrm{IC}_{8 \mathrm{a}}$ via IC_{9}. These conditions leave a narrow window during which a negative going edge at A , made positive-going by $\mathrm{IC}_{9 c}$, can clock $\mathrm{IC}_{8 \mathrm{Ba}}$. Resistor R_{7} is adjusted so that if A is high for more than 18 ms after
the initial 25 ms break, C_{2} is discharged to the negative threshold of $\mathrm{IC}_{6 \mathrm{~b}}$. The charge and discharge action of C_{2} provides heavy filtering and reduces the likelihood of false triggering by noise pulses.

Unused inputs of gates which are required to be high are taken to +5 V via $1 \mathrm{k} \Omega$ resistors as a precaution against transient noise on the power supply. The Q output of $\mathrm{IC}_{8 \mathrm{a}}$ clocks $\mathrm{IC}_{8 \mathrm{~b}}$ which in turn allows IC_{10} to run in the astable mode with a frequency set to 100 Hz by means of R_{10}. Simultaneously, the $\overline{\mathrm{Q}}$ output of $\mathrm{IC}_{8 \mathrm{~b}}$ allows IC_{11} to count the negative-going edges from the timer. On the 15th edge all outputs of IC_{11} go high to give a low out from $\mathrm{IC}_{12 \mathrm{a}}$ which clears $\mathrm{IC}_{8 \mathrm{~b}}$. The last-mentioned then resets and holds the timer. The \bar{Q} output of $\mathrm{IC}_{8 \mathrm{~b}}$ returning high also resets IC_{11}.

The timer capacitor C_{3} normally charges to $2 / 3$ of the supply and discharges to $1 / 3$ by the internal action of the circuit. This gives the mark-space ratio as shown in Fig. 5 with the component values selected. When held in the reset state, C_{3} becomes discharged and it is therefore required to initially charge from zero to $2 / 3$ of the supply which produces the first wide pulse as shown. Thus, by choice of resistor values it is possible to place the negative-going edges of the timer output in the centre of the time code bits. This output is then inverted so that the time code is clocked serially into shift registers IC_{13} and ${ }_{14}$ at the middle of each bit; the shift registers clocking on positive-going edges. The registers are not cleared in this design, new information simply pushes out the previous pattern. Although the marker bit can be used as the first rec^ived high at the end of the shift registers, to stop the clock, the counter was used because if the marker bit were missed due to noise, the time-code might still be retained correctly.

It is possible that the time code itself contains a pattern similar to the one that indicates the start of the code because it is divided into 10 ms -long bits. However, the $\overline{\mathrm{Q}}$ output of $\mathrm{IC}_{8 \mathrm{~b}}$ is connected to the A_{2} input of IC_{7} and this pin therefore goes low just before the end of the monostable pulse. IC_{7} cannot fire again until the complete code has been received and when this occurs A_{2} returns high without firing the monostable so good noise immunity of the code recognition circuitry is maintained.

Seconds counter

Due to the tranmission accuracy, reception and display of seconds is well justified. In this design the Signetics NE567 p.11. tone decoder has been used. for the seconds counting function as shown in Fig. 6. The device operates from a 5 V supply and incorporates a balanced multiplier type of phase detector which, when overdriven, also operates as exclusive-OR gating.
The maximum recommended timing resistance for the p.1.1. current-controlled oscillator (c.c.o.) is $20 \mathrm{k} \Omega$. The tantalum timing capacitor may increase in value by as much as 5% for a 20 degC rise in temperature but, as the oscillator is not required to accurately run for

Fig. 7. Delay of 250 ms is created from the positive edge on $1 C_{9 c}$ by lengthening pulses via monostable IC $_{15}$
long periods without an input signal, the effect is not important provided the loop remains locked.

In this application the p.l.1. is required to lock to a single fixed frequency so it is desirable that the bandwidth of the loop is small. Because heavy filtering is used it is necessary to reduce the loop gain which increases damping. This is ar omplished by the manufacturer's re ,mmended method of adding $\mathrm{R}_{12,13,14}$, $D_{1,2}$. This network reduces one of the internal multiplier collector loads and hence the loop gain. Potentiometer R_{12} enables the correct d.c. conditions to be maintained while the diodes provide temperature compensation. The detection band is reduced from $\pm 7 \%$ to about $\pm 4 \%$. Reduction in gain coupled with the value of C_{5} gives the loop a damped response which prevents overshoot in phase after a disturbance. It also has the advantage of reducing the number of input cycles required before locking occurs, usually less than the maximum of twenty.
To produce the required 1:1 markspace ratio at the input of the p.1.1., monostable IC_{15} is used to lengthen the input pulses. By delaying the input to the monostable a phase shift brings the c.c.o. output in phase with the second markers. The total delay is 250 ms from the positive-going edge, on the second, at pin 6 of IC_{9} - see Fig. 7. By timing the delay from the negative-going edge the extra amount required is 150 ms which is obtained by allowing C_{4} to charge through R_{11}. This capacitor is discharged by Tr_{7} when the output from $\mathrm{IC}_{9 c}$ is high for 100 ms after the second. The monostable Schmitt trigger input is used and R_{11} adjusted until the necessary delay is achieved. The output-pulse length of the monostable is fixed at about 0.5 s and any phase error can be eliminated by adjusting R_{11}.

Fig. 8. Waveforms present in the seconds counter.

The c.c.o. output is fed via buffer stage Tr_{8} through $\mathrm{IC}_{17 \mathrm{a}}$ and $\mathrm{IC}_{18 d}$ to the input of the seconds counter. The outputs of the counters IC_{19} and IC_{20} are inverted where necessary to present all highs to IC_{21} at the count of 59 seconds. This causes the output to go low and clock flip-flop $\mathrm{IC}_{22 \mathrm{a}}$ causing its $\overline{\mathrm{Q}}$ output to go low. Further clock pulses via IC 17 a are inhibited until the flip-flop is cleared by detection of the minute sequence. Thus, if the hours and minutes are not updated the seconds count ceases. When the sequence is correctly received the counters are reset and $\mathrm{IC}_{22 \mathrm{a}}$ is cleared by the output of $\mathrm{IC}_{8 b}$. Waveforms of this are shown in Fig. 8.

It should be noted that extra decoupling of the supply to the tone decoder is used. This is to prevent the decoder running as a locked oscillator, with no signal at pin 3 , due to small 1 Hz spikes on the supply rail from other parts of the circuit.

(To be continued)

Printed circuit boards

Wireless World has arranged a supply of glass fibre boards for the time code clock. The p.c.bs are available as a set which comprises three double-sided and two single-sided boards for the receiver, GMT/BST converters, decoder, seconds counter, and display. The boards mount on top of each other (see photo) to form a compact module which can be housed in a case approximately $8 \times 5 \times 3 \mathrm{in}$. The set of boards is priced at $£ 13.50$ inclusive or $£ 11.00$ undrilled.

A set of special components is also avaitable which comprises an aerial assembly, receiver coil assembly (LA4145) N5596K multiplier, MPS HO5 transistor, two $1.5 \mathrm{k} \Omega$ metal-film resistors, and the NE567 tone decoder. This set is priced at $£ 7.50$ inclusive. Available from M. R. Sagin at 11 Villiers Road, London NW2.

Circuit Ideas

Voltage probe

This circuit indicates the presence of direct or alternating voltages from 3 to 440 V without range switching. The circuit is basically a constant current supply for the l.e.d. Transistor Tr_{2} regulates the base current of Tr_{1}. As the voltage across R_{2} rises to $V_{e b}, \mathrm{Tr}_{2}$ begins to conduct and reduces the base current of Tr_{1}. The voltage capability of the probe is limited by the $V_{\text {ceo(sus) }}$ of Tr_{1} which is 350 V . This value can be increased to 450 V by the addition of a suitable base emitter resistor R_{be}. If this is a fixed value of 60Ω the low voltage operation of the circuit is impaired due

to the lack of forward bias on Tr_{1}. With the correct selection of $\mathrm{R}_{1}, \mathrm{Tr}_{1}$ can be made to act as a variable $\mathrm{R}_{\text {be }}$ having high resistance at low operating voltages and low resistance at high operating voltages. The power dissipated in R_{1} can be reduced by increasing its value provided that Tr_{1} has a $h_{\text {FE }}$ above 45 at 1 mA . However, R_{1} must not be so high that $R_{b e}$ is significantly increased due to the lower collector current in Tr_{2}.
The prototype was housed in a plastic tube of internal dimensions $100 \mathrm{~mm} \times 10 \mathrm{~mm}$ dia. The probe tip was made from a 4 mm plug and the l.e.d. was mounted in the back end plate of the probe. For use on the mains supply a suitable varistor should be used to limit voltage transients.
Glyn Jones,
Queen Elizabeth College,
London W. 8.

Direct-reading transistor tester

The op-amp provides base current for the transistor under test whose action causes equal voltages to occur at the op-amp input terminals. If $V_{\text {ref }}$ is 5.3 V , sufficient base current will flow to provide 1 mA collector current. Gain of the transistor is then $1 \mathrm{~mA} / \mathrm{b}$ ase current, and the meter scale is calibrated. Thus, the $50 \mu \mathrm{~A}$ point is marked $1000 / 50=20$, and so on. A gain value of 400 is marked at the $2.5 \mu \mathrm{~A}$ point. Resistor R and the
diode protect the meter against overloading which could occur if a zero-gain transistor were tested. Resistance R in series with the meter should total $5 \mathrm{k} \Omega$.

For testing p-n-p devices a switch is fitted to reverse the supply polarity and the meter.
A. Rigby,

Ormskirk,
Lancs.

Fast modulo-3 counter

A receiver design required a local oscillator source covering 10 to 30 MHz . To avoid a $3^{2}: 1$ capacitance ratio in the oscillator tuner, and to reduce the tuning rate, a 40 to 60 MHz oscillator was followed by a circuit which could divide by 2,3 or $4 . G_{1}$ and G_{4} are the input driving gate and output buffer gate respectively. When A and B are both 1 , the circuit is $a \div 4$ twisted ring counter with G_{2} and G_{3} acting as
inverters between the J \& K inputs of each bistable. When A is 0 and B is 1 , both Ks go to 1 , and the circuit is a synchronous $\div 3$. With both A and B at $0, \mathrm{FF}_{2}$ is preset, preventing it from switching, and J of FF_{1} is forced to 1 . Input K of FF_{1} then divides by 2 . With the components shown the circuit will operate up to 60 MHz .
C. Attenborough,

Emsworth, Hants.

Tone burst generator for testing p.p.ms

The rise time of a peak programme meter is defined by BS4297:1968 as the deflection caused by various short duration tone bursts. This circuit can be used with an audio oscillator for producing these tone bursts. Transistors Tr_{3} and Tr_{4} form a monostable with switched timing capacitors. The monostable is triggered every five seconds by the astable Tr_{1} and Tr_{2}. An audio oscillator signal is pulsed by the monostable output via the transistor switch formed by R_{14} and Tr_{5}. This switch is biased to handle the required +8 dB output, and is designed to avoid d.c. level changes and spurious transients which could give misleading results. The load impedance should not be lower than $10 \mathrm{k} \Omega$ which results in a transmis-
sion loss of 6 dB . If this cannot be tolerated, or the p.p.m. under test has a low input impedance, the switch should be followed by an emitter follower. The residual output in the off condition is adequately low at -26 dB , and the minimum input impedance is $10 \mathrm{k} \Omega$. Output waveform can be checked on an oscilloscope, in which case C_{1} can be temporarily reduced in value to increase the pulse repetition frequency. Power requirements are 5 mA at 12 V but other voltages can be used if R_{15} is adjusted accordingly. Transistors Tr_{1} to Tr_{4} can be any silicon n-p-n types but a good quality device is recommended for Tr_{5}.

To test a p.p.m. response time the tone burst generator is connected to a 5 kHz oscillator which is adjusted for a
reading of 6 on the meter with $S w_{1}$ at continuous. On switching to the various pulse lengths the p.p.m. reading should be within the following limits.

Burst duration	Meter reading (relative to 6)
continuous	0 dB
100 ms	$0 \pm 0.5 \mathrm{~dB}$
10 ms	$-2.5 \pm 0.5 \mathrm{~dB}$
5 ms	$-4.0 \pm 0.75 \mathrm{~dB}$
1.5 ms	$-9.0 \pm 1.0 \mathrm{~dB}$
E. T. Garthwaite,	
Carlisle.	

Phase failure indicator

The circuit shown will indicate whenever any one of the three phases of a balanced supply is absent. Each phase is separately stepped down to about 9 volts and rectified. The three cathodes of the diodes are joined together and resistor R_{2} is adjusted so that Tr_{1} is just conducting when three phases are present. In this condition the relay will operate. If one of the phases is off the average voltage at the base of Tr_{1} is reduced and the relay is released.
S. K. Sud,

Instrument Design Development Centre,
I.I.T. Delhi,

India.

Precision phase sensitive detector

Precision phase sensitive detectors are finding an increasing application in experimental environments where a small signal has to be retrieved from background noise, often much greater than the signal itself.

The basis of this detector is four precision rectifiers operating as analogue gates. Each passes signals of one polarity and may be dis-enabled by a suitable signal. At any instant only one of the gates will be passing a signal and a d.c. output is obtained by summing and smoothing the outputs from the individual gates. The phase reference is obtained from two 180° out of phase square waves (a and b in the diagram) which should be symmetrical about zero and have an amplitude greater than the largest expected signal.

Performance of the circuit is good, and no switching transients are present at the output. Overall phase response and rejection of quadrature components in the signal are dependent on all the amplifier elements having unity gain. For the highest quality detector, selection of the gain determining resistors will be necessary.
W. Allison,
U.C.L. (Dept. of Physics),

London W.C.l.

Loudspeaker feedback circuit

Power dissipated in a loudspeaker is proportional to V^{2} / R where V is the voltage across the coil and R is the, resistive impedance. Modern voltage amplifiers driving into moving coil loudspeakers work successfully on the assumption that the impedance is roughly constant over the entire frequency range. This, however, is not the case and, although damping factors can minimize the effect, this is one of the causes of colouration.

It is possible to obtain a loudspeaker output which is more accurately proportional to the square of the amplifier input voltage by including the speaker in the feedback path of an amplifier. In circuit (a) the resistance in series with the loudspeaker monitors the current, and a potentiometer is used to monitor the output voltage. If the feedback is now made proportional to the geometrical mean of v_{1} and v_{2}, i.e. $\left(v_{1} \times v_{2}\right)^{1 / 2}$, then the output from the speaker will be proportional to the amplitier input and independent of variations in the speaker impedance. Very complicated circuitry would be needed to obtain such a mean, but for medium differences between v_{1} and ν_{2} the arithmetical mean approximates closely to the geometrical mean. The simplest way of obtaining an arithmetical mean is shown in circuit (b) where the output and feedback paths of a typical amplifier are shown. Circuit (c) shows a modified arrangement but other configurations are possible and may be more suitable in different amplifier designs. The results, especially in the medium quality loudspeaker range, can be quite impressive. Giles Hibbert,
Blackfriars, Oxford.

(a)

(b)

(c)

Low-noise, low-cost cassette deck - 3

Motor control and further notes

by J. L. Linsley Hood

In response to one or two queries, the following notes are offered. Several cassette decks have now been completed, using alternative designs of printed board, and have proved very successful.

Motor control

Circuitry for the control of the drive motor and solenoid is shown in Fig. 20. It is required to supply or withhold current from the cassette-retaining solenoid and to supply a constant drive to the motor in the presence of supply variations.

Solenoid control. Tr_{3} normally conducts and energizes the solenoid. As the motor turns, the pulse-generating switch in the mechanism (yellow and green leads in the Goldring deck) keeps Tr_{1} conducting, which cuts off Tr_{2} and allows current to flow through the solenoid and Tr_{3}. When the motor stops, so does the switch: Tr_{1}.ceases to conduct and, after 3 seconds $\left(\mathrm{C}_{2} \mathrm{R}_{5}\right) \mathrm{Tr}_{2}$ conducts, cutting off Tr_{3} and de-energizing the solenoid. The cassette is
thereby released. If the "pause" contacts are made, the motor stops, but the cassette is retained in position.

Speed control. The motor is supplied with constant current via $\mathrm{Tr}_{5} \mathrm{Tr}_{4}$ is conducting. Back e.m.f. developed by the motor beginning to turn is applied to Tr_{4} emitter, reducing its forward bias.

Fig. 19. Buffer amplifier to match a DIN source to the recording amplifier.

This reduces the current into Tr_{5} base and tends to reduce the motor speed the effect is to stabilize the motor. Tr_{5} behaves as a constant-current source by virtue of the feedback from its collector to Tr_{4} base.

Record input impedance

There are, unfortunately, two conventions on the impedance levels employed for signal handling prior to tape recording. Of these, the older, and I think the

Fig. 20. Circuit diagram of the motor controller.

more sensible, is the " 600 ohms, 0 VU " (+0 to -60 dB , ref. 0.77 V r.m.s.), system which seems to be used by many recording studios, and gives a signal level which can be handled comfortably without problems of degradation due to noise. The other, and the one which is being used increasingly in commercial amplifier "recorder" outputs, is the DIN standard, which implies basically a constant-current source, developing a nominal lmV r.m.s. for each $1 \mathrm{k} \Omega$ of recorder input impedance. Predictably, this leads to a degradation of signal quality due to thermal noise unless fairly high value input impedance circuits are employed.
The convention for which the recorder described above was designed was the 600 -ohm source impedance one although, taken in general terms, this means any range of source impedances in the range zero to a few kilohms, and the system as it stands would probably have inadequate gain if operated from a DIN source. It is, however, not practicable simply to increase the input record level potentiometer to $50 \mathrm{k} \Omega$ or $100 \mathrm{k} \Omega$ since the source impedance of IC_{2} influences the Q of the h.f. pre-emphasis system (see Appendix). While the effect of the existing $10 \mathrm{k} \Omega$ potentiometer, when driven from a fairly low source impedance, is negligible, this would not be true for a higher value DIN input.
If, therefore, this is to be used with a commercial unit having this convention (as distinct from a home-constructed item, in which it is probably most convenient to take the recorder feed at the pre-amp output, in parallel with the power amplifier input), it is recommended that a small buffer circuit

Fig. 21. A suggested, actual-size layout for the controller. The layout and modifications to the speed control circuit are due to Mr A. H. Milligan.
should be attached to the output of the record level potentiometer, as shown in Fig. 19.

Replay h.f. stability

Proximity of output and input leads may cause instability in the replay amplifier. If this cannot be avoided due to layout constraints, a small capacitor (330 pF or so) can be connected across the replay output relay terminals ($\mathrm{RL}_{1} / 1, \mathrm{RL}_{1} / 2$) - across the replay coil output in the replay position - without any adverse effect on the h.f. performance.

The author has pointed out to us that the use of a Doram 207-374 toroidal transformer greatly eases the problems of hum elimination. Doram Electronics Ltd, P.O. Box TR8, Leeds, are the suppliers. Components and metalwork for this design will be available from Hart Electronics Ltd, Penylan Mill, Oswestry, and Powertran Electronics, Portway Industrial Estate, Andover, Hants, also tell us they intend to produce a kit of components. Wireless World has arranged a supply of glass fibre p.c.bs based on the author's design. The board accommodates a changeover relay and four present potentiometers for switchable bias and provision has been made for a single time constant suitable for chromium dioxide tape ($70 \mu \mathrm{~s}$). The board is priced at $£ 4.50$ inclusive. Make cheques or postal orders payable to M. R. Sagin at 11 Villiers Road, London, N.W.2.

Announcements
Customs and Excise have issued a revised list of electronic components which will attract a VAT rate of $12 \frac{1}{2}$ per cent from July 1. The announcement supersedes one made on May 22 by the customs and the Electronic Components Board, and the list includes c.r.ts, radio and tv tuners, delay lines, transformers, chokes and coils, valves and voltage multipliers. The full list is available from the nearest VAT office.

Computer exhibition COMPEC has been acquired by the publishers of Wireless World, IPC Business Press Ltd, from the original promoters Trident Conferences \& Exhibitions Ltd. This year it will be held at the new Wembley Conference Centre, November 23 to 25. In May COMPEC Europe was launched in Brussels and plans are in hand for further European shows.

The European Physical Society has awarded the Hewlett Packard Europhysics prize to Professor Wolfgang Helfrich for work on liquid crystals, leading to the discovery of the twisted nematic display.

The Sira Institute, in association with Warren Spring Laboratory, is holding a two-day seminar on microprocessor applications in instrumentation and control systems at the City University, London ECl, on September 29 and 30, 1976. Application forms from the Sira Institute Ltd, South Hill, Chislehurst, Kent BR7 5EH.

Sixty Years Ago

The following, rather untypical piece was published in Wireless World for August 1916. Technological prophecies seem to become fact rather quicker than the prophets imagine, but this one was a little too far-seeing. The long-wave trans-Atlantic wireless telephone service was opened on January 7th, 1927.
"According to an American scientific journal, it will not be long before England and America will be able to converse with one another by means of the wireless telephone. There are certain individuals to-day who cling to the conviction that the telephone was simply the invention of a man who had a grudge against humanity. What will they now say of the wireless telephone? There is this much to say. It will be much better than those cheap wire telephones, the wires of which are so apt to snap if you don't pay up your subscriptions. With the wireless telephone it may be that you will receive a second demand note for payment, but there will be not a man with a pair of wire-cutters in his pocket to bring the third and last demand note and cut you off if you do not pay at once. It is getting to be very exciting when we get those wireless telephones in full working order. Just imagine yourself stepping into a call box in Victoria Street and asking for "45678, Broadway, New York City." While the young lady is waking up New York you just sit down and read a few chapters from your Shakespeare or Bacon according to which school you belong. But it will test your temper when the young lady tells you that you are through, and will you please drop three hundred and sixty-five pennies in the slot and 'turn the handle after each, please'."

Operation of QS Variomatrix decoder

by David Heller, B.Sc. (Eng.)

Abstract

The Sansui Variomatrix technique allows decoding of OS records with enhanced separation but without altering the gain of the decoder outputs and consequent loss of subsidiary sounds. It permits decoding of SQ records and provides two alternative ways of reproducing stereo records through four loudspeakers.

It's well-known that in the basic Sansui QS system crosstalk is distributed symmetrically in that a left-front source, for example, produces crosstalk in the right front and left back speakers, but negligible leakage in the diagonal speaker. The QS Variomatrix (continued next folio) is a teechnique to increase the interchannel separation and place the reproduced signal more sharply in focus. When a predominant signal is detected, say in the left-front (L_{F}) direction, the Variomatrix circuit varies the L_{B}^{\prime} matrix coefficients* as well as the R_{F}^{\prime} matrix coefficients. If a signal of a lower level is present at the same time, it will be reproduced with maximum interchannel separation if it is located in the same direction as the dominant signal L_{F}. If it is located in a different direction, it will be reproduced in such a way that its directionality is more and more obscure as it moves further away in direction from the L_{F} signal.

Sansui claim that their experiments have shown that when a listener perceives a dominant and a secondary sound source simultaneously, the directionality of the secondary sound source is masked by the direction of the predominant sound source, which they call directional masking. This being the case, a listener would hardly be able to detect the ambiguous directionality of the secondary sound source. However for the directional masking to be efficient it is necessary that the secondary sound source should occur within a certain time after the predominant signal. For this reason the Variomatrix coefficients have to respond to primary source changes within 20 ms .

Variomatrix principles in QS decoding

 The QS Variomatrix decodes the coded L_{T} and R_{T} signals \dagger as follows$L_{F}^{\prime}=(1+f)\left(L_{T}-R_{\mathrm{T}}\right)+(1+1) / 2 R_{\mathrm{T}}$
$R_{\mathrm{F}}{ }^{\prime}=-(1+f)\left(L_{\mathrm{T}}-R_{\mathrm{T}}\right)+(1+r) \sqrt{ } / 2 L_{\mathrm{T}}$
$L_{\mathrm{B}}{ }^{\prime}=(1+b)\left(L_{\mathrm{T}}+R_{\mathrm{T}}\right)-(1+1) \sqrt{ } 2 R_{\mathrm{T}}$
$R_{\mathrm{B}}{ }^{\prime}=(1+b)\left(L_{\mathrm{T}}+R_{\mathrm{T}}\right)-(1+r) \sqrt{ } 2 L_{\mathrm{T}}$
where the Variomatrix coefficients $\mathrm{f}, \mathrm{l}, \mathrm{b}$ and r vary between 0 and $\sqrt{ }$. Fig. 1 shows the relationship between the

Abstract

In attempting to give a surround effect, matrix systems arrange source information into two, three or four audio channels. Differences between the various approaches arise in the coding and decoding methods used; different relative weights being given to the quality of surround, stereo and mono playback. (In two-channel systems it is not possible to give optimum playback in all three modes.) The defects of early two-channel systems were quickly recognized and widespread use was made of 90° phase difference circuits to distribute the 180° phase error. Codings for these systems, including the Sansui QS, have been detailed many times, see for example "Commercial quadraphonic systems," Wireless World Annual 1975 pp.84-9, (for a subjective assessment see "Matrix decoding" Hi-Fi News, March 1975, pp 147-57), and it is known that the maximum directivity of a two-channel system is governed by a cardioid-shaped characteristic relating signal amplitude and direction, no matter how many loudspeakers are used. The Variomatrix technique is a method developed by Sansui to improve directional effect by reducing the gains of signals prior to final decoding, according to detected phase relationships. This allows subsidiary sounds, which would otherwise be attenuated along with undesired crosstalk, to be reproduced. - Tech-ed.

direction of a sound source and the corresponding value of the Variomatrix coefficients. The centre of each circle represents 0 and the circumference $\sqrt{ } 2$. For example, when the sound source is located in the L_{F} direction the Variomatrix coefficients become $f=\sqrt{ } 2, b=0$, $1=\sqrt{ } 2$ and $r=0$. Fig. 2 shows the internal functions of the HA1328

[^4]decoder i.c. The input matrix derives the $L_{\mathrm{T}}+R_{\mathrm{T}}, L_{\mathrm{T}}-R_{\mathrm{T}}, \quad \sqrt{ } 2 R_{\mathrm{T}}$ and $\sqrt{ } 2 L_{\mathrm{T}}$ signals which are then passed through four gain-controlled amplifiers.
It is here that any similarity with the SQ logic ends, because in the case of SQ logic the gains of the output amplifiers are varied in such a way that the channel containing the predominant signal is amplified, while the gains of the channels containing crosstalk are attenuated. Hence any secondary sound sources contained in the attenuated channels are largely lost and only appear as crosstalk components in the remaining channels. To quote Sansui's phrase, matrix coefficients are governed according to the "centre of gravity" of the total sound signal.
The QS Variomatrix system allows weak secondary sources to be reproduced, but with ambiguous directionality. To understand how this is achieved, readers are referred to the Appendix.

Derivation of four-speaker signals from stereo sources

The QS Variomatrix circuitry can be adapted to "synthesize" a surround sound field from a stereo source in two ways.
Surround mode. In Fig. 3 stereo signals at the input are blended in antiphase through S_{1} to yield the following signals prior to entering the matrix i.c.

$$
L-0.414 R
$$

and

$$
R-0.414 L .
$$

For a left-only source ($R=0$), inputs to the matrix i.c. are L and $-0.414 L$, chosen to correspond to a left-back QSencoded signal. Similarly a right-only signal produces the equivalent of a right-back encoded signal. If the stereo inputs correspond to a phantom image defined by $L=1.414 R$ or $R=1.414 L$, this is equivalent to an encoded left-front or - right-front signal respectively.

Hall mode. In this instance, the stereo signals are blended by the same amount but in-phase and fed to the matrix i.c. However, signals for the left-front and right-front speakers are taken directly from the stereo source signals, while

Fig. Relationship of the four Variomatrix coefficients with encoded direction follows the laws shown.

Fig. 2 Matrix i.c. includes gain-control elements before final matrix.

Fig. 3 Decoder arrangement includes facility for deriving four speaker sound from stereo sources using Variomatrix technique by operating S_{1} or S_{2}.
signals for the rear speakers are taken from the appropriate Variomatrix decoder outputs. Referring to the table it is evident that all in-phase stereo signals would appear in the front while antiphase signals result in rear speaker images. Therefore any antiphase information present in a stereo recording will appear from the back speakers and normal stereo from the front.

SQ decoding

It is possible to use the Variomatrix decoder to with SQ sources. Like the QS matrix, the SQ matrix distributes the front signals in-phase to L_{T} and R_{T}, and the back signals in reverse-phase to L_{T} and R_{T}. In the case of the $S Q$ matrix the L_{B}^{\prime} and R_{B}^{\prime} signals are 90° out-of-phase with each other. Separation between L_{F}, L_{B} and between R_{F}, R_{B} is limited to 6 dB , but is theoretically infinite for centre front/back.
The decode equations for playback of SQ encoded signals using the Variomatrix decoder are

$$
\begin{aligned}
L_{\mathrm{F}^{\prime}} & =(1+f)\left(L_{\mathrm{T}}-R_{\mathrm{T}}\right)+2 R_{\mathrm{T}} \\
R_{\mathrm{F}^{\prime}} & =-(1+f)\left(L_{\mathrm{T}}-R_{\mathrm{T}}\right)+2 L_{\mathrm{T}} \\
L_{\mathrm{B}^{\prime}} & =\left(L_{\mathrm{T}}+R_{\mathrm{T}}\right)-2 R_{\mathrm{T}}+\mathrm{jb}\left(L_{\mathrm{T}}+R_{\mathrm{T}}\right) \\
-R_{\mathrm{B}^{\prime}} & =\left(L_{\mathrm{T}}+R_{\mathrm{T}}\right)-2 L_{\mathrm{T}}^{-}+\mathrm{jb}\left(L_{\mathrm{T}}+R_{\mathrm{T}}\right)
\end{aligned}
$$

with $0 \leqslant f, b \leqslant 1$. The first two terms of the above equations correspond to the original QS decode equations with $l=r=\sqrt{ } 2-1$, while the third and fourth equations correspond provided $l=r=\sqrt{ } 2-1, b=0$ and a new term $\mathrm{jb}\left(L_{\mathrm{T}}+R_{\mathrm{T}}\right)$ is added. Hence, provided the signals $\mathrm{j}\left(L_{\mathrm{T}}+R_{\mathrm{T}}\right)$ are derived at external circuits to be applied to the b control terminal of the matrix i.c. HA1328, it is possible to decode SQ sources.

Fig. 4 Relationship between encoded direction and phase difference of L_{f}, R_{T} and $\left(L_{T}+R_{T} \angle-45^{\circ}\right),\left(L_{T-} R_{T} \angle-45^{\circ}\right)$.

Appendix

To understand how the QS Variomatrix method of decoding allows both dominant and weak signals to be reproduced simultaneously, consider the Table. Two columns show the encoder and decoder inputs while another column shows the resultant Variomatrix coefficient required to give the correct decoded output. In physical terms, this is equivalent to placing resistors, the values of which are given in the Table, at the respective i.c. pins numbered 9 to 12 .
Consider a signal $\mathrm{L}_{\mathrm{T}}, \mathrm{R}_{\mathrm{T}}$ to be present at the decoder inputs consisting predo-

 together with a lesser signal of rightfront directionality $\left(\mathrm{S}_{1}, \mathrm{~S}_{\mathrm{r}}\right)$. The L_{T} and R_{T} signals may be expressed as

$$
\begin{aligned}
L_{\mathrm{T}} & =L_{\mathrm{T}^{*}}+S_{1} \quad\left(L^{*} \gg S_{\mathrm{Y}}\right) \\
R_{\mathrm{T}}=R_{\mathrm{T}}^{*}+S_{\mathrm{r}} & \left(R^{*} \gg S_{\mathrm{T}}\right)
\end{aligned}
$$

where $L_{\mathrm{T}}{ }^{*}=1, \quad R_{\mathrm{T}}{ }^{*}=\sqrt{ } 2-1, \quad S_{1}=$ $(-\sqrt{2}-1) x$ and $S_{\mathrm{r}}=x$ and with $x \ll 1$.
The Variomatrix circuitry recognises the dominant signals $\mathrm{L}_{\mathrm{T}}{ }^{*}$ and $\mathrm{R}_{\mathrm{T}}{ }^{*}$ to be a left-front encoded signal and adjusts the Variomatrix coefficients to $f=\sqrt{2}, b=0, \quad l=\sqrt{ } 2$ and $r=0$. The resulting decoding equations become $L_{\mathrm{F}}^{\prime}=(1+\sqrt{ } 2)\left(L_{\mathrm{T}}-R_{\mathrm{T}}\right)+(1+\sqrt{ } 2) \sqrt{ } 2 R_{\mathrm{T}}$ $R_{\mathrm{F}}^{\prime}=-(1+\sqrt{ } 2)\left(L_{\mathrm{T}}-R_{\mathrm{T}}\right)+\sqrt{ } 2 L_{\mathrm{T}}$ $L_{\mathrm{B}}{ }^{\prime}=\left(L_{\mathrm{T}}+R_{\mathrm{T}}\right)-(1+\sqrt{ } 2) \sqrt{ } 2 R_{\mathrm{T}}$ $R_{\mathrm{B}}{ }^{\prime}=\left(L_{\mathrm{T}}+R_{\mathrm{T}}\right)-\sqrt{ }{ }^{2} L_{\mathrm{T}}$.
Substituting $\left(L_{T}{ }^{*}+S_{1}\right)$ for L_{T} and ($R_{T}{ }^{*}+S_{r}$), and then for $L_{T}{ }^{*}, R_{T}{ }^{*}, S_{l}$ and S_{n} yields

$$
\begin{aligned}
& L_{\mathbf{F}^{\prime}}=2.83+2 x \\
& R_{\mathbf{F}^{\prime}}=0+2 x \\
& L_{\mathbf{B}^{\prime}}=0-2 x \\
& R_{\mathbf{B}^{\prime}}=0+0.83 x
\end{aligned}
$$

The calculations may be redone for different combinations of primary and secondary sound sources. In all cases it can be shown that the Variomatrix decodes the dominant sound source in the correct position, while secondary sounds are reproduced with ambiguous directionality.

To be continued.

Note. Sansui ask us to point out that QS and QS Variomatrix are trade marks of Sansui Electriclo Ltd. and SQ is a trade mark of CBS Inc. - Ed.

Books Received

Convolution and Fourler Transforms for Communications Engineers by R. D. A. Maurice explains the mathematical process of convolution from basic concepts and gives many examples enabling the reader to compare convolution with Fourier transformation. Convolution is rather like correlation in that it is a statistical process which enables relationships between, or possible combinations of, two or more groups of things to be calculated. In communications engineering a method of calculating the effect of a network on a transient signal would be to obtain the final waveform by convolution of the original signal with the waveform of the network's response to a test signal - the unit impulse. If the functions to be convolved are in digital rather than analogue form the process becomes a simple arithmetical operation. All examples in the book are taken from real cases and chosen to show features which predominate in practice. Suitable for broadcasting and telecommunications engineers and also for undergraduate and postgraduate engineering students. Price $\mathrm{E7.50}^{\text {. Pp. 198. Pentech Press, }}$ 4 Graham Lodge, Graham Road, London NW4.

Electronics in measurement

New industrial techniques revealed at 7 th IMEKO congress, London

Too often electronics seems to be associated with dangling before the public a succession of new toys and trinkets - digital watches, pocket calculators, radio and television sets, video games and the like - for the main purpose of creating mass consumer markets for components and equipment. To some engineers this seems like a trivialisation of their calling. It is therefore encouraging to be able to report on a field of activity where electronics has a more direct bearing on the quality of our lives - on energy conservation, pollution control, public safety, agriculture, and the efficient utilization of raw materials. Such applications were the dominant feature of the seventh IMEKO congress held in London in May this year. Indeed, the official theme of the congress was "practical measurement for improving efficiency", and this was reflected in most of the papers delivered.
In general the electronic techniques described were used for processing in various ways the electrical signals produced by measurement transducers, thereby obtaining more refined or elaborated information, or quicker results, than would be possible by other means. One of the simplest examples, described by two Indian authors, A. S. Zadgaonkar and M. G. Tarnekar, was an instrument for estimating the ash content of coal samples. This is being used to test coal in India to decide whether it is in fact worth mining. A 1000 Hz acoustic signal, produced by a signal generator, amplifier and transducer, is passed through a 5 mm cube sample of coal and the received energy is picked up by a microphone, the output of which is amplified and indicated on a voltmeter directly calibrated in percentage ash content. The ash percentage is in fact proportional to $\log _{10}\left(V_{0} / V\right)$, where V_{0} is the voltmeter reading without the sample and V the reading with the sample.
At the other end of the scale were elaborate instruments including analogue and digital computing techniques, in some cases using microprocessors. The technique of correlation computing
is now being widely used, particularly for measuring the flow rate of materials and the velocity of objects. The attraction of this method is that it can be applied to measurement signals obtained from natural features of the material itself, such as particles, grain patterns, turbulences and radiation discontinuities. In flow rate measurement, for example, two transducers are used, spaced at a known distance apart along the flowing material. They produce electrical signals $x(t)$ and $y(t)$. The output from the leading or "upstream" transducer, $x(t)$, is delayed in time by an interval τ which can be continuously varied, giving $x(t-\tau)$. To obtain the cross-correlation function of the two signals, $x(t-\tau)$ is multiplied by $y(t)$ and the time integral of the product is continuously calculated over a fixed period of time while τ is varied. All this is done by analogue or digital electronic circuits. When delay time τ is equal to the time of travel of, say, a particle from one transducer to the other, the crosscorrelation function is at a maximum. This gives the time of travel, and since the distance between transducers is known the flow rate can be electronically calculated.
One example of this method of flow measurement was concerned with pollution of the environment by fumes from steel making plant, in a paper by P. J. Webb and co-authors from the British Steel Coporation. To optimise the use of capital in the construction of steel-making plant and to monitor the conditions of service they have developed noncontacting techniques for measuring the flow rate, temperature and composition of exhaust gases. These make use of either emission or absorption of infra red radiation by the fumes. In particular the flow rate of the exhaust gases is based on cross-correlation between the electrical signals from two spaced infra-red detectors "viewing" the gas stream. By arranging these detectors in different viewing configurations it is possible to distinguish information relating to either regional flow rates or to the mean flow rate.
Correlation is also the basis of an instrument, described by G. J. Llewellyn,
of Bradford University, for measuring, the velocity of jets of high temperature gas and solid material from volcanos. Expeditions have been made to the Etna and Stromboli volcanos to test it, and the applications intended are to provide early warning of volcanic activity and to improve the deployment of rescue services aiding the communities affected by the eruptions. The flow of the volcanic jet is detected by means of infra-red radiation emitted by it, received at a distance. A telescope is focused on the jet, and the infra-red radiation from two points on the jet, one above the other, is directed onto two lead sulphide cells. The output signals from the cells are amplified and tape recorded on site, after which the readings are applied to a cross-correlator, from which the jet velocity is obtained.
When solid materials are transported hydraulically or pneumatically along pipelines they have to be conveyed as slowly as possible to minimise power costs and wear on equipment and to reduce the risk of breakage. R. M. Henry (Open University) and M. S. Beck (Bradford University) presented a paper on an adaptive control system for achieving this which used cross-correlation for conveyer velocity measurement. Two conductivity transducers are placed in the pipeline about 2 pipe diameters apart and the cross-correlation, flow control, adaptive control and flow valve positioning are all done digitally by an on-line digital computer (the Argus 400). The system operates by sampling at a rate of 1300 Hz , and 48 points are correlated in about 9 seconds. A modified system under development will use a microprocessor and a l.s.i. correlator.

Two cross-correlation flowmeters for use in open channels were described by R. W. Smith and co-authors of Bradford University. In one, ultrasonic sensing is used. Two transducerstransmit beams of ultrasound from one side of the channel through the flowing liquid to pick-up transducers at the other side. Discontinuities in the flowing liquid modulate the received signals in amplitude and phase, and the demodulated signals are
processed in the cross-correlator. A second flowmeter works optically, using photocells, and operates on the time of travel of turbulence patterns or floating particles between two points on the liquid surface.

Speed measurement

Highly accurate measurements of vehicle speeds are often needed as a basis for improving motor vehicle efficiencies. T. Idogawa and T. Ono of Hokkaido University, Japan, described a method, using cross-correlation of random functions obtained from road surfaces, which gives a speed measurement accuracy of 1% for movement both in straight lines and in arbitrary curves. Two semiconductor photocells are mounted in the vehicle and arranged to examine the road surface, one being 20 cm ahead of the other in the line of movement. The output signals of these are fed to a digital cross-correlator and the correlation function is read out every 400μ s and indicated on analogue and digital display units.

Another method of speed measurement using cross-correlation was revealed by C. Zimmer and co-authors of Hasler Ltd, Switzerland. This uses a delay locked loop, based on a shift register, which automatically follows the delay time between the two spaced transducer signal's. The system is for measuring the speed of trains without using the wheels (which introduce errors because of skidding and slipping) and it works by optically scanning the varying structure of the rail surface with two optical heads spaced 50 mm apart. The rail surface is illuminated by solid state light sources and the reflected light is focused through slits onto photodiodes. The output of the leading photodiode is applied to the shift register delay line and the delayed signal is multiplied by the output of the other photodiode. The product is then integrated and, through a voltage controlled oscillator, used to control the stepping speed of the shift register. Each step of the shift register indicates a certain travelled distance, e.g. 1.25 mm . The whole delay locked loop operates to automatically adjust the delày tìme in the shift register to equal the time of travel of a point on the rail between the spaced optical heads. Speed is then obtained by integrating the distance pulses over a given time. Measurement accuracies of better than 1% are obtained.

Correlation technique also has its use in extracting periodic signals from noise which obscures them: the periodic signal is highly correlated but the noise, being random, is not. Y. Dubnistchev and co-authors from the USSR showed how correlation technique can reduce the noise that affects the performance of a laser Doppler velocity meter used for flow measurement. Another noise problem was dealt with by Japanese authors. Flaws in wire rod being made by hot rolling are normally detected by
eddy current flaw detectors. The rod passes between search coils as it is rolled and a flaw is detected by the change it causes in the eddy current induced in the rod. A serious measurement problem, however, is introduced by noise created by vibration of the rod. K. Watenabe and co-authors from the Daido Steel Company of Japan showed how this trouble can be overcome electronically by phase discrimination between the flaw signal (at 160 kHz) and the noise. This is based on the fact that the phase angle of the noise is continually changing while that of the flaw signal remains constant.
A special purpose m.o.s. integrated circuit digital correlator designed for use in correlation flowmeters was described by J. R. Jordan and B. A. Manook of Edinburgh University. The i.c. executes 12 points of polarity correlation and has a novel output circuit which interrogates only the overload state of the integrating counters summing coincidence between the two, polarity detected, analogue inputs. When used in a flowmeter, the first integrating counter to overload indicates the position of the peak of the correlation function, while a frequency inversely proportional to the peak position (i.e. proportional to flow rate) is obtained directly from the output circuit.

Thickness and layers

An optical method for measuring the deposition rate and thickness of various layers of material used in the making of microelectronic devices was described by V. N. Chernjaev and co-authors from the Moscow Aircraft Technological Institute, USSR. The principle makes use of optical interference between rays of coherent light. A beam of monochromatic light is directed on to the substrate carrying a deposited layer and the intensity of the reflected light is measured. As the thickness of the deposited layer increases there is a continuous change of phase between the light reflected from the substrate and the light reflected from the layer surface, and this causes a cosine law variation in the intensity of the measured reflected light. From this the thickness is determined electronically and used to control the deposition rate.

In optical range-finders and other stereoscopic instruments, the parallax is a measure of range or altitude Normally such instruments depend on human perception, but F. Mesch and H Moll of the University of Karlsruhe, Germany, showed how correlation methods could be applied to obtain parallax measurements. For electrical operation, the two stereoscopic images, which are temporarily constant, have to be transformed into time varying signals by electronic scanning methods using television cameras or cathode-ray tubes.
Examination of layers in the earth's
atmosphere associated with temperature discontinuities has been carried on for some time with powerful frequency modulated, continuous-wave microwave radar sets. A development revealed by J. H. Davies of Barringer Research, Toronto, is a small, lightweight (150 lb) f.m.-c.w. radar for this purpose which could be carried in an aircraft. Using a transmitter power of only 20 watts at 5.8 GHz with a frequency excursion of 200 MHz , it has a receiver sensitivity of -140 dBm , a maximum range of 1 km and a resolution of 3 metres.

One way of measuring the flow rate of solid granules in pipes or conveyors depends on detecting random fluctuation of the granules in transit: the greater the flow rate the greater the amplitude of the fluctuations. A method described by Y. Tomita and co-aurhors of Keio University, Japan, depends on the audible noise produced by the collision of the particles against each other. The noise is picked up by a microphone mounted in the pipe and the power spectrum of the noise signal is obtained by a wave analyser for bandwidths of 10 and 100 Hz . The noise is pink; at lower frequencies the r.m.s. sound pressure is flat but above about 200 Hz it falls sharply. Curves plotted show a relationship between particle flow velocity and r.m.s. sound pressure. Other methods, using a similar basic principle, were described by H. K. Kwan and M. S. Beck of Bradford University. One of these employed a capacitance transducer. Random variations in flow cause small changes in the instantaneous concentration of material between two capacitance electrodes and the amplitude of the resulting capacitance changes is measured electronically. The second method uses ultrasonic transducers operating at 40 kHz . The granule fluctuations cause variations of ultrasound pressure at the receiving transducer and the amplitude of this modulation of the 40 kHz signal is again measured electronically. With the capacitance method, R. G. Green of Bradford College showed that higher sensitivity is obtained with an f.m. transducer (the capacitance changes causing frequency variations in an oscillation) than with an a.m. transducer (the capacitance changes causing amplitude variations in the oscillation).
Speakers from Unilever Research, Netherlands, described the use of microprocessors in conjunction with a nuclear magnetic resonance spectrometer, for measuring the percentage of solid matter in partially crystallized fat, and with a dissolver/sampler for automated analysis of detergent powders. Digital techniques are also used in a system, explained by S. Kun and co-authors of Budapest, for accurately measuring the net mass of hydrocarbons passing along pipelines. The mass flow measurements taken by turbine flowmeters are automatically corrected in digital circuits by measurements of
density, pressure, viscosity, temperature and other variables to give accurate measurement of net mass. Also from Hungary, G. Várnai showed how digital computing methods are used for accurate measurement of the mass or volume of liquids stored in tanks. The basic measurements are of liquid level in the tank and of temperature differences which affect the expansion of the liquid. The digital computing operation calculates the volume or weight of liquid using these measurements and the cross-sectional area of the tank stored in a r.o.m.

A method of measuring the quality of printed characters, resulting from multiple copying or other processes, was described by R. J. Hall of Wiggins Teape Research and Development. Its principle is to compare the density distribution of a sample character with that of a master (perfect) character by means of two vidicon television cameras scanning the characters. For each line scan across the characters, the line waveform from the "master" camera is subtracted from that from the "sample" camera and the resulting difference signal represents the error in density between corresponding areas. The integral of this waveform is the total area-density product and is obtained by digitizing the difference signal. Measured results are displayed digitally. A refinement to the digital processing system enables the area due to the "master" to be removed from the "sample" field and as a result only the external dispersion error, or "blur," is measured.
It is useful to be able to monitor the flames used for heating boilers, in one case for the purpose of minimizing fuel consumption (by controlling air/fuel ratios) and in another case to prevent explosions (caused by accumulation of a mixture of unburnt fuel and air). H. C. Lord and co-authors from the Environmental Data Corporation, USA, described a flame monitor used for the first application which works on a spectroscopic principle. The intensity of light emitted from the flame is measured at two wavelengths and the ratio of these two measurements, calculated in a microprocessor, is proportional to the percentage of air in the combustion process and is used to control electronically the burner's air/fuel ratio.
B. G. Gaydon of the UK C.E.G.B.' gave a review of flame monitoring techniques for large boilers, one of which was an electronic cross-correlation method now being tried out in England and Australia. Two telescopes spaced 70 mm apart are aimed so that their lines of sight intersect at the edge of the flame. When the flame is present the flickering light received by one telescope is very similar to that received by the other telescope. If, however, the flame is absent, either the light level will by very low or the flickering illumination received from different areas of background sources will be dissimilar,
i.e. uncorrelated. The monitored flame is presumed to be present only when the electrical flicker signals have sufficient amplitude (determined by a "low signal" detector) and are highly correlated (determined by a cross-correlator). An advantage of this method is its sensitivity to low light levels as the correlation process gives a dimensionless criterion of flame presence, independent of flicker amplitude.

The vibration in lathes and other machine tools known as "chatter" was the subject of a paper by M.A. El Hakim, of Ain Shams University, Egypt, who described a "chatter" detector and control system. Vibration of the cutting tool is detected by an accelerometer and the output signal of this is amplified and passed through a band-pass filter tuned to the natural frequency of the chatter process, then rectified. When the rectified voltage approaches a reference voltage which represents a point just before the onset of chatter, a relay operates an audible alarm and also causes a solenoid to disengage the clutch of the machine-tool feed motion.
A new type of very thin (10 to $50 \mu \mathrm{~m}$) pressure transducer, for measuring pressure fluctuations on aerofoils, was the subject of a paper by M. Chatanier: of the French Office National d'Etudes et de Recherche Aerospatiales. Being so thin, it can be attached by simple bonding and no machining of the aerofoil is necessary. It consists of a dielectric film (6 to $25 \mu \mathrm{~m}$), both surfaces of which are metallized. Pressure changes cause corresponding variations in the dielectric thickness and an electrical signal is obtained by measuring the resulting capacitance values. The transducer will operate at temperatures of a few hundred ${ }^{\circ} \mathrm{C}$ and at frequencies up to tens of kHz .

Aids to agriculture

Agricultural research is greatly benefiting from the use of electronics and several papers reflected this activity. For example, J. D. Lambright of Texas Technical University and co-authors described a digital capacitance meter designed for measuring the foliage yield of plants. This is much quicker in use than the normal method of clipping, drying and weighing samples of foliage to obtain the mass per unit area. The principle is to measure the capacitance of a structure consisting of a specific volume of vegetation enclosed between electrodes. Basically the system measures moisture content, because water has a higher permittivity than other substances. The measured capacitance variations indicate either water content and its alteration with time in a constant mass or total mass in a given region of growth, or both. Essentially, a relationship between water content and foliage mass can be established.
Reducing the heating costs of glasshouses is the ultimate purpose of an electronic meter which measures and
records the total heat in joules dissipated by a hot water heating system. Described by W. R. Wignall of the UK National Institute of Agricultural Engineering, it integrates the product of water flow rate and the temperature difference between flow and return circuits. This is done by means of a train of pulses which have an amplitude proportional to the temperature difference and a mark-space ratio proportional to flow rate. The area under the pulses is integrated and the result is shown on an electromechanical counter. Also outlined by this author was an electronic instrument for measuring a rotary digger's "bite length" or length along the ground surface between successive cuts of the rotor blade. It operates from photoelectric transducers sensing forward speed and rotor blade speed, and these produce pulses which are fed to gating and counting circuits. Forward-speed pulses are counted for a period determined by counting a pre-set number of rotor speed pulses, and from the first-mentioned a direct display of "bite length" is obtained.

The 7th IMEKO congress was organized by the Institute of Measurement and Control, and the proceedings, consisting of 163 papers in four volumes, can be obtained from the Institute at 20 Peel Street, London W8 7PD, price $£ 20.00$ including postage and packing.

Announcements

North Sea orders
Ferranti will supply $£ 11 / 2$ million worth of telemetry and control equipment to the Central and South Platforms in the Ninian field. Each will have a dual Argus 700E computer with paper tape peripherals and an interface which includes two semi-graphic CRTs with digital and analogue inputs and outputs. All systems can be monitored on the displays and the operator will be able to route selected wells to the test separator system automatically. As well as full logging the system will provide constant monitoring for metal fatigue and corrosion in the steel platform.
Marconi has bought Comelit antennae and cable feeders from Hayden Laboratories to establish communication links between oil and gas rigs in the North Sea and the shore. Hayden says all the rigs will now be linked permanently to the mainland telecommunications system. Hayden has also supplied equipment to install on the Occidental Piper and Mobil Beryl A oil platforms 100 miles east of the Shetlands. The four antennae use either line of sight or tropospheric scatter techniques.

Tanker equipment orders
The Shell tankers Methane Princess and Methane Progress are to be fitted with a ship telex system. the new vessel Matco Thames has been fitted with radio communications and navigational equipment, and the BP'fleet has been supplied with 79 multi-standard colour tv receivers, all orders for Marconi.

Characteristics and load lines

1 - Linear characteristics

by S. W. Amos, B.Sc., M.I.E.E.

To use an electronic device successfully information is required on its basic properties and these may be quoted as the input resistance, output resistance, transfer resistance (or conductance) and reverse transfer resistance. This is true whether the device is a transistor, an i.c. or a complete equipment. This article and the next one are concerned with the shape of the transfer characteristic, i.e. the form of the relationship between the input signal and the output signal. For some applications the characteristic is required to be linear, showing strict proportionality between input and output signals: such characteristics are the subject of this article. Other applications require a non-linear characteristic and these are discussed in Part 2.

For a bipolar transistor the inputoutput characteristic may be given in the form of a curve relating output (collector) current with input (base) current. A typical example of such a curve is given in Fig. 1(a) and this has an almost-linear section showing the output current to be nearly directly proportional to the input current. For a field-effect transistor (and a thermionic valve) the input-output characteristic is generally shown as a curve relating output (drain or anode) current and input (gate or grid) voltage. As shown in Fig. 1(b) this curve also has a near-linear section showing that the output current is proportional to the input voltage (measured from the cut-off point).

In general input-output characteristics have the form shown in Fig. 2 in which $B C$ is the nearly-linear section. The regions of curvature at the ends of the characteristic can be explained by considering a simple single-ended amplifying stage. Linearity cannot continue as the input is decreased towards zero because the output current is cut off, causing the characteristic to become horizontal as shown by section AB. On the other hand linearity cannot continue indefinitely as the input is increased, and at a particular value of input amplitude the device is unable to increase the output current pro rata with the input and the charac-
teristic again goes horizontal as shown by section CD. This may not be due to lack of emission: it is quite likely to be due to the inclusion of a load resistor in the output circuit which limits the output current to a particular value by reducing the supply voltage across the device to zero. For example if the supply voltage is 12 and the load resistor 3 kilohms, the output current cannot exceed 4 mA . Thus the curvature at one end of the characteristic arises because the active device runs out of current and at the other end because it runs out of voltage.

The linear part of the characteristic is of interest to the designer of linear or analogue equipment and in general the degree of linearity of active devices is not good enough for most purposes. The linearity must therefore be improved, and some methods of doing this are described later.

In the design of digital equipment the shape of the almost-linear part of the input-output characteristic is of little interest. For most of the time the active device is biased either well beyond point A, i.e. beyond cut off, or well beyond point D, i.e. at maximum current. These two regions are identified in Fig. 3. The' device is used in fact as a switch which is either on or off. The only time the .linear part of the characteristic is used is during the change from one stage to the other, and this occurs so quickly that the precise shape of section $B C$ is of little concern. The only interest the designer of digital equipment has in this part of the characteristic is that it should be steep so that the change from one state to the other can be as rapid as possible.

Linear amplification

Let us assume that part BC of an input-output characteristic has been

Fig. 1. Input-output characteristic for (a) a bipolar transistor and (b) a field-effect transistor or a thermionic valve.

Fig. 3. Relationship between on, off and linear modes of operation.
linearised by one of the methods to be mentioned later and suppose a sinusoidal signal of say 1 kHz is applied to the input of the device. To avoid using the non-linear sections of the characteristic, which would result in distortion, the amplitude of the signal must not exceed the extent of the linear section of the characteristic and the bias must be chosen to ensure that the signal is centred accurately on the linear section. Amplification is then distortion-free and, if we ignore extraneous signals such as hum and noise, the output of the device consists solely of the amplified $1-\mathrm{kHz}$ signal.

Suppose now a second signal of say 10 kHz is added to the input. The two signals when added give the waveform shown in Fig. 4, from which it is clear that the combined amplitude is the sum of the individual amplitudes of the two input signals. This combined amplitude must be accommodated on the linear part of the characteristic if distortion is to be minimised. Thus the individual amplitudes of the two signals must be smaller than that of the $1-\mathrm{kHz}$ signal used originally. Under these conditions the two signals are amplified independently and the output of the device contains only $1-\mathrm{kHz}$ and $10-\mathrm{kHz}$ components: amplification is again distor-tion-free.
If too large a signal amplitude is used the non-linear parts $A B$ and $C D$ of the characteristic are involved in the amplification process and distortion results: this, of course, is overloading the amplifier and can be avoided by restricting the input-signal amplitude. But even when there is no overloading there is still some residual non-linearity in part BC of the characteristic in spite of efforts to linearise it. Amplification is not quite distortion-free and there is a slight modification to the waveform of the signal during amplification: an example is shown in exaggerated form in Fig. 5. This distortion is equivalent to the addition of new signals (harmonics) at multiples of the original frequency. When the non-linearity is such as to produce a resultant wave which is asymmetrical about the time axis, as shown in Fig. 5, the added harmonics are chiefly even, i.e. are at twice, four times, six times etc. the frequency of the input signal. If the distorted output wave is symmetrical about the time axis (e.g. both peaks equally flattened) the added harmonics are chiefly odd, i.e. at. three times, five times, seven times etc. the input frequency. In general both even and odd harmonics are generated, and if the frequency of the input signal is 1 kHz , the harmonics have frequencies of $2 \mathrm{kHz}, 3 \mathrm{kHz}, 4 \mathrm{kHz}$ etc., the amplitude of the harmonic decreasing as the frequency increases. The harmonics are evenly spaced throughout the spectrum, the common frequency difference being 1 kHz - the frequency of the input signal.
If the introduction of harmonics were the only consequence of non-linearity

Fig. 4. Addition of $1-\mathrm{kHz}$ and $10-\mathrm{kHz}$ signals at the input to a device and their application to the linear part of an input-output characteristic. (Time scales are different.)

Fig. 5. Production of even-harmonic distortion by a non-linear characteristic. (Time scales are different.)
they would not be serious in an audio-frequency amplifier because:
(a) low-order harmonics blend harmoniously with the input frequency and with each other. For example 2 kHz is one octave higher than $1 \mathrm{kHz} ; 3 \mathrm{kHz}$ forms a masical fifth with 2 kHz . The 7th and 9th harmonics do form discords with the original frequency but often the amplitude of these harmonics is too small to be significant.
(b) in audio amplification the input signals are not usually single tones such as 1 kHz . Musical instruments and the human voice produce a wealth of harmonics and it is their number and relative amplitudes which give the source its characteristic sound quality. In practice therefore the input is likely to contain a number of harmonics: as a result of the non-linearity of the amplifier the amplitudes of the harmonics will be slightly increased.
Unfortunately non-linearity results in another effect which is far more serious than the introduction of harmonics. This effect occurs when there is more than one input frequency and this, of course, is normal for an audio-frequency amplifier. For simplicity suppose there are two inputs at frequencies of f_{1} and f_{2}. Each is treated as a single tone and a number of harmonics of
each are generated during amplification as just described. In addition, however, new signals are produced as a result of non-linearity with frequencies equal to the sum and difference of the two input frequencies and their harmonics. These new signals are known as sum and difference tones or intermodulation products and their frequencies can be expressed as $\left(m f_{1} \pm n f_{2}\right)$ where m and n are 1, 2, 3 etc. Each fundamental component and each of its harmonics gives rise to sum and difference tones with every component of the other signal and thus the total number of tones now generated is very large. Some of these new tones do not blend harmoniously with the others. Discords are produced and it is these which are responsible for the harsh and unpleasant quality from an overloaded amplifier. The difference tones can be low in frequency and probably make a greater contribution to the harshness than the sum tones, many of which lie outside the frequency range of the amplifier or the ear.

The degree of distortion introduced by the use of a non-linear characteristic is measured by the amplitude of the intermodulation terms introduced and this depends on the length of the non-linear section of the characteristic used during the amplification process. In general distortion is very low for very small input-signal amplitudes, increases slowly as the amplitude is increased but increases very rapidly when the overload point is reached. Small input signals, such as those from a high-quality microphone, take up such a small length of the characteristic that its linearity is not so important as for signals of larger amplitude.
The generation of harmonics and combination tones by a device with a non-linear characteristic is not peculiar to electronic equipment. It occurs also in the human ear for sound inputs exceeding about 50 dB above the threshold of hearing. It is an interesting thought that if an amplifier generates intermodulation tones we interpret the process as distortion but we do not do so when the ear itself introduces such tones. The brain is evidently able to decide whether the spurious signals are introduced externally or internally. Many of the properties of the ear, e.g. its ability to detect the fundamental frequency of a complex harmonic sound, were at one time thought to depend on the non-linearity of the ear. The theory was that the ear made an analysis of the sound and could assess the common interval between the harmonic frequencies: this interval is the fundamental frequency and determines the pitch of the sound. This explains the ability of the ear to detect the pitch of a note which has no discrete component at the fundamental frequency. However, this theory has been abandoned because of the observation that the ear is linear for very small sound inputs but can still detect pitch accurately. Moreover,
recent experiments have shown that the ear still correctly assesses pitch even when the common frequency interval is by electronic means made different from the fundamental frequency. It is now thought that the ear assesses pitch by measuring the repetition frequency of a complex sound and it does so without using the non-linearity of the characteristic.

Video-frequency amplification

We have so far confined this discussion to the effects of curvature of an input-output characteristic on audiofrequency amplification. It is instructive to consider the effects of such curvature on video-frequency amplification. As an example consider a characteristic for which the output is proportional to the square of the input as shown in Fig. 6. Such a characteristic could have a disastrous effect on audio-frequency amplification. The distortion depends on the input-signal amplitude and is small for small signals but for largeamplitude signals the distortion can reach 25 per cent. If a video signal is applied to the input of the squaring device the curvature of the characteristic causes details near one extreme of the input signal (say near white level) to be exaggerated compared with those at the other extreme (i.e. near black level), as shown in Fig. 6. The reproduced picture is still recognisable: indeed it is quite viewable and for some types of picture the effect of the characteristic could be an improvement in tonal balance. The television engineer would say that the signal has been "upgammed" (gamma for the characteristic in question being, of course, 2). The effect of the characteristic curvature is thus quite different from that experienced in audio reproduction: in television the effect would not be described as distortion but as "white stretching" or "black stretohing" depending on the polarity of the signal applied to the input.

Methods of linearising characteristics

There are a number of methods of minimising the distortion caused by the curvature of an input-output characteristic. One has already been mentioned: if the signal amplitude can be kept small, distortion can be kept to a low level. This may apply, for example, to an amplifier intended to follow a high-quality microphone. The output of such a microphone is so low that distortion due to characteristic curvature is unlikely to be troublesome. The designer is likely to be more concerned with maintaining a good signal-to-noise ratio than in obtaining a high degree of linearity.

A second method of reducing the waveform distortion caused by a device characteristic is to pass the distorted signal through another stage with a characteristic having complementary

Fig. 6. Exaggeration of a highlight detail by a square-law characteristic.

Fig. 7. Form of characteristic required to correct the waveform distortion introduced in Fig. 5. (Time scales distorted to emphasize effect.)

Fig. 8. Distortion reduced by inverting the input and using the same characteristic as in Fig. 5. (Time scales distorted to emphasize effect.)

Fig. 9. Basic form of push-pull amplifier.
curvature to that of the first device. For example, if the output signal in Fig. 5 is applied to a device with a characteristic shaped as in Fig. 7 the final waveform is less distorted than that at the output of the first stage. In practice it is difficult to find two devices with accuratelycomplementary characteristics but fortunately this is not necessary. A considerable reduction in distortion can be achieved by using two similar devices and by inverting the signal applied to one of them. To illustrate this consider again the output signal in Fig. 5. Let us invert it and apply it to a characteristic identical to that in Fig. 5. This is illustrated in Fig. 8 which shows that a reduction in waveform distortion is possible by this means. Sucti a reduction in distortion occurs to a limited extent in amplifiers consisting of cascaded common-emitter or other signal-inverting stages but the cancellation is not perfect because:
(a) a characteristic and its mirror image (which we are effectively using here) are not necessarily complementary
(b) the signal input to the second stage is larger than that applied to the first stage: it therefore uses a longer length of the characteristic and so produces greater distortion than the first stage.
If it were possible to arrange that the signals applied to an amplifying stage and to the compensating stage were of equal amplitude a considerable reduction in distortion could be achieved. This can be done for example by using a transformer with a centre-tapped secondary winding to provide two identical signals, by applying these signals to closely-matched devices and by combining the outputs of the devices. The circuit deduced in this way is shown in Fig. 9 and is, of course, a push-pull amplifier.

The way in which the push-pull principle reduces distortion is shown in Fig. 10. In this diagram we have allowed for the fact that the signal applied to one device is inverted with respect to that applied to the other by assuming a common input signal and by laterallyinverting one characteristic with respect to the other. The horizontal spacing between the two characteristics is determined by the bias value which must be located at the same point on both characteristics: the bias value in Fig. 10 is chosen to give class-A operation at (a) and class- B operation at (b). The effective characteristic for the pair of devices can be obtained by simple addition of the individual characteristics and is shown in dashed lines in Fig. 10. It is a better approximation to the ideal straight line than the individual characteristics but there is still some residual curvature. This is to be expected because one characteristic is the mirror image of the other and the two are not accurately complementary. Any curvature in one characteristic on one side of the bias value is repeated in the other characteristic on the opposite side of the bias value: thus when the
characteristics are added the result is-a characteristic symmetrical about the bias value. A symmetrical characteristic produces only odd-harmonic distortion: even harmonics cancel.
This advantage of the push-puli principle is one reason for its popularity: a second reason is that by biasing the devices to cut off as in class-B operation very high efficiency can be obtained.
A third method of reducing the waveform distortion caused by the non-linearity of input-output characteristics is to include the non-linear stage within a negative feedback loop. In this way distortion can be reduced to any desired extent.
There is a graphical method of demonstrating the improvement in linearity brought about by negative feedback. Fig. 11 shows in solid lines the $I_{d}-V_{d s}$ characteristics for a junctiongate field-effect transistor. We will assume that voltage-derived negative feedback is to be applied to this device and, as a numerical example, we will assume that 20 per cent of the drain voltage is to be returned to the gate circuit. Consider point A: this corresponds to a drain voltage of 10 and lies on the characteristic for $V_{g}=-2 \mathrm{~V}$. The feedback voltage is 20 per cent of 10 , i.e. 2 V . Thus when feedback is applied the new input ($V_{f b}$) must be -2 V to neutralise the feedback and -2 V to supply the gate input. Thus for this point $V_{f b}=-4 V$. Similarly for point B the drain voltage is 15 and the feedback voltage therefore 3 V . As B lies on the characteristic for $V_{g}=-1 V$ the value of $V_{f b}$ for this point is also-4V. Thus A and B are two points on the new characteristic for $V_{f b}=-4 \mathrm{~V}$. By continuing this process it is possible to deduce the new set of characteristics shown in dashed lines in Fig. 11 which apply when 20 per cent voltage feedback is applied.

The new characteristics are more upright than the original characteristics, showing the effective reduction in a.c. drain resistance brought about by the feedback. Both sets of characteristics are drawn for $0.5-\mathrm{V}$ increments in input voltage but the new characteristics are more closely spaced, this illustrating the reduction in gain due to feedback. The improvement in linearity due to feedback is best demonstrated by considering the intercepts on a load line. $C D$ is a load line chosen to cross most of the characteristics and the intersections of this line with the solid curves are plotted in Fig. 12 in the form of an curve of input voltage against output voltage. The intersections of the load line with the dashed characteristics are also plotted on the same diagram to show the effect of the negative feedback on the input-output characteristic. The characteristic with feedback is clearly straighter than the other, showing the improvement in linearity, and also has a lower slope, showing the reduction in gain due to feedback.

Fig. 10. Derivation of the shape of the effective input-output characteristic for a push-pull amplifier (a) class-A and (b) class-B.

Fig. 12. Input-output characteristics of the transistor of Fig. 11 with and without negative feedback.

Fig. 11. $I_{d}-V_{d s}$ characteristics of a junction-gate field-effect transistor in solid lines without negative feedback and in dashed lines with 20% voltage feedback.

In the air

The month of May brought a big change to the 21 and 28 MHz bands with many Sporadic E openings and some unexpectedly good F-layer conditions. The morning of May 15, for instance, found the 21 MHz band full of Japanese signal, while the late evening of May 27 produced an opening to North America that may have been double-hop Sporadic E. On 28 MHz the beacons (DLoIGI, 5B4CY, 3B8MS etc) provide very good indicators of these sunspot-minimum openings. In Australia a 28.5 MHz "local net" has been organised and the additional activity on the band ensures that opportunity is taken of the long-distance openings that occur most often at the commencement and break-up of geomagnetic disturbances. Openings between Europe and Australia are rare but a few were reported during the past winter season.
A- Sheffield amateur, Barry Chambers, G8AGN, has applied for permission to install the country's first $9 \mathrm{~cm}(3456 \mathrm{MHz})$ beacon station, GB3UOS, to the north-west of Sheffield. The 10.1 GHz beacon on the Isle of Wight has been received in nine English counties and in Guernsey.
Virtually every country having a significant number of radio amateurs has a national society of its own. There is however one exception: the recognised IARU society for Canada is a division of the American Radio Relay League. The Americans seem determined to keep it that way. At the recent IARU Region 2 conference in Florida there was extensive discussion "of the problems which arise when there are competing societies in a country, and it was agreed to continue with the existing policy, which discourages official IARU contact with such societies". So presumably RSGB contact with Canada should be routed via Connecticut? A thought for the Bicentenary.

An investigation into the future of the Wireless Institute of Australia (the doyen of all national societies, having been founded in 1910) has suggested a change of name on the grounds that "Institute" is felt to be too Victorian sounding.

Touchy transmitters?
An article on "antennas" by Bill Lowe, GB3UOS, to the north-west of Sheffield. letter of the Association of Sheffield Amateur Radio Clubs makes one reflect on the limitations that we have apparently come to accept in the design of modern amateur transmitters. For he firmly advises amateurs not to attempt to use voltage-fed systems such as the 136 ft long-wire that I find a most convenient multiband system (since it uses some salvaged multi-core telephone cable and is slung over a tree it cost me precisely nothing to put up).
Bill Lowe states that "if you squirt your transmitter into a high impedance you wreck your power amplifier even though it can be made to look like a low impedance by the use of an antenna tuner or "Z-match". . . . the slightest tweak on the controls sends the s.w.r. sky high and it is during the microsecond or so of high s.w.r. that the snap, crackle and pop takes place in the power amplifier . . . we concede that experienced operators are adept at the art of tuning up and get away with it but we cannot emphasise strongly enough that for the average chap, an inherently low impedance is essential."
Well, well. Certainly Bill Lowe, whose firm handles many of the popular transmitters using high-perveance and line-output valves in their output stages, should be in a good position to speak from experience, even if his "microseconds" are artistic licence. And one must accept that solid-state power amplifiers, unless protected, are vulnerable to high s.w.r. and that stages using line-output valves need to be tuned quickly since they are seldom intended to operate with a high duty cycle. But should we encourage designers to accept that we are never going to use voltage-fed systems or those with high s.w.r.?
The almost 20 -year-old transmitter that feeds my long-wire aerial has an 813 p.a. that loafs along at 150 -watts d.c. input and I suspect that if I wished I could spend all day twiddling the knobbs of my a.t.u. without any snap, crackle and pop (except perhaps from the high-efficiency r.f. output). But that's progress!

Amateurs and the CIA

Little reaction has been forthcoming on the disturbing suggestion in the book "The Real Spy World" by Miles Copeland, a former CIA organiser, that amateur transmissions are sometimes used for clandestine intelligence operations. He suggests that high-speed "squirt" or "screech" signals are sometimes played in the background to ordinary "ham radio messages" since it is no longer possible to pass speeded up transmissions over international telecommunications circuits due to the presence of cut-off filters. Copeland claims that squirt recordings "are still
used to good effect on 'ham' radio transmissions". It is much to be hoped that if CIA or any other organisations have ever in the past used amateur radio in this way, the practice has long ceased.

It is if course well known that radio amateurs played a big part in both German and British clandestine radio during World War 2, in very different circumstances. Last September we noted how SOE's suitcase sets (A2, A3, B1, B2, B3 and MCR1) owed much to Major John I. Brown, G3EUR, as a member of the Inter-Services Research Bureau. John Brown has recently joined Avel-Lindberg Ltd to provide a liaison service to handle technical queries on their uninterruptible power supplies. Since considerable emphasis was placed in the SOE-ISRB work on providing novel forms of power supply for use in the field, his wartime experience should stand him in good stead.

In brief

"We must try to behave like responsible people . . . some recent happenings on 3.5 MHz and 144 MHz have made me ashamed to be the holder of an amateur licence. Some have been due to inexperience in new licence holders, but I'm sure that the bulk has been deliberate action by old hands who, for reasons best known to themselves, wish us to be all put off the air." - Quoted from a stern warning issued by Dr John Allaway, G3FKM, president of the RSGB. . . . Radcomex 76, the revived RSGB Radio Communication Exhibition for the first time at Alexandra Palace in north London, opens at 10 a.m. on Friday, July 30 (official opening by Lord Wallace of Coslany at noon) and is open to 8 p.m. on the Friday and Saturday, closing at $4 \mathrm{p} . \mathrm{m}$. on Sunday, August 1. . . the recent steep increase in postage rates for sending printed papers overseas will significantly increase the cost of QSL bureaux. When Bill Bullivant, VK2BC, sent a large packet of QSL cards to Box 88, Moscow (address of the Russian QSL Bureau) it was returned marked "addressee unknown in Moscow, Idaho, USA - apparently the Australian Post Office had not heard of Moscow, Ayr, Scotiand or Moscow Road, Bays water. . . . The BATC is holding its next amateur television convention on Saturday, September 18 in Parkinson Court, University of Leeds, from $10 \mathrm{a} . \mathrm{m}$. to $5.30 \mathrm{p} . \mathrm{m}$. with demonstrations of both slow-scan and 625 -line systems, trade stands and bring-and-buy stall. Further details from A. R. Watson, Somerby View, Bigby, Barnetby, South Humberside . . . Alan Dorhoffer, K2EEK has become Editor of CQ Magazine, taking over from Richard Ross, K2MGA.
The French society REF lists "Radio France International" as an intruder on 7085 kHz .

PAT HAWKER, G3VA

Earthing,

1 - Unwanted resistance in earth lines

by R. C. Marshall, M.A., M.I.E.E..Rank Xerox Ltd

Problems resulting from ineffective or insufficient grounding, shielding or filtering are not easily anticipated or understood, yet this is one of the least-taught aspects of the electronic engineer's art. Difficulties arise from components not shown on circuit diagrams, modes or operation not contemplated by the designer and, worst of all, several such modes operating at the same time. Cure of one mode may not eliminate the symptom only when all spurious couplings are removed at the same time will correct operation occur.

Grounding and shielding problems often occur only when systems are coupled together, and then may appear only spasmodically. This makes them difficult to locate, and underlines the importance of dealing with them at the design stage. This short series of articles considers the basic effects, setting the scene with first-order numbers, and the cures that can be achieved by changing magnitudes and circuit configurations. Situations will be dealt with in order, firstly those due to unwanted series impedance, then unwanted coupling capacitance, and then more complex situations involving both.

Unwanted series impedance almost always appears as the source of potential difference between ground point. For example one foot of 16 s.w.g. (14 a.w.g.) wire has a resistance of 2.5 milliohms. Above 3 kHz the inductance $(0.6 \mu \mathrm{H})$ will be dominant. Printed wiring has much higher resistance ${ }^{\prime}, 0.36 \Omega$ per
foot of 0.015 in -wide 10 z copper track. The significance of this depends of course on the circuit. In a small audio amplifier, 1A is a typical reservoir capacitor ripple current which will develop 2.5 mV across the above-mentioned foot of thick wire. A mere one thousandth of this voltage transferred to a 1 mV input will degrade the signal-to-hum ratio to 52 dB !

These notes detail the effect of series resistance in an earth line that is common to both input and output of an amplifier or buffer ${ }^{2}$.

Case 1

Situation: Subassembly amplifier or digital buffer with significant output

current as shown in Fig. 1 (a). This could be a loudspeaker amplifier, or solenoid or lamp driver.

Symptoms: Oscillation or unexpected gain characteristic. Input threshold variation with output load. Hysteresis.

Problem: Output current flows through AB , developing e.m.f. in series with input circuit.

Cures: Reduce resistance of AB.
Separate wiring of the output stage and use distinct signal and power earths, connected only at one point for the whole system, as in Fig. 1 (b).
Isolated or balanced input using transformer or long-tailed pair, as in Fig. 1 (c).

Case 2
This case is similar, except that the common earth line couples the power supply to an input circuit because of an incorrect sequence of earth connections.

Situation: Audio or instrumentation amplifier, line-powered or using a battery and inverter, as in Fig. 2 (a).

Symptom: Pulses at twice supply frequency appear in amplifier output.

Problem: Smoothing capacitor ripple current flows through wire FG and develops and e.m.f. in series with input, as the common side of the input returns to the amplifier along this wire.

Cure: Rearrange sequence of connections to earth, or isolate input circuit from earth. The arrangement of Fig. 2 (b) is one of many.

Comments: Use of directly-earthed reservoir capacitors and directly. earthed input sockets is the commonest cause of this problem. A related problem is the e.m.f. between one point of an earthed wire or chassis and another, caused by circulating currents induced by the magnetic field of a supply transformer or motor; 1 mV per square inch is typical. This spurious voltage is

Fig 2
approximately sinusoidal, and at supply frequency. Motor sources can be identified by the change of phase when the motor is stalled.

Case 3

Next for consideration are the com-mon-impedance effects of simple systems.

Situation: Two amplifiers in different boxes, at least one mains powered, and both grounded to same ground point. E.g. f.m. tuner and audio amplifier, or instrumentation amplifier and oscilloscope.

Symptom: Line frequency and line switching transients appear at amplifier 2 output.

Problem: Currents flow through transformer and wiring capacitance shown symbolically as C_{1} and C_{2} in Fig. 3 (a) to equipment 2 chassis. The current from primary to interwinding shield (or, if there is no shield, to secondary) is typically $50 \mu \mathrm{~A}$ for a 240 V 50 Hz 60 W transformer, but can be substantially less for low capacitance designs. This current returns to source via NM and NJKLM in parallel. The portion developed across JK is in series with amplifier 2 input and causes the symptom.
Cures: Break ML or MN, or add series resistance to either - but this may contravene safety regulations.
Isolate amplifier 2, point J and all associated electronics and power supplies from box 2 - this may satisfy safety regulations.
Lower the resistance of JK.
Use twin shielded cable to ground the input return of amplifier 2 at K not J .
Isolate K from L by using a transformer T_{2}, for fairly narrow bandwidth, or optoisolator, for digital systems, as in Fig. 3 (b).
Raise the signal level to swamp interference by reallocating circuits to boxes.
Eliminate the loop, perhaps by combining power and signal along one cable as in the reference oscillator of Fig. 3 (c).
Comments: The situation and cures above may be extended to cover other real-life cases. If the supply earth connections are to different distribution points, currents due to leakage elsewhere in the electricity distribution system may contribute to the voltage across JK. Such currents may also
arrive via unexpected routes such as structural steel work, or water or air pipes. In some specialized buildings a low-impedance "technical earth" is provided for electronic equipment ${ }^{3}$, but continuing vigilance is needed to keep this distinct from the power earth. Between buildings, lightning or power faults may develop 100 to 100,000 volts of differential earth potential, and substantial earth connections, together with zener diodes, spark gaps, or gas discharge tubes, may be needed to protect equipment. ${ }^{4}$

Next article in this series will consider situations involving stray capacitance.

References

1. Printed Circuits Handbook, edited by C. F. Coombs McGraw Hill 1967, particularly pages 1-30 and $1-31$.
2. Case and cable shielding, bonding and grounding considerations in electromagnetic interference, C. B. Pearlston, IRE Trans. R.F.I. October 1962. Tutorial paper with bibliography. Particularly recommended treatment of shielding and bonding.
3. Considerations in the design of a grounding System for a complex electronic facility, H. W. Denny, J. A. Woody IEEE Electromagnetic Compatibility Symposium Record, 1974, $75 \mathrm{CH} 0803-7 \mathrm{EMC}$ pages. Mixed h.f. and l.f. equipments spread over a large area benefit from a grounding arrangement incorporating features of the four basic noise minimization techniques. -4, Lessening lightning's effects A. K. Guthrie IEEE Newsletter of Vehicular Technology Group, July 1975 pages 21 to 23. Practical methods for protection of isolated radio transmitter sites.

Transcient Protection Devices. Chin-Lin Chen. IEEE EMC Symposium Record, 1975, Paper 31a.
Semiconductor devices in hostile electrical environments, K. A. T. Knox. Electronics and power 13 December 1973, pages 557-60, with bip.
Some Effects of low frequency interference when using thermocouples for industrial temperature measurement. L. C. Towle and C. J. Burkitt. IEE Conference on Electrical Interference in Instrumentation, London, 1970. Discusses the environment, common mode - series mode conversion, and the effect of guarding, isolation and siting practice.

Progress in optical-fibre communications

A field demonstration of a 140Mbit/s digital optical fibre system for a telephone network is to be carried out on the urban route Hitchin to Stevenage in the latter half of 1977. STC, who have been manufacturing and marketing optical cables since September 1975, are to undertake the task to demonstrate, in co-operation with the Post Office, the current state-of-the-art in a non-research environment. Optical-fibre research has shown that system frequencies of between 2 and 560 MHz are feasible and can be economical, depending upon the application.
A system, which will have a route length of 9 km , will have repeater spacings of 3 km and will be capable of handling 1920 speech channels. Some of the lessons to be learned from this demonstration will be: whether the cable can be pulled over long distances, exactly what sort of coding is necessary to control the system, and overcoming practical problems such as cable jointing in the field. Jointing by mechanical alignment is acceptable if close tolerances are met, but fusion, by melting the glass, gives far better results. Although fusion can be carried out successfully in the laboratory, many problems arise when this is attempted in the field. When producing mechanical joints, the fibre must be broken to form a flat normal face so that the joint attenuation is minimized. This can now be done repeatedly by simultaneously marking, tensioning and snapping the fibre, and it is envisaged that small machines could be produced to carry out this job in the field.
Recently, the Nippon Telegraph and Telephone Public Corporation of Japan released a report claiming that they have produced a fibre with a minimum attenuation of $0.47 \mathrm{~dB} / \mathrm{km}$ at a wavelength of $1.2 \mu \mathrm{~m}$, with an overall bandwidth loss of $1 \mathrm{~dB} / \mathrm{km}$ between $0.95 \mu \mathrm{~m}$ and $1.37 \mu \mathrm{~m}$. The best fibre previously produced, by Bell Telephone Laboratories in the USA, had a minimum loss of $1.1 \mathrm{~dB} / \mathrm{km}$ at $1.02 \mu \mathrm{~m}$. The new fibre, consisting of a borosilicate cladding and phosphosilicate core, was fabricated using the chemical vapour deposition technique previously used by Southampton University to produce fibres with a minimum loss of $1.9 \mathrm{~dB} / \mathrm{km}$. Chemical vapour deposition greatly diminishes the transition-metal-ion and OH -ion concentrations in the glass, but the Japanese have improved on this by pre-refining all the materials before fabrication to further reduce the highly absorptive OH -ion component. At present, losses as low as $1.9 \mathrm{~dB} / \mathrm{km}$ are only considered to be "aims" when manufacturing optical cables. In practice,

This optical cable being held has a bandwidth greater than the 4800 pair cable or the 18 -core 9 mm coaxial cable. The space requirement is tiny compared with the other two types of cable.

Fig. 1. Optical fibre cable construction. Note that the fibres are loose in the cable in order to reduce bending strains and radial crushing.

SITE solar experiment

Two solar arrays will provide electricity to run two of the television receivers in the SITE project as a result of an agreement between NASA and the Indian Space Research organisation (ISRO) to add a solar energy experiment to the project. The arrays were shipped to ISRO in May. They can produce 260 watt-hours of power each day under Indian sunlight conditions and will be used during the four hours each day that programmes are broadcast to Indian villages from satellite ATS-6. "The experiment," NASA said, "is being
conducted to demonstrate the technicait and economic feasibility of using photovoltaic power to operate television sets in areas where there is no electricity available." A report on the SITE project will be published shortly.
At the end of May NASA launched a second Maritime satellite (Marisat B) for COMSAT General Corporation. The satellite will provide communications to the US Navy, commercial shipping and offshore industries, and will be in stationary orbit over the equator at 176.5 degrees west, just west of Hawaii.

Hi Fi market to stay depressed, says report

A market survey of the hi fi market in the United Kingdom predicts that rising unemployment and continuing inflation would depress the market until 1978. The report, conducted for Acoustic Research, the speaker makers, by Research Associates and supplemented for publication, says that a fall of $£ 17.4$ million on last year's figures can be expected to the end of this year, when the market will be worth $£ 164.5$ million. Small increases may be expected in the following two years, but a rise of $£ 25.9$ million on the 1978 figure may bring the 1979 figure to $£ 200$ million, and the market will be worth $£ 226.1$ million the year after that.

Research Associates also expect the tendency to improved performance and features in amplifiers and tuner amps to slow down. "There will be a move to the modular concept in the electronics and towards making the equipment easier to service." At the same time the appearance of equipment would improve. Turntables would have more complicated motors and drive mechanisms, with servo-controlled assemblies and direct drive, but they would perform better. Automatic turntables would tend to disappear, "but there would seem to be a place in the market for the more expensive automatic deck with true high fidelity specification." The greater use of four channel records would bring about improvements in pickup cartridges. "It is also expected that there will be a movement towards tape systems as against record systems since a tape system is cheaper, more convenient and produces a higher quality of sound. There has been a revival of interest in the conventional reel-to-reel recorder as a result of this trend but the main areas of benefit will be cassette systems and to a lesser extent cartridge systems."

Loudspeaker manufacturers, the report says, would try to improve the look of their product because the: consumer wanted a better looking speaker and was more inclined to look behind the front panel. "Speakers which are not well finished behind the gauze are increasingly likely to be rejected by discerning consumers. Another reason for the improved appearance was the effort by manufacturers to make their product look different from that of their competitors. Speaker sales would increase as the market became more sophisticated, and the demand grew for four speakers rather than two.

The survey examines the market by geography, age, marital status, social class and knowledge of the subject. The projections were based on a study of general economic information, a review
of published information available in the UK on the development of the sound reproduction market, fourteen executive interviews with manufacturers or retailers, fifteen more extended interviews with senior shop staff, and numerous telephone inquiries.
A 48-page second volume on consumer attitudes is based on 12 group discussions in the Midlands and South with 111 respondents who had spent at least $£ 150$ on hi fi in the last three years. "Real high fidelity equipment was thought to cost a minimum of $£ 110-£ 150$ by most. Many would not consider paying more than $£ 250$. Beyond this level they considered the improvement in quality was too marginal to justify the extra cost."
The survey said that most buyers did not have a rigid budget but a good idea how much they would spend. "Friends were an important source of advice when choosing equipment. The high fidelity magazines were respected but several found them too technical to understand. Manufacturers' leaflets were criticised for the use of meaningless terms and the lack of standardisation of frequency responses. Price and sound quality were the most important factor (sic) in the choice of system for all income groups."

The report, which is 95 pages long and cost over $£ 7,000$ to produce, costs $£ 140$ from Research Associates, the Radfords, Stone, Staffs. Title: "High-Fidelity in the United Kingdom".

Switching component prospects

The Electrical Research Association predicts that over $£ 1,000$ million will be spent on switching components in the EEC in 1980. By that time the UK market alone will have increased by half, electromechanical components rising by 24 per cent and semiconductor devices doubling their sales. The information is contained in a $£ 1,200$ report which took 14 months to compile and analyses the markets for contractors, relays, sensing switches, timers and their solid state equivalents. The UK and European markets are covered country by country under various application headings and there is also an examination of the structure of the telecommunications market. The price includes an opportunity to discuss the findings with the compilers. ERA Ltd, Cleeve Road, Leatherhead, Surrey KT22 7SA.

Digital colour TV via satellite
Digitized PAL colour television signals on System I have been experimentally transmitted through a communications satellite. This was done in May by the BBC and the Post Office, using the Intelsat IV (Flight 1) satellite stationed over the Indian Ocean. The picture signals were sent from the BBC Designs Department, London, in analogue form to the Post Office earth station at Goonhilly Downs, Cornwall, and back over Post Office s.h.f. links.
A 60Mbit/s signal, generated in BBC equipment, was transmitted. This was split into two $30 \mathrm{Mbit} / \mathrm{s}$ parallel streams plus a clock signal before being fed to a differentially encoded quadrature phase shift keying (q.p.s.k.) modulator built by the Post Office. The 70 MHz i.f. output from the q.p.s.k. modulator was upconverted to s.h.f., amplified, and transmitted through Aerial 1 at Goonhilly to the Intelsat IV satellite and back again, using a transponder with a 36 MHz r.f. bandwidth.

The $60 \mathrm{Mbit} / \mathrm{s}$ signal comprised one video-audio "package". This consisted of a multiplex of one digital colour video signal, with a bit-rate of optionally 44.3 or $53.2 \mathrm{Mbit} / \mathrm{s}$, and one $2048 \mathrm{kbit} / \mathrm{s}$ multiplex signal for sound channels. The video channel used sub-Nyquist sampling at about 8.9 MHz . After quantizing with 8 bits per sample, the bit-rate was reduced optionally to 5 or 6 bits per sample, using a type of differential pulse-code modulation. Resultant bitrate was $53.2 \mathrm{Mbit} / \mathrm{s}$, which, after error-correction coding, was increased to $56.8 \mathrm{Mbit} / \mathrm{s}$.

To facilitate reliable recovery of the q.p.s.k. carrier signal in the demodulator (developed by Marconi Research Laboratories), in which only 36 MHz r.f. bandwidth was being used for the $60 \mathrm{Mbit} / \mathrm{s}$ baseband signal, the digital video bits were "scrambled".

The 15 kHz bandwidth sound channels were coded using a digital companding technique to enable six such channels to be fitted into a bit-rate of 2048kbit/s (the rate of the first-order multiplex in the new Post Office digital communications network).

Elevation of the Goonhilly aerial above the horizon was necessarily small: about 5°, which is about the smallest elevation for satisfactory transmission. Consequently, careful adjustment of parameters such as group-delay equalization of filters was needed. When this was done a bit-error rate of about 1 in 10^{6} was attained. Subjective assessment of picture and sound quality suggested, according to the BBC, the lo:g-term possibility of obtaining slightly higher quality using digital techniques rather than analogue f.m. techniques, without requiring additional r.f. bandwidth or getting unacceptable interference between channels.

New Products

Four-channel cassette recorder

A 4-channel recorder has been made available in this country by North East Audio Ltd. The recorder, designated Model 140, utilizes a 4 -track, in-line, full-tape-width record/playback head and is available in standard form with Dolby noise reduction on all four channels and provisions for line or microphone inputs on each channel. This model is intended for professional and industrial applications. Versions of the Model 140 can be obtained to specification: for example, with Dolby on some channels only or with specified input and output levels to suit applications such as dual-sync plus stereo sound audio-visual. Technical specifications of the Model 140 are the same as the forerunning models 102,103 , and 104 and similarly a 3 M Wollensak heavy duty mechanism provides the drive. Some of these specifications are as follows: wow and flutter less than 0.09% r.m.s., distortion less than 0.1% from the head to all outputs at 0 dB level, and crosstalk better than 40 dB . As with the previous models all the outputs have 10Ω impedances, the frequency
responses are corrected to $3,180 \mu \mathrm{sec}$ $\pm 1 \mathrm{~dB}$ from DIN test tape $45513 / 6$, and the signal-to-noise ratio with Dolby is better than 52 dB depending upon the tape used. North East Audio Ltd, 5, Charlotte Square, Newcastle-on-Tyne. WW $\mathbf{3 0 1}$ for further details

Multitester

A portable solid-state multitester, the TMII made by Levell Electronics Ltd, offers 120 basic ranges and 30 optional ranges. Basic ranges have maximum f.s.ds of 500 V and 500 mA for both a.c. and d.c. Minimum d.c. ranges are $150 \mu \mathrm{~V}$ and 150 pA . In addition the meter reads decibels, resistance from 0.2Ω to $10 \mathrm{G} \Omega$, and d.c. nulls with lin $/ \log$ scales ± 4 decades. The meter, which has a 140 mm mirror scale, has an input resistance of $100 \mathrm{M} \Omega$ on all voltage ranges. Low test voltages on the resistance ranges allow solid-state circuits to be tested without turning on semiconductor junctions, and an i.c. operational amplifier with a m.o.s.f.e.t. balanced input stage is used to obtain a low offset current, high input resistance and wide bandwidth. A selection of optional extras are available with this multitester. Levell Electronics Ltd, Moxon Street, High Barnet, Herts. WW 302 for further details

Electrolytic capacitors

The 071 series of electrolytic capacitors from Mullard Ltd has been extended to cover the range $3300 \mu \mathrm{~F}$ to $4700 \mu \mathrm{~F}, 63$ to 6.3V. Previously this range was provided for by externally linking capacitors in the 072 triple tag series, which is now to be phased out. Series 071 comprises etched-foil polarized capacitors having aluminium electrodes and non-solid electrolytes impregnated into paper. Mullard Ltd, Mullard House, Torrington Place, London WCIE 7HD.
WW 303 for further details

WW 301

X-band amplifiers

Gallium arsenide f.e.ts are used in a series of wide-band amplifiers by Avantak. The AMT-11000, AMT-12000 and AMT-12400 series are available for gains of $22,26,31$ and 35 dB in frequency ranges of $7-11,8-12$ and $8-12.4 \mathrm{GHz}$. The f.e.ts are passivated with polycrystalline GaAs to reduce gain drift with time and temperature. The mean time to failure is said to be "thousands of hours", during which time performance remains constant. Gain/frequency response is within $\pm 2 \mathrm{~dB}$ over the quoted range, noise figure is less than 8 dB and the balanced mode of each stage reduces even-order distortion. Walmore Electronics Ltd, 11-15 Betterton Street, London W.C.2.
WW 304 for further details

R.f. shielding paste

A low-cost, silver-filled adhesive paste by Dage Intersem, Ablebond 26-2 is designed as both bonding agent and r.f. shield. It takes the form of a room-temperature curing adhesive, which can be applied by brushing. The shielding properties are said to be better than those of mesh gaskets. Volume resistivity is $0.005 \Omega-\mathrm{cm}$, remaining constant after 100 hours at $85^{\circ} \mathrm{C}$ and in 85% relative humidity. Dage Intersem Ltd, Haywood House, 64 High St, Pinner, Middlesex.
WW 305 for further details

Electronically tuned magnetrons

Magnetrons which can be tuned electronically are announced by the English Electric Valve Company. Tuning over 100 MHz in the X-band at 50 kW and over 30 MHz in the S-band at 200 kW

WW 302
peak power output is claimed. This is achieved in a few nanoseconds by applying a control voltage of 1 to 3 kV to the mułtipactor cavity electrode. An auxiliary resonant cavity, coupled to the main magnetron anode, is designed so that when an r.f. voltage is applied between its electrodes there is a controlled electron multipactor discharge; this causes a resonance shift and so changes the magnetron frequency. Several of these cavities can be fitted to the same anode to increase the total frequency shift or to give a selection of frequencies. English Electric Valve Company Ltd, Chelmsford, Essex CM1 2QU.
WW 306 for further details

Quartz-crystal filter

A $21.4 \mathrm{MHz}, 25 \mathrm{kHz}$-channel-spacing filter has been designed within a volume of one and a half cubic centimetres. This quartz-crystal filter, which is the result of studies carried out by Hirst Research Centre of GEC, is claimed to offer performance equal to larger devices previously available. The stopband attenuation is greater than 90 dB beyond $\pm 25 \mathrm{kHz}$, providing a $\pm 7.5 \mathrm{kHz} 3 \mathrm{~dB}$ bandwidth and $\pm 1 \mathrm{~dB}$ ripple within the passband. The filter, designed for $1.6 \mathrm{k} \Omega$ termination, maintains its specified performance from -20 to $+70^{\circ} \mathrm{C}$ and can be provided with impedance matching coils for lower resistances or to include a reactive impedance component. Salford Electrical Instruments Ltd, Times Mill, Heywood, Lancs.
WW 307 for further details

Rotary switch for p.c.bs

A small rotary switch for mounting on p.c.bs has a roller type of indexing mechanism with a pressure spring. It
can be made in up to three sections, axially connected. Each section has a stator bearing, linearly placed in two rows, the connecting terminals and a rotor bearing the movable contacts. A sliding type of contact system is claimed to give long life by reducing contact wear. A standard version, suitable for switching currents up to 0.2 A at 150 V , has silver gilded contacts, while another model, intended for frequent switching of microampere currents, has gold plated contacts. Special versions can be supplied. AB Electronic Components, Abercynon, Glamorgan, CF45 4SF.
WW 308 for further details

Coaxial attenuator

The FA2015 coaxial attenuator covers the range 0 to 2 GHz and has a power handling capability of 50 W average, 5 kW peak. Attenuation is $10 \pm 0.5 \mathrm{~dB}$ and is flat within $\pm 0.1 \mathrm{~dB}$. Excluding the connectors the FA2015, which has a maximum v.s.w.r. of $1.2: 1$, measures only $2 \times 11 / 4 \times$ lin. Each unit is suitable for mounting on the customer's heatsink, or can be supplied with a radiator for cooling in ambient air. REL Equipment and Components Ltd, Croft House, Bancroft, Hitchin, Herts SG5 1BU.
WW 309 for further details

Liquid-crystal multimeter

On display at the Leeds Electronics Exhibition was the Beta $31 / 2$-digit portable digital multimeter. This multimeter, introduced for the first time in the UK by Gould Advance Ltd, has a high-contrast liquid-crystal display and is battery operated. Voltage ranges are from 200 mV to 1 kV d.c. and 200 mV to 750 V a.c. and current ranges are from $200 \mu \mathrm{~A}$ to 10 A on both a.c. and d.c. The meter also measures resistances from 200Ω up

WW 306
to $20 \mathrm{M} \Omega$ and offers optional temperature, r.f., and h.v. probes, a battery eliminator and a carrying case. Gould Advance Ltd, Roebuck Road, Hainault, Essex.
WW 310 for further details

200 MHz square-wave synthesizer

Syntest SI-200 is a frequency synthesizer with, the makers claim, features only found on higher-priced instruments. Output is variable between 1 Hz and 200 MHz with a stability of 1 in 10^{6}. A $61 / 2$-digit thumbwheel selection switch sets a divider in the phase-locked loop, whose reference is a 1 MHz crystal oscillator. Output attenuator is calibrated in both $\mu \mathrm{V}$ and dBm and covers $0.1 \mu \mathrm{~V}$ to 10 mV in two ranges. Two fixed-level outputs are provided at -6 dBm and at t.t.l. level into 50Ω (usable to 50 MHz). Rise and fall times are 2 ns . Manufacturer is Syntest Corporation, 169 Millham Street, Marlboro, Mass. 01752. UK agents: Lyons Instruments Ltd, Hoddesdon, Herts. UK price $£ 1,370$. WW 311 for further details

Logic checker

An audible logic checker is now available for testing 0 to 5 MHz pulse-ratefrequency logic systems. The LCl , from Lawtronics Ltd, produces a high tone on logic 1 or $V_{c c}$ voltages and a low tone on logic 0 or ground potential. Changes of logic level are indicated by an alternating high-low tone. The presence of a single-shot transient of 200 ns or more is shown by a short high tone. This unit, which is not limited by type of logic or size of i.c. package, has a typical input resistance of $1 \mathrm{M} \Omega$ and can be used on logic voltages from 3 to 18 V . Law . tronics Ltd, 139 High Street, Edenbridge, Kent TN8 5AX.
WW 312 for further details

WW 307

Solid Stufe Devices

Names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of thesection.

Low-noise r.f. transistor

A 5 GHz silicon p-n-p transistor, the BFT95, has a noise characteristic of 2 dB at 1 GHz . The device is constructed using planox-silicon-nitride technology to minimise parasitic capacitances, and is mounted in the common-emitter configuration in a T-plastic package. An improved cross-modulation level is obtained using a copper-alloy frame to withstand high currents. The transistor, which has a forward transmission gain of 10 dB at 1 GHz and an intermodulation intercept point for optimum bias of +23 dBm , is intended for high-volume r.f. applications such as antenna amplifiers, cable TV and up-converter tuners.

SGS-ATES

Voltage comparators

A family of monolithic comparators which combine $200 \mathrm{~V} / \mathrm{mV}$ gain, for low-level signal detection, with 50 mA or 35 V high-level output drive compatability, has been announced by Analog Devices Ltd. The units, AD111, AD211 and AD311 are suitable for use with t.t.l., r.t.l. or d.t.l. loads, lamps, relays, in window or threshold detectors, or free-running multivibrators. Two additional external components facilitate t.t.l. strobing on the ADlll. Each comparator is packaged in a TO-99 can. AD 311 is also available in an 8-pin dual-in-line package. Analog Devices

High current rectifiers

The Impac series $3 \$ 1015-16$ miniature high-current silicon rectifiers are cylindrical in design, have insulated cases and axial leads. These general purpose rectifiers, introduced by Semtech, are characterized within the following ranges: p.i.vs from 50 to 600 V , r.m.s. voltages from 35 to 420 V , and direct blocking voltages from 50 to 600 V . Average rectified currents are 3 A at $55^{\circ} \mathrm{C}$ and 2 A at $100^{\circ} \mathrm{C}$, and surge current limits are 30 A if recurrent and 300 A if single cycle.

Bourns

Radio frequency f.e.ts

Two f.e.ts, the BF244 and BF256L, have been added to the Siliconix range. Both transistors are supplied in TO-92 packages and are intended primarily for r.f. applications. The f.e.ts, which are available in categories to define perfor-
mances more accurately, feature typical $\mathrm{C}_{\text {rss }}$ values of 0.85 pF and have high $y_{\text {fs }} / C_{\text {iss }}$ ratios. Type BF244 is in three categories, A, B and C , corresponding to $i_{\text {dss }}$ spreads from 2 to $6.5 \mathrm{~mA}, 6$ to 15 mA and 12 to 25 mA respectively when operating at $V_{\mathrm{ds}}=15 \mathrm{~V}$ and $V_{\mathrm{gs}}=0$. Similarly BF256LA, B and C correspond to $i_{\text {dss }}$ spreads from 3 to $7 \mathrm{~mA}, 6$ to 13 mA and 11 to 18 mA respectively under the same conditions.

Siliconix

Bìm.o.s. op-amp

The CA3140 operational amplifier uses a technique called bi-m.o.s., combining a p.m.o.s. input stage with a wide-vol-tage-range bipolar output stage. It is claimed that this amplifier is suitable for virtually all applications of the 741 series and most applications of other op-amps ranging from the 107 series to the LF356. The p.m.o.s. stage is similar to that used in the CA3130 op-amp but with the added features of internal compensation and a 44 V supply-rail capability. Bipolar diodes protect the input so that there is no need for any special handling procedures. The output stage may be strobed, allowing the output to be dríven to a low-level independently of the input signal. An output swing to within 0.2 V of the negative supply voltage allows power transistors to be driven directly, thus eliminating the need for level-shifting circuitry. The CA3140 has an input impedance of $1.5 \mathrm{~T} \Omega$, a 10 pA input current (at $\pm 15 \mathrm{~V}$) and a 5 mV input offset voltage. The amplifier, which has an input swing -0.5 V below the negative rail, has a $9 \mathrm{~V} / \mu \mathrm{s}$ slew rate, a 4.5 MHz gain-bandwidth product and a settling time of $1.4 \mu \mathrm{~s}$.

RCA

High speed analogue gate

A high-speed four-channel analogue switch designed for use in high-speed store-and-hold and general purpose analogue gate applications, is made by Crystalonics Inc. The 16 -pin dual-in-line package has a maximum turn-on time of 20 ns and maximum turn-off time of 30 ns . The typical on resistance is 35Ω, off leakage current is $\ln \mathrm{A}$, and operating voltages and temperatures range from +5 to -15 V and from -55 to $+125^{\circ} \mathrm{C}$ respectively.

GE

Analog Devices Ltd, Central Avenue, East Moseley, Surrey.
Bourns (Trimpot) Litd, Hodford House, 17/27 High Street, Hounslow, Middlesex TW3 ITE. G.E. Electronics (London) Ltd, 182/4 Campden Hill Road, Kensington, London W. 8 .

RCA Ltd, Solid State-Europe, Sunbury-onThames, Middlesex.
SGS-ATES (UK) Ltd, Planar House, Walton Street, Aylesbury, Bucks.
Siliconix Ltd, 30A High Street, Thatcham, Newbury, Berks RG13 4JG.

APRS

The ninth exhibition shows increases in foreign interest and British confidence

The number of visitors at this year's Association of Professional Recording Studios exhibition was up by 11% to 1,926. Foreign visitors from 36 countries accounted for 14% of the total, 270 compared with 148 last year. The exhibition drew visitors from Jordan, Iran, Iceland and Indonesia as well as the European countries to see the 82 exhibitors, 15 per cent up on last year.

These figures coincide with a welcome upsurge in the number of British manufacturers anxious to compete in one of the fussiest yet most whimsical markets there is. Two reasons for their increased confidence are the fall in the pound and the necessity for buyers to look a little further down the market than their resources would have required a couple of years ago.
A good example is Leevers Bias, who introduced their Proline Professional tape machine for the first time at APRS. For under $£ 2,000$ they make a machine which has a good chance of attracting those buyers who are unable to afford the established stereo and two track machines at more than twice the price. The Proline supersedes the Bias B1000 and is the result, say Leevers Bias, of analysing faults and spares orders over the past four years. The design has a toroidal mains transformer and plug in capstan and spool motors. All the adjustments are accessible from underneath except for the record and replay electronics.

The Ampex ATR 100 recorder, which is available in 1,2 or 4 channel table top, floor standing or rack mounted versions. It has servo controlled tape handling and a new matrix control panel. Ampex also showed the MM1200 multitrack machine.

Another British firm launched a new tape machine at APRS. Brenell's Mk 7S deck offers stereo half or quarter track to add to their range of stereo and multitrack tape transports. Brenell has also changed ownership, having joined Allen \& Heath in the Batiste group of companies a little while ago. Neither company has designs on the money-no-object end of the market but Allen \& Heath seems to have a solid group of adherents in the sound reinforcement and small studio fields. A \& H launched a ten-channel production mixer S6-2 consisting of two stereo gram, two stereo tape, and two mic input channels and a master stereo output channel with VU metering. The unit is intended "for the production of tape collages for radio, television and film broadcast."
Raindirk is a fairly new British firm which seems to be doing well in foreign markets. It is competing in the high cost mixer market but produces a range of smaller modular units, such as the Mini Mixer, as well as the bigger custom built models. The latest addition to the Raindirk range is the Quantum system. Each channel has circuits normally associated with separate input, output and monitor modules, and sections of the circuitry are used for more than one function. A master status module is provided to determine whether the channel modules are being used in the record, overdub, remix or track jump modes. This reflects a tendency noted elsewhere, such as on the Harrison console shown by Scenic Sounds Equipment, for even the biggest desks to become smaller. It is evident that the prestige afforded by being able to show customers acres of knob-speckled console has been tempered by the reduction in studio budgets and the unchanging length of engineers' arms. The Quantum comes in three frame sizes, for 24,32 and 40 channels. Further modules can be added as needed. The 24 channel frame with 24 channel costs about $£ 15,475$. The 40 channel frame with 32 channels costs $£ 19,355$.
Audix says Thames Television has already ordered five or six of its new MXT 1000 audio mixers aimed at the small radio and recording studio, mobile and theatre market. Customers may build up a two or four group system from a pre-designed range of channel modules. "Technical features," says Audix, "include a compressor in the microphone/line channels and the talkback module, two auxiliary outputs from each channel and stereo monitoring facilities." It also offers a choice of VUs or p.p.ms and a selection of faders. The preliminary specification lists 12 modules, including two and four group $\mathrm{mic} /$ line channels, two and four group line input amplifiers, two and four group monitors, talkback module meter panel in two or four groups, and an oscillator.

3 M (UK) is marketing a new autolocator and a tape timer made by a British firm better known, perhaps, for making

Audix MXTI000 four group p.p.m. metered mixer with ten mic/line and 2 stereo line inputs. See text.
acoustic screens. Sonaplan designed the XT14 autolocator for 3M's M79 machines. It consists of a display and control unit and a logic unit normally hidden inside the tape machine. The counter operates in minutes and seconds and accuracy, says 3 M , is better than plus or minus two seconds over 30 minutes playing time at 15 i.p.s., with no overshoot. The unit, which can be hand held, also has a full tape machine remote control unit on the same panel. Among its 11 functions, including a memory, the most basic is to find the point on the tape at the elapsed time set on the preset counter. The unit can also make the machine go to zero, which is normally set automatically when the tape is loaded.
The tape timer is a real time digital timer for use with all the 3 M professonal range and derives its drive pulses from two sensors mounted below the reversing idler at the front of the 3 M tape transport. The accuracy is as quoted for the autolocator.
F.W.O. Bauch was showing a new wow and flutter meter by EMT. The unit has a frequency deviation sensitivity of 0.1% f.s.d., and works to linear, DIN/IEC, low pass, high pass or band pass curves, with provision for an external filter. Three lamps indicate the performance of a given unit under test. A green lamp shows that the wow and flutter is well within limits, the amber that it is adequate and the red that it is outside limits. The limits are set by a programme plug in the front of the unit which is supplied along with a dummy plug for making up individual programmes. At the moment the price is $£ 453$ based on an exchange rate of 4.5 DM to the pound. Bauch also showed a new micro-ohmmeter from EMT with suppressed zero facility, at $£ 507$

Ferrograph, part of the reorganized

Wilmot Breeden Electronics' group, showed their professional audio response analyzer ARA1. The oscillator provides automatic, continuous and single sweep modes in the ranges 20 Hz to 30 kHz or 200 Hz to 200 kHz . The long persistence c.r.t. displays a gain v frequency plot, and a permanent record of the response can be obtained by connecting an X-Y plotter to the machine. "The receiver frequency display is derived from the incoming signal and not from the oscillator," says Ferrograph, so the unit can be used to test systems with time delay, such as tape recorders, systems using separate sources, such as test records or tapes or where there is a distance between oscillator and receiver, as in telephone line checks. The graticule has a log frequency scale from 20 Hz to 20 kHz with $\times 10$ range. Vertical ranges are 10 , 25 and 50 dB .
The Digital Audio special effects unit provides simple delay and echo effects, phasing, frequency shift and octave up and down signals mixed with the main signal. The unit uses a 40 kbit r.a.m. store to hold up to 200 ms of audio information which is released to the output under the control of an arithmetic processor. All functions can be remote controlled. There is a line and a low level input and all terminations are on XLR connectors. The unit can be rack mounted or free standing. The sole agents are Philip Drake Electronics.

Lockwood showed a new range of three professional disc turntables. The PDR1 has a Russco turntable, PDR2 a Garrard 401 and PDR3 a Thorens TD125. The last two have Ortofon F15E arms, but the Russco has a Grays 12 in arm and Stanton cartridge. Alternatives can be provided for all three. Each has a 12 transistor amplifier offering a maximum output of 18 dB into 600 ohms with a distortion of not greater than 0.3%. At OdBm and 1 kHz the distortion is 0.1%. The output is on two XLR connectors and there is a headphone jack at the front. PDR1 costs $£ 750$, PDR2 $£ 530$ and PDR3 $£ 575$ plus VAT.

ELECTRONICS CAN BE FUN

Just in case any reader, on scanning the heading, is wondering whether his subscription has been transferred to Reader's Digest, a hasty glance at the front cover will reassure him. His second natural assumption, namely that Vector is mentally deranged, is equally invalid. (I wouldn't put money on that! - Ed.)
What I really wanted to talk about is "do-gooders" of various kinds. Dogooding covers a wide spectrum, from the flamboyant gift of a hundred thousand or so to a hospital, with the. Press fully alerted beforehand, to those earnest souls who rouse us from our Sunday afternoon nap to press a tract upon us and to assure us that their particular brand of dogma washes whitest of all. There is a great variety of do-gooders and it has been said that you can always tell the people who are being done good to by the hunted expressions on their faces.
But do-gooding, even when performed with the highest of motives in view, does not always work out in the way intended. I have in mind a certain electronics factory whose employees included two brothers by the name of Miller. One was chief of Goods Inward and the other chief of Finished Components Store. Now, if you happened to be in Goods Inward, its chief would be referred to as "Dusty" and the chief of Finished Comps as "Dusty's Brother". So far so good, except that the personnel of Finished Comps, to a man, regarded their chief as the only genuine Dusty and the Goods Inward usurper as "Dusty's Brother". I daresay you find that confusing and so did new arrivals in the factory, but they either contract-- ed a nervous breakdown or got the hang of it after a while.

There was a young and enthusiastic curate in the area who conceived the idea (basically a good one) that he could best get to grips with the problems of his parishioners by working alongside
some of them, and to this end he bludgeoned the management into allowing him to work in the factory for three days a week. (I don't know how the union aspect was overcome, but it evidently was.)

News of the impending arrival swept through the factory grapevine at the , speed of light and on the works floor a book was made as to which department would be selected to take the curate under its wing. "Goods Inward" was firm favourite, for that particular Dusty Miller, being a thorough-going Plymouth Brother, was considered a natural for the honour; in fact, a supplementary book was envisaged as to who would convert who. The Dusty Miller of Finished Comps, on the other hand, was at the tail-end of the field at astronomical odds; for although he was a chap with a heart as big as a barn door he subscribed only to one of those churches run by the Licensed Victuallers Association and was, moreover, possessed of a lurid vocabulary, with every other word an adjective of four-letter derivation.

Now, some say it was malice aforethought on the part of the management, while the more charitable hold that the hierarchy were genuinely confused as to which Dusty was which. Be that as it may, when the news broke that the cleric had been assigned to Finished Comps, the Works was in a ferment. The bookmaker, in particular, was contemplating suicide until a providential last look at his list showed that not a single client had backed the, winner.

Not the least surprising aspect of the affair was the seriousness with which Dusty Miller of Finished Comps took his assignment. The clergyman was due to start on Tuesday; on Monday afternoon Dusty paraded his workforce before him.
"Now look here, you bleepers," he began. "As you may know, the bleeping management have wished a bleeping sky-pilot on me. And I want to say, right here and now, that I want some bleeping respect for the cloth from you lot. The first of you bleepers who says a bleeping word out of place, gets his bleeping cards! Savvy?"
It would be pleasant to conclude by saying that in the fullness of time Dusty might have been seen taking up the collection on Sundays. Life, however, is not always what we would wish it to be. Truth compels me to say that the alliance foundered after three weeks when the curate resigned, being distressed to find that he was acquiring the habit of uttering certain undesirable expletives in moments of trial. By doing so, he saved Dusty from certain apoplexy, for the discipline of saying, "Sorry, mate, we're out of stock" in place of his erstwhile "Wot the 'ell d'you bleeping fink this is - bleeping Marks and Spencers?" had become all but intolerable. Honours, it was generally agreed, were just about even.

But I would particularly like to recall to you a little-known category among those who do good - and, furthermore, do it by stealth. I'm thinking of those anonymous Works humorists who put a little leaven into the flour-and-water of everyday existence, You are walking along the corridor, let us say, feeling Monday-morningish and with a particularly dull chore ahead. You pause at a notice-board and one sheet sticks out from the rest. It's typed on official Head Office paper and runs as follows:

NOTICE TO ALL EMPLOYEES

It has come to the attention of the Management that personnel are becoming increasingly in the habit of dying in the company's time. This practice must cease forthwith.
(Signed) F. M. Tuner,
Managing Director

Another that I recall was handwritten at the foot of a Samaritan's poster. It stated simply: "My mother made me a homosexual." Underneath, in (apparently) another hand, was the comment: "If I send her the wool, will she make one for me?"
You read, and all of a sudden the prospect of the chore doesn't seem nearly so grim. Why do they do it, these chaps? It's an interesting problem inpsychology. It can't be for public acclaim, because, by the way nature of. things, the author must remain anonymous. The cynic may say that it's for kicks; the thrill of filching Head Office notepaper and pinning it up unseen in a busy corridor. I prefer to think it's done in the hope of relaxing a few taut faces, but perhaps I'm being naive.

Sometimes, however, these efforts come unstuck. Some years ago - in the same Works I spoke of earlier - an "official" document was circulated to the technical staff. It purported to be a description of two new types of radar equipment, one a transmitter and the other a receiver. The tone of the document was that of a preamble to a technical handbook; the uninitiated could easily read the first couple of paragraphs - or, as it transpired the whole of it - without realising that the "new radar system" was in fact a description of that biological process which, initiated by Adam and Eve, has enjoyed universal popularity ever since. The author as usual, was our old friend Anon.
His offering brought joy to the staff, and then someone decided to push the joke a stage farther and sent a copy to a well-known journal (not, I hasten to add, W.W.!) which promptly took it at face value and published it. On the morning of publication somebody must have rung the editor, for the edition was whistled off the book-stands at high speed.

We slock all the parts for this brilliantly designed synthesiser, including all the PCB's, metalwork and a drilled and prirted front paael, giving a superb protessional finish. Opinions of authority agree the ETI International Synthesiser is technically superior to most of today's models. Complete construction details in our booklet nov available price $£ 1.50$. or send SAE for specification.

BUILD IT YOURSELF . . . IN STAGES

Get started with a 49 note instrument features tremulant and reverberation. Ideal to learn on. Leatlet MES 51. Price 15p gives full details to build this complete instrument. Extend the range of MES 51 by adding another keyboard and several new tone colours. Lealiet MES 52. Price 15p also shows how to use 61 note keyboards.

Fully controllable altack and delay controls fnormally found only on the most expensive organs), up to seven footages on each keyboard. up to 70 controls including drawbars, and a 13 note pedatboard, make up the additions described in the step-by-step 32 page instruction leaflet MES 53. Price 35p.

A really superior high quelity stereo graphic equalizer featuring 9 octaves per chasnel. We stock all the jarts (except woodwork) including the metalwork drilled and printed. 15p brings yar a reprint of the article.

Thi= is a fully constructes and lested electronic clock module as illustrated. Data sheet supplied. Sim Jle to connect to alarm and your battery/mains radio. Smart case avalable shortly. Data sh set available separately. Please send SAE.

* Bright 4 Digit 0.5* Display
* Flashing Colon ${ }^{1} \mathrm{~Hz}$
* Switch for Display Seconds
- Alarm Set Indicat 3 r
P.M. Indicalot
* Power Faiture Indicator
* Steep Timer
* Snooze Timer
* Time can be set accurately to
* Wrading Zero Blanking
* Automatic voice operated fader
* Belt drive turntables

Monitor facilities (Headphones and VU meter)
Full construction details to be published in "Electronics Today International on sale Augus
Send for our leaflet MES 41. giving full details for construction. Price 20p. Soon you'll be the Deejay everyone wants at their party!

SIMPLE ALARM KIT - £9.38
ALARM CLOCM \& RADIO ALARM CLOCK KIT - £10.99 SMART PLACM RADIO CONTOLLER KIT - £11.51
SMART PLASTIC CASE with fully punched chassis - $\mathbf{E 2 . 4 9}$ Please send SAE for our Clock data sheet

RST VALVE MAIL ORDER CO. Climax House, 159 Fallsbrook Rd., Streatham London SW16 6ED Tel: 01-677 2424 Telex: 946708

Terms of Business: Mon. to Fri. Open for callers 9 a.m. to 5 p.m. Closed Sat. Express postage $15 p$ for 1st valve. 2peach additional valve. Express postage. $15 p$ per ord for transistors. Prices on application for any type not listed. Obsolete valves a speciality. Prices correct when going to press. This applies to the U.K.

QUADRAPHONIC KIT MODULES

Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut

Banana piugs and test probes XLR compatible in-line attenuators, and

Audia Connectors

Broadcast pattern jackfields, jackcords, plugs and jacks

Low cost slider faders by Ruf
Future Film Developments Ltd. 90 Wardour Street London WiV 3LE 01-437 1892/3
DEMODULATOR £32 + VAT (£4.00)
VARIOMATRIX DECODER SYNTHESIZER

27 + Vat (£3.38)

MASTER SWITCH KIT 8.50 + vat (£1.06)

 Bargains in Semi-Conductors, components, modules \&equipment.

B.P.P Patis

Originated in 1959 by the Company's managing director, his were the first semi-conductor and component packs to be marketed in this country, and Industrial Pre-Packed Components', Today Bi-Pre-Pak Industrial Pre-Packed Components..Today, Bi-Pre-Pak cupply of pecks as wall as a vastly extended range of products detailed in our latest 24 -page A. 4 size free catalogue. Send 10 p stamped large addressed envelope for your copy, together with our special summer bargains list, by retum.

IT'S ALL IN OUR FREE CATALOGUE

Gomponent Patks

Abstract

$\begin{array}{ll}\text { CP2 } 200 & \text { erc Appox quantuy counted by wergh: } \\ \text { Resistors. mexed bag ol different lypes values watrages }\end{array}$ CP4 12 Polentiometers, pre-sets. w/wound catbon elc Mixed CP5 $\quad 5 \begin{gathered}\text { types and vatues } \\ \text { eassenes. single } \\ \text { cast }\end{gathered}$ cassertes, etc Less plugs. for stidable plugs see PAKs CP and CP10 TO. 5 mounting pads futs between transistor and board fo That pro firish pads. fits between rransistor anu board fo Cative clips tor GPPO //2" dia cable NYlon with hardened steel pin (probably tungsten) per sealed bor of 50060 . 25 mm sub minature a ack plugs. io li, earphones in PAKK Screwdrivers. $1 \times$ mains nean lester $5 \times$ grub screwdrivers $\begin{gathered}\mathbf{6 0 p} \\ \mathbf{6 0 p}\end{gathered}$ an external magnel or col For magne:s see PAK Magnets of varous sires tor operating read switches on PAK CP12 Ideal for burglar alarms in doors and Windows. etc Potentomesers, presets, wirewounds. carbons, dual gangs watrages ocodile clips, screw lixing good values and $\mathbf{E 1 . 2 0}$ CP17 25 Electrolytic Capacitors, varrous values and votrages, many CP18 + Light activated SCR 50 volts $\$ 6$ amps type L.FF Ready mounted on PC board with gate resistor and leads fitted Full data and circuit dragrams tor 14 profects. includes CP19 3 Micro swiches ! pole change over slandard model 11_{6} ", CP20 $10 \begin{gathered}\text { Relays assorted types Ex.GPO } \\ \text { vollages }\end{gathered}$ CP23 4 Switches mintature push to make single pole $\quad \begin{gathered}60 \mathrm{p} * \\ 60 \mathrm{p}\end{gathered}$

YOUR SUPPLIERS FOR

 Switchas, Knobs, Ex-G.P.O. items. Aluminium Boxes.
Triacs. Thyristors. Zener Diodes and much more in our catalogue and shop

Semi-Fonduturs

- TESTED AND GUARANTEED PACKS

TP4 3 SN740
SN7490 integrated curcuits, 14 pin dual in line TTL type
Decade counter Get one FREE. these are 60 p each ir
LL THE FOLLOWING ARE AT 60 E EACH PACK
TP9* 5 SN7400 inegrated circuits. 14 pin dual in line TTL type TP10 2 Light dependant resistors 400 ohms light. 1 megohm 10 Transistors XB102 and XBil2 equivalent to ACl 26
AC156, OC81/2 OC72, etc.

\qquad TP16 20 TYpe. $\mathrm{OC} 200 / 1 / 2 / 3$ transistors PNP silicon TO-5 unmarked $\begin{array}{llll}\text { TP17 } & 20 & \text { I watt zener doodes. mixed voltages. } 688 \text { to } 43 \\ \text { TP18 volts. } \\ 20 & \text { 2N3707/8/9/10 } & \text { ransistors. NPN sulicon plastic }\end{array}$ TP19:00 Diodes. mixture of germanium. gold bonded. stlicon. et TP20 10 Useful selection of many types, marked and unmarked TP23 $20 \mathrm{BFY} 50 / 1 / 2.2 \mathrm{~N} 696 / 7.2 \mathrm{~N} 16 \uparrow 3$ etc NPN silicon 10 TP24 20 Uncoded COMMPLEMENTARY TO PAK TP 24 TP30 20 NPN silcon planar transistors TO-18 similar to BC 108 TP31 20 ete uncoded silicon planat transistors. TO. 18 simitar to BC 178 P32 $20{ }_{2}^{\text {etc }} 2 \mathrm{~N} 2926$ sil

- UNTESTED PACKS - 60p each Specially for keen bargain hunters
 UT6
UT9 ${ }^{25}$ Zener diodes $1.1 / 1 / 2$ wall top hat ype. mixed voltages
UT10 15 Power transistors. PNP germanium and NPN silicon UT13 $15 \begin{aligned} & \text { mostiy To-3 but some plastic and some marked } \\ & \text { Integrated circurs experimenters pak, dual in tine. TO. } 5\end{aligned}$ TL. DTL. marked and unmarked, some definitely good but
for full ranges - see catalogue
POWER TRANSISTORS

	vee	Wate	ps	Price
40 P 1	15	20	3	30 p *
40 N 2	40	40	4	30\%*
40P2	40	40	4	30p*
GoN1	15	45	4	25p*
90P 1	15	45	4	25p*
90N2	40	90	8	$35 p$ *
90P2	40	90	8	35p*

- WHEN ORDERING

clearly in block capital letter Check that your order is corr
description, quantuly and price
Don't forger VAT at $121 / 1 /$ \% of tord value
of order uniess otherwisa marked (8\%)
make sure you get our name AND ADDHESS RIGHT WHEN ordering.

TERMS OF BUSINESS
VAT at $121 / 2 \%$ must be added to total value of order. except for items marked or (8%) when VAT is to be added at 8% No VAT on overseas orders POST \& PACKING add 30p for UK orders encept where shown otherwise Minimum mail order acceptable-£ 1 . Subject to alteration without notice. AVAILABILITY All items are available at time of going 10 press when every effort is made 10 ensure correctness of information. Cash with order please. Cheques or money orders should be crossed and made payable to Bi.Pre-Pak Lid

To: BI-PREPAK $220 / 224$ WEST RD
To: BI-PRE-PAK, 220/224 WEST RD.
WESTCLIFF-ON-SEA, ESSEX SSO 9DF

Please send
for which I Enclose
NAME
ADDRESS

Singles
BRIDGE RECTIFIERS Plastic encapsu lated

Suniry

SIGNAL GENERATOR

pocket signal injectio

Fountain-pen tyoe Invaluable for faut tracing in radio sets. amplitiers TVs, tape recorders etc Takes one HP7 battery

EX.G.P.O. 6" LONG NOSE PLIERS
MAINS TRANSFORMER

mi6	6v 06 v 100 ma	E1.22*
MT12	12 v 012 v 50 mA	E1.22*
SST9/1	9 v 1 mmp	¢1.67*
SSTi2/1	12 v lamp	£2.05*
SST18/1	18 v 1 mmp	¢2.50*
SST25/2	25v 2 amp	£3.00*
$\begin{aligned} & \text { SSTOU/2 } \\ & \text { SS } 35 / 4 \end{aligned}$	30v 2 amp 35 v 4 mp	£4.25* £5.50**

pC EDGE CONNECTORS

UHF TUNER UNITS

BOOKS

All free of VAT We carry very large stocks of technical books by Babani \& Bernard Publishers, by Newnes ond Market in Engish/Grmill All Common Market in English/German/Italian. All detailed in our
catalogue.

MONEY SAVER FOR CAR OWNERS

The "Super Soark" MK. 5 Capacity Discharge Ignition Unit, developed enables you to enfoy this system at a truly economic price. Facilities include simple adaption 10 pos. or neg. earth. immediate switch back to enclosed strong metal case Very easy to fit and install. With full instructions (P / P add 75 p)

KIT £7.95* READY-BUILT £10.50*

X-44 R.F. CROSS HATCH GENERATOR

gular use. Size $150 \times 75 \times 50 \mathrm{~mm}$. strong plastic
and frame generator and synchro pulse Pre-sel adjust tor R F outpu and line/trame symch. Uses 4 alkaline type 1600 batts. Blank raste
taclity FOR COLOUR AND MONO $(\mathrm{P} / \mathrm{P}$ add 50 p$)$
£27.50 \& * Bull
TV SIGNAL STRENGTH METER
As described originally in "Television. Dec. 74/Jan. 75. Gives direct
reading of strangth of signat received on UHF zerial. compiete kir and
reprinis of articles. (P/P 50 p.)

$$
\begin{aligned}
& \text { SOME SPECIAL SUMMMER OFFERS } \\
& \text { FM STEREO DECCODERS } \\
& \text { IMC Unit for negative earth, with data } \\
& \text { Transistorsed version for positive earth } \\
& \text { RADIO SET CHASSIS }
\end{aligned}
$$

On P.C.B's.. Unsorted. Useful for experimenting evc. Various kinds
(cannot be exchanged) AM/FM
AM lypes. each

22024 WEST ROAD, WESTCLIFF-OLL-SEA, ESSEX SSO.9DF. TELEPHONE: SOUTHEND (0702) 46344.

- FIRST IN U.K. WITH PACKS FOR ELECTRONIC USERS

Get a great deal from Marshalls

A Marshall (London) Ltd Dept: WW
40/42 Cricklewood Broadway, London NW2 3ET
Tel: 01-452 0161/2 Teiex: 21492
\& 85 West Regent St Glasgow G2 2OD Tel: 041-332 4133
\& 1 Straits Parade Fishponds Bristol BS16 2LX Tel : 0272 654201/2 \& 27 Rue Danton Issy Les Moulineaux Paris 92 Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat Trade and export enquiries welcome
Catalogue price 35 p (30p to callers)

OUR RANGE COVERS OVER 7,000 ITEMS THE LARGEST
SELECTION IN BRITAIN TOP 200 IC'S, TTL, CMOS \& LINEARS

LONDON, GLASGOW, PARIS - AND NOW BRISTOL IT'S OUR SERVICE THAT MAKES US GROW

POPULAR SEMICONDUCTORS

0nNTNN000000-000000000000000000-000000000000 														
$0000-10000000000-00 n 0000000 n 0-00000000000000$ 														
 $000000000000000000000000000000000000-0000000$ 														
 $00000000000000000-00000000 n n N-00000000000000$ 														
$000-0000000000000000000000000000010$ 														

Prices correct at July 1976, but all exclusive of V.A.T.

[^5]MULTIMETER F4313 (Made in USSR

SENSITIVITY $1200 \mathrm{~V} D \mathrm{C}$ range: $10,000 \Omega / \mathrm{V}$ Other DC ranges: $20,000 \Omega / \mathrm{V}$ 1200 AC range $6.000 \mathrm{R} / \mathrm{V}$ 600 V AC range: $15.000 \Omega / \mathrm{V}$ 300 V AC range: $15,000 \Omega / \mathrm{V}$ Other $A C$ ranges: $20,000 \Omega / \mathrm{V}$
$A C / D C$ current ranges: $60-120-600 \mu \mathrm{~A}-3-12-300 \mathrm{~mA}-1.2-6 \mathrm{~A}$ $\mathrm{AC} / \mathrm{DC}$ voltage ranges $60-300 \mathrm{mV}$-1 2-6-30-120-300-600-1200V Resistance ranges $3000-10-100-1000 \mathrm{~K}$
Accuracy $1.5 \% \mathrm{DC}, 2.5 \% \mathrm{AC}$ (of full scale deflection)
Mirror scale and knife edge pointer. Taut suspension of movement. Transistor amplifier is used for all AC ranges thus achieving a common linear scale for both AC and $D C$ ranges.
Meter is fully protected for a transistorised cut-out relay circuit. Range selection is achieved by clearly marked piano keys. Power source: 51.5 V dry cells Dimensions: $95 \times 225 \times 120 \mathrm{~mm}$.

PRICE £37.50 plus VAT
Packaging and postage $£ 1.10$

OSCILLOSCOPE CI-5
 Made in USSR

Extremely simple and easy to use single beam oscilloscope. Well proved design based on standard octal valves makes servicing and maintenance straightforward and inexpensive. Because of its bandwidth of 10 MHz the instrument is suitable for general electronic applications and educational purposes where a sophisticated instrument would be both too expensive and delicate. 3 -in tube giving a 50 $\times 50 \mathrm{~mm}$ clear display. Amplitude and time base calibrations. Sensitivity $30 \mathrm{~mm} / \mathrm{v}$ max. Triggered and free-running time base, suitable for displaying pulses from $0.1 \mu \mathrm{sec}$ to 3 m sec . A.C. mains operation. Price E55 00 ex, works
Packing and carriage (U.K. only $£ 2.50$)

$\begin{array}{ll}65176 T & 0.55\end{array}$

FULLY GUARANTEED

\qquad
 0.90
1.30
1.40
0.50
0.63
0.45
0.45
0.50
1.10
0.50
5.90
5.90
0.50
0.70
0.50
0.50
0.50
0.50
0.75
0.50
0.75
0.80
0.50
0.40
0.70
0.75
0.75
0.40
0.50
0.50
0.70
0.50
0.55
0.55
0.60
0.50

$\begin{array}{ll} & 0.8 \\ 10.50 \\ 1 & 0.55 \\ & 0.50\end{array}$

HIGH GAIN DARLINGTON PAIRS
Plastic 3-Lead Case Darlingron Pairs. Typical current gain 30.000. Max collector voltage VCBO 40 V . Max collector current 400 mA . 1CBO-10nA
BC516 PNP
BC5 17 NPN
0.45 6SN7GT

.45 6SN7 \begin{tabular}{ll}
6SN76T

12477

\hline

12177

\hline

0.55 \& 128816

\hline 5 \& 128 E 7

\hline

 $0.65{ }^{128284} 7$

19105

0.65 \& 3045

\hline
\end{tabular}

- B

TRANSISTORS FOR T.V.

R2008B	$\mathbf{0 . 9 5}$
R2010B	$\mathbf{1 . 6 5}$
BU126	$\mathbf{1 . 5 5}$
BU133	$\mathbf{1 . 5 5}$
BU208	$\mathbf{2 . 0 0}$

Z \& I AERO SERVICES LTD.
Head Office: 44A WESTBOURNE GROVE, LONDON W2 5SF Tel.: 7275641

Retail Branch
85 Tottenham Court Road London W1. Tel: 5808403

WW-039 FOR FURTHER DETAILS

THE RADIO SHOP

16 CHERRY LANE BRISTOL BSI 3 NG

TELEPHONE 0272-421196
official orders welcomed govt /educational depts, etc TRIACS

1.6 AMP PLASTIC				6 Amp isolated tab				10 AMP ISOLATED			
				NAS	0651 w	100 V	. 68	NAS	1001 w	100 V	. 80
NAS	0161x	100 V	. 31	nas	$0651 \times$	100V	68	NAS	$1001 \times$	100 V	80
NAS	0162w	200 V	. 34	NAS	0652w	200 V	72	NAS	1002w	200 V	86
NAS	0162x	200 V	. 32	NAS	0652x	200 V	12	NAS	1002x	200 V	84
NAS	0164w	400 V	. 45	NAS	0654w	400 V	80	NAS	1004w	400 V	¢1.19
NAS	0164*	400 V	. 43	NAS	0654x	400 V	. 78	NAS	1004x	400 V	¢1.14
nas	0166w	600 V	. 56	NAS	0656w	600 V	97	NAS	1006w	600 V	61.49
NAS	0166x	600 V	. 53	NAS	0656x	600 V	86	NAS	1006x	600 V	61.47
3.5 AMP CLIPPED TAB				8 AMP ISOLATED TAB				15 AMP ISOLATED TAB			
NAS	035 \%	100 V	. 58					NAS	1501w	100 V	E1.15
NAS	0351x	100 V	. 57	NAS	0851x	100 V	75	NAS	1501x	100 V	£1.05
NAS	0352w	200 V	. 64	NAS	$0852 w$	200 V	. 86	NAS	$1502 w$	200 V	f1. 12
NAS	0352x	200 V	. 61	NAS	0852x	200 V	. 84	NAS	1502x	200 V	E1.12
NAS	0354w	400 V	. 75	NAS	0854w	400 V	. 97	NAS	1504w	400 V	E1.66
NAS	0354x	400 V	. 74	NAS	0854x	400 V	94	NAS	1504x	400 V	¢1. 63
NAS	0356w	600 V	. 95	NAS	0856w	600 V	f1.21	NAS	1506 w	600 V	¢2.07
NAS	0356x	600 V	. 92	NAS	0856x	600 V	¢1.16	NAS	:506x	600 V	£2.02

THYRISTORS

1.6 AMP TO5 ${ }^{\circ}$			4 AMP isolated tab				G AMP isolated tab			
NAS 006\%	50 piv	. 28		${ }^{106 \%}$	50 piv	. 29	NAS	206p	50 piv	40
NAS 006q	100piv	. 31	NAS	1069	100pir	. 33	. NAS	2069	100piv	. 46
NAS 006r	200piv	. 34		106	200piv	40	. NAS	$206{ }^{2}$	200 piv	. 55
NAS 006s	400piv	. 44	NAS	1065	400piv	. 63	NAS	206s	400pir	. 85
NAS 0061	600piv	. 57	NAS	106 t	600 piv	. 99				
8 AMP ISOLATED TAB			16 AMP TO 48							
NAS 306p	50piv	. 45	16A	析	50 V	. 60				
NAS 306q	100piv	. 52	16 A		100 V	. 64				
NAS 306r	200pis	. 65	16 A		200 V	. 70				
NAS 306s	400piv	. 93	16A		400 V					
			164		600 V	11.17				
Quantily Prites on Application SAE										
TRANSISTOR SPEAKERS										
				$7{ }^{8}$ ohems			${ }_{40}^{40}$			
Bin il wath ken		707 LED 3", Common Anode Dispory								

ELECTRONIC DIGITAL CLOCH with alorm and mooze features

FEATURES: 0.7 -inch high digits Variable intensity 24 -hour alarm 5 -minute repeating, snooze alarm Alarm set indicator Snooze indicator Pulsing second indicator Power interrupt indicator Alarm cancel features - tilt operation Alarm tone output AM. PM. Indicator,
Size $\quad 130 \mathrm{~mm} \times 90 \mathrm{~mm} \times \quad$ Manufactured to high standards by a major American electronics corporation this superbly styled
Weight 10 oz
Power Supply $230 \mathrm{VAC}=10 \% 50 \mathrm{~Hz}$

SPECIAL OFFER £18. ${ }^{95}$

inc. VAT and Post 8e Packing
FREE TRIAL IN YOUR HOME. Try out the clock in your home If digital time is not for you return it in original condition within ten days and we'll refund your money without question. Allow 21 days for delivery.

TIME MICROELECTRONICS P.O. BOX 29 BRIGHTON HILL PARADE, BASINGSTOKE HANTS RG22 4EH

Please send \square electronic clocks as illustrated
I enclose cheque \square postal order \square money order \square

Signature

LYNX ELECTRONICS (LONDON) LTD.

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | |

SINCLAIR, CBM AND NOVUS CALCULATORS

Sinclair: Cambridge Scientific E11.45. Oxford $300 \quad £ 13.30$. Programmable
Scientific $£ 24.95$. Mains adaptors for all models $£ 3.20$.
CMB: SR7919D 8 digit/memory/trig/ log/pi/powers/sci. notation E11.90. 796MD 8 digit/\%/memory $\mathbf{6 5 . 9 8}$. Mains adaptors £3.20.
Novus: 7506 digit 55.45 .8358
digit/ $\% /$ const digit/ $\% /$ const $/ \mathrm{sq}$ root/ 4 funct mem

BATTERY ELIMINATORS
STABILIZED POWER UNITS Millenia series. Switched 11030 V in 0.1 V steps. 1A output: Kit $£ 7.95$. Kit c9 95 Kit + . ع14.95.
6-WAY SPECIAL
Switched outpu1
$\begin{array}{ll}11 / 2 & 9\end{array}$
12 V at $500 \mathrm{~mA} £ 5.20$

G-WAY DOUBLE RADIO MODEL

Switched output $3+3,41 / 2+41 / 2,6+6$ $71 / 2+71 / 2,9+9,12+12 \mathrm{~V}$ at 250 mA Also $15,18,24 \mathrm{~V}$ single $£ 6.20$

3-WAY MODEL
Switched output of 6. $71 / 2$ and 9 V at 250mA with 4-way mult-jack connector and free matching
RADIO MODELS
50 mA with press-stud battery connectors for radios etc. $6 \mathrm{~V} \quad £ 3.45$. 9 V €.3.25. $41 / 2+41 / 2 v$ £4.45. $6+6 \mathrm{~V}$ £4.45. $9+9 \mathrm{~V}$ ¢4.45. Also $9 \mathrm{~V} 300 \mathrm{~mA} £ 3.95$ CASSETTE MAINS UNITS $71 / 2 \mathrm{~V}$ output with 5 pin DIN plug, 50 mA model £3.45. 300 mA model $£ 3.95$ CAR CONVERTERS input 12 V DC. Output 6. $71 / 2$. 9 V DC 1 A regulated £4.75*.

PRINTED CIRCUIT KIT.

Make your own printed cirruits. Contains etching dish. 100 sq ins of copper clad drill bit and laminate cutter $\mathbf{£ 3 . 9 5}$.

SINCLAIR BLACK WATCH:
 Fully assembled with

 black strap $£ 20.9$
SINCLAR IC20

C20 10W +10 W stereo amp kit with printed circuit £4.95. PZ20 Power supply for above $£ \mathbf{~} \mathbf{3 . 9 5}$ - VP20 Control and
preamp kit $£ \mathbf{7} .50$.

SINCLAIR PRDJECT 80 FM tuner $\mathbb{E 1 3 . 2 5}$. 016 £9.50. PZ5 £3.95. PZ6 £8.70. PZ8 £9.10. Trans for 28 £5.60, 240 £5.75. Stereo 80

JC12 AMPLIFIER

6WIC audio amp with free data and
printed circuit $£ 1.95$ *. DELUXE KIT FOR JC12 Volume and tone controls and extra parts for the pcb. Mono £2.16. Stereo £4.66 JC12 POWER KIT
Supplies 25V 1 Amp £3.25.
SEND SAE FOR FREE LEAFLET
S-DECS AND T-DECS
S DeC E2.24
T- DeC $£ 4.05$
u-DeCA $£ 4.45$ u-DeCA $£ 4.45$
u-DeCB £7.85 16 dil IC carriers

BATTERY ELIMINATOR KITS

Send sae for free leatlet on ranye 100 mA radio type: with press stud terminals $41 / 2 \mathrm{~V}, 6 \mathrm{~V}$ or 9 V £1.95. 100mA double radio type: with press
stud terminals. $41 / 2+41 / 26+6$ or $9+9 V$ stud terminals. C.2.60.
100 mA

100mA cassette type: $71 / 2 \mathrm{~V}$ din plug.
c1.95.
Stabilized 8-way types: transistor stabilized to give low hum $3 / 41 / 2 / 6$ / E3.15. 500 mA model $£ 4.65$. Heavy duty 13 -way types: $41 / 2 / 6 / 7$ 81/2/11/13/14/17/21/25/28 $34 / 42 \mathrm{~V}$ 1A £4.10. $2 \mathrm{~A} £ 6.80$. Car converter kit: input 12 V DC. Outpu
$-6 / 71 / 2 / 9 \mathrm{DC} 1 \mathrm{~A}$ regulated $£ 2.95$.

SWANLEY ELECTRONICS

DEPT. WW, PO BOX 68, S
Post 30 p on orders under $£ 2$, otherwise free Prices include VAI (Overseas customers
deduct 7% on items marked otherwise 11%). Official orders welcome

HART ELECTRONICS

Audio Kit Specialists since 1961

J. L. Linsley-Hood High Quality

 Cassette RecorderFull kits of parts for this outstanding design, including metalwork, cabinet, low humfield mains transformer and all other parts. Please send SAE for full data
Cassette Mechanism only complete with Erase and Record/Playback head, £19.10 + 121/2\% VAT.

FURTHER INFORMATION ON ALL KITS FREE if you send us a $9 \mathrm{in} \times 4 \mathrm{in}$ S.A.E

REPRINTS Post free no VAT
BAILEY 3OW 18p.
STUART TAPE RECORDER. All 3 arficies under one cover 30p
BAILEY/BURROWS/QUILTER Preamp circuits layouts and assembly notes $\mathbf{1 5 p}$

> Penylan Mill, Oswestry, Salop
> Personal callers are always welcome, but please note we are closed all day Saturday

For Toshiba say Erie ERIE

If you're looking for ex-stock, competitively priced solid-state devices, look no further! Because at Erie, we are offering the comprehensive Toshiba range. It includes signal and power transistors, FETs, diodes, ICs, and LEDs (single and 7^{-} segment).
Here's a selection of Toshiba devices, with prices for quantities from I to 24 inclusive
15% discount applies to all orders for quantities of 25 to 99 If you want 100 or more of any one item, special prices applysend for price list direct from Erie, or complete the reader service card.
Data sheets for devices ordered are supplied free on request, but if you want data sheets only, please send rop for each set of device data, to cover costs.
P\&P of 30 p is applicable on all orders up to 100 devices (any mix of types).
VAT Please ačd $12 \frac{1}{2} \%$ for VAT to all prices, except those marked with an asterisk (*) which are rated at 8% VAT

TRANSISTORS			BD 139	NPN	40p
Small Signal$(2-5 B)$			$\begin{aligned} & \text { BD } 140 \text { PNP } \\ & \text { (TO-220AB) } \end{aligned}$		
2SA 561	PNP	13p	-2SA 473 P	PNP	40p
2SA 562	,	12p	- 2 SA 489		75 p
2SA 493		17p	-2SC 790 N	NPN	50.5p
2SA 495		12p	2SC 1173	..	35.5p
2SC 372	NPN	$9.5 p$	-2SC 1447	,	50.5p
2SC 373		$95 p$	-2N 5296		59p
2SC 382		26p	Metal Pow	er	
2SC 383	,	24.5p	(TO-66)		
2SC 388A	,	22.5p	2SC 515A	NPN	48.5p
2SC 733	,	6 p	2SC 782	.,	£1.08
2SC 734	.	$11.5 p$	(TO-3)		
2SC 735	,	11p	- 2 SC 643A	"	$£ 2.05$
2SC 1000	,	16p	2SC 1434	,	£14.30
2SC 1681	,	16 p	-2SC 1576	,	£2.43
(TO-92)			2SC 1617	,	£1.29
BC 451	NPN	$11 p$	- 2 N 3055	"	£0.86
BC 452	。	11p	-S 2530A	..	£3.48
BC 453		$11 p$	S 1299		£4.09
BC 454	PNP	11.5p	Integrated	Circuits	
BC 455	.,	11.5p	TA 7093P		£1.49
BC 456	.,	11.5p	ta 7109ap		£1.57
Plastic Po $(2-7)$			$\begin{aligned} & \text { TA } 7117 \mathrm{P} \\ & \text { TA } 7205 \mathrm{P} \end{aligned}$		£2.36
$\begin{aligned} & \mathrm{S} 1234^{\prime} \\ & \text { (TO-126 } \end{aligned}$	NPN 6)	33.5p	$\underset{(2-5 \mathrm{~J})}{\text { F.E.T. }}$		
BD 135	NPN	33.5p	-2SK12		£1.04
BD 137		36.5 p	2Sk30A		27p
BD 138	PNP	40p	3Sk35		£1.45

DIODES

ERIE ELECTRONICS LIMITED
 South Denes, Great Yarmouth, Norfolk.

Tel: 0493 56122 Telex: 97421

Components
IITH

RETURN OF POST MAIL ORDER SERVICE

BSR HI-FI AUTOCHANGER STEREO AND MONO
Plays $12^{\prime \prime} .10^{\prime \prime}$ or $7^{\prime \prime}$ records. Auto or
Manual. A high quality unit backed by
BSR reliability with 12 monthe Manual. A high quality unit backed by
BSR reliability with 12 months guar antee. A.C. 200/250V.
Size $131 / 2-111 / 4 \mathrm{in}$. 3 speeds.
Above motor board $33 / 1 / \mathrm{in}$
with STEREO and MONO
WARTRIDGE
£10.25 Post 75p
B.S.R. SINGLE PLAYER similar to MP60 with stereo
cartridge and cueing device $£ 15.50$
PORTABLE PLAYER CABINET
Modem design Rexine covered.
Vynair tront grille. Chrome fittings $\quad £ 4.50$ Post 50 p
Size $17 \times 15 \times$ 8in. approx.
Size $17 \times 15 \times 8 \mathrm{in}$. approx.
Motor board cut for BSR or Garrard deck
HEAVY METAL PLINTHS

COMPLETE STEREO SYSTEM Two full size loudspeakers $133 / 4 \times 10 \times 33 / 4$ in. Player unit dips io loudspeakers making in extremely compact. overall size only $133 / 4 \times 10 \times 8 \frac{1 / 2 i n}{}$.. 3 watrs per channel. plays all $\begin{array}{ll}\text { records } 33 \text { r.p.m.., } 45 & \text { r.p.m. Separate volume and tone } \\ \text { Atractive Teak finish controls } \\ 240 \mathrm{a} & \mathbf{E 2 2 . 5 0}\end{array}$
Attractive Teak finish 240 V ac
$£ 22.50$

SPÉCIAL OFFER!
SMITH'S CLOCKWORK 15 AMP
TIME SWITCH
O-60 MINUTES £2.95 post 35p single pole two-way. Surface mounting
with fixing screws Will replace existing wall switch to give light for return home. garage, automatic anti-burglar lights. etc. Variable knob. Turn on or off at full or fully guaranteed

TEAKWOOD LOUDSPEAKER GRILLES
WEYRAD P50 TYPE TRANSISTOR COILS RA2W Ferrite Aerral 85 D Diver Trans. LFDT4 $65 \mathrm{P}^{\circ}$

 Ferrite Rod 7 in. $\times 3 / 3 \mathrm{in} ., 20$ p. $6 \times 5 / 16$ in.. 20p. $3 \times 3 / 1 \mathrm{in} .10 \mathrm{p}$

VOLUME CONTROLS

 /S 25p. D.P 40p. STEREO L/S 26p. D.P. 40p. STEREOL/S 55p. D.P. 75p. Edge 5 K . S.P. Transistor 30p.

ELAC HI-FI SPEAKER 8 in. or 10×6 in.
Dual cone plasticised roll surround. Large ceramic magnet $50 \cdot 16.000 \mathrm{c} / \mathrm{s}$. Bass resonance $55 \mathrm{c} / \mathrm{s}$. B ohm impedance.
10 watts. music power. $£ 3.95$ post
E.M.I. $131 / 2 \times 8$ in. SPEAKER SALE!

GLANK ALUMINIUM CHASSIS. $6 \times 4-70 \mathrm{p}$; $8 \times 6-90 \mathrm{p}$: $10 \times 7-£ 1.15 ; 12 \times 8-£ 1.35 ; 14 \times 9-£ 1.50 ; 16 \times$ $6-E 1.45 ; 16 \times 10-£ 1.70$.
ALUMINIUM PANELS. 6
ALUMINIUM PANELS. $6 \times 4-17 p ; 8 \times 6-24 p ; 14 \times$

800 hm Coax 8 p yd. STANDARD TTPE VHF
FRINGE
ITOW LOSS ${ }^{10}$ deal 625 anc colours pron LINE SOCKETS 18p. OUTLLET BOXES 50p.

ELAC 9×5 in HI-FI SPEAKER
 £3.45

TYPE 59RM
This famous unit now available, 10 watts, B ohm
RCS LOW VOLTAGE STABILISED POWER PACK KITS
$£ 2.95$ circuit rectifiers and with Zener diode, printed circuit rectifiers and double wound mains
transformer. Input $200 / 240 \mathrm{~V}$ a.c. Output transformer. Input $200 / 240 \mathrm{~V}$ a.c. Output
voltages available, 6 or 7.5 or 9 or 12 V d. up voltages available, 6 or 7.5 or 9 or $12 \mathrm{~V} \mathrm{d.c}$.up to 100 mA or
RCS POWER PACK KIT $£ 3.35$ circuir 750 mA . Complete with printed Post 30p circuit board and assembly instructions.
12 VOLT 300 mA KIT, E3.15. 9 VOLT 1 AMP KIT, $\mathbf{E 3 . 3 5 .}$
R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER - BRITISH MADE Ideal for Mike. Tape, P. U.. Guitar, etc. Can be used with Battery 9.12 V or H.T. line $200-300 \mathrm{~V}$ d.c operation. Size $13 / 4 \times 11 / 4 \times$ $3 / 4 \mathrm{in}$. Response $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s} .26 \mathrm{~dB}$ gain For use with valve or transistor equipment.
Full instructions supplied. Details S.A.E.
£1.45
Full istructions stpplifed ODails S AAE

PENDULUM MECHANISM

 1.5V d.c. operation over 300 hours continuous on SP2 battery, fully adjustable swing and speed. Ideal displays,teaching electro magnetism or for
metronome, strobe, etc.
R.C.S. "MINOR" 10 watt AMPLIFIER KIT This kit is suitable for record players, guitars, tape playback,
electronic instruments or small P.A. systems. Two versions available. Mono, $£ 11.25$; Stereo, $£ 18$. Post 45p. Specification 10 W per channel; input 100 mV : size $91 / 2 \times 3 \times 2 \mathrm{in}$. approx S.A.E. details Full instructions supplied. AC mains powered.

MAINS TRANSFORMERS

$250-0-250 \mathrm{~V} 70 \mathrm{~mA}, 6.5 \mathrm{~V}, 2 \mathrm{~A}$.
$250-0-25080 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6.3 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 A
$350-0.35080 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6.3 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 A $350-0.35080 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6.3 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 A $300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 6.3 \mathrm{~V} 4 \mathrm{~A}$
MIDGET $220 \mathrm{~V} 45 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}$
MEATED TRANS. $6.3 \mathrm{~V} 1 / 2 \mathrm{amp}$ E1; 3 amp
L POST.
50 p
50 p
$\mathrm{f3.45}$
$£ 3.45$
$\mathbf{£ 4 . 6 0}$
$£ 4.60$
$£ 5.80$

HEATED TRANS. $6.3 \mathrm{~V} 1 / 2 \mathrm{amp} \mathrm{E1;} 3 \mathrm{amp} \quad . \mathrm{E} 1.40$
 amp. $3,4,5,6,8,9,10,12,15,18,25$ and $30 \mathrm{~V} £ 4.60$.
1 amp. $6,8,10,12,16,18,20,24,30,36,40,48,60$

 24, $30,36,40,48,60 £ 11,25.6 .06 \mathrm{~V} 500 \mathrm{~mA} £ 1,9 \mathrm{~V} 1$
amp. $£ 1,12 \mathrm{~V} 300 \mathrm{~mA}, £ 1,12 \mathrm{~V} 500 \mathrm{~mA}, £ 1,12 \mathrm{~V} 750 \mathrm{~mA}$ amp. $£ 1,12 \mathrm{~V} 300 \mathrm{~mA}, £ 1,12 \mathrm{~V} 500 \mathrm{~mA}, £ 1,12 \mathrm{~V} 750 \mathrm{~mA}$
$£ 1,10 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 2 \mathrm{amp} ., \mathbf{£ 2} .75,20 \mathrm{~V}, 3 \mathrm{amp} . £ 2.45$ $40 \mathrm{~V}, 2 \mathrm{amp},, \in 2.95,30 \mathrm{~V} 5 \mathrm{~A}$ and 34 V 2 ACT £3.45, 16 V ,
$1 / 2 \mathrm{amp}, £ 1,16 \mathrm{~V}, 2 \mathrm{amp} ., £ 2.20,0,5.8,10,16 \mathrm{~V} .1 / 2$ amp., £1.95, $20 \mathrm{~V} 1 / 2 \mathrm{amp}, \mathrm{E}^{2} .75,20 \mathrm{~V}$, 1 amp., $£ 2.20$.
$150 \mathrm{~W} £ 5$; $250 \mathrm{~W} £ 6$; $400 \mathrm{~W} £ 7$; 500 W £8.
FULL WAVE BRIDGE CHARGER RECTIFIERS.
6 or 12 V outputs. $11 / 2 \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}$. CHARGER TRANSFORMERS. $11 / 2 \mathrm{amp} £ 2.75 ; 4 \mathrm{amp}$ e4.60. 12V. 11/2A HALF WAVE Selenium Rectifier, $\mathbf{2 5 p}$.

R.C.S.

ROSEWOOD SPEAKERS
Size $121 / 2 i n . \times 93 / 4 \mathrm{in} . x$
$51 / 2 \mathrm{in}$. Response 50 to 14.000 cps 8 watts rms.
$£ 12$ pair

	NEW ELECTROLYTI: CONDENSERS				
2/350	20p	250/25	20p	50+50/300\%	50p
4/350Y	20 p	500/25V	25p	30.000/25V	95p
8/350V	28p	100+100/2751	8	$32+32 / 250 \mathrm{~V}$	20 p
16/350\%	$33 p$	$150+200 / 275$	700	$32+32 / 4504$	80 p
32/500	60p	$8+8 / 350 \mathrm{~N}$	50 p	$300+50 / 301$	8 p
$25 / 255$	$15 p$	$8+16 / 350 \mathrm{~V}$	50 p	$100+50+50 / 3501$	88
50/50Y	$15 p$	$16+16 / 3501$	80p	$32+32+32 / 3501$	60
100/254	15 p	$32+32 / 300 \mathrm{~V}$	E0p	4700/634	$95 p$

LOW VOLTAGE ELE CTROLVTICS $1,2,4,5,8,16 ; 25,30,50,100,20$
500 mF 1 $2 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
1000 mF 12V 17p; $25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 50 \mathrm{~V} 57 \mathrm{p}$.
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p}$; 50 V p .
$5000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ;$; $12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p}$; 50 V 95 p .
SHORT WAVE 100 pF air spaced gangable tuner. 95p.
TRIMMERS 10 pF . 30 pF . 50 pF , 5 p . 100 pF , 150 pF , 15 p .
CERAMIC, 1 pF to 0.0 mF , 5 p . Siver Mica 2 to 5000 pF .
PAPER $350 \mathrm{~V} \cdot 0.17 \mathrm{p}: 0.5 \mathrm{mp}$. Silver Mica 2 to $1 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p} ; 2 \mathrm{mFF}$. 5 pp .
$15 p ; 500 \mathrm{~V} \cdot 0.001$ to $0.05 \mathrm{sp} ; 0.110 \mathrm{p} ; 0.2513 \mathrm{p} ; 0.4725 \mathrm{p}$.
MICRO SWITCH SINGLE POLE CHANGEOVER 20p.
SUB-MIN MICRO SWITCH, 25p. Single pole change over
TWIN GANG, "0-0" 208pF + 176pF E2.00; 500pF standard 75p; $365+365+25+25 \mathrm{pF}$, Slow motion drive 65 p .
120 pF TWIN GANG, 50 p ; 365 pF TWIN GANG, 50 p .
NEON PANEL INDICATORS 250 V AC/DC. Amber or red 30p.
RESISTORS. $1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W} .20 \%$ 2p; 2W, 10p; 102 to 10 M HIGH STABILITY. $1 / 2 \mathrm{~W}$ 2\% 10 ohms 106 meg.. 12p.
Ditto 5%. Preterred values 10 ohms to 10 meg. $5 p$. ohms to 100 K 12 p each
TAPE OSCILLATOR COIL. Valve type, 35p
BRIDGE RECTIFIER $200 \mathrm{~V} \mathrm{PIV} 1 / 2 \mathrm{amp} 50 \mathrm{p}$
TOGGLE SWITCHES S.P. 20p. D.P.S.T. 25p. D.P.D T. 30p

BAKER	MAJOR 12' $£ 10.35$ $30.14 .500 \mathrm{c} / \mathrm{s}$. 121 in . double cone. wooter and tweeter cone together with a BAKER ceramic magnat assembly having a flux density of ${ }_{145.000}$ Maxwells. Bass resonance $40 \mathrm{c} / \mathrm{s}$ Rated 25 W . NOTE 3 or 8 or
	 Please state 3 or 8 or $\begin{aligned} & \text { or } \\ & \text { or } \\ & 60 \\ & 50 \\ & \text { ohm each }\end{aligned}$

BAKER "BIG-SOUND" SPEAKERS. Post 50p each

'Group 25'	'Group 35'	'Group
12 in		50/15'

3 or 8 or 15 ohm 3 or 8 or 15 ohm 75 w £19.50
NEW MODEL BAKER LOUDSPEAKER, 12 IN 60 WATT
GROUP 50/12, 8 OR 15 OHM HIGH POWER
$30-16,000$ CPS MASSIVE CERAMIC MAGNET.
$£ 14.50$ 30-16.000 CPS MASSIVE CERAMIC MAGNET.
WITH ALUMINIUM PRESENCE CENTRE DOME.

Post 80 p
TEAK VENEERED HI-FI SPEAKERS AND CABINETS
For 12 m . or 10 in speaker $20 \times 13 \times 12 \mathrm{n}$. $£ 12.50$ Post 95 p For 13×8 in or 8 in. speaker $16 \times 10 \times 7$. 64.95 Post $75 p$ LOUDSPEAKER CABINET WADDING 18in. WIde . . 20p f

R.C.S. 100 watt

VALVE

AMPLIFIER

CHASSIS

Four inputs. Four way mixing, master volume, treble and bass controls. Suits all speakers This professional quality amplifie chassis is surtable for all groups, disco. P.A., where high quality power is required. 5 speaker outputs A/C mains operated. Slave output. Produced by demand for a quality valve amplifie Send for leaflet
Suitable carrying cab £14.
ce $£ 85$ carr £2 50
SPEAKER COVERING MATERIALS. Samples Large S.A.E Horn Tweeters $2-16 \mathrm{kc} / \mathrm{s}$. 10 W 8 ohm or 15 ohm $£ 3.60$ De Luxe Horn Tweeters $3-18 \mathrm{kc} / \mathrm{s}$. 30 W . $8 \mathrm{ohm}, £ 7.50$ CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm £1.90. 3-way $950 \mathrm{cps} / 3000 \mathrm{cps}$. £2.20.
LOUDSPEAKERS P.M. 3 OHMS. $7 \times 4 \mathrm{in}$ E1.50; $61 / 2 \mathrm{In}$ £1.80; $8 \times 5 \mathrm{in}$., $£ 1.90 ; 8 \mathrm{in}$. $£ 1.95$.
SPECIAL OFFER: 80 ohm $21 / 4 \mathrm{in}, 2^{3 / 4 \mathrm{in}, 35 \mathrm{ohm} .3 \mathrm{mn}, 25}$
ohm, $2^{1 / 2 \mathrm{in} \text {. dia, } 3 \mathrm{in} \text {. dia., } 5 \times 3 \text { in } 8 \mathrm{ohm}, 21 / 2 \mathrm{in} \text {. } 3 \mathrm{in} 31 / 2 \mathrm{n}}$
 $3 \mathrm{ohm} .21 / 2 \mathrm{in}, 25 / \mathrm{in}, 31 / 2 \mathrm{in}$, 5 in dia $£ 1.25$ each. RICHARD ALLAN TWIN CONE LOUDSPEAKERS 8 in diameter $4 W \mathrm{E}$ 2.50. 10 in diameter $5 \mathrm{~W} £ 2.95$; 12in diameter 6 W £3.50. $3 / 8$ / 15 ohms, please sta VALVE OUTPUT TRANS. 40p; MIME TRANS. 501.40 p Mike trans mu metal $1001 £ 1.25$.
Loudspeaker Volume Control 15 ohms 10 W with one inch long threaded bush for wood panel mounting. $1 / 4 \mathrm{in}$. spindle. 65 p .
BAKER 150 WATT
ALL PURPOSE
MIXER AMPLIFIER
All purpose transistorised 4 inputs speech and music mıxing. Output $8 / 15 \mathrm{ohm}$ a.c Mans Separate treble
 and bass controls.
Guaranteed. Details S.A.E
NEW MODEL MAJOR-50 watt. 4 input, 2 vol Treble and bass. Ideal disco amplifier
£49.95
100 WATT DISCO AMPLIFIER CHASSIS
input. Four loudspeaker outputs 4 to 16 ohm . $£ 52$

BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER Add musical highlights and sound effects to recordings.	
Will mix Microphone. records, tape and tuner with separate controls into single output. 9 V	5.20
TWO STEREO CHANNEL VERSION	5
BARGAIN 3 WATT AMPLIFIER. 4 Transistor Push-Pull Ready Built, with volume. Treble £3.95 and bass controls 18 volt d c. Mains Power Pack $\mathbf{£ 3 . 4 5}$	

BALANCED TWIN RIBBON FEEDER $300 \mathrm{ohms} .7 p$ yd. JACK SOCKET Std. open-circuit 20p, closed circuit 25p Chrome Lead-Socker 45 p . Mono or
JACK PLUGS Std. Chrome 30p; Plastic 2
STEREO JACK PLUG 30p. SOCKET 25p.
DIN SOCKETS Chatekis 3-pin 10p. 5-pin 10p.
DIN SOCKETS FREE 3 -pin 25p; 5-pin 25p. DIN PLUGS
3-pin 25p; 5-pin 25p. VALVE HOLDERS, 10p; CANS 10p.
R.C.S. SOUND TO LIGHT KIT

Kit of parts to build a 3 channel sound to light
1.000 watts per channel $\mathbf{£ 1 2 . 5 0 \text { . Post } 3 5 \text { p }}$
Easy to build Full instructions supplied Cabinet $£ 3$
As featured in December Practical Wireless
E.M.I. TAPE MOTORS. 240 V d c 1.200 ipm $41 / \mathrm{pole} 185 \mathrm{~mA}$ Spinde 0187×0
Size $31 / 4 \times 21 / 2 \times 21 / 4 \mathrm{n}$ £2. Post 40 p Size $31 / 4 \times 21 / 2 \times 2$
$120 V$ Model, $£ 1$
120 Model , E
337 WHITEHORSE ROAD, CROYDON

pen 9-6. Wed. 9-1. Sat. 9-5 (Closed fo

Tel. 01.6841665

58－60 G㩲OVE RD WINDSOR，BERKSSLAIHS ADD 8\％VAT TO PRICES MARKED ADD $121 / 2 \%$ VAT TO ALL OTHER PRICES SEND CWO（EXCEPT GOVT．DEPTS．）
POST \＆PACKING 20p FOR THE UK

FAST SERVIRE

G 号（S red R20
209 STYLE OR $0.2^{\prime \prime}$ no CLIP $11 \mathrm{p}^{*}$ TIL209 or 0．2＂RED\＆CLIP 13 ．3p＊ GReEN LARGE／SYALL CLIP 22 p ． ORANGE LARGE／SMALI，\＆CLIP 22 2 *
 digital clocks wh5316 E5＊6

CAPACITORS
CERAMIC＇22pp－0．1uf 50v 5p． ELECTROLYTIC： $10 / 50 / 100$ uf 10 or $1000 u \rho^{25 V} 18 \mathrm{p}, 200 / 500 \mathrm{uf} 9 \mathrm{p}$
 PRESETS 6p．RESISTORS 1 p ea
IEATSINKS TO5／18 7p．TO3 15 p ．
SHITCHES：SPST 19 p ，DPDT 2 ． 4 P． IIN PLUGS ALL 12 p. SOCKETS 9 p ．
ALI CASES：AB5／Ar37 50 p AB13 65 p TRANSFORYFRS 100 mA 89p ea＊ NEW AUDIBLE WARNING［HLHEHER \＆1 TRAMPUS FULL SPEC PAKS ALL $[1$ ea PAK A in trio lalins our chotee el

IC＇s LOW PRICES

 $\begin{array}{llll}709 & \text { T099 } & 22 p^{*} & \text { MC1310 } \\ 709 & \text { £2．47 }\end{array}$ 709 DIL $14 \mathrm{Sap}^{*}$ MC1312 SQ $£ 1.50$
 $\begin{array}{llll}710 \text { DIL } 14 & 31 \mathrm{p} & \text { YC1318 } & £ 2.50 \\ 723 \text { Regul＇r } & 45 \mathrm{p}^{*} & \text { MC1330 } & 75 \mathrm{p}\end{array}$ $\begin{array}{llll}741 & \text { DIL } 8 & 20 p^{*} & \text { MC1339 } \\ 741 & \text { DIL } & 14 & 31 \mathrm{p}^{*}\end{array}$ MC1350／1／29 $\begin{array}{llll}741 & \text { DIL } 14 & 31 \mathrm{p}^{*} & \mathrm{MC} 1350 / 1 / 2^{2} \quad 75 \mathrm{p} \\ 741 & \text { TO99 } & 31 \mathrm{p}^{*} & \mathrm{MC1}\end{array}$ 7472×741

748 DII

1．27．NE536 FETOPA \＆2

 76013 GW AF 75p NE556 2x＂84p 8 PL $\begin{array}{lrl}\text { CA3046 } & 59 \mathrm{p} & \text { NE561 PLI．\＆4．00 } \\ \text { CA3048 } & \text { £ } 2.20 & \text { NE562 PLL } £ 4.00\end{array}$

 $\begin{array}{llll}\text { LM300 } & \text { โ1．50＊} & \text { NE566 } & £ 1.55 \\ \text { L4．301 OPA } & \text { 11p＊} & \text { NF567 } & 〔 2.20\end{array}$
 L4308 H1 130 95p＊SN76660 IF

 14380 CO74 89p TBA810 7WAF 80p

74ח TTL

， 10		5\％of	100mIX
7400	9p＊	7474	27p＊
7401	10 p	7476	27 p ＊
7102／3	11 p ＊	7490	37p＊
7404	1.3 p ＊	7491	60p＊
7405／6／7	$25 p$＊	7192／93	43 p
7108／9／10	0 9p．	7494	43 p ＊
7413	26p＊	7496	$68{ }^{\text {6＊}}$
7420／30	12ヶ＊＊	74100	¢1
7440	12 P	71121	26 p ＊
7441	6．1p＊	71123	58p＊
74.47	6．7p＊	74141	64 p ＊
$717 n$	25 p ＊	74174	¢1．
7472	22 P ＊	74175	95p＊
7473	26p＊＊	74196	§1

TRAMSISTORS

cmas locic

NEW MOTOROIAA CD14533 £2．35＊
CD4000 1．5p＊CD4028 73p＊

NE FAST SERVICK，LOM PHICES MONEY BACK If NOT SATISFIRD ALL GRAND NE TOF GRADE FULL SPEC DEVICEA，CAMMKAS WELKOM NAE CATALDOUE LIET FREE SAK， OR TELEPRIONE OH E5 wietsery

WW－OOP FOR FURTHER DETAILS

Rulb down lettelino

TELEPHONE 54525

DIODES

DA81 \＆OA91 GERYLANIIM 5p 1N4001 1A5OV \＆1N4002 5p 1N4004 6p＊ 1 N4007 9p＊ ZFNERS 1 N914 SILICON $4 p$ ZENERS $11 \% 17 \mathrm{P}$ 21J 9p BRIDGE RECTIFIER 1A50 18p 1A400V 25p．4A100V 45p SCR＇s TRIACS SCR＇s TAG1／400 1A400V 50p 1A50V 38p＊1A 600V 70p＊ C106D 4A400V SCR ONLY 47p＊ TRIAC SC146D 10A400V If＊ TRIAC DISCO 16A400V $£ 1,75$
DIACS：ST2 20p．BR100
25p vero
36PINS 28p＊FACE CUTTER49p 36PINS 28p＊FACE CUTTER49p＊
COPPERCLAD 0.1 PITCH VERO 2！＂ג5＂32p＊2立＂x3\｛＂29p＊
 3！＂×17＂£1，70＊ DIL BRFADBOARD 6K4＂ $\mathrm{E}^{2 *}$

DAIO pen

DALO FICII RESIST PEN 69p＊ FEC ETCII PAK 500gm 89p＊ 6x4 COPPER BOARD 50p＊
PCB KIT 3 ITEMS CASSETTE MECHANISM $¢ 9$ \＆ASC 1 TGS GAS DFTECTORS 308』tc〔2＊

FOR THE PROFESSIONAL LOOK

A boon to industry，students and enthusiasts，this is a totally new system of graphic lettering．
（1）Eliminating pencil marks on art work
2）．Built－in straight edge
3）Guaranteed correct spacing of letters
Guaranteed correct spacing of letters
Ensures all letters upright

DIL suchets

TOP QUALITY NYLON SOCKETS SPIN 1 2p 14PIN 12p：16PIN
SOLDFRCON PINS 100 65p： 100053 50

CDAnnl
CDA
CD4016
$\operatorname{CD} 4016$
$\operatorname{CD} 4017$
CDAO1R
CD4n22
CD4 023 16p

SO SIMPLE TO USE
No experience in graphict is required as
simoliciy is the
keynote

Send for sample pack complete with capitals，lower case and numerals plus applicator pencil，full instructions and order form．

Patent pending
Print in Helvetica Medium

Prices including postage，packing and

V．A．t．

$1 / 8^{\prime \prime}$ plus numerals complete kit ．．．£1．00
$1 / 4^{\prime \prime}$＂plus numerals complete kit ．．．£1．00
$1 / 2^{\prime \prime}$ plus numerals complete kit ．．．．$£ 2.50$
Satisfaction guaranteed or cesh refunded．

区

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories Inc
We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring

* switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment,
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes:
-complete set of components tor stereo processor
-regulated power supply components
-board-mounted DIN sockets and push-button switches
-fibreglass board designed for minimum wiring
-solid mahogany cabinet, chassis, twin meters, front panel, knobs, inounting screws and nuts
PRICE: $£ 37.90+$ VAT
Also available ready built and tested
Price $£ 52.00+$ VAT
Calibration tapes are available for open-reel use and for cassette (specify which)
Price $£ 2.00+$ VAT*
Șingle channel plug-in Dolby ${ }^{(\mathrm{TM})}$ PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts are available with ali components
Single channel board with selected fet
Price $\mathbf{5 7 . 2 0 + V A T}$

Gold plated edge connector
Price £2.20+VAT
Price £1.40+VAT*

Please add VAT at $12 \frac{1}{2} \%$ unless marked thus*, when 8% applies We guarantee full after-sales technical and servicing facilities on all our kits \square babclavcaro babclavcaro (1)

Please send SÁE for complete lists and specifications
INTEGREX LTD.

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In / Out facility (for noise reduction unit, etc), THD less than 0.1% at 20 W into 8 ohms. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section: uses Mullard LP1 186 module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range 88-104MHz.30dB monos/N@ $1.8 \mu \mathrm{~V}$. THD typ. 0.4%

PRICE: $£ 53.95+$ VAF

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz} .20 \mathrm{~dB}$ mono
quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70 dB . IF rejection-85dB. THD typically 0.4%
IC stabilized PSU and LED tuning indicators. Push-button 'tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders
Compare this spec. with tuners costing twice the price

Mono £29.15 + VAT
With ICPL Decoder $£ 33.42+$ VAT
With Portus-Haywood Decoder $£ 35.95+\mathrm{VAT}$

Sens. 30dB S/N mono @ $1.8 \mu \mathrm{~V}$
THD typically 0.4\%
Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the Mullard LP1186 RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE.

PLL stereo decoder IC
PRICE: Mono £26.85 + VAT Stereo £29.95 + VAT
S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring

Type Spec. $24+24 \mathrm{~W}$ r.m.s into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N 72 dB . Headphone oūtput. Tape in / Out facility (for noise reduction unit, etc.). Toroidal mains transformer

PRICE: £31.95 + VAT
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

PHASE-LOCKED IC DECODER KIT
PUSH-BUTTON UNIT
$£ 4.47$ + VAT
$£ 4.50$ +VAT

Dept. WW, Wellington Roas
 Herts

TEST EQUIPMENT Please see our advertisement in last month's issue.			FOR EXPORT ONLY RCA ET 4336 TRANSMITTERS\qquad COLLINS TYPE $23104 / 5 \mathrm{KW}$ TRANSMITTER 10 channel. Autotone and manual luming.C13 TRANSMITTERS 3862 TRANSCEIVERSNO 53 TRANSMITTERS. REDIFON IOOW SSBTRANSCEIVERS. MULLARD C 11 HIGH POWER INSTALLATION 11.000 W			COLOMOR (${ }^{\text {ELECHRONICS }}$) 170 Goldhawk Rd.. London, W. 12 Tel. 01-743 0899 Open Monday to Friday 9-12.30, 1.30-5.30 p.m.					
ALL EQUIPMENT ordered from us is completely overhaule mechanically and electricall laboratories.											

 FAST SERVICE

WW - 628 FOR FURTHER DETAILS

STEREO IC DECODER
 HIGH PERFORMANCE PHASE LOCKED LOOP asi in w.w. Julut 72 2)
 MOTOROLA MC1310P
 ех stock DELIVERY spelificaron SPECIFICATION

Separation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$
\qquad Power requirements: $8-14 \mathrm{~V}$ at 16 mA KIT COMPRISES FIBREGLASS PCB

OMPRISES FIBREGLASS PCB	ONLY	WHY PAY
(Roller tinned), Resistors, I.C. Capacitors.	c308	MORE?
Preset Potm \& Comprehensive Instructions	. $£ 3.98$	
LIGHT EMITTING DIODE	RED	29p
uitable as stereo on indicator	GREEN	59p

NOTE
As the supplier of the first MC1310P decoder kit, of which we have sold literally V.A.T.

Please add V.A.T. to all prices
FI-COMP ELECTRONICS
PORTWOOD INDUSTRIAL ESTATE, CHURCH GRESLEY
GURTON-ON.TRENT, STAFFS. DE11 9PT

WORKSHOP TEST EQUIPMENT
 Designed by Mr. J. L. Linsley Hood 1. AUDIO OSCILLATOR
 Simple design Very low distortion

 $10 \mathrm{HZ}-100 \mathrm{KHZ}$ Sine/Square output. Kit Form £14Made and tested $£ 18$
His famous $30-75$ wat
HI-FI AMPLIFIER $\mathbf{E 6 5}$ (tax $12 \frac{1}{2} \%$)
Distortion is below normal measurement Available in pack form or made in units.

P.L.L. F.M. STEREO TUNER

Requires no
adjustments
Kit £40 (Tax 12 $1 / 2 / 1 /$
Vea
We can also supply REG PSV O-60V, O-1AE17.30 Tax 8% F M SIG/GEN Wobbulator
TELERADIO ELECTRONICS

TRANSFORMERS

ALL EX-STOCK - SAME-DAY DESPATCH
MAINS ISOLATING VAT $8 \% 12$ and/or 24-VOLT
PRI $120 / 240 \mathrm{~V}$ se $120 / 240 \mathrm{~V}$ Centre rapped and Screened

Ref.	VA (Watts)	ε	PR, P
07*	20	E3.10	66
149	60	4.69	80
150	100	5.33	95
151	200	8.54	1.25
152	250	10.32	1.53
153	350	12.47	1.53
154	500	14.33	1.79
155	750	21.94	BRS
156	1000	30.51	BRS
157	1500	34.89	BRS
158	2000	38.92	BRS
153	3000	51.48	B75
-115 or 240 sec onfy			

50 VOLT FANGE

HIGH VOLTABE
 MAINS ISOLATIN

 Pri $200 / 220$ or $400 / 44 \overline{0}$Sec $100 / 120$ or $2001 / 240$ Va Ref or 2010 $\begin{array}{llll}\mathbf{V A} & \text { Ref. } & \mathbf{E} & \text { P\& P } \\ 1.10 & \overline{243} & \mathbf{4 . 3 7} & 97\end{array}$ $\begin{array}{cccc}1.53 & 247 & \mathbf{1 0 . 9 3} & 1.41 \\ 1000 & 250 & 26.31 & \text { BRS }\end{array}$ $2000 \quad 252 \quad 44.12$ BRS COMPONENT PA.KS
P1. 200 app. Mixed Resistors P1 200 app. Mixed Resistors. P2 150 app Mixed Casacitor
P3 15 Ass. pots. \& pre-sets. P4. 10 Reed switches P4. 3 Reed switches
P5. 3 Micro switches.
P6. 5 Ferrite rods 8 slass. $68 p$ per pak: $p 8 p 20$ p

BRIDGE RECTIFIERS

$\begin{array}{rrr}50 \mathrm{~V} & 2 \mathrm{~A} & 35 p \\ 100 \mathrm{~V} & 2 \mathrm{~A} & 40 \mathrm{p}\end{array}$

$100 \mathrm{~V} 2 \mathrm{~A} \quad 40 \mathrm{p}$
$100 v-6 \bar{A} \quad 80 p$
$\begin{array}{lll}200 V^{-} & 1 A^{-} & 35 p \\ 200 v & 2 A & \mathbf{4 5 p}\end{array}$
$400 \mathrm{v} 2 \mathrm{~A}-50 \mathrm{p}$

$400 v$	$4 A$
$600 v$	$85 p$

$\frac{\text { P\&P } 15 \text { p VAT } 121 / 35}{\text { METERS }}$

AVOB METERS
AVOB EE1.09
AVO 72 E 24.07
AVOMM5 \quad C20.94
AVO T169 … $\mathbf{£ 2 4 . 5 2}$
V4315 E12.00
(USSR) inc. steel carrying
case - Avo Cases and
Accessories
P\&PE1 25 VAT. $\varepsilon \%$
STEREO F.M. TUMER
4 Pre-selected station
Switched AFC
Switched AFC
Supply $20.35 v 90 \mathrm{Ma}$ Max
£19.95. P\%P 25 p VAT $121 / 2 \%$
MAGNETIC TO CERAMIC
CART'RIDGE CONVIERTERK
Operating voltage $2(1 / 45 \mathrm{v}$,
ONLY ¢2.65 P\&P I 8p
BSR MINI-DECK
4-speed autochanger E6.
4-speed autochanger £6.00.
Garrard SP25 Mk. IV [Chassis] £17.20

Primary 220-240 Volts				
	12 V	-	£	P\&F
111	0.5	0.25	1.54	36
213	9.0	0.5	1.86	65
71	2	1	2.41	80
18	4	2	2.97	80
70	6	3	4.43	95
108	8	4	5.09	95
72	10	5	5.50	1.10
116	12	6	5.80	110
17	16	8	7.48	1.73
115	20	10	10.91	1.73
187	30	15	14.20	1.41
226	60.	30	17.67	BRS

30. VOLT RANGE

E	SEC. TAPS 0-12.15-20-25-30V			
	Ret.	Amps	E	PGP
PRP	112	$\overline{0.5}$	1.90	65
65	79	1.0	2.52	80
80	3	2.0	3.77	80
95	20	3.0	4.70	85
10	21	40	5.56	95
25	51	5.0	6.73	1.10
. 37	117	6.0	7.52	1.25
-. 73	88	8.0	10.20	1.37
BRS	89	10.0	10.36	153

AUTO TRANSFORMERS

Ref.	$\begin{gathered} \text { VA } \\ \text { (Watts) } \end{gathered}$) AUTO TAPS		P8
113	20	$0.115-210.240 \mathrm{~V}$	1.75	59
64	75	$0.115-210-240 \mathrm{~V}$	3.05	80
4	150	0-115-210-220-240V	4.33	80
66	300		6.11	95
67	500	./ -	9.36	1.37
84	1000		14.36	1.73
93	1500	".	19.02	BRS
95	2000	".	25.41	BR
73	3000	.. ${ }^{\text {. }}$	36.84	

SCREENED MINIATURES

Ref.	mA	Volts	E	e
238	200	3-0-3	1.62	46
212	$1 \mathrm{~A} .1 \mathrm{~A}^{-}$	0-6, 0-6	1.93	58
13	330, 330	9-0.9	1.56	32
235	500, 500	0-9. 0-9	1.64	2
207	1A, 1 A	0-8-9. 0-8-9	2.02	9
208	200, 200	0-8-9, 0-8-9	3.07	65
236	300, 300	0.15, 0.15	1.56	32
214	1A, 1 A	0.20, 0.20	2.03	65
221	500, 500	20-12-0-12-20	2.38	65
206	1A, 1A	0-15-20, 0-15-20	3.63	80
203	500, 500	0-15-27 0-15-27	3.15	80
204	1a 1A	0.15-27, 0.15-27	-4.14	80
. 5112	500	12, 15, 20, 24, 30	1.97	65

CASED AUTO. TRANSFORMERS 240V mains lead input and USA 2-pin outlets 20VA E3.29. P\&P 80p 150VA £6.37. P\&P 95p
$500 \mathrm{VA} £ 10.97$. P\&P \&1 1000VA $£ 18.39$ BRS Ref
Ref.
Ref
Ref 2000VA E28.71 BRS $\begin{array}{ll}\text { Ref. } & 67 \mathrm{~W} \\ \text { Ref. } & 84 \mathrm{~W} \\ \text { Ref } & 95 \mathrm{~W}\end{array}$
HIGH QUALITY MODULES3 watt RMS Amplifier5 watt RMS Amplifier
10 watt RMS Amplifier10 watt RMS Amplifier

25 watt RMS Amplifier
Pre-Amp for 3-5-10w (new)
Pre-Amp for $25 w$ Power Supplies for 3-5.10w Power Supplies for 25 w Transformer for 3 w
Transformer for 5.10 w
Transformer for 25 w
P\&PAmps/Pre-Amps/Power Suoolies P\&P Transtormers

$£ 2.30$ $£ 2.65$ $£ 2.95$ $£ 3.95$ $£ 6.50$ $£ 13.87$ $£ 1.20$ $£ 3.00$ $£ 1.90$ $£ 2.30$ $£ 2.60$ $18 p$ $58 p$

NEW STEREO 30
Complete chassis. inc. $7+7 w$ rms amps pre-amp. power supply. front panel, knobs (needs mains
trans.) $£ 15.75$. Mains trans. $£ 2.45$. Teak veneered cab. $\mathbf{~} 3.65$. P8P 88 p . VAT $121 / 2 \%$.

POWER UNITS
CC12-05. Output switched
$45 \mathrm{v} .6 \mathrm{v}, 75 \mathrm{v} .9 \mathrm{v} \quad 12 \mathrm{v}$ ai 500 m A £4.08. P\&P 48p

15W ANTEX SOLDERINGIRONS
15W £2.90.18W £2.75. 25W€2.45
Stand tor above \&1.13. P\& ${ }^{2}$ 25p
PLEASE ADD VAT AFTER P\&P
ELECTROSIL ANO SEMICONOUCTOR
STOCKISTS AUDIO ACCESSORIES \& BARGAİN PAKS CALLERS WELCOME (MON.FRI.) OR

Barrie Electronics Ltd.
 3,THE MINORIES,LONDONEC3N 1BJ TELEPHONE: 01-488 3316/8

HI-FI NEWS 75W / CHANNEL AMPLIFIER

By J. L. Linsley Hood

	. Fibraplass printed-circuit board for power amp E
	p
	or of 2 drilcod. fismed heat simks
	Fitreglass minted-circuil moard tor pre-amp £1.7
	Sen of low notso retisters. capacitors. pre-sols
	t of how molse. high gain samicoadeclors trap \qquad £2.
	Sed M potentiometers (including maias switen)
	Sel of 4 puathburtion switches.
	Teroldal trasalormer comptete with mag sermen/housing primary: 0 117-234 V; seconda $33-0.33 \mathrm{~V} .25-1.25 \mathrm{~V}$ \qquad

In Hi.Fi News there was published by Mr Linsley-Hood a series of fou aricles (November 1972-February 1973) and a subsequent follow.up aricle (April wich has as its design for an amplifier of exceptional direct coupled fully protected output stage. power in excess of 75 watts whulst maintaning distortion at less than 001% even at very low power levels. The power amplifier is complemented by a pre-a mplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system namely the equalization stage and tone control stage. postions where most conventional designs run out of gain at the extremes of the frequency spectrum Unusual leatures of the design are the variable transition frequencies of the tone enntrols and the variable slope of the scratch fiter There is a chooce of four inputs. wo equalized and iwo livear each having has been made practical by highly compact PCBs and a specially designed Toroidal transformer

FREE
 TEAK CASE WITH FULL KITS
 wrencenowr $£ 73.90$

WIRELESS WORLD FM TUNER

Designed in response to demand for a tuner to complement the world-wide acclarmed Lirsiey Hood 75 W Amplifier. This kit provides the perfect match inclusion into this outsianding slimine unit and features a pre-aligned front end module, excellent a.m rejection and temperature compensated varicap tuning, which may be controlled either continuously or by push button pre-selection Frequencies are indicated by a frequency meter and sliding LED indicators. attached to each channel selector pre-set The PLL stereo decoder incorporates active filters for "birdy" suppression and power is supplied via a oroidal transformer and integrated regulator for long term stability meta oxide resistors are used throughour

NEW KIT!

LINSLEY-HOOD CASSETTE DECK

A full kit has been prepared for this excellent new design. The above illustration is of Mr. Linsley-Hood's own unit but the Powertran kit is. though not identical, very similar and of course in the same cabinet (that used for the outstandingly successful 75 W Linsley-Hood Amplifier design).

Goldring-Lenco mechanism, as specified Stereo P.C.B. (accommodates 2 rep. amps. 2 rec amps. 2 meter Stereo P.C.B. (accommodates 2 rep. amp	
Stereo set of capactiors, M.O. restsors, potentumeters for	¢9.80
Ster	¢8.90
Further details of above and additional packs given in our FREE LIST	

Stereo P.C.B. (accommodates 2 rep. amps. 2 rec amps. 2 meter amps
bias/erase osc, relay). $7.3^{\prime \prime} \times 37^{\prime \prime}$

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP10 3NN

AUDIO KIT SUPPLIERS TO THE WORLD

Pat	T20	1301
8. Terwidal transtermer - 240 V prim.		
a.s. screm	4.95	6.80
9. Ftruglass PC8	3.20	3.60
10. Set of metalwork. fixing parts	4.20	4.80
11. Sel at ctablas. mains lead	0.40	0.40
12. Handiock (tree with complete kit)	0.25	0.25
13 Teak catinel $15.4^{\prime \prime} \times 6.7^{\prime \prime} \times 2.8{ }^{\prime \prime}$	4.5	4.5

2 NEW TUNERS!

WW SFMT II

Following the success of our Wireless World FM Tuner kit we are now pleased to introduce our new cost reduced model. designed to more advanced model has been omitted and the mechanics simplified, however the circuitry is identical and this new kut offers most exceptional value for money. Facilties included are switchable afc, adjustable. switchable muting, channet selection by slider or readily adjustable pre-set push-button controls and LED tuning indication. Individual pack prices in our free list

$\mathbf{T 2 0}+\mathbf{2 0}$ and our new $\mathbf{T 3 0 + 3 0}$ 20W, 30W AMPLIFIERS

Designed by Texas engineers and described 17 Practical Wireless the Texan was an immediate success Now developed further in our laboratories to include a Toroldal transformer and additional improvements. the slimine $T 20+20$ delivers 20 W per channel of true Hi-Fi at exceptionally low cost
The design is based on a single F/Glass PC3 and features all the normal facilties found on quality The destgn is based on a single F/Glass PC3 and reatures all the normal faciltites found on quality
amplifiers. including scratch and rumble filters. adaptable input selector and head phones socket. In a follow up article in Practical Wireless further modifications were suggested and these have been incorporated into the $\mathrm{T} 30+30$. These include RF interference filters and a tape monitor facility incorporated into the T $30+30$. These include RF interference filters and a tape monitor facility

SPECIAL PRICES
 FOR COMPLETE KITS!

T20+20
KIT PRICE only 528.25 T30 + 30 KIT PRICE only 232.95

POWERTRAN SFMT

This easy 10 construct tuner using our own circuit design includes a prealigned front end module, PLL stereo decoder. adjustable, switchable muting, switchable afc and push-button channel sefection. As with all our full kits, all components down to the last nut and bolt are supplied
together with full constructional details.

CONVERT NOW TO QUADRAPHONICS!

Wrolese Word Amplifior Dosiging. Full kits are not avalable for these projects but
component packs and PCBs are stocked for the hrghly regarded Bailey and 20 W class $A B$ component packs and PCAs are stocked for the highly regarded Bailey and 20W class AB
Linsley Hood designs, together with an efficient regulated power supply of our Own dosign. Suntable for driving these amplifiers is the Bailey Burrows pre-amplifier and our circuit board, for the stereo version of it features 6 inpuls. scrath phd rumbla, filters and mide range tone controis which may be either rotary or sidder operating for those described by D. C. Read. which splits the output of each channel from the pro-amplifier into three channels each of which is fed to the appropriate speaker by its own power amplifier The Read/Texas 20 W . or any of our other kits are surtable for these For tape
systems a set of three PCBs have been prepared for the integrated circuit based high períarmance stereo Stuart design Details of component packs are in our iree list
30 W Bailey Ampllfier
BAIL Pk 1 F/GIess PCE
BAll Pk. 2 Ressistors, Capscitors. Potentiometor set
2AIL Pk. 3 Semiconductor 8el
HAB Pk 1 F/Glass PCB
LHAB Pk. 3 Semiconductor set
Regulator Power Sypply
60 P Pk. $1 \mathrm{~F} / \mathrm{Glass}$ PCB
60VS Pk. 2 Resititor. Capecitor set
GOVS Pk. 3 Semiconductor set
GOVS Pk. 6 A Toroidal transformer (for usa with Bsiley)
Bailey Burrows Sterso Pre-Amp
B8PA Pk 1 F/Glass PCB.
BBPA Pk. 2 Resistor, capacror semicondivitor set
BBPA Pk 3R Rotary Potentiometer set
Active Filter
FiLT Pk. 1 F/ass PCB
IIT Pk. 3 Remistor, Capac,
2 of Pks 1.2.3 rqd ior stero
Reed/Texas 20 W Amp
READ Pk. 1 F/Giss PCB
READ Pk. 2 Ressistor, Capacitor
REAO Pk. 3 Semiconductor set
Stuar Tape Recorder
TRRP Pk I Replay Amp F/Glass PCB
IRAS
TRRP Pk: Replay Amp A/Glass PCB
Further detais of abo alass PCB

EXPORT NO PROBLEM

SQ QUADRAPHONIC DECODERS

tape monitor outlets) into any one of our 3 decoders and take 4 channels out with no overall signal level reduction. On the logic enhanced decoders Volume. Front-Back. LF-RF balance. $\overline{L B}-\overline{\mathrm{RB}}$ balance and Dimension controls can ali be implemented by simple single gang potentiometers
These state-of-the-art circuits used under licence from CBS are offered in kits of superior quality with close tolerance capacitors, metal oxide-resistors and fibre-glass PCBs designed for edge connector insertion. All kit prices include CBS licence fee.
11. Full logic controlleder with fixed 10.40 blend. All components. PCB \quad ¢5.90
11. Full logic controlled decoder with "wave matching" and "front back logic" for enhanced channel separation. All
components PCB.

A M .
PCB
L3A. Decoder similar to L2A but with discreet component front end with high precision 6 -pole phase shit networks for creased frequency response. All components (carbon film resistors). PCB $£ 25.90$
SEMICONDUCTORS as used in our range of quality audio equipment.

2N699	50.72	40361	$\underline{0.40}$	80529	c0. ${ }^{-185}$	MJE521	$\underline{6} .60$	TIP29C	
2 N 1613	c0. 20	40362	c0.45	BD530	¢0.55	MPSAO5	¢0.25	TJP30C	c0.60
2N1711	$\underline{80.25}$	BC107	C0.10	B0Y56	£1.60	MPSA12	60.35	TIP4ta	60.70
${ }^{2 N} 2926 \mathrm{G}$	¢0.10	BC108	c0. 10	BF257	¢0.40	MPSA14	$\underline{60.30}$	TIP42A	50.80
2N3055	¢0.45	BC109	c0.10	8F259	$\underline{60.47}$	MPSA55	¢0.25	TIP418	60.75
2 N 3442	¢1.20	BC109C	E0. 12	BFR39	50.30	MPSA65	E0. 35	TIP428	60.00
2 N 3711	$\underline{60.09}$	BC125	60.15	BFR79	¢0.30	MPSA66	¢0.40	1 N 914	60.07
2 N 3904	60.17	BC 126	E0.15	BFY51	c0. 20	MPSU05	E0.50	1 N916	60.07
2 N 3906	¢0.20	BC182	¢0.10	BFY52	$\underline{60.20}$	MPSU55	c0.50	15920	60.10
2 N 4062	$\underline{60.11}$	BC212	c0.12	CA3046	¢0.70	S8A750A	E1.80		
2 N 4302	c0. 60	BC182k	¢0.10	LP1188	¢ 6.50	SL301	E1. 30		
2 N 5087	¢0.25	BC212K	¢0.12	MC1390	¢2. 20	SL3045	$E 1.20$	filters	
2 N 5210	c0. 25	BC182L	60.10	MC1351	E1.05	SN72741P	c0.40	FM4	
2N5457	¢0.45	BC184L	¢0.11	$\mathrm{MC174106}$	20.65	SN72748P	c0.40	SFG 10 7MA	E1.50
2 N 5459	${ }_{60.45}^{60.45}$	$\mathrm{BC2}^{12 \mathrm{~L}}$	60.12	MFC4O10	¢0. 95	TH209	c0. 20		
$2 N 5461$ 2N5830	¢0.30	${ }_{8 C 2} \mathrm{BC} 214 \mathrm{~L}$	¢0.14	MJ481	${ }_{61} 1.25^{\circ}$	TIP29A	c0.40		
2N5830	E0.35	BCY72	¢0.13	MJ49:	E1.45	tip30a	50.45		

Our Export Department will be pleased to advise on postal costs to any country in the world. Some of the countries to which we sent kits in 1975 are shown surrounding this advertisement.
Kenya France St. Martin, Java New Zealand Borneo South Africa Denmark Nigeria Anguilla Fin
 ALPS INSTRUMENT CO. PANEL METERS are avalable in production quantities at extremely competitive prices. The meters are of high qualty and attractive appearance FOR YOUR NEW INSTRUMENTS SPECIFY ALPS METERS, PROTOTYPES AT SHORT NOTICE, Our range includes 240 in instruments and TRUE VU METERS, Personalised Scales and Special movements manufactured to customers' requirements For one off prices see the May WW. SPECIALIST STOCKISTS OF SERVOMOTORS, SYNCHROS, TEST EQUIPMENT, METERS AND CONNECTORS Servo and Electronic Sales Ltd 24 HIGH ST., LYDD, KENT TN29 9AJ. Tel. Lydd 20252 (STD 0679) VAT No. 201-1296-23. TELEX 965265

I.

Overall length 1.85 in. (Body length 1 in.). Diameter 0.14 in to switch up to
500 mA or 250 vDC Gotd clad contacts $\mathbf{£ 4 . 2 5}$ per 100 (min qty.) $\mathbf{£ 2 9 . 6 5}$ per 1.000 . All carriage paid U.K.
Operating Coils for 12 v supply to accept up to four standard reeds $\mathbf{E 2 . 6 5}$
per dor. $\mathbf{E 1 2 . 5 0}$ per 100 All carllage paid U.K
 up to 250 vAC . Gold clad contacts $\mathbf{E 1 . 7 5}$ per doz $\mathbf{E 8 . 9 5}$ per 100
c82.00 per 1,000 Changeover Heavy Duty type $\mathbf{£ 3 . 0 0}$ per doz. All carriage paid U.K
Megreta for HD reeds $\mathbf{E 1 . 6 0}$ per doz. A 'ew coils evailable for HD reeds
OSCILLATOR/DISTORTION METER For masis on amplifiers and

 Diatontion Meter 20 Hz to 20 KHz . Continuously varable rejection filter for input range 500 mV to 130 V at impedance of 500 Kohm and a Valve
Votumeter 100 mV to 100 V in 7 ranges $£ 55$ inc. carr. (England) \& VAT
 OVER 300.000 RF AND MULTIWAY CONNECTORS IN STOCK

UNIVERSAL AVOMETERS Ranges: DC Voits. 2.5. 10. 50. 100. 10.30
 (m s . 10 K). 10 M ($\mathrm{m} . \mathrm{s}$. 100 K). Fitted as usual with AVO (meverse movement

FULL SERVICING AND SPARES SERVICE NOW IN OPERATION AT LYDD, KENT

sanШa

electronic test instruments

QUALITY DISCOUNTS AVAILABLE TO TRADE, PROFESSIONML

QUALITY ELECTRONICS LTD.

24 High Street, Lydd, Kent TN29 9AJ Tel. Lydd (0679) 20252
(opposite the Guildhall)
Telex: 965265 (A/B Servolydd)
follow the course many thousands in britain

5SUPER QUALITY

WW - 060 FOR FURTHER DETAILS

Nini~ Pon outer Ixonemge

PDPBE 24 K System complete with industry-comparible magnetic
PDPBI Rack-mounted BK Processor mith Teletype control module
PDP11/20 20 K Processor with Dual DECtape and Control. 64 K nova 840 Reck-Mounied 24 K System complete with 128 K PDP11 Interface Boards. UM1 Paraner Interface, OC11.AC Serial
Line Syster Unit. OC11.OA Ful Duplex Serial Module Sel.

PrPBE Option Modules KOBE Databreak. KPBE Power Fail/Auto
Restart MABE Boolstrap loader
PDP8, PDP8I - many spares in slock
HEWLETT PACKARD 9830A Proqrammable Calculator
DEC Power Supplies $728 \mathrm{~A}+10 /$ 150V 50 Hz
terminals - large stocks available

KSRB3 Teletype from $\mathbf{4 2 5 5 0 . 0 0}$
ASB35 Telype from $\mathbf{C 7 5 0 . 0 0}$
ABM731/0 Golibail Typewriter trom $\mathbf{£ 2 7 5 . 0 0}$
Lossor DiDS 4012 visual Display Units 13 ines $\times 40$ characiers
$\left(81 / 244 / z^{\prime \prime}\right.$ screen) 64 character repertore with deliachable $A S C I I$ keyboard. (Control device required), $£ 195.00$

New Economy 80 Columin Hand Punch
Completely redesigned with many important new features - send for brochure from $£ 85.00$

REED-SWITCH 4-BANK ALPHANUMERIC KEYBOARO MOURTE on primed circuit board with ASClH coded output. 43 character keys +2
shith keys and 12 instructional keys Ideal for data displays, computer
 miniature WINIATURE MATRIX PROGRAMME BOARD'S. X-Y mattix board
with 3 mm grating BRAND NEW by Ghielmetio of Swizerland 20×30
 $\left(13 k^{\prime \prime} \times{ }^{1 \prime \prime}\right) \mathrm{cm}^{\prime \prime}$
from 40 p oach.

MAGNETIC TAPES

Add 8% VaT to all
prices shown.
Carriage extra
dotime on request.

Collect wirless world Circards. and build a valuable dossier on
 Circards is a unique and comprehensive

 circuit design. system, launched by Wireless World, to provide professional engineers and enthusiasts with valuable and up-to-the-minute data on circuit design data not available from any other single source.Each Circard is $8^{\prime \prime} \times 5^{\prime \prime}$ and usually shows a specific tested circuit, a description of the circuit operation; component values and ranges; circuit limitations and modifications; performance data and graphs.
The double-sided format enables the Circard to be filed in standard boxes for easy reference. And the plastic wallet provided keeps the cards well protected.

Circard sets (10 cards) come in wallets and cost $£ 2.00$. A subscription for 10 consecutive sets costs $£ 18$.
Start your personal dossier on circuit design by completing and returning the coupon below.

Subjects already covered by Circards

1. Basic active filters. 2. Switching circuits comparators and schmitts.
2. Waveform generators. 4. AC measurements. 5. Audio circuits: preamplifiers, mixers, filters and tone controls.
3. Constant current circuits. 7. Power amplifiers.
4. Astables. 9. Opto-electronics.
5. Micropower circuits. 11. Basic logic gates.
6. Wideband amplifiers. 13. Alarm circuits. 14. Digital counters. 15. Pulse modulators. 16. Current differencing amplifiers - signal processing.
7. Current differencıng amplitiers - generation.
8. Current differencing amplifiers measurement and detection.
9. Monostable circuits. 20. Transistor pairs.
10. Voltage to frequency converters.
11. Amplitude modulators. 23. Reference circuits.
12. Voltage regulators
13. RC oscillators - I. 26. RC oscillators - II.
14. Linear C.M.O.S.-I.
15. Linear C.M.O.S.-II.
16. Analogue multipliers
17. Non-linear functions

To: General Sales Dept., IPC Business Press Ltd., Room 11 Dorset House, Stamford Street, London SE1 9LU
Please send me set no(s)
@ $£ 2.00$ each \square *
@ £18.00 $\square{ }^{*}$

I wish to subscribe. starting with no
I enclose cheque/money order for $£$
*Tick as required/Cheques to be made payable to IPC Business Press Ltd.

Name \qquad
\qquad

Ampex and What?..

The

 JAMES SCOTT Alignment Units for D.R. and F.M. Multi-Channel Tape Recorders.

If you have a sophisticated Ampex RecorderAlign it to the Manufacturers specification using our Alignment Units for D.R. \& F.M. Systems.

Speedy and inexpensive

For Further information and Technical Literature Write or telephone.

[Electronic Engineering] Ltd
Carntrue noustrial istate GLASGOW G32 6AB Tel: 041-778 4206

Join the Digital Revolution

Understand the latest developments in calculators,

 computers, watches, telephones,television, automotive instrumentation . . .
Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 81^{\prime \prime}{ }^{\prime \prime}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems.

$£ 6.20$
plus 80 p packing and surtace post anywhere in the world
Payments may be made in foreign currencies.

Quantity discounts available on request VAT zero rated

Also available - a more elementary course assuming no prior knowledge except simple arithmetic
Digital Computer Logic and Electronics
In 4 volumes
. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits 10 Carry Out Logical Functions
4. Flipflops and Registers

$£ 4.20$

plus 80 p P. \& P
Offer Order both courses for the bargain price 19.70 plus 80 p P. \& P

Designer Manager Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked

[^6]
TELETYPE 35RO ASC11 CODE

HEAVY DUTY CONTINUOUS OPERATION with 240Volt Power Supply and Paper Feed. Circuits, Diagrams, Information supplied with all purchases. A MUST AT £50 each

A Re-BUILDABLE KEYBOARD. In addition to the conventional keyboard layout there are 21 separate push-bution function switches. Circuits of the internal logic and core system are provided. $£ 10$ each.
As above but requiring push buttons etc. to be replaced. All parts provided for you to $\mathrm{fit} \mathbf{£ 6} \mathbf{e a c h}$.

MARCONI TF1094 SPECTRUM ANALYSEF:
Late Model, 3 MHZ to 30 MHZ . Resolution down to 6 HZ . Nice condition with copy of manual. Cost new in excess of $£ 2,000$. Our Price $£ 75$. Carr. $£ 2.50$. SPECIAL OFFER TO FIRST TEN PURCHASERS a FREEL.F. Adaptor extending the range down to 100 HZ . Further purchases of the L.F. Adaptor enables us to continue our free offer.

SOLARTRON OSCILLOSCOPE

type CT316. DC-6MHZ. Size 81/2'
$\times 11^{\prime \prime} \times 20^{\prime \prime}$. With Circuit Diagram

AVO RF SIGNAL GENERATOR

AM Modulation. Freq range 2 to 250 MHZ 240 V operation. Suitcase style. Size approx $15^{\prime \prime}$ wide $\times 10^{\prime \prime}$ high $\times 6^{\prime \prime}$ deep

THE LATE MODEL MARCONI OSCILLATOR TF855A/1

 in superb condition covering 25 HZ to 12 MHZ sine wave in 3 ranges and 50 HZ to 150 KHZ square wave. High output 31.6 V . Meter scaled in volts and dbs.
SOLARTRON AC MILLIVOLT METER VF252

1.5MV to 150 V full scale in 10 ranges. $6^{\prime \prime}$ meter $\pm 1 \%$. Good Condition.

AVO VALVE TESTED CT160

"The Suitcase". Size approx. $15{ }^{\prime \prime}$ wide $\times 10^{\prime \prime}$ high $\times 11^{\prime \prime}$ deep

R.F. WATTMETER TS118A

FREQ. RANGE 20 MHZ TO 1400 MHZ . POWER 2 WATTS TO 300 WATTS 4 RANGES IMPEDANCE 50 OHMS Designed also to be used as a Dummy Load. Small portable instrument. In Superb Condition supplied in transit case with MANUAL AND SPARES.

$£ 75$ each

Ex-Min SCOPES CT436 DB 6 meg $\mathbf{E 9 5}$ eo. SOLARTRON CD 1212 SB 40meg E85. OB 24 Meg wice 120 Many other tyoes available
Many other types available ONLY E10 EACH STABILISED POWER SUPPLY. 240 V 50 HZ inpur. Outpurs -15 V @ 104 +15 V @
 PuSh buttion resets. Many OTHER POWER SUPPLIES - Call

MELPHONE EXCHANGES. eg 55 -wy automatic (exchange onty) from $\mathbf{E 9 5}$
Also 230V @ E2.50 ea. P\&P 75p *
 Pap $£ 1.25$. 1,000 off $£ 25$. P\&P $£ 1.50$. $31 / 2^{\prime \prime} \mathrm{EE}$. Thereather E 1 per KV. P\&P 75 p .
VARIACs 240 V input 0.270 V output E18 ea.; 20 a f 30 en

E.M.T. TRANSFORMERS 20 KV 2 KVA EAS oe. 26 KV AC 10 MA 240 V 50 HZ Single phase inpui E50 ea. Many

 ALL BRAND NEW IAPT surplus types A, B, C \& O Honemwell surplus typa E; Recordacall surplue type F armeko Attantic series type G).

 WDU BULLDER, M3B- 111 GH Rectangular $30 \times 20 \mathrm{~cm}$. Green trace. Supert value, f.12, or Economy Eype CME $122024 \times 18 \mathrm{~cm}$. White Trace ER As.
DON'T FORGET YOUR MANUALS. SAE with requirements.

[^7]
20HZ to 200KHz

SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermistor stabilised. Separate

 independent sine and square wave amplitude controls, 3 V max $\sin e, 6 \mathrm{~V}$ max square outputs. Completely assembled P.C. Board, ready to use 9 to 12 V supply required. $£ 8.85$ each P\&P 35 p. Sine Wave only $£ 6.85$ each. $P \& P 35 p$POLYSCOPE SWOB 1500 KHZ 10 400 MHZ R Very a sine condition
 GENERATOR BN4 1022300 - 100) MHZ $£ 220$. ADMITTANCE METER BN 3511 AS NOw E76 AA. RECEIVER ES 180 BN $15073 / 230$ to 180 MHZ E285. ARGE Benson Layner X-Y PLOTTER. Approx $4 \times 3 \mathrm{~h}$, table $£ 400$. MARCONI Wide Range Oscillator TF1370. Frea, range 10 HZ to 10 MHZ Sint Wave: 10 HZ to 100 KHZ MARCONI Generator TFBO1D Very fine condition E190.
MARCONI Generstor TF867. 15KHZ $1030 \mathrm{MHZ} \mathbf{6 5 5}$ on.

```
ROYAL INVERTORS manutactured USA. 2BV DC Inpur. Output 115V AC 400HZ up to 2KVA Brand
```

POLARAD Receiver Model FIM-B2 Complete 1.10 GHZ e780.
12-CHANNEL CHART RECORDER FSD $5 V 20 \mathrm{MA}$ Der channel £20
IRMEC 4 trace scope type 279 Large screen E130.
TELONIC SWEEPER 2000 . 1 With LA-1M 20 HZ 20 KHZ E 130.
MARCONIOSCILLATOA TF 110120 HZ . 20 KHZ . Nice condition. Specisl price $\mathbf{£ 6 5}$
returished by Solarron / Schlumberger and are as new $\mathbb{E 4 5}$.
WAYNE KERR Autoboiance Adapter type AA 221 EED aa.

```
                                    Just In - E&H EQUIPMENT
                                    1 off Word Gerierstor Model 1623
                                    M, %ort Caborectierator Model 1623 Ramp Units Model $033
                                    10+Cabnet Completo woth 3 D
```

COME AND LOOK OH OUR SHELVES - HUNDREDS OF OTHER ITEMS TO NTEREST YOU. TOO FAR AWAYT THEN SEND FOR LISTS

WIDE RANGE WOBEULATOR

5 MHZ to 150 MHZ (usetul harmonics up to 1.5 GHZ) up to 15 MHZ sweep width. Only 3 controls present RF level sweep width and frequency. Ideal for 10.7 or TV IF alignment fitters, receivers. Can be used with any general purpose scope. Full instuction supplied. Connect $6.3 \mathrm{~V} A C$ and use within minutes of receiving. Alt this for only $£ 6.75$. P\&P 35p (Not cased, not calibrated).

Minimum Mail Order $£ 2$. Excess postage refunded Unless stated - please add $\mathbf{£ 2 . 5 0}$ carriage to all units VALUE ADDED TAX not included in prices - Goods marked with $\star 121 / 2 \%$ VAT, otherwise 8% Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order Open 9 a.m. to 5.30 p.m., Mon. to Sat

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, King's Road). Tel. Reading 582605

SIGNAL SOURCES

Electronic Brokers Ltd. are pne of the leading electronic ingtrumentation companies in the UK, providing a full rangs of services to Universities, Industry, Colleges and
Governments both at home and overseas.
We have the largest stecks of secondhand tert equipment in Europe as well as a selected raye of new products. These are on display at or London showrooms where customars can examine the equipment of their choice and see $i t$ working.

Electronic Brokers Lid. have fully equipped workshops on the promises to teat and report on the majority of equipmert we sell.

OSCILLOSCOPES

COSSOR Type 3100

 HAWEG

Transistorised compact single beam portable scope bandwidth of 8 MHz . Compensated $\mathrm{Y}-$ attenuator 12 ranges $50 \mathrm{mV} / \mathrm{cm}$ to $30 \mathrm{~V} / \mathrm{cm}$. Timebase sweep range of 10 Hz to 500 kHz and can be triggered from + Ve or -Ve triggered from $+V e$ or -Ve
externally or internally. Y externally can be $A C$ or $D C$ coupled. Display area $6 \mathrm{~cm} \times$ 4 cm . Rise time 44 ns . Di-
mensions 203 mm mensions $203 \mathrm{~mm} \times \underset{ }{\times 240 \mathrm{~mm} \text {. Wt. }} 160 \mathrm{~mm} \times 2$. 5 Kg . BRAND NEW. Type No. HM207 E85
marco
MARCONIT V. Scope TF 22000 $/ 1 \mathrm{c} / \mathrm{w}$ TV DA n TM 6457 ADC DC-30MHz
Portable Scope TF 2203 coupled. 50 m
SOLART RON Portable Scone DC Portabie
$C D 10143$
PC CD 10143 DC .5 MHz
Porrabbe Scope CO 1400 DC - 15 MHz Plug ins avaiable $\mathrm{E90}$
CX $1441,1443,1444,1448,1571$ Wide Band General Purpose Scope CD 1212 Min
spec. CT484). Plug ins $\mathrm{C} \times 1251 \& \mathrm{C} \times 1252$ (coilection (only) $\mathbf{£ 1 4 2 . 5 0}$
 HEATHKIT
HEATHKIT
$10-12 \mu$ Scop

test

POWER SUPPLIES

SCOOP PURCHASE - f^{\prime} 's to be anved!! We have taken into stock à very large quanity
verying types and makes, ex-computers These device varying types and makes, ex.computers These cevices
are fixed and /or presettibbte with 115 V 1/P or 230 V
if
 vultage preferent
Just Received
CL Power Supplies (ex-computer)
$6 \mathrm{~V}-25 \mathrm{~A}$ (variable from 4.5 V to 8 V)

BRIDGES

Contact Resistance Biridge AC 6000 . Range 0.99 Jhins $\pm 2 \%$ Freg. 1 KH
hado Frea Bridge B601
V.H.F. Admitance Endge B701

Acaptor
E115
E 85
E
POWER METERS
BIRD
Termaline Loads Type 884 1000W $Z=50$ ohrms. As
Esed by USAF Uncalibrated
E150

Carriage and packing

 charge extra on all items unless otherwise statedPlease note：All instruments offered are secondhand and tested and guaranteed 12 months unless otherwise stated

MISCELLANEOUS	
Ance	
	come
何	
	${ }^{\text {cosem }}$
	VOLT
Soindec	VOLTMETERS
Not	
（e）	
促	
${ }_{\text {cosem }}$	込
${ }_{\text {cosem }}$	
DECCA Power Supply for Noise Source．MW 64	
and	
	AC Volimeter 400 F MARCONI
，	c

 TEKTRONIX
 TEKTRONIX

VOLTMETERS

On these pages you will find just the briefext seloction from the vast range whet we hold in stock at any one time．

If you are seaking a specific item and it is not listed，it will pay you to ring us first－wo believe we offer the bent prices and the beat senice． WORLD WIDE EXPORT

Enquiries and tenders welcome from any pet of the world． HOW TO REACH US

We are eagy to reach，ro matter whers yon live．Minutes away from Kinge Gross or Sr． Pancras main－line stations，and a bus ride from Euston；only just over half ale hour from Heathrow Airport．Parking is easy too．

49－53
PancrasRd London NW1 2QB Telephone： 01－8377781

PVE
Themocouple tEI set 7556
RHODE \＆SCHWART2
Rorrsop Swot

 SIGN ELECTRONICS

TELEPHONE

 TEST EQUIPMENT STIEMENSLever Meter $30,33203.1200<\mathrm{Hz}$
Lowel Meiter $30,33510 \mathrm{KHz} 17 \mathrm{MHz}$ Lever Meter $30,33510 \mathrm{KHz} 17 \mathrm{MHz}$ Leve Oscillar 315518 ．
WANDEL GOLTERMAN
 Wandel \＆Gctierman VZM 2 ．Cis tor phase and amplitude mod For multichannel

SWEEP GENERATORS

 SHWLTV PACKARD onsto trea Sweep Oscillator 593 B 4 BGHz
 400 Mt th wide 50 ohms o／p inpeedance M．E．E．L．

日GOK＝ABLTD

WW-066. FOR FURTHER DETAILS

Solid State Colour Television Circuits

G. R. WILDING

The book contains, firstly, a clear and concise explanation of how the various semiconductor devices used in solidstate receivers function, and how they are utilized in the complicated and of ten highly ingenious arrangements of modern designs. Secondly, concentrating on the most modern c.t.v. designs, explanations are given of how these circuits operate, providing excellent back-up material to the manufacturers' service manuals, which can contain only the minimum of 'circuit notes' to aid fault diagnosis.
The information covering the most up-to-date innovations in c.t.v. design in major British, European and Japanese receivers will be useful to service engineers, technicians and students and to amateur enthusiasts as a lucid exposition of the modern design of colour television receiver
CONTENTS: Devices and Principles. Power Supplies. Timebase Circuits. Sync Separators. Convergence and Degaussing. Tuners and I.F. Amplifiers. Luminance Circuits. Chrominance Circuits. Burst Gates and Reference Oscillators. Demodulator and PAL Switch Circuitry. Signal Amplifying and Output Stages. Beam Limiters. Index.
1976208 pages $252 \times 160 \mathrm{~mm} 040800228 \times$ £5.75

Order from your bookseller or, in case of difficulty, from
NEWNES-BUTTERWORTHS
Borough Green, Sevenoaks, Kent, TN15 8PH
Telephone 0732884567

HEPWORTH ELECTRONICS

Worcester Road, Kidderminster, Worcs

Direct Mail: Tel. 0562-2212
Contact Mrs Moore

The original concept in breadboarding Solderless long life contacts Takes up to $\mathbf{4 0}$ pin D.I.P.'s, just push in

THE FIRST - THE BEST
 - THE ONLY SK10 Socket £13.33

ambit WIRELESS SPECIALISTS

$\square 10000000000$

fm tuner number two

The New FM Tuner from Ambit.
1.2 uV for 30 dB SN, adjustable output voltage, ultrasonic suppression better than 70 dB . 6 presets, geared manual drive. Double IC stabilizers Supplied with prealigned Larsholt RF/IF and decoder module. Com plete with black woodgrain cabinet, and solid aluminium front panel. Kit $£ 55.50$ ($£ 62.43$ inc. VAT)
Built and tested $£ 79.75$ ($£ 89.71$ inc. VAT)
(Carriage $£ 3.00$ extra)
modules for rf, if,mpx: $\quad(12 \mathrm{v})$
audio and general components
NEW
7020
Dual ceramic filters, 2 stage preamp into the improved CA3089E (HA1137W), with mute, AFC to suit ANY varactor tunerhead, meter output and edge terminations. kit $£ 5.25$ built $\mathbf{£ 6 . 5 5}$

NEW 92310
The MC1310 mpx decoder, with twin audio preamps, and BLR3107 ultrasonic block filter. kit $\mathbf{£ 5} .35$ built $\mathbf{£ 6} \mathbf{6 5}$

NEW 71197
A new varicap tuner for MW/LW, with ceramic filter 80 dB AGC, low noise and distortion. kit with ferrite rod $£ 9.65$ built $£ 11.35$

NEW 5800
The state of the art in FM tunerheads. 6 double varicap tuned circuits, 2 MOSFET AGC controllable RF stages, double tuned IF output stage. kit $£ 11.35$ built $£ 14.00$
TDA2020 kit A stereo power amp, with the TDA2020 15W RN:S 0.1\% THD IC from SGS £7.85. (Special extruded heatsinks 75p each).

LINEAR ICs
CA3089E $\quad 1.94$
CA3090AO 3.75
MC1310 2.20
SN76660 0.75
TBA120AS 1.00
TBA651 1.81
UA720 $\quad 1.40$
LM380
LM381
TBA810
TCA940
VARACTORS
MVAM2 1.05

MV104/8B104	1.05
0.45	

BA102 $\quad 0.30$
(* at 8\%)

LS8038	3.10°
NE560	2.50
NE561	2.50
NE562	2.50
NE565	2.50
NE566	2.55°
7805UC	1.55°
TDA1412	0.95°
78M20UC	1.20°
UA723	0.80°
NE550	0.80°
NE567	2.50°

FOIL TRIMMERS

$3-12 p F$	0.18	$100 k+100 k$ LIN	0.60
$3-30 p F$ 0.23 $6-45 p F$ 0.26	$100 k+100 k$ with \ldots 50% top	0.65	
(7.5 diameter types)	20 turn $100 k$ diode law	0.35	

0.35

TOKO COILS, FILTERS, TUNERS FOR AM/FM AND MPX. Full details of standard types in lists:

10 mm IFTs for $455-470 \mathrm{kHz}$
10 mm if Ts for 10.7 MHz
Ceramic filters for 10.7 MHz Ceramic filters for 6.0 M Mz Ceramic 455 kHz type CFX 104 CFT455B/C, CFT470C ceramic CFU050D 470 kHz ceramic

27p Linear Phase filter for 10.7 MHz 30p MFH41/71T mechanicals for 455 50p SFD470 new Murata ceramic block 80 p BLR3107 19/38kHz notch (sterea) 1.50 Variable chokes 11,23 \& 36 mH 60 E EC3302 low cost varicap FM tuner 65 EF5600 5 stage varicap $F M$ head $\quad 12.50$ Send an SAE for a free price list and stock list. There is a new Larsholt Signalmaster FM tuner and more details on our range of wireless products. PP 22p per order, VAT is generally at $12 \frac{1}{2 \%}$ - and the min. CWO charge is $£ 1$. Min. invoice $£ 7.50$, Catalogue 40 p. (* 8% VAT).
37 HIGH STREET,
BRENTWOOD, ESSEX
CMI4 4RH
tel 216029

COMBINED PRECISION COMPONENTS LTD.

DISTRIBUTORS
LANCASHIRE - G. TAYLOR, 70 Moorside Ave., Smithills, Bolton. Tel. 020440918
SOUTH
Raynes Park, London SW20 SOUTH WEST - D. B COMPONENTS. 20 Russell Close, Saltash, Cornwald. Tel. Saltash 4135 NORTHERN IRELAND - NORTHERN IRELAND ELECTRONIC SALES (ULSTER) LTD., 4 Tates Ave. Lisburn Rd.. Belfast BT9 7BY. Tel. 0232668718
Distributors now required for other areas
C.P.C.. Dept. W, 194-200 NORTH ROAD, PRESTON, LANCASHIRE, ENGLAND. Phone: Preston (STD 0772) 55034. Telex 677122

Forall whowantto knowabout electroniccircuits

Here's a book of very special appeal to all concerned with designing, using or understanding electronic circuits. It comprises information previously included in the first ten sets of Wireless World's highly successful Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of the ten sets - including additional circuits - in this magazine size hard cover book has been updated where necessary, and is preceded by an explanatory introduction. Circuit designs (I) is the first collection of its kind.

Circuits covered are:
Basic active filters
Switching circuits.
Waveform generator's
AC measurements
Audio circuits
Constant-current circuits
Power amplifiers
Astable circuits
Optoelectronics
Micropower circuits

A new book fromWirelessWorld

To: General Sales Department,
IPC Business Press Limited,
Room II, Dorset House,
Stamford Street, London SEI 9LU.
Please send me copy/copies of Circuit Designs - Number I at $£ 10.40$ each inclusive. I enclose remittance. value $£$.(cheques payable to IPC Business Press Ltd.)

NAME (please print)
ADDRESS

Company registered in England and a subsidiary of Reed International Limited Registered No 677128 Regd. office Dorset House, Stamford Street, Londor: SEI 9LU.

(ams)

 WILMSLOW AUDIO

 WILMSLOW AUDIO THE Firm for speakers!

 THE Firm for speakers!}

SPEAKERS	
Group 253.8 or 15 ohm	£8.64
Group 353.8 or 15 ohm	£10.25
Group 50/12 3 or 15 ohm	£14.00
Group 50/15 8 or 15 hm	£18.62
Deluxe $12^{\prime \prime} 8$ or 15 ohm	£12.38
Major 12" 3,8 or 15 hmm	£10.69
Supert 12" 8 or 15 ohm	£16.31
Regent 12" 8 or 15 ohm	$£ 9.00$
Auditorium $12^{\prime \prime} 8$ or 15 ohm	£14.65
Auditorium 15" 8 or 15 ohm	£19.41
CASTLE 8RS/DD 6 or 8 ohm	£9.28
CELESTION	
HF1300 8 or 15 ohm	£6.98
HF2000 8 ohm	¢8.55
MH1000 8 or 15 ohm	£13.50
G12M 8 or 15 ohm	£12.95
G12H 8 or 15 ohm	£15.95
G12/50TC 2245 d/cone	£18.00
G12/50 2236 single/cone	£16.50
$\mathrm{G} 12 / 502239 \mathrm{~s} / \mathrm{cone}$ alu dome	uminium $£ 17.00$
G12/50 2242 s/cone cambric	£16.50
G15C 8 or 15 ohm	£26.95
G18C 8 or 15 ohm	£34.50
CO3K 3 kHz crossover	£4.46
DECCA	
London Ribbon Horn	¢28.80
London X/over CO/1000/8	£6.75
DK30 Ribbon Horn	£17.25
DK30 X/over CO/1/8	£4.50
EMI	
$14^{\prime \prime} \times 9^{\prime \prime}$ bass $14 \mathrm{~A} / 770$	
8 ohm	£11.92
$8^{\prime \prime}$ roll surround, bass 8 ohm	¢5.73
$8^{\prime \prime} \times 5^{\prime \prime} \mathrm{d} /$ cone roll surround ohm	$\begin{array}{r} \text { d or } 8 \\ \quad £ 3.56 \end{array}$
$6^{1 / 2^{\prime \prime}} \mathrm{d} /$ cone roll surround ohm	$\begin{array}{r} 8 \text { or } 15 \\ \quad \mathbf{~} 3.93 \end{array}$
ELAC	
59RM 109, 59RM 1148 ohm	¢3.38
$61 / 2^{\prime \prime} \mathrm{d} /$ cone roll/s 6RM171	
8 ohm	£3.83
10'10RM2398 ohm	£3.83
EAGLE	
CT5	£1.95
CT10	£2.75
DT33	$£ 5.68$
FF5	£3.26
FF22	£8.50
FF23	£10.68
FF24	£11.70
FF25	£10.13
FF26	$£ 7.60$
FF27	£6.18
FF28	£8.10
FF30	£8.43
FR4	£5.51
FR65	£8.66
FR8	£11.08

FR10	£14.06
HT21	£6.13
HT15	E3.96
MHT10	¢4.00
FANE	
Pop 158 or 15 ohm	£5.25
Pop 33T 8 or 15 ohm	$£ 9.25$
Pop 508 or 15 ohm	¢12.50
Pop 558 or 15 ohm	£15.50
Pop 608 or 15 ohm	£17.95
Pop 708 or 15 ohm	£18.75
Pop 1008 or 15 ohm	£27.95
Crescendo 12A 8 or 15 ohm	£37.95
Crescendo 12BL 8 or 15 ohm	£39.95
Crescendo 15/1008 or 15 ohm	£49.95
Crescendo 15/125 8 or 15 ohm	£59.95
Crescendo 188 or 15 ohm	E67.95
910 Mk II horn	£15.75
920 Mk II horn	£36.95
PH50 High power tweeter 50 watt	£6.50
HPX1 X/over, 200 watt	£2.50
$138 / 10$ T $13 \times 8 \mathrm{~d} /$ cone 8 or 15 ohm	
801 T d/c roll surround	£8.96
GOODMANS	
Axent 100	¢7.60
Audiom 200	£13.44
Axiom 402	£19.80
Twinaxiom 8. 8 or 15 ohm	$E 9.50$
Twinaxiom 10, 8 or 15 ohm	£9.86
8P 8 or 15 ohm	$¢ 5.95$
10P 8 or 15 ohm	¢6.25
12P 8 or 15 ohm	$£ 14.95$
12PG 8 or 15 ohm	$£ 16.50$
12 PD 8 or 15 ohm	$£ 16.95$
12 AX 8 or 15 ohm	$£ 39.00$
15 P 8 or 15 ohm	£22.50
15 AX 8 or 15 ohm	£45.00
18P 8 or 15 ohm	$£ 39.00$
Hifax 750	£16.00
$5^{\prime \prime}$ midrange 8 ohm	£4.05

LOWTHER	
PM6	£30.60
IPM6 Mk 1	£32.85
PM7	£48.60
PEERLESS	
1060	pr. $£ 50.40$
1070	ea. $£ 41.40$
1120	ea. $£ 45.00$
2050	pr £39.50
2060	pr. $£ 53.00$
MT25HFC	£2.95
MT225HFC	£2.95
RADFORD	
Filter network	£13.00
TD3 iweeter	E7.25
MD9 midrange	£10.50
MD6 dome midrange	E12.50
BD25 Mk II bass unit	£22.00

PEERLESS

20-2	ea. $£ 15.70$
30-2	ea. $£ 21.95$
20-3	ea. $£ 23.90$
50-4	ea. £34.45
1060	pr £50.40
1070	ea. $£ 41.40$
1120	ea. £45.00

RICHARD ALLAN	
Twin Assembly	ea ¢13.46
Triple 8	ea $£ 20.25$
Triple 12	ea. £25.16
Super Triple	ea £29.25
RA8	pr £37.80
RA82	pr $£ 59.40$
RA82L	pr £65.70
WHARFEDALE	
Linton II kit	pr. £21.50
Glendale 3XP kit	pr. £47.70
Dovedale III kit	pr £59.40

STC

4001G Super tweeter $\overline{1} 5$ ohm $\overline{\mathbf{5} 5.9} \mathbf{9}$
4001 K Super tweeter o onm ks.90

TANNOY	
10' Monitor HPD	£78.00
12' ${ }^{\prime \prime}$ Monitor HPD	£86.00
15" Monitor HPD	¢99.95
WHARFEDALE	
Super 10RS/DD	£13.50
SPEAKER KITS	
Baker Major Module 3,	
8 or 15 ohm ea.	£13.28
Fane Mode One Mk II 15 watt	£10.35
Fane D40 Disco Kit ... ea.	$£ 19.95$
Goodmans DIN 204 or 8 ohm	£13.28
Mezzo Twinkit pr.	£46.50

HI-FI ON DEMONSTRATION IN OUR SHOWROOMS

AIWA, AKAI, ARMSTRONG BOWERS \& WILKINS. CASTLE. CELESTION, DUAL, GOODMANS KEF, LEAK, MONITOR AUDIO. PIONEER, RADFORD, RICHARD ALLAN, ROTEL. TANDBERG TANNOY, TRIO VIDEOTONE WHARFEDALE ETC

Ask for our Hi-Fi discount price

THIS MONTH'S SPECIALS

Pioneer PL12D	¢43.0
Pioneer SX434	$£ 98.95$
Videotone Minimax II	pr. $£ 39.00$
Pioneer CT 2121	£115.00
Videotone Saphir	pr. $£ 52.00$
All prices inclu Prices correct at	$\begin{aligned} & V, A T \\ & / 5 / 76 \mid \end{aligned}$

Send stamp for free 32-page booklet CHOOSING A SPEAKER
All units guaranteed new and perfect

Carriage and insurance SPEAKERS 50p each $12^{\prime \prime}$ and up 750 each

Kits 80 p each ($\mathbf{(x} 1.60$ per pair) Tweeters and crossovers $30 p$ each

WILMSLOW AUDIO

Loudspeakers, mail order and export Swan Works, Bank Square, Wilmslow
Hi-Fi, Radio \& TV
Swift of Wilmslow
5 Swan Streat
Wilmsiow, Cheshire
PA, Hi-Fi \& Accessories Wilmslow Audio 10 Swan Street
Wilmslow, Cheshire

Loudspeakers, Mail Order \& Export Wilmslow 29599
Hi.Fi, Radio, etc
Wilmslow 26213

Appointments

Advertisements accepted up to 12 noon Monday, July 26, for the September issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 6.50$ per single col. centimetre (min .3 cm). LINE advertisements (run on): £l per line, minimum three lines.
BOX NUMBERS: 45p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Owen Bailey on 01-261 8508 or 01-261 8423.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Radio Officers-now you can enjoy the comforts of home.

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are $£ 2905$ rising to $£ 3704$ after three years service. Between 19 and 24 , the starting salary varies from $£ 2234$ to $£ 2627$ according to age. In addition, a supplement of $\mathfrak{£ 3 1 2}$
p.a. is payable. You'll also receive an allowance for shift duties which at the maximum of the scale averages $£ 900$ a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have a few vacancies at some of our coastal radio stations, so if you're 19 or over, preferably with sea-going experience, write to: ETE Maritime Radio Services Division (L690), ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.
Post Offifice Telecommunications

EASTERN ELECTRICITY

ENGINEERING ASSISTANT
 (TELECOMMUNICATIONS)
 Salary £3042 to £4692

A vacancy exists at our Stowmarket depot for an Enigineer to assist with the installation, maintenance, repair and future development of internal private data and PAX telephone systems Previous experience in this type of work is desirable and a working knowledge of Strowger types of telephone equipment is essential
Applicants should have appropriate experience and should preferably possess a recognised technical qualıpossess a recognised technical qualı-
fication in Telecommunications work. Applicants should apply in writing giving qualifications and previous experience to: The Group Secretary and Accountant. Eastern Electricity East Anglian Group. Finborough Hall. Stowmarket, Suffolk IP14 3DN, by 19 th July, 1976

Aural and Visual Aids Technician

£3,963-£4,299 p.a.

An experienced technician is required by the Croydon Education Service to maintain and repair a range of Audio and Video equipment including TV Receivers in schools.
Commencing salary in the scale will be according to qualification and experience
In appropriate cases assistance toward removal and lodging expenses will be paid.

CROYDON

Apply in writing, giving detals of age, qualifications, present post and relevant work experience to the Superintendent, Education Service Centre, Princess Road, Croydon, CRO 20Z, or telephone the Superintendent, Mr. A. Bevan (tel: 01-684 9393) for further details.

THE HATFIELD POLYTECHNIC SCHOOL OF NATURAL SCIENCES PSYCHOLOGY

TECHNICIAN

to assist with the maintenance and construction of a variety of electronic and other equipment. The person appeinted will work with the Senior Technician and he/she should preferably hold an appropriate intermediate or National Certificate. or City and Guilds qualificatıons but this is not essential The work centres on the development of research equipment and calls for initative and resourcefulness.
Salary scate Technical 1 rising to £2529 per annum plus £120 local weighting

Application form and further detals from The Staffing Officer, The Hatfield Polytechnic, PO Box 109. Hatfield, Herts AL10 9AB.
Quote ref. 789. Closing date 9 th July. 19761

YAMAHA

require an

AUDIO ENGINEER

We require an Engineer to service Yamaha Hi Fi products. Applicants must be used to working on current sophisticated audio products and should be able to repair these without assistance to the highest standards. Salary up to $£ 3,500$ negotiable.
Please telephone the Service Manager, Mr. T. Finn, on 01-904 0141.

Natural Sound Systems

Strathcona Road, North Wembley, Middlesex HA9 8QL

ELECTRONIC ENGINEERS

TELEVISION

We need an engineer to augment the staff of our Test Department The ob entails test and commissioning of our full range of TV studio broadcast equipment including our colou cameras.
The most up-to-date semiconductor techniques are employed and this is reflected in the required experience. You should either have HND/Degree or possess very relevant experience of similar equipment Someone with less than two years in industry is unlikely to nave the necessary depth of knowledge

Link Electronics is situated in Hampshire within easy reach of London and many major towns in the South. There is a wide choice of housing in the town and surrounding villages Relocation assistance will be given where necessary

There is a pleasant working environment and benefits include free lite and health assurance.
Please write or telephone Mic Comber (at Andover 61345 - reverse charges if you wish) Brief details only at this stage please as we shall be asking you to complete an application form

Looking

for
a
new
job?

Perhaps we canhelp!

We have regular contact with hundreds of electronics and electrical companies needing qualified electronics engineers and technicians and TV service engineers.
We can, therefore, help you to find an interesting and well paid job. All you need to do is to return the coupon below or give us a ring. Our service is confidential and costs you nothing.

TJB Electrotechnical Personnel Services 12 Mount Ephraim Tunbridge Wells, Kent Tunbridge Wells (0892) 39388

TJB Electrotechnical Personnel Services is a division of Technical \& Executive Personnel Ltd. and is solely concerned with job placement in the Electronics and Electrical Industries

Please note that this service is available only for engineers who are (or will be) available in the U.K. for interview.

[^8]

INTERNATIONAL CIVIL AVIATION ORGANIZATION

A Specialised Agency of the United Nations

Invites applications for Technical Assistance Programme assignments in South America, Africa, Middle East and Asia.

ELECTRONICS ENGINEERS

Duties: Vary with assignment; in general, to assist and advise Governments in the standards and procedures of systems planning, installation, modification and maintenance of air navigation, air traffic control and aeronautical communications facilities.
Qualifications: University degree, or equivalent, with ten years or more experience at a responsible level in the management of installation and maintenance programmes relative to telecommunications, VOR, ILS, DME, NDB and/or Radar. Training experience highly desirable
Salary: Min. U.S. $\$ 21,324$ Tax Free

ELECTRONICS TECHNICAL OFFICERS

Duties: To advise and assist Governments in the installation and maintenance of electronic equipment such as VOR, ILS, DME, NDB and Radar; and/or to conduct formal and on-the-job training of personnel involved in the use of the above-mentioned equipment, point-to-point communications, teletype and automatic data processing equipment.
Qualifications: Ten years or more experience in the installation, maintenance, repair and overhaul of electronic and electrical communications and navigation equipment; certification or licensing in accordance with requirements of the applicant's home country; knowledge of pertinent international standards Experience as instructor or supervisor, or as an operator or airborne flight calibration consoles desirable.
Salary: Min. U.S. $\$ 15,853$ Tax Free

AVIONICS INSTRUCTORS

Duties: To provide instruction at basic and advanced levels in one or more of the following: Aircraft Electrical, Instrument, Radio or Radar Systems
Qualifications: Adequate technical or academic background with previous instructional experience; must have worked with relevant equipment for at least ten years.
Salary: Min. U.S. \$17,532 Tax Free
Dependency, Assignment Allowance and Post Adjustments are payable in accordance with current United Nations scales depending on location.

Apply in writing, giving details of qualifications, experience and equipment knowledge to:

Director, Technical Assistance Bureau
International Civil Aviation Organization
P.O. Box 400

International Aviation Square
1000 Sherbrooke Street West
Montreal, Quebec
Canada H3A 2R2

TELEVISION ENGINEERS

Abstract

Doric Radio is a fast growing member of the Rediffusion group of companies, selling monochrome and colour T.V. receivers to the rotall trade through an increasing network of dealers. A small but effective team is being established to provide a technical service to our customers at home and overseas. This team provides service back up facilities by direct contact with our Donc dealers, belping to solve their problems and completing the link back to our factories where necessary.

Attitude, ability, thoroughness, tact and a willingness to get involved are essential requirements for these positions. This is a challenging opportunity for experienced engineers who wish to become important members of a small successful tearn working on the latest receivers employing advanced electronic techniques. Prospects for promotion are excellent. Formal qualifications, whilst desirable, are not ensential where adequate practical experience on modern colour televiston receivers can be demonstrated.

Successful applicants will be based at our Chessington laboratories, with their excellent facilities and equipment, but occasional visits to our factories in the North of England and to our dealers' premises, both at home and abroad, may be necessary

Salaries will depend on ability and experience, but will reflect the importance of these new posts. Assistance with relocation expenses will be given where appropriate

Leterested? then write to:-
H. Brearley,

Head of Technical Services,
Dortc Radio Ltd.
Fullers Way South
Chessington,
Surrey. KT9 1 HJ
Telephone 01-397-5411

-
 Opportunities in the ELECTRONICS FIELD

We have selected from many vacancies those whichoffer ex ceptional career prospects and job interest. If you have experi ence in design, test, sales or service and wish to progress our career please telephone your career, please telephone Mike Gernat B.Sc. who is advis ing on these opportunities
E.M.A. Management Personnel L'td Burne House, 88/89 High Holborn London WC1V 6LR 01.2427773

SOUND SYSTEM ENGINEERS

Join the APAE the only official Association representing the P.A Industry - further details:

The Secretariat
The Association of Public Address Engineers
47 Windsor Road, Slough Berks., SL1 2EE

TECHNICIAN

required in the Computer Centre for construction, testing and maintenance of electronic equip ment, mainly in the area of data transmission. HNC or equivalent Knowledge of digital devices an advantage Salary sale £2,751-£3.207 pa. Ref 660/C/143
Applications from: Assistant Secretary, Personnel Office University of Birmingham. PO Box 363. Birmingham B 15 2TT
(6034)

(CA CAPITAL

APRONTMENTS LTD
FIELD SERVICE ENGINEERS [ELECTRONICS]

34 Parcy Streat, London, W. 1 $01-8369659$ (day) or 01500836 (ovening)

With contracts for a variety of advanced avionic projects in the Tornado (MRCA), Sea Harrier, Nimrod Mk2, Mitsubishi FS-T2, Jaguar and the naval Lynx helicopter, Ferranti in Edinburgh are in a position to offer career conscious engineers a wealth of technological experience. Planned expansion through this year and next now requires the appointment of engineers with experience in

Technical Authors

Test And Support

To support our design teams we need engineers with qualifications from $\mathrm{C} \&$ G to HNC, preferably with Test and Quality Assurance experience.

They will become involved in a range of work covering automatic test equipment, fault diagnosis and building special-to-type test equipment.

Development across all our projects requires parallel expansion in our Technical Publications Group. Experienced technical authors will find the close association with project design particularly stimulating and for engineers keen to embark on such a career this is an opportunity to train in one of the most authoritative technical writing teams in the country.

Salaries are negotiable. The Company operates a contributory pension and life assurance scheme and incoming employees will qualify for housing under the Scottish Special Housing Association scheme.

Apply in writing, quoting reference WW/1, with particulars of qualifications and experience to:

Staff Appointments Officer, Ferranti Limited, Ferry Road, Edinburgh EH5 2XS.

Sales Engineers

Later this year we shall be adding to our sales programme a range of Hi-Fi and Semi-Professional products by one of the worlds best known manufacturers of Audio Equipment.

We are therefore presently interviewing sales engineers with experience in the Hi-Fi Market for both in-house and travelling positions.

Applicants should enclose a brief CV. and indicate the area of occupation in which they are interested.

Service Engineers
Due to the expansion outlined above and the reeent completion of our new extended laboratories, we are seeking service enginears for our entire range of audio products. A good understanding of tape recorders and audio equipment is essential.

The Managing Director, F.W.O.Bauch Limited

49 Theobald Street. Boreham Worod.
Hertfordshire. WD6 4RZ.

Witn the increasing sophistication of today's aircraft, the role of the Service and Test Engineer on the ground is of the utmost importance if the electronic systems and equipment are to be kept at a high level of efficiency.

We are engaged in an expanding programme of work covering the provision of spares and the repair maintenance and overhaul of airborne electronic equipment, and we need Engineers to service and test a variety of British and American equipment, both in the aircraft and in the workshop

The work calls for a sound knowledge of radio anc electronics theory, preferably coupled with a recognised qualification and at least two years' experience in servicing or maintaining complex electronics equipment, including complete fault diagnosis using sophisticated test gear. Training will be given to suitable less experienced engineers.

The Company offers excellent salaries together with all the benefits of working for a highly progressive company with in a major electronics group. The Unit provides first-class working conditions and is conveniently located in pleasant surroundings with close easy access to the M1.

Write with details of experience to Mrs. L. J. Elborn Marconi-Elliott Avionic Systems Limited, 22-26 Dalston Gardens, Stanmore, Middlesex HA7 1BZ
Tel: 01-2043322

CIRCUIT DESIGN ENGINEERS SYSTEMS TEST ENGINEERS SALES AND CDNTRACTS ENGINEERS

INTERNATIONAL FIELD SERVICE ENGINEER

Required for our International Mass Spectrometer Service Division based in the U.K. A sound knowledge of modern electronics is essential and a working knowledge of high vacuum systems would be an advantage. although training will be given. Applicants should possess City and Guilds or equivalent qualifications. Due to the extensive travel involved, the position is probably more suitable for a single person aged between 20 and 30 years.

The Company is internationally renowned for the quality of its products and offers excellent working conditions, including company car pension scheme, superannuation and profit sharing bonus scheme.

Write or telephone for an application form
Service Manager
G Division
LK8 Instruments Limited
232 Addington Road
Selsdon. South Croydon, Surrey CR2 8YD

ELECTRONICS TECHNICIAN

required in Department of

 Engineering Production, University of Birmingham. Analogue and digital circuit development, computer interfacing. instrumentation, machine-tool control. Do you have substantial experience of two or more of these plus initiative and self-motivation? Do you enjoy varied work in a small team? Salary scale £2.751-£3,207 p.a.Ref. 713/C/176
Application forms from: Assistant Secretary Personnel Office University of Birmingham P.O. Box 363

Birmingham B15 2TT

technical manager (MEDIA SERVICES) TECHNICIAN GRADE 7

Applications are invited from qualified and experienced electronics engineers for the post of TECHNICAL MANAGER (Media Services) in the Library and Learning Resources Service
This is a new post to meet the continuing development in the Polytechnic's Media Services.
The successful applicant will have had at least 10 years' experience as an electronics engineer (preferably in the education field) and will be familiar with all tvpes of TV and audio visual equipmert. Proven management ability is desirable as well as flair and imagination. A genuine desire to contribute to this developing area is essential
Salary $£ 3,666$ - £4, 122 per annum plus E 465 p.a. London Allowance.

Application forms and further details from the Assistant Secretary, City of London Polytechnic. 119 Houndsditch, London EC3A 7BU
(6053)

TECHNICAL OFFICER

An Electronics Engineer with B.Sc. or equivalent qualification is required to assist in the design and construction of an automated system for recording isopotential electrocardiographic surface maps. The project will be conducted jointly with the Engineering in Medicine Laboratory at Imperial College and the appointment is for three years and is available immediately. Salary according to qualifications and experience on scale up to $£ 3.699$ per annum

Appications to the Personnel Officer, RPMS, 150 Du Cane Road, London W12 OHS (01.743 2030, Ext. 93), quoting ref. no. $2 / \mathrm{WW}$.
(6026)

University of Reading
 ELECTRONICS TECHNICIAN

required in the Department of Chemistry. Duties include the maintenance of a very wide range of electronic instruments and help with the design and construction of electronic devices. Salary in scale £2751£3207 pa. (Grade 5) Apply in writing, quoting Ref. TZZ.28B, with full detalls and names of two referees, to Assistant Bursar (Personnell. University of Reading. Whitek nights. Reading RG6 2AH.
(6052)

> Electronic Engineers

Energetic engineers required to help design. test and commission systems using our range of automatic weighing and logic contro equipment The positions offer an opportunity o foin an expanding company currently enjoying a high rate of export growth Applicants should be prepared to travel. have a current driving licence. and experience with Load Cell Weighing. Dig tal systems using

Isca Electronics Limited,
Newtown Industrial Estate Crosskeys, Newport, Gwent NP1 7PX Great Britain Tel: Crosskeys (0495) 270671 Telex: 497437

TEST OR COMMISSIONING

DIGITAL INSTRUMENTS

Vacancies exist for Senior and Junior Engineers in our Test and Service department
Necessary qualifications are HNC ONC or C\&G and experience with sophisticated digital and analogue circuitry is required
We are a small well established company producing high standard signal processing equipment
Salary up to £4,500
Please write with brief particulars to

Chief Test Engineer
DATA LABORATORIES LTD. 28 Wates Way

Mitcham
Surrey CR4 4HR
Tel: 01-640 5321
datalab-MMA

UNIVERSITY OF EDINBURGH
 ELECTRONICS
 TECHNICIAN

Required for the DEPT, OF RESTORATIVE DENTISTRY. The work is mainly concerned with medical electronics and electromyography. The successful candidate will be concerned with maintenance and modification of a wide range of medical electronic and allied equip. ment, and with research and development in electronics as related to lopment in electronics as related to
dentistry. The post offers challenging dentistry. The post offers challenging
and rewarding work in a new and and rewarding work in a new and
expanding field. Applicants should expanding field. Applicants should
hold HNC or equivalent in appropriate subjects. Salary will be on scale $£ 2751 £ 3207$ p.a. Assistance with relocation expenses is available if necessary. Applications, quoting post reference No. A188, and giving full details of age and qualifications, together with the names and addresses of two referees, should be submitted by 23 rd August, 1976, to submitted by 23 rd August, 1976 , to the Personnel Otice. University of
Edinburgh, 63 South Bridge, EdinEdinburgh, 63 South Bridge, Edin-
burgh EH1 1 LS. Telephone $031-667$ burgh EH1 1LS. Telephone 031-667
1011, ext. $4510-3$. 6021 .

Radio Society of Gt. Britain

general manager

A vacancy will arise in the near future at the Society's London headquarters for an Assistant General Manager with a view to becoming General Manager
The candidate should ideally possess the following qualifications:
At least five years' executive experience.
Working knowledge of accountancy.
Hold an amateur radio transmitting licence
Salary will be commensurate with qualifications.
Applications should be made before 30 September 1976 to Mr C. H. Parsons, 90 Maesycoed Road, Heath, Cardiff, Glamorgan.

ELECTROSONIC S.E. LONDON

PROJECT ENGINEERS

AUDIO, LIGHTING, AUDIO VISUAL SYSTEMS SALARY NEGOTIABLE

The work involves handling a project from the receipt of an order and specification, to its final installation and commissioning. Duties will include the integration of the company's standard products into systems, the design of special equipment as part of the system, and the close liaison with the customer to ensure equipment 'meets their specification.

Applications should be qualified to H.N.C. standard and have experience in system engineering in the relevant fields.
Electrosonic Limited is a rapidly expanding company manufacturing equipment for theatres, hotels, Conference Centres, Discotheques, and all areas of the entertainments and promotion industry

If you have the right qualifications and experience and are prepared to travel in the UK and Overseas, apply in confidence to: R. J. Owen, Projects Manager, Electrosonic Limited, 815 Woolwich Road, London SE7. Tel: 8551101.

[^9]Electronic Engineers with market able lideas or inventions to join well established company with development laboratory and production facilities on salary and profit sharing basis. Preference given to high quality instruments. avionics
or
telecommunications. Excellent or telecommunications. Excellent trpportunity for right man to build
a future with a share in well esa future with a share in well es-
tablished electronizs company just tablished electronizs company just
south of London Airport. Write Box south of London Airport. Write Box WW 6051
U.S.A. OPPORTUNITY. Marine Electronics Field Service technician. Must be experienced in all phases of Marine Communications. Autopilots and radar. Work on world's largest duxury yaches. Please submit résumé and photograph to Electronics for Yachting. 1525 S. E. 16 h Street. Ft. Lauder dale. Fla. 33316 U.S.A. (6054)

TESTING \& SERVICE ENGINEER

Due to expansion of our manufacturing department, we are looking for a young and progressive Electronic Technician to test and service our multi-track tape recorders. Knowledge of electro-mechanical tape decks will be an advantage. Salary negotiable. Excellent prospects. Ring: $01-4856162$ (6017)

Technical Writer

Required for ELECTRICAL AND RADIO TRADING, the Trade's top-selling weekly journal.

Applicants for this position should be familiar with servicing data and have practical experience in the TV/ Audio and Electrical industry together with the ability to write about repairs and servicing.

Please apply to the Editor, Electrical and Radio Trading, Dorset House, Stamford St. London SE1 9LU
Tel. 01-261 8523

MEDICAL PHYSICS TECHNICIAN GRADE 3

Electronic Technician required to organise maintenance service of equipment in the Physics Department Intensive Care Unit and,Operating Theatre

Good opportunities for development work and this will contine to increase depending on the candidate's initiative. Starting salary £3555 per annum inclusive.

Further details from the Principal Physicist (01-807 3071 Extn. 581).

Applications to the Sector Administrator, North Middlesex Hospital, Sterling Way, Edmonton, London N18 1QX. Closing date 2nd August. 1976
(6078)

MEDICAL PHYSICS TECHNICIAN GRADE II for Guy's Hospital Department of Clinical Physics \& Bloengineering. He/She will be a member of a team of Physicists
and Technicians engaged in a and Technicians engaged in a
variety of clinical instrumentation variety of clinical instrumer oNC/HNC or higher qualification required, plus 2 years elec. tronics experience in NHS Techni. clans Grade lil. Salary scale es,558£4,581 plus $£ 312$ London Weighting plus é per week. Apply to PersonThomas Street, London SE1 9RT Tel. 01-407 7600. Ext 3462. (5578

ELECTRONICS SERVICE ENGINEER

Interesting and varied work with organs, hi-fi and amplification. Apply in writing, giving full details of experience to: WHITWAM'S, 70 High Street, Winchester, Hants.

MPEERIAL WAR MUSEUM. Department of Sound Records. Applicants volves a variety of both technical volves a variety of both technical partment of Sound Records has a wide range of professional equip. ment and facllities and the post ment and faclities and the post ed in working in the audio field. Full training will be provided by an experienced Audio Technician. Candidates must have a strong technical aptitude and be capable of careful and systematic work. The post is graded Library Assistant 2 and the starting salary is from 288.15 at age 16 to 245.21 at age 23 and over rising to f50.91. A Pay Supplement ranging from $\begin{aligned} & \text { £ } 4 \mathrm{DW} \text { at } \\ & \text { age } 16 \text { to } f 6 \mathrm{pw} \text { at age } 18 \text { and over }\end{aligned}$ is payable in addition. Leave is 3 weeks 3 davs per year. rising to 4 weeks after 7 years' Service. There are prospects of permanent and pensionable emplowment. Please apply in writing to the
Fistablishment officer. Imperial war Fstablishment officer. Imperial war Museurm Lambeth Road. Londom
SE1 6 HZ .
Royal Holloway College
(University of London)
Egham Hill, Egham, Surrey
EXPERIENCED
ELECTRONICS
TECHNICIAN (GRADE 5)
required in the Physics Department
for three years, preferably with
experience in digital and computer
electronics. Salary on the scale
E2,751 - £3,207 plus E275 London
Allowance.
Applications together with the names
and addresses of two referees should
be sent to the Personnel Officer (WW)
as soon as possible.

DEVELOPMENT ENGINEERS Phone for free lists

PRECISION POLYCARBONATE CAPACITORS

MARCÓ TRADING

 (Dept. D1)The Old School, Edstaston. Nr. Wem Shropshire
Tel. Whixall (Shropshire) (STD 094872] 464/5

OSCILLOSCOPE
 ELECTRO-

 MYOGRAPH, high Hain MYOGRAPH, low monse, high Latint ehannel instrument. This is a brand new instrument for sale by
tha manufaclurers as an end of thi manufacturers as an end of
line offer. due to cessation inf line offer. due to cessation inf
production of this modet. Full kuarantee and all circoits. Service Maximuin gain 5 macru-vits per Maximuin gain 5 micro-valts per centimeter. Nolst los pe:sk al 5 kHz bandwidit camera recording on separate cRT. fully electrically controlled. and complete with motor driven camera. Also includes a synchronised simmatar for facilities. Time calibration di played an woren. Leaflet avaiable on enquary. Price at below inanufacturing cost fa90 plus VAT.
phone Wialdeston (024665) 220.
fols

GREENBANK ELECTRONICS

digital clock modules, kits

details free on request							
displays		CLOCK CHIPS			$\begin{aligned} & \text { SOLDEERCON PINS } \\ & 100 \\ & 1000 \end{aligned}$		$\begin{array}{r} \text { 50p } \\ \text { c4.00 } \end{array}$
DL-707E $03^{\prime \prime}$		70 p AY-5	1224A	c3.50			
		70p MK 5	MK 50253	c5.50			
DL. $728 \mathrm{E} 2 \times 05^{\prime \prime}$		£1.80					
DL-727E $2 \times 05^{\prime \prime}$		£1.80 OP-A	OP-AMPS				
DL-750E $06^{\prime \prime}$		E1.50 CA 3	CA 3130 (COS/MOS	OS, 75p		$\times 3 \mathrm{~mm}$	70 p
DL-747E $06^{\prime \prime}$		£1.50 741	Minidip	25p	DIL SOCKETS 14/16 Pin 15p		
PUSH \#UTTON SWITCHES Type Sw9 Min Push to make 15p							
CMOS WITH DISCOUNTSI LANY mix disc 10\% $25+25 \% 100+1$							
CA 3130	075	40351	2.20	$4 \mathrm{AB5}$ /-	0.60	14515/4515	2.70
4000/14000	0.15	20140/14040	0.90	4086/-	0.60	14516/4516	1.15
4001/14001	0.15	4041 -	0.70	4089 /	1.30	14517/-	335
4002/14002	0.15	4042/14042	0.70	$4693 / 14093$	0.65	14518/4518	1.05
4006/14006	1.00	4043/14043	0.85	4694/-	1.60	14519/4019	0.45
4007/14007	015	4044/14044	0.80	4695/-	0.90	14520/4520	1.05
4008/14008	0.80	4045/-	1.20	4096 / -	0.90	14521/-	230
4009/14009	0.45	$4046 / 14046$	1.15	4097/-	3.16	14522'	1,75
4010/14010	0.45	4041 -	0.75	4098/14528	1,00	14524/	N/3
4011/14011	0.15	4348/-	0.45	44999/-	1.55	14526/-	1.73
4012/14012	0.15	4049/14049	0.45	$4001-$	1.50	14527/4527	1.35
4013/14013	0.45	405(1/14050	0.45	7083/-	4.25	14528/4098	1.00
4014/14014	0.85	4051/14051	0.80	46101/-	1.55	14529/-	1.40
4015/14015	0.85	405:3/14052	0.80	40104:-	2.00	14530/-	0.73
4016/14016	0.45	4053/14053	080	40107/-	0.55	14531/-	1.45
4017/14017	0.85	4054 / -	1.00	40109/-	1,90	14532/4532	1.25
4018/-	0.85	405! \% -	1.10	$4 \mathrm{C} 180 / 14580$	6.95	14534/-	6.700
4019/14519	0.45	4056\% -	1.10	49181/14581	355	14536/-	3.30
4020/14020	0.95	405\%	21.55	40182/14582	1.35	14537/-	11.00
4021/14021	0.85	4059\% -	475	14160/-	0.95	14539/-	1.00
4022/14022	0.80	40613-	0.95	14161/-	0.95	14541/-	1.35
4023/14023	0.15	40631-	18.92	1=162/-	0.95	14543/-	1.85
4024/14024	0.65	$4062 \mathrm{~T} /$ -	7.75	1/163/-	0.95	14549/-	3.40
4025/14025	0.15	406 3/-	0.95	14174/-	0.30	14552/-	± 7
4026/-	1.50	40613/14066	0.80	14175/..-	0.15	14553/-	3.75
4027/14027	0.45	4067/-	3,10	14194/-	0.95	14554/-	1,35
4028/14028	0.75	40613/14068	0.20	14501/-	0.15	14555/4555	0.75
4029/-	0.85	406'3/14069	0.20	14502/4502	1.05	14556/4556	0.75
4030/14507	0.48	4070/14070	0.45	14503/-	0.60	14557/ -	3.85
4031/-	1.90	4071/14071	020	14505/-	3.65	14558/-	1.00
4032/14032	0.90	4072/14072	020	14506/-	0.45	14559/-	340
4033/-	1,20	407.3/14073	0.20	14507/4030	0.50	14560/-	1.80
4034/14032	1.fs	4075/14075	-20	14508/14508	2.55	14561/-	0.55
4035/14035	1.00	4076/14076	1.30	16510/4510	115	14562/-	4.65
4036/-	220	4078/14078	0.20	14511/4511	135	14566/-	1.35
4037/-	0.80	4081/14081	0.20	14512/-	1.05	14568/-	2.60
-238/14038	0.90	4082/14082	0.20	14514/4514	2.70	14569/-	3.10

GREENBANK ELECTRONICS (Dept. W8W) 94 New Chester Road, Now Ferry, Wirral, Merseyside 162 5AG, England. Tel: 051-6453391

THE
 ELECTRONIC MUSICAL INSTRUMENT MANUAL

 PROBLEMS \& SOLUTIONS IN LOGIC DESIGN by D Zissos IC OPAMP PRICE $£ 2.10$ IC OP-AMP COOKBOOK bY W G Jung PRICE $£ 8.75$ COLOUR TV WITH PARTICU. LAR REFERENCE TO THE PAL SYSTEM by G. N. Patchett PRICE E5.40 DESIGNIPGU WITH TTL INTEGRATED CIRCUITS by Texas TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR by A Douglas PRICE £4.85 TRANSISTOR POCKET BOOK by R G Hibberd PRICE E4.25 SOLID STATE COLOUR TVCIRCUITS JYG R WIIding PRICE E6. 25 MICROPROCESSORS \& MICROCOMPUTERS by B Sou-
cek RADIO VALVE \& SEMICON. OUCTOR DATA by A M. Bali VHF - UHF MANUAL bY D S
"PRICES INCLUDE POSTAGE*

THE MODERN BOOK CO
RECLAIMED COMPONENTS. Cinarinteed fuil sper CABns.
f1.25. 1310 decuders $45 p$ TBA fisl 95 p post frep. Box No. W TRA hol

SPECIALISTSIN SCIENTIFIC
\& TECHNICAL BOOKS
19-21 PRAED STREET LONDON W2 1 NP

Cassified

EXCLUSIVE OFFER

WORLD-WIDE RANGE

 NEVER BEFORE OFFERED PHILCO HC-150 POINT-TO-POINT STRIPRADIO HF RECEIVERS $2 / 30$ mi/cs Ten fully
 with 4 sub-bands to each channel. Full details and prices on application

HIGHEST QUALITY 19"

 RACK MOUNTING CABINETS \& RACKSENOUIRIES INVITED AND SEE NEW STOCK

AUDIO AND INSTRUMENTATION

 TAPE RECORDER-REPRODUCERS
We have a large quantity of "bits and pieces" we cannot list - please send us your requirements, we can probably help - all enquiries answered.

```
Rohn 95ft masss latice 12"s
lol
Heavy Aerial Rotators
Racal SA 504 Voltage conver
Hallucrafter 152/174 M
Tecequipment Serviscopes.
75f/ Alumninium Lattice Masts.
Phessey peak distortion meters
Rhode & Schwarz SBR sig gen.l.
Aimmec 702 sig gen 30 cyc 30 kcs
Muirhead D669 Aralys
Large Aerial Turning Units
Muirhead Hydraulic Ship Co
S.T.C. Rx 5 Receivers 0.5/25.0 m/cs Dual
45 feet Uniradio 4 Co-ax 50 ohms
Stema RIT Scopes E....
Telegraph Distortion Test Sets
2n Telescopic Aerial Masts
Addo 5/8 Track Tape Punches E%O,
Digital Cassette Recorders '/`"'1000 bps 
1600tt 16 m/m Film Spools ally (unused)
Quality Weather Vanes 8
Video Cross Hatch TV Generators
Racal MA-175 L.S.B. Modulators (new).
Imslide Cabinet Shelf Sliders
MV.R Action Replay 20 sec. Videodisc U'ni
Advance H1 Signal Generators, 15/50\textrm{Kcs}
Osciltators
Tally 5/8 Track Tape Readers 60 cps
2 KVA Auto-Transformers
Cawkell FU4 4 Band Pass Filter Testers
```


We have a quantity of Power Transformers 250 watts to 15 KVA at voltages up to 40 KV . Best

 quality at low prices. Lists available.
Racal RA-63 SSB Adaptors, new Racal RA- 237 L L-W Converters,

 19 Blank Rack Panels 8\% in high, new Hewiett Packard 524C Digital COunterPortable Mains Battery Hospital Portable Mains Battery Hospital Lights Aralysers

We have a varied assortment of industria! and profeasd
request

COMPUTER HARDWARE

* LINE PRINTER, High speed 1000 lines c.p.m.
TAPE READER
CARD READER $80 \mathrm{col} .600 \mathrm{c} . \mathrm{p} . \mathrm{m}$
Prices on Application
PLEASE ADD CARRIAGE AND
V.A.T.

AT APPROPRIATE RATE TO ABOVE

P. HARRIS

ORGANFORD-DORSET BH16 6BR
BOURNEMOUTH (0202) 765051

COLOUR, UHF AND TV SPARES Lists on request. "Wireless World TV Tuner and FM Tuner Projects by 1. C. Read. Kits of parts avail able JAPANESE SOLID STATE COLOUR CHASSLS for the experi
menter Includes IF Decoder menter Timeludes output secoder CDA. Timebases, Incl. circuit. Brand new. $£ 20$
etc. p/p incl. circuit. Brand new Cross Hatch kit Aerial Input type. No other con necte Incl Sync \& UHF Modular unvis fl1* Add-on Grey Scale kit $£ 2.90^{\circ} \mathrm{p} / \mathrm{p} 45 \mathrm{p}$. CRT Reactivator kit for colour and mono p / p sup. Signal Strength Meter kit i18* p/p 70p. 625 TV IF Unit, for ti8*: p/p 70 p .625 TV IF Unit for
Hi-Fi amps or tape recording $£ 6.80$ p/p 65p. Decca Colour TV Thyris tor Power Supply Unit. incl. H.T L.T.. etc. Incl. circuits $£ 3.80 \mathrm{p} / \mathrm{p}$
95 p . Bush CTV 25 Power Supply $95 p$. Bush CTV 25 Power Supply
Unit, inct. H.T.. L.T.. etc. $£ 3.20$ p/p £1.20. Bush CTV 25 Convergence panel plus yoke. blue lateral f3.60 p/p 80 p . Philips single stand convergence units complete. incl 16 controls. $£ 3.75$ p/p 75 p . Colour
Scan Coils. Mullard or Plessey 66 Scan Coils. Mullard or Plessey
p/p
pop. Mullard AT1023/05 or Plessey Converig. Yoke $£ 2.50 \mathrm{p} / \mathrm{p}$ 55p. Mullard or Plessey Blue Laterals 75 p p/p 30p. BRC 3000 type scan coils $£ 2 \mathrm{p} / \mathrm{p}$ 80p. Bush CTV 25 Scan Colls $£ 2.50 \mathrm{p} / \mathrm{P} 80 \mathrm{p}$. Delay Lines: DL20 $£ 3.50$ DL40 $£ 1.50$ DLIE, $\begin{array}{lllll}\text { DLL } & 85 \mathrm{p} & \mathrm{p} / \mathrm{p} & \text { 40p. Lum. delay } \\ \text { lines } & 50 \mathrm{p} & \mathrm{p} / \mathrm{p} & 30 \mathrm{p} . & \text { Bush/Murphy }\end{array}$ $\begin{array}{lllll}\text { lines } & 50 p & p / p & 30 \mathrm{p} . & \text { Bush/Murphy } \\ \text { CTV } & 25 & 3 / 174 & \text { EHT } & \text { quadrupler }\end{array}$ $\begin{array}{llll} & \text { CTV } \\ \text { p }\end{array}$ oriplers. ITT TH25 1TH \&2 GEC 2040 £1.75 p/p 50 p . Phillps 8 P Panels E1.75 p/p 50p. Phillps G8 Panels. Decroder 82.50 , IF incl. 5 modules £2.25. T. Base $£ 1 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. CRT Base 75p p/p 30p. GEC 2040 Decoder panel for spares $£ 3.50 \mathrm{p} / \mathrm{p}$ ELC 1043 £4.20. ELC $1043 / 05$ £5 VHF: ELC 1042 £5.50. Philips VHF caps $£ 1.50 \quad \mathrm{p} / \mathrm{p}$ 35p. SPECIAL OFFER: RBM 6 psn. Varicap control unit $£ 1$ p/p 35p. UHF Tuners transd. incl. slow motion drive £3.80. 4 Psn. and 6 Psn . push but. ton transd. $£ 4.40 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Philips. Bush Decca integrated UHF/VHF transd. tuners $£ 4.50 \mathrm{p} / \mathrm{p} 80 \mathrm{p}$. Thorn 850 dual stand. time base panels 50 p . Philips 625 IF panel incl. cct. 50p. p/p $85 \mathrm{p} . \mathrm{VHF}$ Turret tuners
AT
7650 for KB Featherlight. Philips 19TG170, GEC 2010, etc. f2.50. Pye miniature incremental tuners e1. Fireball tuners, Ferguson. HMV. Marconi $80 \mathrm{p} p / \mathrm{p}$ all tuners 70 p . Mullard Mono scan coils
for Philips, Stella, Pye. Ekco. Ferranti. Invicta $£ 2 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Large selection LoPTs, FOPTs available for most popular makes MANOH SUPPLIES, 172 West End Lane, London NW. Shop premises. Callers welcome. (Nos. 28, 159 buses or West Hampstead-Bakerloo Line and British Rail). Mail Order: 84 Golders Manor Drive, London. N.W.11. Tel: 01-794 8751. V.A.T.
Please ADD $12 \frac{1}{2}$ TO ALL PKICES Please ADD 121
(EXCEPT WO ALL PRICES
WHE MARKED VAT (EXCEPT WHERE MARKED (60)
8%

500 WATT DIMMER SWITCH

(not suitable for fluorescent lights)

 Basic Module with $1^{\prime \prime}$ KnobComplete on MK swith plate Complete on MK swith plate $\quad € 2$
Large $2^{\prime \prime}$ knob $(B \cup L G \mid N) 25 p$ extra Please add 8\% VAT 25p to all orders inc P\&P FRASER-MANNING LTD 40 TUDDENHAM ROAD, IPSWICH IP4

OPPORTUNITY SALE
Do you use equipment Wire, solder sleeving, etc All sizes in stock, full ist sent on application

Example price (less than half price)
7/0076 PVC EQUIPMENT WIRE £8/1,000 yds RESIN CORED SOLDER $\varepsilon 1.30 / 1 \mathrm{Kg}$ REEL

INTEGRATED SUPPLIES

Electrographic House
Printinghouse Lane
Hayes, Middx UB3 1 AP
el: 01-573 1826 (6063)

DIGITAL CLOCK CHIP, AY-5-1224. with data and circuit diagram, £3.66 plus VAT. 'Jumbo' LED digits 16 mm high) type economy DL/747 only $£ 2.04$ each plus VAT. post free. Greenbank Electronics. 94 New Chester Road. Wirral. Merseyside L62 5AG.
C.R.T. REGUNNING PLANT. New and secondhand reconditioned training. demonstration. colour or
B / W Barretts, Mayo Road Croydon B/W. Barretts, Mayo Road. Croydon.
Surrey CRO 2 QP.

VACUUM is our speciality, new
VACUUM is our speciality, new and secondhand rotary pumps, dif-
fusion outfits, accessories, coaters. fusion outhits, accessories. coaters. gassing equipment from $E 40$. V. N. Barrett iSales) Ltd.. 1 Mayo Road. Croydron. $01.684 \quad 9917$.

26MM B \& H 631 Sound projectors c/w speaker and transformers $£ 135$. - Hilton Cine, 9 West Hill. Dart-

SALE UHF/VHF C.A.T.. Equipinent.
SALE UHF/VHF C.A.T.. Equipinent. spurs, tees sockets. Send S.A.E. spurs tees Sockets. Send. S.A.E. Platt. West End. Woking Surrey.

VARISPEED 98 conversion kit for Philips mono cassette recorders gives you second track for stereol. cine synchronization. ete. plus variable speed control. only 89.95
(p\&p 30 p). A.M.P.C.. 115 York (p\&p 30p). A.M.P.C.: 115 York
 welcomed.

YOUR TAPES TO DISC. Mono or Stereo Cutting. Vinylite Pressings. Sleeves/labels. Top professional quatity. S.A.E. for Dhoto leaflet DEROY Reconds.
Cove Dunbartonshire. Scotland.

60 KHz MSF Rugby Receiver. BCD TIME OF DAY OUTPUT. High per formance, phase locked loop radio receiver. 5 V operation second LED indication. Kit com plete with tuned ferrite rod aerial El4.08 (including postage and vat). Assembled circuit and cased.
up version also available. Send for version also available. Send (4359). Dorset. (21)

OSCILLOSCOPE Tektrunix mode: 564B storage with plug in 2 B 67 timebase and $3 A 6$ dual trace amplifier. Manuals. Little used. £550. Tel. Erith (Kent) 30556.

ANTIQUE WIRELESS: receivers valves. components service sheets books and magazines. 1920-1950. S.A.E. with enquiries or $50 p$ for
full catalogue. - Tudor Retes, 64 Broad Street staple Hill Bristol BS16 5NL. Tel. Bristol 565472 .

Language Laboratory. Complete equpment nith furniture-32 siu. Kecorders. Microphones and headsets Tutors console with indivirlual sets Tutors consome with indiviruail
ur aral commanibation. Mr Wright. ©61.754 2931 (6047)

BURGLAR ALARMS
 Supplies and Equipment

 * SPECIAL OFFER - LARGE SIZE PRESSURE MATS £1.20 * MAGNETIC CONTACTS with magnetBells. Sirens. Alarm Units. Bell covers S.A.E. FOR FREE CATALOGUE

Complete kit, fantastic value, everything Vou need, onlv $£ 4000$
Add V效 at $\overline{\mathrm{T}} 21 / 2 \%$ to all orders
A.D. ELECTRONICS, Warbreck Moor Aintree, Liverpool. L9 OHU $051-5253440 \quad$ (6043)

QUARTZ CRYSTAL UNITS from

- 1.1.58.0 mnz
- fast ofliviry
- migh stallity

CREED 54/N4 TELEPRINTERS in good condition. enquiries to:-D. M. Hoodan, 7 Valley View. Landkey, Barnstable. Devirn. Tel. Swinbridge 489.

VALVE OUTPUT transformers sectionalised silcor laminations
Kw 15 watts (Two) 4 Kk 20 watts Kw 15 watts (Two) 4 Kk 20 watts
(Two). 150 HM Secondaries. Offers.
(5558)

PRINTED CIRCUIT EOARDS. High quality, fast deliveries. - Phototechniques. 11 Old Witney Road. Eynshain. oxford. Tel. Oxford
0×65) sx0645.

VALVES RADIO TV TRANSMITTING INDUSTRIAL 1936 t 11975. many ubsulete types. list 20 p s.a.c. for quotatoon. Pastal expurt service. We wish to buy all types of
valves new and boxed. Wholesalers. Dealers. etc. stucks purchased. Cox Radio isussex) Lld., The Parade East Witlering, Susscx, West wittering 202s.

Burglar Alarm equipment - safes - D.I.Y. - S.A.E. price list. Astro Alarms 25 Stockton Road, Sunderland, Tyne \& Wear. Telephone 77825.

Wireless World, 1943 to '1975. Iess three copies. 29 volumes with in. dex. unbound. - Offers Telephone Sudbury, Suffolk 75692 (6068)

Oual Beam Oscilloscopes C116, $£ 50$. CD71152. 225 ; Nombrex 40 Alldil Signal Generator, E20: Sinclaii Programmable Calculator, £20. 4124. 4124. (6071)

COMPARASCOPE (By Vision En. gineering) Type 51. In excellent hardly used condition. £350. Rom* ford 44473 . (6076)

VIBRATOR / TRANSOUCER (By Goodmans) 100 w . 100 . Romford 44473. (6076)

ENAMELLED COPPER WIRE
S.W.G. $\quad 1 \mathrm{lb}$ reel $\quad 1 / 2 \mathrm{lb}$ reel
$\begin{array}{ccc}\text { S.W.G. } & 1 \mathbf{l b} \text { reel } & \mathbf{1 / 2} \mathbf{~ l \mathbf { b r e }} \\ 10 \text { to } \mathbf{1 9} & 240 & 135 \\ 20.1029 & 245 & 140\end{array}$
$\begin{array}{lll}201029 & 245 & 145 \\ 201034 & 260 & 150\end{array}$
$\begin{array}{lll}35 \text { to } 34 & 260 & 150 \\ 35 \text { to } 40 & 285 & 160\end{array}$
All the above prices are inclusive of postage and packing in UK
COPPER SUPPLIES
102 Parrawood Road, Withington,
Manchester 20
lephone $061-4458753$

RECEIVERS AND AMPLIFIERS

HRO RASA. etc. ABEN. CRLom. BRT401 G209. S640, "tc rete in stock H. T. J. Electronics Lito. Ashrille old Hall. Ashville Rd Londorn. Ell. Lev 4986

SIGNAL (ienerators, Oscillostopest
 Frequency Melfrs. Mult-ranze Met"rs elc etf in stack k f
 Ley toxt.

SITUATIONS WANTED

ELECTRONIC ENGINEER wishes to obtain Work in $S . W$ England. 15 years' experience all aspects including Medical Electronics. Would represent company (service) in S.W. or accept part lime work. B clyst. Near Exeter, Devon. (6058)

BUSINESS OPPORTUNTIES

TO ALL PRODUCERS of Hi -Fi equipment, complete systems or components, who are developing components, who are developing new techniques and are looking for a distribution outlet in Switzeriand. We can offer our experiIse in this field to help you place your products strategically on the lucrative swiss market. Our young
organisation is endeavoured to enargle to you optimum distribution with maximum returns. Interested manufacturers apply io Box 6073.

EQUIPMENT WANTED
BROADFIELDS AND
MAYCO DISPOSALS
21 Lodge Lane, N. Finchley
London, N128JG
Telephone:
$01-4452713$
$01-4450749$
$01-9587624$
WE ARE INTERESTED IN PURCHASING ALL KINDS OF RADIO, T.V. AND ELEC. TRONIC COMPONENTS AND EQUIPMENT IN BULK QUANTITIES.
WE PAY PROMPT CASH AND CLEAR MATERIAL BY RETURN.

PRINTED CIRCUITS and HARDWARE
Readily available supplies of Constructors hardware. Aluminium sheet and sections Printed circuil board. top quality for individual or published designs
Prompt service
Send $15 p$ for catalogue
RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratiord-on-Avon Warwicks. Tel: 4879

AUDIOMASTER BACKCROUND

 MUSIC . Service. Sales. Tape Onslow Street. Guildford 4801. (12 LABELS. NAMEPLATES, FASCIASon aluminium or plasic. Speedy delivery G.S.m. Graphic Arts Letd., 1-5 Rectory Liane, Guisborough (W2873-4443). Yorks, U.K

TUBE POLISHIMG, scratched faces in your tubes can be repaired for f6.ss totat cost. V.A.T. and retura ciarriage included. - Retube Lat. ㄴurtir Somercotes. Louth, Lincs. - Phone N/S 300 istd. O50785).

Strathclyde Regional Council Department of Education GLASGOW COLLEGE OF TECHNOLOGY

PART-TIME COURSE

leading to the CNAA DEGREE OF

B.Sc. in ELECTRICAL ENGINEERING

ENTRY QUALIFICATIONS: A good HNC or HND in an appropriate subject. or equivalent qualification DURATION: 4 years or 3 years for some HND holders ATTENDANCE: 9 a.m.- 3 p.m., one day per week, 40 weeks per year, plus one full week in each of the third and fourth years. The course commences each August

FURTHER DETAILS FROM:

TEL. 041-332 7090

ARTICLES WANTED

WANTED!

all types of scrap and REDUNDANT ELECTRONIC 8 COMPUTER MATERIALS
with precious metal content

TRANSISTORS

 \& PRINTED CIRCUIT BOARDS TO COMPLETE COMPUTERSThe COMMERCIAL SMELTING \&
REFINING Co. Lid.
171 FARRINGDON ROAD LONDDN EGIR 3AL Tel. 01 -a37 1475 Cables: COMSMELT. EC
Works: FLECKNEY. nr. LEICESTEA (6050)

* MINICOMPUTERS
\star PERIPHERALS
* INSTRUMENTATION

For tastest. best CASH offer, phone
COMPUTER APPRECIATION Godstone (088 384) 3106

WANTED, all types of communications receivers and test equipment.
Details to R. T. \& I. Electronics Details to R. T. \& 1 . Electronics Rd., London. E.11. Ley $4986 . \quad 163$

SURPLUS COMPONENTS Equip. ment and Computer panels wanted for cash. Ring Southampton 72501

B-D ELECTRONICS offer prompt settlement for your surplus components. Our main field of interest telephone our Miss Hughes, Sandy (0767) 81616 (22

WE BUY new valves, transistors and clean new components, large or small quantities. all details. quotations by return. - Walton's. 55 Worcester St. Wolverhampton. 162

ANNOUNCEMENT

The Voice of Iran change frequency

The English Programme of Iran Radio will be broadcast for Europe on $11770 \mathrm{KHZ}(25$ metre band) as from June 20, 1976, from 20.00 to 23.00 GMT.

VALVES WANTED

Valves. Good prices. Types CV2797, CV2798, CV2792, CV2130 CV2131 CV345.' CV450. Phone 021-373 4357.

The Society of Electronic \& Radio Technicians

mICROPROCESSORS AT WORK

A residential symposium to he held at Sussex University from 26 th to 29th September, 1976
The technical sessions will cover the devices and technology on the market, the selection, prototyping and testing of microprocessors. programming and software, and a look at a wide variety of applications. which will shed light on some of the problems which arise and the methods of solution.
There will also be a small scale exhibition of microprocessors and peripheral equipment. allowing further access to microprocessor expertise
The symposium is directed towards the practical aspects of MPUs and is intended to aid those considering, or embarking upon. the use of microprocessors

COMPETITION FOR THE MOST INGENIOUS APPLICATION OF AN MPU

During the symposium the result will be announced of a competition for an application of MPUs by the home constructor which is simple economic, original and useful or entertaining

First prize $£ 150$, and the working system will be displayed in the exhibition associated with the symposium. Closing date for full submission, 19th September, 1976
Further information about the symposium Microprocessors At Work or the competition may be obtained from the MPU Secretariat, SERT.

SH:
society of electronic and radio technicians

Faraday House, 8-10 Charing Cross Road, London WC2H OHP Telephone: 01-240 1152

CAPACITY AVAILABLE

sember Production Wiring and As sembly to sample or drawings.
Deane Electricals
Station Parade, Ealing Common, London, W.5. Tel: 01-992 8976.

DESIGN, development, repair, test and small production of electronic equipment. Specialist in production YOUNG ELECTRONICS LTD. 184 Royal College Street. London NW1 9NN. 01-267 0201

AIRTRONICS LTD., for Coil Winding - large or small production runs. Also PC Boards Assemblies. Suppliers to P.O., M.O.D. etc. Export enquiries welcomed, 3a Walerand Road, London SE13 7PE. Tel: 011 -852 1706

FINE SPOT WELDING, coil winding soldering. mechanical and electrical assembly. "ight sheet metal and presswork. Lontact ShenWenson Road Sharston. Industrial tonfield Road, Sharston.
Estate. Manchester 22. (5376)

COIL WINDING and transformer Manufacturer. Quick deliveries, competitive prices. Raven Transformers Lid. 587 High Road. Leyton. E10. 01-556 9467.

Small batch production wiring. assembly to sample or drawings. Specialists in printed circuit assernbly. Rock Electronics. 41 Silver Street. Stansted. Essex. Tel. Stansted (0279) 3310n.s14006. (19

PRINTED. CIRCUIT BOARDS -

 Quick deliveries, competitive prices. quotations on request, roller tinning. drilling, etc., speciality small bamesons Automatics Ltd. $1-5$ Westgate Bridlington N. Humber. side for the attention of Mr J . Harrison. Tel: (0262) 4738/77877CAPACITY available to the Electronice Industry. Precision turned parts, engraving, milling and grinding imited capacity available on Mathey SP33 jig borer. Write for Mathey SP33 ing borer. Write Cull plant capacity to C. lists of full plant capacity to C.B. Mackintosh Lane, E9 6AR. Tel: 019857057.

LICENCE OFFERED

ACOUSTICALLY ADJUSTABLE LOUOSPEAKERS. We wish to apprint licensees to manufacture the world's first Monitor Loudspeaker with acoustic adjustability; the revolutionary Omal Ambrionic TL6. It has no competition and its many unique features include a variable transmission line (patented) giving uncoloured sound reproduction of outstanding quadity. For full details (Principals only), write to:Managing Direotor, Omal Group Ltd. Omal House. North Circular Road, London, NW10 7UF, England.

ELECTRONIC Petrol consumption meter. Manufacturer required to produce under licence a miles per write to Poston for cars. For details seley Ruad London N8 35 Wol
\qquad

BOOKS

" WIRELESS "WORLD" 1945 to July 1973. Eleven copies missing. Offers. Buyer collects. Hargreaves Goole 83276. Rawcife. (roote. (6027)

WANTED receivers and books on microwave. U.H.F, receivers. Books for sale on communications. Electronics. List available. Hughes. 11 Henley Road Ludiow: Salop.
(6057)

NEW GRAM AND SOUND EQUIPMENT

Glascow. Hi Fi. Cassette Decks Tape Recorders. Viden Equipment. always available we buy sell and exchange for Hi Fi sets and pholoKraphic equipment. Victor
MORRis Audio Visual Lid.. 340 Argyle Street. Glasgow. G1. א,10 Glassford Street, Glaspow, G1. X.10 Sauchiehall Street. Tele: 041 -221 Sauc'h
8958. 11

IBM.GOLFBALL 735 1/0 TYPEWRITERS Coding similar to E8CDIC. Will accept normal or sprocketed working order with photocopy of 18 supplied in nanual. Each machine serviced and 18 M interface 8\% VAT. As atove but moditied to take office range o
gotiballs (10 pitch) $\varepsilon 125+8 \%$ VAT (inc. goifball) UK delivery by Securicor + packing $£ 7.50$ VAT. Overseas air freight or surtace at cost.

+ ELECTROLYTICs

 $2000 \mu 63 \mathrm{v} 3 \mathrm{pp}$ (14 p). $2500 \mu+2500 \mu 30 \mathrm{v} 40 \mathrm{p}$
(15p) $40 \mu 275 \mathrm{v}$ RMS Motor start cap. 50 p (20p). + \$MALL ELECTROIYTIGE
$2.2 \mu 10 \mathrm{v}, 10 \mu 35 \mathrm{v} .50 \mu 40 \mathrm{v}, 100 \mu 40 \mathrm{v}, 10 \mathrm{O}_{\mu} 4 \mathrm{v}$
 45p (12p).
4 PIHER PRESETS 100 mmw
$200.470 .1 \mathrm{~K} .4 \mathrm{~K} 7,10 \mathrm{k}, 47 \mathrm{k}, 100 \mathrm{k}$. 220 K 12 for sop (12p).
+ other pre
+ other presers avaitsble in velves 3 K (large type)
$\mathrm{c} 1 / 100470$ cermat 10 for 50 p (12 p)
TRANSFOMMERE
$31 v 330 \mathrm{~mA} 60 \mathrm{p}(30 \mathrm{p}), 12 v 2 \mathrm{~A} \mathrm{E} .60(50 \mathrm{p}) .17 \mathrm{v}$

VARIOUs
Humidity switches
Mains latching retiays 6 A contacts.
Relays varley VP4/5A
2500 $80 p(13 p)$ Relays varie
$4 \mathrm{p} / \mathrm{l}$
3 M phastic
3 M plastic sell-adhesive magnetic ${ }^{3} 3^{\prime \prime}$ WIDE
42 size $1.25 v^{\text {NICAD }}{ }^{3^{\prime \prime} \text { WIDE }}$ Catls
+250 mixed capacitors H Lamps $12 v 53 \mu$ $12 v 100 \mathrm{w}$
250 w 500 w Light activated SCR L9F 50v 1.6 A $\times 2243$ por core Ex Equipt with p) 65p (12p) clamp
amp scorpio agnition Surtable scorpio igntion)

+ Ge DIODES GEXOO (15/1000 £2.50/100 TEXAS CALCULATOR KEYBOARDS P.C. Type new 5 p (10p). No buttons. PAPST FANS
thoned $41 / 2 \times 41 / 2 \times 2 \mathrm{in}$ sumiar) $100 \mathrm{CFM} 50 / 60 \mathrm{c} / \mathrm{s}$ + REED INSERTS $70 \mathrm{~mm} / / \mathrm{d}$ contacts 10 for + REED INSERTS 45 mm \qquad 20 for 61 (12p)

KEYTRONICS

Shop open Monday to Saturday
9.30 a.m. - 2 p.m. 332 LEY STREET, ILFORD ESSEX. 01-553 1863

ARTICLES FOR SALE CONT

DIRECT COMMUNICATIONS

Division of Direct Electronics Ltd

INTERCOMMS \& TELEPHONES

- New Italian Designed 2-Way Telephone Intercomm Wall/Desk with 30 metre cable, E 9.95 位 11 . Operates on 6 to $9 v$ batt or power supply
As above, 2-to 6 -way Wall Model. £10 65 Desk modelinc term block. $£ 12.65$ pe inst. 2- to 11 -way wall model. £11.50. Desk inc term block. $£ 1345$ per inst (50 p) colours, ivory and grey blue.
- Superior 2- to 6 -way Siemens \& Halske Wall Intercomm with desk conversion kı term block and cord. Per wistrument, \& 10 (packing and carriage 50p)
- Push-button intercomnis from 2- to 21 -way with mult-channel and conference acilities. New: 6 -way $£ 24,11$-way $£ 27,16$-way $£ 30,21$-way $£ 35$. Refurbished at hal the above prices. at 1 each unit)
Entrance Phones. Single unit + Internal Phone + Electric lock release + Twin Power Supply, $£ 39.95$ ($\mathbf{\Sigma}$). Add $£ 7$ for each additional button and Internal Phone up to 20 -way (+50 p per way)
Transistorised 2 -way Intercomm with 6 v Power Supply and 50ft cable. £ 1175 (it) Transistorised batt-op 3-way Intercomm (Master - 2 subs). $£ 23.95$ 位 1). 4 -way

Wireless intercomm (uust plug 2 or more into mains - no wires required). £20 par (1) Ideal for baby alarm

Automatic Instruments. Strowger-compatible or PAX working. New P.O. Types 706 and 746, £15. 722 (Trimohone), 41.65 Refurbished from $£ 5.00$ (ì1) Also Spectal and Foreign rypes.
Ulita Modern Types. Gondola (dial in hand set). $£ 3995$. Charleston (Candlestick).
 styles from 288. 100 other Superb Reproduction and Modern styles available in wood acryllc, leather, onyx, etc. Come and see

- Plan and Key phones for Home and Export New or refurbished

Telephone amplifier (1-way) $£ 5.95(35 p$) Hands-Free Tele Amp (two-way
conversation) $£ 9.50$ (50 p) With record conversation) $£ 9.50$ (50 p). With recording facility $£ 12.50$ (50 p)
Telephone terminal blocks: 3-way 45p. 4 -way 75 p. 6 -way £1 25, 24 -way $£ 275$
48-way E3.75 (20p)
Telephone cords: 4 -way to (20p). 920 plugs it 150 (20p) Less 10% per dozen
Telephone cords: 4 -way to 9 -way, 6 ft 75 p . $10 \mathrm{ft} \dot{1} 115$. $16 \mathrm{ft} £ 165$ (15 p)
Telephone cable Per metre, 4 -way 18p. 6-way 20 p. 10 -way 50 p. 13 -way 56 p Add 10\%). Paired cable also available up to 50 pair

* Mains Adaptors. 6/7.5/9vdc, switched, £375 (50p). 3/45/6/75/9/12v, £5 (50p) Suit Transistor Radios, Cassette Recorders. Intercomms. etc
- Auto Exchange: 10 extension +1 circuit. Power supply incorporated. E175 (car free)
- New Transformers Extensive range in stock or quick delivery Auto. Isolating, H V Charger. Equipment, Output, etc. 1.2 va to 6000 va (6 Kva) from $£ 1.70$ Please enquire Ball point stretch pens. self-adhesive. attach to anything, anywhere, 95 (20 p)
Telephone locks with 2 keys .95 p (20). Telephone locks with 2 keys. 95p (20).

```
Add VAT \(=8 \% \quad=25 \%\) on post paid price
``` TRADE ENQUIRIES WELCOMED
Many surplus bargains still available at exceptionally low prices All must be cleared 34 LISLE STREET, LONDON, WC2N 7BD - Tel: 01-437 2524

\section*{CLASSIFIED ADVERTISEMENTS} Use this Form for your Sales and Wants
To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 914
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
- Rate 81p PER LINE. Average seven words per line Minimum THREE lines.
- Name and address to be included in charge if used in advertisement.
- Box No Allow two words plus 45 p
- Cheques. etc. . payable to "Wireless World" and crossed "\& Co.

NAME

ADDRESS

To obtain a brochure and booking form, tick the box against the tours in which you are interested, complete the coupon and post to the exclusively appointed travel agent, Commercial Trade Travel Lid., Carlisle House, 8 Southampton Row, London WC1. Telephone 01-405-8666 or 01-405-5469

International Radio and Television Exhibition - FIRATO - Amsterdam August 27-29 1976. Two nights at the first-class American Hotel. Fully inclusive price \(£ 89.00\)

Western Electronic Show and Convention - WESCON - Los Angeles - September 14-17, 1976. 10 nights at the de luxe Downtown Hilton Hotel. Fully inclusive price-£399.00. \(\square\)
nternational Exhibition of Data Processing, Communication and Office Organisation SICOB Paris, September 23 - October 1 1976. Two nights at the de luxe Meridien Hotel. Fully inclusive price \(£ 86,50\), extra nights as required. \(\square\)

Hifi International Exhibition and Festival Dusseldorf - September 24-29, 1976. 2 nights at the first class Quality Inn Hotel. Ratingen (8 km from the Fair Ground) Fully inclusive price - £99.90. \(\square\)

International Industrial Electronics Trade Fair - FAIREX - Amsterdam, October 18 20 1976. Two nights at the first-class American Hotel. Fully inclusive price £89.00 ■

International Trade Fair for Production in the Electronics Industry - ELECTRONICA Munich, November 25-December 1, 1976 Two nights at the first class Hotel Der Konigshof. Fully inclusive price \(£ 118.00\), extra nights as required. \(\square\)

Please send details of the tours indicated above.

In this, Professor Laithwaite's seventh book, he again offers us a rich mixture of controversial and always thought provoking articles. In the manner that we have learned to expect, he conveys through his writings and experiments the excitement of engineering and invention, and the ways in which man in his laboured progress has so often merely mimicked nature's own engineering achievements.

The author, famous in the academic world and for numerous television appearances, presents us with two series of articles, 44 in all, which will appeal to the engineer, scientist and all interested readers equally. The price of the book is \(£ 2.85\).

From leading newsagents and bookshops, or can be ordered direct by using the coupon below

\section*{INDEX TO ADVERTISERS}

\section*{Appointments Vacant Advertisements appear on pages 106-117}

\footnotetext{
Printed in Great Britain by QB Ltd., Sheepen Road, Colchester and Published by the Proprietors IPC ELECTRICAL-ELECTRONIC PRESS LTD., Dorset House, Stamford St., London, SE1 \(9 L U\) telephone \(01-2618000\). Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch LId. INDIA: A. H. Wheeler \& Co. CANADA: The Wm. Dawson Subscription Service, Lid. Gordon \& Gotch Ltd. SOUTH AFRICA: Central News Agency Ltd.: William Dawson \& Sons (S.A.) Ltd. UNITED STATES: Eastern News
}

\section*{It＇s a mod．mod．modular world．}

Simplify，simplify！Instead of paying more for bigger，bulkier audio control components，pay less for compact Shure modular components that－ singly or in combination－handle critical functicns flawlessly．Cases in point： （1）the M67 and M68 Microphone Mixers，the original high－performance， low－cost mixers；（2）the M610 Feedback Controller，the compact component that permits dramatically increased gain before feedback；（3）the M63 Audio Master，that gives almost unlimited response－shaping characteristics；（4） the M688 Stereo Mixer，for stereo recording and multi－source audio－visual work；（5）the M675 Broadcast Production Master，that works with our M67 to create a complete production console（with cuing！）for a fraction of the cost of conventional consoles；and（6）the SE30 Gated Compressor／Mixer， （not shown above）with the memory circuit that eliminates＂pumping．＂For more on how to＂go modular＂write for the Shure Microphone Circuitry Catalogue．

\title{
Multicorethe complete answerfor printed circuit soldering.
}

Most printed circuit soldering problems can be avoided by using quality products and seeking quality advice. Naturally, we suggest ours. First, let's talk about quality products.

\section*{Extrusol and Multipure.}

EXTRUSOL Extruded Bars and MULTI-PURE Cast Bars are made from specially processed ultra high purity solder. EXTRUSOL bars and pellets are protected by plastic film from the moment they are made to the moment they are used. And MULTI-PURE bars are probably the smoothest and brightest solder bars you will ever see.

\section*{Ersin Multicore Savbit.}

This cored solder has countless uses. For instance, it avoids erosion of copper plating and wires as well as prolonging the life of soldering iron bits.

\section*{Liquid Fluxes.}

We have a whole family of them, so you're bound to find the right one for your job. One of our latest is PC 26, exceptionally fast but non-corrosive and non-conductive. Eliminates "icicles" and "bridging."

ROSIN BASE
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
ERSIN \\
Flux No.
\end{tabular} & Type & Solids Content w/w & Specifications \\
\hline 0360 & non-activated & 38\% & MIL-F-14256D Type R:DTD 599A DIN 8527 F -SW 31 \\
\hline 5381 & mildly activated Chloride and Bromide free & 25\% & MLL-F-14256D Type RMA; DTD 599A \\
\hline \[
\left.\begin{array}{l}
304 \mathrm{D} \\
304 \mathrm{~W}
\end{array}\right\}
\] & mildly activated Halide Free & \[
\left.\begin{array}{l}
10 \% \\
25 \%
\end{array}\right\}
\] & DIN 8527 Type F-SW 32 DTD 599A \\
\hline PC.21A & activated & 38\% & DTD 599A;DIN 8527.F-SW 26 \\
\hline PC. 26 & activated (extra fast) & 15\% & DTD 599A: DIN \(8527 . F-S W 26\) \\
\hline 366 & activated (extra fast) & 38\% & Meet DIN 8511 Type F-SW 26 and \\
\hline 366A-25 & activated (extra fast) & 25\% & pass DTD 599A Corrosion Test \\
\hline \multicolumn{4}{|l|}{ORGANIC ACID} \\
\hline \[
\begin{aligned}
& \text { PC. } 101 \\
& \text { PC. } 112
\end{aligned}
\] & water base solvent base.fast drying & \[
\left.\begin{array}{l}
12 \% \\
9.5 \%
\end{array}\right\}
\] & Water soluble residues must be removed after soldering. \\
\hline \multicolumn{4}{|l|}{INORGANIC ACID} \\
\hline ARAX & water base extremely active & 40\% & Used with most "very difficult to solder" metals. Not for electronics assembly joints. \\
\hline
\end{tabular}

Right, those are the products. Now for the advice. And we can't really say any more than: if you've a soldering problem or question, call us. We really do have all the answers and the widest range of problem solving test equipment.
to solder metals. Not for electronics assembly joints.

\section*{Solderability Test Instrument.}

Already used by major electronic companies throughout the world, this novel instrument saves production costs by controlling solderability of component leads which, unlike a printed circuit, cannot be assessed by a simple "immersion and inspection" test.

\section*{Multicore Soldering Chemicals.}

We make a complete, compatible range to assist in soldering processes. They clean, protect and preserve.
```


[^0]:    Gould Advance Limited
    Roebuck Road, Hainault, Essex IG6 3UE, England
    Telephone:01-500 1000 Telex:263785

[^1]:    FREQUENCY COUNTERS
    HIGHER PERFORMANCE INSTRUMENTS FROM $1 / 10 \mathrm{~Hz}$ to 1.2 GHz . MEASURING FREQUENCY, PERIOD, TIME, FREQ./RATIO AND CALIBRATED OUTPUT FACILITY. FAST DELIVERY

[^2]:    *At the 1971 World Administrative Radio Conference the ITU authorized a number of allocations for these direct broadcasting services: for Region 1 , 11.7 to 12.5 GHz , and for Regions 2 and $3,11.7$ to 12.2 MHz , on a shared basis between satellite and terrestrial broadcasting and the fixed and mobile services (including fixed services by satellite in the case of Region 2 only); 620 to 780 MHz (u.h.f.) for f.m. television signals, provided these do not unduly interfere with existing terrestrial systems; 2.5 to 2.69 GHz on a shared basis with fixed and mobile services; and two other bands 41 and 43 GHz and 84 to 86 GHz . The Indian experiment, on 860 MHz , is not within the official u.h.f. allocation, and a permanent service in India would have to lie within the 620.780 MHz band or in a higher band.

[^3]:    "See "News of the Month"

[^4]:    *Primed quantities indicate playback signals.
    $+L_{T}$ and $R_{T}$ represent signals in the two transmission channels; they are in-phase for front sources and antiphase for back sources.

[^5]:    
    

    EMUIRHEAD D-658 $18^{\prime \prime}$ MUFAX CHART TRANSMITTER
    E Further details on request. For $110 / 250 \mathrm{v}$ a.c. operation $£ 325.00$
    EMEGGER (Record): 500 volts $£ 20.00 £ 1.00$ post
    틀 MEGGER (Evershed Vignoles): 250 volts $£ 17.50 £ 1.00$ post
    ER2I6 Receiver MANUAL (photostat copy): $£ 1.50$ inc. post
    ERACAL I.S.B. ADAPTOR RA -95A: £65. Carr. £2
    EMUIRHEAD ATTENUATORS: 75 ohms $0-8 \mathrm{Mc} / \mathrm{s} 3 \mathrm{~V}$ MAK 3 ranges $0-5,0-25$ E0-50 DR $£ 3.00+75$ p post
    ECREED MODEL 75 TELEPRINTER: Receiver only £30.00. Carr. £3
    EEDDYSTONE TELEPRINTER ADAPTOR TYPE 937: £45. Carr. £1
    EWILD BARFIELD ELECTRIC FURNACE MODEL CCI.22X; with ether indicating temperature controllers Model $990.0-1400^{\circ}$ C. £250. Carr $£ 5$.
    METROVAC IONIZATION GAUGE MOLEL V.C.3: £55. Carr. £3.
    AVO VALVE TESTER CT. 160 : (Portable)
    meter. Good condition, $£ 45.00$. Carr. $£ 2.00$.
    REDIFON TELEPRINTER RELAY UNIT No. I2: ZA-41196 and power supply E 200-250V a.c. Polarised relay type 3SEITR. $80-0 \mathrm{~V}$ 25mA. Two stabilised valves CV 286. Centre Zero Meter 10-0-10. Size 8 in $\times 8$ in $\times 8$ in New condition. $£ 10$ arr. 75p
    SOLARTRON PULSE GENERATOR TYPE G1101-2: £75.00 each. Carr. £2.00.
    TELEPRINTER TYPE 7B: Pageprinter 24 V d.c. power supply, speed 50 bauds pe min . second hand cond. (excellent order) no parts broken. $£ 20$ each. Carriage $£ 3$ AUTO TRANSFORMER: $230 \vee 50 \mathrm{c} / \mathrm{s}, 1000$ watts. Mounted in strong steel case $5^{\prime \prime} \times 6^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$. Bitumen impregnated. £12.00. Carr. £1.50.
    CRYSTAL TEST SET TYPE 193: used tor checking crystals in freq. range $3000 \cdot 10.000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in 25. Carr. $\mathbb{E}$ l. 50.

    ESOLARTRON VARIABLE POWER UNIT S.R.S. $1535: 0-500$ volts at 100 mA and E 6.3 volts C.T. 3 amps d.c. $110 / 250$ volts a.c. input. £I8.50. Cari. £1.50.
    EADVANCE A.F. SIGNAL GENERATOR HIE: Sinesoidal or square wave output

    - $5-50 \mathrm{kHz}$. Adustable level between 200uv and 20 v . Overall distortion less than
    $1 \%$. Output adjustable 1.4 mV to 140 V . Waveform ratio $50: 50$ up to 25 kHz . Standard A.C. mains input. As new condition £40.00. Carr. £2.00.
    ADVANCE A.F. SIGNAL GENERATOR H.I.: Same frequency and characteris Etics as above Earlier model. Secondhand condition. £25.00. Carr. £2.00
    EPULSE GENERATOR PG21: Pulse width variable 15 nS to 200 msec in / ranges Delay variable 40 nS to 200 msec with respect to sync pulse output in 7 ranges Jitter less than $1 \%$. Repetition rate 1 Hz to 10 MHz in 7 decade ranges. 20 MHz - available in double pulse mode. Pulse mode: normal, square wave and double Epulse. 240 v a.c. As new condition. £125.00. Carr. £2.00.
    ECLASS 'D' WAVEMETER NO. 1: Crystal controlled heterodyne frequency meter covering 2.8 MHz . Power supply 6 V d.c. Good secondhand condition. = 88.50 . Carr $£ 1.50$.

    PRECISION PHASE DETECTOR TYPE 205: Freq. $0.1-15 \mathrm{MHz}$ in 5
    Variable time delav microseconds $0-0.1 \mathrm{c}, 115 \mathrm{~V}$ input. £55 each. Carr. $£ 1$
    RING TOROIDAL DUST CORES: Size $21 / 2^{\prime \prime}$ outside $13 / 4$ inside $5 / 16^{\prime \prime}$ thick. Box two £1.00. Post 30 p .
    MUURHEAD PHASEMETER TYPE D729: A.M. ©95.00. Carr. £3.00.
    CT. 420 SIGNAL GENERATOR: $200-8000 \mathrm{c} / \mathrm{s}$ Variable tuning. Two fixed frequencies 9000 and 10,000 . Internal calibrator $100 \& 500 \mathrm{c} / \mathrm{s}$. £75 each carr. £2. NOISE GENERATOR TF-II06: Frequency 1 to $200 \mathrm{Mc} / \mathrm{s}$ Direct noise facto calibration. Output impedance 70 ohms $£ 65$ each. Carr. £l.50.
    MW-59 UNIVERSAL KLYSTRON POWER SUPPLY: £85. Carr. £3.
    TF-1'78 II TRAVEI IING TUBE WAVE AMPLIFIFR: $£ 125$. Carr $£ 2$
    BPL A.C. MILLIVOLTMETER TYPE VM.348-D Mk. 3: 2 millivolts-2 volts, ranges £30. Carr $£$
    CAWKELL REMSCOPE TYPE 741 : Memory scope, 'as new' cond. £150.00 MANSON SYNTHESISER QII5-URC: $2-30 \mathrm{mc} / \mathrm{s} . ~ £ 175.00$. FIREPROOF TELEPHONES: $£ 25.00$ each, carr. £i.50.
    POWER UNIT: $110 / 230$ volts a.c. input. 28 volts d.c. at 40 amps output. $£ \mathbf{3 0 . 0 0}$ each. carr. $£ 3.00$
    SMOOTHING UNIT (for the above): $\mathbf{£ 1 0 . 0 0}$ each. carr. $\mathbf{£ 2 . 0 0}$.
    X-BAND MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James Scott £125 each Carr. El
    BACKWARD WAVE OSCILLATOR TYPE SE-125: 6.3 heater, 105 V Anode. 7.9 mA . Mnfr. Watkins \& Johnson. $£ 85$ each. Carr. £1.

    ROTARY INVERTERS: TYPE PE. 218 E - input $24-28 \mathrm{~V}$ d.c. 80 Amps. $4,800 \mathrm{rpm}$ Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}$. IPh. P.F.9. £20.00 each. Carr. $£ 2.50$.
    FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$ complete with origina calibralion charts. Checked out. working order $£ 20+£ 1.50$ carr.
    SORENSEN VOLTAGE REGULATOR: Input $190 / 260$ volts a.c. Output $220 / 240$ volts a.c. 1000 watts. $£ 40.00$, carr. $£ 3.00$
    EVERSHED SAFETY OHM. METER: Max 10 Ma . Test pressure 30 v . Complet 1 leather case $£ 25.00$ each. post $£ 1.00$
    FYLDE AMPLIFIERS TYPE 154 BDM: Rack mounted $\overline{3} \mathrm{v} \mathrm{d} . \mathrm{c}$. and power supply FE 500 TP $£ 65.00$, carr. $\mathbf{E 2} .00$
    AUTOMATIC VOLTAGE STABILIZERS: Input $207-242 \mathrm{v}$ a.c. Output 230 v a.c at $2.80 \mathrm{amps} . £ 17.50$, carriage $£ 1.50$.
    ANTENNA MAST 36ft.: Aluminium, diameter at base $3^{\prime \prime}$ tapering to $2^{\prime \prime}$ at top complete with red hazard lights, stays, guys, etc. Normally used with directio finding equipment. Approx. weight 3cwt. $£ 95.00$ each, carriage rates on reques With rotating Antenna suitable for $200-400 \mathrm{mHz}, £ 15.00$ extra.
    BURGLAR ALARM BELL: $6.8 v$. d.c. $£ 3.00$, $£ 1,00$ post
    Carriage quotes given are for 50 -mile radius of London

[^6]:    To Cambridge Learning Enterprises, Depi COM
    FREEPOST, St. Ives. Huntingdon, Cambs PE 174 BR
    "Please send me....set(s) of Design of Digital Şystems at£7.00 each $p$ \& $p$ included
    or $\quad$ set(s) of Digital Computer Logic and Electronics at $£ 5.00$ each $p$ \& $p$ included
    "or . ..... combined set(s) at £10 50 each, p \& p included

    ## Name

    Address

[^7]:    *10,000 TRANSISTORS Type 2SC733 by Toshibe (BC 108) $\mathbf{E 2 5 0}$ the Lor ( $21 / 2 p$ each

[^8]:    Please send me an "Application for Registration" form
    NAME
    ADDRESS

[^9]:    BURY AREA HEALTH AUTHORITY. We need an ASSISTANT IN THE INSTRUMENT SURVEILLANCE DEPARTMENT at Bury General Hospitai. Salary scale $£ 1,635 \cdot £ 2,226$ p.a. Junior Medicall Physics Tech. nician or $£ 2,346$ - £3,267 p.a. Medical Physics Technician IV - according
    to qualifications and experience to qualifications and experience $+£ 312$ non-enhanceable supplement on each scale. For further informa. tion please contact Mr Brian Taylor
    at Bury General Hospital at Bury General Hospital. 'phone ing giving full detaills of writ. ing giving full detaills of age. ment together with the names and ment together with the names and addresses of two referees to the Area Personnel Officer. Bury Area
    Health Authority 22a Union Health Authority, 22a Union
    Arcade, Bury. Lancashire, BL9 0QF. Arcade, Bury. Lancashire, BL9 0QF: cations 22 July. 1976.

