

The Most Advanced Spectrum Analyser

You've neverseena faster, more accurate way of measuring frequency response from 30 Hz to 110 MHz

The TF 2370 Spectrum Analyser employs advanced technology to provide a complete system for measuring response, level, frequency, signal purity, modulation and much more, with a speed and degree of accuracy previously unobtainable. A digital memory permits the use of a standard monitor tube and internal logic selects gain ratios and sweep speeds for optimum performance. The specification speaks for itself

* Flicker-free 100 dB display of frequency response from 30 Hz to 110 MHz on a high brightness c.r.t.
* Electronic graticule, with a $\pm 15 \%$ variation of horizontal divisions for pin-point positioning against waveform display. * Three amplitude scales: one linear and two logarithmic with expansion to 1 dB /div. with an accuracy of $\pm 0.1 \mathrm{~dB} / \mathrm{dB}$. * 9-digit electronic counter automatically gives centre frequency, reads any other frequency corresponding to manually-adjusted 'bright line' position on display, or the difference frequency between the two, at the press of a
button. All to an accuracy of $\pm 2 \mathrm{~Hz} \pm$ reference frequency accuracy on high resolution and manual. Internal reference frequency provided with setting accuracy of 1 in 10^{7}. * Internal generator supplies synchronous signal source for measuring such items as networks and filters.
* For comparative measurements, unique memory storage system will retain one display indefinitely as required, for simultaneous display with response produced by items under test.
* Automatic adjustment of amplifier gains to give optimum lowest-noise performance with full protection against input overloading.
* Automatic selection of optimum sweep speed.
* With the 5 Hz filter, signals 100 Hz from a response at 0 dB can be measured to -70 dB .

Please send for full information or ask for a demonstration

seeing is believing
 mi: THE INNOVATORS

LOW COST VOLTMETERS

These highly accurate instruments incorporate many useful features, including long battery life. All A iype models tave 83 mm scale meters, and case sizes $185 \times 110 \times 130 \mathrm{~mm}$. B types have 127 mm mirror scale meters and case sizes $260 \times 125 \times 180 \mathrm{~mm}$.

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN 5 5SD
Tel: 01-449 5028/4408686

Prices include batteries and U.K. DELIVERY, VAT extra Optional extras are leather cases and mains power units. send for data covering our range of portable instruments.

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited,
Electron House,
Cray Avenue, St. Mary Cray,
Orpington, Kent BR5 30J.
Telephone : Orpington 27099
Telex: 896141

Not a win on the pools, a trip to a Pacific paradise, or a reduction in income tax, but distortionless 'current dumping'
Z's 1 to 4 are the four passive components which interconnect the current dumpers, (the output transistors which supply the power), to the small high quality amplifier which provides the error signal, so that when the above condition is met the current in the load, the loud speaker, is independent of the current in the dumpers and hence distortion is solely dependent on the quality of the error amplifier, which because it is small can be very good
Wonderful indeed

For further details on current dumping and other Quad products write to Dept. WW
The Acoustical Manufacturing Co. Ltd., Huntingdon. Cambs. PE18 7DB Telephone (0480) 52561

\section*{"Something wonderful happens when $\mathrm{Z}_{1} \mathrm{Z}_{3}=\mathrm{Z}_{2} \mathrm{Z}_{4}{ }^{\prime \prime}$

* Elektor Electronics

Magazine No. 8. Dec. 1975

QUAD

for the closest approach to the original sound for twenty-five years

Offers exceptional value; e.g. the $\mathbf{2}$ channel CR552 Yt Recorder has a comprehensive specification (5 sensitives, 9 chart speeds, electric pen lift, event marker, etc.) at an inclusive ex works price of $£ 396$ (excluding V.A.T.)
Improved PL100 XY/t Plotter now with increased Y axis writing speed.
New PL200 XY/t Plotter plus electric pen lift and vertical or horizontal mounting.
For industry, reseàrch and education, JJ offer rapid delivery of electrical reference, measuring and recording equipment in a wide range of prices and specifications.
Resistance Bridges; Galvanometers; Potentiometers; Decade Boxes; Dynamometers; Machine Sets; Tensile Testers; Pen Recorders.

Send for our illustrated catalogues.
J.J. LLOYD INSTRUMENTS LIMITED

Brook Avenue, Warsash, Southampton SO3 6HP, England.
Tel: Locks Heath 4221 (STD 048 95)
INSTRUMENTS Telex: 477042 - JAY JAY - SOTON. Cables: Eddymes, Southampton.
ww - 059 FOR FURTHER DETAILS

Wayne Kerr's top-selling bridge

Meets modern requirements. Is accurate to 0.1\%.
Is self-balancing. Has 2.3 and 4 -terminal connections. Continuous readout of real and quadrature terms. Overall range 10 micro-ohms to 100 gigohms, 0.001 pF to 10 farads, 1 nanohenry to 10 megahenrys and 10 pıcomhos to 100 kilomhos. Built-ın source/detector (1592 Hz).
Connectors for $200 \mathrm{~Hz}-20 \mathrm{kHz}$ manual operation.
Comparator facilities. Analog outputs. Adjustable sensitivity. Ask for B642 Data Sheet.

Durban Road, South Bersted, Bognor Regis, West Sussex, PO22 9RL
Telephone: Bognor Regis (02433) 25811 Telex: 86120
*Incorporating FERROGR.APH • REND.AR • W'AYNE KERR

$3009+$ SL120

This turntable offers the mechanical excellence of the SL110 in a more compact form. Ideally suited to our precision pick-up arms. its use is detailed in information sheet No. 15, a copy of which will be sent to you on request.

Write to Dept $0638 \cdot$ SME Limited • Steyning • Sussex • England

The best pick-up arm in the world
WW-064 FOR FURTHER DETAILS

Now over to the

Type 2041

Type 2045

Three new additions to the Dymar communications instruments team make a perfect match. They are: Type 2C 41 AF signal generator. Frequency range 3 Hz to 300 kHz . Maximum output $3 W$ into 3 ohms. A combination to 'cover the field from audio applications to vibration analysis. Calibrated and stepped 600 ohms attenuator gives adjustable output levels from 1mV to $3 V$ (fsd). Auxiliary output from oscillator for frequency monitoring. Type 2045 AF two-tone signal generator.
Full audio range, 30 Hz to 30 kHz , with two simultaneous but independently adjustable AF tones of high stability and purity. For intermodulation testing, or for evaluating communications circuits.

Constant source impedance of 600 ohms and output levels adjustable from 1 mV fsd to 1 V emf (3 V for a single tone).
Type 2065 AF distortion factor meter. Accurate measurement of noise and harmonic distortion of AF waveforms in the frequency range 6.4 Hz to 64 kHz . Handles distortion measurements down to 0.03% and can be used as a tuneable bandstop filter.Sensitivity: 300 mV to 10 V . Naturally, all three operate on mains or optional internal rechargeable batteriesfor classic home or away peiformance. 'Ask Dymar for details or use the Reader Reply Service.

$\underbrace{\text { DTMAE }}_{\text {instruments for communications }}$

> Dymar Electronics Limited, Colonial Way,
> Rad ett Road, Watford, Herts. WD2 4LA, England. Telephone: Watford 37321. Telex: 923035 .
> Cables: Dymar Watford.

Gardners TheBest of British

Where performance

 is paramount, professionals prefer Gardners.We, at Gardners, have been in the communications busi ness for many more years than we care to remember - so have our Audio Transformers. Used throughout the world by leading broadcasting and recording companies or wherever leading broadeasting anical standards and levels of reliability only the highest technical standards are good enough our products are still pred by profes sionals who know

From microphone to tape (or film), speakers or head phones, studio consoles, manpacks, amplifiers, modems, we at Gardners have tried to anticipate your needs. Miniaturisa tion (yes!) plus good performance (yes!) through to excep tional performance (of course!). Impedance changing. coupling, isolation, bridging, low and high power, with or without D.C. Choose from our standard range of 95 models Every one an example of sheer professionalism.

All have low loss, low distortion, low phase-shift, low pick-up, BUT wide frequency range

Greenwood Electronics

Greenwood Electronics, Portman Road, Reading, RG3 1NE Telephone: 0734-595844. Telex 848659

Grampian introduced the modular plug-in concept for building multifacility sound installations, together with solid state audio switching over three years ago. Since then many hundreds of complex installations have been supplied and have set a standard for reliability under the most stringent conditions. All equipments are built to a necessary engineering standard and not down to a price with its ultimate high cost of ownership. All amplifying equipments supported by an extensive range of manufactured microphones, loudspeakers and all items required for sound installations by the firm of forty vears standing in the sound business.

GRAMPIAN REPRODUCERS LTD.
HANWORTH TRADING ESTATE, FELTHAM, MIDDLESEX, ENGLAND.

Problem.

Where to obtain devices for push-pull audio power amplifiers which give good linearity and don't blow up on the slightest overload.

Solution.

M-OV audio beam tetrodes. A pair of KT66s will give up to 501V and a pair of KT88s will give up to 100 W .
And M-OV audio triodes, too: a pair of DA42s gives up to 200 W and a pair of DA 100s gives up to 300W

EEVandM-OV know how.

THE M-O VALVE CO LTD, Hammersmith, London. England W6 7PE Tel:01-603 3431. Telex: 23435 Grams: Thermiónic London SEC E WW - 054FOR FURTHER DETAILS

ELECTRONIC INDUSTRIAL THERMOMETER

the modern way to measure temperature
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals. Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal $11 / 2$ volt standard size battery.
Model "Mini-Z $1^{\prime \prime}$ measures from- $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Model "Mini-Z $2^{\prime \prime}$ measures from- $5^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Model "Mini-on Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$
PRICE £20.00 each [VAT 8\% EXTRA)
Write for further detalls to
HARRIS ELECTRONICS (LONDON),
138 GRAY'S INN ROAD, LONDON. WC1X 8AX ('Phone 01-837 7937)
WW - 02I FOR FURTHER DETAILS

- P.A. SYSTEMS FOR AIRPORT, HOTEL, FACTORY.
- THEATRE AND LECTURE THEATRE AUDIO SYSTEMS
- AUDIO MIXING EQUIPMENT
- SIMULTANEOUS TRANSLATION SYSTEMS
- RADIO AND T.V. BROADCAST SOUND CONTROL EQUIPMENT
- MARINE INTERCOMmuNication and Entertainment Equipment
- System design, manufacture and installation

 Wonden, Saffron Warden, Escex CB11 4L9
 TEL. Safiron Waldon (0799) 40888: TELEX: 817444

5145 INLAND MOTOR amplifiers and motors

NEW!

DC SERVO

 AMPLIFIEREM-1800 SERIES 25-300 WATT MIL SPEC DESIGN

Features:
Small size for package flexibility
Wide band-width for fast servo response
Voltage or current feedback to provide low or high impedance output.
Adjustable gain for maximum flexibility.
Current limiting to prevent demagnetization of a DC torque motor and for short circuit
protection.

DIRECT DRIVE

TORQUE MOTORS TACHOGENERATORS BRUSHLESS MOTORS SERVO MOTORS for
Aerospace/Military applications.

Applications: DC Torque Motors Other DC Servo Motors Deflection Coils
Servo Valves
Low Inertia Motors.

Inland UK Representatives
219 Kings Road, Reading RG1 4LS Berkshire
Telephone: Reading (0734) 68980/65929 Telex: 847032

WW-066 FOR FURTHER DETAILS

DIGITAL CLOCKS MODULES KITS CALCULATORS NEM PBTCES

Module: Assembled Complete Clock Kit Complete Clock Kit Ready built Clock Ready built Clock

'DELTA'

4 RED $05^{\prime \prime}$ LEDS

	STD	ALARM
(excl. case)	9.00	11.50
(excl. case)	$\mathbf{9 . 5 0}$	$\mathbf{1 2 . 0 0}$
Perspex Case	$\mathbf{1 2 . 0 0}$	$\mathbf{1 5 . 0 0}$
Teak Case	$\mathbf{1 2 . 7 0}$	$\mathbf{1 5 . 7 0}$
Perspex Case	$\mathbf{1 7 . 0 0}$	$\mathbf{2 1 . 0 0}$
Teak Case	$\mathbf{1 7 . 7 0}$	$\mathbf{2 1 . 7 0}$

ALARMS:
Built-in alarm : Tilt operated snooze
AM / PM indicator: Power failure indicator

[^0]

[^1]$12 / 24$ hour

STD 10.00

Module Kit Module Assembled Complete Clock Kit Ready-built Clock

FREQUENCY COUNTERS HIGHER PERFORMANCE INSTRUMENTS FROM $1 / 10 \mathrm{~Hz}$ to 1.2 GHz . MEASURING FREQUENCY, PERIOD, TIME, FREQ./RATIO AND CALIBRATED OUTPUT FACILITY. FAST DELIVERY

TYPE 1001M
C̄̄̌stal oven
OPERATING MANUAL
TWO TONE BLUE CAS
TWO TONE BLUE CASE
. 1.2
Sensitivity 10 mV . Stability 5 parts $10 .{ }^{10}$

Type 101 1MHz 100KHz 10 KHz Crystal Standard $\mathbf{E B 5}$ Type 103 Oft/Air Standard E85
SUPPLIER̄S TO: Minivery of Defence, G.P.O.. B.B.C., Government Dapt.. Cryutal Manufacturers and Elactronic Laboratories world-wide

R.C.S. ELECTRONICS 6 WOLSEY ROAD, ASHFORD MIDDX. TW15 2RB
Telephone: Ashford (Code 69) 53661/2

Our standardirange of toroidal transformers are now encapsulated to give full protection and present a more attractive component
Power ratinigs from 15 VA to 130 VA
Comprehensive range of secondary voltages to suit most power supply requirements

Avel buntherg Lte South Oekendon Essex RM155TD Telephione Scuth Ockenton 3444 T Thex 897106

WW-056 FOR FURTHER DETAILS
Nahade
TRANSVERTORS
TRANSISTORISED INVERTERS

VALRADIO t́ransvertors are being used all over the WORLD FOR MANY APPLICATIONS, INCLUDING: VIDEO TAPE RECORDERS, SOUND TAPE RECORDERS, ALARMS LABORATORY EQUIPMENT, TELEVISIONS AND MANY OTHER TYPES OF EQUIPMENT

SOME TYPICAL TYPES ARE:

D24/500S 24v DC input 500 watts sine wave outpui 230 V
AC $£ 217.20$
D12/150T 12vDC input 150 watts square wave 230 voutput £47.55
D24/60S $24 v$ DC input 60 watts sine wave $230 v$ output
£66.95
We also manufacture Frequency Changers, Power Supplies and Standby Systems, and we are always happy to quote for your special requirements. All prices plus VAT

Please send for full details to
VALRADIO LIVITED, BROWELLS LANE, FELTHAM, MIDDLESEX, TW13 7EN
Tel. 01-890 4242/4837

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.

Our product range comprises Low profile (flatform) Timing Miniature - Low contact capacity Herme tically sealed Stepping Mains switching Latching Contact stacks Solenoids

Stepping Relay AZ 170

Contacts are mechanically latched and thus unaffected by supply interruption.
Regular contact configurations from 1 make up to 3 charigeovers. Heavy duty version with 1 make or 1 changeover. Switching capability: 3 A at 125 VAC Coil voltages: 6 to 110 V DC

We resolve your switching problems rapidly and expertly. Please contact us for further details.

Zettler
UK Division
Brember Road, Harrow. Middx. HA2 8AS. Tel. (01) 4220061
Leetronex, Leeds, 29 June-1 July, 1976
A member of the worldwide ZETTLER electrical engineering group. est. 1877 WW-008 FOR FURTHER DETAILS

THIS IS IT!

Fully built and tested for immediate use in ANY tuner using Vari-cap control

NOW IS THE TIME TO BUY!

Our prices were reduced in April. Now VAT has been halved. Will things ever be quite this good again? Make use of your credit card and buy now with confidence
We give full after-sales service and guarantee with all parts and kits.

6 channels plus manual Illuminated touch buttons 20 volts supply
Full instructions for use Fully built and tested Available now, post free. Introductory price $£ 16.71$ inc. V.A.T. See May's advertisement for full lists and prices, or write to:

TOUCH TUNE PRE-SELECT UNIT

Shown here with meter drive components from Kit K 12 mounted on same P.C.B.

Our Tuner is now fully updated and improved. If you intend to build, you must buy our new booklet fully describing our updated tuner.
(50 p post free, refundable on orders over $£ 10$)

Son
33 Restrop View
Purton, WILTS. SN5 9DG

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

 SPECIAL FEATURES:\star very low distortion content-less than 0.03%
\star an output conforming to RIAA recording characteristic

* battery operation for no ripple or hum loop
\star square wave output of fast rise time

Si451 Millivoltmeter

$\star 20$ ranges also with variable control permitting easy reading of relative frequency response

Better Performance thanany Graphic Equaliser on the market

$$
\begin{aligned}
& \text { Buventisu }
\end{aligned}
$$

Summerfied Kidderminster DY17 7 RE
Tel Kidderminster 64027

Ww - 011 FOR FUTHER DETAILS

DATA AND COMMUNICATIONS TERMINALS

Teletype 28, 32, 33, 35, 40
TermiNet 30,300 \& 1200 (30 and 120 cps) Teleterm $1030 \& 1132$ (portable 30 cps with integral coupler and RS 232C) Other page printers (by Siemens, ITT Creed, etc.) TermiNet 120 line printer

* Spares, repairs, overhauls and maintenance * Other types and models available
* Refurbished units also available \star Short and long period rentals
* Minicomputer interfaces
* Quantity discounts * Immediate delivery

TELEPRINTER EQUIPMENT LTD. 70-80 AKEMAN STREET, TRING, HERTS., U.K.

Telephone 0442-82-4011 Cables Rahno Tring Telex 82362 A/B Bateicom Tring

AMCRON POWER AMPLIFIERS

The AMCRON range of DC-coupled power amplifiers are used by Government, and University Research Departments as well as by Industry for a variety of applications ranging from Shaker, and Vibrator driving, to driving both $A C$ and $D C$ Motors, providing variable frequency power supply, or high voltage material testing. All models are DC-coupled throughout, with Intermodulation, and Harmonic Distortion below 0.05\%, damping factor of at least 400 from $D C$ to 1 kHz , and the ability to operate into load impedances from 1 ohm to infinity even into highly reactive loads.

M600
750 watts into 8 ohms 1,350 watts into 4 ohms $D C$ to $20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db}$ $+0^{\prime}-15^{\prime} \mathrm{DC}-20 \mathrm{kHz}$ $16 \mathrm{~V} / \mu$ second
120 db below 600 Watts $19^{\prime \prime}$ std rack, $8^{3 / 4^{\prime \prime}} \mathrm{H}, 16^{1 / 2^{\prime \prime}}$ Deep

500 watts rms into 2.5 ohms (1 chan) 200 watts into 2.5 ohms (1 chan) $\mathrm{DC}-20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db}$ $+0,-15^{\prime}$ DC to 20 kHz 8 volts per microsecond At least 110 db below 150 watts 19" Rackmount $7^{\prime \prime}$ High. 93/4" Deep

D150A $\mathrm{DC}-20 \mathrm{kHz}+1 \mathrm{db},-0 \mathrm{db}$ $+0^{\prime},-15^{\prime} \mathrm{DC}$ to 20 kHz 6 volts per microsecond At least 115 db below 90 watts $19^{\prime \prime}$ Rackmount, $5^{1 / 4^{\prime \prime}} \mathrm{H}, 88^{3 / 4^{\prime \prime} \mathrm{D} \text {. } \mathrm{C}}$

MACINNES LABOBATORIES LTD.
Macinnes House, Cartion Park Industrial Estate
Saxmundham, Suffolk IP17 2NL. Tel: (0728) 22622615

MACINNES FRANGE
45 Rue Fessant
Paris 75019, France
Tel: 203-30-01

WW-006 FOR FURTHER DETAILS

itam

ITAM 805 (8TRACK) MASTER RECORDER

Fully modular electronics using plug out. Separate sync and replay amps give identical gevels Switchable decay Individual oscillator for each channel. Dolby A switching facility. Comprehensive facilities include sync on all chan. nels, servo controlled capstan modularelectronics, variable speed (optional), relay solenoid operation Compact presenta toon for easy porta-
bility.
$\mathbf{£ 1 7 9 0}+$ VAT Full console optional extra
Compatible 8-output Mixer available $£ 1260$ + VAT

DTIAII

OTARI DP-4050

Ideal for one copy or ten thousand Eight times copy speed foolproof operation for non skitled personnel. modularconstruc tion, servo-con trolled direct cap. stan drive.

Immediate delivery

Alice Broadcasting

USA: CCA ELECTRONICS

 CORPORATION NEW JERSEY TELEX 84-5200CANADA: CALDWELL AV
EQUIPMENT CO. LTD TORONTO
TELEX 06-963645

AM Series Broadcast Mixing Consolus for Radio and Television

Chris Walden or
Ted Fletcher at:
Windsor (07535) 51056/7

TPA 50-D Specification
\(\left.\begin{array}{ll}Powef Output \& 100 watts rms into 4 ohms

\& 65 watts rms into 15 ohms\end{array}\right]\)| Freq Response | $\pm 0.1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 KHz into |
| :--- | :--- |
| | 15 ohms. -1 dB at 150 KHz |
| Total harmonic | Less than 0.04% at all levels up to |
| distortion | 50 watts rms into 15 ohms |
| Input sensitivity | OdBm |
| Noise | -100 dB |
| Rise time | 2 u seconds |
| Price | $£ 77$ plus $\overline{\mathrm{V} . A . T . ~}$ |

100 V Line (C.T.) and balanced inputs available.
For full technical information contact:
h|HELECTRONIC
CAMBRIDGE ROAD, MILTON, CAMBS
TELEPHONE CAMBRIDGE 65945/6/7

Test Equipment

Multimeters

The Eagle range of multimeters covers every possible need of the electrical or electronic engineer. They cost from about $£ 6$ to $£ 58$ (inc V.A.T.). There's at least one which suits your job precisely.
We have a lot of other test equipment too.
Send the coupon and we'll send you our

WW - 023 FOR FURTHER DETAILS

SUMMER SALE

 DEDUCT 10\% FROM THE PRICES SHOWN HERE. OFFER CLOSES JULY 31st 1976min. CWO E1

LINEAR ICs

CA3089E	1.94	7805 KC
KB4402	1.94	$7805 \cup C$
TDA1200	1.94	$78 L 12$
HA1137W	2.20	$78 M 12$
CA3090AO	3.75	TDA1412
MC1310P	2.20	7812
KB4400	2.20	7815
CA3053	0.40	$78 M 20$
CA3088E	1.50	78M24
LM1496	1.02	UA723
		NE550
MC135OP	0.70	LS8038
SN7666ON	0.75	NE555
TBA120AS	1.00	NE560
TBA651	1.81	NE561
UA720PC	1.40	NE562
UA753	0.99	NE565
TDA440	1.75	NE566
LM380	1.00	NE567
LM381N	1.81	MVAM2
LM3900	0.68^{*}	BA102
MC3401	0.68^{*}	BA121
UA741	0.40^{*}	MV104
TBA810AS	1.09	MEM615
TCA940E	1.80	MEM616
TDA2020	2.99	11C90

ambit wr𠃊amanoal

DISCRETE

ZTX107n

0.45* ZTX109n

1.20* ZTX212p

Modules, tuners

$\underset{\substack{5600 \\ E \in 3302}}{ }$ Ec3302
9001
9002
9007
7700
 Strength meter, scale 0-10. Tuning meter, scale $3-0-3$ 'Off-air' UHF TV sound receiver Varicap tuned, with interstation muting, and sound detection at 38 MHz (Built). inc. P.S.U.
80116 station electrnic station selector for any positively tuned varicap tuner system.
incorporating a muting output, AFC lock and scan tuning. Built.
14.99

7252 Top quality tunerset VHF to audio Varicap tuned with 3 meter outputs.
7253 Tunerset with built-in stereo decode
8319 anal Mosfer qunerhead as used in 7252
24.00

Oual Mosfet qunerhead as used in $7252 . \quad 12.00$
2020k TDA2020 stereo amplifier kit. 7.85
2020HS Heatsink for one TDA2020 (only with IC).
55 kHz low pass filter (birdy filter) for
stereo radio (between detector and decoder).
1.75

Suffix ' k ' indicates kit, otherwise supplied built and tested.
NEW MODULES (EDGE TERMINATED)
56196 stage, dual mosfet UHF tunerhead.
£12.50
7020k 10uV FM IF system with muting, agc, main tuning voltage AFC system.
£4.50
92310k Comprehensive 1310 decoder, with
notch filters and $5 \times$ gain.
£5. 35

D.M.W.
 D.M.W. ASSOCIATES (ELECTRONICS) LIMITED

Time code generators' translators, tape search systems with manual or computer control

High-power wideband
linear amplifiers

A comprehensive range of airborne and ground based Time Code Generators, Translators, and Tape Search Units. The equipment is used in conjunction with instrumentation and other types of magnetic Tape Recorders, for efficient data acquisition and analysis. Manually operated equipment and fully computer controlled systems are available. The computer controlled systems include installation, commissioning and checkout software. A design service for special time code applications is also available.

A comprehensive range of wideband linear amplifier systems covering the frequency range $500 \mathrm{kHz}-60 \mathrm{MHz}$ is available. A wide rangé of power output is available by combination of basic modules. Hybrid couplers for power splitting and combining, sub-octave high power switched filters, and automatic aerial matching units are also available. The company also offers a design and development service for special systems.

SYSTEMS
STUDY-DESIGN
ENGINEERING AND
INSTALLATION

> RESEARCH AND DEVELOPMENT FACILITIES COVERING A WIDE RANGE OF TECHNOLOGY

DMW Associates (Electronics) Ltd 6-8 Morris Road
Royal Oak Industrial Estate
Daventry, Northamptonshire
Great Britain. NN11 5PD
Telephone: Daventry (032 72) 71472

BIMEDARD

Stop Ruining Your I.C.'s And Wasting Time Soldering Plug Into The Revolutionary New BIMEDABD
The Only Professional Quality Breadboard That Accepts All DIL Packages With 6 To 40 Pins Incorporates Bus Strips For Vcc And Ground Includes A Component Support Bracket

Has Over 500 Individual Sockets
And Allows You To Use And Re-Use IC's, Transistors, LED's, 7 Segment Displays, Diodes, Resistors, Capacitors

Only $£ 9.72$ (cheque with order) Including VAT and P.P. Special Quantity Discounts Available For Radio Clubs, Retail Outlets, Distributors $=\mathrm{BO}=$ INDUSTRIAL MOULDINGS LTD
Higgs Industrall Estate, 2 Herne Hill Road, London, SE24 0AU, England Tetephone 01.737 2383

With a calibration accuracy of 5 ppm and a resolution better than 0.1 ppm , the JJ BR150/10 a.c. bridge is particularly suited to precision resistance thermometry.
The BR100 d.c. bridge will calibrate an eight decade resistance box on every setting of every decade to within 2 ppm in less than 5 minutes.

For industry, research and education, JJ offer rapid delivery of electrical reference, measuring and recording equipment in a wide range of prices and specifications.

Resistance Bridges; Galvanometers; Potentiometers; Decade Boxes; Dynamometers; Machine Sets; Tensile Testers; Pen Recorders.

Send for our illustrated catalogues:

The Semicon International ancomon Transistor Index

Easy alpha-numeric reference to the ratings and characteristics of some 24,000 transistors of international origin. European, U.S.A. Japanese. Essential guide for all Engineers, Teclonicians, and Buyers. Over 450 pages of basic information. By far the best manual of its kind available anywhere to-day

* EXTENSIVE SUBSTITUTION GUIDE

* CV \& BS DEVICES \& EQUIVALENTS

* TERMINATION DRAWINGS

* alternative sources of supply
Remit with order price. UK only
$£ 9.60$
Elsewhere $£ 10.90$ Surface mailing Please send copres of the Semicon Transistor Index. 6th Ed. 10: Name Address / enclose cheque/postal orders for $£$. My Access/Barclay/Interbank Card No. is

Refund it not satisfied and book is returned within 14 clays. Semicon Indexes Ltd. 2 Denmark St. Wokinghain. Berks. RG 112 BB. TEL: WOKINGH,AM (0734) 786161 WW-032 FOR FURTHER INFORMATION

brenell

 PROFESSIONAL TAPE TRANSPORTSand multi-channel electronics for studio and industrial use

* Tapewidths up to 25 mm
* Speeds: $3 \mathrm{~mm} / \mathrm{s}$ minimum up to $152 \mathrm{~cm} / \mathrm{s}$ max 2 and 4 speed models
Finance available
* Reel Capacity up to 29 cm
* Remote Control Facility
* Tape Tension Control
* Automatic Interlock against misuse
* Special models to customer requirements

1. RADFORD

AUDIO HIGH SENSITIVITY VOLTMETERS \& NOISEMETERS

HSV1
Audio Voltmeter. Average reading
£125.00
HSV2
Audio Voltmeter. True r.m.s. reading $£ 175.00$

ANM1
Audio Noisemeter. Average reading
£150.00
ANM2 Audio Noisemeter. True r.m.s. reading . . £200.00
Four instruments are now available for the measurement of audio frequency signals including noise. They are derived from a basic battery operated voltmeter design having 16 measurement ranges from $10 \mu \mathrm{~V}$ for full scale meter deflection to 300 V f.s.d. The Voltmeter has a high input impedance and low inherent noise. It is fitted with a high grade meter having a $5^{\prime \prime}$ mirror scale of excellent linearity, calibrated in volts and dBv .

The Audio Voltmeter (HSV1) becomes an Audio Noisemeter (ANM1) by the inclusion of frequency contouring networks having characteristics recommended by international organisations concerned with specifications and measurement standards as being suitable for the quantitative measurement of the subjective effect of noise in audio systems. The HSV1 and ANM1 instruments respond to the average or mean value of the waveform being measured and are calibrated in r.m.s. values on a sine wave.

In the HSV2 and ANM2 instruments an r.m.s. to d.c. converter module is incorporated which provides a true r.m.s. reading on waveforms with a crest factor in excess of 10 . These instruments are also provided with an additional output socket giving 1.00 V d.c. output corresponding to 1.00 V at nominal full scale meter deflection to operate a chart recorder or d.c. digital voltmeter.

All the instruments are fitted with a socket to enable an external network of any weighting characteristics to be introduced in the measuring circuit. This extends the use of the instruments to vibration and acoustical measurement as well as to the measurement of gramophone turntable rumble, f.m. receiver noise, etc.

Brief Specification.

Frequency response as Voltmeter

Input impedance
Attenuator accuracy

Meter scale linearity

Waveform error in true
r.m.s. instruments

Noisemeter included
weighting characteristics

Size deep overall

Please write or phone for descriptive leaflet giving details of the design and full performance characteristics of the above instruments, together with a reprint copy of Dolby Laboratories Inc. Engineering Field Bulletin No. 19/2 - 'Noise Measurement on Consumer Equipment

RADFORD LABORATORY INSTRUMENTS LTD. Ashton Vale Road, Bristol BS3 2HZ Avon Telephone 0272662301

USA. Roth/Sindell. 540 Kelton Ave., Suite 102 Los Angeles, California 90024. Tel. (213) 473-3687

WW - 031 FOR FURTHER DETAILS

servos synchronous steppers de motors

gearboxes and

 control systems soocsiss or or imex nooos MClennonMcLENNAN ENGINEERING LIMITED Kings Road Crowthorne Berks Telephone: Crowthorne 5757/8

WW - 012 FOR FURTHER DETAILS

PRECISION PETITE LTD.

119 A HIGH STREET, TEDDINGTON, MIDDX. TEL. 01-9770878

Now with the
-NEW MK. II DRILL•
10,000 r.p.m., 120 cmg
"MORE POWER MORE TORQUE"
$12 v .-14 v . D C$
DRILL ONLY £8.00
(P.P. 35p)

STAND £3.76
(P.P. 35p)

Incl. VAT
(Together 50p P.P.)
SAE for illustrated
 leaflet and order form

COIL WINDING

Manufacturers of all wound components including transformers, chokes stators and armatures.
Prototype and design service available.
-Electric Windings' factories are equipped to handle large or small volume production. Vacuum impregnation plants provide varnish impregnation for all temperature requirements.

ELECTRIC WINDINGS (LONDON) LTD. (Dept. WW) Avenue Works, Gallows Corner Romford, ESSEX RM3 OAJ

Ingrebourne 46677

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

ANEMPINESSOM insoldening

Iso-Tip Cordless Soldering Iron

Ideal for factory, field servicing, laboratory or home, the Iso-Tip Cordless offers a great advance in soldering. It is completely portable, heats in 5 seconds and recharges automatically in its own stand.

The Iso-Tip is powered by long-life nickel cadmium batteries giving tip performance up to 50 watts with a temperature of $370^{\circ} \mathrm{C}$. Tips are available in five different sizes ranging from Micro to Heavy Duty to meet all soldering requirements.

Greenwood Electronics
Portman Rd, Reading RG3 1NE, England Telephone: Reading (0734) 595844 Telex: 848659
$\overline{\text { WW - }} 026$ FOR FURTHER \bar{R} DETAILS

ELECTRONORGṪECHNICA

carbon film

RESISTORS
$1 / 8$ and $1 / 4 w 70^{\circ} \mathrm{C} 5 \%$ tol. E. 12 EX-STOCK

Contact John Gingell

WW-0X0 rUK ruKTHER DETAILS

PRINTED CIRCUIT BOARD TRANSFER SYSTEMS

Acid resistant transfers for direct application to P.C. Board. This is a new approach to printed circuit board manufacture, giving a professional finish with all details that an electronics engineer would require, including all drilling positions automatically marked.
Ideal for single unit boards or small quantities. All at a very low cost-for example an average $6^{\prime \prime} \times 4^{\prime \prime}$ layout would cost less than 30p, and the time taken under one hour, including etching to complete.
The system is simple, briefly it consists of 10 sheets of self adhesive acid resistant transfers made in required shapes - i.e. edge connectors, lines, pads, dual in line I.C.s, 8-10-12. T.O. 5 Cans, 3-4 lead transistors, etc., etc., which only require pressing into the required positions on the printed circuit board before etching

The printed circuit transfer system is a genuine offer to the public and industry, A full money back guarantee is sent with each order, trade prices on application.

List of Prices

Complete system including post and VAT £2.95
Individual sheets . 30p
Sample sheet . 30p
Ex. U.K. Post Extra . 1.00
Printed circuit board PCB transfer systems patent applied for

Printed circuit board PCB transfer systems patent applied for

E. R. NICHOLLS, 46 LOWFIELD ROAD, STOCKPORT, CHESHIRE TELEPHONE NUMBER 061-480 2179

PROFESSIONAL - FREQUENCY COUNTERS BY HOYMITZ

Up-to-the-minute design. All five of our range of frequency-period-ratio counters are directly gated. For best resolution - FAST
Stability. Electronic controlled crystal oven 3 parts 10^{*}
Bright. .63" character height display. (All Nine)
CHOICE. Filament or LED with Polaroid Filter.
All counters have suppressed leading zeros and auto decimal point positioning for easy positive readings. The memory is also standard
Suffix F- Filament
Suffix L- LED

Type DG100L

Type DG100F
Sensitivity 10 min V
Frequency 100 Mhz
PRICE £199.00

Type DG3zL

Type DG32F
[8 digit only)
Sensitivity 10 mV
Frequency 32 Mhz
PRICE £169.00

Type DG700L
Type DG700F
Sensitivity AMP $1.0 \mathrm{C}-200 \mathrm{Mhz}$. 10 mV . PRICE 5569.00
Sensitivily AMP 2.40-700 Mhz. 10 mV

nombrex

MODEL 41
R.F.SIGNAL GENERATOR

Price £54.85

* $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals.
pLUS V.A.t
- 8 clear scales - Total length 130 mm
* Spin-Wheel Slow Motion Drive 11 - 1 ratio
- Overall Accuracy - $2 \frac{1}{2} \%$
* Modulation, Variable depth and frequency.
* Internal Crystal Oscillator providing calibration checks throughout all ranges.
* Mechanical scale adjustment for accurate alignment against internal 1 MHz crystal oscillator.
* Powered by 9 V Battery.

Trade and Export enquiries wetcome
Send for full technical leaflets
Post and Packing $£ 1.00$ extra
NOMBREX LTD., POUND PLACE, WOLBOROUGH STREET, NEWTON ABBOT, DEVON, TQ12 INE Tel. Newton Abbot 68297

WW - 016 FOR FURTHER DETAILS

RADFORD HD250

High Definition Stereo Amplifier

A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

Rated power output: 50 watts av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven.

Maximum powar output: 90 warts av. per channel into 5 ohma
Distortion, preamplifier: Virtually zero (cannot be identified or measured as it ia below inherent circuit noies.)
Distortion, power amplifier: Typically 0.006% at 25 warts, less than 0.02% at rated ourpur (Typically 0.01% at 1 Khz)

Hum and noise: Ditc, -83dBV measured flat with noise band width 23 Khz (ref 5 mV); -88 dBV " A " weighted (ref. 5 mV)

Line -85 dBV measured flat (rof 100v) $-88 d$ BV " A " woighted (ref 100 V)
Hear the HD250 at
SWIFT OF WILMSLOW
5 Swan Street, Wilmslow, Cheshire (Tel. 26213) Mail Order and Personal Export enquiries: Wlimsiow Audio. Swan Works, Bank Mail Order and personal Expo
Squaro, Wlimatow (Tel. 29599)
Atso in stock: All Radford speaker drive units and crossovers, ZD22 preamp. Low

SGS-ATES power linears it's lonely at the top

Our loneliness and our leadership go back a long, long time; they began with power linears. - In fact, right from the start we've done it all ourselves; paving the way for the others. So that now, when you talk about power linears you automatically talk about SGS-ATES. And in all senses - from experience to technological progress, from the fullness of range to production know-how.

In 1968 we put the first audio amplifier on the market - the 2 W TAA 611 - and since then we've gone on being first at every new step along the way. In 1970 we were the first to achieve 5 W with the TBA 641 and TBA 800; in 1972 the first circuit with thermal protection - the 7 W TDA 810 S .

In 1973 the first amplifier to achieve 10 W with full protection - the TCA 940.

In 1974 the first real $\mathrm{Hi}-\mathrm{Fi}$, the TDA 2020 20 W with 1% distortion.

The development of these technologies has also made it possible to make the first complete sound-channel for TV; the first monolithic vertical deflection system; the first complementary Darlington integrated pair.

And now?

The TDA 2002: the most robust and compact audio amplifier. The very best of our design experience has gone into producing the TDA 2002: in the chip and
 the package. It comes in Pentawatt ${ }^{\circledR}$ and it's highly protected against thermal overloads; against short-circuits; against supply overvoltages including spikes.

With a 14.4 V supply it gives 8 W on 2Ω. It is ideal for car radios and saves 50% on external components and even more on space.

And that's why

SGS-ATES (UNITEC KNGDOM) LTD.

EEVmarine magnetrons?

+++ EEV MAGNETRONS FOR MARINE RADAR STOP.
EXPANSION COMPLETE STOP ALL TYPES NOW
\therefore AVATLABLE STOP FOR EX STOCK DELIVERIES
ORDER NOW. ENELECTICO

Yes.

To meet increasing worldwide demand, we've stepped up production of EEV marine magnetrons.

Now you can order all EEV types and be sure of getting them from stock.

You'll be sure, too, of getting the world's best tubes. EEV's unique metal/ceramic magnetrons can last 60% longer

than other makers' glass types. Get the best. Fast. EEV/M-OV magnetrons, modulator tubes, duplexer devices, CRTs - in fact, all the tubes you need for marine radar.

From EEV/M-OV international stockists everywhere. Or if you'd like our equivalents list, contact Chelmsford.

EEVand M-OV know how.

wireless world

Electronics, Television, Radio, Audio

JULY 1976 Vol 82

Contents

Alien audio

Video discs?
Schmitt trigger design with op-amps by R. D. Tuthill
Circuit ideas
P.c.b. ammeter

Electrostatic headphone amplifier
Thermostat
IRCAM
F.m. adaptor for a.p.t. tape recording by T. B. Tuke

Wireless across space -2 by Tong B. Tang
H.F. predictions. Literature received

Unfamiliar forms of temperature compensated voltage reference by K.
C. Johnson

45 Wideband compander design by John Vanderkaoy
News of the month
Video-plus-data recording
Brake regulator eliminates locking
Tributes to Arthur C. Clarke
52 World of amateur radio
53 Analogue-to-digital meter by G. Kalanit
57 F.m. tuner designs by D. C. Read
58 Receiving weak TV signals by W. H. Jarvis
59 Space news
60 Letters to the editor
Traffic broadcasting
Current-dumping amplifier
TV tuner design
64 Circards 31: digital multipliers and dividers by J. Carruthers, J. H. Evans, K. Kinsler and P. Williams

65 Surround sound decoders - 2 by David Heller
68 Announcements
71 Binary Counting by C. Jones
76 Doppler shifts analyse Chinese ceramics
77 Electronic systems - 4 by W. E. Anderton
79 IEA products
81 New products
123 APPOINTMENTS VACANT
136 INDEX TO ADVERTISERS.

[^2]

Photographer Paul Brierley
Front cover introduces the article on video discs in this issue and shows colour patterns produced by light interference effects on the surface of a Philips VLP video disc.

IN OUR NEXT ISSUE

The inventors. An examination of the difficulties of inventors in the electronics field in getting their ideas accepted by the Establishment - some revealing interviews.

Accurate digital clock. First part of a design for a self-setting clock controlled by radio using the time-of-day code transmitted by MSF, Rugby.

Linear characteristics. First article of a tutorial series on linear and nonlinear characteristics and load lines in electronic circuits.

SIXTY-SIXTH YEAR OF PUBLICATION

Vocal Moster of Ceremonies

There are precious few ceremonies, functions, meetings or entertainment events that Shure Vocal Master Sound Systems can't cover - regardless of room size or apparent acoustic difficulties. The Vocal Master is designed to project the voice with intelligibility and authority to the rear of large areas without overwhelming the listeners up front. It's versatile, easy to operate, and totally reliable. It's the system that earned its reputation for superb sound amplification by meeting the standards of professional entertainers and is now used in hotels, churches, schools, executive meeting rooms and entertainment facilities from Land's End to John O'Groats in preference to built-in "custom"' systems costing many times more.
Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

wireless world

Editor:
TOM IVALL, M.I.E.R.E

Deputy Editor:

PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors:

BILL ANDERTON, B.Sc
Phone 01-261 8620
MIKE SAGIN
Phone 01-261 8429

Production:

D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)

KEVIN BURNAL
Phone 01-261 8515

NIGEL LITTERICK
Phone 01-261 8037
O. BAILEY (Classified Advertisements)

Phone 01-261 8508 or 01-261 8423

JOHN GIBBON (Make-up and copy) Phone 01-261 8353

IPC Electrical-Electronic Press Ltd
Publisher: Gordon Henderson

Alien audio

We were recently talking to a man who takes published designs for audio equipment (among other things), collects the components together and, after attending to the mechanical design of the instrument, sells kits of parts. The finished appearance of the equipment was mentioned and he was of the opinion that an extra few decibels of s / n ratio or another order of magnitude less on the t.h.d. figure were as nought compared with a multitude of "facilities" and a satin-finished front panel. Not that his kits reflect this point of view - they are extremely well done - but he is beginning to think in terms of a spurious "technical" appearance, quite apart from high quality, to sell his products. The conversation made us think about the imbalance in the hi-fi shops in favour of foreign equipment and why it exists.

There are at least two main reasons for this imbalance. The first is advertising in a recent check in one of the high-fidelity magazines we counted 30 pages (full-page, single-name ads) for foreign, mainly Japanese equipment, against 12 similar pages for British products. And that didn't include the discount companies who handle a very high proportion of foreign equipment. It is also evident that the use of English-sounding names for many of these foreign products is widespread. Secondly, the appearance of most foreign equipment is designed to project a "scientific" look, often with superfluous controls and indicators. The performance of these products is good, but is not better than that of home-grown equipment, whose appearance is less deliberately contrived. However, if the "mission-control" category of product is what the average person likes and therefore buys, why not let him have it? It could pay British designers to take more notice of the preferences of their customers. Or perhaps a foreign name might help.
British sound reproduction equipment has always been in the lead for sheer high quality and it seems stupid to let foreign companies take over the market by means of high-pressure saturation advertising through their distributors. Loudspeakers and electronics made in Britain have no peers anywhere, except perhaps in presentation, and that shouldn't present too much of a problem to a competent industrial designer who is prepared to cater for the demonstrated taste of the equipment-buying public.

"Without doubt the video disc is not the end of the story"

The quotation is how we ended our June 1975 view of the video disc scene. That view made the point that everyone seems to have taken for granted the use of the domestic television receiver for display of video records. It is of course the existence of a huge number of $t v$ sets that prompts industrial and commercial concerns to think in terms of selling a home video unit to set owners. The return on investment could no doubt be enormous if things turn out right for them. But it does bring into focus the question of whether the currently-promoted video disc systems are the best way to achieve this end; not to mention the more fundamental question of priority about whose needs are to be met in the first place.

If an attraction for the electronics giants is the sheer volume of production, can it be achieved with the precision mechanisms, by domestic standards, that so far appear to be needed? Video players are not like other domestic products of the electronics industry, many of which can almost be thrown together and sold in millions at rock-bottom prices. Not yet anyway. They are precision machines, made from close-tolerance and hence costly components, and clearly fall into a different category from the low pro-duction-cost things we see around the home. Cost reduction by quantity production has its limits for such instruments and unless price can be reduced to amounts within the pocket of the ordinary citizen where is the one-video-player-per-family market? Teldec are not finding it easy to sell TeD players at DM1500.
It is doubtful that the tv-type display will be optimum for many applications. All manner of new display devices are currently being dreamed up, and it seems unlikely that the television line-by-line scanning system would be optimum to these. (If scanning is at all appropriate, a variable scanning rate, depending on changes in information density, may offer advantages.) Together with developments in the newer kinds of storage methods - for example photochromic, photoplastic and thermoplastic materials, possibly linked with holography - and possibilities for spatial information processing, it would seem unwise to limit the options now.

So we hope engineers will take a broad view of the possibilities for video records. The commercial pressures will be there; but let's continue to question our priorities and ask whether we need video disc players in our homes so soon. The present situation could easily produce a "bandwagon" effect - a tendency for the pace to quicken for fear of either being left behind in the market place or of writing off large R \& D investments. Let's take our time and get it right, for everybody's sake.
If we had rushed into a standardized format at the outset for surround-sound records, for instance, we might conceivably, commercial interests aside, have got the best of the available systems at the time. As it became clear only a short time later, the initial attempts at providing surround-sound codings fell short of what was optimum - that is, of making the best use of channel capacity to portray sound direction.

THERE ARE SIGNS of consolidation among those who were first in the (optical) field. Following the collaboration of Philips and MCA it now seems that if Zenith opt for an optical system it will be based on the same broad specifications i.e. $1800 \mathrm{rev} / \mathrm{min}$ (NTSC) to give one $t v$ frame per disc revolution and allowing "stop action", spiral track with direct NTSC coding by frequency modulation, two sound channels with subcarriers at 2.3 and 2.8 MHz , and 8 or 12in reflective discs, either 1 mm rigid or 0.2 mm flexible. (See WW 1973, pages 541-3 for details of European version.) •
Thomson-CSF, who with Zenith have developed aerodynamic stabilization of discs, have put in some effort to reduce player cost. This stabilization means that a focusing servo mechanism can be eliminated. In addition, the method used to correct radial tracking error doesn't require a separate motorized mirror; the error signal is derived instead from the photodetector array.

Bosch have developed a system along similar lines to these optical systems (WW August 1975, pages 364-5); with its higher resolution - the disc spins at $3000 \mathrm{rev} / \mathrm{min}$ - application is in the professional television and archival areas. RCA too have a synchronous optical disc for picture storage though this, like the Ampex magnetic ESS
(electronic still store) and the Sony magnetic card, is for broadcast use.
By adopting a mechanical guidance method for the pickup, RCA avoid the need for servo tracking in their Selectavision system. But more significant in terms of cost saving is the use of a capacitance pickup from a metallic electrode deposited on the stylus. RCA claim the stylus is easy and inexpensive to fabricate compared to other pickups, and that it is capable of resolving signal elements smaller than the wavelength of visible light, permitting high density recording with an electron beam.
A further point of difference is the choice of speed, $450 \mathrm{rev} / \mathrm{min}$. According to RCA, effects of vibration due to unbalance of rotating parts are reduced compared to a rotational speed of 1500 or $1800 \mathrm{rev} / \mathrm{min}$. Errors in signal timing that result from warp or eccentricities of the disc occur at a lower frequency, making it easier for the synchronizing circuits of the television receiver to follow. More important, a simple and inexpensive transducer can be used to reduce time-base errors, permitting playback into receivers with relatively slow horizontal sync circuits without requiring circuit modification. This consists of a small moving coil element which drives the stylus arm back and forth along its long dimension, parallel to the record groove. If the record runs too slowly, the stylus is pulled toward the transducer to increase the relative speed, and if the record runs too fast, the stylus is pushed away from the transducer to reduce the relative speed. Error signals are derived from the colour burst frequency as the record is played.

Luminance, chrominance and audio signals are encoded on carriers and recorded on the disc as variations in the width or spacing of slots in the bottom of the grooves on a master disc. Colour information is encoded to give spectrum peaks at odd multiples of half line frequency to conserve bandwidth.
The master recording is made with an electron beam to record the signal slots -in a material similar to photo-resist, but optimized for sensitivity to electron beam exposure. Replication is similar to conventional processes. After discs are pressed, they are coated with three 40 nm layers. First, a conductive metallic

In the digital video record system, the 5×7 in record is stationary and the scanner moves. A distributing prism acts to switch the beam from the end of one track to the start of the next.
coating is applied which serves as one electrode of a capacitor. Then an insulating coating is applied to act as the dielectric, and finally a thin layer of oil is added as a lubricant to prolong the life of the disc and stylus. The tip of the sapphire stylus is triangular in shape, and a metal electrode is deposited on the back surface. Signals are recovered by detecting the variations in electrical capacitance between the tip of the electrode on the stylus and the metal coating on the disc as the stylus passes over the slots in the bottom of the groove. Apart from the stylus, RCA say the components are conventional and have been used for years in consumer products.

Whilst this electrostatic system may be able to provide low-cost players, the film-based systems claim the advantage of potentially low-cost duplication. The I/O Metrics system is f.m. and based on synchronous disc speeds, whereas the DRC system, see below, is digital with non-circular records. Full details of the French SEPO technique aren't available, but in 1974 they quoted a disc production cost of one franc!

Perhaps replication cost of the MDR magnetic disc is being quietly forgotten, as the system lends itself to home recording. MDR say they will market this year at DM2000. It started with the aim of low-speed recording and replay to allow the use of ordinary turntables, but a speed of $156 \mathrm{rev} / \mathrm{min}$ has had to be accepted. We do not know how much of a problem disc-head contact is going to be.

High-density optical system is digital

It is perhaps surprising that of all the video disc systems announced not one has been truly digital. Most are analogue systems relying on frequency modulation of a carrier. Recently, we learned of a video record system that uses, in effect, photographic plates digitally encoded. Developed originally by a division of the Battelle Memorial Institute, work on the system is now sponsured by the Digital Recording Corporation of Scarborough, New York, whose president recently told Wireless World of the system.
Applications for the digital technique are seen in wide variety of situations. In information storage and retrieval, costs are expected to be lower than any other storage technique and much lower than any other system with automatic access. In this application, four possible information handling schemes can be adopted depending on the nature of the material to be stored. For continuous tones the material would be scanned with an 800 -line resolution system to digitize the image. The digitized data can then be stored by differential binary coding, giving a linear reduction of 150 times. A twolevel (black or white) image e.g. line drawings or text can be stored with a linear reduction of 270 times or, by storing changes only, 460 times. Computer coding could allow a reduction of 1700 times. On this basis, a reduction of storage area can be about three million times, compared with 400 times for conventional microfilm or microfiche techniques. In an archival system, a storage unit of 1000 plastic 4×5 in records is envisaged with an access time of five seconds or so (milliseconds on
the same record). Between 5 and 600 million frames could be stored in the space of a four-drawer file, depending on storage mode. Storage size could be increased by a factor of ten if speed can be sacrificed.
As a device for playback on home TV receivers, a unit could cost $\$ 150$ to produce. It could make use of $5 \times 7 \mathrm{in}$ records loaded singly or automatically from a stack. The storage medium could equally well be a film cassette, automatically wound-on. And according to the company a playback unit can be modified to provide a home recording unit, the optics and mechanics being the same. Replication cost is said to be low and a production cost of "much less than 25 cents" has been mentioned.
As with other video storage techniques, it would lend itself to audio records. Use of a digital technique allows a greater dynamic range, elimination of various distortions, an unwearable and more compact record. An audio player, possibly small enough to fit into a car, could store 30 to 60 minutes of surround sound on a 3×3 in record. There could also be applications in the professional or studio television area, especially for advertising spots. Variable delay can be provided for monitoring and editing, and loss-free stop and start, stop-action, frame indexing and computer-controlled editing are a few of the more obvious facilities. Freedom of jitter and of errors in colour, together with high signal-to-noise ratio come with the digital format.

Although the patents held by DRC cover a wide compass of configurations, one type is described to illustrate the approach. Information on the records is in the form of spots and spaces distributed along a curved path on a photosensitive glass plate. In recording such a plate, the data are scanned in serial order on to the plate by a rotating scanning head with several scanning apertures around its perimeter (see diagram). An optical distributing prism placed on-axis switches the light beam so that when a scanning aperture reaches the end of a track, the light beam is cut off and reinstated at the start of the next track. Thus the track pattern is a series of arcs, rather than the popularly used spiral. To produce sequential tracks, the scanning components are translated in the direction of the arrow. The fixed-plate approach is claimed to result in a simpler and less expensive mechanism.

In playback, the light beam is reflected from the dark ' 1 ' spots, but not from the clear ' 0 ' bits. Because the same machine would not generally be used for both recording and playback a tracking servo (not operative on recording) is provided to deflect the beam slightly as required. This feature,

- Continued on page 36

Schmitt trigger design with op-amps

Graphical technique eases design procedure

bv R. D. Tuthill

The common form of a Schmitt trigger design using discrete components as shown in Fig. 1 has several disadvantages. If $V_{i n}$ is 0 V , transistor $\mathrm{Tr}_{\text {: }}$ is switched off and Tr_{2} will therefore be switched on. It can be seen that $V_{\text {out }}$ has a minimum voltage level, set by the ratio of R_{5} and R_{6}, values, which is the first disadvantage. If the potential of $V_{\text {in }}$ is raised, Tr_{1} will start to conduct and the potential at the collector will fall. This starts to switch off Tr_{2} which causes the voltages across R_{6} to fall and Tr_{1} to switch on. Although the change of state is now complete, there is now a current flowing into the base of Tr_{1} which changes the input impedance of the circuit. This is also a disadvantage. The basic Schmitt trigger in Fig. 1 is a non-inverting type, and this can also be a disadvantage.
Using integrated circuit op-amps these disadvantages can easily be overcome. From Fig. 2(a) and (b) the only apparent difference between inverting and non-inverting configurations is the reversal of functions at the two inputs. However, for the same specified input and output conditions, different values of R_{i}, R_{f} and reference potential are required. Note that when using op-amps, switching always occurs when there is virtually no potential difference between the two inputs. Secondly, because the input impedance of an op-amp is high, virtually all of the current in the feedback resistor also flows through the input resistor. Therefore, the potential at the amplifier input can be caiculated by knowing the voltage applied to R_{i}, the output voltage, the values of R_{i} and R_{f} or just their ratio.
The design procedure relies on the last-mentioned point. In the non-inverting configuration $V_{I H}$ is the upper input voltage limit, $V_{I L}$ the lower limit, $V_{O H}$ the positive output voltage, $V_{O L}$ the negative output and V_{R} the reference voltage. When the voltage ranges have been selected, a suitable voltage scale as shown in Fig. 3, can be chosen. A vertical line is drawn through Q and using the same scale as that on the left-hand side, $V_{O H}$ and $V_{O L}$ are marked. For the example shown $V_{O H}$ is +10 V ,

Fig. 1. Common form of non-inverting Schmitt trigger.
$V_{O L}-10 \mathrm{~V}, \mathrm{~V}_{1 H} 8 \mathrm{~V}$, and $V_{I L}-1 \mathrm{~V}$. This gives hysteresis of $V_{I H}-V_{I L}$ which is $8-(-1)=9 \mathrm{~V}$. At the left-hand end of the 0 V line, point P is chosen and a vertical line through P is marked with $V_{I H}$ and $V_{I L}$, again using the same voltage scale. Referring now to Fig.

Fig. 2. (a) Non-inverting and (b) inverting Schmitt trigger both using a single op-amp.

2(a), the inverting input of the op-amp is connected to the reference voltage. Note that the non-inverting input must also be at potential V_{R} for switching to occur. This potential is not yet known but a line from V_{H} to $V_{O L}$, the conditions which exist just prior to switching, can be drawn. If the length of this line represents the impedance $R_{i}+R_{f}$, then, by knowing their ratios or values, the value of R_{F} can be found. Unfortunately neither of these are known but a second set of conditions is, and this may have the same reasoning applied to it, i.e. just prior to the output switching from V_{OH} to $V_{O L}$ the voltage at the non-inverting input is also V_{R}. Therefore, a line from $V_{O H}$ to $V_{I L}$ can be drawn. The intersection of the two lines gives the value of V_{R} when scaled vertically from the 0 V line.
The ratio $R_{f}: R_{i}$ can be found as well as the value of R_{i} if a suitable value for R_{f} already exists. Using the scale of resistance, R_{f} is marked on the horizontal axis, in this case $100 \mathrm{k} \Omega$, and a line is constructed from this point through R to interset the vertical line at point X . Using X as a starting point a second line is constructed through W to finish at Z .

Fig. 3. Graphical method for calculating R_{i} in the non-inverting Schmitt trigger mode.

Fig. 4. Graphical method for calculating R_{i} in the inverting Schmitt trigger mode.

On the same resistance scale the distance $\mathrm{V}-\mathrm{Z}$ gives the value of R_{i},

If necessary a resistance scale in the horizontal axis can be used to begin with. In this case, values for R_{i} and R_{f} are marked off as point P and Q accordingly, and the distance from Q to the line vertically dropped from R is measured to obtain R_{f}, and from this point to P for R_{i}. The only disadvantage of this method is that there may be two awkward values of resistance rather than one.

This covers the graphical technique. For the trigonometrically minded it can be proved that $k / l=n / m$ and from this a mathematical formulae can be deduced. The vertical component of k is $V_{I H}-V_{R}, l$ is $V_{O L}+V_{R}$ (where $V_{O L}$ is negative), n is $V_{I L}+V_{R}$ (where $V_{I L}$ is negative), and m is $V_{O H}-V_{R}$
.Therefore:

$$
\begin{gathered}
\frac{k}{l}=\frac{n}{m} \text { becomes } \\
\frac{V_{I H}-V_{R}}{-V_{O L}+V_{R}}=\frac{-V_{I L}+V_{R}}{V_{O H}-V_{R}} .
\end{gathered}
$$

Solving for V_{R} gives

$$
V_{R}=\frac{V_{I L} \cdot V_{O L}-V_{I H} \cdot V_{O H}}{\left(V_{I L}+V_{O L}\right)-\left(V_{I H}+V_{O H}\right)}
$$

It is also true that $k / l=R_{i} / R_{f}$, therefore

$$
R_{l}=R_{f} \cdot \frac{k}{l}=R_{f} \frac{\left(V_{I H}-V_{R}\right)}{\left(-V_{O L}+V_{R}\right)}
$$

Once R_{f} has been selected it is a simple matter to evaluate R_{i}

For the inverting configuration more care has to be taken in positioning point P because the lines of construction may be well to the left of this point. From Fig. 2(b) the voltage on the non-inverting input of the op-amp changes every time the output changes state. However, the inverting and non-inverting inputs

must be virtually at the same potential for a change in output voltage to occur. A line can be constructed from V_{OH} to $V_{I H}$ with its length representing only the potential across R_{f}, and not $R_{f}+R_{i}$ as in the non-inverting case. A similar state exists for $V_{O L}$ and $V_{I L}$. The intersection produces a point from which the ratio $R_{f}: R_{i}$ can be obtained. Also, the value of V_{R} is, as before, the vertical separation of point R from the 0 V line. Resistors $R_{\text {, }}$ and R_{i} can also be marked off as before. From Fig. 4 it can be trigonometrically proved that $k / l=n / m$, therefore $k / k+1=n / n+m$ and, from deduction

$$
\frac{V_{I H}-V_{R}}{V_{O H}-V_{R}}=\frac{-V_{I L}+V_{R}}{-V_{O L}=V_{R}}
$$

Solving for V_{R} gives

$$
V_{R}=\frac{V_{I H} \cdot V_{O L}-V_{I L} \cdot V_{O H}}{\left(V_{I H}+V_{O L}\right)-\left(V_{I L}+V_{O H}\right)}
$$

Also $k / l=R_{i} / R_{p}$, therefore

$$
R_{i}=R_{f} \frac{\left(V_{I H}-V_{R}\right)}{\left(V_{O H}-V_{I H}\right)}
$$

Once R_{f} has been selected it is again a simple matter to evaluate R_{i}.

Linsley Hood cassette deck

The final part of this article, containing details of the motorcontrol circuit, will be published in the next issue. Readers who have used Garrard mechanisms will find that the motor-control unit is supplied but we will provide the information for the convenience of readers who have obtained the Goldring CRV mechanism.

CPMT! $1 \because 1 E$

the 741 which was chosen for the merit of low cost.

The l.e.d. shown in the circuit has a twofold use. Firstly, when there is an offset voltage at the input, on shorting all four wires of the probe on a dead conductor, it will light or, alternatively, the ammeter will show a reading. Secondly, when the probe input is reversed the l.e.d. will again light. Diodes D_{1-2} and D_{3-6} provide protection to the circuit which may be floated from voltage to voltage when in use. Finally, the d.c. converter enables the circuit to use a single battery.
F. Andrews,

Southampton College of Technology.

P.c.b. ammeter

This circuit allows measurement of current in a single printed circuit conductor, without the necessity of breaking the track. The device uses a probe of four wires and when all the wires are in contact with a conductor a p.d. appears at the input of a differential amplifier. The two outer wires carry a current of opposite polarity via an ammeter. Because there is a negative feedback loop in the conductor, the differential amplifier input voltage will return to zero when the outgoing current is equal to that of the unknown current, the former being read from the ammeter. The differential amplifier offset voltage must be maintained to as near zero as the twenty-turn preset potentiometer will permit. An advantage would be to use a 725 C instead of

Simple sine-wave oscillator

This circuit provides a simple a.f. sine-wave oscillator by using a unijunction transistor as a negative resistance in a RLC circuit. The potential divider R_{2} sets the peak point of the emitter and should be adjusted for maximum output consistent with a good sine wave. The output is about 200 mV and the circuit operates from 1 kHz to 50 kHz by using suitable values of L and C.
R. P. Hart,

Hadlow,

Kent.

Electrostatic headphone amplifier

This circuit has been used successfully with a pair of headphones based on the W.W. design Dec. 1968. The amplifier can be driven from the headphone output of most power amplifiers. Potentiometers R_{5} and R_{6} are used to set V_{1} and V_{2} at half the supply voltage.

Resistor R_{1} is required to compensate for the small signal resistance of a diode in the non-inverting input of $\mathrm{IC}_{\mathrm{lb}}$. If headphones of greater capacitance than 150 pF are used it is necessary to reduce R_{2} and R_{3} to maintain the power bandwidth. It may then be necessary to heat sink the power transistors. The +15 V bias supply for $\mathrm{IC}_{\mathrm{la}}$ and $\mathrm{IC}_{\mathrm{lb}}$ must be well filtered. The amplifier has a
small signal frequency response of $(-3 \mathrm{~dB}) 10 \mathrm{~Hz}$ to 40 kHz , a power bandwidth of 10 Hz to 15 kHz , and a total harmonic distortion at 1 kHz (almost entirely second harmonic) of 0.1% at 50 V pk-pk and 1.0% at 300 V pk-pk output.
N. Pollock,

Sandringham,
Australia.

Short-circuit protector

The short-circuit protector shown is fast and cheap. The transistor is biased to saturation and the collector-emitter voltage is therefore less than a volt. If a short-circuit occurs, the collector is pulled along the constant current line of its output characteristic corresponding to the base bias current I_{B}. The short-circuit current is therefore restricted to some value say $I_{\max }$. Suppose that a maximum load current of $I_{\text {max }}$ is to be made available from a supply of V_{s}, and the transistor has a current gain of $h_{T E}$, then the base resistor is calculated as follows. As $I_{B}=I_{\text {max }} / h_{F E}$, and because $V_{B E}$ is small, $R_{B} \approx V_{S} / I_{B}$. Therefore $R_{B} \approx V_{S} h_{F E} / I_{\text {max }}$. If the precise current gain of the transistor is not known, or if a variable $I_{\text {max }}$ is necessary, R_{B} may
be made partly variable and adjusted on test. For a +15 V supply from which at least 100 mA may be drawn, suitable components for the short circuit protector would be a silicon p-n-p transistor with $h_{F E} 100$ (e.g. BC327) and a base resistor of $12 \mathrm{k} \Omega$. The output voltage will then be 14.5 V and the value which $I_{\text {max }}$ reaches will exceed 100 mA .
Under normal operation very little power is dissipated in the protection transistor. Under a short-circuited load condition the power developed is $V_{s} I_{\max }$ watts. For negative supplies a $n-p-n$ transistor may be used in the same configuration.
M. C. Hately,

Robert Gordon's Institute of
Technology,
Aberdeen.

Thermistor controlled
 thermostat

Essentially the circuit is a bridge formed by the thermistor, $\mathrm{R}_{1}, \mathrm{R}_{4}, \mathrm{R}_{5}$ and R_{6} with an amplifier for sensing the unbalance. The circuit switches a relay on when the temperature is below a chosen level, and by altering R_{1} the operating temperature can be changed. If the opposite function is required the positions of the thermistor and R_{1} are reversed. The sensing circuit uses a CA3046 which supplies two matched pairs of transistors in addition to the output transistor. $T r_{1}$ and Tr_{2} act as a voltage comparator; the tail current being provided by the current mirror Tr_{3} and Tr_{4}. The base voltage of Tr_{2} can be adjusted using R_{5} which allows the switching temperature to be set precisely. Positive feedback via R_{7} prevents chatter when the switching point is reached. If the thermistor is separate from the amplifier, a $0.1 \mu \mathrm{~F}$ capacitor should be connected across R_{1} to minimize pickup effects.
D. E. O'N. Waddington,

St. Albans,
Herts.

Video discs (continued from page 3i)

common to most analogue optical disc systems, allows some tolerance on record positioning and on hole align. ment in the scanning disc.

An interesting point concerns the limiting spot size. According to classical diffraction theory the focused spot produced by a lens passing monochromatic light shows an intensity distribution in which the bright central area contains 84% of incident energy. The diameter of the first dark ring surrounding this area determines, at first sight, the maximum achievable bit density. But in practice, the spot size on a photographic emulsion will be smaller due to the gamma effect of the emulsion. (Gamma is the maximum slope of the \log of exposure versus density.) The intensity distribution of the diffraction pattern is not "mirrored" by the photographic density distribution, and the slope of the central peak in the diffraction pattern is sharpened on the emulsion - in effect a sharpening of the spot size, allowing greater spot density. Spot sizes of $1 \mu \mathrm{~m}$ are produced on silver halide emulsions at 633 nm wavelength and a focal length-to-aperture ratio of two, allowing a bit density of 10^{8} bit/cm.
Because of possible variations in emulsion depth and position depth of focus must be adequate. A technique that avoids the expense of servo-controlled focusing is to blank off the central portion of the lens, in playback if
not in recording. This has the effect of increasing the depth of focus, but at the expense of more energy appearing in the secondary rings of the diffraction pattern. This is not very important in playback because of the way the detector electronics respond to sharp modulation represented by the central spot. Depth can be increased from 20 to $40 \mu \mathrm{~m}$ by occulting three-quarters of the lens. (Actually, DRC say $10 \mu \mathrm{~m}$ is adequate for rigid records in commercial form.)
For flexible records an holographic lens - made by replacing the lens by a transmission hologram after exposure by sending monochromatic light backwards through the system which can compensate for errors in the optical system - could yield up to $120 \mu \mathrm{~m}$ depth.
An advantage of a digital method is that emulsion noise is much less noticeable than in an analogue method - only extreme fluctuations of grain density and size would show. In certain applications, error-correcting codes could be built into the system.

In demonstration apparatus, differential encoding has been used to remove some of the redundancy in normal tv pictures. Each picture element is recorded as a four-bit word, three bits for luminance and one bit for: colour. Instruction codes are recorded instead of the usual blanking signals so that audio signals can be digitized and time multiplexed into the horizontal blanking periods.

Square-wave generator with single frequencyadjustment resistor

When the circuit shown is switched on C is uncharged and Tr_{1} is non-conducting. Transistor Tr_{2} is therefore fully on and its emitter is at a potential near V_{cc} Capacitor C therefore charges until Tr_{1} begins to conduct which causes Tr_{2} to rapidly cut-off, by regenerative action. The emitter of Tr_{2} falls to a level determined by the ratio of R_{1} to R_{3}, and C discharges through R_{4} until Tr_{1} cuts-off and the cycle repeats.
The transition times of the circuit are rapid and it will work with small-signal silicon transistors up to at least 0.5 MHz , and down to a frequency determined by $C R$. The output is almost an equal mark-to-space ratio over a wide frequency range, though this can be trimmed if required by the ratio of R_{2} to R_{3}, or by a small resistor in Tr_{1} base.
J. L. Linsley Hood,

Taunton.

Electronics at the Paris Institute for Research and Coordination in Acoustics and Music

Under construction, just off the boulevard de Sebastopol in the heart of Paris is the new Centre Beaubourg research institute which is to form part of a major contemporary art centre. The Centre Georges Pompidou will house a museum of modern art, a centre for industrial design and an extensive public library in which space will be reserved for displays on current events and for the operation of audiovisual facilities. The centre, to be officially opened in April 1977, will also include a fourth department, IRCAM - Institut de Recherche et Coordination Acoustique/Musique, built underground next to the Centre Beaubourg.
IRCAM is to provide research facilities for developing future aspects of music. To do this the aid of digital electronics has been enlisted as an important tool in the processing of real time electronic sound reproduction. At the heart of the technical facilities will be a Computer Automation PDP10 with its associated 24 k bit core store and a peripheral number of interlinked visual display units and input/output keyboards. Nothing out of the ordinary to those already involved in the use of computer facilities, but the application is unique and likely to cause initial scepticism. Computers for making music? What then will happen to the composer and instrumentalist and the essence of human expression? In the words of Pierre Boulez, Director of the research programme "The musician must assimilate a certain scientific knowledge, making it an integral part of his creative imagination. As to the scientist, we are of course not asking him to compose, but to conceive with precision what the composer, or instrumentalist, expects of him, to understand the direction contemporary music has taken, and to orient his imagination along these lines. At educational meetings, scientists and musicians will become familiar, with one another's point of view and approach. In this way we hope to forge a kind of common language that scarcely exists at present, while traning a staff who will be basically oriented towards musical creation."

Computer aided design

It has become clear that with the appearance of syntiesized sound, tra-
ditional instruments no longer determine the limits of perception and comprehension of music. The aim of the research at IRCAM is to determine in which direction these limits should be pushed in widening the available scope for composition and performance. A computer programme, Musik V, has been developed over the last few years to assist these aims. Its initial application is in the examination of the waveforms produced by musical instruments in order to determine the parameters relevant to their accepted perception. This is not as simple as it sounds. For instance, a waveform of say a trumpet can be reproduced easily enough, but it was found that the result still did not sound like a trumpet. Further investigation showed the reason to be that the decay of harmonics was dependent on their frequency. In other words harmonics of high frequency decayed at a different rate to those of lower frequency.
Using computer facilities to analyse results such as this should be applicable to the development of new instruments. For instance a composer could stipulate the range and timbre of the sound he requires by simulating them on the computer, analyzing their component. parts and developing an individual instrument that can produce them.' Another application is in 'bending' the sound of a standard instrument so that its range of timbre can be increased or completely altered. It was demonstrated at the centre how the waveform from a violin could be fed to a computer which gradually reshaped the signal to that produced by a trumpet, the startling result being a sound emanating from the same instrument which gradually changed from one type of known instrument timbre to that of another.

Such flexibility provided by the computer can be coupled in the IRCAM centre with its 'Espace de Projection'. This area of the underground building will be used for transmitting any sound produced in the studios, for acoustic measurements and also for direct participation of concert audiences in sound experiments. The acoustics of the Espace de Projection will be mechanically variable so that reverberation time will depend on the position of moveable absorption elements in the walls and ceiling. Also it will be possible to lower
and raise the ceiling and a system of curtains across the area will provide even more flexibility of the acoustic environment. Other facilities in the building will include two acoustically isolated studios with 'ideal' reverberant conditions and a department for the study of psychoacoustic effects. Finally, it will be the job of the 'Diagonal department' (le departement Diagonal) to coordinate the different branches of research and instigate the transplanting of techniques from one department to another. It will also undertake research work on the transmission, projection and perception of sound as well as on pure acoustics, music theory and their relationships with other disciplines.

Common effort

Two aspects of the centre which it was surprising to find were not being considered in depth were the use of video in composition and the use of a computerised system for multichannel sound recording. Lack of video applications was surprising as there is a lot of interest in its use by many contemporary artists in both the fields of music and the visual arts. More importantly however it was felt that recording techniques are as complex in their execution as the basic research of the institute already mentioned. If results of the work produced from IRCAM in years to come are to be communicated to as wide a public as possible then it. would be a pity if the subtleties of compositions using new acoustic effects were lost because recording equipment was not developed to an equivalent degree of flexibility . . . "Contemporary music has at the moment less need of individual souls and their vagaries than of common effort to explore its own innermost nature, to explore sound itself, both with instruments and artificially, in order to unlock new sonorous possibilities for composition, to explore musical perception, in order to understand why some tools function better than others, to explore relationships between music, performance and listeners. This adventure will take place in many ways: through the severity of scientific analysis, through experimental testing of hypotheses, through all manner of public presentation, and through composition itself" - Gerald Bennett.

F.m. adaptor for a.p.t. tape recording

P.l.I. design overcomes replay amplitude variations

by J. B. Tuke

Many earth stations receiving automatic picture transmissions from satellites use a tape recorder as an intermediate link between the radio receiver and picture printing equipment. This system has advantages because some picture printers need to be operated in complete or semi-darkness, and many aerial systems are manually tracked which requires the operator's full attention during satellite transit.
The 2400 Hz amplitude-modulated signal which carries the picture information can be recorded and reproduced on a domestic type of tape recorder, preferably running at $71 / 2 \mathrm{in} / \mathrm{s}$. However, the picture produced on replay shows dark horizontal streaks, caused by fluctuations in the replayed signal level. These variations of about a decibel are in the most critical part of the picture level, where minute changes of intentisy produce appreciable changes in the shades of grey. If infra-red data is being displayed using the intensification process, deterioration can become severe.
To overcome the amplitude variations a frequency modulated signal can

Fig. 1. (a) Block diagram of phase locked loop, (b) signal path for the modulating mode, (c) connections for the demodulating mode.
be used. This technique is well known and the Signetics NE565 phase-locked loop i.c. is used, as shown in Fig. 1(a). The v.c.o. frequency-determining components are chosen to produce the required carrier frequency, and the modulation is applied to pin 7. The v.c.o. output on pin 4 is then passed to the recorder as shown in Fig. 1(b). On replay, the f.m. signal from the tape recorder is fed to pin 2 of the i.c., which is connected in the conventional p.if. demodulator mode and the demodulated output appears on pin 7, see Fig. 1(c).
Choice of v.c.o. frequency is important. The upper frequency limit of the v.c.o. is set by the tape recorder and experiments have shown that a carrier frequency of 11 kHz is quite satisfactory. Remember that the f.m. sidebands on both sides of the carrier must be reproduced. For this type of recording, using limited deviation and where fidelity of the replayed signal is not of primary importance, it is adequate to consider the required bandwidth as being twice the modulating frequency either side of the carrier. With an 11 kHz carrier and 2.4 kHz modulation, the tape recorder should be able to deal with a frequency band between about 6 and 16 kHz .
As replay is only concerned with an f.m. signal, this band does not have to be
replayed at the same level as long as there is sufficient signal from the tape recorder to lock the p.1.1. A carrier frequency which is an exact multiple of 2400 Hz should be avoided to prevent patterning on the finished picture.
Measurements of input amplitude against output signal have shown an almost linear relationship within the dynamic range of the system. The signal to be recorded may have a value up to -3 dBm . Higher values than this cause excessive carrier deviation and loss of lock on replay. If the weakest signal (full black) is recorded at -30 dBm , the worst signal-to-noise ratio is 15 dB and the dynamic range is nearly 30 dB which is ample for a.p.t. signats.
When setting the record level remember that in NOAA spacecraft signals, peak-white occurs at the edges of the picture and not in the picture itself. Due to the global position of the U.K., picture content rarely exceeds 80% of the peak value. Consequently the input must be adjusted so that signal peaks do not exceed -3 dBm otherwise the circuit will momentarily drop out of lock. Although this may not be part of the line scan carrying picture data, lock takes a few milliseconds to recover and causes a large black streak.

If the 2.4 kHz signal were first rectified to produce the video ($\mathrm{f}_{\text {max }}$ is 1.8 kHz) and

then applied to the NE565, the resultant f.m. signal would be of a simpler nature and a lower carrier frequency could be used. This system presents no problems in the record mode but when amplification is required on replay, the d.c. component would have to be preserved right through to the picture printing device. Infra-red NOAA pictures indicate temperature by the relative intensity of black and white. A typical read-out from near the north pole to

Component list			
c1	$100 \mu \mathrm{~F} 25 \mathrm{~V}$	R1,2	7.5k
2,3	100n	3,16	4.7k
4.8	470n	4	10k
5,6,7	47n	5	22k
9	$25 \mu \mathrm{~F} 6 \mathrm{~V}$	6	3.3k
10	1 n	7	33k
11	10 n	8,9, 10,	
12	$50 \mu \mathrm{~F} 25 \mathrm{~V}$	11.12.	1k
13	200n	15	1 k
14	100 n	13	6.8 k
		14	68k
		17	20k
		18	2.2k
		19	10k

Fig. 2. Practical circuit for modulator / demodulator using one p.l.l. and a d.p.d.t. switch. Tr_{1} provides an overall gain of 0 dB in the replay mode, and Tr_{2} isolates the v.c.o. output in the record mode.
north Africa shows a steady darkening of the picture from north to south as the surface temperature increases. This may be referred to calibration charts for exact temperatures and therefore the d.c. levels must be maintained. This complication is removed by retaining the 2.4 kHz portion of the signal.

A practical circuit as in Fig. 2 consists of the NE565 together with two simple transistor amplifiers. In the record mode the v.c.o. output is isolated from the tape recorder by an emitter follower. In the replay mode a transistor amplifier is used to produce an overall gain of 0 dB . A d.p.d.t. switch enables one i.c. to be used in both modes, although two devices can be used.

The unit may be built on Vero-board and powered by an 18 V regulated supply. Using this adapter, which can be built for around $£ 10, \cdot$ pictures can be recorded which are almost indistinguishable from the original.

Correction

The following apply to "Weather satellites ground station - 3 ' by G. F. Kennedy, January 1975: capacitors $\mathrm{C}_{77.79}$ and C_{85587} should be $1,800 \mathrm{pF}$ and R_{94} is a $5 \mathrm{k} \Omega$ ten-turn pot; in Fig.23, IC_{7} output is from pin 12, IC_{6} should have pin 10 grounded; Tr_{27} should be 2N4061, 2 N 3702 or similar; S_{4} is labelled in reverse; on page 25 for S and S^{4} read S_{5} and S_{6} and in the appendix for R_{53} read R_{57} for C_{67} read C_{68}. in the parts list add $\mathrm{R}_{\text {ios }}^{\prime}-390 \Omega$, for REL65 ${ }^{68}$ read REC65 and C_{93} should be $1.5 \mu \mathrm{~F}$.

Wireless across space

2 - Proximity of communicating civilizations in the Milky Way

by Tong B. Tañg, M.Tech

St John's College Cambridge

That communication with extraterritorial intelligence (sometimes abbreviated to CETI) is possible with today's radio technology was postulated in Part 1. As further support of the thesis, we will now consider an order-of magnitude calculation of the most probable distance separating a civilisation from its nearest neighbour, using today's knowledge and opinions.

There are at least $10{ }^{10}$ galaxies, some containing more and some less stars than the Milky Way, in the part of the universe so far observed. But for our present purpose we need only to consider our own galaxy, the Milky Way (Fig. 5); which from statistical star counts has some 10^{11} stars. (On the scale of galaxy diameters intergalactic distances are two orders of magnitude higher.) After Drake ${ }^{5}$, the number of civilisations which have the capacity for interstellar communication can be analysed as

$$
N^{*}=R f_{p} n f_{1} f_{h} f_{\mathbf{c}} T
$$

Here R is the average rate of star formation. The age of the Milky Way is about 1.5×10^{10} years, and thus the overall R will be seven stars per year. However, the actual R in earlier times must have been larger, and in later times smaller, while those stars formed in the earlier periods are likely to be lacking in heavy chemical elements and should be excluded because in their absence advanced civilisations or perhaps even life itself cannot arise. In view of this, a reasonable value of R will be one star per year.
f_{p} is the fraction of stars possessing planets. For a long time it has been observed that stars whose temperatures are similar to or less than that of our sun - and nine out of ten stars belong to this category - are usually rotating much less rapidly than the remaining stars; the observation is deduced from the much smaller amounts of the Doppler broadening in their spectral lines. The interpretation is that they have planets to which most of their rotational energies have been transferred. Furthermore, in particular, the motions of some nearby stars, "Bernard's Star" for instance, have been seen to "wobble," and this almost certainly shows that they have dark companions (planets) in
orbit around them. ${ }^{26}$ The mechanism of planet formation is not yet well-established theoretically ${ }^{27}$ but in all possibilities it is consistent with that of star formation, viz. the self-gravitational collapse of a nebula of gas and "dust" into a state where it is hot and dense enough for the start of nuclear reactions and the birth of the star. We shall be conservative by taking f_{p} as 0.5 .
n is the mean number of planets in each planetary system which have environments suitable for life; or, in astrobiologists' jargon, which lie within the ecosphere of the local sun. The most important factor here is whether the planet in question acquires by outgassing its crust an atmosphere which initially contains hydrogen but not oxygen (where complex molecules when formed will not be at once oxidised) and a hydrosphere of water. In our solar system Earth and Mars satisfy the conditions, and we shall use 2 as the value of n, by the "assumption of mediocity" 11 (that what is true for us cannot be unique and is likely to be the average for the whole galaxy).
f_{1} is the percentage of these planets in which life does develop. It looks to us that the abiogenic (spontaneous) synthesis of probionts (self-replicating molecular assemblies) is, given the boundary conditions of a primitive hydrosphere containing hydrogen, methane and ammonia, forced by the laws of physics and chemistry and therefore a certainty. Given, in addition, sufficient time and an environment which is not entirely static, self-reproducing organisms are bound to appear later. (Incidentally, I mention the speculation that the properties of matter or even the physical laws change, until they are such that the appearance of life in the universe becomes inevitable. We should therefore not be surprised that everything seems to just fit in, so that in particular we exist on earth, because when it is not so we do not exist to know. We are here, hence the world is being such that life can exist - the "anthropic principle"; and hence there is life "out there" as well - the assumption of mediocity.) It follows that f_{1} is very nearly 1 and as a
close estimation is taken as 1.
f_{h} is the fraction of inhabited planets in the biospheres of which life advances to a high level, during the lifetime of the local sun. A high-level life form means one which will not become an evolution cul-de-sac. It is, I think, one which can form an internal analytical model of the external environment, and which relies mainly on this ability for the survival of its species (or, more exactly, its genes). On earth this occurred when the first truly erect walking species, Sinanthropus pekinensis, appeared; that was 1.5 million years ago, according to the very recent fossil dating by R. E. F. Leakey. Ample artefacts have been uncovered to show that they were tool-using and relied more on manipulative skill than on structural adaptations of the body for species survival. We have, or at least think that we have, reasons to suppose that, given certain broad and fairly general initial conditions, the appearance of such species in due course is again a certainty. Of course, there are many hurdles to jump before its superiority over other species, many of which are splendidly adapted to specific environments so long as they do not change, becomes established (as is so for us, Homo sapiens). Some species (e.g., the Neanderthal man) failed and went extinct. However, eventually one species would succeed. This is not so only if, for example, the planet is covered entirely by water, so that there is no land for life to invade from the sea and to develop stronger interactions with the environment. From these considerations a guess of f_{h} will be 0.5 .
f_{c} is the fraction of planets populated by higher forms of life, on which civilisations develop to the stage of participating in interstellar communication. That is, they change from "planetary" civilisations (civilisations whose activities and modes of thinking are restricted in their scopes to their own planets) to extra-planetary civilisations. This is precisely the threshold over which we are about to step, and it is difficult to imagine that we will somehow regress. My considered belief is that similar laws of technological and social evolution apply in different
planets, except where the natural conditions differ fundamentally. Lower life forms can be very unalike on different planets or even on different regions of a planet, because of the multiplicity of planetary initial conditions and of evolutionary accidents. However, as they evolve further, the influences of these boundary conditions decrease in proportion to those dictated by the universal laws of nature. Accordingly, the "psychologies" of different intelligent races should in general converge. With the conservative assumption that the development of a technological civilisation requires that things like low melting-point alloys and easily accessible fossil fuels are naturally existing, we take f_{c} as 0.2 .

Finally, T is the lifetime of the communicative stage of these civilisations. In our view the continued development and progress of a technologically advanced civilisation depend on its social system, which is a matter of experimenting and choice, so that they are not only possible but probable because presumably they are its intentions. We then judge that, say, one out of ten civilisations lasts as long as the local sun remains "healthy." The averaged value of T will be 10^{9} years.

With these values, N^{*} comes to be $\left(1\right.$ year $\left.^{-1}\right) \times 0.5 \times 2 \times 1 \times 0.5 \times 0.2 \times\left(10_{9}\right.$ years) $=10^{8}$. In other words, on average one out of a thousand stars will possess on average one planet where there is a civilisation in the interstellar communicative stage. The main uncertainties in this estimation of N^{*} lie with the last three factors, namely $f_{b} f_{c}$ and T.

Using the mean density of stars in the Milky Way, which is 1 star per 200 cubic light-years, the mean minimum separation of communicating civilisations (i.e., the most probable distance between the nearest neighbours) will be the radius of the sphere of volume 2×10^{5} light-years, or roughly 40 light-years. In general, the distance is $2 \times 10^{4} /^{3} \sqrt{ } N^{*}$ light years.

If direct radio contact is considered, the civilisations have to exist in the same epoch. A slightly more complicated procedure gets $23 /{ }^{3} \sqrt{ } T_{G} / T$ light-years as the likely minimum separation between 'contemporary' civilisations, ${ }^{28}$ in which T_{G} is the galaxy time-scale, i.e. 10^{10} years. In our estimation therefore it will be about 50 light-years. This is not much greater than the previous estimation of 40 light-years, because we have taken T to be not much smaller than T_{G}. A more exact assessment will have to take into account the length of time required in biological evolution ${ }^{29}$ but being much less than 10^{9} years it can be taken as zero.

The chance that a randomly selected star is sending interstellar signals is 0.001 . If and when the synchronisation problem referred to previously has been solved, we can be sure that, when we look at it, its signals are beamed towards us. In this case, the probability of achieving at least one contact after

Fig. 5. Schematic picture of the galaxy, showing its shape and size and the relative position of our solar system.
searching N stars is $1-(1-0.001)^{N}$ or approximately $1-\exp (-0.001 N)$. A search of a thousand stars will, assuming perfect synchronisation, give us a 63% success.

Inevitability of participation in interstellar communication

The feasibility of intentionally achieving communication by radio contact with extra-terrestrial civilisations has been shown. By way of conclusion 1 would point out one more considera. tion. We have been using u.h.f. radio communication for some fifteen years. Also, there must be now a few thousand television stations on our planet which transmit in channels 14 to 83 at a power of something like 20 kW on average, and a lot of u.h.f. transmitters such as maritime radio beacons and satellites' telemetry and tracking. Earth is then radiating nearly a tenth of a watt per hertz into space at centimetre wavelengths. By the equation for L, we see that these radiations can be detected, over a distance of 50 light-years, by a radio telescope of effective area $40 \mathrm{~km}^{2}$ and listening to a bandwidth of one hertz. If there is such a telescope on a planet within this distance, the discovery of our presence in due course, whether we intend it or not, is highly probably.

To build this telescope does not necessitate fantastic technological sophistication. In fact, as investigated in the Project Cyclops ${ }^{30}$, the construction by us of a phased antenna array of ten thousand parabolic reflectors, each 30 m in diameter. is feasible (it would cost six to ten thousand million dollars but this is less than half the cost of the Apollo space programme.) Such an antenna system would have an effective area of $20 \mathrm{~km}^{2}$, and there appears to be no technological limitation to its expansion, to a size of $100 \mathrm{~km}^{2}$ or more. If we do build this colossal telescope, we will be able to eavesdrop on our neighbours. (A further feasibility study after Project Cyclops is being undertaken, and should be completed by summer 1976.) The Cyclops concept is already the basis of a very-large-array telescope now under construction in the plain west of Socorro in New Mexico. When completed, it will have 27 parabolic dishes, each 30 m in diameter, and an estimated sum of seventy-six million dollars will have been spent. Scheduled for general radio-astronomical observations at $1.3,2,6$ and $18-21 \mathrm{~cm}$ wavelengths, it will be partially operating by the winter of 1977.
I have not discussed the rationality or even necessity of communicating with extra-terrestrial civilisations. Everyone will form his or her own opinion, and it seems out of place to argue here. However, it does appear obvious to me that it is wiser to devote our labours and
resources to seeking out life outside Earth, than to building things which potentially destroy life on Earth and which are no less expensive
The table ${ }^{31}$ published last month listed projects to detect radio signals from extra-terrestrial intelligence which are still in progress. The complete projected programme in the USSR has been published ${ }^{32}$; it is perhaps at present the country where (mainly for political reasons) such work is taken on most seriously.

References

26. Argyle, E., "On the observability of extrasolar planetary systems", Jcarus, vol. 21, pp.199-201 (1974).
27. Huang, S.-S., "Extrasolar planetary system" Jcarus, vol. 18. pp.339-376 (1973).
28. Shkovskii, I. S., "Multiplicity of inhabited worlds and the problem of interstellar communication'", in ibid Ref. 9, p. 80.
29. Freeman. J., and Lampton. M., ''Interstellar archaeology and the prevalence of intelligence", Icarus, vol. 25, pp.368-9 (1975).
30. Oliver, B.M. et al, "Project Cyclops, a design study of a system for detecting extraterrestrial intelligent life". NASA Document CR-114445, 1972. 31. Sagan, C., and Drake, F. D.. "The search for extraterrestrial intelligence", Scientific American, May 1975. pp.80-89.
31. U.S.S.R. Academy of Sciences, 'The Soviet CETI Program', Soviet Astron.-AJ, vol. 18, pp.669-675 (1975).

Some readers interested in CETI and related subjects may like to read, among other magazines and journals, Spaceflight and the Red Cover issues of J.B.J.S.. both published by the British Interplanetary Society.

Sixty Years Ago

The following piece was printed, without much comment, in our issue of July, 1916. It was in the section "Digest or wireless literature", which contains a couple of fairly imaginative accounts of inventions and development, including a description of a wireless-controlled boat of 30 tons, which carried a torpedo at 50 mph and would turn upon and destroy any jamming transmitter!

Radium and aerials

"The following abstract of an article by E . Leimer in the Elektrotechnische Zeitschrift, printed recently by the Electrician, will be of special interest to our readers as it contains a report of some experiments on new lines.

On the results of Szilard with radiumcoated lightning conductors becoming known to the author he was led to consider the possibility that radium might exert some effect upon the reception of radio-telegraphic signals.

The first experiments were made with an indoor antenna consisting of a wood rod closely wound throughout its length with wire, the rod being directed towards a sending station, FL, about 300 km distant from it. This antenna was suspended in a room. The receiving set used comprised a galena detector, $4,000 \mathrm{ohm}$ telephones, and a tuning coil 50 mm in diameter, and having 800 turns of enamelled wire. No signals were audible from FL at any position on the tuning coil. Signals were, however, at once distinctly audible as soon as a sealed glass tube containing radium bromide of 50,000 units. (and thus very weak) was brought near.

Literature Received

Television sound, off-air, is provided by the Ambit 7700 uner, which contains a u.h.f. tuning head and therefore requires no pickup coil. The tuner is compatible with 6 MHz , 5.5 MHz and 4.5 MHz intercarrier frequencies at aerial input levels of $10 \mu \mathrm{~V}$ or more and is provided with a four-channel selector and indicator. A leaflet is obtainable from Ambit International, 25 High St, Brentwood, Essex

WW401
Multiway circular connectors, type 602GB, are described by Amphenol in a new catalogue. The connectors are intended for military and civil aerospace use and are resistant to most solvents and fluids likely to be encountered, including salt spray. They also meet the requirements of BS 2G 100 P 2 Cll. Amphenol Ltd, Thanet Way, Whitstable, Kent. .

WW402

Rare-earth cobalt alloys in powder form, for the making of permanent magnets, are made in a new process by T, H. Goldschmidt Ltd, which is discussed in issue $4 / 75$ No. 35 of Goldschmidt Informiert, available from the company at York House, 353a Station Road, Harrow, Middx.

WW403
Aerials for domestic radio and television are dealt with in a publication from the British Aerial Standards Council. The booklet describes methods of measurement, together with the relevant electrical and mechanical requirements. Available from the council at 27 Ingorsby Lane, Houghton on the Hill, Leicestershire, the booklet costs $£ 1$.

Heathkit's new catalogue supplements, containing the latest exotica, are now available. Introductions are a pre-amplifier (£94), an equalizer (£88), a 200 W power amplifier at up to $£ 340$, a 10 MHz oscilloscope at $£ 270$ and a digital i.c. tester at $£ 49$. But the real mind-boggler is, we are informed, a Digital AM/FM Stereo/Quadraphonic Tuner/Preamplifier at $£ 550$. The only thing we couldn't spot on the front panel was a handle to wind it up. The supplements can be obtained from Heath (Gloucester) Ltd, Bristol Road, Gloucester

WW404

Precision metal pressing by Latham Manufacturing Co Ltd is briefly described and illustrated in a brochure, now available from Latham at Croxstalls Road, Bloxwich, Walsall, Staffs

WW405
Audio accessories are listed by Ross Electronics in their enlarged catalogue, which includes tape, headphones, microphones, test meters and connecting leads. The catalogue can be obtained from Ross Electronics, 32 Rathbone Place, London W1P IAD (Trade only.)

An $\mathrm{X}-\mathrm{Y}$ recorder, the HR2000, is the subject of a brochure from Gould Advance. The instrument takes the form of a mainframe with inputs and pen controls, with a range of input modules to provide a choice of sensitivity and speed. The brochure is obtainable from Gould Advance Ltd, Roebuck Road, Hainault, Essex.

WW 406

HF predictions

HPF (highest probable frequency) is the frequency above which the probability of ionospheric reflection is less than 10% and FOT (from the French optimum working frequency) is the frequency below which reflection probability is greater than 90%. Thus the skywave probability of any given frequency can be found from the charts. Although a skywave path may exist signals can be below noise level and LUF (lowest usable frequency) is the 90% probability contour of signal level exceeding noise level by a certain amount. Best operating frequencies for consistent day to day working will lie between FOT and LUF and this applies when LUF is higher or lower than FOT. The latter condition implies that the certain amount referred to above cannot be realised.

Unfamiliar forms of temperature compensated voltage reference

The Widlar diode and others

by K. C. Johnson, M.A.

It is almost universal, at the present time, to use zener diodes whenever a constant voltage is required in an electronic circuit. These devices depend on the breakdown of a reverse-biased junction between two semiconductors and the characteristic voltage can be varied over a wide range by controlling the abruptness of the junction (width of the depletion layer) during manufacture. If a very abrupt junction is made, breakdown occurs at a low voltage, while less abrupt junctions give higher voltages. In low-voltage devices the temperature coefficient is negative, since the breakdown is predominantly by the true zener action, while in higher-voltage devices, where breakdown is due to avalanche action, the coefficient is positive. In silicon, the two effects compensate at about 5.6 V ; consequently a silicon diode with this breakdown value has an almost zero variation with temperature. At 3.3 V the variation matches that of an ordinary forward-biased junction such as the base-emitter of a transistor. Both of these types of diode, together with others where compensation is obtained by connecting junctions in series, are in very wide use and will be familiar to readers.

There are, however, two other ways in which temperature-compensated reference voltages can be obtained, using only the forward conduction characteristics of semiconductor junctions. These arrangements are very much less known, but offer advantages in that they work at lower voltages and do not require such precise control of the abruptness of the junctions. In order to understand their action one must first consider the effect of temperature on conduction under forward bias.

Forward-biased junctions

The usual Schottky formula for the current flow i at an applied voltage V is

$$
I=I_{\mathrm{q}}|\exp (q V / k T)-1|
$$

where I_{0} is the leakage current, q the electronic charge, k Boltzmann's constant, T the absolute temperature.
From its appearance, this formula should also predict the changes of
current with temperature, as it clearly contains T, but in fact any results it gives will be wildly wrong. The trouble is that L_{0} is not constant but changes rapidly with temperature.

To improve matters we must alter the formula into the form

$$
\begin{gathered}
I=I_{\mathrm{G}} \mid \exp \left(q\left(V-V_{\mathrm{G}}\right) / k T\right) \\
-\exp \left(q V_{\mathrm{G}} / k T\right)
\end{gathered}
$$

and choose a value for V_{G} so that I_{G} really is essentially constant irrespective of temperature changes within the working region. When this is done it turns out that V_{G} is approximately equal to the energy gap of the semiconductor material (1.2 V for silicon) while

Fig. 1. Zener diode characteristics indicating how the difference between the voltage (V) across a diode at any given current and the energy gap (V_{G}) of the semiconductor expands in direct proportion to the absolute temp. (T).
I_{G} has a value far larger than any real working current.
Suppose now that such a diode is made to carry a constant current while its temperature is allowed to change. The second exponential term in the formula represents the insignificant leakage current only and so the first term must remain virtually constant. It can only remain constant if ($V-V_{G}$) changes in direct proportion to T, and this is what happens in practice.
If, for example, a particular type of silicon diode requires 0.65 V to carry. 1 mA at $25^{\circ} \mathrm{C}$, the formula predicts a temperature variation of

$$
\frac{0.65-1.2}{25+2 \overline{7} 3}=-0.00185 \mathrm{~V} /{ }^{\circ} \mathrm{C}
$$

which clearly agrees well enough with the normally accepted figure of $-1.8 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

This behaviour can be represented graphically as in Fig. 1. A diode behaves as if cooling to absolute zero temperature would make it insulate at all

voltages below V_{G} and then turn on unlimited forward current, with an almost superconducting slope resistance, at that voltage. As the temperature is increased, the familiar exponential characteristic appears and expands linearly away from the V_{G} ordinate.

The Widlar diode

The Widlar diode is really an assembly of three transistors and three resistors, as shown in Fig 2. All the junctions are of the same semiconductor material and are essentially at the same temperature, but the circuit behaves as a compensated voltage reference as seen at the two terminals. Temperature compensation is obtained by exploiting the fact that a forward-biased junction, carrying less current in the same area, has a working voltage further away from V_{G} and hence has a greater temperature coefficient. In silicon, the effect is roughly a 10% increase for every reduction by a factor of 10 in the current. This can be verified from the formula given.

The three resistors in the circuit are selected so that Tr_{1} and Tr_{3} each carry 1 mA , while Tr_{2} carries 0.1 mA (all three transistors being of the same type) when the voltage applied is at some value near 1.2 volts. Typically, the values might be $540 \Omega, 575 \Omega$ and $5.4 \mathrm{k} \Omega$ respectively for R_{1}, R_{2}, and R_{3}. Therefore the whole assembly carries 2.1 mA at 1.2 volts.
If the applied voltage is increased slightly, the current in Tr_{1} will, of course, increase. The stabilizing effect of R_{2}, however, makes the corresponding increase at Tr_{2} very much less, even as a proportion. The voltage across R_{3} therefore remains almost constant and a large part of the original voltage increase is passed to the base of Tr_{3}, which is consequently turned on. The overall effect is that the slope resistance at the terminals is in the region of 30Ω while the intercept resistance is nearly twenty times this value. The circuit clearly gives a constant voltage action.

Suppose now that the temperature rises slightly. The voltage at the base of Tr_{1} will fall, since the junction conducts

Fig. 2. The Widlar diode circuit.
more easily, and the base of Tr_{2} will fall with it. The emitter junction of Tr_{2}, however, was carrying less current and so has a greater temperature coefficient. The voltage across R_{2} therefore rises and increased current flows in Tr_{2} and R_{3}. If R_{3} is large enough the resulting fall of voltage at the base of Tr_{3} can be sufficient to cut the current in that transistor by an amount greater than the combined increase in Tr_{1} and Tr_{2}, despite the warming of the emitter junction.
The magnitude of R_{3} depends directly on the value selected for the voltage when the resistor values were determined. Selection of a large voltage would therefore have given over-compensation, while a small voltage would have under-compensated. The value for an exact balance depends on the precise properties of the components used, but is in the region of the figure of 1.2 V already quoted.

The fact that this arrangement uses only standard transistors operating in the normal way makes it much more attractive than a zener for use in integrated circuits. The lower voltage is also more convenient if the incoming power is from batteries or a standard 5 V supply. Many integrated circuits rely on Widlar diodes for their voltage references, but the three transistors are often hidden in a complex circuit diagram without any clear explanation of their function.

The l.e.d. as a reference

Another, simpler, form of tempera-ture-compensated voltage reference can be obtained using the forward conduction characteristic only. If two junctions of different semiconductor materials both obey the theoretical formula reasonably well then it is possible to select the devices and adjust their current levels so that the values of ($V-V_{G}$) match to give equal variations with temperature, while the actual values of forward voltage are appreciably different. If the two voltages are arranged to subtract in a circuit the required effect can be obtained.

Silicon and germanium could obviously be used in this way but the resulting difference in voltage would be rather small and might not be very stable. A more attractive alternative, which has only recently become possible, is silicon and gallium phosphide or arsenide phosphide. Diodes made from these new materials are now in large scale production for use as l.e.ds and are already no more expensive than zener diodes. In spite of the fact that they are designed primarily for making visible light these devices have a surprisingly low series resistance and obey the Schottky formula well at currents in the milliampere region.

A great many different types of device are being made and the values of ($V-V_{G}$) can be expected to vary accordingly, but some measurements of a few

Fig. 3. A reference voltage using a gallium phosphide l.e.d.
commercial l.e.ds of various colours were made by Mr S. G. Hale and all showed values of temperature variation within 10% of that of a typical silicon transistor. There would appear to be little difficulty in selecting devices to match more accurately than this. The value of V_{G} for this material is about 2.4 V , so the compensated reference output will again be in the region of 1.2 V .

The kind of circuit shown in Fig. 3 can be used to obtain the necessary subtraction. The resistors R_{1} and R_{2} fix the levels of current in the two junctions and can be adjusted to give a fine control of the compensation, since a larger current gives a reduced variation. If a really stable output is required the l.e.d. should be shielded to avoid any photo-cell action, but for most practical applications this refinement is unlikely to be needed and the device might even do double duty as an indicator lamp.
If a constant current rather than a voltage is required, then this can be obtained from the collector of the transistor in Fig. 3. Once the basic principle is understood, there is no great difficulty in arranging circuits for multiplication of the voltage or any other of a vast range of requirements. This second system may well prove the more useful to readers on account of its simplicity, but it is unlikely to find application in integrated circuits due to the mixing of semiconductors.

Gravitational radiation - a fruitless search

Another disappointment in the search for gravitational radiation: the Glasgow University team working on the subject report a negative result from further test runs. This latest work was designed to test the possibility that a series of short pulses of gravitational radiation might produce a cumulative response in a detector, big enough to account for reported detections elsewhere. This now seems likely.

Wideband compander design

Simple square-law circuit gives 100 dB dynamic range

by John Vanderkooy
University of Waterloo, Ontario

Abstract

The wideband compander described can preserve the dynamic range of virtually any input signal when recorded by a normal tape recorder. Operational amplifiers and matched photocells allow accurate compansion with no necessity for calibration or care in recording levels. The unit can be used in compression mode for recording or playback in noisy environments, and for speech signals.

The dynamic range of tape recorders has never been adequate for high quality reproduction. If a high input level is used in an attempt to decrease the effects of tape noise, distortion results on loud passages and transients are severely distorted. Reducing the level to allow even moderate transients to be captured with little distortion means that small signals will be lost in noise. A good quality half-track reel-to-reel machine can expect a signal-to-noise ratio of about 60 dB and because normal audio signals vary more than this, most recording is caught in the compromise between noise and signal distortion.
Several commercial devices are available to solve these noise problems. Dolby A systems are compressor-expanders that work in a number of frequency bands in the audio spectrum. They are very virtuous but are beyond the stage where home construction can be contemplated. The Burwen. compressor-expander' is a device that works over the whole audio spectrum, using cube-root compression and cubic expansion, along with some equalization. Circuits for this compander were not available to the author, but the appeal of the basic system was such that a design suitable for home construction was sought and finally achieved. A recent advertisement from DBX indicates their companders may be similar to the one described here. Recently, Self ${ }^{2}$ has detailed a circuit for compression only. Stuart ${ }^{3}$ has described several other active systems but not the power law compander so its basic merits will be given below.
If a compressor is designed to take an input audio signal I of large dynamic range and compress it to an output θ in accordance with the law

$$
\theta=k_{1} I^{1 \prime}
$$

where k_{1} is a constant and n is a positive integer (it could be fractional, but the electronics is more complicated), then the dynamic range of θ can be such that a tape recorder can faithfully record this signal. We assume that the playback signal P is equal to θ for a unity gain recorder. (There will be some error and its effect will be discussed later). Then if an expander is made which gives a final output signal S given by
then

$$
\begin{aligned}
& S=k_{2} P^{\prime \prime}, \\
& S=k_{2} b^{\prime \prime}=k_{2}\left(k_{1} I^{\prime \prime \prime}\right)^{\prime \prime} \\
& =k_{2} k_{1}^{\prime \prime} I
\end{aligned}
$$

and hence except for the constants, which will vary if level controls are altered, the signal S is a scaled version of the original input I. For domestic use it is argued that $n=2$ is a good choice. An input signal of 100 dB variation will be compressed to 50 dB at the tape, thereby achieving a good performance with modest recorders. The $n=3$ system used by Burwen ${ }^{1}$ shows deficiencies when used with domestic recorders having considerable variations in response with frequency. If the recorder has a response error of $X \mathrm{~dB}$ then the final expanded signal will have an error of $n X d B$. A wide spectrum signal such as normal audio will relieve these difficulties, but if a 6 dB variation in response exists, the cubic system is impractical.

Recent articles by Shorter ${ }^{4}$ on the Wireless World Dolby B noise reducer give much useful information on compansion in general and prompt a comparison between wideband compansion and Dolby B. I have always preferred the transmission of programme material by simple $2: 1$ logarithmic compression, rather than Dolby B methods, because the frequency response is then not altered by receivers not equipped with standard decoders. I fear the extra top will become so enticing to people that the Dolby decoders will hardly find use. In essence it boils down to a preference for distortion in level as opposed to distortion in frequency response. An interesting view of Dolby methods from the BBC recently appeared in a letter to the editor ${ }^{5}$.
A real advantage of the Dolby B approach is that only high frequencies are altered, and gain changes can be made so quickly that no noticeable noise modulation and breathing exist. Present-day wideband companders can partially solve these problems as well. Firstly, the attack time can be very short, so that extra pre-emphasis can be used with a consequent reduction in, noise. This however, creates more incompatibility with existing components and pre-emphasis is not used in the present design. Secondly, by using special filters to eliminate self-modulation distortion, but still retaining a rapid decay-time, the effects of noise modulation and breathing are subjectively reduced. This concept is used in this design. A definite advantage of wideband compansion is the much greater degree of noise reduction for low-level signals, as will be evident later. Professional
assessments of companders and Dolby 'systems are given in recent reviews ${ }^{6}$. For the moment it is to be appreciated that wideband compansion prevents overloading the recorder, reduces the effects of noise at low signal levels, and virtually makes recording level controls unnecessary. In addition an accurate power law device will reproduce faithfully irrespective of the settings of the level controls. No reference levels are necessary as in Dolby systems or other non-linear companders.

Requirements

The heart of a compander is a gain-controlled amplifier which can divide or multiply the gain by means of a control voltage. It must be capable of 50 or 60 dB gain variation with an accurate characteristic. A good audio bandwidth must be maintained over the whole variation, and the distortion should not exceed 1%. The gain variation must be rapidly programmable as well. A servo system driving a potentiometer would be accurate but too slow. A good figure to shoot for in response time is several milliseconds. This allows even transients to be respectably dealt with.
A well-built transconductance multiplier will satisfy the above characteristics, but it has too much wideband noise. This is due to the necessity of small signal levels at the bases of the multiplying transistors to prevent distortion.

As well as an accurate multiplier-divider, the circuits which caliper the audio level and produce a smooth rectified signal proportional to the amplitude must be accurate and have an attack time less than a few milliseconds. The release time should be rapid to prevent pumping but not rapid enough to cause distortion by "self modulation" of a low-frequency signal.

Experiments

Early experimental attempts at making the multiplier-divider centred on f.e.ts and their source-drain characteristics near the origin. Distortion is high if the f.e.t. is used in a straightforward way. It can. be greatly reduced if the gate is driven not only as a control voltage but as an alternating voltage which is midway between that of the source and the drain as in Fig. 1(a). This gives the device a drain characteristic of odd symmetry. Thus all even harmonics are entirely

Fig. 1 (a) The distortion of the f.e.t. as a voltage-controlled attenuator can be reduced by driving the gate with an alternating voltage midway between the source and drain voltages. (b) by using a second matched f.e.t. the variation of the gain can be made proportional to $V_{m} / V_{\text {ref }}$.
removed by this "push-pull" technique, and only odd harmonics, mainly third, occur at higher signal levels. The problem still remains that a large gain variation of greater than 30 dB is difficult to achieve, and the gain is not a simple function of the control voltage. The last-mentioned problem can be alleviated by using one of a matched pair of f.e.ts (a dual) to generate a specific resistance using an operational amplifier.
In Fig. 1(b), Tr_{2} has a resistance which is determined by setting the input current of the op-amp equal to zero with due respect for the virtual earth, i.e. $V_{\text {ref }} / R_{\text {f.e.t. }}=V_{m} / R$. Transistor Tr_{1} will have the same resistance and the upper circuit, which handles both polarities for audio, will obey a law $' V_{\text {out }} / R=V_{\text {in }} / R_{\text {fe.t. }}=V_{M} V_{\text {in }} / V_{\text {ret }} R$. Thus $V_{\text {out }}$ $=V_{\text {in }} V_{M} / V_{\text {ref }}$ Division and multiplication have both been accomplished! This circuit technique must be remembered for the multiplier to be described later. It is not suitable in the present form since not enough-gain variation is available.

Another method attempted was to make a transconductance multiplier ùsing f.e.ts as the input active elements. They would not be as linear as transistors on a relative basis but since the voltage scale on which they turn on is about a volt as opposed to the 25 mV for a transistor, much less attenuation of the input signal is necessary and this together with lower f.e.t. noise would reduce the noise to small values. Disadvantages of the design are the difficulty of obtaining division and the requirement of four well-matched f.e.ts.

Photoconductive cells were also considered as possible gain control elements for
the multiplier-divider. Initial experiments indicated that when a light-emitting diode was suddenly turned on the coupled photocell would respond with approximately two time constants, one a fast but rather small relative behaviour, the other a slower rise of about 10 ms to a final conductance level. This is not suitable for a fast-acting gain control circuit. Also the final conductance value was not properly proportional to the l.e.d. current. Fig. 2 shows the characteristic of resistance versus current for a CL904N photocell coupled to an l.e.d. A straight line of slope -1 would represent ideal behaviour.

Fig. 2 Curve of photocell resistance versus l.e.d. current for a Clairex CL.904N photocell when illuminated by a red l.e.d. The unbroken line is drawn through the experimental points. The dashed line represents ideal behaviour.

It was decided to employ op-amps to linearize the cells using the technique mentioned earlier. Fig. 3 shows the basic idea for a multiplier. A divider can be constructed by interchanging the resistor and the photocell as gain-determining elements for the amplifier A_{1}. The l.e.d. shines equally onto both photocells. Tracking of the photocells is essential for an accurate power law compansion, but an error does not significantly affect the overall characteristic, see later. From five photocells at least two would track well over factors of 100 change in the resistance.

Experiments with this multiplier-divider

Fig. 3 Photocells and a controlling l.e.d. are used here as a multiptier using a concept similar to that shown in Fig. 1 (b). For this circuit $V_{\text {out }}=V_{c} V_{i n} / 6$.
showed that a 60 dB range was possible and the attack time for a large step increase in the control voltage was about one millisecond. The feedback has thus considerably reduced the sluggishness of the cell. At low light levels the cell seems to have a longer time constant and a nonlinear network placed in series with the l.e.d. maintains good control stability over all voltage levels.

Fig. 4 shows the rectifier circuit that was adopted to produce a direct control voltage for the multiplier-divider. Amplifier A_{2} has circuitry which creates an absolute value circuit with a gain of $2 / 3$. Diode D_{2} is used to create a virtual earth at the inverting input for positive input signals so that the upper $5 \mathbf{k}$ and 10 k resistors can form a simple attenuator. This diode also prevents`op-amp saturation and hence allows accurate response up to the highest audio frequencies, a feature which many precision rectifier circuits do not have.
Amplifier A_{3} is a peak detector in which D_{4} prevents saturation of the op-amp when the input voltage from the absolute value rectifier is lower than the voltage on C_{1}. Another advantage of this diode is more subtle. If a rectified sine wave of constant amplitude is fed into the peak detector, the

Fig. 4 Schematic of the circuit used to obtain an absolute value of the audio signal and produce a control voltage proportional to the peak of the waveform.

Fig. 5 Complete schematic of the compander. Op-amps are assumed to have $\pm 15 \mathrm{~V}$ power supplies. For best performance amplifier A_{1} should have separately decoupled supplies. The $10 \mathrm{k} \Omega$ resistor in the compensation should be referred to the negative supply.
droop at C_{1} is much less than in a circuit in which R_{1} is returned to ground rather than the inverting input terminal. This is so because the negative input terminal follows faithfully the input signal on the non-inverting input terminal. However, if the audio signal dissappears, then R_{1} is effectively returned to ground and the decay time constant is short. For audio frequencies $>1 / 2 \pi R_{l} C_{b}$, the droop is only $1-(2 / \pi) \approx 0.36$ as large in this circuit as when R_{1} is returned to ground. Components R_{2} and C_{2} provide extra filtering and D_{5} allows the control voltage to rise quickly in the presence of audio transients. The input follower A_{1} is necessary because the input impedance of the absolute value circuit changes with signal polarity.

Circuit description

The complete compander circuit diagram is shown in Fig. 5. Switching allows the circuit to be used as a compressor during recording, and as an expander during playback. In the compression mode, the control voltage acts to decrease the audio gain as a divider. Hence the output θ will be related to the input by the relations $\theta \propto I / V_{c}$ But V_{c} is derived from the amplitude of the output signal, hence $V_{c} \propto \theta$. Thus $\theta \propto I / \theta$ or $\theta \propto \sqrt{ } I$, a square-root compressor. When in the expansion mode, the audio gain is precisely proportional to the control voltage. Hence the final output signal S is related to the playback signal by the relation $S \propto P V_{c}$ but V_{c} is derived now from the audio signal P, hence $V_{c} \propto P$. Thus $S \propto P^{2}$ and a square-law expander results.

If the photocells do not track well, the division or multiplication factor must still be the same function of control voltage, say $f(V)$, because of the way the photocell is switched in the compress and expand modes. Hence $\theta=I / f\left(V_{c}\right)$, and if we assume again that $P=\theta$ (for a good recorder) then

$$
S=P f\left(V_{\mathrm{c}}\right)=\theta f\left(V_{\mathrm{c}}\right)=I
$$

Thus a perfectly complementary system still results. Careful analysis shows that this is true only if the recorder has unity gain, because otherwise the playback signal would produce a different control voltage than that used during recording. Only a power-law behaviour of the function $f\left(V_{\partial}\right)$ will preserve the relative level differences. In the present circuit $f(x)=x$, a simple function indeed.

The major circuit blocks in Fig. 5 can easily be recognised from the earlier discussion, but several features warrant special consideration. The operational amplifier $A_{\text {, }}$ used in the multiplier is used in a circuit in which the gain is varied by up to 60 dB . At unity inverting gain, a compensation capacitor of about 15 pF between pins 1 and 8 (half of that for a voltage follower) is necessary for stability. But this is detrimental to the frequency response when the gain is high (a small amount of feedback), as for example during small signal levels in compression. Pin 8 comes from the output circuit of the op-amp. Pin 1 is a high impedance point which has a signal referred to the negative supply line. The difficulty occurs when the

high level signal from pin 8 is injected into pin 1 through the normal compensation capacitor. The gain is drastically reduced at high audio frequencies. But there is no problem with op-amp stability at these frequencies; instability only occurs near 1 MHz . The $10 \mathrm{k} \Omega$ resistor between the two 50 pF capacitors shunts the gain reducing signal to the negative supply line thus restoring the gain at audio frequencies while not materially affecting stability considerations at megahertz frequencies.

An important point is the selection of photoconductive cells. Impedances of $1 \mathrm{k} \Omega$ are ideal for op-amp gain determining resistors. Lower values might tend to cause current limiting at high signal levels. It is therefore recommended that the photocells have resistances of not much less than $1 \mathrm{k} \Omega$ when illuminated by an l.e.d. carrying a current of 10 mA . The l.e.d. can be glued to the two matched photocells (or dual photocell) with clear epoxy.

In a stereo system one has a choice of building a compander for each channel (the best solution) or of combining functions together. In a combined system it will be necessary to control three photocells with one l.e.d. If matched l.e.ds are available then
two double units can be used. But they are not easily matched. Some require a threshold current before they start to emit light. In any event the right and left channels should be summed before peak detection. The voltage follower in the rectifier circuit can easily be rewired to act as an inverting summer. Of course two separate op-amps will be necessary with compensation as described earlier.
Due to the switching in the rectifier and peak detecting circuits, it is recommended that separate decoupling be used for the supply lines to the signal op-amp. All input and output connectors should have their signal ground connected to the non-inverting input of A_{1}. You may wonder why a low-noise audio op-amp such as the Fairchild 739 was not used in the signal circuits. This is because these do not have adequate reserve gain for the multiplier - divider action necessary here. They also draw more input current, causing greater offsets when the gain is high. It is wise to include the input offset current adjustments for the signal op-amps as shown in Fig. 5. The offset is adjusted to provide zero direct output voltage with a very low signal input in the compress mode. If this is not done a low frequency thump will occur when the gain

changes quickly.
Another point is that for no signal level in the compress mode, the gain is very large and is limited mainly by the rectified output noise. This is not usually a problem since most sources for recording in the home such as discs and microphone arrangements have enough background noise. An easy way to eliminate such problems is the inclusion of a resistor shown dotted in Fig. 5 which limits the maximum gain, by preventing the l.e.d. current from becoming zero.

As shown, the compander responds to very low frequency signals and has low phase shift. Sometimes a turntable can have a large low frequency. rumble which can modulate the compressor gain. In such cases a filter should be used to remove such low frequencies. A simple solution is to decrease the value of the $0.5 \mu \mathrm{~F}$ record input coupling capacitor to give an appropriate cut off frequency. If a recorder with restricted bandwidth is used, it is wise to restrict the. input to the compander to the same extent. This ensures that the rectifier circuits will see similar signals on compression and expansion.

The power supplies should be well regulated for optimum performance, but unregulated supplies with good ripple filtering are acceptable. The transformer should supply 11 V a.c. on open circuit and allow 70 mA of current drain

All diodes can be silicon signal diodes, such as 1N914, 1N4148, 1S44; only D_{5} in Fig. 4 should be a germanium signal diode as this will help reduce overshoots in compression.

Input impedances are simply given by the values of the record and playback preset potentiometers. The outputs are low impedance, and perhaps 560Ω resistors should be added in series with these outputs to prevent damage if high signal levels are inadvertently applied to these outputs.

Performance

The most important characteristics are the compression and the accuracy of the whole process. Fig. 6 shows the graph of output level versus input level in the compression mode of operation. The deviation of the curve at very low input levels is due mainly to photocell tracking error, and partially from the amplified noise of the 748 op -amp. The input voltage is not measured at these low levels; it is inferred from the settings of an accurate low impedance attenuator. Deviation from a square root behaviour is never more than 1 dB for well over 80 dB of dynamic range. All levels are in $\mathrm{dBm}(0 \mathrm{dBm}=0.775 \mathrm{~V}$ r.m.s.).

Fig. 6 Curve indicates output level versus input level when the compander is in the compression mode. Note that a 60 dB input variation is compressed to 30 dB of output variation to be recorded on the tape.

Fig. 7 Output level versus input level in decibels for the expansion mode. A $30 d B$ input variation from the recorder on playback would be expanded to an output of 60 dB to be fed to a power amplifier.

Fig. 7 shows the output level versus input level in the expansion mode. The curve again shows almost no discernable deviation from a square law. Output levels are difficult to measure with standard a.c. voltmeters below about -90 dB . The complete characteristic from recording input to final signal output is linear to much better than 1 dB because of the exact complementarity discussed earlier.

Even the dynarnic characteristics are precisely complementary, because the audio signal used to produce the control voltage is derived from the output in compression

Fig. 8 Oscillograph of the compressor output when the 1 kHz input signal is suddenly increased by about 30dB by a mercury wetted relay. ($20 \mathrm{~ms} / \mathrm{div}$ horizontally, $2 \mathrm{~V} /$ div vertically.)
mode, and from the playback input signal in expansion mode. These two signals should be the same for a good tape recorder. An overshoot in the compression mode, which is very difficult to suppress completely because of the time constants .of the photocells and the peak rectifier, will not be problematic because it will be exactly undone in the expansion mode. Only the leading edge of a transient sound will perhaps not be faithfully recorded, but the ear will forgive severe distortion for periods of several milliseconds. Fig. 8 shows the output signal to the recorder in compression mode when the input signal is suddenly increased by about 20 dB . The signal frequency is 1 kHz . Notice that there is a slight overshoot in the compression that lasts about 10 ms . The transient edge dies away with a time constant of about a millisecond. There is some dependence in Fig. 8 on the phase of the input signal at the moment of switching in the higher level. One would expect this in fast-acting circuits. A real audio transient is likely to be less severe than the instantaneous switching used here as a test signal.
The release time constant is less than a tenth of a second, giving a fast enough action - that even on a rapid reduction in signal level, no noise is noticeable on replay. The rapid release time is also advantageous if the compressor is used on the output of an automobile radio. The normally large variations in signal level will be reduced so that low levels are not masked by the ambient noise. (I have often wanted something akin to an engine-speed dependent volume adjustment on my automobile radio.)

For high fidelity purposes the compander must have low distortion. Fig. 9 shows the - measured second and third harmonic distortion versus frequency in compression mode for an input level of +10 dB . The rise at low frequencies is due to the ripple from the peak rectifier. The wideband distortion is due to the photocell characteristic and is mainly third harmonic.

Fig. 10 shows the second and third harmonic distortion versus the output signal level (the voltage across the photocell) at a frequency of 1 kHz . Except at high output level, the distortion quickly falls near the noise limit of the wave analyser. There is approximately 0.05% of residual third harmonic distortion in the oscillator which may slightly raise or lower the measured third harmonic, depending on phase relationships. Distortion level is low enough because it does. not represent a crossover distortion, only a gently curving transfer characteristic. However, it would be unwise to be too defensive

about distortion levels in photocell circuits. Some cells have much larger distortion than others. A number of different types were tried. 1 admit 1 could not hear the difference, but measured distortions of up to 2% at high level were occurring for some cells. The circuit whose measured low distortion is shown in Fig. 9 and 10 uses quite inexpensive cells, type VT-833, manufactured by Vactec, Incorporated.*

Any reasonably fast CdSe photocell could be- used with resistance characteristics as described earlier. A quick check on distortion can be made by applying 10 V r.m.s. at 1 kHz to a divider made up of $10 \mathrm{k} \$ 2$ resistor and the cell, illuminated to a resistance of about $10 \mathrm{k} \Omega$. If no appreciable curvature exists on an $\mathrm{X}-\mathrm{Y}$ oscilloscope display or cell voltage versus oscillator voltage, the cell has suitable characteristics.

In Fig. 11 the clipping characteristics of the compander are shown in compression and expansion modes. The break point is due to current limiting of the amplifier A_{3} in Fig. 5 which drives the l.e.d.

The final test of performance of an audio circuit must be the human ear. In microphone arrangements using the compander there is dead quiet at no signal level. This is far from true without the compander. Replay sounds natural and the settings of the level controls on either recording or playback are
*U.K. agents Teknis Ltd, Teknis House, Meadrow, Godalming, Surrey GU7 3HQ. The cells cost around $£ 1$.

Fig. 10 Distortion of the compressor versus output voltage level at a signal frequency of 1 kHz . There is a residual distortion of about 0.05% third harmonic in the oscillator which may alter the third harmonic results somewhat at low levels.
unimportant as long as overload is prevented. Using good discs as a source there is no noticeable difference in the dynamics even on piano music when the compander is used. This is impressive performance for such a simple circuit.

How can the audio enthusiast use the compander? If his tape recorder has a signal-to-noise ratio not much worse than the sources at his disposal, then it is hardly worthwhile using it to preserve dynamic range. However, modern stereo cassette recorders have signal-to-noise ratios of around 50 dB , whereas a live f.m. broadcast can have 70 dB . Then 20 dB of increased dynamic range will result. In a live microphone setup with a low noise preamplifier the increase in dynamic range is greater than 40 dB , and here the compander allows almost complete disregard of the level controls.

If master tapes and discs were made with a square root compressor and radio stations would broadcast these directly, then an expander in the receiver could bring back the full dynamic range of the original signal. Another use for the compander occurs whenever there is a high background noise

Fig. 9 Distortion of the compressor versus frequency for an input level of +10 dB . Curves are substantially constant beyond 800 Hz with a small increase beginning beyond 10 kHz .

Fig. 11 Characterisucs of the compander for high level signals. Clipping level in the compression or the expansion mode is determined by the supply voltage of the operational amplifiers. Deviation from square-root compression and square-law expansion results from the current limiting of the amplifier A_{3} driving the l.e.d. These levels were obtained by setting the record and playback present potentiometers to $10 k \Omega$. Altering these values will alter the point at which the .behaviour saturates.
level, such as in an automobile, workshop, or a home with children. The unit can be usfí to process a signal using compress mode, so that the dynamic range of the signal stays. sensibly above the noise level. It is wise to. include the dotted resistor of Fig. 5 in such setups to reduce the noise output when the signal level is very low.

References

1 Burwen R. S. Design of a noise eliminator system Audio Eng. Soc. Vol 19 December 1971.

2 Self, R. G. High-quality compressor printer, Wireless World, Dec. 1975 p.587-90.

- 3 Stuart, J. R. Tape noise reduction, Wireless World March 1972.
4 Shorter, G. Wireless World Dolby noise reducer, Wireless World, May 1975, p. 200
5 Dolby f.m. broadcasting (letter), Wireless World, Sept 1974, p. 344.
6 See, for example, Studio Sound, March 1974.

Printed circuit boards

Wireless World has arranged a supply of glass fibre p.c.bs. The board is a stereo version but using a common control circuit. (Two boards are needed for a two-channel version with separate control circuits.) Provision has been made for board-mounted l.e.ds and photocells, and connections are brought to one edge. One-off price is $£ 3.50$ inclusive from M. R. Sagin, 11 Villiers Road, London NW2.

Video-plus-data recording

The Japanese are using a teletext type of method to record simultaneously on video tape pictures and measurement data from industrial or other processes. The idea is that in investigating certain processes it is useful to be able to correlate pictures of events with measurements of the variables (e.g. temperature, pressure) that are significant in these events. At the 7th IMEKO congress held in London in May, H. Soga and co-authors described a system for multiplexing television pictures and data that has been applied to blast furnace operation and human body movement patterns. It uses an ordinary. closed-circuit television camera and magnetic-tape video data coder.
The c.c.t.v. camera signals are sent by coaxial cable to the video data coder, and at the same time measurement signals from transducers on the process are fed in via an analogue-to-digital converter. The a-d converter produces the measurements as 10 -bit digital signals, and after storage in a register the successive pulses of these data signals are fed out sequentially from the register and combined with the camera's video signal. Each data pulse is accommodated in an extended blanking period, following the line sync pulse and colour burst and before the video signal proper. Addressing is done by means of an additional identifying pulse, called a "group bit pulse", inserted at intervals also into the blanking period. Finally the composite video-and-data signal is recorded by the video recorder. On playback the data pulses are picked out of the composite signal by gating, converted back to analogue signals by a d -a converter and passed to pen recorders or other display instruments.

This process monitoring technique is said to be particularly useful when an experiment cannot be artificially repeated, or is expensive, time consuming or dangerous, or when a fully explanatory record is required for educational purposes.

Brake regulator eliminates locking

A new brake regulator system which allows car drivers to brake hard at high speed without risk of the wheels locking has been developed in Sweden. Many accidents are caused by cars going out of control because the wheels have become locked as a result of abrupt brake application at high speed, especially on icy or wet roads. The new system has a toothed rim mounted inside each wheel hub. The rim's rate of rotation is continuously monitored by a photocell which feeds data on every change in speed to an electronic control unit. When the brakes are applied and a wheel is about to lock, the electronic unit actuates a valve mechanism which causes the brakes to be released for a short time and then to be applied again. This process can be repeated up to 15 times per second and the brakes retain full effectiveness without locking the wheels. The inventors, two Linkoping technicians, believe that, if the new system can be manufactured on a sufficiently large scale, it could be supplied at "reasonable cost" either as a spare part or as a component for installation during manufacture.

Microwaves for Ireland

The Republic of Ireland is to be provided with a new microwave communication system that will replace the country's existing television distribution network and provide additional TV coverage to new areas. The system will utilise 22 repeater stations over approximately a 750 -mile route and will provide two main television channels which will
each have an 1800-channel capacity. Originating from Dublin, the system will provide high-quality television broadcasting to Ireland's most populated areas which include Cork and the south coast, Galway and the west coast, Donegal, Athlone and Dundalk.

The 3.5 m dollar contract to provide and install microwave equipment was awarded to GTE Telecomunicazioni S.p.A., Milan, GTE International's Italian subsidiary, by Ireland's Department of Post and Telegraphs. The system is expected to become operational in early 1977.

Tributes to Arthur C. Clarke

Arthur C. Clarke may not have received the first L. M. Ericsson prize for his significant contribution to telecommunications (see "Who thought up the synchronous satellite?, April issue, p.68) but he did get an appropriate material tribute for his work from the Indian Space Research Organisation. A party of their engineers arrived at his home in Colombo, Sri Lanka, one day and fitted up a complete installation for receiving the Indian television programmes now being broadcast from the ATS-6 satel.lite (March issue, p.68). The 15ft antenna, mounted on a balcony, is shown in the picture. The 22 -inch monochrome set was made in India.

Also, Dr Harold Rosen of Hughes Aircraft, on receiving the Ericsson prize

Arthur C. Clarke and the $15 f t$ paraboloid of the ATS-6 television satellite receiving station presented to him by the Indian Space Research Organization. The feed unit contains an 860 MHz three-stage low-noise pre-amplifier (see news item).

in Stockholm in May, made a graceful reference to Arthur Clarke in an address on the history of geo-stationary communications satellites. Earlier this year Mr Clarke was awarded an Honorary Fellowship of the American Institution of Aeronautics and Astronautics in New York. In fact he made history by being promoted from Member to Fellow and then to Honorary Fellow all in the same year

Radio relay above 13 GHz

A radio relay system has been developed to operate in the frequency range above 13 GHz and to transmit information by means of digital phase modulation. Modern radio relay systems using frequencies up to 13 GHz fulfil their functions in analogue long-range communication networks, Nevertheless, factors such as the increasing digitization of communications traffic, future transmission capacity requirements and economic considerations have made the new relay system necessary.
The PSK 120-240/15000, developed by Siemens, operates with differential four-phase shift keying of the carrier, information being contained in the phase shifts at $0^{\circ}, 90^{\circ}, 180^{\circ}$ and 270°. This type of modulation permits a good compromise between immunity to interference, bandwidth requirements and technical complexity. On the basis of rainfall figures for Germany, radio path lengths of 22 to 28 km were found advisable, so that the system is suitable for dense radio relay networks whose nodes have several links radiating from them and which have relatively short transmission paths of between 25 and 50 km . Such network structures and corresponding transmission capacities can be found for instance at the short-haul level of the Federal German communication networks. This is where the PSK radio relay system (see photo) will probably be used first when it becomes necessary to transmit large numbers of digital signals such as p.c.m. speech bands or coded videotelephone signals.

Open University's telecommunication course

An understanding of technical advances and their practical application for the present and future, form the basis of a one-year course 'Telecommunication Systems' being offered by the Open University. With over 55,000 students spread throughout the UK,

Clean room at Mullard Hazel Grove, a Philips Industries semiconductor components factory. Instead of having large open areas serviced with cleaned and filtered air, the working stations are fitted into modules that can be put together to form an open-endea tunnel.
improved communication systems have a special interest for the University. A part of the course which is therefore of particular interest is a case study of the use of tutorials by telephone and an examination of current developments in the transmission of graphical information over telephone lines with visual displays at remote terminals.

The course which is part of the University's 'Post-experience' programme for 1977, deals mainly with the way in which various elements of telecommunication systems are selected and combined, the functions they serve, the way they interact and the effects which inherent imperfections have on the overall system performance. Application and further information on the course can be obtained from the Post-experience Student Office, the Open University, PO Box 76 Milton Keynes, MK 7 6AA.

TV deliveries down

Deliveries to UK distributors of UK made and imported colour television receivers reached 109,000 in March, a fall of 22 per cent on March 1975 (139,000), according to the latest statistics compiled by the British Radio Equipment Manufacturers' Association. This brought the total for the year to 309,000 , a fall of 35 per cent compared with the same period in $1975(475,000)$. Total monochrome TV deliveries for March were 96,000 , an increase of 55 per cent compared with March 1975
(62,000), bringing the year's total to 244,000 compared with 212,000 last year. These figures include deliveries to rental and relay companies.

IBA's 300th transmitter opened

The opening of a local television relay station at Beacroft Hill near Leeds, which came into full service on April 30 , 1976, brings the number of IBA television and radio transmitting stations to 300 . Of these, 200 have been opened in the four years since April 28, 1972, when a television relay at Brighton, Sussex, brought the IBA's total to 100 . There are now 213 u.h.f. 625-line television transmitting stations, including 46 highpower 'main' stations, serving just over 96 per cent of the population of England, Scotland, Wales and Northern Ireland; 39 v.h.f. and medium-wave sound transmitting stations for the 19 independent local radio companies; and 47 v.h.f. television transmitting stations which continue to provide television services for viewers with older $405-$ line receivers or who are not yet in range of the u.h.f. services.
The introduction by the IBA of unattended transmitters at all power ratings has meant that the 300 existing transmitting installations are operated and maintained by approximately the same number of field engineering staff as were needed before 1969 for the original ITV v.h.f. television network of under 50 transmitting stations.

World of Amateur Radio

More u.h.f. repeaters

During April the Home Office licensed 20 u.h.f. "talk through" repeaters in England, Scotland and Wales and within a week or two the installations at Corby, Manchester, North Wales and some near London were operating. The introduction of these repeaters between 433 and 435 MHz has, however, caused some consternation in amateur television circles and it is to be hoped that arrangements will be worked out to enable both services to operate without mutual interference. Many other amateurs are perturbed at the deliberate interference to and abuse of the 144 MHz repeaters (particularly the GB3LO repeater in London) and the whole subject of repeaters is still creating a highly charged atmosphere.

Some 40 u.h.f. repeaters are planned, conforming to a 33 km square grid covering the UK. There are now some 2,000 amateur repeaters in the United States and the FCC has recently authorised repeaters in the 28 MHz band, between 29.5 and 29.7 MHz with a suggested 100 kHz separation of input and output frequencies.

Experimental retransmission of 625 -line amateur television vision and sound signals through a u.h.f. repeater has been reported from Adelaide, South Australia, with 441 MHz input and 579 $\overline{\mathrm{MHz}}$ output. Pictures from the 1.5 W repeater transmitter can be received on standard u.h.f. domestic TV sets.

Interference suppression

Both amateurs and broadcast listeners have learned how difficult it can be to cope with two intractable sources of electrical interference: car ignition systems and domestic TV.

A team at Stanford Research Institute have come up with a suggestion that could do much to reduce ignition problems: a modified form of sparking plug that by increasing capacitance between the centre electrode and the resistive lead to about 10 pF provides, in effect, a built-in low-bass filter. In IEEE Transactions on Vehiculàr Technology (February 1976) the team - R. A. Shepherd, J. C. Gaddie and D. L. Nielson

- report that such plugs, if a manufacturer would produce them, could result. in 13 to 20 dB additional suppression, compared with conventional techniques, over the range 30 to 500 MHz . Earlier research by the same team drew attention to the wide variation in ignition noise radiated by different vehicles and even between different firings of the plugs. Some "super-noisy" vehicles were found to radiate 40 dB more interference than others.

Interference radiated by television sets (sometimes called reverse-tvi or "ivt") seems to have risen with the increasing use of switched-mode power supplies and greater deflection power in colour receivers, often ruining broadcast reception below about 800 kHz and producing whiskery signals at line-frequency separation throughout the h.f. spectrum. While various "braidbreaker" high-pass filters in the aerial leads of the TV sets can sometimes' reduce radiation from individual sets, urban areas appear to be increasingly heavily polluted during popular TV viewing hours.

ARRL and Citizens' Band

Although one still finds among American amateurs a deep dislike of many aspects of the $C B$ scene, a notable attempt to heal the breach has been made by Richard Baldwin, WlRU, general manager of ARRL and secretary of IARU. He admits, in a QST editorial, the widespread interference caused by $C B$ to television but also pays tribute to "some fine public work" by CB operators. He believes that the big expansion has now brought into existence "a new breed of CBers interested in CB because it is a way of talking to someone - not because it is radio - to relieve the boredom of long trips and to keep posted on traffic conditions". No longer, he suggests, is the bulk of CB operation from frustrated would-be radio amateurs who wanted to be on the air because of a hobby interest in radio but who did not want to learn the Morse code or pass examinations. He feels, however, that there are still some $C B$ enthusiasts who become interested in radio communication as radio and who should be encouraged.

This distinction between amateur radio and $C B$ communication is something not always appreciated in the UK. The Council of the RSGB has stated that the Society will give no support to a 27 MHz communications band, partly because the press does not differentiate between licensed radio amateurs and the 27 MHz users.

In the United States CB has reached the stage where the radio stores carry large stocks of mobile and hand-held 27 MHz transceivers and the bookshops carry more CB publications (including dictionaries of CB slang) than books on amateur radio. It has become very big business but clearly both $C B$ and amateurs would gain from keeping the
two types of activities entirely distinct. FCC are to attempt to move very low power CB hand-held operation to frequencies around 50 MHz .

In brief

One little known fact about that supreme recluse - the late Howard, Hughes: at one time he held the amateur callsign W 5 CY . . . The revival of an RSGB Radio Communications Exhibition this year in the London area has already been promised considerable trade support: it is to be held at Alexandra Palace from 10 a.m. to 8 p.m. on July 30 and 31, and 10 a.m. to 4 p.m. on August 1 ... For the first time in its 63 -year history, the membership of RSGB has exceeded $20,000 \ldots$ The 1976 convention of the British Amateur Television Club will be held on Saturday, September 18, at Parkinson Court, Leeds University . . . ARRL are appealing for 100,000 new US amateurs by 1979 , now that those who graduate from training courses held by affiliated clubs and societies will be able to obtain licences without the usual issuing delays . . Combined operational life of the Oscar 6 and Oscar 7 satellites now exceeds five years with Oscar 6 clocking up $31 / 2$ years in service in April and Oscar $711 / 2$ years in May ... Total of UK amateur licences had reached 22,789 (class A 15,819; class B 5,843; class F (mobile only), 21 ; and television, 306) by the beginning of March . . . Novice and Technician licences first came into force in the United States 25 years ago on July 1, 1951. A current proposal for novice licences in Canada would provide c.w. only between 3700 to 3725,7100 to 7150 , 21,100 to $21,200,28,100$ to $28,200 \mathrm{kHz}$ with 150 -watts input. Licences would be issued for two years only and require 5 w.p.m. morse, knowledge of regulations, adjustment, operation and care of radio apparatus; tests would be administered by Advanced Class amateurs not related to the applicant. . . A German international "hamfest" is being held this year in a new location at Friedrichshafen on Lake Constance between June 25 and 27 (details DARC, PO Box 1155, D-3507, Baunatal, Federal Republic of Germany) . . . The "National Wireless Museum" has opened, under the auspices of the Wireless Preservation Society at Arreton Manor, near Newport, Isle of Wight, with early radio and television receivers, crystal sets, early loudspeakers, etc ($10 \mathrm{a} . \mathrm{m}$. to $6 \mathrm{p} . \mathrm{m}$. on weekdays, Sunday afternoons) . . In the USA a new electronic-communications museum at East Bloomfield, New York, contains over 25,000 pieces of equipment, including 7,000 valves (with an original 1905 Fleming diode given by The Marconi Company) and including a number of replicas of early amateur stations (including a 1923 station, W2AN, which operates on 1.8 MHz ; early ship and coast stations are also reproduced. It is run by the Antique Wireless Association.

PAT HAWKER, G3VA

Analogue to digital meter

Circuit using l.e.ds or $11 / 2$-digit display

by G. Kalanit, B.Sc., M.I.E.E.

Rediffusion Engineering Ltd

In level measurements such as signal strength in communication, an accuracy of about $\pm 10 \%$ and a resolution of about 5% may be sufficient. For such a requirement an l.e.d. array may replace a conventional meter. The level is displayed as a moving bright dot, calibrated with an appropriate scale. The advantage of such a circuit is its clarity and its instantaneous display of varying levels. Mechanically it is robust. Its main characteristics are a resolution of half a digit, and a minimal consumption of supply power. The current drain is almost constant and used mostly (about 80%) to illuminate the array l.e.ds. For applications where a digital display or level warning is also required, an output from the meter is described.
Initially when the d.c. input level is low, Fig 1(a), transistors $\mathrm{Tr}_{1} \mathrm{Tr}_{2}$ and Tr_{3}. are cut off and transistors $\mathrm{Tr}_{01}, \mathrm{Tr}_{02}$ and Tr_{03} are in a saturated state. Hence the l.e.d. for 0 is illuminated. Because of the
voltage drop across $\dot{\mathrm{T}}_{01}$ base-emitter junction, there is not enough voltage drop across l.e.d. l, and therefore it is not switched on. By the same reasoning l.e.d. 2 is also off. When the input direct voltage is raised sufficiently to switch transistor Tr_{1} on, Fig. l(b), transistor Tr_{01} cuts off and l.e.d. 0 is switched off This results in l.e.d. 1 being on. With a further increase of input voltage, Fig. 1(c), transistor Tr_{2} comes into saturation and cuts off transistor Tr_{02} and l.e.d. 1. This results in l.e.d. 2 being switched' on. Hence, in the final state transistors $\mathrm{Tr}_{1}, \mathrm{Tr}_{2}$ and Tr_{6} are switched on, and only l.e.d. 2 is illuminated. The circuit may be described as a column of transistor pairs.
The switching from one l.e.d. to another is not a snap action, and illumination from 0 to 1 to 2 is continuous. This means that halfway between 0 and 1, both I.e.d. 0 and I.e.d. 1 are lit together. Similarly halfway
between 1 and 2, l.e.d. 1 and 2 are lit together. Because of the constant-current feed, the level of the illumination is halved for each l.e.d; however, the total level remains constant and the visual effect is to give a resolution of half a digit.
A complete meter circuit is given in Fig. 2 for an eleven-l.e.d. array. A constant-current source of 20 mA gives a fairly bright display. Fig. 3 gives a calibration curve of the circuit in Fig. 2. The curve slope is the meter sensitivity which may be defined as the increase in input voltage required to change one digit, i.e. $i \times R_{\mathrm{n}}+\mathrm{V}_{\text {cetsat }}\left(\operatorname{Tr}_{\mathrm{n}}\right)$, where i, is the constant current through R_{n}, and $V_{\text {ce(sat) }}\left(\operatorname{Tr}_{n}\right)$ is the saturation voltage drop across transistor Tr_{n}. In the circuit, Fig. 2, for n values 1 to 10 , sensitivity is

$$
20 \mathrm{~mA} \times 15 \Omega+0.15 \mathrm{~V}=0.45 \mathrm{~V}
$$

The fact that the sensitivity of each

Fig. 3. Calibration curve for the display in Fig. 2 showing the input voltages required to light l.e.ds numbers 0 to 10. Points X represent a single l.e.d. when lit, points 0 represent two adjacent l.e.ds when equally bright; e.g. at an input of ' 5.6 V both l.e.ds 5 and 6 are equally on and the error is about 0.12 V . Full scale is 3.5 V d.c. therefore error at full scale is $0.12 x$ $100 / 3.5=3.4 \%$
digit can be controlled with the value of the corresponding resistor, means that the meter may be easily employed in non-linear requirements. It was adapted to a newly developed r.f. calibrated level receiver. Response of the receiver detector output was plotted against a decibel varied input, shown in Fig. 4. The slope of Fig. 2 circuit was then adjusted with a new set of R_{0} to R_{10} resistors, values of which are given in the table (see Fig. 4). Fig. 5 shows the total response of the receiver input r.f. level against the l.e.d. meter display. Hence the meter reads decibels with a resolution of $1 / 2 \mathrm{~dB}$. The l.e.d. display array is shown in Fig. 6. Adjacent to the 10 dB scale are the voltage level scales.

Each display l.e.d. requires two n-p-n transistors. The circuit of Fig. 2 requires a total of $24 \mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors. Arrays of n-p-n transistors are the obvious solution for a reduction in number and cost of active elements in the circuit. RCA type CA3086 is a suitable example, containing 5 n-p-n transistors. Because one of the transistors in the array has to be wired to the earth rail, only four out

Fig. 4. Graph showing how the selection of the resistors R_{0} to R_{10} allows the circuit in Fig. 2 to be used for a non-linear application; in this case an r.f. calibrated receiver.

Fig. 5. Graph showing the response of the receiver input r.f. level against the l.e.d. display when using the parameters described in Fig. 4.

of the five transistors can be used. Hence, six units of CA3086 must be employed, making a worthwhile reduction in number and cost.

The meter can be arranged to have digital outlets for systems which require level limits warnings. The basic circuit is given in Fig. 7. The 4.7 -ohm resistor in series with the diode, together, sense the l.e.d. current, and develop a voltage which switches on the p-n-p transistor.

The $1 \mathrm{k} \Omega$ resistor in series with the p-n-p transistor emitter limits the transistor current to 0.1 mA , and therefore does not load the 20 mA current source and disturb the l.e.d. chain switching action which depends on constant current, i.e: only $0.5 \%(0.1 \mathrm{~mA} / 20 \mathrm{~mA})$ of the constant current is drained away by the p-n-p transistor. In the circuit, the p-n-p collector current switches on a t.t.1. drive transistor (Tr_{d}).

Fig. 8 demonstrates the use of the outlets to drive a display of $1 / 2$ digits. A drive transistor is on when the corresponding l.e.d. number n is on, hence output $D_{n}=0$ for l.e.ds being on. As the digit display units may also require a zero voltage to drive them on, it is convenient to use negative logic for the Boolean expressions of logic requirements, as follows: The 0.5 digit B is on only when two adjacent l.e.ds are on
together, otherwise 0.0 is displayed. Hence for zero input into B_{5}
$B_{5}=0=D_{1}+D_{1} \cdot D_{2}+\ldots+D_{9} \cdot D_{10}$
also $\mathrm{B}_{0}=\overline{\mathrm{B}}_{5}$. For the A digit, the requirement is that, number A_{n} is on only when $A_{(n-1)}$ is switched off. Hence $A_{n}=0=D_{(n-1)}, D_{n}$. For the 10 display, A_{10} is fed via a buffer to A_{1} input i.e. digits 1 and 0 are on, and the decimal point is switched off.

Automatic brightness control

The light emitting diodes, in the meter example of Fig. 2, are driven with a constant current of 20 mA to give a bright display suitable for outdoor use. Indoors, however, it would be desirable, to reduce the l.e.ds' current consumption to improve their life span. Also, the power of the battery source, in the case of portable equipment, may be saved.

Truth table (negative logic)

The earth rail of the meter circuit (Fig. 2) is lifted and re-connected to earth via a saturated transistor Tr_{6} (Figs. 9.\& 10) which acts as an on/off switch. Transistor Tr_{6} is switched on/off by astable multivibrator $\mathrm{Tr}_{3}, \mathrm{Tr}_{4}$,
at a rate of 66 Hz to 630 Hz . The on time is fixed to 1.5 ms duration (see waveforms in Fig. 9). The off time is variable and is inversely in proportion to ambient light. Thus, we have a pulse-width-modulated multivibrator controlled by ambient

Fig. 10. Modification to Fig. 2 to include supply switching for power saving.
light with a variable mark to space ratio from about 5% to 98%. In practice it was found that a ratio range of 10% to 95% was adequate.

Transistors $\mathrm{Tr}_{3}, \mathrm{Tr}_{4}$ are connected d.c. wise as a Schmitt trigger with input at junction $\mathrm{C}_{1}, \mathrm{R}_{1}$. The off/on switching voltages at C_{1}, R_{1} are approximately +8 V and +10.5 V . The timing of the sawtooth which occurs at C_{1}, R_{1} is controlled by C_{1} and the independent mark and space charging and discharging circuits. The mark time is determined by the discharge resistor R_{2} only, and lasts 1.5 ms . The space time is controlled by the charging current through Tr_{5} and Tr_{2}. The current amplitude depends on the ambient light affecting the light sensitive transistor Tr_{1}. The brighter the light, the larger the charging current and the shorter is the space time. The space 'dark' charging current is determined by R_{3} to be 13.5 ms (Tr_{2} is cut off).

During the mark time, when Tr_{4} is on, D_{1} is on and Tr_{5} is off. During the space time, when Tr_{4} is off, D_{1} is off and Tr_{5} is on, giving complete independence of mark and space time control. Potentiometer R_{4} controls the direct voltages at which the on/offs occur; this it controls the 'dark' mark-to-space ratio. Potentiometer R_{5} controls the d.c. gain of transistor Tr_{2}; thus it controls the 'bright' mark-to-space ratio.

The astable current consumption is 0.4 mA indoors at 10% duty cycle and 2 mA outdoors at 95% duty cycle. The total meter circuit consumes only 2.6 to 3.3 mA indoors at 10% duty cycle, and 23 to 27 mA outdoors at 95% duty cycle.

The lowest frequency of the astable was chosen to be 66 Hz to avoid flicker effect. The cycle length is 15 ms , therefore the maximum mark time of 10% duty cycle is 1.5 ms .

To see how well the l.e.ds follow the input waveform, a photosensitive probe (see inset in Fig. 10) was placed in front of an illuminated l.e.d. in the meter array. The waveform was then displayed on a double-beam 'scope together with Tr_{6} collector waveform. The waveform from the probe was delayed by about 0.1 ms with a rise and fall time of about 0.1 ms .

Acknowledgment. The astable circuit was suggested by Messrs. H. L. Baker and J. W. Sinclair of Rediffusion Engineering Ltd., who used an op-amp type LM3900. The above design follows the basic circuitry of the LM3900 but consumes less current. A similar circuit employing an op-amp is also shown by A. Cantori in Electronics Letters vol. 9 1973 no. 7, p. 158.

FM tuner designs

Further details of construction and alignment

by D. C. Read, B.Sc.

As the result of experience gained in building what might be termed production models of the f.m. tuners described recently in Wireless World (March and April), the following information on construction and alignment is given, together with suggestions for possible modifications and: component alternatives, and some corrections to details already published.
As a board layout was arranged to take specific capacitor types, further details are:
$\mathrm{C}_{1}, \mathrm{C}_{6}, \mathrm{C}_{15}$ - polystyrene 2 per cent types were used originally but disc ceramic capacitors are also suitable;
$\mathrm{C}_{20}, \mathrm{C}_{21 \mathrm{a}}, \mathrm{C}_{21 \mathrm{~b}}$ - polystyrene; $\mathrm{C}_{24}, \mathrm{C}_{25}, \mathrm{C}_{26}$ - polystyrene (these low-pass filter components need to be as accurate in value as possible);
$\mathrm{C}_{4}, \mathrm{C}_{32}, \mathrm{C}_{33}-10$ per cent polyester, e.g. Mullard type 334.
On the p.c. board supplied for the tuner there are two positions marked for each of C_{32} and C_{33}. This provides for additional components to be installed so that the theoretical 75μ s de-emphasis time-constant can be obtained very accurately if necessary. Unless otherwise specified, the remaining capacitors are either disc ceramic or tantalum types, the last-mentioned being marked with polarity on the circuit diagrams.

Push-button assemblies

Push-button switch assemblies may be used, but remember that as these are generally equipped with high-value adjustment resistors ($100 \mathrm{k} \Omega$ per section), the reservoir capacitors, C_{42} to C_{48} in Fig. 1, would not then be suitable because tantalum capacitors are subject to considerable variation of leakage current with change in temperature. They are unsuitable for use in a high-resistance circuit within an a.f.c. loop; given a modest change in temperature, the resulting frequency bias created by the consequent change in the tantalum characteristics could so offset the a.f.c. system as to prevent it giving satisfactory overall control.

As a compromise, disc ceramic capacitors of, say, 220 nF could be used in these positions to provide a small but useful reservoir effect. Note, however, that without the decoupling action of
the $22 \mu \mathrm{~F}$ components, the tuning-voltage feed to the LP1 186 module is more liable to pick up hum and noise interference and hence allow spurious modulation of the received signal. Thus, if a push-button unit remote from the tuner is installed, it is good practice to screen this feed and/or ensure that it is kept well away from possible sources of interference, e.g. mains wiring. When loaded with the high-resistance selection circuit, the tuning voltage regulator diode, D_{4}, may be fed with much more current than is needed to carry out its control function. In this event, R_{44}. could be increased, say to $100 \bar{\Omega}$.

AFC circuit

In Fig. 5 (April issue) a $3.3 \mu \mathrm{~F}$ capacitor was specified for C_{6} in the a.f.c. line from pin 7 of the CA3089E demodulator. This is an unnecessarily large value because the feed only carries an appreciable audio component under off-tune conditions. A smaller, and hence cheaper, component, say a 470 nF disc ceramic or polyester capacitor, would suffice.

Too large an a.f.c. range can be a disadvantage because of station-jumping. If four diodes, arranged as two series pairs connected back-to-back in parallel, are placed across points 1 and 2 in the a.f.c. circuit, the positive and negative voltage excursions are limited each to about 1.2 volts so that the maximum possible tuning frequency change under a.f.c. action is always less than the minimum channel separation.

The other modification concerns extension of the a.f.c. sensitivity control as a front panel facility. This can be done by making R_{9} a variable component, still connected between points 1 and 2, but with R_{8} taken to the slider. Such an arrangement then enables reduction in sensitivity to be carried out manually whenever necessary but does not prevent the voltage changes appearing across R_{g} from being used to operate the l.e.d. indicator circuit detailed in Fig. 4 of the March issue.

Muting circuit

In at least one of the advanced tuners so far built and aligned, the CA3089E muting output from pin 12 took the form of amplitude-clipped noise instead

Filter type	3 dB bandwidth	$\pm 300 \mathrm{kHz}$ rejection	stopband loss
Vernitron FM4	235 kHz	30 dB	40 dB
Toko CFSA	300 kHz	20 dB	30 dB

of varying d.c. The interconnecting circuit feeding the muting input on pin 5 then produced an average of this output which was not sufficient to operate the mute when required. As the i.c. gave a satisfactory performance in all other respects, it was worthwhile making a suitable circuit change to correct for the abnormality. The circuit published in the April issue was therefore modified to give an increased output by disconnecting the existing circuit between pins 12 and 5 and connecting a 1N914 and $50 \mathrm{k} \Omega$ potentiometer in series between pins 12 and 5 (anode to pin 12). Connect C_{21} between pin 5 and the zero-volt line.

Aerial coil

The aerial coil, L_{1}, used to feed incoming signal to the tuned r.f. stage in the advanced version is constructed as shown below. Note that the total number of turns on this coil is 7, not $81 / 4$ as stated on page 50 of the April issue.

Cut Neosid 6 mm former to about 14 mm .

Wind on 7 turns 22 s.w.g. tinned copper wire, equally spaced out to 11 mm .

Remove former, tap at $11 / 4$ turn from start, open turns adjacent to tap to avoid shorting.

Re-insert former and centralise. Screw in core together with p.t.f.e. tape. Coat with Denfix or nail varnish.
In some examples of the advanced version, C_{1} may not be required because stray capacitance and the input capacitance of Tr_{1} added together are sufficient.

Ceramic filters

Difficulty has recently been found in obtaining the Vernitron filters specified for F_{1} and F_{2} in both versions. Fortunately, ceramic filters from the Toko type CFSA 10.7 range are readily available. These replacement components offer a performance which is not quite as good as that of the Vernitron FM4, but it is generally adequate for the tuners described. The Toko units are also cheaper - about half the cost.
if these alternative filters are used, a small change in Fig. 1 circuit values would be required because the amount of overall phase response correction given by C_{28} and R_{27} in the $\mathrm{Tr}_{2} / \mathrm{Tr}_{3}$ amplifier is no longer suitable. The values should be changed to 3.3 nF and $2.4 \mathrm{k} \Omega$. Resistor R_{27} can be adjusted on test to obtain up to 38 dB channel separation from 1 to 5 kHz .

Adjustment of L_{3}

The quadrature-phase signal derived for both demodulators, TAA661B in the simple version and CA3089E in the advanced version, could optionally be produced by means of a double-tuned coil at L_{3}. When setting the two cores of L_{3} so as to take the best possible advantage of the linearizing effect of current in the dummy coil, it is essential that the cores be kept as far apart as possible in the former, thus minimising changes in coupling between the coils when adjustment is made. The lower core is used to tune the mail L_{3} coil; it should initially be screwed in just enough to give as symmetrical an S-curve as possible. When this has been set satisfactorily, the upper core is added and screwed in enough to straighten the bend in the transfer slope as in the left hand trace of Fig. 2. More precise adjustment would require the use of a wave analyser or distortion meter.

Corrections

In Fig. 1 of the March article, R_{2} should be 1 k not $100 \mathrm{k} \Omega$ and R_{65} should be 10 k , not $12 \mathrm{k} \Omega$. The switch shown in broken line at pin 14 of IC_{3} is an optional component which operates as a can-cel-stereo shorting contact when closed. Note also that the common-circuit line mainly joining $\mathrm{Tr}_{2}, \mathrm{Tr}_{3}$ and IC_{3} should be labelled ' 0 V ' - it is not a continuation of the +4.5 V line in the tuning selector circuit. In Fig. 5 of the April article R_{37} should be 47Ω not 470Ω. In the p.c. board/layout diagram, R_{18} (top, centre) should be shown as R_{13} and the unmarked component immediately to the left of R_{43} (centre, toward r.h.s.) should be marked D_{4}.

Receiving weak TV signals

by W. H. Jarvis,

Rannoch School, Perthshire

With the aid of a grant from the RoyalSociety, we have been studying for years various approaches to the problem of weak TV reception in a remote, mountainous area of Scotland.
Some years ago, two licensed amateurs (one pupil and one teacher) set up a 10 W f.m. transmitter operating on 145 MHz at a local beauty spot known as Queen's View, and showed that it gave good signal levels to about 800 potential listeners or viewers who at present have little or no signal.
In tackling the problem of using the existing very weak signals, we have until recently been without a calibrated signal strength meter, so we modified a 12 V portable dual-standard TV receiver to give a meter indication of relative strengths (Physics Education, vol. 16 No 2, p86). We bought a 44 -element J-Beam for channels 10 and 11, and, whilst we failed to get an "enjoyable" IBA signal from either Kirk O'Shotts or Angus (Dundee), we did get consistent enough results to show that in highly wooded areas, the average signal falls in spring when foliage begins to appear, and rises in autumn when the leaves fall. In a 'separate experiment on amateur v.h.f. bands, we showed that horizontally polarised signals travel better through woods than do vertically polarised signals, and we attribute this to a greater average conductivity in the vertical direction when one is surrounded by damp trees.
Intermittent work on trying to improve reception for local residents led to the installation of 3 -channel colour through a piped system using 7 in-line amplifiers; unfortunately only one householder benefited, and no-one connected with the school could be served.
In establishing a v.h.f. TV relay at the school (School Science Review, Sep '71), we found that even high-grade low-loss coax deteriorates rapidly as damp diffuses through the coating and dielectric.
We are now experimenting with a Signetics NE561 p.1.1. i.c, hoping to find a demodulating circuit which will give a higher signal-to-noise ratio with existing signals (about $15_{\mu} / \mathrm{V}$).

In addition to thanking the Royal Society and Professor Lamb of the University of Glasgow, we would gratefully acknowledge the help of the BBC and the Post Office, and the loan of a signal strength meter from the local firm of K. Atter and Partners.

Earthquakes examined

A satellite which looks like a giant golf ball has been launched by NASA into a $5,900-\mathrm{km}$ high orbit to obtain information on the Earth's polar motion and crustal movements. The Laser Geodynamic Satellite (Lageos) will use laser satellite tracking techniques to make extremely accurate measurements which include minute movements of large land masses, called tectonic plates.

Lageos carries an array of 426 prisms called cube-corner retroreflectors, giving it the dimpled appearance of a golf ball. Retroflectors are three dimensional prisms that reflect light (in this case a laser beam) back to its source, regardless of the angle of incidence. A laser pulse beamed from a ground trackingreceiving station to Lageos initiates a timing signal at the ground station that continues until the pulse is bounced back from the satellite and received at the station. By measuring this length of
time, the distance between the station and the satellite can be calculated and in this way movements detected of the Earth's surface.

New ESA ground stations network

The European Space Agency ground stations network, controlled by the European Space Operations Centre is now composed of two types of station; the v.h.f. stations (Redu and Fairbanks) and the "specialized" stations (Odenwald, Fucino and Villafranca del Castillo). The Redu (Belgium) and Fairbanks (Alaska) stations form part of the network set up by ESRO in 1966 in relation to the orbits of the first European satellites which were mainly low and polar. The stations at Ny Alesund (Spitsbergen) and Port Stanley (Falkland Islands) which also formed part of this network, are now closed.

Satcom II during tests of the antenna system at RCA's Astro-Electronics Division, Princeton, New Jersey. The domestic communications satellite has recently joined Satcom 1 in orbit. It is capable of providing a communications service to 50 North American states.

At present Redu is performing tracking, telemetry and v.h.f. telecommand operations for COS-B, launched in 1975 , and ANS, a Dutch satellite also launched in 1975. This will be the main v.h.f. station for GEOS tracking and telecommand (due for launch in 1977) and back-up v.h.f. for Meteosat (1977), OTS (1977) and Marots (1978). Fairbanks is also participating in support operations for COS-B.

The Odenwald station (Michelstadt, Germany) will acquire S-band datá from GEOS. It will also collect, process and disseminate raw meteorological data from Meteosat.

The Villafranca del Castillo station near Madrid will perform the acquisition, scientific processing and control as well as the main support of the in-orbit operations of the maritime satellite, Marots (1978) and the aeronautical satellite, Aerosat (1979). The Fucino station near Rome, which is to perform the control of the operations of the telecommunications satellite OTS (1977), is already equipped with its main antenna and will be operational in 1977.

First Comstar in orbit

The first Comstar 1 communication satellite that will relay telephone and television traffic within the United States, Alaska, Hawaii and Puerto Rico was launched from Cape Kennedy at. the beginning of May. Each Comstar 1 will be able to handle approximately 14,400 telephone conversations or about twice the capacity of the satellites presently operating. This has been achieved by a cross polarization technique which allows re-use of the same. frequency bands and therefore more efficient use of the r.f. spectrum. The British Aircraft Corporation has manufactured a large part of the structure, solar arrays, cable harnesses and battery packs for these massive satellites which stand 20ft tall. Cylindrical solar panels, covered with nearly 17,000 solar cells, provide the satellite with primary power of 570 W .

International magnetospheric study underway

An international magnetospheric study is now underway which is to last several years and is expected to help scientists understand more about the magnetic field surrounding the Earth. Geos, the first geostationary research satellite of the European Space Agency is due to be launched this autumn and will contribute information to the study. The antenna of the Earth station for this project was erected near Michelstadt, Odenwald by Siemens and was recently handed over ready for service to ESA.

Letters to the Editor

TRAFFIC

BROADCASTING

I have read your very interesting article in News of the Month (Wireless World May 1976) concerning the BBC traffic service proposal. I should like to amplify a statement made in the final sentence, which deals with international aspects.

The European Broadcasting Union, through both its Technical and Programme Committees, has been studying the use of broadcasting in helping the motorist for some time. The requirements vary considerably from country to country, and lack of precise knowledge on this aspect has so far precluded a firm recommendation for any particular system. However, their technical sub-group (of which I am a member) regards the West German v.h.f. system as suitable in the short term. They have also said that in the longer term where a dedicated service is required, the t.d.m. (BBC) system might be feasible. The BBC has now demonstrated that, technically, this solution is feasible. It also represents a cheaper and more efficient approach for the United Kingdom, although the full technical implications of international operation have not yet been examined.

The proposal has clear advantages, but obviously to be successful it depends upon the organizations which obtain and process traffic information. This aspect and the interface with the broadcasting network are now being examined by the authorities concerned. This will, one hopes, lead to a public experiment.
R. S. Sandell,

BBC Research Dept.
Kingwood Warren,
Surrey.

OUR DAILY BREAD

The pay and status of engineers has been an issue - amongst engineers - for some time, but no amount of criticism of employers, or of railing at an unjust world, can alter the fact that we are paid what we are worth, at least in the eyes of the world. The unpalatable truth is that the supply of engineers balances the demand at the prevailing rates of pay: we are not, in general, seen as demonstrating any particular sense of responsibility, and we must face the fact that the standard of education necessary to function to a satisfactory level is not particularly high, in spite of pious attempts
by our own establishment to make people believe so. If the pay demanded by a chartered engineer is too high, then his job can, and will, be done by someone else, with very few exceptions.
I believe we have not accepted sufficient responsibility for the end uses to which our products are put, we tend to be too short sighted, too involved in the immediate problems of how to make something work, to worry about implications for the future. The engineering profession is very inward looking; we seem to split into two camps which seldom meet. The one camp concentrates on the job in hand, meeting the employer's specification, cost and delivery, but never worrying about the use of the end product; and the other camp sits on committees, in institutions, universities and colleges, considering the engineering profession; its status, training and qualifications, occasionally handing down a sermon: "the engineer must be broadly educated", which is done by the addition of a class on "the engineer in society" or some such pretence: or perhaps "the engineer should join a trade union", the latest edict!
I suggest that we shall gain nothing from joining a trade union since we shall still be over-ruled by the giant manual unions, the power of which will continue to grow. They will not allow themselves to become the dog, wagged by the professional engineers' "tail".
The true answers, I submit, are two-fold. Firstly, we shall raise our status by demonstrating our responsibility and concern at the purpose and uses of those things which would not exist were it not for engineers; and secondly, we shall raise our pay, relative to the unskilled, only if we enter the political arena and join the battle to reduce the power of the unions, to get us out of the terrifyingly unstable situation we are now in. After all, if the pay of manual workers continues to increase at the expense of the professional. engineer, we shall reach the stage where we simply refuse to become professional engineers and all become manual workers, and our civilisation cannot exist in those conditions. J. C. Taylor, M.I.E.R.E.

Heywood,
Lancs.

CURRENT DUMPING AUDIO AMPLIFIER

I have had many enjoyable discussions with P. J. .Walker, M. P. Albinson, P. Blomley and R. C. Bowes in the quest for the ideal audio amplifier which would be totally free from audible distortion, have no adjustments of any kind, and be economical and straightforward to manufacture. Numerous fascinating schemes have been considered, and assessing their overall relative virtues has been quite difficult - and indeed, at times, very perplexing.

When the Quad 303 circuit was first evolved, it was evident that the very good linearity of the individual triples, resulting from their internal feedback, was, in a sense, being partially wasted, because the existence of some residual crossover distortion in the transfer of current from one triple to the other necessitated a large amount of overall feedback in addition. A superb performance is, of course, thus obtained, but one was left feeling that if only a circuit could be devised that would sense when both triples were on
together and apply extra negative feedback to prevent the gain from increasing, then a more economical design, preferably free from preset adjustments, might be possible. Countless hours were spent scratching around trying to solve this and related problems, and there were moments of elation when it was thought that an answer had been found. But then it turned out that the proposed solution, to work ideally, involved the concept of infinite loop gain - camouflaged, maybe, as a requirement for a zero source impedance at some internal point in the circuit. In other words it turned out merely to be an example of Mr Halliday's "familiar assertion that the distortion can be made negligible by huge amounts of feed: back".
Then Peter Blomley's fundamental and excellent new idea came along ${ }^{1}$ - a class B amplifier in which both halves of the output stage retained their full mutual conductance throughout the whole audio cycle. This seemed to me at first to be the total answer to the problem of an adjustment-free amplifier with first-class performance, and I did a good deal of very encouraging experimental work leading to simplified circuit designs. It became evident, however, that though the technique is basically absolutely sound, the major practical problem is to ensure that, in the absence of any kind of adjustments or selection of transistors, the quiescent current will fall within reasonable practical limits, albeit quite uncritical ones, without wasting too much output power in highish-valued output-stage emitter resistors, or requiring, somewhere in the circuit, transistors having closely-matched $V_{b e}$ values at a given current. Circuits using dual transistors, or i.cs, in the quiescent-current-determining circuitry, were inclined to become undesirably complex, though excellent results were obtainable.
I tried to persuade Peter Walker, at an early stage, that Quad would do well to develop an amplifier based on the Blomley idea, but he and Michael Albinson, with remarkable intuitive wisdom, sensed that the economics of such an approach might well be less than ideal, and they continued to investigate other techniques. The currentdumping scheme as conceived and developed by them seems to me to have an impressive elegance and economic "rightness" about it. Much of the practical success of the 405 design is due to the master-stroke of making the class A amplifier into an integrator, with an inductor elsewhere in the circuit, but there is also the ingenious economy of making the integrator output transistor (Tr_{7} in Fig. 4, page 562, December 1975 issue) function in addition as the driver for one of the dumper transistors. (For practical reasons the dumpers-off regime is displaced to one side of the zero-load-current state.)
For the record, it may be mentioned that R. C. Bowes independently put forward a proposal for a current-dumping amplifier circuit, in which the current fed by the dumpers to the load was monitored not by a resistor directly in series with the load, but by small resistors in the collector leads of the dumpers. A negative-feedback voltage was derived from the sum of the voltage drops across these resistors, and values were so chosen that the gain of the system was independent of whether or not the dumpers were in action. So far as I can recollect, however, nothing comparable with the integrator-and-inductor scheme was envisaged.
Having just completed $a_{\text {, chapter }}$ on amplifiers for the forthcoming Butterworths
publication "Radio, TV and Audio Technical Reference Book", I thought some Wireless World readers might be interested in the simple explanation there given of the Quad current-dumping technique. It seems to me that this rather different approach has the virtues (a) that it is more directly related to very familiar ideas and (b) that it provides a simple and convincing physical argument that the scheme must work, without recourse to any algebra. I believe that it is always very much worthwhile to seek the simplest possible, sound, non-mathematical explanation of any circuit, to supplement the algebraic analysis which may already have been done.
Consider first diagram (a). In the absence of overall feedback via R_{p}, and assuming for convenience a resistive load, the transfer characteristic will be as at (b), giving gross distortion. With overall feedback, the transfer characteristic is much better, as shown at (c); but however much feedback is applied, it can never be quite perfect. Clearly what is wanted is to apply a little more negative feedback in the $A B$ and $A^{\prime} B^{\prime}$ regimes than in the $A A^{\prime}$ regime, thus equalizing the slopes in the three regimes. This is achieved with the (d) arrangement, in which $R_{\text {, }}$ receives a small extra voltage component (the voltage drop in \mathbf{R}_{4}) only when the dumpers are in action. If R_{4} is made too large, there will evidently be too much extra feedback, and the gain will then be less in the $A B$ and $A^{\prime} B^{\prime}$ regimes than in the $A A^{\prime}$ regime. The correct value of R_{4} will thus give exactly
equal slopes, and there is clearly no need for infinite gain to exist anywhere in the circuit for this result to be obtained.

If R_{2} is made yery large, the system will have a large forward gain and there will then be a lot of overall feedback. Consequently, even with $\mathrm{R}_{4}=0$, the characteristic shown at (c) will have nearly equal slope everywhere, so that a very small value of R_{4} is all that is then required for perfect slope equalization. Thus, if R_{2} is replaced by a capacitor, giving high forward gain at low frequencies only, the impedance element replacing R_{4} needs to have an impedance which is very small at low frequencies but which increases in proportion to frequency to offset the effect of the falling forward gain introduced by C. An inductor is therefore required, as shown in (e).

When the circuit shown at (e) is handling a high-level sine-wave signal, the voltage waveform at ' P ' is, of course, very non-sinusoidal, and it is therefore necessary for the class A integrating amplifier to have a clean performance up to much higher frequencies than the upper limit of the audio band. A very simple circuit is capable, however, of giving the required performance.

One way to arrive at the correct choice of values for distortionless results with circuit (e), assuming a perfect integrator, is as follows. Consider first the ideal limiting case that the dumper stage is not only on, but that it has infinite mutual conductance. Then the incremental output impedance of the complete circuit is clearly that of R_{3} and L in
parallel, for at the left-hand side of both of these elements we see the zero output impedance of an ideal feedback circuit. Now consider the other limiting case, where the dumpers are completely off, and work out the output impedance (or, more conveniently, admittance) of the circuit which then applies. It will be found that if L is made equal to $\mathrm{R}_{1} \mathrm{R}_{3} \mathrm{C}$, this output impedance is equal to that of L and R_{3} in parallel, as before. Now any system with a distortionless no-load output voltage, and an output impedance independent of loading, must be distortionless.
P. J. Baxandall,

Malvern,
Worcs.

1. Blomley, P., "New Approach to Class B Amplifier Design", Wireless World, Feb. 1971, pp. 57-61 and March 1971, pp. 127-131. (Also in Wireless World "High-Fidelity Designs" book.)

In the April issue of Wireless World, Mr P. G. Walker tries to prove that the feed-forward is linear, referred to the input. It would then be possible for the A gain (or $G_{m 1}$) to be arbitrarily low and the current dumping to be linear at the same time. This is not the case. The error in the top figure on p. 55 is that it does not show the interaction between $G_{n 1}$ and $G_{m \dot{L}}$ If $G_{m L}$ is nonlinear it is impossible for $G_{m I}(\operatorname{or} A)$ to have a linear voltage and current gain consistent with linear load current. During the cross-over instant, when the power-section is cut-off, the total gain is only $A \cdot R_{L} /\left(Z_{3}+R\right)$. During the remainder of the cycle the gain is A, because the power-section has approximately unity voltage gain. This causes some cross-over distortion if the gain of A is not infinite. No

more proof is needed to show that the feed-forward is not linear, referred to the input terminals.

One may look a little closer at the non-linear feed-forward, or shall we say, non-linear gain, assuming the existence of one of the following extremes of A and the power-section. Independent of how the $\operatorname{amplifier} A$ is fed back, it may have one of the extremes of voltage or current feedback or no feedback at all. Amplifier A may thus, by design, have a constant-voltage or con-stant-current output.

Constant-voltage output in series with $Z_{\text {, }}$ gives a constant $G_{m 1}$ - as long as Tr_{1} and Tr_{2} take no input current. But when they draw a base current comparable to the current in Z the G_{m} is no longer constant. Constant current generated by A has the same error. The conditions for constant G_{m} do not exist as long as Z_{3} is connected in parallel to the variable input impedance of Tr_{1} and Tr_{2} In other words there is no way to make A linear, which was required to make term I_{1} disappear from the equations. Since there is no linear relationship between the output voltage and the output from amplifier A, the "rigidity of interconnection" is missing, as pointed out by MrA. Sandman.
The current dumping method acquires a linear feedback current, i.e., it is proportional to the total output current, but this goal can with the same merit by arranged by common voltage feedback (assuming constant load) as shown by Mr J. G. Bennett. The feedback from each output path is made proportional to the output current in that path. This holds both statically (feedback resistors only) and dynamically (feedback resistors, capacitors and inductors are used) because of the design rules suggested by P. J. Walker:

$$
\frac{\text { feedback current }}{\text { output current }}=\frac{Z_{3}}{Z_{2}}=\frac{Z_{4}}{Z_{1}}=k
$$

That is: 1 mA of output current (or $1 \mathrm{~mA} / \mu \mathrm{s}$) causes $k \cdot 1 \mathrm{~mA}$ feedback current, whether the current is sensed by Z_{3} or Z_{4}. In addition, there is only one summing point. The audio amplifier can not sense from where the feedback signal originates - all the output current branches being equa!ly weighted by the rule of design. The forward linearity will not be changed by the divided feedback loops, since the same input voltage differential V^{\prime} is needed to drive the current I, and the base current of Tr_{1} and Tr_{z}-irrespective of how the feedback is taken.
The current dumping method would be unique if the feedback network could separate the different output paths. But it cannot, and the mode of operation is not different from one feedback resistor sensing the output current or output voltage or parts of both. The use of reactances, as in Fig. 2 in Walker's first paper, causes the feedback to increase with the frequency in the same way as if the single feedback resistor is shunted by a small capacitor. There is one implicit feature - that of current continuity, accomplished by $Z_{\text {f }}$ If $Z_{\text {f }}$ has a low impedance, any non-linear amplifier would be less non-linear. The existence of $Z_{\text {I }}$ causes an improvement, but not a change of nature of the amplifier.
One arrives inevitably at the conclusion that the current-dumping scheme has the same forward nonlinearity and identical feedback collection of output current information, as an ordinary amplifier with zero bias current and with the same amount of feedback. In fact there is no difference at all. Bengt G. Olsson,
Xelex AB,
Stockholm.

THE WALLTENNA

Any reader who is offended by unsightly roof-top TV antennae should consider another alternative before starting to strip the wallpaper (The "Walltenna", WW May $1976 \mathrm{pp} 57-59$) - the screened loop. This gives me excellent colour TV reception in conditions where a commercial wide-band Yagi array (folded dipole, reflector, and 21 directors) gave excessive ghosting, and gross deterioration of the picture in bad weather My house is about 50 km east of Crystal Palace, on high ground but surrounded by tall trees, which clearly provided most of the multiple-path interference. A two-turn screened loop mounted horizontally in the loft below the ridge-beam of the roof solved all my problems, and was very easy to make. The last two metres of the coaxial cable to the receiver were coiled to form two turns, and lashed with adhesive tape. A short length of the outer insulating sheath adjoining the loop was removed to expose the braided screen, and a copper-foil clip clamped round it: the free end of the cable was stripped and the screen cut back, the centre conductor being connected to the clip. The result is a loop antenna, having two turns fully electrostatically screened from each other and from interfering sources. The improvement in picture quality was sensational, and my chimney stack is now unadorned. The feeder to the receiver was dropped inside a cavity wall to a flush socket in the living-room, so the installation could not be neater. It is baffling that screened-loop antennae are not more widely used: in areas reasonably close to a transmitter they offer a far tidier roofscape, and less chance of ghosting from mutual interference.
David T. Broadbent,
Chatham,
Kent.

PHASE AND SOUND QUALITY

i hesitate to proliferate the correspondence on phase distortion, but there were letters published in the April issue worthy of comment.

Analogies between eye and ear can be interesting, although I am not sure that they are always constructive; specifically, the suggestion that parallels may be drawn between colour perception and the analysis of chords (even "broadly speaking") is quite wrong. I assume that when Mr Gamble refers to the presentation of a harmonic interval. such as a major third, he means that the tones are to be played simultaneously, otherwise the analogy will bear even less resemblance to the mixing of primary colours. If two notes, reasonably separated in frequency, are played simultaneously, the ordinary observer can pick out the two components making up the chord. If he cannot do this he will most easily hear the upper note, but there is certainly no perception of some kind of average frequency, half way between the two. In vision the situation is entirely different. With suitable choice of intensities a mixture of red and green light, of wavelengths around 600 nm and 540 nm respectively, will look indistinguishable from a pure yellow of
intermediate wavelength and the spectral components will be invisible.,
A far better analogy is to be drawn between the way in which we hear auditory frequencies and see spatial frequencies, such as a region covered by stripes. There is strong evidence (e.g. Campbell and Robson, Journal of Physiology, 1968) that the visual system analyses such stimuli in a manner equivalent to Fourier Analysis and it has been shown that a visual square wave (i.e. alternating dark/light stripes of equal width and with no merging through grey) invokes sensations at the third harmonic, as if there are stripes present three times as close. If stripes of high spatial frequency, with brightness varying sinusoidally, are displayed on a c.r.t. the contrast can be amplitude modulated at a lower frequency. This is exactly equivalent to amplitude modulating a high pitched tone with a lower frequency. In both cases, although the fundamental is not physically present, the low frequency, whether visual or auditory, is perceived.

In the same issue Mr Hodgkinson points out the many other sources of phase distortion that modify the wave form of a signal, apart from the loudspeaker. One that he does not mention is the outer ear flap or pinna. The little folds of the pinnae produce delays and echoes in the sound, particularly at higher frequencies, where the wavelength is comparable to the fold size. Far from being a nuisance to the auditory system the distortion of the waveform is a valuable direction-finding cue, since the effect varies with source/head angle. To extract a clear signal, when it is followed by multiple reflections, we use both ears. If readers care to listen to sounds in a fairly reverberent room and then cover one ear they will observe an increase in "boomyness." However, they will still be able to judge source direction fairly well. If those keen enough now fill in the folds of their exposed ears with plasticine they will find a marked decrease in localising ability! Some listeners to dummyhead recordings do not at first find them particularly convincing, but with continued listening the reality grows. This occurs as the listener learns to hear with a new set of pinnae. Of course, surroundings will modify the spectrum of a sound too, but the distortion remains constant for a given frequency and source direction and the auditory system seems very quickly to cope with this, learning to treat it as a constant. As long as the phase distortions introduced by loudspeakers do not fluctuate arbitrarily over short time intervals, then there is no reason'to suppose that we cannot listen comfortably to the results, which is not to say that, given the opportunity to make fairly quick alternate comparisons, we cannot hear a difference between two loudspeakers of differing phase linearity.
Peter Naish,
University of Reading,
Berks.

Being a hi-fi enthusiast myself I have followed the arguments for and against the audibility of phase distortion in audio program material with much interest. To some extent I was hoping that this illusive but controversial effect may explain the differences in sound from systems which are not borne out by differences in specifications. The case for phase linearity in loudspeakers is obviously dubious by virtue of the preceding stages in the process from recording to the output terminals of the
amplifier, none of which (with possible exception of the amplifier) are performed with phase linearity as a subject of cause.

However it has intrigued me as to whether, given phase linear material applied directly to a loudspeaker, any phase difference gave rise to a difference in overall sound experience of the listener. In the absence of any phase linear material it is possible to obtain a signal source from two sine wave generators and feed these directly into a loudspeaker via a mixer network whilst monitoring the waveform on a c.r.t. It must be realized that this configuration obviates any of the negative arguments put forward by linear phase optimists that the effects are masked by the use of phase distorted program in subjective tests. It must be accepted that the sine waves from both generators, however pure or impure, are constant and phase distortion in a loudspeaker cannot exist (relative to constant listening position) when it is fed by a single sine wave without any fixed reference.

If the levels of both generators are the same and they are set at 1 kHz adjustment of generator B will cause enhancement and cancellation effects at a critical point on the scale. If generator B is then increased to 2 KHz and is offset sufficiently to allow it to drift gently in and out of phase with respect to generator A , the tone remains constant and apparently absent of aberations due to the constant drift of phase between signals! ! have carried out this experiment at all harmonic multiples and at various levels and ratios of level with various loudspeakers and have so far failed to hear any relationship between the relative phase of the generators and the actual sound of the resultant waveform.

However, if the resultant signal is seriously distorted by introducing a diode across the loudspeaker terminals, regular changes in sound, at the rate of changes in phase, can be heard at a few apparently arbitrary harmonics of the fixed generator A . It seems, therefore, that phase relationships of signals is only audible when the resultant composite signal is wildly distorted! This leads me to believe that, since all musical waveforms are made up of a complex combination of a wide range of sine waves, phase linearity cannot be heard or appreciated unless the output stages of the amplifier are clipping or half waving. And that the sound is then produced by the effect of the waveform meeting an insufficient threshold and is consequently incomplete?
Paul A. Furindle,
Norwich.

Television tuner design

Just a few points about the coil winding for D. C. Read's TV tuner. With regard to the pile wound centre-tapped coils, I presume it is best to wind them with a double strand of wire and make the centre tap the start.
Secondly, 1 would like to mention ways of making a single layer unframed coil very firm. Of course one winds on a simple jig, as in Fig. 1 . To give the coils extra firmness either double-sided sticky tape folded back over the coil or a double looped technique using dental floss can be used. Wire is started through loop E and wound over the 3 strands of floss and to finish passed through loop F.

Then pulling end A will tighten the finish of the coil and pulling end B will tighten the start. It may help to attach the dental floss to the end with double sided sticky tape to start the coil. This makes a very firm coil.
J. Rankin,

Harpenden,

Herts.

Mr Read replies:

I thank Mr Rankin for his helpful.coil-construction hints, particularly the one given for making secure winding ends. The doubleloop, draw-through process will be well known and perhaps fondly remembered by any ex-Scout (or ex-Guide, for that matter) as the means to produce tidy 'whipping'; the extension of this technique to coil-winding, especially with dental floss as the draw 'string, is a very useful idea.

I must, however, correct Mr Rankin's wrong supposition regarding the winding of centre-tapped coils. As the tuner circuit diagram (Fig. 2 Part 1) shows, the sense of winding in each instance is 'series-aiding', and for such an arrangement it is necessary to have the centre tap at a finish/start point (assuming the coiling sense to be the same on both sides of the tap). It would be possible to use bifilar winding on these coils much as Mr Rankin suggests, but the double start could not be used as a centre tap because the two halves would then be in series opposition. In fact, with the coils parallel wound like this, the centre tap must be formed by cutting the double start and joining one of the resulting free ends to a winding finish.

But as most of the centre-tapped coils are used in the group-delay equalizer and this circuit is operating at an unusually high impedance of 750 ohms, this is not a satisfactory winding method because it results in excessive self-capacitance, with the danger of in-band self-resonant coils.
As explained in the follow-up article. (Wireless World, April, page 83), pile winding is the best way to reduce coil capacitance and can be used for tapped as well as single coils. The diagram shows how the winding order is modified to enable the tap.to be brought out.

The tuned circuits $\mathrm{L}_{10}(110 \mu \mathrm{H})-\mathrm{C}_{13}$ and L_{11} $(14 \mu \mathrm{H})-\mathrm{C}_{31}$ should resonate at 3 MHz and L_{12} $(39 \mu \mathrm{H})-\mathrm{C}_{32}$ and $\mathrm{L}_{13}(12 \mu \mathrm{H})-\mathrm{C}_{33}$ shrould resonate at 5.5 MHz . Wind L_{13} with 23 turns, and not 31 as given in the parts list. The correct tuning for these inductors should obtain when the cores are turned back between 1 and 4 turns from the fully-in position. In case of difficulty in resonating L_{8} L_{9}, the shunt capacitors can be reduced.
The group delay network, $\mathrm{L}_{10}-\mathrm{L}_{13}$ may add a small amount of stray shunt capacitance and cause a slight droop of the video characteristic - between 1 and 2 dB - which can be compensated by adjustment of the optional equalizer circuit in parallel with R_{25} (see broken lines at Tr_{5} in Fig. 2, October issue page 450).

A pack containing all the parts required for the tuner inductors is available from Manor Supplies (excepting the rubber cushion shown on page '83. Cut this from rubber' $1-2 \mathrm{~mm}$ thick to a size of 13 mm square).
Finally, a small but important aspect of reception inadvertently not covered in the earlier articles should be mentioned. It concerns the high-order vision and sound carrier harmonics generated by carrier clipping diodes in the MCl330 demodulator and the discriminator circuit. Some of these harmonics, specifically from the 12 th to the 20th, fall in bands IV \& V, and, if picked up on the aerial input, could cause considerable interference. Obviously, it is good practice to have efficient screens at all low-level circuit points, especially at the ELC1043 aerial input connection. For this particular purpose, a Mullard accessory - called an immunity shield (part number $4313 \quad 13201910$) - is available. A satisfactory home-made alternative can be constructed, however, by suitably stretching the screening braid of the incoming aerial co-ax so as to form a hood over the connection. As illustrated in the diagram below, this is most easily done by

bending a small piece of wire (about 20 s.w.g.) into an omega-shape and soldering this to the tinned cover. The braid end is then pulled over and round the frame as shown and then soldered, allowing small amounts of solder to run over the braid to strengthen the hood.

Digital multipliers and dividers

Summary of circuits in set 31 of Circards

by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams

Paisley College of Technology

Many transducers used in the measurement, or as a monitoring function, of physical processes deliver digital signals in the form of a pulse-rate. This sort of information is usefully processed by rate-multipliers which are available as m.s.i. circuits, both in t.t.l. and c.m.o.s. Their range of application is wide, covering numerical control, digital filtering and frequency synthesis, to name a few. When combined with up-down counters, rate-multipliers may perform arithmetic functions such as multiplication, division, square-rooting and integration.

Basically, a rate-multiplier generates an output pulse-rate or frequency which is proportional to the product of two inputs, one of which is a clock frequency f_{c}, and the other, an n-bit binary or binary-coded-decimal integer. M is the programmed number, with $N=2^{n}-1$, and the output pulse rate is $f_{\mathrm{c}} \cdot M / N$ where $N>M$, so that the output rate is always less than the input pulse rate. Usually the rate-multiplier produces a train of unevenly-spaced pulses, but this is not too critical when the output rate is time-averaged to the correct fractional rate of the input pulse train.
This type of multiplier is useful under conditions where variable input pulse rates are to be multiplied or divided on-line. For example, an unknown input frequency can be compared against a rate-multiplier output and on the result of the comparison, a counter can be made to count up or down until a stable result is acquired, which will relate to the unknown quantity. This is usually a counter/multiplier closed loop which allows fairly straightforward implementation. Discrete and m.s.i. forms with applications are covered in three of the cards of this set.
Card 8 considers a simpler frequency ratio ratemeter to provide an analogue output signal proportional to the ratio N_{1} / N_{2}, where N_{1} and N_{2} are the average rates of two input pulse trains, but this requires additional constraints on the ratio that can be recognized. Normal frequency division with m.s.i. counters provides output pulse trains which are
not symmetrical, whereby with fairly simple external gating, card 7 summarises techniques for obtaining a range of dividers which always produce symmetrical outputs.
Stochastic multiplication is reviewed in card 4, with a novel delta-sigma modulation technique using probabilistic principles being discussed on card 6. The specific application arranges for squared and cubic outputs proportional to an analogue input, but demanding a synchronous clock-drive. Another m.s.i. package for implementing cellular-array structures provides for 2 bit by 2 bit multiplication, and is shown to be extendable to increased bit manipulation by straightforward interconnection of the i.c. packages. To conclude this short summary of Set 31, a digital/analogue monolithic 8 -bit d-a converter is shown to provide a fairly simple technique for multiplying two-binary numbers and giving an analogue output voltage or current proportional to the result.
Titles of cards in this set are:
1 monolithic d/a multiplier
22×2 bit binary multiplier
3 binary rate multiplier
4 stochastic multiplication
5 dual-slope a/d multiplier
6 JI modulator probability multiplier 7 symmetrical programmable divider
8 pulse ratio measurement
9 applications of rate multipliers/ dividers - I
10 applications of rate multipliers/ dividers - II

How to get Circards

Order a subscription by sending $£ 18$ for a series of ten sets to:

Circards

IPC Electrical-Electronic Press Ltd
General Sales Department, Room 11
Dorset House
Stamford Street
London SE1 9LU
Specify which set your order should start with, if not the current one. One set costs $£ 2.00$, postage included (all
countries). Make cheques payable to IPC Business Press Ltd.

Circard sets available

1 active filters
2 switching circuits (comparator and Schmitt circuits)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, etc.)
6 constant-current circuits
7 power amplifiers (classes A, B, C, D).

8 astable multivibrator circuits
9 optoelectronics: devices and uses
10 micropower circuits
11 basic logic gates
12 wideband amplifiers
13 alarm circuits
14 digitäl counters
15 pulse modulators
16 current-differencing amplifiers signal processing
17 c.d.as - signal generation
18 c.d.as - measurement and detection
19 monostable circuits
20 transistor pairs
21 voltage to frequency converters
22 amplitude modulators
23 reference circuits
24 voltage regulators
25 RC oscillators-1
26 RC oscillators-2
27 linear c.m.o.s.-1
28 linear c.m.o.s.- 2
29 analogue multipliers
30 non-linear circuits
31 digital multipliers and dividers

Surround sound decoders - 2

Assembly, setting-up CD-4 unit, cartridge notes

David Heller, B.Sc.(Eng.)

Abstract

This article includes performance details of a CD-4 decoder using the OSI i.c., which includes preamplifier, phase-locked loop demodulator, a.n.r.s. expander and muting circuits. Spectrum analyser traces show performance of record-cartridge-decoder system for various extended-response cartridges. Subsequent articles by the same author will give circuits for OS and SQ surround sound decoders.

The construction of the demodulator is straightforward, but note the following points. Solder the link wires whose positions have been silk-screened on top of the board after soldering resistors into position, but before soldering the remaining components. Do not apply too much heat to the polystyrene capacitors; these 30 volt devices are closely wound and excessive heat will short the layers together.
The $12 \mathrm{mH}, 15 \mathrm{mH}$ and 18 mH inductors are variable inductors which have been. preset. They are either marked with their values or colour coded with paint (red -12 mH , green -15 mH and grey -18 mH). On no account should the pot cores be adjusted and each coil should only be handled by its case so as not to disturb the core.

Use insulated wire to connect remaining links (marked A to A, B to B, C to C, D to D, E to E, F to F, G to G and H to H on the board). These connections are best made on the copper side of the board.

In connecting the signal input to the board (points h and i on the switches to points h and i on the board), use screened cable but only earth one side of the lead. To stop possible r.f. breakthrough, loop small ferrite beads with three to four turns of wire and solder one end of this wire to the points on the board (marked h and i) with the other end going to the audio lead.

Connect the points on the switch positions to the similarly marked points on the board using insulated wire. Again it is preferable to make the connections on the underside of the board. (The positions to be connected are b to b, o to o, c to c, x to x, d to d, m to m, e to $e, 1$ tol. Points f, k, a and p are left unconnected.) The signal input leads to the selector switches are: tuner input to v (left) and w (right); auxiliary input to s (left) and t (right); tape input
to g (left) and r (right), and disc input to \mathbf{g} (left) and j (right).

Care must be taken not to create an earth loop; in particular the input socket earth must not touch the chassis. A separate earth line should be run from the mains socket earth to the earth of the power supply. And the board should only be earthed in one position i.e. an earth wire is run from the earth point on the board to the power supply earth. A 100 nF capacitor should be soldered between the input socket earth and chassis. Run an earth wire from the chassis to the power supply earth terminal.

Connections for switches S_{1} are best "hard-wired", depending on whether a magnetic or semi-conductor cartridge is used. (Note that on the p.c. board, the marking "SIE" correspond to S Sib in the circuit diagram. S4 on the board corresponds to S_{2} in the circuit.)

When wiring is completed (do not forget the l.e.d. - anode to supply rail) mount the board in its box and connect up a regulated 13 to 14 volt supply line to the supply rail, but do not turn on. (A power supply is included in the kit available from Compcor; a circuit will be given with the next part and is suitable for the CD-4, QS and $S Q$ decoders.)

Setting-up procedure

Connect the record player fitted with extended-response cartridge to the input jacks of the demodulator using low-capacity TV cable of approximately $50 \mathrm{pF} /$ metre. Limit the cable length to maintain a total capacitance of 100 pF or less. Run a separate earth wire from the chassis of the demodulator to a screw or chassis of the turntable.

Switch on the equipment and place the pickup on band 2 of side 2 of the test record. If the demodulator is functioning and either of the two phase locked
loops are in-lock, the l.e.d. should glow. Adjust the $4.7 \mathrm{k} \Omega$ v.c.o. potentiometers so that the l.e.d. glows brightest. By turning the v.c.o.-adjust potentiometer ($\mathrm{R}_{57,157}$) to either of the extreme positions, the l.e.d. will either go off or vary in intensity depending whether the other v.c.o. is in lock or out of lock.
Turn the test record to side 1, band 3. This gives the same music played sequentially out of each speaker. Turn down the front volume controls of your amplifier. Adjust the $1 \mathrm{k} \Omega$ separation potentiometer ($\mathrm{R}_{9,109}$) of the preamplifier for minimum loudness out of the respective rear channels when the announcer states the front channel sound. The announcer will state "left front channel" and music will follow. Adjust the left separation adjust to get minimum loudness from the left rear channel. Disregard the announcement of the rear channel music. Repeat the process for the right front channel announcement, this time tuning for minimum right rear channel loudness.
Alternatively, the white noise source on band 2 can be used. This is fully explained on the test record. Return to side 2 of the test record and place the cartridge anywhere from band 2 onward. Turn the balance control first to the left side and adjust the left hand side v.c.o. control for minimum distortion. Repeat the process with the balance control set for the right hand side.

Extended-response cartridges

The following nine cartridges were tested: Tenorel 2001SD, Audio Technica 12S, Nagaoka JT322, JVC 4MD20X, B \& O MMC5000, B \& O MMC6000, JVCX1, Pickering UV152400 and Pickering XUV4500. Each cartridge was tested in an SME arm with detachable headshell. Tracking weights between lgm and 3 gm were chosen depending on the.
various manufacturers' recommendations. Using side 1 , band 3 of the test record, the separation control was adjusted for minimum level out of each of the rear speakers.
Side 1,' band 2 of the test record contains CD-4 encoded white noise. With the aid of an audio spectrum analyser, kindly loaned by HewlettPackard, the spectrum level of the front channel was measured and stored on the display. The analyser was then connected to the rear channels and the same passage of white noise was replayed and the spectrum level recorded on the lower trace.
The accompanying photographs, Fig. 11, show the relative levels between front and back for the left hand channels only, the top trace being the front channel and the lower trace being the rear channel. The difference in level is thus the separation obtained from the disc encoded material through the cartridge and demodulator.

Performance

Input
level . 0.7 to 14 mV
Input impedance
magnetic $100 \mathrm{k} \Omega$
semicon-
ductor $\quad 2.2 \mathrm{k} \Omega$
Output
level 300 mV
Output
impedance less than 200 2
Amplitude
response
baseband
system $\quad 30 \mathrm{~Hz}$ to $15 \mathrm{kHz},-3 \mathrm{~dB}$
carrier
system $\quad 30 \mathrm{~Hz}$ to $12 \mathrm{kHz},-3 \mathrm{~dB}$
Harmonic
distortion
baseband less than 0.2%, at 150 mV output (typically 0.05%)
carrier
channel less than 1%, at 150 mV
Power
supply output, $1-10 \mathrm{kHz}$

12 to $15 \mathrm{~V}, 130 \mathrm{~mA} \max$

Fig. 13. Front-back separation measured using test bench generator.
Sum signal delayed by 45μ s with reference to the carrier signal.

Separation front- back	$>30 \mathrm{~dB}$ at 1 kHz . SEe Fig. 13 for system separation
left- right	60 dB at 1 kHz S/n ratio
$>60 \mathrm{~dB}$	

-Measured using a virgin test record, containing an unmodulated and modulated (1 kHz) carrier together with 1 kHz baseband signal.

Components	
Resistors	All $1 / 4$ W 5\% carbon film
R1. 101	47k
$\mathrm{R}_{2}{ }^{102}$	100k
$\mathrm{R}_{3} \cdot 103$	10k
$\mathrm{R}_{4} \cdot 104$	150k
R_{5}, 105	15k
$\mathrm{R}_{6} 106$	15k
$\mathrm{R}_{7}, 107$	15k
$\mathrm{R}_{8}, 108$	$2.2 k$
$R_{9} 109$	1 k pot
$\mathrm{R}_{10} \quad 110$	20
$\mathrm{R}_{11} \cdot 111$	2.2 k
$\mathrm{R}_{12} 112$	20
$\mathrm{R}_{13} \mathrm{R}_{113}$	330
$\mathrm{R}_{14}, 114$	3.3k
R_{115}	150k
R_{16}	100k
$\mathrm{R}_{17} \mathrm{R}_{117}$	6.8k
$\mathrm{R}_{18} 118$	8.2k
$\mathrm{R}_{19} 119$	7.5k
$\mathrm{R}_{20}{ }_{120}$	15k
$\mathrm{R}_{21}, 121$	4.7k
$\mathrm{R}_{22,122}$	4.7k
$\mathrm{R}_{23}{ }^{\prime} 123$	4.7k
$\mathrm{R}_{24} 124$	8.2k
$\mathrm{R}_{25}{ }_{125}$	4.7k
$\mathrm{R}_{26,126}$	1 k
$\mathrm{R}_{27}{ }_{127}$	27k
$\mathrm{R}_{28}{ }_{128}$	4.7k
$\mathrm{R}_{29} 129$	15k
$\mathrm{R}_{30}{ }_{130}$	220k
$\mathrm{R}_{31}{ }^{131}$	15k
R_{32}, 132	4.7k
$\mathrm{R}_{33}{ }^{133}$	10k
$\mathrm{R}_{34}{ }^{134}$	220k
$\mathrm{R}_{35}{ }^{135}$	3.3k
$\mathrm{R}_{36}{ }_{136}$	4.7k
$\mathrm{R}_{37,137}$	4.7k
$\mathrm{R}_{38}{ }^{138}$	4.7k
$\mathrm{R}_{39}{ }^{139}$	4.7k
$\mathrm{R}_{40} 140$	470k
$\mathrm{R}_{41}, 141$	1.8k
$\mathrm{R}_{42}, 142$	4.7k
$\mathrm{R}_{43} 143$	4.7k
$\mathrm{R}_{44,144}$	4.7k
$\mathrm{R}_{45}, 145$	47k

R_{46},		4.7k
R_{47},		4.7k
R_{48}		4.7k
R_{49}	149	47k
R_{50}		1.8 k
R_{51},		560k
R_{52}		330
$\mathrm{R}_{53}{ }^{\prime}$		2.7 k
R_{54}	154	1 k
R_{55}		330
$\mathrm{R}_{56}{ }^{\prime}$		56k
R_{57}		4.7k
		preset
R_{58},		10k
R_{59}		10k
R_{60}		10k
		optional
R_{61}, 1		10k.

Capacitors
Types E are electrolytic. PC Siemens 832540 polycarbonate, PE polyester, PS 30 V polystyrene, and DC disc ceramic.

$\mathrm{C}_{1} 1_{101}$	3.3μ	16 V	E
$\mathrm{C}_{2}, 102$	200μ	10 V	E
$\mathrm{C}_{3} 103$	$4.7 n$	PS	
$\mathrm{C}_{4} 104$	$22 n$	PC	
$\mathrm{C}_{5}{ }^{105}$	0.47μ		E
$\mathrm{C}_{6.106}$	$33 n$	PS	
$\mathrm{C}_{7}{ }_{107}$	$2.2 n$	PC	
$\mathrm{C}_{8 .} 108$	$2.2 n$	PC	
$\mathrm{C}_{99} 109$	8 n	PE	
$\mathrm{C}_{10}{ }_{110}$	450p	PS	
$\mathrm{C}_{11} 111$	$1.4 n$	PS	
$\mathrm{C}_{12}{ }^{\prime} 112$	$1.6 n$	PS	
$\mathrm{C}_{13}{ }^{1} 113$	$10 n$	DC	
C_{114}	3.3μ	16 V	E
$\mathrm{C}_{15} \mathrm{C}_{115}$	$2.7 n$	PS	
$\mathrm{C}_{16}{ }^{1} 116$	$2.1 n$	PS	
$\mathrm{C}_{17} 1117$	960p	PS	
$\mathrm{C}_{18} 118$	$3.9 n$	PS	
$\mathrm{C}_{19}{ }_{119}$	6.8 n	PS	
$\mathrm{C}_{20} 120$	3.3μ	16 V	
$\mathrm{C}_{21} 121$	$7.2 n$	PS	
$\mathrm{C}_{22}{ }^{122}$	10n	DC	
$\mathrm{C}_{23}{ }^{123}$	3.3μ	16 V	E
$\mathrm{C}_{24} 124$	100p	PS	
$\mathrm{C}_{25}{ }^{125}$	100p	PS	

Semiconductor

 devices${ }^{I C} C_{1}, I C_{101}$ Signetics OS5022
$\mathrm{Tr}_{1}-\mathrm{Tr}_{4} \mathrm{Tr}_{101}-\mathrm{Tr}_{104} \mathrm{BC} 208 \mathrm{~A}$
$\mathrm{D}_{1}, \mathrm{D}_{101}, \mathrm{D}_{2}, \mathrm{D}_{102} 1 \mathrm{~N} 4148$
light-emitting diode TIL209, MLED650, or similar

Inductors

$L_{1}, 1015 \mathrm{mH}$ Toko 80016
$\mathrm{L}_{2.102} 18 \mathrm{mH}$ Toko 80016
$\mathrm{L}_{3.103} 12 \mathrm{mH}$ Toko 80016
$\mathrm{L}_{4.104} 15 \mathrm{mH}$ Toko 80016
$\mathrm{L}_{5,105} 100 \mathrm{mH}$ TDK 104 J

A 10 kHz bandwidth is displayed because, in all but one case, the separation fell below 5 dB after 10 kHz . The only exception was the $B \& O$ MMC5000 where 10 dB of separation extended to 13 kHz Fig. 12.

In addition listening tests were carried out using difficult CD-4 records. The following is a brief assessment of each cartridge.

Tenorel 2001SD. Separation of 18 dB was attained at about 2 kHz , but disappeared totally at 9 kHz and reversed at 9.25 kHz . In the listening tests, carrier dropout occurred frequently with annoying results. Playing weights of close on 3 gm were required with the result that the cartridge base nearly touched the record.
Audio Technica 12S. Peak separation of 18 dB occurred at about 2 kHz , decreasing to 5 dB at about 8 kHz and remained at such to 13 kHz , where the low-pass filter in the demodulator started to take effect. A tracking weight of 1.8 gm gave good results with little carrier dropout. This cartridge is available at discount stores for about $£ 17$ (including v.a.t.) and is the low cost cartridge I would recommend for the system.

Nagaoka JT322. This cartridge displayed 15 dB separation at 2 kHz , but this disappeared at about 9 kHz . Its output at 2 gm tracking weight was on the low side and it did not track difficult passages as well as the AT12S. This cartridge is available from its distributor in The Netherlands at a cost of about $£ 22$. The AT12S is a better bet.

JVC 4MD20X. This cartridge gave essentially similar results to the AT12S, but is about twice its cost. I would go for the AT12S in preference as I found little to choose between the two in performance.

B \& O MMC6000. The MMC6000 has a recommended tracking weight of 1 gm . I tried three of these cartridges and none functioned satisfactorily. The devices suffered from carrier loss particularly in the left channel. The latest sample I tried was found to be defective when played through B \& O's own demodulator. I believe the cartridge should only be used in the tangential player for which it was designed; the SME arm has too much mass for such a delicate cartridge.

B \& O MMC5000. The MMC5000 gave excellent separation results, as the extended separation trace of Fig. 12 shows. However, the maximum practicable tracking weight was 1.5 gm and this was inadequate for an SME or similar type arm. The cartridge is ideally suited for the B \& O 3400 unit which has a low-mass arm and can thus track at a lower weight more effectively. A pity, because this cartridge showed signs of excellence, but carrier breakup was too frequent for comfort. On consulting B \& O they agreed that a low-mass arm would be needed to ensure effective tracking.
JVC X1. This cartridge gave 20 dB

Fig. 10. Linear phase filter with delay of $32 \mu \mathrm{~s}, 19-45 \mathrm{kHz}$. Two of these filters are used in the circuit of Fig. 9.

separation between 2 and 5 kHz , settling to about 5 dB at 9 kHz . Its tracking of CD-4 records at 1.8 gm was excellent and its clarity was unequalled by any other cartridge except Pickering's XUV4500. This is indeed an excellent CD-4 cartridge and is available at some discount stores at about $£ 50$. For those who have the money, this represents very good value.

Pickering UV152400 and XUV4500. Both of these cartridges are very expensive. The UV152400 displayed similar separation characteristics as the AT12S but was clearly superior in tonal quality. However, it is more expensive than the JVC XI.

The XUV 4500 was an excellent cartridge. Admittedly the separation exhibited in the photograph looks poor (about 10 dB over the bandwidth displayed), but it is likely that this is

Fig. 11. Spectra of the left front and left back demodulated signals from a white noise CD-4 encoded disc through selected cartridges and the demodulator.

Fig. 12. Separation of 10 dB or more extends to 13 kHz in the case of the B\&O mmc5000 cartridge.
because the delay time of this cartridge is shorter than that of the other cartridges tested (12μ s for the XUV 4500 against $25 \mu \mathrm{~s}$ for the majority of the others). The demodulator is designed for a 25μ s delay through the cartridge and any deviation from this will reduce separation. In listening tests I was not

able to perceive any less separation through this cartridge when compared to the JVC X1. It performed equally as well as the X 1 and proved superior on stereo discs to the X1. Both cartridges were tested using the difficult band of the $\mathrm{Hi}-\mathrm{Fi}$ Sound 75 test record. The XUV4500 tracked this band perfectly, while the JVC X1 displayed some slight mistracking.

After carrying out extensive tests on the cartridges named, I would recommend the AT12S for budget systems and the JVC XI for those who can afford it In both cases a tracking weight of between 1.8 and 2.0 gm proved optimal.

Correction. On page 45 of the June

One format of the surround-sound decoder incorporating CD-4 unit (left) A two-board SQ decoder is shown right, and a two-board QS decoder middle. There is space for a rear-channel, preamplifier and tone control, above the switchboard.
issue, the reference to C_{38} should be to C_{33}.

Acknowledgement. I should like to thank Lou Dorren of Quadracast Systems Inc. for the valuable help and guidance given in the preparation of this CD-4 project. Thanks too to Hewlett Packard for the loan of the audio spectrum analyser.

A kit of parts (except metalwork) may be obtained from Compcor Electronics Ltd, 9 Dell Way, London W13 8JH for $£ 37$ inclusive of v.a.t., packing, postage and insurance. The same price applies to overseas readers, and covers the cost of airmail postage. A test record produced by Quadracast Systems Inc is available for $£ 4.20$ inclusive from the same supplier.

A specially constructed case is available from Bazelli Instrument Cases, St. Wilfred's, Foundry Lane, Halton, Lancaster LA2 6LT for £10 (including v.a.t. and carriage) with fully punched panels or E8 unpunched. This case will house CD-4, QS and SQ decoders and power supply. A suitable case for the CD-4 module only is type B304, available from the same company for about $£ 5$ (unpunched) inclusive of delivery and v.a.t.

Ammouncements

Panduit Ltd of Sittingbourne, Kent, manufacturer of cable ties and DIN connectors, has announced the appointment of Vero Electronics Lid Chandler's Ford, Eastleigh, Hants, as the UK stockist and distributor for the Panduit range of DIN 41612 and 41613 one-piece and two-piece connectors.

Gould Advance Ltd has appointed J. Sinclair Ltd, 8 Dixon Place, College Milton North, E. Kilbride Glasgow, G74 5JF, as the Scottish agent for Gould Advance power supplies and Gould Brush oscillographic recorders.

Ferrograph, Ferrograph Professional, Rendar and Wayne Kerr, formerly operating as separate companies within the Wilmot Breeden (Holdings) Ltd, are to trade collectively as Wilmot Breeden Electronics Lid. Manufacturing facilities for the various product groups will remain at South Shields, Burgess Hill and Bognor Regis

Laskys, one of Europe's leading hi-fi retailers, has announced a new service. All of Laskys' 35 branches will offer a repair service for any hi-fi equipment, provided that spare parts are available. You do not need to have purchased the equipment from Laskys.

Boosey \& Hawkes Litd has formulated a new subsidiary Boosey \& Hawkes (Electrosonics) Limited. This follows the acquisition earlier this month of 50 per cent of Hammond Organ UK Ltd Hammond will continue to be run by its existing management team who will also manage Boosey \& Hawkes (Electrosonics). Boosey \& Hawkes (Elec trosonics) will market a range of electronic musical products both in the UK and overseas. It will be exclusive distributor of Leslie Speakers in the UK and will operate from new premises at St Albans, Herts.

Steatite Insulations Litd, Hagley House, Hagley Road, Birmingham, B16 8QW, have announced their entry into the field of semiconductor devices in co-operation with Toshiba (UK) Ltd. The aim of the agreement is to broaden the UK penetration of Toshiba's semiconductors and to enable this by forming a semiconductor marketing department at the Steatite Group's headquarters in Birmingham.

In keeping with their involvement with the military electronics industry, Sealectro Ltd, Walton Road Farlington, Portsmouth, PO6 1TB, manufacturers of precision coaxial connectors, insulated terminals and programming devices, have received approval by the Ministry of Defence to the recently introduced standard 05-21.

The UK agency for Fuki Film magnetic tape ,has been given to Belmont A/V Ltd, a member of the Pyser Group, at Fircroft Way, Edenbridge, Kent. TN8 6 HA . The range of Fuki Film cassette and open reel tapes is available to the public from mid-May, 1976.

Uber Werke Munchen have announced that with effect from April Ist. 1976, a wholly owned subsidiary company, namely Uher Ltd, 24 Market Place, Falloden Way, London, N.W.11, will transact all business in the UK and Channel Islands under a distribution agreement
Jermyn Industries, Vestry estate, Sevenoaks, Kent, will programme all National p.r.o.ms free of charge, providing the memories are purchased from them They will also consider programming memories of other manufacture free of charge dependent on type of memory, application and complexity.

PLESSEY

You know the name but did you know that we supply electronic components from stock?

24 hour turn round.

No minimum order charge.

No post or packing charges in the UK.

For priced stock catalogue and terms of business, contact:

Vicarage Lane Ilford Essex 1G1 4AQ Telephone: (01) 4783040 Extn 3391 Telex: 23766

WW - 072 FOR FURTHER DETAILS

Reliable unting

Sigynal Hatfield with Hal Switches Coaxial Sigmal with Hatfield Coaxial Switches

The new 2320 series Microwave Coaxial Switches
provide efficient and accurate signal rerouting for Television, Radio and
telegraphic communications
in the $2-4 \mathrm{GHz}$
range. They have
low VSWR,
low crosstalk,
single-pole
2 to 6-way
switching.

Low priced 2700 series
Coaxial Relays
provide single pole switches of 2,4 or 6 ways.
Exceptionally low insertion loss with high isolation.
Versions available for 12 or 24 volt operation.
Contact rating (non switching) 100 watts C.W.
50 or 75Ω terminations.

Hatfield 6 and 11
CoaxialSwitches
are designed for selective switching of R.F. signals without mismatch.
Specifications extend to 500 MHz . Alternative versions incorporate automatic terminations of unused ways

For more complex applications, ask for details of Hatfield, 26 way TTL
Compatible Reed Relay Switch.
in to 50 or 75Ω.

HATFIELD
forward thinking in electronics HATFIELD INSTRUMENTS LIMITED, Burrington Way, Plymouth PL5 3LZ, Devon. Telephone: Plymouth (0752) 772773. Telex: 45592. Grams: Sigjen, Plymouth.

Binary counting

Explanations of terms used in today's techniques

by C. Jones

As digital techniques continue to spread to increasingly diverse applications so the ranks of those obliged to keep abreast of developments in logic design are swelling accordingly. It is lamentable that this area of most rapid change is also surrounded by the heaviest element of mystique, perpetuated to a large degree by excessive and often cynical use of jargon in much of the associated literature.

While it is true that current trends in logic design are quickly reflected in additions to the integrated circuit lists, there is a tendency for the various manufacturers to favour differing terminology when referring to what are, in fact, identical circuit types and functions. This is particularly marked in the case of the binary counter which, as the most versatile of the digital building blocks, has spawned so many variations.

Counters now attract such terms as "programmable", "variable-modulo", "parallel access", and "carry lookahead" while clocking arrangements are described as synchronous, asynchronous or even semisynchronous.

The implications of these and many other circuit descriptions are certainly of more than just academic interest and are considered in this review of current binary counting techniques.

Basic counting and the JK flip-flop. The basic counter arrangement Fig.l, which is included for the sake of completeness, consists of a chain of four JK edge-triggered bistables with the count pulse, or "clock", applied to the first stage only. Each successive stage accepts the (Q) output of the preceding one as a clock
pulse input and will change stage each time this preceding stage is reset.

Note that the leading (least significant) stage does not change state until the trailing edge of the clock pulse this is a feature of the JK class of flip-flop which is the bistable most favoured in integrated logic design. The adoption of the JK flip-flop as the preferred micrologic bistable is based on the versatility obtained by combining the best features of alternative configurations to form one multipurpose design suitable for all applications.

Functional differences between the more familiar RS (set/reset) flip-flop and the JK type are illustrated by comparison of the truth tables (Tables 1 and 2). The troublesome indeterminate condition resulting from a " l " level being presented to both R and S inputs simultaneously is overcome in the JK arrangement by "back-priming" con-" nections (Fig. 2) which force a straightforward change of state for the double " 1 " input condition. However, as the changeover will normally take place well within the width of the clock pulse the effect of simple back-priming connections will be to allow the circuit to tumble between one state and the other until the clock pulse ends. This problem is overcome by adopting the slightly more complex arrangement (Fig. 3) in which two RS flip-flops are connected in cascade with clock pulse inversion and gating in such a way that the second flip-flop (slave) is prevented from following the first (master) until the trailing edge of the clock pulse. In

Fig. 1. Basic JK count chain.

effect, a delay has been introduced on the back-priming lines to prevent unstable operation.

It is this characteristic two-stage transfer action that has added the term "master/slave" to the JK flip-flop description in which J and K have been

Fig. 2. Simple back-priming of RS flip-flop.

Table 1. RS flip-flop..

K	J	\bar{Q}^{\prime}	Q^{\prime}	\bar{Q}	Q
0	1	\bar{Q}^{\prime}	Q^{\prime}	0	1
1	0	$"$,	1	0	
0	0	$\prime \prime$	\bar{Q}^{\prime}	Q^{\prime}	
1	1	\cdot		Q^{\prime}	\bar{Q}

* indeterminate $\bar{Q}^{\prime} Q^{\prime}$ outputs before clock $\bar{Q} Q$ outputs after clock

Table 2. JK flip-flop.

taken to correspond to S (set) and R (reset) respectively. In the binary counting application the J and K inputs ${ }^{\hat{s}}$ of each stage are internally tied to the logic " 1 " level so that the required binary sequence is followed.

Reduced counts. When the internal organisation of the various counter types is studied it becomes evident that certain basic configurations have been generally preferred, mainly to ensure that each device meets the widest possible field of applications.

To this end it will be found that standard four-bit counters have no internal connection between the first and second stages and separate access is provided to the clock input of the second stage (Fig.4).

By splitting the count chain into two distinct parts, three count modes are made available with an external connection required for the full division by sixteen. When operating in the split-count mode, the first and final three stages are able to function quite independently of each other in the divide-by-two and divide-by-eight modes, even when working at widely differing clock rates. However, as the reset-to-zero facility has not been similarly split the dual count mode is restricted to those applications which either do not use a reset or those that can tolerate common resetting.
The split-count method of providing for shortened counts is purely organisational and cannot be regarded as a true reduced count in the same way, as, for example, the decade counter which involves a premature reset-to-zero. Retaining the split-count format will now result in separate divide-by-two and divide-by-five modes or a full count which is held-down to ten.
The divide-by-twelve counter, although apparently similar to the decade format, has important functional differences which show clearly when the count patterns are compared. The

Fig. 3. JK (master/slave) flip-flop.
output lines of the decade counter are allowed to follow a true binary coded decimal (b.c.d.) progression from 0 to 9 . By comparison, the method used to produce the divide-by-twelve count is a combination of premature resetting and count knock-on logic which, in effect, causes two count states to be skipped.
This forcing-on technique inevitably results in count patterns appearing at the output pins which do not accurately relate to the true count. The sequence diagram (Fig. 5) shows that this occurs during the second half of the count cycle with counts 6 and 7 being skipped and the reset being forced at the appearance of 14 . The divide-by-twelve counter is therefore unsuitable for the direct driving of count displays any further than the 50% duty cycle point.

Synchronous working. The counting scheme so far outlined (Fig. 1 and 4) in which the clocking pulse is applied to the first stage only is generally known as ripple or asynchronous counting and is only acceptable provided that speed of operation is not of primary importance. If, however, the total count length has been greatly extended by a stringing together process, then the time taken for a resetting edge to "ripple" through the entire counter length could well prove to be prohibitive. This would apply particularly to uses in which various processing steps are initiated or otherwise controlled by the count sequence, and would therefore need to be inhibited for a period at least equal to the worst-case settling time following each clock pulse.

The time penalty involved in avoiding the effect of spurious counts during settling is largely overcome by the technique of synchronous counting, in

Fig. 4. Split count chain.

Fig. 5. Divide-by-twelve sequence diagram.
which all stages are clocked simultaneously but via interstage gating (Fig. 6). The steering gates ensure that the clock pulse only reaches those stages having a full count in the preceding (less significant) positions. By this method all change-of-state switching is synchronised with the trailing edge of the clock pulse with no false count patterns appearing between one condition and the next.

Semisynchronous format. The splitcount configuration in which the first and second stages are not internally coupled cannot be combined with fully synchronous working but results in a hybrid action classed as semi-synchronous (Fig. 7). With the external link in place the second, third and fourth stages do not receive the clock pulse direct but are simultaneously clocked by the output of stage A. The only difference, therefore, between full and semi-synchronous working is the switching time of the first stage.

Group carries in synchronous counting. Providing for synchronous operation over a four-bit counter is perhaps deceptively simple due to the functionally straightforward nature of the clock' steering logic. In fact, a problem still exists in providing a system arrangement which will allow something approaching true synchronous operation when a number of packages are cascaded to form an extended chain. Although functionally straightforward, the clock gating commitment for synchronous working rapidly becomes unwieldy as the number of stages
increases so that even the improved package count lengths of l.s.i. do not provide an altogether effective answer.

Advancing the count state from one package to the next is referred to as a "group carry" and the design requirements of the synchronous counter will always include additional gating to generate the group carry signal for use by the following counter group(s). The group carry output will be typically labelled by different manufacturers as "terminal count", "ripple clock" or simply "carry", but in each case will be the product of a full (terminal) count condition plus the group carry level from the preceding counter.

The resulting scheme (Fig. 8) provides a reasonable compromise in counting speed but one which still imposes a heavy restriction on the maximum count rate possible. The restricting factor hinges on the series enabling line only being held active for the time that the first (least significant) counter is actually holding a full count. This allows only one clock period for the group carry to propagate (trickle) through to the final group(s) as the total count reaches the full reset point. Any carry operation not completed before the arrival of the next clock pulse will, of course, result in a false count.

Greater group carry speed is possible using a modified version of the trickle method (Fig. 9) but one that requires each counter to include an additional enable input which controls only the clock pulse and not both clock and carry output. The least significant counter is now only permitted to control the clock enabling of the remaining counters via this additional input, which is usually labelled "paralle! enable" as distinct from the trickle (series) enable. It is now the full count of the second package that has the longest trickle path forward but with the' 'complete count cycle of the least - significant counter effectively acting as a time buffer.

To remove the remaining restriction on count rate would require external "look ahead" logic, probably in the form of carry look-ahead packages which are actually intended for the generation of fast carries in parallel adding schemes and can operate in a similar manner across blocks of four counter packages.

Reversed counting and parallel access. As the counting down process is invariably concerned with the reduction of a preset count level to zero rather than with a repetitive count cycle, it would be most unusual for the reverse count feature to be incorporated into the design of a counter without a ,parallel loading facility also being included. The resulting combination offers the convenience of being able to force the count to any desired state independently of the clock style (asynchronously) and for the count to then continue up or down from this point.

A reducing count sequence will be obtained if the "reset" output of each tlip-flop is used as the clocking line (ripple), or clock controlling influence, (synchronous) in place of the "set" outputs. The reversible, or up/down counter, must therefore include both types of interstage connection with either one or the other enabled to decide the direction of count.

Two types of direction control logic are used: the dual clock method in which separate clock inputs control the count direction, or the single clock scheme with direction being selected by a separate up/down control line (Fig.

Fig. 6. Four stage synchronous
clocking.

Fig. 7. Semi-synchronous format.

Fig. 8. Trickle group carry scheme -.skeleton logic.

Fig. 9. Group carry scheme - fast.

Fig. 10. Reversible count logic-single clock.

Fig. 11. Basic Johnson counting.
table 3

count	stage outputs				two input octal decode
	a_{0}	O_{1}	O_{2}	O_{3}	
0	0	0	0	0	$\overline{\mathrm{Q}}_{0} \cdot \overline{\overline{\mathrm{C}}}_{3}$
1	1	0	0	0	$\mathrm{O}_{0} \cdot \mathrm{C}_{1}$
2	1	1	0	0	$\mathrm{O}_{1} \cdot \overline{\mathrm{O}}_{2}$
3	1	1	1	0	$\mathrm{O}_{2} \cdot \overline{\mathrm{O}}_{3}$
4	1	1	,	1	$\mathrm{Q}_{0} . \mathrm{O}_{3}$
5	0	1		1	$\mathrm{D}_{0} . \mathrm{O}_{1}$
6	0	0	1	1	$\overline{\mathrm{O}}_{1} \cdot \mathrm{O}_{2}$
7	0	0	0	1	$\overline{\mathrm{O}}_{2} . \mathrm{O}_{3}$

Table 3. Four-bit Johnson count sequence.
10). Both methods are straightforward in operation but result in slightly different cascading arrangements.
The cascading requirement for a reducing count is virtually identical to that of the forward count but the group carry function now becomes a "group borrow" and must reflect zero count states rather than the full counts of a carry line. Use of the dual clock method of direction control dictates separate carry and borrow lines which are controlled by the appropriate up or down clock input. Alternatively, the single clock system allows both carry and borrow functions to share a common "max/min" output which is quite independent of the clock line and which signals the full or zero condition as selected by the count direction (up/ down) input.

In addition to the max/min output it is common to have a "ripple clock" output which allows the equivalent of the trickle group carry scheme, while fast operation is possible by using the $\mathrm{max} / \mathrm{min}$ output in conjunction with external look-ahead logic.

From the crop of exotic-sounding circuit descriptions used to refer to the parallel loading facility, those most likely to be encountered are the terms "parallel entry", "parallel access", "side-loading", "programmable" or "presettable". All are used to describe the arrangement in which a set of inputs, under the control of a "data load" line, may over-ride an existing bit pattern by forcing each count stage to follow its appropriate parallel data input. This load function can be referenced to the clock cycle for synchronous working or be left to operate in the more flexible asynchronous mode.

Variable modulo. The terminal (full) count output of the synchronous counter is especially useful in serving as the data load input when forming a variable count length without the need

Fig. 12. Johnson-based counter/divider (octal).

for external sensing logic. The count length of the resulting variable-modulo configuration is equal to the normal full count, minus the bit pattern set up on the parallel data lines and to which the counter resets. In this manner, a continuously variable count length is possible by manipulation of the data input lines.

Purpose designed variable-modulo counters use various methods of modulo selection and often no individual stage outputs are provided, particularly when the maximum count length is extremely long. In these instances output information is limited to a single divide-by-N pin which flags the terminal count condition.

Johnson counters. Octal and decade counter/dividers in which a four or five stage Johnson format is used as a basis for obtaining a set of linear spike-free outputs are now quite common. Basically a ring counter, the Johnson sequence follows the bit pattern of a back-primed shift register with the clock input acting as the shift pulse (Fig. 11). Decoding each count state of the Johnson sequence (Table 3) to produce a linear one-of-eight or one-of-ten output is particularly straightforward and involves a simple two input gating function for each linear output line (Fig. 12).

The advantages of this type of counter are the high speed,operation resulting from not having to follow true binary $1,2,4,8$ code and the spike-free outputs taken via decoding gates.

Unlike standard binary counters, the Johnson counter must be guarded against unwanted codes which, once established, lock "holes" into the
sequence with the inevitable output errors. It is also possible for certain types of Johnson logic to lock up completely in some circumstances and anti-lock logic is necessary to ensure that only valid codes can exist.

Tomorrow's counters. As fuller use is made of the high density logic families so the present building-block approach to digital system design will take on a more concealing blackbox character. For the counter, this trend will not be restricted to extending package count lengths but will result in much decoding and look-ahead logic being included as part of the counter packaging. A current forerunner to this level of inclusive counter logic is the full four decade counter with a single timeshared b.c.d. output, and the variable modulo concept has now been taken to the stage where the maximum divide-by- N factor equals 16,000 .

As the existing logic families expand and new lists appear so the task of technical monitoring becomes more unmanageable but at the same time even more vital. Hopefully, keeping tabs on state-of-the-art counting techniques will at least go some way in maintaining a foot in the door of the digital skyscraper

Commercially available i.c. counters grouped under general function headings

BASIC ASYNCHRONOUS COUNTERS (RIPPLE CLOCK)		
	TEXAS	MULLARD
4 bit binary	SN7493	FJJ211
decade	SN7490	FJJ141
divide by 12	SN7492	FJJ251

SYNCHRONOUS COUNTERS (PRESETTABLE)'

	TEXAS	MULLARD
4 bit binary	SN74161	FJB9316
SN74163	FJB9316	
decade	SN74160	
	SN74162	FJB9310

REVERSIBLE COUNTERS (SYNCHRONOUS)

	TEXAS	MULLARD
4 bit binary	SN74191	FJB9366
decade	SN74190	FJB936
	FJB9360	

ASYNCHRONOUS PRE'SETTABLE COUNTERS

	TEXAS	MULLARD
4 bit binary decade	SN74177	FJB93177
SN74176	FJB93176	

VARIABLE MODULO COUNTERS

4 bit binary	RCA	MULLARD
Four decade	CD4059 (cmos)	-

JOHNSON-BASED COUNTER/DIVIDERS (CMOS)

MOTOROLA MC 14022

Semiconductor developments

Power f.e.t. and improved bi-polar transistor

Audio power f.e.ts were first reported in Wireless World in June 1974. These devices were developed by Yamaha under a commission by Japan Technology Development Foundation. At the same time, Sony started a separate line of development concerned with power f.e.ts and as a result produced versions which differed in detail from the Yamaha device. Interestingly, Yamaha produced only one polarity of f.e.t., the n-type f.e.t., whereas Sony developed complementary pairs. The structure of the Sony f.e.t. is shown in Fig. 1 and consists of a drain of n^{+}doped silicon mounted on a substrate, a grid of p^{+} gates diffused into n^{-}drain area and a source also selectively diffused through the inner silicon oxide layer between the grid of the gate. The structure is completed by a metal connecting bridge to the gate and the source. The complete chip of the power f.e.t. is 3 mm square and has approximately 1500 rectangular source areas. The complementary version of this f.e.t. is produced by reversing the polarity of the impurities used in each layer.
The difference between this device and the Yamaha device reported earlier appears to be largely one of detail design, and also of power dissipation. The Sony devices are rated at considerably lower powers than the Yamaha versions, the former having a total dissipation of 63 watts for both types.
Fig. 2 shows the output characteristics of two power f.e.ts, showing a strong resemblance to the characteristics of a triode valve. These devices are known as vertical f.e.ts (v-f.e.t.) because current flows from the substrate area through the thickness of the chip to the metal connections at the top. The advantages to be obtained
through this form of construction are a greater current density, coupled with a high input and low output impedance characteristic. Other advantages claimed for the v-f.e.t. are a fast pulse response originating from the low capacitance due to the thick insulating layer separating the source from the drain, and a voltage rather than a current controlled response.

In a paper presented to the AES at the recent 50 th Convention, a speaker reported on the characteristics of two devices developed and used by Sony, the 2SK60 and the SJI8. These are complementary power devices with a voltage amplification factor $\mu=4-5$, a mutual conductance, $g_{\mathrm{m}}=250 \mathrm{mS}$, and an output resistance $R_{D}=16 \Omega$. Unlike its bi-polar counterpart, the v-f.e.t. has no area of second breakdown and this, coupled with its extremely fast switching response, indicated to the equipment designers that it was particularly suitable for a Class B or similar power output stage.
Several power amplifiers have been designed by Sony using these v-f.e.ts. However, only two have appeared here in the UK, these being mentioned above. The version described in the AES paper mentioned is not available yet in the UK, though it is believed that the design techniques described are similar to the models now available. The model described is the TAN-8550 power amplifier which utilises three n-channel and three p-channel devices in parallel, complementary arrangement to produce a 100 watt per channel output into an 8Ω load at any frequency in the audio

Fig. 1. A cross-section of the Sony v-f.e.t.

drain
spectrum. The output stage is driven from a Class A stage consisting of three direct coupled differential amplifiers. The total open loop gain of this circuit is approximately 82 dB with a distortion that has been held to below 1% over the audio spectrum, before negative feedback is applied.

In designing the v-f.e.t. power stage, two alternatives offered themselves, the first of which was a source follower, the second being a drain follower. The source follower suffers from a gain loss by the mount of the offset bias potential; the drain follower circuit provides a gain proportional to the amount of the actual amplification factor μ_{R}. The main disadvantage of the drain follower is that the power supply voltage needs to be rather higher than that for source follower. A simplification of the bias circuit is obtained by using the source follower design and this in fact is a version used in the Sony TAN-8550 amplifier. The open-loop frequency response extends to a roll-off point of about 35 kHz before negative feedback is applied. This initial wide frequency response is said to bring an improved transient intermodulation performance, an improved stability and a reduced high order harmonic distortion, compared with a similar bi-polar output stage.
There appeared to be some disadvantages to the use of v-f.e.t., these being principally associated with the values of voltage required from the power supplies. In the case of the Sony

Fig. 2. Output characteristics of two complementary v-f.e.t. devices.

amplifiers at least three supply rails are provided, and, in addition, the idling current in the output stage produces a high order of power dissipation in the static, no-signal condition. In one amplifier designed by Sony, the static dissipation is in the order of 65 watts for a 100 watt amplifier.
A further disadvantage of the type of design approach utilising the parallel arrangement of output devices is that should one break down and require replacement, the complete six need replacement since the six v-f.e.ts are matched in characteristics.
Sony have also produced a lower powered version of the v-f.e.t. which is :used elsewhere in voltage amplification stages in at least one of their v-f.e.t. amplifiers.
A second semiconductor device developed by Sony and used in some of their v-f.e.t. integrated amplifiers is known as the l.e.c. bi-polar transistor. The abbreviation l.e.c. stands for low emitter impurity concentration, which describes in elementary form the structure of the emitter area of what is otherwise a conventional bi-polar transistor. In a recent paper the Sony engineers described the general design of the l.e.c. device, which appears to have arisen from a study designed to investigate the noise characteristics of small signal transistors.
Conventional transistors, in order to obtain a high emitter efficiency have a higher emitter impurity concentration than that of the base region. The reason for this is to keep the value of the injected minority carrier current from the base into the emitter as low as possible. Any attempt at reducing the emitter impurity concentration below that in the base results in a reduced emitter efficiency because there is an increase in the ineffective minority carrier current being injected into the emitter which is inversely proportional to the emitter concentration.

The l.e.c. transistor does not suffer from this disadvantage because the emitter region is double diffused to produce a secondary junction. This junction divides an area of high emitter impurity concentration from an area of low emitter impurity concentration and thus is an $n^{+} n$ or a $\mathrm{p}^{+} \mathrm{p}$ junction. The purposes of this barrier is to reflect unwanted minority carriers injected into the emitter and thus retain higher high emitter efficiency.

The $n+n$ junction is not the only type of barrier which is capable of reflecting injected minority carriers. Other barriers listed in the original paper are as follows; surface barrier, m.i.s. (sic) barrier, $\mathrm{p}-\mathrm{n}$ junction barrier, heterojunction barrier and the Schottky barrier. An example of one application of the m.i.s. barrier application is where a metal gate device with such a structure, is designed to control the surface recombination velocity and thus the gate so formed can change the
amplification factor by changes in its bias.

However, the l.e.c. transistor described has the singular advantage of having high current gain with very low noise and in particular the flicker noise and burst noise is reduced below that normally found in conventional bi-polar devices.

Doppler shifts analyse Chinese ceramics

The aesthetic appeal-of ancient Chinese ceramics is enhanced by their coloured glazes which are found in a variety of forms with names such as Tea Dust, Coral Red, and Mirror Black. It would be of interest to know how the potter produced these effects - without destroying the specimens in the course of finding out.
A step in this direction has been made at the Research Laboratory for Archaeology and the History of Art at Oxford. R. E. M. Hedges reports some preliminary work on measurements based on Mössbauer spectroscopy. This applies an effect, discovered by Mössbauer in 1957, concerned with the way in which very short electromagnetic waves (gamma rays) are emitted and absorbed by crystalline substances. The processes of emission and absorption are tremendously frequencydependent, and each element has characteristic frequencies. For iron, the selectivity of the effect corresponds to a Q-factor of about 3 million million. The frequency of emission is slightly different from the frequency of absorption, and because of the high Q the emission frequency falls outside the absorption passband. The emission and absorption frequencies can however be made to coincide by moving the emitter relative to the absorber, so that the emission frequency is Doppler shifted by the right amount. This is the basis of Mössbauer spectroscopy. If a specimen is believed to contain a certain element, its absorption of the gamma rays from a moving emitter is measured. By changing the velocity of the emitter different absorption peaks can be tuned in. The interest to the physical chemist lies in the fact that the shape of the frequency response is modified by the way in which the element is chemically bound in a crystal. This enables the structure to be deduced and, in the case of the Chinese glazes, makes possible intelligent guesses about the original production processes.
The work done at Oxford so far used iron-containing glaze ground off the surface of pieces of broken china (sherds) but an improved instrument, now under construction, based on reflection rather than absorption should enable non-destructive measurements to be made, and with luck reveal the secrets of the potters' techniques.

Electronic systems - 4

More about modulation and transmitting signals

by W. E. Anderton Assistant Editor, Wireless World

Further considerations in an amplitude modulation system include the depth of modulation. We must not over modulate the carrier as this would be like asking for more than full output or less than no output and the effect would be to distort the transmitted and thus the received signal. Fig. 1 illustrates this principle with examples of the waveforms expected for $0 \% .50 \%, 100 \%$ and more than 100% modulation.

Figure 1 also shows the quantities which must be measured in order to calculate the depth of modulation. The amplitude labelled b represents the mean carrier level, i.e. the unmodulated carrier amplitude. The quantity labelled a is the peak modulation amplitude on the resultant modulated carrier. Depth of modulation is given by the relationship depth of modulation $=(a / b) \times$ 100%.

If we examine the case where $a=b$ then we can see that the carrier will be 100% modulated.

Spectrum of an a.m. signal

The transmitted signal involves multiplication of the carrier and modulating signals. The multiplication process produces a complex output signal which contains the sum and difference frequencies of the two input signals. If we are to transmit the baseband speech signal previously described, the sum and difference components will form two bands of frequencies on either side of the carrier frequency. These bands of frequencies are known as "sidebands", each of them having a bandwidth equal to the bandwidth of the modulation signal.
If our a.m. system is to transmit baseband signals up to 4 kHz , then each sideband will have a bandwidth of 4 kHz . The total bandwidth of the transmitted signal (accounting for both the upper and lower sidebands) will be 8 kHz . The spectrum of such a system is shown in Fig.2.

Channel allocation

The long-wave and medium-wave amplitude-modulated broadcast bands have all been split into 9 kHz channels.

Fig. 1. Illustrating the meaning of modulation depth in an amplitude modulated system with examples of the waveforms expected for $0 \%, 50 \%, 100 \%$ and more than 100% modulation.

Fig. 2. Spectrum of an a.m. system which is to transmit baseband signals up to $4 k H z$.

Fig. 3. Type of allocation of channels one might expect over a small portion of the medium wave band.

Each radio station is allocated a channel in which it is allowed to transmit so that each of these stations is located at an allocated frequency in each band. Now, because the channel bandwidth is only 9 kHz , each station can only transmit baseband signals up to the maximum of 4.5 kHz . If a station were to transmit outside its allocated channel, the people receiving adjacent channels would experience interchannel interference. In an attempt to alleviate this problem, adjacent channels are allocated to stations as far removed geographically, from one another as possible. Figure 3 indicates the type of allocation of channels one could expect over a small portion of the medium wave band.

Advantages and disadvantages of am.

One of the main advantages of an a.m. transmission system is that it is simple both in design and implementation at both the transmitter and the receiver, making the system relatively cheap to operate and maintain.

The disadvantages of the a.m. systems are all concerned with quality of reception. We started this section by describing how early experiments were conducted using spark transmitters (now illegal, incidentally). All sparks cause propagation through space on a wide range of frequencies and hence amplitude-modulated systems are subject to impulsive, wideband noise. Impulsive noise can be generated by car ignition systems, electric motors, arcing switch contacts, etc. The received impulsive noise is so intrusive in some locations as to make concentration on the received programme extremely difficult.

The second disadvantage is again concerned with quality; this time it is the low bandwidth which is considered an impairment. Two sidebands are accommodated within a narrow channel and transmitted bandwidth is necessarily limited.

Frequency modulation

Frequency modulation (f.m.) was developed in an attempt to overcome the limitations of an a.m. system. The transmitter again supplies a sinusoidal voltage to an aerial, but this time the frequency of the sinewave varies in sympathy with the modulation signal, the amplitude of the transmitted signal being kept constant (see Fig.4, part 3, April issue). The receiver is designed in such a way that the demodulated output is insensitive to impulsive amplitude changes of the carrier wave.

When there is no modulation signal, the carrier wave is at a fixed frequency. The modulation signal causes a frequency deviation of the carrier and this deviation is proportional to the instantaneous amplitude of the modulation signal.

The spectrum produced by this f.m. signal is extremely complex. Mathema-

This series of articles is based on a proposed Advanced Level course for schools and is prepared in consultation with Professor G. B. B. Chaplin, University of Essex. The next article will deal with reception and demodulation.
tical analysis shows that there exists an infinite number of sidebands, each one of less amplitude than the previous one. To achieve full modulation in the receiver one can argue that you would require to transmit and receive a signal of infinite bandwidth, but in practice, it is found that the bandwidth required is given by $2\left(f_{d}+f_{m}\right)$ where f_{d} is the maximum deviation frequency and f_{m} is the maximum modulation frequency. If we remember that lack of baseband available bandwidth was one of the criticisms of an a.m. system, then our f.m. system must attempt to improve this situation. Very high frequency f.m. transmissions can be modulated at up to at least 15 kHz and achieve a quality comparable to hi fi record reproduction.

The bandwith required to transmit a broadcast f.m. signal is greater than 100 kHz ; consequently f.m. stations are only found on the v.h.f. band where these large bandwidths can be accommodated. (The v.h.f. f.m. band, known as Band II, is from 87 to 10 MHz). The v.h.f. transmissions have a disadvantage in that the transmitters and receivers are complex and thus relatively expensive. Coupled with this disadvantage is also the fact that v.h.f. transmitters have a limited range; often no more than about 50 miles. Thus more transmitters are required to provide national coverage than would be the case with an a.m. system.

Contrast of a.m. and f.m.

In a.m. the amplitude of the carrier is varied, whereas in f.m. the carrier frequency is varied. Frequency modula tion gives a much better signal-to-noise ratio than a.m. under similar operating conditions. Frequency-modulated systems are usually more sophisticated and expensive than a.m. systems.

Appendix 1

Derivation of a.m. sidebands. Let the modulation signal be represented by

$$
V_{\bmod }=\cos A
$$

and the carrier be represented by

$$
V_{c}=\cos \dot{B} .
$$

Modulation will be the product of the two input signals plus a function representing the carrier itself. Thus the output (the transmitted signal) is

$$
V_{\text {out }}=\cos B+k \cos B \cos A
$$

where k is a constant chosen to ensure that the expression $1+k \cos A$ never becomes negative. Alternatively,
$V_{\text {out }}=\cos B+(k / 2)(\cos (\dot{A}-B)+\cos (A+B)$.

Appendix 2

Representing the f.m. carrier wave. To obtain an expression for an f.m. wave, let the instantaneous carrier wave be represented by

$$
v_{c}=V_{c} \sin \omega_{i} t=V_{c} \sin 2 \pi f_{i} t
$$

where f_{i} is the instantaneous frequency. For a positive increase in frequency we have

$$
f_{i}=f_{c}+\Delta f_{c} \sin \omega_{m} t
$$

where f_{c} is the carrier frequency and Δf_{c} is the frequency deviation of the carrier wave due to the modulating signal of frequency f_{m}

If the instantaneous carrier phase is ϕ_{i} then

$$
\begin{gathered}
\frac{1}{2 \pi} \frac{\mathrm{~d} \Phi_{i}}{\mathrm{~d} t}=f_{i}=f_{\mathrm{c}}+\Delta f_{\mathrm{c}} \sin \omega_{m} t \\
\text { or } \frac{\mathrm{d} \Phi_{i}}{\mathrm{~d} t}=2 \pi f_{i}=\omega_{\mathrm{c}}+2 \pi \Delta f_{c} \sin \omega_{m} t .
\end{gathered}
$$

By integration and a correct choice of the phase angle, we obtain

$$
\Phi_{i}=\omega_{c} t-\frac{\Delta f_{c}}{f_{m}} \cos \omega_{m} t
$$

or

$$
\Phi_{i}=\omega_{c} t-m \cos \omega_{m} t
$$

where $m_{f}=\Delta f_{c} / f_{m}$ is called the modulation index. Since $v_{c}=V_{c} \sin \phi_{i}$ we obtain

$$
\nu_{c}=V_{c} \sin \omega_{c} t-m f \cos \omega_{m} t
$$

which represents an.f.m. carrier wave. This article was prepared in consultation with Professor G.B.B. Chaplin, University of Essex.

Further reading

Obtainable from Mr. R. A. Smith, Department of Electrical Engineering Science, Universtiy of Essex, Wivenhoe Park, Colchester CO4 3SQ, Essex, are the teaching texts for the electronic systems pilot A-level course, price $£ 4.50$; communication systems section only, $£ 2.00$; computer systems section only, $£ 2.00$; feedback systems section only, $£ 2.00$; basic electronics section only, $£ 1.50$.

Teletext at Birmingham

Our demonstration of teletext at the IEA/ Electrex exhibition during May was not an undiluted success and for this we apologize to those people who went to the exhibition for the express purpose of seeing the decoder. We were rendered hors de combat by an obscure fault in the television receiver and were unable to either rectify it or obtain another, modified receiver in time to go on with the demonstration, in spite of rapid assistance from the set makers.

Correction

In the article "Some factors in loudspeaker quality" by H. D. Harwood, May 1976 , reference \& should be accredited to D. E. L. Shorter and A. Gee.

IEA New Products

Seen at the IEA/ Electrex exhibition, Birmingham 1976

Digital counter

A range of low-cost digital frequency meters was one of the highlights of the Marconi Instruments stand. The meters, designated TF2430, TF2431 and TF2432, cover the ranges 10 Hz to $80 \mathrm{MHz}, 10 \mathrm{~Hz}$ to 200 MHz , and 10 Hz to 560 MHz respectively. Large-scale-integration component design and automatic production methods have enabled the instruments to be manufactured for reliability, and at low cost. Frequency measurements are made directly, requiring no prescaling, and switching allows a maximum resolution of 0.1 Hz . A feature of this range of meters is the simplicity of design. Each instrument has as few controls as possible and incorporates automatic gain control on the input channel, which will accept from 10 mV to mains voltage, to cut out the need for a sensitivity control. The readout, which is in the form of a l.e.d. display, is operated from a memory so

IEA

that only the last measured value is displayed and the blur of the digits during counting is avoided. This facility, together with an in-built leading-zero suppression, ensures that the meter is easy to read. Attention has been paid, during design, to the construction and layout of the meters to give good servicing accessibility. Marconi Instruments Ltd, Longacres, St Albans, Herts AL4 0JN.
WW 301 for further details

Programmable power supply

Two digitally programmable power supplies, types GXP25/25 and GXP10/50, were among the major items displayed by Gresham Lion Ltd. These power supplies provide outputs which may be controlled by a binary. coded-decimal logic input. Type GXP25/25 has a range up to 24.975 V and 2.475 A , and minimum settings of 25 mV and 25 mA . The GXP10/50 covers a range up to 9.99 V providing up to 4.95 A . Minimum settings for the GXP10/50 are 10 mV and 10 mA . The input, which can accept up to 50 V without damage, is by standard p.c.b. connector. Gresham Lion Ltd, Twickenham Road, Feltham, Middlesex TW13 6HA.
WW 302 for further details

Low cost oscilloscope

The model 4S6-LS oscilloscope has a vertical amplifier sensitivity of $10 \mathrm{mV} / \mathrm{cm}$ with a 6 MHz bandwidth and an accuracy of $\pm 5 \%$ A major difference between the $4 \mathrm{~S} 6-\mathrm{LS}$ and previous models is in the timebase sweep range which has been extended to ls/cm at $\pm 5 \%$ accuracy. To ensure that the oscilloscope produces a good display with the low-speed sweep a P7 longpersistance cathode ray tube is fitted as a standard. As an optional extra the c.r.t. graticules may be treated with Glarecheq, a non-reflective acrylic
coating which helps to reduce the amount of reflection from the screen. At the time of release the oscilloscope, treated with Glarecheq, was priced at £106. Scopex Instruments Ltd, Pixmore Industrial Estate, Pixmore Avenue, Letchworth, Herts SG6 1JU.
WW $\mathbf{3 0 3}$ for further details

Programming aids

A collection of programming aids for microprocessor systems design were exhibited by Osprey Electronics Ltd. The aids, produced by Stag Electronic Designs Ltd, offer a system which, it is claimed, avoids the problems of time consumption and inconvenience resulting from the large number of changes and trial runs inevitable in software development. Each system may consist of a range of r.o.m. and p.r.o.m. simulators, a simulator programmer, a p.r.o.m. eraser, and a p.r.o.m. programmer. Pin-compatible simulators are available for the 1702, 2704 and 2708 series of ultra-violet erasable p.r.o.ms,

WW 303 for further details

WW 301 for further details
as well as an equivalent of the Motorola MCM6830L mask programmed r.o.m. The SP2 simulator programmer is a manually operated data entry device capable of programming any of the Stag range of p.r.o.m. or r.o.m. simulators. This programmer can be used to modify individual locations or load complete programmes - by keyboard for data entry and by thumbwheel switches for address selection. Two p.r.o.m. erasers suitable for electronically programmable r.o.ms are available, the SE4 which will take four p.r.o.ms and the SE15 with a capacity for 15 p.r.o.ms. The p.r.oms are placed in a tray, within the eraser, and are then exposed to high intensity ultra violet light for a prescribed time, preset on a timer dial. Two p.r.o.m programmers exist, the PP2 for the 1702 series and the PP8 for the 2704 and 2708 series. These programmers are suitable for electrically programmable r.o.ms and are capable of transferring master p.r.o.m. or simulator data directly into a p.r.o.m. Stag Electronic Designs Ltd, Northaw House, Potters Bar, Herts EN6 4PS.
WW 304 for further details

Multimeters

The Dolomiti has 39 ranges and measures current, voltage, resistance, capacitance and decibels. This meter has a sensitivity of $20 \mathrm{k} \Omega /$ volt, with an accuracy of $\pm 2.0 \%$ on d.c. ranges and $\pm 2.5 \%$ on a.c. and resistance ranges. Operating frequencies on the a.c. ranges are from 20 Hz to 20 kHz . The meter, which measures $130 \times 125 \times 40 \mathrm{~mm}$, requires two 1.5 V batteries and one 22.5 V battery and incorporates diodes, a cutout and a fuse for automatic overload protection. Optional extras include a 30 kV probe and a signal injector. Carlo Gravazzi (U.K.) Ltd, North Crawley Road, Newport Pagnell, Bucks, MK16 9HF
WW 305 for further details

Avometer model 73 is a pocket sized multimeter measuring up to 750 V and up to 3 A on both a.c. and d.c. ranges. On resistance ranges the meter will measure up to $20 \mathrm{M} \Omega$ using internal batteries. This meter has a sensitivity of $20 \mathrm{k} \Omega /$ volt d.c. and $1 \mathrm{k} \Omega /$ volt a.c. and an accuracy of $\pm 2.5 \%$ on direct voltage

WW 304 for further details

WW 309 for further details

IEA
and current ranges. On a.c. ranges the model 73 will operate on frequencies up to 75 kHz . Fuse protection allows the application of up to 250 V r.m.s. for 10 seconds on any range. Avo Ltd, Archcliffe Road, Dover, Kent CT17 9EN.
WW 306 for further details

Sanwa $\mathbf{N}-501$ has a $2 \mu \mathrm{~A}$ movement, enabling resolutions of 0.05 mA or 1 mV , and measures current, voltage, resistance and decibels. This meter has current ranges up to 12 A a.c./d.c. and voltage ranges up to 1.2 kV a.c./d.c. with an accuracy of $\pm 2.0 \%$ on the d.c. ranges and $\pm 2.5 \%$ on the a.c. ranges. Operating frequencies on the a.c. ranges are from 20 Hz to 50 kHz . The $\mathrm{N}-501$, which measures $252 \times 191 \times 107 \mathrm{~mm}$, is protected by diodes and a fuse. Quality Electronics Ltd, 24 High Street, Lydd, Kent TN29 9AJ.
WW 307 for further details

Miselco Tester 20 is a $20 \mathrm{k} \Omega /$ volt, 40 range meter measuring current, voltage, resistance and decibels. This general-purpose unit can measure d.c. current up to 10 A , has an accuracy of 2.0% on the d.c. and resistance ranges and 3.0% on the a.c. ranges. Operating frequencies on the a.c. ranges are from 20 Hz to 20 kHz . The Tester 20 measures $105 \times 130 \times 35 \mathrm{~mm}$ and requires two 1.5 V batteries. Optional extras include a $15 \mathrm{kV} / 30 \mathrm{kV}$ d.c. probe. Alcon Instruments Ltd, 19 Mulberry Walk, London SW3 6DZ.
WW 308 for further details

Display modules

Compact 7 -segment l.e.d. display modules, with integral push-button decade switches for preset counting, were featured by Contraves Industrial Products Ltd. The displays, called Multicount modules, may be assembled into multi-decade display and switching banks, for instrument and control panel mounting. Each module occupies 10 mm $x 50 \mathrm{~mm}$ of panel space, and end brackets, for push-in front-of-panel mounting, add a further 10 mm to the width. A variety of functions are available in the Multicount range; these include a built-in-memory, an up or down counter, a comparator and a sign display. Dummy modules can be supplied for incorporating additional functions such as push-buttons, keyswitches or electronic circuits. The bidirectional decade switches have binary-coded decimal outputs which can either function independently from the digital display, or may be connected to the display logic. Contraves Industrial Products Ltd, Times House, Station Approach, Ruislip, Middlesex, HA4 8LH. WW 309 for further details

Base stations for f.m. systems

Burndept Electronics have introduced two f.m. base station transceivers, the BE454 for u.h.f. and the BE458 for v.h.f. The u.h.f. station operates within the range 420 to 470 MHz , with channel spacings of 25 kHz , and has a transmitter output of 5 watts with a spurious output of less than $2.5 \mu \mathrm{~W}$. The v.h.f. station operates in the bands 68 to 108 MHz and 132 to 174 MHz with channel spacings of 12.5 or 25 kHz . Receiver sensitivity for both transceivers is $0.35 \mu \mathrm{~V}$ for 20 dB quieting. Crystal stability is ± 5 parts in a million over the temperature range -10 to $+60^{\circ} \mathrm{C}$. The transceivers, which can also be used for repeater operation, are designed to be operated either locally or remotely in a communications network. Remote control is achieved by tone or d.c. signalling over two or four wire systems. A range of quick-change modules are available allowing both versatility and ease of maintenance. Both transceivers can be used in single or two frequency simplex, or duplex modes and are available in single or multichannel versions. Optional extras include tone squelch and selective calling controls. Burndept Electronics (E.R.) Ltd, St Fidelis Road, Erith, Kent DA8 1 AU.
WW 310 for further details

Cam switch

Adjustable cam switches, suitable for up to $700 \mathrm{rev} / \mathrm{min}$, have been introduced by Barden Corporation. These miniature switches, in the PA1 and PA2 series, give infinitely adjustable shaft and dwell angles between 3° and 357°. The units; which can be adjusted while the shaft is fixed or rotating, can be mounted in series to provide from 1 to 10 independently adjustable switches. Features include precision ball bearings and low inertia and operating torque for fast and accurate switch operation at minimum power. Operating characteristics are: $115 / 230 \mathrm{~V}$ a.c. for 5 A inductive and restive load, 30 V d.c. for 5 A resistive load or a 3A inductive load with an inrush capacity of up to 24 A . The Bardon Corporation (UK) Ltd, Western Road, Bracknell, Berks, RG12 IQU.
WW 311 for further details

Digital cassette recorder

A digital cassette recorder, known as the Raycorder, is claimed by its makers, Raymond Engineering Inc., to be a highly reliable instrument suitable for minicomputer, telecommunications, and research applications. The recorder is designed primarily for use in data terminals and data logging systems, but may also serve as a digital interface. A
number of versions are available, including single or dual-channel machines with either read-write or read-while-write options. The reels and capstans are driven directly by four motors, eliminating clutches, belts and flywheels to give maximum reliability and performance. Mean time before failure has been rated at 5000 h . The motors have low-mass ironless armatures and are controlled by a servosystem which enables the tape to be accelerated uniformly and accurately. Preferred tape speeds are factory set between $3 \mathrm{in} / \mathrm{s}$ and $30 \mathrm{in} / \mathrm{s}$ with variations not exceeding $\pm 2 \%$. Typical acceleration and deceleration times are 20 ms at $3 \mathrm{in} / \mathrm{s}$ and 60 ms at $15 \mathrm{in} / \mathrm{s}$. Trend Telecommunications Ltd, St. John's Estate, Tylers Green, High Wycome, Buckinghamshire, HP10 8HW.
WW 312 for further details

Microprocessor kit

The SC/MP Introkit includes a SC/MP central processing unit - the ISP-8A/500D, a 512×8 r.o.m. (MM5214), a 256×8 r.a.m. (MM2112-1), a 1 MHz crystal, interface circuits and discrete components. It is claimed that these components can be assembled on to the $100 \times 160 \mathrm{~mm}$ Introkit printed circuit board in one hour, providing a practical method of familiarising users with microcomputer characteristics. Small programmes can be developed and entered into the r.a.m. using a teletype keyboard or a compatible terminal. These programmes can then be run and their performance monitored by the Kitbug programme which is stored in the r.o.m. Applications for this kit could include automatic control systems, domestic appliance programmes, traffic light sequencing and machine tool control. The kit, which includes a data sheet and technical manuals, was priced at $£ 54.50$ at the time of release. DTV Group Ltd, 126 Hamilton Road, London SE27 9SG.
f. WW 313 for further details

Recorder-calculator

The SX4500 cassette recorder, introduced by Hadley Sales Services, has a built-in calculator. The two-track recorder, which can be operated from either the mains supply or internal batteries, will take C30, C60 and C90 cassettes, has an audio output of 300 mW , and uses a built-in condenser microphone. Calculator functions include addition, subtraction, multiplication, division, constant multiplication or division, power calculation, a memory and a percentage calculation. Calculations may be made to seven decimal places. The overall size of the instrument is $4 \times 13 / 4 \times 8$ in. Hadley Sale $\stackrel{3}{ }$ Services, 112 Gilbert Road, Smethwick, Warley, Birmingham B66 4PZ.
WW 314 for further details

WW 310 for further details

WW 312 for further details

WW 311 for further details

Audio switching system

A system of modules for audio mixing and switching have been introduced by Prowest Electronics Ltd. The system consists of a five channel input buffer, a ten by one switching unit, a twin output amplifier and a d.c. controlled fading amplifier. Four field effect transistors in a series shunt configuration are used as the switching elements and a further series switch on each board reduces 'system crosstalk to approximately 90 dB at 20 kHz . Maximum level through the system is +26 dBm and distortion is less than 0.03% at all levels up to +20 dB . The modules are all based on 7 in printed circuit boards, are built into standard Imhoff 19in racks, and use a common $\pm 18 \mathrm{~V}$ power supply. The switching can
be controlled directly or by a binary-coded-decimal address. Prowest Electronics Ltd, Alma Road, Windsor, Berks. WW 315 for further details

Resistance standards

A range of 4-terminal resistance standards have been manufactured by Croydon Precision Instrument Company for values from 0.0001Ω to $100 \mathrm{k} \Omega$. The standards, type RS3, offer accuracies between $\pm 0.005 \%$ and $\pm 0.02 \%$ depending upon the resistance values. Each standard is designed to have the maximum permanance of calibration combined with a good load coefficient, and is suitable for use in air or in a temperature controlled oil bath. Croydon Precision Instrument Company, Hampton Road, Croydon, CR9 2RU.

WW 316 for further details

Tantalum capacitors

Thomson-CSF have introduced a range o: solid-tantalum electrolytic resindipped capacitors. The capacitors have values ranging from $0.1 \mu \mathrm{~F} / 35 \mathrm{~V}$ to $100 \mu \mathrm{~F} / 3 \mathrm{~V}$ with tolerances of $\pm 20 \%$. Case dimensions vary from $6.5 \times 4 \mathrm{~mm}$ to $10 \times 7 \mathrm{~mm}$. The leads are 0.6 mm diameter and are spaced 5.08 mm apart. Thom-son-CSF (UK) Ltd, Ringway House, Bell Road, Daneshill, Basingstoke, Hants RG240QG.
WW 317 for further details

Dual-in-line switches

A series of subminiature switches for printed circuit applications has been introduced by Secme. Three basic types of switch are available within the range; one to eight single-pole on/off, one to four double-pole on/off, and one to four single-pole change-over. Other functions may be combined in the same body if required. The switches, which are
rated for 0.5 A at 12 V , have a contact resistance of less than $30 \mathrm{~m} \Omega$, and can be stacked end to end in any number on standard 0.1 in pitches. The bases are sealed to prevent the ingress of moisture. Souriau (UK) Ltd, Shirley Avenue-Vale Road, Windsor, Berkshire.
WW 318 for further details

All purpose stroboscope
 A compact portable stroboscope has

 been made available by ESI Nuclear for use in industry, research, education and medicine. The 202, as it is called, has three ranges covering from one to 250 flashes per second with an accuracy of $\pm 2 \%$. A feature of the 202 is its flexibility; two or more units may be coupled to flash simultaneously while controlled by one dial, external sockets may be used to drive an external frequency meter, and there is also a provision for external triggering. At £64, the 202 is claimed to be amongst the most inexpensive instruments of its kind. ESI Nuclear, 6A Holmesdale Road, Reigate, Surrey RH2 0BQ.WW319 for further details

Line impairment simulator

A new release at the "All Electronics Show" was the model 770 line impairment simulator from Axel. The simulator is claimed to be cheaper and more compact than previous models. and capable of simulating most of the line conditions common in data transmission systems. These conditions include those in voice-transmissiontype telephone lines which, when used for data transmission, degrade the digital data - especially at speeds above 2400 bits per second - switch-selection enabling simulation of the worst cases of Bell C1, C2, C4 and 3002 lines. A user

WW 318 for further details
may also add to the simulation certain! steady-state disturbances such as various random noises, phase jitter, frequency shifts, and harmonic distortion. Transient disturbances such as impulse noise and sudden amplitude changes can also be added. The disturbances may be selected individually or simultaneously, as required. A built-in random noise generator with a calibrated attenuator allows selection of the desired signal-to-noise ratio, having output levels from -16 dBm to -88 dBm in IdBm steps. At the time of going to press the model 770, which weighs 16 lb and is suitable for bench or rack applications, could be obtained for $£ 2,650$. A portable version, the model 771, is also available. JVN Components, 204-206 High Street, Bromley, Kent BR1 lPW.
WW 320 for further details

High Q bandpass filter

Pulse Engineering has introduced a high Q bandpass filter, PE 86030 , that can te tuned to any frequency from 67 Hz to 3 kHz . Each tone frequency is. actively trimmed to better than $\pm 0.15 \%$ and Q factor is typically 150. Deviation from the specified centre frequency over a temperature range 0 to $50^{\circ} \mathrm{C}$ is less than $\pm 0.25 \%$. These filters can replace tuning forks in paging applications and two-way transceivers for the detection of specific tone frequencies and are claimed to eliminate reliability problems and shock sensitivity. Auriema Ltd, Components Division, 442 Bath Road, Slough, Berks.

WW 321 for further details

Digital thermometer

A pocket-size thermometer, introduced by Kane-May Ltd, is claimed to give a rapid digital reading, to a resolution of $0.1^{\circ} \mathrm{C}$, over a temperature range from $-30^{\circ} \mathrm{C}$ to $199.9^{\circ} \mathrm{C}$. The device, called the Digitherm "Universal" electronic ther-1 mometer, is also available for a wider' range from $-50^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$, to a resolution of $1^{\circ} \mathrm{C}$, Built-in circuitry compensates for ambient temperature and also for loss of battery voltage, which can be checked as required, the accuracy being maintained until the battery potential drops away sharply. The thermometer is intended for food processors, plastics manufacturers and in other industries where fast transient temperature changes must be measured. Kane-May Ltd, Burrowfield, Welwyn Garden City, Herts.

WW 322 for further details

	SWEEPER MODELS*	
1001 A	0.5 MHz to 300 MHz	$£ 830$
$\mathbf{1 0 0 2}$	1 MHz to 500 MHz	$£ 830$
$1004-1$	450 MHz 950 MHz	$£ 830$
1004	500 MHz to 1 GHz	$£ 830$
1005	700 MHz to 14 GHz	$£ 830$
1801 A	1 MHz to 950 MHz	$£ 1145$
2000	1 MHz to 14 GHz	$£ 1120$
2001	1 MHz to 14 GHz	$£ 1330$

${ }^{*}$ We also offer a complete line of attenuators and detectors covering the same frequency ranges.

It's also how to tell the story of the most complete line of sweepers in the business. Our latest additions include the 1801A for CATV equipment testing and the 2000-a less expensive version of the spectacular 2001. All of our sweepers have rugged, solid-state designs and are suited for laboratory, production and systems use. They are available with both 50.0 hm and $75 . \mathrm{ohm}$ calibrated RF outputs and feature pin-diode leveling, crystal-controlled markers and excellent display linearity characteristics. All include remote programming of frequency and sweep width, and can be AM or FM modu lated. If you'd like more information, use the reader service card or get in touch with us directly. You can count on an immediate response

Wavetek Electronics Limited, 109, Crockhamwell Road Woodiey, Reading, Berks RG5 3.JP Tel: Reading (0734) 694944 . Telex: 849301

Wireless World Dolby ${ }^{*}$ noise reducer

Trademark of Dolby Laboratories Inc
We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
(2) a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes
-complete set of components for stereo processor
--regulated power supply components
-board-mounted DIN sockets and push-button switches
--fibreglass board designed for minimum wiring
--solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts
PRICE: $£ 34.40+$ VAT

Calibration tapes are available for open-reel use and for cassette (specify which)

Typical performance

Noise reduction: better than 9 dB weighted
Clipping level: 16.5 dB above Dolby level (measured at 1% third harmonic content)
Harmonic distortion 0.1% at Dolby level iypically 0.05% over most of band. rising to a maximum of 0.12%

Signal-to-noise ratio: $75 \mathrm{~dB}(2 \mathrm{OHz}$ to 20 kHz , signal at Dolby level) at Monitor output
Dynamic Range $>90 \mathrm{~dB}$
30 mV sensitivity

Single channel plug-in Dolby ${ }^{\top M}$ PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts are available with all components

Price $£ 6.50+$ VAT

Single channel board with selected fet
Gold plated edge connector

Price $£ 2.00+V A T$
Price £1.27 + VAT*

Selected FET's $\mathbf{5 4 p}$ each + VAT, $\mathbf{9 6 p}+$ VAT for two, $\mathbf{£ 1 . 7 6 + V A T}$ for four
Please add VAT at $121 / 2 \%$ unless marked thus*, when 8% applies We guarantee full after-sales technical and servicing facilities on all our kits

IITEERREK

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 20W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In / Out facility (for noise reduction unit, etc), THD less than 0.1% at 20 W into 8 ohms. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section: uses Mullard LP1 186 module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @$ $1.8 \mu \mathrm{~V}$. THD typ. 0.4%

PRICE: £48.95 + VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter /dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz}, 20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70 dB . IF rejection-85dB. THD typically 0.4%
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price
Mono £26.31 + VAT
With ICPL Decoder $£ 30.58+$ VAT
With Portus-Haywood Decoder
$\mathbf{£ 3 2 . 8 1}+\mathrm{VAT}$

Sens. 30dB S/N mono @ $1.8 \mu \mathrm{~V}$
THD typically 0.4%
Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the Mullard LP1186 RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE.

PLL stereo decoder IC
PRICE: Mono £25.55 + VAT
Stereo £28.65 + VAT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring

Typ. Spec. $20+20 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $S / N 60 \mathrm{~dB}$. Radio input S / N
72 dB . Headphone output. Tape In/Out facility (for noise reduction unit, etc.). Toroidal mains transformer.
PRICE: £30.94+VAT
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABHNETS AND COMPREHENSIVE INSTRUCTIONS

EleGriohive

Wise buyer's first choice
 CATALOGUE 8 ISSUE No. 2

- 144 pages
- UP-DATED PRODUCT \& PRICE INFORMATION
- 40p POST PAID + 40p REFUND VOUCHER

We have made it just about as comprehensive and up-to-the-minute as possible. Thousands of items trom vast ranges of semı-conductors including I. C.s to components,
tools, accessories. technical information and diagrams are included as well as a refund voucher worth 40p tor spending on orders list valuet 5 or more. SEND NOW FOR YOUR COPY OF CATAIOGUE 8 , ISSUE NO 2 BY RETURN it's an investment in practical money-saving and reliability
+E.V. PRICE STABILIzATION POLICY
This is one of reviewing prices every 3 months rather than trying to keep up with day by day changes as they occur We have on the whole held prices better than anticipated in + E.V. DISCOUNT PLAN
Applies to alt nems except the lew where prices are shown NETT 5% on orders from E 5 to £1499 10\% on orders value 215 or more.
+FREE POST \& PACKING
In UK for pre-pard mall orders overt2 if under there is an additional handling charge of + QUALITY GUARANTEE
All goods are sold on the understanding that they conform to makers' specifications. No.

ELEGTRO/ALIE LTD

28 St. JUDES ROAD. ENGLEFIELD GREEN. EGHAM. SURREY TW 20 OHB Telephone Egham 3603. Telex 264475 . Shop hours 9.530 daily, 9.1 p.m 5
NORTHERN BRANCH: 680 Burnage Lane, Burnage. Manchester Mig INA
 In U.S. A. You are invited to conlact ELLCTROVALUE AMERICA. P.O. 337 Peterborough mh03458

HART ELECTRONICS

Audio Kit Specialists since 1961

J. L. Linsley-Hood High Quality Cassette Recorder

Full kits of parts for this outstanding design, including metalwork, cabinet, low humfield mains transformer and all other parts. Please send SAE for full data.
Cassette Mechanism only complete with Erase and Record/Playback head, £19.10 + $121 / 2 \%$ VAT.

FURTHER INFORMATION ON ALL KITS FREE if you send us a 9 in $\times 4$ in S.A.E.

REPRINTS Post free no VAT
BAILEY 30W 18p.
StUART TAPE RECORDER. All 3 articles under one cover 30p.
BAILEY/BURROWS/QUILTER Preamp circuits. layouts and assembly notes 15p
\qquad
Penylan Mill, Oswestry, Salop
Personal callers are always welcome, but please note we are closed all day Saturday

, Marsholls

A Marshall (London) Ltd Dept WW
40/42 Cricklewood Broadway, London NW2 3ET. Tel: 01-452 $0161 / 2$
\& 85 West Regent St Glasgow G2 2QD Tel 041-332 4133
Telex 21492
\& 1 Straits Parade Fishponds Bristol BS 16 2LX Tel 0272-654201/2
\& 27 Rue Darton Issy Les Moulineaux Paris 92
Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat
Trade and export enquiries welcome. Catalogue price 35p (30p to callers)

OUR RANGE COVERS OVER 7,000 ITEMS THE LARGEST

SELECTION IN BRITAIN TOP 200 IC'S, TTL, CMOS \& LINEARS $\begin{array}{cc}\text { CA3020A } & 1.80 \\ \text { CA30284 } \\ \text { CA3035 } & 1.39 \\ \text { CA3046 } & 1.70 \\ \text { C } & 03052 \\ \text { C } & 1.72\end{array}$
CA304B
CA3052

CA 3089 E	1.96
A 30900	

CA3089§	1.96
CA30900	4.23
CA3130	0.88

| CA3130 | 0.88 |
| :--- | :--- | :--- |
| 74000 | 0.13 |

604008
0.0409
0.04010

$C 04009$
004010

$\begin{array}{ll}04010 & 0.52 \\ 0.54011 & 0.18 \\ 04012 & 018\end{array}$
CO4012
CD4013
CD4014
$\begin{array}{ll}\text { D4014 } & 0.19 \\ 0.2015 & 0.49 \\ 04016 & 0.45\end{array}$

084021	0.93
0.83	
34022	0.85
4023	0.88

44022	0.85
04023	0.18
094024	0.72
074025	0.19

LONDON, GLASGOW, PARIS - AND NOW BRISTOL
IT'S OUR SERVICE THAT MAKES US GROW

POPULAR SEMICONDUCTORS

2N696	0.2	2N3716	1.80	AC153	0.35	3C257a	0.16
2N697	0.16	2N3771	2.20	${ }^{\text {A C }} 176$	0.41	BC2598	0.17
2N699	0.59	2N3773	2.65	${ }_{\text {AC }}{ }^{\text {d }} 87 \mathrm{~K}$	0.35	BC301	0.34
2N706	0.14	2N3789	206	ACI88k	0.40	日C3078	0.17
2N708	0.17	2N3819	037	A0161	0.69	bic308A	0.15
2N916	0.28	2N3820	029	AD162	0.69	ecacac	0.20
2N918	0.32	2N3904	0.19	${ }^{\text {AF }} 106$	0.40	BC. 227	0.23
2N1302	0.185	2N3906	0,19	AF 109	0.40	8f. 28	0.22
2N1306	0.31	2N4058	0.18	AF 11 l	0.35	miv:0	0.17
2N1308	0.47	2N4062	015	AF 116	0.35	mer.	0.22
2N1711	0.27	2N4921	083	AF 117	035	ECY 72	0.18
2N2102	0.60	2N4923	100	AF 118	0.35	HD1>1	1.00
2N2148	0.94	2N5245	029	AF 124	-30	HLD) 23	0.32
2N2218A	0.47	2N5294	048	AF 139	0.65	80174	1.20
2N2219A	0.52	2N5296	048	AF239	0.65	ac 31	0.40
2N2220	0.25	2N5458	0.26	AF279	0.70	BC-35	0.50
2N2221	0.18	2N5459	0.29	AF280	0.79	3013	0.21
2 N 2222	0.20	2N6027	0.45	Al102	1.00	3D 36	0.22
N2369	020	3N128	0.73	BC.10?	0.14	30 37	0.24
N2646	055	3N140	1.00	Ectima	0.15	$30+18$	0.26
2N2905	047	3N141	081	BC1478	0.10	$30 \cdot 15$	0.71
2 N 2906	0.33	3N200	249	EC1498	0.11		029
2N2907	0.22	40361	0.40	BC157A	0.16	3F/17	0.55
2N2926G	0.12	40362	0.45	BC158A	016	BF 54	0.20
2N3053	0.25	40406	0.44	BC1670	0.15	35-80	0.35
2N3054	0.60	40407	0.35	BC16B	0.15	BF) 81	0.36
2N3055	0.65	40408	0.50	BC169B	0.15	BE= 84	0.30
2N3391	0.28	40409	0.52	BC182	0.12	BF 194	0.12
2N3392	0.15	40410	0.52	BC182L	0.12	BF 196	0.13
N3393	0.15	40411	200	BC183	0.12	BF197	0.15
2N3440	0.59	40594	074	BC183L	9.13	BF 198	0.18
2N3442	1.40	40595	0.85	BC184	0.13	BF244	0.21
2N3638	0.15	40636	110	BC184L	0.13	BF258	0.53
2N3702	0.12	40673	- 73	BC2 12	016	BF259	0.55
2N3703	0.13	AC126	$\bigcirc 20$	BC2121	0.16	BFS98	025
2N3704	0.15	AC127	040	BC213L	0.15	BFR39	0.24
2N3706	0.15	AC128	035	8C2141	0.18	BfR79	0.26
2N3708	0.14	AC15	0.27	BC2378	0.16	BF×29	0.32
2N3714	1.38	AC152	0.49	BC239C	0.15	BF×30	0.34

3.70
3.70
0.99
0.90
0.98
0.50
0.75
0.13
0.13
0.15
0.13
0.18
0.07
0.36
0.10
0.07
0.22
0.30
0.08
0.25
0.18
0.12
0.12
0.23
0.45
0.27
0.29
0.51
0.51
0.06
0.18
0.08
0.05
0.05
0.57
0.20
1.00
0.33
0.65
0.60
300

diversity switch type malase. Solid state 645.00 .

GRA10. Full particulass and pice on request
GELS
SOLOTRON REGULATED PSU MODELS SRS 152
O 170 V DC $\mathrm{F} 200 \mathrm{~mA} \quad 160-340 \mathrm{v} 330-500 \mathrm{v}$ and 0170 vOC to $200 \mathrm{~mA} 160-340 \mathrm{v} 330-500 \mathrm{v}$ and AC
$6 \mathrm{zv} 5 \mathrm{mmp} £ 35.00$. Carriage E 500

RACAL RECEIVERS MODELS. RA17 in fulty working and tuned condinion Pr applicaun RA9BA ADAPTOR E85.00.

 RACAL FREQUENCY COUNTER SA 550 .Measures freq up to 100 MHz also period and
 524B FREQUENCY COUNTER. Measures
basically to $10 M H$ OISplay on neon tamp 8
decibels PDA PHILIPS AUDIO GENERATOR TYPE GM 2308.
 E400
FERRANTI SWEEP GENERATOR LF MK 2,0210 20 cps B Band sweep
$10.220 \mathrm{MHz} \mathbf{E 5 5 . 0 0} \mathrm{ca}$

BOONTON

AM/FM SIGNAL GENERATOR TYPE 202E \& 202H. $54-216 \mathrm{MHz}$ in 2 ranges $£ 275.00$. SIGNAL GENERATOR TS. 497 /URS $2.5 \mathrm{Mz}, \quad 13 \mathrm{MHz}$. $30 \mathrm{MHz}, \quad 78 \mathrm{MHz}, \quad 180 \mathrm{MHz}$, $400 \mathrm{MHz}, 0.1 \mathrm{v}-1 \mathrm{uv} £ 150$ carriage

Open Monday to Friday 9-12.30. 1.30-5.30 p.m.

 TRIGGERED VACUUM SPARK GAP TYPE ZR 7512. Caoable of swiching 15000 avies at 45 KV
E50.00 carriage t 200 LOW RESISTANCE HEADPHONES TYPE CLA 2.50. 40 p postage VAT 25%

CINTEL TYPE 1873 SQUARE WAVE \& PULSE GENERATOR. Freq 5 c 's to 250 KHz Pulse 05 sec
03.3 Output to 50 v for $1000: ?$ \& to 5 v for , 00 : RADIOMETER TYPE MS 111 SIGNAL GENERA
 KMC'S Mod C W F M Pulse fi 60 carrage 500
 +2 RIDGE IMPEDANCE N
B
1.4H-IH EB5 Carriage f 400 EDISWAN STAEELIZED POWER UNITS. TO 100 V 0MA rype R 1280 to 300 V 150 MA and TEKTRONIX OSCILLOSCOPES 535, 545 \& 545A With plug in units CA (33MHz double beam

TECHNICAL MATERIAL CORP EXCITER/

 TECHNICAL MA ERIAL CORP EXCITER,TRANSMITER MODE SELECTOR Fre
232 MHz MO and 10 crvstal positions Vernie tuning USB $L S 8$ var cariver insertion eic $£ 200$ carrage ExCITER. FSK EXCITER. Freq 65 MHz O 100 Hz
contunued frequency shit up to 600 Hz swutched
trea corfection Modes FAX FS MSC CW treq corfection Modes FAX FS MSC CW
f50.00 cartage 500
AMPLFIER UNIT TYPE 1430. DVnatron Production Pulse amplitier woith contiol
Oifferential and Integration time constant
 PULSE ANALIIER. Made by DYnatron with
discriminator all meter reads channel width

RHODE \& SCHWARZ. Zg OIAGRAPH TYPE ZDU $3042 \mathrm{DMHz} 50: 2$ Directly measures multiterminal net works phrase shift phrase angle with complimentary POWER SIGNAL GENERATOR TYPE SMLM high frea resolution mernal external mod up to 3 v out $\mathbf{£ 7 5 0}$. FREQUENCY SYNTHESIZER TYPE XUA. 30 Hz -30MHz with FREOUENCY INOICATOA TYPE FKM 1530 MHz 3010 DMHz £1,000

SIGNAL GEN carrage 400

SIGNAL GENERATOR NO 1320 MH ? BOMH? AM M CW 1 N 16 E 65 carrage 4 no
 diversity to combat fading 20 sce RC memory to meters nuvishers 10 W disto
demodulator $\mathbf{E 5 5}$ carriage 2500 demodulator $\mathbf{E 6 5}$ carrage 45
IF $801 \mathrm{~B} / 2$. Spec as TF $801 \mathrm{~B} / 2$. Spec as for 8010 but minor
difterences Few only left $£ 120$ carnage $t 500$

BEST PRICES PAID FOR TEST AND COMMUNICATION EQUIPMENT. Single items or quantities. Private or Industrial.

 RF and mod meters P OA applicaiton signal generator 450 MHz to
 CW Int A M \& Ext Putse f200.00 carrige t 5 OO
TF 1041 B VALVE MULTIMETER. General puroonse TF 1041 B VALVE MULTIMETER. General putpose
measuring DC voitage tom 300 mV to 1000 AC
voliage from 300 mV to 300 V at up to 1000 MHz and esistance up to 500 Mohms Price $\varepsilon 65$ carrage \& 300 TF 1370 R.C. OSCILLATOR FOR SQUARE \& SINE
WAVE. F.eq -316 V .ms 10 Hz 1 MHz Square wave
 500 OSCILLOSCOPE WM8 AC/DC to 15 mc
EMI
Time base $015 \mathrm{Msec} 15 \mathrm{Msec} £ 40$ cartage 500 HR 23 TRIPLE DIVERSITY SSB RECEIVERS. Freq
3.275 MHz VF 0 at $6 \times$ tat positions Reception of
 Fult spec on applicenion E350 carriage 23500
TF $885 A / \$$ VIDEO OSCILLATORR. 030 KHz 5 MH IF 316 V E 85 cariage 400
TF 934 DEVIATION METER. $250 \mathrm{MH}, 655$ carIIag TE 1400 S DOUBLE PULSE GENERATOR WITH TM' 6600 SECONDARY PULSE UNIT for testing
radax nurleonics scopes counters filters eft E. 175

500/250 MEDIUM WAVE BROADCAST TRANSMITTERS. Export only Price and detals on application		
VAT FOR TEST EQUIPMENT		
8\%	PLEASE A00	8\%
PLEASE SEND STAMP WITH ENQUIRIES		

KINNIE COMPONENTS

10, NELMES WAY, HORNCHURCH
ESSEX RM11 202
HORNCHURCH 45167

CIRCUIT BOARD

P.C.B. 1/16. 1 oz. COPPER

FORMICA
Dim. 8.4×7.7 in 3 pcs., 80p
Dim. 9.4×8.1 in 3 pcs., 90 p
Dim. 10.1×7.9 in 3 pcs., $\mathbf{£ 1 . 0 0}$
Dim. $13: 1 \times 9.4$ in 3 pcs., $£ 1.20$
Dim. 17.0×9.0 in 2 pcs.. $£ 1.20$

BARGAIN PACK

10 pcs. $10.1 \times 7.9 \mathrm{in}$. Plus free $1 / 2 \mathrm{lb}$ etching Xtals $£ 3.10$ P.P. 65p.
FIBRE GLASS P.C.B.
Dim. 6×6 in. $\mathbf{5 0 p}$ each
Dim. 12×6 in. 75p each
Dim. 12×12 in. $\mathbf{\$ 1 . 3 0}$ each
Equals less than $\mathbf{1 p}$ sq. in.
FIBRE GLASS P.C.B. DOUBLE SIDED
Dim. 6×6 in 40p each
Dim. 12×6 in. 65 peach $\}$ P.P. $15 p$
Dim. 12×12 in. $\mathbf{£ 1 . 3 0}$ each P.P.

ETCH RESIST PENS

Pens 55p, P.P. 5p
RESIST COATED P.C.B. FORMICA
$10.1 \times 7.9 \mathrm{in} .65 \mathrm{pea}$
13.1×9.4 in 75p ea.
RESIST COATED P.C.B. FIBRE GLASS
6×6 in. 65p ea
12×6 in. $\mathbf{£ 1} .35$ ea
$12 \times 12 \mathrm{in} \mathbf{£ 2 . 0 0}$ ea
BLUE P.C.B. INK
Etch resist use with any pen. Much cheaper than ready loaded pens
50 c.c. 55p. P.P. 10 p.
FERRIC CHLORIDE ETCHING XTALS
1 lb - 1 litre pack. 70p P.P. 35p.
$5 \mathrm{lb}-5$ litre pack. £2.20 P.P. 65p.

PRINTED CIRCUIT KIT

The no frilis all value kit. Containing $4 \mathrm{pcs} 8 \times$ 7 Formica laminate. 1 pce 6×6 Fibre glass laminate, 1 lb Etching Crystals, 50 c.c. Resist ink, with instructions
£2.40 P.P. 65 p.

BARGAIN PACK FIBRE GLASS P.C.B.

200 sq. in. all usable pieces $£ 1.25$ P.P. 25 p.

EDGE CONNECTORS. 54 WAY

.1 Vero size etc. Can be cut to any length. 55p P.P. 10p. Side Guides to suit above 15p each.

TELEPHONE DIALS
 (New) E1 P.P. 250

EXTENSION TELEPHONES
(Type 706). Various colours
£3. 95 P.P. 75 p.
12V MINIATURE

UNISELECTOR

11 ways. 4 bank (3 non bridging, 1 homing), £2.50 P.P. 35p.
H.T. TRANSFORMERS. Prim. $110 / 240 \mathrm{v}$. Sec. 400 v .100 M/A £3. P.P. 65 p.
l.T. TRANSFORMER. Prim. 240v. Sec $27-0-27$ at $800 \mathrm{M} / \mathrm{A} . £ 2.35$. P.P. 50 p . L.T. TRANSFORMER. Prim. 110/240v. Sec. 50 v . at 10 amp . 10 . P.P. E1. 50
L.T. TRANSFORMER. Prim 240 v . Sec. 18 v at 1.5 amp . \& 12 v . at 1 amp . $£ 2.25$. P.P. 65p.
L.T. TRANSFORMER. Prim. 240v. Sec. 18 v . 1 amp. £1.10 P.P. 35 p
L.T. TRANSFORMER. Prim. 240 v . Sec. 12 v at 1 amp. £1 P.P. 25p.
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$ Sec. 23/24/25v. at 10 amps £7. P.P.£1 L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$ Sec. $20 / 21 / 22 \mathrm{v}$. at 8 amp £6. P.P. £1.

UNISELECTORS

(New) 25 way. 12 Bank (Non bridging). 68 ohms. $£ 6.50$ P.P. 50 p.

MINIATURE UNISELECTOR

(Ex. Equip.) 6 Bank (5 non bridging. 1 bridging) 100 ohms $24-30$ V.D.C. $£ 1.50$ P.P. 50 p.

1,000 TYPE KEY SWITCHES

Single $2 \times 2 \mathrm{c} / \mathrm{o}$ Locking. 50p. P.P. 10 p Bank of $4-2 \times 4 \mathrm{c} / \mathrm{o}$ each switch (one biased). £1.20 P.P. 25p

MULTICORE CABLE

6-core (6 colours) 14 / 0076 Screened P.V.C $\mathbf{3 0 p}$ per yard; 100 yards at $£ 16.50$ P.P. 2p a yard, 7 -core (7 colours) $7 / 22 \mathrm{~mm}$. Screened P.V.C. 30p per yard; 100 yards £16.50 P.P. 4p per yard.

P.T.F.E. CONNECTING WIRE

1/20 Black or White 100 m . Drum $£ 2.50$ P.P. 30p.

OVERLOAD CUT OUTS

Panel mounting $800 \mathrm{M} / \mathrm{A} 1.8 \mathrm{amp} .10$ amp. 55p ea.

H.D. ALARM BELLS

6 in. Dome. $6 / 8 v$, d.c. Heavy cast housing for exterior/interior use. £3.75 P.P. £1. Connecting wire (twin/twisted) $220 y$ d. reel $£ 3$ P.P. 75p.

HIGH CAPACITY ELECTROLYTICS

$250 \mathrm{mfd} / 63$ volt, 20p P.P. 8p.
$1.000 \mathrm{mfd} / 100$ volt, 70 p P.P. 25 p $2.200 \mathrm{mfd} / 100$ volt. 90 p. P.P. 25 p. $4,700 \mathrm{mfd} / 25$ volt, 65p. P.P. 20 p . $6.800 \mathrm{mfd} / 16$ volt, 50 p. P.P. 15 p. $10,000 \mathrm{mfd} / 25$ volt, 75 p . P.P. 25 p . $25,000 \mathrm{mfd} / 40$ volt. $£ 1.25$. P.P. 30 p . $47,000 \mathrm{mfd} / 40$ volt, $£ 2.00$. P.P. 50 p . $100.000 \mathrm{mfd} / 10$ volt, $\mathbf{£ 1 . 5 0}$. P.P. 50 p $160.000 \mathrm{mfd} / 10$ volt. $£ 2.00$. P.P. 50 p

BULK COMPONENTS OFFER

Resistors/capacitors 600 new components £2.75. P.P. 36p.
Trial order 100 pcs 75p. P.P. 20p.

SMITHS GEARED MOTORS 240V AC

3 rev. per min. $\mathbf{£ 1 . 5 0}$. P.P. 25 p.
4 rev. per min. $£ 1.50$. P.P. 25 p.
6 rev. per min. $£ 1.50$. P.P. 25 p.
2 rev. per hour. $\mathbf{£ 1 . 5 0 . P . P . 2 5 p}$.
6 rev . per hour. £1.50. P.P. 25p.

HIGH-SPEED MAGNETIC

 COUNTERS (state which)
$4 \times 1 \times 1$ in. £1. P.P. 20p.
5 digit (non reset) $24 \backslash £ 1.50$. P.P. 20 p.
3 digit 12 V (Rotary Reset) $21 / 4 \times 13 / 4 \times 11 / 4$ £1.40. P.P. 15 p .
6 digit (Reset) 220 v. a.c. £3.50. P.P. 25p
RESET COUNTER (BRAND NEW)
6 digit 24 v . 25 I.P.S. £5 P.P. 25p.

TRANSFORMERS

L.t. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$ Sec. $0 / 24 / 40 \mathrm{v}$. at $11 / 2$. amp. (Shrouded) £1.95. P.P. 50p.
L.T. TRANSFORMER. Prim. 200/250v Sec. 20/40/60v. at 2 amp . (Shrouded) $£ \mathbf{3}$ P.P. 70p.
L.T. TRANSFORMER. (H.D.) Prim $200 / 250 \mathrm{v}$. Sec 18 v . at $27 \mathrm{amp} ; 40 \mathrm{v}$. at $9.8 \mathrm{amp}: 40 \mathrm{v}$. at $3.6 \mathrm{amp} ; 52 \mathrm{v}$ at 1 amp . 25 v . at $3.7 \mathrm{amp} \mathbf{£ 1 7 . 5 0}$. P.P.E 2.50 .
L.T. TRANSFORMER. Prim 240v. Sec. 20v at 2.5 amp . £2. P. P. 65p
LT. TRANSFORMER (${ }^{C}$ '" CORE) $200 / 240 \mathrm{v}$. Secs. $1-3-8-9 \mathrm{c}$. All at 1.5 amp 50 v . at 1 amp. £2.50. P.P. 50p

SIEMENS MINIATURE RELA゙V
$6 v .4 \mathrm{c} / \circ 65 \mathrm{p} .24 \mathrm{v} .2 \mathrm{c} / \mathrm{o} 50 \mathrm{p}$.

MINIATURE RELAYS

$(13 / 8 \times 11 / 4 \times 1 / 2) 24$ v. $4 \mathrm{c} / 035$ p. P.P. $5 p$ MAINS RELAY 240v.a.c.
$3 \mathrm{c} / 010 \mathrm{amp}$. contacts 80 p . with base P.P. 20p
24v a.c. RELAY (PLUG IN)
3 pole c/o 75p. P.P. $15 p$.
2-pole c/o 55p. P.P. 15p
MINIATURE REED RELAY
$(1 \times 1 / 4) 12 v .1$ c/o 50p. P.P. 10p.

S-DECS AND T-DECS

S-DEC £1.90.
U-DEC A $£ 4.20$.
T-DEC $£ \mathbf{3 . 6 0}$.
U-DEC B £6.90.

S.T.C. CRYSTAL FILTERS

(10.7Mhz) 445-LQU-901A (50 Khz spacing), £3. P.P. 20p.
445-LQU-901B (25 Khz spacing). £4. P.P. 20p. 10.7 Mhz Canned I.Fs. Size $1 \times 1 / 2 \times 1 / 2$ in. (with data) 65p. P.P. $10 p$.

3 GANG TUNING CAPACITOR

8.5 PF, to 320 P.F. 80p. P.P. .20p

V.H.F./U.H.F. POWER TRANSISTORS

(type BLY 38). 3 watt output at 100-500 Mhz. £2.25. P.P. 10p.

AM/FM TUNING METER

125-0-125 $\mu \mathrm{A}$ Edgewise $11 / 2 \times 1 / 2, £ 1.10$
SIGNAL STRENGTH METER
$250 \mu \mathrm{~A}$ (illum.) Edgewise $11 / 2 \times 1 / 2, £ 1.10$
OUTPUT METER CLEAR PLASTIC
$500 \mu \mathrm{~A} 11 / 2 \times 1 / 2$, , 11.30

MINIATURE METERS

500 micro-amp (level stereo beacon, etc) scaled half back/half red. Size 1×1 in. 65 p. P.P. $15 p$

PANEL METERS

$23 / 8$ in. $\times 1 / 8 \quad$ T8 $\quad 500 \mathrm{~mA}$

T2 $100 \mu \mathrm{~A} \quad$ T10 50v.a.c.
T3 $500 \mu \mathrm{~A}$ T11 300v.a.c.
T4 1 mA T12 50/0/50fIA
T5 10mA T13 100/0/100 $\mu \mathrm{A}$
T6 50mA T14 500/0/500 $\mu \mathrm{A}$
T7 100 mA All at $£ 3.75$. P.P. 15 p .

PANEL METERS

$41 / 2$ ins. $\times 3^{1 / 4} \quad$ D3 $200 \mu \mathrm{~A}$
D1 $50 \mu \mathrm{~A} \quad$ D4 $500 \mu \mathrm{~A}$
D2 $100 \mu \mathrm{~A}$ All at $£ 4.60$. P.P. $15 p$

S.C.R - THYRISTORS

1 amp. 400 P.I.V. 35p
5 amp. 400 P.I.V. $\mathbf{4 0 p}$

miniature 'Elapsed time'

INDICATORS
(0.5000 hours) $45 \times 8 \mathrm{~mm} 75 \mathrm{p}$. P.P. 15 p .
L.T. TRANSFORMER (${ }^{\prime} \mathrm{C}^{\prime \prime}$ CORE) Prim. $120 \mathrm{v} / 120 \mathrm{v}$ SECS. $1-3-9-20 \mathrm{v}$. 10 amps £7.50. P.P. £1. 25.
L.T. TRANSFORMER (${ }^{\prime} \mathrm{C}$ ' CORE) $200 / 240 \mathrm{v}$. Secs. $1 \cdot 3-9-27 v$. All at 10 amp . £7.50. P. P. £ 1.50
L.T. TRANSFORMER (${ }^{\prime} \mathrm{C}$ " CORE) 200/240v. Secs. 1-3-9-20v. All at 4 amp . £5.50. P. P. $75 p$.
L.T. TRANSFORMER ("C' CORE) $120 / 120 \mathrm{v}$. Secs. $1-3-9-9 \mathrm{v}$. All at 10 amp . £6.50. P.P.£1.50.'
L.T TRANSFORMER ("C' CORE)
$110 / 240 \mathrm{v}$. Secs. $1 \cdot 3-9 \mathrm{v}$. 10 amp. 35 v . 1 amp; $50 \mathrm{v} .750 \mathrm{M} / \mathrm{A} . £ 6.50$. P.P.£ 1.50 .

FAST SERVME

ALL FULL SPEC DL707 COM．ANODE \＆ DL704 COM．CATHODE
$0.3^{\prime \prime}$ 0－9DP 89p．ea 747 JUMBO $0.6^{\prime \prime}$ CA LED DISPLAY ¢ 1.75 3015 F 0－9DP £1．25
DISCO etc STROBE ZENON TUAE STROBE LSDS SOO NSO
209 STYLE OR $0.2^{\prime \prime}$ NO CLIP 11p＊ TIL209 or 0．2＂RED \＆CLIP 13p＊ GREEN LARGE／SYALL CLIP 22p＊＊ ORP12 57p＊2N5777 33p＊TEC12 SOp DIGITAL CLOCKS MM5316 \＆5＊ MM5314 £3．39＊MM5311
AY51224 $£ 3.49^{*}$ PCB £ $1 *$ AY51224 £3
CERAMIC 22pf－n．1uf 50y 5p ELECTROLFTIC：10／50／100 uf 10 or 25V 7P．50V 9p．2uf／10V 6p． 1000uf 25V 18p．200／500uf 9p， POTENTIOMETERS LIN／LOG 16 p ea PRESETS 6p．RESISTORS 1
HEATSINKS TO5／18 7p．TO3 15p SWITCHES：SPST 19p．ПPDT 24p DIN PLUGS ALL 12p．SOCKETS 9
 TRANSFORMERS 100 mA 89 p fa ＊ 2A／1A 6／12 or $12 / 24$ \＆ 2 eacl NEW AUDIBLE WARNING BLEEPER TRAMPUS FULL SPEC PAKS ALL

IC＇s

79 TTL

F	Flili，S	5\％off	100MIX
7400	40^{*}	7474	27p ${ }^{\text {c }}$
7401	1 （1）${ }^{\text {c }}$	7176	27 p ＊
7102／3	11p＊	740	37 p ＊
7404	$17{ }^{1}$	7191	600°
7105／6／7	3炜	7492／93	$43{ }^{13}$
740\％／9／10	$10{ }^{\text {ap }}$	7494	130＊＊
7113	3 F	719 r	681，
7421／3n	$1{ }^{1 /}$	71100	
7140	$1 \mathrm{p}^{*}$	711：1	
7111	（1）	71193	8_{1}＊
711，	17p＊	－1111	$\mathrm{Cl}^{1 \mathrm{D}^{*}}$
7177	2 p	2117%	${ }^{\text {¢ } 1.0}$
747	2p＊	7117	35 p

$58 \cdot 60$ GROVE RD． WINDSOR，BERKS．SLAIAS
ADD 8\％VAT TO PRICES MARKED＊
ADD $121 / 2 \%$ VAT TO ALL OTHER PRICES SEND CWO（EXCEPT GOVT．DEPTS．）
POST \＆PACKING 20p FOR THE UK

NE FAST SERVICE，LOM PRICES． ManEy BACK If NDT EATYAFIRO． ALL GRAND NE TOP GRADE FULL SPEC DEVICES，GAMRERS WELCORE Ne cataloge lispr paee saz． barchan card an is urmilu

TELEPHONE 54525

TRANSISTORS

PRICE EACH		matceing	30p＊
AC127 \＆ 128	10 p ＊	INS．buSh SET	\＃p＊
AC176	15p＊	TIP29 \＆ 30	$43{ }^{\text {\％}}$
AC187 \＆ 198	18p＊	TIf31＊32	54 p ＊
ग1149	45p＊	TIP41	6．jp
Allat \＆ 16 ？	$33 . *$	TIP42	6． p^{*}
AC107	dр＊	TIP2055	！ 5 －${ }^{\text {P }}$
［10．1n7B	120＊	TIP3055	67p．
HC108	$7 p^{*}$	1！S43 HJCT＇	23 \％
3 CC 108 n	$1 \mathrm{P}^{\prime}{ }^{\text {P }}$		11 p
BC109	37 ＊	ZTX300 4304	201
$\mathrm{BC}^{\text {c }} 09 \mathrm{C}$	$1.2 \mathrm{p}^{*}$	7，$\times 50006504$	12p
BC147／8／9	90	2N70¢ \＆ 708	$118{ }^{\text {c }}$
［BC157／8／9	13 p	2v264r UJT	S8p＊
BC167／8／9	12，	22^{2918}	$3{ }^{-1}$
EC177／8／9	1 kp	2N29263 roys	9 p
BC182／3／4ARL	103	2N3053	159＊
HC212／3／4A\＆L	127	2v3054	42 p
BCY70／1／2	16%	2N3055 115m	3780
10131 \＆ 132	39p＊	2 N 3055 RCA	6020
BFRR8 250 V	35p	2N3702／3／4／5	81
BFY 50	147＊＊	2v3706／7／8／9	del
BFY51	1：3＊	23710 \＆11	Hip
BFY52 \＆ 53	$14 .{ }^{*}$	\％ 3819 F ．PET	1\％
BSX18／20／21	16 p	N3820 FET	40\％
MJ2955 To3	$75{ }^{*}$	2038231 FlTT	$1 \mathrm{f} \mathrm{\%}$
YJJO955	41p＊	$3 \times 3901 / 5 / 8$	13n
MJFions	（1pt	2N4289 miti	310
＂Pİ31 Tit	49p	9\％\％4า7 F^{1}	17

ETILS LOGIL

NE

D）1ODES
OA81 \％OA91 GERYANITP 5 p ． 1 N4001 1A50V \＆1N4002 5p＊ 1N40n4 Gp＊ 1 N 4007 9p＊ 1N4148 \＆ 1 N914 SILICON ZENERS H7Y8R 400 mH ZENERS 1tw 17 P ．Z1Jnoise FRI BRIDGE RFCTIFIER 1A50 18 B SCR＇s TRIACS SCR＇s TAGI／400 1A400V 50p＊ 1A50V 38p＊1A 600V 70p＊ C1OGI 4 AAOOV SCR ONLY 47p TRIAC SC14（I）10A400V £1＊＊
TRIAC DISCO $16 A 400 \mathrm{~V}$ 〔1，75 DIACS：ST2 20p． 8 R100 25p
vero
36PINS 28p＊FACE CUTTER49p＊ COPPERCLAD 0，1 PITCH VERO
 31＂x17＂ 81 70＊$\times 3$＂ $32 p^{\circ}$ 3\}"x17" PIAALN 0.1"£1.06*
DIL BREADBOARD 6x4＂
g90
 Fx4＂（＇OPPRR BOARD PC・ル KIT 3 TTEMS CASSETTE MECHANISM 59 \＆ASS 1 TGS GAS DETECTORS 308etcf2＊

MUIRHEAD D－658 $18^{\prime \prime}$ MUFAX CHART TRANSMITTERS（Model GA）． Further details on request．For $110 / 250 \mathrm{v}$ a．c．operation $£ 325.00$
MEGGER（Record）： 500 volts $£ 20.00 £ 1.00$ post
MEGGER（Evershed Vignoles）： 250 volts $£ 17.50 £ 1.00$ post
R216 Receiver MANUAL（photostat copy）：$£ 1.50$ inc．post
RACAL I．S．B．ADAPTOR RA－95A： $\bar{£} 65$ ．Carr．£2．
MUIRHEAD ATTENUATORS： 75 ohms $0.8 \mathrm{Mc} / \mathrm{s} 3 \mathrm{~V}$ MAK 3 ranges $0-5,0-25$ ， $0-50 \mathrm{DB}$ £3．00 +75 p post．
CREED MODEL 54 TELEPRINTER：$£ 37.50$ each．Carr．$£ 4$
CREED MODEL 75 TELEPRINTER：Receiver only £30．00．Carr．£3．
EDDYSTONE TELEPRINTER ADAPTOR TYPE 937：£45．Carr．£1．
WILD BARFIELD ELECTRIC FURNACE MODEL CCI．22X：With ether
indicating temperature controllers Model 990 ．0－1400 ${ }^{\circ}$ C．£250．Carr．£5．
METROVAC IONIZATION GAUGE MODEL V．C．3：£55．Carr．£3．
AVO VALVE TESTER CT̄．I60：（Portable）similar to Avo Mk． 3 Characteristic meter．Good condition，£45．00．Carr．$£ 2.00$ ．
REDIFON TELEPRINTER RELAY UNIT No．12：ZA－41196 and power supply $200-250 \mathrm{~V}$ a．c．Polarised relay type 3 SEITR． $80-0 \mathrm{~V} .25 \mathrm{~mA}$ ．Two stabilised valves C＇V 286．Centre Zero Meter 10－0－10．Size 8 in ．x 8 in ．x 8 in ．New condition．$£ 10$. Carr．75p．
SOLARTRON PULSE GENERATOR TYPE G1101－2：£75．00 each．Carr．£2．00． TELEPRINTER TYPE 7B；Pageprinter 24V d．c．power supply，speed 50 bauds per min．second hand cond．（excellent order）no parts broken．£20 each．Carriage £3 AUTO TRANSFORMER： $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}, 1000$ watts．Mounted in strong steel case $5^{\prime \prime} \times 6^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$ ．Bitumen impregnated．$£ 12.00$ ．Carr．£1．50．
CRYSTAL TEST SET TYPE 193：used for checking crystals in freq．range $3000-10.000 \mathrm{KHz}$ ．Mains 230 V 50 Hz ．Measures crystal current under oscillatory conditions and the equivalent resistance．Crystal freq．can be tested in conditions and the equivalent resistance．Cr
conjunction with a freq．meter．£25．Carr．$£ 1.50$ ．
SOLARTRON VARIABLE POWER UNIT S．R．S． $1535: 0-500$ volts at 100 mA and 6.3 volts C．T． 3 amps d．c． $110 / 250$ volts a．c．input．£I8．50．Carr．$£ 1.50$

ADVANCE A．F．SIGNAL GENERATOR HIE：Sinesoidal or square wave output $15-50 \mathrm{kHz}$ ．Adjustable level between 200 uv and 20 v ．Overall distortion less than 1% ．Output adjustable 1.4 mV to 140 V ．Waveform ratio $50: 50$ up to 25 kHz Standard A．C．mains input．As new condition $£ 40.00$ ．Carr．$£ 2.00$ ．
ADVANCE A．F．SIGNAL GENERATOR H．I．：Same frequency and characteris－ tics as above．Earlier model．Secondhand condition．$£ 25.00$ ．Carr．$£ 2.00$
ANTENNA MAST：40ft．aluminium $11 / 4^{\prime \prime}$ dia．in 5 ft ．sections complete with guys etc．$£ 25.00$ ．Carr．$£ 3.00$ ．
PULSE GENERATOR PG21：Pulse width variable 15 nS to 200 msec in 7 ranges． Delay variable 40 nS to 200 msec with respect to sync pulse output in 7 ranges． Jitter less than $.1 \%$ ．Repetition rate 1 Hz to 10 MHz in 7 decade ranges． 20 MHz available in double pulse mode．Pulse mode：normal，square wave and double pulse． 240 v a．c．As new condition．$£ 125.00$ ．Carr．$£ 2.00$ ．

CLASS＇D＇WAVEMETER NO．1：Crystal controlled heterodyne frequency meter covering $2-8 \mathrm{MHz}$ ．Power supply 6 V d．c．Good secondhand condition €8．50．Carr．$£ 1.50$ ．
PRECISION PHASE DETECTOR TYPE 205：Freq． $0.1-15 \mathrm{MHz}$ in 5 ranges． Variable time delav microseconds $0-0.1 \mathrm{c} .115 \mathrm{~V}$ input．$£ 55$ each．Carr．£1
RING TOROIDAL DUST CORES：Size $2 \frac{1}{2 \prime \prime}$ outside $13 / 4$ inside $5 / 16^{\prime \prime}$ thick．Box of two $\mathbf{\text { 1．00．Post } 3 0 \text { p．}}$
MUIRHEAD PHASEMETER TYPE D729：A．M．£95．00．Carr．£3．00．
CT． 420 SIGNAL GENERATOR： $200-8000 \mathrm{c} / \mathrm{s}$ Variable tuning．Two fixed frequencies 9000 and 10,000 ．Internal calibrator $100 \& 500 \mathrm{c} / \mathrm{s}$ ．£75 each carr．£2． NOISE GENERATOR TF－1106：Frequency 1 to $200 \mathrm{Mc} / \mathrm{s}$ Direct noise factor calibration．Output impedance 70 ohms $£ 65$ each．Carr．£1．50
MW－59 UNIVERSAL KLYSTRON POWER SUPPLY：£85．Carr．£3．
TF－1278／I TRAVELLING TUBE WAVE AMPLIFIER：$£ 125$ ．Carr．$£ 2$
BPL A．C．MILLIVOLTMETER TYPE VM．348－D Mk．3： 2 millivolts－2 volts， 6 ranges．£30．Carr．£1．
CAWKELL REMSCOPE TYPE 741 ：Memory scope．＇as new＇cond．$£ 150.00$.
MANSON SYNTHESISER Q115－URC： $2-30 \mathrm{mc} / \mathrm{s} . ~ £ 175.00$ ．
FIREPROOF TELEPHONES：£25．00 each，carr．£1．50．
POWER UNIT： $110 / 230$ volts a．c．input． 28 volts d．c．at 40 amps output． $\mathbb{£ 3 0 . 0 0}$ each，carr．$£ 3.00$
SMOOTHING UNIT（for the above）：$£ 10.00$ each，carr．$£ 2.00$ ．
X－BAND MODULATOR CALIBRATOR TYPE MC－4420－X：Mnfr．James Scott． £125 each．Carr，fl
BACKWARD WAVE OSCILLATOR TYPE SE－125： 6.3 heater， 105 V Anode， 7.9 mA ．Mnfr．Watkins \＆Johnson．£85 each．Carr．£1

TEKTRONIX TIME MARK GENERATOR TYPE 180－S1： $5,10,50 \mathrm{MHz}$ ． $\mathbf{£ 6 5}$ Carr．$£ 2$.
ROTARY INVERTERS：TYPE PE．218E－input $24-28 \mathrm{~V}$ d．c．， 80 Amps． 4.800 rpm ． Output 115 V a．c． 13 Amp $400 \mathrm{c} / \mathrm{s}$ ．lPh．P．F．9．£20．00 each．Carr．£2．50．
FREQUENCY METER BC－22I： $125-20.000 \mathrm{Kc} / \mathrm{s}$ complete with original calibration charts．Checked out，working order $£ 20+£ 1.50$ carr．
SORENSEN VOLTAGE REGULATOR：Input $190 / 260$ volts a．c．Output $220 / 240^{\circ}$ volts a．c． 1000 watts．$£ 40.00$ ，carr．$£ 3.00$ ．

EVERSHED SAFETY OHM．METER：Max 10 Ma ．Test pressure 30 v ．Complete in leather case．$£ 25.00$ each，post $£ 1.00$
FYLDE AMPLIFIERS TYPE 154 BDM：Rack mounted 3 v．d．c．and power supply FE． 500 ．TP．£65．00．carr．£2．00．
AUTOMATIC VOLTAGE STABILIZERS：Input $207-242 \mathrm{v}$ a．c．Output 230 v a．c at 2.80 amps ．$£ 17.50$ ，carriage $£ 1.50$

ALL U．K．ORDERS SUBJECT TO VALUE ADDED TAX．

RETURN OF POST MAIL ORDER SERVICE

SPECIAL OFFER!
SMITH'S CLOCKWORK 15 AMP
TIME SWITCH
$0-60$ MINUTES $£ 2.95$ Post 35D

WEYRAD P50 TYPE TRANSISTOR COILS

 Ferrite Rod $8 \times 3 / 41 n . .20 \mathrm{p}$. $6 \times 5 / 16 \mathrm{~m}, 20 \mathrm{p} .3 \times 3 / 1 \mathrm{n}$: 10 p

VOLUME CONTROLS 5 kN to 2M1I LOG or LIN L/S 25p. DP 40p. STEREO L/S 55p. D.P. 75p. Edge 5K. S.P. Transistor 30p.	80 Ohm Coax 8p yd. STANDARD TYPE VHF fRINGE Low loss 15p Ideal 625 and colour yd.
ELAC HI-FI SPEAKER	
$8 i n$. or $10 \times 6 \mathrm{in}$	
al cone plasticised roll s ramic magnet 50-16. sonance $55 \mathrm{c} / \mathrm{s} 8$ watts. music power	d. Large s. 8ass edance.

E.M.I. $131 / 2 \times 8 i n$.

SPEAKER SALE!

$\begin{aligned} & \text { Be } \\ & \text { ef } \end{aligned}$	

THE "INSTANT" BULK TAPE ERASER AND HEAD DEMAGNETISER. Suitable for mans $200 / 250 \mathrm{~V}$ Leaflet S A.E $\mathbf{~} 4.35$ Will also demagnetıse smalĩ 24.35

BLANK ALUMINIUM EHASSIS. $6 \times 4-70 p ; 8 \times 6-90 p$ $10 \times 7-£ 1.15 ; 12 \times 8-£ 1.35 ; 14 \times 9-£ 1.50 ; 16 \times 6-£ 1.45$ $16 \times 10-£ 1.70$.

ELAC $9 \times 5 \mathrm{in}$ HI-FI SPEAKER TYPE 59RM

$$
£_{2} .45
$$

RCS LOW VOLTAGE STABILISED POWER PACK KITS
All parts and instructions with Zener diode, printed circuit rectifiers and double wound mains
transformer Input $200 / 240 \mathrm{~V}$ a C Output
$£ 2.95$
transformer Input $200 / 240 \mathrm{~V}$ ac Outpul
ost $45 p$ voltages avalable. 6 or 7.5 or 9 or 12 V d.c. up to 100 mA or

RCS POWER PACK KIT

12 VOL.T. 750 mA . Complete with printed $\{3.35$. 30 pop circuit board and assembly instructions.
R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER - BRITISH MADE Ideal for Mike. Tape. P.U.. Guitar, etc Can be used with 8atrery
9.12 V or H.T. Ine 200.300 V d.c. operation. Size. $13 / 4 \times 1 / 4 \times$ $3 / 4 \mathrm{n}$. Response $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s} .26 \mathrm{~d} 8$ gain.
For use with valve or transistor equipment. E1 45 Post
Full instructions supplied. Details S.A.E. \&1.4530p

ELECTRO MAGNETIC

 PENDULUM MECHANISM 1.5 V d.c. operation over 300 hours continuous -on SP2 battery, fully adjustable swing and speed. Ideal displays.teaching electro magnetism or for
metronome, strobe, etc.
R.C.S. "MINOR"' 10 watt AMPLIFIER KIT his kit is sultable for record players, guitars, tape playback. electronic instruments or small P.A. Systems. Two versions
avallable Mono $£ 11.25$; Stereo. £18. Post 45 p Specification 10 W per channet: input 100 mV : size $91 / 2 \times 3 \times 2 \mathrm{~m}$. approx S.A E. details. Full instructions supplied. AC mains powered

\section*{MAINS TRANSFORMERS | All 500 |
| :---: |
| 508 |}

 $350-0-35080 \mathrm{~mA} .6 .3 \mathrm{~V} 3.5 \mathrm{~A} .6 \mathrm{BV} 1 \mathrm{~A}$ or 5 V 2 A £5.80 $300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 63 V 4 A$ C.T . 6 3V 2A . $£ 7.00$
 GENERAL PURPOSE LOW VOLTAGE Tapped outputs at 2 amp. 3. 4. 5. 6. 8, 9. 10, 12, 15, 18, 25 and 30 V £4.80. £4.60. 2 amp. 6. 8, 10. 12, 16, 18. 20, 24. 30, 36, 40 . $48,60 £ 7.00 .3 \mathrm{amp} 6,8,10,12,16,18,20,24,30$, 24. 30. 36. 40,48 . $60 £ 11.25$. $606 \mathrm{~V} 500 \mathrm{~mA} £ 1,9 \mathrm{~V} 1$ amp. $£ 1,12 \mathrm{~V} 300 \mathrm{~mA} . £ 1,12 \mathrm{~V} 500 \mathrm{~mA}, £ 1,12 \mathrm{~V} 750 \mathrm{~mA}$
 $1 / 2 \mathrm{amp} . £ 1,16 \mathrm{~V} .2 \mathrm{amp} . £ 2.20,0,5,8,10,16 \mathrm{~V}, 1 / 2$
amp. £1.95, $20 \mathrm{~V} 1 / 2 \mathrm{amp}, ~ £ 1.75,20 \mathrm{~V}$. 1 amp., £2.20. AUTO TRANSFORMERS, 115 V to 230 V or 230 V to 115 V 150 W £5; 259 W £6; 400W £7; 500W £8.
6 or 12 V outputs. $1 / / 2 \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}$. 6 or 12 V outputs. $1 / 2 \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}$.
CHARGER TRANSFORMERS $11 / 2 \mathrm{amp}$ E2.75; 4 amp . £4.60. $12 \mathrm{~V} .11 / 2 A$ HALF WAVE Selenıum Rectifier, $\mathbf{2 5 p}$.

GOODMANS 8-inch HI-FI BASS WOOFER
Rubber cone surgeund Frequency response $30-8000 \mathrm{c} / \mathrm{s}$
$£ 6.75$

	NEW ELECTROLYTIC CONDENSERS				
2/350Y	20 p	250/25V	20p	$50+50 / 300 \mathrm{~V}$	50 p
4/350Y	20p	500/25V	25p	30.000/25V	95 p
8/350Y	28 p	$100+100 / 275 Y$	65p	$32+32 / 250 \mathrm{~V}$	20p
16/350Y	35p	$150+200 / 2754$	70p	$32+32 / 4504$	epp
$32 / 500 \mathrm{~V}$	60p	$8+8 / 3504$	50p	$350+50 / 325 \mathrm{~V}$	85p
25/25V	15p	$8+16 / 350 \mathrm{~N}$	50p	$100+50+50 / 3504$	85p
50/50V	15p	$16+16 / 350 \mathrm{~V}$	600	$32+32+32 / 350 \mathrm{~V}$	65 p
100/25v	15p	$32+32 / 350 V$	600	4700/63V	${ }^{85}$

LOW VOLTAGE ELECTROLYTIC8
$2,458,16,25,30,50,100.200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$.
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p}$; 50 V 30 p .
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
$2000 \mathrm{mF} 6 \vee 25 \mathrm{p}$; 25 V 42p; 50 V 57p.
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 8 \mathrm{p}$. $5000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V}$ 85p; 50 V 95 p .
HORT WAVE 100DF arr spaced ganaable tuner, 95p. TRIMMERS 10pF, 30pF. 50pF. 5p. $100 \mathrm{pF}, 150 \mathrm{pF}, 15 \mathrm{p}$. CERAMIC, 1 pF to 001 mF . 5p. Silver Mica 2 to 5000 pF . 5 p . $15 \mathrm{p} ; 500 \mathrm{~V}-0001$ to $0.055 \mathrm{p} ; 0.110 \mathrm{p} ; 02513 \mathrm{p} ; 0.4728 \mathrm{p}$. MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUB-MIN MICRO SWITCH, 25p. Sinale pole change ove
TVIN GANG, " $0-0$ " 208pF + 176pF \& 2.00; 500pF standard 75p; $365+365+25+25 \mathrm{pF}$. Slow-motion drive 50 p 120 pF TWIN GANG, 50p; 365pF TWIN GANG, 50p. NEON PANEL INDICATORS $250 V$ AC/DC. Amber or red, 30p RIGH STABILITY $1 / 2 W$, $1 \mathrm{~W} .20 \% 2 \mathrm{p} ; 2 \mathrm{~W} .10 \mathrm{p} ; 10 \mathrm{n}$ to 10 M HIGH STABILITY. $1 / 2 \mathrm{~W} 2 \% 10 \mathrm{ohms}$ to 6 meg.. 12 p . WIRE-WOUND RESISTORS 5 watt. 10 watt. 15 watt, 10 tap to took 12p each
bRID OSCILLATOR COIL Valve type. 35 p .
HOGGE RECTIFIER 200 V PIV $1 / 2 \mathrm{amp} 50 \mathrm{p}$.
TOGGLE SWITCHES, S P 20p. DPST. 25p. D.PDT 30p

BAKER "BIG-SOUND" SPEAKERS. Post 50p each.

'Group 25'	'Group 35'	Group
12ın	12:n	50/15'
30w E8.95	$40 w \leq 10.50$	15 nn .
3 or 8 or 15 ohm	3 or 8 or 15 ohm	75 w ¢19.50

NEW MODEL BAKER LOUDSPEAKER 12 -Inch 60 WATT GROUP. 50/12 8 OR 15 OHM HIGH POWEA
 $30-16.000 \mathrm{CPS}$ MASSIVE CERAMIC MAG ALUMINIUM PRESENCE CENTRE DOME. Post 80p

TEAK VENEERED HI-FI SPEAKERS AND CABINETS For 12 in or 10 m . speaker $20 \times 13 \times 12 \mathrm{in}$. $£ 12.50$ Post 95 p For $13 \times 8 \mathrm{in}$, or 8 in , speakar $16 \times 10 \times 7 \mathrm{nn}$. $£ 6.95$ Post $\frac{75 \mathrm{p}}{} \mathrm{p}$. Eor $8 \times 5 \mathrm{in}$. speaker $12 \times 8 \times 6 \mathrm{in}$.
LOUDSPEAKER CABBNET WADDING $18 \mathrm{E4.95}$ Post 50 p
wide. 20 f .
R.C.S. 100 watt

VALVE
AMPLIFIER CHASSIS

Four inputs Four way mixing, master volume, treble and bass controts. Suits all speakers This professionah quality amplifier chassis is suitable for all groups. disco. PA, where high quality putput. Produced by demand for a quality valve amplitier. Send for leaflet.

SPEAKER COVERING MATERIALS. Samples Large S A.E.
Horn Tweeters $2.16 \mathrm{kc} / \mathrm{s}$. 1 DW 8 ohm or $15 \mathrm{ohm} £ 3.60$ De Luxe Horn Tweeters $3.18 \mathrm{k} / \mathrm{cs}$. 30W 8 ohm $£ 7.50$ CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm £1.90. 3 -way $950 \mathrm{cps} / 3000 \mathrm{cps}$, £2. 20 .
LOUDSPEAKERS P.M. 3 OHMS. 7×4 in E1.50; $61 / 21 \mathrm{n}$ £1.80; $8 \times 5 \mathrm{in}$, $£ 1.90 ; 8 \mathrm{in}$., $£ 1.95$.
 $25 \mathrm{ohm}, 21 / 2 \mathrm{n}$. dia, 3 nn dıa. $5 \times 3 \mathrm{in}, 8 \mathrm{ohm}, 21 / 2 \mathrm{nn} \times 3 \mathrm{in}$. hm . $21 / 2 \mathrm{in}, 2 \% \mathrm{in}$., $31 / 2 \mathrm{in}$. 5 in dia $£ 1.25$ each.
PHILIPS LOUDSPEAK
coramic magnet $\{1.95$
CHARD ALLAN TWIN CONE LOUDSPEAKERS
8in. diameter $4 W € 2.50$. 10 in . diameter $5 \mathrm{~W} £ 2.95$;
VALVE OUTPUT TRANS. 40p; MIKE TRANS. $50 \uparrow, 40 p$. *Aike trans. mu metal 1001 E1. 25.
oudspeaker Volume Contral 15 ohms 10 W with one inch Ion threaded bush tor wood penel mounting. $1 / 4 \mathrm{in}$. Spindle. 65 p

SAKER 100 WATT

ALL PURPOSE

AMPLIFIER
All purpose transistorised.
Ideal for Groups, Disco and P.A.
4 inputs speech and music. 4 way
mixing. Output 8 / 5 ohm. a.e. M
Seperate treble and bass cortrols. E65 Carr
Guaranteed. Details S.A.E. 1.00 each NEW MODEL MAOR-50 wett, 4 input. 2 vol. $£ 49.95$ TOO WATT DISCO AMPLIFIER CHASSIS

 Push-Pull Ready 8 uilt, with volume. Tréble $£ 3.95$
and bass controls. i8 volt d.c. Mains Power Pack $£ 3.45$ COAXIAL PLÚG 10p. PANEL SOCKETS 10p. LINE 18 p. UALANCED TNIN RIBBON EEEDER 300 ohm 7 . y JACK SOCKET Sed. open-eireuir 20p, closed circuit 25p;
Chrom Leed-8ocket 45p. Mono or Stereo.
Phono Pluge 6p. Phono Socket 8p.
JACK PLUC'S Stid. Chrome 30p. PIastic $25 p$.
DIN 80CKETS FREE 3-pin 25p; 5-pin 25p. DIN PLUG8 3 -pin 25p; 5-pin 25p. VALVE HOLDERS, $10 p$; CAN8, $10 p$
R.C.S. SOUND TO LIGHT KIT

Kit of parts to build a 3 channel sound to light
TEasy to build. Full instructions supplied, cabinet. £3
As featured in December Practical Wireless.
E.M.I. TAPE MOTORS. Z 40 V a.c. 1.200 rpm. 4 pole 185 mA . Spindte 0.187×0.75
Sue $31 / 4 \times 21 / 2 \times 21 / 4 \mathrm{n}$ £2. Post 40 p Sue $31 / 4 \times 21 / 2 \times 21 / 4 \mathrm{n}$ £2. Post 40 p
120 V Model, f 1

MULTIMETER F4313 Made in USSR

SENSItivity
1200 V DC range: $10.000 \Omega / \mathrm{V}$ Other DC ranges: $20,000 \Omega / \mathrm{V}$ 1200 AC range. $6,000 \Omega / \mathrm{V}$ $600 \mathrm{~V} A C$ range $15,000 \Omega / \mathrm{V}$ 300 VAC range: $15,000 \Omega / \mathrm{V}$ Other $A C$ ranges: $20,000 \Omega / \mathrm{V}$
AC/DC current ranges 60-120-600 $\mathrm{\mu A}-3-12-300 \mathrm{~mA}-1$ 2-6A $A C / D C$ voltage ranges $60-300 \mathrm{mV} \cdot 1.2-6-30-120-300-600 \cdot 1200 \mathrm{~V}$ Resistance ranges $300 \Omega-10-100-1000 \mathrm{~K}$
Accuracy: 1.5% DC: 2.5% AC (of full scale deflection)
Mirror scale and knife edge pointer. Taut suspension of movement. Transistor amplifier is used for all AC ranges thus achieving a common linear scale for both AC and $D C$ ranges.
Meter is fully protected for a transistorised cut-out relay circuit. Range selection is achieved by clearly marked pano keys. Power source: 51.5 V dry cells. Dimensions: $95 \times 225 \times 120 \mathrm{~mm}$

PRICE $£ 37.50$ plus VAT
Packaging and postage $£ 1.10$

OSCILLOSCOPE CI-5
 Made in USSR

Extremely simple and easy to use single beam oscilloscope. Well proved design based on standard octal valves makes servicing and maintenance straightforward and inexpensive. Because of its bandwidth of 10 MHz the instrument is suitable for general electronic applications and educational purposes where a sophisticated instrument would be both too expensive and delicate. 3 -in. tube giving a 50 $\times 50 \mathrm{~mm}$ clear display. Amplitude and time base calibrations Sensitivity $30 \mathrm{~mm} / \mathrm{v}$ max. Triggered and fre-running time base suiable for displaving pulses from 0.1 sec . 3 m sec A.C. mains popation

Packing and carriage (U.K. only E2.50)

FULLY GUARANTEED											
0 A 2	0.45	6SN7GT	0.55					KT66	3.40	P1508	0.90
0 A 3	0.55	12aT7	0.45					KT88	3.65	PL509	1.30
082	0.45	12047	0.38					PC86	0.65	P1802	1.40
00_{3}	0.45	120x7	0.38					PC88	0.65	PY31	0.50
003	0.45	12844	0.80			1		PC900	0.55	PY33	0.63
5R46Y	1.00	128a6	0.60					PCC884	0.45	PY81	0.45
5046	0.55	12вЕб	0.60				2)	PCC85	0.45	PY82	0.45
524G	0.55	$128 \mathrm{H7}$	0.60					PCC888	0.65	PY88	0.50
5 Y 3 CT	0.65	12x4	0.50			ALV		PCC89	0.55	pyscon	1.10
6 6B4	0.50	19 AO 5	0.75					PCC189	0.65	PY800	0.50
6AN5	0.65	30A5	0.70	ECC83	0.38	EF86	0.40	PC580	0.40	$\pi 21$	5.90
6AK5	0.45	35A3	0.70	ECC84	0.35	EF183	0.35	PGF82	0.40	T22	5.90
6AL5	0.30	35A5	0.80	ECC85	0.45	EF184	0.40	PGF86	0.65	WABC80	0.50
6A05	0.50	3585	0.70	ECCA8	1.25	EFL200	0.75	PCF200	0.80	UAV 42	0.70
6 6T6	0.60	35C5	0.70	ECC88	0.60	EL34	0.70	PCF201	0.85	URCAI	0.50
6, \%6	0.50	35A5	0.80	ECC89	0.60	E136	0.60	PCF801	0.55	UBCB	0.50
6AWBA	0.75	35WA	0.60	EEC189	0.80	EL41	0.80	PCFB02	0.55	UBF80	0.50
6 6all ${ }^{6}$	0.40	50as	1.00	ECP80	0.45	El81	0.60	PCH200	0.75	Uefbg	0.50
6ваб	0.38	5085	0.85	ECFPB2	0.45	ELB2	0.60	PCLI81	0.55	UCC88	0.75
68E6	0.45	50C5	0.70	ECF86	0.75	E183	0.60	PC282	0.40	UCC85	0.50
68Н6	0.75	5763	1.50	ECFP801	0.75	El84	0.35	PCL83	0.70	UCF80	0.75
68.1	0.75	EABC80	0.40	ECFPO2	0.75	Elso	0.50	PCLB4	0.50	UCH42	0.80
6BM6	0.80	EAC9I	0.55	ECH42	0.85	El95	0.70	PCL85	0.60	UCH8I	0.50
6BM8	0.65	Eaf42	0.70	ECH81	0.50	El500	0.80	PCL86	0.60	UCL82	0.40
5826	0.55	EAS801	0.65	ECHR3	0.50	EM80	0.55	PCL200	0.75	UCL83	0.70
6821	0.70	ebc41	0.75	ECHB4	0.50	Embl	0.60	P0500	1.70	UF41	0.75
6 CA	0.40	EBC81	0.50	ECLBO	0.40	EM84	0.40	PFL200	0.70	UF42	0.75
${ }_{6 C B 6}$	0.50	EbF80	0.50	EL281	0.75	EY51	0.45	PL35	0.40	UF80	0.40
${ }_{6 E A B}$	0.75	EBF83	0.50	ECL 82	0.42	EY51	0.45	PL36	0.60	UF85	0.50
${ }_{6}^{6} \mathbf{6} 56$	0.70	EBF89	0.40	ECL83	0.75	EY87	0.50	PL38	0.65	uf89	0.50
G606	0.65	EC86	0.75	ECL84	0.60	EY88	0.50	PLibl	0.55	UL41	0.70
6.4	0.75	EC88	0.75	ECL 85	0.65	EZ40	0.60	PL82	0.50	UL84	0.50
6.J5GT	0.55	EC91	2.60	ECL86	0.55	E241	0.75	PL83	0.50	11741	0.55
G.J5	0.35	ECCAO	0.80	ECL1 1800	4.50	E280	0.30	Pli84	0.50	U442	0.55
61667	0.60	ECC81	0.45	EF80	0.35	E281	0.35	Pl95	0.70	UY82	0.60
6SL7GT	0.55	ECC82	0.38	EF85	0.45	6734	0.75	PL504	0.90	UY85	0.50

HIGH GAIN DARLINGTON PAIRS

Plastic 3-Lead Case Darlington Pairs. Typical current gain $30,000 \mathrm{Max}$ collector voltage VCBO 40V Max collector current 400 mA . ICBO-10mA. BC516 PNP
BC517 NPN

TRANSISTORS FOR T.V.

R20008B	$\mathbf{0 . 9 5}$
R2010B	$\mathbf{1 . 6 5}$
BU 126	$\mathbf{1 . 5 5}$
BU 133	$\mathbf{1 . 5 5}$
BU 208	$\mathbf{2 . 0 0}$

Z \& I AERO SERVICES LTD.
Head Office: 44A WESTBOURNE GROVE, LONDON W2 5SF Tel.: 7275641

Retail Branch:
85 Tottenham Court Road London W1. Tel: 5808403

DISPLAYS

二 $-\infty \quad \square \quad \square \square$
 Bargains in Semi-Conductors, components, modules \& equipment.

B-P-P Packs

Originated in 1959 by the Companys managing director, his were the first semi-conductor and component packs to be marketed in this country. and indeed, the company's name grew nut of "British Industrial Pre-Packed Components". Today. Bi-Pre-Pak continues to occupy a position of pre-eminence in the
supply of packs as well as a vastly extended range of supply of packs es well as a vastly extended range of
products detailed in our latest 24 -page A. 4 size free catalogue. Send $10 p$ stamped large addressed catalogue. Send 10p stamped harge addressed IT'S ALL IN OUR FREE CATALOGUE

Gomponent Packs

YOUR SUPPLIERS FOR
 Switches. Knobs. Ex.G.POO items Aluminum Boxes

Semi-Gonduthors

- TESTED AND GUARANTEED PACKS

- Singles

BRIDGE RECTIFIERS Plastic encapsu lated

SIGNAL GENERATOR

bobs ($\rho^{\prime} 040$)								

POCKET SIGNAL INJECTOR
TVI
tape recorders eic Takes one HP7 battery fadio sers amplifiers
$£ 2.00 *$
EX-GPO 5" SIDECUTTERS
EX.G.P.O $\mathbf{6}^{\prime \prime}$ LONG NOSE PLIERS
mains thansformers

MT6	Gvo 0 6v 100 ma	E1 22*
MT12	12.012 v 50 mA	f1.22**
SST9/1	gv lamp	¢1.67*******
SST12'1	12v lamo	¢2.05**
SST18/1	tav lamo	£2.50*
SS125/2	25v 2 amo	¢300**
SST30/2	30 v 2 mp	64.25*
SST35/4	95v 4 amp	¢5.50*

pe edge connectors

Type	Sizes	Pi	
SSEC 6 -way	1/n	156 "	32p
SSEC 10	11/4	$156^{\prime \prime}$	50 p
SSEC 12	${ }^{2}$	$156^{\prime \prime}$	60 p
SSEC 16	$21 / 2$	$156{ }^{\prime \prime}$	75 p
SSEC 18	3 "	$156{ }^{\prime \prime}$	$85 p$
SSEC 22	$31 / 2$	$156{ }^{\prime \prime}$	1.00

UHF TUNER UNITS
or use as TV sound recerver ivith data
BOOKS
we carry very large stocks books by Babant \& Bernard Publishers, by Newnes and Buterworth as well as reference books from the Common ctalogue

MONEY SAVER FOR CAR OWNERS

 enctosed strong mearal case very easy to fil and instan With full

KIT £7.95* READY-BUILT £10.50*
X-44 R.F. POCKET SIZE
CROSS HATCH GENERATOR
 and liame generator and synchio pulse Pre-set adjust for R.F ouipul actity FOR COLOUR AND MONO (P / P add 35 p)
$£ 27.50$ - Buit \& \star SOME SPECIAL OFFERS

C unit for negat ve earth with dara	5
ransistorised vers on tor positive eath	E1.75

On PCB5 unsorted uselul for experimenting eic Various kincs

- WHEN ORDERING

Write your own name and address Check that yourr order is cour Check that your order is correct
descriptoon. quantity and price

Sort t forger Vat at $12 \% / 2$ th at rotal value of order unless otherwise marked* or

MARE SURE YOU GET OUR NAME AND ADDRESS RIGHT WHEN ORDERING

TERMS OF BUSINES
VAT at $12 \frac{1}{2} \%$ must be added to total value of order except for items marked \star or $(8 \%$ when VAT is to be added at 8% No VAT on overseas orders POST \& PACKING add 30 for UK orders except where shown otherwise Mirimum mall order acceptable - $\ddagger 1$ Subject to alteration without notice AVAILABILITY All items are available at fime of going to press when every effort is made to ensure correctness of information Cash with order please Cheques or money orders should be crossed and made payable to

To: BI-PRE-PAK, 220/222 WEST RD WESTCLIFF-ON-SEA, ESSEX SSO 9DF
Please send
for which I enclose
NAME
222224 WEST ROAD,WESTCLIFF-ON-SEA, ESSEX SSO SDF. TELEPHONE: SOUTHEND (0702) 46344.

ADDRESS

Bahrain Singapore Thailand Iceland Brazil Sweden Germany Iran Jamaica St. Kitts Tunisia

POWERTRAN ELECTRONICS HI-FI NEWS 75W /CHANNEL AMPLIFIER

By J. L. Linsley Hood
Pack1. Fibreglass printed-circuit board for power amp E0.852. Set of resistors. capacitors. pre-sels tor powerSel ol semiconductors for gower amp.
Set of semiconduclors for power as
. Pair of 2 drilled. finped hast sinks
5. Fibrepisss printed-circuit board for pre-amp.
Set of low nise resistors. capacitors, pre-sets lor
pro-amp . E2.70
Sel of low noise. high gain semiconductors lar pre-amp
Sel of polentioneters finctuding mains switch] $£ 2.40$
Sot of 4 pushbulton switches. rotary mode
witch. $E 3.70$
10. Toroidal transtormer complete with magnatic

Pack Price I. Fibreglass printed.circuit board lor power supply. E0.65 sami-conductors for power supply. $\mathbf{E 3 . 5 0}$ 3. Set of miscellaneous parts including OIM skis, maina input skt. tuse hofder. inter-connecting cable. control . E4.25 4. Set of metawork parts including silk screen printed azacia panel and all brackets. fixiap parts. aic. $\mathbf{E 6 . 3 0}$. Handtook ….................... ≤ 0.30

2 each of packs 1.7 inclusive are required tor complete slereo system. Tolal cost of individually purchased
packs In Hr-FI News there was published by Mr Linsley-Hood a series of four articles (November, 1972-February, 1973) and a subsequent follow-up article (April. 1974) on a design for an amplifier of exceptional periormance which has as its principal feature an ability to supply from a whist matitaining distortion at less than 0.01% even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system. namely the equalization stage and tone control stage. positions where mos conventional designs run out of gain at the extremes of the frequency spectrum Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Torordal transformer

FREE
 TEAK CASE WITH FULL KITS
 simacon $£ 62.40$

WIRELESS WORLD FM TUNER

Designed in response to demand for a tuner to complement the world-wide acclaimed Linsley Hood 75W Amplifier this kit provides the perfect match The Wireless World published original circuit has been developed further for inclusion imto this outstanding slimline unit and eatures a pre-aligned front tuning. which may be controlied either continuously or by push button pre-selection. Frequencies are indicated by a frequency meter and sliding LED indicators, attached to each channel selector pre-set The PLL stereo decoder incorporates active filters for "birdy" suppression and power is supplied via a toroidal transformer and integrated regulator for long term stability metal oxide resistors are used throughout

STOP PRESS !

LINSLEY-HOOD CASSETTE DECK

Goldring-Lenco mechanism, as specified
£19.10
Stereo P.C B. (accommodates 2 rep. amps. 2 rec amps. 2 meter amps bias/erase osc, relay). $7.3^{\prime \prime} \times 37^{\prime \prime}$ £3.35
Stereo set of capacitors, M O. resistors, potentiometers for above
Stereo set of semiconductors for above
E8.90
FURTHER DETAILS in our FREE LIST

Wireless World Amplifier Designs

Full kits are not avalable for these projects but component packs and PCBs are stocked for the highly regarded Bailey and 20W class $A B$ Linsley Hood designs, together with an efficient regulated power supply of our own design Suitable for driving these amplifiers is inputs, scratch and rumble filters and wide range tone controls which may be either rotary of slider operating
For those intending to get the best out of their speakers. we also offer an active filter system described by 0 C Read, which splits the output of each channel from the pre-amplifier int three channels each of which is ted to the appropriate speaker by is own power amplifier The Read/Texas 20W. or any of our other kits are suitable for these for tape systems a se of three PCBs have been prepared for the integrated cwised. high performance stere Stuart design Detaik of component packs are in our free list

30W Barley Amplifier
BAIL Pk $1 \mathrm{~F} /$ Glass PCB
BAIL Pk 1 F/Glass PCB
BAIL Pk. 2 Resistors. Capacitors. Potentiometer set
BAIL Pk 3 Semiconductor set
BAIL Pk 3 Semiconductor se
$20 W$ Linsley Hood Class AB
LHAB Pk 1 F/Glass PCB
LHAB Pk 2 Resistor. Capacitor. Potentiometer sel
LHAB Pk 3 Semiconductor set
Regulated Power Supply
60VS Pk 1 F/Glass PCB
GOVS Pk 1 F/Glass PCB
60VS Pk 2 Resistor, Capacitor set
60VS Pk 2 Resistor, Capacitor se
G0VS Pk 3 Semiconductor set
60VS Pk 6A Toroldal transformer (for use with Batley)
GOVS Pk 6B Toroidal transformer (for use with 20 W LH
Barley Burrows Stereo Pre-Amp
BBPA Pk 1 F/Glass PCB
BBPA Pk 2 Resistor, capacitor semiconductor se
BBPA Pk 3R Rotary Potentıometer set
BBPA Pk 3S Slider Potentometer set with knobs

Further details of above and additional
packs given in our FREE LIST
£1.00
$£ 4.70$
£ 1.05
£ 3.20
£ 0.85
$£ 0.85$
$£ 1.95$
£1.95
$£ 3.10$
$£ 7.95$
£2.35
C6.10
E 2.40
E2.70

PRICE STABILITY!
Order with confidence! Irrespective of any price changes we will honour all prices in this advertisement for two months from issue date provided that this advertisement is quoted with your order. E\&OE VAT rate changes excluded. All components are brand new first grade full specification devices All resistors (except where stated) are low noise carbon film types. All printed circuit boards are fibre-glass, drilled, roller tinned and supplied with circuit diagrams and construction layouts
U.K. Orders. Subject to $121 / 2 \%$ Surcharge for VAT. Carriage free MAIL ORDER ONLY (or at current rate if changed)
Securicor Delivery For this optional service (Mainland only) add $£ 2.50$ VAT inc. per kit
Overseas Orders No VAT. Postage charged at actual cost plus 50p packing and handling

Hong Kong Jersey Australia St. Lucia India Barbados Antigua Jordan Spain Israel Mauritius S_{t}

AUDIO KIT SUPPLIERS TO THE WORLD

$\mathbf{T} \mathbf{2 0 + 2 0}$ and our new $\mathbf{T} \mathbf{3 0 + 3 0}$ 20W, 30W AMPLIFIERS

Designed by Texas engineers and described in Practical Wireless the Texan was an immediate success Now developed further in our laboratones to include a Toroidal transtormer and additional improvements, the slimline T20 +20 delivers 20 W per channel of true H_{1}-Fi at exceptionally low cost The design is based on a single F/Glass PCB and features all the normal facilities found on quality amplifiers, including scratch and rumble filters. adaptable input sedector and head phones socket. In a follow up article in Practical Wireless further modifications were suggested and these have been incorporated into the T30 +30 These include RF interference filters and a tape monitor facility
Power output of this new model is 30 W per channel

Pack
I Sel of low noise ressistors
2. Set of small capacitors
3. Sol of pawer supply capacilors
4. Sol of misedizanous parls.
5. Sel of pots. mams. P.8. switch
6. Sel of pots, selector swith h. .

120 130 Pack
Pack
8. Torcidal transtormer -240 V prim. c.s. screen

Sy tol enalwerk livie.....
II. Set of cables. maing tad
12. Mandwodk firse with complete exti),
13 Teak cabinel $15.4^{\prime \prime} \times 6.7^{\prime \prime} \times 2.8^{\prime \prime}$
$120 \quad 130$
$4.95 \quad 6.80$
$\begin{array}{ll}2.50 & 2.90 \\ 4.20 & 4.80\end{array}$
$\begin{array}{ll}4.20 & 4.80 \\ 8.40 & 0.40\end{array}$
$\begin{array}{ll}0.40 & 0.40 \\ 0.25 & 0.25\end{array}$
$\begin{array}{ll}0.25 & 0.25 \\ 4.50 & 4.50\end{array}$

FREE
TEAK CASE WITH FULL KITS
T20+20
Kit price ony $£ 28.25$ T30 30 KIT PRICE only $£ 32.95$

2 NEW TUNERS!

WVW SFMT II
Following the success of our Wireless World FM Tuner kit we are now pleased to introduce our new cost reduced model, destgned to complement the T20 and T30 amplifiers The frequency meter of the more advanced model has been omitted and the mechanics simplified. however the circuitry is identical and this new kit offers most exceptional vatue for money Facilties included are switchable afc, adjustable, switchable muting, channel selection by slider or readily adjustabla pre-set push-button controls and LED tuning indication Individual pack prices in

KIT PRICE
$£ 47.40$

POWERTRAN SFMT
This easy to construct puner using our own circuit design includes a pre-aligned front end modute, PLL stereo decoder, adjustable, switchable muting. Switchable afc and push button channel selection As with all our full kits, all components down to the last nut and bolt are supplied
together with full constructional details

KIT PRICE
£32.60

With the precision of the Jackson G10 Gearbox, you get ten turns of input equalling one effective turn of output. This makes the G10 ideal for decimal presentation for arralog control. The Gear Box itself is packaged within 70 mm by 35 mm by 19 mm . The output shaft drive torque is greater than 700 gm cms . Input shaft diameters are 6 mm . All the gears are fully anti-backlash loaded. The Jackson G10, the compact, versatile gearbox.
All Jackson Products are backed by 50 years' experience in the communications field. Highly skilled men, and Jackson Brothers' good name.

Write for further information to:
JACKSON BROTHERS (LONDON) LIMITED
Kingsway, Waddon, Croydon CR9 4DG Tel: 01-681 2754/7 Telex 946849 U.S. Office: Swedgal Electronics Inc., 258 Broadway, New York, N.Y. 10007
B.S. 9000 Approved. DEF STAN 05-21.

Join the Digital Revolution

Understand the latest

 developments in calculators, computers, watches, telephones, television, automotive instrumentation . . .Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 8 \frac{1}{4^{\prime \prime}}$ and contaıns 60 pages packed with information. diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, 10 memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems.

$£ 6.20$
plus 80p packing and surtace post anywhere in the world.
Payments may be made in foreign currencies.
Quantity discounts available on request VAT zero rated.

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics.
In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits 10 Carry Out Logical Functions
4. Flipflops and Registers
$£ 4.20$
plus $80 p$ P. \& P.
Offer Order both courses for the bargain price $£ 9.70$, plus 80p P. \& P.

Designer Manager Enthusiast Scientist Engineer Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be. refunded in full, no questions asked.

[^3]

We stock all the parts for this brilliantly designed synthesiser, including all the PCB's, metalwork and a drilled and printed front panel, giving a superb professional finish. Opinions of authority agree the ETI International Synthesiser is technically superior to most ol today's madels. Complete constructio i details in our booklet now aveilable price $£ 1.5$]. or send SAE for specification.

BUILD IT YOURSELF... IN STAGES

Gel started with a 49 note instrument features tremulant and reverberation. Ideal to learn on. Leaflet MES 51. Price $15 p$ gives full details to build this complete instrument.
Extend the range of MES 51 by adding anather keytoard and several new tone colours. Leaflet MES 52. Price 15p also shows how to use 61 note keyboards.

Fully controilable attack and delay controls fnormally found only on the most expensive organs|. up to seven footages on each keyboard, up to 70 controls including drawbars, and a 13 note pedalloard. make up the additions described in the step-by-step 32 page instruction leaflet MES 53. Price 35p.

A really zuperior high quali:y stereo graphic equalize- featuring 9 octaves per channel. We stock all the parts [except woodwork) including the metalwork drilled and printed. 15 p arings you : reprint of the article.

This is a fully constructed and tested electronic clock nodule as illustrated. Data sheet supplied. Simple to cont ect to alarm and yaur battery/mains radio. Smart case available shortly. Data sheet available separately. Please send SAE.

* Brigt 4 Digit 0.5" Lisp ay
* Flasting Colon (1 Hz)
* Switch for Display Secends
* Alarm Sel Indicator
* Alarm Set Indic
* P.M. Indicator

SIMPLE ALARM KIT - £9.38 ALARM CLOCK KIT - £10.99 ALARM CLOCK \& RADDO CONTOLLER KIT-£11.51 SMART PLASTIC CASE with fully punched crassis - £2.49 Please send SAE for Our Clock data smeet

Get our fabulous

NEW197T/78 CATALOGUE

 PUBLICATION DATE OCT.28. 1976 ON APPROVAL> All new Completely re-written Hundreds of new lines
> Lors of exciting new projects to build - PRICE 50 p
> SEND NO MONEY NOW Overseas send 8 Internationat reply coupons.
JOIN OUR MAILING LIST NOW
Published every two months our
full details of our latest guaranteed
Send just 30 p towards cost of postage an
publishecs (A 5p voucher is sent w theac

15-240 Watts!

HY5
Preamplifier

HY30
15 Watts into 8Ω
and thermal protection The kit consists of C neatsink PC board 4 resistors. 6 capacitors mounting kit together vith easy to follow construction and operating instructions This amplitier is idealty suted to the beginner in audio who wishes to use the most up to date technology avartable FEATURES: Complete Kit - Low Distortion - Short Open and Thermal Protection - Easy io Buld APPLICATIONS: Jpdating audio equipment - Guitar practice amphiter - Test amptifier -audio SPECIFICATIONS
OUTPUF POWER 15 W RM S into 8! DISTORTION 0 I 1% al 1 bW
NPUT SENSITIVITY 5OOmV FREQUENCY RESPONSE $10 \mathrm{~Hz} .16 \mathrm{kHz}-36 \mathrm{~B}$ supply voltage - 18 V
rice $\mathbf{4 . 7 5}+59 \mathrm{p}$ VAT $\mathbf{P} 8_{1}$ P free.
HY50
25 Watts into 8Ω
negrat heatsink together withegration appioach to power amplifier design The amplitier teatures an the amplifier has been efined the simplicity of no external components During the past three years Fidelity modules in the World
FEATURES: LOW Distortion
APPLICATIONS: Medum Power Hi-Fi systems - Low power disco - Guiar amplifier
SPECIFICATIONS. INP Power Hi-Fi systems
SPECIFICATIONS: INPUT SENSITIVITY 500mV
OUTPUT POWER 25 W RMS IMIO 8!? IOAD IMPEUANCE $4.16!$! DISTORTION 004% at 25 W at
SIGNAL NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz} \cdot 45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE - 25V StZE 1055025 mm
Price $\mathbf{£ 6} \mathbf{2 0}+77 \mathrm{p}$ VAT PRP free.
HY120
60 Watts into 8Ω equiren Five connections - No external component SPECIFICATIONS INPUT SENSITIVITY 500nIV SIGNAL NOISE RATIG 90dB FREOUENCY RESPONSE 10 Hz .45 kHz --30B SUPPLY VOLTAGE SIZE 1145085 mm
Price £14.40 + £1.16 VAT P\&P free.
HY200
120 Watts into 8Ω
he HY 200 now improved 10 give an output of 120 Watts has been designed to FEST.TURES: Thermal shutdown - Very low distortion - Load line protection - Integral heatsink No external components APPLICATIONS: HiFI - Disco - Montor - Power slave - Indusirial -- Public Addeess SPECIFICATIONS INPUT SENSITIVITY 500 mV
OUTPUT POWER 120 W RMS int $8!$ LOAD IMPEDANCE $4-16!$ DISTORTION 005% at 100 W at SIGNAL NOISE RATIO 96 dB FREOUENCY RESPONSE $10 \mathrm{H}_{2}-45 \mathrm{kHz}$ - 3 dB SUPPLY VOLTAGE SIZE 11410085 mm
Price $£ 21.20+£ 1.70$ VAT P\&P free
HY400
240 Watts into 4Ω
The HY400 is ILP 5 Btg Oaddy of the range producing 240 W into 4 !? th has been designed to levets a cooling fan is recommended The amplifer inctudes all the quatities of the rest of the tamily to lead the markel as a true high power hi-hdelity power module
FEATURES: Thermal shutdown -- Very low distortion
APPLICATIONS: Public address - Disco - Power slave - Industria
SPECIFICATIONS
OUTPUT POWER 24OW RMS Into 4!) LOAD IMPEDANCE 4.16:) DISTORTION 0 1\% at 24OW al SIGNAL NOISE RATIO 94 dB FREQUENCY RESPONSE 10 Hz .45 kHz - 3dB SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price E 29.25 + £2.34 VAT P\& P free
POWER SUPPLIES

PSU 70 sulable tor two tht 120 S E 12.50 plus : 1 OO VAT P P Pree
PSU 180 sutable lor two HY 700 s or one HY 400 \& 27.00 plus + 168 VAT P P tree

Available June'76

two years' guarantee on all of our products
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address
Signature

P. F. RALFE
 10 CHAPEL ST. LONDON NWI Phone 01-723 8753

SIGNAL GENERATORS

MARCONI TFBOID/IS. $10-480 \mathrm{mHz}$ P.O.A. MARCONI TFBOIB/2S. . $10-480 \mathrm{mHz}$ £225. HGN MS3/U. 9.7-11.9 and 77.109 mHz . AM /FM ADVANCE SG63D. AM/FM $7.5-230 \mathrm{mHz} £ 125$. RACAL/AIRMEC $201 \mathrm{~A} .30 \mathrm{kHz}-30 \mathrm{mHz}$. As new. P.O.A. ADVANCE SG2I VHF Square-wave generator $9 \mathrm{kHz}-100 \mathrm{mHz} .625$.

OSCILLOSCOPES

SOLÄRTRON CD 1400 DC-15m
COSSOR CDU110. DC-80m
TEKTRONIX 545A with CA unit. DC-30mHZ. Price
TEKTRONIX $531 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in
TEKTRONIX $535 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in
TEKTRONIX 545 B DC -30 mHz with 'CA' plug-in
TEKTRON IX 585 A . DC -80 mHz with type 82 plug-in
TEKTRONIX 654B. Storage oscilloscope
TEKTRONIX 502. 200uV. Sens. X-Y
TEKTRONIX C27 Polaroid Camera. Series 125 with 560 series adapter

CO-AXIAL CHANGE OVER RELAYS. Terminated in $\mathcal{N}^{- \text {-type }}$
sockets $(3$ off $)$ Suitable for frequencies up to 1 GHz 48 .V.D.C coll. Plugs avalable at $\mathbf{5 0}$ p each Retay only $\mathbf{8 5 . 5 0}$ each.
PRINTED CIRCUIT MOTORS. Manufactured in U.S by Photocircuits Corp. 24 . These are quality made. high precision motors oftered at a fraction of list price Only $£ 8.50$ each
"WEE MEGGERS'. 250 V Insulation Testers. Good working condition

ADVANCE type 63A AM/FM R.F. Signal generators. 75.230 mHz . Deviation 0.22 .5 calibrator. scope output $£ 75.00$.

MARCONI TF995A2/M AM/FM R.F. SIGNAL GENERATORS $1.5-220 \mathrm{mHz} .0-100 \mathrm{kHz}$ Deviation $1 \mu \mathrm{~V}-100 \mathrm{mV}$ output. Sold in excellent condition. P.O.A.

METRIX 210 WOBBULLATORS.
0.25 mHz . Sweep width 0.5 . 20 mHz 0.25 mHz . Sweep width 0.5 .20 mHz Output 100 mV attenuable in steps of 10 to 10 uV . Last few of these lett at
only $£ 15.00$ each to callers only.
E. M.I. oscilloscopes model WM 16 with type $7 / 1$ W.B.A. plug-in unit. Suptrolley. £125.00.

20-way BPO Jack strips to accept 316 type Jack plugs. Also quantit 316 type Jack plugs. Also quantity
of 316 plugs available. All good condition.
Centrifugat blowers by WOODS 8 inch snait type Outlet $23 / 4 \times 2$ in 24 V DC
$28 A \quad 2400$ r.p.m Grey stove firish all brand new. Price is $£ 10.50+$ carriage.

GENTS/FRIEDLAND fire alarm GENTS/FRIEDLAND fire alarm dc All in as new condition and tested before despatch Sizes $6 / 8 / 12$ inch Prices $£ 4.80$. $£ 5.20$ and $£ 6.50$ resp.
COMPUTER -PERIPHERALS. Tape punches. 8 hole by Westrex and other well known manuiacturers Tape readers by Ellot All virtually brand
new. Prices are better than one half the maker's Write or phone for quotation

An exceptional buy enables us to offer stabilised and regulated power supplies by APT at a very cheap price 16.24 v dc @ 10 Amps , and $8 \cdot 10 \mathrm{v}$ dc @ A Both supplies are extremely stable with low ripple voltage Price each £18.50 + carriage.

MISCELLANEOUS TEST EQUIPMENT

MARCONI TF1400S double pulse generator with TM6600/S secondary pulse unit. $£ 105$.
MARCONI TF791D deviation meter. $4-1024 \mathrm{mHz} .0-100 \mathrm{kHz}$ deviation MARCONI 455E Wave Analyser £120.
MARCONI TF 2600 Valve Voltmeter $1 \mathrm{mV}-300 \mathrm{~V}$. Excellent. $£ 75$. ROHDE \& SCHWARZ USVD calıbrated receıver $280-940 \mathrm{mHz}(4600 \mathrm{mHz})$ LEVELLTG200 DM, RC Oscillator, c/w case, $£ 65$.
ROHDE \& SCHWARZ URV milli-voltmeter BN 10913 (late type) $1 \mathrm{mV}-10 \mathrm{~V}$. With ' T ' type insertion unit, free probe and attenuator heads. $11 \mathrm{kHz}-1.600 \mathrm{mHz}$ £175
COSSOR 1453 True RMS milli-voltmeter. Excellent. $£ 75$.
AIRMEC TYPE 210 modulation meter. Excellent condition
ROHDE \& SCHWARZ 'SCR'V H.F. Signal Generator 1000.1900 mHz . MAMCONI type TFg36 Impedance Bridge. £85.00.
GERTCH Phase Angle V. Meters. Range $1 \mathrm{mV}-300 \mathrm{~V}$, in 12 ranges.
SOLARTRON oscillator type CO $546.25 \overline{\mathrm{H} z}-500 \mathrm{kHz} . £ 30.00$.
GAMBRELL Precision $\dot{4}$ Decade Resistance Box. 1-11. 110 ohins £24.50.
MARCONI TF329G Q-Meter £95.

PLEASE ADD 8% V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

TRANSFORMERS

ALL EX-STOCK - SAME-DAY DESPATCH
MAINS ISOLATING VAT $8 \% 12$ and/or 24-VOLT

PRI 120/240V sec 120/240V Centre Tapped and Screened

Ref.	$\begin{aligned} & \text { VA } \\ & \text { (Watts) } \end{aligned}$	£	Pe
07°	20	C3. 10	5
149	60	4.69	
150	100	5.33	8
151	200	8.54	11
152	250	10.32	14
153	350	12.47	14
154	500	14.33	16
155	750	21.94	BRS
156	1000	30.51	- BRS
157	1500	34.89	BRS
158	2000	38.92	BRS
	3000	61.48	BRS

50 VOLT RANGE SEC TAPS 0.19-25 33-40.50V

Ref.	Amps	$\mathbf{£}$	PRP
102	0.5	$\mathbf{2 . 7 1}$	5 B
103	10	$\mathbf{3 . 5 5}$	12
$\mathbf{1 0 4}$	20	$\mathbf{4 . 9 5}$	35
106	30	$\mathbf{6 . 1 0}$	87
106	4.0	7.98	112
$\mathbf{1 0 7}$	60	$\mathbf{1 2 . 7 1}$	1.26
118	8.0	$\mathbf{1 3 . 6 3}$	1.61
119	100	$\mathbf{1 7 . 7 5}$	BRS

60 VOLT RANGE SEC TAPS 0-24.30-40-48-60V Ref. Amps \& P\& Ref.
124

124 126 127 125 123 120 121 122 189

HIGH VOLTAGE
 MAINS ISOLATING
 Pri 200, 220 or 400/440
 Sec 100/120 or 200/240

 240 v to 110 v (To BS 3535)

Fet.	VA
277	500
278	750
279	1000
280	1500

29.96
34.47 34.47
37.63
\&\& BRS SE

$$
41.55
$$

BRIDGE RECTIFIERS

BRO		
$50 v$	$2 A$	$35 p$
$100 v$	$2 A$	$40 p$
$100 v$	$6 A$	$70 p$
$200 v$	$1 A$	$35 p$
$200 v$	$2 A$	$45 p$
$400 v$	$2 A$	$50 p$
$400 v$	$4 A$	$65 p$
$600 v$	$2 A$	$55 p$
$500 v$	$10 A$	PM $7 A 6$
P\&P	$15 p$	$£ 2.35$

METERS
AVO8
AVO12 $\mathbf{6 6 1 . 0 9}$
$\begin{array}{lr}\text { AVOMM5 } & \text { ¢24.07 } \\ & \text { £20.94 }\end{array}$
P\&P i 110 VAT 8%
Alps Panel Meters
Sanwa Multo-Meters
Full range now in stock
STEREO F.M. TUNER
4 Pre-selected stations Switched AFC
Supply $20-35 v 90$ Ma Max
£19.95. P\&P 25 p VAT $121 / 2 \%$ MAGNETICTO CERAMIC
CARTRIDGE CONVERTER
Operating Voltage $20 / 45 \mathrm{~V}$
ONLY £2.65 P\&P 18
\qquad
4-speed autochanger $£ 6.00$.
Garrard SP25 Mk. IV (Chassis) £17.20

$$
\text { LAT } 121 / 2 \%
$$

NEW STEREO 30
NEW STEREO 30
Complete chassis, inc $7+7 w$ rns amps, pre-amp, power supply. front panel. knobs (needs mains
trans) $£ 15.75$. Mains trans veneered cab. £3 65. P\&P 88p. VAT $121 / 2 \%$

POWER UNITS

ANTEX SOLDERING IRONS
15W £2.90. BW E2.75. 25W £2.45
Soldering iron kit $\mathbf{£ 3 . 9 0}$
Stand for above £1.13. P\&P 25 p VAT 8%
PLEASE ADD VAT AFTER P\&P
ELECTFOSI - AND SEMICONDUCTOR
STOCK STS AUCIO ACCESSORIES \& BARGAIN
PAKS CALLERS WELCOME (MON -FRI) OR
Barrie Electronics Ltd.
3,THE MINORIES,LONDONEC3N 1BJ TELEPHONE: 01-488 3316/8
NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOL ST.

EHROWRSONTE electronics Dom 5

(4)

9 \& 10 CHAPEL ST., LONDON, N.W. 1 01-7237851 01-262 5125 ADJACENT TO EDGWARE ROAD MET. LINE STATION
PLEASE ADO $\$ \%$ TOALL DRDERS INC. CARR.

PLEASE ADO $\$ \%$ TO ALL DRDERS INC. CARR.

INSULATE THAT CHASSIS, OR COMPONENT,
THE EASY WAY BY MOUNTING WITH
TRANSIPILLARS
FOR
STRENGTH

INJECTION MOULDED NYLON PILLARS WITH INSERTS MOULDED IN FOR SUPER STRENGTH

TRANSIPILLARS

ARE
STRONGER THAN ANY SIMILAR DEVICES HAVING MECHANICALLY ASSEMBLED INSERTS
SIZES FROM 6BA $1 / 2^{\prime \prime}$ LONG TO OBA $23 / 4^{\prime \prime}$ LONG
METRIC EQUIVALENTS ALSO AVAILABLE
MIXED TERMINATIONS

(E.G. 2BA ONE END, 4BA AT OTHER END) AND LENGTHS MADE TO USERS' REQUIREMENTS

DETAILS, PRICES AND SAMPLES FROM

Scientific Instruments \& Electronic Components
40a NAPIER ROAD́, BROMLEY KENT BR2 9JA
Telephone: 01-4609861 Telex 896071

LYXX ELECTRONICS [LONDON) LTD.								DIGITAL DISPLAYS \& LED'S																													
${ }_{\text {AC12 }}{ }^{\text {Cli }} 12$	0.15	${ }^{8 \mathrm{BC3O1}}$	0.32		${ }^{0.15}$	in4003	${ }^{0.06}$	DL707		99p		dı75		61.75		2 RED GREN cele	EAR ${ }^{\text {anty }}$		${ }_{15 p}^{13 p}$																		
AC128	0.13	8С327	0.18 -	${ }_{8 \times} \times 36.300$	0.12	-	${ }_{0.08}$.	THYRISTORS																													
AC128k	0.25	${ }_{8}^{8 C 328}$	${ }^{0.16} 0^{\circ}$	$8 \times \times 36.600$		1 l 40006	0.09 .																														
${ }_{4 C 141 \mathrm{~K}}^{\text {AC1 }}$	0.18 0.28	${ }_{8 \times 338}$	${ }_{0}^{0.177^{\circ}}$			(1N4007	0.10 0.14			84 1092		(105)					${ }_{\text {coser }}^{84}$		104																		
${ }_{4 C 142}$	${ }_{0.18}^{0.28}$	${ }_{8 \text { çr }}$	${ }_{0}^{0.12}$	${ }_{8 Y \times 38.300}$	0.50	${ }_{\text {2N697 }}$	${ }_{0}^{0.12}$	50		20							42																				
AC142k	0.28	вCC71	0.18	$\mathrm{Br} \times 38.600$		2N706	0.10	100		25		25		0			48		54																		
${ }_{\text {ACP }} 176$	0.16	$\mathrm{BCr}^{\text {che }}$	0.12	BYx 38.900		2N929	0.14	200		${ }_{30}$		35					-80		${ }_{98}^{68}$																		
	${ }^{0.25}$	${ }^{80115}$	${ }_{0}^{0.55}$		S 0.65	2 N 930 2 N 1131	0.14 0.15	400 600		30		${ }_{65}^{40}$							$\begin{array}{r}\text { 988 } \\ \hline 1.26\end{array}$																		
AC187\%	${ }_{0}^{0.25}$	$80+32$	0.40	Zeners	0.20	2 N 1132	${ }_{0}^{0.16}$																														
${ }^{\text {ACC1 }} 88$	0.18	${ }_{8}^{80135}$	${ }^{0.36}$		x88	${ }^{2} \mathbf{2 N 1 3 0 4}$	0.20																														
${ }_{\text {AD }} 140$	0.25 0.50	80137	0.40	Sertes	0.11	2N1305	${ }_{0}^{0.20}$	TRIACS (PLASTIC TO-220 PKGE. ISOLATED TAB)																													
AD 142	0.50	BD138	0.48	C106A	0.40	2N2102	0.44				44	65 A		854		104			54																		
4 D 143	0.46	80139	0.58	${ }^{\text {C1068 }}$	0.45	2 N 2369	0.14				(b)																										
AD149	0.45	${ }_{80}^{80181}$	0.86	C1060	0.50	2 2N2369A	0.14	100 V		0.60	0.60	0.70	0.70	0.78	${ }^{0.78}$	0.83	0.83	1.01																			
40161	0.35	${ }_{80183}{ }^{80182}$	${ }_{0}^{0.92}$	${ }_{\text {C106f }}$	0.35	- ${ }_{\text {2N2484 }}$	0.16	200 V 400 V		${ }^{0.64}$	${ }^{\mathbf{0}, .64}$	${ }_{0}^{0.75}$	${ }^{0.75}$	0.87	${ }^{0.87}$	${ }_{0}^{0.87}$	${ }^{0.87}$	1.17																			
${ }_{\text {Al }}^{40162}$	0.35 0.95	${ }^{80232}$	${ }^{0.60}$	${ }^{\text {CRS }} 110$	-	-	0.50 0.18	600 V		0.96	0.98 099	0.87	${ }_{\text {1. }}^{1.81}$	1.21	1.26	1.42	1.19 1.50	2.11																			
${ }_{\text {Af }}^{\text {ALP } 114}$	${ }_{0}^{0.93}$	80233	${ }^{0.485^{\circ}}$	CRS1 CRSI 120	- 0.35	${ }_{2}^{2 N 2905 A}$	-	NE Triacs withou: insernal itigger diar are priced under column (a) Tracs with internal ifigger diac are priced under cotumn (t) When ordering please indicate clearly the type required																													
AFI 15	0.20	80238	${ }^{0.60}$	CRSI 160	0.65	2 N 2926 C	0.09																														
AF116	0.20	8 BP 184	1.20	Crs3 05	0.34	2 N 292967	${ }^{0.09}$																														
AF118	${ }_{0} 0.50$	BDY 38	0.60	CRS3 20	-	${ }_{\text {2N }}$	- 0.15	74 TTL mixed prices																													
AF 139	0.33	80760	0.60	CRS3 40	0.60	2 N3054	0.40																														
AF239	${ }^{0.37}$		-0.65	${ }_{\text {CRS }}$ M 14880°	- 0.85	2N3055	- 0.50						1242599		$100+$		124																				
${ }_{\text {BC }} 107 \mathrm{~B}$	${ }_{0.16}^{0.15}$	${ }^{\text {BFI }} 178$	0.28	MJA81	1.05	${ }^{2} \mathbf{N 3 4 4 2}$	1.20	${ }^{7} 1400$	${ }_{14}^{14 p}$	${ }_{12 \mathrm{p}}^{12 \mathrm{p}}$		${ }^{7444} 7$	${ }_{810}^{85 p}$	${ }^{719}$	${ }_{\text {65p }}^{57}$	${ }_{7495} 74$	45p ${ }_{\text {47p }}^{\text {67 }}$	2599 $100+$ 408 32 p																			
${ }_{8 C 108}$	0.13		${ }^{0.30} 0$	MJ490 MJ491	- 1.95	2N3525	0.75		${ }^{14}{ }^{19}$	${ }^{12 \mathrm{p}}$	${ }^{100}$	7448	${ }^{75 p}$	${ }^{620}$	50p	74100	ci.08	${ }^{59}$	450 720																		
${ }_{\text {BC1090 }}$	-	8 BF 195	${ }_{0.10}$	M 153440	${ }^{0.40}$	2N35702 23	${ }^{0.80}{ }^{\text {0. }}$	7403 7404	$1{ }^{15 p}$	${ }_{13 \mathrm{p}}^{121 / 2}$		${ }_{7}^{74478}$	${ }_{\text {30p }}^{\text {95p }}$	${ }_{\text {25p }}^{83}$		${ }_{74107}^{74121}$		${ }_{28}^{28 \mathrm{p}} \quad 22 \mathrm{p}$																			
${ }_{\text {BC1 }} \mathrm{BC} 117$	${ }^{0.19}{ }^{0.18 .}$		${ }^{0.12}$		0.60 0.45	2N3703	-	${ }_{7}^{7408}$	${ }^{16 p}$	${ }^{13 \mathrm{p}}$	${ }^{11}$	7472	25p	210		74122	47p	${ }^{289}$																			
	${ }^{0.180^{\circ}}$	${ }_{8 \times 224} 8$	${ }_{0}^{0.18}$	M. LE 521	0.55	2N3704 2 23705	${ }^{0.10}$		${ }_{16 p}^{16 p}$	${ }_{\substack{13 \mathrm{p}}}^{13 \mathrm{p}}$		7473 7474	${ }^{30 p}$	${ }_{26 p}^{25 p}$		74141 74145	${ }^{78 p}$	$\begin{array}{ll}\text { 39p } \\ 63 & \text { 53p }\end{array}$																			
	${ }_{0}^{0.28}$		${ }_{0}^{0.17}{ }^{0.30}$	OA5 OA90	${ }^{0.50} 0$	2N3706 2N307	0.10° 0.10.		${ }_{270}^{29,}$	${ }_{2}^{24 \rho}$		7475	478	${ }_{39}{ }^{39}$	${ }_{31}^{31}$	74154		${ }_{\text {83p }}^{\text {81. }}$																			
BC143	0.23	${ }_{8 F 258}$	0.35	OAg 1	0.08	2 N 3714	1.05	7420	${ }^{16 p}$	${ }_{13}^{21 / 2}$		7476 7482	${ }^{32 \mathrm{p}}$	${ }_{\text {22p }}^{268}$	${ }_{\text {21p }}^{21}$	74174 74180	${ }_{\substack{61.00 \\ 61.00}}$																				
${ }_{\text {BC }}^{8144}$	${ }^{0.30}$		${ }^{0.32}$	$\mathrm{OCC41}^{\text {c }}$	0.15	2n3715	${ }^{1.15}$	7427 7430	${ }^{270}$	221/2p			¢1.30	1.09	8^{87}	74181	¢1.20																				
${ }_{\text {BC1 }}{ }^{\text {che }} 14$	${ }^{0.099}$	${ }_{86 \times \times 29}$	${ }_{0}^{0.26}$	$\mathrm{OCH}^{\mathrm{O} 44}$	${ }^{0.15}$	$\begin{array}{r}2 \times 3766 \\ \hline 2 \times 371\end{array}$	1.25		${ }^{160}$	${ }^{13}{ }^{\text {p }}$			${ }^{32 \mathrm{p}}$	${ }^{26 p}$	21	74192	$\underset{\text { c1.35 }}{\text { E1.35 }}$																				
${ }_{\text {BC1 }} 149$	0.09	${ }_{8 \times \times 30}$	${ }^{0.30}$	OC45	0.10	${ }^{2 N 3772}$	1.60	${ }_{1 / 437}$	${ }_{27 p}^{27 p}$	${ }^{22} 1 / 2 \mathrm{p}$		7489 7490		${ }_{\text {c20 }}$		74193 74196																					
${ }_{8 C 152}$	${ }^{0.25} 0$		${ }^{0.23}$	OC70	-0.10	(2N3773	${ }^{2.10} 0$	${ }_{7}^{7441}$	${ }_{65} 5$	${ }_{55} 6$	${ }^{500^{\circ}}$	7497	65p	55p	${ }_{36}$																						
${ }_{\text {BCL }} 57$	${ }^{0.09}$	BEx88	${ }_{\text {der }}^{0.20}$	OC72	0.22	${ }_{2} \mathrm{~N} 3904$	0.16 .		$65 p$				57p	${ }^{46 p}$																							
${ }_{\text {BC1 }}{ }_{\text {BC159 }}$	${ }_{0}^{0.09}$	BFY51	${ }_{0}^{0.18}$	SC404 SC84	${ }_{0}^{0.14}$	-	- $0.14{ }^{\text {0. }}$	LINEAR IC'S																													
BC160	0.32	Bfy52	0.19	SC408	0.81	2N4290	0.12																														
${ }_{\text {BC1 }}^{\text {BC } 168}$	-	¢8F64	0.35 0.65	SC40 SC40F	0.98 0.65	(ender	1.20 0.35	307 309 K 38014 pin or 38114 pin OIL									514 pin D11	DIL	2.00 .																		
${ }_{8 C 1} 182$	0.11.	${ }^{\text {BR100 }}$	0.20	SCA A	0.65	$2 \mathrm{Na871}$	0.35																														
	0.110.	${ }_{\text {BRY }} \times 19$	0.40 0.16	SC4 SC418	${ }_{0}^{0.70} 0$	(2N4919	${ }^{0.70^{\circ}} 0$																														
BC183L	0.10	${ }^{85 \times 20}$	0.18	$\mathrm{SCA}^{\text {P }}$	0.60	2 N 4922	0.58 .			7488 pin Dil 5558 PIn DIL			$\begin{aligned} & 36 p- \\ & 45 p \end{aligned}$	C43045 85p.																							
	${ }^{0.111}$	-	0.12	${ }_{\text {STP29a }}$	0.20 0.44	(2N4923	${ }^{0.64} 0$																														
${ }^{81} \times 2078$	${ }^{0.12}$	${ }_{81106}^{810}$	1.00		${ }^{0.52}$	2N5061	$0.25{ }^{-}$																														
${ }_{8 C 2}{ }^{\text {BC2 }} 12$	0.11.	${ }^{81108}$	1.60	T1P32A	0.64	${ }_{\substack{\text { 2n }}}^{\text {2N066 }}$	0.27 0.30																														
BC2 $\substack{\text { C2 } 2131}$	${ }^{0.12}$	${ }_{81109}^{81116}$	1.00	${ }_{\text {T1P4 }}^{1 / \mathrm{P} 34}$	1.05 0.68	2 S 5496	0.65	HIGHAM MEED. CHESHAM. BUCKS. Tel. (02405) 75154																													
8 BC 214	0.14 :	BU105 Butos,	1.80	T1P42A	0.72																																
${ }^{\text {BCC2 }} 314$	${ }^{0.14 .}$	${ }^{\text {O2 }}$	1.90.	1N2070	${ }^{0.14}$			VAT - Please add 8% except items marked ' which are $121 / 2 \%$P\&P 20 p. Overseas 80 p																													
8CC238 BC 300	- ${ }^{0.166^{\circ}}$	BU126		- ${ }_{\text {in }}^{\text {N4002 }}$	${ }^{0.04 .}$																																

AUDIIO AMMATIUR

THE AUDIO AMATEUR is a new U.S. quarterly for the enthusiast who enjoys hands-on work in building or customizing his audio equipment.
TYPICAL ARTICLES: Octave equalizers, Transmission line loudspeakers with 8" to 24 " drivers, Electrostatic speakers with a 900 Watt direct drive amplifier, Mixers, preamps, parametric equalizers, stock equipment modifications, and much more. Completely tested circuits, construction aids, etched circuit boards, parts sources.

READERS SAY: "A hit here at WLWT Television provided several useful ideas for our engineers." ". . . Cannot praise you enough for your understanding of just what it is audio enthusiasts with limited know-how yearn to do." "As an audio technician I have found TAA one of the best sources for technical help in the audio field. Craig Stark of Stereo Review says: "Those interests of the 'home constructor' The Audio Amateur serves are nothing if notabsolvtely top quality. The magazine is, I think, the only A merican publication devoted to the real ly serious audiophile constructor

Yellow Oak Cottage, Tillington, Near Hereford, HR4 8 LO \square Tick here for free prospectus. DEPT. WW \square I enclose $£ 2.50$ for four quarterly issues. \square I enclose $£ 7$ for twelve quarterly issues.

NAME
Address
City Cty. Post Code
Country
Please allow eig hí weeks for sea mail delivery. Rates above are for the U.K. only. Rates for other areas available on request.

SINCLAIR, CBM AND NOVUS CALCULATORS Sinclair: Cambridge Scientific £11.45. Oxtord 300 £13.30. Programmable Scientific $£ \mathbf{2 5} \mathbf{9 5}$. Mains adaptors for all models $\mathbf{£ 3 . 2 0}$. CBM: SR7919D 8 digit/memory/trig/ log/pi/powers/sci notation £13.20. $796 \mathrm{MD} 8 \mathrm{digit} / \% /$ memory £6.45. Mains adaptors $£ \mathbf{3 . 2 0}$. Novus: 7506 digit £5.45. 8358 digit/\%/Const/sq root/4 funct mem £7.60. Mains unit £4.20.	SINCLAIR BLACK WATCH* Fully assembled with black strap $£ 20.95$. Bracelet £2.00.
	SINCLAIR IC20 IC20 10W +10 W stereo amp kit with printed circuit $£ 4.95$. PZ20 Power supaly for above $£ \mathbf{3 . 9 5}$ - VC2O Control and preamp kit £7.50.
BATTERY ELIMINATORS 55 WAY SUPER Switched 31030 V in $1 / 2 \mathrm{~V}$ steps. Fully stabilised. 1 Amp output Kit E8.95. Assembled $£ 11.95$. 2 Amp model Kit £10.95. Built £13.95. 6-WAY SPECIAL Switched outpu of 3. $41 / 2.6$ 12 V at $500 \mathrm{~mA} \mathrm{f5} 20$. G-WAY DOUBLE RADIO MODEL Switched output $3+3,41 / 2+41 / 2.6+6$. $71 / 2+71 / 2,9+9,12+12 \mathrm{~V}$ at 250 mA Also $15,18,24 \mathrm{~V}$ single $\mathbf{£ 6 . 2 0}$. 3-way model* Switched output of $6,71 / 2$ and 9 V at 250 mA with 4 -way multi-jack connector and free matching socket $£ \mathbf{Z . 9 5}$. RADIO MODELS 50 mA with press-stud battery connectors for radios etc. 6 V £3.45. $9 \mathrm{~V} £ 3.25$. $41 / 2+41 / 2 \vee £ 4.45 .6+6 V £ 4.45 .9+9 V$ £4.45. Also $9 V 300 \mathrm{~mA} £ 3.95$ CASSETTE MAINS UNITS $71 / 2 V$ output with 5 pin DIN plug. 50 mA mode: £3.45. 300 mA model $£ 3.95$. CAR CONVERTERS input 12V DC. Output 6.71/2.9VDC 1 A regulated $£ 4.75$ *.	SINCLAIR PROJECT 80 FM funer $\mathbf{£ 1 3 . 2 5}$. 016 £9.50. E3.95. PZ6 88.70 . PZ8 89.10 Trans PZ8 E5.60. 240 E5.75. Stereo E11.95. Project BO 00 E18.95.
	JC12 ANPLIFIER 6W IC audio amp with free data and printed circuit $£ 1.95$ * DELUXE KIT FOR JCI2 RTMI volume and tone controis and extra parts for the pcb. Mono £2.06. Stereo £4.46. JC12 POWER KIT Suppties 25V 1 Amp £3.25. SEND SAE FOR FREE LEAFLET
	S-DECS AND T-DECS S.DeC £2. 24 T-DeC $£ 4.05$ u-DeCA £4. 45 u-DeCB £7.85 16 dil IC carriers with sockets $£ 2.21$
	BATTERY ELIMINATOR KITS Send sae for free leaflet on ranyt 100 mA radio rype: with press stud terminals $41 / 2 \mathrm{~V} .6 \mathrm{~V}$ or $9 \vee £ 1.95$. 100 mA double radio type: with piess stud terminals. $41 / 2+41 / 2,6+6$ or $9+9 \mathrm{~V}$ £2.60. 100mA casserte type: $71 / 2 \mathrm{~V}$ din plug £1.95. Stabilized 8-way types: transistor stabilized to give low hum $3 / 41 / 2 / 6 /$
PRINTED CIRCUIT KIT* Make your Own printed circuits Contain etching dish, 100 sq ins of copper clad board. 1 it ferric chlonde, etch resist pen drill bit and laminate cutter £3.95.	Heavy duty 13-way types: $41 / 2 / 6 / 7$ $8 \frac{1}{2} / 11 / 13 / 14 / 17 / 21 / 25 / 28$ 34 / 42 V 1A E4.10. 2A E6.80. Car converter kit: Input $: 2 \mathrm{~V} O \mathrm{C}$. Output $.6 / 71 / 2 / 9 V D C 1 A$ regulated $£ 2.95$.
SWWANLEY ELECTRONICS DEPT. WW, PO BOX 68, SWANLEY, KENT BR8 8 TO Post $30 p$ on orders under $£ 2$, otherwise free Prices include VAT (Overseas customers deduct 7% on tems marked \star otherwise 11%) Official orders welcome	

DEMA ELECTRONICS
INTERNATIONAL
ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST

TERMS: PRICES LISTED ARE BRITISH POUNDS \& PENCE SEND CHEQUE WITH ORDER. ACCESS CARD BANKAMERICARD, BARCLAY CARD ACCEPTED (Card \# and expiration date requested). TERMS OFFERED TO SCHOOLS \& INSTITUTIONS
 $\begin{array}{lll}\text { under } 4.99 & \text { add } .45 & \text { E } 10 \text { and over }\end{array}$ add 35 No Charge

High quality modules for stereo, mono and other audio equipment.

$£ 19.95$

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls Used with your existing audio equimment or with the BI-KITS STEREO $\mathbf{3 0}$ or the MK60 Kit etc. Alternatively the PS 12 cand be used if no sui
The S450 is supplied fully buit tested and aligned The unit is easily installed using the simple instructions supplied

MPA 30

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only It is provided with a standard DIN mut societ to a ase of omnection. Full instructions supplied.

* FET Input Stage
* VARI-CAP diode tuning
- Switched AFC
* Multi turn pre-sets
* LED Stereo Indicator

Typical Specification Sensitivity 3μ volts Stereo separation 30 db Supply required $20-30 \mathrm{~V}$ at 90 Ma max.

STEREO PRE-AMPLIFIER

 £13.50

The Stereo 30 comprises a complete stereo pre-amplifier power amplifiers and power supply. This, with only the addition af a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs i.e high quality ceramic pick-up. stereo tuner, stereo tape deck etc Simple to install, capable of producing really first class results. this unit is supplied with full instructions, black front panel knobs, main switch fuse and fuse holder and universal mounting brackets enabling it to be installed in a record mounh bracker enabling construction or the cabinet plinth, cabines of you or her ared avalable, ldeal for the begi constructor instalian difficuly (can be installed in 30 mins)

TRANSFORMER $£ 2.45$ plus $62 p$ p \& p TEAK CASE E3.65 plus $62 p$ p \& p.

NEW PA12 Stereo Pre-Amplifier com-
pletely redesigned pletely redesigned
for use with AL10/
$20 / 30$ 25 Watts (RMS)

AL60

SPECIFICATION
Harmonic Distortion Po $=3$ watts $\mathrm{f}=1 \mathrm{KHz} 02.5 \%$
oad Impedance $8-16 \mathrm{ohm}$ - Frequency response $\pm 3 \mathrm{~dB}$ Po $=2$ watts $50 \mathrm{~Hz}-25 \mathrm{~Hz}$

Sensitivity for Rated $0 / P-\bar{V} s=25 v . R L=8 \mathrm{ohm} f=1 \mathrm{KHz} 75 \mathrm{mV} . R \mathrm{MS}$

* Max Heat Sink temp 90C * Frequency response 20 Hz to $100 \mathrm{KHz} \star$ Distortion better than 0.1 at $1 \mathrm{KHz} \star$ Supply voltage $15-50 v *$ Thermal Feedback Latest Design Improvements \star Load - $3.4,8$, or 16 ohms \star Signal to noise ratio $80 \mathrm{db} *$ Overall size 63 mm . 105 mm . 13 mm . Especially designed to a strici specification Only the
finest components have been used and the latest
solid. sia: circutry incorporated in this powerful hitle
anplifiei which should satisfy the mosi critical A F
enthusias!

Stabilised Power Supply Type SPM80
SPM80 is especially designed to power 2 of the AL60 Amplifiers up to 15 watt (R M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 15 A at 35 V . Size 63 mm .105 mm .30 mm Incorporating short circuit protection
Transformer BMT80
£2.60 + 62p postage

Input voltage $15-20 v$ A C Output voltage $22-30 v$ D C Transformer 5539 OUR PRICE 2.30 \&

New to the UK from PRONTO

Battery operated LCD read out

CALENDAR CLOCK KIT-crystal accuracy minalimitin

 Bold Digits-runs on two Penlight Cells.Now is the time for the hobbyist to move into Advanced
TRON with Pronto
PRONTO MODEL 301 - The first completely portable liquid crystal display, digital CALENDAR CLOCK KIT offered in the United Kingdom.
*Battery operation
life of 12 two small alkaline cells give a minimum

* Superb accuracy through crystal control - of 3 minutes a year *Wide angle display with $1 / 2$ " digits
* Push Buttons give choice of 3 display modes - hours minutes on 12 hour display with flashing colon, or seconds, or date. * PRONTO 301 comes complete with easy to follow

£29-50
 including $V . A . T$. You save

Pounds off the recommended retail price of a
TERMS Clock
TERMS: Cash with order - make cheque and/or postal order
payable to PRONTO ELECTRONIC SYSTEMS LIMITED
(P \& P - U.K. £0.45 Overseas $£ 1.50$)

10:59

PRONTO Fluorescent Display Alarm Clock KIT
Wake up to the electronic age with the new PRONTO 304 Alarm Clock

* Large Bright Green Display
- Alarm with 10 minute 'snooze' feature * AM/PM indication and simple setting *Automatic brightness control on digits governed by room lighting

Ingenious gravity alarm - time setting mode switch Full assembly instructions
f15-50 including V.A.T With all PRONTO products - enquiries

10:59

O 10 pranta
from the Trade, as well as the Hobbyist, are welcome, and you can also buy individual components!
PRONTO CONSTRUCTOR'S CLUB When you buy your first Pronto k it
you're automatically a Member of the PRONTO CONSTRUCTOR'S CLUB. It will not only keep you in the picture on new ideas and kits . . . but gives you FREE a $£ 2$ Voucher against the purchase of your next kit! Isn't it time you joined the Club?

PRONTD

The SECDND-USER

 Computer Specialists
COMPUIER SALES

Peripherals and Systems for Data Processing Systems, Equipment and Components

Minn Pomputer Ixehenee

pope 8 K Processor will Teletype \& Reader Punch Contro Modules
PDP 81 BK \& 16 K Processors wiht Teentye Contiol Module
PDP1 $1 / 20$ 20k Processor win Dual DECiape 8 Contiol 64 K Dist

PERIPHERALS: DEC DF 32 Disk Drive a Control dec tugo Dual Cassette Drive \& Controt DEC RTO2 Single Line Alphanumeric Display

MAGNETIC

TAPES.
Manufacturer's surplus stocks just received. Brand new in original sealed packs. $1 / 2^{\prime \prime} \mathrm{x}$ $2,400 \mathrm{ft}$. $£ 4$ per reel, $3 / 4^{\prime \prime} \mathrm{x}$ $2,400 \mathrm{ft} . £ 4.50$ per reel. $\mathrm{P} \& \mathrm{P}$ extra

add 8\% YAT to an
prices shown.
Crarriage extra -
Carrage oxtra -

PROXIMITY SENSOR

TYPE EP45
ANIMAL VEGETABLE OR MINERAL

PHYSICAL \& ELECTRONIC LABORATORIES LTD.
MANUFACTURERS OF PRECISION ELECTRONIC EQUIPMENT 7683

EQUIPMENT DESIGNED BY MR. J. L. LINSLEY HOOD

AUDIO OSCILLATOR
Simple design. Very low distortion. 10hz £14 (Kit) £18 (Made) + tax 8\% HI-FI AMPLIFIER £64 Distortion is below normal measuremen Available in pack form or made up

P.LL F.M. STERED TUNER

Kit $£ 40$ (Tax $122^{2 \%} \%$ Also in pack form

Collect wireless world Circards. And build a valuable dossier on

 circuit design.Circards is a unique and comprehensive system, launched by Wireless World, to provide professional engineers and enthusiasts with valuable and up-to-the-minute data on circuit design data not available from any other single source.

Each Circard is $8^{\prime \prime} \times 5^{\prime \prime}$ and usually shows a specific tested circuit, a description of the circuit operation; component values and ranges; circuit limitations and modifications; performance data and graphs.

The double-sided format enables the Circard to be filed in standard boxes for easy reference. And the plastic wallet provided keeps the cards well protected.

Subjects already covered by Circards

1. Basic active filters. 2. Switching circuits

 comparators and schmitts.3. Waveform generators. 4. AC measurements.
4. Audio circuits: preamplifiers, mixers, filters and tone controls.
5. Constant current circuits. 7. Power amplifiers.
6. Astables. 9. Opto-electronics.
7. Micropower circuits. 11. Basic logic gates.
8. Wideband amplifiers. 13. Alarm circuits.
9. Digital counters. 15. Pulse modulators.

To: General Sales Dept., IPC Business Press Ltd., Room 11 Dorset House, Stamford Street, London SE1 9LU
Please send me set no(s)
@ $£ 2.00$ each
@ $£ 18.00$ \qquad
16. Current differencing amplifiers - signal processing.
17. Current differencıng amplifiers - generation.
18. Current differencing amplifiers -
measurement and detection.
19. Monostable circuits. 20. Transistor pairs.
21. Voltage to frequency converters.
22. Amplitude modulators. 23. Reference circuits.
24. Voltage regulators
25. RC oscillators - I. 26. RC oscillators - II.
27. Linear C.M.O.S.-1.
28. Linear C.M.O.S.-II.
29. Analogue multipliers
30. Non-linear functions

FOR YOUR NEW INSTRUMENTS SPECIFY ALPS METERS, PROTOTYPES AT SHORT NOTICE
Our range includes 240^{\prime} in instruments and TRUE VU METERS. Personalised Scales and Special movements manufactured to customers' requirements For one off prices see the May Wiw

DESSYN SYSTEMS
instruments in slock $£ 6.50$ per pair (inc P\&P \& VAT)
 priced Knobs quantities only Min. order
1000 Pcs of any one of 66 types

Lemania aircrew CHRONOGRAPHS Stanless steel case with screw back luminous hands and markings One-fith sec sweep hand
by press to star stop and return to zero button by press to star stop and return to zero button.
15 -ewel movement Many of these watches are as new hut all have been completely oveshauled and checked for sccuracy Finted strap
E18.80. Btack face $£ 19.75$ inc P\&P

LEMANIA STOPWATCHES

$$
\begin{aligned}
& \text { Fitted wht one erd and one blach sweep hancs independently controlled } \\
& \text { enabling elapsed periods torming part of the main perrod to be measured }
\end{aligned}
$$ ensbling elapsed periods torming part of the main peerod to be measured

separately without siopping the measurement of the main ume period Many eparately without stopping the mealsurement of the main tume period Many $1 / 10$ SEC. STOPWATCHES. Overhauled E6.50. 1/100 SEC. STOPWATCHES. 0.6 sec Es.50 (Inc P\&P \& VA
\qquad
OVER 300,000 RFF AND MUL-TIWAY
CONNECTORS IN STOCK

REED SWITCH INSERTS
 500 mA or 250 vDC Gold ciad contacts 74p per doz $\mathbf{£ 4 . 1 5}$ per 100 £29.65 Oporating Coils for 12 v supply to accepl up to four standard reeds $\mathbf{£ 2 . 5 0}$ per doz $£ 12.60$ per 100 All carriage pand U K
Heavy durty type. (Body length 21π) Dameter 022 in to switch up to 1 A a up 10250 vAC Gold clad contacts $\mathrm{E1.45}$ per doz $\mathrm{E6.95}$ per 100
 Magnemia for HD reeds E1.50 per doz A few colls available for HO reeds
K.30. THD

The model K. 30 THD has thermal scales provided which a thermometer probe atrached, the meter whecks temperature of from - 50 C up to $200^{\circ} \mathrm{C}$ The midget bead thermistor is used as its thermal etement accelerates temperatures
response, and time lag is minimized compared response, and time lag is minimized compared
wath conventional thermometers By simply replacing the probe wir By simply repiacing the probe with usual tes
leads. the meter pertorms as a crifult tester
As a circuit tester As a circuit tester. the 18 -position rotary
systern range selector swutch and individual sysern range selector switch and individual
racks covel practically all measurement
recuirements $4 \begin{aligned} & \text { reculrements } \\ & \text { The collapsible stand angles the meter to } \\ & \text { tacilitate use of the }\end{aligned}$

Tachnical Data
DC volts $0.25-1000$ in 6 ranges $(10 \mathrm{k} \Omega) / \mathrm{V})$
$A C$ volts $10-100 \mathrm{~V}$ in 5 ranges (5 r Q / V)
DC milliamperess $025 \sim 250 \mathrm{ma}$ in 4 ranges
DC chms $R \times 1$ - $R \times 1000$ ir 4 ranges (min 2 z 8 B max 10 mg in Decibels $-20=+62 \mathrm{db}$
Temperature $-50 \mathrm{C}-100 \mathrm{C} \& \mathrm{a}=200 \mathrm{C}-50-200 \mathrm{~F} \& 30-400$ Accurracy: $D C+3 \% A C=4 \% \quad$ Weight: 590%
Size: $144 \times 96 \times 45 \mathrm{~mm}$ $\begin{array}{ll} \\ \text { Meter } E 25.17 . & \text { Mengm: } 5909 \\ \text { Mer avalable with case } £ 31.48 .\end{array}$ high voltage probe available

FOLLOW THE COURSE MANY THOUSANDS IN BRITAIN HAVE ALREADY TAKEN AND ORDER

FROM QUALITY ELECTRONICS LTD
Full catalogue and prices on iequest
sanшa
electronic test instruments

N-401
The N-401 MULIIIESTER nas iwo outstanding odvanlages firstly a taut band meter movement hat of a galvanometer Secondly an or'sina automatic cut-oul device provides exceptional
SPECIFIGATIONS
Rengee Aveileble
 16 kV Input impedance $200 \mathrm{ki} / \mathrm{V}$ for 40 OV beluw 16 M L for 160 V 40 M ? for 16 kV 20 M :
or $400 \mathrm{~V} \& 800 \mathrm{~V}$

$\mathrm{ACV} 4 \mathrm{~V} 8 \mathrm{~V} 16 \mathrm{~V} 40 \mathrm{~V} 160 \mathrm{~V}, 400 \mathrm{~V} 16 \mathrm{kV} \mathrm{In}$
impedance $5 \mathrm{k}, \mathrm{S} / \mathrm{V}$ for $16 \mathrm{~V} \&$ above at 50 Hz

$=1 /$ Range $\times 1 \times 10 \times 100 \times$
$50 \mathrm{k} 12500 \mathrm{k} \Omega 550 \mathrm{~m} \Omega$
 Accurecy: Within $+2 \mathrm{~s} / \mathrm{I}$ is
Within $3 * / \mathrm{Is}$ or AC ranges
Withur: 2 n of scale lengit for $: 1$ ranges
Froquency error: Within $=1 \mathrm{dE}-50 \mathrm{~Hz} \sim 250 \mathrm{kHz}$
$4 \mathrm{~V} \& 8 \mathrm{~V} \mathrm{AC} 50 \mathrm{~Hz} \sim 5 \mathrm{kHz}$ $(4 \mathrm{~V} \& 8 \mathrm{VACl} 50 \mathrm{~Hz}-5 \mathrm{kHz}$ tother ranges)
Simes
end Meler $£ 42.97$. (C)

WW-086 FOR FURTHER DETAILS

	LCD MODEL TLC4	LED MODEL TLE5
		FEATURES HOURS MINUTES day of week £29.50
THE "MISTRAL" I DIGITAL CLOCK Pleasant green display * Pushituc colon builoing timet hour complete kit price $£ 11.07$ \qquad виاт сlock PRIcE $£ 14.95$		GOLD OR RHODIUM PLATED
	ELECTROTIME, DEPT. 3/7, 11 SHEPLEY'S YARD CHESTERFIELD. DERBYSHIRE. TEL. (O246) 35804 PLEASE SUPPLY Enclose Cheque postal order NAME ADDRESS	

29, 30 June

 and 1 July 1976Catalogues and Tickets for Seminars available from

University of Leeds Department of Electrical and Electronic Engineering

For further information write or telephone
FITCH TAPE MECHANISMS
7a Balham Grove London SW12 01-673 1362

SERVICE TRADING CO

RELAYS
SIEMENS PLESSEY, ${ }_{1}$ MiNIATURE RELAY

OPEN TYPE RELAYS
6 VOLT D.C.
9 VOLT D.C. RELAY
9/12 VOLT D.C. RELAY

24 VOLT D.C

100 VOLT AC
ENCLOSED TYPE RELAYS
6 24V DC
24 V DC
55 VOLT A.C
230 VOLT A.C. RELAY
220/240 VOLT AC RELAY

ARROW 230/240V AC
CLARE-ELLIOT TVDE RP 7641 G8
MANY OTHERS FROM STOCK, PHONE FOR OETAILS

[^4]ALL MAIL ORDERS, ALSO CALLERS AT
57 BRIDGMAN ROAD. CHISWICK
LONDON, Wa 5BB. Phone: 01.995 1560

VARIABLE VOLTAGE TRANSFORMERS $\begin{array}{ll}\text { Carriage extra } & \text { INPUT } 230 \text { v. A.C. } 50 / 60 \\ \text { OUTPUT VARIABLE } 0 / 260 v \text {. A.C }\end{array}$
 OUTPUT VARIABLE $0 / 260 v$. A. BRAND NEW. All types.
$200 W$ (1 Amp)
0.5 KVA (Max. $21 / 2 \mathrm{Amp}$)
$1 \mathrm{KVA}($ Max. 5 Amp$)$
$2 \mathrm{KVA}(M a x .10 \mathrm{Amp})$
3 KVA (Max. 15 Amp$)$
4 KVA (Max. 20 Amp$)$
(max. 37.5 Amp) $\varepsilon 10.00$ $£ 11.50$
$£ 16.50$ $£ 16.50$
$£ 30.00$ $£ 30.00$
$£ 33.00$ $£ 33.00$ £60.00
$\mathbf{~} 102.50$

LT TRANSFORMERS	
0612 voth " 10 amp	¢6.15 Posi 70p
0.10 .1718 volt "10 amp	18.70 Post 100
0.612 vnit " 20 amp	¢ 10.90 Post 2100
0.1224 voit " 10 amp	$\underline{59.90}$ Post 2100
0.462432 volt "12 amp	E10.30 Post 2100
0.6 .12 .1718 .20 volt "20 amp	E 11.80 Poss 1100

AUTO TRANSFORMERS
Step up step down 115200220 at 75 watt $\mathbf{£ 3 . 0 0}$ Post 40 p 150 watt $\mathbf{4} 4.30$ Post 50 p 300 Att $\mathbf{~ w . 2 0 . ~ P o s t ~} 60$ p 500 watt $\mathbf{6 9 . 2 0}$ Post $75 p 1000$ watt
watt

+ HY-LIGHT STROBE MK. IV
 ULTRA VIOLET BLACK LIGH
* fluorescent tubes

WHY PAY MORE?

TRIAC

	Sunlable Diac 18p.

insulated terminals Incorporating 4 mm socket
 1000 VOLTS 1000 megohms

GEARED MOTORS
100 R.P.M. 115 lbs. ins.!!

(Type 3) 71 r.p.m. 230 Volz A.C
6/9 VOLTD.C. GOVELNED

24 R P
230 voli A C
c3.85 Post 75
1 R.P.M.
230/240 VOLT A.C. SYNCHRONOUS!!

20 r.p.m. GEARED MOTOR
$230 / 240$ voll 20 rpm motor $£ 1.00$. Post 20 p
REVERSIBLE MOTOR $230 V$ A.C

METERS NEW
 90 mm Diameter

PROGRAMME TIMERS

SERVICE TRADING CO.
SHOWROOMS NOW OPEN AMPLE PARKING

PERSONAL CALLERS ONLY
9 LITTIE NEWPORT STAEET.
LONDON: WC2H 7JS

ELECTRONIC BROKERS

Electronic Brokers Lid. are one of the leading electronic instrumentation companies in the UK, providing a full range of services to Universities, Industry. Colleges and Governments both at home and overseas.

We have the largest stocks of secondhand test equipment in Europe as well

as a selected range of new products. These are on display at our London showrooms where customers can examin the equipment of their choice and see it working

Electronic Brokers Ltd have fully equipped workshops on the premises to test and report on the majority of equipment we sell.

SWEEP CEWERATORS

HEWLETT PACKAFD
 Sweep Oscllator 693D 4.8GHz SPCIAL OFFER E325 Jwhoep
 M.E.S.L. L.

SIGNAL SOURGES
general radio
Unit Osciltator 1209 C Freg $250-920 \mathrm{MHz}$ Accuracy
1% Difif $02 \% ~ 0 /$ pin to $500 \mathrm{hms}=150 \mathrm{~mW}$ suppited rilustrated Unit Oscillator 1218 A
ot 200 mW across band HEWLETT PACKARD
FM A.M Signat Generator 202 H FM A.M CW \&
pulse coverage 54 to 216 MH2 RF

 VHFSI Snal Generator 608 E 10.480 MHz (5 band) | Accuracy | |
| :--- | :--- |
| mt | mM |
| 400% | $5 / 0$ | SHF S895 SHF Signal Generator $618 \mathrm{C} \quad 8.76 \mathrm{GHz} \# 1 \%$

50 Chms
$\mathbf{E 5 5 0 . 0 0}$ OHF Signal Generator 616A 1.8.42GHz $£ 475.00$ MARCONI INSTS.

 $10-470 \mathrm{MHz}$ R.F outpur $01 \mathrm{~A}-1 \mathrm{~V}$ Pision attenuator
50 Imms Impedance Modulation Int $A M 1 \mathrm{Hzz} \mathrm{Ex}$ \checkmark WWR 12 orless 6400 - $\mathbf{8 8 0 0}$
 R.C Oscilator TF $1370 \mathrm{~A}, \mathrm{~Hz}$. 10 MHz Square wave
up to 100 KHz High Outputs up to 31 GV E285 $\begin{array}{ll}\text { Phase/A } M \text { Signal Generator TF } \\ 04.12 \mathrm{MHz}_{\mathrm{M}} & 2003 \\ \mathrm{El50}\end{array}$ A.M Signal Génerator TF $801 \mathrm{~B} \cdot 35 \quad 12485 \mathrm{MHz}$
O 1uV.TV
E 195.00
 variabie Arenuator 0.60 B in 10dB steps impedance
600 O Distortion Via 1 KHz Fitter less than 1 1\%
Direct or via Attenuato Less than 05%. 50 Hz 20 KHz

 conditon
AM FM Generator TF995B/5 EBand new MUUSed
 Decade Oscilator D890A $1 \mathrm{~Hz}-112 \mathrm{KHz} \quad £ 335.00$
RADIOMETER
Stere

WAVNE KERR

OSCILLOSEOPES
 cosor
 $\begin{array}{ll}\text { COSSOR } \\ \text { TYPe } 3100 & \text { OC to } 35 \mathrm{MHz}\end{array}$

CDU 150 OEWLETT PACKARD
Ostilloscope 140 A c/w 1415 A itme domain
retleciometer
For testing of cables conneciors
retlectioneter for testing of cables connectors
stiplines \& transmission lines
Sisen

 Aux Plug-In 1780 A Display Scanner 1782 A Sweep
Delay Gen 1781 B Dual Trace Ver

Transistorised compact single beam portable scope bandwidth of 8 MHz Compensated Y-attenuator 12 ranges $50 \mathrm{mV} / \mathrm{cm}$ to $30 \mathrm{~V} / \mathrm{cm}$ Timebase sweep range of 10 Hz to 500 kHz and can be triggered from + +Ve or coupled Oisplay area $6 \mathrm{~cm} \times 4 \mathrm{~cm}$. Rise time 44 nc Dimensions $203 \mathrm{~mm} \times 160 \mathrm{~mm} \times 240 \mathrm{~mm}$ Wg 5 Kg
BRAND NEW. TYpe No HM 207 BRANO NEW. TyDE No HM207
MARCONI
IV Scnpe TF 2200
6457 ADC 30 MHz Porable Scupe tF 2203 15MHz $\mathbf{~} 190$ SOLAR 50 mV cm sensitivily $\quad \$ 125.00$ SOLABTRRN SCOpe DC 6 MHz Daubie Beam CT436 $\mathbf{6 9 5}$ Porrable Scope CD 1400 DC 15 MHz Plug ins avallable
CX $1441 \quad 1443 \quad 1444,1448$
\& 180 Wide Band General Purpose Scope CD-1212 (Min
spec CT484) Plug ins CX1251 \& C $\times 1252$ (Con
 Portable transistorised CD 1642 Dual uace. DC
$15 \mathrm{MHz} 10 \mathrm{mV} / \mathrm{cm}$ Sensitivity 3 ?rigering to 25 MH ${ }_{\text {SEATEN. }} 10 \times 6 \mathrm{~cm}$

Sensitivity zrigering to $\begin{array}{r}25 \mathrm{MHz} \\ \mathbf{£ 1 9 5}\end{array}$ $10.12 ;$ Scope Single Beam 50MV/cm $A C$ coupled B/W 4 SMHz $5^{\prime \prime \prime}$ Tube Assembled Refurbished 90 Day Warranty Our price
HOBAND 5MAN SC
$\begin{array}{ll}\text { 25MH2 Scope R O } 050 \mathrm{c} / \mathrm{w} 5 \mathrm{C} \text {. Plug in } & \text { £200 } \\ \text { 25MH2 SOOpe R O50A c/w 5C Plug in } & \mathbf{E 2 2 5}\end{array}$ TEKTRONIX
Sampling Sco

E400

DISPLAYS

Sogmented Muitipte Cold Carhode Gastimed Indicator Tube Type 2 M $1500 / 12$ made by Muliard - unused.
12 Oecades. Character height 76 mm Striking voltage 160 Ideal for Display Applications requiring a larg No. of digits to
Overall width 86.2 mm . Overall height 26 mm
$\mathbf{E 3 . 7 5}+\mathrm{P} \mathrm{\& P} 30 \mathrm{p}+\mathrm{VAT} \mathbf{8 \%}$
 SELF SCAN

$$
\begin{aligned}
& \text { Panel Display Model SSD } 1000-0030 \text { Drect Visual } \\
& \text { Presentation of Alpha Numeric Data. Each panel is a } \\
& \text { celifnation }
\end{aligned}
$$ self-contarned package, provicing Data. Each panel is 16 is 18 display positions. each of which may be instructed by a 6 -bit

coded sıgnal to dispiay one of 64 pre-programmed characters as a 5×7 dot-matrix. formed by special gas-discharge umits. Each character is 0.4 inches high
providing a bright image, visible over a wide viewing
angle. Full apolications data is avile pivise

POWER SUPPLIES

 overload protection (I2OV imput). On INPUT \& Fast response tumeFast respo
$6 V-6 A$
$3 V-8 A$
$3 V-4 A$
$3 V-4 A$
$3 V-16 A$
$48 \mathrm{~V}-2.7 \mathrm{~A}-7.25 \mathrm{~V} 4.8$ Ex Computer (108 -132V inpur) Type 007-6004501

Amember of
\qquad the EBgroup

thetestequipment people
 49-53Pancras

MULTIWETERS

 MUNMUN
 YDLTMETEBS ADVNC
Oitterentig
Mon AC Millvormeer 7 PB
HEWLETT PACKARD

On these pages you will find just the briefest selection from the vast range which we hold in stock at any ome time.

If you are seeking a specific item and it is not listed, it will pay you to ring us first - we believe we offer the best prices and the best service.
WORLD WIDE EXPORT
Enquiries and tenders welcome from any part of the world.
HOW TO REACH US
We are easy to reach, ro matter where you live. Minutes away from Kings Cross or St. Pancras main-line stations, and a bus ride from Euston; only just over half an hour from Heathrow Airport. Parking is easy too.

SIGN ELECTRONICS

AF Voltmeter
SOLARTRON

 Ditterential Votimeter 821 A For calibration, resing
stabilty neasurements of regulated power supplies. DC

STROBOSCOPES \& TACHOMETERS

STROBOSCOPIC TACHOMETER

Two unit:s in one

£49.50 BRAND NEW
'TOUCHLESS
RETRO-REFLECTIVE
 TACHOMETER

Feaccs RPM from as tar as

£89.50

Cartying Case
extra
Sond tot full litera
12.50

BRAMLC NEW Road, London NW12QB Tel:O1-837 7781

MM2151/1

Wave Analyser 248A. $5-300 \mathrm{MHz} \quad$ E19B.e. 300

 AIRMEC
Modulation Meter $210 \quad$ E75 to E100
AMPEX
F.M Direct Recorder/Reproducer SP 3004
 SOHz 18 KHz at 15 :ps
GECKMAN
Franster Osclilavor 7580 HDC .15 GHz with counter
 (RMS.)
Gausmeter Type 120, complete with Probes P.O.A
Deviation Bridge 1505
nil Comoarator CZ457/5
Bartery Charget BE370
COssor
Battery Charger CC 99
Battery Charger CC. 99
DECCA
Powor suppiy
Recerver Type 770 Freq 500.100 MHz P.O.A.
TELONIC Bend Pass Fitter TBA $140-60-5 \mathrm{CCl} 5$ Sechion. TNC to
INC 140 Mhz centre trea. Brand new 60 Mhz bandwuidin
TEKTRON:
E20 TEKTRONIX
Probe type P6006 (with UNF plug firted)
Thermocouple rest set 7556
GENERAL RADIO
Wmittance Bridge 1607A tmmaculate Condition
Unit Null Detector $1212 \mathrm{~A} \quad 20 \mathrm{~Hz}$-5MHz Log Response HEWLETT PACKARO
Distortion Analyser 331A
Oigizal Recorder 560 A
Digitel Recorder 5618
HEWLETT PACKARO
Directional detector 7870 1.9.4.1 Gm
Orectionai detector 788 Cl 3.7 .8 .3 Gmz
MARCONI INSTS
Atrenuator TF $1073 \mathrm{~A} / 2 \mathrm{~S}$
Out of Limits Indicaior TF $2404 / 2 \mathrm{M1}$ Checks
readings from elecironic counters and insts Local and remote visuat and elecilicalnindication
suitable tor use by unskilled personnel and with at Blank \& Sync. Mixer TE. 2908 Quantization Distortion Tester TF 2343
R. P. Power Meter TF. $1152 / 1$ MARCONI TF2600. Brand new
RHODE \& SCHWARTZ RHODE \& SCHWARTZ Stereo Coder MSCBN 4192/2 P.O.A.
Polyscop Swob 11 .
 Frequency Indicator FKM. BN 4705
SIGN ELECTRONICS
TELONIC ${ }^{\text {DFM }}$ OMAA
Sweep Generator SM $2000 \mathrm{c} / \mathrm{w}$ Plug Ins E. $3 \mathrm{M}, \mathrm{S}$-6 \&
S4M

- hाsमझunitives

Carriage and packing charge extra on all items unless otherwise stated.

Please note: All instruments offered are secondhand and tested and guaranteed 12 months unless otherwise stated.

To obtain a brochure and booking form, tick the box against the tours in which you are interested, complete the coupon and post to the exclusively appointed travel agent. Commercial Trade Travel Lid., Carlisle House, 8 Southampton Row, London WC1. Telephone 01-405-8666 or 01-405-5469

International Radio and Television Exhibition - FIRATO - Amsterdam. August 27-29 1976. Two nights at the first-class Anterican Hotel. Fully inclusive price $\mathbf{1 8 9 . 0 0 \square}$

Western Electronic Show and Convention - WESCON - Los Angeles - September 14-17,1976. 10 nights at the de luxe Downtown Hilton Hotet. Fully inclusive price- $\mathbf{f} 399.00$. \square

International Exhibition of Data Processing, Communication and Office Organisation SICOB Paris, September 23 - October 1 1976. Two nights at the de luxe Meridien Hotel. Fully inclusive price $£ 8650$, extra nights as required. \square

Hifi International Exhibition and Festival Dusseldorf - September 24-29, 1976. 2 nights at the first class Quality Inn Hotel. Ratingen (8 km from the Fair Ground) Fully inclusive price - £99.90. \square

International Industrial Electronics Trade Fair - FAIREX - Amsterdam, October 18. 20 1976. Two nights at the first-class American Hotel. Fully inclusive price £89.00 \square

International Trade Fair for Production in the Electronics Industry-ELECTRONICA Munich, November 25-December 1. 1976 Two nights at the first class Hotel Der Konigshof. Fully inclusive price £ 118.00 . extra nights as required \square

Please send details of the tours indicated above.

TYPICAL TRANSIPACK
NO-BREAK POWER SUPPLY
AS DELIVERED TO C.E.G.B.

INDUSTRIAL INSTRUMENTS LIMITED

TRAMSIPACK

Sales and Laboratories
STANLEY ROAD
STANLEYROAD
GROMLEY BR2 9.JF
Telophone: 01-460 9861/5
Telograms. TRANSIPACK. BROMLEY
Telex: 896071
Factony
theaklen drive
PONSWOOD INDUSTRIAL ESTATE
hastings. sussex. england
Telephone: Hastinga 427344

For those who appreciate Quality...

a complete electronic kit

 The Forgestone 400 high quality
colour television receiver

A really up-to-the-minute kit, with all these Plus Features

- 9 integrated circuits
- Fully isolated power supply
- Thick film resistor units
- Ready-built and aligned IF module panel removal
- Each module kit available separately
- Glass epoxy printed circuit - Full technical construction panels manual
- High quality components
- LT supply regulator

Buy as you build - all Forgestone Kitsets are for the constructor of today, each section of the kit is available separately. Please send stamp for further details of these quality products.

Forgestone Colour Developments Limited
Ketteringham, Wymondham, Norfolk, NR 18 9RY, U.K. Telephone: Norwich 810453 (STD 0603)

MAIL ORDER - Barclaycard \& Access accepted

WW-089 FOR FURTHER DETAILS

Fanasilifiontame Thetrumentecoopt

\star Complete, undamaged units!

- Fabulous bargains in all departments! Just look at these low, low prices! Look around as much as you likeyou won't beat these incredibly low prices for complete, undamaged instruments, But-you must contact Carston Electronics, the big name in the used instrument business in the UK!

Forallwhowantto knowabout electroniccircuits

Here's a book of very special appeal to all concerned with designing, using or understanding electronic circuits. It comprises information previously included in the first ten sets of Wireless World's highly successful Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of the ten sets - including additional circuits - in this magazine size hard cover book has been updated where necessary, and is preceded by an explanatory introduction. Circuit designs (1) is the first collection of its kind.

Circuits covered are
Basic active filters
Switching circuits
Waveform generator's
AC measurements
Audio circuits
Constant-current circuits
Power amplifiers
Astable circuits
Optoelectronics
Micropower circuits

A newbook fromWireless World

ORDER FORM

To: General Sales Department,
IPC Business Press Limited,
Room II, Dorset House,
Stamford Street, London SEI 9LU.
Please send me . .
. copy/copies of
Circuit Designs - Number I at $£ 10.40$ each inclusive. I enclose remittance value $£$. (cheques payable to IPC Business Press Ltd.)

NAME (please print)
ADDRESS

Company registered in England and a subsidiary of Reed International Limited Registered No 677128 Regd. office Dorset Hcuse. Stamford Sireet, Lordon SEI 9LU.

Wilmslow Audio

THE firm for speakers!

Baker Group 25, 3, 8 or 15 ohm

Baker Group 35, 3, 8 or 15 ohm Baker Deluxe. 8 or 15 ohm Saker Major, 3.8 or 15 ohm Baker Regent, 8 or 15 ohm Baker Superb, 8 or 15 ohm Celestion HF1 3008 or 15 ohm Celestion MH 1000 horn 8 or 15 ohm Decca London and X over Decca DK30 and X over
EMI 5" Mid range
EMI $61 / 2^{\prime \prime} d /$ cone roll surr 8 ohm EM1 $8 \times 5,10$ watt. d/c. roll/s 8 ohm EMI $14^{\prime \prime} \times 9^{\prime \prime}$ Bass 8 ohm Elac 59RM $10915 \mathrm{ohm}, 59 \mathrm{RM} 1148$ Elac $6^{1 / 2^{\prime \prime}} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm Fane Pop 15 walt 12
Fane Pop 33T 33 watt 12
Fane Pop 50 watt, $12^{\prime \prime}$
Fane Pop 55, $12^{\prime \prime} 60$ watt
Fane Pop 60 watt. 15
Fane Pop 70 watt $15^{\prime \prime}$
Fane Crescendo 12A or B. 8 or 15 ohm
Fane Crescendo 12A or B, 8 or 15
Fanescendo 15, 8 or 15 hm
Fane Crescendo 18, 8 or 15 ohm
Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$, rolis/s. 8 or 15 hm Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll $/ \mathrm{s} 8 \mathrm{ohm}$ Goodmans 8P 8 or 15 ohm
Goodmans 10P 8 or 15 hm
Goodmans 12 P 8 or 15 ohm
Goodmans 12P-G 8 or 15 ohms
Goodmans Audiom 2008 ohm
Goodmans Axent 1008 ohm
Goodmans Axiom 4028 or 15 ohm Goodmans Twinaxiom 8' 8 or 15 ohm Goodmans Twinaxiom $10^{\prime \prime} 8$ or 15 ohm Kef T27
Kef T15
Kef 8110
Kef B200
Kef 8139
Kef DN8
Kef DN 13
Richard Allan HP8B 8" 45 watt
Richard Allan CG8T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s
STC 4001 G super tweeter
STC 4001 K super tweeter
Baker Major Module, each
Goodmans Mezzo Twinkit, pair
Goodmans DIN 20, 4 ohm, each
Helme XLK35, pair
Helme XLK40, paif
Heime XLK30. par
Helme XLK50, pair
Kefkit 1, pair
Richard Allan Twinkit, each Richard Allan Triple 8. each Richard Allan Triple, each Richard Allan Super Triple each Richard Allan RA8 kit, pair
Richard Allan RA82 kit. pair
Wharfedale Linton 2 kit (par)
Wharfedale Glendale 3 XP kit, pa
Wharfedale Dovedale 3 kit pair.
£8.64 $£ 8.64$
$£ 10.25$ £12.38 £10.69 $£ 9.00$ £16.31 £6.98 $£ 6.98$
$£ 13.50$ $£ 36.25$ $£ 36.25$
$£ 24.00$ £24.00 $£ 3.15$
$£ 3.93$

WILMSLOW AUDIO

Loudspeakers \& Export Dept: Swan Works, Bank Square, Wilmslow, Cheshire SK9 1HF. Discount HiFi, PA etc: 10 Swan Street Wilmslow. Radio. Hi-Fi, TV: Swift of Wilmslow, 5 Swan Street, Wilmstow. Tel. (Loudspeakers) Wilmslow 29599, (HiFi, etc.) Wilmslow 26213.

Test Instruments

MODEL 510 Exclusive Dynapeak'w with
Selectable Hi-Lo Drive For Accurate
in-Circuit And Out:of-Circuit Trans istor Testing

- Fast GO/NO-GO in-circuit transistor testing
- Fast and thorough GOOD/ BAD out-of-circuit testing
- Test FET's and SCR's incircuit or out-of-circuit

MODEL 280 3-Digit Portable Multimeter.

- Low price •Easy to read
- Reliable-fully overload protected
- Large LED readout
- Completely portable-use it

MODEL $2833_{3}^{3} / 2$ Digit Mult mete

- High intensity, high reliability 3½ digit LED display for maximum readability
- Selectable HI/LO ohms function allows in-circuit resistance
- Universal AC power supply

EMPIRE EXPORTERS Inc.

270 Newtown Ra., Plainview, N.Y. 11803
Cable Address: EMPEXINC PLAINVIEW. N.Y STATE Telex No 96-7880 MORHAN EX PLVW

Appointments

Advertisements accepted up to 12 noon Monday, June 28, for the August issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 6.50$ per single col. cēntimetre (min. 3 cm). LINE advertisements (run on): $£ 1$ per line, minimum three lines.
BOX NUMBERS: 45p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Owen Bailey on 01-261 8508 or 01-261 8423.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Radio Officers-now you can enjoy the comforts of home.

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are $£ 2905$ rising to $£ 3704$ after three years service. Between 19 and 24 , the starting salary varies from $£ 2234$ to $£ 2627$
according to age. You'll also receive an allowance for shift duties which at the maximum of the scale averages $£ 900$ a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have vacancies at some of our coastal radio stations, so if you're 19 or over, write to: ETE Maritime Radio Services Division (L687), ET 17.1.1.2., Room 643, Union House, St. Martins-leGrand, London EC1A 1AR.
Posit Ofifilice Telecomnnuinicationins

```
MPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY
Depertment of Electrical Engineering
DEPARTMENTAL SUPERINTENDENT
```

Applications are invited from candidates with suitable experience for the post of Engineering Depanment.

Outies will include supervising the operation of departmental technical services and deparmental records/finance office The superintendent will have regular contact with over 100 departmental academic and technical staff. and with a wide range of college administratuve staff Proven administrative, supervisory and technical ability is essential. Salary in the per annum plus $£ 450$ London allowance

Further particulars may be obtained from the Head of Oepartment, Electrical
Engineering Oepartment. Imperial College Engineering Oepartment. Imperial College
SW7 2BT, to whom applications should be sent by 30 th June, 1976.

audio development engineers

Grampian, a member of the Telephone Rentals group, manufacture a wide range of electronic and electro-acoustic audio and internal telephone equipment. We have vacancies for development engineers to work on all aspects of communications processing and audio distribution systems. We are seeking people with experience of analogue development work, preferably in the audio field, and possessing a high degree of motivation. In return for initiative we offer competitive salaries and generous Pension and Life Assurance schemes.
For application form or further details please contact Mr. G. N. Turner

Ḡ̄AMPIAN REPRODUCERS LIMITED The Hanworth Trading Estate Feltham, Middlesex TW13 6EJ 01-894 9141

UNIVERSITY OF

 LIVERPOOLELECTRONICS TECHNICIAN/ ENGINEER

Required for the Electronics Workshop of the Oepartment of Electrical Engineering and Electronics This post would be suitable for a person holding either HNC or C \& G Final Certificate for telecommunications technicians. together with practical expertence of the lay-0ut of printed circuit boards and the use of linear and digital integrated circuits. The successtul applicant will assist
in the development and production of a in the development and production of a teaching and research laboratories.
Intual salary within a range up to $£ 3207$ per annum. according to qualifications and experience

Application forms may be obtained from the Registrar, The University, P.O. Box 147, Liverpool L69 3BX. Quote ref. RV/791/WW.

Appointments

TEST AND LIAISON ENGINEERS

Ferranti in Edinburgh have a number of Ministry of Defence contracts nvolving the design and development of advanced avionic equipment for military aircraft in an international market.

We have vacancies for test and liaison engineers who will probably be qualified to HND level in electronic engineering with some years' experience in design, test or support of modern avionic equipment. A knowledge of digital and analogue techniques is essential.

Close liaison with design/development teams currently engaged on inertial navigation and display systems will be necessary and the work will entail factory acceptance testing, fault diagnosis and system commissioning on a variety of sophisticated equipment.

There will be opportunities for some of these engineers after a period of in-house training to be selected for technical liaison duties at locations in the U.K., Europe, Middle and Far East.

The Company offers an attractive employment package which includes 22 days holiday and membership of a life assurance and pension scheme. Incoming personnel will qualify for housing under the Scottish Special Housing Association scheme and realistic assistance will be given with relocation expenses where applicable.

Apply in writing giving details of age, experience and qualifications to:
THE STAFF APPOINTMENTS OFFICER
FERRANTILIMITED
FERRY ROAD
EDINBURGH EH52XS

Engineer Technicians

EMI have all kinds of future for you at Hayes

[^5]
Silu:

A superb location

- particularly for broadening professional and management skills with a 3 -year contract. This land-locked central African state, larger than France, Belgium, The Netherlands and Switzerland combined, has a congenial, equable climate and a wealth of fascinating scenery. Although mainly a broad plateau, Zambia also has spectacular mountains, dense forest, penetrating rivers and vast lakes as well as huge wildlife reserves. Large cities and towns containing all the usual modern facilities are linked by excellent road and rail services. Extensive natural resources, copper particularly, have provided the firm economic base for dramatic post-independence progress. Wide-ranging, expanding industries and substantial agriculture, which includes both crops and dairy farming, ensure the long-term continuation of Zambia's prosperity.

Chief Engineer

Qualifications:

A relevant degree or status as a Chartered Engineer. Wide practical experience of sound and television broadcasting systems and knowledge of modern transmitter design and installation.

Duties:

The planning of general broadcasting developments, overal supervision, planning and development of all technical and administrative matters in the Engineering Division. Guiding and training of Zambian Engineers.

Salary Scale:
K 7200×204-K7608 p.a. (55414 - 65720) Supplement $£ 4128$ (Married) $£ 2724$ (Single)

Maintenance Engineer
 (Radio transmission, Short and Medium wave)

 Qualifications:Final City and Guilds Certificate in Teiecommunications or equivalent plus at least 8 years' experience with a Broadcasting Organisation with particular experience in the installation and maintenance of transmitters

Duties:

The installation of medium and short wave transmitters and antennas ranging in power from 10 Kw to 500 Kw . He will also be responsible for maintenance of transmitters and will be expected to train local staff.

Salary Scale:
K 4416 - K 5136 p.a. (63397 - $\mathbf{6 3 8 6 2}$). Entry point will depend on previous relevant experience.
Supplement $63060-63540$ (Married) $£ 1710-62136$ (Single)

Maintenance Engineer

(TV Transmitters)
Qualifications:
As in above post,

Duties:

The operation and maintenance of TV transmitters operating in Band I and Band III. He should have wide experience to be able to train local staff

Salary Scale:
K4416-K5136 p.a. (63397 - © 3862). Entry point will depend on previous relevant experience.
Supplement $£ 3060-£ 3540$ (Married) $£ 1710-£ 2136$ (Single)

Strong financial attractions

- salaries plus TAX-FREE supplements, TAX-FREE terminal gratuities. low-cost accommodation, low taxation and free passages together add up to exceptional real earnings. Starting salaries relate to qualifications experience (the maximum of each scale is shown), while gratuities total 25°, of basic salary Salary-related supplements are paid by the British Government to designated British nationals, (annual maximum is shown). while appointment grants, educational allowances, car loans, medical aid assistance and free holiday visits for children educated in Britain are also provided for those receiving supplements. N.B. Sterling equivalents given are approxima tions only, due to constant exchange rate fluctuations

[^6]

Looking

a

Perhaps we can help!

We have regular contact with hundreds of electronics and electrical companies needing qualified electronics engineers and technicians and TV service engineers.
We can, therefore, help you to find an interesting and well paid job. All you need to do is to return the coupon below or give us a ring. Our service is confidential and costs you nothing.

TJB Electrotechnical Personnel Services 12 Mount Ephraim Tunbridge Wells, Kent

 Tunbridge Wells (0892) 39388

TJB Electrotechnical Personnel Services is a division of Technical \& Executive Personnel Ltd. and is solely concerned with job placement in the Electronics and Electrical Industries
Please note that this service is available only for engineers who are (or will be) available in the U.K. for interview.

Please send me an "Application for Registration" form NAME ADDRESS

TELEVISION IN SOUTH AFRICA

TELEVISION \& ELECTRICAL DISTRIBUTORS LIMITED the MAJOR manufacturers of television receivers in South Africa, manufacturing and marketing the world-famous range of SONY and BLAUPUNKT colour and monochrome receivers, require more FIELD, BENCH and SENIOR TELEVISION SERVICE TECHNICIANS to join their already successful team comprising mainly of personnel from the United Kingdom
Ability, thoroughness, tact and willingness to get involved are essential requirements for these posts at locations throughout the Republic.
This is a challenging opportunity for qualified and experienced RECEIVER SERVICE TECHNICIANS wishing to join a highly successful public company working on the latest television receivers employing advanced electronic techniques.
Salaries range from R6000 ($\mathbf{(3 4 2 9 \text {) p.a. to R9000 }}$ ($\mathbf{\Sigma} 5143$) p.a. dependent upon qualifications and experience.
Financial assistance with immigration can be arranged for suitable applicants and the Company pays a settling-in allowance on arrival. A medical aid and pension scheme is in operation. Company vehicles are provided.
Application and Immigration forms can be obtained by writing to Miss M. L. Fretwell, J. A. Ewing \& Co. (London) Ltd., Ewing House, 108/126 Kings Road, Brentwood, Essex CM 14 4EA.

RF ENGINEERS

Vacancies exist for engineers and physicisis $t 0$ work on problems of electromagnetic interference - investigating generation of noise. modes of electromagnetic interterence - Investigating generation of noise. modes of
coupling and methods of control The Electromagnetic Interference Laboratory is engaged in rf investigations for a wide range of sponsors covering problems arising in complex industrial systems as well as in ships. military vehicles and aircraft The investigations are not confined to the laboratory and opportunities for travel could well exist in the future There are several vacancies for which the qualifications range from HNC to Degree standard and although experience in radio frequency techniques is desirable. consideration will certainly be given to suitable applicants without experience

ERA is an independent engineering organisation specialising in the application of electrotechnology in industry. commerce and the public services Located in pleasant surroundings and amenities include full canteen facilities and an active Sports and Social Club

Please write or telephone for an application form to: The Personnel Office, ERA Ltd., Cleave Road, Leatherhead, Surrey KT22 7SA, Leatherhead 74151.

UNIVERSITY OF READING Department of Linguistic Science EXPERIMENTAL OFFICER

required to be responsible for the technucal services provided by the Phonetics Laboratory. Equipment in use includes PDP8E computer and a wide range of peripherals for spectrum analysis at audio frequencies. Applicants should be able to design peripheral and suitable interfaces and be familiar with audio recording up to professional standard. Equipment for CCTV, high speed photography and electromyography will be acquired shortly. Maintenance of all equipment is carried out within the laboratory.
Salary within the range £2766-£5418 per annum according to qualifications and experience.
Apply with full particulars and names of two referees, quoting Ref. TWW23A, to Assistant Bursar (Personnel), University of Reading, Whiteknights, Reading, Berks. RG6 2AH.

IMPERIAL WAR MUSEUM. Department of Sound Records. Applicants are invited for a post which involves a variety of both technical and library-type duties. The Department of Sound Records has a wide range of professional equip-
ment and facillties and the post ment and facilities and the post
would suit a young person InterestWould suit a young person interest-
ed in working in the audio field. Full training will be provided by an experienced Audio Technician. Candidates must have a strong technical aptitude and be capable of careful and systematic work. The post is graded Library Assistant 2 and the starting salary is from E 28.15 at age 18 to $\mathbf{5 4 5 . 2 1}$ at age 23 and over rising to $£ 50.91$. A Pay Supplement ranging from E 4 pw at age 16 to $£ 6 \mathrm{pw}$ at age 18 and over is payable in addition. Leave is 3 weeks 3 davs per year, rising to 4 weeks after 7 years' Service. There are nrospects of permanent and pensionable emplovment. Please apply in writing to the Fstabllshment officer. Imperial War Museum Lambeth Road, Lontin SEI 6 HZ .

TEST ENGINEERS

S. LONDON

UP TO £2,800 p.a.
Dolby Laboratories is a young, go-ahead company with a world-wide reputation for their audio norse reduction system

Test Engineers with a good understanding of basic circuits are required to test and troubleshoot professional audio P.C.B.s and equipment. This is interesting and well paid work. We give over four weeks holiday per annum.

Write or phone: Mr. C. Keys

Dolby Laboratories Inc.
346 Clapham Road London, SW9 Tel. 01-720 1111

0

AGreatopportunity for

 TV Engineers in South Africa £4800+With the introduction of Television into South Africa, OK Bazaars are busy capturing the major share of the market. As the largest retail organisation in southern Africa we're building up a comprehensive and professional 'T'\' service operation and with our extensive involvement in this exciting new development, we are able to offer outstanding prospects to experienced personnel. Many British Technicians whostarted with us less than 12 months ago are already in management and senior technical positions and we now need to enlarge our already substantial staff loy appointing addlitional Technicians in various centres throughout the Country.

Initially, the work will entail carrying out repairs in the field and in the workshops, keeping records of time and materials involved and feerling back information to management on recurrent faults and

defects in apparatus.

Essential requirements are a recognised apprenticeship or training course on radio and TV'servicing and at least three years' experience in colour T\'.
Applicants shourd also persess a City \mathbb{X} Guilds Final Certificate in radio and TV with RTEB colour endorsement or an equivalent qualification

Salary will be at least $£ 4800$ per annum with an extensive range of fringe benefits including Company assisted pension and medical aid schemes, full air passages, initial hotel accommodation and relocation allowances.
Interviews will be held in the UK, so write now with details of age, qualifications and experience to OK^{K} Bazaars, 20, Soho Square, London WiA IDS, including a telephone number where you can be contacted.

Live and work in the sun

ОНОНОНОНОНОНОНОНОНОНОК

TEST/SERVICE ENGINEER

Able to work on own initiative with digital circuitry.

Please telephone or write
MORFAX LIMITED

Willow Lane
Mitcham
Surrey CR 4 4TD
01-6487040
(5599)

CAPITAL
 APPOLTMENTS LTD.

FIELD SERVICE ENGINEERS (ELECTRONICS)
It you're not earning over $£ 3,500$ p a plus a car - then you had better contact us!

34 Percy Street, Landon, W. 1 $01-636 \mathrm{ge5} 9$ (day) ar
5500835 (evening)

PInNer
 Opportunities in the ELECTRONICS FIELD

We have selected from many vacancies those which offer ex ceptivinal cereer prospects and jub interest. If you have experi ence in design, test, sales or service and wish to progress your career, please telephone Mike Gernat B Sc who is advis my on these opportunities
E.M.A. Management Personnel L'td. Burne House, 88/89 High Hotborn London WC1V 6LR 01.2427773

ENERGETIC

YOUNG DOGSBODY

with some electronics training for better, experiencel) required as assistant in maintenance departnient in enterprising secording studio. An exacting position with good prospects for an intelligent and conscientious person. CONTACT ROB HAGGAS. $\begin{array}{ll}01-586 & 1271 .\end{array}$

THE OPEN

 UNIVERSITYfaculty of technology

Research Post in Telecommunications

The research topic is in the field of telecommunications and the vacancy is for a suitably qualified graduate based at Walton Hall. The successful applicant will be concerned with the development of a low-cost acoustic modem for use with remote teaching terminals that are presently under development at the Open University It is envisaged that the project will involve considerable use of computing and microprocessor technology. The salary is on the scale £2766-£3990 per annum plus Ł2766-£3990
U.S.S. benefits
Application forms and further particulars are obtainable, by postcard requests only please, stating sender's name and address, from the Personnel Manager (RT3). The Open University, P.O. Box 75, Walton Hall, Milton Keynes MK 7 6AL. Telephone Milton Keynes 63868/9. Closing date Monday, 28th June, 1976.

A superb location

- particularly for broadening professional and management skills with a 3 -year contract. This land-locked central African state, larger than France, Belgium. The Netherlands and Switzerland combined, has a congenial, equable climate and a wealth of fascinating scenery. Although mainly a broad plateau, Zambia also has spectacular mountains, dense forest, penetrating rivers and vast lakes as well as huge wild life reserves. Large cities and towns containing all the usual modern facilities are linked by excellent road and rail services. Extensive natural resources, copper particularly, have provided the firm economic base for dramatic post-independence progress. Wide-ranging, expanding industries and substantial agriculture, which includes both crops and dairy farming, ensure the long-term continuation of Zambia's prosperity.

Radio Engineer - Aviation

Up to K4416 (c£2870)
Supplement $\mathbf{E 2 8 9 8}$ (married), 11596 (single).

Requirements:

either 5-year apprenticeship, service trade certificate, ICAO certificate or equivalent; knowledge of medium-powered HF transmitters, frequency key shifting, SSB and equipment, medium-frequency non-directional radio beacons plus low and high-powered VHF AM equipment; and knowledge of either (a) VHF, omni-range, automatic VHF, direction finders, distance measuring equipment, (b) instrument landing systems, (c) radar X -band teriminal and PPI talkdown equipment, (d) audio and remote control equipment, public address equipment, airport magnetic type equipment, interoffice communications, underground control cables, impulse and $D C$ switching systems or (e) teleprinter telegraphy (torn tape) and associated page printers, tape recorders (auto heads), printing reperforators, semi-automatic message switching systems.

Responsibilities:

installation/maintenance/overhaul of ground terminal radio communication equipment and navigational aids.

Senior Radar Technician

Up to K5136 (c£3862).

Supplement $\mathbf{6 3 1 5 6}$ (married), $\mathbf{6} 1806$ (single).

Requirements:

G \& GC Level with specialisation in radar or Electronic Engineering Diploma.

Responsibilities:

Controlling a smalt team operating the Meteorological Department's electronic equipment; training, manual drafting, involvement in obtaining new equipment and establishing an instruments laboratory and workshop.

Strong financial attractions

- salaries plus TAX FREE supplements. TAX FREE terminal gratuities; low-cost accommodation, low taxation and free passages together add up to exceptional real earnings. Starting salaries relate to qualifications/experience (the maximum of each scale is shown), while gratuities total 25° of basic salary. Salary-related supplements are paid by the British Government to designated British nationals, (annual maximum is shown), while appointment grants, educational allowances. car loans. medical aid assistance and free holiday visits for children educated in Britain are also provided for those receiving supplements. N.B. Sterling equivalents given are approximations only, due to constant exchange rate fluctuations.

For further information please send full personal/professional details (without obligation), to: Recruiting Officer, Zambia High Commission, 7-1I Cavendish Place, London, W.I.

INTERNATIONAL FIELD SERVICE ENGINEER

Required for our International Mass Spectrometer Service Division based in the UK. A sound knowledge of modern electronics is essential and a working knowledge of high vacuum systems would be an advantage, although training will be given. Applicants should possess City and Guilds or equivalent qualifications. Due to the extensive travel involved, the position is probably more suitable for a single person aged between 20 and 30 years

The Company is internationally renowned for the quality of its products and offers excellent working conditions, including company car pension scheme, superannuation and profit sharing bonus scheme.

Write or telephone for an application form
Service Manager
G Division
LKB Instruments Limired
232 Addington Road
Selsdon, South Croydon. Surrey CR2 8 YD
01.6578822

G.R. International Electronics Ltd

ELECTRONICS ENGINEER

Experienced in the design of consumer audio equipment with particular emphasis on current tape-recording and/or radio receiving techniques The position offered is membership of a small but busy design team. The successful applicant will be able to work with a minimum of supervision under the direction of the Chief Engineer Qualifications are of secondary importance to the ability and willingness to get the job done. The company is situated in a very pleasant part of Central Scotland with many and varied sporing and socia facilities, including an active sports and social club on the company premises Removal expenses will be re-imbursed, and where applicable assistance in re-housing will be given
Please write in the first instance, giving details of age experience, marital status qualification and current salary, to

Mr. J. Bandeen
G.R. INTERNATIONALELECTRONICS LTD Almondbank, Perthshire, Scotland, PH1 3NQ

Broadcasting \& Television Project Staff

As consultıng engineers we are compiling a register of professionally qualified broadcasting and television engineers who would be willing to undertake assignments in the UK and overseas on contract terms for short periods of from 3 to 12 months in connection with preliminary planning, feasibility studies, systems designs, project management, supervision of installation and acceptance testing of broadcasting and television studio and transmitter projects
Applicants should have experience of the planning and installation of such projects, preferably gained overseas Experience limited to operations and maintenance will not be acceptable.
Interested applicants should send brief details of relevant technical qualifications and experience to

LEICESTER POLYTECHNIC
School of Chemistry
ELECTRONICS TECHNICIAN

To be responsible for (a) the design, development and construction of protolype electronic equipment for chemical applications; (b) the maintenance of existing equipment.

Successful applicant must have a knowledge of analogue and digital knowledge of analogue and digital
electronics and will probably have at electronics and will probably have at
least two years experience least two years experience
subsequent to taking a Full Technological Certificate, HND, or a degree in Electronics.

Salary: E2,922-£3,702 per anr.um plus additions for certain qualifica. tions.

Apply in writing, giving full details, to Staffing Officer, Leicester Poly. technic, P.O. Box 143. Leicester LE 1 9BH.
(5565)

Kingston Polytechnic CCTV Unit
ASSISTANT
ENGINEER/PRODUCER
for the maintenance and operation for the maintenance and operation
of TV cameras and recording equipof TV cameras and recording equip-
ment. The ability is required to help ment. The ability is required to help
staff and students in preparation and making of short TV pro grammes. HND electronics or applied physics or equivalent necessary plus keen interest in photographic presentation prob-

lems of TV work.

Salary grad
Salary grade AP3/4 E2922-£3702 + £261 London al lowance
Application form from Assistant Registrar, Kingston Polytechnic, Ponhyn Road, Kingston upon Thames KT1 2EE. 01-549 1366.
(5580)

AGENTS REQUIRED to sell quality electric soldering instruments and ancillary equipment to Industry. Commission only basis. Suit persons selling allied products who require additional income. Good
potential. Box No. WW 5600 .

Electronics Development Engineers

 A challenge to your electronic ingenuity.

Pantak (EMI) of. Windsor are world-leaders in production of X-ray equipment, and supply the sophisticated high voltage power source units for the internationally acclaimed EMI-Scanner

Continuous development plans include refinement of the power sources to permit a degree of operational accuracy approaching nil tolerance. To achieve this, the Company's development engineering staff, housed in a new production block, is to be increased by several electronics engineers.

Although this is a highly specialised work it requires broadly based, non-specialist experience in electronics development and the ability to fulfil a wide variety of functions, such as production liaison and design and development of own test equipment. Engineers selected will be expected to work on their own initiative with very little supervision.

Senior Engineers should have HNC or degree-level qualification and a minimum of 5 years' electronics development experience. Junior Engineers require at least ONC and 2 years' electronics development experience.

Salaries will take full account of experience, ability and qualificalion. Successful candidates will enjoy EMI Group benefits - including future opportunities for advancement. not only with Pantak, but also with other companies in the Group. Relocation expenses will be paid where appropriate.

Pantak is easily accessible from the M4 (Junction 6), A4, A332 and A355, and parking space is a mple.

Applicants of either sex will be considered.
To apply, please telephone or write to Geoff Smith, Pantak (EMI) Limited, Vale Road, Windsor, Berks SL4 5JP. Telephone

A leading Radio Manufacturer in
 JOHANNESBURG, SOUTH AFRICA

requires an experienced

DEVELOPMENT ENGINEER

Responsible to the Chief Engineer, but able to work on his own initiative, on radio development work.

Applicants should be qualified to at least HNC/HND, and are unlikely to have less than five years' production experience in the domestic radio field, including a close association with design and manuiacturing activities.

The requirement above else is for a practical engineer with both the ability and experience to make a genuine contribution to the engineering team

Salary: $£ 6000$ with additional benefits including pension and sickness scheme together with full assistance with relocation.

Apply now with full details of your qualifications and experience to Mr. T. Willis

> P.O. Box 43121
> INDUSTRIA
> 2042
> S.A.

CIRCUIT DESIGN ENGINEERS SYSTEMS TEST EMGINEERS SALES AND CONTRACTS ENGINEERS

ELECTRONICS TECHNICIAN

AREA MEDICAL PHYSICS DEPARTMENT Iccated at the Nottungham General and University Hospitals and Medical School regures a technician for a key position in the Electronics and Instrumentation in the Electronics and Instrumentation
Section which is involved in research and development projects, equipment and development projects,
evaluation and servicing.
Applicants should have qualifications of ONC or HNC or equivalent and relevant experience though not necessarily in medical electronics.
Salary £2931-i3834 +E312 supplement to earnings.
Further detals from Area Chief Technician Tel (0602) 46161, Exi. Techn
641
Application form from Sector Admin. Istrator Genneral Hospital, Park Row. Notingham

155961

Training Officer (Audio) RET AIL SALES STAFF

The range of audio merchandise being sold in our retail branches is becoming increasingly complex and sophisticated, extending from simple transistor radios to expensive music centres. This situation is making greater demands on the sales staff concerned, both in the form of basic product knowledge and in answering queries from increasingly knowledgeable customers.
We wish to appoint an Audio Trainer, who will be responsible to the Training and Development Manager for the training of retail branch staff. The successful applicant will probably be aged under 40 and could come from one of a variety of backgrounds, but the ability to communicate technical ideas in a simple language, a knowledge of electronics and enthusiasm for the subject is essential. Evidence of a successful record in education and/or training will be expected. The appointment is based at our Nottingham Head Office but a limited amount of travel and some evening work will be involved. It is open to male and female candidates
Conditions of employment are first class and include a Profit Sharing Bonus Scheme
Please apply in writing to: John Hobbs, Employment Services Manager,

Station Street.
Nottingham NG2 3AA.

ELECTRONICS DESIGNER. We are a small company situated in S. W. London. We require a designer to join our young electronics team working on professional equipment. He/she will design new circuitry and update present equipment in the digital, analogue and audio
fields. Some experience in similar fields. Some experience in similar
areas is essential. The company areas is essential the company operates a profit sharing scheme.
Telephone Mr Hamill on $01-5421171$ for an application form.

LEICESTER POLYTECHNIIC School of Chemistry
 ELECTRONICS TECHNICIAN

 To be responsible for (a) the destgn, development and construction of prototype electronic equipment for chemical applications; (b) the maintenance of existing equipment. Successiful applicant must have a knowledge of anallogue and digitbal electronics and will problably have at least two years' experience subsequent to taking a Full Technological Certificate, HND, or a degree in Eliectronics.Selary: £2,922-£3,702 p.a. plus additions for certain quallifications.
Apply in writing, giving full detadis, to Staffing Onicer, Leicester polytechnif P
(5565)

[^7]Staffordshire Area Heath Authority Mid-Steffordshire Health District STAFFORDSHIRE GENERAL INFIRNARY

ELECTRONICS

 TECHNICIANSalary E2931-£3834
in 7 Annual increments
This is an interesting new post established to provide a maintenance service to the engineering electronic equipment
Applicants shall be qualified to ONC Applicants shall be qualified tandard and have had constderable experience in the maintenance of electronic equipment as found in the Health Service
Apphications Forms and Job Description from Mr C B Denne, District Works Officer. Mid Staffs Health District. Coton Hill Hospital. Weston Road. Stafford Tel Staftord 57238
(5564)

RADAR/RADIO ENGINEER REQUIRED

Duties will include the maintenance of Airport ground radars, navigational aids and communications equipment. Technical qualifications are desirable and it is essential that applicants should have considerable experience and be capable of working without close supervision.
Salary scale $£ 2529 . £ 3282$ plus shift allowance. Salary claim pending additional $£ 312$ p.a. anticipated from ist July.
Written applications, giving age, experience and qualifications, to the Aipport Commandant, Municipal Airport, Southend-on-Sea, Essex.

THOMSON FOUNDATION
 TELEVISION COLLEGE
 require
 ENGINEERING LECTURER

To join a team in the training of senior engineering staff from overseas television stations, in studio and transmission equipment. maintenance and operations. The post will be based in Glasgow with occasional overseas visits.
Minimum Qualifications: H.N.C City \& Guilds Full Telecommunications Certificate or equivalent: 3 years' professional broadcasting experience.
Salary: £4,266-£5,256 incremental. Contributory pension scheme
Application forms from: The Principal، Thomson Foundation Television College. Kirkhall House, Newton Mearns, Glasgow G77 5RH (5569)

MEDICAL PHYSICS TECHNICIAN GRADE II for Guy's Hospital De partment of Clinical Physics \& Bloengineering. He/She will be a member lof a team of Physicists and Technicians engaged in a variety of clerical instrumentation projects. ONC/HNC or higher qualitfication required, plus 2 years elec tronics experience in NHS Techni cians Grade III. Slalary scale $£ 3,558$ e4,581 pluse $£ 312$ London Weighting plus ff per week. Apply to Personnel Department, Guy's Hospditall. St Thomas Street, London SE1 9RT Tel. 01-407 7600, Ext. 3462 (5578

TRAINEE ENGINEER required by broadcast television production oompany. Applicants should have electronic engineering background,
wreferably
associated
with preferably associated with television and a keen interest in pro-
duction. Ring John Beedile 01-734 duction. Ring John Beedle $\begin{aligned} & \text { 01-734 } \\ & \text { 9151. }\end{aligned} \mathbf{(5 5 7 1)} \mathbf{~}$

PRECISION POLYCARBONATE CAPACITORS

\qquad
\qquad
\qquad

\qquad
\qquad

MARCO TRADING

(Dept. D1)
The Old School. Edstaston. Nr. Wem Shropshire
Tel. Whixall (Shropshire) [STD 094872) 464/5

LICENCE OFFERED

ACDUSTICALLY ADJUSTABLE LOUDSPEAKERS. We wish to apworld's first Monitor Loudsperakev with acoustic adjustability; the revolutionary Omal Ambinmic TL6 It has no competition and its many transmission line (patented) uncoloured sound reproduction of outstanding quality. For full details Managing Direcior Omal Ciroup Ltd. Ontal House, North Circular Road, London. NW10 7UF. England.

IBM GOLFBALL 735 I/ 0 TYPEWVITERS Coding similar to EBCDIC will accept normal or sprocketed paper Supplied in working order with photo copy of IBM interface manual Each machine serviced and tested $£ 100+8 \% \text { VAT }$ As above but modified to take office range of goltbalis 2 $118+8 \%$ VAT (including new golfball) UK delivery by Securicor + packing 1750 Overseas air treight or surface at $\cos :$ RELAYS Vailey 2 p c/o 185!) 65p (12p) Varley 2p c/o 2800 65p (12p) PXB 2p c/o 1500) 40p (1 2p) BNC Free SKT BL L1339/J 35p (10p) BNC Chassis SKT SCRND L1339/FS 35p (10p) PAPST (or simular) Fans $4 \frac{1}{2} \times 4 \frac{1}{2} \times 2$ in $100 \mathrm{cfm} 50 / 60$ e3.50 (65p) c/s ELECTROLYTICS $1000063 v$ £ 1 (30p) 2.800-100v 70p (25p) 2240~100v 70p (25p) 4.000 - $35 v$ 50p (20p) 2.000 - $50 \vee 35 p$ (11 p) 4.060 70 v 80p (25p) $10.000 \quad 16 \mathrm{v}$ 50p (20p) EX COMPUTER PC PANELS $2 \times \mathbf{4}^{\prime \prime} 50$ boards $£ 2.40$ (62pl QH butbs 12 v 55 w 60p (10p) 250 mixed resistors 60p (18p) 250 mixed Capacitors 60p (18p) Small electrolytics $2.2 u 10 v, 10 u 35 v 50 u 40 v, 100 u 40 v$. 100 : 6v. 150 u 10 v .64 u 10 v .300 u 10 v 200 a 10 v 12 for 45 p (12 p) - PIHER PRESETS 100 mw 220. 470, 1 K .447 . 10 K . 47 K . 100 K 220K. 12 for 50p (12p) Reed relays 6 v coil h / d contacis 5 for $£ 1$. (20p) Reed inserts h/d contacts 10 for $£ 1(12 \mathrm{p})$ TRANSFORMER $6 v 500 \mathrm{~mA} 75 \mathrm{p} / 7 \mathrm{BD}$) TRANSFORMER $31 \vee 330 \mathrm{~mA} \mathbf{6 0 p}$ (30 p) Add $\mathbf{2 5 \%}$ VAT 10 items marked others 8\% KEYTRONICS Shop open Monday to Saturday 9.30 a m-2 p.m 332 Ley Street, Iford, Essex $01-5531863$

THE SCIENTIFIC WIRE CO

Copper - Nickel - Chrome - Eureka

- Litz - Manganin Wires Enameiled - Silk - cotton - Tinned Coverings
* No minimum charges or quantuties
- Trade and export enquires welcome

S A.E brings List
P.O. BOX 30, LONDON E4 9BW

VALVES WANTED

VALYES Good prices Types Cviz747
CV279世, CV2792, CV2130, CV2131
CV345. CV450. Thone 021-373 4357.

EXCLUSIVE OFFER

WORLD-WIDE RANGE NEVER BEFORE OFFERED

HIGHEST QUALITY 19 RACK MOUNTING CABINETS

\& RACKS CABINETS					
$\begin{aligned} & \mathbf{O}_{\mathrm{u} \text { ur }} \mathrm{R} \end{aligned}$	Heikht in ins	$\begin{aligned} & \text { Width } \\ & \text { in ins } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { in ins } \end{aligned}$	Rack Panel Space in ins	Price
CR	69	30	20		£24.00
${ }_{\text {FA }}$	85	${ }^{22}$	${ }_{22}^{36}$	${ }^{160}$	${ }_{\text {E22, }}^{\text {E200 }}$
${ }_{\text {FH }}$	15	${ }_{21}^{25}$	${ }_{17}$	11	${ }_{8}^{172.00}$
FJ	15	21	15	12	£12.00
L16	11	21	17	9	155.00
113	16	20	12		E15.00
L48	10	20	10	9	E15.00
$\underline{14}$	${ }_{52} 17$	21	17	14	${ }^{\text {E } 15.00}$
LLIO	52	21	18	46	E15.00

	OPENRACKS			
			Ruck	
Our	Heeight	Charnet	Panel	
Ref	in ins	Depth	Space	Base
RG	66	2	51	14

We have a large quantuty ot "bits and pieces" "u cannot list - please sendus your requremen can protably help - all enquiries answered	
Belling Lee 75 ff . Sky Tower. self supporting Rhode \& Schwarz SBR sig venf 16.62 .4 ginc Airmec 702 sig gen 30 cyc 30 kcs Murhead D6699 Analyses S.E 4000 System Units. Large Aerial Turring Únits Murhead Hydraulic Relays Lavoie OS-62 Oscilloscoyes $115 \mathrm{~s} 15 \mathrm{~m} / \mathrm{cs}$ Diry dry	
45 feet Uniradio 4 Co-ax 50 ohms Stelma RTT Scopes	
Baluns Pro	
(unused)	

```
Imslide Cabinet Sheff Sliders
- Remscope Storage scope with iracer ...... E3.00 M.V.R. Action Replay 23 sec. Videodisc Unit 1150.00 M V.R. Action Replay 23 sec. Videodisc Unit P.U.R.
Advance HI Signal Generaiors. \(15 / 50 \mathrm{kcs}\) E18.00
Varian VAI \(75 E A\) backward Wave Osillators. - Tally \(5 / 8\) rack Tape Readers 60 cps 2KVA Auto-Transtormers 11 foot 12 inch Latice Steel Mast Sections Cintei 2 KV Power Supplies
Cawkell FU 4 Band Pass Filt E48.00
C65.00
\(E 22.00\) Cawkeifer 4 Band Pass Filler Testers \(£ 35.00\)
\(£ 60.00\)
``` We have a quantity of Power Transformers 250
watts 10
\[
\begin{aligned}
& \text { We have a quantity of Pouer Transformers } 250 \\
& \text { watts to } 15 \mathrm{KVA} \text { at voltages up to } 40 \mathrm{KV} \text {. Best } \\
& \text { quality at low prices. Lists available. }
\end{aligned}
\]
\[
\begin{aligned}
& 400 \text { chanel Puise Height Spectrum } \\
& \text { Analysers. }
\end{aligned}
\]
We have a varied assortment of industrial and
professional Cathode Ray Tubes available. List on
request

AUDIO AND INSTRUMENTATIONTAPE RECORDER-REPRODUCERS

Ampex FR-1100, 6 speeds, stereo \(1 /{ }^{\prime \prime}\)
Ampex FRG00 4 speeds, 7 tracks \(1 /{ }^{\prime \prime}\)

D.R.I. RMI. 4 speeds 4 tracks

EMI R30IG. 2 speeds, 2 tracks

Prices of above \(£ 70\) to \(£ 400\)

\section*{COMPUTER HARDWARE}
* LINE PRINTER, High speed 1000
* TAPE READER. High-speed 5/8 track 800 cpm
* CARD READER 80 col .600 c.p.m Prices on Application PLEASE ADD CARRIAGE AND AT APPROPRIATE RATE TO ABOVE P. HARRIS

ORGANFORD-DORSET
BOURNEMOUTH (O202) \(76505^{9}\)

\section*{GREENBANK ELECTRONICS}

GBEENBANK ELECTRONICS (Dapt. W7W)
94 Now Cheater Road, Now Forry, Wirral, Morsoyside
L62 5AG, Engend. Tol: 051-645 3391

\section*{DIRECT COMMUNCATIONS}

Division of Direct Electronics Ltd

\section*{INTERCOMMS \& TELEPHONES}
- New Halan Designed 2-Way Telephone Intercomm Wall/Desk with 30 metres cable. \(£ 1995\) (11) Operates on 6 to 9 v batt or power supply
- As above. 2-to 6 -way Wall Model. £ 1065 Desk model inc term block. \(£ 1265\) per inst 2 . to 11 -way wall model. \(£ 1150\) Desk inc term block \(£ 1345\) per inst (50 p) Colours. ivory and grey blue
- Superior 2- to 6 -way Siemens \& Halske Wall Intercomm with des
\begin{tabular}{l}
term block and cord Per instrument \(\mathfrak{E} 10\) (packing and carriage 50 p) \\
Push-button Intercomms from \\
\hline
\end{tabular} 2. 10.21.way with multi-channel and conference Push-button Intercomms trom \(2 \cdot 10 \cdot 21\).way with multi-channel andiconerence the above prices (It each unit) Suplyance Phones Singld ic for each additional button and Internal Phone up to 20.way (+ 50p per way)
- Transistorised 2 -way Intercomm with 6v Power Supply and 50 ft cable, \(£ 1175\) (i) 1) - Transistorised batt-op 3 -way Intercomm (Master - 2 subs) \(£ 2395\) (i 1) 4 -way (Master - 3 subsl. \(亡 2850\) (Ei1)
- Wireless Intercomm (just plug 2 or more into mains - no wires required) \(£ 20\) pair E'1). Ideal for baby alarm
- Auromatic Instruments Strowger-compatible or PAX working New P O Types 706 and 746. £15 722 (Trimphune). £4165 Refurbished from £̌5 00 (í1) Also Special and Forergn types
- Ultra Modern Types Gondola (dial in hand set) \(\mathfrak{E} 3995\) Charleston (Candlestick) styles from 88100 other superb Reproduction and Modern styles available in wood acrylic leather, onyx. etc Come and see
- Plan and Key phones for Home and Export New or refurbished
- Telephone amplifier (1 way) \(£ 5.95\) (35 p) Hands.Free Tele Amp (two-way conversation) £9 50 (50 p) With recording facility \(\mathrm{E}, 1250\) (50 p)
- Telephone terminal blocks 3 -way 45p. 4-way 75 p. 6-way E1 25. 24 -way E2 75 48 -way \(\ddagger 375\) (20p)
- 95 a Jack Sockets \(£ 150\) (20p). 420 plugs \(£ 150\) (20 p) Less \(10 \%\) per dozen
 - Teleghone cable Per metre, 4 -way 18 p . 6 .way 20
(Add \(10 \%\)) Parred cable also avalable up to 50 pair

 - Auto Exchange 10 extension +1 circuit Power supply incorporated e 175 (carr ireel New Transformers Extensive range in stock or quick delivery Auto isolating. H V. Cherger. Equipment. Output. etc 12 va to 6000 va (6 Kva) from E 170 Please enquire - Ball point stretch pens, self-adhesive. attach to anything, anywhere. 95p (20p) - Telephone locks with 2 keys. 95p (20)

Add VAT \(=8 \% \quad *=25 \%\) on post pard price
trade enquiries welcomed
Many surplus bargains still available at exceptionally low prices All must be cleared 34 LISLE STREET, LDNDON, WC2H 78D - Tel: 01-437 2524

\section*{Economise on Semiconductors}

All prices include VAT - by return service
* Lower price 741C
* Lower price CMOS

\section*{SILICON SEMICONDUCTOR SERVICES}

41 Dunstable Road, Caddington, Luton LUI 4AL

The DIOTESTOR detacts faulty diodes and transistors when atill in circuit withour need for unsoldering

BRITEC LIMITED
17 Devonshire Rond, London SE 23 3E'N Tel. 01-6998844 Telex: 896161

LINSLEY-HOOD 75 watt amplifier spares by return. BDY56 51.65 . BD529 55p. BD530 55p, 2N5457 35p. 2N5450 45p, BF528 35p, MPSA 40p, BFR39 25p, BFR79 25p, BC109C 12p,
BC182L \(10 \mathrm{p}, \quad\) BC184L, \(11 \mathrm{p} . \quad\) BC212L BC182L 10p, BC184L \(11 \mathrm{p} . \quad\) BC212L
\(12 \mathrm{p}, \mathrm{BC} 214 \mathrm{~L}\) 13p. IS920 5p, MC1310P 12p, BC214L 13p. IS 920 5p, Interference suppression kit (also reduces preamp noise). with rull instructions 11.35 . Inclusive prices. \(P\) \& \(P\) 10p. All components brand new and guaranteed. SAE for list. I. G. Bowman (Dept WW). 59 Fowey Avenue. Torquay Devort.

STEREO CASSETTE MECHANISMS. Similar to those used in low-noise cassette deck Ww May. Choice of side or top loading. Complete with heads and funt S.A.E. Box No. 5497

CREED 54/N4 TELEPRINTERS in good condition enquiries to:-D. M. Hogan, 7 Valley View. Landkey Barnstable, Devon. Tel. Swinbridge

VALVE OUTPUT transformers sectionalised silcor laminations. KW 15 watts (Two) 4 Kk 20 watts (Two). 150 HM Secondaries. Offers.
(5558)

SOUND SENSE
BUUGET KITS
MIX WITH
OR CUSTOM BUILT ARTRIDGE ELECTRONICS
MANUFACTURERS OF AUDIO
MIXERS, BIG AND SMALL, FOR ALL PURPOSES
\(x=1\)
21-25 Hart Road, Benfleet, Essex
Phone: (03745) 3256

FREQUENCY SYNTHESISER. FIUKE model 6160A/DX \(4-30 \mathrm{MHz}\) in 1 Hz model 6160A/D.
steds brand new. boxed full spec steps brand new. boxed sentern send s.a. Antenna tuning svstems model A.T.S.- 2 technical material cord. \(2-30 \mathrm{MHz} 1 \mathrm{KW}\) continuous at \(100 \%\) mod. Forward and reverse power. Measurement brand new boxed floo. Branson, 111 Park Road. Peterborough.

RECHARGEABLE NICAD BAT. TERIES. Pencell 'AA', 94p; sub 'C'. £1.18; 'C', £1.92; 'D' £2.59; PP3. \&4.48; Chargers for 'AA' sub 'C' £4.48. 'C' \& 'D' £4.98; 'PP3'. £3.98. Others. All prices includes VAT. Add \(10 \%\) Post and package. S.A.E. for price list plus 25p for informa1 Denholm Road Sutton Coldfelid west Midlands 021-354 9764 (5586)

30 FERRUTUTOR TAPE RECORDERS FOR SALE. New 1968. 19 are in good order, 11 in need of some ably maintained Make well-known for durability. Available South Lon. don from end of June. Offers and inquiries to Box WW 5588 .

WE INVITE ENQUIRIES from anywhere in the World. We have in stock several miluon carbon resistors th, \(\frac{1}{2}\), and 1 watt. \(\frac{1}{2}\) milhion
whire wound resistors 5 and 10 watt - 1 million capacitors -1 million electrolytic condensers - \(\frac{1}{2}\) million transistors and diodes, thousands of potentiometers, and hosts of other components. Write, phone or call at our warehouse - Broadfields \& Layco Nisposals Ltd., 21 Lodge \(01-4450749.4452713\). London, \({ }_{(5097)}^{\text {N. }}\)

PRINTED CIRCUIT BOARDS. High techniques 11 Old Witney Road Eynisham, Oxford. Tel. Oxford (0865) 880645. (5525)

60 KHz MSF RUGBY RECEIVERS. BCD TIME-OF-DAY OUTPUT. High performance, phase locked loop radio receiver. 5V operation with assembled and tested unit 111.12 (prices include postage and V.A.T.) Also available low power receiver with signal and audio outputs. Send for detaills Toolex, Sherborne (4359) Dorset.

\footnotetext{
DIGITAL CLOCK CHIP, AY-5-1224 with data and circuit diagram (16 mm high) type economy DL/747 only \(£ 2.04\) each plus VAT, post free. Greenbank Electronics, 94 New Chester Road, Wirral, Merseyside L62 5AG.
}

VACUUM is our speciallty, new and secondhand rotary pumps, dif fusion Sillicone rubber or varnish cors gassing equipment from fat y out Barrett (Sales) Ltd. 1 Mayo Road Croydon. 01-684 9917. Mayo Road
C.R.T. REGUNNING PLANT. New and secondhand reconditioned B/W. Barretts, Mayo Road, Croydon Surrey. CRO 2QP. (36)

QUANTITY OF MARCONI SIGNAL GENERATORS type TF144G. £25 each. Cash with order. Carriage forward. - Contact Neilh Broady. Ascot (Berks) 23422. Office hours 16MM B \& H 631 Sound projectors
c/w speaker and transformers \(£ 135\). - Hilton Cine, 9 West Hill, Dart ford -T. 20009.

\footnotetext{
FOR SALE-24 Pye "' Ranger" and 19 Pye "Vianguard . Mobile Radio Sets with associated equip-
ment consisting of 38 Control ment consisting of 38 Control rate speakers and 40 micnophones. Equipment does not comply with current Government specifications and is sorap. Offers to The Chief Constable. Pollice H.Q.. Dumfries. by 31 st May. 1976 . \(\quad\) (5570)
}
\begin{tabular}{|c|c|}
\hline NEW PEAK & \begin{tabular}{l}
 \\
PUBUC ADORESS: : SOUNO REMFROCEEENT
\end{tabular} \\
\hline & \\
\hline & \\
\hline \begin{tabular}{l}
meter specitications it
the IBA EBU and BPO \\
The circuil board is designed to mourt on the rear of
\end{tabular} & +5 kz Fixed Shift Circuit Boards for WW July 1973 article. \\
\hline & SPECTRUM SHIFTER \\
\hline & \begin{tabular}{l}
SURREY ELECTRONICS \\
Sumox \\

\end{tabular} \\
\hline
\end{tabular}

\section*{COLOUR, UHF AND TV SPARES,} COLOUR, UHF AND TV SPARES,
Lists on request. "Wireliess World' TV Tuner and FM Tuner projects by D. C. Read. Kits of parts available. JAPANESE SOLID STATE
COLOUR CHASSIS for the experi. menter. Includes IF. Decoder. CDA. Timebases, output stages. etc. Incl. circuit. Brand new. \(£ 20\) p/p \&1.50. New Cross Hatch kit, Aerial Input type. No other connections. Battery operalted portable. Incll. Sync \& UHF Modulator
units fil Addion Grey Scale kit, units
\(£ 2.90^{*}\)
\(\mathrm{p} / \mathrm{p}\)
Add-on Crey Scale Kit,
45 p. kit for colour and mono \(£ 17.48^{*}\) p/p 80 p . Signal Strength Meter kit f18*. p/p 70p. 625 TV IF Unit, for Hi-Fi amps or tape recording \(£ 6.80\)
\(\mathrm{p} / \mathrm{p} 65 \mathrm{p}\). Decea Colour TV Thyris. p/p 65p. Decea Colour TV Thyristor Power Supply Unit, incl. H.T..
L.T.. etc. Incl. circuits \(£ 3.80 \mathrm{p} / \mathrm{p}\) L.T.. etc. Incl. circuits \(83.80 \mathrm{p} / \mathrm{p}\)
95 p . Bush CTV 25 Power Supply Unit. inct. H.T., L.T., etc. E3.20 p/p £1.20. Bush CTV 25 Convere3.60 p/p 80p. Philips single stand convergence units complete, incl 16 convergence units complete, incl 16
controls, \(£ 3.75 \quad \mathrm{p} / \mathrm{p} 75 \mathrm{p}\). Colour Scan Coils, Mullard or Plessey \&6 \(\mathrm{p} / \mathrm{p} 80 \mathrm{p}\). Mullard AT1023/05 or Plessey Converg. Yoke \(£ 2.50 \mathrm{p} / \mathrm{p}\)
55 p . Mullard or Plessey Blue Laterals \(75 \mathrm{p} p / \mathrm{p} 30 \mathrm{p}\). BRC 3000 type eran coils \(12 \mathrm{p} / \mathrm{p} 80 \mathrm{p}\). Bush CTV 25 Scan Coils \(82.50 \mathrm{p} / \mathrm{p}\) 80p. Delay Lines: DL20 \(£ 3.50\) DL40 £1.50 DL1E, DL1 \(85 \mathrm{p} \quad \mathrm{p} / \mathrm{p} 40 \mathrm{p}\). Lum. delay lines 50 p p/p 30 p . Bush/Murphy \(\begin{array}{lllll}\text { CTV } & 25 & 3 / 174 & \text { EHT quadrupler } \\ \text { £8.50 } & \text { p/p } & 75 \mathrm{p} & \text { Special }\end{array}\) £8.50 p/p 75p. Special offer colour oriplers, ITT TH25 1TH £2 GEC 2040 £1.75 p/p 50p. Philips G8 Panels. part complete, surplus/salvaged: £2.25, T Base \(£ 1\) p/p 70 p CRT £2.25, T. Base \(£ 1\) p/p 70p. CRT Base 75p p/p 30p. GEC 2040 Decoder panel for spares \(£ 3.50 \mathrm{p} / \mathrm{p}\)
70 p . VARICAP TUNERS UHF. ELC \(1043 \quad £ 4.20\), ELC \(1043 / 05\) \&5 VHC
 caps \(61.50 \mathrm{p} / \mathrm{p} \quad 35 \mathrm{p}\). SPECIAL caps \({ }^{61.50} \mathrm{p} / \mathrm{p}\) 35p. SPECIAL
OFFER: RBM 6 psn. Varicap control unit \(£ 1 \mathrm{p} / \mathrm{p} 35 \mathrm{p}\). UHF Tuners transd. incl. slow motion drive £3.80. 4 Psn , and 6 PSn . push button transd. \(£ 4.20 \mathrm{p} / \mathrm{p} 70 \mathrm{p}\). Philips. Bush. Decea integrated UHF/VHF transd. tuners \(54.50 \mathrm{p} / \mathrm{p} 80 \mathrm{p}\). Thorn 850 dual stand time base panels 50 p . Philips 625 IF panel iincl. cct. 50p. p/p 65p. VHF Turret tuners AT 7650 for KB Featherlight. Philips 19TG170, GEC 2010, etc. 2.50. Pye miniature incremental tuners \(£ 1\). Fireball tuners, Ferguson. HMV, Marconi \(80 \mathrm{p} p / \mathrm{p}\) all tun ers 70p. Mullard Mono scan coils or Philips, Stellia, Pye. Ekco Felection LOPTs popTs available selection LOPTs, FOPTS available for most popular makes MANOR SUPPLIES. 172 West End Lane. lers welcome. (Nos. 28, 159 buses lers welcome. (Nos. 28. 159 buses and British Rall). Mail Order: B4 and British Rall. Mail Order: \({ }^{64}\)
Golders Manor Drive, London, N.W.I1. Tel: 01-794 8751. V.A.T. Please ADD 12 \(\frac{1}{2} \%\) TO ALL PRICES (EXCEPT WHERE MARKED * VAT \(8 \%\)).
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[t]{14}{*}{\begin{tabular}{l}
VHF-UHF \\
MANUAL \\
by D. S. Evans. Price E5.60 \\
ELECTRONICS POCKET BOOK by P J McGoldrick PRICE £4.00 SERVICING WITH THE OSCILLOSCOPE by \(G \mathrm{~J}\) King \\
PRICE \(£ 4.80\) \\
99 WAYS TO KNOW \& USE YOUR ELECTRONIC CALCULA. TOR by L E Frenzal PRICE \(£ 4.00\) MINICOMPUTERS \& MICRO. PROCESSORS by \(M\) Healey PRICE \(\mathbf{£ 6 . 6 5}\) \\
LINEAR INTEGRATED CIRCUIT APPLICATIONS by \(G\) B Clayion PRICE £4.80 \\
SOLID-STATE DEVICES MAN. UAL by RCA PRICE £3.50 PRINCIPLES OF TRANSISTOR CIRCUITS by \(S W\) Amos PRICE £4.25 \\
FOUNDATIONS OF WIRELESS \& ELECTRONICS by \(M G\) Scroggie PRICE £4.35 \\
HANDBOOK OF OATA COMMUNICATIONS by N C C PRICE £9.00 THE ELECTRONIC MUSICAL INSTRUMENT MANUAL by A Douglas PRICE \(£ 8.00\) \\
* All PRICES include POSTAGE
\end{tabular}}} \\
\hline & & & & \\
\hline
\end{tabular}

\section*{THE MODERN BOOK CO}

PECIALISTSIN SCIENTIFIC
\& TECHNICAL BOOKS
19-21 PRAED STREET LONDON W2 1NP

Phone 7234185 Closed Sat 1 pm .

> 500 WATT DIMMER SWITCH
> Enot surtable for fluorescent lighrs)
Besic Module with 1 "Knob 00 Complete on MK switch plate Large 2" knob (BULGIN) 25p extra. add \(8 \%\) P\&P \(25 p\)
> FRASER-MANNING LTD. 40 TUDDENHAM ROAD, IPSWICH IPA

\section*{OSCILLOSCOP} Telequipment Model D43. Plug-in amplifiers. 15 M/Cs. Manual 5110 . AVO valve tes tions. \&70. Other working instruc and electri process instruments apparatus and working instrumer good Erith (Kent) 30556 .

\section*{ARTICLES FOR SALE}

MARCONI TF 885A/2 VIDEO OSCIL. MARCON TF 885A/2 VIDEO OSCIL-
LATOR \(50 \mathrm{c} / \mathrm{s}\) to \(12 \mathrm{Mc} / \mathrm{s} 31.6\) Volt LATOR \(0 / \mathrm{P}\), 585 ; Marconi TF \(\mathrm{TF} 45 / 1\) Max \(\mathrm{Mc} / \mathrm{S}\) Digital Counter with 7 M
10 im Plug In, f40; Solartron AT 5953 Plug In, \(140 ;\) Solamron AT
203 DC to 300 Kc/s Calibrating
Unit, f10; Advance Mullivoltmeter Unit, \(£ 10\); Advance Millivoitmeter
Type \(77 \quad 15 \mathrm{cps}\) to \(4.5 \mathrm{mc} / \mathrm{s}\), \(£ 32\); Type 7715 cps to \(4.5 \mathrm{mc} / \mathrm{s}\), 132 ;
Dawe Transistor Phase Meter Type Dawe Transistor Phase Meter Type 630A Battery/Mains, \(£ 30 ;\) Marconi
Wave Analyser TF455E \(0.16 \mathrm{kc} / \mathrm{s} 4\) Wave Analyser TF455E \(0.16 \mathrm{kc} / \mathrm{s} 4\) cps Bandwidth, \(£ 90\); Marconi
versal Mrid
Uridge Type
TF868/1,
£60; versal Mridge Type TF868/1,
Solartron Oscilloscope CD 523
S, S45; Advance "Q" Meter Type
 10 to 400, 885 ; Dawe Audio Oscillator type 440 A 20 c/s to \(200 \mathrm{Kc} / \mathrm{s}\) 600 or 15 ohms output, ess: Hearthzed 100 to 350 v 150 'MA max \(£ 30\); zed 100 to 350 V Vigital Volitmeter LM902. 0.1 volt to 1000 y 4 digits f 35 ; Advance Transistor Tester TTI/s tests dioodes and NPN PNP transistors, £15; Advance B4B5 A.M. Signal \(\begin{array}{ll}\text { E15; Advance } \\ \text { Generator. } & \text { B35; } \\ \text { A.M. } & \text { Nagard } \\ 5002\end{array}\) Double Pulse Generator \(0-50\) volt max single shot \(0.1 \mathrm{c} / \mathrm{s}\) \(1 \mathrm{mc} / \mathrm{s}, \mathrm{f} 40\); Dawe True R.M.S. Voltmeter Type
300 volt
F.S.D.
e30; \(\quad \underset{\text { Tektronix }}{\mathrm{mv}}\) Type \(G\) and Type \(L\) Plug-ins, \(£ 20\) Muirhead Facsimile Xmitter MD901 AM/MH, £50; Muirhead Tunable Filter, D925A, \(£ 20\); Muirhead Phasemeter D729AM, 250 ; Murrhead Phasemeter D729BM. 130 ; B.P.L. ellectrolytic bridige CB154/D3, £30; \(S\) and \(H\) power oscillator Type 48 , £20; S and H rejector .V.V. Type VP 250 ; Solartron Phasemeter P.S.U. S \(0530 / 8\), \& 60 ; U.H.F. Siggen 370-560 Mhz, \(£ 20\); Pulse Generator, AN/UPM15, \(£ 35\); Vibnon electrometer 33B/2, £25; Cossor CDU 110 cilltator 0.01 Hz 1 KHz 90 degrees and Ref phase \(0 / P\) terminals, \(f 30\) : and Ref phase Lapmaster monochromatic light unit 525 ; Gertsch complex ratio bridge CRB B1 mint. 6 decades phase 4 real \(£ 300\) Wayne Kerr Mod/Demod nit SA400, £35; Wayne Kerr transfer function computor, £200; Airmec 853 wave analyser 30 Khz to 30 Mhz , 65 ; Cossor Motor driven oscilloscope camera unit \(£ 60\); Marconi D.F.M. T.F. 142E, E25; Sollartron Synchro test unit JM 355.2, £40; B.P.L. Mego meter RM175-LZ MK2, suip; vene £20; Polaroid ascidoscope camera unit, £80: P.S.U. A.P.T. fully stab ilised 20 V at 10 Amps. f14. Terms C.W.O., V.A.T.; at 8 per cent and postage. "Q" Services Electronic (Camberley) Ltd. 29 Lawford
Crescent Yateley Camberley, Sur Crescent, Yateley Camberley, Sur
rey (0252) 871048 .

\section*{PHOTO ETCH}
pl
H. Limited ךel

9 LOWER QUEEN STREET PENZANCE, CORNWALL TR184DF

Prototype or long run -- we will supply your printed circuit require ments
Also facilities for Design. Assembly and Test
Prompt and efficient service assured

\section*{EQUIPMENT WANTED}

BROADFIELDS AND MAYCO DISPOSALS

21 Lodge Lane, N. Finchley Iondon. N12 8JG Telephone:
014450749 01-958 7624

MAY WE ASSIST YOU TO DIS POSE OF YOUR SURPLUS AND REDUNDANT STOCKS?

We will call anywhere in the British Isles, and pay SPOT CASH for Electronic Componfents and Equipment.

\section*{WANTED IN LARGE QUANTITIES}

\section*{Electronic components: resistors.} loudspeakers. semi-conductors. diodes. TV tubes especially colours, etc., etc., etc
incomplete products record players, amplifiers. radios, tuners, tape recorders, enclosures.
etc., etc. etc.
We will buy complete factories and
pay cash. TEL. 01-4914636
EC.E. AVON HOUSE
360/366 OXFORD STREET
LONDON, W. 1
WANTED, all types of communica tions receivers and test equipment Details to R. our Hav Ashvill Rd., London, E.11. Ley 4986. (63

CASH AVAILABLE for purchase of surplus R.F. Power transistons and components of VHF/UHF interest Convert your surpluses to cash.

SURPLUS COMPONENTS Equip ment and Computer pranels wanted for cash. Ring Southampton 772501

WANTED. Agent to purchase Mon and Colour T.V's transistor radios vacuum cleaners, washing mach ines, cookers, etc. New and second hand. Box Nio. 5328.

LISTS OF SURPLUS electronic com ponents from business selling same. Write Malloy W.G.M. Elec tronics, 66 Woodvale Avenue, Bel-
fast. BT13 3 EX . N. Ireland. (5601)

COURSES

\section*{The Polytechnic of NorthLondon}

\section*{Why not a Career in Electronics?}

The electronics industry is the fastest growing industry in the country. Expansion averages \(20 \%\) per year, and to help
this expansion qualified technicians and engineers are needed.

With two "A" levels, ONC, or equivalent, you could become a

Chartered Electronic and Radio Engineer

Write for detalls of our three-year tronic and Communications Engineering. * With three "O" levels. City and Guilds
Part I, or equivalent. you could become a

Professional Technician Engineer (CEI)

Write for detalls of our two-year full-time course in Electronics.

Department of Electronic and Communications Engineering. Polytechnic of North 6767.

RADIO and Radar M.P.T. and C.G.L.I. Courses. Write: Principal Nau
8 JZ .
\(\star\) MINICOMPUTERS
* PERIPHERALS
* INSTRUMENTATION

\author{
COMPUTER APPRECIATION Godstone (088 384) 3106
}

\section*{WE BUY new valves, transistors} and clean new components, large or small quantities, all wetan's, 55 Worcester St., Wolverhampton.

REQUIRED from Ministry of Defence and other sources Plessey models P.T.R. 371 also 691, 692 and 693. Please post fullest details to John F. Learney. 16 Pine Walk,
B-D ELECTRONICS offer prompt settlement for your surplus com ponents. Our main field of interest is consumer electronics. Please telephone our Miss Hughes, Sandy
(0767) 81616 .

\section*{NEW GRAM AND \\ SOUND EQUIPMENT}

GLASGOW. Hi Fi, Cassette Decks Tape Recorders, Video Equipment always available we buy, sell and exchange for Hi Fi sets and photographic equipment. VICTOR \(\begin{array}{ll}\text { Morris Audio Visual Ltd., } & 340 \\ \text { Argyle Street, Glasgow, G1, } & 8 / 10\end{array}\) Argyle Street, Glasgow, G1,
Glassford Street, Glasgow. G1, \(8 / 10\) Sauchiehall Street. Tele: 041-221 Sauc.
8958.

\section*{TAPE RECEIVERS}

\section*{RECORDS MADE TO \\ \section*{ORDER}}

\section*{DEMO DISCS}

VINYLITE
PRESSINGS

\section*{RECORD COMPANIES}

PRESSINGS
Single disc. 120 . Mono or Stereo. delivery 4 days from your tapes Quantity runs 25
o 1.000 records PRESSED IN VINYLITE IN OUR OWN PLANT Oelivery 3-4 Weeks Sleeves/ Labels finest quality NEUNANN studios UK/OVERSEAS SAE list

\section*{DEROY RECORDS}

Eastwood Cove, Dunbartonshir Scotland

HRO Rx5s, etc. AR88. CR100. BRT400 G209, S640, etce. etc. in stock. R. T. \& 1. Electronics. Ltd. Ashville Oid Hall, Ashville Rd.
London, Ell. Ley 4986 .

SIGNAL Generators, Oscilloscopes, Output Meters, Wave Voltmeters, Frequency Meters, Multi-range Meters etc., ete in Stock R. T.
\& 1. Electronics, Ltd. Ashville Old Hall, Ashville Rd., London. E. 11 Ley 4986

\section*{CAPACITY. AVAILABLE}

\section*{A.A.A. SERVICE}

Small batch production wiring assembly to sample or drawings Specialists in printed circuit assem-
bly Cableforms to order. Rock bly Cableforms to order. Rock Electronics, 42 Bishopsfield, Harlow,
Essex. Tel. Harlow 10279 33108.
(19

STOVE ENAMELLING. Single items or production runs. Gloss, hammer or acrylic finsh. We also manuracequipment Wiring pe boards equip olson Electronics boards: Long Street, London E2. 739-2343.
(5394)

FINE SPOT WELDING, coll winding, soldering, mechanical and electrical assembly, light sheet Webson (Manchester) Ltd. Shentonfield Road Sharston Industrial Estate, Manchester 22 . (5376)
A.A.A. SERVICE. Small batch pro duction wiring assembly to sample or drawings. Specialists in printed rircuit assembly. Cableforms to order. Rock Electronics Ltd., 42 Bishopsfield Harlow, Essex. Tel Harlow (0279) 33018.
AIRTRONICS LTD., for Coil Wirvding - large or small production runs. Also PC Boards Assemblies. port enquiries welcomed. 3a wart enquiries welcomed, 3 3a Tel: \(01-852\) 1706. London SE13 (61

DESIGN development, repair test and small production of electronic equipment. Specialist in production of printed circuit assemblies. Royal College Street. London NW1 9NN. 01-267 0201

BATCH Production Wiring and As sembly to sample or drawings. Deane Electricals. 19B Station Parade, Ealing Common, London,

CAPACITY available to the ElecCAPACITY available to the Elec-
tronic Industry. Precision turned parts, engraving, milling and grinding both in metals and plastics Limited capacity available on Mathey SP33 jig borer. Write for Insts of full plant capacity to C.B. Mackintosh Lane, E9 6AB. Tel: 019857057.

PRINTED CIRCUIT BOARDS Quick deliveries, competitive prices, quotations on request, roller tinning, drilling, etc., speciality small Jamiesons Automatics Westgate, Bridlington \(N\). Humber side for the attention of Mr J Harrison Tel: (0262) 4738/77877

\section*{SERVICES}

PRINTED CIRCUITS and HARDWARE
Readily avalable supplies of Constructors hardware Aluminum sheet and sections Printed cricuit board. top quality for

\section*{Prompt service}

RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratford-on-Avon
Warwicks. Tel: 4879 Warwicks. Tel: 4879

\section*{from ONE source}

\section*{CLASSIFIED ADVERTISEMENTS}

\section*{Use this Form for your Sales and Wants}

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9LU

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
- Rate 81p PER LINE. Average seven words per line Minimum THREE lines.
- Name and address to be included in charge if used in advertisement.
\(\qquad\)

ADDRESS
- Box No. Allow two words plus 45 p
- Cheques, etc. payable to "Wireless World" and crossed " \& Co.

\section*{INDEX TO ADVERTISERS}

Appointments Vacant Advertisements appear on pages 123-135
Ander PAGE

Acoustical Mfg. Co. Lto
Page
Aero Electronics Ltd. 22
Alice (Stancoil) Ltd.
22
All Things Are Possible
Ambit International
A.S.P.

Audio Amateur
117
103
Audix Ltd.
Avel-Lindberg

Barrie Electronics Ltd
Bentley Acoustic Corp. Lid. 107
122
Bi. Pab Semiconductor Lt
4, 105
Bi-Pre Pak Ltd
93
Boss Industrial Mouldings Ltd
er iii
Bradley, G. \& E. Ltd
Brenell Eng
Bull, J., Electrical, Ltd

Cambridge Learning
Carston Electronics
Catronics
Chiltmead Ltd
Chromasonic Electronics
Colomor (Electronics) Ltd
Combined Precision Components Ltd.
Computer Sales \& Service
Condor Electronics Ltd.

Datong Electronics Ltd.
Dema Electronics International
Direct Electronics Ltd.
D.M.W. Associates (Electronics) Ltd.

Dolby Noise Unit
Dymar Electronics Ltd
Eagle International Lid.
Electronic Brokers Lid.
Electronic Windings (Ldn) Lid.
Electrotime Lid.
Electrovalue Ltd.
Empire Exporters Inc.
English Electric Valve Co. Ltd.

Farnell Instruments Lid
Fi-Comp Electronics
Fitch Tape Mechanisms
Forgestone Colour Developments Ltd.
Future Film Developments Ltd.
Gardners Transformers Ltd
PAGE
ampian Reproducers Ltd. 8Hall Electric LtdHarmsworth Townley \& Co. Ltd.2
Harris Electronics (London) Ltd. eaders Card
Harris, P.8.2286
Hart Electronics
Hatfield Instrumen86
70
Henry's Radio Ltd. 70
86
H/H Electronic- 16
Hightech Components \(\stackrel{9}{9}\)
1Icon Designs
mtech Products Ltd13
17
ndustrial Instruments 119Industrial Tape Applications Lid.
ntegrex Ltd 84.85I.P.L. Electronics Ltd.
Jackson Bros. (Ldn.) Ltd. 9698
Kinnie Components Lid
Klark Teknik Ltd.8914
Ledon Instruments Ltdeeds University- 20
Leeds University114
Leven Electronics Ltd. 4. 18
Lynx (Electronics) London Ltd. 102
MacInnes Laboratories15
McLennan Eng. Ltd
Maplin Electronic Supplies 97
Marconi Instruments Ltd. Cover ii
Mills, W 90
Motorola Electronics Itd \(\begin{array}{r}12 \\ \hline\end{array}\)
Multicore Solders Lid Cover iv
Nicholls, F R69
Nombrex Lid 23
Nombrex Lid. - 12
OMB Electronics11
Physical \& Elec. Labs. Lid 109
Plessey Distributors
Powertran Electronics Powertran Electronic 94. 95 20
108
Pronto Electronics SQuality Electronics Ltd.
PAGE
111
Radford Laboratories Ltd. 19
Radio Component Specialists 99
Rank Film EquipmentR.C.S. Electronics11
R.l. Audio 20
R.S.T. Valves Lid. 109
Samsons (Electronics) Ltd 100
S.C.S. Components 102
Semiconductor Supplies Ltd Semicon Inder Supp102
19
115
Service Trading Co115
Servo \& Electronic Sales Ltd 111
25
Shure Electronics Ltd 28Sinte92
Special Products Ltd. 10
Strumech Eng. Ltd.10
14
13
Surrey Electronics Ltd. 133
Swift of Wilmslow24
Technomatic Ltd. 112
Teleprinter Equipment Lid14
109Trampus Electronics90
Valradio Ltd. 12
Wavetek Electronics Itd. 83
West Hyde Developments Lid. 107
112
Wilmnt Breeden Electronics Lid4
122
Wirmslow Audio 110
Wireless World Circuit Designs 121
101
W.K. Electronics
Z. \& I. Aero Services Ltd 10. 22, 92 Z. \& I. Aero Services Ltd
Zettler (U.K.) Division 92
12

\footnotetext{
Printed in Great Britain by QB Lid.. Sheepen Road, Colchester and Published by the Proprietors IPC ELECTRICAL.-LECTRONIC PRESS LTD. Dorset House. Stumford St., London. SEI 9 U telephone 01-261 8000. Wiretess World can be obtained abroad from the following: AUSTRALIA and NF.W ZFALAND: Gordon \& Gotch Lid. INDIA: A.H Theeler \& Co. CANADA. The Distributors inc., 155 West 15th Street. New York, N.W. 10011
}

For the Great Names a Great Service

Bradley Electronics are well known as manufacturers of precision electronic instrumentation. But there's another important aspect of our business we're also experts on other people's products.

For 21 years our Services Division has been providing a first-class repair and recalibration service for all types and makes of electronic test and measuring equipment - from simple meters to complicated systems. Any manufacturer's instrument in the frequency range DC to 18 GHz - and to

36 GHz in some cases - collected and delivered back to your doci ready to plug-in.

The Services Division has its own \(35,000 \mathrm{sq} \mathrm{ft}\) factory, expert staff, comprehensine spares, and a Standards Laboratory approved by the British Calibration Service. It will supply calibration certificates for AC, DC and RF measurements. And, of course, our standards are directly traceable to NPL and NBS.
So - when your calibrator won't calibrate anymore, your generator
refuses to generate, or your counter stops counting - you know who to contact.

G \& E BRADLEY LIMITED Electral House, Neasden Lane, London NW10 1 RR
Telephone: 01-4507811
Telex: 225583
A Lucas Company

\title{
Multicore SolderCreamsare oxide free!
}

Multicore's newest solder creams are designed specifically for hybrid microcircuits P.C.B's and critical component joints. Unlike ordinary creams which suffer from the problem of oxide around each atomised solder powder particle - they're completely oxide-free. The advantage is faster soldering with clear flux residues and no solder globules.

The new range can be made in any quantity and with a very wide variety of soft solder alloys, fluxes, particle sizes and viscosities. They'resuitable for screen printing, stencilling or application by automatic precision dispensers. Add to that the speed, simplicity, reliability and low application cost of solder creams in many operations and you have a product that takes the art of soldering one step further.

Multicore's solder cream can often be used instead of solder preforms. No tool costs are involved and inventories of individual shapes are avoided. The cream can often be applied more quickly and has more uniform flux content than preforms. But for those assemblies where preforms are preferred...

\section*{...don't forget Multicore preforms}

These precision-made solder preforms come in virtually any size and shape. Rings, washers, dises, pellets and lengths of solder tape in most soft-solder alloys, with or without flux cores, are easily placed
 between the parts to be soldered.

Whether cream or preforms are used, just raise the temperature of the metal surfaces to around \(50^{\circ} \mathrm{C}\) above the melting temperature of the solder. The solder cream or preform does the rest. Heating techniques can include gas flame, hot plate, oven conveyor, induction coils, resistance/electrode soldering, hot gas and infra-red.

Multicore Solders Ltd are Ministry of Defence Registered Contractors and on Qualified Products List QQ-S-571E of U.S. Defense Supply Agency for solder creams and preforms.```

[^0]: Perspex Case Colours: Black, White, Red, Blue, Green, Orange. Available separately

[^1]: Built Alpha Units: State 12 or 24 hour
 2-YEAR GUARANTEE ON READY BUILT CLOCKS

[^2]: Price 35p (Back numbers 50p, from Room 11. Dorset House, Stamford Street, London SE1 9LU.)
 Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
 Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
 Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London SE1."
 Subscription rates: 1 year: $£ 7.00$ UK and overseas ($\$ 18.20$ USA and Canadá). Student rate: 1 year, $£ 3.50$ UK and overseas ($\$ 9.10$ USA and Canada).
 Distribution: 40 Bowling Green Lane. London ECIR ONE. Telephone 01-837 3636.
 Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH 16 3DH. Telephone 0444,59188 . Subscribers are requested to notify a change of address.

[^3]: To. Cambridge Learning Enterprises. Dept COM
 FREEPOST. St. Ives. Huntingdon, Cambs. PE 174 BR
 "Please send me set(s) of Design of Digital Systems at $£ 7.00$ each, p \& p included
 orset(s) of Digital Computer Logic and Electronics at $£ 5.00$ each. p \& p included
 "or
 combined set(s) at $£ \mathbf{1} 0.50$ each, p \& p included
 Name
 Address
 |
 I
 delete as applicable
 No need to use a stamp -- just print FREEPOST on the envelope

[^4]: 600 WATT DIMMER SWITCH
 W. Easily fitted. Fuly guaranteecr by makers Wil

[^5]: With several different EMI industries concentrated at Hayes. Middlesex, the Company offers you work on a wide variety of equipments - plus opportunities to win promotions in one direction or another without ever having to move out of the Hayes area And, since the entire EMI Group is constantly expanding -- and, indeed, looks likely to continue to expand for years to come - these opportunities may be expected to come up frequently.
 Recent practical electronics experience associated with maintenance, commissioning, fault finding, testing or cathbration, either in industry or with HM forces is essential. Ideally, it will have involved work on advanced and complex electronic devices.

 Certainly you'll need a good technical background withiknowledge equivalent to ONC.
 Given these minimum conditions, Engineer Technicians of all levels are required -
 and you're starting salary will faithfully reflect the experience you have accumulated to date.
 Terms and conditions of employment at EMI are everything you would expect of a major international organisation, and assistance towards relocation expenses will be considered where necessary.
 To apply, please write to Bill Clark, Personnel Department EMI Limited, 135 Blyth Road, Hayes, Middlesex. Or telephone him on 01-573 3888 extension 639 or Record-a-call anytime on 01-5735524.

[^6]: For further information please send full personal/professional details (without oblipersonal/professional details (without obli-
 gation). to: Recruiting Officer, Zambia High Commission, 7-11 Cavendish Place, London, W.I.

[^7]: MANCHESTER POLYTECHNIC, Educational Services Unit. Television Engineer. Applications are invited from candidates having
 technical qualifications such as HNC or appropriate City and Guilds certificates with experlence. in the servicing of closed circult television equipment of all types. Television studio experience preferred but not essential. Salary scale: Technician 4 e3,366-£3,702. For further particulars and application form (returnable by 31 July 1976) please send a self-addressed envelope Marked "T/304"' to the Secretary, Manchester Polytechnic, Lower Ormond Street, Manchester
 (5597) 6BX.

