wireless

JUNE 1976,35p

CD-4 demodulator Wireless across space

mis's TF 2015 awider view of signal generation...

The TF 2015 is a versatile $10-520 \mathrm{MHz}$ signal generator with calibrated a.m. and f.m. and an accuracy of output level setting normally found only in instruments costing three times as much. A special system gives very fast tuning across the bands yet provides smooth control within the narrowest of passbands. Leakage radiation is carefully screened out to enable accurate measurements to be made even at levels below $1 \mu \mathrm{~V}$.

Matched Synchronizer

The clip-on Synchronizer TF 217| transforms the performance of TF 2015 into the equivalent of a synthesizer at less than half the comparable cost. The frequency is locked to crystal stability and can be dialled in 100 Hz . steps. Tuning is quick and easy - set the decade dials, switch to "lock" and tune the generator to the approximate
frequency and the synchronizer will finish the job for you. Now you can change the frequency by up to 2% using the decade dials without touching the generator and all to an accuracy of 2 parts in 10^{2}. It stays locked all day and doesn't degrade any aspect of the generator performance.

I.F. Probes

These are an invaluable aid to the testing of receivers with squelch or battery economiser circuits. These circuits are inactivated when the crystalcontrolled signal from the probes is brought into the proximity of the receiver's i.f. strip. This makes it easy to tune the generator to a receiver when its channel frequency is unknown. The probes can also be used to check exact tuning by adjusting for zero beat.

Mi:THE SIGNAL GENERATORS

MARCONI INSTRUMENTS LIMITED

LEVELL

PORTABLE IWSTRUWENTS
SEE US AT THE
LEEDS ELECTRONICS EXHIBITION
JUNE 29/30, JULY 1, 1976

FREQUENCY
ACCURACY

SINE OUTPUT DISTORTION

METER SCALES
SIZE \& WEIGHT
0.2 Hz to 1.22 MHz on four decade controls.
$\pm 0.02 \mathrm{~Hz}$ below 6 Hz
$\pm 0.3 \%$ from 6 Hz to 100 kHz
$\pm 1 \%$ from 100 kHz to 300 kHz $\pm 3 \%$ above 300 kHz .
5 V r.m.s. down to $30 \mu \mathrm{~V}$ with $\mathrm{Rs}=600 \Omega$
$<0.15 \%$ from 15 Hz to 15 kHz
$<0.5 \%$ at 1.5 Hz and 150 kHz
2 Expanded voltage $\&-2 /+4 \mathrm{dBm}$. $260 \mathrm{~mm} \times 190 \mathrm{~mm} \times 180 \mathrm{~mm} .5 .6 \mathrm{~kg}$

TG66B
Battery
model \& 100

LEVELL ELECTRONICS LTD.

Moxon Street, High Barnet, Herts. EN5 5SD
Tel. 01-4495028/4408686

FREQUENCY
ACCURACY
SINE OUTPUT
DISTORTION
SQUARE OUTPUT
SYNC. OUTPUT
METER SCALES
SIZE \& WEIGHT

3 Hz to 300 kHz in 5 decade ranges.
$\pm 2 \% \pm 0.1 \mathrm{~Hz}$ up to 100 kHz , increasing to $\pm 3 \%$ at 300 kHz
2.5 V r.m.s. down to $<200 \mu \mathrm{~V}$
$<0.2 \%$ from 50 Hz to 50 kHz
2.5 V peak down to $<200 u \mathrm{~V}$.
2.5 V r.m.s. sine
$0 / 2.5 \mathrm{~V} \&-10 /+10 \mathrm{~dB}$ on TG152DM
$260 \mathrm{~mm} \times 130 \mathrm{~mm} \times 180 \mathrm{~mm} .3 .4 \mathrm{~kg}$.

TG152D	TG152DM
Without 253	With 58
meter	meter 58

Prices include batteries and U.K. delivery. VAT extra. Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

EMI offers the widest choice of options in Cable T.V.

EMI Colorline Cable TV equipment provides long reach, low distortion and high channel capacity. It is based on the RE 1000 range of modular VHF trunk amplifiers offering full two-way facilities. Basic forward bandwidth is $40-300 \mathrm{MHz}$ with optional reverse bandwidths of $5-30 \mathrm{MHz}$ or $5-100 \mathrm{MHz}$.

And now EMI introduces hybrid VHF/UHF systems based on our new RE 1037,* a unique VHF/UHF distribution converter. It enables up to seven VHF trunk channels to be converted into the UHF bands for local distribution together with unçonverted VHF channels.

Then there's the ME 670, an ultra wideband distribution amplifier cover-
ing the range $40-860 \mathrm{MHz}$ and incorporating its own line or mains power supply. Also covering the same range are the new RE 1022 ultra wideband Subscriber Tap and RE 1032 Splitter.

These are just some of the new developments you can expect from EMI, who cover virtually every requirement for VHF and UHF distribution networks, together with unrivalled technological and design resources and the most comprehensive service facilities in the business.

So when you're planning for cable television contact EMI, the specialists.
*The RE 1037 is manufactured by EMI under licence from the British Post Office.

EMI Sound \& Vision Equipment Ltd., 252 Blyth Road, Hayes, Middlesex, England Tel:01-573 3888. Telex:25145. Cables: EMISOUND. A member of the EMI Group of Companies. International leaders in music, electronics and leisure.

Wéve joined ChirstopherWren in the dome business...

... as users of our Dome Tweeters will already know

ISOPHON -are a company who have been manufacturing loudspeakers for over fifty years and are internationally known and respected for quality and reliability. They offer a wide range of tweeters. mid-range and bass units

Owing to shortage of space we are only able to draw your attention to just two of the models currently being manufactured by Isophon.

The KK8

A dome iweeter, well known for its performance and reliability, and chosen by many loudspeaker manufacturers. Two models are available, one up to 50 watts and the other up to 80 watts RMS Power Rating. Frequency range from 800 to over $20,000 \mathrm{~Hz}$.

The PSL 245/60
A new 10" circular loudspeaker, offering up to 60 watts RMS Power Rating.

Our 28 page colour catalogue will give you details of the extremely wide choice of loudspeakers that are available from Isophon.

> HAYDEN

For your free copy of the catalogus, please post the coupon to.

Hayden Laboratories Limited Hayden House, Churchfield Road Chalfont St. Peter, Bucks. SL9 9EW
Tel: Gerrards Cross (028 13) 88447

10 to 512 MHz GENERATOR

Farnell which may be seen at the Communications ' 76 Exhibition.

Facilities include:

- amplitude and frequency modulation
narrowband sweep
- crystal stability and accuracy
- low r.f. leakage
- thumbwheel switch or dial frequency selection
- built in r.f. detector and xy outputs
- remote control facilities

Other products on display include:

- Data cartridge recorders
- Computer peripherals
- Video display terminals
- Frequency counters
- R. F. millivoltmeters
- Sweepers
- Power supplies - Alarms etc.

Telephone us for.a ticket to the show or use the publishers reply service for full data on all products.

FARNELL INSTRUMENTS LIMITED SANDBECK WAY, WETHERBY,
WEST YORKSHIRE LS22 4DH
TELEPHONE: 09373541 TELEX 557294
LONDON OFFICE: 01-8647433

For faster delivery try these sources

Our Appointed Distributors have been ordering instruments on your behalf for over a year now. This means they can deliver your order quicker than any other source. They can help you choose the right instrument, too.
Here's where to contact them:
LONDON AREA
London
Edmundson Electric Ltd.
Tel: 01-8911331
ERD (South East) Ltd.
Tel:01-928 5620
Lugton \& Co. Ltd. Tel:01-3488247
R.T.\&I. Electronics Ltd

Tel:01-5394986
ITT Distributors Ltd.
Tel:01-8036522
Harlow
ITT Instrument Services
Tel: 027929522
Welwyn Garden City
Ellistons (Welwyn) Ltd.
Tel:0707326344
MIDLANDS
Coventry
Mercia Electronics Ltd.
Tel: 020324091

Birmingham
ITT Distributors Ltd.
Tel:021-236 5030
ERD (Midlands) Ltd. Tel:021-2365060
Northampton
E.M.F.(Electrical) Ltd. Tel:060421711

Norwich
Newey \& Evre Ltd. Tel: 060349341
Nottingham
Newey \& Eyre Ltd. Tel: 0602866531
NORTHERNIRELAND
Belfast
Eirco Ltd. Tel:023242911
NORTHEAST
Hull
Edmundson Electric Ltd.
Tel:0482 20691
Leeds
Farnell Electronic Components Ltd.
Tel:0532636311
Wetherby
Farnell instruments Ltd.
Tel:09373541
Newcastle upon Trne
J. Cledson \& Co. Ltd. Tel:0632 860955

NORTH WEST ANDN. WALES
Salford
Hirst Ibbetson \& Taylor.Ltd.
Tel:061-8329711
J. Walton (Electrical) Ltd. Tel:061-8724224

SCOTLAND

Clasgow
ERD (Scotland) Ltd. Tel:041-647 7141 Elesco-Fraser Ltd. Tel:041-2219301
SOUTH WEST AND S. WALES
Bristol
Black Arrow (Electronics) Ltd.
Tei: 0454315824
Cardiff
Newev: Eyre Ltd. Tel:022245831
Bath
ERD (Sputh West) Ltd. Tel:022563281
You will still be able to buy our instru-
ments through your usual wholesaler, although hemay
not bean Appointed Distributer.

Alice Broadcasting STM6

Six Channel Stereo Transmission Mixer (ALICE'S BABY)

INPUTS	OUTPUTS
Microphones	Lines
Lines/Tape/Carts	P.A.
Pick-ups	Headphones
Off Air	Recording

The definitive DJ / OB / Production Mixer Can you afford to use anything use?

Dimensions
$20^{\prime \prime} \times 15^{\prime \prime} \times 41 / 2^{\prime \prime}$

ALICE (STANCOIL LTD.), 38 ALEXANDRA ROAD, WINDSOR, BERKS, ENGLAND
Also available from Roger Squires, London and Manchester

WW - 018 FOR FURTHER DETAILS

WW-0.56 FOR FURTHER DETAILS

Follow the 'Philips plus' way to prosperity

Make sure that your workshop is the most efficiently equipped and that your service engineer's home visits are the fastest and most effective. Get these Philips instruments now. You won't find better value for money.

NEW

PM6456 FM Stereo Generator Price $\mathbf{£ 1 9 2}$

Complete stereo signal. L \& R signal. Internal L.F. modulation: i \& 5 kHz . External stereo modulation possibility. X-tal controlled pilot. Adjustable multiplex signal.

PM5324 HF Generator
Frequency range 100 kHz I 10 MHz . X-tal calibration. Special band spread ranges High frequency stability. Electronically stabilised output max. 50 mVrms in 75 S2. Facilities for internal and external AM and FM modulation.

PM5334 TV Sweep Generator Price $£ 399$
 modulation.

8 frequency ranges, 3 MHz -
860 MHz . Sweep width continuously adjustable over selected range. Sweep frequency adjustable, 8-50 Hz. One variable and 3 fixed markers. Signal frequency is accurate and thermally stable. Stabilised output into 75Ω load.

PM2503 Electronic Multimeter Price $£ 69$
$\mathrm{AC} / \mathrm{DC}$ voltage ranges $100 \mathrm{mV}-\mathrm{mV}$. AC/DC current ranges I $\mu \mathrm{A}-\mathrm{I} \mathrm{A}$. Resistance ranges 100Ω - $10 \mathrm{M} \Omega$. $2-3^{\prime \prime}$, accuracy on all ranges. Resistance measurements: unique linear scale. No zero adjustment necessary. Automatic polarity indicator.

PM2412 General Purpose

 Multimeter Price $£ 48$DC voltage $300 \mathrm{mV}-1000 \mathrm{~V}$.
AC voltage $3 \mathrm{~V}-600 \mathrm{~V}$.
DC current io mA-6A.
AC. current $100 \mathrm{~mA}-6 \mathrm{~A}$.
(all values f.s.d.)
Resistance I Ω r $10 \mathrm{M} \Omega$. Tautband $40,000 \mathrm{~s} / \mathrm{V}$. suspension-type meter.

PM2513 Low Cost
Digital Multimeter Price $\mathrm{f}^{2} 5$
DC voltage ranges $0.2-1000 \mathrm{~V}$. AC voltage ranges $0.2-600 \mathrm{~V}$. $\mathrm{AC} / \mathrm{DC}$ current ranges $0.2 \mathrm{~mA}-2 \mathrm{~A}$. Resistance ranges $200 \mathrm{~S}-2 \mathrm{M} \Omega$. Full circuit protection. Provision for temperature measurements, -60 to $200^{\circ} \mathrm{C}$.

PM3225 and PM3226 15 MHz oscilloscopes
Comprehensive triggering facilities (Auto, AC, DC and TV)
Large 8 x io div. screen
Sensitivity $2 \mathrm{mV} / \mathrm{div}$
Ergonomic styling and lightweight construction

Single trace: PM 3225 . Price $£ 210$
Dual trace: PM3226. Price $£ 290$
The Philips Plus is the quality of design, specification and appearance - particularly in terms of human engineering - of every instrument. A total test and measuring range capability, which includes 'scopes, meters, counters, pulse generators, power supplies, recorders and generators. The ability to supply all the user's needs from a single source.
All prices exclude VAT.
For prompt delivery of any of these instruments, send us your cheque, If you require further information, there is a new 16 page illustrated brochure packed with facts which we would be delighted to send you. Please use the reader reply service, write or telephone to

Pye Unicam Ltd

Philips Electronic Instruments Dept. York Street Cambridge England CBi 2PX Tel: Cambridge (0223) 58866 Telex: 8I733I

AMCRON POWER AMPLIFIERS

The AMCRON range of DC-coupled power amplifiers are used by Government, and University Research Departments as well as by Industry for a variety of applications ranging from Shaker, and Vibrator driving, to driving both $A C$ and DC Motors, providing variable frequency power supply, or high voltage material testing. All models are DC-coupled throughout, with Intermodulation, and Harmonic Distortion below 0.05\%, damping factor of at least 400 from $D C$ to 1 kHz , and the ability to operate into load impedances from 1 ohm to infinity even into highly reactive loads.

M600
RMS power out
Power bandwidth Phase response Slew rate
Hum \& noise
Dimensions

750 watts into 8 ohms 1,350 watts into 4 ohms DC to $20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db}$ $+0^{\prime}-15^{\prime}$ DC - 20 kHz $16 \mathrm{~V} / \mathrm{usecond}$
120 db below 600 Watts $19^{\prime \prime}$ std rack, 83/4' H, 161/2" Deep

DC 300A

D150A

500 watts rms into 2.5 ohms (1 chan) 200 watts into 2.5 ohms (1 chan) $\mathrm{DC}-20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db}$ $+0,-15^{\prime} \mathrm{DC}$ to 20 kHz 8 volts per microsecond At least 110 db below 150 watts 19" Rackmount, 7" High, 93/4' Deep
$\mathrm{DC}-20 \mathrm{kHz}+1 \mathrm{db},-0 \mathrm{db}$ $+0^{\prime}--15^{\prime} \mathrm{DC}$ to 20 kHz 6 volts per microsecond At least 115 db below 90 watts 19" Rackmount, $51 / 4^{\prime \prime} \mathrm{H}, 8^{3 / 4^{\prime \prime}} \mathrm{D}$

MACINNES FRANGE 45 Rue Fessart Paris 75019, France Tel: 203-30-01

WW—052 FOR FURTHER DETAILS

[^0]
SPECIFICATION

INPUT
OUTPLT:
100-125 volts or 200-250 volts at 40.60 Hz
(adjustable within $\pm 5 \%$)
STABIL TY: Vortage; $\pm 1 \%$ No load to full load
Frequency: $\pm 0.01 \%$ No load to full load
FFEQUENCY: $\quad 50 \mathrm{~Hz}$ or 60 Hz Single or
WAVEFORM
DISTORTION
AMB. TEMP.
DUTV.
DIMENSIONS: facturers of a wide range of'equipment for use in Recording Studios, Offices, Hospitals, etc., and in particular, when it is required for mobile operation.

The CINTEC FREQUENCY \& VOLTAGE STABILIZER is also available for supplies of $100-125$ volts, $40-60 \mathrm{~Hz}$ with an alternative output of 50 Hz or 60 Hz at 115 volts or 23 m volts and as a dual frequency model with a switchable output for 50 Hz or 60 Hz .

The Stabilizer may also be used as a frequency converter. For example, the supply to it can be any frequency between $40-60 \mathrm{~Hz}$ and the output can be switched to either 50 Hz ar 60 Hz . In hatels, overseas visitors frequently arrive, bringing with them Audio-Visual equipment which they wish to use, only to find that the frequency of the supply in the hotel is unsuitable

Applications for the use of the CINTEC FREQUENCY \& VOLTAGE STABILIZER are more numerous than can be listed. Therefore, if you have a supply problem, contact CINTEC LIMITED whose engineers will be only too pleased to assist.
dual versions
SINUSOIDAL
2\% Max.
-20° to $+40^{\circ} \mathrm{C}$
Continuous
432 (W) x 196 (H) \times
508 mm (D)
$\left(17^{\prime \prime} \times 73 / 4^{\prime \prime} \times 20^{\prime \prime}\right)$
$33 \mathrm{Kg} .(72 \mathrm{lbs}$)
Cabinet or rack mounting Barrier strip connections at rear of case

24V DC Inverter

Inverter versions of the Stabilizer are available with output ratings of $500 \mathrm{w}, 250 \mathrm{w}$ and 150 w . at 230 volts or 115 volts at 50 Hz or 60 Hz . The output stability has an accuracy to the same specification as for the A C versions and the Unit is housed in a case of similar design and size

Certificate of Calibration

The Stabilizer has been tested accordance with National Standards by Bradle. Services of London (Certitication No. K5149/5832)
demand the variation in the frequency and voltage is sufficient to introduce errors and the malfunction of such items as Recording equipment, etc. Likewise, in certain areas the only source of supply is from a Generator, the output of which can vary considerably when different loads are imposed. This has precluded the use of a wide range of equipment in many countries Voltage Stabilizers are readily available but these do not stabilize the frequency of the supply which, in many instances, is essential.

The CINTEC FREQUENCY \& VOLTAGE STABILIZER provides the answer to both these problems.

When the supply frequency is fluctuating wildiy, between 40 Hz and 60 Hz and the voltage by more than 10% the output from the Stabilizer will not vary more than $.01 \%$ from 50 Hz or 1% in voltage, even when different loads are imposed

Detale ell Spectication and Brachure - Avallable Post Coupon or Telephone/Telex

Name

$£ 53.70$
plus VAT

UK price
$\mathbf{£ 5 3 . 7 0}$
Plus VAT
LINSTEAD
MANUFACTURING CO.
LTD.
ROSLYN ROAD LONDON N15 5JB
01-802 5144
IRELAND: LENNOX LTD P.O. BOX 212 A DUBLIN 2 DENMARK SCANFYSIK AB $13 / 15$ HJORRINGADE DK-2100 COPENHAGEN SWEDEN: EMI SVENSKA AB TRITONVAGEN 17 FACK S. 17119 SOLNA 1. NORWAY: EMI NORSK AS POSTBOKS 42 KORSVOLL OSLO 8. MALAYSIA: LEC Sdn Bhd P.O. BOX 60 BATU.PAHAT SOUTH AFRICA: PROTEA (PTY) 38 FARADAY STREET SOUTH AFRIC

brenel

 PROFESSIONAL TAPE TRANSPORTS and multi-channel electronics for studio and industrial use

* Tapewidths up no 25 mm
* Speeds: $3 \mathrm{~mm} / \mathrm{s}$ minimurn up to $152 \mathrm{~cm} / \mathrm{s}$ max

Finance available

* Reel Capacity up to 25 cm
* Remote Control Facility
* Tape Tension Contral
* Automatic Interlock agairist misuse
* Special models to customer requirements

BRENELL ENGINEERING CO LTD
231-5 Liverpool Road, London M1 1LY. Tel: 01-607•8271

WW - 022 FOR FLRTHER DETAILS

THOMSON-CSF electrostatic CRT's :

- for high-performance scopes

Tube ref	Useful screen area $\mathrm{cm} \times \mathrm{cm}$	Overall length cm	Typical Trequency MHz	Capacitance	w-ifing speed nm. ns	Deflection factor $X_{1} X_{2} Y_{1} Y_{2}$ V. cm^{-1}
TH 8203	8×10	37	350	$Z 6=2 \times 150 \Omega$	30	6.1 1.2
TH 8205	8×10	34	200	8	15	$\begin{array}{lll}5.4 & 2.2\end{array}$
TH 8206	10×12.5	38	100	8	15	$\begin{array}{lll}6.5 & 2.8\end{array}$
TH 8207	10×12.5	40.5	175	8	25	$6.5 \quad 2.6$

- for large - screen wideband monitors

Tube ref.	Useful screen area $\mathrm{cm} \times \mathrm{cm}$	Overail length cm	Deflection angle 0°	Ser sitivity $\text { V. } \mathrm{cm}^{-1}$
$\begin{aligned} & \text { TH } 8000 \\ & \text { TH } 8201 \end{aligned}$	$\begin{aligned} & 25 \times 19 \\ & 18 \times 13 \end{aligned}$	$\begin{aligned} & 44 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 85 \end{aligned}$	$\begin{aligned} & 9 \\ & 7.5 \end{aligned}$

Rugged versions available.

IHOMSON-CS:

One more request item. We met it with a neat littje transformer. Now, in two versions, it joins the list of useful Whiteley products, and everyone involved in communications system design will be interested in the protection they provide. Inserted in voice band circuits, they effectively isolate equipment from the hazards of adjacent high voltage power circuits on the 'line' side. High isolation level between line and equipment windings gives protection against voltage surges, lightning strikes and fault conditions. One version is designed for 17 Hz signalling circuits, the other with several voltage ratios also suits a 50 Hz ringing circuit. All are Post Office and C.E.G.B. approved, and the second version is also approved with extra protection diodes added. Requests for data sheets welcome. Or if you want to request a product spec of

Whiteley Electrical Radio Co. Ltd
Mansfield, Notts NG18 5RW, England. Tel: 062324762.

FREQUENCY COUNTERS

HIGHER PERFORMANCE INSTRUMENTS FROM $1 / 10 \mathrm{~Hz}$ to 1.2 GHz . MEASURING FREQUENCY, PERIOD, TIME, FREQ./RATIO AND CALIBRATED OUTPUT FACILITY. FAST DELIVERY.

CRYSTAL OVEN
OPERATING MANUAL
TWO TONE BLUE CASE
${ }_{\text {c } 670} 1.2 \mathrm{CHz}$
Sensitivity 10 mV . Stability 5 parts 10 . ${ }^{10}$

301 M	32 MHz 5 Digit £82	401	32 MHz 6 Digit $£ 121$
501	32 MHz 8 Digit £178	701 A	80 MHz 8 Digit £195
$801 \mathrm{~A} / \mathrm{M}$	300 MHz 8 Digit £305	901 M	520 MHz 8 Digit £375
$801 \mathrm{~B} / \mathrm{M}$	250 MHz 8 Digit £262	1001 M	1.2 GHz 8 Digit £670

Start/Stop versions plus $\mathbf{£ 1 2}$ Memory versions available if not suffixed M
£25 extra
Type 1011 MHz 100 KHz 10 KHz Crystal Standard £85 Type 103 0ft/Air Standard E85
SUPPLIERS TO: Ministry of Defence, G.P.O., B.B.C., Government Dept., Cryatal Manufacturers and Electronic Laboratories world-wide

R.C.S. ELECTRONICS NATIONAL WORKS, BATH ROAD HOUNSLOW, MIDDX. TW4 TEE Telephone: 01-572 0933/4

WW - 025 FOR FURTHER DETAILS

Vaco STRIPEX Wire Stripper
 Precision Stripping Tool for most types of PVC

 wire and cable from 38-10AWG. - Solid or stranded.

Model No. 70285
Features include:
33 self adjusting cutting knives penetrate and remove insulation without nicking the wire Depth Control adjusts for different insulation thick nesses.
Wire cutter with transparent finger guard snips cable clean Lightweight moulded nylon body reinforced with fibreglass, reduces fatigue in continuous operations.
Packed in contoured plastic case. Individually cartoned.
No. 70286. Metric wire plier Crimps terminals, cuts andmeasures bolts, cuts and strips wire. Combines the most used cable operations in a single tool

Distributed by
Special Products Distributors Limited 81 Piccadilly, London W1V OHL

- P.A. SYSTEMS FOR AIRPORT. HOTEL, FACTORY.
- THEATRE AND LECTURE THEATRE AUDIO SYSTEMS
- AUDIO MIXING EQUIPMENT
- SIMULTANEOUS TRANSLATION SYSTEMS
- radio and t.v. broadcaist sound control equipment
- marine intercommunication and entertainment Equipment
- System design, manufacture and installation

AUDIX LIMITED
Wenden, Safiron Walden, Essax CB11 419 TEL. Saffron Walden (0799) 40BE8: TELEX: 817444

Putting our test equipment to the test won't cost you a thing.
 Send now for the new Heathkit catalogues.

They're both free
Then, when you get them, compare Heathkit equipment with the instruments you re using now.

We're sure you'll be pleasantly surprised
In the assembled catalogue youll find a wide range of laboratory grade assembled instruments. Including oscilloscopes, frequency counters, muiti-meters, power supplies. function generators and chart recorders.

In the lit catalogue you'll find all you'd expect from the world's largest makers of electronic kits. Test equipment, audio equipment, kits for the home and many more

Well also be very happy to actwise on all your service requirements

For full details, just post the coupon now. () call in and see us at the London Heathkit Centre, 233 Tottenham Court Road. or at our showroom in Bristol Road, Gloucester.

And test our test equipment for yourself.
Heath (Gloucester) Limited. Dept. WW 66 Bristol Road. Gloucester GL2 6EE Tel: (0452) 29451.

Jointhe Digital Revolution

Understand the latest developments in calculators,

 computers, watches, telephones, television, automotive instrumentation . . .Each of the 6 volumes of this self-instruction course measures $11^{3 / 4^{\prime \prime}} \times 8^{1 / 4^{\prime \prime}}$ and contains 60 pages packed with information diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems.

$£ 6.20$

plus 80 p packing and surface post anywhere in the world.
Payments may be made in foreign currencies.
Quantity discounts available on request.
VAT zero rated

Also avarlable - a more elementary course assuming no prior knowledge except simple arithmetic
Díigital Computer Logic and Electronics.
in 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

$£ 4.20$

plus 80p P. \& P.
Offer Order both courses for the bargain price £9.70, plus 80p P. \& P

Designer

Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

COIL WINDING

Manufacturers of all' wound components including transformers, chokes, stators and armatures. Prototype and design service available.

Electric Windings' factories are equipped to handle large or small volume production. Vacuum impregnation plants provide varnish impregnation for all temperature requirements.

ELECTRIC WINDINGS (LONDON) LTD. (Dept. WVW) Avenue Works, Gallows Corner Romford, ESSEX RM3 OAJ

Ingrebourne 46677
WW-039 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. $1 \quad$ Phone: 01/837/7937
WW - 032 FOR FURTHER DETAILS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR1 2×0
Telephone 077257560

RADFORD

AUDIO HIGH SENSITIVITY VOLTMETERS \& NOISEMETERS

HSV1
Audio Voltmeter. Average reading
£ 125.00
HSV2
Audio Voltmeter. True r.m.s. reading $£ 175.00$
ANM1
Audio Noisemeter. Average reading $£ 150.00$
ANM2
Audio Noisemeter. True r.m.s. reading
£200.00

Four instruments are now available for the measurement of audio frequency signals including noise. They are derived from a basic battery operated voltmeter design having 16 measurement ranges from $10 \mu \mathrm{~V}$ for full scale meter deflection to 300 V f.s.d. The Voltmeter has a high input impedance and low inherent noise. It is fitted with a high grade meter having a $5^{\prime \prime}$ mirror scale of excellent linearity, calibrated in volts and dBv .

The Audio Voltmeter (HSV1) becomes an Audio Noisemeter (ANM1) by the inclusion of frequency contouring networks having characteristics recommended by international organisations concerned with specifications and measurement standards as being suitable for the quantitative measurement of the subjective effect of noise in audio systems. The HSV1 and ANM1 instruments respond to the average or mean value of the waveform being measured and are calibrated in r.m.s. values on a sine wave.

In the HSV2 and ANM2 instruments an r.m.s. to d.c. converter module is incorporated which provides a true r.m.s. reading on waveforms with a crest factor in excess of 10 . These instruments are also provided with an additional output socket giving 1.00 V d.c. output corresponding to 1.00 V at nominal full scale meter deflection to operate a chart recorder or d.c. digital voltmeter.

All the instruments are fitted with a socket to enable an external network of any weighting characteristics to be introduced in the measuring circuit. This extends the use of the instruments to vibration and acoustical measurement as well as to the measurement of gramophone turntable rumble, f.m. recerver noise, etc.

Brief Specification.

Frequency response as Voltmeter
Input impedance
Attenuator accuracy
Meter scale linearity
Waveform error in true
r.m.s. instruments

Noisemeter included
weighting characteristics

Size
4 Hz to $500 \mathrm{kHZ} \pm 0.5 \mathrm{~dB}$ at frequency limits.
1 Mohm shunted by 30 pF .
0.25%.
1%. Typically better than 0.5%.
1% for crest factor 10.
Wide band (flat response as voltmeter)
DIN. 'Audio Band'
IEC/DIN. Curve ' A '
CCIR

$$
\begin{aligned}
& 111 / 4^{\prime \prime} \times 71 / 4^{\prime \prime} \times 81 / 2^{\prime \prime} \\
& \text { deep overall }
\end{aligned}
$$

Please write or phone for descriptive leaflet giving details of the design and full performance characteristics of the above instruments, together with a reprint copy of Dolby Laboratories Inc. Engineering Field Bulletin No. 19/2 - Noise Measurement on Consumer Equipment

RADFORD LABORATORY INSTRUMENTS LTD.
 Ashton Vale Road, Bristol BS3 2 HZ Avon Telephone 0272662301

USA. Roth/Sindell. 540 Kelton Ave.. Suite 102
Los Angeles, California 90024. Tel. (213) $473-3687$

WW-041 FOR FURTHER DETAILS

DECADE BOXES
'Junior'Series-Resistance-1 \%

DECADE BOXES continued

High Dissipation-Resistance-1\%					
	Decades	Uhms	Range	Ohmis Resolution	
HD 1	5	0--	1,111,100	10	104.70
HD1/L	5	$0-$	111110	0.2 Approx.	110.30
"Point One" Series-Inductance-5\%					
	Decades	mH R	ange	mH Resolution	$\underline{\underline{E}}$
L1	3	0 -	1.110	1.	95.60
12	2	0-	110	$1{ }^{\circ}$	67.10
L3	2	0--	1.100	10	74.50
"Hundred' Series-Inductance-0.3\%					
	Decades	mH	ange	mH Resolution	£
1300	3	O-	1110	1	277.00
L400	4	$0-$	11.110	1	360.00

Decades

	Decades	pF Range	pF Resolution	Accuracy	£
C3	3	100- 111.000	100	1%	48.30
PC3	3	100- 111,000	100	5\%	66.70
C4	4	100-1.111.000	100	1\%	73.60
PC4	4	100-1.1 11,000	100	5\%	103.50
Decade plus Variables					
	Decades	pf Range	pF Resolution	Accuracy	$\underline{\text { £ }}$
VC4	3	50-- 111.150	INFINITE	1\%	61.00
VC5	4	50-1.111.150	..	1\%	86.30
PVC5	4	50-1 111.150	.	05%	128.80
SVC5	4	50-1,111,150	"	0.05\% -	574.20
C500	4	50-1.111.150		0.2\%	$238.50 \dagger$

SVC 5 special Detalls on applica.ion
Variables

D.D. Iloyd
 Instruments lid

Brook Avenue, Warsash, Southampton SO3 6HP
Tel: Locks Heath 4221
WW-053 FOR FURTHER DETAILS

hatrele baiun

 The FIRSTname forWIDEBANDMATCHING
TRANSFORMERS

With over 30 year's experience in designing Wideband Matching Transformers Hatfield Instruments design team offer a solution to almost all problems of matching unbalanced to balanced impedances
of different values,

```
The standard range of over 200 types includes Low Power Wideband Transformers Series 3500 Matching 50 onm and 75 ohm unbalanced impedances to \(50,75,110,150,200,300\) and 600 ohm balanced impedances.
Frequency coverage in three major bands. 5 KHz to \(3 \mathrm{MHz}, 100 \mathrm{KHz}\) to \(100 \mathrm{MHz}, 3 \mathrm{MHz}-\) 300 MHz 3 Alternative styles.
```

High Power H.F.
Transformers Series 6700 Matching 50 ohm and 75 ohm unbalanced impedances to 75 , 200, 300 and 600 ohm balanced impedances C.W. power ratings
from 150 W to 1.8 KW . Frequency range 2 to 30 MHz .
\qquad

INTRODUCTORY PRICES

In addition to National, Mostek and Caltex clock chips, we are now selling a range of General Instrument chips.

AY-5-1202 + Futaba 5LT01

AY-5-1202 interfaces directly with 5LTO 1 to provide the basis for a very simple electronic clock. The hours and minutes can be in 12 or 24 hour format and 50 or 60 Hz can be used as the timing source. 5 LTO 1 is a green phosphor diode display. Price $£ 10.56$.

AY-5-1230 + Futaba 5LTO1

This chip similar to 1202. It has an ON / OFF programmable alarm which can be used in 7 segment mode to drive the 5LTO 1 or in BCD format to drive logic or TV display chips. Price £11.05

MK50253 + Futaba 5LTO1

12 or 24 hour, 6 digit alarm chip. Snooze facility. Price £1 140

MISTRAL CLOCK KIT

Uses AY-5-1202 + Futuba 5LTO 1. Complete kit including case. E11.58

CHEVIOT ALARM CLOCK

24-hour 4-digit alarm clock. $0.5^{\prime \prime}$ green display, tilt to snooze Finished clock - not kit. £21.85

Please send S.A.E for new Catalogue
Terms C.W.O. Access, Barclaycard (simply quote your number and sign) Credit facilities to Accredited account holders ALL PRICES EXCLUDE VAT AT 8%

DOLBY NOISE REDUCTION The First Successful Decade: 1966~1976

Abstract

Dolby noise reduction has staying power. The A-system has been around for ten years. If you have read our technical papers and otherwise followed our progress, you're probably familiar with the reasons for this success. Here are ten quick reminders.

1

The Dolby system works like a constant-gain amplifier in two critical dynamic regions - low levels and high levels. Error-free signal handling is thus ensured at the dynamic range extremes. Compression and expansion occur only at easy to handle mid-levels.

2

The system employs a simple adding and subtracting scheme which automatically results in mathematically exact complementary compression and expansion. There are no approximations, so the signal must come out the same as it went in (just get the Dolby Level right).

3

Compressor overshoots with high-level transient signals are suppressed without audible distortion, because of the basic system layout (dual signal paths). Since there are no overshoots to be clipped by the recorder, there is no impairment of even the most extreme transient signals.

4

The freedom from overshoot is a result of system philosophy, not an ultra-short attack time, so it is possible to utilize relatively gradual gain changes. This yields a compressor output which is remarkably free from modulation distortion. There is thus no need to depend upon cancellation of modulation products by the expander (which relaxes recorder performance requirements).

5

The reproduced dynamics of low-level signals are essentially immune to rumble in the input signal and head bumps and other frequency response errors in the recorder - the system has a solid low-level 'gain floor'.

6

The system gives a pre-determined amount of noise reduction which is realistically useful (set at 10 dB).

7

The noise that remains has a subjectively constant level. Noise modulation effects are almost non-existent.

8

The principles and parameters used in the Dolby system result in a high margin of safety. The system works well with all types of audio signals - speech, music, effects - and practically all types of noises. High noise levels (from multi-generation copies, for example) do not . impair performance.

9

The system functions reliably on a day in, day out basis, with real workaday recorders and other equipment.

10

All of the above have been proved in ten years of dependable service to the industry $-25,000$ professional channels in use by 'well over a thousand studios in more than 50 countries around the world.

The Second Successful Decade: 1976~1986

'Dolby' and the double-D symbol are trade marks of Dolby Laboratories Inc.

731 Sansome Street

San Francisco CA 94111
Telephone (415) 392-0300
Telex 34409
Cable Dolbylabs

346 Clapham Road
London SW9
Telephone 01-720 1111
Telex 919109
Cable Dolbylabs London

NOW IS THE TIME TO BUY!

Our prices were reduced in April. Now VAT has been halved. Will things ever be quite this good again? Make use of your credit card and buy now with confidence.
We give full after-sales service and guarantee with all parts and kits.

If you have already purchased, why not add a

TOUCH-TUNE PRE-SELECT UNIT to your tuner

This is a separate unit, powered from the normal tuner supply, and designed as an alternative to the existing push button unit (K 9 a). It provides six pre-select channels while maintaining the manual control and frequency meter circuits. The pre-set pots (20 turn cermet types, of course) are accessible from the underside of the tuner without removing the cabinet, being mounted between the chassis and the front panel. The channel selected is indicated by L.E.D. lamps incorporated in the touch buttons, which replace the manual buttons without modification to chassis or front panel
-anciavcabo

Send for full details and price list, etc. Or send 50p* for our new booklet fully describing our updated tuner - Refundable on order over $£ 10$

33 Restrop View Purton, WILTS SN5 9DG

WW-047 FOR FURTHER DETAILS

ELECTRONIC INDUSTRIAL THERMOMETER

the modern way to measure temperature
A Thermometer designed to operate, as an Electronic Test Meter. Will measure temperature of Air. Metals. Liquids. Machinery. etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal $11 / 2$ volt standard size battery
Model "Mini-Z $1^{\prime \prime}$ measures from-40 C to $+70^{\circ} \mathrm{C}$
Model "Mini-Z 2" measures from-5 C to $+105^{\circ} \mathrm{C}$
Model "Mini-on Hi^{\prime} measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$ PRICE $\mathbf{~} 20.00$ each [VAT 8% EXṪRA]
Write for further details to
HARRIS ELECTRONICS (LONDON), 138 GRAY'S INN ROAD, LONDON. WC1X 8AX
('Phone 01-837 7937)

Scopex 4D 10-now in front

Where else will you find for ${ }^{*} £ 125:-$

* Dual trace, full portability
* 10 MHz bandwidth, IomV sensitivity
* Time base $1 \mu \mathrm{~s}$ to 100 ms in 16 steps
* $\times 5$ magnification, Trace Locate button
* Trig Level and Polarity by one control
* Bright, stable trace

For immediate attention write or telephone

Scopes Instruments Lid., Pixmore Industrial Estate. Letchworth, Hers. SG6 1JJ Tel: Letchworth (04626) 72771 An independent British Company

Wayne Kerr's top-selling bridge

Meets modern requirements. Is accurate to 0.1\%.
Is self-balancing. Has 2,3 and 4-terminal connections Continuous readout of real and quadrature terms. Overall range 10 micro-ohms to 100 gigohms. 0.001 pF to 10 farads, 1 nanohenry to 10 megahenrys and 10 picomhos to 100 kilomhos. Built-in source /detector (1592 Hz).
Connectors for $200 \mathrm{~Hz}-20 \mathrm{kHz}$ manual operation
Comparator facilities. Analog outputs.
Adjustable sensitivity. Ask for B642
Data Sheet.

Wilmot Breeden Electronics Limited*

Durban Road, South Bersted, Bognor Regis, West Sussex, PO22 9RL
Telephone: Bognor Regis (02433) 25811 Telex: 86120
Incorporating FERROGRAPH - RENDAR - WIYNE KERR

GRAMPIAN REPRODUCERS LTD. hanworth trading estate feltham, midolesex telephone 01-894 9i41

Switching problems ? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.	Our product range comprises: Low profile (flatform) Timing - Miniature. Low contact capacity. Herme- tically sealed. Stepping. Mains switching. Latching Contact stacks - Solenoids

We resolve your switching problems rapidly and expertly. Please contact us for further details.

FAST RESPONSE STRIP CHART RECORDERS

Made in USSR

Specification
Basic error. 2.5\%
Sensitivity 8mA F.S.D.
Response 0.2 sec.
Width of each channel 80 mm
Chart speeds, selected by
pusth buttons
......
$0.1-0.2-0.5-1-2.5-$ $-5-12.5-25 \mathrm{~mm} / \mathrm{sec}$.
Chart drive $200-250 v 50 \mathrm{~Hz}$

Type H3020-3
Three-pen

Recording:
Syphon pen directly attached to moving coil frame. curvilinear co-ordinates

Equipment: Marker pen, Timerpen, Paper footage indicator, 10 rolls of paper, connectors. etc.

Dimensions: H32O-1: $285 \times 384 \times 16.5 \mathrm{~mm}$
H320-3: 475×384x 16.5 mm
PRICE: H320-1 £108.00
H320-3 £ 160.00
Exclusive of VAT

Available for immediate delivery
Z \& I AERO SERVICES LTD.
44A WESTBOURNE GROVE, LONDON W2 5SF
Tel. 01-727 5641
Telex: 261306

THE 'MISTRAL’ 1 DIGITAL CLOCK
 * COMPLETE KIT *

- Pleasant green display. 12/24 Hour readout
- Silent Synchronous Accuracy. Fully electronic
- Pulsating colon . Push-button setting

Building time 1 Hr . Attractive acrylic case Easy to follow instructions Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$ Ready drilled PCB to accept components

KIT PRICE £10.25
$+82 p$ VAT P\&Pinc.

Cash, Cheque or Postal Order or if you wish to use Barclaycard or Access, simply quote name, address and card number when ordering

THE ‘MISTRAL’ 2 DIGITAL ALARM CLOCK

* Fully Built, Tested and Guaranteed * WITH SLEEP-OVER FEATURE

- Soft Green Display

24 Hour Alarm
10 Minute Repetition
Alarm Set Indicator
Accurate Silent Timekeeping
British Designed and Built

An manemme

LM

 पषயयवण CompanyITTTELH PRADUCTS LTE
IMP HOUSE, ASHFORD ROAD ASHFORD, MIDDX. TW15 $1 \times B W$ telephone ASHFORD 44211 (4 lines) telex 936291 WESSIMP ASHFORD

DATA AND COMMUNICATIONS TERMINALS

Teletype 28, 32, 33, 35, 40 TermiNet 30, 300 \& 1200 (30 and 120 cps) Teleterm $1030 \& 1132$ (portable 30 cps with integral coupler and RS 232C) Other page printers (by Siemens, ITT Creed, etc.) TermiNet 120 line printer

* Spares, repairs, overhauls and maintenance * Other types and models available * Refurbished units also available \star Short and long period rentals \star Minicomputer interfaces * Quantity discounts \star Immediate delivery

TELEPRINTER EQUIPMENT LTD. 70-80 AKEMAN STREET, TRING, HERTS., U.K.

Telephone 0442-82-4011 Cables RAhNO Tring Telex 82362
A/B Batelcom Tring

WW-043 FOR FURTHER DETAILS

Teonex are better known abroad... because we don't sell in the U.K.

Electronic valves (a really comprehensive range), semi-conductors (a wide variety). integrated circuits.
Teonex offers more than 4.000 devices. uperlative in performance, because the company imposes strict quality control. Teonex concentrates entirely on export and now operates in more than 70 'countries. on Government or private contract All popular types in the Teonex range are nearly always avallable for immediate delivery to Teonex Limited. 2a Westbourne Grove Mews. to Teonex Limited, London W11 2RY. England. Cables: Tosupty London W11. Telex: 262256

ELECTRONIC VALVES + SEMI CONDUCTORS
for Teonexport only WW - 019 FOR FURTHER DETAILS

BULK ERASURE PROBLEMS?

If it's personal we can only advise a diet or joining weightwatchers. If it's to do with tape, then why not consider the LR70/71 bulk tape erasers. They are simple to operate and will erase cassettes, cartridges and reels of tape up to a maximum reel size of $11 \frac{1}{2} 2^{\prime \prime}$ and tape width of $1^{\prime \prime}$, quickly and efficiently within the time it takes to read this advertisement.

The LR70/71 bulk erasers are currently used in Broadcast Companies, Recording Studıos, Government Departments. Educational Establishments and the Computer Industry.
Moderately priced and avalable from
LEEVERS-RICH EQUIPMENT LIMITED
INCORP. BIAS ELECTRONICS
319 Trinity Road, Wandsworth, London SW 18 3SL
Telephone 01-874 9054
Cables: Leemag London SW18. Telex 923455 Wembley

Greenwood Electronics

Greenwood E ectronics Pirtman Road. Readr.g RG3 INE Telephone 0734.595844 Telex 848659

D.M.W.

D.M.W. ASSOCIATES (ELECTRONICS) LIMITED

Time code generators' translators, tape search systems with manual or computer control

High-power wideband linear amplifiers

A comprehensive range of airborne and ground based Time Code Generators, Translators, and Tape Search Units. The equipment is used in conjunction with instrumentation and other types of magnetic Tape Recorders, for efficient data acquisition and analysis. Manually operated equipment and fully computer controlled systems are available. The computer controlled systems include installation, commissioning and checkout software. A design service for special time code applications is also available.

A comprehensive range of wideband linear amplifier systems covering the frequency range $500 \mathrm{kHz}-60 \mathrm{MHz}$ is available. A wide range of power output is available by combination of basic modules. Hybrid couplers for power splitting and combining, sub-octave high power switched filters, and automatic aerial matching units are also available. The company also offers a design and development service for special systems.

HIGH SPEED VIDEO ANALOGUE TO DIGITAL AND DIGITAL to analogue CONVERTERS AND SYSTEMS. VIDEO INSERTION UNITS

STAND 160 communications
The third in a senes of international expositions METROPOLE CONVENTION CENTRE
BRIGHTON, ENGLAMD

- 1011 JUNE 1978

Organised by Tony Davies Communications Limited

RESEARCH AND DEVELOPMENT FACILITIES COVERING A WIDE RANGE OF TECHNOLOGY

DMW Associates (Electronics) Ltd 6-8 Morris Road
Royal Oak Industrial Estate Daventry, Northamptonshire Great Britain. NN 11 5PD Telephone: Daventry (032 72) 71472

Hard-to-find tubes and semiconductors are normally included in our quotations. We try to give a complete answer.
AEL GATWICK HOUSE HORLEY SURREY RH6 9SU Telex 87116 Cables Aerocon Telex Morley Telephone Morley 5353

WW-044 FOR FURTHER DETAILS

Now the Alpha costs less than the A类类 will the 1567 engineers who are still without one please identify themselves?

Do get the Gould Advance data on Alpha. You see, it's so much better.

A range of prof
The standard
The A Series (Protessional Studio Monitor) amplifiers feature dual power supplies to maintain full RMS power on both channels.
The B Series (Professional) amplifiers feature single power supplies suitable for most
music applications.

$$
\begin{array}{ll}
\text { MODEL A5UU } & 250+250 \text { watts RMS. } 4 \text { ohms } \\
\text { MODEL A300 } & 150+150 \text { watts RMS. } 4 \text { ohms } \\
\text { MODEL B300 } & 150 \text { watts RMS per channel } \\
\text { MODEL B200 } & 100 \text { watts RMS per channel }
\end{array}
$$

TURNER ELECTRONIC INDUSTRIES LTD. 175 Uxbridge Road, London W7 3TH

Tel. 01-5678472

NEW LAN-SCOPES...

- 20 inch screen
- Fully stabilised
- New series of Plug-in Control Units
-1, 2, 4 and 6 channel Models
- Vertical bandwidth DC-30kHz-3dB (small signal)
- 'Full House' Trigger
and Sync to Y1 and Y2 or external.

The new 200 Series supersedes the well-known 19 inch 419 A models and offers considerable improvements in bandwidth, dynamic input range and trace stability. The instrument is self-contained and made to the highest standards. Rack mounting versions are available

Please ask for technical leaflets
LAN-ELECTRONICS LTD.
95 Farnham Road, Slough
Berks., SL1 4UW. Tel. 26447/8 \& 30431/5

WW- 048 FOR FURTHER DETAILS

EIMEOARD

Stop Ruining Your I.C.'s And Wasting Time Soldering Plug Into The Revolutionary New =INBDARD
The Only Professional Quality Breadboard That Accepts All DIL Packages With 6 To 40 Pins Incorporates Bus Strips For Vcc And Ground Includes A Component Support Bracket Has Over 500 Individual Sockets
And Allows You To Use And Re-Use IC's. Transistors, LED's, 7 Segment Displays, Diodes, Resistors, Capacitors

Only $£ 9.72$ (cheque with order) Including VAT and P.P. Special Quantity Discounts Available For Radio Clubs, Retail Outlets, Distributors

PRECISION PETITE LTD.

119 A HIGH STREET, TEDDINGTON, MIDDX. TEL. 01-977 0878

Now with the

- NEW MK. II DRILL•

10,000 r.p.m., 120 cmg .

"MORE POWER MORE TORQUE"

12v.-14v DC DRILL ONLY £8.00 (P.P. 35p)

STAND £3.76 (P.P. 35p) incl VAT (Together 50p P.P.) SAE for illustrated
 leaflet and order form
-ronn

ANEMDIMEYSOU IDSOLDERIVG

No doubt about it our S22 portable 'scope is beautifully put together, from the compact and elegant case right down to the chassis where its three main circuits fan out giving easy access to the heart of the instrument.
Aesthetics apart, the S22 is a lightweight single-trace 5 MHz oscilloscope designed for the travelling service engineer and offering high specification at a competitive price, including all the facilities of trigger selection plus a special TV mode giving auto lock on LINE and FRAME frequencies. Versatile toothe S22 can be mains or battery powered, only we don't give you the option-we give you both, complete with internal rechargeable cells and charger.

For 10 MHz dual-trace requirements the Telequipment D32 is available, with a similar specification.

$$
\begin{array}{rr}
\text { Prices S22 } & £ 185.00 \\
\text { D32 } & \text { (+ vat) } \\
£ 275.00
\end{array}
$$

Interested? Then send today for the full colour leaflet describing both models.

TELEQUIPMENT<<霊>

Tektronix U.K. Limited,
P.O. Box 69, Beaverton House, Harpenden, Herts. Tel: Harpenden 63141 Telex: 25559

wireless world

Electronics, Television, Radio, Audio

JUNE 1976 Vol 82
 No 1486

Contents

33	Myths and maths
34	Wireless across space by Tong B. Tang
39	News of the month
	New video recording system
	Eye direction recorder in Britain
	New tape format
42	Surround-sound decoders - 1 by David Heller
47	Anti-phase or 180° phase-shift by S. W. Amos
48	Sixty years ago
49	Communication theory - $\mathbf{3}$ by D. A. Bell
52	H.F. predictions. Literature received
53	Wireless World Teletext decoder - $\mathbf{8}$ by J. F. Daniels
56	World of amateur radio
57	APRS preview
58	Letters to the editor
\quad The consultants	
\quad Citizens' band in the UK?	
62	Microprocessors oversold?
66	Books received
67	Balunamp design nomogram by Andrew M. Stephenson
68	Announcements
69	Generation of equal-tempered pitches by Robert M. Youngson
70	Circuit ideas
	Class A power amplifier
75	Broadcast's biggest by Pat Hawker
77	Electronics à Paris
79	New products
82	Real and imaginary by "Vector"
123	APPOINTMENTS VACANT
136	INDEX TO ADVERTISERS

Price 35p (Back numbers 50p, from Room 11, Dorset House, Stamford Street, London SEĪ 9 $\bar{L} \mathrm{U}$.) Editorial \& Advertising offices: Dorset House, Stamford Street. London SE1 9LU.
Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London SE1."
'Subscription rates: 1 year: $£ 7.00$ UK and overseas ($\$ 18.20$ USA and Canada). Student rate: 1 year, $£ 3.50^{\circ}$ UK and overseas (\$9.10 USA and Canada)
Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House. Perrymount Rd. Haywards Heath. Sussex RH 16 3DH. Telephone 044459188 . Subscribers are requested to notify a change of address.

Front cover is a reference to Dr Tang's article "Wireless across space," which examines the feasibility of communication with 'beings on planets of other stars (photographs by Richard Knox (stars) and AP (earth)).

IN OUR NEXT ISSUE

Video discs. A review of the current state of this area of development, with a look at the latest contender.

Wideband compander. A noise-reducing circuit for tape-recording which uses power law compansion and does not exhibit the "breathing" effect.

Simple modem for a.p.t. tape recording. Design which overcomes amplitude variation on playback by using the frequency-modulated signal from a phase-locked-loop i.c.

SIXTY-SIXTH YEAR OF PUBLICATION

CONSERVES YOUR CASH. No need to lock up capital in slow moving stocks.
SAVES TIME. Parts usually despatched by return. Orders phoned before midday are often on the way same day.
A PROTOTYPE SERVICE. Invaluable when assorted alternative experimental parts are required.
SOLVES BUFFER STOCK PROBLEMS. Eliminates need for heavy stock holding. Our stocks are at your immediate disposal.
SIMPLIFIES ORDERING. One transaction for a variety of parts saves bookkeeping and paper work.
NO ORDER TOO SMALL. Every enquiry is of equal importance and dealt with expeditiously.
Obviously Single Source Service can solve a lot of your day to day problems. As the first step get the relevant U-C S catalogue, which illustrates and describes hundreds of parts any of which you may want at any moment. Write, or better still phone 0602328711

So make United-Carr Supplies your SINGLE SOURCE for:-

Itmakes sense to use the United-Carr Supply Service when you require smallerormixed quantities of any of the following:-

CINCH

Barrier terminal strips.
Fanning strips.
Marker strips.
Printed circuit board edge connectors.
D Subminiatures.
Multi way'plugs and sockets.

DOT

Electrical Components. Single and double pole rocker switches.
Mains and low voltage indicator lights. Plunger switches. Mains connector blocks. Automotive lamp holders. Push on terminations. Fuse holders.

F

Edge clips. Cable clips. Cover plates. Turnbuckles. Knob clips.

Audio sockets.
Group boards.
Valve holders.
Fuse holders.
Battery connectors.

Industrial Fastenings.

 Tee nuts. DOTLOC single thread . lock nuts. Lift the Dot fastenings. Turnbuttons.Plugs and grommets.
Metal and plastic components.
Press studs.

W buttons.
Door catches.
Cable straps.
Metal and plastic components.

Separate catalogues are available for:-

Electronic Components, Electrical Components \& Industrial Fasteners.

Write or phone for your free copy, stating possible requirements.

wireless world

Myths and maths

Why should scientists want to get in contact with possible intelligent beings in other solar systems? The author of "Wireless across space" in this issue does not set out to answer this question - he is writing a technical article. Yet the question is a legitimate one to ask. Much time, money and effort has been expended on this work. One answer could be in the "because it's there" category - the possibility exists, so we must take up the challenge. Another answer could be scientific curiosity. Science is part of university life - which is justified by education and passing on the culture - and science needs problems to work on. The psychologists might suggest that we have an inner wish to find life elsewhere: we are really seeking more evidence to demonstrate purpose and design in the universe, to reasure us that life on this planet is not just an isolated molecular accident.
Practical people will say these are specious answers. But when you try to find the basic motivation behind so much of our science and technology you find yourself among similar, apparently vague and mystical explanations. Technology, in particular, is supposed to serve the needs of man (such as for more communication channels). But the needs of man, beyond those of sheer survival, are largely generated by his visions of himself - in fact by myths. (Here "myths" is not intended to mean things that are not true, but expressions of ideas by which we act and live.)

Behind much of technology is the myth of human progress - that we are on some road that will eventually lead us to perfection if we work away hard enough at our gadgets. And there are also myths of perfection operating in the specialized areas of our progress. Take sound reproduction, for example. Frequency and phase response, harmonic and intermodulation distortion, signal-to-noise ratio and so on are ultimately all measurements - nothing more than meter deflections and points plotted on paper, symbols representing concepts. Yet those of us who feel we cannot rely on our own ears believe that if we make all the measurements absolutely right by sufficient expenditure of money and technical effort, the reproduced sound must necessarily be absolutely right also. This is an example of the myth of objectivity.

Technologists and scientists should always be aware that objectivity is a myth. It is so easy to fall into the trap of imagining that the laws of nature, of logic and mathematics somehow exist independently - that they existed before anyone was around to think them. As the eminent molecular biologist Jacques Monod points out in his book Chance and Necessity, the principle that objectivity is necessary for truth is in fact an ethical, and therefore 'wholly human, decision. Our myths and maths go hand in hand.

Wireless across space

Communication with possible intélligent beings on planets of other stars

by Tong B. Tang, M. Tech

St John's College, Cambridge

When the Viking lander-orbiter spaceprobe reaches the planet Mars in July 1976 we may receive the first confirmation that life exists not only on Earth but on extra-terrestrial bodies as well. It is extremely unlikely, however, that we shall find intelligent life either there or on other planets in the solar system. On the other hand, it is statistically likely that among the 10^{11} stars constituting our galaxy (the Milky Way) many have planets which are inhabited by intelligent beings of one form or another and at various levels of social and technological development.

As yet we know of no physical principle which suggests that space travel at speeds faster than light can be implemented. The distances between stars are enormous. The star nearest to the sun is 4.29 light-years away, a distance of a quarter of 10^{14} miles and nearly ten thousand times our distance from the outermost planet of the solar system. While interplanetary travel could be possible within fifty years, launching interstellar spacecraft, whether manned or urimanned, will at best be grossly inefficient, even after all the technological advances we can foresee have been achieved.

Communication by electromagnetic waves will remain the most convenient and fastest method of making contact between stars. It is also the cheapest, requiring only the expenditure of electrical power, granted that the antennae and associated electronics used for transmission and reception exist already. Using 1970s technology and prices, a ten-word telegram costs less than 10 pence if the antennae are 45 metres in diameter and 10 light-years apart !.

Extra-terrestrial civilisations could possess technology much more advanced than ours and make use of telecommunication means which we cannot implement (modulation and

Fig. I. The radio telescope at Arecibo, Puerto Rico. The paraboloidal reflecting dish. 300 m in diameter, is constructed within a natural valley in limestone mountains. The feed is supported 137 m above ground by cables attached to three pillars. By moving the feed the telescope is made semi-steerable (at 1.42 GHz , to any direction within 20° from the zenith).

demodulation of gravitational waves or neutrino beams, etc.) or cannot imagine. But they would understand that, while some civilisations on other planets could be still more advanced than themselves, some could be behind them. Counting from the dating of the earliest known fossils of living things on Earth, we have been evolving for three thousand million years, and radio technology has been with us for less than a hundred years. Hence, to maximise the chance of achieving contacts, as primitive a communication technique as possible should be used by civilisations; this I shall call the "principle of presumed modesty". That is, every civilisation in attempting communication will try to make things as easy as possible for the other side, irrespective of whether the other side is in fact very advanced, because it does not know beforehand one way or another. Assuming that everywhere technology develops in the same overall sequence ${ }^{2}$, we need therefore consider only radio communication.

Feasibility of interstellar radio communication

Our first television broadcasts took place at Alexandra Palace, London, nearly forty years ago. Within a distance of twenty light-years of our sun there are about a hundred stars and star components. It is not absolutely impossible that they all possess planets, on which there are civilisations who have built radio receivers sensitive enough to pick up those television transmissions. The people who sent out the television programmes, may therefore expect at any time now "replies" from up to a hundred different directions in the sky!
Returning from such speculation, we now show that indeed we already possess radio equipment capable of maintaining point-to-point communication with a planet of another star. Its technological advancement need be no higher than ours. (If it is more advanced the issue does not arise at all.) There is a definite low-noise "window" for the reception of interstellar radio signals, in the microwave region from 1 to 10 GHz (u.h.f. to radar s.h.f.). The window is
determined on the low-frequency side by the onset of intense radio frequency cosmic radiation and on the high-frequency side by that of atmospheric thermal noise. As far as we are concerned, if the interstellar radio station is built on the moon, then the upper frequency limit will be extended to the infra-red, where absorption by dust and debris in the interstellar space begins to be serious. By the "principle of presumed modesty" we should ignore this possibility. Further, the atmospheres of planets where life has evolved to advanced forms must have similar constituents (oxygen and water vapours) and therefore similar noise characteristics.

We now derive an equation for the maximum range of radio communication. If the transmitting antenna radiates a total power P_{1} over a bandwidth Δf in all directions with equal intensity, then from a distance l away the power received by an antenna of "effective" area A_{2} will be

$$
P_{2}=P_{1} A_{2} /\left(4 \pi l^{2}\right)
$$

When l is of the order of interstellar distances, it is obvious that with reasonable values of P_{1} and A_{2} (reasonable by earthly standards), P_{2} will be far too small to be detectable. However, the transmission can be beamed and made highly directional. If then a radio telescope with a parabolic reflector is used, there is a gain over the isotropic radiator of ${ }^{3}$

$$
G_{1}=\pi^{2}\left(d_{1} / \lambda\right)^{2}
$$

where d_{1} is the diameter (aperture) of the reflector dish and λ the operating wavelength. (For simplicity it is assumed that it is radiating "uniformly", otherwise a numerical coefficient slightly less than 1 has to be included.)

Likewise, the receiving antenna will be a parabolic type and will have a gain G_{2} If its aperture d_{2} is large, as should be the case, its effective area is close to the physical area:

$$
A_{2}=d_{2}^{2} \pi / 4
$$

If now P denotes the minimum detectable signal power at the receiver, and L the maximum range of communication, which we want to find, we can write

$$
\begin{aligned}
P & =P_{1} G_{1} A_{2} /\left(4 L^{2}\right) \\
& =\left(\pi^{2} / 4^{2}\right) d_{1}^{2} d_{2}^{2} P_{1} /\left(L^{2} \lambda^{2}\right) \\
& \text { so that } L=\frac{\pi d_{1} d_{2}}{4} \sqrt{\frac{P_{1}}{P}}
\end{aligned}
$$

P will depend on the background and receiver internal noises, characterised as noise temperatures ${ }^{4}$. Without going into the details we can reasonably take P as 3.2×10^{-24} watts per hertz. Within the window mentioned earlier the interstellar background noise ${ }^{4}$ is nearly constant at 3.2×10^{-22} watts per hertz

Fig. 2. Earth's first message to the stars (from ref. 23). The first bit sent is at the upper right-hand corner. The sequence continues from right to left and down.
(except at a few specific frequencies like 1.42 GHz). In addition, since the receiving radio telescope will be pointing towards a star, microwave-frequency radiation of the star will add to this noise. However, if the star is more than ten light-years away it will be quite negligible ${ }^{30}$. By using masers or parametric amplifiers, and signal processing techniques such as time integration, frequency cross-correlation ${ }^{5}$ and phasor detection ${ }^{6}$, it is possible to dig out signals which are as much as 20dB weaker than this constant noise.

Now, let us assume the receiver passband has been adjusted to be the same as the signal bandwidth Δf so that P in watts is $\left(3.2 \times 10^{-24} \Delta f\right)$, with Δf in Hz . Take λ representatively as 10 cm , corresponding to a frequency of 3 GHz . Further, assume d_{1} and d_{2} both to be 300 m , the same as the aperture of the Arecibo radio telescope (Fig. 1) which is the world's largest in operation at present, so that $G_{1}=G_{2} \approx 80 \mathrm{~dB}$. Then if P_{1} is 0.25 MW , the present limit in our technology, a little arithmetic will show that

$$
L=2 \times 10^{4} / \backslash^{\prime} \Delta f \text { light-years }
$$

The interested reader can draw graphs of L against P_{1} for various values of Δf.
at selected values of λ and d. If one uses $\log -\log$ scales they will be straight lines of slope -0.5 .

It is seen at once that a larger L is obtained with a smaller Δf, though not quite proportionally. This is because reducing Δf diminishes the background noise power. Δf is limited by the frequency stability of the local oscillators of the transmitter and receiver, as it must be larger than the frequency drift. Using state-of-the-art quartz crystal oscillators and phase-locked loop systems for subsequent frequency up-conversion, Δf can now be made as small as 0.1 Hz on s.h.f. waves. If this value of Δf. is adopted, L is more than sixty thousand light years. In other words, two Arecibo-class radio telescopes, placed almost anywhere in the galaxy, could maintain communication with each other.

Problems and solutions

Interstellar radio communication is not, however, without problems. The first few concern Δf. The maximum amount of information obtainable from a radio .transmission lasting a period of time t is, in bits, ${ }^{7}$

$$
\begin{aligned}
I & =\Delta f \cdot \log _{2}(1+\alpha) \cdot t \\
& \approx \Delta f \cdot \alpha \cdot t / \log _{e} 2 \\
& \approx(3 / 2) \Delta f \cdot \alpha \cdot t
\end{aligned}
$$

where α is the received message sig-nal-to-noise-ratio and is assumed to be small. As an illustration, to send 3 megabits, which is the average amount of information contained in one book ${ }^{8}$, to be received up to points where α is 1 , then if Δf is 0.1 Hz time t will be nearly 8 months. Unless we merely want to transmit call signals, which are of low I and serve only to advertise our existence and that we send call signals, then the chosen Δf cannot be too small so that the transmission time t will be reasonable. Moreover, signals of low I may be mistaken to be not artifical but of natural origin ${ }^{9}$. Here it is interesting to note that when the stellar objects called pulsars were first observed there *were speculations that they were radio beacons for interstellar navigation but their emissions pulse with extremely regular periodicity and nothing else. The speculations did not last long

Also, on the receiver side, the timeconstant of the passband determining filters is set to be $1 / \pi \Delta f$. If Δf is very narrow the time τ_{i} required for a single signal recording (the "integration time") becomes inconveniently long, espectially if the signal-to-noise-ratio is low.

More importantly, in the frequency domain, reducing Δf increases the total number of possible channels. Communication is achieved, of course, only if both the transmitter and the receiver are tuned to frequencies within the same channel. The trouble is that each side is ignorant of the other's choice of
frequency before the contact. Within the 1 to 10 GHz window there will be nine thousand channels if Δf is 1 MHz , but ninety thousand millions if it is 0.1 Hz .

Fortunately, this problem of frequency compatibility seems to be tractable. Within that window there are particular frequencies which have.special significance. Although each civilisation does not know beforehand how the others think, to maximise the chance of contact each should in its planning converge on those points which can be identified by all the others; this has been referred to as the "principle of anti-cryptography". ${ }^{10}$ For us, the first such "watch frequency" to be so identified is the 1.42040575 GHz spin-flip emission line of neutral hydrogen. As a physical property of matter, its value is universal and known by all other civilisations. Its significance comes from the observation that hydrogen is the most abundant element in the universe, so that it may be regarded as one fundamental constant of nature. However, for the same reason, it is unusually noisy. There has been a suggestion that its second harmonics $(2.84 \mathrm{GHz})$ should be chosen instead. ${ }^{11}$ Also suggested ${ }^{12}$, later, are the 1.667358 GHz radio frequency line of the hydroxyl radical and two "naturally" derived frequencies in the "water hole" 13 between it and the hydrogen line. (Water is composed of hydrogen and the hydroxyl radical, and it is most probably the basis of life anywhere in the universe.) All these frequencies lie near the low-frequency end of the window, an additional advantage since $L \propto 1 / \lambda$.
There is an analogous problem in the time domain - the synchronisation of the transmitting and the receiving radio telescopes. As mentioned earlier, high gains on the telescopes, and therefore longer L, are obtained by making them highly directional. Hence, they are at one time transmitting or listening to only some small solid angles in the sky - in fact, $(4 \pi / G)$ steradians, where G is the gain of the telescope concerned. (The whole sky extends by definition 4π steradians.) For communication to be achieved the two telescopes have to be in the same line of sight and pointing at each other. The probability of this happening by pure chance is $\left(1 / G_{1} G_{2}\right)$. If G_{1} and G_{2} equal 80 dB , it becomes 10^{-16}, an exceedingly small probability. (A field of view of $4 \pi / 10^{8}$ steradians is so narrow that generally at most one star lies in it.)

One solution is to reduce G_{1} and G_{2}. which however decreases L as well. Another solution is the simultaneous use of vast numbers of transmitting and receiving telescopes, pointing in different directions. Practical proposals are not lacking ${ }^{14!}$ Even if neither is feasible, the problem may still turn out to be solvable. In the same way that certain frequencies are special and, obviously to all, should be those used for
interstellar communication, some astronomical phenomena in the galaxy may be suitably exploited as "time markers" and used for synchronisation purposes. One example is, for binary stars (two suns circling each other), the times when the two stars are nearest and farthest away ${ }^{15}$. Another, I propose, is the occurrence of a supernova ${ }^{16}$ (a star "blowing up"; and this is, incidentally, the event responsible for the generation of the heavy chemical elements and the cosmic rays which in turn are requirements for the appearance and evolution of life.)

After the interstellar signals have been located, yet another problem is presented by the demodulation process. Which modulation method has been used by the transmitting civilisation? For reasons of simplicity and obviousness, the information must have been in binary. form. According to one analysis ${ }^{10}$, the optimum binary modulation process (and by "the principle of presumed modesty" the one to be used) is by sense-switching of the circular polarisation of the radio waves. This means that the waves will be circularly polarised, in the clockwise and anticlockwise directions alternatively to represent 0 and 1 . To use amplitude, frequency or phase modulation will be less efficient.
Assuming that we have got the message (as a sequence of 0 s and 1 s), we have to start decoding it into intelligent information. Much has been discussed about this subject of "interstellar cryptography". The information may be pictorial as was the first interstellar tranṣmission by us (see later: Fig. 2). It may be more sophisticated and high-level, and it will not be so straightforward to interpret and translate into our own concepts. However, the transmitting and the receiving civilisations share quite a few things in common, irrespective of their differing systems of concepts (which in any case all reflect the same objective world). They are the message itself, the "same" understanding of physics (albeit with different "names,', notations and unit systems), and the (universal) conception of arithmetic (counting one, two, three, etc.). A language of high expressional power can be defined, starting from
them and nothing else. A long message can consist of, in the first part, the construction of such a formalised syntactic language, followed then by "books". The reception and deciphering of such a message will have unimaginable effects.

Lastly, there are a few "tactical" problems. The transmitting and the receiving planets will be rotating as well as travelling in space, so that they are moving relative to each other. Hence, there will be a time-varying Doppler shift in the signal frequency, equal to the (varying) relative velocity divided by the speed of light. However, this can be eliminated easily if each side separately compensates for its contribution to the total shift, by using for example a phased frequency-scanned antenna system ${ }^{17}$. Another problem is due to the fact that interstellar space is not exactly a vacuum, so that dispersion of the radio signal occurs. The lower frequency components of the signal have slightly lower propagation velocities, resulting in distortion. However, with an unusually small Δf, it will not be serious unless the propagated distance is very large ($>10^{4}$ light-years). ${ }^{1}$

The receiving system

Let us now consider the radio telescope receiving system (sometimes referred to as a "radiometer") in some detail. Its basic function is to amplify, within a specified bandwidth at a selected frequency, the signal-carrying electromagnetic waves collected by the telescope. After appropriate demodulation the signal drives an output recorder.
Its front end will consist of a lownoise pre-amplifier - inevitably a parametric amplifier or the more expensive liquid-helium cooled maser ${ }^{18}$ - which is usually placed right in the telescope to reduce feeder transmission loss. (A discussion of "noise temperature" and front-end amplifiers can be found in reference 4.) To eliminate misleading outputs due to internal drift in the system characteristics, the input to the pre-amplifier is switched between the telescope feeder and a standard noise source. The pre-amp is followed by several stages of superheterodyning intermediate-frequency amplifier, and

Investigator	Observatory	Frequencies	Targets
Trotsky	Eurasian network. USSR	$\begin{aligned} & 06,1 \text { and } \\ & 1875 \mathrm{GHz}_{2} \end{aligned}$	Entire sky
Zuckerman. Palmer	Green Bank. USA	1.420 GHz	Some 600 nearby sun-like stars
Kardashev	Eurasian network. USSR	Several	Entire sky
Bridle, Feldman	Algonquin Radio Observatory. Canada	22.2 GHz	Several nearby stars
Drake. Sagan	Arecibo. Puerto Rico	$\begin{aligned} & \text { 1.420, } 1.653 \\ & \quad \text { and } \\ & 2.380 \mathrm{GHz} \end{aligned}$	Several nearby galaxies

Fig. 3. Project Ozma receiving system schematic (adapted from National Radio Astronomy Observatory diagram).
then by the detector, which is synchronised to the pre-amp switching frequency, so that signals from the feeder which are pulsed at the same frequency will be demodulated but receiver noises etc. which are not will be ignored. An integrator comes after the detector stage. It averages the signal over an interval τ_{i} equal to its set time-constant, to give successive recordings. The root-mean-square deviation in a single recording is inversely proportional to $V_{i} \Delta f$, so that a longer τ_{i} leads to more significant digits in the reading. In the search period, before the signal has been detected, square-law (energy) detectors are used. After the signal has been found, however, a coherent or homodyne detection method is used to retain the phase information. The recordings usually go through ana-logue-to-digital converters and then are stored on tapes, to be dumped into a computer later. Sometimes, signal processing processes such as frequencycorrelation are performed in real time immediately after the integrator, by a digital correlator ${ }^{19}$.

The first attempt by mankind to listen for extra-terrestrial radio messages (Project Ozma) was made fifteen years ago. ${ }^{20}$ In the last five years there were three more publicised searches. ${ }^{21,}{ }^{22}$ Project Ozma used a telescope of $d=26$ metres, and searched at frequencies from 1.4202 to 1.4206 GHz with Δf from 40 to 100 Hz . The other three had d ranging from 26 to 50 metres, frequencies at 1.420 and 0.927 GHz , and Δf at various values from 13 Hz to 2 MHz . Results were all negative, which is hardly surprising as these efforts were on very small scale. Using the Arecibo radio telescope ($d=300 \mathrm{~m}$) the first radio signalling to other stars was carried out in 1974, just before the first man-made objects to leave the solar system would have left. (These were the Pioneer 10 and 11 space-probes, travelling more than a hundred thousand times slower than the radio signals.), The radio message ${ }^{23}$ has 1,679 bits and therefore can be broken down into a two-dimensional picture in only two ways, either as 73×23, or as 23×73 which is the intended one (Fig. 2). The frequency of transmission was $2.38 \mathrm{GHz}, \Delta f$ was 10 Hz and the transmission time lasted 169 seconds. Binary frequency modulation was used, the effective average power was $3 \times 10^{12} \mathrm{~W}$, directed towards the Great Cluster in Hercules, a group of some 300,000 stars 2.4×10^{4} light-years distant. The Doppler shifts in the signal frequencies due to motions on the Earth side had been continuously compensated.

Fig. 4. Multi-channel receiving system

The functional block diagram for the receiving system used in Project Ozma, which will be representative, is shown in Fig. 3. Two horn antennae are connected by waveguides to an electronic switch, and the signals from them are fed alternately to the pre-amplifier. They are placed above the telescope reflector dish, so that one "looks" effectively at the star of interest and the other at a point in the celestial sphere just next to it. The second horn serves as a comparison noise source. The detectors on the right-hand'side of Fig. 3 respond only to signal pulses synchronised with the switching frequency. In this way receiver internal drifts, and terrestrial interferences which are collected by both horns, are eliminated, since they are not synchronised.

The quartz crystal oscillator for the first mixing stage is kept at a very stable temperature in an oven-within-oven, , and has a frequency drift of less than ' 1 Hz in 1 GHz . Its output is up-converted in frequency to 1.39 GHz by a phaselocked loop system.

After the fourth i.f. amplifier, two filters pick up one broad $(0-200 \mathrm{~Hz})$ and one narrow $(80-120 \mathrm{~Hz})$ band of signals. Their attenuations are in the ratio of 5 to 1 , so that if the signals are broad-band their outputs are the same. In this case, the differencing circuit and thus the "interstellar signal channel" will have zero output. (The signal-band filter is shown as passing a Δf of 40 Hz , but it can be easily and quickly re-adjusted and in the actual experiment Δf had varied from 40 to 100 Hz .) Only when there are signals of bandwidth less than 200 Hz will the filters' outputs be different. The other two outputs, shown as "comparison band" and "signal band," serve as checks on system performance.

The other receiving systems used in the search for extra-terrestrial radio messages are similar in construction, except that they are multi-channel so that a number of watch frequencies can be scanned simultaneously. Fig. 4 is a schematic of these systems. There is the radio telescope, and a standard reference source for noise comparison purpose. After going through the switch and the wide-band pre-amplifier, the signals pass several stages of mixers and i.f. amplifiers and are then selectively allowed through a number of pass-band defining filters. After detection and integration they are summed by nonlinear circuit elements and go to an output recorder. Multi-channel one-bit digital correlators ${ }^{24}$ are also sometimes incorporated. Each channel can be searched individually, and the data from several adjacent channels can be combined to represent a wider channel without any loss of information or sensitivity.
(It may be interesting to compare the
receiving systems just described with a home-made one operating at 0.2 and 0.45 GHz and for less sophisticated purposes ${ }^{25}$, which, while being much simpler, contains all the essential ideas.) To be continued

References

1. Drake, F.D., in Interstellar Communication: Scientific Perspective (ed. C. Ponnamperuma and A.G.W. Cameron), Houghton Mifflin (Boston; 1974).
2. Sagan, C., "Life beyond the Solar System" in Exobiology (ed. C. Ponnamperuma), North Holland (1972) p.473.
3. I.T.T. Reference Data for Radio Engineers (5th ed.), H. W. Sams (New York, 1968) p.26-20.
4. Smith, K. L.., "Noise - Confusion in more than one" Parts 3 and 4, Wireless Worid, vol. 81, pp.235-7 and $326-330$ (1975).
5. Drake, F. D., in Current Aspects of Exobiology (ed. G. Mamikunian and M. H. Briggs), Pergamon (1965) p. 323.
6. Golay, M. J. E., "Note on the probable character of intelligent radio signals from other planetary system", Proc. IRE, vol. 49, p. 959 (1961).
7. ibid Ref. 3, p.38-15.
8. Shkovskii, I. S., and Sagan, C., Intelligent Life in the Universe. Holden-Day (1966) pp.427-8.
9. Slysh, V. L., "Radio astronomic artificiality criteria of radio sources" in Extraterrestrial Civilisations (ed. G. M. Tovmäsyan), Israel Programme for Sci. Transl. (1967) pp.38-42.
10. Dixon, R.S., "A search strategy for finding extraterrestrial radio beacons". Icarus, vol. 20 , pp.187-199 (1973).
11. von Hoerner, S., "The search for signals from other civilisations" in Interstellar Communication (ed. A. G. W, Cameron), Benjamin (1963) pp.272-286.
12. Drake, F. D., and Sagan, C., "Interstellar radio communication and the frequency selection problem", Nature, vol. 245, pp.257-8 (1973).
13. Oliver, B. M., in Communication with extraterrestrial intelligence (ed. Carl Sagan), M.I.T. Press (1973) pp.284-5.
14. for example, Gindilis, L. M. in Extraterrestrial Civilisations (ed. S. A. Kaplan), Israel Programme for Sci. Transl. (1971) p. 68.
15. Pace, G. W., and Walker, J. C. G., '"Time markers in interstellar communication", Nature, vol. 254, pp.400-1 (1973).
16. Tang. T. B., "Supernovae as time markers in interstellar communication", J. Br. Interplanet. Soc., 1976 July-Aug.
17. Dixon, R. S., "An isotropic frequency-independent antenna system for simultaneous omnidirectional Doppler shift removal", IEEE Trans. Antennas and Propagation, vol. 22, pp.707-9 (1974); Teich, M.C., "Doppler-independent selective heterodyne radiometry for detection of remote species", Rev. Sci. Instrum. vol. 46، pp.1313-1317 (1975).
'18. Kollberg, E. L., "A Travelling-wave maser system for radio astronomy", Proc. IEEE, vol. 61,' pp.1323-9 (1973).
18. Bowers, F. K., Whyte. D. A., Landecker, T. L., and Klingler, R. J., "A digital correlation spectrometer employing multiple-fevel quantisation", Proc. IEEE, vol. 61, pp.1339-1343 (1973).
19. Drake, F. D., "How can we detect radio transmissions from distant planetary systems?" in ibid ref. 9, pp.165-175; "Project Ozma", pp.176-7. 21. Troitskii, V. S., Starodubtsev, A. M., Gershtein, L: 1., and Rakhlin, V. L., "Search for monochromatic $927-\mathrm{MHz}$ radio emission from nearby stars", Soviet Astron. - AJ. vol. 15, pp.508-510 (1971).
20. Verschuur, G. L., "A search for narrow band $21-\mathrm{cm}$ wavelength signals from ten nearby stars,:' Icarus, vol. 19, pp.329-340 (1973); Zuckerman, B. "Ozma II", paper presented at US Commission V URSI Meeting, January 1973, Socorro, New Mexico. 23. The Staff at the National Astron, and Ionosphere Centre "The Arecibo message of November 1974", Icarus, vol. 26 pp.462-6 (1975). 24. Ables, J. G., Cooper, B. F. C. Hunt, A. J. Moorey, G. G., and Brooks, J. W., "A 1024-channel digital correlator", Rev. Sci Instrum., vol. 46, pp.284-295 (1975)
21. Duncan, J. H., "Radio telescope project at Frensham Heights School", Wireless World, vol. 81, pp.289-290 (1975).

New video recording system

When is a video disc not a video disc? The multiplicity of answers to this question seemed to have escaped the organizers of Video Disc 76, a recently held conference in London. For by choosing this title, they automatically excluded at least one system from being presented that has equal, if not more, potential than the best disc systems announced so far. A question and answer period however allowed Mr Sarason Liebler, president of Digital Recording Corporation, to give a brief description which were later expounded to Wireless World (more details next issue).

The system is an optical one that can. store live colour television signals in digital form at a density of 300 million bits per square inch, a density that allows 30 minutes of TV programme to be stored on a 5×7 in record. Mr Liebler told Wireless World that for consumer TV playback large-scale production could bring manufacturing cost down to $\$ 120$ per unit, as only relatively inexpensive components were required. But a large consumer market was seen to be a long way off, and application is more likely to be in other areas such as archival information storage and retrieval, military situations, and professional areas where high signal-tonoise ratio and a high bit rate or density is desirable.
Material to be stored is converted to a digital code and written as a series of micron-sized dots (or bars) and spaces on a photosensitive plate. For playback, which can use the same unit as for recording, digital tracks are scanned by a light beam. The modulated beam is converted by photodetector and a conventional digital-to-analogue converter to reproduce the original information. Scanning is achieved by a spinning scanning head that has several apertures in its periphery. An optical distributor switches the light beam in
such a way, that the data at the end of one track are picked up at the start of the next track by the next aperture. It is the scanner that translates, the record remaining fixed.

Eye-direction recorder in Britain

Accurate "eye direction" recording has posed difficult problems for researchers trying to find a system in which the measurement process itself does not interfere with the normal activity of the subject. The "remote oculometer", demonstrated recently in London, is claimed by its designers, Honeywell Radiation Centre, to overcome this problem.
The oculometer, which is the result of 10 years' research at the company's: laboratories in Lexington, Massachusetts, uses a beam of infra-red light, aimed at the subject's eye, to operate a special TV camera. This camera locates the position of the eye's corneal reflection, which moves within the pupil area according to the direction of the line of sight. A small computer translates the position of the corneal reflection into a precise "measure" representing the point at which. the subject is looking. This measure can be recorded and/or displayed on a TV screen showing the fixation point within the viewed area.

Video tape recording showing a viewer's "eye fixation" on a TV commercial. The fixation point shown as a white dot on the woman's mouth is superimposed on the screen by an oculometer computer.

There are two basic types of oculometer; one which requires the subject's eyes to stay within one cubic inch of space, and another which, using a two-axis moving mirror and a servo-driven focusing lens automatically controlled by the computer processor, allows movement within one cubic foot of space.
The oculometer, Honeywell says, can provide objective data in many applications such as training and evaluation of aircraft pilot or air-traffic controllers' skills, instrument panel design, driving and road safety research, design of TV commercial and other advertising copy, and reading analysis. The U.S. Air Force are presently using a cubic-foot unit for study into the use of eye control as an alternative to conventional hand control, and oculometers have been purchased by a variety of other research centres, armed forces and universities in both the States and Europe. Honeywell's own Systems and Research Centre uses an oculometer for analysing the viewing pattern of shoppers asked to watch a series of TV commercials, and also for the National Highway Traffic Safety Administration for a night-driving study of headlight effectiveness.

Post Office install electronic director

The first electronic 'director' equipment to be installed in a London telephone exchange is being tested under live traffic conditions. The original director equipment designed for London and other large cities in the 1920s, used Strowger two-motion selectors and

Final checking of the Pye TMC electronic director equipment (see news item) before delivery to the Post Office for field trials.
uniselectors to convert the three digits of the exchange code dialled by the subscriber into the necessary routing digits for directing the call across the particular city to the destination exchange. This equipment, which enabled a universal numbering scheme to be employed, has worked efficiently but does not provide some facilities now considered desirable by the Post office. Pye TMC was awarded a contract by the Post Office to design and develop a system which could not only replace the existing electromechanical equipment but would also incorporate additional facilities.

The new equipment, designed using m.o.s. l.s.i. techniques, is much more compact and has a translation store of 2,000 individual routing instructions. Any or all of these can be electrically rewritten, providing for the routing of traffic to several hundred local exchanges, to the trunk network or the various information centres as desired. The translators are triplicated for reliability. An added advantage for the maintenance staff will be the reduced noise level in the exchange to improve working conditions.

The first production TXE4 exchange is now carrying public traffic. Between now and March 1980, the Post Office expects to spend about $£ 330 \mathrm{M}$ on electronic exchanges at current price levels.
(As pointed out in "Centenary of the Telephone", March issue, the TXE4 is not fully electronic, relying on reed relays. See also "Electronic telephone exchanges", Juné, July 1974.)

Touch for iron and steel

A touch-sensitive display is taking a role in the investigation of data processing systems and information display techniques being carried out by the British Steel Corporation. Under a contract received by Marconi Radar Systems Ltd, a Digilux touch-sensitive display unit and a television alphanumeric display are being supplied to the Control and Human Factors Department of the BSC's Corporate Engineering Laboratory. The Digilux will be used in conjunction with the laboratory computer; a PDP11/45, to evaluate data processing systems and programmes developed for specific steelworks applications one of which is the operator guidance system for 'basic oxygen'. steelmaking, control.

The planned experimental programme being carried out by the Corporation also incudes comparative evaluations of equipment and an investigation of the display parameters such as desirable contrast ratios, character size, alphanumeric data format design and techniques of graphical display. Digilux does not rely on physical contact between finger and a bare wire conductor but uses narrow infra-red beams to form an invisible grid over the display screen. At each of the intersection points a small stud is let into the screen and above each stud an item of data to serve as a label is written electronically on the tabular display screen. By touching the appropriate
stud, two beams at right angles are intercepted and the data designated by the label is signalled to the computer. This data is then written on the screen and at the same time a new set of labels designating the next stage of information to be fed in, is written above the studs.

Cartridges to Tokyo

Goldring are feeling pleased with themselves as a result of a Japanese order for their new G900 pick-up cartridge. They first sold cartridges in Japan to Sony, with their 850 model, a derivative of the million-selling G800, series. But the 900 cartridge is a completely new design. Though the chemically-etched laminations of the pole shoe assembly, first introduced by Goldring in 1969, improved the mid-range droop of earlier cartridges, it still left a fairly heavy pick-up. The 900 uses the moving magnet technique enabling magnet size and weight to be reduced drastically, resulting in a cartridge weighing only 5 gm . The cantilever stylus support has also been reduced in weight - the tube wall measures 0.9 "thou" - and a smaller diamond tip is used. Tip mass is said to be 0.32 mg . The coil and pole shoe assembly is also improved with finer laminations and a coil construction technique that avoids the usual bobbin former; inductance of the pick-up is 640 mH at 1 kHz and 630 mH at 10 kHz . Droop at $5-10 \mathrm{kHz}$ is kept to within -1 dB , giving an overall response of 20 Hz to $20 \mathrm{kHz} \pm 2 \mathrm{~dB}$.

Local radio for the army

The Ministry of Defence is purchasing a mobile sound broadcasting facility which will enable the British Army deployed anywhere in the world to provide a local radio service of general interest and current news content. Two medium wave sound broadcasting transmitters together with studio equipment, h.f. receivers, antenna arrays, a demountable mast, an aerial tuning unit and a range of associated test equipment are being supplied by Marconi Communication Systems Ltd. All of this equipment is to be mounted in two Army containers so that the resultant station can be transported by air by Support Command to any destination and brought into operation. at short notice.

One of the containers will be fitted with two Marconi type B6023 1kW m.f.. sound broadcast transmitters with a paralleling unit to provide 2 kW of power. This container will also hold the drive units which will provide the choice of either crystal oscillator or synthesizer frequency control and a patching panel. The second container will function as the sound broadcasting studio and will be fitted with a

12-channel sound mixer, microphones, disc reproducers, tape recorders and sound monitoring equipment. A separate compartment within this container will mount h.f. receivers operating in space diversity to enable overseas broadcasts to be received and re-transmitted as required.

$I^{2} L$ in volume

Claimed to be the first European based volume production facility for $\mathrm{I}^{*} \mathrm{~L}$ devices, a facility of ITT Semiconductors at Footscray is approaching a production rate of one million devices per year. At this time, a significant proportion of these devices are for use in digital watch applications where the significant reduction in package size coupled with the capability to directly drive l.e.d. displays give I*L devices advantages over other comparable processes for certain applications. These advantages have potential for other applications and sample products are being evaluated by manufacturers in the telecommunications, TV, control systems and automotive markets. ITT inform us that development is now well advanced on a new range of consumer time pieces which use new circuit and packaging design techniques.

New tape format

A consortium of Japanese manufacturers consisting of Sony, Matsushita and Teac have announced a new tape format. Called the Elcaset, it consists of a tape cassette containing $1 / 4 i n$ tape in a plastics housing of similar appearance to a compact cassette. Designed to run at a speed of $9.5 \mathrm{~cm} / \mathrm{s}$, the Elcaset is a contender in the professional recording field alongside the BASF Unisette.
The principle difference between this new cassette and its competitor is that the tape is removed in a large loop by the recorder, thus isolating the cassette reel friction from the section of tape passing across the tape heads. Additionally, the track configuration allows for four conventional tracks and two control tracks down the centre of the tape. These control tracks can be used, one in each direction of tape travel, to carry synchronizing pulses for slide projectors, pilot-tone for film projectors, or a numeric code enabling selection of recorded items to be made using a programmable control unit. Automatic selection of bias and equalization is provided for three types of tape, by moulded lugs on the rear edge of the cassette.
Subsequent to the initial announcement, Aiwa and Victor (JVC) also announced agreement to adopt the format. The first machines using this format are expected to appear in the winter of 1976.

Artificially produced showers are among the extreme stress condltions to which Siemens communications equipment is subjected for environmental testing.

Underwater inspection completed

An unmanned undersea inspection vehicle has completed a visual examination of the massive new Brent Spar oil, storage and loading buoy for Shell UK Exploration and Production. The vehicle, equipped with colour and black and white television and stereo still cameras, inspected parts of the Spar Buoy in 25 hours of underwater operation. The buoy, whose underwater structures extend 109 m below the surface of the sea, is 29 m in diameter and can contain 320,000 barrels of oil. A British Aircraft Corporation team operated Consub 1 from a barge tethered alongside the structure. All areas were illuminated by lamps on Consub and real time television pictures were relayed and recorded on videotape at the operator's console on the barge for assessment by engineers.

Broadcasting Convention 1976

The organizers of the biennial International Broadcasting Convention 76 to be held at Grosvenor House, London from September 20 to 24, have announced an excellent response to the call for papers. More than sixty papers by leading experts around the world will be presented during the fourteen sessions of the technical programme. They cover new techniques, systems, developments and trends which will be of interest to engineers concerned with all aspects of broadcasting.

In addition to conventional broadcasting techniques there will be two sessions concerned with new information systems utilising the domestic television receiver for information display. Papers will be presented on Teletext, Viewdata and Text Television, the experimental system of NHK in Japan. A special session will highlight 'Electronic Journalism' using lightweight camera, recording and transmission equipment specially designed for this purpose and now being produced by many manufacturers for increasing use around the world to cover new events for television. The exhibition at IBC 76 at which leading manufacturers will display and demonstrate an extensive range of professional broadcasting equipment will complement the technical sessions and enable delegates to get up-to-date information and firsthand experience of the latest equipment. Over 2000 delegates from 44 countries attended IBC 74:

Marine electronics conference

The Society of Electronic and Radio Technicians, in association with the Institution of Electrical and Electronic Technician Engineers, has organised a three-day symposium on marine electronics at the University of Southampton. The symposium, which is to be held from 5th to 8th July, covers five sessions. The first session will deal with maritime communications and will include papers on ships' aerials, speech processing for high frequency communications and satellite communications. Other sessions will deal with navigation and radar, automation and computers, education, training and future developments of marine electronics, and safety at sea. Eighteen papers are to be presented, the authors being drawn from marine companies, manufacturing companies, government departments and corporations, shipping industries, shipbuilders and colleges. In addition to the papers, technical visits will be arranged and a full social programme is planned. Registration fee is $£ 68$ plus 8% v.a.t. ($£ 50$ plus v.a.t. for members inclusive of attendance, board and the volume of published papers. Amongst the chairmen are Sir Edward Fennessy, managing director of telecommunications at the Post Office, Air Commodore Alec Morris, Director of Signals (Air), Ministry of Defence, R. M. Billington, Maritime Radio Services at the Post Office, and Col. J. D. Parker, Secretary General, C.I.R.M.

Briefly

Approval for calibration centre. The MSL Calibration Centre of Hunting Gate, Hitchin. Hertfordshire has been approved by the British Calibration Service.

Surround-sound decoders - 1

System details and circuit description of CD-4 demodulator

by David Heller, B.Sc.(Eng)

The Compatible Discrete 4 system (CD-4) was introduced in 1970 by the Victor Company of Japan. As its name implies, it was developed to allow four separate signals to be recorded on a disc record, at the same time having playback capability in stereo and mono when played through existing equipment.

A CD-4 record is cut in the familiar stereo format. Each of the two groove walls are cut at a 45° angle with the disc surface and at a 90° angle with respect to each other. Conventionally, the inner wall closest to the record centre is recorded with the left channel information. Modulation of the walls is perpendicular to their surfaces and, because of their 90° relationship, can be traced by a pickup to produce independent electrical outputs that correspond to the undulations of the wall.

Two signals are recorded on each wall side of the CD-4 disc: a sum signal, $L_{\mathrm{F}}{ }^{+}$ L_{B} occupying the base band up to 15 kHz , and a difference signal, $L_{\mathrm{F}}-L_{\mathrm{B}}$, modulated onto a 30 kHz carrier. This last-mentioned signal occupies the 20 to 45 kHz band.
If a CD-4 disc is played on a normal two-channel stereo system, only the sum signal is detected. Information contained in either the left or the right channel is processed and appears in either the left or the right channel as a normal stereo disc. To obtain four audio channels from a CD-4 disc, a high frequency pickup and demodulator are required to recover the f.m. signals and thus obtain the difference signals. By combining these with the sum signals, four independent audio signals are obtained. Although the encode/decode principle used in the CD-4 system is basically simple, certain refinements have to be used in the difference signal processing to ensure that the signal-to-noise ratio is not substantially degraded over that obtainable in a normal stereo disc system.

Recording system

Fig. 1 is a block diagram of a CD-4 recording system. Four independent signals are fed into the input matrix amplifiers. The sum signal, delayed by
about 40μ s to compensate for the delay of the difference signal during replay, is passed to the RIAA equalizer.
Before modulating the carrier, the difference signal is compressed and emphasized. To understand why this processing takes place it is necessary to explain two major sources of difficulty encountered in the difference signal path. Noise in the difference signal is caused because the wavelength of the modulated carrier is so short that the ratio of record particle size to wavelength is no longer negligible, and with angle modulation the noise spectrum corresponds with the particular modulation curve used. Angle modulation has a number of unique characteristics. In a frequency modulated signal, the noise density or noise power per unit bandwidth increases as the modulation frequency increases. Carrier deviation caused by the noise at a particular modulating frequency is directly proportional to that frequency. Theory and experimental evidence show that noise from an f.m. signal is greater at the upper frequency end of the sonic spectrum. However, noise from a phase modulated signal is flat throughout the sonic spectrum. Experiments using the best record material available were undertaken by JVC to derive the noise spectrum, and Fig. 2 shows both the theoretical and experimentally-obtained noise spectra; in the frequency range above 2 kHz the signal-to-noise ratio and dynamic range are reduced.

Crosstalk occurs between the two modulated signals recorded on the two walls of a $45-45$ record groove. It is impossible to entirely eliminate crosstalk between the two channels, but it is possible to minimize it. With modulated carrier systems, crosstalk causes beats between channels on playback and distortion of the sound because of leakage. To minimize this, the frequency and phase of the left and right-channel carriers must be the same and to prevent distortion due to leakage, the modulation index should be no greater than 1.9. The choice of the modulation index is, however, a compromise. Fig. 3 shows the frequency spectrum of several modulated signals
for various values of the modulation index (m). For signals in the middle and low frequency ranges, the spectrum is mostly within the range $30 \pm 1 \mathrm{kHz}$. As the frequency increases above 1 kHz , the spectrum becomes wider. To ensure that 95% of the energy falls within the frequency limits shown in Fig. 3, it is necessary that the value of m be greater than 1.9 at frequencies lower than 500 Hz .

Distortion due to signal leakage depends on the amount of crosstalk and the modulation index. The larger the index and crosstalk, the greater the distortion and, if the signal leakage is the same in both directions, the crosstalk signal leaking from channel A to channel B will be identical in size and spectrum to the signal leaking from channel B to channel A. Distortion becomes significant at frequencies below 500 Hz where the modulation index is greater than 1.9. Crosstalk distortion peaks at around 700 Hz , as shown in Fig. 4.

A frequency-dependent compres-sion-expansion system reduces interference caused by noise and crosstalk. As distortion caused by crosstalk peaks at about 700 Hz , while noise from the f.m. signal starts rising at about 2 kHz , the noise reduction system is designed to operate over two frequency bands. In addition, the difference signal is phase modulated over a proportion of its frequency band to minimize noise.

The noise reduction system consists of a compressor in the recording system and a complementary expander in the playback system. To function effectively, it must automatically emphasize low-level signals at about 700 Hz and over 2 kHz in the recording mode and de-emphasize them by exactly the same amount in the playback mode. Figs 5 and 6 show the compression-expansion level and the frequency versus input level characteristics. The curves are generated by a compressor based on a two-band scheme, with a band-pass filter having 3 dB corner frequencies at 200 Hz and 2 kHz , and a high-pass filter with a 3 dB corner frequency at 2 kHz .

Response time of the compressor is chosen to make the noise improvement

Fig. 1. Signal processing for CD-4 half-speed disc cutting.

Fig. 2. Noise spectra of carrier channel for modulation scheme used.

Fig. 3. Modulation spectra for different values of modulation index.

Fig. 4. Spectrum of crosstalk between carrier channels showing peak at around 700 Hz .

Fig. 5. Input-output characteristic of two-band compander.

Fig. 6. Frequency-input level characteristic of two-band compressor.

arrangement as inaudible as possible during the automatic gain adjustments. At 630 Hz , the rise time is specified at $5 \mu \mathrm{~s}$ when the level is increased in a jump from -30 to -10 dB and the restoration time is $100 \mu \mathrm{~s}$ for the reverse transition. Above 2 kHz , the rise time is decreased to $\left({ }^{-}-1 \mu \mathrm{~s}\right.$ for a step level change from -40 to -10 dB and restoration time is $10 \mu \mathrm{~s}$.
Carrier deviation caused by the noise at a particular modulating frequency is directly proportional to that frequency. Consider a signal pre-emphasized with the characteristic of Fig. 7 and then used to angle modulate a carrier. The pre-emphasized signal is kept flat until 800 Hz , boosted by 6 dB per octave between 800 Hz and 6 kHz and flattened out thereafter. The total pre-emphasis operates over a range of a little less than three octaves, giving a total boost of 17.5 dB .

When this pre-emphasized signal is used to angle modulate the carrier, the carrier is frequency modulated up to 800 Hz . Frequency modulation is again resumed from 6 kHz upwards. Between 800 Hz and 6 kHz , frequency modulation is carried out with a linear frequency boost - i.e. phase modulation. In a frequency modulated scheme, phase deviation decreases inversely with modulating frequencies. The same

Fig. 7. Static pre-emphasis scheme giving a combination of frequency and phase modulation.
amplitude signal at 2 kHz will phase deviate the carrier half as far as a 1 kHz signal. If the pre-emphasis counteracts this decrease by a corresponding rise in its amplitude, the phase deviation will be independent of frequency and will only depend on the modulating amplitude. Phase modulation gives excellent signal-to-noise performance at the higher frequencies since any increase in phase deviation is not accompanied by increase in noise.
The difference signal now modulates the carrier, chosen to be 19 dB lower than the sum signal reference level to minimize interference between the frequency bands and to ensure cartridge pick-up trackability on replay.
If the high frequency end of the sum signal is large, mistracking of the pickup results, reducing the detected carrier level and raising the susceptibility to interference and noise. To compensate for this, an automatic level

Fig. 8. Block diagram of one channel of CD-4 decoder.
control changes the carrier level accordingly, operating from advance heads on the master tape recorder.
The base-band signal and the carrier signal are then added together in the mixer. At this stage, the shapes of the resultant waveform are predistorted to compensate for the distortion resulting from the tracing of the base band interfering with the tracing of the carrier, which would otherwise degrade the sound quality and channel separation (Neutrex).
Incidentally, because of the restricted frequency range of disc cutting equipment, the composite signal is formed at half frequency to allow half-speed disc cutting.

Circuit description

The demodulator is designed around an integrated circuit, QSI5022. Designed by Quadracast Systems Inc and manufactured by Signetics, it was chosen as it houses all the required functions, including preamplifier. Fig. 8 gives a block diagram of the workings of a complete side of one demodulator. The signal entering via the cartridge is fed to a pre-amplifier and is either RIAA compensated (for a magnetic cartridge) or is amplified at a constant level over the whole frequency range (for a semi-conductor cartridge). In addition, provision is made to use the pre-amp as a buffer/amplifier to accept tuner, tape and auxiliary inputs. The base-band signal is filtered (low pass) and passed to the output matrix. The carrier signal is fed to a bandpass filter and demodulated. The 30 kHz carrier is filtered out of the demodulated signal and the resultant signal de-emphasized and then expanded to compensate for the compression which took place during cutting. This difference signal is now added and subtracted from the sum signal in the matrix to produce the resultant back and front signals.

Preamplifier. The preamplifier, shown within the i.c. in Fig. 10, has antiphase outputs (pins $23 \& 24$). Its d.c. bias is determined by feedback from the noninverting output, through R_{4} and R_{5}, back to the preamplifier input at pin 25 . The ratio of R_{4} and R_{5} is chosen to ensure that both of the output voltages sit at about 6 volts for a 13 -volt supply rail. Components $\mathrm{R}_{7}, \mathrm{R}_{9}, \mathrm{C}_{3}$ and C_{4} determine the RIAA playback characteristic. The demodulated carrier signal is constant for any cartridge as it is a function of carrier deviation and not carrier amplitude. The baseband signal level will, however, vary from cartridge to cartridge. To add and subtract the baseband and demodulated carrier signals correctly, a variable gain is therefore necessary to adjust the gain of the baseband signal, and potentiometer R_{9} allows the gain to be changed. Values chosen for R_{9} and R_{10} allow the preamplifier to accommodate inputs from 0.7 mV r.m.s to about 15 mV r.m.s.

A magnetic cartridge can be a.c.coupled to the input of the pre-amplifier by a capacitor but a semiconductor cartridge requires bias current. The Technics 450 C or 451 C cartridge requires 4 mA bias current, and R_{41} and R_{141} supply this current while C_{38} filters out any hum. Components C_{33} and R_{40} form a network to maintain the proper direct voltage across the input capacitor, and R_{2} matches the cartridge to the amplifier.
'Fig. 9. Right-channel circuitry using QSI i.c. Circuit shown in broken lines is included in one channel only. Bandpass filter circuit, and component values will be given in part 2. Earth input socket at power supply. Point marked X is connected directly to pin 24 in right channel.

The non-inverting output is from a class A stage designed to drive the 15 kHz low-pass filter, while the inverting output is a class B output stage, designed to drive the 15 kHz low-pass filter and the 30 kHz band-pass filter. The band-pass filter is matched by R_{11}. On the left side only, the non-inverting output is used for magnetic cartridge playback. The inverting pin is used for semiconductor cartridge playback. This is required because the left channel of a semiconductor cartridge needs phase inversion to be in proper phase relative to the right channel.

In addition, the preamplifier is used as a buffer amplifier for tape, tuner and auxiliary inputs. In this mode a flat feedback characteristic is applied by switching $\mathrm{S}_{3 \mathrm{a}}$ and $\mathrm{S}_{3 \mathrm{~b}}$ to its open-circuit position, making R_{9} and R_{109} gain controls ineffective, and by closing switches $S_{3 c}$ and $S_{3 d}$ thus applying a flat feedback characteristic to the preamplifier. A voltage gain of two occurs in this mode. Output is taken from the non-inverting output at pin 24 via R_{54} and C_{61}.

Limiter. The limiter's function is to provide a constant amplitude carrier to the demodulator and reduce the spike noise and amplitude modulation on the carrier. Components R_{15}, R_{16} and C_{14} determine the d.c. bias of the limiter; R_{14} is a matching load for the band-pass filter, coupled via C_{13}, and the bias feed. To reduce sum signal interference, C_{13} is chosen to allow maximum gain for the carrier signal but minimum gain for the sum signal. Components C_{5} and R_{12} determine the overall gain of the limiter. The value of 20 ohms chosen gives a gain of approximately 50 dB for this stage.

Phase-locked loop demodulator. Pins 18 and 19 of the phase detector and pins 15 , 16 and 17 of the voltage controlled oscillator form the phase-locked loop circuit used for demodulation of the difference signal. The carrier signal from the limiter is fed into the phase detector along with the v.c.o. signal, and the product of these two signals appears at the filter terminals, pins 18 and 19. The filter performs three functions:
-it maintains a large d.c. tracking range for turntable speed variations
-it controls the a.c. tracking range for optimum audio pass band
-it reduces carrier feed through to the v.c.o., thus increasing interference rejection.
Resistor R_{13} determines the a.c. tracking range and, together with C_{6} forms a 15 kHz low-pass filter for carrier rejection. Varying the carrier input level to the phase detector or altering the value of R_{13} and C_{6} varies audio passband response. Capacitor C_{15} is the v.c.o. timing capacitor, the value of which changes v.c.o. sensitivity or the audio
output level. The only alignment required for the system is the v.c.o. adjustment. This can be done by adjusting the v.c.o. free-running frequency to 30 kHz with pin 22 a.c.-shorted to ground.

Carrier level detector. With proper carrier level output of the limiter and the phase-locked loop locked to the carrier, the carrier level detector will unmute the difference sub-channel. Attack and release time is controlled by C_{19} of the mute. It is advisable in practice to connect pin 14 to the supply rail by a resistor R_{51}. This is not always required and depends on the batch of i.c.s produced. Using a value of $560 \mathrm{k} \Omega$, the detector should unmute automatically if a 30 kHz carrier is present. The four-channel indicator drive is designed to drive an l.e.d. at a maximum of 25 mA . Series resistors R_{26} and R_{126} minimize power dissipation in the i.c. The limiter gain and the preamplifier gain chosen allow the carrier level detector to ${ }^{\circ}$ unmute when the carrier input level is approximately $50 \mu \mathrm{~V}$.

Difference sub-channel mute. This consists of a gated amplifier with the gate control for the difference subchannel mute coming from the carrier level detector. The amplifier serves the additional purpose of level matching between the phase-locked loop demodulator, the expander and de-emphasis. Components $\mathrm{C}_{21}, \mathrm{R}_{25}$ and R_{27} determine the correction required for de-emphasis. Audio to the mute input arrives from the 15 kHz low-pass active filter via filter matching resistor R_{24} and C_{20}.

Expander. The expander consists of two a.c.-d.c. convertors, two transductor inversion amplifiers (t.i.a.) and two gain control transconductance amplifiers (t.a.). One of each is used in the mid-band expander and the high-band expander. The system operates over two bands and expands according to the characteristics given in Fig. 5. Values of the external components are chosen for . complementing the compressor curves. Parts used here are C_{27} for the high band with L_{5} and C_{28} for the mid-range. The expander characteristics obtained are within $\pm 3 \mathrm{~dB}$ of the standard values stipulated by JVC.

Sum signal mute. Pin 24 of the preamplifier feeds the sum signal into a low-pass filter. This filter has exactly the same amplitude and phase characteristics as the low-pass filter placed in the difference signal channel. A sum channel mute (pins 9 and 10) is incorporated in the i.c. to facilitate the use of semiconductor cartridges. These cartridges when used with automatic turntables are likely to give a large spike into the preamplifier, when lifting off the record. The mute circuit detects this spike before it passes through the sum channel and turns the sum signal off.

When the cathode of D_{1} or ${ }^{\prime} D_{101}$ is earthed, C_{35} discharges to 0.75 volts, thus muting the sum signal. The difference signal will already be muted by the loss of the carrier. When the cathode potential of D_{1} or D_{101} is lifted, C_{35} is charged by approximately $100 \mu \mathrm{~A}$. When C_{35} is at about 1.4 volts, the sum channels unmute and the signals pass normally. The value of C_{35} is chosen for a delay long enough to allow the preamplifier to stabilize again.

Matrix amplifier. The matrix amplifiers recombine the difference signal and the sum signal to form the original front and back signals of a four-channel system. Output level is approximately 300 mV r.m.s. for a $0 \mathrm{~dB}(150 \mathrm{mV})$ output from the preamplifier. Amplifier outputs at pins 6 and 7 are then fed into a second pole of a low-pass filter.

Reference supply. Pin 27 is a reference supply output from the i.c. This gives a voltage of around 5.8 V which is used throughout the i.c. for reference and power purposes. The supply is filtered by C_{49} Resistors $\mathrm{R}_{1}, \mathrm{R}_{28}, \mathrm{R}_{31}, \mathrm{R}_{33}$ and R_{35} supply the appropriate circuits.

Filter requirements. The demodulator requires three filters for each i.c. There are two low-pass filters and a band-pass filter. It is essential that the low-pass filters should have a linear-phase response, i.e. a constant delay, and a flat amplitude characteristic to 15 kHz . The two low-pass filters should be identical in all respects. The five-pole Butterworth active filter shown in part 2 is used but is split up so that the latter poles appear at the output of the demodulator, thus saving duplication. When a CD-4 disc is cut, the sum signal is delayed with respect to the difference signal. On playback, the difference signal is delayed with respect to the sum signal as it passes through the cartridge system. There are additional delays through the difference channel of the demodulator. In particular, the bandpass filter is designed to have an almost constant delay over its pass band so that the delays during the encoding/decoding process in both the sum channel and the difference channel cancel. The delay of the band-pass filter system shown in the second article is $32 \mu \mathrm{~s}$ for signals between 18 and 45 kHz .

Part 2 will give constructional details and performance using various pickup cartridges. A kit of parts for this and other decoder designs to be described subsequently is available from Compcor Electronics Ltd, 9 Dell Way, London W13 8JH. (See advertisement).

Antiphase or 180° phase shift?

A clarification

by S. W. Amos, B.Sc., M.I.E.E.

,

The 180° phase difference between the signals at the base and the collector of a common-emitter amplifier is well known. Indeed many of us have been aware of it for as long as we can remember; originally, of course, we knew it as the 180° phase difference between the signal voltages at the grid and anode' of a valve, but the principle is the same. It is not surprising therefore that an engineer once designed a piece of electronic equipment in which the fundamental mode of operation depended on this phase difference. The equipment did not work and at the ensuing post mortem it was discovered that a common-emitter amplifier does not introduce 180° phase shift: instead it inverts the input signal and this is a fundamentally-different process.

Fig. 1 illustrates the difference. The waveform chosen for this illustration is a sine wave together with some second harmonic. The effect of adding the harmonic is to exaggerate, the peak of' one half cycle of the sine wave and to flatten the peak of the other so that it is possible to distinguish one half cycle from the other. Fig. 1 shows the effect of phase shifting this signal by 180° and of inverting it. The two results are quite dissimilar waveforms showing that the two processes are fundamentally differ-

Fig. I. The effect on an assymmetrical waveform (a), of phase-shifting it by 180° (b), and inverting it (c). Note that (b) and (c) are different.

Fig. 2. The effect on a symmetrical waveform (a), of phase-shifting . it by 180° (b), and inverting it (c). Note that (b) and (c) are the same.
ent. To facilitate comparison of the waveforms any increase in amplitude due to amplification has been ignored in this diagram and all the waveforms are shown with equal amplitudes. What has caused the confusion between 180° phase shifting and inversion is that, for a waveform which is symmetrical about the time axis, the effects give identical results; this is illustrated in Fig. 2 for a sine wave.
It is surprising that the myth of the 180° phase shift introduced by a transistor or valve should ever have gained credence. The only way' of introducing phase shift is by the use of combinations of reactance and resistance e.g. capacitance and resistance or inductance and resistance. An ideal transistor or valve certainly contains resistance but it has no capacitance or inductance and cannot possibly therefore introduce any phase shift. All it can do is to invert the input signal and this has nothing to do with phase shift. In fact the term "antiphase" is a little unfortunate because it suggests that the process of inverting a signal has some
connection with phase. "Signal inversion" might be a better phrase than "antiphase".

To summarise then, for a wave symmetrical about the time axis the effects of 180° phase shift and of signa! inversion are indistinguishable; for an asymmetric wave the two processes give quite different results.

These considerations are of importance in the design of an oscillator which can be regarded in general as a combination of a maintaining amplifier and a frequency-determining network as shown in Fig. 3. The requirements to be satisfied for oscillation to occur are: (a) that at the frequency of oscillation the frequency-determining network must introduce signal inversion which, with the inversion in the maintaining amplifier, gives the overall positive feedback which is essential for oscillation and (b) that the gain of the maintaining amplifier must exceed any attenuation in the frequency-determining network at the frequency of oscillation.

Fig. 3. A fundamental block diagram for an oscillator.

Fig. 4. A simple method of obtaining signal inversion using a tapped inductor.

Fig. 5. A Hartley oscillator.

Fig. 6. An astable multivibrator circuit drawn in the conventional manner.

Fig. 7. The circuit of Fig. 6 re-arranged to show that it agrees with the basic form of the oscillator (Fig. 3).

Fig. 8. An oscillator which relies on phase shift in the R-C filter for its operation.

The frequency-determining network must then give signal inversion at the oscillation frequency. One simple way of achieving signal inversion is by the use of a tapped inductor as shown in Fig. 4 and this can be tuned by a parallel-connected capacitor to give operation at a particular wanted frequency. By adding a common-emitter circuit as maintaining amplifier we obtain the familiar circuit of the Hartley oscillator shown in Fig. 5. In a similar way, by tapping the capacitive branch of a resonant circuit to obtain signal inversion, the Colpitts' oscillator circuit can be derived.
Any type of frequency-determining network can be used, and oscillation will result, provided the two conditions set out above are fulfilled. Thus a common-emitter amplifier can be used as a frequency-determining network. It introduces the necessary signal inversion but there is no attenuation. Instead there is usually considerable voltage and current gain at the frequency of operation and this, together with the gain of the maintaining amplifier, means that there is an excess of positive feedback - far more than is necessary just to sustain oscillation. As a result the oscillation amplitude grows rapidly until it is limited on one extreme by collector-current cut off and on the other extreme by the collector voltage falling to base potential and so applying a low-resistance shunt across the circuit. In other words this particular oscillator generates rectangular waves; it is, of course, a multivibrator and because of the symmetry of the circuit either transistor can be regarded as the maintaining amplifier or frequency determining network. The circuit diagram is shown in its familiar form in Fig. 6 but if it is recast as in Fig. 7 it is easier to visualise the circuit as a combination of maintaining amplifier and frequency-determining network. The components $\mathrm{R}_{1} \mathrm{C}_{1}$ and $\mathrm{R}_{2} \mathrm{C}_{2}$ are chiefly responsible for determining the free-running frequency which is given approximately by

$$
f=\frac{1}{0.7\left(R_{1} C_{1}+R_{2} C_{2}\right)}
$$

So far in this discussion on oscillators it has not been necessary to mention the word "phase" but there is a type of oscillator in which the frequency-determining network operates' by introducing phase shift. This is a workable solution if a symmetrical signal is being generated because, as shown in Fig. 2, for such signals the effect of 180° phase shift and signal inversion are indistinguishable. Thus in one form of phaseshift oscillator the frequency-determining network consists of a three-stage RC filter each section of which introduces 60° phase shift at the required frequency of oscillation. The circuit diagram is given in Fig. 8. If all three frequency-determining resistors have the same value R and all three fre-
quency-determining capacitors have the same value C, the oscillation frequency is given by

$$
f=\frac{1}{2 \pi \checkmark^{\prime} 6 R C}
$$

and the current attenuation at this frequency is 29 . The current gain of the transistor must hence exceed 29 for oscillation to occur but it should not greatly exceed this value, otherwise the oscillation amplitude will grow as in the multivibrator circuit and, if it is limited by circuit features such as collectorcurrent cut off, the output will no longer be sinusoidal. As shown in Fig. 8 a preset resistor in the emitter circuit can be used to adjust the current gain to the critical value which gives a sinewave output, but a system of a.g.c. which keeps the maintaining transistor operating in class A is perhaps the best method of securing a pure output waveform.

Sixty Years Ago

The tremendous transmission distances nonchalantly achieved by Marconi operators and the commonplace use of wireless in. military form might tend to obscure the fact that communication was still, in 1916, chiefly telegraphic, using spark-gap oscillation generators. A review article in June 1916 covered the field of such generators and was one of the earliest articles to fully explain the valve oscillator, to be used for the transmission of speech.
"In 1884 Edison showed that an incandescent filament of carbon (such as a lamp filament) possesses the property of ionising the surrounding air, so that it becomes a unilateral conductor.
"This property has been turned to practical utility by Dr Fleming and others, and forms the basis of the well-known Fleming oscillation valves which are now often used as wireless detectors. Some of these values have characteristics (ie volt-ampere curves) which at some point are negative, like an arc characteristic, and hence it is possible to use such valves as generators of oscillations just as the arcs can be so used.
"The mode of operation of this type of apparatus may be briefly summarised as follows: The hot filament has the property of emitting negative electrons, and hence the combination of hot filament and cold plate in an exhausted vessel forms an electrical conductor, which will allow current to flow in one direction only - that is to say, it is a unilateral conductor, and therefore will exert a rectifying action on an alternating P.D. applied to it. Since the current passing through this vacuous space is carried by a stream of moving electrons, and since an electron is merely a negative electric charge, it is evident that the motion of the electrons can be influenced either by an electro-static or bv a magnetic field. .

घ1shuFe
 COMMUNICATIONS

 MICROPHONES

 MICROPHONES}

the vital link when the message must go through.

Shure Safety Communications Microphones are routinely subjected to 2-metre (6 ft .) test drops onto hard floors ... over and over and over again, and even though they've been manhandled and abused

...THEY

GISHURE
 SHAEES EM

Shure Safety Communications Microphones are tested with violent vibrations up-and-down, side-to-side, and back-and-forth simultaneously ... and even though we tumble 'em around for a while for good measure

...THEY WORK!

Shure Safety Communications Microphones are tested for level and response at a searing $70^{\circ} \mathrm{C}$ often up to an incredible $85^{\circ} \mathrm{C}$ for day-long periods . . . and even though the inside parts are too hot to touch

...THEY WORK

SB円URE FREETES ED

Shure Safety Communications Microphones are plunged to an appalling $-45.6^{\circ} \mathrm{C}$ for half hour periods during severe temperature tests, and even though they're covered with frost

$\square \square \square \square \square \square$ WORK

SHURE COMMUNICATIONS MICROPHONES:
 WORLD

A definite margin of extra reliability is the reason why, in the United States as well as in many other countries, Shure Mobile Communications Microphones are used with more public safety and professional business communications transceivers than all other brands combined. They are thoroughly field-proved. They perform when the chips are down, as they have been doing for over 20 years. Even after years of constant use and abuse in the most critical situations, often under the most adverse conditions imaginable, they deliver ... they get intelligible messages through when it counts.

Shure Satety Communications Microphones are tested in super steam baths with humidities of 100% at room temperature 93% at 38 C and though they re soaking wet at the end

$\square \square \square \square \square \square \square$ WORK

Imagine! Shure Safety Com munications Microphones are dragged behind swiftly moving vehicles for miles ... over all sorts of roads, and though scratched-up on the surface

$\square \square \square \square$

ELECTROSTATIC

 FIELDS HIGHALITUUE

Shure Safety Communications Microphones are carefully quality control checked at every step in manufacture-and random samples from every production run are subjected to the kind of torture testing and abuse that ruins most microphones

COMMUNICATIONS MICROPHONES

Look for the name Shure mouided into the back of the case of every microphone you buy. It identifies the microphones that have undergone the most rigid and demanding tests in the industry. And, it's your peace-oi-mind assurance of reliability, know-how, quality, quality control, and conscientious fast service!

QUALITY CONTROLLED EVERY STEP OF THE WAY

Mechanically, environmertally, electrically, operationally, acoustically', and visually - Shure Mobile Communications Microphones go through the most comprehensive and extensive quality control procedures. And that's your assurance of getting microphones that have not been simply spot-checked, but thoroughly inspected at every stage in manufacture, from raw materials to finished product.

OUR CASE HISTORY...

Shure Mobile Communications Microphones feature an exclusive, virtually indestructible Armo-Dur* plastic case, which remains comfortable to the souch even if the microphone sits in the hot sun or in freezing temperatures, and is completely corrosion resistant and immune to oil, grease, salt spray, fumes, humidity, and perspiration. Shure's long-life cables and "million-cycle" switches are specially engineered and tested to outlast, by far, these most common failure points of ordinary mobile microphones. They also feature modular construction for easy in-the-field maintenance on those rare occasions when service is required.

Model 524C

THE MICROPHONE ON THE MOVE..

The new Shure Ranger 2 Microphone serves double-duty It combines the quality transmission of a dynamic-element microphone with the Shure reputation for rugged dependability in mobile and fixed-station microphones

Internally, a silicon transistor amplifier provides a direct replacement for a carbon microphone with reduced sensitivity to hum pickup and susceptibility to interference The Ranger 2's wide 300 to $5,000 \mathrm{~Hz}$ frequency response range and low distortion are specially tailored for unusually smooth, natural voice signals.
Externally, there's the famous Armo-Dur ${ }^{\oplus}$ case that's lighter and stronger than die-cast metal (and comfortable tohold at any temperature). The coil cord is jacketed with long-life neoprene. Constant use and rough handling won't affect the "million-cycle" lea--type switch-it's engineered to withstand the severest conditions. All this in a compact size for easy handling
Together, the superior performance and heavy-duty construction offer you the clearest choice in communications microphones today

SPECIFICATIONS

Model 524C Transistorized Dynamic Hand-Held Microphone

Type: Dynamic (with transistor preamplifier for carbon microphone circuits)
Frequency Response: 300 to $5,000 \mathrm{~Hz}$ (See Figure A)
Output Level (at $1,000 \mathrm{~Hz}, 5 / 16 \mathrm{in}$.): $-44 \mathrm{~dB}(6.32 \mathrm{mV})$ with
$10 \mathrm{Vdc}, 500$-ohm load ($0 \mathrm{~dB}=1$ volt per microbar)
Load Impedance Range: 250 to 2,200 ohms
Maximum Signal (with $10 \mathrm{Vdc}, 500$-ohm load): 118 dB SPL at $1,000 \mathrm{~Hz}$ produces $0 \mathrm{dBV}(1.0 \mathrm{~V})$ at 10% THD
DC Supply Voltage Range: 2.5 to 35 Vdc
Switch: Double-pole single-Ihrow, leaf-type, push-to-talk
Cable: Non-detachable, $1.5 \mathrm{~m}(5 \mathrm{ft}$.), four-conductor
neoprene-jacketed coil cord
Case: High-impact Armo-Dur
Dimensions: $52.4 \mathrm{~mm} \times 72.2 \mathrm{~mm} \times 39.7 \mathrm{~mm}$ deep (2-1/16 in. x 2-27/32 in. x 1-9/16 in.)

Series 577

Microphones:

Break the Sound Barrier!

Be heard, even when ambient noise levels are so high you can hardly hear yourself. The 577 Sonobar NoiseCancelling Dynamic Microphones dramatically block unwanted noise and boost close-up voice signals. The 577 s' noise-cancelling pickup pattern and "tailored" voice-range frequency response can discriminate against environmental noise so that the transmission sounds loud and clear even in noisy factories, disaster areas, or airport ramp areas
The 577 Series features three models: the 577A for high-impedance inputs ... the 577B for longer cable lengths (low impedance) ... and the 577C transistorized carbon replacement model.
All have the tough Armo-Dur cases to repel oil, grease, fumes, salt spray, humidity, and rust! A "lifetime" hang-up button and mounting bracket, Triple-Flex coiled cable, and shock-resistant construction features are all part of the $577 \mathrm{~s}^{\prime}$ built-in durability.

SPECIFICATIONS

577 Series Noise-Cancelling Dynamic Microphones

 Type: Dynamic, Noise-CancellingFrequency Response: 100 to $5,000 \mathrm{~Hz}$ (See Figure B) Impedance: Model 577A: High impedance for connection to high-impedance inputs
Model 577B: Low impedance for connection to microphone inputs rated at 25 to 200 hms
Model 577C: Transistorized tor carbon microphone type Circuits: Load Impedance Range: 250 to 2,200 ohms

Output Level

(at $1,000 \mathrm{~Hz}, 5 / 16 \mathrm{in}$.):

Open Circuit
 Voltage

Model 577A
Model 577B
Model 577C*
$-63.5 \mathrm{~dB}(.63 \mathrm{mV})-84 \mathrm{~dB}(.062 \mathrm{mV})-47 \mathrm{~dB}(4.5 \mathrm{mV})$ ($0 \mathrm{~dB}=1$ volt per microbar)
*With $10 \mathrm{Vdc}, 500$-ohm load
Power Level: -61.5 dB (Model 577B)
($0 \mathrm{~dB}=1$ milliwatt with 10 microbars)
DC Supply Voltage Range (Model 577C): 2.5 to 35 Vdc Hum Sensitivity: (Equivalent to)
Model 577A: 44 dB SPL in 1 millioersted field Model 577B: 32 dB SPL in 1 millioersted field
Model 577C: 27 dB SPL in 1 millioersted field
Switch: Double-pole, single-throw, leaf-type, push-to-talk
Cable: Non-detachable, $1.8 \mathrm{~m}(6 \mathrm{ft}$.), neoprene-jacketed Triple Flex coil cord
Model 577A: Three-conductor (one conductor shielded)
Model 577B: Four-conductor (two conductors shielded)
Model 577C: Four-conductor (non-shielded)
Case: Two-tone Grey, high-impact Armo-Dur
Dimensions: $66.7 \mathrm{~mm} \times 93.6 \mathrm{~mm} \times 44.9 \mathrm{~mm}$ deep ($2-5 / 8 \mathrm{in}$. $\times 3-11 / 16 \mathrm{in} . \times 1-25 / 32 \mathrm{in}$.)

HANDS-FREE TRANSMITTING

 with built-in noise control!All new and field-proven! Shure's SM 10 Head-Worn Microphone and SM12 Head-Worn Microphone Monitor have every transmitting convenience you will need built into three ounces of confort. Both microphones have high-power, clear-signal dynamic elements for maximum intelligibillty Yet, no batteries or cumbersome controls are needed - your hands will be free for note-taking or driving *
The SM10 and SM 12 are specially designed to reduce pickup of annoying background sounds without masking close-up voice signals. Unidirectionat pickup pattern means only the sounds of your voice are transmitted. The anti-noise feature is further enhanced by a strong, natural voice frequency response (50 to $15,000 \mathrm{~Hz}$) that minımizes low background rumble. A built-in windscreen filter eliminates other nose distractions.

Headset mouthpiece is designed to pivot and extend to fit any face. Adjustable frame and padded head band assure a pleasant fit for anyone, too
*when used with a footswitch or other relay arrangement (not supplied with microphone)

SPECIFICATIONS

MICROPHONE (applies to both SM10 and SM12)
Type: Dynamic, Close-Talking
Frequency Response: 50 to 15000 Hz (See Figure D)
Polar Pattern: Cardioid (unidirectional)
response-uniform with frequency, symmetrical about axis (See Figure E)
Impedance: Microphone rating impedance is 150 ohms (200 ohms actual) for connection to microphone mputs rated at 25 to 200 ohms

Output Level (close-talked at 1.000 Hz)
Open Circuit Voltage
$87 \mathrm{~dB}(.045 \mathrm{mV})$
($0 \mathrm{~dB}=1$ volt per microbar)
Power Level
$-66 \mathrm{~dB}$
($0 \mathrm{~dB}=1$ milliwatt with 10 microbars)

Hum Sensitivity: Less than - 62 dBmin 1 millioersted field
Phasing: Positive pressure on diaphragm produces positive voltage on pin 2 of microphone connector
Connector: Professional three-pin Male audio connector designed to mate with Cannon XL series, Switchciaft A3
(Q.G.) series or equivalent connector

Cable: Non-detachable 1.5 m (5 ft .), four-conductor shielded, plastic-jacketed: additional 0.3 m (12 in .). two-conductor receiver cable attached to microphone connector on the SM12
Case: Black thermoplastic microphone and pivot housings anodized alumınum end caps, stainless steel grilie, ear tube and boom
Dimensions: 202 mm ($7^{15 / 15} \mathrm{in}$.) long; $44.5 \mathrm{~mm}(13 / 4 \mathrm{in}$.) maximum height (pivot housing)
Microphone: $15.9 \mathrm{~mm}(5 / 8 \mathrm{in}$.) diameter; $14 \mathrm{~mm}(9 / 16 \mathrm{mn}$.) height
Optional Accessory: A10CH Cough Button
RECEIVER (SM12 Only):
Type: Dynamic
Frequency Response: 70 to $12,000 \mathrm{~Hz}$
Impedance: 2,000 ohms at 1 kHz (200-ohm cartridge with matching transformer in phone plug)
Output Level: 106 dB SPL with 1.414 V at $1 \mathrm{kHz}(1.0 \mathrm{~mW}$ into 2 cc cavity)
Phasing: Positive voltage on phone plug tip produces positive pressure in ear tube
Connector: Phone Plug (contams matching 2,000:200 ohm transformer)

SHUFE

Communication theory

3 - The digital revolution

by D. A. Bell
University of Hull

In speaking of the "digital revolution" I am not thinking of the proliferation of digital computers (though this has its impact on telecommunication through the need for data transmission) nor of the fact that a simple pocket electronic "digital calculator" is now in almost the same price bracket as a good slide rule, its analogue predecessor; I am thinking rather of the impact of digital techniques on television (mostly behind the scenes) and on the use of the Post Office telephone network for the communication of both data and speech, with developments in Viewphone as well. All of these digital developments depend on the flexibility which digital techniques allow in exploiting three key features of Shannon's communication theory, namely redundancy, the possibility of an exchange between signal-to-noise ratio and bandwidth, and a certain symmetry between time and frequency in the calculation of information rate and channel capacity.
The problem of television standards conversion became important in this country as soon as BBC2 was introduced with 625 lines while BBCl continued to use 405 lines (see Wireless World May 1971.) Then the development of international exchange of television programmes, especially since communication via satellite has been available, has drawn attention to the fact that there are also differences between scanning standards used in different parts of the world: in North America they have 525 lines per picture and 60 (interlaced) fields per second, but in Europe we usually have 625 lines with 50 fields per second. (There are also differences in colour transmission, such as between N.T.S.C., PAL and SECAM.) Conversion between these standards requires storage, and storage of information is simple and reliable only when it is in digital form. ${ }^{.}$Since the development of l.s.i. (large scale integration) both semiconductor memories and shift registers have become comparatively cheap, so that the digital solution is also an economic solution. In the simplest case each picture element is represented by several bits (as described below for
p.c.m.) and the number of bits is minimised by non-linear quantisation, using small steps for small signals but larger steps at each end of the scale.
There is also a great deal of redundancy in picture signals arising from the fact that neighbouring points are related to each other - they are said to be correlated. This correlation reduces the amount of information in the signal, but it is difficult to use because one must make provision for the occasional picture in which there is not much correlation - e.g. if the camera is panned across a scene. In most pictures, however, the difference between adjacent points in a line is much less than the full swing from black to peak white. It follows that for the same gradation of grey the signal conveying the difference between adjacent points will nearly always require fewer steps than would be needed to convey the absolute value of each point. So this differential p.c.m. (or d.p.c.m.) can use fewer bits per sample than direct p.c.m., which is particularly valuable if the picture has to be transmitted through a limited channel. The addition of vision to an ordinary telephone circuit ("Viewphone" in Britain or "Picturephone" in the Bell System, USA.) is a case where (a) economy of bandwidth is of great importance and (b) occasional momentary degradation of the picture may be tolerable. The addition of vision to an ordinary telephone channel may seem an extravagant luxury, but its supporters claim that it is justified by fuel economy if the addition of vision to the communication channel makes it an acceptable alternative to face-to-face meeting and so reduces travel. Bandwidth economy in television was the subject of a great deal of investigation some years ago ${ }^{2}$ but in those days only analogue devices were considered for nroviding the storage from line to line or field to field which is needed to take advantage of the correlation in space between adjacent points or the correlation in time between the same points in successive scans ("picture difference" transmission) ${ }^{3}$. Now Post Office designers of Viewphone suggest digital

Fig. l. (a) Lumped circuit approximation to an unloaded line. (b) Frequency response of such a network.
storage of a line in shift registers ${ }^{4}$ so that use may be made of correlations between points which are adjacent vertically, in different lines, as well as that between adjacent points in the. same line. A more elaborate system has been proposed for the American Picturephone, utilising correlation between successive scans. This has a buffer store of 67,000 bits (equivalent to about 4,000 words storage for a minicomputer using 16 -bit .words); and if movement in the picture destroys correlation to such an extent that a scan cannot be compressed into this size, the picture is deliberately degraded in two stages. First the scan is coarsened to use only half as many picture elements per line; and if that does not suffice the second stage is to omit a complete scan and instead re-transmit the previous scan. ${ }^{5}$
Another digital development in television is the transmission in the field blanking interval of alpha-numeric data. The system is called teletext (Oracle by the IBA and Ceefax by the BBC); and any viewer who has the appropriate adjunct for decoding, storage and character generation (as recently described in this journal) can
choose at any time to have the picture on his screen replaced by a page of information consisting of latest news or any one of a hundred or so pages which may be available.
But in more mundane telephone communication, digital methods first came in with the use of p.c.m. on junction lines which are usually in the range of 10 to 30 miles long and employ multi-pair paper-insulated cables - the last kind of cable one would think of for the transmission of a wide frequency band or narrow pulses. These cables have very little inductance of their own so that ideally they would behave as CR circuits (Fig. la) with a frequency response which falls continuously for all except the very lowest frequency (Fig. 1(b).

The equivalent circuit of Fig. 1(a) with capacitors at intervals is only an approximation, since in fact the capacitance is uniformly distributed along the cable; but Pupin pointed out a long while ago that if one had inductance distributed along the line as well, or an approximation to this in the form of loading coils at intervals (Fig. 2(a), the cable became a lossy low-pass filter which passed all frequencies up to a definite cut-off but very little beyond. So most telephone cables have these loading coils at intervals so as to maintain a uniform pass-band with a signal/noise ratio better than 50 dB which is then divided into telephone channels by frequency-division multiplex. Now a binary signal can tolerate a much lower signal/noise ratio and the signal after regeneration is independent of the signal/noise ratio. Therefore a binary signal can use a much wider frequency range in Fig. 1(b), and does not require the attenuation to be uniform within that range.

In p.c.m. we need to sample the analogue signal twice per cycle, but Nyquist says we can transmit two pulses per second per hertz of bandwidth: so there appears to be no change so far. But if we are to reduce the pulses to a binary scale, i.e. p.c.m., we need several pulses per sample; and in fact eight are used, seven to quantize the signal into 128 levels and one for synchronising and signalling. The bandwidth is increased eightfold; but the characteristic of the cable is such that the useable bandwidth increases more than eight times when one drops the signal/noise ratio from that required for a good telephone channel to that required for binary signalling, so there is a net profit on the exchange. In terms of communication theory, this is an example of trading signal/noise ratio against bandwidth.

Pulse code modulation is now in widespread use on junction lines. ${ }^{*}$ It should be recognised that an important factor contributing to this is the availa-

* Lines 10 to 30 miles long which give direct connection between local exchanges, without using the trunk system.
bility of solid-state circuits for handling quantized signals which combine complexity of logic circuitry with small size, low power consumption and reliability. In the days of valve amplifiers the repeaters (line amplifiers) were usually housed in telephone exchanges, or occasionally in separate buildings. Such housing was necessary on account of their bulk, the need for a substantial power supply (with means of maintaining power in case of a mains failure) and the need for access for maintenance. Now, a solid-state regenerative repeater is put in whenever a loading coil is taken out. The loading coils were usually inserted at intervals of about a mile, and housed in cable-jointing chambers below manholes. A small solid-state regenerative repeater can be put there instead, and its small power requirement supplied along the telephone cable from the nearest exchange.
The spacing of repeaters is important. The signal must not be attenuated below the permissible signal/noise ratio

Fig. 2. (a) An inductively loaded line. (b) Bandpass frequency response of the loaded line.
before arriving at the next repeater; but the attenuation increases with frequency so that the maximum frequency which can be used depends on the closeness of spacing of repeaters.

For some thirty years engineers have been seeking an all-electronic telephone exchange. Note that I said "all-electronic" because the present generation of what are generally called "electronic exchanges" are really electronically controlled electromechanical exchanges. You must first understand that a telephone exchange has three functions: (a) to provide a switchable path for speech signals from an incoming to an outgoing line; (b) to receive, act upon and generate signals for controlling the speech path and (c) to interpret the signals and other data so as to provide speech paths efficiently. If we think of the old type of manual switchboard, (a) is provided by jack plugs and cords which can connect selected jack sockets, (b) depends on the senses and limbs of the operator (e.g. seeing a calling subscriber's light,
switching ringing tone on a called subscriber's line) and (c) depends on the operator's brain.
In the past generations of automatic exchanges, (b) and what could be done towards (c) were implemented by relay logic, and this has been replaced by computer-like electronic circuits in the current generation of electronically controlled exchanges. ${ }^{6}$ But there has been comparatively little success in the search for a solid-state replacement for the metal-to-metal contact in the speech-path switches, though the mechanical form of the contacts has changed from Strowger two-motion switches through cross-bar switches to the sealed reed relays used in the current electronically controlled exchanges. ${ }^{7}$ The metal-to-metal contact has virtually infinite ratio of open to closed resistance, perfect linearity and no noise in normal functioning. Engineers became increasingly convinced that these characteristics could not be approached by any solid-state device and therefore solid-state switches could not be employed in an analogue speech path. But the use of digital signals such as p.c.m. makes the characteristics of the switches far less critical, so that solid-state switches would be useable. \dagger
Once an analogue signal has become contaminated with noise, it can never be "cleaned"; and the noise components introduced at successive links in the route are additive. A digital signal, on the other hand, can be regenerated by threshold devices so that it leaves each repeater stage as a perfectly clean on/off signal. The Post Office therefore took the view that a future "System X", which will one day supersede the present generation of electroniccontrol - plus - reed - relay - switching exchanges, will employ digital transmission on the main trunk circuits. Preliminary trials on trunk transmission between Portsmouth and Guildford using high-speed p.c.m. have recently been initiated by the Post Office. ${ }^{8}$ Again there has been an exchange of bandwidth against signal-to-noise ratio, since p.c.m. at $120 \mathrm{Mbit} / \mathrm{s}$ is sent over a coaxial cable which could only be used up to 12 MHz for f.d.m. The first consequence of this change to digital transmission will be that our familiar frequency-division multiplexing will be replaced by time-division multiplexing. Then instead of picking out a frequency channel with filters we shall pick out a time-slot by strobing. Some of the exchange switching can then be replaced by the matching of time-slots between incoming and outgoing lines, but some switching of circuit connections (known as "space switching") will probably be needed as well. But in view of the greater tolerance of digital signals, "cross-points"** could be solid-state.
\dagger See section headed "Electronic exchanges" in "Centenary of the telephone", Wireless World, March 1976, p.92. - Ed.
** See Appendix for explanation of "cross-point".

A few years ago this was unquestioned and there seemed no hope for solid-state cross-points outside digital systems. Recently, however, there has been a revival of interest and a dozen manufacturers in the USA offer private automatic branch exchanges (PABX) using solid-state technology which offers the advantages of small size and little maintenance requirement. Most of them use four-layer devices, analogues to thyristors, as cross-points. But the point is that in this case the speech goes through only one solid-state switching system (or at most two if the subscriber at each end of the line has a solid-state PABX). This contrasts with the number of exchanges which may be involved in a long-distance call over a public network, and of course any noise or distortion arising in successive exchanges is additive.
An immediate advantage expected from digital transmission of speech is that data in binary form can immediately replace the p.c.m. signals. There has been much controversy over the question of whether we need a separate data network in addition to the telephone network. At present digital signals are usually fed into the frequency-division multiplexed analogue telephone system through modems (modulator-demodulators) which convert the on/off binary signal into a more or less complicated system of frequency-shift, phase-shift or mul-ti-level amplitude modulation of an audio tone. It is much simpler to send binary digits straight to line, if the line is tailored to handle digital signals. Sincethe telephone network provides almost universal coverage, it seems uneconomic to set up another network alongside it just to handle data. So making telephoning digital confers a further advantage if it makes telephone traffic and data traffic fully compatible. (But it must be remembered that the telephone system is at times fully loaded, so that extra trunk lines and switching plant would be needed to enable it to carry a significant load of data traffic as well.)

A development in networks intended solely for data is called "packet switching." This arises because transmitting data has some of the characteristics of sending telegrams: there is no need for communication to, be instantaneous and simultaneous with the origination of the information, though one would prefer that any delay in data transmission should be measured in seconds rather than hours. Given adequate buffering, data signals which arise at irregular intervals can be sent at a steady rate (most of the time) over the main transmission channel.
The idea is in fact very old since what we shall now call "a node in a packetswitching network" has as antecedent "a torn-tape relay station in a telegraph network." Telegrams are normally transmitted via punched paper tape and if they had to be sent through a relay station they could be received there on a
tape perforator. Originally an operator would read the address on an incoming message and at its end tear off the length of tape and transfer it to an appropriate transmitting machine for its particular destination; but later the address was read by machine and the length of tape directed automatically into the appropriate channel for retransmission, where it might join a queue of messages for that destination. The equivalent in modern technology is obviously to have at the relay centre a computer with appropriate buffer stores.
The torn-tape telegraph relay is not of great practical interest now because it is usually easier to switch electrical connections, so why has the principle been revived for data transmission? The first answer is that there is a considerable demand for transmitting small units of data, such as banking transactions of individual customers, which contain no more than a few hundred characters. At the present time it may take 15 seconds to set up a long-distance s.t.d. connection so if the data can then be transmitted in a similar or shorter time the whole process is rather inefficient. Secondly there is the problem of concentration of local traffic into trunk lines, which in telephony is achieved at present by frequency multiplexing. In the transmission of telephony by p.c.m. the sampling pulses are generated within the exchange, so that although there are problems of synchronism between exchanges in the proposed digital telephone network the timing is at least all controlled within the system. (Incidentally, one proposed method of matching time slots between different exchanges is called "pulse stuffing" and consists in inserting extra pulses into the signals from one of the channels. This clearly could not be used in data transmission).

So the idea is that data should be divided into units called "packets" of perhaps 1000 bits, each carrying a destination address. These would originate at sources of various types, ranging from a keyboard to a 48 kHz line from a computer centre and would all be sent to a local switching centre or node on the special network. The computer here would take them into store, read the address, sort them into strings according to destination and transmit at high speed (of the order of 100 megabits/second) to other nodes in the network. Precautions have to be taken to see that no packet is lost and to see that the packets in a series constituting one message arrive in the right order. At the present time there is considerable activity in the development of data networks. The first was ARPA, set up by the United States Department of Defense to link a number of computer centres which each contain one or more powerful computers. It has also some access points in Europe. Part of the argument for such a network is that a computer centre may specialise in some
particular type of work for which its computer is particularly suitable on account of features such as the balance between fast-access store, backing store, input and output facilities, etc. It is then economic to send different kinds of work to different computers and a communication network serves this purpose. In Europe the emphasis is more on data collection, as implied in the explanation of packet-switching above. The British Post Office has opened an experimental packetswitched service on the route London-Manchester-Glasgow to assess the commercial value of such a system; the European banks are proposing a network called SWIFT for the rapid transfer of information about international banking transactions; there are plans for a European Information Network (EIN); and a EURONET is proposed to link all major scientific research establishments in Western Europe.
It seems a far cry from Shannon to digital television and packet-switched data networks. But the same principles apply throughout:
(1) All information is finite and can therefore be digitised.
(ii) The maximum capacity of any physical channel can be specified in terms of its bandwidth, signal-to-noise ratio and the time for which it is available.
(iii) Within the bounds set by (ii) it is possible to exchange signal-to-noise ratio against the bandwidth-time product.
No doubt we shall see many further applications of these fundamental principles as time goes by.

Appendix: Cross-bar and cross-points

The Strowger system of automatic telephony is based on its two-notion switch. This first moves vertically to one of 10 levels and theh horizontally to one of 10 positions in the level so as to select one out of 100 contact pairs. This is a direct mechanisation of the action of the manual exchange operator in

Fig. A. Principle of cross-point switch connecting any of inputs A, B, C, D, E to any of outputs $1,2,3,4,5$.
selecting one out of a square array of jack sockets, but with one important difference. The whole of the Strowger switch remains engaged while the single call is passing through its contact field; but the operator after putting plugs in to make one connection can leave it and attend to other connections until she receives a signal to clear the first connection. The cross-bar switch, which is illustrated in principle in Fig. A comes nearer than Strowger does to simulating the methods of the human operator. The diagram shows input lines A, B, C, D, E crossed by output lines 1,2 , $3,4,5$. At each point where the lines cross there is a switch, closing of which is indicated by a blob on the diagram. Thus the cross-bar switch can complete more than one circuit at a time: the connections shown are $\mathrm{A} \rightarrow 4, \mathrm{~B} \rightarrow 1, \mathrm{D}$ $\rightarrow 2$ and $\mathrm{E} \rightarrow 5$. While the numbers of lines in each direction may be varied, the principle is now universal and the only question is what kind of switch or cross point should be used at each crossing. In the original cross-bar switches the contacts were metal-tometal and operated by a mechanical system of solenoids, bars and latches; in the current electronically controlled exchanges they are reed switches; and there is an increasing probability of the future use of solid-state devices as cross-points in some applications.

References

1. J. L. E. Baldwin et.al., "DICE: the first intercontinental digital standards converter," R.Telev. Soc. Journ. 1974, vol. 15, pp 140-159.
2. D. A. Bell, "Economy of bandwidth in television," Journ. Brit. Inst. Rad. Engrs., 1953, vol. 13, p. 447.
3. R. Barthelemey, "Images Differentielles," Comptes Rendus, 1949, vol. 229, p. 61.
4. J. E. Thompson and G. A. Gerrard, "A differential p.c.m. encoder for Viewphone signals." Conference on Digital Processing of Signals in Communications, 1972, lERE Conference Proceedings No. 23, pp.329-337. 5. D. J. Connor, B. G. Hashell and F. W. Mounts, "A frame-to-frame Picturephone coder for pictures containing differential quantizing noise," Ibidem, pp. 363-372.
5. M. T. Hills "Electronic telephone exchanges. Conclusion: Computer-controlled Systems," Wireless World, July 1974, p. 241 .
6. M. T. Hills, "Electronic telephone exchanges. A Review of Techniques," Wireless World, June 1974, p. 164.
7. "High capacity p.c.m. system,". Wireless World, February 1975, p. 92.

Literafure Received

A guide to the range of thyristors, triacs and trigger devices made by Motorola is now available. Equivalents to other types are suggested and there is information on outlines and leads; application notes are listed. The guide is offered by GDS Data Centre, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks

WW401
A price list of over 200 instruments. classified as signal sources, signal conditioners' and analysers and measuring instruments, is produced by Lyons Instruments Ltd, Hoddesdon. Herts EN11 9DX

WW402
Measuring instruments for hire are described and classified in the 1976 Livingston Hire Catalogue. Most common electronics laboratory instruments are listed, as well as a range of industria! equipment. The catalogue can be obtained from Shirley House, 27 Camden Road, London NWI 9NR

WW403
High-voltage, stable and precise power supplies, intended for use with precision c.r.t. displays, photomultipliers and similar equipment, are described in a 4-page catalogue from CPS Inc., 722 E. Evelyn Avenue, Sunnyvale, California 94086 , USA.

WW404
Memories, microcomputer kits and development systems (including peripherals) are briefly described, with prices, in a price list produced by Rapid Recall, all the components being by 1 ntel. Rapid Recall Ltd are at 9 Betterton St, London WC2H 9BS
. WW405
"Foundation for a Career" is the title of a pamphlet. produced by the City and Guilds of London Institute, which outlines a scheme of courses to give school leavers vocational preparation. Five courses are described - construction, engineering, science industries, food industries and community care. Copies are available at 50 p from the Sales Section of the Institute at 76 Portland Place, London WIN 4AA.
Digital, panel-mounted counters conforming to DIN43700 are produced by Orbit Controls and are described in their Industrial Electronic Instrumentation catalogue, available from Orbit at Lanşdown Industrial Estate, Cheltenham, Gloucestershire GL51 9PL.

WW406
A supplement to the Doram mail-order catalogue has been sent to us. New products include amateur radio modules, a 432 MHz -to- 28 MHz transverter, a 70 cm varactor tripler, a 500 MHz prescaler and a 50 MHz counter. Price reductions on small components are announced. Doram Electronics Ltd. PO Box TR8, Wellington Road Industrial Estate, Wellington Bridge, Leeds LS12 2UF WW407
Soldering irons, stands, de-soldering instruments and tools are fully described in a booklet from Adcola Products Ltd, Adcola House, Gauden Road, London SW4 6LH

WW 408
Hygrometers, dewpoint meters and moisture analysers made by Shaw are the subject of a catalogue recently received. Brief details are given of instruments for the measurement of moisture in a range of materials. Shaw Moisture Meters, Rawson Road, Westgate, Bradford WW409

Coaxial connectors (Type N, BNC, 27, etc) and cables are illustrated and described in a new catalogue from Intel Connectors Ltd. R. F. Division. Henlow Trading Estate. Henlow, Beds. . . WW 410 Thermistor materials, their resistance/temperature characteristics, tables, outline drawings and application information are presented in a new short catalogue by Fenwal Electronics. The catalogue can be obtained from Electrautom Ltd. Etom House, Queens Road, Maidstone, Kent

WW41I
Jitter when displaying data streams can be avoided by recognizing a selected data bit and generating an oscilloscope trigger at that time. Hewlett-Packard describe the 1620A Pattern Analyser, designed for this purpose, in application note 167-8, obtainable from King Street Lane, Winnersh. Wokingham, Berks.

WW412

HF predictions

Predicted disturbed periods are May 21 June 2 and June 15-21. Seasonal trend and minimum solar activity combine to produce FOTs and LUFs which give a restricted choice of time and frequency for reliable day to day communication. This feature is most evident when both ends of a radio path are in the northern hemisphere mid-latitudes.

Wireless World Teletext decoder

8 - Modifications and lining up

by J. F. Daniels

Most constructors will probably want to use the decoder with a colour television receiver, but for those who use a black-and-white set, a few words on interfacing are needed.

Monochrome receivers

If a black-and-white receiver is to be modified then there are two options open to the constructor. The decoder may be wired in, in a similar manner to that described for the colour receiver, or a separate tuner and i.f. strip may be used, the output of the decoder being fed via a u.h.f. modulator into the receiver's aerial socket. This second method has the advantage that the decoder may be electrically isolated from the TV set. Whichever system is used, the best display will be obtained by mixing the red, green and blue outputs of the decoder together by means of variable resistors, the resistances of which may be varied to give the desired grey levels for different transmitted colours. Mixed syncs must also be added at this point to lock the scan circuits in the TV set. The problem most likely to be encountered with black and white sets, especially the older ones, is lack of bandwidth in the i.f. strip - a good reason for using the extra i.f. and modulator approach.

Character verticals

The following modification to the decoder circuitry has been found advantageous because it reduces the h.f. response requirements of the receiver video amplifier output stages. Fig. 1 shows the circuit, which uses existing "spare" i.c. gates. The extra gates are wired in series with the output of gate $(57,6)$. Gates $(75,8)$ and $(75,3)$ pass the signal through unchanged, but gate $(75,6)$ adds to the original signal a pulse derived from the trailing edge of the display character components. VR_{3} can be adjusted to give the best character appearance, and the setting of this control will depend on the frequency response of the receiver video amplifiers. At zero resistance setting, the signal passes through this stage unchanged, but as the resistance is increased the width of the character verticals gradually increases until the
appearance of the characters is obviously distorted. A suitable control setting should be found which gives the best character appearance.

Upper and lower-case characters

Texas Instruments have recently announced a new character generator i.c., the X 887 , which has been developed as part of their Tifax decoder module, and as the i.c. was specifically designed for Teletext decoders, it has a number of advantages over the 2513.
Firstly, it contains a complete set of upper and lower-case characters, which includes all those characters defined in the latest Teletext code table. Secondly it has provision for a four-bit row-select input code which means that all ten rows of the characters may be addressed independently, and no shifting of address codes is required for characters with "tails". Thirdly, it only requires a +5 V supply, which means that the decoder power supply may be simplified as the -12 V rail is now unnecessary.

Fig. 1. This modification reduces the degrading effect of poor video frequency / amplitude response in the television receiver. The effect is to broaden vertical components of characters.

The circuit arrangement using the new i.c. is shown in Fig. 2 and is almost identical to the original circuit using the upper-case 2513. The differences are that all seven bits are now fed to the character-select inputs and the four-bit row-select inputs are fed from the Q_{A}, Q_{B}, Q_{C} and Q_{D} outputs of IC_{5} directly. The $Y_{1}-Y_{5}$ outputs feed, as before, into the five open-collector gates, although the timing of the strobe pulses from IC_{42} has been changed slightly to allow for the faster access time of the X887.

The cost of the X887 is around $£ 20$, which makes it rather expensive compared with the 2513 , but if a decoder with the lower-case facility is required, then the X 887 is the obvious choice.

Line-up procedure

The following line-up procedure has been devised after lining up six decoders, but it does assume that the decoder has no faults and is being fed with a suitable video signal as described earlier. It would also be advisable to check that data is actually being transmitted on the selected TV channel, since the system is still in its experimental period and transmissions may be interrupted occasionally. To check the transmissions are present, reduce the height of the T.V picture, or offset the vertical-hold control and look for lines of constantly-changing white dots and

dashes across the full width of the TV line in the field blanking interval.
The line-up procedure requires no test gear, but the power supply rails should be checked with a multimeter prior to following these instructions.
Set the six preset potentiometers (three on the analogue board, two on digital board 1 and one on digital board 2) to mid-position. A screen full of random characters will probably be obtained, because the flip-flops in the r.a.m.s take up random states at switch-on. Do not, however, push the clear-page button at this stage.
Adjust VR_{3} on the analogue board (set sync separator) to give a display that is free from vertical jitter. Turning the potentiometer too far in one direction will cause the display to jitter vertically and move down the screen. Turning it too far the other way will make the display disappear altogether.
Adjust VR_{1} on the upper digital board (horizontal shift), and VR_{1} on the analogue board (display width) to give a correctly-centred and suitably proportioned display.
Connect a link between pins 13 and 14 of IC_{9}. This disables the "framingcode allow" monostable, and this is essential during the first part of the setting up procedure.
Switch the decoder to the "roll" mode and adjust L_{1} to give the maximum amount of "movement" of the display. The characters should start changing at random and this may appear to be happening on consecutive rows from top to bottom of the screen, giving a "rolling-through" appearance. If so; adjust the
coil for the most consistent rolling-through action. If the coil former being used is not the specified one, then the oscillation frequency can be checked as follows: - disconnect the uppermost wire link to the analogue board, (lines 11-21) and adjust L_{1} to give a display of approximately the correct width. (Disconnecting this link inhibits the display oscillator and makes the data oscillator operate the whole time, so the characters will appear rather ragged). If this is outside the range of adjustment of L_{1}, adjust the value of C_{2} until the width of the display is approximately correct. Reconnect the link to the analogue board.
Adjust VR_{2} on the analogue board (slice level) to improve the rolling through action and some correct pages may now be observed changing very rapidly. Continue adjusting L_{1} and VR_{2} alternately to give the best rolling action. (N.b., when the roll mode is selected the decoder reads out each data row as it is transmitted, and this enables the effect of each adjustment to be observed, instantaneously, rather than having to wait for up to 15 seconds, which would be the case if pages were selected in the normal way.
Remove the link from IC_{9}, pins 13 and

Fig. 2. The revised character generator, which uses the Texas X887 to display both upper and lower-case characters, as well as the complete Teletext symbol set.
14. The rolling-through action will probably cease. Adjust VR_{2} on digital board I carefully, until the rolling-through action begins again. This control has an "on-off" action, unlike those previously adjusted, and is necessarily quite critical in its setting. The adjustment should be checked on different TV channels, since there may be slight differences in the position of the framing code between different channels.
Switch off the roll mode and select a clock-cracker page (at the time of writing page 899 on Oracle or page 140 on Ceefax). This page is used to accurately check the frequency of the data oscillator, and consists of 14 consecutive 1 s followed by two 0 s repeatedly across each row of the page. This means that the data oscillator gets the least possible amount of locking information on each line and so must free run at the correct frequency for almost two bytes of data. If L_{1} is not quite - correctly adjusted, a regular pattern will appear on the left-hand side of the screen which will gradually disappear or turn to "rubbish" on the right-hand side. L_{1} should be adjusted a quarter of a turn at a time, until the page readout produces a pattern which is even over the whole screen. The two photographs in Fig. 3 show a correct and incorrect clock-cracker readout. These photographs were taken from the output of a decoder which had a lower-case character generator installed, and the characters displayed when an upper-case-only decoder is used are

Fig. 3. The "clock-cracker" page, with L_{1} (April issue, p.66) correctly adjusted is shown at (a), while the result of incorrect tuning is seen in (b).
different to those shown. The principle of adjustment is, of course, the same.
Finally adjust the slice level control (VR_{2} on the analogue board) to give the most error-free page readouts, selecting pages'in the normal manner. If the contrast control on the TV set alters the amplitude of the signal being fed to the decoder, check that both the sync separater and the data slicer work satisfactorily over the required range of the control.
Check that the decoder function switches operate correctly and adjust VR_{3} on the lower digital board to give the most pleasing character appearance.

Fault finding

Experience with a number of decoders has shown that faults are almost invariably caused by i.c. pins being left unsoldered, especially on the top side of the p.c. boards, or missed connectedthrough holes, so it is best to check the boards very carefully before attempting the line-up procedure.

Faulty or suspect t.t.l. gates can be checked fairly easily by means of d.c. tests (remember that t.t.l. outputs can be shorted to the 0V rail for "in-circuit" testing of following gates, but must not be connected directly to the +5 V rail.) If an oscilloscope is not available, suspect counters can only really be checked by substitution. Faulty r.a.ms can easily be detected by spotting an abnormally large number of spelling mistakes on each page and by consulting the code table, the bit which is common to all the incorrect letters can usually be located

Installation

A few final hints on wiring the decoder into a domestic receiver may be of some use. Coaxial cable must be used for the video input feed to the decoder, and this should be kept as short as is practical. The other feeds to the decoder will be $+5 \mathrm{~V},-5 \mathrm{~V},-12 \mathrm{~V}$ and 0 V . From the decoder to the receiver there will be red, green and blue output signals, the video switch control wire, and the clamp pulse feed. These last nine feeds may be combined in a single multicore type of screened cable. Screening is necessary to prevent pick-up of the high frequency display components of the output waveforms in the receiver sound or video stages.
Finally it must be stressed again that great care must be taken when connecting the decoder into the TV

receiver, to ensure that every possible safety precation is taken. The decoder box must be effectively earthed, not connected to the TV chassis, and there must be no exposed connections that are at anything other than earth potential. An isolating transformer (which allows the receiver chassis to be earthed) must be used while lining up the decoder, but if the above precautions are observed, this will not be necessary once the decoder is installed in its box.

Acknowledgments

I would like to thank Mullard Letd for their help with character generator i.cs and also my colleagues, Dave Beavan.

Norman Riggs and Arnie Tidder for their helpful suggestions and help with building the prototype decoders.

Is h.f. propagation getting worse?

The many months during which amateurs have struggled with low m.u.fs and early closing of the h.f. bands have underlined the recognised problems of the classic 11-year sunspot cycle. It is not so much that long-distance lowpower signals disappear altogether but rather that activity becomes bunched on low frequencies, stations are heard more spasmodically and the resulting contacts go more and more to the elaborately equipped stations having effective aerials, leaving the less ambitious stations struggling after the occasional better "openings."
Such conditions this past winter came as no surprise to those radio amateurs whose memories stretch over several sunspot minima. But beyond this anticipated and transient deterioration there is another possibility that is attracting some attention: is there evidence to support a view that m.f.-h.f. radio propagation may be gradually changing - for the worse? That "average" propagation conditions today are less good than in the twenties or thirties?
Some people believe that a deterioration of conditions has been disguised by the gradual improvement in receivers and in the higher powers used by broadcasters and amateurs. Such a proposition would be extremely difficult to prove conclusively one way or the other; detailed information on signal path losses over many years is just not available, and it would be difficult to distinguish increased attenuation from the practical consequences of increasing mutual interference between stations.

Yet one does find a persistent belief among some old-timers that radio paths have gradually deteriorated or at least changed. One of the few tangible pointers in support of this view is the virtual disappearance of "long delay echoes" which, as recent correspondence has convinced me, were heard regularly and authentically in the period up to 1939 .

If, in fact, ionospheric propagation has been subject to long-term changes this might be part of some as yet unidentified solar cycle or it might reflect the increasing effect of the vast increase in total radiated power, affecting electron temperatures in the ionosphere (as indicated for instance in the recent artificial radio aurora experiments in the United States).

On the bands

National Field Day, to be held this year on June 12-13, is to be run under new rules, including the dropping of the "double station" entries and the removal of power 'restrictions other than those imposed by the amateur licence. Instead new "open" and "restricted" sections have been created with those clubs entering the "restricted" section having to limit their amount of equipment and type of aerials that may be used. The original purpose of NFD, established by the RSGB in 1933, was to show that low power portable stations set up at short notice outdoors were capable of maintaining reliable communications with similar stations throughout the UK - a proposition that today would be accepted without question with the result that there has been some flagging of enthusiasm in recent years. It will be interesting to see if the new rules lead to a revival of interest. .
Recent Australian microwave activities have included a 244 km contact on 2304 MHz between Mount Genini, near Canberra and Mount Canobalis, near Orange, New South Wales. This was made between Des Clift, VK2AHC and Bill Cox, VK2ZAC. These amateurs have also been investigating 6 cm and 3 cm paths, including super refraction over coastal paths.
A new headquarters station of the Royal Naval Amateur Radio Society has been inaugurated at the HMS Mercury training school.
The Home Office has agreed that amateurs holding slow-scan television permits may now use 256 -line transmissions as an alternative to 128 -line systems without further notification of the authorities.
To avoid interference from radioteleprinter transmissions the RSGB is proposing to change the frequency of its Sunday morning GB2RS news-bulletin transmissions from 3600 kHz to 3650 kHz .
J. Michale Gale, G3JMG, a civilian instructional officer at the Fleet Air Arm's Air Engineering School, HMS Daedalus, Lee-on-Solent, Hampshire, has been instrumental in the setting up of a local amateur radio society. The society, using the call G3JMG, will be regularly active on 1.8 MHz .
Some tips from a lecture by Lewis McCoy, WIICP, at a recent amateur
convention in the United States: "If you have confidence in your antenna it will work better than if you don't"; "If the antenna stays up it is too small"; and "If the confounded thing works, leave it alone." He is a strong advocate of the quad aerial as providing roughly 2 dB more gain than comparable Yagi arrays.

For moonbounce operation, Peter Carey, ZE5JJ, is reported to be constructing a new 32 ft dish aerial using some 500 metres of aluminium tubing. He also has a 128 -element colinear array which gives $24-25 \mathrm{~dB}$ gain on 432 MHz . A 28 ft diameter parabolic dish aerial with circularly polarized feed horn is used for moonbounce work on 1296 MHz by Hans Lohmann Rasmussen, OZ9CR in Denmark.

25 years ago

25 years ago, following the imposition of unexpected operational conditions, the RSGB abandoned its original plans to equip and operate an amateur radio station in the Dome of Discovery at the 1951 Festival of Britain. However, special stations were established at Manchester, Leeds, Birmingham and Nottingham as part of the Land Travelling Exhibition, operating under the call GB3FB. A Festival amateur radio convention in London failed to attract anticipated support - and perhaps the most memorable feature from an amateur viewpoint of that Festival year turned out to be the publication of the first of the annual "RSGB Call Books", compiled by John Tyndall, G2QI.

In brief

The New Zealand Association of Radio Transmitters (NZART) celebrates its golden jubilee with a special convention from June 4 to June 7 at the North Shore Teachers' Training College, Auckland

The 1976 Welsh Amateur Radio Convention will be held on Sunday, September 26 at its usual venue: Oakdale Community College, Blackwood, Gwent. It is being organised by the Blackwood \& District amateur radio society . . . A weekly bulletin of ARRL news is transmitted on $14,095 \mathrm{kHz}$ r.t.t.y. at 1730 GMT on Sundays by W2QFR, beamed on Europe and with 170 Hz frequency shift. DL8VX transmits an r.t.t.y. information bulletin every 2nd and 4th Sunday of the month, except during contests ($0900 \mathrm{GMT}, 3585 \mathrm{kHz}$)

The British Amateur Radio Teleprinter Group has warned its members that a number of Model 54 teleprinters appearing on the surplus market have non-standard keyboards and codes and that it might be difficult to convert them for amateur r.t.t.y. applications.

PAT HAWKER, G3VA

Exhibitors and details for the Association of Professional Recording Studios exhibition

Abstract

The ninth international exhibition of professional recording equipment is to be held at The Connaught Rooms, Great Queen Street, London WC2 on Thursday, June 17 (09.00-19.00) and Friday, June 18 (09.00-18.00). Fire on February 5 this year at the Connaught Rooms had made the Grand Hall unusable for the time being so alternative arrangements have been made by the organizers within this venue. The exhibition is for professional users and is not open to the public. Tickets are available from 'E. L. Masek, 23 Chestnut Avenue, Chorleywood, Herts WD3 4HA.

APRS exhibitors

Acousmat

Acoustic Research
Agfa-Gevaert
AKG Equipment
Alice (Stancoil)
Allen \& Heath
Allotrope
Amek
Amity Schroeder
Ampex International
Audio \& Design Recording
Audio Developments
Audix
BASF United Kingdom
B \& K Laboratories
Bauch, F. W. O.
Beat Instrumental
Beyer Dynamic (GB)
Bose (UK)
Brennell Engineering
Cadac (London)
Calrec Audio
Cetec Audio UK
Dolby Laboratories
Drake Electronics, Philip
EMI Tape
Feldon Audio
Ferrograph Professional Recorder
Fraser-Peacock Associates
H/H Electronic
Hammond, C. E.
Hampstead High Fidelity
Hayden Laboratories
Helios Electronics
Industrial Tape Applications
International Musician \& Recording World
Jackson Recording Studios
Klark-Teknik

Lee Engineering
Leevers-Rich Equipment

Lennard Developments
Levy. Jacques
Lockwood \& Co. (Woodworkers)

MCI (UK)

3M United Kingdom
Macinnes Laboratories
Magnetic Tapes
Midas Amplification
Millbank Electronics Group
Music Week
NTP Elektronik A/S
Neve. Rupert
North East Audio
Penny \& Giles
Pyral Magnetics
Quad
Racal-Zonal Group Services Radford Electronics
Raindirk
Richardson Electonics
Rockwool
Rola Celestion
Rugby Automation Consultants
Scenic Sounds Equipment
Shure Electronics
Sonaplan
Soundcraft Electronics
Studio Republic
Studıo Sound
Surrey Electronics
Tannoy
Theat're Projects
Trad Sales \& Service
Trident Audio Developments
Turner Electrical Industries Tweed Audio

Uher (UK).
Veale \& Associates, Edward
Vitavox
Webland Electronics
Zoot-Horn

Principle exhibit by Helios Electronics Ltd will be a music recording and re-mixing console designed and built for Release Records Ltd, Dublin. The console has 28 input channels, 16 main output groups and 24 -track monitoring. The specification includes parametric equalization on all input channels and four echo sends with eight returns. Length of the console is less than 2 m . New from Helios will be a rack mounting parametric equalizer. The unit has two independent channels, each with a four-section sweep equalizer, by-pass switch and overload indicator.

A range of acoustic screens will be exhibited by Sonaplan Ltd. Model A is designed for separating brass and woodwind from quieter sections of the orchestra. Model O has an observation window designed for vocalists, percussion and string sections where visual communication is desirable and Model S is a half size screen $(1.05 \times 1.00 \mathrm{~m})$ for rhythm sections.

Rupert Neve \& Company Ltd who will be exhibiting at the show have released information about a new disc mastering system, the Neve/MSR 2000. This is the result of a joint venture between MSR Electronics Ltd and Rupert Neve to produce and market the mastering system on a worldwide basis. The lathe cuts monophonic and stereophonic production masters and direct replay acetates to the requirements of the recording industry and accommodates all standard record sizes. It has a range of four turntable speeds to facilitate half speed cutting of quadraphonic masters. The system offers such facilities as digital computer control of all functions, digital display readout of 'cutting suspension, a rumble-free servo-control turntable, turntable speed indication by electronic strobe and automatic groove compensation.

Focal point of the Shure display will be the recently introduced SR line of sound reinforcement equipment. The SR101 mixing console when used with the SR106 electronic crossover, SR105 power amplifier and SR 108 two-way horn loaded speaker units forms a complete sound system.

THE CONSULTANTS
As one of those interviewed last year by John Dwyer, I have read and followed with interest his article "The Consultants" published in the November 1975 issue, and the correspondence resulting from it. By and large, I found it a fairly well balanced commentary though, perhaps rightly, a little pointed. Not every conclusion he draws is accurate, and since others of your correspondents seem to have misinterpreted my views, perhaps I may be allowed to clarify them.

First of all, I know of no conscientious professional who is also a " 26 hour a week" man. This time, as John Dwyer correctly quoted, is easily spent in the preparation and presentation of lecture and tutorial classes, but undergraduate students of engineering are not trained simply with a stick of chalk. Additional to this is the time necessarily spent on the development of a programme of laboratory experiments, projects and research, their supervision, examination and coursework assessment, the organisation and revision of these and other, new courses of conferences, my own registered research and participation in the Polytechnic's Faculty committees, in forming its long term academic plans. Those not qualified to teach might be forgiven for overlooking many of our responsibilities, but I hope they will at least take note of them.

I would have thought that James Moir and those of his calibre need have no fear of a little competition, whilst others have allowed this age-old reason for resentment to colour their judgment. Thus Gordon King (his letter, April 1976 issue) seems to think that an academically-based professional should not be paid for the work he does on commercial development or sponsored research projects. If that were the case, then some of the criticisms levelled at consultants in these columns recently, might eventually become more justified.
The same lack of judgment is evident in Mr King's interpretation of my comments about consultancy fees; it is because I do not wish the profit motive to dominate my work, as it must not, that I do not request high fees. There are other reasons why I want to see the excellent facilities in the PNL Acoustics Laboratory maintained and developed, which I thought were made clear in the - article; not firstly to serve the hi-fi press, but to serve the best interests of my undergraduates. My consultancy work has assisted greatly in this; and it has created good will with certain sections of the engineering
industry, and it has benefitted our laboratory facility. Recently, as a result of some such work, an instrument worth ten times the fee we received, was donated, at my request, to the Acoustics Laboratory at PNL. Private consultants are not unique in having professional integrity and responsibility.

Finally, I would like to echo the major point made by C. A. Henn-Collins (also April 1976 issue) about the crucial importance of the consultant's impartiality, especially when he must earn a living from both company development and consumer review work. Obviously, the two undertakings have contrasting purposes, one for the manufacturer, the other for the user, and must always be viewed accordingly. My position as an academically based consultant affords me the privilege of being able freely to observe this distinction.
Roger C. Driscoll,
The Polytechnic of North London.

CITIZENS' BAND IN THE UK?

'The concensus of the various references to Citizens' Band radio in your March issue seems to suggest that if CB ever comes to Britain, it will come at 27 MHz . Surely this is not necessary.

If we are to have a Citizens' Band, and I hope we are, we would be far better advised to have one operating at v.h.f. with narrow band f.m. This would have many advantages over 27 MHz a.m., including reduced t.v.i. and b.c.i., less chance of interference during sunspot maxima, and smaller antennas. Such v.h.f. transceivers would be somewhat more expensive than 27 MHz ones, but if such firms as Yaesu Musen, Inoue, Standard and Trio can make v.h.f. transceivers (for the 2-metre amateur market) for well under $£ 100$, I am sure that they can do even better for the much larger CB market.
I know that there is considerable pressure on the v.h.f spectrum, but surely there must be six to ten channels somewhere between 60 and 300 MHz which could be allocated for this purpose - if e.r.p. is limited even this small number is unlikely to be too congested. A further refinement would be to incorporate a station identifying circuit which causes a tone sequence to be transmitted each time a transmitter is keyed. This could serve the dual purpose of uniquely identifying each transmitter and of acting as a selective call system - more sophisticated receivers could be set to unsquelch only on a call from a particular transmitter.

I feel that there will soon be a strong political demand for CB. I hope that when it comes, the Home Office will have plans ready - perhaps similar to those outlined above and will not have an unsuitable 27 MHz system forced upon it from above for lack of a planned alternative.
James M. Bryant,
Cheltenham,
Glos.

Unlike Mr Webber I do feel that the introduction of Citizens' Band radio facilities in the UK would lead to abuse, caused by ignorance on the part of the user and commercial exploitation. If there is a need for a Citizens' Band in the UK then let it be
introduced in the u.h.f. bands and not in the 27 MHz band.

I and many thousands share a few hundred kilohertz of the 27 MHz band for model radio control. We already suffer from having several hundred pounds' worth of aeroplane and radio equipment "shot down" by the illegal use of walkie-talkies. If CB radio is introduced we may all be grounded. As a professional engineer and a keen modeller I protest!
L. K. Anderson,

Braunton,
Devon

MICROPROCESSORS OVERSOLD?

Mr Hill has indeed made a number of valid points. Microprocessor technology is very new and by almost everyone's judgement, it has very great potential in the future. This therefore means that microprocessors have attracted considerable publicity in most of the media.

Mr Hill makes the point that the microprocessor chip cannot operate in isolation. This is, of course, true. The microprocessor only becomes a useful microcomputer when attached to memory devices and input/output interfaces, but already due to large-scale production these devices are very inexpensive for what they are. I think the semiconductor industry has proved that once a product goes into large scale production, costs fall dramatically. An example of this is the electronic calculator which, less than two years ago, would have cost $£ 100$ and is now available for less than $£ 10$. Significant microcomputer systems can be built now in only moderate volume for less than $£ 40$.

Mr Hill mentions the "shock situation" facing engineers wanting to use microprocessors in that they must learn some programming. I am sure that the majority of electronic engineers are well able to cope with learning a new technique and history proves that this is so, for every generation of engineers has had to learn to handle new technologies. In less than two decades, the industry has moved from the valve technology, through discrete semiconductors into the integrated circuit, with an aplomb that must have amazed some of the early experimenters and we are sure that the younger engineers will move into even higher levels of technology in the future without too much difficulty.

So, in answer to Mr Hill, I say yes, the engineers will have to learn programming but it is not that complex. The support hardware to help them to produce and debug programmes is available now and will be available in design centres all round the country in the future. Even if a company decides to buy some programme and system-proving hardware, it is no more expensive than a complex oscilloscope.

As Mr Hill says, the microprocessor is here to stay and indeed we are glad to see that he suggests an intelligent approach to dispel the image that it is the panacea for all iils, because, used intelligently, it can solve many problems of today and will obviously solve many problems in the future. We, as a company, are trying to educate the engineering fraternity and would be prepared to help Mr Hill in any way we can and I am sure this is true of all other semiconductor
manufacturers concerned in the development of microprocessors.

Yes, we agree, let us get together so that the learning is made less difficult.
Vic Yates,
Motorola Ltd,
Wembley,
Middlesex.

When something important happens, like the introduction of the microcomputer, many claims are likely to be made as to the power and capability of the technology. Sometimes these claims are exaggerated and may, therefore, be misleading. You will sometimes find that such claims are made by individuals who have not yet acquired a full grasp of the subject or by companies who enter the new field late and are trying to establish themselves quickly.

However, I feel that Mr Hill's claim that much of the published material on microprocessors is misleading could also be construed to be an exaggeration in itself, since the bulk of this published information is in the form of technical data sheets and instruction manuals.

Now let us have a look at microcomputer systems to see if Mr Hill's other claims are justified. At the low end of the microcomputer spectrum it is possible to construct a powerful calculator-like system with just four chips: the 4040 c.p.u. the 4201 clock generator, a 4001 r.o.m. to hold the programme and a 4269 interface chip. This system will interface directly to encoded or non-encoded keyboards (up to 128 keys) and will drive a variety of multi-digit display devices. The display registers in the 4269 are used as read/write memory. If more r.a.m. is required, this can be provided by an additional chip. The system can be further expanded by adding a 4265 interface chip which will provide four four-bit ports, any of which can be inputs or outputs. These ports can be synchronous or asynchronous. The 4265 also incorporates all the logic necessary for 'handshaking' with a peripheral. These various options are selected by the software.

The important point here is that two chips provided a full keyboard and display interface, 16 programmable I/O lines and all the logic necessary to control a very wide variety of peripheral devices.
The same principles apply to 8-bit microcomputers. Interface chips are available that approach the c.p.u. in terms of internal complexity and which will provide serial, parallel, synchronous, asynchronous and bidirectional inputs and outputs. These chips also contain a great deal of sophisticated control logic, which relieves the c.p.u. from many of the repetitive and mundane tasks needed to service some peripherals.
A company which is about to use a microcomputer as the processing element in a piece of equipment that is being designed for production, will purchase a development system such as the MDS (see Wireless World, February 1976, page 40) which will provide the necessary teletype interface and interfaces for other peripheral equipment that might be needed for the project. In addition, the MDS will provide all the other aids required such as hardware and soft ware development and diagnostic facilities. The cost of the MDS will be amortized over all
the systems that are to be produced in this, and future, microprocessor projects.

The alternative to a microcomputer design is to use t.t.l. logic which, if the system is not a simple one, will involve a considerable amount of design effort. Once designed and in prototype form it is difficult, and expensive, to make changes since, amongst other things, circuit board artwork will have to be changed.
The microcomputer is controlled by a programme of instructions stored in read-only memory (r.o.m.). The more complex the task to be performed, the more ro.m. will be needed. It can be said, therefore, that the r.o.m. in a microcomputer system is being used to replace the gates in a t.t.l. system. It takes between 8 and 16 bits of r.o.m. to form the equivalent of a gate. Since an average small or large-scale t.t.l. circuit contains an average of 10 gates, between 80 and 160 bits of ro.m. are needed to replace each package. Memories are available with capacities of up to 16 kbits and a r.o.m. of this size will replace between 100 and 200 gates.
It can be shown that a microcomputer replacement for a t.t.l. system requiring between 130 and 140 gates will take two circuit boards less, will consume about 14 W less power and will save more than 130 cubic inches of space. This means real savings in production costs.
If we take a microprocessor equivalent of a 75 -gate logic system of which 100 a year are going to be produced and include all component and production costs, it can be shown that the t.t.l. system will cost in the region of $£ 56$ and the microprocessor about $£ 41$.
A company starting on their first microcomputer design project can expect to spend around $£ 5,000$ on equipment and will take about six months to get an average system into production. This will add about another $£ 5,000$ to the cost of the project. On a second design project, using the same microcomputer family, the company will have zero capital expenditure (since they already have the equipment) and could expect to have a similar sized system in production in three to four months (since they have acquired the necessary expertise).
While writing, 1 would also like to comment on the statement made by J. O. Owen in the February issue, that "PL/M reduces the number of lines of programme by a factor of ten." This is somewhat misleading and, if I may beg a little more space, I would like to explain why.
What must be kept in mind is that when a microcomputer system is designed, it is usually intended that a fairly large number of identical systems are going to be produced. We know that a microcomputer is controlled by binary coded instructions stored in a read-only memory. These binary instructions are normally produced by a computer from a source programme which can either be written in the high-level compiler language PL/M or in assembly language. It is a fact of life that a source programme written in PL/M will be much shorter than an equivalent assembly language programme. The assembly language programme will, however, result in less machine code than the equivalent PL / M programme. Usually, therefore, the assembly language programme will make more efficient use of the programme store since fewer bytes will be needed, and the saving in memory capacity per system will be multiplied by the number of systems to be produced. In cash terms, the actual saving in
memory cost will depend on the type of memory being used.

On the other side of the coin, it is much cheaper to write a programme in PL/M because it takes far less time. Therefore, the increased cost of writing an assembly - language programme must be set against the likely savings on memory components.

As a general rule of thumb, it is more cost effective to use PL/M for systems which are not going to be produced in large quantities - say, below 1,000 systems if mask-programmed r.o.m. is used or below 100 systems if e.p.r.o.m. is used.

- If the programme is very large or very complex, it is probably better to use PL/M regardless of the size of the envisaged production run since, in these circumstances, inefficiencies can be introduced by the programmer writing in assembly language.
Keith Chapple
U.K. Manager

Intel Corporation (UK) Ltd
Oxford

ELECTRODYNAMICALLY INDUCED E.M.F.

The opinions and proofs relating to this old problem as expressed by "Cathode Ray" and Messrs Smith and Masson all make good sense to me. It is clear that regardless of screening no e.m.f. will be measured. I personally do not need to look for proof as the following facts show.

An important measurement in oilwells is the spontaneous potential generated by telluric currents of various sources between a downhole electrode and a surface electrode This is made by an insulated conductor screened with two layers of steel cable which is partially spooled on a winch drum. It is a fact that if the winch is mounted on a moving barge, the EMF induced in the coiled drum by the earth's field appears as a "noise" on the signal. It is effectively eliminated by mounting a small coil in series opposition in the same field. This coil need not be screened. Again, I would ask any doubting Thomases "Would electric motors, whose conductors are often totally surrounded by iron, work if the iron was effective in screening them?"
"Cathode Ray" (September 1975 Letters) suggests cutting the dipole and inserting a perfect field-effect device to measure the e.m.f. This raises a very interesting point. When he does this, will the capacitance across any real device destroy the effect? In schoul physics texts we read that a sphere has a capacitance to infinity, whatever that may mean, equal to its radius. If, then we put spheres on the ends of our dipole the theoretical measurement once again becomes practical, because the capacitance created will overide, the effect of capacitance across the amplifier. As "Cathode Ray" points out, the signal must be made into a.c. by rotating it. This will not change its magnitude. The experiment is not only feasible, it can be made with existing semiconductors as the signals, assuming reasonable dimensions of the apparatus, are well above the noise level. Furthermore I have obtained the necessary field-effect amplifier and would like to invite anyone with the time to spare to make the experiment.
What will we measure? Originally I was

attempting to devise an absolute speedometer for a sailing boat. I fear, though, that what we will actually measure will be the differential component of the changing earth's magnetic field.

I include a sketch of the apparatus as I designed it some years ago. There is no need for slip rings because if it is battery operated the whole thing can rotate. There exist a number of output displays which would be legible even if rotating at high speed.
R. Hunt-Grubbe,

University of Reading.

I was interested to read in your December 1975 issue Mr Gray's comments on my letter in the September issue, but I continue to maintain that the electric field perceived
! from the aircraft is real. Far from contradicting the principle of relativity, it is in fact a direct corollary. If the electric field were in any way unreal then the observer on the aircraft would be able to detect this and determine his state of motion without any external reference.
A correct description of the situation would be something like the following: Knowing the values of electric and magnetic fields measured in the aircraft, the navigator may calculate his velocity relative to the inertial frame in which the electric field is zero. Then, from the information that the electric field measured by a ground-based observer is zero, he is able to identify this calculated velocity with the speed of the aircraft relative to the earth.

I would also like to take issue with the other point raised in Mr Gray's letter. Unfortunately I have not been able to find a copy of his reference so I can only comment on his statement that "relative motion between a conductor and the system within which the conductor e.m.f. is to be detected is a basic requirement for electrodynamic induction of e.m.f. in the conductor". This may be refuted by a simple experiment in which a coil of wire is connected to the terminals of a meter. The insertion of a bar magnet into the coil causes an e.m.f. to be induced and the resulting current is indicated by the meter. Relative motion is, indeed, involved but not between the conductor and detector. Other examples may readily be adduced.
"Cathode Ray's" arrangement should work since, as the conductor is rotated, the electrons within it must be periodically redistributed to maintain an equipotential surface (as seen from the aircraft). The meter in the centre of the conductor will register an alternating current constituted by the flow of these electrons.

Colin Masson,

Cambridge.

Assuming that magnetic field uniformity is still conditional, in the continuing corre.spondence relating to Electrodynamically

Induced E.M.F. (Cathode Ray's letter in your February issue), I retain my belief that Einstein's axiom is fundamental to the matter under consideration.
I cannot see that Cathode Ray's reference to "the measurement of relative velocity with reference to a field in another system" has any meaning; though I would agree to a condition of velocity of the field's source, relative to the conductor with which the observer is travelling, which returns one to my original argument. Detection of the field's velocity is another matter, for which I suggest that non-uniformity is a necessity.
Acceptance of the argument for "electrodynamic" detection of absolute conductor motion would require acceptance of induced e.m.fs in a multitude of superficial conductors, moving with the earth and within its magnetic field; and I am not aware that these have become manifest.
John Gray,
College of Technology,
Belfast.

WAS BAIRD FOOLING THE PUBLIC?

THE letter "Was Baird Fooling The Public?" from $\mathrm{Mr} \mathrm{H}. \mathrm{F}$.Haynes in the April 76 issue, is, I think, likely to cause confusion among readers trying to follow the various articles about the Baird half-centenary. The original article by Messrs. Waddell, Smith and Sanderson, to which Mr Haynes refers, was purely concerned with the period 1925 to 1928 about which information is sparse and frequently contradictory, thanks partly to Baird's own passion for secrecy, a trait shared by many of his contemporary rivals.

But the 30 -line story extends to September 1935 (at least) and about these later years there is no shortage of information, since that august body, the BBC, was itself responsible for the regular programme of news and entertainment until December 1935. The "Televisor" referred to by Mr Haynes, in spite of many subsequent mechanical (and even electronic) rivals, continued to be the most popular type of receiver until the termination of the 30 -line service, probably because of its basic simplicity, reliability and relative cheapness.

As for "synchronization over a distance" during these later years, the toothed wheel device, covered by a Baird patent, gave adequate results within the transmitter's reception limits, which were very extensive.

Whether the 30 -line service gave acceptable standards for entertainment purposes, is ,perhaps a matter for debate. The recent practical demonstrations of the mechanical low-definition techniques by Mr E . W. Elliott
at the University of Strathclyde and on the BBC programme "Blue Peter", and public shows by the Low Definition Television Association, have given a modern generation the chance to judge this issue in a direct and subjective way instead of by the largely sterile method of literary research.

Certainly, if one judges the techniques by the calibre of the artistes offering their services to the BBC for 30 -line entertainments, one cannot fail to be impressed. A glance through the TV programmes of 1934 and 1935 resulted in a list of names that included some of the "top liners" of the period, all by courtesy of various kinds of "trundling mechanical image analyser" which remained supreme at both ends of the television process until the demise of the BBC service in September 35.
D. B. Pitt,

Chairman, Low Definition
Television Association,
Nottingham

Mr Haynes in a recent letter to the editor, Wireless World, April 1976, p.52, 'Was Baird fooling the public?' mentions an article written by myself and others, "John Logie Baird and the Falkirk Transmitter", Wireless World, January 1976, pp.43-46.
I feel it is Mr Haynes who is fooling the public, not John Baird. The statement in his letter that Radio Societies were amused is inaccurate. Over 600 people attended Baird's lecture, in November 1943, to the Institute of Radio Engineers in London, the lecture being on all-electronic, 3D colour television, a subject in which Baird could reliably be said to be leading the world. The Hankey Committee produced in 1945 a white paper on the future of British television. Up to 1,000 lines with 3D and colour were amongst the recommendations but, to that date, only Baird had demonstrated all three.

Mention is made of Wireless World remaining silent: this is grossly inaccurate. Following the E.M.I-Marconi and Baird TV demonstrations at Alexandra Palace (November 1936 - Feb. 1937) Baird resumed cinema colour television, a world first. Wireless World reported this pioneering work and gave it much praise on February 17th, 1938, p.148, and August 17th, 1939.

Mr Haynes comments that Baird tried, in the late 1920's, to sell by pretence. This is inaccurate; newspaper articles by Baird in late 1928 stated that he was not yet prepared to sell television to the public on a production basis - keen amateurs could procure kits and check for reception.

I do not recollect in my article asking for "a serious study of the business and technical aspects of Baird's $30-\mathrm{line}$ TV work." I asked simply for any photographic or written proof of what Baird used for TV equipment from late 1924 until early 1928. Mention is made by Mr Haynes of no synchronization: this is a strange comment, considering Baird's Lon-don-to-Glasgow demonstration in May 1927 and his transatlantic demonstration of February 1928!

Mr Haynes says that fibre optics were "well known" and not requiring synchronization. This is again inaccurate: Baird's patent (1927) on multi-fibre tube bundles was a world first, so how it could be well known to him beats me, he had to invent it first! Fibre optics still required synchronization; the fibres only eliminated a rotating lensed disc to dissect the transmitter image, but the receiver still had to be synchronized to the 'ransmitter.
I have in my possession information on

John Baird which will, on pubiication, do much to redress the comments still being made against Baird. I am not ashamed to admit that 1 admire 'John Baird's many talents and to state that in my opinion the treatment he received in this country in the lack of scientific awards and credits is little short of a national disgrace.
Dr P. Wassell,
University of Strathclyde,
Glasgow

I feel I cannot let Mr Haynes' letter in your April issue pass without comment because in one respect at least, in his last sentence, it is factually incorrect.

The Wireless World did not remain silent. This may be checked by reference to your issue for 12 March, 1930. On page 277 you said in the first paragraph of an article . . . "At last a Baird television receiver built for sale to the public has arrived. As no commercial product can live that does not fulfil the purpose for which it is created, there is the obvious inference that this new apparatus functions in the way it should and that moving pictures can be received by the broadcast transmission. Without further preamble it can be stated that this receiver does give reception of images with sufficient definition to be readily intelligible." In the final paragraph of the article you said "Such results will interest the enthusiast, and these have become possible since the adoption of the signal controlled toothed wheel method of synchronization first introduced towards the end of last year." The article also refers to an earlier article on p. 282 of the issue for 18 September 1929 which reports the start of the $11-11.30$ a.m. radio transmission from 2 LO and illustrates the toothed wheel synchronizer. About this you said . . ."The aim is to provide for the rotation of a disc with a degree of constancy that after long periods of running must possess no cumulative error. In the Baird apparatus we find that this is accomplished by the phonic wheel method." You ended by saying . . . "a few facts as to the results may help others to appreciate clearly the degree of success at present obtainable. The image is viewed through a magnifier and possesses a slight, yet not tiring, flicker. Good brilliance is obtained, but with an excessive, contrast between light and shade. A sitter at the transmitter is at once recognised, and his expressions considerably enhance his words which come from an adjoining loud speaker. With a little concentration one can note the time from a normal watch. Letters running past the transmitter in the manner of an advertising sign are clear and easily followed. These results, it is stated, will be obtainable on home equipment working on the broadcast service."

So, your impressions are clearly set down. But a quite different opinion was expressed in a third article in the issue for 18 December, 1929, on page 669. The author says "Knowing that the real difficulty in television is that of synchronizing the revolving mechanism at transmitter and receiver, no inventor can claim success who does not first put forward a solution to this problem." He continues . . . "We know now that Baird had no important contribution to make in solving the synchronizing problem." The author of this article had applied considerable ingenuity in construction to improving the magnetic circuit of the synchronizer. It was unfortunate that he then coupled the iight source and synchronizer to his output valve by a circuit different from that used by the Baird
television receiver. He added four expensive and unnecessary components (a choke, two $4 \mu \mathrm{~F}$ capacitors and a variable resistor (roughly the cost of 2 to 3 weeks' lunches for a student at that time) which altered completely the shape of the synchronizing pulses. That the pulses were distorted seriously is shown by his own statement in the article that, from the appearance of the pictures, it seemed that the synchronizing pulses lasted for about half the length of a line. This finding, that a method which was different in a number of significant respects from Baird's did not work, clearly does nothing but show that the author had made a mistake. The mistake was entirely justifiable in the technical milieu of that time, but it remains a mistake. The author's name? l nearly forgot; it was F. H. Haynes!

Some of us who later made the simplest possible equipment (this was dictated by cost, not insight) found that synchronization could be held over sufficiently long periods for the pictures to be interesting. Fading of the radio signal, which was then being received in Manchester from the late night transmissions, was the biggest problem. In the comparison with the cinema at that time I would agree that the results were not commercially viable. Entertainment, in anything like the modern sense, had to wait until high frequency transmission made possible a 300 times increase in the picture information. Even then, some years passed before TV became a serious threat to the cinema.

However, the results that could be obtained were just as fascinating as listening on a one or two valve short wave receiver, to snatches of intelligible messages from all over the world. That was not commercially viable as a method of communication either. If the pictures had not been worthwhile there would have been none of the drive that led to a mirror drum receiver projecting a 7×3 in picture and using a polarizer, analyser and Kerr cell to modulate the light source.

Should we not give Baird full credit for what he did do? True, others might have done it equally well. Professional engineers might have done it better. But none of them, if they tried at all, tried long enough or hard enough. What Baird did do, on a shoestring budget, by prolonged and concentrated effort is made. clear in your reports. This surely seems worth full recognition.
Prof. G. D. Dawson, McSc.,
Dept. of Physiology,
University College,
London.
1 was very interested to read the letter in your April issue from F. H. Haynes on the claims made for Baird's contribution to the development of television. Those of your readers whose memories of W.W. go back to the 1920s may recall that Mr Haynes was its assistant editor. In that position he undoubtedly looked very closely into Baird's claims on behalf of W.W. and his conclusions should not therefore be dismissed out of hand.

Leslie Bailey in his "BBC Scrapbooks" (Vol 2: 1918-1939) reproduced the following advertisement which Baird inserted in the personal column of The Times. "SEEING by WIRELESS. - Inventor of apparatus wishes to hear from someone who will assist (not financially) in making working. model. Write Box" Mr Bailey's comments are: "Baird was not a trained scientist. Indeed, it is astonishing to know that his knowledge of radio techniques at this period was so limited that he went to the staff of The Wireless World for help over the design of
amplifiers. Mr Hugh S. Pocock, the then editor of that magazine, has written to Scrapbook: "I well remember Baird coming into the office and having a talk about his difficulties and particularly the problem of distortion which arose when he tried to amplify the shadow effects he was obtaining. We designed and built for him a suitable amplifier because at that time he had little knowledge of the correct design of distortionless amplifiers'."
P. P. Eckersley, whose ability to cut down to size anyone who made unjustifiable claims is well known to members of the I.E.E. where he so frequently entered into discussions. after reading of papers, wrote in his 1941 book "The Power Behind The Microphone" that Baird possessed "that flair for picking about on the scrap-heap of unrelated ${ }^{\text {i }}$ discoveries and assembling the bits and pieces to make something work and so revealing possibilities if not finality."
1 think it was Baird's obituary in 1948 that . W.W. said he was the catalyst in the development of television.
H. W. Barnard,

Leigh-on-Sea,
Essex.

PHASE AND SOUND QUALITY

Reading all those contributions on "phase effects in loudspeakers," I cannot escape from the impression that many experts do not dare to be too certain and prefer referring to the opinions of others instead. What is everybody so worried about? Undo the tweeter from your loudspeaker cabinet so that it stands off, an inch or so nearer to the listener's ear. The result is a change in phase relationship between the high- and the low frequencies, right? An inch difference in path length corresponds with something in the order of a full wavelength for a tone of, say, 10 kHz . If this is not enought phase shift, move the tweeter further, a foot or so, so that the phase tumbles several times over and over before it reaches your ear. Better still, ask somebody to move the tweeter for- and backwards for you, so that there is a continuously varying phaseshift between the high- and low-frequency components.

Why not try that on a rainy Sunday afternoon?

I did. With sounds of harpsichords, pianos, plucked strings, whole orchestras, voices, rushing water, white noise, square waves. And I eat my hat if I hear phase effects.
Hans Evers,
Lammersdorf,
Germany.

Low-noise, low-cost cassette deck -2

by J. L. Linsley Hood

Any convenient power supply circuit may be used for a.c. mains operation, provided that it can be set to give a stable, ripple-free output of $13.5-14 \mathrm{~V}$ at output currents up to 250 mA . A suitable design is shown in Fig. 8. The low-value resistor in the record amplifier supply line is to limit the supply line current surge through the changeover microswitch when the large capacitor on this line is connected in parallel with the capacitor on the output of the power supply. To avoid noise originating from the pulsating current demand from the d.c. cassette-drive motor-control circuitry, the recorder supply is taken directly from the power supply reservoir capacitor through a $20 \Omega, 10 \mathrm{~W}$ resistor, with the negative return line being also directly connected to the reservoir capacitor, rather than to a chassis return.
The chassis itself is only connected to the zero-volt line at the input to the replay amplifier.
information has been published on this subject, it is often discussed in obscure terms which make the argument difficult to comprehend. Since it is possible that the construction of a cassette recorder of this type may be of interest to those with no previous experience in this medium, an attempt has been made to provide a simple introduction to this topic.

In general, it is not practicable to obtain an adequate remanent magnetic flux in a magnetic tape, for the reproduction of signal waveforms of low harmonic distortion and good output level, unless a high frequency "bias" of suitable magnitude is superimposed on the signal at the time of recording. The effect upon the various signal parameters of variations in the bias level is shown in schematic form in Fig. 9. From this it will be seen that there is not a single biasing level which is optimum for all recorded frequencies, and that the optimum level for 1 kHz is in excess

Recording and bias levels

One of the most obscure areas in the field of tape recording, in the eyes of the layman, is the interaction between tape types and biasing levels. While much

Fig. 8. Power supply. The motor is fed with 3.5 V by the stabilizer, but the solenoid is provided with the full $12-14 \mathrm{~V}$.
of that which gives the highest output for, say, 10 kHz . Also, the level which gives the lowest recorded noise level is less than that which gives the lowest t.h.d.

It is apparent from this that the setting of this parameter is one which demands some compromise, and the one which is chosen will depend upon the preferences of the user. In general, for cassette recorders, the chosen bias is that which gives the maximum output at 330 Hz , or a slight excess of that optimum for 1 kHz , and the reduction in output at higher frequencies is compensated by modifications to the record pre-emphasis curve. However, the required bias and compensation characteristics will be different from one make of tape to another, and from one design of record/replay head to another. In this design, the decision had been taken, partly in the interests of running costs, and partly in the interests of minimizing wear in the Permalloy heads, to optimize the design for "ferric" tapes rather than chrome types, and the Philips standard low noise C90 was taken as the reference. It was found, however, that the settings derived for this was also optimum for

'super" tapes of the types exemplified by Memorex MRX_{2}, and BASF Super LH, although these gave an improved performance.

In general, there is very little difference in the background "bulk-erased" noise levels of most good-quality commercial cassette tapes, although there will be larger differences between the noise outputs of tapes passed through a recorder set to record at zero signal level. The greater the degree of homogeneity of the tape oxide layer, the lower the zero-recorded-level noise will be, down to a minimum which depends on the fundamental granularity of the oxide medium. The recently introduced "super" series tapes have a more. uniform oxide coating, which can give a 1-2dB zero-signal background level improvement.

However, there are also improvements which have been made in the output level and harmonic distortion for a given output level, due to a more careful balance of grain shapes and sizes. The extra $2-3 \mathrm{~dB}$ in output can lead, in total, to a small though audible improvement in overall signal-to-noise ratio (some typical results are shown in Fig. 11, and Table 1.) Useful though this is, a far greater capacity for improvement in overall performance lies in the hands of the user in a careful choice of the recording level setting. Ideally, one should record at as high a level as possible, so long as few signal peaks significantly exceed the DVU level. A $1-2 \mathrm{~dB}$ excess is unlikely to be noticed in replay, especially with good tape, provided that the duration of overrun is brief, and the difference in s / n ratio from "correct" to over-cautious choice of record levels can readily exceed the difference between a cheap tape and an expensive one.

Probably the best way of choosing recording levels is to set the mechanism to Record but with the pause button pushed in, and in this condition to experiment with the gain settings until the optimum setting is found. when the recording can be started. In the case of a live performance, assuming one has the co-operation of the performers, it is usually possible to persuade them to execute a known fortissimo and set the record levels appropriately for this.

Noise characteristics of the system

During the development of this circuit, the sources of noise in the system were investigated at some length, since, although it was envisaged that some form of external noise-reduction system would be incorporated for use during replay, it seemed advisable to try to minimize noise in the design before taking additional palliative action. The reduction of noise in the replay circuit has already been described; if the unweighted noise level at this stage, without tape, is taken as the unit, the bulk-erased-tape noise level corresponds to about one and a half or two units, and the zero-record-level noise
(with the circuit parameters arranged in accordance with normal practice) was then equivalent to some five or six units.

Obviously there was little that could be done about the noise level of the tape, as received, but it seemed that quite a lot could or should be done about the 14 dB worsening of this during no-signal recording. Indeed, if it were possible to get down to the level of the original tape, the overall performance would have been beyond reproach, in
spite of the low tape speed and narrow tape width. An additional piece of evidence which seemed of interest was that the replayed noise was "whiter" than would have been expected from an' original white-noise source (i.e., the tape) when replayed through the type of equalizing characteristic employed in the replay amplifier. This seemed to be a. common characteristic of commercial cassette recorders, which all sounded "whiter" on the replay noise tone than'

Fig. 9. The effects of changes in the h.f. bias level on output, t.h.d. and modulation noise.

Fig. 10. Record/replay frequency/amplitude curves for a variety of tapes, optimized for maximum flatness and for best square-wave reproduction

Table 1.
Relative output at $660 \mathrm{~Hz}^{-}$(OVU recording level)
Philips Standard C90
Pyral C90
Memorex MRX ${ }_{2}$ C90 OVU $(+0 \mathrm{~dB})$
+2 dB
+2 dB
+3.5 dB

Fig. 11. Harmonic distortion (including noise) as a function of recording level for three types of tape:

$0 V U=2.25 \mathrm{~V}$ r.m.s. © 660 Hz at output of record amo
seemed reasonable to expect. It was also observed that changes in the level, frequency or shape of the bias waveform made no difference to the result. The conclusion began to grow that the problem was due to generally-distributed noise, in the source and record amplifier, being selectively amplified in the $10-15 \mathrm{kHz}$ band and applied to the tape at high levels through excessive signal pre-emphasis.

Having become convinced on this point, the attempt was made to determine the optimum compromise between flatness of frequency response and signal-to-noise ratio for a given record level. At this stage it was found that optimization of a recorded 1 kHz square wave to reduce the initial overshoot and ringing found when more conventional magnitudes of pre-
emphasis were applied gave also the best performance compromise on bandwidth against s / n ratio. The bias levels found during this exercise were compared to those obtained by more conventional setting-up procedures, and found to be substantially identical. However, the zero-signal-level recorded noise was found to have been reduced by about 10 dB by the process of square-wave optimizing, as compared to that given by frequency response optimizing. The two curves are shown in Fig. 10, and it will be seen that the h.f. loss amounts to only 1 dB at 10 kHz and some 4 dB at 14 kHz , which can be remedied by the use of amplifier tone controls on replay with very little detriment to performance.

The final conclusion is that in general far more h.f. pre-emphasis is employed

Fig. 12. Class A headphone amplifier, with a gain of 5 .

Fig. 13. Low-noise microphone pre-amplifier.

on recording, in the interests of maximum flatness of the published response curves, than is sensible in the light of the overall performance, and that with more prudence exercised in this respect, noticeable improvements could well be made. Interestingly, programme recordings made before and after optimizing of the square-wave performance of the recorder did not show the expected small loss of higher frequencies, with the upper register seeming both cleaner and more extended than before, possibly due to the lessening of the incidence of h.f. tape or head saturation.

One final recommendation in this respect is that for one's own use, even on ferric tapes, the $70 \mu \mathrm{~s}$ characteristic should be used both on record and replay. However, this is a choice which can be assessed readily by individual experiment. Certainly, in the case of the author's prototype, the use of this equalizing time-constant, in association with an optimized square-wave characteristic, has given a system in which the tape noise, on a good quality tape, is sufficiently unobtrusive to render further noise reducing circuitry unnecessary.

Bias and equalization settings

It will be apparent from Fig. 9 that adjustment of the h.f. bias level of the recorder will have the effect of altering the whole response curve, by altering the effective recorded levels of the h.f. and l.f. components relative to one another, and it may therefore appear difficult to optimize either the bias or the equalization. The suggested method is therefore as follows:

- Set VR_{2} so that the response curve on record is as curve A on Fig. 5., (approx. 85Ω) when measured at the output of IC_{3}
- Set the bias level so that there is approximately a $1-2 \mathrm{~dB}$ drop in output at 1 kHz .
- Record a square wave at 660 Hz , and make small adjustments to ${V R_{2}}^{\text {until }}$ the cleanest leading edge is obtained on the replayed square wave, with only a small single overshoot.
- Finally, leaving VR_{2} set at the chosen value, record a 660 Hz square-wave at various bias levels and adopt the one which gives the best overall squarewave shape for the tape which it is desired to employ.

The technique of square-wave optimization is well known in the audio field as a means for setting tone-controls and filters to optimum flatness, because of the facility which it offers for a simultaneous examination of a wide range of frequencies. On exactly the same score it would appear to be an excellent method of optimizing bias levels.

While it is hoped that the performance given by the prototype will prove to be fairly typical of the results given by other models built to this design, it is appreciated that in a system in which
not only will components vary in types and tolerances, but also the tape transport mechanism and heads (which may be changed during the manufacturer's production run for reasons of commercial availablility) may differ from those used by the author, the scope for variability is considerable. Also, from personal experience, and measurements, there is a considerable variation in performance from one tape type to another, although the consistency of performance of the bettergrade tapes from the better manufacturers 'appears to be fairly good. On the credit side may be set the fact that one does not have quality control problems in a unit that is one-off, and that one can optimize one's channel balance and h.f. performance for the tapes one prefers and the heads one happens to possess.

Headphone operation

Both the output level and the drive capability of the final 741s of the replay amplifier are adequate to give a satisfactory signal strength and quality into the $2 \mathrm{k} \Omega$ load impedance of the author's headphones (Sennheiser HD414), so, for simplicity, this was the course adopted. However, for those with lower-impedance or less-sensitive headphones, a suitable circuit is shown in Fig. 12. This operates in class A, and is suitable for load impedances down to 100 ohms .

Direct microphone recording

The sensitivity of the record input is only intended to be sufficient for recording from an existing audio amplifier or radio tuner capable of delivering some $50-100 \mathrm{mV}$ output at a fairly low impedance, and it would not be suitable for microphone inputs. For this purpose a pre-amplifier can be used, of which a suitable circuit is shown in Fig. 13. Three preset gain positions are given, of 10,33 and $100 \times$, which should cope with the bulk of microphones likely to be found in practice. A typical gain suitable for a low-output cardioid capacitor electret microphone is of the order of 33, for a normal recording level 'at half-gain setting on the recorder.

Final details of the design will be in the final part, including information on the motor controller - lack of space prevents publication in this issue:

We are informed that components and metalwork for this design will be available from Hart Electronics, Penylan Mill, Oswestry.

Appendix

Derivation of record equalisation characteristics.
The generation of a recording pre-emphasis characteristic of the general form shown in Fig. 5 is normally done by incorporating a damped LC parallel ${ }^{*}$ resonant circuit in the feedback loop of an inverting amplifier stage. However,

Fig. 15. Frequency/gain response of filter in Fig. 14.

Fig. 14. Basic second-order active low-pass filter (as Reference I).

Fig. 16. Common-emitter (a) and common-collector (b) arrangements of basic circuit shown in Fig. 14.
since it was desired, in the interests of simplicity, to avoid the use of inductors, and it was also required to avoid possible trouble due to the intrusion of 38 kHz signals from multiplex stereo decoders, the decision was made to use the gain/frequency characteristics of an under-damped second-order active low-pass filter, such as that shown in Fig. 14.

This is one of the classic forms of active element, and was analysed by Girling and Good ${ }^{1}$ in the first part of their survey of active filters in Wireless World. It has a gain/frequency response of the type shown in equation (1) and

(a)

(b)
illustrated in Fig. 15 for various values of $Q(1 / \alpha)$

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1+j \alpha \frac{\omega}{\omega_{c}}}{1+j \alpha \frac{\omega}{\omega_{c}}-\left(\frac{\omega}{\omega_{c}}\right)^{2}} . \tag{1}
\end{equation*}
$$

If this is redrawn, ignoring biasing, in the form in which the amplifying element is a single, common-emitterconnected transistor, as shown in Fig. 16(a), it will clearly be seen that this can be rearranged into the common-collector form of Fig. 16(b) without significant alteration of the expression for the

Fig. 17. Use of the active filter in a stage possessing gain, as in Fig. 4.
frequency response. (It was pointed out by Girling and Good that a similar rearrangement leads to the evolution of the filter circuit due to Sallen and Key ${ }^{2}$ from the type based on a feedback loop containing an integrator and a lag, described earlier by Baxandall ${ }^{3}$.)

Filters of the type shown in Fig. 14, and 16(b) were used in the authors "Modular preamplifier" design (Wireless World July 1969) and the subsequent postscript to this and the earlier class A amplifier, , published in December 1970. The performance of the circuit shown in Fig. 16(b) referred to as a bootstrap or " H " filter, was analysed by the author in another place ${ }^{4}$ and, in a
different context, by Hemingway ${ }^{5}$.
The operation of the filter circuit of Fig. 16(b), like that of the Sallen and Key configuration, can be realised by any active element in which there is approximately unity gain between points " a " and " b ". This allows the use, for example, of a voltage-follower operational amplifier as the active circuit element, or even a non-inverting operational amplifier having more than unity gain, as shown in Fig. 17, provided that an adequate fed-back gain margin is available at the frequency of interest. The gain and frequency of maximum response of such a circuit is given by equations (3) and (4) where M is the
normal gain of the stage with feedback.

$$
\begin{align*}
f_{\mathrm{c}} & \approx \frac{1}{2 \pi \sqrt{ }\left[\mathrm{C}_{3} C_{4} R_{1}\left(R_{2}+R_{5}\right)\right]} \tag{3}\\
\left|\frac{E_{\text {out }}}{E_{\text {in }}}\right| & =M\left(1+\frac{\left(R_{2}+R_{5}\right)}{R_{1}} \frac{C_{1} C_{2}{ }^{1 / 2}}{\left(C_{1}+C_{2}\right)^{2}}\right) \tag{4}
\end{align*}
$$

While, basically, the Q of the system is determined by the ratios of $R_{1}: R_{2}+R_{s}$, in a stage with a shunt network, such as that of $\mathrm{VR}_{2}, \mathrm{R}_{19}$ and C_{15} in Fig. 4, the gain will change in the frequency region of the filter attenuation band. The associated phase shift due to this network also modifies the Q and allows adjustment of this by VR_{2}, which is a feature of some practical convenience.

References

1. Girling. F. E. J., , and Good. E. F., Wireless World, vol. 75, No. 1406. pp 348-352.
2. Sallen. R. P., and Key, E. L., Trans. IRE., vol. 2. No. 1., pp. 74-85.
3. Baxandall. P. J., Wireless World, vol. 61., No. 1., pp. 8-14.
4. Linsley Hood. J. L., Hi-Fi News and Record Review, vol. 18, No. 2., pp. 293-294.
5. Hemingway. T. K., Electronic Designers Handbook. pp. 283-288.

Component supplies

Goldring-Lenco CRV cassette mechanisms can be obtained from Goldring Ltd, 10 Bayford St, Hackney, London E8 3SE, or Hart Electronics, Penylan Mill, Oswestry, Salop. VU meters are available from J. E. T. Electronics, 90a Mawney Road, Romford, Essex.

. 1ccording to its sleeve note Problems and Solutions in Logic Design by Prof. D. Zissos, makes easy and reliable logic design techniques available to those with no specialist knowledge of mathematics or engineering. Even those who are not familiar with Boolean algebra will find an appendix giving sufficient foundation for the rest of the book. The emphasis throughout is on optimal rather than strictly minimal designs which have become less important with the availability of integrated circuits. In the case of sequential circuits, these allow hazard-free designs for the realistic engineering constraint of a maximum variation of $331 / 3 \%$ in gate speed. A feature of the book is the comprehensive set of problems and solutions at the end of each chapter. These have been chosen to appeal to the student and include the design of logic circuits for traffic lights, a panel game, digital clocks and electronic dice. For the practising engineer solutions are given for commonly used circuits such as flat sorters, shaft encoders and counters. After an introduction to the basic concepts of logic design, the chapters deal with unclocked sequential circuits, clocked sequential circuits, counters and combinational circuits. The design pattern used
throughout the book was developed by Prof Zissos several years ago and is now gaining 'rapid acceptance. The technique involves the conversion of a design problem into a flow diagram which can be converted directly into the basic logic equations before the circuit is then drawn. The three stages are analogous to flow charting, writing the software statements and executing a computer programme. An important feature is that the documentation is inherent in the design. The use of state diagrams and sequential equations eliminates confusion in verbal statements. Price £1.75. Pp.146. Oxford University Press, 37 Dover Street, London W'1X 4AH.

High Speed Pulse Techniques by J. A. Coebin describes the nature of pulse signals and the deliberate or inadvertent processing of them. The emphasis is on an appreciation of circuit and system behaviour at very high and ultra high speed. It is assumed that the reader is familiar with a.c. theory, use of the Laplace transform, small-signal transistor response, and the fundamentals of logic. Price $£ 5.00$ ($£ 3.50$ paperback). Pp. 219. Pergamon Press Ltd, Headington Hill Hall, Oxford, OX3 OBW.

Noise and Fluctuation in Electronic Devices and Circuits by F. Robinson. Noise to the physicist represents a phenomena described by statistical mechanics. To the engineer, noise is an obstacle in the realization of useful devices. This book attempts to interest
the physicist and be sufficiently practical for the engineer. The emphasis is entirely on the physical origins of noise in electronic devices and the way noise behaves in electronic circuits which are used as building blocks. Price $£ 8.50$. Pp. 246. Oxford Books, 37 Dover Street, London WIX 4AH.

Japanese Consumer Electronics - Schematic/Servicing Manual. This publication contains details and schematic diagrams for about 90 products manufactured by J.V.C., Lloyds, Midland, Panasonic, Sanyo, Sharp, Sony and Toshiba. Items covered are digital clock radios, a.m.-f.m. radios, monochrome television receivers, cassette recorders, eight-track tape players and receivers. Four chapters deal with radio principles, radio, recorder, and stereo servicing, transistor and i.c. cross references, and typical circuit diagrams. Foulsham-Tab Ltd, Yeovil Road, Slough, Bucks SLl 4JH.
Recent additions to the Tab Books range are Radio Astronomy for the Amateur by Dave Heiserman (No. 714, \$5.95 paperback). Transistor Theory for Technicians and Engineers by A. Veronis (No. 717, \$5.95 paperback). Computer Programming Handbook by P. A. Stark (No. 752, $\$ 8.95$ paperback). Handbook of Multichannel Recording by A. Everest (No. 781, $\$ 7.95$ paperback). Toshiba Colour TV Service Manual Vol. one (from 1970 to 1974, \$5.95). Tab Books, Blue Ridge Summit, Pa. 17214, U.S.A.

Balunamp design nomogram

Converting an unbalanced signal into a balanced one at low frequencies

by Andrew M. Stephenson
Plessey Telecommunications Research Ltd.

"Balunamp" is my portmanteau neologism for a device which converts a balanced electrical signal into an unbalanced one while providing a predetermined amount of amplification. That the gain may be less than one is irrelevant; the most important feature is that the input impedance is balanced about earth. In practice a balunamp is a special case of a differential amplifier incorporating an operational amplifier. What has been attempted is the design of a simple nomogram with which even a novice may construct a working balunamp with the minimum of fuss and false starts.

Fine. So what use is a balunamp?
Assuming that the reader is not interested in frequencies much above the audio spectrum, nor in the ultimate of performance, the device may be applied to almost any situation where it is desired to produce an unbalanced signal from a balanced one. Instances are microphone amplifiers and preamplifiers, floating a.c. to grounded d.c. converters, and line receivers.

The basic circuit is shown on page 68. This is a much simplified theoretical one; it has been left to the reader to decide what op-amp he will use and hence what other components are needed. The four resistors, R_{1} to R_{4} suffice to define the basic performance of the device.

The characteristics desired are

- an input impedance ($R_{i n}$) balanced about earth or zero volts.
- an output impedance which is not balanced about earth.
- a certain voltage gain (G).

Few such amplifiers will be required to have a gain above 100 . Thus if a good balance is to be preserved it is necessary to choose the values of R_{1} to R_{4} with care so as to take advantage of those commonly available, assuming that specials are to be avoided. This problem becomes particularly acute at lower values of G, such as 20 or below, and it is the peculiar virtue of this nomogram that it allows this choice to be made quickly and easily - more easily than by heuristic methods. Sceptics may prove this point to themselves if they wish.

As this is a practical article no attempt is made to derive the equations on which it is based; essentially they are straightforward derivations of standard amplifier design expressions. They are given next.

Knowing $R_{\text {in }}$ and G (defined as the output voltage divided by the differential input voltage), then
($R_{1}=R_{\text {in }} / 2, R_{2}=R_{\text {in }} G / 2, R_{3}=R_{\text {in }} / 2(1+G)$, $R_{4}=R_{\text {in }} G / 2(1+G)$.
Two important assumptions must be pointed out: the op-amp is assumed to have an open-loop gain much greater than G, say, more than 20 times, and to have a negligible phase shift (other than 180° inversion) at the operating frequency.

From these equations one could derive values for R_{1} to R_{4} directly. In practice, however, some difficulty may be experienced in fitting them to real resistors; therefore their values have been calculated for G varying from 0.1 to 100 , normalized to give $R_{1}=1.0$, and plotted on $\log -\log$ graph paper, as in the nomogram.
Next, a substitute for a sliding scale has been drawn to the right of these curves, where three decades of the standard E24 series of resistors, commonly available in 2% tolerance, arf marked.

Example 1

A balunamp having a G of 10 is required, the differential input impedance to be 300 ohms.

First draw a vertical line through $G=10$. This intersects the four resistor
curves at $R_{1}=1.0$ (naturally), $R_{2}=10.0$, $R_{3}=0.0909$, and $R_{4}=0.9091$.
Now these values must be scaled to give $R_{1}=150$ ohms, this being half the desired input impedance. Sometimes it is not possible to perform this scaling and arrive at realistic values for the other resistors, as is the case here. Scaling gives $R_{1}=150, R_{2}=1500$, $R_{3}=13.635, R_{4}=136.35$. Therefore a compromise is necessary.

Often the impedance is not crucially important and may be altered slightly. Here, by extending the unscaled values of R_{1} to R_{4} across the E24 grid, we find that another suitable set of values is $R_{1}=180, R_{2}=1800, R_{3}=16, R_{4}=160$. This results in $R_{\text {in }}$ being 356 ohms, there being an imbalance of only two ohms, or about 2.2%.
If the balance and the value of $R_{\text {in }}$ are important, a modification must be made: an additional resistor across the input will adjust $R_{\text {in }}$ to the right value while allowing greater flexibility in the choice of the other resistor values; thus $R_{1}=620, R_{2}=6200, R_{3}=56, R_{4}=560$ with an extra resistor of 390 ohms , as on p.68, gives $R_{\text {in }}=296$ and an imbalance of about 0.65%. Naturally one may argue over the definition of imbalance, but for the applications in which the balunamp is likely to be used it is low by any measure.

Example 2

This simple case serves as an introduction. Consider another: a balanced a.c. to unbalanced d.c. converter such as

[^1]
（9）NIV9 צヨコITdWV

Circuit to illustrate use of nomogram－see Example I．
might be used in an a．c．voltmeter，as shown on page 67．The desired features are：a G of 0.125 and a very high input impedance，partly to make it a useful voltmeter but also to reduce the size of the various capacitors；assume for the moment that the capacitors are large enough to be ignored in these calcula－ tions．

Returning to the nomogram，the standardized values of R_{1} to R_{4} are $R_{1}=1.0, R_{2}=0.125, R_{3}=0.889, R_{4}=0.111$ ．

Now，there will be practical limitations such as the stability of high value resistors subjected to large vol－ tages（up to 80 V here）；therefore set an upper bound on the largest resistor， R_{1} in this case．Say R_{1} to be equal to or less than 220 kohm．

Scaling with the aid of the E24 grid yields：$\quad R_{1}=150 \mathrm{k} \Omega, \quad R_{2}=18 \mathrm{k} \Omega$, $R_{3}=130 \mathrm{k} \Omega, R_{4}=16 \mathrm{k} \Omega, G$ is about 0.1215 ， and the gain imbalance is only about 0.22 dB with these values，while the input impedance is $296 \mathrm{k} \Omega$ ．At $50 \mathrm{~Hz}, 1 \mu \mathrm{~F}$ capacitors would be more than ade－ quate．

These two examples should suffice to demonstrate the theory of the nomo－ gram．It is left to the reader to recog－ nize the applications which will help him personally．

One final point：at no time has any allowance been made for offset currents or voltages．It was felt that should this be important the designer should be able to devise some means of providing the necessary balance of resistance to ground while keeping the a．c．impe－ dances at their correct values．

Acknowlegment：Thanks to Plessey Telecommunications Research Limited， for whom the early work leading to the construction of this nomogram was done，for permission to publish this article and the diagrams associated with it．

Generation of equal-tempered pitches

Robert M. Youngson

An adequate approximation to the equal-tempered musical scale can be derived from a fixed-frequency waveform by integer division. The realization of this process, by t.t.1. m.s.i. integrated circuits, is easy and reasonably economical.

Table 1 gives the frequencies of the 12 equal-tempered semitones in the octave from middle C upwards, based on the standard pitch $A=440 \mathrm{~Hz}$. A set of divisor integers is given with the resultant frequencies, for comparison with the standard pitches. In practice, the master oscillator frequency is selected as a convenient binary multiple of that given, so that the chromatic octave obtained by division by these integers lies above the frequency of the highest pitch required. All the necessary musical tones may then be obtained by successive binary division.

As the largest divisor in the set given is less than 256, the divisions may be implemented using 8 -bit counters. Fig. 1 shows how pairs of SN 74193 counters may be connected to achieve division by the decimal number corresponding to any 8 -bit binary number applied to the, set of eight data inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ and D^{\prime}. Note that the A input is the least significant bit and that logical " 1 " inputs may be left unconnected.

A suitable crystal oscillator circuit is given in Fig. 2 and the connections for

TABLE 1
Master osciliator frequency
$=(4,8$ or $16 \times) 57,290.5628 \mathrm{~Hz}$.

Pitch	Frequency	DivisorResultant -Frequency	Percentage Error	
B	493.8833	116	493.8833	-
A\#	466.1637	123	465.7758	-0.08
A	440.0000	130	440.6956	+0.15
G $\#$	415.3046	138	415.1480	-0.03
G	391.9954	146	392.4001	+0.10
F $=$	369.9944	155	369.6156	-0.10
F	349.2282	164	349.3318	+0.02
E	329.6275	174	329.2553	-0.11
D $\#$	311.1270	184	311.3610	+0.07
D	293.6648	195	293.7970	+0.04
C $=$	277.1826	207	276.7655	-0.15
C	261.6256	219	261.6001	-0.01

TABLE 2

Master oscillator frequency
$=(4,8$ or $16 \times) 963,600.00 \mathrm{~Hz}$.

Pitch	Divisor	Resultant Frequency	Percentage Error
B	1951	493.9004	+0.0034
A $\#$	2067	466.1828	+0.0040
A	2191	440.0000	-
G $\#$	2320	415.3448	+0.0096
G	2458	392.0260	+0.0078
F $\#$	2604	370.0460	+0.0139
F	2759	349.2569	+0.0082
E	2923	329.6613	+0.0102
D $\#$	3097	311.1398	+0.0041
D	3281	293.6909	+0.0088
C $\#$	3476	277.2151	+0.0117
C	3683	261.6345	+0.0034
Accuracy, with these divisors, can be improved further			
bylowering the oscillator frequency so as to distributer			
errors about zero.			

the binary division stages for the descending octaves of the chromatic intervals are shown in Fig. 3.

Variations in the frequency of the master oscillator do not, of course, have any effect on the accuracy of the relative tuning of the pitches, and if absolute accuracy is unimportant, almost any crystal can be used, extra division stages being inserted as
required. In this event, a single SN 74193 would offer great flexibility in obtaining a suitable clock frequency for the set of 12 programmable dividers. Alternatively, a variable frequency oscillator, allowing immediate "one knob" tuning of the whole instrument may be preferred.
The set of divisors given offers a good compromise between relative tuning accuracy and economy and provides about the minimum of musically acceptable accuracy. The standard of precision may of course, be indefinitely improved by using even higher master oscillator frequencies with larger divi-1 sors. A sample set using 12 -bit. counters, and achieving a maximum inaccuracy of 0.013%, is given in Table 2.
This method of deriving musical tones is well suited to large scale integration, 'and implementation byi l .s.i. has already been achieved.

Fig.1. Binary counters connected to divide by the decimal number corresponding to an 8 -bit binary number.
Fig.2. Crystal oscillator circuit.

Fig.3. Binary division stages for descending octaves of the chromatic intervals.

Electronic cut-out

The circuit shows a practical design used to protect experimental equipment against transients. Resistor $\mathrm{R}_{1}, \mathrm{D}_{1}, \mathrm{Tr}_{2}$ and C_{1} form a rudimentary 5 V supply for the t.t.l. gates. Diode D_{2} prevents overvoltage at gate b input. Transistors Tr_{3} and Tr_{4} provide the turn-off control. Note that Tr_{4} needs no heat-sink because it is used as a switch. The two spare gates, c and d can be used as an lindicator. They form an astable oscillator enabled by a 0 on gate c input. Thus the l.e.d. turns on when the power is applied, and flashes when the cut-out "trips.

A variation of this circuit is a complementary version using 7400 gates and an n-p-n sensing transistor for negative rails. Bypassing R_{5} with a capacitor reduces sensitivity to tran-

sients, or all a.c. signals, whereas adding. a diode in Tr_{1} 's collector as a reverse voltage protection allows one half-cycle of an a.c. circuit to be monitored. This arrangement is possible because the latch need not have the sensed line as its power supply.

The circuit is instantly reset by S_{1} but, inexplicably, the circuit invariably resets when switched on. Any explanations would be welcome.
C. Woolf,

Swanland,
Yorks.

Variable phase delay for digital signals

In the diagram shown the monostable circuits generate a very narrow pulse on the leading and trailing edges of the input signal. These spikes are OR-ed together and used to trigger a 9601 monostable with a period dependent on C and R. Gate e NANDS the $9601 \overline{\mathrm{Q}}$ output with the input signal and causes a section of the input signal to be gated out. Gate d NANDS the 9601 Q output with the input signal thus generating a pulse at the trailing edge of S_{in}. These two outputs are effectively OR-ed by gate f to produce $S_{\text {out, }}$, a delayed version of $S_{\text {in }}$.
If the signal needs to be advanced and retarded with respect to a second signal, an identical delay unit can be incorporated in the other signal line. Delays between the two signals may then assume any desired phase relationship. W. D. Gunn,

Glenrothes,
Fife.

Wideband Y amplifier for oscilloscope

Transistors Tr_{1} to Tr_{4} operate as a constant-current tail with Tr_{5} added to improve linearity. This. draws 6 mA down each side of the amplifier and results in a voltage drop of nearly half the 200 volts across each $18 \mathrm{k} \Omega$ collector resistor. Driven by this voltage, and with a slight forward bias provided by the $100-\mathrm{ohm}$ preset potentiometers and diodes, Tr_{6} and Tr_{7} act as complementary emitter followers. They have their counterparts in Tr_{8} and Tr_{9} and both sets have a quiescent current of about 3 mA . Bandwidth of this circuit seems independent of output capacitance loads up to 200 pF and appears to be only limited by the $18 \mathrm{k} \Omega$ resistors and the collector-base capacitance of the complementary pairs. Rise time of the circuit is 40 ns , which improves to around 30 ns with compensation. A bandwidth of 10 MHz was easily obtained by driving the amplifier from a 50Ω source. An increase in the speed canprobably be achieved by increasing the tail current and lowering: the value of the $18 \mathrm{k} \Omega$ resistors at the expense of increased dissipation. Any complementary small-signal transistors capable of withstanding above 200 V can be used, but a supply current-limited at about 20 mA is advisable.
B. J. Frost,

Paignton,
Devon.

Class A power amplifier

This circuit was designed using easily available components. Its operating conditions are unconditionally stable, unaffected by individual transistor parameters and the transistor types are not critical. Short-circuit protection is provided by the constant-current source $D_{1}, \operatorname{Tr}_{2}, \operatorname{Tr}_{5}$ and Tr_{4}. Transistor Tr_{4} may be omitted if short-circuit protection is not required. The amplifier may be altered for a different load: impedance (R) or power output (W^{\prime}) by putting the output-stage current $I=$ $2 W / R$, and supply voltage equal to $2+$ $0.61+2 \backslash 2 W R$.
Dissipation in the output transistors is roughly $W \times 4$ watts, so the heat sinks need to be adequate. The amplifier shown will deliver 10 W into an eightohm load. Diode D_{1} and Tr_{2} should be in thermal contact.
A. H. Calvert,
I.ondon NWI.

'Voltage-controlled ramp generator

By using the 555 timer as an astable. multivibrator with the charge current supplied by a transistor, a wide frequency range can be covered. With the values shown, the range is greater than 0.2 Hz to 20 kHz . Potentiometer R_{1} sets. the lowest frequency, R_{2} sets the
average output to zero volts, and R_{3} sets the output level. The voltage/frequency relationship is logarithmic which makes the oscillator suitable for use in sound synthesizers.
J. L. Brice,

Fulwood,
Preston.

Linear d.c./d.c. opto isolator

The circuit shown was initially designed to provide input isolation for mains related thyristor converters. Diode turn-on voltage is rendered insignificant by the amplifier loop gain, and temperature effects are minimised by close tracking of the isolator characteristics. Linearity is within 2%. The circuit may be re-arranged to achieve alterna-
tive input/output polarities and operate with other power rails. Resistor R_{L} must, however, be chosen to limit diode current to 20 mA , and the supply rail which provides the feedback current (positive in the circuit shown) must be at least $\mathrm{V}_{\text {in }}+2$ volts.
R. J. Haney,

Fletching, Sussex.

L.e.d. display

The low voltage and relatively high current requirement of i.e.ds means that when used in the normal way as digital indicators considerable power is wasted. In battery equipment with reasonably high voltages and where a number of indicators are required, it is advantagous to connect the l.e.ds in groups using a constant-current source for each group. The diagram shows a circuit to display a four-bit binary number from a c.m.o.s. counter.
T. R. E. Owen,

University of Cambridge.

Low-frequency triangle wave generator

In this generator circuit (W'ireless World, May 1976), R_{2} in parallel with R_{3} is greater than $10 k \Omega$ and not R_{2} / R_{3} as shown. Time t is $C_{1} R_{1} R_{3} / R_{2}$ and F is $1 / T$ $=R_{2} / 4 C_{1} R_{1} R_{3}$

Contributors to Circuit Ideajs are urged to say what is new or improved about their circuit early in the item, preferably in the first sentence.

A good image gets around.

RG Switzerland SRG Siemzerland SRG Switzerland SRG SwI OF France TDP NCQ Fis? France TDF France TDF France 3SR TVUSS $3 C$ Australia :C United Stant ates ABC United States AE C Great Britair BBC Great Britain BBC - Canada CBC N Na CBC Canada CBC BUnited States Citr ved US United States C Australia ITV Ausin :hoslovakia TV Cze ìreat Britain ITV Gred United States NBC Un : New Zealand NZBC N, Fland ustria ORF Austria ORF \quad DRF Au 1 ORF Aus rian TV Hungarian TV Hu $\quad=$ TV Hunganan TV H TV Polish TV Polish TV Po VV Polish TV Polish T vitzerland SRG Switzerlana sRG Switzerland SRC

EEVs' Leddicon is the consistent colour tube.

The EEV Leddicon ${ }^{\text {(6) }}$ is the advanced lead oxide colour tube made with high purity materials to the most precise standards.

Ease and speed of line-up are exceptional. Perfect colour registration can be achieved in seconds. Geometry is precise. Manufacture is consistent. Tube dependability is excellent.

EEV Leddicons are in use with most major colour networks. A good image gets around - and so does EEV service. All EEV camera tubes are available across the world from local representatives.

For your nearest contact, please write to EEV at Chelmsford, Essex, England.

Leddicon Type	Application	Features	Leddicon Type	Application	Features
P8000	Monochrome Luminance Chrominance channels	30 mm diameter liategralmesh ganstruction	P8130	Monochrome Luminance CTrominance channels	30 mm diameter. coaxial construction Separate or integral mesh. Fixed integral light bias.
P8001	Monochrome Luminance $+$ Chrominance channels	30 mm diameter. Separate mesh construction	P8131 *	Monocirome Luminance Chrominance channels	Similap to P8130 series butwith variable integral light bias.
P8003	Red channel Luminance/green channels Monochrome Channel	30 mm diameter. Separate mesh with extended red response. with or without IR faceplate filter.	P8132	Red Channel Luminance/green channels Monocnrome channe	Similar to P8130 series but with extended red response with or without IR faceplate filter.
P8005*	Monochrome Luminance $+$ Chreminance channels	30 mm diameter Separate mesh umproved lag under law-light conditions.	P8133 *	Fied Channel Luminance/green channels Monochrome channel	Similar to P8131 series but with extended red response with or without IR faceplate filter.

(3) Ledoicon:s a Registered Trade Mark of Eng isnElectric Valvg CoLid

EEVand M-OV know how.

We' ve driven germanium out of its last stronghold

Until a short time ago germanium's last stronghold seemed to be the TV tuner.

In fact this was the only application left in which the germanium transistor had not yet been replaced by the silicon type.

It wasn't easy for silicon to conquer this field; after all the germanium transistor worked very well, and there did seem to be insurmountable difficulties in the production of equivalent silicon types.

We at SGS-ATES met the challenge when we created the family of PNP silicon transistors which combined the characteristics of germanium and the reliability and stability intrinsic to silicon.

In addition we gained improvement on some important parameters such as noise.

Today these products have become standard for industry, and over 20 million pieces have already been sold.

And now 5 GHz !

An achievement unthinkable during the era of germanium. Today SGS-ATES presents the BFT 95, a 5 GHz PNP silicon transistor with $\mathrm{NF}=2 \mathrm{~dB}$ at 1 GHz .

Low noise, high gain, minimum intermodulation distortion, low cost T-plastic package, make it ideal for wide band amplifiers and converters in the 1 GHz frequency range.

SGS-A羊ES (UNITED KINGDOM) LTD

Broadcasting's biggest

Highlights of the National Association of Broadcasters 1976 Convention reported by Pat Hawker

The NAB convention and exhibition returned this year to Chicago: by moving into the massive new McCormick Place exhibition centre on the shores of Lake Michigan, the 54th annual convention was able to reach new heights in size and scope. With well over 200 firms participating - including many from Europe - some 6,000 visitors and 4,000 industry representatives it reflected for those more used to Montreux and IBC in London the significant differences in broadcasting outlook and practice in North America and Europe.

At NAB broadcasting is an industry or trade; the attraction of any new equipment tends to be evaluated directly on whether it will increase the appeal of a station to its audience by jumping ahead of the competition or whether it will reduce operating costs or provide better coverage. Higher technical standards, if these are beyond those required to meet FCC regulations, or whose advantages will not accrue for some time to come - such matters are not for NAB unless as a means of securing commercial prestige. Montreux and IBC may give you a better idea of what broadcast engineering will be like in ten years' time - but NAB provides a wonderfully exciting and dynamic panorama of what the stations will be doing in the months ahead, provided that the new products stand up to the hard assessments that constitute the American form of Operational Research.

It is easy to say that the Americans do not have the same engineering dedication as Europeans to high standards of technical quality; that many of their television programmes would never make British screens. But when one considers what is available (for no licence fee) in metropolitan areas such as Chicago - where over many, many hours each day there are three network-affiliated stations (CBS, NBC and $A B C$); the local independent WGN; a public broadcasting/educational station on a v.h.f. channel (carrying much British and European programme material); a clutch of u.h.f. stations; and separate streams of m.f. and v.h.f. radio
stations - it is difficult not to have at least a sneaking feeling that there is more to American broadcasting, as it is today, than is sometimes conceded over here.

Electronic journalism

News has become a major element in American programming and is still evolving rapidly. This is particularly true in the area known as "electronic news gathering" (e.n.g.). The use of electronic cameras as a replacement for film in news operations has made rapid progress in the past few years (ITN with a compact Range Rover unit have been ' active in this field). But the emphasis in the States is towards even smaller and lighter equipment, requiring less technical support, and even the complete elimination of news film by some stations.
E.n.g. fulfils the criteria for appeal to American broadcasters: it can provide more national and local news inserts, including 'live' and late news, making newscast more attractive to audiences; potentially it offers (at least debatably) economic advantages if film processing can be eliminated and tape is re-used and not stored for possible archival purposes. But against these must be set the proven reliability, low capital cost and ease of transportation of film, and film cameras.

The past 12 months have seen a number of North'American stations convert to all-electronic news, many more to hybrid e.n.g./film working; and many sitting on the fence waiting to see what the competition will do.

All-electronic news became possible with the appearance of light-weight "portable" (though often heavy) backpack cameras and more especially with the improvement in low-cost helical video recorders such as Sony U-matic or JVC units that became possible with digital time-base correctors. Now firms are rushing out new products specially designed for e.n.g. and to eliminate some of the reliability problems that do arise. Cables, cable connectors, head cleaning on recorders, batteries, "instant" inter-ference-free microwave links and general maintenance all give more headaches
than the early e.n.g.-advocates anticipated, but these problems are being tackled vigorously in the new designs.
E.n.g. cameras featured at NAB included the Thomson-CSF (CBS Laboratories) "Microcam" which sets a new record for an all-up weight of 13 lbs for a camera based on three $2 / 3-i n$. Plumbicons with built-in image enhancement. Camera head including lens weighs 81 b , a shoulder-slung hip pack weighs 3lb, and a typical battery belt weighs llb. Power consumption is 22 watts, including viewfinder. It is claimed the camera can be fully operational in 4 seconds from switch on. First production units are due to be delivered to CBS this. -summer. Size and weight reduction has been achieved largely by the use of I.s.i. circuits.

Other lightweight e.n.g. cameras include the RCA TK76 (shown at Montreux 1975) of about 281b all-up weight; several Ikegami units including the HL77 with no back pack and weighing 6 kg (plus lens and viewfinder); the NEC MNC-61, again with no back pack. and weighing some 6.7 kg including viewfinder and hand grip; the Hitachi SK80 with a basic weight of 7.5 kg . Many other portable cameras including those using 1 -in lead oxide vidicons are being offered either for e.n.g. or as portable production or sports cameras, although some call for a strong cameraman rather than camera person. Many use 1 -in lead oxide vidicons to give quality comparable with studio cameras.

Another area where considerable development can be seen is in microwave link equipment where it is not only required to set up links quickly and easily but where problems are being encountered in mutual interference .between competing teams and those presented in such areas as New York due to high buildings. Trends include "quad polarization" for pick-up, allowing remote selection of right-hand or left-hand circular polarization or vertical or horizontal polarization, often also with remote selection of direction. The mobile units often use circularly polarized aerials.

Nurad have a new 2 GHz "Golden-
rod" aerial for mobile use in the form of a 2 -in diameter rod just under 4 ft long which is claimed to provide circularlypolarized signals comparable with those from a 2 ft parabolic dish but with far less wind loading and easier to store and handle.

Video tape recording

For the past five years or so the "format controversy" of video tape recording has been waging, but most television broadcasts continue to be based on 2 -in quadraplex machines even ENG material is often transferred to 2 -in cassettes for transmission. With the issue to RCA, Philips and IVC of licences for the manufacture and marketing of the Fernseh 1-in BCN series of helical scan recorders, and the introduction of a new Sony 1 -in unit (BVH1000), the stage is set for more general acceptance of 1 -in tape.
The IVC-Cintel 9000 , a 2 -in superband helical-scan studio machine, appeared at NAB in a new guise as the IVC 9000-4 half-track machine for archival purposes, where a 3 dB lower signal-to-noise performance (47 dB instead of 50 dB) can be tolerated.

Ampex introduced their new AVR 3. machine aimed at operators seeking modern replacements for the widely used VR2000-series. This uses the super high band plus pilot tone technique which Ampex first demonstrated on 625 -line PAL. The pilot tone at 1.5 times colour subcarrier is claimed to provide superior autochroma and time base corrector performance, resulting in reduced head banding and reduced moirè patterning. The AVR3 is the first use of this system as an integral part of the design including automatic switching between normal high band and super high band pilot on playback. Ampex however has for this model abandoned the vacuum-buffered transport system that they introduced with the AVR1 to provide virtually instantaneous lock-up: in the AVR3 lock-up is achieved in $1-2$ seconds.
Although the machine was not shown, J. Dierman of Ampex presented a detailed paper on the company's "electronic still store" the first delivery of which is due this summer to CBS. This is designed to replace the large collections of slides and graphics held by most broadcasters (it is suggested that the average broadcaster has a slide library of 3000 to 5000 items) by using computer disc drive techniques to store the material digitally. The system provides instant random access to 1472 stills and can store additional graphics off-line: still sequences can be assembled in advance. The basic storage medium is gamma ferrous oxide coated on to a thin aluminium disc.
A rather similar application was demonstrated by RCA with its optical disc recording system which can store up to 10,000 still pictures on a 12 -inch disc. This is based on the original RCA video disc system and is distinct from
the firm's later Selectavision technique with capacitance pick-up seen as having consumer applications. Although the optical system was shown working effectively on stills (it could be used for motion) no attempt was being made to indicate the appearance of an early production model, with final development put at 2 to 5 years away. RCA, however, are now offering a half-speed ($7.5 \mathrm{in} / \mathrm{sec}$) version of their TR600 video tape recorder and also a modification kit including 6 mm headwheel tip and use of super high-band f.m. for existing machines.

Other video memory systems include a 3M D8000 system and an Arvin/Echo "video frame-store" handling 400 stills.

As a lower cost arrangement to the massive video cartridge machines, Recortec have introduced a "video spot assembler" which is intended for use with two vacuum-buffered tape machines. The assembler itself is priced under $\$ 9000$.
Apart from the IVC 9000-4 and the Fernseh BCN series, a number of new broadcast helical scan recorders have been introduced including a new 1 -in Sony BVH-1000 with a tape speed ($525-\mathrm{line}$) of $9.63 \mathrm{in} / \mathrm{sec}$ and claimed to be the only machine that eliminates head band flicker by recording in the vertical gap. It is being marketed with built-in time coding, and a 625 -line version is expected in 1977.

Transmission

One of the problems which have faced u.h.f. stations using relatively low-efficiency multicavity klystrons has been the rising cost of electricity. This has often meant that with power amplifier efficiency less than 25 per cent the cost of maintaining a high power transmitter on the air has been significant. In recent years a number of klystron manufacturers have shown that efficiency can be increased to just over 40%; at NAB John Bullock of RCA and Robert Schmidt of Varian Associates presented a joint paper on a new approach to klystron operation that could further reduce power consumption by up to about 13%. This pulser or electronic switching system makes use of the fact that maximum output from the klystron is required only during the sync periods, representing on 525 -lines just 8% of the total time. At other times the beam current can be significantly reduced, using radar techniques, by reducing the mod. anode voltage from -2000 to -4000 volts provided that greater linearity correction is applied. The bi-mode system has been developed for use with Varian "H" type klystrons and it has been estimated that for 16 -hour per day operation annual savings of between about $\$ 3500$ to $\$ 7000$ are possible with high power u.h.f. transmitters.
Power saving is also seen as one of the attractions of all-solid-state m.f.-a.m. transmitters; Harris, Sparta and RCA
were among the firms showing or announcing designs from 1 to 5 kW . RCA were also demonstrating their a.m.-f.m. m.f. stereo system - one of five m.f. stereo systems already proposed to the National AM Stereo Committee of the Electronic Industries Association. This committee is due to report in the Spring of 1977 but it will be some time before FCC is ready to accept a national system. The recent industry report on discrete quadraphonic systems has apparently left the matter up in the air since no direct inter-system comparisons are provided: meanwhile about 100 f.m. stations in the United States are using matrix quad encoders and several hundred are playing matrix encoded records. If a.m. stereo becomes established this could be a serious blow to the f.m. stations who still find it difficult to attract majority audiencesbut undoubtedly would provide a boost for m.f. .

Automation of radio stations continues to attract interest although the aim is now often to provide hybrid systems that have the appearance of being "live" stations. A new emergency broadcast system has just been introduced in the United States.
For many years the planning and operation of the m.f. band in the United States has been the envy of European broadcasters, with the effective use of directional aerials and day/night switching. However some U.S. operators are alarmed at the increasing number of extremely high power stations in the Caribbean not under FCC control.
Several firms have developed circu-larly-polarized $\dot{v} . h . f$. and u.h.f. for television transmissions following field trials by RCA (v.h.f.) and Jampro (u.h.f.). To achieve true circular polarization - in terms of good axial and polarization ratios in all azimuth directions for broadband television transmissions -- is by no means easy, and if, as seems likely, there is progressive utilization of this technique in North America it is likely to be an expensive undertaking (European use will probably be limited because of the use made of polarization discrimination). Certainly the field trials indicate that considerable reduction of ghosting is experienced by many viewers (especially those using bow-tie aerials). Harris have developed circular polarized v.h.f. aerials using a cavity-backed radiator. So far FCC have authorized only experimental use of circular polarization for television broadcasting.

Digital techniques

A year or two back, NEC introduced a series of large digital framestore synchronizers designed to allow any nonsynchronous colour signal to be locked to the local station sync, and thus to be handled as a local source without special gen-lock techniques. This year Quantel (DFS 3000), and RCA (TFS 121) both show how it is now possible to
provide these facilities in a compact unit. The DFS 3000 for instance is packaged complete with power supply and associated analogue circuitry into only $8.75-$ in of panel space. Prices of framestores are in the region of $\$ 50,000$.

Apart from the time-based correctors and frame-store synchronizers, there were few signs that the Americans are thinking as seriously as Europeans of digital video throughout a studio or for transmission networks - although digital control and computer techniques are prominent. The convention papers and discussions on digital video were generally disappointing and undoubtedly the single most-sophisticated digital equipment on display was the first of the Marconi-built DICE (standards converters, to the IBA design.

The recent decision by FCC to permit much wider use of unattended operation of all classes of broadcast transmitters will undoubtedly be reflected in more use in North America of interval
test signals and automatic measuring equipment of the type already in use in Europe, and several firms were showing sophisticated systems developed in Europe.

British and European firms were prominent. With the acquisition of CBS Laboratories, CSF-Thomson appear to have moved firmly into North America in a similar manner to Philips. Marconi had their largest display ever at NAB. Rank Cintel featured their new Mark 3 capstan-driven flying-spot colour telecine unit suitable for NTSC operation. Evershed Power-Optics, EEV, Marconi Instruments, Matthey Printed Products, Quantel, Racal, Amplivox, Rupert Neve, W. Vinten and several of the Rank companies were among those present at NAB.

Communications-systems of all types are proliferating, partly as a result of the emphasis on news gathering both television and radio. ABC in New York have been experimenting with extra
sub-carriers on their television sound channel - similar to SCA f.m. radio techniques - to provide communications cueing and one-way communication with outside-broadcast units. A related development are more complex multi-channel radio microphone systems (Thomson-CSF are marketing a u.h.f. unit made by RF Technology suitable for up to 15 radio-microphone channels). A recently introduced "Opti-mod-FM" system by Urban is clá:med to raise modulation levels by $2-3 \mathrm{~dB}$ with less than 0.25% distortion.

In brief, NAB 1976 was an exciting, rewarding reflection of broadcasting trends in North America; both for broadcast engineering and broadcast management.

Grateful acknowledgement is made to Mr Howard Steele, Director of Engineering, IBA, for permission to publish this report - the views expressed, however, are solely those of the author.

Electronics à Paris

New products at the Paris component show

The air of economic despondency of the previous Paris components show seemed to have disappeared this year although it was difficult to tell if this was a result of enthusiasm on the part of the organizers or of an increase in trade. The number of exhibitors this year (1013) was less than the previous year (more than 1100) mainly due to there being no section for test and measuring equipment. This aspect is to have its own venue in Paris at a later date.

Turnover in the French electronic component industry declined 6% in 1975. The semiconductor and capacitor branches were the hardest hit, their figures being down 24 and 15% respectively. Signs of a recovery appeared in the final quarter of 1975 in the consumer goods field which had been the worst affected early in the crisis along with data processing equipment. The French electronic components industry faces a less gloomy climate in 1976, a marked feature being the upturn in orders for consumer goods. Underlying trends in the international components market are a cause for reasonable optimism between now and 1980 even though competition is likely to be increasingly
tough with new component manufacturers appearing particularly in the developing countries.

A single-chip, 8-bit, 40 -pin c.m.o.s. microprocessor, the CDP1802, was launched by RCA. Also introduced by this company were several new memory and timekeeping devices using silicon-
on-sapphire plus numerous additions to the range of c.m.o.s. and linear integrated circuits, power transistors and resistors. The CDP1802 microprocessor family is a development of the existing CDP1801 series, but with the two c.m.o.s. chips in the earlier microprocessor replaced by a single chip using self-aligned silicon-gate fabrication. Although compatible with the CDP1801 series, it is faster and is supplied with a wider range of instruction sets. Typical of the new range of RCA silicon-on-sapphire memories is the MWS 5001, a 1024×1-bit r.a.m. with an access time of 150 ns for only 4 mW of operating power. Operating

temperature range is -20 to $+85^{\circ} \mathrm{C}$ and voltage range is +4.5 to 6 V . A colour TV receiver featured by RCA contained several novel circuits. The horizontal deflection system for the 110° precision in-line tube combined a switched-mode power supply with a thyristor deflection circuit. The main point here was that no input inductor is required and the chassis is completely isolated. A similar system was also demonstrated by Videocolor S.A., a joint venture of Thomson and RCA.

An array of new products was exhibited by Plessey. These included two new ranges of circular connectors now in production, together with an interrack wiring connector for telecommunications use. New capacitors exhibited included examples from the recently announced improvements to the 400 V a.c. general purpose range which now has a reduction in physical size of up to 25% together with an extension of capacitor values so that values from 0.5 to $20 \mu \mathrm{~F}$ are available. The Minican range of aluminium electrolytic capacitors has been extended to much larger capacitance values, up to $360,000 \mu \mathrm{~F}$. Being shown for the first time were smaller additions to the 1.60 Minibox series of low-cost miniature metallized polyester capacitors. The new values have radial leads at 5 mm separation.

A new miniature chip tantalum capacitor to complement the use of ceramic capacitors on thick-film hybrid circuits was announced by Sprague. The type 194D Midget is available in eight chip sizes. Capacitance ratings at the lowest working voltage range up to $100 \mu \mathrm{~F}$ while at the highest working voltage the maximum capacitance is $4.7 \mu \mathrm{~F}$. The new capacitor can be reflow solder-attached to substrates at temperatures up to $300^{\circ} \mathrm{C}$ for three minutes without damaging the electrical or mechanical characteristics of the capacitor.

The SGS-Ates BFT95 is a new 5 GHz silicon p-n-p transistor with low noise (2 dB at 1 GHz) intended for high-volume radio-frequency applications such as antenna amplifiers and cable TV. The device is constructed with the Planax silicon nitride technique and is mounted in the SGS-Ates T-plastic package using a copper alloy frame to withstand high currents and thus achieve an improved cross-modulation level. The device has a forward transmission gain of 10 dB at 1 GHz . The BFT95 will shortly be followed by another device able to handle even higher signal levels and designed for ultra-linear output stage applications. SGS-Ates has also developed three high-voltage, high-current Darlington transistor arrays each consisting of seven silicon n-p-n Darlingtons. The L201 array is suitable for d.t.1., t.t.l., p.m.o.s. and c.m.o.s. The L202 is designed for use with 14 to 25 V p.m.o.s. elements and the L203 allows operation directly with t.t.l. or c.m.o.s. operating at a supply voltage of 5 V . The three devices have an output sink capability

New tantalum miniature capacitor chip, the 194D Midget introduced by Sprague is available in eight sizes.

Pye has introduced a range of foil polystyrene capacitors encased in a newly developed plastic. They are claimed to have high reliability, low self inductance and low series resistance.

Augat's single-in-line terminatingresistor adaptor plug.
maximum of 500 mA with a specified level of input current at $50 \mu \mathrm{~A}$.

One of the most interesting stands was that of Thomson-CSF on which several novel demonstrations took place. The TH7601 flat screen display was operated as part of an alphanumeric storage display terminal. The characters of the display could be generated either from an associated keyboard or read from a punched tape where they had been previously stored. Also demonstrated on the Thomson stand was an experimental system of video transmission by optical fibres and video image delay using a THX1105 charge transfer device. The monitor display consisted of two juxtaposed images one arriving directly, the other having been delayed by the chargecouple device. Each TV line was treated separately, the time lag being constant for each line but being adjustable by modifying the clock frequency of the THX1105 (number of elements: 256,
distortion: 1%, dynamic range: 60dB, delay-bandwith product: 128 and clock frequency: 10 kHz to 10 MHz).

Siemens are investigating the use of optoelectronics in transistor car ignition units. Ignition units are already in existence in which the mechanical contact breaker points have been replaced by Hall effect generators or inductive type transducers - a light barrier provides an even simpler and longer lasting solution. The high operating temperature of the internal combustion engine to which the optoelectronic elements would be exposed presents difficulties but development work by Siemens has shown there are good prospects of being able to supply suitable light-emitting diodes and phototransistors with an adequate resistance to high temperatures. Siemens has a new m.o.s. device available for manufacturers of multimeters. The device incorporates a four-decade counter and automatically selects one of four possible current or voltage ranges in decade steps. This circuit, S190, has automatic polarity selection and a power dissipation of 50 mW .
Several new additions to the Thorn Brimar range of cathode ray tubes were on view including a working demonstration of the smallest monitor tube yet produced by Brimar, the M8.100GX. Designed for avionic applications, the tube is also suitable for other alphanumeric applications where compact, low profile presentation is required. The Brimar TBK3 is a deflection component kit for use on $70^{\circ}, 90^{\circ}$ and 110° cathode ray tubes with 20 mm diameter necks. This kit provides a typical final anode voltage of 11 kV from an 11.5 V d.c. supply and the various auxiliary voltages required by the circuit.

International Electronics S.A., a Greek TV tube manufacturing company were demonstrating a new TV tube whose screen was designed for operation in high incident light conditions. No detailed information is available yet but the tube has a dark raster and is used for both colour and black and white tubes.

News of a new processing technique was released by Isotronics who have begun production of a type of hermetic window which uses a new method of glass-to-metal hermetic sealing permitting high transmission of ultraviolet light for quick erasure of the programme material stored on erasable memory devices. The window can be sealed onto the package with a low leakage level. Windows presently used are made of quartz which also has high transmission of u.v. However, quartz requires time consuming and expensive finishing processes such as mechanical machining and lapping. The new window from Isotronics is claimed to be not only inexpensive to manufacture but easy to seal to the semiconductor packages. The first windows being manufactured are in a form suitable for solder sealing.

New Products

Deflection yoke

A colour deflection yoke, the type GI 1080-1, has been introduced by General Instrument (UK) Lțd. Intended for use with the Philips 26 -inch 110° picture tubes type A66-500X (in for example the Philips 20AX system), it can be used in conjunction with an associated beam centering device type 1081 or similar assembly. The yoke housing is moulded from self-extinguishing plastic. Saddle coils of the pegged type are used for horizontal and vertical deflection whilst a toroidally-wound quadrapole winding on the ferrite core is used for convergence tolerance corrections. The yoke can be adjusted within the housing after fitting to the TV tube. General Instruments (UK) Ltd, Cock Lane, High Wycombe, Bucks.
WW 301 for further details

Capacitance meter

The ESP 200A linear capacitance meter from Electronic Services and Products Ltd is designed for fast, accurate mea-
surements on a wide range of capacitors. Capacitances ranging from 1 pF to $50 \mu \mathrm{~F}$ may be measured simply by selecting the appropriate range and reading the value direct from the meter; no balancing is necessary. The instrument, which is housed in a robust metal case, has a stabilized supply and can be connected directly to a chart recorder for plotting capacitance changes. Short term stability is better than 1% of the meter reading. Electronic Services and Products Ltd, Cross Lane, Braunston, Nr. Daventry, Northants.

WW 302 for further details

Universal breadboard

Up to 36 14-pin d.i.ps can be fitted to a breadboard from GDS. The board, called the "All Circuit Evaluator," is intended for fast, solderless circuit building and testing, and consists of a matrix of 3,648 plug-in tie points. consisting of 512 separate 5 -point terminals, 32 vertical distribution buses and 4 horizontal buses. The vertical buses each have five connected 5 -point terminals, and the horizontal buses éach have eighteen 4 -point types. Any combination of links may be made between buses to provide both unique and common circuit functions. Components are simply plugged into the breadboard terminals and interconnections are made easily using ordinary 22-gauge solid wire. No special patch cords are required. The tie-point material is a non-corrosive nickel-silver with acetal-copolymer dielectric, and the base, which serves as a ground plane, is made from anodized aluminium. Rubber feet are fitted to prevent sliding. The overall size of the breadboard is $10^{1 / 4} \times 91 / 4 \mathrm{in}$. GDS Sales Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.
WW 303 for further details

WW 301 for further details

Logic troubleshooter

Hewlett-Packard have introduced a probe which can indicate digital states and the presence of pulses in both high-level c.m.o.s. and low-level t.t.1. The logic probe, designated as model 545 A , has been designed for simplicity and speedy logic circuit testing. A single lamp display's high, low, unacceptable or open circuit conditions, and it is claimed that this probe enables almost all positive logic up to +18 V d.c. to be sensed, including d.t.l., r.t.l., h.t.l., n.m.o.s., m.o.s. and high noise-immunity logic. The probe also features a pulse memory which controls the indicator lamp switching when logic changes occur. A pulse stretching facility allows the operator to see fast pulses - as short as 10 ns - pulse trains up to 80 MHz being detected in t.t.l. and up to 40 MHz in c.m.o.s. logic. The hand-held probe, which requires a supply of up to 15 V d.c. on t.t.1., and up to 18 V d.c. on c.m.o.s., is protected against voltage overloads. Hewlett-Packard Ltd, King Street Lane, Winnersh, Wokingham, Berkshire RGll 5AR.
WW $\mathbf{3 0 4}$ for further details

Low cost solenoids

N.S.F. have introduced the Ledex "D frame" range of solenoids, designed for simplicity, high performance and low cost. The solenoids, which have a dielectric strength of 1000 V r.m.s., may be supplied for operating voltages ranging from 6 to 240 V d.c. or 60 Hz a.c. Design features include a plunger cavity as an integral part of the nylon/glass bobbin, a dichromate-treated cad-mium-plated frame and multiple tapped mounting holes for easy installation and interchangeability. N.S.F. Ltd, Switches and Controls, Keighley, Yorkshire BD21 5EF.

WW 305 for further details

WW 302 for further details

WW $\mathbf{3 0 3}$ for further details

WW $\mathbf{3 0 7}$ for further details

WW $\mathbf{3 0 8}$ for further details

Spectrum shaper

The Kemo type 495 spectrum shaper has 36 channels, the input to each being adjusted by slide attenuators (patch panel optional). The outputs from each channel are summed and applied to an equalized output terminal. Each channel may also be selected by means of a rotary switch and applied to an output terminal. Provision is made within the system to fit two Kemo KA1193, $\mathrm{n}=19$, pseudo-random Gaussian noise sources which may be switched in at will. Main specifications are: frequency range 1 Hz to 100 kHz , filter accuracy $\pm 2 \%$ of centre frequency, filter level accuracy $\pm 0.5 \mathrm{~dB}$, maximum equalized output signal $\pm 10 \mathrm{~V}$ peak into $2 \mathrm{k} \Omega$, output impedance 51s. Kemo Ltd, 9-12 Goodwood Parade, Elmers End, Beckenham, Kent BR3 3QZ.

WW 306 for further details

Portable oscilloscope

Small size, light weight and simplicity of controls are the features of the S22 single-beam portable oscilloscope. The Telequipment instrument can be operated from its internal rechargeable batteries, or direct from the mains supply. Although the instrument is small enough to pack into an attache case or tool box, it contains a relatively large screen size of about $6 \times 3.6 \mathrm{~cm}$. Normal bandwidth of the oscilloscope is 5 MHz at 10 mV sensitivity, but a gain switch enables the sensitivity to be increased to 1 mV for a bandwidth of 1 MHz . Tektronix UK Ltd, Beaverton House, P.O. Box 69, Harpenden, Herts.

WW 307 for further details

Fast response recorder

The WTR771 portable Miniwriter, made by Envíronmental Equipments Ltd, is a single-channel fast-response recorder having a 40 mm chart width and a frequency response from 0 to 60 Hz . This model, which supersedes the WTR711 Miniwriter, features a thermal writing system incorporating an automatic heat control which, it is claimed, improves the record obtained. The WTR771, which has a higher sensitivity and improved chart speed accuracy, has 14 switched input ranges, having a maximum sensitivity of $10 \mathrm{mV} / \mathrm{cm}$ on the standard version, and $0.5 \mathrm{mV} / \mathrm{cm}$ on the high-sensitivity version. Chart speeds range from I to $50 \mathrm{~mm} / \mathrm{s}$ in 6 switchable steps. The recorder weighs only 5.5 kg and can be operated from the mains supply or from a 12 V battery. Optional extras include a solenoid-operated event marker, a $1 / 10$ speed gearbox, and a rechargeable battery pack. Environmental Equipments Lid, Eastheath Avenue, Wokingham, Berkshire, RGll 2PP.
WW 308 for further details

Data selecting system

Fenscan 3 is a versatile data scanning and logging system designed for demanding process system applications such as multipoint digital temperature indication, alarm scanning and logging, and intrinsically-safe multiplexing in computer systems. The system, which was launched at the "All Electronics Show" by Fenlow Electronics Ltd, features up to 200 low-level analogue inputs, two 16 -segment linearization programmes, manual point selection by a calculator-style keyboard, and a high-accuracy dual-ramp digital voltmeter which uses a strobe-locking technique to reduce series mode mains interference by ensuring that integration is performed over one complete cycle. Optional extras include alarms to aid the automatic point scanning and a trend recording facility. The units are designed to give freedom of location for the scanner, keyboard and display. Fenlow Electronics Ltd, Whittots Eyot, Weybridge, Surrey.
WW 309 for further details

Coaxial attenuators

Fixed 50Ω 'axial-attenuators, for use from d.c. to 4 GHz , are available in six values between 3 and 40 dB from Aspen Electronics Ltd. The LDV 5033 series offers an attenuator accuracy of between $\pm 0.5 \mathrm{~dB}$ and $\pm 1.0 \mathrm{~dB}$, depending on the model, a maximum v.s.w.r. of 1.2 , and has a power handling capability of 15 W continuous and 13 kW peak. Each attenuator unit consists of an internal resistor and black anodized-metal fins on a rugged substrate. The unit has a distributed structure designed for uniform power distribution and low skin temperature. Aspen Electronics Ltd, 18a High Street, Northwood, Middlesex HA6 IBN.
WW 310 for further details

Instrumentation amplifier

A compact differential d.c. 'amplifier has been produced by Fylde Electronic Laboratories Ltd, for instrumentation applications in transducer and recording systems. This modular amplifier, designated as FE-35l-UA, has a bandwidth greater than 50 kHz and exhibits less than $8 \mu \mathrm{~V}$ pk-pk noise. The gain is variable between 0.2 and 10000 from two outputs, one being matched for galvanometers up to 20 mA , with less than 0.02% non-linearity and a typical stability of $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The amplifier, which can be powered by either an isolated d.c. supply or the integral mains circuit, has both input and output protection, and greater than 100 dB common-mode rejection. A wide range of compatible analogue conditioning modules are available and fourteen of the amplifiers can be packed into a 19 in two unit high crate. Fylde Electronic Laboratories Ltd, 49 Fylde Road, Preston PRI 2XQ.
WW 311 for further details

Solid Stafe Devices

Names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

High frequency transistors

Motorola have added two more n.p.n' silicon transistors to their range of radio frequency products. The transistors, BFR90 and BFR91, are designed primarily for use in high gain, low noise, small signal amplifiers, but are also claimed to be suitable for applications requiring fast switching times. The devices are in Macro-T plastic packages and have radially arranged leads.

Motorola

Amplifier transistors

BCX 38 is a family of $60 \mathrm{~V}, 800 \mathrm{~mA} 1 \mathrm{~W}$ n.p.n Darlington amplifier transistors introduced by Ferranti's Electronic Components Division. The transistors, produced in E-line plastic encapsulations and available in gain bands, offer high gains and input impedances and are claimed to be suitable for use in driver and output stages of audio amplifiers and also for interfacing with integrated circuits.

Ferranti

High current transistors

Two high current transistors, designated as 2 N 4276 and 2N4283, have been introduced by the Germanium Power Devices Corporation. The devices, available in copper TO-3 and TO-41 hermetically sealed packages, have high gain and low voltage saturation and are suitable for inverter and computer power supply applications.

GPD

Transistor package

Thirty-four different transistors in the Durawatt 92 -Plus package are offered by National Semiconductors. This is a modified TO-92 package containing a small heat sink. The 34 transistor types are n-p-n and p-n-p general purpose devices, $n-p-n$ Darlington pairs and high-voltage transistors $\left(300 \mathrm{~V} \mathrm{~V}_{\mathrm{CEO}}\right)$. A square inch of copper p.c. board is required to reach at least 1.2 W power dissipation at an ambient temperature of $25^{\circ} \mathrm{C}$.

National

Op-amps

The CA301AG, CA307G, and CA748G general-purpose operational amplifiers, CAl458G dual operational amplifiers, CA3401G quad operational amplifier and CA3119 voltage comparator are
additions to the Gold Chip linear i.c. ranges produced by RCA Solid State. All of the circuits are hermetically packaged and are available in industrial and military temperature range options.

RCA

High performance r.a.m.

The MK 4027 is a 4 kbit r.a.m. which has a claimed 200 ns access time and a 10% tolerance on all supplies. The 16-pin d.i.p. memory system offers a performance matching the 160 ns obtainable from a 22 -pin 4 -kbit r.a.m. by eliminating the 40 ns delay of the 12 V clock driver. Features include direct interfacing capability with Schottky-t.t.l., two, methods of chip selection, and a cycling operation, called page-mode, which allows an increased access speed of 135ns at decreased power for successive memory operations within the same row address.

Mostek

Multipurpose p.m.o.s. dividers

A range of G.I.M. frequency dividers can be driven by both square and sine wave inputs up to 1 MHz , and require -13-volt and -27 -volt supplies. All outputs are changed on the negativegoing clock edges. In particular, the AY-1-5050 divider, supplied in a 14-lead dual in-line plastic package, can divide by $1,2,3,4,5,6$ and 7 by appropriate selection of divider elements.

SCS

Silicon power rectifiers

A series of high current silicon rectifiers, SCSFO5-SCSM6, -has been introduced by Semtech specifically for high frequency, high power industrial, military and space applications. The rectifiers, known as "Cupac 150", have fast recovery characteristics and allow heat sinking from both the anode and the cathode. Peak inverse ratings extena from 50 to 600 volts.

Bourns

Bourns (Trimpot) Ltd, Hodford House, 17/27 High Street, Hounslow, Middlesex TW3 1TE.
Ferranti Ltd, Electronic Components Division, Gem Mill, Chadderton, Oldham, Lancs.
Germanium Power Devices Corp, P.O. Box 65, Shawsheen Village Station, Andover, Maヶ01810, U.S.A.
Motorola Ltd, Semiconductor Products Division, York House, Empire Way, Wembley, Middlesex HA9 0PR.
Mostek UK Ltd, 240 Upper Street, London N.I.
National Semiconductor U.K. Ltd, 19 Goldington Road, Bedford MK40 3LF. RCA Ltd, Solid State - Europe, Sun-bury-on-Thames, Middlesex.
SCS Components, Northfield Industrial Estate, Beresford Avenue, Wembley, Middlesex HAO ISD.

''COME IN, REYNARD 51, YOUR TIME IS UP'

I see that the Min of Ag., Fish and Food has been advertising for an electronics engineer. Not any old run-of-the-mill! electronics engineer, you understand, but one (and I quote)
"To work in a biological laboratory concerned with control of vertebrate pests. Development of radio-telemetry systems for tracking movements of foxes, badgers, rats, coypu, polecats and other species in a variety of habitats. Considerable scope for research and development."

That first sentence - control of vertebrate pests - is perfectly straightforward and will, I'm sure, meet with the full approval of every thinking electronics engineer. I mean, we could all, at the drop of a microcircuit, provide a long list of vertebrate pests we would like to control; vacillating marketing managers; all group leaders; H.M. Collector of Taxes; that anonymous Scrooge in Accounts Dept who is constantly ringing to reduce our latest expense account presentation by an order of magnitude, et al. By the time this piece gets into print the onerous post at the Ministry will doubtless have been filled and I'm sure the best wishes of all go to the successful candidate. It's a comforting thought to know that one of our fraternity has infiltrated into a Government laboratory and (one earnestly hopes) is actively working on our behalf.

So far, so good, and if only the Ministry man who compiled the advertisement had downed his ball-point at this juncture and gone home to his fish and chips, he would háve left me a happy man. But no. I can only suppose that he felt that his story so far didn't constitute a fair week's work and so, after a painful gestation period and a w.p.b. full of rejected copy, he at length 'gave birth to the foxes, badgers and rats
bit and caught the 4.15 back to Pinner, thoroughly exhausted.
I think it's a tribute to the restraint with which affairs in the animal king-dom are conducted that the author of that piece of copy hasn't been torn to pieces by the savage carnivores with which our country is infested. Foxes, in particular, must be feeling grossly ill-used. As is well-known, foxes relish being chased over the terrain by well-bred huntspersons and aristocratic hounds. It is their express reason for being, and, no doubt, as they are being torn to pieces, their last thoughts are of intense satisfaction at having fulfilled their destiny, particularly if the MFH is an Old Etonian. But to be tracked across country by a miscellany of microcircuits is quite another matter. It is devoid of dignity; the babel of binary code will never be an adequate substitute for the resounding "Tally-Ho!" from the throats of the elite and the impetuous "There goes the little brown **!*?!!" from the less erudite followers.

In a Gallup poll taken on the $8.27 \mathrm{a} . \mathrm{m}$. from Woking, commuters were asked whether they considered polecats to be a pest. Of those questioned, 247 thought they were extinct, 123 said "don't know" and one said he preferred the Military Two-Step. It subsequently transpired that his hearing-aid was defective.

But what particularly intrigues me is this; exactly how does one go about selecting a radio-telemetry coypu-tracker? It's worried me to the point where I have a recurring nightmare about it . . . The scene is the Ministry office where the Comptroller of Pest Infestation is interviewing a candidate, a gangling six-footer with red hair and a wild look in his eyes. The Comptroller glances down at the application form
"Good morning, Mr Shakespeare -"
"Not Shakespeare, sir - Napoleon."
"But it says Shakespeare on your application," says the Comptroller, peering through his gold-rimmed spectacles.
"Ah, yes, sir. That was last week when I sent it in. This week it's Napoleon."
"Good gracious me! Do you change your name every week?"
"No sir, of course not. That would be silly, wouldn't it? No - just every other week."
"H'm. Now, Mr - er - Napoleon; I presume you have had previous experience in a biological laboratory. Which one?
"Broadmoor, sir. It's the invisible ink."
"The what?"
"The invisible ink, sir, why the form is apparently incomplete. I had to do it that way. You see, THEY are after me."
"They?"
"No sir. - THEY, in capitals; or, to put it another way, in upper case. THEY: The ones with snow on their boots. They want to know how I do it."
"Do what?"
"Why, how I track the.movements of foxes, badgers, rats, coypu, polecats and other species in a variety of habitats of course. What else?"
At this the Comptroller leans forward excitedly.
"You mean that yóu're already doing this? By radio-telemetry?"
"Well, not exactly, sir. It's more what you might call audio than radio."
"Audio? I don't follow."
"Well, sir, I'm not supposed to tell you this - Official Secrets Act, and all that rubbish. But this is how I do it. First, I concrete over their variety of habitats, and then I fit the animal pests with littble hobnailed boots. They make such a noise coming and going that I can keep track of them over quite long distances., Bang, bang, bang they go, all night long; sometimes it makes me go quite funny in the head. But that's the price of science, I always say. What do you always say, sir?"
"But -"
"Funny you should say that sir, because it reminds me of my latest development. I don't need concrete or hobnails any more. It works a treat with my experimental goat. I call him 'Nearly'."
" 'Nearly'? That's an odd name for a goat. Why do you call him 'Nearly?"
"I was hoping you'd ask that, sir. I call him 'Nearly' because he's all but. D'you get it; sir? All butt - see? Why aren't you laughing, sir? I wish you would. I get funny pains in the head and things swim around in a red mist when people don't laugh at my little jokes."
"I do not wish to know that! Now, Mr Napoleon - let us stick to the matter in hand. You say you have dispensed with your earlier - er - apparatus and you can still track this goat of yours?"
"Yes, sir, and foxes, and polecats in a variety of habitats."
"Ah. Now we are getting somewhere. Radio-telemetry this time, I presume?"
"No sir. I sniff them out. Did you ever smell a polecat, sir?"
"Most certainly not. Now, Mr - er Napoleon; you seem to be under a certain misapprehension as to our modus operandi. Our approach is to catch the pests, implant a miniscule telemetry transmitter in each and then turn the animals loose again."
"Why, sir?"
"Perfectly odvious, I would have thought. By applying modified minedetector techniques we can then track down these pests and destroy them. Ingenious - what?"
"But - sir! If that's what you wanted, why didn't you kill them in the first place? Why bother with implants?"

At this the Comptroller sits bolt upright, his face a mixture of incredulity and joy.
"By jove! A lateral thinker at last! Mr Napoleon - my congratulations, my boy. You've provided us with the breakthrough we've been looking for! Nhen can you start?"

Soundcraft-Series II

 revised specification.

The Series II range of recording consoles are now available with many more facilities as standard, enabling the engineer to record four and eight-track with the four-group output mixers, eight \& sixteen-track with the eight group mixers Input modules are available in groups of four channels. All connections between the channels are by multipin connectors and a mother board system. Two types of equalisation:- the standard module features the Soundcraft four-band E/Q with the addition of a high pass filtér (bass cut), 12dB/octave below cut-off frequency, continuously
variable between 20 Hz and 350 Hz . The special module features sweepable frequency of the two mid-frequençy peaking and dipping equalisers, addition of a low pass filter to the HF shelving equaliser, and the same 50 Hz shelving equaliser and high pass filter as supplied on the standard module. There are four cue sends from each input and monitor channel.
Write for complete details direct to Soundcraft Electronics Ltd., or to the local agent or distributor if listed below.

SOUNDCRAFT - Mixing Consoles to the World of Music

U.S.A.	Systems \& Technology in Music, Inc., 2025 Factory Street, Kalamazoo, Michigan 49001. Tel: (616) 382 6300. (Mr. Vẹne Wandell)
CANADA.	Franchised dealer network - write for your local dealer.
NETHERLANDS.	Selectronic B.V., Sluisplein 3-4, Ouderkerk aan de Amstel. Tel : (02963) 3838/3966.
SWEDEN.	Ing. Jan Setterberg, Forstavsgatan 1, S-43136 Molndal. Tel : (031) 130216875893.
GERMANY.	Franchised dealer network - write for your local dealer.
BELGIUM.	Delta Equipment, Rue de Calevoet 112, 1180 Bruxelles. (02) 3766034. Calevoet Straat 112, 1180 Brussel. (02) 3766034.
SWITZERLAND.	Professional Audio Systems, 4132 Muttenz, Kappeliweg 41. Tel: 061/415156.
AUSTRALIA.	Klarion Enterprises (Pty) Ltd., P.O. Box 379, South Melbourne, Victoria 3205. Tel: 61 3801. Cables: Klarionmelb.
SOUTH AFRICA.	Tru-Fi Electronics S.A. (Pty) Ltd.; P.O. Box 31801, Braamfontein, TVL 2017. Tel : Johannesburg 8384930.
JAPAN.	C.M.C. Inc., Kasumi Building No. 503, 21-20 Nishi-Azabu, 3-Chome, Minato-ku, Tokyo 104.

Forall whowantto knowabout electroniccircuits

Here's a book of very special appeal to all concerned with designing, using or understanding electronic circuits. It comprises information previously included in the first ten sets of Wireless World's highly successful Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of the ten sets - including additional circuits - in this magazine size hard cover book has been updated where recessary, and is preceded by an explanatory introduction. Circuit designs (1) is the first collection of its kind.

Circuits covered are
Basic active filters
Switching circuits
Waveform generator's
AC measurements
Audio circuits
Constant-current circuits
Power amplifiers
Astable circuits
Optoelectronics
Micropower circuits

A newbook fromWirelessWorld

ORDER FORM

To: General Sales Department. IPC Business Press Limited, Room II, Dorset House, Stamford Street, London SEI 9LU.

Please send me copy/copies of Circuit Designs - Number I at $£ 10.40$ each inclusive. I enclose remittance value $£$:(cheques payable to IPC Business Press Ltd.)

NAME (please print)
ADDRESS

Company registered in England and a subsidiary of Reed International Limited Registered, No 677128 Regd. office Dorset House. Stamford Street, London SE I 9LU.

S-DEC Solderless Breadboard for only $£ 1.00$

The world proved S-DEC can now be yours at half price

f S-DEC just plug components directly in, no soldering, use components over and over again.
With your S-DEC you receive FREE a booklet which gives a range of circuits which can be quickly assembled on the S-DEC including Radio-Receiver, VHF Radio-Microphone, 3 Stage Amplifier and many others, also FREE control panel for mounting switches, lamps, etc.
S-DEC normally £1.98 with this advertisement only $£ 1.00$ (When ordering direct send $£ 1.20$ to cover Post \& VAT)

ALL FULLY
T-DEC normally £3.63, with this advertisement $£ 3.38$ (When ordering direct send £3.87 to cover Post \& VAT) GUARANTEED U-DEC-A for discrete and use with I.C. send £4.31.
N.B. These half-price S-DECS are seconds and may be chipped or wrong colour

Expo Reliant Drills and Kits

Powerful, miniature, low-voltage drills capable of sawing, grinding, burring, brushing and polishing - as well as drilling holes up to 3 mm diameter through virtually any material.

The Expo drill operates from a power supply of 12 V d.c. or, using the Titan transformer / rectifier unit (0220), from a.c. mains supplies at 200-250V a.c., 50 Hz .
The Expo Reliant Mini Kit, consists of the Reliant Standard Drill (0510) and a set of 20 assorted tools (0305), providing a powerful, versatile kit for use both by the professional and the hobbyist. Prices: £9.40 including postage and packing, and VAT.

Special offer Fibre Glass Circuit Board

Offcuts of perfect Fibre Glass material (includes 3 pieces 1.2×12)
10 sq. ft. ONLY $£ \mathbf{3 . 0 0}$
$1 / 32$ in. thick Fibre Glass Circuit Board, size 12×12
10 sq. ft. ONLY £4.00
$5 \mathrm{sq} . \mathrm{ft}$. ONLY $£ 5.00$
Resist coated Circuit Board, size 12×12
All Double sided Circuit Board
10 sq . ft. ONLY £4.00
Please add £0.60 to all above for Post \& VAT. N.B. No smaller amounts supplied

Make Your Own Circuit Boards

Draw circuit on circuit board with etch resist pen (not supplied) place circuit board in ferric chloride, etch off copper, wash, produce perfect circuit board. 5 sq. ft. of fibre glass circuit board +5 litre mix of ferric chloride
£4.00

Teach Yourself Electronics Book with Free S-DEC

A set of 38 experiments based on the S - DEC covering such subjects as: Applications of Diodes, Biassing, Amplifiers, The Multivibrator Family, Oscillators, etc., etc. EXPERIMENT AND PROJECT GUIDE AND FREE S-DEC

Zippy Cabinets. Ideal for All Assembly Cabinets

Robust $A B S$ plastic assembly boxes, front panel designed to be cut and drilled, slots inside for mounting circuit boards, attractive colouring and styling.

| TP1 $80 \times 50 \times 30 \mathrm{~mm}$ | $\mathbf{£ 0 . 7 2 1 \text { OFF }}$ | |
| :--- | :--- | :--- | :--- |
| TP2 $115 \times 65 \times 40 \mathrm{~mm}$ | $£ 1.271$ OFF | Special low pricé offer |
| TP3 $155 \times 90 \times 50 \mathrm{~mm}$ | $£ 1.621$ OFF | TP4 only £1.75 |

TP3 $155 \times 90 \times 50 \mathrm{~mm}$ £1.62 1 OFF
TP4 $210 \times 125 \times 70 \mathrm{~mm}$ £2.27 1 OFF
inc. Post \& VAT
Discount for quantity prices include Post \& VAT.

PB Electronics (Scotland) Ltd. 57 High Street, Saffron Walden, Essex CB10 1AA
Tel: 079922876

[^2]
ELECTRONIC DIGITAL CLOCH with alarm and snooze features

FEATURES: 0.7-inch high digits Variable intensity 24 -hour alarm 5 -minute repeating. snooze alarm Alarm set indicator Snooze 'indicator Pulsing second indicator Power interrupt indicator Alarm cancel features - tilt operation Alarm tone output AM. PM. Indicator.
Size $\quad 130 \mathrm{~mm} \times 90 \mathrm{~mm} \times \quad$ Manufactured to high standards by a major American electronics corporation this superbly styled
Weight 10 oz .
Power Supply 230 VAC $\pm 10 \% 50 \mathrm{~Hz}$
Mail Order only. Please enclose 55 pence for postage and packing

SPECIAL OFFER

5512.48
+99 pence VAT
FREE TRIAL IN YOUR HOME. Try out the clock in your home. If digital time is not for you return it in original condition within ten days and we'll refund your money without question. Allow 21 days for delivery

TIME MICROELECTRONICS

BRIGHTON HILL PARADE, BASINGSTOKE HANTS RG22 4EH

Please send \square electronic clocks as illustrated
I enclose cheque \square postal order \square money order \square
Name
Address

NEW FROM COMPUTER APPRECIATION!

* VDU KIT. The CT 1024 is the first TV compatible terminal everyone can afford. Featuring: 1024 character memory (2 pages of 16×32), serial interface 110 to 1200 baud, video output (RF modulator available). Kit includes all components and fibreglass plated-through cards, TTY compatible ASCII keyboard, and PSU. Price £215 (excl. VAT)
* MOTOROLA M6800 4K MICROPROCESSOR KIT. Includes 4 K static RAM, serial interface, PSU, cabinet, and manuals. Manufactured to the same high standards as the CT 1024 . Price $£ 375$ (excl. VAT).
\star Available very soon! A range of interfaces for the M60800, including a cassette recorder interface. We shall also be offering both kits assembled and tested at around $£ 100$ extra per kit.

Trade enquiries welcomed

Computer Appreciation, Castle St., Bletchingley, Surrey RH1 4NX, Godstone (088 384) 3106.

WW-076 FOR FURTHER DETAILS

Your choice of Live SocketsInstantly!

A Lexor DIS-BOARD gives you up to 6 A Lexor DIS-BOARD gives you up to 6 sockets from one power outlet. Portable
or permanent fixing, compact units, wit safery neon. Over 1,000 socket combinations available from stock. All types of fittings and finishes.
Brochure from
LEXOR DIS-BOARDS LIMITED
Allesley Old Road, Coventry
Telephone 72614 or 72207

WW-078 FOR FURTHER DETAILS

A Mini Mixer with a true
PROFESSIONAL STUDIO SPECIFICATION

10 input Channels, 4 Output Groups. Auxiliary Sends and Echo Returns. XLR Connectors to balanced Mic Inputs and Line Returns. Normalled Insert Jacks. Low Noise and High Output levels. Portable. Extension units, PPM's, Limiters, etc., also available

SOUTH AFRICA

Prosound

Musicians Sound Centre J'burg.
Tel. 642-87.21

SPAIN

TELCO Sociedad Limitada
Madrid
Tel. 221-5606
HOLLAND
Pieter Bollen
Eindhoven
Tel 040-512777

BELGIUM
ARC, S.P.R.L
Brussels
Tel. 771-30-63
DENMARK
Audiophil
Copenhagen F
Tel. (01)fa. 5209

WEST GERMANY

Elmus GmbH
Berlin 12
Tel. 030-312-2012

SINCLAIR BLACK
WATCH $\begin{aligned} & \text { Fully assembied }\end{aligned}$
with black
With Bracelet $£ 22.95$
DIGITAL CLOCK KIT \star
supply. attractive case, 0.5in. jumbo power cisplay. clock chip and all other parts pulsating colon. Kit £12.50. Built £13.50.

C20 10W+

ṔZ2O Power supply for above $\mathbf{£ 3 . 9 5}$

Siand sae for free leafier.
SINCLAIR PROJECT 80
 PZ8 £5.60. Z40 £5.75. 260 discontinued
but we stock a similar 30W equivalent amp ع18.95. Quadraphonic decoder £14.95

JC12 AMPLIFIER
with free data
and printed

DELUXE KIT FOR JC1 2
and tone controls Mono $\mathbf{E 2} 06$. 4.46

JC12 POWER KIT

JC12 PREAMP KITS
Type 1 for magnetic pickups, mics and for ceramic or crystal pickups. Mono 78p.

LOUDSPEAKERS
FOR JC 12.8 in. x Sin 8 Ohms. W£2.28
FOR JC 1 2. 8 in . $x \sin 8$ Ohm

TRONICS
DEPT. WW, PO BOX 68, SWANLEY, KENT BR8 8 TO

MORE THAN JUST A CATALOGUE!

Really good value for money at just 40p.

The 3600 SYNTHESISER

The 3600 synthesiser includes the most popula features of the 4600 model. but is simpler Faster to operate. it has a switch.
patching system rather than the matux patchboard of the larger unit and is
particularly
surtabie for
performance and portable use.
S.A.E. please for price list

The 4600 SYNTHESISER

We stock all the parts for this priliantly designed symmesiser including all the PCBs, metalwork and a drilled and printed front panel, givinq à superis piotessional finish
Opmions of authority agree the ETI International Svnthesiser is technically superior to most of today's models. Complete construction detals available now in our booklei price $£ 1.50$
or S.A.E. please for specification
ELECTRONIC ORGAN
Build yourself an exciting Electronic Organ. Our leaflet MES51, price 150 deals with the basic theory of electronic organs and describes the construction of a simple 49-note instrument with a single keyboard and a limited number of stops. Leaflet MES52, price 15 p, describes the extension of the oryan to two keyboards each with five voices and the extension
 by an octave of the organ's range
 Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown il leaflet MES53, price 35p

NO MORE DOUBTS ABOUT PRICES

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'll tell you about price changes ill advance for just 30 p a year liefunded on purchases). If you already have our catalogue send us an s.a.e and we'll send you our latest list of
GUARANTEED prices. Send us 30p and we'll put vou on our maling list you'll receive immedialely our tatest price list then every two months from the sfarting date shown on that list you'll receive detals of our prices for the next GUARANTEED period betore the prices are implemented! plus detaiis of any new lines, special offers, interesting projects - and coupons to spend on components to repay your-30p
NOTE: The price list is hased on the Drder Codes shown in our catalogue so an investment in our super catalogue is an essential first step.
Call in at our shop, 284 London Road, Westclift on Sea, Essex Please address all mall to

L enclose Cheque/P O value \qquad
For copy/copies of your Catalogue
Name
Address
MAPLIN ELECTRONIC SUPPLIES $\begin{gathered}\text { PO } \mathrm{E} \text { Box } 3 \text { Rawien } \\ \text { Esex } \\ \text { SSu } 8 \text { LLe }\end{gathered}$

Wireless World Dolby ${ }^{\text {® }}$ noise reducer

Trademark of Dolby Laboratories Inc
We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring

- switching for both encoding (low-level h.f. compression) and decoding

6 a switchable f.m. stereo multiplex and bias filter
(2) provision for decoding Dolby f.m. radio transmissions (as in USA)
no equipment needed for alignment

* suitability for both open-reel and cassette tape machines
* check tape switch for encoded monitoring in three-head machines

The kit includes

Typical performance

Noise reduction: better than 9 dB weight ed
Clipping level: 16.5 dB above Dolby level (measured at 1% third harmonic content)
Harmonic distortion 0.1\% at Dolby level typically 0.05% over most of band, rising to a maximum of 0.12%

Signal-to-noise ratio $75 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz , signal at Dolby level) at Monitor output
Dynamic Range $>90 \mathrm{~dB}$
30 mV sensitivity
--complete set of components for stereo processor
--regulated power supply components
-board-mounted DIN sockets and push-button switches
--fibreglass board designed for minımum wiring
--solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts
PRICE: $£ \mathbf{3 4 . 4 0}+$ VAT

Calibration tapes are available for open-reel use and for cassette (specify which)
Price $\mathbf{£ 1 . 8 0 + V A T *}$
Single channel plug-in Dolby ${ }^{(1)}$ PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts are available with all components

Price $£ 6.50+V A T$
Single channel board with selected fet
Price $\mathbf{£ 2 . 0 0 + V A T}$
Gold plated edge connector
Price £1.27+VAT*
Selected FET's $\mathbf{5 4 p}$ each + VAT, $\mathbf{9 6 p}+$ VAT for two, $\mathbf{£ 1 . 7 6 + V A T}$ for four
Please add VAT at $12 \frac{1}{2} \%$ unless marked thus", when 8% applies
We guarantee full after-sales technical and servicing facilities on all our kits

Please send SAE for complete lists and specifications

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY.CABINET

A high-quality push-button
FM Varicap Stereo Tuner combined with a 20W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In / Out facility (for noise reduction unit, etc), THD less than 0.1% at 20 W into 8 ohms. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section: uses Mullard LP1.186 module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono S/N@ $1.8 \mu \vee$.THD typ. 0.4%

PRICE: £48.95 + VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz} .20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70 dB . IF rejection -85 dB . THD typically 0.4%
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit Choice of either mono or stereo with a choice of stereo decoders
Compare this spec with tuners costing twice the price
Mono £26.31 + VAT
With ICPL Decoder $£ 30.58+$ VAT
With Portus-Haywood Decoder
$£ 32.81$ + VAT

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the Mullard LP1186 RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE.

PLL stereo decoder IC
Sens. 30dB S/N mono @ $1.8 \mu \mathrm{~V}$ THD typically 0.4%
Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator
PRICE: Mono £25.55 + VAT
Stereo £28.65 + VAT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful
"TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring

Typ. Spec. $20+20 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N 72 dB . Headphone output. Tape In / Out facility (for noise reduction unit, etc.). Toroidal mains transformer

PRICE: $£ 30.94$ + VAT
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVEINSTRUCTIONS

PRINTED CIRCUIT BOARD TRANSFER SYSTEMS

Acid resistant transfers for direct application to P.C. Board. This is a new approach to printed circuit board manufacture, giving a professional finish with all details that an electronics engineer would require, including all drilling positions automatically marked.
Ideal for single unit boards or small quantities. All at a very low cost-for example an average $6^{\prime \prime} \times 4^{\prime \prime}$ layout would cost less thian 30 p , and the time taken under one hour, including eiching to complete.
The system is simple, briefly it consists of 10 sheets of self adhesive acid resistant transters made in required shapes - i.e. edge connectors, lines, pads, dual in line I.C.s, 8-10-12. T.O. 5 Cans, 3-4 lead transistors, etc., etc., which only require pressing into the required positions on the printed circuit board before etching.

The printed circuit transfer system is a genuine offer to the public and industry. A full money back guarantee is sent with each order, trade prices on application.

List of Prices
Complete system including post and VAT £2.95
Individual sheets . 30p
Sample sheet . 30p
Ex. U.K. Post Extra . £1.00
Printed circuit board PCB transfer systems patent applied for

E. R. NICHOLLS, 46 LOWFIELD ROAD, STOCKPORT, CHESHIRE TELEPHONE NUMBER 061-480 2179

Dralaid Elatimitios

DE A ELECTRONLGS ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST

MDNTHLY SPECIAL

CATRONICS

WW TELETEXT DECODER

The design of this decoder is being described in a series of articles being published by 'Wireless World' (from last November). All the components are available from Catronics Ltd.

Our kit contains all the printed circuit boards and components necessary to build the complete decoder. The power supply and video switching circuitry are normally installed
within the television cabinet and the main decoding control and memory circuity in a separate cabinet positioned on top of the television

PRICES ARE AS FOLLOWS:
Set of 5 PCBs (incl. PSU 8e Video Switching)
$£ 16.00+$ VAT $=£ 18.00$
Component Kit (incl. PCBs) Add-on Unit for Lower Cas
Comporent Kit (incl. PCB)
Cabinet
READY BUILT AND TESTED $\mathbf{C 9 6 . 0 2 +}$ +VAT $=£ 104.10$
for Lower Case add $\mathbf{£ 2 . 0 0 + V A T}=\mathbf{£ 2 . 2 5}$ $\mathrm{E12.65+VAT}=\mathbf{£ 1 3 . 7 5}$ ALL COMPONENTS ALSO AVAILABLE SEPARATELY - SAE for price list

A wide range of other components is also pailable, including SL600 series
 $\begin{array}{llllllll}\text { SL620C } & £ 2.90 \mid & \text { SL621C } & £ 2.90 & \text { SL622C } & £ 7.10 & \text { SL623C } & £ 5.25 \\ \text { SL624C } & £ 2.80 & \text { SL630C } & £ 1.80 & \text { SL640C } & £ 3.20 & \text { SL641C } & £ 3.20\end{array}$ KVG filters, AERIALS for Commercial. Mobile and Radio Amateur bands. IGNITION interference Suppression Components plus, of course, the famous Catronics $\mathbf{2 0 0} \mathbf{M H z}$ DFM, 7 digit display, mains or $12 v$ supply Only $£ 121$

Send SAE for current price list (stating requirements) or $30 p+$ large SAE (11p stamp) for full catalogue

WW-626 FOR FURTHER DETAILS

THE RADIO SHOP

16 CHERRY LANE TELEPHONE
BRISTOL BSI 3 NG 98
$0272-421196$

OFFICIAL ORDERS WELCOMED.GOVT /EDUCATIONAL DEPTS ETC
TRIACS

O AMP ISOLATED TA

\qquad

THYRISTORS

INTEGRATED CIRCUITS

1976 INTERNATIONAL AUDIO FESTIVAL \& FAIR OLYMPIA LONDON
13th - 19th September (inclusive)

There is a whole new deal for exhibitors at the 1976 Audio Festival \& Fair. A new deal designed to ensure that participation spells success in every way. The formula has been created by a new management team comprising people with a real understanding of $\mathrm{Hi}-\mathrm{Fi}$ and people possessing deep experience and

IT'S SOUND SENSE FOR YOUR COMPANY TO BE THERE

Complete and post the coupon below for more details

Please send me a brochure with details for intending exhibitors at the 1976 Audio Festival \& Fair.
Name
Company

Address
「elephone number

[^3]
Industrial Action ${ }^{2}$. JAMES SCOTT IMDU TRIAL

The James Scott range of Microwave equipment now offers industrial users a greater choice of alternative systems in robust, industrial, cast aluminium housings, for a wide variety of applications.
The range is made up of standard sub-assemblies which can be permutated to suit Individual application requirements.
Some Suggested Applications for these Units Level controllers: Proximity alarms; Smail object counters; Process control systems; Positioning systems: Door opening systems; Safety barriers: Presence/detectors: Train control systems: Vibration sensing systems; Intruder alarms; Road vehicle systems.
If any of the above are your problems or if you have a particular problem for which we could adapt a system please write or telephone for further information and technical literature to.

WW-045 FOR FURTHER DETAILS

Get tothe Point Quickly with ANTEX ModelX25

Point 1

Near-perfect insulation. Breakdown voltage 1500 A.C. Leakage current 3.5 uA .

Point 2

Top-efficiency in heat transfer. Element slides inside the soldering bit.
25 watts but equivalent in heat capacity to 60 watts.

Point 3

High grade phenolic handle (own moulding!) Stainless steel shaft. -3 core 0.4 mm . Flexible lead.

Point 4

Iron-coated bits that do not stick to the shaft but slide on and off easily.
3 tip sizes 2.4. 3.2
and 4.7 mm .

Point 5

Price with standard $(3.2 \mathrm{~mm}$.) bit $£ 3.20$ ($P+P 0.22$) each Spare elements $£ 1.52$

Spare bits £O. 50 each

Point 6

A well balanced tool -
length 22 cm .
weight 50 gr .

Prices include VAT Postage + Packing extra as shown in brackets.

STAND S.T. 3
High grade insulation material. chromium plated steel spring. Suitable for all our models.
Replaceable sponges.
space for spare bits.
Complete £ 1.37 ($\mathrm{P}+\mathrm{P} 0.24$)

from electrical, radio or car accessory shops or from Antex Ltd., Freepost (no stamp required) Plymouth.
PL 1 1BR Telephone 0752 67377/8.

Name
\square ANTEX colour catalogué. Address
I enclose cheque/P.O./Cash
(Giro No. 258 1000)

TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd
Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

POWERTRAN ncomosams ELECTRONICS
 HI-FI NEWS 75W /CHANNEL AMPLIFIER

Pack Price Fibreglass printed-circuit board for power amp $£ 0.85$	Pack 11. F.breglass printed-circuit board for power
2. Set of resistors. capacitors. pre-sets for power anp. $£ 1.70$	supply . $£ 0.65$
	12. Set of resislors. capacitors. secondary fuses.
3. Set of semiconductiors for power amp. $\mathbf{E 6 . 5 0}$	semi-conductors tor power supply, £3.50
4. Pair of 2 drilled. linned heat sinks ¢0.80	13. Set of miscellaneous parts including oln skis. mains
5. Fibreglass printed-circuil board for pre.amp. £1.30	input skt. luse holder. infer connecting cable. control
6. Set ol law naise resislors, capacitors. presels lor	knobs . $£ 4.25$
pre-amp . £2.70	14. Set ol melalwork parts including silk screen printed
7. Set of low moise. high gain semiconductors for pre amp	fascia panel and all brackets, fixing parts. etc. $\mathbb{E 6 . 3 0}$
	15. Handbook . $£ 0.30$
8. Sel of potentiometers (including mains swith) $\mathbf{£ 2 . 0 5}$	16. Teak cabinet $18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime}$. $£ 9.85$
9. Set of 4 push button swilches, rotary made	
switch . E3.70	2 each of packs 1.7 inclusive are requirsd lor complete
10. Toroidal Iransformer complete with magnetic	ereno sysiem. Tatal cost of individually purchased
y 0117.234 v: secandaries:	packs . ¢72.25

Hi.FI News there was published by Mr Linsley-Hood a series of our (November. 1972-February. 1973) and a subsequent follow-up (Apri. 1974) on a design hor an amplifier of exceptiona performance which has as its principal fearure an ability to supply from direct coupled fully protected output stage. power in excess of 5 wall levels The power amplifier is complemented by a pre-amplifier based on discrete component operational amplifier referred to as the Liniac which employed in the two most critical points of the system namely the equalization stage and tone control stage, positions where mos conventional designs run out of gain at the extremes of the frequenc pectrum Unusual features of the design are the variable transifion There is a choice of four inputs, two equalized and two linear. each having independently adjustable signal level The attractive slimfine unit pictured has been made practical by highly compact PCBs and a speciatly designed Toroddal transtormer

FREE
 krpance omy $£ 62.40$

WIRELESS WORLD FM TUNER
$33-0.33$ V. 25-0.25 V. 9.15

Designed in response to demand for a tuner to complement the world-wide acclaimed Linsley Hood 75W Amplitier. This kit provides the perfect match helusion end module, excellent a m rejection and temperature compensated varicap tuning, which may be controlled either continuously or by push button pre-selection Frequencies are indicated by a frequency meter and sliding LED indicators attached to each channel selector pre-sel The PLL stereo decoder ioroidal transformer and integrated regulator For long term stability meta oxide resistors are used throughout

STOP PRESS!

LINSLEY-HOOD CASSETTE DECK
Goldring-Lenco mechanism, as specified
$£ 19.10$
PCB, Components - Please send for details

Wireless World Amplifier Designs

full kits are not avalable for the highly regarded Bailey and 20W class AB Linsley Hood designs. together with an efficient regulated power supply of our own design Suitable for driving these amplifters is he Bailey Burrows pre-amplitier and our circur slider operating slider operating described by D C Read which splits the output of each channel from the pre-amplifier into three channels each of which is fed to the approprate speaker by its own power amplifier The Read/Texas 20W or any of our other kits are suitable for these For tape systems a set of three PCBs have been prepared for the integrated circuit based high pertormance stereo Stuart design Details of component packs are in our free list

30W Bailey Amplifier

BAIL Pk 1 F/Glass PCB
BAIL Pk 2 Resistors. Capaci
BAIL Pk 3 Semiconductor se
LHAB Pk I F/Glass PCB
HAB Pk 2 Resistor. Capacitor Potentioneter set
LHAB Pk 3 Semiconductor set
Regulated Power Supply
G0VS Pk $1 \mathrm{~F} / \mathrm{Gl}$ ass PCB
60VS Pk 2 Resistor. Capacitor se
Govs Pk 3 Semiconductor sel
leyl
60VS PK 6A Torordal transformer (for use with Bailey)
60VS Pk 6B Toroidal transformer (for use with 20 W LH)
Bailey Burrows Stereo Pre-Amp
BBPA Pk 1 F/Glass PCB
BBPA Pk 2 Resistor, capacitor semiconductor se
BBPA Pk 3R Rotary Potentiometer set
BBPA Pk 3 S Sider Potentiometer set with knobs

Further details of above and additional
packs given in our FREE LIST
£ 1.00
$£ 2.35$
£ 2.35
$£ 4.70$
E 1.05
£ 3.20
$£ 3.35$
f0. 85
£1.95
£3.10
67.95
$£ 7.25$
£ 2.35
E 6.10
£ 2.40

rack Price	Pack
1. Fibreglass printed board lar front end If strip. demodulator. AFC and mute circuits £2.15	9. Function switch. 10 furn taning polentiometer. knobs
2. Sel of metal oxide resistors. the mistor. capacitors. cermat preset for mounting on pack 1 £4.80	10. Frequency meter. meter drive components. fibragias printed circuit board \qquad E8.6
3. Sel of transistors. diodes. LED, integrated circuits for mounting on pack 1. £6.25	11. Taroidal transiormer with electroslatic screen Primary: 0-117V-234V £4.45
4. Pre-aligned front end module. coil assembly. three section ceramic filter $£ 8.80$	12. Set of capacitors. rectifiers. valtage regulator to power supply
5. Fibreplass printed circuit board for stereo decoder £1.10	13. Sef of miscollantous parts. including sockets. fus holder, fuses, inter-connecting wire. elc. .. Et.5
6. Set of metal oxide resistors. capacitor s. Cermet preset lor dacader . £2.60	14. Set of metal work parts including silk screen printed tacia panel. acrylic silk screen printed tunin
Set of transistors LEO. intagraled circuit for dacoder	indicator panel insert. Internal screen. lixing pasp elc.
Set of components for channel selector switch. module	15. Construction notes (free with complete kit)
	16. Teak cabinet $18.3^{\prime \prime} \times 12.7{ }^{\prime \prime} \times 3.1{ }^{\prime \prime}$
nobs. Leds. preset wous	One aach ol packs $1-16$ inclusive are required for comp sterea FM tuner. Total cost al individualiy purchas packs

FREE

KIT PRICE only
TEAK CASE WITH FULL KITS $£ 66.75$

PRICE STABILITYI
Order with confidence' Irrespective of any price changes we will honour all prices in this advertisement for two months from issue date provided that this advertisement is quoted with your order E\&OE VAT rate changes excluded All components are brand new first grade full specification devices All resistor (except where stated) are low noise carbon film types All printed circuit boards are fibre-glass. drilled. roller tinned and supplied with circuit diagrams and construction layouts
UK. Orders. Subject to $12 \% \%$. Surcharge for VAT. Carriage free MAIL ORDER ONLY (*or at current rate if changed)
Securicor Delivery For this optional service (Maınland only) add $\mathfrak{z} 250$ VAT
Overseas Orders No VAT Postage charged at actual cost plus 50 p packing and handling

DEPT. WW06

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP10 3NN
r/and Portugal Mozambique Belgium Sumatra

AUDIO KIT SUPPLIERS TO THE WORLD

$\mathbf{T 2 0 + 2 0}$ and our new $\mathbf{T 3 0 + 3 0}$ 20W, 30W AMPLIFIERS

Designed by Texas engineers and described in Practical Wireless the Texan was an immediate success Now developed further in our laboratories to include a Toroidal transformer and additional The design is based on a single F/Glass PCB and features all the normal facilties found on quality ampllifers. including scratch and rumble filters. adaptable input selector and head phones socket In a follow up article in Practical Wireless further modifications were suggested and these have been incorporated into the T30 30 These include RF interfererice filters and a tape monitor facility Power output of this new model is 30 W per channel

Pack
1 Sel of low noise resisiors
2. Set of small capacitors
3. Sel ol power supply capacitors
4. Set of miscellaneous parts
5. Set of slide. mains. P.B. switches
6. Set of pots. seiectar switch. .
7. Sel of semic onduclors. ICs. skis.

T20	T30
0.95	1.05
1.50	2.10
1.40	2.05
1.90	1.90
1.20	1.20
2.00	2.00
7.25	7.75

Pack
B. Tor oidal ir anstormer -240 V prim. E.s. screen Fibreglass PCB
10. Set of metalwork, fiximg parts. 11. Sel of cables. mains le ad 12. Handbook (free with complete kit) Teak cabinet $15.4^{\prime \prime} \times 6.7^{\prime \prime} \times 2.8^{\prime \prime}$

2 NEW TUNERS!

WW SFMT II
Following the success of our Wireless World FM Tuner kit we are now pleased to introduce our new cost reduced model designed to complement the T20 and T30 amplifers The frequency meter of the however the circuitry is identical and this new kit offers mosi exceptional value tor money Facilties included are switchable atc adjustable switchable muting channet selection by slider or readily adjustable pre-set push-bution controls and LED tuning indication Individual pack prices in our free list

T20 T30
$\begin{array}{ll}4.95 & 6.80 \\ 2.50 & 2.90\end{array}$
$\begin{array}{ll}2.50 & 2.90 \\ 4.20 & 4.80\end{array}$
$\begin{array}{ll}4.20 & 4.80 \\ 0.40 & 0.40\end{array}$
$\begin{array}{ll}0.25 & 0.25 \\ 4.50 & 4.50\end{array}$

KIT PRICE
$£ 47.40$
FREE teak case with ful kits $^{\text {kin }}$
T20 +20
KIT PRICE only 228.25 T30 +30
KIT PRICE only $\mathbb{2} 2.95$

POWERTRAN SFMT

This easy to construct tuner using our own circuil design includes a pre-aligned front end module PLL steico decoder adjustable, switchable muting switchable afc and push-button channel selection As with all our full kits, all components down to the last nut and bolt are supplied
together with full constructional details

KIT PRICE

$£ 32.60$ - 10000000000

CONVERT NOW TO QUADRAPHONICS!

ere any problem over suitable software No problems with hardware either Our
new unt the SOM $1-30$ simply plugs into the tape monitor socke. of your existing amplifier and drives two additional speakers at 30W per channel A full complement of controls including volume bass. treble and balance are provided as are comprehensive switching facilites enabling the unit to be used
for either front or rear channels. by-passing the decoder for stereo-only use and exchanging left and right channels The Si matrix decoder is based upon a single integrated circuit and was matrix decoder is based upon a Single integrated circuit and was
designed by CBS whist the power and tone control sections are identical to those used in our $130+30$ amplifier which the SOM 1-30 matches perfectly Kit price includes CBS licence fee Special offer to T20 + 20 and Texan owners?
Owners of T20 +20 and Texan amplifiers. which have no tape monitor outlet. purchasing an SOM $1-30$ will be supplied. on request. a free conversion kit to fit a tape monitoring iacility to the existing amplifier This makes simple the connection to the
highly adaptable SOM $1-30$ quadraphonic decoder / rear channe highly adaptable sam This quadraphone decoder rear channe

SEMICONDUCTORS

as used in our range of quality audıo equipment.

2N699	$\underline{0.20}$	BC212k	$\underline{50.12}$	MPSA65	¢0.35
2 N 1613	¢0 20	BC1821	$\varepsilon 0.10$	MPSA66	10.40
2N1711	¢0.25	BC184,	¢0. 11	MPSUOS	$\underline{50.60}$
2N2926G	f0. 10	BC21)	60.12	MPSU55	60.70
2N3055	¢0.45	BC214L	¢0.14	S8a750a	E2.50
2N3442	E1.20	BCY72	¢0.13	St301	¢1.30
2N3711	$\underline{60.09}$	B0529	60.85	St3045	E1.60
2N3904	¢0.17	B0¢30	E0.85	SN72741P	$\underline{50.40}$
2N3906	¢0. 20	BDY56	$\underline{1.60}$	SN72748p	¢0.40
2 N 4062	¢0.11	B1257	${ }^{\text {c }} 0.40$	TH209	¢0.30
2 N 4302	c0.60	BF259	c0.47	THP29A	50.50
2N508 ${ }^{\text {a }}$	$\underline{0.42}$	BFR39	¢0.25	TIP30A	¢0.60
2N5210	¢0.54	BFR 79	¢0.25	TIP29C	¢0.71
2 N 5457	¢0.45	BFY51	¢0.20	IIP30C	¢0.78
2N5459	f0.45	Bfys?	E0.20	TTP4 4 A	¢0. 74
2N5461	$\underline{50.50}$	Ca3046	60.70	TIP42A	¢0.90
2N5830	¢0.35	LP1186	E5.50	TiP418	¢0. 82
40361	6040	MC1310	¢2.90		¢0.98
40362	$\underline{6} .45$	MC1351	$\underline{1.05}$	1 N 914	¢0.07
BC 10)	¢0.10	MFC4010	${ }_{60.95}$	1 N916	$\varepsilon 0.07$
BC, 08	¢0.10	MJAB:	${ }^{1} 1.20$	15920	E0. 10
BC109	c0. 10	MJ491	${ }^{1} 1.30$	5805	£ 1.20
BCiosc	¢0.12	MJE52 ${ }^{\text {¢ }}$	60.60	Filters	
BC125	¢0.15	MPSA05	$\underline{0.25}$		
BC1206	¢0.15	MPSA12	${ }_{60.55}$	FM4	£0.80
BC182	¢0.10	MPSA 14	60.35	SFGIo 7 MA	E2.80
8C21.	¢0.12	MPSA55	10.25		
BC182k	¢0. 10				

SQ QUADRAPHONIC DECODERS

Feed 2 channels ($200 \cdot 1000 \mathrm{mV}$ as obrainable trom nost pre-amplifiers or amplifier
tape monitor outlets into any one of our 3 decoders and take 4 channels, out with no overall signal level reduction On the logtc enhanced decoders Volume. Front-Back LF-RF balance LB-RB balance and Dimension These state-of-the art circuits used under licence from CBS are offered in k

解 apactors matalith prices include CBS licence fee
M1 Basic matrix decoder with fixed 10.40 blend All components. PCB $\mathbf{£ 5 . 9 0}$
1 Full logic controlled decoder with wave matching and front back logic for enhanced channel separation All
components PCB L2A More advanced full logic decoder with variable blend extended frequency response, increased front back separation All components. PCB

EXPORT NO PROBLEM
 Our Export Department will be pleased to advise on postal costs 10 any country in the world. Some of the countries to which we sent kits in 9975 are shown surrounding this advertisement.

Kenya France St. Martin, Java New Zealand Borneo South Africa Denmark Nigeria Anguilla Fin

$=18-13$
 Bargains in Semi-Gonductors, components, modules \& equipment.

D.P.P Packs

Originated in 1959 by the Company's managing director, his were the first semi-conductor and indeed. the company's name grew out of "British Industrial Pre-Packed Components ". Today, Bi-Pre-Pak continues to occupy a position of pre-eminence in the supply of packs as well as a vastly extended range of products detailed in our latest 24-page A.4 size free catalogue. Send 10p stamped
IT'S ALL IN OUR FREE CATALOGUE

Bomponent Packs

YOUR SUPPLIERS FOR
Semiconductors - all popular types. Opro-electronic Switches. Knobs, Ex-G.P.O items. Aluminium Boxes Triacs. Thyristors. Zener Diodes and much more in ou

Semi-Fondutiors

- TESTED AND GUARANTEED PACKS

```
SN7490 integrated circuits. 14 pin dual in line TTL iype 
```

LLL THE FOLLOWING ARE AT 60p EACH PACK
TP9. $\quad 5$ SN7400 integrated circuits. 14 pin dual in line TTL type
Quad 2.nnput NANO gate Get one FREE. these are 15 p
TP10 2 each dependant resistiors. 400 ohms light, 1 megohm
 AC156. OC81/2. OC72 etc
Hy127 Silicon rectifers 1000 piv 1 amp Plastic I

$\begin{array}{ccc}\text { TP1 13. } & 5 \text { OCP71 } \\ \text { TP14 } & \text { Light sensitive transistors } \\ \text { 20 } & \text { OC71 } \\ \text { germanium PNP audio pre }\end{array}$

TP15 20 glass type. $\mathrm{OC8} 1 \mathrm{German}$. PNP PN zudio output transistor, white glass
TPI 620 type $\quad 20 / 1 / 2 / 3$ uransistors. PNP slican TO.5. unmarked
TP 17201 watt zener diodes mixed voliages 6.8 to 43 volts
TP19 100 Diodess, mixture of germanium gotd bonded slicon, eic a usetul selection of many types marked and unmarked
 TP23 20 BFY50/1/2. 2N696/7. 2N1613. Etc NPN silicon $10-5$

TP32 $20 \begin{aligned} & \text { etc. Uncoded } \\ & 2 N 2926 \text { silicon plastic transistors uncoded and ungraded }\end{aligned}$

UNTESTED PACKS - 60p each Specially for keen bargain hunters


```
UT6 
```

UT9 40 NPN silicon olanar transistors. of the 2 N3 $707-11$ range

UT10 $15 \begin{aligned} & \text { Power trans.stors. PNP germanium and NPN } \\ & \text { mostly TO- } 3 \text { but some plastic and some marked }\end{aligned}$
UT13 if \quad mostly TO-3 bul some plastic and some marked TTL DTL marked and unmarked, some defintely good
for full ranges - seecatalogue

- Singles

BRIDGE RÉCTIFIERS Plastic encapsulated

POWER TRANSISTORS

	vco	Worts	ncamps	Price
40 P 1	15	20	3	$3 \mathrm{p}^{\text {- }}$
40 N 2	40	40	4	$3{ }^{30} \mathrm{p}^{\circ}$
${ }_{40 \mathrm{P} 2}$	40	40	4	${ }^{30 \mathrm{p}}$.
${ }_{90 \mathrm{P} 1}$	15 15	${ }_{45}^{4}$	${ }_{4}^{4}$	${ }_{25 p}$
90 N 2	40	90	8	${ }^{35 p}$
90 P 2	40	90	8	${ }^{35}{ }^{\text {P }}$

INTEGRATED CIRCUITS
MS380 SLL60745 Oual in line 2 w audio amp with data etc 75^{Em} M5380/SL60745 Oual in line $2 w$ audio amp. with dala ea

Sundry

SIGNAL GENERATOR

550 KHz for IF Fully portable Invaluable in MM for MW and 400 to
pocket signal injector
tountan-pen iype Invaluable for fault tracing in radio sels amplithers
TVs tape recorders. elc Takes one HP 7 battery
$\mathbf{6 2 . 0 0}$
EX.G.P.O. 5in SIOECUTTERS
EX-G.PO E" LONG NOSEPLIERS
EX-G.P.O. 6"LONG NOSE PLIERS
Not new. but in periect order, per par

PC EDGE CONNECTORS Sizes

Type	Sizes	Pitch	
SSEC 6 -way	$11 / 8{ }^{\prime \prime}$	156"	32p
SSEC 10	$1{ }^{1 / 4}$	156**	150 p
SSEC 12	2	156"	60
SSEC 16	21/2"	156"	75
SSEC 18	3 "	156"	85 p
SSEC 22	$31 / 2^{\prime \prime}$	156"	1.00

UHF TUNER UNITS
or use as fy sound receiver With data 625 lines. Channels $21-65$ idea
воокs
All free of VAT We carry very large stocks of rechnica. books by Babant \& Bernard Publishers, by Newnes and Butterworth as well as reference books from the Common catalogue

MONEY SAVER FOR CAR OWNERS
The Super Spark Capacity Discharge Ignition Unit developed out of
our original model lof which we have sold well over 9.000) enables you to enjoy this system al a truly economic price facilities include simple gnition, anti-burglar immobilisalion with all parts. in totally enclosed
storg meat case Very easy to
It and insiall With full instructions P/P add 50pl KIT £7.95 READY-BUILT £10.500

X-44 POCKET SIZE R.F. CROSS HATCH GENERATOR\qquad use Stze $150 \times 75 \times 50 \mathrm{~mm}$, strong plasticcase with handie/stand. 4 push button Operation, 4 patterns. Self-contained ine Pre-set adjust for R F outpul and line/trame 5yneh Uses a alkaline ty ee MONO. (P/P add 35p)$£ 27.50 \int_{\substack{\text { Bull } \\ \text { tested } \\ \text { tesed }}}$

VAT 00012,2

EXCEPT ITEMS MARKED WHICH CARRY ONLY 8\%

TERMS OF BUSINESS: VAT rates subject po atheration if decreed by Governmen
VAT at $121 / \%$ must be added to toral value of order. except tor items marked of (8% when
VAT is to be added at 8% NO VAT on Overseas orders POST \& PACKING Add 30 p for UK orders except where shown otherwise Minumum mall order acceptable - EL Overseas orders
add til for postage And difference will be credited or charged PRICES Subject to alteration add th 1 for postage And difference will be credited or charged PRICES Subject to alteration
without notice AVAilA BILITY All liens avaliabie at time of going to press when evety effort

Electroime

THE TIME HAS ARRIVED FOR YOU TO JOIN THE DIGITAL REVOLUTION

COMPLETE BUILT CLOCK PRICE $£ 14.00 \mathrm{inc}$. VAT

THE MISTRAL Mk 1
DIGITAL CLOCK

* Pleasant green display
* Pulsating colon
* $12 / 24$ hour readour
* Building time 1 hour
- Push-button setting

KIT PRICE $£ 11.07$ inc. VAT COMPLETE BUILT CLOCK PRICE £ 14.95 inct

CRYSTAL DISPLAY MODEL TLC4

WITH UNIQUE BACKLIGHT FEATURE FOR NIGHT READING

LED MODEL TLE3

LED MODEL TLE5

GOLD OR RHODIUM PLATED
ALL MODELS FEATURE ELECTRONIC ACCURACY TO WITHIH SECONDS PER MONTH
Money back if not completely satisfied One-year guarantee with all models

Electrotime, Dept $1 / 6$
111 Storforth Lane Trading Estate
Chesterfield, Derbyshire. Tel: 35804
Please supply
I enclose cheque / postal order
Name
Address

20mes Marshall's

 A Marshall (London) Ltd Dept WW42 Cricklewood Broadway London NW2 3ET Tel 01.452 0161/2 Telex 21492 \& 85 West Regent St Glasgow G2 200 Tel 041-332 4133 \& 1 Straits Parade Fishponds Bristol BS 16 2LX Tel: $0272-654201 / 2$ \& 27 Rue Danton Issy Les Moulineaux Paris 92 Call in and see us 9-5.30 Mon-Fti 9-5.00 Sat

OUR RANGE COVERS OVER 7.000 ITEMS THE LARGEST

SELECTION IN BRITAIN TOP 200 IC'S. TTL, CMOS \& LINEARS

CA3020a	1.80	CD4030	0.52	LM7815	1.99	SN7413	. 0.28	SN7486	0.29	SN74190 1.8
CA30284	0.79	CO4031	1.98	LM7824	1.99		0.28	SN7490	0.42	SN74191 1.86
CA3035	1.37	C040	0.88	WC1303t	1.50		0.28	SN749	0.	SN74192 1.15
CA 3046	0.70	CD404 1	0.70	WC131	2.50	SN7420	0.16	SN7492	0.45	SN74193 1.15
CA3048	2.11	CD4042	0.83	VC1330	0.90	5N7423	0.23	SN7493	0.45	SN74196 1.60
CA3052	1.62	C04049	0.45	MC1351P	0.80	SN7425	0.23	SN7494		SN74197 1.58
CA3089E	1.96	CD4050	0.45	MC1466	3.50	SN7427	0.23	SN7496	0.68	SN74198
CA309	4.23			MC1469	2.75	SN74	0.15	SN	0.68	SN
CA31	0.88	C04	1.94	MC14553	4.07	SN7432	0.22	SN74	1.10	SN76003N2.92
CD400	0.18	CO4516	1.25	Ne5	0.70	SN7437	0.28	SN74107	0.30	SN76013N1.95
C0400 1	0.18	CD4518	1.87	NE556	1.30	5N7438	0.28	SN74118	0.85	SN?6023N1.60
CD4002	0.18	CD4520	1.87		4.48	SN7440	0.16	SN74119	1.75	SN76033N2.92
CO4006	0.99	Lm301A	0.48	NE561	4.48	SN744	0.68	SN74121	0.32	TA¢263 $\quad 1.20$
CO4C	0.18	LM 308	1.17	NE565	4.48	SN7442	0.65	SN74122	0.42	†AA300 1.84
C04008	0.82	Lм 309 K	1.88	SLA14	2.35	SN7445	0.78	5N74123	0.65	tas 350A 2.10
C04009	0.52	LM 380	0.98	St610C	2.35	SN7446	0.84	SN74141	0.75	tas550 0.32
CD4010	0.52	LM 381	2.07	56116	2.35	SN7447	0.80	5N74145	0.72	TAA611C 2.18
CD401	0.18	LM 702 C	0.75	SL612C	2.35	SN7448	0.90	SN74	1.20	TAA621 2.03
C04012	0.18	LM709		51620 C	3.50	SN7450	0.16	SN	0.68	tAA6618 1.03
CO4013	0.45 0.89		0.38	${ }_{5}^{51621 C}$	3.50	SN745	0.16	SN74153	0.68	T8A641B 2.25
${ }^{\text {COP4O15 }}$	${ }_{0}^{0.89}$	14011	0.45 0.38	St623C	5.75 4.00	SN7453	0.16 0.16	SN74154 SN74155	1.20	
CD4016	0.45	LM710	0.47	SN7400	0.16	SN7460	0.16	SN74	0.76	tbabio 0.98
C04017	0.88	LM 723 C	0.56	SN740	0.16	SN7470	0.29	SN74160	0.88	tBAB20 0.80
${ }^{\text {COLPO18 }}$	0.88	LM741C		SN7402	0.16	SN7472	0.21	SN74161	0.88	tBA920 1.79
C04019	${ }_{0}^{0.52}$	1099 8OH	$\begin{aligned} & 0.40 \\ & 0.40 \end{aligned}$	$\begin{aligned} & \text { SN7403 } \\ & \text { SN } 7404 \end{aligned}$	0.16 0.19	$\begin{aligned} & \text { SN7473 } \\ & \text { SN } 74744 \end{aligned}$	0.31 0.31 0.31	SN74162	0.88	14DISSKT 0.14
CD402:	${ }_{0}^{0.98}$	${ }_{14 \mathrm{DI}}$	0.48	SN7405	0.19	SN74	0.31 0.45	SN74:63		160
CD4022	0.85	LM747	1.05	SN7406	0.36	SN7476	0.30	SN74		
CD4023	0.18	LM 748		N740	0.36	SN7480	0.42			
CDAO24	0.72	801	0.44	SN7408	0.19	SN7481	1.00	SN74174	0.99	SOCKETS 11p
CD4025	0.19		0.41	SN7409	0.18	SN7482	0.65	SN74175	0.70	
CD4027	0.43	Lм3900	0.61	SN7410	0.16	SN7483	0.82	SN74176	1.14	
CD4028	0.83	LM7805	1.88	12	0.20		0.95	SN/4188	10	
CD4029	1.06	781	1.99	17412	0.22	SN7485	1.00	SN74181	1.95	6.wiry spkr

LONDON, GLASGOW, PARIS - AND NOW BRISTOL IT'S OUR SERVICE THAT MAKES US GROW

POPULAR SEMICONDUCTORS

	$2 N 696$	0.22
$2 N 697$	0.16	2
2	2	
$2 N 699$	0.59	2
$2 N 706$	0.14	2
$2 N 708$	$\mathbf{0 . 1 7}$	2
$2 N N 16$	$\mathbf{0 . 2 8}$	$2 N 3$
	$2 N 18$	$\mathbf{0 . 3 2}$

2N
2 N
2 N
2

\qquad
\qquad
$2 N 1$
$2 N 1$
$2 N_{2}$
$2 N_{2}$
$2 N 2$2 N
2 N
2 N
2 N
2

Post \& Packing 30p

MULTIMETER F4313 (Made in USSR)

SENSITIVITY
1200 VC range: $10,000 \mathrm{R} / \mathrm{V}$ Other DC ranges $20.000 \Omega / \mathrm{V}$ 1200 AC range: $6.000 \mathrm{\Omega} \mathrm{~V}$ 1200 AC range: $6,000 \mathrm{D} / \mathrm{V}$
600 V AC range: 15.000 O 600 VAC range: $15,000 \Omega / \mathrm{V}$
300 V AC range $15,000 \Omega / \mathrm{V}$ $300 \mathrm{~V} A C$ range $15,000 \Omega / \mathrm{V}$
Other $A C$ ranges $20.000 \Omega / \mathrm{V}$ 2-300mA-1.2-6A
$\mathrm{AC} / D C$ current ranges: $60-120-600 \mu \mathrm{~A}-3-12-300 \mathrm{~mA}-1.2-6 \mathrm{~A}$
$\mathrm{AC} / \mathrm{DC}$ voltage ranges: $60-300 \mathrm{mV}-1.2-6-30-120-300 \cdot 600 \cdot 1200 \mathrm{~V}$ Resistance ranges: 300Ω-10-100-1000 X
Accuracy: 1.5% DC: 2.5% AC (of full scale deflection)
Mirror scale and knife edge pointer. Taut suspension of movement. Transistor amplifier is used for all $A C$ ranges thus achieving a common linear scale for both $A C$ and $D C$ ranges
Meter is fully protected for a transistorised cut-out relay circuit. Range selection is achieved by clearly marked piano keys. Power source: 51.5 V dry cells Dimensions. $95 \times 225 \times 120 \mathrm{~mm}$

PRICE $\mathbf{E 3} 7.50$ plus VAT
Packaging and postage $£ 1.10$
OSCILLOSCOPE CI-5

Made in USSR

Extremoly simple and easy to use single beam oscilloscope. Well proved design based on standard octal valves makes servicing and maintenance straightforward and inexpensive. Because of its bandwidth of 10 MHz the instrument is suitable for general electronic applications and educationa purposes where a sophisticated instrument would be both too expensive and delicate. 3 -in. tube giving a 50 $\times 50 \mathrm{~mm}$ clear display. Amplitude and time base calibrations. Sensitivity $30 \mathrm{~mm} / \mathrm{v}$ max. Triggered and free-running time base, suitable for displaying pulses from 0.1 usec to 3 m sec . A.C. mains operation

Price $£ 55.00$ ex. works
Packing and carriage (U K. only $£ 2.50$)

HIGH GAIN DARLINGTON PAIRS

Plastic 3-Lead Case Darlingion Pairs. Typica current gain 30.000. Max. collector voliage VCBo 40 V Max collector current 400 mA ICBO-10nA
BC517 NPN
BC517 NPN

FULLY GUARANTEED

(B)

$\begin{array}{ll}3.40 & \text { PL.50 } \\ \mathbf{3 . 6 5} & \text { P150 }\end{array}$

Z \& I AERO SERVICES LTD. Head Office: 44A WESTBOURNE GROVE, LONDON W2 5SF Tel.: 7275641

Retail Branch:
85 Tottenham Court Road London W1. Tel: 5808403

HART ELECTRONICS

Audio Kit Specialists since 1961

J. L. Linsley-Hood High Quality Cassette Recorder

Full kits of parts for this outstanding design, including metalwork, cabinet, low humfield mains transformer and all other parts. Please send SAE for full data

Cassette Mechanism only complete with Erase and Record/Playback head, $£ 19.10+121 / 2 \%$ VAT. Post 40p

FM Tuner. Several useful modifications have been made to our compact tuner. The mechanical layout with all its advantages is retained and four important electrical extras are now offered. 1. Multi-turn preset pots for easier tuning. 2. MPX filter for trouble free taping. 3. Extra thermal stabilisation for tuning line to eliminate drift. 4. Provision for remote control tuning of as many stations as you require.

STEREO BAILEY 30 WATT TUNER AMP.

This complete tuner/amp unit is of the very highest quality and is the amalgam of our Compact FM Tuner. Bailey 30watt power amps and the Bailey/Burrows/Quilter pre amp The wooden sleeve is avallable in either teak or sapele finish to blend with existin equipment or furnishings
The combination of our excellently designed printed circuits and the high qualit components and approached components used makes this unit unequalled on up tuner amps Full uetalls are in our free lists

STUART TAPE CIRCUITS. Our printed circuits and components offer the easy way :o convert any suitable quality deck into a very high quality Stereo tape unit. nput and output levets suit Bailey pre amp Total cost varies but around $\mathbf{£ 3 5}$ is all you need W can offer tape heads as well if you want new ones
All above kits have fibreglass PCB's Prices exclude VAT but P\&P is included
FURTHER INFORMATION ON ALL KITS FREE if you send us a 9 in. $\times 4$ in S.A.E.

REPRINTS Post tree no VAT
Bailey 30W 18p.
STUART TAPE RECORDER. All 3 anicles under one cover 30p.
BAILEY/BURROWS/QUILTER Preamp circuits. layouts and assembly notes $\mathbf{1 5 p}$
All prices exclude VAT@121/2 per cent except for reprints which are exempt

Penylan Mill, Oswestry, Salop

Personal callers are always welcome, but please note we are closed all day Saturday

SERVICE TRADING CO

 OPEN TYPE RELAYS
 6 VOLT D.C
 9 VOLT D.C. RELAY
 9/12 VOLT D.C. RELAY
 24 VOLT D.C

 ENCLOSED TYPE RELAYS
 $24 V$ DC 3
 24 VOLT A.C. M
 55 VOLT A.C.
 230 VOLT A.C. RELAY
 220/240 VOLT AC RELAY
 Base $15 p$ extia ARROW 230/240V AC
 CLARE-ELLIOT Type RP 7641 G8
 MANY OTHERS FROM STOCK. PHONE FOR DETAILS

ALL MAIL ORDERS, ALSO CALLERS AT
57 BRIDGMAN ROAD CHISWICK,
LONDON, W4 5BB. Phone: 01-995 1560
Closed Soturdoys.

VARIABLE VOLLTAGE TRANSFORMERS

Carriage extra	INPUT 230 v. A.C. 50/60 OUTPUT VARIABLE $0 / 260 v$. A.C.
-	BRAND NEW. All eypes. 200W (1 Amp) $£ 10.00$
	$0.5 \mathrm{KVA}(\mathrm{Max} .21 / 2 \mathrm{Amp}) \ldots £ 11.50$
	4 KVA (Max. 20 Amp) \cdots E60. ${ }^{\text {c }}$
	(max. 37.5 Amp) E102.5

LT TRANSFORMERS	
0612 volt "10ame	E6.15 Past 70 p
-0. 10.17 .18 vert " 10 mmp .	¢8.70 Post E' 100
0. 46.24 .32 volt " 12 amp	E10.30 Post 1100
O. $6,12,17.18 .20$ woth 20 amp Other types to order at short notice	E11.80 Positl 00

AUTOTRANSFORMERS

At 75 watt $£ 3.00$ Post 40 p 150 watt $£ 4.30$ Post 50 p. 300 watt $\mathbb{E 6} .20$. Post 60 p 500 watt $£ 9.20$ Post 75 p. 1000 wal E 13.50 Post 90 p.

RING TRANSFORMERS

WHY PAY MORE?!

TRIAC

$$
\begin{aligned}
& 1000 \text { VOLTS } 1000 \text { megohms } \mathbf{~} 46.00 \\
& \text { Post } 80 \mathrm{~g} \text {. }
\end{aligned}
$$

NICKLE CADMIUM BATTERY
隹

GEARED MOTORS

250 mm
145 mm.
145 mm ex equipr
Suitable transtor

15 R.P.M.
1ype 5048
oearbox 270
qearbox 270 mm
Werpht 8.5 klos
Suitable
60 R.P.M. REVERSIBLE

BODINE TYPE N.C.I.
GEARED MOTOR
Grype 1171
Reversible
Type
Ty

 Price. euther type 66.25 . $230 / 240 \mathrm{~V}$ A.C. inpur.
\qquad display stands. vending machines. elc.

20 r.p.m. GEARED MOTOR

REVERSIBLE MOTOR 230V A.C

Genterabation mounting brackel and capacitor 0.4 anmp Complete with $110 \mathrm{~mm} \times 95 \mathrm{~mm}$

METERS NEW

90 mm Dismater

E2. 50 . Post 30 p
ROTARY VACUUM AIR COMPRESSOR ANO PUMP

A.C. MAINS

 TIMER UNIT

SERVICE TRADING CO.
SHOWROOMS NOW OPEN
AMPLE PARKING
personal callers only
S LITTLE NEWPORT STREET,
LONDON. WC2H 7 J.

 * (ง) Texan Amplifier as featured by PRACTICAL WIRELESS SOLE U.K. DISTRIBUTORS - HENRY'S

texan Fm 22350 TUNER KIT 2 ROU

Bultand
Buld the matching Texan stereo tuner Features advanced varicap funing
lock loop decoder. Professionally designed circuit Everything you need is in the kil. From the glass fibre pcb to the erial sensitivity 500 mV out (adjustable). Tuning range 87-102
the natural follow-on

Henry's latest ELEGTRONIOS GATALOGUE

Switch on And you TV aetial Choose yourgame - football safe For you Yoall. Absolutely HENPY Mais powered List price And your
 For this latest edition, we have additions. Features now include

* over 5000 items - \quad * over 200 pages
many new
* frees 50 voucher inside * virtually everything * section index viriualed by amateurs and professionals
FREEto Educational Establishments when ordered on official headed notepaper

HENRY'S

 All mail to: Henry's Radio 303 Edgware Rd. London W2LONDON W2: 404/6 Edgware Road. Tel: 01-402 8381 LONDON W1: 231 Tottenham Ct Rd. tretyifor/Tel:01-636 6681 *NOTTINGHAM: $94 / 96$ Upper Parliament St. Tel: (0602) 40403 *2READING, BERKS: 130/131 Friar Street. Tel: (0734) 583230 *HARROW: 190/4 Station Road. Tel: 01-863 7788
*CROYDON: 110 North End. Please Note: Mail Order Customers㐘 NEW STORES

WW - 080 FOR FURTHER DETAIL.

P. F. RALFE

10 CHAPEL ST. LONDON NW1. Phone 01-723 8753

SIGNAL GENERATORS

MARCONI TF8OID/IS. $10-480 \mathrm{mHz}$ P.O.A. MARCONI TF80IB/2S. 10.480 mHz HGN MS3/U. 9.7-11.9 and 77-109 mHz. AM / FM ADVANCE SG63D. AM/FM $7.5-230 \mathrm{mHz} £ 125$. RACAL/AIRMEC 201 A. $30 \mathrm{kHz}-30 \mathrm{mHz}$. As new. P.O.A ADVANCE SG2I VHF Square-wave generator $9 \mathrm{kHz} \cdot 100 \mathrm{mHz} . \mathbf{\varepsilon 2 5}$.

OSCILLOSCOPES

SOLARTRON CD 1400 DC. 15 mH
COSSOR CDU110. DC. 80 mHz
TEKTRONIX 545A
only $£ 295.00$
TEKTRONIX 531 DC- 15 mHz with L type plug-in
TEKTRONIX $535 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in
TEKTRONIX 545 B DC- 30 mHz with ' CA ' plug-in
TEKTRONIX 585A. DC -80 mHz with type 82 plug-in
TEKTRONIX $654 B$. Storage oscilloscope
TEKTRONIX 502. 200uV Sen
TEKTRONIX C27 Polaroid Camera. Series 125 with 560 series adapter.

CO-AXIAL	G	
RELAYS. Termi		
sockets (3 off)		
up to 1 GHz 48 VDC coil Plugs		
avalable at 50 p each		
PRINTED CIRCUIT MOTORS		
Manufactured in $U S$ by Photocircuits		
Corp 24 VDC 2.000 rpm 14 cms diameter These are qualsty made. high precision motors offered at a fraction of		

-WEE MEGGERS*. 250 V Insulation
Testers Good working condition
c8.50. C8.50.
'MUFFIN' INSTRUMENT FANS. Manufactured in Holland by Rotron Dims $45 \times 45 \times 15$ ins This is a precision cooling fan, very quiet running specially designed for the cooling of electronic equipment.
amplifiers, etc. 115 V .50 Hz operation amplifiers, etc. 115 V .50 Hz operation.
drawing only it Watts The list price drawing only from Rotrons is over $£ 10$ each. Our price. brand new. only $£ 4.50$ each

MINIATURE DEAC NI-CADMIUM batteries. type 700 K 3 cells in package making 37 Volts $25 \times 17 \times 15 \mathrm{~mm}$ only 75p

DAWE Strobotorch type 1202 C Fxcellent

```
MARC
100
PYE
```

PYE Electrosiall
RMS $E 120.00$ TEKTRONIX ivoe 57
haces excellent condition

ADVANCE type 万ु3A AM/FM R F Signal generators 75.230 mHz Deviation $0-225$ and $0-75 \mathrm{kHz}$ X-sweep output.
calibrator

MARCONI TF995A2/M AM/FM R.F. SIGNAL GENERATORS. $1.5-220 \mathrm{mHz} .0 .100 \mathrm{kHz}$ Deviation. $\mu \mathrm{V}$ - 100 m , output. Sold in excel

20-way BPO Jack strips to accept 316 type Jack plugs. Also quantity of 316 plugs available All good

Centrifuyal blowers by WOODS 8 inch Snall type Outlet $2^{3 / 4} \times 2 \mathrm{~m} 24 \mathrm{~V}$ DC 28 A 2400 rpm Grey stove finish All brand new Price is $£ 10.50$ carrage

GENTS/FRIEDLAND

bells Operating voltages 12 v dc/24 dc All in as new condition and tested before despatch Sizes $6 / 8 / 12$ inch
Prices $£ 4.80, £ 5.20$ and $\mathbf{£ 6 . 5 0}$ resp

COMPUTER PERIPHERALS. Tape punches. 8 hole by Westrex and other well known manufacturers Tape readers by Elhot All virtually brand new Prices are better than one half the ars whe phone tor quotano An exceptional buy enables us to offer by APT at a very cheao price 16.24 y dc (a) 10 Amps and $8-10 \mathrm{~V}$ dc (a) A Both supplies are extremely stable with ow ripple voltage Price each £18.50 + carrage

MISCELLANEOUS TEST EQUIPMENT

MARCONI TF1400S double pulse generator with TM6600/S secondary pulse unit. $£ 105$
MARCONI TF791D deviation meter, $4.1024 \mathrm{mHz} .0-100 \mathrm{kHz}$ deviation MARCONI 455E Wave Analyser $£ 120$.
MARCONI TF2600 Valve Voltmeter 1 mV -300V. Excellent. $£ 75$ ROHDE \& SCHWARZ USVD calibrated recelver $280-940 \mathrm{mHz}(4600 \mathrm{mH}$ LEVELL TG200 DM. RC Oscillator, c/w case. £65.
ROHDE \& SCHWARZ URV milli-voltmeter BN10913 (late type) 1 mV . 10 V With ' T ' type insertion unit, free probe and attenuator heads $1 \mathrm{kHz}-1.600 \mathrm{mHz} £ 175$.
COSSOR 1453 True RMS milli-voltmeter Excellent $£ 75$.
AIRMEC TYPE 210 modulation meter Excelient condition ROHDE \& SCHWĀ̄ZZ "SCR" V.H.F. Signal Generator 1000.1900 mHz MARCONI type TF936 Impedance Bridge $£ 85 \mathbf{5 0 0}$.
GERTCH Phase Angle V. Meters. Range $1 \mathrm{mV}-300 \mathrm{~V}$. in 12 ranges SOLARTRON oscillator type CO $546 \quad 25 \mathrm{~Hz}-500 \mathrm{kHz} . £ 30.00$. GAMBRELL Precrsion 4 Decade Resistance Box $1.11,110$ ohms $£ 24.50$.
MARCONI TF329G Q-Meter $£ 95$.

PLEASE ADD 8% V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

DISPLAYS

FND500
Outstanding Value Only $£ 1.02$ each for this high quality display

Parino	Manutacturer	Colour	Type	5180	Price
FND500	Farchild	Red	Common Cathode LEO	0.5"	¢1.02
TIL322	Texas Instr	Red	Common Cathode LEO	13 mm	¢1.20
TH321	Texas Instr	Red	Common Anode led	13 mm	¢1.30
XAN654	Xciton	Green	Common Cathode LED	$0.6{ }^{\prime \prime}$	61.75
XAN652	xciton	Green	Common Anode LED	$0.6{ }^{\prime \prime}$	61.75
MAN3M	Monsanio	Red	Common Cathode LED	$0{ }^{13 \prime \prime}$	48p
5LTO1	Futaba	Green	4 dig. Phos. Diode	05	E5. 80

Note IIL322's the Texas Insirument pin-for-pin equivalent of the FNO 500, may be supplied instead maich a previous purciase

DISPLAY PCE's wired for mulliplexed output - each PCB firs neatly inio Verocase J)

ADD VAT at standard rate (now $8 \%-25 p$ p 8 pon all orders Price List sent with oreers of 0
request Data available on request Expon no VAT 50 p (Europe) it
El
SINTEL 53c ASTON STREET, OXFORD TEL. 086549791

FAST §FRVOCE

TIL209 or $0.2^{\prime \prime}$ RED \& CIIIP 13p*
GREEN ILARGF/SMALL. \& CLIP 22p* ORANGE LARGE/SMALL \& CLIP 22p* ORP12 57p* 2N5777 33p* TEC12 50p** DIGITAL CLOCKS MM5316 £5*
 CAPACITORS ELECTROLYTIC: $10 / 50 / 100$ uf 10 or 25 V 7 P . $50 \mathrm{~V} 9 \mathrm{p} .2 \mathrm{ff} / 10 \mathrm{~V}$ 6p.
1000 f .25 V 18p. $200 / 500 \mathrm{uf} 9 \mathrm{p}$. POTENTIOMETERS IIV/LOG 16 p e PRESETS Gp, RESISTORS 1 p ea HEATSINKS TO5/18 78. TO3 15 p , DIN plugs

IC's LOW PRICES

74T TJL

58-60 GROVE RD. WINDSOR, BERKS.SLA IHS ADD 8% VAT TO PRICES MARKED
ADD $121 / 2 \%$ VAT TOALL OTHER PRICES SEND CWO (EXCEPT GOVT DEPTS) SEND CWO (EXCEPT GOVT. DEPTS.

NEW YASP SERVICR LOO DRTCES MADY BACK IF NOT 9ATISFIED. ALL GRAN NE TOP GRADE FULL
SPEC DEVICES, CALSKRS NETCOHE NE CATALOOUE LIEF FHEE SRK. BARCLATCARB ACESSS GY POST

TRAMSISTORS

PRICE EACH:-			Caing	
AC127	\& 128	10 p	INS.BUSH SET 6p*	
AC 176		15p*	TIP29 \& 30	43p*
AC187	188	$18 \mathrm{P}^{*}$	T1131 \& 32	54p*
719		45 p *	TIP4	63p*
ADIfil	16 ?	33p*	TIP42	67 p *
BC107		8p*	TIP2955	99p*
8 C 107 B		12 p	55	67 p *
BC 108		7 P *	TIS43 UJCT	26p*
BC1080		12 p *	7TX107/8/9	11 p
HC 109		$8{ }^{\text {p* }}$	ZTX300 \& 304	20p
BC109C		$12 \mathrm{p}^{*}$	ZTX500 \& 504	12 p
BC147/	1819	92	2N706 \& 708	$11 p$
BC157/	/8/9	12 p	2N2646 UJT	38p*
ВС $167 /$	/8/9	12 p	2 N 29048	20p*
BC177/	/8/9	18 p	2N2926broyg	9 p
BC182/	/3/4A\&L	$10 p$	2N3053	16p*
$\mathrm{HC}_{6} 212$	/3/4ASL	12 p	N305.	42p*
ВСу70	/1/2	$16 p^{\prime}$	N3055 115	37p*
BDI31	\& 132	39p*	2N3055 RCA	60p*
BFR88	250 V	$35 p$	2N3702/3/4/5	8 p
BFY 50		14 p *	2N3706/7/8/9	8 p
BFY51		14 p *	2N3710 \& 11	${ }^{8} \mathrm{p}$
BFY52	\& 53	$14 p^{\prime}$	2N3819F PET	12 p
BSX19/	/20/21	16 p *	2N3820 FLT	40 p
4 H 29.55	5 TO 3	75 p *	2,3823F. Fl:T	$16 p$
M.IF.2		89 p *	2N3904/5/5	15 p
MJE3O!		6.15	2N4289 mini	

CTOS LOGIL

CTins Latere

TELEPHOME 54525
DIODES
OA81 \& DA91 GERיIANIHM 5p
1 N 4001 AFOV \& 1 N 4002 1N40n4 6p* 1N4007 9p* 1N4148 1 N914 SILICON $4 p$.
ZENERS $12 Y 88400 \mathrm{mH}$
9p.
 BRIDGE RECTIFIER 1A50 18p 1 A400V 25p. 4 AlOOV 45 p
SCR's TRIACS SCR's TAG1/400 1A400V
1A50V $38 \mathrm{p} \cdot 1 \mathrm{~A} 600 \mathrm{~V} 70 \mathrm{p}$ C106D 4A400V SCR ONLY TRIAC SC146D 104400 V TRIAC DISCO 16A400V vero
36PINS 28p* FACE CUTTER49P
COPPERCLAD 0.1 PITCI VERO COPPERCLAD O. 1 PITCH VER 3)"×5" 37p" 3引"×3ネ" 32p* 31"x17" £1.70" 3"x17 PlAIN 0.1" $11.06 *$

CIST PEN 69p* FEC ETCH PAK 500gm
690^{*}
6×4 " COMPER HOARD
500^{*} RC13 KIT 3 ITEMS CASSETTE MECHANISM 59 \& ASE 1

MOTOROLA MC1310P DELIVERY specification	EX STOCK	
Separation. $40 \mathrm{de} 50 \mathrm{~Hz}-15 \mathrm{kHz}$ Plevel 560 mV rms input impedance 5oks? Will drive up to 75 mA stereo Pow	$\begin{aligned} & \text { uire men } \\ & 0, ~ \\ & 0 \end{aligned}$	sortion. 0.3%
COMPRISES FIBREGLASS PCB Preset Potm \& Compreflensive Instuctions light emitting diode		WHY PAY MORE? $29 p$ 590
MC1310P only $£ 2.15$ plus p.p. 10p		
thousands our customers can benefit trom our wide experienti P.A.T		
PORTWOOD INDUSTRIAL ESTATE, CHURCH GRESLEY BURTON-ON-TRENT, STAFFS. DEII GPT		

RETURN OF POST MAIL ORDER SERVICE

BSR HI-FI AUTOCHANGER

STEREO AND MONO

 with STEREO and MONO
$£ 10.95$ Post 75p

PORTABLE PLAYER CABINET

Vynair front grile. Chrome fittings • $\mathbf{~ 4 . 5 0 ~ p o s t ~ 5 0 p ~}$
Size $17 \times 15 \times 8$ in. approx
Motor board cut for BSR or Garrard deck

HEAVY METAL'PLINTHS

With PVC Cover Cut out tor most B S R
Gerrard decks Silver grey finish. Model "A" $\quad \mathbf{E 5 . 9 5}$
Size $121 / 2 \times 143 \times 71 / 21 \mathrm{n}$

COMPLETE STEREO SYSTEM

SPECIAL OFFER!
SMITH'S CLOCKWORK 15 AMP
TIME SWITCH
0-60 MINUTES $£ 2.50$ Post 35 n
Single pole two-way. Surface mounting
with fixing screws Will replace existing wall switch to give light for return home. garage automatc anni-burglarghis etc intermediate settings. Brand new and

tully guaranteed
JDSPEAKER GRILLE
$101 / 2 \times 7 \% 10-45 p$.
teaflie board Size $101 / 2 \times 7 \%$ in- $45 p$.
WEYRAD P50 - TRANSISTOR COILS RA2W Ferrite Aerial $85 \mathrm{8j}$ Oriver Trans LFDT4 $6 \mathbf{6 5 p}$
 P50/1AC....60p 1 OPT1. 16 65p Ferrite Rod $8 \times 1 / \mathrm{min} ., 20 \mathrm{p} .6 \times 5 / 16 \mathrm{in}, 20 \mathrm{p} .3 \times 1 / 3$ in 10 p

BLANK ALUMINIUM EHASSIS. $6 \times 4-70 \mathrm{p} ; 8 \times 6-90 \mathrm{p}$;
$10 \times 7-£ 1.15 ; 12 \times 8-£ 1.35 ; 14 \times 9-£ 1.50 ; 16 \times 6-£ 1.45$; $10 \times 7-£ 1.15 ; 12 \times 8-1.35 ;$
$16 \times 10-$ f1.70.
ALUMINIUM PANELS. $6 \times 4-17$ p; $8 \times 6-24$ p; 14 ALUMINIUM PANELS. $6 \times 4-17 p ; 8 \times 6-24 p ; 14$
3-25p; $10 \times 7-35 p: 12 \times 8-43 p ; 12 \times 5-30 p ; 16$

ELAC 9×5 in HI-FI SPEAKER TYPE 59RM $£ 3.45{ }^{\text {Posp }}$

RCS LOW VOLTAGE STABILISED POWER PACK KITS
All parts and instructions with Zener diode. printed $£ 2.95$ transformer Input $200 / 240 \mathrm{~V}$ a c Output Post 45 p voltages available, 6 or 7.5 or 9 or 12 V dc up to 100 mA or less Size $3 \times 21 / 2 \times 11 / 2$ in Please state voltage required.

RCS POWER PACK KITT 12 VOLT 750 mA Complete with prin circuit board and assembly instructions
12 VOLT 300 mA KIT. E3.15, 9 VOLT
£ $3.35^{\text {post }}$
R.C.S GENERAL PURPOSE TRANSISTOR

PRE-AMPLIFIER - BRITISH MADE
Ideal tor Mike. Tape, P U. Guitsr, etc Can be used with Battery 9.12 V or H.T. line $200-300 \mathrm{~V} \mathrm{~d} \mathrm{c}$. Operation.
$3 / 4 \mathrm{in}$ Response $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s}$. 26 dB gain For use with valve or transistor equipment
Full instructions supphiad. Details S.A.E.

ELECTRO MAGNETIC
 PENDULUM MECHANISM

 1.5 V d.c. operation over 300 hours continuous on SP2battery, fully adjustable swing and speed ideal displays. teaching electro magnetism or for metronome, strobe, etc

95p ${ }^{2010}$
R.C.S. "MINOR" 10 watt AMPLIFIER KIT This kit is sultable for record players, gutars. tape playback. electronic instruments or small PA. Systems
available Mono, $£ 12.50$; Stereo. $£ 20$. Post 45 p Specification available Mono, 10 W per channel, input 100 mV : size $91 / 2 \times 3 \times 2 \mathrm{~m}$, approx

\section*{MAINS TRANSFORMERS | Alp post |
| :---: |
| sop |}

$\begin{array}{lll}250-0.250 V & 70 \mathrm{~mA} .6 .5 \mathrm{~V}, 2 \mathrm{~A} \\ 250-0-25080 \mathrm{~mA} & 63 \mathrm{~V} 35 \mathrm{~A} .6 \mathrm{~V} \text { i } \mathrm{A} \text { or } 5 \mathrm{~V} 2 \mathrm{~A} & \mathbf{£ 3 . 4 5} \\ \mathbf{£ 4 . 6 0}\end{array}$

 HEATED TRANS $63 \mathrm{~V} 1 / 2 \mathrm{amp} £ 1 ; 3 \mathrm{amp}$ £1.40
GENERAL PURPOSE LOW VOLTAGE Tapped outputs at 2 amp 3.4,5. $6,8,9.1012,15$. 18. 25 and $30 \mathrm{~V} \subset 4.60$

 $3640,48,60 \cdot £ 8.70 .5 \mathrm{amp} 6$ 8, $10,12,16,18,20$,
$24,30,36,40,48.60 £ 11.25,6.06 \mathrm{~V} 500 \mathrm{~mA} £ 1,9 \mathrm{~V}$, $24,30,36.40,48,60 € 11.25,6.06 \mathrm{~V} 500 \mathrm{~mA} £ 1,9 \mathrm{~V}$
amp $£ 1,12 \mathrm{~V} 300 \mathrm{~mA} . £ 1,12 \mathrm{~V} 500 \mathrm{~mA}, £ 1,12 \mathrm{~V} 750 \mathrm{~mA}$
 $40 \mathrm{~V} 2 \mathrm{amp} ., \mathrm{c} 2.95,22 \cdot 0.22 \mathrm{~V}, 4 \mathrm{amp}$ d $\mathrm{c}, \mathrm{C3} .45,16 \mathrm{~V}$.
 AUTO TRANSFORMERS. 115 V to 230 V or 230 V to 115 V 150 W £5; 250 W £6; 400 W £7: 500 W £8.
FULL WAVE BRIDGE CHARGER RECTIFIERS
6 or 12 V outputs. $1 / / 2 \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}$. CHARGER TRANSFORMERS $11 / 2$ amp $£ 2.75 ; 4$ amp $£ 4.60$

GOODMANS 8-inch

HI-FI BASS WOOFER

8 ohm 10W Large ceramic magnet Speciat Rubber cone surround. Frequency response.
$30.8000 \mathrm{c} / \mathrm{s}$
Ideal HI-F1 Enclosure Systems. $£ 6.75$

	NEW ELECTROLYTIC CON				
2/350V	20p	250/254	20p	$50+50 / 300 \mathrm{~V}$	50p
4/350Y	20p	500/25V	25p	900/350V	95
$8 / 3504$	2 p	$100+100 / 275 V$	65p	$32+32 / 250 \mathrm{~V}$	20p
18/350y	35 p .	$150+200 / 275 Y$	70p	$32+32 / 450 y$	809
$32 / 500 \mathrm{~V}$	80p	$8+8 / 350 \mathrm{y}$	50p	$350+50 / 325 y$	85
25/25y	$15 p$	$8+16 / 350 \mathrm{~N}$	50p	$100+50+50 / 350 \mathrm{~V}$	85
50/50	15p	$16+16 / 350 \mathrm{~V}$	60p	$32+32+32 / 350 \mathrm{~V}$	65 p
100/25Y	15p	$32+32 / 350 \mathrm{~V}$	601	4700/6.3V	95

LOW VOLTAGE ELECTROLYTICB

1.2. $4 \quad 58$ 16. 25 . $30,50,100$. 200 mF 15 V 10 p .
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
2000mF 6V 25p; 25 V 42p; 50 V 57p.
2500 mF 50 V 62 p ; 3000 mF 25 V 47 p ; 50 V 65 p 5000 mF 6 V 25 p ; 12 V 42p; $25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V}$ 85p; 50 V 95p.

JRT WAVE 100 pF air spaced gangable tuner, 95p. TRIMMERS 10pF 30 pF 50pF 5p. 100pF 150pF 15p. CERAMIC, 1pF 10001 mF , 5p. Silver Mica 2 to 5000 pF 5p.
PAPER $350 \mathrm{~V}-017 \mathrm{p} ; 05 \mathrm{13p}, 1 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p} ; 2 \mathrm{mF}+50 \mathrm{~V}$ 15p; 500V-0 001 to 0005 5p; $0110 p ; 025$ 13p; 047 25p MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUB-MIN MICRO SWITCH, 25p. Sinqle pole change over
TWIN GANG, $000208 \mathrm{pF}+176 \mathrm{pF} \mathrm{E} 2.00 ; 500 \mathrm{pF}$ Standar $75 \mathrm{p}: 365+365+25+25 \mathrm{pF}$. Slow motion drive 50 p 120 pF TWIN GANG, 50 p; 365 pF TWIN GANG, 50 p .
NEON PANEL INDICATORS 250 V AC/ DC. Amber or red. 30p. NEON PANEL INDICATORS 250V AC/DC. Amber or red. 30
RESISTORS. $1 / \mathrm{W} 1 / 2 \mathrm{~W}$. $1 \mathrm{~W} 20 \% 2 \mathrm{p} ; 2 \mathrm{~W} 10 \mathrm{p} ; 10 \% 2$ to 10 M RESISTORS. $1 / 2 \mathrm{~W}$ 1/2W. $1 \mathrm{~W} 20 \%$ 2p; 2 W 6 mp ; 1012 to
HIGH STABILITY. $1 / 2 \mathrm{~W} 2 \% 10 \mathrm{ohms}$ to 6 meg 12 p. HIGH STABILITY. $1 / 2 W 2 \% 10$ ohms to 6 meg
Ditio 5% Pr Preferred values 10 ohms to 10 meg
$\mathbf{5 p}$. Ditio 5'\%, Preferred values 10 ohms to 10 meg 5 .
WIRE-WOUND RESISTORS 5 watt. 10 watt 15 watt 10 ohms to 100 K 12p each
TAPE OSCILLATOR CO

OIL Valve type 35 p .
BRIDGE RECTIFIER $200 \mathrm{~V} \mathrm{PIV} 1 / 2 \mathrm{amp} 50 \mathrm{p}$.

BAKER MAJOR 12" $£ 11.50$
 assembly having a flux density of 14,000 gauss and a total Hux of 145.000 Maxwells. Bass resonance $40 \mathrm{c} / \mathrm{s}$. Rated 25 W NOTE: 3 or B o 15 ohms must be stated.

Module kit, $30 \cdot 17,000 \mathrm{c} /$
tweeter crossover, baffle and
instructions
$£ 14.50$ Post $600_{\text {gach }}$ Please state 3 or 8 or 150 hms .

BAKER "EIO-SOUND" SPEAKERS, Post 50p each.

'Group 25'	'Group 35'	'Group
12 m 17 95	12 n	50/15'
sow $£ 8.95$	40w£ 10.50	15 n
3 or 8 or 15 onm	3 or 8 or 15 ohm	$75 w £ 19.50$

NEW MODEL BAKER LOUDSPEAKER, 12 .mch 60 WATT GROUP 50/12. 8 OR 15 OHM HIGH POWEh. © 4.50 30-16.000 CPS MASSIVE CERAMIC MA
£14.50 ALUMINIUM PRESENCE CENTRE DOME

Post 80p
TEAK VENEERED HI-FI SPEAKERS AND CABINETS For 12 in of 10 in speaker $20 \times 13 \times 12$ in $£ 12.50$ Post 950 For 13×8 in or 8 in , speaker 16
£6.96 Post 75p For $8 \times 5 \mathrm{in}$, speaker $12 \times 8 \times 6$ in
4.95 Post 50

R.C.S. 100 watt

VALVE

AMPLIFIER

CHASSIS

our inputs four way mixing, master volume, treble and bass controls Suits all speakers This professional quality amplifier chassis is sutable for all groups. disco. PA, where high quality power is requrred 5 speakerd for a quality valve amplifier | Send tor leatlet | Price |
| :--- | :--- |
| E85 | |
| Sarr | ⿺2 20 |

SPEAKER COVERING MATERIALS. Samples Large SAE Horn Tweeters $2-16 \mathrm{kc} / \mathrm{s}$. 10 W 8 ohm or $15 \mathrm{ohm} £ 3.60$ Re Luxe Horn Tweeters $2-18 \mathrm{kc} / \mathrm{s} 15 \mathrm{~W}$. 15 ohm . $\mathrm{C4.50}$.
De 15 or
CROSSOVERS. TWO.WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 oh CROSSOVERS. TWD.WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm ¢1.80. 3-way $950 \mathrm{cps} / 3000 \mathrm{cps}, ~ £ 2.20$.
LOUDSPEAKERS P.M. 3 OHMS. 7×4 in $\mathrm{E} 1.50 ; 61 / 2 \mathrm{n}$ £ 1.80 ; $8 \times 5 \mathrm{In}$., $£ 1.90$; 8 in ., $£ 1.95$.
SPECIAL OFFER: 80 ohm $21 / 4 \mathrm{in} 23 / 4 \mathrm{n}$. $35 \mathrm{ohm}, 2 \mathrm{nn} .3 \mathrm{~m}$ $25 \mathrm{ohm} .21 / 2 \mathrm{ir}$ dia. 3 in dia. 5 in dia. 8 ohm, $21 / 2 \mathrm{in}$. 3 in
 PHILIPS LOUOSPEAKER, \&in, 4 onms, 4 watts.
PHILIPS LOUOBIC magnet E 1.95
RICHARO ALLLAN TWIN CONE LOUDSPEAKERS
AICHARO ALLAN TWIN CONE LOUXSPEAKERS
8in diameter $\angle W \mathrm{E} 2.50$. 1 Qin. diameter 5 W £2.95;
12 in diameter $6 \mathrm{~W} £ 3.50$. $3 / 8 / 15$ ohms. please stat
VALVE OUTPUT TRANS. 40p; MIKE TRANS. 501.40 p - A,ke trans. mu metal 1001 £1.25.

Loudspeaker Volume Control 15 ohms 10 W with one inch iong threaded bush for wood panel mounting. 1/4in. spindle. ESp
SAKER 100 WATT

ALL PURPOSE

AMPLIFIER
All purpose trensistorised Ideal for Groups. Disco and P A. inputs speech and music. 4 way Separare treble and bass controls 065 Guaranteed Detanls S.A E. $\mathbf{E 5}$ Guaranteed Detanls S.A E. NEW MODEL MANOR - 50 walt. 4 in
treble and bass Ideal disco amplitier
 volume. treble, bass controls 500 MV
Four loudspeaker outputs 4 to 16 hm

BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER

 Add musical highlights and sound effects to recordings. Will mix Microphone. records, tape and tuner $\mathbf{~ w ~} 5.20$with separate controls into single output 9 V TWO STEREO CHANMEL VERSION £6.85
GARGAIN 3 WATT' AMPLIFIER. A T'T $^{\circ}$
BARGAIN 3 WATT AMPLIFIER. 4 Trans
Push-Pull Ready Buih, with volume. Treble
£4.50
and bass controls. 18 volt d c Mains Power Pack $£ 3.45$
COAXIAL PLÜG 10p. PANEL SOCKETS 10p. LINE 18p. OUTLET BOXES, SURFACE 40p. FLUSH 60p. TWIN 85 BALANCED TWIN RIBBON FEEOER 300 ohms. 7p Yd. Chrome Leed-Socket 45p. Mono or Stereo.
Phono Plugs 8p. Pbono Socket 8 p
JACK PLUGS Std Chrome 30 p; 3.5 mm Chrome 15 p .
DIN SOCKETS Chassis 3 -pin 10p. 5 -pin 10p.
DIN SOCKETS FREE 3 -pin 25p; 5 -pin 25p. OIN PLUGS
3 -pin 25p; 5 -pin 25p. VALVE HOLOERS, 10 p : CANS, 10 p.
R.C.S. SOUND TO LIGHT KIT

Kit of parts to build a 3 channel sound to light unit
1,000 watts per channel $£ 12.50$. Post $35 p$
'Easy to buile Full instructions supplied, cabinet ©3.
As teatured in December Practical Wireless
E.M.I. TAPE MOTORS. 240 V ac 1200 Size $3^{1 / a} \times 2^{1 / 2} \times 2^{1 / 4} 111$
$120 \mathrm{~V} \times 2$. Pos $140 p$

LYNX ELECTRONICS (LONDON) LTD.

	AC126	0.15	BC301	0.32	8Y206	0.15	1 N 4003	0.06 .
	AC127	0.16	8C323	0.60	BY207	0.20	1 N 4004	0.07
	AC 128	0.13	8C327	0.18	BY×36.300	0.12	1N4005	$0.08{ }^{\text {- }}$
	ACl28k	0.25	EC328	0.16	BY $\times 36.600$	0.15	in4006	$0.09{ }^{\text {- }}$
	AC141	0.18	BC337	0.17	BYX $36-900$	0.18	$1 \mathrm{~N}^{0} 007$	0.10^{+}
	AClialk	0.28	8С338	0.17°	BYx 36.120	0.21	2N696	0.14
	AC142	0.18	BCY 70	0.12	BY $\times 38.300$	0.50	2 N 697	0.12
	ACI42K	0.28	BCY71	0.18	BY $\times 38.600$	0.55	2N706	0.10
	AC176	0.16	BCy 72	0.12	Brx 38.900	0.60	2N929	0.14
	AC176K	0.25	BD 115	0.55	Byx 38120	0.65	2N930	0.14
	AC187	0.18	BD131	0.36	8ZX61 1 Serle		2N1131	0.15
	AC187k	0.25	BD 132	0.40	Zeners	0.20	2N1:32	0.16
	AC188	0.18	BD135	0.36	82×83 or B	x88	2N1304	0.20
	AC188k	0.25	80136	0.39	Series		2N1305	0.20
	40140	0.50	BD137	0.40	Zeners	0.11	2N1711	0.18
1	AD142	0.50	B0138	0.48	C106A	0.40	2N2102	0.44
	AD143	0.46	BD139		C106B	0.45	2N2369	0.14
	AD149	0.45	BD181	0.86	C1060	0.50	2N23694	0.14
	AD161	0.35	BD182	0.92	C106F	0.35	2N2484	0.16
	AD162	0.35	ED183	0.97	CRS1 05	0.25	2N2646	0.50
	AL102	0.95	8D232	$0.60{ }^{\circ}$	CRS $1 / 10$	0.25	2N2905	0.18
	Al 103	0.93	BD233	0.48 -	CRS 120	0.35	2N2905A	0.22
	AF 114	0.20	8 D 237	0.55	CRS 140	0.40	2N2926R	0.10°
	AF 115	0.20	8 D 238	0.60	CRS1/60	0.65	2N29260	$0.09{ }^{+}$
	AF 116	0.20	BD184	1.20	.CRS3.05	0.34	2N29267	0.09*
	AF 117	0.20	80Y20	0.80	CRS3. 10	0.45	2N2926G	0.10°
	AF 118	0.50	B0Y38	0.60	CR53 20	0.50	2N3053	0.15
	AF 139	0.33	BDr60	0.60	CRS3 40	0.60	2N3054	0.40
	AF239	0.37	BDV61	0.65	CRS3.60	0.85	2N3055	0.50
	BC 107	0.14	Boy62	0.55	M/480	0.80	2N3440	0.56
	BC1078	0.16	BF 178	0.28	M. 5481	1.05	2N3442	1.20
	BC108	0.13	EF179	0.30	MJ490	0.90	2N3525	0.75
	BCios	0.14	BF194	0.10	M 1491	1.15	2N3570	0.80
	BC109C	0.16	BF 195	0.10	MJE340	$0.40{ }^{*}$	2N3702	0.10^{-}
	$8 \mathrm{C}+17$	0.19°	BFi96	0.12°	MJE371	0.60	2N3703	0.10
	BC125	$0.18{ }^{\text {- }}$	BF197	0.12	MJE520	0.45	2N3704	0.10^{-}
	BC126	0.20°	Bf224J	0.18 '	MJES 21	0.55	2N3705	0.10°
	BC141	0.28	BF244	0.17	OAS	$0.50{ }^{\circ}$	2N3706	0.10°
	BC142	0.23	BF257	$0.30{ }^{+}$	0490	0.08	2N370,	$0.10{ }^{\circ}$
	$8 \mathrm{BC143}$	0.23	8F258	0.35	0491	0.08	2N3714	1.05
	BC144	0.30	BF337	0.32	0 C 41	0.15	2N3715	1.15
	BC14)	$0.09{ }^{\text {- }}$	BFW60	0.17	0 C 42	0.15	2N3716	1.25
	BC148	$0.09{ }^{\text {- }}$	BF×29	0.26	0 C 44	0.12	2N3771	1.60
	BC149	$0.09{ }^{-}$	Bfx30	0.30	0 C 45	0.10	2N3772	1.60
	BC 152	0.25	BF $\times 84$	0.23	OC70	0.10	2N3773	2.10
	BC153	0.18	8F×85	0.25	0 C 71	0.10	2N3819	0.28 -
	BC157	0.09	BF×88	0.20	OC72	0.22	2N3904	0.16
	BC158	0.09	3FY50	0.20	0 C 84	0.14	2N3906	0.16^{*}
	BC159	0.09 -	BFY51	0.18	SC404	0.73	2 N 4124	$0.14{ }^{\text {- }}$
	BC160	0.32	Bry52	0.19	SC40B	0.81	2N4290	$0.12{ }^{\circ}$
	$\mathrm{BC}_{6} 16$	0.38	BFY64	0.35	SC40D	0.98	2N4348	1.20
	8 BC 168 B	0.09	BFY90	0.65	SC4OF	0.65	2N4870	0.35
	BC182	0.11	BR100	0.20	SC41A	0.65	2N4871	0.35
	8C182L	0.11	BRY39	0.40	SC4 ${ }^{\text {P }}$	0.70	2N4919	0.70
	8C183	0.10	BS×19	0.16	SC41D	0.85	2N4920	0.50
	SC1834	0.10	BS $\times 20$	0.18	SC4iF	0.60	2N4922	0.58
	8С 184	0.11^{1}	BSx21	0.20	ST2	0.20	2N4923	$0.64{ }^{\text {- }}$
	BC184L	0.11	BSY95A	0.12	TiP29a	0.48	2N5060	0.20
	BC2078	0.12	${ }^{\text {BT }} 106$	1.00	TIP30A	0.52	2N5061	0.25 -
	BC212	0.11^{*}	BT107	1.60	TIP31A	0.54	$2 N 5062$	0.27
	BC212L	0.11	B1108	1.60	TiP32A	0.64	2N5064	$0.30{ }^{\circ}$
	BC213	0.12	BT 109	1.00	IIP34	1.05	2N5496	0.65
	BC213L	0.12	81116	1.00	11941 A	0.68		
	BC214	0.14 ${ }^{\text {- }}$	8U105	1.80	TIP42A	0.72		
	BC214L	0.14	Bu105		1 N2069	0.14		
	8C237	0.16°	02	1.90	1 N 2070	0.16		
	BC238	$0.16{ }^{\text {- }}$	BUI 26	1.60	1 N 4001	0.04 .		
	8C300	0.34			1N4002	0.05 -		

DIGITAL DISPLAYS \& LED'S

$\begin{aligned} & \text { DL704 } \\ & \text { Dit } 707 \end{aligned}$	$\begin{aligned} & \text { 99p } \\ & \text { 99p } \end{aligned}$	$\begin{aligned} & \text { DL747 } \\ & \text { DL750 } \end{aligned}$	$\begin{aligned} & £ 1.75 \\ & £ 1.75 \end{aligned}$	2 RED LED ONLY Green clear		$\begin{aligned} & 13 p \\ & 15 p \end{aligned}$
THYRISTORS						
	$\begin{gathered} 8 \mathrm{~A} \\ (1092) \end{gathered}$	$\begin{gathered} 1 \mathrm{~A} \\ \text { tos } \end{gathered}$	$\begin{aligned} & 3 \mathrm{~A} \\ & \text { (C106 ripe) } \end{aligned}$	$\begin{gathered} 64 \\ (T O 220) \end{gathered}$	$\begin{gathered} 8 \mathrm{~A} \\ (\mathrm{TO} 220) \end{gathered}$	104
50	20	25	35	41	42	47
100	25	25	40	47	48	54
200	27	35	45	58	60	68
400	30	40	50	87	88	98
600		65	70	1.09	1.19	1.26

TRIACS (PLASTIC TO-220 PKGE. ISOLATED TAB)

			6 5A		5					
	0.60	${ }^{\text {b }}$	(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)
100 V	0.60	0.60	0.70	0.70	0.78	0.78	0.83	0.83	1.01	1.01
200 V	0.64	0.64	0.75	0.75	0.87	0.87	0.87	0.87	1.17	1.17
400 V	0.77	0.78	0.80	0.83	0.97	1.01	1.13	1.19	1.70	1.74
600 V	0.96	0.99	0.87	1.01	1.21	1.26	1.42	1.50	2.11	2.17

LINEAR IC'S

HIGHAM MEED, CHESHAM, BUCKS. TeI. (02405) 75151
VAT - Please add 8% except items marked * which are 12 \%/2 $\%$

ㄴ ㄴ ㄱThe SECOND-USER Computer Specialists

COMPUTER SALES Peripherals and Systems for Data Processing AND seivices Systems, Equipment and Components

Vinincomputer \#nen 2,

JUST RECEIVED - PDPBE 8K Processor PDP 1 1/20 24 K Processor with RF11/RS 1 \& Disk Drive and Control and Remex High Speed Reader / Punch \& Control Tektronix Graphics Display \& Control (for PDP 11 series)
PDP81 16 K Processor, rack-mounted. with Teletype Contr PDP81 16 K Processor, rack-mounted. with Teletype Control PC8 1 High Speed Reader Punch
RK05 Disk Drive (no Controler)
DF32 Disk Drive and Control (for PDP8E series)
TU60 DUAL Cassette Drive and Control (for PDP8E series) RTO2 Single-line Alphanumeric Display and Control (for RTO2 Single-li
PDP8E serres)
DEC 6 ft Cabine
IMMEDIATE EX STOCK DELIVERY OF ASR 33 TELETYPES ALSO ASR35 and KSR33
NOVA $2 / 1032 \mathrm{~K}$ Processor with Hardware Multiply ${ }^{\prime}$
Divide, Floating Point, Real Time Clock and Paper Tape
Reader
NOVA 120016 K Processor with Real Time Clock Twin
Cassette Unit and Matrix Printer
Also avallable Nova 4 K Memory Module 8103, a few only 8K 8115 From $£ 250$.
位
IBM PUNCHED CARD
EQUIPMENT
EX STOCK DELIVERY OF IBM 024
056, 026, 077

Paper Trpe Punches and headers

TELETYPE BRPE 110 CDS Synchionous Punch
578 channel Selt contaned mans operated unnt consisting of puinch unit base molot and tane suply sproi Price
astinet ava lable dt $£ \mathbf{2 5 . 0 0}$

 low out sensor and targe bult in
E595.00 Contiol unit also avalizale

[^4]COMPUTER SALES \& SERVICES (EQUIPMENT) LIMITED
49/53 Pancras Road, London NW1 2QB. Tel. 01-278 5571

BENTLEY ACOUSTIC CORPORATION LTD.

 25323
AAl19 $\left|\begin{array}{ll}\text { BCY12 } \\ \text { BCY }^{2} & 0.58\end{array}\right|$ 0.58 GET887

 p.m Closed 1.2 p.m. 25p for post and packing or cheque with order. Despatch charges: - Orders below $£ 10$ in value. add 25p for post and packing. Orders over $£ 10$ post and packing free of charge. All orde rscleared same day.
Any parcel insured against damage in transit for $5 p$ extra per parcel. Conditions of sale a vailable on
request. Many others in stock too numerous to list. Please enclose S.A.E. for reply to any enquiries.

MUIRHEAD D-658 I8" MUFAX CHART TRANSMITTERS (Model GA). Further details on request. For $110 / 250$ v a.c. operation $£ 325.00$ MEGGER (Record): 500 volts $£ 20.00 £ 1.00$ post
MEGGER (Evershed Vignoles): 250 volts $£ 17.50 £ 1.00$ post
PRECISION METER: $0-18.5 \mathrm{Kv} 6^{\prime \prime}$ scale. Electrostatic movement in fine wood mahogany box. $£ 7.50 £ 1.00$ post
R216 Receiver MANUAL (photostat copy): $£ 1.50$ inc. post
AIRMEC FREQUENCY METER TYPE 265: 0-6000 rpm and $0-100 \mathrm{Kc} / \mathrm{s} \mathbf{£ 3 5}$. Carr. £2.
RACAL I.S.B. ADAPTOR RA-95A: £65. Carr. £2.
MUIRHEAD ATTENUATORS: 75 ohms $0-8 \mathrm{Mc} / \mathrm{s} 3 \mathrm{~V}$ MAK 3 ranges 0-5. 0-25 $0-50$ DB $£ 3.00+75$ p post
CREED MODEL 54 TELEPRINTER: $£ 37.50$ each. Carr. £4.
CREED MODEL 75 TELEPRINTER: Receiver only £30.00. Carr. $\mathbf{£ 3}$.
MULLARD VALVE VOLTMETER: E/7555/3 A.C./D.C. 2 ranges $0-5$ and $0-500 \mathrm{v}$. E35. Carr. £2.
EDDYSTONE TELEPRINTER ADAPTOR TYPE 937: £45. Carr. £1.
WAVEMETER CLASS 'D' NO. 2: 1.2 to $20 \mathrm{Mc} / \mathrm{s} 12$ volts d.c. input or 240 v a.c. £I2.50. Cart. £3.
WILD BARFIELD ELECTRIC FURNACE MODEL CCI.22X: With ether indicating temperature controllers Model $990.0-1400^{\circ} \mathrm{C}$. £250. Carr. £5. METRŌVAC ION̄IZ̄ATĪON Ḡ̄́Ū̄̄̄ MOD̄EL V.C.3: £55. Carr. £3.
AVO VALVE TESTER CT.I60: (Portable) similar to Avo Mk. 3 Characteristic meter, Good condition, £45.00. Carr. $£ 2.00$.
ANTENNA MAST: 30 ft . consisting of $10 \times 3 \mathrm{ft}$ tubular screw sections ($\% \mathrm{~F}^{\prime \prime} \mathrm{dia}$) with base, guyropes and stays, etc. $£ 7.50$ each. Carr. $£ 2.00$.
REDIFON TELEPRINTER RELAY UNIT No. 12: ZA-41196 and power supply 200-250V a.c. Polarised relay type 3 SEITR. $80-0 \mathrm{~V} 25 \mathrm{~mA}$. Two stabilised valves Carr. 75p.
SOLARTRUN PULSE GENERATOR TYPE G1I0I-2: $£ 75.00$ each. Carr. $£ 2.00$. TELEPRINTER TYPE 7B: Pageprinter 24V d.c. power supply, speed 50 bauds per min . second hand cond. (excellent order) no parts broken. £20 each. Carriage $£ 3$. AUTO TRANSFORMER: $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}, 1000$ watts. Mounted in strong steel case $5^{\prime \prime} \times 6^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$. Bitumen impregnated. £12.00. Carr. £1.50.
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under osellatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction with a treq. meter. £25. Carr. £i.50.
SOLARTRON VARIABLE POWER UNIT S.R.S. $1535: 0-500$ volts at $10(1 \mathrm{~mA}$ and 6.3 volts C.T. 3 amps d.c. $110 / 250$ volts a.c. input. £I8.50. Carr. £1.50.

ALL U.K. ORDERS SUBJECT TO, VALUE ADDED TAX.

CLASS 'D' WAVEMETER NO. I: Crystal controlled heterodyne frequency meter covering 2.8 MHz . Power supply 6 V d.c. Good secondhand condition E8.50. Carr $£ 150$
PRECISION PHASE DETECTOR TYPE 205: Freq. $0.1-15 \mathrm{MHz}$ in 5 ranges. Variable time delay microseconds $0-0.1 \mathrm{c}, 115 \mathrm{~V}$ input. $£ 55$ each. Carr. $£ 1$.
MUIRHEAD PHASEMETER D-729: A.M. E85. Carr. E3.
all Carriage quotes given are for 50-mile radius of london ONLY.
RACAL RA17 Front Panels: £5. £1 post.
Q METER: $30 \mathrm{MHz}-200 \mathrm{MHz}$. £55. Carr. £
MUIRHEAD PHASEMETER TYPE D729: A.M. £95.00. Carr. $£ 3.00$.
CT. 420 SIGNAL GENERATOR: $200-8000 \mathrm{c} / \mathrm{s}$ Variable tuning. Two fixed frequencies 9000 and 10,000 . Internal calibrator $100 \& 500 \mathrm{c} / \mathrm{s}$. $\mathbf{E 7 5}$ each carr. £2. NOISE GENERATOR TF-IIO6: Frequency 1 to $200 \mathrm{Mc} / \mathrm{s}$ Direct noise factor calibration. Output impedance 70 ohms $£ 65$ each. Carr. $£ 1.50$.
MW-59 UNIVERSAL KLYSTRON POWER SUPPLY: £85. Carr. £3.
1F-1278/I TRAVELLING TUBE WAVE AMPLiFItk: $£ 1 \%$. Carr. t 2.
BPL A.C. MILLIVOLTMETER TYPE VM.348-D Mk. 3: 2 millivolts- 2 volts, 6 ranges. £30. Carr. E 1 .
CAWKELL REMSCOPE TYPE 741 : Memory scope, as new cond. Eilbu.uv MANSON SYNTHESISER QII5-URC: $2-30 \mathrm{mc} / \mathrm{s}$. £I75.00.
FIREPROOF TELEPHONES: $£ 25.00$ each, carr. $£ 1.50$.
POWER UNIT: $110 / 230$ volts a.c. input. 28 volts d.c. at 40 amps output. £30.00 each. carr. £3.00
SMOOTHING UNIT (for the above): $\mathbf{£ 1 0 . 0 0}$ each, carr. $\mathbf{£ 2 . 0 0}$.
X-BAND MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James Scott. £I25 each.Carr. £1
BACKWARD WAVE OSCILLATOR TYPE SE-125: 6.3 heater, 105 V Anode, 7.9 mA . Mnfr. Watkins \& Johnson. $£ 85$ each. Carr. £1.

TEKTRONIX TIME MARK GENERATOR TYPE 180-SI: 5, 10, 50 MHz . £65. Carr. £2.
ROTARY INVERTERS: TYPE PE.2I8E - Input $24-28 \mathrm{~V}$ d.c.. бU Amps. 4, 8ữ rpm. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}$. 1 Ph. P.F.9. £20.00 each. Carr. $£ 2.50$.
FREQUENET VETER BC-221: $125-20.000 \mathrm{Kc} / \mathrm{s}$ complete with original calibration charts. Checked out, working order $£ 20+£ 1.50$ carr.
SORENSEN VOLTAGE REGULATOR: Input 190/260 volts a.c. Output $220 / 240$ oits a.c. 1000 watts. $£ 40.00$, carr. $£ 3.00$
EVERSHED SAFETY OHM. METER: Max 10 Ma . Test pressure 30 v . Complete in leather case. $£ 25.00$ each. post $£ 1.00$.
AVO SIGNAL GENERATOR: $200 / 250$ volts a.c. Frequency range 6 bands $50 \mathrm{~Hz}_{z}$ to 80 MHz . $£ 25.00$, carriage $£ 2.00$.
FYLDE AMPLIFIERS TYPE 154 BDM: Rack mounted 3 - d.c. and power supply EE.500.TP. £65.00, carr. $£ 2.00$
AUTOMATIC VOLTAGE STABILIZERS: Input $207-242 \mathrm{v}$ a.c. Output 230 v a.c. at 2.80 amps. $£ 17.50$, carriage $£ 1.50$.

EQUIPMENT designed by J. L. LINSLEY-HOOD AUDIO OSCILLATOR

avo osc ver Low

$£ 14.00$
READY MADE

Phase Locked Loop F.M $£ 40$ or in pack form

HI FI AMPLIFIER Price (Kii) $£ 64$
Also in component and module form

ALSU AVAILABLE F.M Sig/Gen-Wobbulator£12. TH.D. Analyse £18.50 0.60v 1APSU. £17.30

TELERADIO ELECTRONICS
325 FORE STREET, EDMONTON, LONDON, N.9. 01-807 3719

ELECTRONORGTECHNICA

carbon film
RESISTORS
$1 / 8$ and $1 / 4 \mathrm{w} 70^{\circ} \mathrm{C} 5 \%$ tol. E. 12
EX-STOCK
£4.50
PER 1,000
OF ONE VALUE
PLUS
V.A.T

Contact John Gingell
\& \&

ELECTRONIC BROKERS

Electronic Brokers Ltd. are one of the leading electronic instrumentation companies in the UK, providing a full range of services to Universities, Industry, Colleges and Governments both at home and overseas.

We have the largest stocks of secondhand test equipment in Europe as well

TESTEPHOME

SWEEP GEJERMTORS

 JERROLD

as a selected range of new products. These are on display at our London showrooms where customers can examine the equipment of their choice and see it working.

Electronic Brokers Ltd have fully equipped workshops on the premises to test and report on the majority of equipment we sell.

GENERAL RADIO
Unit Oscillaor 1209 C Frea $250-920 \mathrm{MHz}$ Accuracy

 HEWLETT PACKARD
\qquad

 SHF Sigral Generator $618 \mathrm{C} \quad 28.76 \mathrm{GHz}=1$
500 hms
$\mathbf{E 5 5 0 . 0 0}$ UHF Signal Generator 616418.42 GHz E475.00
MARCONI INSTS MARCONI INSTS

 good condition Antemal Exlernal Mod facilities V 8
 Oistortion (1) on internal FM $=\mathbf{2 5} \mathrm{Hz}$ (2) on internal
A.M 6% at 30% mod

 RC Oscillator IF 1370 A 10 Hz - 10 MHz Square Wave
wit to 100 KHz High Outpuls up to 316 V E285 Phase $A \mathrm{M}$ Signal Generalo if 2003

 variable Akenuator 0.6d8 in 10 dB steps impedance
600 ? Distortion Via 1 KHz Filter less than 01%

 RADIOMETER D890A $1 \mathrm{Hzz} .112 \mathrm{KHz} \quad \mathbf{E 3 3 5 . 0 0}$

OSCILLOSCOPES

HAMEG

sistorised compact single beam portable scondwidih of 8 MHI Compensated $Y-$ artenuator	
- Veeterenill or ther naly	
comen	
1441 14:3 [180	
roband	
25 MHz Scope R $050 \mathrm{c} / \mathrm{w}$ 5C Plug in	
25 MHz ScopeTEKTRONBX	

Segmented Mullorie Cold Camode Gastimed ricicail

POWER SUPPIES

 Fast response lime Fast respo
$5 V-6 A$
$3 V-8 A$

Ex Computer ($108-132 \mathrm{~V}$ Input) Type 007 (6004501

thetestequipment people

On these pages you will find just the briefest selection from the vast range which we hold in stock at any cne time.

If you are seeking a specific item and it is no:

49-53Pancras
Road, London NW12QB
Tel:O1-837 7781

WORLD WIDE EXPORT.
Enquiries and tenders welcome from any part of the world.
HOW TO REACH US
We are easy to reach, no matter where you live. Minutes away from Kings Cross or St. Pancras main-line stations, and a bus ride from Euston; only just over halt an hour from Heathrow Airport. Parking is easy too.

ranges 0.05% EC accuracy 6

 Freg range
FLUKE
Differential Differential Voltmeter 821 . For calibratos. testing.
stability measurements of tegulated power supplies. AC stability measurements of tegulated power supplies. GC
Volimeter catbration $\pm 0001 \%$ absoiete accuray
infinite inpul reenslance al null over entirs 0.50 CV

Carriage and packing charge extra on all items unless otherwise stated.

Type $315-0502654 \mathrm{D}$
Type $315-0505928 \mathrm{G} \quad 12 \mathrm{~V}-15 \mathrm{~A}$
$12 \mathrm{~V}-25 \mathrm{~A}$

The most comprehenave catalogue of itt kind ever compiled in the UK
Sond 50 p to wards prinug, postage, etc (Overseas customerf $\{1$) and a catalogue will
be zent by return. besent by return.
Electronic Brokers Ltd, will then keep the Electronte Brokere tyd will then keep the
catalogues updated by forwerding revision
aheots tren of charge.

MULTMETERS

Avo
Avometer Test Set No 1 (Panclimatic Version of Model
£44 9)
Avometer Model
Avomeler Modet Avometer Model A29
All above Melurbished calibrated and guaranteed test
leads. NEW for above Models leads. NEW
RUSSIA
AC Clamp Volt-ammetel $\cup 91$ Band New E13.75
Sperc Current $10.25 \cdot 100.250-500$ Amps, Voltage
300.600 V Accuracy 4% Used for measurements of 300.600 V Accuracy 4% Used for measurements of Ranges are selected by means of a Rolary Selecior
 Nominal olp Voltage lopen ccl
${ }_{640}^{632}$

BROK

 marco
 7hbs.) and Hand operated C
ALSO INSIDE BACK PAGE.

YOLTMETERS

STROBOSCOPES \& TACHOMETERS

 STROBOSCOPIC TACHOMETERTwo units in one
 TVM 400 L Logan thmic version of 4000 Reads RMS

 AV Volmeter 200 E Solid slate AC velts $1 \mathrm{PV} . \mathrm{O} . \mathrm{A}$
\qquad

 F Milivoltmeter GM $6012 \quad 12$, anges. 1 niv. 300 V

 sign electronics
solartron

IFAMEC/RACAL 5300 MHz C195.c340

 SIRMEC

MPEX
M Drect Recorder/Reproducer SP 300. 4 nstrumentation $50 \mathrm{~Hz}-40 \mathrm{~Hz}$ at 15 ips. Audo
 BECKMAN
ranger Oscallator 7580 HDC .15 GHz with countisp
 BELL
Saussim

Eviallor Bridge 1505
areny Charger BE 370
arenc Charger CC 99
ower Supply for Noise Source. MW6 61
and Pass Filter TBA $140-60-5 C C 15$ Section TNC to
 rube type P6006 (with UHF plug titted) E12.50 Hermocouple tesi set 7556
GENERAL RADIO
mmuttance Bridge 1607 A Immaculate Condtion in
Fioden Transit Case
 HENLETT PACKARD
Sigutal Recorder 560 A
HEWLETT PACKARD

Altenuaror TF $1073 \mathrm{~A} / 2 \mathrm{~S}$
Out of Limits indicalor TF $2404 / 2 \mathrm{M}$ 1 Chers
eanings from electionic counters and other digigat table for use by unskilled personnel and with A If Siank \& Sync Mrxet if 2908 E90 = Pomer Meter TF 1152 , 2343 C. Meter TF 329G
tove kir FM8120.
RHODE E SCHWARTZ
Stereo Coder MSCBN 4192
 IELONIC

WIEFATLITINTS

CARBON RESISTOR PAKS Thest Paks contain a range of Carbon Resistors, assorted into the following
groups:-groups:-
R. 50 Mixed 100 ohms -
820 ohms 1/th W R2. 50 Mixed 1 K ohms R3. 50 Mixed 10 K ohms $1 / 2 \mathrm{th}$ R4. 82 K ohms $1 / \mathrm{tth}$ W R4. 50 Mixed 100 K ohms R5. 30 Mixed 100 ohms R6. 30 Mixed 1 K 0 ohms $1 / 2 \mathrm{~W}$ R7. 30.2 K ohms R7. 3 Mixed 10 K ohms R8. 30 Mixed 100 K ohms $820 \mathrm{~K} \mathrm{ohms}^{1 / 2}$

- These are unbeatable prices.

LOW COST CAPACITORS			
500	$\mu \mathrm{~F}$	50 V	
01	$\mu \mathrm{~F}$	400 V	
0.09	each		
	0.03 each		

REPANCO CHOKES \& COILS $\begin{array}{lll}\text { CH } & 2.5 \mathrm{mH} & 0.27 \\ \mathrm{CH} 3 & 7.5 \mathrm{mH} & 0.29\end{array}$ $\begin{array}{lll}\mathrm{CH} & 1.5 \mathrm{mH} & 0.29 \\ \mathrm{CH} & \mathbf{5} .26\end{array}$ $\begin{array}{lll}\mathrm{CH} 2 & 5.0 \mathrm{mH} & 0.28 \\ \mathrm{CH} & 10 \mathrm{mH} & 0.31\end{array}$
COILS DRX1 Crystal set 0.29

CARBON POTENTIOMETERS Log and $\mathrm{Lin} 4.7 \mathrm{~K} .10 \mathrm{~K}, 22 \mathrm{~K} .47 \mathrm{~K}$

 , $470 \mathrm{~K}, \mathrm{IM}, 2 \mathrm{M}$. 22 K .47 K .100 K , VC I Single Less SwitchVC 3 Tandem Less Switch VC 5 lotin Less Switch

HORIZONTAL CARBON PRESETS

0.1 Watt 0.09 each

00, 220, $40.1 \mathrm{~K}, 2.2 \mathrm{~K}, 4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$ $47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}, 4.7 \mathrm{M}$.

REPANCO TRANSFORMERS *

240 V . Primary. Secondary voltages $8 \mathrm{~V} .10 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}$ and $25 \mathrm{~V} \cdot 0-25 \mathrm{~V}$.

Type	Amps	Price	P\&P
Ti550/1/2	$1 / 2$	$£ 3.00$	0.45
MT50/1	1	$\mathbf{E 4 . 0 0}$	0.48
MT50/2	2	$\mathbf{E 5 . 0 0}$	0.60

COIL FORMERS \& CORES
NORMAN $14{ }^{\prime \prime}$ Cores \& Formers 0.07 p
Cores \& Formers
${ }_{0.09 \mathrm{p}}$

SWITCHES

DP/DT Toggle 0.28 p

FUSES

20 mm .100 mA . $200 \mathrm{~mA}, 250 \mathrm{~mA}, 500 \mathrm{~mA}$
Anti-surge 20 mm only $\quad{ }^{*} 0.05 \mathrm{p}$ each
VEROBOARDS*
VB I . B 2 all 0.1 matri
containing approx. 50 sq . ins. various sizes all 0.15 matrix
DECON-DALO 33PC Marker
Etch resistant printed circuit marker pen. Full instructions supplied
each pen

$* 0.92 p$

BATTERY HOLDERS*
Takes 6 H.P. 7's complete with terminal
V.A.T.
all prices EXCLUDE V.A.t.

Please add 8% to all prices marked ${ }^{*}$. Remainder add 121/2\%. Do NOT add V.A.T. to prices marked \dagger.

 40 | .40 |
| :--- |
| .60 |

SOLDERING IRONS

102 for model CN240	3/32"	${ }^{*} 42 \mathrm{p}$
104 for model CN240	3/16"	*46p
1100 for model CCN240	3/32"	${ }^{*} 46 \mathrm{p}$
1101 for model CCN240	3/8'	* 46 p
1102 for model CCN240	$1 /{ }^{\prime \prime}$	*46p
1020 for model G240	3/32"	*46p
1021 for model G240	1/8'	*46p
1022 for model G240	3/16 ${ }^{\text {. }}$	*46p
50 for model $\times 25$	3/32'*	*46p
51 for model X25	1/8'	*46p
52 for model X25	3/16 ${ }^{\prime}$	*46p
ELEMENTS *		
Model ECN		*£1. 25
Model EG 240		* E 1.60
Model ECCN 240		*¢1.60
Model EX 25		*1.40
SOLDERING IRON STAND		
ST3 Suitable for all mode		*£1.25

BITS AND ELEMENTS*

PLEASE ADD 20p POSTAGE AND

COMPONENT PAKS

Pak Qty Description

${ }_{\mathrm{C}}^{\mathrm{No}} 200$ Resistors mixed values
C2 150 Capacitors mixed values
C3 approx count by weight 50 Precision Resistors mixed 60 $\begin{array}{ll}50 \text { Precision Resistors mixed } \\ \text { values } \\ \text { C4 } & .60\end{array}$ $\begin{array}{ll}\mathrm{C} 5 & 5 \text { preferred values } \\ \mathrm{C} 6 & .60 \\ & \text { Pieces assorted Ferrite Rods. } 60\end{array}$ Tuning Gangs. MW/LW 60 VHF 60 Pak Wire 50 metre C8 10 Reed Switches C9 3 Micro Switches C10 15 Assorted Pots \& Pre-Sets $\quad \begin{aligned} & \mathbf{*} .60 \\ & \mathbf{. 6 0}\end{aligned}$ x standard Switch Type. x standard Switch Type C12 30 Paper Condensers preElectrolytics Trans types C14 1 Pack assorted Hardware. Nuts/Bolts,Grommets. etc.* Mains Slide Switches, 2 Amp C16 20 Assorted Tas Strips Panels .60 $\begin{array}{rr}\text { C17 } & 10 \\ \text { Assorted Control Knobs } \\ \text { C18 } \\ 4 & \text { Rotary Wave Change }\end{array}$ $\begin{array}{ll}\text { C19 } \\ \text { Switches } \\ 2 \text { Relays } 6-24 V & \text { Operating , } \\ .\end{array}$ C20 Sheets Copper Laminate. approx. 200 sq. ins.
Please add 20 p post and packing ${ }^{*} 60$ component packs. plus a further 10 p on pack nos. C1,C2. C19 \& C 20 .

AVDEL BOND
SOLVE THOSE STICKY PROBLEMS!

CYanOACRYLATE G2 ADHESIVE
\qquad

OUR PRICE ONLY 70p *

$$
\begin{array}{lr}
\text { PLUGS } & \text { PRICE } \\
\text { PS } 1 \text { D.I.N. } 2 \text { Pin (Speaker) } & 0.10 \\
\text { PS } 2 & \text { D.I.N. } 3 \text { Pin }
\end{array}
$$

3 D.I.N. 4 Pin
4 DIIN. 5 Pin 180°
P.C.B. KITS \& PENS

PROFESSIONAL D.I.Y. PRINTED
Containing 6 sheets of $6^{\prime \prime} \times 4^{\prime \prime}$ singl
sided laminate. a generous supply of etchant powder. etching dish, etchant marking pen, high quality pump drill with spares, cutting knife with drill blades, $6^{\prime \prime}$ metal ruler. plus full easy to follow instructions.
complete with instructions
P.C.B. MARKING PENS
$2 \times$ quality market pens, specifically designed for drawing fine etchan resistant circuits on copper laminate Complete with full instructions *£1.53

SLIDER PAK

Containing a range of slider pots.
SPI 6 mixed values sliders SP1
SP2
SP3
SP4

0.60

SP3 6 47OR Lin. sliders

P4 , $6 \quad 22 \mathrm{~K} \mathrm{Lin}$.
LOW-NOISE CASSETTES C60
$C 90$

SEMICONDUCTORS
IT'S NEW-IT'S POWERFUL! IT'S THE AL250
125 watts R.M.S.
of 450 mV and frequency
esponse extending from 25 Hz
to 20 KHz whilst distortion levels
are typically below 1% The
use of 4. 115 w transistors in the
POWER AMPLIFIER
output stage makes the unt extremely ruound reenforcement systems power H-Fi
ncorrect or short-circuit loads is prevented by a four transistor protection
circuit
The unit is intended for use in many applications such as disco units sound SPECIFICATION
Output Power: 125 watt RMS Continuous
Operating voltage: 50-80
Loads: 4-16 ohms
Frequency
response:
$25 \mathrm{~Hz}-20 \mathrm{kHz}$ Measured at 100
watts
Sensitivity for 100 watts output
at 1 kHz : 450 mV
ONLY $£ 15.95+8 \%$ VAT

BIB HI-FI ACCESSORIES

REF

Tape Head Cleaning Tit
Hi-Fi Cleaner
Model 9 Wire Stripper
24 1/4"' Cassette Editing Ki
29A Salvage Cassette
32A Stylus Balance
33 Splicing Tape
36A Record \& Stylus Cleaning Kit ${ }^{* 38} 32 \mathrm{p}$
Model 42 Groov-Kleen 88 p
$42 / \mathrm{S}$ Roller $\&$ Brush for REF 42 \& ${ }^{*}$ 2000 1.84
43 Record Care Kit
46 Auto Chang
48 Record Dust-o
52A Cassette Tray
53 Hi Fi Stereo Test Cassett
56 Hi Fi Hints
56 Hi-Fi Hints \& Tips Book
Model 60 Groow-Kleen
and Base Sticker for Melvet Pad
62 Cassetre Head Cleaner (Liquid) 48 p
62 Cassette Head Cleaner (Liquid) 48 p
71 Record 'Dust Off' (Display's of ten)
11A Record 'Dust Off' (Bubble Pack) ${ }^{* 70 p}$
75 Indexa Record
78 Cassete Fast Hand Winder $\quad{ }^{* 36}$ p
$83 \begin{gathered}\text { Cassette Title \& Container Labels } \\ (20 \& 10)\end{gathered}$

AUDIO LEADS

S221 5 pin DIN plug to 4 phono plugs
S222 5 pin DiN plug to 5 pin DIN socket
37 length 1.5 m

Total harmonic distortion
50 watts into 4 ohms: 011%
50 watts into 8 ohms: 0.06%
S/N ratio: berter than 80 dBs Damping factor, 8 ohms: 65 Semiconductor complement: 13 transistors, 5 diodes
Overall size: Heatsink width 190 mm , length 205 mm , height

CERAMIC PAKS
Containing a range of miniature ceramic capacitors in mixed values. unrepeatable value.

124 ceramic capacitors: 22 pF . 27pF, 33pF, 39pF, 47pF, 56pF, 68pF. 24 ceramic capacitors: 100 pF . 120 pF . $150 \mathrm{pF} .180 \mathrm{pF} .220 \mathrm{pF}, 270 \mathrm{pF}$.
330 pF . and $390 \mathrm{pF} \ldots \ldots . .0^{2} .60$ MC3 24 ceramic capacitors: 470 pF . $560 \mathrm{pF} .680 \mathrm{pF}, 830 \mathrm{pF}, 1000 \mathrm{pF}$, MC4 2] ceramic and 3300 pF . 0.60 $6800 \mathrm{pF}, 01 \mu \mathrm{~F}, .015 \mu \mathrm{~F}, .022 \mu \mathrm{~F}, .033 \mu \mathrm{~F}$ $6800 \mathrm{pF}, 01 \mu \mathrm{~F}, .015 \mu \mathrm{~F}, .022 \mu \mathrm{~F}, .033_{\mu} \mathrm{F}$
and $.047_{\mu} \mathrm{F} \ldots \ldots$.
0.60

MAMMOTH I.C. PAK

 APPROX. 200 PIECESAssorted fall-out integrated circuits, including: Logic. 74 series, Linear,
Audio and D.T.L. Many coded devices but some unmarked - you to identify.
OUR SPECIAL PRICE 1.00

HANDBOOKS

TRANSISTOR DATA BOOK. DTE 2 227 Pages packed with information on tion including outlines.
TRANSISTOR EQUIVALE +22.95 each BPE 75256 Pages of cross references and equivalents for European, American and Japanese Transistors. This is the most comprehensive equivalents book on the market today and has an introduction in 13 languages. DIODE EQUIVALENT BOOK 144 Pages of cross references 74 equivalents for European, American and Japanese Diodes, Zeners, Thyris-
tors, Triacs, Diacs and L.E.D.s. Prs. Triacs, Diacs and L.E.D.'s.
Price \dagger £1. MULLARD DATA BOOK
MDB 50p. The tatest edition MDB 50 p . The latest edition of this popular handbook contains informaCircuits. Television Picture Tubes Valves, Capacitors and Resistors. Included in the 161 informative pages are 21 pages on $\begin{aligned} & \text { Semiconducto } \\ & \text { Comparables }\end{aligned}$. 50 p . TTL DATA BOOK DIC 75 Now complete Data book of 74 series TTL (7400.74132). Covering 13 main manu facturers in U.S.A. and Europe, this book gives full data as well as equivalents
THE WORLD'S + E3.74
BROADCASTING STATIONS WBS 75 An up-to-the minute guide for those interested in
DX-ing. Contains all the worid's DX-ing. Contains all the world's
broadcasters on SW MW and well as European FM/TV stations.
A full range of technical books

Connected to pins 3 \& 5 length
1.5 m
S 7005 pin DIN plug to 3.5 jack connected to pins $1 \& 4$ length

High quality modules for stereo, mono and other audio equipment.

pre-amplifier power amplifiers and power supply. This with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs i.e high quality ceramic pick-up. stereo tuner, stereo tape deck etc. Simple to install capable of producing really first class results, this unit is supplied with full instructions, black front panel knobs, main switch. fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available Ideal for the beginner or the advanced constructor who requires Hi-Fi performance with a minimum of installation difficulty (can be installed in 30 mıns)

TRANSFORMER $£ 2: 45$ plus $62 p p$ \& TEAK CASE £3.65 plus $62 p p$ \& p

AL 5125 Watts (RMS)

* Max Heat Sink temp 90C. * Frequency response 20 Hz to $100 \mathrm{KHz} \star$ Distortion better than 0.1 at $1 \mathrm{KHz} \star$ Supply voltage $15-50 \mathrm{v}$ * Thermal Feedback * Latest Design Improvements Load - 3,4,8, or 16 ohms Signal to noise ratio 80 db * Overall size 63 mm .105 mm . 13 mm .
 PA1 2, SA450 etc

Stabilised Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watts (R M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size 63
Transformer BMT80
$£ 2.60+62$ p postage

Input voltage $15-20 \mathrm{v}$ A C Output voltage $22-30 \mathrm{v}$ D. C

P.O. BOX 6, WARE, HERTS

QUADRAPHONIC KIT MODULES

The following modules. currently being described in Wireless World, are offered Each kit comprises of glass fibre PCBs and Components. Each module functions independently, but a universal system may be constructed by means of a master switch

Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut.
Hirschmann Banana plugs and test probes XLF compatible in-line attenuators and reversers.

Low cost slider faders by Ruf.
Future Film Developments Ltd. 90 Wardour Street London WIV 3LE 01-437 1892/3

WW-036 FOR FURTHER DETAILS

$\mathbf{£ 3 2 + V A T}(\mathbf{E 4 . 0 0})$
 R COMPANY OF JAPAN VARIOMATRIX DECODER SYNTHESIZER £28 + VAT (£3.50)
OS, QS Variomatrix and OS Synthesizer are registered trade marks of SANSUI ELECTRIC COMPANY LIMITED OF JAPAN

(Variable Blend + Wave Matching Logic)
SO is the registered trade mark of CBS INC
WASTER SMITGM NTT E8.50 + VAT [E1.06)
Add $£ 1$ postage packing and insurance per parcel. Overseas customers neglect VAT. but
add $£ 3.20$ per kit to cover airmail postage.
COMPCOR ELECTRONICS LIMITED 9 DELL WAY, LONDON W13 8JH
or telephone $01-9988221$ on weskdays between 7.30 p.m. and 10 p.m. only WW-092 FOR FURTHER DETAILS

COMPUTER APPRECIATION

Castle Street, Bletchingley, Surrey RH1 4NX. Godstone (088 384) 3106

EKCO M5138 Digital Ratemeter. High precision 6 digit TTL counter-timer, counting freq. to 10 MHz and timing with a resolution of 1 microsec. Very extensive range of $1 / 0$ (incl. analogue output. NEW AND packaged. $£ 48$
EKCO Field Ratemeter. All solid state multi-range instrument with fluid sampling and end-window beta probes. NEW. $£ 45$ RUSTRAK 2 -channel chart recorder. NEW. £30.
HONEYWELL P112 key-to-card printing punches; V126 verifiers. About 40 available. Prices from $£ 85$ one-off to around $£ 30$ per unit for the consignment.
G.E. 9 -track Data Recorders £95

FLEXOWRITER Model 2305 with full ASCII character set $£ 575$ (Other Flexos. from £95).

ITEL Paper Tape Golfball Typewriter, ex-demo. £290. VIATRON Data Prep. Units comprising VDU \& twin Philips cassettes under microprocessor control. £̌190
PDP 8L, 4k processor with ASR 33. E1,050
ASR 33 Teletypes sometimes available at $£ 325$.
BURROUGHS E2100 Computer with typewriter. E79
HONEYWELL. 120 processor with $16 \mathrm{k} \times 82 \mathrm{mic}$ rosec memory. All manuals. $£ 135$
FACIT 4001 Tape Reader, $£ 390.4015$ spooler, £ 75 . PE 1001 Reader, £175
PRINTEC 100 C.P.S. ASCII printer. Ex-demo. $£ 450$.

SUMMER SALE SHOWN HERE. OFFER CLOSES JULY 31st 1976
 min. CWO £1

LINEAR ICs

CA3089E KB4402 TDA 1200 HA1137W CA3090AQ MC1310P
KB4400
CA3053
CA3088E
LM1496
MC1350P SN76660N TBA120AS TBA651 4A720PC uA753 TDA440
LM380
LM381N
LM3900
MC3401
uA741
TBA810AS
TCA940E
TDA2020
1.94
1.94
1.94
1.94

78M12
TDA1412
207812
2.20
0.40
.40
1.02

78M20
78 M 24
uA723
NE550
0.70
0.75
1.00

81
.81
1.40
0.99
1.75
1.00
1.81
ambit

DISCRETE
1.75*
1.55*
0.45^{*}
1.20
0.95
. 5 5*
1.55*
1.55*
1.20*
1.20**
0.80^{*}
3.10
0.70^{*}
2.50
2.50
2.50
2.50
2.50
2.55^{*}
2.55
2.50
2.50^{*}
1.05
0.30
0.30
0.30
0.30
0.45
0.45
0.38
0.50
4.00*

2T $\times 107 n$
ZTX108n
ZTX109n
$\begin{array}{lr}0.14 \\ 2 T \times 109 n & 0.14\end{array}$
$2 \mathrm{~T} \times 212 \mathrm{p}$
0.16
. 16
0.16
0.18
0.18
. 18
0.22
0.27
0.30
0.50
0.54
0.54
0.52
0.53
0.70
1.20
1.20
0.29
0.32
0.06
0.10
0.07
0.08
$0.95 *$
1.25*

Modules, tuners

5600	Varicap Mosfet with 4 tuned RF ccts.	11.00
EC3302	Varicap FET/Bipolar min. tunerhead.	5.50
9001	Frequency meter, scale $88-108$.	2.50
9002	Strength meter, scale 0-10.	2.50
9007	Tuning meter, scale 3-0-3	50
7700	'Off-air' UHF TV sound receiver Varicap tuned, with interstation muting, and sound detection at 38 MHz (Built). inc. P.S.U.	26.00
8011	6 station electrnic station selector for any positively tuned varicap tuner system, incorporating a muting output, AFC lock and scan tuning. Built.	14.99
7252	Top quality tunerset VHF to audio Varicap tuned with 3 meter outputs.	24.00
7253	Tunerset with built-in stereo decoder.	
	Varicap tuned.	24.00
8319	Dual Mosfet tunerhead as used in 7252.	12.00
2020k	TDA2020 stereo amplifier kit.	7.85
2020HS	Heatsink for one TDA2020 (only with IC).	0.75
8001k	55 kHz low pass filter (birdy filter) for stereo radio (between detector and decoder)	1.75
Suffix ' k ' indicates kit, otherwise supplied built and tested.		
NEW MODULES (EDGE TERMINATED)		
$\begin{aligned} & 5619 \\ & 7020 \mathrm{k} \end{aligned}$	6 stage, dual mosfet UHF tunerhead. $10 \mathrm{u} V$ FM IF system with muting, agc, main tuning voltage AFC system.	£12.50
		£4.50
92310 k	Comprehensive 1310 decoder, with	

Varicap Mosfet with 4 tuned RF ccts. Grequency meter scale $88-108$ Strength meter, scale 0-10. 'Off-air' UHF TV sound receiver Varicap tuned, with interstation muting, and sound detection at 38 MHz (Built). inc. P.S.U. positively tuned varicap tuner system, incorporating a muting output, AFC lock and scan tuning. Built.

Suffix 'k' indicates kit, otherwise supplied built and tested.

NEW MODULES (EDGE TERMINATED)

7020k 10uV FM IF
f4.50 Comprehensive 1310 decoder, with
£5.35

General Terms: CWO please, official bodies and companies please note min. invoice £7.50. PP for CWO orders 22 p per order. (UK and Eire). Overseas customers please include sufficient for postage. VAT is not included, and must be added at $12 \frac{1}{2} \%$, but where items are marked * only add 8%. In stock orders despatched within 48 hours. 25 High Street, Brentwood, Essex. Tel: (0277) 216029, Telex: 995194.

NOW TELETYPE 35RO
 ASC11 CODE

HEAVY DUTY CONTINUOUS OPERATION with 240Volt Power Supply and Paper

A MUST AT $£ 50$ each

To all purchasers of the Teletype 35RO we offer a Re-Buildable Electronic Keyboard. In addition oo the conventional keyboard layout there are 21 separate push-button function switches. Circuits of the internal logic and core system are provided Power requirements obtainable from Price $£ 10$ ONLY.
ANO NOW the LOW COST Approach to the IN-OUT problem of the Micro Processor Means this is a MUST if you cari't afford a Teletype 35
Attractive cast alloy front panel, vertical mount, Size $16 \frac{1}{2} \times 151 / 2 \times 51 / 2^{\prime \prime}$ containing 72 push buttons with manual or electrical reset (28 V) with provision for labelling with your code. 65 illuminated symbols or functions (complete with 28 V lamps) which again you can change: 15 bit front panel microswitch assembly to enable your coded cards to be read (sample card supplied) and host of other electronic parts Limited quantity - so rush your order $£ 15$ each.
TALLYP/120 Panel mounted perforator
AMPEX TM7 (7211) Nice cond
POLARAD Receiver Model FIM-B2 Complete 1.10Gh
UNIVAC Butfer Processor 8K Core Store Full into
LOCKHEAD ELECTRONICS 4 Channel Audio Recorde
12 CHANNEL CHARD RECORDER FSD $5 V 20 \mathrm{MA}$ per channel
MARCONI ADAPTOR TM6 113 for TF2700: TF1313; TF868B
RHODE \& SCHWARZ Gen. BN4 $1022300-100 \mathrm{MHZ}$
HEWLETT PACKARD Gen. 608D $10-420 \mathrm{MHZ}$
AIRMEC 4 trace scope type 279. Large screen
TELONIC 4 Watt Sweeper PD3. 100-250HM2
TELONIC Sweeper 2000.1 with LA-1M $20 \mathrm{HZ} \cdot 20 \mathrm{KHZ}$
TEKTRONIX 180A Time Mark Generator
TEKTRONIX 181 Time Mark Generator
ROHDE \& SCHWARZ Admittance Meter BN35ii As new
CREED Model 928 hole reader
CREED 8 hole punch
SOLARTRON VF252 AC Millivoltmeter $15 \mathrm{mv}-150 \mathrm{~V}$ full scale in 10 ranges. $6^{\prime \prime \prime}$ meter $\pm 1 \%$
COMF AND LOOK ON OUR SHELVES - HUNDREDS OF OTHER ITEMS TO INTEREST YOU. TOO FAR AWAY? THEN SEND FOR LISTS

EX MIN SCOPES CT 336 DB6 meg $\mathbf{5 8 5}$ ea. May other types avalable Stocks always changing Contact us ONLY 10 EACH STABILISED POWER SUPPLY 240 V 50 HZ input to overload @ps on wolt push bution resets Manv OTHER PONE SUPPLIES - call and see SELEPMONES Post

Post $9^{\prime \prime}$ '
MUFFIN FANS. $115 v$ Size $5 \times 5 \times 1 \frac{1}{2^{\prime \prime}}$ Superbly quet and reliable Ex-eq but tested E1.50 ва. P\&P 75p
HOTOMULTIPLIER type $931 \mathrm{~A} \mathbf{£ 4} \mathbf{e a}$. P\&P 75 p . Other types avalable also suitable Power upplies
POTENTIOMETERS - All 5p ee. P\& Pextra Metal bodied AB Linear PCB Mount Brand . 10 K : 100 K ganged. 250 K ganged. 100 K ganged concentric shat
BEEHIVE TRIMMERS 3/30pf Brand New
Sp. 50 Off £15 P\&P $£$ 25, 1.000 of £25 P\&P $£ 150$
ARGE RANGE ELECTROSTATIC VOLMEPERS. From $0.300 \mathrm{~V} 2^{\prime \prime} £ 3$ to 20 KV Max

20A $£ 30$ ea. plus carr
4.43MHZ CD Crystal 25p ea. P\&P $15 p$

50KHZ Crystal 87/Octal base £4 ea. P\&P 50p E H T Transformer 26KV AC 10MA 240 V $50 H Z$ Single phase input $£ 60$ ea. Many other EHT transiormers and EHT capacitors avarlable TRANSFORMERS - All 240 V 50 HZ inpurs. Type A 17.0 .17 V 250 MA 750.75 V 250MA, O-2OV 5A, O-4V 5A, 0 1-15V5A. I2 ea. P\&P£ 125 Type B $17.0-i 7 V 250 \mathrm{MA}$
 $19 \mathrm{~V} 4 \mathrm{~A}, 17 \mathrm{~V} 4 \mathrm{~A}$ £3 ea. P\&P£1 25 Type E 3 V 1 A 25 p es. P\&P 50 p Type F 17 V 1 A 85 p ee. P\&P 50p Type G $20-0-20 \mathrm{~V} 200 \mathrm{MA}$. O-6V 100 MA 75 p ea. P\&P 75 p

TUBES. All Brand New Boxed Electrostatic deflection Type 408A $11 / 2^{\prime \prime}$ dia $71 / 2^{\prime \prime}$ long Blue Trace £2.50 ea. P\&P 75p. Type CV1526 (3EG1) $3^{\prime \prime}$ dia £4 ea. P\&P $£ 1$. Type DG $7 / 363^{\prime \prime}$ dia (Replacement for Telequipment S31) £15 ea. P\&P 1150 Magnetic Deflection $120 \mathrm{DF} 7^{12^{\prime \prime}}$ round Blue with yellow after glow £1 ea. AND FOR THE VDU BUILDER M38-111GH
Rectangular $30 \times 20 \mathrm{cr}$ Green trace Superb value $£ 12$ or Economy type CME $24 \times 18 \mathrm{~cm}$ Rectangular $30 \times 20 \mathrm{cr}$
White Trace $\mathrm{C9}$ ea.
OON'T FORGET YOUR MANUALS. S A E with requirements
$2 O H Z$ to $200 K H Z$ SINE \& SQUARE WAVE GENERATOR. In four ranges Wien bridge oscillator thermustor stabilised Separate independent sine and square wave amplitude controls
3 V max sine 6 V max square outputs. Completely assembled PC Board ready to use 9 to 12 V upply required. $£ 8.85 \mathrm{ea}$. P\& 8 P 35 p Sine wave only $£ 6.85 \mathrm{em}$. supply required, £8.85 ea. P\&P 35 p Sine wave only $£ 6.85$ ea-
WIOE RANGE WOBBULATOR 5 MHZ to 150 MHZ (Useful har
15MHZ sweep width Only 3 controls preset RF level sweep width and up to 15 GHZ up to 107 or TV IF alignment filters. receivers Can be used with any general purpose scope Full instructions supplied Connect 63 VAC and use within minutes of receiving All this for onty £6.75 P\&P 35p (Not cased, not calibrated)
Minimum Mail Order $£ 2$. Excess postage refunded.

Wilmslow Audio
 THE firm for speakers!

Baker Group 25, 3, 8, or 15 ohm Baker Group 35, 3, 8 or 15 ohm Baker Deluxe. 8 or 15 ohm. Baker Major, 3, 8 or 15 ohm Baker Regent, 8 or 15 ohm. Baker Superb, 8 or 15 ohm Celestion HF 13008 or 15 ohm. Celestion MH 1000 horn. 8 or 15 ohm Decca London and X over
Decca DK30 and X over
EMI $5^{\prime \prime}$ Mid range
EMI $61 / 2^{\prime \prime} \mathrm{d} /$ cone roll surr. 8 ohm
EMI 8×5.10 watt, d / c, roll/s 8 ohm
EMI $14^{\prime \prime} \times 9^{\prime \prime}$ Bass 8 ohm
M1 14×11.82
Elac 59RM 10915 ohm, 59RM 1148 ohm $\mathbf{E 3 . 3 8}$
Elac $61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll $/ \mathrm{s} 8 \mathrm{ohm}$
Fane Pop 15 watt $12^{\prime \prime}$
Fane Pop 33 T 33 watt $12^{\prime \prime}$
Fane Pop 50 watt, $12^{\prime \prime}$
Fane Pop 55, $12^{\prime \prime} 60$ watt
Fane Pop 60 watt, $15^{\prime \prime}$
Fane Pop 70 watt $15^{\prime \prime}$
Fane Pop 100 watt, 18
Fane Crescendo 12A or B, 8 or 15 ohm Fane Crescendo 15, 8 or 15 ohm Fane Crescendo 18.8 or 15 ohm Fane Crescendo 18 , ror 15 ohm ${ }^{\circ} \mathrm{hm}$
Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$, rols/s. 8 or 15 ohm Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm
Goodmans 8 p 8 or 15 hm . Goodmans 8 P 8 or 15 omm
Goodmans 10P 8 or 15 ohm Goodmans 10P 8 or 15 ohm
Goodmans 12 P 8 or 15 ohm Goodmans 12 P-D 8 or 15 ohms Goodmans 12 P.G 8 or 15 ohms Goodmans Audiom 2008 ohm. Goodmans Axent 1008 ohm Goodmans Axiom 4028 or 15 ohm Goodmans Twinaxiom 8' 8 or 15 ohm Goodmans Twinexiom $10^{\prime \prime} 8$ or 15 ohm Kef T27.
Kef T15
Kef B1 10
Kef B200
Kaf B1 39
Kef B139
Kef DN8
Kef DN8
Kef DN 12
Kef DN 13
Richard Allan HPEB 8" 45 watt
Richard Allan CG8T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s
STC 4001 G super tweeter
STC 4001 K super tweeter
Baker Major Module. each
Goodmans Mazzo Twinkit, pair
Goodmans DIN 20, 4 ohm, each
Helme XLK35, pair
Helme XLK40, pair
Helme XLK30, pair
Helme XLK50, pair
Kefkit 1, pair
Kefkit III, each
Richard Allan Twinkit, each.
Richard Allan Triple 8, each
Richard Allan Triple, each.
Richard Allan Super Triple, each Richard Allan RA8 kit, pair
Richard Allan RA82 kit, pa
Wharfedale Linton 2 kit (pair)
Wharfedale Glendale 3 XP kit, pair.
Wharfedale Dovedale 3 kit , pair
All Radford, Gauss, Castle, Jordan Watts, Eagle
Lowther, Peerless Tannoy units in stock
Prices correct at 26.4.76
ALL PRICES INCLUDE VAT
Cabinets wadding. Vynair, Crossovers etc. Send stamp for free booklet "Choosing a Speaker FREE with all orders over $£ 10-\mathrm{HiFi}$ Loudspeaker Enclosures Book
All units are guaranteed new and perfect Prompt despatch
Carriage. Speakers 50 p each. $12^{\prime \prime}$ and up 75 p each. tweeters and crossovers 30 p each, kirs $80 p$ each (19.60 pair)

WILMSLOW AUDIO
 \section*{Dept. WW}

Loudspeakers 8. Export Dept: Swan Works Bank Square, Wilmslow, Cheshire SK9 1HF. Discount HiFi, PA etc: 10 Swan Streat, Wilmslow. Radio, Hi-Fi, TV: Swift of Wilmslow, 5 Swan Street, Wilmslow. Tel. (Loudspeakers) Wilmslow 29599, (HiFi, etc.) Wilmsiow 26213.

SPECIAL RESISTOR KITS (CARBON FILM 5%) (Prices include post \& packing)
10 E 12 yW Wor $1 / \mathrm{WW}$ KIT 10 of each E 12 value
$22.0 h m s .-1 \mathrm{M}$ a total or 570 E 5.29 net
$25 E 12 \mathrm{~V} / \mathrm{WW}$ or $1 / / \mathrm{WW}$ KIT 25 of each E 12 value. 22

SPECIAL CAPACITOR KITS

C280 Kil-PC Mounting polyester 250v 5 of sach value 0.01. 0.022

C296 Kit-Tubular palyester 40045 ol each value 0.01, 0.022 0.047. 0.1 $0.22 \mu \mathrm{~F}, 2$ of $0.47_{1}, \mathrm{~F}$ E2.67 net
Corimionit-apary plagua 50 V 5 of aach value $22,33,47,100,220,330$
470. $1000 \mu \mathrm{FF}$. 2200.4700 HFF . $0.01 \mathrm{HF} \mathrm{E}, 66 \mathrm{nat}$.
metal case. 3 of each value 0.05. D.I. 0.25
500 V Paper Kit-Tubular metal case. 3 of each value 0.025. 0.05. 0.1
$0.025 .0 .51 ; \mathrm{F} 1.41$ net
IOOOW Paper Kh-Tubular metal case, 3 at each value $0.01,0.025$. 0.05 .
D. 11 :F $£ 1.63$ net
B.H. COMPONENT FACTORS LTD.

MULTIMETER U4341
27 Ranges plus Transistor Teste
$16700!$ Volt
Votc $-03--900 \mathrm{~V}$ in 8 ranges
$\mathrm{Vac}-15-750 \mathrm{~V}$ in 6 ranges
ldc $-006-600 \mathrm{~mA}$ in 5 ranges
lac $-0 \quad 3-300 \mathrm{~mA}$ in 4 ranges
lac -0 3- 300 mA in 4 ranges
Resistance. -2 K ! -2 M ! in 4 ran
Resistance.-2K!? -2 M ? in 4 ranges
Accuracy-dc--2
ac -4% of FSD
hie $-10-350$ in 2 ranges
Sire- $115 \times 215 \times 90 \mathrm{~mm}$
Complete with steel carrying case. test
leads and battery PRICE E12.10 net P\&P 75 p

MULTIMETER U4323
2. Ranges plus
20000 ? Volt

Vac -0 5-- 1000V in 7 ranges
Vac-2 5-1000V in 6 ranges
Idc-0 05-500mA in 5
ranges
Resistance $-512-1 \mathrm{M} 12$ in 4 ranges
Accuracy- 5% of F

Accuracy-5\% of FS.D
OSCILLATOR- 1 KHz and 465 KHz (A M) al approx 1 Voli Size $-160 \times 97 \times 40 \mathrm{nin}$
Supplied complete with carrying case, test leads and
battery
PRICE 9.95 net P\&P $75 p$
MULTIMETER
34324
34 Ranges High sensitivity
2000013 Volt
Vdc-06-1200V in 9 ranges
vac $-3-900 \mathrm{~V}$ in 8 ranges
vac $-3-900 \mathrm{~V}$ in 8 ranges
tor -006 -- 3 A in 6 ranges
dac $-006-3$ in in 6 ranges
lac $-03--3 A$ in 5 ranges
Resistance-25!! - $5 \mathrm{M}!$! in 5 ranges
Accuracy-dc and $R-21 / 2 \%$ of $F S$.D ac and $d b 4 \%$ of FSD

Size $-167 \times 98 \times 63 \mathrm{~mm}$

Supplied complate witt storage case test
leads. spare diode and battery
PRICE $£ 11.72$ net P\&P $75 p$
(WW), LEIGHTON ELECTRONICS CENTRE, 59
NORIH STREET, LEIGHTON BUZZARO LUT 59 Tel Leightion Buzzard 2316 (Std code 05253)

Quality Products Made in America

Blonder-Tongue
Field Strength Meter - FSM2
Superb quality and performance. Complete line of MATV and CATV products available.
Astatic - Choose from over 60 different microphones for public address, studio, commercial sound and recording microphones. Quality sound reproduction since 1930. Complete line of Astatic cartridges. needles and arms.

Atlas Loudspeaker - complete line of public address speakers and microphone stands.

Trusonic - speaker systems to meet every indoor and outdoor requirement.
Irish Tape - premium quality tape available in cassette, 8-track, open reel and video.
Gromes Precision - public address amplifiers
Consolidated Wire and Cable
AVA - coaxial connectors
Teleco-telephone answering instruments
Perma Power - portable PA Systems
Utah - complete line of hi-fi
speakers and accessories
Automatic Garage Doors, TV Tube Brighteners, Remote Controls
Write for illustrated catalog and
specifications for these products.

Morhan Exporting Corp.

270-278 Newtown Road
Plainview, N.Y. 11803
Cable Address: Morhanex, N.Y.
Telex 96-7880

KINNIE COMPONENTS

10, NELMES WAY, HORNCHURCH
 ESSEX RM11 202

HORNCHURCH 45167

CIRCUIT BOARD

P.C.B. 1/16. 1 oz. COPPER

FORMICA

Dim. 8.4×7.7 in 3 pcs., 80p
Dim. 9.4×8.1 in 3 pcs., 90p
Dim. 10.1×7.9 in 3 pcs., $£ 1.00$
Dim. 13.1×9.4 in 3 pcs., $\mathbf{E 1 . 2 0}$
Dim. 17.0×9.0 in 2 pcs., $£ 1.20$
Post \& Packing 35 p each pack

BARGAIN PACK

10 pcs. $10.1 \times 7.9 \mathrm{in}$. Plus free $1 / 2 \mathrm{lb}$ etching Xtals £3.10 P.P. 65p.
FIBRE GLASS P.C.B.
Dim. 6×6 in. $\mathbf{5 0 p}$ each
Dim. 12×6 in. 75p each
$\operatorname{Dim} .12 \times 12$ in. £1. $\mathbf{3 0}$ each
Equals less than $\mathbf{1 p}$ sq. in.
Post \& Packing 15p per sheet.
RESIST COATED P.C.B. FORMICA
$10.1 \times 7.9 \mathrm{in} .65 \mathrm{p}$ ea.
13.1×9.4 in 75p ea.
RESIST COATED P.C.B. FIBRE GLASS
6×6 in. 65p ea.
12×6 in. $£ 1.35$ ea.
12×12 in. £2.00 ea.
Post \& Packing 10 p per sheet
BLUE P.C.B. INK
Etch resist use with any pen. Much cheaper than ready loaded pens.
50 c.c. 55p. P.P. 10p
FERRIC CHLORIDE ETCHING XTALS
$1 \mathrm{lb}-1$ litre pack. 70p P.P. 35p.
5 lb - 5 litre pack, £2.20 P.P. 65p

PRINTED CIRC̄̇̄IT KIT

The no frills all value kit. Containing 4 pcs $8 \times$ 7 Formica laminate. 1 pce 6×6 Fibre glass laminate. 1 lb Etching Crystals. 50 c.c. Resist ink, with instructions.
£2.40 P.P. 65p

BARGAIN PACK FIBRE GLASS P.C.B.

200 sq. in. all usable pieces $£ 1.25$ P.P. 25 p.

EDGE CONNECTORS. 54 WAY

1 Vero size etc. Can be cut to any length 55p P.P. 10p. Side Guides to suit above 15p each.

OVERLOAD CUT OUTS

Panel mounting $800 \mathrm{M} / \mathrm{A} 1.8 \mathrm{amp} .10$ amp. 55p ea.

TELEPHONE DIALS

(New) £. 1 P.P. 25p.
EXTENSION TELEPHONES
(Type 706). Various colours
£3.95 P.P. 75 p.
12V MINIATURE

UNISELECTOR

11 ways. 4 bank (3 non bridging. 1 homing) £2.50 P.P. 35p.

UNISELECTORS

(New) 25 way. 12 Bank (Non bridging). 68 ohms. £6.50 P.P. 50 p

MINIATURE UNISELECTOR

(Ex. Equip.) 6 Bank (5 non bridging. 1 bridging) 100 ohms 24.30 V.D.C. $£ 1.50$ P.P. 50p.

1,000 TYPE KĖY SWITCHES

Single $2 \times 2 \mathrm{c} / \mathrm{o}$ Locking. 50p. P.P. 10 p Bank of $4.2 \times 4 \mathrm{c} / 0$ each switch (one biased), £1.20 P.P. 25p.

MULTICORE CABLE

6-core (6 colours) 14/0076 Screened P.V.C 30p per yard: 100 yards at $£ 16.50$ P.P. 2p a yard, 7 -core (7 colours) 7/22. mm. Screened P.V.C. 30p per yard; 100 yards £16.50 P.P. 4 p per yard.

RIBBON CABLE

(8 colours); 10m. £1.65. P.P. 25p. 100m 8 -core $\times 14 / 0.19 \mathrm{~mm}$. Bonded side by side £11.50 P.P.£1.

P.T.F.E. CONNECTING WIRE

$1 / 20$ Black or White 100 m . Drum $£ 2.50$ P.P. 30p

H.D. ALARM BELLS

6in. Dome. $6 / 8 \mathrm{v}$, d.c. Heavy cast housing for exterior/interior use. £3.75 P.P. £1. Connecting wire (twin/twisted) 220yd. reel £. 3 P.P. 75 p.

HIGH CAPACITY ELECTROLYTICS

$250 \mathrm{mfd} / 63$ volt, 20p P.P. 8p.
$1.000 \mathrm{mfd} / 100$ volt, 70p P.P. 25p
$2.200 \mathrm{mfd} / 100$ volt. 90p. P.P. 25p $4.700 \mathrm{mfd} / 25$ volt, 65p. P.P. 20p.
$6,800 \mathrm{mfd} / 16$ volt, 50p. P.P. $15 p$.
$10,000 \mathrm{mfd} / 25$ volt, 75 p. P.P. 25 p .
$25.000 \mathrm{mfd} / 40$ volt, £1.25.P.P. 30 p . $47,000 \mathrm{mfd} / .40$ volt. £2.00. P.P. 50p. $100,000 \mathrm{mfd} / 10$ volt. $\mathbf{1 . 5 0}$. P.P. 50 p $160,000 \mathrm{mfd} / 10$ volt, £2.00. P.P. 50p

BULK COMPONENTS OFFER

Resistors/capacitors 600 new components £2.75. P.P. 36p
Trial order 100 pcs 75p. P.P. 20p.

SMITHS GEARED MOTORS 24OV AC

3 rev. per min. £1.50. P.P. 25p.
4 rev. per min. £1.50. P.P. 25p.
6 rev. per min. £1.50. P.P. 25p.
2 rev. per hour. $£ 1.50$. P.P. 25 p.
6 rev. per hour. £1.50. P.P. 25p.

HIGH-SPEED MAGNETIC

 COUNTERS (state which) state which) $4 \times 1 \times 1$ in. E1. P.P. 20p.
5 digit (non reset) $24, ~ £ 1.50$. P.P. 20p. 3 digit $12 v$ (Rotary Reset) $21 / 4 \times 13 / 4 \times 11 / 4$ £1.40. P.P. $15 p$
6 digit (Reset) 220 v. a.c. $£ 3.50$. P.P. 25p

RESET COUNTER (BRAND NEW)

6 digit 24v. 25 I.P.S. £5 P.P. 25p.

SIEMENS MINIATURE RELAYS

$6 v .4$ c/o 65p. 24v. $2 \mathrm{c} / \circ$ 50p.

MINIATURE RELAYS

$(13 / 8 \times 11 / 4 \times 1 / 2) 24 \vee .4 \mathrm{c} /$ o 35p. P.P. $5 p$
MAINS RELAY 240v.a.c.
$3 \mathrm{c} / \mathrm{o} 10 \mathrm{amp}$. contacts 80p. with base P.P 20p
24v a.c. RELAY (PLUG IN)
3 pole c/o 75p. P.P. $15 p$
2-pole c/o 55p. P.P. 15 p.
MINIATURE REED RELAY
$(1 \times 1 / 4) 12 \mathrm{v} .1 \mathrm{c} / 0$ 50p. P.P. 10 p

S-DECS AND T-DECS

S-DEC £1.90.
U-DEC A $£ 4.20$.
T-DEC £3.60.
U-DEC B $£ 6.90$.

S.T.C. CRYSTAL FILTERS

(10.7Mhz) 445-LQU-901A (50 Khz spacing). £3. P.P. 20p.
445-LQU-901B (25 Khz spacing). £4. P.P.
20p. 10.7 Mhz Canned I.Fs. Size $1 \times 1 / 2 \times 1 / 2$ in. (with data) 65p. P.P. 10 p.

3 GANG TUNING CAPACITOR

8.5 PF, to 320 P.F. 80p. P.P. 20p.

V.H.F./U.H.F. POWER TRANSISTORS

(type BLY 38). 3 watt output at $100-500$
Mhz. £2.25. P.P. 10 p.

AM/FM TUNING METER

125-0-125 μ A Edgewise $11 / 2 \times 1 / 2, £ 1.10$
Signal Strengit meter
$250 \mu \mathrm{~A}$ (illum.) Edgewise $1 / 2 \times 1 / 2, £ 1.10$

OUTPUT METER CLEAR PLASTIC

$500 \mu \mathrm{~A} 1 / 2 \times 1 \frac{1}{2}, £ 1.30$

MINIATURE METERS

500 micro-amp (level stereo beacon, etc) scaled half back/half red. Size $1 \times 1 \mathrm{in} .65 \mathrm{p}$. P.P. 15p.

PANEL METERS

PANEL METERS			
23/8	in. $\times 11 / 8$	T8	500 mA
T1	50 uA	T9	1 Amp
T2	100 uA	T10	50 v.a.c.
T3	500 uA	T11	300v.a.c.
T.4	1 mA	T12	50/0/50fla
T5	10 mA	T13	100/0/100ma
T6	50 mA	T14	500/0/500uA
T7	100 mA	All	£3.75. P.P. $15 p$.
PANEL METERS			
41/2	ins. $\times 31 / 4$	D3	200 mA
D1	50 uA	D4	500 AA
D2	100 ${ }^{\text {a }}$	All at	E4.60. P.P. $15 p$.

S.C.R.

1 amp. 400 P.I:V. 35p

ETCH RESIST

5 amp. 400 P.I.V. 40p

MINIATURE "ELAPSED TIME"

INDICATORS

(0.5000 hours) $45 \times 8 \mathrm{~mm}$ 75p. P.P. 15 p
H.T. TRANSFORMERS. Prim. $110 / 240 \mathrm{v}$ Sec. $400 \mathrm{v} .100 \mathrm{~m} / \mathrm{a}$ £3. P.P. 65 p .
l.t. TRANSFORMER. Prim. 240 v . Sec $27-0-27$ at $800 \mathrm{~m} / \mathrm{a}$. $£ 2.35$. P.P. 50 p. L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$ Sec. 50 v . at 10 amp . £10. P.P. £1.50. L.T. TRANSFORMER. Prim. 240 v . Sec. 18 v at 1.5 amp \& 12 v . at 1 amp . £2.25. P.P $65 p$.
L.T. TRANSFORMER. Prim. 240 v . Sec. 18 v 1 amp £1.10 P.P. 35p.
L.T. TRANSFORMER. Prim. 240v. Sec. 12 v at 1 amp. £1 P.P. 25p
L.T. TRANSFORMER Prim. $110 / 240 \mathrm{~V}$

Sec. $23 / 24 / 25 \mathrm{v}$. at 10 amps E7. P.P. £ 1 .
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$ Sec. $20 / 21 / 22 \mathrm{v}$. at 8 amp . E6. P.P.£ 1 .

TRANSFORMERS

L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{~V}$ Sec. $0 / 24 / 40 v$ at $11 / 2$. amp. (Shrouded). £1.95. P.P. 50p.
L.T. TRANSFORMER. Pim. 200/250v. Sec. 20/40/60v. at 2 amp . (Shrouded). £3. P.P. 70p.
L.T. TRANSFORMER. (H.D.) Prim. $200 / 250 \mathrm{v}$. Sec. 18 v . at $27 \mathrm{amp}: 40 \mathrm{v}$. at $9.8 \mathrm{amp}: 40 \mathrm{v}$ at $3.6 \mathrm{amp}: 52 \mathrm{v}$. at 1 amp . 25 v at 3.7 amp. £17.50. P.P $£ 2.50$
L.T. TRANSFORMER. Prinn. 240 v . Sec. 20 v at 2.5 amp . £2. P.P. 65 p
L.T. TRANSFORMER ('C' CORE)
$200 / 240 \mathrm{v}$. Secs. $1-3-8-9 \mathrm{c}$. All at 1.5 amp
50 v . at 1 amp. £2.50. P.P. 50p.
L.T. TRANSFORMER ("C" CORE) Prim. $120 \mathrm{v} / 120 \mathrm{v}$ SECS. 1-3-9-20v. 10 amps £7.50. P.P. £1. 25 .
L.T. TRANSFORMER (' C' CORE) $200 / 240 v$. Secs. $1-3 \cdot 9-27 v$. All at 10 amp . £7.50. P.P. £ 1.50
L.T. TRANSFORMER (${ }^{\prime} \mathrm{C}$ " CORE) 200:/240v. Secs. 1-3-9-20v. All at 4 amp. £5.50. P.P. 75p.
L.T. TRANSFORMER ("C' CORE) $120 / 120 \mathrm{v}$. Secs. 1-3-9-9v. All at 10 amp . £6.50. P.P.E1.50.
L.T. TRANSFORMER (${ }^{\circ} \mathrm{C} \cdot$ CORE) $110 / 240 \mathrm{v}$. Secs $1-3-9 \mathrm{v} .10 \mathrm{amp} .35 \mathrm{v} .1$ amp: $50 \mathrm{~V} .750 \mathrm{M} / \mathrm{A}$. £6.50. P.P. £1.50.

Appointments

Advertisements accepted up to 12 noon Monday, May 31, for the July issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $\mathbf{£ 6 . 5 0}$ per single col. centimetre ($\mathbf{m i n} .3 \mathrm{~cm}$) LINE advertisements (run on): £l per line, minimum three lines
BOX NUMBERS: 45p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SEI 9LU.) PHONE: Owen Bailey on 01-261 8508 or 01-261 8423.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

TEST AND LIAISON ENGINEERS

Ferranti in Edinburgh have a number of Ministry of Defence contracts involving the design and development of advanced avionic equipment for military aircraft in an international market.

We have vacancies for test and liaison engineers who will probably be qualified to HND level in electronic engineering with some years' experience in design, test or support of modern avionic equipment. A knowledge of digital and analogue techniques is essential.

Close liaison with design/development teams currently engaged on inertial navigation and display systems will be necessary and the work will entail factory acceptance testing, fault diagnosis and system commissioning on a variety of sophisticated equipment.

There will be opportunities for some of these engineers after a period of in-house training to be selected for technical liaison duties at locations in the U.K., Europe, Middle and Far East.

The Company offers an attractive employment package which includes 22 days holiday and membership of a life assurance and pension scheme. Incoming personnel will qualify for housing under the Scottish Special Housing Association scheme and realistic assistance will be given with relocation expenses where applicable.

Apply in writing giving details of age, experience and qualifications to:
THE STAFF APPOINTMENTS OFFICER
FERRANTI LIMITED
FERRY ROAD
EDINBURGH EH52XS
required with experience in the maintenance of television and sound equipment in addition to superviston of staft. The work workshop and operational puties as a Senior member of the studio crew for television recordings Candidates should have experience in a television studio. preterably as vision control engineer or sound maxer and'should hold an H.N C. City \& Guilds or RTE.B. Cerlificate
Salary Scale $13156 \cdot$ \& 3762 per annum Applications in writing. QUOTING REFERENCE AV.4. giving detalls of age and qualifications, should be made to the Personnel Officer. University of Strathclyde. Royal College Building, 204 George
Street Glasgow G1 $1 \times W$ Street. Glasgow G1 IXW

SENIOR TEST ENGINEER

To fault find on interesting and varied circuits for a range of equipments. Produced in small batches Experience of digital and analogue circuits is essential. Above average salary and good promotional prospects. The Company is rapidly expanding with positive management. We have a full order book, mainly for export World Wide

Please contact in confidence Mr. D. Hemsley
DIGITAL ELECTRONICS LTD.
Holywell Industrial Estate Watford, Herts

Tel: 45991

Prinnat

 ELECTRONICS FIELDWe have selected from mamy vacancies those which uffer ex ceptional career prospects and jub interest If you have exper ence in desiun, lest sates or service anu wish to progres service and wish 10 progres your caree, please telephone Mike Germal S Sc who is advi:
E.M. A. Management Personnel Litd Burne House, 88/89 High Holborn London WCIV 6 LR 01.2427773

Radio Officers-now you can enjoy the comforts of home.

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over. are $£ 2905$ rising to $£ 3704$ after three years service. Between 19 and 24 , the starting salary varies from $£ 2234$ to $£ 2627$
according to age. You'll also receive an allowance for shift duties which at the maximum of the scale averages $£ 900$ a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have vacancies at some of our coastal radio stations, so if you're 19 or over, write to: ETE Maritime Radio Services Division (L687), ET 17.1.1.2., Room 643, Union House, St. Martins-leGrand, London EC1A 1AR.
Post Offifice Tellecomnmunications

With several different EMI industries concentrated at Hayes, Middlesex. the Company offers you work on a wide variety of equipments - plus opportunities to win promotions in one direction or another without ever having to move out of the Hayes area. And, since the entire EMI Group is constantly expanding - and, indeed, looks likely to continue to expand for years to come - these opportunities may be expected to come up frequently.
Recent practical electronics experience associated with maintenance, commissioning, fault finding, testing or calibration, either in industry or with HM forces is essential.
Ideally, it will have involved work on advanced and complex electronic devices.

[^5]UNIVERSITY LABORATORY OF
PHYSIOLOGY PHYSIOLOGY
OXFORD
ELECTRONICS TECHNICIAN
Opportunity to ןoin a small ream providing an electronics service to a number of research and teaching groups. The work involves the full range of activities from struction installation modifications and struction. in
maintenance maintenance.
Candidates Candidates must have at least 5 years oxperience in the construction and ancluding analogue and digital techniques HN.C standard is required and the ability to work with a minimum of upervision is
essentiai familiarity with medicat electionessential Familiarity with m
ics would be advantageous
Salary on University Technical Scale Grade 5. £2751 $\times 5$ - $\mathbf{£ 2 0 7}$

Letters of application stating age qualiftLetters of application stating age qualiti-
cations. experience and the names of 2 cations. ex
referees to

Administrator
Universny Laboratory of Physiology Parks Road Oxtord OX1 3PT

ELECTRONIC TECHNICIAN

DEPARTMENT OF CHEMISTRY ELECTRONIC TECHNICIAN GRADE 5 required to join a team concerned with the development and maintenance of a wide range of electronic equipment encountered in chemical equipment encountered in chemical
research. Experience of electronic research. Experience of electronic
equipment maintenance and deveequipment maintenance and deve-
lopment an advantage. Salary in range $£ 2.751$ to $£ 3.207+£ 465$ London Weighting. Application form from Personnel Officer (Technical Staff CE5). University College London. Gower Street. WC1E GBT Closing date 28 May 1976
(5520)

SERVICE AND INSTALLATION ENGINEERS

M.E.L., part of the Philips Organisation, has recently achieved outstanding success in gaining new markets for its highly successful range of medical Linear Accelerators - used in the fight against cancer.

This expansion has created new opportunities for skilled engineers to install these highly sophisticated equipments in all parts of the world. As a member of a specialist team, you will be required to carry out installation projects (of up to three months' duration), service equipment and trouble-shoot - wherever your skills are needed.

You must be adaptable and self-reliant, qualified to at least ONC level or equivalent and have a good knowledge of semi-conductor circuitry. Preferably, you will also have worked on such equipment as modern high-power radar systems.

We offer a progressive salary, bonus and pension scheme, generous expenses and twenty three days' holiday. If appropriate, assistance will be given in moving to this attractive part of Sussex, situated mid-way between Brighton and London.

Please write or telephone for an application form to Diana Hill, Personnel Officer, M.E.L. Equipment Coinpany Limited, Manor

126

TEST GEAR ENGINEERS

Rediffusion, a major British company in television manufacture, Is developing a ner, state of the art receiver at its Chessington laboratories. To support this project we require additional Test Equipment Design and Development Engineers at senior and intermediate levels to help produce our sophisticated production test equipment. Rediffusion test equipment leads the industry and uses both analogue and digital techniques along with an up-to-date approach to jigging.

Applications are invited from well qualified and experienced test equipment engineers, who will be offered the opportunity to join a young and energetic team. Our work is usually demanding, often under pressure but always stimulating, using new ideas to aped production testing whist reducing the demands on our test operators.

Salaries, which will depend on experience, are excellent and assistance with relocation will be given where appropriate. Some travelling to our production factories in Co. Durbam will be necessary from time to time to assist in the installation anc commissioning of new equipment since our design engineers are expected to be responsible for all aspects of their project.

If you are a high calibre engineer and wish to have your ability recognised and rewarded, come and join us.

Write or 'phone to:

A. J. Litteck,
Test Equipment Group Leader, Rediffusion Consumer Electronics Ltd. ,
Fullers Way South,
Chessington, Surrey
Phone 01-397-5411

REDIFFUSION

STROBE EQUIPMENT LTD

Manufacturers of High Powered Studio Electronic Flash Equipment. which is used all over the world by top photographic companies. require

SERVICE/CONSTRUCTION MECHANICS

To be generally involved in maintain ing and building power units, acces sories and allied devices Basic electronic knowledge is sufficient but applicants should be capable of handling bench tools and light machinery and hold a current driving licence.

Phone or write (preferably) Mr. Cecil, Strobe Equipment Ltd 56 Turnmill Street. London. EC 1 M5QR
01-2530791/3

RESEARCH, DESIGN

\& DEVELOPMENT
We are expanding our Electronics Laboratory and can offer rapid results in all electronic departments. We have 15 years experience working for the Government and industry generally. Give our Technical Director, A. Falkner a ring on 01-5720933 R.C.S. Electronics, National Works, Bath Road, Hounslow. Middlesex

Opportunities for Electronics Engineers

To change to wider fields of electronics - join the EMI Service Team at Hayes.
vacancies exist on repair and calibration of a wide range of electronic test gear including oscilloscopes, DVMs, pulse generators, power supplies etc.

Also

Servicing and commissioning closed circuit television equipment including cameras. VTRs, Monitors etc.
Applicants should have at least 5 years practical experience
These positions offer varied and interesting work Attractive starting salaries, subsidised lunches, 4 weeks holiday and excellent sick pay and pension schemes
For further details telephone ol write to - M Ford, 01-573 3888. Ext 2167, EMI Service, 254 Blyth Road. Hayes. Middlesex

LEICESTER POLYTECHNIC School of Chemistry

ELECTRONICS TECHNICIAN

To be responsible for
(a) the design, deveiopment and construction of prototype electronic equipment for chemical applications:
(b) the maintenance of existing equipment Successful applicant must have a knowledge of analogue and digıtal electronics and will probably have at least two years experience subsequent to taking a Full Technological Certificate. HND, or a degree in Electronics.

Salary: £2.922-£3,702 p.a. plus qualification allowance for certain qualifications

Apply in writing, giving full details, to Staffing Officer Leicester Polytechnic, PO Box 143, Leicester LE 1 9BH
(5380)

> London Borough of Barking Barking Colloge of Technology LECTURER GRADE I IN MARINE RADIO/COMMUNICATIONS
required as soon as possible, principally for full-time courses in Marine Radio and for
City and Guilds of London Institute Telecommunications Certificate. Applicants should have appropriate qualifications and experience Burnham Scale salary 22.429 to £4.377. plus $£ 351$ London Addition. Requests for application forms and further details should be accompanied by a stamped addressed envelope and sent 10 The Dagenham Road, Romford, Essex, RMy OxU Completed forms to be returned to him within 14 days of the appearance of this within
notice

THE UNIVERSITY OF MANCHESTER HESTER ADRIAN RESEARCH CENTRE
Anson House Pre-School Project for Mentally Handicapped Children

TECHNICIAN

(Grade 3)

in the above project. The successful applicant will work in the pre-school facility which is one mile from the University but will have access to electronic and itself The warkshops in the University the technician will be responsible for the operation of an extensive CCTV system and will undertake the editing of tapes Experience with CCTV is therefore impor electronic and mechanical work UNC is essential and HNC (Electronics or Physics) (or equivalent qualification) s-erestirable

Salary scale £2.325- 2.655 pa
The post is at present vacant and the successful applicant could start on a date to be arranged
Applications with full details of age qualitications and previous experience should be addressed to Dr. Hogg, Hester
Manchester M13 9PL
(5398)

> CIRCUIT DESIGN ENGINEERS SYSTEMS TEST ENGINEERS SALES AND CONTRACTS ENGINEERS

OMAN

Dhofar Region Television Service

- Very Good Salary
- Free Family Passage
- No Income Tax payable in Oman
- Free furnished Accommodation
- Special End of Contract Bonus
- We pay Local Education Fees
- Comprehensive Free Insurance, Health, Dental, etc.
- Hard work is necessary

We are recruiting on renewable one year contracts and have vacancies for the following and other positions:

PROGRAMME STAFF

- Production Direction
- News
- Film Editing
- Transmission Controller

OPERATIONS STAFF

- Telecine
- V.T.R.
- Sound Dubbing and Mixing
- Film Processing

ENGINEERS

- Studio
- Transmitters
- Microwave
- O/B Van

PLUS

- Aerial Rigger
- Electricians

Let us discuss with you your abilities for these interesting and important positions.

Phone: Tony Towers, 01-573 8333 for more information PERSONHEL \& ELECTRONICS LTD.

Radio Technology

TELECOMMUNICATIONS OFFICERS

for a Radio Station in Hertfordshire. The work is mainly concerned with the installation and maintenance of electronic equipment such as radio receivers, spectrum analysers and direction-finding equipment and involves the use of a wide range of test equipment

Candidates (aged at least 23) must have ONC in Engineering (with a pass in Electrical Engineering 'A) or in Applied Physics. or an equivalent qualification. In addition they should have had experience in the operation of radio receiving equipment and have a knowledge of current operational systems of radio communications.

Salary starting between $£ 3,145$ and $£ 3,790$ (according oage) and rising to $£ 4,090$. A shift system is worked and a shift disturbance allowance is payable Promotion prospects. Non contributory pension scheme.

For further details and an application form (to be returned by 14 June 1976) write to Civil Service Commission. Alencon Link, Basingstoke, Hants Commission. Alencon Link, Basingstoke, , (Cants RG21 1JB, or telephone Basingstoke (0256) 68551
(answering service operates outside office hours) or (answering service operates outside office hours)
1.ondon $01-8.391992$ (24-hour answering service). Please quote T/9292/3

TELERADIO HI FI L. LINSLEY HOOD high quality amplifiens and test EQUIPMENT
3075 Wat Amplifier Kit $£ 12.00$ Made $£ 15.95$ Pre-Amplifier \quad Kit $£ 7.50$ Made $£ 10.00$ f.M. Tuner [stereot Kil $\mathbf{£ 4 0 . 0 0}$

Low Dislortion Audio Oscillator
mili voitmeter Kit Mili voitmeter k
T. M. O. Analyser
 Г40 Kit $£ 15.25$
 Frequency meter. Price to be announced "Tax 8°. Omber items 25°
FOR DETAILED AND ILLUSTRATED LISIS SENO S A.E

325 Fare St. Edmonton. London H. 9 01-807 3719 Closed Thursdays 15210)

Electronics Engineers

VOL is the worlds largest operator of commercial work submersibles. A number of these units are involved in underwater surveying, primarily for the off-shore oil industry.

As a part of our continuing expansion we have vacancies for Electronics Engineers to operate and maintain the computers, data iogging and underwater acoustic systems, used in this developing technology.

Past experience should include either underwater navigation, surveying systems or data recording and computer maintenance. Familiarity with DEC PDP11 machines would be particularly useful.

Applicants should be of HNC standard and be able to work on their own initiative in a challenging environment. Off-shore and base training will be provided for suitable applicants. These positions are based at VOL's L.eith Base and would involve periods of work at sea, usually not exceeding 3 weeks

Please write for an application form to the:-

Personnel Officer,
Vickers Oceanics Ltd.
P.O. Box 215
 East Old Dock, Leith Docks,
Edinburgh EH6 6PH

International Broadcast Sales Engineers

RCA Broadcast Division has openings for Sales Engineers to assume responsibility for the marketing and sale of our range of professional television and radio studio and transmitter equipment in areas of Europe, Africa and the Middle East.
The positions will be based either in Sunbury on Thames, England, or if appropriate on the continent of Europe, and each salesman/ woman will have direct responsibility for the aggressive promotion and sale of our products.
As a considerable amount of time has to be spent in the countries concerned, applications are invited only from persons willing to spend up to 50% of their time in their sales territory. Ideally, we seek people with past experience of selling broadcast or associated products, preferably internationally. However, we will also consider for training, candidates with experience in the operation and maintenance of broadcast equipment who are interested and keen to enter commercial and selling activity.
We are looking for people who are interested in overseas travel and who have the initiative, dedication and personality to operate effectively in the challenging environment of international sales. A knowledge of French and/or German would be an asset for some posts.
Salaries are negotiable but will certainly be in keeping with the responsibilities and demands of these posts. Competitive Company fringe benefits etc., exist.
Applications outlining past experience, age etc. should be sent as early as possible to:
Pam Torma, RCA International Ltd. 50 Curzon Street.
London, W.1.
England.

CCTV Engineer

EM| Service require an experienced CCTV Engineer to supervise a team engaged in the servicing and commissioning of CCTV systems and equipment. For this position, which offers varied and interesting work, applicants should have at least 5 years' practical experience in CCTV

There's an attractive starting salary, subsidised lunches, 4 weeks holiday and excellent sick pay and pension schemes. For further details telephone or write to M. Ford on 01-573 3888 ext. 2167 EMI Service, 254 Blyth Road. Hayes, Middlesex

The interational music, electronics and teisurc Group

TWO INSTRUCTORS IN MARINE RADIO

 are required by
COLLEGE OF I.M.R. COMMUNICATIONS

160-176 CHORLTON ROAD, MANCHESTER M16 7 WT
One will be required to instruct morse sending and receiving to trainee radio officers, and the other will teach the theoretical syllabus for the Home Office General Certificate course
Qualifications and experience will determine the position on a salary scale £2. 112 10£3.945

SCOTTISH HOME AND HEALTH DEPARTMENT

WIRELESS TECHNICIAN

Applications are invited for a post of Wireless Technician in Scottish Home and Health Department.

Location:

Montreathmont Moor (near Montrose)

Qualifications:

HNC in Electrical or Electronic Engineering or City and Guilds Certificate desirable

Experience:

3 years' appropriate experience

Starting Salary:

$E 2.010$ (age 17) to $£ 2.905$ (age 25 or over) scale maximum E3.385. In addition a supplement of $£ 313.20$ per annum is payable for staff aged 18 or over $(\pm 261.00$ per annum for staff aged 17). Applicants should have sound theoretical and practical knowledge of Radio Engineering and Radio Communications equipment in HF, VHF and UHF bands. The work involves installation and maintenance of equipment located at considerable distance from headquarters. A clean current driving licence and ability to drive private and commercial vehicles are essential
Appointment is unestablished initially but there is prospect of an established (ie permanent) appointment after 1 year's satisfactory service
Application forms and further information are obtainable from Scottish Office Personnel Division, Room 105, $22 / 25$ Queen Street, Edinburgh EH2 1LY (quote ref; PM(PTS)2/5/76 (031-556 9222, ext. 727).
Closing date for receipt of completed application forms is 27 May 1976

LEEDS CITY COUNCIL
 Department of Education
 Leeds Polytechnic - Education Technology Unit

 T.V. ENGINEER

 T.V. ENGINEER (Temporary)

 (Temporary)}

(Ref. 13/23)
T3 £2922-£3282

The holder of this post works with the media production team in the operation of the colour television studio and related recording facilities and assists in the maintenance of equipment
Application forms (quoting ref. no.) together with further details, should be obtained from the Administration Officer, Leeds Polytechnic, Calverley Street, Leeds LS1 3HE. Please enclose S.A.E
(5378)

Anglian Water Authority ELECTRICAL AND MECHANICAL ASSISTANT

Ref: W1032
Grade 7
£4,650-£5,016
Applications are invited for the above post based at Milton Keynes Office. Old Stratford
The successful candidate will be reponsible for the operation. maintenance and instailation of all electrical, electronic and mechanical equipment in the area including modern processor operated telemetry
Relocation expenses payable in appropriate cases and an essential car users allowance will be attached to the post.
NJC for Water Service Staffs Conditions of Service apply
Further details available from. The Area Manager, Cosgrove Road Old Stratford Telephone: Stony Stratford 2481

Applications in writing 10: The Divisional Manager, by May 30th 1976.

BEDFORD WATER OIVISION
Cambridge Road, Harrowden, Bedford, MK42 011

Looking

for a new job?

Perhaps we can help!

We have regular contact with hundreds of electronics and electrical companies needing qualified electronics engineers and technicians and TV service engineers.
We can, therefore, help you to find an interesting and well paid job. All you need to do is to return the coupon below or give us a ring. Our service is confidential and costs you nothing.

TJB Electrotechnical Personnel Services 12 Mount Ephraim Tunbridge Wells, Kent
Tunbridge Wells (0892) 39388

TJB Electrotechnical \bar{P} ersonnel Services is a division of Technical \& Executive Personnel Ltd. and is solely concerned with job placement in the Electronics and Electrical Industries
Please note that this service is available only for engineers who are (or will be) available in the U.K. for interview.

Please send me an "Application for Registration" form' NAME \qquad ADDRESS

Phillips Petroleum Company, operator for the Phillips Norway Group of companies, is establishing a major crude oil processing; natural gas liquid fractionating and terminalling project at Seal Sands. Cleveland, which will create employment opportunities for high calibre personnel

TECHNICIANS (WW/ 1 / 76)

An integral and important part of our operations capability at our oil stabilisation and NGL fractionating plant presently under construction will be sophisticated computer and communications controls
Daniels, Kent, AAl computers will be used extensively to optımise plant control functions with the metering and loading of products into sea going tankers
Communications equipment centres around at Tropospheric scatter shore station and micro wave link with the Ekofisk oil field in the North Sea. In plant radio and telephone systems will also be in operation
We now wish to establish a small group of technicians to maıntain and repair this wide range of equipment and invite applications from candidates who can offer relevant practical experience with preferably a H.N.C qualification
These appointments offer competitive commencing salaries, and conditions of service are those one would expect from a major organısation such as Phillips Petroleum Company

If you are interested in these vacancies, please write for an application form (quoting job reference No.), to: Mr, A. Jackson. Personnel Officer
(5395)

PHILLIPS PETROLEUM COMPANY

Tresside operations seal Sands, Mididitstroush,cleveland TS2 Ho. Tet 0642546411

WEST BIRMINGHAM HEALTH DISTRICT

 TECHNICIAN
For the Electronics and Bio-Medical Engineering Section

[^6]
SENIOR

 TECHNICIANWellcome
Bioengineering

An opportunity has occurred in our Pharmacology Department for a Senior Technician to work in the Bioengineering field. There will be some troubleshooting and general maintenance but principally the work concerns the design, construction and servicing of electronic apparatus. The successful candidate, who will join a small and specialised team, must be able to work with both analogue and digital electronic circuits and should be familiar with multichannel equipment used for recording bioelectric signals
Education is likely to be to H.N.C. level or possibly a technical qualification at a lower level in electronics.
Our Laboratories are situated in pleasant parkland surroundings within easy reach of Bromley and Beckenham, and about 12 miles from Charing Cross. Conditions of employment are attractive and include 4 weeks holiday. a subsidised canteen and excellent sports and social facilities.
Please write, quoting reference ZH.652, and giving brief details of qualifications and experience to N. J. Michell

Personnel Officer
The Wellcome Research Laboratories
Beckenham
Kent BR3 3BS

University of Glasgow
 Department of Music

 ELECTRONIC MUSIC STUDIO
A TECHNICIAN

 Grade 5is required to maintain, modify and build equipment for the Electronic Music Studio in the Department of Music.
Applicants should be interested in digital and audio electronics, be able to maintain analogue and digital audio equipment and have at least an ONC and seven years' of relevant experience.
The studio is developing a course as part of the University's B.Mus. degree and provides facilities for professional composers. Equipment includes 16 -track recording facilities, based on an Ampex 1000 and including Dolby. noise reduction, quadrophonic and stereo playback, à computer-controlled (PDP8/A) Synthi 100 and other synthesizing equipment.
Salary range: £2751-£3207 Further information from. and all applications including a curriculum vitae and the names of two referees, to. The Personnel Officer. The University of Glasgow, Glasgow G 12 800. not later than 4th June 1976 (5496)

(CA)
 GAPITAL
 APPONTMENTS LTD.

FIELD SERVICE ENGINEERS (ELECTRONICS)

It you're not earning over $£ 3,500$ pa plus a car - then you had better contact us ${ }^{1}$

THERMIONIC VALVE expert

 specialising in "Rats Nests" required by famous film schoon desperate for mainitenance assistance. Little money, much $9.30-6 \mathrm{~m}$ and satisfaction. Hours 9.30-6 p.m. weekly or by arrangement. - Apply to: The AdminiFilm School 24 Shelton Street. Film School, 24 Shelton Street London, WC2.
V.T.R. ENGINEER Tequired by

 C.C.T.V. Company. Applicantis should have at least 5 years experience in the V.T.R. fielid and bc fully conversant with alll helical scan V.T.R.'s. Salary will be negotiable. Applicants should write gualifications tion of sarary required to indiea 5530. salary required to BoaRADIO TELEPHONE Service Engineer wanted for work-shops in South London. Must be reliable and experier Neg 680-1010 rado equip. Salary

Required a TECHNICAL REPRE-

 SENTATIVE to sell the Electro Voice range of sound reinforce ment products in the United Kingdom.deally the person selected will be Electnonics Engineer in Physics, tween 25 and 30 yeoustics aged be tween 25 and 30 years having in in the electro-acoustial record ing or sound reinforcement fielids. Selling experience to Recording Studios, National Broadcasting Companies and/or the entertain. ments industry will be a distinet advantage.
Remuneration will be on a basic salary plus commission basis and there is ample scope for promotion for the successful applicant. who can successfully demonstrate an ability to build grood business for ur products in the UK. Please write or telephone Wendy Hunter IGulton Europe Ltd., The BNa, Low Sussex ean, Brighton Brighton (0273) 66271. (5390

INSTRUMENTATION SECTION LEADER

c. $£ 4,500$

Michelin seek a graduate or HND engmeer (of elther sex) to head a small technical group working on vehicle instrumentation systems at Stoke-on. Tient Applicants must have at least five years instiumentation experence: with road vehicles or aircraft Knowledge of both digital and analogue data handing is essential and ability in FORTRAN would be an advantage
As leaders in radial tyre manulacture, Michelin reflect ther favourdule world market position in eacelleril servic conditions including five weeks annual toliday, pension and life assurance schemes. and relocat on assistance Please write. with full detals of career to date to Recrutment Manager (SPS). (M. 322 /WW) Michelin Tyre Co. Ltd Stoke-on-Trent ST4 4FY
(5508)

RESEARCH, DESIGN \& DEVELOP. MENT. We are expanding our Eleotronics Laboratory and can offer rapid results in all electronic department. We have 15 years experience working for the Government and industry generally. Give our Technical Director, E. A. Falkner a ring on 01-572 0933. Bath Road, Hounslow, Middlesex.
(5500)

UNIVERSITY OF LEEDS
 TELEVISION SERVICE

Applications are invited for the post of SENNIOR AUDIO EN.GINEER, based at the University Television Service Leeds, where the faci ities inm one firm studio an audio-dubbing suite, 'a moibile television unit and era/VTR units
An active interest and competence in practiveal sound recording at an appropriate professional level is appropriate professional level is the operation and engineering maintenance of film and television audio recording and dubbing equipment, logether with the sup ervision of, and close working involvement with, other members of staff
Evidence of ability will be required and practicali tests will be arranged for those initerviewred.
Salary will be within the range 83,156-£3.762 per annum and the conditions of employment for those applying to full time University echnical staff.
Details, applicaltions should be sent as soon as posstible to The Deputy Director (Technical Services). Uni versity Television Service. The Unversity of Leeds, Leeds LS2 9jT
V.H.F. RADIO TELEPHONE. Both bench and field engineers required for maintenance and installation. 5 day week Salary, $22,500-£ 3,500$ p.a. capable of experience. Must be $01-573$ 4541. using own intiaitive 01-573 4541.

RADIO-Telephone Service Engineer Manager wanted for workshop in Croydon. Must be experienced in Pye, GEC. etc., mobile radio equipment. Enormous potential for the right applicant. Salary accord ing to ability land experience, 01
680 l 1010 .

AUDIO/ COMMUNICATIONS CONSULTANT

A leading firm of consultants in the Entertainment Industry are looking for a Specialist to expand their team dealing with theatres conference halls and studios in the U.K. and abroad. Practical experience in communications systems, sound reproduction and reinforcements, recording and television is appropriate and an ability to define equipment and installation details is required Based in Central London.

Applications in confidence to Box No 5511.

The Polytechnic of NorthLondon

Department of Electronic and Communications Engineering

Two Technicians

 (Grade 11B)Applications are invited for the posts of wo Technicians (Grade 11B) in th Department of Electronic and Communications Engineering. Duties will include provision of general assistance to students as directed and construction, modification and servicing of electronic test equipment, under supervision.
2 to 3 years' similar previous experience is desirable and suitably recognised qualifications.
Salary scale: £2583-£2910 inclusive of London Weighting.

Application forms obtainable from the Establishment Officer, The Polytechnic of North London. Holloway Road. London, N78DB.

HULL ROYAL INFIRMARY (SUTTON)

Medical Physics Technician Electronics)

Fixed term vacancy

required by the Medical Physics Department to assist in the development and mantenance of electronic equipment within the health service. The appointment is for one year in the first instance, but may be extended for a further one or two years dependent on the continuance of the funds currently being used for this purpose Subject to satisfactory performance, the experience gained will improve prospects of a permanent appointment
Candidates (male or female) should have ONC. HNC or a degree in Electronic Engineering and, according to qualifications and experience the salary will be in the range $£ 2346$ - $£ 3171$
Application forms may be obtained from the District Personnel Officer. Victoria House, Park Street, Hull, but applicants are invited to telephone the Chief Techniclan. Mr. Harrison (701151 Ext. 203) for further information

돌
 Hull District
 Humberside Area Health Authority

SITUATIONS WANTED

PHYSICS TEACHER Seeks

 broaden his horizons during year from September. Experience in writing, editing, electronics. Full, part, or home' work considered.Box No. 5507 .

ARTICLES FOR SALE

MICROPROCESSORS

This book gives you a genera
overview of the Technology Design overview of the Technology Design
Ideas and Practical Applications Ideas and Practical Applications
by Altman PRICE $£ 9.25$

THE ELECTRONIC MUSICAL INSTRUMENT MANUAL by A Douglas PRICE E8.00
THE RADIO AMATEUR'S HANDSOOK, 1976 by ARRL WORLD RADIO TV HAND BOOK, 1976 PRICE £4.00 TTL COOKBOOK by D Lancaster

ELECTRONIC FUNDAMEN TALS \& APPLICATIONS: FOR ENGINEERS \& SCIENTISTS by Millman, Halkıss PRICE $£ 9.55$ 110 COSMOS DIGITAL IC PROJESTS FOR THE HOME CONSTRUCTOR by R M Mar 99 WAYS TO KNOW \& USE YOUR ELECTRONIC CALCULATOR by LE Frenzel PRICE $£ 3.80$ HANDBOOK OF DATA COMMUNICATIONS by Post Office ELECTRONIC,S ENGINEER'S REFERENCE BOOK bY L W Turner PRICE £25.60

* PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO
SECALSTS NSCLENTFIC \& technical books

19-21 PRAED STREET LONDON W2 INP

Phone 7234185
closed Sat 1 pm

ARTICLES FOR SALE

IBM GOLFBALL 735 I/O TYPEWRITERS

 will accept normal or sprocketed paperSupplied in working order with photo copy of 18 M interface manual Each machine serviced and tested
As above but modified to take office range of goltballs $t 118+8 \%$, VAT (including new ooltball! UK delivery by Securicor + goltbalin i:750 Overseas air freight or surface at cost

RELAYS
Varley 2p col 0 185:. 65p (12p) Varley $2 p$ c (o 280.1 65p (12p)
P×8 2pco 1500.$) 40 \mathrm{p}(12 \mathrm{p})$
8NC Free SKT 8LL1339 J 35p (10p) BNC Chassis SKT SCRND LI339/FS 35p

PAPST (or sumilar) Fans $41 / 2 \times 41 / 2 \times 2$
ELECTROLYTICS
$1000063 v$ £ (300) 2800 . 100 v 70 p $(25 p) 2240-100 v 70 p(25 p) 4000 \quad 35 v$
$50 p(20 p) 2000-50 v 35 p(11 p) 4000$ $50 p(20 p) 2000.50 v 35 p(11 p) 4000$
$70 v 80 p(25 p) 10.000 .16 \vee 50 p(20 p)$
EX COMPUTER PC PANELS $2 \times 4^{\prime \prime} 50$ boards $£ 2.40$ (62 p)
QH bulbs 12 V 55 w 60 p (10 p

- 250 mixed Capacitors 60 p (18 p)

Small electrolytics
$22 u 10 v 10 u 35 v 50 u 40 v 100 u 40 v$ $100.6 v 150 u 10 v .64$ u $10 v .300$ u $10 v$

- PIHER PRESETS 100 mw
$220 \quad 470 \quad 1 \mathrm{~K} 447$ 10K $47 \mathrm{~K} \quad 100 \mathrm{~K}$ 220 K 12 for 50 p (12 p) Heed relays 6 v coll h / d conlacts. 5 for $\mathrm{\varepsilon} 1$ (20p)
Reed inserts h d contacts 10 for $£ 1$ (12p) TRANSFORMER $6 v 500 \mathrm{~mA} 75 \mathrm{p}$ (18 p) TRANSFORMER $31 v 330 \mathrm{~mA}$ 60p (30p) Add $\mathbf{2 5} \%$ VAT to tems marked others

8\%

KEYTRONICS
Shop open Monday to Saturday
332 Ley Street, liford, Essex
332 Ley Street, IIfor

COLOUR UHF and TV SPARES, Lists available on request "Wireless World' 'TV tuner project, by D. C. Read. Kits of parts available. New cross hatch kit, Aerial input type No other connections. Battery operated, portable. Incl. Sync \& 8
UHF Moderator units. $£ 11.00 \mathrm{p} / \mathrm{p}$ UHF Moderator units. $£ 11.00 \mathrm{p} / \mathrm{p}$
45 p . CRT Reactivator kit for colour and mono $£ 17.48 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Signa strength meter kit eil $8.00 \mathrm{p} / \mathrm{p} 60 \mathrm{p}$ 625 TV I.F. Unit, suitable for $\mathrm{Hi}-\mathrm{F}$ amp on tape recording $£ 6.80 \mathrm{p} / \mathrm{p}$ 60p. Bush CTV 25 new convergence $53.60 \mathrm{p} / \mathrm{p} 65 \mathrm{p}$. New Philips single iandard convergence panels single standard convergence panels com switches, leads $£ 3.75 \mathrm{p} / \mathrm{p} 65 \mathrm{p}$. New
 sey, plus convergence yoke and blue lateral $£ 9.20 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Mullard at $1023 / 05$ convergence yoke s2.50 p/p 50 p . Mullard or Plessey Blue laterals 75 p p/p 25p. BRC 3000 type scan coils $£ 2.00 \mathrm{p} / \mathrm{p} 60 \mathrm{p}$. Bush CTV25 scan coils, new. $£ 2.50 \mathrm{p} / \mathrm{p}$ 60p. Delay lines UL20 £3.50, DL40 £150, DLIE, DLI £1.00 p/p 35p. Lum Delay Lines 50 p p/p 20 p . EHT colour quadrupler for Bush/Murphy CTV25 $3 / 174$ Series $88.50 \mathrm{p} / \mathrm{p} 60 \mathrm{p}$. Specia offer, colour triplers: ITT TH25 $\begin{aligned} & \text { ITH } \\ & \text { £ } 1.75 \\ & \mathrm{p} 2.00 \\ & \mathrm{p}\end{aligned} \mathrm{p} / \mathrm{p} 40 \mathrm{p}$. Philips 2040 tripler part complete. surplus/salvaged decoder $£ 250$ 1F inct 5 modules 52.25 T-Base s. $00 \mathrm{p} / \mathrm{D} 50 \mathrm{D}$ CRT
 panels for spares. Decoder $£ 3.59$ Timebase $£ 1.00 \mathrm{p} / \mathrm{D} 55 \mathrm{p}$. VARICAP TUNERS UHF ELC 1043 new $£ 4.20$ ELC 1043/05. £5.00. VHF ELC 1042 new £5,00. Salvaged VHF and UHF Varicap tuners $£ 1.50$ p/p 25p SPECIAL OFFER: RBM 6psn. Vari cap control units $£ 1.00 \mathrm{p} / \mathrm{p} 25 \mathrm{p}$ UHF tuners, new, transistorised incl. slow motion drive, $£ 3.80$. 41
 button transistorised. $44.20 \mathrm{p} / \mathrm{p}$
60 p . Philips, Bush, Decca integrated 60 p Philips, Bush, Decca integrated
UHF/VHF transd. tuners $£ 4.50 \mathrm{p} / \mathrm{p}$ 65 p . Thorn 850 dual Standard time base panel 50p p/p 50p. Philips 626 I.F. amp. incl. CCT 50 p p/p 50 p . Valves for K B Featherlight, Philios 19TG170. GEC 2010 ETC. 52.50 . PYe miniature incremental for 110 to 830, Pam and INVICTA $£ 1.00$. New Fireball tuners. Ferguson. HMV Marconi. $£ 1.00 \mathrm{p} / \mathrm{p}$ all tuners 50 p . Mullard 1100 Mono scan coils. new. suitable all standard Philips, Stella. Pye, Ekco, Ferranti. Invicta $£ 2.00$ p/p 55p. Large selection. LOPTS, FOPTs available for most popular makes $200+200=100$ MFD 350 V Electrolvtic $£ 1.00 \mathrm{p} / \mathrm{p} 30 \mathrm{p}$. MANOR London N w 6 Shop Premises Callers welcome. iNo 28 Premises buses or W Hampstead-Bakerloo and Brit. Rail). Mail Order: 64 Golders: Manor Drive. London NW11 Tel. $01-7948751$ VAT Please ADD 25% TO ALI PRICES (EXCEPT KITS. VAT 8%

ENAMELLED COPPER WIRE

S.W.G.	$\mathbf{1 / b}$ reel	$\mathbf{1 / 2} \mathbf{~ l b}$ reel
10 to $\mathbf{1 9}$	240	135
20 to 29	245	140
30 to 34	260	150
35 to 40	285	160

All the above prices are inclusive of postage
and packing in UK
COPPER SUPPLIES
102 Parrswood Road, Withington,
Manchester 20
Telephone $061-4458753$

16MM B \& H 631 Sound projectors c/w speaker and transformers $£ 135$ - Hiton Cine. 9 West Hill. Dart ford - 7 '. 20009

DIGITAL CLOCK CHIP, AY-5-1224 with data and circuit diagram 16 mm high) type economy DL/747 only $£ 2.04$ each plus VAT, post free. Greenbank Electronics. 94 New Chester Road. Wirral. Merseyside L62 3 AG

[^7]
PRECISION POLYCARBONATE CAPACITORS

Leakage				
ut				
Not.: 1p1				
Ll 1				
11.22 ,				
04.4				
0.51 F	33	7p	* Et	
		93p 11 lor L 2	L1.	
		. 4.3	2	
$\begin{aligned} & 10 \mathrm{H}, \mathrm{~F} \\ & 20_{4} \mathrm{t} \end{aligned}$	50.4254	+4	25 23	
IAVIALC: Brab) (APACllofs - Valuen walabie: 01. 022.047 1.02 2.2. 4.8 6.1plat at 15 V 25 V or $35 \mathrm{~V} .10, \mathrm{~F}$ at 16 V 20 V or 25 V .220 tr at 6 V or $1 \mathrm{fV}: 330 \mathrm{~F}$ at 6 V or 10 N ; 47.0 H H 43 V or 6 V 				
TRANSISTORS \& IC.s				
128				
		xA12p		
		. 11.32 .340		
		1516% 22p		
BC 114 8 CCH 18				
8 Clit 8 8 BC 53 l		$194145 \cdot 120$		
8 BC 157		(197		
BC 17$\mathrm{HC} 1 \times 2$				
	$11 p$	$\mathrm{BF} 262^{863}$ 6itp	1p3053	
8C1/3		50315220		
H('21.3	$11 p$	8R101	2N+1	
21	HLILp	(ticsiz		
		CH (0C+5 $1+$		
POPCLAR				
LON PRK				
.15N. 16 V . 18 y 206. 2				
All 417	P each.	5 for		
SPFGLAL. Pack (3) rumbrocs.				
. tiok) 3 Sp				
H.AD) ISp Post AND PACKING ONALL				
ADI, OSTTOFSEA/AIR MAIL.				
Plitase Ald K\% VAI to dill terns except those marked with • which are 25%				
hle tor benal fide				

MARCO TRADING

(Dept. D1)
The Oid School, Edstaston. Nr. Wem Shropshire
Tel. Whixall [Shropshire) [STD 094872) 464/5

CAPACITY AVAILABLE

From drawings to completed product For quality se wee and a Keen price contact Mr Price-Smith

$\overline{=}=$ Multiform Limited

22 Portugal Road Woking Surrey GU2I sJE 22 Portugal Road Woking Surrey GU21 EJE
Telephone Woking (04862) 70248

PRINTED CIRCUIT BOARDS

 Quick deliveries, competitive prices, quotations on request, roller tin. batch drining, etc., specially smal Jamiesons Automatics Ltd, 1-5 Westgate. Bridlington. N. Humber side, for the aitention of Mr . Harrison. Tel: (0262) 4738/77877CAPACITY available to the Elec tronic industry. Precision turned parts, engraving. miling and grinding buth in metals and plastics. Limited capacity available on Mathey SP33 jig borer, Write for lists of full plant capacity to C.B. Industrial Engineer B 9857057 . 9857057.

ARTICLES FOR SALE

Economise on Semiconductors
 All prices include VAT - by return service

* Lower price 741C

EXCLUSIVE OFFER

NEVER BEFORE OFFEREDPHILCO HC-150 POINT-TO-POINT STRIP
RADIO HF RECEIVERS $2 / 30 \mathrm{~m} / \mathrm{cs}$. Ten fullytuneable chanels to 0.5 kcs with synthesisers.
Single and diversity reception on ISB, DSB sSBSingle and diversity reception on ISB, DSB, SSB
with 4 sub-bands to each channel. Full details andprices on application.RACK MOUNTING CABINETS\& RACKS
 Space
inins
open racks

We have a large quanury of "bits and pleces", we
cannot list -please send us your reequrements. we
can probably hielp - all enquiries answered.

Belling Lee 75ft. Sky Tower. self supporting $E 475.00$
Rhode \& Schwarz SBR sig zent, 1.6 .24 gmc. $\mathbf{7 7 0 . 0 0}$
Rhode \& Schwarz SBR sig gen,
Airmec 702 sig gen 30 cyc 30 kcs
Muirhead D669 Analyse
Large Aenal Turning Unit
Muirhead Hydraulic Relay
Lavore OS-62 Oscilloscopes $115 \mathrm{IV} 15 \mathrm{in} / \mathrm{cs}$.
S.T.C. Rx 5 Receivers $05 / 25.0 \mathrm{~m} / \mathrm{cs}$ Dual
Dirly - Uni........................ 45 fet 40 ohms
Stelma RTT Scopes.
Baluns Professional Exterior $600 / 75$ ohms
Telegraph Distortion Test Set

$1600 f \mathrm{t} 16 \mathrm{~m} / \mathrm{m}$ Film Spoois ally (unused)
10 for.
Quality
Quality electric Weather vanes 8 contacts
(unused)
large Aerial Rotators for Coaxial.
Barge Aerial Rotators for
Video Cross Hatch TV Generators
Collins KWT-6 SSB Transceivers 500)
$2 / 30 \mathrm{~m} / \mathrm{cs}$
mslide Cabinet Shelf Sliders

Imslide Cabinet Shelf Slid DG.7/32 and DG7/5 C. R.T

E115.00
P.U.R.
M.V.R. Action Replay 20 sec. Videodisc Unit P.U.R.
Advance HI SIgnal Generators. $15 / 50 \mathrm{Kcs}$. Ei8.00
Advance H1 Signal Generators. $15 / 50 \mathrm{KCs}$${ }^{£ 3.00}$
$£ 3.00$ Occillators.
Tally 588 Track Tape Readers 60 cps P.U.R. $\mathbb{E 4 8 . 0 0}$ Tally $5 / 8$ Track Tape Readers I20 cps 5 foot 12 inch Latuce Stee
Cintel 2 KV Power Supplies

Cawkell FU 4 Band Pass Fiter Testers | $£ 35.00$ |
| :--- |
| $£ 29.00$ |
| 50.50 |

We have a quanity or Power Tr in
We have a quantity of Power Transformers 250
watts to 15 KVA at voltages up to 40 KV . Best
quality at low pnces. Lists avallable
Racal RA-63 SSB Adaptors. new
Racal RA- 237 L -W Converters. new
19 Brank Rack Panels 8 gedn high new Apeco Dial a Copy Photo Copier Electros Hewlett Pack ard 524 C Digital Counter Portable Mains Battery Floodlights

We have a vaned assortment of industrial and
professional Cathode Ray Tubes available. List on
request.
AUDIO AND INSTRUMENTATION-
TAPE RECORDER-REPRODUCERS
Plessey ID33 Digital Units. 7 track
Plessey M5500 Dugital Unit. 7 track
Ampex FR-1100, 6 speeds, stereo $1 /$

D.R.1. RMI 4 speeds, 1 tracks $\%$

EMI TR90 2 speeds. 1 track $1 / 3$
EMI BTRI, 1 speed, 1 track 1/",
EMI R30IG. 2 speeds. 2 racks
Mincon CMP-100. 6 speeds. 7 t racks 1
Levers RIch DA-2P. 2 speeds. 2 track Prices of above $£ 70$ to $£ 400$ Also Transport Decks only availa ble COMPUTER HARDWARE

* LINE PRINTER. High speed 1000 lines C.p.m.
TAPE READER, I ligh-speed $5 / 8$
track 800 c. p.m.
* CARD READER $80 \mathrm{col} .600 \mathrm{c} . \mathrm{p} . \mathrm{n}$ Prices on Application
PLEASE ADD CARRIAGE AND
AT APPROPRIATE RATE TO ABOVE
P. HARRIS

ORGANFORD-DORSET BH16 6BR
BOURNEMOUTH (02O2) 765051

SAVE IT" BARGAIN 500 WATT DIMMER SWITCH (not suitable tor fluorescent lights) Basic Module with 1"Knob £2 00 Complete on MK switch plate Large 2" knob (8ULGIN) 25p extra. $\text { P\& P } 250$ Please add 8\% VAT to all orders inc P\&P FRASER-MANNING LTD. 0 TUDDENHAM ROAD, IPSWICH IP4 2 SL

RIVERSIDE ELECTRONICS

Wholesalers and other large users of consumer electronic components are invited to send for our monthly list of special offers. We stock semi-conductors, i.c s. capacitors, resistors, etc. Export enquiries welcome
P.O. BOX 4, WISBECH, CAMBS
Telephone: 09454188

DISCO UNIT

Consisting of two KF Speakers, outpul 100 w each. Two wurntables, one Garrard and the other BSR. plus DJ Disco phones 200 miorophone and Head phones $£ 200$ for quick sale Also comprehensive record selection
available with unit

For further details
Phone $01-4404153$ or 01-886 7026

THE SCIENTIFIC WIRE CO
Copper - Nickel - Chrome - Eureka Enamelled - Silk - cotton - Tinned Coverings.

* No minimum charges or quantities * Trade and export enquiries welcome * S.A.E. brings List
P.O. BOX 30, LONDON E4 9BW

VACUUM is our speciality, new and secondrrand rotary pumps, diffusion outfits, accessories, coaters. etc. Silicone rubber or varnish outBassing equipment from $\begin{aligned} & \text { equ. Road } \\ & \text { Barrett } \\ & \text { (Sales) Ltd., } 1\end{aligned}$ Barrett (Sales) Ltd.,
Croydon. $01-6849917$.

FOR SALE. Heathkit receiver K/SB 303 in perfect order. §300. Hughes. O1-407 4411 Ext. 240.

COMPONENT GARGAINS. Full spec,

 741 20p, 555 37p, 7447 decoders 58p. PD142 (Motorola 115 W 40 V) 25 p . BC108 6p. Mullard polyesters, 50 mixed 1 \& 2.2 microfarads 250 V . tested but some cosmetic imperfections so $f 1$. Mixed electrolytics, 500 untested $£ 1$. Minimum order fist, add 40 p p.p. for capacitors or 20 p for Road London SW Erpin1BE.

OSCILLOSCOPE. Dynamco D7100 1×2 and 1Y2

CCTV EQUIPMENT. Aston SPIGI sync pulse generator $£ 70$, vision mixer and effects unit. - Phone Carlisle 20776.

QUANTITY OF MARCONI SIGNAL GENERATORS. TYpe TF 1449, £25 each. Cash with order. Contact Neill Brady. Ascot 23422. Office hours.

VALVES RADIO TV TRANSMITTING INDUSTRIAL 1936 to 1975. many obsolete types, list 20p s.a.e. for quotation. Postal export ser
vice. We wish to buy all types of vice. We wish to buy all types of
valves new and boxed. Wholevalves new and boxed.
salers, Dealers, etc. stocks purchased. Cox R'adio (Sussex) Ltd. West Wittering 2023

QUANTITY OF MARCONI SIGNAL GENERATORS type TF144G. £25 each. Cash with order. Carriage forward. - Contact Neil Broady Ascot (Berks) (5369)

100 MHz TWIN BEAM, dual timebase oscilloscope as new $£ 450.00$ Weston super Mare 412178 (5388)

TELEPRINTERS CREED. Envoy 5Unit receive only in good working order in CABINETS. Tel Commun

60 KHz MSF RUGBY RECEIVERS. BCD TIME-OF-DAY OUTPUT. High performance, phase locked loop radio receiver. 5 V operation with
LED indication. Kit complete $f 9.50$ assembled and tested unit $£ 11.12$ (prices include postage and V.A.T.)
Also available low power receiver with signal and audio outputs. Send with signal and audio outputs (4359) for deta

SIGNAL GENERATOR TM.I. TF8ATA 15 kHZ to 30 MhZ . $£ 90.00$
Hedingham 60599 .

PRINTED CIRCUIT BOARDS. High quality fast deliveries. - PhotoEynsham. Oxford. Tel. Oxford (0865) 880645. (5525)

INSTRUMENT TURNSCREWS

 (SCREWDRIVERS). Precision made with hardened tool steel bladesand brass bodies. Set of five blade and brass bodies. Set of five.
sizes 0.8 mm to 2.4 mm , packed in sizes
strong
0.8 mm
plastic strong plastic wallet. To prove $\begin{array}{ll}\text { only } £ 1: 35 \text { (incl. V.A.T., } \\ \text { to } & \text { Dunbar Marketing. } \\ \text { Stamford }\end{array}$ House, Stamford New Road, AltrinHouse, Stamford New Road, Altinn
cham, Ches. WA14 1BL.
R.T.T.Y, GEAR. FOr ham or computer enthusiast. Buyer collect.s.Details ring Mr. Radley 01-953 1918

VARIACS $240 \mathrm{v} \quad \mathrm{I} / \mathrm{P}$ with driving motor. $O / P 0$ to 240 v at 20 amps
cont with 1.20 v tap by Foster Elec cont With 1.20 . Veeders Counters 5 digit with reset coil $12 / 24 v$ DC $£ 1.30$. Blower reset coil $12 / 24 \mathrm{v}$ DC E1.30. Blower Motors small double ended 6 to $27 v$
DC new $£ 3.60$. H.F. Trans Tx type DC new 23.60 . H.F. Trans
$70 \mathrm{w} ~ 75$ to 600 ohm in case new £3.40. Me'ter Unit dual aircraft type as 270 ft 1 ma \& $100-0-100 \mathrm{Ua}$ in same case $3 \frac{1}{\frac{1}{2}}$ sq. $£ 4.50$. Spectrum Filter provides 20 channels in
range 3 to 20 Kc ea with its own $\begin{array}{lll}\text { o/p. use } 20 \text { pot cores, in box } 6 \frac{1}{3} \\ \text { sq. } & \text { f4.30. Crystal Filters } 10.7\end{array}$ Mc / s STC size $38 \quad \times \quad 16 \times 18 \mathrm{~mm}$ 12 Kc b.w. $£ 1.60 .30 \mathrm{Kc}$ b.w. £1.30. New. Tape Decks with amps ex language lab equip. Type A with BSR deck type TD. 22 chan. amp with erase osc mixer \& o/p stage provision for rec \& playback on both chan. two chan are mixed to give one o/p for phones. Units are complete except for 2 .U. req
$24 v$ DC smoothed for amps. with circ 59.50 also type B similar but with circ $£ 6.50$. Aerial system 8 element Yagi for use on Satellite chan $183.6 \mathrm{Mc} / \mathrm{s}$ for use with 50 ohm coax N type termination.
boom approx $11 f t$ new in cases foom approx lift new in case type tested $£ 9.60$. Ind Unit small type tested \quad e9.60. Ind Unit smal
sector sean P.P.I. with P7 tube sector scan P.P.i. with focus coils in case $14 \mathrm{in} x$ in x in, needs ext eht $£ 7.50$. Radar Ass with 2 J 42 ext eht $£ 7.50$. Radar Ass with $2 J 42$
mag Klystron. TR cell's, balanced mixer. $7115 \mathrm{C}, \mathrm{I} . \mathrm{F}$. strip. etc with w.g. for X band $£ 25$. Marconi TF942 pulse scope, intended for high speed pulses, trig t.b. int cal marks, mains operated with circ £26. Trans Pria 120v $50 \mathrm{c} / \mathrm{s}$ se $34 v$ at 60 amps supplied in pairs for 240 v to give $34 / 120 \mathrm{a}$ or $68 / 70 \mathrm{a}$ £30 per pair. Selsyns $230 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$ power type $£ 25$ per pair. Goods are ex equip unless stated new. prices inc VAT and carr UK. A. H. Supplies, 122 Handsworth Road. Sheffield. 59.4 AE . Phone . 444278 (0742)

LINSLEY-HOOD 75 watt amplifier interference suppression kit - reduces effects of mains borne/rf interference and parasitic oscifiation, virtually eliminates click from
filth and now contains com. ponents to reduce preamp noise ponents to reduce preamp noise instructions supplied - \quad avail. 35 . Headphone socket kit, with instruc tions, £1.45. Sescosem BDY56 £1.65. Motorola BD529 55p. BD530 55p BF258 35p, 2N5457 35p. 2N5459 45p MC1310P $£ 2.30$. Texas BFR39 25p. BFR79 25p. Inclusive prices. $P \& P$
10 p . All components brand new. 10p. All components brand new.
guaranteed and despatched by reguaranteed and despatched by re(Dept WW),
quay. S. Devon.

CT 381 LABORATORY SWEEP GENERATOR SYSTEM for IF/RF alignment, $10 \mathrm{KHZ}-33 \mathrm{MHz}$ comprising PSU, generator, and scope,
with handbook, spare PSU and scope, $£ 85$. Advance 7000 3 $\frac{1}{2}$ digit DP'M. new. £15. Sealectroboard programming panels 24×32 matrix. with 60 diode pins, new, 〔15. Ad-
ditional ping $10 p$ each. Heathkit
 blidstate voltmeter IM
$-\quad$ G3YLQ. Luton 25595 .

DAWE U.L.F. OSCILLATOR 0.01 Hz to 1 Khz .90 degrees and ref phase $0 / \mathrm{P}$ terminals. $£ 30$. Lapmaster monochromatic light unit $£ 25$. $\begin{array}{ll}\text { Gretsch } & \text { Complex ratio bridge } \\ \text { CRB B1, mint, } 6 \text { decades phase } 4\end{array}$ CRB B1. Mint, 6 decades phase 4
real $\mathbf{4} 300$. Wayne Kerr Mod/Demod Unit SA400 £35, Wayne Kerr transfer function computer $£ 200$. Airmec 853 wave analyser 30 khz to 30 Mhz
$\mathbf{4 6 5}$. Cossor motor driven oscillo£65. Cossor motor driven oscillo-
scope camera unit $£ 60$. Marconi
 Dynchro test unit JM $\quad 555.2 \quad$ f40.
 B.P.L. Telequipment 33C Amp plug £30. Telequipment 33C Amp plug
in unit $\& 20$. Polaroid oscilloscope camera, mint, $£ 60$. P.S.U.S A.P.T. camera, mint, stabilised 20 V @ 10 V (0A Variablet or - 10% V E. $12,10 \mathrm{~V}$ @ 8% S.A.E. for your electronic components lists - ${ }^{2}$ Q" Services Electronic (Camberley) Ltd.. 29
Lawford Crescent. Yateley, Camberley, Surrey (0252) 871048. (5366)

RACAL SA505 frequency counter, 7 digit DC-40 MHZ with adaptor. handibook, good condition, 820. Ultrasonic cleaner, solid state 60W $\begin{array}{lllll}\text { Generator plus } 2 & \text { tanks. new } & \text { E40. } \\ \text { Cother }\end{array}$ Cathodeon BP4706/1 1.4 . lator TF $1102 / 1$ £5. Wanted Philips LBB 5000 pocket radio paging re ceivers. G3YLQ Luton 25595.
(5504).

OSCILLOSCOPES telequipment DC. 15 MHz 2 trace 2150 . Fairchild $\mathrm{DC}-25 \mathrm{MHz}$. 2 Trace 2 time base $£ 270$. Both with manuals Wargrave
(5503) 2788.

STEREO CASSETTE MECHANISMS, Similar to those used in low-noise cassette deck WW May. Choice of side or top loading. Complete with heads and full technical data. Send S.A.E. Box. No. 5497

PYE, GEC, 1 TT mobile radio equipment for sale. New and second hand mobiles and base stations ex stock. Crystals 2 weeks delivery.
Finglas mobile and base station Finglas mobile and base station antennas available ex. Stock at very competitive prices. White wait fitting service. Cash waiting for surplus r / t and test equipment.
$01-680 \quad 1010$.

WE INVITE ENQUIRIES from any where in the World. We have in stock several million carbon resis tors $\frac{1}{2}$ th. $\frac{1}{6}, \frac{1}{2}$, and 1 watt. $\frac{1}{\frac{1}{2}}$ million wire wound resistors 5 and 10 watt - 1 million capacitors - 1 million electrolytic condensers - $\frac{1}{2}$ million transistors and diodes, thousands of potentiometers, and hosts of othe at our warehouse - Broadfields \& Mayco Disposals Ltd., 21 Lodge Lane, N. Finchley, London. N. 12 . 01-445 0749, 4452713.

WATTMETERS. Four multirange models covering ranges from 60 W to 3 KW . Further details from E.M.S. 21 Mount Road, Bentieet Essex. SS7 1HA.

TELEQUIPMENT oscilloscope, dual beam. Model D43. Plug-in high gain Y amplifiers. TV line and frame sync: $15 \mathrm{M} / \mathrm{Cs}$ bandwidth. Manual. Little used $£ 110$. AVO valve tester
Mk. 2. Manual. $\{70$. E.H.T. transMk. 2, Manual, £70. E.H.T. trans-
former, mains input, $15 \mathrm{~K} . \mathrm{V}$, centre tapped at 20 mA, Parmeko hermetically sealed. as new. £20. - Te
Erith (Kent) 30556.

TAPE RECORDING ETC

RECORDS MADE TO ORDER
DEMO DISCS
MASTERSMPA PRESSINGS
Single disc. 120. Mono or Stereo. delivery 4 days from your tapes Quantity runs 25 to 1.000 records PRESSED IN VINYLITE IN
OUR OWN PLANT Delivery 3.4 weeks OUR OWN PLANT Delivery 3.4 weeks
Sleeves/Labels finest quality NEUMANN Sleeves/Labels finest quality
STEREO/Mono Lathes We cut for many STEREO/Mono Lathes We cut for
studios UK/OVERSEAS SAE list

DEROY RECORDS
PO Box Hawk Streat Carniorth
Lancs
Tel: 2273

NEW GRAM

gLASGOW. Hi Fi Cassette Decks, Tape Recorders. Video Equipment. always available we buy sell and
exchange for Hi Fi sets and photoexchange for Hi Fi sets and photo-
graphic
equipment. graphic
MORRIS Audio Morris Audio Visual Ltd.,
Argyle Street, Glasgow, G1. $8 / 10$ Argyle Street, Glasgow, G1, $\begin{array}{r}8 / 10 \\ \text { Glassford Street, Glasgow. G1, } \\ 8 / 10\end{array}$ Sauchiehall Strest. Tele: 041-221 8958.

TRANSISTORS

 \& PRINTEDCIRCUIT BOARDS TO COMPLETE COMPUTERS
The COMMERCIAL SMELTING 8
REFINING Co. Ltd.

171 farringoon road | LONDON EC1R |
| :---: |
| Tel. $01-8371475$ |

Cables: COMSMELT.EC1
Works: RECKNEY. ar. LECESTER (51

MINICOMPUTERS

PERIPHERALS
INSTRUMENTATION

COMPUTER APPRECIATION
Godstone (088 384) 3106

WANTED, all types of communica tions receivers and test equipment Led. Ashville Old Hall Ashvill Rd., London, Er.11. Ley $4986 . \quad 163$ B-D ELECTRONICS offer prompt settlement for your surplus com ponents. Our main field of interes is consumer electronics. Please telephone our Miss Hughes. Sandy
(0767) 81616 .

REQUIRED from Ministry of Defence and other sources Plessey
models P.T.R. 371 also 691,692 models 693 . Please post fullest details and 693. Please post 16 Pine Walk Carshalton Beeches, Surrey. (5226)
SURPLUS COMPONENTS Equipment and Computer panels wanted for cash. Ring Southampton 772501

WANTED. Agent to purchase Mono
and Colour T.V's transistor radios, and Colour T.V's transistor radios,
vacuum cleaners, washing machines, cookers, etc. New and second hand, Box INo. 5328.
AVO VCM1GB VALVE TESTER. Wormald, 39 Greenside Lane, cullingworth, West Yorkshire
5 (DP. $0274-33466$, Ext. 423 (Day)

LICENCE OFFERED

ACOUSTICALLY ADJUSTABLE LOUDSPEAKERS. We wish to appoint licensees to manufacture the world's first Monitor Loudspeaker with acoustic adjustalbility; revolutionary Omal Ambionic TL6. It has no competition and its nany unique features include a variable transmission line (patented) giving uncoloured sound reproductinn of
outstanding quality. For full details outstanding quality. For full details
(Principals only). write to:Mrincipals oniy). Omal Uroup Ltd. Omal House. North Circular

VALVES WANTED

WE BUY new valves transistors and clean new components, large quotations by return. - Walton's, 55 Worcester St. Wolverhampton.

VALVES. Good prices. Types CV2797.
CV2798, CV2792, CV2130, CV2131
CV345, CV450. Phone 021.373 4357.

and NOW

/ /

 from ONE source

|/|
SERVICE, you can obtain many other Technical Products including Electrical, Mechanical and Tools in addition to the Electronic components that we have been distributing to Industry for over 30 years.

Large duplicate stocks are kept in LONDON and SCOTLAND to give you quick service.

CABLES \cap COMPONENTS LTD
Park Avenue, London NW10 7XN

COURSES

The Polytechnic of NorthLondon

Department of Physics B.Sc(Hons.) THE PHYSICS AND TECHNOLOGY OF ELECTRONICS A sandwich course offering special isation in Microwave Physics, or Theory and Practice of Computers. or Electrical Processes in Gases and Associated Spectroscopy.

HNC IN APPLIED PHYSICS
2-year day-release course with special topics in electronics.

CERTIFICATE OF
SUPPLEMENTARY STUDY
3 one-term day-release courses (Further Electronics, Nuclear Radiation and Counting Techniques, Experimental Atomic Spectroscopy).
M.Sc. THE PHYSICAL

BASIS OF ELECTRONICS
This course is available as a fulltime, part-time or an evening only course for graduates in Physics, Electrical Engmeering and allied disciplines.
Specialisation is offered in Specialisation is offered in
Semiconductor Physics and De. Semiconductor Physics and De-
vices, Plasma and Laser Physics, Electromagnetic Waves and Communication Theory
Details of these courses from:
The Head of the Physics Dept (Ref. WW2)
THE POLYTECHNIC OF NORTH LONDON
Holloway Read, London. N7 8DB
(Tel. 01-607 6767. ext. 305) (5391)

SOUTHALL COLLEGE OF TECHNOLOGY

Beaconsfield Road, Southall, Middx. UB1 1 DP 01-5743448

CEI PART II PART-TIME COURSE

in Electrical / Electronic Engineering Subjects
For full details please contact Head of Department of Electrical \& Electronic Engineering (5373)

BROADFIELDS AND

MAYCO DISPOSALS
21 Lodge Lane, N, Finchley
London, N12 8JG
Telephone:
$01-4450749$
$01-4452713$
MAY WE ASSIST YOU TO DISPOSE OF YOUR SURPLUS AND REDUNDANT STOCKS?

We will call anywhere in the British Isles, and pay SPOT CASH for Electronic Components and Equipment.
(5330)

CAPACITY AVAILABLE

BATCH Production Wiring and As sembly to sample or drawings. Deane Electricals. 19B Station parade, Ealing Common. London, W.5. Tet: 01-992 8976.
T.w. ELECTRONIC CONTRACTORS Wiring and assembly specialists. For instrument assy, sub assy P.C.B. assy, Cableforms etc. For service. Tel. 01-500 1708. (5334)

RADIO and Radar M.P.T. and C.G.L.I. Courses. Write, Principal, Nautical College. Fleetwood. FY7
8 JJZ .

RECEIVERS AND AMPLIFIERS

HRO Rx5s, etc. AR88. CR100, stock. R. T. \& I. Electronics. Litd.. Ashville oid Hall, Ashville Rd. Lon'don, E11. Ley 4986.

SIGNAL Generators, Oscilloscopes. Output Meters. Wave Voltmeters Frequency Meters, Multi-range Meters etc., etc. in stock. R. T. \& I. Electronics, Ltd., Ashville old Hali, Ashville Rd., London. E.11. Ley 4986.

SERVICES

REVOX could you do without one. Service repairs and modification (24 hours service). Please ring 01 9026560.

5505)

[^8]
PRINTED CIRCUITS

and HARDWVARE

Feadily avallable supplies of Constructors
hartware Aluminiunt sheet and sections Printed circuit board top quality for individual or publistied designs
Prompt service
Send $15 p$ for catalogue
RAMAR CONSTRUCTOR SERVICES

$$
\begin{aligned}
& \text { Masons Road, Stratford-on-Avon } \\
& \text { Warwicks. Tel: } \mathbf{4 8 7 9}
\end{aligned}
$$

$$
\text { Warwicks. Tel: } 4879
$$

LABELS. NAMEPLATES, FASCIAS on aluminium or plastic. Speedy delivery G.S.M. Graphic Arts borough (02873-4443), Yorks U K (5305)

[^9]TUBE POLishive. scratched faces on your tubes can be repaired for 66.88 total cost, V.A.T. and return carriage included. - Retube Ltd. North Somercotes. Louth, Lincs. - Phone N/S 300 (Std. 050785).

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 123-135
Aero Electronics Ltd PAGE
$6,24,26$Alben Engineering Co. LtdAlice (Stancoil) Ltd.Ambit InternationalAntex Products ItdArrow-Hart (Europe) LtdA.S.PAspen Electronics Ltd.Audio FairAudix LtdAvo Ltd.
Barr \& Stroud.Barrie Electronics LtdBentley Acoustic Corp. Lid.Beyer Dynamics (Gt Britain) LtdB.H. Component Factors LtdBi-Pak Semiconductors Ltd.Bi-Pre Pak Ltd.
Boss Industrial Mouldings LtdBrenell Eng.6, 24,26
.... 26612096
.$\quad 8$8
119 26$\begin{array}{r}95 \\ \hline\end{array}$13
5
1693111$\cdot 121$ii6, 117100100
29
Bywood ElectronicsCambridge LearningCase SystemsCatronics.Chiltmead LtdCintec Ltd.10
18
Cintec Li.Combined Prectronics) LtdCombined Precision Components LtdCompcor Electronics LtdComputer AppreciationComputer Sales \& ServiceD.M.W. Associates (Electronics) Ltd.Dema Electronics InternationalDolby Laboratories Inc.Dolby Noise UnitDrake, Philip, Electronics Ltd.Dymar Electronics Ltd.
Eagle International Ltd.Electronic Brokers Ltd.Electronics Weekly
Electrovalue Ltd.Electronic Windings (Ldn) LtdEMI Sound \& Vision Equipment LtdEnglish Electric Valve Co LtdEnglish Electric Valve Co. Ltd.Evershed \& Vignoles Ltd.Farnell Instruments LtdFi-Comp ElectronicsFuture Film Developments LidFuture Film Developments
Fylde Electronic Labs. Ltd.

	PAGE
Gould Advance Ltd.	27
Grampian Reproducers Ltd.	22
Greenwood Electronics Ltd.	25, 29
Harmsworth Townley \& Co. Ltd.	Readers Card
Harris Electronics (London) Ltd.	... 15, 20
Hart Electronics	104
Hatfield Instruments Ltd.	18
Hayden Laboratories Ltd.	- 3
Heath (Gloucester) Ltd.	13
Henry's Radio Ltd.	106
H/H Electronic	. 16
Icon Designs.	20
1.P.L. Electronics Ltd.	97
Imtech Products Ltd.	24
Industrial Tape Applications Ltd.	103
Integrex Ltd.	.. 90,91
Kinnie Components Ltd.	122
Lan Electronics Ltd.	28
Leevers-Rich Equipment Ltd.	25
Levell Electronics ltd.	1
Lexor Electronics Ltd.	86
Linstead MFG Co. Ltd.	- 10
Lloyd J. J.' Instruments Ltd.	
Lynx (Electronics) London Ltd.	110
MacInnes Laboratories Ltd.	8
Maplin Electronic Supplies	89
McLennan Eng. Ltd. ...	
Marconi Instruments Ltd.	Cover ii
Marshall, A., \& Sons (London) Ltd.	103
Mills, W.	111
Modern Book Company	132
Morhan Exporting. .	121
Motorola Electronics Ltd.	. 18
Multicore Solders Ltd.	Cover iv
Nicholls, E. R. .	
Nombrex Ltd.	- 20
Oison Electronics Ltd.	29
Orchard Electronics	93
P.B. Electronics Ltd.	85
Powertran Electronics	98, 99
Precision Petite Ltd.	29
Pulse Electronics Ltd.	13
Pye Unicam	

'Phone-in

Programme

When you can reach them. And theycan reach you. Any time.You've got a Dymar system.

Computer controlled VHF radıotelephone network. Sounds
great The coming thing. At Dymar it's come And that's the
Dymar difference.
Dymar designs systems that take all the local conditions into account Terrain. Geographical distribustion of the labour and
the customers avallable to :he user. Emergency situation
control Channel congestion The lot
Dymar does it with common frequency coverage using quas
svnchronous transmitters. With a CCIR compatible selective
calling system With automatic signal level selection. With
computer control of signal routing
Tomorrow's systems loday It's what you'd expect from a com
pany 100% devoted to the radiotelephone business. and
nothing eise
Discover the Dymar difference Make contacting Dymar part
of today's programme

DTMAE

the name in radiotelephone systems

[^10]
Multicore Solder Creamsare oxide free!

Multicore's newest solder creams are designed specifically for hybrid microcircuits P.C.B's and critical component joints. Unlike ordinary creams which suffer from the problem of oxide around each atomised solder powder particle - they're completely oxide-free. The advantage is faster soldering with clear flux residues and no solder globules.

The new range can be made in any quantity and with a very wide variety of soft solder alloys, fluxes, particle sizes and viscosities They're suitable for screen printing, stencilling or application by automatic precision dispensers. Add to that the speed, simplicity, reliability and low application cost of solder creams in many operations and you have a product that takes the art of soldering one step further.

Multicore's solder cream can often be used instead of solder preforms. No tool costs are involved and inventories of individual shapes are avoided. The cream can often be applied more quickly and has more uniform flux content than preforms. But for those assemblies where preforms are preferred.

...don't forget Multicore preforms

These precision-made solder preforms come in virtually any size and shape. Rings, washers, dises, pellets and lengths of solder tape in most soft-solder alloys, with or without flux cores, are easily placed
 between the parts to be soldered.

Whether cream or preforms are used, just raise the temperature of the metal surfaces to around $50^{\circ} \mathrm{C}$ above the melting temperature of the solder. The solder cream or preform does the rest. Heating techniques can include gas flame, hot plate, oven conveyor, induction coils, resistance/electrode soldering, hot gas and infra-red.

Multicore Solders Ltd are Ministry of Defence Registered Contractors and on Qualified Products List QQ-S-571E of U.S. Defense Supply Agency for solder creams and preforms.

Multicore Solders Limited,
Maylands Avenue, Hemel Hempstead, Herts. HP2 7EP
Telephone: Hemel Hempstead 3636. Telex: 82363

[^0]: WW - 065 FOR FURTHER DETAILS

[^1]: Application of nomogram to design of a.c. voltmeter - see Example 2.

[^2]: All stockists of DEC Breadboards
 Please note PB are the manufacturers and suppliers, please send all orders, communications direct

[^3]: Complete and post to: Audio Festival \& Fair, lliffe Promotions Ltd.,
 Dorset House, Stamford Street, London SE1 9LU.
 Tel:01-2618000

[^4]: Add 8% VAT to at
 prices shown.
 Gerriage exira -
 detilis on roquest.

[^5]: Certainly you'll need a good technical background with|knowledge equivalent to ONC.
 Given these minimum conditions, Engineer Technicians of all levels are required and you're starting salary will faithfully reflect the experience you have accumulated to date. Terms and conditions of employment at EMI are everything you would expect of a major international organisation, and assistance lowards relocation expenses will be considered where necessary.
 To apply, please write to Bill Clark, Personnel Department EMI Limited, 135 Blyth Road, Hayes, Middlesex. Or telephone him on

[^6]: The successful applicant must have sound knowledge and experience of maintenance and development of electro medical respirators; ventilators, laboratory and other electro-mechanical equipment

 Salary. Technician III £2931-£3834 (increase pending)
 Technician $11 £ 3558-£ 4581$ (increase pending)
 Starting salary dependent on qualifications and previous experience

 Application form and job description from District Works Officer Dudley Road Hospital, Birmingham B187OH
 Telephone 021-554 3801. Ext 4838

[^7]: C.R.T. REGUNNING PLANT, New and secondhand reconditioned trainitig. demonstration, colour or B/W. Barretts. Mayo Road, Croydon Surrey. CRO 2QP.

[^8]: AUDIOMASTER BACKGROUND MUSIC . service, sales. Tape programmes. P. J. Equipments. ${ }^{3}$ onslow Street. Guildford 4801. (12

[^9]: THOR-HOLE CONYENTIONAL P.C.B.'s gold plating, roller tinning. prototypes, silk screening, drilling All or part service.- ELECTRO CIRCUITS (P.C.) LTD., Delamare Road Cheshunt, Herts Tel. Wal

[^10]: Dymar Electron cs Limited. Colonal Way Radlett Road Wattord Herts WD2 4!A Tel Wattord 3732! Telex 923035
 Cables Dynmar Wattord

