MARCH 1976 35p
EM. tuner design
Radar targets

mis TF 2015 a wider view of signal generation...

The TF 2015 is a versatile $10-520 \mathrm{MHz}$ signal generator with calibrated a.m. and f.m. and an accuracy of output level setting normally found only in instruments costing three times as much. A special system gives very fast tuning across the bands yet provides smooth control within the narrowest of passbands. Leakage radiation is carefully screened out to enable accurate measurements to be made even at levels below $\mid \mu V$.

Matched Synchronizer

The clip-on Synchronizer TF 2171 transforms the performance of TF 2015 into the equivalent of a synthesizer at less than half the comparable cost. The frequency is locked to crystal stability and can be dialled in 100 Hz . steps. Tuning is quick and easy - set the decade dials, switch to "lock" and tune the generator to the approximate
frequency and the synchronizer will finish the job for you. Now you can change the frequency by up to 2% using the decade dials without touching the generator and all to an accuracy of 2 parts in 10^{7}. It stays locked all day and doesn't degrade any aspect of the generator performance.

I.F. Probes

These are an invaluable aid to the testing of receivers with squelch or battery economiser circuits. These circuits are inactivated when the crystalcontrolled signal from the probes is brought inte the proximity of the receiver's i.f. strip. This makes it easy to tune the generator to a receiver when its channel frequency is unknown. The probes can also be used to check exact tuning by adjusting for zero beat.

MARCONI INSTRUMENTS LIMITED

Longacres, St. Atbans, Hertfordshire, England, AL4 OJN • Telephone: St. Albans 59292. Telex: 23350.
A GEC-Marconi Electronics compory.

LOW COST VOLTMETERS

A.C. MICROVOLTMETERS
VOLTAGE \& dB RANGES: $15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V}$. 500V Acc $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 1 \mu \mathrm{~V}$ at $1 \mathrm{kHz}-100 \geq 90$ $+50 \mathrm{~dB}$
Scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel to $1 \mathrm{~mW} / 600 \mathrm{~s}$ RESPONSE: $\pm 3 \mathrm{~dB}$ from 1 Hz to 3 MHz . $\pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$. Type TM3B can be set 10 a restricted B.W. of 10 Hz to 10 kHz or 100 kHz INPUT IMPEDANCE: Above $50 \mathrm{mV}>43 \mathrm{MQ}<20 \mathrm{pI}$ On $50 \mu \vee$ to $50 \mathrm{mV}:>5 \mathrm{MS}<150 \mathrm{pt}$.
AMPLIFIER OUTPUT: 150 mV at $\mathrm{f} . \mathrm{s} . \mathrm{d}$
, £77

BROADBAND VOLTMETERS

H.F. VOLTAGE \& dB RANGES: 1 mV .3 mV .10 mV 3V

ACC 470 . 1% s.d. at 30 MHz - 50 dB - 400 B -30 on $\mathrm{in}+20 \mathrm{~dB}$. Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel. $101 \mathrm{~mW} / 50$ $\pm 0.7 \mathrm{~dB}$ from 1 MHz to $50 \mathrm{MHz} \pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz
L.F.RANGES: As TM 3 except for the omission of $15 \sharp \mathrm{~V}$ and $150 \mu \mathrm{~V}$
AMPLIFIER OUTPUT: Square wave at $2 \mathrm{OH}_{2}$ on H.F. with amplitude proportional to square of input. As TM3 on L

D.C. MICROVOLTMETERS

VOLTAGE RANGES: $30 \mu \mathrm{~V} .100 \mu \mathrm{~V}, 300 \mu \mathrm{~V}$. . 300V $\mathrm{Acc} \pm 1 \% \pm 2 \%$ \& s d. $\pm 1 \mu \mathrm{~V} . \mathrm{CZ}$ scale CURRENT RANGES: 30pA, 100pA. 300pA…300mA ACC $+2 \%+2 \%+s \mathrm{~d} \pm 2 \mathrm{pA}$. C Scale LOGARITHMIC RANGE:
$\pm 5 \mu \mathrm{Vat} \pm 10 \%$ s.d. $\pm 5 \mathrm{mV}$ at $\pm 50 \%$ f.s.d. $\pm 500 \mathrm{mV}$ a f.s.d. RECORDER OUTPUT; $\pm 1 \mathrm{~V}$ at $\mathrm{f} . \mathrm{s} \mathrm{d}$. into $>1 \mathrm{k} \Omega$.
\%in $£ 73$

These highly accurate instruments incorporate many usefur features, including long case sizes $185 \times 110 \times 130 \mathrm{~mm}$. B types have 127 mm mirror scale meters and case sizes $260 \times 125 \times 180 \mathrm{~mm}$

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN5 5SD
Tel: 01-449 5028/4408686

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very. very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited,
Electron House,
Cray Avenue, St. Mary Cray,
Orpington, Kent BR5 30J.
Telephone : Orpington 27099
Telex: 896141

What have Quad been up to recently?

Current Dumping thats what

Current Dumping is not East Anglia's answer to the black pudding but the name given to a totally new power amplifier circuit developed by QUAD.

A current dumping amplifier basically consists of a low power amplifier of very high quality, which controls the loudspeaker at all times and a high-powered heavy-duty amplifier which provides most of the muscle.

The small amplifier is so arranged - it carries an error signal - that provided the heavy duty transistors (the dumpers) stay within the target area of the required output current, it will fill in the remainder accurately and completely.

The reproduced quality is solely depen-
dent on the baby amplifier, which because of its low power. can be made very good indeed.

The QUAD 405 is the first amplifier to incorporate current dumping.

There are no interna adjustments, so nothing to go out of alignment.

There are no crcssover distortion problems and performance is unaffected by thermal tracking.

The QUAD 405 offers impeccable performance, reliably and predictably.

Details from your nearest QUAD retailer or write directly to Dept.WW Acoustical Manufacturing Co. L:d., Huntingdon, Cambs., PE18 7DB.
for the closest approach to the original sound

Good, better, best...

All things are a matter of compromise and superlatives must take account of it. Few will dispute the slogan under which our precision pick-up arms are sold. In this context 'best' is not only a reference to quality in design and manufacture, but extends to service which we believe is unequalled.
Every week we send out hundreds of letters providing detailed advice and answering customers' queries in a way that only specialisation permits.

Spares are despatched promptly to all parts of the world, usually the same day, and a recently introduced exchange service provides new arms for old on very attractive terms.
Because of these things demand sometimes exceeds supply but delivery is yet another matter in which we should be able to help if you write to

SME Limited • Steyning Sussex •ngland

The best pick-up arm in the world

Follow the 'Philips Plus' way to prosperity

Prepare for an increase in trade by, making sure that your workshop is the most efficiently equipped and that your service engineers' home visits are the fastest and most effective. Get these Philips instruments now. You won't find better value for money.

PM5501 PAL TV
Pattern Generator Price $\mathbb{1} 149$
Extremely light, portable instrument for service in customers home. 5 different test patterns for colour and black white installation and service. RF output signal switchable: VHF Band III and UHF Band IV. I kHz tone for sound performance checks.

PM5509 PAL TV Pattern
 Generator
 Price $£ 350$

The ultimate in pattern generator: Full IF coverage; band I, IIII, IV and V. Eiectronic tuning with 5 preset channels. 10 test patterns (colour and black white). Adjustable chroma burst and HF-amplitude. Special sync, video and VCR outputs.

PM6456 FM Stereo Generator Price £192

Complete stereosignal. I, \& R signal Internal L.F. modulation: : \& 5 kHz External stereo modulation possibility. X-tal controlled pilot. Adjustable multiplex signal.

PM5324 HF Generator
Frequency range 100 kHz i 10 MHz . X-tal calibration. Special band spread ranges. High frequency stability. Electronically stabilised output max. 50 mVrms in 75 !2. Facilities for internal and external $A M$ and $F M$ modulation.

PM5334 TV Sweep Generator Price £399

8 frequency ranges, 3 MHz 860 MHz . Sweep width continuously adjustable over selected range. Sweep frequency adjustable, $8-50 \mathrm{~Hz}$. One variable and 3 fixed markers. Signal frequency is accurate and thermally stable. Stabilised output into 75 ! load.

PM2503 Electronic Multimieter Price $£ 69$

AC DC voltage ranges $100 \mathrm{mV}-\mathrm{kV}$. AC DC current ranges i $\mu \mathrm{A}-\mathrm{I} \mathrm{A}$ Resistance ranges ioo !!- Io M ! $2-3^{\prime \prime}$, accuracy on all ranges. Resistance measurements: unique linear scale. No zero adjustment necessary. Automatic polarity indicator
PM2412 General Purpose
Multimeter Price $£ 48$
DC voltage $300 \mathrm{mV}-1000 \mathrm{~V}$.
$A C$ voltage $3 \mathrm{~V}-600 \mathrm{~V}$.
DC current $10 \mathrm{~mA}-6 \mathrm{~A}$.
AC. .urrent $100 \mathrm{~mA}-6 \mathrm{~A}$.
(... , values f.s.d.)

Resistance I !!- Io M!. Tautband
40,000 !! V. suspension-type meter.

PM2513 Low Cost Digital Multimeter Price $£ 95$
DC. voltage ranges $0.2-1000 \mathrm{~V}$. AC voltage ranges $0.2-600 \mathrm{~V}$. AC DC current ranges $0.2 \mathrm{~mA}-2 \mathrm{~A}$. Resistance ranges $200!$ - 2 M !. Full circuit protection
Provision for temperature measurements, -60 to 200 C .

PM3110.10 MHz dual-trace

oscilloscope

Price $£ 243$
Fully automatic triggering, including TV line and frame.
Large $8 \times 10 \mathrm{~cm}$ screen.
10 $\mathrm{MHz} 50 \mathrm{mV}, 5 \mathrm{MHz} 5 \mathrm{mV}$.
Overload protected.
Ergonomic styling and lightweight
 construction.
IThe Philips Plus is the quality of design, specification and appearance - particularly in terms ot hunan enginetering - of ctery instrument. A rotal test and measuring range capability, which includes 'scopes, meters, counters, pulse generators, power supplies, recorders and generators. The ability to supply all the user's needs from a single sourcc.
. Al! prices exclude VAT
For prompt delivery of any of these instruments, send us your cheque. If you require further information, uso
 the reader reply scrvice or write to or telephone

Pye Unicam Ltd
Philips Electronic Instruments Dept.
York Street Cambridge England CBI 2 PX Tel: Cambridge (0223) 58866 Telex: 81733 I

On balance the best

FlyingSpotColour Telecine

The all in one $16 \mathrm{~mm} / 35 \mathrm{~mm}$ Telecine for 625/525 Standards.
instant Start - Fast Shuttle - Still Frame Automatic Facilities.

Cintel9000

Economy with Super High Band Broadcast Performance the obvious choice for the cost and quality conscious user.

In a range of multimeters with pointers whats the point of one without

The point is that for some applications, a digital indicator makes a lot of sense.That's why AVO makes the the Digital Avometer DA 114. It offers voua choice of $D C, A C$ and resistance ranges at high accuracy. High input impedance, comprehensive built-in calibration check facilities, two versions - one for mains operation, the other with built-in rechargeable battery and mains operation.

It offers you the best of the traditional AVO features - reliability, ruggedness, range, repairability, readability and, perhaps above all, AVO accuraç. Plus the best of the new generation multimeters.

As you can imagine, our designers took a long hard look at digitals before they produced a Digital Avometer. For instance, they realized that the displays on some digital meters could be a positive nuisance in many applications. After all, you don't always need accuracy to the ' nth degree-so where vou'd normally just glance at an analogue pointer you could find yourself screwing your eyes up at a diminutive and
faintly glowing digital. A. few hours of that and the average engineer would be begging for the return of his cld analogue meter.

That's why we gave the [AA 114 numerals big and bright enough to read across a room. And it's the reason that AVD, while producing one of the few 'serious' digital multimeters, still produces what is probably the widest rarige of analogue multimeters for the electronics engineer.

The AVO range for Electronics Engineers includes Model 8 Mk 5, Model 72, and the high impedance models EM 272 and EA 113.

For full details of the range, contact your distributor or write to:
AVO Limited, Archcliffe Road, Dover, Kent CT17 9EN. Telephone: Dover (0304) 202620. Telex: 96283

Thorn Measurement Contrbl and Automation Division

GRAMPIAN REPRODUCERS LTD. hanworth trading estate feltham, midolesex telephone 01-8949141

A message for dealers in exclusive high quality audio equipment everywhere.

It is now proposed to expand the distribution of RADFORD products by supplying from the factory in BRISTOL direct to franchised dealers outside the United Kingdom.

If you have a discriminating clientele looking for the finest audio equipment and loudspeaker components available, you could profit from a direct RADFORD franchise.

Write today for details and leaflets.
Radford Audio Ltd
Ashton Vale Road
Bristol BS3 2HZ England
F/RADFORD

ZD22

Stereo Pre-amplifier Control Unit
A stereo pre-amplifier of virtually zero distortion Inputs for disc, tuner, and two tape machines. Size $17^{\prime \prime} \times 4 \frac{3}{4} \times 10^{\prime \prime}$ deep.

HD250 Stereo Integrated amplifier

Incorporates ZD22 pre-amplifier with low distortion power amplifier of 50 watts per channel into 4-8 ohms load. Headphone output. Illustrated above. Size $17^{\prime \prime} \times 4 \frac{3{ }^{\prime \prime}}{} \times 11^{\prime \prime}$

ZD100 Power amplifier

Power output 120 watts in 4 ohms and 75 watts into 8 uhms. Distortion less than 0.004% up to clip level. Size $17^{\prime \prime} \times 4 \frac{3^{\prime \prime}}{} \times 13^{\prime \prime}$.

ZD200 Power amplifier

Power output 250 watts into 4 ohms and 150 watts into 8 ohms. Distortion less than 0.004% up to clip level. Size $17^{\prime \prime} \times 7^{\prime \prime} \times 13^{\prime \prime}$
£295.00

13th - 19th September (inclusive)

There is a whole new deal for exhibitors at the 1976 Audio Festival \& Fair. A new deal designed to ensure that participation spells success in every way The formula has been created by a new management team comprising people with a real understanding of $\mathrm{Hi}-\mathrm{Fi}$ and people possessing deep experience and expertise in staging major exhibitions.

Plans for the 1976 Audio Fair include:-
new - earlier dates
new - extended trade
only period
new - floor plans
new - cost structure
new - Biggest zver
all-media
promotion
plus -
The backing of all the rey IPC Business Press publications

IT'S SOUND SENSE FOR YOUR COMPANY TO BE THERE
Complete and post the coupon below for more details
Please send me a brochure with details for intending exhibitors at the 1976 Audio Festival \& Fair.
Name
Company

Address
「elephone number

[^0]
Bridge in a thousand

WAYNE KERR

For more information phone Bognor (02433) 25811 , or write to Wayne Kerr, Durban Rd., Bognor Regis. Sussex PO22 9RL

One part in one thousand is the accuracy of Universal Bridge B224 from 10 ohms to 1 gigohm, 0.1pF to 10 microfarads and 1 nanomho to 100 millimhos. Monitor its 1592 Hz source frequency and also get 0.1% from 1 mH to 10 kH . With reducing accuracy, coverage extends above and below the ranges quoted, on R,C, G and L Resistive and reactive terms read simultaneously. Sockets for $200 \mathrm{~Hz}-50 \mathrm{kHz}$ operation. Internal rechargeable battery. Many other valuable features detailed in Data Sheet B224.

ELECTRONIC
 INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate. as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids, Machinery, etc., etc. Just plug-in the Probe. and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal $11 / 2$ volt standard size battery.
Model "Mini-Z $1^{\prime \prime}$ measures from- $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Model "Mini-2 $2^{\prime \prime}$ measures from $-5^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Model "Mini-on Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$ PRICE 820.00 each [VAT 8\% EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON), . 138 GPAY'S INN ROAD, LONDON. WC1X 8AX ('Phone 01-837 7937)
 day shipment
Prices from 49p 100 rate

Military grade-

ask for NATO conversion list
Custom design specials-
7-10 days for samples
15 years experience
Equivalents to most European \& U.S.type available

Eis Components

Telephone : 0582-62241 Luton Road, Dunstable, Bedfordshire, LU5 4LJ England.

The Greanuroci quide to professionel soliging:

The Oryx 50. A temperature controlled mains soldering iron. (Temperature control within $\pm 2 \%$.) Adjustment $\left(200^{\circ}-400^{\circ} \mathrm{C}\right)$ can be made whilst iron is operating using the same tip. Light, compact and easy to handle. A large 50W element loading gives rapid heating and high performance with constant tip temperature.

Also available: Oryx safety stand.

The Iso-Tip. A safe, high powered iron which works anywhere without a mains lead. The breakthrough? Nickel Cadmium cells that arere-chargeable (A charging stand is included for 240 v or 115 v A.C.) Each charge gives at least 60 soldering joints. Weight? Only 6oz.

Gryx SR3A desoldering tool Ideal where components are tightly grouped. Instantly removes unwanted solder from printed circuits etc. Accurate, reliable, speedy, and safe

Greenwood Electronics offer a range of highly advanced products specifically for professional soldering applications.
For more detailed information about the comprehensive Greenwood range, write to address below.
Greenwood Electronics
Portman Road, Reading RG3 1NE.Tel: Reading (0734) 595844. Telex: 848659
Due to expansion we are seeking additional distributor/stockists.

S-DEC Solderless Breadboard 50p off + free solder board.

Designing circuits? It's easy with S-DEC! NO SOLDERING - just plug your components in. So they can be re-used indefinitely. As used by the Schools Project Technology Courses.
FREE with this offer - booklet giving a range of quick-assembly circuits for the S-DEC, including radio receiver; 3 -stage amplifier, and many others
Also, FREE control panel for mounting switches, lamps etc.
This offer also applies to the T-DEC, U-DEC, and the T- and U-super solder boards. Simply take this page to your local dealer, or send it direct to us.
S-DEC BREADBOARD + FREE SUPER SOLDER BOARD. $£ 1.48$ (send $£ 1.80$ to cover postage, packing and V.A.T.).
T-DEC + SUPER SOLDER BOARD $£ 3.87$
U-DEC A + SUPER SOLDER BOARD $£ 4.31$
covers postage, packing and V.A.T.
U-DEC B + SUPER SOLDER BOARD $£ 7.71$ \}
To use ICs with T and U-DEC A, 16 DIL adaptor with socket, $£ 1.92$; 10 to 5 adaptor with socket, $£ 1.80$.

NEW Low cost PB DEC Super Solder Boards.

When your circuit is proved working on your DEC, simply plug the components into a Super Solder Board - a fibre-glass, drilled, roller-tinned finished circuit board using the same layout as the DEC breadboard. Once the components are plugged in, in the same positions as on the DEC, solder! (No cutting or drilling of contact rails.) The result -a perfect, finished, printed circuit board.
Super-solder boards are available in packs of 1 or 3 off.
SUPER SOLDER BOARD SSS-1 for use with S DEC circuits, only: 1 off $£ 0.39$;
3 off $£ 1.00$.
SUPER SOLDER BOARD SST-1 for discrete circuits: 1 off $£ 0.59$; 3 off $£ 1.60$.
SUPER SOLDER BOARD SSU-1 for discrete and DIL circuits: 1 off $£ 0.59$; 3 off $£ 1.60$. SUPER SOLDER BOARD SSN- 1 for discrete and DIL sockets. Up to $40-$ lead 0.6 in . DIL, and for the direct insertion of TO5 packages or 0.1 in . lead-out sockets: 1 -off $£ 0.69$; 3-off, £2.00
When ordering, please also send $£ 0.40$ for post, packing and V.A.T.

Expo Reliant Drills and Kits.

Powerful, miniature, low-voltage drills capable of sawing, grinding, burring, brushing and polishing - as well as drilling holes up to 3 mm . diameter through virtually any material. The Expo drill operates from a power supply of 12 V d.c. or, using the Titan transformer/ rectifier unit (0220), from a.c. mains supplies at $200-250 \mathrm{~V}$ a.c., 50 Hz .
The Expo Reliant Mini Kit, consists of the Reliant Standard Drill (0150) and a set of 20 assorted tools (0305), providing a powerful, versatile kit for use both by the professional and the hobbyist. Prices: $£ 9.40$ including postage and packing, and V.A.T.

Zippy Cabinets. Ideal For All Assembly Cabinets.

Resist Coated Circuit Board Lowest price in Resis
U.K.
$12^{\prime \prime}$ $12^{\prime \prime} \times 12^{\prime \prime}$ Glass Fibre $1 / 16$ coated with resist £ 1.50 each.

Circuit Board Manufacture, Fast deliverv, Low Price, any circuit board made in days.

Robust ABS plastic assembly boxes, front panel designed to be cut and drilled, slots inside for mounting circuit boards attractive colouring and styling.
TP1 $80 \times 50 \times 30 \mathrm{~mm} £ 0.721$ OFF TP3 $155 \times 90 \times 50 \mathrm{~mm} £ 1.621$ OFF
TP2 $115 \times 65 \times 40 \mathrm{~mm} £ 1.271$ OFF TP4 $210 \times 125 \times 70 \mathrm{~mm} £ 2.271$ OFF
Discount for quantity prices include Post \& VAT

NIGHT GUARO.
Dimmer with a difference, Guards your home
from theft, SET, darkness comes, lights come on, dawn, lights go off. Dims room lights up to 500 watts. $£ 5.95+£ 1.05$ VAT \& POST

SOEC-T DEC-U DEC Accessories.
16 DIL ADAPTOR
 16 DIL with socket $£ 1.92$
Single ended leads (packs of ten) . Double ended leads (packs of ten). $£ 0.90$ EXPERIMENT GUIDES used by all to 0.90 teach electronics with DEC breadboards. teach electronics with DEC breadboards.
GUIDE A 8 Projects $£ 1.50$

 $\begin{array}{lll}\text { 'GUVDE D } 10 \text { Projects } & £ 2.40 \\ \text { GUDE } . . .23 \text { Projects } & £ 4.20\end{array}$

Putting our test equipment to the test won't cost you a thing.
 Send now for the new Heathkit catalogues.

Thev're both free
Then, when you get them, compare Heathkit equipment with the instruments you're using now

We're sure you'll be pleasantly surprised.
In the assembled catalogue you'll find a wide range of laboratory grade assembled instruments. Including oscilloscopes, frequency counters, multi-meters, power supplies. function generators and chart recorders.

In the kit catalogue youll find all you'd expect from the world's largest makers of electronic kits. Test equipment. audio equipment, kits for the home and many more.

Well also be very happy to advise on all your service reçuirements

For full details, just post the coupon now. Or call in and see us at the London Heathkit Centre, 233 Tottenham Court Road. or at our showroom in Bristol Road, Gloucester:

And test our test equipment for yourself.
Heath (Gloucester) Limited. Dept. WW-36, Bristol Road, Gloucester GI 26 EEE . Tel: (0452) 29451

FAST RESPONSE STRIP CHART RECORDERS

Specification

Basic error.	2.5\%
Sensitivity	8mA F.S.D.
Response.	0.2 sec.
Width of each channel	80 mm
Chart speeds. selected by push buttons.	$.0 .1-0.2-0.5-1-2.5-$
	-5-12.5-25mm/sec.
Chart drive	200-250v 50Hz

Type H302O-3
Three-pen

Recording:
Syphon pen directly attached to moving coil frame, curvilinear co-ordinates

Equipment: Marker pen, Timerpen, Paper footage indicator. 10 rolls of paper, connectors. etc.

Dimensions:
H320-1: $285 \times 384 \times 16.5 \mathrm{~mm}$
Н320-3: $475 \times 384 \times 16.5 \mathrm{~mm}$
PRICE: H320-1 £108.00
H320-3 £160.00
Exclusive of VAT

Z \& I AERO SERVICES LTD.

44 A WESTBOURNE GROVE, LONDON W2 5SF
Tel. 01-7275641
Telex: 261306

The James Scolt range of Microwave equipment now offers industrial users a greater choice of alternative systems in robust, industrial, cast aluminium housings, for a wide variety of applications.
The range is made up of standard sub-assemblies which can be permutated to suit Individual application requirements
Some Suggested Applications for these Units Level controllers; Proximity alarms; Small object counters; Process control systems; Positioning systems; Door opening systems: Safety barriers; Presence/detectors; Train control systems; Vibration sensing systems; Intruder alarms; Road vehicle systems.
If any of the above are your problems or if you have a particular problem for which we could adapt a system please write or telephone for further information and technical literature to.

(Electronic Engineering)Ltd
CARNTYNE INDUSTRIAL ESTATE GLASGOW G32 6AB Tel:041-778 4206

BRENELL ENGINEERING CO LTD

231-5 Liverpool Road. London N1. 1LY. Tel: 01-607.8271

MINIATURE BATTERY FREQUENCY METER FM-1 FOUR-DIGIT MEMORY DISPLAY FIVE RANGES 4 ppm CRYSTAL SIZE $6 \frac{1}{4} \times 3 \frac{1}{4} \times 2 \frac{3}{4}$ in -including knob and terminals

There's more scope in Scopex

The Scopex 4 D 25 is a portable 25 MHz dual-trace instrument suitable for all laboratory and field applications. It features a guaranteed measuring accuracy of 3%-and yet at $£ 225^{*}$ is in a price bracket bel6w aryr comparable instrument. Check these features and see why the 4D25 is a must for the discerning buyer.

* DC-25 MHz, full screen
*3\% accuracy
*Signal delay (both channels)
* One control for Trig Level and Polarity
*Timebase 200 ms to $\mathbf{2 0 0 n s}$
$\times 5$ expansion
*Sensitivity $\mathbf{5 0 V} / \mathrm{cm}$ to $\mathbf{1 0 m V} / \mathrm{cm}$

CロPE× Write or telephone today:-
Scopex Instruments Ltd., Pixmore Industrial Estate,
Letchworth, Herts. Tel: Letchworth (04626) 72771
*UK List ex VAT

- P.A. SYSTEMS FOR AIRPORT. HOTEL. FACTORY.
- theatre and lecture theatre audio systems
- AUDIO MIXING EQUIPMENT
- SIMULTANEOUS TRANSLATION SYSTEMSradio and t.v. broadcast sound control equipmentMARINE INTERCOMMUNICATION AND ENTERTAINMENT EQUIPMENT
- System design, manufacture and installation.

\star MINIMIX is a unique system of interlinking units which may be used individually or together to provide low cost quality mixing facilities for any application
* QUASI is a fully professional semimodular portable mixing console. It can be supplied in two configurations, 8×4 or 10×2
\star POP MIXER is a modular 16 channel stereo P.A. console built to a very high standard and with maximum facilities.
\star MOD II 16×8, 16 -track monitoring studio console. The emphasis is on maximum facility and quality and yet keeping price to a minimum.

66 where can I get an RF Generator nowadays that's easy to use,reliable, robust but not too expensive?

"Here"-AVO's new HF 135 - a really useful professional RF generator ideal for repair bench or test lab.

Wide frequency range-eight bands from 100 kHz to 240 MHz . Calibration accuracy conservatively rated at $\pm 1 \%$ right across the range Output level from $1 \mu \mathrm{y}$ to 100 mV (16 dB). AF Signal source facility (1 kHz) Input for external modulation. All wrapped up in a tough metal cabinet with ergonomically designed front panel and complete with connectors, crocodile clips and the AVO guarantee of reliability, serviceability, and accuracy at a sensible price

For descriptive leaflet and name of your nearest stockist. phone or write:

Avo Limited, Archcliffe Road,
Dover, Kent. CT17 9EN.
Tel: 0304202620 Telex: 96283.
Imom Thorn Measurement Control and Automation Division
WW-102 FOR FURTHER DETAILS

ELECTRONORGTECHNICA

carbon film

RESISTORS

$1 / 8$ and $1 / 4 \mathrm{w} 70^{\circ} \mathrm{C} 5 \%$ tol. E. 12

EX-STOCK

\section*{$\mathbf{£ 4 . 0 0}$| PER 1,000 |
| :--- |
| OF ONE VALUE |
| VLAS |}

Contact John Gingell

66 Where can I get a Universal Bridge that's good enough for the labs,simple to use and tough enough for the shop floor and doesn't cost a fortune? 8

"Here"- AVO's Universal Bridge B150 Mk. 3 gives you measurement of resistance, capacitance, inductance accurate to 1%, can be used anywhere, it's battery powered. And anyone can use it, connections are simple and readings easy to take - with no calculations thanks to the mechanical irr-line digital display and interlocking units selector.

The B150Mk. 3-for use in production, quality control, development labs-even at goods inwards. Tough metal cabinet, and the AVO guarantee of reliability, serviceability and accuracy, all at a price that's a pleasant surprise. From good distributors everywhere.

Ring us for the name of your nearest stockist or for fuller details of AVO's Universal Bridge B150 Mk. 3.

Avo Limited, Archcliffe Road, Dover, Kent. CT17 9EN. Tel: 0304202620 Telex: 96283.
, mom Thorn Measurement Control and Automation Division

Gardners
 TheBest of British

Where performance

 is paramount, professionals prefer Gardners...We, at Gardners, have
sionals who know.
pick-up, BUT wide frequency range.
$\begin{aligned} & \text { MU } 7501 \\ & \text { MU } 7503 \\ & M U 7514 \\ & M U 7518 \\ & M U 7521 \\ & M U 7522 \\ & M U 7524 \\ & M U 7525 \\ & M U 7530 \\ & M U 7534 \\ & M U 7566 \\ & M U 7567 \\ & M U 7582 \\ & \text { VM } \\ & \text { VM } 7461 \\ & \text { VM } 7466 \\ & \text { VM } 7468\end{aligned}$
is a representative selection only
Send for Brochure GT5 for
complere listings
Alt units described are normally
$\begin{aligned} & \text { SPECIAL DESIGN SERVICE } \\ & \text { If your requirements cannot }\end{aligned}$
be met by our stencara
range, then wa will glady
procuction needs ness for many more years than we care to remenber - so have our Audio Transformers. Used throughout the world by leading broadcasting and recording companies or wherever only the highest technical standards and levels of reliability are good enough our products are still preferred by profes-

From microphone to tape (or film), speakers or headphones, studio consoles, manpacks, amplifiers, modems, we at Gardners have tried to anticipate your needs. Miniaturisa tion (yes!) plus good performance (yes!) through to exceptional performance (of course!). Impedance changing, coupling, isolation, bridging, low anc high power, with or without D.C. Choose from our standard range of 95 models! Every one an example of sheer professionalism.

All have low loss, low distortion, low phase-shift, low
$\begin{array}{ll}\text { Turns Aatio } & \begin{array}{l}\text { Operating Level } \\ \text { Sec/Pri }\end{array} \\ \text { dBmat } 50 \mathrm{~Hz}\end{array}$ Frequancy
Response
 converters to Defence Standard 05-21

WW-101 FOR FURTHER DETAILS

Tester available

no salary required

Undertakes thorough checks on printed-circuit boards
Thrives on repetitive work Never omits a test

Full information in brochure TM. avallable from Wayne Kerr. Durban Road, Bognor Regis. West Sussex, PO22 9RL Telex 86120 Telephone Bognor Regis (02433) 25811

Interviews by arrangement

WAYNE KERR

WW - 066 FOR FURTHER DETAILS

DIGITAL CLOCK KITS

LITRONIX CLASS II LEDs	1-24	25-99	$100+$
DL707E, 704E, 701E $03^{\prime \prime}$	0.70	0.48	0.36
DL727E, 728E. 721E.0.5' (2 digit pack)	1.80	1.15	0.86
DL747E, 746E, 750E $06^{\prime \prime}$	1.50	1.00	0.80
MHI CLOCK KITS			
Contents:. Clock chip. driver chip. PC board		1-9	10.24
MHI-530g BCD \& 7 seg . Reset to zero		7.35	6.80
MHI-5311 BCD output - TTL interfacing		7.35	6.80
MHI-5314 Basic clock, 7 seg.		6.60	6.20
MHI-5318 External digit selection		7.35	6.80
MHI-5378 Car/Boat clock. Quartz crystal timing source			
		15.10	13.50
MHI-5025 Alarm. snooze 7 seg .		8.35	7.85
MHI. 50395 Up/Down counter 6 Decade		19.50	18.60
MHI-50396 Up/Down counter. HHMMSS		19.50	18.60
MHI-50397 Up/Down counter MMSS. 99		19.50	18.60
MHI-700\% Time date, alarm, sleep. 7 seg		10.00	8.70
MHI DISPLAY KITS			
Contents Litronıx Class I LEDs \& PC Board		1-9	10-24
MHI-707/4 (dıgit) $03^{\prime \prime}$		6.60	6.00
MHI-707/6 0 3''		9.50	8.80
MHI-727/4 $0.5^{\prime \prime} 2$ digıt package		8.50	7.80
MHI-727/6 $05^{\prime \prime} 2$ digit package		12.00	10.85
MHI-747/4 $06^{\prime \prime}$		9.80	8.75
$\mathrm{MHI} .747 / 6$ O6 ${ }^{\prime \prime}$		14.70	13.00
MHICASE $8 \times 5.5 \times 3$ inches	2.95 (plus 0.25 p\&p)		

The above kits are not supplied with transformer, resistors, etc, all of which are stocked by most radio shops With some kits (e.g MHI-5378) we also supply quartz crystals, trimmers or other components normally difficult to obtain Any of the MHI clock kits will interface directly with any of the MHI display kits or any other common anode LEDs.

Terms C W.O. Access. Barclaycard (simply quote your number and sign) Credit facilities to Accredited account holders ALL PRICES EXCLUDE VAT AT 8%

WW - 088 FOR FURTHER DETAILS

New

 Achievements from Xcelite

Xcelite technology has created some new additions to the famous 99 SERIES of Interchangeable Tools The first of these is the Compact Set of Ball-End Hex drivers which, as illustrated, can drive from any angle.

Also now available in the same series are the
POSIDRIV b̆lades Nos. 1, 2 and 3
Send for the complete Xcelite precision tools catalogue from:
Special Products Distributors Limited 81 Piccadilly, London W1V OHL
Telephone: 01-629 9556
XCELITE PROFESSIONAL HAND TOOLS
WW-048 FOR FURTHER DETAILS

SUMMINIATURE
 Metal Film Resistors ${ }^{\text {stock }}$

* Resistance Range 10Ω to $150 \mathrm{~K} \Omega$
* Tolerance from $\pm 1 \%$
* Nominal Watage $1070^{\circ} \mathrm{C}$ upto $50 \mathrm{~K} \Omega 125 \mathrm{~mW}$ * Prices from 9.06p each 100 rate * Temperature Coefficients from 50ppM * Size 4.1 mm long 1.8 mm diameter

Etg Compiniants

Telephone : 0582-62241
Luton Road, Dunstable, Bedfordshire, LU5 4LJ England.
 WW-055 FOR FURTHER DETAILS

Wireless World Annual 1976

IThe world of electronics, television, radio/audio is on parade in the second great Wireless World annual. Constructional articies include making a photographic timer. Surveys cover video, magnetic tape compatability, electronic ignition and radio astronomy in schools.

Mi-Fi Year Book IPTF

2
This is the book that tells you everything you need to know about the hi-fi equipment on the market. Separate illustrated sections cover every major category, together giving prices and specifications of over 2,000 products

High Fidelity Designs

3

In response to demand for reprints of Wireless World constructional projects, we have collected fifteen of the most popular designs in one book

Circuit Designs (1)

A compilation of the first ten sets of Wireless World Circards and including additional circuits. Each set in this hard back book is preceded by an explanatory introduction.
Order coupon
To General Sales Dept. Room 11
Dorset House, Stamford St., SE1 9LU
Please send me books as indicated below (state number of copies of each)
Hi-Fi Yearbook 1976
£2.35 incl
\qquad
High Fidelity Designs '" $£ 1.35$ incl \qquad
Circuit Designs (1) " $£ 10.40$ incl
l enclose remittance value f
(cheques payable to IPC Business Press Ltd)
Name
ALSO AVAILABLE AT LEADING BOOKSTALLS
The bic four from Wireless World

Audio Lahoratory Instruments

To expand the distribution of Audio Laboratory Instruments RADFORD are looking for new dealer/agents outside the United Kingdom. If you are a supplier of laboratory instruments to professional and industrial end users it could be to your advantage to learn more about
RADFORD audio measuring equipment.
Write today for leaflets and details of franchised dealership.

Radford Laboratory Instruments Ltd
Ashton Vale Road
Bristol BS3 2HZ England

F RADFORD

LDO3. Low Distortion Oscillator
Frequency range: $10 \mathrm{~Hz}-100 \mathrm{kHz}$.
Distortion: Distortion less than 0.002% over audio band. Size: $17^{\prime \prime} \times 7^{\prime \prime} \times 8 \frac{3}{4}$ ".
LDO3B. Low Distortion Oscillator
As LDO3 but additionally fitted with output amplifier and
transformer providing a 600 ohm floating balanced output.
Unbalance: $-80 \mathrm{~dB} .1 \mathrm{kHz} .-60 \mathrm{~dB} 10 \mathrm{kHz}$. £375.00
DMS3. Distortion Measuring Set
Frequency range: $5 \mathrm{~Hz}-50 \mathrm{kHz}$.
Measurement down to 0.00T\%.
Size: $17^{\prime \prime} \times 7^{\prime \prime} \times 8 \frac{3^{\prime \prime}}{}{ }^{\prime}$
£225.00
HSV1. High Sensitivity Voltmeter
Average reading: $10 \mu \mathrm{~V}$ to 300 V f.s.d.
£125.00
HSV2. High Sensitivity Voltmeter
True r.m.s. reading. $10 \mu \mathrm{~V}$ to 300 V f.s.d
£17500
ANM1. Audio Noise Meter and High Sensitivity
Voltmeter
Average reading: $10 \mu \mathrm{~V}$ to 300 V f.s.d.
Includes Wide band, Audio band, IEC curve 'A' and CCIR
weighting networks. Illustrated above.
f150.00
ANM2. Audio Noise Meter and High Sensitivity
Voltmeter
As ANM1 but true r.m.s. reading.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for $10-14$ days delivery. Other Ranges and special scales can be made to order

Full Information from:
HARRIS ELECTRONICS
(London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

SLOPING CASES
 CASES

Type	Panel Dim	Depth	Height	Price
1	$150 \mathrm{~m} / \mathrm{m} \times 100 \mathrm{~m} / \mathrm{m}$	$95 \mathrm{~m} / \mathrm{m}$	$95 \mathrm{~m} / \mathrm{m}$	$£ 1.55 \mathrm{p}$
2	$200 \mathrm{~m} / \mathrm{m} \times 100 \mathrm{~m} / \mathrm{m}$	$95 \mathrm{~m} / \mathrm{m}$	$95 \mathrm{~m} / \mathrm{m}$	$£ 1.75 \mathrm{p}$
3	$250 \mathrm{~m} / \mathrm{m} \times 100 \mathrm{~m} / \mathrm{m}$	$95 \mathrm{~m} / \mathrm{m}$	$95 \mathrm{~m} / \mathrm{m}$	$£ 1.95 \mathrm{p}$

Now range of cases as 45° sloping panels, attractively designed of robust
 feet, available from stock in thres different widths.

Materibls
Cases made from 20G. steel.
Front panels made from 20G. aluminium
Colours
Cases sprayed in light br grey semi-gloss enamel

PORTABLE POWER DISTRIBUTION

COMPLETE WITH GFT CABLE AND 13-AMP PLUG
4 Sockets $13 \mathrm{~A} \quad 8.80$
Sockets 13A
4 Sockets 13A/SW
11.11

PLEASE ADD 8% FOR V.A.T. PLUS P \& P
Trade Counter is open for personal callers from $9 \mathrm{a} . \mathrm{m}$. to 5.00 p.m. Monday-Friday

OLSON ELECTRONICS LTD. $\begin{aligned} & \text { 5-7 LONG ST, LONDON, E. } 2 \\ & \text { TEL: 01-739 } 2343\end{aligned}$

EXCLUSIVE

HON-ALABM EI4 ING. YAT, ETC.

* Or Ready Built \& Tested £22.50

- Built-in Alarm Photo cell controlled brightness
- AM/PM Indicator
- Giant 0.63" LED Display
12/24 hr. mode

CWO, PULSE ELECTRONICS, DEPT. WW10, 202 SHEFFORD RD., CLIFTON, SHEFFORD, BEDS.
PHONE: HITCHIN 0462814477
S.A.E. for complete price list

- Mains failure ind
- Tilt Snooze Sw
- Separate alarm Control Sw.
- 9 min . Snooze
- No knowledge of electronics to build kit

clic k

switch

For Programming,
Select on Test,
Crosspoint Switching, Range Changing, etc. etc

From about £0.56 each

DILswitch 16
Contacts, $1 p / 8 w, 2 p / 4 w, 4 p / 2 w$ and many others held in stock. Rated at 28 V 250 mA (240 V and 2 A carry) and gold on nickel plating for low level circuits.

Eug Rompanemis

Telephone 0582-62241
Luton Road, Dunstable, LU5 4LJ Bedfordshire, England.

WW-109 FOR FURTHER DETAILS

Hard-to-find tubes and semiconductors are normally included in our quotations. We try to give a complete answer. AEL GATWICK HOUSE HORLEY SURREY RH6 9SU Telex 87॥6 Cables Aerocon Telex Horley Telephone Horley 5353

WW-057 FOR FURTHER DETAILS

JES AUDIO INSTRUMENTATION

Si451 £50.00 Comprehensive Millivoltmeter 350μ Volts 20 ranges prices plus VAT
J. E. SUGDEN \& CO. LTD. Tel. Cleckheaton [0274] 872501 CARR STREET, CLECKHEATON, W. YORKSHIRE B19 5LA

WW-040 FOR FURTHER DETAILS

Ilustrated the Si452
Distortion Measuring Unit-low cost distortion measurement down to. $01 \% \quad \mathbf{£ 4 0 . 0 0}$

Si453
£50.00
Low distortion Oscillator
sine - square - RIAA

A

PETITE PRECISION!
 A 12V DC POWER TOOL FOR THE DESIGN AND RESEARCH ENGINEER AVAILABLE IN KIT FORM OR SEPARATES

PRECISION PETITE LTD
119A HIGH STREET
TEDDINGTON, MIDDX. UK
TEL. 01-977 0878

Diameter 33 mm Weight 160 g Length 125 mm Torque 120 cmg RPM approx. 10,000 at 12 V DC Power 9/14V DC Batteries or AC/DC transformer

NEW IMPROVED MARK II
£8.00 P\&P 35p

Teach yourself the latest techniques of digital electronics

Join the Digital Revolution

Computers and calculators are only the beginning of the digital revolution in electronics Telephones, wristwatches, TV. automobile instrumentation - these will he just some of the application areas in the next few years

Are you prepared to cope with these developments?
This four volume course - each volume measuring $11 \frac{3}{4}{ }^{\prime \prime} \times 8 \frac{1}{4}{ }^{\prime \prime}$ and containing 48 pages - guides you step-by-step with hundreds of diagrams and questions through number systems. Boole, an algebra, truth tables, de Morgan's theorem, flipflops, registers, counters and adders All from first principles The only initial ability assumed is simple arithmetic

At the end of the course you will have broadened your horizons, career prospects and your fundamental understanding of the changing world around you

£5.95 plus $50 p$ p\&p

Also available - a more advanced course in 6 volumes:

1. Computer Arithmetic
2. Boolean Logic
3. Arithmetic Circuits
4. Memories \& Counters
5. Calculator Design
6. Computer Architecture

Offer. Order this together with Digital Computer Logic \& Electronics for the bargain price of 59.25 , plus 50 p p\&p.

Design of Digitat Systems contams over iwice as much information in each volume as the simpler course Digital Computer Logic and Electronics All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which as you can see from its contents also covers many more advanced topics

Designer

 Manager EnthusiastScientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee - no risk to you

If you are not entirely satisfied with Digital Computer Logic and Electronics or Design of Digital Systems, you may return them to us and your money will be refunded in full, no questions asked.

£3.95
plus 50p packing and surface mail anywhere in the world.

Quantity discounts avaitable on request.

Fayment mav be made in toreign currencies.

VAT zero rated.

[^1]
HIGH POWER DC-COUPLED AMPLIFIER

\star UP TO 500 WATTS RMS FROM ONE CHANNEL

* DC-COUPLED THROUGHOUT
* OPERATES INTO LOADS AS LOW AS 1 OHM
* FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
* 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm , and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth

Slewing Rate Load impedance Input sensitivity Input Impedance Protection Power supply Dimensions

8 volts per microsecond 1 ohm to infinity
1.75 V for 150 watts into 8Ω

$$
\text { 10K ohms to } 100 \mathrm{~K} \text { ohms }
$$

Short, mismatch \& open cct. protection $120-256 \mathrm{~V}, 50-400 \mathrm{~Hz}$ 19" Rackmount. 7"High, 93** Deep

MACINNES LABORATORIES LTD

MACINNES HOUSE, CARLTON PARK INDUSTRIAL ESTATE, SAXMUNDHAM, SUFFOLK IP17 2NL
TEL: (0728) 22622615

TOKO's latest FM tunerhead is available for immediate evaluation with the Broadercasting 9000 tuner chassis- an AM (LW/MW) and mpx FM chassis, with switches inc.

distributed by Ambit international, 37 High St Brentwood, Essex. tel:216029, t/x:848095. ALL 9000 chassis enquiries to Ambit please. OEM enquiries to TOKO UK, Ward Royal Parade Alma Road, Windsor, Berkshire. tel:54057, tlx:848095. WW-054 FOR FURTHER DETAILS

ANEWDIMESAOU ITSOLDEATIG

Iso-Tip Cordless Soldering Iron

Ideal for factory, field servicing, laboratory or home, the Iso-Tip Cordless offers a great advance in soldering. It is completely portable, heats in 5 seconds and recharges automatically in its own stand.

The Iso-Tip is powered by long-life nickel cadmium batteries giving tip performance up to 50 watts with a temperature of $370^{\circ} \mathrm{C}$. Tips are available in five different sizes ranging from Micro to Heavy Duty to meet all soldering requirements

Greenwood Electronics
Portman Rd, Reading RG3 INE, England
Telephone: Reading (0734) 595844.
Telex: 848659 .

Problem

Where to obtain a low-cost device to use as a linear output stage for mobile and marine radio under SSB conditions.

Solution

M-OV long-life beam tetrodes. A single TT21/22 gives 100W PEP at 1200 V H.T. and one TT100 delivers 180W PEP at 850 V H.T.

EEVand M-OV know how.

THE M-O VALVE CO LTD, Hammersmith, London, England W6 7PE. Tel: 01-603 3431. Telex: 23435. Grams: Thermionic London $\mathcal{G C} \mathbb{E}$ 르 WW-016 FOR FURTHER DETAILS

WW - 063 FOR FURTHER DETAILS

McLENNAN ENGINEERING LIMITED
Kings Road Crowthorne Berks Telephone: Crowthorne 5757/8

Vaco STRIPEX Wire Stripper
 Precision Stripping Tool for most types of PVC

 wire and cable from 38-10AWG. - Solid or stranded.

Model No. 70285
Features include:
33 self adjusting cutting knives penetrate and remove insula tion without nicking the wire. Depth Control adjusts for different insulation thick nesses
Wire cutter with transparent finger guard snips cable clean Lightweight moulded nylon body reinforced with fibreglass, reduces fatigue in continuous operations.
Packed in contoured plastic case Individually cartoned

No. 70286. Metric wire plier Crimps terminals cuts and measures bolts cuts and strips wire Combines the most used cable operations in a single tool

Distributed by
Special Products Distributors Limited 81 Piccadilly, London W1V OHL

Cables: Speciprod London W1
WW - 083 FTR FURTHER DETAILS

For iust \$1, the woridis yours!

The world of electronics, television, radio/audio is on parade in the second great Wireless World annual. Constructional articles include making a photographic timer. Surveys cover video, magnetic tape compatability, electronic ignition and radio astronomy in schools. 'How to ... ' features range from using oscilloscopes to making printed circuit boards. And there's a reference section listing standard frequency transmissions and much, much more. All written with the clarity, authority and expertise you'd expect from Wireless World.
*£1 from newsagents or $£ 1.35$ inclusive by post from the publishers.

 with THIS BOOK

\star With the Colour Faults Guide system of rapid, on-the-spot diagnosis of colour set faults the originating firm, Colour Vision Rentals Lid, reported savings of the order of well over $£ 1,000$ per engineer per year.

HOW IT IS DONE . . . A tabulated index of fault symptons and the most common circuit troubles causing them quickly enables the engineer in the customer's home to locate the cause of the breakdown and the panel or assembly in which it has occurred. He can then change the panel (etc) on the spot from his van stock and return the faulty item for repair subsequently, and return to stock. The originating firm calculates that an average of about 3 hours a week per engineer is saved, plus an average of one workshop uplift less per engineer - hence the $£ 1,000$-plus per year saving.

The Colour Faults Guides, E R T's top innovation of 1974-5, covering 14 widely used chassis, are now collected in book form for sale at £1.70 inclusive per issue.
CAN YOU AFFORD YOUR MEN NOT TO HAVE A COPY WITH THEM ON EVERY JOB?
The fourteen chassis covered in the book comprise:- Decca 30 series; GEC 2210 series: GEC Hybrid 2040 series; Hitachi range - CAP 160, CEP 180, CNP 190; ITT CVC5; Philips G8; Pye CT200 series, Pye 691-697; Rank R I A823/A; Thorn C E 3000 \& 3500; Thorn (BRC) $8000 / 8500$ series; Bang \& Olufsen 39 series - Beovision 3500, 3600, 400, 600; Skantic - all models except earlier 22 in . hybrid.

$\star 4$ RANGES. $10 \mathrm{~Hz}-100 \mathrm{KHz}$.

* SINE AND SQuARE WAVE OUTPUT.
* DUAL CALIBRATED ATTENUATOR.
\star STABILIZED OUTPUT LEVEL 1 V.

> Trute and Expuri enq. the's we li.we,
> Send for fult technial leaflets Post and packing $£ 100$ extra

NOMBREX LTD., POUND PLACE, WOLBOROUGH STREET NEWTON ABBOT. DEVONTQ12 INE

Tel. Newton Abbot 68297

1 GHz COUNTER FOR £475

Features include:--
$\star 1 \mathrm{GHz}$ count rate with 1 Hz resolution

* 30 mv sensitivity with high overload capabulity
* 8 digit 'SPERRY' display

Also: Model CF-710 giving 0.001 Hz resolution up to 10 kHz

aspen

electronics limited
18a HIGH STREET, NORTHWOOD, MIDDX HA61BN
TELEPHONE NORTHWOOD 27688

tecknowledgey in consumer ICs - and their applications SGS Audio ICs
 WV®'V® $1 \rightarrow \square \mathrm{C}$
 Modules \& Kits
 New modules:

The much heralded TDA2020 is here. And just to make sure that you don't go wrong, so is the SGS application test circuit PCB for a stereo $15+15$ (RMS) Hi Fi amplifier.

Prices		IC	AUDIO	DISCRETES
TBA810AS	+HS	1.09	ZTX107/8/9	14p
TCA940E	+HS	1.80	ZTX413(LN)	17 p
TDA2020		2.99	ZTX212/3/4	16 p
FM LINEAR		ICS	BD 535 npm	7A/60v 52p
MC1350		0.70	BD536 pnp	53p
CA3089	+OC	1.94	BD377 npry	$3 \mathrm{~A} / 50 \mathrm{v} 29 \mathrm{p}$
TBA120	+OC	1.00	BD378 pnp	32p
MPX LINEAR		ICS	BD515 $\mathrm{np7}$	/45v 27p
MC1310P	+LED	2.20	BD609 npm	10A/90v 70p
CA3090AQ	+LED	3.75	BD610 pnpl	102p

To accomodate expanded R \& D facilities, AMBIT has moved sales and administration to 25 High St . Brentwood. The existing 37 High Street premises are retained for the engineering activities.
One of the first products of this move has been the development of a TV sound tuner, from an "off air" system, using its own varicap UHF TV tuner, with ICIF am plifiers and block filters by TOKO. And then one of our best ever circuits - an electronic touch tuner, with scanning mode, and facilities for 6 preset stations. The unit is suitable for use with FM, and now AM of course, and offers a com plete tuner system without any moving parts. Selection is by means of touch tuning in all cases, with manual scan and preset switching automatically interlocked.

Our R\&D facilities are available for general consultancy to OEMs: further details on application. Standard project estimation fee, including project evalua tion comment data is $£ 15.00$ payable in advance.

8011 Totally touch tuned varicap controller built $£ 14.99$. 8005 Larsholt tunerset accesory unit, with pilot tone filter and audio stages, rectifier, IC stabilizer, meter driver circuits. $£ 4.99$ (kit)
800155 kHz low pass filter :mpx birdy filter) $£ 2.35$ buit $£ 1.75$ (kit)
2001 Stereo scratch and rumble filter, with continuously variable oper ating frequencies. $£ 5.80$ (built) $£ 4.60$ (kit)
3000 Stereo contral preamp - a wide dynamic range, low distortion AF preamp, with vol, bal, bass and treble controls. kit $£ 5.78$
2020k The TDA2020 stereo amp kit photographed on the left. £7.85
7700 TV off air UHF sound tuner - built $£ 26.00$ (4 preset stations)
9000 kit AM/FM mpx tuner chassis, with mech. tuner $£ 17.50$ 7004 kit MW/LW varicap tuner module, inc. ferrite rod $£ 9.95$ 7252 HiFI MOSFET FM tuner module by Larsholt $\quad \mathrm{E} 24.00$ 5600 Hi Q MOSFET varicap tunernead by TOKO $£ 11.25$ EC3302 FET tunerhead from TOKO $£ 5.00$ Complete FM Tuner kits, inc case, for use with the above modules: derai/s SAE please. Prices range from £40- £60.

Amongst our various accessories for entertainment electronics is a range of FM tuning, frequency and sig. strength meters with $12 v, 50 \mathrm{~mA}$ bulb. $£ 2.50 \mathrm{ea}$.
,

ambit international 25 high street, brentwood, essex. cm14 4rh.

Free price list. with an SAE. cutalogue of modules and parts 40p., including postage and VAT.
General Terms: CWO please, official bodies and companies please note min. invoice $£ 7.50$. PP for CWO orders 22 p per order. (UK and Eire). Overseas customers please include sufficient for postage. VAT is not included, and must be added at 25%, In stock orders despatched within 48 hours.

SHADED 4 POLE AC MOTORS

Slow drive speed
Smooth running and freedom from 50 Hz vibration. Low magnetic leakage field. No electrical interference
Speed torque characteristics adaptable to individual requirements Full load power up to 4 watts.
Particularly suitable for tape recorders, record players instrumentation.
Sample $£ 8.50$ incl. P\&P and 25% VAT
Also DC Motors up to 10 watts output

A. D. Bayliss \& Son Ltd.

PFERA WORKS
REDMARLEY
Tel. Bromesberrow $364 \& 273$
GLOUCESTER GL19 3JU
STD 053-181-364 \& 273

Better Performance than any Graphic Equaliser on the market

 Tel Kidderminster 64027WW-119 FOR FURTHER DETAILS

PROFESSIONAL - FREQUENCY COUNTERS BY HOYMITZ

Up-to-the-minute design. All five of our range of frequency-period-ratio counters are directly gated. For best resolution - FAST
Stability. Electronic controlled crystal oven 3. parts 10
Bright. .63" character height display. (All Nine)
CHOICE. Filament or LED with Polaroid Filter
All counters have suppressed leading zeros and auto decimal point positioning for easy positive readings. The memory is also standard

Suffix F-Filament
Suffix L- LED

Type 0G100L

 Type 0GIOOF Sensitivity 10 mV Frequency 100 Mhz PRICE £199.00[^2]Type 0G700L
Type 0G700F
Sensitivity AMP $1.0 \mathrm{C}-200 \mathrm{Mhz}$. 10 mV . PRICE $£ 569.00$
Sensitivily AMP 2.40 .700 Mhz .10 mV

HEPWORTH ELECTRONICS
 Worcester Road, Kidderminster Tel. 05622212 or 3

for
Quick, Clean, Low Cost, No Waste Breadboarding:

THE SK10 Socket

or its little brother the SK50 Socket. SK50 Costs £6.95, the SK10 Costs £12.07.
VAT and Postage extra or from London and South East Distributors

ASPEN ELECTRONICS

18A High Street, Northwood, Middlesex
Tel. 27688
WW 107 FOR FURTHER DETAILS

PRINTED CIRCUIT BOARD TRANSFER SYSTEMS

Acid resistant transfers for direct application to P.C. Board. This is a new approach to printed circuit board manufacture, giving a professional finish with all details that an electronics engineer would require, including all drilling positions automatically marked
Ideal for single unit boards or small quantities. All at a very low cost-for example an average $6^{\prime \prime} \times 4^{\prime \prime}$ layout would cost less than $30 p$, and the time taken under one hour, including etching to complete.
The system is simple, briefly it consists of 10 sheets of self adhesive acid resistant transfers made in required shapes - i.e. edge connectors, lines, pads, dual in line I.C.s, 8-10-12 T.O.5 Cans, 3-4 lead transistors, etc., etc., which only require pressing into the required positions on the printed circuit board before etching

The printed circuit transfer system is a genuine offer to the public and industry. A full money back guarantee is sent with each order, trade prices on application.

List of Prices	
Complete system including post and VAT.	£2.95
Individual sheets	30p
Sample sheet	30p
Ex. U.K. Post Extra	£1.00

E. R. NICHOLLS, 46 LOWFIELD ROAD, STOCKPORT, CHESHIRE TELEPHONE NUMBER 061-480 2179

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.	Our product range comprises: Low profile (flatform). Timing - Miniature - Low contact capacity - Hermetically sealed. Stepping Mains switching Latching Contact stacks • Solenoids
	Miniature Relays AZ 420 ... 439 International standard relay. 2. 4, or 6 change-overs. Plug-in type saves maintenance costs. Coil voltages: 1.2 to 180 Volts D.C. 6 to 240 Volis A C. Life expectancy to 100 million operations. Balanced spring-held armature allows operation in any mounting position. Relay extends only $3 / 4^{\prime \prime}$ from PC bcard when used with right-angle socket.

We resolve your switching problems rapidly and expertly. Please contact us for further details.

Harrow, Middx. HA2 8AS. Tel. (01) 4220061
A member of the worldwide ZETTLER electrical engineering group. est. 1877

SPECIALISTS IN COIL AND TRANSFORMER WINDING:

Torroidal: c core: high speed high turn bobbin winding: chokes and wave winding
any quantity, any rating.

Send for new catalogue.

27 STATION ROAD BRIMINGTON CHESTERFIELD DERBYSHIRE, ENGLAND TEL: 0246 70297/8/9 TELEX 54284

> WW-018 FOR FURTHER DETAILS

QUADRAPHONIC KIT MODULES

CDMIDCOR EIECTIRDNUCS IUMMTED

is pleased to announce that it has concluded licensing agreements with the respective licensers of the CD-4, QS and SO systems, thus entitling it to offer approved kits of parts for the following quadraphohic modules. Each module is capable of being used on its own However, the modules have been designed to plug into a master switch board thus enabling a universal quadraphonic system to be constructed. A fourichannel tone and loudness control is to be offered shortly. Silk screened and driled-front and back panels are also offered.

(D) -13 DEMODULATOR

A complete kit of parts comprising all resistors, capacitors, transistors inductors, a PCB and OSI 5022 integrated circuits necessary to construct a complete CD-4 demodulator. The demodutator incorporates a phase lock loop design and ANRS.
CD-4 and ANRS are registered trade marks of the VICTOR COMPANY OF JAPAN LIMITED

O
 VARIOMATRIX DECODER SYNTHESIZER

A complete kit of parts comprising four special integrated circuits, resistors capacitors and double PCBs necessary to construct a Type A left-right and front-back QS Variomatrix Decoder/Synthesizer, capable of decoding QS encoded discs and synthesizing four channel sound from normal stereo sources Both "Surround" and "Hall" synthesizer options are incorporated and offer a truly remarkable transformation of normal stereo to four channel sound.
Sound as Variomatrix and as Synihesizer are registered trade marks of SANSUI ELECTRIC COMPANY LIMITED of JAPAN.

A complete kit of parts comprising two integrated circuits, 28 transistors, 1 FET, double PCBs and all resistors and capacitors necessary to construct an SO decoder with wave matching logic and variable blend. This is the top design presently offered by CBS to its licensees.
$\widehat{S O}$ is the registered trade mark of CBS INC.
For enquiries please send S.A.E. 10 :
COMPCOR ELECTRONICS LIMITED
9 DELL WAY, LONDON W 138 JH
or telephone 01-8988221 on weekdays
between 7.30 p.m. and 10 p.m. only
WW-085 FOR FURTHER DETAILS

FOUR CHANNEL

Recorder . £385
Replay only £237
VAT and carriage extra
A new rugged four channel recorder for industrial or university use mounted in an imhof stee case size $21^{\prime \prime \prime}$ wide $\times 19^{\prime \prime} \times 10^{\prime \prime}$ high overall.
Weight 25 Kg .
Weight 25 Kg .
In line record and replay heads with ability to erase and record on individual tracks. Mk. 5 Brenell Deck - $33 / 4,71 / 2$ and 15 i.p.s. -
This equipment, which has simple controls, is sp
This equipment, which has simple controls, is specially designed for reliability and easy maintenance. All the amplifiers plug in. Features include jack sockets for input and 8 watt power amplifiers available.

DEIMOS LIMITED
Simmonda Road, Wincheap, Canterbury, Kent. Tel. 022768597

BE FAIR TO YOUR MUSIC
Reproduction of
sound and its acceptability is dependent on a combination of physical parameters not yet fully explored. We believe that only a compatible combination of specifications will enable a system to
reproduce music. We have taken care that the NAC 12 and NAP 160 pre and power amplifier will do so faithfully, while accepting the output of any pickup cartridge and driving any loudspeaker

Naim Audio Ltd. 11 Salt Lane, Salisbury, Wilts. Tel: (0722) 3746
WW-036 FOR FURTHER DETAILS

WW-038 FOR FURTHER DETAILS

How can you possibly be expected to know about every single piece of new equipment that has a bearing on what you are doing?

IEA-ELECTREX' 76 fills in the gaps. It gives you a convenient opportunity of assessing everything under one roof at the same time,

IEA-ELECTREX' 76 could provide confirmation of your choice of new equipment. Or you could find a better proposition for your fequirements.

Make a point of setting aside time to come to IEA- ELECTPEX 76. It's an education.

Take advantage of our special money-saving travel and accommadation package deal.

Teonex are better known abroad... because we don't sell in the U.K.

Electronic valves (a really comprehensive range), semi-conductors (a wide variety) integrated circuits.
Teonex offers more than 4.000 devices They are competitively priced and they are superiative in performance, because the company mposes strict quatity control. Teonex concentrates entirely on export and now operates in more than 70 countries, on Government or private contract. All popular types in the Teonex range are nearty Write now for technical specifications and prices to Teonex Limited, 2a Westbourne Grove Mews. London W11 2RY England Cables: Tosuply London W11. Telex: 262256

ELECTRONIC VALVES + SEMI CONDUCTORS
for Teonexport only
WW-015 FOR FURTHER DETAILS

WW-047 FOR FURTHER DETAILS

FREQUENCY COUNTERS

HIGH PERFORMANCE REASONABLY PRICED ELECTRONIC INSTRUMENTS

Sensitivity 10 mV . Stability 5 parts 10^{10}

301M	32MHz 5 Digit £ 78	401	32mHz 6 Digit £121
501	32 MHz 8 Digit £178	701A	80MHz 8 Digit £195
801A/M	300mHz 8 Digit £305	901M	520MHz 8 Digit £375
8018/M	250MHz 8 Digit £262	Memary	versions available if not
Start/Stop versions plus £12			
Type 101 MHz 100 KHz 10KHz Crystal Standard $£ 85$ Type $1030 \mathrm{ff} /$ /Air Standard $£ 85$			

Government Depis
Crystal Manufacturers and Electronic Laboratories world-wide

R.C.S. ELECTRONICS NATIONAL WORKS, BATH ROAD HOUNSLOW, MIDDX. TW4 7EE Telephone: 01-572 0933/4

WW-106 FOR FURTHER DETAILS

WW-111 FOR FURTHER DETAILS

BRADMATIC CENTURY II AMPLIFIER

Professional Solid State Stereo Power Amplifier

As used by Spendor Audio Systerns for quality assessment SPECIFICATION Consists of two independent amplifiers and power supplies OUTPUT PER CHANNEL: 150 watts R.M.S. into 8 ohms. $03^{\prime \prime}$ "T.H.D.
INPUT LEVEL: For max o/p. 75 volts R.M.S. into 10 K ohms.
CROSSTALK AND NOISE: Berter than 80 Db below max oupur.
CRERATING VOLTAGE: $220-240$ yolts $50-60 \mathrm{~Hz}$ or 115 voles $50-60 \mathrm{~Hz}$.
Fully protected against short circuit a and open circuit loads.
Connections via CANNON or SWITCHCRAFT Plugs.
CONSTRUCTION: Standard $19^{\prime \prime}$ Rack Panel and equip
 $15 \mathbf{t}^{\prime \prime} \times 5 \mathbf{t}^{n}$, grey with silver panel.

WEIGHT: 3516 .
The Century II Amplifier has been designed for all applications where high power top quality audio reproduction is a prerequisite. It is ideal for studio monitoring, and other systems where the most discerning standards of reproduction are requred and the amplifier must not contribute audible distortion.
PRICE: $£ 240.00$ plus V.A.T. at $8^{\circ}{ }_{\mathrm{U}}$. Set Plugs $\mathrm{E7} .00$ plus $8^{\circ}{ }^{\circ}$, V.A.T. Trode enquiries invited BRADMATIC LIMITED
338 Aldridge Road, SLitton Coldfield, West Midlands B74 2DT. 021-353 3171

TRANSISTORISED INVERTERS

VALRADIO TRANSVERTORS ARE BEING USED ALL OVER THE WORLD FOR MANY APPLICATIONS, INCLUDING• VIDEO TAPE RECORDERS, SOUND TAPE RECORDERS, ALARMS, LABORATORY EOUIPMENT, TELEVISIONS AND MANY OTHER TYPES OF EQUIPMENT.
SOME TYPICAL TYPES ARE:
D24/500S $24 v$ DC input 500 watts sine wave output $230 v$
AC
£217.20
D12/150T12vDC input 150 watts square wave 230 voutput
£47.55
D24/60S $24 v$ DC input 60 watts sine wave $230 v$ output

We also manufacture Frequency Changers, Power Supplies and Standby Systems, and we are always happy to quote for your special requirements. All prices plus VAT

Please send for full details to
VALRADIO LIMITED, BROWELLS LANE, FELTHAM,
MIDDLESEX, TW13 TEN
Tel. 01-890 4242/4837

Magnetic tapes Itd make the 10/2 above as well as a $16 / 2$ and a $12 / 4$ with all the inherent flexibility and quality customarily found in big studio mixers. Most of our mixers are constructed to meet the varying demands of the customer, perhaps we can do one for vou. Prices start at $£ 365$ for the basic $10 / 2+$ VAT@ 8%.

MAGNETIC TAPES LTD.
Chilton Works, Garden Road, Richmond Surrey TW9 4NS - 01-876 7957

OUR NEW XL2000 dpm . . .

for second to none applications

- True automatic polarity full $4 \frac{1}{2}$ digit display with basic 0.01° o accuracy
$0.55^{\prime \prime}$ Beckman or $0.43^{\prime \prime}$ led display.
- Automatic zeroing feature
- Low power consumpton
- Optio-isolated and fully screened analogue circuits
- A proven design using the latest techniques and
components make the XL2000 suitable for use in most process control, test, calibration and automatic monitoring applications
Send now for full details.

exel electronics limited
waltertion road tranksome
pooie BH12 1LR
telephone bournemouth (0202) $766166 \mathrm{f} \mid \times 417143$

Audio Connectors

Broadcast pattern jackfields, Jackcords, plugs and jacks.
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut.
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers.
Low cost slider faders by Ruf

Future Film Developments Ltd.

 90 Wardour Street London WIV 3LE 01-437 1892/3WW-027 FOR FURTHER DETAILS

ANALOGUE \& HYBRID COMPUTERS

Illustrated is the C180. one of our standard range of analogue and hybrid computers which offer high performance and extremely good value for money This
model has 18 । C operational amplifiers all of which may be switched for use as integrators automatic function selection and meter switching 3-Four quadrant Multupliers Individual Pot-Set Facilities 1% accuracy. built-1n Stabilised Power Supplies. D V M optional extra Many other features at this very low price of $\pm 1,150$ complete with patching leads and instruction Book

We are specialists in producing computers designed for your own specific research or engineering requirements at prices which are very little more than those for our standard range
Phone or write for detals of our Analogue or Hybrid apparatus
PHYSICAL \& ELECTRONIC LABORATORIES LTD.
MANUFACTURERS OF PRECISION ELECTRONIC EQUIPMENT
Athenaeum Road Wherstone, London N20 9AE Tel 01.4457683

Now Seminex offers you a choice of 72 presentations.

(Do get your free brochure for full information.)

Linear ICs/1 day
Digital ICs/1 day
Microprocessors/1 day
Memories and
minicomputers/1 day
CCDs/1 day
Optoelectronics/1 day
Power SCs/1 day
PCB design, production and testing/2 days
Buying and selling in the
SC industry/i day
No less than seventy-two papers in all.

All in one new venue - Imperial Coliege, London. In three lecture theatres. With optional luncheon facilities. With special applications 'talk-in' sessions.

Whatever your semiconductor interests, there are days which are tailor-made for you

Get your brochure quickly; there are only a few weeks to go Seminex; 22nd-26th March 1976

WW-09I FOR FURTHER DETAILS

Kit $£ 12.50$ (Incl)

Built $£ 18.00$.

- Pleasant green display - 24 Hour readout
- Silent Synchronous Accuracy o Fully electronic
"Pulsating colon «Push button setting
© Building time 1 Hr o Attractive acrylic case
" Easy to follow instructions - Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$
- Ready drilled PCB to accept components

The Semicon International
 6th EDITION
 (1975/6) Transistor Index

Easy alpha-numeric reference to the ratings and characteristics of some 24,000 transistors of international origin. European, U.S.A. Japanese. Essential guide for all Engineers, Technicians, and Buyers. Over 450 pages of basic information. By far the best manual of its kind available anywhere to-day.

* EXTENSIVE SUBSTITUTION GUIDE
* CV \& BS DEVICES \& EQUUVALENTS
* TERMINATION DRAWINGS
* ALTERNATIVE SOURCES OF SUPPLY

Remit with order 88 Elsewhere $£ 10.90$ price. UK only.

Please send comes of the Semicon Transistor Index, 6th Ed to:
Name
Address

\square
I enclose cheque/postal orclers for $£$. My Access/Barclay/Interbank Card No. is

Refund if not satistied and book is returned within 14 days.
Semicon Indexes Ltd. 2 Denmark St. Wokınghaim. Berks. RG 11 2BB. TEL: WOKINGHAM (0734) 786161 WW-044 FOR FURTHER INFORMATION

~~ RADIO CLOCK

Some examples of our range of PRECISION TIME MEASURING EQUIPMENT

RADIO CLOCK RCOGOA

Co-ordinated time (from
M.S.F. Rugby) throughout

Western Europe with full data validation

QUARTZ
 CHRONOMETER

Robust temperature stabilised timekeeper for navigational purposes.

STANDARD
FREQUENCY
RECEIVER SFR200B
Automatic locking and tracking to Droitwich.

Suppliers of Quartz Timing equipment to the B.B.C.
EUROPEAN ELECTRONIC SYSTEMS LTD.
HOWE GREEN - CHELMSFORD
0245-75570

FOUNDATIONS OF WIRELESS AND ELECTRONICS

M. G. Scroggie, B.Sc., C.Eng., F.I.E.E.

* Since the first edition was first published in 1936 over a quarter of a million copies have been sold
\star Has proved to be of great assistance to many thousands of enthusiasts and students making aquaintance with the principles of radio and electronics.
* It has been written clearly and concisely in Mr. Scroggie's well-known and often humorous style
CONTENTS: General View of a System. Electricity and Circuits. Capacitance. Inductance Alternating Currents. Capacitance in a.c. circuits. The Triode at Work. Transistor Equivalent Circuits. The Working Point. Oscillation. Radio Senders. Transmission Lines. Radiation and Aerials. Detection. Low-Frequency Amplification. Selectivity and Tuning. The Superheterodyne Receiver. High-Frequency Amplification. Cathode-Ray Tubes; Television and Radar. Electronic Waveform Generators and Switches. Computers. Power Supplies. Appendices.
The cost of this very useful text is $£ 3.75$ which you will agree is tremendous value for a book of 521 pages. 0408001887
If you purchase a copy you could be the winner of a beautiful leatherbound copy, personally autographed by the author. Details of 'The $1 / 4$-million Competition' appear in the book.
For details of other books in this field please write
NEWNES TECHNICAL, Borough Green, Nr. Sevenoaks, Kent

RADFORD HD250

High Definition Stereo Amplifier

A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250

Rated power output: 50 watts av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven.
Maximum power output: 90 warts av. per channel into 5 ohms.
Distortion, preamplifier: Virually zero (cannot be identified or measured as it is below inherent circuit noise.)
Distortion, power amplifier: Typically 0.006% at 25 watts, less than 0.02% at rated ourput (Typically 0.01% at 1 Khz)
Hum and noise: Disc,-83dBV measured flat with noise band width 23 Khz (ref 5 mV): - 88 dBV " A " weighted (ref. 5 mv)

Line -85 dBV measured flat (ref 100 V) B8d BV "A" weighted (ref 100 v)
Hear the HD250 at

SWIFT OF WILMSLOW

100 WATTS ! HY200

The HY200 is the latest hybrid amplifier from I.L.P. It has been designed to be virtually indestructible lending itself to domestic and industrial applications. Latest design techniques including thermal shutdown make the HY200 the most advanced amplifier of its kind in the World. Only five connections are required, input, output, power lines and earth

Features:
Short Circuit Protection No External Heatsinking
Thermal Shutdown
Only Five Connections
Low Distortion
Price £21.20 + VAT £1.70
P\&P Free

Specifications:
Output Power 100 watts R.M.S. into 8Ω Input Impedance $100 \mathrm{~K} \Omega$ Input Sensitivity 500 mV R M.S Distortion 0.05\% Typical
Signal: Noise 96 dB
Power Band Width $10 \mathrm{~Hz}-45 \mathrm{KHz} \pm 3 \mathrm{~dB}$
Power Supply 45-0-45v D.C. at 2 Amps Weight 1 Kilo (2.2 lb)
Power Supply PSV90 suitable for one HY200
Price£10.56 + VAT 84p
P\&P free

TWO YEARS GUARANTEE ON ALL OUR PRODUCTS
I.L.P. Electronics Ltd, Crossland House,
Nackington, Canterbury.
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
1 Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclay card account \square
Account number
Name \& Address

[^3]

Carry the D32 comfortably on any assignment

Weight less than 10 lb . Size: $4 \times 9 \times 11 \mathrm{ins}$. The new Telequipment D32 dual trace 10 MHz oscilloscope, battery/mains operated, is probably the smailest and least expensive 'scope of its kind in the world! Priced at $£ 275^{*}$ (including rechargeable batteries) this dual trace scope offers 10 MHz bandwidth

Telequipment gives you more scope for your budget

Telequipment <電〉
 Tektronix UK Ltd.
 Beaverton House, P.O. Box 69 Harpenden, Herts.
 Telephone: Harpenden 63141 Telex: 25559

at 10 mV /div sensitivity; automatic selection of chopped or alternate modes: automatic selection of TV line or frame displays; and the choice of battery or mains operation.
Travel with the D32 yourself by writing or 'phoning for a demonstration of this light, powerful 'scope now

wireless world

Electronics, Television, Radio, Audio

MARCH 1976 Vol 82 No 1483

Contents

43 Our daily bread
44 Radar targets by M. W. Hosking

News of the month

Oilmen on the 'phone
Harmony for cables and flex
Home Office views on Citizens' Band
55 Frequency modulation illustrated by P. L. Taylor
58 Letter from America by G. W. Tillett
59 Progress in Teletext
60 Letters to the editor
Microprocessors oversold?
Audibility of phase effects Citizens' Band
63 Time code receiver clock - 2 by A. F. Cross
67 Conferences and exhibitions. Literature received
68 Television from India reports from Dublin and Sheffield
75 Wireless World Teletext decoder - 5 by J. F. Daniels
80 Phase and sound quality by James Moir
89 Circuit ideas
Non-symmetrical phase-sensitive detector
Single window discriminator
Universal-motor reverser
92 Centenary of the telephone
95 World of amateur radio
96 March meetings. H.F. predictions
97 New products
133 APPOINTMENTS VACANT
152 INDEX TO ADVERTISEṘS

[^4]C) IPC Business Press Ltd, 1976

Front cover shows part of a continuous trace, multi-pen, wide chart pen recorder, the Model 320 made by Chessell Ltd.

IN OUR NEXT ISSUE

Valve audio output with transistor drive. Wideband direct-coupled transistor amplifier will drive almost any valve output stage, including the Williamson, with low distortion.

How we communicate using symbols. First of a series of articles on communication theory - this one on the theme that information is finite.

Phase shift in loudspeakers - how we measure it and why the measurements are useful. Also, what causes electrical and acoustic phase shifts in speakers.

SIXTY-SIXTH YEAR OF PUBLICATION

We tailorTWTs fast at EEV.

EEVand M-OV know how.

wireless world

Our daily bread

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:

PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:

GEOFFREY SHORTER, B.Sc. Phone 01-261 8443

Assistant Editors:

BILL ANDERTON, B.Sc
Phone 01-261 8620
MIKE SAGIN
Phone 01-261 8429

Production:
Production:
D. BRAY

Advertisements:
G. BENTON ROWELL (Manager)

KEVIN BURNAL
Phone 01-261 8515
O. BAILEY (Classified Advertisements) Phone 01-261 8508 or 01-261 8423

JOHN GIBBON (Make-up and copy) Phone 01-261 8353

IPC Electrical-Electronic Press Ltd Publisher: Gordon Henderson

Birmingham University was recently advertising for an electronics technician, to construct and maintain electronic instruments, for a salary of $£ 2013$ rising to $£ 2343$ p.a. There are, in fact, many employers expecting to get qualified and experienced electronics people for less than $£ 2500$. These figures are pathetically low, considering the skilled nature of the work and the kind of pay now being received by unskilled and semi-skilled workers in other fields (the national average for male industrial workers is $£ 60.80$ per week). The situation for professional engineers in our field is similarly discouraging. Last year's survey of chartered engineers by the Council of Engineering Institutions showed median incomes in electronic engineering ranging from $£ 2460$ at ages below 25 to a maximum of $£ 5500$ at 60 and over. For all engineers, the CEI comment that, taking into account the retail price index, over the two years up to April 1975 "there has been a reduction in the real value of income over the whole profession". Another electronics magazine has said "in Britain today your certificate, diploma or degree in technology is a passport to poverty".

What can we do about it? Individual solutions include emigration, "moonlighting" and self-employment. For most of us, however, the best hope lies in collective action. There are about 50,000 electronics people in the UK -a small number but considerable in its influence on society. We could benefit from a trade union of our own. At present electronics engineers and technicians can belong to unions associated with the particular sectors of industry and public services in which they work. As such they are fragmented and cannot speak with one voice. But simply to press for higher pay through collective bargaining is not enough. Such action tends to be negated by counter-action from other groups of workers anyway. It must be backed up and psychologically justified, first by raising our inherent status and secondly by making ourselves more influential.
Status can and should be raised by improving the standard of our professional qualifications. Our "C. Eng", for example, doesn't cut much ice in other European countries, with their technical universities and doctor-engineers. Getting to be more influential is not quite so straightforward, but one opportunity comes to hand in the Government's recent move to establish "industrial democracy" in the UK - which means putting workers on the boards of companies. This system is already accepted and operating in several countries including West Germany and Sweden. An independent Committee of Inquiry on the proposal was set up in December and is now receiving evidence and representations from interested groups. UKAPE is sending in a paper on the professional engineer's point of view. Legislation could result from the 1976-77 session of Parliament after the committee of inquiry produces its report in the autumn.
Remember that white-collared intellectuals peering into oscilloscopes are just as much "workers" as blue-collared craftsmen tending capstan lathes.

The purpose of the radar system is to obtain information about its target and, in many cases, to try and differentiate between, or identify, several objects which may have reflected the system's questing beam.

The types of target encountered are many and varied. There are high speed targets such as missiles, low-level strike aircraft and shells or bullets; there are slower targets such as victims of police speed traps or the ground itself as used in radar altimeters. Sometimes targets such as hills, trees, clouds or rain are unwanted clutter to be suppressed and ignored and, in other applications such as terrain mapping or meteorology, they are of prime interest. Whichever the case, the radar target is diverse in nature and can appear in many guises depending on the aspect angle, frequency, or polarization with which it is viewed.

Consequently, much work has been devoted over the years to obtaining both theoretical and practical information about the radar target and it still forms an important area of study. In addition, the subject holds much interest and also happens to be one which has occupied much of my time in the past, particularly in the tracking characteristics of guided missiles. So we shall examine just how various objects appear to eyes which respond only to electromagnetic radiation.

Radar cross section

In the first instance, it is necessary to have some sort of definition of the ability of a target to scatter the incident radiation back again along the same path to the receiver. In some cases, one also wishes to know how much is scattered in some other direction. But, as this only introduces yet another variable by having to tag any definition with a set of coordinates, we will stay

How objects look to radio-wave eyes

by M. W. Hosking, M.Sc., M.I.E.E.
British Aircraft Corporation, Filton

with the more widely-used practical case of transmitter and receiver in close proximity.

This scattering ability of a target object, when used in this radar context, turns out to have units of area and is called the radar cross section or echo area. It forms the coupling element between the radar transmitter output and the receiver input and a knowledge of its magnitude enables a very important parameter to be determined - radar range.

The formal definition or radar cross section conjures up that theoretical corvenience the isotropic scatterer, that is, one which scatters power equally in all directions. The radar cross section is then the area which would be needed in the first place to intercept sufficient power for an isotropically scattered signal at the receiver to be of the same strength as that from the target. In practice, however, things are not quite as simple as this may sound. For on thing, the radar cross section generally bears no resemblance at all to the geometrical cross section of a target and the only statement that can be made with any confidence is that an increase or decrease in physical size will produce the same trend in radar cross section.

For another thing, radar cross section is directly related to and is strongly dependant on, frequency. More speci-
fically, it relates to the number of (wavelengths) ${ }^{2}$ contained within the effective geometrical cross section. It also depends on the polarization of the incident field; that is, horizontal, vertical or circular and also on the angle from which it is viewed. Thus, for real life targets such as aircraft, missiles, meteorological conditions, terrain, as opposed to theoretically convenient shapes, a definition of radar cross section, to be meaningful, must be accompanied by a statement of the above parameters.
To show, mathematically, the place of the radar cross section in the scheme of things, we can derive on a straightforward basis a much simplified but basic form of the radar equation. Take the transmitter of the tracking radar as having an output of P_{T} watt and the target as being at a distance R metre. Then, if the antenna could radiate uniformly in all directions, this power would be spread evenly over the surface of an ever-expanding sphere. At the point when this sphere touched the target, it would have a surface area of $4 \pi R^{2}$ and so the power density at the target is $P_{T} / 4 \pi R^{2} \mathrm{~W} / \mathrm{m}^{2}$. Now real antennas do not radiate omnidirectionally, but concentrate the power into a directional beam and it may be recalled from a previous article that the degree to which the antenna concentrates the power is called the gain. And so, for the practical case where the transmitter antenna has a gain G_{T} in the direction of the target, the actual power density at the target is $P_{T} G_{T} / 4 \pi R^{2} \mathrm{~W} / \mathrm{m}^{2}$.

A proportion of this power is then scattered back in the direction of the transmitter and, from the foregoing definition or radar cross section, this amount is $P_{T} / 4 \pi R^{2} \sigma G_{T}$ watt, where σ is the symbol adopted for radar cross section and is usually given the units of (metre) ${ }^{2}$. From the same reasoning as
betore, except that this time the directive properties of the radiation are inherent in the radar cross section, the power density arriving back at the receiving antenna is $P_{T} G_{T} \sigma /\left(4 \pi R^{2}\right)^{2}$.
This is the basic form of the radar equation and, whilst it can be written in terms of many other system parameters, nearly all of these are within the control of the system designer and the one that is not in the radar cross section. The received power is directly proportional to the radar cross section and so directly affects the detection probability, hence maximum effective range of the radar. Due to the complex nature of practical targets wherein the returned signal is made up from many individually scattered signals from different areas, it is necessary to know not only the average or rms value of σ, but also how it fluctuates.

Target characteristics

To find out how a target behaves when tracked by a particular radar system, there are the two obvious courses open: calculate the radar cross section or measure it. For all but the simplest of shapes such as spheres, cones, rods, flat plates, the scattering calculations become extremely complex. Once the target starts to consist of sudden changes in section with surface protruberances, holes and changes in material such as are encountered in practice, then multiple reflections occur across the target. When the sources of these multiple reflections are widely spaced compared with the wavelength, as is usually the case, then a true interference situation exists with the returned signal being composed of the vectorial sum of many individual ones.

As a consequence, the amplitude of the returned signal - hence radar cross section - becomes very sensitive to aspect angle. So, whilst a mathematical formulation and method of solution of the problem do exist, the actual computation, which boils down to determining surface current distributions, is so involved that even with the large, high-speed digital computers now available, it is hardly a practicable exercise.

One method of obtaining a rough estimate of a complex target's radar cross section is to split it up into a number of more simple shapes about which more is known and then to add the separate scattering effects. Consequently, a lot of work has been done to predict the scattering from such shapes as cones, ogives, cylinders with a large degree of success. With all of these targets, their radar cross sections are a function of aspect angle and can, even for simple shapes, fluctuate quite considerably; signal fluctuations of 10 to 20 dB per degree being quite common.

An important exception to this rule, though, is the sphere which has a radar cross section independent of aspect angle. Fig. 1 shows how the signal

Fig. l. Variation in radar cross section of a conducting sphere as wavelength decreases. Note approach to a limiting value equal to geometrical cross section: region in which the sphere is often used as a calibration reference.
return from a sphere varies with frequency over the transitory spectrum from when its diameter is smaller than the wavelength to when it is much larger. The region where the sphere is much smaller then a wavelength, called the Rayleigh region, is of interest when studying the behaviour of small particles such as raindrops and the radar cross section varies as D^{-4}.

When the sphere diameter increases past the point where the circumference exceeds one wavelength, the radar cross section varies as a damped oscillation which tends to a limiting value equal to the geometrically projected cross section of the sphere. The amplified oscillations are due to a surface wave which propagates around the back of the sphere and combines with the main relection in varying phase.

Fig. 2. Image of the HS 125.600 aircraft . as seen from about the same elevation angle as photo on page 44 at about 600 MHz (a) and at 3000 MHz (b) over nose-to-tail azimuth bearings.

Other types of target also have this overall tendency in behaviour but in a less well-defined manner and the sphere is generally used as a calibration reference for cross section measurements. Provided that the circumference is greater than about 10λ and that the conductivity, sphericity and surface finish are good, then its radar cross section is equal to the projected area πr^{2} to a high degree of accuracy and is independent of aspect, type of linear polarization and further increase in frequency.

At the other end of the scale, in terms of complexity, lies a radar target such as an aircraft. This consists of a multitude of different reflector shapes and angles, all of various sizes and it is just not possible to arrive at an accurate radar cross section theoretically. Measurement is thus the only answer and must be carried out over all aspect angles, frequencies and polarizations of interest. This consists of positioning the target on an essentially reflection-free site, illuminating it with the radar and recording the signal strength of the reflected echo. Calibration is obtained by comparing this return with that from a known sphere.

For a large target such as an aircraft it is usual to carry out the measurements on a scale model rather than the real thing and to increase the frequency by the same scaling factor to maintain the same electrical size. The HS125, aircraft shown on page 44 was measured in this way to produce the radar cross section plot of Fig. 2 (a). This is the aircraft as seen by the radar from about the same elevation angle as in the photograph as the azimuth angle varies from nose-on through broadside to tail-on. Equivalent frequency was about 3 GHz using vertical polarization.

Another plot under the same conditions except at the equivalent frequency of about 600 MHz is given in Fig. 2 (b)

wherein it can be seen that although the pattern follows the same shape, the scintillating effects of small reflectors are not so apparent at this longer wavelength, so producing a smoother return.

Besides these characteristics of inanimate targets, there is a lot of interest in determining the radar refiection properties of birds and flocks of birds. On the one hand, the echoes from such objects appear as clutter on the radar screen and in some cases can substantially mask the returns from small aircraft. It is thus desirable to know the fluctuating characteristics of flocks of birds so that the information oblained by tracking or surveillance radars can be properly interpreted.

In addition, there is the danger of bird strike itself, particularly for the case of fast, low-flying aircraft and it is thus important for air traffic control (a.t.c.) radars to be able to identify and to try and predict bird movements. Radar can be used to monitor bird migration movements and thereby plays a part in planning flight operations as well as providing information for ornithologists and for environmental studies.

Besides the usual radar cross section dependence on frequency, polarization and aspect angle, the reflections from birds can be characterized by several additional parameters; amplitude variations due to wingbeat, further characteristic amplitude variations due to movements from other parts of the body and the speed of flight itself. A practical difficulty often encountered is that different types of radar system are best suited to obtaining different bits of the total information and not all radar sites possess this full capability. For instance, surveillance radars for a.t.c. are pulsed, continuously rotating types best suited for obtaining coarse amplitude variations, possibly the relatively slow velocities and the range, whilst the characteristic spectral "signature" from general body movements is obtained using c.w. Doppler rädars.

A good deal of bird target information has been accumulated over the last decade, however; much of it by this country's Royal Radar Establishment

max. r.c.s. $=\frac{8 \pi(a b)^{2}}{\lambda^{2}}$

Fig. 3. Variation in radar cross section of a man as a function of frequency and polarization.
and, on many occasions it has proved possible to identify a particular bird species (and hence predict movement) entirely on the information displayed by the radar.

Individual birds to not have a very large radar cross section, but in flocks they can present quite a big reflection. There has been found to exist a fairly simple relationship between bird weight and radar cross section (ref. I). For instance using S-band radar (2 to 4 GHz), vertical polarization and side-on targets, a bird such as a starling weight 70 g has an average radar cross section of $10^{-3} \mathrm{~m}^{2}$ and a mallard duck of 1 kg appears as $10^{-2} \mathrm{~m}^{2}$.

Out of interest the radar cross section of a man is shown in Fig. 3 (ref. 2). It has also been found that the radar signal reflection from birds is quite distinctly amplitude modulated and that the modulation frequency is inversely related to the size of the bird. The more common species, ranging in size from swallows to herons for example have wingbeat frequencies lying between 2 and 10 Hz . Flight movement with tume is represented by a number of wingbeats followed by a rest period and flight

Fig. 4. These types of reflectors are used as calibration sources and as target enhancers. The dihedral (a) has a broad response in one plane and a sharp cut-off in the other whilst the trihedral (b) has a better all-round coverage.

speeds themselves are found to lie mainly in the 20 to 35 mile/h region. Thus, by combining the data on airspeed, wingbeat frequency and wingbeat pattern, one can start to identify birds as a particular type of radar clutter and, in many cases, can form a good estimate of the species itself.

A further source of information about this type of target can be obtained by monitoring their reflections with a coherent source such as a c.w. Doppler radar. The display thus obtained is one of the Doppler frequencies (or relative velocities) versus time caused by the relative movements of different parts of the bird's body, such as head, wings, tail. As different species tend to have different degrees of movement, this composite spectrum is analogous to a fingerprint classification, though it is dificult to resolve unambiguously.

Several years agu, the Royal Radar Establishment used the surveillance radar on top of Gibraltar Rock to monitor bird migration movements through southern Spain, across the Straits and into north Africa. A film was made of the "speeded-up" movements taken over a long period of time from the radar display and clearly demonstrated the flight patterns and routes taken by various migrating species. This sort of information is of great interest to designers of radar systems and displays, to air traffic control and to ornithologists alike.

Echo enhancement

Sometimes, as in the case of small objects such as guided missiles and towed targets, it is necessary to find means of augmenting the radar cross section to enable them to be tracked reliably. A missile is by no means ideally suited for radar tracking, the only protruding surfaces generally being fins and wings. In addition, pitch and yaw angles greater than 50° occur very. seldom during target following and the majority of aspect angles are likely to be very much less than this. The subtended angle at the missile is also decreasing with increasing range. Consequently, very little extra enhancement is provided by the wings and fins and the total return consists of a rapidly varying pattern of peaks and nulls.

With this type of pattern, it is quite possible for the missile to be positioned at a point of abnormally low return. Coupled with the possibility of also observing very rapid signal fades, this could be interpreted as loss of acquisition and result in premature self-destruction of the missile. The radar cross section of a typical missile at the highest frequencies normally used might have a mean value of $5 \times 10^{-3} \mathrm{~m}^{2}$ with peaks of $0.1 \mathrm{~m}^{2}$ and nulls of $10^{-4} \mathrm{~m}^{2}$. The 20 dB variation in returned signal strength could occur within a fraction of a degree difference in aspect angle and represents a very severe fade.

The amount of space available for
enhancement is severely limited and is further restricted by aerodynamic drag requirements. The body diameter of typical missiles ranges from 120 mm to 300 mm , most of which is taken up by propellant, exhaust nozzel, servo mechanisms, warhead and electronics. A reasonable requirement might be for a mean radar cross section of $0.2 \mathrm{~m}^{2}$ maintained at all aspect angles from 0° to $\pm 50^{\circ}$, with additional restrictions on the extent and duration of the nulls.
A major factor affecting the enhancer design is the presence of the motor exhaust. Some systems employ a continuously burning motor during the flight and others an energetic initial boost followed by a coasting phase. In both cases, though, the motor flame must be taken into account as having a detrimental influence on the tracking signal. The overall effect is one of attenuation resulting from reflective, diffractive and absorbtive losses. This is most severe within the region about 5° from zero aspect angle and, depending upon the frequency, can give a two-way mean return loss of up to 40 dB .

A tail-mounted enhancer system is clearly rendered useless at these aspect angles and a typical solution to the problem is to mount additional enhancers at the wing tips to provide coverage within this region. Because of aerodynamic considerations, these must be small in size, and, as such, usually have a limited angular coverage and do not contribute significantly to the eninancement at large aspect angles

A particularly useful design on which to base wide-angle enhancers is the corner reflector. Fig. 4(a) shows a right angle dihedral form of this reflector in which the incoming signal undergoes a double reflection. When viewed as drawn from different angles of θ, the reflected signal is returned in the same direction as the one incident and so the dihedral has a relatively large radar cross section in this plane, proportional to the projected area in the direction of view. In the vertical plane, the dihedral behaves as a flat plate, with the incident energy glancing off at the incidence angle and so has a fairly sharp and limited response.

Better all-round coverage can be obtained with the trihedral corner reflector shown in Fig. 4(b). Once again, the signal is reflected back again towards the source, but with a more uniform response in the vertical as well as the horizontal plane.

An additional factor which must often be taken into account in the design of enhancer systems arises from the frequent use of circular polarization in the tracking radar. This is used to enable some discrimination to be made between the wanted target and precipitation clutter such as rain or hail. Every time a circularly-polarized wave undergoes a reflection, the electric field component is phased-reversed and the sense of polarization is also reversed. If; say right-handed polarization was
transmitted, then the radar receiver would only be receptive to a right-hand polarized reflection.

In rain, whilst multiple scattering between droplets exists, the predominant reflection appears as having undergone an odd number of bounces and so has the wrong sense of polarization to be received. The wanted return from a complex target such as a plane or a missile, however, is essentially of the original polarization and so is detected. A slight penalty of 6 to 8 dB is paid on the mean level of the radar cross section by using circular instead of linear polarization. But typically this technique can provide about a 25 dB target to clutter discrimination. It does mean that any enhancer designs must take this into account and provide the equivalent of an even-bounce system.

Another application. for radar cross section enhancement lies in the type of towed target often used for missile firing trials. Whilst physically small in size, they might be required to appear electrically as a small aircraft. Particu-

Fig. 5. The Luneberg lens focuses a plane wavefront to a point on its surface (a) from which it may be reflected back again and the theoretically required uniform variation in dielectric constant is achieved in practice by a concentric shell construction (b).

larly convenient is a device known as the Luneberg lens, first postulated as an optical device but only realized practically at microwave frequencies. Usually, the lenses are spherical as shown in Fig. 5 and, if the dielectric constant can be made to vary with radial distance, r, according to the law $\epsilon_{r}=2-(r / R)^{2}$, a plane wave incident on the lens will be focused to a point on the opposite surface. By placing a reflecting cap at this point, then the energy can be returned as a plane wave to the source. The above equation requires a dielectric constant of unity at the lens surface when $r=R$, increasing uniformity to a value of 2 at the lens centre when $r=0$. Such a gradual variation is not possible to achieve in practice but, with careful design, it is possible to achieve the required result by building up the lens from concentric shells, each of a slightly different dielectric constant. This method of construction is shown in the cutaway lens of Fig. 5(b).

Theoretically, the radar cross section of the Luneberg lens is the same as that of a flat plate having the same diameter D, namely: $4 \pi A^{2} / \lambda^{2}$ where λ is the wavelength and A is the cross sectional area equal to $\pi D^{2} / 4$.

Theoretically at, say, 10 GHz the radar cross section of the lens is $8.6 \mathrm{~m}^{2}$ compared with the geometrical cross sectional area of $0.025 \mathrm{~m}^{2}$. In practice, the lenses do not have 100% efficiency and, as indicated by the calibration, the signal return is typically up to IdB lower than that from the plate.

Acknowledgement

Thanks to Hawker Siddely Aviation for the HS125 photograph and to ACL Adelphi for permission to use the corresponding radar cross section data. I am also grateful to my colleagues of the Plastics department at B.A.C. Stevenage for Fig. 5(b).

References

1. E. W. Houghton. Radar Echo Areas of Flying Animals. AGARD lecture series 59, Oslo. October 1973.
2. F. V. Schultz, R. C Burgener and S. King. Measurement of the Radar Cross Section of a Man, Proc. I.R.E. vol. 46, Feb. 1958.

FM tuner designs

Two designs with various circuit options

by D. C. Read, B.Sc.

Performance

Signal-to-noise ratio.
Simple version 62 dB at 1 mV input 27 dB at $l \mu \mathrm{~V}$ input
f.e.t. version offers an improvement for low signal levels of $1-100 \mu \mathrm{~V}$ e.g. 55 dB instead of 47 dB at $10 \mu \mathrm{~V}$.
Distortion. Simple version: 0.5% at lkHz and 75 kHz deviation (1 mV), see text for method of improving to 0.1% f.e.t. version gives 0.12% at 1 mV , 0.08% at $10 \mu \mathrm{~V}$.
Crosstalk. 34 dB 80 Hz to 5 kHz with C_{28}, R_{27} optimized.
RF performance. See part 2.
gain in the preceding stages is required, to make up for ceramic filter losses and provide impedance matching, and the 20dB gain i.c. (CA3053) used in the simple version is therefore not needed.

In addition to the composite signal output, the CA3089E produces:

- delayed a.g.c. voltage
- push-pull current supply for a.f.c.
- adjustable inter-station muting voltage.
- direct voltage proportional to the r.f. signal amplitude to actuate a tuning meter or show received field strength.
Of these, the first is most useful. It is used here to control the gain of an additional aerial-fed r.f. amplifier which, as well as giving the tuner increased sensitivity for reception of weak incoming signals, attenuates those of excessive strength to reduce the risk of local-oscillator pulling, an effect which can occur when the LP1186 module is over-driven. More particularly the a.g.c. circuit using this control feed can easily be tailored to suit different reception conditions according to location and requirement.

In the simple version of the tuner, an a.f.c. feed is conventionally derived from the demodulated audio and, because of other precautions taken against drift, is more than adequate for all practical purposes. The availability of a separate a.f.c. supply is not therefore partıcularly signıficant except that it does more readily offer a choice
of control sensitivity. Similarly, the other two CA3089E outputs have only limited application in the present design. For general household use muting is not required with stable push-button tuning; neither is there need to inspect the incoming signal level. These optional facilities are included only to allow for band-searching by manual tuning.

The decoder, stabilizer and tuningvoltage circuits are the same in both versions of the tuner.

Simple version

The LPl186 module circuit is "floating", but is made unbalanced by C_{3} (Fig. 1) so that it is suitable for connection to the aerial via a 75 -ohm co-axial feeder. A.C. earthing is used because the module negative supply rail and the metal cover is held at about +4.5 volts with respect to the main chassis earth by zener diode D_{1}. There are two reasons for this, first, the LP1186 requires an 8 volt supply, instead of 12.5 volts nominal as in the remainder of the tuner circuit. And second, the local-oscillator frequencycontrol circuit óperates about a 0 -volt zero error signal at pin 1 (ref, pin 8) but the a.f.c. voltage produced by the TAA661B has an on-tune centre value of around 5.4 volts, reduced to about 4.5 volts, in the chain R_{22}, R_{23} and R_{24}.

A minimum incoming r.f. signal of about $2 \mu \mathrm{~V}$ r.m.s. for 30 dB quieting is

Fig. 1. Simpler version of tuner design using LP1186 module. Stereo decoder and tuning circuits are common to the two tuner designs. See part 2 (April issue) for modification for Toko module. Station selection switch should have break-before-make contacts. Resistors can be 5\% high stability or metal film types, rated at $1 / 4$ watt. Capacitors are 2% polystyrene types for signal circuits, disc ceramics for r.f. decoupling, and tantalum types for audio coupling and decoupling. Switch shown with broken lines is closed for mono reception to kill 76 kHz oscillation. Values in parentheses are for lower a.f.c. sensitivity.

[^5]

necessary to give adequate limiting in the TAA661B amplifiers; and a maximum amplitude of between 5 and 10 mV is recommended to prevent oscillator pulling.

The remaining LP1186 module at pin 2 is the tuning control voltage from the push-button selector circuit which has selected values between 4.7 volts and 6° volts; a somewhat greater range is provided in the continuously-variable manual tune position. Both this voltage feed and the a.f.c. line are decoupled $\left(R_{1} / C_{1}, R_{2} / C_{2}\right)$ to prevent spurious modulation effects which could be caused by hum fields or other stray signals picked up on wiring to and from switches.

AFC sensitivity

Following normal practice, of course, the a.f.c. feed passes through components, C_{4}, R_{4}, which filter out the audio modulation. The input resistance at pin 1 of the LP1186 is $62 k \Omega$, if R_{4} has the value $100 \mathrm{k} \Omega$ in Fig. 1, the useful a.f.c. voltage change is about one-third of the total available. If greater sensitivity is required, therefore, the value of R_{4} must be reduced and that of C_{4} raised to maintain effective audio rejection. A suggested pair of values is $33 \mathrm{k} \Omega$ and $3.3 \mu \mathrm{~F}$. With these in circuit a 50% increase in sensitivity is achieved but at a greater risk of locking to an adjacent station.
The problem of incorrect selection because of excessive a.f.c. is aggravated by the interleaving allotment of transmitter frequencies and therefore misselection is most likely to occur at points where interleaved channels are received at comparable strengths. A typical instance might be a location midway between the Oxford and Wrotham transmitters which radiate basically the same Radio 1, 2 and 3 programmes on interleaved frequencies. In such circumstances, the station chosen by the receiver might not be the wanted one; the choice will arbitrarily depend on the direction of tuning change. As the tuning shifts up or down the band from one selection to the next, the local oscillator might be captured by an in-between transmission which creates a large enough a.f.c. voltage to make it lock to this station in error. Over-sensitivity of the a.f.c. can also result in station-jumping effects where the receiver suddenly changes tuning and switches away from one transmission to some other because of a

Fig. 2. Effect of changing dummy circuit resonance on transfer slope of demodulator. (a) left, optimum setting (b) middle, upper core "in" on optimum setting (c) right, upper core "out" on optimum setting. (IV/cm.)
reduction in received signal strength; aircraft flutter, particularly, causes such mis-operation.

It is obviously good practice then to set the a.f.c. sensitivity so that it is no more than just sufficient. In the event that particular reception conditions are such that sensitivity is already too large, even with the circuit as given in Fig. 1, two pairs of diodes in series (types 1N914 and 1N916 are suitable) can be connected back-to-back across C_{2} at the LP1186 a.f.c. input. With this modification, the frequency-control swing is limited to less than the 300 kHz station spacing and thus station jumping or mis-selection will be prevented.
The 10.7 MHz output from across pins 6 and 7 is fed to Tr_{1} which provides the correct source impedance for the first ceramic filter, and also gives some amplification. The amount of gain is set by the value for R_{8} and should be such that, for a low r.f. input of $10 \mu \mathrm{~V}$ to the tuner, a suitable signal level (say 10 mV) is available to drive the first i.f. amplifier in the demodulator module; this gives 40 dB quieting. A 20 dB amplifier stage comprising the cascode-connected circuit in IC_{1} provides the correct source impedance for F_{2} which finally passes the band-shaped i.f. signal to IC_{2}.

Remember that the Vernitron type FM4 components used for F_{1} and F_{2} must have the same colour marking. The green-coded type is recommended because these have a pass band centred on 10.7 MHz and therefore match the curve normally provided by the maker's preset adjustment of LP1186 modules. If ceramic filters of another colour code are used, it may be advantageous to re-tune the two output band-pass coils in the LPll86 for optimum performance. These are accessible through holes in the module cover. The best way of making the adjustments is to use a frequency-sweep input signal displayed on an oscilloscope connected across the demodulator input (pin 6 of the TAA661B). Such ideal methods are rarely available to the home constructor, however, and the practical compromise is to select a weak incoming signal and then adjust the coils for least background noise in the sound output
from the tuner.
For reception of weak signals it may be worthwhile to carry optimization of the LP1186 one step further and adjust its input circuit to match the aerial. Two other holes in the LP1186 cover allow separate access to the aerial trimming coil and its associated capacitor. Because these components affect opposite ends of the tuning range, their adjustment is a relatively simple matter: using the manual tuning control, select a weak station radiating in the $87-89 \mathrm{MHz}$ range and tune the coil for minimum noise; no more than a fraction of a turn is needed to show either that a reduction in noise is possible or that the optimum setting already exists. Change to a weak signal towards the other end of the band ($96-97 \mathrm{MHz}$) and similarly adjust the trimmer capacitor. This is not an essential adjustment and will, at best, give only small improvement for weak stations.

Quadrature demodulator

The circuit surrounding $I C_{2}$ shows two main differences compared with that in the original Nelson-Jones tuner. First, the i.f. signal sample used to derive the quadrature-phase demodulating signal is taken through an inductor L_{1} instead of a capacitor (note that C_{20} in Fig. 1 is now simply a d.c. blocking component). This is done so that the resulting demodulator transfer slope is in the correct sense for a.f.c. Second, the phase-shifted carrier itself can optionally be produced by two tuned circuits with twin coils L_{3} having separate cores but mounted on the same former. As Fig. 1 shows, one of these circuits is a dummy, the tuning of which is adjusted so that the modifying component of current induced in the main tuned circuit is of suitable phase and amplitude to give a straighter transfer slope. The effect of changing the dummy circuit resonance is illustrated by the three sweep photographs which show: (a) the transfer slope for an optimum setting; (b) and (c) non-linearity resulting from two incorrect settings.

There is, unfortunately, a difficulty to. be met in using this apparently simple and cheap modification: it is only effective if properly adjusted and although adjustment is relatively easy, it necessarily entails the use of extra test equipment. Further, the basic reduction in tuner output distortion is marginal (typically, 0.5% total harmonic content for the one-coil circuit; 0.1% with two coils) and would be hard to detect aurally. Even so, a low level of harmonics in the demodulated signal, helps to prevent intermodulation products in the overall stereo decoding process and, provided that suitable test equipment is available, the additional circuit and set-up procedure offers a worthwhile advantage.

There are two possible methods of adjustment. The first uses a distortion meter to measure the total harmonic
content in the audio output (taken via a 15 kHz low-pass filter such as that described later) for an r.f. tuner input modulated by 1 kHz at $\pm 75 \mathrm{kHz}$ deviation. The filter is needed here to reject the 19 kHz pilot tone as well as the 23 kHz transmitter switching signal remaining in the audio output. The dummy tuned circuit (upper core) is then simply adjusted to give a minimum reading on the meter. However, since the distortion figure which can be achieved is low (about 0.1%), the exact null point may be somewhat masked by noise. The alternative method overcomes this. It uses a wave analyser tuned to the 3rd harmonic of the incoming 1 kHz modulation which is again at the maximum deviation of \pm 75 kHz ; in this instance there is no requirement for a low-pass filter. The adjustment of dummy circuit tuning is made for a minimum output at 3 kHz .

The demodulated multiplex signal from pin 14 of $I C_{2}$ at about 0.5 volts r.m.s. for $\pm 75 \mathrm{kHz}$ incoming f.m. deviation has a d.c. component of about +5.4 volts for the in-tune condition. In fact, the value given here is a nominal one and varies between different examples of the TAA661B; since this varying direct voltage is used to operate the a.f.c. circuit and must be matched to the supply offset provided by D_{1} (4.3 volt zener), variable resistor R_{24} is included in the a.f.c. potentiometer chain to allow fine adjustment.

The method suggested for adjustment is as follows. Switch a.f.c. off. Using the manual control, set the tuner well away from any station, i.e. completely off-tune. Measure the direct voltage at the IC_{2} pin 14 test point (this connects with the demodulator output via a protecting $1 \mathrm{k} \Omega$ stand-off resistor); normally, the value obtained will be about 5.4 volts positive.

Tune through a reasonably strong incoming signal and, by observing the voltage change from maximum positive to maximum negative (a total peak-topeak swing of, say, between 2.5 and 3.5 volts) sample the S curve to find the on-tune point, which is at a voltage nearly equal to that already established for the off-tune condition. With the tuning set at this point, transfer the meter to the tuning-indicator connection points marked 1 and 2 in Fig.1. In the on-tune condition and with R_{24} set at a maximum, terminal 1 will be positive with respect to 2 . Adjust R_{24} to bring this potential difference to zero. Switch a.f.c. on and observe the possible slight change of meter reading. Again adjust R_{24} to restore it to zero. Finally, check the voltage appearing at the test point and operate the a.f.c. switch to ensure that this voltage remains unchanged with and without a.f.c. applied.

Tuning voltage selector circuit

The circuit used to provide a selection of pre-set direct voltages for tuning purposes in the LP1 186 module forms the

Fig. 3. In this tuning indicator option, the 2200 hm resistor can be replaced with the circuit shown in broken box to ensure equal lamp brightness either side of tuning position.

Fig. 4. Optional meter circuit provides tuning scale for manual tuning. Meter is RS Component MR100.

lower left of Fig. 1; this part of the circuit also includes the main supplyvoltage stabilizer.

All the tuning voltages are derived as proportions of a fixed voltage from zener diode D_{4} which is supplied with a constant current by the stabilizer circuit of Tr_{6} and $\mathrm{Tr}_{7} . \mathrm{D}_{4}$ is returned to 0 volts instead of the 4.5 volt rail used by the LPl186 module and the rest of the tuning voltage circuit, so of the 13 -volt reference potential provided by D_{3}, only about 8.5 volts is used for tuning. The main reason for this arrangement is that by allowing for a greater reference voltage than necessary, the zener diode used to provide it has a positive temperature coefficient large enough to give the degree of frequency-drift correction required. The coefficient of a suitable lower-value zener, although still positive, would be too small for this purpose; the figures for comparison here are $+10.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ for D_{4} and $-10 \mathrm{kHz} /{ }^{\circ} \mathrm{C}$ for the oscillator.

Thus, with D_{4} connected as shown, the variation of control voltage with temperature has an effect on the
tuning frequency which both opposes and, after accounting for potentiometer action and the 4.3 volt zener offset in the selector circuit as well as the tuning-voltage/frequency relationship, is about equal to the variation caused by a similar temperature change on the local oscillator itself. Obviously, for automatic compensation to become fully effective, the relevant components in the tuner must themselves have reached their normal working temperature.

If the number of pre-selected stations required is more than, say, 12 then as each chain takes about 0.4 mA the total drain on D_{4} might be greater than its reserve of current and it would no longer be effective in maintaining a constant voltage. In this event, it will be neccessary to increase the current supply from Tr_{7} by reducing R_{44} to the next lowest preferred value (56Ω).

Transistor Tr_{8} and Tr_{9} form the main parts of a conventional series regulator acting with reference to zener diode D_{6} to provide the main supply rail of 12.5 volts from the nominal 16 volt d.c. input.

An incoming feed of this value is conveniently obtained by peak rectification of the output from a mains-to- 12 volt transformer. It should be capable of supplying at least 250 mA r.m.s. at 12 volts to ensure the required rail voltage.

The 12 volt zener, D_{5}, provides a reserve of current for supplying the stereo indicator D_{2} so that the main supply rail is not affected by current changes as this l.e.d. is switched on and off.

Stereo decoder and output circuit

The right hand of Fig. 1 shows the decoder module feeding twin audio output circuits and preceded by a low-pass filter mainly comprising L_{2}. This filter passes the composite multiplex signal obtained from the demodulator including the upper subcarrier sideband extending to 53 kHz but rejects frequency components outside this range. Ideally, the filter should have a flat pass-band with negligible phase distortion so that the mono and stereo information channels occupying 0 to 15 kHz and 23 to 25 kHz , respectively, can be recovered with equal fidelity. It should also cut off sharply to give the maximum possible attenuation to all signals outside this band, especially in the range 99 to 129 kHz , which includes the first odd harmonic of- the stereo channel subcarrier with sidebands.

To satisfy such a requirement would entail the use of a complex network; in practice, the simple, single-section filter used in the tuner is adequate, even more so if the demodulator dummy tuned circuit, discussed earlier, is used to reduce the level of interfering harmonic components. As an added refinement, the tuning of L_{2} can, if desired, be adjusted to set the first rejection frequency so that optimum separation is obtained for signals in the region of 5 kHz ; this is the upper end of the audio range over which good stereo separation is most important.

Further overall response adjustment is given by the feedback stage of $\mathrm{Tr}_{2} / \mathrm{Tr}_{3}$. The $\mathrm{C}_{28}, \mathrm{R}_{27}$ circuit causes a basic $6 \mathrm{~dB} /$ octave rise which is modified by R_{29} so that the resulting slope counteracts a general slight fall in the preceeding circuits. As before, equality of level for both the mono and stereo information channels at the decoder input is the criterion. The low output impedance presented by $\mathrm{Tr}_{2} / \mathrm{Tr}_{3}$ is a necessary factor in the proper operation of the MC1310P circuit; separation at the lower end of the audio band suffers if this requirement is not met.

The decoder module, IC_{3}, is operated in a normal manner with surrounding circuit values much the same as in an article which introduced the MC1310P (Wireless World July 1972). The only addition is the optional 76 kHz oscilla-tor-disabling switch shown in Fig. 1. If fitted, this is used to inhibit stereo operation for exceptionally weak incoming signals when the resulting 20 dB improvement in signal to noise
ratio offers a worthwhile advantage.
De-emphasis of the decoded audio signals taken from open collectors at pins 4 and 5 of the MC1310P is arranged by shunting each of the load resistors, R_{32} and R_{33} with $0.01 \mu \mathrm{~F}$ capacitors. The twin output signals are then available from buffer emitter followers, Tr_{4} and Tr_{5}. Apart from the more obvious benefits of having low-impedance outputs, these are particularly useful, with series resistors R_{41} and R_{42} suitably changed in value, for feeding the 15 kHz low-pass filters (part 2) which may be inserted between the tuner and its following amplifiers.

Extra circuits

Where stereo programmes are to be used to make mono recordings, the emitter follower circit shown dotted in the lower right hand corner of Fig. 1 would be a useful addition. This simply provides a low-impedance output of the separately de-emphasized multiplex signal.

Another possible extra facility is the tuning indicator circuit illustrated by Fig.3. This basically comprises two Darlington pairs in a single i.c. with a common-emitter load and light-emitting diodes in the collector feeds. When connected to a.f.c. circuit points 1 and 2 in Fig.l, these diodes show equal illumination for equal input voltages at pins 6 and 9 to indicate the in-tune condition whereas one or other is brighter on either side of this point. An optional refinement to the basic Fig. 4 circuit (shown boxed) overcomes possible asymmetry in individual diode brightness for off-tune conditions. As the modification shows, the commonemitter resistor is replaced by a con-stant-current source using a spare transistor in the i.c. and two additional resistors.
As a further aid to station selection, the reader may like to include the circuit shown in Fig. 4 and thus provide a tuning-scale facility. The added circuit mainly uses a readily-available and reasonably cheap edgewise meter which in my installation is mounted together with the pre-selection buttons and other controls on a remote front panel. Fig. 4 shows how the meter is connected into the main tuning/selection system detailed in the Fig.l circuit which requires only two small modifications. One is the addition of a series resistor between R_{62}, the manual tune control, and the 11 -volt maintained tuning-voltage supply rail. The value of the added component (typically $18 \mathrm{k}!2)$ is chosen on test so that the meter full-scale deflection (indicating 98 MHz) occurs at the fully-clockwise slider setting of R_{62}. Second, the value of R_{67} will need changing to, say, $22 \mathrm{k}!/$ to make the $\mathrm{R}_{\mathrm{t} 2}$ fully-anticlockwise setting coincide with a tuning frequency of 88 MHz . The values actually required might be different because the tuning. voltage spread for the LP1 186 varies by
about 1 volt at the low end of Band II and about 3 volts at the top end.

With the meter circuit as shown full line in Fig. 4 the scale (constructed by experiment) will be cramped at the low-frequency end. This is an advantage if all the pre-selected station frequencies are here, because the more open upper-end markings then give better accuracy when exploring/setting in the manual tune position. However, in some other instance it may be necessary to make the scale marking more linear and this can be done by modifying the meter circuit as shown dotted in Fig. 4 whereby the scale already provided with the meter can conveniently used such that $0 \equiv 88$ MHz and $10 \equiv 98 \mathrm{MHz}$.

Part 2 will include details of the "advanced" version of the f.m. tuner.

Printed circuit boards

Wireless World has arranged a supply of glass fibre p.c.bs. One off price is $£ 3$ inclusive from M. R. Sagin, 11 Villiers Road, London NW2.

Amplicon Electronics Ltd, Lion Mews, Hove, BN3 5RA, have been appointed sole UK agents for Semiconductor Circuits Inc. of Massachusetts, USA. S.C.I. is a large producer of encapsulated mains power supplies and d.c. to d.c. converters.

West Hyde Developments Ltd have been appointed agents for the American TEC Company for their v.d.u. data terminals.

Keithley Instruments Ltd, 1 Boulton Road, Reading, Berks RG2 0NL, have been appointed agents for the Monroe line of scientific and statistical programmable calculators.

Swisstone Electronics Ltd, 4/14 Barmeston Road, London SE6 3BN is a new company which will specialize in the servicing of Rogers audio equipment. Swisstone have obtained the premises, stock and plant of Rogers Developments, now in liquidation, and have also retained the services of key personnel.

Omni Components Ltd, 22 Portman Road, Reading, Berks, has been appointed a franchised distributor for semiconductor products by Thomson-CSF United Kingdom Ltd. Thomson-CSF, based in France, with U.K. headquarters at Basingstoke, is a major European manufacturer of electronic equipment and components.
E. I. du Pont de Nemours and Company, Post Office Box, CH-1211 Geneva 24, Switzerland, has been licensed by N. V. Philips of the Netherlands to market in Europe a VCR cassette for the half-inch Philips VCR format. The Du Pont cassette contains "Crolyn" magnetic tape, a chromium dioxide tape developed by Du Pont. The cassettes will be available with playing times of 30,45 and 60 minutes. Du Pont has previously been licensed to market VCR cassettes in the United States for Philips Broadcast Equipment Corporation.

News of the Month

Video editing for BBC External Services

By late 1977 staff at the BBC's External Services in Bush House will be supplementing pen, paper and typewriter with a 14 in video screen. The Corporation is to modernize its production and distribution of news and current affairs at Bush House by installing a $£ 1.2 \mathrm{M}$ ITT computer-based news distribution system. Instead of conventionally producing the material and stencilling it for distribution to various language services for transmission, the news staff will feed news stories, talks and features into the computer through video display units, which have comprehensive editing facilities.

The BBC decided on the new system as a means of speeding up the complex machinery of its external broadcasting operation, which is in action round the clock seven days a week, uses 39 languages and has an output of almost 700 programme hours each week. Display terminals for the news distribution system are being supplied by Delta Data Systems Ltd of London. They are to supply 47 of their type 4000 v.d.us as part of an eventual total of about 240 terminals to be used for entering, displaying or printing information.

Oilmen on the 'phone

Beryl is the first North Sea oil platform to be provided with an automatic public telephone service. The service is a business link but workers on the platform will be able to ring their homes in the event of urgent personal business. The new troposcatter microwave link is the first part of a multi-million-pound network of off-shore microwave radio links being set up by the Post Office. The link from Beryl to the Shetiands has been in operation since early December but was officially opened in mid January after proving its claimed reliability of 99.98%. Sir Edward Fennessy, deputy chairman of the Post Office and man-
aging director of telecommunications, inaugurated the service by making a three-way international 'phone call from the Post Office Tower, London. The call linked him with the Beryl platform and with Mobil's headquarters in New York.

Because the oil and gas production platforms are well out of sight of land, microwaves, normally used for line-ofsight communication, are scattered by turbulence in the troposphere and as a result become "visible" to aerials beyond the horizon. Focal points of the new off-shore network are two radio stations, strategically sited to serve almost all the British sector of the northern North Sea gas and oil field areas. One station, the control centre, is sited near Fraserburgh, Aberdeenshire. The other is on South Shetland.

Oil pollution threat reduced

Electronics is helping to eliminate the risk of an oil tanker breaking from its mooring during load or discharge, thus minimizing the possibility of damage to the environment through oil pollution. An electrowriting recorder is being used to monitor the load on a single point mooring buoy about four miles off the English coast near Grimsby. The recordings are also expected to produce substantial economies in mooring line costs for terminal operators by enabling them to predict to a certain degree the safe working life of the mooring lines.

Aerials at the new radio station on South Shetland (see news item) one of two shore stations for the new network of radio links with oil platforms over the northern sector of the North Sea.

The equipment uses a load transducer attached between the buoy mooring lug and the mooring rope. The signal from the transducer is fed into a combined encoder/transmitter unit and is then received on shore and decoded to provide a voltage output proportional to the applied load. The load readout is recorded on a Servocorder, supplied to designers at the British Hovercraft Corporation by Environmental Equipments Ltd. An alarm system working off the inkless pen recorder is incorporated so that a warning tone can sound at the shore station and through the normal shore-to-ship radio speech link when the strain on the mooring buoy exceeds its safety limit.

Harmony for cables and flex

The publication of three revised British Standards dated December 1975 has marked an important step towards common specifications for wiring cables and flex in Europe. In February 1973, one month after gaining full membership of the EEC, Britain became a signatory to the Low-Voltage Directive (see "Electrical safety, standards and the law" Sept. 1975, pp.401-404). The main purpose of this Directive is to ensure the safety of the user. The Electrical Equipment (Safety) Regulations, which came into force on April 1, 1976 are among the measures being taken to implement the LV Directive.
The agreement between European countries to harmonise standards for electrical products has been an important method of ensuring compliance with the Directive. The new standards, which are being published in the UK as revisions to BS6500, 6004 and 6007, can be regarded as logical extensions in the process of metrication of cable stan-

dards which was initiated in the 1969 edition of the specifications. Members of the Electric Cable Makers Confederation will be able to provide users of cables and flex with any advice or guidance they may require on the new specifications.

IEE's director of qualifications

A new director of qualifications has been appointed at the Institution of Electrical Engineers, London. Mr Allan Charles Sensicle, B.Sc., M.I.E.E., currently director of the Tayside Schools' Technology Centre Association, Dundee, took up this position in February. As director of qualifications, Mr Sensicle will be in charge of the department which deals with membership matters including the standards of educational qualifications and training required by the IEE. The department also gives advice and information to school leavers on careers in electrical engineering and provides a continuing education service, by correspondence course, for electrical engineers.

When asked about the role engineering institutions can play in education, Mr Sensicle said: "The low status of engineers in industry, science and technology indicates some of the attitudes to professional engineering prevalent in Britain today. This gives rise to a shortage of recruits, particularly those of high calibre, into the profession. Institutions can do a lot to show the relevance of applied science and its importance to society. In showing that engineering is human and exciting they can demonstrate that

Lightweight stabilized antenna and a high performance transmitter-receiver which make extensive use of digital techniques are used in the new Plessey AWS-5 tactical radar system. A contract was recently awarded to Plessey by the Royal Danish Navy for the supply of the AWS-5.

Mr Gilbert Briggs (right) early loudspeaker pioneer, discussing some of the latest products of his former employers in the new acoustic engineering block at the Whurfedale Works of Rank Audio Visual. The building, named Briggs House in his honour, was officially opened on December 15, 1975.
there is likely to be a great deal more that educationalists can gain from industry and can thereby provide young people with a greater understanding of the importance of engineering". (This month's leader comments on the pay of electronics engineers and technicians.

Data dialled to South Africa

Computer users are now able to send data to South Africa on a directly dialled call - the first intercontinental Datel service to be put on the international subscriber-dialled network. Calls can be dialled direct to the South African towns which are available on ISD from the UK. The International Datel 600 service provides half duplex, serial transmission of digital data within the speed range of 600 to $1,200 \mathrm{bits} / \mathrm{s}$ while the Datel 200 service provides full duplex, serial transmission at speeds up to $200 \mathrm{bits} / \mathrm{s}$. The Post Office are advising customers who have not previously used any of the international Datel services to contact their local telephone area offices to make sure they have suitable equipment.

Doubts on UK Citizens' Band

The Home Office still has reservations about the introduction of a Citizens, Band in this country (see Letters, January and March issues). They state that at a time when it is difficult to meet all the frequency requirements of public services and commercial users, and
strict economy in the use of the spectrum is increasingly necessary to make existing resources last out, even a small Citizens' Band is a luxury we can ill afford. In Europe the Citizens' Band facility is of comparatively recent origin and those countries that allow it have not yet been confronted with such widespread problems as in the USA where the 27 MHz Citizens' Band has been in use for many years. Nevertheless, the Home Office understands from its contacts in three European governments that they are concerned about the extent of Citizens' Band activity in urban areas, where interference to television reception seems to be the main trouble. According to a late item of news, the Citizens' Band licence has been withdrawn in Holland and will be replaced by a form of amateur licence for which an examination pass is required.

Sound ' 76 public address exhibition

This year's exhibition of the Association of Public Address Engineers is to be held at the Bloomsbury Centre Hotel, Coram Street, London WCI, from March 16 to 18. Admission is free and anyone with a trade or professional interest may attend during the opening hours of 10.00 to 18.00 (final day 10.00 to 17.00). The exhibition covers nearly 7,000 square feet of stand space and will show audio-visual communications and associated equipment. About 30 manufacturers will be participating. Further information can be obtained from APAE Secretariat. 47 Windsor Road, Slough, Berkshire.

Frequency modulation illustrated

Oscillograms obtained using a Fourier synthesizer illustrate the significance of sidebands in a frequency-modulated signal

by P. L. Taylor, M.A., F.I.M.A., F.I.E.E.
Department of Electrical Engineering, University of Salford

Textbooks on frequency modulation show that if a carrier oscillation of magnitude E_{c} and (angular) frequency ω_{c} is frequency-modulated by a sinusoid of frequency ω_{m} the result can be expressed as

$$
\begin{equation*}
e_{\mathrm{c}}=E_{\mathrm{c}} \cos \left(\omega_{\mathrm{c}}+\beta \cos \omega_{\mathrm{m}} t\right) t \ldots \tag{1}
\end{equation*}
$$

where β, the modulation index, is the ratio of the swing in carrier frequency ω_{c} to the modulating frequency ω_{m}. The books go on to state that (1) can alternatively by expressed as

$$
\begin{align*}
& e_{\mathrm{c}}=E_{\mathrm{c}}\left[J_{0}(\beta) \cos \omega_{\mathrm{c}} t\right. \\
& +J_{1}(\beta)\left\{\cos \left(\omega_{\mathrm{c}}+\omega_{\mathrm{m}}\right) t-\cos \left(\omega_{\mathrm{c}}-\omega_{\mathrm{m}}\right) t\right\} \\
& +J_{2}(\beta)\left\{\cos \left(\omega_{\mathrm{c}}+2 \omega_{\mathrm{m}}\right) t+\cos \left(\omega_{\mathrm{c}}-2 \omega_{\mathrm{m}}\right) t\right\} \\
& +J_{3}(\beta)\left\{\cos \left(\omega_{\mathrm{c}}+3 \omega_{\mathrm{m}}\right) t-\cos \left(\omega_{\mathrm{c}}-3 \omega_{\mathrm{m}}\right) t\right\} \\
& +\ldots] \tag{2}
\end{align*} \quad \ldots \ldots \ldots(2)
$$

where $J_{0}(\beta), J_{1}(\beta)$, etc, are Bessel functions of the carrier and sidebands for modulation index β. Values are found from tables.

It is explained that this represents a carrier-frequency oscillation together with pairs of sidebands at frequencies $\omega_{c} \pm \omega_{m}, \omega_{c} \pm 2 \omega_{m}, \omega_{c} \pm 3 \omega_{m}$ and so on.

Waveform synthesis

A student may perhaps be forgiven for doubting the "reality" of sidebands; after all, some of the early pioneers were equally doubtful. However, the significance of sidebands may be illustrated with the aid of a Fourier synthesizer, which consists of a number of oscillators working at successive harmonics of some lowest (fundamental) frequency. All the harmonic oscillators are phaselocked to the fundamental oscillator. There is provision for altering the amplitude and also the phase of each oscillator, so that for example the third harmonic output can be $\sin 3 \omega_{\mathrm{m}} t$ or $\cos 3 \omega_{m} t$ or any phase in between. The primary purpose of a Fourier synthesizer is, of course, to show that a non-sinusoidal periodic waveform can be built up by adding together purely sinusoidal waveforms at the fundamental frequency and its harmonics, each with suitable amplitude and phase.

Such an instrument can also be used to illustrate f.m. as follows. Suppose we regard, say, the sixth harmonic oscillator as providing a "carrier" of frequency
$\omega_{c}=6 \omega_{m}$, then the fifth harmonic has the frequency $\omega_{c}-\omega_{m}$ (where ω_{m} is the fundamental) and the seventh has the frequency $\omega_{c}+\omega_{m}$. Together these oscillators can provide the first pair of sidebands. In the same way the fourth and eighth harmonic oscillators can provide the second pair of sidebands at $\omega_{c} \pm 2 \omega_{m}$; and so on for the higher-order sidebands. Thus it is possible to build up a series such as equation (2). Fig. I shows the result. The synthesized oscillation has a constant amplitude, but its frequency is varying. One cycle

Fig. 1(a), top. Two cycles of the fundamental-frequency oscillation of a Fourier synthesizer. Below is a synthesized frequency-modulated waveform (b) based on a "carrier" of six times the fundamental frequency.

Fig. 2(a). The top waveform contains exactly the same components as the waveform (b) below, but with the components in the wrong phases.
The waveform after amplitude-limitation (and amplification) is shown below (b).
of frequency variation occurs for each cycle of the fundamental.

Clearly the result is indistinguishable from what would be obtained from a true frequency modulator. Equally clearly, if an f.m. receiver can handle the synthesized waveform it can handle the other. The converse is also true: if the receiver cannot handle the synthesized waveform it will distort the "true" waveform. For example, if the receiver has a restricted bandwidth it will distort the synthesized waveform because it rejects the high-order sidebands. It will equally distort the waveform from a modulator. The sidebands are real, at least in the sense that one ignores them at one's peril!

It is not just a question of adequate amplitude bandwidth; the phase response is equally important. Fig. 2(a) shows what happens if the relative phases of the sidebands are altered (as might happen in a receiver with a poor phase/frequency response), leaving their amplitudes unchanged. Considerable amplitude modulation has been introduced by the phase-shifts. The situation is not retrieved by amplitude limiting in the receiver shown in Fig 2(b). On the contrary: there is something clearly wrong with the f.m. information. The illustration is admittedly an extreme one, but the moral is clear. It is no use measuring just the amplitude-bandwidth of a receiver, and especially not after the limiter. This latter can yield an inflated figure which gives no guarantee that the phase response is satisfactory.

Phasor diagrams

An even deeper insight into the significance of the sidebands is obtainable from a phasor diagram. The phasor which represents a frequency-modulated carrier, equation (1), has a constant length \dot{R}_{c} and rotates with an average angular velocity ω_{c}. Its instantaneous velocity varies above and below ω_{c} because of the modulation. If in the usual way a constant angular velocity ω_{c} is subtracted the phasor simply oscillates backwards and forwards so that its tip traces out an arc of a circle, each oscillation occupying one cycle of
modulation. The greater is β the wider the angle of swing and the larger the arc of the circle.

Let us see how the sidebands combine to give this result. Subtracting the constant value of ω_{c} from each of the frequency terms in equation (2) leaves $e_{c}=E_{c}\left[J_{0}(\beta)\right.$

$$
\begin{align*}
& +J_{1}(\beta)\left\{\cos \omega_{\mathrm{m}} t-\cos \left(-\omega_{\mathrm{m}}\right) t\right\} \\
& +J_{2}(\beta)\left\{\cos 2 \omega_{\mathrm{m}} t+\cos \left(-2 \omega_{\mathrm{m}}\right) t\right\} \\
& +J_{3}(\beta)\left\{\cos 3 \omega_{\mathrm{m}} t-\cos \left(-3 \omega_{\mathrm{m}}\right) t\right\} \\
& +\ldots \ldots] \tag{3}
\end{align*}
$$

The phasors corresponding to the terms in this series are shown in Fig. 3. In this
figure the scaling factor E_{c} has been omitted, and positive cosine quantities are reckoned upwards.

Starting from the origin O the first term, the carrier, is represented by a phasor of length $J_{0}(\beta)$ pointing upwards, which does not rotate. The first pair of sideband phasors each have length $J_{1}(\beta)$. The upper sideband phasor starts off at $t=0$ by pointing upwards (its sign is positive) and subsequently rotates anticlockwise (the sign of ω_{m} is positive). The lower sideband phasor starts off at $t=0$ by pointing downwards (its

Fig. 3. The sideband phasors combine to trace out a circle.

Fig. 4 (below). Oscillograms obtained by adding successive harmonic oscillations to the x and y plates alternatively, representing (a) the carrier, (b) carrier plus first sidebands, (c) plus second sidebands, (d) plus third sidebands. Modulation index $\beta=1$.

a

C

b

sign is negative) and subsequently rotates clockwise (the sign of ω_{m} is negative). As these phasors rotate their resultant moves from left to right along the line BAC. The total length of this line is $4 J_{1}(\beta)$.

If β is small (narrow-band f.m.) $J_{1}(\beta)$ is small, and the line BAC is short. It is then by itself a good enough approximation to a small arc of a circle, and no higher-order sidebands are necessary. If β is larger then the straight line is not a good approximation to an arc; but then the second pair of sidebands becomes significant. These phasors are both of length $J_{2}(\beta)$; both start ;off at $t=0$ by pointing upwards (both their signs are positive). At $t=0$, therefore, the resultant of this pair of phasors raises the centre of the straight line, point A, up to E.

The resultant of the second pair of phasors, as they rotate clockwise and anticlockwise respectively, always lies along a vertical line. These phasors are rotating at twice the velocity of the first pair, with the result that, when they are added in, the outer ends of the line $B C$ are bent downwards to the points D and F respectively. Thus the resultant of all the phasors considered so far traces out the parabola DEF. The third pair of phasors, like the first, have a resultant which always lies on a horizontal line. Adding them in tucks in the points D and F to G and H, and broadens out the arc in the region of the apex. E. If, as in Fig. 3, the third pair of sidebands are the last significant ones, the arc GEH is part of a circle. (Note the general rule that the odd-order pairs of sidebands produce horizontal deflections, even-order pairs produce vertical deflections.)

Diagrams such as Fig. 3 are difficult to sketch and tedious to compute and plot; which is where the synthesizer can help. Fig. 4 shows successive stages for the case $\beta=1$. \ln (a) the c.r.t. spot is moved upwards, using the y-shift control, by an amount $J_{0}(1)$ to represent the tip of the carrier phasor. In (b), the fundamental oscillator is applied to the x plates to produce a horizontal deflection of peak-to-peak amount $5 J_{1}(1)$. In (c), the application of the second-harmonic oscillator to the y plates to produce a peak-to-peak vertical deflection of $4 J_{2}$ (l) bends the straight line into an arc. Finally, in (d), addition of a small amount of third-harmonic oscillation to the x plates rounds off the arc into a

Fig. 5 (right). A much larger number of sidebands is required when $\beta=5$. Each picture is numbered according to the order of the sideband added. The appropriate values of the Bessel
functions are:
$J_{0}(5)=-0.178, J_{1}(5)=-0.328$,
$J_{2}(5)=0.047$,
$J_{3}(5)=0.347, J_{4}(5)=0.391, J_{5}(5)=0.261$,
$J_{6}(5)=0.131, J_{7}(5)=0.053, J_{x}(5)=0.018$.
$J_{9}(5)=0.006$

circle. For $\beta=1$ only sideband-pairs up to the third are important.

Fig. 5 shows the case $\beta=5$. A much larger number of successive harmonics, applied alternatively to x and y plates, is required to produce a movement of the c.r.t. spot round a much greater arc of a circle. These pictures show quite clearly why (a) a larger number of sidebands is required if the modulation is increased; (b) the upper and lower sidebands of a pair always have the same amplitude; (c) if β is changed then the amplitudes of all sidebands must change-it is not just a question of adding in extra sidebands as β is increased, leaving existing ones unchanged; and (d) the amplitude of the carrier must also change.

Books Received

Transmission and Display of Pictorial Information by D E. Pearson attempts to explain the principles of electronic systems which process, store and transmit information ultimately entering the human eye. The book starts with a mathematical analysis of images and then covers the properties of the eye affecting system design. Subsequent chapters discuss scanning, reception and display of monochrome pictures. transmission of monochrome information, displays in colour and the transmission of colour information. A concluding chapter deals with the subjective assessment of picture quality. Price $£ 5.95$. Pp. 225. Pentech Press, 8 John Street, London WCIN 2 HY .

Guide to Amateur Radio by Pat Hawker G3VA (16th edition) has been published by the Radio Society of Great Britain. The publication has been enlarged and revised to incorporate the latest trends in amateur radio such as the greater use of single sideband techniques. A new chapter on amateur radio equipment includes a survey of over 160 receivers, transmitters and transceivers. Price $£ 1.10$ (post paid). Pp. 112. Radio Society of Great Britain, 35 Doughty Street, London WCIN 2AE.

Light Sense by Integrated Photomatrix is a handbook of optoelectronic devices and systems. The text starts with the facts of light and progresses through the detection process, the technology, integrating detection and the light-activated switch. Subsequent chapters cover self-scanned arrays, camera systems and special space applications. The book is well illustrated with circuit diagrams, graphs and block diagrams, and several industrial systems are described. A concluding chapter gives IPL product data. Price $£ 2.50 . \mathrm{Pp}$. 147. Integrated Photomatrix Ltd. The Grove Trading Estate, Dorchester, Dorset.

Letter from America

Last November, the first newspaper production operation in the world to be controlled through a communications satellite was officially dedicated by Dow Jones \& Co., publishers of the Wall Street Journal. The journal is set in type in Chicopee, Massachusetts and facsimiles of full-size pages are sent via Westar I to another plant in Orlando, Florida - about 1,200 miles away. The reproduction proofs are individually wrapped around a transmitting drum and a light beam scans the page at 800 lines per inch, converting the print to electrical impulses. Transmission rate is 150,000 bits per second to Westar, 22,300 miles over the Equator, which relays the information to the earth station at Orlando. The receiving unit then converts the impulses back into light, which exposes the image on page-size (15 by 26 inches) sheets of film in an average time of three minutes. The developed film is laid over a sheet of treated aluminium to make a lithographic plate, which is then attached to the printing press. The earth stations use 10 -metre diameter dish aerials and the electronics have automatic switchover based on fault monitoring of selected sections. The engineers responsible, the American Satellite Corporation, have supplied a number of similar satellite links to the US Government.

The NQRC (National Quadraphonic Radio Committee) has now presented its report to the Federal Communications Commission concerning the feasibility of quadraphonic broadcasting. A long series of tests included subjective listening to closed-circuit and over-the-air transmissions from five different proposed f.m. broadcast systems. There were seven panels, composed of nearly 100 engineers and other representatives of the industry. A considerable amount of data was collected and the report states: "The subjective tests positively demonstrate the compatibility, the feasibility and practicality of quadraphonic broadcasting. Specifically, the requirements for interconnecting facilities and broadcast transmitters were examined and it was concluded that the state-of-art equipment is sufficient to perform the quadraphonic service . . The NQRC's results are not intended to recommend a specific system but are intended to replace a Federal Com-
mittee of Inquiry, and the FCC should now be in a position to propose rules for this new service." Elsewhere in the report it is stated: "To accommodate a quadraphonic service, modulation levels must be reduced and noise levels increased. However, the reduction in signal to noise is not large enough to significantly reduce the coverage of existing stereophonic services."

Since Tesla's day, the possibility of transmitting electrical power through the air has fascinated engineers all over the world. Much has been achieved with microwaves and waveguides but some very promising results have been obtained with electromagnetic beams and large parabolic dish aerials in experiments conducted in the Mojave desert. The engineers responsible are from the California Institute of Technology and Raytheon's Microwave and Power Tube Division, but the work is being sponsored by NASA. The object is to develop equipment capable of transmitting power from a solar energy collector in space to a receiving station on earth. According to Peter Glaser of Arthur D. Little Inc., a typical satellite using a 10 cm microwave beam could provide $10,000 \mathrm{MW}$ and a network of such satellites could provide enough power to meet a significant portion of the foreseeable US demands. The distance covered and the power transmitted in the Mojave experiments are relatively small -30 kW of d.c. power

'Citizens' band transceiver from

Canada, the PocketCom. Uses a large-scale i.c. to provide two channels of 100 mW r.f., crystal-controlled.

over 1.54 km - but this is only the beginning. The transmitter uses a klystron with a maximum output of 450 kW at 2.388 GHz , a 26 metre-diameter parabolic reflector aerial and a 100 ft collimation tower. The receiving aerial consists of dipole rectifiers separated one-half wavelength from each other. Present collection efficiency is 82%, but is is stated that this will be improved to 90% as the Schottky barrier diodes used are potentially extremely efficient.

The year 1975 saw the sudden extraordinary rise of interest in $C B$ (Citizens' Band) radio and old-established firms are competing with newcomers in a frantic rush to get a share of the market. A Personal Communications Show (PC-76) is to be held in Las Vegas at the end of March and plans are under way for a New York Show later. A new trade publication Communications Retailing - was launched last October and another one is due to appear soon. There are already about six million CB radios in use, from 85 manufacturers (or importers) giving the "Cb-ers" a choice of more than 500 different models! If all the optimistic 1976 forecasts were added together, the total sales would be over $\$ 800,000,000$, but a more realistic figure would be $\$ 400,000,000$ - which is still a lot of money even for this affluent society! Most CB equipment is designed to fit into a car, with only about 5% hand-held models. One of the smallest is the JS \& A "PocketCom" which measures only $51 / 4$ by $11 / 2$ by $3 / 4 \mathrm{in}$. It uses a large-scale i.c. and the r.f. output is 100 milliwatts. Among the features are a beep-tone paging system, switch-selected two-channel operation (crystal controlled), a l.e.d. low-battery warning indicator, squelch control, and a 60 dB a.g.c. circuit. Sensitivity is quoted as "better than 1 microvolt" but no noise figures are given.

What has caused this tremendous interest in CB? Some say the truckers (lorry drivers) were the first people to find out how useful two-way radio could be when they wanted to buy petrol during the fuel shortage, and to warn each other of police radar traps! Be that as it may, these days all kinds of people use $C B$ - salesmen reporting to the office, security patrols in apartment complexes, workers on construction sites, housewives and students anyone who can afford to buy one. No licence is required for outputs below 100 milliwatts. There is a recognised 10 code: for example, 10-4 means yes, 10-30 means danger and 10-33 help me quick. Truck drivers have been mainly responsible for the colourful but expressive vocabulary. For instance, "Plain Wrapper" means a police car with no markings, a "Seat Cover" is a passenger - usually female, and a "Pregnant Roilerskate" is - you've guessed it - a Volkswagen!
G. W. Tilleit

Progress in Teletext

The views of broadcasters, equipment makers, device designers and the Post Office were fully aired at an IEE Colloquium on broadcast and wired teletext systems, held in January at Savoy Place.
The morning session was devoted to papers on the organization and transmission of teletext. John Chambers of the BBC Research Department described a technque for measuring the quality of the data signal by means of an "eye" display, also referred to in the summary of a paper by Bernard Rogers of Rank Radio International. The diagram in Fig. 1 shows that when the edges of the data bits have been distorted, due to amplitude/frequency response inadequency, group-delay inequalities, noise or multipath propagation, the "eye" aperture reduces in height. A pseudo-random pulse sequence is used and the eye pattern of the data from one line held on a storage display for recording or inspection. Mr Chambers described a number of variations on this theme.
Mr Chambers also pointed out that when regional transmitters carry networked programmes from London, the teletext signal is transmitted with them but that, as no special equalization equipment is used, the data is degraded, restricting the service. When teletext emerges from the experiment stage, its digital nature will enable local engineers to regenerate the data in video form prior to transmission. It has also been found that translators, which receive the broadcast signal and retransmit it without detection and re-modulation, do not significantly degrade the teletext data waveform.
S. Fedida, of the Post Office Research Centre, read a paper on the Viewdata system, which was described in WW, Nov. 1975. This interactive system has an enormous potential data base which, if thoroughly catalogued and indexed, will provide extremely rapid access, very simply. A Viewdata terminal was in the exhibition and many private terminals are now in use experimentally, including one in Brussels.
BREMA have produced a market research report, in which it is pointed out that a considerable amount of publicity for teletext is absolutely essential - one exposure to the system interests people, but the impression quickly fades. However, it appears already that 12% of people who have, or
will soon have, a colour receiver say they will buy teletext equipment.

Reception

Receiver and decoder design was discussed in the session under the chairmanship of Bernard Rogers, who made some general comments in his opening address. His main point was that the industry should not aim for standardization in techniques too precipitately. A number of design options are still open and the best solutions have yet to be found. For example, the question of data storage may be solved by r.a.ms., but serial storage is not completely out of court (charge-coupled devices were mentioned by R . Parsons): large-scale integration of current decoding circuitry is important, but the microprocessor may well be a

(b)

Fig. 1

Fig. 2

Fig. 3
good alternative. In the television receiver itself, a good group-delay performance can be obtained by the use of acoustic surface-wave filters, although conventional tuned circuits with correction might be better.
J. Schaffer of Decca was of the opinion that a.s.w. filters were essential for i.f. amplifiers, saying that a group delay of less than 50 ns is needed. His view was that synchronous demodulation was preferable to the envelope detector in its provision of equal positive and negative going data edges. It also reduces the effect of overmodulation, which can produce teletext vision interference on sound. Mr Schaffer also contended that a static data slicer (the circuit which extracts data from the video signal by "slicing" it at half amplitude) does not take account of varying signal levels and should be discarded in favour of the adaptive type, which is also able to reject low-frequency interference. A suggested circuit is shown in Fig. 2. Some encouraging evidence was given on the robustness of the teletext signal, the diagram in Fig. 3 showing that a good teletext display is often seen when the received signal is of too low a level for an acceptable television picture. The graph takes no account of multipath propagation, which can render a high level signal quite useless for teletext, although this would only happen rarely.

Papers from G. Crowther, J. Kinghorn and G. Summers of Mullard and R. Parsons of Texas Instruments illustrated two approaches to the integration of - decoding circuitry. Mullard have three decoder i.cs, the "front end", which operates on the video input to produce clocks, syncs and data, being fabricated with linear bipolar devices, while the digital data acquisition and control sections are in LOCMOS. Texas use a variety of i.c. techniques and produce the Tifax module, which consists of 14 i.cs on a printed circuit board. TI obtain their character rounding by accessing a fast (180ns access time) character-generator r.o.m. twice.

In brief

- In reply to a French observer, it was mentioned that the CCIR and EBU are considering the implications of teletext on international standards.
- The only way to transmit teletext on $525 / 60$ systems is to reduce the data rate and number of data lines.
- A plea of "Guilty" was entered by the assembled experts when accused of confusing us with differing keypad layouts. This will be rectified, the delegates were assured.
- Twenty-five organizations have already signalled their willingness to be information suppliers of Viewdata.
- The independent television companies are already experimenting with teletext advertisements.

PRD

MICROPROCESSORS OVERSOLD?

Much of the published material on microprocessors can be misleading. We are told that this device has considerable computing power. It most certainly has, but only when surrounded by many more times the cost in other items. It must be made quite clear that the microprocessor chip on its own will do little or nothing; only when it is surrounded by many more chips can one start to think about the central processor unit doing something. At this stage thinking has to start in terms of what is now required to make this microcomputer (a much more correct description) work.
Now comes the shock situation, not only in engineering time, but also in many cases the cost of external devices required to make it do simple exercises. Memory has to be programmed, which means detailed software to be written and proved; some means of communicating with the microcomputer has to be devised; and input and output ports have to be interfaced to the system under control so that information can be fed in and the result of computation fed out. For more complex operations, items like teleprinters, c.r.t. terminals and magnetic stores all have to be considered as input/output ports to the microprocessor.
The microprocessor is here to stay so let's set about using it in an intelligent way and dispose of the image that as a chip it is a cure for all ills. If any of your readers are interested in forming into a society to spread the good news on microcomputers, their problems, their uses, programming them or even giving them up, then if they would care to contact me I am prepared to do some of the work in getting all of us who are learning together so that our labours may be made less difficult.
C. A. Hill,

Hepworth Electronics,
Worcester Road,
Kidderminster, DY10 1BG.

AUDIBILITY OF PHASE DISTORTION

The article by H. D. Harwood in the January issue on the 'non-audibility of phase distortion on programme ${ }^{1}$ makes me feel in the position of being oneeared in the country of the deaf! As Geoffrey Horn pointed out some while ago^{2}, a high quality (reasonably phase linear) microphone feeding a Quad electrostatic loudspeaker produces a sound which is quite obviously different in quality when the speaker is connected in one phase than in the other. I suggest that your readers in a position to do so try this test; it convincingly demonstrates that the ears can hear phase on good quality musical programme.

I suspect that most experimental reports purporting to prove that phase response is inaudible (provided that the rate of change of phase with log-frequency is not large $)^{1,3}$ on programme are simply demonstrating the inadequate quality of programme used. One source of poor programme is the use of microphones with a poor phase response and polar diagram at high frequencies, since phase errors are particularly noticeable on microphones with outstanding phase response in the extreme treble. Another source of degradation may be tape recording, which introduces phase degradation and also tends to "squash" high frequency information that may be important unless recording levels well below commercial practice are used. A third important source of degradation is the power amplifier. My experience shows that most commercial power amplifiers (even those that measure well in conventional tests) ${ }^{4}$ introduce programme degradation considerably in excess of the changes produced by simple phase inversion. Without stating precautions taken to remove the effect of these variables, subjective tests on phase audibility cannot be evaluated sensibly by readers.

Readers wishing to inform themselves about conditions under which phase is known to be audible will find the two surveys in references 5 and 6 particularly informative. For example ${ }^{6}$. it is known that the subjective audibility of second harmonic distortion on sinewaves depends on the phase relationship between the fundamental and second harmonic; this effect is not one involving a change in the envelope of a signal.

Phase response is particularly important in the high frequency region above 5 kHz , where it is possibly used ${ }^{7}$ to aid vertical sound localisation. A resonant all-pass network of the type shown in the figure can cause a "shrieky" quality that is difficult to tame even with a heavy treble cut. Such all-pass resonances give many pickups their distinc-
tive sound quality despite resonably flat frequency responses.

Harwood ${ }^{\text {l }}$ is perfectly correct in observing that straightforward phase response plots are almost meaningless, since their appearance is drastically modified simply by introducing a constant time delay. Probably a group delay plot is the most unambiguous presentation of phase response effects.

The argument is used in ref. 1 that very poor phase responses associated with room reflections or interference effects are not audible, and so phase response is unimportant - this is just wrong! I don't think that anyone claims that phase response on its own must be linear quite irrespective of whatever the frequency response is. It is quite possible that to each ragged frequency response there might be an optimum phase response, which will not generally be linear unless the frequency response is flat. For example, it has been suggested that the ears can hear the high-frequency phase response of speakers despite the effect of room reflections by looking at the signal. following a transient for a period too short to include the arrival of delayed room reflections.

Resonant all-pass circuit, with variable Q control and bypass switch.

Finally, it may be "very difficult to see how (phase) can be effective (on stereo image formation) above about 2 kHz ", but experimental studies on the effect of interspeaker phase on one-octave bandwidth signals ${ }^{8}$ do report such effects at both 4 kHz and 8 kHz . Difficulties in understanding (and human hearing is full of them) should not make us ignore experimental results because they do not fit our present conceptual framework. A new conceptual framework (picturing the ear as a "bispectral" analyser as well as a spectral analyser) that does predict audibility of phase effects at high frequencies has been derived by the writer and submitted elsewhere for publication.
It is, of course, impossible ever to prove that some defect (e.g. of phase response) is inaudible, and the very greatest care is required in attempting to show that the defect is below a
practical threshold of audibility. It is true that phase response defects are subtle compared to many other defects afflicting current programme material and hi-fi equipment, but they are audible under some high-quality progranime conditions.
Michael A. Gerzon,
Mathematical Institute,
Oxford.

References

1. Harwood, H. D., "Audibility of Phase Effects in Loudspeakers", Wireless World, vol. 82, Jan. 1976, pp. 30-32.
2. Horn, G., "Hobby Horse", Hi-Fi News, Feb. 1973. pp. 315
3. Bauer, B. B., "Audibility of Phase Distortion", Wireless World, vol. 80, Mar. 1974, pp.27-28.
4. (compiled by) Hughes. F. M., " 17 Amplifiers taken to task"," Hi-Fi for Pleasure, vol. 3, Dec. 1975, pp.52-77.
5. Stodolsky, D. S. "The Standardization of Monaural Phase", I.E.E.E. Transactions on Audio \& Electroacoustics, vol. AU-18, Sept, 1970, pp. 288-299.
6. Schroeder, M. R., "Models of Hearing", Proc I.E.E.E., vol. 63, Sept. 1975, pp.1332-1350.
7. Gerzon, M. A. "Dummy Head Recording", Studio Sound, vol. 17, May 1975, pp.42-44.
8. Bower, J. S. "The subjective effects of interchannel phase-shifts on the stereophonic image localisation of narrowband audio signals", BBC Research Dept. Report BBC RD 1975/28, Sept. 1975.

Mr Harwood replies:

I note that Michael Gerzon can detect the difference in the quality of monophonic programme when the terminals of a loudspeaker are reversed. He mentions that this can be clearly demonstrated using a reasonably phase-linear microphone feeding a Quad electrostatic loudspeaker. I have carried out such tests under controlled conditions in a listening room but no one from a team of fifteen experienced listeners was able to detect any effect. This does not necessarily mean, of course, that no one else could have heard it, but it leads me to believe that those who can hear such effects must - represent a very small proportion of the population.

He mentions the effect of phase relationship on the audibility of the second harmonic of a sine wave. I agree that this can occur; it is one of the sharp, relatively narrowband effects to which I referred. However, they do not appear to be audible on programme.

My view that phase information above 2 kHz is relatively unimportant was based on a number of articles in the literature including some work ${ }^{1}$ of my own. This was concerned with the permissible phase shift between the A and B channels of a stereophonic system and was used by the EBU in setting international tolerances; it showed that the permissible phase change at high frequencies was set, not by stereo effects, but by the monophonic compatibility when the two channels were added.

Michael Gerzon quotes a BBC Research Department report ${ }^{2}$ against this view but Fig. 2 in the report shows that
when octave bands of speech are applied with equal amplitudes to two loudspeakers such that one channel is 180° out of phase with respect to the other, the images extend right across the stage for frequencies up to and including 2 kHz but that above this frequency the image is substantially central and relatively narrow. Hence my conclusion that phase has little apparent effect above 2 kHz .

Clearly the argument concerning linear phase is unresolved.

May I take this opportunity to say in reply to Mr Bowers' letter in the February issue (p.44) that I consider the linear-phase theory to be worthy of car eful consideration and certainly not a "gimmick" as in the subheading inserted by the editor. I was considering the subject from an academic standpoint snd made no reference to any manufacturer or specific loudspeaker. It is fair to add that the opinions expressed were based upon work carried out before the B \&'W loudspeaker was available.

References

1. Shorter, D.E.L., Harwood, H.D., Manson. W.I. "Stereophony: the effect of interchannel differencts in the phase/frequency and amplitude/frequency characteristics". BBC Eng. Div. Monograph No. 36, Dec. 1964.
2. Bower J.S. "The subjective effects of interchannel phase-shifts on the stereophonic image locatisation of narrowband audio signals'" BBC Research Dept. Report 1975/28.

BAIRD'S RECEIVER

In their article in your January issue, "John Logie Baird and the Falkirk Transmitter," the authors seek to discover the methods used by Baird for his first public demonstration in 1926. I suggest that one conclusion from this survey must be that the receiver illustrated, now in the Science Museum, is incompatible with any of the transmission systems discussed, since this receiver is known to have a single spiral of 30 holes as opposed to the 8,16 or perhaps 32 lines used for the picture generation. This does not bring us nearer to the truth, but even if the receiver at the Museum is not original (and indeed there are some reasons for doubting it) a receiver purporting to be such, and illustrated in The Times only a week after the demonstration, also appears to be quite small and compact judging from the cabinet, which is all that can be seen. It is difficult to imagine this could contain the complexity of wheels and discs shown in Fig. 4 and one is tempted to surmise the use of a simple single-spiral disc of perhaps 32 holes which would of course nearly fit the suggested 32 -lens single-spiral transmitting disc illustrated in Fig. 2. However, one appreciates that so far there is little solid evidence.

One clue only touched on lightly is the statement that a model of the
"original transmitter" was presented to Glasgow University as early as 1927. It is said that some parts of it are still in existence, but the implication seems to be that nothing significant (such as the scanning system) has been preserved. How does this come about? Can the University help us here?
The authors are to be complimented on their careful research including the discovery of the little-known "Falkirk Transmitter" and maybe they will have more to reveal in the future.

T. H. Bridgewater,

London, NW7.
We apologize that the photographs above the captions Fig. 6 and Fig. 7 on p. 46 of the article were transposed. - Ed.

CITIZENS' BAND WANTED IN UK?

If low cost Citizens' Band radio facilities were extended to the UK I am sure they would not be unduly abused (Letters, Jan. issue). Among those benefitting would be weekend mountaineers, sailors, and others indulging in outdoor sports where accidents happen and time is lost searching for the incident. Sports and outdoor show organisers would also benefit - as is evidenced by the illegal use of small handsets at such events.
1 cannot believe that the amateur radio fraternity would suffer in any way as those seriously devoted to radio communication would surely be put off by the low power and other restrictions of CB radio. So far as "Smokey Bear" messages are concerned, offenders could be charged with impeding the police in the execution of their duty, with a suitable fine as penalty.

Let us hope that the Home Office comes up with a suitable system so that the present impossibly high cost of a short range, light weight, low power radio telephone could be avoided by those who do not require the high standards of performance given by the present business radio type of equipment.
Walter Webber,
Long Ashton,
Bristol.

Editor's note: Mr J. R. Brinkley, chairman and managing director of Redifon Telecommunications Ltd and a well known pioneer in the development of mobile radio in the UK, made the following remarks when opening a recent IERE conference on civil land mobile radio. ". . . There are now about 4 million vehicles in the US equipped with Citizens' Band 27 MHz mobile radio and the numbers are increasing by about 750,000 per year. So great has the recent growth been that the FCC has decided to increase the number of channels available to the service by 12. The demand for quartz crystals caused by this
development is now in excess of 9 million per year and rising. Urgent consideration is therefore being given to providing l.s.i. synthesizers for the equipments to reduce this phenomenal demand for individual channel crystals . . . If a parallel Citizens' Band development had been taking place in the UK there would now be probably some 500,000 vehicles equipped with CB radio, many more than currently fitted under the present conventional licensing basis. This US development is interesting from two points of view. First, it seems to argue that there is a very large pent up demand for mobile radio. Secondly, it indicates that a tremendous utilisation can be got out of 12 channels. All this on a.m. too! Should we, I wonder, introduce Citizens' Band radio in the UK? On the face of it I cannot see why not. I feel it might well be a very healthy development."

STEREO NOISE LIMITER IMPROVEMENT

The two circuit ideas shown on p. 474 of the October issue can be developed and combined in an interesting way. The dynamic noise limiter offered by Mr Richter is not really satisfactory as it stands since the switch-over from stereo to mono, even at low volume level, can be disconcerting to say the least.

However, the hiss which he is attempting to remove by this means is precisely an antiphase effect; thus a low pass filter, designed along similar lines to Mr Oldfield's stereo rumble filter, will remove it - with very little detriment to the overall signal. The f.e.t., driven by the amplifier output (or whatever - I prefer to drive it direct from the tuner), is now used to switch the filter into operation rather than to switch over to mono.

The component values shown in the circuit give very good results, and it was found that with a 2 N 3819 taken at random switch-over occurred abruptly at $V_{g s}$ about $-2 V$. Operating the f.e.t. from the positive line, as shown, facilitates switching the device in and out.

The bypass capacitor for non-filtering operation, 10 nF , requires a resistor
(2k2) in series with it to prevent -excessive lowering of the input impedance at high frequencies. Otherwise the circuit is the low-pass corollary of Mr Oldfield's. I feel that the simple ingenuity of his circuit deserves considerable commendation.
Giles Hibbert,
Blackfriars,
Oxford.

PHASE AUDIBILITY: RATE OF CHANGE

I have in my laboratory a Fourier synthesiser, consisting of a fundamental oscillator at a frequency of 256 Hz and harmonic oscillators up to the twelfth, all phase-locked to the fundamental. It is possible to alter independently the amplitude and phase (through a full 360°) of each of the harmonic oscillators. Thus it is possible to synthesise a wide variety of waveforms*, for listening tests.
The consensus of opinion among my colleagues is that the tonal quality of a sound depends solely on the amplitudes of the harmonic components and not on the phases. The phase of any harmonic may be altered individually by any amount without, apparently, altering the tonal quality. This applies when the phase-control knobs are stationary; while any one of them is being moved, i.e. while there is a rate of change of phase, the ear readily detects that "something is happening" (it is difficult to describe the effect in words). But since rate of change of phase is synonymous with frequency it is arguable that the detectability of the effect is due to the fact that a harmonic component becomes slightly inharmonic while the phase knob is being rotated.

The effect is very similar to that caused by any movement in the laboratory where the tests were carried out. This is acoustically quite lively, so that there must have been a marked stand-ing-wave pattern, which would alter as a result of movement by anybody in the room. What seems to me surprising is (a) the sensitivity of the ear to move-

ment, and (b) the fact that when movement ceases the sound appears to revert to its original tone quality, in spite of the fact that in this case one would expect the amplitudes as well as the phases of the harmonic components to have altered at the position of the ear.
These were all rather rough experiments, and I hope in time to do something more precise. But the fact is that we know so little about how the ear and brain perceive sounds that we do not even know what are the crucial experiments we should perform.
P. L. Taylor,

University of Salford.

* See Mr Taylor's article "Frequency modulation illustrated" in this issue. - Ed.

TV SOUND: BOOSTING WEAK SIGNALS

I have noted with interest the recent articles on television tuner design (Oct. 1975-Jan. 1976 issues), especially with reference to television sound reception. In ihis area of Ireland the cross-channel u.h.f. TV stations provide alternative programmes - if they can be received. U.l.f. signals in the 600 MHz region from a .00 kW e.r.p. transmitter 120 miles away are usually very weak and suffer fro.n severe tropospheric fading, even at elevated sites. From experience I have found that only at 1000 ft a.s.l. are signals acceptable.

Those of us at lower altitudes receiving u.h.f. signals have to cope with signals on television receivers that are loaded with noise to say the least. I have been experimenting for some time in order to get less noisy reception and offer the following comments.
s:t extreme distances fading occurs on signals at different rates at different frequencies and this includes u.h.f. television signals. Even when receiving ste.ady but noisy video signals the audio signals are usually quite noisy also, not due to deficiencies in the f.m. system but to the fact that they are attenuated in the inter-carrier sound detection prucess. Having a few various u.h.f. tur.ers, I tried feeding them directly into the input of a sensitive f.m. portable (Tundberg TP41). The reception of weak signals using this method was much superior to that of the normal tel vision receiver, especially when the ouiboard tuner was re-aligned to the v.h.f.-f.m. band frequencies acting as i.f. and detection stages. Mechanical and vai icap tuners gave similar results. In fac : when tested on a signal generator, sig.als of 3 to 5 microvolts of sound car:ier in Band 4 gave good acceptable sig.als, and I am sure these figures could be bettered.
De.mond J. Walsh.
Ca.rick-on-Suir,
Co. Tipperary, Republic of Ireland.

Time-code receiver clock - 2

Control logic and display

by A. F. Cross, B.Sc.

Thames Television Ltd

The control logic is shown in Fig. 10. A negative data-strobe pulse from the time-code register is applied to the clock input of the D-type flip-flop $\mathrm{IC}_{14 \mathrm{a}}$. This operates as a divide-by-2, and is clocked by the data-strobe pulse. If, at the time of the data-strobe pulse, the comparator logic indicates no disparity between the incoming data and the display-dividers, a simultaneous reset pulse is applied to the clear input of the D-type via gates $\mathrm{IC}_{3 \mathrm{~b}, \mathrm{~d}}$ and inverter $\mathrm{IC}_{1 \mathrm{~d} \text {. }}$ Thus the clock pulse will have no effect. If, however, the comparator is indicating disparity, the reset will not be applied, and the data strobe will clock the D-type into the 1 state. This is remembering that a disparity has arisen, but no action is taken apart from lighting the disparity indicator (the benefit of the doubt is given to the display-dividers). One of two things can happen on the next code one minute later; if no disparity is signalled by the comparator the D-type will be reset, and the previous disparity ignored. If a second disparity is indicated the reset pulse will not appear, and the clock pulse will now cause the D-type to revert to the 0 state, clocking the JK flip-flop $\mathrm{IC}_{12 \mathrm{~b}}$ to a 1 as it does so. With the JK flip-flop's Q output at 1 , gate $\mathrm{IC}_{4 \mathrm{a}}$ is enabled and passes 100 kHz pulses into the minutes and hours-dividers, thus advancing the indicated time. When the time in the hours and minutes-dividers becomes equal to the received code, the comparator produces an equal signal which resets the JK and D-type flip-flops, thus disabling the 100 kHz clock pulses. The inhibit-se-conds-output signal from the Q output of the JK flip-flop ensures that gate $\mathrm{IC}_{4 \mathrm{~d}}$ in Fig. 3. does not inhibit the 100 kHz pulse train. The data-strobe signal also resets the seconds dividers and resynchronizes the 5 -decade divider, so long as there is no comparator error' signal.

The initial conditions upon switching on the clock are provided by $\mathrm{C}_{35}, \mathrm{D}_{7}$ and the cross-coupled NAND-gate ($\mathrm{IC}_{4 \mathrm{~b}, \mathrm{c}}$) bistable. Capacitor C_{35} is initially discharged and presents a 0 to the input of $\mathrm{IC}_{3 \mathrm{~d}}$ via diode D_{7}. Thus a low reset is provided on the clear inputs to bistables a and b via inverter $I C_{l d}$. However, the

Complete clock showing one matrix board containing all the circuitry except for the power supply.

Fig. 10. Control logic.

Fig. 11. GMT/BST converter. This section adds one to the hours code presented to its input, and is essentially a simplified binary adder.
preset condition is also applied to bistable a. As C_{35} charges its potential rises and diode D_{7} ensures that the logic 0 disappears from the input of $\mathrm{IC}_{3 \mathrm{~d}}$ (and therefore from the clear inputs of the bistables) before the preset is removed from bistable a. This bistable is left in the set state, and bistable b in the reset state. The disparity lamp will light, and on the first received time code the display dividers will be set to match it, rather than the normal running procedure of waiting for the second received code before setting the display dividers. The cross-coupled NAND-gate bistable is also reset by capacitor C_{35}, and set when the \bar{Q} output of bistable b goes low, which occurs when the control logic is setting the time in the displaydividers. The output of $\mathrm{IC}_{4 \mathrm{~b}}$ controls the blanking input to the b.c.d.-to-7segment decoder-driver. Thus, on switching on, the display will be blanked until the first time code is received.

The GMT/BST Converter, when enabled, adds one to the hours code presented to its input as shown in Fig.

Component list

Resistors (all $1 / 3 \mathrm{~W}, 5 \%$ unless stated)			
R1, 2, 3	220k	31	220
4	10k	32	56k
5,6	220k	33	4 k 7
7	10k	34	10k
8	33k	35	4 k 7
9	18k	36-39	220
10	3k9	40	560
11	2k2	41	470k
12	1k5	42	2k2
13	4k7	43	470k
14	1M	44	10k
15	82k	45	4k7
16	4k7	46	330
17	470k	47	220
18	100k	48	560
19	27k	49, 50	27k
20	3M3	51	220
21	270	52	1 k
22	330	53-58	4k7
23	10k	59-64	820
24	1k	65-71	270
25	4k7	72	180, 1/2W
26	15k	73 20	skelton preset
27	10k	74, 75	10k skeleton preset
28	15k		
29	2k2		
30	4k7		

[^6]| 24.25 | 10 n |
| :--- | :--- |
| 26 | \ln |
| 27 | 10 n |
| 28 | $4-20 \mathrm{p}$ trimmer |
| 29 | 39 p silvered mica (RS Components) |
| 30 | 500 p silvered mica (RS Components) |
| 31 | $\ln 5$ silvered mica (RS Components) |
| 32 | 33 p |
| 33 | $2 \mu 210 \mathrm{~V}$ electrolytic |
| 34 | 10 n |
| 35 | $100 \mu 10 \mathrm{~V}$ electrolytic |
| 36 | In |
| 37 | $4,700 \mu 16 \mathrm{~V}$ electrolytic |
| 38 | $10 \mu 10 \mathrm{~V}$ tantalum bead |

Additionally a 10 n ceramic disc across the 5 V supply at each i.c. is recom. mended.

Integrated circuits		
IC	Function	Type No
1	lnverter	SN7404N
$2,3,4,5$	2-I/P NAND	SN7400N
6,7	2-1/P AND	SN7408N
8	3-1/P NAND	SN7410N
9,10	4-1/P NOR	SN7425N
11	B.c.d./7 segment decoder	SN7447AN
12,13	J-K flip flop	SN7473N
14	D-type flip flop	SN7474N
$15,16,17,18,19$	Exclusive-OR	SN7486N
$20,21,22,23,24$		
$25,26,27,28$	Decade counter	SN7490N
$29,30,31$	Divide-by-12	SN7492N
32	Monostable	SN74123N
33	One-of-ten decoder	SN74145N
$34,35,36,37$	8-1/P Multiplexer	SN74151N
38,39	8-bit shift register	SN74164N
40	5-volt regulator	LM309K

Transistors
 Tr 1-8 BC 108
 9-12 2N4123

13,14	BC 108
15	2N4123
16-21	MPS6534 (Motorola)
Diodes	
D1, 3, 4	IN 914
2	Light emitting diode: yellow (RS Components)
5,6	Light emitting diode: red (RS Components)
7	OA47
8	Full wave bridge, type REC 76 (RS Components)
9	Light emitting diode: green (RS Components)

Display
Seven segment l.e.d. type, Litronix DL 707 (Forward drop 1.7 V at 20 mA): 6 required

Crystal
100kHz type MG5X (Quartz Crystal Co. Ltd)
Transformers
Tl, $2 \quad$ Wound on Mullard Cores type
LA 1416 (adjuster LA 1503):
Primary: 100 turns 36 s.w.g. (1.42 mH)
Secondary: 10 turns 36 s.w.g.
Mains transformer 20 VA . 9 V r.m.s.
(RS Components, type 207-122)

Aerial
Ferrite rod $\sin \times 5 / 1$ in diameter. Denco.

Miscellaneous

Heaisatk for regulator $8^{\circ} \mathrm{c} / \mathrm{W}$ or better. Mains fuse 300turi slow.
11. It is essentially a simplified binary adder, with modifications to cater for the decimal count and twenty-four hour reset. The BST enable signal is effectively a one-bit number which is added to the six-bit hours code. With the BST enable line at logic 1 (switch open), a 1 is added to the GMT code to produce a BST output; with the BST enable line at logic 0 , nothing is added to the incoming hours code and it passes unaltered through the converter. Gates $\mathrm{IC}_{6 \mathrm{a}}$ to $\mathrm{IC}_{6 \mathrm{~d}}, \mathrm{IC}_{18 \mathrm{~d}, \mathrm{~d}}$ and $\mathrm{IC}_{19 a, ~ b, ~ c, ~ d}$ perform the add function. The operation on each bit is identical. The first addition is performed by exclusive -OR gate $\mathrm{IC}_{18 \mathrm{c}}$ and the AND gate $\mathrm{IC}_{6 \mathrm{a}}$. With the switch closed, a 0 is presented to one input of each gate; thus the AND gate is inhibited, and the output of the exclusive -OR gate follows the hours code input. With the switch open, a 1 is applied to one input of both gates. When the hours code 2^{0} input is a 0 the BST bit will convert the output of the exclusive -OR gate to a 1 , but, because the code input is low, it inhibits the AND gate; no carry is therefore passed to the next stage. With the hours code 2^{0} input at logic 1 , the gates provide the required 0 output on the 2^{0} line and a carry bit to the next significant level where the process is repeated on the 2 input. Because speed is unimportant, this ripple-through technique is quite suitable.

Truth table for multiplex clock				
Output code of +12				
D	C	B	A	Digit enabled
X	0	0	0	Tens of hours
X	0	0	1	Units of hours
X	0	1	0	Tens of minutes
X	0	1	1	Units of minutes
X	1	0	0	Tens of seconds
X	1	0	1	Units of seconds
X	0	0	0	Tens of hours
			1	Units of hours
etc ($\mathrm{X}=$ irrelevant)				etc

Fig. 12. (a) Drive for units of hours, minutes and seconds ($3^{\prime \prime}$ required), (b) drive for tens of minutes and seconds (2. required), and (c) drive for tens of hours.

Fig. 13. Multiplex connection details for display which uses a total of six anode and seven cathode connections.

Gate $\mathrm{IC}_{5 \mathrm{c}}$ detects the condition 1010 (decimal value 10) on the hours-units output, produced by a decimal value 9 input. When this happens the hours units must have an output 0000 and a carry must be passed to the tens-ofhours. A low output from $\mathrm{IC}_{5 \mathrm{c}}$ inhibits the outputs of gates $\mathrm{IC}_{7 \mathrm{a}}$ and $\mathrm{IC}_{7 \mathrm{~b}}$, which produces the carry 1 from inverter $\mathrm{IC}_{2 \mathrm{~b}}$ for the tens-of-hours adder. Gate $\mathrm{IC}_{5 \mathrm{~d}}$ detects the decimal value $24(100100)$ on
the output of the adder and inhibits the gates $\mathrm{IC}_{7 c}$ and $\mathrm{IC}_{7 \mathrm{~d}}$ to produce the required all-zeros output.

Display

The display can take several forms, using either numerical indicator tubes or seven-segment displays. The author's clock uses seven-segment l.e.d. displays. Two modes of display operation have

been used by the author and both are described.

The simplest method uses a SN 7447 AN b.c.d.-to-seven-segment decoderdriver for each digit, as shown in Fig. 12. Any unused data inputs to the decoder must be grounded. The resistors between the decoder outputs and the segment cathodes set the currents to about 10 mA . Supply potentials other than 5 V may be used for the display, provided that the resistor value is adjusted and the voltage rating of the decoder output is not exceeded. It may be convenient, for example, to run the display from the d.c. supply feeding the 5 V regulator, rather than from its output, to reduce the current demand on the regulator. This parallel method of driving the displays, while simple in principle, does involve 42 current-setting resistors, and 43 connections to the display board. For about the same component cost, but with only seven current-setting resistors and thirteen display board connections, the multiplex mode of operation may be used. This has been adopted for the prototype clock and is shown in Fig. 14.

With this method the digits are not driven simultaneously, but in sequence, and at a rate which appears as a continuous drive of all digits. Only one b.c.d.-to-seven-segment decoder-driver is used, which receives in turn the input code for each digit. In this case each digit code is applied for 1 mS , and is repeated every 6 mS . Synchronously, with each digit code being applied to the decoder-driver input, the appropriate common anode connection is switched to the supply rail by the associated driver transistor. The multiplexing of the six-digit codes into the decoderdriver is performed by four 8 -input multiplexers, type SN 74151 N . The digit code is selected by the three-bit code applied to the selector inputs of the multiplexers, and derived from the A, B and C outputs of the divide-by-12, IC_{31}. The counting sequence, and the digitcode enabled for each state are shown in the table. The count outputs are also applied to the inputs of the 1 -of- 10 decoder, IC_{33}. Each input state produces one low output only, and this is used to switch on the anode driving transistor for the display digit whose code is currently controlling the display cathodes. Because only one digit commonanode is driven at any time, the equivalent cathodes in all displays may be connected together as shown in Fig. 13. This results in a total of six anode and seven cathode connections.

Fig. 14 Multiplex display logic drivers. This method of driving the displays only requires seven current-setting resistors and thirteen display board connections.

Conferences \& Exhibitions

Supplementing list
in January issue

LONDON

Mar. 16-18 Bloomsbury Centre Hotel
Sound 76 - Public address exhibition
(APAE Secretariat, 47 Windsor Road, Slough, Berkshire)

Mar. 22-26 Imperial College
Seminex '76 (seminar of semiconductor technology and applications)
(Seminex Ltd., 2 Old Stone Link, Ship Street, East Grinstead. WestSussex RH 19 4EF)

Mar. 23-25
New Horticultural Hall
Computermarket '76 exhibition
Mar. 30-Apr. 1 West Centre Hotel
Tempcon (Temperature Measurements and Control exhibition and conference)

Apr. 27-May 2
Heathrow Hotel
Hi-Fidelity '76 exhibition
(Emberworth Ltd, 8 Furlong Road, Bourne End, Bucks.)

June 8-12 Olympia
Internavex - International Audio Visual Aids Exhibition
(Brintex Exhibitions Ltd., 178/202 Great Portland Street, London WIN 6NH)

June 8-12
Olympia
Infofair - information retrieval exhibition
Brintex Exhibitions Ltd., 178/202 Great Portland Street, London WIN 6NH)

Aug. 24-26 Holland Park Schoo
Education and Communication Technology exhibition

Sept. 13-19
Olympia
International Audio Festival and Fair
(Iliffe Promotions Ltd.. Dorset House, Stamford Street, London SEI 9LU)

Sept. 14-16 Heathrow Hotel
Eurocomp - European Computing Congress
Nov. 16-18
West Centre Hotel
International Minicomputer Conference and Exhibition

BIRMINGHAM

Nov. 15-19
National Exhibition Centre
National Design Show
(Fairs and Exhibitions Ltd., 21 Park Square East, Regent's Park. London NW1 4LH)

BRIGHTON

Mar. 9-11 Metropole Convention Centre
Electro-Optics/Laser International Conference and Exhibition

Oct. 19-21 Metropole Convention Centre Internepcon/LK Electronic Production conference and exhibition

BRISTOL

Mar. 2-4
Computermarket ' 76 exhibition

CAMBRIDGE
June 21-24
Training and Career Development for Engineers (I.Mech.E., 1 Birdcage Walk, London, SWI)

EDINBURGH

Mar. 9-11
Assembly Rooms
Computermarket '76 exhibition
Sept. 2-3
Heriot-Watt University
Institute of Acoustics Autumn Conference
(Institute of Acoustics, 47 Belgrave Sq., London, SWIX 8QX.)

FARNBOROUGH
Sept. 5-12
Royal Aircraft Establishment International Air Show

HULL
Apr. 7-9
University of Hull
Electronics Teaching Conference
(Department of Electronic Engineering, The University, Hull HU6 7RX)

LEEDS

June 29-July
Leeds Electronics Exhibition

LIVERPOOL

Apr. 12-14
Liverpool Polytechnic
Institute of Acoustics Spring Conference
(Institute of Acoustics, 47 Belgrave Square, London SWIX 8QX)

MANCHESTER

Mar. 16-18
Wythenshawe Forum
Computermarket '76

NOTTINGHAM

Mar. 24-26 Nottingham University Industrial Robot Technology conference and international symposium on industrial robots

SOUTHAMPTON

Apr. 7-9
Southampton University
Interaction of electrons with solids
(The Institute of Physics, 47 Belgrave Square, London SWIX 8QX)

July 5-8

Southampton University

Marine Electronics Symposium

(Society of Electronic and Radio Technicians, 8-10 Charing Cross Road, London WC2H 0HP)

WEMBLEY

Sept. 13-17
Conference Centre
Micro 76 - International symposium and exhibition of microscopes and ancillary equipment

Oct. 11-14 Conference Centre
Coil Winding International 76 exhibition and conference

Oct. 26-29
Conference Centre
Microforum International exhibition
Nov. 23-25
Conference Centre
Compec - computer peripheral and small computer systems exhibition and conference

OVERSEAS

Mar. 14-21
Leipzig
International Spring Fair
Mar. 18-28
Rome
International Exhibition of Electronics Nuclear Energy and Aerospace Technology

Mar. 21-24
Chicago
30th Broadcast Engineering conference
Mar. 22-24 Rome
International Scientific Congress on Electronics
Mar. 23-26 Hamburg
Automatic Testing 76 exhibition and conference
(Network, 84 High Street, Newport Pagnell, Bucks, MK168EG)

Mar. 23-27 Basle
Didacta - European Educational Materials Fair
Apr. 7-8
Paris
International Symposium on Deposition and Packaging of Hybrid Circuits

Literature Received

An application note from RCA (AN-6330) describes a safe-area rating system for transistors used in power invertors. Circuits employing self-excited single transformers, s-e double transformers and driven types working into R, C or L. loads are covered by the system. RCA Ltd, Solid State-Europe, Sunbury-on-Thames, Middx.

WW416

A chart from Lambda illustrates and tabulates a full range of power supplies and over voltage protectors. Single, twin and triple supply units are described. Lambda Electronics Ltd, Abbey Barn Road, High Wycombe, Bucks WW417

A descriptive leaflet and Technical Bulletin from Multicore contain a full description and application information on 96 S Arax silver solder wire, designed for the jointing of stainless steels, particularly in food handling equipment, where lead-free materials are a requirement. Multicore Solders Ltd, Hemel Hempstead, Herts. . . WW418

Switches, keyboards and displays for digital applications are fully described in a cataloque from Cherry. Characteristics. drawings and data are included. Cherry Electrical Products (UK) Ltd, Lattimore Road, St. Albans, Herts. WW4 W 19

An application note entitled "Low-csot, high-speed a-to-d conversion with the DAC-08" is available from Precision Monolithic. Three designs are described, of 4, 2 and $l \mu \mathrm{sec}$ conversion times, and a printed-board layout is provided for the $l \mu s e c$ design. Bourns (Trimpot) Ltd, Hodford House, 17/27 High Street, Hounslow, Middx. WW420

Scientific instruments, mainly in the nucleonic field, are briefly described in a short-form catalogue from ESI Nuclear. Many of them are said to be designed for low cost, although no prices are given in the catalogue. ESI Nuclear, 6A Holmesdale Road, Reigate ${ }^{\text {Surrey }}$ RH2 0BQ. .
.WW421
The new Heathkit catalogue will be available in February. New kits this time include a stop watch, ignition analyser. s.s.b. transceiver, 2-metre hand-held transceiver and a 30 MHz counter. Heath (Gloucester) Ltd, Bristol Road, Gloucester GL2 6EE. WW W 422

The new Brimar Design Data Handbook on industrial cathode-ray tubes is now available, covering tubes for oscilloscopes, radar, television, data display and monitor equipment and special types such as flying-spot scanners and monoscope character generators. The charge for the Handbook and a newsheet service is $£ 2,00$ in the first year and then fl per year. Thorn Radio Valves \& Tubes Ltd, Mollison Avenue, Erimsdown, Enfield, Middx.

Electrovalue have sent us their catalogue No. 8, which is rather bigger than previous issues. Al varieties of component are listed - semiconduc tors, hardware, materials and kits. The Catalogue costs 40 p by post, but this will be refunded if goods costing $£ 5$ or more are ordered. Electrovalue Ltd, 8 St. Jude's Road, Englefield Green, Egham, Surrey.

A leaflet by Varelco describes a range of accessories for mounting dual-in-line integrated circuits sockets and d.i.p. plugs and covers. Varelco Ltd, Exning Road, Newmarket, Suffolk. WW W 43

Ferranti have produced a new product guide to their range of t.t.l. i.cs - standard and low-power series. BS9000 approval is under way for many of the types listed. Ferranti Ltd. Gem Mill, Chadderton, Oldham. WW424

Synchronous motor-driven timers made by the Italian company, cdc, are characterized in a leaflet available from Tempatron Ltd, 5 Loverock Road, Reading. WW425

Television from India

Experimental stations in Dublin and Sheffield have been receiving All India Radio television programmes via the ATS-6 direct broadcasting satellite

The ATS-6 satellite, at present in geostationary orbit at longitude 35° E over Lake Victoria in Africa, is being used to re-broadcast domestic television to rural parts of India. The transmissions are of an experimental nature and are scheduled to last only until August 1976. They are on a frequency of 860 MHz with f.m. vision on 625 lines, 50 fields/s. Sound is also f.m., with two channels, one at 5.5 MHz and the other at 6.0 MHz above baseband. Although the 30 ft parabolic antenna on the satellite is pointing at India and giving a 2.8° beam, Europe is at worst about 12° degrees off the beam axis so that signals of approximately 30 dB down or less on the on-axis signal can be expected, corresponding to an expected field strength of $3.3 \mu \mathrm{~V} / \mathrm{m}$. The following reports are from two experimental stations, one in Eire and the other in England, where the Indian television pictures have been successfully received (see also News, February, and leader, December).

Report from G. Baird, T. McKenna, E. O.'Mongain and John White. University College, Dublin. The system used at University College, Dublin, shown in Fig. 1, consists of a 20 ft diameter parabolic dish with a helical antenna wound for 860 MHz and terminated in a manner similar to that described by E. H. Davis, in Wireless

World, November 1968 (pp. 386-387). This is followed by a coaxial switch, making it possible to check at any time the frequency alignment of the electronics or the signal level compared with a 502 load. A high-pass filter is necessary in order to minimise local interference from harmonics of local
television transmitters. A local oscillator at 790 MHz is used to produce an i.f. at 70 MHz . This frequency was chosen simply because of the availability of 70 MHz equipment. The remainder of the laboratory equipment is more or less standard and the only problem arises from local sources of interference,

Fig. 1 (above). Receiving system used at
University College Dublin.
Fig. 2 (below). Recording of satellite signal strength at Dublin.

which make it necessary to set the bandwidths of the various amplifiers very carefully in order to maximise the signal to noise ratio.

Fig. 2 shows a typical recording of the signal strength from both the morning (0330 to 0600 hr) and afternoon (1200 to 1500 hr) transmissions with a typical signal strength of approximately 8 dB above 50\&. The signal marked "sun" is caused by the sun traversing the field of view during the early part of October. This sun signal was also used to calibrate the system.

The photographs from the television screen (see also News, Feb. issue) are typical of the picture quality, recorded under good conditions. Local weather conditions do affect the signal strength somewhat, causing 1.5 dB decrease in signal under heavy cloud, but the transmitted power also appears to vary suddenly, often by as much as 5 or 6 dB (see morning transmission section of Fig. 2). Sound on both programmes has also been detected but is of very poor quality due to local sources of interference. In general, the total detected signal strength is approximately $1.6 \mu \mathrm{~V} / \mathrm{m}$.

Report from S. J. Birkill, Sheffield.

First, an estimate was made of the field strength expected if a 5 ft dish, already to hand, were used. A beam-centre e.i.r.p. of around 51 dBW (125 kW) is radiated by the satellite (i.e. 80 W to the $30 f t$ parabolic reflector), centred on Nagpur. This puts the receiving location at Sheffield approximately 12° off beam, at which angle in the absence of published data we might guess the radiated power to fall about 30 dB below that of the main lobe. If we assume a probable minimum figure of 30 dB , the down-path power budget is as shown in Table 1 .

It was clear that results if any would be marginal. Nevertheless a receiver was constructed around the Signetics NE561B integrated phase-lock loop as f.m. demodulator, preceded by a standard u.h.f. television tuner and a wide-band limiting amplifier at the 35 MHz intermediate frequency. The 5 ft mesh paraboloid, shown overleaf, was fitted with interchangeable helical feeds for both senses of circular polarisation (at the time I had been unable to ascertain the polarisation used) and a transistor head amplifier was mounted on the feed support structure. The receiver fed a standard 625 -line television monitor. No signals were received, and thus it remained until early December 1975, when the project was reviewed and a further attempt decided upon.

The 20ft paraboloid with helical antenna used at the University College Dublin station.

The head amplifier was rebuilt using a lower-noise transistor (a 2 GHz stripline device similar to BFR91) in a cascode configuration with a BF180 as the common-base element. The limiting i.f. amplifier was replaced by a linear stage of 26 dB gain, to improve demodulation at carrier/noise values below threshold, and a variable attenuator allowed adjustment of phase-lock loop drive level, effectively to control the demodulation bandwidth. A bandpass filter tuned to 860 MHz with a bandwidth of 5 MHz 'was inserted between the head amplifier and the converter, to define the frequency when tuning and to set the maximum noise bandwidth. This is just sufficient to pass the deviation limits of the carrier. (The transmitted f.m. channel is some 30 MHz wide.) Finally, a dipole feed was constructed in case polarisation should be linear.

Two pictures photographed at the Dublin station. (See also the example in News last month.)

With this arrangement, overleaf, Fig. 2, the first pictures were received on December 13, 1975. Though transmitted polarisation on axis is right-hand circular, the received signal at the Sheffield location is predominantly plane polarised, 5° from vertical (clockwise as seen from satellite) and shows no detectable variation of signal strength or polarisation with time. Carrier/noise ratio of 10 dB is reached in a bandwidth of between 100 and 500 kHz (suggesting pessimistic estimates in our down-link calculation). This has the unusual effect, on tuning through the signal, of making the various levels of the grey scale emerge from and in turn subside into the noise. The transmission frequency does not appear to be clamped to black level or sync tip, so without receiver a.f.c. changes in picture content necessitate frequent

Table 1

(a)	Satellite transmitter power (80 W)	19dBW
(b)	Transmitting aerıal gain over isotropic (30ft diam.)	32 dB
(c)	Satellite e.i.r.p. to India ($a+b$)	51 dBW
(d)	Off-beam loss (assumed minimum)	30 dB
(e)	Satellite e.i.r.p. to UK ($\mathrm{c}-\mathrm{d}$)	21 dBW
(f)	Free-space attenuation at $860 \mathrm{MHz}(4 \pi d / \lambda)^{2}$	183 dB
(g)	Receiving aerial gain ($5 \mathrm{ft} \mathrm{diam)}$.	19 dB
(h)	Receiver input power ($\mathrm{e}-\mathrm{f}+\mathrm{g}$)	$-143 \mathrm{dBW}$
(i)	Required carrier/noise for threshold (say)	+ 10 dB
(j)	Permissible receiver noise power (h -i)	-153dBW
(k)	Receiver overall noise factor (estimated)	3 dB
(I)	Noise power at receiver input ($j-k$)	-156dBW
(m)	Boltzmann's constant	$-228.6 \mathrm{~dB} /{ }^{\circ} \mathrm{K}-\mathrm{Hz}$
(n)	Receiver input temperature ($290^{\circ} \mathrm{K}$)	$24.6 \mathrm{~dB}^{\circ} \mathrm{K}$
(0)	Bandwidth in which threshold is attained (1-m-n)	$\begin{aligned} & 48 \mathrm{dBHz} \\ & \text { (i.e. } 63 \mathrm{kHz} \text {) } \end{aligned}$

Fig. 2. Receiving system used at Sheffield in December 1975 to obtain first pictures.

Fig. I. The 5ft paraboloid antenna used at Sheffield.

Philips test card photographed at Sheffield.

Screen picture of a presentation announcer photographed at the Sheffield station.
re-tuning for optimum results. These effects are eliminated if loop bandwidth is increased to 2 MHz , but carrier/noise then drops to 4 dB and pictures are very noisy.

No 860 MHz carrier is radiated outside programme, pre-programme line-up and test transmission times. The "evening" broadcast begins at about 1150 GMT each day with test waveforms, including at 1215 (for a few seconds) a slide showing the transmitting Earth station. A test-card (the Philips PM5544) follows at 1220 until 1229. when identification captions are shown, leading to presentation and start of programmes at 1230. Programme source switching occurs regularly, and is accompanied by views of the originating Earth stations. Close-down is at 1500. The "morning" transmission the writer must admit to only having seen once, for the perhaps understandable reason that it ran from 0350 to 0600 GMT. On that occasion (a Sunday morning) it consisted largely of captions on vision to identify test tones carried on the sound channels (which at present are outside the receiver bandwidth).

For others who may be interested in receiving these transmissions, unless a dish of realistic dimensions is available, capable of being efficiently illuminated at this frequency (the 20ft one at Dublin is superb) a preferable system might be an array of stacked long-yagis, with which 26 dB gain would seem an attainable figure. At this gain, an elevation of 22°, bearing 132° should bring ATS- 6 within the beam for most of the UK and enable the signal to be found. The u.h.f. bandpass filter could be dispensed with, a better solution perhaps being an i.f. filter of lesser bandwidth (dependent on signal strength) with the u.h.f. converter swept by the demodulated video, keeping the instantaneous carrier frequency within that bandwidth and so forming an elementary threshold-extension demodulator. A varicap television tuner seems the obvious choice for this application. Anticipated improvenients to the writer's receiving systen are in these directions and a parametric anıplifier is also under construction.

Later this year we hope to publish a report on television reception of the ATS-6 broadcasts in India itself. This will be written by a British engineer who has been to India to study the Satellite Instructional Television Experiment.

Television Society honours Baird

On January 26 the Royal Television Society celebrated the 50 th anniversary of J. L. Baird's demonstration of television to members of the Royal Institution by holding a supper party and unveiling a plaque in 22 Frith Street, in London's Soho district, where the demonstration took place. (See January issue, pp. 43-46). Several people who knew or worked with Baird were present, including T. H. Bridgewater who contributes a letter to this issue on the question of the apparatus used for the 1926 demonstration. Eight of the guests had received the Baird system 30 -line television transmissions when they were subsequently broadcast by the BBC from the London Regional medium-wave station.

The plaque was unveiled by William C. Fox, aged 86 , a retired journalist who had been a friend of Baird's. He had helped Baird in getting publicity for his television experiments, and at the Frith Street demonstration his job had been to take the names of the Royal Institution visitors as they arrived. After the demonstration, Mr Fox recalled, he eavesdropped on the learned gentlemen's conversation. He heard ". . . a mountebank" and ". . . this young man doesn't know what he's doing" and several other derogatory remarks, but one visitor who himself had been experimenting with telegraphic transmission of pictures had exclaimed enthusiastically "He's got it!"

An article describing Baird's early work, "Television fifty years ago" by George Shiers, is published in the January-February issue of Television, the journal of the Royal Television Society.

CONSERVES YOUR CASH. No need to lock up capital in slow moving stocks.
SAVES TIME. Parts usually despatched by return. Orders phoned before midday are often on the way same day.
A PROTOTYPE SERVICE. Invaluable when assorted alternative experimental parts are required.
SOLVES BUFFER STOCK PROBLEMS. Eliminates need for heavy stock holding. Our stocks are at your immediate disposal.
SIMPLIFIES ORDERING. One transaction for a variety of parts saves bookkeeping and paper work.
NO ORDER TOO SMALL. Every enquiry is of equal importance
and dealt with expeditiously.
Obviously Single Source Service can solve a lot of your day to day problems. As the first step get the relevant U-C S catalogue, which illustrates and describes hundreds of parts any of which you may want at any moment. Write, or better still phone 06072 78711, for it now.

It makes sense to use the United-Carr Supply Service when you require smallerormixed quantities of any of thefollowing:-

CINCH

Barrier terminal strips. Fanning strips. Marker strips. Printed circuit board edge connectors.
D Subminiatures.
Multi way plugs and sockets.

DOT

Audio sockets. Group boards. Valve holders. Fuse holders. Battery connectors.

Electrical Components.
Single and double pole rocker switches.
Mains and low voltage indicator lights.
Plunger switches.
Mains connector blocks. Automotive lamp holders. Push on terminations. Fuse holders.

FT

Edge clips.
Cable clips.
Cover plates.
Turnbuckles.
Knob clips.

Industrial Fastenings.
Tee nuts.
DOTLOC single thread lock nuts.
Lift the Dot fastenings.
Turnbuttons.
Plugs and grommets.
Metal and plastic components.
Press studs.

Separate catalogues are

 available for:-Electronic Components, Electrical Components \& Industrial Fasteners.

Write or phone for your free copy, stating possible requirements.

The Sinclair DM2 Multimeter.

Comprehensive. Accurate. Portable. And really rugged. Yet only $£ 59$. prusvant

State-of-the-art circuit design, incorporating high-quality components, has resulted in a professional, $3 \frac{1}{2}$ digit instrument of outstanding performance and reliability at a realistic price.
A custom-designed MOS LSI digital processing IC controls the auto-polarity dual-slope-integration A to D converter. The circuit built around this IC uses a MOSFET op-amp input buffer with 0.1% metal-film resistors. The result is excellent accuracy and stability with a very high basic input impedance.
The instrument reads to $\$ 1999$ and has a basic accuracy on the 1 V DC range of $0 \cdot 3 \%$ digit. Four 8 mm LED displays provide excellent legibility and angle of view. Battery operation allows complete independence of mains supply.
The Sinclair DM2 has all the capability you need. Just take a look at its features and compare them with higher-priced multimeters. You'll find the DM2 is their equal in virtually everythirig-except price!

Features of the Sinclair DM2

5 functions giving 22 ranges DC volts - 1 mV to 1000 V AC volts -1 mV to 500 V DC current $-0 \cdot 1 \mu \mathrm{~A}$ to 1 A AC current - $1 \mu \mathrm{~A}$ to 1 A Resistance-1 Ω to $20 \mathrm{M} \Omega$ Easy to use
Automatic polarity, bush-button selection for all ranges and modes from a single input terminal pair. Easy to read
Big, bright 8 mm LED display gives a quick, clear reading.
$3 \frac{1}{2}$ digit display
Display reads from 000 to 1999
Overload indicator.
Protected
Separate fuses for current and resistance circuits.
Accurate
Dual slope integration. High stability.

Rugged construction
Tough metal casing takes the roughest treatment - try standing on it!
Two powersources
Supplied with a 9 V battery,
giving 60-hour typical life. Mains adaptor also available.
Portable
Weighs only 3.5 lb approx.
including battery.
Measures only 2 in $\times 9$ in $\times 6$ in approx.
Optional extras
Mains adaptor - $£ 3.19$ inc VAT.
Rechargeable battery and charging unit $-£ 16.20$ inc VAT. Carrying case $-£ 5.40$ inc VAT. 12-months no-quibble guarantee.

Use it in your laboratory. The DM2 sits rigidly on its combined carrying handle/stand.

Use it on the move. Keep the DM2 in its carrying case -it's always ready for use.

All you need to use the DM2 ... anywhere. Mains adaptor ...carrying case . . . multimeter... you're ready for quick, efficient metering - whatever the situation.

Take advantage of this money-back, no-risk offer today
Test the Sinclair DM2 for yourself. Simply send us a cheque, your Access/Barclaycard number, or an official company order, with, the coupon below. And in the unlikely event you find it's not what you need, return it to us within 10 days and we'll refund your money in full.
Interested in a quantity discount?
Use the coupon to get details
of prices on 5 or more instruments.

Sinclair Radionics Ltd,

London Road, St Ives, Huntingdon,
Cambs., PE174HJ.
Tel: St Ives (0480) 64646.
VAT Registration No: 213817088.

The Sinclair DM2 Multimeter: full technical story

Readers outside the UK, please write for details of your local distributor to: Sinclair Equipment International Ltd, 33 Beauchamp Place, London SW1 1NU.

RadioTelephoner?

Key-men keep in touch by radio-telephone. For the planning of these sophisticated installations, for the supply and installation of equipment, for advice and help in procuring licenses, for maintenance and servicing, key-men keep in touch with Nolton.
Nolton supply major radio-telephone users in the UK and overseas ... Nolton advise impartially on the suitability of equipment (of their own manufacture and also other leading brands)... Nolton are represented throughout the UK. For all radio-telephone enquiries, write, ring, or telex Nolton

Nolton Communications ltd

Radiotelephone Division Fieldings Road Cheshunt Herts EN8 9TX Telephone Waltham Cross 33555
Telex 28952

Wireless World Teletext decoder

5-Selection, control logic, control codes decoding and display

by J. F. Daniels

Last month's article concluded the description of the circuitry on digital board 1 . This month we continue the description by looking at board 2 , which contains the page and time selection circuits, read/write control logic, control codes decoding, graphic and alphanumeric display circuits.

Page and time detection

This part of the circuit indicates when the selected page is reached in the transmission sequence, and it does this by looking at the Hamming-coded information contained in the page header (row address zero) of every page. When a page header is found which contains the same page number as that selected on the thumbwheel switches, an output pulse is obtained which lasts for the length of the data line. If the time-coded mode of operation is selected, a comparison is also made between the transmitted time and the setting of the time-selection thumbwheel switches. The pulse is fed to the read/write control logic which initiates the sequence of writing data into the memories. Before we look at the writing operation in more detail we will consider how this pulse is obtained.
The method of achieving the detection of page number and time coding information is by means of a chain of D-type flip-flops, IC numbers $55,79,80$, 72 and 64 . It should be remembered from an earlier article describing the clockdivider circuits, that IC_{47} produces clock pulses timed to occur during each of the Hamming-coded groups in the page header. (IC_{47}, pin 2 is a strobe pulse during the magazine number group IC_{47}, pin 10 a strobe pulse occurring during the hours tens group.)

- The first of the flip-flops (IC_{55}) is used I to define which of the rows are page headers. The first half detects the least significant bit, and the second half the other four, by being fed with output zero of the b.c.d.-to-decimal decoder, IC_{44}. This i.c. is employed very usefully to provide decimal outputs of all the b.c.d.-coded addresses, and these outputs may be fed to all the decimal thumbwheel switch inputs in parallel. It will be noticed that the inputs to this i.c.
are not fed directly by the Hamming corrector output, the D input being fed via gates $(71,8)$ and $(63,8)$. This is necessary because of the Clear Page bit which may occur during the minutes tens group. If the extra gating was not employed then correct time detection of pages which included a clear bit would not be obtained. The hours tens group does, of course, also contain extra bits to indicate newsflash and subtitle pages, but it is unlikely that either of these types of page will ever need to be time selected, and so no precautions have been taken in this respect.
The action of the chain of flip-flops is initiated by the preset input of IC_{55} which is fed by the Data Allow waveform. By doing this, only valid data rows are interrogated. IC_{55}, pin 8 goes to 1 only during page headers and this waveform is gated with the output of the magazine number flip-flop, to allow operation of the fourth flip-flop, the page units detector.

The wiring of the thumbwheel switch for magazine number detection is slightly different to the rest of the thumbwheel switches. This is because maagazine number eight is coded $000-$ or 0 in decimal terms, and there is no magazine number 0 or 9 . This switch is wired normally from inputs I-7, but input 8 must be fed from IC_{48}, pin 1, not pin 10 , and inputs 0 and 9 should be left unconnected, as these are unused positions on the switch. From the page units detection flip-flop through to the hours tens flip-flop the i.c.s. form a simple repetitive chain and the output pulse is obtained either from IC_{80}. pin 8 in the normal mode, or IC_{64}, pin 8 in the time-selection, mode of operation.

Read/write logic

This part of the circuit performs a large number of different functions, and before attempting to describe the circuit operation, these will be summarised as follows.

- The basic function is to provide write pulses to the random-access memory store during transmissions of the selected page, in order that the page may be written into the store. As
explained in an earlier article, the page is written into the store every time it is received, and not just the first time, in order that any errors may be corrected, and also so that self-changing, and updated pages will be automatically written into the store.
- It must provide a constantly changing time indication in the top right hand corner of the display, and also a continuously changing page header during the time between the "clear" button being pushed and the receipt of the selected page.
- It should detect the clear-page bit, if it is present in the page header of the selected page, and then erase the stored information before writing the new page into the store.
- Finally, in the "auto newsflash" mode of operation, newsflashes selected on the thumbwheel switches must not be written into the store until one is detected that contains a clear-page bit, indicating an updated newsflash.

The circuitry to achieve the above functions is shown in Fig. 1, together with the page and time-selection circuits.
Page selection. The pulse from the page detection circuitry (which goes to I during the page header of the correct page) is used to preset the D-type flip-flop IC_{79} after being gated in (71, 6) with the output of inverter $(63,4)$. This waveform is an inversion of that appearing at gate (12, 12) and was shown in the clock-divider waveform diagrams in Part 2 of the series. It only goes to I after the Hamming bits of the page header row address have finished, and it is gated here with the page detection puise in order to prevent the Hamming bits from being written into the store.
The action of presetting IC_{79} sets the Q output to 1 , and this is then gated in $(45,8)$ with the output of the parity checker, the Data-Allow waveform and the line-blanking waveform. The output of the parity checker is normally at I for valid bytes of data, but if a parity error is detected it goes to 1 , inhibiting the write pulses. The Data-Allow waveform is gated in at this point to ensure that on!y valid data lines are written into the
store, and the line blanking waveform further restricts the writing action by inhibiting writing during the framing code and control and row address group bytes. Gate $(45,8)$ will therefore go to 0 when we require to write information into the store. This, in turn, sets $(62,6)$ to 1 , which allows the write pulses (from $66,2)$ through gate $(70,8)$ and into the read/write input of the store.
This process initiates the writing of information into the store, but it must also be stopped at the end of the page, an operation which is not quite as straightforward as it might appear. The difficulty arises because there is nothing to indicate that the page transmission has finished. Detection of row number 23 to stop the writing action is not feasible because this may be a blank row, in which case it may not be transmitted. The same reason rules out
a "stop" signal after a count up to 24 rows. It is possible that more than 24 rows may be transmitted in any given page, as there may be more than one page header containing the correct page number transmitted at any time during the transmission of the page. This may be done to update the time information in the top right hand corner of the display at regular seconds intervals. This last piece of information also precludes another possible way of ending the writing sequence, that of using the detection of the next page header after the correctly detected one.

Fig. 1. Page and time detection circuits and read/write control logic.
(At the present time the BBC quite often transmit two page headers consecutively, and the reason for this will be dealt with later in the article.)

The only way to end the writing sequence is to detect a "wrong" page header, meaning a header of any page other than the one selected on the thumbwheel switches, and this is done by clocking IC_{79} with page header detections, while the D input is held at 0 . This returns the Q output to 0 and stops the writing sequence. It may not seem obvious why this does not still stop the writing action even if a second 'correct' page header is transmitted. The reason is that the preset input will always overide the action of the clock input (which only operates on positive-going edges), and the preset input will always be present during the correct page header detections.

It will be noticed from the circuit diagram that the clear input of IC_{79} is fed from the output of $(70,6)$. However, this only has any effect in the autonewsflash mode of operation which will be dealt with later: During normal operation the clear input is held at 1 because one input of $(70,6)$ is held at 0 by the auto/normal switch.

Time display. Having looked at the operation of writing normal pages into the store let us now look at how the continuously changing time information is obtained in the top right hand corner of the screen, and also how the page header is made to "rotate" when the Clear button is pushed. The QD output of counter 19 is very useful in this respect because it goes to 1 only during the last eight bytes of data on each line, which happen to coincide with the point at which the time display information is transmitted on the page header.
This waveform is fed through gates $(46,1)$ and $(63,10)$ into gate $(62,6)$ where it causes the output to go to 1 (so enabling the write pulses) only during parity-correct information. The action of pushing the clear button presets IC_{78}, which is a D-type flip-flop. This sets the \bar{Q} output to 0 which is fed to one input of the two-input NOR gate (46, 4). Here it is gated with the waveform which inhibits writing during the Hammingcoded bytes and is then fed into $(46,1)$ where it causes the whole of the page header information to be written, instead of just the time information as before.

Page clearing. Another function performed by this part of the circuit is the action of clearing the page when a clear bit is detected in the Hamming bytes at the start of the page header. The clear bit is transmitted during the header of any page which contains new information, i.e. during automaticallychanging page, every time it cycles on to the next one of the group, or whenever a single page is transmitted for the first time with updated information.

In order to effect the operation of clearing the page, the store must be filled with 'space' characters, by writing them into the store at all the positions used for display purposes. Now the most convenient way to do this is to use the display period to write in these space characters as the store automatically cycles through all its positions during this time. In fact the system specification allows us to do this as it states that:- "A clear page command for a particular page; and new information for that page will not be transmitted in the same fieid blanking interval to allow time for the receiver store to be cleared" (hence the need to transmit two page headers in succession occasionally).

Detection of the clear page bit is achieved in gate (71,3), where bit 8 from

Fig. 2 (a) Graphic character segments are of unequal sizes to avoid gaps between characters. Alphanumeric generation is shown at (b), which does not include the three vertical columns for gaps between characters.
the Hamming corrector is strobed by a pulse from IC_{47}, pin 7. The resulting, short, negative-going pulse is used to clock IC_{78}, pin 11, and if the D input is at 1 , which it will be during correct header detections, the Q output will also go to 1.

Now there is one slight problem which prevents us using this output directly to initiate the writing action during the display period. This problem is that the header which contained the Clear Page bit will be erased from the store by the action of writing during the display period and the page will then be displayed with no header, except for the time information which will, of course, reappear almost instantly. In this design that is prevented from happening by inhibiting the Clear Page action during the part of the display normally occupied by the header. that is. all the displayed header row except the part occupied by the Hamming coded bytes, which are still erased.
This is achieved with gates $(46,10)$, $(46,13)$ and $(62,12)$ which gate out a waveform corresponding to the display
header position on the screen. This waveform is gated with $(78,9)$ and also the inverse of the Data Allow waveform in $(70,12)$ to provide the Clear Page action. The inverse of the Data-Allow waveform is gated in at this point to prevent the Clear Page action taking place on valid data rows. The Clear Page action can also be initiated by operation of the Clear Page button which presets IC_{78}, which again sets the Q output to 1 . IC_{78} is cleared by negative-going frame sync pulses obtained from $(7,12)$ which stops the clearing action at the end of the display period.

The operation of deriving the space character codes to be written into the store is achieved in the serial-to-parallel convertor, IC_{21} (74164). In fact, a space character code is not used in this design, merely a set of eight zeroes, obtained by clearing the shift register outputs during the display period. It will be seen from the code table that this is in fact a NUL control character, which is not designated to any particular function, and is in fact inhibited from doing anything in the control codes decoder. (To be described later in this article.) It will of course be displayed as a space character, as are all control characters.

Newsflash. The only other function of this part of the circuit is to provide the Auto Newsflash facility, which is merely a method of preventing any newsfiash (or any other pages) being written into the store, until one is found which contains a Clear Page bit.
When one of these "new newsflashes" is detected, the decoder reverts to normal operation, i.e., it writes all the succeeding newsflash pages into the store as, well as the one containing the clear bit. In this way errors can still be corrected as described last month.
Normally the auto mode is inhibited by means of gate $(70,6)$, the output of which is held at 1 by virtue of the auto/normal switch. When the auto mode is first selected the positive transition at the clock input of IC_{69} sets the Q output to 0 and this still allows the first newsflash received to be read into the store, regardless of whether it contains a clear bit. However, if the Clear Page button is pushed, this presets IC_{69} Q output to 1 and the output of gate $(70,6)$ goes to 0 . This clears IC_{79} and thus prevents any further pages from being written into the store. The Clear Page bit detection circuitry, however, still works as usual and if a newsflash is detected which contains a clear bit, IC_{69} is cleared by a pulse from C_{9}. This sets the circuit back to normal operation, and all the succeeding newsflash pages are read into the store until such time as the Clear Page button is pushed again.

Graphics generation

Figure 2(a) shows the way in which graphics characters are formed. Bits 1 , $2,3,4,5$ and 7 each represent one sixth of the graphic shape, and it is intended that when a bit is 1 its corresponding
section of the graphics rectangle should be 'illuminated'. The decision as to how much area shall be occupied by each of the bits is left to the circuit designer, and a number of possibilities will be considered here. If rectangles of equal size were chosen for each of the six bits of information, then the best arrangement would be for the bits each to occupy three lines on each TV field and three out of the four available vertical columns. (The actual size of the complete character box available is ten lines per field and eight clock pulses wide in the horizontal direction.)

This arrangement would, however, give gaps between each of the graphics characters in the vertical direction, as only nine out of the ten available lines would be used, and in the horizontal direction, as only six out of the eight available clock pulses would be used. Now, although this method would give characters with equal size components, the effect of having gaps between each of them would be most undesirable for
displays where large areas of colour were intended to be shown.
In fact the effect of having unequal size rectangles forming the graphics characters is far less disturbing than the effects caused by having gaps between them, and this design uses the format shown in Fig. 2(a) which uses four TV lines per field for bits 1 and 2 and three lines for each pair of the other four bits. In the horizontal direction the bits are equal in width, each one being formed from four out of the eight clock pulses. The reason for making bits 1 and 2 larger than the other pairs of bits, was purely one of simplicity, requiring fewer gates than any other arrangement.
The circuit for generating the graphics characters is shown in Fig (3a). Six, three-input open collector NAND

Fig. 3(a) Circuit of the graphics generator. The r.o.m. character generator is at (b).

gates are used, one for each bit of the displayed character. One input of each of these gates is fed with the bit information from the output of the r.a.m. store, and the other inputs are fed, one with the horizontal gating waveform, and the other with the vertical gating waveform. The six outputs are added together by the open-collector connexion of the gates and the output at this point is negative-going graphics information. The horizontal gating waveform for the right hand half of the graphics character is obtained at the output of gate $(45,6)$ and the waveform for forming the left-hand half of the characters is simply the inverse of this waveform.
The vertical gating waveform for bits 1 and 2 is obtained by gating two of the line divider waveforms, $(5,11)$ and $(5,8)$ together in NOR gate (43,10). Bits 3 and 4 require the slightly more complicated gating arrangement, achieved with gates $(44,8),(50,3)$ and $(59,6)$, and finally the waveform for bits 5 and 7 is obtained from gate $(50,6)$.

Alphanumeric characters

The generation of alphanumeric characters is similar in many respects to the graphics characters, the main difference being that each of the alphanumeriç characters is formed from thirty-five small squares situated in the character cell. In fact, the character cell is divided into a total of fifty squares, as shown in Fig. 2(b). (This does not include the gaps between characters in the horizontal direction, which take up three extra columns).
The top row of five squares is normally left blank to give a space between rows of characters, and the two lines of five empty squares at the bottom of the character cell are used when lower case characters, which normally descend below the line (g, j, p, q , and y), are generated.
Figure 3(b) shows the circuit diagram of the alphanumeric character generator. It is not practical to use the same approach as in graphics generation using discrete i.cs to form the characters, because this would result in an extremely large nurnber of components. Special i.cs are in fact manufactured to perform the function of character generation, and these are called readonly memories or r.o.ms. The one shown in the circuit diagram is manufactured by Signetics and contains information for sixty-four different characters, including all the upper-case alphabet and various other characters such as brackets, numerals etc.

There are five outputs from the i.c., one for each column of the character, as indicated in Fig. 2(b), and nine address inputs. Three of the address inputs (called row addresses) are used to define which of the horizontal rows of the character is to be displayed, and the other six inputs are used to decide which of the sixty-four characters will
be displayed. The row address inputs are fed from the line divider outputs $(5,9)$ and $(5,8)$, also $(4,10)$ which has been gated to inhibit the output during the last two lines of the character cell. It does this by making the row address " 000 " during the last two rows, and in this particular r.o.m. the output is always ' 0 ' when this row address is present.
The other six address inputs are fed directly from the r.a.m. store outputs. A quick look at the code table might indicate that bit numbers $1-6$ should be used here, but as this i.c. is capable of producing upper-case only characters, this would result in lower-case alphabet letters appearing as numerals and various other odd symbols. If, however, bit 6 is replaced with bit 7 inverted, the desired effect of lower-case letters appearing as capitals is achieved.

The outputs of the i.c. are gated with their respective vertical column infor-
mation in five 2 -input open-collector NAND gates, where they are added together to form negative-going alphanumeric characters.

Control-codes decoding and output

This part of the circuit, shown in Fig. 4, performs several functions.

- To detect all the various control codes that are transmitted, for colour, graphics, flashing and boxing information and to switch the output gates to the correct state.
- To provide switching between the graphic and alphanumeric information in the "alphanumeric blast through" mode.
- To add line and field blanking information to the output waveform,

Fig. 4. The control codes decoder and output circuit.
and also to blank out the control characters, which of course are not intended for display.
There is also a problem caused by the fact that the standards of transmission have been changed recently, in terms of the position in the code table of some of the control characters. (On February 2, 1976, BBC 1 began to transmit the new standard, BBC 2 reverting to the old standard.) This problem is overcome by providing three links on the printed board which can be changed according to which type of transmission is being received.
(To be continued)

Corrections

In the list of i.cs, published last month, IC_{2}, was incorrectly given. It should be 74164.

On page 48, Fig. 3, the connéxion to IC_{40}, pin 8 should come from IC_{30}, pin 9 , not pin 19.

Phase and sound quality

". . . there is almost overwhelming evidence that the preservation of waveshape is of no significance and that in consequence phase shift in a monaural channel is of little importance . .
by James Moir, F.I.E.E.

James Moir \& Associates

Abstract

As the distortions that have the major effect on the quality of reproduced sound become more clearly understood it is natural that the remaining minor distortions should be subject to critical examination. Claims about the advantages of minimizing phase shift have appeared in advertisements for amplifiers and loudspeakers. In the light of the current interest in the problem and its controversial nature this article reviews the arguments both for and against the importance of phase in affecting the quality of reproduced sound.

The ensuing discussion is about the phase differences between the frequency components that can appear in a single channel. The effect of the phase differences that may exist between signals in different channels is not considered in the present contribution; for example there is no discussion of the effects of the phase differences that may appear between the signals in the two channels of a stereo system, though they are of vital importance in achieving a good stereo image. It is probably advantageous to start by explaining what is meant by "phase shift."

Phase shift indication

When power supply engineers required a technique for indicating that the current maxima and the voltage maxima in their circuits did not always occur at the same instant in time, they invented the concept of phase. The time of a cycle of the supply frequency (20 milliseconds for our supply frequency of 50 Hz) was divided into 360 degrees and where the maxima of voltage across a load and the maxima of the current in the load did not occur simultaneously, they indicated the difference in fractions (degrees) of the time of one cycle. At a later date when they discovered that their supply voltage waveforms included harmonics of the supply frequency they were able to specify the "phase" of the harmonic voltage with respect to the maxima in the waveform of the 50 Hz voltage by quoting the "phase difference" in degrees. Basically it is a time difference that is being indicated, but the use of degree units is a satisfactory alternative when single frequency working is being considered because the time duration of one cycle of the supply voltage waveform is
(very) constant and a phase shift of one degree always represents the same time interval (0.056 ms).
.. The technique of specifying a time difference in degree units has been carried over to the communications field, but it is not so useful to the communication engineer because his circuits rarely work at a single frequency and in consequence a fixed difference between the time of two events is not a fixed phase shift expressed in degrees. A constant time difference of say 10 millisecondsbetween the current and voltage maxima is a phase shift of 180 degrees if the operating frequency is 50 Hz ., 1800 degrees at a frequency of 500 Hz , and 18,000 degrees if the frequency is 5,000 Hz . If a circuit produces a fixed time delay measured in milliseconds it has a phase/frequency response that is linearly proportional to frequency as indicated in Fig. 1.
The complications are minimized in the following discussion by referring to

Fig. 1. Phase shift versus frequency for a constant time delay of 10 ms .
a time difference wherever this is applicable, but including comment about the equivalent phase difference where this clarifies the situation. It seems reasonable to suggest that the phase shift concept should really be confined to those situations where the phase shift is less than one cycle of the fundamental frequency. This infers that it be used when dealing with power supply and similar circuits where any high frequency components occur only at harmonics of the basic frequency. Indeed, it is often troublesome to apply to communication circuits where the phase shift between two unsynchronized frequency components is continuously changing.

Cause of phase shift

It is worth while looking at the simplest mechanism that results in these phase shifts. A typical audio amplifier includes a series of amplifying stages coupled together by combinations of resistance and capacitance to allow the appropriate d.c. potentials to be maintained in each stage. Each series combination of C ind R shifts the phase of the output voltage with respect to the input voltage, the output voltage across the resistor leading the input voltage to the combination by an angle that is:

$$
\theta=\tan ^{-1} X_{c} / R
$$

In addition to the discrete components in the coupling network there is always stray capacitance in parallel with the input and output resistance of each stage. This parallel combination of resistance and reactance results in a phase shift in the opposite direction, the output voltage across the capacitor lagging the input voltage by an angle

$$
\theta=\tan ^{-1} R / X_{c}
$$

A typical amplifier of many stages

Fig. 2. Typical phase shift characteristic of a high quality domestic amplifier.
will generally have a more complex phase shift/frequency response, similar to that shown in Fig. 2 as the overall phase shift between the input and output circuits of the amplifier is the sum of many phase shifts both leading and lagging. It should be noted, however, that the phase shift between the limit frequencies of 10 Hz and $10^{5} \mathrm{~Hz}$ is only a few degrees. In this particular amplifier it will be seen that the output voltage leads the input voltage at low frequencies, and lags at high frequencies. In consequence the low frequency signal components arrive first, followed by the mid-frequency components and finally the high frequency signal appears.
The series and parallel combinations of R and C are probably the simplest network that introduce phase shift, practically any combination of inductive or capacitive reactance and resistance producing a phase shift in one direction or the other. Amplifier input and output transformers produce phase shifts at both high and low frequencies as do gramophone pickups, loudspeakers, tone control networks and almost every other component in an audio system.
To produce phase shifts of more than 180 degrees, combinations of several reactive elements must be employed and if a time delay of more than a few milliseconds is to be produced, electronic, acoustical or mechanical delay mechanisms must be used. Time delays in the millisecond range also result from transmission over long telephone lines which may include hundreds of amplifier stages.
Fig. 3 illustrates the effect of time delay on the waveform of a transmitted pulse, the lower curve being the transmitted pulse and the top curve the received pulse. In this instance the time delay is 10 milliseconds and it will be

Fig. 3. Effect of time delay on the waveform of a transmitted pulse.

seen that the consequent waveform distortion is enormous.
Now common sense suggests that accurate reproduction of the signal waveform is an essential aspect of the performance of a good amplifier, but anticipating the outcome of the discussion that follows it will be shown that an accurate reproduction of the signal waveform may be of little consequence in determining the quality of the reproduced music.
At this point it is important to recognise that manipulating either the amplitudes, or the relative phases of the components of a complex tone can produce changes in waveform. However, it is easy to demonstrate that even small changes in waveshape, hardly discernible on an oscilloscope, but produced by changes in the amplitude of the harmonic components can produce devastating changes in sound quality, while the very similar but much greater changes in waveshape produced by changes in the relative phase of the harmonics have no apparent effect on the quality of the sound. Amplitude clipping and cross-over distortion are typical examples of waveform distortion produced by changes in the harmonic amplitudes that produce very audible changes in sound quality when present in such small amounts that they

are detectable as a waveform change only to an experienced observer. All the changes of waveform produced by changes in the amplitude of the various components of a complex wave are excluded from the discussion that follows.

Effect of phase shift on test tones

The significance of the phase differences that may appear in a single channel on the sound quality of a complex note have been investigated by many workers beginning with Ohm and it is fair to say that their overwhelming conclusion has been that the phase difference between the components of a single complex tone has no significant effect on the quality of the resultant sound. In other words the accurate reproduction of waveform is of no great importance. But beginning with an investigation by Mathes \& Miller (see Bibliography), there has been a steady flow of research workers claiming to have found that the waveform changes produced by changing the phase of the components of some complex waves may be audible.
NTathes \& Miller's circuitry, essentially a balanced a.m./f.m. modulator, get.erated three tones, a carrier and two side bands (the modulating signal) and allowed them to vary the phase of the catrier with respect to the two side baids. At low values of the modulation index a frequency modulated carrier has the same side band structure as an ani, litude modulated wave, but the side bal:ds are shifted in phase by 90 degrees. By shifting the phase of the carrier, Mathes \& Miller could change the rel.tive phase of the sidebands without ch..nging the side band or carrier an: , litudes.
The paper quotes a considerable number of findings but typically a wave consisting of a carrier at a frequency of 1 kHz with two side frequencies is said to sound "raucous and rough" when the modulated envelope is that of an a.m.
wave, but to what sounds like a "combination of pure tones accompanied by an apparent pitch sensation of twice the signal (modulating) frequency," when the carrier phase is shifted through 90 degrees. They note that the tonal quality difference resulting from shifting the phase of the side band frequency disappeared when the signal (side band) frequencies exceeded abut 40% of the carrier frequency but that this effect was a function of the listening level.

The waveforms of the test signal were those characteristic of a modulated carrier similar to those shown in Fig. 4 (a) and (b). Mathes note that the effects were only audible over a limited range of modulation depths in the region where the modulation depth exceeded about 85%. This may be of significance for the appearance of audible effects seems to depend on the envelope of the combined signal approaching zero at some points in the cycle. Mathes and Miller also note that direct transmission to the ear was most important, as attempts to observe these effects with a loudspeaker were defeated by the complex phase and amplitude effects characteristic of the standing wave patterns in a room.
There are a lot more results of a similar type quoted in the Mathes paper that do not justify present repetition in-so-far as the results already mentioned confirm that they had discovered conditions in which shifting the phase of the components of a complex tone could produce audible changes in the sound quality.
In a generally similar investigation two later workers, Craig and Jeffries, produced some results that are unusual in several ways. As the test signal they us $\in d$ a tone of 250 Hz and its octave, and they found that over a restricted range of sound levels the test subject could detect a change in quality of the combination of notes when the phase of the 500 Hz component was changed. Other investigators have consistently failed to find this effect. Surprisingly, the changes in quality with change of phase were in opposite directions for the two subjects involved in the experiment, one observer describing the phase reversal as producing a note that sounded 'higher pitched, louder and purer' whereas the second subject described it as 'lower pitched, softer or less pure.' This contradictory result has apparently been observed by other investigators using similar combinations of tones.
A more recent investigation is described in a paper by Hanson and Madsen. They described results that are claimed to show that changing the phase of the components of a square wave produce audible changes in sound quality, a repetition of our experiment described later (see Fig. 7). They reject the use of simple passive phase shifting networks to distort the square wave, on the quite unjustifiable ground that they intro-

0

b
Fig. 4. Modulated carrier test signals in (a) and (b) used to examine the effects of phase shifts on test tones.

Fig 5. Effect on the waveform of a square wave shown in (a) of changing the phase of the (b) 5th harmonic shifted by 100° and (c) 3rd harmonic shifted by 100°

b

c
duce amplitude changes in addition to the wanted phase shifts. In one of their experiments Hanson and Madsen employ a phase shifting technique that requires four recordings and replays of a square wave test signal, including in the chain a loudspeaker, microphone and an anechoic chamber.
Now even the supporters of the claim that "phase shifts affect sound quality" wouid agree that any effects are indeed very subtle. The distortions introduced by the multiple recording and replaying of a taped square wave and the introduction of a loudspeaker, microphone and anechoic chamber into the reproducer system, are certain to be far more obvious than the effects of any phase shifts. The paper makes the valuable point that polarity is important but the validity of many of the other conclusions are suspect for several reasons, not least the remark that "improving the performance of the loudspeaker used to reproduce the test signals resulted in the phase shifts becoming less audible."
Nevertheless taken together the three papers and those listed in the bibliography in the Craig and Jeffries paper can be accepted as confirming that there is some combination of tones for which change in the relative phase of the various components produces some change in the acoustic quality of the resultant sound. The hearing system is not completely insensitive to the effect of phase shift but it seems obvious that the phase sensitivity is very low. However none of the authors have directly suggested that the effects are significant when reproducing programmes, nor have they attempted to confirm that there are phase effects that are audible in music.

Phase sensitivity

Having confirmed that there are conditions under which phase shift may produce audible effects, it is worth attempting to decide on how sensitive the hearing system is to phase change effects and how significant they are in determining the quality of the reproduced sound.

Relatively simple apparatus enables complex waveforms such as that shown in Fig. 5 to be produced by adding harmonics to the basic sinusoidal waveform. The same equipment allows the phase of the added harmonics to be varied with respect to the fundamental sinusoidal signals. There are an infinite number of possible combinations but Fig. 5 illustrates the effect on the waveform of changing the phase of the 3 rd and 5th harmonics with respect to the fundamental frequency. We have never been able to detect any audible change in the quality of the resulting waveform as the waveshape is changed from (a) to (c), even when the listener is making the change and the waveforms are simultaneously visible on an oscilloscope.

An experiment that only requires simple equipment will go far towards convincing any listeners that if there are any phase effects, they are rather subtle. Two audio oscillators having their outputs coupled together through separate resistors are coupled into an amplifier driving a good loudspeaker and the frequencies set a few hertz apart. This ensures that there is a continuous variation in the relative phases of the two signals. If the resultant signal is reproduced at a level not greater than about 50 dB (conversational speech at about 10 ft) it will be found that though the waveform varies continuously through extremes similar to those shown in Fig. 5 the sound quality changes are those due to the amplitude changes only.
Following the discussion of the causes of phase shift earlier in this contribution, it will be fairly evident that tone controls are likely to introduce considerable phase shifts for they are almost invariably combinations of RC networks. Fig. 6 illustrates a typical result, curve A being the measured phase shift through an amplifier and control unit of high repute with the tore controls set to "flat" while the dolted curves result when the bass and top controls are set at min and max. Pei haps this is another reason for the pui ists' objection to tone controls.

Reproduction of transients

The experiments just described demonstrate that gross changes in phase may produce no significant effect on the sound quality of a continuous note but while agreeing with this, the
supporters of the "phase changes effect sound quality" point of view suggest that any phase changes that reduce the steepness of the wavefront of a transient sound must affect the quality of these transients. Again, this statement is incapable of either rigid proof or positive contradiction, but it is easily possible to demonstrate that gross changes in the phase of the component harmonics in a square wave may not produce any significant changes in the quality, although the wavefronts of a square wave are presumably typical transients.

The second waveform shown in Fig. 7 is merely the first waveform with the phase of all the higher frequency harmonics shifted by 180 degrees by inserting a simple passive lattice network. It always appears incredible that such gross changes in waveform should be inaudible, but it is true to say that no member of the development team, or any other hi-fi enthusiast who has heard this demonstration has been able to detect any audible difference between the two waveforms, even when the waveform changes were being made by the observer and were simultaneously visible on an oscilloscope. This was an experiment first made around 1945 when the writer was investigating the effect of phase in an attempt to decide whether the phase changes inherent in any normal sound reproducer amplifier were of any significance, but it has been used as a demonstration during many lectures on sound reproduction given since then.

This is a particularly interesting finding, for if it is confirmed, it indicates

Fig 6 (above). Phase shift effected by tone controls in a typical amplifier.

Fig. 7 (below). Changing the phase components of a square wave to determine the effects on audibility.

that it is not necessary to reproduce the steep wavefronts that are assumed to characterize a transient in music. If this conclusion is right, it raises the question as to what reviewers mean when they claim that some amplifier or loudspeaker has a particularly good transient response. It has a second interesting aspect, for when listening to the phase distortions of a square wave (Fig. 7) the writer found that the effects were no more obvious on headphones than when listening in a typically furnished lounge. This was surprising, in that it was initially considered that the acoustic phase shifts produced by an enclosure were masking the electrical phase shifts produced by the lattice network phase shifter. The masking effects of the phase changes introduced by the room are now thought to be only a small part of the explanation for any failure to observe audible effects due to shifting the phase of the components in music.

Reproduction in an enclosure

An alternative approach is to consider what happens if an attempt is made to reproduce a square waveform in a room or hall. At any point in a room the instantaneous waveform of the complex note emitted by an orchestra, or a loudspeaker, is the vector sum of all the component harmonics arriving at that point. Sounds arrive at every point in an auditorium by direct transmission following a straight path from source to listener, but also by a multitude of indirect paths that include multiple reflection from the room boundaries. The reflected components having travelled by longer paths than the direct components, arrive delayed in time, and in consequence, with their phases radically changed. Because the reflective properties of a boundary surface are almost invariably a function of frequency, the time of arrival at any listener's ear receiving the reflected components changes rapidly with frequency and with the position of the listener in the room. As a result there is no single acoustic waveform that chi.racterizes the sound of the orchestra at any particular instant. There is a different waveform for almost every position in which the measuring microph ne is placed, yet there is no significant difference in the sound quality in adjacent seats.

It is easy to confirm that the acoustic waveform varies widely with position, by using a loudspeaker fed with a square wave electrical signal and using a precision capacitor microphone to pick up the waveform at points in the auditorium. Fig 8 shows typical waveforms measured at two points only four inches apart in a normal domestic lounge, when a high quality speaker system was driven by a square wave voltage signal. Experiment confirms that it is usually difficult to find two points in an enclosure where the
waveforms are similar. A square wave electrical signal applied to a loudspeaker produces as many different acoustic waveforms in space as there are positions for the measuring microphone.

Exactly the same conditions apply to the reproduction of the waveform of the music of a real orchestra. Not only does the orchestra produce a different waveform at every seating position in the auditorium, but wide changes in the waveform appear if any of the instrumental groups or individual instrumentalists are moved with respect to the rest of the orchestra. Thus if the quality of the sound depended on the accuracy of the reproduction of waveforms, each instrument in the orchestra would have to be precisely located in a carefully pre-determined position in space. As the optimum location for every instrument would depend on the position of every other instrument, the determination of the "correct" location for the 100 odd instruments in a symphony orchestra would require many months of investigation. The final position would be so critical that the instrument would have to be permanently fixed in position and the player would have to adjust his position to suit. When this had been done, there would only be one seat in the auditorium in which the sound would be acceptable.

Phase shifts in programme material

The aspect that is of real interest to the hi-fi enthusiast is not the audibility of phase changes on special test signals, but the effect of phase shifts on the quality of music and speech. My own interest in the effects of phase on the quality of sound arose in 1945 after having worked for a time on the design of wide band amplifiers for radar where it is essential to preserve the waveform of the radio signal. On returning to the problem of designing sound reproducer amplifiers it was thought that the preservation of waveshape might improve the sound quality obtained in cinemas. Our investigations showed that nothing was to be gained, amplifiers having substantially zero phase shifts having no obvious advantage over conventional amplifiers in which no special attempts have been made to minimize the phase shifts that result from standard design procedures.

At a recent Wireless World seminar on linear phase loudspeakers, H. D. Harwood of the BBC Research Department indicated that they had been quite unable to detect any "distortions"due to the effect of phase shifts in sound reproducer amplifiers. A recently published paper reaching the same conclusions is that by Ashley in the Journal of the Audio Engineering Society for April 1971.

Acceptable time delays

It will be obvious that absolute time delays are not of any consequence. Signals may be stored on tape for years

Fig. 8. Waveforms from the same signal source measured at points four inches apart.
without the storage time affecting the sound quality. It is the differential time delay, or group time delay that is of significance. This is the difference between the time delay occurring towards the extremes of the audio frequency band and the delay that occurs at some suitable reference frequency in the middle of the band. Clearly there must come a point where the delaying of one section of the frequency spectrum with respect to other parts of the spectrum must result in some changes in the quality of the reproduced sound. If the low frequency components in a musical passage arrive to-day, the high frequency components cannot be allowed to arrive tomorrow. Establishment of the "just detectable" differential delay time would be a significant point in any discussion about the effect of phase shifts or time delays.

Because of its importance to telephone administrations, the time delay that is "just detectable" when producing speech has been the subject of many investigations. It is worth mentioning that effects of these differential time delays are much more obvious on speech than on music. The differential time delays result in a kind of metallic echo following each syllable or word. Much greater time delays are permissible before the distortion becomes obvious on music. The experimental procedure was substantially the same in all the investigations. A high quality reproducer system was used with arrangements to allow the introduction of time delays either by the use of all-pass networks or long telephone lines. The listener was allowed to increase the time delay until the effects were detectable on an immediate comparison with the un-delayed condition. This is a highly critical test, for under normal listening conditions the listener does not have any opportunity of making an instantaneous comparison, and as it will appear, the effects of phase shifts are rather subtle even when present in large amounts. Thus the opportunity of detecting a particular distortion is immensely improved if an immediate comparison of the "distorted" and "undistorted" condition is possible.

It is not proposed to go through all the experiments in detail, but merely to quote the authority and the order of the time delay they found to be "just detectable." Bell Telephone Laboratories inserted a series of delay networks into a high quality reproducer system and directly compared the output signal with the input signal, using reproducer equipment of the highest quality. Distortion on speech was just audible when the $5-8 \mathrm{kHz}$ band was delayed by $5-8$ milliseconds behind the $1-3 \mathrm{kHz}$ band. At the low frequency end they found that delays of $70-90$ milliseconds were innocuous.

Similar tests were made at a later date by Belger, Pavel \& Rindfleisch of the German Post Office and the German Broadcasting Organisation using long telephone lines to produce time delays. Their findings were in good agreement with those of Bell Telephone Laboratories. They concluded that permissible delay was 70 millisecond at 50 Hz and 8 millisecond at 8 kHz .

After reviewing all the information available, C.C.I.F., the authority that fixes the performance standards for international telephone lines, specified substantially similar limits for lines intended for the transmission of speech and musical programmes. They consider that signals may be delayed with respect to the mid-band $(1 \mathrm{kHz})$ signal by the times given:- in the 50 Hz band they may be delayed by up to 80 ms , in the 100 Hz band they may be delayed by up to 20 ms ; in the 8 kHz baisd they may be delayed by up to 8 ms .

Though there is almost overwhelming evidence that the preservation of waveshape is of no significance and that in consequence phase shift in a monaural channel is of little importance, there can be no doubt that the relative phase of the signals in a two channel stereo system is of considerable importance. Unless the corresponding instantaneous signals are emitted by the two loudspeakers at the same instant in time, the stereo image will be deflected towards the loudspeaker emitting the leading wavefront. If the time delay (phase shift) between the two speakers is a function of frequency the stereo image will be unstable.

Bibliography

Mathes \& Miller, "Phase Effects in Monaural Perception," JASA, Sept. 1947.
Craig \& Jeffries, "Effect of Phase on the Quality of a Two-Component Tone," JASA, Nov. 1962.
Hanson \& Madsen, "On Aural Phase Detection," JAES, Jan. 1974.
Hilliard, "Effects of Phase on the Quality of Sound Effects," IEEE Trans. on Audio March 1964.
Belger Pavel \& Rindfleisch, "The Effect of Time Delay Distortions," FTZ, Book 8, 1955. Moir, "The Effect of Phase Shift on Sound Quality," Wireless World, April 1956.
Ashley, "Test Signals for Music Reproduction Systems" JAES, April 1971.

Ion out your quality control problems

The AVO Breakdown and Ionisation Tester RM215-L/2 is specifically designed to help solve all manner of quality control problems.

It measures resistive leakage current under both AC \& DC voitage testing conditions as well as total AC leakage current. Test voltages up to 12 kV DC and 6 kV AC are continuously variable and breakdown current level is adjustable up to 1 mA . A built-in loudspeaker gives audible detection of ionisation and there are connections for earphone or an oscilloscope.

The circuit features low internal resistance yet at the same time limits the maximum output current, even at short circuit.

With the RM215-L/2 you can carry out general flash testing, measurement of breakdown voltage -even after breakdown-and the detection (and counting) of spurious flashovers.

Equally suited to both destru:tive and non-destructive testing, the RM215-L/2 is a piece of test equipment you cannot afford to be without. If you have some problems that need to be 'ioned' out, get in touch for full details.

APPLICATIONS

Flash testing of electrical components. Measurement of breakdown voltage on electrical components and materials.
Measurement of insulation resistance at high vcltage
Measurement of d.c. leakage current
Measurement of a.c. Ieakage current and total current
Non-destructive insulation testing of materials and components.
Detection of ionisation in electrical assemblies.
Designed to meet B.S., V.D.E. and I.E.C. Safety Requirements.

Now...the most exciting Sinclair kit ever

The Black Watch kit

 At £14.95, it's * practical-easily built by anyone in an evening's straightforward assembly. * complete -right down to strap and batteries.* guaranteed. A correctlyassembled watch is guaranteed for a year. It works as soon as you put the batteries in. On a built watch we guarantee an accuracy within a second a day-but building it yourself you may be able to adjust the trimmer to achieve an accuracy within a second a week.

The Black Watch --using the unique Sinclair-designed state-of-the-art IC.

The chip...

The heart of the Black Watch is a unique IC designed by Sinclair and custom-built for them using state-of-the-art technologyintegrated injection logic

This chıp of silicon measures only $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ and contains over 2000 transistors. The circuit includes
a) reference oscillator
b) divider chain
c) decoder circuits
d) display inhibit circuits
e) display driving circuits

The chip is totally designed and manufactured in the UK, and is the first design to incorporate all circuitry for a digital watch on a single chip

.and how it works
A crystal-controlled reference is used to drive a chain of 15 binary dividers which reduce the frequency from $32,768 \mathrm{~Hz}$ to 1 Hz . This accurate signal is then counted into units of seconds, minutes, and hours, and on request the stored information is processed by the decoders and display drivers to feed the four 7 -segment LED displays. When the display is not in operation, special power-saving circuits on the chip rəduce current consumption to only e few microamps

Take advantage of this no-risks, money-back offer today!
The Sinclair Black Watch is fully guaranteed. Return your kit in original condition within 10 days and we'll refund your money without question. All parts are tested and checked before despatch-and correctly-assembled watches are guaranteed for one year. Simply fill in the FREEPOST order form and post it-today!

Price in kit form: £14.95 (inc. black strap, VAT, p\&p).

Sinclair Radionics Ltd,
Londón Road, St Ives,
Huntingdon, Cambs., PE17 4HJ.
Tel: St lves (0480) 64646.
Reg no 699483 England VAT Reg no: 213817088

To: Sinclair Radionics Ltd, FREEPOST, St Ives, Huntingdon, Cambs., PE17 4BR

Please send me
Total £

(qty) Sinclair Black Waich	* ${ }^{\text {enclose cheque for } £ \sim}$
kit(s) at $£ 14.95$ (inc. black strap, VAT, p\&p)	made out to Sinclair Radionics Ltd and crossed.
(qty) black stainless-stee bracelet(s) at £2.00	* Please debit my *Barclaycard/Access American Express account number

Name
Address
w w/3
Please print. FREEPOST - no stamp required.
*Delete as required

The Dymar 1680 portable frequency counter

Youre working miles frombase, there's no power handy, and enough AM about to drive you crazy...

You don't have to have problems in order to appreciate the Dymar 1680 frequency counter. But if they arise you'll know you've got a friend.

At home or away, the 1680 offers a frequency range of from 30 Hz to 600 MHz with exceptionally high sensitivity right across the range.

A high stability crystal time base provides laboratory standard accuracy in workshop or on location - accuracy which is maintained even in the presence of a large proportion of AM on the carrier wave.

The eight-digit LED display reads in MHz , kHz and Hz , with automatically positioned decimal point, and the front panel controls are simple and easy to use.

In the field, the 1680 really comes into its own. Operating from AC mains supply or its own rechargeable batteries, it provides genuine portability at only 5.5 lbs weight and $7.2 \times 10.6 \mathrm{x}$ I.9in dimensions.

Want to know more? Use the Reader Reply Service or contact Dymar direct.

DYMAR ELECTRONICS LIMITED, Colonial Way, Radlett Road, Watford, Herts. WD2 4LA. Tel: Watford 3732 I. Telex: 923035. Cables: Dymar Watford.
 \section*{DYKA:
 \section*{DYKA:

 the name in radiotelephones}

 the name in radiotelephones}

Designed for the mobile land, marine and air communications industry.

Monostable ring oscillator

The circuit shown generates square waves which are suitable as clock signals in sequential digital circuits. The monostable multivibrator SN74121 requires an external timing resistance $2 \mathrm{k} \Omega<R \leqslant 40 \mathrm{k} \Omega$ and an external timing capacitance - $10 \mathrm{pF}<\mathrm{C} \leqslant 10 \mu \mathrm{~F}$ to generate a pulse of duration $T_{p}=C R \log _{e} 2$ seconds. Each monostable is set for a similar pulse duration giving a 33% duty-cycle and a complete ringing cycle with a period of $T_{\text {osc }}=3 \times T_{p}$ seconds. When the CR-pairs are selected within the above ranges, the nominal period $T_{\text {osc }}$ may be varied between 150 ns and ' 20 s giving frequencies from 7 MHz to one cycle in two minutes. By realizing one timing resistance as a $2 \mathrm{k} \mu$ fixed resistor in series with the next highest preferred value multi-turn potentiometer, adjustments of approximately $\pm 20 \%$ about the nominal frequency are

possible. The inhibit inputs (B) are returned to the +5 V supply with $1 \mathrm{k} \Omega$ resistors whilst one is decoupled with a capacitance of at least $0.1 \mu \mathrm{~F}$ to ensure oscillation when power is first applied. The stability of oscillation-frequency is dependent upon the tolerances of the external timing components. For an even mark/space clock, $T_{\text {osc }}$ is set to half the required period and a divide by 2 bistable SN7474 is used from any Q or $\overline{\mathrm{Q}}$ output. With a further chain of bistables, this ring-of-three circuit has been used to generate clock signals for asynchronous data transmission applications.

A ring-of-four circuit requires a fourth monostable in the ring with each T_{p} being set to $1 / 4 \times T_{\text {osc }}$. When the external resistances of any two non-adjacent monostables are realised as variable components, the oscillator generates a selection of multiphase pulses which may be derived from any Q or \bar{Q} output as required. This latter configuration has been used in conjunction with certain microprocessor devices.
P. J. Best,

Dept of Electrical Engineering \& Electronics, Manchester University.

P.w.m. oscillator to vary display-intensity

Intensity control of solid-state displays by pulse width modulation is now a standard technique. Conventional systems employ a separate oscillator and modulator. The circuit suggested here combines the two functions using a common t.t.l. device. With $\overline{\mathrm{Q}}$ high, C_{1} will charge toward the switching potential of the B input Schmitt trigger, firing the monostable. $\overline{\mathrm{Q}}$ will go low, discharing C_{1} via D_{1}. At the end of the triggered period, which is set by the potentiometer with $\mathrm{C}_{2}, \overline{\mathrm{Q}}$ will go high, repeating the cycle.
A fan out of 10 is available from the Q output. This follows a high-off convention and is suitable for displays such as the Hewlett-Packard 7300 series. Should the complement be required a smaller fan-out is available from $\overline{\mathrm{Q}}$.
C. Bartram.

Department of Metallurgy \&
Science of Materials,
Oxford.

Shunt stabilized power supply

This circuit offers an improved power handling capacity over a simple zener stabilized circuit. It is short-circuit proof and less likely to damage delicate loads in the event of a fault in the supply. In many cases less power will be dissipated, by the regulating transistor,
than in conventional series stabilizers. In the circuit shown, a feedback amplifier has been added to compare the output and zener voltages. The regulating transistor carries current equal to the difference between maximum and instantaneous currents. Therefore, if the
load normally takes close to maximum current, the power dissipation will be low and a cheaper transistor may be used, particularly if the unregulated input voltage is very much larger than the required output voltage.'
J. Suter,

Wallasey,
Cheshire.

Simple window discriminator

The voltages at the input terminals of the comparator are as shown. V_{A} is an attenuated form of the input V_{1}, but V_{B} is offset by an amount $-b V_{S}\left(V_{S}=\right.$ supply voltage), and rises linearly with

V_{i} until D_{1} becomes reverse biased, when it is clamped to $V_{\text {ref }}$. Thus the V_{A} and v_{B} curves cross twice, giving rise to the two switching points. V_{B}, below the knee, is given by $V_{B}=V_{i n}(1-b)-b V_{S}$, and above by $V_{B}=V_{\text {ref }}$. Because $V_{A}=$ $a V_{\text {in }}$, the lower switching point occurs at;

$$
\begin{gathered}
a V_{i n}=(1-b) V_{i n}-b V_{S} \\
\text { i.e. } \quad V_{\text {in }}=-b V_{S} /(a+b-1), \\
\text { and the upper switching point at; } \\
\quad a V_{\text {in }}=V_{\text {ref }} \\
\text { i.e. } \quad V_{\text {in }}=V_{\text {ref }} / a .
\end{gathered}
$$

By fixing the ratio, the two switching points may be varied independently by adjusting b and $V_{\text {ref }}$ for the lower and upper points respectively. As shown, the circuit will work only with positive going input voltages, but by reversing the polarity of $D_{1}, V_{\text {ref }}$ and $-V_{S}$, may be made to work with negative going inputs.
M. J. Newman,

Stockton,
Teesside.

Digital pulse detector

The display of digital pulses, on an oscilloscope, becomes difficult if they are not repetitive. Pulses of a fairly long duration (milliseconds) may be displayed on a storage oscilloscope but the display of microsecond and nanosecond pulse widths becomes particularly difficult, if not impossible.

This circuit provides a simple method for detecting such pulses. Because the D type bistable transfers the information from its data input to the Q output on the positive going edge of the clock pulse, both positive and negative pulses with widths down to approximately 10ns may be detected.

Any positive-edge triggered bistable may be used provided the correct conditions are wired to the J and K or data inputs.
P. V. Prior, Ipswich,
Suffolk.

Universal-motor reverser

Universal motors are basically series types and, if the direction of rotation is to be reversed, the field connection must be reversed relative to the armature. The field winding usually consists of two coils, one at either end of the armature. These connections are made internally and must be cut, the ends being brought out separately. The field coils are connected to line and neutral with the armature in a full-controlled bridge rectifier circuit. Switches S_{1} and S_{2} allow either of the thyristors to conduct when forward biased. With S_{1} closed, the current in the field coils is from neutral to line, i.e. the motor only uses half the a.c. cycle. With S_{2} closed the current in the field coils is from line to neutral. Because the current in the armature is always from right to left, the effective direction between field and armature is changed. The starting current, on a full half wave, is five times

larger than the rated load current. Unless frequent stop-starts or reversals are contemplated, only modest rectifiers and thyristors are needed and large heatsinks are not required.

Diodes D_{4} and D_{5} need only be low voltage types but D_{3} must have a 400 V rating for use on 240 V a.c. supplies.

A. Refsum

Queen's University,
Belfast.

Contributors to Circuit Ideas are urged to say what is new or improved about their circuit early in the item, preferably in the first sentence.

Non-symmetrical phase-sensitive detector

This circuit gives an output voltage proportional to the phase angle between signal and reference waveforms, at one of two outputs dependent on whether the signal leads or lags the reference.

An exclusive-OR gate is used as a p.s.d. and the output of this is switched between the two outputs by a sequence detector consisting of two RS flip-flops interconnected in a lock-out system, the flip-flops being reset during the period when both signal and reference are at zero. The values of R and C must be
calculated from the frequency of the signal and the input resistance of the following stage. R should not be lower than 4 k 7 to avoid overloading the final inverter gate.

There is a discontinuity at $\pm 180^{\circ}$ and hence the circuit is unreliable at this point. The maximum output swing is approximately 2.5 V .
G. C. Plain,

Barnby,
Suffolk.

Centenary of the telephone

A hundred years on and electronics is taking over

Alexander Graham Bell, the Scotsman who invented the telephone and first demonstrated it in Philadelphia in 1876, would not have been particularly surprised at the idea of sending telephone conversations over optical fibres, for he did something similar himself. He also invented the "photophone", an apparatus which transmitted voice waveforms along a beam of light and picked them up at the receiving end with a photoelectric cell. But he certainly would be surprised at the many other developments in telephone technology which have resulted from the application of electronics to his invention: communication satellites, undersea repeaters, viewphones, computer controlled electronic exchanges, waveguides, digital transmission, adaptive line equalizers the whole host of devices which are now becoming familiar ideas to the telecommunication engineers of 1976.
Leaving aside radio telephony and such marvels as conversations between the moon and earth, Bell would have been astonished at the multitude of other devices that have now been put on to the lines and cables originally set up for telephony. Facsimile, data transmission, telemetry, sound and television broadcasting distribution are just a few. The "wired city" with its interactive information systems is not all that far off in 1976. Actually this year is a notable one for communication anniversaries in the UK: it is also the quincentenary of the introduction of printing to England by Caxton and the quinquagenary of Baird's demonstration of television to members of the Royal Institution (see January issue). The symbols and pictures disseminated by these techniques are now in fact being transmitted on the switched telephone network along with the phonemes of speech, and increasingly this is being done with the help of electronics. The diagram opposite (taken from "Telecommunication developments in the United Kingdom and their social implications" by W. J. Bray and A. A. L. Reid, IEEE Trans. Commun. Com-23 No. 10 Oct. 1975) shows the development of such information services from the year 1870 up to a projected situation in 2000 AD .

Alexander Graham Bell, 1847-1922, inventor of the telephone.

Just in time for 1976 the Post Office decided to open its new research centre at Martlesham Heath, near Ipswich in Suffolk. Claimed to be the most advanced centre for telecommunications research in Europe, it cost nearly £ll million to build and will employ 1,800 people. Here the visitor is very much aware of the dominance of electronics, and the following notes outline some of the main areas of work.

Optical fibres

Transmitting digital signals over optical fibres may eventually be more economic than using coaxial cables for most inter-city trunk routes. Optical fibres would avoid the need for buried repeaters on routes between urban-area telephone exchanges, would get rid of intermediate repeaters in most c.a.t.v. connections and would reduce the number of repeaters required in c.c.t.v. connections. Further simplification would follow from the use of space division multiplexing. Fibres can be assembled into cables, which can be drawn into ducts like those now used for conventional telephone cables. Fibre cables would be smaller, lighter and more flexible than metal cables of similar information carrying capacity.

In a p.c.m. transmission system an infra-red light source, e.g. a light emitting diode or solid-state laser (see photo), is coupled to the fibre and switched on and off in accordance with the digital pulses. At the receiving end of the fibre the light signals are coupled to a photo-diode and converted back into electrical signals, which can then be processed in the same way as digital signals in other systems. Analogue transmission - of, say, television signals - is also possible over optical fibre lengths of several kilometres. Digital transmission is preferred for all kinds of signals over long (e.g. intercity) distances.
A great deal of work has been put into developing fibres with low attenuation, to reduce the number of repeaters needed for a given distance. A few years ago we were hearing of attenuations of $20 \mathrm{~dB} / \mathrm{km}$ but now they are generally below $10 \mathrm{~dB} / \mathrm{km}$ and even approaching $1 \mathrm{~dB} / \mathrm{km}$ in some cases. At Martlesham an $8 \mathrm{Mb} / \mathrm{s}$ optical fibre transmission system is being developed which will be capable of handling 120 telephony channels over a 4 km to 5 km length of each fibre. This system uses a gallium arsenide light-emitting diode operating at the infra-red wavelength of about 900 nm , together with a large-core multi-mode fibre with an attenuation of about $7 \mathrm{~dB} / \mathrm{km}$. For the detector at the receiving end a silicon avalanche photodiode detector is used, and the resulting electrical signal is regenerated by conventional solid-state electronic circuits.

Electronic exchanges

Britain's first commercially produced electronic telephone exchange, the TXE4, is about to go into service at the Rectory Exchange at Sutton Coldfield near Birmingham. (Experimental electronic exchanges have been on public trial for short periods over the past decade or so.) Meanwhile more TXE4s are being manufactured for public service in exchanges handling 3,000 to 40,000 lines, and these, gradually replacing the existing Strowger and crossbar electromechanical exchanges, are expected to remain in service for about 25 years.

The TXE4, however, is not fully electronic, because the final connections between the speech wire pairs of subscribers are made by reed relays arranged in a matrix switching system. The operation of these relays is automatically controlled by electronic, solid-state, computer-like equipment working under programme control. Consider the analogy of a human switchboard operator using eyes, brain and hands in a manual exchange. The hands making connections are equivalent to the reed relay switching apparatus; the eyes looking at indicators are equivalent to electronic scanning and storage equipment examining the state of the incoming lines to see whether calls are being made on them; while the operator's brain is equivalent to electronic "control units" which identify calling subscribers, determine the connections required, select suitable routes through the network and finally operate the reed relays.
Programme control for the "brain" part - an ordered sequence of instructions which must be followed to set up each connection - is provided physically by a permanent wired programme. This consists of energizing wires running in various paths through an array of small ferrite cores carrying sensing windings. Each wire is energized in turn by having a current pulse passed through it, and this causes a particular combination of the cores to be magnetized - forming an instruction. Whichever pattern of cores is magnetized (the instruction) is read out by the sensing windings.

In later electronic exchanges the wired programme will be replaced by an alterable stored programme as used in digital computers. The stored programme control exchange on which the Post Office is working at Martlesham is called System X - presumably because its final form is not yet known. The essential thing about it, however, is that the actual connections between lines will be made by solid-state switches. Whether these will be diodes, or f.e.ts or something else is not yet decided, but they will almost certainly be integrated in m.s.i. or I.s.i. form. Already the i.c. manufacturers are putting small crosspoint switching devices on the market.

The advantages offered by System X will be greater versatility and the ability to both cope with changing requirements from customers and take in future advances in electronics technology. Reductions in cost, weight and size are also likely, and, of course, there will be no electro-mechanical components producing noise and requiring regular maintenance. The system will use a range of control processors compatible with the GEC Mark IIBL computer which has been chosen as the main processor for System X. The first parts of System X to be introduced will provide digital switching for trunk routes.

Meanwhile at Martlesham a small

Bell used a reflecting diaphragm to modulate the light beam in his
"photophone": nowadays, with optical fibres, the transducer is a laser. Here a Post Office scientist is checking the performance of solid-state lasers for optical fibre transmission as part of a device reliability study.
local telephone exchange has been designed as part of the switching research programme for System X. It makes extensive use of digital processor control, and the processors are arranged in a three-level hierarchy. At the highest level is a highly reliable digital processor at a remote site. This enables the cost of tasks which require

The development of British Post Office telecommunications services. (Telex $=$ teleprinter; Datel $=$ data communication; Confravision = conference television; Fax $=$ facsimile; Viewphone = video telephone; Viewdata $=$ textual information displayed on television set; Telemail $=$ overnight letter facsimile service.)
large electronic stores, or which are not used very frequently such as fault diagnosis or control of special facilities, to be shared between many exchanges. A smaller, local processor is responsible for the control of the basic telephone service. At the lowest level in the hierarchy a number of single-chip microprocessors perform simple tasks, and these are replicated over several units so that the failure of any one degrades, but does not interrupt, the service. Speech paths are switched by reed relays as the constraints imposed by the standard telephone make this necessary.
The register which receives the dialled or keyed information from the customer is an example of microprocessor control. The programme in the microprocessor discriminates between different types of signalling by examining the signal characteristics and then uses an analysis programme to interpret the information. Thus a mixture of telephones, with conventional dials or keypads, can be connected to the exchange. Whatever the type of sig-

2000

Telemail
Radiopaging Confravision Viewphone Universal Fax Telemetry Telecommand Super Telex Viewdata Radiophone Datel
Telex
Facsimile
Telephony Telegraphy

Home New Colour Fax Radiopaging Confravision Viewphone Universal Fax Telemetry Telecommano Super Telex Viewdata Radiophone Datel
Telex Facsimile
Telephony Telegraphy
nalling, one digit at a time is passed up to the local processor which controls the call connection.
Call processing is normally performed by the main machine unless a failure is detected. This detection is achieved by simple checking circuits and simple software routines which monitor the accuracy and duration of each stage in the setting up of each call.
Sooner or later research and development contracts for System X will be placed with the telephone equipment manufacturers.

Communications satellites

The latest communications satellite to come into service is the first of the Intelsat IV-A series, which began operating in January (see Space News, February). Carrying 20 transponders, it will handle 6,000 telephone circuits or 20 television channels or various combinations of other services. The next series of comsats will be the Intelsat Vs, due to come into operation in 1979. These will use not only the present 4 and 6 GHz frequency bands but also the higher satellite bands at 11 and 14 GHz . These higher frequency systems can only be economically and efficiently designed if there is sufficient long-term statistical data on the propagation characteristics of the satellite-earth paths. Such data can be obtained from measurements on signals radiated from geostationary satellites, and at Martlesham a 6 m diameter steerable aerial has been built for this work. Path attenuation and depolarisation measurements at frequencies from 11 to 30 GHz will be made possible by the availability in the next three years of two experimental satellites. These are the ATS-6, now stationed at 35° E over East Africa (see p.68), and the OTS (European Space Agency) satellite which will become available in late 1977. Martlesham started working with ATS-6 in July 1975, and data at 20 and 30 GHz will be collected until mid-1976, when the satellite will be returned to its original position at $95^{\circ} \mathrm{W}$ after the Indian television broadcasting experiment. The OTS satellite will provide data at 11 and 14 GHz .
In the absence of experimental satellites, sky noise temperature measurements can be used to determine slantpath attenuation over a range of about 10 dB . Radiometers working at 20 and 30 GHz have been built and their use is being validated by the ATS-6 measurements.

Digital transmission

Pulse code modulation is being widely adopted for signal transmission because it gives large improvements in economy and performance. Already over 3,000 p.c.m. systems are operating in the UK. Latest work is concentrated on a high-capacity $120 \mathrm{Mb} / \mathrm{s}$ system (February 1975 issue, p.92). In February 1976 we reported on experiments by
the Post Office, BBC and IBA in digitizing colour television signals and sending them over the Guildford-Portsmouth $120 \mathrm{Mb} / \mathrm{s}$ system. At Martlesham the Post Office is studying methods of coding television signals to reduce the required transmission capacity to a practical minimum. This involves making use of the statistical redundancy of television pictures and also the psychological and physiological limitations of the human visual system. So far these studies have been concerned with coding the composite PAL colour signal to allow this signal format to be preserved throughout a mixture of analogue and digital links. When there are enough digital transmission systems in use to provide a completely digital television network, it may be a good idea to distribute colour signals by multiplexing separately encoded colour components.

Future research will aim at reducing the redundancies of the digitised colour signal components by using coding techniques that have been developed for monochrome pictures. These include differential coding using predictions based upon samples in the same ine, the previous line and the previous frame of each signal or in the associated colour components. First parameters to be established - subjectively - are the minimum necessary sampling rates (and bandwidths) and numbers of bits per sample for each colour component.
As for digitisation of speech, it's possible that in addition to the p.c.m. being used between exchanges, in the future digitized signals could come right into the home, to and from the telephone handset. The idea is to use time division multiplexing to get more telephone conversations on to the existing local telephone lines, in order to utilize them more economically. Methods being tried at Martlesham include delta-sigma modulation, which is fairly simple to implement and is economical in bandwidth compared with straight p.c.m. Measurements are being made to find out whether existing local lines and cables will be able to handle the higher frequencies present in digital signals.

Waveguide for the trunk network

As an alternative to coaxial cable, microwave relays and optical fibres, long distance waveguides carrying millimetre waves could be an economic possibility for the trunk routes of the future. Now being tested is a 14 km length of circular waveguide running between Martlesham and Wickham Market in Suffolk. It consists of a 50 mm diameter helix of fine copper wire set within a lossy resin-impregnated, glass-fibre tube. Typical attenuation is less than $3 \mathrm{~dB} / \mathrm{km}$ from 32 to 110 GHz , falling to less than $2 \mathrm{~dB} / \mathrm{km}$ between about 40 and 80 GHz . For the trial the frequency range has been split into five bands, $32-40,41-49,52-68,72-88$ and $90-110 \mathrm{GHz}$. The first two bands are
each subdivided into 16 channels, the next two into eight channels, and frequencies above 90 GHz are used for monitoring purposes. Using relatively simple filters and four-phase modulation, each of the 16 go plus 16 return channels can provide an information capacity of about $500 \mathrm{Mbit} / \mathrm{s}$, while each of the eight go plus eight return channels has a capacity of about $2 \mathrm{Gbit} / \mathrm{s}$. This means that when exploited up to about 90 GHz the system could handle $24 \mathrm{Gbit} / \mathrm{s}$ each way - the equivalent of more than 300,000 twoway telephone circuits, with further capacity available above 90 GHz .
Digital repeaters using solid state devices and microwave i.cs are installed at each end of the waveguide run so that a digital signal, comprising colour television and simulated multichannel telephony, can be transmitted from Martlesham and looped back at Wickham Market up to four times in each direction - a total transmission distance of about 112 km with repeaters at 14 km intervals.

The wired city

Viewdata, the Post Office's new television screen information service now on pilot trial (November issue, p.532), is just one of the many communication services which could be provided in addition to the telephone by the "domestic terminal" of the future. Facsimile, data, viewphone, television and others shown in the diagram are also possible. Although existing local cables are designed only for the telephone, higher frequency signals can often be transmitted over the relatively short distances of the local network. The existing network is already being used for services such as data and subscriber-carrier telephony, and a viewphone service with a bandwidth up to 1 MHz might also be possible.

In the future signals of much greater bandwidth than can be handled at present will need to be transmitted if all the new services shown in the diagram are to be offered. A new network for wideband transmission-about 500 MHz - being studied at Martlesham makes use of coaxial cable laid in closed loops around the service area. Customers would have access to this wideband "highway" through nearby electronic "accessors". Signals would circulate in one direction, out from the exchange and back again. The upper part of the spectrum could transmit broadband video signals in analogue form for educational TV, surveillance and traffic control, and for broadcast entertainment TV. The lower part of the spectrum, below about 100 MHz , could be allocated to two-way switched services, such as speech, data, facsimile, viewphone, operating in the digital mode. The advantages of digital techniques here would be negliglible transmission impairment, cheaper switching and compatibility with the new p.c.m. trunk network.

Not appliance operators!

The ARRL has strongly rebutted the frequent charge that radio amateurs have degenerated to the status of mere appliance operators who simply purchase all equipment and no longer care or know about the technical aspects of electronics. In a guest editorial in QST, Vic Clark, W4KFC, dismisses this as "nonsense". He agrees that in the early days amateurs were required by circumstances to construct most of their equipment "although many wound coils and wired circuits simply by dutiful adherence to designs developed by the more knowledgeable". Today, he claims, few are content merely to use purchased equipment but continually seek new horizons of technical and operational effectiveness in the best amateur tradition: "we devise, construct, modify, reconfigure, test, diversify, substitute and repair as necessary . . . in the process we learn and make contributions to society and to the state of the art."

Indeed, Vic Clark suggests that today there is vastly more technical interest and experimentation than at any time and that this is carried out "within the framework of an orderly, progressive and self-disciplined radio service which places a minimum burden on the public coffers . . amateur radio has more to be proud of today than ever."

Technical innovations

One outcome of the supposed "black box" concept of amateur radio is the belief that the equipment and techniques of radio communication are now so developed that there is little scope for experimentation. In practice, fortunately, this is far from true: a surprisingly large number of new ideas in systems, circuits and aerials continue to emerge from the hobby. with British amateurs playing their full part. Although any selection must be invidious, the following could be among those of the last few years that clearly have applications beyond the hobby itself.

The rapidly increasing use of s.s.b. up to and including 1.3 GHz (currently in the UK, v.h.f. amplitude modulation
seems to be disappearing as rapidly as a decade ago it did on h.f.); renewed interest in low-cost phasing methods of generating s.s.b. (including digital r.f. phase-shifting, third-method and the more recent polyphase approach which, although developed initially at STL for professional use, has been taken up and developed for h.f. and v.h.f. by amateurs) and combinations of filter with phasing methods to allow relatively low-cost filters to be used primarily for cleaning up the output; pseudo-stereo methods of enhancing the reception of weak c.w. signals as developed by F. Charman, G6CJ, and R. Harris, G30TK; the simple use of PAL television delay lines to stabilise variable frequency oscillators as proposed by Brian Rose, G3ULR; a new general theory on dual-frequency resonance of aerial elements discovered by Leslie Moxon, G6XN.

If one adds the large number of new techniques for the display of slow-scan television images; conversion units for transcoding between c.w. teleprinters and visual displays; the increasing interest in circular and dual polarization for fixed and mobile communications; the OSCAR space techniques, earth-moon-earth and similarly exotic systems, it can still be fairly claimed that amateur radio continues to contribute to the art and practice of radio communication and is not content to ride on other people's development work.

On the ultra highs

Since November 1975, American amateurs have been permitted to use "all frequencies above 300 GHz " a ruling that recalls the famous " 200 metres and down" edict of 1912. In addition they have been allotted: 48 to $50 \mathrm{GHz} ; 71$ to $76 \mathrm{GHz} ; 165$ to 170 GHz ; and 240 to 250 GHz .

Considerable progress was made during 1975 in moonbounce work, partly due to the use for tests of the $150-\mathrm{ft}$ dish aerial of the Stanford Research Institute. (WA6LET) and many stations in the U.SA are now interested in 144 MHz e-m-e operation; 432 MHz is used world-wide (Peter Blair, G3LTF and S. J. W. Freeman, G3LQR helping to put the UK on the e-m-e map); and some activity on 50 MHz in those countries where this band is available.

Three times as much use in being made of the 432 to 144 MHz OSCAR transposer in Europe as in North America, with more West German than American users.

1975 saw the first use of the 24 GHz band in the UK by L. W. G. Sharrock, G3BNL, and A. Wakeman, G3EEZ, who are believed to have established a world record by making contact over distances up to 154 km . A new RSGB microwave award is available to amateurs making contact over distances exceeding 600 km on the 1.3 GHz band.

Japanese "explosion"

The "incredible explosion" of amateur radio in Japan during the past decade today more than a half-million Japanese hold operator licences, more than double the number of Americans - may have provided the home market on which the country's commercial prowess in this field is based, but it has clearly resulted in many local problems. Hal Offutt, K8HVT/JAlZXX, says that many, finding the bands swamped, soon lose interest; only about half of the total hold station licences and less than 30,000 the first and second class licences; there are about 30,000 with "novice-type" licences but the overwhelming majority never progress beyond the 10 -watt radiotelephoneonly licences. Unlike Europe or America, these phone-only licences cover h.f. as well as v.h.f., skating around international regulations on the grounds that they do not cause "harmful interference" to other services. Although (as many of us would confirm) Japanese amateurs heard in Europe are among the most courteous and competent of operators, there is much flaunting of the power and frequency restrictions. Many give up after about six months and regard amateur radio almost entirely as a hobby with little or no interest in the public service or educational aspects. The national society, JARL, has 70,000 members.

In brief

An industrial dispute has delayed the holding of amateur radio examinations, including those for the new novice category, in Australia. . . . The French national society, REF, has increased membership from about 6,200 in 1968 to over 12,000 . . . ARRL membership has increased to over 120,000 . . . The FCC has lifted restrictions on crossband operation of repeaters permitting the output to be on a different band from its input. . . Roger Taupiac, F8KT, who died recently, acted as a resistance radio operator of the Brutus network during the period November 1, 1942 to September 30, 1944 and used much of his pre-war equipment in repairing many clandestine transmitters. . . . The first of the "six-band" worked all continents awards has gone to Tokuro Matsumoto, JA7AO. . . . Good quality, high-voitage variable capacitors for home constructors are described as "a species near extinction" in the USA and some amateurs are now making their own using the slide trombone technique of moving cylindrical plates one inside the other. . . John Johnston, K3BNS, has become chief of the Amateur and Citizens Division of FCC. . . The 1975 Sarnoff Award of the Radio Club of America went to Edgar F. Johnson, a pioneer amateur who in 1923 began a mail-order business selling components to radio amateurs.

PAT HAWKER, G3VA

Meetings
 MARCH

LONDON

1st. IEE/IERE - Colloquium on "The influence of high level languages on computer system design" at 10.30 at Savoy PI., WC2.

Ist. BKSTS - Symposium on "Sound from microphone to ear" at 19.00 at Thames Television, Studio 7, Euston Road, London NW1.
2nd. AES - "Acoustic loading of loudspeakers" by John D. Collinson at 19.15 at the IEE, Savoy PI. WC2.
3rd. IEE - Colloquium on "Low cost microwave components and subsystems" at 10.30 at Savoy PI. WC2.

3rd. IERE - Colloquium on "Tropospheric scatter communications" at 14.00 at 9 Bedford Sq. wCl.
4th. IEE -67 th Kelvin lecture on "The pulsar dynamo" by Prof. A. Hewish at 17.30 at Savoy PI. WC2.
10th. IEE/IERE - Colloquium on "Centenary of the telephone" at 10.00 at Savoy P1., WC2.
10th. BKSTS - "CCTV applications" by Peter Thompson at 19.30 at Thames Television Theatre 308-316 Euston Road, London NW1.
1lth. R.Soc. - Discussion on "New particles and new quantum numbers" at 10.15 at 6 Carlton House Terrace, London SWl.

1lth. IEE - "Commercial electric vehicles" by Dr. M. A. Hind at 18.00 at Thames Polytechnic Wellington St., SE18.

15th. IEE - Colloquium on "Dynamics and control theory for biological applications" at 14.30 at Savoy PI., WC2.

16th. IEE/R.Ae.S. - Symposium on "Equipment and system design for minimum cost of ownership" at Royal Aeronautical Society, 4 Hamilton PI., W1.

16th. IEE - "The application of radar to meteorology" by Dr. B. C. Taylor at 17.30 at Savoy PI., WC2,
17th. IEE/Operational Research Soc. - Colloquium on "Everyday use of business models" at 10.30 at Savoy Pl., WC2.

17th. IEE - "From d.c. to light: pulses and plasmas" by Dr. J. E. Carroll at 17.30 at Savoy PI., WC2.

18th. IEE - Colloquium on "Physiological aspects of biological control systems" at 10.30 at St Thomas' Hospital, Lambeth Palace Rd., SE1.

18th. IEETE - "Terotechnology" by Dennis Parkes at 18.00 at the IEE Lecture Theatre, Savoy Pl., WC2.
18th. IERE - "Global communications" by D. Weedon at 18.00 at 9 Bedford Sq ., WC1.
22nd. IEE - Discussion on "Remote audio conferencing" at 17.30 at Savoy Pl., WC2.
22nd. IEE - "Planning of the u.h.f. television transmitter network" by W. F. Williams and G. H. Taylor at 18.30 at Savoy PI., WC2.
23rd. IEE - Colloquium on "Programmable controllers" at 10.30 at Savoy PI., WC2.
24th. IEE - Colloquium on "Logic design using microprocessors" at Savoy PI., WC2.
25th. IEE - "Measurement of earth resources by optical means" at 17.30 at Savoy P1., WC2.
25th. IEE - "New talks for science and technology" by Sir Alan Cottrell at 17.30 at Savoy Pl., WC2.
29th. IEE - Colloquium on "CCTV in difficult environments" at 14.30 at Savoy Pl., WC2.

ABINGDON

10th. IEE - "Sonar and underwater acoustic communications" by V. G. Welsby at 19.00 at Culham Laboratory, Nr Abingdon.

BATH

17th. SERT - "Recent developments in land mobile radio" by Prof. W. Gosling at 19.15 at the University of Bath

BIRMINGHAM

17th. RTS - "Charge coupled television cameras" by Harold Brown at 19.00 at A.T.V. Centre, Broad Street.

BOURNEMOUTH

1lth. IEETE - "Advanced passenger train" by P. Cautley at 19.30 at Cotford Hall Hotel, Knyveton Road.

BRISTOL

10th. BKSTS - "Let's talk sound" (discussion on sound-recording techniques) at 19.30 at BBC, Whiteladies Road.

CHATHAM

17th. IERE - Discussion on "Education and training for the electronic engineer" at 19.00 at Medway and Maidstone College of Technology.

GRIMSBY

10th. SERT - "The Trinitron tube" by a speaker from Sony (UK) Ltd. at 19.30 at Grimsby College of Technology.

HATFIELD

18th. IERE - "The technology of scientific satellites" by G. G. Lewis at 19.45 at Hatfield Polytechnic.

IPSWICH

24th. IEETE - "Radio Orwell" by R. G. Allison at 19.30 at Room 2. Ipswich Town Hall.

11th. SERT - "Engineering aspects of sound reproduction" by Mr Watling at 19.30 at the Civic College.

LIVERPOOL

19th. IEE - Faraday lecture on "The entertaining electron" by F. H. Steele in the afternoon and evening at the Philharmonic Hall.

MAIDSTONE

Ist. IEE/Maidstone District - "Stereophonic and ambisonic reproduction" by Prof. P. B. Fellgett at 19.00 at S.E.E.B., Maidstone District Offices, Parkwood, Sutton Road.

MIDDLESBROUGH

30th. SERT - "Latest developments in measuring instruments" at 19.45 at the Cleveland Scientific Institute.

PRESTON

2nd. SERT - "Current trends in television power supplies" by a speaker from Granada TV at 19.30 at Room G7, Preston Polytechnic

SHEFFIELD

24th. IEETE - "Electrical and electronics engineering in the hospital services" by K. H. Dale at 19.30 at Granville College of Further Education, Granville Road.

SLOUGH

16th. IEETE. - "CEEFAX: a new form of broadcasting" by J. P. Chambers at 19.30 at Slough College of Technology, Wellington Street

SWANSEA

10th. IEETE - "Hi-fi, a technical appreciation" by J. Ham at 19.30 at University College, Singleton Park.

WORCESTER

30th. IEETE - "The history and development of radio astronomy" by D. M. A. Wilson at 19.00 at the MEB Training Centre, Whittington, Nr Worcester.

Tickets are required for some meetings: readers are advised therefore to contact the society concerned.

HF predictions

Solar activity summary for 1975 from data supplied by the Royal Greenwich Observatory:

	A	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}
Jan				0	22	11		14
Feb			1	0	27	10		20
Mar				0	27	9		16
Apr				0	22	5		19
May				0	32	8		21
Jun				0	39	10		25
Jul	1			12	45	28		22
Aug	2	6	5	9	66	35	2	24
Sep				0	39	16		26
Oct				0	20	9	1	22
Nov	1			0	44	18		19
Dec				0	22	12		12

A, sunspots greater than 500 millionths of the sun's visible hemisphere; B, sudden enhancement of visible hemisphere; B , sudden enhancement of
atmospherics at 28.5 kHz ; C, solar flares; D, lowest atmospherics at 28.5 kHz ; C, solar flares; D , lowest
of daily sunspot numbers; E , highest of daily sunspot numbers; T, mean of daily sunspot numbers; G, new cycle spots; H, number of days on which sunspot counts were made.

Every day,our cusfomers establish new reliability records in data collection and display....

...in-air,offshore,even underground, SE provides effective economical solutions to instrumentation

recording problems....

No-one covers a more diverse range of data recording and display requirements than SE. There are sophisticated SE pressure transducers

And whether your application is in aerospace, industry or research, you can pinpoint your precise needs from our range of transducers, signal
monitoring the engines of in-flight Tri-stars, ultraviolet recorders and signal conditioning equipment measuring vibration levels of construction machinery in the new Dartford Tunnel, high performance analogue tape recorders checking vital parameters in the design of offshore platforms and ships.
conditioning equipment, oscillographs and analogue tape recorders.
And all SE equipment offers the high reliability and above all Guaranteed Value - needed today. For further information on the most effective instrumentation recording system to match your needs, contact SE.

Analogue Magnetic Tape Recorders.

There are four instruments in the SE range from four channel portable equipment weighing only 11.5 kg to the SE 5000 high performance mid-band recorder, established leader in multi-format analogue magnetic tape recording, offering 14, 28 or 42-track operation with direct recording to $600 \mathrm{kHz}, F M$ to 80 kHz and PCM to 2 Mbps . Another outstanding instrument is the SE 7000A, fully portable but with all the facilities you . normally associate with a fixed installation. It offers single switch selection of recording speeds and a built-in calibration system allowing all parameters to be checked, set-up and monitored instantly. All this in a true portable mains or battery operated 14-channel device weighing only 43 kg . Another key feature of the SE 7000A is the ability to record and reproduce at all speeds in the range 60 to $15 / 16 \mathrm{ips}$ without the need to change plug-in filters/equalisers or to adjust zero and gain settings.
If you want the best - and value for money,
contact SE.

A JCB excavator loader undergoes intensive strain and hydraulic pressure tests at the company's Rocester research area. Measurements are recorded on an SE 7000 portable instrumentation recorder for subsequent laboratory analysis.

Compare the value of SE reliability,

SE systems capability,SE service with any other in the instrumentation recording field.

In addition to providing standard off-the-shelf instruments suitable for displaying, recording and monitoring data for a wide range of applications,
equ pment. In the UK there are full calibration/ service centres at Feltham, Manchester, Not:irgham, Wells and Glasgow, and facilities for

SE will provide a tailor-made system package to match specific requirements - from displaying pressure diecasting and plastic extrusion phenomena to hydraulic and strain test monitoring etc. We can provide the entire system, hardware to software, and guarantee its system function. And SE provides the quick-reacting service back-up to ensure you get the best out of your
switt, emergency on-site service. Overseas SE companies and service agents offer a similar capability.

When you buy SE instruments you get the right price/performance ratio, reliability, ease of operation and a first-class after-sales serjice back-up.

Multimeters, Voltmeters, Counters, Dynamic Analysis, Oscillographs, Transducers, Signal Conditioning, Analogue and Digital Tape Recorders, Modems, Medical Instrumentation.

SE Labs (EMI) Ltd., Spur Road, Feltham, Middlesex TW14 OTD England. Telephone: 01-890 1166. Telex: 23995.
A member of the EMI Group of companies
International leaders in music, electronics and leisure

Send coupon for details by return.
To: SELabs (EMI) Ltd.,
Spur Road, Feltham, Middlesex TW14 OTD England.
Telephone: 01-890 1166. Telex: 23995.
Please send me full details of:-
 Transducers}

Analogue Tape Recorders
Oscillographs and
conditioning equipment
Name/Titte
Company

Addess
\square
Tel. NoWW/B/A

European Sales \& Service

Holland: ANRU B. V., Wijnhaven 80, Rotterdam 1. Phone: 137-395
Telex: 25175
France: Emitronics, 18, Rue des Bluets, 75011 Paris Ile. Phone: 357-58-45,
357-58-46 Telex: OMITEL 68461 F ext. 196
Belgium: Régulation-Mesure S.P.R.L., Av R Vandendriessche 73, 1150 Brussels Phone: $771-2020$ Telex: 21520 Mereg-Brux
Germany: Kontron Elektronik GMBH, D8051 Eching, Postfach 105.
Phone: (08165) 77-1 Telex: 0526719
Italy: Marconi Italiana, 20135 Milano, via Comelico 3
Phone: 54-65-541/542/543 Telex: 32467
and: Via Adige 39, 00198 Roina, Phone : 86 1713, 863341 Telex: 61272
Norway: EMI Norsk A/S., Postboks 42, Korsvoll, Oslo 8. Phone: 23-14-88 Telex: 16294 EMIAS
Sweden: EMI (Sweden) Ltd., Svenska AB., Tritonvägen 17, Fack S-171, 19 Solna 1. Phone: 08-730-0060 Telex: 10046

Also represented by EMI companies and agents throughout the world.
Enquiry No. 296
Printed in England

New Products

Modular power units

Coutant Electronics have introduced a range of switched-mode power supply units called the SAC series. The circuits employ a conventional mains transformer as the first stage followed by a h.f. inverter switching stage incorporating optical isolation to produce the required regulated d.c. output via a rectifier. This method is claimed to result in lower voltage stress in the switching circuits, low ripple and noise, suitability for multiple output applications and the possibility of operating from all conventional a.c. inputs (i.e. $102-256 \mathrm{~V}, 45-65 \mathrm{~Hz}$) and $40-56 \mathrm{~V}$ d.c. inputs. There are nine units available in the series ranging from the $60 / 5$ (a 5 V , 60 A unit measuring $125 \times 190 \times 285 \mathrm{~mm}$ and weighing 10 kg) to the $4 / 24(24 \mathrm{~V}, 4 \mathrm{~A}$ output in a 4 kg module). The units' r.f.i. performance will be of interest to designers who have previously avoided switching-mode supplies due to their higher levels of radiated and conducted interference. Coutant Electronics Ltd, 3 Trafford Road, Reading, Berks RG1 8JR. WW 301 for further details

Meter for temperature and humidity

A portable instrument for measuring both temperature and humidity uses a thin-film capacitor for humidity sensing and a silicon semiconductor to measure temperature. The display is a l.e.d. type and the instrument uses rechargeable batteries. Lee-Dickens, the makers, say that the response time on the $0-100$ relative humidity range is one second to achieve 90% of the final reading at room temperature. Calibration is within 0.5% and hysteresis $(20-80-20 \%$, reading excursion) is less than 1%. The $0-100^{\circ} \mathrm{C}$ temperature range is within $0.5^{\circ} \mathrm{C}$ in both calibration and linearity. The instrument is designed as a pistol-grip device, with a probe for use in free air or for the testing of conditions in loose materials or ducts. Lee-Dickens Ltd, Desborough, Kettering, Northants.
WW 302 for further details

Printer

Known as the series 100 printer, a unit which accepts parallel b.c.d. logic from a variety of digital sources, such as digital clocks, digital voltmeters, electronic counters and computers, has been introduced by Pye TMC Components Ltd. The b.c.d. logic is decoded and printed with the print-out legibility of an electric typewriter. Two basic types are available giving the choice of a maximum capacity of either 8 or 16 columns. Where special print formats are required, these can be designed to customers' specifications. All inputs and outputs are t.t.l. compatible. Character control is by means of up to 16 columns of parallel, four-line, b.c.d. Print rate is two lines per second when a logic 0 is applied to the print command input. The print drum has $13,2.2 \mathrm{~mm}$ high by 1.5 mm wide characters in each column and incorporates a replaceable type ink roller which has a life of more than 100,000 lines. Paper width is 58 mm . Pye TMC Components Ltd, Controls Division, Roper Road, Canterbury, Kent CT2 7ER.
WW 303 for further details

Sensitive reed relay

High coil resistance of 500 ohms is the main feature of the dual-in-line reed relay $97-1-\mathrm{C}-5 / 7$ introduced by Pickering Electronics. It requires 10 mA , from a 5 V supply. Consequently the relay can be driven directly from low level t.t.l. Hitherto, many 5 V changeover d.i.l. reed relays have needed a 40 mA driver, and had a coil resistance of about 140 ohms or even less. The new relay can switch 3 W , with a maximum voltage of 28 V and a maximum current of 0.25 mA . Pickering Electronics Ltd, Brunel Road, Clacton-on-Sea, CO15 4NL.
WW $\mathbf{3 0 4}$ for further details

Heat sinks

Two extruded aluminium heatsinks for use with d.i.l. integrated circuits have been developed by Wakefield Engineering Inc. and are available from Dage Eurosem Ltd. The models 650 and 651 have transverse and longitudinal fins respectively for natural or forced air cooling. The heatsinks are mounted to the i.c. using thermally conductive and electrically isolating epoxy adhesive. Both types are supplied in $3 / 4$ in lengths, with longer units available to order. Dage Eurosem Ltd, Haywood House, Pinner, Middlesex.
WW 305 for further details

Automatic device-tester

The Datest 1 automatically tests and identifies transistors, including all classes of f.e.ts, both in and out of

WW 301 for further details

WW 302 for further details

WW 303 for further details

WW 304 for further details

WW 305 for further details
circuit, and op-amps out of circuit. No prior knowledge of device polarity is required. The instrument displays the polarity together with parameter information on a six l.e.d. display which also indicates when the battery voltage is low. Six different test sockets are incorporated and the unit is supplied with special probes for in-circuit testing. Datong Electronics Ltd, 11 Moor Park Avenue, Leeds LS6 4BT.
WW 306 for further details

Sound level meters

Bach-Simpson have announced two new portable sound level meters which comply fully with BS3489-1962 and IEC723-1961. A calibrator, precision band filter and carrying case are also available. The model 884 gives coverage from 50 to 130 dB in seven ranges with A weighting, and fast or slow response. An output jack socket is also provided for interfacing with other instrumentation. The model 886 gives coverage from 40 to 140 dB in 9 ranges, with A B and C weighting and fast or slow response. This meter has a detachable microphone for remote measurements, and two external filter jack sockets for use with an octave band filter. Bach-Simpson Ltd, Trenant Industrial Estate, Wadebridge, Cornwall, PL27 6HD.
WW 307 for further details

WW 307 for further details

Mains filter and inlet socket

A combined filter for protecting equipment against mains-borne transients and standard mains inlet socket, conforming to CEE 22, is introduced by Belling-Lee. Available in 2 A and 6 A ratings, it is suitable for standard mains supplies at 250 V a.c. or at frequencies up to 400 Hz . The mating face is in accordance with publications CEE 22 and IEC 320 and accepts standard free connectors, which can also be supplied. Side or end terminations are designed for use with either push-on or soldered connections. Overall length is 52 mm . Belling-Lee Ltd., Great Cambridge Road, Enfield, Middlesex.
WW 308 for further details

Cutters that clinch

A cutter which severs and clinches a lead in one action has been developed by Light Soldering Developments Ltd, for cutting component leads after they have been located in a p.c.b. The action prevents components from being dislodged during handling and soldering even if the board is inverted. The Litesold Cut/Clinch pliers are equally suitable for use with hand or wave soldering techniques and eliminate the need for special assembly frames to hold the components in place. The pliers cost

WW 308 for further details
£4.82 plus v.a.t. Light Soldering Developments Ltd, 97-99 Gloucester Road, Croydon, Surrey.
WW 309 for further details

Pulse and function generator

In addition to sine, square and ramp waveforms the Interstate Electronics F72 pulse and function generator produces positive, negative or bipolar pulses with variable rise and fall times at repetition frequencies from $20 \mu \mathrm{~Hz}$ to 20 MHz and with pulse widths from 15 ns to ls. Output frequency can be controlled by an external voltage, while input signals can be converted to digital levels and be shaped, offset and amplified, using the rise/fall and output amplifier controls. High and low outputs with 30 dB difference are provided and both may be used simultaneously. Maximum output of bipolar waveforms is 30 V peak-to-peak into open circuit and 15 V peak-to-peakinto 50 ohms . The generator may be connected directly to logic circuits such as m.o.s. and the sync output provides a t.t.l. compatible squarewave which may be used as an auxiliary digital circuit drive. Euro Electronic Instruments Ltd., Shirley House, 27 Camden Road, London NWI IYE.
WW 310 for further details

WW 309 for further details

WW 310 for further details

Edge connector

The Series 6072 printed-board edge connector is new to the Varelco range. It is made in glass/phenolic plastic and uses bifurcated spring nickel gold-plated contacts on a 0.1 in pitch. The connector is provided with up to 178 contacts, in two rows, with wire-wrap or solder terminations. Mounting brackets are of metal or plastic, and board guides can be used on any length of connector. Varelco Ltd, Exning Road, Newmarket, Suffolk CB8 OBB.

WW 311 for further details

Selective level meter

The selective level meter CE-24A made by Cushman Electronics has a frequency range of 200 Hz , and is portable, weighing 9.1 kg (20 pounds). It can operate from a.c. mains and also has built-in rechargeable cells for field use. A plug-in option, type 241, is available for noise measurement in N and ON carrier systems. Level range is -110 to +12 dBm . An l.e.d. frequency read-out gives 10 Hz resolution. Frequency accuracy is 1×10^{-5}. Automatic frequency control reduces errors due to drift, and the time-consuming signal peaking, and the instrument has phase-lock stability. A residual phase jitter of 1° peak-to-peak permits phase
jitter measurements at carrier frequencies. Alternative bandwidths of 1.74 kHz or 3.1 kHz are provided for channel noise measurement, and there is also a 45 Hz narrow bandwidth for single-tone measurement. Five switched impedances are available. Price is $£ 1,615$. Dana Electronics Ltd., Collingdon Street, Luton, Beds.
WW 312 for further details

Miniature circuit breakers

Available in thermal, thermal magnetic or magnetic configurations, Stopcircuit miniature circuit breakers are available from Rilton Electronics Ltd. Current ranges are from 40 mA to 25 A and up to four poles operated by a single pair of buttons. Fixing can be by a single nut, two screws, plug-in or DIN rail. Rilton Electronics Ltd, Crowborough, Sussex, TN6 1JS.
WW 313 for further details

Etch-resistant transfers

Electro Circuit symbols are a range of etch-resistant transfers for direct use on copper clad printed circuit boards. The shapes are deposited on to the copper by
rubbing a backing sheet (similar to Letraset) to produce a complete layout. The final board is then etched and the transfers subsequently removed. The symbols are supplied in wallets of five $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ sheets at around $£ 0.90$ per pack. An evaluation kit is also available which comprises 10 sheets of assorted symbols, three pieces of copper clad laminate, a jar of etching solution, and a. plastic dish for etching.

This kit is priced at $£ 6.70$ inclusive and is available from Theta, P.O. Box 10 , Martock, Somerset TA12 6LT.
WW 314 for further details

A-d converter

The low power analogue/digital converter ADC585-12 performs 12-bit conversion with a power consumption of 20 to 30 mW from a single +12 V to +15 V d.c. source. Conversion time is 100 ms . Suitable for battery powered applications, it measures 2 in $\times 2$ in $\times 0.4$ in. The device can be arranged to convert either a 0 to +10 V unipolar or $\mathrm{a}-10$ to +10 V bipolar input signal range by the external connection of two module pins. Corresponding digital outputs are c.m.o.s. level binary (unipolar) and offset binary (bipolar) codes that are simultaneously available at the module pins in both a 12-line parallel format and a single line serial format. Input impe-

WW 311 for further details

WW 313 for further details

WW 312 for further details
dance is $400 \mathrm{k} \Omega$ bipolar and $1 \mathrm{M} \Omega$ unipolar. Maximum linearity error is 0.02% and temperature coefficient accuracy is 35 p.p.m. $/{ }^{\circ} \mathrm{C}$ over the operating temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Hybrid (Component) Systems U.K. Ltd, 12a Park Street, Camberley, Surrey.
WW 3i5 for further details

Capacitor range

Plessey Capacitors has announced an extension to the 1.60 series Minibox capacitor range with the introduction of a new range of low cost miniature metallized-polyester capacitors with radial leads of 5 mm spacing. Intended as a direct replacement for monolithic ceramics, the range is designed for such applications as decoupling up to 1 MHz , timing and general use at a.f. Capacitance values offered are 1000 pF to $0.15 \mu \mathrm{~F}$ for 63 V and 100 V d.c. Tolerances are 20% and 10%; at 4700 pF and above, 5% tolerance is also available. These capacitors have better electrical properties than high K ceramics because the capacitance is not voltage dependent and their dissipation factor and insulation resistance are usually better. Plessey Capacitors, Bathgate, West Lothian, Scotland EH48 2RL.
WW 316 for further details

R.f. chokes

Moulded chokes to the MIL-C-15305 specification are available from Aladdin. Inductance values are between $0.1 \mu \mathrm{H}$ and 10 mH , the four body sizes lying between $2.4 \times 6.4 \mathrm{~mm}$ and $6.1 \times$ 18.8 mm . The cases, which are in a plastic which does not support combustion, are colour-coded and the units are intended for military and industrial use. Aladdin Components, Aladdin Building, Western Avenue, Greenford, Middlesex.
WW 317 for further details

Microwave attenuator

An 11-bit digital-to-analogue converter is used to control a p-i-n diode in the 61060 precision digital attenuator made by Anaren Microwave Inc. The converter is compatible with t.t.l. outputs and its analogue output is linearized and corrected for temperature variations before being applied to the diode attenuator. Insertion loss is, at most, 5 dB and the range of controlled attenuation is 0 to 64 dB at a maximum non-linearity of 0.5 dB . Attenuation errors do not exceed 0.3 dB from 8.5 to 9.6 GHz , at all settings, and phase shift is less than 10°. The unit will accept 100 mW at the input, with permissible overload to 1 W , at a characteristic impedance of 50 ohms. Walmore Electronics Ltd, 11-15 Betterton Street, I. ondon WC2H 9BS.

WW 318 for further details

Names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

Miniature 1A rectifier bridges

The Varo range of miniature 1 A rectifier bridges comprises seven devices with peak repetitive reverse voltage ratings from 50 to 1000 V d.c. Peak surge current for all types is 25 A , and the operating temperature range is -50 to $+150^{\circ} \mathrm{C}$. The devices are housed in 4 -pin di.i.l. packages which measure approximately $8 \times 91 / 2 \times 3 \frac{1}{2} \mathrm{~mm}$. Prices vary from 28 to 40 p in one-off quantities.

Marshall

Optically coupled isolators

A series including types $4 \mathrm{~N} 22,4 \mathrm{~N} 23$ and 4N24 designed to meet optical coupling requirements in high reliability applications is available from Norbain Electronics Ltd. They are similar to Optron's OPI 102 and OPI 103 standard isolators, available in a hermetically sealed TO-5 package, and are suitable as solutions to such problems as common mode noise rejection, ground loops and voltage level translation. Guaranteed minimum current transfer ratios are 25% for the $4 \mathrm{~N} 22,60 \%$ for the 4 N 23 and 100% for the 4 N 24 . All devices in the new isolator series are rated at 1 kV isolation.

Norbain

High voltage rectifiers

Semtech have released versions of their FF series of fast recovery silicon rectifiers available at $300 \mathrm{~V}, 400 \mathrm{~V}$ and 500 V . The $3 F F 30,40$ and 50 series have a 30 ns reverse recovery time from 0.5 A forward current to 1.0 A reverse current. The devices are suitable for high frequency applications.

Bourns

Voltage regulators

Lambda Electronics have introduced 22 new d.c. voltage regulators for positive and negative applications. The fixedvoltages range from +5 to +28 V in the LAS 500 range and -2 to -28 V in the LASl 800 range. All of the devices are housed in TO-3 packages and are rated at 1.5 A . Current limiting protection is provided in the regulators which are designed for operation in a temperature
range from -55 to $+150^{\circ} \mathrm{C}$. Typical characteristics for these devices are; line regulation 0.4%, load regulation 0.3%, and temperature coefficient $0.015 \% /{ }^{\circ} \mathrm{C}$.

Lambda

S.c.r. module

A recent addition to the Pace Pak series of encapsulated thyristor elements is the PR102W. This module contains two thyristors and three flywheel diodes arranged as a single phase half-controlled bridge for use on 240 V a.c. supplies. The device is suitable for applications such as motor speed control or variable power-supplies and can deliver a direct current up to 24 A . Compared with conventional discrete components, the Pace Pak offers a cheaper and quicker solution to many power-control problems. Connection to the module is by six screw-terminals.
I.R.

Presettable counters

Two new presettable up/down counters have been added to the comprehensive CD 4000 series of c.m.o.s. digital integrated circuits produced by RCA Solid State-Europe. The CD4510BE is a presettable b.c.d. up/down counter and the CD4516BE is a presettable binary up/down counter; each device consists of four synchronously clocked gated D-type flip-flops connected as counters. Applications include up/down difference counting, multistage synchronous counting, multistage ripple counting and synchronous frequency division. The devices are designed for medium speed operation (typically 7 MHz) and incorporate facilities for resetting and presetting. The counters can be cascaded in ripple mode by connecting the carry-out to the clock of the next stage and both devices are supplied in 16-lead d.i.l. plastic packages.

RCA

Suppliers

Norbain Electronics Ltd, Norbain House, 44 London Street, Reading RG1 4SQ.
Bourns (Trimpot) Ltd, Hodford House, 17/27 High Street, Hounslow, Middx. TW3 1TE.
RCA Solid State-Europe, Sunbury-onThames, Middx.
A. Marshall (London) Ltd, 42 Cricklewood Broadway, London NW2 3ET.
International Rectifier Ltd, Hurst Green, Oxted, Surrey.
Lambda Electronics, Abbey Barn Road, High Wycombe, Bucks, HPII 1RW.

More than just a catalogune! PROJECTS FOR YOU TO BUILD

4-digit clock, 6 -digit clock, 10 W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc.

CIRCUITS . . Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance Multiplier, etc., etc.
Full details and pictures of our wide range of components, eg. capacitors, cases, knobs, veroboards, edge connectors, plugs and sockets, lamps and lampholders, audio leads, adlaptor plugs, rotary and slide potentiometers, presets, relays, resistors (even 1\% types!), switches, interlocking pushbuttonswitches, pot cores, transformers, cable and wire, panel meters, nuts and bolts, tools, oigan components keyboards, L.E.D.'s, 7 -segment displays, heatsinks,
transistors, diodes, integrated circuits, etc., etc., etc
Really good value for money at just 40p.

The 3600 SYNTHESISER

The 3600 synthesiser includes the most popular teatures of the 4600 model, but is simpler Faster to operate, it has a switch patching system rather than the matrix patchboand of the larger unl: and is
particularly su table for li
performance and portable use.
S.A.E please
for price list

GRAPHIC EQUALIZER

A really superior high quality stereo graphic equaliser as described in Jan. 1975 issue of ETI. We stock all parts (except woodwork) including all the metal work drilled and printed as required to suit our components and PCBs Complete reprint of article - price 15 p

The 4600 SYNTHESISER

We stock alt the parts for this brillantly designed synthesiser including all the PCBs,

metalwork and a drilled and
 'printed front panel, yiving a superb professional finish. Opinions of authority agree the ETI International Synthesiser is technically superior to most of today's models. Complete construction detaıls available now in our booklet price $£ 1.50$,
or S.A.E. please for specificatio

ELECTRONIC ORGAN
 Buld vourself an exciting Electronic - Organ. Our teaflet MES51, price 15p. deals with the basic theory of electronic organs and describes the construction of a simple 49-note instrument with a single keyboard and a limited number of stops. Leaflet MES52, price 15p, describes the extension of the organ to two keyboards each with five voices and the extemsion
 by an octave of the organ's range

 Solid-state switching and new lootages atong with a pedal board and a further extension of the organ's range are shown leaflet MES53, price 35p. (Pre-publication price 15 p)
NO MORE DOUBTS ABOUT PRICES

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'll tell you about price changes ill advance for just 30p a year (refunded on purchases). If you already have our catalogue send us an s.a.e and we'll send you our latest list of
GUARANTEED prices. Send us 30p and we'll put you on our mailing list you'll receive immediately our latest price list then every two months from the starting date shown on that list you'll receive details of our prices for the next GUARANTEED period before ine prices are implemented! plus details of any new lines, special offers repay your 30 p
NOTE The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essential tirst step
Call in at our shop. 284 London Road, Westclift on Sea, Essex.
Piease address all mall to
\square
\square
\square
MAPLIN ELECTRONIC
SUPPLIES
PO. Box 3 Rayleigh Essex SS6 8LR

Surime $\mathbf{S}_{\text {and }}$ FROM BI-PRE-PAK roducts

BRAND NEW MODULES FROM THE DESIGN-BENCH OF A FOREMOST BRITISH DESIGNER AND EXCLUSIVE TO B-P-P

BUILT FOR QUALITY

THE SS 125 HIGH FIDELITY POWVR AMPLIFIER

OUTPUT
25 watts R.M.S. into 88.2 using 50 V 22 watts R.M.S. into 4Ω using 33 V (Low imp. not less than 4 4)

DISTORTION
Less than 0.05% at all power levels (ifrom 10Hz to 10 kHz]
FREQUENCY RESPONSE
$\pm 1 \mathrm{~dB} 15 \mathrm{~Hz}$ to $30 \mathrm{KHz}[4 \Omega \mathrm{\Omega}]$
$\pm 1 \mathrm{AB} 10 \mathrm{~Hz}$ to $30 \mathrm{KHz}[\mathrm{BZ}]$
high Z input
100 Kohms (40d8 gain/100x)
input Sensitivity
150mV for 25W.R.M.D. out
SIZE
(Inc. 40w. built on heat sink)

PRICED FOR ECONOMY

Not only is this Stirling Sound's best audio amplifier yet; it rightfully qualifies as one of the best of its kind yet made available to constructors. Intended above all for high-fidelity, the characteristics of the SS. 125 are such that it can be used in many other applications where dependability is the prime consideration. The SS. 125 integrates well with other S.S units as well as those of other manufacturers. Incorporates new circuitry using a complementary long-tailed pair input and full complementary output circuits to give standards of performance. Every unit is individually tested before leaving our factory and carries a guarantee of satisfaction and reliability.

Robustly designed units in each of which is a stabilised take-off point to provide for tuner, pre-amp and control stages. Size $-5 \frac{1 / 4^{\prime \prime}}{} \times 3^{\prime \prime} \times 2 \frac{1 / 8^{\prime \prime}}{}$ high $(133 \times 76 \times$ $54 \mathrm{~mm})(P / P$ add $50 p$ any model)

SS 312	$12 \mathrm{~V} / 1 \mathrm{~A}$	E3.75*
SS 318	$18 \mathrm{~V} / 1 \mathrm{~A}$	E4.15*
SS 324	$24 \mathrm{~V} / 1 \mathrm{~A}$	£4.60*
SS 334	$34 \mathrm{~V} / 2 \mathrm{~A}$	£5.20*
SS 345	$45 \mathrm{~V} / 4 \mathrm{~A}$	E6.25*
SS334 and SS345 are supplied wath transformers		
from PCBs.	Op for P/P	

A NEW STIRLING SOUND C.D.I. UNIT FOR YOUR CAR
use saving motorists appreciable trouble as well of which are in use saving to install The Stirling Sound model incorporates switch for instant change to conventional ignition; instant adaption to pos. or neg earth return; ant-burglar immobilising switch pre-set on po mexpored the unit. instructions and leads. Size 75 Br $^{\prime \prime} \times 45 / \mathrm{m}^{\prime \prime} \times 21 /{ }^{2}$

- add 50 p) BUILT \&

K|T £7.95 TESTED £10.50
A NEV X-HATCH GENERATOR
R.F. MODEL $\times 44$ For colour and mono TV: Plugs into aerial socket of set Operates without need for transmissions. 4 push-button operation Runs pocket Strong plastic case BUILT £27.50.
A USEFUL CATALOGUE - FREE
Send us a large S A. E. with $10 p$ stamp and we will send you the latest Bi-Pre Pack catalogue free by return. Packed with useful hargains - in's a real money saver. accessories equipment

TERMS OF BUSINESS:

- PERSONAL SHOPPERS WELCOME

VAT at $\mathbf{2 5} \%$ must be added to total value of order except for items marked or (8%), when VAT is to be added ar 8%. No VAT on overseas orders. POST \& PACKING add 30 p for UK $£ 1$ for postaga. Any difference will be credited or chargad. PRICES subject to alteration without notice. AVAILABILITY All items available at time of going to press when every effort is made to ensure correctness of information

Order your Stirling Sound products from Co Reg No 820919

222224 WEST ROAD, WESTGLIFF•ON•SEA. ESSEX SSO SDF. TELEPHONE: SOUTHEND (0702)46344
FACTORY AT SHOEBURYNESS, ESSEX

TO: STIRLING SOUND (BI-PRE-PAK LTD.)
222 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SSO ODF
Please send
inc. V.A
NAME
ADDRESS

LATCHING RELAY Twin latching relay 'flip-flop $2 c / 0$ each relay Mains comacts 115 volts AC or 50 voli $D \bar{C}$ operation or 240 volts A. C with 2.5 K resisior $\mathbf{8 5 p}$. Post 20p	
PRECISION CENTRIGUGAL BLOWERS Mig Dy Smiths lindusties Mintalure model Series SF 200 Size $95 \mathrm{~mm} \times 82 \mathrm{~mm} \times 82 \mathrm{~mm}$ Aperqure $38 \mathrm{~mm} \times 31 \mathrm{~mm}, 12 \mathrm{c} .9 \mathrm{~m}$ £ 2.75 . Posl 50p Mfg by Airflow Developments Lid Precision made, conlinuously rated, smooth rumming $230 / 240$ v A.C motor $80 \mathrm{e} f \mathrm{~m}$ Asillustrated but with round aperture, £6.50. Post 75 p Mily by Woods Extremely powertul $220 / 250 v$ A C. 03 amp 2.700 rpm contmuously Fated Capacinot start Cast construction Aperture $66 \mathrm{~mm} \times 50 \mathrm{~mm}$. O A 200 mm £12.00. Post है 100	
230 VOLT FAN ASSEMBLY Continuously rated, removable aluminium blades. Price £1.25. Post 50p VAT 25%	
C/O MICRO SWITCH VERY SPECIAL OFFER Mfg bV CEM 3 amp 250 vol: 10 amp 125 voll 50 for $£ 3$. Post 36 100 for E5. Post 50 p 1000 tor $\mathbf{\text { E45. Post paid }}$ DOUBLE POLE C/O or 2 make/ 2 brbak micro swatch 10 amp 250 v A.C With detachable roller assembly. 10 for $£ 2.50$. Post 50 p (Min order 10)	
COIN MECHANISM (Ex-London Transport)	
Unir contarning, selector mechanism for ip 2p \& $5 p$ coms,	
230-250 VOLT A.C. SOLENOID Simiar in appearance to illustration Approximately $1 \frac{1}{3}$ th pull. Size of feet $1 \frac{5}{6}$	

SOLENOID HEAVY DUTY MODEL
24 VOLT DC SOLENOIDS

600 WATT DIMMER SWITCH
(2)

Easily fithed fully guat anteen by makers. Wi
control uip 10600 watts of allighting excent tiuo escent at mains voltage Co
instructions. $\mathbf{£ 2} \mathbf{2} 5$. Post 25 p
instructions. $\mathbf{E 2}$
i 000 wat: model

SERVICE TRADING CO.

AUTO TRANSFORMERS

Step up step downo 15200220240 volts组 $£ 3.00$ Post 40p. 150 watt $£ 4.30$ Post 50 p. 300 £13.50 Post 90p

RING TRANSFORMERS Funcrional Versatife Educational These multt-putpose Auto rransformers. with large centre apenture. can be used as a Double wound current Transtormer Auto Transtormer. HT or LT Teanstormer by simply hand winding the required number of turns through the centre opening E. Using the RT 100 V . Model the oulput could be wound to give 8 V (@ $12 / 2 \mathrm{Amp} 4 \mathrm{~V} @ 25$ Amp. or 2 V @ 50 Amp eic. Price RT 100 VA 318 turns per voll. $£ 5.00$. Post 75 p RT 2 KVA 15 turns per valt $£ 21.00$ Post 1150 RT 3 KVA 15 turns per volt. $£ 28.00$ Post t. 50
 SIROBE! STBD:E! SURD日E

* HY-LIGHT StROBE MK. IV

 \star Range of Xenon tubes avaliable from slock S.A.E for full deials. \quad.
* ULTRA VIOLET BIG BLACK LIGHT

WHY PAY MORE?!

VABIABLE VOLTAGE

LT TRANSFORMERS	
0.6 .12 volt 10 amp	¢5.60 Post 70p
O. 10.17 .18 volt a 10 mp	E.7.90 Post 11.00
0.6 .12 volt " 20 amp .	69.00 Posi 11.00
- 12.24 volt 210 amp .	69.2u Poste 1.00
0.46 .24 .32 volt " 12 mmp .	
$\begin{aligned} & 0.6 .12 .17 .18 .20 \text { voll a } 20 \text { amp. } \\ & \text { Other types to order at short notice } \end{aligned}$	£10.40 Post $£ 1.00$

0.00
£ 11.50
16.50
£30.00
£ 33.00

Carriage extra	INPUT 230 v. A.C. 50/60 OUTPUT VARIABLE $0 / 260 v$. A.C.	
5	BRAND NEW. All types. 200W (1 Amp) $£ 10.00$	
	0.5 KVA (Max. $21 / 2$ Amp)	£11.50
	1 KVA (Max. 5 Amp)	£16.50
	2 KVA (Max. 10 Amp)	¢30.00
	4 KVA (Max. 20 Amp)	¢60.00
	(max. 37.5 Amp)	£102.50

METERS NEW

$=$

$\frac{15 \text { R }}{\text { operation ex-equipmerl tested \&s.00. Post }}$
\qquad

60 R.P.M. REVERSIBLE

BODINE TYPE N.C.I. GEARED MOTOR

65 p .

20 r.p.m. GEARED MOTOR

	REVERSIBLE MOTOR 230V A.C. General Electric $230 v$ A.C 1600 ipm 0.25 amp Complete with anti-vibration mounting bracket and capacitor 1 size $110 \mathrm{~mm} \times 5 \mathrm{~mm}$

BENDIX MAGNETIC CLUTCH

\qquad

A.C. MAINS TIMER UNIT

GEARED MOTORS

 36 R.P.M. REVERSIBLE

a

65p
These
$230 / 240$ volt 20 r.p.m. motor. $£ 1.00$. Post 20 p
\qquad
 Post 80p.

Wireless World Dolby"noise reducer

Trademark of Dolby Laboratories Inc.
We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes:
-complete set of components for stereo processor
--regulated power supply components
--board-mounted DIN sockets and push-button switches
--fibreglass board designed for minimum wiring
-solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts

PRICE: £34.40+VAT

Calibration tapes are available for open-reel use and for cassette (specify which)
Price $\mathbf{£ 1 . 8 0 + V A T * ~}$
Single channel plug-in Dolby ${ }^{\text {TM }}$ PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts are available with all components

Price $\mathbf{£ 6 . 5 0 + V A T}$
Single channel board with selected fet
Gold plated edge connector
Price $£ 2.00+$ VAT
Price £1.27+VAT*

Selected FET's 54p each + VAT, 96p+VAT for two, £1.76+VAT for four
Please add VAT at 25% unless marked thus*, when 8% applies
We guarantee full after sales technical and servicing facilities on all our kits

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 20W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier: Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit, etc), THD less than 0.1% at 20 W into 8 ohms. All sockets, fuses, etc., are PC mounted for ease of assembly, Tuner section: uses Mullard LP1 186 module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @$ $1.8 \mu \mathrm{~V}$. THD typ. 0.4\%

PRICE: $£ 48.95+$ VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter / dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz}$. 20dB mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70 dB . IF rejection -85 dB . THD typically 0.4%
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price
Mono £26.31 + VAT
With ICPL Decoder $£ 30.58+$ VAT
With Portus-Haywood Decoder
$\mathbf{£ 3 2 . 8 1 + V A T}$

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the Mullard LP1186 RF module requiring no alignment. The If comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC

PRICE: Mono £25.55+VAT
Stereo £28.65 + VAT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring

Typ. Spec. $20+20 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N ' 72 dB . Headphone output. Tape In/Out facility (for noise reduction unit, etc.). Toroidal mains transformer.

PRICE: £30.94 + VAT
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

PHASE-LOCKED IC DECODER KIT PUSH-BUTTON UNIT
$\mathbf{£ 4 . 4 7 + V A T}$
$£ 3.50$ +VAT

KINNIE COMPONENTS

10, NELMES WAY, HORNCHURCH ESSEXRM11 $20 Z$
HORNCHURCH 45167

CIRCUIT BOARD

P.C.B. $1 / 16.1$ oz. COPPER

FORMICA

Dim. 8.4×7.7 in 3 pcs., 75p
Dim. 9.4×8.1 in 3 pcs., 90 p
Dim. 10.1×7.9 in 3 pcs.. $£ 1.00$
Dim. 13.1×9.4 in 3 pcs., $£ 1.20$
Dim. 17.0×9.0 in 2 pcs., $£ 1.20$
Post \& Packing 30 p each pack

BARGAIN PACK

10 pcs. $10.1 \times 7.9 \mathrm{in}$. Plus free $1 / 2 \mathrm{lb}$ etching Xtals $£ 3.00$ P. P. $55 p$

FIBRE GLASS P.C.B.

Dim. 6×6 in. $\mathbf{3 5 p}$ each
Dim. 12×6 in. 60 p each
Dim. 12×12 in $\mathbf{£ 1 . 0 0}$ each
Equals less than $\mathbf{1 p} \mathbf{s q}$ in
Post \& Packing 10p per sheet
RESIST COATED P.C.B. FORMICA
10.1×7.9 in. 55p ea
13.1×9.4 in 70p ea

RESIST COATED P.C.B. FIBRE GLASS

6×6 in. 50p ea
12×6 in. 90p ea
12×12 in. £1.50 ea
Post \& Packing 10 p per sheet

BLUE P.C.B. INK

Etch resist use with any pen. Much cheaper than ready loaded pens
50c.c. 55p. P.P. 10p.

FERRIC CHLORIDE ETCHING XTALS

1 lb - 1 litre pack, 60p P.P. 25p.
$5 \mathrm{lb}-5$ litre pack, $£ 1.95$ P.P. 55p.

QUADROPHONIC DECODER MODULE
 C.B.S./S.O. Type using I.C. MC 1312 P

 With slight modification direct substitute for P.E. "RONDO" Board. Complete with Data £4.60 each. P.P. 25 p.
PRINTED CIRCUIT KIT

The no frills all value kit. Containing 4 pcs 8 x 7 Formica laminate 1 pce 6×6 Fibre glass laminate, 1 lb Etching Crystals, 50 c.c. Resist ink, with instructions. £2.30 P.P. 50p

TELEPHONE DIALS
 (New) £1 P.P. 25p.

EXTENSION TELEPHONES
(Type 706) Various colours.
E3.95 P.P. 75p
12 V MINIATURE

UNISELECTOR

11 ways. 4 bank (3 non bridging, 1 homing) £2.50 P.P. 35 p.

H.T. TRANSFORMERS. Prim. $110 / 240 \mathrm{v}$

 Sec. $400 \mathrm{v} .100 \mathrm{~m} / \mathrm{a}$ £3. P.P. 65 p L.T. TRANSFORMER. Prim. 240v. Sec $27-0-27$ at $800 \mathrm{~m} / \mathrm{a} 7.5 \mathrm{amp}$ £2.25. P.P 50p.L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{~V}$

Sec 50 v at $10 \mathrm{amp} £ 10$. P.P. £ 150
L.T. TRANSFORMER Prim. 240 v . Sec. 18 v at 1.5 amp \& 12 v at 1 amp . $£ 2.25$. P.P 50p.
L.T. TRANSFORMER Prim 240 v . Sec. 18 v 1 amp. £1. P.P. 30p
L.T. TRANSFORMER Prim 240 v . Sec. 12 v at 1 amp. 80p. P.P. 25p
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$ Sec. $23 / 24 / 25 v$, at 10 amps £7. P.P. £ 1
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{~V}$

UNISELECTORS

(New) 25 way 12 Bank (Non bridging), 68 ohms. £6.50 P.P. 50p.

MINIATURE UNISELECTOR

(Ex. Equip.) 6 Bank (5 non bridging. bridging) 100 ohms $24-30$ V.D.C. $£ 1.50$ P.P. 50 p

1,000 TYPE KEY SWITCHES

Single $2 \times 2 \mathrm{c} / \mathrm{o}$ Locking. 50p. P.P. 10p
Bank of $4-2 \times 4 \mathrm{c} /$ o each switch (one biased) £1.20 P.P. 25p

MULTICORE CABLE

6-core (6 colours) 14/0076 Screened P.V.C 30p per yard; 100 yards at £16.50 P.P. 2p a yard, 7 -core (7 colours) $7 / 22 \mathrm{~mm}$ Screened P.V.C. 30p per yard; 100 yards $\mathbf{£ 1 6 . 5 0}$ P.P. 2p per yard

RIBBON CABLE

(8 colours); 10 m £1.65. P.P. 20p. 100 m 8 -core x $14 / 0.19 \mathrm{~mm}$. Bonded side by side £11.50 P.P. £ 1

P.T.F.E. CONNECTING WIRE

$1 / 20$ Black or White 100 m . Drum $£ 2.50$ P.P. 30p.

H.D. ALARM BELLS

6in. Dome. $6 / 8 \mathrm{v}$, d.c Heavy cast housing for exterior/interior use. £3.75 P.P. £1 Connecting wire (twin/twisted) $220 y$ d. reel £3 P.P. 75 p

HIGH CAPACITY ELECTROLYTICS

250mfd/63 volt, 20p P.F. 8p
$1.000 \mathrm{mfd} / 100$ volt, 70 p P.P. 25 p
$2,200 \mathrm{mfd} / 100$ volt, 90p. P.P. 25 p
$4,700 \mathrm{mfd} / 25$ volt, 65p. P.P. 20p
$6,800 \mathrm{mfd} / 16$ volt, 50 p. P.P. 15 p
$10,000 \mathrm{mfd} / 25$ volt, 75p. P.P. 25 p
$25,000 \mathrm{mfd} / 40$ volt, E1.25. P.P. 30p $47,000 \mathrm{mfd} / 40$ volt, $\mathbf{E 2} \mathbf{2 0 0}$. P.P. 50p. $100,000 \mathrm{mfd} / 10$ volt, $£ 1.50$. P.P. 50p $160,000 \mathrm{mfd} / 10$ volt, $£ 2.00$. P.P. 50p

OVERLOAD CUT-OUTS

Panel mounting $800 \mathrm{M} / \mathrm{A} .1 .8 \mathrm{amp} .10$ amp. 55p ea

SMITHS GEARED MOTORS

250V A/C 4 rpm, £1.50 F.P. 25p

HIGH-SPEED MAGNETIC

 COUNTERS4 digit (non reset) 24 v or 48 v (state which)

$4 \times 1 \times 1$ in $£ 1$. P.P. 20 p.
5 digit (non reset) $24 \vee 1.50$. P.P. 20p
3 digit 12 v (Rotary Reset) $21 / 4 \times 13 / 4 \times 11 / 4$
£1.40. P.P. ${ }^{15 p}$
6 digit (Reset) 220 v . a.c. $£ 3.50$. P.P. 25p

S-DECS AND T-DECS

S-DEC £1.90 T-DEC £3.60
U-DEC A £4.20 U-DEC B $£ 6.90$
Post \& Packing 25p

MINIATURE METERS

500 micro-amp (level stereo beacon, etc) scaled half back/half red. Size 1×1 in. 65 p. P.P. $15 p$.
PANEL METERS

T1 $50 \mu \mathrm{~A}$

T2 $100 \mu \mathrm{~A}$
T3 $500 \mu \mathrm{~A}$
$\begin{array}{ll}\text { T4 } & 1 \mathrm{~mA} \\ \text { T5 } & 10 \mathrm{~mA}\end{array}$
T12 50/0/50fiA
50mA T13 100/0/100 $\mu \mathrm{A}$
All at £3.75. P.P. 15 p
PANEL METERS
$41 / 2$ ins. $\times 31 / 4$
D3 $200 \mu \mathrm{~A}$
D4 $500 \mu \mathrm{~A}$

S.T.C. CRYSTAL FILTERS

(10.7Mhz) 445 LQU-901A (50 Khz spacing) £3. P.P. 20p
445-LQU-901B (25Khz spacing). £4. P.P 20p. 10.7 Mhz Canned I Fs. Size $1 \times 1 / 2 \times 1 / 2$ in. (with data) 65p. P.P. 10 p.

3 GANG TUNING CAPACITOR

8.5 PF, to 320 P.F. 80p. P.P. 20p

V.H.F./U.H.F. POWER TRANSISTORS

(type BLY 38). 3 watt output at 100-500 Mhz. E2.25. P.P. 10 p.

SIEMENS MINIATURE RELÁYS

$6 \mathrm{v} .4 \mathrm{c} / \mathrm{o} 65 \mathrm{p}$. $24 \mathrm{v} .2 \mathrm{c} / \mathrm{o} \mathrm{50p}$.

MINIATURE RELAYS

($13 / 8 \times 1 \frac{1 / 4 \times 1 / 2)}{} 24 \times .4 \mathrm{c} / \mathrm{o} 35$ p. P.P. 5 p
MAINS RELAY 240 v.a.c.
$3 \mathrm{c} / \mathrm{o} 10 \mathrm{amp}$. contacts $\mathbf{8 0 p}$. with base P.P. 20p
24v a.c. RELAY (PLUG IN)
3 pole c/o 75p. P.P. 15 p
2-pole c/o 55p. P.P. 15 p
S.C.R.

5 amp. 400 P.I.V. (T.I.C.106c) 30p. P.P. 8 p .

MINIATURE "ELAPSED TIME'

INDICATORS

(0.5000 hours) $45 \times 8 \mathrm{~mm} 75$ p. P.P. $15 p$
BULK COMPONENTS OFFER
Resistors/capacitors 600 new components £2.75. P.P. $36 p$
Trial order 100 pcs 75p. P.P. 20p

D.C. SUPPLY

Input $240 v$ a.c. giving $171 / 2 v$ d.c. at $11 / 2$ amp (unsmoothed) $23 / 4 \times 21 / 2 \times 21 / 4 \mathrm{in}$. £2.25. P.P. 45 p.

ADVANCE TRANSFORMERS

"VOLSTAT"
Input $240 v$. a.c. C.V.50. $38 v$. at 1 amp. $25 v$. at $100 / \mathrm{m} / \mathrm{a}, 75 \mathrm{v}$, at $200 \mathrm{~m} / \mathrm{a} \mathbf{~} \mathbf{3}$. P.P. 65 p.
C.V. $75.25 v$. at $21 / 2$ amp £3.25. P.P. $75 p$ C.V. 100.50 v . at $2 \mathrm{amp} ; 50 \mathrm{v}$. at $100 \mathrm{~m} / \mathrm{a}$ £4. P.P $75 p$
C.V. 250.25 v at $8 \mathrm{amp} ; 75 \mathrm{v}$. at $1 / 2 \mathrm{amp}$ £6.50. P.P.E1.50
C.V. 500.45 v at $3 \mathrm{amp} ; 35 \mathrm{v}$ at 2 amp £12. P.P.E1. 75
$200 / 240 \mathrm{v}$ Secs $1-3-8-9 \mathrm{c}$. All at 1.5 amp 50 v . at 1 amp. $\mathbf{£ 2 . 5 0}$. P.P. 50 p .
L.T. TRANSFORMER ("C'" CORE) $200 / 240 \mathrm{v}$. Secs. 1-3-9-27v. All at 4 amp E4. P.P 50 p
L.T. TRANSFORMER ("C' CORE) 200/240v. Secs. 1-3-9-27v. All at 10 amp . £7.50. P. P. £1. 50
L. T. TRANSFORMER ("C" CORE) $200 / 240 \mathrm{v}$. Secs. $1-3-9-20 \mathrm{v}$. All at 4 amp . £5.50. P. P. 75 p .
L.T. TRANSFORMER ("C" CORE) $120 / 120 \mathrm{v}$ Secs. $1-3-9 \mathrm{gv}$. All at 10 amp . £6.50. P.P. £1.50
L.T. TRANSFORMERS ("C' CORE) $110 / 240 \mathrm{v}$. Secs. $1-3-9 \mathrm{v} .10 \mathrm{amp} .35 \mathrm{v}$. 1 amp $50 \mathrm{v} .750 \mathrm{M} / \mathrm{A}$. $\mathbf{£ 6 . 5 0}$. P.P. £1. 50

RETURN OF POST MAIL ORDER SERVICE

BSR HI-FI AUTOCHANGER STEREO AND MONO
 with STEREO and MONO cartridge
$£ 10.95$ Post 75p
PORTABLE PLAYER CABINET
Modern design. Rexine covered.
Vynair tront grille Chrome fit
Size $17 \times 15 \times 8$ in approx
$£ 5.25$ Post 75 p
Motor board cut for 8SR or Garrard deck

COMPLETE STEREO SYSTEM
clips to loudspeakers making it extremely compact, overal size only $133 / 6 \times 10 \times 81 / 2 \mathrm{in}$. 3 watts per channel, plays al records $33 \mathrm{rpm}, 45 \mathrm{rpm}$ Separate volume and tone

controls 240 V a.c.

SPECIAL OFFER!
SMITH'S CLOCKWORK 15 AMP
TIME SWITCH
0-60 MINUTES £2.50 Post 35 p
Single pole two-way. Surface mounting
with fixing screws. Will replace existing wall switch to give light for return home, garage, automatic ant-burglar jights, e Varable knob. Turn on of off at full or Intermediate set

TEAKWOOD LOUDSPEAKER GRILLES will easily fit to batfle board. Suze $181 / 4 \times 101 / 2 n-75 p$. $101 / 2 \times 7 / 1 / 1 n-45 p$.

WEYRAD P50 - TRANSISTOR COILS \begin{tabular}{ll|ll}
RA2W Ferrite Aerial \& 85 p \& Uriver Trans LFDT4 \& $\mathbf{6 5 p}$

3rd I F. P50/3CC \& $\mathbf{4 0 p}$ \& J.B Tuning Gang \& $\mathbf{£ 1 . 2 0}$

Spares Cores \& $\mathbf{3 p}$ \& OPT1 \& 65 p
\end{tabular} Spares Cores

P50 1 AC

Ferme Rod $8 \times 3 / 8 \mathrm{~m}, 20 \mathrm{p} .6 \times 5 / 16 \mathrm{~m} . .2$ 20p. 3×2

VOLUME CONTROLS

(o 2 Mn . LOG or LIN L/S 25p. D.P. 40p. STEREO L/S 55p. DP 75p.
S P. Transistor 30p.

80 Ohm Coax 8p yd.
8RITISH AERIALITE 40 yd £3; 60 yd . $\mathbf{~ 4 . 5 0 . 5 1 5 p}$
FRINGE LOW LOSS ideal 625 and colour yd

ELAC HI-FI SPEAKER

8 in. or 10×6 in.
Dual cone plasticised roll surround Large ceramic magnet $50-16.000 \mathrm{c} / \mathrm{s}$ Bass resonance $55 \mathrm{c} / \mathrm{s} 8$
10 watts music power

$$
£ 4.35 \text { Post 35p }
$$

E.M.I. $131 / 2 \times 8 \mathrm{in}$.

SPEAKER SALE!
crossover 10 wat

20 watts.

$\mathbf{£ 5 . 2 5}{ }_{\text {Post } 135 p}$

magnet 10 wat
Bass res $45-60 \mathrm{c} / \mathrm{s}$
8 ohm 40 to 11 000
$£ 3.45$

Bookshelf Cabinet
8 or 150
£6.95
.95

THE "INSTANT BULK TAPE ERASER
AND HEAD DEMAGNETISER. Suitable for
manses, and all sizes of tape
Will also demagnetise small $£ 4.35$
BLANK ALUMINIUM CHASS, O $\times 4-70 \mathrm{p}$; $8 \times 6-90 p$
$10 \times 7-£ 1.15 ; 12 \times 8$-£1.35; 14×9-£ $1.50 ; 16 \times 6$-£ 1.45
ALUMINIUM P
ALUMINIUM PANELS. $6 \times 4-17 p ; 8 \times 6-24 p ; 14$
$3-25 p ; 10 \times 7-35 p ; 12 \times 8-43 p ; 12 \times 5-30 p ; 16$ 6-43p;

ELAC 9×5 in HI-FI SPEAKER TYPE 59RM
 $£ 3.45{ }^{\text {? }}$

RCS LOW VOLTAGE
STABILISED POWVER PACK KITS All parts and instructions with Zener diode. printed
circuit rectifiers and double wound mains
$£ 2.95$ transformer Input $200 / 240 \mathrm{~V}$ a c Output 100 mA or less Size $3 \times 21 / 2 \times 1 / 2$ in Please state voltage require

RCS POWER PACK KIT
ed $£ 3.35_{\substack{\text { fosis } \\ \text { 300 }}}$ 12 VOLT 750 mA . Complete with print 12 VOLT 300 mA KIT, $£ 3.15 .9$ VOLT
R.C.S. GENERAL PURPOSE TRANSISTOR

PRE-AMPLIFIER - BRITISH MADE Ideal for Mike. Tape. P.U.. Guitar. etc. Can be used with Battery $3 / 4 \mathrm{In}$ Response $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s} .26 \mathrm{~dB}$ gain For use with valve or transistor equipment
Full instructions supplied. Details S.A.E.

ELECTRO MAGNETIC
 PENDULUM MECHANISM

 15 V de operation over 300 hours continuous on SP2battery. fully adjustable swing and speed. Ideal displays battery. fully adjustable swing and speed.
teaching electro magnetism or for
metronome strobe
$95 p_{300}^{\text {posid }}$
R.C.S. "MINOR" 10 watt AMPLIFIER KIT This kut is suitable for record players, guitars. tape playback. lectronic instruments of small P.A systems Two versions 10W per channel: input 100 mV : size $91 / 2 \times 3 \times 2 \mathrm{~m}$ approx S.A.E. details. Full instructions supplied

\section*{MAINS TRANSFORMERS | All post |
| :---: |
| 508 |}

$250-0-25080 \mathrm{~mA}, 63 \mathrm{~V} 3.5 \mathrm{~A}, 63 \mathrm{~V} 1 \mathrm{~A}$ or $5 \mathrm{~V} 2 \mathrm{~A} \quad £ 4.60$ $350-0-35080 \mathrm{~mA}, 63 \mathrm{~V} 35 \mathrm{~A}, 6.3 \mathrm{~V} 1 \mathrm{~A}$ or $5 \mathrm{~V} 2 \mathrm{~A} \quad \mathbf{£ 5 . 8 0}$ $300-0.300 \mathrm{~V} 120 \mathrm{~mA}, 6.3 \mathrm{~V} 4 \mathrm{~A}$ C. T, $63 \mathrm{~V} 2 \mathrm{~A} \quad £ 7.00$
 GENERAL PURPOSE LOW VOLTAGE. Tapped outputs at 2 amp 3 4, $5,6,8,9.10$ 12. $15,18.25$ and $30 \mathrm{~V} £ 4.60$. 4.60 . 2 amp $6.8,10.12,16,18,20,24,30.36,40$. 48,60 £7.00. 3 amp. $6.8,10$ 12. 16. 18. 20. 24, 30. 36, 40, 48, $60 £ 8.70 .5 \mathrm{amp} 6.8,10,12,16,18 \quad 20$ amp $£ 1,12 \mathrm{~V} 300 \mathrm{~mA} . £ 1,12 \mathrm{~V} 500 \mathrm{~mA} . £ 1,12 \mathrm{~V} 750 \mathrm{~mA}$ £1, $10 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V} .2 \mathrm{amp}$ £2.75, 20V. 3 amp . £2.45, $40 \mathrm{~V} .2 \mathrm{amp}, £ 2.95,22.0-22 \mathrm{~V} .4 \mathrm{amp} \mathrm{d} \mathrm{c}, £ 3.45,16 \mathrm{~V}$. amp. £1.95, $20 \mathrm{~V} 1 / 2 \mathrm{amp}$. £1.75, 20V. 1 amp £2.20. AUTO TRANSFORMERS, 115 V to 230 V or 23
$150 \mathrm{~W} £ 5$; $250 \mathrm{~W} £ 6 ; 400 \mathrm{~W} £ 7$; $500 \mathrm{~W} £ 8$ FULL WAVE BRIDGE CHARGER RECTIFIERS
6 or 12 V outputs. $11 / 2 \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}$. 6 or 12 V outputs. $1 / 2 \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}$.
CHARGER TRANSFORMERS $11 / 2 \mathrm{amp} £ 2.75 ; 4 \mathrm{amp} £ 4.60$.

GOODMANS $61 / 2$ in.

HI-FI LOUDSPEAKERS

4 ohm or 8 ohm 10W Large ceramic magnet Frequency response. $30-15.000 \mathrm{c} / \mathrm{s}$
HI-FI Enclosure Systems. etc
\&.60

NEW ELECTROLYTIC CONDENSERS					
2/3504	20p	250/25V	20p	50+50/300V	50p
4/350V	20p	500/25V	25p	900/350V	95p
$8 / 350 \mathrm{~V}$	$28 p$	$100+100 / 275 V$	65p	$32+32 / 250 \mathrm{~V}$	20p
16/350V	$35 p$	$150+200 / 275 \mathrm{~V}$	70p	$32+32 / 450 \mathrm{~V}$	$80 p$
32/500V	60p	$8+8 / 350 \mathrm{~V}$	50p	$350+50 / 325 v$	${ }^{85}$
25/25V	15p	$8+16 / 350 \mathrm{~V}$	50p	$100+50+50 / 350 \mathrm{~V}$	85p
50/50\%	15p	$16+16 / 350 \mathrm{~V}$	60p	$32+32+32 / 350 \mathrm{~V}$	$65 p$
100/25V	15p	$32+32 / 350 \mathrm{~V}$	60p	4700/63V	95p

LOW VOLTAGE ELECTROLYTICS
$1,2,4$. $.8,16,25,30,50,100,200 \mathrm{mF}$ i 5 V 10p.
 $1000 \mathrm{mF} 12 \mathrm{~V} 27 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 50 \mathrm{~V} 57 \mathrm{p}$; 100 V 70 p.
$2000 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$. 2500 mF 50 V 62p; 3000 mF 25 V 47p; 50 V 65p.
$5000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p}$; $35 \mathrm{~V} 85 \mathrm{p} ; 50 \mathrm{~V} 95 \mathrm{p}$

TRIMMERS $10 \mathrm{pF} 30 \mathrm{pF} .50 \mathrm{pF}, \mathbf{5 p} .100 \mathrm{pF}, 150 \mathrm{pF} .15 \mathrm{p}$. CERAMIC, 1 pF to 001 mF 5 p . Silver Mica 2 to 5000 pF . 5 p . $15 \mathrm{p} ; 500 \mathrm{~V}-0.001$ to $0055 \mathrm{p} ; 0110 \mathrm{p} ; 025.13 \mathrm{p} ; 147725 \mathrm{p}$. MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUB-MIN MICRO SWITCH, 25p. Single pole change ove TWIN GANG, ${ }^{-1} 0-0^{\prime} 208 \mathrm{pF}+176 \mathrm{pF} \mathbf{£ 1 . 2 0 ; 5 0 0 \mathrm { pF } \text { standard }}$ $75 \mathrm{p} ; 365+365+25+25 \mathrm{pF}$. Slow motion drive 50 p .
120 pF TWIN GANG, $50 \mathrm{p} ; 365 \mathrm{pF}$ TWIN GANG, 50 p . 20pF TWIN GANG, 50p; 365 pF TWIN GANG, 50p. NEON PANEL INDICATORS 250 V AC/DC. Amber or red, 30p RESISTORS. $1 / 4 W$, $1 / 2 \mathrm{~W}$. IW 20\% 2p; 2W. 10p; 10 n to 10 M HIGH STABILITY, $1 / 2 \mathrm{~W} 2 \% 10$ ohms to 6 meg 12p WIRE-WOUND RESISTORS 5 watt 10 watt. 15 Ams to 100K 12 p each
RADIO COMPONENT SPECIALISTS
337 WHITEHORSE ROAD, CROYDON
Open 9-6. Wed. 9-1. Sat. 9-5 (ciosed for lunch 1.15-2.30
PWe accept Access or Barclaycard. Tel. 01-684 1665

BUY A CASE FROM A SMALL RANGE, YOU GET A CASE-BUY A CASE FROM A BIG RANGE, YOU GET A SOLUTION

 Instrument cases

${ }^{5.35}$,

OVER 250 DIFFERENT CASES IN STOCK-SIZE RANGE OVER 5000:1 in VOLUME

WW - 086 FOR FURTHER DETAILS

-ABE BRGOMAREME

THE INETRIMMENT

Z \& I AERO SERVICES LTD.

STEREOIC DECODER

MOTOROLA MC1310P EX STOCK DELIVERY
Separation 40 dB 50 Hz .15 kHz
P level 560 mV

Power requirements 8.14 V at 16 mA
Power requiremen
on lamp or LED
KIT COMPRISES FIBREGLASS PCB

Her tinned) Resistors IC Cap	ONLY	WHY PA
Preset Poin) \& Comprehensive Instructions	$f 398$	C3E?
light emitting diode	RED	
Surtable as stereo on mdicator tor	green	290

MC1310P only $£ 2.15$ plus p.p. $10 p$
NOTE
As the suppli
plier of the first MC1310P decoder

Please add VAT to all prices
PORTWOODI-COMP ELECTRONICS
PORTGURTON-ON-TRENT STAFFS DEACH GRESLEY

IMATIPUS HEDINDHISS ITL．WIMBSAR

「A＠T＠引NVIEF

IC＇s

$703 \mathrm{FF} / \mathrm{IF}$	
709 T099	
	709 Dil． 14
	710 TH． 14
	723 Regu
	741 DIL
	741 DIL
	711 T099
	472×7
	748 DIL
	8055
	781212
	781515 V
	7900 Serie
76013 fix AF	
	48
CA3054	
ICL8038	
LM300	
	L4301 ORA
	LM304 0－40V
L4308 H1 Bo	
	L4309K 5V
LM372 LF	
	LM377 2x 2 界
LM380 60745	
LM381	
	0

LOW PRICES

LOW PRICES

$74{ }^{7}$ TTL

5\％off	100MIX
7474	27p＊
7476	27 p ＊
7490	37 p ＊
7191	60p＊
7492／93	43p＊
7191	43 p ＊
7496	68p＊
74100	¢ 1
71121	26p＊
71123	58p＊
74141	6．1p＊
71174	¢1＊
74175	95p＊
74196	¢1

$58 \cdot 60$ GROVE RD． WINDSOR，BERKSSLA IHS
 ado 8 Dq var to prices markes tho 235 vat mall POST－PACKING AOP WOR THE UK

NEW EAST SERVICE LOU PRICES MONEX BACK IF NOT \＆ATISFIKD ALL BRANO NE TOP GRADE FULL
 GARCLAYCARD ACCESS HY POST OR TELETHONE OH 55 MIKIMES

TRAMSISTORS

ETIDS LOGIL

NEW YOTOROLA

CD4000	15 p ＊	CD4028	73p＊
CD4001	16 p ＊	Co． 4746	¢ 1 ＊
C14002	16p＊	CD． 4047	73p＊
Cr4009	45 p ＊	CD4049	45p＊
CD4011	17 p	CD4054	94！＊＊
CD4013	45p＊	CD405．5	£ 1
C54016	45 p ＊	CD4060	90p＊
C54017	82 p ＊	CD4071	17p＊
CD4018	82p＊	CJ4081	17p＊
CD4022	77p＊	CD4510	£1．19＊
CDAO2，	16 P	CD． 4.11	£1，90＊
C1）4024	$63 \mathrm{p} *$	CD4528	£1．10＊＊
CD402	45p＊	CD 4.5 .58	¢2．35＊

TELEPHOME 54525
DIODES
DAB1 R OA91 GFRMANTIM $1 N 4001$ IA5OV \＆ $1 N 4002$ 1N1004 6p＊1N4007 9p＊ 1N4148 \＆ 1 N914 SILICO ZENERS HZY88 400 mF ZENEAS 11世W 175．213noiae¢1 BRIDGE RECTIFIER 1 A50 18p
1A40OV 25p． $4 A 100 \mathrm{~V}$ SCR＇s TRIACS SCR＇s TAG1／400 1A400V 50p＊
 C1O6D 4A40OV SCR ONLY $17 p$ TRIAC SC146D 10A400V £1＊
TRIAC DISCO $16 A 400 \mathrm{~V}$ £ 1.75 DIACS：ST2́ 20p．BR100 25p vero COPINS 28p＊FACE CUTTER49p COPPERCLAD 0.1 PITCH VERO
 3！＂x17＂£1，70＊ 3？＂xI7＂PLAIN 0．1＂£1．06＊
DIL BMEADBOARD 6x4＂

DALO Ren

DALO ETCH RESIST PEN G9p＊ FFC ETCH PAK 500 gm 89p＊ 6x 4 ＂COPPFR BOARD PCB KIT 3 ITEMS CASSETTE MECHANISM $£ 9 \&$ ASE TGS GAS DETECTORS DIL sochets TOP QUALITY NYLON
SOCKETS SPIN 13p＊ SOCKETS SPIN $12 \rho^{*}$
1 APIN 12 F ＊ 16 IIN SOLDERCON PINS

WW－ 116 FOR FURTHER DETAILS

AIRMEC FREQUENCY METER TYPE 265： $0-6000 \mathrm{rpm}$ and $0-100 \mathrm{Kc} / \mathrm{s} £ 35$ ．Carr． E2．
 RACAL LF．CONVERTER UNIT RA－37B：£35．Carr．£
 RACAL I．S．B．ADAPTER RA－95A：£65．Carr．£2
 MUIRHEAD ATTENUATORS： 75 ohms $0-8 \mathrm{Mc} / \mathrm{s} 3$ V MAK 3 ranges 0－5，0－25． $0-50 \mathrm{DB} \mathrm{C3} .00+75$ p post
 CREED MODEL 54 TELEPRINTER：$£ 37.50$ each．Carr．£4
 CREED MODEL 75 TELEPRINTER：Receiver only $£ 30.00$ ．Carr．$£ 3$ ．
 CREED MODEL 75 TELEPRINTER：Receiver，Transmitter and perferator－ £50．Carr．£4

MULLARD VALVE VOLTMETER：E／7555／3 A．C．／D．C． 2 ranges $0-5$ and $0-500 \mathrm{v}$ £35．Carr．£2．
EDDYSTONE TELEPRINTER ADAPTOR TYPE 937：£45．Carr．£1
WAVEMETER CLASS＇D＇NO．2： 1.2 to $20 \mathrm{Mc} / \mathrm{s} 12$ volts d．c．input or 240 v a．c ¢12．50．Carr．£ 3
WILD BARFIELD ELECTRIC FURNACE MODEL CCI．22X：With ether indicating temoerature controllers Model $990.0-1400^{\circ} \mathrm{C}$ C250．Carr．£5．
A．E．I．MASS SPECTROMETER TYPE MS．I0：$£ 300$ ．Carr．£6．
METROVAC IONIZATION GAUGE MODEL V．C．3：£．55．Carr．£3
AVO VALVE TESTER CT．160：（Portable）similar to Avo Mk． 3 Characteristic meter．Good condition，$£ 45.00$ ．Carr．$£ 2.00$ ．
ANTENNA MAST： 30 ft ．consisting of $10 \times 3 \mathrm{ft}$ tubular screw sections（ $7 / \mathrm{s}^{\prime \prime}$ dia．） with base，guyropes and stays，etc．$£ 7.50$ each．Carr．$£ 2.00$ ．
REDIFON TELEPRINTER RELAY UNIT No．12：ZA－41196 and power supply $200-250 \mathrm{~V}$ a．c．Polarised relay type 3 SEITR． $80-0 \mathrm{~V} 25 \mathrm{~mA}$ ．Two stabilised valves CV 286．Centre Zero Meter $10-0-10$ ．Size 8 in ．x 8 in ． x 8 in ．New condition．£10． Carr．75p．
SOLARTRON PULSE GENERATOR TYPE G110I－2：$£ 75.00$ each．Carr．$£ 2.00$ ．
TELEPRINTER TYPE 7B：Pageprinter 24V d．c．power supply，speed 50 bauds per min．second hand cond（excellent order）no parts broken．£20 each．Carriage $£ 3$. AUTO TRANSFORMER： $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}, 1000$ watts．Mounted in strong steel case $5^{\prime \prime} \times 6^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$ ．Bitumen impregnated．$£ 12.00$ ．Carr．$£ 1.50$
BRIDGE MEGGER： 250 V ．（Evershed Vignoles）series 2． 130 each．Carr．£ BRIDGE MEGGER： $2,500 \mathrm{~V}$ ．，series I．£30 each．Carr．Ł1
CRYSTAL TEST SET TYPE 193：used for checking crystals in freq range $3000-10,000 \mathrm{KHz}$ ．Mains 230 V 50 Hz ．Measures crystal current under oscillatory conditions and the equivalent resistance．Crystal freq．can be tested in conjunction witn a freq．meter．E25．Carr．£ 1.50
SOLARTRON VARIABLE POWER UNIT S．R．S． $1535: 0-500$ volts at 100 mA and 6.3 volts C．T． 3 amps d．c． $110 / 250$ volts a．c．input．$£ 18.50$ ．Carr．$£ 1.50$

ALL CARRIAGE QUOTES GIVEN ARE FOR 50 －MILE RADIUS OF LONDON ONLY．

ALL U．K．ORDERS SUBJECT TO VALUE ADDED TAX．

CLASS＇D＇WAVEMETER NO．I：Crystal controlled heterodyne frequency meter covering $2-8 \mathrm{MHz}$ ．Power supply 6 V d．c．Good secondhand condition 88．50．Carr $£ 1.50$
PRECISION PHASE DETECTOR TYPE 205：Freq． $0.1-15 \mathrm{MHz}$ in -5 ranges Variable time delav microseconds $0-0.1 \mathrm{c}, 115 \mathrm{~V}$ input．$£ 55$ each．Carr．$£ 1$
MUIRHEAD PHASEMETER D－729：A．M．£85．Carr．£3．
RACAL RAI7 Front Panels：$£ 5$ ．$£ 1$ post．
CT． 343 VALVE VOLTMETER：in ruggerised steel case．Range 1.2 mV to 400 V .6 ranges indicated on $3^{\prime \prime}$ meter．230v a．c．input．£25．Carr．£2
UHF MICROWAVE MILLIWATTMETER TYPE I4：Direct reading，can be used o measure power from 100 MHz upwards．F．S．D．on 4 in ．scale meter 2.5 mW ．£40
each．Carr．$£ 1$
Analyser．Further details on request．$£ 200$
Q METER： $30 \mathrm{MHz}-200 \mathrm{MHz}$ £55．Carr £
MUIRHEAD PHASEMETER TYPE D729：A．M．£95．00．Carr．£3．00
CT． 420 SIGNAL GENERATOR： $200-8000 \mathrm{c} / \mathrm{s}$ Variable tuning．Two fixed requencies 9000 and 10,000 ．Internal calibrator $100 \& 500 \mathrm{c} / \mathrm{s}$ ．$£ 75$ each carr．£2． NOISE GENERATOR TF－1106：Frequency 1 to $200 \mathrm{Mc} / \mathrm{s}$ Direct noise factor calibration．Output impedance 70 ohms $£ 65$ each．Carr．$£ 1.50$ ．
COUNTER EXTENSION UNIT TF－1434／2：Complete with plug－in units $£ 75$ carr E1．50．
MW－59 UNIVERSAL KLYSTRON POWER SUPPLY：£85．Carr． $\mathfrak{\text { £ }}$ ．
TF－1278／1 TRAVELLING TUBE WAVE AMPLIFIER：$£ 125$ ．Carr．$£ 2$
BPL A．C．MILLIVOLTMETER TYPE VM．348－D Mk．3： 2 millivolts－ 2 volts， 6 ranges．£30．Carr．£1
CAWKELL REMSCOPE TYPE 741：Memory scope，＇as new＇cond．$£ 150.00$ ． MANSON SYNTHESISER Q115－URC： $2-30 \mathrm{mc} / \mathrm{s}$ ． $\mathbf{~} 175.00$ ．
H．V．TRANSFORMER： $8000 / 8000$ ．Output 300 mA ．rms．Size： 12 in ．$\times 12 \mathrm{in} \times 36 \mathrm{in}$ 230 V input．$£ 40$ ．Carr．$£ 4$ ．
FIREPROOF TELEPHONES：$£ 25.00$ each ${ }_{*}$ carr．$£ 1.50$
POWER UNIT： $110 / 230$ volts a．c．input． 28 volts d．c．at 40 amps output．$£ 30.00$ ach，carr．$£ 3.00$ ．
SMOOTHING UNIT（for the above）：$£ 10.00$ each．carr．$£ 2.00$
X－BAND MODULATOR CALIBRATOR TYPE MC－4420．X：Mnfr．James Scott £125 each Carr．$£$
BACKWARD WAVE OSCILLATOR TYPE SE－125： 6.3 heater，105V Anode TEKTRONIX TIME MARK GENERATOR TYPE I80－SI： $5,10,50 \mathrm{MHz}$ ．£65 Cotar
OTARY INVERTERS：TYPE PE．218E－input $24-28 \mathrm{~V}$ d．c．， 80 Amps． $4,800 \mathrm{rpm}$ Output 115 V a．c． $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}$ ． 1 Ph．P．F．9． $\mathbf{£ 2 0 . 0 0}$ each．Carr．£2．50．
FREQUENCY METER BC－221： $125-20.000 \mathrm{Kc} / \mathrm{s}$ complete with original cal＇bration charts．Checked out，working order £20 + £1．50 carr

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication. Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription, place a tick in the box on one of the postage-free cards opposite and fill in your name and address.

Wireless World: Subscription Order Form

> To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Wireless World, Room 15, Dorset House, Stamford Street, London SE1 9LU, England

Enquiry Service for Professional Readers

WW	WW	WW
WW	WW	
WW	Ww	
WW	WW	
Ww	Ww	Ww
WW	WW	
WW	WW	WW
WW	WW	
WW .	WW	Ww
WW.	WW	WW
Ww.	Ww.	ww
WW.	WW	
WW.	Ww.	
Ww.	WW.	ww
Ww.		
WW .	ww.	ww

WIRELESS WORLD
Wireless World, March 1976

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name . . .
Name of Company .
\qquad

PUBLISHERS USE ONLY		-	A/E			

Position in Company .
Nature of Company/Business
No. of employees at this establishment .
I wish to subscribe to Wireless World \square
VALID FOR SIX MONTHS ONLY

Wireless World Subscription Order Form

UK subscription rates
1 year: $£ 7.00$

USA \& Canada subscription rates
1 year: $\$ 18.20$

Please enter my subscription to Wireless World for 1 year
I enclose remittance value. made payable to
IPC BUSINESS PRESS Ltd.

Name
Address
Wireless World, March 1976
\qquad

HARMSWORTH TOWNLEY FOR FASTENERS
The quickest way of putting things together

METAL ANCHOR NUTS
with threads up to $3 / 8$ " or 10 mm

SYSTEM J for sheet metal and other work up to 1/4" thick

SYSTEM X for materials from 0.038" upwards.

These internally threaded fasteners are set into work like a blind rivet

WIRE TIES
Colour coded plastic wire ties. Twist-on, Twist-off, use over and over again.

PLASTIC RIVETS

Self expanding plastic rivets, set with simple hand tools or a light hammer.

DRESSING CLIPS
Semi-rigid panelmounted clips for flat, compact looms.

To get information on hundreds of fastener types please ask for leaflets!
Harmsworth, Townley \& Co. Ltd.
2 Harehill, Todmorden, Lancs. Phone 0706812601

Introducing
 the small speaker with'big' ideas Celestion UL6

Compact Shape

How small? $11 \frac{1}{2} \times 16 \times 83 / 4 \mathrm{in}$ to be precise: these measurements are the only 'small' thing about UL6

Expansive Sound

UL gives expansive, open, natural sound; only Celestion have truly conquered the technical problems which have previously been held to be insurmountable.
An intensive three year development programme has crystalized a life times know-how of speaker design and given birth to UL

Superior Performance

Inside the beautiful exterior are the new 'acoustic motor units' which make these designs possible. New soft dome 'tweeters' of impeccable design to give smooth sweet treble sounds. bass units built on to diecast chassis, with small ultra-low distortion bextrene ciaphragm, extra large voice coil ($11 / 2 \mathrm{in}$.) and magnet lor high accuracy and ability to handle wide dynamic range and high peak music levels when required. The third diaphragm is Celestions auxiliary bass radiator 'ABR' which comes into its own on the extreme low notes of instruments
such as organ and double bass UL means ultralinear: UL also represents unlimited quality of sound; Celestion experience makes possible a prestige product at an ordinary cost.
The UL6 speaker has precise and beautiful balance bath aurally and visually.

Celestion

Hear the full range speak for itself:
Please send me full det ails 0^{*}
UL6 \square UL8 \square UL10 \square andinform me of my riearest franchised demonstration centre

Name
Address

Marshallis

A. Marshall (London) Led Dept: Ww

42 Cricklewood Broadway London NW2 3ET Tel: 01-452 0161/2 Telex 21492
\& 85 West Regent SI Glasgow G2 2OD Tel: 041-332 4133 \& i Stra its Parade Fishponds Bristol BS 162 X Tel:0272 654201/2
\& 27 Rue Danton Issy Les Moulineaux Paris 92 Tel: 64.42356 Catalogue price 25p Trade and export enquiries welcome

OUR RANGE COVERS OVER 7,000 ITEMS THE LARGEST SELECTION IN BRITAIN TOP 200 IC'S TTL CMOS \& LINEARS

LONDON, GLASGOW, PARIS - AND NOW BRISTOL
IT'S OUR SERVICE THAT MAKES US GROW

POPULAR SEMICONDUCTORS

2N696
2N69
2
N697
2N698
2N699
2N706
2 N 708
2N916
2N916
2N918
2N1302
2N1304
zNN
2 N 171
2N210
2N214
2N214
2N221
2N221
2N 22
2N22
2N 22
2N236
2N 2546
2N290
$2 N 2905$
2N290
2N290
2N290
$2 N 2924$
2N2924
2N2926G
2N3053
2N3054
2N3055
$2 N 3055$
2N3391
2N3392
$2 N 3393$
$2 N 3393$
$2 N 3440$
$2 N 344$
2N363
2N370
2N370
2 N 370
2 N 370
2 N 370
2N3714
2N3716
2 N 3771
$2 N 3773$
2N3773
2N3789
2N3819
$2 N 3820$
$2 N 3904$

Prices correct at February. 1976. but ail exclusive of V.A T
Post 8. Packing 25p
P. F. RALFE

10 CHAPEL ST. LONDON NW1. Phone 01-723 8753

SIGNAL GENERATORS

MARCONI TF801D/IS. $10-480 \mathrm{mHz}$ P.O.A.
MARCONI TFBOIB/2S. $10-480 \mathrm{mHz}$ E225.

HGN MS3/U. 9.7-11.9 and $77-109 \mathrm{mHz}$. AM/FM
ADVANCE SG63D. AM/FM $7.5-230 \mathrm{mHz}$ E125.
RACAL/AIRMEC $201 \mathrm{~A} .30 \mathrm{kHz}-30 \mathrm{mHz}$. As new. P.O.A.
ADVANCE SG2I VHF Square-wave generator $9 \mathbf{~} \mathrm{kHz}-100 \mathrm{mHz}$. $£ 25$.

OSCILLOSCOPES

SOLARTRON CD $140 \overline{0}$ DC-15 mHz
COSSOR CDU110. DC-80 mHz.
TERTRONIX $545 A$ with CA unit. DC- 30 mHz . Price only $\mathbf{E 2 9 5 . 0 0}$
TEKTRONIX 531 DC- 15 mHz with L type plug-in
TEKTRONIX $535 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in
TEKTRONIX 545 B DC- 30 mHz with ' CA ' plug-in.
TEKTRONIX 585 A. DC- 80 mHz with type 82 plug-in.
TEKTRONIX 654B. Storage oscilloscope
TEKTRONIX 502. 200u
TEKTRONIX C27 Polaroid Camera. Series 125 with 560 series adapter.

> "WEE MEGGERS". 250 V . Insulation Testers. Good working condition. $\mathbf{£ 8 . 5 0}$.

> MUFFIN' INSTRUMENT FANS. Manufactured in Holland by Rotron. Dims.: $4.5 \times 45 \times 1.5$ ins. This is a precision cooling fan. very quiet running specially designed for the cooling of electronic equipment. amplifiers, etc. 115 V .50 Hz operation. drawing only 11 Watts The list price from Rotrons is over $£ 10$ each. Our price. brand new, only $£ 4.50$ each.

MINIATURE DEAC NI-CADMIUM batteries, type $700 \mathrm{~K}, 3$ cells in package
making 3.7 Volts. $25 \times 17 \times 15 \mathrm{~mm}$ only 75 p post paid.

> E.M.I. oscilloscopes type RMO 15 . Response to 40 mHz 5 inch CRT. 10 KV E.H.T. We can offer these quality oscilloscopes at the exceptional price of only $£ 35$ each to callers only.

ADVANCE type 63A AM/FM R.F. Signal generators. $7.5-230 \mathrm{mHz}$. Deviation $0-225$ and 0.75 kHz . X-sweep output, Crystal
calibrator, scope output. $£ 75.00$.

MARCONI TF995A2/M AM/FM R.F. SIGNAL GENERATORS. $1.5-220 \mathrm{mHz} .0 .100 \mathrm{kHz}$ Deviation. $1 \mu \vee-100 \mathrm{mV}$ output. Sold in excelent condition. P.O.A

METRIX 210 wOBBULATORS.
025 mHz Sweep width $5-20 \mathrm{mHz}$
Output 100 mV attenuable in steps of
10 to 10 uV . Last few of these left at
only $£ 15.00$ each to callers only
E.M I oscilloscopes model WM 16 with
type $7 / 1$ W.B.A. plug in unit Sup-
plied in perfect condition complete with
trolley. $£ 125.00$.

20-way BPO Jack strips to accept 316 type Jack plugs. Also quantity of 316 plugs available. All good condition.

Centrifugal blowers by WOODS 8 inch
snail type. Outlet $23 / 2 \times 2 \mathrm{nn}$. 24 V OC
28 AA 2400 r.p.m. Grey stove finish
All brand new. Price is £10.50 +
carriage.

GENTS/FRIEDLAND fire alarm bells. Operating voltages $12 \mathrm{vdc} / 24 \mathrm{v}$ dc. All in as new condition and tested Prices $\mathbf{£ 4 . 8 0} \mathbf{E 5 . 2 0}$ and $\mathbf{£ 6 . 5 0}$ resp

COMPUTER PERIPHERALS. Tape well known manufacturers Tape readers by Elliot. All virtually brand new. Prices are better than one half the
maker's. Write or 'phone for quotation.
strbilised and regulated power supplies by APT at a very cheap price $16-24 \mathrm{v}$ dc@10 Amps, and 8-10v dc@ A low ripple voltage. Price each $£ 18.50$ + carriage

MISCELLANEOUS TEST EQUIPMENT

MARCONI TF1400S double pulse generator with TM6600/S secondary pulse unit. £105
MAKCONI TF791D deviation meter, $4-1024 \mathrm{mHz}$. O-100kHz deviation. MARCONI 455E Wave Analyser £120.
MARCONI TF2600 Valve Voltmeter 1 mV -300V. Excellent. $£ 75$.
ROHDE \& SCHWARZ USVD calibrated receiver $280-940 \mathrm{mHz}(4600 \mathrm{mH}$ LEVELL TG200 DM. RC Oscillator, c/w case, $\mathbf{E} 65$.
ROHDE \& SCHWARZ URV milli-voltmeter BN10913 (late type) $1 \mathrm{mV}-10 \mathrm{~V}$. With ' T ' type insertion unit, free probe and attenuator heads.
$1 \mathrm{kHz}-1.600 \mathrm{mHz} £ 175$. $1 \mathrm{kHz}-1,600 \mathrm{mHz} £ 175$.
COSSOR 1453 True RMS milli-voltmeter. Excellent. $£ 75$.
AIRMEC TYPE 210 modulation meter. Excellent condition ROHDE \& SCHWARZ "SCR' V.H.F Signal Generator 1000.1900 mHz MARCONI type TF936 Impedance Bridge. $£ 85.00$
GERTCH Phase Angle V. Meters. Range 1 mV -300V, in 12 ranges SOLARTRÓN oscillator type CO $546.25 \mathrm{~Hz}-500 \mathrm{kHz}$ £ $\mathbf{~} 30.00$. GAMBRELL Precision 4 Decade Resistance Box. 1-11. 110 ohms £24.50.

[^7]```
Pack
 glass printed circuit board for fron
 end. If strip, dem
2 Set of metal oxide resistors. thermistor
 capacitors, cermet preser for
 mounting on pack }
Set of transistors. diodes. LED. integrated
 circuits for mounting on pack 1
 ligned front end module.coil
 assembly. three-section ceramic
 filter
Fibreglass printed circuit board for
 sterco decoder
Set of metal oxide resistors. capacitors
 cermet preset for decoder
Set of transistors LED. integrated
 circuit for decoder
Set of components for channel
 selector swutch module including
 fibreglass printed circuit board
 push-button switches. knobs. LED
 preset adjusters. etc.
 Function swwith. 10 turn tuning
 potentiometer. knobs
£2.15
 \mathrm{ potentiometer. knobs }
 l
f480
 screen. Primary: 0-117V-234V _ £4.45
 regulator for power supply
 13 Set of miscellaneous parts. includin
 sockets, fuse holder, fuses. inter.
 connecting wire. etc.
f8.80
 metal work parts including silk
 screen printed facia panel. acrylic
 silk screen printed tuning indicator
 panel insert. internal screen, fixing
 parts, etc.
 kit)
```fibreglass printed circuit boardibreglass printed circuit board

One each of packs 1-16 inclusive are EM equired for complete stereo
Total cost of individually purchased packs ¢7685
```

 onstructon notes Hree with complete
    ```

\section*{STEREO FM TUNER KIT}

In the April and May issues of Wireless World there was published a novel design for an f.m. tuner which combines consistent high performance with the elimination of the critical setting-up procedure required by 100 many earlier tuners. This original circuit has been developed further and is used as the basis for our new slimline unit. The front end is a ready built pre-aligned module which then feeds an amplifier driven screened three section ceramic filter leading to an integrated circuit five-stage limiting amplifier providing excellent a.m. rejection. This is followed by a single coil integrated balanced demodulator from which the audio output may be taken. Temperature compensated varicap tuning allows stations to be selected either by a ten-turn tuning potentiometer or by a choice of six preset push-button controls. Each of the preset controls can be adjusted on the fron panel with the settings being indicated by six LED lamps behind an acrylic silk screen printed facia panel insert Additional circuitry includes temperature Compensated AFC restricted to less than station spacing, inter-station muting, a single-lamp LED tuning indicator and a linear scale frequency meter the stereo decoder, built on a separate board. is based on a well-proven integrated circuit phase-locked-loop to which has been added active filiers to remove sub-carrier harmonics and 'birdies'. The power supply, to ensure station holding stability. uses an integrated circuit voltage regulator which is powered via a low-hum fietd specially designed TOROIDAL IRANSFOHMER

STYLED TO COMPLEMENT THE WORLD-WIDE ACCLAIMED LINSLEY-HOOO 75W AMPLIFIER
for further information please write for FREE LIST

\section*{FREE}

TEAK CASE WITH FULL KITS

\section*{MORE KITS ON NEXT PAGE!}


\title{
f6f:76 carriage free (U.K.) \\ KIT PRICE only carriage free (U.K.)
}
*********************************
Typical P. \& P. charges at November 1 st (E \& OE)

\section*{EXPORT NO PROBLEM}

\section*{£'s NOW HEAP CHEAP!}

By special arrangement the \(U K\) government has continued its policy of mdustrial sabotage and stimulation of inflation ensuring the rapid decline in value of sterling. making it even easier for US \(\$\) in last 6 months') Write now for postage quote
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{L.H. 75 Watt} & \multicolumn{2}{|l|}{F.M. Tuner} & \multicolumn{2}{|c|}{T20+20} \\
\hline & Alr & Seb & Air & Sea & Alr & Sea \\
\hline 'Australia & £42.60 & £1140 & 22605 & \(\pm 7.25\) & 11705 & ¢4 65 \\
\hline Canada & -23 50 & 18.00 & £. 14.40 & \(\pm 505\) & ¢960 & \(\pm 3.4\) \\
\hline Denmark & ¢ 1050 & £740 & 26.00 & \(\pm 4.65\) & 1475 & \(\pm 32\) \\
\hline Germany & +10.50 & £765 & £6.00 & \(\pm 4.80\) & ¢4.75 & 133 \\
\hline New Zealand & ¢41.60 & ¢1075 & £25 25 & 2685 & ¢1685 & 144 \\
\hline Norway & E11.40 & £730 & ¢670 & 8450 & 1520 & 23.3 \\
\hline Rep S Africa & £2500 & ¢7.80 & 21515 & ¢485 & \&1035 & \(\pm 3.4\) \\
\hline Sweden & E1090 & [725 & ¢645 & ¢450 & 1495 & \(\pm 3\) \\
\hline Swituerland & £8.90 & \(\underline{16.85}\) & ¿5 30 & £4.25 & \(\pm 410\) & \(\pm 3.10\) \\
\hline US.A. & ¢23 20 & £9.85 & \(\underline{1425}\) & £6 30 & £945 & 14.0 \\
\hline
\end{tabular}
\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)

\section*{75W AMPLIFIER KIT}

In Hi -Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973) and a subsequent follow-up article (April 1974) on a design for an amplifier of exceptional performance which has as its principal feature-an ability to supply from a direct coupled fully protected output stage, power in excess of 75 watts whilst maintaining distortion at less than \(0.01 \%\) even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system, namely the equalization stage and tone control stage, positions where most conventional designs run out of gain at the extremes of the frequency spectrum. Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs, two equalized and two linear. each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer.

Hi-Fi News Linsley-Hood 75W/Channel Amplifier Mk III Version (modifications as per HI.Fi News April 1974)
\(\left.\begin{array}{ccc}\text { Pack } & \text { Pibeglass printed circuit board } \\ \text { for power a mp }\end{array}\right)\)

Price

11 Fibreglass pinted circult board
 secondary fuses. semiconduc.ors for power supoly
13 Set of miscellaneous parts including DIN skis, mains
input skt. fuse holder inter input skt. fuse holder. inter connecting cable, control knobs metalwork parts inctuding
silk screen printed fascaa panel and all brackels. fixing

Price
0.65

〔3 50

f4. 25
\(£ 6.30\)
\(£ 0.30\)
\(£ 0.30\)
\(£ 985\)
Mandbook
Teak cabinet
2 each of packs \(1-7\) inclusive
Teak cabinet 2 each of packs \(1-7\) inclusive
are required for complete stereo system
Tetal cost of individually

FREE
teak case with full kits
\(£ 62.40\) carriage free (U.K.)

V A T Please add \(25 \%\) *
to all U.K. orders
( or at current rate if changed)
U.K. ORDERS - Carriage free (MAIL ORDER

ONLY)
SECURICOR DELIVERY: For Securicor delivery io mainland - add £2.50 VAT irc. per kit
OVERSEAS - Postage at cost +50 p special packing, handling (remittance in sterling please) Dept. WW3
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NN



WW-056 FOR FURTHER DETAILS

\section*{QUALITY AMPLIFIER KITS by POWERTRAN}
\begin{tabular}{|c|c|c|}
\hline Pack & & Price \\
\hline 1 & Set of all low noise resistors & f0.95 \\
\hline 2 & Set of all small capacitors & f1.50 \\
\hline 3 & Set of 4 power supply capacitors & f1.40 \\
\hline 4 & Set of miscellaneous parts including DIN sockets. fuses. fuse holders. control knobs, etc. & ¢ 1.90 \\
\hline 5 & Set of slide and push-button switches & f1.20 \\
\hline 6 & Set of potentiometers and selector switch & ¢2.00 \\
\hline 7 & Set of all semiconductors & ¢7. 25 \\
\hline 8 & Special Toroidal Transformer & ¢4.95 \\
\hline 9 & Fibreglass PC Panel & ¢2.50 \\
\hline 10 & Complete chassis work. hardware and brackets & f4.20 \\
\hline 11 & Preformed cabie/leads & f. 40 \\
\hline 12 & Handbook & ¢0.25 \\
\hline 13 & Teak Cabınet & \(£ 4.50\) \\
\hline
\end{tabular}

\section*{NIRELESS WORLD AMPLIFIER DESIGNS}

Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating

\section*{30W BAILEY}

Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors. pots
Pk. 3 Semiconductor set
2OW LINSLEY-HOOD
Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors. pots 60V REGULATED POWER SUPPLY Pk. 1 F/Glass PCB Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set
BAILEY-BURROWS PRE-AMP Pk. 1 F/Glass PCB (Stereo) Pk. 2 Resistors, capacitors, pre-sets transistors (Stereo)

Pk. 3R Rotary potentiometer set (Stereo) Pk. 35 Slider potentiometer set (Stereo)
(with knobs)

\section*{STUART TAPE RECORDER}

A set of three printed-circuit boards has been prepared for the stereo integrated circui version of this high-performance Wireless world published design
TRRP Pk. 1 Replay amplifier F/Glass PC
TRRC Pk. 1 Record amp./meter drive cct F/Glass PCB
TROS Pk. 1 Bias/erase/stabilizer cct.
F/Glass PCB
For details of component packs for
please write for free list.

\section*{ACTIVE FILTER CROSSOVER}

An essential and critical component in a high-quality speaker system is the crossover unit convention ally comprising of a series of passive networks which unfortunately, though introducing reactive impedances between the amplifier and the speakers. result in the loss of the advantage of high amplifier damping factor'and renders the speakers prone to overshoots and resonances. An elegant solution to this problem. described by D. C. Read in Wireless World, involves the use of a series of active filters splitting the output of the pre-amplifier into three channels, of closely defined bandof active filters splitting the output of the pre-amplifier into three channels, of closely defined band-
width. each of which is fed to the appropriate speaker by its own power amplifier. A design for a width. each of which is fed to the appropriate speaker by its own power amplifier. A design for a
suitable 20 -watt amplifier, based on a proven Texas circuit. was also described by Mr Read. The suitable 20 -watt amplifier, based on a proven Texas circuit. was also described by Mr Read. The
printed-circuit board for this has been designed such that three amptifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.


ELECTRONICS

\section*{AND NOW OUR NEW} T30 + 30 30 WATT VERSION!

The \(T 20+20\). already a development from the very successful Texan, has been developed still further to include all the improvements suggasted in the P W July 1975 dilow-up article and our new model offers RF interference
tape monitor facility and an additional 10 fiters, tape monitor
watts/channel of power.
\begin{tabular}{|c|c|c|}
\hline Pac & & Pri \\
\hline 1 & Set of all low noise resistors & E1.05 \\
\hline 2 & Set of all Small capacitors & ¢2.10 \\
\hline 3 & Set of 4 power supply capacitors & ¢2.05 \\
\hline 4 & Set of imscellaneous parts including DIN sockets fuses fuse holders control knobs etc & ¢190 \\
\hline 5 & Set of slide and push button sinitches & f1 120 \\
\hline 6 & Set of potentiometers and selector swith & f200 \\
\hline 7 & Set of all semiconductors & k 7.75 \\
\hline 8 & Special Torodal Transformer & 1680 \\
\hline 9 & Fibreglass PC Panel & ¢2.90 \\
\hline 10 & Complete chassis work hardware and brackets & E4.80 \\
\hline 11 & Preformed cable eads & £0. \(\overline{4} 0\) \\
\hline 12 & Handbook (free with complete kit) & £0.25 \\
\hline 13 & Teak Cabunet & £4.50 \\
\hline
\end{tabular}

FULL KIT (WITH FREE TEAK CASE) ONLY £32.95

SEMICONDUCTORS
as used in our range of quality amplıfiers
\begin{tabular}{|c|c|c|c|}
\hline 2N699 & £0. 20 & BFY51 & ¢0.20 \\
\hline 2N1613 & ¢0.20 & BFY52 & ¢0.20 \\
\hline 2N1711 & ¢0.25 & CA3046 & ¢0.70 \\
\hline 2N2926G & ¢0. 10 & LP1186 & ¢5.50 \\
\hline 2N3055 & £0.45 & MC1310 & ¢2.90 \\
\hline 2N3442 & ¢1.20. & MC1351 & c1.05 \\
\hline 2N3711 & ¢0.09 & MFC4010 & ¢0.95 \\
\hline 2N3904 & ¢0. 17 & MJ481 & £1.20 \\
\hline 2N3906 & £0.20 & MJ491 & £1.30 \\
\hline 2N4062 & ¢0.11 & MJE521 & f0.60 \\
\hline 2N4302 & ¢0.60 & MPSA05 & ¢0.25 \\
\hline 2N5087 & ¢0.42 & MPSA12 & ¢0.55 \\
\hline 2N5210 & ¢0.54 & MPSA14 & ¢0.35 \\
\hline 2 N 5457 & c0.45 & MPSA55 & c0. 25 \\
\hline 2N5459 & ¢0.45 & MPSA65 & ¢0.35 \\
\hline 2N5461 & ¢0.50 & MPSA66 & £0.40 \\
\hline 2N5830 & +0.35 & MPSU05 & £0.60 \\
\hline 40361 & ¢0.40 & MPSU55 & ¢0.70 \\
\hline 40362 & ¢0.45 & SBA750A & f2.50 \\
\hline BC107 & ¢0.10 & SL301 & £1.30 \\
\hline BC108 & £0.10 & St3045 & £1.60 \\
\hline BC109 & ¢0.10 & SN72741P & ¢0.4. \\
\hline BC109C & £0.12 & SN72748P & ¢0,40 \\
\hline BC125 & f0. 15 & 「IL209 \({ }^{\text {a }}\) & \(\overline{\mathbf{f}} \mathbf{0} .30\) \\
\hline BC126 & ¢0.15 & TIP29A & ¢0.50 \\
\hline BC182 & f0.10 & TIP30A & ¢0.60 \\
\hline BC212 & ¢0.12 & TIP29C & ¢0.71 \\
\hline BC182k & £0.10 & TIP30C & ¢0.78 \\
\hline BC212K & f0.12 & TIP4 1 A & ¢0.74 \\
\hline BC182L & ¢0.10 & TIP42A & ¢0.90 \\
\hline EC184L & ¢0.11. & TIP 418 & E0.82 \\
\hline BC212L & f0. 12 & TIP 428 & - 60.98 \\
\hline BC214L & ¢0.14 & 1 N 914 & - \(£ 0.07\) \\
\hline BCY72 & ¢0.13 & 1 N916 & ¢0.07 \\
\hline BD529 & ¢0.85 & 15920 & c0.10 \\
\hline 80530 & ¢0.85 & 5805 & ¢1.20 \\
\hline B0Y56 & f1. 60 & FILTE & \\
\hline 8F257 & f0.40 & FM4 & ¢0.80 \\
\hline BF259 & ¢0.47 & SFG10 7M & \\
\hline BFR39 & ¢0. 25 & & £2.80 \\
\hline BFR79 & ¢0.25 & & \\
\hline
\end{tabular}
V.A.T. Please add 25\%* to all U.K. orders
(*or at current rate if changed)
U.K. ORDERS - Post free (mail order only) SECURICOR DELIVERY-for this optional service (Maroland only) add 52.50 V. A.T. inc. per KıV
OVERSEAS - Postage at cost \(+50 p\) special packing, hardling (remittance in sterling please)

Dept. WW3
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP10 3NN


High quatity competitively priced Knobs in production quantities only. Min. order 1000 Pcs of any one of 266 types 1 KNOB CAT.: WW124 FOR FURTHER DETAILS



ENVIRONMENTAL TEST EQUIPMENT

A Standard Range offering
the following facilities:
High temperatures to \(500^{\circ} \mathrm{C}\) Low temperatures to \(-75^{\circ} \mathrm{C}\)
Humidity Cycling
Thermal Shock
Vibration
Pressure Cycling
Sand and Dust exp.
Corrosive Gas exp.
Explosion Test

Also embraced in
the range of
manufacture are


VACUUM DRYING EQUIPMENT
HYPERBARIC OXYGEN SURGERY CHAMBERS

TABAI INFO.: WWI26 FOR
FURTHER DETAILS

SPECIALIST STOCKISTS OF SERVOMOTORS, SYNCHROS. TEST EQUIPMENT, METERS AND CONNECTORS Servo and Electronic Sales Ltd \(\overline{24}\) HIGH STT., LȲ̄D̄, KENT TN29 9AJ. Tel. Lydd 20252 (STD' 0679) V̈AT'No. 201-1296-23. TELEX 965265


\section*{LEMANIA AIRCREW CHRONOGRAPHS}
 hands and markings Onentro sec sweep hand
controlled and independently of main move Controlled and independently of main movemem
by press to stan stop and return to zero bution by press to stann stop and return to zero bution
15 jewel movement Many of these watches are as new but all have been completely overhauled



LEMANIA STOPWATCHES fitted with one red and one black sweep hands independently controlled enabling elapsed separately without stopping the measurement of the main time period. Absolutely mint condition but cleaned and checked. £ 15 inc P. \&P. \& VAT

\section*{1/10 SEC. STOPWATCHES, overhauled, \(\mathbf{6 6 . 5 0}\) (inc. P. \& P. \& VAT}

1/100 SEC. STOPWATCHES, \(0-6\) sec.. \(£ 8.50\) (inc P. \& P aval)
AMBRIDGE INST. MIRROR GALVOS, \(4.50 \mathrm{ohm}, \mathrm{E} 10\) (inc. P.\&P \& VAT)
HEAW DUTY FTAANSMITTERS, 1.5 to 26 MHz, P.OA HEAVY DUTY FLEXIBLE POWER CABLES, Type A 2 core
each 750 A 440 VAC Type 4 core each 200A 440 VAC 100 ft lengths

\section*{REED SWITCH INSERTS}


RELAYS, HYDRAULIC AND ELECTRIC ACTUATORS, POWER SUPPLIES, ELEC. TRONIC COMPONENTS ESPECIALLY TANTALUM CAPACITORS, METAL OXIDE RESISTORS, TRIMPOTS, FANS, MULTIWAY CABLES, RECORDERS, CONVERTERS, INVERTERS, AIRCRAFT INSTRUMENTS, MAINS STABILISERS, Etc.

\section*{SYNCHROS AND SERVOMOTORS} EX STÓCK


OVER 300,000 RF AND MULTIWAY CONNECTORS IN STOCK. TELEX YOUR REQUIREMENTS NOW!

Institution of Electronics, University of Edinburgh, 16-18 March 1976 FORTHCOMING IEA-Electrex 1976 National Exhibition Centre, Birmingham, 3-7 May 1976 EXHIBITIONS Leetronex 1976, Leeds University, 29-30 June, 1 July, 1976 Tickets free on receipt of SAE ( 1 for each Exhibition please)


FOR YOUR PRODUCTION REQUIRENENTS USE ALPS PANEL METERS
Substantial quanllty discounts to manufacturers Remembert We are the sole inporters!


NEW ADDITIONS to our range of PANEL METERS available at present only in MANUFACTURING QUANTITIES


SU45 \(69 \times 53 \mathrm{~mm}\) SU55 \(87 \times 63 \mathrm{~mm}\) SU65 \(105 \times 77 \mathrm{~mm}\)
Above meter forms are for moving coil movemente only and mey house S-meter and VU-meter instruments.

\section*{ENGINE TEST EQUIPMENT}

SERVO AUTOTESTER No. 1. \(0.32 \& 016 \mathrm{v} .0 .80 \mathrm{~A} . \mathrm{DC}\) \& 020 K








MULTIRANGE TEST METERS \& LOW-PRICE INDICATORS AND PANEL METERS AVAILABLE WITH PERSONALISED SCALES


METERS CAT.: WW127 FOR FURTHER DETAILS

\section*{AT THESE PRICES AND BUY QUALITY}
\begin{tabular}{|c|c|c|c|c|c|}
\hline VALVES Type & Price (p) & Type & \[
\begin{array}{r}
\text { Price } \\
\text { Each (p) } \\
15
\end{array}
\] & Type
R20088
Eac & \[
\begin{gathered}
\text { Price } \\
\text { h }(p) \\
\text { E2 } 00
\end{gathered}
\] \\
\hline DY87 & - 30.0 & BC132 & 25 & R20108 & f2.00 \\
\hline \({ }_{\text {DY802 }}\) & 30.0 & \({ }^{8 C 135}\) & 15 & RCA16334 & 80 \\
\hline ECC82 & 28.0 & 8 BC 137 & 19
26 & RCA16335 & 80 \\
\hline EF80 & 29.5 & BC138 & 23 & TIP31A
TIP32A & 57
67 \\
\hline EF183 & 34.5 & BC 142
BC 143 & 23 & TIP32A & 67 \\
\hline EF184 & 34.5 & \({ }_{8 C 147}\) & 11 & TIP42A & 80 \\
\hline EH90 & 35.5 & \({ }_{8}\) C147A & 11 & 2N3055 & 55 \\
\hline \({ }^{\text {PC900 }}\) & 24.5
40.0 & BC148 & 10 & DIODES & \\
\hline PCC189 & 41.0 & BC149 & 10 & BA115 & 7 \\
\hline PCF80 & 31.5 & 8 BC 53 & 15 & BA145 & 14 \\
\hline PCF86 & 39.0 & 8C154 & 15
14 & BA148 \({ }^{\text {BA154/201 }}\) & 19 \\
\hline PCF801 & 420 & 8C157 & 10 &  & 11 \\
\hline PCF802 PCL. 82 & 400
390 & BC159 & 11 & 8 Y 127 & 12 \\
\hline PCL84 & 39.0 & BC173 & 18 & BY199 & 27 \\
\hline PCL85 & 44.5 & \({ }^{\mathrm{BC} C 1788}\) & 20 & BY206 & 21 \\
\hline PCL86 & 41.0 & \({ }_{\text {BC1 }}^{\text {BC }} 183 \mathrm{~L}\) & 12 & BY238 & 25 \\
\hline PFL200 & 59.5 & \({ }^{8 C 183}\) & 25 & OA90 & 6 \\
\hline PL36 & 55.5 & 8 C 214 L & 15 & OA202 & 75 \\
\hline PL84 & 25.0 & \({ }_{8} \mathrm{BC} 328\) & 28 & IN60/OA91 & 5 \\
\hline PL504 & 64.5 & BC337 & 19 & IN914 & 6
5 \\
\hline PL508 & 67.0
\(¢ 1.20\) & 8 BD 124 & 75 & 1 1N4002 & 5 \\
\hline \[
\begin{aligned}
& \text { PL519 } \\
& \text { PY888 }
\end{aligned}
\] & ¢1. 20
35.5 & \({ }^{8 D 131}\) & 45 & \begin{tabular}{l}
INTEGRATED \\
CIRCUITS
\end{tabular} & \\
\hline PY800 & 33.0 & BD132
80160 & 39
¢ 39 & & Price \\
\hline PY500A & 85.0 & \({ }^{8} \mathrm{BD} 235\) & 17
49 & Type Ea & ¢ (p) \\
\hline SEMI & & 8 B 237 & 52 & ETTR6016
MC1351P & £200 \\
\hline CONDUC & TORS & 8D×32 & £2 40 & & \\
\hline & Price & BF115 & 20 & SN76013N & £2.35 \\
\hline Type & Each (p) & BF160 & 15 & SN76013ND & ¢150 \\
\hline \({ }_{\text {AC1 }}{ }^{\text {d }}\) & 17 & \(8 F 167\) & 20 & SN76023N & c1.50 \\
\hline AC128 & 13 & \(8 \mathrm{FF173}\) & 20 & SN76023ND & ¢1 45 \\
\hline AC141K & 25 & \(8 F 178\) & 35 & SN76033N & ¢2 35 \\
\hline AC142K & 25 & BF179 & 31 & SN76227N & ¢1.45 \\
\hline AC151 & 20 & \(8 \mathrm{BF180}\) & 32 & SN76532N & f1. 45 \\
\hline AC154 & 18 & \({ }_{8 F 184}\) & 25 & SN76660N & 58 \\
\hline AC156 & 20 & 8F185 & 25 & SN76666N & 87 \\
\hline AC176 & 22 & \(8 F 194\) & 9 & TAA550 & [2 95 \\
\hline AC187 & 19 & 8 F 195 & 8 & T8A120AS & ¢1 100 \\
\hline AC187K & 24 & 8 8196 & 10 & tBa120SQ & [1.00 \\
\hline AC188 & 17 & BF197 & 12 & T8A4800 & [1. 40 \\
\hline AC188K & 26 & 8 8198 & 23 & TBA520Q & £2.35 \\
\hline AD142 & 45 & BF200 & 25 & TBA5300 & ¢1. 75 \\
\hline AD149 & 40 & 8 F 218 & 30 & TBA5400 & ¢1 75 \\
\hline AD161 & 38 & 8F224 & 34 & T8A550Q & C2.90 \\
\hline AD162 & 38 & \({ }_{8}^{8 F 258} 8\) & 34 & TBA560CQ & \(\underline{5} .40\) \\
\hline AF114 & 24 & 8 BF 37 & 28 & TBA800 & ¢150 \\
\hline AF115 & 21 & BF337
BF355 & 54 & T8A9200 & f. 290 \\
\hline AF116 & 22
19 & BF355
8 FF 86 & 28 & T8A99CQ & [2.90 \\
\hline AF117
AF118 & 19
50 & \({ }^{8} \mathrm{BFY} 50\) & 19 & TCA2700 & ¢2.90 \\
\hline AF139 & 35 & BFY52 & 20 & EHT MULTIP & Liers \\
\hline AF178 & 45 & 8 SY52 & 35 & MONOCHRO & ME \\
\hline AF180 & 45 & 8T106 & £1 20 & (BRC) Pric & Each \\
\hline AF181 & 45 & 8U105/02 & ¢1 95 & 2 HO 950 MK 1 & \\
\hline AF239 & 40 & \(8 \mathrm{U108}\) & ¢2 10 & & \\
\hline AF240 & 60 & 8U208 & £295 & 2TQ 950MK2 & 1400
\(¢ 185\) \\
\hline 8C107 & 11 & E1222 \({ }_{\text {M }}\) & 30
45 & 2DAK 1500 & \\
\hline 8C108 & 10 & & 45
15 & & \\
\hline 8C109
BC109C & 14
14 & \({ }_{0}^{\text {OC7 }} \mathrm{O} 72\) & 15
16 &  & ¢1.85 \\
\hline \(\mathrm{BC109C}\)
8 C 113 & 14
13 & & & ( \(23^{\prime \prime} \& 24^{\prime \prime}\) ) & £2.00 \\
\hline 8C116A & 19 & & & & \\
\hline \multicolumn{2}{|l|}{BC117 14} & \multicolumn{4}{|c|}{EHT MULTIPLIERS COLOUR} \\
\hline & & \multicolumn{3}{|r|}{TYPAQ ITT CVC 1, 2 \& 3} & Each \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{ITN GEC Sohell}} & ¢450 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{8}{*}{}} & & & & ¢4. 85 \\
\hline & & \multicolumn{3}{|c|}{11 TAM Philips G8
11 TBD Philips 550} & \(\begin{array}{r}\text { ¢4 } 50 \\ \text { ¢4 } 50 \\ \hline\end{array}\) \\
\hline & & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{3TCW Pye \(691 / 693\)
1TH Decca 30 Series}} & ¢3.50 \\
\hline & & & & & ¢4.50 \\
\hline & & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{11 TAQ Decca Bradiord
3TCU Thorn \(3000 / 3500\)}} & ¢450 \\
\hline & & & & & ¢5.00 \\
\hline & & \multicolumn{3}{|c|}{11HAA Thorn 8000
11 HAB Thorn 8500} & \\
\hline & & & & & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{8}{*}{COMBINED PRECISION}} & \multicolumn{4}{|r|}{\multirow[t]{3}{*}{\begin{tabular}{l}
MeN toshiba tubes \\
with 12 months in service guarantee
\end{tabular}}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{19'A A49-191X equivalents
A49-192 and A49-120X}} & \\
\hline & & & & & £4895 \\
\hline & & \multicolumn{3}{|r|}{20 " 510 D J J 222 equivalent
A51.110X} & \\
\hline & & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{22. \({ }^{\text {A } 56 / 120 X ~}\)}} & £54.25 \\
\hline & & & & & \\
\hline
\end{tabular}

COMPONENTS (PRESTON)LTD

Department w. 194-200 North Rd, Preston PR1 1 YP Tel:5503a Telex:677122.

TRANSFORMERS
ALL EX-STOCK - SAME-DAY DESPATCH

MAINS ISOLATING VAT \(8 \% 12\) and/or 24-VOLT

PRI \(120 / 240 \mathrm{~V}\) SEC \(120 / 240 \mathrm{~V}\)



30 VOLT RANGE
SEC. TAPS 0-12-15-20-25-3OV
\[

\]

\section*{HIGH VOLTAGE}

PRI \(200 / 220\) OR \(400 / 440\)
SEC \(100 / 120\) OR \(200 / 240\)
\[
\begin{array}{|rrrr}
\text { VA } & \text { Ref. } & \mathbf{~} \mathbf{~} \mathbf{P} \& \mathbf{P} \\
60 & 243 & \mathbf{p} .37 & 97 \\
350 & 247 & \mathbf{1 0 . 9 3} & 1.41 \\
1000 & 250 & 26.31 & \text { BRS } \\
2000 & 252 & \mathbf{4 4 . 1 2} & \text { BRS } \\
\hline
\end{array}
\]


AUTO TRANSFORMERS
\[
\begin{array}{r}
\mathbf{R} \\
\mathbf{N} \\
11 \\
6 \\
6 \\
6 \\
8 \\
8 \\
9 \\
9 \\
7 \\
\hline
\end{array}
\]
\begin{tabular}{cc} 
& P\&P \\
\(\mathbf{£}\) & \(\mathbf{D}^{2}\) \\
\(\mathbf{1 . 9 0}\) & 58 \\
2.52 & 72 \\
3.77 & 72 \\
\hline .70 & 85
\end{tabular}




All goods new, to full manufacturer's spec. No substandard parts sold. TERMS Non-Account Customers, Cash with Order. Standard P\&P Visitors welcome, by appointment. Colleges, Govt. and Account orders 50p. Please add VAT to overall total welcomed

\section*{Rastra ElECTRONICS LTロ.}


\section*{DATA AND COMMUNICATIONS TERMINALS}

Teletype 28, 32, 33, 35, 40
TermiNet 30, \(300 \& 1200\) ( 30 and 120 cps )
Teleterm 1030 \& 1132 (portable 30 cps with integral coupler and RS 232C)
Other page printers (by Siemens, ITT Creed, etc.) TermiNet 120 line printer
* Spares, repairs, overhauls and maintenance \(\star\) Other types and models available * Refurbished units also available * Short and long period rentals
* Minicomputer interfaces * Uuantity discounts * Immediate delivery

TELEPRINTER EQUIPMENT LTD. 70-80 AKEMAN STREET, TRING, HERTS., U.K.

\author{
Telephone 0442-82-4011 Cables RAHNO Tring \\ Telex 82362 \\ A/B Batelcom Tring
}


\section*{Hanover makes Markets f) afresh every year 28 April- 6 May 1976 Hanover Fair}
- Day visit by jet flight from Luton Airport Thursday, 29th April for \(£ 49\) per person;
- Day visit by jet flight from Gatwick Airport Tuesday, 4th May for \(£ 49\) per person;
- Day visit by jet flight from

Gatwick Airport for the Aerospace Show Tuesday, 4th May for £44 per person
- Package tours inclusive of scheduled flights
First and tourist class accommodation in central Hanover from £68 for two days (one night),
Price includes entrance ticket;
- Good clean private accommodation in central Hanover for two days by scheduled flight from £.67. Also sleeping car berths available at the fairground itself for two days by air from \(£ 89\).
OFFICIAL UK AGENTS FOR VISITORS
Telephone No: 01-4998836 (ask for lan Stewart for immediate confirmation)

Kuoni Travel Ltd
33 Maddox Street,
London W1R 9LD.

\section*{ADVANCED CLOCK KIT}

Cormplete ket including atractive sim case for 6 digit alarm clock with bleep alarm. snooze and automatic

 SEND LARGE SAE. FOR DETAILS AND PAICES OF THIS MONTH'S P.E CAR/BOAT CLOCK/ IJURNEY TIMER OR PHONE FOR IMMEDAATE DESPATCH.
SEND LARGE SA.E. FOR DETAIS OF OUR MODULAR STOPWATCH SYSTEM USING CMOS SEND LAAGE SA.E FOR DETAILS OF ATTRACTVE SIMPLE 4 DIGIT GREN CLOCK SOHZ CRVSTA

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CMOSICS}} & \multirow[t]{3}{*}{CD4031
CO4032
CO 0333} & \multirow[b]{2}{*}{\({ }_{1.14}^{0.88}\)} & \multirow[t]{2}{*}{CD4062 \(C 04063\)
\(C 04066\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1.33 \\
& 0.90 \\
& 0.58
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { CO4518 } \\
& \text { C04520 }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1.03 \\
& 1.03 \\
& 103
\end{aligned}
\]} & \multicolumn{2}{|l|}{display in} \\
\hline & & & & & & & & \multirow[t]{2}{*}{\begin{tabular}{l}
SN75492 \\
7447
\end{tabular}} & \multirow[t]{2}{*}{.81
1.02
1.05} \\
\hline \multicolumn{2}{|l|}{} & & & & & CD4532 & & & \\
\hline \multicolumn{2}{|r|}{. 17} & & & & & & 0.74 & & \\
\hline \multicolumn{2}{|l|}{} & & & & & & & & \\
\hline \multicolumn{2}{|l|}{CD4007 0.17} & & 0.78 & & 0.18 & & & & \\
\hline \multirow[t]{2}{*}{co4008
CO409} & & CO & - \({ }_{2.88} .88\) & CO & \({ }_{0} 0.18\) & MC14534 & 6.04 & 10 M for & 0 \\
\hline & & & & & 0.18 & MC & 4.07 & & \\
\hline C04011 & & & & & & & & & \\
\hline \multirow[t]{2}{*}{CO4012} & & & & & & & & & \\
\hline & 0.46 & & 0.83 & CD & 0.18 & & & & \\
\hline  & 0.83 & CD & 1.15 & \({ }_{C D}\) & 0.18 & CLOCK & & & \\
\hline \multirow[t]{2}{*}{C04016} & 0.4 & & & & 18 & M M & 4.44 & 3000 & . 60 \\
\hline & 0.83 & & 0.74 & & & AY5 1224 & 3.68 & & \\
\hline \({ }^{\text {CDOAOP1 }}\) & 0.83 & CD & 0.46 & & 0.59
1.27
1.27 & & 4.78 & & \\
\hline C04019 & -0.92 & CO4 & \({ }_{0.48}^{0.48}\) & Co & 0.86 & & & Ports & \\
\hline \multirow[t]{2}{*}{} & & & 0.71 & CD & 1.53 & & & & 0.30 \\
\hline & 0.78 & & & CO4 & 0.86 & & & \({ }_{40}^{28}\) & \({ }_{0}^{0.30}\) \\
\hline  & 0.17 & CO40 & 0.75 & co & 50 & RCA1975 & & & \\
\hline C04025 & 0.17 & C04055 & 1.98 & \({ }^{\text {CDO450 }}\) & 0.98 & mcmos & . 7 & Ca & \\
\hline \({ }^{\text {co4026 }}\) & & & 08 & CO45 & & & & 10 & \\
\hline \multirow[b]{2}{*}{CO4028
C04029} & 0.48 & C0405 & 10.64 & CO45 & 1.28 & -15 & & 751412K & \\
\hline & \({ }_{0.94}\) & & & & 2.56 & & & & \\
\hline C04030 & 0.46 & C0406 & 16.43 & C04516 & & fno500 & 1.50 & & \\
\hline
\end{tabular}




\section*{HART ELECTRONICS}

Audio Kit Specialists since 1961


STEREO BAILEY 30 WATT TUNER AMP.
This complete tuner/amp unit is of the very highest quality and is the amalgam of our amp. The wooden sleeve is available in etther teak or sapele finish to blend with existing equipment or furnishings
The combination of our excellently designed printed circuits and the high quality components used makes this unit unequalled on the kit market
Futt uetails are in our free hists.
STUART TAPE CIRCUITS. Our printed circuirs and components offer the easy way to convert any suitable quality deck into a very high quality Stereo 1 ape unn. Input and utput levers balley pre amp Total cost hat de All auove kits have fitreglass PCB's Prices exclude VAT but P\&P is included.

FURTHER INFORMATION ON ALL KITS FREE if you send us a in. \(\times 4\) in.
REPRINTS post itee no VAT
Bailey 30W 18p
STUART TAPE RECORDER. All 3 articles under one cover 30p
BAILEY/BURROWS/QUILTER Preamp circuits, layouls and assembly notes 15p

Penylan Mill, Oswestry, Salop

\section*{Build if yourseff!}

\begin{tabular}{|c|c|}
\hline unlt. And have had all the pleasure of dolng it yourself, with the Henry's kit, & \multirow[t]{3}{*}{\begin{tabular}{l}
* Can he helif Stage by srage Ash for tealfer 10. \\
+ Evervinima necess.ary suppled.foll after salus seferice and guarannees.
\end{tabular}} \\
\hline Look at the Texan specification & \\
\hline incorporating fully integrated stereo preamp and prower amp, with biC's, 10 transisiors. & \\
\hline 6 pactifieps and zener diodes. Plus trablised. prolet.ted clicuitry, glass nb DCb; Gardeners & \\
\hline P & £ 45.00 inc. VAT \\
\hline & \\
\hline MS, tess than \(0.1 \%\) dis & \\
\hline
\end{tabular}

\section*{THE NATURAL FOLLOW-ON - THE TEXAN FM TUNER KIT!}

advanced valicap tuning. Phase lockloop decod Protessionatly designed circuir. Everything you need in the kit. From the glass fibre peb to the cabinet itself. Excellent spec : 25 uV aerial sersitivity. 500 mV output (adjustable)
powered
 all the electronic excitement
 you could wish for! An up-to-the-minute game. Plugs nto your own TV aetial socket
Switch on. And you're awiay! Choose your game - footrall, tennis or hale-in-the-wall Absolutely
safe. For you. Yourchildten. And your TV. Mains powered.

HENRY'S PRICE-ONLY £29.50
WHATEVER YOU DO, DON'T FDRGET YOUR LatEst 1 Gibive Hitcidily


\section*{\(17 \rightarrow 2\) \\ 3G9 EOGWAGE RENTRES 404 and}

404/S EDGWARE ROAD, LOMDON W2 01-402 8981
LOWER SALES FLOOR 231.TOTREHMAM CT. RD., LONDON W1 01-636 G681
MIDLANOS S4/9G UPPER PAALLAMEMT STREET, MOTTHGYAM. OS02-40403
midLANOS
sto Res
All mai to Henry's Radio. 303 Edgware Road, London W2


WW - 129 FOR FURTHER DETAILS



\section*{COME AND SEE}
the latest in
SOUND and VISUAL COMMUNICATION EQUIPMENT at the
SOUND 76
INTERNATIONAL

\section*{EXHIBITION}

16-18 MARCH 1976
bloomsbury centre hotel
Coram Street, Russell Square, London VJC1
10.00-18.00 hrs daily Admission Free

Organisers:
THE ASSOCIATION OF PUBLIC ADDRESS ENGINEERS
47 Windsor Road, Slough, Bucks Telephone: Slough 39455


High quality modules for stereo, mono and other audio equipment.


\section*{\(£ 19.95\)}

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls.
Used with your existing audio equipment or with the BI-KITS STEREO \(\mathbf{3 0}\) or the MK60 Kit etc. Alternatively the PS \(\mathbf{1 2}\) can be used if no suitable supply is available, together with the ransformer T461
The S450 is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied

\section*{STEREO PRE-AMPLIFIER}


A top quality stereo pre-amplifier and tone control unit. The six push-button selector switch proides a choice of inputs together with two really effective filters for high and low frequencies, plus tape output
MK. 60 AUDIO KIT: Comprising \(2 \times\) AL60's. \(1 \times\) SPM80 \(1 \times\) and knobs 1 Kit of parts to - panel and knobs. 1 Kit of parts to include sor suren, neon indicaror tereo headphone sockets plus PRICE \(£ 27.55\)

\section*{TEAK 60 AUDIO KIT} KIT: postage omprising Teak veneered cabinet size \(163 / 4^{\prime \prime} \times 111 / 2^{\prime \prime} \times 33 / 4\) ", other parts include aluminium chassis heatsink and front panel bracket plus back panel and appropriate sockets etc KIT PRICE E9. 20 plus 62p ostage

SPECIFICATION:
ostage

Fitted with Phase Lock-loop Decoder
* FET Input Stage * VARI-CAP diode tuning * Switched AFC
* Multi turn pre-sets - LED Stereo Indicator

Typical Specification Sensitivity \(3 \mu\) volts Stereo separation 30db Supply required 20-30v at 90 Ma max.
 OUR PRICE £13.50

\section*{requency Response +1 dB 20 Hz}

20 KHz . Sensitivity of inputs dB \(20 \mathrm{H}_{2}\) 1. Tape Input 100 mV into 100 K ohms 2 Radio Tuner 100 mV into 3. Magnetic P.U 3 mV into 50 K ohms \(\qquad\) 1 dB from 20 Hz to 20 KHz Supply - \(20-35 \mathrm{~V}\) to 20 mA Dimensions \(299 \mathrm{~mm} \times 89 \mathrm{~mm}\)

\section*{AUDIO}

\section*{AMPLIFIER MODULES}

\section*{The AL10, AL20 and AL30 units} are similar in their appearance and in their general specification However, careful selection of the plastic power devices has resulted in a range of output powers from 3 o 10 watts R.M.S
The versatility of their design makes them ideal for use in record players, tape recorders, stereo amplifiers and cassette and car tridge tape players in the home
Hamonic Distortion \(P o=3\) watts \(f=1 \mathbf{K H z} 02.5 \%\)
Load Impedance \(8-16 \mathrm{ohm}\) Size: \(75 \mathrm{~mm} \times 63 \mathrm{~mm} \times 25 \mathrm{~mm}\) Frequency response \(\pm 3 \mathrm{~dB}\) Po \(=2\) watts \(50 \mathrm{~Hz}-25 \mathrm{~Hz}\)


\section*{MPA 30}

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only It is provided with a standard DIN input socket for ease of connection. \(£ 2\) .65 Full instructions supplied. 4 E


The Stereo 30 comprises a complete stereo pre-amplifier power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs i.e high quality ceramic pick-up stereo tuner, stereo tape deck etc. Simple to install apable of producing really first class results, this unit is supplied with full instructions. black front panel knobs main switch, fuse and fuse holder and universa mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabine available. Ideal for the beginner or the advanced enstructor whe requires Hi-Fi performance with minimum of installation difficulty (can be installed in 30 mins)

\section*{* Max Heat Sink temp 90C. Frequency respon} 20 Hz to 100 KHz . Distortion better than 0.1 at 1 KHz Supply voltage \(15-50 v *\) Thermal Feedback * Latest Design Improvements \(\star\) Load - \(3,4,5\), or 16 ohms Signal to noise ratio 80 db * Overall size 63 mm .105 mm 13 mm

Power supply for AL10/20/30, PA12, SA450 etc.

\section*{Stabilised Power Supply Type SPM80}

SPM80 is espectally designed to power 2 of the AL60 Amplifiers up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size \(: 63 \mathrm{~mm} .105 \mathrm{~mm} .30 \mathrm{~mm}\). incorporating short circuit protection
Transformer BMT80
£2.60 + 62p postage

Inputt voltage \(15-20 v\) A.C. Output voltage 22.30 v D.C.
Output current 800 mA Max. Size \(60 \mathrm{~mm} \times 43 \mathrm{~mm} \times 26 \mathrm{~mm}\)
Transformer T538 £2.30
OUR PRICE \(E 1.20\)

P.O. BOX 6, WARE, HERTS.

DEMAELECTRONICS INTERNATIONAL ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST

MONTHLY SPECIALS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{\begin{tabular}{l}
MONTHLY SPECIALS \\
- Close out Sale Special Purchaso Whito They Lart -
\end{tabular}} \\
\hline CT 5001 & 12 Digit 4 Funct Batt Oper 5001 & & \[
\begin{array}{r}
.59 \\
.68 \\
\hline
\end{array}
\] & CT \({ }_{\text {CT }} 50\) & \[
\begin{aligned}
& 0612 \mathrm{DH} \\
& 014 \operatorname{cor} 6
\end{aligned}
\] & Funct. w/ it Alerm & & .79
3.50 \\
\hline \multicolumn{9}{|c|}{- Memories Are Made of These Specials} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
1101256 . Bit Rat Moa. \\
1103 1024. Bit Aam Mon \\
5260 1024. Bir Rem \\
5261 1024-Bit Ram L/power
\end{tabular}}} & . 99 & \multicolumn{4}{|l|}{\multirow[t]{4}{*}{5262 2048-Bit Rem 1702A 2048. Bit Prom. 52032048 - Bit u/Violet Proms 2102 1024-8ti Status Rem}} & 3.96 \\
\hline & & & 1.45 & & & & & \\
\hline & & & 1.45 & & & & & 8.96 \\
\hline & & & 1.45 & & & & & 2.75 \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { T4L } \\
& 7447 \\
& 7475 \\
& 7490
\end{aligned}
\]} & \multirow[b]{4}{*}{\[
\begin{array}{r}
.59 \\
.29 \\
.35
\end{array}
\]} & \multirow{4}{*}{\[
\begin{aligned}
& 74123 \\
& 74145
\end{aligned}
\]} & \multirow{4}{*}{\[
\begin{array}{r}
39 \\
.49
\end{array}
\]} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{tCL 8038 Funct. Gen Voh Conts Oncillator Sine Sa.}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{1.95}} \\
\hline & & & & & & & & \\
\hline & & & & 9 Digit & EO displa & & & \\
\hline & & & & & oden Cor & 8-digit & & \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{TTL 7400 SERIES}} \\
\hline & & & & & & & & \\
\hline 7400 & £ 011 & 7440 & ¢ 0.11 & 7485 & ¢. 0.85 & 74155 & ¢ 0.69 & \\
\hline \multirow[t]{2}{*}{7401} & 0.11 & 7441 & 2.60 & 7486 & 0.24 & 74156 & 0.69 & \\
\hline & 0.11 & 7442 & 0.55 & 7488 & 2.50 & 74157 & 0.69 & \\
\hline \[
\begin{aligned}
& 7402 \\
& 7403
\end{aligned}
\] & 0.11 & 7443 & 0.55 & 7489 & 1.50 & 74158 & 0.69 & 69 \\
\hline 7404 & 0.13 & 7444 & 0.50 & 7490 & 0.40 & 74160 & 0.89 & 89 \\
\hline 7405 & 013 & 7445 & 0.75 & 7491 & 0.55 & 74162 & 0.89 & \\
\hline 7406 & 0.22 & 7445 & 0.85 & 7492 & 0.43 & 74163 & 0.89 & \\
\hline 7407 & 0.22 & 7447 & 0.75 & 7493 & 0.43 & 74164 & 105 & \\
\hline 7408 & 0.14 & 7448 & 065 & 7494 & 0.49 & 74165 & 1.05 & \\
\hline 7409 & 014 & 7450 & 012 & 7496 & 0.49 & 74166 & 105 & \\
\hline 3410 & 0.11 & 7451 & 0.13 & 7496 & 055 & 74170 & 1.65 & \\
\hline 7411 & 0.16 & 7453 & 0.13 & 74100 & 089 & 74175 & 0.90 & \\
\hline 7413 & 0.26 & 7454 & 0.14 & 74107 & 0.27 & 74180 & 0.80 & \\
\hline 7416 & 0.22 & 7460 & 011 & 74121 & 0.27 & 74181 & 2.50 & \\
\hline 7417 & 0.22 & 7470 & 0.24 & 74122 & 0.37 & 74182 & 080 & \\
\hline 7420 & 011 & 7472 & 0.21 & 74123 & 0.49 & 74192 & 0.90 & \\
\hline 7426 & 0.23 & 7473 & 0.25 & 74145 & 0.57 & 74193 & 0.85 & \\
\hline 7430 & 0.14 & 3474 & 0.25 & 74150 & 0.59 & 74194 & 0.85 & \\
\hline 7432 & 0.22 & 7475 & 0.37 & 74151 & 0.59 & 74195 & 0.80 & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 7437 \\
& 7438
\end{aligned}
\]} & 0.25 & 7476 & 0.26 & 74153 & 0.69 & 74198 & 1.70 & \\
\hline & 025 & 17483 & 0.69 & 174154 & 1.05 & 174199 & 1.70 & \\
\hline \multicolumn{9}{|l|}{HIGH SPEED 74H00} \\
\hline \multirow[t]{2}{*}{74но0
\[
74 \mathrm{HO}
\]} & ¢ 016 & 174 H 20 & ¢0 016 & 74H52 & ¢0.16 & 74H71 & ¢ 0.21 & \\
\hline & 016 & 74 H 21 & 0.16 & 74 H 53 & 0.16 & 74H72 & 0.26 & \\
\hline 74 H 04 & 016 & \(34+22\) & 016 & 74H54 & 0.21 & \(74 \mathrm{H74}\) & 0.28 & \\
\hline 74405 & 021 & 74 H 30 & 0.16 & 74 H 55 & 0.16 & 74H76 & 0.28 & \\
\hline 74408 & 016 & 74 H 40 & 0.16 & 74460 & 0.16 & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 74 \mathrm{H} 10 \\
& 74 \mathrm{H} 10
\end{aligned}
\]} & 016 & 74H50 & 016 & 74461 & 0.16 & & & \\
\hline & 0.16 & 74451 & 0.21 & 74462 & 0.16 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{CMOS 4000 SERIES} \\
\hline 4000 A & ¢ 019 & 4014 & & E. 10 & 14028 & ¢ 0.95 & 407; & ¢0.23 \\
\hline 4001 & 0.19 & 4015 & & 110 & 4030 & 0.50 & 4072 & 0.25 \\
\hline 4002 & 0.19 & 4076 & & 055 & 4042 & 0.95 & 4073 & 0.25 \\
\hline 4006 & 0.90 & 4019 & & 0.67 & 4043 & 1.20 & 4075 & 025 \\
\hline 4007 & 0.19 & 4020 & & 1.15 & 4044 & 120 & 4078 & 0.25 \\
\hline 4008 & 130 & 4021 & & 1.10 & 4049 & 0.48 & 4081 & 0.25 \\
\hline 4009 & 0.49 & 4023 & & 019 & 4050 & 0.48 & 4082 & 0.29 \\
\hline 4010 & 0.49 & 4024 & & 0.85 & 4066 & 0.75 & 4528 & 0.85 \\
\hline 401 & 019 & 4025 & & 0.19 & 4068 & 0.23 & 4585 & 1.25 \\
\hline 4013 & 0.39 & 4027 & & 075 & 4069 & 023 & & \\
\hline \multicolumn{9}{|l|}{OtL} \\
\hline 930 & E 010 & \({ }^{936}\) & & £010 & 1944 & £ 0.10 & 962 & ¢ 0.10 \\
\hline 932 & 010 & 937 & & 0.10 & 1946 & 010 & 963 & 0.10 \\
\hline \multicolumn{9}{|l|}{linears} \\
\hline LM300 & T099 & ¢ 045 & 3400 & TO92 & £ 1.25 & 739 & A DIP & £ 065 \\
\hline 301 & \(\checkmark\) Oip & 029 & 380 & A DIP & . 80 & 741 & VOIP & 022 \\
\hline 302 & то99 & 045 & 381 & A DIP & 1.05 & 747 & \(\triangle\) DIP & 0.44 \\
\hline 304 & 10100 & 0.50 & 546 & \(\checkmark\) DIP & 0.51 & 748 & \(\checkmark\) OIP & 0.27 \\
\hline 305 & ros9 & 0.60 & 550 & A Dip & 0.55 & 5556 (1456) & \(\checkmark\) DIP & 0.65 \\
\hline \multirow[t]{2}{*}{307} & \(\checkmark\) Dip & 038 & 555 & \(\checkmark\) DIP & 0.45 & 5558 (1458) & \(\checkmark \mathrm{VIP}\) & 0.65 \\
\hline & т099 & 0.45 & 556 & 8 DIP & 075 & ULN 2111 & A OIP & 095 \\
\hline \multirow[t]{2}{*}{308} & A DIP & 0.59 & 560 & 8 DIP & 2.55 & LM3900 & A Dip & 0.35 \\
\hline & то99 & 0.79 & 561 & 8 CIP & 2.55 & 75450 & \(\checkmark\) Dip & 0.45 \\
\hline 309K & T03 & 1.45 & 562 & 8 DIP & 2.55 & 7545 , & Voip & 0.45 \\
\hline 310 & Tpkg & 065 & 565 & A DIP & 1.25 & 75452 & \(\checkmark\) DIP & 0.45 \\
\hline 311 & \(\checkmark\) DIP & 090 & 566 & \(\checkmark\) DIP & 1.20 & 75453 & \(\checkmark\) Oip & 045 \\
\hline \multirow[t]{2}{*}{320 K} & TO 3NEG & & 567 & \(\checkmark\) Dip & -. 25 & 75454 & \(\checkmark\) OIP & 0.45 \\
\hline & 5.2 .12 .15 & 1.25 & 709 & A DIP & 022 & 75491 & A \(\mathrm{pk}^{\text {a }}\) & 0.65 \\
\hline 324 & A DIP & 1.07 & 710 & A DIP & 0.25 & 75492 & A pkg & 0.75 \\
\hline 339 & A DIP & 1.49 & 711 & A OIP & 0.30 & \multicolumn{2}{|l|}{1 CL b038 Funce Gen} & 1.95 \\
\hline 340 K & \[
\begin{aligned}
& \text { TO3 } \\
& 12 \mathrm{~V}, \mathrm{AMP}
\end{aligned}
\] & 210 & 723 & A DIP & 0.38 & voll Contr Oscillator. & Sune. Sq & \\
\hline
\end{tabular}
V. Mini Dip \(A=14 \mathrm{~L}\) Dip \(\quad B=16 \mathrm{~L}\) DIP TO99 8 -Pin Header TO 100 10-Pin Header
Data sheets supgited on request. Add 20 ea excepted as noted.


TERMS: PRICES LISTED ARE BRITISH POUNDS \& PENCE SEND CHEQUE WITH ORDER
MASTERCHARGE, BANKAMERICARD, BARCLAY CARD ACCEPTED. TERMS OFFERED TO SCHOOLS \& INSTITUTIONS
POSTAL ANO HANOLING CHARGES
under 4.99 add 0.35
5.00.9.99 add 0.25 No Charge

DEMA ELECTRONICS INTERNATIONAL P.O. Box 407

San Raman, Ca. 94583 USA
Cable DEMAELINTL

\section*{INSTANT ANSWERS!}

The Realtone SC44 is the only single key, double bracket machine at this price - 3 seconds for the longest calculation!
£32.00 + VAT
* 22 functions
* 40 keys
* Algebraic logic
* Two parenthesis levels [(I]
* 8 digit mantissa: 2 digit exponent
* Full chain calculation with any function sequence
* Works to 10 . rounds to 8
* Basic arilhmetic \((+,-, \times, \div)\)
* Trig functions sin. cos. tan. and INVERSE
\(\star\) Logarithms ( \(\ln \times\) and log)
\(\star\) Anti-logarithms \(\left[\mathrm{e}^{\mathrm{x}}\right.\) and 10\(\}\)
* Exponentiation [y
* Factorials (n!)
* Convenience functions \(\left(1 / x \cdot x^{2}, \sqrt{x}\right.\).

Pi keyl
* Full feature memory [STO, RCL. M+1
\(\star\) Exchange operations [xy]
* Oegres/Radian Selection (Trig or Inverse Trigl
* Automatic error delection and display
- Clearing Operations (CA. CE)
- Plus much more


NiCd rechargeable batteries \(A / C\) adaptor
charger. Realtone SG44 instruction book Size \(63 / 4^{\prime \prime} \times 312^{\prime \prime} \times 112^{\prime \prime}\). Weight 330 g .
1 year warranty, parts and labour
S.A.E. for details of SC60

3-memory and SC601010-memory statistical and scientific calculators.
We repair most makes of calculators-S.A.E. for quotation
Please send me....SC44@ @3200 + V.A.T. £2.56. Total £34.56 + 51p packing
NAME
ADDRESS
Orders to KRAMER \& CO., 9 October Place. Holder Hill Road, London NW4 1EJ. Tel. 01-203 2473. Telex: 888941 attention KRAMER. Regiatered No. 1797716 . Export orders invited, £2.50 P\&P.

\section*{NowlThe day-by-day yearbook.}

Day-by-day usefulness throughout 1976-that's the keynote of our new, completely revised Yearbook. New features include a week-at-aglance desk diary, and a fact-packed Serviceman's Section. Plus the industry's most comprehensive buyers' guide, big legal and technical sections, and pages of valuable trade names and addresses. Order your copy now!

\section*{To: General Sales Dept. IPC Electrical \& Electronic Press Ltd} Room 11. Dorset House, Stamford St.. London SE1 9LU Please send me.......copies of Electrical \& Electronic Trader Year Book and Diary 1976 @ 55.50 each. inclusive of postage and packaging. I enclose cheque p.o. for
Name
Address

Cheques should be made payable to IPC Business Press Ltd

SPIT MOTOR WITH CARTER GEAR BOX. SPIT MOTOR WITH CARTER GEAR BOX.
probably ore of the best spit motors made Orignally
intended to be used in very high priced cookers. Mrended to be used in very high pricer coakers,
towever, this can be put plonty of othe uses for
instance your garden barbecue or to drive a colour disc mstance your garden barbecue or to drive a colour disc
for a dance or display or to drive a fumbler for stone polishing in fact. there is no end to its uses Normal
mains operation Special poice during January and fotruary \(£ 250+20 \mathrm{p}\). post \(30 \mathrm{p}+20\) MULTIPLE CONTACT PANEL, size approx \(4 x^{\prime \prime} x\) 2/4. This has 200 contacts each cross referenced each can be easily identified Contacts are capable of making positive connection with a strip or wite as each contact is spring loaded and has a gold "pip Ideal if you want tomake boarding lresistors elc plug strabgh or cricul working out printed circuits. even for teaching electronics and novelties such as puzzles combination locks. etc Taken from unused computer panets Price
only \(\in 2+16 p\) each which works our to only 10 per contact. probably less than the value of the goid pio Post 15p + 10
AEMEMBER 7.029? Electricians of the old schoof most certanly will. and most will agree how much
better this is than its modern replacement 15 mm has greater current carrying capacity 120 amps aganst 13 ampst and being stranded it will not break so easily and being larger it is easter to use A toriunate buy
enables us to oftier 3 core 7029 cheaper then we
 you are contemplating installing a ting main. immersion heater sinage heaters or fires then
should definitely buy some of this cable it is should definitily buy some of this cable 11 is pve
covered correctly colour coded and up to aill British sandards, in fact. was made by one of our most
tamous cable companies price \(88+64 p\) per 100 tamous cable companies Price
metre coll Carrage \(\ell 250+20\)
REED RELAY IN SOLENOID. Resistance 15 K . this will operate from voltages of \(10 y\) upwards or a current
of 12 mA upwards the fiow of the contral eurrent coses the reed switch but if you bias this with a sman
magnet of an opposing current then the flow of the magnet of an opposing current then the liow of the
conntol current could be made to open the reed switch Price \(75 p+6 p\)
MULTI-TURN POTS. American made rIL 2 K -20K These are an expensive control bul perform a mo
useful function Limited stocks \(1100+8 p\) each 19-PIECE SOCKET SET. These were wery popular tne when we last had them. we have lust secured a further delvery Covering sizes from ins 0 15/16 with ratcher handie and wion shaped handies mans bench, also usefful for carrying in your car Price E1.40 +11 p. post \(50 p+4 p\)
CAR ELECTRIC PLUG, another tem which we have been out of stock for some time but which has ulust
come in again Fits in place of a cigareure lighter so useful method of making a quick connestion into the car electric system for a mint immersion heater, razor cassette player. etc \(P_{\text {fice }} 58 \mathrm{p}+5 \mathrm{p}\) each NYLON DRIVE CORD. We are always getting asked customers are needing it too Standard 6 ft lengths suitable for most receivers Price \(20 \mathrm{p}+5 \mathrm{p}\) per length LUBRICANT AEROSOL. You have probably otten tound the meed to lutricate maccessible places the
aerosol we have is fust right for this. you can direct it in fine spray The lubricant forms a dry film, it is in tact
CCi Fluon L169 Price \(45 p+4 p\) per can or 12 cans \(\dot{E} 4\)

TANGENTIAL HEATER UNIT
This heater unit is most efficient and quiet runnung. Is as fitted in
Hoover and blower heaters costing \(£ 15\) and more. Comprises motor impeller, 2 kW element, and 1 kW element allowing switching 1.2 an We and with ther mal safety cut-out. Can be fitted into any met VAT £1 2 kW Model as above except 2 kW E4. 25 plus VAT \& post 75 p .


\section*{CENTRIFUGAL BLOWER}

Miniature mains driven blower centrifugal type blower unit by cushioned induction motor with specially buit low noise bearings. Overall size \(4 h^{\prime \prime} \times 4^{\prime} 4^{\prime \prime \prime} \times 4^{4 \prime \prime}\). When mounted by fanne, air is blown
into the equipment bui to suck air out mount from centre using nto the equipment but to suck air out. mount from centre using
lamp Ideal for cooling electrical equipment or fitting into a cooker hood, film drying cabinet or for removing flux smoke when DISTRIBUTION PANELS
in metal box to take standard 13 amp las. \(4 \times 13 \mathrm{amp}\) socke switch with neon warning light. Supplied complete with 6 fee
of flex cable Wired up ready to work. 2.75 , VAT \& postag

\section*{AUDIO AMPLIFIER} Pat belleved in good order However no guatrantee. we are selling for
but
spares value only These are 6 valive amplitiers the \(\times E L 84\) in push/pull complete with marns transformer. rectiles and ample smoothing equipment The mans transtormer alone. today would
cosial least 4 Size is \(91 / 2^{\prime \prime} \times 5 / 2^{\prime \prime} \times 41 / 2^{\prime \prime}\) Price only \(£ 2.00+\) postage


15A ELECTRICAL PROGRAMMER

learn in your sleep Have radio playing and kertle boiling as you awake All these and many other things you can do warm hou invest in an electrical
and time can be set anywhere to stay on up to 6 hours Independen! 60 minute


SMITHS CENTRAL HEATING CONTROLLER
 continuous hot warer but central heating watt a! anght (3) conunvous hot water bus central heating on onfl lor 2 periods durng the day (4) hot wate, and central
heating both on but day time only (5) hot water all day but central heating only to heating both on but day lime only (5) hot water all day but central hearing only for
2 periods during the day \((6)\) hot water and central heatinc on for 2 oerrods during
the day time onty - men tor summer time use with central heating off 17 ) hot water the day time onfy - then tor summer time use with central heating off (1) hot water
conturuous (8) hot water day ume only (91 hot water twice daily 10 ) everything oft绪 desired programme of heating Supplied complete with wirng diagram Originally sold
over \(£ 15\) - we oftet these while stocks last at \(£ 6.95\) each Var \& Postage 85 each

TERMS: Where order is under \(£ 5\) please add 30 p surcharge to offset packing expenses

\section*{J. BULL (ELECTRICAL) LTD. \\ (Dept. W.W.), 103 TAMWORTH ROAD CROYDON CRO IXX}

THIS MONTH'S SPECIAL OFFER IS a very varsatite transtormer which can be used for many purposes.
Rated at 250 watis it is very well buitt with frames for upright mounting and is varnish impregnated its primary is tor \(230 / 240\) volis 50 cycles. it has four secondaries each 10 v very high current windings. Jusi 12 amps . \(20.0-20 \mathrm{v}\) at up to 6 amps , single 10 v at 25 12 mps s. mps. singre \(\mathbf{E}\) a mps The transtormer can be used
ing power circuits (eharging. ett) or for amplifiers. or power circauts (eharging. etc) or for amplifiers
there being an earth screen between primary and secondaries A rranstormer like this today would cost at weast E 15 from the makers. however. We are making spectil offer at \(\& 3: 50+28 \mathrm{p}\), post \(\mathrm{f} 1+8 \mathrm{p}\) each Grab
some while you can, our stock may not last long. IV MINIATURE RELAY with plastic dust cove this has 4 sets of gold plated change-over contacts. th dical rating of which we are not sure. but they loo high \(x / /^{\prime \prime}\) wide \(\times 1 / s^{\prime \prime}\) thick Price E \(1+8 p\)
110 O OPERATED CONTACTOR. This has 4 sets of robust than the mormal type and with bakelite segarators between the contacts to prevent flashovers
if 11 is not convenient to wark two of these in series \(230 / 240\) voits. then use a condenser in serits to cu down the voltage \(A\) reai bargan at E1 \(50+12 \mathrm{p}\) which \(s\) less han han manulaurers pict
FLUORESCENT DIMMING. Fluorescens lights maintained at their normal voltage We have a Philips ballast designed especially to do this and with this ballast a 40 wat lamp may be dimmed using a vartiac ULSE TRANSFORMER with ight unit it is a very sumple circuit and all parts are eadily obtanable trom us or you may already have hem in your lunk box Price of the transtormer wit ORP 12 LIGHT CELL. This device has been going fo omplications keep being tor been bettered and new

METERS WITH BUILT IN TRIP. A most unusual and these are flush mounting. full viston. moving coil melers, tace size \(211^{\prime \prime} \times 21^{\prime \prime}\) " with two tront setings which enable a exiernal circuit to be tipped, a light ange of the meter We heve meters covering the following \(O C\) valtages 0 to 2 v .0 to \(6 \mathrm{v}: 0\) to 15 v : 0 to APST MOTOR. These are German made but a very special teature about them which has made them equiring a very constant speed is that instesd of the centre rotating it is in tact the outer which rotates and this being a fartly heavy casting acts as a flywheen reverse wie have just recelived delivery of
 +30 We also have aimilar, but alightly lerge motor (estimaved \(1 / 20\) th HP ).
\(2250+20 \mathrm{p}\). post \(30 \mathrm{p}+3 \mathrm{p}\)
110 R.P.M. MOTOR. We have good stocks of very


\section*{ELECTRONIC BROKERS}

Electronic Brokers Lid． are one of the leading electronic instrumentation companies in the UK． providing a full range of services to Universities， Indusiry．Colleges and Governments both at home and overseas．

We have the largest stocks of secondhand test equipment in Europe as well

as a selected range of nêw products．These are on display at our London showrooms where customers can examine the equipment of their choice and see it working．


Electronic Brokers Ltd have fully equipped workshops on the premises to test and report on the majority of equipment we sell．

\section*{SWEEP CENERATORS}

\section*{hewlett packard}

Swoep Osclinator 6920 24 GHz Swaeps from＂stert＂
To stop teac Sweep Oscillator 693 A 4.8 GHz SPECIAL OFFER E 32 s Sweep Oscillator 6930 4．9GHz
JERROLD

\section*{jerrold}

Sweep Signal Generator 9008 Central Freqs． \(500 \mathrm{KHz} \cdot 1200 \mathrm{MHz}\) Sweep widhs narrow as 10 KHzt to
400 MHz wide \(500 \mathrm{hms} 0 / \mathrm{p}\) impedence．
E 400 M．E．S．L．
Swept Signal Source MH883 \(7-12.5 \mathrm{GHz} \quad £ 480.00\)

\section*{SIGYAL SOURGES}

 AIRMEC
HF SIGnal Generator 201， 30 KHz .30 MHz （7 bands）
int Pai Calibratot
 10KHE
GENERAL RADIO
GENERAL RADIO
Unit Oscillator 1209 C ．Freq． 250.920 MHz ．Accuracy
\(1 \%\) Dift \(0.2 \% .0 /\) pin to 50 h． Unit Oscillator 1209 C Freg． \(250-920 \mathrm{MHz}\) ．Accuracy
1\％Drift \(0.2 \%\) ． pin to \(500 \mathrm{hms}=150 \mathrm{~mW}\) supplied
with power Supply Type \(1201-\mathrm{CQ} 18\) as
 Unit Oscillator 1218 A.
of 200 mW across band
 HEWLETT PACKARD
F．M／A M Signal Generator 202H．F．M．A．M CW \＆
pulse coverage 54 to 216 MHz R F o／p 0 IMV－0． 2 V pulse coverage 54 to 216 MHz R．F o／p 0 i \(\mu \mathrm{V}-\mathrm{O} .2 \mathrm{~V}\)
50 Climas Impedance
E450 \(\begin{array}{ll}\text { Univerter 207H for use with above } & \begin{array}{l}\text { E100 }\end{array} \\ \begin{array}{ll}\text { UH．F Signal Generator } 612 A 450-1200 \mathrm{MHz} \\ \text { E495 }\end{array}\end{array}\)
 Accuracy \(\pm 0.5 \%\) ofo \(0.1 \mu \mathrm{~V}-1 \mathrm{~V}\)（varabie） 50 banms
\(\mathrm{INt} A \mathrm{M}\)
400 Int AM
St


 MARCONI INSTS．
FM，A．M Signal Generator TF 995 A ， 3 S ．Ministry
type No CT \(402 \quad 15 \mathrm{MHz}-220 \mathrm{MHz}\) A． F o／p good condition 6385 F M／AMA Signal Generator TF 995A／5, 5.220 MHz


 \(10-47 \mathrm{OMH}_{2}\) R．F output 0 th－IV Piston attenuator 50 hms Impedance Moduation int A M 1 KHz ．Ext

 R C Oscillator TE1101 Superb Condtion
20 Hz －200 KHz 60 dB Altenuator Output continuouslr 20H2－2
varible up to 20 V
BC
C Atrachment Rel \(3 W\) 933．Tracing Recoiver Rel 30
 V2700）and wroeband rad
FM600 FMMOO FM1800）
S．TC
Oclave Filter \(74143 \mathrm{~A} \quad 37 \mathrm{5}-12.800 \mathrm{~Hz}\) For
analysing noise \＆interference on comms systoms analysing nate \＆interterence on comms systems
Particulary useful with Psophomeer 74142 P．P．A．
Selective Level Measuring Set \(74184 \mathrm{~B} 60-1364 \mathrm{KHz}\) Measuring Set 74831 A £125．00 Measuring Set 74831 A
Milliwit Tesi Sers \(7466 \quad\) P50．P．O．A \(\begin{array}{ll}\text { Noise Generator } 7412620 \mathrm{~Hz}_{z} 4 \mathrm{~K}_{\mathbf{z}} \\ \text { Selective Level Measuring } & \begin{array}{r}\text { ¢120－f200．00 } \\ \text { Sets } \\ 74832 \mathrm{~B}\end{array}\end{array}\) \(50 \mathrm{KHz}-800 \mathrm{MHz} 03.3 \mathrm{~V} \quad 0.600 \mathrm{~m} V\) \＆dB scale lunction also as Beat frequency indicator scale a Freq Deviation Meter Transistorsed \＆Poriable operates
from an internal batiery mpedence 750 hms \(E 140.00\) Trom in internal batiery mpedence 750 hims
Whte Noise Generator 742628 ．Measures basic noise
\＆intermodulation on muticircuit telephone sysiems （up 10960 ccis．）in terms of Noise Power RanioP．O．A． WANDEL \＆GOLTERMAN
 tandelase and amplitude mod For multichannel FM
fladio Systems up to 12 MHz base bands
P350

\section*{PULSE GENERATORS}


 System of 5 Signal Generating \＆Processing Units
Repetition treas up io 20 MHz \＆Output Pulses to 20 V
俍
 the production of complex pulse \＆ramp waveforms not
obtainable trom pulse generators
\(\mathbf{E 2 5 0}\) ADVANCE
Pulse Generator PG55
HEWLETT PACKARD
Pulse Generator 212A Pulse width variable from 0.07
 5002 siec
MARCONI
Double Pulse Generator TF \(1400 / \mathrm{S}\) Min type CT434 10 W TM6600 sec Pulse gell Plug in 10 Hz －100ki Negative pulses up to 200 VEMF ．+ VE puises up to ・ーー
，


 Portable Scope TF2203， 15 MHz Bandwidrh．DC
couoled． \(50 \mathrm{mV} / \mathrm{Cm}\) sensilivity PHILIPS
Oscilloscope PM \(3250 / 02\) DC． 50 MHz £395
SOLARTRON SOLARTRON
 \(\begin{array}{r}\text { Suitable lor TV Servicing } \\ \hline 95\end{array}\) Porable Scone CO 1400 DC－15 M Hz Pligg ins avalable
OX 1441.1443 .1444 Wide Band General Purpose Scope CD－1212（Min．
Type CT484）Plug ins CX1251 \＆CX1252 E149．50
 \(5^{\prime \prime}\) Tube．Assembled Returbished Our price \(\mathbf{£ 4 9 . 5 0}\)
ROM 25 MHz Scope R \(050 \mathrm{c} / \mathrm{w} 5 \mathrm{C}\) Plug in \(\quad \mathbf{E 2 0 0}\)

\section*{25}

Square wave \(10 \mathrm{~Hz} \cdot 100 \mathrm{KHz}\) Direc
 Phase／AM Stanal Generator TF2003 \(0.4-12 \mathrm{MHz} \quad \mathrm{E} 15000\) F Decade Oscillator D880A 2 phase \begin{tabular}{lll} 
Decade Oscillator D890A 1 Hz .11 & \(2 \mathrm{KHz} \quad £ 335.00\) \\
\hline
\end{tabular} Decade Oscilletor D890A \(1 \mathrm{~Hz}-112 \mathrm{KHz} \mathbf{E 3 3 5 . 0}{ }^{\text {RADIOMETER }}\) Stereo sygat generamer SMG1C full snec on reques， Superb condition

KHz 8 MHz in 6

\section*{OSCILLOSGDPES}

\section*{ADVANCE}

OS 2000 Scope c／w．OS 2002 Y \＆OS 2003 P Plug Ins
HEWLETT PACKARO
Oscilloscope 140 A c／aN 1415 A time domam
reflicctometer for testing of calles，connectors reftectometer for lesting of cables．connectors
striplines \(\&\) transmission imes
\＆




C Oscillator fifion Fiequenty range


 U HF \＆S．HF Signal Generator TF 1058 600－4000MHz 01 uv .445 mV 50ohms Impe． Heterodyne \(\mathbf{E 2 9 5 0 0}\) 2 MHz 100 MHz Generalor 545.00


 luV． 10 mV in 10 dB sters 1 KHz A．F Oscillator af
power ranges 10 mV
10 CmW \＆ 1 W
\(\qquad\) Aux Plug．tn 1780 A Display Scanner 1782 A Sweep \\ \section*{VOLTUETERS \\ \section*{VOLTUETERS \\ ADVANCE 50H 4.5 M} FSD input Impedance 10 Mohms 300 V
 DAWE Volimeter Type \(613 \mathrm{~B} \quad 003.300 \mathrm{~V}\)
Valve
（RMS） RRMS
GPL
VOITR
Voltneter TVM 1063
HEWLETT PACKARD
DC Vacuum tube volimeter 42at
 VTVM 40001 mV to 300 VFSD 12 ranges 10 Hz to
4MHz \(2 \%\) accuracy input impedence \(10 \mathrm{Mohms} \mathrm{EB5}\) VTVM 400 L Logaritmic version of 4000 Reads RMS vaiue of stne wave Log voltage scale 03 to 1808 to
3 Linear dB scale．Input Impedance 10 Mohms
E 90
 \begin{tabular}{l} 
ohmeler \(O 2\) ohms to 500 Mohms （ 7 ranges）Accuracy \\
\(\pm 65.00\) \\
\hline E
\end{tabular} －ve from \(10 u \mathrm{~V}\) and scale to iV end scale ।｜steps \(8_{1}\) ．
 Vacuum Tube Voltmeter 400 H Freq Range
10 Hr 4 MHz Volls \(10 \mathrm{mV}-300 \mathrm{FS} 12\) ranges！ Accuracy \(\pm 1 \%(50 \mathrm{~Hz}-500 \mathrm{KHz}) \pm 2 \%(20 \mathrm{~Hz}-1 \mathrm{MHz})\) AV Voltmeter 400 E Solid state AC volts 1 mV P． 300 A ．

A．
 




\(\qquad\)


\section*{TRANSISTORS+DIODES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & Price excluding VAT & Price including VAT & Type & \[
\begin{aligned}
& \text { Price } \\
& \text { excluding } \\
& \text { VAT } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Price } \\
& \text { including } \\
& \text { VAT } \\
& \hline
\end{aligned}
\] \\
\hline BC 107 & 0.090 & 0.113 & 2N 930 & 0.200 & 0.250 \\
\hline BC 107A & 0.130 & 0.163 & 2N 1132 & 0.240 & 0.300 \\
\hline BC 107B & 0.140 & 0.175 & 2N 2129 & 0.240 & 0.300 \\
\hline BC 108 & 0.090 & 0.113 & 2N 2218 A & 0.220 & 0.275 \\
\hline BC 108A & 0.130 & 0.163 & 2N 2219 & 0.220 & 0.275 \\
\hline BC 108B & 0.130 & 0.163 & 2N 2219 A & 0.220 & 0.275 \\
\hline BC 108C & 0.140 & 0.175 & 2N 2221 & 0.180 & 0.225 \\
\hline BC 109 & 0.090 & 0.113 & 2N 2221 A & 0.210 & 0.263 \\
\hline BC 109B & 0.140 & 0.175 & 2N 2222 & 0.200 & 0.250 \\
\hline BC 109C & 0.140 & 0.175 & 2N 2222A & 0.250 & 0.313 \\
\hline BC 184(K) & 0.120 & 0.150 & 2N 2904 & 0.190 & 0.238 \\
\hline BC \(212 \mathrm{~A}(\mathrm{~K})\) & 0.110 & 0.138 & 2N 2905A & 0.230 & 0.288 \\
\hline BC \(212 \mathrm{~B}(\mathrm{~K})\) & 0.110 & 0.138 & 2N 2906 & 0.170 & 0.213 \\
\hline BC 213C(K) & 0.110 & 0.138 & 2N 2906A & 0.170 & 0.213 \\
\hline BC \(214 \mathrm{~B}(\mathrm{~K})\) & 0.110 & 0.138 & 2N 2907 & 0.220 & 0.275 \\
\hline BCY 71 & 0.220 & 0.275 & 2N 2907 A & 0.240 & 0.300 \\
\hline BFY 50 & 0.200 & 0.250 & 2N 3053 & 0.180 & 0.225 \\
\hline BFY 51 & 0.200 & 0.250 & 2N 4037 & 0.250 & 0.313 \\
\hline BD 131A & 0.360 & 0.450 & 1N 4001 & 0.050 & 0.054 \\
\hline BD 135 & 0.360 & 0.450 & 1N 4002 & 0.065 & 0.070 \\
\hline BD 136 & 0.396 & 0.495 & 1N 4003 & 0.070 & 0.076 \\
\hline BD 137 & 0.432 & 0.540 & IN 4004 & 0.075 & 0.081 \\
\hline BD 138 & 0.450 & 0.563 & IN 4005 & 0.080 & 0.086 \\
\hline BD 139 & 0.495 & 0.619 & IN 4006 & 0.085 & 0.092 \\
\hline 2N 929 & 0.230 & 0.288 & IN 4007 & 0.090 & 0.097 \\
\hline & & & 1N4148 & 0.040 & 0.050 \\
\hline
\end{tabular}

\section*{REPLECOMPS Ltd. \\ Telephone: \\ Hastings 427914}

123 Bohemia Road, ST. LEONARDS-ON-SEA, Sussex TN376RL

\section*{quality}

Manufactured strictly to stringent specifications. 12 months guarantee

\section*{service}

Orders actioned in 20 hours Over one million transistors in stock

\section*{special discounts}

For large quantities ordered by retailers, educational establishments and hobby clubs.

\section*{terms}

Cash with order, please Post and Packing 20p Minimum order 50p.


\section*{Appointments}

Advertisements accepted up to 12 noon Monday, March 1, for the April issue subject to space being available.

DISPLAYED APPOINTMENTS VACANT: \(£ 6.50\) per single col. centimetre (min. 3 cm ). LINE advertisements (run on): \(£ 1\) per line, minimum three lines.
BOX NUMBERS: 45p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Owen Bailey on 01-261 8508 or 01-261 8423.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

\section*{Young ElectronicsEngineers A mobilefuture in broadcasting?}

We require Engineers qualified, or about to qualify, to H.N.C. or equivalent level and possibly with a few years' experience, who will learn to operate and maintain the advanced electronic equipment at our Transmitting Stations throughout the country bringing Independent Television and Radio into millions of homes.
Our Engineers may be called upon to rectify a fault anywhere, anytime and in all weathers. It's a job that requires flexibility about when and where you work; you'll need a driving licence and you must be prepared to undertake a demanding training course.

\section*{Paid While You Train}

IBA's special eighteen month training course, which combines theoretical study with practical 'on station training' will give you a comprehensive knowledge of operations and maintenance techniques, plus an additional recognised qualification, and you will be paid a training salary of not less than \(£ 2250\), more for those with experience.

\section*{The Future}

On completion of your training, you will be in the field, full-time on a salary range of \(£ 362 \mathrm{I}-£ 446 \mathrm{I}\). Further promotion to Team Leader and beyond is up to you.


Write or telephone for full details and an application form quoting ref. WW/I234 to: The Personnel Officer, Independent Broadcasting Authority, Crawley Court, Nr. Winchester, Hants. Tel: Winchester 822327.


INDEPENDENT BROADCASTING ACTHORITY

\section*{TECHNICAL SALES MANAGER}
wanted for export and UK sales of electronic components, specialising in industrial and receiving valves and semi-conductors. Must be able to show successful recent sales record and active connections in the electronics industry. Preferred age \(35 / 45\). Location London W.2. Salary, car allowance to be arranged. Full curriculum vitae to Managing Director, Box No. 5183.

\section*{IPC MAGAZINES LTD.}

\section*{require two}

\section*{TECHNICAL EDITORS}

PRACTICAL WIRELESS magazine invites applicants from Radio. Audio and Electronic Engineers. preferably with writing experience to fill the post of Technical Editor. Applicants must have a working knowledge of electronics and communications techniques and a logical approach to circuit analysis to knowledge of electroterial for publication.
TELEVISION Magazine is looking for a person with sound knowledge of recerver techniques. modern construction methods including colour. This vacancy is ideally suited for Television or Electronic Engineers, preferably with writing experience.
Applicants should write giving full details stating vacancy, salary, career and personal particulars to L. Howes, IPC Magazines, Fleetway House, Farringdon Strest, London EC4 4AD
(5123)

\title{
Appointments
}

\section*{}

\section*{Radio Officers-now you can enjoy the comforts of home.}

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are \(£ 2905\) rising to \(£ 3704\) after three years service. Between 19 and 24 , the starting salary varies from \(£ 2234\) to \(£ 2627\)
according to age. You'll also receive an allowance for shift duties which at the maximum of the scale averages \(£ 900\) a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have vacancies at some of our coastal radio stations, so if you're 19 or over, write to: ETE Maritime Radio Services Division ( \(\mathrm{R} / \mathrm{B} / 1\) ),
ET 17.1.1.2., Room 643, Union House, St. Martins-leGrand, London EC1A 1AR.
Post Ofifice Telecommunicatiońs

Seryice
Hagineer
(Blectro-mechanical)

\section*{SERVICE ENGINEER}
required by Importer of Electronic Equipment located in Hampton. Middx. to repair and maintain a range of test equipment measuring instruments and laser equipment

Phone: Robin Bancroft, 01-979 0123
(5200)

\section*{CRANLEIGH SCHOOL \\ (H.M.C. Independent)}

\section*{Required}

\section*{HEAD OF ELECTRONICS}

The Department conducts a vigorous programme of practical work and courses in theory for boys aged 13-18. The Head of Electronics also does some teaching of Physics up to \(O\) Level (Nuffield syllabus).

The position gives scope for independence and ideas. The successful applicant will preferably have a degree in Physics, Electronics or Engineering, and some industrial experience. Age about 25-40. Salary according to experience and qualifications. Other benefits: Help with housing, school holidays, eligibility for the D.o.Ed. \& Sc. Pension Scheme.
Applications, with full curriculum vitae, in confidence to: Headmaster, Cranleigh School, Surrey, by 29 th February.


\section*{Technical} Authors (Ref77883/20)
These vacancies provide the opportunity for
established Technical Authors to engage in interestestablished Technical Authors to engage in interest-
ing and varied work on extensive modern airborne radar development and production projects.
Applicants should be HNC qualified and should have had two or three years' electronic engineering
experience on radar, microwave or associated experience on radar, microwave or associated
computer systems in a development or quality assurance capacity.
The works consist of the preparation of descriptive and maintenance handbooks and test data manuals of signal analysing systems involving logic circuits. Of signal analysing systerns involving logic circuits. Handbook Standards AVP70 and the JSP series or of
writing specifications to DG5008 or PEPS format to writing specifications to DG5008
this work is highly desirable.
Close liaison with the design team is involved and the work requires the ability to interpret detailed design functions and test requirements into the
appropriate format.
əวuelsisse 'səưepes бụ̆ towards relocation expenses in appropriate cases, a range of benefits associated with an intemational organisation and excellent career development policies.
Please write or telephone, quoting appropriate reference number and giving concise details of age/qualifications/expenence to:
John Swallow Personnel Manager

> adar and Equipment Division EMI Electronics Limited

Telephone Ol-573 3888Ex. 587
(Record-a-call Service anytine
Ol-5735524).

The international music,
electronics and leisure Group.

\section*{Development} forces would be an advantage.
Candidates will be required to undert performance evaluation and defect investigation;
exercise production design control, co-ordinate other technical services and liaise with Government
departments and the Armed Forces.

\section*{Trials \\ Engineers}
Ref. \(76735 / 212\) )
For these positio level is required. A minimum of three years' experience
in development and maintenance of radar systems is necessary, with specialist knowledge of signal processing, digital circuitry, microwave engineering, or computer technology. Previous participation in
airborme trials and air observer work and service operational or engineering support experience will
The work involves operating as a member of an radar systems employing new processing and display techniques. Design of installation interface units, analysis of operational results, initiation of improvements, and maintenance of
spects of the work.
Responsibility for one or
Responsibility for one or more elements
aspects of the trials equipment will be or aspects of the trials equipment will be
given to engineers of appropriate ability.

\section*{}
EMI Electronics Limited is a major


has established an engineening group support a wide range of airbome electronic systems.
This group's activities covers all functions essential to the effective introduction and utlisation of airbome and associated trials engineening and assessment; reliability design and defect analysis; systems appraisal and conversions for
pportunites now exst for electonics ate engineers and authors with the appropnate experience.

\section*{Appointments}


\title{
Microwave Engineering
}

\section*{(CA) envNi}

\section*{Recession?}

Don't you believe it!
We have more jobs for good Electronic Design Development and Test Engineers than ever before. All areas UK, all applications. Salaries to betore.
\(£ 5,000\).

34 Pcrey Sticer, London, W. 01-636-9659 (doy) or 5500836 rave

\section*{TEST ENGINEERS}

\section*{S. LONDON} UP TO £2,800 p.a.
Dolby Laboratories is a young, go ahead company with a world-wide reputation for their audio noise reduc tion system
Test Engineers with a good understanding of basic circuits are required to test and trouble shoot professional audio P.C.B.s and equipment. This is interesting and well paid work. We give over four weeks' holiday per annum

Satellite Ground Stations,
Radio Relay and Tropospheric Scatter Systems all need sophisticated equipment, developed at Marconi Communication Systems in Chelmsford.
We believe that our recent successful orders in the communications field reflect the professional approach adopted by our engineering staff and the total involvement of project teams at all stages, from conception to final production specifications. It also creates our need for more engineers who wish to work in this changing and challenging technical environment.

If you have experience of R.F. circuits or systems design, experience in microwave communication and are interested in our company, please telephone Huw Jones on Chelmsford 53221 extension 251, he will be pleased to supply further information about these appointments. Alternatively, you can write to him at Marconi Communication Systems Limited, Marconi House, New Street Chelmsford, Essex, CM1 1PL
(5124)

Marconi Communication Systems

\section*{Video Recorder Techniciuns}

Due to a rapid expansion in the South African market we have vacancies for technicians in Johannesburg to service and repair our VOR machines.
Candidates should have been trained on VCR machines ( \(N 1500\) \& 1501), have a minimum of 3 years experience and should be presently employed in the video field. We offer a generous salery, medical aid, pension scheme with life assurance provisions, a guaranteed annual bonus of one month's salary and other fringe benefits.

On arrival in South Africa the company pays one month's salary as a settling in allowance and free accommodation for two weeks in a good hotel.

Initially, please contact Personnel Officer, lain Penfold, S.A. Philips,

PO. Box 7703. Johannesburg, South Africa.

\section*{Appointments}

\section*{TEST AND LIAISON ENGINEERS}

Ferranti in Edinburgh have a number of Ministry of Defence contracts involving the design and development of advanced avionic equipment for military aircraft in an international market.

We have vacancies for test and liaison engineers who will probably be qualified to HND level in electronic engineering with some years' experience in design, test or support of modern avionic equipment. A knowledge of digital and analogue techniques is essential.

Close liaison with design/development teams currently engaged on inertial navigation and display systems will be necessary and the work will entail factory acceptance testing, fault diagnosis and system commissioning on a variety of sophisticated equipment.

There will be opportunities for some of these engineers after a period of in-house training to be selected for technical liaison duties at locations in the U.K., Europe, Middle and Far East.

The Company offers an attractive employment package which includes 22 days holiday and membership of a life assurance and pension scheme. Incoming personnel will qualify for housing under the Scottish Special Housing Association scheme and realistic assistance will be given with relocation expenses where applicable.

Apply in writing giving details of age, experience and qualifications to:
THE STAFF APPOINTMENTS OFFICER
FERRANTILIMITED
FERRY ROAD
EDINBURGH EH52XS


\section*{ELECTROSONIC S E LONDON}

\section*{INSTALLATION ENGINEERS}

The hire department requires an engineer to set up equipment in the factory and install and operate on site. The equipment is principally for exhibition and audio presentation and includes lighting and audio systems.

Essential requirements are attention to detail with a mature and a presentable manner. The job will appeal to young engineers with an interest in electronics and travel. A clean driving licence is desirable. Salary according to age and previous experience in the range \(£ 2000-£ 2600+\) overtime and allowances.

Applications should be made by telephone or in writing to: Mr. R. D. Naisbitt, Personnel Director, Electrosonic Ltd., 815 Woolwich Road, London, SE7. Tel: 01-855 1101.

\section*{APPLICATIONS ENGINEER}

Dolby Laboratories manufacture and market professional noise reduction equipment which is widely used by major recording companies. recording studios and broadcasting authorities throughout the world. The Company has enjoyed successful growth from incorporation in 1968, and recent promotion leads to the present vacancy.

Reporting to and working closely with the International Sales Manager the person appointed will be involved in all technical aspects of sales, e.g. field servicing, providing technical information to overseas distributors and directly to customers, giving demonstrations and training courses, and visiting recording studios and broadcasting organisations, both in the UK and abroad.

The successful applicant will be an electronics engineer who enjoys dealing with people and problems. Aged between 25 and 35 he or she will probably have a degree and may well have experience of recording studio or broadcasting practice. European languages would be useful but are not essential.

Salary is expected to be around \(£ 4,000\) but the right person may justify more.

Write with brief details, or telephone
ELMAR STETTER, International Sales Manager
Dolby Laboratories Inc., 346 Clapham Road, London SW9 9AP
Tel: 01-720 1111

\title{
Looking
}

\section*{Perhaps we can help!}

We have regular contact with hundreds of electronics and electrical companies needing qualified electronics engineers and technicians and TV service engineers.
We can, therefore, help you to find an interesting and well paid - job. All you need to do is to return the coupon below or give us a ring. Our service is confidential and costs you nothing.

TJB Technical Services Bureau, 3A South Bar, Banbury, Oxfordshire. Banbury (0295) 53529


Technical Services Bureau. is a division of Technical \& Executive Personnel Ltd and is solely concerned with job placement in the Electronics and Electrical Industries
Please note that this service is available only for engineers who are (or will be) available in the U.K. for interview.

Please send me an "Application for Registration" form NAME \(\qquad\)
ADDRESS

\section*{TEST GEAR ENGINEERS}

Redufusion, a major British company in television manufacture, is developing a new, state of the art receiver at its Chessington laboratories. To support this project we require additional Test Equipment Design and Development Engineers at senior and intermediate levels to help produce our sophisticated production test equipment. Rediffusion test equipment leads the industry and uses both analogue and digital techniques along with an up-to-date approach to Hgging.

Applications are invited from well qualified and experlenced test equipment eagineers, who will be offered the opportunity to join a young and energetic team. Our work is usually demanding, often under pressure but always stimulating, using new ideas to apeed production testing whilst reducing the demands on our test operators.

Salaries, which will depend on experience, are excellent and assistance with relocation will be given where appropriate. Some travelling to our production factories in Co. Durham will be necessary from time to time to assist in the installation and commissioning of new equipment since our design engineers are expected to be responsible for all aapects of their project.

If you are a high calibre engineer and wish to have your ability recognised and rewarded, come and join us.

Write or "phone to:

\author{
A. J. Litteck, \\ Test Equipment Group Leader, Rediffusion Consumer Electronics Ltd. \\ Fullers Way South, \\ Chessington, Surrey. \\ Phone 01-397-5411
}

\section*{Systems Engineers}

\section*{Complex Systems}

North London

The company is Crosfield Electronics, a leader in the field of sophisticated electronics equipment for the printing industry. They need engineers to work on final testing of systems involving analogue, digital electronics and a degree of optical and photographic functions.
The right people will be aged 20 to 32 and either up to HNC standard with three to five years' relevant experience or with a suitable service background Knowledge and experience of computer
software and hardware would obviously be an important advantage.
A starting salary depending on age and experience will be attractive and benefits are all those expected of a company that is a member of the De La Rue Group.
Please write with brief career details to: Miss L. Geers, Crosfield Electronics Limited, 766 Holloway Road, London, N19.


\section*{UNIVERSITY OF EDINBURGH}

\section*{SENIOR TECHNICIAN}
required by

\author{
AUDIO-VISUAL SERVICES
}

Duties include the operation and maintenance of a C.C.T.V. studio including telecine and helical scan video tape recording and editing facilities, provision of video and audio recording/replay facilities outwith studio and maintenance of university departments' video and audio equipment.

Applicants must be qualified and have worked for a minimum of 5 years in a C.C.T.V. or broadcast studio complex and have a sound knowledge o electronics with diagnosing and repairing exper ience. The post is one of responsibility and requires drive, initiative and tact in dealing with technicians in the unit and academics using the facilities.

Salary on scale \(£ 3666-£ 4122\) p.a. Annual holidays 4 working weeks and 4 days, plus public holidays The names and addresses of two referees will be required.
Applications, quoting post reference No. A161 should be addressed to the Personnel Officer University of Edinburgh, 63 South Bridge, Edinburgh EH1 1 LS . Telephone: 031.6671011 , ext. 4446

\section*{CHELSEA COLLEGE University of London ELECTRONICS TECHNICIAN GRADE 5}
required for a new SRC research contract to work on a wide band tuning range microwave solid state oscillator. A high level of skill in electronic design and construction and experience in microwave techniques is essential. The appointment is for two years. Salary in the range £3161£3617 inclusive. Application forms and further information from Mr. M. E. Cane (5ER), Department of Electronics, Chelsea College, Pulton Place, London SW6 5PR.
(5173)

\section*{UNIVERSITY OF ABERDEEN}

\section*{ELECTRONICS TECHNICIAN}
required for the Department of Medical Physics for work in developing and servicing electronic instruments used in Aberdeen Hospitals. The successful candidate will work as a member of a team of graduates and technicians in a hospital environment and will have an opportunity of experience in the application of electronics to medicine. Applicants should hold an ONC for equivalent qualification) and have about \(4-5\) years experience. Salary on scale \(£ 2325-£ 2655\) with appropriate placing

Applications giving details of age, qualifications and experience should reach the Secretery, University Office, Regent Walk, Aberdeen, ABS 1FX, by 1 st March and quote Ref. No. 12/76.

\section*{The Polytechnic of NorthLondon}

Department of Chemistry
Applications are invited for the following appointment

\section*{Laboratory \\ Technician (Grade 4)}

Required immediately in the spectroscopy laboratories of the Department. The main duties will involve the maintenance and development of electronic instrumentation.

Applicants should have practical experience in electronics but specific knowledge of spectroscopic instruments is not essential.

Normally candidates should hold C \& G/IST Ordinary Certificate, ONC or C \& G Part 2 (or equivalent) in Electronics subjects, and have seven years' experience.
Salary scale: \(£ 2559-£ 2940\) plus \(£ 411\) London Allowance.
Apply for further details and application form to the Head of the Department of Chemistry. The Polytechnic of North London, Holloway Road, London N7 8DB

\section*{ELECTRONICS} TECHNICIAN

Required to assist with construction development and maintenance of electronic equipment for teaching and research purposes Candidates must possess ONC, HNC or an appropriate equivalent qualification and have several years experience. Salary within a range up to \(£ 3,207\) per annum. Application forms may be obtained from the Registrar, The University, P.O Box 147, Liverpool, L69 3BX. Quote ref. RV/679/WW

\footnotetext{
RCS ELECTRONICS have the following vacan cies Electronic Engineer with general elecronic experience for work on 74 Series Lngic R.F and pigilal circuis. Design \& Devenp ment Digital Equipment. Apply: R.C.S Elec tronics National Works. Bath Riad Hounslow Middx Phone: 01-572 0933. 15140
}

\section*{COMPUTER SERVICE ENGINEERS}

Sintrom Electronics, leading suppliers of minicomputer systems and peripherals, are continuing to expand and require several engineers to service their high technology products.
The work is varied and will provide adequate opportunities for promotion and career development within the company

\section*{Field Service Engineers}

To install, commission, and provide after sales service on a broad range of products. The job involves travel around Southern England with occasional visits to Europe to assist our local Agents. The work is both interesting and challenging and will provide an excellent foundation for progress into Sales or Design.
The rewards are substantial and include a company car and other fringe benefits

\section*{Junior Engineer}

We have a vacancy for a young engineer to perform in-house repairs on equipment. This is an ideal opportunity to learn about computer equipment and electronics in general and will provide for progression into Field Service with its additional benefits. Some knowledge of fundamental electronics is required but training will be given in all relevant fields. This is a vacancy which could provide a solid career for the right applicant

For further details of these vacancies write or telephone


\section*{Colin Richards Service Manager \\ 2 Arkwright Road Reading, Berks. RG2 OLS}

Tel. Reading (0734) 85464

DISTRICT WORKS DEPARTMENT
Electronic and Bio-Medical Engineering Section

\section*{TECHNICIAN}

A Technician is required for the above Department, to be responsible for the maintenance of medical. mechanical and electronic apparatus used by the Hospital. The technician will carry out a continuous servicing and overhauling programme to ensure that the equipment in their charge will run at the peak of its available efficiency at all times.
Salary Dependent on qualifications and experience Application Form and Job Description to be obtained from District Works Officer, Dudley Road Hospital, Dudley Road Birmingham B1870H
Complete Application Forms to be returned as soon as possible.
Please quote Ref 12511 /WW
West Birmingham Health District


\section*{SIEMENS}

Siemens is one of the world's biggest international electrical and electronics organisations Behind us, 10 years of consistent growth in Britain.

Ahead of us, a vigorous programme for continued
expansion
That's why we now require an.

\section*{Electronics Service Engineer}

This work involves the servicing of Siemens closed circuit TVused in hospital installations for \(X\)-ray examination.

Despite the medical application of the equipment, someone with around 3 years experience of basic TV maintenance (and preferably a C\&G or R.T.E.B Finall would have sufficient qualifications-as full training will be given in specialist areas of the job.

Offering a competitive salary, this position is based at our West-End headquarters.

A company car will be provided
for travel around London and the

\section*{Home Counties.}

Add four weeks holiday, a generous benefits package (including non-contributory retirement, widow's and children's pension schemes), and it's easy to see why Siemens' growth in quality staff is keeping pace with its expansion in commercial success.

Isn't that the kind of team you ought to join?

Write to: Miss C. M. Lewis, Siemens Limited, Medical Group, 15-18 Clipstone St., London W1P 8AE. Tel: 01.580 2464 Siemens. Bringing Technology to Life.

\section*{Crown Agents}

\author{
TELECOMS PROJECT STAFF
}

As consulting engineers we are compiling a register of former members of the BPO or overseas telecommunication administrations with suitable qualifications who would be willing to undertake assignments either in the UK or overseas on contract terms for short periods of from 3 to 24 months in connection with telecommunication projects; including traffic studies and forecasts, development planning feasibility studies, external line plant planning, radio route surveys, exchange engineering, project management, installation and commissioning

Interested applicants should write to Crown Agents. Appointments Division, 4 Millbank, London SW1P quoting reference \(M 5 / 510 / 12 / W F\), and giving brief details of qualifications and experience.

\section*{Natural Environment Research Council BRITISH ANTARCTIC SURVEY WIRELESS OPERATOR MECHANICS}

\footnotetext{
required for expedition to spend approximately 30 months in Antarctica Applicants must be single and aged 22-30. They should have experience of maintaining and operating SSB trarismitters and receivers, Teleprinter experience desirable
Salary from £2.060 per annum depending on qualifications and experience. Low income tax, polar
}
clothing and messing free
For further details and an application form, please write stating full qualifications and experience to Establishment Officer, British Antarctic Survey, 2 All Saints Passage, CAMBRIDGE CB2 3LS. Tel Cambridge (0223) 61188 . Please quote ref. BAS 12

\section*{UNIVERSITY OF ST. ANDREWS Department of Psychology Technician Grade 5 (Electronics)}

Appications are invited for the above post in the Electronics Workshop of the Psychology Department. Applicants should have a good electronics background together with practical exper ence in the development and construction
equipment and the design of computer interfaces
The person appointed will work together with othe memuers of :he technical staff on the development of on-line expetimental facilities using the Department's Data General computers. Experience with smalli general purpose digital computers and a knowledge of programming languages is desirable. The duties will also involve the use and mainienance of other electronic equipment in the Department.
Salary scale \&2751£3207. Applications, with full details of career to date and the names of two referees. should be sent to the Establishments Officer of the University, College Gate St. Andrews, Fife, by 22 nd March. 1976.
(5191)

\section*{PROGRESSIVE COMPANY} seeks services of

\section*{YOUNG ENGINEER}
with experience of VHF Marine and land mobile equipment. Suit keen amateur ham. Driving experience an advantage, good salary and expenses by negotiation.
Frank Cody Electronics Ltd., 40 Sunbury Cross Centre, Sunbury-onThames, Middx. Tel. Sunbury-onThames 88705 .
15158)

KELLY COLLEGE, TAVISTOCK, DEVON. (HMC 275 boys 13-18, 28 VIth Form girls, country town 15 miles from Plymouth). Graduate re. quired September. 1976, to teach Physics to A Level. Wireless station, electronics club Rugger/hockey player especially welcome. Own sailing. canoelng, fishing. Bachelor accommo dation. Apply to the Headmaster with cur riculum vitae, naming two referees

RADIO-TELEPHONE Service Engineer Wanted for workshops in \(S\). London must be reilable and experienced. Salary neg. 680 1010 . (5141)

\section*{SITUATIONS WANTED}

EX SENIOR DIRECTOR for Electronics Com ponents Distributor in late tifties seeks manage ment position in London or South East after premature retirement. If you are interested in vigorous healthy man with 10 years' ex perience in running a company with signifi cant success, please contact BBox No. 5185.

SWEDISH ELECTRICAL ENGINEER, 33, Spec Mobile Radio VHF UHF, Engilsh, Swedish, Ger man seeks inter. empl., pref. Canada. Please reply Box No.

ARTICLES FOR SALE


ARTICLES FOR SALE

\section*{no wiring needed}

WIRELESS INTERCOM
All prices incl. Vat

Each unit plugs into the mains \& transmits down the mains cable (up to \(3 / 4\)-mile of wiring is possible) \(£ 12\) below the
recommended price af ONLY
\[
\begin{array}{r}
£ 19.20 \\
+75 p \text { P\&P }
\end{array}
\]


ULTRASONIC REMOTE CONTROL SWITCH

\section*{£14 betow recommended price}

By pointing the transmitter at the recelver, mains appliances
(TV's, radios, lights, etc ) can be (Ivitched on / off. 600 watt max Range up to 40 H
ONLY £14.95 + 65p P\&P

\section*{240 V MAINS AC/DC CONVERTOR SIX VOLTAGE model}

Switchable 3, 41/2, 6, \(71 / 2,9 \&\) 12 volts DC at 500 mA Metal case. pllot light and on/off
switen Output to std cutout plug. Unique battery multiplug to suit almost all radios/cassettes/calculators. 50p extra.


ONLY £4.95 + 45p P\&P

\section*{CAR SOLDERING IRON}

12 volt, 30 watt. complete with

and lighter plug.
Spares evalable, ONLY \(\mathbf{E 1 . 2 5}+30 p \mathrm{P} \& \mathrm{P}\)
\(240 v\) mains 40 watt iron \(£ 1.95+30 p P \& P\)

\section*{C. 3025 TRANSISTOR CHECKER}
-miniature, neat compact checker for germanium and silicon transistors - PNP/NPN thick switch selection rotary
settings for B \& Iceo factors. Panel meter \(9 v\) internal hatery
 anel meter. 9 v internal battery Quick check socket. Metal case List price \(£ 9.55\) - our price \(£ 3.95\) plus 35 p P\&P JEC (Doper. ww), box so. Crawloy, sussex. RH11 TUF
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
CRYSTALS \\
Fast delivery of prototype and production quantities to your
\end{tabular}}} \\
\hline & & & & & \\
\hline 100 Klo & 0.005\% & HC13/4 E2.50 each: \(£ 1.900\) per 1.000 & \multicolumn{3}{|l|}{¢2.50 each: £1,900 per 1.000} \\
\hline 1 metz & 0.005\% & HC5/U & \multicolumn{3}{|l|}{£2.50 each: \(£ 1.600\) per 1.000} \\
\hline 2.097152 mitz & 0.0025\% & HC6/U & \multicolumn{3}{|l|}{¢3.05 each: \(£ 1.550\) per 1.000} \\
\hline 3.2768 M Hz & \(0.0025{ }^{\text {a }}\) & Hers/u & \multicolumn{3}{|l|}{£2.70 each: £ 1.500 per 1.000} \\
\hline 10 mk & 0.002\% & HC18/l & \multicolumn{3}{|l|}{£2.00 each: £1,100 per 1.000} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Also. Statek L.F. crysals in T0-5 package. maay slock frequancies in the ranpa \(10-240 \mathrm{KHz}\), e.g. \(10.12 .8,16.384,32.768\) \& 100 KHz , prices 1 rom £2.55 asch: \(£ 1.400\) per 1.000 .}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Please send for further detaris.} \\
\hline INTERFACE & \multicolumn{4}{|l|}{Quartz devices LTD., 29 Market} & \\
\hline Crawherne. & Somerset. & Teleph & (046031] & 2578 & \\
\hline
\end{tabular}

\footnotetext{
VACUUM is our speciality, new and sccondjand rotary pumps, diffusion outtits, accessorhand rotary pumps, diffusion outfits, accessories, coaters, ete, Silicone rubber or varnish (Sales) Ltd., 1 Mayo Road, Croydon 01-684 (Sal7. Lid., 1 Mayo Road, Croydon. 01-684

60 KHz MSF RUGBY RECEIVERS. BCD TIME-
60 KHz MSF RUGBY RECEIVERS. BCD TIME OF-DAY OUTPUT. High performance, phase locked houp radio receiver, 5 V operation with and tested unit fil.12 (prices include postage and tested unit e11.12 (prices include postage with signal and audio outputs. Send for details Toolex, Sherborne (4358) Dorset. (21

TIDY PACK with 6 different sizes of heat shrink sleeving each 1 M in length 100 selt. locking cable ties and a roll of black PVC tape. All for only 12 ine, VAT \& PP B.D.O. Products Lid Retall Division, 13A Heath Road
St Albans, Herts. St Albans, Herts.
(5090

WE INVITE ENQUIRIES fmm anywhere in the World. We have in stock several million carbon resistors the \(1, \frac{1}{1}\) and 1 watt. \(\frac{3}{2}\) inillion wire wound resistors 5 and 10 watt -1 million capacitors - 1 million electrolytic condsensers - million transistors and diodes, thousands of potentiometers, and hosts of other components. Write, phone or call at our warehnuse Broadfields \& Mayco Disposals Ltd., 21 Lodge Lane, N. Finchley. Lindon. N.12. 01-445 0749 4452713.
} Demonstration/ Service Engineer T.V. Broadcast Equipment

This is an interesting opportunity within the Planning and Installation Department of Pye TVT in Cambridge. As a major manufacturer of TV broadcast equipment, we can provide excellent scope to a capable engineer with an outgoing personality who can combine technical expertise with organising ability.

Main duties will include maintaining and controlling TV broadcasting studio equipment; demonstrating it to customers either in our own demonstration studio or elsewhere and assisting in after sales follow-up activities both in the UK and overseas.

A good standard of general education is required together with technical qualifications appropriate to TV broadcasting, e.g. HNC or City \& Guilds. Previous experience of colour TV studio systems, preferably with a broadcasting organisation, is essential and applicants must be capatle of carrying out and demonstrating performance tests.

Write with details of experience and qualifications to Mirs. J. A. Macnab. Personnel Manager, Pye TVT Limited, Coldhams Lane, Cambridge CB1 3JU.
(5126)


POBox 41 Coldhams'.ane
Cambridge England CB1 3JU Cambridge England CB1 3JU
Tel: Cambridge (0223) 45115



\section*{THE BRITISH COUNCIL}

KING FAISAL UNIVERSITY, DAMMAM, SAUDI ARABIA

\section*{ENGINEER}

\section*{For TV Studios and Equipment}

An Assistant Project Engineer is required for August 1976, possibly earlier, for the maintenance of TV Studios, Video and Language Laboratory equipment, for a Language Service Centre
Applicants, men only, with suitable qualifications and/or experience.
Salary: £4969-£5524 p.a.
Benefits: Allowances of \(£ 750-£ 1500\) according to marital status. Free furnished accommodation; travel costs; outfit and baggage allowances; passage-paid annual home leave.
One-year contract, probably renewable
Further particulars and forms of application obtainable from Overseas Educational Appointments Department, The British Council, 65 Davies Street, London W1Y 2AA. Please quote reference 75 AU 107-116.

\title{
TRANSFORMER DEVELOPMENT ENGINEER REQUIRED:
}

Must have a sound knowledge of wound component design and associated circuitry. Experience in TV wound components preferred. This person must be able to work with a minimum of supervision.
Position entails direct liaison with customers.
Attractive salary will be offered to the successful applicant.
Please write giving details of experience and qualifications to:

\section*{Managing Director}

ST. IVES WINDINGS LIMITED
4 Edison Road, Industrial Estate, St. Ives Huntingdon, Cambs. PE17 4LT

\section*{product engineer}

Grampian, a member of the Telephone Rentals group, manufacture a wide range of audio and telephone equipment. We have a vacancy for a Product Engineer to work in conjunction with Development and Production Departments to ensure the satisfactory introduction into production of new items of equipment, and to provide technical support for equipment already in production. We are seeking somebody with previous Product Engineering experience within the Electronics Industry, having suitable technical knowledge and qualifications to enable them to appreciate the production implications of circuit design and equipment practice. In return we offer a competitive salary and generous Pension and Life Assurance schemes.

For application form or further details please contact Mr. G. N. Turner GRAMPIAN REPRODUCERS LIMITED The Hanworth Trading Estate, Feltham Middlesex TW13 6EJ, 01-8949141


\section*{THE SCIENTIFIC WIRECO.}

Copper - Nickel - Chrome - Eureka Litz - Manganin Wires.
Enamelled - Silk - Cotton - Tinned Coverings.
* No minimum charges or quantities
* Trade and export enquiries welcome
\(\star\) S.A.E. brings List.
P.O. BOX 30, LONDON E4 9BW

COLOUR UHF and TV SPARES. Lists avallable on request "Wireless world" TV tuner project, by \(D\). C. Read, Kits of parts available. New cross hatch kit, Aerial input type. No other connections. Battery operated, portable. Incl. Sync \& UHF Modulator units. £11.00 P/P 45p. \(\mathrm{p} / \mathrm{p} 70 \mathrm{p}\). Signal strength meter kit \(f 1800 \mathrm{p} / \mathrm{p}\) p/p 70p. Signal strength meter kit f18.00 p/p on tape recording \(£ 6.80 \mathrm{p} / \mathrm{p} 60 \mathrm{p}\). Bush CTV 25 new convergence panels + yoke and blue lateral convergence panels \(£ 3.60 \mathrm{p} / \mathrm{p} 65 \mathrm{p}\). New yoke and blue
laps single standard convergence panels complete, incl. 16 controls, coils, P.B. switches, leads \(£ 3.75 \mathrm{p} / \mathrm{p}\) 65p. New colour scan coils, Mullard or Plessey, plus convergence yoke and blue lateral \(£ 9.20 \mathrm{p} / \mathrm{p} 70 \mathrm{p}\). Mullard at \(1023 / 05\) convergence yoke \(12.50 \mathrm{p} / \mathrm{p} 50 \mathrm{p}\). Mullard or Plessey Blue laterals 75p p/p 25p. BRC 3000 type scan coils £2.00 p/p 60p, Bush CTV25 scan coils, new, £2.50 p/p 60p. Delay lines DL20 £3.50, DL40 £1.50, DLIE, DL1 £1.00 p/p 35p. Lum Delay Lines 50p p/p 20p. EHT colour quadrupler for 60p. Special offer, colour triplers: ITT TH25/ 60p. Special offer, colour triplers: ITT TH25/
ITH \(£ 2.00 \mathrm{p} / \mathrm{p} 40 \mathrm{p}\). GEC 2040 tripler \(£ 1.75 \mathrm{p} / \mathrm{p}\) THH
40 p . Philips G8 panels, part complete, surplus/ salvaged: decoder 22.50 , IF. incl. 5 modules £2.25. T-Base \(£ 1.00 \mathrm{p} / \mathrm{p} 50 \mathrm{p}, \mathrm{CRT}\) base \(75 \mathrm{p} \mathrm{p} / \mathrm{p}\) 20 p . G.E.C. 2040 panels for spares. Decoder £3.50, Timebase \(£ 1.00 \mathrm{p} / \mathrm{p} 55 \mathrm{p}\). VARICAP TUNERS. UHF ELC 1043, New £4.20. ELC 1043 / 05, £5.00. VHF ELC 1042, new £5.00. Salvaged VHF and UHF Varicap tuners \(£ 1.50 \mathrm{p} / \mathrm{p} 25 \mathrm{p}\). SPECIAL OFFER: RBM 6psn. Varicap control units f1.00 p/p 25p. UHF tuners, new, tranSistorised, incl. slow motion drive, e3.80. 4 -
position and 6 -position push-button position and 6-position push-button transistorgrated UHF/VHF transd. tuners \& 40 pea inte Thorn 850 dual Standard time base panel 50 p \(\mathrm{p} / \mathrm{p} 50 \mathrm{p}\). Philips 626 I.F. amp incl. ccr, 50 p \(\mathrm{p} / \mathrm{p}\) 50p. VHF turret tuners at 7650 incl. Valves for K.B. Featherlight, Philips 19TG170, GEC 2010 ETC. 12.50 . Pye miniature incremental for 110 to 830 . Pam and INVICTA E1.00. New Fireball tuners. Ferguson, HMV, Marconi, £1.00 \(\mathrm{p} / \mathrm{p}\) all tuners 50 p . Mullard 1100 Mono scan colls, new, suitable all standard Philips, Stella, Pye, Ekco, Ferranti, Invicta \(£ 2.00 \mathrm{p} / \mathrm{p} 55 \mathrm{p}\).
Large selection. LoPTs FOPTs most popular makes. \(200+200 \stackrel{ }{=}=100\) for most popular makes. \(200+200=100 \mathrm{MFD}\) PLIES, 172 West End Lane, London Shop Premises. Callers welcome. (No. 28.159 59 buses or \(W\). Hampstead-Bakerloo and Brit. Rail). Mail Order: 64 Golders Manor Drive London NW11. Tel: 01-794 8751. VAT. Please ADD \(25 \%\) TO ALL PRICES (EXCEPT KITS,
VAT \(8 \%\) ).

\title{
B. BAMBER ELECTRONICS \\ (DEPT. WW), 5 STATION ROAD, LITTLEPORT, CAMBS, CB6 1 QE \\ TEL: ELY (0353) 860185 (TUESDAY-SATURDAY)
}

\section*{TERMS OF BUSINESS: CASH WITH ORDER \\ ALL PRICES INCLUDE POST AND PACKING (UK ONLY)}

EXPORT ENQUIRIES WELCOME. CALLERS WELCOME TUES. -SAT. PLEASE ADD VAT. MINIMUM ORDER E1 Peest bliose stmped aodessed Evelope wit all erouines

\section*{ALL BELOW- ADD \(8 \%\) VAT} IMHOFF CABINETS, 21 in. wide by \(121 / 2\) in
high by 18 in. deep to take 19 in unit \(10 / 2\) in high by \(18 \mathrm{in}\). deep, 10 take 19 in . unit \(101 / 2 \mathrm{in}\)
high. Very smar, deep turquoise, with silve side louvres, few only, brand new. \(\$ 10.00\)
ASch ABOVE, but 2 3in. high, to take 19 in. unit 21 in . high few only, \(\mathbf{E 1 5 . 0 0}\) each SMALL MAINS SUPPRESSORS (small chokes, ideal tor radio, HI-FI inputs, etc.). approx. \(1 / 2 \mathrm{in} . \times 1 / 4 \mathrm{in}, 3\) tor 50 p.
PERSPEX TUNER PANELS (for FM Band 2 tuners), marked BB-10B MHz and Channels
\(0-70\). clear numbers, rest blacked out smart modern appearance, size approx. \(B 1 / 2\) in. \(^{x} x\) WEAUY DOUTY. HEATSINK BLOCKS, undrilled. base area \(21^{\prime \prime} \times 2^{\prime \prime}\) with 6 fins total height \(21 / 4^{\prime \prime} 50 \mathrm{p}\) each.
9V RELAYS, Continental type. 2 pole change over 35p.
RUBBER MAGNETS
mounting hole, 20 for 30 .
PYE CAMBRIDGE PC BOARDS (Removed from cagh band AM 10)
RF prd M1XER BOARD 57.00
\(10,7 \mathrm{MHZ}\) OSCILLATOR/MIXER BOARD

AM AUDIO BOARD E1. 20
AM SQUELCH BOARD SOP
6 Channel ledex switches, 12 V . complete with all trimmers and coils (removed from high band AM10) \(£ 4.00\).
BFY51 TRANSISTORS
BSX20 TRANSISTORS 3 for 60 p BS 20 TRANSISTORS 3 for 50
BC 108 imetal can) 4 for 500 . BC 108 (metal can) 4 for 50 .
BSYP5A TRANSISTORS. 6 for 50p. BCY72 TRANSISTORS, 4 for 50 p . MINIATURE 2 PIN PLUGS \& SOCKETS "Fit into \(1 / a^{\prime \prime}\) hole, pins enclosed with covers for chassis mounting. or can be used for in-tine connectors) Bargain pack of 3 plugs + 3 sockets + covers 50 p .
PROGRAMMERS (Magnetic Devices) Con. tain 9 microswtiches isultable for mains operation) with 9 rotating cams, all individually adjustable, ideal for switching disco lights. displays. etc. or industrial
machine programming iNeed slow motion motor to drive cams, not supplied) 9 switch

\section*{ALL BELOW - ADD \(8 \%\) VAT} A LARGE SELECTION of Test Equipment Surplus equipment. Componenis, etc. Bulk Loads for dealers. Ring for appointme
MAINS TRANSSFORMERS

\section*{All 240 V input. voltages quoted} input. voltage
approx. RMS
(Please quote Type No. only when ordering) TYPE \(10 / 210-0.10 \mathrm{~V}\) at \(2 \mathrm{~A} . \mathrm{E1.50}\)
TYPE 72703400 V at \(10 \mathrm{~mA}, 200 \mathrm{~V}\) at 5 mA .6 .3 V at 400 mA . \(\in 1.25\).
TYPE \(28 / 428 \mathrm{~V}\) at \(4 \mathrm{~A}, 125 \mathrm{~V}\) at 500 mA \(\frac{\text { E4.00 }}{\text { TYPE }}\)
TYPE 125Bs, approx. 125 V at 30 mA
85p.
COLOUR MONITOR DÉCODËR PANELS By leading British manufacturer. Designed to B.B.C. standards. Units consist of chrominance ance modut filter and delay module. lumin All units bre and encoded video input module. adge connectors new and complete including Manual supplied separately, £1.00 each. TO3 TRANSISTOR INSULATOR SETS 10 for 50p.
SPECIAL ÓFFER. Miniature 50 ohm coax, high quality, PTFE insulation and blue PTFE cover. solid silver-plated inner, and silver-plated braid, approx. 3 mm overall
diameter, (ideal for unit wiring of RF stages up to 23 cms . etc.) 4 metres for 50 p stages up n 23 cms . etc.) 4 metres for 50p. ISEP RACXING, \(19^{\prime \prime}\) wide. \(15^{\prime \prime}\) deep to take panels (with some PCB slides and PAL DECODER PANELS (from Phillips Colour Monitors), type ELB618/00, new complete, but untested, \(£ 20.00\). AS ABOVE, but NTSC, E10.00. PF1 POCKETFONES, UHF, untested, but complete.
\(£ 32.50\).
PYE CAMBRIDGE BOOT MOUNT AM 10B sets only. no control gear, 25 KHz channe spacing. £20.00. (High or Low Band MULLARD TUBULAR CERAM MULLARD TUBULAR CERAMIC TRIM MERS, 1-1 Bpi, 6 for 50p.
as featured in Rad. Comm. Jan. p.25)
Cs, some coded, 140IL type, untested

\section*{ALL BELOW - ADD \(8 \%\) VAT} 2-6PF., 10MM CIRCULAR; CERAMIC TRIMMERS (for VHF/UHF workl. 3 pin mounting, 5 for 50p.
WE NOW STOCK SPIRALUX TOOLS for the electronics enthusiast. Screwdrivers. nut etc. SAE for list

\section*{PLUGS AND SOCKETS}
:25-WAY ISEP PLUGS AND SOCKETS, 40 p set ( 1 plug +1 skt ). Plugs and sockets sold separately at 25 p each.
ANDREWS 44AN FREE SKTS. (N-type) for FH4/50B or FHJ4/50B cable, \(£ 1.00\) each. BULGIN ROUND FREE SKTS. 3 pin. for mains input on test equipment, etc, 25p
each \({ }^{\text {eO23 }}\) BACK TO BACK SOCKETS, £1.25 each.
PL259 PLUGS (PTFE). Brand new Packed with reducers 65 p each, or 5 for \(£ 3.00\). SO239 SOCKETS (PTFE). Brand new hole fixing type). \(\mathbf{5 0 p}\) each, or 5 for \(£ 2.25\). N-TYPE SKTS. 14 hole chassis mounting 50ohms, small coax lead type), 50 p ea HREF PLUGS 50ohm. 60p each
GREENPAR (GE35012) CHASSIS LEAD bort on to the chsssis, the are the units which bolt on to the chassis, the lead is secured by screw cap. and the inner of the coax passes
through the chassis), 30 p each 4 for \(£ 1.00\). BULGINFLAT 2 PIn FLEX CONNECTORS Non-reversible. 40p each.

PYE RADIO-TELEPHONE EQUIPMENT

\section*{Cambridge, Westminster, Motofone, Euro-}
pa series. Send s.a.e for full detans
WELLER STOCKIST. All irons and spares available. S.A.E. for list

\section*{VALVES}

QOV03/20A (ex-equipment), £3.00.
QQV03/10 (ex-equipment) 75p or 2 for
2C39A (ex. equipment). \(E 1.00\) each.
4X2508 (ex. equipment), \(£ 1.50\) each
DET22 (ex. equipment),

ALL BELOW - ADD \(25 \%\) VAT HIGH QUALITY SPEAKERS, \(8 \%\) in \(\times 6 \mathrm{in}\). ell.ptical. 21 n . deep. 4 ohms. inverse magnet, Quantity discount available)
T.V. PLUGS (metal type) 6 for 50p T.V. SOCKETS (metal type) 5 for 50 p T.V. LINE CONNECTORS (back-to-back skt. 4 for 50p.
MIXED ELECTROLYTICS, large bag 1.00

PNP ÁUDIO TYPE TOF TRĀNĒIST̛OṘ8, 12 for 25p
IN SPEAKER SKTS, 2-pin, 4 for 50p. F CAN\$, \(1 / 2 n\) n square. suitable for rewind, 6 for 30p.

DUBILIEREELECTROLYTICS. 50uF, 450V 2 for \(50 p\).
DUBILIER ELECTROLYTICS. ' 100 uF 275 V . 2 for 50p.
PLESSEY ELECTROLYTICS. 470uF, 63 V 3 for 50 p .
TCC ELECTROLYTICS. 1000uF, 30V, 3 for 30p.
PLESSEY ELECTROLYTICS. 1000 uF 80V. 40p each ( 3 for \(£ 1.00\) ).
DUV 50p ELECTROLYTICS. 5000 mfd , al DUBILIER ELECTROLYTICS. 5000 mfd at 50 V 60p each
DUBILIER ELECTROLYTICS. 5000 mfd at 70V 65p each
ITT ELECTROLYTICS. 6800 mfd at 25 V . high grade screw terminals, with mounting clip. 50p each.
S3V 75 ELECTROLYTICS. 10000 mfd a
MULLARD BLACK/WHITE C.RT A65-1 1 W. Brand new. £11.00.
T.V. LINE SOCKETS. 18 p each. 5 for 75p. T.V. SOCKETS. Mounted on Bakelite panel 6 for 50 p.
DIN 3 PIN LINE SOCKETS. 15p each. E.H.T. V/HOLOERS B9A. (Both PHILIPS and PYE rypes available.) \(\mathbf{2 0 p}\) each.
B9D VALVEHOLDERS, for PL509, e1 ceramic chassis mounting, 5 for 50 p .

\section*{TELEVISION RELAY EQUIPMENT FOR SALE}

75' self supporting lattice mast - to be dismantled on site.

\section*{MAIN STATION RELAY EQUIPMENT}

7 stabilised line power transformers in weatherproof case - input 190 volt-260v AC output 64 volts AC 300 VA. 18 Belling and Lee transistorised VHFF repeaters, 4 outputs plus trunk. 5 short line Belling and Lee VHF transistorised repeaters.
B. J. Hay, David Owen \& Co.

126 High Street, Marlborough Witshire SN8 1 LZ
Tel: Marlborough 2163

MULLARD LP1400 high performance stereo decoder modules. Limited quantity to clear, unly \(£ 6\) including \(p\) \& \(p\). Mr. Cook, 39 Barrett Road, London, E.17. Mail order only.

DISCO CONSOLE consisting of two 100 watt DJ Power Amplifiers with SDL mixer Mk II. \({ }_{2}\) Garrard SP25 MKIII Turntables with Shure. 2 Garrard SP25 MKIII Turntables with Shure.
Magnetic cartridges, housed in compact mobile unit. 4 speaker units; 2 containing four \(12^{\prime \prime}\), ,
50 watt Goodman speakers. 2 containing 1\()^{\prime \prime}\)
 jector, microphone (including stand and boom) Speaker leads, Bank lights. All perfect and ready for use. £800. 01-805 3898.

AUTOMATIC TYPEWRITER SALE, Itel, I.B.M. Golfball based paper tape typewriters. Sale prices during February and Marchc only. Machines installed, from \(£ 375\), kits from \(\mathfrak{\text { f } 2 5 0 ; ~}\) also E.I.A. and other coded Flexowriters. These must be the lowest prices for automatic and Oxford 43393.
(5160)

\section*{APPOINTMENTS CONT}

\section*{audio development engineer}

Grampian, a member of the Telephone Rentals group, manufacture a wide range of electronic and electro-acoustic audio and internal telephone equipment. We have a vacancy for a development engineer to work on all aspects of audio processing and amplifying systems. The person we are seeking will have experience of development work in this field, and will probably be a graduate, although proven development ability will be a more important factor. In return we offer competitive salary and generous Pension and Life Assurance schemes.

For application form or further details please contact Mr. G. N. Turner
Grampian
GRAMPIAN REPRODUCERS LIMITED
The Hanworth Trading Estate, Feltham Middlesex TW13 6EJ, 01-894 9141
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{ENAMELLED COPPER WIRE} \\
\hline S.W.G. & 1 lb . real & 1/2 lb. reel \\
\hline 10 to 19 & 240 & 1.35 \\
\hline 20 to 29 & 2.45 & 1.40 \\
\hline 30 to 34 & 2.60 & 1.50 \\
\hline 35.1040 & 2.85 & 1.60 \\
\hline \multicolumn{3}{|l|}{All the above prices are inclusive of postage and packing in U.K.} \\
\hline 102 Parrsw & \begin{tabular}{l}
ER SUP \\
d, Withing no 061-4
\end{tabular} & nehester 20 \\
\hline
\end{tabular}

SUPERB INSTRUMENT CASES by Bazelli, SUPERE manufactured from heavy duty PVC faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range, competitive prices start at a low 75 p . Over 400 models to choose from. Prompt despatch. Free literature (stamp would be appreciated). Bazelli. Dept No 22, St Wilfrid's Foundry Lane. Halton. Lancaster, LA2 6LT.
(5052)

OSCILLOSCOPE \(1,0-18 \mathrm{U}\), only 8 months old, with handbook and test leads. 550. Phone Lewes
4248 .

\section*{fibre optic تuppliers}
cuet
FIBROFLEX SIZE 1440 Strand Fiextble Glass Ligh
Artive Dia Black Shearh \(10 \mathrm{~m} £ 3.00 ; 100 \mathrm{~m}\) £ 21.00
FIBROFLEX SIZE 41760 strand \(£ 1.50\).

CROFFON 1610 Flexible 64 Strand Plastic Light Condurt. Active Dia

 \(100 \mathrm{~m} £ 32.00\). FP \(6010 \mathrm{~m} £ 8.00 ; 100 \mathrm{~m}\) E65.00 OPTIKIT 1032 m CROFON 1610 + 3 m each FP20. FP4O FP60 + Polishing Compound ideal laboratory pack \(£ 5.50\)
OPTIKIT L6 6 Convex Glass Lenises Dia \(7 / 14 / 21 / 26 / 47 / 51 \mathrm{~mm} £ 3.00\) (Lenses also avalable saparately)
OPTIKITS RBE Five Retro-R

\(22 / 36 / 44 / 83 \mathrm{~mm}+150 \mathrm{~mm}\) StriD. \(\mathbf{C 2 . 5 0}\).
ULTRASONIC TRANSDUCERS SEOSB-4

OLTRASONNIC TRANSDUCERS SEOAEE-25T/R 25
(Better Sensituwy Lower Bandwaldin than SEO58-40) E3.

REO/AMBER or NEUTRAL 50 mm sq
£4.50. Linear Polarise-s also avalable
OPTOLECTRONICS LIGHT SOURCES \& DETECTOR
MV54 2 mm Red LED 20p. MLEE 500 TO92 Red LED 20p.
\(\times C 209\) Red ( 3 mm ) 20p. XC209.Y \(\times\) C \(209 . G\) (Amber Green) 30 p .
MLED 92 Inta Red Emiter 30p MLSS203 Photo.Thy
2 N5 777 Hrgh Sensinvity Photo Darlington 25 V 50 p .
MhD


\title{
GREAT GROWTH PROSPECTS AT
}

\author{
EMI Sound \& Vision Equipment Limited
} Broadcast Equipment Division

Our development programme is well under way. In ' 76 you'll see us back amongst the market leaders in a big way. We'll be significantly extending our visiting product ranges with a new eneration of equipment. But that's just the start. Over the next few years we'll be breaking into a number of new fields

A programme as active and aggressive as this means we re in the market for additional staff with sound experience of the television broadcasting business. At our Hayes base we're currently interested in

\title{
Sales Engineers Systems Planning Development Engineers
}

\section*{Engineers \\ Project Planner}

Starting salaries are excellent and the prospects for advancemen are very good indeed. In the first instance contact C.W. T. Mott. Chief Recruitment Officer, EMI Limited, 135 Blyth Road. Hayes Middlesex. Telephone 01-573 3888 Ext.


\section*{ARTICLES FOR SALE}

Economise on Semiconductors
All prices include VAT - by return service
* Lower price cmos
* Lower price 741C
\(\star\) Low price DIL sockets * Low price NE555
\begin{tabular}{llll|lll|lll}
\hline & & & \\
\hline
\end{tabular}


OSCILLOSCOPE. Dual Trace type CI-16 D.C. to 5 MHz . As new, owner emigrating, \(£ 80\) o.n.o
( 5136 )
Crayford 521506 .
V.H.F. A.M. radio installation consisting of the following G.E.C. equipment:-1 High power fixed TX/RX RC 760. L Low power fixed transceiver RC 750. 3 Portable iransceivers RC 660. 3 Personal transceivers RC \(550-\mathrm{TR}\) with batteries and charger. Phone Pickering
12333 , 5168\()\)

LOUDSPEAKER UNITS - UK's lowest prices for KEF, Celestion, PeerJess, etc. SAE lists. Uussex Tel 56822 Nad, Haywards (5A1) ussex. Tel. 56822
C.DU. 110 Oscilloscope, v.g.c., \(£ 180\), Solartron CD 1400, v.g.c., 1130 , with Delay T.B. Scopex GP-DBI, mint, f120. Bridge \(Z\) No 5, V.g.c., \(£ 35\) : PYE PANCHROMATOGRAPH with all ancillary equipments and spare columns, 1350 . Westrex Temperature controlled baths and ovens Temperature controlled baths and ovens.
various prices. Metrohm POTENTIOGRAPH Type 336 with Metrohm POTENTIOGRAPA Type 336 with accessories, \({ }^{\text {£ } 65, ~ V . g . c . ~ C D 140 才 ~}\)
C.R.T., unused, £45. WW Box No. 5169. (5169)

MARCONI TF 885A Video Oscillator c/w copy manual/circuit £27.50 (no VAT - one only), Buyer collects or carriage at cost. Martin. Well Cottage
rel. 0279
74.364.

LINSLEY-HOOD 75 watt amplifier headphone socket kit. with instructions. f1,45. Filter switch click and mains borne/rf interference suppression kit, with instructions, \(£ 1.35\)



 \&2.70. Inclusive prices. P\&P 10p for prompt despatch. All components brand new and guarAvenue, Turquay South Devon
(5187)

VIDEO RECORDERS Sony CV2100GE with 9 tapes and service manual, \(f 200\). Roydon 3343. wide band amplifier. £130. Roydon 3343. (5186)

CD 1400 SCOPE for sale 15 MHZ D/Beam age 57605, evenings.
"MOTIVATOR" Curtain Cord Controllers. Mains battery models and kits for use whith Droducts Dept WW12 8 Hillview Road, Pinner HA5 4PA, Middlesex.

USED CLOSED circuit TV equipment for Sale - cameras, monitors, lenses and anciliary electrical equipment. Details from Photo-Scan Limited; telephone Head Office, Sunbury-onThames 89741 or Northern Region, Pontesbury 506.

16MM B \& H 631 Sound projectors c/w speaker and transformers 1135 . - Hilton Cine, 9 Wes Hill, Dartford -T. 20009
C.R.T. REGUNNING PLANT. New and secondhand reconditioned training, demonstration colour or
Surrey, CRO
2QP.

DIGITAL CiOCK CHIP, AY-5-1224, with data and circuit diagram. £3.66 plus VAT, \(\pm\) Jumbo LED digits ( 16 mm high) type economy DL/747 only \(£ 2.04\) each plus VAT, post free. Greenbank Electronics, 94 New Chester Road. Wirral Merseyside L62 5AG.
\(\begin{array}{r}r \mathrm{ral} \\ 183 \\ \hline\end{array}\)

THE TRADE MARK NO. 714799 consisting ot the word ALLIANCE and registered in respect of scientific, nautical, serveying and electrical apparatus and instruments all included in Class 9; wireless sets (sold complete); optical weighing. signalling, checking (supervision) Hife saving and teaching apparatus and instru ments; and talking machines was assigned on the 8 December, 1975 by ALLIANCE WIRES AND CABLES LIMITED of 256 Hotwell Road, Hotwells Bristol, Avon to T, NEESHAM AND COMPANY LIMITED, of 256 Hotwell Road aforesaid: WITHOUT THE GOODWILL OF THE
BUSINESS IN WHICH IT WAS THEN IN USE BUSINESS IN WHICH IT WAS THEN IN USE.
(5184)

\section*{COMPLETE VOLS. WIRELESS WORLD dating from 1944 to 1966 ( 1952 missing-most of them bound) Locklay}
(5193)

CAPACITORS mixed bags of electrolytics, ap proximately 500 untested for \(£ 1\). Mullard metal lised polyester. mixed bags of \(50,1 \mu \mathrm{~F}\) and \(2.2 \mu \mathrm{~F} \quad(250\) d.c. \()\) cosmetic imperfections so \(£ 1\)


\title{
Eectrotime \\ the TIME has araived FOR YOU TO JOIN THE DICHTAL REYOLUTION
}
introducing a new range of QUARTZ CRYSTAL digital electronic watches

CONTINUOUS LIQUID CRYSTAL DISPLAY MODEL TLC 4
features -
* Hours
* Minutes
* Seconds
- Date


With unique Backlight feature for Night Reading

ALL WATCHES FEATURE-
* Solid State - No moving parts
* Quartz Crystal Controlled
accurate to 5 secs. per month
* Attractive Presentation Gift Box


LED MODEL TLE 4 £39
inc. VAT
features
* Hours
- Mi uutes
* Seconds
* Seconds
* Da:e

ALL MODELS EXCEPT THE BLACK WATCH WITH GOLD PLATED OR RHODIUM BRACELET

\section*{LED MODEL TLE 5}


\section*{ADD TO THE SOPHISTICATION OF YOUR LIFE WITH THIS UNIQUE DIGITAL ELECTRONIC CLOCK}


\section*{\(£ 14.50\)}

\section*{inc. VAT}

This remarkable example of modern technology is also modern technology is also avai able as a Price £13-50 inc. VAT


\section*{PROGRAMMABLE} CALCULATOR MODEL 1421 \(£ 50\) FEATURES-8-Digit Capability. Full Floaung poire: Three Register Stack; Memory: Trig. Functions. Reciprozals, Ra-dians-Degrees; \(\pi\) Constant; Logs (in. log). Power Square/Square Root being PLUS-Capability \({ }^{31}\) being
loaded with up to a 102 -step program from conplex or
tedious calculations. tedious calculations


MODEL 1437
FEATURES - 8-Digit Capabrity
\(£ 13.80\) Full Floating Foint
inc. VAT
Auton
Clear
\(\underset{\substack{\text { Clear } \\ \text { Leading Zero }}}{ }\)
Suppression

Money back if not completely satisfied One-year guarantee with all models

ELECTROTIME, 111 Storforth Lane Trading Estate Chesterfield, Derbyshire - Tel: 35804

Please supply

I enclose cheque / postal order / money order

\section*{* MINICOMPUTERS \\ * PERIPHERALS \\ * INSTRUMENTATION}

For fastest, best CASH offer, phone COMPUTER APPRECIATION Godstone (088 384) 3106

PLEASE CAN ANYONE HELP? Lend or photocopy manual for telequipment D55A scope Mercer, 6 Briarlyn Avenue, Huddersfield. Tel.
(5197) WANTED, all types of communications receivers and test equipment. Details to R. T. \&sil. Rd., London, E.i1. Ley 4986. B-D ELECTRONICS offer prompt settlement for
your surplus components. Our main field of interest is consumer electronics. Please tele. phone our Miss Hughes, Sandy (0767) 81616.(22
SURPLUS COMPONENTS, Equipment and Computer panels wanted for cash. Ring Southampton 772501.
VALVES RADIO TV TRANSMITTING INDUSTRIAL 1936 to 1975 many obsolete types, list 20p s.a.e. for quotation. Postal export service, Wexed. Wholesalers, Dealers, etc., stocks purchased. Cox Radio (Sussex) Ltd.' The Parade, chased Cox Radio (Sussex) Lid \(\dot{\text { E }}\) The Parade,

WANTEO: One copy of each of the following: WIRELESS WORLD. Feb 1973-Vol 79, Jan \(1974-\mathrm{Vol} 80\), Feb 1974-Vol 80, Feb 1975-Vol 81. Bailey Bros Lid, 11 Ronaid Road, Highbury, London, N5 1XJ. Tel 607 3361/2.
WANTED NEW 705A VALVES. Details to \(P\). Norglate. GV Planer Ltd., Sunbury-on-Thames, 86262.

\section*{CAPACITY AVAILABLE}

\section*{CAPACITY AVAILABLE}

General Sheet Metal Work including Fabrication of Chassis Panels. Boxes and Guards, Large and Small Runs at highly Competitive Rates. Let us quote you

\section*{ANTEC ENGINEERING LTD. \\ 6 Sunny Place, Sunny Garden Road}

London NW4 1 RS Tel. 01-203 4822

LABELS, NAMEPLATES, FASCIAS on aluminium or plastic. Speedy delivery G.S.M. GRAPHICS


AIRTRONICS LTD., for Coil Winding - large or small production runs. Also PC Boards Assem plies. SE13 7PE. Tel: 01-852 1706.
PRINTED CIRCUIT BOARDS - Quick deliveries, competitive prices, quotations on request roller tinning, drilling etc., speciality small batches, larger quantities available Jamiesons Automatics Ltd, 1.5 Westgate, Bridlington, N. Humberside, for the attention of
Mr . J. Harrison. Tel: (0282) \(4738 / 77877\). (18
A.A.A. SERVICE. Small batch production wiring assembly to sample or drawings Specialists in printed circuit assembly. Cable forms to order. Rock Electronics Lishopsfield, Harlow, Essex. Tel. Harlow (0279) 33018 .

BATCH Production Wiring and Assembly to sample or drawings. Deane Electricals, 19 B Station Parade, Ealing Common, London, W. 5 Tel: 01-992 8976.

CAPACITY avallable to the Electronic Industry. Precision turned parts, engraving, milling and grinding both in metals and plastics. Limited capacity avallable on Mathey Sp33 jig borer
Write for Lists of full plant capacity to C.B Industrial Engineering Ltd., 1 Mackintosh Lane E9 6AB. Tel: 01-985 7057
FASCIAS, LABELS, NAMEPLATES on aluminium, indeliible finish, quick delivery. ELTON IGRAPHIC ARTS, CASL HOUSE Sandy Lane, Sandbach, Cheshire 4768. (5140)

\section*{COURSES}

RADIO and Radar M.F.T. and C.G.L.I Courses. Write: Principal, Nautical College, Fleetwood FY7 8JZ.

\section*{VALVES WANTED}

WE BUY new valves, transistors and clean new components, large or small quantities, all de sails, quatation by return - Walton's, 55 Wor.
cester St., Wolverhampton.
ARTICLES FOR SALE CONT,

\section*{RECEIVERS AND AMPLIFIERS -}

RECORDS MADE TO ORDER
DEMO DISCS
MASTERS FOR
RECORD COMPANIES
PRESSINGS

Single disc: , 1.20, Mono of Stereo. delivery 4 days from your tapes. Quantity runs 25 to 1,000 records PRESSED IN VINYLITE IN OUR OWN PLANT. Delivery 3.4 weeks. Sleeves/Labels. Finest quality NEUMANN STEREO/Mono Lathes. We cut for many studios UK/OVERSEAS. SAE list

DEROY RECORDS
PO Box 3, Hawk Street, Carnforth, Lancs. Tel. 2273
HRO Rx5s, etc., AR88, CR100, BRT400, G209, S640, etc., etc., in stock. R. T. \& I. Electronics, \begin{tabular}{l} 
Ltd., Ashville Old Hal, Ashville Rd., London, \\
Ell \\
\hline 65
\end{tabular} SIGNAL Generators, Oscilloscopes, Output Meters, Wave Voltmeters, Frequency Meters, Multi-range Meters etc., etc., in stock. R. \(\&\) I. Electronics, Lid., Ashville Old Hall, Ash.
ville Rd., London, E.il. Ley 4986 .

\section*{NEW GRAM AND SOUND EQUIPMENT}

GLASGOW. Hi Fi, Cassette Decks. Tape Recorders, Video Equipment, always available we buy, sell and exchange for Hi Fi sets and photographic equipment. Viction MORRIS
Audio Visual Ltd, 340 Argyle Street, Glasgow, \(\underset{\text { Audio Visual Ltd, } 340 \text { Argyle }}{\text { Glaset, }}\) Glasgow, G1, 8/10 Glassford Street, Glasgow, G2,
Sauchlehall Street, Tele: \(041-2218958\).


\section*{BARGAINS}

A1 500W Dimmer Switch Module with \(1^{\prime \prime}\) knob \(£ 1.998 \%\) A2 2W Audio Amplifier LM380 14pin DIL 79p \(25 \%\) A3 Timer type LM555CN 8 pin DIL A4 Voltage Regulator 723 Series \(2-37 \mathrm{~V}\) A5 RCA IF chip CA \(3089 \mathrm{E}^{-1} 16\) pIn DIL A6 RCA Stereo Decoder CA3090AO 16 pin OIL \(4.2225 \%\) Please add VAT \& 15 p postage or send SAE for catalogue FRASER-MANNING LTD.
26 HERVEY STREET, IPSWICH, SUFFOLK

SOWTER TYPE 3678
MULTITAP MICROPHONE TRANSFORMER Primary windings for \(600 \mathrm{ohm}, 200 \mathrm{ohm}\) and 60 ohm with Secondary loadings from 2 K ohm to 10 K ohm Frequency response plus/ finished Mumetal box, 33 mm diameter by 22 mm high well inished Mumetal lox, Iomm diameter by 22 mm high, quantities) EX STOCK HIGHLY COMPETITIVE PRICE FULL DETAILS ON REQUEST.
E. A. SOWTER LTD.. Dedham Place, Ipswich IP4 1JP. Telephone 047352794 WW-03I FOR FURTHER DETAILS

\section*{Wilmslow. Audio \\ THE firm for speakers!}

\section*{Baker Group 25. 3. 8, or 15 ohm}

Baker Group 35, 3, 8 or 15 ohm Baker Deluxe. 8 or 15 ohm .
Baker Major, 3. 8 or 15 ohm
Baker Regent. 8 or 15 ohm.
Baker Superb, 8 or 15 ohm Celestion HF1 3008 or 15 ohm Celestion MH 1000 horn, 8 or 15 ohm Decca London and Xover Decca London and Xove
Decca DK30 and Xover
Decca DK30 and X
EMI 5" Mid range
EMI \(61^{1 / 2} \mathrm{~d} /\) cone roll surr. 8 ohm EMI \(8 \times 5,10\) watt, \(d / \mathrm{c}\), roll/s 8 ohm EMI \(14^{\prime \prime} \times 9^{\prime \prime}\) Base 80 Elac \(6^{1} / 2^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll/s 8 ohm Fane Pop 15 watt \(12^{\prime \prime}\)
Fane Pop 25 T 30 watt \(12^{\prime \prime}\) Fane Pop 50 watt, \(12^{\prime \prime}\) ane Pop 55. 12 . 60 watt ane Pop 60 watt. 15
Fane Pop 70 watt 15 Fane Pop 70 watt 15
Fane Pop 100 watt, \(18^{i}\) Fane Crescendo 12 A or B. 8 or 15 ohm Fane Crescendo 15,8 or 15 ohm Fane Crescendo 18.8 or 15 ohm Fane \(807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll/s. 8 or 15 ohm Fane \(801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll/s 8 ohm Goodmans 8P 8 or 15 ohm Goodmans 10P 8 or 15 ohm Goodmans 12P 8 or 15 ohm Goodmans 12 P-D 8 or 15 ohms Goodmans 12P-G8 10015 -ohm Goodnlans Audiom 10015 ohm Goodmans Auciom 2008 ohm Goodmans Axent 4028 orm 15 ohm Goodmans Axiom 4028 or 15 ohm.
Goodmans Twinaxiom 8"' 8 or 15 ohm Goodmans Twinaxiom 8"' 8 or 15 ohm
Goodmans Twinaxiom \(10^{\prime \prime} 8\) or 15 ohm Goodmans
Kef T27
Kef T15
Kef B110
Kef B200
Kef B139
Kef DN8
Kef DN 12
Kef DN 13
Richard Allan HP8B 8" 45 watt
Richard Allan CG8T \(8^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll/s
weete
Baker Major Module, each
Goodmans Mezzo Twinkit, pair
Goodnans DIN 20.4 ohm, each
Helme, XLK35, pair
Helme XLK40, pair
Helme XLK 30 , parr
Helme XLK50, par
Kefkit 1. pair
Rıchard Allan Twinkıt, each.
Richard Allan Triple 8, each
Richard Allan Triple, each
Richard Allan Super Triple, each
Richard Allan RA8 kıt, pair
Richard Allan RA82 kıt, pai
Wharfedale Linton \(2 \mathrm{kıt}\) (pair) Whartedale Glendale \(3 \times P\) kit, pair Whartedale Dovedale 3 kit, pair
£8.64
\(£ 10.25\)
\(£ 13.75\)
£13.75
\(£ 11.87\)
\(£ 10.00\)
£18.12
\(\begin{array}{r}£ 7.75 \\ \mathbf{f} \\ \hline\end{array}\)
\(£ 13.50\)
\(£ 42.25\)
£24.06
\(£ 24.06\)
\(\mathbf{~} 3.50\)
£4.37
£13.25
\(£ 3.44\)
\(£ 4.06\)
\begin{tabular}{l}
\(£ 5.06\) \\
\hline
\end{tabular}
\(£ 5.25\)
\(\mathbf{E} 7.50\)
\(£ 12.00\)
\(£ 15.50\)
\(£ 15.50\)
\(£ 17.25\)
\(£ 17.25\)
\(£ 18.75\)
\(£ 18.75\)
\(£ 29.95\)
\(£ 29.95\)
\(£ 34.50\)
£47.50
£62.95
\(£ 5.75\)
\(£ 9.95\)
\(£ 9.95\)
\(\mathbf{£ 5 . 9 5}\)
\(£ 5.95\)
\(£ 6.25\)
\(£ 13.95\)
\(£ 16.95\)
\(£ 16.95\)
\(£ 15.95\)
\(£ 13.90\)
\(f 13.90\)
13.90
\(£ 8.44\)
\(£ 8.44\)
\(£ 20.00\)
\(£ 10.55\)
\(£ 10.95\)
\(£ 14.75\)
f 47.19
£14.75
\(£ 24.00\)
\(£ 35.00\)
\(£ 19.00\)
\(£ 56.00\)
\(£ 53.00\)
\(£ 48.00\)
\(£ 14.95\)
\(£ 2250\)
\(£ 22.50\)
\(£ 27.95\)
£27.95
\(\mathbf{£ 3 2 . 5 0}\)
£ 32.50
\(£ 42.00\)
\(£ 66.00\)
£23.12
\(\begin{array}{r}\text { £ } 58.00 \\ \hline 63.12\end{array}\)
All Radford. Gauss, Castle, Jordan Watts. Eagle,
Lowther. Peerless Tannoy units in stock
Prices correct at 32.76
INCLUDING VAT AT \(\mathbf{2 5} \%\) ON HI-FI
\(8 \%\) ON PRO \& P.A.
Cabınets for PA AND HifI, wadding. Vynair, etc
Send stamp for free booklet "Choosing a Speake
FREE with all orders over £10-HiFi
Loudspeaker Enclosures Book
All units are guaranteed now and perfect Prompt despatch
Carriage Speakers 50 p each, \(12^{\prime \prime}\) and up 75p each tweeters and crossovers 30 p each. kits 80 p each

\section*{WILMSLOW AUDIO}

Loudspeakers a Export Dept: Swan Works, Bank Square, Wilmalow, Cheshire SK9 1 HF . Discount HiFi, PA etc: 10 Swan Street Wilmalow. Radio, Hi Fi, TV: Swift of Wilms low, 5 Swan Street, Wilmsiow. Tel. (Loud speakers) Wilmslow 29599, (HiFi, etc.) Wilmalow 26213.
WW - 065 FOR FURTHER DETAILS

\section*{American Made Quality Products. Prompt DeliveryExcellent Pricing}


\section*{B\&K Television Analyst} Model 1077 - PAL
Cuts troubleshooting time in half! Checks every stage of black-and-white and color TV receivers from antenna input to grid of CRT. Drives solid-state sweeps, all UHF channels, 8 VHF channels, 20 to 45 MHz IF , audio, video, sync outputs


B\&K Solid State Sweep/Marker Generator
Model 415 - PAL
Four instruments in one - sweep generator, marker generator, marker adder and bias supply (3) plus the demodulator probe. Easy to use. Available for CCIR frequencies.

Write for complete catalog and prices.
Empire Exporters Inc.
270-278 Newtown Road
Plainview, N.Y. 11803
Cable Address: Empexinc, N.Y. Telex: 96-7880

\section*{DIRECT \\ COMMUNICATIONS \\ Division of Direct Electronics Ltd.}

\section*{INTERCOMMS \& TELEPHONES}
- Simple 2-way wall/desk with 100 ft cable E16 (i) P\&P). 6 v batt. \(£ 2.32(50 \mathrm{p})\), or power supply \(\$ 5.00(25 \mathrm{p})\).
Similar but 2- to 7 -way instrument only Installation diagram. 8.50 each ( 50 p )
- Superior 2- to 6-way Siemens \& Halske Wali-desk conversion kit, term. block and cord. Per instrument \&10. (50p).
- AUTOMATIC INSTRUMENTS. Strowger compa tible or PX working. New/refurbished / 2nd hand \(232 \cdot 332 \cdot 706 \cdot 746 \cdot 722\) (Trimfone), etc. Special and foreign types.
- ULTRA MODERN TYPES. "Goiidola" Interna tional TOUCH-BUTTON DIAL Charleston (cand lestick), etc.; from £32.85.
- PLAN \& KEY Phones for home and export
- Jacks; Plugs; Cords; Term. Blocks; Cables (up to 25-way and 50 pair), etc
- ENTRANCE PHONES and Electric Latches, with or without intercomm. facility
- TELEFHONE AMPLIFIER (1-way). E6.95 (35p): Hands-free tele. amp. (two-way conversation), £9.50 (50p).
* TRANSISTORISED UNITS. Simple 2-way batt intercomm. £7.75 (50p); Batt. Baby Alarm £5. 25 (50p); Intercomm. with roving master \(£ 9.50\) (50p) -Wireless Intercomm. (just plug into mains): 2-way \(£ 20\) (i 1 ): batt. op. 3 -way (master +2 subs) £23.95 (i) 1 ): 4-way (master +3 subs) \(£ 28.50\) ( \(\mathbf{i} 1\) ) * mains adaptor \(6 \mathrm{v} / 7.5 \mathrm{v} / 9 \mathrm{v}\) dc \(£ 3.75\) ( 35 p ).

Add VAT. \(=8 \% ; \star=25 \%\) on post paid price TRADE ENQUIRIES WELCOMED MANY SURPLUS ELECTRONIC BARGAINS FROM OLD STOCK STILL LEFT - COME AND DO A

34 LISLE STREET, LONDON WC2H 7BD
Tel: 01-4372524


MARCO TRADING
(Dept. D3)
The Old School, Edstaston, Nr. Wem, Shropshire Tel. Whixall (Shropshire) (STD 094872) 464/5 (Proprs: Minirosi Trading Lid.

EXCLUSIVEOFFERS

\section*{WORLD-WIDE RANGE
NEVER BEFORE OFFERED}

COMPLETE TRAKSPORTABLE HF. COMYUMICATIONS CENTRE honsed in Air Conditioned TrAILEH fitted two COLLINS KWT-6 500 W s.S.B. TranmitterReceivers and one COLLINS Receiver all fully tuneable
2 to \(_{30} 30 \mathrm{~m} / \mathrm{cs}\) digital readout syntheaised frequency control, with line amplifiers and inputs, operating position and remote control facilities and ancillary equipment. Power input 115Y or 230 V C. Full detalle on application.
PHILCO HC-150 POINT-TO-POINT STRIP RADIO HF RECEIVERS \(2 / 30\) mu/cs. Ten fully tuneable channels to
\(0 \cdot 5\) kes with synthesisers. Single and diveraity reception on ISB, DsB, SsB uith 4 sub-bands to each channel. Full details and prices on application.
HIGHEST QUALITY \(19^{*}\) RACK MOUNTING CABINETS \& RACKS
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{CABINET8} \\
\hline ( hu & Height & Widh & Depth & Rack Panel & \\
\hline \({ }_{\text {cr }}\) & in inches & & in miches & Space in ins. & Price \\
\hline CR & \({ }^{69}\) & 30 & 20 & - & E24.00 \\
\hline FA & 85 & 22 & 36 & 160 & \(\underline{2} 2.00\) \\
\hline FC & 52 & 25 & 22 & 47 & c17.00 \\
\hline FH & 15 & 21 & 17 & 11 & ¢12.00 \\
\hline FJ & 15 & 21 & 15 & 12 & c12.00 \\
\hline LL6 & 11 & 21 & 17 & 9 & E15.00 \\
\hline LL7 & 16 & 20 & 12 & 14 & c15.00 \\
\hline L 18 & 10 & 20 & 10 & 9 & E15.00 \\
\hline 1.19 & 17 & 21 & 17 & 14 & \(\varepsilon 15.00\) \\
\hline 1.10 & 52 & 21 & 18 & 46 & E15.00 \\
\hline \multirow[t]{2}{*}{MM} & 75 & 22 & 26 & 68 & ¢22.00 \\
\hline & \multicolumn{5}{|l|}{Also Consoies. twin and multi-way Cabinets OPEN RACKS} \\
\hline 1 ur & Height & Channel & Rack Pan & & \\
\hline Kef & menches & Depth & Space & Base & \({ }_{\text {Prace }}\) \\
\hline
\end{tabular}
```

* 1600t 16 m/m Film Spoots ally (unused) 10 for

```
Hell Facsimile Machines Coaxial
#
Collins 500 watt Telephone Transmitters 2/12 mcs ec300.00
Video Cross Hatch TV'Generators
Racal MA-1ITS I.S.B. Modulators (new)
Colling KWT-6 SSB Transceivers 50w)
Imslide Cabines Shelransceivers 50 watts 2/30 m/cs P.U.R
Imslide Cabinet Shelf Sliders
Remscope Storage Scope with trace
Textronic 519 Scope IGHZ
M.V.R.Action Replay 20 sec. Videodisc Unit
Racal IKW S.S.B. Linear amplifier s }1.5/30\textrm{m}/\textrm{cs
Advance HISignal Generators, 15/50\textrm{Kcs}
Varian VAITSEA Backward Wave Oscillator
T
    KVA Auto-Transformers
    Coutant 40v 30A Power Supplies
    15 foot 15 inchLattice Steef Mast Sections
    Cintel 2 KV Power Supplies
45 feet co-ax, 1/2" dia
Avo Geiger Counters (new)
Porable Hospital Lamps (new)
AR-RED Receivers (n)
```



```
Airmec 702 sig gen 30 cyc 30 kcs
```

We nave a quantily of Power 'ranstormers $\angle 50$ watts to
List avalabltages up to 40 KV . Best quality at low prices.

- Racal RA-63 SSB Adaptors, new
Racal RA. 237 L-W Converters, new
19 Blank Rack Panels 8 man high
Apeco Dial a Copy Photo Copier Electrostatic
Hewlett Packard 524C Digital Counter
Airmec 702 Sig. Generator 30 cyc $/ 30 \mathrm{k}$
Tuning Reller Coasters
Pertable Mains Battery Floodlights
400 channel Pulse Height Spectrum Analysers
$\mathbf{E 7 0 . 0 0}$
$\mathbf{E 7 0 . 0 0}$
We have a varied asportment of industrial and
рrofuest.

INSTRUMENTATION-TAPE

 RECORDER-REPRODUCERSAmpex FR 4 speeds, 7 tracks $1 /$
Ampex FR 6000.4 speeds. 7 tracks 2 ,
Ampex FR600, 4 speeds. 14 tracks 1
DRI. RMI 4 speed. 4 tracks $1 /$
EMil R301G. 2 speeds, 2 track
Mincom CMP. 1 Mis. 6 speeds. 7 tra
Racal T. 5000.2 speed. 7 tracks ${ }^{\prime \prime}{ }^{\prime \prime}$
Ral Thei speed. 7 tracks 'z Prices of above $£ 70$ to $£ 400$ Also Transport Decks only available

COMPUTER HARDWARE

PRINTER, High speed 1000 lines p.m

* TAPE READER, High speed $5 / 8$ track 800
- CARD READER $80 \mathrm{col} .600 \mathrm{c} . \mathrm{p} . \mathrm{m}$

Prices on Application
PLEASE ADD CARRIAGE AND V.A.T. AT APPROPRIATE RATE TO ABOVE
P. HARRIS

ORGANFORD-DORSET BHIS 6BR
BOURNEMOUTH-765061

SPECIAL RESISTOR KITS (CARBON FILM 5\%) Prices include post \& packing)
$10 \mathrm{hm} / \mathrm{WW}$ or 1 A KIT 10 ot each E1 2 value
220 nnis - MM. a tola or 570 £5.29 ne

SPECIAL CAPACITOR KITS

C280 Kit-PC Mounling polyester 250 V 5 of each value 0.01 . 0.022 . 0.047, 0.1. $22 \mu \mathrm{~F}, 2$ ol $0.47,1 \mu \mathrm{~L} \varepsilon 1.98$ nel.

C296 KII- Iubular polyester 400 V 5 ol each value $0.01,0.022,0.047,0.1$
0.22 F 2 of 0.47 [F $[2.67$ nel.

Ceramic Kil-square plaque 50 y 5 of each vriur 22.33. 47.100. 220. 330,
$470,1000 \mu \mathrm{~F}$. $2200.47000_{\mu} \mathrm{F}, 0.01_{\mu \mathrm{F}} \mathrm{E} 1.66 \mathrm{nal}$.
250 P Paper Kit-Tubular melal case. 3 of each value 0.05. 0.1, 0.25. 0.51 FF E1. 41 net.

0.025. $0.5 \mu \mathrm{~F} \mathrm{E} 1.41 \mathrm{net}$

B.H. COMPONENT FACTORS LTD MULTIMETER U434. 27 Ranges plus Transistor Tester
16. $7005 /$ Volt.
Vdc- $-0.3-900 \mathrm{~V}$ in 8 ranges
$\mathrm{Vac}-15-750 \mathrm{~V}$ in 6 ranges
$1 d \mathrm{c}-0.06-600 \mathrm{~mA}$ in 5 ranges
tac- $-0.3-300 \mathrm{~mA}$ in 4 ranges lac-0. 3-300mA in 4 ranges Resistance-- 2 K ! -2 M ? in 4 ranges Accuracy-dc- $-21 / 2 \%$.
hie-10-350 in 2 ranges
Complete with steel carrying case, test
leads and battery. PRICE $£ 11.88$ net P. \& P

Accuracy- -5% of FS D in 4 ranges
OSCILLATOR $=1 \mathrm{KHz}$ and $465 \mathrm{KHz}(\mathrm{A}, \mathrm{M})$ at approx Volt Size- $160 \times 97 \times 40 \mathrm{~mm}$
Supplited complete with carrying case. test leads and
baticry 18.64 net P.\&P. 75 p.
PRICE 8.6 .
MULTIMETER U4324
34 Ranges High sensitivity 20.000 : Volt
$\mathrm{Vdc}-0.6-1200 \mathrm{~V}$ in 9 ranges
Vac- $3 .-900 \mathrm{~V}$ in r . Vac.-3-900V in 8 ranges
Idc. $-0.06-3 A$ in 6 ranges idc $-0.06-3 A$ in 6 ranges tac -0.3-3A in 5 ranges
Resistance- 250 ? 5 M ? Resistance-250-5M? in 5 ranges.
Accuracy-dc and $R-21 / 20 \%$ of F. Accuracy - dc and R- $21 / 2 \%$ of F.S.D
ac and db 4% of F S. ac and $\times 63 \mathrm{~mm}$
Supplied complete with storage case, tes
leads. spare diode. and battery
PRICE $\$ 10.64$ net P \& $75 p$
(WW), LEIGHTON ELECTRONICS CENTRE, 59 NORTH STREET, LEIGHTON BUZZARD, LUフ TEG.

When you need to hire Video-
 it pays to contact the most experienced video company in the business

R.E.W. HoUsE 10, 12 HIGH STREET COLLIERS WOOD LONDON SW19 2BE PHONE: 01-540 9684

Also at GENTRE POIN゙T
20/21 ST. GILES HICH STREET LONDON, WC2 PHONE: 01-240 3066

PDP 11/05. BK Store, BRAND NEW, in maker's packing
£1850
SINGER FLEXOWRITER Model 2305. E.I.A. Code £600

BURROUGHS Model E2100 ACCOUNTING COMPUTER. Consists of Typewriter/calculator keyboard, and electronics box containing core store, etc. Has interesting possibilities
£165
MEMODYNE DIGITAL INCREMENTAL CASSETTE RECORDER. NEW. Manufacturer's price in excess of $£ 600$
£225
PHILIPS PM 1052 Image Intensiifier Camera. WITHOUT tube
£19.50
PDP 8L. 12K Store
£1050
FLEXOWRITER. proportional spacing automatic typewriter
£225
ITEL automatic GOLFBALL typewriters from £375

KUDELSKI NAGRA SNN Miniature Tape Recorder
£550
SOLARTRON CD1440 Double Beam Oscilloscope
$£ 120$

COMPUTER APPRECIATION

Castle Street, Bletchingley Surrey RH1 4NX
Godstone (088 384) 3106

WW-011 FOR FURTHER DETAILS

BROADFIELDS \& MAYCO DISPOSALS LTD.
21 Lodge Lane. N. Finchley
London N12 8JG
$01-4450749$
01-445 2713
01-958 7624

URGENTLY REQUIRED FOR CASH
Large quantities of radio, TV and electronic components or equipment which may be redundant or surplus to your requirements.

Will call and inspect anywhere in the U.K

Mail order protection scheme

Members given to the Periodical Publishers Association have underaking to Director General of Fair Trading and response to mail order advertisements (except for classified adventisements) placed by mail order fraders who fail to supply goods or refund monies owing to liquidation or supply goods or refund monies owing to bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation. Publishers in membership of the Periodical Publishers Association are making these refunds voluntarily and readers' claims can only be entertained in cases where the mail order advertiser is the subject of liquidation or bankruptcy, where proof of peyment can be entablished and if lodged within three months of the date on which the advertisement appeared. Any claims received atter the three month per
publisher.

IBM GOLFBALL TYPEWRITERS

Will accept normal or sprocketed paper Supplied in working order with data sheets, circuit diagram and application notes Each machine serviced and tested

$$
\mathbf{E 1 0 0}+\mathbf{8 \%} \text { VAT }
$$

As above but modified to take office range of Golf Balls £110 + 8\% VAT.
Varley 2p c/o 185Ω
P\&B 2p c/o 1500 S
65p
(12p)
\&B 2p c/o 15002
40p (12p)
BNC Chassis SKT SCRNO L1339/fS $\mathbf{3 5 p}$ (10 p)
PAPST (or sim
c/s $\mathrm{E4}$ (40 p)
LIGHT DIMMERS 250w £2.70 (16 p)
BC107/8/9. BC147/8/9. BC157/8/9 all 9p ea. (11p)
ELECTROLYTICS
$10.000 \mu 63 v$ £ 1 (25p). $2800 \mu 100 v 80 p$ (25 p) 2240μ
$100 v 75 p$ (25p) $1000 \mu 63 v \mathrm{f} 1(25 p) .4500 \mu 35 v 60 p$ $\begin{array}{lll}4700 \mu & 63 v 80 p(15 p) \\ 4500 \mu & 250 \vee 50 p(12 p) & 2000 \mu 30 v\end{array}$ $4700 p 63 \vee 80 p(15 p) \quad 2500 \mu 60 v 50 p$
$30 p(14 p) .10 .000 \mu 16 v 50 p(15 p)$.
EX-COMPUTER PC PANELS. $2 \times 4^{\prime \prime} 50$ boards for $\varepsilon 2.40$ (62p)
OPCOA SCA7 $7 \mathrm{~mm} 7 . \mathrm{seg}$ led display QH bulbs $12 \vee 55 \mu$
250 mixed resistors
250 mixed capacitors
2N3055 equiv
£1 (12p)
$\mathbf{6 0 p} \quad(18 p)$
$\mathbf{6 0 p}$
EXTRUDED HEAT SINK for $2 \times$ TO3 $\quad 4$ for $£ 1$ (15p)
SMALL ELECTROLYTICS
$2.2 \mu 10 \mathrm{v} .10 \mu 35 \mathrm{v}, 50 \mu 40 \mathrm{v}, 900 \mu 40 \mathrm{v}, 100 \mu 6 \mathrm{v}, 150 \mu$ 12 for 45p (\%2p)
220.470 ik 4k7. $10 \mathrm{k} 47 \mathrm{k}, 100 \mathrm{k} 220 \mathrm{k} .12$ for 50p (12)p 6v 0.5A TRANSFORMER
REED RELAYS 6 v coil h / d contacts. 5 for $\mathbf{f 1}$ ($\mathrm{mp}^{75 \mathrm{p}}(18 \mathrm{p})$ REED INSERTS h / d contacts ... 10 for $£ 1$ (12p) WATER-COOLED HEATSINKS ex eqpt £1.20 (40p) CHROMED HANDLES
$5^{\prime \prime} \mathrm{mtg}$. centres
$8^{\prime \prime} \mathrm{mtg}$. centres \qquad - per pair $£ 1$ (20p)

P\&P shown in brackets
PSUs, VAT ro TOTAL
KEYTRONICS
332 LEY STREET, ILFORD, ESSEX $01-5531863$ till 2 p.m. 01-478 8499 after 2 p.m.

radio valve and SEMICONDUCTOR DATA

by A. M. Bal
Price $£ 2.50$
TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR
by A. Douglas Price £4.70 SEMICONDUCTOR CIRCUIT ELEMENTS by T. D. Towers Price $£ 5.90$ COLOUR T.V. WITH PARTICULAR REFERENCE TO THE PAL SYSTEM by G. N. Patchett IC OP-AMP COOKBOOK
by W. G. Jung
FOUNDATIONS OF WIRELESS ELECTRONICS
by M. G. Scroggle
LOGICAL DESIGN OF SWITCHING CIRCUITS
by D. Lewin Price $\mathbf{5} 5.45$
THE A.R.R.L. ANTENNA BOOK by ARRL
by Texas Instruments Price $\mathbf{E 5 . 7 5}$ ELECTRONIC CIRCUIT DESIGN HANDBOOK
by EEE Price $\mathbf{5 5 . 0 0}$ ELECTRONICS ENGINEERS' HANDBOOK by D.G Fink Price £28,00

* PRICES INClUDE POSTAGF *

THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS 19-21 PRAED STREET LONDON W2 1 NP

Phone 7234185
Closed Sal 1 fm

J. LINSLEY HOOD

HIGH OUALITY AMPLIFIERS AND TEST EQUIPMENT Examples: TELERADIO HIFI

| 75 Watt Amplifier. PA Module | $£ 12.00$ | [Kit] | $£ 15.95$ (Made] |
| :--- | :--- | :--- | :--- |
| Pre-amp Module from | $£ 7.50$ [Kit] | $£ 10.00$ (Made] | |
| P.S.U. from | $£ 13.70$ [Kit] | $£ 15.30$ (Made] | | F.M. Tuner with Stereo Decoder Millivoltmeter Kit Low Distortion Audio Osc. \{40.00 [Kit] £15.25 (Kit) (Tax 8\%) Third Harmonic Aulo 0sc. \quad E 14.00 [Kit) (Tax 8\%

 E17.30 (Kil) (Tax 8\%)
Reg. P.S.V. 0/60v IA E 17.30 (Ki) (Tax 8%

325 Fore St, Edmonton, London, N. 9 01-807 3719 Closed Thursdays

STABILIZER

The Stablizer 5 a versetule frequency shiter for howl reduction on both speech and music it offers vavisble shittseither up or down between 1 and 10 Hertz so allowing choice of the optumurn shift for the particular acoustics and sound for music is to split the mixeo audio teeds with those instruments which produce susianed notes such as gutar and organ ted direct to the amplitication system and the teedtbeck-troublesome vocals going through the shifter tirst A shifter not only allows more useable gain (4 - 8 dB) but also gives a greater stabitiv margin between the onset of warbling and actual howling systern will go from ringing to towling with a gain increase of 1 or 2 dB Avalable as a boxed unit with either balanced or unbalanced signal fines or rack mounting version offering studio quality 'SHIFT control duplicated jack Slabolizers include a signal overload LE D, a 24 Hz high pass filter to remove signals betore connechon to power amplifiers and a mumetal shrouded mains


```
Sirsapungeriwe mue lollowng sluations
```

- Foldback minntoring on stage
giving 10 Hz round the loop which is effective in the small non - feverberant rooms involved

Group hearing and s/stems tor teaching deat children

Microphone or adio miciophones tor discussion groups or iloor
questioners who are within the intended coverage of the PA loudspeakers
+5 Hz FIXED SHIFT CIRCUIT BOARDS for WW July 1973 article.
Small enough to be buill inside the cabinets of many amplitters
Comptete $k: 1$ and board $: 24$ DESIGNER Board built and alignt 124

DESIGNER
APPROVED

SPECTRUM SHIFTER

SURREY ELECTRONICS

Newnes Technical Books

The Newest name in Technical Books
For details of all the books in our list please write to:
Newnes-Butterworths, Borough Green
Nr. Sevenoaks, Kent
Telephone: Borough Green (0732) 884567

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 133-148

[^8]

M95ED: A Significant Technological Innovation

Shure now introduces a superb, moderately priced pick-up cartridge with a performance second only to the renowned V-15 Type III. The technologically advanced electromagnetic structure with a newly designed pole-piece virtually eliminates hysteresis loss. The frequency response from 20 to $20,000 \mathrm{~Hz}$ remains essentially flat. Operating at extremely light tracking forces of between $3 / 4$ and $11 / 2$ grams, the exceptional trackability of the M95ED enables il to trace the very high recorded velocities encountered on many modern recordings with the result that in addition to provicing faithful reproduction of the recorded sound, stylus and record wear are reduced to minimum proportions. The M95ED: A notable addition to the Shure range with a performance never before available al such a competitive price.

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

84mentan Multicorethe complete answer for printed circuit soldering.

Most printed circuit soldering problems can be avoided by using quality products and seeking quality advice. Naturally, we suggest ours. First, let's talk about quality products.

Extrusol and Multipure.

EXTRUSOL Extruded Bars and MULTI-PURE Cast Bars are made from specially processed ultra high purity solder. EXTRUSOL bars and pellets are protected by plastic film from the moment they are made to the moment they are used. And MULTI-PURE bars are probably the smoothest and brightest solder bars you will ever see.

Ersin Multicore Savbit.

This cored solder has countless uses. For instance, it avoids erosion of copper plating and wires as well as prolonging the life of soldering iron bits.

For full information on these or any other Multicore products, please write on your company's letterhead direct to:
Multicore Solders Limited, Maylands Avenue, Hemel Hempstead, Hertfordshire HP2 7EP.
Tel: Hemel Hempstead 3636. Telex: 82363.

[^0]: Complete and post to:
 Audio Festival \& Fair, lliffe Promotions Ltd.,
 Dorset House, Stamford Street, London SE1 9LU.
 Tel:01-2618000

[^1]: r To; Cambridge Learning Enterprises,
 1 FREEPOST. St. Ives, Huntingdon, Cambs.
 PE1 7 4BR
 *Please send meset(s) of Digital Computer Logic and Electronics at $£ 4.45$ each, p\&p included
 "or set(s) of Design of Digital Systems at
 £6.45 eact, p\&p included
 *orcombined set(s) at $£ 9.75$ each, $p \& p$ included

 Name
 Address
 delete as applicable
 No need to Jse a stamp - Ilst print FREEPOST on the
 envelope.
 WW,

[^2]: Type ©G32L
 туре 0G32F
 (8 digit only)
 Sensitivity 10 mV
 Frequency 32 Mhz
 PRICE £169.00

[^3]: Signature

[^4]: Price 35p (Back numbers 50p, from Room 11, Dorset House, Stamford Street. London SEI 9LU.) Editorial \& Advertising offices: Dorset House. Stamford Street, London SEI 9LU.
 Telephones: Editorial 01-261 8620: Advertising 01-261 8339.
 Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables. "Ethaworld. London SEI."
 Subscription rates: 1 year: $£ 7.00$ UK and overseas ($\$ 18.20$ USA and Canada). Student rate: 1 year, $£ 3.50$ UK and overseas (\$9.10 USA and Canada).
 Distribution: 40 Bowling Green Lane, London ECIR ONE. Telephone 01-837 3636.
 Subscriptions: Oakfield. House, Perrymount Rd, Haywards Heath, Sussex RH 16 3DH. Telephone 044453281 . Subsćribers are requested to notify a change of address.

[^5]: F.M. Stereo Tuner. Wiretess World, vol. 77 1971, pp.175-80. 245-9. See also p.376, vol. 78 1972, pp.179-83, pp.318/9 and vol. 791973 pp.271-5. p. 591. All reprinted in "High Fidelity Designs". IPC Business Press Ltd, 1974.

[^6]: Capacitors ($\pm 10 \%$ unless stated)

 | Cl | \ln polystyrene |
 | :--- | :--- |
 | 2 | 500 p Trimmer (RS Components) |
 | $3,4,5$ | 100 n |
 | 6,7 | 5 n polystyrene $(4 \mathrm{n} 7+270 \mathrm{p})$ see text |
 | $8-14$ | 100 n |
 | 15 | $2 \mu 210 \mathrm{~V}$ electrolytic |
 | 16 | $47 \mu 10 \mathrm{~V}$ electrolytic |
 | 17 | 33 n |
 | 18 | \ln |
 | 19,20 | $4 \mu 735 \mathrm{~V}$ tantalum bead $(\pm 20 \%)$ |
 | 21 | 470 n |
 | 22 | 100 n |
 | 23 | \ln |

[^7]: PLEASE ADD 8% V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

[^8]: Printed in Great Britain by QB Ltd., Sheepen Road, Colchester and Published by the Proprietors IPC ELECTRICAL.ELECTRONIC PRESS LTD.. Dorset House. Stamford St., London, SE 9LU telephone 01-261 8000. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Ltd. INDIA: A. H. Wheeler \& Co. CANADA: The Wm. Dawson Subscription Service. Ltd. Gordon \& Gotch Ltd. SOUTH AFRICA: Central News Agency Lid.: William Dawson \& Sons (S.A.) Ltd. UNlTED STATES: Eastern News Distributors Inc., 155 West I5th Street, New York, N.W. 10011.

