

You've neverseen a faster, more accurate way of measuring frequency response from 30 Hz to 110 MHz

Slash your production-test times and divert your skilled engineers to more important work with our TF 2370 Spectrum Analyser. It will reduce to simple operations, complicated measurements such as response, level, gain, signal purity, modulation and many more, with a speed and degree of accuracy that has to be seen to be believed. Forget everything you have heard about spectrum analysers.
The TF 2370 is unique. It employs advanced technology to make it reliable and as easy to operate as a multimeter. The facts speak for themselves.

* Flicker-free display of frequency response from 30 Hz to 110 MHz on a high-brightness c.r.t.
* Electronic graticule, with a $\pm 15 \%$ variation of horizontal divisions for pin-point positioning against waveform display. * Press-button selection of three amplitude scales: one linear and two logarithmic with expansion to $1 \mathrm{~dB} / \mathrm{div}$. with an accuracy of $\pm 0.1 \mathrm{~dB} / \mathrm{dB}$.
* 9-digit electronic counter automatically gives centre frequency, reads any other frequency corresponding to manually-adjusted 'bright line' position on display, or the
difference frequency between the two, at the press of a button. All to an accuracy of $\pm 2 \mathrm{~Hz}+$ reference frequency accuracy on high resolution and manual. Internal reference frequency provided with setting accuracy of 1 in 10^{7}. * Internal generator supplies synchronous signal source for measuring such items as networks and filters.
* For comparative measurements, unique memory storage system will retain one display indefinitely as required, for simultaneous display with waveform produced by items under test.
* Automatic adjustment of amplifier gain to give optimum
lowest-noise performance with full protection against input overloading.
* Automatic selection of optimum sweep speed.
* With the 5 Hz filter, signals 100 Hz from a response at 0 dB can be measured to -70 dB .

Now ask for a demonstration. It could prove that the TF 2370 is a better cure for your headaches than aspirin. We are standing by for your call.

LOW COST RC OSCILLATORS

PORTABLE INSTRUMENTS

ANALOGUE

FREQUENCY ACCURACY

SINE OUTPUT DISTORTION SQUARE OUTPUT SYNC. OUTPUT METER SCALES SIZE \& WEIGHT

3 Hz to 300 kHz in 5 decade ranges $\pm 2 \% \pm 0.1 \mathrm{~Hz}$ up to 100 kHz , increasing to $\pm 3 \%$ at 300 kHz .
2.5 V r.m.s. down to $<200 \mu \mathrm{~V}$ $<0.2 \%$ from 50 Hz to 50 kHz . 2.5 V peak down to $<200 \mu \mathrm{~V}$.
2.5 V r.m.s. sine.
$0 / 2.5 \mathrm{~V}$ \& $-10 /+10 \mathrm{~dB}$ on TG152DM.
$7^{\prime \prime}$ high $\times 10 \frac{1^{\prime \prime}}{}{ }^{\prime}$ wide $\times 5 \frac{1}{2}{ }^{\prime \prime}$ deep. 8 lbs .

TG152D

FREQUENCY

ACCURACY
SINE OUTPUT
DISTORTION

SQUARE OUTPUT
SYNC. OUTPUT
SYNC. INPUT
METER SCALES
SIZE \& WEIGHT

1 Hz to 1 MHz in 12 semi-decade ranges. O to 1% fine control included on TG200DMP
$\pm 2 \% \pm 0.03 \mathrm{~Hz}$.
7 V r.m.s. down to $<200 \mu \mathrm{~V}$ with Rs $=600 \Omega$
$<0.1 \%$ to $5 \mathrm{~V},<0.2 \%$ at 7 V from 10 Hz to 100 kHz
TG200D, DM \& DMP only. 7V peak down to $<200 \mu \mathrm{~V}$. Rise time $<150 \mathrm{nS}$.
$>1 \mathrm{Vr} . \mathrm{m}$.s. sine in phase with outpu $\pm 1 \%$ freq. lock range per volt r.m.s. TG200M. DM \& DMP only. $0 / 2 \mathrm{~V}$. $0 / 7 \mathrm{~V} \&-14 /+6 \mathrm{dBm}$

TG200 TG200D TG200M TG200DM TG200DMP
£63 £66 £73 £76 £80

DIGITAL

FREQUENCY
ACCURACY

SINE OUTPUT
DISTORTION
METER SCALES
SIZE \& WEIGHT
0.2 Hz to 1.22 MHz on four decade controls
$\pm 0.02 \mathrm{~Hz}$ below 6 Hz
$\pm 0.3 \%$ from 6 Hz to 100 kHz
$\pm 1 \%$ from 100 kHz to 300 kHz
$+3 \%$ above 300 kHz .
5 V r.m.s. down to $30 \mu \mathrm{~V}$ with $\mathrm{Rs}=600 \Omega$
$<0.15 \%$ from 15 Hz to 15 kHz .
$<0.5 \%$ at 1.5 Hz and 150 kHz
2 Expanded voltage \& $-2 /+4 \mathrm{dBm}$.
7 "high $\times 10 \frac{1}{4}$ " wide $\times 7$ " deep. 12 lbs .
TG66A
Battery \& 7 Mains \&
masid 170

Prices include batteries and U.K. delivery. VAT extra Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

${ }^{9}$ Phone-in Programme

When you can reach them. And they can reach you. Any time.You've got a Dymar system.

Computer controlled VHF radiotelephone network. Sounds
great. The coming thing. At Dymar it's come! And that's the
Dymar difference.
Dymar designs systems that take all the local conditions into
account. Terrain. Geographical distribution of the labour and
the customers available to the user. Emergency situation
control. Channel congestion. The lot.
Dymar does it with common frequency coverage using quasI-
synchronous transmitters. With a CCIR compatible selective
calling system. With automatic signal level selection. With
computer control of signal routing.
Tomorrow's systems today. It's what you'd expect from a com.
pany 100\% devoted to the radiotelephone business ... and
nothing else.
Discover the Dymar difference. Make contacting Dymar part
of today's programme.

DYMAS

the name in radiotelephone systems
Dymar Electronics.Limited. Colonial Way. Radlett Road Wattord
Herts WD2 4LA. Tel: Wattord 37321. Telex: 923035
Cables Dymar Wattord.

Ion out your quality control problems

The AVO Breakdown and Ionisation Tester RM215-L/2 is specifically designed to help solve all manner of quality control problems.

It measures resistive leakage current under both AC \& DC voltage testing conditions as well as total AC leakage current. Test voltages up to 12 kV DC and 6 kV AC are continuously variable and breakdown current level is adjustable up to 1 mA . A built-in loudspeaker gives audible detection of ionisation and there are connections for earphone or an oscilloscope.

The circuit features low internal resistance yet at the same time limits the maximum output current, even at short circuit.

With the RM215-L/2 you can carry out general flash testing, measurement of breakdown voltage -even after breakdown-and the detection (and counting) of spurious flashovers.

Equally suited to both destructive and non-destructive testing, the RM215-L/2 is a piece of test equipment you cannot afford to be without. If you have some problems that need to be 'ioned' out, get in touch for full details.

APPLICATIONS

Flash testing of electrical components. Measurement of breakdown voltage on electrical components and materials.
Measurement of insulation resistance at high voltage.
Measurement of d.c. leakage current.
Measurement of a.c. leakage current and total current.
Non-destructive insulation testing of materials and components.
Detection of ionisation in electrical assemblies.
Designed to meet B.S.,V.V.E. and I.E.C. Safety Requirements.

Avo Limited, Dover, Kent
Tel: Dover (0304) 202620.

Thorn Measurement Control THRAN and Automation Division.

S-DEC Solderless Breadboard 25p Off.

The world proved 5 - DEC can now be yours with 25 P off list price take this coupon to your local dealer or send direct to us for immediate delivery.
5 - DEC iust plug components directly in, no soldering, use components over and over again. With your 5 -DEC you receive FREE a booklet which gives a range of circuits which can be quickly assembled on the S - DEC including Radio-Receiver, VHF Radio-Microphone, 3 Stage Amplifier and many others, also FREE control panel for mounting switches, lamps etc.
S-DEC normally $£ 1.98$ with this advertisement $£ 1.73$
(When ordering direct send $£ 2.08$ to cover Post \& VAT)
T - DEC normally $£ 3.63$ with this advertisement $£ 3.38$
(When ordering direct send $£ 3.87$ to cover Post \& VAT)
U - DEC - A for discreet and use with I.C. send $£ 4.31$
(Mr . Trader for every coupan received PB will refund 25 p)

NEW NEW PB DEC Super-Solder Boards. Low Cost.

Marched to the world famous range of DEC breadboard layouts PB introduce a new concept into printed circuit board assembly. Now you can buy off the shelf professional circuit boards which have the following features.
DEC SUPER - SOLDER BOARD SSU . Roller Tinned for super soldering.
Carefully engineered layout for maximum assembly efficiency bus - bars for power supplies.
No cutting and drilling of cantact rails required.
The 208 cantacts are identified by a letter number system.
SIZE OF BOARDS 5" $\times 3^{\prime \prime}$ APPROX, fibreglass, drilled, roller tinned.
Lay the prototype out on DEC-breadboards and then for small or large production runs use SUPER - SOLDER Boards.
Super - Solder Boards are available in packs of 1 or 3 off.
SUPER SOLDER BOARD SSTl for discreet circuits 1 off £0.59, 3 off $£ 1.60$.
SUPER SOLDER BOARD SSUl for discreet and dil circuits 1 off £0.59, 3 off $£ 1.60$.
SUPER SOLDER BOARD SSNI for discreet and dil circuits up to 40 lead. $6^{\prime \prime}$ DIL and for direct insertion of TO5 .1" lead out sockets and packages 1 off £0.69, 3 off $£ 2.00$.
When ordering please add $£ 0.40$ for Post and VAT.

Zippy Cabinets Ideal For All Assembly Cabinets. Int
 Robust ABS plastic assembly boxes, front panel designed to be cut and drilled, slots inside for mounting circuit boards attractive colouring ond styling.
 TP $180 \times 50 \times 30 \mathrm{~mm}$ £0.72 1 OFF
 TP $2115 \times 65 \times 40 \mathrm{~mm} \quad £ 1.271$ OFF
 TP $3155 \times 90 \times 50 \mathrm{~mm}$ £1.62 1 OFF
 TP $4210 \times 125 \times 70 \mathrm{~mm}$ £2.27 1 OFF
 Discount for quantity prices include Post \& VAT.

\}esist Coated Circuit BoardLowest price n U.K.	S DEC - T DEC - U DEC Accessories. 16 DIL ADAPTOR	NIGHT GUARD.
$12^{\prime \prime} \times 12^{\prime \prime}$ Glass Fibre 1/16 coated with	16 DIL with socket £1. 92	Dimmer with a difference, Guards your
esist £1. 50 each.	Single ended leads (packs of ten) $£ 0.90$	home from theft, SET, darkness comes,
	Double ended leads. . .'. . .'.£0. 90	lights come on, dawn, lights go off:
	EXPERIMENT GUIDES used by all to teach	Dims room lights up to 500 watts.
	electronics with DEC breadboards.	£5.95 + £1.05VAT \& POST.
	SUIDE A 8 Projects £1. 50	
	SUIDE B 10 Projects £ . 77	
	GUIDE C 3 ADVANCED. . £0.90	
Zircuit Board Manufacture, Fast deli	GUIDE D 10 Projects £2.40	
.ow Price, any circuit board made in days.	GUIDE E 23 Projects £ $£ 4.20$	

NIGHT GUARD.

Dimmer with a difference, Guards your home from theft, SET, darkness comes,
lights come on, dawn, lights go off.
Dims room lights up to 500 watts.
$£ 5.95+£ 1.05$ VAT \& POST .

PB ELECTRONICS (SCOTLAND) LTD, 57 HIGH STREET, SAFFRON WALDEN, ESSEX, CBIO IAA TEL: 079922876	ALL STOCKISTS OF DEC bREADBOARDS please note pb are the MANUFACTURERS AND SUPPLIERS, please Send all ORders COMMUNICATIONS DIRECT

Stable companions

Wide-range universal bridge B602 0.1-100MHz source/detector SR268 from Wayne Kerr

SPECIFICATION

B602

Frequency range Accuracy

Overall impedancerange

SR268

Fiequency Fange
Frequency accurazy
Short TermFrequens,
Stability
Sutputievel
Cutput attenuator
Input sensitivity for
10% meter defiection
Inputattenuator
Detectorbandwidth

100 kHz to 10 MHz
1% up to 3 MHz . 1 pF to 10 nF 10Ω to $100 \mathrm{k} \Omega$ $1 \mu \mathrm{H}$ to 10 mH
1fF to 1 mF
 10 pH to 10 H

100 kHz to 100 MHz in 9 bands
(SR268L46 5 kHz to 465 MHz)
23% according to band used
001%
$05-20 \mathrm{~V}$ according to band used
3. $6.10,20 \mathrm{~dB}$ additive steps. 75Ω

1 to $30 \mu \mathrm{~V}$ according to frequency setting
4 steps of $20 \mathrm{~dB}, 75 \Omega$
23% according to band used

For more information, either phone Bognor Regis (02433) 25811 or write to the address below.

WAYNE KERR

Durban Road, Bognor Regis, Sussex Telex: 86120. Cables: Waynkerr, Bognor

A member of the Wilmot Breeden group

I he B602 transformer ratio arm bridge measures impedance in all four quadrants of the complex plane over the frequency range 100 kHz to 10 MHz . Because of novel features incorporated in the design, values from virtually a short circuit to an open circuit can be measured. This bridge has established a standard of performance and flexibility which is unobtainable from any other radio frequency bridge

A standard inductor is included in the bridge network in addition to standards of capacitance and resistance enabling a periodic calibration of the scales which are correct at any frequency between 100 kHz and 10 MHz .

There are only two balance controls. One is direct reading in resistance and conductance, the other in capacitance and inductance and there is no interaction between them.

The stability realised allows a discrimination of 01% to be obtained for all types of measurement with a general accuracy of 1% over most of the impedance and frequency range

The bridge is shown together with the SR268 Source and Detector which can also be used with other bridges in the Wayne Kerr range over the frequency band 100 kHz to 100 MHz . Nine frequency ranges are provided by this instrument and a single tuning control adjusts both source and detector to the exact frequency required

Meticulous screening between the two sections provides freedom from bridge measurement errors due to leakage of the source signal into the detector. Common mode rejection transformers are incorporated in the input and output networks to reduce interference from unwanted signais, and push button attenuators are included to assist the logarithmic detector circuit to indicate approach of the bridge balance point

100 WATTS ! HY200

The HY200 is the latest hybrid amplifier from I.L.P. It has been designed to be virtually indestructible lending itself to domestic and industrial applications. Latest design techniques including thermal shutdown make the HY200 the most advanced amplifier of its kind in the World. Only five connections are required, input, output, power lines and earth.

Features
Short Circuit Protection
No External Heatsinking
Thermal Shutdown
Only Five Connections
Low Distortion
Price E21.20 +VATE5.30
P\&P free

Specifications

Output Power 100 watts R.M.S. into 8Ω
Input Impedance $100 \mathrm{~K} \Omega$
Input Sensitivity 500 mV R.M.S
Distortion 0.05\% Typical
Signal: Noise 96dB
Power Band Width $10 \mathrm{~Hz}-45 \mathrm{KHz} \pm 3 \mathrm{~dB}$
Power Supply 45-0-45v D.C. at 2 Amps
Weight 1 Kilo (2.21b)
Power Supply PSV90 suitable for one HY200
Price £10.56 + VAT£2.64
P\&P free

TWO YEARS GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd,
Crossland House,
Nackington, Canterbury,
Kent CT4 7AD
Tel (0227) 63218

[^0]Signature

Now the Alpha costs less than the A溇 will the 1567 engineers who are still without one please identify themselves?

Do get the Gould Advance data on Alpha. You see, it's so much better.

WW-059 FOR FURTHER DETAILS

Now FOUR Modulesand more to come!

The introduction of our EF3 Electronic Filter System was a breakthrough in electronic filtering, a System with options and interchangeability.
Now we introduce iwo additional modules to extend the scope and versatility of the EF3. To appreciate fully the technical and economic merits of the EF3 System you ought to have our detailed literature which we will be pleased to send. Continuing development of the EF3 System means that we will be announcing yet more modules in the near future.
Send now for full details to

BARRAND GTRECUE

Glasgow and London
Barr \& Stroud Limited,
1 Pall Mall East, London SW1 Y 5AU
Tel:01-9301541 Telex: 261877

There's more scope inscopex

The Scopex 4D25 is a portable 25 MHz dual-trace instrument suitable for all laboratory and field applications. It features a guaranteed measuring accuracy of 3% - and yet at $£ 225^{*}$ is in a price bracket below ary comparable instrument. Check these features and see why the 4D25 is a must for the discerning buyer.

* DC-25 MHz, full screen *3\% accuracy
* Signal delay (both chamels)
* One control for Trig Level and Polarity
* Timebase 200 ms to 200ns
$\times 5$ expansion
*Sensitivity $50 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$

CDPEX
Scopex Instruments Ltd., Pixmore Industrial Estate,
Letchworth, Herts. Tel: Letchworth (04626) 72771

Join the Digita Teach yourself the latest techniques of digital electronics

Computers and calculators are only the beginning of the digital revolution in electronics. Telephones, wristwatches, N. automobile instrumentation - these will be just some of the application areas in the next few years

Are you prepared to cope with these developments?
This four volume course - each volume measuring $11 \frac{3}{4}{ }^{\prime \prime} \times 8 \frac{1}{4}{ }^{\prime \prime}$ and contaınıng 48 pages - guides you step-by-step with hundreds of diagrams and questions through number systems, Boolean algebra, truth tables, de Morgan's theorem, flipflops, registers, counters and adders All from first principles. The only initial ability assumed is simple arithmetic

At the end of the course you will have broadened your horizons, career prospects and your fundamental understanding of the changing world around you.

Design of Digital Systems contains over twice as much information in each volume as the simpler course Digifal Computer Logic and Electronics All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which as you can see from its contents also covers many more advanced topics

Designer

Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the nex,t.

Guarantee - no risk to you

If you are not entirely satisfied with Digital
Computer Logic and Electronics or Design of Digital Systems, you may return them to us and your money will be refunded in full, no questions asked.

Logic and Dectronics

A Self-instructional Course
Book 1

Book | Logical |
| :--- |
| circuit |
| elements |

£3.95
plus 50 p packing and surface mail anywhere in the world.

Quantity discounts available on request.

Payment may be made in foreign currencies.

VAT zero rated.

[^1]
"He's asking for a reed relay assembly with a 30kV isolated coil"

People often bring their need to us. They know the Whiteley speciality. Being helpful! And the item that started life as a customer request, joins the Whiteley product list, ready to help other designers over a problem. You, perhaps? Consider a neat relay assembly - one or two dry reed switches with a rating of 25 W , housed in a mounting tube, with either 'normally open' or 'changeover' contacts. Around them, a coil operating from 8 , 12,24 or 50 V supply, 30 kV isolated from the contacts. The whole unit mounting on a $0.25^{\prime \prime}$ insulating plate with a couple of 3 way tag strips. If you're interested, ask for a data sheet. But more, keep Whiteley in mind as the people who make useful things
Surprising how often you'll find

Whiteley Electrical Radio Co. Ltd.
Mansfield, Notts NG18 5RW, England. Tel: 062324762.

MAIN AGENTS

IRELAND: LENNOX LTD PO BOX $212 A$ DUbLIN 2
DENMARK: SCANFYSIK AB 13/15 HJORRINGADE DK-2100 COPENHAGEN
SWEDEN: EMI SVENSKA AB TRITONVAGEN 17 FACK S. 17119 SOLNA 1

NORWAY: EMI NORSK AS POSTBOKS 42
korsvoll osto 8
MALAYSIA: LEC Sdn Bhd P.o BOX 60 BATU-PAHAT
SOUTH AFRICA: PROTEA (PTY)
38 FARADAY STREET
JOHANNESBURG

Audio Lahoratory Instruments

To expand the distribution of Audio Laboratory Instruments RADFORD are looking for new dealer/agents outside the United Kingdom. If you are a supplier of laboratory instruments to professional and industrial end users it could be to your advantage to learn more about RADFORD audio measuring equipment.

Write today for leaflets and details of franchised dealership.

Radford Laboratory Instruments Ltd
Ashton Vale Road
Bristol BS3 2HZ England

TPADFORD

LDO3. Low Distortion Oscillator
Frequency range: $10 \mathrm{~Hz}-100 \mathrm{kHz}$.
Distortion: Distortion less than 0.002% over audio band
Size: $17^{\prime \prime} \times 7^{\prime \prime} \times 8 \frac{3}{4}{ }^{\prime \prime}$.
LDO3B. Low Distortion Oscillator
As LDO3 but additionally fitted with output amplifier and
transformer providing a 600 ohm floating balanced output.
Unbalance: $-80 \mathrm{~dB} .1 \mathrm{kHz} .-60 \mathrm{~dB} 10 \mathrm{kHz}$. $£ 375.00$
DMS3. Distortion Measuring Set
Frequency range: $5 \mathrm{~Hz}-50 \mathrm{kHz}$.
Measurement down to 0.001%.
Size: $17^{\prime \prime} \times 7^{\prime \prime} \times 8 \frac{3 "}{\prime \prime}$.
HSV1. High Sensitivity Voltmeter £125.00
Average reading: $10 \mu \mathrm{~V}$ to 300 V f.s.d.
HSV2. High Sensitivity Voltmeter
True r.m.s. reading. $10 \mu \mathrm{~V}$ to 300 V f.s.d.
ANM1. Audio Noise Meter and High Sensitivity
Voltmeter
Average reading: $10 \mu \vee$ to 300 V f.s.d.
includes Wide band, Audio band, IEC curve 'A' and CCIR
weighting networks. Illustrated above.
ANM2. Audio Noise Meter and High Sensitivity
Voltmeter
As ANM1 but true r.m.s. reading.
£200.00

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days' delivery. Other ranges and special scales to order

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1
Phone: 01/837/7937

*AUTOCRAT

Farnell offer the only. Digital Multimeter with all these features:-
AUTORANGING AUTOPOLARITY AUTOZERO SIX RESISTANCE RANGES LARGE DISPLAYS
A.C. AND D.C. VOLTS AND CURRENT

TEMPERATURE MEASUREMENT
at £140 (mains powered version)
or £165 (mains/battery version)
*The absolute leader in its class
Details from
Farnell Instruments Ltd.
Wetherby, W. Yorks, LS22 4DH
Tel: 0937-3541 or 01-864 7433

WW-053 FOR FURTHER DETAILS

PETITE PRECISION!

A 12V DC POWER TOOL FOR THE DESIGN AND RESEARCH ENGINEER
AVAILABLE IN KIT FORM OR SEPARATES

Diameter 33mm
Weight 160 g Length 125 mm Torque 105 cmg 'RPM approx. 3000 at 12 V DC Power 9/14V DC Batteries
or AC/DC
transformer

Drill. £7.00 P\&P 35p

EXAMPLE OF FRENCH PRECISION ENGINEERING

UK DISTTRIBUTOR

PRECISION PETITE LTD

(Les Applications Rationelles Paris)
119A HIGH STREET
TEDDINGTON, MIDDX. UK
TEL. 01-977 0878

Inland motors do the things most motors can't do

Inland direct drive torque motors, tachogenerators and DC servo motors respond in milliseconds to rapidly programmed commands and give precise control of position. speed or tension. Their high quality and extreme accuracy makes them particularly suitable for instrumentation, data handling and computer peripheral sub-systems like magnetic tape drives, incremental transport drives and high speed printout systems.

Sizes range from a tiny "inch-cube" torque motor which will give $70 z$ in., to larger motors capable of $3,000 \mathrm{lb}$. ft. Speeds from zero to 10,000 r.p.m. are typical. And all models have high thermal capacity under severe duty cycles. We offer competitive prices, prototype services and application engineering support.

Get in touch and see what Inland can do for you.

INLAND MOTOR DIVISION
Kolimorgen (UK) Limited,
219 Kings Road, Reading, Berks Tel: Reading (0734) 68980/65929 Telex: 847032
For larger motors for machine tool applications contact: Merit House, Edgware Road, Colindale, London NW9 Tel: 01-205 0500/0538 Telex: 923416

WW - 017 FOR FURTHER DETAILS

Type A modular system with widest range of film backs, lenses, viewing systems and adaptors to meet virtually all requirements.

Plus inexpensive Type P (prices from $\mathbf{f 5 0}$) utilising coaterless Polaroid © film and Type \mathbf{C} with economical 35 mm film for continuous feed.

SH: 1 MIMA PUMCIIS FORQUCK CLEANHOLES

- Easiest and quickest way of punching holes in sheet metal (up to 1.625 mm).
- Simple operation 100\% British
(Burr-free holes - no jagged edges
- 57 Metric and Linear sizes ILsts on appication)

Used all over the world by: Government services - Atomic, Military, Naval, Air, G.P.O. and Ministry of Works; Radio, Motor and Industrial manufacturers, Plumbing and Sheet Metal Trades, Garages, etc.
Obtainable from leading tool factors
Wholesale \& Export enquiries to:

Telcon Metals Ltd. Manor Royal, Crawley, Sussex, Crawley: 28800 WW-065 FOR FURTHER DETAILS

brandenburg's Olympian view.

Our Ensign range and HV meters.

Brandenburg produce a wider range of power supplies and associated equipment than any other British manufacturer.

There's our high technology Ensign range of HV power supplies. Featuring the exceptionally high stability level of 10 parts in 10^{66} at voltage outputs from $3-30 \mathrm{kV}$ at $500 \mu \mathrm{~A}$ to $6-60 \mathrm{kV}$ at $250 \mu \mathrm{~A}$, the Ensign is designed for $19^{\prime \prime}$ rack mounting. Operation is from 200-250V r.m.s. $50 \mathrm{H}_{2}$ supply at ambient temperatures between $0^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$.

And our HV meters. Designed for accurate measurements of line voltages in the ranges $0-5 \mathrm{kV} ; 0-15 \mathrm{kV}$ and $0-30 \mathrm{kV}$ at better than 1% accuracy at full scale or 1% f.s.d. Our probe and cable assemblies are available separately.

We at Brandenburg believe Britain does not do enough at or for the Olympic Games. So, as we are British through and through, we thought we would get our industry involved.
Please use our enquiry number and, apart from receiving full information on our Ensign range and meters, it could be the first step in your winning a free trip to the Montreal Olympics. We'll send you an entry form for our Olympian Competition which is, we are sure you'll agree, great fun. Get in training; use your pen now.

For printed circuit boards...

It pays to know the right drill

KB-2 drilling machine by Kema Elektronik

The KB-2 is a compact, high-speed drill ideal for all precision drilling tasks in workshop or laboratory especially printed circuit board work.
With a 2 mm maximum drill diameter, and a 20 mm maximum drill
 depth, it runs at $15,000 \mathrm{rpm}$ with voltage (variable) 220 volts and maximum power 25 VA. Measuring $13 \frac{1_{2}^{\prime \prime}}{} \times 5 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times 10^{\prime \prime}$, the KB-2 is Swiss precision engineered, extremely reliable and moderately priced.

For full details, contact:
SPECIAL PRODUCTS DISTRIBUTORS LTD.
81 Piccadilly, London W1V OHL. (01-629 9556)
WW—011 FOR FURTHER DETAILS

U-50DX

Sanlina
 MULTI TESTERS

USEO THAOUGHOUT THE WORLD. SANWA'S EXPERIENCE DF 30 YEARS EMSURES ACCURACY. RELLABILITY, VERSATILITY. UNSURPASSED TESTER PERFORMANCE COMES WITH EVEEY SARWA. 6 Monith' Guarantes MODE P2B MODEL BX 505 MDDEL YX36DTA MODEE USDOX MODEL A303TRO MDOEL K30 THD $\begin{array}{r}\text { E19.15 } \\ \hline \\ \hline\end{array}$ Cases YaESE PBICES DO NOT IMCLIUE V.A. T

WW—014 FOR FURTHER DETAILS
Brandenburg Limited,
939 London Road,
Thornton Heath,
Surrey CR4 6JE
England.
Telephone: 01-689 0441
Telex: 946149

New - Thermostatic-Compact Fast - Accurate-Self Contained Adjustable

TC50 Thermostatic Soldering lron

Litesold TC50 thermostatic soldering iron is specially designed for production line use in the electronics industry.

\author{

* COMPACT
 * SELF CONTAINED
}

Only $3^{\prime \prime}$ from tip to handle. Weighs

* FAST only $2 \frac{1}{2}$ oz. without flex. Less tiring to use.

Mains version requires no power unit. 24 volt version uses existing soldering iron power units.
Simple Allen screw adjustment between $180^{\circ} \mathrm{C}$ and $420^{\circ} \mathrm{C}$ whilst running without changing bits.

* ECONOMIC

Reaches $350^{\circ} \mathrm{C}$ in less than 90 secs. Recovery from $300^{\circ} \mathrm{C}$ to $350^{\circ} \mathrm{C}$ in 10 secs.

Holds set temperature in any attitude with no overshoot.

Slip-on long-life bits in 6 shapes and sizes.

Indicator lamp in handle shows operation of control.

Leaflet giving full details and specification available now.

LIGHT SOLDERING DEVELOPMENTS LTD
 97-99, Gloucester Road, Croydon, CRO 2DN. 01-689 0574

TRANSDUCER and RECORDER

AMPLIFIERS and SYSTEMS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard 19" crates small size-low weight-realistic prices.

49/51 Fylde Road Prestan PR1 2XQ
Telephone 077257560

ARE YOU HAVING TROUBLE WITH THE WIRELESS WORLD TUNER?

The kits we supply are fully guaranteed to work, and if trouble should arise we can, and do, put it right. But there are possibly thousands of tuners about which we know nothing, because the parts were not purchased from us. If you have one of these tuners and are having any sort of trouble with its construction or operation, we would like to help. Why? Well, we believe in our design, and know that if it is built correctly it will work, and work better than most. Unfortunately, things are not always as simple as they seem, there were misprints in the article: equivalent devices are not always the same; and a simple dry joint can take a long time to trace. So, if you have built our tuner, or are thinking of doing so, why not write now for your-

FREE TROUBLE-SHOOTING KIT

This includes
11 -page article reprint
Full list of errors, etc
Voltage check chart
Checking routine and
Diagnostic hints
In fact all you need to know to get it working the way it was intended to work. Please send a S.A.E size $A 5(6 \times 81 / 2 \mathrm{~min})$ today, as this offer is only open up to 1 st Jan

If you haven't started yet, why not avoid all possibility of trouble and buy one of our kits. You will get an immediate acknowledgement, prompt delivery ex-stock, a guarantee of success or free repair, in fact a complete after-sales service by the designers.
All our sub-assemblies are available ready built and tested for even less trouble, or you may have a fully assembled tuner with a five year guarantee. Send today for full details (S.A.E., please) to

Main Tuner Board Kit . £24.55 Decoder Board Kit £ $£ .05$ Full Tuner Kit £85.00 Ready builtE102.00 ($+25 \%$ VAT)

33 RESTROP VIEW PURTON, WILTS., SN5 9DG

HIGH POWER DC-COUPLED AMPLIFIER

^ UP TO 500 WATTS RMS FROM ONE CHANNEL

* DC-COUPLED THROUGHOUT
* OPERATES INTO LOADS AS LOW AS 1 OHM
* FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
* 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth
Power at clip point (1 chan)
Phase Response
Harmonic Distortion Intermod. Distortion Damping Factor
Hum \& Noise ($20-20 \mathrm{kHz}$) At least 11 odb below 150 wats
Other models in the range: D60-60 watts per channel

Slewing Rate Load impedance Input sensitivity Input Impedance Protection Power supply
Dimensions D150-150 watts per channel

S-2020TA STEREO TUNER/AMPLIFIER KIT

NEW PRODUCT

A high-quality push-button FM Varicap Stereo Tuner combined with a 20 W r.m.s.
 per channel Stereo Amplifier.
Brief Spec. Amplifier: Low field Toroidal transformer. Mag. input. Tape In/Out facility (for noise reduction unit, etc), THD less than 0.1% at 20 W into 8 ohms. All sockets, fuses. etc. are PC mounted for ease of assembly. Tuner section: uses Mullard LP1 186 module requiring no RF alignment. ceramic IF. INTERSTATION MUTE. and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @ 1.8 \mu \mathrm{~V} . \mathrm{THD}$ typ. 0.4%.

PRICE: $£ 47.95+99 p$ p\&p+VAT.

PRICE: Mono $£ 25.46+85 p$ p\&p+VAT;
 With Portus-Haywood Decoder $£ 31.96+85 p$ p\&p+VAT; With ICPL Decoder $£ 29.73+85 p$ p\&p+VAT.

NEW PRODUCT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses
 are used for ease of assembly and to minimize wiring.
Typ. Spec. $20+20 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input $\mathrm{S} / \mathrm{N} 72 \mathrm{~dB}$. Headphone output. Tape In/Out facility (for noise reduction unit, etc). Toroidal mains transformer.

PRICE: $£ 29.95+99 p$ p\&p+VAT.

STEREO MODULE TUNER
 A low-cost Stereo Tuner based on the Mullard LP1 186 RF module requiring no alignment. The IF comprises a ceramic filter and high-

 performance IC. Variable INTERSTATION MUTE. PLL stereo decoder IC.Typ. Spec. Sens. $30 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ mono @ $1.8 \mu \mathrm{~V}$. Tuning range $88-104 \mathrm{MHz}$. LED sig. strength indicator. LED Stereo indicator. THD typically 0.4%.

PRICE: Stereo $£ 26.32+85 p$ p\&p + VAT. Mono $£ 22.40+85 p$ p\&p+VAT.
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS.

SUB ASSEMBLIES

BASIC NELSON-JONES TUNER
Supplied as a printed circuit board with all components and screening box to build a varicap tuner module. Performance spec as above for complete N -J Tuner. For suitable stereo decoders see below. (Illustrated without screening box.)

PRICE: $£ 12.88+25 p$ p\&p + VAT.

BASIC MODULE TUNER

Supplied as a printed circuit board with all components and screened Multard LPI186, to build a mono or stereo tuner module. Performance spec as above for Stereo Module Tuner complete kit.

PRICE: Mono $£ 11.11+25 p$ p\&p+VAT; Stereo $£ 13.89+25 p p \& p+$ VAT.
PORTUS-HAYWOOD PHASE-LOCKED STEREO DECODER
Mk II version of this design (WW Sept. 1970). The lowest distortion phase-locked stereo decoder kit available (Typ. 0.05% @ N-J Tuner O/P level). Separation 40 dB up to 15 KHz .
Complete kit comprises PCB and all components. inc. stereo LED
PRICE: $\mathfrak{£} 7.68+25 p p \& p+$ VAT .
PHASE-LOCKED IC DECODER
Integrated circuit phase-locked stereo decoder based on the MC 1310 . THD typically 0.3%. Separation 40 dB @: 1 KHz .
PRICE: $£ 4.27+20 p p \& p+$ VAT.

PUSH-BUTTON UNIT

The six-position push-button unit used in our tuners and tuner/amp. Each track has the required diode law for stability of tuning. There are approx. 40 turns on each button and there are six separate moving pointers. An AFC disable switch is incorporated with each button. The unit is finished in black with red pointers.

PRICE: $£ 3.00+20 p p \& p+$ VAT.
Please send SAE for complete lists and specifications.
INTEGREXLIMHTED, Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs, DE11 9PT.
Tel. Swadlincote (0283 87) 5432. Telex 377106.

A message for dealers in exclusive high quality audio equipment everywhere.

It is now proposed to expand the distribution of RADFORD products by supplying from the factory in BRISTOL direct to franchised dealers outside the United Kingdom.

If you have a discriminating clientele looking for the finest audio equipment and loudspeaker components available, you could profit from a direct RADFORD franchise.

Write today for details and leaflets.
Radford Audio Ltd
Ashton Vale Road
Bristol BS3 2 HZ England

ZD22
Stereo Pre-amplifier Control Unit
A stereo pre-amplifier of virtually zero distortion. Inputs for disc, tuner, and two tape machines. Size $17^{\prime \prime} \times 4 \frac{3}{4} \times 10^{\prime \prime}$ deep. £145.00

HD250 Stereo Integrated amplifier
Incorporates ZD22 pre-amplifier with low distortion power amplifier of 50 watts per channel into $4-8$ ohms load. Headphone output. Illustrated above. Size $17^{\prime \prime} \times 4 \frac{3}{4} \times 11$
£195.00
ZD100 Power amplifier
Power output 120 watts in 4 ohms and 75 watts into 8 uhms. Distortion less than 0.004% up to clip level. Size $17^{\prime \prime} \times 4 \frac{3}{4} \times 13^{\prime \prime}$.
£175.00
ZD200 Power amplifier
Power output 250 watts into 4 ohms and 150 watts into 8 ohms. Distortion less than 0.004% up to clip level. Size $17^{\prime \prime} \times 7^{\prime \prime} \times 13^{\prime \prime}$
£295.00

FAST RESPONSE STRIP CHART RECORDERS

ELECTRONIC
 INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate.as an Electronic Test Meter. Will measure temperature of Air. Metals, Liquids. Machinery. etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe, and internal $1 \frac{1}{2}$ volt standard size battery. Model "Mini-On $1^{\prime \prime}$ measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price f 17.50 Model "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price £20.00 (V.A.T. EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON), 138 GRAY'S INN ROAD. LONDON. WC1X 8AX ('Phone 01-837 7937)

FREQUENCY COUNTERS

HIGH PERFORMANCE REASONABLY PRICED ELECTRONIC INSTRUMENTS
> two tone blue case

Sensitivity 10 mV . Stability 5 parts 10^{10}

Anti.reflection coatings for high -power laser systems

Check your requirement from this list
VERY LOW REFLECTIVE COATINGS
Reflectance equal to less than 0.05\%
at specified wavelength.
HIGH-EFFICIENCY
REFLECTIVE COATINGS
Details on request.

ANTI-REFLECTION	\square
WIDE BAND COATINGS	

WIDE BAND COATINGS
POLARISING COATINGS AND BEAMSPLITTERS
Detalls on request.

GRAMPIAN REPRODUCERS LTD. hanworth thading estate feltham, miodlesex telephone 01-89499141

WW-022 FOR FURTHER DETAILS

WW-047 FOR FURTHER DETAILS

Our noise reducer is something to shout abouth

Wireless World Dolby noise reducer

Complete kits for the Wireless World Dolby B noise reducer are available through the address given below The two-channel design features

- a weighted noise reduction of 9 dB
- switching for both encodina (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes:
-complete set of components for a stereo processor
-regulated power supply components
-board-mounted ${ }^{\circ}$ DIN sockets and push-button switches
-fibreglass board designed for minimum wiring
-solid mahogany cabinet, chassis, two meters, front panel, knobs, mounting screws and nuts
Price is $£ 43$ inclusive
A single-channel printed-circuit board, with f.e.t. costs $£ 2.50$ or £8.63 with all components inclusive (excluding edge connector, $£ 1.37$ extra). Selected field-effect transistors cost 68 p each inclusive, £1. 20 for two and $£ 2.20$ for four.

Calibration tapes are available, costing $£ 1.94$ inclusive for $9.5 \mathrm{~cm} / \mathrm{s}$ open-reel use and for cassette (specify which).

Send cash with order, making cheques payable to IPC Business Press Ltd. to:

Wireless World noise reducer General sales department Room 11 , Dorset House Stamford Street
London SE1 9LU

DOLBY KIT ORDER FORM

Please supply me with the complete Wireless World kit for a Dolby noise reducer.
I enclose remittance value $£ 43.00$ inclusive \square

Name
Address

Additional items required

FANTASTIC OFFER—DIGITAL CLOCK KIT SAVE £££s

Fast building

- Easy to follow instructions

No knowledge of electronics required

- The most comprehensive kit and instructions you have ever seen
now only £12.50
$+£ 1.50$ VAT \& $\mathrm{p} \& \mathrm{p}$
OR READY BUILT \& FULLY TESTED ELECTRONIC ASSEMBLY Excl. Case E11.88 INC.

COMET CLOCK DATA
Size $61 / 4 \times 3 \times 21 / 2$
Mains Operation $50 / 60 \mathrm{HZ}$
12 / 24 hour mode

KIT COMPRISES or separately at:-	£
1 MOS Clock Chip 12-24 hr option MM5314N	2.95
$40.63^{\prime \prime}$ LED Displays NSN61L	6.60
1 Segment Driver Chip	0.50
${ }^{1}$ Pack Resistors, Caps., Transistors, switch	1.60
Double Sided Glass Fibre P.C. Board	0.95
Double Wound Mains Transformer	1.50
Circuit/ Assembly Manual	0.50
1 Futuristically styled Case (state colour). Red. Black, White, Mauve, Green. Blue.	4.40
-NB All Prices INCLUDE VAT \& $\mathrm{p} \& \mathrm{p}$	
C.W.O. to:	
ALL WOOD CASE 70p EXTRA	

Pulse Electronics Ltd
Dept. ww3, 202 Shefford Road, Clifton, Beds. Tel. Hitchin 0462814477
ALL WOOD CASE 70p EXTRA

nombrex

MODEL 41
R.F.SIGNAL GENERATOR Price £54.85

- $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals PLUS V.A.T. * 8 clear scales - Total length 130 mm .
- Spin-Wheel Slow Motion Drive 11 - 1 ratio
* Overall Accuracy - $2 \frac{1}{2} \%$
* Modulation, Variable depth and frequency.
* Internal Crystal Oscillator providing calibration checks throughout all ranges.
* Mechanical scale adjustment for accurate alignment against internal 1 MHz crystal oscillator
- Powered by 9V Battery

Trade and Export enquiries welcome
Send for full technical leatlets
Post and Packing EI 00 extra
NOMBREX LTD., POUND PLACE, WOLBOROUGH STREET, NEWTON ABBOT, DEVON. TQ12 1NE Tel. Newton Abbot 68297

NW-012 FOR FURTHER DETAILS

JES AUDIO INSTRUMENTATION

J. E. SUGDEN \& CO. LTD. Tel. Cleckheaton (0274) 872501 CARR STREET, CLECKHEATON, W. YORKSHIRE B195LA

WW-013 FOR FURTHER DETAILS

SPECIALISTS IN COIL AND TRANSFORMER WINDING:

Torroidal: c core: high speed high turn bobbin winding: chokes and wave winding any quantity, any rating.

Send for new catalogue

27 STATION ROAD BRIMINGTON CHESTERFIELD DERBYSHIRE, ENGLAND
TEL: 0246 70297 / 8 / 9 TELEX 54284

ENHANCE YOUR HOME WITHA SOPHISTICATED DIGITAL ALARM CLOCK

An all solid state digital alarm clock in an attractive brilliant white plastic case.
Pleasing 4 -digit orange displays with brightness control together with a flashing colon for seconds and a p.m. indicator.
Gentle alarm with snooze facility - Tip it forward and it stops. With a reminder every five minutes.

SPECIAL OFFER PRICE £12.99

(Plus VAT£1.04, Post \& Packing 50p)
Remittance with order, please, to:
TYME \& GEAR
Eastern Towers, 30 Eastway, Morden, Surrey Telephone: 01-540 1898

745 COUNTER TIMER
Measures frequency, period, time and totalises 32 MHz frequency range (DC coupled)

5-digit . $3^{\prime \prime}$ LED display
6 Gate times/Time units, 10μ s to 1 S in decades Sensitive, protected FET input

744 COUNTER TIMER
$£ 74+£ 1.50$ p.\&p. + VAT
Measures frequency, period and time
30 MHz frequency range (DC couipled)
5 -digit, long-life incandescent display
Sensitive, protected FET input

643 FUNCTION GENERATOR
$\mathbf{£ 8 6}+\mathbf{£ 1 . 5 0}$ p. \&p. + VAT Accurate, digital frequency setting $.01 \mathrm{~Hz}-1 \mathrm{MHz}$
Wide range external control of frequency Triangle. Squarewave and Low Distortion Sinewave outputs
$50 \Omega+$ simultaneous outputs DC offset

Prices correct at time of going to press, subject to change without notice
OMB ELECTRONICS
Riverside, Eynsford, Kent DA4 OAE Tel. Farningham (0322) 863567

WW-034 FOR FURTHER DETAILS

Alice Broadcasting STM6

Six Channel Stereo Transmission Mixer (ALICE'S BABY)

The definitive DJ / OB / Production Mixer Can you afford to use anything use?

Dimensions
$20^{\prime \prime} \times 15^{\prime \prime} \times 41 / 2^{\prime \prime}$

INPUTS	OUTPUTS
Microphones	Lines
Lines/Tape/Carts	P.A.
Pick-ups	Headphones
Off Air	Recording

Low-cost phasemeter

The A200 is an analogue phasemeter which directly displays the phase difference between two inputs - both input channels are carefully matched internally so that phase shift within the instrument is negligible. Lead/lag indicators automatically register polarity.

Prosser Scientific Instruments Ltd Lady Lane Estate Hadleigh Suffolk Tel Hadleigh (0473-38) 3005

WW-023 FOR FURTHER DETAILS

Hard-to-find tubes and semiconductors are normally included in our quotations. We try to give a complete answer.
AEL GATWICK HOUSE HORLEY SURREY RH6 9SU
Telex 87116 Cables Aerocon Telex Horley Telephone Horley 5353
WW-049 FOR FURTHER DETAILS

Professional photoelectrjc ignition using L.E.D. light source and reflective disc. This machined aluminium disc gives a timing accuracy far superior to other methods and is
simple to fit. Unit housed in diecast box $41_{2}^{\prime \prime} \times 3 \%^{\prime \prime} \times 2 \%^{\prime \prime}$ Price $£ 18.80$ (Kit $£ 16.80$) State car/model/measurement across cam lobes.

SYSTEM 11

Contact breaker model as above less sensor. Price $£ 12.80$ (Kit £10.80) M/C Twin unit Price $£ 15.00$. S.A.E. for descriptive leaflet - ALL UNITS IN STOCK. Mall orders to CDI Electronic Syrtems Lid, 275 Vale Road, Ash Vale, Aldershot, Hants Demonstration/Callers to Hillside Motors, 292 Carshalton Road. Carshalton, Surrey.
telephone 01.6429973 .

ANETDMENSOA DSOLDEilta

Ideal for factory, field servicing, laboratory or home, the Iso-Tip Cordless offers a great advance in soldering. It is completely portable, heats in 5 seconds and recharges automatically in its own stand

The Iso-Tip is powered by long-life nickel cadmium batteries giving tip performance up to 50 watts with a temperature of $370^{\circ} \mathrm{C}$. Tips are available in five different sIzes ranging from Micro to Heavy Duty to meet all soldering requirements

Greenwood Electronics
Portman Rd, Reading RG3 INE, England Telephone: Reading (0734) 595844. Telex: 848659.

WW-037 FOR FURTHER DETAILS

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.

Our product range comprises:
Low profile (flatform) Timing - Miniature Low contact capacity. Hermetically sealed \cdot Stepping Mains switching Latching Contact stacks Solenoids

Impulse Latching Relay
AZ 340
Make contacts
Resistive load: 10 A 240 V AC. Lamp ioad: 8 A 240 V AC. Compensated fluorescent tubes $3.7 \mathrm{~A} / 240 \mathrm{~V}$ AC.
Break contacts:
Resistive load: $8 \mathrm{~A} / 240 \mathrm{VAC}$ Lamp load: $5 \mathrm{~A} / 240 \mathrm{~V}$ AC. Compensated fluorescent tubes $3.7 \mathrm{~A} / 240 \mathrm{~V}$ AC.

We resolve your switching problems rapidly and expertly. Please contact us for further details.

Zettler UK Division

Harrow, Middx. HA2 8AS. Tel. (01) 4220061 A member of the worldwide ZETTLER electrical engineering group. est 1877
 a $16 / 2$ and a $12 / 4$ with all the inherent flexibility and quality customarily found in big studio mixers. Most of our mixers are constructed to meet the varying demands of the customer, perhaps we can do one for you. Prices stárt at $£ 365$ for the basic $10 / 2$ + VAT @ 8\%.

MAGNETIC TAPES LTD.
Chilton Works, Garden Road, Richmond Surrey TW9 4NS - 01-876 7957

 to prepare in minutes a perfect PCB. A fine-tipped marking pen charged with free-flowing etch-resist ink new formulation QUICK-DRI ink is ready for etching in just two minutes!
Simply draw the desired circuit onto copper laminated board etch - clean.
The circuit is ready to use

NO MESS - NO MASKING

A perfect circuit every time!
Still only $£ 1.08$ for one-off, $£ 4.42$ for six, $£ 8.80$ for twelve, post and VAT paid! Available now in every country in Europe. AND FROM YOUR LOCAL COMPONENT SUPPLY SHOP!
Decon Laboratories Ltd., Ellen Street,
Portslade, Brighton BN4 1EQ Phone: 0273414371

brerel| PROFESSIONAL TAPE TRANSPORTS
and multi-channel clectronics for studio and industrial use

* Tapewidths up to 25 mm
* Speeds: $3 \mathrm{~mm} / \mathrm{s}$ minimum up to $152 \mathrm{~cm} / \mathrm{s}$ max

Finance available 2 and 4 speed models

* Reel Capacity up to 29 cm
* Remote Control Facility
* Tape Tension Control
* Automatic Interlock against misuse
* Special models to customer requirements

McLENNAN ENGINEERING LIMITED
Kings Road Crowthorne Berks Telephone: Crowthorne 5757/8

GENUINE
BIG-SOUND VALUE!

Many nure interesting aUJUK KITS AND COMPONENTS I ISTED IN DORA․'S CATALOGUE PRIGED AT ONI Y GOH.

the DINOSAUR ELECTRONICS ьт. MULTISWEEP ED3 SWEEP-GENERATOR

WIDE RÄNGE
20 KHz to 70 MHz in 10 switched
ranges
DIRECT GENERATION
For low spurious and high stability
DUAL TRACE
With most simple oscilloscopes
COMPREHENSIVE MARKERS
Crystal marker combs as standard fitting
MAXIMUM UTILITY
Just connect oscilloscope and attenuators
£490.00 + VAT
MARKETED by

aspen electronics limited

18A HIGH STREET, NORTHWOOD, MIDDLESEX HA6 1 BN
Tel.: Northwood 27688/9

professionally canned from earto ear

The DT 100 is only one of an extensive range of headphones manufactured by Beyer Dynamic, in use in studios throughout the world. setting a new sound standard.

* Frequency Response: $30-20,000 \mathrm{~Hz}$
- Output Level at 100 HZ and 1 mW : 110 db over 2. 10.4 is bar
- Rated Input: appr. $600 \mathrm{~m} V$ per cartridge
- Peak Power Load: 1 W or 20 V per cartridge
- Impedance: $2 \times 400 Q(2 \times 8,2 \times 100,2 \times 800$, $2 \times 2,000$ Qupon request)

BEYER DYNAMIC

BEYER DYNAMIC (GB) LIMITED
1 Clair Road, Haywards Heath, Sussex. Tel: Haywards Heath 51003

Youedit the tape. Weedit the prices. VIDEOTAPE AT DIXONS TECHNICAL

RECOMMENDED	
PRICE	DIXON
$£ 11.99$	PRICE
$£ 19.43$	$£ 8.50$
$£ 14.41$	$£ 14.50$
$£ 10.50$	$£ 11.00$
$£ 10.50$	$£ 8.50$
$£ 14.50$	$£ 8.50$
$£ 17.00$	$£ 12.00$
$£ 5.50$	$£ 14.50$
$£ 3.00$	$£ 5.50$
$£ 2.00$	$£ 3.00$
	$£ 2.00$

SCOTCH $1 / 2^{\prime \prime} 361-2400 \mathrm{ft}$ SCOTCH $1 / 28174-3550 \mathrm{ft}$ SCOTCH $1 / 2461-2400 \mathrm{ft}$ BASF $1 / 2^{\prime \prime}-2400 \mathrm{ft}$ SHIBADEN $1 / 2^{\prime \prime}-2400 \mathrm{ft}$ U-MATIC KC60 Cassettes PHILIPS VC60 Cassettes DIXTEC ${ }^{1 / 2 / 2} 2400 \mathrm{ft} 7^{\prime \prime}$ spool DIXTEC $1 / 2{ }^{\prime \prime} 2000 \mathrm{ft} 7$ " spool DIXTEC $1 / 2 \prime 1200 \mathrm{ft} \mathrm{7"} \mathrm{spool}$

DIXON PRICE

ع. 50
£14.50
と8
£8. 50
£12.00
$14 \cdot 50$
£3.00
£2.00

We will gladly supply you with a quotation for any tapes not listed above

SOUND INSTALLATIONS

Design, installation and commissioning of recording and broadcast studios, sound reinforcement equipment, theatre communication and other systems

SOUND EQUIPMENT

Supply and, where required, manufacture of equipment to customers' specifications.
We also specialise in television, lighting and other systems

PHILIP DRAKE ELECTRONICS LTD.

165 LANCASTER ROAD, NEW BARNET, HERTS.
Telephone: 01-445 1144

WW-063 FOR FURTHER DETAILS

TAKE A CLOSE LOOK

at a professional recorder that offers high performance, excellent reliability and is very easy to maintain. Ask yourself why so many commercial radio stations and recording studios are doing their best to wear them out, and not having much success. Decide if you need mono or stereo, console transportable or rack mounting versions and then inquire about prices.
We are sure you will be very pleasantly surprised.

BIAS ELECTRONICS LTD.
01-540 8808 572 KINGSTON ROAD, LONDON SW20 8DR

WW-021 FOR FURTHER DETAILS

-TURNER-

STEREO POWER AMPLIFIERS

A range of professional stereo power amplifiers designed and manufactured to a very high standard
The A Series (Professional Studio Monitor) amplifiers feature dual power supplies to maintain full RMS power on both channels.
The B Series (Professional) amplifiers feature single power supplies suitable for most
music applications.
MODEL A500 $250+250$ watts RMS 4 ohms
$\begin{array}{cccccc} & & & \text { STANDARD } & \text { WITH VU's } \\ \text { MODEL } & \text { A500 } & 250+250 \text { watts RMS } & 4 \text { ohms } & \mathbf{£ 3 8 0 . 0 0} & \mathbf{£ 4 4 0 . 0 0}\end{array}$
$\begin{array}{lllll}\text { MODEL } A 300 & 150+150 \text { watts RMS } 4 \text { ohms } & \mathbf{£ 2 6 2 . 5 0} & \mathbf{£ 3 2 2 . 0 0}\end{array}$
MODEL B300 150 watls RMS per channel $\quad \mathbf{E 2 1 0 . 0 0} \quad \mathbf{£ 2 5 0 . 0 0}$
MODEL B200 100 watts RMS per channe
Overseas Import Agents are invited to make their final appications for allocation of areas for 1976 exports.

TURNER ELECTRONIC INDUSTRIES LTD. 175 Uxbridge Road, London W7 3TH

Tel. 01-5678472

NT 3302• fet fm tunerhead

+AMgang

* FET input stage
* 3 stage tuning
* 3:1 gearing
* 335pF AM gangs
* AFC facility

TOKO's latest FM tunerhead is available for immediate evaluation with the Broadercasting 9000 tuner chassis- an AM (LW/MW) and mpx FM chassis, with switches inc.

distributed by Ambit international, 37 High St Brentwood, Essex. tel:216029, tlx:848095. ALL 9000 chassis enquiries to Ambit please.
OEM enquiries to TOKO UK, Ward Royal Parade, Alma Road, Windsor, Berkshire. tel:54057, tix:848095.

WW-032 FOR FURTHER DETAILS

Spot the Difference

TYPICAL
STEREO
MASTER RECORDER at around £3,000.00

Wow \& Flutter less than 05\%

Start Time less than .5 sec

Frequency

Response
$40-18 \mathrm{KHz} \pm 2.0 \mathrm{~dB}$

Erasure

75dB
FullServo Tension
Noise
60dB below 320 $\mathrm{nWb} / \mathrm{m}$
Servo Controlled
Capstans

Electronic Tape Timer

TEKNIK SM2
STEREO
MASTER RECORDER at *£1,750.00 complete

Wow \& Flutter
less than 05\% (Typically . 02% at $15 \mathrm{ips})$
Start Time less than .3 sec

Frequency

Response
$40-20 \mathrm{KHz}+2.0 \mathrm{~dB}$

Erasure

75 dB
FullServoTension
Noise
60dB below 320 $\mathrm{nWb} / \mathrm{m}$ at all speeds
Servo Controlled Capstans with panel operated or remoteable varispeed Electronic Tape Timer

Switchable
NAB/DIN
equalization
V.U. metering plus L.E.D peak level indicators

* U K. Trade Price

Klark-ToknikLfd
Summerfield Kidderminster Worcestershire DYII 7RE Tel Kidderminster 64027

BE FAIR TO YOUR MUSIC

Reproduction of sound and its acceptability is dependent on a combination of physical parameters not yet fully explored. We believe that only a compatible combin ation of specifications will enable a system to
eproduce music. We have taken care that the NAC 12 and NAP 160 pre and power amplifier will do so faithfully, while accepting the output of any pickup cartridge and diving any loudspeaker

Naim Audio Ltd. 11 Salt Lane, Salisbury, Wilts. Tel: (0722) 3746
WW-038 FGR FURTHER DETAILS

EXCLUSIVE OFFER

EXCERPT from our SPECIAL OFFER 1975
KITS with circuit diagram and parts lis1 enclosed. Net Prices E KIT No. 3A for transformerless A.F Full-Amplifier 1 OW complete with printed circ KIT Nc 12 A tim. $80 \times 160 \mathrm{~mm}$ supply unit 30 V max 700 mA for KIT 4.70 complete with printed circ panel, drilled, dim $110 \times 115 \mathrm{~mm}$ 4.50 3日 ranstormer merless A complete with 2 pint circ panels, drif KIT. No. 13A for stabiliz. Manss supply with printed circ panel, drilled, $\operatorname{dim} 110 \times 115 \mathrm{~mm} \quad \mathbf{4 . 5 0}$
KIT No 5A $\quad 3.60$
Krinte. SA
KIT No. 11A for stabiliz Mains 2.50
complete with printed circ, panel drilled dim $80 \times 115 \mathrm{~mm}$ ma for Kit No. 5 .
Price for transformer
Ni No. 58 for 2 transformerless A.F. Amplifier 5 W with treble adjusting for stare poration complete with 2 print. Circ panels, drilled dim $80 \times 120 \mathrm{~mm} \quad \mathbf{5 . 1 5}$ Ping. 4 for KIT No. 5 B complete Price. panel, drilled dim. $65 \times 120 \mathrm{~mm}$

KIT No. 16 Line Voltage Regulator complete with printed circ panel, drilfed. dim. 65 x
115 mm Potentiometer turning knot
Radio interference suppression set for KIT No. 16
KIT No. 22 Line Voltage Regulator (Brightness Control) 220V 200W
$\begin{array}{ll}\text { Radio interference suppression set for KIT No. } 16 \\ \text { KIT No. } 22 \text { Line Voltage Regulator (Brightness Control) 220V 200W } & 1.10\end{array}$
orinted circ panel drilled dim $50 \times 50 \mathrm{~mm}$
Potentiometer turning knob
Radio interference suppression set for KIT No. 22 220 0.90
printed circ panet drilled dim. $60 \times 70 \mathrm{~mm}$.
Potentiometer turning knob $\times 70$

No. 24 Line Voltage Regulator (Brightness Control) $220 \mathrm{~V} 1,000 \mathrm{~W}$ complete with
Potentiometer dilled dim $60 \times 70 \mathrm{~mm}$
Radio interference suppression set for KIT No. 24

EUGEN QUECK
Augustenstr. 6
D-85 Nürnberg/f.r.g.
mport-Transit-Export
Tel. 46.35 .83
WW-093 FOR FURTHER DETAILS

Comprehensive Audio Measurements....

from ONE compact unit comprising lowdistortion audio oscillator, eleven-range millivoltmeter, wow and flutter meter (which also measures mean speed drift), and a distortion meter with seven full-scale ranges from 100% to 0.1%. The RTS2 Audio Test Set is used daily in fifty-nine countries throughout the World and is accepted as essential equipment by designers, manufacturers, test engineers, studio staffs and hi-fi reviewers.

Auxiliary Unit ATU1 extends the field of application by providing balanced input and output connections (in stereo pairs). a number of loading and weighting facilities. further amplification and attenuation of the oscillator signal from the RTS2, and loudspeaker monitoring of recorded announcements on test tapes. Audio Test Set RTS2 (Upper) Auxiliary Test Unit ATU1 (Lower)

A member of the Wilmot Breeden Group
The Ferrograph Co. Ltd., 442 Bath Road, Slough. Bucks., SL1 6BB, England Telephone: Burnham (06286) 62511. Telex: 847297

WW-M5 FOR FURTHER DETAILS

GET THE MESSAGE

As Europe s most experienced Citizen Band specialists we can meet all your needs in 2.way equipment from our complete line of hand-held and mobile transceivers Transmitting powers of 02 watts on 2 channels to 15 watts on 60 channels are avarlable now Not licensable in the U.K.

For full detalls contact the Sole $\cup \mathrm{K}$. agent
COMMUNIQUE, 129 PARK RDAD, LONDDN, N.W.8. Tel. 2624707
WW-075 FOR FURTHER DETAILS

Whether the need is for a high performance portable for field use or for a laboratory-grade oscilloscope with plug-in flexibility the Telequipment D83 and D75 instruments can meet that need at highly competitive prices. Common features are a full 50 MHz bandwidth at $5 \mathrm{mV} /$ div sensitivity. choice of single, dual, and mixed sweep operation, internal graticule CRT's, and a brilliant 15 kV trace. The D83 is designed around a $6 \frac{1}{2}$ " CRT which provides 50% more viewing area than the usual $8 \times 10 \mathrm{~cm}$ CRT's. The mainframe contains one vertical and one horizontal plug-in compartment. Five vertical plug-in amplifiers cover a wide range of applications, from single channel, dual channel and high-gain differential operation to specialised
television measurements. The dual time base plug-in incorporates sweep intensifying, delaying, mixed sweep and single-shot facilities, whilst the simpler single time base unit provides the same basic sweep rates with the addition of X - Y operation.
The D75 is essentially a portable version of the D83 and offers the same high performance in applications not requiring full plug-in facilities. Optional versions are available which provide a choice between dual vertical channels with single time base, high gain differential amplifier with dualtrace or single time base. This compact, highly portable instrument is equipped with an $8 \times 10 \mathrm{~cm}$ CRT, and is supplied with a protective front panel cover.

Write or telephone for leaflets and a demonstration:

Telequipment

Tektronix UK Ltd.,
Beaverton House, P.O. Box 69, Harpenden, Herts. Telephone: Harpenden 63141 Telex: 25559

wireless world

Electronics, Television, Radio, Audio

DECEMBER 1975 Vol 81 No 1480

Contents

549 A star for India
550 Microprocessors by D. E. O'N. Waddington
556 News of the month
A-level electronics
Advance in i.c. fabrication
Component giants integrate
560 Current dumping audio amplifier by P. J. Walker
563 Wireless World Teletext decoder - 2 by J. F. Daniels
567 Applying "magnetic Ohm's law" to permanent magnets by P. E. K. Donaldson
568 Letters to the editor
571 Interference from pocket calculators by Charles Thomas Ristorcelli
575 Circuit ideas
Frequency doubler
Linear current/rotation control
Balanced output amplifier
577 Advances in microwaves by M. W. Hosking
578 H.F. predictions
579 High resolution satellite cloud cover pictures by P. E. Baylis
580 Space news
581 Television tuner design - 3 by D. C. Read
585 Announcements. Books received
586 World of amateur radio
587 High quality compressor/limiter by D. R. G. Self
590 Literature received
591 New products
594 Instruments in Bloomsbury
5961975 Index
a84 APPOINTMENTS VACANT
a 00 INDEX TO ADVERTISERS

Price 35p (Back numbers 50p, from Room 11, Dorset House, Stamford Street, London SEI 9LU.) Editorial \& Advertising offices: Dorset House. Stamford Street, London SE1 9LU.
Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
Telegrams/Telex. Wiworld Bisnespres 25137 London. Cables. "Ethaworld. London SE1."
Subscription rates: 1 year, £6 UK and overseas (\$15.60 USA and Canada): 3 years. $£ 15.30$ UK and overseas ($\$ 39.80$ USA and Canada). Student rates: 1 year, £3 UK and overseas ($\$ 7.80$ USA and Canada): 3 years. $£ 7.70$ UK and overseas ($\$ 20.00$ USA and Canada).
Distribution: 40 Bowling Green Lane. London ECIR ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House. Perrymount Rd. Haywards Heath, Sussex RH16 3DH. Telephone 044453281 . Subscribers are requested to notify a change of address.
(C) IPC Business Press Ltd, 1975

This month's front cover shows a television monitor picture of a human face after digital processing in a video synthesizer made by Electronic Music Studios (London) Ltd.

IN OUR NEXT ISSUE

Phase changes in loudspeakers - are they audible, and do they affect sound quality and stereo image formation?

A-level electronics. Introducing a new tutorial series based on a course that has been on trial in schools for three years.

Television history. On the 50th anniversary of Baird's Royal Institution demionstration a disclosure about his early apparatus.

SIXTY-FIFTH YEAR OF PUBLICATION

ibpa

Introducing Powerlab: a revolutionary concept in precision powersupply

Exit the panel meter: enter the push button

Powerlab represents an entirely new approach to bench power supplies. Designed not only for electronics laboratories but for general use as well, Powerlab does away with the conventional panel meter, replacing this with simple push-button selection of precision voltages.

These give selection of 5,12 and 15 volts, in isolated series or parallel mode interlocked to give zero voltage at range change and half depressed point.

Voltages are adjustable if necessary $\pm 10 \%$ by a precision calibrated slide potentiometer. For series operation, $B \triangle V$ tracks $A \triangle V$ to $\pm 0.1 \% A \Delta V$.

Good things come in palrs

Powerlab has dual twin isolated power outputs, with push-button mode selection of internal connection in Series or in Parallel. So Powerlab provides an ideally flexible power source.

We're a little remote...

And we mean to be, with Powerlab's built-in remote sense which overcomes variance in voltage between source and board, so that you know you're getting \pm precisely the right voltage

Put it in....cut it out

The jack plugs on Powerlab ensure perfect connection and the screened cable reduces extraneous pick-up

Repeatability

You don't need to use a DVM to recheck settings. Output voltages can be reset to within 20 mV on 5 Volt range.

makes for simple operation. And its pushbutton controls promise fool-proof handling.
The right price for the right package

Powerlab will cost you $£ 75$
That's all - for the most radical advance in power supply equipment for generations. Its capability, flexibility and ease of operation put it way ahead of conventional power supply apparatus.

[^2]
wireless world

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:

PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:

GEUFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors:

BILL ANDERTON, B.Sc.
Phone 01-261 8620
BASIL LANE
Phone 01-261 8043
MIKE SAGIN
Phone 01-261 8429

Production:
D. R, BRAY

Advertisements:

G. BENTON ROWELL (Manager)

KEVIN BURNAL
Phone 01-261 8515
ROGER PORT
Phone 01-261 8037
O. BAILEY (Classified Advertisements) Phone 01-261 8508 or 01-261 8423

JOHN GIBBON (Make-up and copy) Phone 01-261 8353

IPC Electrical-Electronic Press Ltd Publisher: Gordon Henderson

A star for India

India is irradiated. Since August 1, an entire sub-continent has been lit with a beam of u.h.f. television signals from a single source, the Applications Technology Satellite ATS-6 now positioned in synchronous orbit over Lake Victoria in East Africa (see Space News, September).

Looking back over 1975, this must surely be the most important project of the year in the application of electronics to human welfare. Important on two counts. Technically, it is the first example of direct broadcasting from a satellite providing coverage of a whole country. (Earlier the ATS-6 had been used for a direct broadcasting experiment in America to isolated communities in Appalachia, the Rocky Mountain region and Alaska.) Socially, it is an ambitious attempt to help the backward, underprivileged people of rural India to understand how they can improve the material conditions of their life. Programmes giving instruction on modern agricultural methods, nutrition, health, hygiene and birth control (as well as other educational and cultural programmes) are being transmitted by All India Radio, via the satellite, to 2400 remote villages in 20 districts spread over the country. There are in fact six clusters of villages, each with about 400 communal receiving stations. Signals on 860 MHz from the satellite are picked up by 10 ft diameter dish aerials made cheaply of chicken wire, and pass through frequency converters to television sets installed in public buildings for communal viewing.
All this comes, incidentally, just 30 years after Arthur C. Clarke suggested the possibility of direct broadcasting from satellites in his prophetic article "Extra-terrestrial relays" in the October 1945 issue of Wireless World.
Unfortunately the Satellite Instructional Television Experiment, as it is called, is indeed just an experiment. It is to last only a year, after which the ATS-6 satellite will be moved on to a new position in the western hemisphere. Considering the enormous problems of rural India - poverty, illiteracy, epidemics, fragmented and inefficient agriculture, all made worse by a caste system which condemns most people to automatic inferiority - it is futile to imagine, as the Indian broadcasters admit, that one year's exposure to television will make any real difference. And for this brief experiment, the expenditure on the ground hardware and facilities has been very high for a poor nation - about $£ 6$ million. One year is barely enough to sort out the operating problems, both technical and in the presentation of programmes, let alone derive useful social knowledge from the experiment. It's a pity that NASA, who provided the satellite, could not have been persuaded to leave their vital relay in place for at least another year. One can only echo the expressed hope of All India Radio that this "mammoth" experiment will help to create a "climate for development" in the backward areas of the country. Centuries-old patterns of life and work will not be changed in a few months but expectations may be.

India already has its own scientific satellite, built in Bangalore and launched by the USSR. The need for its own direct broadcasting satellite is much more pressing.

An introductory discussion of the principles of design, programming and application

by D. E. O'N. Waddington, M.I.E.R.E.

Computer control!• These two words conjure up visions of intelligent automatic systems far beyond the reach of us ordinary mortals. Until recently this has been true but it will not be long before microprocessors will be appearing in all sorts of unexpected and even mundane applications. Originally, digital computers were somewhat ponderous and unreliable, using many thousands of thermionic valves, kilo-amps of heater current, were built in large racks and housed in air-conditioned rooms to prevent them from dying of heat exhaustion! This was changed, to a large extent, by the introduction of semiconductor technology. The use of transistors enabled smaller and more efficient computers to be designed, although the need for some form of air conditioning has remained. Silicon integrated circuits allowed further size reduction, as it was now possible to put many logical functions into a very small volume.
This led to the design of the "minicomputer" which is small in size, in comparison with earlier computers, but is usually comparable in performance to much larger machines. A basic form exists which is, in effect, a mini-computer without all the mechanical frills and may even consist of a few, albeit rather large, printed circuit cards. New semiconductor production techniques together with improved quality control are now making true large-scale integration possible so that, although Isaac Asimov's positronic robot is still in the future, the "computer on a chip" has arrived under the alias of Microprocessor. Admittedly, it is not the equal of the large computer or even the mini, but it does represent a new generation of pseudo-intelligent circuits which will change the design and operation of machines ranging from cookers, cars and traffic lights to measuring instruments, automatic landing systems and process control.
One of the main attractions of microprocessors is price. Full size computers can cost tens of thousands of pounds and even minis cost in the order of one to ten thousand. The faster microprocessors cost between $£ 100$ and $£ 500$ and

Using microprocessors

One of the prime reasons for using a microprocessor in a control system is its flexibility. Many systems which use these devices could, in theory at least, be made with smaller-scale logic packages in a purpose-designed form, but any changes needed in an operational sequence would involve expensive changes in logic design and printed-circuit layout. Changes in a system using a microprocessor only require a programme change, and the reliability of the system gains from the reduction in the number of integrated circuits.

A typical application for a microprocessor would be the operation of a supermarket cash-point where, together with its input/output devices (keyboard, display, tally-roll printer, etc.), the microprocessor would display the price total, check prices against codes, count the total number of articles, deduct these from stock and inform stock control, dispense change, issue a receipt and send the total to the accounts department.

Possible domestic use of microprocessors includes the control of central heating, taking into account external temperatures, time of day, and internal temperatures desired and achieved. Simulating the occupation of a house when the owner is absent is also a possibility; lights would be switched on and off at relevant times, curtains would be drawn and it is even suggested that the sound of water music could be caused to issue from the bathroom from time to time.

Cars are particularly receptive to microprocessor control. When fed with information derived from sensors on engine temperature, exhaust gas composition, piston position, road speed, engine speed, accelerator depression, road wheel forces, seat belt connexion, etc., the optimum adjustment of mixture and timing to obtain efficient running and least pollution can be maintained, braking can be controlled in such a way as to reduce skidding and the car can be made to refuse to go at all unless the driver has fastened his seat belt. No doubt a breath "sniffer" could also be incorporated in the system.
simple 4-bit machines now cost from $£ 30$ to $£ 100$, depending on volume and complexity. Prices are still falling, and the new Texas Instruments TMS1000, a one-chip 4 -bit machine, primarily intended for calculator type applications but also suitable for use in small control systems, is reputed to cost less than ten dollars. However, this low price applies only to large quantities and does not include the initial charges for the design and manufacture of programming masks, which could be in the order of $£ 10,000$. If microprocessors continue to follow the same price trend as most other semiconductor devices, the minimum prices will not be reached for some time yet, so there will probably be substantial price reductions over the next few years.

Before discussing microprocessors in more detail, it is as well to try to answer the question: "What is a computer?". The full definition is very wide ranging but, in the electronics world it has come to mean an electronic machine which is capable of carrying out a set of instructions (programme), either arithmetical or logical, without the need for operator intervention other than to specify which programme is required. In its. simplest form, shown in Fig. 1, a computer consists of three main parts; a central processor unit (c.p.u.), a memory or store and input/output ports. The programme or set of instructions which control the operation of the computer is stored in the programme memory and is "read" in sequence by the c.p.u. which carries out each instruction as it is received. The data memory is used to store the data whicn is to be operated on and the c.p.u. can gain access to the locations in this memory either to read the data stored there or to write new information. As a computer is only capable of recognising l's or 0 's it carries out all its operations in binary code, although frequently instructions are in binary-coded octal, decimal or hexadecimal. In order that the computer may serve a useful function it has to be able to communicate and this is done via the input/output ports. Typical inputs are derived from tape-readers, teletypes and trans-
ducers while outputs may go to lineprinters, video display units, control valves, etc.
The basic operating sequence for a computer is as follows: (a) send to the programme memory the address of the instruction to be carried out; (b) read and decode the instruction; (c) implement the instruction. This sequence, illustrated in Fig. 2, is usually known as a machine cycle or micro-cycle and the time taken for its completion is frequently used to define the speed of the computer. This can be misleading as some computers have far more powerful instruction sets than others.

Central processing unit

This description is obviously an over-simplification, so we will look at the architecture (the "in" word used by computer men to describe the layout) of the c.p.u. in more detail as it is this which defines the character of the
computer. Fig. 3 shows a typical c.p.u., which is likely to consist of the following main units.

Accumulator register. This usually contains one of the operands to be processed by the arithmetic and logic unit (a.l.u.). A typical instruction could tell the a.l.u. to add the contents of some other register location to the accumulator register and to store the result in the accumulator. Thus the accumulator could be regarded as the main working register into which data and results are written and processed, and from which they are subsequently despatched to memory or output ports.

Programme counter. The instructions which form a programme are stored in the programme storage memory in sequence so that, in order to carry out an operation correctly, the c.p.u. has to keep a count of where it is in the
programme. This, then, is the main function of the programme counter. However, programmes frequently contain subroutines which may be called for at any point during the execution of the main programme. Subroutines are sets of instructions used to carry out specific tasks which may be needed several times during the execution of a programme. In a desk calculator type of environment, for example, the calculation of functions such as square, sine, logarithm or root, might each call for a separate subroutine which might, in turn, call for subroutines to add, subtract, multiply and divide. In a control system, the operation of each function might call for a separate subroutine, while the overall operation is unified by a main programme calling for the subroutines as required.
When a jump-to-subroutine instruction occurs in a programme, the address of the next sequential instruction must

Fig. I. Basic computer system.

Fig. 2. Computer machine cycle.

be stored so that the processor will know where to return at the end of the subroutine, and the address of the first instruction in the subroutine must be inserted into the programme counter. In a microprocessor, this operation is usually done by means of a "push down stack" memory which is also sometimes called a "li.i.f.o." or last-in, first-out memory. Thus the jump-to-subroutine instruction causes the current address to be pushed down one step and the new address is written into the top location. A further jump instruction might cause both of these addresses to be pushed down another step. This occurs when nested subroutines, i.e., subroutines which call for further subroutines, are used. Obviously, the number of subroutines which can be nested before losing the original return address will depend on the depth of the stack, which will vary from one type of microprocessor to the next. At the end of the subroutine the programme "branches back" and the last return address stored is replaced in the programme counter register. This causes the processor to resume its programme from the point immediately following that at which the branch occurred.

Instruction register. When the c.p.u. receives an instruction from memory, it stores it in the instruction register, which holds it for decoding. The length of the instruction will depend on the type of processor. A simple processor, for example, will probably use an 8 -bit instruction code. This will give a capacity of up to 256 separate instructions, each of which will consist of a series of 1's and 0's. In practice this is more than sufficient, although some machines use variable-length instruction codes which not only tell the c.p.u.

Fig. 4. "Bit slice" c.p.u. configuration.
what operation is required, but also specify one or more addresses for fetching data or writing results.

Instruction decoder. The function of this is to decode the instructions and tell the c.p.u. what to do with them - a task which, though appearing formidable, is no more difficult, in principle, than a b.c.d. to 7 -segment display decoder, although a different technique is usually used. Generally, the instructions are grouped so that those associated with a particular portion of the c.p.u. have the same "signatures". The four most significant bits in the instruction might be used to define a separate section such as "data transfer", "arithmetic functions" or "logical operations", etc. In this way the decoding can be simplified considerably.

Scratch pad memory. This section is used for all sorts of temporary storage as it is usually more easy to gain access to than the main memory area. One of its main uses in the simpler machines is to store addresses of working memory locations or input/output ports which the c.p.u. will need to use. These addresses can usually be incremented by single instructions so that successive memory locations can be addressed for iterative operations.

Arithmetic/logic unit (a.l.u.). All processors include some form of arithmetic/logic unit which is often known as the a.l.u., although sometimes the registers are included in the description when it is called the r.a.l.u. The a.l.u. is the section which actually performs the computation and it will normally be
expected to be able to carry out the following operations as a minimum requirement:

- addition with carry
- subtraction with carry
- left and right shift
- count up/down
- logical AND and OR
- digital word comparison for conditional branching. This may be simple zero/non-zero detection or full word comparison.
More sophisticated a.l.us will include additional functions such as hard-wired multipliers or dividers and more comprehensive logical operations.

As the a.l.u. is based on digital processing techniques, it will carry out all of its operations in binary notation so that the programmer will need to understand binary arithmetic techniques. However some processors which have been designed for calculator type applications will include binary/ b.c.d. (binary-coded decimal) conversion instructions.

Clock and control circuitry. The clock generates the timing information for the whole processor system. Its frequency is usually determined by the speed at which the various parts of the c.p.u. can function, although the speed of the memories is also a factor which may have to be taken into account. The actual sequence of events in the c.p.u. is organized by the control circuits. Normally the sequence is fixed, but the control circuit will usually be able to respond to an external request for attention. This is known as an "interrupt" and it will cause the programme to jump to a subroutine which will identify the source of the interruption, service it and return control to the main programme.

These then are the main parts of the c.p.u. In the past they have ranged from several racks of valved equipment down to a single printed-circuit card containing a series of l.s.i./m.s.i. chips. The idea of putting a c.p.u. on a single chip has been around for many years, but for a long time it was not practical. The number of transistors necessary to make a practicable processor is such that a relatively large piece of silicon (about 4 mm square) is necessary for the integrated circuit. Both the Intel 8080 and the Motorola 6800 use well over 5000 transistors! Of necessity, this means that unless the crystal slice into which the transistors are to be diffused is perfect, the manufacturing yield will be low and prices correspondingly high. The use of m.o.s. technology has helped the situation considerably, although some small processors using bipolar transistors are now available. Two types of m.o.s. circuit are generally in use; p.m.o.s. which is the least difficult to make and n.m.o.s. which needs tighter production control but which has the advantage that the transistors can be smaller and, as a result, can work at a higher speed.

Most surprisingly it is not the number of transistors which determines the size of the final integrated circuit chip but the amount of interconnection. Usually, the transistors take up less than 10% of the surface area. C.m.o.s. would appear to be an ideal medium for microprocessors as it combines good speed performance with low power consumption. However, it also requires a relatively large area, so that it is not as attractive to make. Nevertheless, at least two manufacturers are now offering c.m.o.s. processors. Bipolar transistor processing, as the oldest-contender in the field of integrated circuits, would appear to be ideal as it has the advantage of the best speed performance. It also, however, has the disadvantage that it uses considerably more power than m.o.s. and this sets an additional limitation on the size of processor which can be made. In order to overcome this, devices known as "bit-slice" processors have appeared. The basic processors are made as two or four bit slices which can be connected in parallel to make up the required word length as in Fig. 4. The major advantage of these

Fig. 5. One machine cycle using a 4-bit bus, illustrating the limitation when compared to higher-capacity buses.
processors is speed. They can be designed to have a cycle time of 200 ns or less - an order faster than n.m.o.s.

In all processors the number of bits in the bus system is an important factor in determining the effective speed. With a 4-bit bus, addresses can only be sent in 4-bit "nibbles". This means that in order to address 4 k (4096) words of store, it will be necessary to send three 4 -bit nibbles of address $\left(4096=2^{12}\right)$. If the instructions are each eight bits long it
will then take a further two clock cycles to read the instruction. Thus a minimum of five clock cycles is necessary to carry out the first two parts of the machine cycle. It could then take a further three clock cycles to implement the instruction, so that one machine cycle will take eight clock cycles or, with a 1 MHz clock, $8 \mu \mathrm{~s}$ as in Fig. 5. However, if the data bus were 12 bits wide, this same operation could be carried out in three or four clock cycles, i.e., twice as fast.

Programme storage

In the past, magnetism has played a great part in computer memories or stores. Core stores are still very widely used, as they have no mechanical

Fig. 6. Basic 4×4 read-only memory

moving parts, they are non-volatile, i.e., they retain their information when switched off, and they can be made to occupy a relatively small volume. In fact, for a computer which is to be reprogrammed periodically, they form an ideal storage medium. Most microprocessor systems work with fixed programme control, i.e., the programme need seldom if ever be changed as the processor is dedicated to a single task. For these, core stores are an "overkill" as they require a considerable amount of drive circuitry and provide a facility which will never be used. Thus another kind of store, the read-only memory or r.o.m. is generally used. These consist of logic circuit arrays which can be programmed to give either a 1 or 0 as each location is addressed. Read-only memories can be made in all the various semiconductor technologies. The main differences between these are size, i.e., the number of bits which can be stored, logic levels, reprogrammability and access time. In general bipolar memories are faster than their m.o.s. counterparts, but the latter usually have more capacity.

In its simplest form, a read-only memory is an array of open or closed unidirectional contacts, the state of the contact determining whether the location contains a " 1 " or a " 0 ". In the 16 -bit array shown in Fig. 6, half of the address lines are decoded to energize one of the rows. This activates those column lines which have closed contacts to the selected row. The other address lines are decoded and used to select a column. Thus a selected closed contact will result in a " 1 " at the output. In a memory for a microprocessor, r.o.ms are usually arranged so that an address selects eight locations in parallel, so that a single address will locate an 8-bit word.

One of the main distinctive features of a r.o.m. is the method by which it is programmed.

Mask-programmable r.o.ms. As implied by the name, these are programmed by a metallization pattern which is either deposited on the surface of the r.o.m. through a mask or selectively etched through a mask. This method of manufacture has a lot to commend it, as the manufacturer can hold stocks of r.o.ms which only need their final masking to provide any memory pattern required. Thus the process of making a r.o.m. need only take the time necessary to produce the final mask and metal pattern. This reduces the time necessary to produce a r.o.m. to about six weeks. However, the disadvantages are that the system designer has no control over the manufacture and there is no room for any error. He must be right!

Electrically-programmable r.o.ms. These fall into two main types; those which, when programmed, cannot be changed and those which can. The first
Bit slice microprocessors

Cycle time
Data word

Bit slice microprocessors					
Manufacturer	Advanced Micro Devices	Intel	Monolithic Memories	Texas Instruments	Motorola
Type	AM2901	3002	5701/6701	SBP 400	M 10800
Technique	Schottky t.t.l.	Schottky t.t.l.	Schottky t.1.1.	1.1	e.c.l.
Cycle time	100 ns	100 ns	200ns	530 ns	55ns
Data word	4	2	4	4	4

type contain some form of fuse which is "blown" by the application of a suitable pulse during the programming process. One type includes links of either nichrome or polysilicon. It is claimed that the latter are more reliable as there is a tendency for nichrome to "grow" back and connect once more. A variant on the fusible link is the shorted-junction where transistors with no physical connection to their bases are diffused into the substrate. By applying a high potential between the collector and emitter, the transistor is forced to break down and a short is formed between the emitter and base, changing the transistor into a diode. This process is a critical one and needs precise control. These p.r.o.ms are all made using bipolar technology.

Two main types of p.r.o.m. are made using m.o.s. transistor arrays. Unlike their bipolar counterparts they are erasable so that they can be reprogrammed, a facility which makes them ideal for development of microprocessor systems. One of the best known types uses f.a.m.o.s. or floating-gate avalanche injection m.o.s. which was introduced in 1971 by Intel. In this type, shown in Fig. 7, a floating gate is induced into the silicon dioxide separating the source and drain of an m.o.s. transistor by applying an excessive voltage to the device. As no discharge path is available for this gate, the charge remains unchanged and it is predicted that if the device is maintained at a temperature of $125^{\circ} \mathrm{C}$ for 10 years, at least 70% of the charge will remain. At lower temperatures the charge would remain even longer. However, if the device is exposed to strong ultra-violet radiation, the charge may disperse in 5 minutes, when the p.r.o.m. can be reprogrammed. This type is easily recognisable, as the chip is covered by a transparent quartz window.
Another type of m.o.s. p.r.o.m. is known as the e.a.r.o.m. or electricallyalterable r.o.m. Actually, it uses m.n.o.s. in which an additional gate insulation layer of silicon nitride is used. During programming, which is done electrically, a charge is trapped in the gate region and it is possible to sense this charge up to 10^{9} times before there is any uncertainty. This is not sufficient for programme storage but, if it is provided as a back up to a read/write memory it may be used to provide a non-volatile store for data. However, it takes an appreciable time, of the order of 2 ms , to save data in an e.a.r.o.m. so that these are not in general use.

In addition to the programme storage, a microprocessor system usually contains a memory to store results or data. This is normally known as r.a.m. or random-access memory which, strictly speaking, is a misnomer as the access to r.o.m. may be equally random. It is probably better to call this read/ write memory as it is used in this fashion. Just as the amount of r.o.m. used in a system depends on the programme

Fig. 7. Cross section through an idealised f.a.m.o.s. transistor.
requirement, the amount of r.a.m. needed will depend on the data storage requirement. R.a.ms consist of arrays of flip-flops which are set or cleared according to the data stored. As with r.o.ms they are made in both bipolar or m.o.s. form. Bipolar devices are generally very much faster but they absorb an appreciable amount of power. M.o.s. r.a.ms may be either static or dynamic: in the former, the data is stored in normal flip-flop type circuits, but in the latter it is stored as electrical charges holding transistors "on" or "off". As the charges leak away gradually, dynamic r.a.ms are refreshed by "clocking" them periodically to replenish the charge.

Programming

Like computers, microprocessors need to be programmed if they are to serve any useful purpose. The processor recognises ones and zeros. However, although a human programmer can learn all the machine codes, it is a very tedious business to try to write a complete programme in machine code. Thus various computer languages have evolved. The simplest type is known as assembly language or assembler code and consists of groups of two, three or four letters, known as mnemonics, which relate directly to the machine codes and describe the instructions. For example:

NOP $\ldots \ldots .$.	no operation add the contents of ade register X to the accumulator with
Carry.	

This type of language is relatively easy to use once all the implications and limitations of each instruction is understood. This is very important as the c.p.u. has no intuition. It can only carry out instructions which it is given and not guess at those which have been left out. In order to convert a programme written in assembly language into machine code, one of two courses is available. The first is to do it very patiently and inefficiently by hand, a procedure which is not recommended for more than about 20 commands. The
second is to make use of a programme known as an assembler, which examines the source programme (i.e., assembly language) and converts into machine code. In most machines a "two pass" assembler is used, feeding the source programme to the assembler twice. The first time, the assembler converts the mnemonics to machine code, looks for syntax errors and allocates addresses to the instructions. The second time it fills in all the addresses for the "jump" instructions. Assembly language programming is probably the most efficient when it comes to making the optimum use of memory space and, as such, is most generally used for small to medium sized systems. However, it can be tedious for large programmes, so that high level languageș are being developed to allow programmes to be written using a limited English/mathematical vocabulary. One such language is PL/M, which has been developed by Intel for their 8080 system and no doubt other manufacturers are developing their own languages. Programmes written in these languages are then converted into machine code using a programme known as a compiler. Although this method provides a degree of built in "intuition", so that the programmer does not need to worry about all the minor details, compilers do produce programmes which take up to 40% more storage than the corresponding assembly language programme. Another approach is to use an "interpreter" which is a programme which converts the programme to be executed directly into machine code as it is used. As this implies, the processor has to have two programmes built into it, the interpreter and the programme which is to be executed. This approach is only really suitable for very large machines at present but, as microprocessors get "smarter," we may see them with built-in interpreters. Interpreters, however, are inevitably rather slow.

Microprocessor circuits

The first microprocessor was introduced by Intel in 1971 and was a 4-bit machine called the 4004. This was the first of its kind; a 4-bit machine, oriented towards calculators but capable of very much wider application Shortly it was followed by an 8-bit model, the 8008 . The latter has been superseded by the 8080 , a n.m.o.s. machine with a $2 \mu \mathrm{~s}$ instruction cycle and 70 instructions. The power dissipation is only 600 mW and there is a full range of r.o.ms and r.a.ms, clock and interface receivers and drivers so that a complete system can easily be built. Intel have also introduced the 4040 which is primarily a calculator-oriented machine which has an instruction cycle of $10.2 \mu \mathrm{~s}, 47$ instructions and which can be used for many other applications.

Some of the types known to me are shown in Table 1.

Meetings
 DECEMBER

LONDON

3rd. BKSTS - "Impressions of television and film in the USA and Canada by A. B. Palmer at I9.30 at Thames Television Theatre, 308-316 Euston Rd., NWI.

4th. IEE - Discussion on "Are fibre optics the answer to aircraft signal transmission problems?" at 17.30 at the Royal Aeronautical Society, 4 Hamilton PI., WI.
4th. IERE - "Dynamic system checkout" by Prof. D. R. Towill at 18.00 at 9 Bedford Sq., WC 1 .

4th. RTS - "Progress in colour receiver design" by M. F. Bowers at 19.00 at the Conference Suite. London Weekend Television, South Bank TV Centre, Upper Ground, SE1.

5th. IEE - Colloquium on "Communication for the deaf and dumb" at 10.30 at Savoy Pl., WC2.

5th. RI - "Acoustics regained" by Eric A. Ash at 20.45 at The Royal Institution of Great Britain, 21 Albemarle St., W1.

8th. IEE/IERE - Colloquium on "Computer aids to software and system design" at 10.30 at Savoy PI., WC2.

8th. IEE - Discussion on "Ultra-violet and infra-red curing of printed and coated materials and ultra-violet sterilisation" at 17.30 at Savoy PI.. WC2.

10th. I.Phys./IEE - One-day meeting on "Light detection" at 10.00 at Imperial College, SW7.

10th. IERE - Colloquium on "The electronics of electronic organs" at 14.00 at Engineering Theatre G6, University College, Torrington Pl., WC1.
IOth. IEE - "On-line capture and analysis of transient phenomena" by C. Buffam at 18.30 at Savoy PI., WC2.

10th. BKSTS - "Specialised techniques in television film production" by G. Anderson at 20.30 at NFT2, National Film Theatre, South Bank, Waterloo, SE1.
llth. RTS - The Shoenberg Memorial Lecture on "The history of videotape recording" by J. Roizen at 19.00 at The Royal Institution. Albemarle St., WI.
11th IEETE. - "Electrotechnology in offshore oil fields" by D. S. Townend at 18.00 at the IEE, Savoy PI., WC2.

12th. IEE - Colloquium on "Technological developments in the fabrication of MOS integrated circuits" at Savoy PI., WC2.

15th. IEE - "The NPL reference volt" by C. H. Dix at 17.30 at Savoy Pl., WC2.

16th. IEE - Discussion on "Intelligent instruments". at 17.30 at Savoy Pl.. WC2.

17th. IEE - "Engineering for biomedical research" by D. Rothwell at 17.30 at Savoy Pl.. WC2.

18th. IEE - Colloquium on "Review of digital signal processing"' at 9.30 at Savoy Pl., WC2.

18th. IEE - "The development of the Doppler microwave landing system" by K. Kelly at 18.30 at Savoy PI., WC2.

30th. IEE - "Electronics in crime prevention" by G. Phillips at 14.30 at Savoy Pl., WC2.

31st. IEE - "Electronics in crime prevention" by G. Phillips at 14.30 at Savoy PI. WC2.

ARBORFIELD

4th. IERE - "Terotechnology" by H. Lukes at I9.30 at the Lecture Theatre, School of Electronic Engineering, R.E.M.E., Arborfield.

BELFAST

2nd. IERE - Discussion on "The role of the engineer in society" at 19.00 at Cregagh Technical College, Montgomery Road.

BIRMINGHAM

10th. RTS - "Optical fibre communications" by M. R. Mathews at 19.00 at the ATV Centre, Broad Street, Birmingham 1.

BLANDFORD

2nd. IERE - "Opto-electronics - illuminating the future" by R. J. Abraham at 18.30 at School of Signals, Blandford Camp.

BOURNEMOUTH

3rd. IEE - "Microprocessor technique" by R. Savage at 19.30 at Durlston Court Hotel.

11th. IEE - A Christmas lecture on "Computers and users" by Peter Clarke at the College of Technology, Lansdowne.

BRISTOL

1st. IEE/IERE - "Open University technology courses - an outsider's view" by Dr S. L. Hurst at 18.00 at Queens Building, Bristol University.

CAMBRIDGE

llth. IEE - One-day seminar on "Unexpected inter-action in electronic equipment" at 10.00 at the University Engineering Dept., Trumpington St.

CARDIFF

10th. IERE/I.Phys. - "Solar energy and its applications" by B. J. Brinkworth at 18.30 at Room 164, Dept. of Chemistry, UWIST.

CHELMSFORD

10th. IERE - "Teletext - information display on the home television receiver" by P. L. Mothersole at 18.30 at the Civic Centre.

COLCHESTER

4th. IEE - "Machine - master or slave of man?" by Prof. M. W. Thring at 18.30 at University of Essex, Wivenhoe Park.

COVENTRY

3rd. IEE - "Computer numerical control of machine tools" by K. W. Norman and I. W. Smith at 18.30 at Lanchester Polytechnic.

DUBLIN

10th. IEE - "The Institution and the future of the Irish branch" by J. L. Dobie at 18.00 at the Physics Theatre, Trinity College.

GLOUCESTER

10th. IEE - "Colour TV - a popular approach" by G. D. Barnes at 19.30 at CEGB Barnwood.

GUILDFORD

10th. IERE - "Aspects of v.h.f. reception" by R. S. Broom at 19.00 at Lecture Theatre ' F '. University of Surrey.

LEEDS

9th. IEE - "Automobile electronics" at 18.30 at Leeds University.

16th. IEE - "Computers and communications, convergence or conflict" by J. R. Pollard at 18.30 at Leeds University.

18th. IERE - Colloquium and exhibition on "Microprocessing" at 9.30 at Leeds Polytechnic.

LEICESTER

9th. RTS - "Radio and television interterence problems" by F. C. Ward at 19.30 at The Post House. Braunstone Lane East.

LIVERPOOL

Ist. IEE - "Artificial vision - past. present and prospect" by P. E. K. Donaldson at 18.30 at the Dept. of Electrical Engineering, Liverpool University.

10th. IERE - "Progress in medical instrumentation" by Dr D. W. Hill at 19.00 at the Dept of Electrical Engineering and Electronics. University of Liverpool.

LOUGHBOROUGH

10th. IERE/l.Phys. - "Sector scanning sonar" by" Dr A. R. Pratt at 19.00 at Lecture Theatre W.O.01. Loughborough University of Technology.

MALVERN
8th. IEE - "Electronic aids for detection and prevention of crime" by G. Phillips at 19.30 at the Winter Gardens.

10th. IERE - "Electronics in seismic exploration" by M. J. Hughes at 19.30 at the Foley Arms Hotel.

MANCHESTER

10th. BKSTS/RTS - "Slide and sound versus cine and sound" by L. E. Slater at 19.00 at Preview Theatre, Granada Television.

11th. IEE/IERE - "Communications in oil rigs" at 17.45 at Renold Building, UMIST.

NEWCASTLE-ON-TYNE

1st. IEE - "Microcomputers - control systems application"' by J. Gallacheı, at 18.15 at Rm M421 Merz Court, University of Newcastle-on-Tyne.

9th. IERE - 'Practical uses of pattern recognition" by Dr J. R. Parks at 18.00 at YMCA Lecture Theatre. Ellison Place.

PLYMOUTH

11th. IEE - Student papers evening at 19.00 at Plymouth Polytechnic.

SHEFFIELD

11th. IEE - Faraday lecture on "The entertain. ing electron" by F. H. Steele at $10.30,14.30$ and 19.30 at the City Hall.

SOUTHAMPTON

3rd. IERE/IEE - "Impact of behaviour science in management" by P. Sadler at 18.30 at Southampton Technical College.

STONE, Staffs

8th. IERE/IEE/IPOEE - "My dear Watson" by G. Phillips at 19.00 at the P.O. Training Centre.

SWANSEA

11th. IEE - "Technology aids the police" by G. Phillips at 18.15 at University College of Swansea.

Tickets are required for some meetings: readers are advised therefore to communicate with the society concerned.

Quarter million "Foundations"

With the ninth edition of M. G. Scroggie's "Foundations of Wireless and Electronics" this famous book, from which many engineers have received their grounding in our subject, will have sold a quarter of a million copies. Since it was first published in 1936 the book has been closely associated with Wireless World because its author has been a much valued contributor to the journal for the whole of this period (indeed over 50 years) under his own name and as "Cathode Ray",

To commemorate the occasion the publishers of "Foundations", NewnesButterworths, have produced two handsome crimson leather-bound gold-embossed copies of the ninth edition. One of these has been presented to the author and the other, autographed by M. G. Scroggie, is to be the prize in a competition open to all buyers of the new edition, just out. Competitors are invited to write an explanation of "why Scroggie's Foundations of Wireless and Electronics is so popular". Details of the competition are given on leaflets inside copies of the new edition.

" A " level electronics

A conference on the pilot " A " level course in electronic systems was recently held at City University by the National Electronics Council in association with the IERE, the IEE, and the Institute of Physics. The course is not intended to be vocational training and will not replace the existing maths and physics courses. "Systems" is the area of interest, in its widest sense, and one gains the impression that electronics is used as an illustration of computer, communication and feedback systems, encountered in any sphere of living, be it biological, mechanical or, one imagines, political and social. Each type of system can be treated as a unit, and taught separately and the course material includes a selection of lecture notes and experimental hardware (an ingenious breadboard particularly caught the eye) designed by a team at the University of Essex, led by Prof. G. B. B. Chaplin. Speakers at the conference included two teachers, G. F. Bevis (Richard Taunton College) and D. Thompson (Welbeck College) who were loud in their praise of the course material, Mr Thompson being particularly encouraging to those teachers present who looked upon electronics with trepidation; he himself, he explained, was until a couple of years ago more at home with a rugby football than an integrated circuit.

IEE's '"Factual Salary Survey'

The Council of the Institution of Electrical Engineers, at its meeting on October 2, 1975, endorsed the recommendation of its newly formed Professional Services Board, to undertake a "Factual Salary Survey" beginning January 2, 1976, with the results being produced about six weeks later. The IEE thinks that a survey of this nature is both timely and vital in view of the present inflationary situation and the $£ 6$ per week maximum pay increase. The
normal questions of age, qualifications, grade of membership and field of employment will be supplemented by questions covering the employment status of IEE members; number employed/unemployed at the beginning of January 1976; number of weeks/months employment during 1975 and if while unemployed the engineer was advised to take part in a government retraining scheme.

TV by tropo-scatter

A television programme has been successfully transmitted via a troposcatter communication system across the Mediterranean from Crete in Greece to Dernah in Libya. The $320-\mathrm{km}$ system is capable of transmitting one monochrome television channel and 300 telephone channels. Transmission of television via a long-distance tropo-scatter system has been considered almost impossible due to deep selective fading characteristics in tropo-scatter propagation. Nippon Electric Company has developed a quadruple i.f. combining system to overcome this drawback. The trans-Mediterranean system is connected at Dernah to the border-toborder microwave system, completed by NEC in 1974 , running along the Mediterranean Sea from Bengardane in Tunisia to Musaid near the Egyptian border. It will be further linked to microwave systems now being built by NEC in Algeria and Egypt to form a pan-African communications network. The newly completed tropo-scatter system linking Greece and Libya is expected to contribute to the development and furthering of friendly relations between the two countries.

Royal president for IERE

In its 50th year of existence (see News, Oct.) the Institution of Electronic and Radio Engineers has installed as its president a member of the Royal Family, the Duke of Kent. At the end of a wide-ranging presidential address on the applications of electronics, including a look into the future, the Duke sounded a warning about "inherent dangers" to personal liberty in the use of electronic systems for management: ". . . it will be our task, together with the planners of management systems, to ensure that the privacy of the individual is preserved, that he or she is not reduced to the status of a 'human terminal' in a central management complex. I see great strides in the whole field of 'management' by the electronic devices in the future but I hope also to see an industry profoundly concerned with ensuring preservation of the essential human liberties. The almost limitless
scope for extending 'management by electronics' must be accompanied by rigorous safeguards against deliberate or accidental abuse.'

The Duke's cousin Charles, Prince of Wales, has just been made an Honorary Fellow of the IERE.

Facsimile future forecast

"Facsimile transmission over ordinary telephone lines will be much more useful and will play a much more important part in the office of the future than was previously thought. Picture telephones and other video facilities, in which executives can see the person at the other end of the line, do improve the quality of judgments made but they require very expensive telecommuncations links and the extra cost is not justified by the degree of improvement obtained." These are two of the main conclusions of a new research report on the use of telephone facsimile in business which was published at the beginning of October.

The report "Telephone facsimile for business" which is a new and enlarged edition of one published early in 1973, finds that the changes in equipment and practice in the last two or three years have been more substantial than those

To meet increasing demands on telecommunications between the UK and Europe, the Post Office have built a new radio tower to replace the existing guyed mast and tower at their radio relay station near Folkestone. Concrete was chosen as the most suitable material for the 42 m high main structure of this 64 m high tower.

that had occurred in the previous decade. This means that they have been very substantial indeed because the earlier developments converted facsimile from an expensive, specialised tool suitable only for sending very urgent information such as news photographs and weather charts into a simple, inexpensive one suitable for use on the executive desk of the smallest business. The report costs $£ 29$ and is available from Ronald Brown, FREEPOST, Stoke-sub-Hamdon, Somerset TA14 6BR.

Advance in i.c. fabrication

A major advance in the fabrication of integrated circuits has been claimed at Bell Telephone Laboratories by the development of an "electron beam exposure system" known as EBES. By using a beam of electrons to generate the microscopic patterns from which integrated circuits are manufactured, EBES can produce integrated circuit master pattern masks faster, more reliably, with fewer defects and at lower cost than masks made by existing photographic systems. Because electrons have a smaller equivalent wavelength than light, a much "sharper" writing beam can be generated for use in the mask-making process. Circuit design instructions on magnetic tape are fed into the EBES computer which controls both the electron beam and the movable stage on which the mask blank is mounted so that the writing operation is entirely automatic.

Microcircuit copyright lawsuit

General Instrument Microelectronics Ltd have instituted proceedings against the Plessey Company Ltd and their subsidiary LSI (Electronic Systems) Ltd alleging copyright infringement and breach of confidence.

The proceedings stem from Plessey's introduction of certain m.o.s. integrated circuits which GIM claim were copied from their designs. General Microelectronics also assert that Plessey improperly obtained process and design information from several of GIM's former employees.

The first hearing of GIM's application for a temporary injunction restraining Plessey from marketing the microcircuits was heard in the High Court of Justice Chancery Division on October 10,1975 . The circuits in question are Plessey's MP9100 push-button telephone dialler, MP9200 repertory telephone dialler store and MP1013A UAR/T which GIM claim were improperly derived from their AY-5-9100, AY-5-9200, AY-5-1013A respectively.

NRDC wants more proposals

Despite the pressures of increased expenditure, interest charges and operating costs, a surplus of $£ 845,000$ is recorded by the National Research Development Corporation in its 26th Annual Report published on October 9.

At Mullard Research Laboratories near Redhill, Surrey, a data communication network has been built which shares the computing power among a number of users distributed within a laboratory building. The results of one experiment can then be used in setting up the next with no need to provide expensive intermediate storage.

The achievement of this surplus emphasizes the present health of the Corporation. Interest charges of $£ 1.12 \mathrm{M}$ have been paid to the Department of Industry, the Corporation's interest relief grant having again been reduced this year to $£ 0.43 \mathrm{M}$.

The effects of the generally depressed state of British industry have inevitably been reflected in the Corporation's development activities during the year ended March 31, 1975. Expenditure on development rose to $£ 3.17 \mathrm{M}$ (compared with $£ 2.49 \mathrm{M}$ last year) but amounts authorized for investment fell from $£ 5.21 \mathrm{M}$ to $£ 4.30 \mathrm{M}$. NRDC state that "Although we can appreciate that companies are reluctant, in the present financial climate, to embark on new development activities, the Corporation is concerned that it is not receiving more proposals for substantial projects involving an appropriate degree of technological innovation."

Component giants integrate

From November 1, 1975 responsibility for all UK Signetics sales operations will be undertaken by Mullard Ltd. This follows the acquisition of the Signetics Corporation by the United States Philips Trust earlier this year. From the beginning of November the entire Signetics range of digital and linear integrated circuits became part of the range of solid-state devices available from Mullard. This includes the recently announced Signetics 2650 microprocessor and the Mullard LOCMOS 4000 series of digital integrated circuits.

Sales of all Signetics i.cs will be the responsibility of a new integrated circuit marketing group being set up within Mullard which will not only be concerned with Signetics products but also with the maintenance and expansion of the sales of all other Mullard industrial i.cs.

According to Bill Everden, general manager of the Mullard Data Processing Division with overall responsibility for the Signetics operation "Under no circumstances do we intend to cause Signetics customers any concern whatsoever. . . . Basically all it means is that instead of contacting the Penge office they will now deal with the same team based in Mullard House."

Indonesian television update

New transmitters, film and processing equipment for the Republic of Indonesia's television authority and radio communications equipment for use by its radio broadcasting authority will be part of an ambitious scheme to expand and update Indonesia's television and broadcasting system. Transmitters and
antennas are to be installed at six of the television authority's stations on the islands of Java and Madura as part of a plan to ensure that the majority of inhabitants of the two islands will be able to receive television programmes. At the eastern end of Java, Surabaya, an important city and port, will have its television station's existing low power transmitters replaced by a pair of 10 kW v.h.f. transmitters which will radiate more than 100 kW of power. Surabaya will then feed three relay stations each supplied with a pair of 1 kW v.h.f. transmitters.

The contract for this work has been awarded to Marconi Communication Systems Ltd who will supply the v.h.f. television transmitters. These are selfcontained and from their B7103 series of i.f. modulated equipment. Modulation at i.f. has several potential advantages, paramount amongst these being the possibility of applying at i.f. corrections which are asymmetrical about the vision carrier. Emphasis in the design of the series has been placed on the need to reduce the number of valves to a minimum in order to obtain the sort of reliability which is associated with high grade solid-state devices.

Holographic videodisc

The fifth method of recording video signals on disc (and the first from Japan) has been announced by Hitachi. The recording method is holographic, each frame of the television picture being concentrated in a 1 mm diameter hologram on a 12 in disc. All three pieces of television information - chrominance, luminance and sound - are superimposed in one hologram, and are "read out" by one laser beam inspected at three different angles. The disc spins at only 6 r.p.m. and can contain 54,000 frames - enough information for 30 minutes playing time in the NTSC standard. This seems to be a playbackonly machine and will depend for its success on the supply of programme material. We hope to give more information in a future issue.

Broadcasting for Pakistan villages

Isolated village communities throughout Pakistan are to be provided with news, entertainment and educational programmes broadcast in their own dialect. The low powered broadcasting equipment to be supplied consists of small, self-contained community radio stations, simple to operate and totally self-sufficient in power supply. Until now, many remote country villages in Pakistan have been without any form of radio broadcast communications. The national radio programmes of the Pakistan Broadcasting Corporation

Position Location Reporting System seen in use here was developed for the US Marine Corps by Hughes Aircraft Company's ground systems group at Fullerton, California. The set, which weighs 15 pounds, continuously and automatically exchanges information with a master unit back at the command post.
could not reach these isolated districts because there was no mains power supply nor any suitable landlines to transmit a programme. The "Village Broadcaster" supplied by Standard Telephones and Cables Pty. is a fully duplicated radio station with two 25 kVA diesel generators, two transmitters and two sets of studio desks plus ancillary equipment. Depending on the terrain, a range of 8 to 12 kilometres radius with good quality reception is expected. The contract is part of the Australian Government's aid programme to Pakistan.

Well oiled

An advanced remote control and monitoring system to link Burmah Oil Developments' giant $£ 3000 \mathrm{M}$ Thistle "A" drilling platform with the towing and laying vessels during the platform's deployment in the Thistle field is to use a radio communications link between the platform and support vessel during tow out. A cable link will be used as well during the deployment phase. Governing the operation will be the transmission of 150 control signals and the monitoring of over 40 analogue levels and more than 240 indications of platform status. The system, developed by EM1, also includes a unit for attitude measurement during the turnover manoeuvre and an acoustic measuring system for checking leg-to-sea-bed distances during the final touch-down phase. There is complete duplication of the encoding/decoding and radio equipment, with automatic changeover
to achieve maximum reliability. Using a 13 ft model of the platform, EMI is undertaking extensive tests at its Feltham laboratories which are designed to simulate the radiation patterns that will be encountered. Similarly the entire system will be subjected to full environmental testing with vibration and temperature cycling prior to delivery.

Briefly

5th Salon International "Audiovisuel et Communication." This will be held in Paris from January 24 to 30 , 1977. In addition to professional and semi-professional equipment and systems, the Salon will present for the first time "light audiovisual systems". These are intended for a wide public but are of quality suitable for, among other applications, teaching, training, information and commercial promotion.

British radio helps conquer Everest. A Hacker Super Sovereign, RP75MB five-waveband radio was chosen by Chris Bonnington's successful British Everest expedition as its principal portable broadcast receiver.

Computer's Esperanto. Texas Instruments has announced a new micro/ minicomputer family with the capability of operating with the same software language throughout, from a microp:ocessor chip up to the full-size minicomputer.

Current dumping audio amplifier

Output power transistors' non-linearity amplifier transfer characteristic

does not appear in

by P. J. Walker

Acoustical Manufacturing Co. Ltd.

Abstract

If Harold Black did not actually invent negative feedback, he was certainly the first to show a. comprehensive understanding of the subject in his famous patent of 1937. Nine years earlier he took out a patent on feed-forward error correction'. Relatively small variations on this nearly 50 year old concept have led to the development of a new type of audio output circuit with attractive properties. The circuit was the subject of a paper presented to the 50th convention of the A.E.S. by M. P. Albinson and the writer earlier this year.

An audio power amplifier is required to produce an output signal that differs from the input signal in magnitude only It must therefore have occurred to every circuit designer that it should be a simple matter to take a portion of the output, compare it with the input to derive an error signal. It is then only necessary to amplify this error signal and add it to the output in the correct amplitude and phase to cancel completely the distortion of the primary amplifier. Of course, one is left with distortion of the error amplifier but being of very low power this can be made negligibly small without much difficulty.
There is a special appeal in feed forward error correction for transistor power circuits. Because of thermal limitations, the output transistors in the majority of audio amplifiers operate in
class B, in which alternate output transistors handle the negative and positive signal excursions. The output transistors are carefully biased to obtain a reasonably smooth transition from one to the other. If the bias is insufficient there will be a discontinuity in the transfer characteristic. If the bias is too great, there will be a region of overlap when the mutual conductance will be doubled. The curvature of the characteristic near cut-off precludes there being a perfect bias condition and this is further aggravated by the fact that the junction temperature and hence the bias is a varying factor depending upon both the long term and immediate past history of the programme dynamics. A compromise is

Fig. 1. Basic circuit parameters.

selected and overall feedback is applied to obtain an acceptably linear characteristic. Excellent amplifiers have been produced along these lines. Nevertheless, whereas feedback reduces distortion to a small and no doubt negligible amount, feed-forward carries the promise of reducing to zero the distortion of that part of the amplifier over which it is applied. If this is the class B stage, then not only does the distortion itself disappear but all the paraphernalia of quiescent current adjustment and thermal tracking disappears with it
Feed-forward has only really flourished in areas where stability problems prohibit the use of feedback ${ }^{2}$. In the field of domestic audio amplifiers, it has failed to fire the imagination of all but a few ${ }^{3}$; presumably due to the extra complications and the undoubted practical problems of adding the error channel to the main 'stiff' output in an elegant manner.
If feed-forward is applied within the loop of a feedback amplifier, its stability advantage is necessarily forfeit. Nevertheless, in return, the need for a separate error amplifier can disappear and mutual loading problems disappear with it. A circuit developed on these lines carries an error component bypassing the main output transistors and so largely releasing them of linearity requirements. This technique has become known as 'current dumping' since this is descriptive of the rather mundane functions they are called upon to perform.
The basis of the new approach is shown in Fig. I. Amplifier A is a small class A amplifier capable of providing the total required output voltage swing but with limited output current capability. Tr_{1} and Tr_{2} are current dumping transistors which supply the major part of the load current.

It will help in visualising the operation if the impedances are assumed to be resistors of values $Z_{1}=1 \mathrm{k}$ ohm; $Z_{2}=100 \mathrm{k}$ ohm; $Z_{3}=100 \mathrm{ohm}$; and $Z_{4}=1$ ohm. In the interest of simplicity we have assumed Z_{4} to be negligibly small compared to Z_{1}, and for the time being we will assume that the voltage output of amplifier \mathbf{A} is completely defined by the external impedances.

With Tr_{1} and Tr_{2} turned off, amplifier A will deliver current to the load via Z_{3}. The current with the values suggested will be $1.01 \mathrm{amps} /$ volt because the second term in the brackets is zero (no I_{4} current from the dumpers). When half a volt or thereabouts appears across Z_{3} one or other of the dumpers Tr_{1} or Tr_{2} will begin to turn on and pass some current I_{4} into the load. We have selected resistor values such that $Z_{4} Z_{2} / Z_{1} Z_{3}$ is unity so that the second term in the expression for the I_{3} current is exactly equal and opposite to I_{4} (this second term is the feed-forward error correction component). Currents I_{3} and I_{4} add in the load so that no matter what the magnitude of I_{4}, the overall mutual conductance remains constant. We can say that any distortion in Tr_{1} and Tr_{2} produces perturbations in the current I_{4} and since this causes the exactly equal and opposite perturbations in I_{3}, no distortion appears in the load.
Tr_{1} and Tr_{2} have only one function to perform and that is to dump current into the load sufficiently accurately and sufficiently fast to come to the rescue of the class A amplifier and prevent it from overloading. If this is achieved then the class A amplifier, although it may have considerable gymnastics to perform, will be in complete control of the load current at all times.
Fig. 1 does not look like a practical hi-fi amplifier since its output is constant current and the input is floating relative to the power supply. Nevertheless it is obvious that if the input is returned to the other end of the load all the unique properties of Fig. 1 will still apply though perhaps a little less simple to visualise. This done, we have an amplifier whose output source impedance is Z_{4} and Z_{3} in parallel.

Two further changes are desirable. A practical amplifier is required to have an internal impedance small compared to the load at audio frequencies and stability requires that the internal loop gain falls with frequency. Both these conditions are met by the use of an inductor for Z_{4}, a capacitor for Z_{2} and resistors for Z_{1} and Z_{3}. The requirement for zero distortion from the dumpers is that $Z_{4} Z_{2} / Z_{1} Z_{3}$ is unity at all frequencies of interest. This is achieved if $L=R R C$. Fig. 2 shows the circuit with the modifications carried out. (In order to keep the system operating at all frequencies it is necessary for a resistor in series with the inductor to have a conjugate match with a parallel resistor across the capacitor. This has been omitted for simplicity.)
Fig. 2 begins to look very familiar, in fact just like a conventional amplifier with the biasing removed and a small inductor added. Is this really all that is necessary to produce the perfect amplifier? The answer, of course, is no, not quite; the circuit is over-simplified. We have pushed all the problems back
into the class A stage and whilst the distortion would indeed be zero if the class A stage were perfect, this cannot be completely so in practice. We assumed in our analysis that amplifier A was completely controlled by the external impedances, that it had a perfect virtual earth at its input which implied perfect regulation at its output. The effect of departure from this ideal can be assessed by calculation from a deliberate unbalance of the four component bridge, whether this is due to tolerances of any of the components or to inadequate 'stiffness' at the output of amplifier A. With the values shown in Fig. 2, a 5% error in any component value will produce maximum intermodulation products of around $5 \mu \mathrm{~V}$ at 1 kHz ; maximum possible i.m. of 0.01%, the maximum absolute level of these components being some 140dB below full power. Although frequency dependent, it is clear that balance is by no means critical and standard tolerance fixed components can be used without adjusting facilities.

We have said that the dumpers have

Fig. 2. Basic diagram of principal elements.

Fig. 3. Simplified diagram showing
 Class A stage, current dumpers and bridge components.

CLASS A OUTPUT

to be sufficiently fast to come to the rescue of the class A amplifier to prevent its overloading. Clearly they must be sufficiently fast to achieve this over the audio spectrum of the programme. There is, however, nothing whatever to say that they must do so at frequencies outside the audio range provided that steps are taken in the design of the whole amplifier to ensure that any such frequencies that may be present do not embarrass the amplifier performance within the audio range. If the system is properly designed it is possible to use relatively slow devices inherently more rugged than fast devices - and to show in theory and

Fig. 4. Full circuit diagram. Resistor R_{2} is a protective connection provided to ensure earth continuity in the event that $T r_{2}$ and its associated component panel are disconnected from the common earth chassis.

Fig. 5. The Quad 405, a commercial realization of the circuit design.

practice that they will never fail to come to the rescue of the low powered amplifier to any programme. If, however, the criteria are thought to be response to step functions, square waves and other factors not relevant to programme, then of course faster dumpers must be used commensurate with the rise times involved.
Fig. 4 shows a commercial amplifier circuit (the Quad 405) developed along these lines, Fig. 3 being a simplified diagram to indicate the relevant areas. The class A amplifier serves also as the driver for the top dumper. To counter this extra burden, the class A amplifier is a triple to give a very effective virtual earth. The mid frequency distortion of this amplifier measures about 0.005%, a region where slight component nonlinearities etc. tend to deprive such measurements of any true meaning.
An extremely attractive factor of the technique is the complete absence of adjustments or alignment requirements and no thermal problems. Nothing to set up in manufacture and nothing to go out of adjustment during life. One may expect that after several years there will be far less variation, set to set, than is presently realised with most conventional circuits.

References

1. Black. US Pat. 1,686,792. 9th Oct. 1929.
2. Feedforward error control. Wireless World, May 1972, p. 232.
3. Sandman, A. M. Reducing amplifier distortion. Wireless World October 1974, pp.367-371.

For the first fime someone's measured up to

your real need in a measurement system...

True value as reflected in SE digital instrument

SE provide a wide range of instruments, each one providing an outstanding price/performance package. The range includes the most versatile $51 / 2$ decade, high performance multimeter available and runs up to the most accurate portable dc voltmeter in the world with true 0.001% three month stability without recalibration. Instruments in the range feature every facility you could require including autoranging, full programming capability, BCD and printer outputs, and stored display.
SE provide an economic solution to your measurement problem from this twelve instrument range. Send for our literature and find out more about SE value.

Timer/Counters and Frequency Meters.

Six outstanding units, extending from a low-cost general purpose instrument offering 6 decades, frequency, count period, time and ratio to the genuine 500 MHz frequency measurement in the SM 209.
The range also includes the fully automatic SM 205 and the SM 202M with every worthwhile feature to be found in a very high performance general purpose universal counter/timer, in a compact unit.
Find out more about SE instruments - value you can count on.

Dynamic Analysis.

Our SM 2001 Digital Frequency Response Analyser has one competitor. Both equipments offer similar facilities. We're convinced that ours has the edge in performance and convenience. It also costs some $£ 1,500$ less. This is what value is all about-equating performance and convenience with cost. We also provide a range of complementary units to extend the range of usefulness o SM 2001, including frequency extension and modulator/ demodulator units, plotter and computer interfaces. Exceptional value too is our SM 272 Transfer Function Analyser. Capable of processing all but the lowest frequencies, it provides a flexible reliable unit at very low cost indeed.
Find out more about Dynamic Analysis and more about S instruments.

The SE range of digital instruments includes highly sophisticated devices for research and systems use as well as general purpose units for bench and portable operation.

Whatever your application, all SE instruments have the same premium to offer - GUARANTEED VALUE - the optimum interface between quality and price.

For you this means a range of instruments to meet your precise needs - instruments with a stated accuracy that is always attainable - at a sensible price. The SE range of
multimeter, voltmeter, counter/timer, and dynamic analysis instruments provides effective and economic solutions to a wide range of measurement problems.

Send for further information on specification and prices.

...with the first class serviee backup you need.

SE provide a quick reacting service back-up that measures up fully to your requirements, through our calibration/service centres at
Feltham, Nottingham, Wells, Manchester and Glasgow.
Where on-site service is required a service engineer can visit anywhere in England, Wales and Scotland within 48 hours of your call.
Overseas, SE companies and selected agents offer a similar capability.

When you buy SE instruments you get the right price/performance ratio, reliability, ease of operation and first-class after-sales service facility.

Oscillographs, Transducers, Signal Conditioning, Analogue \& Digital Tape Recorders, Multimeters, Voltmeters,
Counters, Dynamic Analysis, Modems, Medical Instrumentation.

SE Labs (EMI) Ltd., Spur Road, Feltham, Middlesex TW14 OTD England. Telephone: 01-890 1186. Telex: 22985.
A member of the EMI Group of companies
International leaders in music, electronics and leisure

Send coupon for details by return.

To: SE Labs (EMI) Ltd.,
Spur Rd., Feltham, Middlesex. TW14 OTD.
Telephone: 01-890 1166 Telex 23995.
Please send me full details of:- \square Dynamic Analysis Capability
\square Digital Multimeters/Voltmeters
\square
Timer/Counters, Frequency MetersInstrument Hire Facilities
\square Please arrange for your applications engineer to contact me
Name/Titite
Company
Address
2-2
Tel. No.

European Sales \& Service

Holland: ANRU B. V., Wijnhaven 80, Rotterdam 1. Phone: 137-395
| Telex: 25175
France: Emitronics, 18, Rue des Bluets, 75011 Paris lle. Phone: 357-58-45,
357-58-46 Telex: OMITEL 68461F ext. 196
Belgium: Régulation-Mesure S.P.R.L., Av R Vandendriessche 73, 1150
Brussels Phone: 771-2020 Telex: 21520 Mereg-Brux
Germany: Kontron Elektronik GMBH, D8051 Eching, Postfach 105.
Phone: (08165) 77-1 Telex: 0526719
Italy: Marconi Italiana, 20135 Milano, via Comelico 3
Phone: 54-65-541/542/543 Telex: 32467
and: Via Adige 39, 00198 Roma, Phone: 861713,863341 Telex 61272
Norway: EMI Norsk A/S., Postboks 42, Korsvoll, Oslo 8. Phone: 23-14-88
Telex 16294 EMIAS
Sweden: EMI (Sweden) Ltd., Svenska AB., Tritonvägen 17, Fack S-171, 19
Solna 1. Phone: 08-730-0060 Telex:10046
Also represented by EMI companies and agents throughout the world.
Enquiry No. 295
Printed in England

Wireless World Teletext decoder

2-The decoder system

by J. F. Daniels*

This article describes the facilities offered by the Wireless World decoder and also covers, in general terms, the methods of installation in a commercial colour receiver. The problems likely to be encountered with such a project are also discussed.

When contemplating the design of a project as complex as this one, there are many factors which have to be considered. For instance, to build a single Teletext decoder with cost and size virtually no object and expensive test equipment available is comparatively easy, but this is of little interest to the home constructor. What is needed is something which can be built relatively cheaply, can be mounted in a small, attractive cabinet, and can be installed and made to work with only the minimum of adjustments, preferably requiring only a cheap multimeter.
This design will fulfil these requirements. This does assume, however, that the unit is constructed without any wiring errors and with no faulty components - in a unit using around 85 i.cs and their interconnexions, there is some room for error!

Not to be too discouraging at such an early stage, however, it should be pointed out that printed circuit boards will be made available, from normal sources, which should eliminate most wiring error problems. Further, digital i.cs tend to be very reliable, in my experience anyway, as long as they are not obtained from one of the sources of unmarked, untested devices. The use of such i.cs in this project must be strongly discouraged, as even if they appear satisfactory on a d.c. test, they may well be out of tolerance on delay time or fan-out, which could have disastrous effects in some parts of the circuit, where correct delay time through i.cs is an important factor.

For the constructor who has access to an oscilloscope, waveform diagrams will be given at various points in the circuit to help those wishing fully to understand the circuit operation.

It is not intended, in this series of articles, to give full constructional details, and the choice of suitable box, and method of mounting p.c.bs etc. is
left to the individual constructor. Details of how the unit may be connected into various types of commercial colour receiver will, however, be fully covered and this should leave only problems of a mechanical nature to the individual.
The cost of the decoder will be in the region of $£ 85$, and although this may seem a great deal of money to pay, people who have seen the resulting display of pages on the TV screen agree that the service is well worth while and has great potential for the future. The Wireless World decoder will be capable of utilising most of the features currently offered by the system, including display in six colours and white, alphanumeric characters, graphic characters, and flashing display. Two circuit options will be described; one which includes both upper and lower case characters, and another, slightly simpler circuit, with upper case characters only - a worthwhile option for cost conscious contructors. The circuit does not include any form of interpolation (character rounding) because it was thought that the extra cost of about £15-20 was not justified in a discretecomponent decoder of this type.

Before going on to describe some problems, which can be encountered when dealing with commercial TV receivers, it is necessary to describe in more detail the performance of the Teletext decoder.

Fig. 1. Suggested front panel layout of the Wireless World Teletext decoder.

Operation

The decoder can be built into a box measuring about $8.5 \times 10.5 \times 2$ in, which is a convenient size to rest on top of a normal domestic TV receiver. The power supply is not included in this box for a number of reasons, some electrical, but mainly to keep down the size and heat dissipation in the decoder unit. Space can usually be found in the cabinet of most domestic TV receivers to take the decoder power supply.

The front panel of the decoder carries two sets of thumbwheel switches, and various other function switches. In the latest version, the function switches take the form of a row of pushbuttons as shown in Fig. 1. The bank of three thumbwheel switches are for magazine and page number selection, the one on the left being for magazine number; the other two for page number tens and units. The bank of four thumbwheel switches are for the selection of timed pages. which may only be transmitted for a one-minute period during each day, and therefore require selection by means of time code and storing, for viewing later. The switches can be set to any given time during a 24 -hour period, and in this mode of operation a page will only be written into the store at the time shown on the thumbwheel switches. It should be pointed out here that at the time of writing, no pages are being transmitted in this manner, although the operation of the circuitry can easily be checked, because all pages carry time coding information. However, a cost saving of the order of $£ 6$ could be made by omitting this facility.

The row of pushbutton switches mainly controls the form of display on the TV screen. The four in the centie are all interlocked, latching pushbuttons, the one of the left is an individuallyoperating, momentary-action type and the right-hand one is individually latching. The "TV" button merely selects the picture on the screen in the normal manner, although the decoder will still be operative and can store pages in the usual way, ready for instant viewing when the "Teletext" button is pushed. The latter merely replaces the picture with the video output of the decoder and, in this mode, all the normal features of Teletext display are available.
The page header contains a continuously changing time indication in the top right-hand corner, but a fixed page number display - the number of the page selected. When a different page is required on the display, the momen-tary-action, left-hand button marked "clear" is pushed. This clears all the information from the display except for the page header row, which then starts "rotating" i.e., reading out all the page headers as they are transmitted until the new page number selected is reached whereupon the new page is read cut into the screen.
The next button is marked "subtitle" and is used to select the "insert" mode of operation. When this button is selected, the TV picture is displayed on the screen until the subtitle page, the number of which has been selected on the thumbwheel switches, is detected, when the subtitle message will be read out in a box inserted in the picture. If a new subtitle, or indeed a continuous stream of different subtitles is trans-
mitted, the displayed subtitles will automatically change as they are transmitted. This may be a very useful facility for the future, as subtitles take up very little transmission time in the Teletext waveform, consisting of only a few rows of information. However, at the present time they are only transmitted in test form.

The operation of the "newsflash" button is somewhat similar to the subtitle button, but with an added facility. After selecting the newsflash page number on the thumbwheel switches, the current newsflash which may have first been transmitted some time ago - is displayed in a box in the TV picture in the normal manner. If, however, the clear button is then pushed, the picture returns to normal, and no data are then displayed until a new newsflash is transmitted, whereupon this is displayed in the usual way in its box. If the cur:ent newsflash is required to be seen again, after pushing the clear button, the newsflash button is simply released and reselected.

The next button, marked "time" brings the time-select thumbwheel switches into operation, when the selected page will only be written into the decoder store during the one-minute period displayed on the thumbwheel switches. This page will then be held in the store until either the clear button is depressed or a different mode of operation is selected. This button is not

Fig. 2. Suggested method of connexion into a domestic colour receiver, using an interface board containing three simple electronic video switches.

interlocked with the other buttons so that time-selected pages can be written into the store while watching a TV programme - possibly for later reading during the commercials! The time selection facility is not operative when subtitle or newsflash buttons are selected.

No facility is provided for superimposing the complete Teletext display.on the picture, as in the author's opinion this gives a meaningless display which makes both the picture and the Teletext display difficult to interpret.

These, then, are the basic facilities offered by the Wireless World decoder. Without doubt, as the Teletext system progresses, more facilities will be offered by the service, and it should not be difficult to add extra facilities to the decoder as required.

Installation

There is really only one satisfactory way to connect the decoder to a domestic colour receiver if all the facilities described earlier are required, and this is shown in Fig. 2. It can be seen from the diagram that there are only four points of connexion into the set: a feed of composite video from the output of the receiver i.f. strip, and feeds of red, green and blue (or possible R-Y, G-Y and $B-Y$) to and from the inputs to the receiver video amplifiers. It is possible that a fifth connexion, from the set's flywheel oscillator, will be required if the set is in use in a low signal area and displays a noisy picture, as this can be used to remove horizontal jitter on the Teletext display caused by the noise on the video signal. However, this possibility will be considered later during the circuit description.
The interface board is a small video switch unit, mounted inside the receiver, fairly close to the video amplifiers, and serves to switch electronically between the picture and the Teletext display, when commanded by either the function switches, or by. "hole-cutting information from the decoder. The design of this unit will vary slightly, depending on the type of receiver used, some sets having, R, G and B feeds to the video amplifiers and others using colour difference signals ($\mathrm{R}-\mathrm{Y}, \mathrm{G}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$). If the facility of putting newsflashes and subtitles in boxes is not required, then this unit could probably be replaced by a three pole change-over relay, controlled solely by the function switches.
This, then, is the only practical way in which a decoder can be installed into an existing TV set, if a coloured display is required and this is the only method that will be described in detail in this series of articles. However. for those who rent a colour set, there is another, somewhat less attractive possibility, shown in Fig. 3. Here, a separate tuner and i.f. strip are used to provide video for the Teletext decoder. The R, G and B outputs of the decoder are then matrixed together, and fed to a u.h.f.
modulator. This in turn feeds the aerial socket of the receiver, which is tuned in to the modulator on an unused channel. This will, of course, only give a monochrome display, but would at least have different shades of grey to represent different transmitted colours.

It is not practical to modulate the decoder display into PAL colour form, partly because of the high cost of a colour coder, but mainly because the results woule be unsatisfactory due to the fact that the bandwidth of the PAL system would be insufficient to cope with the Teletext display waveform.

Data signal

Before starting a description of the decoder block diagram, there are two more important points to be made to prospective constructors. Firstly, there is the question of obtaining a suitably undistorted data signal from the TV receiver.

Distortion of the data waveform can be caused in a number of ways; poor bandwidth or non-linear phase response in the receiver i.f. strip; reflections (ghosting) on the picture, caused either by external multipath interference or aerial mismatching; co-channel interference; and finally noise. All these can cause errors to be made in the data display and, in extreme cases, prevent operation of the decoder at all.

Generally speaking, however, satisfactory results can be expected from the majority of colour sets displaying a ghost-free picture. Noise on the picture, unless of sufficient amplitude to be objectionable, is unlikely to be a problem, as the decoder employs circuits capable of detection and correction of errors caused by noise spikes.

Secondly, the performance of the decoder in the presence of interference in various forms is determined almost solely by the performance of the front end, i.e., the circuitry which separates the data from the video waveform, and converts it into t.t.l.-compatible form. It is proposed to describe first a fairly simple data separator, which is extremely easy to set up and which will be adequate under good reception conditions. This will enable the rest of the digital circuitry to be tested and set up. In a later article a more complex form of data separator will be described which will give an improved performance under adverse signal conditions although it will be rather more difficult to set up initially.

Safety

The most important problem of all is one of safety. If the decoder is to be installed in the manner to be described rather than by using a u.h.f. modulator, as mentioned earlier, then a direct connexion must be made to the receiver chassis, which could under some circumstances be live.

There is only one way to prevent the decoder itself from becoming live, and that is to use a mains isolating trans-

Fig. 3. Alternative arrangements for rented television sets. This has the disadvantage that only a black and white display will be obtained.
former in the mains supply to the TV receiver, and I would strongly recommend this course of action for anyone who does not regularly work with live equipment. If, however. the constructor feels absolutely confident that he can carry out the installation without electrocuting himself, then there are two important points to note. The first is to ensure that the receiver chassis is connected to the neutral side of the mains and not the live - this should be a simple matter of connecting the plug the correct way round but it must be checked with a multimeter. The second is to make sure that the decoder cabinet (if made of metal) or any metallic parts on it such as switches, etc. are not connected to the decoder electrical earth.

A three core mains lead must be used. with the earth connexion taken to the decoder cabinet, if this is made of metal. Probably the best solution, though, is to use a wooden cabinet and ensure that the thumbwheel switches and pushbutton switches are suitably insulated from their electrical contacts. The earth connexion should only be made after the decoder has been tested and set up, as it could create a hazard while actually working on the decoder. Of course, after testing is finished, when the earth is connected, protection is ensured against the decoder box becoming live due to faulty insulation.

Construction

Prototype decoders were constructed on 12×7 in pieces of ordinary Veroboard 0.1 in matrix sheets. There is no reason why this method of construction should not be used, apart from the fact that it is very laborious, and wiring errors can easily be made.

For those who have less time to spare, printed circuits will be available in the form of two large p.c.bs for the digital circuitry, and a smaller p.c.b. for the analogue circuits. The overall size of the
unit has been kept down by splitting up the boards in this way.

The large boards measure $91 / 2 \times 5^{1 / 2} \mathrm{in}$, and are arranged to mount one above the other, spaced about $1 / 2$ in apart. The analogue board measures $51 / 2 \times 3$ in and is spaced $1 / 2$ in above the digital boards. This gives an overall size for the decoder electronics of about $91 / 2 \times 51 / 2 \times$ $11 / 2 i n$. The digital boards, which each hold about 40 i.c.s, are double sided, but for cheapness do not have platedthrough holes. The "plating through" process is carried out by the constructor, using tinned copper wire soldered on both sides of the board.

This simplified block diagram in Fig. 4 shows the main functions contained in the decoder, only the main data paths being shown for simplicity. The heart of the circuit is contained in the clock and line divider blocks, and there are many waveforms from these sources which are distributed to the rest of the circuit blocks. This initial description is only intended as a guide to circuit operation, so that an overall picture can be obtained, before starting a detailed description of each circuit block.

The function of the analogue board is to take the composite wide-band video signal from the receiver i.f. strip, and produce from it t.t.l.-compatible mixed syncs, data, and clock waveforms. The single clock line includes the outputs of two clock generators, one derived from the incoming data, and another freerunning oscillator used during the display time. Switching between the oscillators is achieved by using a waveform from the line divider circuits, which switches from the display oscillator to the "data locked" oscillator during part of the field blanking interval (between lines 10 and 20). The free-running oscillator has a preset frequency adjustment which controls the width of the Teletext display, and is also triggered by a line blanking wavefrom to ensure that it starts up in the same phase at the start of each television line.

Clock and data waveforms from the analogue board are fed to the serial-toparallel converter, which in turn feeds the data latches and the framing-code detector. The output of the framing code detector is used to reset the clock
dividers, and a $\div 8$ clock waveform is in turn used to operate the data latches.

It should be explained at this point that the clock and line dividers perform the dual role of data aquisition and data display dividers, and this constitutes quite a saving in circuit components.

Bits 1-7 from the data latches are fed straight to the inputs of the data store, while all eight bits are fed to the parity checker and Hamming-code corrector. The output of the Hamming corrector consists of bits $2,4,6$ and 8 , suitably corrected in the case of a single error, and also an output which indicates an even number of errors. If an even error is detected during a row address group, then the even error output of the Hamming corrector is used to inhibit any data from being written into the store on this row.
Bits 2, 4, 6 and 8 from the Hamming corrector are fed to the row and page recognition circuitry, and also to the line divider circuits. The line divider circuits count line syncs during the display period, but when data lines are detected during field blanking, the counters are preset to the correct row number, indicated by the Hammingcorrected bits. The five-bit row-address output of the line dividers is fed, together with the six-bit column-ad-
dress output of the clock dividers, to the code convertor circuit. ("Column address' refers to the 40 vertical character columns and "row address" to the 24 horizontal character rows.)
The divider circuits are both arranged so that the data on these eleven wires is correct during both data aquisition and data display, and this obviates the necessity of complicated switching in the address inputs to the store; The code convertor is required for the following reason: the 1024 -bit random-access memories are arranged in a 32×32 matrix which can, of course, be addressed in any of its store positions by a 10 -bit address input. Our display matrix, though, is arranged in a 40×24 pattern as previously described, and this requires an 11 -bit $(6+5)$ code to address each individual position. However, there are many unused positions which can be addressed by the 11-bit code and by a suitable rearrangement of the addresses, the 11-bit code can be reduced to 10 bits, without actually losing any of the 40×24 matrix positions. A simple calculation showing that 40 multiplied by 24 comes to less than 1024 indicates this possibility.

Fig. 4. Teletext decoder simplified block schematic.

The data store consists of seven 1024-bit random-access memories, addressed in parallel - one for each of the seven bits of data. The other input to the store is the read/write input. This input is normally in the read condition, when data already in the store is read out onto the screen, but changes to the write condition during Teletext data lines 17 and 18 , when instructed to do so by the read/write control logic.
The seven-bit output of the data store is fed in parallel to three circuit blocks, as.shown. Alphanumeric characters and graphic characters are generated for each of the 960 display positions on the screen. The control codes decoder decides which will actually be displayed, what colour it should be, and whether or not it ought to be flashing or boxed. It does this by suitable switching in the output control unit, which also blanks control characters.
This, then, is a necessarily brief introduction to the Wireless World. Teletext decoder. In the following articles. detailed descriptions of each of the circuit blocks will be given, with waveform diagrams and explanations where these are relevant. Finally, circuits will be given for various types of "interface" board.
(To be continued)

Applying "'magnetic Ohm's law' to permanent magnets

by P. E. K. Donaldson

Medical Research Council

The entertaining article last year by M. G. Sçroggie in which he replaces the notion of e.m.f. by a counter electric field ("What is e.m.f.?", August 1974 issue) reminded me forcibly of another area in which a motive force is inclined to be consigned to limbo: the application of the "magnetic Ohm's law" to magnetic circuits excited by a permanent magnet. The textbooks follow a well-worn path in defining magnetomotive force as the line integral of a magnetizing force, but then press quickly on to consider a magnetic circuit excited by a coil carrying a current, developing the familiar relation

$$
\text { flux }=\frac{\text { m.m.f. }}{\text { total circuit reluctance }}
$$

which parallels neatly the even more familiar

$$
\text { current }=\frac{\text { e.m.f. }}{\text { total circuit resistance }}
$$

perhaps leaving the student with the notion that m.m.f. is something made only by a coil carrying a current.

What does happen to a magnetic circuit if the electromagnet is replaced by a permanent magnet? Is the "magnetic Ohm's law" model still relevant? The textbooks are maddeningly inexplicit on this point, but seem in general to abandon the notion, switching abruptly to an "ad hoc" graphical solution to find the flux in the permanent magnet case. "Cathode Ray" (Wireless World, February 1973) evidently believes in m.m.f. for permanent magnets, but uses the graphical solution. Another author ${ }^{1}$ states clearly that, in the absence of a wound coil, "the m.m.f. in the circuit is zero," and concludes that a flux is able to exist because the reluctance of the permanent magnet is negative. Now this is perfectly legitimate; it is analogous to looking at the terminals of the dotted box in Fig. 1 and concluding that, since there is a p.d. of 1.4 V between them, and a current of 0.1 A flowing in at the negative terminal and out at the positive, the box must contain a resistance of -14 ohms. But I feel sure it is more useful to think of a real cell as an e.m.f. in series with an internal (positive) resistance, and would like to suggest, in the magnetic case, that it is useful to think of a real permanent magnet as a m.m.f. in series with an internal (positive) reluctance.

Choosing a ceramic magnetic material for the conveniently constant reluctance such materials have, we find for Mullard ${ }^{2}$ Magnadur 1 that the $B-H$ curve cuts the $B=0$ axis at $H=-140 \times 10^{3}$. ampere turns/metre, the $H=0$ axis at $B=210$ milliwebers $/$ metre 2 and is straight between. Plotting this data for a magnet of length $l=3 \mathrm{~cm}$ and a cross-section $A=4 \mathrm{~cm}^{2}$ gives us Fig. 2. If the magnet were to be immersed in a very highly reluctant medium, there can be no flux, $\phi=0$, so the working point is α. Because there is no flux, the "open circuit" magnetic potential difference will give the m.m.f.; in this case 4.2×10^{3} ampere-turns. If the magnet were immersed, in a very high- μ (low-reluctance) medium, the magnet would be short-circuited, there can be no magnetic potential difference, the working point is β and the short-circuit flux is 8.4×10^{-5} webers. The internal reluctance (cf. Fig. 1) is given by
$\frac{\text { open-circuit m.m.f. }}{\text { shart-circuit flux }}=5 \times 10^{7} \frac{\text { ampere-turns }}{\text { weber }}$

Fig. 1 Electrical circuit analogy for a permanent magnet with negative reluctance: the box can be said to contain a resistance of -14 ohms .

Fig. 2 Plot of magnetic flux against magnetic potential difference for a ceramic magnetic material.

These two quantities, m.m.f. and internal reluctance, entirely characterize the magnet.

In general the working point will be between α and β, at some point γ, where $\mathrm{O} \gamma$ is a load line representing the reluctance of the air-gap, pole pieces etc.:

$$
\frac{l_{1}}{\mathrm{~A}_{1} \mu_{1}}+\frac{l_{2}}{\mathrm{~A}_{2} \mu_{2}} \ldots \ldots
$$

The flux is given by

$$
\begin{aligned}
& \frac{\mathrm{m.m.f}}{\text { load reluctance }+ \text { internal reluctance }} \\
& =\frac{4.2 \times 10^{3} \text { ampere-turns }}{\frac{l_{1}}{\mathrm{~A} \mu_{1}}+\frac{l_{2}}{\mathrm{~A}_{2 \mu_{2}}} \ldots+5 \times 10^{7} \frac{\text { ampere-turns }}{\text { weber }}}
\end{aligned}
$$

If the only significant load is an air gap 0.5 cm long and of cross-section $1 \mathrm{~cm}^{2}$, then its reluctance is

$$
\begin{aligned}
\frac{l}{A \mu_{0}}= & \frac{0.5 \times 10^{-2}}{10^{-4} \times 4 \pi \times 10^{-7}}=\frac{1.25}{\pi} \times 10^{8} \\
& =4 \times 10^{7} \frac{\text { ampere-turns }}{\text { weber }}
\end{aligned}
$$

and the flux is
$\frac{4.2 \times 10^{3}}{4 \times 10^{7}+5 \times 10^{7}}=4.7 \times 10^{-5}$ weber or 4,700 "lines" or maxwells.

The distance $\delta \gamma$ is the magnetic potential dropped in the internal reluctance of the magnet, leaving $\gamma \theta$ available for pushing flux through the external load. When the load reluctance is equal to the internal reluctance, γ bisects $\alpha \beta$ and the product $H l, B A$ is maximal. For a given magnet, that is, $l A$ fixed, we have therefore the wellknown (BH) max condition ("Cathode Ray," Wireless World, February 1973, p. 73) for optimum use of the magnetic material. We see that the condition corresponds to conditions for maximum power transfer in the analogous electrical case.

It seems that some useful insights are to be had by pushing the "magnetic Ohm's law" notion into the realm of permanent magnetism. Is there a catch to it, or have I been looking in the wrong books? Oh, and let nobody say that the graphical solution, rather than the simple Ohm's law solution, is necessitated by the fact that, for many permanent magnet materials, the reluctance is not very constant, but is a function of H (or B). The β of a bipolar transistor is not very constant either, being a function of I_{c}. But the concept of β is far too useful to be discarded on that account. And so, it seems to me, are the m.m.f. and internal reluctance of a permanent magnet.

References

1. Bennet, G. A. G., Electricity \& Modern Physics, Edward Arnold, 1971.
2. Mullard Ltd data sheet, Permanent Magnets, March 1971.

TELEVISION TUNER DESIGN

I am writing to advise you and forewarn potential constructors of D. C. Read's television tuner (Oct., Nov., Dec.) that the design, as shown, with the Mullard ELC1043 varicap tuner, will not be suitable for use in those areas served by group C / D or E transmitters. The tuning voltage is derived from an llV line and therefore the varicap tuner cannot be tuned above channel 50 , some 24 V being required to reach channel 68 . Indeed, the values shown for resistors R_{89} to R_{97} inclusive preclude the tuner from being used even on group B, for the potentiometers $\mathrm{R}_{90} \quad \mathrm{R}_{93}$ and R_{96} will allow channels 21 to 26,23 to 29 , and 33 to 40 , respectively, to be tuned. These will be satisfactory for the Crystal Palace transmissions but different component values may be required for some group A or any group B transmitters. A mechanical tuner will be required if' coverage of the whole u.h.f. television spectrum is required.

It would also be helpful if Mr Read could advise which version of the ELCl043 is required, as there have been six versions: the two models in current production, the ELCl043/05 and ELC1043/06, have differing i.f. coil arrangements which may require alteration to the matching components C_{5} and R_{3} to optimise the response shape. I am also advised that early versions of the ELC1043, as are currently available from many discount dealers, had an i.f. output which was not isolated from the 12 V supply, which might result in R_{3} expiring along with the i.f. coil in the tuner.
P. A. Moore,

London E3.

Mr Read replies:

I am indebted to Mr Moore for his timely reminder that television channel numbers and radiated frequencies in use move ever upward towards the limit of Band V and that some changes (even additions) to the tuner circuit published in Part 1 of the article would be
necessary to receive signals from the newer transmitters. To allay Mr Moore's possible suspicion that we who live in the shadow of the Crystal Palace transmitter had forgotten everyone else, I refer him to steps 2 and 11 a of the line-up procedure in Part 4 which deal with this aspect of construction, specifically relating it to a curve (Fig. 21) showing tuning voltage against channel numbers/frequencies for the ELC1043 and ELC 1043/05 modules. Re-stated briefly, the point is made that the published circuit will enable reception up to channel 50 ; for channels 51 to 68 one or two extra zener diodes are needed in the Tr_{20} collector circuit to provide up to 22.5 V for the tuning supply.

At the time of writing it seems that channel 69 is being reserved for the "Fourth Programme" transmissions ready for when (and if) the Government decides on allocation. The highest-numbered channel at present in use is 67 , which is allocated to the IBA transmitter at Henley. In the event that a tuner is required to receive channel 67, and also happens to have an ELC1043 or an ELC1043/05 version with a characteristic at the top of the manufacturer's quoted spread (see Fig. 21), the necessary extra tuning voltage - perhaps 25 V - could be obtained by bypassing the $\mathrm{MC} 7824 \mathrm{CP}\left(\mathrm{IC}_{3}\right)$ regulator and driving the $\operatorname{Tr}_{19} / \operatorname{Tr}_{20}$ circuit directly from the 30 V rail, using an extra zener diode.

Regarding the specific version of the tuner module to be used, I am similarly grateful for the information from Mr Moore, particularly his point about the lack of i.f. output isolation on early models; I had not previously heard of this. In reply, it is simply necessary to say that: (i) as indicated in the parts list (Part 3), the u.h.f. module fitted to the prototype tuners was coded ELC1043, i.e. without suffix numbers; the ELC1043/05 version should be suitable but has yet to be tried; and (ii) if one of the early un-isolated u.h.f. tuners is to be used, the only modification required will be to break the copper track leading from the i.f. output roundel on the board and to bridge the break with a small disc ceramic capacitor (e.g. 2.2nF).

AUDIO AMPLIFIER LOAD SPECIFICATION

Since amplifier specifications rarely call for any "wattless" output capability and since loudspeakers are not required to reflect a purely resistive load, it is not surprising that some amplifiers of excellent paper specification fail to live up to their promise when auditioned.

The situation has deteriorated in recent years because of the indiscriminate use of voltage-dependent current limiting. $V-I$ limiting restricts the amplifier's ability to cope with the
reactive component of the load but it does enable faster output transistors to be safely used, with the implied assumption of a "better" specification.

I would like to suggest that a power amplifier must be capable of providing its full output voltage without exceeding its specified distortion when loaded by $R \pm j X$, where R is the rated load for which the amplifier is designed and X is any value from zero to several times R.

In practice only a single additional measurement is really necessary. Set up the amplifier in the usual way to measure power output and distortion just below clipping into the resistive load R. Then, without changing the input level, a reactance equal to R at the frequency of measurement is added in series with the R. The distortion at the amplifier output terminals should not increase.

The choice of $R \pm j X$ seems to me a reasonable compromise because it is the form of the load of any single movingcoil speaker and it is very representative of the load imposed by the majority of loudspeaker systems. It allows a sensible degree of $V-I$ limiting in the amplifier. (Constant voltage to $R \pm \mathrm{j} X$ implies that the amplifier shall be able to deliver half peak current at zero volts.)

There are a few loudspeakers (our ESL is one) which place a more severe load on the amplifier than their rated impedance implies. However, the prudent loudspeaker designer will only allow this to happen in areas of the frequency band where full power is unlikely to occur on programme.

Meeting the requirement outlined in this letter is no real hardship for amplifier or loudspeaker designer and can result in nothing but better sound for the listener.
P. J. Walker,

Acoustical Mfg. Co. Ltd., Huntingdon.

The following is an invited response to Mr Walker's letter. Other invited comments will be published later.

I applaud Mr Walker's letter as a useful and correct attempt to arrive at a standard to be agreed and achieved by loudspeaker and power amplifier designers. As a target the notion of a load $R \pm \mathrm{j} X$ where the magnitude of X varies from 0 to ∞ is suitable.

However, in the present world loudspeakers tend not to be so well behaved and the amplifier designer is obliged to consider more stringent loads. I would suggest that a power amplifier of rated load impedance R ohms should maintain its performance into loads of $R / 2$ and $R / / \mathrm{j} X$, i.e. $(\mathrm{j} R-X) / X R$. This requires, of course, twice the resistive load current and a zero voltage current sink of rated peak current. This is not of course an ideal state of affairs and is only necessary because monitor quality loudspeakers are not designed to Mr Walker's suggested impedance limits
and do not always exhibit the defects outside the speech band.

In the second paragraph of his letter it is suggested that $V-I$ limiting is a device for enabling fast transistors to be used with reduced reactive power capability. There is an economic factor not made clear; there is no reason for $V-I$ limiting, particularly delayed limiting, to deteriorate the performance of the power amplifier, nor is there any reason why this should preclude the use of fast or slow devices. All that is important is the time nature of the $V-I$ limiting and the $V-I$ co-ordinates used, bearing in mind the loads already discussed. Of course, faster transistors e.g. triple-diffused devices, may need to be used in larger numbers and because they are already more expensive than the rugged single diffused or epi-base parts a given $V-I$ characteristic will cost more with the faster part. Whether or not this actually improves the specification or the performance is too dependent on the circuit and too complicated to discuss here.

How do we propose to achieve this standard?
J. R. Stuart,

Boothroyd/Stuart and Partners,
Cambridge.

ANALOGUE vs DIGITAL READOUT

Your editorial on analogue versus digital measuring instruments in the July issue strikes a chord in my thought which I should like to express. My home laboratory has only analogue meters for d.c. and low frequency a.c.; and with $1-2 \%$ or $3-4 \%$ moving iron types for a.c., and a few 1% d.c. meters, I try to stay that close to true voltages and currents over a fairly wide range. Every five years or so I purchase a (British-made) standard cell and check over my d.c. instruments, assisted by a Wheatstone bridge and sufficient precision resistors to set up a potentiometer. But I am not unaware of the relatively-phenomenal accuracies of the digital multimeters available for a few hundred doliars; in fact, I read all the advertisements, wondering when I will jump that way. What stops me is their evident limited life at their initial accuracy, unless re-calibrated. Decades pass, and my analogue meters (when properly treated) continue to live up to the standard cell checks and other means of calibration I am able to borrow.

What use would it be to me to have a meter that would display impressive rows of digits, when after a year or so it may have drifted way beyond my modest, but dependable, 1%, and thereby require re-calibration to a degree of accuracy entirely out of reach of the home laboratory, budget-wise? And I am not at all anti-digital; my "upstairs" scientific calculator uses reverse Polish logic, while my "downstairs" ditto
employs algebraic logic with two pairs of nested parentheses. I could hardly be happy without both of them, technically. speaking. I would be interested to hear comments from experts on digital multimeters which might help to resolve my doubts.
F. A. B. Smith,

Washington DC,
USA.

CONTROLLING STAGE LIGHTING

I have read with very great interest the letter from Paul M. Hodgson in the October issue on the amateur's problem in using triacs for stage lighting. The points he made on using triacs with T class lamps were extremely relevant and enlightening. However, he is misinformed on the point that these triacs are not available on the British market.

Allen Bennett components Ltd (Orgreave Crescent, Sheffield SI3 9NR) supply a range of triacs up to 50 amps r.m.s. on-state current which are extremely reliable and at a price between $£ 5$ and $£ 10$ each. I have approached the company and have received the assurance that if any bona fide amateur group who are building their own stage lighting equipment would write to the company they are prepared to supply these triacs at a much reduced price. C. D. Naylor,

Sheffield.

ELECTRODYNAMICALLY INDUCED E.M.F.

For those readers who are interested in the continuing discussion of "electrodynamically induced e.m.f." (Letters, Feb., May, July, Sept., Oct. 1975) which was prompted by your earlier two-part series on electricity and magnetism and who would like to augment their general understanding of electromagnetic theory, I would like to recommend the lucid paper by Professor Chen-To Tai entitled, "On the Presentation of Maxwell's Theory" (Proc. IEEE, Aug. 1972).

This important contribution identifies some typical ambiguities found in most textbooks on the subject, explains their origins and resolves them in a scholarly way. However one has become acquainted with electromagnetic theory, Professor Tai's paper is indeed both a necessary and enlightening supplement.
Douglas H. Preis,
Harvard University,
USA.
The continuing controversy concerning electrodynamically induced e.m.f., as expressed by the letters from Dr Smith and Mr Masson in your September 1975 issue, prompts me to refer once again to my relevant correspondence in your

May 1975 issue. This is in broad agreement with Colin Masson's suggestion that only a relativistic consideration is satisfactory; but I must disagree with Mr Masson's statement that the electric field seen from the aeroplane is as real as the earth's magnetic field itself. Such a statement is at variance with one of the two axioms upon which Einstein based the special theory of relativity, namely that uniform and non-rotational velocity of a system cannot be detected within that system, and is in fact meaningless.
In contrast, the first reference of my May 1975 letter postulates relative motion between a conductor and the system within which the conductor e.m.f. is to be detected as a basic requirement for electrodynamic induction of e.m.f. in the conductor. Perhaps "Cathode Ray" will also accept my note of disagreement as being equally valid for his footnote in your September issue, with rotation discounted in the interest of simplicity.
John Gray,
College of Technology,
Belfast.

'THE CONSULTANTS'

We have read with great interest the contribution by Mr Dwyer in the November issue on the subject of consultants.
It is a source of considerable dismay to us that there are several points which can be regarded as little short of gross misrepresentation - not only regarding the activities of our own company, Angus McKenzie Facilities Limited, but also those of several of our highly respected colleagues also mentioned in the article.

One specific source of concern to us is the very superficial discussion of fees, which most unjustly gave the impression that the better established audio consultants charged exorbitant fees, with the sole justification of personal greed for big houses and fast cars! In order to maintain a high standard of instrumentation to avoid Mr Raymond Cooke's true picture of some "consultants with just an Avo with a bent needle", the capital investment involved in a properly organised and equipped audio laboratory runs well into tens of thousands, and the feeblest level of schoolboy accountancy points to the need to amortizing this high level of expenditure. In our own concern, for example, we have had to re-equip with approaching $£ 10,000$ worth of capital gear over the last 12 months in order to keep the standard of our test equipment at least one step ahead of the increasingly more sophisticated products which we are called upon to assess. Our particular rates of charge are by no means rigid and depend upon facilities and personnel required to complete the job of work - the article made no
reference to the fact that as a firm we are not a "one-man-band"; there are indeed six of us regularly employed with extra staff enrolled as necessary for work calling for more hands.

Our second major worry is with regard to the holding of shares in companies in the audio industry. It can hardly be construed as a sin for an investor to have shares in any particular large public company in any industry and the Managing Director, Mr McKenzie, is by no means unique in holding a relatively small proportion of his shares in major electrical companies. The point which Mr McKenzie was endeavouring to put over was that our existence depends entirely upon our being unbiased and being seen to be such and that we are most prepared to disclose any associations financial or otherwise with clients; the same state of affairs we know to be true of others amongst our respected colleagues.

Finally we would request that such an apparently irresponsibly composed article receive closer scrutiny before publication in order to maintain the very high standard and integrity of reporting to which we have previously been accustomed in Wireless World and also to avoid the upset which has been caused to ourselves and undoubtedly to more than a few of our colleagues. A. P. B. Faulkner, Angus McKenzie Facilities Ltd, London, N3.

Mr Dwyer replies:

Consultants seem to find no difficulty in expressing the inestimable advantages of using their services, as Mr McKenzie well knows. Therefore, if I attempt to tell readers what to look out for if they are thinking of employing a consultant, what I have to do is to try to discover the pitfalls. I feel sure that Angus McKenzie, for whom I have the highest regard, would not countenance the design, or even the use, of a digital or analogue system which fed merely the non-errors in the output back to the input, for such a system would be unstable. Yet he is not alone among electronics engineers in being willing to entertain just such an idea in relation to examination of his own activities by the press and others.

As I pointed out in the article, PATS charge about the same as Angus McKenzie Facilities and yet they support a staff of 100 , many of them Ph.Ds, as well as a laboratory and office complex covering several thousand square feet. The capital employed would be many times that employed by Mr McKenzie's company. That part of the article alluded to by Mr Faulkner merely said that consultants who have large houses and expensive cars must be successful, yet they still resent competition from university departments. I find this resentment puzzling, but I said nothing about greed, nor did I mean to imply it.
I had no intention when I started the
article of mentioning anyone's shareholdings, since normally these are are the business of no-one but the person concerned. That is why I did not ask Mr McKenzie about this when I first interviewed him. But in subsequent interviews with others it was put to me that holding shares in a company might prejudice a consultant in favour of pushing the client in the direction of that company's products. I felt I could not write the article without touching on the subject and so I 'phoned Mr McKenzie to ask him about it. I knew that he had in the past been annoyed by remarks he said had been made about 'his shareholdings and thought it a good opportunity to make clear exactly what his position was. The morality of the thing is his concern. I made it clear in the article that he would tell clients of his shareholdings.

With reference to John Dwyer's article "The consultants" in the November issue, it was stated that $B \& W$ employed consultants and as implied I should like to absolutely deny this and would point out that we have a staff of five engineers in the Research and Development Department and the only outside services we call on are for styling and visual design and climatic testing for reliability of components, the two consultants being Pentagram Design Partnership, 61 North Wharf Road, London W2, and Yarsley Research Laboratories Limited, The Street, Ashtead, Surrey.
John Bowers,
B \& W Loudspeakers,
Worthing,
Sussex.

NSULATION TESTERS

Mr King's reply (October Letters) to my letter in the March issue shows he quite missed my point. Far from suggesting that d.c. testing of a.c. circuits was ridiculous, I wanted to imply that the Americans were only just beginning to do it - with this "new product".

I would, however, apologise for using the name "Megger" to describe the instrument illustrated, which still looks to me very like the genuine Megger we have, and which has given yeoman service almost every day for many years. We could not manage without these tests. How could anyone?
J. G. C. Fox,

Royal Postgraduate Medical School, London, WI2.

RAILWAY FAIL-SAFE?

Mr Anderton, in his interesting article on railway electronics (August issue), reproduced an example of supposedly fail-safe circuitry. The design included a traditional two transistor astable, but
did not show any provision for recovering from the stable state in which both transistors are hard on. Such a state can be reached when the power is turned on. The probability of this event depends largely on the match of transistor gains, a parameter which changes with time and temperature.

I hope that human safety does not depend on this circuit.

I would also question the use of high value resistors and capacitors in timing circuits. The $15 \mu F$ unit, which must be a plastic film type if the quoted 5% accuracy is to be maintained, probably costs as much as the other fifty components together, and five times as much as a single integrated circuit which could perform the whole timing function.
David Cockerell,
New York,
USA.

ZENER DIODE LOAD LINE

In the case of a zener-regulated supply, students often have difficulty in relating zener voltage and current to input voltage and output current. The following simple graphical construction clar-

ifies the interrelation between these quantities. From Kirchhoff's law:

$$
V_{s}=V_{z}+\left(I_{z}+I_{L}\right) R_{s}
$$

A load line of slope $-1 / R_{s}$ is drawn through the point $\left(V_{s}-I_{U}\right)$. Its intersection with the zener diode characteristic gives the operating point. It is immediately obvious how changes in V_{s} and I_{L} affect V_{z} and I_{z} N. H. Sabah,

American University of Beirut, Lebanon.

Interference from pocket calculators

Electromagnetic radiation tests on three commercial instruments

by Charles Thomas Ristorcelli
Postgraduate School, US Navy

Abstract

This article reports an investigation into the near field electromagnetic interference caused by pocket calculators. American regulations on permissible levels of interference from port able electronic equipment are reviewed, then the results of measurements on three pocket calculators are presented. Results indicate that near field radiation levels are sufficiently large to make questionable the unrestricted operation of a pocket calculator in an electromagnetically sensitive environment, such as an aircraft flight deck. A simple and inexpensive way of eliminating the interference is suggested.

Electromagnetic interference caused by portable electronic equipment is receiving attention in many circles, including the US Department of Defense, because of the profusion of devices such as calculators, digital test instruments and digital processors which are being used in modern electronic systems. Of particular interest is the possibility of interference to electronic sensors from these devices in electromagnetically sensitive areas such as aircraft flight decks, especially if the operation of a digital device causes r.f. emissions of significant magnitude in the near field. This increased interest is not limited to United States agencies alone, as is demonstrated by the following excerpt:

"A Word To The Wise"

Recent tests by the Canadian Department of Communications have established that handheld calculators cause a degree of interference in a.d.f. signals when the calculator is operated in close proximity to the a.d.f. antennas. It is not necessary that operations be performed on the calculator, only that the calculator be turned on.
Pilots should be aware of this and use a.d.f. indications cautiously when handheld electronic calculators are being used in the cockpit."

The only US government regulation establishing permissible e.m. interference levels for pocket calculators is expressed in Article 15.7. (c) of the Rules and Regulations of the Federal Communications Commission:
"That in any event the total electromagnetic field produced at any point distance of $157,000 / f(\mathrm{kHz})$ (equivalent to $\lambda / 2 \pi$) from the apparatus shall not exceed 15 microvolts per meter."

This regulation is applicable to all
"miscellaneous" electronic equipment, that is, equipment not specifically designed for the purpose of radiation of electromagnetic energy.
Another American organization which establishes guidelines pertaining to r.f. emission from portable electronic equipment, with emphasis on equipment to be used aboard aircraft, is the Radio Technical Commission for Aeronautics at Washington. DC.* The following excerpt from a RTCA report emphasizes the nature of the problem:
"Unfortunately, detailed factual data upon which to base precise limits for the levels of r.f. energy which can be permitted to radiate from portable equipment are not available. However, safety considerations and general experience with r.f. interference problems indicate that the levels of radiated r.f. energy from portable electronic devices should be at least $6 \mathrm{~d} \beta$ below those which cause malfunction of airborne electronic equipment during the tests conducted by the FAA. On this basis, the maximum level of permissible r.f. energy emission from any portable electronic device operated aboard aircraft in flight should not exceed the following values within the frequency bands indicated:
Frequency
Maximum emission
110 kHz
$3.5 \mu \mathrm{~V} / \mathrm{m}$ at 64 cm
$350 \mathrm{kHz} \quad 1.8 \mu \mathrm{~V} / \mathrm{m}$ at 64 cm
$1750 \mathrm{kHz} \quad 1.7 \mu \mathrm{~V} / \mathrm{m}$ at 64 cm
$10.0 \mathrm{MHz} \quad 1.15 \mu \mathrm{~V} / \mathrm{m}$ at 64 cm
$18.0 \mathrm{MHz} \quad 0.63 \mu \mathrm{~V} / \mathrm{m}$ at $64 \mathrm{~cm}^{\prime \prime}$
Theory. The following derivation from classical electromagnetic theory is provided as a mathematical basis for understanding the terms "near field" and "far field" in these studies.

[^3]For an elementary electric dipole of vanishingly small length relative to the wavelength λ of its conducted current, the electric field at an observation point $P_{(X, Y, Z)}$ in the spherical co-ordinate system, as a function of angular displacement θ from the z axis, is given by Fig. 1(a):

$$
\begin{gathered}
\left.E_{y}=-\frac{I d B_{0}{ }^{2}}{2 \pi} \sqrt{\frac{\mu}{\epsilon}} \sin \theta \right\rvert\, \frac{1}{j B_{0} r}+\frac{1}{\left(j B_{0} r\right)^{2}} \\
\left.+\frac{1}{\left(j B_{0} r\right)^{3}} \right\rvert\, e^{-\mathrm{j} B_{0} r}
\end{gathered}
$$

where: $I=$ conducted current; $B_{o}=$ free space phase constant; $d={ }^{\circ}$ dipole length; $\mu=$ permeability of free space; $\dot{\epsilon}=$ permittivity of free space; and $r \neq$ radial distance from dipole centre.
For the case where $B_{o} r \ll 1$ the expression given above may be simplified to read:

$$
E_{\psi}=-\frac{I d B_{0}{ }^{2}}{2 \pi} \sqrt{\frac{\mu}{\epsilon}} \sin \theta\left|\frac{1}{\left(\mathrm{jB} B_{0} r\right)^{3}}\right| \mathrm{e}^{-\mathrm{j} \mathrm{~B}_{0} r(1)}
$$

whereas for the case $\left(B_{o} r\right) \gg 1$ a similar simplification yields:

$$
\begin{equation*}
E_{\mathrm{k}}=-\frac{I d B_{0}{ }^{2}}{2 \mu} \sqrt{\frac{\mu}{\epsilon}} \sin \theta\left|\frac{1}{\left(j B_{0} r\right)}\right| e^{-j B_{0} r} \tag{2}
\end{equation*}
$$

Expressions (1) and (2) are commonly considered the near field and far field electromagnetic radiation terms, respectively. Similar derivations for all other electromagnetic field components are possible.

Consider the ratio

$$
\frac{E_{\theta \text { near field }}}{E_{\theta \text { far field }}}=\frac{1}{B_{0}^{2} r^{2}}=\frac{1}{\mu \epsilon \omega^{2} r^{2}}
$$

where $\omega=2 \pi f$. If a unity value for the above ratio is chosen as a convenient indicator of the radial distance r at
which a crossover between the near field and far field radiation components applies, then r may be expressed as

$$
\begin{equation*}
r=\frac{\lambda}{2 \pi} \tag{3}
\end{equation*}
$$

The ratio given by expression (3) is the radial distance chosen by the FCC in establishing the permissible interference levels described by article 15.7.(c) of FCC regulations.
The emphasis in this investigation was to determine the interference levels from near field measurements during the operation of three different portable calculators. The models chosen were two Texas Instruments SR-50 calculators and one Hewlett-Packard HP-45. The reasons for choosing these calculators were their availability, and the fact that their light emitting diode displays are blanked during the performance of certain calculations. The desirability of this feature will be explained later.
Two possible sources of electromagnetic interference believed associated with the operation of a pocket calculator are: strobing of data into the l.e.d. display; and digital switching operations associated with the streams of pulses found in all operating digital devices. The digital switching operations are believed to provide the broadband r.f. emissions when the calculator is in operation. If streams of symmetrical pulses such as shown in Fig. l(b) are assumed in these switching operations, Fourier analysis of the waveform leads to the following Fourier coefficients in frequency domain:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{k}}= & \sum_{k=-\infty}^{=+\infty} \frac{V}{\pi k} \sin \frac{k \omega_{0}(a)}{2} ; \\
& (k=0, \pm 1, \pm 2, \ldots)
\end{aligned}
$$

Measurement procedures. The measurements in this investigation were performed according to the method suggested by RTCA, except that a radio frequency interference meter type AN/PRM-1 (A) was substituted for the 390 -ohm terminated valve-voltmeter suggested by RTCA (Fig. 1(c)). The frequencies of interest are those in the $110-1750 \mathrm{kHz}$ band because of their importance to long range navigation systems.

The measurements obtained have been examined with the following questions in mind:

- Can the calculator's emission of e.m. interference be attributed principally to the l.e.d. display strobing, or to the internal processing? It was consideration of this question that made the chosen calculators desirable, because while the devices perform certain mathematical functions such as the determination of large factorials the l.e.d. display remains blanked, allowing
measurement of interference levels associated with the internal processing.
- Can unusual r.f. emission patterns be detected during performance of certain calculator functions?

Is there a difference between the levels of interference from the two makes of calculator which may indicate certain construction features preferable in order to eliminate, or reduce, electromagnetic radiation?

Operating modes. The calculator operating modes used to measure their interference levels as indicated in the graphs and tables are defined as:

Display. The constant pi (3.141592654) was displayed, providing measurement of emitted r.f. energy when l.e.d. display data strobing was in progress.

Undefined. Division by zero was performed to provide measurement of r.f. energy emitted with a pulsating display.

These coefficients may be associated with the power spectrum of the pulse stream. If we assume a fundamental frequency of 100 kHz for the calculator functions, the broadband nature of the possible radiated interference is immediately apparent.

Fig. 2. Interference from Texas Instruments SR-50(A) calculator at various frequencies: (left) H -field radiation in mV / m; (above) E-field radiation in $\mu V / m$. Letters D, U and F identifying the plotted points are explained in the text.

Table 1: H-field interference levels from three calculators ($\mu \mathrm{V} / \mathrm{m}$ at $\mathbf{6 4 c m}$). Operating modes: D - display, U - undefined, F - factorial

	Texas Instruments SR-50 (A)				Texas Instruments SR-50 (B)				Hewlett-Packard HP-45			
	operating mode				operating mode				operating mode			
frequency (MHz)	ambient noise ($\mu \mathrm{V} / \mathrm{m}$)	$\begin{gathered} \mathrm{D} \\ (\mu \mathbf{V} / \mathbf{m}) \end{gathered}$	$\begin{gathered} \mathbf{U} \\ (\mu \mathbf{V} / \mathbf{m}) \end{gathered}$	$\begin{gathered} \mathbf{F} \\ (\mu \mathbf{V} / \mathbf{m}) \end{gathered}$	ambient noise $(\mathrm{r} V / \mathrm{m})$	$\begin{gathered} D \\ (\mu V / m) \end{gathered}$	$\begin{gathered} U \\ (\mu V / m) \end{gathered}$	$\begin{gathered} F \\ (\mu \mathbf{V} / \mathbf{m}) \end{gathered}$	$\begin{gathered} \text { ambient } \\ \text { noise } \\ (\mu V / m) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{D} \\ (\mu \mathrm{~V} / \mathrm{m}) \end{gathered}$	$\underset{(\mu V / m)}{U}$	$\begin{gathered} \mathbf{F} \\ (\mu \mathbf{V} / \mathbf{m}) \end{gathered}$
0.160	62.0	750.0	750.0	750.0	90.0	240.0	300.0	310.0	135.0	9000.0	1050.0	1050.0
0.200	60.0	1500.0	1500.0	1500.0	90.0	450.0	630.0	510.0	120.0	2700.0	585.0	150.0
0.240	90.0	750.0	750.0	750.0	900	150.0	300.0	210.0	90.0	600.0	420.0	420.0
0.280	75.0	600.0	600.0	600.0	60.0	600	110.0	60.0	90.0	2100.0	360.0	120.0
0.300	75.0	360.0	360.0	360.0	70.0	240.0	300.0	210.0	60.0	3000.0	2250	90.0 60.0
0.320	60.0	225.0	225.0	225.0	30.0	30.0	60.0	100.0	45.0	600.0	150.0	60.0 240.0
0.340	60.0	150.0	150.0	150.0	45.0	600	100.0	45.0	45.0	1050.0	180.0	240.0
0.450	60.0	210.0	210.0	210.0	60.0	15000	720.0	2100.0	60.0	1500.0	180.0	60.0
0.500	60.0	165.0	165.0	165.0	60.0	70.0	18000	80.0	550	600.0	150.0 800	55.0 60.0
0.600	54.0	126.0	126.0	126.0	60.0	650	90.0	750	60.0	660.0	80.0 3000	60.0 600.0
0.700	54.0	105.0	105.0	105.0	48.0	750	90.0	1200	55	2850.0	600	20.0
0.830	20.0	35.0	35.0	35.0	20.0	200.0	140.0	240.0	20.0	450.0	60.0	20.0
1.000	20.0	30.0	30.0	30.0	20.0	120.0	90.0	190.0	0	175.0	30.0	20.0
1.520	20.0	45.0	45.0	45.0	20.0	100.0	700 1300		20.0 40.0	160.0	50.0	60.0
2.100	40.0	40.0	40.0	40.0	40.0	100.0	130.0	100.0	40.0	160.0	50.0	60.0

Table 2: E—field interference levels from three calculators ($\mu \mathrm{V} / \mathrm{m}$ at $\mathbf{6 4 c m}$). Operating modes: D - display, U - undefined, F - factorial

	Texas Instruments SR-50 (A)				Texas Instruments SR-50 (B)				Hewlett-Packard HP-45			
	operating mode				operating mode				operating mode			
frequency (MHz)	ambient noise ($\mu \mathrm{V} / \mathrm{m}$)	$\underset{(\mu \mathbf{V} / \mathrm{m})}{\mathbf{D}}$	$\begin{gathered} \mathbf{U} \\ (\mu \mathbf{V} / \mathbf{m}) \end{gathered}$	$\begin{gathered} F \\ (\mu \mathbf{V} / \mathbf{m}) \end{gathered}$	ambient noise ($\mu \mathrm{V} / \mathrm{m}$)	$\begin{gathered} D \\ (\mu \mathbf{V} / \mathbf{m}) \end{gathered}$	$\begin{gathered} \mathbf{U} \\ (\mu \mathbf{V} / \mathbf{m}) \end{gathered}$	$\begin{gathered} F \\ (\mu V / m) \end{gathered}$	$\begin{gathered} \text { ambient } \\ \text { noise } \\ (\mu \mathrm{V} / \mathrm{m}) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ (\mu \mathbf{V} / \mathbf{m}) \end{gathered}$	$\begin{gathered} V \\ (\mu \vee / m) \end{gathered}$	$\begin{gathered} F \\ (\mu \vee / m) \end{gathered}$
0.160	3.0	16.0	17.0	17.0	2.0	12.0	110	50.0	3.0	20.0	160.0	28.0
0.200	3.0	28.0	30.0	30.0	2.0	6.0	6.0	6.0	3.0	11.0	20.0	18.5
0.240	3.0	14.0	14.0	14.0	1.8	5.5	4.0	8.0	3.0	11.0	12.0	6.0
0.280	3.0	10.0	10.0	11.0	2.0	4.5	4.0	9.0	2.9	11.0	12.0	6.0
0.300	3.0	22.0	22.0	44.0	2.5	5.0	4.5	19.0	3.0	180.0	180.0	200.0
0.320	3.0	8.0	7.0	24.0	4.1	7.5	7.0	14.0	3.0	100.0	80.0	100.0
0.340	3.0	9.0	9.0	32.0	4.0	6.0	6.0	6.0	3.0	70.0	120.0	70.0
0.450	3.0	10.0	10.0	44.0	2.0	4.0	45	5.0	3.0	24.0	60.0	20.0
0.500	3.2	8.0	8.0	10.0	2.0	60	70	160	3.0	100.0	180.0	110.0
0.600	3.2	9.5	9.5	11.0	1.9	35	3.0	10.0	3.0	16.0	18.0	120.0
0.700	3.2	10.0	10.0	20.0	2.0	40	4.0	5.0	3.2	100.0	240.0	120.0
0.830	4.0	11.0	11.0	18.0	2.0	10.0	8.0	140	4.0	10.0	44.0	10.0
1.000	6.0	22.0	22.0	32.0	2.0	4.0	4.0	80	36	6.0	85.0	9.0
1.520	5.7	16.0	16.0	22.0	20	2.0	3.0 20	5.0 40	3.9 2.0	9.0 4.0	80.0 20.0	4.0
2.100	5.7	6.0	6.0	9.5	10	2.0	20	4.0	2.0	4.0	20.0	

Factorial. 69! was calculated. In this manner the display was blanked for approximately 4 seconds, allowing the measurement of emitted r.f. as a result of the internal digital processing.

The frequencies for measurement were randomly chosen. The r.f. energy emission was not confined to discrete frequencies, however, but was observed to cover a very broad spectrum. The non-automated measuring technique prevented a continuous measurement of interference vs. frequency, thus making necessary a discrete set of measurements. The results of all measurements are listed in the tables and selected data are presented graphically in Figs. 2, 3 and 4.

Conclusions. As expected before the measurements were performed, the levels of e.m. interference detected as a result of the calculator operations were below the limits established by the FCC for such interference. However, these limits address the interference detected at a range $r=\lambda / 2 \pi$, a distance which our theoretical development indicates is a crossover point for near vs. far field considerations. In the near field the measurements indicate a level of interference which exceeds the limits suggested by RTCA for electromagnetically sensitive environments such as aircraft in flight.
From the above considerations it seems advisable to re-examine the regulations establishing permissible interference levels from portable electronic equipment. The fact that significant levels of interference are present in the near field of an operating portable calculator becomes a problem only if the environment in which the device is
operated cannot safely tolerate the interference. If instances of this problem are identified, then either restrictions on the use of portable calculators may be imposed, or a cure for the radiated interference must be found (a possible solution is offered below):
The E-field interference intensity measurements associated with the operation of the SR-50 calculators would indicate that the resulting interference levels are principally caused by the internal digital processing in the strobing of the l.e.d. display. This type of interference should be expected from any digital processor, and the power level of the interference should be directly related to the power levels found within the device.
The measurements indicated that for near field considerations the interference levels associated with the H -field electromagnetic components are orders of magnitude greater than those associated with the E-field. Further investigation may reveal that this phenomenon is a result of component layout within the caclulator, permitting circular current flows to create a "loop antenna" radiation effect.
As a subject of amusing interest, the AN/PRM-1(A) r.f. interference meter provides the operator with an audio output for monitoring purposes, and the interference signals resulting from
operation of the calculators presented significantly different "audio signatures" as a function of calculator brand. The differences were sufficiently pronounced to allow the meter operator to identify the calculator brand name from the audio output.
Finally, a means was sought which would reduce the levels of interference emitted from these calculators. Some form of shielding seemed a likely solution, and this approach was briefly examined. The calculators were surrounded by one sheet of aluminium kitchen foil and then operated in the various modes described above. The shielding proved so effective that the r.f. interference meter was then only capable of detecting the ambient noise level of electromagnetic radiation. This suggests that, at least where portable calculators are concerned, perhaps either selectively or collectively as a general cure, providing a foil or other type of shield around the interior of the calculator case would eliminate the possibility of interference from these devices in environments where it cannot safely be tolerated.

Reference

1. United States Department of the Navy, Approach, The Naval Aviation Safety Review, December 1974, p.28. Washington, United States Government Printing Office, 1974-635 022/7.

Fig. 4. Interference from
Hewlett-Packard HP-45 calculator at various frequencies: (left and middle) H-field radiation in mV / m; (top) E-field radiation in $\mu V / m$. Letters D, U and F identifying the plotted points are explained in the text.

Frequency doubler

This circuit was devised to show that theory can be put into practice; we hope that readers may find other uses for $i t$. The theory is simply the trigonometric identity $1 / 2(1+\cos 2 \theta)=\cos 2 \theta$. Replacing θ by wt produces a frequency doubler. Probably the easiest way of obtaining a square law characteristic, at least over half the input range, is to use

a f.e.t. because the drain current is determined by

$$
I_{d}=\left(1-\frac{V_{g s}{ }^{2}}{V_{p}^{2}}\right) . I_{d s s} \text { for }\left|V_{g s}\right| \leqslant\left|V_{p}\right| \text {. }
$$

In practice, $\mathrm{D}_{1.2,3,4}$ ensure that a posi-tive-going pulse is applied to the f.e.t. gate so that the device operates with a square law effect on both cycles $\left(\cos ^{2} \theta\right.$ $=|\cos \theta|^{2}$).
Potentiometer R_{1} is adjusted to operate the device at the correct input level, a compromise between overloading and a good output.
Potentiometer R_{2} sets the f.e.t. to just-cut-off under no-signal conditions,
which operates the device in the square law region. The potentiometers may be adjusted, while the device is in operation, with the use of an oscilloscope or t.h.d. monitor to obtain minimal distortion. Correctly set up, the harmonic content of the output for a sine wave input can be made to approach that of the input. It will of course considerably distort any other input waveform. The circuit shown performed well up to about 10 kHz , but this could probably be bettered with good construction and higher speed diodes.
R. Williams \& J. Dunne

Brentwood School,
Essex.

Clock generator for electronic calculators

The Wireless World desk calculator (Sept./Oct. 1972) uses a hybrid thickfilm integrated circuit for its clock generator. An alternative, and inexpensive (around 50 p) way of producing the clock waveform is by means of two readily available t.t.l. integrated circuits, as shown.

NAND gates A, B, C, D and E are connected to form a free-running multivibrator, with a self starting gate,

C , to ensure that the clock waveform is available as soon'as the supply is applied to the calculator-chip. The multivibrator output (gate D) swings approximately from -7.2 to -2.1 V , and this signal is applied to the input of a voltage level changing gate, F, which is an open-collector type having its output connected to +7.2 V via a $1 \mathrm{k} \Omega$ resistor. When the input to F is -7.2 V (logical O) this gate is effectively an open
circuit and its corresponding output is +7.2 V . Alternatively, when the input to F is -2.1 V (logical 1) this gate is effectively a short-circuit and its corresponding output is -7.2 V . Therefore the output swings between +7.2 and -7.2 V at approximately 320 kHz for a 1000 pF capacitor. This frequency was found to be satisfactory in practice.
T. J. Terrell,

Preston Polytechnic.

Linear current/rotation control

In the circuit described, the current through a linear potentiometer is made a linear function of the rotational angle of the potentiometer. Consider the circuit of Fig. 1, in which

$$
i_{1}\left(R_{1}+R_{2}+R_{3}+R_{4}\right)=\mathrm{i}\left(R_{3}+R_{4}\right)
$$

The linear relationship between angle of turn and current i_{1} is achieved by making current i constant and by using a double potentiometer for R_{1} and R_{4}, connected so that $R_{1}+R_{4}$ is constant and equal to the value of the potentiometer R, therefore

$$
i_{1}=\frac{i}{R+R_{2}+R_{3}}\left(R+R_{3}-R_{1}\right)
$$

showing the linear relationship between current i_{1} and the variable resistance R_{1}. Because R_{1} has a maximum value of R the ratio of maximum to minimum current is

$$
\frac{i_{1 \text { max }}}{i_{1 \text { min }}}=\frac{R+R_{3}}{R_{3}}
$$

This ratio may be altered by adjusting R_{3}.

For any setting of the potentiometer, current i_{1} is proportional to i so the latter may be adjusted to set up a particular i_{1} max or i_{1} min. Appropriate adjustment of both i and R_{3} allows setup of i_{1} max and i_{1} min. In designing a practical circuit we must allow for the voltage across the arms (assuming still that $v_{1}=v_{2}$):

$$
v-v_{1}=i_{1}\left(R_{1}+R_{2}\right)
$$

$$
=\frac{i}{R+R_{2}+R_{3}}\left(R_{1}+R_{2}\right)\left(R+R_{3}-R_{1}\right)
$$

Fig. 1
which is dependent upon angle of rotation and is at maximum

$$
\left(v-v_{1}\right)_{\max }=\frac{i\left(R+R_{2}+R_{3}\right)}{4}
$$

Shown in Fig. $\dot{2}$ is a practical circuit in which the current i_{1} is used to charge capacitor C which is periodically discharged by the unijunction transistor when the trigger voltage is reached. Because the charging time is inversely proportional to charge current, the frequency of the output sawtooth is proportional to current i_{1} and hence to the potentiometers angle of rotation The setup sequence is:
Adjust potentiometer to give maximum frequency sawtooth and adjust preset R_{5} to give the required maximum frequency.
Set potentiometer to the other extreme and adjust preset R_{3} to give the required minimum frequency.
The sequence may need repeating because the two adjustments are coupled. The preset R_{f} is adjusted to setup working voltages, and in a final design may be replaced by a fixed resistor.
A multi-way switch can be included to select different R_{5} and C values.
Andrew Armit,
Clifton,
Bedfordshire.

Balanced output amplifier

This low-cost amplifier provides a low impedance balanced output from an unbalanced input. The modest power supply requirements can be met by a voltage doubler and filter working from a valve filament supply; this enables a balanced output to be added to a valve preamplifier. In the original design 741

amplifiers were used but similar types such as the LM307 or dual 741 (747) can be used. Response is flat from 10 Hz to 20 kHz and the distortion is less than 0.1% at $800 \mathrm{~Hz}+20 \mathrm{dBm}$ into a 600 ohm load. Crossover distortion is minimized by the addition of R_{2}, and R_{3}. The gain is 20 dB but can be reduced by increasing R_{1}.
K. D. James,

Dunedin,
New Zealand.

Contributors to Circuit Ideas are urged to say what is new or improved about their circuit early in the item, preferably in the first sentence.

Advances in microwaves

5th European microwave conference held last September in Hamburg is reported by M. W. Hosking, author of the Realm of Microwaves articles

This conference has grown in size over the years and also in composition, starting as a biennial event held first in London in 1969, then in Stockholm in 1971 where it was amalgamated with the Microwave and Optical Generation and Amplification Conference (MOGA), Brussels in 1973, and Montreaux in 1974. From 1974 the conference became associated with an organised exhibition and is now the largest microwave event of its kind.

In recognition of the advances being made in opto-electronics, together with the use of the laser and infra-red sources in communications, Prof. H. G. Unger's invited paper on optical waveguides gave a very comprehensive survey of this vital area of technology. There are two main areas of development, one being the types of transmission line suitable for the design of components and interconnections, and the other being long-distance waveguide. In the first category, the most widely-used type of transmission line is the film guide. This consists of a thin dielectric film on top of a dielectric substrate of lower refractive index. A trapped light wave then propagates down the thin film in a zig-zag fashion by total internal reflection at the boundaries Phase conditions can exist for both low and high-order modes but, as the attenuation losses arise from general dispersion and scattering at film imperfections, the higher order modes suffer greater loss. Transparent glass-film guide with suitable boron and silicon doping can provide low-order mode losses of less than $1 \mathrm{~dB} / \mathrm{cm}$ and a value of $0.04 \mathrm{~dB} / \mathrm{cm}$ has been achieved.

Instead of coating the complete substrate, the film can be made as a narrow raised or recessed strip and can still provide total internal reflection at the side walls. This looks very similar in section to the microstrip type of microwave transmission line and, in fact, many of the design principles can be used directly to fabricate beam splitters, directional couplers, filters and other passive components.

A laser beam can be coupled into and out of the film guide by various types of coupler. One efficient method is to form a series of grating strips in the film which, with proper phase design, will radiate a coherently scattered beam into the guide. Another technique, the prism coupler, consists of bringing a

Microstrip pulsed Trapatt oscillator producing about l00Wpeak power at 2.5 GHz with 32.5% efficiency. Key circuit element is a matching low-pass filter. Inset shows the device mesa structure. (Mullard Research Laboratories).
slab of different refractive index material into close proximity with the film guide. An evanescent mode is set up in the gap which in turn excites a plane wave in the prism and, for the correct laser intensity distribution, can vary efficiently couple out power.

For long-distance signal transmission, single-mode fibres are used consisting of a central core and a slightly lower refractive index cladding. The wave is confined by total internal reflection and parameters are adjusted so that usually only the dominant HE 11 mode propagates. Fibres with a graded index of refraction, decreasing from the centre outwards, are being developed
to reduce signal dispersion and high-silica fibres have been made with $1 \mathrm{~dB} / \mathrm{km}$ loss and less than Ins/km pulse dispersion.
This is still a new and rapidly expanding area and many problems remain to be overcome in circuit design and basic technology. Not least is the interconnection of optical fibres which individually range in diameter from about $10^{-2} \mathrm{~mm}$ to $10^{-1} \mathrm{~mm}$.

In the design of array antennas, commonly-used individual elements are the half-wave dipole and radiating slot and most attention is paid to the overall radiation pattern, together with problems of mutual coupling. In a paper presented by A. Clavin of Hughes Aircraft, a basic improvement in the design of the individual array element was described, consisting of a conventional slot radiator with two short wires placed one either side and normal to the slot. The total radiation pattern is a combination of a slot plus an array of two dipoles (monopole plus image). By adjusting the phase of excitation of the wires by their length and spacing, the slot pattern can be modified. In particular, its endfire radiation can be cancelled, with the result that the E-plane pattern of the eiement can be made equal to the H -plane slot pattern. The new element thus has a symmetrical radiation pattern. Beamwidth was increased by bending over the top of each wire to form an inverted-L. Practical results with an array of these new elements at X -band have shown a reduction in mutual coupling, elimination of back radiation, general improvement in sidelobe structure and a slight increase in gain.

Complementary to the radiating aperture side of phase array antennas was a session devoted to the heart of the system - the microwave phase-shifter circuitry itself. This, as usual, splits into the two areas of ferrite and p-i-n diode
devices where the competition still exists for the best low weight, low loss and low cost device. On the ferrite side the papers were mainly theoretical and included a useful survey of the properties and performance of dual-mode reciprocal phasers. A further advance in the design of high power, low loss p-i-n diode phase shifters was reported from ITT in the form a 4 -bit $\left(22.5^{\circ}, 45^{\circ}, 90^{\circ}, 180^{\circ}\right)$ device on a sapphire substrate capable of handling 440 watts at a 17 dB insertion loss level.
On the solid-state oscillator and amplifier front, one of the most rapidly advancing areas is that of the microwave field-effect transistor This device is already competing strongly on noise performance with microwave mixer diodes and looks likely to offer higher c.w. powers and higher efficiency than Impatt devices. In a paper read by J. A. Angus of Plessey, results on some designs of GaAs power m.e.s.f.e.t.s. were presented. Using some novel gate and drain configurations, a four-cell, 2 $\mu \mathrm{m}$ gate device gave 700 mW of c.w. power output at 3 GHz with 6 dB gain and 25% efficiency. A six-cell f.e.t. of slightly different geometry and a $3.5 \mu \mathrm{~m}$ gate length gave 1.3 watt at 2 GHz with 6.2 dB gain and 32% efficiency. With multiple-cell devices already reported as giving saturated output powers of this order at X-band (8 to 12 GHz), f.e.t. development over the next few years should prove to be very interesting.
At the low-noise end of the scale, an impressive GaAs m.e.s.f.e.t. amplifier was described by C. A. Liechti et al. of Hewlett Packard. Operating in the 11.7 to 12.2 GHz satellite communication band, the three-stage amplifier using 1 $\mu \mathrm{m}$ gate chips on a microstrip circuit gave a noise figure of 5.3 dB with 18 dB gain. This compares very favourably indeed with achievable mixer figures. On cooling to $40^{\circ} \mathrm{K}$, the noise figure improved to $1.6 \mathrm{~dB} \quad\left(130^{\circ} \mathrm{K}\right.$ noise temperature) and the gain increased to 31 dB . Considering that uncooled and cooled parametric amplifiers provide about $150^{\circ} \mathrm{K}$ and $50^{\circ} \mathrm{K}$ respectively of noise figure, improved performance of this type of m.e.s.f.e.t. is expected to provide keen competition.
Acoustic-wave technology is another area wherein steady progress is being made and a paper from France by P. Hartemann of Thomson-CSF described a range of surface-wave components produced on lithium niobate and quartz substrates. Operating in the region of 1000 MHz , a range of wide-band delay lines, filters and oscillators had been constructed. One of the main technological advances was the production of transducer patterns with linewidths down to $0.3 \mu \mathrm{~m}$. The Royal Radar Establishment continues its world leadership in bulk acoustic-wave technology and T. M. Mason described the design of a complete delay module containing delay line, amplifiers, p-i-n switches, circulators and power supplies. Spinel $\left(\mathrm{MgAl}_{2} \mathrm{O}_{4}\right)$ crystal formed
the delay line and the module operated at 1000 MHz with a 3 dB bandwidth of $500 \mathrm{MHz}, 22 \mu$ s delay and unity gain.
Finally, a session this year was devoted to the biological effects of microwaves. The most apparent and obvious effect of microwave power has always been the absorption of energy by living tissue, leading to heating. However, in experiments on animals, nervous system effects, blood cell production and glandular performance have all proved to be influenced by microwave exposure. On the cheerful side, there appears to be no definite evidence of attributable health defects among microwave workers. But a disturbing inconsistency prevails in that the USSR specifies 0.01 to $1 \mathrm{~mW} / \mathrm{cm}_{2}$ as a safe power density whilst the USA specifies $10 \mathrm{~mW} / \mathrm{cm}^{2}$.

This, the second year of a combined conference and exhibition, was well supported in terms of exhibitors with over 100 companies being represented on stands. Components of all sorts were on show ranging from connectors to integrated sub-systems and semiconductor devices. A full range of instruments was also present, including advanced sweep generators, power monitors and spectrum analysers. There never appeared to be much danger of being trampled underfoot by visitors to the exhibition and a light attendance was confirmed by many of the people on the stands. However, a general comment was that those that did attend were serious visitors and several reported fresh business openings.
The 1976 European Microwave Conference will be held from 14 to 17 September at the Pallazzo di Congressi in Rome with Professor Peitro de Santis as chairman. Particular attention will be paid to microwave acoustics and integrated optics.

"Facsimile scanner"

We regret that an error occurred in the diagram of Fig. 5, p.460, in the October issue. The two $1 \mathrm{k} \Omega$ resistors should be returned to the gate inputs, not to 5 V . This biases the gates in the "linear" part of their character istic and ensures starting

"Transmitter power amplifier design"

We regret that it has been necessary to postpone publication of the fourth, and final part of this series.

${ }^{H \text { HF predictions }}$

Ionospheric absorption or skywave loss is greater during winter than in summer months. This is known as the winter anomaly as it is the opposite effect to that deduced from simple reasoning of the seasonal changes in sun/Earth relationship.

The high absorption is continuously present over a large area for several days and then shifts to another area, for example Europe to Western Russia. This results in short routes having "patchy" conditions and long routes having day-to-day variations in signal strength about four times greater than during summer. However, with the availability of higher frequencies (compare this month's Montreal chart with that for June) winter daytime communication is overall better than that experienced during summer.

High resolution satellite cloud cover pictures

Report from a unique ground receiving station

by P. E. Baylis

University of Dundee

The Department of Electrical Engineering and Electronics, University of Dundee has recently completed the construction of a ground receiving station for the acquisition of Very High Resolution Radiometer (VHRR) cloud cover picture data from the American NOAA satellites. It is thought to be the only station in the UK with this capability. This type of data transmission is similar to that on 137.5 and 137.62 MHz from the low resolution scanning radiometers on the same spacecraft. The chief difference lies in the nearly ten-fold increase in resolution and consequent hundred-fold increase in data rate. The VHRR scanning rate is 400 lines of visible and 400 lines of infra red channel per minute, time multiplexed. The resolution of both channels is 0.9 km . The analogue signal from the radiometer which has a video bandwidth of 35 kHz , frequency modulates a 99 kHz subcarrier with peak deviation of $\pm 29 \mathrm{kHz}$., The subcarrier frequency modulates the main carrier of 1697.5 MHz with peak deviation of $\pm 300 \mathrm{kHz}$. Total r.f. bandwidth is approximately 1 MHz and the transmitter power is $5 \mathrm{~W}(+37 \mathrm{dBm})$.

The Dundee receiver front end consists of a two stage transistor preamplifier, balanced diode mixer and first i.f. mounted at the focus of a 12 ft diameter fully steerable parabolic reflector antenna. Local oscillator power is derived from a v.h.f. crystal controlled oscillator followed by a power amplifier, a times- 12 varactor multiplier and an interdigital bandpass filter fabricated in triplate configuration from p.c.b. The first i.f. is at 137 MHz so that it can be fed into existing v.h.f. satellite equipment for the reception of APT (Automatic Picture Transmission) compatible WEFAX type transmissions from either Meteosat or SMS when they become available in the future. The low noise two stage transistor preamplifier was fabricated from microstrip on three 2 $\times 2$ in alumina substrates and has a noise figure of approximately 3 dB . The transistors are type 35876 E , made by Hewlett Packard. It is mounted in a sealed tube bolted on to the back of a 5 in diameter circular waveguide primary
feed at the reflector focus. Right hand circular polarization is transmitted by the spacecraft so the circular waveguide contains a polarizer to convert from circular to linear before the probe transition into a coaxial feed to the receiver. Matching into the first transistor is for optimum noise. A bandpass filter is included in the preamplifier to attenuate the second channel and discourage local v.h.f. mobile signals which are frequently over 70 dB stronger than the satellite signals.

Satellite NOAA 4, orbit no 2313, date 19.5.75, time 09.40, height 31 km .

When the satellite is at an elevation of 5° the slant range is 2180 miles and the space loss $(\lambda / 4 \pi R)^{2}$ is -169 dB . With a receiver n.f. of 3 dB and bandwidth 1 MHz the resultant predemodulator carrier/noise ratio is 14 dB assuming the gain of the 12 ft reflector antenna to be 33.7 dB (55% aperture efficiency). In fact, the receiver will produce usable data from horizon to horizon.
The remaining parts of the receiver are quite conventional. A second mixer, manually tuned v.f.o. and 10.7 MHz second i.f. amplifier are followed by a bandpass limiter and phase lock discriminator. Doppler shift has a maximum of $\pm 25 \mathrm{kHz}$ so a.f.c. to the second l.o. is included. A separate i.f. is used to drive an S meter and to produce a signal for the possible implementation of autotrack at some future date.

ESA's first satellite

The first satellite to be launched by the new European Space Agency (ESA) was placed in orbit on August 9, 1975 from the Western Test Range, California. A scientific satellite designed to study extraterrestrial gamma-radiation, $\operatorname{COS}-\mathrm{B}$ is the eighth satellite developed by European industry for ESA's predecessor, the European Space Research Organization. COS-B carries a single payload which can be considered as a remotely-controlled astronomical laboratory designed to study radiation emitted from known and assumed sources of gamma rays. The payload has been assembled by six institutes in France, Germany, Italy, Netherlands.
The experiment electronics unit plays a central role in the payload in that it generates and accepts most of the internal payload signals and controls the flow of data from the sub-systems to the telemetry encoder. These signals
consist of time, position and energy data produced by gamma and pulsar synchronizer events in the sub-systems of the payload. A built-in inflight test sequencer generates four main programmes which are capable of testing and calibrating other parts of the payload according to a preset pattern. Other functions of the experiment electronics are concerned with basic interpretation of data produced by the spark chamber. The objective of this chamber is the accurate measurement of the arrival direction of gamma quanta in the energy range from 30 MeV to above 3 GeV . Tracks of electron-positron pairs produced when gamma quanta in this energy range pass through conversion plates are traced out in the chamber by sparks produced by applied high voltage fields. The position co-ordinates of the sparks generated are stored on ferrite cores and from there are transferred to a buffer memory for telemetering to ground.

Installing an ,ozone sounding instrument on NASA's Atmosphere Explorer-E satellite that will be investigating the possibility of ozone depletion in the stratosphere.

Radar probes Ganymede

Jupiter's largest moon, Ganymede, has been probed by radar for the first time and found to have a rougher surface than the inner planets. The big Jovian satellite, slightly larger than the planet Mercury, is considerably rougher than Mercury, Mars or Venus, the most likely possibility for the surface being rocky and/or metallic material embedded in a top layer of ice. The Ganymede test over a distance of 600 million kilometres was conducted on six nights, employing the 64-metre antenna at the NASA-Jet Propulsion Laboratory deep space network tracking station at Goldstone, California. The finding is particularly interesting in view of verification by Pioneer 10 and 11 flybys that Jupiter itself is gaseous with no solid surface that could sustain a radar echo.
The material on Ganymede is probably meteoric in origin. Ganymede scatters to Earth 12 per cent of the power expected from a conducting sphere of the same size and distance. Roughness is made evident in this experiment by the presence of echoes away from the centre of the disc. A perfectly smooth disc would reflect only a glint from the centre. A rough one reflects power from the entire disc. A 400-kilowatt beam of microwaves with a wavelength of 12.6 cm was directed at Ganymede.

Mars probe launched

America's most ambitious unmanned space venture is underway with the launch during August and early September of two Viking spacecraft. The year long 815-million-kilometre journey will culminate with the landing of an automated laboratory on the surface of Mars in the summer of 1976. The instrument-laden craft will take pictures and conduct a detailed scientific examination of the planet, including a search for life. Viking 2 will arrive at Mars seven weeks after Viking 1. Each will divide into an orbiter and lander vehicles. The main orbiter communications system is a two-way S-band, radio link providing Earth command, radio tracking and scientific data return. This link uses either a steerable 1.5 m highgain dish antenna or an omni-directional low-gain antenna. Transmission rates at S-band vary from 8.3 to 33.3 bits per second for engineering data to 2,000 to 16,000 bits per second for Lander and Orbiter science data. The radio science investigations will make use of Orbiter and Lander communications equipment to measure Mars' gravitational field, determine its axis of rotation, measure surface properties, conduct certain relativity experiments and pinpoint the locations of both Landers on Mars. An X-band radio link will be used to study charged ion and electron particles.

Television tuner design - 3

Construction and sound-only version

by D. C. Read, B.Sc.

Parts 1 and 2 of this article dealt with important aspects of the tuner design, particularly where it differs from the more conventional arrangements, explained circuit operation, and gave oscillograms to illustrate typical performance. Description continues with constructional points and modifications for a vaned-capacitor-tuned version and a sound-only unit. Part 4 will detail alignment and use of an optocoupler for mains isolation.

To help readers build the tuner, a component location diagram, provided with the printed-circuit board* carries important information concerning specific processes in construction; the uses of this diagram are explained below.
Inspection of the printed-circuit board will show that it has an earth plane covering the whole of the component side; there are also a number of "earth-plane" zones on the wiring side, and it is esential that in the course of wiring-in components these zones are connected through to the main earth plane.

Each of the points at which a through connection must be made (before
mounting near-by components) is indicated in the location diagram by a small triangle; at such points on the board, a short wire link is passed through the hole provided and firmly soldered to both sides. Most, but not all, of the large squares representing inductors in the drawing are flanked by triangles. In these instances, the links ensure that the screening-can lugs and the associated wiring-side zones are properly connected to earth. Sometimes, as with resistors R_{5} and R_{56}, a through connec-
*Board diagram is available from the editorial office, together with location diagram. Drilled boards are available from the address given in the components list.

Fig. 14. Changes and corrections to the sound/a.f.c. circuit given in Fig. 2 (Part 1). Separate components in the $I C_{2 a}$ and $I C_{2 b}$ positions take advantage of better noise performance.available from the SN72748P acting as the audio output amplifier.
tion can be arranged simply by feeding the component lead itself through the board and soldering this on each side.
Several of the through connection points are associated with short sections of copper track which are needed: - on the wiring side of the board, to provide earth connections for $\mathrm{C}_{59}, \mathrm{C}_{65}$, $\mathrm{L}_{18}, \mathrm{Tr}_{7}$ and IC_{2}. Both pins 4 of the 8 -pin d.i.l. packaged SN72748P and the SN72741P (See Fig.14) require an earth; these two i.cs replace the SN72747 shown in Fig.2.

- on the component side of the board, to complete the 24 -volt supply rail circuit. These are shown in the diagram as broken lines across the top of C_{35} and along the edge of the board below R_{25} and R_{26}.
Two other symbols used in the location diagram to indicate particular aspects of construction are:
- a diagonal cross drawn at one end of some components. This shows that the appropriate connecting "leg" in each instance has to be shortened and bent so that it can be soldered directly to the earth plane (on the component side).
- a square, which shows the position of a monitor point, provided with stand-off resistor for oscilloscope measurement.
In addition to the copper-track links already mentioned, a long wire link must be fitted to carry the a.g.c. circuit output to the $\mathrm{Tr}_{1} / \mathrm{Tr}_{2}$ i.f. stage. The two points which require this interconnection are terminated in copper "pads" on the board; one of these is beneath C_{65} (the large $1 \mu \mathrm{~F}$ component to the right of the u.h.f. module) and the other is marked "a.g.c." (at the junction of C_{13} and R_{f}). A further long wire link is needed if the group-delay equalizer has been omitted from the circuit. This is required to join the output of the $\mathrm{Tr}_{4} / \mathrm{Tr}_{5}$ stage to the input of $\mathrm{Tr}_{6} / \mathrm{Tr}_{7}$, and runs from R_{28} to C_{34}.
$L_{19} ; 40$ turns 30 s.w.g. enamel, 15 mm
$\mathrm{L}_{20} ; 12$ turns 20 s.w.g. enamel, 15 mm
$L_{21} ; 2 \frac{3}{4}$ turns 30 s.w.g. enamel, interwound

In the circuit of Fig. 2 the following components were omitted: C_{77}, which should decouple the junction of R_{1} and R_{2} to earth, C_{40}, which should decouple Tr_{9} base to earth, R_{108}, which should be in series with the tuning voltage line atpoint F, and R_{109}, which feeds the sound a.f.c. discriminator output on pin 6 to atest point.

Pre-assembly of inductor circuits

In addition to winding the coils (see parts list), further assembly work is required for some inductors before they. are mounted on the circuit board. In most instances, these sub-assemblies are formed simply by adding a capacitor which is mounted inside the screening can in one of the two ways outlined below. Construction of the $\mathrm{L}_{19} / \mathrm{L}_{20} / \mathrm{L}_{21}$ assembly and of the L_{18} discriminator circuit, however, is more involved, and requires separate description.
For the more simple inductors the choice of construction depends on whether the inductor and its associated capacitor are in series or parallel. For series combinations use diagonally opposing base pins; from Fig. 2 and the parts list it can be seen that L_{1}, L_{3}, L_{11} and L_{13} need to be assembled in this way. Inductors $\mathrm{L}_{7}, \mathrm{~L}_{14}, \mathrm{~L}_{15}$ and L_{17} are parallel-connected to their capacitors and wired to adjacent base pins. Inductors $\mathrm{L}_{8}, \mathrm{~L}_{9} \mathrm{~L}_{10}$ and L_{12} also have parallel capacitors, and as the Neosid type E-2 formers used for these have an offcentre stack, there is room for the added component inside the can. But for these components it is just as convenient to solder the capacitors across the inductor connection pins which will be proud on the wiring side of the board.
As explained more fully elsewhere, proper operation of the sound trap/ sound take-off circuit obtains when phase cancellation occurs precisely at the sound carrier (i.f.) frequency, and this in turn depends on the degree of coupling between L_{19} and the $\mathrm{L}_{20} / \mathrm{L}_{21}$ pair. Fig. 15 shows how the three coils are wound on the common former and are connected to associated capacitors C_{19} and C_{20}. Typical dimensions for the coils and their spacing are also given. To facilitate a change in spacing which may be advantageous during adjust-

Fig 15. Dimensions and form of $L_{19} / L_{20} / L_{21}$ coil construction.
ment of the circuit as described in step 7 of the line-up instructions (part 4), the upper coil can be wound over a paper tube wrapped round the former stack, and subsequently fixed by a coating of Denfix or clear Bostic when the optimum coupling conditions have been established by measurement.
Rigid construction of the discriminator assembly (L_{18} and components enclosed by broken lines in Fig.2) before installation on the board is essential: any change in circuit parameters here, such as might be caused by relative movement, could spoil the performance of the tuner.

Two views of the coil and its associated circuitry are given in Fig.16, which shows diagrammatically the assembly from opposite corners of the former base. The assembly should be built up in three stages, as detailed below.

- Insert an 18 s.w.g. wire through hole 5
in the former base, solder it to the metal insert and cut it so that it reaches nearly to the top of the stack; this wire simply acts as a support and is not part of the circuit. Wind the $101 / 3$-turn coil as shown and temporarily secure the ends by wrapping them round the support wire so that

Fig. 16. Opposing views of L_{18} assembly identifying associated components and their positions.

the coil turns are held tightly in position. Completely coat the coil in cement (Denfix) and leave overnight to dry thoroughly.

- Free the coil ends and cut back the support wire to a length roughly as in the drawing. Now connect and arrange into the positions shown, resistors R_{52} and R_{53}, ceramic capacitors C_{53} and C_{55}, and diodes D_{7} and D_{8}, each with leads formed into miniature coils as explained in part 1. Cover these components with cement, making sure that wiring points to which the remaining capacitors will be soldered are kept clear. Leave the assembly to dry.
- Finally, connect $\mathrm{C}_{50}, \mathrm{C}_{51}, \mathrm{C}_{52}$ and C_{54} so that they are held in position as firmly as possible but do not cement them because the polystyrene dielectric might then be dissolved.
The assembly is then connected into the circuit, (making sure that pin numbers on the base correspond with those marked on the board) where it is held by means of 6BA screws in the tapped holes provided. The screening can is added later and held separately by 6BA screws and nuts passing through two more holes in the board.

Tuning-voltage supply arrangements

The later steps in the line-up procedure, to be given in part 4, require reception of a transmitted signal, and therefore the switched voltages available from the tuning supply circuit (shown in part 1) must be pre-set to the appropriate values for the required transmissions. Values given for the fixed resistors feeding the pre-set controls $\mathrm{R}_{90}, \mathrm{R}_{93}, \mathrm{R}_{96}$ are suitable for the London area (Crystal Palace) transmitter; for other localities, these values will have to be changed as follows.

From Fig. 17 the tuning voltages which correspond to the channels chosen. If a wanted channel has a number more than 45 to 50 , add one or two 5.6 -volt zener diodes in series with those at D_{12} and D_{13} to increase the tuning supply-rail voltage. Calculate new fixed-resistor values (for $\mathrm{R}_{89} / \mathrm{R}_{91}$, $\mathrm{R}_{92} / \mathrm{R}_{94}$, etc), taking the current through each resistor chain to be 0.5 mA , so that suitable voltages are then available for final adjustment by the pre-sets to the precise values found above.

Current from Tr_{20} through the zener circuit should be held at about 6.5 mA to give the required zero temperature coefficient of the zeners. Therefore, the resistance of each pre-set control divider chain must be increased to maintain a total supply to the four chains of about 2 mA . The increase will be up to, say, $40 \mathrm{k} \Omega$ for a 22 V rail with each variable changed to $10 \mathrm{k} \Omega$ to give the same control range.

For added convenience of operation, push-button units can be obtained (from Manor Supplies) in which each button also actuates a separate multiturn variable resistor and a common

Even Santa Claus would be delighted with a present like this. Antex Soldering Irons are about the most versatile gifts you could receive and are as reliable as Christmas itself.

Model X. 25

- Near-perfect insulation Breakdown voltage 1500A.C. Leakage current $3.5 \mu \mathrm{~A}$.
- Top efficiency in heat transfer Element slides inside the soldering bit. 25 watts but equivalent in heat capacity to 60 watts.
- Highgrade phenolic handle (own moulding!) Stainless steel shaf $\mathrm{t}-3$ core 0.4 mm flexible lead.
- Iron-coated bits that do not stick to the shaft but slide on and off easily. 3 tip sizes $2.4,3.2$ and 4.7 mm .
- For dual-in-line de-soldering the model $\times .25$ can be fitted with special bits 14 A and 14 B .
PRICE $£ 2.67$ (0.22)
Our catalogue gives further particulars.

MODEL C -15 watt miniature soldering iron Bits slide on and off stainless steel shaft. Elementsfitted inside steel shaft for efficient heat transfer. Length 16 cm . Complete iron with 2.3 mm . iron-ccated bit $£ 2.67(0.22)$ Spare elements $£ 1.20$ Spare bits $£ 0.35$ (nickel) £0-45 (iron-coated).

MODEL G- 18 watt miniature soldering iron Looks exactly like model C, but because of the extra 3 watts should be kept going all day on repairs or production. Stainless steel shaft - fitted with standard iron-coated bit 2.3 mm . £2.94(0.22) Spare elements $£ 1.47$ Spare bits $2.3,3$ or 4.7 mm . $£ 0.45$.

\rightarrow -

MODELCCN - 15 watt miniature soldering iron
Unique - ceramic shaft - no measurable leakage - capacitance 30 pf . Tested at 2000 volts A.C. Length 16 cm . Complete with standard iron-coated bit 2.3 mm . $£ 3.15$ $(0.22) .4$ other stide-on and-off bits available from $£ 0.45$ Spare elements $£ 1 \cdot 69$. Suitable for the most delicate soldering job imaginable.

MODEL X. 50 T.C. - 50 watt temperature controlled soldering iron
Leakage current negligible - Temperature controlled to $2^{\circ} \mathrm{C}$ either way. Ceramic shaft inside stainless steel shaft. Tested at 2000 volts A.C. Complete with 3 mm . iron-coated bit $£ 9.69(0.27)$ Normally set at $370^{\circ} \mathrm{C}$ Length 20 cm . Weight 50 gr
MODEL SK. 1 - SOLDERING KIT
Fitted with model C miniature iron lsee abovel. 2 spare 5 brts 2.3 and
 sink, reel of solder. Plastic
base serves as stand. Booklet "How to Solder" gives useful tips for beginners. Price $£ 4.25(0-42)$ MODEL MLX - 12 volt - 12 watt Soldering
 iron with 41/2 mtrs. lead and crocodile clips Useful for repairs on motor cars, boats, model trains, etc. Can be worked off car- type battery. Complete with 3.2 mm . bit $£ 3.27(0 \cdot 30)$ Two other bits available 2.4 and 4.7 mm . $£ 0.47$ each. Packed in a plastic wallet with guide "How to Solder".
STAND S.T. 3
High grade insulation material. chromium plated steel spring. Suitable for all our model Replaceable sponges,
space for spare bit
Complete £1-21(0.24)

\square Please send the following
\square Please send the
ANTEX colour catalogue.
From radio or electrical dealers, car accessory shops or in case of difficulty direct from
ANTEX LTD. FREEPOST, PLYMOUTH PL1 1BR (no stamp required) Tel. 075267377

1 enclose cheque/P.O./Cash
(Giro No. 258 1000)
NAME
ADDRESS

Questions to ask before buying a video monitor

It's an impressive number of models but what about the performance?

The performance price ratio is equally impressive - perhaps the best in the CCTV business. More than $80^{\prime \prime}$ ", of the screen has a resolution capability greater than 1,000 lines and on the large monitors the minimum brightness in the white area is I 3 oft lamberts (under accepted test conditions). Other features include high video input impedance and external sync input.

I need a large screen. For what application has Electrohome's 23 in monitor been designed?

The long-term reliability of the EVM23 and EVM23AG make either ideal for surveillance systems in banks, factories and department stores. They are equally at home in the message centres of the world's airports, in schools and broadcast studios. Both models have a durable outer casing and the EVM23AG has a special tube face to reduce reffections important where lights or windows may reflect on to the screen. Lockable front panels make them ideal for unattended locations.

What about mounting? I need the utmost flexibility.

There is no problem. Electrohome have wall and ceiling mount assemblies that allow a monitor to be swivelled or tilted about its centre of gravity. For mobile work like presentations and exhibitions there is an adjustable stand to support the EVM23 at four different heights $-63 \mathrm{in}, 55!\mathrm{in}, 54 \mathrm{in}$, and $46!\mathrm{in}$. If your requirement is for rack mounting versions, all sizes below 23 in are available in rack mount options.

How do I decide the screen size to suit my application and do Electrohome have a complete range?

Screen size depends largely on viewing distance and available space. If the minimum viewing distance is roft then you should use a large monitor - 17 in or above. At closer distances or where space is limited a gin or I in screen may be more suitable. If you intend TV to teach or persuade, avoid the mistake of sacrificing visual impact for the sake of economy. Electrohome's range is one of the most comprehensive available with seven different sizes from gin to 25 in (two in colour).

What facilities do Electrohome's small screen monitors offer?

To complement this outstanding specification we have not forgotten the importance of switchable A-B inputs, switchable underscan, DC restoration and good geometry. Also the wide input sensitivity range and the input ground which can be 'floated' will look after less favourable operating conditions. Input power requirement is also tolerant within $95-130 \mathrm{~V} 185-265 \mathrm{~V}, 5060 \mathrm{~Hz}$.

When should I use a colour monitor?

W'e'll ask a question which will help you decide. Everything you show on TV will be shown with a purpose. Will colour help to achieve that purpose? If so, use colour - and choose an Electrohome colour monitor because, simply, you cannot make a better choice. (This is only part of the answer to a complex question which we would enjoy discussing with you in proper depth.)

What about audio? You have convinced me that the video signal is first-class, but I need to hear the sound.

Electrohome haven't overlooked audio, like some manufacturers. For large-screen monitors, both colour and monochrome, they produce an add-on audio pod with a combined 3 W' RMS amplifier plus speaker unit. It has tone and rolume controls and can handle all common audio inputs.

Bell \& Howell A-V Ltd.,
Freepost, Wembley, Middlesex HAo IBR (no stamp required).

More questions ? W'rite to us for the address of your nearest Bell \& Howell Video Centre. You'll get the answers in the most convincing way possible - by seeing and hearing how Electrohome's monitors perform.

Specifications: the Electrohome monitor range from Bell \& Howell

a.f.c.-inhibit switch. When a button is pressed, it can then be rotated, acting as a fine-tuning control, to give any voltage up to the maximum available.
The pre-set variables in these units have resistance values around $50 \mathrm{k} \Omega 2$. and hence draw a much smaller current that the control chains specified in the published tuner circuit. To compensate for this, the standing zener current must again be adjusted to 6.5 mA , in this instance by adjusting the value of R_{88} feeding Tr_{20} emitter (an increase in value causes a decrease in current).

MODIFICATIONS

Vaned-capacitor module

Although varicap-operated u.h.f. tuner circuits such as the Mullard ELCl043/05 used here are very convenient, especially for remote-control arrangements, they do have disadvantages, mainly in that they are prone to spurious phase modulation.

The ELC1043 circuit principally consists of four half-wave tuned lines in cascade, each with a fixed capacitor at one end and a capacitance diode at the other acting as the control variable responding to the separately-applied tuning voltage (which is push-button switched and includes a slowly-varying a.f.c. correction signal). The incoming r.f. signal, with its main spectral components as illustrated in Fig. 18. passes through these lines superimposed on the direct control voltage; the varicap diodes can thus be affected by amplitude changes in the vision carrier

Photograph of component side of board showing approximate positions of test points and the signals they carry. When completed, the board is fitted on pillars into the bottom of a U-section aluminium sheet screen which covers the whole of the wiring side and extends above the components.

Fig. 17. Broken line indicates tuning voltage versus frequency and channel number for ELCIO43 u.h.f. tuner. Shaded area shows spread quoted for the ELCIO43/05.
envelope as well as by the controlvoltage.

Thus, if the incoming vision carrier amplitude is very high, it causes detectable sympathetic changes in the resonance of the lines, and hence variations in the phase of their output. In practice, the rate of phase change will be mainly at the $50-\mathrm{Hz}$ field frequency (2 fields $\equiv 1$ picture) which predominates at the low end of the spectrum. Such phase variation does not usually affect the a.m. picture information (unless a phase-locked-loop demodulator is being used), but it does interfere with the sound because it is detected as frequency modulation. Given a sufficiently large phase variation, the result is the well-known sound 'buzz.'

This lype of interference may be prevented by suitably arranging the

r.f./i.f. a.g.c. overlap (see Fig. 13 in part 2) to give as small an r.f. signal amplitude as possible. But if the amplitude is reduced too much, the signal-to-noise performance is degraded.

To test the relative merits of varicap and vaned-capacitor u.h.f. tuners, and especially to sample the possible improvements in tuner performance with regard to the problem mentioned above, a second circuit to this overall design was constructed but with the varicap module replaced by a "mechanical" module taken from a commercial receiver and connected to the board by means of flying leads. (The component used was a Mullard type AT6382 $-41-\mathrm{PB}$.)

Extensive tests were carried out, using locally-generated r.f. feeds as well as 'off-air' signals and with both high

and low incoming levels. From these tests, it was evident that the performance benefits - as distinct from possible financial ones - were not as marked as expected.
The first main improvement was in signal-to-noise - of 3 to $4 \mathrm{~dB}-$ obtained from transmissions received at high aerial-strength (e.g. the signal from a transmitter at 'line-of-sight' distance). Reception conditions as beneficial as this, however, are the exception rather than the rule; generally, the limiting factor in respect of noise performance is already realized as a function of received signal level, and the signal-to-noise figure which can be achieved using a varicap-tuned front end is the best possible given that input level. Hence, the noise cannot be further reduced by changing the input circuit to one using a vaned capacitor.

The second main improvement was discussed earlier regarding r.f./i.f. a.g.c. overlap setting. Remember, with low r.f. but high i.f. gain, the problem is r.f.-circuit mixer noise whereas with gain conditions reversed, the result is buzz-on-sound. Higher r.f. levels could be permitted in the mechanical tuner so allowing greater level range to be accommodated between the onset of adverse effects. But, except in places where reception conditions for wanted stations are greatly different (or change considerably with time), this extra range is of no particular advantage because the a.g.c. circuit can so easily be set for a satisfactory compromise which includes the highest and lowest levels normally received.

Under certain conditions, then the different operating characteristics of mechanical tuners could be useful in obtaining the best possible video sig-nal-to-noise figure. Added to this is the saving in component cost which would be made if a mechanical module were already to hand or cheaply available.
In choosing such a module, check that it includes a varicap diode for a.f.c. correction. For constructors who wish to take up this option, therefore, the necessary circuit changes have been detailed in Fig. 2. They involve the small differences in value for C_{5} (which could accommodate the capacitance introduced by about 6 inches of connecting cable), R_{3}, the alternative a.f.c. circuit catching diodes as detailed by the inset diagram in Fig. 2, Tr_{19} and Tr_{20} plus, R_{87} to R_{100} and associated capacitors with the zener diodes omitted.

Sound-only tuner

Some readers may wish, at least initially, to build only those parts of the circuit necessary for producing a sound signal; the vision side could be added at a later date. The circuit changes necessary are as follows. Referring separately to the four sections of circuitry in Fig. 2

- top section - retain except for $\mathrm{R}_{9} . \mathrm{Tr}_{3}$ and L_{4}. The i.f. output from C_{14} is then connected directly to the emitter of

Fig. 18. Spectrum of r.f. television transmission showing distribution and relative energy content of side bands about the vision carrier (left), the colour subcarrier (centre), and the sound carrier (right).
Tr_{8}, via a short wire link on the wiring side of the board.
-second section - omit entirely (C_{17} to $\mathrm{C}_{35}, \mathrm{R}_{13}$ to R_{33} etc).
-third section - retain all this section, making sure R_{34} is $22 \mathrm{k} \Omega$, not as incorrectly shown in Fig. 2, and incorporating the changes to the sound and a.f.c. output circuits already called for.
-bottom section - omit the part up to the $\mathrm{R}_{80} / \mathrm{R}_{81}$ divider, retaining all the circuit including, and to the right of, C_{66}. The temporary divider chain marked 'a.g.c. test' in Fig. 2 becomes a permanent part of the circuit and is used to set the gain of the sound-only tuner.
Line-up of this simplified tuner is very easy and details will be given subsequently.

Announcements

Allen-Bradley Electronics Ltd. Pilgrimsway, Bede Industrial Estate, Jarrow have announced that they are to phase out production at Jarrow of the "Morganite" range of carbon composition resistors, the last of their important products supplied to the consumer goods sector.

National Semiconductor U.K. Ltd, 19 Goldington Road, Bedford MK40 3LF has formed a new group to produce electronic subsystems. Known as The Module Products Group, it will produce modules to meet the needs of home appliances, entertainment systems. automotive products, telecommunications and miltary equipment.

Reaching decisions on the technical merits of introducing hybrid microelectronics into equipment, assessing alternative approaches, estimating likely costs and identifying the right suppliers can be difficult problems for electronic equipment designers and manufacturers. Now available is a comprehensive, independent report dealing with these problems which has just been completed by the Electronics Technology Department of the Electrical Research Association Ltd. Cleeve Road, Leatherhead. Surrey KT22 7SA.

Plasro Plastics Ltd, 38 Wates Way, Mitcham, Surrey now offer a service for the manufacture of control knobs. These can be produced in any thermosetting or thermoplastic material with hot foiled or paint infilled legend, metal inserts and bright trimmed discs.

Sifam Ltd, Accessories Division, Torquay, Devon has appointed Townsend Coates Ltd, Lunsford Road, Leicester, stockists and distributors for the Sifam range of professional collet knobs.

Bosch Ltd has changed its company name to Robert Bosch Ltd, P.O. Box 166, Rhodes Way, Watford, Herts.
As a result of a six-year research programme the Allen Clark Research Centre of the Plessey Company Ltd at Caswell. near Towcester, Northants has now established a complete facility for the design and production of surface acoustic wave devices to customers' requirements.

Electroplan Lid, P.O. Box 19. Orchard Road, Royston, Herts, has been appointed sole UK distributor for the "Powercube" range of power supplies manufactured by Integrated Photomatrix.

Amateur Computer Club, 7 Doordells, Basildon, Essex has commenced the design and construction of a low cost computer which appears in a series of articles in the club's newsletter. Membership to the ACC costs $£ 1$ and details of the club's activities can be obtained from the above address.

Guest International Ltd, Redlands, Coulsdon, Surrey CR3 2 HT , is establishing manufacturing facilities for carbon film resistors.

Books Received

Radio Construction for Amateurs by R. H. Warring is a plain-man's guide to understanding and (hopefully) building a receiver. The book contains 27 working circuit designs ranging from a simple crystal set to a f.e.t. receiver and i.c. amplifier. Transistor circuitry is used in all the discrete designs and the text is supplemented with pictorial. diagrams for the identification of components. Price E2. Pp. 120 (paperback). Pitman Publishing Ltd, 39 Parker Street, London WC2B 5PB.

Videotape Recording by Joseph F. Robinson is aimed at providing a readable exposition for readers with a basic engineering knowledge. The book starts with chapters on tape recording principles and basic requirements of videotape recording. Having gently led the reader up the video path, broadcast and c.c.t.v. formats, f.m. theory, signal systems, and servo-mechanisms are discussed. The book concludes with chapters on errors and correction, cassettes and cartridges, editing, magnetic video discs and slow motion techniques. Pp. 303. Price $£ 5.75$. Focal Press Ltd, 31 Fitzroy Square, London W1P 6BH.

Radio and Line Transmission A (second edition) by D. C. Green. This is a textbook covering the second-year requirements of the telecommunication technicians' course. The contents have been revised to include chapters on f.e.ts and i.cs, and omit those dealing with aerials and power supplies. A number of new questions have also been added to the exercises at the end of each chapter. Price $£ 4.00$. Pp. 318. Pitman Publishing Ltd, 39 Parker Street. London WC2B 5PB.

Amateur radio on Oracle

Amateur radio information is now frequently transmitted on the experimental Oracle Teletext service (London region only except when London programmes are networked) on the ITV channel. A multiple-page (often up to 5 pages transmitted sequentially on page 167) provides, typically, details of Oscar 6 and Oscar 7 orbits, information on beacon and repeater stations, and news items. An introduction states: "These pages of information are being transmitted as a service to radio amateurs who have access to, or have built, Oracle decoders." The service was initiated and is being updated by members of the London Weekend Television Radio Club (G4AOT). It is hoped to include h.f. propagation information.

More countries with novice licences

The Australian Post Office, with the full support of the Wireless Institute of Australia, has now begun issuing "novice licences" to applicants who pass a simple theory examination and a 5 w.p.m. Morse test. The licence permits the use of crystal-controlled transmitters between 3525-3575, 21125-21200 and $26960-27230 \mathrm{kHz}$ with up to 10 watts input (double sideband) or 30 watts p.e.p. single sideband. Licences cost \$A6 plus $\$$ A2 examination fee, half the usual cost of an Australian amateur licence. Purpose of the new facility is to allow applicants "to engage in radio as a hobby on a restricted basis and gain the knowledge and experience necessary to qualify for a normal licence".
Holland is introducing shortly a " D licence" (communicators) which allows the holder to operate on six crystal-controlled channels in the 144 MHz band using n.b.f.m. for fixed or mobile operation with a maximum input of 20 watts. It will be issued to people over 18 years old who have passed a simple technical examination. The Dutch society VERON opposes what it believes is "an ill-considered plan" in conflict with the aims and definition of the amateur service. It would seem that the introduction of the

D-licence is linked with efforts to suppress illegal use in Holland of the 27 MHz "citizens band".
The Federal Republic of Germany is making it possible for youngsters between 14 and 18 years old to obtain revocable amateur licences; these permit operation of club stations (under supervision) and, after reaching 16 years, home stations under normal regulations.

Repeater problems

Although a number of v.h.f. and u.h.f. repeater stations are now licensed and operational in the United Kingdom, there appears to be some dissatisfaction with the way in which the Home Office is regulating these facilities. In particular the ruling that v.h.f. repeaters must normally be spaced at least 100 miles apart is provoking the criticism that little or no account is being taken of the topography: an example is the turning down of the proposed Dover repeater although the area it would cover is screened by hills from the London repeater service area. One result is the recent formation of a UK Repeater Users' Council to act as a ginger group.

ARRL opposes Docket 20282

The American Radio Relay League in its official submission on the proposed "restructuring" of the amateur radio service criticises FCC Docket 20282 on the grounds that "Whilst idealistic in its goals, it is so unrealistic and potentially diversive as to be unworkable". The ARRL however favours some more moderate revision and improvement of the present licence structure. Instead of the suggested Morse-code-free "communicator" licence, the League puts forward a new suggestion: the idea that applicants should have "familiarity with the Morse code without requiring the ability to send or receive at any speed".
"Amateur radio" ARRL comments "has reached its present high level of technical excellence under a licensing philosophy based upon learning by doing - there must be a balance between the attractiveness of an entry level licence and the motivation of those entering to advance to higher grades".

In view of the recent resignation of Mr A. Prose Walker, W4BW, chief of the FCC Amateur and Citizens Division, it may well mean that FCC will revise its proposals and that some of the more controversial elements of the restructuring will be dropped altogether.

In brief

With Oscar 6 now in its fourth year of operational service, it is available for use on ascending orbits on Mondays, Thursdays and Saturdays and on descending orbits on Sundays. Oscar 7, one-year-old on November 19, is avail-
able for general use daily except Wednesdays when orbits are reserved for special experiments. It is not necessary to use more than 80 watts. effective radiated power for Oscar communication and excessive power harms the batteries. . . . A supplementary instruction guide to the use of the London v.h.f. repeater, covering recently-added facilities, is available under the title "GB3LO what you hear and why" from Richard Street, UKFM Group (London), "Code 12", 3 White Ledges, London W13 8JB. Price 7p plus large stamped-addressed envelope; add 5 p for a copy of the original "GB3LO without tears" and change address to "Code 23".... According to William Orr, W6SAI, the original prototype of the famous HRO communications receivers was given the factory designation "HOR" standing for "Hell of a rush" and finally rechristened HRO just in time for its first announcement in the December 1934 issue of QST. Over 10,000 HRO receivers were manufactured during World War II (many of them still in use) ... World Radio Club - broadcast on the BBC's World Service - has recently enrolled its 23,000 th member... Address of Rev. G. C. Dobbs (G3RJV) who is secretary of the G-QRP Club and produces the newsletter "Sprat" devoted to low power radio communication is now 8 Redgates Court, Calverton, Nottingham NG14 6LR . . . Several instances of Sporadic E propagation extending up to beyond 144 MHz occurred during the Summer but an outstanding example in the United States was the "fantastic day" of July 20th when widespread Sporadic E lasted many hours on 144 MHz ... Customs \& Excise in turning down RSGB efforts to reduce VAT on amateur radio equipment admit the educational value of amateur radio but nevertheless state that "their considered view is that the activities of ham radio operators are essentially of a recreational nature" clearly the Customs do not set much store by "learning by doing" . . . Winner of the 1975 BERU contest for British Commonwealth stations was Yuri Blanarovich, VE3BMV who made over 400 contacts. Leading British station was that of Al Slater, G3FXB who was a close second in a hard fought. contest that has encouraged the RSGB Contest Committee to retain many of the features of the "BERU" contest for 1976 after originally deciding that a complete overhaul was needed...RSGB president for 1976 will be Dr E. J. Allaway, MB, ChB, MRCS, LRCP, G3FKM who for many years has been a noted enthusiast for long-distance operation on the h.f. bands. Membership of the Society at the end of July totalled just over 18,500 of which 1,827 were overseas members. In the year to the end of June 1975, the Society overspent its income by a staggering $£ 18,000$ (less a $£ 5,000$ VAT refund) which the treasurer says is "the worst year in our history".

PAT HAWKER, G3VA

High-quality compressor/limiter

A variable law, low distortion attenuator incorporating second harmonic cancellation circuitry

by D. R. G. Self, B.A.
University of Sussex

Compression and limiting play an increasingly important role in the resources of a modern sound studio. The conventional function of signal level control is to avoid overload, but it can be used in the realm of special effects. To date, however, relatively few designs for high-fidelity compressor/limiters have been published.

The main design problem is the vol-tage-controlled attenuator, v.c.a., which increases attentuation of the input signal in response to a voltage from a control loop as shown in Fig. 1. In limiting, this circuit block continuously monitors the peak output level from the v.c.a. and acts to maintain an almost constant level if it exceeds a threshold value, or, in compression, allows it to increase more slowly than the v.c.a. input signal. This is illustrated in Fig. 2., which shows the input-amplitude/out-put-amplitude characteristic for both compression and limiting. Note that limiting makes use of a much tighter slope to ensure that the output voltage cannot exceed the chosen limit, and that the threshold (point of onset of attenuation) takes place at a higher level than for compression.

Traditionally, studio-quality compressor/limiters (as the two functions are so similar it is logical to produce a system that can be used for either compression or limiting) used one of two types of v.c.a. Either the audio signal was chopped at an ultrasonic frequency by a variable mark/space square wave - which requires complex circuitry and careful filtering of the audio output to avoid beats with tape-recorder bias frequencies - or it was attenuated by an electronic potential divider, one arm of which was a photoresistor, the control signal being applied via a small filament bulb. The last-mentioned has disadvantages because photoresistors are non-linear devices, therefore noticeable distortion is introduced into the audio signal, and the thermal inertia of the bulb filament limits the speed of attenuation onset.

Most moden compression systems use field-effect transistor operated below pinch-off as a voltage-variable resistance in a potential divider. This

Fig. 1. Voltage-controlled attenuator with d.c. control loop.

Fig. 2. Amplitude characteristics for compression and limiting - the last-mentioned uses an almost zero slope to prevent the output exceeding a preset level.

Fig. 3. Basic v.c.a. circuit providing up to $45 d B$ of attenuation. This configuration introduces second-harmonic distortion which is greatest at 6dB of attenuation.
technique has many advantages; it is a simple, cheap, and fast-acting configuration that can provide an attenuation variable between 0 and 45 dB . The only problem is that an f.e.t. is a square-law device, and tends to generate a level of second-harmonic dịtortion that increases rapidly with signal amplitude. A typical arrangement is shown in Fig. 3 $-R_{2}, R_{3}$ and C_{2} allow the source of the f.e.t. to be set at a d.c. level above ground, so that a control-voltage that moves positive with respect to ground can be used, to avoid level-shifting problems in the control loop. This d.c. level is isolated from the input and output by C_{1}.
The distortion introduced by this circuit is at its worst for the 6 dB attenuation condition, because at this point the drain-source resistance equals R_{1}, and the maximum power level exists in the f.e.t. Table 1 shows the level of se-cond-harmonic distortion introduced into a sine-wave signal of 100 mV r.m.s. amplitude, under the 6 dB attenuation condition, for three different f.e.t. types. Measurements were made with a Marconi TF2330 wave analyser, higherorders of harmonic distortion proved to be negligible amplitude in all cases. These measurements were made on one sample of each type of f.e.t. and, because production spreads are large, the results should be treated with some caution. However, it is clear that these levels of distortion are unacceptable for high-quality applications.

Fortunately, a technique* exists for reducing f.e.t. distortion to manageable levels, if the control-voltage is applied to the f.e.t. gate and summed with a signal consisting of one-half the voltage. from drain to source, then the distortion level is dramatically lowered. The configuration in Fig. 4 shows a simple way of realising this; the signal fraction fed back is not critical and 10% resistors can be used for R_{4} and R_{5}. Surprisingly, this distortion cancellation procedure leaves the attenuation/control-voltage characteristic almost unchanged. Table 1 shows the new maximum distortion values for 100 mV r.m.s. input. (Note that the maximum no longer occurs at 6 dB attentuation, but at a point that
varies with the f.e.t. type, where cancellation is least effective.) From these results the 2 N 5457 and 2 N 5459 are superior, the 2 N 5459 was used in the final version of the v.c.a.

To determine appropriate signal levels in the v.c.a., measurements were made of maximum distortion generated, ie the v.c.a. was set to 2 dB attenuation, against r.m.s. input voltage; results are shown in Table 2. The question now arises as to whether this distortion per formance is adequate for a high-quality compressor/limiter. There is no general agreement as to the amount of second harmonic distortion that can be introduced into a program signal before it becomes aurally detectable, but 0.1% is a figure that is quoted. This means that the permissible input voltage to the v.c.a. would be restricted to below 100 mV r.m.s. In practice, however, the attenuation level will be constantly changing, and because distortion level peaks fairly sharply with attenuation change, this level of distortion will only be present for a very small percentage of the time. In any case, second harmonic distortion alone has a relatively low "objectionability factor". The proof of the pudding is in listening to the compressor output signal; inputs of music around 200 mV r.m.s. produced no trace of audible distortion. (Good class A power amplifiers and headphones were used for monitoring).

The control loop consists of an amplifier which senses the v.c.a. output level. A full-wave rectification system is normal practice because program waveforms have positive and negative peaks that can vary by as much as 8 dB , and an 8 dB uncertainty in the output level is usually unacceptable. A timeconstant arrangement is used with the rectification circuit to control the attack and decay rates.

The output sensing amplifier in the system is a non-inverting op-amp which allows a high input impedance because the output impedance of the v.c.a. stage reaches a maximum of about $39 \mathrm{k} \Omega$ at zero attenuation. The full-wave rectification system consists of a transistor phase-splitter driving two op-amp pre-cision-rectifier stages in antiphase. The principle of a precision rectifier is illustrated in Fig. 5. The rectifying element is placed in the feedback loop of an op-amp, so that the effect of the forward voltage drop on the output voltage is divided by the open-loop gain. During positive half-cycles, if the input voltage exceeds the d.c. level stored on the capacitor C, the op-amp output swings positive and C is charged through diode D until its stored voltage is equal to the input voltage. Thus C takes up a voltage across it equal to that of the positive peak of the input signal. During negative half-cycles, and while the input is less than the voltage on C during positive half-cycles, the op-amp saturates negatively and D remains firmly reversebiased. Obviously this is only a half-wave rectification circuit, the

Table 1. Second-harmonic distortion leve introduced into a sine-wave of 100 mV r.m.s.
Device \quad 2N3819 2N5457 2N5459
\(\left.$$
\begin{array}{llll}\begin{array}{llll}\text { 2 nd harmonic } \\
\text { at - 6dB }\end{array} & 13 \% & 10 \% & 8.9 \% \\
\begin{array}{l}\text { 2nd harmonic } \\
\text { with cancellation } \\
\text { attenuation shown }\end{array}
$$ \& \begin{array}{l}0.39 \%

2 \mathrm{~dB}\end{array} \& 0.12 \% \& 10 \mathrm{~dB}\end{array}\right)\)| 0.12% |
| :--- |
| 2 dB |

Table 2. Maximum distortion generated by various input voltages at 2 dB attenuation.

Input $(\mathbf{m V}$, r.m.s. $)$	2nd harmonic $(\%)$
20	0.005
50	0.10
100	0.12
200	0.19
500	0.34
1,000	0.56

Table 3. Prototype calibration data and compression ratios

$\mathbf{V C}_{\mathbf{2}}$ (V)	Threshold (mV, pk)	Compression ratio
2.9	10	2.3
3.5	20	5.1
5.0	50	10
6.7	100	20
8.5	200	35
9.8	500	50

Fig. 4. Standard circuit technique for reducing f.e.t. distortion by summing half of the drain/source voltage with the control voltage.

Fig. 5. Basic precision rectifier circuit where the rectifying element is in the feedback loop of an op-amp.
full-wave version uses two of these driven in antiphase, and charging a common capacitor. A resistance through which the charging currents flow determines the attack time, and another in parallel with C defines the decay time-constant.

The complete circuit is shown in Fig 6. The v.c.a. is essentially as described above and the attenuation threshold is set by the variable resistance R_{2}. As the resistance is increased the level of control voltage required for attenuation to begin is reduced, and the system's input/output characteristic moves smoothly from A to B on Fig. 2. The threshold decreases and the compression slope becomes less flat as the system turns slowly from a limiter into a compressor by the manipulation of a single control. The output sensing amplifer consists of IC_{1} and has a gain of 19 over the audio band. This is rolled off to unity at d.c. by C_{5}. Transistor Tr_{2} and its associated components form a conventional phase-splitter driving IC_{2} and IC_{3} the precision rectifiers. The rectifier circuitry is more complex than implied above, three modifications have been made improve the performance. Firstly, IC_{2} and IC_{3} charge C_{9} via current amplifier stages Tr_{5} and Tr_{6} otherwise the current-limited 741 outputs would be unable to provide enough current for the faster attack times (less than 1 mS). Secondly the feedback loop from C_{9} to the inverting unputs of IC_{2} and IC_{3} is completed via a f.e.t. source-follower. Without this, C_{9} would be loaded by the two 741 inputs, and this would severely limit the maximum decay times available. Incorporating the source-follower allows decay times of several minutes by using large resistance values for R_{27}. The conventional source-follower has a large negative offset voltage and is unusable in this application because due to their rectifying action IC_{2} and IC_{3} are unable to provide a voltage on C_{9} that is negative of ground. This would be required to allow the source-follower output to be at ground when there is no input to the rectifers. However, if a modified source-follower is used, with a constant-current source and resistance combination in the source circuit, the offset voltage can be varied on either side of zero by manipulation of R_{24} which varies the driving current. The offset voltage is arranged to be plus 0.3 V , to allow a large safety margin for thermal variations, component ageing, etc. This means that under no-signal conditions C_{9} takes up a standing quiescent voltage of plus 0.3 V . The effect of this is taken up in the calibration of R_{2}
The third modification is the addition of R_{21}, D_{3}, and R_{22}, D_{4}. These two. net works prevent IC_{2} and IC_{3} from saturating negatively, during negative half-cycles of their input voltage, by allowing local negative feedback through D_{3} and D_{4}. This limits the negative excursion of the IC outputs to

about two Volts. The prevention of saturation is necessary because the recovery time of the 741s causes the frequency response of the precision rectifier circuit to drop off at about 1 kHz . The addition of the anti-saturation networks provides a frequency response that starts to fall off significantly above about 12 kHz which is ample for our purposes as program signals have very little energy content above this frequency.
The final part of the circuit defines the attenuation time constants. Resistor R_{26} sets the attack time constant and R_{27} the decay time constant; these can range between zero and $1 \mathrm{M} \Omega(220 \mu \mathrm{~s}$ and 10 s) for R_{26}, and $1 \mathrm{k} \Omega$ and infinity (10 mS and 20 min) for R_{27}. They can be either switched or variable resistances, depending on the range of variation required.
The circuit in Fig. 6. shows the compressor output being taken directly from the v.c.a. This is only suitable if the minimum load to the output is greater

Fig. 6. Complete circuit where the output is taken directly from the v.c.a.-this may be buffered for loads greater than 100 ks .
than $100 \mathrm{k} \Omega$, otherwise the v.c.a. attenuation characteristic will be distorted by excessive loading. If lower resistance loads are to be driven a buffer amplifier stage must be interposed. The IC_{1} amplifier stage is suitable for most applications, and its gain is $\left(R_{7}+R_{8}\right) / R_{8}$. For the unity gain case $\mathrm{R}_{8} \& \mathrm{C}_{5}$ can be eliminated and R_{7} replaced by a direct connexion.
The compressor should be driven from a reasonably low impedance output (less than $5 \mathrm{k} \Omega$).
Construction is straightforward; the layout is not critical and the prototype was assembled on 0.1 in matrix Veroboard. To set up the circuit R_{24} is adjusted so that the voltage across C_{9} is about plus 0.3 V with no signal input.

The value required will vary due to production spreads in the f.e.t.s. To calibrate R_{2} it is necessary to relate the level of input signal at which attenuation commences, with the voltage across C_{2}. This can be done with an oscilloscope, or preferably an a.f. milivoltmeter. As a guide the calibration data for the prototype is shown in Table 3 , along with the values of the compression ratio (number of dBs the input must increase by to increase the output by 1 dB). This data must be regarded as only a guide. It is worth noting that as the controlling factor setting the compression/limiting function is the volage acrss $C_{2} R_{2}$ could be replaced by a $1 \mathrm{k} \Omega$ resistor connected to a remote voltage source.

The compressor/limiter is quite straightforward in use, provided a few points are kept in mind. Firstly, if it is being used in the limiting mode to prevent overload of a subsequent device, the fastest possible attack time should be used, to catch fast transients, and a
fast decay time (say $100 \mathrm{~ms} ; \mathrm{R}_{27}=10 \mathrm{k} \Omega$), to allow the system to recover rapidly when the transient has passed. Secondly , if a noisy programme signal is being compressed a long decay time should be employed, otherwise the noisy background will be faded up during quiet passages, and the familiar compressor "breathing noises" will be heard. Finally, signals with a large v.l.f. content should be avoided or filtered, otherwise v.l.f. modulation of the signal will result, if a fast decay time is in use.

If a stereo compressor/limiter is constructed from two of the systems described above it is necessary to gang together R_{2}, R_{26}, and R_{27} between the two channels. A direct connexion between the non-grounded sides of the two $\mathrm{C}_{9} s$ is also needed. It might be necessary to select matched f.e.ts to avoid stereo image shift during compression, due to differing attenuation characteristics in the two v.c.as. A well-smoothed p.s.u. providing $\pm 15 \mathrm{~V}$ should be used to power the compressor/limiter.

Components list	
$\mathrm{IC}_{1} 2_{2,3}$	741
$\mathrm{Tr}_{2 \text { 256 }}$	BC 184L or equivalent
Tr,	2N5459
$\mathrm{Tr}_{3} 4$	2N3819
$\mathrm{D}_{1}, 2,3,4$	IS44 or low-leakage equivalent
R_{1}	39k
R_{2}	25 k variable, with 1 k in series
R_{3}	2.2 k
$\mathrm{R}_{4}{ }_{5}$	1M
R_{6}	270k
R_{7}	18k
R_{8}	1k
R_{9}	120k
R_{10}	82k All resistors
$\mathrm{R}_{11}{ }^{12}$	2.2 k (except $\left.\mathrm{R}_{2}\right)^{1 / 4} \mathrm{~W}$
$\mathrm{R}_{13}{ }_{14}$	270k
$\mathrm{R}_{15} 16$	15k
$\mathrm{R}_{17} \mathrm{IB}_{18}$	1.5 k
$\mathrm{R}_{19} 20$	3.3 k
R_{21}, z^{2}	10k
R_{23}	3.3k
R_{24}	see text
R_{25}	120k
$\mathrm{R}_{20} 27$	see text
R_{23}	100k
C_{1}	$10 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic
C_{2}	$100 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic
C_{3}	100 nF 250 V polyester
C_{4}	220 nF 250 V polyester
C_{5}	$50 \mu \mathrm{~F} 40 \mathrm{~V}$ electrolytic
C_{6}	$4.7 \mu \mathrm{~F} 40 \mathrm{~V}$ electrolytic
$\mathrm{C}_{7}{ }_{8}$	100 nF 250 V polyester
C_{9}	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum bead

Printed circuit boards

Wireless World has arranged a supply of stereo glass fibre p.c.bs. One off price is $£ 3$ inclusive; make cheques or postal orders payable to M. R. Sagin, 11 Villiers Road, London NW2.

"Electronic circuit calculations simplified"

We apologize that once again it has been necessary to postpone publication of Part 6 of this series, on LC circuits. The seventh, and final, part will be on active devices.

A British Standard, BS E 9111, on the quality assessment of low-power. fixed-value, nonwirewound resistors has recently been published, being the English text of a European Standard CEEC 40100 , with additions. Copies are available from BSI Sales Department, 101 Pentonville Road, London N1 9ND at $£ 2.70$.

Television distribution equipment from Wolsey is briefly described in their new short-form catalogue, available from Wolsey Electronics, Cymmer Road. Porth, Mid Glamorgan WW401

Full descriptions of a range of analogue and digital thermometers, recorders and associated equipment, thermocouples and application information are given in a new catalogue from Comark Electronics Ltd. Brookside Avenue, Rustington Sussex BN 16 3LF

WW402

Moore Reed have sent two new leaflets, which give technical data and general descriptions of the company's ranges of stepping motors and rotary contact encoders. The leaflets contain useful descriptions of general interest on each of the classes of device. Moore Reed \& Company Ltd, Walworth, Andover, Hants SP10 5AB. WW 404

The Annual Report and Accounts of the Independent Broadcasting Authority are now published. giving details on the financial position, technical developments, programmes and programming, advertising and engineering information. The Report is obtainable from H.M. Stationery Office or booksellers at $£ 1.00$.

General transducer techniques are described and specific information is given relating to a range of transducers for the measurement of pressure. displacement, acceleration and force in a new brochure from Sales Department. S.E. Labs (EMI) Ltd, Feltham. Middx. The publication is entitled "A guide to your transducer requirements" . . WW405

We have received a copy of the new catalogue of gears from Davall. which, in addition to data on a vast range of gear products, contains a technical section providing tabular information, conversions. glossary and bibliography. Davall Gear Company Ltd, Welham Green, Hatfield, Herts AL9 7JB

WW406
Hewlett-Packard have prepared an eight-page guide to their range of optoelectronic devices. including red, green and yellow l.e.ds, alphanumeric displays and opto-couplers. P.i.n. diodes are also included. The brochure is obtainable from GDS Sales Ltd, Michaelmas House, Salt Hill, Bath Road. Siough, Bucks

WW407

Self-balancing chart recorders which use fan-fold chart paper and feature $\pm 1 \%$ accuracy, the SM range from Channel Electronics can provide up to six-point dotting with colour and a wide range of speeds. Channel Electronics (Sussex) Ltd, Cradle Hill Industrial Estate, Seaford, Sussex BN25 3JE

WW408

A brochure on the E.E.V. range of travelling-wave tubes is now available, which gives descriptions of t.w.ts for high-capacity microwave links, including 10 W and 20 W types working at $4,6,8$ and 11 GHz . E.E.V., Chelmsford, Essex CM1 2QU WW409

A book on the design and use of heat pipes has been produced by Solek. Costing $£ 17.50$, the publication includes information on the theory and design of heat pipes. testing, wick materials and applications in 300 pages. The price includes one 12 in , $\frac{3}{6}$ in diameter heat pipe with its data sheet. Solek Ltd, 16 Hollybush Lane, Sevenoaks, Kent WW410

Unitrode have published a 32 -page semiconductor selection guide which presents information, in tabular form, on rectifying devices, transistors, diodes and i.cs. There is also a section on reliability a list of application notes and mechanical details. Walmore Electronics Ltd, 11-15 Betterton Street, Drury Lane, London WC2 9BS .

We have received a copy of Pye Ether's new brochure on their range of transducers for industrial measurement. Descriptions are offered of devices for the electrical measurement of displacement, pressure, force, acceleration. vibration, speed, torque and temperature, and associated signal-conditioning, display and recording equipment is illustrated. Pye Ether Ltd, Caxton Way, Stevenage, Herts.

WW412
Highland Electronics have sent us a leaflet on an over-voltage trip circuit breaker, designed to operate within 2% of the setting in four ranges centred on 25 V d.c., 50 V d.c., 118 V a.c. and 242 V a.c Contact rating of load-switching controls is 50 A at 250V a.c. Highland Electronics Ltd., 33-41 Dalling ton Street, London ECIV 0BD

WW413

A booklet from Fairhurst Instruments forms an introduction to a logic tutor and Karnaugh mapper, describing the construction and use of the equipment. It is available, on payment of 15 p for postage and packing, from Fairhurst at Dean Court, Woodford Road, Wilmslow, Cheshire WW414

A booklet from Marconi presents specifications and applications information on two precision signal sources. employing signal generators and associated digital synchronizers, with which frequencies locked in 10 Hz steps to 88 MHz and 100 MHz steps up to 520 MHz can be generated at crystal stabilities. Marconi lnstruments Ltd, St. Albans, Herts AL4 OJN.

WW415

Speed detection alternative

An alternative method of speed detection on the roads has been proposed, based on the Doppler effect in vehicular noise. * The method correlates the noise frequency spectrum as the vehicle approaches an observer with the spectrum as it moves away. The results of empirical investigation demonstrate that the Doppler shift can be extracted from a motor vehicle's noise and related to the vehicle's speed. Although sources of inaccuracy are significant at lower speeds, a resolution of $\pm 5 \%$ was easily achieved at $60 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. Such a technique might be found useful in large scale traffic speed and density monitoring systems and may prove to be practical with the use of dedicated mini- or micro-processors. A single computation centre could simultaneously serve a large number of inexpensive microphone sensors. There is considerable interest in computer controlled traffic systems, and it's possible that the acoustic speed measuring technique could become economically competitive with the widely used radar method.

[^4]
New Products

Test meter

The LT 801 is a small multimeter with the unusual feature that the meter movement lifts to an inclined angle to improve viewing. Fifteen switched ranges are available together with three current ranges. The meter is $20 \mathrm{k} \Omega / \mathrm{V}$ and is overload protected. Alternating voltages from 10 V to 1 kV f.s.d. may be measured, together with direct voltages from 5 V to 2.5 kV , f.s.d. Two resistance scales are offered with $50 \mathrm{k} \Omega$, f.s.d. and $5 \mathrm{M} \Omega$ f.s.d. West Hyde Developments Ltd, Ryefield Crescent, Northwood, Middlesex HA6 INN.
WW 301 for further details

Cartridge heated soldering iron

The Quick-Shot soldering iron is designed for us in situations where no power supply is available. The iron bit encloses a replaceable cartridge of "thermit" compound which, when fired by a spring loaded pin in the handle, generates about 10,000 calories of heat, raising the bit temperature to over $860^{\circ} \mathrm{F}$ in a few seconds. Soldering temperatures are maintained for 8 to 10 minutes.

The cartridge is non-inflammable and non-explosive and produces no sparks or chemical fumes during use. A range of copper bits are available. Tele-production Tools Ltd, 28B Hamlet Court Road, Westcliff-on-Sea, Essex.
WW 302 for further details

Static inverter

Designed primarily for aircraft use, the ATR500 is a static inverter rated at 500 VA and generates 200 V , three phase, 400 Hz from a 28 V d.c. source. The system comprises two 250 VA inverters, a master and a slave, mounted in a tray which interconnects them to give a 3 -phase output. The output voltage regulation is 4% worst case with a typical figure of 2%. Up to 167 VA load may be applied to each phase with a
power factor of one for unbalanced loads and 0.7 for balanced loads. Industrial Instruments Ltd, Stanley Road, Bromley, Kent BR2 9JF.
WW 303 for further details

Pico and micro-fuses

Pico fuses are $3 / 32$ in $\times 9 / 32$ in and weigh approximately $1 / 5 \mathrm{~g}$. Available in fusings from 62 mA to 15 A these are designed for use in circuits below 125 V . They have a ceramic body hermetically sealed by a heat-shrunk transparent sleeve and are made with two lead configurations. Type 275 have tinned copper axial leads for direct soldering and type 276 have tinned copper radial leads either for soldering or plugging into AMP type tubular receptacles.
Microfuses are plug-in types and are available in 24 fusings from 2 mA up to 5 A . Designed to have a very fast fusing action, the short-circuit interruption capacity is 10 kA d.c. at 125 V . Seven types of holders are available including p.c.b. mounting, panel mounting and indicating types. G. E. Electronics (London) Ltd, Eardley House, 182/4 Campden Hill Road, Kensington, London W87AS.
WW 304 for further details

P.m. synchronous motors

The range of Memotrace motors is based on a permanent magnet face rotor design, offering ungeared torque ratings from $80-3000 \mathrm{~g}-\mathrm{cm}$ in a variety of options. At 50 Hz the motors will operate synchronously at 250,375 or 500 r.p.m. with gear heads available for a wider range of speeds from 10 r.p.m. The single coil construction type have a random initial starting direction, but will automatically reverse when driven against a mechanical end stop. The double coil, capacitor start motors are directionally controllable and provide greater torque, a stepping mode by d.c. pulsing the winding and variable speed operation also from d.c. pulses. Unimatic Engineers Ltd, Granville Road Works, 122 Granville Road, Cricklewood, London NW2 2LN.
WW 305 for further details

Sound level meter

The PSI 203A is a data-logging sound level meter with a total of 72 dB linear dynamic range. The meter is designed to meet the IEC 179 Standard and can be fitted with filters for either octave band or other analysis. Weighting characteristics such as the three standard A, B and C curves are incorporated with an externally fitted option of a D weighting filter. Three dynamic responses may be selected, slow, fast or impulse. Normally supplied with a lin micro-

WW 301 for further details

WW 302 for further details

WW 303 for further details

WW 304 for further details

WW 305 for further details
phone, the meter can also be fitted with 0.5 in or 0.25 in capsules, permitting measurements up to 40 kHz . A linear d.c. output is provided for connexion to a recorder, with a dynamic range of 0 to 3.5 V d.c. Power is supplied from either five 1.5 V primary or NiCd rechargeable cells or an accessory a.c. power unit. A wide range of optional accessories is also available. Castle Associates, Redbourn House, North Street, Scarborough, Yorkshire YOll 1DE.
WW 306 for further details

Real-time analyzer

Two real-time spectrum analyzers have been announced by Wessex, the distributors for Rockland Systems. These are the FFT $512 /$ S and the FFT $512 /$ C. The former is a single-channel analyzer using fast Fourier transform techniques to calculate 512 spectral lines of which only 400 are displayed. In addition thirty one-third octave filters from 25 Hz to 20 kHz are optionally available together with a selectable mode enabling two 200 -line analyses to be made and simultaneously displayed. Either digital or analogue data can be accepted and an analogue display and digital data output are provided.

The display is in the form of a $10 \times$ 8 cm c.r.t. with cursor readout built in.

Real-time analysis to 5 kHz is offered as a standard, but an extension to 10 kHz is offered as an option. The Model $512 / \mathrm{C}$ cross-channel adaptor provides for the combination of two $512 / \mathrm{S}$ units to perform cross-channel analysis. Wessex Electronics Ltd, Stover Trading Estate, Yate, Bristol BS175QP.
WW 307 for further details

NiCd charger module

An extended range of modular chargers is available ex-stock from Electroplan. These units provide true constant current operation and are available with output currents ranging from 10 mA to 400 mA with up to 10 cells being simultaneously charged in a series connexion. Two case sizes are offered, this being dependent upon the power output. Electroplan Ltd, P.O. Box 19, Orchard Road, Royston, Herts SG8 5HH.
WW 308 for further details

Anti-static plastic

A range of anti-static plastic products are being offered by Dage Intersem. These include plastic and foam packages for the transportation and storage of c.m.o.s. devices and assembled

WW 308 for further details

WW $\mathbf{3 0 7}$ for further details
boards, together with anti-static plastic sheeting for work tops, trays etc, and grounding straps for use with either the plastic sheeting or for use by production line staff. Dage Intersem Ltd, Haywood House, Pinner, Middlesex.
WW 309 for further details

Extractor tool

The user of l.s.i. circuits is often faced with the problem of extracting these 24 , 36 or 40 pin d.i.p. packages from a tight socket. The l.s.i. extractor tool is a simple stainless steel device with a vinyl coated handle designed to make this task easier. Rastra Electronics Ltd,, 275-281 King Street, Hammersmith, London W6 9NF.
WW 310 for further details

D.i.p. boards

A range of high density d.i.p. cards have been introduced by Vero. Initially they have been introduced in two versions, the international card size of $114.3 \times$ 165.1 mm and the Eurocard size of $100 \times$ 160 mm . The former has forty three 2.54 mm pitch gold plated contacts on both sides and will accept a maximum of thirty six, 14 or 16 pin i.cs. The Eurocard will take a 64 way indirect

WW 309 for further details

WW 311 for further details

TO MINIMISE INVESTMENTS AND SOLVE STOCK PROBLEMS

You can increase your efficiency, too, by ordering large or small quantities of any one part, or making up an order of any number of assorted small quantities through the United-Carr Supplies service. We can deliver with more than usual promptitude because we carry such large and varied stocks of CINCH, DOT and FT electronic and electrical components.
Fastenings and assemblies.

So, make United-Carr Supplies your SINGLE SOURCE for

[^5]
Now...the most exciting Sinclair kit ever

$\underset{\substack{\text { attriqg }, \text { trs }}}{\text { The Bla }}$

 * practical-easily built by anyone in an evening's straightforward assembly.*complete - right down to strap and batteries.

* guaranteed. A correctlyassembled watch is guaranteed for a year. It works as soon as you put the batteries in. On a built watch we guarantee an accuracy within a second a day-but building it yourself you may be able to adjust the trimmer to achieve an accuracy within a second a week.

The special features of The Black Watch

Smooth, chunky, matt-black case, with black strap. (Black stainlesssteel bracelet available as extrasee order form.)

Large, bright, red display-easily read at night.
Touch-and-see case-
no unprofessional buttons.

Runs on two hearing-aid batteries (supplied). Change your batteries yourself-no expensive jeweller's service.

The Black Watch-using the unique Sinclair-designed state-of-the-art IC.

The chip...
The heart of the Black Watch is a unique IC designed by Sinclair and custom-built for them using state-of-the-art technologyintegrated injection logic.
This chip of silicon measures only $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ and contains over 2000 transistors. The circuit includes
a) reference oscillator
b) divider chain
c) decoder circuits
d) display inhibit circuits
e) display driving circuits

The chip is totally designed and manufactured in the UK, and is the first design to incorporate all circuitry for a digital watch on a single chip.

... and how it works
A crystal-controlled reference is used to drive a chain of 15 binary dividers which reduce the frequency from $32,768 \mathrm{~Hz}$ to 1 Hz . This accurate signal is then counted into units of seconds, minutes, and hours, and on request the stored information is processed by the decoders and display drivers to feed the four 7 -segment LED displays. When the display is not in operation, special power-saving circuits on the chip reduce current consumption to only

a few microamps.

Quartz crystal

2000-transistor silicon integrated circuit

Take advantage of this no-risks, money-back offer today!
The Sinclair Black Watch is fully guaranteed. Return your kit within 10 days and we'll refund your money without question. All parts are tested and checked before despatchand correctly-assembled watches are guaranteed for one year. Simply fill in the FREEPOST order form and post it-today!
Price in kit form: £17.95 (inc. black strap, VAT, p\&p).

Sinclair Radionics Ltd,
London Road, St Ives,
Huntingdon, Cambs., PE174HJ.
Tel: St Ives (0480) 64646.
Reg. no: 699483 England VAT Reg. no: 213817088.

Complete kit STM

The kit contains

1. printed circuit board
2. unique Sinclair-designed IC
3. encapsulated quartz crystal
4. 'trimmer
5. capacitor
6. LED display
7. 2-part case with window in position
8. batteries
9. battery-clip
10. black strap (black stainlesssteel bracelet optional extrasee order form)
11. full instructions for building and use.
All you provide is a fine soldering iron and a pair of cutters. If you've any queries or problems in building, ring or write to the Sinclair service department for help.

To: Sinclair Radionics Ltd, FREEPOST, St lves, Huntingdon, Cambs., PE17 4BR.

Please send me
Total $£$
(qty) Sinclair Black Watch kit(s) at £17.95 (inc. black strap. VAT, p\&p).
(qty) black stainless-steel bracelet(s) at £2.00 (inc. VAT, p\&p).

Name
Address

M95ED: A Significant Technological Innovation

Shure now introduces a superb, moderately priced pick-up cartridge with a performance second only to the renowned V-15 Type III. The technologically advanced electromagnetic structure with a newly designed pole-piece virtually eliminates hysteresis loss. The frequency response from 20 to $20,000 \mathrm{~Hz}$ remains essentially flat. Operating at extremely light tracking forces of between $3 / 4$ and $11 / 2$ grams, the exceptional trackability of the M95ED enables it to trace the very high recorded velocities encountered on many modern recordings with the result that in addition to providing faithful reproduction of the recorded sound, stylus and record wear are reduced to minimum proportions. The M95ED: A notable addition to the Shure range with a performance never before available at such a competitive price.
Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

(B)
connector to DIN 41612 specification and will accept a maximum of thirty 14 or 16 pin packages.

The copper pattern is carried on three separate planes, two voltage planes on the wiring side and a ground plane on the component side. Interconnection of devices is either through soldering or by wire wrapping. Vero Electronics Ltd, Industrial Estate, Chandlers Ford, Eastleigh, Hants.
WW 311 for further details

Centre fed dipole

The CD95/3 is a single dipole claimed to produce the same 3 dB gain in a single dipole, that is normally obtained from a stacked and phased two way system. Frequency range is from $70-480 \mathrm{MHz}$ with maximum gain between 165 and 175 MHz . Impedance is 501 , and the v.s.w.r. better than 1.5:1. Radiomasts Ltd, Pond Wood Close, Moulton Park, Northants.
WW 312 for further details

WW 313 for further details

Audio-video receiver

This unit features a three day digital timer/clock and is designed to be used in conjunction with video cassette recorders. Up to 72 hrs pre-selection of record start with a one-minute accuracy is available for periods up to 9 hrs 57 minutes. Tuning is effected without the use of a monitor, by using a combina-
tion of an l.e.d. display and the integral monitor loudspeaker. Video and audio outputs are available from off-air u.h.f. transmissions together with a switched mains outlet. Power supply is $200-240 \mathrm{~V}$, 50 Hz , with a standby battery for the digital timer/clock. Radio Rentals Contracts Ltd, Apex House, Twickenham Road, Feltham, Middlesex TW13 6JQ. WW 313 for further details

Solid State Devices

Names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

M.o.s. drivers

The AM0026 and AM0056 are two dual high-speed clock drivers for use in large m.o.s. memory systems. They consist of two independent circuits suitable for driving loads of high capacitance and providing clock pulse widths down to 125ns. Both standard and Shottky t.t.l. input levels are accepted and converted to m.o.s. compatible outputs. Output current drive is rated to 1.5 A and output voltage swing up to 20 V . The devices are identical in all but one respect, the AM0056 having a $V^{B B}$ terminal to provide a higher voltage to the output stage.

Advance Micro Devices Inc. WW 350 for further details

Dual op-amp

The Harris HA-2655 features, in each half, a minimurn slew rate of $2 \mathrm{~V} / \mu \mathrm{s}$, a minimum full-power bandwidth of 30 kHz and a $\pm 13 \mathrm{~V}$ output voltage swing. The slew rate capability is maintained typically above $4 \mathrm{~V} / \mu$ s even when supply voltages are permitted to drop to $\pm 3 \mathrm{~V}$. The average input offset
voltage drift is said to be $8 \mu \mathrm{~V} / \beta \mathrm{C}$ and the maximum offset current 60 nA . Minimum input resistance is $5 \mathrm{M} \Omega$.

GDS Sales Ltd
WW 351 for further details

Tuner diodes

The ZCI00 Series are a range of variable capacitance tuner diodes claimed to provide a high Q at low cost. The devices are encapsulated in the standard E-line package. Sets of devices with matched parameters are obtainable and also a selection based on parameter tolerance.

Ferranti
WW 352 for further details

Microwave transistor

A family of Class A amplifying microwave transistors has been introduced by AE1. These devices make use of an overlay emitter structure and the high power versions incorporate emitter ballast resistors. The series comprises three types, the DC5621, $5 \overline{6} \overline{2} 3$ and 5631 with gains of $9 \mathrm{~dB}, 8 \mathrm{~dB}$ and 7.5 dB respectively and 1 dB gain compression points of $60 \mathrm{~mW}, 150 \mathrm{~mW}$ and 300 mW , measured at 2 GHz .

AEI Semiconductors
WW $\mathbf{3 5 3}$ for further details

Germanium power transistors

A series of germanium power transistors with peak current capabilities of 25 A at up to 80 V have been introduced by the American company, Germanium

Power Devices Corp. Designed as p-n-p transistors and for use in a wide variety of switching and analogue situations they are designated 2 N 575 and 2 N 575 A and are available in a standard MT-7 package.

Germanium Power
WW 354 for further details

Yellow, orange, red l.e.ds

Twelve high intensity discrete l.e.ds are now available from Vitality. Available in yellow, orange, red and green, the devices have intensities ranging up to 45 mcd and viewing angles from a spot for backlighting, a 24° dispersion for directional indicators to $65 \beta^{\circ}$ for general panel uses. All the l.e.ds are encapsulated in cylindrical packs with 0.75 in tin-plated leads.

Vitality
WW 355 for further details

Suppliers

Advance Micro Devices Inc., 901 Thompson Place, Sunnyvale, California 94086, U.S.A.
GDS Sales Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.
Ferranti Ltd, Electronic Components Division, Gem Mill, Chadderton, Oldham, Lancs.
AEI Semiconductors Ltd, Carholme Road, Lincoln, LNI ISG.
Germanium Power Devices Corp., P.O. Box 65, Shawsheen Village Station, Andover, Ma. 01810, U.S.A.

Instruments in Bloomsbury

In the present economic uncertainty, instrument manufacturers can hardly be blamed for appearing less than complacent about the coming year. The development which must have been undertaken before the situation began to worsen is now, however, bearing fruit in the shape of a variety of new equipment from a large number of manufacturers, who anticipate that the new crop will modify recessive tendencies to manageable proportions. New equipment shown at the 15th EPG electronic instruments exhibition in London takes full advantage of semiconductor developments to achieve a high degree of automatic operation and superlative performance. But the introduction at the less complicated end of the market is equally worthwhile.
Scopex showed two new single-beam oscilloscopes, both continuing the company's policy of simplicity in design and operation. The $4 \mathrm{~S}-6$ has a reduced cost and performance specification, compared with the earlier models, and is intended for use in schools and servicing roles. It is evident that very careful thought has been applied to the controls, the result being a horizontal sweep controlled in time, trigger level, trigger polarity and internal/external trigger selection by two knobs and a 4 mm switching socket. Bandwidth is 6 MHz and the maximum sweep is $1 \mathrm{~cm} / \mu \mathrm{s}$ - a little slow for the bandwidth. The other instrument, the IS-10, is a 1 -in-tube, 10 MHz instrument, which is smaller than the standard car radio. The front panel is $51 / 4 \times 23 / 8$ inches and the unit weighs just over 3lb.
Among the customary exoticism at the Tektronix stand were the DM40 and DM43 digital add-on units for time measurements when used in conjunction with the 465 and 475 portable oscilloscopes. Time measurement is carried out by selecting the two points by means of a bright-up spot with the delay-time position control. Time between the two is then displayed digitally on the add-on unit, which can also be used independently of the oscilloscope for voltage, resistance and temperature measurement.
The 314 portable storage oscilloscope, also shown by Tektronix, possesses a bistable storage screen with a four-hour viewing time. Sensitivity is $1 \mathrm{div} / \mathrm{mV}$ at 10 MHz (1 division is 0.25 in). Maximum sweep speed is $10 \mathrm{div} / \mu \mathrm{s}$ and a full complement of triggering and dualbeam switching modes is provided. The unit can be powered by a.c. mains, by 24 V d.c. at 800 mA or 12 V d.c. at 1.6 A .
Oscilloscopes newly introduced by Dynamco are the 7500 and 8500 . The former is a mains/battery portable instrument with a bandwidth of
$0-40 \mathrm{MHz}$ at $0.1 \mathrm{~cm} / \mathrm{mV}(1 \mathrm{~cm} / \mathrm{mV}$ at 5 MHz) sweep delay (which operates in the "mixed" mode) and gated trigger. It is a dual-trace unit with the same general approach as the older Dynamco types, but has no facilities for plug-in X and Y modules. This does help to keep costs down and is sensible in a gener-al-purpose instrument with a specification high enough to be useful in the majority of applications. A rather more advanced specification was adopted for the 8500 , which is a 100 MHz unit, reverting to the more conventional shape from the long, low look previously used by Dynamco. It boasts an extremely fast timebase ($5 \mathrm{~ns} / \mathrm{cm}$ with magnifier in use) and delayed sweep. Sensitivity of the dual-channel Y amplifier is $0.1 \mathrm{~cm} / \mathrm{mV}$ or $1 \mathrm{~cm} / \mathrm{mV}$ at 40 MHz . Both instruments possess sufficient signal delay to enable leading pulse edges to be seen.
The development of digital measuring instruments continues to advance rapidly, the pace being determined, to a large extent, by the integrated-circuit designer rather than the instrument engineer, although there will always be the ingenious method of sailing round limitations instead of battering through them. The EIP Autohet digital frequency meter, for instance, is capable of measuring frequencies up to 18 GHz with a basic 300 MHz counter. This instrument, shown by Dana, uses three different techniques to cover the band, that employed from 20 Hz to 300 MHz being straightforward counting, with either $50 \Omega 2$ or $1 \mathrm{M} \Omega$ input impedance. From 100 MHz to 850 MHz , a divide-by-four prescaler precedes the counter, while at higher frequencies a heterodyne approach is used. The 10 MHz crystal oscillator used for the gating circuitry is also used to phaselock a 200 MHz oscillator, which feeds an yttrium-iron-garnet comb filter. This produces a series of harmonics of 200 MHz and is automatically tuned, selecting successive harmonics until one of them, when mixed with the unknown signal, generates a frequency within the range of the counter. The converter circuit, which step-tunes the filter, provides information to the display on which harmonic was selected and the heterodyne frequency is added to this. Operation is completely automatic, once the correct input is chosen, and the method of measurement confers the advantage that a high degree of f.m. will not affect the result.

A digital method of generating a variety of waveforms (sinusoid as standard) is used by Farnell in the DSGi digital signal generator, which covers the range of $10^{4} \mathrm{~Hz}$ to $10^{5} \mathrm{~Hz}$. The frequency of a multivibrator is phase-locked to a crystal oscillator for
stability and the square-wave ouput is used as the clock, addressing a readonly memory. The r.o.m. is programmed to contain the waveshape of interest (other programmes are available) in 120 steps, giving a minimum of 0.1% harmonic distortion at mid frequencies. T.h.d. figures rise to 0.3% and 1.5% at top and bottom of the frequency range. The clock waveform and a square wave at twice this frequency are provided at a separate output. A feature of this method of signal generation is that two such instruments can be run together to provide a precise phase relationship.

Carrying this approach several steps further the Fluke 601DA (£1650) is a signal synthesizer, covering 10 Hz to 11 MHz at a resolution of 0.1 Hz and a stability of better than 3 p.p.m. after one year. A microprocessor is used to programme the unit with up to ten frequencies, modulation modes and output levels, controlled by push-button. The unit is interfaced for use with automatic test systems.
The use of digital methods in voltage measurement are in use at comparatively less advanced levels of work than was the case a few years ago, two new examples being shown by Advance and Farnell. Both are digital multimeters, designed for general use in the sort of work that ordinary mov-ing-coil test meters were, and still are, used but with greater resolution and accuracy. The Advance DMM7 uses p.m.o.s. large-scale i.cs to provide direct voltage measurement from 199.9 mV full scale to 1200 V full scale, at an accuracy of $0.1 \% \pm 0.05 \%$ f.s.d. and a c.m.r.r. of more than 120 dB at 50 Hz ; alternating voltage in the same ranges; direct current from $199.9 \mu \mathrm{~A}$ f.s.d. to 1999 mA and resistance from 199.982 f.s.d. to 19.99MS2. Farnell's DM131 is a similar type of instrument, but offers autoranging and temperature measurement from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ at a resolution of $0.1^{\circ} \mathrm{C}$.
Turning to communications, the automatic modulation meter Type 9008, shown by Racal, is able to measure amplitude modulation depth or frequency deviation without the critical manual tuning process and level-setting that is a common feature to these instruments. The carrier frequency range is $1.5 \mathrm{MHz}-2 \mathrm{GHz}$, tuned completely automatically, and levels from 5 mV r.m.s. to IV r.m.s. can be accepted, depending on frequency. The level of signal is also adjusted automatically if it lies within the acceptable range. Mod. depths up to 100% f.s.d. in six ranges and deviations of up to 100 kHz in eight ranges $(50 \mathrm{~Hz}-30 \mathrm{kHz})$ can be displayed.

A similar instrument was on the Marconi Instruments stand, the TF2304, which covers $25-1000 \mathrm{MHz}$ and accepts
modulation frequencies (a.m. and f.m.) of 50 Hz to 9 kHz .

Even more impressively automatic in operation is the OA2090C white noise test set by M.I., for the measurement of noise-power ratio, channel power and signal-to-noise ratio in multi-channel, frequency-multiplex communications systems. The set consists of a noise generator and receiver, which can be used separately, covering the frequency range 6 kHz to 12.36 MHz . The generator contains a programmable filter unit with plug-in filters, which is remotely selectable, as is the output level. Selection of a band-stop filter in the generator automatically selects the receiver bandpass frequency, and several functions on the generator
(filter switching, noise on/off) can be controlled from the receiver.

As an example of the analogue equipment on show, Racal had the

A: Dynamco 8500100 MHz oscilloscope. B: Advance digital multimeter. C: Scopex $1 S$ - 10 miniature oscilloscope. D: Racal true r.m.s. millivoltmetre.
E: Farnell digital multimeter. F: Racal modulation meter.

9301 - a true r.m.s. millivoltmeter for the range 10 kHz to 1.5 GHz at 1 mV fullscale. It is a sampling type, which converts the product of the sampling process to the r.m.s. value, giving correct readings in the presence of distortion. Remote programming has been provided
High-power signals for r.f. testing are provided by the AIL model 446, which puts out 70 W in the range $10 \mathrm{kHz}-2.5 \mathrm{GHz}$ by means of plug-in r.f. sections. Up to 1000 MHz , frequency calibration is by means of a five-digit l.e.d. display, while frequencies above this point are dial-calibrated. Load mismatch protection is incorporated and there is metering for both forward and reflected power.

General index

Volume 81, January-December 1975

Abstract

The general index is followed by classified and authors' sections. The classified index is divided into the following sections: audio and acoustics, circards, circuit ideas, circuitry and circuit design, communications, constructional designs, editorials, education and instructional, exhibitions and conferences, letters to the editor, measurement and test, news of the month, research notes, space news and world of amateur radio.

A.f. and r.f. clipping for speech processing, D.A. Tong, 79 Feb. 254 June
ABOUT PEOPLE. 73 Feb
Active notch filters, Y. Nezer, 307 July, Letters, 467 Oct
Advances in microwaves, M. W. Hosking, 577 Dec.
Aerial rotator servo. D. J. Telfer, 177 Apr.
Aerials, v.l.f. transmitting. R. B. C. Copsey, 427 Sept.
Aid for drivers. 269 June
Amplifier, "current dumping" audio, P. J. Walker, 560 Dec. design, transmitte
479 Oct., 541 Nov.
low-noise wideband. J. A. Grocock, 117 Mar
Ampltude modulators. J. Carruthers. J. H. Evans, J. Kinsler \& P. Williams, 287 June
ANNOUNCEMENTS, 120 Mar.. 158 Apr., 206 May. 325 July. 482 Oct, 585 Dec.
Applying "magnetic Ohm's law" to permanent magnets. P. E. K. Donaldson. 567 Dec.

Artificial vision progresses. T. E. Ivall. 156 Apr
Audio Engineering Society 50 th convention. W. E. Anderton
\& B. Lane, 207 May
-- Fair new products, 49 Jan
-- level indicator, peak-reading, S. F.
Bywaters \& J. E. West. 357 Aug., Letters, 468 Oct., 512 Nov. Note, 492 Oct.
Berlin show, more from the, 539 Nov
Binary sequence generators, pseudo-random. F. Butler, 87 Feb,
BOOKS REC

Feb, RS RECEIVED, 205 May, 311 July, 440 Sept., 453, 458 Oct., 539 Nov., 585 Dec.
Broadcast ing, digital techniques in recording and, J. Dwyer, 248 June, Letters, 365 Aug.

Cables in buildings and city streets, radiating, R.
Calculations simplified, electronic circuit, S. W. Amos, 273 Junc. 323 July, 387 Aug., 423 Sept., 475 Oct. Correction, 532 Nov.
Calculators, interference from pocket. C. T. Ristorcelli, 571 Dec.
Capacitance meter. oscilloscope, H.v.Z. Smit, 238 May
Cassette and cartridge recorders, vision. 185 Apr.
Centenary of the crystal rectifier, 141 Mar.
Charge-coupled devices, J. Mavor, 13 Jan., D. J. MacLennan, 61 Feb., E. Williams, 133 May
Circuit calculations simplified, electronic, S. W. Amos, 273 June, 323 July, 387 Aug., 423 Sept., 475 Oct. CCUIT IDEAS, 12 Jan., 93 Feb., 175 Apr., 226 May. 391 Aug. 413 Sept., 473 Oct., 519 Nov., 575 Dec.
Classifying f.e.ts. B. L. Hart, 2 Jan.
Clipping for speech processing, a.f and r.f., D. A, Tong, 79
Feb.
Clock, solid-state digital, D. D. Clegg, 69 Feb., 129 Mar. Letters. 221 May
Coastguard v.h.f. repeaters, J. B. Tuke, 240 May
Comparator, resistance, D. Griffiths, 331 July, Letters, 415 Sept.
Components show, Paris, 271 June
Compressor/limiter, high quality, D. R. G. Self. 597 Dec
Computer monitoring of TV signals, J. Schaffer, 37 Jan.
Computers, communication and high speed railways. W. E. Anderton, 348 Aug, Letters. 570 Dec.
CONFERENCES \& EXHIBITIONS, 17 Jan.
Consultants. J. Dwyer, 505 Nov. Letters, 569 Dec
Consumer electronics in the U.S.A., 369 Aug., Letters, 514 Nov.
Convention, Audio Engineering Society 50th. W. E. Anderton \& B. Lane, 207 May
Converters, voltage-to-frequency. J. Carruthers, J. H. Evans. J. Kinsler \& P. Williams, 183 Apr.

Crossover networks and phase respunse, S. K. Pramanik, 529 Nov.
"Current dumping" audio amplifier, P. J. Walker, 560 Dec.
Decoder, Wireless World Teletext. P. R. Darrington, 498 Nov., J. F. Daniels. 563 Dec.
Delayed switching, power supply, P. J. Briody, 139 Mar Digital clock, solid-state, D. D. Clegg, 69 Feb 129 Mar

Letters, 221 May
frequency-synthesis - a new approach, D. C. Ayre \& K. G. Woodard, 216 May, Letters, 365 Aug., 468 Oct. 248 June, Letters, 365 Aug.

- waveform synthesizer, R. A. J. Youngson. 431 Sept.
- wristwatch, solid-state, D. D. Clegg. 298 July. 371 Aug Display devices, 229 May
Dolby noise reducer. Wireless World, G. Shorter, 200 May. 257 June, 314 July, Letters, 415 Sept.
Domestic equipment, new. 354 Aug.
Drivers, aid for, 269 June
EDITORIALS, 1 Jan., 51 Feb, 101 Mar., 151 Apr., 199 May 247 June, 297 July, 347 Aug., 397 Sept., 447 Oct., 497
Nov., 549 Dec. Letters, 126 Mar., 313 July, 414 Sept.
. Letters, 513,514 Nov
Electronic circuit calculations simplified, S. W. Amus. 273 June, 323 July, 387 Aug., 423 Sept., 475 Oct.. Correction, 532 Nov.
-- engineers' slide rule, L. Nelson-Jones, 74 Feb., Letters, 165 Apr .
- watches, big demand for. 532 Nov

Electronics in oil, W. E. Anderton, 4 Jan. J. M. Caunter, 75 Feb., Letters. 165 Apr,, 265 June. 514 Nov
F.e.ts, classifying. B. L. Hart. 2 Jan.
F.m. tuner, high-quality, J. B. Dance, 111 Mar.. Letters, 312 July
Facsimile scanner, J. M. Osborne, 459 Oct
Ferite pot-cores, using, D. E. O'N. Waddington, 152 Apr
MHz oscilloscope. C. M. J. Little, 211 May, 266 June, 319 July, 381 Aug.
Figure-of-merit for front-end selectivity of f.m. tuners. G. J. King, 83 Feb.
Filters, active notch, Y. Nezer, 307 July, Letters, 467 Oct.
Frequency-synthesis, dipital-a new approach, D. C. Ayre \&
Generator, low-cost emergency power. J. M. Caunter, 75 Feb., Letters, 165 Apr., 265 June, 514 Nov
Generators, pseudo-random binary sequence, F. Butler, 87 Feb.
H. F. PREDICTIONS, 30 Jan.. 77 Feb.. 138 Mar., 173 Apr., 239 May, 272 June, 302 July, 376 Aug., 412 Sept., 478 Oct., May, 272 June.
508 Nov., Dec.
Hermetic plastics i.cs. 322 July
High capacity p.c:m. system. 92 Feb. quality
High quality compressor/limiter. D. R. G. Self. 587 Dec.
High resolution satellite cloud cover pictures, P. Bayliss, 579 Dec.
How speech can be compressed and expanded. S. L. Silver, 433 Sept.
l.c. telephone tone generator. R. Ball, 119 Mar Ignition system, optical sensor. H. Mardment, 533 Nov gnition system, optical sensor. H. Maıdment
Indicator, peak-reading audio level, S. F Bywaters \& J. E. West, 357 Aug., Letters, 468 Oct., 512 Nov., Note 442

Interference from pocket calculators, C. T. Ristorcelli, 57 Dec.
st ruments in Bloomsbury, 594 Dec.
International radio and television exhibition, 52I Nov.
Kirchhoff's voltage law, M. G. Scroggie, 143 Mar.
LETTERS TO THE EDITOR, 18 Jan., 65 Feb., 126 Mar., 165 Apr., 219 May, 264 June, 312 July, 365 Aug., 414 Sept., 465 Oct., 512 Nov., 568 Dec.
Linear c.m.o.s. circuits - 1, J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams, 581 Dec.
LITERATURE RECEIVED, 35 Jan., 82 Feb., 155, 190 Apr., 215 May, 286 June, 356 Aug., 422 Sept., 537 Nov.. 590 Dec
London electronic component show 1975, 227 May
Loudspeaker developments, recent, 182 Apr.
Low-cost emergency power generator, J. M. Caunter, 75 Feb., Letters, 65 Apr., 265 June, 514 Nov
-- noise wideband amplifier, J. A. Grocock. 117 Mar.
M.o.s. centre, new, 218 May

Magnetic recording, 75 years of, B. Lane, 102 Mar., 161 Apr 222 May, 283 June, 341 July, Letters, 365 Aug.
Magnets, applying "magnetic Ohm's law" to. P. E. K Donaldson, 567 Dec .
Oct., 509 Nov., 556 Dec.
ter, oscilloscope capacitance, H.v.Z. Smit, 238 May
Microprocessors, D. E. O'N. Waddingion, 550 Dec.
Microwaves, advances in, M. W. Hosking. 577 Dec.
Modulators. amplitude, J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams, 287 June
Monitoring of TV signals, computer. J. Schaffer. 37 Jan.
Monostable doth give us pause, J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams, 27 Jan.
More from the Berlin show, 539 Nov.
Multiphonic organs, progress in, J. H. Asbery, 456 Oct.
National Electronics Council Link scheme, 192 Apr.
Navigation by satellite, W. Blanchard, 52 Feb., Letters, 264
June
New domestic equipment, 354 Aug.
-- m.o.s. centre. 218 May
NEW PRODUCTS, 47 Jan., 97 Feb.. 146 Mar., 194 Apr., 243 May, 293 June, 343 July, 392 Aug., 443 Sept., 493 Oct., 545 Nov. 591 Dec.
NEWS OF THE MONTH, 10 Jan., 59 Feb., 114 Mar., 159 Apr., 209 May, 255 June, 303 July, 367 Aug., 405 Sept., 454 Oct., 510 Nov., 556 Dec
Noise - confusion in more ways than one, K. L. Smith, 107 Mar., 169 Apr., 235 May, 326 July, Letters. 264 June educer, Wireless World Dolby, G. Shorter, 200 May 257 June, 314 July, Letters. 415 Sept.

Oil, electronics in, W. E. Anderton, 4 Jan.
Optical sensor iginition system, H. Maidment, 533 Nov
Organs, progress in multiphonic, J. H. Asbery, 456 Oct
scillat or for the amateur, variable frequency, 1. J. Dilworth, 407 Sept,
Oscillators, RC, J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams, 483 Oct
Oscilloscope capacitance meter, H.v. Z. Smit, 238 May $50 \mathrm{MHz}, \mathrm{C} . \mathrm{M}$. J. Little, 211 May, 266 June, 319 July, 381 Aug.
P.c.m. system, high capacity, 92 Feb
aris components show. 271 June
Peak-reading audio level indicator, S. F. Bywaters \& J, E. , 512 Nov., Note, 492 Oct.
Phase response
529 Nov.

- shift in loudspeakers, 482 Oct

Pot-cores, using ferrite, D. E. O'N. Waddington, 152 Apr.
Power amplifier design, transmitter, W. P. O'Reilly, 417 Sept., 479 Oct., 541 Nov.
generator. low-cost emergency. J. M. Caunter. 75 Feb.. Letters, 165 Apr., 265 June, 514 Nov.
-- supply delayed switching, P. J, Briody, 139 Mar. 43 Jan. Letters 127 Mar. 167 Apr. L. Linsley Hood,
Processing, a.f. and r.f. clipping for speech, D. A. Tong, 79
Products seen at Hi-Fidelity 75, 345 July
--------- at LECS, 395 Aug.
Progress in mult iphonic organs. J. H. Asbery, 456 Oct
Pseudo-random binary sequence generators, F. Butler, 87 Feb.
RC oscillators, J. Carruthers, J. H. Evans, J. Kinsler, \& P. Williams, 483 Oct.
Radiating cables in buildings and city streets, R. Johannessen \& P. K. Blair. 398 Sept.
Radio and television exhibition, international, 521 Nov.
-- telescope project at Frensham Heights School, J. H. Duncan, 289 June
--. time by, D. A. Bateman, 277 June
-- waves, "Cathode Ray", 469 Oct.
Ralways, computers, communication and high speed, W. E. Anderton 348 Aug.. Letters, 570 Dec.
REAL \& IMAGINARY. "Vector", 150 Mar., 198 Apr.. 296 June, 396 Aug. 496 Oct.
Realm of microwaves, M. W. Hosking, 334 July
Recent loudspeaker developments, 182 Apr.
Recorders, vision cassette and cartridge, 185 Apr. TV use of video tape, A. C. Smaal, 121

Mar
248 June beadcasting. digital techniques in. J. Dwyer. 75 years of magnetıc, B. Lane, 102 Mar., 161 Apr.. 222 May, 283 June, 341 July, Letters, 365 Aug.
Rectufier, Centenary of the crystal, 141 Mar.
Reference and regulator circuits, J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams, 377 Aug.

Repeaters. coastguard v.h.f., J. B. Tuke, 240 May
RESFARCH NOTES, 36 Jan., 106, 110 Mar., 430 Sept., 538
Now.
Resistance comparator, D. Griffiths, 331 July, Letters, 415 Sept.
Resistors, R. A. Fairs, 487 Oct.
Rule, electronic engineers' slide. L. Nelson-Jones, 74 Feb., Letters, 165 Apr.
Safety, standards and the law, electrical, B. Lane, 401 Sept., Letters, 513,514 Nov

Satellite cloud cover pictures, high resolution. P. Bayliss, 579 Dec.
-- ground station, weather, G. R. Kennedy, 21 Jan. Correction 145 Mar.
-- navigation by, W. Blanchard, 52 Feb., Letters, 264 June Scanner, facsimile, J. M. Osborne, 459 Oct
Selectivity of f.m. tuners, figure-of-merit for front-end, G. J. King, 83 Feb.
75 years of magnetic recording, B Lane, 102 Mar., 161 Apr. 222 May, 283 June, 341 July. Letters, 365 Aug.
Signs, sorting out, A. T. Morgan, 436 Sept., Letters, 512 Nov.
SIXTY YEARS AGO, 92 Feb, 125 Mar, 145 Mar.
YEARS AGO, 92 Feb., 125 Mar,. 155 Apr., 241 May
339 July, 368 Aug., 404 Sept, 458 Oct 538 Nov 339 July, 368 Aug., 404 Sept., 458 Oct., 538 Nov
Slide rule, electronic engineers'. L. Nelson-Jones. 74 Feb.
Letters, 165 Apr.
Solid-state digital clack, D. D. Clegg, 69 Feb., 129 Mar. Letters, 221 May
-- -- -- wrist watch, D. D. Clegg, 298 July, 371 Aug.
SPACE NEWS, 78 Feb., 174 Apr., 291 June, 441 Sep 580
Dec.
Speech can be compressed and expanded, how, S. L. Silver 433 Sept.
-- processing, a.f. and r.f. clipping for, D. A. Tong, 79 Feb Jan., Letters. 127 Mar ., 167 Apr
Standards and the law, electrical safety, B. Lane, 401 Sept., Letters, 513,514 Nov.
Switch for stereo-pair comparisons, silent, K. Moulana. 31 Jan., Letters, 312 July, Corrections, 145 Mar
witcher. vision network, 325 July
Switching, power supply delayed, P. J. Briody, 139 Mar.
Synthesis, digital frequency - a new approach, D C. Ayre \& Synthesizer, digital waveform, R. A. J. Youngson, 431 Sept.

TV signals. computer monitoring of, J. Schaffer, 37 Jan
Telephone tone generator. i.c., R. Ball, 119 Mar.
Teletext decoder. Wire World, P. R. Darrington, 498 Nov., J. F. Daniels, 563 Dec

Television exhibition
Television exhibition. international radio and, 521 Nov.
-- - solid-state and digital, 362 Aug. $\quad . \quad 1$ Nov. 581 Dec Letters, 568 Dec.
Tidal-wave warnings from the ionosphere? 206 May
Time by radio, D. A. Bateman, 277 June
Tone generator, i.c. telephone, R. Ball, 119 Mar
Transformer phase reversal, T. Palmer, 58 Feb.
Transistor-aided ignition, G. F. Nudd, 191 Apr
pairs, J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams, 95 Feb.
Transmitter power amplifier design. W. P. O'Reilly, 417 Sept., 479 Oct., 541 Nov.
Transmitting aerials, v.I.f., R. B. C. Copsey, 427 Sept
Tuner design, television, D. C. Read, 448 Oct., 525 Nov., 581 Dec., Letters, 568 Dec.
high-quality f.m., J. B. Dance, 111 Mar., Letters, 312 July
Tuners, figure-of-merit for front-end selectivity of f.m., G. J. King, 83 Feb
voltage stabilized power supply, J. L. Linsley Hood, 43 Jan., Letters, 127 Mar., 167 Apr.

Use of video tape recorders with domestic TV. A. C. Smaal, 121 Mar
Using ferrite pot-cores, D. E. O'N. Waddington, 152 Apr.
VAT rates - details, 386 Aug
V.h.f. repeaters. coastguard, J. B. Tuke. 240 May
V.l.f. transmitting aerials, R. B. C. Copsey, 427 Sept-
Variable frequency oscillator for the amateur, I. J. Dilworth, 407 Sept.
"Vector" articles
The first book of Vector, 150 Mar .
The second book of Vector. 198 Apr
Ode to colour television and Tuppence coloured, 296 June
Noonday upon the market-place, 396 Aug On committees, 496 Oct.
Video tape recorders with domestic TV. use of, A. C. Smaal. 121 Mar
Viewdata on trial soon, 532 Nov.
ision cassette and carridge re
progresses. artificial. T. E. Ivall, 156 Apr.
Voltage law. Kirchhoff's, M. G. Scroggie. 143 Mar
Voltage-to-frequency converters. J. Carruthers, J. H. Evans. J. Kinsler \& P. Williams, 183 Apr.

Waveform synthesizer, digital, R. A. J. Youngson, $43!$ Sept.
Waves, radio, "Cathode Ray," 469 Oct.
Weather satellites ground station, G. R. Kennedy, 21 Jan. Correction. 145 Mar.
Wideband amplifier, low-noise, J. A. Grocock, 117 Mar
Wireless World Dolby noise reducer, G. Shorter. 200 May, 257 June, 314 July, Letters. 415 Sept
-- Teletext decoder, P. R. Darrington, 498 Nov.. J. F.
\rightarrow Danies. 5 S63 Dec
193 Apr., 242 May, 292 June, 340 July, 380 Aug., 442
Sept 486 Oct 540 NO 586 De
Wristwatch, solid-state digital, D. D. Clegg, 298 July. 371
Aug.

CLASSIFIED INDEX

AUDIO \& ACOUSTICS

Amplifier "current dumping" audio, P. I. Walker, 560 Dec -- , low-noise wideband. J. A. Grocock, 117 Mar
Audio level indicator, peak-reading. S. F. Bywaters \& J. E West, 357 Aug, Letters, 468 Oct., 512 Nov.. Note. 492 Oct.

Compressor/limiter, high quality, D. R. G. Self. 587 dec. ssover networks and phase response, S. K. Pramanik.
529 Now.
"Current dumping" audio amplifier. P. J. Walker, 560 Dec
Delayed switching. power supply. P. J. Briody, 139 Mar
Dolby noise reducer. Wireless World, G. Shorter, 200 May noise reducer. Wireless World, G. S
257 June, 314 July, Letters, 415 Sept.
F.m. tuner, high-quality, J. B. Dance, 111 Mar., Letters, 312 July
Figure-of-merit for front-end selectivity of f.m. tuners, G. J King. 83 Feb.
High-quality f.m. tuner, J. B. Dance, 111 Mar.. Letters, 312 July
High quality compressor/limiter, D. R. G. Self, 587 Dec.
How speech can be compressed and expanded, S. L. Silver 433 Sept.

Low-noise wideband amplifier, J. A. Grocock, 117 Mar.
Magnetic recording, 75 years of, B. Lane, 102 Mar., 161 Apr. 222 May. 283 June, 341 July. Letters, 365 Aug.

Noise reducer, Wireless World Dolby, G. Shorter, 200 May, 257 June. 314 July, Letters, 415 Sept.

Peak-reading audio level indicator, S. F. Bywaters \& J. E West, 357 Aug., Letters, 468 Oct., 512 Nov., Note, 492 West.
Oct.

Phase respons 529 Nov.
Power supply delayed switching. P. J. Briody, 139 Mar.
Selectivity of f.m. tuners, figure-of-merit for front-end, G. J King, 83 Feb .
75 years of magnetic recording, B. Lane, 102 Mar.. 161 Apr. 222 May. 283 June, 341 July. Letters, 365 Aug.
Silent switch for stereo pair comparisons. K. Moulana, 3I Jan., Letters, 312 July, Correction. 145 Mar .
Speech can be compressed and expanded, how, S. L. Silver 433 Sept.
Switching, power supply delayed, P. J. Briody, 139 Mar.
Tuner, high-quality f.m., J. B. Dance, 111 Mar., Letters, 312 July figure-of-merit for front-end selectivity of f.m., G. J. King, 83 Feb.
Wideband amplifier, low-noise, J. A. Grocock, 117 Mar. Wireless World Dolby noise reducer, G. Shorter, 200 May, 257 June, 314 July, Letters, 415 Sept.

CIRCARD ARTICLES

Amplitude modulators, 287 June
Converters, voltage-to-frequency, 183 Apr .
Liner c.m.o.s. circuits - 1,581 Dec
Modulators, amplitude, 287 June . 27 Jan.
RC oscillators. 483 Oct.
Reference and regulator circuits, 377 Aug.
Transistor pairs, 95 Feb
voltage-to-frequency converters, 183 Apr

CIRCUIT IDEAS

A balanced output amplifier, K. D. James, 576 Dec Amplifier for oscilloscopes, deflection, G. A. Johnston, 175 Apr.
Analogue gate with no offset, L. Cook, 93 Feb
Antenna switch, passive solid state, A. Lieber, 12 J an
Astable circuits, tolerant, C. Horwitz, 93 Feb.
Battery charger, N. H. Sabah, 520 Nov.

- voltage indication, low, P. R. K. Chetty, 175 Apr Binary counter for division by one or two, control of a, J. M Firth, 12 Jan.

Cancellation by negative resistance provides alternative to Wheatstone bridge, D. R. Schaller, 391 Aug.
Charger, hattery, N. H. Sabah, 520 Nov.
Clamp, d.c. level. C. B. Mussell, 93 Feb.
Clock generator for electronic calculators. T. J. Terrell, 575 Dec.
Complementary ramp generator with independent amplitu-
Constant amplitude sawtooth generator. J. N. Paine, 473
Oct. Control of a binary counter for division by one or two, J. M Firth. 12 Jan
Converter, variable voltage-ratio transistor. R, M. Carter. 519 Nov.
Current generator, accurate, R. Morcom, 226 May
Cut-out, thermal overload, C. Woolf, 520 Nov
D.c. level clamp, C. B. Mussell. 93 Feb.

Deflection amplifier for oscilloscopes. G. A. Johnston, 175 Dividing of two pulse rates, continuous. J. Sabol, 391 Aug.

Electronic organ to piano, C. J. Outlaw. 94 Feb
F.m. tuning indicator, simpler, H. Hodgson, 413 Sept. Filter, rumble stereo, M. L. G. Oldfield. 474 Oct. Filters, click- free switching for audio, J. S. Wilson, 12 Jan
Frequency doubler, J. Dunne $\&$ R. Williams, 575 Dec.

Gate with no offset, analogue. L. Cook, 93 Feb
Generator, accurate current, R. Morcom, 226 May -- with independent amplitude/slope control, comple mentary ramp, L. J. Retallack, 94 Feb.

Indication. low battery voltage, P. R. K. Chetty, 175 Apr Indıcator. sımpler f.m.tuning. H. Hodgson. 413 Sept.
Limiter. stereo dynamic noise, J. W. Richter, 474 Oct. Linear current rotation control, A. Armit, 576 Dec.
Low battery voltage indication, P. R. K. Chetty. 175 Apr.

Meter tach-dwell. N. Parron, 413 Sept
Modulator. pulse height. M. D. G. Dabbs. 176 Apr
Noise limiter. stereo dyynamic. J. W. Richter, 474 Oct
One-shot timer circuit. J. L. Linsley Hood, 520 Nov
Organ to piano, electronic. C. J. Outlaw, 94 Feb.
Oscillator uses c.d.a. sine, T. J. M. Rossiter. 176 Apr ses passive voltage-gain network, W. R. Jackson, 175

Oscilloscopes, deflection amplifier for. G. A. Johnston. 175 Apr.
oad cut-out, thermal. C. Woolf, 520 Nov.

Passive solid-state antenna switch. A. Lieber, 12 J an.
Power supply, voltage stabilizing a symmetrical. O.
-- with zener stabilization. variahle, L. J. Baughan. -- with
Protection circuit, thyristor. S. G. Pinto. 473 Oct
Pulse height modulator, M. D. G. Dabbs. 176 Apr.
Ramp generator with independent amplitude/slope control. complementary. L. J. Retallack, 94 Feb .
Rumble filter, stereo. M. L. G. Oldfield, 474 Oct
Sawtooth generator, constant amplitude. J. N. Paine, 473 Oct.
Simpler f.m. tuning indicator. H. Hodgson, 413 Sept.
Sine oscillator uses c.d.a., T. J. M. Rossiter. 176 Apr. Holmskov, 226 May, Letters, 415 Sept.
Stereo dynamic noise limiter, J. W. Richter, 474 Oct - rumble filter, M. L. G. Oldfield, 474 Oct .

Supply with zener stabilization. variable power. L. J. Baughan, 520 Nov
Switch, passive solid-state antenna, A. Lieber, 12 J an.
Switching for audio filters, click-free, J. S. Wilson, 12 .1an.
Tach-dwell meter. N, Parron, 413 Sept.
Thermal overload cut-out, C. Woolf. 520 Nov.
hyristor protection circuit, S. G. Pinto. 473 Oct.
Tolerant astable circuits, C. Horwitz 93 Feb.
Transistor converter, variable voltage-ratio, R. M. Carter. 519 Nov.
Tuning indicator, simpler f.m.. H. Hodgson, 413 Sept
Variable power supply with zener stabilization, L. J.
Baughan. 520 Nov. voltage-ratio transistor converter. R. M. Carter. 519 Nov.
Voltage-gain network, oscillator uses passive, W. R. Jackson. 175 Apr.
-- ratio transistor converter. variable, R. M. Carter, 519 Nov.
stabilizing a symmetrical power supply. O. Holmskov. 226 May, Letters, 415 Sept

Wobbulator, E. C. Lay. 226 May

CIRCUITRY \& CIRCUIT DESIGN

Active notch filters. Y. Nezer, 307 July, Letters. 467 Oct
Aerial rotator ser'o. D. J. Telfer, 177 Apr.
_ design, transmitter power. W. P. O'Reilly, 417 Sept., 479 Oct., 541 Nov.
rtificial visise wideband. J. A. Grocock. 117 Mar.
Audio level indicator, petak-reading, S. F. Bywaters \& J. E. level indicator, peak-reading, S. F. Bywaters \& J. E.
West, 357 Aug., Letters, 468 Oct., 512 Nov., Note. 492 Oct.
Binary sequence generators. pseudo-random, F. Butler, 87 Feb.

Calculations simplified, electronic circuit. S. W. Amos. 273 June. 323 July, 387 Aug., 423 Sept. 475 Oct., Correction. 532 Nov
Capacitance meter, oscilloscope, H.v.Z. Smit. 238 May
Circuit calculations simplified, electronic, S. W. Amos. 273 June, 323 July. 387 Aug., 423 Sept., 475 Oct., Correction, 532 Now .
Clock. solid state digital, D. D. Clegg. 69 Feb., 129 Mar..
Letters, 221 May
Comparator, resistance, D. Griffiths. 331 July. Letters. 415 Sept.
Compressor/limiter, high quality. D. R. G. Self, 587 Dec
Crossover networks and phase response, S. K. Pramanik.
"Current dumping" audio amplifier. P. J. Walker. 560 Dec.
Decoder, Wireless World Teletext, P R. Darrington, 498 Nov., J. F. Daniels, 563 Dec.
Delaved switching, power supply, P. J. Briody. 139 Mar.
Digital clock. solid-state. D. D. Clegg, 69 Feb.. I29 Mar., Letters. 221 May
-- frequency-synthesis -- a new approach. D. C Ayre \&
K. G. Woodard, 216 May. Letters. 365 Aug.. 468 Oct
waveform synthesizer. R. A. J. Youngson. 431 Sept.
-- waveform synthesizer. R. A. J. Youngson, 431 Sept.
Dolby noise reducer. Wireless World. G. Shorter, 200 May. 257 June. 314 , July, Letters, 415 Sept.
Electronic circuit calculations simplified. S. W. Anios. 273 June, 323 July, 387 Aug., 423 Sept, 475 Oct..
Emergency power generator. low-cost, J. M. Caunter, 75 F.m. tuner, high-quality, J. B. Dance, 111 Mar.. Letters. 312

July
50 MHz oscilloscope, C. M. J. Little, 211 May. 266 June. 319 July, 381 Aug.
filters, active notch, Y. Nezer, 307 July, Letters, 467 Oct
Frequency-synthesis, digital - a new approarh. D. C. Ayre \&
K. G. Woodard, 216 May. Letters. 365 Aug., 468 Oct.
Generator. low-cost emergency power. J. M. Caunter. 75 Feb., Letters, 165 Apr.. 265 June. 514 Nos.
jenerators, pseudo-random hinary sequence, F. Butler. 87 Feb.
High-qualty f.m. tuner. I. 13. Dance. Ill Mar., Letters, 312 High quality compressor/limiter, D. R. G. Selt. 587 Dec.
I.c. telephone tone generator. R. Batl. 119 Mar .
gnition system, optical sensor, H. Maidment. 533 Nov
Gransistor-aided. G.F. Nudd, 191 Apr.
ndicator, peak-reading audio level. S. F. Bywaters \& J. E. West, 357 Aug.. Letters, 46 K Oct.. 512 Nov.. Note, 492
ow'cost emergency power generator. J. M. Caunter, 75 Feb., Letters. 165 Apr.. 265 June, 514 Nov.

Meter, oscilloscope capacitance, H.v.Z. Smit, 238 May
Multiphonic organs, progress in, J. H. Asbery, 156 Oct
Noise reducer. Wireless World Dolby, G. Shorter, 200 May 257 June, 314 July, Letters, 415 Sept
Notch filters, active, Y. Nezer, 307 July. Letters, 467 Oct.
Optical sensor ignition system, H. Maidment, 533 Nov
Organs, progress in multiphonic, J. H. Asbery, 456 Oct.
Oscillator for the amateur variable frequency, I. J. Dilworth
Oscilloscope capacitance meter, H.v.Z.. Smit. 238 May
$-\quad 50 \mathrm{MHz}$. C. M. J. Little, 211 May, 266 June, 319 July, 381
Aug.
eak-reading audio level indicator, S. F. Bywaters \& J. E. West. 357 Aug., Letters, 468 Oct., 512 Nov., Note, 492
Oct.
529 Nov.
Power amplifier design, transmitter. W. P. O'Reilly, 417 Sept., 479 Oct., 541 Nov.
-- generator, low-cost emergency, J. M. Caunter, 75 Feb., 14 Nov
-- supply delayed switching, P. J. Briody, 139 Mar. Jan., Letters, 127 Mar., 167 Apr .
Progress in multıphonic organs, J. H. Asbery, 456 Oct.
seudo-random binary sequence generators, F. Butler, 87 Feb.
Radio, time by, D. A. Bateman, 277 June
Resistance comparator, D. Griffiths. 331 July, Letters, 415 Resistorst, R. A. Fairs, 487 Oct
Rotator servo, aerial, D. J. Telfer, 177 Apr.
Satellites ground station, weather, G. R. Kennedy. 21 Jan., Correction, 145 Mar.
Servo, aerial rotator, D. J. Telfer, 177 Apr.
Silent switch for stereo-pair comparisons, K. Moulana, 31 Jan., Letters, 312 July, Correction, 145 Mar.
solid-state digital clock, D. D. Clegg, 69 Feb., 129 Mar., Letters, 221 May
Stabilized power supply, twin voltage, J. L. Linsley Hood, 43 Jan., Letters, 127 Mar., 167 Apr
witch for stereo-pair comparisons, silent, K. Moulana. 31 Jan., Letters, 312 July, Correction, 145 Mar.
Switching, power supply delayed, P. J. Briody, 139 Mar.
Synthesis, digital frequency - a new approach, D. C. Ayre \& K. G. Woodard, 216 May, Letters, 365 Aug., 468 Oct.

Synthesizer, digital waveform, R. A. J. Youngson, 431 Sept.
Telephone tone generator. i.c., RII, 119 Mar.
eletext decoder, Wireless World, P. R. Darrington, 498 Nov., J. F. Daniels, 563 Dec.
elevision tuner design, D. C. Read. 448 Oct., 525 Nov., 581 Dec., Letters, 568 Dec .
Time by radio, D. A. Bateman, 277 June
Tone generator, i.c. telephone, R. Ball, 119 Mar
Transistor-aided ignition, G. F. Nudd, 191 Apr. $\quad ~(217$ Sept., 479 Oct.. 541 Nov.
Tuner design, television, D. C. Read. 448 Oct., 525 Nov., 581 Dec., Letters, 568 Dec.
--, high-quality f.m., J. B. Dance, 111 Mar., Letters. 312 July
Twin voltage stabilized power supply, J. L. Linsley Hood, 43 Jan., Letters, 127 Mar., 167 Apr.

Variable frequency oscilfator for the amateur, I. J. Dilworth, 407 Sept.
Vision progresses, artificial, T. E. Ivall, 156 Apr.
Waveform synthesizer, digital, R. A. J. Youngson, 431 Sept.
Weather satellites ground station, G. R. Kennedy, 21 Jan., Correction. 145 Mar.
Wideband amplifier, low-noise, J. A. Grocock. 117 Mar.
Wireless World Dolby noise reducer, G. Shorter, 200 May, June. -- Teletext decoder, P. R. Darrington, 498 Nov., J. F.
Wristwatch. solid-state digital, D. D. Clegg, 298 July, 371 Aug.

COMMUNICATIONS

Advances in microwaves. M. W. Hosking. 577 Dec.
A.f. and r.f. clipping for speech processing, D. A. Tong, 79

Aerial rotator servo, D. J. Telfer, 177 Apr.
Aerials, v.I.f. transmitting, R. B. C. Copsey, 427 Sept
Amplifier design, transmitter power, W. P. O'Reilly, 417 Sept., 479 Oct., 541 Nov.
Broadcasting, digital techniques in recording and, J. Dwyer, 248 June, Letters, 365 Aug.

Cables in buildings and city streets, radiating, R. Johannessen \& P. K. Blair, 398 Sept.
Cassette and cartridge recorders, vision, 185 Apr.
Clipping for speech processing, a.f. and r.f., D. A. Tong, 79
Feb.
Coastguard v.h.f. repeaters, J. B. Tuke, 240 May
Computer monitoring of TV signals. J. Schaffer, 37 J an
Computers, communication and high speed railways, W. E. Anderton. 348 Aug., Letters. 570 Dec.
Consultants. J. Dwyer, 505 Nov.
Decoder. Wireless World Teletext. P. R. Darrington, 498 Nov.. J. F. Daniels, 563 Dec
248 June, 248 June, Letters, 365 Aug.

Electronics in oil. W. E. Anderton, 4 Jan.
Facsimile scanner, J. M. Osborne, 459 Oct
Figure-of-merit for front-end selectivity of f.m. tuners, G. J. King, 83 Feb.
High capacity p.c.m. system, 92 Feb
High resolution satellite cloud cover pictures. P. Bayliss, 579 Dec.
1.c. telephone tone generator, R. Ball, 119 Mar

Microwaves, advances in, M. W. Hosking, 577 Dec.
Monitoring of TV signals, computer, J. Schaffer, 37 Jan.

Navigation by satellite, W. Blanchard, 52 Feb., Letters. 264 June
Oil, electronics in, W. E. Anderton, 4 Jan
P.c.m. system, high capacity. 92 Feb.

Power amplifier design, transmitter, W. P. O'Reilly, 417
Sept., 479 Oct., 541 Nov.
Feb.
F.f. and r.f. clipping for speech, D. A. Tong, 79
adiating cables in building and city streets, R. Johannessen \& P. K. Blair, 398 Sept.
Radio, time by, D. A. Bateman, 277 Jun
-- waves, "Cathode Ray." 469 Oct
Railways, computers, communication and high speed. W. E.
Anderton, 348 Aug., Letters, 570 Dec.
Recorders, vision cassette and
Recorders, vision cassette and cartridge, 185 Apr.
with domestic TV, use of video tape. A. C. Smaal, 121
with domestic TV, use of video tape, A. C. Smaal, 121
Mar.
248 June, Letters, 365 Aug.
240 May
Repeaters. coastguard v.h.f., J. B. Tuke, 240 M
Rotator servo, aerial . Telfer, 177 Apr
Satellite cloud cover pictures, high resolution, P. Bayliss, 579
--, Dec. navigation by, W. Blanchard, 52 Feb., Letters, 264 June
Jlites ground station, weather, G. R. Kennedy, 21 Jan.. Correction, 145 Mar .
Scanner, facsimile, J. M. Osborne, 459 Oct.
Selectivity of f.m. tuners, figure-of-merit for front-end, G. J. King. 83 Feb.
Servo. aerial rotator. D. J. Telfer, 177 Apr.
Speech processing, a.f. and r.f. clipping for, D. A. Tong, 79 Feb.

TV signals, computer monitoring of, J. Schaffer, 37 Jan.
Telephone tone generator, i.c. R. Ball, 119 Mar
Teletext decoder. Wireless World, P. R. Darrington, 498 Nov., J. F. Daniels, 563 Dec.
-- receivers, 45 Jan.
Television tuner design, D. C. Read, 448 Oct., 525 Nov.. 581 Dec., Letters, 568 Dec.
Time by radio, D. A. Batemsn, 277 June
Tone generator, i.c. telephone, R. Ball, 119 Mar
Transmitter power amplifier design, W. P. O'Reilly, 417 Sept., 479 Oct., 541 Nov.
Transmitting aerials. v.l.f., R. B. C. Copsey, 427 Sep
Tuner design, television, D. C. Read, 448 Oct., 525 Nov., 581 Dec., Letters. 568 Dec.
Tuners, figure-of-merit for front-end selectivity of f.m., G. J. King, 83 Feb.

Use of video tape recorders with domestic TV, A. C. Smaal, 121 Mar.
V.h.f. repeaters, coastguard, J. B. Tuke, 240 May
V.1.f. transmitting aerials, R. B. C. Copsey, 427 Sept

Video tape recorders with domestic TV, use of, A. C. Smaal. 121 Mar.
Viewdata on trial soon, 532 Nov
Vision cassette and cartridge recorder, 185 Apr
Waves, radio, "Cathode Ray", 469 Oct.
Weather satellites ground station, G. R. Kennedy, 21 Jan. Correction. 145 Mar.
Jireless World Teletext decoder, P. R. Darrington, 498 Nov.,
J. F. Daniels. 563 Dec.

CONSTRUCTIONAL DESIGNS

Aerial rotator servo, D. J. Telfer. 177 Apr.
Audio level indicator, peak-reading. S. F. Bywaters \& J. E. West, 357 Aug., Letters. 468 Oct., 512 Nov., Note. 492 Oct.
Capacitance meter, oscilloscope, H. v. Z. Smit, 238 May
Clock. solid-state digital. D. D. Clegg, 69 Feb., 129 Mar.,
Comparator, resistance, D. Griffiths, 331 July, Letters, 415 Sept.

Decoder, Wireless World Teletext, P. R. Darrington, 498 Nov., J. F. Daniels, 563 Dec
Digital clock, solid-state. D. D. Clegg. 69 Feb., 129 Mar.. Letters, 221 May
-- waveform synthesizer, R. A. J. Youngson. 431 Sept
-- wrist watch, solid-state, D. D. Clegg, 298 July, 371 Aug. Dolby noise reducer, Wireless World, G. Shorter, 200 May. 257 June, 314 July, Letters, 415 Sept.

Emergency power generator, low-cost. J. M. Caunter, 75 Feb., Letters, 165 Apr., 265 June. 514 Nov.
F.m. tuner, high-quality, J. B. Dance, 111 Mar., Letters. 312 July
50 MHz oscilloscope, C. M. J. Little, 211 May. 266 June, 319 July, 381 Aug.
Generator, low-cost emergency power, J. M. Caunter. 75
Feb., Letters. 165 Apr., 265 June, 514 Nov.
High quality f.m. tuner. J. B. Dance. 111 Mar.. Letters. 312 July
lgnition system, optical sensor. H. Maidment, 533 Nov
--, transistor-aided, G. F. Nudd, 191 Apr.
Indicator. peak-reading audio level. S. F. Bywaters \& J. E. Oet.
Low-cost emergency power generator, J. M. Caunter. 75
Feb., Letters, 165 Apr., 265 June. 514 Nov.
Meter, oscilloscope capacitance. H. v. Z. Smit, 238 May Multıphonic organs, progress in, J. H. Asbery, 456 Oct.

Noise reducer, Wireless World Dolby, G. Shorter, 200 May, 257 June, 314 July, Letters. 415 Sept.

Optical sensor ignition system, H. Maidment. 533 Nov.
Organs, progress in multiphonic, J. H. Asbery, 456 Oct. Oscillator for the amateur, variable frequency, 1. J. Dilworth 407 Sept.

Oscilloscope capacitance meter, H. v. Z. Smit, 238 May
$--, 50 \mathrm{MHz}, \mathrm{C} . \mathrm{M} . \mathrm{J}$. Little, $211 \mathrm{May}, 266$ June, 319 July, 38 Aug.
Peak-reading audio level indicator, S. F. Bywaters \& J. E. West. 357 Aug., Letters, 468 Oct., 512 Nov., Note, 492 Oct.
Power generator, low-cost emergency, J. M. Caunter, 75 supply, twin voltage stabilized, J. L. Linsley Hood, 43 Jan., Letters, 127 Mar., 167 Apr
Progress in multiphonic organs. J. H. Asbery, 456 Oct.
Radio, time by, D. A. Batemen, 277 June
Resistance comparator, D. Griffiths, 331 July, Letters, 415 Sept.
Rotator servo, aerial, D. J. Telfer, 177 Apr.
Satellites ground station, weather, G. R. Kennedy, 21 Jan., Correction. 145 Mar.
Scanner, facsimile, J. M. Osborne, 459 Oct
Servo, aerial rotator, D. J. Telfer, 177 Apr
ilent 312 July, Corrections, K. Moulana, 31 , Jan., Lental
Letters. 221 Ma
-- $\overline{\text { Stabilized power supply, twin voltage, J. L. Linsley Hood, } 43}$ Jan., Letters, 127 Mar., 167 Apr.
Swith for stereo-pair comparisons, silent, K. Moulana, 31 Jan., Letters, 312 July, Correction, 145 Mar
Synthesizer, digital waveform. R. A. J. Youngson, 431 Sept
Telephone tone generator, R. Ball, 119 Mar .
Teletext decoder, Wireless World, P. R. Darrington, 498 Nov., J. F. Daniels. 563 Dec.
elevision tuner design, D. C. Read, 448 Oct., 525 Nov.
Time by radio, D. A. Batemen. 277 June
Tone generator, j.c. telephone, R. Ball, 119 Mar
Transistor-aided ignition, G. F. Nudd, 191 Apr.
Tuner design, television, D. C. Read, 448 Oct., 525 Nov
--, high-quality f.m., J. B. Dance, 111 Mar., Letters, 312 July
Twin voltage stabilized power supply. J. L. Linsley Hood. 43 Jan., Letters, 127 Mar., 167 Apr
Variable frequency oscillator for the amateur. l. J. Dilworth, 407 Sept

Waveform synthesizer, digital, R. A. J. Youngson, 431 Sept. Weather sateltites ground station. G. R. Kennedy, 21 Jan.. Corection, 145 Mar
Wireless World Dolby noise reducer, G. Shorter, 200 May,
257 June, 314 July, Letters, 415 Sept. 498 Nov., J. F. Daniels. 563 Dec.
Wristwatch, solid-state digital, D. D. Clegg, 298 July, 371 Aug.

EDTTORIALS

A star for India, 549 Dec.
Broadcasting and communications. 447 Oct.
Consumerism and the Common Market, 397 Sept .
Measuring what we perceive, 51 Feb
Not always the spice of life, 347 Aug.
Off the record, 247 June
Outlook for cable television. 151 Apr
Professional advice, 1 , Mar. Letters, 126 Mar.
Sharing the spectrum, I Jan., Letters, 126 Mar.
The analogue to digital conversion, 297 July, Letters, 414
Sept., 569 Dec.
The dugs of war. 497 Nov

EDUCATION \& INSTRUCTIONAL

A.f. and r.f. clipping for speech processing, D. A. Tong, 79 Feb. file notch filers. Y. Nezer, 307 July. Letters, 467 Oct.
Advances in microwaves, M. W. Hosking, 577 Dec.
Advances in microwaves, M. W. Hosking, 77 Dec.
Add for drivers, 269 June
Amplifier design, transmitter power, W. P. O'Reilly, 417 Sept. 479 Oct.. 541 Nov.
Applying "magnetic Ohm's law" to permanent magnets. P. Artificial vision progress. 567 Dec.

Broadcasting, digital techniques in recording and, J. Dwyer, 248 June. Letters, 365 Aug

Calculations simplified, electronic circuit, S. W. Amos, 273 June. 323 July, 387 Aug.. 423 Sept., 475 Oct.. Calculators, interference from pocket, C. T. Ristorcelli, 571 Des.
Cassette and cartridge recorders. vision, 185 Apr
Charge coupled devices. J. Mavor. 13 Jan., D. J. MacLennan,
61 Feb.. E Williams, 133 Mar.
6 I Feb.. E. Williams. 133 Mar.
Circuit calculations simplified, electronic. S. W. Amos. 273 June. 323 July, 387 Aug., 423 Sept.. 475 Oct., Classifying f.e.ts. B. L. Hart. 2 Jan.
Clipping for speech processing, a.f. and r.f., D. A. Tong. 79 Clipping for
Feb.
Coastguard v.h.f. repeaters, J. B. Tuke, 240 May
Computer monitoring of TV signals, J. Schaffer, 37 Jan.
Computers. communication and high speed railways. W. E. Anderton, 348 Aug., Letters. 570 Dec.
Consultants, J. Dwyer, 505 Nov., Letters, 569 Dec
Digital techniques in recording and broadcasting, J. Dwyer, 248 June, Letters. 365 Aug.
Display devices, 229 May
Dolby noise reducer, Wireless World, G. Shorter, 200 May. Drivers, ald for, 269 June

Electrical safety, standards and the law, B. Lane, 401 Sept.. Letters, 513,514 Nov
simplified. S. W. Amos. 273 June, 323 July, 387 Aug., 423 Sept., 475 Oct., Correction, 532 Now.
Electronics in oil. W. E. Anderton, 4 Jan
F.e.ts, classifying, B. L. Hart, 2 Jan.

Ferrite pot-cores, using. D. E. O'N. Waddington, 152 Apr
Figure-of-merit for front-end selectivity of f.m. tuners, G. King. 83 Feb.
Filters, active notch. Y. Nezer, 307 July, Letters, 467 Oct.
How speech can be compressed and expanded. S. L. Silver 433 Sept.
interference from pocket calculators, C. T. Ristorcelli, 571 Dec.

Kirchhoff's voltage law, M. G. Scroggie. 143 Mar.
Magnetic recording. 75 years of. B. Lane, 102 Mar.. 161 Apr 222 May, 283 June, 341 July, Letters, 365 Aug.
Magnets, applying "magnetic Ohm's law" to, P E. K Donaldson, 567 Dec.
Microprocessors, D. E. O'N. Waddington, 550 Dec
Monitoring of TV signals, computer, J. Schaffer, 37 Jan
Navigation by satellite, W. Blanchard, 52 Feb., Letters, 264 June
Noise - confusion in more ways than one, K. L. Smith. 107
Mar., 169 Apr., 235 May, 326 July, Letters, 264 June

- reducer. Wireless World Dolby, G. Shorter, 200 May 257 June, 314 July. Letters, 415 Sept.
Notch filters. active. Y. Nezer, 307 July, Letters, 467 Oct.
Oil, electronics in W.E. Anderton, 4 Jan
Phase reversal, transformer, T. Palmer, 58 Feb.
Pot-cores, using ferrite, D. E. O'N. Waddington, 152 Apr.
Pot-cores, using ferrite, D.E.ON. Waddington, 152 Apr. Sept., 479 Oct., 541 Nov.
Frocessing, a.f. and r.f. clipping for speech. D. A. Tong, 79
Feb.
Radio waves. "Cathode Ray", 469 Oct.
Railways, computers, communication and high speed, W. E. Anderton, 348 Aug., Letters. 570 Dec.
Recorders, vision cassette and cartridge, 185 Apr.
-- with domestic TV, use of video tape, A. C. Smaal. 121 Mar.
Recording and broadcasting, digit al techniques in, J. Dwyer. 248 June, Letters, 365 Aug.
75 years of magnetic, B. Lane, 102 Mar., I61 Apr., 222 May, 283 June, 341 July, Letters. 365 Aug.
Repeaters, coast guard v.h.f., J. B. Tuke, 240 May
Resistors. R. A. Fairs, 487 Oct
Safety, standards and the law, electrical. B. Lane, 401 Sept. Letters. 513.514 Nov
Satellite, navigation by, W. Blanchard, 52 Feb., Letters, 264 June
Slectivity of f.m. tuners, figure-of-merit for front-end, G. J King, 83 Feb.
years of magnetic recording, B. Lane. 102 Mar.. 161 Apr 222 May, 283 June, 341 July, Letters, 365 Aug
ut signs, A. T. Morgan, 436 Sept., Letters. 512 Nov 433 Sept.
processing, a.f. and r.f. clipping for, D. A. Tong, 79 Feb. Letters, 513,514 Nov
V signals, computer monitoring of, J. Schaffer, 37 Jan eletext receivers, 45 Jan
ransformer phase reversal, T. Palmer, 58 Feb.
ransmitter power amplifier design, W. P. ('Reilly, 417 Sept., 479 Oct., 541 Nov
Tuners, figure-of-merit for front-end selectivity of f.m., G. J. King. 83 Feb.
se of video tape recorders with domestic TV. A. C. Smaal, 121 Mar.
Using ferrite pot-cores, D. E. ON. Waddington, 152 Apr
V.h.f. repeaters, coastguard, J. B. Tuke, 240 May
V.l.f. transmitting aerials. R. B. C. Copsey, 427 Sept.
Video tape recorders with domestic TV, use of. A. C. Smaal. 121 Mar.
Vision cassette and cartridge recorders, 185 Apr .
-- progresses, artificial. T. E. Ivall, 156 Apr.
Waves, radio. "Cathode Ray", 469 Oct
Wireless World Dolby noise reducer. G. Shorter, 200 May, 257 June. 314 July, Letters, 415 Sept.

XHIBITIONS \& CONFERENCES

APRS 75, 254 June
Audio Engineering Society 50th Convention. W. E. Anderton \& B. Lane. 207 May

Berlin show. more from the, 539 Nov
Components show, Paris. 271 June
Consumer electronics in the U.S.A., 369 Aug.. Letters, 514 Nov.

Nontion. Audio Engineering Soclety 50th. W. E.
Anderton \& B. Lane, 207 May
Domestic equipment, new. 354 Aug
Instruments in Bloomsbury. 594 Dec
international radio and television exhibition, 521 Nov
London Electronic Component Show 1975. 227 May
More from the Berlin show, 539 Nov .
New domestic equipment. 354 Aug
Paris components show. 271 June
Radio and television exhibition, international. 521 Nov
elevision exhibition, international radio and. 521 Nov. -- solid-state and digital, 362 Aug.

LETTERS TO THE EDITOR

Active crossover networks. K. C. Gale. 68 Feb..
-- notch filters, P. Bowron, 467 Oct.
American insularity, J. G. C. Fox, 128 Mar.
Amplifier clams. T. de Paravicini, 19 Jan., R. A. J. Glowacki. 165 Apr.
Analogue vs digital readout, E. J. Williams, 414 Sept., F. A. V Smith, 569 Dec.
Audio amplifier load specification, P. J. Walker, R. J. Stuart 568 Dec.

Blattnerphone, G. Dann, 365 Aug.
Blowers on amplifiers, I. M. Marshall, 514 Nov.
Broadcasting duplication, C. Higham, 126 Mar.
Capacitors as transmission lines. A. Azelickis. 219 May, R. A. Fairs, 265 June
Circuit diagram layout, D. Williams, P. V. J. Adkins, 18 Jan Computer power, D. P. C. Thackeray, 313 July
Confusion about noise. H. Sutcliffe, 264 June
Contacts requested, Mrs. I. David, 264 June
Hog ag
dB conversion on a slide-rule. R. A. Scott, 165 Apr
Digital frequency synthesis, J. P. Martinez, 365 Aug.. G Bates, 468 Oct.
-_ speed oneter, G. B. Weston, 166 Apr.
Directory of audio courses, J. Borwick, 313 July
Distortion transmuted?. T. Marshall, 128 Mar.
Dolby kit filter adjust ment, M. S. Maisey, 415 Sept.
Doppler distortion, C.F. Coleman, 416 Sept.
-- effect, D. H. Edgar, 220 May
Easier to become a radio amateur?, J. F. Dunglinson, 21 May
Electricity and magnetism, C. P. J. Meade, 67 Feb.
Electrodynamically induced e.m.f., J. Gray, 221 May, D. C. E Todd \& N. G. S. Taylor, 313 July, K. L. Smith, C. R Oct.. D.'H. Preis, J. Gray, 569 Dec
Electrolytic capacitors, P. D. Habermel, 168 Apr
Electronic component retailers, A. Sproxton 467
-- music journal, J. Meyerowitz, 67 Feb
Emergency power generator, I. R. Sinclair, 165 Apr., M. W Garman, 265 June
F.m. tuning indicator, R. D. Post, 220 May

Good service, F. V. Mourant, 415 Sept
High quality f.m. tuner. J. E. Marshall, 312 July
Horn loudspeaker output, D. R. Schaller, 126 Mar
Impedance of a transmission line, R. Aratari, 168 Apr. Instrument read-out in Braille?, J. M. Osborne, 313 July Insulation testers, E. A. King, 466 Oct., J. G. C. Fox, 570 Dec May

Keypad layout: telephones and calculators, R. E. Abbiss. 66 Feb.

Lawn mower powered generator. L. Streatfield, 513 Nov . Liquid-cooled power amplifier, P. Lenartowicz. 220 May Low-cost practice electronic organ, K. J. Young, 167 Apr. 466 Oct.
More things in Heaven and Earth, C. G. Warren, 128 Mar Multi-rate VAT, J. C. Nuttall, 366 Aug.
Music without movement, R. G. Young, 365 Aug., J. Sager, 467 Oct.

Navigation by satellite, J. R. Watkinson, 264 June
Novel class B amplifier?. T. Bennett, 366 Aug.
-- -- -- output:. N. M. Visch. 166 A
Optically coupled v.f.o., R. Sterry, 66 Feb.

Peak reading level meter. J. Dawson \& C. Evans, 468 Oct., S F. Bywaters \& J. E. West. 512 Nov.

Peril of publishing, W. B. Henniker, 265 June, D. A. Bailes 465 Oct.
Power supply protection, L. Bischoff \& D. W. Branston, 415 Sept.
Quad broadcasting - an alternative view, D. J. Meares. 65 Feb.
Quadraphonic quandary, B. J. Shelley, 19 Jan
Railway fail-safe?, D. Cockerell, 570 Dec
Read-out for the visually handicapped, A. J. Croft. 514 Nov
18 Jan., G. W
Short, 127 Mar. 513 Nov.
Rıbbon microphones. D. Ireland. 165 Apr
Safety regulations. R. C. Whitehead, 513 NOV .
Series and parallel feedback, T. Magchielse, 68 Feb., 265 June "Settling tıme" in audio amplifiers, J. L. Linsley Hood, 18 Jan.. (j. J. King. 127 Mar
Silent stereo switch. S. F. Bywaters, 312 July
Single lamp f.m. tuning indicators, J. A. Skingley. 219 May Small shops care. G. J. Badman. 513 Nov .
Solid state digital clock. D. D. Clegg, R. M. Sinden. 221 May Sound broadcasting dynamic range, J. M.
sound broadcasting dynamic range, J. M. Hughes. 167 Apr . Sept.

Teletext denionstration, M. A. E. Butler, 415 Sept
Television tuner design. P. A Moore. 568 Dec.
"The consultants", A. P. B. Faulkner. J. Bowers, 569 Dec
The strip in bank notes. A. Sproxton, 68 Feb .
Trarking filters. G. D. Dawson. 19 Jan.
Tranststor curcuit diagrams. R. C. Whitehead. 221 May
Twan voltage stabilized power supply. L. Cook. D. Boxal
127 Mar. J. F. K. Nosworthy. 167 Apr.
Use of l.e.ds as photorells. K. C'Johnson, 66 Feb.

Vanishing component shops. B. W. B. Pethers, 512 Nov Variable frequency division, P. E. Battrick, 67 Feb.

Wide-band local net works. R. Gabriel, 465 Oct

MEASUREMENT \& TEST

Binary sequence generators, pseudo-random, F. Butler. 87 Feb.
Capacitance meter, oscilloscope, H. v. Z. Smit, 238 May Comparator, resistance, D. Griffiths, 331 July, Letters, 415 Sept.

Electronic engineers' slide rule, L. Nelson-Jones, 74 Feb., Letters, 165 Apr

50 MHz oscilloscope, C. M. J. Little, 211 May. 266 June, 319 July. 381 Aug.
Figure-of-merit for front-end selectivity of f.m. tuners, G. J. King, 83 Feb.

Generators, pseudo-random binary sequence, F. Butler, 87 Feb.

Monitoring of TV signals, computer, J. Schaffer, 37 Jan.
Oscillat or for the amateur, variable frequency, I. J. Dilworth. 407 Sept.
Oscilloscope capacitance meter, H. v. Z. Smit, 238 May
$-\quad 50 \mathrm{MHz}$ C. M. J. Little, 211 May, 266 June, 319 July, 381 Aug.

Pseudo-random binary sequence generators, F. Butler. 87 Feb.

Radio, time by. D. A. Bateman. 277 June
Resistance comparator, D. Griffiths, 33 I July. Letters, 415 Sept.
Rule, electronic engineers' slide, L. Nelson-Jones, 74 Feb., Letters, 165 Apr.

Selectivity of f.m. tuners, figure-of-merit for front-end, G. J. King, 83 Feb.
Slide rule, electronic engineers', L. Nelson-Jones, 74 Feb., Letters, 165 Apr.

TV signals. computer monitoring of. J. Schaffer. 37 Jan. Time by radio. D. A. Bateman, 277 June
Tuners, figure-of-merit for front-end selectivity of f.m. G. J. King, 83 Feb
Variable frequency oscillator for the amateur. 1. J. Dilworth. 407 Sept.
Zener diode load line. N. H. Saban, 570 Dec.

NEWS OF THE MONTH

AES Convention 1975, 60 Feb.
Advance in i.c. fabrication. 558
"A" level electronics. 577 Dec.
Antenna system for AEROSAT, 304 July
Association of research contractors formed, 305 July
Audio/visual show for the Midlands. 116 Mar.
BBC demonstrate matrix system, 59 Feb. Bell Laboratories celebrate fifty years, 160 Apr . Bouncing ball detector, 405 Sept.
Breakthrough in quartz oscillators, 454 Oct BREMA on VAT, 304 July

Broadcasting for Pak istan villages. 559 Dec
Buy British audio, 510 Nov
CCTV in Westminster Abbey, 406 Sept.
Ceefax. Oracle - now Tifax. 306 July
Celtic communications covered, 114 Mar
Chart recorder controls furnace, 406 Sept
Colour TV deliveries down. 4550 Cl .
$\overline{\text { Communications } 76.210 \text { May }}$
Communications 76.210 May ${ }^{\text {Compont }}$ giants integrate, 558 Dec .
Componers respond to human voice, 114 Mar
Crystals for calculators, 405 Sept .
Data buoy commissioned. 511 Nov
DICE throws a double, 159 Apr.
Direct-drive a.c. motor, 306 July
EEA promotions for 1975.59 Feb .
Electronics at 'A level. 255 June
-- industry surveyed, 60 Feb .
Errors reduced on radio-t eleprinters. 114 Mar.
Fascimile future forecast. 557 Dec
Fingerprint file, 406 Sept
irst production c.c.d. memory. 159 Apr
Flexible speaker, 116 Mar.
Gulf radar. 256 June
High Fidelity 75 expands. 116 Mar
High-speed waveform recorder. 160 Apr .
Holographic videodisc. 559 D Jec
EE recommends reconstruction of engineering profession 159 Apr .
-- To ' Fresign from CEI. 510 NO
ITU first l.f. m.f. conference session. 10 Jan
Indonesian television update. 558 Dec .
ntegrated circuit in stitches. 454 Oct.
as circularly polarized TV'coming? 304 July
Josephson faster than transistors. 303 July
Large-area iquud cry'stal display. 367 Aug
diser pulses connect ues. 116 Mar.
.iquid crvstals for electron observation. 10 Jan.
Live stereo from Japan. 367 Aug .

Memory store for coloured weather display, 209 May
Microcircuit copyright lawsuit, 558 Dec.
Microwave Conference overwhelmed, 306 July
Miniature solid-state TV camera. 59 Feb
Monitoring monitors, 60 Feb.
NRDC wants more proposals, 558 Dec
Navel television. 256 June
New communications device, 11 Jan
-- computer breed, 511 Nov.

- trade exhibition, 60 Feb .
video system. 116 Mar.
1975 Spring trade shows. 303 July
No interference from experimental tube train. 511 Nov
Optical stereo for cinema films using Dolby, 255 June
Paging service for London. 255 June
-- the dead, 10 Jan
Perth Adelaide by microwave 455 Oct
Push-button 'phones introduced. 510 Nov.
Quadraphonic cassettes, 10 Jan
Queen's awards to electronics, 305 July
Quintophonic Tommy, 256 June
Radio range increased twentyfold. 115 Ma
Rescue radio system, 209 May
Royal president for IERE, 557 Dec
Safety for school TVs, 115 Mar.
Satellite interference suppressed 454 Oct
Satellite navigator helps food search. 210 May
Ship simulator innovations, 368 Aug.
Solid state radio transmitter, 256 June
Standstill brake tester, 455 Oct.
Stockholm's buses computerized, 367 Aug.
Study on teleconferencing, 160 Apr
Symposium on broadcasting satellites. 210 May
TV by tropo-scatter, 557 Dec .
-- delivenes down, 11 Jan.
-- -- -- again, 306 July
-- landmark disappears, 367 Aug
Telegram a second, 4540 Oct
Telemetry brings in North Sea oil, 405 Sept
Test transmissions curtailed, 115 Mar
Tower Bridge won't fall down, 368 Aug
Trading boom at LECS, 368 Aug.
Transistor assembly automated, 305 July
Troposcatter equipment for PO. 59 Feb .
VAT muddle, 303 July
Video first, 209 May
Well oiled. 559 Dec.
World markets decline, 305 July Worldwide telephone link, 115 Mar.

RESEARCH NOTES

At last! The solid-state radio valve, 106 Mar
Bat sonar is best, 538 Nov
Better propagation forecasts? 430 Sept.
Black holes: radiation transformers? 110 Mar
-- -- to solve the energy crisis, 538 No
Dielectric waveguide materials, 106 Mar Digital filters reveal weather trends, 430 Sept
E.E.G. test for telepathy? 430 Sept.

Ear temperature clue to brain-damage, 430 Sept. Enter the white hole, 36 Jan.

First binary pulsar, 36 J an
Gravity waves: more problems for detection, 106 Mar.
Holes in the ionosphere to aid radio astronomy? 430 Sept.
Insect tracking by radar, 106 Mar.
Just a second . . ., 538 Nov
LDEs - not from alien space probes, 106 Mar Lasers detect paint-peeling masterpieces, 110 Mar
Meteorites: poor man's intelsat? 538 Nov.
New thermal imaging tube, 110 Mar.
Optical fibre modulators? 106 Mar.
Power from ocean waves. 36 Jan
Si particle, 110 Mar
Sund waves to hold liquids in space lab? 538 No Sunspots, Jupiter, and earthquakes, 36 Jan.

Tailpiece, 106 Mar.
Thermistor-stabilized oscillators. 36 Jan Towards the 12 GHz consumer f.e.t., 430 Sept

Watching high-speed transistors in slow motion, 36 Jan Wave power looks good, 430 Sept.

SPACE NEWS

ASTP's ranging system. 441 Sept.
Communications satellite moves to India, 441 Sept
Conference on spacecraft antennas. 291 June
Crop inventory experiment, 78 Feb .
Crystals grown in space, 291 June
Did you know?, 78 Feb
ESA's first satellite, 580 Dec
European Space Days, 441 Sep
First African Landsat station, 291 Jun Future of satellite communications. 291 June

Jovian magnetic influences, 291 Jun
Last Intelsat IV launch, 441 Sept .
Magnetosphere exploration, 78 Feb Mars probe launched, 580 Dec

New communications satellite, 78 Feb
Radio and space research $1971-73,78$ Feb
Self-repairing memories, 174 Apr
Seventh Intelsat IV launch, 174 Apr
Solid state data recorder. 78 Feb.
Weather satellite for Western states, 174 Apr.

WORLD OF AMATEUR RADIO
Across the Channel, 292 June
All-solid-state stations. 86 Feb.
Amateur production line, 292 June -- television, 46 Jan.
Amateurs and emergencies, 340 July Armerican opinions. 486 Cct .

Commonwealth microwave record?, 46 Jan
End of "BERU". 242 May
FCC Docket 20282, 380 Aug.
50 years of REF, 193 Apr.
From all quarters. 193 Apr
G-line pioneer, 380 Aug .
Good winter for "Top Band", 193 Apr
Hourly propagation forecasts :rom WWV, 340 July
1ARU celebrates 50 years, 142 Mar
Inflated awards? 540 Nov.
Italian FAX, 142 Mar.
Less television interference, 442 Sept.
Licence trends, 242 May
Look no batteries, 340 July
Low-cost s.s.b. generation. 242 May
Milliwatts and coherent c.w., 142 Mar
Mixed grill. 242 May
Moonbounce, 486 Oct
On the bands, 540 Nov.
Oscar 7 up and working. 46 Jan
Powers low and high, 292 Jun
Preparing for 1979, 292 June
President from Wales, 46 Jan., Letters, 219 May Proposed changes to American licences, 193 Apr.
R.t.t.y. facilities at ZS3B, 193 Apr.

Repeaters and beacons, 86 Feb
SOE's suitcase sets, 442 Sept
Slow-scan progress, 86 Feb.
Sun shines on $28 \mathrm{MHz}, 442$ Sept

Transatlantic link severed, 486 Oct
200 -mile microwave contacts, 380 Aug
Typewriters rampant, 486 Oct.
Using the London repeater, 292 June
Warsaw and v.h.f., 380 Aug.
What goes wrong?, 540 Nov
When portable is fixged, 442 Sept.
World Radio Club. 142 Mar.

AUTHORS

Amos. S. W., 273 June, 323 July, 387 Aug., 423 Sept., 475 Oct Anderton, W. E., 4 Jan., 207 May. 348 Aug.
Asbery, J. H., 456 Oct
Ayre, D. C. \& Woodard, K. G.. 216 May. Letters. 365 Aug
Ball, R., 119 Mar
Bateman, D. A... 277 June
Bayliss, P., 579 Dec
Blanchard, W 52 Febssen, R., 398 Sept.
Briody, P. J., 139 Mar
Butler, F., 87 Feb.
Bywaters, S. F. \& West, J. E., 357 Aug., Letters, 512 No
Carruthers, J., Evans, J. H., Kinsler, J. \& Williams, P., 27 Jan. 95 Feb., 183 Apr., 287 June, 377 Aug., 483 Oct., 581 Dec "Cathode Ray", 469 Oct
Caunter J M 75 Feb., Letters, 166 Apr
Clegg. D. D., 69 Feb., 129 Mar., 298 .Iuly, 371 Aug., Letters 221 May
Copsey, R. B. C., 427 Sept
Dance, J. B., 111 Mar., Letters, 312 July
Daniels, J. F., 563 Dec
Dartington, P. R., 498 Nov.
Dilworth. l. J., 407 Sept.
Donaldson, P. E. K.. 567 Dec
Dwyer, J., 248 June, 505 Nov
Evans, J. H. Kinsler, J., Williams, P. \& Carruthers. J.. 27 Jan. 95 Feb., 183 Apr., 287 June. 377 Aug., 483 Oct., 581 Dec

Fairs. R. A., 487 Oct.
Griffiths. D., 331 July
Grocock, J. A.. 117 Mar., Letters. 264 June
Hart, B. L., 2 J an.
Hosking. M. W., 334 July, 577 Dec.
Ivalı, T. E., 156 Apr.
Johannessen, R. \& Blair, P. K., 398 Sept.

Kennedy, G. R., 21 Jan
King, G. J., 83 Feb. Letters, 128 Mar.
Kinsler, J., Williams, P., Carruthers, J. \& Evans, J. H., 27 Jan. 95 Feb., 183 Apr., 287 June, 377 Aug., 483 Oct., 581 Dec

Lane, B., 102 Mar., 161 Apr., $208 \& 222$ May. 283 June, 341 July, 401 Sept.
Linsley Hood, J. L., 43 Jan., Letters, 18 Jan., 127 Mar., I 67 Apr.
Little, C. M. J., 211 May, 266 June. 319 July, 381 Aug.
Maclennan, D. J., 61 Feb.
Maidment, H., 533 Nov.
Mavor, J., 13 Jan.
Morgan, A. T., 436 Sept., Letters. 513 Nov
Moulana, K., 31 Jan.
Nelson-Jones, L., 74 Feb
Nezer, Y., 307 July

O'Reilly. W. P., 417 Sept., 479 Oct., 541 Nov
Osborne, J. M., 459 Oct.
Palmer, T., 58 Feb.
Pramanik, S. K., 529 Nov.
Read, D. C., 448 Oct., 525 Nov., 581 Dec.
Ristorcelli. C. T.. 571 Dec.
Schaffer, J., 37 Jan
Scroggie, M. G., 143 Mar.
Shorer. G., 200 May, 257 June, 314 July
Silver, S. L., 433 Sept.
Silver, S. L., 433 Sept.
Smith, K. L., 107 Mar., 169 Apr., 235 May. 326 July, Letters, 264 June, 414 Sept.

Telfer, D. J., 177 Apr
Tong. D. A., 79 Feb
Tuke, J. B.، 240 May
"Vector", 150 Mar., 198 Apr.. 296 June, 396 Aug., 496 Oct.
Waddington, D. E. O'N., 152 Apr. 550 Dec
Walker, P. J., 560 Dec.
West. J. E. \& Bywaters. S. F., 357 Aug., Letters, 512 Nov. Williams, E., 133 Mar
Williams, P. Carruthers, J., Evans, J. H. \& Kinsler, J., 27 Jan
95 Feb., 183 Apr., 287 June, 377 Aug., 483 Oct., 581 Dec Woodard, K. G. \& Ayre. D. C.. 216 May, Letters, 365 Aug.

Youngson, R. A. J.. 431 Sept

Born in Hodgenville, Kentucky, he came from humble origins. His descendants have been traced back to Puritans who emigrated to Massachusetts from England in 1637. His father was an illiterate farmer and Lincoln himself had irregular schooling.

After a succession of jobs over ten years, a friend encouraged him to study law and he practiced as a lawyer during the 1830 's 40 's. In 1861 he became the sixteenth president of the U.S.A.

During the American Civil War he preserved the Union and on January 1 st 1863, he emancipated negro slaves

On 14th April 1865, John W'ilkes Booth, an actor and fanatical southern sympathiser, shot Lincoln through the head, he died the next day.

"But you cannot fool all of the people all of the time"...

W'e're not suggesting that our competitors try to, but International Rectifier is the only company producing Solid State Relays offering all these advantages, from 120 to 240 V up to 40 amperes, and 8 and 12 amperes up to 480 V . All International Rectifier SSR's are photo-isolated, have zero-voltage switching, are I C compatible and can be made to withstand either 1500 VAC or 2500 VAC isolation between output terminals and base.

But what is important, when you are not trwing to fool even some of the people any of the tinte, is that ALLI.R. SSR's use POWER THYRISTOR JUNCTIONS not triacs.

Why not send for details and find out for yourself.

IT MAKES SENSE TO

bUY AT LASKys

STOOTR MUL TIMETER
TRANSISTOR TESTER

CENTRAL LONDON

$4810 x t 0 r d$ Street Wl
30 Tottenham Court Rd Wl 63
42 /45 Jottenham CI Ro WI
$257 / 8$ Totteriham Ci Rd Wi
3 Lisle Street WC2
118 Edgware Road. W2
193 Edgware Road W2
311 Edgware Road W?
346 Edgware Road W?
382 Edgware Road W?
109 Fleet Street IC4
152 / Fleet Street FC4

BIRMINGHAM

${ }_{16}$ BRISTDL
CROYDON
1046 Whigit Centre
KINGSTON 38 -40 Eden St
LEICESIER 45 Market Pl

FANTAVOXFMTI STEREO
FMTUNER

ELECTRONIC CALCULATORS

AUDIOTRONIC HEADPHONES
LSH2O Individual
volume contols

ADC33 Delune 24.hour cloch iadio covering Mw fM wavehands $\$ 80$ minute sleep tinie: Buzzer alarm Tone contro OUR PRICE 19.95 p

AUDIOTRONIC HIGH ENERGY LOW NOISE CASSETTES

AUDIOTRONIC ACD 770D
Gassette Deck with Dotby

AUOIOTRONIC
LOW NOISE CASSETTES

LOW NOISE CASSETTES			
model	5	O	15
C60	¢205	${ }_{2} 388$	E5 50
C90	f2 81	¢5 34	[7.57
C120	¢359	c680	C9 64

booklet. Size $121 \times 73 \times 29 \mathrm{~mm}$
OUR PRICE 5540 P P 2 Ins $25 p$

rest teads
OUR PRICE 54.60 P P\& Ins 250

ABSOLUTELYFREE Andavalabig
fromany branchol LASk YS orby fromanybranch of LASKVS ar oy
post complete coupon below)
Our brochure includes a complete Our brochure encludgs a complete
price lict list or components.
Calculators. Tapes Casserte Calculators. Tapes Casserte
Decks. Tuners. Amplitiers Televisions Record Decks
Electronickits Video and most
Ot Othel deccessories A must tor evervh.tior electronics COMSNGSOON'DONTMISS OUR BUMPEAFB. PAGE CHRISTMASCATALOGUE: STUFFED WITHGAEAT
BARGAINS AND GIFTIOEAS

AC VOITS iv 10 100v hooev OC CURAENT
100 mA 1000 ma AC CURRENT
100 WA
N
OUR PRICE TG3. 70 m .00 k 1000 k
(01) LEWISHAN

93864: 29 Riverdaie Lewisham Centre Opening Soon NORTHAMPION I8 Abington Stre
NOTIINGHAM
5-I Lowet Parliament OXFORD 16 Westgate Centic 18.14 READING
6 Friars Walk Friar Street 0734595459 RICHMOND 3 ? Mill Street 448 । 44
3 ROMFORD 86 South Strept
4 SLOUGH
581 ? Unt 65. Queensmere Centre Openine Soon
32833 SOUTHEND
05206 Churchill Wes
204 ? 3 Camden Road
204?1 WOL VERHAMPION
68. 3021 CHaTHAM, DARTFORD, SWHDON Openne soan

5461271 Altprices corsect at $30 / 9 / 75$ but subject
53767% to change without notice E \& O.E

TTO LASKYs CUSTOMER SERVICES DIVISION [Dept. WWII]
Audiotronic House. The Hyde, London NW9 6JJ. Tel : 01-200 1321
Please send me the following items

For iust £1,the worid is yours!

The world of electronics, television, radio/audio is on parade in the second great Wireless World annual. Constructional articles include making a photographic timer. Surveys cover video, magnetic tape compatability, electronic ignition and radio astronomy in schools. 'How to ... ' features range from using oscilloscopes to making printed circuit boards. And there's a reference section listing standard frequency transmissions and much, much more. All written with the clarity, authority and expertise you'd expect from Wireless World.
*£1 from newsagents or $£ 1.35$ inclusive by post from the publishers.

[^6]
ETBOMASOXDE Electronics

Dept. 5, 56, Fortis Green Road Muswell Hill, London, N1O 3HN telephone: 01-883 3705

More than just a catalogne! PROJECTS FOR YOU TO BUILD

4-digit clock, 6-digit clock, 10W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc.

CIRCUITS ... Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance
Multiplier, etc., etc.
Full details and pictures of our wide tange of components, e.g. capacitors, cases, knobs, veroboards, edge connectors, pluys and sockets, lamps and lampholders, audio leads, adaptor plugs, rotary and slide potentiometers, presets, relays, resistors (even 1\% types!), switches, interlocking pushbutton switches, pot cores, transformers, cable and wire, panel meters, nuts and bolts, tools, organ components, keyboards, L.E.D.'s, 7 -segment displays, heatsinks, transistors, diodes, integrated circuits, etc., etc., etc
Really good value for money at just 40p

The 3600 SYNTHESISER

The 3600 synthesiser includes the most popular features of the 4600 model, but is simpler. Faster to operate, it has a switch patching system rather than the matrix patchboard of the larger unit and is
particularly
suitabie fol performance and portable use.
S.A.E. please for price list

The 4600 SYNTHESISER

We stock all the parts for this brilhantly designed synthesise
including all the PCBs, metalwork and a drilled and printed front panel, yiving a
 superb professional finish. Opinions of authority agree the ETI International Synthesiser is technically superior to most of today's models. Complete construction details available now in our booklet price £1.50 or S.A.E. please for specitication

GRAPHIC EQUALIZER

A really superior high quality stereo graphic equaliser as described in Jan. 1975 issue of ETI. We stock all parts (except woodwork) including all the metal work drilled and printed as required to suit our components and PCBs

ELECTIONGORAN

Build vourself an exciting Electronic Organ. Our leaflet MES51, price 15p, deals with the basic theory of electronic organs and describes the construction of a simple 49 note instrument with a single keyboard and a limited number of stops. Leaflet MES52, price 15p, describes the extension of the organ to two keyboards each with five voices and the extension by an octave of the organ's range.

Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are show
leaflet MES53, price 35 p. (Pre-publication price $15 p$).

NO MORE DOUBTS ABOUT PRICES

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'll tell you about price changes in advance fo just 30p a year (refunded on purchases). If you already have our catalogue send us an s.a.e. and we'll send you our latest list of GUARANTEED prices. Send us 30p and we ll put you on our maning list you recere ormedrat G ARANTEED perod before two months from the starting date shown on that list voull receive detalis of our prices for the next GUARANTEED period before the prices are implemented! plus details of any new lines, special offers, interesting projects and coupons to spend on components to repay your 30p
NOTE: The price list is based on the Order Codes shown in our
catalogue so an investment in our super catalogue is an essential
first step.
Call in at our shop. 284 London Road, Westcliff on Sea, Essex
Please address all mall to
MAPLIN ELECTRONIC
SUPPLIES
P.O. Box 3 Raylergh Essex SS6 8LR.

Collect Wireless World Circards. And build a valuable dossier on circuit design.
 Circards is a unique and comprehensive system, launched by Wireless World, to provide professional engineers and enthusiasts with valuable and up-to-the-minute data on circuit design data not available from any other single source.
 Each Circard is $8^{\prime \prime} \times 5^{\prime \prime}$ and usually shows a specific tested circuit, a description of the circuit operation; component values and ranges; circuit limitations and modifications; performance data and graphs.
 The double-sided format enables the Circard to be filed in standard boxes for easy reference. And the plastic wallet provided keeps the cards well protected.
 Circard sets (10 cards) come in wallets and cost $£ 2.00$. A subscription for 10 consecutive sets costs $£ 18$.
 Start your personal dossier on circuit design by completing and returning the coupon below.

Subjects already covered by Circards

1. Basic active filters. 2. Switching circuits comparators and schmitts.
2. Waveform generators. 4. AC measurements. 5. Audio circuits: preamplifiers, mixers, filters and tone controls.
3. Constant current circuits. 7. Power amplifiers.
4. Astables. 9. Opto-electronics.
5. Micropower circuits. 11. Basic logic gate circuits.
6. Wideband amplifiers. 13. Alarm circuits.
7. Digital counters. 15. Pulse modulators.
8. Current differencing amplifiers - signal

To: General Sales Dept., IPC Business Press Ltd., Room 11 processing. Dorset House, Stamford Street, London SE1 9LU
17. Current differencing amplifiers - signal
Please send me set no(s)
I wish to subscribe to set no(s)
$@ £ 2.00$ each \square^{*}
$@ £ 18.00 \square^{*}$

I enclose cheque/money order for $£$
*Tick as required/Cheques to be made payable to IPC Business Press Ltd. generation. \qquad
18. Current differencing amplifiers measurement and detection. \qquad

DATA AND

 COMMUNICATIONS TERMINALSTeletype 28, 32, 33, 35, 40
TermiNet 30, 300 \& 1200 (30 and 120 cps) Teleterm 1030 \& 1132 (portable 30 cps with integral coupler and RS 232C)
Other page printers (by Siemens, ITT Creed, etc.) TermiNet 120 line printer

* Spares, repairs, overhauls and maintenance
\star Other types and models available * Refurbished units also available
* Short and long period rentals
* Minicomputer interfaces * Uuantity discounts \star Immediate delivery

TELEPRINTER EQUIPMENT LTD. 70-80 AKEMAN STREET, TRING, HERTS., U.K.

STEREO IC DECODER
 HIGH PERFORMANCE PHASE LOCKED LOOP (as in 'W.W.' July '72)
 MOTOROLA MC1310P EX STOCK DELIVERY
 Separation $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$
 SPECIFICATION
 $1 / \mathrm{P}$ level 560 mV rms
 $0 / P$ level 485 mV oms per channel input impedance 5ok Ω
 Power requireme
 KIT COMPRISES FIBREGLASS PCB

 reset Potm \& Comprehensive Instruction
 LIGHT EMITTING DIODE Suitable as stereo on indicator for above

 MC1310p only E2.15 plus p.p. 10p
 NOTE
 As the supplier of the first MC1310p decoder kit, of which we have sold literally thousands. our customers can benefit from our wide experience.
 Please add V.A.T. to all prices
 FI-COMP ELECTRONICS
 PORTWOOD INDUSTRIAL ESTATE, CHURCH GRESLEY
 BURTON-ON-TRENT, STAFFS. DET1 9PT

8 DECADE RESISTANCE BOX

TIME ELECTRONICS LTD.
Botany Industrial Estate Tonbridge, Kent
Tel. Tonbridge (07322) 5993 (3 lines)

STEREO FM TUNER KIT

In the April and May issues of Wireless World there was published a novel design for an f.m. tuner which combines consistent high performance with the elimination of the critical serting-up procedure equired by too many earlier tuners. This original circuit has been eveloped further and is used as the basis for our new slimline unit. The front end is a ready built pre-aligned module which then feeds an amplifier driven screened three section ceramic filter leading to an otegrated circuit five-stage limiting amplifier providing excellent a.m. rejection. This is followed by a single coit integrated balanced demodulator from which the audio output may be taken. Temperature compensated varicap tuning allows stations to be selected either by a en-turn tuning potentiometer or by a choice of six preset push-button controls. Each of the preset controls can be adjusted on the front panel with the settings being indicated by six LED lamps behind an acrylic silk screen printed facia panel insert Additional circuitry ncludes temperature compensated AFC restricted to less than station spacing, inter-station muting, a single-lamp LED tuning indicator and linear scale frequency meter. The stereo decoder, built on a separate board, is based on a well-proven integrated circuit phase-locked-loop which has been added active filters to remove sub-carrier harmonics and 'birdies: The power supply, to ensure station holding sability, uses an integrated circuit voltage regulator which is powered via a low-hum field specially designed TOROIDAL TRANSFORMER.

STYLED TO CDMPLEMENT THE WORLD-WIDE ACCLAIMẸD LINSLEY-HOOD 75W AMPLIFIER

FREE

TEAK CASE WITH FULL KITS
KIT PRICE only 5

MORE KITS ON NEXT PAGE!

Typical P. \& P. charges at November 1 st (E \& OE)

EXPORT NO PROBLEM
 £'s NOW HEAP CHEAP!

By special arrangement the U.K. government has continued its policy of industrial sabotage and stimulation of inflation ensuring the rapid decline in value of sterling. making it even easier for overseas readers to purchase the Powertran range of high-quality audio kits fit down 12% against US. \$ in last 6 months!) Write now for postage quote

	L.H. 75 Watt		F.M. Tuner		120+20	
	Alr	Sea	Alr	Sea	AIf	Sea
Australia	142.60	$E 11.40$	E26.05	¢7. 25	£1705	£4.65
Canada	L23.50	¢8.00	$£ 14.40$	25.05	± 9.60	23.45
Denmark	¢10.50	$\underline{7} 7.40$	26.00	£4.65	$\underline{4.75}$	23.25
Germany	E10.50	$\underline{27.65}$	E6.00	24.80	24.75	£3.35
New Zealand	£41.60	$\underline{10.75}$	$£ 25.25$	26.85	£16.85	± 4.40
Nonvay	E11.40	£7.30	£6.70	£4.50	£5.20	± 3.30
Rep. S Africa	± 2500	£7.80	£15.15	± 4.85	E1035	£3.45
Sweden	110.90	£7.25	26.45	£4.50	± 4.95	£3.25
Switzerland	$\Sigma 8.90$	± 6.85	25.30	£425	± 4.10	£3.10
\cup S A.	£23.20	$\Sigma 9.85$	E14.25	[6.30	± 9.45	2405

75W AMPLIFIER KIT

In Hi-Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973 and a subsequent follow-up article (April 1974) on desion for an amplifier of exceptional performance which has as its principal feature an ability to supply from has as its principal feature an ability to supply from a direct coupled fully protected output stage. power in excess of 75 watts whilst maintaining distortion at less than 0.01% even at very low power levels. The powe amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system, namely the equalization stage and tone control stage, positions where most conventional designs run out of gain at the extremes of the frequency spectrum. Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer.

Hi-Fi News Linsley-Hood 75W/Channel Amplifier Mk III Version

in handbook
(pack 15-price 30p)

FREE
TEAK CASE WITH FULL KITS
KIT PRICE only

Pack
Fibreglass printed-circuit board for power amp
Set of resistors, capacitors. pre-sets for power amp. amp. (now uctors for powe BD529 BD 3) BD529. BD530)
Pair of 2 drilted finned heat sinks
for pre-amp.
Set of low noise resistors capacitors
pre-sets for pre amp
Set of low noise. high gain semicon ductors for pre-amp.
8 Set of potentiometers (including

- Sel mans switch
- rotary mode switch

O Torodal uanstormer con dal transformer complete with magnetic screen/housing primary:
$0.117-234 \mathrm{~V}$ 0.117-234 V . secondarie
$33-0.33 \mathrm{~V} .25 .0-25 \mathrm{~V}$.

Price
f0. 85
f 1.70
c6.50
f0 80
\&1 30
£2.70
£2 40
£2. 05
f3.70
£9. 15

Price
0.65 resistors supply secondary fuses semicon ductors for power supply of misceilaneous parts including DIN skts mans input skl. fuse holder. inter knobs
14 Set of metalwork parts including silk screen printed fascia
panel and all brackets. fixing $\begin{array}{ll}15 & \text { Handbook } \\ 16 & \text { Teak cabine }\end{array}$

2 each of packs 1-7 inclusive are required for complete stereo system
Total cost of individually purchased packs
(or at current rate if changed)
V A T Please add $25 \%^{*}$
to all U.K. orders
U.K. ORDERS - Carriage free (MAIL ORDER ONLY)
SECURICOR DELIVERY: For Securicor delivery to mainland-add $£ 2+$ VAT per kit. OVERSEAS - Postage at cost +50 p special packing, handling (remittance in sterling please) Dept. WW12
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP10 3NN

Please note that as from mid-November we are able
to offer Litronix Class II displays in addition to our range
of Litronix full-spec devices. With the Class II displays all segments are guaranteed to work but have no guaranteed match in output spec. Device availability and prices are -
full spec displays DL701/4/7 148p DL707E 70p experce exate VAT! DL721/7/8 375p DL746/7/750 245p CLASS II DISPLAYS

Quantity prices for either type are available upon request.
We are also able to offer the full range of National Semiconductors Clock chips, most Mostek and Caltex clock chips, Mostek MK5039 series counter/timer chips, our MHI modular kit system, Fluorescent and other technology displays. We accept Access and Barclay cards or Cwo or accounts to accredited customers. A SAE sent to us will be returned with our latest catalogue and price list enclosed.

As we are the experts in our field why bother to
P.S. 5314 Clock chip, CA3081 display driver, $P \subset B$,
4×747E, $2 \times 707 E$
$=5314 E E \quad K_{\text {IT }}-\ell 15$ +Vat.
Managing Director.

STANDARD TRANSFORMERS				
The following types are stock items				
Mains:				
Primary $120 \mathrm{v}+\underset{\text { Each }}{120 \mathrm{v} \text {. Two identical secondaries }}$				
Type		Sec. VA	Quantity	£ p
SM15-6		0-6v	1.9	1.92
SM15-12		$0.12 v\} 15$	10-49	1.82
SM15-15		$0.15 v$	50-99	1.75
SM15-20		$0-20 \mathrm{v}$)	100-499	1.69
SM24-6		0-6v	$1-9$	2.30
SM24-12		0-12v 24	10-49	2.20
SM24-15		0-15v	50-99	2.15
SM24-20		0-20v	100-499	2.10
SM50-6		0-6v	$1-9$	3.75
SM50-12		0-12v 50	10-49	3.60
SM50-15		$0-15 v$ vo	50.99	3.49
SM50-20		0-20v	100-499	3.40
Sub-miniature mains:				
Primary $240 v$. Electrostatic screen. CT Secondary 1.2VA, PCB or clamp mounting				
			$\pm p$	£ p
Type	Sec.	Quantity	Clamp	No clamp
SMS3	3-0-3v	1.9	1.60	1.56
SMS6	6-0.6v	10.49	1.50	1.47
SMS 12	12-0.12v	50-90	1.43	1.40
SMS20	20-0-20v	100-499	1.37	1.34
Data sheets are available. Minimum order charge $£ 5$, post \& packing exira				
WOUND ELECTRONIC COMPONENTS				
LTD.				
Excelcis Works, Gogmore Lane Chertsey, Surrey K 16 SAP Phone: Chertsey 65147				

BC 116 A
BC 117

EHT MULTIPLIERS COLOUR
TYPe
$11 T A Q$ ITT CVC $1.2 \& 3$
11 N GEC Sohelt
$11 T A Z$ GEC 2110
11TAM Philps G8
11 TBD Philips 550
3TCW Pye $691 / 693$
1TH Decca 30 Series
1 TH Decca 30 Series
11 TAQ Decca Bradford
3TCU Thorn $3000 / 3500$
11HAA Thorn 8000
NeW toshiba tubes

COMBINED
PRECISION
COMPONENTS
(PRESTONILTD
Department \mathbf{w}.
194-200 North Rd.
Preston PR1 1 YP.
Tel:55034
Telex:677122.

WW-098 FOR FURTHER DETAILS
celcis Works, Gogmore Lane
Cherisey, Surrey K16 9AP

QUALITY AMPLIFIER KITS by POWERTRAN

WIRELESS WORLD AMPLIFIER DESIGNS

Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs. a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating.

30W BAILEY

Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors. pots
Pk. 3 Semiconductor set
2OW LINSLEY-HOOD
Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors pots
Pk. 3 Semiconductor set
GOV REGULATED POWER SUPPLY
Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors pots Pk. 3 Semiconductor set
BAILEY-BURROWS PRE-AMP
Pk. 1 FrGlass PCB
Pk. 2 Resistors. capacitors, pre-sets transistors

Pk. 3R Rotary potentiometer set
± 200
\&1 00
\&2 35
14 70
± 105
+320
+320
+335
£0 95
E1.95
\& 310
£2 35
£610

Pk. 35 Slider potentiometer set
(with knobs)
STUART TAPE RECORDER
A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this high-performance Wireless World published design
TRRP Pk. 1 Replay amplifier F/Glass PCB \& 1.10
TRRC Pk. 1 Record amp./meter drive cct. F/Glass PCB
£1 60
TROS Pk. 1 Bias/erase/stabilizer cc
F'Glass PCB
For detaıls of component packs for this design please write for free list

ACTIVE FILTER CROSSOVER

An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately. though introducing reactive impedances between the amplifier and the speakers, result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant solution to this problem. described by D. C. Read in Wireless World involves the use of a series of active filters splitting the output of the pre-amplifier into three channels, of closely defined band. width. each of which is fed to the appropriate speaker by its own power amplifier. A design for a suitable 20 -watt amplifier, based on a proven Texas circuit. was also described by Mr Read. The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.

ACTIVE FILTER

${ }_{1}^{\text {Pack }}$ Fibreglass PCB (accommodates all filters for one channell
Set of pre sets. solid tantalum capacitors. 2\% metal oxide resistors. 2% polystyrene capacitors 3 Set of semiconductors 2 off each pack required for stereo system

SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER DESIGNS f4. 20

READ/TEXAS $20 w$ amp.
Pack

Fibreglass PCB Set of resistors. capaciors pre-sets (not includ ing O / P coupling capacitors)
3 Sets of semiconductors 2.65 $4 \stackrel{\text { system }}{\text { Spe }}$

Special heat sink as
sembly for set of semplifiers
5 Set of $30 / \mathrm{P}$ coupling
rapacitors
2 off packs 4.5 required for
stereo system

POWER SUPPLY
for zow/channel stereo
60.70

Pack
E 1.10
f 2.40
$2 \begin{aligned} & \text { Fer of rectifiers. zener } \\ & \text { diode capacitors. fuses }\end{aligned}$ diode capacitors fuses 3 Toroldal trans
0.85
£ 1.00
ON PAGE 51

ELECTRONICS

AND NOW OUR NEW T30 + 30 30 WATT VERSION!

The $120+20$. already a development from the very successtul Texan, has been developed still further to include all the improvements suggested in the PW July i 975 follow-up article and our new model offers RF interterence
filters tape monitor facility and an additional 10 watts/channel of power

Peilk		Prica
1	Siet of all low noisa fersisums	k 105
2	Sert of dismatio copbuters	£2 10
3	Sep of 4 power supply cabat tots	\&2 05
4	DIN souke'ts fusters fuse bolthers comtol knothe iti	t 190
5	Sed of side and mush tmomon swithes	f120
6	Set of potentiomettirs ame selecters swited	: 200
7	Ser of all sermicontac ters	¢775
8	Spercal Torordal Tramsfurmer	$\llcorner 680$
9	Fibreqlass PC Patiol	£290
10	Complete chansis work mardwate and batckit	¢480
11	Preformed (atile leadh	¢040
12	Handbook (free with complete kit)	\& 25
13	Teak Cuthener	\& 450

FULL KIT (WITH FREE TEAK CASE) ONLY £32.95

SEMICONDUCTORS
as used in our range of quality amplifiers

2N699	¢0. 25	BFY51	£0. 20
2 N 1613	f0. 20	BFY52	c0. 20
2N1711	¢0.25	CA3046	¢0.70
$2 N 2926 G$	¢0.10	LP1186	¢5.50
2N3055	¢0.45	MC1310	¢2.90
2N3442	£1.20	MC1351	E1.05
2N3711	$\underline{80.09}$	MFC4010	$\underline{6} \mathbf{0 . 9 5}$
2N3904	¢0.17	MJ481	f1. 20
2N3906	¢0.20	MJ491	£1.30
2N4062	E0. 11	MJE52 1	f0.60
2N4302	¢0.60	MPSA05	£0.25
2N5087	f0. 42	MPSA12	£0.55
2N5210	¢0.54	MPSA14	¢0. 35
2N5457	¢0.45	MPSA55	£0. 25
2N5459	$¢ 0.45$	MPSA65	¢0.35
$2 N 5461$	f0.50	MPSA66	£0.40
2N5830	co. 30	MPSU05	¢0.60
40361	c0.40	MPSU55	f0.70
40362	¢0.45	SBA750a	£2.50
BC107	¢0.10	SL301	£1.30
BC 108	¢0.10	SL3045	£1.60
BC 109	80.10	SN72741P	¢0.40
BC 109 C	¢0.12	SN72748P	£0.40
BC 125	¢0.15	TIL209	£0.30
BC 126	c0.15	TIP29a	f0.50
BC182	¢0.10	TIP30A	£0.60
8 C 212	¢0.12	TIP29C	¢0.71
BC182K	£0.10	TIP30C	¢0.78
BC212K	¢0.12	TIP41A	¢0.74
BC 182 L	c0.10	TIP42A	£0.90
BC184L	£0.11	TIP 418	¢0.82
BC212L	$£ 0.12$	TIP 428	${ }^{60.98}$
BC214L	f0. 14	1N914	¢0.07
BCY72	£0.13	1 N 916	¢0.07
B0529	£0.85	15920	c0.10
80530	£0.85	5805	¢1.20
BDY56	£1.60	FILTE	RS
BF257	£0.40	FM4	¢0.80
BF259	¢0.47	SFG10 7 M	
BFR39	¢0.25		£2.80
8FR79	£0.25		

V.A.T. Please add $25 \%^{*}$
to all U.K. orders
(If at current rate if changed)
'J K ORDERS -Post free (mall order only)
SECURICOR UELIVERY for this optional service (Mainland only) add $200+V A T$ per kıt OVERSEAS - Postage at cost + 50p special facking handing (remittance in sterling please)
Dept. WW12
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATI E
ANDOVER. HANTS SP1O 3NN

INHTIPLS

INTEGRATED CIRCUITS
DL707 COM．ANODE 8
DL704 CON．CATH． 0,3 0－9ap £1＊еa FD JUMBO 0．6＂CA LED DISPLAY €2．25＊
3015 F
O－9dp 3015F 0－9dp £1＊ DL33 YINI 3 DIGIT \＆MAGNIFIER $£ 1,50$
STROBE TUBE $£ 5 *$
 GREEN LARGE／SMALI．\＆CIIP 19p＊ ORANGE LARCF／SYALL \＆CLIP 19p＊ TEC12 PHOTO IC SCMTT
MM5316 E5．OR MT5 M14 6 DIGIT £400＊ CAPACITORS

CERAMIC 22pfon．1uf 5jy 5p．	LM37？	［2．0n	0	8． 1 P	¢2
ELECTROLYTIC：19／50／10n uf in	L\377	2x2w［3	TBA8®0		89p
25V 7P． $50 \mathrm{~V} 9 \mathrm{p} .2 \mathrm{ff} / 10 \mathrm{~V}$ fin．	LW380	fn7． 4 5 39p	TB4810	7VA？	99 p
1000uf 25V 18p．200／500uf 9p	L4381	¢1． 50	T13A820		75 p
POTENTIOYLTERS LIV／L	！439	63n＊	ZN41		

74 TTL
\qquad STITCHES：SPST 19 p ．DPDT 25D．
DIV PLIGS MLL 12 p ．SOCKETS ALL 9p TRANSFORMERS $1 / 1 \mathrm{~A} 6$ or 12 V on 50 TRAMPUS FULL SPEC PAKS ALL 11 ea
 PAK F 10 BC182 \＆1．F 112 EC109E1

	－	－
	7474	99p＊
11p＊	7476	29n＊
13p＊	7490	375＊
13 p ＊	7491	73p＊
15 p ＊	749 ？	43p＊
$13{ }^{\text {＊}}$	7493	30p＊
29p＊	7401	4 cip ＊
13 p ＊	7496	740＊
$13{ }^{\circ}$	74100	［11＊
130＊	74121	271，＊＊
9，4口＊	74123	$65 p$＊
\％のロ＊	74141	（64p＊
29p＊	74173	£2＊
340＊	74171	§1＊
20_{1}	74	$35 n$

58－60 GROVE ROAD，WINDSOR，BERKS，SL4 1 HS
ADD \％\％VAT TO PRICES MARKED＊．ADD 25% VAT TO ALL OTHER PRICES NEW FAST SERVICE LOW PRICES．MONEY BACK IF NOT SATISFIED．ALL BRAND NFW IST FEW TOP SPEC．DEVICES．CALLERS WELCOME

TRANSISTORS

price machi－		MATCEING	20p＊
AC127 \＆ 128	11p＊	INS．BUSH SET	$6{ }^{\text {p＊}}$
4C176	9p＊	TIP29 \＆ 30	${ }^{43} \mathrm{p}$＊
AC187 ${ }^{-188}$	110	TIP31 \＆ 32	54 p ＊
AD149	45p＊	TID41	$68{ }^{\text {＊}}$
A）1s1 9162	33p＊	TIP12	「4ヵ＊
BC107	8u＊	T1P2955	99p＊
BC107B	12 p ＊	TIP3055	67 p ＊
BC198	8p＊	TIS43 UJCT，	38p
BC108B	12 p ＊	ZTX107／8／3	110
13C109	9p＊	ZTX300 \＆ 30.1	200
BC 109C	$1213 *$	2TX500 \＆504	42p
DC147／9／？	？	2N7NE ？ 798	11p＊
BC157／8／a	12 n	2 N 2646 UJT	38p＊
13C167／8／9	12 p	2：2904 \＆ 5	20n＊
BC177／8／9	18 p	2，2926broug	9p
BC182／3／4A\＆L	100	2N3053	$16 \mathrm{p}^{*}$
3C212／3／4A发	12 p	2N305	42）
3cY70／1／2	$16 p^{*}$	2N305 5 115 W	37 p ＊
BD131 \＆ 132	39p＊	2N3055 RC4	60 p ＊
BFR88 250 V	35p	2N3792／3／4／5	9p
BFY50	$14 \mathrm{p}^{*}$	2x3706／7／3／9	9p
［3FY51	$14 \mathrm{p}^{*}$	2N3710 3 11	10p
BFY52 \＆ 53	14p＊	2 3 3819 F FET	141
［3SY19／20／21	16 p ＊	2 N 3820 TET	$40 p$
MJT2955 To3	75n＊	2ヘ3823E SET	16p
MJE2955	¢9p＊	2N3204；5／\％	15 p
MJE3055	67p＊	2N4289 mini	$31 p$
yPU131 PUT	490	2N5457 ：「T	4

cmos logic
CD400n MCit \＆ 145 K AVAILABLE
CD40n 1．5p＊CDAクミS \＆20＊ CDannl 15p＊cク4nif 巨2＊ CD4009 Cl） 4011 Co4n13
Co4nic CD4016
CD4017 CD4018 CD．4n2． 2

DIODES

 1．N4001 IA50゙ \＆1N4002 1ง4118 \＆ 1 N914 SILICON $4 p$ ZENERS $37 Y 88100 \mathrm{mis} 9 \mathrm{p}$ BRIDGE RECTIFIER 1A50 18 p 1 A 400 V 25 p ． 4 A 100 V 45 D SCR＇s TRIACS SCR＇s TAGI／400 1A400V 50p＊ C1OGD AA40OV SCR ONLY 47p＊ TRIAC SCl4FI 10A4DOV \＆1＊ Vero COPPERCLAD 0.1 PITCII VERO 24 55＂32p＊2＂x3＂29p＊
 DIL MAATN O．1＂ई 1.06 DAIO pen

ST PEN 69p＊ FEC ETCII PAK 500gTh 89p＊ 6x4＂COPPER BOARD 50p＊ PCB KIT 3 ITEMS CASSETTE MECHANISM ¢o \＆£ 13 TGS GAS DETECTORS ets

TRANSISTORS＋DIODES

Type	Price excluding VAT	Price including VAT	Type	Price excluding VAT	Price including VAT
BC 107	0.090	0.113	2N 930	0.200	0.250
BC 107A	0.130	0.163	$2 N 1132$	0.240	0.300
BC 107B	0.140	0.175	$2 N 2129$	0.240	0.300
BC 108	0.090	0.113	$2 N 2218 A$	0.220	0.275
BC 108A	0.130	0.163	2N 2219	0.220	0.275
BC 108B	0.130	0.163	2N 2219A	0.220	0.275
BC 108C	0.140	0.175	2N 2221	0.180	0.225
BC 109	0.090	0.113	2N 2221A	0.210	0.263
BC 109B	0.140	0.175	$2 N 2222$	0.200	0.250
BC 109C	0.140	0.175	$2 N 2222 A$	0.250	0.313
BC 184（K）	0.120	0.150	$2 N 2904$	0.190	0.238
BC 212A（K）	0.110	0.138	$2 N 2905 A$	0.230	0.288
BC 212B（K）	0.110	0.138	$2 N 2906$	0.170	0.213
BC 213C（K）	0.110	0.138	$2 N 2906 A$	0.170	0.213
BC 214B（K）	0.110	0.138	$2 N 2907$	0.220	0.275
BCY 71	0.220	0.275	$2 N 2907 A$	0.240	0.300
BFY 50	0.200	0.250	2N 3053	0.180	0.225
BFY 51	0.200	0.250	$2 N 4037$	0.250	0.313
BD 131A	0.360	0.450	$1 N 4001$	0.050	0.054
BD 135	0.360	0.450	$1 N 4002$	0.065	0.070
BD 136	0.396	0.495	1N 4003	0.070	0.076
BD 137	0.432	0.540	$1 N 4004$	0.075	0.081
BD 138	0.450	0.563	$1 N 4005$	0.080	0.086
BD 139	0.495	0.619	$1 N 4006$	0.085	0.092
2N 929	0.230	0.288	$1 N 4007$	0.090	0.097
			$1 N 4148$	0.040	0.050

quality

Manufactured strictly to stringent specifications． 12 months guarantee

service

Orders actioned in 24 hours Over one million transistors in stock

special discounts

For large quantities ordered by retailers，educational establishments and hobby clubs

terms

Cash with order，please Post and Packing 20p
Minimum order 50p

BY POPULAR DEMAND.

Yes indeed. We get asked to do it so often, so that we went out and really did it. A complete series of FM tuner systems in sleek teak cases, with eggshell finish mild steel chasis, and really durable front panel. We think that we have provided an FM tuner for most tastes and budgets. In fact, a three meter receiver, if you'll pardon the pun. $(100 \mathrm{MHz}=3$ metre wavelength, get it, eh?)

The Elektrik FM Wireless System: a brief specification is shown in the following order, beneath each system description
Input for
Image rejection
AF
THD
26dB S/N
output

\pm Built and tested modules * Parts kits

The U66 $25+25 \mathrm{~W}$ amplifier, with mpx tuner. A superl, low look receiver kit, with aluminium extrusion case, one piece PCB construction, torroidal transformer. modular tuner section. The features include tape monitor, loudness (volume related) and a fully fuse protected PSU and output section. \qquad £76.00

Varicap tuned MW/LW receiver modules • the 7003 series. The latest development - with FET input, ferrite rod, electronic switching for MW/LW, ceramic filter. 9003 kit - $£ 9.85,9003$ built $£ 11.85$
SGS audio amplifiers and applications PCBs.
TDA2020 20w rms with sufficient heatsink
TDA2020k $2 \times$ TDA 2020 with PCB and R's\&C's
TCA940 10w rms IC with heatsink 1.85
TCA940k $1 \times$ TCA940, PCB, R's,C's heatsink 3.05.
TBA810s 7 wrms IC 1.30.
TBA810K $1 \times$ TBA810, PCB, R's, C's, heatsink 2.75.
All SGS approved PCBs, all devices overload protected.
More new things:
Birdy filter for stereo radio. Flat to 55 kHz , whereupon the slope dives off to -33 dB at 200 kHz . Fit between the detector and stereo decoder. 1.75. 3000 series stereo control amp/4000 series PU amp/ 2000 series AFU/ Ferranti small signal devices/Motorola power discretes (BD165-609-etc).
Postage $£ 2.50$ per tuner system. VAT extra at 25%. Full catalogue 40 p , postage for general component orders is 22 p - Shortform price list available FOC with an SAE.

ambit int
 37HighStreet BRENTWOOD Essex

Post code: CM14 4RH, telephone 216029; tlx 995194.

HART ELECTRONICS
 Audio Kit Specialists since 1961

BAILEY/BURROWS/OUILTER PRE AMP This is the tone control section of the bes pre-amp kit currently avalable. Consider the advantages:-*First quality fibreglass Low noise carbon film and metal film resistors throughout. *Finest quality low-noise anged controls with matched tracks and shatts cut to length. *Well engineered layout for otal stability. *Special decoupling and earthing arrangements to eliminate hum loops Controls. switches and input sockets mount directly on the boards to TOTALLY
ELIMINATE wirng to these components. (We know of one pre amp kil which claims its controls mount directly on the board-and so they do. by their shaft bushes' You still have wire them up!!!
We incorporate the Quitter modification which is most important as it reduces distortion nd increases the bass and treble control range
As can be seen from the photograph the tone control unit is very stim lonly $1 \frac{1}{2}$ " from解
M. TUNER. Several useful modifications have been made to our compacituner The mechanical layou ats for easier tuning 2 MPX filter for trouble fiee laping 3 Extras are now oftered 1 Mullititurn prese minate drit 4 FS 2 MProl tuning of a

STUART TAPE CIRCUITS Our printed circuits and components ofter the easy way to convert any suitable quality deck into a very high quality Stereo Tape unit. Input and
output levels suit Bailey pre amp. Total cost varies but around $\mathbf{E 3 5}$ is all you need. We can ffer tape heads as well if you want new ones

FURTHER INFORMATION ON ALL KITS FREE if you send us a $9 \mathrm{in} . \times 4 \mathrm{in}$. S.A.E. REPRINTS Post free. no VAT
Bailey 30W 18p.
STUART TAPE RECORDER All 3 articies under one cover 30p.
BAILEY/BURROWS/QUILTER Preamp circuits. layouts and assembiy notes 15p
All prices exclude VAT.
Penylan Mill, Oswestry, Salop

THE RADIO SHOP

16 CHERRY LANE 8RISTOL BSI 3 NG

TELEPHONE 0272-421196

TRIACS

1.6AMP PLASTIC		
NASO161W	1050	. 28
\ASO161X	1000	. 28
NAS0162w	2000	. 30
NAS0162X	20050	. 29
NAS016dW	400 L	40
NaS0164X	4000	. 38
NASO166W.	600 V	. 50
NAS0166x	6000	48
3.5AMP CLIPPED TAB		
NAS0351W	1me	. 52
NaSO351x	100 V	. ${ }^{\text {ch }}$
NASO352W	2mV	. 56
NASO352X	200 V	. 56
NAS0354W	400 V	. 68
NAS0354x	400 V	. 67
NASO356W	600 V	. 85
NASO356X	600 V	84

AASO651W	100 V
NAASO651X	100 V
NASO652W	200 V
NASO652X	200 V
NASO65LW	400 V
NASO650X	400 V

THYRISTORS								
1.8AMP TOE			4AMP ISOLATED TAB			GAMP ISOLATED TAB		
NASCO6P	50PVV	. 25	NAS 106P	50PiV	. 26	Has206P	50 PIV	. 37
NASOO6O	100PIV	. 28	NAS1060	100PV	. 30	NAS2060	${ }_{100 \mathrm{PIV}}$. 42
NAS006R	200PIV	. 31	NAS 106R	200PIV	. 36	NAS 2068	200 PIV	. 50
NaS006s	400 PI	. 40	NAS 106 S	400 PIV	. 67	NAS206S	400 PIV	. 77
NASOO6T	600PIV	. 62	NAS106T	600 PIV	. 90	Nas206		

50PIV
100 PIV
$\begin{array}{ll}\text { 100PIV } & .47 \\ 200 \text { PV } & .18\end{array}$ asurir priaz on application. SAE
SOV .32; $100 \mathrm{~V} .37 ; 200 \mathrm{~V} .46 ; 400 \mathrm{~V}$.56: 600 V .70
INTEGRATED CIRCUITS

PRICES * RCA SLASH PRICES \& RCA SLASH PRICES * RCA

SINTEL for CMOS

CDam00 AE	0.17	coadziag	0.83	C040390	7.47		35	C04026 be	0.18
CoStoolat	0.17	coupzzai	0.79	CPS040AE	0.88	coabssad	10.64		0.57
CDADCOLE	0.17	со4023旡	0.17	CD404 IaE	0.69	C04050LE	0.92	C0401888E	0.57
coasiocie	0.97	CO4024AE	0.64	c04042 2 E	0.69	c04061a	16.43	C040938	0.66
CO4007 AE	0.17	c0402	0.17		0.83	C04062,	7.33	Co4039	
contosat	0.79	с C 402 zam	1.42	C04044	0.77	CD40638	0.90	cన4096	0.86
CDAOOPME	0.46	co4027aE	0.46		1.15		0.58	C04099	1.50
comolioae	0.46	co40zal	0.74	CDAL046	1.10	c®44688	0.18	ca45018	32
CO401) 1 AE	0.17	co40xSak	0.94	C04014	0.74	C0406s	0.18	c04502	02
C 24012 laE	0.17	CDA030AE	0.46	CDA048	0.46	${ }^{\text {COP4070 }}$	0.18	coas	4.20
cosu013 3 E	0.46	coabiliay	1.81	c04049a	0.46	${ }^{\text {COLPO71PE }}$	0.16	cas 108E	26
COADI 14 AE	0.83	coutazas	0.88	CO4450a	0.46	T0407	0.18	C045118	1.95
CD40154E	0.83	стадззае	1.14	ctaus lae	0.71	${ }^{\text {cosel }}$	0.18	6045188 EE	1.03
çanl 6 ce	0.46	coati3a ${ }^{\text {co }}$	7.83	CDA052AE	0.77	${ }^{2} 024075856$	0.18	CDL4520	1.03
CO40177E	0.83	CO40355	0.97	co4053aE	0.77	${ }^{\text {COLO}}$	1.27	CDA4328E	1.18
ca4019at	0.83	CO40336 AD	7.47	COULS4AE	0.95	C304778E	0.18	C045568	0.74
C940194E	0.46	cbaliziae	0.78	ciatissae	1.18	CO40798E	0.18	DCCOL5858	1.45
COAOzane	0.92	C04038,	0.88	C04056AE	1.08	CO40818E	0.		

RCA 1975 CMOS Databook 400 pages of data sheets and 200 pages of ATTRACTIVE ALARM CLOCK KITS - all components Including atractive am case to build a 6 -digit alarm clock with snoore. intensity control. 12 or 4-hour format
Complete kit with DL704E $03^{\prime \prime}$ LEO displays $\quad \mathbf{£ 2 2 . 8 0}$
Complete kit with FND500 0.5" LED displays
26.70
$\mathbf{3 2 . 7 6 7 \mathrm { kHz } \text { Min. Quartz Crystal for watch or clock }} \mathbf{~ £ 3 . 6 0}$ tai rmebase Kit: Will provide stable 50 cps for clock kHx gial. 3 CMOS C's, trimmer C.s ${ }^{2}$.

COMMON CATHODE LED DLTO4E DISPLAYS DL704E $0.3^{\prime \prime}$
FND500 O. 5 ${ }^{\prime \prime}$ only 85p
MAN3M $0.13^{\prime \prime} \quad \begin{aligned} & \text { E1.50 } \\ & \mathbf{4 8 p}\end{aligned}$
DL33MM8 3 digs in OIL ... $£ 2.00$ IC 8
MK50

RLixco	$31 / 2$	digit	Liquid	
Crystal	$0.5^{\prime \prime}$	display	with	
socket				E9.40
5LT01	$0.5^{\prime \prime}$	4	digit	clock
display	with	AM	PM	green
phosphor diode		$\mathbf{E 5 . 8 0}$		

MK50253 4 or 6 digit 12 or 24 hr Alarm Clock IC with snooze 55.00 MK5030M CMOS watch IC for LED display with date and seconds $£ 19.50$ MM5314 $4 / 6$ digit $12 / 24$ hr clock $£ 4.44$. AY51224 4 digit clock $£ 4.25$ HARDWARE
SOLDERCON PINS for Lowest Cost IC sockets for TTL, CMOS, IC's displays Strip of 100 ior 50 p. 400 for $£ 2.1000$ for $£ 4.3000$ for $\mathbf{1 0 . 5 0}$ 20 way Colour-Coded Flexible Flat Cable $£ 1$ per $m \quad £ 8.50$ for 10 m 7 -way Boss Switch: 7 ultra-min toggle sws in 14 pin OIL ADDVAT AT 8% - new 25% rate does not apply to any of $\mathbf{~} 2.60$ 5ρ P\&P on orders under 13 . All orders processed on the day of goods Official orders welcomed, written phoned or telexed from Polys. Univs. Schools. Govt Oept. Nat. Inds.. Rated Cos: Fastest delivery for R \& \mathbf{D} Exports: No VAT 35p (Europe) \& 1 (Overseas) for Air Mall P\& P

53c Aston Street, Oxford
al: 086543203 . T1x: 837650 A/B ELECTRONIC OXFO

Servodata Limited

Advanced Technology in Servo Control Components

DC Torque Motors and Tachometers
High performance, brush and brushless versions and complementary tachometers

* 840 Standard Models ranging from 15 oz -in to 120 Military, Industrial or Space Qualified models are already used by most European Nations.

Servodata

Is able to offer a technical design service utilising these devices in control systems as well as supplying amplifiers, solid state synchro/resolver to digital convertors, readouts and other servo control transducers.

Servodata Limited

Highclere,Newbury
Berkshire RG15 9PU
Telephone: Highclere (STD 0635) 253579 Telex: 847054

TRANSFORMERS
ALL EX-STOCK - SAME DAY DESPATCH

MAINS ISOLATING
PRI 120/240V SEC $120 / 240 \mathrm{~V}$ CENTRE TAPPED AND SCREENED

12 and/or 24-VOLT
PRIMARY $220-240$ VOLTS
Ref. AMPS

Ref. No.	$12 \mathrm{v}$	AMPS $24 v$	£	$\begin{gathered} \text { P\& P } \\ \mathbf{p} \end{gathered}$
111	0.5	0.25	1.54	28
213	1.0	0.5	1.86	58
71	2	1	2.41	58
18	4	2	2.97	72
70	6	3	4.43	72
108	8	4	5.09	85
72	10	5	5.50	85
116	12	6	5.80	97
17	16	8	7.48	97
115	20	10	10.91	1.61
187	30	15	14.20	1.41
226	60	30	17.67	BRS

50 VOLT RANGE
LT RANGE
SECONDARY TAPS
01-19-25-33-40-50

$01-19-25-33-40-50 \mathrm{~V}$				
Ref.	Amps.	$\boldsymbol{£}$	P\&P	
No.		\mathbf{p}		
102	0.5	$\mathbf{2 . 7 1}$	58	
103	1.0	$\mathbf{3 . 5 5}$	72	
104	20	$\mathbf{4 . 9 5}$	85	
105	3.0	$\mathbf{6 . 1 0}$	97	
106	$\mathbf{4 . 0}$	$\mathbf{7 . 9 8}$	1.12	
107	6.0	$\mathbf{1 2 . 7 1}$	1.25	
118	8.0	$\mathbf{1 3 . 5 3}$	1.69	
119	10.0	$\mathbf{1 7 . 7 5}$	BRS	

60 VOLT RANGE

SECONOARY TAPS

```
Re
```

Ref.
No.

122	100	$\mathbf{1 9 . 4 0}$	BRS
189	12.0	20.26	BRS

> | Ref. | ma |
| :--- | :--- |
| 238 | $2 n 0$ |
| 212 | $1 A 1$ |
| 13 | 100 |
| 235 | 330 |
| 207 | |
| 208 | |
| 236 | |
| 214 | |
| 221 | |
| 206 | |
| 203 | |
| 204 | |
| 204 | |
| 112 | |

Volts
$3-0.3$
$0-6.0-6$
$9-0.9$
HIGH VOLTAGE
MAINS ISOLATING
PRI 200 N 220 OR $400 / 440$
SEC $100 / 120$ OR $200 / 240$
330.330
Ref.
No.
112
79
3
20
21
51
117
88
89

Amps	$£$
0.5	$\mathbf{1 . 9 0}$
1.0	$\mathbf{2 . 5 2}$
2.0	3.77
3.0	$\mathbf{4 . 7 0}$
4.0	$\mathbf{5 . 5 6}$
50	$\mathbf{6 . 7 3}$
6.0	$\mathbf{7 . 5 2}$
8.0	$\mathbf{1 0 . 2 0}$
10.0	$\mathbf{1 0 . 3 6}$

$\mathbf{P G}_{\mathbf{1}}^{\mathbf{P}}$
$\mathbf{P}_{\tilde{8}}$
58
72
72
85
85
97
1.12
1.25
1.41

SEC 100/120 OR 200/240

60	243	4.37	97
350	247	10.93	1.49
1000	250	$\mathbf{2 6 . 3 1}$	8RS
2000	252	$\mathbf{4 4 . 1 2}$	BRS

SPECIAL OFFER

1KVA PRI $240 \mathrm{v}, \mathrm{sec}$
Few only $\mathbf{E} 33.50$. BRS
CASED AUTO. TRANSFORMERS
PLIS
20VV mains lead input
150VA E6.37, P\&P $85 p$
500VA £10.97, P\&P E $1.25 p$

Barrie Electronics Ltd. 3,THE MINORIES,LONDON EC3N 1BJ TELEPHONE: 01-488 3316/8
 EAREST TUBE STATIONS: ALDGATE \&LIVERPOOLST.

THE NEW SEMICONDUCTOR SOURCE

ALL ITEMS IN THIS SECTION RATED AT $\mathbf{2 5}$ \% VAT

MUIRHEAD PAMETRADA WAVE ANALYSER D-489-EM: Primarily used for the analysis of complex vibration waveforms but will measure audio and power frequency waveforms from $19 \mathrm{~Hz}-21 \mathrm{KHz}$. Complete with power supply unit 230 V 50 Hz . Secondhand, very good condition, £110. Carr. £3
REDIFON TELEPRINTER RELAY UNIT No. I2: ZA-41196 and power supply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR. $80-0 \mathrm{~V} 25 \mathrm{~mA}$. Two stabilised valves 'CV 286. Centre Zero Meter $10-0$-10. Size 8 in . x 8 in . x 8 in . New condition. $\mathrm{E} 10^{\circ}$. 75
SOLARTRON PULSE GENERATOR TYPE GI10I-2: $£ 75.00$ each. Carr. $£ 2.00$.
TELEPRINTER TYPE 7B: Pageprinter 24V d.c. power supply, speed 50 bauds per min. second hand cond. (excellent order) no parts broken. $£ 20$ each. Carriage $£ 3$. INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision for checking ionisation. $110 / 230 v$ a.c. input. S/hand, good cond. $£ 35+$ £1 carr. BRIDGF MEGGER: $\mathbf{2 5 0 V}$. (Evershed Vignoles) series 2. $£ 30$ each. Carr. $£ 1$.
BRIDGE MEGGER: $2,500 \mathrm{~V}$., seríes $1 . £ 30$ each. Carr. £1.
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in
conjunction with a freq. meter. $£ 25$. Carr. $£ 1.50$. conjunction with a freq. meter. £25. Carr. £1.50
SOLARTRON VARIABLE POWER UNIT S.R.S. $1535: 0-500$ volts at 100 mA and 6.3 volts C.T. 3 amps d.c. $110 / 250$ volts a.c. input. $£ 18.50$. Carr. $£ 1.50$.

FURZHILLL' SENS̄ITIVE VALVE VOLTMETER V.200: Freq. 10 Hz -6MHz (can be used beyond 6 MHz). Probe in circuit - voltage range $1 \mathrm{mV}-1 \mathrm{kV}$ in 6 decade ranges; full scale deflection $10 \mathrm{mV}, 100 \mathrm{mV}-1 \mathrm{kV}$. Without probe $100 \mu \mathrm{~V}-100 \mathrm{~V}$ in 6 decade ranges; full scale deflection $1 \mathrm{mV}, 10 \mathrm{mV}-100 \mathrm{~V}$. Accuracy $\pm 5 \% . £ 30$ each. Carr. £1
NOISE FIGURE METER TYPE 113A (Magnetic AB, Sweden): Complete with Noise Source 121 and 122. £125. Carr. £1.
PRECISION PHASE DETECTOR TYPE 205: Freq. $0.1-15 \mathrm{MHz}$ in 5 ranges. Variable time delav microseconds $0-0.1 \mathrm{c}, 115 \mathrm{~V}$ input. $£ 55$ each. Carr. $£ 1$.
RHODE \& SCHWARZ HF MILLIVOLTMETER: $30 \mathrm{~Hz}-30 \mathrm{MHz}$ Type UVH, $1 \mathrm{mV}-1 \mathrm{~V}$ in 7 ranges, 220 V . $£ 75$ each. Carr. $£ 2$.
PHILIPS VALVE VOLTMETER TYPE GM6014: $1-300 \mathrm{mV}$ in 6 ranges, $70-20 \mathrm{~dB}$;probe $1000 \mathrm{~Hz}-30 \mathrm{MHz} .300 \mathrm{mV}$ maximum. $£ 35$ each. Carr. $£ 1$.
CT. 343 VALVE VOLTMETEK: in ruggerised steel case. Range 1.2 mV to 400 V . 6 ranges indicated on $3^{\prime \prime}$ meter. 230 v a.c. input. £25. Carr. $\mathbf{£} 2$.
UHF MICROWAVE MILLIWATTMETER TYPE 14: Direct reading, can be used to measure power from 100 MHz upwards. F.S.D. on 4 in . scale meter 2.5 mW . $£ 40$ each. Carr. £1.
S-BAND RADAR TEST SET MW69S (Decca) Oscilioscope and Spectrum Analyser. Further details on request. $\mathbf{E 2 0 0}$.
Q METER: $30 \mathrm{MHz}-200 \mathrm{MHz}$. £55. Carr. £. 1 .
AVO TRANSISTOR ANALYSER CT.446: £35. carr. $£ 1.50$.
ALL CARRIAGE QUOTES GIVEN ARE FOR 50 -MILE RADIUS OF LONDON ONLY.

CT. 420 SIGNAL GENERATOR: $200-8000 \mathrm{c} / \mathrm{s}$ Variable tuning. Two fixed frequencies 9000 and 10,000 . Internal calibrator $100 \& 500 \mathrm{c} / \mathrm{s}$. $£ 75$ each carr. $£ 2$. NOISE GENERATOR TF-1106: Frequency 1 to $200 \mathrm{Mc} / \mathrm{s}$ Direct noise factor calibration. Output impedance 70 ohms $£ 65$ each. Carr. $£ 1.50$.
COUNTER EXTENSION UNIT TF-1434/2: Complete with plug-in units $£ 75$ carr £1.50.
MW- 59 UNIVERSAL KLYSTRON POWER SUPPLY: £85. Carr. £3.
TF-1278/I TRAVELLING TUBE WAVE AMPLIFIER: $\mathbf{£ 2 5}$. Carr. $£ 2$.
BPL.A.C. MILLIVOLTMETER TYPE VM.348-D Mk. 3: 2 millivolts- 2 volts, 6 ranges. £30. Carr. 11 .
MARCONI DUAL TRACE UNIT TM-6456: $£ 30$. Post 60 p.
SIGNAL GENERATOR TS-403B/U (or URM-6IA): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq. $-1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, M, Modulated Pulse - 40-400 pulses per sec. Pulse Width $-0.5-10$ microsecs Timing - Undelayed or delayed from 3-300 microsecs from external or internal pulse. Output - 1 milliwatt max., 0 to -127 dB variable. Output Impedance 00. Price: $£ 120$ each $+£ 2$ carr

230 V input $£ 40$. Carr $\mathbf{~} 4000 / 8000$. Output 300 mA . rms. Size: 12 in . 12 in . $\times 36 \mathrm{in}$.
FIREPROOF TELEPHONES: $£ 25.00$ each, carr. $£ 1.50$.
POWER UNIT: $110 / 230$ volts a.c. input. 28 volts d.c.
POWER UNIT: $110 / 230$ volts a.c. input. 28 volts d.c. at 40 amps output. $£ 30.00$ each, carr. £3.00.
SMOOTHING UNIT (for the above): $\mathbf{£ 1 0 . 0 0}$ each, carr. $£ 2.00$.
X-BAND MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James Scott. £125 each.Carr. £1.
HP-766D DUAL DIRECTIONAL COUPLER: 940 -1975MHz. ©35 each, 75 post.
BACKWARD WAVE OSCILLATOR TYPE SE-I25: 6.3 heater, 105 V Anode, T.9mA. Mnfr. Watkins \& Johnson. 885 each. Carr. $£ 1$.

TEKTRONIX TIME MARK GENERATOR TYPE I80-SI: $5.10,50 \mathrm{MHz} . £ 65$.
Carr. $\mathbf{~} 2$. Carr. $£ 2$
MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt
o 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms 100 mV - 1 volt 52.5 ohms. Imternal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Consumption approx. 40 watts. Measurements 29 in . x $121 / 4 \mathrm{in}$. x I 0 in . Secondhand condition. $\mathbf{£ 3 2 . 5 0}$ each. Carr. £2.50.
ROTARY INVERTERS: TYPE PE. 2 I8E - input $24-28 \mathrm{~V}$ d.c., $80 \mathrm{Amps} .4,800 \mathrm{rpm}$. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}$. 1 Ph. P.F.9. £20.00 each. Carr. f.2.50
FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$ complete with original
FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$ complete with
calibration charts. Checked out, working order £20 $+£ 1.50$ carr.

AL! U.K. ORDERS SUBJECT TO VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage)

YOUR CHANCE TO SAVE £12

on this modular stereo fm/amp assembly

TOTAL VALUE AT REGULAR ADVERTISED PRICE (INC. VAT)
£30
ALL 4 UNITS PURCHASED TOGETHER INC. VAT \& P\&P IN U.K.
£18
IF YOU BUY UNITS SEPARATELY YOU STILL SAVE

331/3\%
ORDER NOW FOR DELIVERY BY RETURN

SUNDRY

P.I PAK Approx 170 short-lead semi-conductors and components. PNP. NPN At least 30% factory marked Some dat supplied 50 p .
UHF 625 line tuner. rotary $£ 2.50$ Rev Counter (for cars) (8%) $£ 1.00$ Books by Bernards Publications. Newnes Butterworth s. etc.
> | THE FREE CATALOGUE
> 1 New edition better than ever. It's
> - only please send large S.A.E. with

> 10ply plotif wo have to posit tovou.
> V.A.T. - IMPORTANT

> Rates quoted in good faith in accordance with Customs \& Excise ruings in the event of overpaymen

1. THE FRONT END

Ganged tuning: AFC facility. Reduc-tion-geared drive. 88-108 MHz

Usual price inc. VAT
£8.01
£5.34

2. THE I.F. BOARD

Using I.C. Designed for use with above front end
Usual price inc. VAT
£6.76
£4.50

3. STEREO DECODER USING I.C.

Designed for use with the above modules, can also be used with other mono F.M. tuners. Ready aligned (L.E.D. for stereo beacon available at 18p.)
Usual price inc. VAT
$£ 7.22$
£4.82

4. $5+5$ WATT MUSIC POWER I.C. AMPLIFIER

Useful stereo power amplifier with good performance, at economy price Usual price inc. VAT £8.01 $£ 5.34$

TERMS OF BUSINESS:
VAT at 25% must be added to total value of orter. except lor inems marked or ($8 \% \%$]. when VAT is 10 be added al B\%. No VAT on overseas orders. POST \& PACKING Add 25p lor Ux orders excepl where shown oinerwise. Minimum mail order acceplabie PRICES Subieci to alteration without notice AVABLABILITY All ilems ayailabte a time of going to press when every elfort is made to ensure correctness ol information

222224 WEST ROAD, WESTCUIFF-ON-SEA, ESSEX SSOSOF. TELEPHONE: SOUTWEND (0702) 46344

Where the facts are

Hi-Fi Year Book tells you everything you need to know about Hi-Fi equipment on the market - what it does, who makes it, what it costs and where to buy it. The directory section alone lists prices and specifications of over 2,000 audio products. Included are authoritative articles by leading experts on the latest Hi-Fi developments and their application. So if you want information like you want Hi-Fi, order your copy today before it sells out!

Available direct from the publishers at $£ 2.35$ inclusive or from leading booksellers \& newsagents price $£ 2.00$.

ORDER FORM

To Room 11, IPC Electrical-Electronic Press Ltd., Dorset House Stamford Street, London SE1 9LU
Please send mecopy /copies of Hi-Fi Year Book 1976 at $£ 2.35$ per copy inclusive. I enclose remittance of $£$ (cheque/P.O. payable to IPC Business Press Ltd).
Name (please print)
Address

Registered in England No. 677128 Regd. Office Dorset House, Stamford Street, London SE1 gLU
L__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ل

Celestion Dittons get the best out of any system

Buy a really good set of speakers and you've got yourself a better hi-fi system ... buy a set of Celestion Dittons and you've got one of the best!

Whether you already own or are thinking of buying either a 'package' hi-fi system or are selecting your own individual units, a pair of good speakers will pay dividends in terms of sound quality.

Some people pay least attention to selecting the speakers. Given first priority they will vastly improve the performance of most systems

Celestion Dittons have a long standing repttation among enthusiasts for their outstanding ächievements in high quality sound reproduction.

From left to right, the Ditton 11, 44 and 33. Visit your Celestion dealer. See the beeutiful appearance and hear the new sounds of the very latest Ditons.

Full details on request.

P. F. RALFE
 10 CHAPEL ST. LONDON NWI. Phone 01.723 8753

SIGNAL GENERATORS

MARCONI TF8OID/IS. $10-480 \mathrm{mHz}$ P.O.A. MARCONI TF801B/2S, $10-480 \mathrm{mHz} 6225$

HGN MS3/U. 9.7-11.9 and $77-109 \mathrm{mHz}$. AM / F'M
ADVANCE SG63D. AM/FM $7.5-230 \mathrm{mHz} £ 125$.
RACAL/AIRMEC 201 A. $30 \mathrm{kHz}-30 \mathrm{mHz}$. As new. P.O.A
ADVANCE SG2I VHF Square-wave generator $9 \mathrm{kHz}-100 \mathrm{mHz}$. $\mathbf{£ 2 5}$

OSCILLOSCOPES

SOLARTRON CD 1400 DC -15 mHz
COSSOR CDU110. DC-80mHz
TEKTRONIX 545A with CA unit. DC-30mHZ. Price only $\mathbf{£ 2 9 5 . 0 0}$
TEKTRONIX $531 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in
TEKTRONIX $535 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in
TEKTRONIX $535 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in
TEKTRONIX 545 B DC- 30 mHz with 'CA' plug-in.
TEKTRONIX 545 B DC- 30 mHz with CA plug-in.
TEKTRONIX 585 A . DC -80 mHz with type 82 plug-in
TEKTR ONIX 654 B . Storage oscilloscope
TEKTRONIX 502. 200uV. Sens. X-Y.
TEKTRONIX C27 Polaroid Camera. Series 125 with 560 series adapter

MISCELLANEOUS TEST EQUIPMENT

MARCONI TF1400S double pulse generator with TM6600/S secondary pulse unit. £105
MARCONI TF791D deviation meter, $4 . \overline{1} 024 \mathrm{mHz} .0-100 \mathrm{kHz}$ deviation MARCONI 455E Wave Analyser £120.
MARCONI TFi2600 Valve Voltmeter 1 mV -300V. Excellent. $£ 75$
ROHDE \& SCHW்ARZ USVD calibrated receiver $280-940 \mathrm{mHz}(4600 \mathrm{mHz})$
LEVELL TG̃ 200 DM. $\overline{\text { RC }}$ Oscillator, c / w case, $\mathbf{6 5 .}$
ROHDE \& SCHWARŻ URV milli-voltmeter BN 10913 (late type) $1 \mathrm{mV}-10 \mathrm{~V}$. With ' T ' type insertion unit, tree probe and attenuator heads. $1 \mathrm{kHz}-1,600 \mathrm{mHz}$. £175.
COSSOR 1453 True RMS milli-voltmeter. Excellent. $£ 75$.
AIRMÉC TYPÉ $\mathbf{2 1 0}$ modulation meter. Excellent condition
ROHDE \& SCHWARZ "SCR" V.H.F. Signal Generator $\overline{1} 000-1900^{-} \mathrm{mHz}$. MARCONI type TF936 Impedance Bridge. £85.00.
GERTCH Hhase Angle V. Meters. Range 1 mV - 300 V , in 12 ranges.
SOLARTTRON oscillator type CO $546,25 \mathrm{H}_{\mathrm{z}}-500 \mathrm{kHz}, \mathbf{£ 3 0 . 0 0}$.
GAMBRĒLL' Precision 4 Decade Resistance Box. 1-11, 110 ohms. £24.50.

POWER SUPPLIES

WEIR Electronics modular unit. Model OCAR. Requlated \& sta bilised. 0-7V @ 2A. £9.50.

Centrifugal blowers by wOODS. 8 inch snail type. Outlet $23 / 4 \times 2 \mathrm{in}$. 24 V DC 2.8 A . 2400 r.p.m. Grey stove firish. All brand new. Price is $\mathbf{£ 1 0 . 5 0}+$ carriage.

MANY TYPES of RF plugs and sockers in stock:-
BNC plugs $50 \Omega .30 \mathrm{p}$. BNC sockets 50Ω. 25 p . N. Type plugs 50Ω. 50 p . Burndept plugs. 40p. Burndeps Miniature sockets. 20p.
All connectors are brand new Immediate delivery. Please add apprepriate postaze.

AEI miniâture unisèlectors. Type 2200 C . 3 banks. 1 bridging, 2 non-bridging wipers. 12 positions Coil resistance 50 ohms. Complete with bases. Brand new. $£ 4.50$ each 20-way BPO Jack strips to accept 316 type Jack plugs. Also quantity of 316 plugs available. All good

GENTS/FRIEDLAND fire alarm
GENTS/FRIEDLAND fire alarm
bells. Operating voltages $12 \mathrm{v} \mathrm{dc} / 24 \mathrm{v}$ bells. Operating voltages 12 v dc/24v dc. All in as new condition and tested
before despatch. Sizes $6 / 8 / 12$ inch. Prices E4.80, $\mathbf{5 5 . 2 0}$ and $\mathbf{£ 6 . 5 0}$ resp.
COMPUTER PERIPHERALS. Tape punches. 8 hole by Westrex and other well known manufacturers Tape
readers by Elliot. All virtually brand new. Prices are better than one half the maker's. Write or 'phone for quotation

An exceptional buy enables us to offer stabilised and regulated power supplies by APT at a very cheap price. $16-24 \mathrm{v}$ dc @ 10 Amps, and $8-10 \mathrm{vdc}$ @ A . Both supplies are extremely stable with low ripple voltage. Price each $£ 18.50$

+ carriage. MINIATURE DEAC Ni-Cad batteries type 70 DK . 3 cells in package $25 \times 17 \times 15 \mathrm{~mm}$. 75 p , post paid GEC Courier Walkie-Talkies. 3 Chan. nel. Re-chargeable batteries. Midband. $£ 55$ pair.

E.M.I. oscilloscopes model WM 16 with

 plied in perfect condition complete with trolley. $£ 125.00$.
HEWLETTPACKARD/

 BOONTON TYPE 8900B Peak-power calibrator. Measures true peak power $\pm .6 \mathrm{db}$ absolute Frequency range $50-2000 \mathrm{Mhz}$. RF power range 200 mW peak, fullscale. RF Impedance 50 ohmsMARCONI TF995A2/M AM/FM R.F. SIGNAL GENERATORS $1.5-220 \mathrm{mHz} .0-100 \mathrm{kHz}$ Deviation $1 \mu \mathrm{~V}-100 \mathrm{mV}$ output. Sold in excellent condition. P.O.A. condition

PLEASE ADD 8% V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

WW-071 FOR FURTHER DETAILS

WWWH PRACTICAL PAPERBACKS FREM

ELECTRONIC TEST
EQUIPMENT - and how
to use it
by Joe Risse
$£ 1.85$
COLOUR TV TROUBLES -
Problems \& Solutions
(FactBook)
by the Editors of
Electronic Technician/
Dealer
$£ 2.30$
ELECTRONICS
UNRAVELLED

- A New Commonsense Approach
by James Kyle £1.90
SIMPLIFIED COMPUTER
PROGRAMMING -
The Easy RPG Way
by Keith Carson - £1.95
INSTALLING TV \& FM
ANTENNAS
by Leo G. Sands £1.75
JAPANESE CONSUMER
ELECTRONICS
SCHEMATIC /
MANUAL SERVICING
by TAB Editorial Staff
$£ 2.50$

MODERN GUIDE TO CAR TUNEUP AND EMISSION CONTROL SERVICING
by Paul Dempsey $£ 1.95$

SERVICING TRANSISTOR RADIOS
by Leonard D'Airo
$£ 1.95$

PRACTICAL TRIAC/SCR
PROJECTS FOR THE
EXPERIMENTER
by R. W. Fox
$£ 1.80$

BASIC COLOUR
TELEVISION COURSE
by Stan Prentiss $\quad £ \mathbf{2 . 2 0}$

ELECTRONIC CIRCUIT
DESIGN HANDBOOK
by Editors of EEE Magazine
£4.50

For free catalogue please write to Dept. WW

YEOVIL ROAD, SLOUGH, BERKS.

Terms of Business: Mon to Sat Open forcallers 9 am. ro 5 m Ciosed Sat 1 pm 3 pm.Exprese postage 12 p for one value 2 p each additional value Express postage: 12 p per order for tronsiztors. (Full valve availability list on request, S.A.E.). Prices correct when going to press. This applies to the U.K.

Exclusive offer of a large number of relay sets and selector units with a varety
Type 3000 relays and associated components mounted in cases with cover
Prices on request. The two examples shown are $\overline{1} 10$ ea

Terminal Strips (6×25) B.P.O No. 79 or (5×20) B.P.O No. 194 in stock Single and Double pole High Speed Relays avallable various resistances B.P.O type 316 Telephone Plugs. 60 p ea

High speed
$£ 250$ ea
Internal telephone extensions S.T C Deltaline interphone for instant communication, very latest type of handset and push-button control $£ B .50$ ea. Master station aval
£ 25 .

LONGLEY ROAD, CROYDON CRO 3LH. Phono O1-684 O236. GTam: WILCO CROYDO

ALL MALL ORDER BY RETURN. G.O.D. SERVIGE WELCOME C. T. ELECTRONICS
 Tel: 01-994 6275

All mail order and enquiries to 270 Acton Lane, Chiswick, London W4 5 DG.

KINNIE COMPONENTS

10 NELMES WAY
 HORNCHURCH, ESSEX RM11 202
 HORNCHURCH 45167

```
COPPER HAMINATE P.C. BOARD
\(81 / 2 \times 6 \times 1 / 16 \mathrm{inch}, 3\) for 75 p. P.P. 25 \(10 \times 4 \times 1 / 16\) inch. 5 for \(75 p\). P.P 25 p \(10 \times 81 / 2 \times 1 / 16\) inch, 3 for £1. P.P. 25 p \(17 \times 91 / 2 \times 1 / 16\) inch, 2 for \(£ 1.20\). P.P. \(25 p\)
```

PRECISION A.C. MILLIVOLTMETER (SOLARTRON). 1.5 mv . to 15 v .. 60 dB to 20 dB . 9 ranges. Excellent condition.

OVERLOAD CUT-OUTS. Panel mounting ($13 / 4 \times 11 / 4 \times 1 / 2 \mathrm{in}$.) $800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{amp} .10 \mathrm{amp} .45 \mathrm{p}$. P.P. 5 p .

ADVA C.V.50. 38 v a
C.V.75. 25 v , at $21 / 2$ amp £3. P P. 750
C.V.100. $5 n \mathrm{v}$ at 2 amo .50 v at $1 \mathrm{UU} \mathrm{m} / \mathrm{a}$. £3.75. P P. 75 p . C.V.250. 25 v . at $8 \mathrm{amp}: 75 \mathrm{v}$. at $1 / 2 \mathrm{amp}$. $\mathbf{£ 6 . 5 0}$. P.P. £ 1.50 C.V.500. 45 v . at $3 \mathrm{amp} ; 35 \mathrm{v}$. at 2 amp E. 10 . P.P. Ei. 75 . H.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. 400 v .100 m/a. £2.50, P.P. 65p.
L.T. TRANSFORMER "TOROIDAL". Prim. 240v. Sec. 30v at $1 / 2$ amp. Size 3 in. dia. thick. £1.65. P.P. 20 p.
L.T. TRANSFORMER. Prim. 240 v . Sec. 27-0-2 L.T. TRANSFORMER. Prim. 240 v . Sec. $27-0-27$ at $800 \mathrm{~m} / \mathrm{a}$
7.5 amp . 2.25 . P.P. 50 p.

ALL PRICES INCLUDE V.A.T. EXCEPT WHERE SURCHARGE IS INDICATED
 QUADROPHONIC DECODER MODULE. C.B.S./S.Q. Type, using I.C. MC 1312P. With slight modification direct substitute PEE "RONDO" Board Complete with Data $£ 4$ each
 15% V.A.T. Surcharge

S.T.C. CRYSTAL FILTERS (10.7 Mhz). 445-LQU-90TA 100 Khz spacing). E3. P.P. 20p. 445-LQU-901B (25 Khz spacing). £4. P.P. 20p.
V.H.F./U.H.F. POWER TRANSISTORS (type 8LY38). 3 wat output at 100-500 Mhz, £2.25. P.P. 10p

HIGH CAPACITY ELECTROLYTICS
$1.000 \mu \mathrm{f} / 100 \mathrm{v}$ (4 x ${ }^{13 / 6 \mathrm{in} .)}$ 60p. P.P. 20p. 2,200 $\mu \mathrm{f} / 100 \mathrm{v}$ (4 1/3/in.) 90p. P.P. 20p. 2.200 $\mu \mathrm{f} / \mathrm{/} 100 \mathrm{v}(4 \times 13 / 4 \mathrm{in}$.) 90p. P.P. 20 p.$$ $2.500 \mu f / 100 \mathrm{v}(4 \times 2 \mathrm{in}$.) 90p. P.P. 20p. $10.000 \mu \mathrm{f} / 25 \mathrm{v}(41 / 2$ $11 / 2 \mathrm{in}$) 75 p. P.P. 20 p. $25.000 \mu \mathrm{f} / 40 \mathrm{v}(43 / 4 \times 21 / 2 \mathrm{in}$.) £1. P.P. 20 p $47.000 \mu / 40 v$ Powerlytic ($51 / 2 \times 3 \mathrm{in}$.) £2. P.P. 50p

MULTICORE CABLE. 6-core (6 colours) 14/0076 MULTICORE CABLE.
Screened PV C Core
22p per yard 100 yards at $£ 16.50$. P P 2p a yard, 7 -core (7 colours) $7 / 22 \mathrm{~mm}$ Screened P.V.C 22p per yard; 100 yards $£ 16.50$. P P 2p per yard 30 -core (15 colours) $\mathbf{2 5 p}$ per yard, 100 yards £20. P.P $2 p$ per yard
RIBBON CABLE (8 colours) 1 Um E1.65. PP. 20p 100 m . 8-core $7 / \mathrm{mm}$ 8onded side by side £11.50. P P

TRANSFORMERS

L.T. TRANSFORMER. Prim. $110 / 240 v$ vec. $0 / 24 / 40 \mathrm{v} .11 / 2$ amp. (Shrouded) E1.95. P.P. 50p
L.T. TRANSFORMER. Prim. 200/250v. Sec. 20/40/60v. at 2 amp. (Shrouded) E3. P.P. 50 p.
L.T. TRANSFORMER (H.D.). Prim. 200/250v. Sec. 18 v . a 27 amp .; 40 v at 9.8 amp .; 40 v . at 3.6 amp .; 52 v . at 1 amp : 25 v at 3.7 amp . E17.50. P.P.E2.50. L.T. TRANSFORMER prim. 240v. Sec. 18v @ 1.5 amp . \& 12v@1amp. E2. p.p.50p.
L.T. TRANSFORMER PRIM. $120-0-120 \mathrm{v}$. Sec. 12 v . at 1 mp. 70p. P.P. 20p
C.T. TRANSFORMER PRIM. 240v. Sec. 18v. 1 amp. £1. P.P. 20p.

WE REGRET THAT ALL ORDERS VALUE UNDER fS MUST BE ACCOMPANIED BY THE REMITTANCE COUNTERS. 4 digit (non reset) 24 v or 48 v . (state which) $4 \times 1 \times 1$ in 65 p 15

5 dig
$15 p$
3 digit 12 v . (Rotary Reset) $21 / 4 \times 13 \times 11 / 4 \mathrm{n}$ £ 1.30 . $\mathrm{P} P$ $15 p 6$ digit (Reset) 240 v . A C £3.50. P P 25 p
H.D. ALARM BELLS. 6in. Dome, $6 / 8 \mathrm{v}$ d.c Heavy cast housing for exterior/interior use. £2.75. P.P. 75p. Connecting wire (twin/twisted) 220yd, reel £3. p.p. 75p
MINIATURE REED RELAYS ($3 / 6 \mathrm{v}$). 1 make ($30 \times 8 \mathrm{~mm}$) 20p; 2 make ($32 \times 12 \mathrm{~mm}$) 30p
12v. 2 c/o 5 amp. H.D. RELAY, 65p. P.P $15 p$
240v. A.C. RELAY (PLUG-IN TYPE). $3 \mathrm{c} / 010 \mathrm{amp}$ contact 10 TURN POTENTIOMETERS (M.P.C.) 10 K ohm. 0.5% Lin. $38 \mathrm{~mm} \times 22 \mathrm{~mm} .14 \mathrm{~mm}$ Standard Spindle. E2. P.P. $15 p$ (Dials 50p each.)
GARRARD PLINTH 8 COVER. For 'Zero- 100 etc beautifully finished in brushed aluminium and black with
hinged smoke/grey perspex lid $£ 9.75$ p. p \& 24v. A.C. RELAY (PLUG-IN). 3 pole c/o 75p. P.P $15 p$ 2-pole change over. 55 p . P.P 15 p .
BULK COMPONENTS OFFER.
BULK COMPONENTS OFFER. Resistors/Capacitors, 600 new components. £2.50. P.P. 35p. Trial order 100pcs. 60p. REGULATED POWER REGULATED POWER SUPPLY. Input $110 / 240 \mathrm{v}$., output
9 v . D.C. $11 / 2$ amp., 12 v D C 500 m . D.C. SUPPLY. Input 240 v ac giving. $171 / 2 \mathrm{~F}$. P.P
 MINIATURE "."ELAPSED TIME" INDICATORS (O-5000 hours), $45 \times 8 \mathrm{~mm}$. 75 p .
L.T. TRANSFORMER prim. 240v. Sec. 20v @ 25 amp. £2. p.p. 50p
L.1. TRANSFORMER (${ }^{\prime \prime} \mathrm{C}$ " CORE). 200/240v. Secs 1.3. All at 1.5 amp. 50 v at 1 amp. £2.50. P.P. 50 p .

L.T. TRANSFORMER ('C'', CORE). 200/240v. Secs 1-3-9-27v. All at 10 amp . E7.50. P.P.E1. 50 . L.T. TRANSFORMER ("C"' CORE), $200 / 240 v$ Secs L.T. IKANSFORMER ("C"' CORE). $120 / 120 \mathrm{v}$. Secs 1-3-9.9v. All at 10 amp . E6.50. P.P. 75 p. L.T. TRANSFORMER ('C'" CORE). $110 / 240 \mathrm{v}$. Secs
 around when there＇s Catalogue 7 issue no 3？ －UP－DATED PRODUCT $\&$ PRICE INFORMATION REFUND VOUCHER

We have made it just about as comprehensive and up－to－the－minute as possible Thousands of items from vast ranges of semi－conductors including I Cs to components tools，accessories，technical information and diagrams are included as well as a refund

labily
＋E．V．PRICE STABILIZATION POLICY
This is one of reviewing prices every 3 months rather than trying to keep up with day by day changes as they occur We have in fact held prices for two such periods（Jan 1 July 1 ） and our next price review is due October 1 st

+ E．V．DISCOUNT PLAN

Applies to all temsexcept the few where prices are shown NETT 5% on orders from £5 to $£ 14.99,10 \%$ on orders value $£ 15$ or more
＋FREE POST \＆PACKING
In UK for pre－paid mail orders over $£ 2$（except Baxandall cabinets）If under there is an additional handling charge of 10 p
＋QUALITY GUARANTEE
All goods are sold on the understanding that they conform to makers specifications No rejects，seconds or sub－standard merchandise

ELEGTROMLIUE LTD

All communications to Section $2 / 8$
28 ST，JUOES ROAD．ENGLEFIELD GREEN．EGHAM，SURREY TW20 OHB
Telepho日a Ephom 3603．Telex 264475．Shop hours 9.5 .30 daily， 9.7 p m．Sats MORTHERM BRANCH： 680 Burnage Lane，Burnage，Manchester MIS INA Telephone［O61］432 4945．Shop hours．Daily $9-530$ p．m． $9-1$ p m Sats U．S．A．CUSTOMERS arb imvited to conlact ELECTROVALUE AMERICA．P．O．Box 27．Swarthmore PA I908I

The $\quad{ }^{*}$ A Complete Kit $\begin{gathered}\text { or fully built．}\end{gathered} *$

‘MISTRAL’ Digital Clock

Kit $£ 12.50$（lncl）

Built $£ 18.00$ ．
－Pleasant green display－ 24 Hour readout
－Silent Synchronous Accuracy o Fully electronic
＊Pulsating colon o Push button setting
－Building time 1 Hr 。 Attractive acrylic case
。 Easy to follow instructions \circ Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$
－Ready drilled PCB to accept components

Exetron Time Litu
unlque transformirless design at a substantial saving on re tall price．The kit is compl
 require，is a soldering iram，
solder，and screat driver to assemble your om digital clock

EXETRON Time Ltd Regal House， Penhill Road， LANCING，Sussex．

Payment：CWO，Cheque，Access， Barclaycard．（owote Number）

PER ENGINEER ${ }^{*}$

＊With the Colour Faults Guide system of rapid，on－the－spot diagnosis of colour set faults the originating firm，Colour Vision Rentals Ltd， reported savings of the order of well over $£ 1,000$ per engineer per year．

HOW IT IS DONE ．．．A tabulated index of fault symptons and the most common circuit troubles causing them quickly enables the engineer in the customer＇s home to locate the cause of the breakdown and the panel or assembly in which it has occurred．He can then change the panel（etc）on the spot from his van stock and return the faulty item for repair subsequently，and return to stock．The originating firm calculates that an average of about 3 hours a week per engıneer is saved，plus an average of one workshop uplift less per engineer－hence the $£ 1,000$－plus per year saving．

The Colour Faults Guides，E R T＇s top innovation of 1974－5，covering 14 widely used chassis，are now collected in book form for sale at £1．70 inclusive per issue．
CAN YOU AFFORD YOUR MEN NOT TO HAVE A COPY WITH THEM ON EVERY JOB？

The fourteen chassis covered in the book comprise－Decca 30 series； GEC 2210 series：GEC Hybrid 2040 series；Hitachi range－CAP 160．CEP 180．CNP 190；ITT CVC5；Philips G8：Pye CT200 serıes． Pye 691－697；Rank R । A823／A：Thorn C E 3000 \＆3500；Thorn （BRC）8000／8500 series；Bang \＆Olufsen 39 series－Beovision 3500，3600，400，600；Skantic－all models except earlier 22 in ． hybrid．

TELETYPE 28 - NEW SPECIAL PRICE

TELETYPE 28 without keyboard. Good TELETYPE 28 with housing, keyboard and condition (can be used as receive only) $£ \mathbf{3 2 . 5 0}$ 符 ea.

Limited quantities - information in process of being obtained - this may not be available when orders are dispatched but we guarantee to forward comprehensive information at the earliest possible time

TEKTRONIX OSCILLOSCOPE

Type 536 with T time base and IL20 plug-ins

£675

MARCONI Signal Generator. TF801B 12 . $470 \mathrm{MHZ} £ 120$ ea
MARCONI Valve Voltmeter type TF1041B $£ 45$.
MARCONI TF934/2 FM Deviation Meter $£ 35$.
MARCONI TF1020A RF Power Meter 150 and 300 Watts. As New. $\mathbf{6 6 0}$ ea
MARCONI TF1020A RF Power Meter 50 and 100 Watts. As New, £45 ea
MARCONI TF1094A/S HF Spectrum Analyser Late model. Must go. $\mathbf{£ 1 6 0}$.
MARCONI TF1434/2 Counter Range extension unit $10-100 \mathrm{MHz} \mathbf{£ 2 5}$ ea.
KELVIN \& HUGHES Single Channel Recorders with spare paper $£ 18$ ea.
FURZEHILL Valve Voltmeter V200. 10 mv ful
scale. $£ 18$ ea. Nice condition
NOT OUR SCENE - Large Lathe
Cardiff - Buck \& Hickman £150

MARCONI OSCILLOSCOPES
 TF1 $\overline{3} 30-D C-15 M H Z$. Single Beam £65 ea.
 TF 1331 - DC - 15 MHZ . Double Beam,

 RHODE \& SCHWARZ Admittance Meter VLUK-BN3511. As new, $\mathbf{£ 1 1 0 .}$BRUEL \& KJOER Voltmeter type 24092 cs to $200 \mathrm{k} / \mathrm{cs} . £ 85 \mathrm{ea}$.
DUAL TRACE PLUG-IN units for CD1212 Scopes DC- $2.4 \mathrm{MHz} £ 35 \mathrm{ea}$.
TELONIC Sweep Generator SM2000/1. Main frame with $0-20 \mathrm{kHz}$ plug-in $£ 300$.
TEKTRONIX Uscilloscope type $516 £ 240$.
MARCONI TF 455 E Wave Analyser. Excellent condition. $£ 55$ ea.
MARCONI TF 867 Signal Generator 15 KHZ to 30 MHZ . $£ 50$ ea
MARCONI TF 885 Video Oscillator. £30 ea

MARCONI TF 791D Deviation Meter. $£ 90$. MARCONI TF 791C Deviation Meter. $\mathbf{£} \overline{\mathbf{6}} \overline{\mathbf{0}}$ ea. EDDYSTONE RECEIVER type 770U. £90 ea.
ROHDE \& SCHWARZ Receiver ESM 180 BN 15073/2. £425.
ROHDE \& SCHWARZ Generator 300-1000 MHZ. Type SDR BN 41022. £300.
SE LABS Oscilioscope type SM 112 Double Beam DC-1 00MHZ £295.
FLANN Signal Generator type 501 0.8-3 GC/S £90 ea.
DATAPULSE Generator 101 by Systron-Donner Corporation, $\mathbf{£ 9 0}$ ea

\author{

* AB POTENTIOMETERS
 $100 K+100 K$ LIN DUAL GANG $\mathbf{2 5 p}$
 ea.
 Discount for quantities. P. \& P. extra
}

EX-MINISTRY CT436 Double Beam Oscilloscope DC-6 megs. Max Sensitivity $10 \mathrm{mv} / \mathrm{cm}$. Small compact. Size $10 \times 10 \times 16 \mathrm{in}$. Suitable for Colour TV servicing. Price $\mathbf{f 8 5}$ each including copy of manual.
*CAPACITOR PACK 50 Brand new components only 50p. P \& P 27 p *P.C. MOUNT SKELETON PRE-SETS. Screwdriver adjust 105 and 2.5 M " 2 p ea. 1M. 500250 and 25 K a 4 p ea. Finger ad25 K a 5 p ea Mın. P. \& P 15 p
*Beehive Trimmer 3/30 pf
Brand new Oty 1-9 13p ea P \& P. $15 p$ 10.9910 p ea. P. \& P 25p. 100999 7pea. P \& P free
DELIVERED TO YOUR DOOR 1 cw CW of Electronic Scrap chassis boards etc No Rubbish FOR ONLY ©4. N Ireland $\mathbb{\text { E } 2}$ extra P.C.B. PACK S \& D Qudntity 2 sg fit - no tiny pieces. 50p plus P \& P 25p
*TRIMMER PACK, 2 TwIT 50/200 pf ceramic. 2 Twin 10/60 pf ceramic. 2 min strups with 4 preset $5 / 20$ pt on each. 3 arr spaced preset $30 / 100$ pf on ceramic base

FHACHI RAMP MODULE FX21 24 Volt DC input for 18 volt saw tooth output. Requires only external capacitor and 100 K ohm potentiometer to control frequency range up to 100 KHZ (eg 50 mfd electrolytic gives sweep of approx. 1 cm per second). In or out sync capability. Price £5.75. P. \& P. 20p.

25p the LOT. P. \& P. 15p.
*PHOTOCELL equivalent OCP71. 13p ea GRATICULES. 12 cm by 14 cm . in High Quality plastic 15p each. P \& P. 8p
> *Vast quantity of good quality components 3 LB. of ELECTRONIC GOODIES for £ 170 post pard
HF Cirystal Drive Unit 19 in. rack mount. Standard 240 V imput with, superb crystal oven by Labgear (no crystals) f 5 ea Carr f 2 BOURNS TRIMPOT POTENTIOMETERS. 20. 50, 100; 200: 500 ohms, 1, 2. 25.5. 10. 25 K al 35 p ea ALL BRAND NEW RELIANCE P.C.B. mounting 270: 470: 500 ohms 10 K at 35p ea ALL BRANI NEW TENTURNPOTS. Ex equ As new. Micropot Model 205 Two point nine ohms 01% @ Eourns Mode 20p 150 eas-3-101 100 arms Bourns Model
$\dagger 1.25$ ea P\&P $15 p$

DON'T FORGET YOUR MANUALS
S.A.E. WITH REQUIREMENTS

LOW FREQUENCY WOBBULATOR

For alignmeňt of Receivers. Filters, etc, 250 KHz to 5 MHz , effective to 30 MHz on harmonics. Three controls-RF level. sweep width and frequency. Order LX63. Price $£ 8.50$ P. \& P. 35 p.
 As abo
$35 p$. $35 p$.
Both
Both models can be used with any general-purpose oscilloscope. Requires 6.3 V AC input. Supplied connected for automatic 50 Hz sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability. with the exception of the controls (not cased. not calibrated)

20HZ to 200 KHZ

SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. $£ 8.85$ each. P. \& P. 25 p. Sine Wave only £6. 85 each. P. \& P. 25 p.

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Ful instructions supplied. Connect 6.3 V AC and use within minutes of receiving All this for only $\mathbf{£ 6} \mathbf{7 5}$. P. \& P. 25p. (Not cased, not calibrated.)

TRANSISTORINVERTORS			
TYPE A Input: 12VDC	TYPE Input: 12 DCD	TYPE C Input 12 V to 24 VDC	TYPE D Input 12 V to 24 VDC
Output: $13 \mathrm{kV} \mathrm{AC} \mathrm{1.5MA}$	Output: 1.3kV DC 1.5MA	Output: 1.5 kV to 4 kV AC 0.5 MA	Qutput 14 kV DC 100 micro amps at 24 V , Progressively reducing for lower input voltages
Price $£ \mathbf{¢} \mathbf{. 4 5}$	Price $\mathbf{¢ 4 . 7 0}$	Price $\mathbf{£ 6 . 3 5}$	Price £11

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY £6-25. P. \& P. 25p. STILL AVAILABLE our 20 MHZ version at $£ 9.75$. P. \& P. 25p.

Inless stated - please add $£ 2.00$ carriage to all units.

VALUE ADDED TAX not included in prices—Goods marked with $\star 25 \%$ VAT, otherwise $\mathbf{8 \%}$ Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

Open $9 \mathrm{a} . \mathrm{m}$. to $5.30 \mathrm{p} . \mathrm{m}$. Mon. to Sat

Tel.: Reading 582605

B. H. COMPONENT FACTORS LTD.

Now the European electronics industry is an open book

 can buy. (And, in iact the only multi-lingual. multi-national buyers guide in the electronics world.Every feature is designed to take you fast to the name of the supplier you need whatever the country. whatever the product concerned.

Products and manufacturers are broken down into 26 distinct market sectors. Over 600 types of products are listed. cross-referenced with over 1700 manufacturers. Principal Trade Associations in every country are included too. And all essential information appears in three languages-English. German and Fiench.

The price is £1850. including post and packaging. Not much for opening up a continent.

To: General Sales Dept..IPC Electrical-Electronic Press Lid., Room
Dorset House Stamford St.. London SE1 9LU. England

Please send me a copy of The European
Electronics Suppliers Guide. I enclose Electronics Suppliers for £ 18.50 (100 Swiss Francs) Inclusive

Address
*Cheques should be made payable to IPC Business Press Ltd.
Registered in England. No. 677128 Registered Office Dorset House Stamford Street, London SE1 9LU England.

shermiovich imumit

OSGILLOSCOPES $\&$ PLUAS INS

hewlet packabo

Model $130 \mathrm{C} \quad 200 \mu \mathrm{~V} / \mathrm{cm}$ Oscifloscope This scope is a versatile all purpose instrument for laboratory, production line, industrial process
measurements and medical applications. The outputs of if detectors, strain gauges, transducers, and other low level devices may be viewed directly without preamplification. The Model 130 C is easy to operate even by Base: Range $-1, \mu \mathrm{~s} / \mathrm{cm} 105 \mathrm{~s} / \mathrm{cm}, 21$ ranges in a $1,2,5$ sequence, accuracy $\pm 3 \%$, vernier provides continuous adjustment between steps and extends the $5 \mathrm{~s} / \mathrm{cm}$ step to at least $12.5 \mathrm{~s} / \mathrm{cm}$. Automatic triggering (baseline displayed in the absence of an input signal) Vertical and horizontal amplitiers. Bandwidth d.c. coupled. dc to 500 KHz ; ac coupled (input), 2 Hz to 500 KHz , ac coupled (amplifier). 25 Hz to 500 KHz at $0.2 \mathrm{mV} / \mathrm{cm}$
deflection factor
$\mathbf{£ 1 7 5}$ deflection factor £300 Model 1858 Sampling Scope OC -3.5 GMz £300
ROBANO RO50 OC $-25 \mathrm{MHz} / \mathrm{c} 5 \mathrm{c}$ Plug Duat Trace. Rue Time 13 n secs $50 \mathrm{mV} / \mathrm{em}$ min sensilivity.
$5^{\prime \prime}$ display Superb condition

$$
220
$$

TEKTRONIX
MAIN FRAMES ONLY 546

£275

Pug ins avaiable include
1A1. 1 A 2 . CA 80.86 B D
PO.A. $661 \mathrm{c} / \mathrm{w}$ with plug in
TELEQUIPMENT
Dual Beam Scope D31R DC-6MHz
DM - 64 (storage) \qquad price dependant on choice $\quad £ 165-£ 180$ $\mathrm{MHz} 5^{\prime \prime}$ Display Portable Good condition

HEATHKIT

$10-12 \mu$ Scope Single Beam $50 \mathrm{mV} / \mathrm{cm}$ DC 4.5 MHz 5"' Tube. Assembled Refurbished.
OUR PRICE . . £49.50 HURRY .. . Only a few left in stock!

TMSULATION TESTERS

evershed \& vignoles
Circuit Tester Ohmeter 0.3 ohms 0.39 ohms Circuir Tester Ohmeter 0-1000 ohms, 100-200 kohms
Megger Series III Mk 3250
Megger Serles
Megger 250 V
ع18
ع 12
E20
E20

SIGNAL SOURGES

fM AM SIGNAL GENERATOR TYPE 202H

mISGELLANEOUS

REGENTLY OUT!

The most
Comprehensive
Test Equipment
Catalogue ever
compiled in the U.K.
FREE COPIES now avail-
able for U.K. companies.
Please apply on
letter-headed paper. Private individuals please remit 50p towards cost \& carriage.
Overseas Customers please remit C 1 for airmaitod copy.

COWPONENTS

 density 0.510
points in tube
$25-100$
$100+$
£1 each
900 eact
sen

3971 ALPHA NUMERIC 0.9 and all letters of the
IChabet. $41 / /^{\prime \prime}$ high $\times 2.065^{\prime \prime}$ wide Display $21 /{ }^{2}$

Please add VAT at 8% P\&P 40p
magnetic devices
Cam Timer Type 8303B3/8H/3C6A/240. Cyelic Crouzet Motor 230 V 3 Relay positions at 10 A 250 V
Rating SALE!

The following equipment is being sold off cheap due to our shortage of storage space.

BARGAINS GALORE!

Siemens Level Meter $3033510 \mathrm{KHz}_{\mathrm{Z}}-17 \mathrm{MHz}$ Complete system by Siemens. Comprising Meter, 3W. 933 Sweep Attachment 30 Level Screen Level Tracing Recerver Siemens Level Meter 3D. 332, 0.3-1200K Kz Level Oscillator 3 W .29 .0 .3 .1200 KHz P.O.A S. T.C.

Octave Filter $74143 \mathrm{~A} . \quad 37.5-12.800 \mathrm{~Hz}$. For analysing noise and interference on comms
systems. particularly useful with 74142 psophometer Psophometer
Selective level Measuring Set 74184 A $\begin{array}{ll}60-1364 \mathrm{KHz} & \\ \text { Measuring Set } 74831 \mathrm{~A} & \text { PO.A }\end{array}$

A.T.\&E

Telegraph Distornon Measuring Set Various
rypes $5 B V 58 V 368 V 5 A$ MURPHY RADIO
Receiver VHF teld strengith RX 506 \&

Transter Oscillator Type 7580 HBy Beckman DC-1 15 GHz with counter. $75 \mathrm{MHz-15GHz}$ without counter. Sensitivity 100 mV (R.M.S.) MARCONI $\quad \mathbf{6 3 5 0}$ Distortion Factor Meter TF. 142F. Fundamen tal Freq. Range $100 \mathrm{~Hz}-8 \mathrm{KHz}$. Dist measurement ranges 0.5% \& 0.50% £60 Portable Recener Tester TF $888 / 3$
$70 \mathrm{KHz}-70 \mathrm{MHz}$, Xtal check $500 \mathrm{KHz} \& 5 \mathrm{MHz}$ $1 \mathrm{KHz} \mathrm{A} \mathrm{F} \mathrm{Oscillator} \mathrm{A.F} \mathrm{Power} 5 \mathrm{Mmz}$ 100 mW \& 1 W E.F Power $\begin{array}{ll}\text { Wave Analyser TF } 455 E & £ 69 \\ \mathbf{N S 5}\end{array}$ Noise Generator TF $1301 \quad 200-1700 \mathrm{MHz}$ Amplitude Modulator TF 1102. Basic Carrier Frequency Range $100 \mathrm{KHz}-300 \mathrm{Mhz} / 500 \mathrm{MHz}$ CW or FM output of any conventional signal generator can be amplitude modulated, including sine waves, square waves pulses,
picture signals
$\mathbf{E 2 5}$

SOLARTRON

2533 Component indicator.o.A.
Low Freq. Decade Oscillator OS 103.3 P.O.A.
EKCO INSTS

${ }^{\text {Nucleonics }}$ Ratemeter N .600 B

 RADIOMETER
RADIOMETER
1 MHz Capacitance Comparator Type CMB
11 bS 2 BELI
P.O.A.

Gaussmeter 120
HEWLETT PACKARD
Microwave Link Analyser $3701 / 02 / 03$
$\begin{array}{lr}\text { Microwave Link Analyser } 3701 / 02 / 03 \\ & \mathbf{E 2 0 0 0}\end{array}$
Distortion Analyser 380C
Ratio Meter 416 B
Univerter 207 H (for use with 202H and J .
Generators) MUIRHEAD
Facsimite Transmitter Receiver Type 900 from satellite sysiems to receive weather pictures SAVAGE
Amplifier Mark 11 Star Model 1 KM22, 1 KW output. Freq $50-10 \mathrm{KHz}$. Good condition $\begin{array}{r}£ 1650\end{array}$ WAYNE KERR $£ 1650$ Video
Component Comparator CZ457/5 . P.O.A AIRMEC
$\begin{array}{lr}\text { Modulation Meter } 210 & \text { £ } 75 \\ \text { Modulation Meter } 210 \mathrm{~A} & \mathbf{£ 1 3 5}\end{array}$ Modulation Meter 210A
HEWLETT PACKARD
1415A

MARCONI
$\begin{array}{ll}\text { Blank \& Sync. Mixer TF } 2908 & \mathbf{£ 9 5} \\ \text { VHF/UHF Probe TM } 9650 \text { (New) } & £ 30\end{array}$
TEKTRONIX
scope Camera C-13
MUIRHEAD
SOLARTRON
Analogue Tutor TY 1351. Ask for detalls
AC/OC Converter LM 1219 P.O.A.
P.R.D.

Noise Generator 904A.
TELEMAX-SOUTHERN
TD1 Freq Meter/Generator. $10 \mathrm{KHz} \cdot 3000$
TD1 Freq Meter/Generator. $10 \mathrm{KHz} \cdot \mathbf{3 0 0 0}$
MHz
P.O.A

POTENTIOMETERS

Manuí	Type	Turns Value	Price
Relcon	0705/1001/A	5100 ohm	£1.75
Relcon	0705/05/F11	5200 hm	£1.75
Beckman	7246/5019	1050 ohm	E2.00
Bourns	35005-2-500	1050 ohm	E1.95
Bourns	35005	10 1K	E2.00
Beckman	A/S303	10 5K	E1.00
Beckman	72212/5	10 10K	E2.00
Relcon	0710.1-1-001A	10 10k	E2.00
Beckman	A	10 20K	E3.00
Borg	KS1302512	10 20k	E2.00
Beckman	7223	10 50k	E3.50

The test equipment people

Come and visit Europe's first Electronic Instrumentation Centre

49-53 Pancras Road

London NW1 20B
Tel: 01-837 7781
Next to KING'S CROSS ST. PANCRAS

SELF-SCAN
PANEL DISPLAY
Model SSD 1000-0030
DIRECT VISUAL PRESENTATION OF ALPHA-NUMERIC DATA
limited ouantity only
TYPICAL APPLICATIONS:

- Read.out of Operator Instructions and Ressith fitom
controlied machenes, and test-equupment complexes.
Controdied machines. and rest-equipmeni comple exes.
Otsplay of specific data inserted into pre-programmed messages. Examples include the presentalion of Commerci
intormation such as Share Prices and Exchange Rates industrial uses may include Stock Control and Stores - Presentiation of key intormation where the full message is al a premium
Each panet is a self-contained package. providing 16 or 18
display positions each of which may be intructed by a 6 b bir
coded signal to display one of 64 pre-programmed characters as a 5×7 dot mattix formed by special gas-discharge units.
as alternatively, other characters may be synthesised by the Alternatively. other characters may be syithesised by the
apolictation of the appropriate signals. Each character is 0.4
inches high providing a bright image visibie over a wide viewing angle viewing angle
Full applica

STROBETTE

 STROBOSCOPE TACHOMETER Two Units In One
some specific applications

- To check and
- To check register in printing presses
- To check balance in balancing machines

- To observe motion of packages, bothes. cans.
- To observe belt slippage

SPECIFICATIONS
STROBOSCOPIC FLASH RATE-200 to 6.000 TACHOMETER SPEED RATE-200 to 6.000
accuracy
CALIBRATION-A1 3 . 600 F P M against any
known synchronous speed - 72003600 1800
1200900 RPM etc
CIRCUITRY- 100% sold slate
FLASH OURATION
FLASH OURATION Approximately 10 to 25
FLASHLIGHT COLOR-Xenon white 6.500 K FLASH ENERGY-40 Watts-second (Joules)
DUTY CYCLE-Below $1.000 \mathrm{FPM}=30$ minutes 3.600 FPM and above $=1 / 4$ duty cycle.

BEAM ANGLE-80
PhYSICAL -High impact case Plastic lens.
Mirror tyoe reflector
Mirror type re lilector
SIZE $3^{\prime \prime} \times 3^{\prime \prime} \times 7^{\prime \prime}$ with $4^{\prime \prime}$ diameier faflector
WIE
WEIGHT-270x. (76 kg) Shipping weight
4 ID (18 8 R).
TRIPOD MOUNTING-Built-in $1 / 4-20$ thread tripod
socket POWER- 220 VOLTS $50 / 60 \mathrm{~Hz} 22$ watts.
FANTASTIC VALUE
$£ 49.50$

"TOUChless" retro-beflective TACHOMETER

- WULTIMETERS

screened against external magnetuc fields Scale width and small case dimensions (128
$95 \times 32 \mathrm{~mm}$) Accuracy and stability (1% in $95 \times 32 \mathrm{~mm}$. Accuracy and stability (1% in Simplicity and ease of use and readabitity. Full ranges of accessories 1000 times overload
printed Circuit board is removable without de-soidering More ranges than any orther
meter Ask for free catalogue
$\mathbf{1 8 . 5 0}$

FANTASTIC NEW MICROTEST 80

Amazing Value at $£ 11.95$ 8 ffields of measurement and 40 ranges
PRINTED CIRCUIT BOARD IS REMOVABLE WITHOUT SOLDERING
voluo d.c. 6 range: 100 mV 2v 10 V 50 V 200 V
 Amp. d.c. 6 renges: $50 u \mathrm{~A}$ 500uA 5 mA .50 mA Amp. .e.e. 5 renges: $250 \mathrm{uA}, 25 \mathrm{~mA} .25 \mathrm{~mA} .250 \mathrm{~mA}$. ${ }^{2}$ Ohmu 4 renges: Low \cap Ifron $1 / 10$ di \cap Until SMO
\vee Ourpur 5 renges: 15 V .
Decibols 5 renges: $+6 d \mathrm{~B}$.

DIGITAL TACHOMETER Measures RPM

 instantlyTO MEASURE RPM
Motors - Gears - Fans - Mixers Turbines Drills - Centrifuges Grinders - Wheels • Pumps Pulleys - Anything that rotates specification
RIGITS
RADICATOR
batteries

MEASURING TIME
ON-OFF SWITCH
Push Bution
ACCURACY
AN-OFF SWITCH
Oph of $1 \% \pm$ I Dight
Approx. 15 oz.
£99.50 P\&PE 1
Capacity 4 ranges: $25 \mu \mathrm{~F}, \quad 250 \mu \mathrm{~F}, \quad 2.500 \mu \mathrm{~F}$
$25.000 \mu \mathrm{~F}$

Accessories (extra) available to convert Microtest 80 \& Supertester 680R into
fGliowing SIGNAL INJECTOR GAUSS METER ELECTRONIC VOLTMETER. AMPER CLAMP. TRANSISTOR TESTER. TEMPERATURE PROBE PHASE SEQUENCE MORE RANGES FOR LESS MONEY! meter
$U 4324$. $0.06-3 \mathrm{~A}$ Ranges
03 a Ranges
0.6 .1200 Ranges
3.900 V
 he range of 45 to tance: 500 ohm to 5 Mohm -5
Ranges Decibel:

mensions

$$
\text { Only } \mathbb{£ 9 . 5 0}
$$

-10 to +12 dB
Accuracy $+25 \%$

POST \& PACKING 50p

1st GRADE COMPONENTS

from
MOTOROLA MULLARD SIGNETICS MONSANTO FERRANTI GIM
Guaranteed $£ 250,000$ worth of components and all items listed in this advetisement are ex-stock at the time of going to press. All products guaranteed. No minimum order charge.

C- SCOPE METAL DETECTORS

St	
BFO50 integral speaker	¢26.24
BFO60 integral speaker and meter	E33.59
18100 with headphones	652.59
18300 with headphones and meler	¢68. 24
TR200 with headphones	659.90
TR400 with headphones and	678.43

INDUCTION GENERATOR. Requites a supply voltage of 50 V 50 Hz and provides an output of 7 V per 1000 rm directly proporional to speed
this insifument has a wide varuety of appltcations eq anemometers This instrument has a wide variely or applications eg anemometers
measuring shatt speed etc in brand new condtion 55.60 post paid
ITT OFFICE INTERCDM. 20 way with modern manual SWB and fachithes Lightweighl desk sets
VAT Spare deltaphones $\mathbf{~} 7.50$ ea
TELEPRINTER PAPER. Standard rolls ply $\mathbf{5 5 . 0 0}$ per doz 2 ply $£ 5.00$ per doz 3 piy $\mathbf{E 5 . 4 0}$ per dor 4 wly $\mathbf{E 5 . 7 0}$ wer dor AltPPd K Tele
TAPE STORAGE CANS. Brand new finisheed steel cans originalix
intended for 16 mm film but ideal for storing 7 in reels of tape Our las supply of these items was quicklv exthausted at 30 p each but as a result of a massive new purchase we can now ofter a case of 55 at $\mathbf{\varepsilon 6 . 8 0}$ inc P \& P
SOLAR CELLS. Ferrant siltcon MSuBE active area 390 so mm Open CCT vilaye 550 mV at 3000 lumens/ sc 11 Sht CCt Current 60 mA
Optumum load 90 ohms Dia 34 mm Thickness 6 mm Ex made up panei Optimum load 90 ohms Dia
$£ 1.35$ (nic P \& P and VAT)

COMTINENTAL CUSTOMERS
 Qum

Belyrum

AIRCREW CHRONOGRAPHS

Stanless steel case with screw back. luminous hands and markings One. fitth sec sweep hand controlled independently of main movement by
press to start stop and relurn to zero bution 15 press to start stop and Many of these walches are as new but all have been completely overhauted and
notre checked for accuracy Fitted strap
$\mathbf{c 1 8 . 3 0}$. Black face $\mathrm{E19.25}$ inc P \& P face A.l worches: lnapection ageinst remittance.

ANALYTICAL EQUIPMENT

GAS CHROMATOGRAPHY RESEARCH OVEN
PVaN5 $/ 4056$ (other GC items in atock)
A large capacity oven of low thermal mass for
Alarge capacity oven of low thermal mass for use between 35 and 400 C
Provides a forced anr circulating system yeiding 1000 changes of aur per min The oven has forced air cooled outer surfaces when the internal and Wales)

IONISATION AMPLIFIER PV4075
A modern thigh grade low roise solid spate amplitier to feed a potentiometer mecorder to 100 mv Linearity 01% is Noise less man 05% is al max sensitivily Back ott facility Dimensions $28 \times 10 \times 43 \mathrm{~cm}$ deep With Detarts of these three and other gas chromaroyraphy tems price 25p (C W O only) Handbooks (complete) available

COMPUTER PROCESSORS AND PERIPHERALS. Printers Readers. Core Stores etc
AIRCRAFT INSTRUMENT
items available for flight use
COMMUNICATIO
 415 V 50 Hz to 115 V 400 Hz 1ph 50 w AJ $£ 27.50$.
MULTIWAY CABLES in stock up to 50 way or up to 750 amp Aiso
MARCONI SPECTRUM ANALYSERS OAtO94A/S. Listed al f2700 Our price $£ 585$.
ACTUATORS, RELAYS, FLODDLAMPS, POWER
TRIMPOTS FANS MICROWAVE EQUIPMENT. AII Ex-stock
 Servo and Electronic Joales Ltd

24 HIGH ST., LYDD, KENT TN29 9AS. Tel. Lydd 20252^{\prime} (STD 0679) VAT No. 201-1296-23 TELEX 965265

REACH FOR THE PEAKS OF MEASURING INSTRUMENT ENGINEERING!

FOR YOUR PROOUCTION REQUIREMENTS USE ALPS PANEL METERS
FULL RANGE PRICE LIST-SAE PLEASE! Substantial quantify discounts to manulacturers Romomber I We arn the sole imparters!

NEW ADDITIONS to our range of PANEL METERS available at present only in MANUFACTURING QUANTITIES

Above meter forms are for moving coil movements only and may house S -meter and VU-meter instruments.

All nelers can be supplied with special or personalised scales. internal illumination coloured front lenses. mirror scales. special pointer forms etc

Full details and prices on request

AUTOMOBILE TEST EQUIPMENT

 SEC VOLTS A substitute capacitor is incorporated Size $265 \times$
165 cm w 325 kg With handbook $£ 30.37$ nc $P \& P \& V A T$ SERVO AuTOTESTER No. 2. 0.16 V 080 A dwell angle and
speed for 4688 cyc engines Size $16 \times 95 \times 65 \mathrm{~cm} \mathrm{Wi} 045 \mathrm{Kg}$ speed for $4 \quad 6 \& 8$ cyc engines Size
With insins $£ 11.15$ inc $P \& P \& V A I$

SERVO Aürotestien -No. 3. Simultaneously on separati meters 0.16880 -80A Saze $17 \times 10 \times 7 \mathrm{~cm}$ WI 045 Kg Price $\mathrm{E9.7}$
 Hand held insit Size $14 \times 8 \times 5 \mathrm{~cm}$ Wi 026 kg Price $\mathbf{E} 6.35 \mathrm{inc} \rho \mathrm{git}$
$\& \vee \mathrm{~A} T$

L_- - The SECOND-USER
CoMpUIIfR SAIEs Peripherals and Systems for Data Processing Systems, Equipment and Components

Mini Bompolter Fxonetreg
 JUST ARRIVED SUPERB PDP8M

16K Processor
TU56 Dual DECTape
TU60 Dual DEC Cassette
SINTROM Dual Floppy Disc
LA30 DECWriter
ASR33 Teletype
RTO2 Display
Less than a year old - a bargain at $£ 7,500$. On display now in our London showroom - callers welcome.
Also avaitable
Ring now for prices. Other models becoming available all the time - let us know vour
TERMINALS - SPECIAL CLEARANCE OFFER COSSOR DIDS
 Adod 8% YAT to all prices shown.

COMPUTER SALES \& SERVICES (EQUIPMENT) LIMITED
49/53 Pancras Road, London NW1 2QB. Tel. 01-278 5571

DIGITAL PRINTING MECHANISM TYPE EP 101

HENRLS

 404/6 EDGWARE ROADLONDON W. 2 01-402 8381 404/6 EDGWARE ROAD
LONDON W. $201-4028381$
LOWER SALES FLOOR
231 TOTTENHAM COURT ROAD LONOON W. 1 01-636 6682 NEW MIDLANDS STORE
94/96 UPPER PARLIAMENT STREET. NOTTINGHAM 0602-40403
All mail to Henry's Radio, 303 Edgware Road, London W. 2
Benefit from our 30 years' experience in retail clectronics!

DEMA ELEGTRONICS
 DEMA ELEGTRONICS
 ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST

䨐留

$* \quad 74$ SERIES T．T．L．I．C．＇s
BI－PAK STILL LOWEST IN PRICF．FUIL SPECIFI－

CATION GUARANTEED ALL FAMOUS M

PO BOX 6 WARE HERTS
 AL 60
 50w. PEAK (25w. R.M.S.)
 - Max Heat Sink temp $90^{\circ} \mathrm{C}$ Frequency Response 20 Hz to 100 K Hz Distortion better than 0.1 at 1 KHz Supply voltage $15-50$ volts Thermal Feedback Latest Design Improvements Load - 3, 4, 5 or 16 ohms Signal to noise ratio 80 dH Overall size $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 13 \mathrm{~mm}$. Especially designed to a strict specification. Only the finest components have been used and the latest solid state circuitry incorporated in. this powerful little amplifier which should satisfy the most critical A.F. enthusiast.

STABILISED POWER MODULE SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watt (r.m.s.) per channel simultaneously. This module embodies the latest components and circuit techniques incorporating complete short circuit protection. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 amps at 35 volts. Size: $63 \mathrm{~mm} \times 105 \mathrm{~mm}$ $x 30 \mathrm{~mm}$.
These units enable you to build Audio Systems of the highest quality at a hitherto unobtainable price. Also ideal for many other applications including:-Disco Svstems. Public Address Intercom Units, etc. Handbook available 10p.

TRANSFORMER BMT80 £2.60
PRICE £3.00

STEREO PRE-AMPLIFIER TYPE PA100

Built to a specification and NOT a price, and yet still the greatest value on the market, the PA100 stereo pre-amplifier has been conceived from the latest circuit techniques. Designed for use with the! AL50 power amplifier system, this quality made unit incorporates no less than eight silicon planar transistors, two of these are specially selected low noise NPN devices for use in the input stages. Three switched stereo inputs, and rumble and scratch filters are features of the PAl00 which also has a STEREO/MONO switch, volume, balance and continuously variable bass and treble controls.
$£ 13.20$

GUARANTEE	MK 60 AUDIO KIT	TEAK 60 AUDIO KIT
SATISFACTION OR YOUR MONEY REFUNDED	Comprising: $2 \times$ AL60. $1 \times$ SPM80, $1 \times$ BTM80, $1 \times$ PA100, 1 front panel, 1 kit of parts to include on-off switch, neon indicator, stereo headphone sockets plus instruction booklets.	Comprising: Teak veneered cabinet size $1634^{\prime \prime} \times 11 h^{\prime \prime} \times 3 \% / "^{\prime \prime}$. other parts include aluminium chassis, heatsink and front panel bracket, plus bar panel and appropriate sockets, etc.
	COMPLETE PRICE: $£ 27.55$ plus 45 p postage.	KIT PRICE: $\mathbf{6 9 . 2 0}$ plus 45p postage.

STEREO 30 COMPLETE AUDIO CHASSIS

$7+7$ WATTS R.M.S.

The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This with only the addition of a transformer or overwind, will produce a high quality audio unit suitable for use with a wide range of inputs, i.e. high quality ceramic pickup, stereo tuner, stereo tape deck, etc.
Simple to install, capable of producing really first-class results, this unit is supplied with full instructions, black front panel. knobs, mains switch, fuse \& fuse holder and universal mounting bracket, enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available.

GIRO NUMBER 388-7006

Ideal for the beginner or advanced constructor who requires $\mathrm{Hi}-\mathrm{Fi}$ performance with a minimum of installation difficulty. Can be installed in 30 mins .

PRICE $£ 15.75$
Plus 45D
plus 45p
postage \& päcking
TEAK CASE $£ 3.65$
postage \& packing
TRANSFORMER £2.45
plus $45 r$
postage \& packing,

AL 10/AL 20/AL 30

The AL10, AL20 and AL30 units are similar in their appearance and in their general specification. However, careful. selection of the plastic power devices has resulted in a range of output powers from 3 to 10 watts R.M.S.
The versatility of their design makes them ideal for use in record players, tape recorders, stereo amplifiers and cassette and cartridge tape players in the car and at home.

AL10 £2.30, AL20 £2.65, AL30 £2.95

M.P.A. 30

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new Bi-Pak M.P.A. 30 which is a high-quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only.
Used in the construction are 4 low noise. high gam. silicon transistors. It is provided with a sLandard DIN input socket for case of connec tion.
Supplied with full, easy-to-follow instructions.
PRICE £2.65

STORAGE-CARTVY CASES

RECORD CASES

7 in E.P. $183 / 8 \mathrm{th}$ in. $\times 7$ in $\times 8$ in (50 records)

CASSETTE CASES
Holds 15 . 10 in $\times 3^{3,}$ in $\times 5$ in. Lock and handle
8-TRACK CARTRIDGE CASES
Holds $14.13 \mathrm{in} \times 5$ in $\times 6$ in. L.ock and handle
Holds 24. $133 / 8 \mathrm{~h}$ in $\times 8$ in $\times 53 / 8$ th in Lock and handle
\qquad 4-16 ohms impedance frequency response
20 to $20,000 \mathrm{~Hz}$ stereo/mono switch and Volume Control $£ 4.55$

FOR PA100.
Attracuve matt silver. Finish with black trim and lettering. Adds that professional touch. $£ 1.10$ ouly.

CARTRIDGES

ACOS GPYI-1 GP93.1
GP96.1 GP96.1 $\xrightarrow{\text { GP96. }}$
$5 C 200 \mathrm{mV}$ at $1.2 \mathrm{cms} / \mathrm{sec}$
280 mV at 280 mV at $1 \mathrm{~cm} / \mathrm{sec}$£ 1.11
$£ 1.43$ $\mathrm{J}-2005$
$\mathrm{C}-2010 \mathrm{C}$ Crystal/Hi Output
Cystal/Hi Output J-2010C Crystal/Hi Output J_2006S Stereo/Hi Outpu $\mathrm{J}-2105$ Ceramic/Med Output $\mathrm{J}-2203$ Magnetic $5 \mathrm{mV} / 5 \mathrm{~cm} / \mathrm{sec}$ J-22038 Replacement inclus J-22038 Replacement stylus for abov AT-55 Audio-technica magnetic cartridge $4 \mathrm{mV} / 5 \mathrm{~cm} / \mathrm{sec}$

[^7]
DYNAMIC MICROPHONE

TYPE B1223 200 ohms impedance. Complete plugs. Suitable for cassette tape recorders.

STEREO FM

TUNER
WRITE NOW FOR
FULL DETAILS
TAUT SUSPENSION MULTIMETERS

Made in USSR
U4312: 41 ranges $0.3 \mathrm{~mA}-6 \mathrm{~A}$ D.C., $1.5 \mathrm{~mA}-6 \mathrm{~A}$ A.C., $0.3-900 \mathrm{~V}$ A.C./D.C., $0.2-50 \mathrm{k} \Omega$; Mirror scale. Sensitivity $667 \Omega / \mathrm{v}$: Accuracy 1% D.C.: 1.5% A.C. £ 10.75. U4313: 40 ranges $0.06 \mathrm{~mA}-1.5 \mathrm{~A}$ D.C.; 0.6-1.5A A.C.: $1.5-600 \mathrm{~V}$ A.C./D.C. $0.06-60 \mathrm{k} \Omega$: Mirror scale. Sensitivity $20 \mathrm{k} \Omega / \mathrm{v}$ D.C.: $2 \mathrm{k} \Omega / \mathrm{v}$ A.C. Accuracy 1.5% D.C., 2.5% A.C. £ 13.80
U4315: 43 ranges $0.05 \mathrm{~mA}-2.5 \mathrm{~A}$ D.C:; $0.5 \mathrm{~mA}-2.5 \mathrm{~A}$ A.C.: 1.1000 v D.C./A.C.: $0.3-500 \mathrm{k} \Omega$: Sensitivity $20 k \Omega \vee$ D.C., $2 k \Omega / v A . C$. Accuracy 2.5% D.C.. 4\% A.C. £10.00.
U4324: 33 ranges $0.06 \mathrm{~mA}-3 \mathrm{~A}$ D.C., 0.3mA - 3A A.C., 0.6-1200v D.C. $3-900 \mathrm{v}$ A.C., $0.5-500 \mathrm{k} \Omega$: Sensitivity $20.000 \Omega / \mathrm{V}$ D.C. $4000 \Omega / v$ A.C. Accuracy 2.5% D.C. 4% A.C. Re-chargeable cadmium cell operation. £9.85

LINEAR I.C. AMPLIFIERS

TAA263 - 3 stage low level amplifier Bandwidth DC to 600 kHZ . Supply voltage 6.8 V . Output power 10 mW To 724 -lead £0. 65
TAA293 - Med freq amplfier up to 600 kHz . Supply voltage 6 V . Output OmW into 150 . TO 7410 -lead case 0.65.

TAA320 - Most stage followed by a bu-polar transistor. Gate-to-source voltage $9-14 \mathrm{~V}$. Power dissipation 200 mW . Drain
current $1 \mu \mathrm{~A}$. To 483 -lead $£ 0.60$.

DIGITAL 7400 SERIES I.C.

7400	$\mathbf{£ 0 . 1 4}$	7440	$\mathbf{£ 0 . 1 4}$
7401	$\mathbf{£ 0 . 1 4}$	7450	$\mathbf{£ 0 . 1 4}$
7410	$\mathbf{£ 0 . 1 4}$	7453	$\mathbf{£ 0 . 1 4}$
7420	$\mathbf{£ 0 . 1 4}$	7455	$\mathbf{£ 0 . 1 4}$
7422	$\mathbf{£ 0 . 2 0}$	7460	$\mathbf{£ 0 . 1 4}$
7430	$\mathbf{£ 0 . 1 4}$	7472	$\mathbf{£ 0 . 3 0}$
		7474	$\mathbf{£ 0 . 2 5}$

A minimum of 10 assorted I.C. must be ordered. Discount of 10% for any mix. up
to 25 and 20% for larger quantities.

OSCILLOSCOPE CI-5

Made in USSR

Extremely simple and easy to use single beam oscilloscope. Well proved design based on standard octal valves makes servicing and maintenance straightforward and inexpensive. Because of its bandwidth of 10 MHz the instrument is suitable for general electronic applications and educationa purposes where a sophisticated instrument would be both too expensive and delicate. 3 -in. tube giving a 50 $x 50 \mathrm{~mm}$ clear display. Amplitude and time bas calibrations. Sensitivity $30 \mathrm{~mm} / \mathrm{v}$ max. Triggered and free-running time base, suitable for displaying pulse from $0.1 \mu \mathrm{sec}$. to 3 m sec . A.C. mains operation.
Price $£ 44.00$ ex. works
Packing and carriage (U.K. only $£ 2.50$)

EDUCATIONAL METERS

Made in USSR

A range of small portable free-standing meters suitable for experiments and demonstration work. Moving coil movements with centre-pole pieces. 69 mm long open scale. Basic calibration accuracy 4%. The following ranges are available: $1,2,5,10$ Amps D.C.; $6,15,30$ Volts D.C. Overall dimensions: $80 \times 100 \times 48 \mathrm{~mm}$
Price $£ 1.80$ ax. works
Packing and postage $\mathfrak{£ 0 . 2 0 \text { per meter }}$

SPECIAL TELEVISION

 BARGAINSFIRST GRADE TRANSISTORS

R2008B	$\mathbf{C 0 . 9 5}$
R2010B	$\mathbf{E 1 . 6 5}$
BU126	$\mathbf{E 1 . 5 5}$
BU133	$\mathbf{5 1 . 5 5}$

BU133 $\quad \mathbf{E 1 . 5 5}$
1.55

$\begin{array}{lr}\text { BU133 } & \text { ¢1.55 } \\ \text { BU208 } & \text { C2.00 }\end{array}$

Have you already got our illustrated 1975 catalogue/price list of valves, semiconductors, test equipment and passive components? If not, please send £0.20 for your copy now.

Prices are exclusive of VAT and unless stated otherwise. packing and postage. When remitting cash with order
please add $£ 0.80$ per miltimeter, or $£ 0.20$ in $£$ for other please add $£ 0.80$ per miltimeter, or $£ 0.20$ in $£$ for other linear I.C.s, and 8% for other equipment).

RADFORD HD250

High Definition Stereo Amplifier

A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

Rated power output: 50 watta av. continuous per channet into any impedance from 4 to 8 ohms, both channels driven.
Maximum power output: 90 watts av. per channel into 5 ohms.
Distortion, preamplifier: Virtually zero (cannot be identified or measured as it is balow inherem circuit no ise.)

Distortion. power amplifier: Typically 0.006% at 25 watts, less than 0.02% at rated output (Typically 0.01% at $1 \mathbf{K h z}$)

Hum and noise: Disc, -83dBY measured flat with noise bend width 23 Khz (ref 5 mi) ; -88 dBV " A^{\prime} " weighted (ref. 5 mv)
$\begin{aligned} \text { Line } & -85 \mathrm{dBV} \text { measured flat (ref } 100 \mathrm{v} \text {) } \\ -88 \mathrm{~d} \mathrm{BV} & \text { " } A \text { weighted (ref } 100 \mathrm{v} \text {) }\end{aligned}$
Hear the HD250 at

SWIFT OF WILMSLOW

5 Swan Street, Wilmslow, Cheshire (Tel. 26213) Mail Order and Personal Export enquiries: Wilmslow Audio, Swan Works, Bank Square, Wilmslow (Tel. 29599)
In stock: All Redford speaker drive units and crossovers, ZD22 preamp, Low Distortion oscillator LD03 and Distortion Measuring set DMS3

SINCLAIR CALCULATORS

Cambridge £9.95. Cam Mem £13.95. Scientific $£ 13.95$. Oxford 100 £9.95. Mans units (state medel) $\mathbf{4} 3.19$

CBM CALCULATORS
774 D 7 -digit 4 function model $\mathbf{£ 5 . 9 9}$ 385R 8 digit rechargeable with charger £26.95. 8120D £20.95. SR9120D £43.95. Marns unit for D models $£ 2.95$.

$71 / 2 \mathrm{~V}$ output complete with 5 -pin DIN plug to run cassette tape recorders from the AC mains £4.61.

SINCLAIR AMPLIFIERS	IC20 $10+10 \mathrm{~W}$ sterea amp. kit with tras bookliat and printed clrcuit $\mathbf{\varepsilon 8 . 5 8}$.
	PZ20 power zupply kil lor above E5.91.
	YP20 volume. tone cantrol and proand kit includiang printed circuits $\mathbf{~ 1 7 . 9 5}$.
	SEMO SAE FOR free data

SINCLAIR PROJECT 80

AFU $£ 7.55$. FM tuner $£ 13.25$
$Z 40 £ 5.75$ Stereo decoder $\mathbf{£ 8 . 5 5}$
Z60£7.10. Trans. for PZ $8 £ 5.40$
Q16£9.71. Stereo $80 £ 13.25$
P225£6.50 Prolect $805 £ 34.95$
P225E6.50 Prolect 805 £ 34.95
PZ6 $£ 8$ 70. PZ8 £8.20
JC12 AMPLIFIER
6W IC Audio amp
with free data and
printed circuit
£2.80. Special
£2.80. Special bought with deluxe

DELUXE KIT FOR JC12

includes all parts for the pcb and vol. bass and treble controls for mono version $£ 2.52$ ntrol $£ 5.20$ JC12 POWER KIT Supplies 28 V 0.5 amp £4.77. JC12 PREAMP KITS
Type 1 for magnetic pickups. mics and tuners Mono model £2.15. Stereo $£ 3.70$. Type 2 for ceramic or crystal pickups. Mono £1.27. Stereo £2.33. SEND SAE FOR FREE DATA

Appointments

Advertisements accepted up to 12 noon Monday, December 1 st, for the January issue subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 6.99$ per single col, centimetre (min .3 cm). LINE advertisements (run on): 99p per line (approx. 7 words), minimum three lines BOX NUMBERS: 40p extra. (Replies should be addressed to the Box numbers in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU). PHONE: Allan Petters on 01-261 8508 or 01-261 8423.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T

Radio Officers-now you can enjoy the comforts of home.

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are $£ 2905$ rising to $£ 3704$ after three years service. Between 19 and 24 , the starting salary varies from $£ 2234$ to $£ 2627$
according to age. You'll also receive an allowance for shift duties which at the maximum of the scale averages $£ 900$ a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have vacancies at some of our coastal radio stations, so if you're 19 or over, write to: ETE Maritime Radio Services Division (R/B/12), ET 17.1.1.2., Room 643, Union House, St. Martins-leGrand, London EC1A 1AR.
Post Offifice Telecommunicaitions

UNIVERSITY OF ST. ANDREWS Department of Psychology TECHNICIAN GRADE 5 (ELECTRONICS)

Applicatıons are invited for the above post in the Electronics Workshop of the Psychology Department tenable from November, 1975. Applicants should have a good electronics background together with practical experience in the development and construction of digital equipment and the design of computer interfaces.
The person appointed will work together with other members of the technical staff on the development of on-line experımental facılities using the Department's Data General computers. Experience with small general the Department s Data General computers. Experience with small general purpose digital computers and a knowledge of programming languages is
desirable. The duties will also involve the use and maintenance of other electronic equipment in the Department.
Salary on scale $£ 2439-£ 2895$. Applications, with full details of career to date, and the names of two referees, should be sent to the Establishment Officer. of the University. College Gate. St. Andrews. Fife, by 21 st November, 1975

Men with anaıogue or digital qualifications / experience seeking higher paid posts in: TEST - SERVICE - DESIGN SALES
Phone: Mike Gernat, Ref. W.W.
NEWMAN APPOINTMENTS 360 Oxford Street, W. 1. 01-629 0501

ENGINEERS

Electronic Instruments w. LONDON

PRODUCT SUPPORT ENGINEER

£3,500 + car + comm.

Essentially a sales orientated position covering the UK. The successful applicant should be able to do a service engineer's job, but will concentrate on product applications, interfacing of systems etc , with existing technical staff
Formal qualifications are not required, but an HNC or equivalent in Electronic Engineering is desirable, as is a knowledge and experience of signal analysis, nuclear and automatic isotype counting techniques. Age range 20 's to $30 \% \mathrm{~s}$

SERVICE ENGINEER

£3,000 + car + comm.

To cover over 50 client installations - mainly hospitals and universities - in the London area You need technical product and applications knowledge and at least two years' experience of servicing scientific instruments in a laboratory environment Ideally applicants should have experience in fast digital pulse techniques, isotype counting techniques or computer based systems. Age range 25-40

Telephone Valerie Jenner

London (01) 2357030 Ext. 221

- proinssinna ader

PIONEER

Shriro (UK) Limited are leaders in the field of advanced high fidelity equipment with their superior "Pioneer" range.
To keep pace with our continued expansion in this all important growth market we now require the following qualified engineers.

SENIOR AUDIO ENGINEERS

The people we are looking for will have a sound experienced background in hi-fi servicing, dealing with our wide range of audio products: This is interesting and well paid work for people with potential.

COLOUR TV AND VCR ENGINEERS

As part of our new expansion, we are introducing new lines to our already extensive range. These will include the Loewe-Opta range of colour televisions and video cassette recorders and to help service this range we require a highly experienced VCR and CTV Engineer, with $3-5$ years' relevant experience, preferably qualified to HNC (Elec.) or equivalent. It is a responsible post as he will be taking charge of this new division.
We also require another engineer to work with him on this range For an experienced and competent person, this position is ideal for progression in this challenging new area.
For all the above vacancies we offer:

* Excellent negotiable salaries
- $371 / 2$-hour week
* 3 weeks paid holiday
* LVs
* Special staff discount scheme

Apply to The Service Manager, Shriro (UK) Limited, Shriro House, The Ridgeway, IVER, Bucks SLO 9JL. Tel: Iver 652222.

5019

Rediffusion Reditune Ltd., Britain's leading background music service, require the following technical staff:

PRODUCTION LIAISON ENGINEER

Duties involve quality control and inspection of both incoming and outgoing goods.

Applicants should preferably have an HNC or equivalent and not less than 5 years experience in industry. An interest in music is essential.

LABORATORY TECHNICIAN

A wide variety of duties include layout drawing, construction and test of prototype printed circuits. The person envisaged is young and enthusiastic with ONC or equivalent, and some industrial experience in the audio field.

The positions, which are pensionable, are based at Orpington, where a $371 / 2$-hour week is worked.

There is a subsidised canteen and annual holidays are 3 weeks and 3 days.

The salaries are negotiable according to age and experience.

Please apply to:
Personnel Manager Rediffusion Reditune Limited Cray Avenue
Orpington
Kent
(5005)

MEDICAL PHYSICS TECHNICIAN GRADE IV

Area Medical Physics Department

Required for duties in the INTENSIVE CARE UNIT and in the wards primarily at Leicester General Hospital.

The work involves close contact with patients. It will include care use and maintenance of intensive care equipment and sophisticated monitoring systems both in the Unit and throughout the hospital
A technician qualified ONC/HNC (Electronics) will be required. Experience whilst desirable is not essential as training in this aspect of work will be provided
Salary Technician IV, £2346-£3267. New entrants would normally start at minimum

Applications stating age, qualifications and prevous experience together with the names of two referees to the Sector Administrator, Leicester General Hospital, Gwendolen Road, Leicester LE5 4PW. Closing date 24th November, 1975

Area Sales Manager

Challenge and opportunity with an international leader in T.V. Broadcast Equipment.

Pye TVT Ltd., world-wide supplier of professional broadcasting equipment, has a vacancy in the Sales Department for an Area Sales Manager.

The position, which calls for an extensive knowledge of TV broadcasting, and colour cameras in particular, involves the marketing of a wide range of products including cameras, video and audio switchers and mixers, pulse and distribution equipment and complete outside broadcast vehicles. Essential requirements will be the ability to discuss the products at an appropriate technical level with existing and potential customers; the preparation of comprehensive quotations and approval of complex specifications ; liaison with other departments and companies within the Pye and Philips groups - in short, someone who can make a major contribution to our marketing programme.
We shall expect the successful candidate to be of HNC or equivalent educational standard.

The position, based in Cambridge, offers many opportunities for travelling in the U.K. and, occasionally, abroad. A company car will be provided

In addition to a very competitive salary, there is a company pension scheme and a wide range of fringe benefits, including relocation expenses in approved cases.

Applications, giving brief details, should be sent to:
Mrs. J.A. Macnab, Personnel Manager, Pye TVT Limited, Coldhams Lane, Cambridge CB1 3JU.

G.R. INTERNATIONAL ELECTRONICS LTD.

requires

AUDIO TEST and SERVICE ENGINEERS and TESTERS

The Company, currently 300 strong and embarked on a programme of expansion, is based in one of the most attractive parts of Central Scotland. It is seeking experienced test engineers and testers to become members of or to take control of a number of production test, fault-finding and repair sections concerned with a variety of projects but with particular emphasis on consumer audio products.

Applicants for the more senior positions should ideally possess appropriate technical qualifications and be capable of giving assistance in maintenance and calibration of special purpose test equipment, but the Company considers the principal necessities to be relevant practical experience coupled with enthusiasm and integrity. There are exceptionally good prospects of advancement for hard-working and ambitious people, particularly for anyone able to contribute ideas on future test equipment to be designed in-house

Current technical capabilities and experience of applicants will obviously be taken into account in offering initial appointments, but the opportunities described will be open to all.

The social and sporting amenities and general living environment of Perth are outstanding and the Company offers assistance with rehousing and payment of all removal costs.

Good wages and salaries are offered, consistent with age, experience and responsibilities.

Please apply in writing for interview, giving details of age, marital status, qualification (if any), experience to date and current salary to:

Mr. J. Bandeen, Executive Director (Administration)
G.R. International Electronics Ltd.

Almondbank, Perthshire, PH 1 3NQ
Interview expenses would be fully reimbursed

Birmingham Area Health Authority (Teaching)
Central Birmingham Health District
BIRMINGHAM MATERNITY HOSPITAL Queen Elizabeth Medical Centre

Senior Electronics Technician

to work with Senior Physicist and Electronics Technician in well-equipped laboratory in Department of Medical Physics and Biomedical Engineering
Duties will be concerned with servicing, calibration, design and construction of electronic equipment used in obstetrics. paediatrics and associated laboratories
Applicants should possess O.N.C., H.N.C. or equivalent qualification together with some experience of analogue and digital circuit techniques. preferably in the medical field
Salary Scale (Medical Physics Technician Grade III) £2.931-£3.834
Please write to the Personnel Officer, Queen Elizabeth Hospital, Edgbaston. Birmingham 15, for further particulars and application forms

Looking

for a new job?

Perhaps we can help!

We have regular contact

 with hundreds of electronics and electrical companies needing qualified electronics engineers and technicians and TV service engineers.We can, therefore, help you to find an interesting and well paid job. All you need to do is to return the coupon below or give us a ring. Our service is confidential and costs you nothing.

TJB Technical Services Bureau, 3A South Bar, Banbury, Oxfordshire. Banbury (0295) 53529

Technical Services Bureau is a division of Technical \& Executive Personnel Ltd and is solely concerned with job placement in the Electronics and Electrical Industries

Please send me an "Application for Registration" form NAME
ADDRESS

HER MAJESTY'S GOVERNMENT COMMUNICATIONS CENTRE

HANSLOPE PARK, MILTON KEYNES MK19 7BH
has vacancies in the following fields of R \& D work:
(a) VHF/UHF COMMUNICATIONS EQUIPMENT DESIGN
(b) ACOUSTICS
(c) MICROWAVE COMMUNICATION SYSTEMS
(d) GENERAL CIRCUIT DESIGN - ANALOGUE, DIGITAL
(e) STATISTICS/OPERATIONAL ANALYSIS
(f) RELIABILITY - FROM COMPONENTS TO OVERALL SYSTEMS
(g) SMALL SCALE MECHANICAL ENGINEERING HYDRAULICS/SMALL MECHANISMS

Post (e) will be in.London and will attract London allowance of $£ 410$ p.a. Appointments will be made within the grades of:

Scientific Officer

E2149-£3527 (Candidates under age 27)
Qualifications:- (a) Scientific or Engineering Degree
or (b) Degree standard membership of a Professional Institution
or (c) HNC or HND in a scientific or engineering subject or equivalent qualification.

Higher

Scientific Officer
$£ 3254 £ 4454$ (Candidates under age 30)
Qualifications: As for Scientific Officer, with the following experience since qualifying:
(a) Candidates with 1 st or 2 nd class honours degree or equivalent qualifications - at least 2 years post graduate experience. or
(b) Other Candidates - at least 5 years of appropriate experience.

Senior
 Scientific Officer

$£ 4185-5778$ (Candidates at least age 25 and under age 32)

Posts (c) and (e) only.
Qualifications:
1 st or 2 nd class honours degree in a scientific subject and"a minimum of 4 years appropriate post-graduate experience.

For further details and application form please write to:

Administration Officer

HM Government Communications Centre
Hanslope Park
Hanslope
MILTON KEYNES MK 19 7BH

Engineers -
 Telecommunications Link Equipment

powerful prospects, extensive benefits

Compare this with your present circumstances. This Company has a remarkable on-going growth record in home and export markets. And consequently, a history of continuing internal promotion. The salaries must interest you, and the benefits package comes complete with flexible hours and generous relocation assistance to a most attractive country town.
Experience of low/medium capacity multiplex bearer equipment up to 2 GHz and/or in higher frequency $R F$ techniques is the major requirement for:

Senior

Electronics Designers

Complete involvement from basic development through to responsibility for manufacturing continuity with particular emphasis on specific custom design and engineering of medium capacity multiplex systems. Necessary experience level is around 6 years and experience of RF techniques above 2 GHz is helpful.

Systems Engineers

To plan, quote for and engineer communications systems (particularly link equipment) at all project stages. Involvement in total system pianning and implementation makes this unusually attrac-

ive.

Senior

Development Engineers

To join the link development team you should preferably have BSC, HND or HNC and 3 years related experience, although if you have less experience you should still apply. Useful experience would be on IF and RF filter design or baseband supervisory techniques.
Please write initially with brief details and in strict confidence, to
Alan Wellbrook, Bartlett Jeffress Advertising Ltd., 23/28 Fleet Street, London EC4Y INE
Please indicate any company to whom you do not wish to apply.

ENGINEERING DESIGNS DEPARTMENT

A number of posts are available in Central London for enthusiastic and forward thinking young students to train as

TECHNICIANS

in the laboratories of the BBC's Designs Department. Their work will include assisting engineering and laboratory staff in the development, construction and testing of units of sound and television broadcasting equipment.

The successful candidates will probably be aged 18-20 and have a keen interest in, and possibly some experience of, electronics.

They will have some ' O ' levels - two preferably will be scientific - and they will be either recently qualified to ONC or C \& G Part II standard or have recently started the final year of such a course. Day release to complete the course will be given. Subsequent training to IEETE standard is by full-time BBC courses at its Engineering Training Centre.

The salary offered would depend upon experience and qualification on appointment and would be between $£ 2202$ p.a. and $£ 2394$ p.a. It would also rise by $£ 96$ p.a. to a maximum of $£ 2682$ p.a. Salaries under review. Satisfactory trainees could expect to be selected within two years for more senior Laboratory Technician posts.

Requests for further information and application forms to The Engineering Recruitment Officer, BBC, Broadcasting House, London W1A 1AA, quoting reference 75.E.4056.WW, and enclosing addressed foolscap envelope. Application forms to be returned by 14 days after publication.
(4958)

FIELD SERVICE
ENGINEERS
(ELECTRONICS)
If you're not earning over £3,500 p.a. plus a car - then you had better contact us! (4982) 01-636 9859 (day) or
550.0835 (cyg.)

THE UNIVERSITY OF HULL TECHNICAL MANAGER

Audio Visual Centre (Re-Advertisement) Applications are invited for the above post. The Audio Visual Centre is a central academic service unit with some teaching responsibilities and comprises sophisticated, broadcast standard, television and sound studios, a distribution system and a busy VJR suite, a film unit and the usual A.V. activities.
Scale: National Salary Scale for acade-mic-related staff Grade II. £4932-£6134 (under review)
Applications (four copies) giving details of age, qualifications and experience. together with the names of three referees, should be sent by 1 st December, 1975, to the Registrar, The University of Hull, Hull HU6 7RX, from whom further particulars may be obtained.

CITY OF LONDON POLYTECHNIC ELECTRONICS TECHNICIAN I

GRADE 3

The person appointed would be involved with the development and construction of electronic equipment for teaching and research purposes, together with some servicing and maintenance of existing apparatus Applicants should be familiar with standard test equipment and its uses, and hold relevant qualification in electronics.
Salary scale: $£ 2,424$ to $£ 2,754$ including London Allowance.
Further information on the above post can be obtained by an application in writing to the Head of Department of Psychology, City of London Polytechnic, Calcutta House, Old Castle Street, London, E1 7NT.

THE UNIVERSITY OF LIVERPOOL DEPARTMENT OF PHYSICS VAN DE GRAAFF OPERATOR
OPERATOR required to assist with running a 12 MeV Tandem Van de Graaff Accelerator. Candidates must possess an HNC, Final C. \& G. or equivalent qualification. Practical experience of installation and maintenance of one of the following is essential: Electrical machinery, electrical equipment, vacuum systems. Salary on the scale £2,439-£2,895 p.a. (under review), plus a bonus for shift work (at present 30%). Application forms can be obtained from the Registrar, The University, P.O. Box 147, LIVERPOOL, L69 3BX. Quote Ref. RV/612/WW.
(4977)

MEDICAL LINEAR ACCELERATORS WILL TAKE YOU ROUND THE WORLD!

In its role as the professional electronic equipment division of the
Intemational Philips Group, the MEL Equipment Company Limited produces advanced linear accelerators for use in the treatment of cancer.
The SL 75 senes is the latest development in a successful line of accelerators which are installed in major hospitals throughout the world.
Our continued success in gaining new markets has led to an expansion in our team of

SERVICE AND INSTALLATION ENGINEERS

who will be engaged in the installation and technical support of the accelerators and associated equipment both at home and abroad.
We are looking for adaptable self-reliant engineers who are prepared to spend periods of up to approximately 3 months overseas. The successful candidates will have a good knowledge of semi-conductors circuitry, be qualified to at least ONC standard and will preferably have worked on such equipment as modem high-power radar systems.
The company offers a progressive salary, bonus and pension scheme, generous expenses and at least 4 weeks 3 days holiday. Assistance in moving to Crawley will be given if appropriate.
Please write or telephone for an application form (quoting ref no WW/44), to Diana Hill, Personnel Officer, The MEL Equipment Company Limited, Manor Royal, Crawley, Sussex. Tel; Crawley 28787.

1000

required in the Physics Department for one year only, preferably with experience in digital and computer electronics. Salary on the scale $£ 2,247-£ 2,628$ plus $£ 260$ London allowance.
Applications, together with the names and addresses of two referees, should be sent to the Personnel Officer (WW) as soon as possible.
(4971)

SERVICE ENGINEER

 MEDICAL ELECTRONICS Based at our office in Crawley, Sussex. To serviceMedical Ultrasonic Diagnostic equipment in our own workshops and in hospitals throughout the U.K The post carries a very high degree of responsibility with an appropriate salary
Application for an interview in writing quoting brief career detalls to The Managing Director Kretztechnik (U.K.) Limited, Alpine Works, Oak Road, Crawley Sussex (495)

MECHANICAL DESIGN/DRAUGHTSMAN
A senior Design Draughtsman is required preferably having experience in the radio communications field
The work involves design and development of portable and mobile radio type equipment and a knowledge of drawing office practice and procedures is essential. Qualifications to HNC level or equivalent would be an advantage

DESIGN LABORATORY TECHNICIAN

A position exists for a Technician in the Design Engineering Laboratory Duties would cover the various tasks necessary in the day-to-day running of a laboratory, but the primary function would be to give technical support to the team engaged in design projects.
The salaries and benefits offered for these posts reflect the best of modern practice. Assistance with housing relocation will be offered to the successful applicants if applicable.
Please apply in writing, giving brief details of qualifications and experience, or telephone for an application form to:
The Personnel Manager, Motorola Limited, Chesford Grange, Warrington, Cheshire, WA1 4RG. Tel. Warrington 52306.
MOTOROLA cominuycations
DuISION:

R \& D. IN TELECOMMUNICATIONS \& NIGHT VIEWING SYSTEMS

- Fresh opportunities for Scientists and Engineers

The Signal Research and Development Establishment, situated, near Christchurch, Dorset, is concerned with a wide range of development work in the growth subjects of telecommunications and night viewing systems. Although the work is done mainly to satisfy Ministry of Defence needs, some of the developments also have important civil applications.

To help continue its advanced and challenging work, the establishment currently needs Scientists and Engineers in the following fields: -

* Dedicated computer applications: switching and control of multi-connected communications networks, including research into software structure
\star Assessment and mathematical modelling: communications and electro-optical systems for night vision.
* Applications of microprocessors: data transmission and communication terminals.
* Man/system interface: communications and night vision
* Electromagnetic theory: vehicular aerials and multipath propogation

Candidates should normally have a good honours degree or equivalent in an appropriate scientific or engineering subject and be aged under 32. Appointments will be as Senior Scientific Officers (over $£ 4,180$ to $£ 5,775$), Higher Scientific Officers $(£ 3,250$ to $£ 4,450$) or Scientific Officers $(2,150$ to $£ 3,525)$, according to age, qualifications and experience.
For further details, conditions of service, and an application form (to be returned by 5 December, 1975), please write to J. R. Mills, Signals Research Establishment, Christchurch, Dorset, or telephone the Personnel Officer on 042-52 71311 . Please quote SA/3/FEA.

SIGNALS RESEARCH \& DEVELOPMENT ESTABLISHMENT, CHRISTCHURCH, DORSET

AIRFIELD NAVAIDS Training courses starting soon

IAL is a world leader in communications and aviation services and we will be running a series of UK training courses in the New Year to meet our expanding overseas commitments. Successful completion will lead to interesting, highly-paid postings abroad and opportunities to expand with the company
To qualify for a place on the course, you should have several years' experience in the maintenance and operation of ILS, VGR and DME, together with a knowledge of associated ground-to-
air communications systems We offer attractive tax-free salaries overseas and additional benefits include free furnished accommoda tion ; an excellent pension scheme ; opportunities for accompanied postings education/child allowance. The next course starts January 5th. 1976. Secure your place by contacting the Senior Recruitment Engineer, International Aeradio Limited Aeradio House, Hayes Road, IAL

Southall. Middlesex Telephone 01-571 1808 or 01-5710678

GUY'S HOSPITAL MEDICAL PHYSICS TECHNICIANS Grade II and Grade IV
 Department of Clinical Physics and

 BioengineeringThe Grade II Technician is a member of a team of Physicists and Technicians engaged in a variety of clinical instrumentation projects. ONC/HNC or higher qualification required together with 2 years electronics experience in Technician Grade III or ether relevant technical experience. Salary from $£ 3,558-£ 4.581$ plus $£ 312$ London Weighting.

The Grade IV Technician will be engaged upon maintenance. repaır and calibration of a wide range of electro-medical equipment Candidates should have 2 ' A ' levels plus technical experience OR City and Guilds OR an ONC Science Laboratory Technician Certificate Salary $£ 2.346-3.267$ plus $£ 312$ London Weighting.

Apply to Personnel, Guy's Hospital, London SE1 9RT. Telephone 01-407 7600 Extn. 3462.

UNIVERSITY OF LEICESTER

ELECTRONICS TECHNICIAN

(Grade 5)

Required for the Department of Chemistry. The person appointed will be required to work on the design and development of electronic apparatus for use in teaching and research laboratories and the modification and maintenance of a variety of existing electronic equipment A knowledge of data logging and digital equipment would be useful

Good conditions of apporntment including generous holidays. superannuation and sick leave schemes. Salary (under review) not less then $£ 2439$ pa rising to $£ 2895$ p.a Subject 10 qualifications and/or practical experience an qualications can be made above the minimum of the scale.

Applications in writing should be sent as soon as possible to Professor R D Peacock. Department of Chemistry. The University, Leicester LE 1 7RH

[^8]
UNIVERSITY OF SUSSEX

SChOOL OF MOLECULAR SCIENCES

ELECTRONICS ENGINEER

To carry out repairs and construction of electronic circuitry connected with analytical equipment. Preference will be given to applicants having sound knowledge and experience of logic circuits Some knowledge of conventional circuit fault clearing is also required Applicants must have had a minımum of three years practical experience and hold a City and Guilds Full Technological certificate or equivalent

Salary is within the range $£ 2439-£ 2895$ per annum (under review) Sixteen days holiday plus University closures at Christmas and Easter superannuation and sickness benefit schemes.

Applications giving full details of experience and qualifications to $\mathrm{Mr} \mathrm{P} J$ Gilliver. Laboratory Superintendent. School of Molecular Sciences, University of Sussex. Falmer, BRIGHTON BN 1 90.1

ELECTRONIC ENGINEER

Young man (18-22) with experience of Digital Logic required to work on Electronic Display \& Printing Calculators and Electronic Cash Registers.

Phone: 01-580 1614 or write: J. Norman

Geller Business Equipment Ltd.
15 Percy Street, London, W1

ARTICLES FOB SALE

COLOUR. UHF and TV SPARES. Collour and hatch kit ancl Sync and UHF Modulator units hatch kit Ancl Sync and 4 in . Modulatar
 strength meter kit $£ 18.00$. P/P 45 p .625 TV . If unit, suitable for Hi-Fi amp or tape recording. £6.75 P/P 35p. Bush CTV 25 . New conver gence panels plus yoke and blue lat., £3.85, $\mathrm{P} / \mathrm{P} 40 \mathrm{p}$. New Philips single standard convergence panels complete, incl. 16 controlls, coils,
P B switches. leads $£ 3.75 \mathrm{P} / \mathrm{P} 50 \mathrm{p}$. New Colour P.B. switches. leads $£ 3.75$, P/P 50 p . New Colour Scan Coils. Mullard or Plessey plus conver Mullard 1 T $023 / 05$ Convergence Yoke $£ 230 \mathrm{p}$ Mullard AT $1023 / 05$ Convergence Yoke $22.30 \mathrm{p} / \mathrm{p}$ 50 p . Mullard or Plessey Blue Laterals, 75 p P/P 20p. BRC 3000 type Scan Coils, $£ 2.00$ P/P $40 p$
Delay Lines DL20, $£ 3.50$, DLIE, DLI, $£ 1.00, \mathrm{P} / \mathrm{P}$ Delay Lines DL20, £3.50, DLIE, DLI, £1.00, P/P
$351 \mathrm{p} . \mathrm{Lum}$ Delay Lines. $50 \mathrm{p}, \mathrm{P} / \mathrm{P}$ 15p. EHT Colour Quadrupler for Bush Murphy CTV 25 $111 / 174$ series, £7.50. P/P 60p ERT. Colou Tripler ITT TH25/11TH suitable most sets, $£^{2} 2.00$ $\mathrm{P} / \mathrm{P} 35 \mathrm{p}$. GEC 2040 colour tripler $£ 1.75 \mathrm{P} / \mathrm{P} 35 \mathrm{p}$ P/P 35p. GEC 2040 colour tripler $\begin{aligned} & \text { f1.75 P/P } \\ & \text { Colourplus/stalvaged Phillips G8 panels }\end{aligned}$ part complete; Decoder, $£ 2.50$. IF incl. 5 modules, $£ 2.25$, T. Base, $£ 1.00, \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. CRT base, $75 \mathrm{p}, \mathrm{P} / \mathrm{P}$ 15p. GEC 2040 pancls, for spares Decoder $£ 3.50$, Time Base $£ 1.00 \mathrm{P} / \mathrm{P}$ 50p. B9D valve bases 10p, P/P 6p. VARICAP 05 £5.00. ELC1042 (VHF) $£ 5.50$ Salvaged VHF and UHF Varicap tuners. £1.40, P/P 25 p . UHF and URF Varicap tuners, eir 40, P/P Incl. Nilow TUNERS NEW, Transistorrised. incl. 6 pow motion drive, $\begin{aligned} & \text { push-button } \\ & \text { pransistorised } \\ & \text { e } 4.20 \text {. }\end{aligned}$ push-button transistorised ${ }^{\text {fhilips. Bush. Decca. Integrated UHF/VHF }}$ Philips, Bush, Decca, 60 Integrated $600 / 700$ series com. UHF conversion kits incl. tuner, drive assy. 625 IF amplifier, 7 valves, acces., housed in cabinet plinth assembly, $£ 5.50$. $\mathrm{P} / \mathrm{P} 65 \mathrm{p}$. THORN 850 Dual standard time base panel, $50 \mathrm{p}, \mathrm{P} / \mathrm{P} 50 \mathrm{p}$. PHILIPS 625 IF amplifier panel incl. cet., $50 \mathrm{p} \mathrm{P} / \mathrm{P} 45 \mathrm{p}$. VHF turret tuners AT7650 incl. valves for K.B. Featherlight Phillps 19TG170, GEC 2010, ete., 52.50 . PYE miniature incremental for 1110 to 830 , Pam and invicta, Elion suitable K.B. Baird, Ferguson, 75p. injection suitable K.B. Baird, Ferguson, Marconi $£ 1.00 \mathrm{p} / \mathrm{P}$ all tuners 50 p . Mullard $110^{\circ} \mathrm{mono}$ scan p/p all tuners 50p. Mullard 110 mono Stella. Pye, Ekco, Ferranti, Invicta, $£ 2.00$. P/P 35 p. Large selection LOPTs, FOPTs available for most popular makes. $200+200+100$ MFD 350 v Electrolytic $£ 1.00 \mathrm{P} / \mathrm{P}$ 20p. MANOR SUPPLIES, 172 WEST END LANE, LONDON, N.W.6. Shop premises. callers welcome. (No. 28, 59, 159 Buses or W . Hampstead Bakerloo and Brit. Rail). MAIL ORDER: 64 GOLDERS MANOR DRIVE. LONDON. N.W.11. Tel. 01-794 8751. VAT PLEASE ADD 25% TO ALL PRICES.

TELEVISION ENGINEERS

> Doric Radio is a fast growing member of the Rediffusion group of compantes, selling monochrome and colour T.V. receivers to the retall trade through an increasing network of dealers. A small but effective team is being estrblished to provide a technical service to our customers at home and overseas. This team provides service back up facilities by direct contact with our Doric dealers, belping to solve their problems and completing the link back to our factories where necessary.

> Attitude, ability, thoroughness, tact and a willingness to get involved are essential requirements for these positions. This is a challenging opportunity for experienced engineers who wish to become important members of a small successful team working on the latest receivers employing advanced electronic techniques. Prospects for promotion are excellent. Formal qualifications, whilst desirable, are not essential where adequate practical experience on modern colour television receivers can be demonstrated-

> Successful applicants will be based at our Chessington laboratories, whth their excellent facilities and equipment, but occasional visits to our factories in the North of England and to our dealers' premises, both at home and abroad, may be necessary,

> Salaries will depend on ability and experience, but will reflect the importance of these new posts. Assistance with relocation expenses will be given where appropriate,

Interested? then write to:-
H. Brearley,

Head of Technical Services,
Doric Radio Ltd.
Fullers Way South,
Chessington,
Surrey. KT9 1 HJ
Telephone 01-397-5411

DESIGN/DEVELOPMENT/TEST ENGINEER

An Engineer is required for the development, design and testing to B.S.S. of audio equipment. The ideal candidate should have qualifications to HND or degree level and should have a number of years' relevant experience in this type of work and industry. Salary by negotiation, depending on qualifications and experience.

Reply stating present salary to: The Personnel Manager
 J. Parkar \& Company (London) Limited

Parkar House, 1 Beresford Avenue, Wembley, Middx. HAO 1 YX

ARTICLES FOR SALE

DIGITAL CLOCK CHIP, AY-5-1224, with data and circuit diagram $£ 3.66$ plus VAT, ${ }^{2}$ Jumbo only 52.04 each plus VAT post free Greenbank Electronics, 94 New Chester Road Wirral Merseyside L62 5A.G (83

LADDERS unvarntshed 14 ft lin closed $25 \mathrm{t}^{\circ}$ 4 in extd. 521.40 delivered. Tel: Telford 588644.

16-MM B \& H 631 Sound projectors c/w speaker and transformers
Hill. Dartford
TT
2130
2000.
C.R.T. REGUNNING PLANT. New and second
hand reconditioned training, demonstration, colour or B/W. Barretts, Mayo Road Croydon Surrey, CRO 2QP.

Low COST IC MOUNTING. Use Shldercon IC socket pins for E to 40 pin DILs, 70 p (plus SAT) for strip of 100 pins, El .50 (plus 12 p for 1,000 . Instructions supplied Send for 10 . for 1,000. Instructions supplied. Send for sam

VACUUM is our speciality, new and second. hand rotary pumps, diffusion outfits, accessor. les, coaters, etc. Sllicone rubber or varnish outgassing equipment from exl. N. Barrett Croydon. 9917.

SURPLUS TEST EQUIPMENT AND RADIO AMATUER GEAR Bench power suppliers 200/ 400 v. Precision millivolt meters, chart recorders. Vanguard, Cambridges, etc., etc., precision standards room equipment. B\&H COMPON ENT LTD., Dept, WW, Leighton Electronics

AIRFIED ILTTRAINING Course starts early January

If you've a sound technical background in Airfield Radio and Navigation Aids and preferably knowledge of ILS, this training will bring you up-to-date for a highly rewarding position in Saudi Arabia.
On successful completion you will qualify for a $2 \frac{1}{2}$ year Lockheed contract. That means $£ 4500+$ p.a. and attractive end of contract
bonus - both free of local tax. Free accommodation and generous home leave. Act NOW to make sure of your place - 'phone our Senior. Recruitment Engineer on 01-571 1808 or 01-571 0678.

If you can't 'phone, write to the Senior Recruitment Engineer, International Aeradio Limited, Aeradio House, Hayes Road, Southall, Middlesex.

ARTICLES FOR SALE
MARX-LUDER
STACKABLE EPICYCLIC GEARED ELECTRIC MOTORS

THE SCIENTIFIC WIRE CO.

Copper - Nickel - Chrome - Eureka Litz - Manganin Wires
Enamelled - Silk - Cotton - Tinned Coverings.

* No minimum charges or quantities.
* Trade and export enquiries welcome.
\star S.A.E. brings List.
P.O. BOX 30, LONDON E4 9BW

BUDGET MINI AUDIO MIXERS
 With Professional Facilities

Stuc: raders *Tone Controls \star Montoring \star VU Meter
Mono or Stereo \star Ready to use or kits

Details Ref. WW

PARTRIDGE ELECTRONICS
21-25 Hart Road, Benfleet, Essex
$60^{-} \mathrm{KHz}$ MSF RUGBY RECEIVERS. BCD TIME
OF-DAY OUTPUT. High performance, phase
lucked loop radio receiver. $5 V$ operation with
LED indication. Kit complete e9.50; assembled
and tested unit f11.12 (prices include postage
$\begin{aligned} & \text { and V.A.T.) Also available low power receiver } \\ & \text { with signal and audio outputs. Send for }\end{aligned}$
details Toolex. Sherborne (4359) Dorset. (21
VALVE BARGAINS. Any 5-45p. 10.75p. 50-£3.60.
ECC 82 ECL 80 EF 80/183/184 PC $86 / 88$ PCF $80 /$
802 PCL 82/84/85/805 PL, 36/504 PY 33/81/800/88
30PL14. COLOUR VALVES 12p each PL508/509
PY 500A. No VAT required. P\&P under $£ 1 / 10$ p.
$\begin{aligned} & \text { £1 to £3/15p. Above £3/20D. Money back guaran- } \\ & \text { tee. - LANCASHIRE MAIL ORDER, } 6 \text { WILLIAM }\end{aligned}$
STREET STUBBINS. RAMSBOTTOM BURY
$\begin{aligned} & \text { STREET. STUBBINS. RAMSBOTTOM. BURY. } \\ & \text { LANCS. }\end{aligned}$

SCOOP! CAPACITORS / RECTIFIERS. $10 \mathrm{mfd} /$ $12 \mathrm{~V}, 80 \mathrm{mfd} / 150 \mathrm{~V} \quad 10 / 20 \mathrm{p}, \quad 100 / \mathrm{f} 1 . \quad 10 \mathrm{mfd} / 70 \mathrm{~V}$ $\begin{array}{lllll}22 \mathrm{mfd} / 50 \mathrm{~V} & 10 / 25 \mathrm{p} . & 100 & £ .1 .25 & 100 \mathrm{mfd} / 16 \mathrm{~V} . \\ 1000 \mathrm{mfd} / 6 \mathrm{~V} & 10 / 30 \mathrm{p} & 50 / 25 \mathrm{p} & \text { in } 4002 & 10 / 30 \mathrm{p}\end{array}$ $1000 \mathrm{mfd} / 6 \mathrm{~V} \quad 10 / 30 \mathrm{p} .50 / 75 \mathrm{p} .1 \mathrm{~N} 400210 / 30 \mathrm{p}$ $1 \mathrm{~N} 400410 / 40 \mathrm{p}, 1 \mathrm{~N} 4007$ 100 PRP Uptics, 19 Middleway. Chinnor, Oxon. $\quad 4955$

HUNDREDS, YES HUNDREDS of turntable units, pick-up cartridges, plinths, covers, and speaker cabinet. Wholesale/ketain Ring or Cheltenham. phone 54357. 14952

HUNDREDS of Dual Standard Colour TV's for sale. Contact:
026 (Radnage)
3321.

TEST GEAR ENGINEERS

Rediffusion, a major British company in television manufacture,

 is developing a new, state of the art receiver at its Chessington laboratories. To support this project we require additional Test Equipment Design and Development Engineers at senior and intermediate levels to help produce our sophisticated production test equipment. Rediffusion test equipment leads the industry and uses both analogue and digital techniques along with an up-to-date approach to jigging.Applications are invited from well qualified and experienced test equipment engineers, who will be offered the opportunity to join a young and energetic team. Our work is usually demanding, often under pressure but always stimulating, using new ideas to apeed production ting whist reducing the demands on our test operators.

Salaries, which will depend on experience, are excellent and assistance with relocation will be given where appropriate. Some travelling to our production factories in Co. Durham will be necessary from time to time to assist in the installation and commissioning of new equipment since our design engineers are expected to be responsible for all aspects of their project.

If you are a high calibre engineer and wish to have your ability recognised and rewarded, come and join us.

Write or 'phone to:

A. J. Litteck,

Test Equipment Group Leader,
Rediffusion Consumer Electronics Ltd.,
Fullers Way South,
Chessington, Surrey.
Ptone 01-397-5411

REDIFFUSION

ARTICLES FOR SALE

ENAMELLED COPPER WIRE

s.w.G.	1 lb . reel	$1 / 2 \mathrm{lb}$. rool
101019	240	1.35
20 to 29	2.45	1.40
30 to 34	2.60	1.50
35.1040	285	1.60

All the above prices are inclusive of postage and packing in U.K.
COPPER SUPPLIES
102 Parrewood Road, Withington, Manchestor 20 Telephone 061-445 8753

CASE CLEARANCE. Mulldrd C280 polyester film 250 v 0.1 microfard. 20 per cent tol. Perfect mechanically but untest surplus, E^{2} per
thousand. Also tested 250 v c 280 caps. 0.47 uf thousand. Also tested 250 v e 280 caps. 0.47 uf
$£ 1.50$ per $100,0.33$ uf $£ 1.20$ per $100,0.22$ uf $£ 1.10$ $£ 1.50$ per 100 , 0.33 uf $£ 1.20$ per $100,0.22$ uf $£ 1.10$
per $100,0.33$ uf 80 p per 100 , all perfectly prin. ted. Price includes P.P. Brand new E.C.L. gates MC 10101 L MC $10102 \mathrm{~L}, \mathrm{MC} 1015 \mathrm{~L}$ at 65 p each. TD ${ }^{253}$ tunnel diodes at $£ 2.00$ each.

HIGHLY EXPERIENCED T.V. BROADCAST ENGINEER, many years overseas in Technical/ Sales/Marketing backgrounds seeks challenging, responsible position. Experienced in systems design, planning and installation for
studios $0 . B$. vehicles, etc. Contact: R. Brown. c/o 26 Hill Grove, Romford, Essex. ${ }^{(4994}$

TAPE RECORDING ETC.

RECORDS MADE TO ORDER

DEMO DISCS
MASTERS FOR
RECORD COMPANIES
PRESSINGS

Single disc: , 1.20. Mono of Stereo, delivery 4 days from your tapes. Quantity runs 25 to 1.000 records PRESSED IN VINYLITE IN OUR OWN PLANT, Delivery 3-4 weeks. Sleeves/Labels. Finest quality NEUMANN STEREO/Mono Lathes. We cut for many studios UK/OVERSEAS. SAE lisi

DEROY RECORDS
PO Box 3, Hawk Strest, Carnforth, Lancs.
Tel. 2273
PO Box 3, Hawk Strest, Carnforth, Lancs.
Tel. 2273

$$
182
$$

EX-GOV'T MOMO to multi-track tape recorders, E.M.I:" Ferrograph-rich, etc. S.A.E. detail's A. Wright, 10 Church Street, Dowlais, Glamorgan. 4991

fibre optic suppliers

MARE'S TAIL Decoralive Display $22^{\prime \prime}$ dia $7.000+$ Fibres. Looks
 Dha. Black Sheath. $10 \mathrm{~m} \mathrm{E3.00} ; 100 \mathrm{~m}$ E21.00
 18 mm . $\mathrm{O} \mathrm{D} 33 \mathrm{~mm} E 1.20$ per M. $10 \mathrm{~m} £ 9.00$
PLASTIC OPTICAL MONOFIBRE FFexible Light Guide Dis $10,20,40.60$
thou FP10 100 m E4.00. FP20 105 mm$) 100 \mathrm{~m}$ £8.00. FP40 10m $\mathrm{E4.00}$

OPTIKiT 1032 m CROFON $1610+3 \mathrm{~m}$ each FP2O. FP40. FP60 + Polishing Compound. Ideal laboratory pack $£ 5.50$
(Lenses also avallable separately)
OPTIKITS RRE Five Retro-Reflectors for Optica
Das $22 / 36 / 44 / 83 \mathrm{~mm}+150 \mathrm{~mm}$ Strip Das $22 / 36 / 44 / 83 \mathrm{~mm}+150 \mathrm{~mm}$ Strip $£ 2.50$
ULTRASONIC TRANSOUCERS SEOSB-4TOT/R Sensitive 40kHz T_{x} / R_{x} pair (Sutzble for 'Practucal TV Remore Control System) ©3.50
ULTRASONIC TRANSOUCERS SEO4B-25T/R $25 \mathrm{kHz} \mathrm{T}_{x} / \mathrm{Rx}$ Patr (Betrer Sensitivity Lower Bandwidth than SEO5B-40) E4.00
CIACULAR POLARISERS Reduce glare on all types of instrument.
RED/AMBR/GREEN ONEUTRAL 50 mmsq 70 p : 75 mm sq $\mathrm{E1.40} 150$ mm an E4.50. Lineer Polarisers also avalable
OPTOLECTRONICS LIGHTSOURREES B OETECTORS
MV54 2 mm Red LED 20p. MLED500 TO92 Red LED 20p.
XC209-Red (3 mm) 20p. XC209-Y. \times C 209 -G (Amber. Green)

2N5777 Hegh Sensstivitiv Photo-Darington 25 V 50 p .
MRD 1502 mm High Speed Photo- Transistor (4 uSt 40 V

CLAUDE LYONS TS2 Stabilisers 240V 2750W as new $\begin{aligned} & \text { £25 }+£ 2 \text { cam. S.A.E. for lists. M. Bond. }\end{aligned}$ 38 The Orchard. Market Deeping, Peterborough PE6 SJR.
(4952

NINE IIN tapes scotch video 360-1-3000 R97B Slightly used, five as above unopened twelve in Hitachi Video tape R716 unopened. Offers to Perth High School, Oakbank Road, Perth,
 (4969)

 Scotland.
Abstract

" MOTIVATOR" Curtain Cord Controllers. Mains battery models and kits for use with corded domestic curtains. From $£ 18-20$. Aid-Us Products, Dept. WW10. 8 Hillview Road, Pinner HA5 4PA, Middlesex.

4988

MOBILE RADIO CRYSTALS. All specs except glass types. Competitive price and delivery. Secondhand mobile radio equipment bought and sold. Vehicle mounting and hand held sets. Write to: Radio Ancillaries Lid., 30 Craven
St., London WC2N 5NT.

TEST EQUIPMENT. I X Airmec ' 409 AM/FM Modulation Meter, e100. 2 x Advance $\mathrm{JI} / \mathrm{AF}$ Signal Gen., 545 each. $1 \times$ Clark Pump Up Mast, condition as new, 550 . Write to: Radio Anciallaries Ltd., 30 Craven St., London WC2N 5NT. 4986
GRIMSBY ELECTRONICS. For components relays, sirenss, surplus equipment, ebc. Bargatins list send 9p. Lambert Road, Grimsby. Humber.

SCOPE TUBES DI4-121.GH $50 \mathrm{MHZ} .4 .2 \mathrm{~V} / \mathrm{cm}$ ' Y ' sensitivity with bases and mumetal shields. Also suitable unassembled cases. $£ 30$ the package. Suitable mains transformers. regulator P.C.Bs (no components inverter transformers, multipliers, deflection amps etc. available to tube purchasers at virtually serap prices. Everything brand new. Phone 01-202 6282.
(5000
WEATHER SATELLITE PICTURES. Electoseñ: sitive, chemical recording paper ALFAX Type A. Ideal for experiments. Carton of 12 rolls, eagh $5 \frac{1}{2}$ in x experiments. 124.25 post paid. Suggestions for use included. SAE for further details. Branson, 111 Park Road, Peterborough. (5018)

MULLARD FERRITE CORES LA3 100 to 500 KHZ

 54 p , LA4 10 to 30 KHZ 81 p , LA5 30 to 100 KHz 81p, LaAl3 for W.W. oscillosicope $£ 1.50$. Transistors BD 112455 p AD 149, matched pair 65p, Diodes by 100 for 10 f1.50. BY/ 12710 for $£ 1.08$. Special offer Mullard electrolytic capacitors 22200 MFD 100 V type $\mathbf{1 0 7 - 1 0 2 2 2}$ f1.25 each.All prices include post and VAT at appropriate rate. Mail order only.

1 East Street, Bishops Tawton, Devon
(5020)

NEW FULL SPEC SPARES for Linsley.Hood 75 Watt amplifiers sescosem BDY 56 £2,00 Motorola BD529, 530 65p each, 2N5459 45p, BF 25845 p , Tantalum bead $100 / 3 \mathrm{~V} 20 \mathrm{p}$. Filter switch click and mains/rf interference suppression kit, with instructions, $£ 1.35$. Rapid delivery. SAE for list. P \& $P 10 p$. I. G. Bow. man, 59 Fowey Avenue, Torquay, S. Devon.
(4999
 90 lbs /in torque, $220-250 \mathrm{v} 50$ cps. In-line relay. Any mounting position two-way sw. or Brand new. Boxed half price, $£ 17.50$ including PP. Nigel O'Brien, 189 West Hendon Broadway London, NW9. 189 West Hendon Broadway,

B. BAMBER ELECTRONICS
 5 STATION ROAD, LITTLEPORT, CAMBS, CBG 10E
 TEL: ELY (0353) 860185 (TUESDAY-SATURDAY)

TERMS OF BUSINESS: CASH WITH ORDER
ALL PRICES INCLUDE POST AND PACKING (UK ONLY) EXPORT ENOUIRIES WELCOME. CALLERS WELCOME TUES.-SAT PLEASE ADD VAT. MINIMUM ORDER £1
PLEASE EICLOSE STAMPED ADDRE SSED ENYELOPE WTH ALL EMQURIES

A Merry Xmas

 and a Prosperous New Year to All our Customershellerman lubricant grade c. The ideal lubricant for all rubber goods. Good electrical insulator. 75 p per bottle.
WE NOW STOCK SPIRALUX TOOLS for the electronics enthusiast. Screwdrivers. nut elc. SAE for list
PHOTOMULTIPLIERS.E.M.I. TYPE 6094. Brand new with base E20 each

PLUGS AND SOCKETS

25-WAY ISEP PLUGS AND SOCKETS 40p set (1 plug +1 skt). Plugs and sockets sold separately at 25 p each
ANDREWS 4AAN FREE SKTS. (N-type) for
FH4/508 or FHJ4/50B cable, $\mathbf{£ 1 . 0 0}$ each BULGIN ROUND FREE SKTS. 3 pin for mains input on test equipment, etc., 25p each.
SO239 BACK TO BACK SOCKETS, £1.25 PL259 PLUGS (PTFE). Brand new, 50p each or 5 for $\mathbf{£ 2 . 2 5}$.
Reducers for above 15 p each
SO239 SOCKETS (PTFE)
SO239 SOCKETS (PTFE). Brand new (4 hole fixing type), 50p each, or 5 for $£ 2.25$.
N-TYPE SKTS. N-TYPE SKTS. 14 hole chassis mounting
50ohms. small coax lead type), 50 p each N-TYPE PLUGS 50 ohm , 60p each
GREENPAR (GE35012) CHASSIS LEAD TERMINATIONS (These are the units which bolt on to the chassis, the lead is secured by screw cap. and the inner of the coax passes through the chassis), $\mathbf{3 0}$ p each, 4 for $\mathbf{£ 1 . 0 0}$. BULGIN FLAT 2 pin FLEX CONNECTORS Non-reversible. 40p each
SPECIAL OFFER. Miniature 50 ohm coax high quality. PTFE insulation and blue PTFE cover, solid silver-plated inner, and silver-plared braid approx. 3 mm overal diameter, (ideal for unit wiring of RF stages up

ALL BELOW - ADD 8% VAT PYE WESTMINSTER W15 AM. $121 / 2 \mathrm{k} \overline{H z}$ channel spacing. G.P O approved. High Band tion £100.00. PYE BASE STATION F30M. TX 100 mHz RX 140 mHz , low power MID BAND, good MANUFACTURERS SEND SAE FOR OUR LATEST BARGAIN CAPACITOR LIST. PLESSEY COLOUR SCAN COILS. 90° PLESSEY COLOUR
brand new. 4.00 each
COLOUR MONITOR DECODER PANELS By leading British manufacturer. Designed to B.B.C. standards Units consist of chrominance noodule, PAL filter and delay module, Iuminance module and encoded video input module All units brand new and complete including edge connectors and service manual $£ \mathbf{£ 0 . 0 0}$. Manual supplied separately, $£ 1.00$ each. PHILIPS STAB. POWER 0.35 volt, 3 amp Metered type PE $4806 . £ 65.00$ each TINNED COPPER WIRE. 0.234 mm Looks like $15 a$ fuse wire 12 oz reel. 30p
CHART RECORDER PAPER.
120 ft Type M1299 E1.00 per roll 10% in \times MINIATURE Panel mounting Switches, bolt-on type, smart appearance. 3 for 50 D .
MAINS TRANSFORMERS
All 240 V input voltages quoted
(Please quote Type No. Only when ordering)
TYPE 10/2 10-0-10V at 2A, £1.50. TYPE $18 / 2 \quad 18 V$ at $2 A, £ 1.65$. TYPE $28 / 4 \quad 28 \mathrm{~V}$ at $4 \mathrm{~A}, 125 \mathrm{~V}$ at 500 mA
M4.00. 129400 V at 20 mA .200 V at 10 mA 6.3 V at $500 \mathrm{~mA}, £ 1.25$.
TYPE 72703

TYPE 72703400 V at $10 \mathrm{~mA}, 200 \mathrm{~V}$ at $5 \mathrm{~mA}, 6.3 \mathrm{~V}$ at $400 \mathrm{~mA}, \mathbf{£ 1 . 2 5}$.
TYPE $70462 \quad 250-0.250 \mathrm{~V}$.
TYPE $70462 \quad 250-0.250 \mathrm{~V}, 50-0-50 \mathrm{~V}$ 6.3V £1.75.
TYPE $125 B S$

65p.
65p. MAINS ISOLATING TRANSFORMER (ex equip) in metal cases totally enclosed. tapped mains input. $110-240 \mathrm{~V}$ etc outpu 240 V at $3 \mathrm{~A}+12 \mathrm{~V}$ at 0.5 A . 111.00 . AS above, output 240 V at $12 \mathrm{~A}+12 \mathrm{~V}$

ALL BELOW - ADD 8% VAT MULLARD TUBULAR CERAMIC TRIM MERS, $1-18 \mathrm{pf}$. 6 for 50 p . MERS, $1-18$ pi, 6 for 50 p.
(as featured in Rad. Comm. Jan. p 25 (as featured in Rad. Comm. Jan. p 25)
ICs, some coded. 14 DIL type. untested, mixed 20 for 25 p. 10 for 50 p .

24 V MIN.

single-pole make 2 for 50 p .
CHASSIS TAGS, 25 p pack
RELAYS, single pole, changeover, 12 DC, approx. $3 / 4$ in. $\times 1 / 2 \mathrm{in} \times 11 / \mathrm{in}, 35 \mathrm{p}$ each
MINIATURE SLIDER SWITCHES MINIATURE SLIDER SWITCHES, 2 pole, 2 way, 5 for 50 p .
2-6PF. 10MM CIRCULAR; CERAMIC TRIMMERS (for VHF/UHF work). 3 pin mounting. 5 for 50p.
CERAMIC HIGH VOLTAGE PILLARS (metal ends, tapped 4BA), approx. 1 in long.
10 for 60 p .

PYE RADIO-TELEPHONE EQUIPMENT
Cambridge. Westminster. Motofone. Euro-
pa series. Send s.a.e for full details

WELLER STOCKIST. All irons and spares

 avallable. S.A.E. for list
VALVES

Qav03/20A (ex-equipment) $£ 3.00$.
QQvo3/10 (ex-equipment) 75p or 2 for
£1.20.
2C39A (ex equipment), $£ 1.00$ each
OQV02/6 (ex. equipment). $£ 1.00$ each 4CX250B (ex. equipment), $£ 2.10$ each
$\mathbf{4 \times 2 5 0 B}$ (ex. equipment), $£ 1.50$ each $\mathbf{4 \times 2 5 0 B}$ (ex. equipment). $£ 1.50$ each
DET22 (ex equipment). 2 for $£ 1.00$ DET22 (ex equioment). 2 for $£ 1.00$.
TRANSISTOR HEATSINKS, to tak TO18 transistors, screw-in clamps, block size 1 in. $\times 1 / 2 \mathrm{in}$. $\times 1 / \mathrm{in}$. with 2 holes for mounting 3 for 50 p .
RADIOSPARES 500WATT AUTO TRANSFORMER, $100,110,150 / 200$ $/ 220 / 240 \mathrm{~V}$ tapped input and output step up or step down fachity. ex. new equip £6.00.
MULLARD SCOPE TUBE DN7-78. 3in face complete with base and mu-metal screen.

ALL BELOW - ADD $\mathbf{2 5} \%$ VAT HIGH QUALITY SPEAKERS. 8 \% in $\times 6 \mathrm{in}$. elliptical. 2in deep, 40 hms , inverse magnet, rated up to 10 W . $£ 1.50$ each
Quantity discount available)
T.V. PLUGS (metal type). 6 for 50 p
T.V. PLUGS (metal type). 6 for $\mathbf{5 0 p}$.
T.V. SOCKETS (metal type). 5 for $\mathbf{5 0 p}$ T.V. LINE CONNECTORS (back to-back skt.) 5 for $\mathbf{5 0 p}$.
MIXED ELECTROLYTICS, large bag £1.00.
OC200 TRANSISTORS, 6 for 50p.
BSY95A TRANSISTORS, 6 for 50p BCY72 TRANSISTORS, 4 for 50p. PNP AUDIO TYPE TOS TRANSISTORS, 12 for 25p.
STUD RECTIFIERS, BYX42/300R, 300V at 10A. 30p each, or 4 for $£ 1.00$
DIN SPEAKER SKTS, 2 -pin, 4 for $\mathbf{5 0 p}$.
IF CANS, $1 / 2$ in square, suitable for rewind. 6 DUBILIER ELECTROLYTICS. 50 uF. 450 V 2 for 50 p . DUBILIER ELECTROLYTICS. 100uF PLESSEY ELECTROLYTICS. $470 \mathrm{uF}, 63 \mathrm{~V}$ 3 for 50p.
TCC ELECTROLYTICS. 1000 uF , $30 \mathrm{~V}, 3$ for 60p.
PLESSEY ELECTROLYTICS. 1000 uF $180 \mathrm{~V}, 40 \mathrm{p}$ each (3 for $£ 1.00$).
DUBILIER ELECTROLYTICS. 5000 mid at DUBILIER ELECTROLYTICS. 5000 mfd at 50 V . 60p each
DUBILIER ELECTROLYTICS. 5000 mf d at $70 \vee 65 p$ each
1TT ELECTROLYTICS. 6800 mfd at 25 V . high grade. screw terminals, with mounting
clip. 50p each PLESSEYELECTROLYTICS. 10000 mfd a 63V $75 P$ each.
MULLARD BLACK/WHITE C.R.T. A65.11W Brand new £11.00.
A65.11W Brand new $£ 11.00$.
T.V. LINE SOCKETS. $18 p$ each. 5 for 75 p. T.V. SOCKETS. Mounted on Bakelite panel. 6 for 50p.
DIN 3 pin LINE SOCKETS. $15 p$ each E.H.T. V/HOLDERS B9A. (Both PHILIPS and PYE types available) $\mathbf{2 0 p}$ each

Economise on Semiconductors

All prices include VAT
\star Low Price CMOS \quad L Low price DIL sockets
\star Lower Price 741C $\quad \star$ Plastic 3 terminal Regulators

$1+10+25+$						$1+$	$25+$		1+	$25+$
$709 \mathrm{C}+$ dala 8 pin 014	38	36	34	7400		14	12	4000	18	17
$723 \mathrm{C}+$ data 14 pin 011 L	70	68	64	7402		14	12	4001	18	17
$741 \mathrm{C}+$ dala 8 pin Dill	26	25	24	7403		14	12	4002	18	17
$748 \mathrm{C}+$ data 8 pin 010	39	37	35	7404		16	13	4006	102	95
ME555 + dala 8 pin Oill	48	47	46	7405		16	13	4007	18	17
CA3046 14 pin Oil	84	81	77	7410		14	12	4008	102	95
TDA1405 58650 mA	80	76	74	7413		29	24	4009	50	46
TDA1412 12v 500 mA	80	76	74	7420		14	12	4010	50	46
T0A1415 15v 450ma	80	76	74	7430		14	12	4011	18	17
8C107. 108.109	11	10.5	510	7442		64	54	4012	18	17
BC182. 184	12	11.5	11	7447		90	80	4013	50	46
BC212. 214	13	12.5	12	7473		30	25	4014	90	82
	19	18	17	7474		32	26	4015	90	82
H.P 0.125" LEO red	18	17	16	7476		32	26	4016	50	46
OUL Low prafile 8	11	10	9	7486		32	26	4017	90	82
Sackets 14	12	11	10	7490		48	39	4020	97	88
Sackels 16	13	12	11	74927493		55	50	4023	18	17
						48	39	4024	68	62
				74121		34	28	4025	18	17
								4027	50	45
								4028	78	71
BCIOSC 11	8278				IN914		5	4030	50	43
8 Cl 177	3v3			12 IN	1 N 4001		5	4040	93	84
BC179 22	2 N 3			12 IN	1 10002		6	4042	74	67
852448 30	2N3			13 IN	IN4004		7	4046	117	107
$8 \mathrm{FY51}$	2N37082N3055			10 in	\|N4148		4	4049	50	45
				49				4050	50	45
								4068	18	17
								4071	18	17
AY-5-1224 16 pin Dill clock IC + data + circuit							4.00	4078	18	17
							11.00	4081	18	17
Clock kit IC +4 digits. transistors \& transtormer							13.00	4507	50	45
T8A8lOAS 7 W Audie Amp + circuit + data							1.15	4511	138	126
TCAS40 10W Audia Amp + circuit + data							2.20	4518	109	99
TAO100 Radio IC + IF I	ter +						1.70	4520	109	99
Carbon film resistors $1 / \mathrm{W}$ 5\%/4 EI2. 1.2 ea. $1011 \mathrm{p} .10095 p$.								4527	138	126

SILICON SEMICONDUCTOR SERVICES 41 Dunstable Road, Caddington, Luton LUI 4AL

SMI MUSICAL INSTRUMENTS LIMITED

- Terms of business - Cash with order

All prices include V.A.T., Post and Packing (U.K.only) Minimum order E 1 No personal callers Subject to stock availability

DIODES		CAPACITORS		RESISTORS	
IN 914e	.03p	Polystyrene		Wire Wound	
IN 4001	. 05	3000 pl 63v 5\%	.05p	. 5 Ohm	.12p
IN 4002	. 06	Mullard C280		1/4 watt 5\%	
IN 4148	. 02	. 022 ut	. 04	470 0tm	01
BZY 885.6 w	. 17	. 033 ut	. 04	18k	01
Bzy B8 CJV3	. 10	. 047 uf	. 05	15k	. 01
		. 1.1	. 03	56k	31
TRANSISTORS		. 15 uf	. 04	330k	. 01
BC 108	. 10	. 22 uf	. 04	25k Slider LIN	27
BC 109	. 11	Electrolytic		Var. 4700 hm	. 04
BC 109A	. 11	. 10 uf 25v	. 05	Preset 5000 hm	. 42
BC 1098	. 16	50 mf Reversible	. 07	Preset 200k	. 04
BF 195	. 11	47 mf 25 v	. 04	25k Linear	. 12
BFY 51	. 16	680 mf 16 v	0 OB		
2N 3055	. 80			Patch boaro	
NKT 002B	. 31			Selectro 17×6	¢8.62
NKT 0029	. 36	INTEGRATEO CIRCUIT		Diode Plugs	32p
NKT 0040	. 66	Texas TMS 3802	£1.12		
				LOUDSPEAKER	
MICRO SWITCH		REVERB UNITS		Goodmans Elega	
Crouzet	. 37	Hammond 4C	¢6. 25	Tweeter up to 4	£3.12

SMI MUSICAL INSTRUMENTS LIMITED

41/42 BERNERS STREET LONDON W1P 3AA

EDUCATIONAL

C AND G EXAMS

Make sure you succeed with an ICS home study course for C and G Electrical Installation Work \& Technicians, Radio/TV/Electronics Technicians, Telecomms Technicians
and Radio Amateurs.

COLOUR TV SERVICING
Make the most of the current boom? Learn the techniques of servicing Colour and Mono TV sets through new home study courses, approved by leading manufacturers.

TECHNICAL TRAINING
Home study courses in Electronics and electrical
Engineering. Maintenance Radio. TV. Audio Computer Engineering and Programming Also self-build radio kits. Get the qualifications you need to succeed. Free details from:

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 734, Intertext House, London Sws 4uJ or phone 01-622 9911 (all hours)

CAPACITY AVAILABLE

DESIGN, development, repair, test and small production of electronic equipment. Specialist in production of printed circuit assemblies. YO NG Street, LONdon NW1 9NN ${ }^{184}$ Royal COl-

BATCH Production Wiring and Assemわly to sample or drawings. Deane Electricals, 19B Sel: 01-992 8976 Ealing Common, London, W. 5 Tel: 01-992 8976.

CAPACITY available to the Electronic Industry. Precision turned parts, engnaving, milling and grinding both in metals and plastics. Limited capacity available on Mathey SP33 jig borer. Industrial Engineering plant capacity to C.B E9 6AB. Tel: 01-985 7057 (14

AIRTRONICS LTD., for Coil Winding - large or smaill production runs. Also PC Boards Assemplies. Suppliers to P.O. M.O.D., etc. Export en$\underset{\text { quiries welcomed. 3a Walerand Road, London, }}{(61}$
A.A.A. SERVICE. Small batch production wiring, assembly to sample or drawings. Specialists in printed circuit assembly. CableSpecialists in printed circuit assembly. CableBishopsfield, Harlow, Essex. Tel. Harlow (0279)
33018.

AVOMETERS repaired and calibrated, traceable calibration certificate given if required. AVOMETERS and ELECTRONIC COMPONENTS wanted, good prices paid. 'Q' Services Elecrronic (Camberley) Lid., Yateley (0252) 871048 any time.
(4998)

FARNBOROUGH ELECTRONIC SERVICES. Electronic protype wiring, printed circuit board assembling, at competitive prices. Design, Manufacture and finishing of metal Farnborough 44592 . (4964

PRINTED CIRCUIT BOARDS - Quick deliveries, competitive prices quotations on

 request roller tinning, drilling, etc., speciality small batches, larger quantities available. Jamiesons Automatics Ltd, 1-5 Westgate, Bridlington, N. Humberside, for the attention of Mr. J. Harrison. Tel: (0262) 4738/77877. (18LABELS, NAMEPLATES, FASCIAS on aluminium or plastic. Speedy delivery G.S.M. GRAPHICS LTD .' 1 -5 Rectory Lane, Guisborough (028734443) Yorks.

PCB ASSEMBLY by professional females accurate high quality work. Phone 0256-3858 NOW for quotation and delivery.
(4953

TRANSFORMERS: Capacity available for manufacture of small mains transformers. Art Metal Engineers Ltd. Blatchford Road, Horsham, Sussex. Tel: Hंorsham 2215. (4968

PRINTED CIRCUITS, we will make your P.C.B's for at least 25 per cent less than what you are now paying. Prototypes welcome.

FREELANCE TECHNICAL AUTHOR and design engineer seeks commissions for handbook writing, preparation of test specs, etc. 0276 33479 (Camberley).

SALE BY AUCTION

By order of the Receiver and Manager, W. G. Mackey, Esq Re R.S.D. Systems Limited

PUBLIC ADDRESS AND STAGE EQUIPMENT

including: SPEAKER AND AMPLIFIER CABINETS, SPEAKERS AND SPEAKERS IN CABINETS. 14 ACOUSTIC, H.H. YAMAHA AND OTHER AMPLIFIERS. Yamaha YH S100 horn unit, Yamaha bass stack. 16 AKG and other microphones. HAYMAN DRUM KIT, VOX electric piano, 13 Hayman, Jedson, Yamaha and other guitars, 3 WURLITZER MODEL 200 PROFESSIONAL PORTABLE ELECTRONIC PIANOS. A 3O-CHANNEL MIXER CONSOLE.
Guitar cases, drum skins, spotlights.

COMPONENT STOCK

including Capacitors, jack plugs and sockets, resistors, etc.
which

FRANK G. BOWEN LIMITED

(established 1824) will include in their Sale by Auction on Thursday, November 27 th, 1975 at 2 p.m. precisely at their salerooms at 15 GREEK STREET, LONDON, W. 1 ON VIEW DAY PRIOR AND MORNING OF SALE
Catalogues 15 p from the Auctioneers $\quad 01-437 \quad 3244 / 5$

SERVICE AND REPAIRS

AUDIOMASTER BACKGROUND MUSIC . SeT vice, sales. Tape programmes. P. J. Equipments, 3 Onslow Street, Guildford 4801. (12

THOR-HOLE CONVENTIONAL P.C.B.'s gold plating, roller tinning, prototypes, silk screen ing, drilling. All or part service. - ELECTRO CIRCUITS (P.C.) LTD. Delamare Road, Ches nut, Herts. Tel. Waltham Cross 38600 or 20344

TURE POLISHING, mono, $\mathbf{i 5 . 6 3}$, colour $\begin{aligned} & \text { 玉. } 94 .\end{aligned}$ TUBE POLISHING, mono, 55.63 , colour $£ 3.94$.
C.W.O. Return carriage and VAT paid. Phone: C.W.O, Return carriage and VAT paid. Phone:
N.S. 300 , Retube Limited, North Somercotes, Nough, Lincs.
Lough Re

articles wanted

WANTED, all types of communications receivers and test equipment. Details to R. T. \& I. Rd., London, E.i'1. Ley 4986.

WANTED SECOND A/F real time analyser HP 8054 or GR 1921. Duo or single cassette or floppy disc hardware. Wang 720 C or similar mimi computer. Nagra Kudelski III or IV S M.A.A. 3 Rue de la Gendarme Marie B 1338 , Lasne, Belgium. Tel. 026331804 .

B-D ELECTRONICS offer prompt settlement for your surplus components. Our main field of interest is consumer electronics. Please telephone our Miss Hughes, Sandy (0767) 81616.

COIL WINDERS WANTED. Any type considered including torroidal. For one application we Would prefer Avo Macadie or newer equivalent. your specialise in audio inductors wound to Station Road. Biexhrili-on-Seaa. 0424-219950. (49.63

RECEIVERS AND AMPLIFIERS -

HRO RX5s, etc., AR88, CR100, BRT400, G209, S640, etc., etc., in stock. R. T. \& I. Electrondes, Ltd., Ashville Old Halh. Ashville Rd., London, SIGNAL Generators, Oscilloscopes, Output Meters, Wave Voltmeters, Frequency Meters, Multi-range Meters, etc. otc. in stock. R. T vile Rd., London, E.il. Ley 4986 .

BUSINESS FOR SALE

HI-FI/AUDIO SHOWROOMS, Superb trading position in a busy pedestrian shopping precinct, near Croydon in Surrey. 2,000 sq. ft. premises with electronic comprator, acoustic tiling, subdued lighting, etc. All better class agencies held. Turn-over $£ 50,000$ plus per annum under management. Obvious scope for enterprising owner to increase. Realistically priced at $£ 8.000$ plus S.A.V. - Full details
from sole agents, Latimer Laurence Ltd., from Sole agents, Latimer Laurence Ltd.,
Leslie House, 238 High Street Poole, Dorset. Leslie House, 238 High Street. Poole, Dorset.
Tel. Poole (02013) 71037, 24 hour service. (4950

NEW GRAM AND SOUND EQUIPMENT

GLASGOW. Hi Fi, Cassette Decks, Tape Recorders, Video Equipment, always available we buy, sell and exchange for Hi Fi sets and Audio Visual Ltd 340 Argyle Street Glas Audio Visual Ltd, 340 Argyle Street, Glasgow, Sauchiehall Street, Tele: 041-221 8958. G2, (11

VALVES WANTED

WE BUY new valves, transistors and clean new components, large or small quantities, all details, quatation by returr. - Walton's, 55 Worcester St., Wolverhampton.

COURSES

RADIO and Radar M.P.T. and C,G.L.I Courses. Write: Principal, Nautical College, Fleetwood, FY7 8JZ.
 Radio Telephones, Mobile, VHF Un pp $£ 1.50$ Mounting f2500e, Buile, SHF, Under Dash Mounting $£ 25.00$ ea. or Built-in Speaker and coil lead
mic. Transistorized. 12 v DC
$£ 40.00$ pair pp $£ 1.50$ ea
 88's $£ 30.00$ per pair pp $£ 2.00$ Power \& Modulator Unit Type 404 LRV 3B Built in Rotary Converter $24 v \mathrm{DC}$ in. 3 HT out $£ 8.00 \mathrm{pp} £ 1.50$ 30. 2nd VFO units with film scale for RA $17 \ldots .$. RA 17 L295.00 pp £3.00
 33. RA 17 A... $£ 275.00 \mathrm{pp} £ 3.00$ 34. RA 117 E . $£ 385.00 \mathrm{pp} £ 3.00$
 American. $\quad . \ldots \ldots \ldots \ldots$ Transistorized \ldots North Universal Counter Timer, Racal Type CT RA 98 Single Side Band with AFC.......................... 885.00 pp £ 1.50 39. RA 121 Single Side Band with AFC and Tuning Scope £145.00 pp $£$ 40. RA 218 Single Side Band Fine Tune unit for RA117.
£45.00 pp $£$
41. RA 63 Single Side Band Fine Tunepp $£$ 42. RA 298 Single Side Band Transistorized $£ 160.00 \mathrm{pp} £$ 43. RA 316 F.S.K. Teleprinter Terminal Unit $£ 150.00 \mathrm{pp}$ £
44. Racal Teat Rig Type MA 91 for RA17's $£ 45.00$ pp 45. MA 79 Universal Drive Unit............. $£ 450.00 \mathrm{pp} £$ 46. TA $349 \mathrm{C} 1 \mathrm{~K} . \mathrm{W}$. Linear Amplifier $£ 2500.00 \mathrm{pp}$ £ 47. MA 152 S.W.R. Bridge l.K.W. $880.00 \mathrm{pp} £$ 48. TA 104H S.S.B. Transmitter 100 w $£ 150.00 \mathrm{pp} £$
49. Lorenz Teleprinter with tape feature, send/receive Similar to $444 \ldots{ }^{2} 80.00 \mathrm{pp} £ 3.00$ Creed 75 Mk 4 Receive Teleprinters $£ 60.00 \mathrm{pp} £$
51. Paper Winders for above. £25.00 pp £
52. Sperry Gryro's Compass Mk 4...... £18.00 pp $£ 1.00$ 53. Inverter Type 100B- 22-28v DC in 115 v 3 Phase 400
cycles out 150 VA PF 8 Dial Telephones 55. Klaxton Horns $24 \mathrm{v}, 240 \mathrm{v}$. .-. $£ 5.00 \mathrm{pp} \mathrm{fl} 00$
56. Geared motors with built in 600-1 gearing: Electronic brake, reversible, limiting switches, Rough Appearance 12 -24v DC. $£ 15.00 \mathrm{pp} £ 1.50$
57. Electric Hand Dryers................ $£ 4.00$ pp $£ 1.00$
58. Ferrograph Series 6 Tape Recorder $100-240 \mathrm{vAC}$ Strong Durel Case $£ 70.00$ pp £3.00
59. Ferrograph Series 3 Tape Recorder $100-240 \mathrm{vAC}$. Strong Durel Case $£ 40.00 \mathrm{pp} £ 3.00$
60. Phamphenic 25 watt High/Low inpedance input switchable output 15 ohms- 70 v . Wooden Case ..00 pp £2.00 61. Tape Cartridge Player built in 10 watt
amp................................... $£ 10.00 \mathrm{pp} £ 1.50$ 62. Radar Aircraft (No indicator) $£ 40.00$ pp $£ 2.00$ 63. Radar (Deccà) Type: Marine $£ 350.00$ pp $£ 10,00$ 64. Decca Navigator Mark 5 Complete $£ 1000.00 \mathrm{pp} £ 8.00$ CATALOGUES 50 p each

Mail order only please to
Dept. MO2

SOUTHERN AVIATION

Station Approach, Epsom, Surrey
Telephone (03727) Epsom 20691

SAVE IT" BARGAIN

500 WATT DIMMER SWITCH

(not suitable for fluorescent lights) Basic Module with 1" Knob Complete on MK switch plate
Complete on MK switch plate
Larger 2" knob (BULGN) 25p extra, P\& \& $25 p$
Please add 8\% VAT 10 all orders inc. P\&P FRASER-MANNING LTD.
40 TUDDENHAM ROAD, IPSWICH, IP4 2SL

KEYTRONICS

Please note new address:
332 LEY STREET, ILFORD, ESSEX $01-4788499$ after 2 p.m.

ANNOUNCING

 THE NEW T36"METAL BENDER
BOX AND TRAY FORMING

A WORKSHOP IN ITSELF

as Versatile as our EVER POPULAR RXX-26

\star AMAZINGLY POWERFUL
 * EASY TO OPERATE
 * IDEAL FOR STAINLESS STEEL
 \star A MUST FOR TRAINING

For full details contact sole manufacturers

A.A. TOOLS

WHITEACRE ROAD, HURS ASHTON-UNDER-LYNE LANCS.

PATENTERS AND MAKERS OF TOOLS FOR SHEET METAL \& WIRE WCRKERS

Additions to our range of electronic timing instruments include a precision timer with START/STOP and RESET facilities, and a combined Chronometer/Timer with completely independent timing'circuits and a shared digital display.
Send S.A.E. for full details. Telephone Penn 4661 (STD Code 049481). Trade and overseas enquiries welcome

Model Number and Description

401-6 (hours, minutes,
seconds) Chronometer .
401-6-R (As 401-6, with Ni Cd
battery) Chronometer
402-6 (Hours, minutes
seconds) Timer
402-6-R (As 402-6, with Ni Cd battery) Timer

Price
$£ 54.60$
$£ 68.90$
£65.90
£ 79.90
403-6 (Hours; minutes, seconds) Chronometer/Timer
£ 77.00
-6-R (As 403-6. with Ni Cd
battery) Chronometer/Timer
£92.00
Add 8% VAT UK only. postage and packing included No parcel post
If an instrument is to be used in a motor vehicle or boat With the engine running, an addtitonal internal voltage
surge protection network is necessary and is avalable for surge protection network is necessary, and is available for £1 50 extra (+ VAT if applicable)
Marine versions also avaitable - waterproot construction

* One second per month accuracy at $20^{\circ} \mathrm{C}$
* High frequency AT-cut quartz crystal for best possible
- All versions provid
- All versions provide security against 11 ming short-term mains frequency variations
* Rechargeable nickel-cadmium battery versions offer not only portability but also protection against outright
mains fallure, may be left on charge continuously
* Rugged mechanical design ensures reliability for
portable use
* Large, bright and easy to read LED display 24 -hout or
- 220 hour modes optiona
* $220 / 240 \mathrm{~V}$ mains or external battery operation 110 V
- Weight 0 5kg Width
(12 cm with stand)
- No-cost extras include precision engineered adustable
metal stand and power unn/ battery charger
- Kiss avalable for 401 models (all componenis and full
instructions supplied)
* Many special options avalable to industrial purchasers includting 1 second output pulses, relay operated
Start/stop. ete
cole guarantee.
TO ELECTRO SYSTEMSANDTIMING CD.
48 Robinson Road, Loudwater ENGLAND
Please supply
$\square 401-6 \quad \square 401-6-\mathrm{R} \quad \square 402.6 \quad \square 403.6$ \square 401-6 Kti $\square 401-6 \cdot \mathrm{R} \mathrm{K}_{11} \square$ 402-6-R \square 403-6-R
\square Over votrage protection

UK. residents add 8\% VAT

Wilmslow Audio
 THE firm for speakers!

Baker Group 25, 3. 8. or 15 ohm Baker Group 35, 3' 8 or 15 ohm Baker Deluxe. 8 or 15 ohm Baker Major, 3. 8 or 15 ohm Baker Regent. 8 or 15 ohm Baker Superb, 8 or 15 ohm Celestion HF1 3008 or 15 ohm Celestion MH 1000 horn, 8 or 15 ohm Decca London and X ove

Decca DK30 and X over
EMI $13 \times 8,150 \mathrm{~d} / \mathrm{c} .3 .8$ or 15 ohm EMI 13×8. Type 350 EM $113 \times 8,25$ watt bass EMI $8 \times 5,10$ watt, d / c roll/s 8 ohm EMMI $14^{\prime \prime} \times y^{\prime \prime}$ base 8 C €8.64 $£ 10.25$
$£ 13.75$ $£ 13.75$
$£ 1187$ £11.87 $£ 10.00$ $£ 18.12$
$£ 7.75$ $£ 7.75$
$£ 13.50$ $£ 42.25$ £24.06
£2.94
$£ 9.56$
$E 9.00$
£3.95
E13.25
Elac 59RM 10915 ohm. 59RM 1148 ohm £3.44
Elac $61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm
Fane Pop 15 watt $12^{\prime \prime}$
Fane Pop 25 T 30 wat 12
Fane Pop 50 watt, $12^{\prime \prime}$
Fane Pop 55, 12"' 60 watt
Fane Pop 60 watt $15^{\prime \prime}$
Fane Pop 70 watt. $15^{\prime \prime}$
Fane Pop 70 watt 15
Fane Pop 100 watt. 18
Fane Crescendo 12A or B. 8 or 15 ohm
Fane Crescendo 15, 8 or 15 ohm
Fane Crescendo 18,8 or 15 ohm
Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$, roll/s. 8 or 15 ohm Fane 801T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm Goodmans 8P 8 or 15 ohm Goodmans 10P 8 or 15 ohm Goodmans 12 P 8 or 15 ohm. Goodmans 12P-G 8 or 15 ohms Goodmans Audiom 10015 -ohm Goodmans Audıom 2008 ohm Goodmans Axent 1008 ohm Goodmans Axiom 4028 or 15 ohm. Goodmans Twinaxiom 8 or 15 ohm Goodmans Twinaxiom 10" 8 or 15 ohm Kef T27
Kef B1 10
Ket B200
Kef B139
Ket DN8
Kef DN 12
Richard Allan HP8B 8" 45 watt Richard Allan CG8T 8'd/c roll/s STC 4001 G super iweeter Baker Major Module, each Goodmans Mezzo Twinkit, pair Goodmans DIN 20, 4 ohm, each Helme XLK35, pair Helme XLK40, pair Helme XLK30, pair Helme XLK50, parr
Ketkit 1. par
Kefkıt III, each
Richard Allan Twinkit, each.
Richard Allan Triple 8, each
Richard Allan Triple, each
Richard Allan Super Trıple, each
Richard Allan RAB kit. pair
Richard Allan RA8 2 kit , pair
Wharfedale Linton $2 \mathrm{k} 1 t$ (par)
Wharfedale Glendale 3 kit, pair
Wharfedale Dovedale 3 kit, pair

WILMSLOW AUDIO

Loudspeakers \& Export Dept: Swan Works Bank Square, Wilmslow, Cheshire SK9 1 HF Discount HiFi, PA etc: 10 Swan Street, Wilmslow. Radio. HiFi. TV, Radio: Swift of Wilmslow, 5 Swan Street, Wilmslow. Tel. (Loudspeakers) Wilmslow 29599, (HiFi, etc.) Wilmslow 26213

Private enquiries, send $10 p$ in stamps for brochure THE QUARTZ CRYSTAL CO.LTD. Q.C.C. WORKS. WELLINGTON CRESCENT NEW MALDEN, SURREY. 01.942 .033482988

STABILIZER

 all the teatures which have shown themselves to be desirabie in a unt forhow teauction 1 provides shits between 1 and 10 Heriz either upwards or Hownwards and has a front panel gain control, signal overload LED and SHIFT/BYPASS switch as well as a marns switch and neon This Unit has
a considerably Iower noise level than any previous shifter and hum pickup a considerably lower noise level than any prevous stitier and hum pickup
within the small case is avoided by the mains transtormer and inpu rranstormer in the baianced version being in mumetal screening cans The input amplifier is protected trom high voltage spikes on the signal line.
whether from the valve equipment or occurtingthrougt static or earth leakage whether fiom the valve equipment or occurring through static or earth leakage
voltages while a system is being plugged up the output line driving amplifier is preceeded by a 24 Hz high pass filter which not only provides tuwinur
rejection of the shiturg oscullator but is general good practice before teeding reecection of the shinturg oscullator but is general good practice before feeding
into a power amplifer Avalable an a boxed unit with either balanced or unbalanced signal itnes
Aack mounting version aiso available offering studio quality sider SH control duplicated lack and XLA connectors and a smaft anodised finish wit an engraved front panel

Shithers are proving ethective in the following situations
Sound reinforcement for teievision studio audiences
Folddack monitoring on stage \qquad
Live mictophone telephore conference systems with a 5 Hz shift each way
iving 1 Hz round the loop which is effecive sn the small non-reverberan
ooms involved
Group hearing a
Microphones or radio microphones for discussion groups or floo questioners who are within the intended coverage of the pra loudspeakers
as well as lor straightorward sound rentorcement and public address +5 Hz FIXED SHIFT CIRCUIT BOARDS for WW July 1973 article
Smaly enoug to be built inside the cabinets of many amplitiers

DESIGNER
Write or ring for leatiet giving tull suecitications tor this or anr other tem -
STEREO DISC AMPLIFIER 10 OUTLET DISTRIBUTION AMPLIFIER MICROPHONE PREAMPLIFIER PPM DAIVE CIRCUITS and Ernest Iurne
PPM MOVEMENIS 642643 and TWIN all meeting IBA SPECTRUM SHIFTER:

SURREY ELECTRONICS

The Forge, Lucks Green, Cranleigh
Surrey GU6 7BG (STD 04866) 5997

The brain boggles at what old Johann could have done with his own console, preamp, 8 -in-2 out mixer, octave equalizer, electrostatic speakers, or 24 inch woofer.
Come boggle with us.

Audio

 Hereford HR48LQSend now for a free prospectus.

Name
Address

Housing problems?

West Hyde will have a CONTIL MOD-2 case to meet your needs. See last, or next issue Check now. Ring BRIGHTCASE AMTRON, MINOS WEST HYDE HEAVY DUTY CASES
WEST HYDE DEVELOPMENTS LIMITED
Ryefield Crescent, Northwood Hill
Northwood, Middx. HA6 INN
Tol. Northwood 24941/26732. Telex: 923321

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. SPOT CASH
CHILTMEAD LTD
7, 9, II Arthur Road, Reading, Berks Tel: 582605

RADIO VALLVE AND SEMICONDUCTOR DATA

by A. M. Ball PRICE $£ 2.50$
TTL COOKBOOK by D. E. Lancaster. Price $£ 5.75$
SCR MANUAL inc. Trides by G.E. Price $£ 2.00$
PRINCIPLES OF TRANSISTOR CIRCUITS by Amos S. W Price £3.55
SOLID STATE HOBBY CIRCUITS by R.C.A. Price £1. 25

UNDERSTANDING CMOS INTE. GRATED CIRCUITS by R Melen. Price £2.89
TRANSISTOR CIRCUIT DESIGN by Texas. Price $£ 5.60$
FOUNDATIONS OF WIRELESS AND ELECTRONICS. 9th Edition. Scroggie, M. G. Price $£ 4.25$

DATA COMMUNICATIONS. An introductory guide by Hebditch. D.L. Price $£ 4.55$
LINEAR I.C. PRINCIPLES, EXPERIMENTS \& PROJECTS by Noll, E. N. Price $£ 5.00$
MODERN RECORDING TECHNIQUE by Runstein, R.E. Price $£ 5.35$

* PRICES INClUDE POSTAGE *

THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC
\& TECHNICAL BOOKS 19-21 PRAED STREET LONDON W2 1NP

Phone 7234185
Closed Sat 1 pm

DIRECT COMMUNICATIONS

division of
DIRECT ELECTRONICS LTD.
INTERCOMMS \& TELEPHONES
Simple 2 -way wall/desk with 100 ft . cable 6 v Batt. or Power Supply. £ 16 (ì 1 P\&P).
Similar but 2 to 7 -way instrument only. Installation Diagram. 88.50 each (50 p).

- Superior 2 to 6 -way Siemens \& Halske. Wail / desk conversion kit, term block and cord $£ 10$ (50 p).
- AUTOMATIC INSTRUMENTS. Strowger compatible or PX working. New/refurbished/2nd hand. 232332706 746722 (Trimfone) etc. Special and foreign types.
- ULTRA MODERN TYPES. "Gondola" International Touch-Button-Dial: Charleston (Candlestick) etc. from $£ 32.85$
- Jacks Plugs: Cords: Term. Blocks Cables (up to 25 -way and 50 pair) etc.
- Entrance Phones \& Electric Latches, with or
without Intercomm, Facility.
- Telephone Amplifier (1 -way) £6-95 (35p): Hands-free Tele. Amp. (2-way conversation) £9-50 (50p)
* TRANSISTORISED UNITS. Simple 2-way Batt. Intercomm. £7.75 (50p): Batt. Baby Alarm £5. 25 (50 p) Intercomm. with Roving Master £9.50 (50p).
* Wireless intercomm. (Just plug into mains) 2 -way $£ 20$ ($£ 1$): Master plug 3 subs (4 -way) Batt.-op. Mains adaptor $£ 2.95$ (35p).

Add V.A.T $=8 \%, \star=25 \%$ on posi paid

 priceTRADE ENQUIRIES WELCOMED
MANY SURPLUS ELECTRONIC BARGAINS FROM OLD STOCK STILL LEFT - COME AND DO A DEAL!

34 LITTLE STREET
LONOON WC2H 7BD
Tel. 01-437 2524
PRECISION
POLYCARBONATE CAPACITORS 40V All High Stability - Extremely Low Leakage
 $\begin{array}{cc}\left({ }^{\prime} \mathrm{F}\right) & \mathrm{L} \\ 0.1 & 27 \\ 0.22 \mu \mathrm{~F} & 33 \\ 0.25 \mu \mathrm{~F} & 33 \\ 0.47 \mu \mathrm{~F} & 33 \\ 0.5 \mu \mathrm{~F} & 33 \\ 0.68 \mathrm{~F} & 30 \\ 1.0 \mu \mathrm{~F} & 50 . \\ 2.0 \mu \mathrm{~F} & 50.8\end{array}$

 6 H 100.0pF at 3 V . ALL at 10 peach . 10 for 95 p , 50 for C 4 .

TRANSISTORS \& I.C.'s					
AC128	${ }^{14 p}$	BC268A/384.	10p	$0 \mathrm{C7} 1$	12 p
AC176	16p	- BC547/558A	12p	- 2 N 2926 G	12p
ADI49	40 p	BCY72	12p	- 2 N 2926 O	11 p
AF178	30 p	BDI31/132	339	- 2 N 2926 Y	P
AF239	38 D	BF15/167	22p	${ }^{2 N} 3054$	${ }^{65 p}$
BC107/8/9	9 p	BFI73	24 p	2N3055	50p
- $\mathrm{BC1}^{\text {d }} 14$	12p	8 F 178	26p	$2 \mathrm{~N} 3702 /$	
- ${ }^{\text {CC147/8/9 }}$	10p	BFI84	22p	3704	11 p
BC153/154	12p	${ }^{\text {- BFIP4/195 }}$	12p	- Tip30A	52p
- BC157/8/9	12p.	-BF196/197*	12p	TIP31A	55p
BC177	18p	BF200	${ }^{27 p}$	TIP32A	${ }^{64}$ p
-BC182/183E	$11 p$	${ }^{-\mathrm{BF} 262 / 263}{ }^{\circ}$	60p	TIP3055	55p
-BC183/183L	$11 p$	BFY50,51/52	20p	MPU131	49p
-BC184/184L	12p	BFX $34 / 86 / 88$		NES55	81 p
-BC212/212L	14p	BFX85	26p	${ }^{741 C}$	32p
- BC213/213L	$11 p$	BR101	41 p	ZN414	E1.15
-BC214/2142	11p	GET872	25p	SN76013ND	
BC267	12p	$0 \mathrm{C} 44 / \mathrm{OC45}$	14p		1.5

LOW PRICE ZENER DIODES- 400 MW , Tol $\pm 5 \%$ at 5 mA Values available $3 \mathrm{~V}, 3.3 \mathrm{~V}, 3.6 \mathrm{~V}, 4.7 \mathrm{~V}, 5.1 \mathrm{~V}, 5.6 \mathrm{~V}, 6.2 \mathrm{~V}, 6.8 \mathrm{~V}$
$7.5 \mathrm{~V}, 8.2 \mathrm{~V}, 9.1 \mathrm{~V}, 10 \mathrm{~V}, 11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}, 13.5 \mathrm{~V}, 15 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}$ $22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}$. 30 V all at 7 peach; 5 for 33 p : 10 for 65 p . SPECIA EAsion zeners for $\mathbf{E 6 . 0 0}$.
$10^{\circ} \mathrm{C}, 1 / 2 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. E12 series only-from 2.20 to 2.2 MO . All at peach. 8 p for 10 of any one value. 20 p for 100 of any one value.
5.
SILICON PLASTIC RECTIFIERS- 1.5 amp, brand new wire BRIDGE RECTIFIERS - $2^{1 / 2}$ amp. 200 V 40 p . 350 V 45 p .600 V 55 p . ESUBMINLATURE VERTICAL PRESETS-0 IW Only, ALL at
 PLEASE ADD I5p POST AND PACKING ON ALL ORDERS ELIL E. ALL EXPORT ORDERS ADD COST OF SEA/AIR PLEASE ADD 8\% VAT to all tems exc

Now The day-by-day yearbook.

Day-by-day usefulness throughout 1976-that's the keynote of our new, completely revised Yearbook. New features include a week-at-aglance desk diary, and a fact-packed Serviceman's Section. Plus the industry's most comprehensive buyers' guide, big legal and technical sections, and pages of valuable trade names and addresses. Order your copy now!

To: General Sales Dept., IPC Electrical \& Electronic Press Ltd. Room 11. Dorset House. Stamford St., London SE1 9LU Please send me........copies of Electrical \& Electronic Trader Year Book and Diary 1976 @ £5.50 each, inclusive of postage and packaging. I enclose cheque p.o. for
Name.
Address.
*Cheques should be made payable to IPC Business Press Ltd

Company regıstered in England Regıstered No 677128 Registered address Durset House. Stamford St. SE1 gLU

TIME SIGNAL REGEIVERS

TOOLEX 60 KHz MSF RUGBY RADIO RECEIVERS

MODEL MSFI

Low Power Unit; 1500 hrs independent operation from Internal Battery; Case $8^{\prime \prime} \times 5^{\prime \prime} \times 1 \frac{1}{2 \prime \prime}$; External Aerial; assembled and tested circuit alone available if required.

MODEL MSF.T1

Phase locked Loop System; 10/20 hrs independent operation; External Aerial; External Supply; Case $41 / 2^{\prime \prime} \times 21 / 2^{\prime \prime} \times 1 \frac{1}{2 \prime \prime}$; also available in Kit Form or assembled and tested circuit only.

LOW FREQUENCY ANALYSER

$50 \mathrm{~Hz}-50 \mathrm{kHz}$ ASSEMBLY AND INSTRUCTION INFORMATION S.A.E.

Board, modules and all components (excluding P.U.).

12" CRT

Magnetic Deflection. Blue Trace Yellow Afterglow (P7). Information and recommended circuits with all purchases. Brand new, boxed, $£ 4$ each. Carriage $£ 2$.

X-Y RECORDERS
Advance, Moseley
Hewlett Packard

Price from:
$£ 80$ each
V.A.T. at $\mathbf{8 \%}$

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 83-95

Bradley Electronics are well known as manufacturers of precision electronic instrumentation. But there's another important aspect of our business we're also experts on other people's products.

For 21 years our Services Division has been providing a first-class repair and recalibration service for all types and makes of electronic test and measuring equipment - from simple meters to complicated systems. Any manufacturer's instrument in the frequency range $D C$ to 18 GHz - and to

36 GHz in some cases - collected and delivered back to your door ready to plug-in.

The Services Division has its own 35,000 sq ft factory, expert staff, comprehensive spares, and a Standards Laboratory approved by the British Calibration Service. It will supply calibration certificates for AC, DC and RF measurements. And, of course, our standards are directly traceable to NPL and NBS.
So - when your calibrator won't calibrate anymore, your generator
refuses to generate, or your counter stops counting - you know who to contact

G \& E BRADLEY LIMITED
Electral House, Neasden Lane, London NW10 1RR
Telephone: 01-450 7811
Telex: 225583

A Lucas Company

electronles

The life and efficiency of any piece of electronic equipment can rest entirely on the solder used in its assembly. That is why for utmost reliability leading eectronic manufacturers in the USA and in 106 other countries throughout the world insist on using Ersin Multicore Solder. It's the solder they have depended on for consistent high quality for more than 30 years

If you are not already using Ersin Multicore Solder it must be to your advantage to investigate the wide range of Specifications which are available. Besides achieving better joints - always - your labour costs will be reduced and subsequently savings in overall costs of solder may be possible

There are évell over 1.000 Specifications, made to all International Standards to choose from, and here are just a few of the special solders that we manufacture

Savbit Alloy-dramatically reduces erosion of copper wires and printed circuits and also reduces the wear of soldering iron bits

96S Silver Solder - highest strength soft solder Melting point $221^{\circ} \mathrm{C}$. Bright and non-toxic. Replaces high temperature brazing alloys

95A alloy - Melting range 236-243 C. For electrical connections subjected to peak temp. of approx. $240^{\circ} \mathrm{C}$.
H.M.P. alloy - Melting range 296-301 C. Highest melting point soft solder for high service temperature applications.
T.L.C. alloy - Melting point 145 C . Lowest melting point Ersin Multicore solder for making joints on top of other solders and for heat sensitive components.
L.M.P. alloy - Melting Point $179^{\circ} \mathrm{C}$. For soldering silver plated surfaces such as ceramic capacitors and soldering gold.

Alu-Sol Multicore Solder - for soldering aluminium
Arax acid-cored solder - for non-electrical applications or pre-tinning of parts of difficult solderability (flux residue must be removed) which can then be assembled with Ersin Multicore Solder.

Write for Technical Bulletins, on your Company's letterhead, for products which interest you to

Multicore Solders Ltd.

Maylands Avenue.
Hemel Hempstead, Hertfordshire, HP2 7EP
Tel: Hemel Hempstead 3636 Telex : 82363

Why have leading USA manufacturers specified British made Ersin Multicore solder for over 30 years?

[^0]: Please Supply
 Total Purchase Price
 I Enclose Cheque \square Postal Orders \square Money Order \square
 Please debit my Access account \square Barclay card account \square
 Account number
 Name \& Address

[^1]: Γ To; Cambridge Learning Enterprises, - - -
 FREEPOST, St. Ives, Huntingdon, Cambs.
 PE17 4BR
 *Please send me set(s) of Digital Computer Logic and Electronics at E4.45 each, p\&p included
 *or set(s) of Design of Digital Systems at
 E6.45 each, p\&p included
 *or combined set(s) at E9.75 each, p\&p included

 Name
 Address
 delete as applicable
 No need to use a stamp - just print FREEPOST on the
 envelope.
 WW•?

[^2]: For fuller information send the coupon to: IT Components Group Europe Standard Telephones and Cables Limited, Electrical Products Division, Edinburgh Way, Harlow, Essex CM20 2DE.

 Name
 Position \qquad
 Company \qquad
 Address

 Components

[^3]: * RTCA is not an official agency of the US Government. It is a co-operative association of government, aeronautical industry. and telecommunications agencies. Its objectives are the resolution of aeronautical-telecommunications problems through mutual agreement.

[^4]: Jakus. K. \& Coe, D. S. "Speed Measurement Through Analysis of the Doppler Effect in Vehicular Noise," IEEE Trans. on Vehicular Technology, Vol. VT-24. Aug. 1975.

[^5]: Send now, stating possible requirements, for free and post tree caralogue.
 United-Carr Supplies Ltd., 112 Station Road, !lkeston, Derbyshire DE7 5LF.

[^6]: Order Coupon
 To General Sales Dept., Room 11, Dorset House, Stamford St
 London SE1 ILU.
 | Lendon SE19LU
 copy/copies of Wireless World Annual 1976 at
 E1.35 inclusive
 I enclose remittance value E..... (Cheques payable to IPC Business
 Press Ltd).
 Name (please print)
 Address
 I
 Company regd. in England No. 677128

 - Regd office: Dorset House, Stamford St.
 - London SE1 9LU

[^7]: £2.31

[^8]: SOUND \& VIDEO TECHNICIAN REQUIRED We are AV Distributors (London) Limited importers and distributors of cine camera and projectors, sound recorders and video equip ment. We are situated in close proximity to Baker Street rube and Main Line Station as well are Marylabone Station. We offer amicable working conditions. good salary, holidays honoured. Hexible hours and air conditioned premises. We would like to hear from you. Please contact Mrs Schiaen on 01.935 8161 AV Distributors (Lundon) Limited. 26 Park Road, Baker Street, London NW1 4SH. (4965

 ELECTRICAL / ELECTRONIC ENGINEERS \& MECHANICAL ENGINEERS are required by company engaged in shock and vibration physies, pneumatics, hydraulies, electronics control systems instrumentathon design and use and non-destructive testing. Applicants must be aged between 22 and 30 qualified to HNC or equivalent. Must have willingness to accept challenging work, learn other disciplines and perform fiekd work for limited periods Whit to Dr. Savage, scarch Engineermg Led Surrey, Randats Rova Estate. Leather 496

 ROYAL FREE HOSPITAL SCHOOL OF MEDI
 ROYAL FREE HOSPITAL SCHOOL OF MEDI CINE University of London). A CCTV engineer is required to supervise installation and opera tion of a new recording and Hospital. Hamp vice a substantial part of the work will be in colour and the system wll ultimately include full studio facmities when all building phases are complete. HNC or equivalent qualifications: desirable. Salary in range of IMLT Technician de,s11-£3,73s plus London Weighting of $£ 312$, but initial salary will not exceed $£ 3.102$ gross. Apply in writing with names of two referees lo Professor H. A. B. Simons, Depariment uf Medical Physics, Royal Free Hospital. Pond Street, London NW3 iQG.

