

TheProduction Test Bottleneck Smasher!

You've neverseen a faster, more accurate way of measuring frequency response from 30 Hz to 110 MHz

Slash your production-test times and divert your skilled engineers to more important work with our TF 2370 Spectrum Analyser. It will reduce to simple operations, complicated measurements such as response, level, gain, signal purity, modulation and many more, with a speed and degree of accuracy that has to be seen to be believed. Forget everything you have heard about spect rum analysers.
The TF 2370 is unique. It employs advanced technology to make it reliable and as easy to operate as a multimeter. The facts speak for themselves.

* Flicker-free display of frequency response from 30 Hz to 110 MHz on a high-brightness c.r.t.
* Electronic graticule, with a $\pm 15 \%$ variation of horizontal divisions for pin-point positioning against waveform display.
* Press-button selection of three amplitude scales: one linear and two logarithmic with expansion to $\mid \mathrm{dB}$ /div. with an accuracy of $\pm 0.1 \mathrm{~dB} / \mathrm{dB}$.
* 9-digit electronic counter automatically gives centre frequency, reads any other frequency corresponding to manually-adjusted 'bright line' position on display, or the
difference frequency between the two, at the press of a button. All to an accuracy of $\pm 2 \mathrm{~Hz} \pm$ reference frequency accuracy on high resolution and manual. Internal reference frequency provided with setting accuracy of 1 in 10^{7}. * Internal generator supplies synchronous signal source for measuring such items as networks and filters.
* For comparative measurements, unique memory storage system will retain one display indefinitely as required, for simultaneous display with waveform produced by items under test.
* Automatic adjustment of amplifier gain to give optimum lowest-noise performance with full protection against input overloading.
* Automatic selection of optimum sweep speed.
* With the 5 Hz filter, signals 100 Hz from a response at 0 dB can be measured to -70 dB .

Now ask for a demonstration. It could prove that the TF 2370 is a better cure for your headaches than aspirin. We are standing by for your call.

LOW COST TESTERS

PORTABLE INSTRUMENTS

INSULATION TESTER

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 T \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV . $1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{~K} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V .
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale. Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$. Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA .

CURRENT RANGE

100pA to $100 \mu A$ on 6 decade logarithmic scale.
Accuracy of current measurement $\pm 15 \%$ of indicated value.
Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
Maximum safe continuous overload is 50 mA .

MEASUREMENT TIME

<3s for resistance ori all ranges relative to CAL position.
<10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V .
Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position.

RECORDER OUTPUT

$1 \vee$ per decade $\pm 2 \%$ with zero output at scale centre.
Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

TRANSISTOR TESTER

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is powered by a 9 V battery.
TRANSISTOR RANGES (PNP OR NPN)
${ }^{\prime}$ с в о \& $_{\text {e bo }}: 10 \mathrm{nA}, 100 \mathrm{nA}, \uparrow \mu \mathrm{A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$, $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$, 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
BV C во $\quad 10 \mathrm{~V}$ or 100 V f.s.d.acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
$I_{B}: \quad 10 n A, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed i_{E} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and $100 \mathrm{~mA} \mathrm{acc}. \pm 1 \%$.
$h_{F E}: \quad 3$ inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I into $h_{F E}$ readings.
$V_{B E} \quad \quad \quad \mathrm{~V}$ f.s.d. acc. $\pm 20 \mathrm{mV}$ measured at conditions on h_{FE} test.
$V_{C E}$ (sat): $\quad 1 \mathrm{~V} . \mathrm{s}$. d. acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or $30 \mathrm{acc} . \pm 20 \%$.
DIODE \& ZENER DIODE RANGES
${ }^{\prime} \mathrm{DR}_{\mathrm{R}}$:
As IEBO transistor ranges
V_{Z} : Breakdown ranges as $B V_{C B O}$ for transistors.
$V_{D F}: \quad 1 \mathrm{Vf.s.d}$ acc. $\pm 20 \mathrm{mV}$ at $I_{D F}$ of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .

Moxon Street, High Barnet, Herts. EN5 5SD
Tel : 01-4495028/440 8686

DECADE BOXES

"Junior"Series-Resistance-1 \%

DECADE BOXES continued

R803	8	$0=1.111 .111 .1$	0.01	$\mathbf{1 6 2 . 7 5}$

Decades						
	Decades	pF Re	nge	pF Resolution	Accuracy	£
C3	3	100-	111.000	100	1\%	48.30
PC3	3	100-	111,000	100	5\%	66.70
C4	4	100-	,111,000	100	1\%	73.60
PC4	4	100-	. 111.000	100	5\%	103.50
Decade plus Variables						
	Decades	pF Ra	nge	pF Resolution	Accuracy	£
VC4	3	50-	111.150	INFINITE	1\%	60.95
VC5	4	50-	.111.150	..	1\%	86.25
PVC5	4	50-	.111.150	,	0 5\%	128.80
SVC5	4	50-	,111.150	"	0.05\%	552.00
C500	4	50-	,111,150		0.2\%	$238.50 \dagger$
SVC5 special. Details on application						
Variables						
	pF Range				Accuracy	\pm
PVC1 Mk 2		5-	200		0.5\%	101.20
PVC Mk. 2		20-	1.120		0.5\%	92.00
VC2		20-	1.130		1\%	42.55
PVC4		O-	10		1\%	70.15
PVC1/S		20-	120		0.5\%	60.98
Switched						
	uF Range			uF Resolution	Accuracy	£
C140		$0-$	140	1.0	5\%	$156.00 \dagger$
C100		$0-$	150	1.0	5\%	132.00 †
C60		$0-$	61	0.1	5\%	117.60 t
C60P		O-	61	0.1	1\%	$239.00 \dagger$

High Dissipation-Resistance- 1%

	Decades	Ohms	Range	Ohms Resolution	£
HD1	5	O-	1.111.100	10	104.63
HD1/L	5	0-	111.110	0.2 Approx.	110.25
"Point One" Series-Inductance-5\%					
	Decades	mH	ange	mHi Resolution	£
L1	3	0--	1.110	1	83.25
L2	2	$0-$	110	1	62.33
L3	2	0-	1.100	10	69.30
"Hundred" Series-Inductance-0.3\%					
	Decades	mH	ange	mH Resolution	£
1300	3	O-	1.110	1	277.00
L400	4	0-	11, '10	1	360.00

rion-Resistance- 1%

Decades mH Range

Series-Inductance- 0.3%

CAPACITANCE BOXES

VC5
PVC5
SVC5
C500
0.01 Ohms Resolution 0.3 Approx.
nH Resolution

10
Hesolution
277.00
360.00
Ohms Resolutio
10
10
10
1
10
1
1
1

pF Resolution
100
"Infinite

Ohms Resolution	$£$
0.1	47.25
	46.97
10	46.13
10	57.38
1	57.94
0.1	58.50
100	66.71
1	69.42
01	70.31
001	76.50
i	87.75
01	81.56
001	82.13
01	99.56
001	95.63
Ohms Resolution	£
10	87.15
1	91.35
01	92.40
01	98.70
10	118.65
1	120.75
0.1	122.85
0.01	128.63
1	140.70
0.1	142.80
0.01	148.05
0.1	160.65

£
30.83
25.09
25.09
24.75
24.75
20.51
20.51
20.42
37.13
43.65
${ }^{£} 22.20$ 23.20

4
46.97
57.94
58.50
66.71
70.31
76.50
81.56
82.13
99.56
.63
91.35
92.40
98.70
118.65
122.85
128.63
140.70
148.05
160.65

D.D. Lloyd Insiruments lid

Brook Avenue, Warsash, Southampton SO3 6HP Tel: Locks Heath 4221

WW-081 FOR FURTHER DETAILS
Introducing the Heathkit 2700 Series. There are lots of ways of looking at it.

The new Heathkit range of power supplies.

Not content with giving you a choice of four I)C ranges the new Heathkit $27(0)$ Series Power Supplies can have either digital or analog readout.
And naturally, being Heathkit, each model is available either factory assembled or as a complete kit.

But, whatever one you choose youll still get an exceptionally high degree of sophisticat ion. With features like a remote sensing connection to compensate for voltage drops when'using long leads.
Post the coupon and we'll send you a catalogue and complete technical data. And youll soon find the Heathkit 2700 Series has a lot to offer. Whatever way you look at it. Heath (Gloucester) Limited. Dept. WW-105, Bristol Road Gloucester (CL'2 GEE.
Tel:(0452) 29451.

Ion out your quality control problems

The AVO Breakdown and Ionisation Tester RM215-L/2 is specifically designed to help solve all manner of quality control problems.

It measures resistive leakage current under both AC \& DC voltage testing conditions as well as total AC leakage current. Test voltages up to 12 kV DC and 6 kV AC are continuously variable and breakdown current level is adjustable up to 1 mA . A built-in loudspeaker gives audible detection of ionisation and there are connections for earphone or an oscilloscope.

The circuit features low internal resistance yet at the same time limits the maximum output current, even at short circuit.

With the RM215-L/2 you can carry out general flash testing, measurement of breakdown voltage -even after breakdown-and the detection (and counting) of spurious flashovers.

Equally suited to both destructive and non-destructive testing, the RM215-L/2 is a piece of test equipment you cannot afford to be without. If you have some problems that need to be 'ioned' out, 'get in touch for full details.

APPLICATIONS
Flash testing of electrical components.
Measurement of breakdown voltage on electrical
components and materials.
Measurement of insulation resistance at high
voltage.
Measurement of d.c. leakage current.
Measurement of a.c. leakage current and total
Current.
Non-destructive insulation testing of materials
and components.
Detection of ionisation in electrical assemblies.

Designed to meet B.S.,V.V.E. and I.E.C. Safety Requirements.

BARR \& STROUD ELECTRONIC FILTERS

The 3 aspects of our service

1. System EF3

A flexible system of filter instrumentation using a modular approach to give plug-in interchangeability. The mainframe carries a power unit and accepts up to two filter units of either Low Pass or High Pass function. Integral switching allows individual or cascade operation and can give Band Pass, Band Stop, Band Separate or Band Combine modes.

2. Active Filter Modules

These are compact, solid state, encap sulated units providing basic filter functions to be customer set for cut-off frequency and characteristic. The present range contains Low Pass and High Pass types with cut-off frequency coverage from 1.0 Hz to 30 kHz in overlapping ranges, with attenuation rates up 10 $24 d B / o c t a v e / m o d u l e$. Universal modules specifically for Band Pass and Band Stop operation are part of the range

3. Custom Build Service

If our standard filter range does not meet your specification we welcome the opportunity to study your requirement. Broadly our capability stretches from d.c. to 25 MHz with experience in passive and active designs. We can work to normal commercial standards or strict defence requirements and construction can be as dictated by the environmental conditions of your application

Glasgow and London

Use DORAMcomponents for your project

The doorway to Amateur Electronics

* DORAM'S NEW CATALOGUE OFFERS THOUSANDS UPON THOUSANDS OF QUALITY ELECTRONIC COMPONENTS AND AUDIO ACCESSORIES FROM trusted big name manufacturers.
4 ALL COMPONENTS ARE INDIVIDUALLY CODED AND PRICED - MANY NEW COMPONENTS ADDED FROM CUSTOMER REOUESTS.
左 16 EXTRA PAGE DATA SECTION.
* UNIQUE FREE UP.DATE PRODUCT INFORMATION SERVICE DURING LIFE SPAN OF CATALOGUE.
4LL COMPONENTS SENT BY RETURN OF POST.

4. POST AND PACKING FREE (only applies for Great Britain, N. Ireland and
*.F.P.O. Nos. - overseas orders F.O.B.)
(NO QUIBBLE REPLACEMENT PART SERVICE

name ADDRESS \qquad
\qquad
\qquad

IP I.L.P. (tectoronics) Led

SHEER SIMPLICITY!

The HV5 is a complete mono hybrid preamplifier, ideally suited for both the device comsists of two high quality amplifiers the first contams frequency equalisation and gain correction, while he second caters for tone control and
balance.
TECHNICAL SPECIFICATION
I nputs
Maqnetic Pick-up smV.RIAA
Ceramic Pick-up
Microphone
Tune:
Auxillary

- Tape 100 mV

Main output Odb (0.775 vots RMS)
Active Tone Contral
Treble 12 db at 10 kHz
Bass 12 dbatloOH
Distortion 0.05 at 1 kHz
Signal/Noise Ratio 68 db (ht
Overload Capability 40 db 0 m most
Supply Voltage $+16-25$ volits.
PRICE £4.75 + £1.19VAT.P \& P free

The HY50 is a complete solid state hybind H. Fiamplifiet incorporating its own high conductivity heatsmk hermetically sealed in black epoxy resin. Only five connec thons are provided: liput, output, power lines and earth.

TECHNICAL SPECIFICATION Output Power 25 watts RMS into 8Ω ? Load Impedance 4-16\$?
Input Sensitivity $\operatorname{Oab}(0.775$ volls RMS) Input Impedance $47 \mathrm{k} \Omega$ Distartion Less thals 0.1% al 25 walts typically 0.05
Signal/Noise Ratio Hette, tha! 75 db
Frequency Response $10 \mathrm{~Hz} \quad 50 \mathrm{Ktlz}+3 \mathrm{db}$
Supply Voltage 25 valts
Size $105 \times 50 \times 25 \mathrm{~mm}$

The PSU50 incorporated a specially designed transformer and can be used for either mono or stereo systems

TECHNICAL SPECIFICATIONS
Output voltage 50 volts $(25-0-25)$
Input voltage $210-240$ valts
Size L.70.D.90. H. 60 mm
PRICE £6 $25+£ 156$ V.A.T P \& P free

TWO YEARS GUARANTEE ON ALL OUR PRODUCTS

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclay card account \square
Account number
Name \& Address

New Course in Digital Design

Understand the latest developments in calculators,

 computers, watches, telephones,
television, automotive instrumentation.... .

Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 8 \frac{1}{4^{\prime \prime}}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flip flops and Registers

Co,
Offer Order this together Offer Order this togeth
with Design of Digital Systems for the bargain price of $£ 9.25$, plus 50 p p\&p
Design of Digital Systems contains over twice as much information in each volume as the simpler course. Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents. also covers many more advanced topics.

Designer

Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

Design of Digital Systems

A Solf-Instruction Course in $\mathbf{6}$ Volumes

1 ComputerArithmetic

 $2_{\text {BooleanLogic }}$ 3 Arithmetic Circuits 4 Memories \& Counters 5 Calculator Design ComputerArchitecture

$£ 5.95$

plus 50p packing and surface post anywhere in the world. Payments may be made in foreign currencies Quantity discounts available on request.
Total packaged weight does not exceed 4 lb . Please allow enough extra for air mail. VAT zero rated.

```
To. Cambridge Learning Enterprises
FREEPOST. St. Ives. Huntingdon, Cambs PE174BR
*Please send me . . . set(s) of Design of Digital Systems at £6.45
each, p & p included
or. ...set(s) of Digital Computer Logic and Electronics at £4.45 each,
p&p included
-or ... combined set(s) at £9.75 gach. p & p included
Name
Address
- delete as applicable
Ne need to use a stamp - just prinf FREEPOST on the enveiope.
ww10
```


A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB A fine-tipped marking pen charged with free-flowing etch-resist ink new formulation QUICK-DRI ink is ready for etching in just two minutes!
Simply draw the desired circuit onto copper laminated board etch - clean.
The circuit is ready to use

NO MESS - NO MASKING
 A perfect circuit every time!

Still only £1.08 for one-off, £4.42 for six, £8.80 for twelve, post and VAT paid! Available now in every country in Europe.
Decon Laboratories Ltd., Ellen Street,
Portslade, Brighton BN4 1EQ Phone: 0273414371
Please send me further details on the 33 PC Quick-Dri
Name
Address
Post to DECON LABORATORIES LTD.
FREEPOST
PORTSLADE, BRIGHTON, ENGLAND
(No Stamp Needed) Phone O273 414371
(\quad I

FREQUENCY COUNTERS

HIGH PERFORMANCE REASONABLY PRICED ELECTRONIC INSTRUMENTS

crystal oven
two tone blue case
£370 $\mathbf{5 2 0}$ мHz
Sensitivity 10 mV . Stability 5 parts 10^{10}

301M	32MHz 5 Digit £75	401	32MHz 6 Digit £118
501	32 MHz 8 Digit £175	701A	80MHz 8 Digit £195
801A/M	300MHz 8 Digit £285	901M	520 MHz 8 Digit £370
801B/M	250MHz 8 Digit £260		versions available if not suffixed M £25 extra
Type 101 IMHz 100KHz 10KHz Crystal Standard $\mathbf{£ 8 0}$ Type 103 Off/Air Standard $£ 78$			
TO: Ministry of Defence, G.P.O., B.B.C. Government Depr., Crystal Manufacturers and Electronic Laboratories world-wide.			
	R. C	NAL SLOW ephon	ECTRONICS ORKE, BATH ROAD MIDDX. TW4 7EE 01-572 0933/4

WW-065 FOR FURTHER DETAILS

GROOVAC

ON STAND A1a
AUDIO FAIR

vacuum record cleaner

Vacuum cleaning is the best way to remove dust, especially fine dust. Now with the Groovac, vacuum cleaning is available for extracting the particles from inside record grooves which are responsible for record and stylus wear - while your record is playing

For full details please write to:-

Kernick Road, Penryn Kernick Road, Penryn
Cornwall TR10 9DQ England Telephone 032-67 2753

S-2020TA STEREO TUNER/AMPLIFIER KIT

NEW PRODUCT

A high-quality push-button FM Varicap Stereo Tuner combined with a 20 W r.m.s.

SOLID MAHOGANY ${ }^{-}$ CABINET per channel Stereo Amplifier.
Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In/Out facility (for noise reduction unit, etc), THD less than 0.1% at 20 W into 8 ohms. All sockets, fuses, etc, are PC mounted for ease of assembly. Tuner section: uses Mullard LP1186 module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @ 1.8 \mu \mathrm{~V} . \mathrm{THD}$ typ. 0.4%.

PRICE: $£ 47.95+99 p$ p\&p+VAT.

NEW PRODUCT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful "TEXAN"
 design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring.
Typ. Spec. $20+20 \mathrm{~W}$ a.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input $\mathrm{S} / \mathrm{N} 72 \mathrm{~dB}$. Headphone output. Tape In/Out facility (for noise reduction unit, etc). Toroidal mains transformer.

PRICE: $£ 29.95+99 p$ p\&p+VAT.

STEREO MODULE TUNER

A low cost Stereo Tuner based on the Mullard LPII86 RF module requiring no alignment. The IF comprises a ceramic filter and highperformance IC. Variable INTERSTATION MUTE. PLL stereo decoder IC.
Typ. Spec. Sens. $30 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ mono @ $1.8 \mu \mathrm{~V}$. Tuning range $88-104 \mathrm{MHz}$. LED sig. strength indicator. LED Stereo indicator. THD typically 0.4%.

PRICE: Stereo $£ 26.32+85 p$ p\&p + VAT. Mono $£ 22.40+85 p$ p\&p + VAT.
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS.

SUB ASSEMBLIES

BASIC NELSON-JONES TUNER
Supplied as a printed circuit board with all components and screening box to build a varicap tuner module. Performance spec as above for complete N-J Tuner. For suitable stereo decoders see below. (Illustrated without screening box.)

PRICE: $£ 12.88+25$ p p\& + VAT.

BASIC MODULE TUNER

Supplied as a printed circuit board with all components and screened Mullard LP1186, to build a mono or stereo tuner module. Performance spec as above for Stereo Module Tuner complete kit.

PRICE: Mono $£ 11.11+25 p$ p\&p+VAT; Stereo $£ 13.89+25 p$ p\&p + VAT.
PORTUS-HAYWOOD PHASE-LOCKED STEREO DECODER
Mk II version of this design (WW Sept. 1970). The lowest distortion phase-locked stereo decoder kit available (Typ. 0.05% @ N-J Tuner O/P level). Separation 40 dB up to 15 KHz .
Complete kit comprises PCB and all components, inc. stereo LED
PRICE: $£ 7.68+25 p$ p\&p + VAT.
PHASE-LOCKED IC DECODER
Integrated circuit phase-locked stereo decoder based on the MC1310. THD typically 0.3%. Separation $40 \mathrm{~dB} @ 1 \mathrm{KHz}$.
PRICE: $\{4.27+20 p$ p\&p+VAT.

PUSH-BUTTON UNIT

The six-position push-button unit used in our tuners and tuner/amp. Each track has the required diode law for stability of tuning. There are approx. 40 turns on each button and there are six separate moving pointers. An AFC disable switch is incorporated with each button. The unit is finished in black with red pointers.

PRICE: $£ 3.00+20 p$ p\&p+VAT.
Please send SAE for complete lists and specifications.
INTEGREX LIMITED, $\begin{gathered}\text { Portwood Industrial Estate, Church Gresley, Bur } \\ \text { Tel. Swadlincote (0283 87) } 5432 \text {. Telex } 377106 .\end{gathered}$

Soldering Irons?

These we can supply, on good deliveries, from our tremendous range of specialist tools. At very attractive prices.

Seventeen different models and 71 different bits to choose from. All backed by LITESOLD's 25 years of experience.

Whatever the application, we probably have exactly the right iron.

Low voltage. Mains. Miniature to large sizes. Special temperatures. Copper and Long-Life bits. Electronically controlled irons. Models with burn-proof leads, indicator lamps. Plus a useful range of accessories.

Please send for FREE DETAILS, or give us a call to talk about your problem.

LIGHT SOLDERING DEVELOPMENTS LIMITED

PHILIPS

'Cash andCarry' comes to

 TV test gear New Philips PM550r Colour Bar Pattern GeneratorPhilips new portable 5501 is specially designed for $B \& W$ and Colour TV service at your customer's home! It offers pushbutton selection of five essential test patterns ... for installations, fast checks and repairs on TV and CTV receivers. Extremely light and portable - small enough to be carried in a small case or tool kit. And not too heavy on price, either.

This new generator is strong and well-designed. It comes complete with the Philips promise : continuity of development with world-wide service and guaranteed spares back-up. A promise Philips is big enough to keep!

Philips Electronic Instruments Dept.
York Street Cambridge England CB1 2PX
Tel: Cambridge (0223) 58866 Telex: 817331

analogue instruments

TM2
A.C.ID.C. MILLIVOLTMETER 1 mV to 300 V f.s.d.
10 Hz to 5 MHz frequency range
$10 \mathrm{M} \Omega$ input impedence
Mains or battery operated

Ask for details

FARNELLINSTRUMENTS LIMITED • INSTRUMENTS DIVISION SANDBECK WAY WETHERBY • YORKSHIRE LS22 4DH • TEL. 0937-3541

WW-027 FOR FURTHER DETAILS

GRAMPIAN REPRODUCERS LTD

Make your optical system really work

Try this convincing test with OCLI's HEA* visible anti-reflection coating.
If you study the disc above, you will see just how much HEA (High-Efficiency Anti-reflection) could improve your optical system.

The central portion is coated with HEA and the remainder of the disc is left uncoated.

Viewing the lettering through the disc, as for a typical instrument presentation, the tremendous difference in reflected glare between the coated and uncoated parts of the disc is immediately apparent. In fact, HEA gives over ten times less reflection than an uncoated surface.

If you would like personal proof of HEA's effectiveness, we would be pleased to send a disc for examination.
*HEA is a Registered Trademark. High performance anti-reflection coatings are also available in the infrared.

OCLI Optical Coatings Ltd., Hillend Industrial Estate, Dunfermline, Fife; Scotland KY11 5JE. Tel. Inverkeithing 3631 (038-34 3631). Telex. 72307

MAIN AGENTS

IRELAND: LENNOX LTD P.O. BOX 212A DUBLIN 2 DENMARK: SCANFYSIK AB 13/15 HJORRINGADE DK-2100 COPENHAGEN
SWEDEN: EMI SVENSKA, AB TRITONVAGEN 17 fack S-171 19 SOLNA 1
NORWAY: EMI NORSK AS POSTBOKS 42 KORSVOLL OSLO 8

MALAYSIA: LEC Sdn Bhd P.O. BOX 60 BATU-PAHAT SOUTH AFRICA PROTEA (PTY)
38 FARADAY STREET
JOHANNESBURG

Audio TestSet

foramplifiers,mixers tape recorders

Checks ... frequency response signal/noise ratio distortion cross-talk wow \& flutter drift
erasure sensitivity output power gain
in one compact unit.
Auxiliary Unit provides extra facilities for Studio testing.

Send for leafiet RTS2

Ferrograph Company Limited Aurrema House 442 Bath Road Cippenham Siough Buckinghamshire S:1 6BB
Telephone Burnham ©062 86162511 Telex: 847297

FERROGRAPH
A member of the Wilmot Breeden group

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London)

 138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$WW-029 FOR FURTHER DETAILS

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energiziny current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.	Our product range comprises: Low profile (flatform) Timing - Miniature • Low contact capacity Hermetically sealed Stepping Mains switching - Latching Contact stacks - Solenoids
	Hybrid Relays AZ 1435... 1441 AZ 1435 Voltage monitor (9... 30 V) AZ 1436 Pick-up retarder ($1 . .30 \mathrm{~s}$) AZ 1437 Drop-out retarder ($1 . .30$ s) AZ 1438 Pulse time limiter ($50 \ldots 1500 \mathrm{~ms}$) AZ 1439 Pulse shaper (monoflop) ($50 \ldots 1500 \mathrm{~ms}$) AZ 1440 Pulse generator (multifiop) ($0.1 . . .30$ s) AZ 1441 Pulse-operated relay (flip-flop) $(24 V+10 \%-15 \%$. approx. 30 mA max.)

We resolve your switching problems rapidly and expertly. Please contact us for further details.

Zettler UK Division
Equitable House, Lyon Road
Harrow, Middx. HA1 2DU, Tel. (01) 8636329
A member of the worldwide ZETTLER electrical engineering group. est 1877
Please look us up at the INTERNEPCON Exhibition, Brighton, 14-16 OCT., 1975. STAND No. 3314, Red Hall, Metropole Convention Centre.

Industrial Tape Applications
WW - 083 FOR FURTHER DETAILS

impex motors and drive systems off the shelf

A new division of McLennan Engineering Ltd has been formed to stock the full range of Impex Small Electric Motors and drive systems together with a wide range of standard industrial servo components and electronic control systems

Motors include DC. Uni-directional and Reversible Synchronous and Stepping types offering a comprehensive spectrum of specifications suitable for a wide variety of applications.

In addition to offering an off-the-shelf supply facility for motors and components, McLennan have considerable experience in the solution of actuator and servo problems using synchronous, stepping and DC motor techniques.

So whether you require one motor or one hundred; or you simply have a problem abou't which you would like a second opinion, contact

McLennan Engineering Ltd.
Kings Road, Crowthorne, Berkshire
Telephone: Crowihorne 5757/8

TAKE A CLOSE LOOK

at a professional recorder that offers high performance excellent reliability and is very easy to maintain. Ask yourself why so many commercial radio stations and recording studios are doing their best to wear them out. and not having much success. Decide if you need mono or stereo. console transportable or rack mounting versions and then inquire about prices.
We are sure you will be very pleasantly surprised.

BIAS ELECTRONICS LTD. $01-5408808$
572 KINGSTON ROAD, LONDON SW20 8DR 572 KINGSTON ROAD, LONDON SW20 8DR

WW-031 FOR FURTHER DETAILS

THE S3 PRESSURE UNIT has been designed to meet the growing demand for considerably increased power handling capacity without the sacrifice handiter efficiency or frequency of either efficiency or frequency response. It features a powerful cera mic magnet and a strong but light diaphragm and voice coil assembly with many new features It is a robust, ieliable unit of exceptional quality. The S3 is one of the units of the Vitavox Power Range

[^0]

vitavox

Westmoreland Road London NW9 9RJ
Telephone: 01-2044234

FAST RESPONSE STRIP CHART RECORDERS
 Made in USSR

Specification

Basic error	2.5\%
Sensitivity	8mA F.S.D.
Response	0.2 sec.
Width of each channel	. 80 mm
Chart speeds, selected by	0.1-0.2-0.5-1-2.5-
	$-5-12.5-25 \mathrm{~mm} / \mathrm{sec}$.
Chart drive	$200-250 \mathrm{v} 50 \mathrm{~Hz}$

Type H320-3
Three-pen

Recording:
Syphon pen directly attached to moving coil frame. curvilinear co-ordinates

Equipment: Marker pen. Timerpen, Paper footage indicator, 10 rolls of paper, connectors. etc.

Dimensions: \quad H32O-1: $285 \times 384 \times 16.5 \mathrm{~mm}$ H320-3: $475 \times 384 \times 16.5 \mathrm{~mm}$ PRICE: H320-1 $£ 80.00$ H320-3 £130.00 Exclusive of VAT
Available for immediate delivery

44A WESTBOURNE GROVE, LONDON W2 5SF
Telex: 261306

COWITIS THE AMCRONM60O

M600 POWER AMPLIFIER

Coupling two M600s together through a socket provided at the back of each amplifier produces a 140 Volt balanced output. This configuration is called an M2000, and produces 2 kilowatts into an 8 ohm load. A peak catching meter, and threshold lights provide convenient front panel output monitoring.

DC-Coupled

The M600 amplifier is a new high-power amplifier capable of providing 1.350 watts RIMS over a bandwidth of DC to 20 kHz .70 volts RMS at the output terminels, very low nois 3 and cistortion. $A C / D C$ selector switch. plug-in front panel circuit board built-in fan for cooling and the ability to connect two M6COs together to double the power and output voltage, are just some of the features which place the Amcron M600 in the forefront when considering power amplifiers
Driving shakers and vibrators, motors and difficult speaker systems, providing power for material or components testing or used as a large distribution arr plifier, the M600 is equally at home

Brief specifizations:

RMS power out
DC output Power bandwidth Phase response Siew rate Damping factor (8乞) Hum \& noise THD
Dimensions
751) watts into 8 ohms 1.350 watts into 4 ohms 20 amps (supply fuse limited) DC to $20 \mathrm{kHz}+1 \mathrm{db}-10 \mathrm{db} 600 \mathrm{~W}$ intn 8Ω $+0 \mathrm{db}-15 \mathrm{db} D \mathrm{C}-20 \mathrm{kHz}$ $16 \mathrm{~V} / \mu$ second
greater than $400 \mathrm{DC}-1 \mathrm{kHz}$
greater than
120 db below 600 Watts
less than $0.05 \% \mathrm{DC}-20 \mathrm{kHz}, 600 \mathrm{~W}$ into $\overline{8} \Omega$ $1 \mathrm{~g}^{\prime \prime}$ std rack. $83 / 4^{\prime \prime} \mathrm{H}, 16^{1 / 2^{\prime \prime}}$ deep. Wt. 92 lb .

A message for dealers in exclusive high quality audio equipmenteverywhere.

It is now proposed to expand the distribution of RADFORD products by supplying from the factory in BRISTOL direct to franchised dealers outside the United Kingdom.

If you have a discriminating clientele looking for the finest audio equipment and loudspeaker components available, you could profit from a direct RADFORD franchise.

Write today for details and leaflets.
Radford Audio Ltd
Ashton Vale Road
Bristol BS3 2HZ England
[R RADFORD

ZD22

Stereo Pre-amplifier Control Unit
A stereo pre-amplifier of virtually zero distortion. Inputs for disc, tuner, and two tape machines. Size $17^{\prime \prime} \times 4 \frac{3}{4}{ }^{\prime \prime} \times 10^{\prime \prime}$ deep.

HD250 Stereo Integrated amplifier
Incorporates ZD22 pre-amplifier with low distortion power amplifier of 50 watts per channel into 4-8 ohms load. Headphone output. Illustrated above. Size $17^{\prime \prime} \times 4 \frac{3}{4}{ }^{\prime \prime} \times 11^{\prime \prime}$.
£195.00
ZD100 Power amplifier
Power output 120 watts in 4 ohms and 75 watts into 8 uhms. Distortion less than 0.004% up to clip level. Size $17^{\prime \prime} \times 4 \frac{3}{4}{ }^{\prime \prime} \times 13^{\prime \prime}$.
£175.00

ZD200 Power amplifier

Power output 250 watts into 4 ohms and 150 watts into 8 ohms. Distortion less than 0.004% up to clip level. Size $17^{\prime \prime} \times 7^{\prime \prime} \times 13^{\prime \prime}$.
£295.00

WW-091 FOR FURTHER DETAILS
 Valves, Industrial Valves, T.V. Picture Tubes, Cathode Ray Tubes, High Reliability Valves and a full range of Receiving Valves always available. Professional import and export enquiries welcomed.

EDICRON LIMITED

Redan House, 1 Redan Place, London W2 4SA Telephone: 01-727 0101 Telex: 265531
Cables: Edicron London W2
WW-069 FOR FURTHER DETAILS

Problem

Where to obtain a low-cost device to use as a linear output stage for mobile and marine radio under SSB conditions. \qquad

THE M-O VALVE CO LTD, Hammersmith, Londoh, England W6 7PE. Tel: 01-603 3431. Telex: 23435. Grams: Thermionic London. S\&C WW-050 FOR FURTHER DETAILS

MAKE YOUR OWN PRINTED CIRCUIT BOARDS

IN PLANT OR AT HOME, SIMPLY RUB DOWN, ETCH AND WASH OFF. WE OFFER A COMPLETE SYSTEM OF ACID RESIST TRANSFERS THAT GIVES A PROFESSIONAL FINISH QUICKLY AND AT LOW COST.

Acid resistant transfers for direct application to P.C. Board Inis is a new approach to printed circuit board manufacture, giving a professional finish with all details that an electronics engineer would require, including al! drilling positions automatically marked
Ideal for single unit boards or small quantities. All at a very low cost - for example an average $6^{\prime \prime} \times 4^{\prime \prime}$ layout would cost less than 30 p , and the time taken under one hour, including etching to complete.
taken under one hour, including ecthing of 10 sheets of self adhesive acid
The system is simple, briefly it oonsists of resistant transfers made in required shapes - ie edge connectors; lines, pads, dual in line I.C. s 8-10-12. T. O. 5 Cans, 3-4 lead transistors, eft., etc which only require pressing into the required positions on the 'printed circuit board before etching.

* NO ARTWORK
* NO PHOTOGRAPHY
* SAVE TIME
\star SAVE MONEY
* GUARANTEED

The printed circuit transfer system is a genuine offer to the public and industry. A full money back guarantee is sent with each order.

Complete system including post and VAT
$£ 2.50$
Overseas order $£ 1.00$ extra
Printed circuit board PCB transfer system patent applied for

Send stamped addressed envelope tor FREE sample and instructions
P.M.S. NAMEPLATES. BROOK STREET, HIGHER HILLGATE, STOCKPORT, CHESHIRE

THE INSIDE STORY - 1
 FOOLPROOF F.M.

 the heart of the F.M. tuner system which has set new standards of performance; standards which consider the needs of the user first, and then provides those needs with technically sound and well engineered design.Features include a pre-aligned front end, integrated circuit i.f. amplifier, 3 stage ceramic i.f. filter, integrated mute system, varicap tuning by ten turn pot, plus 17 other semiconductors.
IN KIT FORM $\mathbf{£ 2 7 . 0 0}$
READY BUILT
Postage $30 p$ UK $+25 \%$ VAT

How is it different? Well, to begin with the tuning is temperature compensated against drift, and provided with a powerful a.f.c. which holds stations firmly but does not prevent you tuning to a new programme. Then there is a single lamp tuning indicator allowing very accurate adjustment, and this same circuitry also mutes the audio output when stations are out of tune. In addition, a new system of interstation noise suppression is also included, to ensure that only wanted stations are heard and no spurious noises are produced, and this circuitry, in turn, extinguishes the tuning lamp so that it only indicates when a station is received.

All our kits are fully guaranteed, and backed by a complete after sales service, ensuring your satisfaction.

Full details of our complete tuner kits and assembled modules available (s.a.e.) from:

YconLesign

FANTASTIC OFFER—DIGITAL CLOCK KIT SAVE £££s

- Fast building
- Easy to follow instructions
- No knowledge of electronics required
- The most comprehensive kit and instructions you have ever seen
now only $£ 12.50$
$+£ 1.50$ VAT \& $p \& p$

OR READY BUILT \& FULLY TESTED
$£ 18+£ 1.90$ VAT $p \& p$

Size $61 / 4 \times 3 \times 21 / 2$ Mains Operation $50 / 60 \mathrm{HZ}$
12/24 hour mode

KIT COMPRISES or separately at-

1 MOS Clock Chip 12-24 hr option
$40.63^{\prime \prime}$ LED Displays (latest HI BRI Type)
1 Segment Driver Chip
1 Pack Resistors Caps $\quad 460$
1 Pack Resistors, Caps., Transistors, switch
1 Double Sided Glass Fibre P.C. Board
1 Double Wound Mains Transformer
1 Circuit / Assembly Manual
1 Futuristically styled Case (state colour) Yellow. Orange, Red, Black, White, Mauve, Green, Blue -NB All Prices INCEUDE VAT \& $p \& p$
C.W.O. to:

Pulse Electronics Ltd An
 Dept. WW2, 202 Shefford Road, Clifton, Beds. Tel. Hitchin 0462814477
 nomarn

Distributors

Scmicomps Led., Wembley. 01-903 3161. Telex: 935243 Mercia Electronics, Coventry
Keighley. 0535265191 . Telex: 517343;
Kelso, 2366 \& 2369. Telex: 72692
Edmundson Electronic Components Lid.,
Birmingham. 021-359 2410; London. 01-2370404
Swift-Hardman Ltd., Rochdale.
0706 47411. Telex: 63237

0203 24091. Telex: 311243
SDS Components Itd., Portsmouth. 070565311 . Telex: 86114
J. McKeever Ltd., Dublin.

764869 \& 760589. Telex: Dublin 5608

FERRANTI semiconductors FE. 468 血

WW-078 FOR FURTHER DETAILS

electropian
P.O. Box 19, Orchard Road, Royston, Herts, SG85HH. Telephone: Royston 41171 anteratracon monenvs Goup Company

MODULAR DISPLAYSE COUNTERS AT NEW LOW PRICES!

The Spectra-Tek 2500 CLD is a modular solid-state counter with one inch high numerical display. Each module is sell contained with counter, latch and driver IC's and provides one decade of display in seven segment form, together with a B.C.D. output. Since the units utilise standard TTL they are compatible with other logic elements to form complete courting and display systems with batching and totalising facilities. The 2500 D is a simplified version of the CLD without counter and latching circuits being driven from a B.C.D. input. The panel mounting modules can be assembled into multi decade arrays with end cheeks and red or amber polarising filters. These versatile modules have distinct advantages over the more conventional displays and counters:-
t SPECIALLY AGED, LONG LIFE FILAMENT BULB DISPLAYS LOW VOLTAGE DC OPERATION
TTL COMPATIBLE IINPUTS AND OUTPUTS
EASY ASSEMBLY OF MULTI DECADE DISPLAYS
BANKING KITS AND FILTERS AVAILABLE FOR ANY NUMBER OF DIGITS

Up to and including December 31 st, 1975 these units are available at the special low prices shown below. This represents up to a $\mathbf{4 0} \%$ saving. Offer subject to availability from current stock.

SPECIAL OFFER PRICE

2500 CLD - $£ 9.99$ + VAT per digit (electroplan order code (18-11) 2500 D - $£ 8.20$ + VAT per digit (electroplan order code (18-22) DELIVERY SAME DAY DESPATCH BY POST

DEMA ELEGTRONIGS
 INTERNATIONAL
 ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST

```
CT 5001 40 Pin 12 Dig 4 Funct. Chain up Fix Dec Cal
CT 5002 Same as 5001 only Battery Operated
CT 5005 28 Pin 12 Digit 4 Function w/Memory
5314
1101 Oscillator,S Sine. SQu
1103 1024 Bit Ram Mos.
2102 1024 But Static Ram

\section*{TL 7400 SERIES}
```

7400	£ 0.11	7440	E 0.11	7485	¢. 0.85	174155	£. 0.59
7401	0.11	7441	0.60	7486	024	74156	0.59
7402	0.11	7442	0.55	7488	2.50	74157	0.70
7403	0.11	7443	0.75	7489	150	74158	0.70
7404	0.13	7444	0.75	7490	0.73	74160	0.85
7405	0.13	7445	070	7491	0.71	74162	0.85
7406	0.24	7446	0.85	7492	039	74163	0.85
7407	0.24	7447	075	7493	039	74164	0.25
7408	0.12	7448	0.69	7494	0.42	74165	+ 25
7409	0.12	7450	0.11	7495	0.51	74166	115
7410	011	7451	0.12	7496	0.55	74170	1.65
7411	0.16	7453	012	74100	1.25	74175	0.85
7413	0.26	7454	012	74107	0.25	74180	0.85
7416	0.25	7460	0.11	74121	0.25	74181	2.95
7417	0.25	7470	025	74122	0.35	74182	0.85
7420	0.11	7472	0.21	74123	0.49	74192	0.90
7426	0.22	7473	0.26	74145	0.85	74193	0.90
7430	011	7474	0.26	74150	0.75	74194	0.95
7432	0.22	7475	0.37	74151	057	74195	0.80
7437	024	7476	0.26	74153	0.59	74198	170
7438	0.24	17483	065	174154	115	174199	170
HIGH SPEEO 74HOO							
74H00	£ 016	174 H 20	£016	174 H 2	¢0 016	74 H 72	£. 0.26
74H01	0.16	$74 \mathrm{H21}$	0.16	74 H 53	2.16	74 H 74	2.28 0.28
74H04	016	74 H 22	016	74H55	016	74H76	0.28
$74 \mathrm{HO8}$	0.16	74H30	0.16	74H60	016		
74 H 10	016	74 H 40	0.16	$74 \mathrm{H61}^{\text {a }}$	016		
74H11	016	174 H 50	016	$174 \mathrm{H62}$	0.16		

```

\section*{CMOS 4000 SERIES}
```

4000A	£ 021	14014	£ 110	14028	£ 0.95	4073	£. 0.29
4001	021	4015	110	4030	0.50	4075	029
4002	021	4016	055	4042	095	4078	029
4006	0.90	4019	110	4049	0.48	4081	029
4007	0.29	4020	115	4050	048	4082	0.29
4008	1.30	4021	110	4066	075	4528	0.85
4009	049	4023	0.21	4068	0.29	4585	1.25
4010	049	4024	0.85	4069	029		
4011	0.21	4025	021	4071	0.29		
4013	0.29	4027	0.75	4072	029		
dti							
930	£ 010	\|936	£ 010	1944	E. 010	962	E 010
932	010	937	010	946	010	963	0.10

LINEARS

LM300	т099	¢ 045	$340 \cup$	T092	£. 1.25	739	A DIP	£065
301	\checkmark DIP	0.25	380	A DIP	80	741	\checkmark DIP	0.22
302	T099	045	546	\checkmark DIP	0.51	747	A DIP	044
304	TO100	0.50	550	A DIP	055	748	\checkmark DIP	025
305	т099	0.60	555	\checkmark DIP	0.45	5556 (1456)	\checkmark DIP	0.65
307	\checkmark DIP	0.38	556	B DtP	0.75	5558 (1458)	\checkmark DIP	0.65
	T099	0.45	560	B DIP	2.55	ULN 2:11	A OIP	0.95
308	A DIP	0.65	561	B DIP	255	LM3900	A DIP	0.35
	т099	0.90	562	B OIP	255	75450	\checkmark OIP	0.45
309K	TO3	1.45	565	A DIP	145	75451	\checkmark OIP	0.45
311	\checkmark DIP	0.90	566	\checkmark DIP	1.50	75452	V OIP	045
320K	TO 3 NEG		567	\checkmark DIP	1.60	75453	\checkmark DIP	0.45
	5.2.12.15	1.25	709	A DIP	0.22	75454	\checkmark DiP	0.45
324	A DIP	1.07	710	A DIP	0.25			
340 K	TO3	2.10	711	A OIP	0.30			

```

Mini Dip \(A=14 \mathrm{~L}\) Dip \(\quad B=14 \mathrm{~L}\) Dip
Data sheers supplied on request \(A\) do 20 ea excepted as noted
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{MEMORIES w/DATA} & \multirow[b]{5}{*}{\[
\begin{gathered}
\text { MIN } \\
\text { OROER }
\end{gathered}
\]} & \multicolumn{5}{|l|}{CALCULATORS \& CLOCKS w/DATA} \\
\hline 1101 & \multirow[t]{2}{*}{256 Bit Ram Mos 1024 Bit Ram Mos} & \multirow[t]{2}{*}{£ 9.95} & & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Cal Chip} & \multicolumn{2}{|r|}{£ 1.95} \\
\hline 1103 & & & & & Cal Chim & & \multicolumn{2}{|r|}{195} \\
\hline 7489 & (8225) 64 Bit Ram TTL & 1.50 & & 5005 & \multicolumn{2}{|l|}{Cal Chip} & \multicolumn{2}{|r|}{295} \\
\hline 8223 & Programmable ROM & 2.50 & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Clock Chip
Clock Chip}} & \multicolumn{2}{|r|}{295} \\
\hline 5260 & 1024 Bit Ram Low Power & - 195 & \multirow[b]{2}{*}{£ 2.5} & 5311
5312 & & & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{295
2.95}} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{LEDS}} & & & \multicolumn{2}{|l|}{Clock Chip} & & \\
\hline MV 5020 Jumbo Red or Clear & & £ 015 & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{5316 Clock Chip Data only for any of above}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{3.95
0.50}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MAN I Red 7 Seg 270
MAN 3 R Red Seg. 127}} & 1.30 & & Data & & & & \\
\hline & & . 35 & & \multicolumn{5}{|l|}{Refundable Agarnst Purchase} \\
\hline \multicolumn{2}{|l|}{MAN 5 Green 7 Seg. 270} & 1.75 & \multicolumn{6}{|l|}{TRANSISTORS} \\
\hline \multicolumn{2}{|l|}{MAN 6.6 Solid Seg.} & 2.50 & \multirow[t]{5}{*}{2N 2219A
2N 2222
2N 2369
2N 2905A
2N 3227} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { TO5 } \\
& \text { TO } 18 \\
& \text { TO } 18 \\
& \text { TO5. } \\
& \text { TO } 18
\end{aligned}
\]} & £ 037 & 2N 4124 & TO92 & 010 \\
\hline \multicolumn{2}{|l|}{9 Digit Array Fairchild 37} & \multirow[t]{2}{*}{} & & & 0.15 & 2N 4126 & TO92 & 010 \\
\hline \multicolumn{2}{|l|}{9 Digit Array Fairchild 37 with clear magnifying lens} & & & & 0.10 & 2N 4401 & T092 & 0 10 \\
\hline \multirow[t]{2}{*}{10\%} & & & & & 0.38 & 2N 5225 & TO92 & 0. 10 \\
\hline & orders over £ 10 & £ 10 & & & 0.32 & 2N 5226 & TO92 & 010 \\
\hline \multirow[t]{2}{*}{15\%} & \multirow[t]{2}{*}{Discount on orders over £ 25} & & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{ALL ITEMS NEW BRANDED SUBJECT TO MANUFACTURER`S GUARANTEE}} \\
\hline & & & & & & & & \\
\hline
\end{tabular}

TERMS: PRICES AS LISTED ARE IN BRITISH POUNDS \& PENCE. SEND BANK CHEQUE OR PERSONAL CHEQUE WITH ORDER. ENCLOSE RECEIPT IF INTER. POSTAL MONEY ORDER IS USED. MASTERCHARGE, BANKAMERICARD. ACCEPTED. CABLE DEMAFLINTL.

DEMA Electronics International
P.O. Box 407A

San Ramon, CA 94583 U.S.A.


WW-080 FOR FURTHER DETAILS


This new frequency multiplier produces an output frequency which is either 60X or 100 X the input frequency. Thus LF e.g.. low audio, can be resolved without counting for ages. 60X range converts Hz to RPM with any 1 sec . gate counter. NO WAITING NO RECIPROCALS ShelГпп INSTRUMENTS LTD., 24 Copenhagen Street, LONDON N1. Tel: 01-278 6273


\section*{FREQUENCY} MULTIPLIER FX-1

RESOLVE 0.01 Hz IN ONLY FOUR SECONDS OR READ RPM DIRECTLY
WORKS WITH ANY FREQUENCY METER .
ONLY E27.50 \(\begin{aligned} & \text { inc p\&pp } \\ & \text { ex vat }\end{aligned}\)

WW—009 FOR FURTHER DETAILS


WW-042 FOR FURTHER DETAILS

\section*{ELECTRONIC \\ INDUSTRIAL THERMOMETER}


THE MODERN WAY TO MEASURE TEM PERATURE A Thermometer designed to operate.as an Electronic Test Meter. Will measure temperature of Air. Metals, Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe. and internal \(1 \frac{1}{2}\) volt standard size battery. Model "Mini-On \(\mathbf{1}^{\prime \prime}\) measures from \(-40^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\), price f 17.50 Model "Mini-On Hi" measures from \(+100^{\circ} \mathrm{C}\) to \(+500^{\circ} \mathrm{C}\), price £20.00 (V.A.T. EXTRA)
Write for turther details to
HARRIS ELECTRONICS (LONDON),
138 GRAY'S INN ROAD, LONDON. WC1X 8AX ('Phone 01-837 7937)

WW-020 FOR FURTHER DETAILS

\section*{PETITE PRECISION!}

A \(12 V\) DC POWER TOOL FOR THE DESIGN AND RESEARCH ENGINEER
aVAILABLE IN KIT FORM OR SEPARATES

Diameter 33 mm
Weight 160 g Length 125 mm Torque 105 cmg RPM approx. 3000 at 12 V DC Power \(9 / 14 \mathrm{~V}\) DC Batteries or AC/DC transformer


\section*{PROTECT YOUR EQUIPMENT WITH STOPCIRCUIT MINIATURE CIRCUIT BREAKERS}


\section*{THESE ATTRACTIVELY DESIGNED CIRCUIT BREAKERS OF HIGH QUALITY FRENCH \\ MANUFACTURE ARE NOW AVAILABLE IN THEU.K. FROM STOCK AT COMPETITIVE PRICES}
\(\star\) Ratings from 0.04 amps to 25 amps .
* Thermal, thermal magnetic, magnetic
* \(1,2,3\) or 4 pole all with one pair of buttons
\(\star\) Fixings by single nut, 2 screws, plug in or din rail.
* Terminations can be screw, amp or solder
* Optional extras include signal contacts, tropicalisation and temperature compensation.
* Dimensions of single pole \(19 \times 59 \times 36 \mathrm{~mm}\)


\section*{RILTON ELECTRONICS LTD.}

BLAIR HOUSE, WHITEHALL ROAD CROWBOROUGH, SUSSEX Tel. 08926. Crowborough 4489

\section*{WW-088 FOR FIIRTHFR DFTAII.S}


USED THROUGHOUT THE WORLD. SAHWA'S EXPERIENCE OF 30 YEARS ENSURES accuracy, rellabillity. versatility. unsuapasseo tester performance COMES WITH EVERY SANWA. 6 Months' Guarantee MODEL P2B MODEL JP50 MOOEL BX 505 MODEL YX360TR MODEL US00X MODEL K30 THO
\begin{tabular}{|c|}
\hline \\
\hline £11.7 \\
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Excellent & Service \\
\hline MODEL F80TRD & £26.40 \\
\hline MOOEL AT45 & £23.15 \\
\hline MODEL 380CE & \(\underline{¢ 9.12}\) \\
\hline MODEL NIO1 & \{31.85 \\
\hline MOOEL 460ED & £35.13 \\
\hline MOUEL EMBOD & £74.50 \\
\hline MODEL RIONOCS & ¢7527 \\
\hline 1 inclúoe V.a.i & -152 \\
\hline
\end{tabular} Cuses oxira. available tor mosi meters, but not sold separately
sace imporitiens wux
(1)THITY ELEGTRONGSS LTD,

WW-048 FOR FURTHER DETAILS


AEL GATWICK hOUSE, HORLEY, SURREY, ENGLAND Tel: Horley (02934) 5353
Telex: 87116 (Aerocon Horlev). Cables: Aerocon Telex Horley WW-035 FOR FURTHER DETAILS


Si451 Millivoltmeter
\(\star 20\) ranges also with variable control permitting easy reading of relative frequency response

\section*{JES AUDIO INSTRUMENTATION}

Illustrated the Si453 Audio Oscillator SPECIAL FEATURES:
* very low distortion content-less than 0.03\%
\(\star\) an output conforming to RIAA recording characteristic
\(\star\) battery operation for no ripple or hum loop
\(\star\) square wave output of fast rise time
\(\mathbf{£ 5 0 . 0 0}\)
a/so available
Si452 Distortion Measuring Unit
* low cost distortion measurement down to \(0.01 \%\) with comprehensive facilities including L.F. cut switch, etc. ALL PRICES PLUS VAT
J. E. SUGDEN \& CO. LTD., CARR STREET, CLECKHEATON, W. YORKS. BD19 5 LA.

\section*{-TURNER-}

STEREO POWER AMPLIFIERS


A range of protessional stereo power amplifiers designed and manufactured to a very high standard
The A Series (Professional Studio Monitor) ampltfers feature dual power supplies to maintain full RMS power on both channels
The B Series (Professional) amplifiers feature single power supplies suitable for most music applications
MODEL A500 \(250+250\) watts RMS 4 ohms STANDARD WITH \(\quad\) E 380.00 §440.00 MODEL A \(300 \quad\) 150 + 150 watts RMS \(4 \mathrm{ohms} \quad\) £262.50 \(\quad\) £322.00 MODEL B300 150 watts RMS per channel \(\quad\) £210.00 \(\quad\) £250.00 MODEL B200 100 watts RMS per channel £170.00 £210.00
The above prices are list and exclusive of V,AT
Overseas Import Agents are invited to make their final applications for allocation of areas for 1976 exports

TURNER ELECTRONIC INDUSTRIES LTD. 175 Uxbridge Road, London W7 3TH

Tel. 01-567 8472

WW-047 FOR FURTHER DETAILS


WW-025 FOR FURTHER DETAILS

\section*{SHEETMETAL PUNCHES for quick,clean holes}
- Easiest and quickest way of punching holes in sheet metal (up to 1625 mm )
- Simple operation - \(\mathbf{1 0 0} \%\) British
- Burr-free holes-no jagged edges
- 57 Metric and Linear sizes

\footnotetext{
Used by all Government Services and most industries
}

Wholesale and Export enquiries to:
"O:MAX" (ELECTRONICS)LTD
44PENTON SIREET LONDON NIGOA Tol O12732500



WW-0こ3 FOR FURTHER DETAILS

\section*{Smind METAL INSTRUMENT}
- 1 * Endless Variety of Uses


VAT at 8\% to be added to all prices.
Model W H D PRiCE \(\begin{array}{lllll}3009-00 & 295 & 130 & 150 & \text { £5.80 }\end{array}\) \(\begin{array}{lllll}3009-10 & 235 & 130 & 150 & £ 5.63\end{array}\) \(\begin{array}{lllll}3009-20 & 295 & 130 & 200 & £ 6.47\end{array}\) \(\begin{array}{lllll}3009-30 & 235 & 96 & 150 & £ 5.60 \\ 3009-40 & 295 & 96 & 150 & £ 5.95 \\ 3009 & 295 & 96 & 200 & \end{array}\) 3009-50 \(295 \quad 96 \quad 200 \quad £ 6.80\)
AMTRON(UK)LTD, 4/7 CASTLE ST. HASTINGS. SX
TRADE ENQUIRIES INVITED. ASK FOR QUANTITY DISCOUNT DETAILS. IORDERS UNDER £25.00-P.\&P. EXTRA).
\begin{tabular}{|c|c|c|}
\hline  & \begin{tabular}{l}
QUAR \\
CHRO \\
The range of electronic chron form \\
Send S.AE for Telephone PE 049481). \\
Trade and over
\end{tabular} & \begin{tabular}{l}
OMETER \\
o Systems and Timing ers is now available in kit \\
detals. \\
4661 (STD code enquiries welcome.
\end{tabular} \\
\hline PRICES & KIT & ASSEMBLED \& TESTED \\
\hline  & +3875
+4375
\(\pm 5250\)
+5750 & \(\gtrless 4940\)
£5460
E63.70
\(\pm 68.90\) \\
\hline \multicolumn{3}{|l|}{No VAT reaured for overseas orders bul dud 10\% for air parcet post Add \(8 \%\) VAT UK only; postage and packing included} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
OUTSTANDING FEATURES DF THE MDDEL 401 DIGITAL CHRDND̄METER \\
* One second per month accuracy at 20 C \\
* 3 MHz AT cut quartz crystal used for best possible temperature stability \\
* All versions provide security against timing inaccuracies caused by mains-borne interference and short term mains frequency variations \\
* Rechargeable nickel-cadmum battery versions offer not only portability but also protection against outright mains falure, may be left on charge continuously \\
* Rugged mechanical design ensures reliability for portable use \\
* Large. bright and easy to read LED display. 24 hour or 12 hour modes optional \\
* \(220 / 240 \mathrm{~V}\) mains or external battery operation 110 V version also avalable \\
* Weight 05 kg Width 13 cm , depth 5 cm . height \(10 \mathrm{~cm}(12 \mathrm{~cm}\) with stand) \\
* No-cost extras include precision engineered adjustable metal stand and power unt / battery charger \\
* 12 -month guarantee for correctly assembled kits and ready-built chronometers. Low cost Get-you-going service for kits, if required \\
* All components needed are supplied in kits, including wire, screws and case COMPREHENSIVE INSTRUCTIONS SUPPLIED WITH KITS
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
To ELECTRO SYSTEMS AND TIMING CO. \\
48 Robins on Road, Loudwater, High Wycombe, Bucks., HP13 7BJ ENGLAND \\
supply
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{Name} \\
\hline \multicolumn{3}{|l|}{Address} \\
\hline \multicolumn{3}{|l|}{I ENCLOSE CHEQUE/P O FORE} \\
\hline
\end{tabular}

\section*{\(\square\) Y ■ E \\ TRANSDUCER and RECORDER AMPLIFIERS and SYSTEMS}

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard \(19^{\prime \prime}\) crates \$mall size--low weight-realistic prices.


49/51 FyIde Road Preston PR1 \(2 \times 0\)
Telephone 077257560


WHY LISTEN TO YOUR FLOORBOARDS? LET YOUR SOUND ESCAPE with

\section*{EUROSTANDS}

What other stands have all these necessary
features? ?
\(\star\) Rubber mounts for enclosure protection.
SUPERB value at
\(\star\) Made from attractive high Impact ABS. ONLY
\(\star\) Available In BLACK or WHITE.
£13.75 inc. VAT
* Hollow square section for hiding wires.
\(\star\) Assembled in only a few minutes.
\(\star 8^{-}\)high unless otherwise specified.
To Europhonic
Colour.
Please rush me .............. pair(s) stands.
I enclose cheque/PO at £14.50 payable to Europhonic
Name.
CWO payable to:
Address
Europhonic
92 Aldershot Rd Church-Crookham Hampshire
My Make
Heet (02514) 22055
speakers Model
Trade enquiries wel-
are Width \& Depth.................... come


Hard-to - find tubes and semiconductors are normally included in our quotations: We try to give a complete answer.
AEL GATWICK HOUSE HORLEY SURREY RH6 9SU Telex 87116 Cables Aerocon Telex Horley Telephone Horley 5353

WW-034 FOR FURTHER DETAILS

\section*{ELECTRONIC POWER UNITS}

FOR XENON ARC AND MERCURY ARC LAMPS
UNITS AVAILABLE FOR LAMPS RANGING FROM 75 TO 6500 WATTS. Lamp housings and lens systems manufactured as standard off the shelf models or to specific design.

K. T. Manners Design Ltd.

33 Percy Street, London WIP 9FG Telephone: 01-580 6361. Telex: 28604


\section*{IS CHILTON'S MIXER THE BEST FOR YOUR USE?}

Magnetic tapes Itd make the 10/2 above as well as a \(16 / 2\) and a \(12 / 4\) with all the inherent flexibility and quality customarily found in big studio mixers. Most of our mixers are constructed to meet the varying demands of the customer, perhaps we can do one for you. Prices start at \(£ 365\) for the basic \(10 / 2+\) VAT@ \(8 \%\).

MAGNETIC TAPES LTD.
Chilton Works, Garden Road, Richmond Surrey TW9 4NS - 01-876 7957

ANADEX CF-700

\section*{1 GHz COUNTER FOR £475}


Features include:-
\(\star 1 \mathrm{GHz}\) count rate with 1 Hz resolution
* 30 mv sensitivity with high overload capa-
bility
* 8 digit 'SPERRY' display

Also: Model CF-710 giving 0.001 Hz resolution up to 10 kHz

\section*{aspen}
electronics limited
18a HIGH STREET, NORTHWOOD, MIDDX HA61BN
TELEPHONE NORTHWOOD 27688


BE FAIR TO YOUR MUSIC
Reproduction of sound and its acceptability is dependent on a combination of physical parameters not yet fully explored. We believe that only a compatible combination of specifications will
enable a system to
reproduce music. We have taken care that the NAC 12 and NAP 160 pre and power amplifier will do so faithfully, while accepting the output of any pickup cartridge and driving any loudspeaker


Naim Audio Letd. 11 Salt Lane, Salisbury, Wilts. Tel: (0722) 3746
WW-026 FOR FURTHER DETAILS
Audio Connectors
\begin{tabular}{l} 
Broadcast pattern jackfields, jackcords, plugs \\
and jacks. \\
Quick disconnect microphone connectors \\
Amphenol (Tuchell miniature connectors with \\
coupling nut. \\
Hirschmann Banana plugs and test probes \\
XL compatible in-line attenuators and \\
reversers. \\
Low cost slider faders by Ruf. \\
Future Film Developments Ltd. \\
90 Wardour Street \\
London W1V 3LE \\
\(01-4371892 / 3\)
\end{tabular}

WW-032 FOR FURTHER DETAILS

\title{
fault finding no fiddle \\ With the AVO TT 169 in-circuit transistor tester. Go/No Co tests almost any transistor, diode or thyristor without de-soldering, without damage Find out how it can save you time, save you money. \\ You'll find the price is no fiddle either.
} Contact your local wholesaler, or us:
 1 \(\qquad\)
avo Limited, Dover Kent CT17 gen Telephone: Dover (0304) 202620

WW-036 FOR FURTHER DETAILS




\section*{High Voltage Precision Resistors for Monitoring and Control}

Constructed with high stability Micronox resistance films fired on to a solid cylindrical core, these high voltage resistors are ideal for use in high voltage power supplies and voltage control and monitoring applications where their temperature stability and long-term operating stability can provide immediate improvements in the specified performance of the equipment.

Resistance range to \(\mathbf{2 0 0 0}\) Megohms, non inductive if required
- Continuous operation as high as 30,000 Volts per section.

Selection tolerance, ratio matching and stability within \(0.1 \%\)
- Temperature Coeff. below \(80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\). Voltage Coeff. below \(1 \mathrm{ppm} / \mathrm{v}\). - Matched Coefficients to \(2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) even for ratios of \(10,000: 1\).

\section*{Tantalum Nitride Thin Film Chip Resistors to \(\mathbf{. 0 1 5}^{\prime \prime}\) square}

The passivation layer on these micro-miniature chip resistors is more durable than the glass used to protect other thin film resistors and yet it allows perfect reliable bonding.

Resistance ranges from 10 Ohms to 51 Megohms. All standard values.
Sizes from \(0.015^{\prime \prime}\) square to \(0.040^{\prime \prime}\) square, \(0.008^{\prime \prime}\) thick.
Substrate \(0.008^{\prime \prime}\) thick gold back pure silicon, 100 v proof.
- Pads of aluminium or gold for eutectic/ball or ultrasonic bonding
- Tolerances \(20 \%\) to \(1 \%\), low tcr, close tracking.
- Power dissipation \(1 / 4\)-watt ( 250 mw ) when mounted.
- Networks comprising several resistors custom made.

Contact Sole U.K. Agents:
BROOKES 8 GREEN LTD. GOMSHALL, GUILDFORD, SURREY Tel. Shere (048 641) 2956

WW-089 FOR FURTHER DETAILS

\section*{8 DECADE RESISTANCE BOX}


TIME ELECTRONICS LTD. Botany Industrial Estate Tonbridge, Kent Tel. Tonbridge (07322) 5993 ( 3 lines)

WW-039 FOR FURTHER DETAILS


\section*{POWER AMPLIFIER}

120 watts RMS into 4 ohms


For full details on our range of mixers, amplifiers and light control units, contact

\section*{ICELECTRICS LTD \\ 15 ALBERT ROAD, ALDERSHOT HANTS. TEL: 025228514}

WW - 030 FOR FURTHER DETAILS


\title{
Low-cost phasemeter
}


The A200 is an analcgue phasemeter which directly displays the phase difference between two inputs - both input channels are carefully matched internally so that phase shift within the instrument is negligible. Lead/lag indicators automatically register polarity.


WW-012 FOR FURTHER DETAILS

\section*{ROGERS}

AUDIO TEST EQUIPMENT

A comprehensive, versatile range of test equipment primarily designed for the measurement of high quality audio equipment but with additional applications in the electronics industry in general. The equipment is of particular interest to the professional iaudio engineer recording studios, broadcasting
 authorities and educational
establishments
DM344A Distortion Factor Meter. Designed to make accurate and rapid measurements of total harmonic distortion generated within high quality audio amplifiers, recordirig and transmission equipment Selling Price: c/w Bench Case £225.00 + VAT

S324 Low Distortion Oscillator. Generates a pure sine wave and has been designed as a general purpose low distortion signal source. The primary application, used in conjunction with the DM344A, is the measurement of tota harmonic distortion. Selling Price: c/w Bench Case £94.00 + VAT

AM324 AF Millivoltmeter. Designed tor voltage measurements in the audio and low RF ranges and princlpally for measuring low level signals in high impedance circuits. Selling Price: \(\mathbf{G} / \mathbf{w}\) Bench Case \(£ 92.00+\) VAT.

PS1A. Regulated Mains Power Supply Selling Price: \(£ 22.50\) + VAT

Model "A" Noise Generator. A portable battery operated unit designed or carrying out listening tests on oudspeakers. Pink or White noise can be selected and output can be continuous or burst. Output is continuously variable Selling Price: \(£ \mathbf{£ 7 . 5 0}\) + VAT

ROGERS DEVELOPMENTS (Electronics) LIMITED
4/14 Barmeston Road, London SE6 3BN, England Telephone: 01-6978511 (3 lines)

\section*{2 \({ }^{4}\) EXHBIITITON}


\section*{COMPONENTS MEASUREMENTS CONTROL REGULATION INSTRUMENTS SYSTEMS}
 BRUSSELS - HEYSEL HALL 8
\(25^{\text {th }}\) to \(29^{\text {th }}\) november 1975 from 10 a.m. to 6 p.m.

Distributors of TOKO coils, tunerheads, filters for AM,FM etc.
Ambit are the wireless specialists. We supply a comprehensive range of coils, filters, ICs, modules etc for AM/FM radio. We have systems for voltage tuned radio at ALL frequencies, available as components, kits, or ready built assemblies. A comprehensive folder of product information and prices is available for 40p., inc. PP. Alternatively, a complete shortform pricelist is available free of charge - to all requests accompanied by an SAE.

Tuners, tunerheads, IF modulas Larsholt 7252 tunerset. 1 uV for 26 dB S/N. Scan, AFC, AGC, muting, dual MOSFET input 4 twin varicap tuned stages. A complete \(88-108 \mathrm{MHz}\) receiver system for \(\mathrm{HiFi} /\) Monitor uses. Built and tested .. .. \(£ 24.00\). Ambit ET8000: As described for the ETI international FM tuner. A kit, with TOKO tuner, 3089/1310 IF and decoder, cer. amic IF filters, PSU with stabilizer, pilot tone filter.
Kit price (with EF5603) £28.00 EF5600 tunerhead .. . \(£ 10.00\) EF5603 tunerhead .. -. \(£ 9.05\) EC3302 tunerhead .. © \(£ 5.00\) Larsholt 8319 tunerhead \(£ 9.00\) All the above are varicap tuned MT3302 FM tuner with AM gang capacitor and 3:1 drive (3 stage FM tuning) .. £5.00 993090 deluxe MPX decoder 40 mV composite input, AF preamps, \(19 \& 38 \mathrm{kHz}\) filters. \(£ 7.60\)

Wireless system components. Varicap tuning accessories WS150: 150 mm WW slider pot for direct scale readout. \(£ 3.00\). 9932: 6 preset 40 turn pots for fixed station selection. £3.40 Edgewise meters for frequency, tuning, sig.strength. \(£ 2.50\) ea. (Includes 12 v bulb at 50 mA ). 78series voltage regs for tuning voltage 12, 15, 18v@1A£1.55. \(1 / 2 A\) versions for \(20,24 v £ 1.20\). Varicap AM wireless systems: EC720:Ant, RF and Osc. tuned by MVAM varicap diode. IC signal processing system, ceramic IF filter. For ferrite rod or loop antenna. Kit -... .. \(£ 8.00\) MVAM1 \(3 \times 300 \mathrm{pF}\) varicap diode. £2.75 or MVAM2 2 diode version \(£ 1.05\). ( \(2 \%\) match).

All prices exclude VAT. PP is \(20 p\) per order. Minimum invoice \(£ 7.50\), min. cwo \(£ 2\).

37 High Street, Brentwood, Essex. CM14 4RH. tel: 227050 telex: 995194 (Ambit Brentwood)

\section*{INTEGRAL SYSTEMS PRESENT THE} A1679 PULSE GENERATOR


Contains features previously found only on instruments FIVE TIMES the price.
- Wide Frequency Range - 10 Hz to 10 MHz
- Wide Pulse Width - 50 mS to 50 nS
- Single Shot Facility
- Exceptionally Fast Rise and Fall Times
- LED Indicator
- Battery Operated or Mains Operated (A1679M).

Taking advantage of integrated system techniques Integral Systems present one of the most versatile low cost pulse generators ever produced. Ideal for development, laboratory, amateur or educational requirements, it can be used for:
checking ICs
computers
oscilloscope testing
pulse responses of amplifiers
signal injection for medical research

\section*{Price A1679 £36.00 \\ A1679M £40.00 \\ incl. VAT + P\&P}

Manufactured by
INTEGRAL SYSTEMS
2-4 HUNGER HILL, DURSLEY
GLOUCESTERSHIRE. Tel. Dursley 3851

\section*{Audio Lahoratory Instruments}

To expand the distribution of Audio Laboratory Instruments RADFORD are looking for new dealer/agents outside the United Kingdom. If you are a supplier of laboratory instruments to professional and industrial end users it could be to your advantage to learn more about RADFORD audio measuring equipment.

Write today for leaflets and details of franchised dealership.

Radford Laboratory Instruments Ltd Ashton Vale Road
Bristol BS3 2HZ England
T/RADFORD


LDO3. Low Distortion Oscillator
Frequency range: \(10 \mathrm{~Hz}-100 \mathrm{kHz}\).
Distortion: Distortion less than \(0.002 \%\) over audio band. Size: \(17^{\prime \prime} \times 7^{\prime \prime} \times 8 \frac{33^{\prime \prime}}{}\).
LDO3B. Low Distortion Oscillator
As LDO3 but additionally fitted with output amplifier and
transformer providing a 600 ohm floating balanced output.
Unbalance: \(-80 \mathrm{~dB} .1 \mathrm{kHz} .-60 \mathrm{~dB} 10 \mathrm{kHz}\)
DMS3. Distortion Measuring Set
Frequency range: \(5 \mathrm{~Hz}-50 \mathrm{kHz}\).
Measurement down to \(0.001 \%\).
Size: \(17^{\prime \prime} \times 7^{\prime \prime} \times 8_{4}^{3 "}\).
£225.00
HSV1. High Sensitivity Voltmeter Average reading: \(10 \mu \mathrm{~V}\) to 300 V f.s.d.
HSV2. High Sensitivity Voltmeter
True r.m.s. reading. \(10 \mu \mathrm{~V}\) to 300 V f.s.d.
ANM1. Audio Noise Meter and High Sensitivity
Voltmeter
Average reading: \(10 \mu \mathrm{~V}\) to 300 V f.s.d.
includes Wide band, Audio band, IEC curve 'A' and CCIR
weighting networks. Illustrated above.
£150.00
ANM2. Audio Noise Meter and High Sensitivity
Voltmeter
As ANM1 but true r.m.s. reading.
£200.00

WW-092 FOR FURTHER DETAILS


RADFORD HD250
High Definition Stereo Amplifier


A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250

Rated power output: 50 watts av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven.

Maximum power output: 90 watts av. per channel into 5 ohms.
Distortion, preamplifier: Virtually zero (cannot be identified or measured as it is below inlierent circuit noise.)

Distortion, power amplifier: Typically \(0.006 \%\) at 25 watts, less than \(0.02 \%\) at rated out|put (Typically \(0.01 \%\) at 1 Khz )

Hum and noise: Disc, -83 dBV measured flat with noise band width 23 Khz (ref 5 mV ); -88 dBV " \(A\) " weighẗd (ref. 5 mv )

Line -85 dBV measured flat (ref 100 v )
\(-88 d \mathrm{BV}\) " \(A\) " weighted (ref 100 v )
Hear the HD250 at

\section*{SWIFT OF WILMSLOW \\ Depi WW}

5 Swan Street, Wilmslow, Cheshire (Tel. 26213) Mail Order and Personal Export enquiries: Wilmslow Audio, Swan Works, Bank Square, Wilmslow (Tel. 29599)
In stock: All Radford speaker drive units and crossovers, 2022 preamp, Low Distortion oscillator L003 and Distortion Measuring set DMS3.

\section*{Telequipment's new dual trace 10 MHz battery operated oscilloscope}

\(4 \times 9 \times 11\) inches! Weight, less than 10lb! Price, only \(£ 275^{*}\)
Small in all but specification, Telequipment pack into the tiny frame of the D32 features normally associated with instruments twice its size. Easily carried on any assignment the D32 is probably the smallest and least expensive scope of its kind in the world.


Priced at \(£ 275^{*}\) (including re-chargeable batteries) this dual trace scope offers 10 MHz bandwidth at \(10 \mathrm{mV} /\) div sensitivity; automatic selection of chopped or alternate modes; automatic selection of TV line or frame displays; and the choice of battery or mains operation.
Size up the D32 for yourself and write or phone for a demonstration of this truly remarkable instrument now.

Telequipment gives you more scope for your budget

\section*{TELEQUIPMENT < 娄〉}

Tektronix U.K. Ltd.,
Beaverton House, P.O. Box 69, Harpenden, Herts. Telephone: Harpenden 63141 Telex: 25559

\title{
wireless world
}

\section*{Electronics, Television, Radio, Audio}

\section*{OCTOBER 1975 Vol 81 No 1478}

\section*{Contents}

447 Broadcasting and communications
448 Television tuner design by D. C. Read
453 Books received
454 News of the month
A telegram a second
Standstill brake tester
Breakthrough in quartz oscillators
456 Progress in multiphonic organs by J. H. Asbery
458 Sixty years ago
459 Facsimile scanner by J. M. Osborne
464 Meetings
465 Letters to the editor
Wideband local networks
Controlling stage lighting
Peak-reading level indicator
469 Radio waves - what makes them go by "Cathode Ray"
473 Circuit ideas
Constant amplitude sawtooth generator
Thyristor protection circuit
Stereo rumble filter
475 Electronic circuit calculations simplified - \(\mathbf{5}\) by S. W. Amos
478 H. F. predictions
479 Transmitter power amplifier design - 2 by W. P. O'Reilly
482 Announcements
483 Circards 25 \& 26: RC oscillators by J. Carruthers, J. H. Evans, \(J\). Kinsler and P. Williams
486 World of amateur radio
487 Resistors by R. A. Fairs
493 New products
496 Real and imaginary by "Vector"
a75 APPOINTMENTS VACANT
a94 INDEX TO ADVERTISERS

\footnotetext{
Price 35p (Back numbers 50p, from Room 11, Dorset House, Stamford Street, London SEI 9LU.)
Editorial \& Advertising offices: Dorset House, Stamford Street. London SEI 9LU.
Telephones: Editorial 01-261 8620: Advertising 01-261 8339.
Telegrams/Telex. Wiworld Bisnespres 25137 London. Cables. "Ethaworld. London SEI."
Subscription rates: 1 year. \(£ 6\) UK and overseas ( \(\$ 15.60\) USA and Canada); 3 years. \(£ 15.30\) UK and overseas ( \(\$ 39.80\) USA and Canada). Student rates: 1 year, \(£ 3\) UK and overseas ( \(\$ 7.80\) USA and Canada): 3 years. \(£ 7.70\) UK and overseas ( \(\$ 20.00\) USA and Canada).
Distribution: 40 Bowling Green Lane. London ECIR ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House, Perrymount Rd. Haywards Heath. Sussex RH16 3DH. Telephone 044453281.

Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.
C) I.P.C. Business Press Lid. 1975
}


This month's front cover shows a multiple-layer printed circuit board made by BEPI (Electronics) Ltd. (Photographer Paul Brierley)

\section*{IN OUR NEXT ISSUE}

Teletext decoder. First in a series of articles on constructing a unit to show Ceefax/Oracle pages on a TV set

Consultants - do they provide a worthwhile service? A frank report based on investigations in the electronics industry

Optical sensor ignition. Contactless timing system for car c.d. ignition avoids deterioration of engine performance due to mechanical wear and play

SIXTY-FIFTH YEAR
OF PUBLICATION

\section*{ibpa}
iniermation Bus ines


\section*{microphoner matter most.}


Never have so few words said so much about sound system installations. The truth is that a carefully chosen, top-quality microphone makes a measurable difference in sound system quality-regardless of the other components in the system. It is false economy at its worst to be a microphone miser. Install Shure Unidyne or Unisphere microphones-for installations with a marked superiority in voice intelligibility (and fewer service calls due to microphone problems). For the name of your local sound specialist, write:
Shure Electronics Limited

\title{
wireless world
}

\section*{Broadcasting and communications}

\section*{Editor:}

TOM IVALL, M.I.E.R.E.

\section*{Deputy Editor:}

PHILIP DARRINGTON
Phone 01-26I 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

\section*{Assistant Editors:}

BILL ANDERTON, B.Sc.
Phone 01-261 8620
BASIL LANE
Phone 01-261 8043
MIKE SAGIN
Phone 01-261 8429

\section*{Production:}
D. R. BRAY

\section*{Advertisements:} G. BENTON ROWELL (Manager)

KEVIN BURNAL
Phone 01-261 8515

\section*{ROGER PORT}

Phone 01-261 8037
A. PETTERS (Classified Advertisements) Phone 01-261 8508 or 01.928 4597

JOHN GIBBON (Make-up and copy) Phone 01-261 8353
I.P.C. Electrical-Electronic Press Ltd Publisher: Gordon Henderson

There is no doubt that broadcasting is becoming inextricably mixed up with telecommunications. This is largely in the sharing of the technical means, such as the electromagnetic spectrum for transmission and the coaxial cables for distribution. The actual function of broadcasting is on the whole separate from that of telecommunications, although broadcasting also conveys information and there may be some overlap in the future with such services as Teletext. An awareness of the engineering interdependence is probably what prompted the National Electronics Council to offer evidence to the Annan Committee, through a working party, on ". . . the future technological development of telecommunications and electronics services in the United Kingdom, as they affect broadcasting . . .", and its report* is worth studying as an appraisal of the situation in a highly developed country such as the UK. It shows up some conflicts of interests, and different views on how things should be managed, between some of the organizations concerned, and recommends the setting up of a Telecommunications Council to be responsible for the integration of all telecommunication services.

The Post Office, with its monopolistic hold on telecommunications and the distribution of programmes, considers that to achieve economical operation there is a need for unification in meeting the needs of the public and that there should be a corresponding integration of the technical means for conveying information throughout the country. In practice this implies the "total systems approach" or "national electronics grid" that has been much under discussion - probably a wide-band v.h.f. and u.h.f. cable network, complementary to the broadcasting system, that would be capable of supplying a mixture of information services (some two-way) and television and sound programmes directly to people's homes.

One of the attractions of such a cable network is that it might take off some of the demands on the electromagnetic spectrum at present imposed by broadcasting and leave more space for such things as mobile communications (for which radio is the only possible medium). But it would be a vast and expensive network to set up and might take, according to some estimates, about 20 years to complete. Some objections from the cable television companies' point of view are made in a letter in this issue. The major problem, however, is that such a network would require long-term planning, and this implies some measure of inflexibility. How could we plan now for the information and entertainment requirements of, say, 20 years ahead? Society is changing rapidly and so is electronics and communications technology. There is a danger of being overtaken by events. Nobody knows this better than the Post Office, so it is to be hoped that in any large-scale plans for an integrated network they will succeed in keeping their engineering options as open as possible.

\footnotetext{
*Published in the National Electronics Review, Vol. 11, No. 3, May-June 1975.
}

\title{
Television tuner design
}

\section*{Gives quality sound as well as vision signals}

\author{
by D. C. Read, B.Sc.
}

\begin{abstract}
Using a varicap u.h.f. front-end, this tuner design provides quality sound and vision outputs for connection to a separate sound reproduction system and to a monitor-type receiver. It provides a group-delay corrected signal and proper black-level registration. Sound information is removed prior to the video demodulator, overcoming the problem of sound and colour subcarrier interference. Two modifications, to be described in a subsequent article, enable it to be used with a conventional u.h.f. tuner and with a domes-tic-type receiver and the option of a simplified sound-only unit.
\end{abstract}

Perhaps it is an unfair comment to say that sound has always been regarded as the Cinderella of the television world. But, certainly, set manufacturers have had good economic reason for getting the picture and the price right first; their customers demand it. The advent of colour also tended to push sound further down the priority list. Today's receivers are necessarily more complex, so that stability of operation and ease of control are harder to achieve at reasonable cost and in the achievement there is understandably little room left for more than the basic necessities of sound recovery.

With many households now equipped for hi-fi reproduction, however, and with integrated circuits more than adequate - and cheap enough - to provide the necessary extra circuitry, the essential ingredients for good-quality television sound reception are to hand; if we were to complete the earlier analogy, we might say that Cinderella's glass slipper is ready, waiting, and requires only the final fitting.

Considering the received signal itself, this carries a sound component which differs from the f.m. radio transmissions only in that there is (as yet) no provision for stereo and that the maximum deviation used is 50 instead of 75 kHz ; it is, therefore, reasonably 'hi-fi'. A further important point about the transmitted television sound signal, and one not generally known, is that for all the main U.K. stations, the two sets of information - vision and sound -- are fed to separate transmitters and then combined for radiation from a common aerial. This reduces the risk of interaction between the two signals at the sending end and for the user to obtain the greatest benefit from such isolation, separate receiving chains might be
considered worthwhile. But such a provision would make station changing unnecessarily complicated and there are, in any case, certain advantages (mentioned later) to keeping part of the receiving system common to both signals.

The tuner design to be described has evolved from these thoughts. During many months of experiment, various circuits were tried until the right combination was found. The eventual outcome of these investigations shows refinements not only on the sound side but also to the video circuitry. Some of the changes to the vision circuits were necessary in support of the different sound-recovery arrangements being used, and some simply because improvement was called for, and could be obtained, by using with appropriate modification, circuits suggested in manufacturers' application notes and ideas culled from the technical press.
Accompanying these ideas was the purely practical intention to build a self-contained unit which could be installed in any convenient living-room position such as a book shelf and which would produce standard-level feeds: a 1 -volt composite video signal for driving the decoder and display circuits of a conventional television receiver or monitor-type set, and a 0.5 -volt r.m.s. audio signal.
The block diagram of Fig. 1 shows main circuit functions in the tuner, numbered and divided into the three principal sections. The following list, numbered for ease of reference to the diagram, gives brief outlines of these functions.
Video, i.f. and r.f. circuits
1. The u.h.f. tuner used is the well-tried Mullard ELC1043 module which:
-employs varicap diode tuning (channels 21 to 69)
-has two r.f. stages with the aerial input stage untuned for optimum noise performance
-accepts a delayed a.g.c. voltage between 4 and 8 volts giving a control range of 40 dB .
The carrier level at the first varicap tuned circuit is kept well below the intermodulation threshold. Excessive carrier levels in voltage-diode-tuned circuits can cause spurious phase modulation of the received signal. If simple synchronous demodulation is used, as in this tuner, the video is not affected but the recovered sound signal will contain unwanted in-band components which cannot subsequently be removed. (In more complex demodulators, such as those using a phase-locked-loop re-generated carrier for switching, phase modulation of the i.f. signal also affects the video.)

As a useful protection against temperature drift, the tuner module in this installation is mounted in the bottom corner of the circuit board away from heat-producing components. Other precautions have been taken to give good oscillator stability and the unit has operated satisfactorily in normal household use over long periods without a.f.c. connected.
An alternative version of the tuner has been built using a conventional mechanically-adjusted u.h.f. module instead of the varicap type. Apart from possible economic benefit to the constructor, mechanical tuners have some advantages in performance over their more modern counterparts. An important one is that they do not suffer from spurious f.m. sound-carrier phase modulation under the influence of the a.m. vision carrier in the way that
varicap tuners do with high r.f. level. Details of this option will be given subsequently.
2. The output circuit of the u.h.f. module forms part of the first of two band-pass coupled circuits which together give a well-defined i.f. characteristic with a shape nearly that of the required ideal (see Figs. 6 and 8).
3. The i.f. gain is provided by a single a.g.c. amplifier which, together with the following grounded-base stage, operates in a cascode-type configuration. Because the controlled transistor works between low impedances (it is fed from an emitter-follower stage), it gives maximum gain and. a large control range which can be covered with negligible adverse effect on the i.f. response shape.
4. The second of the two band-pass coupled circuits surrounds the combined own-sound trap and sound carrier take-off circuit. Because separation and rejection are obtained here by means of inductive coupling and cancellation, there is little unwanted inband loss for either carrier.
5. The Motorola MC1330 is a synchronous demodulator giving a
vision carrier rejection of at least 60 dB and a conversion gain of about 35 dB . Typical figures quoted give expected line linearity and differential gain of about \(3 \%\), and differential phase of \(3^{\circ}\) the performance realised here is of this order.
6. Instead of a 5.5 MHz low-pass filter following the demodulator, two simple notch circuits - one each at the sound-carrier offset and twice coloursubcarrier frequencies - give sufficient protection against out-of-band interference. In practice, because of the high efficiency of the sound trap/takeoff circuit mentioned in 4 above, the 6 MHz trap has little work to do except during the temporarily disturbed conditions which can exist for short periods e.g. when first switching on the tuner. Additionally, the trap is included because its lower skirt completes the shaping of the video response, as will be illustrated later. 7. The correct trap-circuit termination is given by the following directly coupled amplifier which produces two outputs each of 4 volts pk -pk composite video. One of these feeds the a.g.c. circuit; the other is passed after impedance match-
ing to a two-stage group-delay corrector and thence to the video output amplifier. Direct coupling is used from the MC1330 demodulator onwards so that true-black-level registration can be achieved. For this reason, the directlycoupled stage mentioned above also provides a necessary d.c. shift so that signal blanking is at the required potential to suit following circuit conditions.
8. The tuner output circuit used will depend on the particular needs of a given installation. The complemen-tary-pair amplifier shown in the full circuit diagram (see Fig. 2) provides one output at 75 ohms and one at higher impedance (about 270 ohms; this is specifically intended for a short link to the receiver decoder). If more than one 75 -ohm output is required, larger transistors than those used in the suggested circuit will be necessary.

\section*{Sound circuit}
9. From the sound take-off point, the 33.5 MHz carrier is fed through a low-input impedance buffer stage to a band-pass pair filter and thence to a cascode amplifier which gives a gain of
 numbers used in description.



about 35 dB . Response shaping is com pleted by two single-tuned circuits before the signal is applied to a long-tailed pair limiter. Only one stage of limiting is necessary because the transmitted sound and vision carriers are maintained at a fixed difference in level and therefore a.g.c. action on the vision is effective in keeping the sound carrier reasonably constant. This is the main reason for' keeping the two carriers together in this part of the circuit where signal amplitude is relatively low.
10 . The sound signal is recovered by means of a Foster-Seeley discriminator circuit using discrete components. In terms of the a.f. output from the discriminator, the circuit is 'floating' so that the d.c. off-tune error voltage also produced by the circuit can be added to whichever of the pre-set tuning voltages (developed elsewhere) has been selected and then returned to the u.h.f. tuner module as a combined a.f.c. station-change control feed.

\section*{A.G.C. circuit}
11. The positive-going composite video feed obtained as outlined earlier is taken through a simple low-pass filter to remove high-frequency video, particularly the coldur bursts. An emitter-follower buffer stage feeding a diode clipper slices the signal at a point just above blanking level. Two feeds of the resulting inverted mixed syncs are used; one is processed to generate a backporch pulse which then operates a blanking-level sample-and-hold circuit carrying the other feed.
12. The remaining two stages develop the d.c. outputs with appropriate levels and time constants for gain control of the i.f. amplifier and the u.h.f. tuner module. The two stages include pre-set controls for adjustment of the main video output level and for selecting the r.f./i.f. a.g.c. crossover point.

\section*{Circuit description}

A full circuit diagram of the tuner is given in Fig. 2; as in the outline of functions given above, for convenience the following detailed description is divided into the same three sections.

Power supply arrangement for circuit of Fig. 2 using varicap u.h.f. front end. Transistors \(\operatorname{Tr}_{19}\) and Tr \(_{20}\) are BCY70 or 2N3906.

\section*{Aerial input to video output}

The Mullard ECL1043 front-end module is connected in a standard manner taking a 75 -ohm aerial input and producing a 39.5 MHz vision i.f. output with the sound carrier at 33.5 MHz . The 12 -volt d.c. feed to the r.f. stages is stabilized by a single zener whereas the oscillator supply is taken through a pair of 5.6 -volt diodes which have a zero temperature coefficient and therefore give a measure of protection against frequency drift. Independent supply feeds are necessary because current consumption in the r.f. stages varies with a.g.c. action.

The module i.f. output circuit is combined with \(\mathrm{C}_{5}\) and \(\mathrm{L}_{2}\) to form a 'bottom-C' coupled pair of tuned circuits giving part of the i.f. pass-band shaping; a small amount of in-band slope correction is carried out by \(\mathrm{C}_{7}\). Fig. 2 also shows a pair of conventional adjacent-channel traps at this point.

Emitter follower \(\mathrm{Tr}_{1}\) provides a lowimpedance source of i.f. signal to the a.g.c. stage \(\mathrm{Tr}_{2}\) which feeds into the low-impedance offered by groundedbase amplifier \(\mathrm{Tr}_{3}\). The circuit arrangement is the outcome of a considerable amount of experiment to overcome the problem of obtaining adequate i.f. gain and control range without the attendant change in pass-band response. Because of the wide difference in input loading given by transistors working variously between maximum and minimum gain, it has usually been necessary to swamp the changing impedance of an a.g.c. stage by means of surrounding fixed low impedances. But although this arrangement represents a fairly effective cure, it necessarily causes loss of overall i.f. gain and of control range (for maximally-flat signals).
In the circuit used here, \(\mathrm{Tr}_{1}\) provides a source of constant signal voltage, \(\mathrm{Tr}_{3}\) is
a 'virtual-earth' amplifier, so that \(\mathrm{Tr}_{2}\) and \(\mathrm{Tr}_{3}\) together effectively act as a cascode pair. Thus a higher maximum gain can be obtained from the combination and, as there is minimal signal voltage swing at the collector of \(\mathrm{Tr}_{2}\), the effect of Miller feedback on this stage is removed. The output impedence of \(\mathrm{Tr}_{3}\) is then matched by the following band-pass circuit to give an overall maximum gain of 38 dB and an optimum signal of 30 to 35 mV r.m.s. at the MCl 330 demodulator input. Similar results can be obtained from a dual-gate f.e.t. (e.g. the RCA 40673), but these components are fragile, and the more robust circuit used here was chosen in preference.
The form of the network which completes the i.f. band shaping is that of a 'bottom-L' coupled pair; in Fig. 2, \(\mathrm{L}_{4}\) with self and stray capacitance added to the output capacitance of \(\mathrm{Tr}_{3}\) represents the 'input' tuned circuit, and \(L_{8}\) is the coupling component. There are no components representing the 'output' tuned circuit; this is because they were deliberately computed to zero and do not have practical existence.

The combined sound trap/sound take-off circuit comprises inductors \(\mathrm{L}_{19}\) to \(L_{21}\) wound on a common former and capacitors \(\mathrm{C}_{19}\) to \(\mathrm{C}_{21}\). This circuit is another departure from the conventional - again the result of development in devising a simple but effective way of achieving total sound channel separation so that there is minimum subsequent interaction between the two sets of information and little in-band loss for either.
Operation of the circuit is as follows. The series combination of \(\mathrm{C}_{19}\) and \(\mathrm{L}_{19}\) is tuned to 33.5 MHz and therefore, in the normal sound-trap manner, offers a low-impedance shunt path to earth for i.f. signals at this frequency. Also, \(L_{21}\) is coupled to \(L_{20}\) which is tuned to 33.5 MHz by \(\mathrm{C}_{20} / \mathrm{C}_{21}\) and thus acts as a 'suck-out' trap. The induced voltage is proportional to the by-passed sound carrier, which is then routed to the sound processing circuits to be described later. Note that the tuning capacitance for \(L_{20}\) is split as shown in Fig. 2 to give a low-impedance source

\section*{Semiconductor devices}

for the input to the sound i.f. circuit; the loss of signal voltage caused by the capacitor step-down is easily made up in the following amplifier which, of course, matches the low feeding impedance.

A 33.5 MHz signal is also induced in \(\mathrm{L}_{19}\) where it is in phase opposition to the sound-carrier component of the total i.f. signal passing through this inductor and hence aids the action of the sound trap circuit already described. On tuning the two circuits, total phase cancellation can be achieved in the video path so that the combined effect is a notch in the overall response of at least 55 dB at 33.5 MHz .

Apart from the main function of producing good separation with negligible in-band loss, two further points of practical interest are illustrated by the way in which the circuit diagram and the assembly detail have been drawn.

First, \(L_{21}\) is wound at the most 'earthy' end of \(L_{20}\), i.e. at the lowest voltage and impedance point as far as the sound carrier is concerned; this arrangement offers the best condition for maximum rejection. Second, two inductance tuning slugs are fitted into the common former and, as shown in the drawing, are positioned so that the one affecting \(L_{20}\) and \(L_{21}\) is screwed fully in to give maximum coupling between these windings, whereas only part of the slug for \(L_{19}\) is enclosed by the winding - i.e. it is withdrawn towards the top of the former. In this way, the position of the \(\mathrm{L}_{19}\) slug determines the tuning frequency of the series circuit but has little influence on the degree of coupling between \(\mathrm{L}_{19}\) and \(\mathrm{L}_{20}\) which is then a function simply of the specified spacing between these two windings. The method of tuning adjustment for this circuit will be given in a later article together with other lining-up details.

\title{
Books Received
}

Radio Servicing Pocket Book by Vivian Capel. This is essentially a practical book for the radio service engineer and as a result much of the space is devoted to workshop planning and practice, test equipment, repair techniques, and fault diagnosis. The book contains information on aerials, car radios, interference and modern radio equipment but a section on some of the older radio sets likely to be encountered is included. A data section is also provided which contains useful formulae and tables together with a directory of over 140 manufacturers, importers, and service depots. Price \(£ 1.95\). Pp. 230 . The Butterworth Group, Borough Green, Sevenoaks, Kent TN15 8PH.

The White Noise Book - Multichannel communications systems and white noise testing by M. J. Tant. Multichannel f.d.m. systems have experienced a large growth in recent years and as a result this book has been published to aid the understanding of technologies associated with these systems, with particular reference to the practice of white noise testing. The history of f.d.m. is summarised and the various transmission techniques in cable and radio systems are described. The book then deals with current noise objectives for multichannel systems together with past and present recommendations for white noise testing Price £2. Pp. 104. Publicity Department, Marconi Instruments, Longacres, St. Albans, Herts.

Basic Electrical \& Electronic Construction Methods by G. M. Allen is a handbook intended for use in schools. The text provides comprehensive advice and guidance on a variety of construction methods and general principles for electronic projects. No electronic theory is dealt with but certain procedures affecting design and layout are discussed. The text is supplemented with diagrams, photographs, tabular information and covers circuits and symbols, components, electrical wiring, motors and solenoids, power supplies, testing, tools and techniques, concluding with a page of reference books. Price \(£ 1.80\). Pp. 119. Heinemann Educational Books Ltd, 48 Charles Street, London W1X 8 AH .

Elements of Transistor Pulse Circuits by T. D. Towers (second edition). This book is based on a series of articles which appeared in Wireless World 1964 by the same author. The text has been kept practical with a minimum of mathematics and is aimed at engineers or students with a limited knowledge of transistor pulse circuits. Chapters include linear pulse amplifiers, waveform shaping. blocking oscillators, gates, counter/timers and timebases. The book also incorporates a section on transistor and diode data. Price £3.50. Pp. 198. Butterworth \& Co. Ltd.. Borough Green, Sevenoaks, Kent TN 15 8PH.

Guglielmo Marconi \(1874-1937\) by Keith Geddes is a Science Museum booklet describing the life and times of the Italian pioneer. His early experiments with "Hert. zian waves," which led to the first wire-less telegraphy system, are described as well as the formation of the Marconi Company and
the influence of the war years. The book concludes with an account of Marconi's last years in which he joined the Italian Fascist party, re-married and finally on 20th June 1937 died after several heart attacks. The booklet is well illustrated with photographs and is priced at 60p. Pp. 40. Her Majesty's Stationery Office, Atlantic House, Holborn Viaduct, London EClP 1BN.

Advanced Communication Systems edited by B. J. Halliwell, comprises six chapters written by five independent authors. The aim of the book was to provide a comprehensive coverage and background to modern communication networks as well as systems of the future. Chapters are titled history and growth, f.d.m. systems, p.c.m. and digital networks, microwave radio systems. communication satellite systems and optical communication. Price \(£ 8.20\). Pp. 276. The Butterworth Group, Borough Green, Sevenoaks, Kent TN 15 8PH.

Electronic Equipment Reliability by J. C. Cluleyo. Attention to the reliability of electronic equipment has escalated during the past twenty years due to the development of more complex electronic systems and our increasing dependence upon them. This book provides an introduction to the subject and then deals with the mathematical background, reliability prediction, component failure data and finally a chapter on designing for reliability. Many of the calculations in the book involve simple application of the laws of probability statistics. These topics are summarised in an early chapter. Apart from this the only mathematics required are elementary algebra and integration. Price \(£ 2.50\), paperback. Pp. 161. Macmillan, 4 Little Essex Street, London WC2R 3LF.

What goes on in Telecommunications? by Paul Roberson is an abridged story concerning the past, present and future of "at a distance" communications. The book adopts a non-technical explanation and is well illustrated with photographs making it suitable for budding Marconis and those with a general interest in telecommunications. Chapters include telegraphy, the telephone, radio, television and worldwide communications. The text concludes with a chapter on careers in telecommunications and sources of information. Price 90p. Pp. 80. Woodhead-Faulkner Ltd, 7 Rose Crescent, Cambridge CB2 3LL.

The OECD, Organisation for Economic Co-operation and Development, has just published Energy Prospects to 1985 vol. I \& II, an assessment of long-term energy developments and related policies. This report has been prepared by an inter-disciplinary team of OECD experts under the guidance of Professor Hans K. Schneider, Director General of the Institute for Energy Economics of the University of Cologne. Price \(\$ 11.25\). Pp. 436. Her Majesty's Stationery Office, P.O.B. 569, London SE1 9NH.

Towers' International Transistor Selector by T. D. Towers gives tabular information on ratings, characteristics, package and lead identification, application, manufacturers, and equivalents of over 10,000 transistors. The transistors are a selection of current or popular obsolete types from the UK, USA, Japan and Europe. Price £2.95. Pp. 142. W. Foulsham \& Co. Ltd, Yeovil Road, Slough SL1 4JH.


\section*{A telegram a second}

Savings of over \(£ 11 / 2 \mathrm{M}\) a year are expected by the Post Office from a new \(£ 4 \frac{1}{2} \mathrm{M}\) centre now open in London which automatically routes telegrams into and out of the United Kingdom. The largest telegram system of its kind in the world, the new London transmission centre handles a telegram each second of the working day. It directly links 13 international telegraph area offices in the UK, six in London and the others in Belfast, Birmingham, Bradford, Bristol, Glasgow, Liverpool and Manchester, with 67 countries using 77 different international routes. Telegrams may be sent through the centre anywhere in the world, either direct or by way of a distant terminal. As an example of how the centre operates, outgoing telegrams for delivery abroad are received at the 13 telegraph area offices in Britain from customers, mostly by telex or telephone, but also by hand or from the sender's local post

Technical control position in the PO's new telegram retransmission centre (see news item) from which the operation of the processing computer can be supervised and controlled.

office. Operators at the area offices forward them by teleprinter to the telegram retransmission centre. Here, a computer automatically checks that each telegram is in the correct internationally agreed format, works out the route it has to take to its destination (its memory holds 10,000 overseas destination towns for this purpose), extracts accounting and billing information, adds the destination indicator and then directs the telegram to the outgoing circuit for the destination office, all in under a minute.

The centre is equipped with three drum stores, each with a capacity of \(21 / 2 \mathrm{M}\) characters for use as brief memories, eighteen magnetic tape stores which will be used for recording telegrams and a variety of other functions plus 24 disc packs each with a capacity of 25 M characters whicn are used for storing telegrams for rapid retrieval, the town name files, the registered telegraphic address and so on. Joint development work on the preparation of software for the system has been between the Post Office, Pye TMC and Philips.

\section*{Integrated circuit in stitches}

One of the latest domestic sewing machines introduced in the United States is controlled electronically by an m.o.s. l.s.i. system. This operates in conjunction with touch contact controls to replace up to 350 mechanical parts including the manual levers and dials conventionally used for the selection of the various machine functions. Pattern selection, for example, is effected simply by touching the relevant contact and the appropriate machine settings are then made automatically by the m.o.s. control system. This facility also allows one unit of a selected pattern to be sewn, after which the machine automatically stops. Machine settings under control of the device can also be made for selected stitch length and width and the fabric in use. The machine, called the Athena 2000, has been introudced by Singer in the United States and was developed by AMI Microsystems. A version of the machine for Europe is currently under development.

\section*{Breakthrough in quartz oscillators}

Quartz crystal controlled oscillators have been produced which have fundamental operating frequencies of 1 GHz . This breakthrough has been achieved by using surface waves on quartz crystal substrates rather than bulk acoustic waves employed in traditional
crystal oscillators. Although the production process is technically advanced, the reduction in active multiplying and phase-lock loop circuits can produce substantial overall unit cost and size reductions. The claimed high spectral purity obtained by using the high fundamental frequency coupled with the overall ruggedness of the devices could permit their use in applications which cannot be undertaken by bulk crystals. The s.a.w. oscillator is capable of being frequency modulated making it suitable for telemetry. It is also expected to be applied in signal processing systems. Measurement of short term stability of the s.a.w. units have shown them to be comparable with bulk crystal oscillators, stabilities of 1 in \(10^{9}\) for a one-second time sample being obtained. The devices exhibit parabolic frequency/temperature characteristics and the zero frequency temperature coefficient point of these characteristics has been varied between \(-20^{\circ} \mathrm{C}\) and \(+70^{\circ} \mathrm{C}\) by using different cuts of quartz crystal.

Marconi Research Laboratories who have produced the oscillators had previously demonstrated the feasibility of using s.a.w. oscillators in the microwave range up to 720 MHz . The laboratories are currently offering research samples for system evaluation purposes.

\section*{Satellite interference suppressed}

A new system for the suppression of unwanted signals which can interfere with transmission from communication satellites has been installed at the Satellite Earth Terminal Station, Goonhilly Downs, Cornwall. This station forms part of the INTELSAT satellite communications network which links virtually every major country in the world via satellites maintained in fixed positions over the Atlantic, Indian and Pacific Oceans. The Indian Ocean satellite appears at a low angle from Goonhilly, just above the horizon and the PO aerial working to it has to be aimed across France nearly in direct line with a French radio-relay station which transmits on frequencies in the \(4,000 \mathrm{MHz}\) band which, unfortunately, can interfere with signals received from the satellite. During periods of anomalous propagation the power of the unwanted signals has sometimes exceeded the power of the wanted signals by as much as 30 dB .

Under a preliminary study contract, Plessey proposed that the Post Office should consider use of a cancellation technique which had been used experimentally. This receives a significant level of the interfering signal only. By feeding a controlled amount of the signal from the auxiliary aerial into the main aerial receiver, the interference can be cancelled. This proposal was
acceptable to the Post Office and Plessey believe that this is the first time that such a system has been applied to civil radio communications and foresees considerable potential for its further application in all fields of communication where interference is a growing problem.

\section*{Standstill brake tester}

Coaxial displacement transducers are being used on a brake analyser which has been developed to test the braking system of motor vehicles. The analyser enables garage mechanics to simulate moving conditions without taking the car out of the workshop. This type of test is being stipulated by the Department of the Environment for vehicle examination and all garages undertaking this work should be equipped with such a device by the end of 1979. Two Pye Ether series PD20 co-axial displacement transducers are mounted either side of a roller which is free to rotate under no-load conditions, i.e. with the wheel of the car under test unbraked and the gears in neutral. The roller is driven by a separate motor and gear box. When the brakes of the car are applied the roller is brought to rest and the system collapses against a force retaining spring arrangement. The transducers compress and a direct reading of the brake force is read out on a meter. The equipment will also indicate other braking defects such as oval drums.
The transducer is a potentiometer type with versions having up to 12 in of travel. It is designed for severe operating conditions such as those found in garage workshops and is available in a number of standard resistance values. The brake analyser was developed by Crypton Triangle.

\section*{Perth to Adelaide by microwave}

The \(2,400 \mathrm{~km}\) transcontinental 2 GHz microwave-radio system between Perth and Adelaide is to be expanded to include the provision of additional telephone lines over the whole route which will effectively treble the telephone capacity of the system and also add a two-way television bearer over a section of the system. The route, which is equivalent to the distance between London and Moscow, crosses the continent between Northam, Western Australia, and Port Pirie, South Australia. As well as catering for through traffic between east and west, the system provides additional telephony circuits for towns and settlements along the route.

In this 60 -hop system the low power-consumption of the 2 GHz semiconductor equipment is particularly important since in many places there is no mains power supply and diesel fuel

Crypton brake analyser before installation (see news item). At the bottom left-hand corner can be seen one of the Pye Ether coaxial displacement transducers.

has to be transported up to distances of 650 km . Power consuming air-conditioners have been eliminated at unattended repeater stations where the equipment is installed in a convectioncooled shelter which keeps the inside temperature within acceptable limits in spite of large diurnal variations outside of up to \(22^{\circ} \mathrm{C}\).

\section*{Colour TV deliveries down}

Deliveries to UK distributors of UK made and imported colour television receivers reached 88,000 in June, a fall of \(49 \%\) compared with June 1974 ( 174,000 ), according to the latest statistics compiled by the British Radio Equipment Manufacturers' Association. This brought the total for the year to 824,000 , a fall of \(28 \%\) compared with the same period in \(1974(1,147,000)\). Of this total for the year, 123,000 were from abroad, which represents a \(15 \%\) share of the market compared with \(24 \%\) for the same period last year. Total monochrome television deliveries for June were 81,000 , an increase of \(47 \%\) compared with June \(1974(55,000)\) bringing the year's total to 448,000 , an \(8 \%\) increase on the same period last year.

\section*{Briefly}

Incoming President of the IEE. On Oct. Ist 1975, Mr Robert J. Clayton, CBE, MA will take office as President of the Institution of Electrical Engineers.

Irish exhibit electronics. Ireland's first electronics exhibition which is being presented under the title ITRON will take place at Dublin's Burlington Hotel Convention Halls from November 4-6 this year. Altogether it is expected that about 50 firms will be represented on the total exhibition area of \(12,000 \mathrm{sq}\). ft . Delay on safety regulations. The Electrical Equipment (Safety) Regulations 1975 were laid before Parliament on 21st August 1975 and are due to become part of the law of the land from that date. The date of effectiveness has, however, been delayed to 1st April 1976 with a further period of grace being given to manufacturers of electric light fittings, until lst October 1976.
IERE 50th anniversary. The first meeting of the British Institute of Radio Engineers was held in Oct. 1925. The name was changed shortly afterwards to the Institute of Wireless Technology until 1941 when it merged with a smaller but similar organization and took the name of British Institution of Radio Engineers. The Institution was granted the Royal Charter in 1961 and in 1964 the title again changed to its present one of Institution of Electronic and Radio Engineers. Our congratulations and best wishes for the future.
Cablevision goes commercial. From September 11975 Sheffield and Greenwich local television stations are carrying advertising. This follows an announcement on July 23 that the British Relay organization which owns and operates Sheffield Cablevision, the largest of Britain's experimental community TV stations, has decided to take up the amended Home Office licence to carry advertising.

\title{
Progress in multiphonic organs
}

\section*{Use of more than one wave shape and more than one pitch}

\author{
by J. H. Asbery, B.S.c., M.I.E.R.E.
}

Many constructors of electronic organs make the mistake of thinking that if the output from a waveform generator is taken to the correct filter the desired tone will result. This is far from the truth. For example, some generators produce a square waveform and some a sawtooth. A square waveform contains only odd harmonics. The open diapason sound requires a predominance of even harmonics. No filter will produce missing harmonics. For a second example, a sawtooth contains both odd and even harmonics. For the closed diapason sound and for the clarinet sound a predominance of odd harmonics is required. A filter which severely attenuates the \(2 \mathrm{nd}, 4\) th, 6 th etc. harmonics will also attenuate the 3rd, 5 th, 7 th etc. harmonics. The open diapason sound
cannot be produced from a square wave nor the closed diapason sound from a sawtooth. As well as the correct filter the correct input waveform is required.

In the more expensive organs a number of different waveforms are provided. In the medium priced organs the designer has to decide which waveform to use, as the price will not allow more than one. This restriction results in some tones not being provided.

In addition to different waveforms , being provided, signals of different pitches for the same note are required to give the sound the "fullness" associated with organs. The most important additional pitch is one octave above the note being played. The second most important additional pitch is one octave
below the note being played, particularly at the lower end of the keyboard. A separate complete switching system is usually provided for each pitch. \({ }^{1}\)

The first difference between a. multiphonic \({ }^{2}\) organ and a polyphonic \({ }^{1}\) organ is that in a polyphonic organ the number of generators is related to the number of keys on the keyboard, typically 49 , whereas in a multiphonic organ the number of generators is equal to the number of keys one wishes to press at one and the same time, typically six. This results in a substantial reduction of cost and time to construct.

The second difference is equally important. In a polyphonic organ the switching system is usually connected to the output of the generators, but in a multiphonic organ the switching sy-

\section*{Components list}

\section*{Resistors - R}

3 k 3 metal fim film
23 k 3 metal film
3 500k 1\%
4 100k 5\% carbon film
5 10k 5\% carbon film
6 100k 1\%
7 100k metal film
8 2k 7 metal film marched 39 47k
95 k 6 metal film matched set
10 100k 1\%
11 1k 5\% carbon film
12 1 M 5\% carbon film
13 33k 5\% carbon film
14 3k3 5\% carbon film
15 10k 5\% carbon film
16470 ohm \(5 \%\) carbon film
17 15k 5\% carbon film
18 1k 5\% carbon film
19 2k2
\(203 \mathrm{k} 35 \%\) carbon film
21 3k35\% carbon film
22 10k
23 10k
24 2k2
2568 ohm
26 2k2
27 10k
28 10k
29 10k
30 10k
31 10k
32 470k

\section*{Capacitors - C}

1 right hand side 100 n left hand side 400n
\(270 p\)
3 220p
4 220p
\(51.5 \mu\)
\(61.5 \mu \quad 162.2 n\)
\(71.5 \mu \quad 17100 n\)
\(818 n \quad 182.2 n\)
9 100n 19 2.2n
10 100n \(20330 p\)
11 100n 21 2.2n
\(1247 n \quad 222.2 n\)
13 220n 23 18n
4 18n 24 220p
15 100n 25 18n

\section*{Integrated circuit}

IC \(1_{1}\) op-amp 741

Variable resistors - RV
5220 k vibrato depth control
650 k melodic bass 16 ft control

Fig. 1 (right). Circuits for adding and subtracting different waveforms produced by the waveform generator; also for frequency dividing and producing vibrato. The letters ( \(a\) ), (b) and (d) on the generator indicate the circuit positions of the waveforms (a), (b) and (d) in Fig. 2. On the extreme right are shown various stop filters.

\section*{Inductors - L}

1, 2, \(3 \quad 600-700 \mathrm{mH}\) (Eagle LT 700)

Preset resistors - RV
14 k 7 octave balance
2 3k3 flute balance
3 3k3 unison balance
4200 ohm vibrato loop gain
\begin{tabular}{lr} 
Transistors \(-\mathbf{T r}\) \\
1,2 & BC 149 \\
3 & BC 307 \\
\(4,5,6\) & BC 149 \\
7,8 & BC 307 \\
9,10 & BC 149
\end{tabular}
polystyrene or polycarbonate matched sets

stem is connected to the input to the generators. The consequence of this is that if an extra waveform or extra pitch is required this can be added to an existing multiphonic organ without any extra switching.

Generating triangular waveforms. \(\mathrm{Tr}_{1,2 \& 3}\) and their associated components in Fig. 1 constitute a typical basic generator. The waveform on \(C_{1}\) is shown in Fig. 2(a) and the waveform on \(\mathrm{R}_{11}\) is shown in Fig. 2(b). By subtracting 2(b) from 2(a) a triangle wave 2(c) results. This has low harmonic content and is suitable for driving the flute stop. A transistor is required to reverse one of these outputs to enable the subtraction to take place. To avoid loading the frequency determining components, \(\mathrm{C}_{1}\) and the keyboard resistor, a buffer transistor is required. An economy can be made by combining these two functions in the one transistor, \(\operatorname{Tr}_{4}\). The result of subtracting a waveform we shall call A1 from waveform B1, waveform A2 from B2 etc. and adding the differences is the same as adding A1, A2 etc., adding B1, B2 etc. and subtracting the two totals. The outputs from all the generators can be added together by resistors and a single transistor used to subtract the totals. One transistor will

\[
\sqrt{(d)}
\]

Fig. 2. Principle of combining different waveforms from the generator: (a) waveform on \(\mathrm{C}_{1}\); (b) waveform on \(R_{11}\); (d) waveform on \(R_{5}\). Triangle waveform (c) results from subtracting (b) from (a), while the sawtooth waveforms (e) and (f) result from the manipulations shown.
produce the new waveform, e.g. the triangle wave, for all the generators and hence for the entire keyboard.

Generating sawtooth waveforms. The waveform on \(R_{5}\) is shown as Fig. 2(d). By subtracting 2(d) from a half of 2(a) and a proportion of \(2(b)\) the sawtooth 2(e) results. By changing the proportion of 2(b) the sawtooth \(2(f)\) results. It can be seen that the frequency of \(2(f)\) is twice the frequency of 2(b). This is equivalent to providing a second rank of generators at twice the pitch of the unison note, or one octave above unison, as well as providing the extra waveform, the unison sawtooth, from only one additional transistor.

Pedal board and solo manual simulators. A further advantage of the multiphonic organ compared with a polyphonic organ is that the lowest note played in the left hand side of the keyboard always comes from the same generator regardless of what the note is. To give extra body to the sound a conventional divider, \(\operatorname{Tr}_{7} \& 8\), can be connected to the "lowest note generator" to give pedal-board simulation. The pitch of this note will be one octave lower. Stops controlling this are conventionally labelled 16 ft .

Similarly the highest note played in the right hand side of the keyboard is always from the same generator. The output from this can be controlled by separate stops and a two-manual solo and accompaniment arrangement simulated.

Vibrato. Any low frequency sinewave oscillator can be used to produce vibrato, such as the circuit of \(\mathrm{Tr}_{9}\) and \(\mathrm{Tr}_{10}\) A diode \(\mathrm{D}_{1}\) is required to apply the vibrato. Without this the vibrato increases the time of one half cycle and decreases the time of the other half cycle by about the same amount.

\section*{References}
1. "Transistor electronic organ" by T. D. Towers. Wireless World, May 1966, pp. 219-224.
2. "Multiphonic organ" by J. H. Asbery. Wireless World, June 1973, pp. 303-305.

\section*{Books Received}

Component technology and standardization by the General Electric Co. (USA). This publication is three loose-leaf binders comprising 24 sections covering virtually every type of passive/active component used in the electronics industry. The information is presented in a standardised format and each component is described under 13 sections dealing with everything from cost factors to circuit applications. Although the manual was compiled by GEC the material was checked and revised by 43 electronics companies to produce an unbiased publication. The three binders, which are updated twice a year, have a total of 2,026 pages and represent one of the most comprehensive component encyclopaedias available to date. Price \(£ 197,80\). London Information Ltd, Index House, Ascot, Berks SL5 7EU.

Gordon King has written two new books entitled Colour Television Servicing (second edition) and The Audio Handbook. Both publications are clearly written with many diagrams and photographs supplementing the text. The first book explains how a colour television system works and deals with each section of a receiver separately. Fault'finding and servicing are described with circuit diagrams used wherever possible. At the end of the book there is a large fold-out fault-procedure chart arranged as coloured block diagrams with a cause and effect notation.
The second book explains the confused world of audio. Most aspects of the subject are covered including amplifiers, loudspeakers, headphones, f.m. radio, tape recording microphones and surround sound systems. Both books are priced at \(£ 4.90\) and are available from Newnes-Butterworth, Borough Green, Sevenoaks, Kent TN15 8PH.


In October, 1915. the generation of radio-frequency signals was still largely done by shock-excited LC circuits producing damped oscillations. There was considerable interest in the production of "single-frequency oscillations" and the British Association (Section G) meeting of September.10th was the occasion of a paper on the subject by Dr W. Eccles and A. J. Makower. - "Electric Oscillations in Coupled Circuits-a Class of Particular Cases". "The paper was of a highly mathematical character, and Dr Eccles apologised for presenting it to the Engineering Section of the Association. He pointed out, however, that the paper gave several formulae not to be found in text books, and he felt that these would be of assistance to designers of wireless telegraph installations. The investigations which formed the subject of the paper arose during an examination of the methods of coupling that might give rise to single frequency oscillations.
"Professor Gisbert Kapp, who was in the Chair, remarked that the author had judged the mentality of his audience rather too highly. He confessed that the subject was beyond him."

\section*{Facsimile scanner}

Minimal-cost design for weather-satellite pictures

\author{
by J. M. Osborne
}

\begin{abstract}
A surplus windscreen wiper is pressed into service as a mechanical scanner for the reception of satellite weather pictures. The control and drive electronics are described and a description is included on an unusual method of synchronizing a d.c. motor with an a.c. signal.
\end{abstract}

The mechanical-facsimile method of printing weather satellite pictures on special paper has obvious attractions over photographic techniques. Professional users, such as the Meteorological Office, normally use Mufax recorders, while amateurs have successfully devised and built drum recorders at a fraction of the cost of a Mufax machine. In general, definition and contrast are lower and mechanical problems are more difficult to solve and contain than electronic or photographic ones. However, as the NOAA satellite scan gives lower resolution than the earlier APT satellites \({ }^{1}\) while still presenting the relevant meteorological information, the mechanical system is entirely adequate.

In essence, the satellite picture - like facsimile processes in general involves a slow-scan raster. At slow speeds, mechanical raster systems compete favourably with the cathoderay tube, both for transmission and reception. The Mufax machine scans a "spot" by means of a one-turn helix on a rotating cylinder pressing sensitive paper against a straight edge parallel to the axis, as shown in Fig.1(a). One revolution of the cylinder scans the point of contact across one line of the picture; it then starts the next line from the other end of the helix on the next revolution, the paper being moved forward at an appropriate "frame scan" ‘speed. It would not be easy for amateurs to emulate this technique and an alternative scan is obtained by a stylus scribing on a paper-covered drum, as in Fig.1(b). This rotates at the line frequency, while the stylus moves slowly parallel to the axis, as in a screw cutting on a lathe. Again, the next line starts as one finishes.
The variable density of the scanned spot is achieved by using the picture signal to vary current through the paper used. In the Mufax, an electrochemical process is used; the paper passes

between the helix and the straight edge at a slow speed such that a series of close spaced lines (one per revolution of the helix) form the picture. The electrochemical paper is supplied damp and is fed from a humidity-sealed container, which poses a problem for the amateur. The rotating-drum method uses a dry white electro-sensitive paper \({ }^{2}\) in which a current passing through a stylus marks the paper black. The current breaks down the white surface and partially exposes a black layer in the paper just below the surface. In this system a lead screw, or its equivalent, drives the stylus parallel to the drum axis at the frame scan speed. The picture, shown in Fig.2, from the ESSA 8 satellite was made by Mr Watts of Christchurch, Hants on his home made drum recorder.
A third mechanical scanner system occurred to me, while in a traffic.jam on a rainy day. A windscreen wiper sweeps an arc of \(100^{\circ}\) or so at about 48 sweeps per minute, the NOAA satellite's line frequency. Now Fig. 3 shows that the satellite line scan is based on a mirror rotating at 48 r.p.m. sweeping from horizon to horizon at right angles to the satellite orbit. Forward motion of the satellite provides frame scan. Since the active part of the line scan (horizon to horizon) occupies less than half the time for a revolution of the mirror, the flyback interval is greater than the line time. A stylus on the arm of a windscreen wiper will scribe an arc corresponding to a single scan line, leaving over \(50 \%\) time for the flyback.
It was this fact which made the windscreen wiper product possible.


Fig.3. (a) shows diagrammatically the satellite's rotating scanning mirror; (b) shows the useful scanning angle swept by the mirror in the plane at right angles to the path of the satellite.

What follows shows that this concept is workable. Much can still be dcne to improve and extend this: some such suggestions will be mentioned later. While an extended period of operation should produce more interesting pictures, my object in presenting these preliminary results is twofold. Firstly, "projects" are never complete and are seldom suitable for direct copying. Secondly, the evidence supports an important general point about school projects. Except for those with considerable workshop facilities and advanced mechanical engineering faci-
lities, imaginative and creative project work is most practicable in electronics, leaving mechanical work to the adaptation of existing machines and materials. A mechanical approach to the problem might well have started with adapting synchronous motors to drive home-made mechanisms. This would have entailed far more time-consuming mechanical development, with, in my estimation, less chance of success. In this case, the "mechanics" are provided by a junk windscreen wiper assembly, "free for the taking" from a motor scrap yard, and standard "Handy Angle" components.
The most rewarding, yet in practical terms perhaps the most useless, result of this project has been the successful synchronizing of a d.c. motor. The idea and its execution is electrical. It is obviously necessary to get the right 48 r.p.m. line speed and equally obvious that the answer won't be in any standard text book on d.c. motors, or, at least, not in most of them \({ }^{3}\). Initially a simple scribe on the end of a wiper arm was lashed up using the wiper motor. This showed that a scan could be obtained, pulling the paper below the stylus by hand. Unless the motor speed could now be controlled to give a synchronised sweep of 48 r.p.m. there was no point in going on. The original hope had been that the motor speed could in some way be controlled by manually or electronically lining up sync pulses from the satellite signal with pulses generated by the sweeping arm. A possible source of the latter was from the "self parking" switch mechanism already built into the motor unit.

Fig.4. The square wave pulse drive for the armature enables the windscreen wiper motor to be driven synchronously.

Fig.5. The quartz crystal oscillator and divider circuits to produce the required a.f. of 364.05 Hz for synchronising the windscreen wiper motor.


A better idea developed when it was realised that in a commutator motor, the armature ripple superimposed on the direct current contained precise information, in the "ripple frequency", of armature and hence, sweep speed. This frequency is best observed across a speed control resistor in the field circuit. The armature a.c. ripple component is superimposed on the d.c. field current by transformer coupling between field and armature within the motor. While considering ideas of phase-lock loops, servo controls and the like, a simple experiment was first tried. A small-amplitude sinusoidal a.c. from a signal generator was fed in series with the armature d.c. supply. A weak tendency to "lock on" was observed when the ripple and generator frequency were sufficiently close. To exploit this phenomenon, a square wave drive was contrived (see Fig.4) to give the armature about twice the current for half the time. The armature torque remains about the same as for \(12 \mathrm{Vd.c}\). but the drive frequency takes significant control of the motor speed. Lock is held over substantial changes in field current. This may be observed by comparing the traces on a double beam 'scope from points \(\mathrm{CRO}_{1}\) and \(\mathrm{CRO}_{2}\) in Fig. 4. The explanation of the phenomenon seems to lie in the armature segments acting like the teeth of a synchronous clock motor.

The next requirement was the precise frequency source to lock on to 48 r.p.m. By counting the commutator segments and gear ratios, the frequency was calculated on a pocket calculator to be 364.0519 Hz . (Not the most convenient figure, but hardly the fault of Lucas Ltd!) From a selection of quartz crystals and, again, with the aid of a pocket calculator \({ }^{4}\), the circuit of Fig. 5 was arrived at. The crystal was marked 2096 kHz (1944). This vintage being demountable, it proved possible to grind it with fine carborundum and turps on plate glass to near 2097 kHz . The frequency was checked every 5 or 10 minutes during grinding by using the circuit of Fig. \(6^{5}\). After 30 minutes of grinding, the correct output count could be bracketed by adjusting the series trimmer. The I.f. source of Fig. 5 is cheaper, simpler to construct, more versatile and more reliable than its predecessor, the electrically maintained turning fork. Using this source to drive the circuit of Fig.4, no problem was encountered in getting the synchronous 48 r.p.m. sweep, although the field current has to be adjusted to get the approximate speed before lock is obtained. As the motor warms up during the first five or ten minutes of running, further adjustment of field current is required to maintain lock. The scribing of picture information on to the paper depends on the choice of the sensitive paper. The paper used was surface conducting, Type SC41 ( \(81 / 2 \mathrm{in}\) ) supplied by Electrosensitive Coatings


Fig.7. The diagram shows the mechanical layout of the apparatus. A general view of the apparatus is shown


Fig.8. The detail shows how the stylus is mounted on the wiper arm.

Ltd. \({ }^{2}\) Three metal roller-skate wheels, loaded by gravity, make surface contact, as in Fig.7. The pen stylus is a " \(V\) " obtained by cutting in half a normal stationery staple. This is fixed by clipping into a small bulldog clip (see Fig.8), mounted on, but insulated from, the wiper arm. No wiper arm spring is used as the weight of the arm gives adequate stylus pressure. A current, up to 15 mA , is supplied to the pen from a

120 V neon-stabilized supply with a \(2.2 \mathrm{k} \Omega\) limiter. The current is controlled by a transistor between the rollers and ground. The transistor \({ }^{6}\) has a high collector/emitter rating of 250 V .
The audio signal is derived from the apparatus originally described in Wireless World Nov. 1971 page 539 Fig. 20. Briefly, at the present time a NOAA satellite on 137.5 MHz f.m. broadcasts continuously a 2.4 kHz a.m. subcarrier


Fig.9. The circuit used to mark the sensitised paper with the signal from the satellite. \(S W_{1}\) and \(S W_{2}\) are microswitches operated by the "self parking" cam on the windscreen wiper motor assembly. They operate the 7400 latch circuit to blank the sweep in one direction while allowing the signal through in the other direction.


Fig.10. To interface the square wave pulses used for synchronising with the second channel on the tape recorder an \(L C\) circuit turned to 364 Hz is used. On record it filters the high harmonics, giving an approximate sine wave input to the recorder. On play-back the filter cleans up the signal before it is used to gate the 7400 to recover the square wave sync. Channel one is used to record the signal from the satellite for subsequent replay.

Fig.11. Part of a picture showing how phasing of the picture with the sweep of the wiper arm is achieved by deliberately throwing the motor off lock for brief intervals of a couple of seconds or so. Whether the motor runs fast or slow depends on the direction that the speed control is altered (see Fig.3).

with picture information of the cloud cover below plus various synchronizing pulses. The amplitude modulation of the 2.4 kHz a.f. subcarrier is demodulated to give a negative-going picture signal Since each point of the earth passes through the plane of the orbit around 0945 and 1945 local time e.g. G.M.T. in the U.K. each day, two or three orbits are observable at just under 2 hour intervals, roughly between 0800 and noon each morning and again between 1900 and 2300 in the evening. The signal is used to drive the pen and mark the paper as shown in Fig.9. The \(10 \mathrm{k} \Omega\) bias potentiometer is set to give a full black line in the absence of a signal. The signal gain is then turned up to give full white (zero paper current) on cloud cover.

Blanking is achieved by grounding the base of \(\operatorname{Tr}_{5}\) through \(\operatorname{Tr}_{4}\), which is switched by two gates of an SN7400 connected as a latch. Micro-switches are mounted on the wiper motor casing so that each is momentarily closed at the end of the travel of the cam mechanism. This cam mechanism already exists for providing the wiper self-parking facility. The switches cause latch up for one half of the sweep and so blank off the signal, but latch down and let the picture signal through for the return sweep. It should be mentioned that to avoid erratic scanning due to mechanical backlash, a long weak spring applies a permanent mechanical bias in one direction to the wiper arm. This spring stretches across the width of the baseboard just below the wiper arm to which it is attached by a string over a pulley fixed to the wiper motor casing.

Apart from running the motor in sync, the sweep must start as the signal line starts. So far no thought has been given to achieving this automatically. The motor is unlocked and allowed to run fast or slow by controlling the field current. By throwing the motor off lock for a few seconds at a time repeatedly, correct phasing can be obtained manually soon after the signal is acquired. A typical illustration of the consequence of this procedure is shown in the photograph Fig.ll. In the NOAA 3 system an infra-red scan signal is transmitted during the visible flyback interval so either can be plotted by suitable phasing of the scan. The gain control has to be adjusted for suitable contrast which differs between the infra-red and visible scans.

A tape-recording of the signal is a very convenient technique for re-play to get both visible and infra-red pictures. Sync is obtained by recording the 364 Hz on the second channel of the stereo recorder. The fundamental is filtered, on record and play-back, by the LC turned circuit as shown in Fig.10. By the nature of the satellite scan and the arc of the wiper sweep, two considerable sources of geometrical distortion are apparent. The arc distortion is minimised by reducing the throw of the


Fig. 12. Pictures taken by the apparatus of two successive orbits of NOAA3. The overlap of cloud formation in the two pictures is not difficult to see.

Fig.13. A general view of the Facsimile project. Note the wiper arm, and contact rollers as shown in the top view layout of Fig. 7 and the circuit of Fig. 9 . The circuitry of Fig. 9 is mounted on a small aluminium plate in the top right corner of the photograph. The wiper motor is on the right.

reciprocating mechanism. This is achieved by resiting the big end bearing as close as convenient to the centre of the final drive wheel, resulting in an arc of \(36^{\circ}\). In spite of distortion, the overlap between successive orbits is clearly demonstrable as seen in the photo Fig.12. If satellite predictions from the Appleton Laboratory, Radio \& Space Research Station, Ditton Park, Slough, are available and if real time marks are put on the paper (or tape), the latitude and longitude can be deduced for points on the centre line of the picture.

The paper drive is obtained by turning the Handy Angle roller ( \(R\) in Fig.9) by a belt drive from a \(2^{1 / 2}\) r.p.m. synchronous motor ( 50 p on the surplus market). The smallest available pulley was fitted to the motor spindle to drive the rubber belt (supplied as spares for a tape recorder). The resulting paper speed is about \(50 \%\) too fast. The correct paper speed (to give an undistorted aspect ratio in the central region of the picture) can be calculated for a given pen speed taken at centre of the sweep. Firstly, we know the speed, say in km/s at which the satellite mirror scans the subpoint (see Fig.3(b)). At 48 r.p.m. and 1470 km high this is \(7400 \mathrm{~km} / \mathrm{s}\). Next, we know the satellite subpoint speed - 5.8 \(\mathrm{km} / \mathrm{s}\) - from its period (115 minutes) and the circumference of the earth. This ratio, 1300 , gives pen writing speed to paper speed. The pen writing speed can be deduced from the system geometry or more easily by feeding a known audio frequency signal to the pen and measuring the average dot spacing.

In conclusion, may I repeat, the project may never be concluded. The paper speed must be reduced and an automatic phasing devised. Perhaps then automatic start on receipt of the signal might be considered. This might be followed by two wipers, side by side, sweeping in opposition, printing both visible and infra-red pictures.

Acknowledgements are due to J . Campbell, of Westminster School, for designing the layout and building all but the electronics of the apparatus shown in the photograph; to Mr Eatwell of Sensitised Coatings Ltd for advice and samples of papers; to Mr J. A. Watts of Christchurch, Hampshire for the photograph; and to Mr D. B. Read of Bradfield College for suggesting the crystal oscillator circuit used in the circuit of Fig. 4.

\section*{References.}
1. "Receiving weather satellite pictures", J. M. Osborne, Wireless World, 1971, October, page 464; November, page 537.
2. Paper supplied by Sensitised Coatings Ltd, Redlands, Coulsdon, CR3 2HT.
3. "Exciting Electrical Machines" by E. R. Laithwaite, Pergamon Press.
4. Letter to Editor, Wireless World, July 1974, 228.
5. "High standard low frequency source", J, M. Osborne, Wireless World, January 1973, p20, and "Applications" July, 1973, p316.
6. Transistor type RCA 40546 supplied by J. Birkett, 25 The Strait, Lincoln LN2 1JF.

\title{
Meetings
}

\section*{LONDON}

1st IEE-Seminar on "High speed analogue to digital conversion" at 10.00 at Savoy Pl., WC2.
1st IERE-"Service experience with the Trident automatic flight control system" by S. J. Collins, R. Taylor and P. E. Ryan at 18.00 at 9 Bedford Sq., WCl.
2nd IERE - Development and evolution of colour television display systems" by Ir. P. G. J. Barten, at 18.00 at The London School of Hygiene and Tropical Medicine, Keppel St., WC1.
7th IEE-"Some developments in computer-aided information services for the blind" by Prof. J. L. Douce at 17.30 at Savoy PI., WC2.
8th I.Phys.-"Teach In," on electronic components at 10.00 at Imperial College, SW7.
8th IERE-AGM and presidential address by HRH the Duke of Kent at 18.00 at The London School of Hygiene and Topical Medicine, Keppel St., WC1.
9th 1EE - "Computers in road traffic control," by D. C. Gazis at 17.30 at Savoy Pl., WC2.

9th RTS-"Underwater low-light television" by M. Johnson and C. Trapmore at 19.00 at Conference Suite, London Weekend Television, South Bank TV Centre, Upper Ground, SE1.
13th lEE-Discussion on "Development and application of high power transistors" at 17.30 at Savoy PI., WC2.
13th 1EE-Discussion on "Detectors for thermal imaging" at 17.30 at Savoy Pl., WC2.
14th Royal Soc.-Discussion on "Scientific results from the Ariel-5 satellite" at 10.00 at 6 Carlton House Terrace, SW1.
15th IERE-Colloquium on "Adaptive array processing" at 14.00 at 9 Bedford Sq., WCl.

16th IEE-Colloquium on "Microwave instrumentation" at 10.30 at Savoy Pl., WC2.
21st IERE/IEE-Colloquium on "Airborne computer systems' at 14.00 at 9 Bedford Sq., WCl.
21st IEE-"Telephone services in Japan" by Dr M. T. Hills at 17.30 at Savoy Pl.. WC2.

22nd I.Phys-One-day meeting on "Molecular beam-surface interactions" at 10.00 at Imperial College, SW7.
22nd IEE-Colloquium on "Compact cassette systems for instrumentation" at 14.30 at Savoy Pl., WC2.
22nd IERE-Colloquium on "Training professional electronics engineers for tomorrow" at i4.30 at 9 Bedford Sq., WC1.
23rd RTS-"Teletext - the editorial angle" by Colin McIntyre, Geoffrey Hughes and Peter Fiddick at 19.00 at the Conference Suite, London Weekend Television, South Bank TV Centre, U pper Ground, SE1.

28th I.Phys - One-day meeting on "Acoustic emission" at 10.00 at the Geological Society, Burlington House, W1.

28th IEE-Colloquium on "Computer aided learning in secondary and further education" at 10.30 at Savoy PI., WC2.

28th IEE-"Computer generated images" by Dr A. M. Spooner and P. M. Murray at 17.30 at Savoy PI., WC2.
29th I. Phys-Half-day meeting on "Lasers in medicine" at 14.00 at the Geological Society, Burlington House, W1.

29th IEE-"Electronics and the aeroplane" by I. L. Davies at 17.30 at Savoy PI., WC2.

30th IEE-Colloquium on "Reduced order models and their use in design of dynamical systems" at 14.30 at Savoy PI., WC2

\section*{BATH}

14th IERE/IEE-"Automobile electronics" by C. S. Rayner at 18.00 at Lecture Room 2E3.1, University of Bath.

\section*{BELFAST}

7th 1ERE-"Integrated circuit applications" by speaker from Texas Instruments at 19.00 at Cregagh Technical College, Montgomery Road.

\section*{BLANDFORD}

14th IERE/IEE/R. Sigs. Inst.-"Digital signal processing with application to speech and radar" by Prof P. C. J. Hill at 18.30 at School of Signals, Blandford Camp.

\section*{BOLTON}

29th Sept. IEETE/IEE - "The influence of TEC on electrical engineering education" by A. C. Normington at 18.15 at Bolton Institute of Technology, Deane Road.

\section*{BRIGHTON}

23rd SERT-"ITT 110 deg colour chassis" by A. E. Thomas at 19.30 at Brighton Technical College.

\section*{BRISTȮL}

9th. IEE.- "Modern trends in hi fi" by J. Lin sley Hood at 19.30 at Queen's Building, Bristol University.

\section*{CAMBRIDGE}

30th IERE/IEE—"Some aspects of modern loudspeaker design" by G. Bank at 18.00 at the University of Engineering Laboratories, Trumpington Street.

\section*{CARDIFF}

8th IERE-"Quadraphonic broadcasting" by J. H. Brooks at 18.30 at Dept. of Applied Physics and Electronics UWIST.

\section*{CHATHAM}

22nd IERE-"The semiconductor story" by Dr K. J. Dean at 19.00 at Medway and Maidstone College of Technology, Maidstone Road.

\section*{CHELMSFORD}

7th IERE/IEE-"Noise reduction in high quality audio" by K. J. Gundry at 18.30 at the Civic Theatre.

\section*{COLCHESTER}

16th IERE-"Fibre optics" at 19.00 at the University of Essex.

\section*{COVENTRY}

29th. IEETE - "The numerical control of machine tools" by M. S. Parkinson at 19.00 at Herbert Machine Tools Ltd, Edgwick Works.

\section*{EVESHAM}

16th IERE-"Charge-coupled devices" by E. W Williams and Dr J. Mavor at 19.30 at BBC (Evesham) Club.

\section*{FARNBOROUGH, Hants}

30th IERE-"Electro-magnetic compatibility - a perspective" by L. J. Fountain at 19.00 at Farnborough College of Technology

\section*{hatfield}

16th IERE-"Prospects for radio communications" by Prof W. Gosling at 19.45 at The Hatfield Polytechnic.

29th l.Phys. - One-day meeting on "Stress analysis - what should be taught?" at 10.00 at Hatfield Polytechnic.

\section*{HULL}

8th SERT "Oracle-broadcasting the written word" by D. Wood at 19.30 at Hull College of Technology.

\section*{LEEDS}

9th IĖRE/IEE-"Solar cells" by R. Davies at 19.00 at Leeds Polytechnic.

\section*{LEICESTER}

15th IERE.-"Electronic aids for medical studies" by Dr E. T. Powner and P. G. Best at 19.00 at Lecture Theatre " \(C\) " Chemistry Dept, Leicester University.

\section*{LINCOLN}

14th SERT-"Quadraphonics" by Dr K. Barker at 19.30 at the refectory, Lincoln Technical College.

\section*{LIVERPOOL}

15th IERE-"Electronics by numbers" by Dr K. J. Dean at 19.00 at Dept of Electrical Engineering and Electronics, University of Liverpool.

\section*{LOUGHBOROUGH}

15th SERT-"Digital techniques for television" by R. S. Roberts at 19.30 at room J001, Loughborough University of Technology.

\section*{NEWCASTLE-UPON-TYNE}

14th IERE.-"Frequency domain measurement" by R. S. Titmarsh at 19.30 at room J00I, Theatre, Ellison Place.

\section*{PORTSMOUTH}

22nd IERE/IEE.-"Solid state' transmitter power amplifier - modern design techniques" by \(R\). O'Reilly at 18.30 at Portsmouth Polytechnic

\section*{PRESTON}

29th Sept. IEETE - "Is your hearing reliable? can you recognise hi-fi?"' by T. G. Izatt at 19.15 at Preston Polytechnic, Corporation Street.

\section*{READING}

8th IERE-"Microprocessors - recent technological advances and applications" by N. Carruthers at 19.30 at Caversham Bridge Hotel. Caversham Road.

\section*{REDHILL}

8th. IEETE - "Special effects in television" by B. Wilkie at 19.30 at Redhill College of Technology, Gatton Point.

\section*{SOUTHAMPTON}

8th IERE/IEE - "Transistors by the million high frequency technology with practical design" by J. H. Tuley at 18.30 at Lanchester Theatre, University of Southampton.
20th. IEETE - "The bionics of physical medicine" by Prof. T. Shelley at 20.00 at the Polygon Hotet, Cumberland Place.

\section*{SWANSEA}

30th IERE/IEE-"Computer graphics" by A. J. Davies at 18.30 at University College.

\section*{SWINDON}

21st. IEETE - "Ambisonic surround reproduction" by Prof. P. B. Fellgett at 19.30 at the Kings Arms Hotel, Wood Street, Old Town.

\section*{TEDDINGTON}

30th 1.Phys-One-day meeting on 'Vacuum standards and traceability of vacuum measurement" at 10.00 at the National Physical Laboratory.

\section*{WEYMOUTH}

16th IERE-"Processing techniques for the speech of divers breathing an oxy-helium gas mixture" by N. G. Kingsbury at 18.30 at South Dorset Technical College.

Tickets are required for some meetings: readers are advised therefore to communicate with the society concerned.

\section*{Digital wristwatch}

Mr D. D. Clegg, designer of the digital wristwatch published in our July and August issues, wishes to acknowledge the assistance with advice and components given to him by Motorola Ltd, Solid State Scientific, Inc., Photo-Etch Lid, Browr Boveri Company and Mallory.

\section*{PERIL OF PUBLISHING}

I am in full agreement with the sentiments expressed in Mr Henniker's letter in the June issue regarding fearing to publish ideas for fear of having them destructively criticised. Perhaps some erroneous ideas do get published, perhaps some circuits are badly designed or "re-discoveries" of already discarded ideas. Publication of these ideas may still be justified if there is a possibility that they will stimulate someone with greater knowledge into thinking and into looking for a kernel of usefulness, rather than thinking and looking for a destructive criticism.

Perhaps some people would gain by reading Dr Edward de Bono's works on "lateral thinking." If my interpretation of the concept of lateral or non-Aristotelian thinking is correct its precepts are: observe from every viewpoint, look for alternative uses if it does not fit its stated use, do not discard until it is proven by all means to be of no use, now that you know it will not work can you conceive of an idea that will work? Basically, no data, idea or concept should be discarded until it is proven to be of no use even as a stimulant for further thought.
D. A. Bailes,

London, S.E. 5 .

\section*{WIDE-BAND LOCAL NETWORKS}

If the Annan Committee says that the public ought to be allowed to enjoy the wider choice of entertainment and the vastly increased flow of information and education which cable television could bring them, then the government of the day will have to decide who is to be given access to the medium and who is to design and install the communication system.
The first question is not primarily a matter of engineering but it may
greatly affect the design of the system: One may hope, against all the odds, perhaps, that the aim will be to make the access to cable as free as it is to the printing press, so that anyone wishing to communicate with the public, who has the means to pay the distributor, is free to do so and free to set what price he likes on his publication. Some will offer it free because of the advertising it contains, some on a regular subscription basis; but others, and no doubt the great majority, on the logical and obvious basis of a separate price for each item like most ordinary economic transactions. This would be entirely in conformity with the principles enunciated by the Labour Party in "The People and the Media", thus:
"Seek, wherever possible, to move away from concentration of power over printing and broadcasting outlets and to decentralise responsibility and diversify outlets.

Make possible the widest practicable access to the media by community groups and by individuals.

Improve the opportunity to publish and broadcast a diversity of views so as to eliminate any risk that the system might lead to government or commercial censorship."

Nobody knows how many different simultaneous services the public will require or, still less, what they will be prepared to pay for, as they learn over the course of many years to make full use of the potential.

There will be two alternative ways of tackling the second question, the authoritarian or the pragmatic. In the authoritarian way "big brother" will try to decide on a fully integrated communication system capable of meeting all possible requirements and looking hopefully to the day when all signals are in digital form. "Big brother" will insist that the new system, whatever it is to be, must be applied universally so that nothing at all can be allowed to happen until its design is decided upon. That decision must be made in the face of continually changing requirements arising from practical experience in other countries and constantly changing estimates of the profitability of various services. Since the decision will set the form of the national telecommunications network for a long time ahead, "big brother" will take years to reach it and, being as fallible as the little brothers, will be just as certainly wrong. The pragmatic alternative is to harness the immense experience and entrepreneural flair of existing cable operators and to allow them and any other competent parties to work out the right methods, both commercial and technical, for serving the public requirements in the market place.

The Post Office, with extraordinary folly, has asked the Annan Committee to accept the authoritarian way and has cast itself as big brother. The inevitable result will be that nothing will happen for years and, when it does, the decision
will be another disaster in the long series of over-ambitious proposals which come to nothing. The decision on electronic exchanges is the outstanding example of this. It was taken in the 1950s and has now disappeared out of sight in the mists of system X. Then there was the postal code to enable the electronic machines to sort right down to the postman's walk, announced several years ago and now virtually abandoned. There are many others only too well known to those whose fate it is to earn their living by supplying the Post Office with equipment to its ever changing requirements.
There is plenty in the Post Office evidence to Annan to support this contention. For example, it says "the means of taking responsible judgement on returns on investment are not yet to hand". It has the commercial success \({ }^{i}\) of the 1966 experiment by Pay-TV Limited in this country and the evident success and rapid growth of pay television in the USA to go on. What more does it want? Since the Post Office Act of 1969 it has had all the powers it needs to distribute sound and vision programmes of every conceivable kind on a pay television or any other basis; but it has done nothing, nothing at all except to install a few highly conventional communal aerial systems under contract to new town authorities.

It is also very clear from its evidence and other of its publications \({ }^{2}\) in which numerous mutually exclusive technical proposals are mentioned, that, although much concerned with the virtues of standardisation in the abstract, it has no real idea of the standards which it would put forward for immediate adoption on a national scale. The scheme which it appears to prefer, a conventional v.h.f. trunk and branch network of a single coaxial cable with final distribution at u.h.f., has the wrong design objectives for the immediate future and, by reason of its limited capacity, cannot grow naturally into a full acommunication network enabling subscribers to have individual access to central audio-visual libraries or a full videophone service. The immediate design objectives are wrong; firstly, because pay television is left out of consideration and it is, of course, the only service likely to show an adequate return on investment in new cable networks. Secondly, it neglects the economy and rationality which can be achieved by including the home terminal as an integral part of the system. Of course, one must take into account the initial need for the system to serve, simply and cheaply, the conventional television receivers designed for off-air reception which exist in such large numbers; but to take as the primary objective that the cable system is to take the place of an aerial, particularly a u.h.f. aerial, is to accept \({ }^{\prime}\). severe and quite unnecessary restraints. which stultify the design, reduce its flexibility and increase its costs. It is
clear that the Post Office is really quite well aware of the point from the reference in its submission to Annan to its future involvement in the technical specification of television receivers; but no doubt it is anxious not to stir up the opposition of the television set manufacturers and dealers and it does its best to cover it up.

For the last fifty years the Post Office has been considering its entry into the programme distribution business and, from time to time, making the decision to start. In practice, what it has done is to license private operators and this policy was quite effective since, until about ten years ago, this country led the world in cable services and would still do so if it were not for the appallingy severe restrictions imposed by grandmotherly governments in an effort to protect the monopolies of the established broadcasters. How much wiser it would be if the Post Office were to continue this policy of licensing others to operate; it could watch - or partake itself if it wished - while the best commercial and technical methods are evolved at other people's expense, while retaining overall control of the situation through its licence. When the time was ripe for standardisation, which it is certainly not today, the question of nationalisation might be considered and so might long-term licences to the operators on similar principles to those which now form a basis for the excellent telephone service enjoyed by the citizens of Hull.

As you said in the leading article in April, we are all agreed that the Post Office is the proper organization to handle the bulk transmission of signals of all kinds on the trunk routes between cities; but the arguments are overwhelming for a more adventurous and flexible approach to the local distribution of television programmes.
Ralph Gabriel
Rediffusion Ltd
London, SWl

\section*{References}
1. Submission by the Cable Television Association of Great Britain to the Committee on the Future of Broadcasting, 1974. 2. "The Expanding Role and Integration of Telecommunications" by W. J. Bray, Director of Research, Post Office. Lecture first delivered at Eurocon '74, Amsterdam, on 25th April, 1974.

\section*{INSULATION TESTERS}

Referring to Mr Fox's letter "American Insularity" in the March issue, there are several aspects which deserve correction.

First, the instrument reviewed in Electronics was not "an ordinary handcranked Megger". Supporting literature indicates that it is identical to a Japanese-made instrument modelled on the lines of an obsolete Evershed product.

Second, Megger insulation testers are made solely by Evershed \& Vignoles Ltd or under licence by our American associates, the James G. Biddle Co. The word "Megger" may be a generic term, but it has been a registered trade mark since 1903 and as such can be associated only with our products.

Third, the use of hand generator testers is by no means an out-moded practice. On a world-wide basis, there is clear evidence that the popularity of the electro-mechanical device is undiminished despite the technological achievements made in solid-state circuitry.

I trust that Mr Fox would not suggest that d.c. testing of a.c. installations as called for in IEE Regulations is equally ridiculous.

\section*{E. A. King,}

Evershed \& Vignoles Ltd,
Dover,
Kent.

\section*{LOW-COST PRACTICE ELECTRONIC ORGAN}

My letter in the April issue gave rise to comments from several readers. Two manuals are preferred, though some would accept a single manual split at middle C. Some would accept one monophonic manual provided the other were polyphonic or had at least four selectable tuneable notes for chords. "Straight" organists need a 30 - or 32 -note radiating and concave pedal board to RCO dimensions, and this could well be monophonic. Reader K. Lawrence of Bristol has applied Asbery methods successfully, and points out that use of a monophonic or Asberytype system affects the style of playing, e.g. exaggerated legato could lead to momentarily spurious results. As plenty of two-manual electronic instruments are on the market, but only one completely separate full-range electronic pedal board, I think a really cheap full electronic pedalboard would be worth developing, but this would take time and expense as some features still need consideration. For a monophonic board frequencies would range from approximately 262 Hz to 698 Hz (F), all calculations being based on \(A=440 \mathrm{~Hz}\). This would give the 2 ft pitch, dividers giving the 4,8 and 16 ft pitches. Three tone filters for stops might suffice, e.g. diapason, flute and reed, but these might need duplication to cover the full range. No conclusion can be reached about plastic pedals without actual trial. A phone jack for inaudible practice appears worthwhile, subject to the usual safety precautions. Spacing between the lowest manual and the pedalboard is important.

\section*{K. J. Young.}

Derby.

CONTROLLING STAGE LIGHTING

The letter from Peter D. Hiscocks (August issue) concerning problems with triacs for stage lighting should be read by any amateur before even thinking of building stage dimmers. I should like to add a few thoughts based on many frustrating years with both triacs and thyristors in this country.

A stage lighting dimmer is a very different creature from the dimmer switch for the simple reason that its load is radically different - class T theatre lamps have substantially higher switch on surges, on a watt-for-watt basis, when compared with other lamps; and when T class lamps end their all too short lives they go with a far bigger wallop than an ordinary bulb! Therefore, a very substantial margin is needed between the steady current rating of the triac and the maximum load. I have found a ratio just above 3 to 1 sufficient, i.e. a 16 -amp triac for a 1 kW class T load; this will also allow the satisfactory use of relatively inexpensive Belling-Lee or Reyrolle fuses (provided of course that the triacs have a sufficiently high p.i.v. of at least 600 V because the 240 V supply is the r.m.s. value and its peak is 340 V ).
But at this point the British amateur must stop, for at the moment he cannot construct a 2 kW dimmer - the most useful stage size - which he can completely rely on. A recently published design in a popular magazine actually suggested the use of a \(15-\mathrm{amp}\) triac to control a 3.25 kW load - five minutes of a 2 kW CP/ 12 lamp reduced that triac to a glorifed nut and bolt. But given a \(25-\) or \(40-\mathrm{amp}\) triac, and a maximum load of 2 kW , the circuit would stand a fighting chance, and an 8 - or 10 -amp fuse could protect the device even from the death throes of the 2 kW lamp. The catch is that in Britain, unlike Canada, these high power triacs are just not available to the amateur. Of course dimmers are made to handle 2 or even 2.5 kW with little \(16-\mathrm{amp}\) triacs, and they employ very sophisticated trigger circuits and chokes (yes, even they are critical but they cost over \(£ 70\) each. In France 25and 4 -amp triacs can be bought singly over the counter (at \(£ 12\) each they are expensive, but then so too are the 16 -amp devices at £5). Why can't these devices be made available to the amateur in Britain?
Now a final checklist for the would-be constructor of a stage lighting board. Can your dimmers
1. Maintain their maximum load at full setting for 4 hours and then smoothly fade down to true zero?
2. Withstand a direct short circuit or lamp blow?
3. Fade up smoothly from a true zero
without an irritating and, to the audience, distracting rush of light?
4. Withstand hot-patching - that is the addition of an extra load to a partially loaded dimmer?
5. Genuinely not interfere with radio reception and audio equipment in the area?
6. Fade without an undue buzzing sound from the chokes?

If your dimmers meet these demands, congratulations, they have every right to be in a theatre or hall; if not then relegate them to domestic service (though do try and meet condition 5 above) and start on the long road of saving for a professional board.
Paul M. Hodgson
London, SW19

\section*{ELECTRONIC COMPONENT RETAILERS}

About five years ago we formed a buying group among the small electronic component retailers. The main object is to buy goods at cheaper prices by bulk buying. In addition, as we have nobody to represent us over such thorny questions as VAT we do this also. Our membership is at present twenty-five but for obvious reasons we would like to enlarge it. We have insufficient funds to advertise as our total revenue is derived from a modest £6 a year subscription.

I am confident there are several hundreds who would join us if they knew we existed.

If you think the continuance of the small electronic component retailer is a worthwhile object I wonder if you would be so kind as to give us a little publicity, perhaps by publishing this letter? Would those interested please write to me at the address below? Alan Sproxton,
c/o Home Radio (Components) Ltd, 240 London Road, Mitcham,
Surrey CR4 3HD (Telephone 01-648-8422).

\section*{ACTIVE NOTCH FILTERS}

In the article "Active notch filters" in the July issue, the author states that "No passive RC notch network, however complex, is capable of achieving \(Q_{0}\) higher than 0.9 ." This is presumably based on Ramachandran's theoretical limit \({ }^{1}\) of \(1 / 2 \sqrt{ } e=0.8243\), derived for \(a\) restricted form of response. However, the author has overlooked a subsequent contribution \({ }^{2}\) which relaxes the conditions on the zero of the transfer function, thereby allowing transmission gains and enabling the maximum selectivity of an unbalanced \(R C\) network to reach a value of \(1 / 2 e=\)
1.359. Of course, this is still a low selectivity and extravagant in numbers of components; even a \(Q\) of 0.8875 requires as many as 31 passive components of large spread.

It is more practicable to resort to distributed \(R C\) null structures which, when exponentially tapered, can achieve gain slope and classical selectivities of 0.6585 and 0.860 respectively using only two integrated components \({ }^{3}\). Higher Qs are possible by resorting to other inhomogeneities and configurations.

Finally, with regard to activated notch sections, it is worth mentioning the reduction in sensitivity to amplifier bandwidth afforded by more recent GIC-derived and allpass-pair circuits.
P. Bowron

University of Bradford
Yorkshire

\section*{References}
1. V. Ramachandran, "High selectivity passive resistance-capacitance null networks," Proc. IEEE, vol. 56, pp. 1237-1238, July 1968.
2. G. Wilson and P. Bowron, "The selectivity limit of lumped passive RC null networks," Proc. IEEE, vol. 60, pp. 911-912, July 1972. 3. P. Bowron and G. Wilson, "A selectivity comparison of the exponentially distributed and twin-T RC null networks," AEU, Archiv fur Elektronik und Ubstrangangstechnik, Band 27, pp. 505-510, December 1973.

\section*{ELECTRODYNAMICALLY INDUCED E.M.F.}

Concerning the question of measuring the voltage across aircraft wings, the suggestion by D. C. E. Todd and N. G. S. Taylor (Letters, July 1975) of employing ferromagnetic sheathing would, of course, work. The field across the wires could readily be reduced by a factor of a thousand or more with Munetal sheathing, reducing the force on the electrons by the same factor.

However, two lengths of ordinary insulated wire would suffice to make the measurement. Pass each through' the inside of the two wings; aircraft wings will provide little or no magnetic shielding and the full voltage developed across the wings will be measured between the inside ends of the two wires, which will be oppositely charged.

The e.m.f. generated will be quite significant; for example, at the latitude of the British Isles, with a 20 -metre wing span and a speed of \(220 \mathrm{~m} / \mathrm{s}\) ( 500 , m.p.h.) the e.m.f. will be about 26 volts,' varying in proportion to speed. With aircraft in contact with beacons for half a transatlantic journey, however, the question is whether such a measurement would be more useful as a wind-independent measure of speed or as a measure of the variations in the Earth's field along the route.
C. S. Evans

University of Reading

\section*{TRANSMISSION LINE IMPEDANCE}

In the April 1975 issue (Letters), after providing the graphical solution to the problem of finding the length and characteristic impedance of a loss-free, uniform transmission line which transforms a given complex impedance into another, Mr Day stated that the solution he gave " . . . must exist somewhere in the technical literature." In fact, Mr Day is correct - I have given the solution in 1960 in the IEEE Trans. on Microwave Theory and Techniques, vol. 8, p. 463, July, 1960.
P. I. Somlo

National Measurement Laboratory CSIRO
Sydney, Australia

\section*{MUSIC WITHOUT MOVEMENT?}

I wonder if Mr Young did any sums before he wrote to you ("Music without movement," Letters, August issue). Mine go something like this: For hi-fi performance a recorder should have, say, 15 kHz bandwidth and 60 dB signal/noise ratio among other things. These imply a sampling frequency of 32 kHz and a resolution of 10 bits per sample, giving a data rate per channel of 320 k bits \(/ \mathrm{sec}\). Therefore to store a one hour stereo programme would require \(320,000 \times 3600 \times 2=2304\) megabits.
A look at the latest m.o.s. random access memory prices suggests that \(0.05 \mathrm{p} / \mathrm{bit}\) is a reasonable large quantity price, which gives a memory cost of \(£ 1,152,000\) ! If one used type 21021 -kbit m.o.s. r.a.ms, which have a power consumption of 350 mW each, the total power required for the memories would: be 787 kW ( \(157,000 \mathrm{amps}\) at 5 V !).
Somehow, Mr Young, I don't think your solid-state tape recorder has been built just yet!
John C. Sager
Ipswich

\section*{Suffolk}

We have received other letters making similar points.-Ed.

\section*{Mr Young replies:}

I had done some figuring, though admittedly some of my assumptions were a little different from those of Mr Sager.

1 assumed a practical sampling rate of 20 kHz , on the point that current hi-fi practice ignores waveform distortion above 10 kHz . If you disbelieve this, try tape recording a 12 kHz wave and observe the resultant waveform.

I also assumed mono. Would twice as many digits be needed for stereo? I think not. So, at 10 samples per data
point, this gives \(20 \times 10^{3} \times 10 \times 3600=\) 720 megabits.

Since 1 megabit per \(\mathrm{cm}^{2}\) is now a commercial viability, this means \(720 \mathrm{~cm}^{2}\) for a "feasible" (sic) one hour playback. Curiously, this is almost the same as one side of an l.p. record.

Cost? Admittedly computer quality comes high, but if storage recording for audio becomes the norm, prices would drop rapidly. If such a recorder exists, it will have been assembled from "reject" chips totally unsuited for calculations but perfectly satisfactory for audio purposes. Most of the cost is due to high scrap anyway.
Even now an equivalent to a " 45 " could be no larger than a cassette.
As for power consumption, only a tiny part of the array would be energized at any given moment. It may well be possible to run it off a battery. Certainly not kW!

\section*{DIGITAL FREQUENCY SYNTHESIS}

I read with interest in the May issue the article "Digital frequency-synthesis - a new approach" by D. C. Ayre and K. G. Woodard, and it occurred to me that an integrated circuit manufactured by Consumer Microcircuits Ltd may be of importance to those designing wide pull-in range frequency-synthesisers.

This i.c. (FX-401) covers a \(2 \times 10^{4}\) : 1 frequency range and has three outputs, input frequency high, low and inband. The high and low outputs are suitable for the coarse control of a voltage-controlled oscillator within a phase-locked loop and could bring the output frequency to within less than \(1 \%\). When the frequency was within this band the inband output would indicate approaching phase-lock and allow a conventional narrow band phase comparator (implying low residual f.m.) to complete lock, since the other two outputs would be off.

I will be pleased to arrange for a detailed datasheet to be sent to those interested.
George Bates,
Consumer Microcircuits Ltd,
WheatonRoad,
Witham, Essex.

\section*{dB TO RATIO ON A CALCULATOR}

Recent correspondence in your columns on dB conversion on a sliderule has been followed with deserved interest. There are, however, some of us who prefer to use an electronic calculator during the course of our work,
mainly because of its greater convenience and accuracy.

Although in recent months calculator prices have fallen considerably, very few of moderate price have an "antilog" key for base 10 . This means that there is no direct, easy-flow way of converting decibels back to ratios. The answer to this problem is to be found in the following standard analysis:
\(\log _{a} x=\log _{a} b \times \log _{b} x\)
If \(a=e\) and \(b=10\), then
\(\log _{e} x=\log _{e} 10 \times \log _{10} x=2.302585 \log _{10} x\)
Thus \(x=\exp .\left(2.302585 \log _{10} x\right)\)
To convert decibels back to a voltage ratio:
\[
\begin{aligned}
\text { Ratio } & =\exp \cdot\left(2.302585 \times \frac{\mathrm{dB}}{20}\right) \\
& =\exp \cdot(0.1151293 \mathrm{~dB})
\end{aligned}
\]

Thus, on a moderately-priced calculator, to convert dB to a voltage ratio, we enter the decibels, multiply by 0.1151293 and operate the \(e^{x}\) key.

It is hoped that this will usefully supplement the ingenious slide-rule method.
R. J. Isaacs,

Clinical Research Centre, MRC, Harrow, Middlesex.

\section*{PEAK READING LEVEL METER}

We were most interested to read the article by S. F. Bywaters and J. E. West on the design of a peak reading audio level meter, published in the August issue. In view of our own experiences in designing and building similar meters for professional and commercial use, we would like to raise a number of points.
We were most surprised by the complexity and relatively high cost of the authors' design. With a small number of audio channels, where digital multiplexing does not offer a significant price advantage, we believe a wholly analogue display system to be preferable for several reasons. A resistive divider chain/comparator technique, for example, is cheaper, easier to calibrate, far more compact and generates less heat and electrical interference than a digital system. Analogue methods also allow the designer to vary the dB -increments along the scale, so that he may use 1 or 2 dB steps at the highest levels and 4 dB steps at the bottom, for example. The temperature drifts of such an analogue system may be made negligible when compared with the capacitor, zener and clock frequency drifts inherent in the Bywaters and West circuit.
We were particularly concerned about the large amount of power dissipated in their design. Assuming a
single 20 V power supply we calculated that the heat dissipation was about 16 W , which is as great as a \(20 \mathrm{~W} /\) channel amplifier running flat out! We fear that constructors attempting this project may literally get their fingers burnt! As well as lowering overall reliability it is worth noting that high temperatures may reduce the light output of red l.e.ds by as much as half for a temperature rise of \(50^{\circ} \mathrm{C}\). Although inconvenient, a separately derived 5 V supply for the. logic would help here. The power consumption could be further reduced by arranging the l.e.ds in one or more series chains driven from current sources attached to the positive rail; changing the source current then varies the l.e.d. brightness in a predictable manner. If this modification were used the 74154 outputs could drive the 7407 buffers directly (7417s would have to be used for \(15-30 \mathrm{~V}\) rails), each buffer acting as a current sink to turn off the appropriate number of l.e.ds in the chain. This would save four 7408 s and 15 resistors per channel.
In spite of the lack of any disclosed specification it is clear that the meter does not meet the BBC specification ED1477 in several respects. Firstly, one cannot obtain a flat enough h.f. response from 748s used in precision rectifier circuits; instead high speed op-amps must be used, although a transistor/diode rectifier may be employed if care is taken to compensate for low level errors and drifts. Secondly, a moving coil meter has inertia (which a light column does not!) and to make a l.e.d. meter read the same as a p.p.m. on tone-bursts necessitates the use of a complex attack characteristic after the rectifier. If a simple attack time constant must be used then the best compromise is \(4-5 \mathrm{~ms}\) rather than the 2.2 ms adopted by Bywaters and West.
In user trials of l.e.d. meters we have found that a combination of green 1.e.ds below 0 dB and red above is the most acceptable format and that those I.e.ds which indicate overload should be brighter than the rest. Luckily, because of the greater efficiency of most red l.e.ds, this brightness difference may be automatically achieved by running them from the same current source as the green ones. We have also found it easier to use these meters vertically and to place them quite close together (typically 2 to 3 cm ) in order to observe the channel balance most effectively. Happily this coincides with the cramped space available on most modern studio mixers, where modular l.e.d. meters show a considerable space saving when compared with conventional p.p.ms or VUs.
John Dawson and Chris Evans
Amplification \& Recording
Cambridge

A reply to this letter will be published later. Ed.

\title{
RADIO WAVES
}

\title{
What makes them go
}

\author{
by "Cathode Ray"
}

Someone who read what I had to say in the September and October 1974 issues, on magnetism being a side effect of electricity (and it's nice to know that at least one person did so) asked me if I would care to go on and deal with electromagnetic waves, and in particular to derive from first principles their velocity and "the impedance of space."

There are three approaches to electromagnetic (or radio) waves. Those of you who are well versed in vector analysis and three-dimensional differential equations will no doubt follow in the footsteps of Clerk Maxwell, with the advantage over him of being able to see and hear the multifarious practical results now obtained with the waves that Maxwell predicted mathematically. Others will be content to enjoy those results, without any overwhelming urge to inquire into their theory. Members of these two classes may now disperse and employ their time more profitably elsewhere, as I am about to address myself exclusively to any who do wish to know what makes electromagnetic waves go, but lack the mathematical expertise needed for taking Maxwell's way.

Electromagnetic (e-m) waves consist entirely of electric and magnetic fields. Most of us are more at home with circuits, amps and volts than with fields. Transmission lines (or high-frequency cables) offer themselves as a bridge from one to the other. So let us adopt that way of approach to free-travelling e-m waves.

In ordinary circuits, resistance, inductance and capacitance are regarded as if they were confined to the places indicated by their symbols in the circuit diagram - the components. The rest of the circuit - the wiring - is there just for connecting up the components, and not for contributing any \(R, L\) and \(C\) of its own. In so far as these qualities are inevitably present to some extent in the wiring, they are just unwanted complications which we hopefully neglect.

If transmission lines are regarded in this way, as they well might be by an electrician, they look like just wiring,
needed to connect units that unfortunately have to be installed at a distance from one another; the radio-frequency counterpart of the flex needed to connect the TV set to the mains socket. It is true that in both of these types of electrical link we would like the resistance to be small enough to neglect. If the resistance of the flex is enough to cause a noticeable loss of volts at the appliance, a heavier gauge of wire is indicated. Transmission lines, being in general much longer than flex leads, their resistance usually does cause appreciable loss en route. But at least they do not (as would too-resistive a flex) constitute a fire risk!
At the mains frequency the inductance and capacitance of a few yards of flex are truly negligible. But at the multi-million times greater frequency of the incoming signals, and with the greater length of the cable, one would quite rightly estimate that the capacitance between its two conductors would be very far from negligible, and perhaps expect this capacitance to be almost a short-circuit for the signals, allowing very little to reach the receiving end. But in spite of the two conductors being so close together - in the common coaxial type, one actually surrounding the other - so that the magnetic effects of currents in them tend to cancel out, there is enough inductance to have a profound effect. Just as the total capitance is distributed in parallel all along the line (assumed to be uniform), so the total inductance is. distributed in series. Electrically, the line can be represented as in Fig. 1,


Fig. 1 An ideal transmission line can be considered as a circuit in which the distributed capacitance and inductance are represented as a very large number of very small capacitors and inductors.
where \(L\) and C are respectively the inductance and capacitance per (very small) unit length of the cable.

Next, let us consider the effective resistance of the TV set or whatever the cable is feeding into, \(R\) in Fig. 2(a). It probably won't be a pure resistance, but it can always be made so by tuning; and that gets rid of one complication. Now we connect to it one of our very short unit lengths of cable, Fig. 2(b). It is so short that the series inductive reactance \(\bar{X}_{L}\), which is \(2 \pi f L\), is very small compared with \(R\); and the parallel capacitive reactance \(X_{C}\), which is \(1 / 2 \pi f C\), is very large compared with \(R\). That being so, the series capacitance \(C^{\prime}\) in Fig. 2 (c) is (near enough) electrically equivalent to \(C\) in (b) if its reactance, \(X_{C}^{\prime}\) is equal to \(R^{2} / X_{C} \cdot{ }^{*} X_{L}\) and \(X_{C}{ }^{\prime}\), being respectively positive and negative reactances, cancel out if \(X_{L}{ }^{\prime}=X_{L}\). Fig 2(c), and therefore very nearly (b) also, is electrically the same as (a). For this to be true, \(R^{2} / X_{C}\) must be equal to \(X_{L}\), so
\[
\begin{align*}
& R^{2}=X_{L} X_{C}=\frac{2 \pi f L}{2 \pi f C}=\frac{L}{C} \\
& \text { So } R=\sqrt{\frac{L}{C}} \tag{1}
\end{align*}
\]

Notice that frequency doesn't come into this at all, except that if it is very high


Fig. 2 By selecting a suitable value of load resistance R, a pair of the small units of \(L\) and \(C\) in Fig. I connected to it (b) can be made of nq effect, because the seriesequivalent of \(C\) ( \(\mathrm{C}^{\prime}\) at (c)) cancels out \(L\). This process can be repeated until any length of line terminated by \(R\) is found to be equivalent, as an impedance, to \(R\) alone.
then \(L\) and \(C\) have to very small indeed to fulfil the condition that \(X_{C} \ggg X_{L}\)

The process of finding a Fig. 2(b) equivalent to (a) can then be repeated indefinitely, so that any length of cable terminated by a resistance is electrically the same as the resistance alone, provided that eqn.(1) is true, subject to the approximation we used. The smaller \(X_{C}\) and \(X_{L}\) are, the smaller is the error in assuming \(X_{C}{ }^{\prime}=R^{2} / X_{C}\), so by making them smaller and smaller and increasing their number correspondingly, ultimately making Fig. 1 equivalent to a real cable, we can make the error as near zero as we like.
So to make a line or cable ideal for

\footnotetext{
*Foundations of Wireless \& Electronics, 8th edition, M. G. Scroggie; Sec. 8.16. See also Sec.16.2.
}
conveying radio signals from one place to another we have to ensure that its inductance and capacitance per unit length (not necessarily small at low frequency) are related to the load resistance \(R\) thus: \(R=\ulcorner(L / C), L\) and \(C\) depend on the cross-sectional dimensions of the cable, and there is only a limited range of practical values of these, so it is usual to fit \(R\) to them, rather than \(r(L / C)\) to \(R\). The resistance \(V^{-}(L / C)\) is usually called the characteristic resistance of the cable and denoted by \(R_{0 .}\). (It is also called characteristic impedance and denoted by \(Z_{0}\); this covers the fact that the effect of resistance of the line conductors introduces reactance along with \(R_{0}\).). Owing to the way in which it was derived with the help of Fig. 2, \(R_{0}\) can also be regarded as the input resistance of an infinitely long line.
How does one find \(L\) and C? Well, of course, they can be measured. Calculating them for practical lines and cables (parallel-wire or coaxial) is rather complicated. But although not a very practical form, there is no theoretical reason why a transmission line should not consist of two parallel metal strips as in Fig. 3. This is much easier for calculating \(L\) and \(C\) at least


Fig. 3 A simple, if unusual, form of transmission line is a pair of parallel metal strips.
approximately, and, as we shall see, it is a very convenient form for studying the whole subject.
Although thinking a thing out from fundamental principles is usually harder work than remembering a handy formula or looking it up in a book, it should be worth it in this case. So we start with the standard definition of the capacitance between two conductors as the electric charge (positive on one conductor; negative on the other) per volt needed to put it there:
\[
\begin{equation*}
C=\frac{Q}{V} \tag{2}
\end{equation*}
\]
(Until further notice I'm going to use the symbols \(C\) and \(L\) in a general sense; not per unit length as in Figs. 1 and 2.) And the inductance of a circuit or part thereof is defined as the voltage induced in it per amp-per-second variation in the current flowing through it:
\[
\begin{equation*}
L=\frac{V}{\mathrm{~d} I / \mathrm{d} t} \tag{3}
\end{equation*}
\]

Although defined thus, capacitance and inductance are really effects of electric and magnetic fields respectively, and we won't be able to get far without


Fig. 4 A short length of the Fig. 3 type of line can be treated as a capacitor.
accepting that fact. Electric field is denoted by \(E\), and is the voltage per metre between two points at different potential (Fig. 4). So
\[
\begin{equation*}
E=\frac{V}{d} \tag{4}
\end{equation*}
\]

That connects with the \(V\) in (2). Associated with \(E\) is what is called electric flux density or displacement, \(D\), which is equal to the charge on the plate per unit area:
\[
\begin{equation*}
D=\frac{Q}{A} \tag{5}
\end{equation*}
\]
(This equation is a form of Gauss's theorem.) \(D\) and \(E\) are related to one another by a property of whatever material or non-material fills the space between the plates - its permittivity, \(\epsilon\) :
\[
\begin{equation*}
D=\epsilon E \tag{6}
\end{equation*}
\]

So, substituting for \(Q\) and \(V\) in (2), from (4)-(6), we get
\[
\begin{equation*}
C=\frac{A D}{d E}=\frac{A \epsilon}{d} \text { farads } \tag{7}
\end{equation*}
\]
which I hope you will recognise as the well known formula for the capacitance of a parallel-platec capacitor in SI units. It would be very inaccurate for a capacitor like the one in Fig. 4 because there would be a lot of stray field besides that directly between the plates; this is usually referred to as edge effect, and is much less if (as in practice) the plates are very close together. Obviously we can apply (7) to calculating the capacitance between the strips in Fig. 3, per small length, or per metre, or for the whole
But now let us go back to inductance, eqn. (3). A coil has an inductance of 1 henry if 1 volt is induced in it when the current is changing at a steady rate of 1 amp per second. But what induces the e.m.f. is not the varying current itself but the varying magnetic flux due to the current and linked with the coil. In SI units the voltage induced is equal to the rate at which the flux is changing, so if 1 amp in the coil causes \(\Phi\) units of flux the inductance is equal to \(\Phi\). In other words, the inductance is equal to the flux per amp:
\[
\begin{equation*}
L=\frac{\Phi}{I} \tag{8}
\end{equation*}
\]

We can make a sort of coil of Fig. 3 if we short-circuit a length \(W\) at both ends and circulate a current \(I\) around this "coil". The flux passes through the
"core" of this coil and doubles back to complete a loop around the current, as indicated in Fig. 5 by only two dotted lines, which represent the continuous flux filling the whole core. Its conventional direction, for a clockwise current, is inwards as shown (corkscrew rule). The flux density, denoted by \(B\), is equal to \(\Phi\) divided by the cross-sectional area \(A\) of the "window" inside the coil:
\[
\begin{equation*}
B=\frac{\Phi}{A} \tag{9}
\end{equation*}
\]

This \(A\) is not the same as in (5) of course, but in this case is equal to Wd. The current itself is also involved because the magnetic field strength \(H\) inside the coil is equal to the encircling current per unit length of the \(\bar{\Phi}\) ' path (Ampere's law):
\[
\begin{equation*}
H=\frac{1}{l} \tag{10}
\end{equation*}
\]

But \(B\) and \(H\) are related to one another by a property of the material or non-material in which they occur - its permeability, \(\mu\) :
\[
\begin{equation*}
B=\mu H \tag{11}
\end{equation*}
\]

So, substituting for \(\Phi\) and \(I\) in (8) we get
\[
\begin{equation*}
L=\frac{A \mu}{l} \tag{12}
\end{equation*}
\]

Strictly, except where \(H\) is constant all the way \(l\) around its loop (which is very rarely) Hl in (10) must be \(\int \mathrm{H}\).dl;


Fig. 5 By adding short-circuiting pieces at the ends, the bit of line in Fig. 4 can be made into an elementary coil.
but in Fig. 5 the external path of \(H\) (and \(\Phi\) ) is so much fatter than the internal one that, provided \(d / w\) is small, the only part of \(l\) that need be counted is the internal part, w. So approximately in this case.
\[
\begin{equation*}
L=\frac{A \mu}{w} \text { henries } \tag{13}
\end{equation*}
\]

This is analogous to (7), but we must remember that \(A\) means different things in (7) and (13). Incidentally, the approximation error ("end effect") in (13) due to \(w\) not being the whole path of \(B\) is analogous to the "edge effect" in (7); but whereas (7) gives too low a value for \(C\), it should be fairly obvious that (13) gives too high a value for \(L\).
Now at last we can combine (7) and
(13) to find approximately the characteristic resistance \(R_{0}\) of the Fig. 3 form of line. To simplify matters and get rid of the ambiguity of the symbol \(A\) we shall take a section of line 1 metre long, so that \(A\) in (7) is equal to \(w\), and \(A\) in (13) is equal to d. If you object that 1 metre is not short enough to be valid in the argument based on Fig. 2, my reply is that it is good enough for relatively long waves (low frequencies) and to suit high frequencies you can reduce the scale. And if you point out that the line doesn't have short-circuits every metre along its length as in Fig. 5, the answer is that it doesn't need to, as current can flow freely along both strips, and is equal and opposite in them, just as in Fig: 5. So for Fig. 3, remembering that \(L\) and \(C\) are now per unit length again,
\[
\begin{equation*}
R_{o}=V^{\prime} \frac{L}{C}=\sqrt{\frac{\mu d}{w} / \frac{\epsilon w}{d}}=\frac{d}{w} \sqrt{\frac{\mu}{\epsilon}} \tag{14}
\end{equation*}
\]

The values of \(\mu\) and \(\epsilon\) for air are almost the same as for a vacuum, \(\mu_{0}\) and \(\epsilon_{0}\) which are \(4 \pi \times 10^{-7}\) and \(8.854 \times 10^{-12}\) respectively. So \({ }^{\prime}(\mu / \epsilon)=377\). For example, if the width of the strips in Fig. 3 was 10 times their separation, \(R_{o}\) for this line would be \(37.7 \Omega\) approximately (owing to edge and end effects it would be rather less).

The \(R_{0}\) of a line or cable terminated by a resistance equal to \(\boldsymbol{R}_{0}\) being equivalent to that same resistance so far as any generator connected to it is concerned, \(R_{o}\) is also the ratio of voltage to current at the point of connection and (as will be clear from the argument illustrated by Fig.2) at every point along the line, right up to the load. This is practically so even if the line loss moderately reduces the actual values of \(V\) and I between generator and load.

The fact that a low-loss line with suitably chosen \(L\) and \(C\) is electrically equivalent to the resistance connected to the far end does not, of course, mean that the generator signal arrives at the far end instantaneously. When the generator (such as an aerial) feeds the first positive half-cycle into its end of the line, it starts to charge the capacitance of that end, say one of the \(C\) units in Fig.1, but the current that tries to go on from there to charge the next unit is delayed by the first series inductance \(L\). And so on. So the signal waveform travels along the line at a certain speed, rather like the wave one can make by waggling the end of a long stretched rope.

What speed?
We can look again at Fig. 3 and, denoting the voltage and current at the start by \(V\) and \(I\left(V / I\right.\) being \(\left.R_{0}\right)\) we calculate the charge on the upper strip (the lower one being assumed earthed) per unit length, from (2) and (7):
\[
\mathrm{Q}=\mathrm{CV}=\frac{\epsilon w V}{d}
\]

The current \(I\) along the line is the amount of charge passing any fixed point per second, so if we call the
velocity of the charge along the line \(\nu\), we have
therefore \(\quad v=\frac{I d}{\epsilon w V}=\frac{d}{\epsilon w R_{0}}\)
and substituting from (14)
\[
\begin{equation*}
=\frac{1}{\sqrt{\epsilon \mu}} \tag{15}
\end{equation*}
\]

In space, where \(\dot{\varepsilon}\) and \(\mu\) are \(\varepsilon_{0}\) and \(\mu_{0}\), this works out at nearly \(3 \times 10^{8}\) metres per second, which is the speed of light, usually denoted by c. Together with much other convincing evidence, this discovery led to the conclusion that light is electromagnetic, differing from radio waves only in its much higher frequency.

In air, \(\epsilon\) and \(\mu\) are very slightly greater than \(\epsilon_{0}\) and \(\mu_{0}\), so the wave speed is very slightly (negligibly for most purposes) lower. But practical lines have to rely on solid insulating spacers with values of \(\epsilon\) several times greater than \(\epsilon_{0}\), so the wave speed therein may be much less than \(c\), and the wavelength along the line, at a given frequency, much less than in air.

Note that as \(V / I=R_{0}\) everywhere along the line, voltage and current are everywhere in phase, so they carry energy along the line, stored in the travelling electric and magnetic fields. Comparing Figs. (4) and (5) we see that these fields must be at right angles to one another and to the direction of wave motion. I don't want to get sidetracked here by the subject of polarization but just mention in passing that the direction of polarization is conventionally that of the electric field; vertical in Fig.3: That is why receiving dipoles for vertically polarized waves should be vertical. But e-m waves don't have to be like this, polarized in one direction ("linearly polarized"); they can be all mixed up.

Fig. 6 shows diagrammatically the electric ( \(E\) ) and magnetic ( \(H\) ) field


Fig. 6 Plane, linearly-polarized electromagnetic waves consist of an electric field pattern, shown here in the vertical plane, accompanied by a similar magnetic field at right angles to it and to the direction in which the whole pattern is moving.
strengths in three-dimensional space between the conductors of a transmission line when verticallypolarized sinusoidal waves are going along it from left to right. If either \(E\) or \(H\) were reversed in phase, the waves would be going from right to left.

All this may be all very well, you may say, but when are we going to get free from lines and cables? How can the waves exist without charges or currents? Well, we know (I hope) that although each of the imaginary flux lines between the capacitor plates in Fig. 4 begins on a positive charge and ends on a negative charge, and \(E\) is inevitably present around any charge, charges are not the only cause of \(E\). The other cause is variation of a magnetic field (Faraday's law of e-m induction)*. It happens in every power station and transformer. The basic principle of electric generators is \(V=B v l, V\) being the voltage generated in a straight conductor of length \(l\) cutting a magnetic field of flux density \(B\) at velocity. \(v\). But even if the conductor were not there the potential difference in space would be, and p.d. is a measure of the electric field between the ends of the length \(l\), because over a length \(l\) it adds up to \(V\). So a more fundamental equation is \(E=B v\). Or in terms of magnetic field strength \(H, E=\mu H \nu\).

But how does a magnetic field come into existence where there are no electric currents? Even the field around a permanent magnet is caused by electric currents on an atomic scale in the magnet material. We go back to eqn.(10) for the basic principle (Ampere's law). Put more correctly it says that the magnetomotive force (m.m.f.), \(\int H . d l\), is equal to \(I\), the current enclosed by an \(H\) loop of length \(l\). Now look at Fig.7, which shows a capacitor \(C\)


Fig. 7 Although the space between capacitor plates çarries no current in the ordinary sense, there is a "displacement current" which produces the same magnetomotive force around it as every other part of the circuit.
in process of being charged. The charging current is flowing in the direction conventionally shown by the arrow \(I\), and of course is diminishing as time goes on. Exactly proportional to this current at all times, and numerically equal to it in Sl units, is an m.m.f. everywhere around the current, indicated at one point in the circuit by a ring. The arrow head on this ring is conventionally related to the current arrow by the corkscrew rule. Having recapped on the familiar circuit situation, let us shift our attention to the space between the plates, which are
*Discussed in "What is e.m.f.?", August 1974 issue.
wider apart than usual in order to make this easier.

It will be generally agreed that no current, in the ordinary sense, is flowing across the space between the plates. There is, as one would say, a break or gap in the circuit. But is there a gap in the m.m.f.? I've never done the experiment, but I'm sure that if a magnetic needle were to be suspended near the plates, with precautions to prevent it from being affected by the rest of the circuit, it would respond to this non-existent current. For I trust James Clerk Maxwell, who decided theoretically (and, for all I know without being able to look it up, experimentally) that there is indeed an m.m.f. around the space between the plates, caused by what he called displacement current. We have come across displacement already, in eqn.(5), as the electric flux density between opposite charges. The total displacement or flux over an area \(A\) is therefore \(A D\), and, as (5) said, this is equal to \(Q\), the total charge on either plate. The circuit current \(I\) is equal to the rate at which charge is moving along, but in the capacitor this charge is not moving along but is accumulating on the plates. However, it makes the displacement increase. The rate of increase of total displacement being equal to the rate of increase of charge, it is also equal to the circuit current, I. So if displacement current is defined as the rate of change of total displacement, it is always equal to \(I\). So the m.m.f. ring around \(C\) is the same amount as around \(I\) anywhere else.

At a fixed point \(P_{1}\) in Fig.6, \(E\) is at this moment at a positive maximum and \(H\) likewise (if positive is towards us). At \(P_{2}\) they are both maximum negative. The rapid change from \(E\) at \(P_{1}\) to \(-E\) half a cycle later was supposed to be due to a negative charge on the upper metal strip being replaced by a positive charge, brought about by current along the strip between \(P_{2}\) and \(P_{1}\). But if we remove the strips and join up the opposite \(E\) lines at \(P_{1}\) and \(P_{2}\) into complete loops as in Fig.8, the


Fig. 8 Although Fig. 6 was based on the existence of electric charges moving along conductors (Fig.3), waves continue when the conductors are removed, because the fields join up to replace them, as far example this electric line of force at the \(\mathrm{P}_{1}-\mathrm{P}_{2}\) section in Fig. 6.
movement of this loop rightwards for half a cycle is accompanied by a displacement current in space where the conduction current used to be. This rapid change in displacement \(D\) causes a magnetic field \(H\) just as any ordinary current would. We have already noted that \(E=B \nu=\mu H \nu\). Without going into the full derivation we can now be pretty sure (by the principle of duality I so often cite) that the counterpart is true: \(H^{\prime}=D v=\epsilon E v\). I have called the generated magnetic field \(H^{\prime}\) to distinguish it from \(H\), as in general the two are not necessarily equal. But for the two fields to keep one another going, \(H^{\prime}\) must be equal to \(H\), which in the first equation is equal to \(E / \mu v\). Substituting this in the second, we get
\[
\text { from which } \quad \begin{align*}
\dot{\epsilon} E & =\frac{E}{\mu \nu} \\
v & =\frac{1}{\sqrt{ } \epsilon \mu} \tag{16}
\end{align*}
\]
which is the same as (15) derived from currents and charges.

Since e-m waves are thus able to get along quite nicely without currents and charges, what exactly is the role of the hardware, especially as its resistance weakens the waves by a few dB per 100 metres? The quick answer is that it guides them from \(A\) to \(B\), when that is what is wanted rather than broadcasting. But how?

An air-cushion-shaped wave like Fig. 8 has parts at top and bottom that are not wholly vertical. These will therefore expand upwards and downwards as well as forwards. In three dimensions it will expand sideways as well, and in fact all around. (The same applies to the magnetic field, not even suggested in Fig. 8 but there in real waves.) If (say) an electric wave front expanding upwards hits a horizontal conducting surface, the field lines will not be at right angles to it. So they will have a component parallel to it, along the surface of the metal. But it is impossible for two points in or on a perfect conductor to be at different potentials. So where an electric field ends on a conductor the direction of the field must be wholly at right angles to the conductor.

That being so, the wave front inside a transmission line must be a plane at right angles to the conductors and to the direction of wave travel. Which, not surprisingly, is why the waves are called plane waves. The conductors eliminate all field components of the waves that are not directly forward. (I have said nothing about the magnetic field, because it is obvious that if any part of the electric field is eliminated the corresponding part of the magnetic field has nothing left to keep it in existence.)

It is not essential to have two conductors for this guiding action; in certain circumstances an empty tube will do, called a waveguide. But that is
too long a story to start on now. If anyone asks me kindly I might tell it some other time. But I do just have room to fulfil my promise about the impedance of space. We found that a transmission line or cable that is loss-free and infinitely long has an input resistance that is
\[
R_{o}=V^{\prime} \frac{L}{C}=\frac{d}{w} \frac{\mu}{\epsilon}
\]
(14 again)
The awkward bit about being infinitely long can be got round by substituting any length you like provided that the far end is connected to a resistance equal to \(R_{o}\), nobody will notice the difference at the input end because there won't be any difference there. If we imagine ourselves inside an enormous line of the Fig. 3 type, looking towards the far end, we can consider one metre square of the cross section of space confronting us. By thus making \(d=w=1\) so far as the space is concerned, we get \(V(\mu / \epsilon)\) as the resistive impedance of space (since it is not concerned at all with the dimensions of the line). Let us call this resistance \(R_{S}\) In fact, the line can be removed and, provided the waves stay plane, which they will then not do, but will very nearly do at a great distance from a radio transmitter, the same applies. We have already noted that the value of \(V(\mu / \epsilon)\) for empty space is \(377 \Omega\). Within dielectric materials \(\mu\) is hardly affected, but \(\epsilon\) will be greater, so the resistance of the material to plane waves will be less than \(377 \Omega\).

If we work back from \(R_{S}=\checkmark(\mu / \epsilon)\) by using equations (14), (4) and (10) (with \(l=w)\) and \(\ddot{R}_{o}=V / I\), we get
\[
R_{S}=\frac{E}{H}
\]
which is analogous to
\[
R_{O}=\frac{V}{I}
\]

The dimensions are right, because \(E\) is in volts per metre and \(H\) is in amps per metre, and the metres cancel out.

\title{
Circuit Ideas
}

\section*{Constant amplitude sawtooth generator}

This sawtooth generator is designed to give a constant-amplitude output over a range of frequencies when driven by an external periodic waveform. The ampli-
tude of the output is sensed and a corrective voltage is applied to the base of a transistor used as a constant-current source. The exponential currentvoltage relationship of such a source renders it particularly useful for this purpose.

An MC3401P is the op-amp package used. This contains four single-supply internally-compensated amplifiers sharing common biasing circuitry, and operating over +5 to +18 V . Each amplifier has a common-emitter type inverting input, and a current-mirror non-inverting input, often used to set quiescent output voltage.

Transistors \(\mathrm{Tr}_{1}\) and \(\mathrm{Tr}_{2}\) form the basic sawtooth generator, \(\mathrm{Tr}_{1}\) being driven on at the input frequency by a 300 ns pulse. The resulting waveform is amplified by \(\mathrm{IC}_{1}\) and fed to \(\mathrm{IC}_{2}\) which acts as a comparator - the amplitude sensing element. The threshold is set by the \(25 \mathrm{k} \Omega\) potentiometer which should be adjusted for maximum output-ampli-
tude versus frequency linearity. Rectangular waves at \(\mathrm{IC}_{2}\) output are filtered to give a control voltage; this is shifted in level by \(\mathrm{IC}_{3}\) and \(\mathrm{D}_{1}\) to meet the input voltage requirements of \(\mathrm{Tr}_{2}\). Capacitor \(\mathrm{C}_{1}\) acts as a reservoir to smooth out any voltage fluctuations at \(\mathrm{Tr}_{2}\) base during each cycle.
Values shown are for a range from 2 kHz to 100 kHz . If a faster response is desired it may be obtained by altering filter values at the expense of frequency range. An output appears at the source of \(\mathrm{Tr}_{3}\), and may be amplified to the desired value. For optimum stability, the power supply should be stabilized. The unit may be employed as a frequency multiplier by adding comparators set to fire at various ramp levels.
The pin diagram for the 14 -pin d.i.l. version of the 3401 is shown. This device may be obtained from Jermyn, Sevenoaks, Kent.
J. N. Paine,

Oxford.


\section*{Thyristor protection circuit}

When different pieces of equipment are being interconnected by a signal interface, the danger exists of high voltages appearing on the interface lines as the result of a malfunction. These can be dangerous, e.g. mains, or nuisance voltages which will damage delicate components. A protection circuit which will provide very little signal degradation is shown. The components may be selected to meet a wide variety of conditions. Suppose there is a voltage \(V_{A B}>0\). If \(V_{A B}>V_{D 3}+V_{D 1} \approx V_{D 3}\) then thyristor \(S_{C_{1}}\) will latch and \(V_{A B}\) will reduce to \(\sim 1 \mathrm{~V}\) within 1 to \(2 \mu \mathrm{~s}\). If \(F_{1}\) is a suitable value it will blow, and isolation will result between \(A A^{\prime}\).

When \(V_{A B}<0\) and if \(V_{B A}>V_{D 4}+\) \(V_{\cdot D 2} \approx V_{D 4}\) then thyristor \(\mathrm{SCR}_{2}\) will latch and \(F_{2}\) will blow: By suitable selection of \(\mathrm{Z}_{1}\) and \(\mathrm{Z}_{2}\) suitable voltages may be catered for.

Capacitors \(C_{1}\) and \(C_{2}\) guard against spurious triggering, or triggering on signal spikes transmitted through the diode capacitance, and \(D_{1}\) and \(D_{2}\)

prevent forward voltage drops across \(\mathrm{D}_{3}\) and \(D_{4}\).

With the following values:
\(\mathrm{Z}_{1}, \mathrm{Z}_{2}\) CV7144 10V zener
\(D_{1}, D_{2}\) CV9637 small-signal silicon diode
\(\mathrm{R}_{1}, \mathrm{R}_{2} 10 \mathrm{k} \Omega\)
\(\mathrm{C}_{1}, \mathrm{C}_{2} 0.047 \mu \mathrm{~F}\)
\(\mathrm{Tr}_{1}, \mathrm{Tr}_{2}\) 2N4147
the circuit will operate with pulses of 20ns with no noticeable degradation, and the circuit will latch if \(\mathrm{V}_{\mathrm{AB}}\) exceeds 11 V .
Higher powered thyristors may be used where necessary with consequent slowing down of edges. Typical component cost is \(£ 1.10\) for values as shown. S. G. Pinto,
A. P. Bell,

Ipswich.

\section*{Stereo rumble filter}

On cheaper turntables and records audible rumble can extend to frequencies above 100 Hz . This rumble can be resolved into mono rumble, corresponding to horizontal displacements of the stylus on the record, and stereo rumble, corresponding to vertical displacements. The last mentioned is disconcerting to the listener because it gives rise to out-of-phase loudspeaker signals. This is easily demonstrated by switching the amplifier from stereo to mono on a quiet passage of a mono record with the listener not equidistant from the loudspeakers. (I suspect that some surround-sound enthusiasts who feed difference signals into the rear speakers think that the stereo rumble is part of the ambience.)

Fortunately, as the human ear is not sensitive to directional information below about 400 Hz , it is possible to remove the stereo ( \(\mathrm{L}-\mathrm{R}\) ) signal at low frequencies without losing stereo separation, thus also removing the stereo rumble, and reducing the total rumble. This is done by the circuit shown. Emitter followers feed two two-pole Sallen \& Key high-pass filters, with 200 Hz break-point frequencies and Butterworth characteristics, but with \(R_{3}\) and \(R_{4}\), which would normally be joined to earth, connected together at the point \(P\).

If identical signals are applied to the inputs (a mono signal), no current flows through \(P(P-Q\) acts as an open circuit), no filtering takes place, and the signals are unchanged. Resistors \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) provide low frequency paths around the capacitors and biasing to \(\mathrm{Tr}_{3}\) and

\(\mathrm{Tr}_{4}\). However, if signals of equal amplitude but opposite phase (a stereo signal) are applied to the inputs, then, by symmetry, the voltage at \(P\) does not vary, and \(P\) becomes a signal earth. The filters then attenuate the difference signal below 200 Hz . The filter chosen gives 12 dB attenuation at 100 Hz , with channel crosstalk of -11 dB at 500 Hz rising to -31 dB at 5 k Hz .

The author has used one of these filters for some time. With loudspeakers
there is an appreciable reduction of rumble without perceptible reduction of stereo separation. With headphones, there is an added bonus because the effective bass-blending of the circuit removes the highly unrealistic sensation of sometimes having bass in only one ear. The filter can be disabled by wiring a switch between \(P\) and \(Q\).
M. L. G. Oldfield,

Dept of Engineering Science, Oxford University.

\section*{Stereo dynamic noise limiter}

Stereo reception of f.m. stations is often accompanied by a slight noise signal. This signal is only heard at weak passages; in this case a noise limiter will help to produce a pseudo-stereo sound, which has reduced noise.

In practice both audio channels are short-circuited, depending on the audio signal strength. The short circuit is realized by a field effect transistor 2N4417, whose gate is controlled by the output voltage. If this voltage is not sufficient to drive the f.e.t, an amplifier or transformer must be used.
J. W. Richter,

Eindhoven.

(* includes; volume. balance and tone controls)

\title{
Electronic circuit calculations simplified
}

\section*{\(5-\mathrm{RC}\) combinations in a.c. circuits}

\author{
by S. W. Amos, B.Sc., M.I.E.E.
}

This article is concerned with RC combinations in analogue or linear circuits. It shows how the values of resistance and capacitance required to give a particular type of frequency response can be simply calculated.

So far in the series we have used three formulae, namely \(I=V / R\) (Ohm's law), \(Q=\) It and \(C=Q / V\). In this article we shall use a fourth formula, the expression for the reactance of a capacitor
\[
\text { reactance }=\frac{1}{2 \pi f C}
\]
which shows that the reactance is inversely proportional to frequency and to capacitance.

Fundamental frequency response of an RC circuit. Fig. 1 shows a combination of series capacitance and shunt resistance commonly encountered in electronic circuits. Because the reactance of \(C\) is inversely proportional to frequency such a combination gives a response in which the loss increases as frequency decreases. It is possible for particular values of \(R\) and \(C\) to calculate the loss introduced by the circuit, and by repeating the calculation for a number of frequencies the response curve for the circuit can be deduced. This is, however, a laborious and unnecessary operation because the response can be calculated very simply as explained below.

At the frequency for which the reactance of \(C\) equals \(R\), the loss of the circuit is 3 dB . At double this frequency (i.e. one octave higher) the loss is 1 dB and one octave higher still it is only 0.25 dB . At half the frequency for 3 dB loss (i.e. one octave below this frequency) the loss is 7.5 dB and one octave lower still it is 12.5 dB . A further halving of frequency increases the loss to 18 dB and below this frequency the loss increase at the rate of 6 dB per octave.

These loss figures are plotted against frequency in Fig. 2 which shows that the frequency response becomes at each end a straight line, a horizontal straight line at high frequencies and a straight line with a slope of 6 dB per octave at low frequencies. These two lines, if extended to the centre of the diagram,


Fig. l. Combination of series \(C\) and shunt \(R\) commonly encountered in electronic circuits.


Fig. 2. Universal frequency response curve for all RC combinations.


Fig. 3. Combination of series \(R\) and shunt \(C\) also commonly used in electronic circuits.
meet at the 3 dB loss frequency, i.e. the frequency for which the reactance of \(C\) equals \(R\). Thus if the 3 dB loss frequency is known, it is possible to indicate it on graph paper and then to put in the straight line for zero loss and that forthe 6dB-per-octave loss. With these as guides the response curve can now be drawn easily and rapidly yet with accuracy. Because of the low-frequency loss introduced by the circuit of Fig. 1, this is usually known as a bass-cut circuit.

If in the circuit of Fig. 1 the output is taken from across the capacitor instead of the resistor, the loss of the circuit is very low at low frequencies where the reactance of \(C\) is large but increases as frequency is raised. The loss is again 3 dB at the frequency for which the reactance of \(C\) equals \(R\), decreases to zero at lower frequencies and increases, reaching 6 dB per octave, at higher frequencies. Such a response is usually described as a top-cut characteristic and the RC combination giving it is usually drawn in the form shown in Fig. 3. The frequency response is defined by precisely the same loss figures as for the network of Fig. 1 and the response curve is as given in Fig. 2 provided that frequency is taken as increasing from right to left. Once the 3 dB loss frequency is known the response curve for the circuit of Fig. 3 can be rapidly drawn using the two straight lines as guides as for the circuit of Fig. 1.
The curve of Fig. 2 thus applies to all RC combinations and it gives the response no matter whether the RC combination is in the main path or the negative feedback loop. The curve is plotted from the figures \(0.25 \mathrm{~dB}, 1 \mathrm{~dB}\), \(3 \mathrm{~dB}, 7.5 \mathrm{~dB}, 12.5 \mathrm{~dB}, 18 \mathrm{~dB}, 24 \mathrm{~dB}, 30 \mathrm{~dB}\) etc. which are the losses at octave intervals of frequency. These figures are extremely useful to the electronic engineer and are repeated in the accompanying table. What Calais was to Mary, this table should be to the electronic engineer! The usefulness of the table will now be illustrated by a number of practical numerical examples.

Frequency response of RC circuit
\begin{tabular}{cll}
\hline \begin{tabular}{ll} 
Frequency for \\
top-cut cct.
\end{tabular} & \begin{tabular}{l} 
Frequency for \\
bass-cut cct.
\end{tabular} & \begin{tabular}{l} 
Loss \\
in dB
\end{tabular} \\
\hline\(f / 4\) & \(4 f\) & 0.25 \\
\(\mathrm{f} / 2\) & 2 f & 1 \\
\(\mathrm{f}^{*}\) & \(\mathrm{f}^{*}\) & 3 \\
2 f & \(\mathrm{f} / 2\) & 7.5 \\
4 f & \(\mathrm{f} / 4\) & 12.5 \\
8 f & \(\mathrm{f} / 8\) & 18 \\
16 f & \(\mathrm{f} / 16\) & 24 \\
32 f & \(\mathrm{f} / 32\) & 30 \\
etc. & etc. & etc. \\
etc. & etc. & etc. \\
\hline
\end{tabular}

\footnotetext{
* is the frequency for which the reactance of \(C\) equals \(R\)
}

Coupling circuit. Perhaps the most familiar application of the circuit of Fig. 1 is in coupling the output of one valve or transistor to the following stage. Fig. 4 shows the circuit in use between two f.e.ts. If these form part of an a.f. amplifier then a uniform frequency response is required from the coupling circuit over the range say 30 Hz to 15 kHz . We can achieve this by arranging that the coupling circuit has a small acceptable loss, say 1 dB , at the lower limit of the band. The loss will then be less at higher frequencies. It would be satisfactory, for example, if \(\mathrm{C}_{g} R_{g}\) introduced 1 dB loss at 30 Hz . From the table or Fig. 2 we know that the loss will be 3 dB one octave lower, i.e. at 15 Hz , and this is the frequency at which the reactance of \(\mathrm{C}_{g}\) is equal to \(R_{g}\) A likely value for \(R_{g}\) is 1 megohm and from this we can calculate the value of \(C_{g}\) from the relationship:
\[
\frac{1}{2 \pi f C_{g}}=R_{g}
\]
from which
\[
\begin{aligned}
C_{g} & =\frac{1}{2 \pi f R_{g}} \\
& =\frac{1}{6.284 \times 15 \times 10^{6}} \mathrm{~F} \\
& =0.01 \mu \mathrm{~F} \text { approx }
\end{aligned}
\]

If there are many stages in an amplifying chain, each of the type shown in Fig. 4 , then a loss of 1 dB per stage at the low-frequency limit could be excessive and a lower loss should be arranged. For example a loss of 0.25 dB per stage can be obtained by doubling the value of \(C_{g}\) (to \(0.02 \mu \mathrm{~F}\) ) or of \(R_{g}\) (to 2 megohms).

If, in the bias circuit for the f.e.t. the gate is connected to a potential divider across the supply, then the loss of the coupling circuit is 3 dB at the frequency for which the reactance of the coupling capacitor is equal to the parallel resistance of the two arms of the potential divider. Some information on calculating this was given in an earlier part of this series.

If a bass cut is required, \(C_{g}\) can be made smaller. For example, if a loss of 12.5 dB at 50 Hz is required, Fig. 2 or the table shows that the loss will be 3 dB two octaves higher, i.e. at 200 Hz . A repeat of the above calculations shows that \(C_{g}\) should be 800 pF if \(R_{\mathrm{g}}\) is 1 megohm .

The circuit of Fig. 4 can also be used at radio frequencies, e.g. for coupling a tuned circuit to a valve or f.e.t., and a repeat of the above calculation for a frequency of say 1 MHz shows that \(\mathrm{C}_{\mathrm{g}}\) should be less than 1 pF !. If however such a small value is used the coupling circuit would give a considerable loss because \(C_{g}\) forms with the input capacitance of the valve or transistor a capacitive potential divider (see Part 3). The input capacitance is likely to be many times 1 pF and thus the potential divider gives a substantial loss. To minimise this effect \(C_{g}\). should be large compared with likely values of input


Fig. 4. The circuit of Fig. 1 used to couple two f.e.ts.


Fig. 5. The circuit of Fig. 1 used to couple two bi-polar transistors.


Fig. 6. The circuit of Fig. 3 used as an r.f. filter following a diode detector.


Fig. 7. The circuit of Fig 3 used as an a.g.c. filter following a diode detector.
capacitance: 100 pF is a commonly-used value. Thus the type of calculation given above is confined to low frequencies at which the effects of input capacitance can be neglected.
Suppose now that \(\mathrm{Tr}_{1}\) and \(\mathrm{Tr}_{2}\) are bipolar transistors as shown in Fig. 5. The value of \(\mathrm{C}_{\mathrm{b}}\) required for an a.f. amplifier is quite different from those just calculated. The input resistance of a bipolar transistor is low ( 2 kilohms is typical for a collector current of 1 mA ) and the coupling circuit must be designed to ensure that as much of the output current of \(\mathrm{Tr}_{1}\) as possible enters the base of \(\mathrm{Tr}_{2}\). The current leaving \(\mathrm{Tr}_{1}\) collector splits at the junction of \(\mathrm{R}_{\mathrm{c}}\) and \(\mathrm{C}_{\mathrm{b}}\) and that which flows through \(\mathrm{C}_{\mathrm{b}}\) can
be assumed to enter \(\mathrm{Tr}_{2}\) base. ( \(R_{1}\) and \(R_{2}\) are usually large compared with \(\mathrm{Tr}_{2}\) input resistance and so absorb very little of the signal current.) The current division at \(R_{c} C_{b}\) junction is analogous to the potential division in \(\mathrm{R}_{\mathrm{g}} \mathrm{C}_{\mathrm{g}}\) in Fig. 4. Thus \(R_{c}\) and \(C_{b}\) determine the frequency response of the coupling circuit in Fig. 5 and, as an approximation, we can say that the loss is 3 dB at the frequency for which the reactance of \(C_{b}\) equals \(R_{c}\), losses at other frequencies being, of course, as indicated in Fig. 2 or the table.
We saw in the section on resistive circuits that a likely value for \(R_{c}\) in a current amplifier is 18 kilohms and if the response is required to be 1 dB down at 50 Hz then the reactance of \(\mathrm{C}_{\mathrm{b}}\) should be 18 kilohms at 25 Hz . This gives the value of \(C_{b}\) as
\[
\begin{aligned}
C_{b} & =\frac{1}{2 \pi f R_{c}} \\
& =\frac{1}{6.284 \times 25 \times 18 \times 10^{3}} \mathrm{~F} \\
& =0.35 \mu \mathrm{~F}
\end{aligned}
\]
R.F. filter circuit. One application of the circuit of Fig. 3 is as a filter to attenuate r.f. signals in the output of an a.m. detector. A typical circuit is given in Fig. 6 in which \(\mathrm{R}_{1} \mathrm{C}_{1}\) are the diode load components (see Part 4) and \(\mathrm{R}_{2} \mathrm{C}_{2}\) form the r.f. filter. \(R_{2} \mathrm{C}_{2}\) should attenuate r.f. signals as much as possible but should not, of course, attenuate the upper audio frequencies significantly. In a medium- and long-wave receiver it would be satisfactory to make the attenuation 3 dB at 5 kHz : at this frequency therefore the reactance of \(\mathrm{C}_{2}\) should equal \(R_{2}\).
Before we can calculate \(C_{2}\), however, we must know the value of \(R_{2}\). If \(R_{2}\) is small \(C_{2}\) must be large and this would effectively increase the value of \(C_{1}\) causing possible distortion at the upper audio frequencies. On the other hand if \(R_{1}\) is large it forms with the following shunt resistor (normally the volume control) a potential divider with a large step-down ratio. A compromise value for \(R_{2}\) is 3 kilohms if \(R_{1}\) is 5 kilohms. We can now calculate \(C_{2}\) from the relationship
\[
\begin{aligned}
C_{2} & =\frac{1}{2 \pi f R_{2}} \\
& =\frac{1}{6.284 \times 5 \times 10^{3} \times 3 \times 10^{3}} \mathrm{~F} \\
& =0.01 \mu \mathrm{~F} \text { approximately }
\end{aligned}
\]
A.f. filter circuit. Diode detectors are generally used as a source of a.g.c. voltage and this voltage should be free of r.f. and a.f. signals. The circuit of Fig. 3 is therefore used to attenuate these unwanted signals: a typical circuit is shown in Fig. 7 in which \(\mathrm{R}_{3} \mathrm{C}_{3}\) are the a.g.c. filter components. A loss of at least 12.5 dB is required at the low-frequency limit, say 50 Hz . Thus, from Fig. 2 or the table, the 3 dB loss frequency is \(12.5 \mathrm{~Hz} . R_{3}\) should be large enough not to
shunt the detector components seriously but low enough to provide effective base bias for the controlled transistors. A typical value for \(R_{3}\) is 15 kilohms and the reactance of \(C_{3}\) must equal this value at 12.5 Hz . The value of \(C_{3}\) is thus given by
\[
\begin{aligned}
C_{3} & =\frac{1}{2 \pi f R_{3}} \\
& =\frac{1}{6.284 \times 12.5 \times 15 \times 10^{3}} \mathrm{~F} \\
& =1 \mu \mathrm{~F} \text { approximately }
\end{aligned}
\]

Top cut circuit. A shunt capacitor such as C in Fig. 8 is often used to give top cut. Suppose, as a numerical example, a cut of 12.5 dB is required at 10 kHz . If \(\mathrm{Tr}_{2}\) has a high input resistance (e.g. is an f.e.t. or an emitter follower) then the current leaving \(\operatorname{Tr}_{1}\) collector effectively splits between \(R_{c}\) and C. \(R_{1}\) and \(R_{2}\) are normally large compared with \(R_{c}\). Thus \(R_{c}\) and \(C\) determine the frequency response and Fig. 2 or the table can be used to determine the value of \(C\) in the usual way. The 3dB loss frequency is 2.5 kHz and if \(R_{c}\) is 10 kilohms we have
\[
\begin{aligned}
C & =\frac{1}{2 \pi f R_{c}} \\
& =\frac{1}{6.284 \times 2.5 \times 10^{3} \times 10 \times 10^{3}} \mathrm{~F} \\
& =0.007 \mu \mathrm{~F}
\end{aligned}
\]

The circuit of Fig. 8 is not of the L-shaped form of Fig. 3. In effect \(R_{c}\) and \(C\) are in parallel and are fed with current by \(\operatorname{Tr}_{1}\). Nevertheless Fig. 2 and the table still apply.
Suppose now that \(\mathrm{Tr}_{2}\) is a commonemitter amplifier with a low input resistance, say 2,000 ohms. Current leaving \(\mathrm{Tr}_{1}\) collector now splits between \(C\) and the input resistance of \(\mathrm{Tr}_{2}\) so that this is now the \(R C\) combination which determines the frequency response. Since the input resistance is one fifth of \(R_{c}\) the value of \(C\) will be five times the former value to give the same frequency response. Thus \(C\) should now be \(0.035 \mu \mathrm{~F}\).
Top lift circuit. As already shown the circuit of Fig. 1 gives a loss which increases at the rate of 6 dB per octave as frequency is reduced. If, however, a resistor \(R_{1}\) is connected in parallel with C, as shown in Fig. 9, the loss of the circuit is limited to that of the potential divider \(\mathrm{R}_{1} \mathrm{R}_{2}\). The frequency response of the circuit is now bounded by two horizontal lines as shown in Fig. 10. One line corresponds to zero loss and the loss to the loss of the potential divider \(\mathrm{R}_{1} \mathrm{R}_{2}\) If the curve connecting the two lines corresponds to a low frequency, the circuit gives bass cut: if, however, it corresponds to a high frequency the effect of the circuit is to give top lift.

Suppose, for example, we want 12 dB lift at 10 kHz . 12 dB corresponds to a voltage ratio of \(4: 1\) and, as shown in Part \(1, R_{1}\) should be three times \(R_{2}\) to


Fig. 8. Shunt capacitor \(C\) gives top cut.


Fig. 9. Modification of the circuit of Fig. 1 to give top lift.


Fig. 10. Frequency response for Fig. 9.


Fig. 11. Modification of the circuit of Fig. 3 to give bass lift.


Fig. 12. Frequency response for Fig. 11.


Fig. 13. RC circuit in feedback path of a voltage amplifier gives top lift.
give this ratio. Before the value of \(C\) can be calculated we must decide a value of \(R_{1}\) or \(R_{2}\) and the values to be assigned to these resistors are in practice dictated by the requirements of the circuit to which the network is connected. If \(R_{2}\) is connected to a high resistance e.g. the input of an emitter follower, then \(R_{2}\) could be 10 kilohms. This gives \(R_{1}\) as 30 kilohms. Provided \(R_{1}\) is large compared with \(R_{2}\), the 3 dB loss frequency is still approximately that for which the reactance of C is equal to \(R_{2}\) and this frequency should, from Fig. 2 or the table, be about 2.5 kHZ to give 12 dB lift at 10 kHz .
\(C\) is thus given by
\[
\begin{aligned}
& C=\frac{1}{2 \pi f R_{2}} \\
& =\frac{1}{6.284 \times 2.5 \times 10^{3} \times 10 \times 10^{3}} \mathrm{~F} \\
& =0.0064 \mu \mathrm{~F}
\end{aligned}
\]

Bass lift circuit. The circuit of Fig. 3 gives a top cut characteristic and the loss increases at the rate of 6 dB per octave as frequency increases. By including a resist or \(\mathrm{R}_{2}\) in series with C as shown in Fig. 11 the maximum loss can be held to that of the potential divider \(R_{1} R_{2}\) as shown in the frequency response curve of Fig. 12. Such a characteristic would be described as top cut if it is located at the upper end of the audio band but as bass lift if located at the low-frequency end.

As a numerical example suppose a bass lift of 12 dB is required at 50 Hz . As before \(R_{1}\) must be three times \(R_{2}\) to give this degree of lift and the values of \(R_{1}\) and \(R_{2}\) will depend on the circuit to which these resistors are connected. Suppose the input of the network is required to be about 100 kilohms. Then \(R_{1}\) can be made 75 kilohms and \(R_{2}\) 25 kilohms. Provided \(R_{1}\) is large compared with \(R_{2}\) the 3 dB loss frequency is approximately that for which the reactance of \(C\) is equal to \(R_{1}\) : a suitable frequency for this example is, from Fig. 2 or the table, 200 Hz . C is thus given by
\[
\begin{aligned}
C & =\frac{1}{2 \pi f R_{1}} \\
& =\frac{1}{6.284 \times 200 \times 75 \times 10^{3}} \mathrm{~F} \\
& =0.011 \mu \mathrm{~F}
\end{aligned}
\]

Negative feedback circuits. The RC circuits of Figs. 1 and 3 give bass cut and top cut when used in the main path of an amplifier: when used in the feedback path they give bass lift and top lift. A typical example of an RC circuit in a feedback path is given in Fig. 13. Tr \(r_{1}\) and \(\mathrm{Tr}_{2}\) are cascaded common-emitter amplifying stages but, for simplicity, the coupling components are omitted. As shown in Part 1 the potential divider \(\mathrm{R}_{1} \mathrm{R}_{2}\) determines the voltage gain of the amplifier which is given approximately
by \(R_{1} / R_{2}\) provided \(R_{1}\) is large compared with \(R_{2}\). C shunts \(\mathrm{R}_{2}\), reducing feedback at high frequencies and so giving a top lift characteristic. The frequency-re-sponse-determining components are thus \(\mathrm{R}_{2}\) and C and their relative values can be calculated as shown earlier in this section. For example to obtain a lift of, say, 12.5 dB at 15 kHz the lift must be 3 dB at 4 kHz and at this frequency the reactance of \(C\) must be equal to \(R_{2}\). A likely value for \(R_{2}\) is 500 ohms and thus \(C\) is given by
\[
\begin{aligned}
C & =\frac{1}{2 \pi f R_{2}} \\
& =\frac{1}{6.284 \times 4 \times 10^{3} \times 500} \mathrm{~F} \\
& =0.08 \mu \mathrm{~F}
\end{aligned}
\]

Another example of an RC circuit in a feedback path is given in Fig. 14. This is based on the circuit of Fig. 17 in Part 2. At low frequencies where the reactance of \(C\) is large, the feedback circuit consists effectively of the current divider \(\mathrm{R}_{1} \mathrm{R}_{2}\) and the current gain of the amplifier is given approximately by \(R_{1} / R_{2}\) provided \(R_{i}\) is large compared with \(R_{2}\). At high frequencies where the reactance of \(C\) is negligibly small \(R_{1}\) and \(R_{3}\) are effectively in parallel and their net resistance (call it \(R_{1}{ }^{\prime}\) ) is less than \(R_{1}\). The current gain at these frequencies is \(R_{1}{ }^{\prime} / R_{2}\) which is less than \(R_{1} / R_{2}\). Thus the low- frequency gain is greater than the high-frequency gain and the circuit can be used to give a bass-lift characteristic. For example suppose a lift of 12 dB is required at 50 Hz . For 12 dB difference in gain \(R_{1}\) must be four times \(R_{1}^{\prime}\) and this requires \(R_{1}\) to be three times \(R_{3}\). So if \(R_{1}\) is 15 kilohms, \(R_{3}\) must be 5 kilohms. The frequency-response-determining components are \(\mathrm{R}_{3}\) and C , and to give a
lift of 12 dB at 50 Hz the lift must be 3 dB at 200 Hz and at this frequency the reactance of \(C\) must equal \(R_{3}\). Thus the value of \(C\) is given by
\[
\begin{aligned}
C & =\frac{1}{2 \pi f R_{3}} \\
& =\frac{1}{6.284 \times 200 \times 5 \times 10^{3}} \mathrm{~F} \\
& =0.17 \mu \mathrm{~F}
\end{aligned}
\]

Decoupling. So far this article has been devoted to RC combinations in sig-nal-frequency circuits but Fig. 2 has a common and essential application in good amplifier design which is not concerned with signal frequencies. This is its use as a decoupling circuit which is necessary in a multi-stage amplifier to avoid instability caused by the impedance of the power-supply circuit. A typical example of a decoupling circuit is shown in Fig. 15.
The decoupling circuit is required to introduce substantial attenuation at very low frequencies and the 3 dB loss frequency must therefore be very low. As a numerical example let the 3dB loss frequency be 5 Hz . A typical value for the resistance is 600 ohms (as shown in Part 1) and thus the reactance of \(C\) must be 600 ohms at 5 Hz . From this information we can calculate \(C\) as follows:
\[
\begin{aligned}
C & =\frac{1}{2 \pi f R} \\
& =\frac{1}{6.284 \times 5 \times 600} \mathrm{~F} \\
& =50 \mu \mathrm{~F} \text { approximately }
\end{aligned}
\]


Fig. 14. An RC circuit in the feedback path of a current amplifier giving bass lift.

Fig. I5. Use of a decoupling network in a multi-stage amplifier.


\section*{HF predictions}

Circuit reliability is the product of the probability of ionospheric reflection and the probability of achieving a desired signal to noise ratio and is thus at a maximum somewhere between FOT and LUF. The term FOT, which is the French equivalent of OWF (optimum working freqency), is thus a misnomer since it relates only to skywave probability. However since LUF is dependent on many factors which cannot be generalised it is found satisfactory in practice to take FOT as being what it says it is.





\section*{Model X25 Point 1}


For dual-in-line de-soldering the model \(X .25\) can be fitted with special bits 14 A and 14B.
For other de-soldering jobs, we can supply our models ESS and GSS de-soldering irons working on compressed air (or with a footpump).

Our catalogue gives further particulars.


Please send the following

Please send the
ANTEX colour catalogue

\section*{The Antex Range \\ All prices include V.AT. P\&P in brackets}

MODEL C-15 watt miniature soldering iron Bits slide on and off stainless steel shaft. Elements fitted inside steel shaft for efficient heat transfer. Length 16 cm . Complete iron with 2.3 mm , iron-coated bit \(£ 2.67(0.22)\) Spare elements \(£ 1.20\) Spare bits \(£ 0.35\) (nickel) £0-45 (iron-coated).


MODEL G- 18 watt miniature soldering iron Looks exactly like model C, but because of the extra 3 watts should be kept going all day on repairs or production. Stainless steel shaft - fitted with standard iron-coated bit 2.3 mm . £2. \(94(0.22)\) Spare elements \(£ \uparrow .47\) Spare bits \(2.3,3\) or 4.7 mm . € 0.45 .


MODEL CCN - 15 watt miniature soldering iron
Unique - ceramic shaft - no measurable leakage - capacitance 30 pf . Tested at 2000 volts A.C. Length 16 cm . Complete with standard iron-coated bit 2.3 mm . £3.15 (0.22). 4 other slide-on and-off bits available from \(£ 0.45\) Spare elements \(£ 1 \cdot 69\). Suitable for the most delicate soldering job imaginable.

MODEL X. 50 T.C. -. 50 watt temperature controlled soldering iron
Leakage current negligible - Temperature controlled to \(2^{\circ} \mathrm{C}\) either way. Ceramic shaft inside stainless steel shaft. Tested at 2000 volts A.C. Complete with 3 mm . iron-coated bit \(f 9.69(0.27)\) Normaliy set at \(370^{\circ} \mathrm{C}\) Length 20 cm . Weight 50 gr .
MODEL SK. 1 - SOLDERING KIT
Fitted with model \(C\) minjature iron (see above), 2 spare bits 2.3 and 4 mm ., heat sink, reel of solder. Plastic base serves as stand. Bookiet "How
to Solder"; gives useful tips
for beginners. Price \(£ 4.25(0.42)\) MODEL MLX - 12 volt - 12 watt Soldering
 iron with \(41 / 2 \mathrm{mtrs}\). lead and crocodile clips Useful for repairs on motor cars, boats, model trains, etc. Can be worked off car- type battery. Complete with 3.2 mm . bit \(£ 3.27(0.30)\) Two other bits available 2.4 and 4.7 mm . \(£ 0.47\) each. Packed in a plastic wallet with guide "How to Solder"
STAND S.T. 3
High grade insulation material, chromium plated steel spring. Suitable for all our models. Replacezble sporges, space fo
Complete \(£ 1.21 \overline{10.2}\)
I enclose cheque/P.O./Cash
(Giro No. 258 1000)
NAME
ADDRESS

\title{
Questions to ask before buying a video monitor
}

\section*{It's an impressive number of models but what about the performance?}

The performance/price ratio is equally impressive - perhaps the best in the CCTV business. More than \(80^{\prime \prime}\) ' of the screen has a resolution capability greater than 1,000 lines and on the large monitors the minimum brightness in the white area is 13 oft lamberts (under accepted test conditions). Other features include high video input impedance and external sync input.

\section*{I need a large screen. For what application has Electrohome's 23 in monitor been designed?}

The long-term reliability of the EVM23 and EVM23AG make either ideal for surveillance systems in banks, factories and department stores. They are equally at home in the message centres of the world's airports, in schools and broadcast studios. Both models have a durable outer casing and the EVM23AG has a special tube face to reduce reflections important where lights or windows may reflect on to the screen. Lockable front panels make them ideal for unattended locations.

\section*{What about mounting? I need the utmost flexibility.}

There is no problem. Electrohome have wall and ceiling mount assemblies that allow a monitor to be swivelled or tilted about its centre of gravity. For mobile work like presentations and exhibitions there is an adjustable stand to support the EVM23 at four different heights \(-63 \mathrm{in}, 55 \frac{1}{2} \mathrm{in}, 54 \mathrm{in}\), and \(46 \frac{1}{2} \mathrm{in}\). If your requirement is for rack mounting versions, all sizes below 23 in are available in rack mount options.

Bell \& Howell A-V Ltd., Freepost, Wembley, Middlesex HAo I BR (no stamp required).

\section*{How do I decide the screen size to suit my application and do Electrohome have a complete range?}

Screen size depends largely on viewing distance and available space. If the minimum viewing distance is roft then you should use a large monitor - 17 in or above. At closer distances or where space is limited a gin or 1 in screen may be more suitable. If you intend TV to teach or persuade, avoid the mistake of sacrificing visual impact for the sake of economy. Electrohome's range is one of the most comprehensive available with seven different sizes from 9in to 25 in (two in colour).

\section*{What facilities do Electrohome's small screen monitors offer?}

To complement this outstanding specification we have not forgotten the importance of switchable A-B inputs, switchable underscan, DC restoration and good geometry. Also the wide input sensitivity range and the input ground (which can be 'floated') will look after less favourable operating conditions. Input power requirement is also tolerant within \(95-\mathrm{I} 30 \mathrm{~V} / 185-265 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\).

\section*{When should I use a colour monitor?}

We'll ask a question which will help you decide. Everything you show on TV will be shown with a purpose. Will colour help to achieve that purpose? If so, use colour - and choose an Electrohome colour monitor because, simply, you cannot make a better choice. (This is only part of the answer to a complex question which we would enjoy discussing with you in proper depth.)

\section*{What about audio? You have convinced me that the video signal is first-class, but I need to hear the sound.}

Electrohome haven't overlooked audio, like some manufacturers. For large-screen monitors, both colour and monochrome, they produce an add-on audio pod with a combined 3 W RMS amplifier plus speaker unit. It has tone and volume controls and can handle all common audio inputs.


More questions ? Write to us for the address of your nearest Bell \& Howell Video Centre. You'll get the answers in the most convincing way possible - by seeing and hearing how Electrohome's monitors perform.

\title{
Specifications: the Electrohome monitor range from Bell \& Howell
}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Accessories} \\
\hline ECM-2 & Ceiling mount \\
\hline EWM-I & Wall mount \\
\hline EVSA-2 & Speaker/amplifier pod. 3 W RMS amplifier available for large monochrome and colour monitors. \\
\hline EPC-I & \begin{tabular}{l}
Pulse-Cross kit. Allows \\
VTR users to optimise tracking and tape tension (EVM-23 only).
\end{tabular} \\
\hline
\end{tabular}

\section*{PERFECT MATING with EMMENEXAN}

\section*{AUDIO CONNECTORS}

EASY TO WIRE
The easy-open design and larger, uniquely designed solder cups cut wiring time in half.

simple assembly and disassemblyi -can't drop out and get lost.


\section*{NO EARTHING PROBLEMS}

Extra earth terminal electrically integral with shell automatically engages the earth contactor of the mating shell.

NO LOST SCREWS
Captive design insert screw tor fast


\section*{MODERN STYLING}

Compact modern shape made of durable die cast zinc with satin nickel finish compatible with other makes.

\section*{IMPROVED FEATURES \\ BIFURCATED CONTACTS}

3-pole contacts ensure extra positive grip on mating contact pins, even under severe conditions of shock and vibration.
LATCHLOCK
Now made of die-cast zinc for exceptionally long life \& reliable operation.
INSERT STRENGTH
New design grub screw and tougher plastic eliminates breakage problems.

\section*{F.W.O. Bauch Limited}

49 Theobald Street, Boreham Wood, Hertfordshire, WD6 4RZ Tel:O1953 0091 Telex:27502

Send now for the new Switchcraft prochure and ask about the attractive quantity discounts available
name \(\qquad\)

COMPANY

ADDRESS \(\qquad\)

\title{
Transmitter power amplifier design - 2
}

\title{
Design considerations for f.m., a.m., pulse operated and linear amplifiers for mobile radio
}

\author{
by W. P. O'Reilly, M.Sc., M.I.E.E. \\ The Plessey Company Ltd
}

In part 1 of this series on transmitter design power amplifiers were classified according to the type of modulation and the frequency band to be used. In part 2 the design of v.h.f. power amplifiers is considered with a discussion of some special design considerations for the four most commonly employed modulation processes.

\section*{Power amplifiers for f.m.}

The most common type of v.h.f. power amplifiers utilizes the common emitter configuration with Class C zero bias. The majority of power transistors are characterized for this mode of operation which is ideally suited to f.m. transmitters. The presence of only a single time-varying frequency in the f.m. signal means that the non-linearity of the input to output power characteristic is of no consequence since intermodulation distortion cannot be generated. The transistor may be operated into its saturation region and hence the maximum output power is much greater than could be obtained from the same device in a linear circuit. The saturated output power is given by:
\[
\begin{equation*}
P_{S A T}=1.25 .\left(\frac{V_{\mathrm{CC}}-V_{S A T}}{2 R L}\right)^{2} \tag{1}
\end{equation*}
\]
and using typical values of \(V_{S A T}\) for present day devices simplifies to
\[
\begin{equation*}
P_{S A I} \approx 0.4 \frac{V_{\mathrm{CC}}{ }^{2}}{R L} \tag{2}
\end{equation*}
\]

The efficiency and power gain are higher if an output power approximately \(20 \%\) less than \(P_{S A T}\) is acceptable.

\section*{Power amplifiers for a.m.}

These transmitters may be classified as either high level or low level modulation systems. In the former the audio frequency modulation is impressed upon the supply voltage to the output and driver stages of the power amplifier. The output stage is driven to voltage saturation so that the power output is determined by the instantaneous value of the supply voltage. In some amplifiers the supply voltage to earlier stages is modulated in the upwards
direction only in order to provide a greater increase in drive on peaks of modulation and compensate for the reduced gain of the output device as it nears current saturation. To achieve a depth of modulation approaching \(100 \%\) the collector supply voltage must swing between zero and twice the average (or "carrier") voltage. Devices used for high level a.m. thus require a \(V_{\text {CEO }}\) in excess of twice the maximum "carrier" voltage. Devices having \(V_{\text {CEO }}>35\) volts are generally selected for 12 volts nominal "carrier" supply.
The output power at the peak of the envelope is four times the carrier power


Fig. 1. Typical load line under carrier and peak modulation conditions for an eight-watt carrier power design (a) carrier conditions (b) peak modulation.


Fig. 2. Loci of constant \(f_{T}\) for a 100 W power transistor.
and to avoid excessive envelope distortion the output transistor must be capable of providing this power without heavily saturating. Fig. 1 shows a typical load line under carrier and peak modulation conditions for an eight-watt carrier power design.
The modulation may be impressed upon the supply line by means of an audio power amplifier with an output transformer. The secondary of this is connected in series with the carrier supply line, or by a series regulator the reference voltage of which is made to vary with the modulating signal. The former solution is often bulky and expensive but can provide very high efficiency.

Low level modulation implies that the amplifier is fed with an already modulated drive signal. A linear amplifier is sometimes used, or, more commonly, a Class C amplifier with overall envelope feedback. The Class C amplifier would produce a distorted replica of the drive signal, but the output envelope is monitored by a detector and compared with the drive signal. The error signal so derived is used to pre-distort the drive signal so as to obtain an output with very little distortion. Using this technique very compact a.m. transmitters can be built with envelope distortion as low as \(1 \%\) and efficiency approaching that of a high level modulation system. For these reasons this type of a.m. transmitter is rapidly gaining popularity.

\section*{Pulse operated power amplifiers}

When operated from the same supply voltage the pulsed output power capability of a transistor is only slightly greater than the f.m. or c.w. capability. This is because the limiting factors are current and voltage saturation of the transistor. Where the pulse duration is much shorter than the thermal time constant of the silicon chip and the duty cycle is sufficiently small to provide a very low average output power, some improvement results from running the transistor much cooler than it would be under c.w. conditions. Improvements of between 1 and 2 dB have been reported. \({ }^{1}\) The reduced
saturation voltage, \(V_{S A T}\) at low temperatures may account for much of the improvement.

A significant increase in output power is obtained if the transistor is operated from a higher supply voltage under pulsed conditions. Provided the duty-cycle and pulse width are suitably small a supply voltage approaching \(V_{\text {CBO }}\) may be used. Power transistors are not normally characterized for pulsed operation and the manufacturers should be consulted to determine the safe ratings for a particular application.

\section*{Linear v.h.f. power amplifiers}

Linear high power amplification at v.h.f. using transistors is a relatively new concept and to date there are no power transistors specially characterized for this mode of operation above about 15 W . Those which exist are generally intended for Class A operation in applications such as c.a.t.v. It is quite feasible to use certain devices which have Class C characterization in Class AB and to obtain very good linearity. Unfortunately, however, the majority of Class \(C\) devices do not give particularly good performance, and so it is as well to present a few notes which should help in selecting suitable devices:
- The maximum linear output in Class AB is usually about \(20 \%\) to \(35 \%\) of the Class C rating of the transistor.
- Transistors having high gain at the required operating frequency generally provide best performance in linear amplifiers but are less tolerant of load mismatch.
- If possible use the transistor at a slightly reduced supply voltage for improved ruggedness. 24 - or 26 -volts supply is ideal for 28 -volt c.w. devices.
- Select transistor types showing least variation of \(f_{T}\) over the required operating loadline. Fig 2 shows contours of constant \(f_{T}\) for a v.h.f. power transistor rated at 100 W c.w. in Class C. This device is ideal for linear operation and can supply up to 30 W p.e.p. in the two-metre band with two-tone intermodulation products better than -30 dB .
- A low impedance, temperature compensated" bias network must be used. (The subject of biasing Class \(A B\)
amplifiers was discussed in part 1 of this series where some suggestions for suitable circuitry were made.)
- Provide an adequate heat sink. The gain obtained by Class \(A B\) operation at reduced output power is typically 4 to 6 dB above the gain obtained in Class C at full rated output. The efficiency usually achieved, however, is much lower (typically 45 to \(55 \%\) ) and due allowance must be made in calculating the thermal performance of the heat sink. The linear power output falls with increased temperature and the reliability is greatly reduced.
- Note that transistors having the same type number from different manufacturers often have quite different performance in linear circuits


Fig. 3. Variation of input impedance with frequency for a typical 25 W v.h.f. transistor.


Fig. 4. Lumped ē̄ēent low-pass ladder matching network.

Fig. 5. Matching network (Fig. 4) bandwidth/impedance ratio for one, two- and three-section networks for different values of maximum v.s.w.r.

even though they may be similar in Class \(C\) performance.

In certain instances the linearity obtainable using Class \(A B\) operation is inadequate and Class A bias must be employed. Amplifiers capable of producing up to about 15 W from a single device are feasible at the present time. Many devices designed for Class C operation will give very good performance in Class A provided the operating point is selected correctly. The following points should be given careful attention when designing this type of amplifier stage.
- The maximum supply voltage which a transistor should be operated from in Class A bias is:
\[
\begin{equation*}
V_{\max }=\frac{V_{C E O}}{2}+V_{S A T} \tag{3}
\end{equation*}
\]

A reasonable guide to the safe supply voltage is 18 V for Class C 28 -volt transistors and 8 V for Class C 12 -volt devices unless specifically quoted otherwise by the manufacturers.
- The maximum standing current is not usually limited by total dissipation or secondary breakdown considerations. Due to a phenomenon known as electro-migration the aluminium metalization which interconnects the cells of the transistor is gradually transported away from the contacts by a mechanism similar to electrolysis. The rate of erosion is a complex function of temperature and current density in the aluminium. To achieve a very high mean time to failure (m.t.t.f.) the transistor should be kept as cool as possible and very high standing currents must be avoided. As a general rule the power dissipated should not exceed \(25 \%\) of the permissible power dissipation for Class \(C\) operation. If this rule is followed m.t.t.f. figures in excess of ten years can be obtained. Aware of the electro-migration problem - which becomes much more severe where very fine conductors must be used as in microwave transistors - some manufacturers are introducing gold metalization which offers a significant improvement over aluminium in its resistance to electro-migration, and in the near future as the problems of this new technology are solved we may expect v.h.f. transistors to use gold metalization and be capable of higher Class A power output.
- The input impedance in Class A is much lower than in Class \(C\), and the manufacturer's data should not be used in design calculations unless the device is specifically characterized for ultra-linear operation.

\section*{Power transistor impedances}

One of the most critical factors in v.h.f. power amplifier design is the matching of the input and output impedances of the r.f. transistor to the source and load between which it must operate. The input impedance is generally low and complex while the required load is
determined by the operating supply voltage and output power, not by the output impedarice of the transistor itself. Radio frequency power transistors are far from unilateral, the input and output impedances being functions of the load and source impedances respectively. For this reason it is advisable to measure the input impedance under actual operating conditions if the transistor is to be used at a power much below its rating or with a different class of bias, since the input impedance may then be quite different from the value quoted by the manufacturer.
Most v.h.f. power transistors have an output shunt capacitance of between 1.5 and 2.0 times the collector-base capacitance, \(C_{o b}\). The optimum load admittance presents an equivalent inductive susceptance to resonate the output capacitance and a conductance determined by the required output power and class of bias. For maximum gain the input impedance must be conjugately matched by the source. In the case of a.m. transmitters, minimum envelope distortion is usually obtained by optimizing the input and output matching for maximum gain at the peak output power. Fig. 3 shows the variation of input impedance with frequency for a typical v.h.f. power transistor. The capacitance generally associated with the input of small signal transistors is swamped at v.h.f. by the inductance of the wire bonds and metalization of the base circuit. As a result, the input impedance passes through a resonance the frequency of which is lower for larger devices. It is the \(Q\) factor of the base circuit which presents the ultimate limitation to the maximum bandwidth over which the transistor may be matched.

\section*{Matching networks}

The impedance transforming networks which are used to match the power transistor to its source and load generally fall into one of four main categories: transmission-line transformers; lumped element ladder networks; distributed networks; and a combination of these.
The design of broadband transmission-line transformers was discussed briefly in part 1 of this series and is well documented \({ }^{2}\). At v.h.f. octave bandwidths may be achieved without using ferrite cores. Suitable choice of core material may extend the frequency coverage to a decade or more. One serious limitation is that only impedance ratios of \(n^{2}\), where \(n\) is an integer, can be obtained, and it is rare that an accurate match can be obtained between a transistor and its source without the use of additional components.

A very popular type of matching network using lumped elements - i.e. discrete capacitors and inductors - is the low-pass ladder of Fig. 4. The


Fig. 6. Typical microstrip transmission line.


Fig. 7. Characteristic impedance of micro-strip on 1.6 mm (1/16 in) loz copper clad p.c.b.


Fig. 8. Ratio \(\lambda / \lambda_{0}\) versus characteristic impedance for microstrip lines on 1.6 mm substrate.
number of sections necessary to achieve the required impedance ratio and bandwidth may be determined from Fig. 5 , in which curves for three values of voltage standing wave ratio have been prepared based on the work of Matthaei \({ }^{3}\). In practice due to component tolerances and especially the variation of input impedance between one sample and another of the same transistor type an input v.s.w.r. of less than 1.25 can rarely be achieved without individual adjustment of the matching components. The low-pass nature of these networks is useful in providing a degree of harmonic rejection. Lumped element networks can also be realised in high-pass or bandpass form if desired, and Motorola \({ }^{4}\) have published tables of element values for various circuit configurations. For very wide band amplifiers the natural gain roll-off of the transistor may be
compensated by using networks having a matching accuracy which improves progressively through the frequency band. Tables of element values for 4, 5 and 6 dB per octave slopes have been computed \({ }^{5}\). The slope is obtained by controlled reflective mismatch and as a result stages using such networks are best driven through unilateral coupling networks such as circulators or 3 dB couplers.

In order to understand more fully the behaviour of distributed components it may be useful to summarize briefly the behaviour of an r.f. wave travelling along a transmission-line. Upon reaching the load the forward voltage wave, \(V_{F}\) is partly absorbed by the load, the remainder of the power being returned as a reflected wave, \(V_{R}\), towards the source. The two waves on the line interact to cause a standing wave pattern with voltage maxima of \(V_{F}+V_{R}\) at points on the line where the waves reinforce one another and minima of \(V_{F}-V_{R}\) at points of partial cancellation. The voltage standing wave ratio is
\[
\begin{gather*}
\text { v.s.w.r. }=\frac{V_{F}+V_{R}}{V_{F}-V_{R}} \\
=\frac{1+V_{F} / V_{R}}{1-V_{F} / V_{R}}=\frac{1+|\rho|}{1-|\rho|} \tag{4}
\end{gather*}
\]
where \(\rho\) is the voltage reflection coefficient. At all points along a lossless line \(\rho\) is constant in magnitude and varies in phase
\[
\begin{equation*}
\rho=|\rho| \exp .(j(\phi-2 \pi l) / \lambda) \tag{5}
\end{equation*}
\]
where \(\phi\) is the phase angle of the reflection at the load and \(l\), is the distance along the line from the load. The impedance at any point on the line is related to the reflection coefficient, by
\[
\begin{equation*}
R+\mathrm{j} X=\frac{1-u^{2}-v^{2}}{(1-u)^{2}+v^{2}}+\mathrm{j} \frac{2 v}{(1-u)^{2}+v^{2}} \tag{6}
\end{equation*}
\]

From this relationship it may be seen that loci of constant values of \(R\) and circles on the \(P\) plane have centres ( \(R / 1+R, 0\) ) and radii \(1 / 1+R\). Similarly constant values of reactance, \(X\), correspond to circles centre \((1,1 / X)\) and radii \(1 / X\). The mapping of \(R\) and \(X\) on the \(\rho\) plane is called (after the inventor) the Smith Chart. Any point on the chart corresponds to both an impedance and a reflection coefficient. Impedances are normalized to the characteristic impedance of the line such that \(Z=1+\) j0 corresponds to a matched load, \(P=0\).

The Smith chart, in either its impedance or admittance form, is an invaluable tool in the design of stripline components.

\section*{Designing in microstrip}

Fig. 6 shows the construction of microstrip transmission lines. The field pattern on such lines is predominantly a transverse electromagnetic wave; that
is, the electric and magnetic fields are at right angles to one another and to the direction of propagation. Microwave integrated circuits use microstrip lines on high purity alumina substrates. The high relative permeability of alumina (typically \(\boldsymbol{\epsilon}_{\mathrm{r}}=9\) ) results in a small guided wavelength and so aids miniaturization. The very large alumina substrates which would be required at v.h.f. are not cost effective but microstrip techniques may still be used to advantage with conventional materials such as epoxy-glass or p.t.f.e. glass. Wheeler \({ }^{6}\) has determined the relationship between substrate permeability, thickness, conductor width and line characteristic but the equations are tedious to solve for each application. Fig. 7 has been prepared so that conductor width may be readily determined for a particular characteristic impedance for the most popular thickness of printed circuit board ( 1.6 mm or \(1 / 16 \mathrm{inch}\) ) and dielectric materials. Good quality epoxy-glass board may be used in most amplifier designs up to about 200 MHz , above which frequency the loss may not be acceptable, while p.t.f.e.-glass is suitable for use up to several gigahertz. Fig. 8 shows the ratio of guided to free space wavelength for each of these materials as a function of characteristic impedance. Note that this ratio is not simply \(1 / 1 \overline{\epsilon_{r}}\). This is because some of the field extends into the air above the line and thus travels at the free space velocity. On wider lines (those having lower characteristic impedance) an almost pure t.e.m. wave propagates and the velocity ratio approaches \(1 / / \bar{\epsilon}_{\mathrm{r}}\).

\section*{References}
1. RCA application note no. 3764 .
2. Ruthroff, G. L., "Some transmission line transformers". Proc. IRE, Aug. [959, pp.1337-1341.
3. Matthaei, G. L. "Tables of Chebyshev impedance - transforming networks of low-pass filter form', Proc. IEEE. Vol. 52, Aug. 1964, pp.939-963.
4. Motorola application report no. AN267.
5. Gibson, R.A. \& Pitzalis Jr., O. "Tables of impedance matching networks which approximate prescribed attenuation", Trans. IEE Microwave Theory \& Techniques, Vol. MTT-19, No. 4, April 1971, pp.381-386.
6. Wheeler, H. A., "Transmission line properties of parallel strips separated by a dielectric sheet", Trans. IEEE, Microwave Theory \& Techniques, March 1965, pp.172-185.
(To be continued)

\section*{Acknowiedgement correction}

The following acknowledgement should have been included at the conclusion of S. L. Silver's article "How speech can be compressed and expanded" in the September issue: "Copyright 1975 by Sagamore Publishing Company Inc. Reprinted by permission."

\title{
Phase shift in loudspeakers
}

Recently several manufacturers have announced plans to market loudspeakers with phase shift taken as one of the design parameters. Loosely described as "linear phase" loudspeakers, these represent the practical evolution of engineering ideas which have been the subject of some controversy in the past. With this in mind Wireless World recently held a private conference, attended by 56 of the country's leading loudspeaker designers, to discuss the validity of the principles involved.

Papers were read, exploring various points of view, and some of these will appear as articles in Wireless World. In the discussion which ensued some new and interesting ideas were expressed, and a selection of these will appear in the letters'columns in subsequent issues of the journal.

\section*{Announcements}

A conference on "Electronic Systems - Pilot ' \(\mathbf{A}\) ' Level" is to be held at The City Unjversity, St John Street, London ECIV 4PB on October 10th from 2.00 to \(5.30 \mathrm{p} . \mathrm{m}\). The aims are to describe the nature and content of the AEB " \(A\) " level syllabus in Flectronic Systems and to make widely available the experiences of those schools teaching the course. Further information can be obtained from The Secretary, National Electronics Council, Abell House, John Islip Street, London SWIP 4LN.
"Electronic Calculators" and "Integrated Circuits" are two new short courses to be held at South London College commencing on Oct. 7 and Oct. 9 respectively. Applications should be made to the Senior Administrative Officer, South London College, Knight's Hill, London SE27 0TX.

The RAE classes which have previously been offered by Slough College of Technology will be taken over by the new Langley College of Further Education from September. The courses will continue to use accommodation at Slough College during the Autumn term. Full details of the courses can be obtained from E. C. Palmer, G3FVC, Langley College of Further Education, c/o Education Offices, 48 High Street, Slough, Berks SLI IEN.

The Polytechnic of North London, Department of Electronic and Communications Engineering, Holloway, London N7 8DB is offering a range of courses on audio engineering and acoustics in 1975/76. For full-time students a new B.Sc degree in Electronics and Communications Engineering with audio engineering as a specialization starts this year. Part-time students can attend for one year on a course of Sound Studios and Recording. Fee for this course is \(£ 15\) and it begins on October 28. Full details can be obtained from the Head of Department.

Communication and its consequences is an external studies course of nine lectures that has been organized at the University of Kent, Caterbury. The first talk will be at 7.00 p.m. on Oct. 16. The fundamentals of modern electronic communication systems and techniques will be discussed and demonstrated during the course. For further information contact Dr A. T. Barbrook, External Studies Office, Rutherford College, University of Kent.

Bedford Audio Club, 8 Emerton Way, Wooton, Beds, hold monthly meetings and are arranging a Winter programme and demonstrations. The club would be pleased to hear from enthusiasts in the area who wish to join or attend meetings.

The first class for the City \& Guilds Radio Examination Course (No 765) to be held at the North and West Farnborough Further Education Centre, St Johns Road, Cove, Farnborough will be on Oct. 2nd, beginning at 7.30 p.m. There will also be a Morse Proficiency course beginning on September 29th at 7.30 p.m. at Oak Farm School, Farnborough, Hants.

Bury and Rossendale Radio Society will be holding RAE classes during 1975/76. The classes will be held at the Soclety HQ and full details of enrolment fees etc, can be obtained from Mr J. Marrow, 12 Halcombe Road, Tollington, Nr Bury, Lancashire.

A Radio Amateur Examination course will be held on Thursday evenings from 7.30 to 9.30 at the Technical College Annexe, Tamworth Road, Croydon, Surrey commencing on Oct. 2nd. Enrolment will be at the College Annexe on September 20th ( 10 a.m. -3 p.m.) or on the first evening. Further details may be obtained from P. L. A. Burton. Tel. 01-6696700 (day) or Downland 51413 (evenings).

Two new companies have been set up to market Redac software and services in the German Federal Republic and the U.S.A. They are CADE, Laichin gen, Nr Stuttgart and Redac Interactive Graphics Inc, Littletown, Mass., USA. Redac Software Ltd is the computer aided design division of the Racal Electronics Group.

On July 18, the share capital of Jaybeam Ltd, Moulton Park Industrial Estate, Northampton NN3 1QQ was transferred to Jones Stroud Ltd of Nottingham and consequently the Group of Campanies is now a subsidiary of Jones Stroud (Holdings) Ltd.

A weekly bulletin which lists all published UK patents relating to electronics and associated technologies is available from PATINEL, 13 North Avenue, Gosforth. Newcastle upon Tyne NE3 4DT. The bulletin is despatched within one week of the original publication of the patents by the Patent Office.

Integrated Circuit Design Workshop is a weekly afternoon laboratory design course of 12 weeks duration beginning on November 12, 1975 at the North East London Polytechnic, Department of Electrical Engineering, Barking Precinct, Longbridge Road, Dagenham, Essex RM8 2AS, tel: 01-5995141.

As from September 1st, D.D. Electronics, 42 Bishopsfield, Harlow, Essex becomes Rock Electronics operating from the same premises.

The Autumn lecture meeting of the Society of Cable Television Engineers will be held on Oct. 14 at 2.15 p.m. in the Faraday Room at the IEE, Savoy Place, London WC2, when EMI Sound \& Vision Equipment Ltd present a paper on "Hybrid v.h.f. to u.h.f. Cable Television Systems".

The Library and Information Services, IEE, Savoy Place, London WC2R 0BL are offering a literature search service covering the fields of electrical and electronic engineering, computers, control engineering and physics. Costs to users vary according to search method and/or length of search. Short manual searches are free of charge and all manual searches are subject to a discount for Institution members. For more information contact Hugh Wilman, Head of Library and Information Services, tel: 01-2401871.

\title{
Tested circuits for a wide variety of oscillators are given in sets 25 \& 26 of Circards. This article summarizes the various kinds
}

\author{
J. Carruthers, J. H. Evans, J. Kinsler and P. Williams
}

Paisley College of Technology

Amplifiers oscillate; oscillators may not. These guiding principles have been developed and confirmed over many years of patient experimenting, not least during the preparation of Circards. Early versions of operational amplifiers were particularly critical of the source/ load/supply impedances and were prone to oscillate at high frequencies unless carefully used. Early transistors had low values of current gain and cut-off frequencies making it difficult to produce controlled oscillations.

These properties point to a dividing line between oscillators and amplifiers with feedback viz that they are of the same kind, differing only in the quantity and nature of the feedback. The point can be illustrated by Fig. 1 in which an amplifier of gain \(A\) has a portion of its output volage \(\beta\) subtracted from the signal at the input. The gain of the amplifier with feedback can be greater or less than \(A\), and the output will in general differ in phase. For well-controlled characteristics, the phase-frequency response has to be such that the feedback does not become regenerative until the magnitude of the \(\beta A\) term is below unity.

Feedback theory is formally expressed in many different ways, but one graphical approach that is helpful is to consider the root locus (Fig. 2). The graph plots the locus of the system transfer function as the frequency varies. Points on the horizontal axis correspond to phase shifts of zero (to the right of the origin) and \(180^{\circ}\) (to the left). Points on the vertical axis represent phase shifts of \(+90^{\circ}\) and \(-90^{\circ}\). The distance of a point from the origin represents the magnitude of the transfer function. Thus in many amplifiers the region of the locus near the horizontal axis would represent a very wide range of frequencies since the gain remains constant and the phase-shift is zero or \(180^{\circ}\) over this range.

An important point on this graph is the point \(1 \angle 0^{\circ}\). A general criterion, due to Barknausen, suggests that if the locus of the system response does not enclose this point then the loop may be safely closed and the feedback will not cause the amplifier to become unstable. An exceptional state of conditional
stability can result where the amplifier/feedback network has multiple reactive elements producing a complex locus which would enclose the point in the event of a fall in the magnitude of the gain.

When the locus passes through the point we have \(\beta A=1 \angle 0^{\circ}\) commonly called positive feedback and this constitutes an oscillator of constant but undefined amplitude, i.e. the signal feedback is just sufficient to sustain the output unchanged and without the need for an input signal. Alternatively we may view it as an amplifier of infinite gain, the denominator of the expression, \(1-\beta A\), having gone to zero.

The inevitable small variations in \(\beta\) and \(A\) caused by temperature, supply or


Fig. 1. A fraction of the output is added to the source at the input in deriving a standard form of the basic feedback equation. Positive feedback occurs when \(\beta A\) is positive.

Fig 3. These three networks have an identical transfer function and can be used interchangeably in oscillators.
load conditions as well as by long term drift in component values, cause the amplitude either to decay away ( \(\beta A>1\) ) or to increase \((\beta A<1)\). The limit is set by non-linearities in the system either inherent to the amplifier or deliberately added externally in the feedback network(s). These reduce \(\beta A\) and the oscillations settle down to a stable situation in which the mean value of \(\beta_{A}\) over the cycle is unity.

For good frequency stability a number of precautions have to be observed (1) the amplifier should have negligible or very closely controlled phase-shift at the frequency of oscillation. (2) Amplitude of oscillation should be controlled to minimize distortion, since harmonics are fed back to the


Fig. 2. If the in-phase and quadrature components of the overall loop gain are used as axes, the locus as the frequency is varied indicates the stability of the system.



Fig. 4. Some oscillators use temperature-dependent resistors heated by the amplitude of the oscillation.
input and the resulting intermodulation reduces the frequency of oscillation below that predicted from the simple theory. (3) Input and output impedances of the amplifier must not load the RC networks significantly.

A major class of oscillators which includes the Wien bridge circuits, uses networks as in Fig. 3. Using equal values of \(\mathrm{R}, \mathrm{C}\) throughout, the transfer function of each of these circuits is the same, with the output reaching a maximum of one third of the input when the phase shift is zero. Frequency is \(1 / 2 \pi R C\). Each can be used with an amplifier of gain +3 to produce sustained oscillation. Many other combinations of these networks and amplifiers can be devised, by using current, transconductance and transresistance amplifiers.
Amplitude control may be via a gain-controlled amplifier whose gain is reduced as the output exceeds a given value, usually via a peak- or mean-rectifier and f.e.t. or similar controlled resistor. The classical solution is to use the RC network as part of a bridge
configuration with a high-gain amplifier monitoring the bridge unbalance. One of the bridge resistors is made amplitude sensitive, e.g. a filament lamp or thermistor arranged so that increasing amplitude of oscillation increases the amount of negative feedback thus stabilizing the oscillation amplitude Fig. 4.
These oscillators are controlled in frequency over a very wide range commonly by switching in pairs of capacitors as the coarse control or range-setting, with ganged resistors for fine control. The reverse is possible with high input-impedance amplifiers where high resistances allow the use of ganged tuning capacitors. Single-element control has obvious advantages of simplicity and economy, as well as the possibility of remote control via light dependent resistors and the like. Most solutions to this problem require a larger number of amplifiers to provide separate feedback paths by splitting the


Fig. 6. Adding another amplifier at appropriate points in various oscillators allows a single control to change the frequency without varying loop gain.

passive network in some way, and in addition there is an effective loss in \(Q\) of the system that results in increased distortion. One example out of many that have been designed is shown in Fig. 6. Frequency ranges of up to three decades have been reported, while the amplitude control mechanisms are similar to those above.

\section*{T, phase-shift, and two integrators}

Since both inverting and non-inverting amplifiers are obtainable, circuits can be designed in which the phase-shifts in the external net works are \(180^{\circ}\) and zero (or \(360^{\circ}\) ) respectively. An example of the former is the classical three section phase-shift circuit shown in Fig. 7. Using equal values of resistors and capacitors the network attenuation is rather large, the output being \(1 / 29\) th of the input at the frequency where the overall phase-shift is \(180^{\circ}\). It is usually preferred to the alternative form using interchanged Rs and Cs, because the increased attenuation at high frequencies reduces the harmonic distortion and with it the corresponding shift in frequency.

If the RC values are scaled, then with \(n\) large each section can be analysed separately since the loading effects of the following section can be ignored. The phase shift of each section is then close to \(60^{\circ}\) at the critical frequency with a halving of the signal level. The amplifier then reeds a voltage gain of -8 but the demands on input and output impedances are more severe (the current that can be drawn from the network without loading it becomes very small while the current needed to supply it increases). Alternative methods are to separate the phase-shift networks, using one amplifier of gain -2 between each section. Fig. 8 shows a related circuit that combines the gain and phase-shifting sections. Variants such as this are convenient for threephase oscillators particularly as gain required from each stage is minimal.
A separate class of oscillators is based on null/notch/band-stop RC networks in which the signal transfer function tends to zero or a low value at a particular frequency (Fig. 9). These can give improved sharpness of tuning with lowered distortion, but interaction between the impedances can make them less tolerant of component drift. More important is the difficulty of tuning such circuits since several components need to be changed simultaneously. Separating the paths through these networks and driving them with individual amplifiers can allow control of the frequency without change in the amplitude condition.
There is a very close relationship between active filters and oscillators. They share common passive networks and in many cases one can be converted simply into the other by adjusting the damping factor (sharpness of tuning). A very important configuration which has wide application in both fields is the
two-integrator loop (Fig. 10). Wellknown in analogue computing, it and its near relatives appear under a number of names including 'bi-quad,' 'triple,' 'state-space,' 'gyrator' etc. For ideal amplifiers the circuit \(Q\) is infinite without the need for positive feedback and it is particularly suited to the design of high-Q active filters by the addition of a small amount of negative feedback In practice the net feedback will depend on internal phase-shifts as well as finite-amplifier gains, and both positive and negative feedback may be used to produce controlled oscillations.

If a single resistor or capacitor is varied then with ideal amplifiers, the circuit is still on the edge of oscillation, but the frequency at which oscillation can be sustained is varied. Single-element control of frequency is of considerable advantage in simplifying the construction of oscillators, since dualgang controls are difficult to keep in a well-matched condition over a wide range. The feedback needed remains small under these conditions, being sufficient only to overcome amplifier imperfections and the finite \(Q\) of the capacitors.

Because the amount of feedback required is small it can be introduced via a clipping network that comes into action sharply at a particular amplitude without bringing in significant distortion. This gives instantaneous control of amplitude without the time delay due to heating effects with thermal control. In addition there are three separate outputs with \(90^{\circ}\) phase differences and the addition of another inverting amplifier gives the fourth phase if required. Again there are a number of combinations of amplifiers and network which share these desirable properties as in Fig. 11. In all of them there is a tendency to instability at high frequencies where the slew-rate limiting of the amplifiers produces a jump phenomenon that locks the oscillator into an output oscillation of higher frequency and uncontrolled amplitude.

Some of these networks are more usually interpreted as forms of impedance inverters/converters, in particular the gyrator, viz, a circuit that with a capacitor across one port synthesizes a purely inductive reactance across a second port. If that port has a second capacitor placed across it, a resonant circuit is established which sustains oscillation if a small amount of positive feedback is introduced. It is instructive to draw out the passive networks in such circuits since this clarifies the interrelationships between the various forms of oscillator and filter (Fig. 12).

\[
\left.\begin{array}{l}
\mathrm{n}=1:-\mathrm{A}_{\nu} \longrightarrow-29 \\
\mathrm{n} \rightarrow \infty:-\mathrm{A}_{\nu} \rightarrow-8
\end{array}\right\}
\]

Fig. 7. If the impedances are graded to minimize loading of each section on the preceding one, each contributes \(60^{\circ}\) to the overall phase-shift at the frequency of oscillation.


Fig. 9. T-networks can have zero-transmission at a particular frequency. Oscillators utilize positive feedback with the T-network in a negative feedback path

Fig. 10. Two integrators plus an inverter form the nucleus of a number of oscillators and filters.


Fig. 11. Gyrators are a class of circuits that synthesize an inductive reactance from a capacitor. An oscillator results from resonating the reactance with \(a\) second capacitor.

Fig. 12. The previous two oscillators share a common passive network and can be shown to be functionally identical.



\section*{Typewriters rampant}

Recently, on 3.5 MHz , I was in touch with Ian Trusson, G3RVM, near Swindon. A few minutes later, switching to 7 MHz , the next contact was with DL2QB in Cologne. Nothing very unusual about that - except for an interesting coincidence. Both of these c.w. stations, it transpired, were not using any of the usual froms of Morse key. Instead the operators were typing their messages on a typewriter keyboard - and electronics was doing the work of converting the letters into perfect international Morse. While still unusual enough to make two successive contacts surprising, this approach is clearly gaining ground. Although the keyboard encoders used by these stations were apparently home constructed, such equipments are now marketed. For example the DKB-2010 dual mode keyboard provides an output encoded either as r.t.t.y. (radio teleprinter) or c.w. and is claimed by Hal Communications Corporation as "one of the most sophisticated products' ever offered to radio amateurs". It permits r.t.t.y. at the various standard rates up to 100 words per minute (or optionally 132 w.p.m.) or c.w. between 8 and 60 w.p.m. Normally it is used with a 3 -character memory, but 64 -character memories are available.
Another use of electronic keyboards is reported by Richard Thurlow, G3WW. Fór several months he has been using one for slow-scan television (s.s.t.v.). His unit, the first in Europe, was constructed by Howard Watson, G3GGJ to a design by WoLMD, first demonstrated in the United States in 1973. Two Swiss amateurs and several others outside the USA are now using a commercial version of this design, made by Sumner Electronics.
Slow-scan continues to attract growing interest and a special s.s.t.v. convention is being organised by the British Amateur Television Club at Aston University, Birmingham on Saturday, October 11 ( 1000 to 1800 hours), open to all interested in the subject. One possible demonstration will be of a Robot slow-to-fast and fast-to-slow storage tube converter capable of giving a "frozen" s.s.t.v. picture on a
normal domestic TV set. Details and tickets (50p) from Mike Crampion, G8DLX, 16 Percival Road, Rugby CV22 5JS.

\section*{A transatlantic link severed}

With the death of 82 -year-old Fred Schnell, W4CF (formerly W1MO etc) all three participants (Delroy, Schnell and Reinartz) on the first amateur two-way contact across the Atlantic in November 1923 are now with us only in memory. The significance of that historic contact was not just that it happened - but that it happened on about 100 metres, rather than the 200 metres on which all earlier amateur transatlantic tests had concentrated. It was this contact, more than any other single event, that started the rush to shorter wavelengths and so heralded the opening of the short waves.
Schnell was the original "traffic manager" of ARRL and a little later vividly demonstrated to the American navy the effectiveness of compact short-wave radio equipment during a famous voyage of the battleship U.S.S. Seattle. The British pioneer, Gerry Marcuse, G2NM, used to tell the story of how, during the time when he maintained regular contact with the Seattle in the Pacific, an American reporter woke him early one morning by throwing stones at his window. He had come to Caterham because of widespread disbelief in America that such communication was really possible and insisted on Marcuse obtaining from Schnell the answers to five questions. Marcuse successfully obtained these and the American returned to London to report to the United States that these incredible contacts were really happening!

\section*{American opinions}

The American Radio Relay League received no less than 56,000 replies to a detailed questionnaire seeking members' opinions on the FCC "re-structuring" Docket 20282. These replies provide perhaps the most detailed "snapshot" of opinions, activities and interests of amateur opinion ever compiled.

Almost half of the 56,000 were aged 50 years or over; only \(11 \%\) less than 25 ; only \(5 \%\) under 20 . Half had taken out licences between 1950 and 1970; 18\% before 1939; \(19 \%\) since 1970 . Almost half held the two most difficult-to-obtain licences; extra class ( \(12 \%\) ), advanced ( \(36 \%\) ). There was very strong support for the American system of "incentive" licensing which encourages amateurs to qualify for more difficult licences by offering extra privileges ( \(81 \%\) either strongly agree or agree with this approach; only \(10 \%\) oppose).
At present all classes of American licence impose a Morse code requirement (Technician and Novice classes at 5 w.p.m.) and the analysis shows that
generally American amateurs oppose the institution of a new "Communicator" class of licence for v.h.f.-only without a code requirement ( \(51 \%\) disagree, \(39 \%\) agree this would be a good way to bring in more amateurs).

And while most of those replying agree that there is a need to change the existing structure to encourage growth there is strong dislike of the idea of code-less licences with Novice-level technical requirement: \(60 \%\) believing this would "bring in more undesirable than worthwhile new amateurs" compared with \(26 \%\) who favour the idea. Almost exactly half disagree or strongly disagree with the suggestion that knowledge of Morse is not as important as it once was, compared with \(43 \%\) who believe this to be true. But it is clear from the replies that American amateurs are not particularly knowledgeable about what happens in other countries: \(64 \%\) replying "don't know" to the question whether other countries have issued no-code licences.
Some \(39 \%\) of the 56,000 are active on h.f. only; \(13 \%\) on v.h.f. only; \(36 \%\) on both h.f. and v.h.f., giving a breakdown of \(75 \%\) h.f. compared with \(49 \%\) v.h.f.

One has the impression looking at the detailed analysis that amateur radio in the United States is an ageing hobby, still based primarily on h.f. and that the participants are aware of this and anxious to encourage growth among youngsters, but not at the risk of making fundamental changes to the hobby that has retained their interest over many years.

\section*{Moonbounce}

Moonbounce (EME) communication between G3LQR and ZE5JJ, Rhodesia was achieved first during pre-arranged tests this Spring. During EME tests arranged by the Stanford Research Institute using a 150 ft dish aerial some 55 contacts were made on 144 MHz and 11 on 432 MHz . An s.s.b. moonbounce contact has been made between VK5MC and W8PKY on 144 MHz , the Australian station using rhombic aerials. The French amateur F9FT has made moonbounce contacts with stations in Europe and North America on 432 MHz .

\section*{In brief}

The annual Amateur Radio Retailers Association's "Fourth Midlands National Amateur Radio Exhibition" is at the Granby Halls, Leicester on October 30 , 31 and November 1 ... Overall winner of the 1975 National Field Day was the Channel Contest Group and the leading single-station entry was once again the East Barnet Amateur Radio Contest Club with the Racal group as second in this section. Band leaders were: 1.8 MHz Mansfield; 3.5 MHz Reigate; 7 MHz Ariel; 14 MHz Channel; 21 MHz Glenrothes; and 28 MHz Channel.

PAT HAWKER, G3VA

\section*{The world's most universal audio bridges}

Each of these bridges has ten decade ranges and can be used to measure any type of component or complex impedance. Transformer ratio-arms are used to cover a very wide range of measurement using a minimum number of standards which are set digitally. The three terminal facility provided by this type of bridge enables small values of capacitance or high values of resistance to be measured at the end of long lengths of cable. Components can also be effectively isolated electrically from a complex network allowing individual measurements to be made without disconnection from the circuit being necessary.

\section*{Wayne Kerr's B224 and B642}


The B224 is a manually operated bridge,
the resistive and reactive terms being independently set to a null indicated on the meter. A rechargeable battery is fitted in order to make the instrument portable.


The B642 balances itself automatically.
The meters read real and quadrature terms and highly stable analogue outputs are provided which are directly proportional to capacitance and conductance above \(10 \Omega\) impedance and also to inductance and resistance below \(10 \Omega\). One or two decades can be set to provide the first significant figures of the measurement, thereby increasing the meter sensitivity by 10 or 100 times. If a chart recorder is connected to the output of either term, drifts in component values to at least four significant figures can be observed.

For-more information, telephone Bognor Regis on (02433) 25811 or write to the address below:

\section*{WAYNE KERR}

\author{
Durban Road, Bognor Regis, Sussex PO22 9R2 Telex: 86120. Cables: Waynkerr Bognor \\ Amember of the Wilmot Breeden group
}

NOTE: \(0.1 \%\) accuracy relates to parallel component measurements above \(10 \Omega\) impedance. \(0.3 \%\) accuracy relates to series component measurements below \(10 \Omega\) impedance
-Manual operation only

\section*{(1) \\ VTM(UK)Ltd Metal Film Resistors}

Low noise, low temperature coefficient and high stability are some of the parameters which make the metal film resistor a valuable tool for the circuit designer

ECM (EUROPE) ELECTRONICS LTD. DISTRIBUTE VTM TYPE 471 METAL FILM RESISTORS FROM VAST STOCKS OF E96 VALUES AVAILABLE FOR SAME DAY DESPATCH

\section*{Series \(471 \quad 1 \% \quad 50 \mathrm{ppm} \quad 1 / 4\) Watt}

SIZE: \(6.6 \mathrm{~mm} \times 2.5 \mathrm{~mm}\) diam. RANGE: 10 ohm- 499 K data sheet available on request


Telephone: 073574611
Telex: 847544


\title{
A survey of current resistor technology and applications
}

\author{
by R. A. Fairs, B.Sc.
}

\author{
Rank Radio International
}

\begin{abstract}
This survey, a sequel to "Capacitors" by the same author published in Wireless World, December 1974, describes the circuit analysis of simple equivalent circuits, the physics and significance of noise in resistors, the construction and properties of different resistor types and gives notes on their application. An applications chart relates the different properties and parameters.
\end{abstract}

Resistors are the most commonly used components in electrical networks. Their presence in circuits is often taken for granted - a demand for a 470 -ohm half-watt resistor is met by going to the appropriate box, selecting the component, placing it in circuit and usually forgetting about it.
Perhaps the first curious fact that would manifest itself to a newcomer to electronics would be the "odd" values that resistors take, for instance 4.7 and 680 ohms. These values are in answer to a problem. One requires to fill a certain band, say one to ten ohms with resistors manufactured to a particular tolerance in the most practical way. A good method is to use a logarithmic sequence (eqn. 1) which generates the \(E\) series of preferred values when \(R n\) is rounded to two significant figures.
\[
\begin{align*}
& \epsilon \sqrt{ } 10^{n}=R n  \tag{1}\\
& \epsilon=\frac{100}{t}(1+0.2)(0.8)^{m} \tag{2}
\end{align*}
\]

Where \(\epsilon=E\) number, \(n=\) integer \(\geqslant 0\) and in (2), \(t=\) tolerance of resistors in percent, \(m=0\) for \(5 \leqslant t \leqslant 20=1\) for \(0.5 \leqslant t \leqslant 2\).
For \(10 \%\) tolerance resistors equations (1) and (2) give the \(E .12\) series of preferred values. For 5\% tolerance


Fig. I. Equivalent circuit for a resistor where \(L_{s}\) is the equivalent series inductance due to leads and construction, \(R\) is the apparent d.c. resistance and \(C_{p}\) is the parallel capacitance.
resistors the \(E .24\) series result. The two series are shown schematically below where (3) is the E. 12 series and (3) + (3a) is the \(E .24\) series.
\(\begin{array}{llllllllll}1.0 & 1.2 & 1.5 & 1.8 & 2.2 & 2.7 & 3.3 & 3.9 & 4.7 & 5.6\end{array}\) 6.88 .2
\(\begin{array}{llllllllll}1.1 & 1.3 & 1.6 & 2.0 & 2.4 & 3.0 & 3.6 & 4.3 & 5.1 & 6.2\end{array}\) 7.59 .1

\section*{Equivalent circuit}

By virtue of its construction, a practical resistor will include phenomena different from pure resistance. Fig. 1 shows an equivalent circuit for a resistor. If we take \(C_{p}\) as proportional to the magnitude of the resistor and constant along its body (to a first approximation) then we
\[
Z=\left(\frac{1}{X_{c}}+\frac{1}{R}\right)^{-1}+x_{1}
\]


Fig. 2. Impedance of the equivalent circuit shown in Fig. 1.
have an impedance, \(Z\), described by eqn. (4), and having the form of Fig. 2 when plotted against frequency, \(f\), (on log-log graph paper).
\[
\begin{equation*}
Z=\left(\frac{1}{X_{\mathrm{c}}}+\frac{1}{R}\right)^{-1}+\mathrm{X}_{1} \tag{4}
\end{equation*}
\]

From this we can make the following observations: for large R ( \(>500\) ohms) \(X_{1} \ll X_{c}, Z \simeq \aleph_{c}\). For small R \((<100)\) ohms) \(X_{l} \gg X_{r}, Z \simeq R+X_{1}\).

Somt cancellation of \(X_{1}\) and \(X_{c}\) will occur ifi:
\[
\frac{1}{X_{c}} \approx X_{1}, X_{1} \gg \frac{1}{R}
\]

For practical resistors (carbon composition type) variations of resistance with frequency are shown in Fig. 3.


Fig. 3. Frequency characteristics for carbon composition types of resistor.

The curves shown are not entirely explained by eqn. (4). One may regard \(C_{p}\) as varying along the body of the resistor and not just as the simple sum of distributed capacitances. A more accurate interpretation of \(C_{p}\) is obtained by considering the body of the resistor as a distributed transmission line with capacitive and resistive elements*. From this theory one may show that for each value of \(2 \pi f\) there is a parallel combination of resistance \(R_{r p}\) and capacitance, \(C_{r f}\) which is an equivalent circuit for the resistor at a given frequency, \(f\), provided the effects of inductance are negligible. In this case \(C_{r f}\) may change in sign as indicated in Fig. 4(a). The variation of \(R_{r f} / R\) is shown in Fig. 5.
Frequency effects are most pronounced in carbon composition and wire-wound resistors. In the latter type the variation of \(C_{r:}\) is extremely complex due to inductance effects which occur in the windings, however special winding techniques have been devised to improve the high frequency performance. Carbon film resistors have good stability at frequencies of 500 MHz and over but in this instance mounting and connection become of importance.

\footnotetext{
* Due to Howe 1933 (this theory also holds to some extent for film type resistors).
}


Fig. 4. Variation of \(\mathrm{C}_{\text {rf }}\) with resistance at a fixed frequency.

Fig. 5. Variation of the ratio \(R_{r f} / R\) with resistance.



Fig. 6. Wattage curves for typical carbon film resistors.


Fig. 7. Typical derating curve for a carbon film resistor.

The temperature at which a resistor is operated affects its stability (the ability of the resistor to keep to a particular resistance), and to a lesser degree its impedance characteristics. For resistance value a temperature coefficient (t.c.) is defined by:
\[
\begin{aligned}
& \text { t.c. }=\frac{r \times 10^{6}}{R . t} \\
&=\frac{\text { change in resistance } \times 10^{6}}{\text { orig. resistance } \times \text { change in temp. }} \\
&=a \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { where ppm }=\text { parts per } \\
& \text { million }
\end{aligned}
\]

By defining the temperature coefficient in this manner it is independent of the units of resistance, and thus comparisons between resistors of differing magnitude may be made, as the change of resistance with temperature is rarely linear.
The wattage rating of a resistor is uniquely determined by the amount of power dissipated within it that creates a given long term stability of resistance value. The practical method of determining the wattage rating is to limit the body temperature to a certain quantity (see Fig. 6), but it is of importance that this will also depend on the ambient temperature of the surroundings, since this will affect the amount of heat transfer. For operation of resistors in high ambient temperatures a derating curve must apply; this curve is of the form shown in Fig. 7.

An excessive amount of power dissipated within a resistor causes violent
changes in resistance and ultimately thermal limitation occurs when the resistor breaks down.
For carbon film resistors definite observable changes manifest themselves during this type of overload. Firstly the resistor begins to emit a steady stream of smoke with a characteristic odour, it then glows cherry red and finally breaks down with three possible results: the resistor becomes open circuit, the resistor becomes short circuit or the resistor splutters hot carbon particles and eventually flames.

In practice the fact that the second case occurs means that detrimental effects could happen to other components (especially semi-conductors) in the circuit not necessarily responsible for the stress condition imposed on the resistor. Similarly, because of case three, components adjacent to the resistor may be permanently damaged by fire, and the risk of fire in the circuit as a whole is not to be dismissed lightly, particularly in consumer electronics.

For convenience it is desirable to select, where possible, a resistor which under extreme overload becomes open circuit and non-flammable.

In high resistance values there is a maximum permissable voltage which, rather than the maximum wattage, limits the use of a resistor. This is due to the dielectric of the resistor breaking down under the extreme electric fields created by the applied voltage. Local voids occur within the material and observable sparking becomes apparent in most cases.

\section*{Pulse ratings}

The response of resistors to transient effects is also of importance in circuit design. The same basic limitations of steady state conditions still apply here although the considerations are somewhat different.
In the transient case we have the form of Ohm's Law given by eqn. (5).
\[
\begin{equation*}
V^{2}=W_{p} R \tag{5}
\end{equation*}
\]
where: \(V=\) pulse voltage, \(W_{p}=\) peak wattage and \(R=\) resistance. The peak wattage is related to the maximum continuous wattage, \(W\), by: \(W_{p}=W / f t\)
where: \(f=\) frequency of the pulse and \(t=\) duration of pulse. Combining (5) and (6) we get
\[
\begin{equation*}
V^{2}=\frac{W R}{f t} \tag{7}
\end{equation*}
\]

From thermal considerations eqn. (7) suggests that there is no limitation on the pulse voltage, provided it is applied for a sufficiently short time. However, the reaction of the resistor to voltage stresses is almost instantaneous and there is a distinct stress region below which the resistor will not fail. Thus there is no gain achieved by pulsing the voltage.

Catastrophic failure by the spreading of voids in the material will increase with the frequency of the pulse since neutralization of the external field by, space or surface charges cannot always take place (due to this being a time dependent process). Experience with the Corona effects in carbon film resistors limits the safe pulse voltage to twice the normal rated d.c. voltage.

\section*{Noise considerations}

Noise in an electrical circuit is an unwanted parameter. Being by far the most worrisome factor, resistors must be selected to give the lowest possible noise for a given application. Metal oxide resistors can be used at the input of audio amplifiers to promote low noise performance, if cost is not a prime consideration.

An intrinsic property common to all types of resistor is the generation of noise due to thermal agitation (Johnson Noise, J). In any resistor we have three types of transport phenomena, viz: (a) random motion of free electrons, (b) thermal motion of molecules and (c) electron drift current due to the p.d. across the resistor. In order that the laws of physics be satisfied, equilibrium between (a) and (b) must exist. This causes a noise voltage, \(e\), whose magnitude is (intuitively) dependent on temperature and the magnitude of the resistance to be superimposed on (c).

An exact expression for Johnson Noise has been given by Nyquist, i.e.,
\[
\begin{equation*}
\tilde{e}^{2}=4 K R T . \delta f \tag{8}
\end{equation*}
\]
where: \(\quad K=\) Boltzmann's
constant
\(=1.38 \times 10^{-23} \mathrm{WK}^{-1}, T=\) temperature in degrees kelvin (K), \(R=\) resistance in ohms, \(\delta f=\) bandwidth of measuring equipment (Hz), \(\bar{e}=\) mean noise voltage (volts).

Carbon composition resistors also exhibit noise due to the current flowing through the resistor. In this instance the noise is generated by random changes in the constituent material caused by the current flow. This noise (see appendix), termed current noise, \(E\), is different in character from Johnson Noise, \(J\), in the following ways: \(E^{2} \alpha \log \left(f_{2} / f_{1}\right)\) where \(f_{2}-f_{1}=\delta f\) (for \(\delta f=\) const \(E \alpha 1 / f\) ); \(E^{2} \alpha V\) where \(V=\) direct voltage across resistor; and \(E>J\) (see Fig. 8).

It should also be mentioned that low noise in resistors can be obtained by operating the component well below its rated wattage (see Fig. 9). The noise figures for resistors are quoted in \(\mu \mathrm{V} / \mathrm{V}\) or in dB referred to a fixed figure (usually \(1 \mu \mathrm{~V} / \mathrm{V}\) ); a comparison between types is given in the Applications Chart.

\section*{Solderability}

Solderability can, by virtue of overheating, cause a change in resistance. In miniature resistors the change can be excessive if the soldering
time is not limited. Soldering time can be shortened by the cleaning of soldering surfaces (particularly important for resistors that have been in stock). The tinning of leads will also reduce the soldering time, and the latter can often be seen to have been done by the manufacturer if the leads have a bright, clean appearance. A soldering time of two seconds at a temperature of \(240^{\circ} \mathrm{C}\) is a maximum for flow soldering. For hand soldering, fifteen seconds at the same temperature is a safe maximum for the component.
The most important considerations in choosing a resistor for particular applications are: rated wattage, working voltage and resistance value; frequency characteristics and noise; environmental conditions (temperature and humidity considerations) and stability; physical size and cost.

It should be noted that a manufacturer cannot achieve a specific life or failure rate, but is able by quality of materials to ensure that the resistor is not subject to any known wear-out mechanism. Information such as resistance drift with respect to applied load, ambiant temperature and time will be important in circuit application and thus individual manufacturers' data must be consulted.

A survey of the various types of fixed resistors now follows.

\section*{Carbon composition resistors}

Carbon composition resistors were used extensively in the radio and television industries for power ratings of up to two watts during the valve era, and to some extent in the early days of transistors. Commercially the resistors were cheap and hence the detrimental effects of poor stability, large temperature coefficient, and high noise levels were to some degree offset.
The construction of carbon composition resistors falls into two basic types. In the first (uninsulated) the resistive element consists of finely ground carbon particles dispersed by a refractory filling, and bonded together with a synthetic resin binder. The resultant black powder (whose proportion of constituents determines the value of the resistance) is then compressed into shape and solidified in a kiln. The end connections are made by either forcing a metal end cap onto the carbon rod (Fig. 10 ) or by spraying the ends with metal and the leads soldered (Fig. 11). Alternatively the enlarged ends of the connecting leads may be moulded directly into the carbon rod.
The second type of resistor (insula-


Fig. 8. Comparison of Johnson and current noise for carbon composition resistors.


Fig. 10. Carbon composition resistor with the end connections made by forcing a metal end-cap onto the carbon rod.


Fig. 12. Insulated carbon composition resistor construction.


Fig. 9. Noise figures for carbon film resistors of differing wattage.


Fig. 11. Carbon composition resistor with the end connections made by spraying the ends with metal and the leads soldered.


Fig. 13. Assembly of a ceramic tube type insulated carbon composition resistance.
ted) is constructed by encapsulating the carbon rod in either a thermoplastic insulation (Fig. 12), a moisture resistant silicone lacquer, or a ceramic tube. With the latter, construction is by placing the rods in ceramic tubes and fitting brass caps over the copper sprayed ends, which are then cemented with a moisture resistant cement. A typical assembly is shown in Fig. 13. Another method of constructing an insulated composition resistor is by dispersing the carbon granules and filler in a varnish which is applied to a glass tube. Leads are then projected into the tube and the whole assembly encapsulated by a moulded case.

The uninsulated form of carbon composition resistors are smaller than the insulated type for a given wattage. This is due to their open construction permitting good heat dissipation. However due to the necessity of preventing short circuits to adjacent components the insulated type of composition resistor is more widely used.

Carbon composition resistors have a large voltage coefficient which means that there is a change in resistance due to the applied voltage. This coefficient is insignificant in film types. Failure in composition resistors is rarely catastrophic, but on account of a large negative temperature coefficient the hotspot of the resistor is at the centre and will exhibit failure if overloaded by way of a reduction in resistance value in the first instance.

Abnormally high noise is generally due to poor terminations on the end cap which causes poor contact with the resistive element. Microphony may also be caused by the modulation of the noise voltage on the signal passing through the resistor.

The demand of transistor circuits caused high stability resistors to become dominant in electronics. On account of the initial investment of continental designers in their use of carbon film resistors during the post war boom in consumer electronics, manufacturing techniques caused the price gap between carbon composition and film to narrow and it is chiefly this reason that has caused carbon film resistors to be widely used in many branches of electronics.

\section*{Carbon film resistors}

In a cracked or pyrolytic film resistor a hydrocarbon vapour at a temperature of about \(1000^{\circ} \mathrm{C}\) is decomposed onto a ceramic rod to produce a thin carbon film. The thickness of the film is a compromise between good electrical properties and detrimental temperature effects as indicated by Fig. 14.

The inherent value of the resistor is increased by spiralling the film to form a long continuous path thus yielding a typical gain in resistance value of \(10-10000\). The final resistor is thus compact in size and values of up to \(10^{8} \mathrm{ohms}\) can be obtained.


Fig. 14. Variation of the temperature coefficient with resistivity (thickness of carbon film).


Fig. 15. Construction of a carbon film resistor.


Fig̀. 16. One construction example of wirewound resistor.


Fig. 17. Fusible type wire wound resistor.


Fig. 18. Equivalent noise circuit where \(e\) is the noise voltage generator, \(R\) is a noiseless resistor and \(C\) is the parallel capacitance.

Terminations may be metal end caps pressed over the carbon film, or alternatively the ends of the ceramic rod may be metallized and the leads soldered to them. Owing to the delicate nature of the carbon film, protection against moisture and handling is necessary, hence apart from enclosing the resistive element in a ceramic or glass tube numerous varnishes are applied.
Construction of a carbon film resistor is shown in Fig. 15, and it is noted that this figure is representative of all types of film resistors as are the noise and failure considerations that follow
The noise, \(n\), in carbon film resistors is much less than in their composition counterparts. Its general properties are summarised by eqn. 9 .
(i) \(n=\mathrm{f}(v, 1 / t)\)
(ii) \(n \alpha 1 / l^{2}\)
where \(v=\) voltage stress, \(t=\) thickness of film and \(l=\) length of film.
Typical noise figures are given in the application chart. Carbon film resistors are available in ratings of up to two watts, and in the latter case may be flameproofed for safety.
Failure is more common in the higher value resistors and is often caused by irregularities in the spiralled track and film. In the former a shallow groove causes an intermittant bridge between tracks whilst a deep groove will produce isolated sections of film along its edge resulting in instability and noise.
Of particular interest in carbon film resistors is the dependence of the temperature coefficient of resistance (t.c.r.) on the resistance value and rated wat tage of the resistor due to the amount of effective carbon film involved in constructing the resistor. This is another instance where manufacturer's data is to be consulted.

\section*{Metal oxide film resistors}

The resistive film for these resistors- is formed by the chemical reaction of acqueous stannic chloride on a glass or ceramic rod at red heat. A resulting hard glass-like oxide varying in thickness between \(10^{-9}\) and \(10^{-7}\) metres is produced. This oxide film is electrically conducting and inert to common chemicals. Its resistivity (typically \(10^{3} \mathrm{ohm} / \mathrm{sq}\).) and temperature coefficient of resistance (usually \(\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) ) may be modified by the addition of small amounts of antimony or boron added to the original chloride solution.
The final resistance value of the film is adjusted by cutting a helix along the ceramic rod. Terminations are similar to those of carbon film resistors but with more attention paid to detail to improve noise and reliability considerations. Encapsulation of the resistive element is usually by means of a suitable epoxy.

The noise and t.c.r. vary little with the value of the resistor and are a good deal lower than in carbon film types. The t.c.r. may be either positive or negative
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Application chart & carbon comp. & carbon film & metal oxide & \[
\begin{gathered}
\text { metal } \\
\text { service }
\end{gathered}
\] & \begin{tabular}{l}
glaze \\
commercial
\end{tabular} & metal film & commercial & ound precision \\
\hline Resistance range ( \(\Omega\) ) & 10-22M & 1-10M & 10-150k & 10-150k & 10-150k & 100-1M & 100-1M & 10-500k \\
\hline Selection tolerance (\%) & 5-20 & 5 & 1-5 & 0.5 & 1 & 0.2-1 & 5-10 & <0.5-0.1 \\
\hline Max d.c. voltage (V) & 500 & 500 & 500 & 350 & 350 & 350 & dependent on type & 350 \\
\hline Insulation resistance ( \(\Omega\) ) & \(10^{4}\) & \(10^{7}\) & \(10^{8}\) & \(10^{9}\) & \(10^{9}\) & \(10^{9}\) & on type
\(10^{7}\) & \(10^{9}\) \\
\hline Voltage coefficient (ppm/V) & 3000 & 100 & negligible & negligible & negligible: & negligible & negligible & negligible \\
\hline Average size (length \(\times\) diam) (mm) & \(15 \times 6\) & \(10 \times 3\) & \(7 \times 2.5\) & \(7 \times 2.5\) & \(7 \times 2.5\) & \(7 \times 2.5\) & dependent & on type \\
\hline Cost & low & low & fair & fair & fair & fair & fair & high \\
\hline Noise ( \(\mu \mathrm{V} / \mathrm{V}\) ) & 3 & 0.15 & 0.03 & 0.4 & 1.0 & 0.015 & negligible & negligible \\
\hline Average frequency range ( MHz ) & \(\sim 10\) & \(\sim 50\) & & \\
\hline Stability after 1000 hours (\%) & \(<20\) & \(<1\) & \(<0.5\) & \(<0.5\) & \(<1.0\) & \(<0.2\) & \(<2\) & \(<0.05\) \\
\hline Max operating temp (ambient + load) & 110 & 150 & 150 & 95 & 120 & 150 & 350 & 150 \\
\hline Temperature coefficient* of resistance (ppm \(/{ }^{\circ} \mathrm{C}\) ) & <1200 & 250-1200 & 50-250 & 100 & 100 & 15-100 & <200 & \(<5\) \\
\hline Max wattage (W) at surface temp of \(70^{\circ} \mathrm{C}\) & 2 & 2 & 10 & 1 & 5 & \(1^{* *}\) & 50 & 1** \\
\hline - Absolute value. & \multicolumn{8}{|c|}{** High power types also available.} \\
\hline
\end{tabular}
due to the semi-conducting nature of the oxide film. Most resistive films used in the construction of resistors are se-mi-conductive; the limit of precision in the composition of the film results in the t.c.r. being a positive or negative quantity for a given value and type of resistor.
Metal oxide resistors are used in circuit applications where stability and low noise are of importance. There is an increasing tendency to use metal film types.
Another application of metal oxide film is in power resistor developments. In this instance tolerance is typically \(5 \%\) and the resistors are coated with a non-inflammable silicon cement and exhibit fusing characteristics. The considerations of cost and stability render this component competitive. High power types (up to 5000 W ) are also produced.

\section*{Metal film resistors}

The film used in these resistors is achieved by the vacuum evaporation of nickel chromium alloys (surface resistivity \(10^{3} \mathrm{ohm} / \mathrm{sq}\).) or by the chemical deposition of nickel alloys (surface resistivity \(10^{5} \mathrm{ohm} / \mathrm{sq}\).) onto a cylindrical ceramic substrate. The metal film is eroded rapidly in humid conditions with a light d.c. load, and for this reason the resistive element is protected by encapsulation in one of the three following ways: lacquering and encapsulation in a moulded plastic case, sealing in a resin filled tube and lacquering and hermetic sealing in a ceramic tube with soldered ends.

The general construction of metal film resistors is similar to the types of film resistor already discussed, the difference being that the terminations may be made via forced metal caps which are in good contact with the resistive element by vacuum deposited terminating bands. Current noise level of metal film resistors is determined only by the cut of the helical groove (c.f. appendix). The t.c.r. may be as low as \(\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\). The stability of metal film is good; results in
laboratory test conditions have given failure rates of \(0.0012 \%\) for 1000 hours of life test.

From these considerations metal film resistors are becoming widespread in military and scientific applications where reliability and close tolerance are of importance. Power types are also available.

\section*{Metal glaze resistors (cermet)}

In these resistors an organic suspension of metal and glass particles is applied to a ceramic rod and fired. As a result a thick resistive film remains on the rod. The firing process causes the ceramic to fuse with the thick film, thus the type of ceramic used influences the physical properties of the resistive element. Unsuitable thermal characteristics of the ceramic rod will cause an expansion effect with the film, as in a bimetallic strip of two dissimilar metals.
The construction of metal glaze resistors is similar to film resistors and shown in Fig. 15. The resistive film can be varied from \(10 \mathrm{ohm} / \mathrm{sq}\). to \(10^{6} \mathrm{ohm} / \mathrm{sq}\). depending on the glaze used. An excess of glass in the suspension causes the metal particles to be disjointed, and hence produces a high but uncontrollable resistance.
Due to the high initial firing temperature, metal glaze resistors may be run at high temperatures and loads, in this instance conduction of heat away from the resistive element is via the terminations and the ceramic rod.
The noise level of metal glaze resistors is intermediate between film resistors and carbon composition. The t.c.r. is low ( \(\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) ) and stability is excellent on account of the body temperature of the resistor being low for the amount of power dissipated.

\section*{Wirewound resistors}

In resistors of this type a length of resistance wire is wound on a bobbin (usually ceramic) and its ends anchored to terminal leads. A coating or case protects the wire from damage or corrosion. A suitable wire for general pur-
pose wire wound resistors is nickel chromium since it has good stability, a low t.c.r., and a high operating temperature. Encapsulation of the wirewound resistive element may be by cement, lacquer or vitreous enamel. Open wound resistors may be used in high power applications.
General purpose wirewound resistors are supplied to tolerances of \(5 \%\) and \(10 \%\) with wattage ratings of up to 50 watts. In the latter case a cement coating is used for the lower wattage types (up to 20 watts) which is not impervious to moisture but has the advantage of cheapness.
Vitreous enamelled types are usually of \(5 \%\) tolerance but a \(0.1 \%\) tolerance may be selected. Excellent protection against moisture is afforded by the vitreous enamel, and one general example of construction is shown in Fig. 16. In precision resistors the resistance wire is Eureka, which has a low t.c.r., but a relatively low operating temperature. In this case certain variations exist, viz: hermetic sealing in an oil filled tube, sealing in a ceramic tube, moulded plastic casing, and various kinds of lacquer. In the latter, protection against moisture is satisfactory but the working temperature is limited to around \(170^{\circ} \mathrm{C}\).
In the use of wirewound resistors particular care must be taken concerning the high ambient temperature from affecting surrounding components. Power resistors of tubular construction convect heat through the hole. The operating temperature of the resistor may be used to effect a fusible resistor an example of which is shown in Fig. 17.

Frequency characteristics of wirewound resistors may be improved by special winding techniques, such as winding in anti-phase. Exact analysis of the efiects encountered is impossible due to the number of variables, e.g., physical size, wire size differences, spacing etc. At around 2.5 MHz low value resistors become capacitive so non-inductive windings are not of value.

Failure in wirewound resistors may be due to the following: (1) in high value resistors the wire may be blemished, (2.) in vitreous enamel types expansion differences between the ceramic substrate and the enamel coating may cause cracking and penetrating of moisture, (3) corrosion of the wire due to d.c. load conditions can induce an excess of alkali in the enamel.
In order to eliminate (2) in their precision wirewound resistors, one manufacturer uses the same material for encapsulation as for the bobbin.

\section*{Special types}

High value resistors are composed of a carbon composition film resistive element in an evacuated glass envelope, the assembly strongly resembling a glass thermistor. Values of resistance up to \(10^{13} \mathrm{ohm}\) may be obtained.

Ceramic carbon resistors are able to withstand high voltages (typically 25 kV ) and are used as current limiting resistors in voltage multiplier circuits in television sets. Standard resistors are constructed as precision wirewound types, the wire used being manganin. A small adjusting resistor in parallel with the main resistive element gives trimming of the exact value. The range of ohmic value is between \(10^{-4}\) and \(10^{5} \mathrm{ohm}\).

Precision power resistors ( \(0.5 \%\) ) may be constructed by mounting a suitable wirewound resistor or power metal film resistor in an extruded aluminium casing. With additional heat sinking this type of encapsulation is capable of dissipating 200 watts.

Recent developments in resistors include the encapsulation of an array of high stability resistive elements ( \(15 \%\) to \(2 \%\) tolerance) in a dual-in-line package similar to the micro-circuits already available. One immediate advantage here is that in low power applications repetitive resistors such as in current limiting for l.e.d. displays, assembly and overall cost are reduced.
Two types of resistive ink are used in the manufacture of resistor arrays giving rise to the terms plane film (sometimes referred to as thin film) and thick film.

In plane film types two inks are principally used, nickel/chromium (t.c.r. \(30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) ) and tantalum/aluminium (t.c.r. \(150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) ). The substrate is alkali free glass and the method of manufacture is by vacuum deposition. The geometry of resistors is achieved by selective etching which may be laser trimmed. Evaporated gold film is used for the patterns of the conductors, external connection being by soldering or thermocompression. Encapsulation may be d.i.I. or in an inert gas filled metal can.
Thick film types are constructed in a similar manner to plain film. The ink used is the same as for metal glaze resistors and this consists of an organic suspension of metal or metal oxide with
fine glass powder. The ink is screen printed onto the ceramic substrate, dried and then fired, insulating pastes are applied next and are in turn dried. Three or four printings may be required to build up the resistive network and the complete assembly (including terminal leads) is then passed through a furnace under a controlled process as some reaction with the ink may occur. In thick film circuits encapsulation is in d.i.1. form. Whole circuits including small capacitors may be designed into the package and most manufacturers offer a design service. The tolerance of the resistors produced may be as low as \(2 \%\).

\section*{Further reading and acknowledgement}

Many manufacturers provide excellent information on fixed resistors, among those of particular interest are technical literature by Mullard, Electrosil, VTM, Allan Bradley, Utronix, Dale, Welwyn, and ITT.

A short list of further reading and references includes:
1. Dummer, Fixed Resistors, Pitman, 1956.
2. Dove, K. L. Metal Glaze Resistors, Wireless World, June 1970.
3. Dearden, J. Development of oxide film resistors, Electronic Components, Vol. 9, No. 2.
4. Boswell, D. \& Russel, R. F. Thick and thin film resistors: performance and reliability comparison. Microelectronics, Vol. 1, No 1. 5. Browning, J. Film Resistors, Electronic Components, Vol. 16, No. 2.
6. B.S. 9000 for methods of test and interpretation of information and results.

The author wishes to thank Rank Radio International for permission to publish this article, and in particular Mr. G. Botwright for his help with its preparation.

\section*{Appendix}

\section*{Noise in resistors}

The noise voltages that appear across the terminals of any resistor are attributed to the random motion of free electrons in the material of the resistance. Electrons in a conductor are free to move by virtue of their thermal energy, and at a given instance more electrons may be directed toward one terminal of the resistor than the other. The result is a small p.d. across the resistor, and this p.d. will fluctuate as the electrons move.

Since the noise voltage across the resistor fluctuates randomly, it has Fourier components covering a wide range of frequencies. It is thus convenient to specify the noise voltage in terms of bandwidth as given by eqn. (8), viz:
\[
\begin{equation*}
\bar{e}^{2}=4 K R T \delta f \tag{Al}
\end{equation*}
\]

Eqn. (Al) may be derived as follows: consider the equivalent circuit shown in Fig. 18. We have:
\[
\begin{equation*}
V_{c}^{2}=\frac{\mathrm{e}^{2}}{1+(R C)^{2}} \tag{A2}
\end{equation*}
\]

The condition of Fig. \({ }^{11} 6\) is completely
determined by \(V_{c} \ln\) thermodynamic terms the circuit is a system with one degree of freedom. According to the equipartition theorem in themodynamics the total energy of the capacitor must be equal \(1 / 2 K T\), thus:
\(1 / 2 K T=1 / 2 C V^{2}{ }_{c}=\int_{0}^{\infty} \frac{e^{2} \mathrm{~d} f}{1+(\omega R C)^{2}}\)
The integration extends over all frequencies \(f\) due to the random nature of the noise. Assuming that the noise voltage is independent of frequency, we have:
\[
\begin{align*}
& K T=C e^{2} \int_{0}^{\infty} \frac{\mathrm{d} f}{1+(\omega R C)^{2}}=e^{2 / 4 R} \\
& \text { i.e. } \quad e^{2}=4 R K T \tag{A4}
\end{align*}
\]

Eqn. (A4) shows that the noise voltage of resistances is independent of frequency, and accordingly, is termed "white" noise in analogy with the uniform spectral distribution of white light energy. This noise in resistors is also called Johnson or Nyquist noise after its discoverers. For a given bandwidth, \(\delta f\), eqn. (A4) assumes the form of eqn. (A2).
Noise voltages in excess of Johnson noise are observed experimentally in certain resistances when a direct current is present. Although the physical origins of this additional noise are uncertain, an empirical expression for the effect is given by (c.f. eqn. (8)):
\[
\begin{equation*}
\overline{\mathrm{e}}^{2}=a \frac{\mathrm{l}^{2}}{\mathrm{f}} \delta \mathrm{f} \tag{A5}
\end{equation*}
\]
where \(\alpha=\) constant (dependent principally on the geometry and material of the resistor), \(I=\) d.c. current and \(f=\) frequency.

The magnitude of the noise shown by eqn. (A5) (termed current noise, E) varies markedly with the material of the conductor and its physical form. It is entirely absent in metals and hence is not observed in wirewound resistors. Composition resistors generate a large current noise due the intergranular contacts in such resistors as shown by Fig. 8 in the main article.

\section*{Peak-reading level indicator}

The following notes are related to "Peak-reading audio level indicator," August issue. The value of \(R_{11}\) quoted in the components list applies to \(R_{11}\) connected to \(\mathrm{Tr}_{3}\) gate and \(\mathrm{R}_{16}\) in Fig, 3. The second resistor marked \(\mathrm{R}_{11}\) connected to \(\mathrm{Tr}_{3}\) source and \(C_{8}\) should be \(47 \mathrm{k} \Omega\). The latter \(\mathrm{R}_{11}\) is that mentioned on p.357, column 3. Left-hand side of the logic equation (p.359, column 3) should be \(Y_{r}\) not \(X_{r}\).. On page 360 , \(\mathrm{VR}_{2}\) should be \(\mathrm{R}_{13}\) Under the heading of "Construction" the second sentence should begin "Three types of board were used" not "Three boards were used." Finally, in Fig. 10 a diode 0A202 should be included connected from the inverting input of the second op. amp. to the base of the 2 N 2905 transistor.

\section*{new Products}

\section*{Low profile i.c. socket}

Known as the Ultra Low Profile Socket, this i.c. socket is available in \(6,8,14,16\), 18 and 22 pin, 0.3 in pitch versions. When fully inserted, the i.c. is 0.16 in from the p.c.b. Contacts first grip the flat of the i.c. pin and also make contact with the wider surface area at the top, reducing contact resistance to typically \(6 \mathrm{~m} \Omega\).

The socket confirms to the vibration requirements of BS2011 and DEF5011, and beneath the socket are four 0.02 in
high feet acting as a moisture barrier, thus conforming to the BS9500 specification for i.c. sockets. Jermyn Manufacturing, Sevenoaks, Kent.
WW 301 for further details

\section*{Cooling fans}

Designed for forced cooling applications where space is at an absolute premium, the Rotron Piccolo fans are 80 mm square by 38 mm deep. From 9 to 13 litres per second of air flow are provided by the fans which are double insulated and protected.

Versions are available with either sleeve bearings for use up to \(55^{\circ} \mathrm{C}\), or ball bearings for use up to \(75^{\circ} \mathrm{C}\). Both versions can be supplied with either 115 V or 240 V motors. G.D.S. Sales Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.
WW 302 for further details

\section*{Vibration analyzer}

A Mark 2 version of the VM3C portable vibration analyzer is being offered by Vibro-Meter Ltd. Designed for use, even in hazardous environments, with signal
supplied from both piezo-electric and magnetic transducers, the read-out may be made in one of three modes. These are velocity, displacement or acceleration, shown as a deflection on a built-in meter

Narrow band analysis is possible using the variable filter which ranges from 10 Hz to 10 kHz . Powered from mains or internal, re-chargeable \(\mathrm{Ni}-\mathrm{Cd}\) batteries the unit is \(300 \mathrm{~mm} \times 130 \mathrm{~mm} \times\) 310 mm . Vibro-Meter Ltd, Newby Road, Hazel Grove, Stockport, Cheshire.
WW \(\mathbf{3 0 3}\) for further details

\section*{Sweep/function generator}

The model 121 Exact is a portable swept function generator with a frequency range from 0.002 Hz to 2 MHz and a range of waveforms with variable time symmetry. Outputs may be sine, square or triangle and have a swept range from zero to \(1000: 1\) with a sweep rate continuously adjustable from 1 ms to 10s.

Two output levels are available, 20 V pk-pk open circuit, dropping to 10 V pk-pk into \(50 \Omega\), and 632 mV pk-pk open circuit, dropping to 316 mV pk-pk into


WW 301 for further details
WW 304 for further details


WW 302 for further details

50S. An invert switch is provided to reverse the polarity of the pulse and ramp outputs, \(a \pm 10 \mathrm{~V}\) of d.c. offset and an external frequency control socket. The sweep waveform is available from a rear mounted socket. Price is \(£ 155\), or the model 121 A , with a 20 dB step attenuator, is available at \(£ 195\). Dana Electronics Ltd, Collingdon Street, Luton, Beds.
WW 304 for further details

\section*{Static meter}

With static becoming a serious problem in industry and the medical world, the model 703 non-contact static meter from 3M Nuclear Products can be useful to examine suspect surfaces.

It can be set to read at distances of 2,6 or 12 inches and will detect potentials from 50 V to 2000 kV . The meter is battery operated from two 9 V dry batteries, giving up to 100 hours continuous service.

The instrument operates on the principle of the discharge of a metal sensor plate in the muzzle, using a weak beta ray source. The small current thus generated is measured by means of an amplifier connected to the meter. The value and polarity of the charge is indicated.

A free "static analysis service" is also offered on industrial premises. Product Public Relations, 3M United Kingdom Ltd, 380 Harrow Road, London W9 2HU. WW \(\mathbf{3 0 5}\) for further details

\section*{Test set}

A hand-held test set designed for fault-finding in data transmission systems, has been announced by IAL Data Communications. The Data Monitor Set PDMS 9801 shows, on a "go-no go" basis, the signal states on the ten most frequently used data and control circuits of a CCITT V24 interface. It is Post

Office approved for connexion to their modems and other approved modems in series with the modem-to-computer interchange cable.
The test set imposes negligible loading on the system being tested and is powered by readily available dry cells. International Aeradio Ltd, Aeradio House, Hayes Road, Southall, Middx.
WW 306 for further details

\section*{Multipurpose instrument}

Digical is a precision voltage and current generator, v.o.m. and constant voltage or current power supply. Designed to provide a calibration source for d.c. instrumentation or other equipment, it offers five functions and 25 ranges.

An \(8 \mathrm{~mm}, 31 / 2\)-digit l.e.d. display indicates the instrument's output which can be from \(10 \mu \mathrm{~V}\) to 100 V at up to 100 mA or 10 nA to 100 mA at up to 100 V .


WW 305 for further details


WW 306 for further details


WW 307 for further details


WW 308 for further details

It will also measure external voltages or currents of a similar range and additionally measure resistance from \(10 \mathrm{~m} \Omega\) to \(100 \mathrm{k} \Omega\). Delresistor Ltd, 21 Windsor Street, Uxbridge, Middx.
WW 307 for further details

\section*{Standard frequency receiver}

One of a range of frequency standards manufactured by R.C.S., the type 103 receiver operates from the Droitwich signal and provides two outputs at 3 V pk-pk square wave into \(300 \Omega\), of 10 MHz and 1 MHz .

The short-term stability is 1 part in \(10^{8}\) and the long term stability, that of Droitwich itself. Manual controls are eliminated by the use of an automatic lock taking up to 20 s from switch-on to operate.

A remote ferrite rod assembly is supplied for use as an aerial and the power requirements for the receiver are
\(220 / 250 \mathrm{~V}\), a.c. \(50-60 \mathrm{~Hz}\). R.C.S. Electronics, National Works, Bath Road, Hounslow, Middx.
WW 308 for further details

\section*{Portable tachometer}

The Philips PR 9131 is a portable tacho-meter for direct measurements between 1 and 9999 r.p.m. An extension of the range above this is obtained by contactless measurement, from 100 to 999,900 r.p.m.

Accuracy is claimed to be \(\pm 0.2 \%( \pm 1\) digit) of the true speed, the display being a 4 digit l.e.d. indicator. Power is provided from either mains or battery, the latter giving 180 minutes continuous use. Recharging takes approximately 10 hrs .

Price with case and accessories, but without batteries is \(£ 295\). Pye Unicam Ltd, York Street, Cambridge.
WW 309 for further details


WW 310 for further details


\section*{Frequency synthesizer}

Additional components are being offered to extend the range of the basic WJ- 1250 modular synthesizer by Wat-kins-Johnson. These consist of a chassis (WJ-1253A) which can house up to three WJ- 1251 r.f. sources, with automatic interfacing with the WJ- 1250 microwave synthesizer main frame.

Two double-band r.f. sources using fundamental y.i.g.-tuned oscillators, one of which (WJ-1251-7) provides from 8 to 18 GHz at 5 mW (min), the other supplying 20 mW (min) from 1 to 4 GHz .

Various options and auxiliary modules are also available. WatkinsJohnson International, Shirley Avenue, Windsor, Berks.
WW 310 for further details

\section*{Soldering iron}

A 24 V soldering iron suitable for continuous production usage has been introduced by Light Soldering Developments. Called the Conqueror, it weighs 35 g and is supplied with a range of five bits from 1.6 mm to 6.3 mm and a spiral spring holder mounted on a Bakelite base. The base is fitted with a wiping sponge and can be fitted directly onto many existing 24 V power units. Light Soldering Developments Ltd, 97-99 Gloucester Road, Croydon, Surrey
WW 311 for further details

\section*{Injection moulded capacitors}

High humidity protection is claimed for the 8017 series of capacitors from Advance Filmcap. The process eliminates voids occurring in normal resin encapsulation and ensures the accurate central location of the axial leads.

The range of values available matches the existing Filmcap polycarbonate and polyester ranges and has received British Post Office approval. Advance Components Ltd, Rhosymedre, Wrexham, Denbigshire.

WW 312 for further details

\section*{Etch and wash unit}

This is a heated p.c.b. processing tank with a spray wash bath, designed as a bench top unit \(16 \times 22 \times 20\) ins. Heating and agitation is by a patented integral wall heater with air agitation. The wash tank contains two spray bars.

All controls, thermostat and air pump are part of the units which only require connection to the 240 V mains supply, mains water and drainage.

Other units with develop, etch, tin or strip tanks each combined with a wash tank are available. Circuitape Ltd, 33 New Street, Aylesbury, Bucks.
WW 313 for further details


ON COMMITTEES
There's this friend of mine, see, who's the proud father of a seven-year-old son. One day, junior returns from school bursting with exictement and announces that his class is working on a new project, to wit, the manufacture of a papier-maché cow. You know wire netting framework and that kind of lark. Pa, suitably impressed, asks questions, and in particular what son's contribution is going to be.
"Well, actually," says junior, voice trembling with pride, 'teacher's appointed me chairperson of the crumpled horn committee!"

In these troubled times it's reassuring to know that our educational system is solidly behind us, nurturing our tender plants so that in the fullness of time the young idea will emerge completely meeting-orientated and ready to pull their full weight in British Industry.

I feel sorry for our forebears. I just don't know how they managed to cope in the B.C. (Before Committee) era. For, incredible as it may seem, Graham Bell, Edison, Marconi et al. seemed to have functioned on a bull-at-a-gate, suck-it-and-see basis and entirely without benefit of committees. That they got anywhere at all can only be attributed to beginner's luck. Fluking their way through, you might call it.

Yes, it's a great pity that the oldtimers hadn't latched on to the committee approach, which, as all thinking men agree, was the greatest single invention since the wheel and girls. For, properly employed in industry, it confers two major boons; it's an almost foolproof safeguard against getting the sack and it creates an intense eagerbeaver atmosphere without actually getting anything done.

Consider the instance of Bludswet and Teeres Ltd, electronic equipment manufacturers in a smallish way of business. In days of yore if one of their engineers had an idea (and they sometimes did) he'd wheel it along to the Chief Engineer. If the Chief liked it, he'd say go ahead and if it, subsequently proved to be a success - well, Chief Engineers were paid to spot winners. If
it didn't, another C.E. was appointed sharpish. Each position of high responsibility carried a built-in chopper; that was what it was all about.
How primitive! Thank goodness we have none of that barbarism nowadays! In the interim period Bludswet and Teeres have prospered and now constitute a democracy by committee. Their Research Dept. dream up an idea and, after lots of meetings, pass it to Development who hold a lot more and tag every electron involved so that they'd know it again if they met it in the street. The prototype is then processed through various channels and is eventually offered to the Commercial Manager; by this time it's not nearly such an original idea as it once was because a lot of water has gone under the bridge and those fiendish Japanese are believed to have got something similar up their kimonos.
In short, the new equipment is a dodgy potato and the Commercial Manager has been too long in the business to stick his neck out. So he sets up a committee of senior executives to brood over the project and eventually to advise him on a straightforward digital yes-no basis.
Naturally, they do nothing of the sort. They have serious responsibilities like week-end cottages, cabin cruisers and Mercedes cars to think about and they know just as much about hedging bets as the Commercial Manager. So they promptly appoint another set of committees at the next level below them. Thus, if we start off with a top-brass committee of ten (a reasonable figure) and each of these appoints a coven of similar size to advise him on his own peculiar interests in the equipment, we already have 110 good men and true involved in committee work.
But that's only the start. The lower (but still quite senior) stratum have no intention of facing a firing squad either, so they in turn delegate subordinates to
but I needn't go on because you know the picture anyway. And naturally, everybody on a committee has to hold a prior meeting with a few immediate colleagues in order to establish what he's got to say at the meeting. So, in no time at all, half the personnel at Bludswet and Teeres are involved in reporting to somebody or other. There are steering committees, whose members are specially selected for their complete lack of a sense of direction, and there are also things called working parties. Nobody has yet discovered what a working party is supposed to do. Nevertheless, momentous issues are being solved all the time. Somewhere in the morass a sub-committee has been haggling for months as to whether the chassis should be stoved in baby blue or a crackle finish.

The immediate consequence of decision-by-committee is that a mass of paper ascends to high heaven and flutters down to the IN-trays beneath. These memoranda require the utmost
care and deliberation in their composition; they must be verbose enough to impress the committee conveners but at the same time they mustn't actually say anything; particularly anything that could be construed as a recommendation one way or another. This continuous interdepartmental to-and-froing of memos has been unkindly described as a closed oscillatory circuit using paperwork coupling.
But at long last the moment of truth can no longer be delayed and, from the information dredged up, the Commercial Manager reluctantly decides that the new equipment shall go into production. The lengthy business of tooling up, buying in components and producing working drawings begins, and, of course, this necessitates a whole lot of new committees. Then, just after the point of no return, those perfidious Japs, who have no sense of the correct procedures, bring out something better on immediate delivery. But do heads roll at Bludswet and Teeres? They do not The buck is passed down and down and you can't sack a committee complex consisting of half the factory, with at least three trade unions behind them.
There are, broadly speaking, two distinct categories of meetingattenders. There are the dedicated committee-men and those who have been co-opted protestingly from their lawful occasions to pronounce judgement on a technical issue. The latter are the sacrificial lambs who can (and assuredly will) be put on the altar should appeasement be demanded from on high.

Professional committee men come in various types. There is the Chairman, born with an agenda in his hand, who has an inexhaustible fund of Rabelaisian anecdotes with which to jolly the meeting along but who is known to have the ear of Sir upstairs, so watch it. Then there are at least two members of any given meeting who like to hear the sound of their own voices and are adepts at saying nothing at interminable length. There is Terribly Ernest, a junior executive from Trends and Tendencies Department; it is his first meeting and he's anxious to make a good impression upon his seniors.

Another well-known frequenter is Humpty Dumpty, so adept at sitting on the fence. There's the Doodler who spends the meeting sketching positions from the Kama Sutra on his pad. And then there's the Ancient, in his prime when the new-fangled triode was ousting the crystal detector; nobody is at all sure who he represents. He just sits in dour silence until the meeting's over and then totters off to a blue movie. And then there's - but you know them, anyway.

Meanwhile, back on the Works Floor the machines are on short time and the pound's taken yet another turn for the worse. H'm; it looks as though we'd better convene another meeting.

\section*{The Dymar 971 radiotelephone.}


Dymar's 971 mobile radiotelephone offers fleet operators a whole series of super-saving features -
- Plug-in transceiver units. With the 971 the vehicle mounting cradle carries all power and aerial services. The transceiver simply plugs in, and can be switched from vehicle to vehicle without disconnection or reconnection of wires or cables.

- Rugged construction. The 971 is built to take the knocks, and has proved it over hundreds of thousands of miles of overseas operation. Should something go wrong, instant testing is also a simple plug-in operation. You save, again, on equipment down-time.
- Base and transportable versatility. That's right, more plug-in economies. The 971 simply slots into a mains power supply speaker unit for base station use, or into a portable shoulder pack (with rechargeable batteries) if the need arises to use it-away from the vehicle.
- Top efficiency VHF-AM communication. Improved contact with vehicles saves in all direction . . on fuel . . . on driver time . . . and in gained business opportunities.
- Economy pricing. 971 prices come as a pleasant surprise in these days of rising costs - the final argument to convince your accountant, or bank manager.

Designed by experts to provide the answer to just some of the problems facing fleet operators in the mid-Seventies, the 971 is the newest product from Dymar, producers of the world-famous Lynx range of AM and FM VHF mobile radiotelephones.

\section*{odThas \\ the name in radiotelephones}

For full details, use the Reader Enquiry Service, or contact Dymar direct.

DYMAR ELECTRONICS LIMITED, Colonial Way, Radlett Road, Watford, Herts. WD2 4LA. Tel: Watford 3732 I Telex: 923035 Cables: Dymar Watford.

\section*{More than just a cataloguse! PROJECTS FOR YOU TO BUILD}

4-digit clock, 6-digit clock, 10 W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc.

CIRCUITS . . . Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance Multiplier, etc., etc
Full details and pictures of our wide tange of components, e.g. capacitors, cases, knobs, veroboards, edge connectors, plugs and sockets, lamps and lampholders, audio leads, adaptor plugs, rotary and slide potentiometers, presets, relays, resistors (even \(1 \%\) types!), switches, interlocking pushbuttonswitches, pot cores, tiansformers, cable and wire, panel meters, nuts and bolts, tools, organ components, keyboards, L.E.D.'s, 7 -segment displays, heatsinks, transistors, diocles, integrated circuits, etc., etc., etc
Really good value for money at just 40p.


\section*{The 3600 SYNTHESISER}

The 3600 synthesiser includes the most popular features of the 4600 model, but is simpler. Faster to operate, it has a switch patching system rather than the matrix patchboard of the larger
unit and is
particularly
suitable for live
performance
and portable
use.
S.A.E. please


\section*{GRAPHIC EQUALIZER}

A really superior high quality stereo graphic equaliser as described in Jan. 1975 issue of ETI. We stock all parts (except woodwork) including alt the
 metal work

\section*{The 4600 SYNTHESISER}


We stock all the paris for this brilliantly designed synthesiser, including all the PCB's, metalwork and a drilled and printed front panel, giving a superb professional finish. Opimons of authority agree the ETI International Synthesiser is technically superior to most of today's models. Complete construction details available now in our booklet price £ 1.50 , or S.A.E. please
for specification

\section*{printed as required to sult our components and PCB's}
drilled and
Complete reprint of article - price 15 p

\section*{ELECTRONIC ORGAN}

Build yourself an exciting Electronic Organ. Our leaflet MES51, price 15p, deals with the basic theory of electronic organs and describes the construction of a simple 49-note instrument with a single keyboard and a limited number of stops. Leaflet MES52, price 15p, describes the extenston of the organ to iwo keyboards each with five voices and the extension
 by an octave of the organ's range.
Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown in leaflet MES53, price 35p

NO MORE DOUBTS ABOUT PRICES
Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'lf tell you about price chanyes in advance for just 30 p a year (refunded on purchases). If you already have our catalogue send us an s.a.e and we'll send you our latest list of GUARANTEED prices. Send us 30 p and we'll put you on our malling list you'll receive immediately our latest price list then every two months from the starting date shown on that list you'll receive detals of our prices for the next GUARANTEED period before the prices are implemented! plus details of any new lines, special offers, interesting projects and coupons to spend on components to repay your 30 p
NOTE: The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essential

\section*{tirst steo.}

Call in at our shop, 284 London Road, Westclift on Sea, Essex.
Please address all mail to


MAPLIN ELECTRONIC SUPPLIES
P.O. Box 3 Rayleigh Essex SS6 8LR.

CHROMASONTE Electronics
Dept.5, 56. Fortis Green Road Muswell Hill, London. N10 3HN telephone: 01-883 3705



The Jackson's range of high voltage air dielectric capacitors has been specially developed for modern transmitting and aerial tuning applications.

It's a versatile range. Some give a capacity of up to \(1,000 \mathrm{pF}\). Others accept up to 6 Kv . d.c. Proof Voltage.

It's a smooth range. Plain bearings for high torque. Ball bearings for low torque. Single stator, differential and split stator configurations.

All backed by 50 years' experience in the communications field. Highly skilled men. And Jackson Brothers' good name.


Write for further information to:

\section*{JACKSON BROTHERS (LONDON) LIMITED}

Kingsway, Waddon. Croydon CR9 4DG Tel: O1-681 2754/7 Telex. 946849 U.S. Office: Swedgal Electronics,inc.. 258 Broadway, New York, N.Y. 10007

OLSON


Standard minicases are made from 20 g . mild steel sheets zinc-coated and finished in silver grey hammertone stove enamel. Front panels made from 18 g . steel, finished in light grey high gloss enamel.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Type} & \multicolumn{3}{|r|}{Overall Dimension} & \multirow[t]{2}{*}{Case no vents} & \multirow[t]{2}{*}{\begin{tabular}{l}
Case \\
with vents
\end{tabular}} & \multirow[t]{2}{*}{Chrome leg} \\
\hline & Width & Height & Depth & & & \\
\hline 21 & \(6 \frac{1}{2}^{\prime \prime}\) & \(4 \frac{1}{2}^{\prime \prime}\) & \(4 \frac{1}{2}^{\prime \prime}\) & - & 3.92 & 0.90 \\
\hline 22 & \(8 \frac{1}{2}^{\prime \prime}\) & \(5 \frac{1}{2}^{\prime \prime}\) & \(5 \frac{1}{2}^{\prime \prime}\) & - & 4.40 & 0.90 \\
\hline 23. & 1019 \(\frac{1}{2}^{\prime \prime}\) & \(6 \frac{1}{2}^{\prime \prime}\) & \(6 \frac{1}{2}^{\prime \prime}\) & - & 5.25 & 0.95 \\
\hline 24 & 121 \(\frac{1}{2}^{\prime \prime}\) & \(7 \frac{1}{2}^{\prime \prime}\) & \(7 \frac{1}{2}^{\prime \prime}\) & - & 5.74 & 0.95 \\
\hline 25A & \(6 \frac{1}{2}^{\prime \prime}\) & \(4 \frac{1}{2}^{\prime \prime}\) & \(4 \frac{1}{2}^{\prime \prime}\) & 3.80 & 4.28 & 0.90 \\
\hline 25B & \(6 \frac{1}{2}^{\prime \prime}\) & \(4 \frac{1}{2}^{\prime \prime}\) & \(6 \frac{1}{4}^{\prime \prime}\) & 4.00 & 4.48 & 0.90 \\
\hline 26A & \(8 \frac{3}{4}{ }^{\prime \prime}\) & \(5 \frac{3}{4}{ }^{\prime \prime}\) & \(6 \frac{1}{4}^{\prime \prime}\) & 5.37 & 5.85 & 0.95 \\
\hline 26B & \(8 \frac{3}{4}{ }^{\prime \prime}\) & \(5 \frac{3}{4}{ }^{\prime \prime}\) & \(8 \frac{1}{4}^{\prime \prime}\) & 5.62 & 6.10 & 0.95 \\
\hline 27A & 1214" & \(7 \frac{1}{2}^{\prime \prime}\). & \(5 \frac{1}{2}^{\prime \prime}\) & 5.75 & 6.35 & 0.95 \\
\hline 27B & \(12 \frac{1}{4}^{\prime \prime}\) & \(7 \frac{1}{2}^{\prime \prime}\) & \(8^{\prime \prime}\) & 6.35 & 6.95 & 0.95 \\
\hline 28A & \(14^{\prime \prime}\) & \(10 \frac{1}{2}{ }^{\prime \prime}\) & \(6 \frac{1}{2}^{\prime \prime}\) & 6.95 & 7.55 & - \\
\hline 28B & \(14^{\prime \prime}\) & \(10 \frac{1}{2}{ }^{\prime \prime}\) & \(8 \frac{1}{2}^{\prime \prime}\) & 7.55 & 8.15 & - \\
\hline 29A & 10" & \(4^{\prime \prime}\) & \(6{ }^{\prime \prime}\) & 4.85 & 5.33 & 0.95 \\
\hline 29B & 10" & \(4^{\prime \prime}\) & 8" & 5.15 & 5.63 & 0.95 \\
\hline 30A & 12" & \(5^{\prime \prime}\) & 6" & 5.25 & 5.85 & 0.95 \\
\hline 30B & 12" & 5" & \(8^{\prime \prime}\) & 5.56 & 6.16 & 0.95 \\
\hline 31 A & \(14^{\prime \prime}\) & \(6^{\prime \prime}\) & \(6{ }^{\prime \prime}\) & 5.75 & 6.35 & 0.95 \\
\hline 31 B & \(14^{\prime \prime}\) & 6 " & 8' & 6.05 & 6.65 & 0.95 \\
\hline 61 & \(15 \frac{1}{2}^{\prime \prime}\) & \(7 \frac{1}{2}^{\prime \prime}\) & \(9 \frac{1}{2}^{\prime \prime}\) & - & 8.75 & - \\
\hline 62 & \(17 \frac{1}{2}{ }^{\prime \prime}\) & \(8 \frac{1}{2}\) & \(9 \frac{1}{2}^{\prime \prime}\) & - & 10.15 & - \\
\hline 63 & \(16 \frac{1}{2}^{\prime \prime}\) & \(9 \frac{1}{2}{ }^{\prime \prime}\) & 9191 & - & 10.15 & - \\
\hline 64 & \(15 \frac{1^{\prime \prime}}{}\) & \(7 \frac{1}{2}^{\prime \prime}\) & 121*' & - & 10.15 & - \\
\hline 65 & \(17 \frac{1}{2}{ }^{\prime \prime}\) & \(8 \frac{1}{2}\) & 1219 \({ }^{\prime \prime}\) & - & 11.60 & - \\
\hline 66 & \(16 \frac{1}{2}{ }^{\prime \prime}\) & \(9 \frac{1}{2}^{\prime \prime}\) & \(12 \frac{1}{2}^{\prime \prime}\) & - & 11.60 & - \\
\hline
\end{tabular}

Types 21, 22, 23 and 24 are finished in olive green hammertone with front panels in light straw gloss enamel. Fitted with ventilated rear panels only. No louvres in the base.

\section*{PORTABLE POWER DISTRIBUTION}


COMPLETE WITH 6FT CABLE AND IJAMP PLUG


Please add for postage and packing and VAT @ 8\%.
Trade Counter is open for personal callers from 9 a.m. to \(5.00 \mathrm{p} . \mathrm{m}\). M onday-Friday
OLSON ELECTRONICS LTD., TEL: 01-739 2343 LONDON. E.2.

\section*{Celestion Dittons get the best out of any system}

Buy a really gexe set of speakers and you've got yourself a better hi-fi system . . buy a set of Celestion Ditions and you've sot one of the best!

Whet he vou already own or are thinkirg of buying either a 'package' hi-fi system or are sclecting you'sown individual units, a pair of good spreakers will pay dizidends in terms of sound qual ty.

Some people pay Least attention to selecting the speakers. Given first priority they will vastly improve the performance of mostsysiems.

Celestion Dittons have a long starding reputation among enthusiasts for their outstanding achievements in high quality sound reproduction.

From left to righ, the Ditton 11, 44 and 33.
Visit your Celestion dealer: See the beautiful appearance and hear the new sounds of the very latest Dittons.

Full details on request.

\section*{Celestion}
 Please send full details of Ditton \(11 \square\) Dition \(33 \square\) Ditton \(44 \square\)


\section*{Name}

Rola Celestion Limited. Ditton Works.
Address
Foxhall Road, Ipswich, Suffolk IP3 8JP.
Telephone: Ipswich (0473) 73131

\section*{BUY AT (I) /i/}


\title{
IT MAKES SENSE TO
}



\section*{Decibels - 20 to}

Decidels -20 to
+62 dB . Battery operated. Size: \(180 \times\) \(140 \times 80 \mathrm{~mm}\). Supplied complete with.
test leads etc. OUR PRICE f18.90 P/P \& ins 60
 \(5 \mathrm{Meg} / 50 \mathrm{Meg}\).
Decibels: -20 to +62 dB OUR PRICE \(£ 21.50 \mathrm{P} / \mathrm{P}\) \& Ins 60 p



f24.30'P/P \& Ins 60p

lb4 TRANSIStor tester Tests PNP or NPN
transistors. Audio indications. Opperetes on two 1.5 V
batter iss. Complate
. OUR PRICE
4. \(4.85 \mathrm{P} / \mathrm{P}\) \& ins \(20^{\circ}\)


MULTIMETER

\section*{111111}

Will measure \(A C\) and \(D C\) volts. \(A C\) and OC current, and resistance in s total of 20 ranges. Thelargelight emitting diode display will read up to 1999 and automatically indicat polarity Indication of positive and negative overload is also provided Thembined carrying handie and combined carrying handle a benchstand and sockets external power supply. RANGES:
DC VOLTS: \(1 \mathrm{iv}, 10,100 \mathrm{v}, 1000 \mathrm{v}\) AC VOLTS: \(1 \mathrm{v}, 10 \mathrm{v}, 100 \mathrm{v}, 1000 \mathrm{v}\). DC CURRENT \(1 \mathrm{~mA}, 10 \mathrm{~mA}\). \(100 \mathrm{~mA}, 1000 \mathrm{~mA}\). AC CURRENT: \(1 \mathrm{~mA}, 10 \mathrm{~mA}\). 100 mA .1000 mA . RESISTANCE: \(1 \mathrm{k}, 10 \mathrm{k}, 100 \mathrm{k}, 1000 \mathrm{k}\). OUR PRICE £63.70.P/P \& Ins 50p

TRANSISTORISED L.C.R. A.C. BR/8 MEASURING BRIDGE
\begin{tabular}{|c|}
\hline A new portable bridge oftering excelifent range and accuracy at low cost. Resistance 6 ranges: 0.1 ohm-11.1 megohm \(\pm 1 \%\) induct. ance: 6 ranges: 1 microhenry- 111 henries \(\pm 2 \%\) Capacity: 6 ranges 10pf-1110 mfd \(\pm 2 \%\) Turns Ratio 6 ranges: 1:1/1000-1:11100 \(\pm 1 \%\) Bridge Voltage at 1.000 cps . Operated from 9 -volt battery. 100 microamp meter indication. Size 71" \(x\) \(5^{\circ} \times 2^{\prime \prime}\) OUR PRICE \(£ 29.70_{\text {Ins } 60 p}^{P / P ~ \& ~}\) \\
\hline \begin{tabular}{l}
TE-200 RF SIGNAL GENERATOR \\
Accurate wide range signel generator covering 120 kHz-500 MHz on 6 bends. Directly callibrated. Variable A.F attenuator audio output. Xtal zocket for calibetion. 220/240V a.c. Brand new with inatructions. Size \(140 \mathrm{~mm} \times 215 \mathrm{~mm} \times 170 \mathrm{~mm}\). OUR PRICE f24.30 P/P \& Ins 60p
\end{tabular} \\
\hline ALAPRYES
IMCIUDE \\
\hline
\end{tabular}

\section*{EXPORT}
overseas visitors Goods spectally pecked insured and despatched to all parts of the Payment by bank transfer, certified cheaue

\section*{CUSTOMERSERVICES our}

Customer Sorvices Division at Head justring 01-2001321

B. H. COMPONENT FACTORS LTD.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{TRANSISTORS} & \multicolumn{2}{|l|}{Type Pnce (\% \({ }^{\text {a }}\)} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{DIODES} & \multicolumn{4}{|l|}{THYRISTORS, TRIACS AND TRIACS} \\
\hline \multicolumn{2}{|l|}{Type Price (\%} & \multicolumn{2}{|l|}{Type Price t?} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { BD115 } \\
& \text { BDO } \\
& 80123
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
0.65 \\
0.98 \\
0.80
\end{gathered}
\]} & \multirow[t]{2}{*}{BF 273 BF336 BF337} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.16 \\
& 0.35 \\
& 0.35
\end{aligned}
\]} & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{WITH TRIGGER}} \\
\hline \({ }_{\text {AC }} 107\) & 0.35 & BC119 & 0.29 & & & & & \multicolumn{2}{|l|}{} & & & & & & & & & & \\
\hline \({ }^{\text {AC }} 117\) & 0.24 & \({ }^{\text {BC }} 125\) & 0.22, & 8013 & & & & & & K1 \({ }_{\text {K }} \times 5 \times 502\) & & & & A 4129 & & IF VRM & & 400 V & 600 V \\
\hline \({ }_{\text {ACl }}{ }^{\text {ACl27 }}\) & 0.25
0.25 & \({ }_{\text {BCI }}{ }^{\text {826 }}\) & 0.15 & & 0.50 & & & \({ }_{\text {E1222 }}\) & 0.55 & & 0.26 & 2 N 38 & & & 0.30 & & - 30/-1 & - & \\
\hline A \({ }^{\text {cl }}\) & 0.25 & BC134 & 0.20 & \(8{ }^{8} 135\) & 0.40 & & 0.15 & E5024 & 0.20 & 2N5 & 0.86 & 2N38 & 0.25 & \({ }_{\text {afz }}{ }^{\text {a }} 17\) & \({ }_{0}^{0.12}\) & & - \(33 / 44 / 46\) & (56/58 60/-1-84 & \\
\hline & 0.26 & & & & & & & & & & & & & balioo & 0.15 & & , & 68880/84 & \\
\hline AC14, & & & & & & & \({ }_{0.30}\) & ME6002 & 0.18 & & & 2 N & \({ }_{0} .15\) & & 0.25 & \(84.36 /\) & -I- \(42 / 60 / 63\) & 51/74/78 84/104/109 & 30 \\
\hline \({ }_{\text {AC } 153 \mathrm{~K}}\) & 0.28 & \({ }^{\text {BC138 }}\) & 0.20 & & 55 & & 0.24 & M \({ }^{\text {LE3 }}\) & 0.68 & & 0.15 & & 0.43, & BA115 & \({ }_{0} 0.12\) & 164 -1- & -/82/9 & -/88/95 -/132/140 & 00/128/13 \\
\hline \({ }_{\text {A }}\) & 0.20 & & 0.30 & & 0.62 & & 0.55 & MJE341 & 0.72 & & 0.35 & & \({ }^{0.52}\) & & & & & & \\
\hline \({ }_{A C}^{A C}\) & 0.2 & 8C1478 & - 0.35 & \({ }^{80144} 8\) & 2.75 & & 0.55
0.55 & MJE370 & 0.65 & & \({ }_{0}^{0.30}\) & & \({ }^{0.15}\) & \({ }^{\text {BA } 145}\) & 0.17 & Notes: All pric & ices are in pence & per unit First price in each groun & or \\
\hline AC & 0.2 & & 0.12 & & &  & 1.70 & M, Je5 & 0.95 & & 0.20 & & 0.13 & BA15 & 0.13 & & & & \\
\hline  & -0.25 & \({ }_{\text {8C149 }}^{\text {8C14 }}\) & 0.14
0.15 & & \({ }_{0}^{0.56}\) & & \({ }_{0}^{1.38}\) & M. & \begin{tabular}{l}
1.85 \\
1.85 \\
\hline
\end{tabular} & 2 N & \({ }^{0.42}\) & 2N4124 & 0.15
0.20
0.12 & \({ }^{8 A 155}\) & - 0.15 & rating and dev & ed. & ea & vice Quantity \\
\hline AC & 0.2 & & & & 0.76 & BFW60 & 0.20 & & 1.75 & 2 N & 0.21 & 2N4236 & 1.90 & & 0.25 & & & & \\
\hline & 0.26 & & & & & & & m & 0.70 & 2N:3 & 0.21 & 2 N 42 & 0.12 & BAX 13 & 0.0 & & & & \\
\hline & 0.3 & & & & 1.45 & & 2.55 & & & 2N & 0.31 & & & & & & & & \\
\hline \({ }_{\text {ACr2 }}{ }_{\text {AC1 }}\) & +0.25 & \({ }_{\text {BC158 }}^{8 \text { 8C15 }}\) & 0.15
0.13 & \({ }_{\text {B0x }}^{80} 8\) & \begin{tabular}{l}
2.55 \\
0.38 \\
\hline
\end{tabular} &  & 0.30
0.35 & & 0.50 & \({ }_{21}^{2 N}\) & 0.26 & 2 N 4 & \({ }_{0}^{0.13}\) & \({ }^{\text {Pa }}\) & & NTEGRATED & CIRCUITS & & \\
\hline ACY39 & 0.68 & BC159 & 0.15 & B0 & 1.78 & BFx84 & 0.25 & & 0.21 & 2 N & 0.36 & 2 N 42 & 0.20 & \({ }^{88}\) & 0.45 & Type Pruce & & & \\
\hline AD \({ }^{\text {AD } 140}\) & 0.50
0.52 & \({ }_{8 C 1678}\) & - 0.48 & B0 & & BF) & (0.26 & MP & 0.66 & \(2 \mathrm{2N}\) & 0.45 &  & - 0.18 & BR & 0.50 & CA3045 1.48 & & & \\
\hline & 0.5 & BC1688 & 0,13 & & 0.45 & BFx87 & 0.28 & MP & 1.26 & & 0.45 & 2N42 & 0.20 & & 0.2 & CA3065 1.90 & & 41 & \\
\hline AD & 0.4 & & 0.13 & & 0.55 & & 0.24 & & 1.26 & 2 N 18 & 0.48 & 2 N 48 & \({ }^{0.24}\) & & 0.16 & MC1307P 1.19 & 300 & 35 & 00 \\
\hline & \({ }_{0}^{0.4}\) & \({ }_{8 C}{ }^{\text {BC }}\) & 0.15 & \({ }_{8 F 123}\) & 0.25
0.28 & \({ }_{\text {BFY } 40}^{8818}\) & 53 & OC26 & 0.38
0.65 & 2 N 2 & \({ }^{0.36}\) & 2N50 & 1.05 & & 0.17
0.23 & MC1327P0 & tas630s & £105/50 & 0 \\
\hline & 0.2 & & 14 & - & 0.25 & BFY41 & 3, & OC35 & 0.59 & 2 N 2218 & 0.60 & \(2 \mathrm{2N5}\) & \({ }^{0.32}\) & & 1.40 & & & 5 Timers & \\
\hline & 0.25 & \({ }_{\text {BC }}{ }^{\text {c/7 }} 1\) & 0.22 & \({ }_{8 F}{ }^{158}\) & 0.25 & BFY51 & 0.23 & & 0.64
0.55 & 2 N 2221 A & 0.41 & 2N506 & 0.45 & & 5 & MC1351P 0.75 & TAAB40 \({ }^{\text {P }}\) & ¢55 & \\
\hline & 0.20 & BC1 & 0.20 & & 0.27 & & 0.23 & & 0.25 & N2222A & 0.50 & 2N5087 & 0.35 & & 70 & 135290.82 & tasb, 1 a & £205/ & 500 \\
\hline \({ }^{\text {AF }}\) AF & 0.32. &  & \({ }^{0.22}\) & \({ }_{161}^{160}\) & 0.25. & \({ }_{\text {BFY64 }}^{\text {BFY }}\) & \({ }_{0}\) & &  & 2N2401 & 0.60 & 2N5296 & \({ }^{0.35}\) & \(\xrightarrow{\text { BY2 }}\) & 0.31
0.15 & \({ }_{1.85}\) & TA0100 \(\begin{aligned} & 0.49 \\ & 8.65\end{aligned}\) & & \\
\hline Aft24 & 0.25 & BC179 & 0.20 & & 0.45 & BFY72 & 0.31 & Oc7 & 0.32 & 2 N 2484 & 0.41 & 2 N & 0.58 . & 0447 & 0.07 & MC1496L 0.87 & TBAT 20080.99 & & \\
\hline Af & 0.25
0.25 & \({ }_{\text {BC188 }}\) & 0.11 & \({ }^{\text {8FF } 163}\) & 025 & \({ }^{\text {BiPY9 }} 15\) A & 0.78
0.79 & & 0.32
0.51 & 2N2546 & - 0.53 & 2 N 54 & \(1 . .90\) & OA & ( 0.12 & P & tBA240A & & \\
\hline AF & 0.25 & \({ }^{\text {BC }} 1\) & 0.12 & & 0.25 & BPx25 & 1.90 & OC & 0.25 & 2N2712 & 0.12 & \(2{ }^{2} 5457\) & 0.35 & OA & 0.07 & 0.43 & o & & \\
\hline Afl & 0.35 & \({ }^{\text {BC } 183 \mathrm{~K}}\) & 0.12 & & 0.30 & 8PX29 & 1.70 & & 0.53 & 2 N 2904 & 0.22 & 2 N & 0.35 & OAS & 0.07 & 060 & & \&P: U.K. C0.12 PER ORD & er over. \\
\hline \({ }_{\text {AF }}\) AF & O.35, & \({ }_{8 C 1}^{8 C 1}\) & 5 & & \({ }_{0}^{0.33}\) & \({ }^{\text {BPaC44 }}\) & 30.68 & & 0.57
0.76 & \({ }^{\text {2N290 }}\) & -26 & \(2{ }^{2} 5\) & & & 0.10
0.10 & mfC6040 0.91 & TBA \({ }^{\text {TBA500 }}\) & Mail at cost & \\
\hline AF1 & 0.55 & & 0.25 & & \({ }_{0}^{0.35}\) & BR & & & 0.80 & & 0.13 & \({ }_{\text {2N6 }}^{2 N}\) & 0.751 & OA210 & 0.29 & \begin{tabular}{ll} 
NE5555 & 0.72 \\
NE556 & 1.34 \\
\hline
\end{tabular} & & 'All items advertised ex & magazine \\
\hline AF179 & 0.60
0.55 & \({ }_{8}^{8 C 2}\) & 0.27
0.12 & & - 0.44 & & 0.47 & OC & 0.25
0.30 & 2 N 2 & 0.13 & 2N61 & 0.92 &  & 0.07
0.10 & \begin{tabular}{ll} 
NE556 \\
SL4 414 A & 1.34 \\
1.91 \\
\hline 1
\end{tabular} & \begin{tabular}{l} 
T8A510 \\
TBA5200 \\
\hline 1.94 \\
\hline 1.95 \\
\hline
\end{tabular} & do Al & \\
\hline \({ }_{\text {AF }}^{\text {AF }}\) & 0.50
0.40 & & - 0.12 & & \({ }^{46}\) & & 0.13 & & 0.92 & & 0.75 & \({ }^{2 S C 643 A A}\) & & IN400 & 0.05 &  & tBA530 2.71 & gue is now & available at \\
\hline \({ }_{\text {AF }}^{\text {AF }}\) & \({ }_{0}^{0.40}\) & \(B_{B C 2}\) & 0.15 & & 26 & & 0.19 &  & 2.19 & \(2 \mathrm{2N3053}\) & 0.21 & & 2.80 & & \({ }_{0}^{0.06}\) & & TBA \({ }^{\text {TH300 }}\) & & \\
\hline AF2 & 0.84 & BC2 & 0.12 & & 0.15 & \({ }^{\text {BS }} \mathbf{1} \times 76\) & 0.15 & \({ }^{\text {ORP } 12}\) & \({ }^{0.55}\) & \({ }^{2} \mathrm{~N} 30\) & 0.55 & 3 N 140
40250 & 1.26 & 114004 & 0.08 & 92 & tBA5400 3.21 & & \\
\hline AL & 1.10
1.10 & \({ }_{\text {BC }}{ }_{\text {BC262a }}\) & \({ }^{0.28}\) & & 0.15
0.15 & \({ }_{\text {BSY19 }}^{\text {BSx }}\) & \begin{tabular}{l}
0.52 \\
0.52 \\
\hline 0.15
\end{tabular} & 20088 & 2.95 & 2N3055 & O.54 & \({ }_{40327}^{4025}\) & 0.60 & INA & 0.09 & 5 & TBAS500 4.10 & & \\
\hline AL103 & 1.10 & \({ }_{8 C 2}\) & 0.25 & & 17 & \({ }_{\text {BSY }}\) & 0.22 & TAG3/400 & & 2 N 31 & 0. 60 & 40361 & - 0.48 & in & 0.14 & SN76013NO & tbasboca & & \\
\hline \({ }_{\text {AL }}^{\text {AL }}\) & \({ }^{0} 9.95\) & \({ }_{\text {BC2 }}\) & 0140016 & & 0.20
0.25 & & \({ }_{0}^{0.50}\) & & 1.54 & 2N32 & 1.10 & 40362
40429 & 0.50
0.80 & in \({ }_{\text {IN4 }}\) & 00501 & No & 7 & & \\
\hline AUl 10 & 1.90 & \({ }^{\text {a }}\) & 0.37 & & 0.35 & & 0.80 & & 0.44 & 2 N 2254 & 0.28 & 40439 & \({ }_{2.67}\) & Ni540 & 0.15 & 1.72 & TBA641 0.76 & & \\
\hline AUl13
BCi0 & 2.40 & & - 0.65 & \({ }_{\text {BF }}^{\text {8F }}\) & 0.08 & \({ }_{\text {BSY7\% }}^{\text {BSY }}\) & 0.0 .15 & TIC & 0.58 & 2 N 33 & 0.48 & \({ }_{\text {ACl }}^{\text {ACl }} 128{ }^{\text {a }}\) & 0.52 & in & 0.17 & SN76023 \({ }_{1.95}\) &  & & \\
\hline \({ }^{\text {BC }}\) BC & O.40 & \({ }_{8 C}{ }^{\text {BC }}\) & 0.66
0.12 & & 0.15
0.20 & BSY91
BY106 & 0.28
1.24 & \({ }_{\text {T1P }}^{\text {T1P30A }}\) & - 0.58 & 2N377 & 0.13 &  & & & 0.22
0.25
0 & SN76033N \({ }_{2.92}\) &  & & \\
\hline \({ }_{8 \mathrm{BC}}^{8 \mathrm{C}}\) & \({ }_{0}^{0.12}\) & & 0.12 & & 0.20
0.22 & 时 & 1.24 & & 0.65
0.67 & & 0.15
0.15 &  & . 56 & ins & \({ }_{0}^{0.25}\) & SN76530P1.05 & \begin{tabular}{l}
TBA7500 \\
TBA800
\end{tabular} & & \\
\hline BC108B & 0.13 & & 15 & BF & 18 & Bu & & T1P33A & 0.99 & 2N37 & 0.11 & \({ }^{\text {AC1 }}\) A 187 K / & 0.60 & & \({ }^{0.30}\) & SN76533 1.20 & tBa810as & & \\
\hline & 0.14 & \({ }_{8}\) & 28 & BF & 0.45 & & 2.95 & & 1.83 & 2 N & 0.13 & \({ }_{\text {ACl }}\) & 0.61 & & 0.34 & TAA \({ }_{\text {T }}\) & tba9200 4.23 & CALLNGTON & \\
\hline \({ }_{\text {BCiog }}\) & 0.14 & \({ }_{8 \text { BC4 }}\) & 1.10 & \({ }^{\text {BF } 256}\) & 0.45 & & \begin{tabular}{l}
1.98 \\
1.98 \\
\hline
\end{tabular} &  & 0.9 & 2N37 & 2.30 &  & & ZENER & &  & T8A9990 4.10 & CORNWALL PL17 8PZ & \\
\hline & & \({ }_{\text {BCY }}^{8 \mathrm{Cl}}\) & 1.58 & BF & \({ }_{0}^{0.49}\) & \({ }^{80207}\) & \({ }_{3}^{1.98}\) & Tistis & 0.30
1.36 & 2N3 & 1.18 &  & & 400mW & & TAA435 & TBA9900 \({ }_{\text {TCA }}\) & & \\
\hline \({ }_{8 C} \mathrm{BC}_{1} 15\) & 0 & & 0.22 & & , 3 & 8U208 & 15 & & -12 & 2 N 371 & 1.70 & AD162 & 0.95 & & 0.12 & TAA550 0.55 & zN414 1.25 & Stoke Cl & \\
\hline  & 0.20
0.20 & - & \({ }_{2.42}^{4.65}\) & \({ }_{\text {BF263 }}\) & 0.70
0.70 & BUV77 & 2.50 & x 304 & - 0.12 & 2N3773 & \begin{tabular}{|l|l|l|}
1.90 \\
2.90
\end{tabular} & \({ }_{\text {BC1 }}\) & 0.70 & 3.1000 & 0.18 & TAAS70 \({ }^{2.02}\) & \({ }_{\text {U6A995159 }}{ }_{2.25}\) & 39. Telex: 4545, A/B & ERC \\
\hline
\end{tabular}






\section*{XR-2206K}

The XR-2206 Function Generator Kit extends the capabilities of a single XR-2206 Function Generator ic to a self-contained generator system using a very limited number of external components. It provides the engineer, student. or hotbyist with highly versatile taboratory instrument for waveform generation at a very small fraction of the cost of conventional tunction generators available today.

The function generator is designed to operate with either a single I2V supply or with \(\pm 6 \mathrm{~V}\) split supplies.
The XR-2206 Function Gemerator Kit provides three basic waveforms: sine. triangle and square wave. There are four overlapping frequency ranges which give an overall frequency range of 1 Hz to 100 kHz . In each range. the frequency may be varied over a 100:1 tuning range. The fotal harmonic distortion of a sine wave is typically \(0.5 \%\).

The sine or triangle output can be varied from 0 to over 6 V peak to peak) from a 600 ohm soarce at the output terminal.
A squarewave output is available at the sync output terminal for oscilloscope synchronizing or driving logic circuits.
The Function Generator kit fealures sine. triangle and square wave: THD \(0.5 \%\) typ.: AM/FM capability.

XR-2206KA: Includes Monolithic function generator IC, PC board. and assembly instruction mamual. £II.50.
XR-2206KB: Same as XR-2206KA above and includes components for PC board. \(\mathbf{£ 1 6 . 0 0}\).

The Kit requires scme additional parts and hardware for complete assembly in a laboratory equipment form.


\title{
Marshallis
}
A. Marshall (London) Lid Dept: WW
42.Cricklewood Broadway London NW2;3ET Tel: 01-452 0161/2
Telex 21402 Telex: 21492
\& 85 West Regent St Glasgow G2 20D Tel: : \(041-3324133\) \& 1 Straits Parade Fishponds Bristol' BS16 2LX Tel: 0272 654201/2
\& 27 Rue Danton Issy Les Moulineaux Paris 92 Tel: : 6422985 Catalogue price 25p Trade and export enquiries welcome
OUR RANGE COVERS OVER 7,000 ITEMS THE LARGEST SELECTION IN BRITAIN
TOP 200 IC'S TTL, CMOS \& LINEARS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline CA3018A & 0.85 & CD4043 & 1.80 & NE565 & 4.4t & SN7448 & 0.90 & SN74157 & 0.96 \\
\hline CA3020A & 1.80 & CD4044 & 180 & SL414 & 1.80 & SN7450 & 0.16 & SN74160 & 1.10 \\
\hline CA3028A & 0.78 & CD4045 & 2.65 & SL610C & 1.70 & SN7451 & 0.16 & SN74161 & 1.10 \\
\hline CA3035 & 1.37 & CD4046 & 2.84 & SL611C & 1.70 & SN7453 & 0.16 & SN74162 & 1.10 \\
\hline CA3046 & 0.70 & C04047 & 1.65 & SL612C & 1.70 & SN7454 & 0.16 & SN74163 & 1.10 \\
\hline CA3048 & 2.11 & CD4049 & 0.81 & SL620C & 2.60 & SN7460 & 0.16 & SN74164 & 2.01 \\
\hline CA3052 & 1.62 & CD4050 & 0.85 & SL621C & 2.00 & SN7470 & 0.33 & SN74165 & 2.01 \\
\hline CA3089E & 1.96 & LM301A & 0.48 & SL623C & 4.6 & SN7472 & 0.26 & SN74167 & 4.10 \\
\hline CA30900 & 4.23 & LM308 & 2.50 & SL640C & 3.10 & SN7473 & 0.38 & SN74174 & 1.25 \\
\hline CD4000 & 0.36 & LOO5TL & 1.60 & SN7400 & 0.16 & SN7474 & 0.31 & SN74175 & 0.90 \\
\hline CD4001 & 0.36 & LM380 & 1.10 & SN7401 & 0.16 & SN7475 & 0.50 & SN74176 & 1.4 \\
\hline CD4002 & 0.36 & LM381 & 2.20 & SN7401AN & 0.38 & SN7476 & 0.35 & SN74180 & 1.40 \\
\hline CO4006 & 1.88 & LM702C & 0.75 & SN7402 & 0.16 & SN7480 & 0.50 & SN74181. & 1.98 \\
\hline CD4007 & 0.36 & LM 709 & 0.38 & SN7403 & 0.16 & SN7481 & 1.25 & SN74t90 & 2.30 \\
\hline CO4008 & 1.63 & 8DIL & 0.45 & SN7404 & 0.19 & SN7482 & 0.75 & SN74191 & 2.30 \\
\hline \[
\begin{aligned}
& \text { CD4009 } \\
& \text { CD4010 }
\end{aligned}
\] & 1.18 & 14 OLL & 0.40 & SN7405 & 0.19 & SN7483 & 0.96 & SN74192 & 1.15 \\
\hline CD4011 & 0.36 & (M723C & 0.47 & SN7406 & 0.45 & SN7484 & 0.95 & SN74193 & 1.15 \\
\hline CD4012 & 0.36 & LM741C & 0.40 & SN7408 & 0.45 & SN7485
SN7486 & 1.25 & SN74196 & 1.60 \\
\hline CD4013 & 0.68 & BDIL & 0.40 & SN7409 & 0.22 & SN7490 & 0.48 & SN74197
SN74198 & 1.58 \\
\hline CD4014 & 1.72 & 14DIL & 0.38 & SN7410 & 0.15 & SN7491 & 0.85 & SN74198
SN74199 & 2. 2.25 \\
\hline CD4015 & 1.72 & LM747 & 1.06 & SN7411 & 0.25 & SN7492 & 0.45 & SN76003N & 2.25
2.92 \\
\hline CD4016 & 0.68 & LM 748 & 0.60 & SN7412 & 0.28 & SN7493 & 0.45 & SN76013N & 1.95 \\
\hline CD4017 & 1.72 & LM14DIL & 0.73 & SN7413 & 0.35 & SN7494 & 0.82 & SN76023N & 1.00 \\
\hline CD4018 & 2.56 & LM3900 & 0.70 & SN7416 & 0.35 & SN7495 & 0.72 & SN76033N & 2.92 \\
\hline CD4019 & 0.88 & LM7805 & 2.00 & SN7417 & 0.36 & SN7496 & 0.75 & TAA263 & 1.10 \\
\hline CO4020 & 1.91 & LM7812 & 2.50 & SN7420 & 0.18 & SN74100 & 1.25 & taA300 & 1.80 \\
\hline CD4021 & 1.72 & LM7815 & 2.50 & SN7423 & 0.29 & SN74107 & 0.36 & TAA350A & 2.10 \\
\hline CD4022 & 1.66 & LM7824 & 2.50 & SN7425 & 0.29 & SN74118 & 1.00 & TAA550 & 0.60 \\
\hline CD4023 & 0.36 & MC1303L & 1.50 & SN7427 & 0.29 & SN74119 & 1.92 & taA611C & 2.18 \\
\hline CD4024 & 1.24 & MC1310P & 2.59 & SN7430 & 0.16 & SN74121 & 0.37 & taA621 & 2.03 \\
\hline CD4025 & 0.32 & MC1330 \({ }^{\text {P }}\) & 0.90 & SN7432 & 0.28 & SN74122 & 0.60 & TAA661B & 1.32 \\
\hline CD4027 & 0.43 & MC1351P & 0.80 & SN7437 & 0.36 & SN74123 & 0.60 & tba641B & 2.25 \\
\hline CD4028 & 1.50 & MC1352P & 0.80 & SN7438 & 0.35 & SN74141 & 0.85 & TBA651 & 1.64 \\
\hline CD4029 & 3.50 & MC1466L & 3.80 & SN7440 & 0.16 & SN74145 & 0.90 & tBab00 & 1.40 \\
\hline CD4030 & 0.87 & MC1469R & 2.75 & SN7441AN & 0.85 & SN74150 & 1.60 & tbab 10 & 1.40 \\
\hline CD403 1 & 8.19 & NE555V & 0.70 & SN7442 & 0.65 & SN74151 & 0.85 & tBA820 & 1.15 \\
\hline CD4037 & 1.93 & NE556 & 1.30 & SN7445 & 0.90 & SN74153 & 0.85 & tBA920 & 4.00 \\
\hline CD4041 & 1.88 & NE560 & 4.48 & SN7446 & 0.98 & SN74154 & 1.50 & DIL sockers & 0.17 \\
\hline CD4042 & 1.38 & NE561 & \(4{ }^{48}\) & SN7447 & 0.96 & SN74155 & T. .60 & & \\
\hline
\end{tabular}

BRISTOL
\(10 \%\) discount for callers at our new shop
at 1 Straits Parade, Fishponds, Bristol at 1 Straits Parade, Fishponds, Bristol \(654201 / 2\) during August. Tele: Bristo

\section*{POPULAR SEMICONDUCTORS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 2N696 & 0.22 & 2N3906 & 0.27 & AFJ 39. & 0.85 & 39 & 0.71 & SA56 & 0.3 \\
\hline 2N697 & 0.16 & 2N4037 & 0.42 & AF239 & 0.65 & BD140 & 0.87. & OC28 & 0.786 \\
\hline 2N698 & 0.82 & 2N4036 & 0.67 & AF240 & 0.90 & BF115 & 0.36 & OC35 & 0.60 \\
\hline 2N699 & 0.59 & 2N4058 & \(0: 18\) & AF279 & 0.70 & BF117 & 0.58 & OC42 & 0.50 \\
\hline 2N706 & 0.14 & 2N4062 & 0.15 & AF280 & 0.79 & BF 154 & 0.20 & OC45 & 0.32 \\
\hline 2N708 & 0.17 & 2N4289 & 0.34 & AL102 & 1.00 & BF159 & 0.27 & TIP29A & 0.49 \\
\hline 2N916 & 0.28 & 2N4920 & 1.10 & BC107 & 0.14 & BF180 & 0.35 & TIP29C & 0.58 \\
\hline 2N918 & 0.32 & 2N4921 & 0.83 & BC108 & 0.14 & 8F181. & 0.36 & tip31A & 0.62 \\
\hline 2N1302 & 0.185 & 2N4923 & 1.00 & 8C109 & 0.14 & BF184 & 0.30 & TIP32A & 0.74 \\
\hline 2 N 1304 & 0.28 & 2N5245 & 0.47 & BC147B & 0.14 & BF194 & 0.12 & TIP33A & 1.0 \\
\hline 2 N 1306 & 0.31 & 2N5294 & 0.48 & BC1488 & 0.15 & BF 195 & 0.12 & TIP34A & 1.51 \\
\hline 2N1308 & 0.47 & 2N5296 & 0.48 & 8 C 1498 & 0.15 & BF196 & 0.13 & TIP35A & 2.90 \\
\hline 2N1711 & 0.45 & 2N5457 & 0.49 & BC157A & 0.16 & BF197 & 0.15 & TIP36A & 3.70 \\
\hline 2N2 102 & 0.60 & 2N5458 & 0.48 & BC158A & 0.16 & 8F198 & 0.18 & TIP42A & 0.90 \\
\hline 2N2147 & 0.78 & 2N5459 & 0.49 & BC1678 & 0.15 & 8F244 & 0.21 & TIP2955 & 0.98 \\
\hline 2N2148 & 0.94 & 2N6027 & 0.45 & BC1688 & 0.15 & BF257 & 0.47 & TiP3055 & 0.50 \\
\hline 2N2218A & 0.22 & 3N12B & 0.73 & BC1698 & 0.15 & 8F258 & 0.63 & TIS43 & 0.28 \\
\hline 2N2219A & 0.28 & 3N140 & 1.00 & 8C182 & 0.12 & BF259 & 0.58 & \(21 \times 300\) & 0.13 \\
\hline 2N2220 & 0.25 & 3 NT 41 & 0.81 & \({ }^{\text {BC }} 182 \mathrm{~L}\) & 0.12 & BFS6 1 & 0.27 & 21x301 & 0.13 \\
\hline 2N2221 & 0.18 & 3N200 & 2.49 & BC 183 & 0.12 & 8FS98 & 0.25 & \(21 \times 500\) & 0.15 \\
\hline 2N2222 & 0.20 & 40361 & 0.40 & BC 183L & 0.12 & BFR39 & 0.24 & 2TX501 & 0.13 \\
\hline 2N2369 & 0.20 & 40362 & 0.46 & BC 184 & 0.13 & BFR79 & 0.24 & \(21 \times 502\) & 0.18 \\
\hline 2N2646 & 0.56 & 40406 & 0.44 & BC184L & 0.13 & BF×29 & 0.30 & 1N914 & 0.07 \\
\hline 2N2904 & 0.22 & 40407 & 0.35 & BC212A & 0.16 & BFX30 & 0.27 & 1N3754 & 0.15 \\
\hline 2N2905 & 0.25 & 40408 & 0.50 & BC212LA & 0.16 & BFX84 & 0.24 & 1N4007 & 0.10 \\
\hline 2N2906 & 0.19 & 40409 & 0.52 & 8C213LA & 0.15 & BFX85 & 0.30 & iN4148 & 0.07 \\
\hline 2N2907 & 0.22 & 40410 & 0.52 & 8C214LB & 0.18 & BFX88 & 0.28 & IN5404 & 0.22 \\
\hline 2N2924 & 0.20 & 40411 & 2.00 & BC237B & 0.16 & BFY50 & 0.225 & 1N5408 & 0.30 \\
\hline 2N2926G & 0.12 & 40594 & 0.74 & BC238C & 0.15 & 8FY51 & 0.23 & AA119 & 0.08 \\
\hline 2N3053 & 0.25 & 40595 & 0.84 & - C 239 C & 0.15 & BFY52 & 0.205 & BA102 & 0.25 \\
\hline 2N3054 & 0.60 & 40336 & 1.10 & BC257A & 0.16 & Bay39 & 0.48 & BA145 & 0.18 \\
\hline 2N3055 & 0.75 & 40673 & 0.ts & 8C25BB & 0.16 & ME0402 & 0.20 & Bal54 & 0.12 \\
\hline 2N3391 & 0.28 & AC126 & 0.20 & BC259B & 0.17 & ME0412 & 0.18 & BA155 & 0.12 \\
\hline 2N3392 & 0.15 & AC127 & 0.20 & BC301 & 0.34 & ME4102 & 0.11 & B81038 & 0.23 \\
\hline 2N3393 & 0.15 & AC128 & 0.20 & 8C3078 & 0.17 & MJ480 & 0.96 & 881048 & 0.45 \\
\hline 2N3440 & 0.59 & AC151 & 0.27 & 8C308A & 0.15 & M 1481 & 1.20 & BY126 & 0.12 \\
\hline 2N3442 & 1.40 & AC152 & 0.49 & 8C309C & 0.20 & MJ490 & 1.05 & 8Y127 & 0.15 \\
\hline 2N3638 & 0.15 & AC153 & 0.35 & 8C327 & 0.23 & MJ491 & 1.45 & BYZ11 & 0.51 \\
\hline 2N3702 & 0.12 & AC 176 & 0.30 & 8C328 & 0.22 & M 32955 & 1.00 & BYZ12 & 0.51 \\
\hline 2N3703 & 0.13 & AC187K & 0.35 & 8Cr70 & 0.17 & MJE340 & 0.48 & 0447 & 0.06 \\
\hline 2N3704 & 0.15 & AC188K & 0.40 & BCY71 & 0.22 & MJE370 & 0.65 & OA81 & 0.18 \\
\hline 2N3706 & 0.15 & AD143 & '0.83 & 8CY72 & 0.16 & MJE371 & 0.75 & OA90 & 0.06 \\
\hline 2N3708 & 0.14 & AD 161 & 0.50 & BD121 & 1.00 & MUE520 & 0.80 & OA91 & 0.06 \\
\hline 2N3714 & 1.38 & AD162 & 0.50 & 80123 & 0.88 & MJE521 & 0.70 & WO21A200 & 0.32 \\
\hline 2N3716 & 1.80 & AF 106 & 0.40 & 8D124 & 0.67 & MJE2955 & 1.20 & BY164 & 0.57 \\
\hline 2N3771 & 2.20 & AF109 & 0.40 & 80131 & 0.40 & MJE3055 & 0.75 & ST2 diac & 0.20 \\
\hline 2N3773 & 2.65 & AF 115 & 0.35 & 8D132 & 0.50 & MP8113 & 0.47 & 40669 & 1.00 \\
\hline 2N3789 & 2.06 & AF 116 & - 3.35 & 8D135 & 0.43 & MPF102 & 0.39 & TIC44 & 0.29 \\
\hline 2N3819 & 0.37 & AF117 & 0.35 & 80136 & 0.47 & MPSA05 & 0.25 & C106D & 0.65 \\
\hline 2N3820 & 0.64 & AF118 & 0.35 & 80137 & 0.55 & MPSA06 & 0.31 & ORP 12 & 0.60 \\
\hline 2N3904 & 0.27 & AF124 & 0.30 & BD138 & 0.69 & mpSA55 & 0.31 & & \\
\hline \multicolumn{10}{|l|}{Prices correct at Jury, \(1 y / 0\), but an txclusive of V.A.T. Post 8 Packege 25p} \\
\hline
\end{tabular}

\section*{HART ELECTRONICS}

\section*{Audio Kit Specialists since 1961}


BAILEY/BURROWS/QUILTER PRE AMP This is the tone control section of the best
pre-amp kit currently availabie. Consider the advantages. * First quality fibreglass
 ganged controls with matched tracks film resistors throughout *Finest quality tow-noise
tot total stability. Special decoupling and earthing arrangements to eliminate hum loops.
*Controls. switches and input sockets mount directly on the boards to TOTALLY ELiMINATE wiring to these components. mount directly on the boards to TOTALLY
controls mount directiy on the board-and so they one preap kit which claims its to wire them up
\({ }^{*}\) We incorporate the Quitret modification which is most important as it reduces distortion
As can be seen from the photograph the tone control unit is very slim (only \(1 \frac{1}{2}\) " From
front to back) and may therefore be used in many other applications than our Bailey METALWORK AND WOODEN CASES These have been under review for some time: F.M. TUNER This latest addition to our range is designed to offer the best possible have taken great care to took after the constructors point of view and there are no can be easily completed and working in an evening as there are oniv 3 transistors one IC
and two ready built and aligned moriules comprising the active components. We have abandoned the concept of having a luner as large as the amplitier and this new wnit has a
frontal size of only \(1 \frac{1}{2}\) in metalwork thus turning it into a tuner/amplifier whilst only increasing its width by \(1 \frac{1}{2}\) in.
Cost of tuner chassis tho case) is \(£ 22\) for mono \(£ 25.45\) for stereo. Metal case \(£ 3.55\) STUART TAPE CIRCUITS Our prind convert any suitable quality deck into a very high quality \(S\) tereo Tape unit. Input and
output tevels suit 8 ailey pre amp. Total cost varies but around \(\mathbf{£ 3 5}\) is all you need We can ohter tape heads as well if you want new ones
All above kits have fibreglass PC 8 's. Prices exclude VAT but P\&P is included
FURTHER INFORMATION FURTHER INFORMATION ON ALL KITS FREE if you send us a 9 in. \(\times 4\) in. S.A.E. Bailey 30W 18 p .
STUART TAPERECORDERALI 3 aricles undet one cover 30p
BAILEY/BURROWS/OUILTER Preamp circuits layouts and as

\section*{Penylan Mill, Oswestry, Salop}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{D/0 Off memorex BASF} &  & TDK
Сотсн \\
\hline \multicolumn{6}{|c|}{} \\
\hline \multirow[t]{2}{*}{} & es & supest m &  & Searer & \({ }_{\text {sciorch }}\) \\
\hline & & Ons & one & & \\
\hline cictict &  &  &  &  &  \\
\hline \multirow[t]{2}{*}{\({ }_{\text {mams }}^{\text {sump }}\)} &  & Aen 002 & Umonere N & & \\
\hline & Wet 10 & & & & \\
\hline \(\underbrace{}_{\substack { \text { cid } \\ \begin{subarray}{c}{\text { cix }{ \text { cid } \\ \begin{subarray} { c } { \text { cix } } }\end{subarray}}\) &  &  & (0, 6.96 &  & (0, \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Ret Tonet Trees}} & & & & \\
\hline & &  & surich & Mawoicm & \\
\hline \multicolumn{2}{|l|}{Lonc par} & OnE 10 & ont io & one To & \\
\hline \multicolumn{2}{|l|}{} &  & \({ }^{10}\) & \({ }_{\text {che }}\) & (tize \\
\hline \multicolumn{2}{|l|}{Dovat fay} & One & & one 10 & \\
\hline \multicolumn{2}{|l|}{} &  &  &  & \\
\hline \multicolumn{2}{|l|}{IRate f par} & ons 10 & ont 10 & - & \\
\hline \multicolumn{2}{|l|}{} &  &  & & \\
\hline \multicolumn{2}{|l|}{} & & & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & \\
\hline
\end{tabular}


\section*{THE RADIO SHOP}


\section*{THYRISTORS}


\section*{TRANSFORMERS}

ALL EX-STOC̄K-SAME DAY DESPATCH

MAINS ISOLATING PRI 120/240V SEC \(120 / 240 \mathrm{~V}\) CENTRE TAPPED AND SCREENED P\&P Rof. VA
No. (Watts)
\begin{tabular}{rrrr}
\(07^{\circ}\) & \(2 U\) & \(\mathbf{2 . 8 0}\) & 38 \\
149 & 60 & \(\mathbf{4 . 3 7}\) & 45 \\
150 & 100 & \(\mathbf{4 . 8 9}\) & 45 \\
151 & 200 & \(\mathbf{8 . 1 3}\) & 53 \\
152 & 250 & \(\mathbf{9 . 8 3}\) & 73 \\
153 & 350 & \(\mathbf{1 1 . 8 8}\) & 73 \\
154 & 500 & \(\mathbf{1 3 . 6 5}\) & 91 \\
155 & 750 & \(\mathbf{9 0 . 5 1}\) & 8 RS \\
156 & 1000 & \(\mathbf{2 9 . 1 5}\) & 8 RS \\
157 & 1500 & \(\mathbf{3 3 . 2 3}\) & 8RS \\
158 & 2000 & \(\mathbf{3 7 . 0 7}\) & BRS
\end{tabular}

12 and/or 24-VOLT Ref. No. \(12 \mathrm{v} \quad \mathrm{MPS} \quad\) E P\&P p

30 VOLT RANGE
SECONDARY TAPS Ref 0-12-15-20-25-30

50 VOLT RANGE SECONEARY TAPS
\begin{tabular}{|c|c|c|c|}
\hline Ref. No. & Amps. & £ & \[
\underset{p}{\text { P\&P }}
\] \\
\hline 132 & 0.5 & 2.58 & 30 \\
\hline 103 & 1.0 & 3.38 & 38 \\
\hline 134 & 2.0 & 4.68 & 45 \\
\hline 135 & 30 & 5.81 & 53 \\
\hline 136 & 4.0 & 7.60 & 67 \\
\hline 137 & 60 & 12.10 & 67 \\
\hline 118 & 80 & 12.98 & 85 \\
\hline 119 & 10.0 & 16.99 & BRS \\
\hline
\end{tabular}

AUTO TRANSFORMERS
R

\begin{tabular}{|c|c|c|c|c|}
\hline Ref. & mA & Volts & ¢ & \\
\hline 238 & 200 & 3-0-3 & 1.54 & \(10^{\circ}\) \\
\hline 212 & 1a1a & 0-6. 0-6 & 1.84 & , \\
\hline 13 & 100 & 9-0.9 & 41 & . \\
\hline 235 & 330.330 & 0-9. 0-9 & . 56 & \\
\hline 207 & 5co. 500 & 0-8-9. 0-8-9 & 1.92 & 30 \\
\hline 208 & 1A. 17 & 0-8-9. 0-8-9 & 30 & 38
19 \\
\hline 236 & \(2 \mathrm{CO}, 200\) & D-15, 0-15 & 3 & \\
\hline 214 & \(3 \mathrm{CO}, 300\) & 0.20. 0.20, & 1.93
2.17 & \\
\hline 221 & \(7(0,10 C)\) & 20.12-0.12-20 & 2.17
3.46 & \\
\hline 206 & 1214 &  & 3.46
3.00 & \\
\hline 203 & \({ }_{12} \mathrm{CO}_{1} \mathrm{~S}^{500}\) & \[
\begin{aligned}
& 0-15-27 \\
& 215-27 \\
& 2
\end{aligned} 0-15-27
\] & & 38, \\
\hline & 500 & 12, 15, 20, 24, 30 & 1.88 & 37 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{6}{*}{\begin{tabular}{l}
CASED AUTO TRANSFORMERS \\
\(\angle 4 u v\) mains lead mput ano usa 2 -Din outlets 2OVA £3.23, P\&P 38p. \\
Hef. 113 W \\
150VA £6.07. P\&P 54p. \\
500 VA £ 10.45 , P\&P 80p \\
Ret. 4W \\
Ref 67W \\
1000 VA £17.51 BRS. \\
Ref. 84 W .
\end{tabular}}} \\
\hline & & & & \\
\hline
\end{tabular}



\section*{Barrie Electronics Ltd. 3,THE MINORIES,LONDONEC3N 1BJ TELEPHONE: 01-488 \(3316 / 8\)}


\section*{PATTRICK \& KINNIE}

191 LONDON ROAD • ROMFORD ESSEX
ROMFORD 44473
E.H.T. POWERUNIT. \(110 / 240 \mathrm{v} 50 \mathrm{~Hz}\) giving 5 Kv .at \(50 \mathrm{~m} / \mathrm{d}\) METERED OUTPUT. £18.50.P.P. £1.50
COPPER LAMINATE P.C. BOARD
\(81 / 2 \times 6 \times 1 / 10\) inch, 3 for 75 p. P.P. 25 p
\(101 / 2 \times 51 / 1 /\), Inch, 5 tor 75 p. P P. \(25 p\)
\(10 \times 1\) x

PRECISION A.C. MILLIVOLTMETER (SOLARTRON) 24. 10 V . 60 dB to 20dB. 9 ranges Excellent condition

\section*{TELEPHONE DIALS (new) £1. PP 1} EXTENSION TELEPHONES (Type RATCHET RELAYS ( 310 ohm). Various RATCHET RELAYS (3 ypes \(\mathbf{£ 1 . 2 0}\). PP 20 NISELECTORS (New) 25 way. 12 Bank (Non bridging). 68 ohms \(\mathbf{E 6 . 5 0}\). P.P 50 p

1,000 TYPE KEY SWITCHES
Single \(2 \times 4\) c/o Locking 50 p . \(\mathrm{P} P 10 \mathrm{p}\) Bank
OVERLOAD CUT-OUTS. Panel mounting
800 M/A/1 8 amp 10 amp. 45 p. P P 5 p

ALL PRICES INCLUDE V.A.T EXCEPT WHERE SURCHARGE IS INDICATED

QUADROPHONIC DECODER MODULE. CB.S./S. O Type using I.C MC 1312P With stight modification direct substitute for P.E. "RONDO" Board. Complete with Data \(£ 4\) each \(15 \%\) VAT Surcharge
S.T.C. CRYSTAL FILTERS ( 10.7 Mhz ). \(\quad 15 \%\) V.A.T 445-LQU-901A (50 Khz spacing). £3. P P 20p Surcharge V.H.F./U.H.F. POWER TRANSISTORS (Type BLY38) 3 wat output at \(100-500 \mathrm{Mhz}\). £2.25. P P 10 p

\section*{HIGH CAPACITY ELECTROLYTICS}

1,000uf/ \(100 \mathrm{v}(4 \times 13\) n ) 60p. P P \(20 \mathrm{p} 1.400 \mathrm{uf} / 200 \mathrm{v}\) PP \(20 \mathrm{p} 2.500 \mu \mathrm{f} / 100 \mathrm{v}(4 \times 2 \mathrm{n}) 90 \mathrm{p}\). P P 20 p 4.00 p \begin{tabular}{ll} 
\\
\(+3.000 \mu f / 70 \mathrm{v}\) & \(141 / 2 \times 2 / n) 75 \mathrm{p}\). \\
\hline
\end{tabular}

\(25.000 \sim \mathrm{f} / 40 \mathrm{~V}\left(4^{3} / 4 \times 21 / 2 \mathrm{n}\right)\) \& 1 . PP 20 p
H.D. ALARM BELLS. 6 in Dome. \(6 / 8 \mathrm{~V}\) D C E2.75. P P
970

MULTICORE CABLE. 6 -core ( 6 colours) 14/0076
 2 p a yard, 7 -core \((7\) colours) \(7 / 22 \mathrm{~mm}\) Screened \(P\) V \(C\)
22 p per yard. 100 yards \(£ 16.50\). P P 2 p per yard 30 -core (15 colours) 25 p per yard 100 yards \(£ 20\). PP 2 p per

RİBBÖN CABLE (8 colours) 10 m £1.65. P P 20 p \({ }_{£ 1}^{100 \mathrm{~m}} 8\)-core \(7 / \mathrm{mm}\) Bonded side by side \(£ 11.50\). P P

We regret that ali orders value under \(£ 5\) MUST BE ACCOMPANIED BY THE REMITTANCE.

\section*{HIGH-SPEED MAGNETIC COUNTERS. 4 digit (non resel) 24 v
 \\ 5 digit (non resey) \(24 v\) £1.15. PP \\ }

3 digt \(12 v\) (Rotary Reset) \(21 / 4 \times 13 / 4 \times 11 / 4\) in \(£ 1.30\). P.P
5p 6 dignt (Resel) 240v A C \(£ 3.50\).

RELAYS. SIEMANS/VARLEY. PLUG-IN. Complete with
 6-12-24-48v types in stock
MINIATURE REED RELAYS ( \(3 / 6 \mathrm{v}\) ). 1 make ( \(30 \times 8 \mathrm{~mm}\) 20p; 2 make ( \(32 \times 12 \mathrm{~mm}\) ) 30p.
12v. 2 c/o 5 amp. H.D. RELAY, 65p. P.P-15p
240v. A.C. RELAY (PLUG-IN TYPE). \(3 \mathrm{c} / \mathrm{o} 10 \mathrm{amp}\) comit 10 base 85p. P 25 p
10 TURN POTENTIOMETERS (M.P.C.) 10 K ohm. \(05 \%\) Lin \(38 \mathrm{~mm} \times 22 \mathrm{~mm} 14 \mathrm{~mm}\) Standard Spindle £2. P P 15 p Duals 50p each
GARRARD PLINTH \& COVER. For 'Zero-100' etc beautifully finished in brushed aluminum and black with
hinged smoke/qrey perspex lid \(£ 9.75 \mathrm{PP} £ 1\)

24v. A.C. RELAY (PLUG-IN) POIE C/0 75p. P P \(15 p\) 2-pole change over 55p. P P 15p
BULK COMPONENTS OFFER. Resistors/Capacitors. \(60 \overline{0}\) new romponents E2.50. PP 35p Trial order 100pcs 60p. REGULATED POWER SUPPLY. Input \(110 / 240 \mathrm{v}\), outpu \(9 \vee\) DC \(11 / 2 \mathrm{amp}\). 12 v DC \(500 \mathrm{~m} / \mathrm{a}\) £4.75. PP 75p MINIATURE "ELAPSED TIME" INDICATORS. (0-5000

\section*{TRANSFORMERS}

ADVANCE TRANSFORMERS "VOLSTAT". Input 242 V
C.V. 50 . 38 v , at 1 amp : 25 v , at \(100 \mathrm{~m} / \mathrm{a}\). 75 v , at \(200 \mathrm{~m} / \mathrm{a}\) E2.50. P P 55 p .
C.V.75. 25 v . at \(21 / 2 \mathrm{amp}\). £3. P P. 75 p .
C.V. 100.5 v at 2 amp . 50 v . at \(100 \mathrm{~m} / \mathrm{a}\). \(\mathbf{£ 3 . 7 5 \text { . P.P } 7 5 \mathrm { p } \text { . }}\) C.V.100. 50 v at 2 amp. 50 v . at \(100 \mathrm{~m} / \mathrm{a}\). £3.75. P.P 75 p .
 C.V.500. 45 V . al 3 amp : 35 v at 2 amp £10. P.P \(£ 175\)
H.T. TRANSFORMER. Prim \(110 / 240 \mathrm{v}\) Sec 400 v 100 \(\mathrm{m} / \mathrm{a}\). £2.50. P P 65 p .
L.t. TRANSFORMER "toroidal". Prim 240 V Sec 30v at \(1 / 2\) amp. Size 3 in . dia thick. \&1.65. PP 20p
L.T. TRANSFORMEER. Prım 240 V Sec \(27-0-27\) at \(800 \mathrm{~m} / \mathrm{a}\)
75 amp £2.25. PP. FOp
L.T. TRANSFORMER. Prim 110
amp (Shrouded) £1.95. P P 50 p.
L.T. TRANSFORMER. Prim 200/250v Sec \(20 / 40 / 60 \mathrm{v}\) a 2 amp (Shrouded) £. . P.P 50 p
L.T. TRANSFORMER (H.D.). Prim 200/250v Sec 18 v a \(27 \mathrm{amp} ; 40 \mathrm{v}\) at 98 amp . 40 v at 36 amp 52 v at 1 amp L.T. TRANSFORMER. Prim 240 v Sec \(16.0-1 \mathrm{kv}\) ot 2 amp E2. PP 50 p.
L.T. TRANSFORMER PRÏM. \(120 \cdot 0 \cdot 120^{-} \mathrm{v}\) Seć 12 v at amp 70p. P.P 20 p.
L.T. TRANSFORMER PRIM. 240 v Sec 18 v 1 amp e 1 PP 20p

POWER UNIT (TRANSFORMER/RECTIFIER). PTIM LT TRANSFORMER ("C" CORE), 200/240V Secs .T. TRANSFORMER ("C" CORE). 200/240v Secs


 1.3-9.20v. All at 4 amp 65.50 . P P 75 p . \(200 / 240 \mathrm{v}\) Secs L.T. TRANSFÓRMER ("C"' CORE). I20/1ZOU Secs -3-9-9v All at 10 amp E6.50. P P 75p

Pack
1 Fibreglass printed circuit board for front
        end. If strip. dem
2 Set of metal oxide resistors. thermisto
        capacitors. cermet preset for
        mounting on pack 1
3 Set of transistors. diodes. LED, integrated
        circuits for mounting on pack
4 Pre-aligned front end module. coil
        assembly. three section ceramic
        filter
Fibreglass printed circuit board tor
        stereo decoder
        metal oxide resistors. capacitors.
        cermet presel for decoder
Set of transistors LED. integrated
        circuit for decoder
        components for channel
        selector switch module including
        ibreglass printed circuit board.
        push-button switches. knobs. LEDs
        preset adjusters. etc.

\section*{KIT PRICE only \(\mathcal{G}\) G. 5 carriage free (U.K.)}

\section*{NOVELSTEREO FM TUNER}

In the Afril and May issues ol Wireless World there was published a novel design for an f.m. tumer which combines consistent high performence with the eliminasion of the critical setting-up procedure required by 100 many earlier tuners. This original circuit has been developed further and is used as the basis for our new slimline unit. The front end is a ready built prealigned module which then feeds an amplifier driven screened three section ceramic fiter leading to an integrated circuit five-stage lingiting amplifier providing excellent a.m. ejection This is followed by a single coil integrated balanced demodulator from which the audio output may be taken. Temperature compensated varicap tuning allows stations to be selected either by a en-tum tuning potentiometer or by a choice of six preset push-button controls. Each of the preset controls can be adjusted on the front panel with the settings being indicated by six LED lamps behind an acrylic silk screen printed ecia panel insert. Additional circuitry includes temperature compensated AFC restricted to less than station pacing, inter-station muting, a single-lamp LED tuning indicator and linear scale frequency meter. The stereo decoder. built on a separate board, is based on a well-proven integrated circuit phase-locked-loop which has been added active filters to remove sub-carrier harmonics and 'birdies'. The power supply, to ensure station holding stability, uses an integrated circuit voltage regulator which is powered ia a low-hum field specially designed TOROIDAL TRANSFORMER.
styled to comflement the worlo-wioe ACCLAIMEO LINSLEY-HOOD 75W AMPLIFIER

\title{
THE FM TUNER KIT YOU HAVE WAITED FOR!
} ********************************* NEW! "' POWERTRAN
ELECTRONICS

\section*{DESIGNER APPROVED KIT}

In Hi -Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973) and a subsequent follow-up article '(April 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage. power in excess of 75 watts whilst maintaining distortion at less than \(0.01 \%\) even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system, namely the equalization stage and tone control stage, positions where most conventional designs run out of gain at the extremes of the frequency spectrum. Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope requencies of the tone conn and of variable slope of the scratch filter. There is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highlyer.

Hi-Fi News Linsley-Hood 75W/Channel Amplifier
Mk III Version (modifications as per Hi-fi News April 1374)


V A T Please add \(25 \%\) *
```

Pack Fibreglass printed-circuit board
for power supply
12 Set of resistors, capacitors.
secondary fuses, semicon
ductors for power su
including DIN skts. mans
input skt. fuse holder. inter
onnecting cable contol
connecting cable. control
14 Set of metalwork parts including
silk screen printed fascia

```

```

 15 Handbook (1)
 Teak cabinet 1-7 inclusive
 are required for complete
 stereo system
 Total stereo system
 purchased packs
    ```
        parts. etc. \(\quad £ 6.30\)
            \(\mathfrak{f} 9.15\)
f 0.85 £ 1.70
\(£ 6.50\) £0.80
f1. 30
\(£ 2.70\)
c2. 40
f2 05
\(£ 3.70\)
to all U.K. orders
(*or at current late if changed)
U.K. ÖRDERS - Carriage free (MAIL ORDER ONLY)
SECURICOR DELIVERY: FOr Securicor delivery to
mainland-add \(£ 2+\) VAT per kit.
OVERSEAS-Postage at cosi \(+50 p\)
special packina
Dept. WWO9
POWERTRAN ELECTRONICS
portway industrial estate
ANDOVEF, HANTS SP10 3NN
POWER AMPS
POWER AMPS
SS103
SS103
    Compact I.C. amp. }3\mathrm{ watts R.M.S. Single channel (mono)
    Compact I.C. amp. }3\mathrm{ watts R.M.S. Single channel (mono)
    On P.C.B. size 31/2'" }\times\mp@subsup{2}{}{\prime\prime}\mathrm{ . Needs 10-20V supply. £1.75
    On P.C.B. size 31/2'" }\times\mp@subsup{2}{}{\prime\prime}\mathrm{ . Needs 10-20V supply. £1.75
    SS103-3
    SS103-3
    Stereo version of above. (Two I.Cs.) £3.25
    Stereo version of above. (Two I.Cs.) £3.25
    NEW! SS105 Mk. 2
    NEW! SS105 Mk. 2
    A compact all-purpose power amp. Size 31/2" }\times\mp@subsup{2}{}{\prime\prime}\mathrm{ . Useful
    A compact all-purpose power amp. Size 31/2" }\times\mp@subsup{2}{}{\prime\prime}\mathrm{ . Useful
    5w output (mono) into 3\Omega using i2V. Excellent value. Two
    5w output (mono) into 3\Omega using i2V. Excellent value. Two
    $
    $
                            E2.25
                            E2.25
    SS110 Mk. }
    SS110 Mk. }
    Similar in size to SS 105 but will give 10w output into 4\Omega
    Similar in size to SS 105 but will give 10w output into 4\Omega
    using 24V (mono). Two in stereo give first-class results.
    using 24V (mono). Two in stereo give first-class results.
    sultable for many domestic applications. 
    sultable for many domestic applications. 
    Now - the SS120 gives 20w V.M.S. into 4 ohms from
    Now - the SS120 gives 20w V.M.S. into 4 ohms from
    SS140*
    SS140*
    Beautifully designed. Will give up to 40w R.M.S. into 4\Omega
    Beautifully designed. Will give up to 40w R.M.S. into 4\Omega
    Excellent S.N.R and transient response Fine for P. A., disco
    Excellent S.N.R and transient response Fine for P. A., disco
        use, etc. Operates from 45V DC Two in bridge formation
        use, etc. Operates from 45V DC Two in bridge formation
            £3.75
            £3.75

\section*{NEW RANGE TRANSISTOR \& COMPONENT PACKS}

TP SELECTION
TP5 20 Transistors, PNP Germanium. Red Spot A.F.
TP6 20 Transistors, PNP German. TP7 2N174 150w 8 Transistor, with mounting assembly.
100 diodes, mixed Germanium, TP19 \(\begin{gathered}\text { ase diodes, mixed Germanium, } \\ \text { Goild-bonded, etc. Marked/Un. }\end{gathered}\) marked
TP23 Twenty NPN Silicon uncoded TO5. Similar to BFY50/2. 2N696, 2N1613, etc. Complementary to TP24.
Twenty PNP
TP24 Twenty PNP Silicon. uncoded 2N2904/5 Similar to BFY64. TP29 \({ }^{8}\) power diodes 400 V , 1.25A

UT SELECTION
UT1 50 PNP's Germanium. AF \& RF
UT2 150 Germanium diodes. min glass.
UT4 100 Silicon diodes, min glass. similar to IN914 IN916

UT5 40250 mW Zener diodes OAZ 240 range: average \(50 \%\) good

UT7 30 Silicon rectifiers 750 mA mixed voltages. Top Hats eich

UTG 40 NPN Silicon planers. Similar 10 2N3707-11 range. Low noise amps.
UT12 25 2N3702/3 Transistors. PNP

CP SELECTION
CP1 Mixed bag of capacitors Electrolytic. Paper, Silver Mica
(Approx. \(150-\) sold by weight).

CP2 200 (approx.) Resistors, various types, values, watts. (Sold by weight.)

CP3 40 Wire-wound resistors, mixed
CP4 12 pots - pre-set w/wound carbon, dual, with/without switches - all mixed.

CP7 \(\begin{aligned} & \text { Heat sinks, assorted To fit SO-2 } \\ & \text { (OC72) TO- } 1 \text { (AC } 128 \text { ), etc. }\end{aligned}\)

SUNDRY
P.I PAK - Approx 170 short-lead semi-conductors and components. PNP, NPN At Least \(30 \%\) factory marked Some data
d. 50 p .

Mev Counter (tor cars)
Books by Bernard's Publications.
Butterworth's, etc

\section*{ALL ABOVE PACKS - 60p EACH.TP Tested \& Guaranteed UT Untested, unmarked CP Components.}

CAPACITOR DISCHARGE IGNITION KIT
Simple to assemble and fit. Improves car performance, \(\mathbf{£ 7 . 5 0}\) \%
soves on fuel. \(P / P 30\).

\section*{BI-PRE-PAK X-HATCH GENERATOR MK. 2}


is invaluable to industrial and home user alike. Improved circuitry assures reliability and still better accuracy Very compact: self-contained Robustly built Widely used by TV rental and other engineers. With reinforced fibreglass case, instructions, but less batteries. (Three U2 type required.
TV SIGNAL STRENGTH METER*
Complete kit às described in "Television" El9.50 plus 40p for P\&P

SS300 POWER SUPPLY STABILISER
Add this to your unstabilised supply to obtain a steady working voltage from 12 to 50 V for your audio system, workbench, etc.
Money saving and very reliable.
\(\mathbf{£ 3 . 2 5}\) *

\section*{PLASTIC POWER TRANSISTORS}
\begin{tabular}{|c|c|c|c|c|}
\hline Type & Polarity & Gain & vce & Price \\
\hline 40 N 1 & NPN & 15 & 15 & 20p \\
\hline 40 N 2 & NPN & 40 & 40 & 30p \\
\hline 40 P 1 & PNP & 15 & 15 & \({ }^{20}\) \\
\hline 40P2 & PNP & 40 & 40 & 30p \\
\hline \multicolumn{5}{|l|}{90 WATT SILICON *} \\
\hline Type & Polarity & Gnin & vce & Price \\
\hline 90 Nt & NPN & 15 & 15 & 25p \\
\hline 90N2 & NPN & 40 & 40 & 35p \\
\hline 90P1 & PNP & 15 & 15 & 25p \\
\hline 90P2 & PNP & 40 & 40 & 35p \\
\hline
\end{tabular}

TERMS OF BUSINESS:
 when Vat is 10 be \(2 d d e d\) at \(8 \%\). Wo VAT on overs 818 orders. POST \& PACKING Add EI. Overseas orders. add \(£ 1\) tor postage. Any dilfer日nct will be cradied or charcaud. PRICES Subiect io alteralion wilhout notice. AVAILABILLTY All items availabla al lime ol going to prass when every eflort is made to ensure correctness of information.

\footnotetext{
222224 WEST ROAD,WESTCLIFF-ON-SEA, ESSEX SSO SDF. TELEPHONE: SOUTHEND (0702) 46344.
}
if you prefer not to cut coupon out, please mention WW8 when writing TO BI-PRE-PAK, 222-224 WEST ROAD WESTCLIFF-ON-SEA, ESSEX

Please send
for which I enclose
inc VAT
NAME
ADDRESS

\section*{QUALITY AMPLIFIER KITS by POWERTRAN}

\section*{WIRELESS WORLD AMPLIFIER DESIGNS}

Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs. a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating

\section*{30W BAILEY}

Pk. 1 F/Glass PC Pk. 2 Resistors. capacitors. pots Pk. 3 Semiconductor set

\section*{2OW LINSLEY-HOOD}

Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors. pots
Pk. 3 Semiconductor set
60V REGULATED POWER SUPPLY Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors, pots Pk. 3 Semiconductor set
BAILEY-BURROWS PRE-AMP
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors. pre-sets transistors

Pk. 3R Rotary potentiometer set
£ 1.60 Pk. 35 Slider potentiometer set (with knobs)

\section*{ELECTRONICS}

TOROIDAL T20 + 20
Developed from the famous Practical Wireless Texan
Designed by Teas engineers and published in series of artictes in Practice Wireless. The a series of articies markable breakthrough in thineripg true Hi-Fi performance at excepdeliverigg true Hi -Fi performance at exceptionally low cost. Now further developed to include a true Toroidal transformer, this slimline integraved circuit design. based upon a single F/Glass PCB. features all the normal facilities found on quality amplifiers, including scratch and rumble filters, adaptable input selector and headphones socket.

\section*{20 WATTS/CHANNEL}


SEMICONDUCTORS AS USED IN OUR RANGE OF QUALITY AMPLIFIERS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 2N699 & ¢0. 25 & 2N5830 & ¢0.30 & - BC 214 L & c0.14 & MJ48 & 81.20 & T/L209 & ¢0.30 \\
\hline \({ }_{2} \mathrm{~N} 1613\) & ¢0.20 & 40361 & ¢0.40 & BCY72 & ¢0.13 & MJ491 & c1.30 & TIP29A & ¢0.50 \\
\hline \(2 \mathrm{~N}^{1719}\) & ¢0. 25 & 40362 & £0.45 & \(8 \mathrm{B529}\) & C0.85 & MJE521 & \({ }_{6} 0.60\) & TIP30A & c0.60 \\
\hline 2N2926G & ¢0.10 & BC107 & ¢0.10. & B0Y56 & c0.85 & MPSA12 & c0.55 & TIP30C & ¢0.71 \\
\hline 2N3055 & ¢0.45 & BC108 & ¢0.10 & BF257 & 10.40 & MPSA14 & c0.35 & TIP41A & ¢0.74 \\
\hline 2N3442 & f1.20 & BC109 & C0.10 & & & MPSA55 & c0. 25 & TIP42A & \\
\hline 2N3711 & ¢0.09 & \(8 \mathrm{BC109C}\) & \({ }_{50} \mathbf{C O} .12\) & BFR39 & \(\underline{50.25}\) & MPSA65 & co. 35 & 'TP'418 & . 8 \\
\hline 2N3904 & ¢0.17 & \(8 \mathrm{CC125}\) & co. 15 & BFA79 & f0. 25 & MPSA66 & ¢0.40 & TIP428 & c0.88 \\
\hline 2N3906 & ¢0. 20 & BC126 & c0.10 & BFY51 & ¢0.20 & MPSU05 & co. 60 & 1 N914 & ¢0.07 \\
\hline 2 N 4062 & £0.11 & \(\mathrm{BCC}_{812}\) & ¢0. 12 & BFY52 & ¢0.20 & MPSU55 & ¢0.70 & 1 N916 & ¢0.07 \\
\hline \(2 N 4302\)
\(2 N 5087\) & \({ }_{\text {f }}^{60.60}\) & \({ }_{8 \mathrm{BC} 182 \mathrm{~K}}\) & £0.10 & -CA3046 & ¢0.70 & SBA750A & f130 & 15920 & f0.10 \\
\hline 2N5210 & ¢0.54 & BC212K & ¢0.12 & LP1186 & ¢5.50 & SLL301
SL. 3045 & ¢1.30 & 5805 & \\
\hline 2N5457 & c0.45 & BC1B2L & £0.10 & MC1351 & £1. \(0{ }^{\text {c }}\) & SN72741P & ¢0.40 & FM4 & f0.80 \\
\hline 2N5459 & ¢0.45 & BC1B4L & ¢0.11 & MFC4010 & ¢0.95. & SN72748P & £0.40 & SFG10.7 & \\
\hline 2N5461 & £0.50 & 8C212L & c0.12 & & & & & & £2.80 \\
\hline
\end{tabular}

\section*{ACTIVE FILTER CROSSOVER}

An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately, though introducing reactive impedances between the amplifier and the speakers, result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant solution to this problem, described by D. C. Read in Wireless World. involves the use of a series of active filters splitting the output of the pre-amplifier into three channels. of closely defined bandwidth, each of which is fed to the appropriate speaker by its own power amplifier. A design for at suitable 20 -watt amplifier, based on a proven Texas circuit, was aiso described by Mr Read. The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.

\section*{ACTIVE FILTER}

Pack
1 Fibreglass PCB (accommodates all filters for one channel)
2 Set of pre-sets, solid tantalum capacitors, \(2 \%\) metal oxide resistors. 2\% polystyrene capacitors €4.20 3 off each pack required for stere system

POWER SUPPLY
FOR 2OW/CHANNEL STEREO
60.70 SYSTEM


Pack
Fibreglass PCB Set of rectifiers, zener diode. capacitors, fuses 3 Toroidal transformer

READ/TEXAS 20 wamp .
Pack
Fibreglass PCB 2 Set of resistors, capacitors pre-sets (not includ ing \(0 / P\) coupling capa citors) 3 Sets of semiconductors Sts system
sembil heat sink as sembly for
amplifiers
Set of \(30 / P\) coupling . capacitors 2 off packs 4,5 required fo stereo system
60.85
f 1.00

SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER DESIGNS
for further information please write for FREE LIST NOW!
\begin{tabular}{|c|c|c|}
\hline Pack & & Price \\
\hline 1 & Set of all low noise resistors & 60.95 \\
\hline 2 & Set of all small capacitors & ¢1.50 \\
\hline 3 & Set of 4 power supply capacitors & £1.40 \\
\hline 4 & Set of miscelłaneous parts including DIN sockets, fuses, fuse holders. control knobs, etc. & £ 1.90 \\
\hline 5 & Set of alide and push-button swit thes & £ 1.20 \\
\hline 6 & Set of potentiometers and selector switch & £2.00 \\
\hline 7 & Set of all semiconductors & ¢7.25 \\
\hline 8 & Special Toroidal Transformer & ¢4.95 \\
\hline 9 & Fibreglass PC Panel & £2.50 \\
\hline 10 & Complete chassis work. hardware and brackets & ¢4.20 \\
\hline 11 & Preformed cable/leads & ¢0.40 \\
\hline 12 & Handbook & ¢0.25 \\
\hline 13 & Teak Cabinet & £4.50 \\
\hline
\end{tabular}

\section*{\(\underset{\substack{\text { кir paice } \\ \text { stul owr }} 28.25}{ }\) post free (U.K.)}

\section*{SPECIAL OFFER \(\star\)}


SLIDER POTENTIOMETER SALE!
Most values \(10 \mathrm{~K}-1 \mathrm{M}\) lin. \(1 \mathrm{~K}-1 \mathrm{M}\) log available
\begin{tabular}{lll} 
& Normal price & Sale Price \\
Single & \(35 p\) & \(25 p\) \\
Dual & \(55 p\) & \(35 p\) \\
Knob & \(15 p\) & \(10 p\) \\
& Pot luck: Mixed bags & - our choice \\
& 10 singles & 10 duals \(£ 3\)
\end{tabular}
V.A.T. Please add 25\%*
to all U.K. orders
(*or at ourrent rate if changed)
U.K. ORDERS - Post free (mail order only)

SECURICOR DÉLIVERY-for this optional
service Mainland only) add \(2.00+\) VAT per kit service : Mainland only) add \(\mathrm{f} 2.00+\) VAT per ki OVERSEAS-Postage at cost + 50p special packing, handling

Dept WW09
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER. HANTS SP10 3NN


는 The SECOND-USER
confutir sires Peripherals and Systems for Data Processing Systems, Equipment and Components

\section*{Mini~ Pomputer} Exchange
Our Mini Computer Exchange has systems for immediate
delivery at greatly reduced prices. A few examples of our stock include.
PDP8L 8K Processor
PC8I Reader Punch \& Control
PDP8E 8K Processor + ASR33
PDP 8E 32K Processor + ASR33
PDPYM 8K Processor + LA30
HUP11/154K Processor
PDP11/15 16K Processor
DEC 6ft. Cabinets
DEC Modules - send for list
Ring now for prices. Other
models becoming available all the time - let us know your requirements.


Add \(8 \%\) VAT \(t, .,\). prices shown
Carriage extra - delaisis on reques

PAPER TAPE PUNCHES \& READERS
 TELETYPE BRPE 110 INVAC PI35 solenaid cps Synchronous Punch acluated punch, 35 cps. 5/7/8 channel. Sell-can. 5/6/7/8 channet. Com
 unit, base, motor and tape Tape Iransport solen oids supply spool. Price
E 145.00 . Sound - reduc-
oids 264 2 26 . Punch solen-

 Minimum pulse widfth
millisec. Price 569.50 .
DATA OYNAMICS 1114 Mounted in sound-reducing rack cabinet and complete with control and
nterface electronics and power supply unit with short circuit and overload protection. Asynchronous operation up to 110 cos . Our special
price \(\mathbf{6 5 5 0}\). JUST ARRIVED - SPECIAL PURCHASE OF DISK STORAGE DRIVES BY CDC WILL ACCEPT 6-SPEED DISK-PACKS AVAILABLE EITHER 2 OR 4 MEG CAPACITY NEVER OFFERED BEFORE. PRICES FROM \(£ 450.00\).


COMPUTER SALES \& SERVICES (EQUIPMENT) LIMITED 49/53 Pancras Road, London NV1 2QB. Tel. 01-278 5571


\section*{REED SWITCH INSERTS}


\section*{C- SCOPE METAL DETECTORS}
\begin{tabular}{|c|}
\hline  \\
\hline INDUCTION GENERATOR. Requires a supply voltage of 50 V 50 Hz and provides an output of 7 V per 1000 r pm directly proportional 10 speed This instrument has a wide warlety of applications, ag anemometers measuring shatt speed, eic In brand new condition \(\mathbf{6 5 . 6 0}\) post pard \\
\hline ITT OFFICE INTERCOM. 20 way with modern manual SWB and lachites. Lightweight desk sets Brand new in cartons \(\mathbf{E} 160 \mathrm{inc} P\) \& \(P\) and VAT. Spare deltaphones \(\mathbf{£ 7 . 5 0 \text { ea }}\) \\
\hline TELEPRINTER PAPER. Standard rolls 1 ply \(\mathbf{6 5 . 0 0}\) per doz 2 ply \(\mathbf{E 5 . 0 0}\) per doz 3 ply \(\mathbf{E 5 . 4 0}\) per doz. 4 ply \(\mathbf{6 5 . 7 0}\) per doz All PPd UK Telex your order now \\
\hline TAPE STORAGE CANS. Brand new fimished steel cans originally intended for 16 mm film but ideal for storing 7 in reels of tape. Our last supply of these items was quickly exhausted at 30 p each but as a result of a massive new purchase we can now offer a case of 55 at \(£ 6.80\) nnc \(P\) \& \(P\) and VAT \\
\hline SOLAR CELLS. Ferrant silicon MSIIBE. active area 390 sq mm Open CCT voltage 550 mV at 3000 lumens/sq it Sht Cet Current 60 mA . Oplimum load 90 ohms. Dia 34 mm Thickness 6 mm Ex made up panel £ 1.35 (unc. P. \& \(P\) and VAT) \\
\hline CONTINENTAL CUSTOMERS - we have a direcil link by all from Lydd to Beauvars (also Channel Islands) and are 3545 minutes drive trom Dover-Folkesione with direci hoverciath and sea links with France and Beigium \\
\hline
\end{tabular}


UNREPEATABLE SPECIAL OFFERI
HITACHI DESK TOP CALCULATORS

Ideal tor technical and commercial

£45
\(1+53.50\) YAT + 76 p P\&P UK. £200 SAVED! These fine calculators made avaitable by a company's cash flow problems
(not ours by ine way'). have a 16 digy display, 2 memories. preselected (not ours by ine way'). have a 16 dign display, 2 memories. prestected
decrmal poont (fully toating during use), performs eddition. outraction. multiplicetion, division, rrieses to pow or, extracto square roots, chain and constant processans facilitated
Call for a demonstration at Lydd Hours Mon-Fri 0800-1700 hours Sal
\(0900-1200\) hours Other times by appointment Full details on rece ipt of SAE

\section*{Servo and Electronic Jales Led}

24 high st., LYDD, KENT. Tel. Lydd 20252 (STD 0679) VAT No. 201-1296-23 TELEX 965265.

 weight 14 los with batts. 8 wansistor circuit with D C erase and bias.
electionic spoed control on capstan drive. Powered bv \(4 \times 15 \mathrm{~V}\) penight
 (STD cassette umpedance) Recording ume up to 80 mins takes 46 mm Spools (No 2 ) of 1/4n tape recording at 1 T/M in P/S STD half track Battery
fite 4 hours Two conirois Volume + play-Record - rewind swith 1.te 4 hours \({ }^{\text {Two }}\) con
\(E 16.80 \mathrm{nc}\) P\&PVAT

PLESSEY GROUND BASED U.H.F. GROUND/AIRTX/RX
PLESSEYGRTOUNO OR SALETO LICENSED USERS
Single Channel Receiver 5820.99.932.-5694
Single Channel Transmmiter 5820-99.932.5698
Single Channel Transmminter 5829.99 .932 .56
Single Channel Amplifier 5820.99 .932 .5701
Single Channel Amplifier 5820-99.932.5700
Power Unit for Amplitier 5820-99-932-5700
Cooler Unit 5820.99 .932 .3995
Cooler Unit \(5820.99-932.3995\)
These assemble into tree standing rack unit providing UHF
communications over 2250 to 3999 MHz , the \(T X /\) Amplitier unit communications over 2250 to 3999 MHz , the TX/Amplitier unit giving
100 Warts R F output into 50 Ohms Spare sub-units avalable All are 100 Watts RF output inted Full details on request
guaranteed new and unused SOLARTRON OSCILLOSCOPES in Stock Cút183. CD1212. CD1220. SOLARTRONA and INSTRUMENTS SR151, 152. VP253. OS103. C0546 J×641. J×641A VF252 JK746. LM1420. TO960. J×603. JM1600. eIc POA HEWLETT PACKARD SA
and VAT HP1858 £357.
STAINLESS STEEL VACUUM CONTAINERS FOR LIQUIDS. Capacily 2 US GALLS FtT
cartons- \(225(\mathrm{C}\) Pd UK)
PRECISION POTENTIOMETERS
Numerous instrument typea, continuous ro
Control applications and HELIPOTS in stock

> OVER 300,000 IN STOCK MULTIWAY AND R.F. CONNECTORS Plossoy Mark 4 Stockists

Metal Oxide Resistors (ELECTROSIL \& WELWYN)
Tantalum Capacitors
(KEMET, ITT, PLESSEY, ETC.) ALL AVAILABLE EX STOCK in MANUFACTURING QUANTITIES

\section*{SYNCHROS \\ AND SERVÖMOTORS EX STOCK}

REACH FOR THE PEAKS OF MEASURING INSTRUMENT ENGINEERING!


NEW ADDITIONS to our range of PANEL METERS available at present only in MANUFACTURING QUANTITIES


Above meter forms are for moving coil movementa only and may houte S -meter and VU-meter instruments.

\section*{ALL VU METERS}
\(5 F 10072 \times 68 \mathrm{~mm}\)
SF10463 \(\times 60 \mathrm{~mm}\)
SF10663 \(\times 60\) men


All meters can be supplied with special or personalised scales. internal illumination coloured front lenses. mirror scales. special pointer forms. etc

\section*{Full dotails and prices on requast}

\section*{AUTOMOBILE TEST EQUIPMENT}

SERvo autotester No. 1. 0.3 .2 \& 016 o O. 0.80 A-DC \&

 SERVO AUTOTESTER No. 2. 0.16 v .080 A dwell angle and

 meters 0.1 © \(80.80 A\) Size \(17 \times 10 \times 7 \mathrm{~cm}\) WI 045 Kg Price \(£ 9.78\)
 Hand held instt Size \(14 \times 8 \times 5 \mathrm{~cm}\) Wi D 26 Kg Price EE. 35 me P. \&
\& VAT
\begin{tabular}{|c|c|c|c|}
\hline  & \multicolumn{2}{|l|}{} & \multirow[t]{2}{*}{} \\
\hline ADJACENT TO EDGWARE ROAD MET. LINE STATION & \multirow[t]{2}{*}{} & \multirow[t]{3}{*}{} & \\
\hline & & & \\
\hline & & & \\
\hline & \multirow[t]{2}{*}{} &  & \\
\hline & & \multirow[t]{2}{*}{} & \\
\hline &  & & \\
\hline & \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{\(\qquad\)} & \multirow[t]{3}{*}{} \\
\hline & & & \\
\hline & &  & \\
\hline &  & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} \\
\hline & \multirow[b]{3}{*}{} & & \\
\hline & & &  \\
\hline  & & &  \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & & \\
\hline & & & \\
\hline
\end{tabular}

\section*{ALL MAIL ORDER BY \\ RETURN, C.O.D. SERVICE WELCOME \\ C. T. ELECTRONICS \\ We are open from 9.30 a.m. -6.00 p.m. Monday-Saturday
}

All mail order and enquiries to 270 Acton Lane, Chiswick, London W4 5DG. Tel: 01-994 6275

\section*{SEMICONDUCTORS}

\begin{tabular}{l|l} 
14p & BRIDGE \\
14p \\
12p & RECTIFIER
\end{tabular}

\begin{tabular}{|c|}
\hline \begin{tabular}{l}
LINEARI.C. \\
IM 304 Neg Voltage Re9 Lm309K 5V. IA Voltage Reg.
\end{tabular} \\
\hline CM 723 C 2.37 V \\
\hline 150 ma \\
\hline Votage Reg. \\
\hline . \\
\hline MFC4000 \\
\hline Audio \\
\hline Audio \\
\hline Audio \\
\hline D.1. \\
\hline 44 IC OpAm \\
\hline D.I.L./T099 \\
\hline 747C Dual Op \\
\hline Amp \\
\hline 748 CCOp Amp \\
\hline D.1.L. \\
\hline ZN414 Radio I.C \\
\hline TAD 100 Radio I.C \\
\hline inc. Filte \\
\hline CA3014 E1.5 \\
\hline CA3018 E1 \\
\hline CA 3028 \\
\hline CA3036 \(\quad 1.00\) \\
\hline Ca3046 \\
\hline CA3048 \(\quad\) E2.35 \\
\hline CA3075 \(\quad \mathrm{E} .60\) \\
\hline CA3089E 51.90 \\
\hline CA30900 \(\quad \mathbf{4 . 8 5}\) \\
\hline MC13036 \(£ 2.20\) \\
\hline MC1310P ¢2.80 \\
\hline 76023 N \\
\hline Texas IC \\
\hline SN76660 \\
\hline \\
\hline
\end{tabular}
\(\star \star\) SPECIAL OFFERS


\section*{SERVICE TRADING CO}

RELAYS SIEMENS PLESSEY
 OPEN TYPE RELAYS
6 VOLT D.C. 1 make con.
9 VOLT D.C. RELAY
12 VOLT D.C. RELAY
24 VOLT D.C
ENCLOSED TYPE RELAYS
24 VOLT A.C
55 VOLT A.C
100 VOLT A.C
240 VOLT A.C. RELAY
220/240 VOLT AC RELAY

ARROW 230/340V AC
110 VOLT A.
CLARE-ELLIOT TYpe RP 7641 G8
MANY DTHERS FROM STOCK, PHONE FOR DETAILS

PRECISION CENTRIGUGAL BLOWERS

\section*{Mig. Vy Smiths Industies}

Precision made conimuously rated smooth rumning \(230 / 240 \mathrm{~V}\) AC
Mifg. by Woods
Extremely powertul. 220/25civ AC 03 amp. 2.700 rpm continuousiy rated Capacitor stant. Cast construction. Aperture \(66 \mathrm{~mm} \times 50 \mathrm{~mm} 0 / \mathrm{A}\)
\(200 \mathrm{~mm} £ 12.00\). Post E 1.00

\section*{230V FAN ASSEMBLY}

Continuously rated, removable aluminium blades. Pnce
VAT \(\mathbf{2 5} \%\)

SUB-MINIATURE REED RELAY 3-9 VOLT D.C

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
LATCHING RELAY \\
Twin latching relay. flip-flop \(20 / 0\) each relay Mains contacts. 115 volts A.C or 50 volt DC operation or \(\mathbf{2 4 0}\) volts A.C. with 2.5 K resistor. \(\mathbf{8 5 p}\). Post 15p
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{COIN MECHANISM (Ex-London Transport)} \\
\hline Unit cont Micro swit Precision £2.50. Po & ing. selector mechanism for 1 p 2p \& \(5 p\) coins relays solenoid-operated hopper 24 volt D.C to high standard. incredible VALUE at only 70p VAT \(25 \%\). \\
\hline \begin{tabular}{l}
230-250 \\
Simular \\
Approxima \\
\(13{ }^{10}\). Price
\end{tabular} & \begin{tabular}{l}
OLT A.C. SOLENOID \\
appearance to illustration \(1 \frac{1}{2} \mathrm{lb}\). pull. Size of taet \(1 \frac{518}{61} \mathrm{X}\) 00 Post 15 p
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { SOLEN } \\
& 230 / 250 \\
& \text { high. £2. }
\end{aligned}
\] & \begin{tabular}{l}
D HEAVY DUTY MODEL \\
C. Approx 141 b pull. \(4^{\prime \prime \prime}\) long \(\times 23 / 6^{\prime \prime}\) wide \(\times\) Post 30p
\end{tabular} \\
\hline \multicolumn{2}{|l|}{24 VOLT DC SOLENOIDS} \\
\hline \multicolumn{2}{|l|}{UNIT containing. 1 heavy duty solenoid approx 25 fb pull} \\
\hline \multicolumn{2}{|l|}{at 1 in , travel. 2 solenoids of approx. 1 lb . pull at in travel 6 solenoids of approx. 4 oz. pull at \(\frac{1}{2} \mathrm{in}\). travel. Plus 124 V D. C 1 heavy duty 1 make relay Price: \(\mathbf{£ 2} \mathbf{5 0}\) Post 75p. ABSOLUTE BARGAIN.} \\
\hline \multicolumn{2}{|r|}{600 WATT DIMMER SWITCH} \\
\hline \multirow[t]{2}{*}{\[
1 \cdot \infty
\]} & Easily fitted Fully guaranteen by makers. Will control up to 600 watts of all lighting except fluorescent at mains voltage. Complete with simple insiructions. \(\mathbf{£ 2 . 7 5}\). Post \(\mathbf{2 5 p}\) \\
\hline & \begin{tabular}{ll}
1000 wat model & E4.00. Post 25p \\
2000 watt model & E8.00. Post 30 p
\end{tabular} \\
\hline
\end{tabular}

\section*{LATCHING RELAY}

COIN MECHANISM (Ex-London Transport)

\section*{SOLENOID HEAVY DUTY MODEL}

\section*{24 VOLT DC SOLENOIDS}
 BARGAIN

600 WATT DIMMER SWITCH
control up to 600 watts of all lighting except fluor 1000 wat model

VARIABLE VOLTAGE TRANSFORMERS
\begin{tabular}{|c|c|}
\hline Carriage extra & INPUT 230 v. A.C. 50/60 OUTPUT VARIABLE D/260 v. A.C. \\
\hline  & \begin{tabular}{l}
BRAND NEW. All types. \\
200W (1 Amp) ........... £10.00
\end{tabular} \\
\hline & 0.5 KVA (Max \(21 / 2\) Amp) . \(£ 11.50\) \\
\hline & 1 KVA (Max. 5 Amp) . . . . . £16.50 \\
\hline & 2 KVA (Max. 10 Amp) . ..... \(\mathbf{5 3 0 . 0 0}\) \\
\hline & 3 KVA (Max. 15 Amp) . . . . 833.00 \\
\hline & 4 KVA (Max. 20 Amp) . . . . 860.00 \\
\hline & (max. 37.5 Amp) . . . £102.50 \\
\hline & \begin{tabular}{l}
1 Arnp OPEN TYPE \\
(Panel Mounting)
\end{tabular} \\
\hline
\end{tabular}

LTTRANSFORMERS
\(£ 5.60\) Post 70 p
\(\mathbf{£ 7 . 9 0}\) Pos 70 p
\(\mathbf{£ 9 . 0 0 \text { Post } 7 0 \mathrm { p }}\)
\(£ 9.20\) Post 70 p
\(\mathbf{£ 9 . 9 0}\) Post 70 p
\(\mathbf{£ 1 0 . 4 0 \text { Post } 7 0 \mathrm { p }}\)
enquiries.

\section*{AUTO TRANSFORMERS}

Step up step down \(115 / 200 / 220240\) volts. At 75 watt \(£ 2.64\) Post 40 p . 150 watt \(£ 3.50\) Post 50 p. 300 watt
\(\mathbf{6 6 . 2 0}\) Post 60 p. 500 watt \(\mathbf{9 9 . 2 0 ~ P o s t ~} 75\) p. 1000 watt \(£ 12.00\)

\section*{STBDBE STRTBE STRDEE!}
- FOUR EASY TO BUILD KITS USING XENON WHITE LIGHT FLASH TUBES, SOLID STATE TIMING +4
+ TRIGGERING CIRCUITS, PROVISION FOR EX-
TERNAL TRIGGERING. \(230-250 \%\) A.C. OPERATION. * TERNAL TRIGGERING. 230-250w. A.C. OPERATION.
 range of thaee other stroxe kits from stock. *
 * BIG BLACK LIGHT
H00 Wart Mercury vapour ultra violet lamp.
\& Extremely compact and powerful source of u.v.
Innumerable industrial applications also ideal for Innumerable industrial applications also ideal for
* stage display, discos etc. P. ballast is essential
with these bulbs. Price of matched ballast and bulb



 holders for either
measures approx.)

 MANUAL/AUTO DIMMER
 control. Four channels each one2farn of handing 750 watus of spotights. noodights. dorens of small mains lamps. Seven programs all speed controlled plus flash modulation. effectively giving 14 different display
Makes sound-to-light obselete. Completely elecrically an Makes sound-to-light obselete. Completely electrically ar
mechanically nose free Can be used on same circuit as rad mechanically notse free Cam be used on same circuit as raci
mikes of sensitive amplifiers. A whole new range of lighting effec mikes or sensitive amplifiers. A whole new range orngith in
possible with astounding results. Already in use in London

 GENTS' \({ }^{\prime \prime}\) ' ALARM BELL E5.00. Post 60 p (IIlus.) VAT \(\mathbf{2 5 \%}\). STC' \({ }^{\prime \prime}\) RED ALARM BELL Brand Now Price: ©4.00. Post 50p. 24/48V DC. VAT \(25 \%\) INSULATION TESTERS (NEW) INSULATION TESTERS (NEW
Test to I.E.E. Spec. Rugged metal co
structlon, suitable. for bench or fle W. 4 i in. H. 6 in., weight 6 ib.
500 volts 500 megohms \(£ 30.00\)

1000 VOLTS 1000 megohms \(£ 36.00\).

\section*{}

FOR THE TOTAL VALUE OF gOODS INCLUDING POSTAGE UNLESS OTHERWISE STATED

\section*{SERVICE TRADING CO.}

SHOWROOMS NOW OPEN AMPLE PARKING

METERS NEW
90mm Diameter.
Type \(65 C 5.2 A D . C\).
Type 62 \(\qquad\)
TYmm \(\times 56\) mm RECTANGULAR
\(\qquad\)
'CARTER 230 VOLT A.C
GEARED MOTOR \(\qquad\)
\(230 / 240\) volt A.C, smoath.
wo rywe 32 . D mo or 410
Ether type \(£ 4.50\) post 50 p.


REVERSIBLE MOTOR

20 r.p.m. GEARED MOTOR
BODINE TYPE N.C.I
GEARED MOTOR
TYpe 1) 7
Reversibla
Reversible
TYye 2l 28
Reversible



The

\section*{BENDIX MAGNETIC CLUTCH}


When energized trarsmission is extremely powertich
MA OUR PRICE JUSI E2.50. Post 30p.
ROTARY VACUUM AIR COMPRESSOR AND PUMP

figures). Now unused surplus stock, with el
connection data. Fraction of maker's price.
E12.00. Post 50p.


UNISELECTOR SWITCHES - NEW
4 AANK 25 WAY FULL WII

coil, 24 v. D.C. 67,90. Pose 30p
8 BANK 25 WAY FULL WIPE
24 v. D.C. operation \(\mathbf{1 9} \cdot 50\). Poss 40 p.

\section*{TIME SWITCH}


\section*{A.C. MAINS TIMER UNIT}



\section*{PROGRAMME TIMERS}
\(\qquad\)
switch. Ideal for lighanting effects.
animated displays etc. Ex equip-
animated displays etc. Ex equip-
ment tested similat in thiskration
cam modet \(15 \mathrm{r} . \mathrm{pm}\). 2.00 post 35



\section*{\(\left\{\begin{array}{l}6 \\ 20\end{array}\right.\)}

\section*{rowar eniostars \\ New ceramic construction, vitreous}

\section*{brush assembl}

New ceramic construction, vitreousis
enamel embedded winding. heavy duty brush assembly, continuously rated.
25 WATT 10 25 WAT


Black SilverSkirted knob calibrased in Nos. 1-9. I 1
in. dia brass bush. Ideal for above Rheosfats, 22p ea.

\section*{TRIAC}


personal callers only
9 LItTLE NEWPORT STREET. LONDON. WC2H 7J. Tel.: O1.437 0576



CROFTON don't just sell kits, we offer you a technical back up service to ensure your success

The following is a selection of some of the more popular kits


Wilkinsons relays

\section*{POST OFFICE TYPE 3000 AND 600 BUILT TO} YOUR OWN SPECIFICATIONS AND REQUIREMENTS THE BEST KNOWN OF ALL RELAYS ARRANGEMENTS KNOWN THROUGHONTACT YORID COMPLETE OANKS OF CONTACTS MADE TO ORDER AND COMPONENT PARTS SUPPLIED. HIGHEST QUALITY AT COMPETI ERVICE. QUOTATIONS BY RETURN HOME AND OVERSEAS. WE ARE SPECIALISTS IN EXPORT ORDERS.
MINIATURE UNISELECTOA P.O. Type 220 la . 12 outlets, 2 bfidging, 1 non-bridging wipers. This compact fatchet driven 3 -level selector is of unique design and occupies no more soace than o standard
3000 rype Retay \(£ 8.50\) and Avalable from slock a complete range of \(\frac{\mathrm{G}}{\mathrm{E}}\). Miniature Sealed and 3000 type Relay \(\mathbf{8 8 . 5 0}\) ea. Avalable from s1ock a complete range of GEC. Miniture Sealed and
Eficsson cylindical type relays. Post Office type 88 and 89 series and Type \(100 \mathrm{AM} 2 \times 53\) ohms P.O. TYPE 4071 Terminal Stinps, these simps consist of rows of solderng tags. AMM \(2 \times 53\) onms in insulating strips, and providing accommodation for a large

INTERNAL TELEPHONE extensions Detraline Intepphone des yned oy S.TC for instant
ATTERY CHARGERS for \(\overline{6} \mathrm{v}\), batteries. input 200/250v AC output up to \(6 \mathrm{v} 15 \mathrm{amps} \overline{\mathrm{D}} \mathrm{C}\). \(\overline{\mathbf{1}} 15\) es THOBOSCOPE FORKS. 125 C.P. \(\mathbf{E Z . 5 0}\) ea two tor \(\mathbf{E 4 . 5 0}\)
\begin{tabular}{|c|c|}
\hline & POST OFFICE TYPE 3000 AND 600 BUILT TO YOUR OWN SPECIFICATIONS AND REQUIREMENTS. THE BEST KNOWN OF ALL RELAYS WITH A LARGE VARIETY OF CONTACT ARRANGEMENTS. KNOWN THROUGHOUT THE WORLD. COMPLETE BANKS OF CONTACTS MADE TO ORDER AND COMPONENT PARTS SUPPLIED. HIGHEST QUALITY AT COMPETI. TIVE PRICES WITH A QUICK DELIVERY SERVICE, QUOTATIONS BY RETURN HOME AND OVERSEAS. WE ARE SPECIALISTS IN EXPORT ORDERS. \\
\hline \multicolumn{2}{|l|}{MINIATURE UNISELECTOR P.O. Type 2201 l . 12 outlets, 2 bridging. 1 non-bridging wipers. This compact fatchet driven 3 -level selector is of unique design and occupies no more space than a standard 3000 trpe Relay \(£ 8.50 \mathrm{ea}\). Available from stock a complete range of \(\overline{\mathrm{E}} \overline{\mathrm{C}}\) - Miniature Sealed and} \\
\hline \multicolumn{2}{|l|}{P.O. TYPE 4071 Terminal Strips, these strips consist of rows of soldering tags. hitled im insulating strips, and providing accommodation tor a large number of soldered ware connections in the minimum amount of space, \(6 \times 25\) and \(5 \times 20\) avaitable from stock} \\
\hline \multicolumn{2}{|l|}{INTERNAL TELEPHONE extensions Dettaline Intepphone designed by S.IC for instant communication, latest type of handset and push button untt \(\mathbf{£ 8 . 5 0 \text { ea Master station avenlable }}\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
 STHOBOSCOPE FORKS. 125 C.P.S E2.50 ea two for \(\mathbf{£ 4 . 5 0}\). \\
All prices shown are carriage pald UK only but subject to VAT at the standard rate
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
L. WILKINSON (CROVDON) LTD., LONGLEY hOUSE \\
LONGLEY RD CROYDON, CRO 3LH, Phone 01-684 0236. GRam: WILCO CROVDON
\end{tabular}} \\
\hline
\end{tabular}


FREE Brochure on New KITS

Whether professional. student, teacher or amateur, the field of electronics can open
up a new world for you.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{\multirow[t]{5}{*}{}} \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}


\title{
Wherriont biownis
}

\section*{SIENAL SOURCES}

FM AM SIGNAL GENERATRR TYPE 202H

one condition.
FM M A.M.
C.W. \& pulse
coverage 54 to
216 MHz
Used to test.
ing and cali.
bration of
F.M receiving systems, V.H.F., T.V., Mobile and general Communications. Freq. range \(54-216 \mathrm{MHz} \div 2\) Bands. R.F. stability 1.2 Signal to noise ratio 50 dB below 10 KHz . PRICE NEW OVER \(£ 1\) OOD!
OUR PRICE £495

\section*{ADVANCE}

Audio Signal Generator HIB \(15 \mathrm{~Hz}-50 \mathrm{KHz}\) Wave \(200 \mathrm{Vm} \pm 2 \mathrm{~dB}\) Sine Wave \& Square Audio Signal Generator JIB \(15 \mathrm{~Hz}-50 \mathrm{KHz}\)
\(02 \mathrm{~V}-25 \mathrm{~V}\) VHF Square Wave Generator SG21 \(9 \mathrm{KHz}-100 \mathrm{MHz}\). Max \(\mathrm{O} / \mathrm{p} 2 \mathrm{~V}\) Signal Generator \(\mathrm{DI}_{1}\)
A.F. Signal Generator J. 2 t 15 Hz to 5 UKHz in \(\overline{3}\) ranges Cal. Accuracy \(\pm 2 \%+1 \mathrm{~Hz}\). Output 250 mV to 25 V varable. Overall distortion at full Power output above 100 Hz is \(<2 \%\). \(£ 65\) A.F. Signal Generator J 28

\section*{AIRMEC}

Signal Generator \(70230 \mathrm{~Hz}-30 \mathrm{KHz}\) in 3 bands
Signal Generator \(70 \%\) £60
Bands
\(1 \mathrm{HV}-1 \mathrm{iv}\) is ohms impedance fint. Mod. at
General radio
Unit Oscillator 1218 -A P.O.A Freq \(250-920 \mathrm{MHz}\) Accuracy \(1 \%\) Dritt 209 C Output into 50 ohms \(=150 \mathrm{MW}\) with PSU 1201 - CQ18 as illustrated

HEWLETT PACKARD
U.H.F. Signal Generator \(614 \mathrm{~A} 900-2100 \mathrm{MHz}\) \(1 \%\) Accuracy. Output 0.1 UV-0. 2 V into 50 ohms. Modulation: CWInt or EXT. FM \& Pulse
S.H.F Signal Generator \(618 \mathrm{C} 3.8-7.6 \mathrm{GHz} \pm\) \(1 \% 50\) ohms \(£ 550\) Signal Generator \(608 \mathrm{~B} \quad 10-400 \mathrm{MHz}\) \(\begin{array}{ll}\text { Signal Generator bu8t } & £ 195 \\ & £ 625\end{array}\)

Signal Generator 612 A 450 MHz .1230 MHz Internal \& ExI A.M. 50 ohms Audio Oscillator Type \(201 \mathrm{C} \quad 20 \mathrm{~Hz}-20 \mathrm{KHz}\) \(0-40 \mathrm{~dB}\) in 10 dB steps. Dis
\(0.5 \%\). Also \(200 \mathrm{CD} \& 200 \mathrm{~B}\)
Audio Generator 206A 20Hz-20KHz ion accuracy \(\pm 2 \%\). Distortion \(<0.1 \%\) a frequencies above 50 Hz and \(<0.25 \%\) from 20 Hz to 50 Hz O/P Attenuators 119 dB in 0 . B steps.
Audio Oscillator \(201 \mathrm{C} 20 \mathrm{~Hz}-20 \mathrm{KHz}\). Calibration Accuracy \(\pm 1 \%\). Output ( 600 ohms ) 3W Max Distortion 0.5\% \(2 \mathrm{C} / \mathrm{Hz}\) Oscillator 202 KHz £95 Accuracy \(+2 \%\) 202C \(1 \mathrm{~Hz}-100 \mathrm{KHz} \mathrm{Cal}\) 5 Hz ) O/P Impedance 600 ohms \(\quad\) E95
MARCONIIETS.


Phase/AM Signal Generator TF 2003 \(\mathrm{M} H z\). Bargain price - super condition
\(\mathbf{E 1 5 0}\)

F995
TF995A/2
E185
TF995A 2 M £225
FM/AM Signal Generator TF \(995 \mathrm{~A} / \frac{3 S}{\mathrm{Mhz}} \mathbf{2 2 0} \frac{\mathrm{MHz} .5}{2 \mu} \mathrm{~V} \cdot 200 \mathrm{mV} \frac{5}{\text { Superb }}\) Condition Sional Generator TF \(£ 385\) \(\frac{\text { U.H.F. Signal Generator TF } 1060 / 2}{450-1200 \mathrm{MHz}} 0\) \(450-1200 \mathrm{MHz} .0 .15 \mu \mathrm{~V}-447 \mathrm{mV}\). Sine and
pulse mod facilities
\(£ 420\) pulse mod facilities


\section*{PULSE GENERATORS}


Double Pulse Generator PG. 56
Pulse Amplitude 0. IV -10V Sq wave 0 -10V Rise Time 10 nsec. (typically) wave \(0-10 \mathrm{~V}\) Pulse Generator PG. 55 Modular Pulse Generator Advance Type PG.52. System of 5 Signal generating \& Processing units. Repetition freqs. up to
\(20 \mathrm{MHz} \&\) Output pulses to 20 V ( 50 ohms) Rise \& Fall times 5 nsec. Its versatility enables the production of complex puise \& ramp waveioms not obtainable from conventiona pulse generators

\section*{SWEEP GENERATORS}


HEWLETT PACKARD \(\begin{array}{ll}\text { Sweep Oscilator } 69202-4 \mathrm{GHz} & \mathbf{£ 4 9 5} \\ \text { Sweep Oscillator } 693 \mathrm{~B} 4-8 \mathrm{GHz} & £ 495\end{array}\)

\section*{VOLTMETERS}


\section*{MARCONI INSTRUMENTS}

TF 1041 B VTVM AC
M. AC. DC and

HEWLETT PACKARD
.c. Vacuum Tube Voltmeter 412A Ohmeter \& Ammeter Can also be used s 1 IM.

OSAILLOSGOPE
TEST EDUPWENT
OHz to \(4 \mathrm{MHz} 2 \%\) accuracy. Inpu mpedance 10 Mohms . \(£ 85\) Reads RMS value of sine wave Log voltage scale 0.3 to \(1 \& 0.8\) to 3 . Linear \(d B\) scale input impedance 10 Mohms E90 PHILIPS
F.F. Millivoltmeter GM 6012 H.F. Millivoltmeter GM 6014

ADVANCE
Voltmeter VM 80 AC Volts \(0-500\) DC Volt

\section*{INSULATION TESTERS}

Circuit Tester Ohmeter 0.3 ohms 0.3 g ohms Tester Ohmeter 0-1000 £18 \(00-200\) kohms
Megger Series +11 250 V
Megger Series tII Mk 3250 V
Megger 250 V
Battery Megger 500 V


Siemens Level Meter \(30-33510 \mathrm{KHz}-17 \mathrm{MHz}\) Complete system by Siemens Comprising Meter. 3W 933 Scila A 335 Level Screen Level Tracing Receiver \(\quad\) PO A Siemens Level Meter 3D 332 o. \(3-1200 \mathrm{KHz}\) Level Oscillator 3 W. \(29 \quad 0.3-1200 \mathrm{KHz}\) P.O.A S.T.C.

Octave Filter \(74143 \mathrm{~A} \quad 37.5 \cdot 12.800 \mathrm{~Hz}\). For analysing noise and interference on comms systems, particularly useful with 74142 psophometer POA Selective level Measuring Set 74184 B \(60-1364 \mathrm{KHz}\)
Measuring Set 74831 A WANDEL \& GOLTERMAN
\(10 \mathrm{KHz}-14 \mathrm{MHz}\) TFPS \(£ 375\) \(\begin{array}{lll}\text { Level Meter TFPM } 4310 K \mathrm{~Hz}-14 \mathrm{MHz} & £ 375 \\ \mathbf{£ 3 7}\end{array}\)


Wandel \& Golterman VZM. 2. Distortion measuring set for phase \& amplitude mod. For \begin{tabular}{l} 
Baltichannel FM Radio Systems up to 12 MHz \\
Bas \\
\(£ 400\) \\
\hline
\end{tabular} MARCONI
Sine Squared Pulse \& Bar Generator
IF \(2905 / 8\)

\section*{COWPONENTS}


B 7971 Displays alphabet \& \(0-9\) numerals
99.
Blank \& Sync. Mixer TF 2908 £95
TEKTRONIX
Scope Camera C- 13 P.O.A.

Scope Camera
SOLARTRON
\begin{tabular}{lr} 
Analogue Tutor TY 1351. Ask for details \\
P.O.A. \\
AC/DC Converter LM 1219..r & E200 \\
P.R.D. \\
Noise Generator 904A. & P.O.A. \\
TELEMAX-SOUTHERN & \\
TDI Freq. Meter/Generator & 10 KHz - 3000 \\
MHz
\end{tabular}

\section*{POTENTIOMETERS}
\begin{tabular}{llcr} 
Manuf & Type & \multicolumn{2}{l}{ Turns Value } \\
Price
\end{tabular}

\section*{the test equipment people}

Come and visit Europe's fitst Electronic Instrumentation Centre
49-53 Pancras Road London NW1 20B Tel: 01-837 7781

Next to KING'S CROSS ST. PANCRAS


Model \(130 \mathrm{C} 200 \mathrm{uV} / \mathrm{cm}\) Oscilloscope This scope is a versatile all purpose instrument for laboratory, production line, industrial process
measurements and medical applications. The outputs of it detectors, strain gauges, transducers, and other low level devices may The Model 130 C is easy to operate even by The Model 130C is easy to operate even by Base Range - \(1 \mathrm{us} / \mathrm{cm}\) to \(5 \mathrm{~s} / \mathrm{cm} .21\) ranges in a 12.2 sequence, accuracy \(\pm\) provides continuous adjustment between steps and extends the \(5 \mathrm{~s} / \mathrm{cm}\) step to at least \(12.5 \mathrm{~s} / \mathrm{Cm}\) Automatic triggering (baseline displayed in the absence of an input signail) Vertical and horizontal amplifiers. Bandwidth.
 (amplifier), 25 Hz to 500 KHz at \(02 \mathrm{mV}(\mathrm{sm}\) deflection factor. \(\quad \mathbf{£ 1 7 5}\) AVAILABLE SOON: HEWLETT PAKARD \(1700 \mathrm{~A}-35 \mathrm{MHZ}\)
\(1707 \mathrm{~A}-75 \mathrm{MHZ}\) TEKTRONIX RM 503-XY 549
SPECTRUM ANALYSER PLUG IN
TELEQUIPMENT
-
\(£ 385\) \(£ 700\)
\(£ 900\)
£200 \(£ 800\)
\(£ 425\) 425


LMB 100 -- RV I/P \(240 \mathrm{~V} 0 /\) P \(100 \mathrm{~V} \pm 5 \%\) LMFA \(24-\mathrm{OV}-\mathrm{V} 1 / \mathrm{P} 240 \mathrm{~V} 0 / \mathrm{P} 24 \mathrm{~V} \pm 5 \%\) LMD \(201 / P 115 \mathrm{~V}\) O/P \(20 \mathrm{~V}+5 \% 7 \mathrm{~A} £ 75\) ALSO OTHER TYPES \& MAKES

\section*{C-Y \& U/V RECORDERS}


XYRecorder HR 92 © \(\mathbf{9 1 5 0}\)
BELL \& HOWEL
BRYANS
ELECTRONIC ASSOCIATES
ELECTRON
\(3 \cdot\)


DC Digital Voltmeter Solartron Type DC Accuracy. 250 KHz Counter Facility \(£ \mathbf{2 3 5}\) DYNAMCO

\section*{DM. 2022 S \(10 \mathrm{HV}-2 \mathrm{kV}\) Max, reading 39999.} Accuracy 0.02\%
DVM DM
2001 DVM DM2004 \(\quad £ 95\) SOLARTRON
Autoranging Digital Volmeter LM 1480 Accuracy \(0.005 \% \quad 10 \mu \mathrm{~V}-2 \mathrm{kV}\) DC. Resolution 1 part in \(30,000.20,000 \mathrm{M}\) input resistance 6 Operating modes. Standards Room, Laboratory or Industrial uses

\section*{RECDRDERS}

RECORD

\section*{ELECTRICAL}

Single Pen Recorde Chart sensitivity
liamp chart speed 1 and
\(6^{\prime \prime}\) per hr Size \(B^{\prime \prime} \times 11 "\)
\(\times 6^{\prime \prime}\) Offered complete with pen assembly Listed at over E120-1 his

\section*{SPEGIAL OFFER}

High
Precision Miniature Motor
\(1.5 \mathrm{~V}-4.5 \mathrm{~V}\) DC MOTOR
\(\qquad\) Uses BULK OFFER



WW-073 FOR FURTHER DETAILS

\section*{REDIFON TELEPRINTER RELAY UNIT No. 12: ZA-41196 and power supply \(200-250 \mathrm{~V}\) a.c. Polarised relay type 3 SEITR. \(80-0 \mathrm{Y}\) 25mA. Two. stabilised valves CV 286. Centre Zero Meter 10-0-10. Size 8 in. x 8 in. x 8 in. New condition. \(\mathbb{E} \mathbf{0}\) Carr. 75p.}

SOLARTRON PULSE GENERATOR TYPE GIIOI-2: £75.00 each. Carr. £2.00. TELEPRINTER TYPE 7B: Pageprinter 24 V d.c. power supply, speed 50 bauds per min. second hand cond. (excellent order) no parts broken. \(£ 20\) each. Carriage \(£ 3\). INSULATION TEST SET: \(0-10 \overline{\mathrm{k} V}\) negative, earth with amplifier provision for checking ionisation. \(110 / 230 \mathrm{v}\) a.c. input. S/hand, good cond. \(£ 35+£ 1\) carr. BRIDGE MEGGER: 250 V . (Evershed Vignoles) series 2. £30 each. Carr. £l. BRIDGE MEGGER: 2,500V., series I. E30 each. Carr. £'1
CRYSTAL TEST SET TYPE I93: used for checking crystals in freq. range \(3000-10,000 \mathrm{KHz}\). Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in onjunction with a freq. meter. \(£ 25\). Carr. \(£ 1.50\)
SOLARTRON VARIABLE POWER UNIT S.R.S. 1535 : \(0-500\) volts at 100 mA and 6.3 volts C.T. 3 amps d.c. \(\mathrm{I} 10 / 250\) volts a.c. input. \(£ 18.50\). Carr. \(£ 1.50\).
 Receivers into d.c. pulses. Complete with monitor. \(£ 75\) each. Carr. \(£ 2\).
FURZHILL SENSITIVE VALVE VOLTMETER V.200: Freq. \(10 \mathrm{~Hz}-6 \mathrm{MHz}\) (can be used beyond 6 MHz ). Probe in circuit - voltage range \(1 \mathrm{mV}-1 \mathrm{kV}\) in 6 decade ranges; full scale deflection \(10 \mathrm{mV}, 100 \mathrm{mV}-1 \mathrm{kV}\). Without probe \(100 \mu \mathrm{~V}-100 \mathrm{~V}\) in 6 decade ranges; full scale deflection \(1 \mathrm{mV}, 10 \mathrm{mV}-100 \mathrm{~V}\). Accuracy \(\pm 5 \%\). £30 each. Carr. £1.
NOISE FIGÜRE METER TYPE II \(\overline{13 A}\) (Magnétic AB, Swēen): Complete with Noise Source 121 and 122. £I25. Carr. £1.
PRECISION PHASE DETECTOR TYPE 205: Freq. \(0.1-15 \mathrm{MHz}\) in 5 ranges. Variable time delay microseconds 0-0.1c, 115 V input. \(\mathbf{5 5 5}\) each. Carr. £1. RHODE \& SCHWARZ HF MILLIVOLTMETER: \(30 \mathrm{~Hz}-30 \mathrm{MHz}\) Type UVH, \(1 \mathrm{mV}-1 \mathrm{~V}\) in 7 ranges, 220 V . £ 75 each. Carr. £2.
 probe \(1000 \mathrm{~Hz}-\mathbf{3 0 M H z}, 300 \mathrm{mV}\) maximum. \(£ 35\) each. Carr. \(£ 1\).
CT. 343 VALVE VOLTMETER: in ruggerised steel case. Range 1.2 mV to 400 V .6 ranges indicated on \(3^{\prime \prime}\) meter. 230 v a.c. input. £25. Carr. £2.
UHF MICROWAVE MILLIWATTMETER TYPE 14:- \({ }^{\text {Direct }} \overline{\text { in }}\) reading, can be used to measure power from 100 MHz upwards. F.S.D. on 4 in . scale meter 2.5 mW . £40 each. Carr. E1.
MARCONI HF SPECTRUM ANALYSER OA. I094/3. Further details on request. £250 each. Carr. £5.
Q METER: \(30 \mathrm{MHz}-200 \mathrm{MHz}\). £55. Carr. £1.
AVOTRANSISTOR ANALYSER CT.446: ©35, carr. £1.50
ALL CARRIAGE QUOTES GIVEN ARE FOR 50-MILE RADIUS OF LONDON ONLY.

SIGNALGENERATORAIRMEC TYPE \(701 \mathrm{I}: 30 \mathrm{KHz}-30 \mathrm{MHz}, 7\) ranges. £65. Carr
f1.
BPL A.C. MILLIVOLTMETER TYPE VM.348-D Mk. 3: 2 millivolts- 2 volts, 6 ranges. €30. Carr. £1.
WAYNE KERR WAVEFORM ANALYSER A.22I: Low scale \(0.1200 \mathrm{c} / \mathrm{s}\). High scale \(1-20 \mathrm{Kc} / \mathrm{s}, 600\) ohns. Harmonic level is \(0-55 \mathrm{~dB}\) in 12 steps. \(£ 75\). Carr. \(£ 1.50\). SPECTRUM ANALYSER TYPE MW.69S (Decca): Further details on request £200.
MARCONI DUAL TRACE UNIT TM-6456: £30. Post 60p.
SIGNAL GENERATOR TS-403B/U (or URM-6IA): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission indicated on dirics. conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. \(115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}\). Freq.- \(1800-4000 \mathrm{Mc} / \mathrm{s}\). CW. FM, Modulated Pulse - \(40-400\) pulses per sec. Pulse Width \(-0.5-10\) microsecs. pulse. Outpulelay 500. Price: \(£ 120\) each + £2 carr. H.V. TRANSFORMER: \(8000 / 8000\). Output 300 mA . rms. Size: 12 in . x 12 in . x 36 in . 230 V input. ©40. Carr. £4.
FIREPROOF TELEPHONES: \(£ 25.00\) each, carr. \(£ 1.50\).
POWER UNIT: \(110 / 230\) volts a.c. input. 28 volts d.c. at 40 amps output. \(£ 30.00\)
each, carr. \(£ 3.00\) eachoothing
SMOOTHING UNIT (for the above): \(£ 10.00\) each, carr. \(£ 2.00\).
X-BAND MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James Scott.
£I25 each.Carr. \(£ 1\). CI25 each.Carr. £1.
HP-766D DUAL DIRECTIONAL COUPLER: \(940-1975 \mathrm{MHz}\). \(\mathbf{\text { C3 }} 3\) each. 75 post. BACKWARD WAVE OSCILLATOR TYPE SE-125: 6.3 heater, 105 V Anode,
7.9 mA . Mnfr. Watkins \& Johnson. £85 each. Carr. £l

TEKTRONIX TIME MARK GENERATOR TYPE 180-S1: 5, \(10,50 \mathrm{MHz} . \operatorname{E65}\). Carr. E 2.
MARCONI SIGNAL GENERATOR TYPE TF-I44G: Freq. \(85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}\) in 8 ranges. Incremental: \(\pm 1 \%\) at \(1 \mathrm{Mc} / \mathrm{s}\). Output: continuously variable 1 microvolt to I volt. Output Impedance: I microvolt to 100 millivolts, 10 ohms 100 mV - 1 volt 52.5 ohms. Imternal Modulation: \(400 \mathrm{c} / \mathrm{s}\) sinewave \(75 \%\) depth. External Modulation: Direct or via internal amplifier. A.C. mains \(200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}\).
 condition. \(£ 32.50\) each. Carr. \(£ 2.50\).
ROTARYINVERTERS: TYPE PE. 2 I8E - input \(24-28 \mathrm{~V}\) d.c., \(80 \mathrm{Amps} .4,800 \mathrm{rpm}\). Output 115 V a.c. 13 Amp \(400 \mathrm{c} / \mathrm{s}\). 1 Ph. P.F.9. £20.00 each. Carr. \(£ 2.50\).
FREQUENCY METER BC-221: 125-20.000 KC \(b\) complete with original calibration charts. Checked out. working order \(£ 20+£ 1.50\) carr. Unused as

ALL U.K. ORDERS SU8JECT TO VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage)

\section*{Ournoise reducer is something to shout about}

\section*{Wireless World Dolby noise reducer}

Complete kits for the Wireless World Dolby B noise reducer are available through the address given below. The two-channel design features
- a weighted noise reduction of 9 dB
- switching for both encodina (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes
-complete set of components for a stereo processor
-regulated power supply components
-board-mounted DIN sockets and push-button switches
-fibreglass board designed for minimum wiring
-solid mahogany cabinet, chassis, two meters, front panel, knobs, mounțing screws and nuts.
Price is \(£ 43\) inclusive
A single-channel printed-circuit board, with f.e.t. costs \(£ 2.50\) or \(£ 8.63\) with all components inclusive (excluding edge connector, £1.37 extra). Selected field-effect transistors cost 68 p each inclusive, £1. 20 for two and \(£ 2.20\) for four.

Calibration tapes are available, costing \(£ 1.94\) inclusive for \(9.5 \mathrm{~cm} / \mathrm{s}\) open-reel use and for cassette (specify which).

Send cash with order, making cheques payable to IPC Business Press Ltd, to: Wireless World noise reducer General sales department Room 11, Dorset House Stamford Street London SE1 9LU
Allow three weeks for delivery.

\section*{DOLBY KIT ORDER FORM}

Please supply me with the complete Wireless World kit for a Dolby noise reducer
I enclose remittance value \(£ 43.00\) inclusive \(\square\)

Name
Address

Additional items required

a

\begin{abstract}
,
\end{abstract} , grand BRAND NEW, FULLY GUARANTEED
BC171
0.15
BFX88
0.22
\(2 N 718\) BRAND
BCI71
BCITl



74 SERIES T.T.L. I.C.'s BI-PAK STILL LOWEST IN PRICE. FULL SPECI
CATION GUARANTEED. ALL FAMOUS

\begin{tabular}{|c|c|}
\hline  &  \\
\hline VOLTAGE REGULATOR & \\
\hline  & 1.25 \\
\hline
\end{tabular}
\begin{tabular}{c} 
ALL PRIGES \\
EXGLUDE V.A.T. \\
\begin{tabular}{c} 
Postage \(\&\) packing \\
add 20p overseas \\
add extr for aivmail. \\
Minimum order \(75 p\)
\end{tabular} \\
\hline D.IL. SOCKETS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \(25.100+\) \\
\hline TSO 1414 pin type &  \\
\hline TSOI6 16 pin type & \(\begin{array}{llll}0.35 & 0.32 \\ 0.35 \\ 0.350\end{array}\) \\
\hline 2424 pin type & \[
0.65
\] \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{BPSI6 16 pin type \(\begin{gathered}0.15 \\ (10.13 \\ 0.10 \\ 0.14 \\ 0.14 \\ \text { cosi }\end{gathered}\)} \\
\hline \\
\hline
\end{tabular}

DIODES
\begin{tabular}{|c|c|c|c|}
\hline As 119 & 0.08 & BYZIf & 0.41 \\
\hline AAI20 & 0.08 & BTZ17 & 0.36 \\
\hline AA129 & 0.08 & BYZ18 & 0.36 \\
\hline AAY30 & 0.09 & BYZ19 & 0.28 \\
\hline AAZ13 & 0.10 & CG62 & \\
\hline Bal00 & 0.10 & (OA91Eq) & 0.06 \\
\hline BAl16 & 0.21 & CG651 & \\
\hline Balz \({ }^{\text {c }}\) & 0.22 & (OA70-OA & 79) \\
\hline BAl48 & 0.15 & & 0.07 \\
\hline BA154 & 0.12 & OA5 Short & \\
\hline BA155 & 0.15 & Leads & 0.21 \\
\hline BA165 & 0.14 & OAl0 & 0.14 \\
\hline BA173 & 0.15 & OA47 & 0.07 \\
\hline BB104 & 0.15 & OA70 & 0.07 \\
\hline BYt00 & 0.16 & OA79 & 0.07 \\
\hline BY゙101 & 41. 12 & OA81 & 0.07 \\
\hline BY/45 & 0.18 & OA85 & 0.09 \\
\hline BY114 & 0.12 & OA90 & 0.07 \\
\hline BY124 & 0.12 & OA91 & 0.07 \\
\hline BYI26 & 0.15 & OA95 & 0.07 \\
\hline BY127 & 0. 16 & OA200 & 0.07 \\
\hline BY128 & 0.16 & OA202 & 0.07 \\
\hline BY130 & 0.17 & SDi0 & 0.06 \\
\hline BY 133 & 0.21 & SD19 & 0.06 \\
\hline BY164 & 0.51 & 1 N 34 & 0.07 \\
\hline BYX38/30 & 0.43 & IN34A & 0.07 \\
\hline BYZ10 & 0.36 & - N 914 & 0.06 \\
\hline BYZ11 & 0.31 & 1 N916 & 0.06 \\
\hline BYZ12 & 0.31 & 1-N4148 & 0.06 \\
\hline BYZ 13 & 0.26 & 15021 & 0.10 \\
\hline & & [S95] & 0.07 \\
\hline
\end{tabular}


\section*{STABILISED POWER MODULE SPM80}

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watt (r.m.s.) per channel simultaneously. This module embodies the latest components and circuit techniques incorporating complete short circuit protection. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 amps at 35 volts. Size: \(63 \mathrm{~mm} \times 105 \mathrm{~mm}\) \(\times 30 \mathrm{~mm}\).
These units enable you to build Audio Systems of the highest quality at a hitherto unobtainable price. Also ideal for many other applications including:-Disco Systems. Public Address Intercom Units, etc. Handbook available 10p.

\section*{STEREO PRE-AMPLIFIER TYPE PA100}

Built to a specification and NOT a price, and yet still the greatest value on the market, the PA100 stereo pre-amplifier has been conceived from the latest circuit techniques. Designed for use with the. AL50 power amplifier system, this quality made unit incorporates no less than eight silicon planar transistors, two of these are specially selected low noise NPN devices for use in the input stages. Three switched stereo inputs, and rumble and scratch filters are features of the PA100 which also has a STEREO/MONO switch, volume, balance and continuously variable bass and treble controls.
\(£ 13.20\)

\section*{MK 60 AUDIO KIT}

Comprising: \(2 \times\) AL60, \(1 \times\) SPM80, \(1 \times\) BTM80, \(1 \times\) PA100, 1 front panel, 1 kit of parts to include on-off switch, neon indicator, stereo headphone sockets plus instruction bookjets. COMPLETE PRICE: 27.55 plus 45 p postage

\section*{TEAK 60 AUDIO KIT}

Comprising: Teak veneered cabinet size \(16 \% / 4^{\prime \prime} \times 11 /_{2}^{\prime \prime} \times 3 \%^{\prime \prime}\), other parts include aluminium chassis, heatsink and front panel bracket, plus back panel and appropriate sockets, etc.
KIT PRICE: \(\mathbf{c 9 . 2 0}\) plus 45 p postage.

\section*{STEREO 30 COMPLETE AUDIO CHASSIS}

\section*{\(7+7\) WATTS R.M.S.}

The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This with only the addition of a transformer or overwind, will produce a high quality audio unit suitable for use with a wide range of inputs, i.e. high quality ceramic pickup, stereo tuner, stereo tape deck, etc.
Simple to install, capable of producing really first-class results, this unit is supplied with full instructions, black front panel, knobs, mains switch, fuse \& fuse holder and universal mounting bracket, enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available.

PLEASE ADD V.A.T. AT \(25 \%\) TO ALL ITEMS EXCEPT *.ADD 8\% \# NO Y.A.T. GIRO NUMBER 388-7006

deal for the beginner or advanced constructor who requires \(\mathrm{Hi}-\mathrm{Fi}\) performance with a minimum of installation difficulty. Can be installed in 30 mins .

PRICE \(£ 15.75\)
Plus 45p.
TRANFORMER plus 45p
TRANSFORMER £2.45
ostage \& packing
TEAK CASE \(£ 3.65\)
plus 45p
postage \& packing

\section*{AL 10/AL 20/AL 30}

The AL10, AL20 and AL30 units are similar in their appearance and in their general specification. However, careful selection of the plastic power devices has resulted in a range of output powers from 3 to 10 watts R.M.S.
The versatility of their design makes them ideal for use in record players, tape recorders, stereo amplifiers and cassette and cartridge tape players in the car and at home.

AL10 £2.30, AL20 £2.65, AL30 £2.95
——.M.I. LEK 350 Loudspeakers Enclosure kit in teak veneer,
including speakers. Rec. retail price including speakers. Rec. retail price E4.50 per pair.
ONLY £27.75 PECLAL PRICE
SPEAKERS
ALSAO

4-16 ohms impedance frequency response 20 to \(20,000 \mathrm{~Hz}\) stereo/mono switch and
Volume Control \(\mathrm{E4.55}\)
\(\overrightarrow{F O R}\) PA100. Attractive matt silver. Finish with black trim and lettering. Adds that professiona touch 81.10 only.


PRICE £2.65

\section*{STORAGE-CARRY CASES}

\section*{RECORD CASES}

7 in E.P. 18 3/8th in. \(x 7\) in \(\times 8\) in ( 50 records) 12 in L.P. \(13 \% /\) in \(\times 73 / 8 \mathrm{th}\) in \(\times 12 \%\) in ( 50 recers CASSETTE CASES
Holds 15. 10in \(\times 3^{3 / 4 i n} \times 5\) in. Lock and handle 8-TRACK CARTRIDGE CASES Holds I4. 13 in \(\times 5\) in \(\times 6\) in. Lock and handle Holds 24.13 3/8th in \(\times 8\) in \(\times 5\) 3/8th in Lock and handle

\section*{CARTRIDGES}
\(\bar{A} C O S\) GP91-1SC 200 mV at \(1.2 \mathrm{cms} / \mathrm{sec}\) GP93-1 \(\quad 280 \mathrm{mV}\) at \(1 \mathrm{~cm} / \mathrm{sec}\)E 1.11
\(£ 1.43\)
\(£ 1.43\)
\(£ 2.31\) \begin{tabular}{lc}
\(\mathrm{J}-2005\) & \(\begin{array}{ll}100 \mathrm{mV} \text { at } \mathrm{cm} / \mathrm{csec} \\
\text { Crystal/Hi Output }\end{array}\) \\
\hline
\end{tabular} \(\mathrm{J}-2005\) Crystal/Hi Output
\(\mathrm{J}-2010 \mathrm{C}\) Crystal/Hi Output -2010C Compatible \(\mathrm{J}-2006 \mathrm{~S}\)
S Stereo/ Hi Output
Ceramic/Med Output \(\mathrm{J}-2203\) Magnetic \(5 \mathrm{mV} / 5 \mathrm{~cm} / \mathrm{se}\) including stylus J- 22038 Replacement stylus for abov AT-55 Audio-technica magnetic cartridge \(4 \mathrm{mV} / 5 \mathrm{cn} / \mathrm{sec}\)

FRONT PANEL

\section*{DYNAMIC MICROPHONE}

TYPE Bl223 200 ohms impedance. Complete
with stand, on off switch and 2.5 mm and 3.5 mm plugs. Suitable for cassette tape recorders. PRICE \(£ 1.67\)

\section*{STEREO FM} TUNER
WRITE NOW FOR FULL DETAILS

\section*{SIGNAL GENERATORS}

MARCONI TFBOID/IS. \(10-480 \mathrm{mHz}\) P.O.A.
MARCONI TFBOIB/2S. \(10-480 \mathrm{mHz}\) E225. MARCONI TF144H \(10 \mathrm{kHz}-72 \mathrm{mHz}\) P.O.A.
ADVANCE SG63D. AM/FM \(7.5-230 \mathrm{mHz}\) £125.
RACAL/AIRMEC 201A. \(30 \mathrm{kHz}-30 \mathrm{mHz}\). As new. P.O.A. ADVANCE SG2I VHF Square-wave generator \(9 \mathrm{kHz}-100 \mathrm{mHz}\). \(\mathbf{E 2 5}\).

\section*{OSCILLOSCOPES}

TEKTRONIX 661 Sampling scope with 4 S 1 \& 5 T1A plug-in units. 3 GHz . \(£ 200\)
TEKTRONIX 545A with CA unit. DC-30mHZ. Price only \(£ 295.00\)
TEKTRONIX \(531 \mathrm{DC}-15 \mathrm{mHz}\) with \(L\) type plug-in
TEKTRONIX \(535 \mathrm{DC}-15 \mathrm{mHz}\) with \(L\) type plug-in
TEKTRONIX 545 B DC- 30 mHz with ' CA ' plug-in
TEKTRONIX 585A. DC -80 mHz with type 82 plug-in
TEKTRONIX 654B. Storage oscilloscope.
TEKTRONIX 502. 200uV. Sens. X-Y
TEKTRONIX C27 Polaroid Camera. Series 125 with 560 series adapte

\section*{MISCELLANEOUS TEST EQUIPMENT}

MARCONI TF1400S double pulse generator with TM6600 S seconcary pulse unit. £105.
MARCONI TF791D deviation meter, \(4-1024 \mathrm{mHz} .0 .900 \mathrm{kHz}\) deviation MARCONI 455E Wave Analyser £120.
MARCONI TF2600 Valve Voltmeter 1 mV -300V. Excellent. \(£ 75\)
ROHDE \& SCHWARZ USVD calibrated receiver \(280-940 \mathrm{mHz}(4600 \mathrm{mHz})\) ROHDE \& SCHWARZ A.F. Wave Analyser type FTA \(0-20 \mathrm{kHz}\) plus \(\log / \operatorname{lin}\) AF meter incorporated. Excellent condition.
ROHDE \& SCHWARZ URV milli-voltmeter BN10913 (late type) \(1 \mathrm{mV}-10 \mathrm{~V}\). With ' \(T\) ' type insertion unit. free probe and attenuator heads. \(1 \mathrm{kHz}-1.600 \mathrm{mHz}\) £175.
COSSOR 1453 True RMS milli-voltmeter. Excellent. \(£ 75\).
AIRMEC TYPE 210 modulation meter. Excellent condition
ROHDE \& SCHWARZ "SCR"V.H.F. Signal Generator \(1000-1900 \mathrm{mHz}\) ADVANCE type SG68 low distortıon A.F. oscillator. \(1.5 \mathrm{~Hz}-150 \mathrm{kHZ}\). Sine and square wave. Battery operated. \(£ 75\). MARCONI type TF936 Impedance Bridge. £85.00.
MARCON type \(1 F 936\) impedance Bridge. \(£ 85.00\).
GERTCH Phase Angle \(V\). Meters. Range \(1 \mathrm{mV}-300 \mathrm{~V}\), in 12 ranges. SOLARTRO N oscillator type CO \(546.25 \mathrm{~Hz}-500 \mathrm{kHz} . £ 30.00\). GAMBRELL Precision 4 Decade Resistance Box. 1.11, 110 ohms
\(\mathbf{£ 2 4 . 5 0}\). £24.50.

\section*{BOXER INSTRUMENT \\ FANS \\ FANS}

Veryensions \(4.5 \times 4.5 \times 1.5\) ins. very quiet running. precision fan specially designed for cooling
elecronic equipmens, amplifiers etc. For 110 V . AC operation(practise is to run from split primary of mains transformer or use suicable mains dropper). CC only 11 Watts. List price over 110 each. Our price, in brand new
condition. is \(\mathbf{f 4 . 5 0}\).

\section*{POWER SUPPLIES}

WEIR Electronics modular unit. ModeL OCAR Regulated \& stabllsed. 0-7V@2A. \(\mathbf{E 9 . 5 0}\)
APT regulateo, stavilised power packs
of computer quality. 240 V input. of compuler quality. 20 VDCC O.P. variable at 10 A . Also 10 V . variable at 7.5 A . Uses best quality output transistors. New condition. Both models E18.50.

\section*{MANY TYPES of RF plugs and} sockets in stock:
BNC plugs \(50 \Omega .30 \mathrm{p}\). BNC sockets \(50 \Omega\). 25p. N. Type plugs \(50 \Omega\). 50 p . Burndept plugs. 40p. Burndept sorkets. 40p. Miniature PYE. 20p. Miniature sockets. 20p.
All connectors are brand new. Immediate delivery. Please add anpropriate postage.

AE1 miniature uniselectors. Type 2200C. 3 banks. 1 bridging, 2 non-bridging wipers. 12 positions. Coil resistance 50 ohms. Complete with bases. Brand new. \(£ 4.50\) each., 20-way BPO Jack strips to accept \(316^{\text {type Jack plugs. Also quantity }}\) of 316 plugs available. All good condition.

AVO VALVE TESTERS
Brief-case type 160 . Full working
Brief-case type 160 .
condition throughout. \(£ 65\).
AERIAL CHANGE/OVER RELAYS of current manufacture designed especof current manufacture designed espee-
ially for mobile equipments, coil voltage 12 v . frequency up to 250 MHz at 50 watrs. Small size only, 2 in. \(x, z\) in. Offered brand new, boxed. Price \(£ 1 \cdot 50\), inc. P.\&P.
RACAL/AIRMEC VHF/UHF Millivolemeter type 301 A . Frequency range \(50 \mathrm{~Hz}-900 \mathrm{mHz}\). Voltage range \(300 \mu \mathrm{~V}-3 \mathrm{~V}\) in eight ranges. Co-axial input 50 and 75 ohms BNC connectors. DC Ranges \(100 \mu \mathrm{~V}-10 \mathrm{~V}\) in ten ranges. Light-weight mains operated instrument in as new condition with handbooks. Othe from stock.

WESTATEX PAPEAR TAPAE PUNCHES 8 Hole. Late model contained in nois reducing cabinets. As new. \(£ 105.00\).
E.M.I. oscilloscopes model WM 16 with type \(7 / 1\) W.B.A. plug-in unit. Sup-
plied in perfect condition complete with trolley. £125.00.
HEWLETT PACKARO/ BOONTON TYPE 8900B Peak-power calibrator. Measures erue peak power \(\pm .6 \mathrm{db}\) absolute. Frequency range \(50-2000 \mathrm{Mhz}\). RF
power range 200 mW peak, fullpower range 200 mW peak, full-
scale. RF impedance 50 scale. RF Impedance 50 ohms.
P.O.A.

MARCONI TF995A2/M AM/FM R.F. SIGNAL GENERATORS \(1.5-220 \mathrm{mHz}, 0.100 \mathrm{kHz}\) Deviation \(1 \mu \mathrm{~V}-100 \mathrm{mV}\) output. Sold in excel lent condition. P.O.A.

PLEASE ADD \(8 \%\) V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

\section*{SINTEL for CMOS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SDHOMOM & 0.17 & ciaceriaf & 0.83 & C4ab390 & 7.47 & cenesial & 20.35 & canaze & \\
\hline Leamine & 0.17 & Cumeris & 0.79 & camman & 0.89 & Cansuo & 10.64 & ¢9008 & 0.5 \\
\hline coampae & 0.17 & ctanezuf & 0.17 & CSAOMAE & 0.69 & comear & 0.92 & Cinteste & 0.5 \\
\hline conoobal & 0.97 & CDAO24AE & 0.64 & canocta & 0.69 & CDMO3180 & 16.43 & cuavisif & 0.6 \\
\hline CTMEIE & 0.17 & cianesme & 0.17 &  & 0.83 & cpueser & 133 & CuTssie & 0 \\
\hline conobeas & 4.75 & CDA026) & 142 & CHOMAE & 0.77 & срйcist & 0.90 &  & \(0 \cdot 6\) \\
\hline conomaje & 4.46 & с94027af & 0.35 & couestie & 115 & crumer & 058 & ctaever & 15 \\
\hline CDHO10AE & 4.46 & соноzame & 074 & coutuaf & 1.10 & cotoker & 0.18 & CO45018E & 0.3 \\
\hline  & 6.17 & CD40290 & 109 & cruontic & 0.74 & cpucest & 0.18 & [Disceis & 1.8 \\
\hline cras 2ue & 0.17 & CDH030AE & 0.46 & cansue & 0.46 & C.403] & \(0.18{ }^{\text {\% }}\) & cousuef & 12 \\
\hline Caxal 3 ME & 0.48 & COLD3ILIE & 1.81 & сDecise & 0.45 & (tu0) \({ }^{\text {a }}\) & 0.18 & COL5100E & \\
\hline COAOLCAE & \(\mathrm{CBS}^{8}\) & CDU033AE & 0.68 &  & 0.46 & O4073 & 0.18 & CDS5118 & 1.9 \\
\hline CO40015AE & 0.83 & сдиабзае & 1.14 & CMAOSIAE & 0.77 & comers & 0.19 & CDS5130 & 1. \\
\hline Patbue & 046 & cota34a & 7.83 & COCOS2M & 0.71 & Ca407516 & 0.18 & ctusper & 11 \\
\hline comizae & \(0 \mathrm{~B}_{3}\) & \({ }^{\text {conalishaf }}\) & 0.97 & çuchas & 0.77 & cadirs & 127 & cjusura & 11 \\
\hline ciomeme & 0.83 &  & 7.47 & CDUSSME & 0.95 & C4477t & 0.18 & chasvat & 0 \\
\hline ciatigaf & 0.45 &  & 0.74 & csusut & 1.04 & canolat & 0.18 & OCOLSESEP & \\
\hline CDA0zase & 0.92 & CD4038AE & \(0.8 \pm\) & cmajorn & 1.08 & Cu08ILE & 0.18 & & \\
\hline
\end{tabular}

RCA 1975 CMOS Databook 400 pages of data sheets and \(\overline{200}\) pages of ADVANCED CLOCK KITS - Cryatal contrl - Bartary back 37 P P P fitted to cer or boat - \(\mathbf{0 . 5 \prime \prime}\) or \(\mathbf{0 . 3 \prime \prime}\) displays - attractive slim case - brightest display you can get - with alarm, touch switch snooze, autometic intensity control Phone or write for detalls and prices
\(\mathbf{3 2 . 7 6 7} \mathbf{k H z}\) Min. Quartz Crystal for watch or clock
Xtal Timebase Kit: Will provide stable 50cps for clack IC's giving
\(\mathbf{3 . 6 0}\) accurate to a few sec: Will provide stable 50 cps .32 .768 kHx Xtal 3 CMO IC's, trimmer. C's R's, IC skts

COMMON CATHODE LED DI704E \(03^{\prime \prime}\) DISLAYS
DL704E \(03^{\prime \prime}\)
FND500 \(05^{\prime \prime}\)
FND500 \(05^{\prime \prime} \quad\) only \(85 p\) MAN3M O \(13^{\prime \prime} \quad\) E1.50 DL33MMB 3 digs in Dit \(£ 1.25\) IC 8 IC 8
MK502 MK50253 4 or 6 digit 12 or 24 hr Alarm Clock IC with snooze MK502064 digit thr clock and programmable appliance timer \(\mathbf{~} 5.60\) MM5314 4/6 digu 12/24 hr clock E4.44. AY5 12244 HAROWARE
SOLDERCON PINS for Lowest Cost IC sockets for TTL, CMOS. IC's displays Sirip of 100 for 50 p. 400 for \(£ 2.1000\) for \(£ 4.3000\) for 10.50 LSI Sockets (Soldercon Pins with nyion supports) 22, 24, 28 or 40 pin 30p. \(\mathbf{2 0}\) way Colour-Coded Flexible Flat Cable \(\mathbf{£ 1}\) per \(\mathbf{m}\).; \(\mathbf{£ 8 . 5 0}\) for 10 m 7-way Boss Switch: 7 ultra-min toggle sws in 14 pin DIL

BUILD A SIMPLE CLOCK 5LT01 4 digit \(0.5^{\prime \prime}\) display + AY51202 new clock IC + suitable transformer: all for £13.10. (Only other components needed are 20 R 's. 5 C s. 6 D's, 3 Sws)

ADD VAT AT 8\% - new \(25 \%\) rate does not apply to any of the above goods

Sp P\&P on orders under E 3 All orders processed on the day of receipt
Official orders welcomed, written, phoned or tetexed, from Polys. Unive
Schools. Govt Dept. Nat. Inds, Rated Cos: Fastest delivery for R \& D
Exports No VAT 35 p (Europe). £ 1 (Overseas) for Air Mart P\&P
Full Price List and Data with any order, or free on request
SINTEL 53 Aston Stret oxford

\section*{DATA AND} COMMUNICATIONS TERMINALS

Teletype 28, 32, 33, 35, 40
TermiNet 30,300 \& 1200 ( 30 and 120 cps ) Teleterm \(1030 \& 1132\) (portable 30 cps with integral coupler and RS 232C)
Other page printers (by Siemens, ITT Creed, etc.) TermiNet 120 line printer
* Spares, repairs, overhauls and maintenance
\(\star\) Other types and models àvailable
* Refurbished units also available
\(\star\) Short and long period rentals
* Minicomouter interfaces
\(\star\) Quantity díscounts
* Immediate delivery

TELEPRINTER EQUIPMENT LTD. 70-80 AKEMAN STREET TRING, HERTS., UK

Telephone 0442-82-4011
Cables RAHNO Tring
Telex 82362
A/B Batelcom Tring


\section*{TELETYPE 28 - NEW SPECIAL PRICE}

TELETYPE 28 without keyboard Good condition (can be used as receive only) \(£ 32.50\) ea.

Limited quantities - information in process of being obtained - this may not be available when orders are dispatched but we guarantee to forward comprehensive information at the earliest possible time.

\section*{Ex-BEA}

Control Units by Univac.
Consisting of \(2-50\) way plug/socket; 3 multiway switch assembly; a 2 \& 4 decade push button assembly electrical reset; etc. Very good value. £12.50 each.

MARCONI Signal Generator. TF801B 12 470 MHZ E120 ea.
MARCONI Valve Voltmeter type TF1041B £45.
MARCONI TF934/2 FM Deviation Meter \(£ 35\).
MARCONI TF1020A RF Power Meter 150 and 300 Watts. As New. \(£ 60\) ea
MARCONI TF1020A RF Power Meter 50 and 100 Watts. As New, £45 ea.
MARCONI TF1094A/S HF Spectrum Analyser. Late model. Must go. \(£ 160\).
MARCONI TF1434/2 Counter Range extension unit \(10-100 \mathrm{MHz} \mathbf{£} \mathbf{2 5}\) ea
KELVIN \& HUGHES Single Channel Recorders with spare paper \(£ 18\) ea.
DAWE Digital Printer type 3094A. As new £27.50 ea.

> MARCONI OSCILLOSCOPES
> TF1330-DC - \(15 \bar{M} H Z\). Single Beam. \(£ 65\) ea.
> TF 1331-DC-15MHZ. Double Beam, \(£ 85 \mathrm{ea}\)

WESTON THERMOPROBE -60 to +100 degrees Centigrade \(\mathbf{£ 7 0}\).
FURZEHILL Valve Voltmeter V200. 10 mv full scale. £18 ea. Nice condition.
RHODE \& SCHWARZ Admittance Meter VLUK-BN3511. As new, £110.
HEWLETT PACKARD DB Oscilloscope type. 175 A . \(3 \mathrm{~dB}-50 \mathrm{MHZ}\) twice. Large \(6 \times 10 \mathrm{~cm}\) screen £185.
BRUEL \& KJOER Voltmeter type 24092 cs to \(200 \mathrm{k} / \mathrm{cs}\). \(\mathbf{£ 8 5} \mathbf{e a}\).
SOLARTRON Multipurpose stab PU type 1094. Standard mains input. Outputs: +250 V DC 200MA: \(+18 \mathrm{VDC} 2 \mathrm{~A} ;+6 \mathrm{VDC} 8 \mathrm{~A} ;-3.5 \mathrm{VDC}\)

100MA: -6V DC 8A: -18 V DC 4A: 25 V AC 150MA. All DC lines will withstand shortcircuits to earth. With copy of manual \(£ 20\) ea. DUAL TRACE PLUG-IN units for CD1212 Scopes DC- \(7.4 \mathrm{MHz} £ 35\) ea.
TEKTRONIX Colour Monitoŕ type \(654 £ 550\).
TEKTRONIX RM527 Waveform Monitor \(£ 250\). TELONIC Sweep Generator SM2000/1. Main frame with \(0-20 \mathrm{kHz}\) plug-in \(£ \mathbf{£} 00\).
COLLINS RECEIVER IP-10ULR. 90 MHz to 10 GHz in 8 bands. Panoramic. Analyser or DF modes. With power unit \(£ 350\) ea.
TEKTRONIX Oscilioscópé type \(516 \mathbf{£ 2 4 0}\).
TEKTRONIX Oscilloscope type 422 £430.
* AB POTENTIOMETERS
\(100 K+100 K\) LIN DUAL GANG 25p
ea.
Discount for quantities. P. \& P extra

\section*{\(\star\) TELEPHONES}

MODERN STYLE 706 BLACK OR TWO-TONE GREY £3.75 ea. P. \& P. M5 STYLE 7006 TWO-TONE GREEN OR GREY \(£ 3.75\) ea. P. \& P. 45 p 45p. STYLE 7006 TWO-TONE GREEN OR GREY \(\neq 3,75\) ea. P. \& P. 45 p .
HANDSETS—complete with 2 insets and lead \(£ 1.25\) ea. P. \& P. 37 p . HANDSETS-complete with 2 insets
DIALS ONLY. 50p ea. P. \& P. \(30 p\)
STILL AVAILABLE MODERN STANDARD TELEPHONES IN GREY STILL AVAILABLE MODERN STANDARD TELEPHONES IN GREY
OR GREEN WITH A PLACE TO PUT YOUR FINGERS LIKE THE 746. \(£ 3.00\) ea. P. \& P. 45p.

EX-MINISTRY CT436 Double Beam Oscilloscope DC-6 megs. Max Sensitivity \(10 \mathrm{mv} / \mathrm{cm}\). Small compact. Size \(10 \times 10 \times 16 \mathrm{in}\). Suitable for Colour TV servicing. Price \(£ 85\) each including copy of manual.
*CAPACITOR PACK 50 Brand new components only 50p. P. \& P. 27 p . AP.C. MOUNT SKELETON PRE-SETS. Screwdriver adjust 10.5 and 2.5 M a 2 pea e.
\(1 \mathrm{M}, 500.250\) and 25 K a 4 p ea. Finger ad. 'just 10.5 and 2.5 M a 3 pea. 1M. 500250 and 25 K a' 5 p ea. Min. P. \& P. P. 15 p.
*Bethive Trimmer 3/30 pf.
Brand new. Oly 1-9 13p ea. P. \& P. 15 p : 10-99 10p ea. P. \& P. 25p: 100-999 \%pea.P. \& P. free
DELIVERED TO YOUR DDOR 1 cwt of Electronic Scrap chassis. boards. etc. No PC.B. PACK S \& D Quantity 2 sq f-no P.C.B. PACK pieces. 50 p plus P \& P. 25 p.
-TRIMMER PACK, \({ }^{2}\) Twin 50:200 pi דTRIMMER PACK, 2 Twin 50,200 pi
ceramic: 2 Twin 10;60 pf ceramic. 2 min ceramic; 2 win 10/60 pf ceramic. 2 min
strips with 4 preset \(5 / 20\) pi on each: 3 air spaced preset \(30 / 100\) pf on ceramic base ALL BRAND NEW.

FHACHI RAMP MODULE FX21 24 Volt DC Requires only external capacitor and 100 K ohm potentiometer to control and look ohm potentiometer to contro mfd electrolytic gives sweep of approx 1 cm per second) in or out sync approx. Price £5.75. P. \& P 20 p 25p the LOT. P. \& P. 15 p .
©PHOTOCELL equivalent OCP71, 13p ea GRATICULES, 12 cm . by 14 c
*Vast quantity of good quathy components
- NO PASSING TRADE-so we offer

3 LB. of ELECTRONIC GOODIES
for \(\mathrm{E} 1.7 \overline{0}\) post pard
HF Cirystal Drive Unit. 19 in. rack mount. Standard 240 V input with superb crystal oven by Labgear (no crystals) \(£ 5\) ea. Carr. E 2 . BOURNS TRIMPOT POTENTIOMETERS. 20: 50; 100; 200; 500 ohms, 1; 2; 2.5, 5 . 10: 25 K at 35 p ea. ALL BRANO NEW RELIANCE P.C.E. mounting, 270: 470: 500 ohms: 10 K at 35 p ea. ALL BRAND NEW. TEN TUAN POTS. Ex equ As new Micropot Model 205. Two point nine ohms \(0.1 \%\) @
Bourns Model 35
Bourns Model 3507 S-3-101 100 ohms
E1 25 ea. P\&P \(15 p\)
VENNER Hour Meters- 5 digit. wall mount -sealed hour Meters-5 digit. wall mount P \& P. 55p.
TRANSFDRMERS. All standard inputs Gard/Parm/Part. 450-400-0-400-450. 180 A. \(2 \times 6.3 \mathrm{v}\) f3 ea
\begin{tabular}{|lll|}
\hline \multicolumn{4}{|c|}{ FANTASTIC VALUE } \\
Miniature & Transformer. Standard 240 V \\
mput. & \(3 V\) & 1 \\
amp output. Brand New. \\
65p ea. & P. \& & P. 20p. Discount for \\
quantity.
\end{tabular}

FIBREGLASS PRINTED CIRCUIT BOARD
Brand New, Single or Doutle sided. Any size 1六p per sq. in. Postage 20p per order.
*HIGH VALUE PRINTED BOARD PACK, no- two boards the same-no short leaded computer boards. \(\mathbf{f 1 . 7 5}\) post pald
*METER PACKS-3 different meters for \(£ \mathbf{2}\) P \& P 55p.

\section*{RESETTABLE CDUNTERS-4 dis} Stonebridge/Sodeco. 1.000 ohm coll \(\mathbf{f 2}\) ea P. \& P 35p.
E.H.T.CAPACITORS

1 mfd 75 KV working. 2 mtd 5 KV working. 8 mfd 25 Ky working. 05 mfd 10 KV working \(\mathbf{£ 2}\) each

RAPID DISCHARGE
1 mfd 56 KV £2.50 ea 0.9 mfd 15 KV \(\mathbb{E 3 . 5 0}\) ea. 0.15 mfd 120 KV f7ea Carrage

\section*{FHACHI VCG MOOULE}

FX11-10-100K HZ
Size \(2 \times 1 / 8 \times 9 /{ }^{3 / H}\) Input 12 V to 24 VOC (not centre tapped) 1 BV input giving 10 V constant amplitude outpur. Requires only a 1 meg ohm potentiometer to tune entire range - or can be swept with a saw tooth input. Price \(£ 5.75\).
\(P\) \& P. 20 p.

DON'T FORGET YOUR MANUALS
S.A.E. WITH

REQUIREMENTS

\section*{LOW FREQUENCY WOBBULATOR}

For alignmeňt of Receivers. Filters. etc, 250 KHz to 5 MHz , effective to 30 MHz on harmonics. Three controls-RF level, sweep width and frequency. Order LX63. Price £8.50 P. \& P. 35p. As above but can have extended cover range down to 20 KHz by addition of external capacitors. Order LX63E. Price £11.50 P. \& P. 35p.
Both models can be used with any general-purpose oscilloscope. Requires 6.3 V AC input. Supplied connected for automatic 50 Hz sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability, with the exception of the controls (not cased, not calibrated).

\section*{20HZ to 200KHZ}

\section*{SINE AND SQUARE WAVE GENERATOR}

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. \(\mathbf{£ 8 . 8 5}\) each. P. \& P. 25 p. Sine Wave only £6.85 each. P. \& P 25p.

\section*{WIDE RANGE WOBBULATOR}

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect \(6 \cdot 3 \mathrm{~V}\) AC and use within minutes of receiving. All this for only \(\mathbf{£ 6} \mathbf{6 5}\). P. \& P. 25p. (Not cased not calibrated.)

TRANSISTOR INVERTORS
TYPE A
Input: 12VDC
Output: 1.3 kV AC 1.5 MA
Price \(\mathbf{£ 3 . 4 5}\)

TYPE B
Input: 12V DC
Output: 1.3 kV DC 1.5 MA
Price \(\mathbf{£ 4 . 7 0}\)

TYPE D
Input: 12 V to 24 V DC
Dutput: 14 kV DC 100 micro amps at 24V. Progressively reducing for lower input voltages
Price £11

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook. up a 9 volt battery and connect to your scope and have two traces for ONLY £6-25. P. \& P. 25p.
STILL AVAILABLE our 20 MHZ version at £9.75. P. \& P. 25p.

\title{
VALUE ADDED TAX not included in prices-Goods marked with \(\star 25 \%\) VAT, otherwise \(\mathbf{8 \%}\) Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
}

Open 9 a.m. to 5.30 p.m. Mon. to Sat


7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

\title{
Forallwhowantto knowabout electroniccircuits
}

Here's a book of very special appeal to all concerned with designing, using or understanding electronic circuits. It comprises information previously included in the first ten sets of Wireless World's highly successful Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of the ten sets - including additional circuits - in this magazine size hard cover book has been updated where necessary, and is preceded by an explanatory introduction. Circuit designs ( 1 ) is the first collection of its kind.

Circuits covered are:
Basic active filters
Switching circuits
Waveform generators
AC measurements
Audio circuits
Constant-current circuits
Power amplifiers
Astable circuits
Optoelectronics


\section*{A newbook fromWirelessWorld}

To: General Sales Department. IPC Business Press Limited, Room II, Dorset House,
Stamford Street, London SEI 9LU.
Please send me
copy/copies of
Circuit Designs - Number I at \(£ 10.40\) each inclusive. I enclose remittance value \(E\).
.(cheques payable to
IPC Business Press Ltd.)

NAME (please print)
ADDRESS

Companyregistered in England and a subsidiary of Reed International Lirited Registered No 677128 Regd. office Dorset House. Stamford Street, London SEI 9LU.

\section*{Appointments}

Advertisements accepted up to 12 noon Tuesday, September 30th, for the November issue subject to space being available.

DISPLAYED APPOINTMENTS VACANT: \(£ 6.99\) per single col. centimetre (min. 3 cm ). LINE advertisements (run on): 99p per line (approx. 7 words), minimum three lines. BOX NUMBERS: 40 p extra. (Replies should be addressed to the Box numbers in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU) PHONE: Allan Petters on 01-261 8508 or 01-261 8423.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

\section*{ELECTROSONIC S.E. LONDON}

\section*{SENIOR DEVELOPMENT ENGINEER PROJECT ENGINEER TEST ENGINEER INSTALLATION ENGINEER}

FROM £4200 £3000-£3600 £2400-£2800

The Company has vacancies in its design, manufacturing and service division as outlined below.
Electrosonic Ltd. is leader in the rapidly expanding fields of lighting control, audio and audio visual systems and offers a wide range of interesting work in an attractive environment with excellent conditions of employment.

\section*{AUDIO DEVELOPMENT ENGINEER}

A Senior Engineer is required to head up the audio side of a development team engaged in new product designs for the audio and audio visual markets. A knowledge of the standards required in studio mixers and professional audio equipment is essential and it is expected that the selected applicant will have qualifications to at least HNC level coupled with specialist audio training and a minimum of five years' experience in industry. An attractive salary will be negotiated in line with the responsibilities of the position, experience and qualifications.

\section*{AUDIO PROJECT ENGINEER}

An Engineer is required with experience of planning and detailing special projects. He will be required to handle projects from initial concept to on-site commissioning and should have the ability to liaise with customer, sales and production departments. ONC with a minimum of three years' experience in an electronics company essential, preferably with an audio background. Willingness to travel and a current driver's licence essential. This is an important post and remuneration will reflect qualifications and experience.

\section*{TEST/SERVICE ENGINEERS}

Vacancies exist in both these departments for Electronic Engineers with at least two years" continuous experience in industry additional to industrial training periods. On the job training will be given in the company's products and opportunities for advancement are available. Service engineers will be required to work both in the factory and on site and the holding of a current driving licence is desirable.

\section*{INSTALLATION ENGINEERS}

The Hire Department requires an Engineer to set up equipment in the factory and install and operate on site. The equipment is principally for exhibition and audio presentation and includes lighting and audio systems. Essential requirements are attention to detail with a mature and presentable manner, the job will appeal to young engineers with an interest in electronics and travel. A clean driving licence is desirable. Salary according to age and previous experience, in the range \(£ 2000-£ 2600\) with overtime and allowances.

Applications should be made by telephone or in writing to: Mr. R. D. Naisbitt, Personnel Director, Electrosonic Ltd., 815 Woolwich Road, Charlton, London, SE7 8LT. Tel. 01-855 1101.

\section*{Quality Assurance \& Test Engineers Product Support, Installation \& Service Engineers}

\section*{MEDICAL ELECTRONICS. RADAR. BROADCAST SVSTEMS.}

At EMI Electronics Lid., Hayes, we are in the forefront of elec. tronics technology with a wide range of award winning projects. Increased demand for our products, particularly from overseas, means that we now need more engineers in the Quality Assurance and Test Departments of our major Divisions. The vacancies are

\section*{Medical Systems}

Junior and Senior positions ranging from trouble-shooting of logic circuitry, video displays, and electro-mechanical systems to design and development of advanced control circuitry. Also installation and service positions involving world-wide travel.

\section*{Radar and Equipment}

Junior and Senior positions involving systems and unit test of advanced radar and automatic test equipment systems, fault diagnosis and building special to type test equipment. Product support positions involving design and development of conversions and modifications to radar and associated systems, defect investigation, and liaison with military users.

\section*{Sound and Vision Equipment}

Functional testing of broadcast equipment including TV colour cameras, studio equipment, community TV amplifiers, and logic circuitry.

For this interesting and varied work we need engineers with qualifications from C \& G to degree standard preferably with Test and Quality Assurance experience, but we would consider anyone with suitable qualifications and recent practical experience in similar areas.
We offer competitive salaries related to experience; a good Company Pension Scheme, 4 weeks holiday; a staff discount; subsidised lunches, but most of all, experience second to none in modern electronics systems with prospects of advancement either in Test/Quality Assurance or Development.

To apply contact J. Docherty, Personnel Department, EMI Limited, \(135^{\circ}\) Blyth Road, Hayes, Middlesex. Tel: 01-573 3888 Ext. 3016. (Or Record-a-Call any time on 01-5735524).

CRANFIELD INSTITUTE
OF TECHNOLOGY
has vacancies for a

\section*{TECHNICAL OFFICER and a TECHNICIAN}
in the Environmental Sciences Research Unit to join a team concerned with all aspects of instrumentation and data recording in laboratory and site experiments. Current activities include measurement of engineering parameters,
noise, vibration, turbulence, stress. temperature on norse, vibration, furbulence, stress.
industrial installations: and of meteorological variables: wind, humidity radiation in field and laboratory environmental studies

Salaries according to qualifications and experience within the University Technical Staffs salary grades, which are
currently under review.

TECHNICAL OFFICER: Qualifications preferred H.N.C or full \(C\) and \(G\) certificate in Electrical or Mechanical Engineering. Experience of strain gauge techniques would be an advantage. Salary grade 5 ( \(2439-\mathrm{t} 2895\) ) p.a. or exceptionally, grade 6 ( \(2844+3450\) ) \(p\) a

TECHNICIAN: Appointment is initially limited to two years Qualifications preferred O.N.C. or C and G technician
certificate in electronic. electrical or mechanical engineering Salary grade 4 ( \(2247 \pm 2628\) ) p.a.

Application form from Staff Records Officer, Cranfield Institute of Technology, Cranfield, Bedford, MK43 OAL. For Curther information telephone or write to Guy West (Te Bedford 750111 ext. \(570 / 1\) )

Well-organised German enterprise working on the sector of loudspeaker chassis and accessories is looking for an

\section*{ACTIVE}

\section*{REPRESENTATIVE}
with good contacts to manufacturers and relevant quarters of special commerce.

We supply loudspeaker chassis for all applications such as \(\mathrm{Hi}-\mathrm{Fi}\), Ela, bass guitars, autocars, frequency converters; also fabrics for loudspeakers.

Please contact us quoting Box No WW.

\section*{Looking}

\section*{for}

\section*{\(a\)}

\section*{new}
job?

\section*{Perhaps we can help!}

We have regular contact with hundreds of electronics and electrical companies needing qualified electronics engineers and technicians and TV service engineers.
We can, therefore, help you to find an interesting and well paid job. All you need to do is to return the coupon below or give us a ring. Our service is confidential and costs you nothing.

\section*{TJB Technical Services Bureau, 3A South Bar, Banbury, Oxfordshire. Banbury (0295) 53529}


Please send me an "Application for Registration" form NAME
ADDRESS

Technical Services Bureau is a division of Technical \& Executive Personnel Ltd and is solely concerned with job placement in the Electronics and Electrical Industries
\(\qquad\)
\(\qquad\)


\section*{A SENIOR POSITION IN LOUDSPEAKER DESIGN}

ACOUSTIC RESEARCH is an international manufacturer of high fidelity loudspeaker systems. The laboratories at the company's United Kingdom facility in Bedfordshire now undertake all the design work for AR's loudspeaker drive unit and loudspeaker system program of development.

The team at present undertaking this work requires the addition of a senior engineer with extensive experience in the above fields. The person we are looking for will be capable of carrying full responsibility for design projects from conception to a finalised product. He will be a person with an innovative approach for design work and with a keen interest in making significant improvements in sound reproduction in the home.

The laboratory at Houghton Regis is well equipped to aid him in this work with a large and unusually versatile anechoic chamber together with a newly completed large reverberation chamber.

The company operates a free life assurance plan and contributory pension scheme.

Please reply in writing giving brief details of career to date to:


\author{
TIM HOLL \\ Director of Acoustics Acoustic Research International High Street Houghton Regis Dunstable Bedfordshire
}

\section*{MILITARY MANPACK DESIGN ENGINEERS}

\section*{for Spain}

Engineers with good experience of fully synthesised transmitter-receivers for military applications in the MF band are required by NORTRON of Spain.

The posts are suitable for graduates with not less than 4 years of experience in this field, and command excellent salaries. Full relocation expenses will be met by the Company.

Please send comprehensive curriculum vitae to:

NORTRON, Fernando el Católico 63, Madrid 15, Spain. Attention of the Engineering Manager, and state phone number and suitable hours to be contacted.

CABLE \& WIRELESS
Personnel Officer (Recruitment),
Cable and Wireless Limited,
Dept. A31/417.
Theobalds Road,
LONDON, W.C. 1.
01-242 4433 Extn. 211

\section*{ELECTRONIC ENGINEERING STAFF}

\section*{TWO ELECTRONIC ENGINEERS}
are required by EMI Electronics, Electron Tube Division, Ruislip Middx.

The first vacancy exists for an electronics engineer to assist the photomultiplier group. He will ensure that the production test gear performs satisfactorily and will also assist the photomultiplier development group to set up experiments and specialised equipment. He will be responsible for supervising a trainee. The post involves looking after advanced equipment including a minicomputer, with one of the major suppliers of electro-optical components in this country.

The second vacancy exists in the Equipment Section for an electronics engineer to undertake electronic equipment design and subsequent development through to small scale production. The equipment may incorporate photo-electric devices and it would be necessary for him to investigate some of the mechanical, thermal and optical aspects of the design.

The candidates should preferably have an Honours Degree but applicants with other qualifications and some experience would be considered.

Personal interviews arranged by telephone at a time to suit your convenience or call for immediate interview 9 a.m. \(11 \mathrm{a} . \mathrm{m}\). or 2 p.m. - 4 p.m.

Telephone Mrs. E. A. Crossman, Personnel Department, EMI Electronics Ltd., Bury Street, Ruislip, Middx. Ruislip 30771

\section*{SOUND SYSTEMS ENGINEER}

\section*{for Spain}

NORTRON, the leading Spanish designers and manufacturers of TV, FM and Sound Broadcasting equipment, require a SYSTEMS ENGINEER with not less than 4 years' experience in multichannel Mixer Desks and with good knowledge of the Broadcasting industry.

The post is based in Madrid, Spain, and attracts a substantial salary and full relocation expenses.

Please apply in writing sending comprehensive resume of career to:

NORTRON, Fernando el Católico 63, Madrid 15, Spain. Attention of the Engineering Manager, and state phone number and suitable times to be contacted.


\section*{Radio Officers-now you can enjoy the comforts of home.}

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are \(£ 2905\) rising to \(£ 3704\) after three years service. Between 19 and 24 , the starting salary varies from \(£ 2234\) to \(£ 2627\)
according to age. You'll also receive an allowance for shift duties which at the maximum of the scale averages \(£ 900\) a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have vacancies at some of our coastal radio stations, so if you're 19 or over, write to: ETE Maritime Radio Services Division (R/B/10), ET 17.1.1.2., Room 643, Union House, St. Martins-leGrand, London EC1A 1AR.
Post Office Telecommunications 93

\section*{ELECTRONIC ENGINEERS}

Applications are always invited from Engineers with a background of test and \(R\) and \(D\). Bias to Avionics systems.


Technical Reserves
362 Euston Road London, NW1 Tel: 3881609

\section*{MEDICAL ELECTRONICS}

Technician/Academic (non-tutorial) Salary not less than \(£ 2,511\) rising possibly to \(£ 6,050\), plus London Weighting
Applications invited from graduates preferably with industrial experience, to work in new Medical, School \& Teaching Hospital as part of team evaluating drugs under laboratory and clinical conditions. Successful applicant to operate and maintain wide range of electronic monitoring equipment including colour TV. Research interest in design fields encouraged.

Apply: The Secretary, Dept of Pharmacology, Charing Cross Hospital Medical School, Brandenburgh House, Fulham Palace Road, London, W6 9 HH .

\title{
Opportunities for Electronics Engineers
}

\section*{To change to wider fields of electronics - join the EMI Service Team at Hayes.}

Vacancies exist on repair and calibration of a wide range of electronic test gear including oscilloscopes, DVMs, pulse generators, power supplies etc.

\section*{Also}

Servicing and commissioning closed circuit television equipment including cameras, VTRs, Monitors etc.
Applicants should have at least 5 years practical experience.
These positions offer varied and interesting work. Attractive starting salaries, subsidised lunches, 4 weeks holiday and excellent sick pay and pension schemes.
For further details telephone or write to:- M. Ford, 01-573 3888, Ext. 2167 , EMI Service, 254 Blyth Road, Hayes, Middlesex

\section*{British Relay}

Communication and

\section*{Call SystemsSpeech and Visual}

We are acquiring an increasing volume of business in this field including many very long term contracts, and we are seeking to expand the range of our activities. Consequently, we have immediate requirements for engineers with good practical experience and ability in any of the following aspects of the work:-

System Design
Planning and Estimating
Project Control
Installation Supervision
Test and Commissioning
Duties are varied and interesting, with frequent opportunities for travel, and for acquiring experience in new fields. Enquiries and application for interviews will be treated in strict confidence, and should be sent to:-

The General Manager, British Relay (Electronics) Limited, 41 Streatham High Road, London SW16 1EP
Tel. 01-677 9681.
(4937)

\section*{ELECTRONIC DEVELOPMENT ENGINEER}

Do you have an H.N.C. Technician's qualification?
Have you obtained a five-year apprenticeship and mechanical experience?
Are you interested in joining a "high-powered" team?
If so, we have the job for you -
Our Research and Development staff need an engineer to assist in the design and development of high power electronic \(X\)-ray supplies (including the redesigning of conventional \(X\)-ray power supplies), test equipment and general laboratory duties.
The engineer must be able to work under minimum supervision and high voltage engineering and transformer design would be an advantage to applicants. This is a senior staff position and carries an appropriate salary level.
If you would like an interview, please contact:


The Personnel Officer
Pantak (EMI) Ltd.
Vale Road
Windsor
SL4 5JP
Telephone: Windsor 60306

\section*{LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY}

\section*{ELECTRONICS TECHNICIAN}

Applications are invited for a post in the Department of Engineering Production. Duties include the setting up and maintenance of a range of instrumentation for experimental work in the Department's laboratories. The person appointed would be expected to give assistance to projects in the form of development and construction of electronic equipment and devices. There would be an opportunity to gain experience in the fields of control engineering, numerically controlled machine tools, and application of computers in Production Engineering.
Education to ONC/OND or City and Guilds Intermediate Certificate standard and experience, including apprenticeship, of at least ten years required.
Salary on Grade 5 scale: \(£ 2,439-£ 2,895\) per annum.

Applications in writing or by telephone for application form to: Administrative Officer, Department of Engineering Production, University of Technology, Ashby Road, Loughborough, Leics., LE11 3TU. Telephone Loughborough 63171, ext. 323.
(4935)


We have posts based in LONDON \& H COUNTIES at all levels from fresh Graduate to Section Leader with Clients expanding their Design Departments.

Expensive city? Look at the compensations many salaries are over \(£ 5000\) p.a. All posts offer stability + career prospects. Ring/write now. Ref. WW9.

\section*{NEWMAN APPOINTMENTS (TECHNICAL) 360 Oxford St., W. 1 01-629 0501}

\section*{ROYAL HOLLOWAY COLLEGE \\ (University of London) Egham Hill, Egham, Surrey \\  laboratory TECHNICIAN}

Experienced Language Laboratory Technician required. Salary on scale \(52013-£ 2343\) or E2247£2628 plus £260 London Allowance, according to age and experience. Applications stating training and experience, together with the names and addresses of two referees should be sent to the Personnel Officer (WW) as soon as possible, from whom further details may be obtained.


With the increasing sophistication of today's aircraft, the role of the Service and Test Engineer on the ground is of the utmost importance if the electronic systems and equipment are to be kept at a high level of efficiency.

We are engaged in an expanding programme of work covering the provision of spares and the repair, maintenance and overhaul of airborne electronic equipment, and we need Service and Test Engineers to work on a variety of British and American equipment, both in the aircraft and in the workshop.

The work calls for a sound knowledge of radio and electronics theory, preferably coupled with a recognised qualification and at least two years' experience in servicing or maintaining complex electronics equipment, including complete fault diagnosis using sophisticated test gear. Training will be given to suitable less experienced engineers.

The Company offers excellent salaries together with all the benefits of working for a highly progressive company within a major electronics group. The Unit provides first-class working conditions and is conveniently located in pleasant surroundings with cose easy access to the M1.

Write with details of experience to Mrs. L. J. Elborn, Marconi-Elliott Avionic Systems Limited, 22-26 Dalston Gardens, Stanmore, Middlesex HA7 1BZ. Tel: 01-204 3322.

\section*{CHAILEY HERITAGE CHILDREN'S HOSPITAL ELECTRONICS/ TECHNICIAN}

A new post in the Experimental Workshop, Chailey Heritage Children's Hospital, Lewes, Sussex, to assist with research on equipment for physicallyhandicapped children. Required: experience in electronic circuitry and instrumentation and fundamental knowledge of measurement and data aquisition techniques. Qualifications: ONC, HNC, HND, or appropriate degrees, plus experience. Salary: £3558-£4581 p.a. Whitley Council conditions of service.

Phone (Newick 2112 ) or write to Mr. N. D. Ring (Technical Director) for further details. Applications by October 3rd

\section*{OPENINGS IN ELECTRONICS TO £5000}

Urgently required for a variety of current vacancies, ring now for confidential free service
TUDOR APPOINTMENTS
11 Muswell Hill
London, N10 3TH
Tel.: 01-444 9121

\section*{KINGSTON POLYTECHNIC SENIOR TECHNICIAN CCTV}

The Senior Technician will deal mainly with servicing of equipment in the Closed Circuit Television Unit. Knowledge of colour circuitry-helical scan VTRs and video cassette systems essential. Candidates should have HNC or final C\&G Electronic Servicing or equivalent.
Salary grade T2/3£2529-£3282+£261 London allowance.
Application forms from Assistant Registrar
Kingston Polytechnic
Penrhyn Road, Kingston upon Thames KT1 2EE. 01-549 1366

\section*{© \\ R \& H APPLIED DYNAMICS FIELD SERVICE ENGINEER}

For installation and maintenance of hybrid computers and interactive computer display systems. Previous experience in similar systems desirable but not essential. Adaptability and ability to work on own initiative more important. Attractive salary and a company car will be offered to suitable applicant who will work from home with occasional calls to base in Worthing.

Please write for Application Form, or telephone:
R\&H Applied Dynamics

\section*{17 Liverpool Road, Worthing, Sussex}

Tel. Worthing (0903) 205995

\section*{ARFIDD NAVADS AND RADAR TRANNIN COURSES for well paid overseas posts}

International Aeradio Limited are running refresher training for experienced Technicians/ Engineers which,on successful completion, will lead to very remunerative overseas postings.

\section*{Navaids: commencing 6th October}

Technicians/Engineers for the operation and maintenance of airfield navigational aids ILS/VOR/DME together with associated ground-to-air communications systems.
Suitable applicants who have had several years' experience in this field will be given additional training at our own college of engineering.

\section*{AR5/SSR: commencing 4th November}

Experienced Radar Tech./ Engineers for training on airport surveillance radar and sophisticated
secondary radar systems.
Applicants will have had several years' practical experience in maintenance of radar systems together with a good knowledge of digital techniques. Experience on small computers would be an advantage.
Formal qualifications to HNC standard (or C and G final telecomms) or several years' experience of in-depth maintenance of modern radar systems.
On successful completion of training applicants will proceed overseas. The commencing salary is c. \(£ 4500\) p.a., free of local income tax. Additional benefits include free furnished accommodation, generous leave, excellent contributory pension scheme.
Write or telephone now for application form to : John Nisbet, Recruitment Officer, International Aeradio Limited, Aeradio House, Hayes Road, Southall, Middlesex. Tel: 01-571 1808 or 01-57h0678.

\section*{ENGINEERS for DEVELOPMENT and PRODUCTION}

Grampian, a member company of the Telephone Rentals group, are engaged in the manufacture of a wide range of professional and industrial audio and telephone equipment, both electronic and electro-acoustic. The equipments are for both outright sale and long-term rental contract. In order to ensure the reliability necessary for such applications we carry out many operations in-house not often grouped within a single company. This means that our engineers have greater freedom of specification and a wider field of involvement than they might otherwise achieve.
If you are interested in accepting the challenge of one of these positions and you have relevant experience and qualifications please telephone Mr. G. Turner on 01-8949141, or write for application form to:

\section*{Technical Writers and Authors \\ £2,500-£3,750 South East}

For a major British electronics company, exporting \(60 \%\) of its products, with wide experience in commercial and military fields. lt is a leader in radar simulation, nuclear power simulation and key-to-disc systems.

The Technical Writers and Authors will prepare maintenance and operational manuals for the above.

Candidates need at least two years' experience and must be able to express themselves clearly. Ex-Service personnel with electronics teaching/writing experience will be considered. Salaries to match qualifications and experience, company
benefits and help with removal expenses.

Telephone: Vernon Wells, Brighton (0273) 23431, or write to PER, 53 West Street, Brighton BN1 2RL.

4941


UNIVERSITY OF THE
WITWATERSRAND, JOHANNESBURG

\section*{RESEARCH ELECTRONICS ENGINEER}

Applications are inivted from suitably qualified persons for a vacancy in the Electronics Workshop of the Nuclear Physics Research Unit.

The duties encompass the maintenance and repair of existing electronic units associated with all aspects of the Unit's research interests ad well as the design and construction of new equipment.

The salary scale attached to the post is R6300 \(\times 360-\) R9180.

An applicant not meeting the required standard of qualification and/or experience may be offered the appointment on a lower salary scale.
The Univeristy offer's generous leave, medical aid and pension facilities, and an annual vacation savings bonus. The policy of the University is not to discriminate in the grounds of sex, religion, race, colour or national origin

Applicants should apply in writing giving full personal and career details. including the names and addresses of three referees, to the Registrar, University of the Witwatersrand. whom applications should be lodged not later than 29 th whom applications should be lodged not later than the London Representative. University of the Witwatersrand, 278 High Holborn, London W.C. 1.

ELECTRONICS TECHNICIAN aged 20-301 We are a small Company situated in S.W. London. We require a technician to join our youngs electronics team working on profesisional audio
equipment. He will be nesponsible for the equipment. He will be nesponsible for the angnment, testing and maintenance and audio circuitry, and should have analogue and audio circuitry and one of these fields. The company operates a profit sharing scheme. Telephone Mr. Evans at 01-542 1171.

\footnotetext{
TELEVISION TECHNICIANS wanted for Middile East position. Five years heavy maintenance required. Send resumes and copies of certificates to Box WW 4851.
}

\section*{University of Oxford Department of Biochemistry \\ RESEARCH ASSISTANT IN ELECTRONICS}

Applications are invited for the post of Research Assistant to help with the development and construction of a 470 MHz magnetic resonance spectrometer. The successful candidate will work in a small research group headed by Dr. R. E. Richards and will be involved in the UHF, digital and audio fields. Whilst expertise relevant to one of , these areas would be an advantage, the post is probably most suited to a person wishing to gain probably most suited to a person wishing to gain
experience on a broad front by participation in an experience on a broad front by participation in an
exciting project. which is a leader in its field. The salary for the post, which is funded for a maximum of three years by the Science Research Council, will be in the range £2439 to £3594 p.a., starting salary depending on age and experience. Candidates must have a degree or equivalent qualifications, and applications, giving full details and including the names and addresses of two referees, should be sent by 30th October to: The Administrator, Department of Biochemistry, South Administrator, Department of Biochemistry, South
Parks Road, Oxford OX \(\uparrow\) 3QU.
4939

INSTRUMENT TECHNIICIANS, can you offer an interesting, worthwhille land" rewarding employment to a recently qualified Instrument Technician with City \& Guild (275). Industrial measurement \(P\) control certificiate. Who is prepared to work non standard hours. If required with a U.K. based company. Then pleasse contact WW, Box 4965 , for further details.

MARINE ELECTRONIC FIELO installation engineers able to install and service radars \(\mathrm{R} / \mathrm{T}\), auto-pilots, instrumentation, DFs, etc., around the counitry and abriad. Mechanical engineering ability is necessary. A first-class standard of work without supervistion is a must. Candidater must live in or around London. Clean driving licence and refenences required. Apply in writing to Telesonic Marine Lid., 243 Euston Rioad, N.W.i. \({ }_{(4849}\)

STUDIO IN KENSINGTON AREA requires JUNIOR TECHNICIAN (18-22 years) to assist with maintenance and tape editing. Contact Graham Stephens, 108 Cromwell Road, London SW7. Tel. 01-370 1442.
(4887)

\section*{ARTICLES FOR SALE}


\section*{MAIL ORDER ONLYFROM}

AID-US PRODUCTS
Dept. WW7, 8 Hillview Rd., Pinner HA5 4PA, Middlesex

\section*{Manger Repair Operations}

Competitive pricing policy, quality, availability of product are three of the factors we consider important in our business. Equally important is the range and efficiency of the after sales service which we offer to our customers. The development of the inventory, particularly in the audio and T.V. fields, presents an outstanding challenge for us to maintain our high standards of service.
We have created the new position of REPAIR OPERATIONS MANAGER, who will assume responsibility for all existing repair operations and developing others as the need is identified. This responsibility will cover the extensive operations of both our own repair workshops and of the very large number of organisations which provide service facilities for us,
Applicants must possess experience in running a consumer service operation for a large Company and the knowledge of audio and T.V. servicing is particularly relevant.
Conditions of service and benefits are first class.
Please write to : John Hobbs, Employment Manager,
The Boots Company Ltd.,
Station Street, Nottingham NG2 3AA.

\section*{LINK \\  \\ (VIDEO)}
to join our R and D team working on design and development of TV studıo broadcast equipment. Our products range from amplifiers and coders to broadcast standard colour cameras.
You should be about \(24-28\) with a good degree or HND and you must have at least two years' experience since qualifying. A background within television or communications would be ideal but is not essential.
We are a young Company with full order books for both home and export markets. Our factory in Andover is in an attractive area of rural Hampshire close to several main towns. Housing is both easier and cheaper than London. In addition to a good salary we also offer free life and health insurance, pension scheme, of course, subsidised canteen and assistance with relocation costs where necessary.
Either telephone Mic Comber at Andover 61345 (reverse charge if you wish) or write with brief details so that we can send you an application form.


Walworth Industrial Estate,
Andover, Hampshire, England
4919
Telephone:
Andover
(0264) 6134

\section*{ELECTRONICS}

\section*{ARTICLES FOR SALE}

WOLTHAM 20w Audio Power Amplifier Module
(1974) confidently challenges any performance (1974) confidently challenges any performance spec. on request Audio Fluttermeter to BS1988 Watford ( 38757 )
Watford (38757).
(479y

\footnotetext{
LADDERS unvarnished 14 ft 11 n , closed, 25 ft 4in extd. 521.40 delivered. Tel: Teliord 586844 . (16

16MM B \& H 631 Sound projectors c/w speaker and transformers \({ }^{\text {Hill, Dartford }}\)-T. 20009 . Hilton Cine. 9 West
(15
}

PHOTO ETCH

\section*{LIMITED}

9 LOWER QUEEN STREET
PENZANCE, CORNWALL, TR18 4DF
Prototype or long run -- we will supply your printed circuit requirements Also facilities for Design, Assembly and Test
Prompt and efficient service assured

\title{
VHF/UHF TELEVISION INSTALLATION ENGINEERS
}

\section*{(Spain)}

Well qualified and/or highly experienced INSTALLATION ENGINEERS are invited to apply immediately for INTERVIEWS IN ENGLAND to fill THREE IMPORTANT VACANCIES leading to senior positions in Spain.

The posts are based in Madrid but, knowledge of Spanish, though desirable, is not essential because the equipment being installed is of an international nature.

Please write today to:
CARLOS SYMMES, Engineering Manager
29 The Rookery, Balsham
CAMBRIDGE CB1 6EU, England.
and send brief summary of experience and qualifications.

ARTICLES FOR SALE

aY-5-1224 Digitai Clack TC. 12 or 24 hr.. 7 segment or BCD outputs. drivas LEO. Mialtron displays. Simple inforiacing. 16 pina Dit. IC + dala + circuils \(£ 4.90\).
Mp5082-7740 \(0.3^{n}\) digits \(£ 2.00\). iC \(+40.3^{m}\) digits \(£ 12.30\). IC \(+40.3^{\prime \prime}\) digits + transistors + traasformer £14.30.
TRABiDAS 7w Audio Anp with tharmal protection + data + circuit
TCA940 10W Audio Anp with tharmal protection + current limit + circult 82.40 TNO 100 Radie ic + If filter + circuit



SILICON SEMICONDUCTOR SERVICES
41 Dunstable Boad, Caddington, Luton LUI 4AL

\section*{ARTICLES FOR SALE}

RECONDITIONED
EX-RENTAL TELEVISION SETS-
OVERSEAS DISTRIBUTORS

\section*{URGENTLY REQUIRED}

Extensive range of modern sets - 19'", 20"', \(23^{\prime \prime} \& 24^{\prime \prime}-\) Dual Standard 405 line VHF/ 625 line UHF.
Colour or monochrome.
SCRAP SETS AVAILABLE AND SPARES ALSO AVAILABLE
Enquiries to
Superent
Export Dept., 210 New Road
Rubery, Birmingham B45 9MJ
England
Telex: 337993 ESMA BHAM

\footnotetext{
HUNDREDS of Dual Standard Colour TV's for sale. Contact: S, H. C. Televisions Ltd., 024\(\underset{026}{\text { sale }}\) (Radnage) \({ }^{\text {Contact: }} \mathbf{3 3 2 1 .}\)
}

\footnotetext{
VACUUM is our speciality, now and secondhand rotary pumps, difusion outfits, accessories, coaters, etc. Stlicone rubber or varnish ies, coaters, etc. Sinssing equipment from 840 . V. N. Barrett (Salles) Lit., 1 Mayo Road, Croydion. . 01 -684 9017.

60 KHz MSF Rugby and 75 KHz Neuchatel Radio Receivers Slgnal and audio outputs. Small, compact units. Two avallable versions. Toolex, Bristol Road, Sherborne (3211). Dorset.
}

\section*{THE SCIENTIFIC WIRECO.}

Copper - Nickel - Chrome - Eureka Litz - Mandanin Wires
Enamelled - Silk - Cotton - Tinned Coverings.
* No minimum charges or quantities.
* Trade and export enquiries welcome
* S.A.E. brings List.
P.O. BOX 30, LONDON E4 9BW

\section*{BUDGET MINI AUDIO MIXERS \\ With Professional Facilities}

Slider Faders *Tone Controis Monitoring * VU Meter
Mono or Stereo Ready to use or kits

\section*{Details Ref. WW}

PARTRIDGE ELECTRONICS
21-25 Hart Road, Benfleet, Eseax QUANTITY OF RADIO TRANSMNTTING \& RECEIViNG, Hi-Fi, TV, Electronic and Electrical Components and Equipment for sale. Many interesting items. Send large S.A.E. for ful list. Callers welcome but by appointment only. B. M. Sandali. Amber Croft, Higham. Der
DE5 5922

STORAGE 'SCOPE (REMSCOPE) SO1 560 ono: TF144G Sig. 'Gen. £15; Solartron 'scope CD643 overhauled \(£ 40\); Resolved Component Indicator VP250 £10. Tel.: 021-329 2305.
(4911
BELL \& HOWELL \(631,16 \mathrm{~mm}\) Sound Projector, complete with accessories, perfect working order, \(£ 120\). Image Electronics. Gt. Dunmow (0371) 3298.
(4921
 \begin{tabular}{l} 
Products 4 Dept. Mo, 8 Midilesiex. \\
HA5 4 , 4930 ) \\
\hline
\end{tabular}

\section*{Hair Transplant}

For free brochure, clip this ad. and send to: Room 6 HAIR TRANSPLANT INTERNATIONAL
502 Eccleshall Road. Sheffield

SURPLUS TEST EQUIPMENT AND RADIO AMATUER GEAR. Bench power suppliers 200/ 400 v. Precision millivolt meters, chart recorders, Vanguard, Cambridges, etc, etc. precision standards room equipment. B\&H COMPONENT LTD., Dept, WW, Leighton Electronics Centre. 59 North Street, Leighton Buzzard Beds, LU7 7EG. (05253 2316).
(49

TRADE BUYERS required for selling battery type antenna amplifiers in all plarts of the world. The type we make are B11-Stereo VHF/ FM radio, B:12-VHF television, B45-UHF colour and monochrome television'. Trade price \(£ 2.75\). Bury. Lancs. England.
Burder Ltd., Ramstbottom,
\((4882\) Bury. Lancs. England.

SELMER ORGAN DIVIDERS, 12 each having 5
double triodes, f10 the lot for parts. Jarvis, double triodes, \(£ 10\) the lot for parts. Jarvis,
Dall, Rannoch Station, Perths.

\footnotetext{
DIGITAL CLOCK CHIP, AY-5-1224, with data, and circuit diagram e3.66 plus VAT, Jumbo LED digits (16mm high) type economy DLe each plus VAT, post free. Greenbank Electronics, 94 New Chester Road. Wirral Merseyside L62 5AG.
}

\section*{The Shop Window for the Very East...}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline TOSHIBA & Valves & Type & \[
\begin{aligned}
& \text { Price } \\
& \text { Each (o) }
\end{aligned}
\] & Type & \[
\begin{array}{r}
\text { Price } \\
\text { Each (p) }
\end{array}
\] & DIOOES \({ }_{\text {Saph }}\) Type (p) & INTEGAA CIRCUITS & Price \\
\hline Type & Price (p) & AD149 & 40 & 80124 & 75 & 84115 & Type & Each \\
\hline OY87 & 30.0 & AD161 & 38 & BD131 & 45 & 8A145 14 & TAA550 & 49p \\
\hline Or802 & 30.0
28.0 & AD162 & 38 & 80132 & 39 & 8A148 & TAA700 & C2.95 \\
\hline EF80 & 28.0
29.5 & AF114 & 24 & BD160 & f1. 39 & 8A154/201 & TBAIzOAS & ¢1.00 \\
\hline EF80 & 29.5
34.5 & AF115 & 21 & 80235 & 4. & 8Y126 12 & tbatzoso & £1.00 \\
\hline EF184 & 34.5 & AF116 & 22 & 8 D237 & 52 & \(8 Y 127 ~ 27 ~\)
\(8 Y 199\) & TBAs800 & f1.40 \\
\hline EH90 & 35.5 & AF117 & 19 & \(80 \times 32\) & 2.40 & BY206 21 & TBA5200 & ¢2.35 \\
\hline PC900 & 24.5 & AF118 & 50
35 & BF115
8 F 160 & 20
15 & BY238 25 & TBA5400 & f1.75 \\
\hline PCC89 & 40.0 & & 45 & 8F 167 & 20 & 0490 - 6 & tbaseoco & ¢2.40 \\
\hline PCC189 & 41.0 & \({ }_{\text {AF }}^{\text {AF180 }}\) & 45 & 8 F 173 & 20 & OA202 7.5 & trasco & E1.50 \\
\hline PCF80 & 31.5 & AF181 & 45 & BF178 & 35 & IN60 OA91 & TBA9200 & ¢2.90 \\
\hline PCF86 & 39.0 & AF239 & 40 & BF179 & 40 & NEW TOSHIBA TUBES & 1B49900 & ¢2.90 \\
\hline PCF801 & 42.0 & AF240 & 60 & BF180 & 31 & 19**49/191X ¢48.95 & tcaz700 & f2.90 \\
\hline PCF802 & 40.0 & -C107 & 11 & BF181 & 32 & 20* 5100.1822 [50.75 & ETTR6J16 & £2.00 \\
\hline PCL82 & 39.0
390 & 8 Cl 08 & 10 & BF184 & 25 & 22* A56/120X Es.e. 25 & SN76013ND & 61.50 \\
\hline PCL85 & 44.5 & BC109 & 14 & BFF85 & 25 & EHT MULTIPLIERS MO & OCMROME & (8RC) \\
\hline PCL86 & 41.0 & \({ }_{8 C 109 C}\) & 14 & BF194 & 9 & & Pric & Each \\
\hline PFL200 & 59.5 & BCII \({ }^{\text {BCA }}\) & 19 & BF195 & 8 & 2HD 950MK1. 950 & & ¢1. 70 \\
\hline PL36 & 55.5 & BC117 & 14 & BF197 & 12 & 2r0 \(950 \mathrm{Mk2} 21800\) & & C1.85 \\
\hline PL84 & 25.0 & BC1258 & 15 & BFigh & 23 & 20ak \(1500(17819)\) & & 61.85 \\
\hline PL504 & 64.5 & BC132 & 25 & BF200 & 25 & 21AK 1500 ( 23 \& 24-) & & c2.00 \\
\hline PL508 & 67.0 & BC135 & 15 & 8 F218 & 30 & EMT MULTIPLIERS - CO & OUR & \\
\hline PL519 & f1.20 & BC137 & 19 & BF224 & 23 & HTAO ITT CVCl. 2 \& 3 & & ¢4.50 \\
\hline \({ }^{\text {PY888 }}\) & 35.5 & 8 CCl 38 & 26 & BF258 & 38 & ITN GEC/Sobell & & C4.50 \\
\hline PY800
PY500A & 33.0 & BC142 & 23 & BF336 & 28 & 11 TAZ GEC 211 C & & [4.85 \\
\hline PY500A & 85.0 & BC143 & 25 & BF337 & 35 & 11 TAM Philips G3 & & ¢4.50 \\
\hline SEMICON & nouctors & BC147 & 11 & 8F355 & 54 & 11 T8D Phulps 550 & & C4.50 \\
\hline & Price & 8C147* & 11 & BFX86 & 28 & 3TCW Pye 691/693 & & ¢3.50 \\
\hline Type & Each (p) & BC148 & 10 & BFY50 & 19 & 1 TH Decta 30 Series & & f. 50 \\
\hline AC127 & 17 & BC149 & 10 & 8FY52 & 20 & [1tao Decca 'Bradford' & & ¢4.50 \\
\hline AC128 & 13 & BC153 & 15 & BSY52 & 35 & 3 CCU Thom 3006/3500 & & ¢5.00 \\
\hline AC141K & 25 & BC154 & 15 & BT106 & f1.20 & 11 HAA Thorn 8000 & & ¢1.90 \\
\hline AC142K & 25 & BC157 & 14 & 84105/02 & E1.95 & 11 HAB Thorn 8500 & & f4.25 \\
\hline AC151 & 20 & BC158 & 10 & BU108 & c2. 10 & \multicolumn{3}{|l|}{} \\
\hline ACL154 & 18 & 8C159 & 11 & \(8 \cup 208\) & £2.95 & \multicolumn{3}{|l|}{\multirow[t]{8}{*}{\begin{tabular}{l}
PRICES SUBJECT TO \(25 \%\) V.A.T \\
All goods subiact to settlement discount of \(5 \% 7\) days and \(2 \%\) monthly. \\
No postage charges or minimum order values. \\
Write or phone for full details now.
\end{tabular}}} \\
\hline AC155 & 18 & BC173 & 18 & \(\varepsilon 1222\) & 30 & & & \\
\hline \({ }^{\text {ACL }} 156\) & 20 & \({ }^{\mathrm{BC} C 1788}\) & 20 & MJE340 & 45 & & & \\
\hline AC176
AC187 & 22
19 & \({ }_{\text {BC183L }}^{\text {BC1 }}\) & 12 & \(\bigcirc 0 ¢ 71\) & 15
16 & & & \\
\hline \({ }_{\text {AC }}{ }^{\text {C } 187 \mathrm{~K}}\) & 24 & BC187 & 25 & R2008B & c2.00 & & & \\
\hline AC188 & 17 & 8 C 2141 & 15 & R2010日 & ¢2.00 & & & \\
\hline AC188K & 26 & 8C328 & 28 & RCA16334 & 80 & & & \\
\hline AD142 & 45 & 8 C337 & 19 & RCA16335 & 80 & & & \\
\hline
\end{tabular}

\section*{..InPrices, Quality and Service}

\section*{fill re optic Guppllierf}



 \(\begin{array}{ll}10 \\ 102.20,100 \mathrm{~m} & 14.00 \mathrm{FPP60} 10 \mathrm{~m} £ 4.00 ; 100 \mathrm{~m} \mathrm{E} 30.00 \text {. }\end{array}\)




 (Bere, Sensivivy Lower Bandwidht than SE05E-40) \(£ 4.00\)


 2 N 5777 Humh Senstivily Photo- Oartingion 25 V 50 O .
Please add il: VAT 10 picices. S.A. \(\mathcal{E}\), please for shon form


\footnotetext{
VALVES - Radio - TV Transmitting and In. dustrial 1930 to 1975.2200 Types in stock, many obsolete. List 20p. Quotation S.A.E Postal export service. We wish to buy new and boxed valves, wholesalers, dealers, etc, stocks purchased - Cox Radio iSussex) Lid. The
 2023.

DISCOLGATS. Best. Cheapest. Reliable Bumper "Catalogue A Arvak g8A(W) West Green Rad, Nis 5 NS . \(01-800 \mathrm{~s} 656\).
LOW COST ic mounting. Use Soldercan IC socket pins for to 40 pin DILs, 70 p rplus 5p VAT) Por strip on 100 pins , fiso give 12 p for 1,000 inctructions supplied Send for sample. Sintel 53 c Aston street. Oxford. Tel. 086543203

100 TONS OF SURPLUS GEAR. Tools, adding
 Raymolld Streat Chester. 1496.3 HUNDREDS. YES HUNDREDS of lurntable units, piak-up cartridges, plinths, owens, and apeaker cabinets Wholesale/Retand Riniz or

}

COLOUR. UHF and TV SPARES. Colour and UHF lists available on request. New cross hatch kit Ancl Sync and UHF Modulator units aerial in-put type 11 p\&p 45 . CRT reactige
 unit, suitable for Hi-Fi amp or tape recording, £6.75 P/P 35 p . Bush CTV 25. New conver gence panels plus yoke and blue lat., \(£ 3.85\) P/P 40p. New Philips single standard convergence panels complete, incl. 16 controls, coils, P.B. switches, leads £3.75. P/P 50 p . New Colour
Scan Coils, Mullard or Plessey plus converScan Coils, Mullard or Plessey plus conver-
gence yoke and blue lateral, \(£ 9.20, \mathrm{P} / \mathrm{P} 55 \mathrm{p}\). gence yoke and blue rateral,
Mullard AT \(1023 / 05\) Convergence Yoke
£2.30 Mullard AT \(1023 / 05\) Convergence Yoke \(12.30 \mathrm{P} / \mathrm{P}\)
50 p . Mullard or Plessey Blue Laterals, 75 p P/P 20 p . BRC 3000 type scan Coils, \(£ 2.00 \mathrm{P} / \mathrm{P} 40 \mathrm{p}\) Delay Lines DL20, \(£ 3.50\), DLIE, DLI, \(£ 1.00, \mathrm{P} / \mathrm{P}\) 35p. Lum Delay Liness. 50p, P/P' 15p. EHT Colour Quadrupler for Bush Murphy CTV 25 \(111 / 174\) series, \(£ 7.50\). \(P / P 60 \mathrm{p}\) ERT, Colour P/P 35p GEC 2040 colour tripler \(£ 1.75\) P/P 35p Colour surplus/salvaged Phillips G8 panels part complete. Decorder, \(£ 2.50\) IF incl. 5 modules. E2.25. T. Base. EI. OH. P/P 25 P . CRT base,
spares

75p,
Decoder
 TUNERS. UHF ELC 1043 NEW, £4.20. ELC1043/
 and UHF Varicap tuners. \(\mathrm{El}_{1} 40, \mathrm{P} / \mathrm{P}\) 25p. UHF motion orive , Transistorised. and 60 pow motion orive ransistorised f4 \({ }^{4}\) a \({ }^{6}{ }^{6}\) pos push.button transistorised
Philips,
Bush.
Decea. Integrated
U transd tuners \(\mathbf{£ 4 . 5 0} \mathbf{P} / \mathrm{P}\) 60p Murphy \(600 / 700\) ser ies com. UHF conversion kits incl. tuner. drive assy. 625 IF amplifier, 7 valves. acces., housed in cathinet pllinth assembly, 55.50 . \(P / P 65 \mathrm{p}\) THORN 850 Dual standard time base panel. \(50 \mathrm{p} . \mathrm{P} / \mathrm{P} 50 \mathrm{p}\). PHILIPS 625 IF amplifier panel incl. cct. \(50 \mathrm{p} P / \mathrm{P} 45 \mathrm{p}\). VHF turret tuners AT7650 incl. valves for K.B. Featherlight. Philips 19TG170. GEC 2010, etc., f2.50. PYE miniature incremental for 110 to 830 Pam
and Invicta, \(£ 1.00\). A.B. miniature with UHF injection suitable K.B. Baird, Ferguson, 75p New hrebal uners Ferguson. HM Marcom s1.00 P/P all tuners 50p. Mullard 110 mono Stella. Pye, Ekco, Ferranti. Invicta. \(£ 2.00\) P/P 35 p Large selection LOPTs. FOPTs available for most popular makes. \(200+200+100\) MFD 351 V Elecirolytic. \(\mathrm{E}_{1.00} \mathrm{P} / \mathrm{P} \quad 20 \mathrm{p}\). MANOR SUPPLIES 172 WEST END LANE, LONDON. N.W.6. Shop premises, callers welcome (No. 28. 59.159 Buses Or W, Hampstead Bakirloo
and Brit. Rail). MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON. N.W.1. Tel. 01-794 K751 VAT PLEASE ADD \(\mathbf{2 5 \%}\) TO ALL PRICES.

\section*{COVENTRY COLOUR}

Single standard piped TV's, make ideal monitor or video games displays.
19"' £40. 25" £50. Aerial conver sion kits available
BUSH CTV 25 colour TV's serviced to retail standards \(£ 80\)
GEC \(19^{\prime \prime}\) single standards \(£ 70\)
All Prices Plus VAT
COVENTRY COLOUR
Arden Street, Coventry
Phone Coventry 79400

CRYSTALS
Fast delivary of prototype and production quantities to your specification for digitial clacks. mobila radio. padar. etc. Examples.
\(10 \mathrm{kHz}, 100 \mathrm{kHz} \quad 0.03 \% \quad\) T05 \(\quad £ 2.22\) atch: \(£ 1.020\) per 1.000 100 kHz 1 MHTR 2.097152 mitz
3.2768 MH2
.005\% HE13/U 23.00 esch: \(£ 1.900\) par 1.000
10.0 MH ?
\(0.005 \%\) HC6/U £2.50 aach: £1.600 per 1.000 \(0.0025 \% \mathrm{HC6} / \mathrm{U}\) £2.70 aach: \(£ 1,500\) per 1.000 d.002 HA18 22.00 zach. E1. 100 per 1.000 Crewkerne. Somerset. Telephone: (045031) 2578 Tele \(x: 46283\) importers and exporters of crystals, fifters. oscillators and trequency
counters from worldwide sources

\section*{Tape Spools}

\section*{5" \& 53/4" Diameter}

Regular bulk supplies of crystal or tinted polystyrene Tape Spools available from stock

Other sizes avallable
Contact: Plasro Plastics Ltd. 38 Wates Way Mitcham, Surrey. 01.6400145

\section*{ARTICLES FOR SALE}

\section*{B. BAMBER ELECTRONICS \\ 5 STATION ROAD, LITTLEPORT, CAMBS, CB6 1 QE \\ TEL: ELY (0353) 860185 (TUESDAY-SATURDAY)}

\section*{TERMS OF BUSINESS: CASH WITH ORDER \\ ALL PRICES INCLUDE POST AND PACKING (UK ONLY) \\ EXPORT ENOUIRIES WELCOME. CALLERS WELCOME TUES. -SAT. PLEASE ADD VAT. MINIMUM ORDER £1}

ALL BELOW - ADD \(8 \%\) VAT MAINS TRANSFORMERS

All 240 V input. voltages quoted
(Please quote Type no. only when ordering) TYPE 10/2 \(10-0-10 \mathrm{~V}\) at \(2 \mathrm{~A}, \mathrm{E}\). 50 . TYPE \(18 / 2\) 18V at 2A. E1.65. TYPE 28/4 28 V at \(4 \mathrm{~A}, 125 \mathrm{~V}\) at 500 mA . £4.00.
TYPE 129400 V at 20 mA .200 V at 10 mA . 6.3 V at 500 mA . \(£ 1.25\).

TYPE 72703400 V at 10 mA . 200 V at \(\begin{array}{ll}5 \mathrm{~mA}, 6.3 \mathrm{~V} \text { at } 400 \mathrm{~mA} . & \varepsilon 1.25 . \\ \text { TYPE } \\ 70462 \quad 250-0.250 \mathrm{~V}\end{array}\)
\(6.3 \vee\) 1 75 50-0.50V 6.3V. 1.75.
TYPE 125 .
\({ }^{85 p}\).
MAINS ISOLATING TRANSFORMER (ex. equip), in metal cases. totally enclosed. tapped mains input. 110.240 V etc., output
 AS above, output 240 V at 1
\(3 \mathrm{~A}+22 \mathrm{~V}\) at \(25 \mathrm{~A}, \mathrm{E} 27.50\).
variable stabilised PSU, solid state: \(240 \mathrm{~V} A C\) input. output \(0.24 \mathrm{~V} D C\) at \(500 \mathrm{~mA}+32 \mathrm{~V}\) at 50 mA (approx.) Size \(71 / 2 \mathrm{in} . \times 4 \mathrm{in} \times .21 / 2 \mathrm{in}\). . (voltage controlled by
external 5 k ohm pot) (less 5 k ohm pot). external 5 k
\(\mathbf{E 5 . 0 0}\) each
5 k ohm pots. 3 turn, for above. \(\mathbf{7 5 p}\) each. MANUFACTURERS - SEND SAE FOR̄ OUR LATEST BARGAIN CAPACITOR LISI. PLESSEY COLOUR SCAN COILS. YO brand new. \(£ 4.00\) each COLOUR MONITOR DECODER PANELS By leading British manufacturer. Chsigned to
B.B.C. standards. Units consist of chrominance module. PAL filter and delay module, luminance module and encoded video input module All units brand new and complete including
edge connectors and service manual. \(\mathbf{£ 3 0 . 0 0}\). edge connectors and service manual. \(£ 30\).
Manual supplied separately, \(£ 1.00\) each Manual supplied separately, \(£ 1.00\) each.
PHILIPS STAB. POWER \(0-35\) volt. 3 amp Metered type PE 4806 . \(£ 65.00\) each TINNED COPPER WIRE. 0.234 mm . Looks like \(15 a\) fuse wire. 12 oz reel 30 p
CHART RECORDER PAPER. CHART RECORDER PAPER 120 Type M1299. \(\mathbf{£ 1 . 0 0}\) per roll. FLEXIFORM GROMMET. Makes your ow
grommet for any size hole. 15 m reel 60 .

ALL BELOW - ADD \(8 \%\) VAT PLUGS AND SOCKETS 25-WAY ISEP PLUGS AND SOCKETS, 40p set ( 1 plug +1 skt). Plugs and sockets sold separately at 25 each.
ANDREWS GAAN FREE SKTS. (N-Iype) for FH4/50B or FHJ4/ 508 cable, \(E 1.00\) each. BULGIN ROUND FREE SKTS. 3 pin, for
mains input on test equipment, elc.. 25 p mains input on test equipment, etc. 25p \begin{tabular}{l} 
SO239 BACK TO BACK SOCKETS, \(\mathbf{\text { each. }} 1.25\) \\
\hline
\end{tabular} each
BNC BNC INSULATED SOCKETS (single hole type). 65p each.
PL259 PLUGS (PTFE). Brand new, 50p each or 5 for \(\mathbf{£ 2 . 2 5}\)
Reducers for above 15p each
SO239 SOCKETS (PTFE). Brand new (4 hole fixing type), 50 p each, or 5 for \(\mathbf{E 2 . 2 5}\). N-TYPE SKTS. (4 hole chassis mounting. 50ohms. small coax lead type). 50p each N-TYPE PLUGS 50 ohm . 60p each
BNC PLUGS (Amphenal, new, packed). 35p each ( 4 for E1.20).
BNC SOCKETS
BNC SOCKETS (4 hole chassis mounting lead type). 35p each (4 for E1.20).
GREENPAR (GE35012) CHASSIS LEAD TERMINATIONS (These are the units which bolt on to the chassis, the lead is secured by screw cap. and the inner of the coax passes
through the chassis), 30 p each. 4 for \(\mathbf{1 1 . 0 0}\). MULLARD SCOPETUBE DN7-78. 3in. face
complete with base and mu-metal screen. £8.50 each.
PHOTOMULTIPLIERS. E.M.I. TYPE 6094 Brand new with base \(\mathbf{£ 2 0}\) each BULGIN FLAT 2 pin FLEX CONNECTORS Non-reversible. 40p each.
HELLERMAN LUBRICANT GRADE C. The ideal lubricant for all rubber goods. Good electrical insulator. \(75 p\) per bottle. PYE U.H.F. BASE STATIONS.F 460 p.o.e PYE COMPACT U.H.F. PORTABLE PFIC p.o.e. PYE WESTMINSTER W15 AM, \(12 \frac{1}{2} \mathrm{kHz}\) channet spacing, G.P.O. approved. High Band
AM. Dash mount. less crystals. Good condition. £100.00
PYE BASE STATION F3OM. TX 100 mHz Rx \(140^{\circ} \mathrm{mHz}\), low power MID BAND, good

ALL BELOW - ADD \(8 \%\) VAT MULLARD TUBULAR CERAMIC TRIM MERS, \(7-18 \mathrm{pf}, 6\) for 50 p .
(as featured in Rad. Comm. Jan. p. 25)
Cs, some coded. 14DIL type, untested
TO3 TRANSISTOR INSULATOR SETS 10 for 50 p .
24V MIN. REED RELAYS, encapsulated single-pole make, 2 for 50 D .
CHASSIS TAGS, 25 p pack
RELAYS, single pole, changeover, 12 DC approx, \(3 /\) in \(x 1 / 2\) in \(\times 1 / 1 /\) in, \(35 p\) each MINIATURE SLIDER SWITCHES, 2 pole 2 wav, 5 for 50p.
2-6PF., IOMM
2.6PF., TOMM CIRCULAR; CERAMIC TRIMMERS (for VHF/UHF work). 3 pir mounting, 5 for 50 p.
CERAMIC HIGH VOLTAGE PILLARS metal ends, tapped 4BA) approx. 1 in . long

PYE RADIO-TELEPHONE EQUIPMENT
Cambridge, Westminster, Motofone
pa series. Send s.a.e. for full details
WELLER STOCKIST. All irons and spare

\section*{VALVES}

QOV03/20A (ex-equipment), \(\mathbf{£ 3 . 0 0}\). QQvo3/10 (ex-equipment) 75 p or 2 fo E1.20.
2C39A (ex. equipment). \(\mathbf{E 1 . 0 0}\) each. Qav02/6 (ex equipment), \(£ 1.00\) each 4 Cx 250 B (ex. equipment), \(£ 2.10\) each \(4 \times 2508\) (ex. equipment), \(£ 1.50\) each DET22 (ex. equipment). 2 for e1.00.
\(150 B 2\) MULLARD 150 V REG. (Equiv. OA2) (new boxed). 40p.
new, boxed). 40p.
RANSISTOR HEATSINKS, to make 2 TO18 transistors. screw-in clamps, block size
1 in. \(x 1 / 2 \mathrm{in} . x 1 / 4\) in. with 2 holes for mounting. 3 for 50 p .
AADIOSPAAES 50OWATT AUTO TRANSFORMER, \(100 / 110 / 150 / 200\) \(/ 220 / 240 \mathrm{~V}\) tapped input and output step up or step down facility. ex. new equip.
\(\mathbf{E 6 . 0 0}\).

ALL BELOW - ADD 25 \% VAT
HIGH QUALITY SPEAKERS, \(\mathbf{B} 3 / \mathrm{in} \times 6\) in
elliptical. 2 in. deep. 4 ohms. inverse magnet.
rated up to \(10 \mathrm{~W} \mathbf{E 1 . 5 0}\) each, or 2 for \(\mathbf{E 2 . 7 5}\) rated up to 10 W . \(\mathbf{£ 1 . 5 0}\) each, or 2 for \(\mathbf{£ 2 . 7 5}\) (Quantity discount available)
T.V. PLUGS (metal type). 6 for 50p. T.V. SOCKETS (metal type). 5 for 50 p . ski.). 5 for 50 p. MIXED ELECTROLYTICS, large bag E1.00.
OC200 TRANSISTORS, 6 for 50p.
BSY95A TRANSISTORS, 6 for 50 p . BCY72 TRANSISTORS, 4 for 50 p . PNP AUDIO TYPE TOS TRANSISTORS
 at \(10 \mathrm{~A}, 30 \mathrm{p}\) each, or 4 for \(\mathbf{E 1 . 0 0}\)
at 10A, 30p each, or 4 for \(\mathbf{E 1 . 0 0}\)
DIN SPEAKER SKTS, 2 -pin, 4 for \(\mathbf{5 0 p}\). DIN SPEAKER SKTS, 2 -pin, 4 for 50 p .
IF CANS, \(1 /\) in square, suitable for rewind for 30 p . for 30p.
dubilier electrolytics. 50uF, 450 V 2 for sop electrolytics. 100uf \(275 \mathrm{~V}, 2\) for 50 p .
PLESSEY ELECTROLYTICS. 470uF. 63V. 3 for 50p.
TCC ELECTROLYTICS. 1000uF, 30V, 3 for 60 p .
PLESSEY ELECTROLYTICS. 1000uF 180V, 40p each ( 3 for £1.00).
DUBILIER ELECTROLYTICS. 5000 mtd at 35V. \(50 p\) ech
DUBILIER ELECTROLYTICS. \(500 u F, 50 \mathrm{~V}\),
60 p each.
DUBILIER ELECTROLYTICS. 5000 mfd . ITT ELECTROLYTICS. 6800 mfd at 25 V high grade. screw terminals, with mounting clpp 50p each
PLESSEY ELECTROLYTICS. 10000 mfd a \(63 \vee 75 p\) each
MULLARD BLACK/WHITE C.R.T A65-11W. Brand new. E11.00.
TY SOCRETS Mount on 5 for 75 p . Gfor 50p.
S for 50 p .
DIN 3 pin LINE SOCKETS. \(15 p\) each
E.H.T. V/HOLDERS BSA. (Both PHILIP
and PYE types available.) \(\mathbf{2 0 p}\) each.

\section*{SCOPES AVAILABLE}

Absolutely perfect condition. Most as new
Tele-equipment S 51b 3 meg. £60 S \(54 \quad 10 \mathrm{meg} . ~ £ 85\) \begin{tabular}{ll} 
D 43 & 15 meg. \\
m \\
D53 & \(15 \mathrm{meg} . ~\) \\
\hline
\end{tabular} D54 10 meg. £125 DM 53.15 meg. storage E225

Ring: Mr. Lewis at 01-882 1644 now and avoid disappointment
\[
(78)
\]

PDP 8/5 MINICOMPUTER with 8 k store. Rack PDP 8/5 MINICOMPUTER with
mounted, and complete with ASR33 TIELETYPE, and fully documented software package including FORTRAN and FOCAL together with diagnostics, etc. Available now cat \(£ 850\) comdiagnostics, etc. Avainable APPRECIATION, Castle Slireet, Bletchingley, Surrey 088384 (Godstone) 3106.

\section*{ARTICLES WANTED}

WANTED, all types of communications receiv ers and test equipment. Details to R. T. \& I. Rd., London, E.II. Ley 4986.

WANTED: Book permanent magnets and magnetism. D. Hadfield. Box No. WW 4849.

E-D ELECTRONICS offer prompt settlement for your surplus components, Our main field of interest is consumer electronics. Please tele
(0767) 81616 . phone our Miss Hughes, Sandy (0767) 81616.

SURPLUS COMPONENTS, Equipment and Computer panels wanted for cash. Ring Southamp-
(4928
ton

SURPLUS COMPONENTS, Equipment and Computer panels wanted for cash. Ring Southamp.
( 4962

\section*{COMPUTER TAPE STATION}



\section*{GREENWELD ELECTRONICS}

51 Shirley Park Road, Southampton SO 1 4FX Tel. (0703) 772501


\section*{RECEIVERS AND AMPLIFIERS -}

HRO Rx5s, etc., AR88, CR100, BRT400, G209, HRO Rx5s, etc., in AR88, CR100 \&
S640, etc., etc., in stock. R. T. \& Electronics, Ltd., Ashville Old Hall, Ashville Rd., London, E11. Ley 4986.

\footnotetext{
SIGNAL Generators, Oscilloscopes, Output Meters, Wave Voltmeters, Frequency Meters, Multi-range Meters, etc., etc. In stock. \(R\). T. \& I. Electronics, Ltd. Ashville Old Hall, Ashvile Rd., Landon, E.i1. Ley 4986.
}

\section*{PMR, TV, BROADCASTING, AMATEUR}
\(1.9 \mathrm{MHz}-500 \mathrm{MHz}\). Do you work on RF on these Frequencies? Then the new Range of Watt Meters. Thru-Line Watt Meters and Dummy Loads will be of interest. Four Instruments up to 1 KW rating are available. For full details send to:

\section*{J. H. ASSOCIATES}

52 Silver Street, Stansted, Essex
(4846)

\section*{B00K}

\section*{Thmearate \\ CONFIDENTIAL FREQUENCY LIST HANDBOOK. Takes the wraps} off and reveals for the first time the Hush-Hush secrest regarding
trequencies used by Miliary Orgenisations. C.ITA. coastguards. spy Hequencies useauty voral netw
stations. aernaution
mention. Proce 2.50 . p.p. 25 p .
international dictionany or semiconductons. Vol. electronics dictionary published at E 16 aveitobio at less than hisit
price. A gold-mine of data. The result of intersive tochnical research. POWER SUPPLIES FOR ELECTRONIC EQUIPMENT. J, R Nowicki. Published recently in 2 vols. A full treatmant of of power
supplies is given. Originally \(E 4.50\) per volume. Bargain price for the 2 volumes E4, postage 50p.
THE GOVERNMENT SUAPLUS WIAELESS EQUIPMENT HANDBOOK. Gives circuits. data and infustrations plus valusbie Nithation for British/USA receivers. transmitters. trans/roc.
HOW TO MAKE 2 M \& 4 M CONVERTORS FOR AMATEUR UBE,
Fully comprehensive. Contains circuits. leyouts. Componant lists


TAPE RECORDING ETC.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{RECORDS MADE TO ORDER} \\
\hline DEMO DISCS MASTERS FOR RECORD COMPANIES & VINYLITE PRESSINGS \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Single discs, 1.20 , Mono of Stereo, delivery 4 days from your tapes. Quantity runs 25 to 1,000 records PRESSED IN VINYLITE IN OUR OWN PLANT. Delivery 3-4 weeks. Sleeves/Labels. Finest quality NEUMANN STEREO/Mono Lathes. We cut for many studios UK/OVERSEAS. SAE list. \\
DEROY RECORDS \\
PO Box 3, Hawk Street, Carnforth. Lancs. Tel. 2273
\end{tabular}} \\
\hline
\end{tabular}

\section*{CAPACITY AVAILABLE}
A.A.A. SERVICE. Small batch production wiring, assembly to sample or drawings. specialists in printed circuit assembly. Cable forms to order. Rock Electronics Lid. (0279) 33018. Hartow, Essex. Tel. Harlow

LABELS, NAMEPLATES, FASCIAS on anodised aluminium or perspex. Any quantity superb quality, fast delivery. G.S.M. Graphics Ltd., \(1-5\) Rectory Lane, Guisborough (Tel. 02873 . 4443), Yorks. Lane, Guisborough (rel. 02873.

PRINTED CIRCUIT BOARDS - Quick deliveries, competitive prices, quotations on request, roller tinning, drilling, etc., speciality Jamiesons Automatics Ltd, \(1-5\) Westgate Brid. lington. N. Humberside for the attention of Mr. J. Harrison. Tel: (0262) \(4738 / 77877\). (18)

DESIGN, development, repair, test and small production of electronic equipment. Specialist in production of printed circuit assemblies. lege Street, London NW1 9NN'. 01-267 0201

SMALL Batch Production, wiring assembly, to sample or drawings. Specialist in printing circuit assemblies. D. \& D. Electronics, 42 Bis hopsfield, Harlow, Essex. Tel: Harlow 33018 .

BATCH Production Wiring and Assembly to sample or drawings. Deane Electricals, 198 Station Parade, Ealing Common, London, W.5. rei: 01.992 8976.

CAPACITY available to the Electronic Industry. Precision turned parts engraving milling and grinding both in metals and plastics. Limited capacity available on Mathey SP33 jig borer. Write for lists of full plant capacity to C.B. Industrial Engineering Lid., 1 Mackintosh Lane E9 6AB. Tel: 01-985 7057.

AIRTRONICS LTD., for Coil Winding - large or
small production runs. Also PC Boards Assem-
plies. Suppliers to P.O. M.O.D., etc. Export en-
quiries welcomed. 3a Walerand Road, London SE13 7PE. Tel: 01.852 1706.

DESIGN, DEVELOPMENT and small production of electronic equipment. No job too small. Holts Electronics, 223 Pole Lane Court, Unsworth, Bury, Lancs. BL9 8QD.

\section*{BUSINESSES FOR SALE}

HI-FI/AUDIO SHOWROOMS. Superb trading position in a tusy pedestrian shopping precinct, near Croydion in Surrey. 2,000 sq. ft. premises with electironic comprator, acousitc tiang, subdued lighting, etc. All better class agnum under management Obvious scope por enterprising owner to increase. Realistically priced at \(£ 8,000\) plus S.A.V. - Full detaills from sole agents, Latimer Laurence Ltd.., Leslie House, 238 High Street Poole, Diorsiet, Tel. Poole ( 02013 ) 71037. 24 hour service. ( 4934 )

FOR SALE IN THE WEST COUNTRY, Small, established radio-communication rental busi ness. Genuine reason for sale. Yields on rental alone uver \(£ 9,000\) per annum plus installations and sundries etc. Easily run by one person.

\section*{COURSES}

\section*{ThePolytechnic of NorthLondon}

Department of Electronic and Communications Engineering

\section*{Interested in Electronics and Communications?}
* Join our B.Sc. vegree course in ELECTRONIC AND COMMUNICATIONS ENGINEERING
** Become a member of a Professional Institution and a CHARTERED ENGINEER.
*** Entry requirements: 2 ' \(A\) ' levels (Mathematics and normally Physics).
**** Any recognized equivalent (ONC, OND, etc.).
***** Write to the Department of Electronic and Communications Engineering, Polytechnic of North London, Holloway, London N7 8DB (or telephone 01-607 6767).

\section*{VALVES WANTED}

WE BUY new valves, transistors and clean new components, large or small quantities, all detalls, quatation by return - Walton's, 55 Wor. cester St., Wolverhampton.

\section*{ANNOUNCEMENT}

\section*{EURO CIRCUITS LTD.}

Due to GOVERNMENT V.A.T REGULATIONS the cost of the additional office work involved in applying our \(21 / 2 \%\) discount is prohibitive. We have no option but to reluctantly withdraw cur discount for the present. This does not reflect our policy but is directiy due to GOVERNMENT REGULATIONS We hope you will join with us in looking forwerd to better times and to a more sane fiscal policy

\section*{EURO CIRCUITS LTD.}
(Manufacturers of Printed Circuit Boards)
Hightiald House Weat Kingedown Nr Sever
Tel: West Kingsdown 2344 (478/〕

\section*{SERVICE AND REPAIRS}

AUDIOMASTER BACKGROUND MUSIC . . . service, sales. Tape programmes. P. J. Equip-
ments, 3 Onslow Street, Guildford 4801 . 12 .

THOR-HOLE CONVENTIONAL P.C.E.'s gold plating, roller tinning, prototypes, silk screenCIRCUITS (P.C.) LTD. Delamare Road, Chesnut, Herts. Tel. Waltham Cross 38600 or 20344.

TUBE POLISHING, mono, £5.63, colour \(£ 5.94\) C.W.O, Return carriage and VAT paid. Phone: N.S. 300 Retube Limited, North Somercotes Lough, Lincs.

\section*{NEW GRAM AND SOUND EQUIPMENT}

GLASGOW. Hi Fi, Cassette Decks. Tape Record ers, Video Equipment, always available we buy, sell and exchange for Hi Fi sets and
photographic equipment. victor MORRIS Audio Visual Ltd, 340 Argyle Street, Glasgow G1, 8/10 Glassford Street, Glasgow, G2, 31 Sauchiehall Street, Tele: 041-221 8958.

\section*{BOX Nos.}

Box number replies should be addressed to:

\section*{Box No.}
c/o Wireless World
Dorset House
Stamford Street
London SE1 9LU

\section*{RING YOUR CLASSIFIEDS TO ALLAN PETTERS \\ ON 01-261 8508 OR \\ 01-261 8423}

\section*{TRANSISTORS+DIODES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & Price excluding VAT & Price including VAT & Type & Price excluding VAT & Price including VAT \\
\hline BC 107 & 0.090 & 0.113 & 2N 930 & 0.200 & 0.250 \\
\hline BC 107A & 0.130 & 0.163 & 2N 1132 & 0.240 & 0.300 \\
\hline BC 107 B & 0.140 & 0.175 & 2N 2129 & 0.240 & 0.300 \\
\hline BC 108 & 0.090 & 0.113 & 2N 2218 A & 0.220 & 0.275 \\
\hline BC 108A & 0.130 & 0.163 & 2N 2219 & 0.220 & 0.275 \\
\hline BC 108B & 0.130 & 0.163 & 2N 2219 A & 0.220 & 0.275 \\
\hline BC 108C & 0.140 & 0.175 & 2N 2221 & 0.180 & 0.225 \\
\hline BC 109 & 0.090 & 0.113 & 2N 2221 A & 0.210 & 0.263 \\
\hline BC 109B & 0.140 & 0.175 & 2N 2222 & 0.200 & 0.250 \\
\hline BC 109C & 0.140 & 0.175 & 2N 2222A & 0.250 & 0.313 \\
\hline BC 184(K) & 0.120 & 0.150 & 2N 290A & 0.190 & 0.238 \\
\hline BC 212A(K) & 0.110 & 0.138 & 2N 2905A & 0.230 & 0.288 \\
\hline BC 212B(K) & 0.110 & 0.138 & 2N 2906 & 0.170 & 0.213 \\
\hline BC 213C(K) & 0.110 & 0.138 & 2N 2906A & 0.170 & 0.213 \\
\hline BC 214B(K) & 0.110 & 0.138 & 2N 2907 & 0.220 & 0.275 \\
\hline BCY 71 & 0.220 & 0.275 & 2N 2907 A & 0.240 & 0.300 \\
\hline BFY 50 & 0.200 & 0.250 & 2N 3053 & 0.180 & 0.225 \\
\hline BFY 51 & 0.200 & 0.250 & 2N 4037 & 0.250 & 0.313 \\
\hline BD 131A & 0.360 & 0.450 & 1N 4001 & 0.050 & 0.054 \\
\hline BD 135 & 0.360 & 0.450 & 1N 4002 & 0.065 & 0.070 \\
\hline BD 136 & 0.396 & 0.495 & 1N 4003 & 0.070 & 0.076 \\
\hline BD 137 & 0.432 & 0.540 & 1N 4004 & 0.075 & 0.081 \\
\hline BD 138 & 0.450 & 0.563 & 1N 4005 & 0.080 & 0.086 \\
\hline BD 139 & 0.495 & 0.619 & 1N 4006 & 0.085 & 0.092 \\
\hline 2N 929 & 0.230 & 0.288 & 1N 4007 & 0.090 & 0.097 \\
\hline & & & 1N4148 & 0.040 & 0.050 \\
\hline
\end{tabular}

\section*{REPLECOMPS Ltd, fantime}

123 Bohemia Road, ST. LEONARDS-ON-SEA, Sussex TN376RL

\section*{quality}

Manufactured strictly to stringent specifications. 12 months guarantee

\section*{service}

Orders actioned in 24 hours Over one million transistors in stock

For large quantities ordered by retailers, educational establishments and hobby clubs

\section*{terms}

Cash with order, please Post and Packing 20p Minimum order 50p.

\section*{CLASSIFIED ADVERTISEMENTS}

\section*{Use this Form for your Sales and Wants}

\author{
To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9LU
}

\section*{PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW}
- Rate: 99p PER LINE. Average seven words per line Minimum THREE lines
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus 40p.
- Cheques, etc., payable to "Wireless World" and crossed \& Co

NAME.

ADDRESS \(\qquad\)


Time and again we are asked for reprints of Wireless World constructional projects: tape, disc, radio, amplifiers, speakers, headphones. Demand continues long after copies are out of print. To meet the situation we have collected fifteen of the most sought after designs and put them in one inexpensive book. And we've updated specifications where necessary to include new components which have become available. A complete range of instruments is presented, from the Stuart tape recorder and Nelson-Jones f.m. tuner, through the Bailey, Blomley and Linsley Hood amplifiers, to the Bailey and Baxandall loudspeakers - some of which have been accepted as standard in the industry.

\section*{highfidelity designs}
fi from newsagents and bookshops or \(£ 1.35\) (inclusive) by post from the publishers. A book from WirelessWorld
| To: General Sales Department, Room ir, Dorset House, Stamford Street, London, SEi gLU
Please send me .. copy copies of High Fidelity Designs
| at \(£ 1.35\) inclusive. I enclose remittance value \(£\)
|(cheques payable to IPC Business Press Ltd.).
Name
|(please print)
| ADDRESS

\section*{Quality Products Made in America}


Blonder-Tongue
Field Strength Meter - FSM2
Superb quality and performance. Complete line of MATV and CATV products available.
Astatic - Choose from over 60 different microphones for public address, studio, commercial sound and recording microphones. Quality sound reproduction since 1930 . Complete line of Astatic cartridges, needles and arms.
Atlas Loudspeaker - complete line of public address speakers and microphone stands.
Trusonic - speaker systems to meet every indoor and outdoor
requirement.
Irish Tape - premium quality tape available in cassette, 8 -track, open reel and video.
Gromes Precision - public address amplifiers
Consolidated Wire and Cable
AVA - coaxial connectors
Teleco - telephone answering instruments
Perma Power - portable PA
Systems
Utah - complete line of hi-fi speakers and accessories
Automatic Garage Doors, TV Tube
Brighteners, Remote Controls
Write for illustrated catalog and specifications for these products.

\section*{Morhan Exporting Corp.}

270-278 Newtown Road
Plainview, N.Y. 11803
Gable Address: Morhanex, N.Y
Telex: 96-7880

\title{
Guide to Broadcasting Stations 17th Edition
}

A new edition of a title which has sold more than 250,000 copies The bulk of the book is devoted to lists of stations broadcasting in the long, medium, short and v.h.f. bands in both frequency and geographical and alphabetical order. The book also contains useful information on radio receivers, aerials and earth, propagation, signal identification and reception reports.
1973206 pp. illustrated
059200081 /8£1.00

\section*{Illustrations in Applied Network Theory}

\author{
F. E. Rogers
}

A hundred numerical and algebraic illustrations designed to exemplify practical circuit problems and introduce, in analysis, principles consistent with studies of synthesis that may be pursued later.
1973240 pp., illustrated
\(040870425 \times\) cased \(£ 5.25\) 0408704268 limp£2.65 Obtainable through any bookseller or from

\section*{Newnes-Butterworths BOROUGH GREEN SEVENOAKS KENT TM 15 8PH TEL. \\ BOROUGH GREEN 884567}


\section*{PRINTED CIRCUIT}

\section*{BOARDS}

QUICK DELIVERIES
Prototypes and smali runs by return Longer runs 7 days For Photography, Drilling, Roller Tinning Machining, Gold Plating, Silk Screenıng, the lot Herold Fisher (Plastics) Limited Grove Mills, Gynn Lane, Honley, Huddersfield

\section*{Wilmsiow} Audio
THE firm for speakers!

Baker Group 25, 3, 8, or 15 ohm
Baker Group 35, 3' 8 or 15 ohm
Baker Deluxe, 8 or 15 ohm
Baker Major, 3, 8 or 15 hm
Baker Regent, 8 or 15 ohm
Baker Regent, 8 or 15 ohm
Baker Superb, 8 or 15 ohm
Baker Superb, 8 or 15 ohm ..
Celestion HF1 3008 or 15 ohm
Celestion HF1 3008 or 15 ohm \(\ldots\)...
Celestion MF 1000 horn, 8 or 15 ohm
Decca London and \(X\) over
Decca DK 30 and \(X\) over
EMI \(13 \times 8,150 \mathrm{~d} / \mathrm{c}, 3,8\) or 15 ohm
EM1 \(13 \times 8\), Type 350
EMI \(13 \times 8,25\) watt bass
EMI \(21 / 4^{\prime \prime}\) tweeter 8 ohm
EMI \(8 \times 5,10\) watt, \(\mathrm{d} / \mathrm{c}\), roll/s 8 ohm
Elac 59RM \(10915 \mathrm{ohm}, 59 R M 1148 \mathrm{ohm}\)
Elac \(61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll \(/ \mathrm{s} 8 \mathrm{ohm}\)
Elac \(61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}\) rolt/s \(8^{\prime \prime}\)
Fane Pop 15 watt \(12^{\prime \prime}\)
Fane Pop 15 watt \(12^{\prime \prime} \ldots\)
Fane Pop 20T \(10^{\prime \prime} 20\) watt
Fane Pop 25T 30 watt \(12^{\prime \prime}\)
Fane Pop 50 watt, \(12^{\prime \prime}\)
Fane Pop 55, 12' 60 watt
Fane Pop 60 watt, \(15^{\prime \prime}\)
Fane Pop 100 watt, \(18^{\prime \prime}\)
Fane Crescendo 1 2A or B, 8 or 15 ohm
Fane Crescendo 15,8 or 15 ohm
Fane Crescendo 18,8 or 15 ohm
Fane \(807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}\), rolls \(/ \mathrm{s}, 8\) or 15 ohm
Fane \(801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll/s 8 ohm
Fane \(80118 \mathrm{~d} / \mathrm{c}\) roll/s 8
Goodmans 8 P 8 or 15 ohm
Goodmans 8P 8 or or 15 ohm
Goodmans 10P 8 or 15 ohm
Goodmans 12 P 8 or 15 hm
Goodmans 12 P 8 or 15 ohm
Goodmans \(12 \mathrm{P}-\mathrm{D} 8\) or 15 ohms
Goodmans 12P-G 8 or 15 ohims
Goodmans Audiom 1008 or 15 ohm
Goodmans Audiom 2008 ohm
Goodmans Axent 1008 ohm
Goodmans Axiom 4028 or 15 ohm
Goodmans Twinaxiom 8" 8 or 15 ohm
Goodmans Twinaxiom 10' 8 or 15 ohm
Kef T27
Kef B110
Kef B110
Kef B1 39
Kef B139
Kef DN8
Kef DN 12
Richard Allan HP8B 8 " 45 watt
Richard Allan CG8T 8" d/c roll/s
STC 4001 G super tweeter
8aker Major Module, each
Goodmans Mezzo Twinkit, pair
Goodmans DIN 20, 4 ohm, each
Helme XLK25, pair
Helme XLK30, pair
Helme XLK50, pair
Kefkit 1, pair
Kef kit III, each
Peerless \(3 / 15\) (3 sp. system) each
Richard Allan Twinkit, each
Richard Allan Triple 8, each
Richard Allan Triple, each
Richard Allan Super Triple, each Wharfedale Linton 2 kit (pair) Wharfedale Glendale 3 kit, pair
Wharfedale Dovedale 3 kit, pair
\(\varepsilon 8.64\)
\(£ 10.25\)
\(£ 10.25\)
\(£ 13.75\)
\(£ 13.75\)
\(£ 11.87\)
£11.87
\(\mathrm{E10.00}\)
\(\varepsilon 10.00\)
\(\varepsilon 18.12\)
\(\varepsilon 18.12\)
. \(£ 7.75\)

\section*{£37.50}
£24.06
E2.94
. 89.56
\(£ 8.56\)
\(£ 9.00\)
\(\begin{array}{r}69.00 \\ \hline 0.77\end{array}\)
\(\varepsilon 0.77\)
\(£ 3.44\)
E3.44
£3.44
\(£ 3.44\)
\(\varepsilon 4.06\)
\(\varepsilon 4.06\)
\(\varepsilon 5.25\)
E5.25
E6.50
\(\varepsilon 7.50\)
\(£ 12.00\)
£14.75
E28.95
E34.50
£47.50
E 82.95
55.75

\section*{E 8.12
E 5.50}

\section*{E 5.50
E 5.80}

\section*{E6.80
E13.85}
£13.85
\(£ 16.85\)
\(£ 15.95\)
\(\varepsilon 15.95\)
£13.90
£13.90
c8.44
£20.00
£10.14
\(£ 10.75\)
E 6.06
c6.84
\begin{tabular}{l}
E 8.37 \\
\hline
\end{tabular}
\(\varepsilon 9.50\)
\(\epsilon 16.50\)
\(\begin{array}{r}\varepsilon 16.50 \\ \varepsilon 2.31 \\ \hline\end{array}\)
E5.75
\(\begin{array}{r}\mathbf{8 5} .75 \\ \mathrm{E3.87} \\ \hline\end{array}\)
E12.95
\begin{tabular}{c} 
E7.37 \\
\(\varepsilon 6.58\) \\
\hline
\end{tabular}
£ 8.66
\(£ 13.44\)
\(£ 47.19\)
\(£ 13.44\)
£25.44
\begin{tabular}{l} 
£25.44 \\
\hline
\end{tabular}
\(\varepsilon 48.25\)
£48.44
E 42.50
£42.50
£17.19
\(£ 17.18\)
\(£ 10.37\)
£10.37
\(£ 15.94\)
ع23.12
£27.50
\(£ 23.12\)
E 40.62
\(\mathbf{~} 63.12\)
All Radford, Gauss, Castle, Jordan Watts, Eagle. Lowther, Tannoy units in stock
INCLUDING VAT AT \(25 \%\) ON HI-FI, \(8 \%\) ON
PRO AND PA
Cabinets for PA AND HiFi, wadding, Vynair, etc. Send stamp for free booklet "Choosing a Speaker

FREE with ell orders over \(£ 7\) - HiFi
Loudepeaker
Enclosures Book

Al unite are.guarenteed new and perfect Prompt despatch
Sarriage: Speakers 38 p each, \(12^{\prime \prime}\) and up. 50 p each. weeters and cross-overs 25p each, kits 75 p each (壬 1.50 pair).

\section*{WILMSLOW AUDIO}

Loudepeakers E Export Dept: Swen Works,
Bank Square, Wilmalow, Cheshire SK9 1 HF . Diecount HiFi, PA, otc: 10 Swan Street, Discount Hifi, PA, otc: 10 Swan Stroet, Wilmalow. Radio, HiFi, TV: Swift of Wilms-
low, 5 Swan Streer, Wilmslow. Tol. (Loudlow, 5 Swan Street, Wilmslow. Tel. (Loud-
speakers) Wimslow 29598, (HiFi, ©tc.)


WW-076 FOR FURTHER DETAILS

\section*{American Made Quality Products. Prompt DeliveryExcellent Pricing}


\section*{B\&K Television Analyst} Model 1077-PAL
Cuts troubleshooting time in half! Checks every stage of black-and-white and color TV receivers from antenna input to grid of CRT. Drives solid-state sweeps, all UHF channels, 8 VHF channels, 20 to 45 MHz IF, audio, video, sync outputs.


B\&K Solid State Sweep/Marker Generator
Model 415 - PAL
Four instruments in one - sweep generator, marker generator, marker adder and bias supply (3) plus the demodulator probe. Easy to use. Available for CCIR frequencies.

Write for complete catalog and prices.

\section*{Empire Exporters Inc.} 270-278 Newtown Road Plainview, N.Y. 11803
Cable Address: Empexinc, N.Y. Telex: 96-7880


\section*{MOTOROLA MICROPROCESSOR}

\section*{1975}

Applications Manual

SCR MANUAL inc. Trides by G.E. Price \(£ 2.00\)
PRINCIPLES OF TRANSISTOR CIRCUITS by Amos S. W. Price \(£ 3.55\)
SOLID STATE HOBBY CIRCUITS by R.C.A. Price \(£ 1.25\)

UNDERSTANDING CMOS INTE. GRATED CIRCUITS by R. Melen. Price \(£ 2.89\)
TRANSISTOR CIRCUIT DESIGN by Texas. Price \(£ 5.60\)
THEORY AND APPLICATION OF DIGITAL SIGNAL PROCESSING by Rabiner, L.R. Price \(£ 15.50\)
DATA COMMUNICATIONS. An introductory guide by Hebditch, D.L. Price £4.55
LINEAR I.C. PRINCIPLES, EXPERI. MENTS \& PROJECTS by Noll, E. N. Price £5.00
MODERN RECORDING TECHNIQUE by Runstein, R.E. Price \(£ 5.35\)
* PRICES INCLUDE POSTAGE *

\section*{THE MODERN BOOK CO.}

SPECIALISTS IN SCIENTIFIC
\& TECHNICAL BOOKS
19-21 PRAED STREET LONDON W2 1NP

Phane 7234185
Closed Sat. 1 p.m.

EXCLUSIVE OFFERS
WORLD-WIDE RANGE
NEVER BEFORE OFFERED
COMPLETE TRAMIPORTABLE BE. COMMUNICATIONS CENTRE housed in Air Conditioned TRAILER
fitted two COLLINS KWT 6 Sjow s.S.B. Transmitter Recelvera and one CoLLINS Recelver all fully tuneable 2 to \(30 \mathrm{~m} / \mathrm{cs}\) digital resiout synthesised frequency
control, with Hne ampliflers and inputs, operating position and remote control facilities and ancillary equalpment. Pow
on applicatlon.
PELLCO EC-150 POINT-TO-POINT STRIP RADIO HP RECEIVRRS \(2 / 30\) m/es. Ten fully tuneable channele to On ISB, DSB, \&SB with 4 sutbobands to each channel. Full detalles and prices on application.
HIGHEST QUALITY 19* RACK MOUNTJNG CABINETS \& RACKS Our Height Width Depth

M.V.R. Action Replay 20 sec. Videodisc Unit
Gresham quality enclosed chokes. \(3 \mathrm{H} 200 \mathrm{~m} / \mathrm{a}\) Dow Key Co-ax. Relay SPST 12 to 110 v \begin{tabular}{l} 
Racal S.S.B. Transmiter Receiver \(3 / 12 \mathrm{~m} / \mathrm{cs} 10 \mathrm{w}\) \\
Racal 1 KW S.S. B. Linear amplifiers \(1.5 / 30 \mathrm{~m} / \mathrm{cs}\) \\
\hline
\end{tabular} Advance HI Sienal Generators. \(15 / 50 \mathrm{Kcs}\) Co-ax. Attenuatorn 2 to 50dB
Varian VA175EA Backward Wave Oscillators
Kinnel stannard voltmeter \(0.001 / 8000 \overline{\mathrm{Vx}} .001 \mathrm{v}\)
Tally 5/8 Track Tape Readers 120 cps
2 KVA Auto-Transformers
Coutant suv zot Powe Supples
Cintel 2 KV Powe Supplies
Vatradio 400 watt inverters 24 v to 230 VAC
Cawkell FV4 Band Pass Fiker Testers
Bendix 313 Directional Couplers
Racal RA-63 SSB Adaotore new
Racal RA-237 L-W Convetiers new
19 Elank Rack Panels 8"fin high
Apeco Lectro-stan Photo Copier Electrostatic Apeco Dial a Copy Photo Copier Electrostatic Hewlett Packard 5601A Digital Recorder Tektronix 519 (oscilloscopes 1 GMC Ferrograph Series 4 Recorders Airmec 701 Sig. Generators \(30 \mathrm{k} / \mathrm{cs} / 30 \mathrm{~m} / \mathrm{cs}\) CT. 381 Test Sets Freq. Response Rustrak Chart Recorders \(1-0.1 \mathrm{~m} / \mathrm{a}\) (New) Portable Mains Battery Floodlights 400 channel Addo 5/8 track Iape Punches Auto Electric Carillon Chimes
Caselia Assmann Eiectric Hygrometers
Ampex Audio Stereo Tape Machines
Astrodata 5190 Time Code Generatots

\section*{P.U.R.
E.B.00
c.} E. 8.00
P.U.R.
 Lequest.

INSTRUMENTATION-TAPE
PECORDER-REPRODUCERS AMPEX

FR-600 \(\mathrm{I}^{\prime \prime}\) and \(1 / 2^{\prime \prime} 14\) and 7 racks \({ }^{4}\) speeds
ransistorised.
MINCOM
CMP-100
\(1 / 4\) " \(1 / 2^{\prime \prime} 1^{\prime \prime} 7\) tracks 6 speeds
E.M.I.

BTR-1 R-301.
Several other smaller decks.

Prices of above are from £ 100 to \(£ 400\)


COMPUTER HARDWARE
* CARD READER 80 col. 600 c.p.m.
* TAPE READER, High speed 5/8 track 800 c.p.m.
Prices on Application
PLEASE ADD V.A.T. ATAPPROPRIATE
RATE TOABOVE
P. HARRIS

ORGANFORD-DORSET
BOU16 8BR


The brain boggles at what old Johann could have done with his own console, preamp. 8-in-2 out mixer, octave equalizer, electrostatic speakers, or 24 inch woofer.
Come boggle with us.

Send now for a free prospectus.
Name
Address

\section*{BROADFIELDS \& MAYCO} DISPOSALS
21 Lodge Lane, N. Finchley London, N12 8JG

Telephone:
01-4450749 01-4452713 01-9587624
MAY WE ASSIST YOU TO DISPOSE OF YOUR SURPLUS AND REDUNDANT STOCKS
We will call anywhere in the British Isles, and pay SPOT CASH for Electronic Components and Equipment.


> Housing problems? West Hyde will have a case to meat your needs. BRIGHTCASE See last. or next iss̄ue AMTRON, MINOS Check now. Fing - ENVIRONMENTAL WEST HYDE HEAVY DUTY CASES

> WEST HYDE DEVELOPMENTS LIMITED
> Ryafield Croscent, Northwood Hille
> Ryoford Croscom, Northwo
Northwood, Middx. HA6 1 N N
> Tel. Northwood 24941/26732. Telex: 923321

\section*{OOT SAVEIT BARGAIN}
(not suitable for fluorescent lights) Basic Module with \(1^{\prime \prime}\) Knob

\section*{When you need to hire Video- \\ it pays to contact the most experienced video company in the business}
R.E.W. HOUSE

10, 12 HIGH STREET
cotilers wood LONDON SW 1928 E PHONE: 01-540 9684

Also at CENTRE POINT
20/21 ST. GILES HIGH STREET LONDON, WCZ PHONE 01-240 3066

325 Fore St. Edmonton, London, N. 9
91-807 3719
Closed Thursdays

QUARTZ CRYSTAL
UNITS from
- 1.0-60.0 M HZ
- fast delivery
- high stabluty
- TO DEF 5271-A


WRITE FOR
LEAFLET AT
McKNIGHT
CRYSTAL Co. Ltd.
hapdiey inoustrial
ESTATE. HYTHE.
TEL. HYTHE 848961 SSTATE. HYHE. SOUTHAMPTON SOA \(8 T Y\)
STD CQDE 0703

\section*{P.C.B.}

AGID RESIST TRANSFERS
See ad in this issue. Page number 21
P.M.S. NAMEPLATES
bROOK STREET
higher hillgate
STOCKPORT, CHESHIRE

\section*{EX-COMPUTER} STABILISED POWER SUPPLIES

\section*{RECONDITIONED, TESTED AND GUARANTEED}

Ripple \(<10 \mathrm{mV}\). Over-voltage protection. \(120 / 130 \mathrm{v}\).. 50 \(\mathrm{c} / \mathrm{s}\). Stepdown transformer to suit, about £3. P\&P
\(5 / 6 \mathrm{v}\). \(8 \mathrm{~A} £ 15.5 / 6 \mathrm{v} 12 \mathrm{~A} £ 18.5 / 6 \mathrm{v} .16 \mathrm{~A} £ 22\). PAPST FANS. \(41 / 2 \times 41 / 2 \times 2 \mathrm{in}\). \(100 \mathrm{c} . f . \mathrm{m} .240 \mathrm{v} .50 / 60\) \(\mathrm{c} / \mathrm{s}\). \(£ 4\) ( 35 p ).
PAPST FANS. Type 7576, \(6^{\prime \prime}\) dia. \(\times 2^{3 / 16^{\prime \prime}}\) deep. \(\mathbf{£ 5 . 0 0}\) (35p).
LIGHT DIMMERS, 250 w . £2. 70 ( \(1 \mathrm{5p}\) ).
BC107/8/9, BC147/8/9. BC157/8/9. all 9p ea. (10p).
ELECTROLYTICS
\(12.000 \mu 100 \mathrm{v}\). \(£ 1.75\) (30p). \(10.000 \mu 63 \mathrm{v}\). £1 (30p). \(8.000 \mu 100 \mathrm{v}\). \(£ 1.50\) ( 30 p ) \(2.800 \mu \mathrm{iOOv}\). 80 p ( 20 p ) \(2.240 \mu-100 v .75 p\) (20p) \(4.500 \mu 25 v\). 60p (13p) \(30,000 \mu 25 \mathrm{v} 75 \mathrm{p}\) (35p) \(2,000 \mu 50 \mathrm{v} .35 \mathrm{p}\) (11p). \(4.000 \mu\) 70v. 80p (17p).

EX-COMPU
E1.20 ( 35 p )
OPCOA SLA 7 mm 7 -seg. led display
OH bulbs 12 v .55 w .
250 Mixed Ressstors
250 Mixed Capacitors
Si RECS 20A 100 piv
2N3055 equiv.


SMALL ELECTROLYTICS
\(22 \mu 10 v\). . \(10 \mu 35 v .50 \mu 40 v\). . \(100 \mu 40 \mathrm{v}, 100 \mu 6 \mathrm{v}\) \(150 \mu 10 \mathrm{v} .64 \mu 10 \mathrm{v} ., 300 \mu 10 \mathrm{v}\).

12 for 45p (9p)
Water cooled heatsinks. ex.eqpt. .
E1 (35p)
5 for
Reed Relays 6v. coil h/d contacts
5 for \(\mathrm{E1}\) (12p)
CALCULATOR KEYBOARDS. Texas P.C Type, 19 switches

SETS 100 mW
220, 470, 1k, 4k7, 10k, 47k, 100k
12 for 50p (12p)
P\&P shown in brackets
ADD \(25 \%\) VAT to TOTAL
\(8 \%\) VAT O PSUS. FANS. DIMMERS. BOARDS
KEYTRONICS
Please note new address:
332 LEY STREET, ILFORD, ESSEX 01-478 8499

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. SPOT CASH
CHILTMEAD LTD.
7, 9, 11 Arthur Road, Reading, Berks. Tel: 582605


WK 2344
Due to GOVERNMENT V.A.T. REGULATIONS the cost of the additional office work involved in applying our \(\mathbf{2} 1 / 2 \%\) discount is prohibitive. We have no option but to reluctantly withdraw our discount for the present. This does not reflect our policy but is directiy due to GOVERNMENT REGULATIONS. We hope you will join with us in looking forward to better times and to a more sane fiscal policy.

EURO CIRCUITS LTD
Manufacturers of
Printed Circuit Boards

Highfield House
West Kingsdown
Nr. Sevenoaks, Kent.

\section*{DIRECT ELECTRONICS LTD. \\ INTERCOMMS AND TELEPHONES \\ All Genuine Instrumente NOT Toys}
- Simple 2 -way wall-fixing kit assembled with 100 ft . cable. Only needs \(6 v\) Battery and Power Supply £ \(16+£ 1\) P\&P
- 7-way simple instrument only. Suit 2 to 7 -way system. Supplied with installation diagram. £1.50 per unit + £1 P\&P
- 6-way Siemens \& Halske superio instrument with wall/desk conversion unit and term, block/cord for eas installation and diagram. \(£ 10+£ 1\) P\&P
- INSTRUMENTS for automatic circuits 332; 706; 746; 722 (trimfone), etc
- ULTRA MODERN TYPES, e dola" International, Ericofone (One-piece Horn type); Touch-Button-Dial; Charles ton (Candlestick); etc. From \(£ 32.85\).
- Éntrance Phones and Door Locks.
- Lamp stocks of refurbished and recovered tems at extra-cheap prices: G.P.O. \& similar types; Loudspeaking phones Special instruments; all tested to work
- Jacks; Plugs; Cords; Term. Blocks; Cables (up to 25 -way and 50 pairs); etc.
- Trade and privare customers welcome

MANY SURPLUS ELECTRONIC BARGAINS FROM OLD STOCK STILL LEFT - COME AND

34 LISLE STREET LONDON WC2H 7BD
Tel. 01-437 2524


\section*{1st GRADE COMPONENTS}

Mrom MONSANTO FERRANTI GIM
We hold \(£ 250,000\) worth of components and all items listed in this advetisement are ex-stock at the time of going to press. All products
guaranteed. No minimum order charge.


Beresford Ave, Wembley, Middx. HAO 1 SD PRICES EXCLUSIVE OF V.A.T. WhiCh must be added as shown below COMPONENTS Telophone: O1-903 3168

\title{
Ferrograph Professional Studio 8 Console
}


Full logic control. Tape motion sensing.Two speeds.Servo-controlled capstan. Constant tape tension. Directreading tape timer (minutes and seconds). Three editing modes. Provision for synchronisation, remote control and remote display panel. Available for line-in/line-out or with mixing and monitoring facilities.IEC or NAB equalisation. Full or
half-track mono, dual track or stereo.
Easy access for maintenance.
Also available in transportable and rackmounted versions.

For full details contact Ferrograph Professional RecorderCompany, 442 Bath Road,Slough SL16BB. Telephone Burnham (06286) 62511. Telex 847297. Cables Brifferro,Slough.

\section*{Ersin Multicorethe international solder}

\section*{Ersin Multicore 5-Core Solder}

The proved superiority of ERSIN Multicore Solder for over thirty years is due to many factors. We have specialised throughout this period in the manufacture of cored solders. Consequently our research and manufacturing staff have been able to devote all their energies to the development of Multicore Solders. All alloys are of highest purity, carefully formulated and checked.

Our unsurpassed ERSIN flux is rigorously tested before and after it is incorporated in the solder wire. Our five separate cores of flux ensure flux continuity, leave only an ultra-thin layer of solder separating flux from work for instant wetting and provide a more accurate ratio of flux to solder. It is therefore possible to
use less solder and obtain greater reliability.
Our Quality Control at all stages of manufacture is guaranteed and recorded by the batch number on every reel.
Needle fine gauges


In addition to our standard range of wire diameters (10-22 swg: 3.2-0.7 mm) supplied on \(2^{\frac{1}{2}} \mathrm{~kg}\) and \(\frac{1}{2} \mathrm{~kg}\) reels we also massproduce needle-fine gauges (24-34 swg: 0.56-0.23 mm) on 250 g reels for microminiature soldering applications-still with 5 Cores of flux.

\section*{Sarbit Solder}

One of our most popular special ERSIN Multicore Solder alloys is SAVBIT alloy. Compared with ordinary tin/lead solders it dramatically redices the erosion of soldering iron bits, copper wires and printed circuit conductors. It also saves costs and increases reliability. SAVBIT alloy containing 5 -Cores ERSIN 362 flux has received special Ministry approval-under DTD. 900/4535 for Military applications.


Sectioned iron-plated bit, after 40,000 simulated operations using 60/40 Sulder.


Sectioned iron-plated bit, after 40,000 simulated operations using SAVBIT Solder.

Composition

\section*{(nominal major elements)}
\(50 / 33 / 17 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Cd}\)
\(62 / 36 / 2 \quad \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag}\)
\(62 / 35.7 / 2 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag} / \mathrm{Sb}\)
\(63 / 36.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}\)
\(60 / 40 \mathrm{Sn} / \mathrm{Pb}\)
\(60 / 39.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / 5 \mathrm{~b}\)
\(50 / 50 \mathrm{Sn} / \mathrm{Pb}\)
\(50 / 49.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}\)
\(50 / 48.5 / 1.5 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Cu}\)
\(45 / 55 \mathrm{Sn} / \mathrm{Pb}\)
\(40 / 60 \mathrm{Sn} / \mathrm{Pb}\)
\(40 / 59.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}\)
\(30 / 70 \mathrm{Sn} / \mathrm{Pb}\)
\(20 / 80 \mathrm{Sn} / \mathrm{Pb}\)
\(15 / 85 \mathrm{Sn} / \mathrm{Pb}\)
Pure Tin
\(95 / 5 \mathrm{Sn} / \mathrm{Sb}\)
\(5 / 93.5 / 1.5 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag}\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Grade} & \multicolumn{3}{|l|}{Melting Temperature} \\
\hline & \begin{tabular}{l}
Solidus \\
\({ }^{\circ} \mathbf{C}\)
\end{tabular} & & Specification \\
\hline TLC & 145 & 145 & DIN 1707 \\
\hline LMP & 179 & 179 & DIN 1707 \\
\hline Sn62 & 179 & 179 & QQ-S-571F, \\
\hline Sn63 & 183 & 183 & QQ-S-57 1E \\
\hline K & 183 & 188 & B.S. 219 \\
\hline Sn60 & 183 & 188 & QQ-S-57 1E \\
\hline F & 183 & 212 & B.S. 219 \\
\hline Sn50 & 183 & 212 & QQ-S-571E \\
\hline Savbit 1 & 183 & 215 & DTD 900/4535 DIN 1707 \\
\hline R & 183 & 224 & B.S. 219 \\
\hline G & 183 & 234 & B.S. 219 \\
\hline Sn40 & 183 & 234 & QQ-S-57 1E \\
\hline J & 183 & 255 & B.S. 219 \\
\hline V & 183 & 275 & B.S. 219 \\
\hline - & 225 & 290 & - \\
\hline P.T, & 232 & 232 & B.S. 3252 \\
\hline 95A & 236 & 243 & B.S. 219 \\
\hline H.M.P. & 296 & 301 & B.S. 219 \\
\hline
\end{tabular}


For full information on these and a Selector Guide to other MULTICORE products please write on your Company's letterhead direct to:
Multicore Solders Limited, Maylands Avenue, Hemel Hempstead. Hertfordshire HP2 7EP. Tel: Hemel Hempstead 3636 Telex: 82363```


[^0]:    $\Gamma$ Please send me further informat
    | on your product range
    | Name
    Company
    Address

