

CoverStory

Some Marconi Instruments are designed to be mobile. Others are not - but do a lot of travelling all the same. In fact, nearly three-quarters of mi's total sales stem from export orders.

So there are plenty of people in Milwaukee or Mannheim or Melbourne or Montevideo who are just as discerning about Marconi Instruments as you are. And they're equally enthusiastic about mi service, too. We've service organisations in New Jersey, Munich, Paris and a whole lot of other
places to see to that.
There are $\mathbf{m i}$ distributors and representatives in more than 60 countries throughout the world and we have 14 associated companies in Africa, the Middle, Near and Far East, North and South America and Europe.
mi, then, doesn't only cover all the intricacies of planning and producing some of the world's finest electronic testing and measuring instruments

It covers the world, as well.

LOW COST TESTERS

PORTABLE INSTRUMENTS

INSULATION TESTER

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV
$1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V .
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale
Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre. Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$.
Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA

CURRENT RANGE

100 pA to $100 \mu \mathrm{~A}$ on 6 decade logarithmic scale.
Accuracy of current measurement $\pm 15 \%$ of indicated value. Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$
Maximum safe continuous overload is 50 mA .

MEASUREMENT TIME

<3 s for resistance on all ranges relative to CAL position. <10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V . Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position
RECORDER OUTPUT
1 V per decade $\pm 2 \%$ with zero output at scale centre.
Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

TRANSISTOR TESTER

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is powered by a 9 V battery.
TRANSISTOR RANGES (PNP OR NPN)
${ }^{1}$ Сво $\left.{ }^{\&}\right|_{\text {E B }}: 10 \mathrm{nA}, 100 \mathrm{nA}, \uparrow \mu \mathrm{A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$, $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$, 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
BVCBO: $\quad 10 \mathrm{~V}$ or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
$I_{B}: \quad 10 n A, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and $100 \mathrm{~mA} \mathrm{acc} . \pm 1 \%$.
$h_{\text {FE }} \quad 3$ inverse scales of 2000 to 100, 400 to 30 and 100 to 10 convert I_{B} into $h_{F E}$ readings.
$V_{B E} \quad 1 \vee$ f.s.d. acc. $\pm 20 \mathrm{mV}$ measured at conditions on $h_{\text {FE }}$ test.
$V_{C E(\text { sat })}: \quad 1 \mathrm{Vf.s.d.acc} . \pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or 30 acc. $\pm 20 \%$.
DIODE \& ZENER DIODE RANGES
$I_{D R} \quad$ AsIEBO transistor ranges
V_{Z} : Breakdown ranges as $B V_{C B O}$ for transistors.
$V_{D F}: \quad 1 V$ f.s.d. acc. $\pm 20 \mathrm{mV}$ at $I_{D F}$ of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .

筑些 $£ 88$

Prices include batteries and U.K. delivery V.A.T. extra. Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

SJSTEN 2000

VORTEXION

A new range of sound equipment from Vortexion, System $\mathbf{2 0 0 0}$ has been designed by our engineers to combine the aesthetics of design in the domestic equipment field with the near flexibility of a modular system. Like all our equipment Vortexion System 2000 is built to last.

No matter what your sound problem, whether hotel or local pop group, ask our Design Consultants how it can be solved with System 2000.

The Dymar 1785 portable AM-FM modulation meter.

No need to ask who's in control. It's you!

The Dymar Type 1785 is quickly and easily tuneable anywhere across the entire VHF band and into UHF to encompass the mobile 470 MHz band.

Designed to measure the depth of modulation or frequency deviation of today's demanding mobile and portable transmitters, the 1785 offers four ranges of both peak or trough percentage modulation (3% fsd to 100%) and both positive and negative deviation (3 kHz to 100 kHz).

The sensitivity over the entire frequency range is better than 2.5 mV into 50 ohms (-40 dbm),
which permits loose coupling to the transmitter under test. And internal noise is typically 44 db below 3 kHz .

Then, like most Dymar instruments, the 1785 is equally at home working from mains supply or in action in the field operating on its own rechargeable NiCd batteries.

With such value-for-money performance, you'll want to drive the 1785 to the limit - and that's why we emphasise that the 1785 is fully tuneable.

Want to know more? Use the Reader Reply Service or contact Dymar direct.

DYMAR ELECTRONICS LIMITED, Colonial Way, Radlett Road, Watford, Herts. WD2 4LA, Telephone Watford 37321. Telex: 923035. Cables: Dymar Watford.

Again and again and again

Given the time, the patience, and the money, one can connect* fifty 303 amplifiers nose to tail so that the programme goes through one after the other gradually deteriorating along the way.
Deteriorating? The fact is, that apart from a very slight background hiss - akin to a good tape recording - the programme will sound exactly
the same at the end as when it started.
*Of course one must fit an attenuator to reduce the signal back to its original level between each amplifier.
Send postcard for illustrated leaflet to Dept.WW Acoustical Manufacturing Co. Ltd., Huntingdon PE18 7DB. Telephone (0480) 52561.

QUAD

Products of The Acoustical Manufacturing Co. Ltd.
for the closest approach to the original sound
QUAD ix a Registered Trad. Alurk

Varley is one of Europe's big names in miniature plus-in relays.

The Miniaturised Bi-stable polarised relay type VPR and the P.O. approved relay type 23 are but two from a range used and approved throughout

cleaning throughout coupled with exacting performance and timing checks

Stable companions

Wide-range universal bridge B602 0.1-100MHz source/detector SR268 from Wayne Kerr

SPECIFICATION

B602

Frequency range Accuracy

Overall impedance range

SR268
Frequency Range
Frequency accuracy Short Term Frequency
Stability:
Outpullevel
Output attenuator.
Input sensitivity for
10\% meter deflection
Input attenuator
Detector bandwidth

100 kHz to 10 MHz
1% up to $3 \mathrm{MHz}, 1$ pF to 10 nF 10Ω to $100 \mathrm{k} \Omega$ $1 \mu \mathrm{H}$ to 10 mH
1 fF to 1 mF
$100 \mu \Omega$ to $100 \mathrm{M} \Omega$ (10 n γ to $10 \mathrm{k} \gamma$) 10 pH to 10 H

100 kHz to 100 MHz in 9 bands (SR268L 46.5 kHz to 46.5 MHz)
2-3\% according to band used
001%
$05-2.0 \mathrm{~V}$ according to band used
3.6 .10 .20 dB additive steps. 75Ω

1 to $30 \mu \mathrm{~V}$ according to frequency setting
4 steps of $20 \mathrm{~dB}, 75 \Omega$
$2-3 \%$ according to band used

For more information, either phone Bognor Regis (02433) 25811 or write to the address below:

WAYNE KERR

Durban Road, Bognor Regis, Sussex Telex: 86120. Cables: Waynkerr, Bognor

The B602 transformer ratio armbridge measures impedance in all four quadrants of the complex plane over the frequency range 100 kHz to 10 MHz . Because of novel features incorporated in the design, values from virtually a short circuit to an open circuit can be measured. This bridge has established a standard of performance and flexibility which is unobtainable from any other radio frequency bridge

A standard inductor is included in the bridge network in addition to standards of capacitance and resistance enabling a periodic calibration of the scales which are correct at any frequency between 100 kHz and 10 MHz .

There are only two balance controls. One is direct reading in resistance and conductance, the other in capacitance and inductance and there is no inter action-between them.

The stability realised allows a discrimination of 0.1% to be obtained for all types of measurement with a general accuracy of 1% over most of the impedance and frequency range.

The bridge is shown together with the SR268 Source and Detector which can also be used with other bridges in the Wayne Kerr range over the frequency band 100 kHz to 100 MHz . Nine frequency ranges are provided by this instrument and a single tuning control adjusts both source and detector to the exact frequency required

Meticulous screening between the two sections provides freedom from bridge measurement errors due to leakage of the source signal into the detector Common mode rejection transformers are incorporated in the input and output networks to reduce interference from unwanted signals, and push button attenuators are included to assist the logarithmic detector circuit to indicate approach of the bridge balance point.

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited
Electron House
Cray Avenue, St. Mary Cray.
Orpington, Kent BR5 30J.
Telephone: Orpington 27099
Telex: 896141

IP) IL.P. © centronesente

SHEER SIMPLICITY!

Mono electrical circuit diagram with interconnections for stereo shown

The HY5 is a complete mono hybrid preamplifier, deally suited tor both mono and stereo applications finternally the device consists of two high quality amplifiers the first contains frequency equalisation and gain correction, while the second caters for tone control and balance.
TECHNICAL SPECIFICATION
Inputs
Maqnetic Pick-up 3 mV R|AA Cerantic Pick-up Microphone
Tuner
Auxiliary
Input impedance
Outputs
Main output Oab (0.775 volts RMS)
Active Tone Control.
Treble + 12 db at 10 hHz
Bass $\quad 12 \mathrm{dbat}$.
0.05 at 1 kHz

Signal/Noise Ratio 68db
Overload Capability 40 db on most
Supply Voltage $\quad \begin{aligned} & \text { sensilive input } \\ & 16-25\end{aligned}$
PRICE E4 $75+£ 1.19 \vee$ AT P \& P free
TWO YEARS GUARANTEE ON ALL OUR PRODUCTS
I.L.P. Electronics Ltd,

Crossland House,
Nackington, Canterbury.
Kent CT4 7AD
Tel (0227) 63218

The HY50 is a complete solid state nybrid Hi.Fiamplifier incorporating its own high conductuvity neatsink hernetically sealed in black epoxy resin. Only five connec tions are provided: Input, output, power lines and earth

TECHNICAL SPECIFICATION
Output Power 25 watts RMS into $8 \Omega 2$ Load Impedance 4-1632
Input Sensitivity Odb (0.775 volts RMS)
nput Impedance $47 \mathrm{k} \Omega$
Distortion Less than 0.1% at 25 watts
typically 0.05°
Signal/Noise Ratio Better tham 75 db
Frequency Response $10 \mathrm{~Hz}-50 \mathrm{kHz} 3 \mathrm{db}$
Supply Voltage 25 volts
Size $105 \times 50 \times 25 \mathrm{~mm}$
PRICE $£ 6.20+£ 155$ V.A.T. P \& P free

The PSU50 incorporated a specially designed transformer and can be used for either mono or stereo systems.

TECHNICAL SPECIFICATIONS
Output voltage 50 volts $(25-0-25)$
Input voltage $210-240$ volts
Size L. 70. D. 90. H. 60 mm
PRICE £6 $25+£ 1.56$ V.A.T. P \& P free

II. It est equipment

TM6 R.F. MILLIVOLTMETER
1 mV to 300 V f.s.d
50 kHz to 1.5 GHz
Useful to 3 GHz
Near true r.m.s. readings on low ranges

MODULAR SIGNAL GENERATORS

100 kHz to 12 MH
M1A/ABM AM,FM Signal
Generator
M1 A'ADM Synthesised AM/FM
Signal Generator
M1A/ACS Sweep Generator

10 MHz to 100 MHz M2/ACM AM,FM Signal Generator
M2/ADM Synthesizer AM/FM Signal Generator M2'ACS SweepGenerator

A range of general purpose r.f. signal generators, synthesizers and sweepers is offered covering 100 kHz to 512 MHz . Specialist instruments include a Marine Test Set covering 0.1 to 12 MHz for use with receivers with narrow i.f. filters for S.S.B. reception and u.h.f./v.h.f. Test Sets suitable for work on alerters, pocket pagers and two-way personal radios. All the equipment is programmable and may therefore be used in A.T.E. systems or operated manually.

Complementary r.f. test equipment includes an r.f. millivoltmeter, a programmable attenuator and an $x-y$ recorder.

X-Y RECORDER
A3 Size flatbed Ideal for use with sweepers Also avallable with timebase for general use Electrostatic paper hold Disposable pens WW-042 FOR FURTHER DETAILS
$10 . \mathrm{MHz}$ to 512 MHz
M3A/ABM AM FM Signal Generator
M3A/ACM Synthesized Signal
Generator
M3A'ACS Sweep Generator
WW-040 FOR FURTHER DETAILS

T6003 TEST SET
Synthesized signal generator 0.1 to 12 MHz
Accuracy 5PPM. Resolution 100 Hz
3 to 50 Hz narrowband sweep Five settable markers
A.M./F.M. capabilty Built-in detector

WW-04I FOR FURTHER DETAILS

PA112
ATTENUATOR
Manual or programmable operation
$0-122 \mathrm{~dB}$ in 1 dB steps Uses thick film technnlogy and reed relay switching
Small size
Built-in power supply
 an entire servicing system

1. It's an 8 MHz general purpose scope Typical composite TV video signal.

2. It's a Vectorscope for colour TV AFP C alignment. Colour bar generator used for test signal.

For full information on the new W0-33B, contact RCA Electronic Componenis Sunbury-on-Thames, Middlesex Tel: Sunbury 85511 or an appointed RCA (EC) Distributor:

2. It's a "Quicktracer" Transistor/Diode and Component Tester. Typical junction wave form.

4. It's a "ringing" tester for coils, yokes, transformers. Typical ringing test pattern.
5. It includes the WG-400A Direct Law-Capacitance Switch Probe and Cable with BNC type connector, and a special "Quicktracer" probe.

ELECTRONIC COMPONENT SUPPLIES (WINOSOR) Ltd
Thames Avenue. Windsor, Berkshire Tel: Windsor 68101
EOMUNOSON ELECTRDNIC COMPONENTS Ltd 30.50 Ossory Road, London SE1 5AN Tel: 01-2370404
BLACK ARROW ELECTRONICS Ltd Millbrook Road, Yate. Bristol BSI7 5HX. Tel: Chipping Sodhury 315824

Electronic Components

Now suitable for U.K., European and American voltages...

Minimod, the versatile British range of encapsulated power supplies first introduced in 1973, has now been extended to cover European and North Americán mains voltages (and is interchangeable with most American types). Normally available ex-stock, all units are fully stabilised with fold back current limiting - the 5 V models have over voltage crowbar too!

STANDARD MODELS				
Type Number	Output Voltage	Output Current Amps	Short Circuit Current mA (Typical)	\% Regulation Line and Load (Typical)
Pu01	5 ± 0.1	0.5	370	0.3
PU02	5 ± 0.1	1.0	770	0.5
Pu03	15-0-15土0.2	0.10	37	0.1
PU04	15-0-15 ± 0.2	0.20	84	0.1
Pu05	12-0-12 ± 0.2	0.12	45	0.1
Pu06	12-0-12 ± 0.2	0.24	120	0.2
PU11	18-0-18 ± 0.2	. 15	50	0.1
Pu10	15 ± 0.2	. 10	37	0.1
PU12	12 ± 0.2	. 10	45	0.1
PU13	18 ± 0.2	. 065	23	0.1

Input voltage ranges 103-126V, 200-240V. 210-250V. Frequency $50-400 \mathrm{~Hz}$ all types.

Comprehensive specification given in brochure GT 29b which is available on request.

\star SPECIAL DESIGN SERVICE

Custom built units for applications requiring different specifications are produced as part of our standard service. Try us first.

Gardners

Specialists in Electronic Transformers \& Power Supplies.

GARDNERS
 TRANSFORMERS LIMITED

NEW!...the decon-dalo 33 PC Quick -Dri etch -resist marker

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect $P C B$. A fine-tipped marking pen charged with free-flowing etch-resist ink new formulation QUICK-DRI ink is ready for etching in just two minutes!
Simply draw the desired circuit onto copper laminated board etch - clean.
The circuit is ready to use

NO MESS - NO MASKING A perfect circuit every time!

Still only $£ 1.00$ for one-off, $£ 4.00$ for six, $£ 8.00$ for twelve VAT and post extra. Available now in every country in Europe.
Decon Laboratories Ltd., Ellen Street, Portslade, Brighton BN4 1EQ Phone: 0273414371

People often bring their need to us. They know the Whiteley speciality. Being helpful! And the item that started life as a customer request, joins the Whiteley product list, ready to help other designers over a problem. You, perhaps? Consider a neat relay assembly - one or two dry reed switches with a rating of 25 W , housed in a mounting tube, with either 'normally open' or 'changeover contacts. Around them, a coil operating from 8 , 12,24 or 50 V supply, 30 kV isolated from the contacts. The whole unit mounting on a $0.25^{\prime \prime}$ insulating plate with a couple of 3 way tag strips. If you're interested ask for a data sheet. But more, keep Whiteley in mind as the people who make useful things.

Whiteley Electrical Radio Co. Ltd.
Mansfield, Notts NG18 5RW, England. Tel: 062324762.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order

Fuli Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$
WW-021 FOR FURTHER DETAILS

Noude

TRANSVERTORS
Valradio sinewave and square wave transvertors now incorporate SILICON transistors resulting in greater reliability and more stable performance at high ambient temperatures, including tropical climates.

A wide selection of types are available to drive practically any equipment within the power rating
A random selection of types
Input Output
$12 v$ DC 115/230v 30watts Sine wave
24v DC 115 /230v D12/400s $\quad 58.20$ D12/500T 12vDC $115 / 230 v 50$ watts Sine wave $£ 110.55$ D24/150T 24v DC $115 / 230 v 150$ watts Square wave $£ 39.60$ D12/250/24 12v DC 24v DC 8A

lease send for literature WW675

VALRADIO LIMITED
BROWELLS LANE, FELTHAM, MIDDLESEX, TW13 7EN

THE NEW P6O INTEGRATED STEREO AMPLIFIER

Low profile design only $2^{\prime \prime}$ high. Recording with or without tone correction
*Peak level indicator for tape recording Suitable for continual high power operation.
Dual independent tape operation.
*Light Emitting Diodes for level monitoring in main and pre-amplifiers. Toroidal mains transformer.

Facilities for three tape recorders.
*Separate main and pre-amp gain controls.
Fully protected output stages.
RIAA phono correction unaffected by cartridge inductance.
Ultra low distortion circuits.
*New tape monitoring, $\mathrm{A}-\mathrm{B}$ and $\mathrm{A}-\mathrm{B}-\mathrm{C}$ facilities.
International state-of-the-art circuitry from Cambridge Audio in Britain.
*To the best of our knowledge these features have never been included in a comparable amplifier hitherto.

for people who listen to music

D M A EnEGTRONICS INTERNATONAL
 ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST

POSTAGE PAID SHIPMENT VIA AIR MAIL

```
MONTHLY SPECIALS - Free Data moluded on Calculator and Clock Chi
CT 5001
LS 1
CT 5002
CT 5005
CT 7001
ICL 8038
            lopin 12 Digit Four Funcrion 
                Oscillator. Sine. Square. Tri Output i4 P
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 7400 & £ 0.11 & 7440 & £ 0.11 & 17485 & ¢ 0.85 & 74155 & £ 0.59 \\
\hline 7401 & \(0 \uparrow 1\) & 7441 & 060 & 7486 & 024 & 74156 & 0.59 \\
\hline 7402 & 0.11 & 7442 & 0.55 & 7488 & 250 & 74157 & 0.70 \\
\hline 7403 & 011 & 7443 & 075 & 7489 & 150 & 74158 & 070 \\
\hline 7404 & 013 & 7444 & 075 & 7490 & 073 & 74160 & 085 \\
\hline 7405 & 0.13 & 7445 & 0.70 & 7491 & 071 & 74162 & 085 \\
\hline 7406 & 0.24 & 7446 & 0.85 & 7492 & 0.39 & 74163 & 085 \\
\hline 7407 & 0.24 & 7447 & 075 & 7493 & 039 & 74164 & 025 \\
\hline 7408 & 0.12 & 7448 & 0.69 & 7494 & 042 & 74165 & 125 \\
\hline 7409 & 0.12 & 7450 & \(0: 1\) & 7495 & 051 & 74166 & 1.15 \\
\hline 7410 & 011 & 7451 & 012 & 7496 & - 055 & 74170 & 165 \\
\hline 7411 & 0.16 & 7453 & 012 & 74100 & 125 & 74175 & 0.85 \\
\hline 7413 & 0.26 & 7454 & 0.12 & 74107 & 025 & 74180 & 0.85 \\
\hline 7416 & 0.25 & 7460 & 011 & 74121 & 025 & 74181 & 2.95 \\
\hline 7417 & 0.25 & 7470 & 0.25 & 74122 & 0.35 & 74182 & 0.85 \\
\hline 7420 & 011 & 7472 & 0.21 & 74123 & 0.49 & 74192 & 090 \\
\hline 7426 & 0.22 & 7473 & 026 & 74145 & 085 & 74193 & 090 \\
\hline 7430 & 011 & 7474 & 0.26 & 174150 & 075 & 74194 & 0.95 \\
\hline 7432 & 0.22 & 7475 & 0.37 & 74151 & 057 & 74195 & 0.80 \\
\hline 7437 & 024 & 7476 & 026 & 74153 & 059 & 74198 & 170 \\
\hline 7438 & 024 & 7483 & 0.65 & 174154 & 115 & 74199 & 170 \\
\hline
\end{tabular}

HIGH SPEED 74HOO
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 7400 & f. 016 & 174 H 20 & £ 016 & \(74 \mathrm{H52}\) & f. 016 & 74 H 72 & £ 026 \\
\hline 74001 & 016 & 74 H 21 & 016 & 74 H 53 & 016 & 74 H 74 & 028 \\
\hline H04 & 016 & 74 H 22 & 016 & 74 H 55 & 016 & 74 H 76 & 0.28 \\
\hline 7408 & 016 & 74 H 30 & 016 & 74 H 60 & 016 & & \\
\hline 74, 10 & 016 & 74H40 & 0.16 & 74H61 & 016 & & \\
\hline 4H11 & 0.16 & 174 H 50 & 016 & 74H62 & 016 & & \\
\hline
\end{tabular}

\section*{CMOS 4000 SERIES \\ \begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4000A & ¢021 & 14014 & E. 110 & 14028 & ¢. 0.95 & 4073 & £ 029 \\
\hline 4001 & 0.21 & 4015 & 110 & 4030 & 050 & 4075 & 0.29 \\
\hline 4002 & 021 & 4016 & 0.55 & 4042 & 095 & 4078 & 029 \\
\hline 4006 & 090 & 4019 & 110 & 4049 & 048 & 4081 & 029 \\
\hline 4009 & 029 & 4020 & 115 & 4050 & 048 & 4082 & 029 \\
\hline 4008 & 130 & 4021 & 110 & 4066 & 075 & 4528 & 085 \\
\hline 4009 & 0.49 & 4023 & 021 & 4068 & 0.29 & 4585 & 125 \\
\hline 4010 & 049 & 4024 & 085 & 4069 & 0.29 & & \\
\hline 4011 & 021 & 4025 & 0.21 & 4071 & 029 & & \\
\hline 4013 & 029 & 14027 & 0.75 & 4072 & 0.29 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{LINEARS} \\
\hline LM300 & T099 & ¢ 0.45 & 340 U & T092 & £. 125 & 739 & A DIP & ¢ 0.65 \\
\hline 301 & \(\checkmark\) DIP & 0.25 & 380 & A OiP & 80 & 74 1 & \(\checkmark\) DIP & 0.22 \\
\hline 302 & TO99 & 0.45 & 546 & \(\checkmark\) DIP & 0.51 & 747 & A DIP & 0.44 \\
\hline 304 & TO 100 & 0.50 & 550 & A DIP & 055 & 748 & \(\checkmark\) DIP & 0.25 \\
\hline 305 & TU99 & 0.60 & 555 & \(\checkmark\) DIP & 0.45 & 5556 (1456) & \(\checkmark\) DIP & 0.65 \\
\hline \multirow[t]{2}{*}{307} & \(\checkmark\) DIP & 038 & 556 & B DIP & 0.75 & 5558 (1458) & \(\checkmark\) DIP & 0.65 \\
\hline & TO99 & 0.45 & 560 & B DIP & 2.55 & ULN 2111 & A DIP & 095 \\
\hline \multirow[t]{2}{*}{308} & A DIP & 0.65 & 561 & B DIP & 2.55 & LM3900 & A DIP & 0.35 \\
\hline & T099 & 0.90 & 562 & B DIP & 2.55 & 75450 & \(\checkmark\) DIP & 0.45 \\
\hline 309 K & 703 & 145 & 565 & A DIP & 1.45 & 7545 ; & \(\checkmark\) DiP & 045 \\
\hline 311 & \(\checkmark\) DIP & 090 & 566 & \(\checkmark\) DIP & 1.50 & 75452 & \(\checkmark\) D \({ }^{(1}\) & 045 \\
\hline \multirow[t]{2}{*}{320к} & TO 3 NEG & & 567 & \(\checkmark\) DIP & 160 & 75453 & \(\checkmark\) DIP & 0.45 \\
\hline & 5.2.12.15 & 125 & 709 & A DIP & 0.22 & 75454 & \(\checkmark\) DIP & 0.45 \\
\hline 324 & A OiP & 1.07 & 710 & A Dip & 0.25 & & & \\
\hline \multirow[t]{2}{*}{340 K} & T03 & 2.10 & 711 & A DIP & 0.30 & & & \\
\hline & 12 V 1 AMP & & 723 & A DIP & 0.38 & & & \\
\hline
\end{tabular}


\footnotetext{

PRICES AS LISTED ARE IN BRITISH POUNDS \&
PENCE. SEND BANK CHEQUE OR PERSONAL CHEQUE WITH ORDER. SEND RECEIPT WITH ORDER IF INTER. POSTAGE MONEY ORDER IS USED. MASTERCHARGE, BANKAMERICARD ACCEPTED.

DEMA Electronics International
}

PO. Box 407A
San Ramon, CA 94583 U.S.A.


ON SALE NOW
From your newsagent or send 90p to Electronics Today International, 36 Ebury Street, London SW1W OLW.


\section*{At Home Soldering?}

You should be -- with the LITESOLD CONQUEROR
A superbly handling lightweight iron, fully insulated and earthed for safety. Bits are interchangeable, non seize, and are available in 16 different shapes and sizes, from \(1 / 16^{\prime \prime}\) up to \(1 / 4^{\prime \prime}\), in copper and long-life types. (Standard fitting, \(1 / 8^{\prime \prime}\) copper single chisel shape.) Covers a range of work often needing several different irons
A special spring stand gives safe, easy location of the iron and spare bits. The heavy heat-resistant base is complete with non-slip pads and bit cleaning sponge
Send cheque / PO direct, or ask for leaflet

\title{
LIGHT SOLDERING DEVELOPMENTS LTD \\ 97-99, Gloucester Road, Croydon, CRO 2DN. 01-689 0574
}


\section*{THE TUNER YOU CAN TRUST}
(W.W. APRIL/MAY 1974)

This tuner has been designed for use with high quality a udio equipment. It has therefore been designed so that only high quality audio signals may be heard. There are no interstation noises, distorted or mis-tuned stations, spurious tuning respunses, or other unwanted effects. There are only clear stereo programmes set against a background of silence. When the tuning lamp is out - silence; tuning lamp on - one of a multitude of receivable stations, in perfect tune, and held by powerful a.f.c.


\section*{NEW REVISED PRICES (EXC. VAT)}

This tuner was designed by us and published in this magazine last year. Since then we have made some small circuit improvements. which have been included in these kits. We also include a guarantee of success. and personal after-sales attention and service Our accent is on quality.
\begin{tabular}{|c|c|}
\hline K1.4 Main receiver board & £24.55 \\
\hline K5-7 Stereo decode board & £7.05 \\
\hline K8 Function Switches & £4.95 \\
\hline K9a Pre-set station unit & £13.75 \\
\hline K10 Power supply unit & £5.59 \\
\hline K11 Cabinet and all else & £27 70 \\
\hline K12 Meter with drive components & E11.00 \\
\hline K1-12 package price & £8500 \\
\hline & £9.59 \\
\hline
\end{tabular}

Postage 30 p per kit, free over \(£ 15\)

OTHER ITEMS
LP1 186 front end MC1310P end. MC1310P decoder SBA750B i.f. amp. SL3046B trans. array SL301B dual trans. Filter SFG 10.7 MA Coil with wire Ten turn pot. 50K Postage per item
£4.53
£4.53
E3.15
E3.15
E2 95
£1.70
E 1.40
£2.95
E2. 95
\(£ 0.50\)
£3 55
£O 10
S.A.E. please for details to:
tconLesign 33 RESTROP VIEW, PURTON, WILTS SN5 9DG J. A. SKINGLEY \& N. C. THOMPSON

\title{
HEPWORTH ELECTRONICS
}

Hepworth House, Worcester Road, KIDDERMINSTER. Tel. 05622212 or 3
No Fuss - No Soldering - No Waste - Digital and Analog Design Aids

The all in one Component Holder with Bus Bars built in.
For D.I.P. and TO5 packages
The SK10 Socket


8-Bus Bars of 25 connectors
128 set of contacts 5 in a row
The SK20 Socket


The SK50 Socket
NEW NEW NEW
Half the SK10 Socket at Half the price

Also Available from Stockists
Quarndon Electronics (Semiconductors) Ltd. Slack Lane Derby DE3 3ED

Tel. 32651

Extensions of the SK 10 socket give the simple and inexpensive Digi \& Op Amp Designers


Digi Designer


Op Amp Designer
also the more complex


The 'Elite'-Series I, II \& III

These Complete instruments in a Box are available only from Hepworth Electronics, for details and demonstration look out for our stand at LEEDS.

\section*{The'HOTHAND' Tubing Shrinker}
'Hot Hand' opens and closes like a thumb and forefinger to encircle tubing with instant, radiant heat.
The "Hot Hand' shrinker is available with elements of \(1^{\prime \prime}, 2^{\prime \prime}\) and \(3^{\prime \prime}\) diameter to take a wide range of tubing sizes. There is a hand model, suitable for intermittent use, and a table model for continuous operation (manual or automated).
-Hot Hand gives unprecedented safety, long life, low operating expense and will not generate electronic interference. It is an efficient tool for many similar uses, including: sweating solder tubing, bending polyvinyl chloride pipe and tubing, etc. For operation on 120 and \(220 / 240\) Volts AC


WW-013 FOR FURTHER DETAILS



\section*{Check in one direct}

\section*{move with Brandenhurg's}

\section*{new HV meter}

We thought it was about time somebody supplied direct reading meters for high voltage, so we've produced three-one for up to 5 kV . one for 15 kV and one for 30 kV to complement our range of HV power supplies
The meters are operated by two 9 V internal batteries ( 800 hours life) linked with a built-in checking facility. Positive or negative ground is available, selected by a front panel switch. And. as with all Brandenburg products. there is a 12 months unconditional guarantee.
Accuracy of \(1 \%\) isd over voltage range of \(0-30 \mathrm{kV}\) d.c.
Less than \(1 \mu \mathrm{~A}\) drawn at 30 kV d.c.
\(4.5 \mathrm{in}(114 \mathrm{~mm})\) scale mirror-backed meter.
Temperature range \(5-35^{\circ} \mathrm{C}\).
Dimensions only \(7 \times 8 \times 5 \frac{1}{2}\) in high ( \(200 \times 145 \times 178 \mathrm{~mm}\) ).
Recorder output.

Yet another Brandenburg piece in the high voltage game

\section*{brandenburg}

Brandenburg Limited, 939 London Road, Thornton Heath, Surrey. CR4 6JE, England. Tel: 01-689 0441 Telex: 946149
Agents or distributors in most principal countries.
P6437


WW-018 FOR FURTHER DETAILS


MODEL
U-50DX


MULI TESTERS
USED THROUGHOUT THE WORLD. SANWAS EXPEAIEACE OF 30 vEARS ENSURES accuracy. rellability. versatility. unsurpasseo tester performance 6 COMES WITH EVERY SANWA.
6 MOnths Gikarante MODEE JP5D MODEL EX 505 MOOEL Y 360 TR MOOEL L 4500 x
MOOET
A303TAD MOOEL A303TAO
MOOEL K 30 THO

\begin{tabular}{|c|c|c|}
\hline & Exce & Service \\
\hline £11.75 & MOOEL F80Tho & £26.40 \\
\hline £12.80 & MOOEL AT45 & £23.15 \\
\hline £22.90 & MOOEL 380CE & E29.12 \\
\hline £14.90 & MOOEL NIO1 & £31.85 \\
\hline £16.10 & MOOEL 460ED & £35.13 \\
\hline £19.15 & MODEL EM800 & \(¢ 74.50\) \\
\hline £24.20 & MOOEL R1000CB & £75.27 \\
\hline
\end{tabular}

THESE PRICES DC MOT MOOEL RIOOOC
7.27

Cases extra available for most meters. but not sotil separately
Please write tor illusirated leatlet of these and other specialised Sanwa meters


Hard-to - find tubes and semiconductors are normally included in our quotations. We try to give a complete answer.
AEL GATWICK HOUSE HORLEY SURREY RH6 9SU Telex 87116 Cables Aerocon Telex Horley Telephone Horley 5353

\section*{}

120 watts RMS into 4 ohms


For full details on our range of mixers, amplifiers and light control units, contact:

\section*{ICELECTRICS LTD}

15 ALBERT ROAD, ALDERSHOT HANTS. TEL: 025228514

LOW-COST INSTRUMENTS


\section*{745 COUNTER TIMER}

Measures frequency, period, time and totalises 32 MHz frequency range (DC coupled) 5-digit . \(3^{\prime \prime}\) LED display
6 Gate times/Time units, \(10 \mu\) s to 1 S in decades Sensitive, protected FET input


744 COUNTER TIMER
£74 + £ 1.50 p.\&p. + VAT
Measures frequency, periad and time 3OMHz frequency range (DC coupled) 5-digit, long-life incandescent display Sensitive, protected FET input

\(\mathfrak{f 8 6}+£ 1.50\) p. \& p. + VAT Accurate, digital frequency setting \(.01 \mathrm{~Hz}-1 \mathrm{MHz}\)
Wide range external control of frequency Triangle, Squarewave and Low Distortion Sinewave outputs
\(50 \Omega+\) simultaneous outputs DC offset
Delivery is normally ex-stock-telephone for confirmation
Prices correct at time of going to press, subject to change without notice
OMB ELECTRONICS
Riverside, Eynsford, Kent DA4 0AE Tel. Farningham (0322) 863567

WW-006 FOR FURTHER DETAILS


\section*{THIIIK 5COPES}
. . . and life can become complicated. But think Scopex and you find practical, professional, dual-channel portables as easy-to-use as to carry. Sensible bandwidth, no-nonsense controls, trig level and polarity from one knob, and the ever popular timesaving trace-locate feature. As an example, the Scopex 4D10 gives 10 MHz over the full screen area, \(5 \%\) accuracy, and all for \(£ 118 *\). It makes sense to . .
* Ex. Vat.

\section*{THIIK 5COPEK}


WW-044 FOR FURTHER DETAILS



WW—098 FOR FURTHER DETAILS

\section*{DIGITAL CLOCK KIT. FANTASTIC OFFER}
on our Quality Units.
Ready made - or the most comprehensive Kit and Instructions you have ever seen. Very quick to build. No knowledge of electronics required.

in Kit Form
\(+£ 1.60\) VAT \(p \& p\)


Ready built
Fully tested
VAT p\&p £1. 90

KIT COMPRISES:- or separately at:- £
1 MOS CLOCK CHIP 12-24 hr option . . . . . . . . . . . 4.00
4 0.63" LED Displays (latest HI BRI Type) 5.00
1 Segment Driver Chip 0.30
1 Pack Resistors, Caps., Transistors, switch 1.20
1 Double Sided Glass Fibre P.C. Board 1.00
1 Double Wound Mains Transformer 1.00
1 Circuit/Assembly Manual 0.50
1 Futuristically styled Perspex case (state colour) 3.00
Yellow, Orange, Red, Black, White, Mauve, Green, Blue.
Individual items also include P\&? + VAT.
C.W.O. to:

Pulse Electronics Ltd., Dept. W.W. 1.
202 Shefford Road, Clifton, Beds. Tel. 0462813453.

\section*{New Course in Digital Design}

\section*{Understand the latest developments in calculators,}

\section*{computers, watches, telephones,}

\section*{television , automotive instrumentation. . . .}

Each of the 6 volumes of this self-instruction course measures \(113 / 4^{\prime \prime} \times 8 \frac{1}{4^{\prime \prime}}\) and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.


Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
In 4 volumes:
1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Carry Out
Functions
4. Flip flops and Registers

Offer Order this together with Oesign of Digital Systems for the bargain price of \(£ 9.25\), plus 50 p \(p \& p\)
Design of Digital Systems contains over twice as much information in each volume as the simpler course, Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents, also covers many more advanced topics.

\section*{Designer}

Manager Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

\section*{Guarantee-no risk to you}

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

\section*{Design of Digital Systems}

\section*{A Solf-Instruction Course in 6 Volumes}

\section*{1 ComputerArithmetic} 2 Boolean Logic 3 Arithmetic Circuits 4 Memories \& Counters 5 Calculator Design ComputerArchitecture

\(£ 5.95\)
plus 50 p packing and surface post anywhere in the world.

Payments may be made in
foreign currencies.
Quantity discounts available on equest.
Total packaged weight does not exceed 4 lb . Please allow enough extra for air mail VAT zero rated

\footnotetext{
To: Cambridge Learning Enterprises
FREEPOST, St. Ives, Huntingdon, Cambs PE1 7 4BR
*Please send me . . . set(s) of Design of Digital Systems at \(£ 6.45\) each. p \& \(p\) included
-or ...set(s) of Digital Computer Logic and Electronics at \(£ 4.45\) p \& p included
-or . . . combined set(s) at \(£ 9.75\) each, \(p\) \& \(p\) included

Name

Address
delete as applicable
Ne need to use a stamp - just print FREEPOST on the envelope
}


\section*{"I MADE IT MYSELF"}

Imagine the thrill you'll feel! Imagine how impressed people will be when they're hearing a programme on a modern radio you made yourself.

\section*{Now! Learn the secrets of radio and electronics by building your own modern transistor radio!}

\section*{Practical lessons teach you sooner than you would dream possible.}

What a wonderful way to learn-and pave the way to a new, better-paid career! No dreary ploughing through page after page of dull facts and figures. With this fascinating technatron course, you learn by building!
You build a modern transistor radio . . . a burglar alarm. You learn radio and electronics by doing actual projects you enjoy -making things with your own hands that you'll be proud to own! No wonder it's so fast and easy to learn this way. Because learning becomes a hobby! And what a profitable hobby. Because opportunities in the field of radio and electronics are growing faster than they can find people to fill the jobs!

\section*{No soldering-yet you \\ learn faster than you} ever dreamed possible. Yes! Faster than you can imagine, you pick up the technical knowhow you need. Specially prepared step-by-step lessons show you how to: read circuits-assemble components-build things-experiment. You enjoy every minute of it! You get everything you need, tools. components. Even a versatile multimeter that we teach you how to use. All included in the course AT NO EXTRA CHARGE! And this AT NO EXTRA CHARGE! And this is a course anyone can afferd. You
can even pay for it by easy instalcan eve
ments.

\section*{So fast, so easy,} this personalised course will teach you even if you don't know a thing today!
No matter how little you know now, no matter what your background or education. we'll teach you. Step by step, in simple easy.
to-understand language, you pick up the secrets of radio and electronics.
You become a man who makes things. not just another of the millions who don't understand. And you could pave the way to a great new career. to add to the thrill and pride you receive when you look at what you have achieved. Within weeks you could hold in your hand your own transistor radio. And after the course you can go on to acquire course vou can go on to acquire high-powered technical qualifica-
tions. because our farnous courses tions. because our famous courses
go right up to City \& Guilds levels.

\section*{Send now for FREE}

76-page book-see how
easy it is-read what others say!
Find out more now! This is the gateway to a thrilling new career. or a wonderful hobby you'll enjoy for years. Send the coupon now. There's no obligation.


\section*{Switching problems? Rely on Zettler.}

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.


Our product range comprises:
Low profile (flatform) Timing Miniature Low contact capacity Hermetically sealed Stepping Mains switching Latching Contact stacks Solenoids

\section*{Miniature Relays} AZ 420... 439
International standard relay. 2,4 , or 6 change-overs. Plug-in type saves maintenance costs Coil voltages: 1.2 to 180 Volts D.C. 610240 Volts A.C.
Life expectancy to 100 million Life expect
Balanced spring-held armature allows operation in any mounting position. Relay extends only \(1 / 4\) " from PC bcard when used with right-angle socket.

We resolve your switching problems rapidly and expertly. Please contact us for further details.


Zettler
UK Division
Equitable House, Lyon Road
Harrow, Middx. HA1 2DU, Tel. (01) 8636329
A member of the worldwide ZETTLER electrical engineering group, est 1877

\section*{WW-010 FOR FURTHER DETAILS}


THE S3 PRESSURE UNIT has been designed to meet the growing demand for considerably increased power handling capacity without the sacrifice of either efficiency or frequency response. It features a powerful cera mic magnet and a strong but light diaphragm and voice coil assembly with many new features it is a robust ieliable unit of exceptional quality. The S3 is one of the units of the Vitavox Power Range
FPlease send me further information
on your product range
Name
Company
| Address
\(\vee 186\)

* ALL INCLUSIVE PRICES - NO HIDDEN EXTRAS! *

SELECTION FROM OUR RANGE
\begin{tabular}{|c|c|c|c|}
\hline CD4000AE & 27p & CD4017AE & E1.85 \\
\hline CD4001AE & 27p & CD4018AE & ¢2.59 \\
\hline CD4002AE & 27p & CD4019AE & \(84 p\) \\
\hline CD4007AE & 27p & CD4020AE & £2.06 \\
\hline CD4009AE & 85p & CD4022AE & £1.92 \\
\hline CD4010AE & 77p & CD4023AE & 27p \\
\hline CD4011AE & 27p & CD4024AE & £1.32 \\
\hline CD4012AE & 27p & CD4025AE & 27p \\
\hline CD4013AE & 71p & CD4026AE & £2.21 \\
\hline CD4014AE & £1.83 & C04027AE & £1.03 \\
\hline CD4015AE & £1.83 & CD4028AE & £1.59 \\
\hline CD4016AE & \(71 p\) & CD4029AE & £2.21 \\
\hline
\end{tabular}
\begin{tabular}{lr} 
& \multicolumn{1}{r}{} \\
CD4030AE & \(\mathbf{7 7 p}\) \\
CD4035AE & \(\mathbf{£ 1 . 8 5}\) \\
\(\mathrm{CD4040AE}\) & \(\mathbf{£ 2 . 1 1}\) \\
\(\mathrm{CD4042AE}\) & \(\mathbf{£ 1 . 5 6}\) \\
\(\mathrm{CD4043AE}\) & \(\mathbf{£ 2 . 2 9}\) \\
\(\mathrm{CD4044AE}\) & \(\mathbf{£ 2 . 2 9}\) \\
\(\mathrm{CD4046AE}\) & \(\mathbf{£ 2 . 2 9}\) \\
\(\mathrm{CD4049AE}\) & \(\mathbf{2 7 p}\) \\
\(\mathrm{CD4050AE}\) & \(71 \mathbf{p}\) \\
\(\mathrm{CD4051AE}\) & \(\mathbf{£ 2 . 9 2}\) \\
\(\mathrm{CD4056AAE}\) & \(\mathbf{£ 1 . 8 3}\) \\
\(\mathrm{CD4069AE}\) & \(\mathbf{2 7 p}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline AC128 & 22p & MC1310P & £2.86 \\
\hline AC176 & 26p & NE555V & 63p \\
\hline AD \(16{ }^{1}\) & 51p & ORP 12 & 56p \\
\hline AD162 & 51 p & tBA810S & £1.29 \\
\hline BC107 & 12p & TIL209 & 14p \\
\hline BC108 & 12p & 2TX300 & 15p \\
\hline BC109 & 12p & 21X500 & 15p \\
\hline BC109C & 21p & 2N2926 & 12p \\
\hline BC182 & 14p & 2N3055 & 48p \\
\hline BC212 & 17p & 2N3702 & 15p \\
\hline BFY51 & 26p & \(741 / 8 \mathrm{DIL}\) & 33p \\
\hline BZY88 & 11p & 40673 & 68p \\
\hline
\end{tabular}
component specialists for the discerning amateur and professional

\section*{HRNILI EIERIMOIIISS ITI.} DEPT. WW9, 7 COPTFOLD ROAD, BRENTWOOD, ESSEX.

WW-008 FOR FURTHER DETAILS


\section*{sound equipment} by Grampian

GRAMPIAN REPRODUCERS LTD. hanworth trading estate feltham. midolesex telephone 01-894 9141

\section*{WW-065 FOR FURTHER DETAILS}

\section*{PETITE PRECISION!}

A 12V DC POWER TOOL FOR THE DESIGN AND RESEARCH ENGINEER
AVAILABLE IN KIT FORM OR SEPARATES

On demonstration daily 1 p.m. -9.30 p.m. at Brighton and Hove Exhibition Ideal Homes Trades \& Hobbies. New Hove Town Halls, 9th July-17th July. Come and Iry our equipment for yourselves.
Diameter 33 mm
Diameter 33n
Weight 160 g
Length 125 mm Torque 105 cmg RPM approx. 3000 at 12 V DC Power 9/14V DC Power \(9 / 14 \mathrm{~V}\)
Batteries Batteries
or \(A C / D C\) or \(\mathrm{AC} / \mathrm{DC}\)
transformer


Drill. \(£ 6.65\) P\&P 25 p


\section*{exible drive}
£4.80
P\&P \(25 p\)
Now in use by the following: GPO, BBC, Atomic Energy Authority, British Nuclear Fuels. Weekend TV, Ministry of Defence, Hospitals,
Opticians, etc.


\title{
EOWITI'S Tif AMCRONMGOO M600 POWER AMPLIFIER
}


Coupling two M600s together through a socket provided at the back of each amplifier produces a 140 Volt balanced output. This configuration is called an M2000, and produces 2 kilowatts into an 8ohm load. A peak catching meter, and threshold lights provide convenient front panel output monitoring.

\section*{1350 watts \\ DC-Coupled}

The M600 amplifier is a new high-power amplifier capable of providing 1.350 watts RMS over a bandwidth of DC to 20 kHz .70 volts RMS at the output terminals, very low noise and distortion. \(\mathrm{AC} / \mathrm{DC}\) selector switch plug-in front panel circuit board, built-in fan for cooling and the ability to connect two M600s together to double the power and output voltage, are just some of the features which place the Amcron M600 in the forefront when considering power amplifiers.
Driving shakers and vibrators, motors, and difficult speaker systems, providing power for material or components testing or used as a large distribution amplifier, the M600 is equally at home.

Brief specifications

RMS power out
DC output Power bandwidth Phase response
Slew rate
Damping factor ( \(8 \Omega\) ) Hum \& noise THD
Dimensions

750 watts into 8 ohms 1,350 watts into 4 ohms 20 amps (supply fuse limited) \(D C\) to \(20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db} 600 \mathrm{~W}\) into \(8 \Omega\) \(+0 \mathrm{db}-15 \mathrm{db} D \mathrm{C}-20 \mathrm{kHz}\)
\(16 \mathrm{~V} / \mu \mathrm{sec}\) cond
greater than \(400 \mathrm{DC}-1 \mathrm{kHz}\)
120 db below 600 Watts
less than \(0.05 \% \mathrm{DC}-20 \mathrm{kHz}, 600 \mathrm{~W}\) into \(8 \Omega\) \(19^{\prime \prime}\) std rack, \(83 / 4^{\prime \prime} \mathrm{H}, 161 / 2^{\prime \prime}\) deep. Wt. 92 lb .

\section*{FREQUENCY COUNTERS}

HIGH PERFORMANCE REASONABLY PRICED ELECTRONIC INSTRUMENTS


Sensitivity 10 mV . Stability 5 parts \(10^{10}\)


WW - 048 FOR FURTHER DETAILS

\section*{ELECTRONIC INDUSTRIAL THERMOMETER}


THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals. Liquids, Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe, and internal \(1 \frac{1}{2}\) volt standard size battery. Model "Mini-On \(1^{\prime \prime}\) measures from \(-40^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\), price f 17.50 Model "Mini-On Hi" measures from \(+100^{\circ} \mathrm{C}\) to \(+500^{\circ} \mathrm{C}\), price £20.00 (V.A.T. EXTRA)

\section*{Write for further details to}

HARRIS ELECTRONICS (LONDON),
138 GRAY'S INN ROAD, LONDON. WC1X 8AX ('Phone 01-837 7937)



WW-032 FOR FURTHER DETAILS

\section*{Bias oscillator blocks; AMI/FM tunerheads.}


\section*{Supply \(+16 v\)}

TOKO now offer a series of prebuilt oscillator blocks, in fully screened PC mounting assemblies.
Various specifications are available to suit supplies of \(6-20 \mathrm{v}\), with impedances that will suit most standard heads.

Frequencies \(35 / 100 \mathrm{kHz}\). Erase current up to 80 mA . (into 300 ohm erase head.)


EC3302 - Varicap FM. The latest varactor tuned VHF head from TOKO. FET input with AFÇ, and very small size.
\(100+\ldots . . . . £ 3.20\) each.


EF5603 - varicap FM. MOS input, 5 tracked tuned circuits. \(100+, . . £ 5.85\).


MT3302 - FM+AM gang. A new low cost tunerhead with two gang capacitor and reduction gearing. \(100+£ 3\)

Varicap tuned MW AM.
A new concept in MW radio with 3 stage tracking, and IC RF/IF system with a ceramic IF filter. The 'All Electric Wireless', with the benefits of remote tuning and location of the entire \(A M / F M\) radio. The MC720 MW varicap tuner has been specially devised to let engineers and enthusiasts evaluate this new concept Kit (PC+ all components) £8 Ready built \(£ 9.95\).

107
TOKO (UK) Ltd., Shirley Lodge, 470 London Road, Slough, Berks. tel. (0753) 48444; tlx. 847185 Distributor Ambit International, 37 High Street, Brentwood, Essex. tel. (0277) 216029; t|x. 995194


Industrial Tape Applications

\section*{Synchronous}

Mod/Demodulators
This is an \(A C\) energised system used for strain gauges, Ivdt, linear potentiometer, pressure transducers, etc. \(A C\) energisation and transformer coupling give immunity to outside interference, and operation at high gains is permissable without drift problems.


Bridge Measuring Unit TB-100 Series
A complete unit utilising the above modules, and offering quarter, half or full wave configuration from resistive capacitor of inductive types of transducer.


BE FAIR TO YOUR MUSIC
Reproduction of sound and its acceptability is dependent on a combination of physical parameters not yet fully explored. We believe that only a compatible combination of specifications will enable a system to reproduce music
 NAC 12 and NAP 160 pre and power amplifier will do so faithfully, while accepting the output of any pick up cartridge and driving any loudspeaker


100 uVf.s. 0.3 sec.f.s.

\section*{MULTICORDER}
- Multi-channel, 2-6 with full range zero set Multi-pen - fibre tip. 6 colours. 16 switched chart speeds. - Choice of \(Z\) fold or roll chart. Five plug - in preamplifiers switched ranges 100 uv -500 Vf.s. \(250 \mathrm{~mm}\left(10^{\prime \prime}\right)\) chart width


ENVIRONMENTAL EQUIPMENTS LTD. Eastheath Avenue, Wokingham, Berks. RG11 2PP. Tel: Wokingham 784922

\section*{GROOVAC}

\(\sigma\)

\section*{vacuum record cleaner}

Vacuum cleaning is the best way to remove dust, especially fine dust. Now with the Groovac, vacuum cleaning is available for extracting the particles from inside record grooves which are responsible for record and stylus wear - while your record is playing.

For full details please write to:-
IER工 ATDTO Kernick Rd, Penryn
IEIE AUDIO Cornwall, England

WW-080 FOR FURTHER DETAILS


\section*{Audio Connectors}

Broadcast pattern jackfields, jackcords, plugs and jacks.
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut.
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers.


Low cost slider faders by Ruf
Future Film Developments Ltd. 90 Wardour Street London W1V 3LE 01-437 1892/3

WW-028 FOR FURTHER DETAILS

\section*{CONSTRUCTIONAL KITS}
in stock:
Mullard CCTV Camera, P.E. CCTV Camera
P.W. Tele-Tennis. Crotion UHF Modulator

Crofton VHF Madulator
Electronic Dic (Ready Assembled) in attractive case
P.W. Electronic Organ Kit.

Further kits will be added to the range. Kits are complete, down to the last nut, including attractively finished ready drilled, painted and silk screened panels. A FREE get you going technical Back up service is available.
A P.C.B. service is avallable for any published design at competitive prices. As well as holding large stocks of electronic components we are also importing a range of competitive products such as Stereo Headphones. Telephone Desk Amplifiers, Stereo 8 -track Head Cleaner and Demagnetizers. Mini Drills. etc.
Full list send \(121 / 2 p\) stamp on large envelope. Alternatively. call in for a demonstration of any kit

\section*{CROFTON ELECTRONICS}

124 Colne Road, Twickenham, Middlesex TW2 6QS Tele: 01-898 1569

Telex: 934642 Cadanac LDN


WW-034 FOR FURTHER DETAILS

\section*{S-2020TA STEREO TUNER/AMPLIFIER KIT}

\section*{NEW PRODUCT}

A high-quality push-button FM Varicap Stereo Tuner combined with a 20 W r.m.s.


Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In/Out facility (for noise reduction unit, etc), THD less than \(0.1 \%\) at 20 W into 8 ohms. All sockets, fuses, etc, are PC mounted for ease of assembly. Tuner section: uses Mullard LP 1186 module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range \(88-104 \mathrm{MHz} .30 \mathrm{~dB}\) mono \(\mathrm{S} / \mathrm{N} @ 1.8 \mu \mathrm{~V} . \mathrm{THD}\) typ. \(0.4 \%\).

PRICE: \(£ 47.95+99 p\) p\&p + VAT.


\section*{NELSON-JONES STEREO FM TUNER}

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

> \begin{tabular}{l}  PRICE: Mono \(£ 25.46+85\) p p\&p+VAT; \\ With Portus-Haywood Decoder \(£ 31.96+85\) p p\&p+VAT; \\ With ICPL Decoder \(£ 29.73+85\) p p\&p + VAT. \\ \hline \end{tabular}

\section*{NEW PRODUCT}

\section*{S-2020A AMPLIFIER KIT}

Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses
 are used for ease of assembly and to minimize wiring.
Typ. Spec. \(20+20 \mathrm{~W}\) r.m.s. into 8 -ohm load at less than \(0.1 \%\) THD. Mag. PU input \(\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}\). Radio input \(\mathrm{S} / \mathrm{N} 72 \mathrm{~dB}\). Headphone output. Tape In/Out facility (for noise reduction unit, etc). Toroidal mains transformer.

PRICE: £29.95 + 99p p\&p+VAT.


Brief Spec. Tuning range \(88-104 \mathrm{MHz}\). 20dB mono quieting @ \(0.75 \mu \mathrm{~V}\). Image rejection-70dB. IF́ rejection-85dB. THD typically \(0.4 \%\).
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.

\section*{STEREO MODULE TUNER}

A low cost Stereo Tuner based on the Mullard LP1186 RF module requiring no alignment. The IF comprises a ceramic filter and high- performance IC. Variable INTERSTATION MUTE. PLL stereo decoder IC.
Typ. Spec. Sens. 30 dB S/N mono @ \(1.8 \mu \mathrm{~V}\). Tuning range \(88-104 \mathrm{MHz}\). LED sig. strength indicator. LED Stereo indicator. THD typically \(0.4 \%\).

PRICE: Stereo \(£ 26.32+85 p\) p\&p+VAT. Mono \(£ 22.40+85 p p \& p+V A T\).
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS.

\section*{SUB ASSEMBLIES}

BASIC NELSON-JONES TUNER
Supplied as a printed circuit board with all components and screening box to build a varicap tuner module. Performance spec as above for complete N-J Tuner. For suitable stereo decoders see below. (Illustrated without screening box.)

PR1CE: \(£ 12.88+25 p\) p \& \(p+V A T\).


BASIC MODULE TUNER
Supplied as a printed circuit board with all components and screened Mullard LP1186, to build a mono or stereo tuner module. Performance spec as above for Stereo Module Tuner complete kit.

PRICE: Mono \(£ 11.11+25\) p p\&p + VAT; Stereo \(£ 13.89+25 p\) p\&p+VAT.
PORTUS-HAYWOOD PHASE-LOCKED STEREO DECODER
Mk II version of this design (WW Sept. 1970). The lowest distortion phase-locked stereo decoder kit available (Typ. \(0.05 \%\) @ N-J Tuner O/P level). Separation 40 dB up to 15 KHz .
Complete kit comprises PCB and all components, inc. stereo LED.
PRICE: \(£ 7.68+25 p\) p \(\&\) p + VAT.
PHASE-LOCKED IC DECODER
Integrated circuit phase-locked stereo decoder based on the MC 1310. THD typically \(0.3 \%\). Separation \(40 \mathrm{~dB} @ 1 \mathrm{KHz}\).
PRICE: \(£ 4.27+20 p\) p\&p+VAT.
PUSH-BUTTON UNIT
The six-position push-button unit used in our tuners and tuner/amp. Each track has the required diode law for stability of tuning. There are approx. 40 turns on each button and there are six separate moving pointers. An AFC disable switch is incorporated with each button. The unit is finished in black with red pointers. PRICE: \(\{3.00+20 p\) p\&p+VAT.
Please send SAE for complete lists and specifications.
INTEGREX LIMITED, \(\begin{aligned} & \text { Portwood Industrial Estate, Church Gresley, Burt } \\ & \text { Tel. Swadlincote }(028387) \\ & 5432 \text {. Telex } 377106 .\end{aligned}\)


Acclarmed as the World's leading telescopic tiltover tower in the field of radio communication Models from \(25^{\circ}\) to \(120^{\circ}\)


Strumech Engineering Co Ltd Coppice Side. Brownhills. Walsall. Stafis.

WW-026 FOR FURTHER DETAILS


\section*{IS CHILTON'S MIXER THE BEST FOR YOUR USE?}

Magnetic tapes Itd make the 10/2 above as well as a \(16 / 2\) and a \(12 / 4\) with all the inherent flexibility and quality customarily found in big studio mixers Most of oup mixers are constructed to meet the varying demands of the customer, perhaps we can do one for you. Prices start at \(£ 350\) for the basic 10/2.

MAGNETIC TAPES LTD.
Chilton Works, Garden Road, Richmond Surrey TW9 4NS - 01-876 7957

OLSON


Standard minicases are made from 20 g . mild steel sheets zinc-coated and finished in silver grey hammertone stove enamel. Front panels made from 18 g . steel. finished in light grey high gloss enamel.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Type} & \multicolumn{3}{|r|}{Overall Dimension} & \multirow[t]{2}{*}{Case no vents} & \multirow[t]{2}{*}{Case with vents} & \multirow[t]{2}{*}{Chrome leg} \\
\hline & Width & Height & Depth & & & \\
\hline 21 & \(6 \frac{1}{2}^{\prime \prime}\) & \(4 \frac{1}{2}^{\prime \prime}\) & \(4 \frac{1}{2}^{\prime \prime}\) & - & 3.57 & 0.82 \\
\hline 22 & \(8 \frac{1}{2}^{\prime \prime}\) & \(5 \frac{1}{}{ }^{\prime \prime}\) & \(5 \frac{1}{2}{ }^{\prime \prime}\) & - & 4.01 & 0.82 \\
\hline 23. & \(10 \frac{1}{2}^{\prime \prime}\) & \(6 \frac{1}{2}{ }^{\prime \prime}\) & \(6 \frac{1}{2}{ }^{\prime \prime}\) & - & 4.78 & 0.88 \\
\hline 24 & \(12 \frac{1}{2}^{\prime \prime}\) & \(7 \frac{1}{2}^{\prime \prime}\) & \(7 \frac{1}{2}^{\prime \prime}\) & - & 5.22 & 0.88 \\
\hline 25A & \(6 \frac{1}{2}^{\prime \prime}\) & \(4 \frac{1}{2}{ }^{\prime \prime}\) & \(4 \frac{1}{2}^{\prime \prime}\) & 3.46 & 3.90 & 0.82 \\
\hline 25B & \(6 \frac{1}{2}^{\prime \prime}\) & \(4 \frac{1}{2}^{\prime \prime}\) & \(6 \frac{1}{4}^{\prime \prime}\) & 3.63 & 4.07 & 0.82 \\
\hline 26A & \(8 \frac{3}{4}^{\prime \prime}\) & \(5 \frac{3}{4}{ }^{\prime \prime}\) & \(6 \frac{1}{4}^{\prime \prime}\) & 4.89 & 5.33 & 0.88 \\
\hline 26B & \(8 \frac{3}{4}^{\prime \prime}\) & \(5 \frac{3}{4 \prime}\) & \(8 \frac{1}{4}^{\prime \prime}\) & 5.11 & 5.55 & 0.88 \\
\hline 27A & \(12 \frac{1}{4}^{\prime \prime}\) & \(7 \frac{1}{2}^{\prime \prime}\) & \(5 \frac{1}{2}^{\prime \prime}\) & 5.33 & 5.88 & 0.88 \\
\hline 27B & \(12 \frac{1}{4}^{\prime \prime}\) & \(7 \frac{1}{2}^{\prime \prime}\) & \(8{ }^{\prime \prime}\) & 5.77 & 6.32 & 0.88 \\
\hline 28A & \(14^{\prime \prime}\) & 101 \(\frac{1}{2}^{\prime \prime}\) & \(6 \frac{1}{2}^{\prime \prime}\) & 6.32 & 6.87 & - \\
\hline 28B & \(14^{\prime \prime}\) & \(10 \frac{1}{}{ }^{\prime \prime}\) & \(8 \frac{1}{2}{ }^{\prime \prime}\) & 6.87 & 7.42 & - \\
\hline 29A & \(10^{\prime \prime}\) & 4" & \(6^{\prime \prime}\) & 4.40 & 4.84 & 0.88 \\
\hline 29B & \(10^{\prime \prime}\) & 4" & \(8^{\prime \prime}\) & 4.67 & 5.11 & 0.88 \\
\hline 30A & 12" & 5" & \(6^{\prime \prime}\) & 4.78 & 5.33 & 0.88 \\
\hline 30B & \(12^{\prime \prime}\) & 5" & \(8^{\prime \prime}\) & 5.06 & 5.61 & 0.88 \\
\hline 31 A & \(14^{\prime \prime}\) & 6" & \(6^{\prime \prime}\) & 5.22 & 5.77 & 0.88 \\
\hline 31 B & 14" & 6" & 8" & 5.50 & 6.05 & 0.88 \\
\hline 61 & \(15 \frac{1}{2}{ }^{\prime \prime}\) & \(7 \frac{1}{2}^{\prime \prime}\) & \(9 \frac{1}{2}^{\prime \prime}\) & - & 7.97 & - \\
\hline 62 & \(17 \frac{1}{2}{ }^{\prime \prime}\) & \(8 \frac{1}{2}{ }^{\prime \prime}\) & 9 \(\frac{1}{2}^{\prime \prime}\) & - & 9.24 & - \\
\hline 63 & 169\%* & 9 \(\frac{1}{2}^{\prime \prime}\) & \(9 \frac{1}{2}^{\prime \prime}\) & - & 9.24 & - \\
\hline 64 & \(15 \frac{1}{2}{ }^{\prime \prime}\) & \(7 \frac{1}{2}^{\prime \prime}\) & 121** & - & 9.24 & - \\
\hline 65 & \(17 \frac{1}{2}{ }^{\prime \prime}\) & 82 \({ }^{\prime \prime}\) & \(12 \frac{1}{2}^{\prime \prime}\) & - & 10.56 & - \\
\hline 66 & \(16 \frac{1}{2}{ }^{\prime \prime}\) & \(9 \frac{1}{2}^{\prime \prime}\) & 12 \(\frac{1}{2}^{\prime \prime}\) & - & 10.56 & - \\
\hline
\end{tabular}

Types 21, 22, 23 and 24 are finished in olive green hammertone with front panels in light straw gloss enamel. Fitted with ventilated rear panels only. No louvres in the base.

\section*{PORTABLE POWER DISTRIBUTION}


COMPLETE WITH 6FT CABLE AND 13AMP PLUG
\begin{tabular}{lr}
\hline 4 SOCKETS 13A. & £8.00 \\
6 SOCKETS 13A. & f9.50 \\
4 SOCKETS 13A. + SW. & f9.15 \\
6 SOCKETS 13A. + SW & \(£ 10.10\)
\end{tabular}

PLEASE ADD FOR POSTAGE \& PACKING AND V.A.T.
Trade Counter is open for personalcallers from 9 a.m. to 5.00 p .m. Monday-Friday OLSON ELECTRONICS LTD., TEL: \({ }^{\text {5-7 }}\) LONG ST., 739 2343

\section*{Telequipment's new dual trace 10 MHz battery operated oscilloscope}

\(4 \times 9 \times 11\) inches! Weight, less than 10 lb Price, only \(£ 275^{*}\).
Small in all but specification, Telequipment pack into the tiny frame of the D32 features normally associated with instruments twice its size
Easily carried on any assignment the D32 is probably the smallest and least expensive scope of its kind in the world


Priced at \(£ 275^{*}\) (including re-chargeable batteries) this dual trace scope offers 10 MHz bandwidth at \(10 \mathrm{mV} /\) div sensitivity; automatic selection of chopped or alternate modes; automatic selection of TV line or frame displays; and the choice of battery or mains operation
Size up the D32 for yourself and write or phone for a demonstration of this truly remarkable instrument now.

Telequipment gives you more scope for your budget

\section*{TELEQUIPMENT<<<}

Tektronix U.K. Ltd.
Beaverton House, P.O. Box 69, Harpenden, Herts. Telephone: Harpenden 63141 Telex: 25559

\title{
wireless world
}

\author{
Electronics, Television, Radio, Audio
}

\author{
JULY 1975 Vol 81 No 1475
}
297 The analogue-to-digital conversion
298 Digital wristwatch-1 by D. D. Clegg
302 HF predictions
303 News of the month
Josephson faster than transistors
Antenna system for Aerosat
VAT
307 Active notch filters by Yishay Nezer
311 Books received
312 Letters to the editor
High quality f.m. tuner
Computer power
Instrument read-out in Braille?
314 Wireless World Dolby noise reducer- \(\mathbf{3}\) by Geoffrey Shorter
319 A 50MHz oscilloscope-3 by C. M. J. Little
322 Hermetic plastics i.cs
323 Electronic circuit calculations simplified-2 by S. W. Amos
326 Noise - confusion in more ways than one-4 by K. L. Smith.
331 Resistance comparator by D. Griffiths
334 Realm of microwaves- \(\mathbf{1 0}\) by M. W. Hosking
339 Sixty years ago
340 World of amateur radio
34175 years of magnetic recording-5 by Basil Lane
343 New products
a73 APPOINTMENTS VACANT
a94 INDEX TO ADVERTISERS

\footnotetext{
Price 30p. (Back numbers 50p, from Room 11. Dorset House. Stamford Street, London SE1 9LU.)
Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU. Telephones: Editorial 01-261 8620: Advertising 01-261 8339.
Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld. London SE1."
Subscription rates: 1 year, £6 UK and overseas (\$15.60 USA and Canada): 3 years, \(£ 15.30\) UK and overseas ( \(\$ 39.80\) USA and Canada). Student rates: 1 year, \(£ 3\) UK and overseas ( \(\$ 7.80\) USA and Canada): 3 years. \(£ 7.70\) UK and overseas ( \(\$ 20.00\) USA and Canada).
Distribution: 40 Bowling Green Lane, London ECIR 0NE. Telephone 01-837 3636.
Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281.

Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.
}


This month's front cover is a composite view of David Clegg's digital watch, a full description of which starts this month.

\section*{IN OUR NEXT ISSUE}

Electronics and the railways, a survey of past, present and future developments in communications from signalling to fail-safe systems in highspeed travel.
Audio level meter. Constructional design, using columns of l.e.ds for logarithmic display, has characteristics similar to BBC peak programme meter.
Solid-state wristwatch. The second part of this unusual project gives the printed circuit board design and other constructional details.

\section*{ibpa}



\section*{It's a mod. mod. modular world.}


Simplify, simplify! Instead of paying more for bigger, bulkier audio control components, pay less for compact Shure modular components that singly or in combination-handle critical functions flawlessly. Cases in point: (1) the M67 and M68 Microphone Mixers, the original high-performance, low-cost mixers; (2) the M610 Feedback Controller, the compact component that permits dramatically increased gain before feedback; (3) the M63 Audio Master, that gives almost unlimited response-shaping characteristics; (4) the M688 Stereo Mixer, for stereo recording and multi-source audio-visual work; (5) the M675 Broadcast Production Master, that works with our M67 to create a complete production console (with cuing!) for a fraction of the cost of conventional consoles; and (6) the SE30 Gated Compressor/Mixer, (not shown above) with the memory circuit that eliminates "pumping." For more on how to "go modular," write for the Shure Microphone Circuitry Catalogue. (8)

\section*{wireless world}

\section*{The analogue to digital conversion}

\section*{Editor:}

TOM IVALL, M.I.E.R.E.

\section*{Deputy Editor:}

PHILIP DARRINGTON
Phone 01-261 8429

\section*{Technical Editor:}

GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

\section*{Assistant Editors:}

BILL ANDERTON, B.Sc.
Phone 01-261 8620
BASIL LANE
Phone 01-261 8043
MIKE SAGIN
Phone 01-261 8429
Drawing Office:
LEONARD H. DARRAH

\section*{Production:}
D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)

KEVIN BURNAL
Phone 01-2618515
ROGER PORT
Phone 01-261 8037
A. PETTERS (Classified Advertisements)

Phone 01-261 8508 or 01-928 4597
JOHN GIBBON (Muke-up and copy) Phone 01-261 8353
I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Administration Director: George H. Mansell Publisher: Gordon Henderson

Until about twenty years ago, the majority of measuring instruments displayed their results in an analogue manner, usually by means of a pointer meter. The accuracy of measuring electronics was such that the precision of this kind of indication was adequate. At this point, frequency measurement using flip-flops and logical gates came into large-scale use, and a numerical indication was the obvious way to display the reading. The numbers did not imply a spurious, mythical accuracy of measurement, because these instruments were capable of a high degree of accuracy.

Since then, measurement capabilities in many fields have improved and digital indication has been adopted to take advantage of this improvement. We have now reached the stage where an instrument is sometimes regarded as not quite "with it" unless a row of numbers appears on the front panel. Digital readout appears, in a sense, to have become a fashion and is sometimes used when the simpler pointer indication may have advantages. It ought to be remembered that the presentation of a measurement in numerical form does not mean that it is necessarily a more accurate measurement. It may give a more precise reading, but that is not to be confused with precision of measurement.

In some instances, a digital display can be a liability. Any slowly-varying quantity or a parameter which is only required to be known roughly is not a suitable case for the digital treatment. In the first instance the display may be a jumble of changing figures and in the second the display must be read rather than recognized. Clock faces, for instance, are very rarely read and are sometimes made without numerals: the position of the hands is taken in at a glance. Or again, a speedometer is usually an analogue indicator and one feels that any time spent reading numbers on a car dashboard would be better employed in looking where one is going, particularly while accelerating or decelerating, when the numerals on a digital indicator can be incomprehensible.
This is not, of course, a tirade against the superb digital instruments designed for precision voltage or frequency measurement - there is often no other way to present such readings. But a feeling persists that the humble moving-coil meter on the end of amplifying or impedance-changing electronics (or even displaying the results of measurements made by digital means, such as frequency) can still give a good account of itself.

Doubtless, many engineers who would consider themselves improperly dressed without an array of digital instruments in their equipment will disagree, pointing out that not only have we published a design for a digital speedo, but are now in the digital watch and clock business. We welcome their comments and, if they are sufficiently numerous and interesting to other readers, will publish a selection of them in a future issue.

\section*{Solid-state digital wristwatch}

\title{
C.m.o.s. circuitry and liquid-crystal display give long battery life 1 - Design
}

\author{
by D. D. Clegg
}

This article describes the design and construction of a wristwatch having a liquid crystal digital display and a quartz crystal time reference. The author was originally tempted to consider the design of a watch with a conventional display, i.e., one with hands driven by a sub-miniature stepping motor. This was later ruled out, however, because it involved a lot of conventional watchmaking expertise quite beyond the limited resources of the author.

\section*{Design considerations}

As a starting point, the following requirements were set down in order of importance:
(1) The watch should be accurate; at least as accurate as a more conventional watch of equivalent price. The timing reference must, therefore, be a quartz crystal which will result in a stability of better than 1 second per day.
(2) The finished watch should be a reasonably presentable piece of jewellery, i.e. it must not only look good, but also be a sensible size, The author had no intention of wearing a three-inch die-cast box on his wrist!
(3) The display must be easy to read under all reasonable conditions of use.
(4) The batteries must be easily obtainable and must last a sensible length of time. The absolute minimum acceptable battery life would be three months or, preferably, longer.

While compiling this list, the author was tempted to add a fifth requirement - that the watch should be easy to assemble - but later realised that this and requirement (2) are incompatible. It will become obvious during the course of this article that this design is very much a compromise because, in early 1974, there were very few suitable components available: all the major ones being imported from either the USA or Europe. For this reason the watch is quite difficult to construct and is, unfortunately, not suitable for economic manufacture in quantity. The watch described here can be built for around \(£ 50\).

Logic type. Considerations of size and power consumption ruled out the use of

\section*{SPECIFICATION \\ Time reference: 32.768 kHz quartz crystal. \\ Display: field-effect liquid crystal. \\ Power supply: three RM312H mercury cells or WH 1 watch cells. Typical life 1 year. (Minimum 9 months.) \\ Stability: better than 1 s per day. 'typically 3 seconds per week. \\ Size: module diameter 31 mm . \\ Depth of main part of module 7.3 mm . \\ Depth of front part of module 1.75 mm}
s.s.i. or m.s.i. bipolar logic for the watch: the only alternative was l.s.i./c.m.o.s. and at that time only one manufacturer's product was available in this country. This was the two-chip system designed for wristwatches with digital displays by Solid State Scientific Inc. One of the chips is a silicon gate c.m.o.s. oscillator and divider packaged in a ten-lead flat-pack - the SCL-5425-AF - and the other is an aluminium-gate watch circuit with outputs suitable for driving liquid-crystal displays, packaged in a 30 -lead flat-pack - the SCL5424-F.

Display. After deciding on a digital display, the author's first intention had been to use an l.e.d. display and to provide a "Display" button to reduce power requirements, so that the display would draw power from the battery only when required. The SCL-5424-F watch chip will not drive an l.e.d. display directly and so it was decided to interface it with CD-4009 c.m.o.s. inverters. At that time, however, c.m.o.s. was in short supply, and c.m.o.s. in flat-packs (necessary because of the size) was almost completely unobtainable; delivery times in excess of six months being quoted in some cases.

The alternative was to use a liquidcrystal display which would require no interfacing, since the SCL-5424-F watch chip was designed to drive this type of display directly. Again, at this time there was considerable difficulty in

obtaining a liquid-crystal display suitable for a watch. There was quite a lot of literature from various manufacturers, but the only device which was actually obtainable was the LC-201135 from Brown, Boveri and Company. One important advantage gained from using this particular display was its ability to operate from a very low voltage ( 1.5 V to 5 V r.m.s.) and still provide a reasonable contrast ratio.

Crystal. The quartz crystal required by the SCL-5425-AF is a 32.768 kHz type. Motorola manufacture a suitable crystal in a sub-miniature vacuum envelope - the MTQ-32. They also make a sub-miniature ceramic trimmer capacitor for wristwatches; this is the MTT-02.

Batteries. It took the author approximately four months to obtain the main components for the watch, these being logic i.cs, display, quartz crystal and trimmer capacitor. Batteries were now the only components outstanding on the shopping list and the author confidently expected this to be very easy since he had obtained the "Designers Guide to Battery Systems" from Mallory. This book describes a very comprehensive range of batteries including no less than six specifically designed for electronic watches.

At this time the author discovered that empty wristwatch cases were available from wholesale watchmakers, so rather than try to make one (the die-cast box effect) it was decided to buy a suitable case ready-made. Before this could be done, however, the type and size of battery or batteries would have to be decided upon.

After visiting a number of large jewellers in central London, it was discovered that watch batteries are not available for sale over the counter; electronic watches requiring new batteries are, apparently, returned to the manufacturers to have their batteries replaced.

To have gone ahead and designed a watch using a battery from the Mallory range, but which proved difficult to obtain in practice, would have broken design rule (4). The author spent some time, therefore, visiting chemists,
jewellers and photographic shops in central London to determine which small mercury batteries were easily obtainable. The result of this investigation showed that the best battery for the watch would be the RM-312H mercury battery designed primarily for hearing aids. This is obtainable from most chemists and with a capacity of 36 mAh it would appear to fulfil design requirement (4). Three of these batteries are used in the watch and they will have a life in excess of nine months.

\section*{Oscillator design}

The timing reference in this watch is a quartz crystal oscillating at 32.768 kHz . This frequency is popular with i.c. manufacturers because it is an exact power of two, ( \(2^{15}=32768\) ) thus simplifying frequency divider design. It is also a compromise between power consumption in the oscillator and the physical size of the crystal; lowering the frequency increases the size of the crystal, making it too large for a wristwatch, while increasing the frequency causes an unacceptable increase in power consumption. Future trends in watch design, however, are tending towards much higher frequencies (as high as 4 MHz ) to increase stability, with the use of silicon-on-sapphire c.m.o.s. integrated circuits to maintain extremely low power consumption.
The equivalent circuit for the Motorola MTQ-32 quartz crystal is shown in Fig. 1 which gives some typical component values. A typical \(Q\) of 50,000 would be obtained. The MTQ-32 is an NT-cut crystal and is mounted in an evacuated sub-miniature envelope.
There are two resonance conditions that a quartz crystal can exhibit parallel resonance and series resonance. If it is assumed, for simplicity, that \(R_{s}=\) 0 , then the crystal impedance is given by:
\[
Z=\frac{j\left(1-\omega^{2} L C_{s}\right)}{\left.\omega^{3} L C_{s} C_{p}-\omega\right)\left(C_{s}+C_{p}\right)} .
\]

The series resonant frequency \(f_{s}\) is defined at the zero impedance point, where \(\omega^{2} L C_{\mathrm{s}}=1\), as:
\[
f_{s}=\frac{1}{2 \pi / L C} .
\]

The parallel resonant frequency \(f_{p}\) is defined as occurring at the infiniteimpedance point; where \(\omega^{3} L C_{s} C_{p}=0\left(C_{s}+C_{p}\right)\), and is
\[
f_{p}=\frac{1}{2 \pi} \sqrt{\frac{1}{L}\left\{\frac{1}{C_{s}}+\frac{1}{C_{p}}\right\}}
\]

Figs. 2(a) and 2(b) respectively show the variations of \(X_{E}\) and \(R_{E}\) with frequency for typical crystal. Unfortunately \(R_{s} \neq 0\) for practical crystals and the real condition frequencies are called resonance \(\left(f_{r}\right)\) and antiresonance ( \(f_{l}\) ). These two frequencies are defined as occurring when the crystal appears purely resistive, i.e. when \(X_{E}=0\). In

(a)

Fig. 1. Equivalent circuit of the MTQ-32 crystal. The values shown are typical and result in a typical \(Q\) of 50,000 .

(D)

Fig 2. The crystal reactance \(X_{E}\) plotted against frequency is shown at (a), while (b) is the resistance \(R_{E}\) against frequency.

Fig. 3. The practical crystal oscillator circuit, using a logical inverter as the maintaining amplifier. The trimmer is type MTT-02.

practice \(f_{r}\) is very close to \(f_{s}\) and \(f_{a}\) is very close to \(f_{p}\). Fig. 3 shows the practical oscillator circuit used in the watch - in this circuit the resonant frequency \(f_{0}\) lies very close to, but below \(f_{a}\). The MTQ-32 crystal is designed to resonate at the specified frequency of 32.768 kHz only when it has an external capacitance \(C_{L}\) of \(10-12 \mathrm{pF}\) in value in shunt with \(C_{p}\)
\[
C_{L}=\frac{\left(C_{i n}+C_{1}\right) C_{x}}{C_{\text {in }}+C_{1}+C_{x}},
\]
where \(C_{\text {in }}\) is the input capacitance of the 5425 inverter, and is probably in the region of 5 pF .

The inverter is biased into its linear mode by the series combination of \(\left(R_{1}+R_{2}\right)\) which should have a value of about ten times the crystal impedance
at resonance \(f_{0}\) (typically \(Z \geqq 10^{6}\) ohms) but should be lower than the various d.c. leakage impedances - the inverter input impedance, for example. A value of between 10 and \(100 \mathrm{M} \Omega\) for \(R_{1}\) satisfies these requirements. Unfortunately, however, physically small high value resistors ( \(>10 \mathrm{M} \Omega\) ) are very scarce; indeed, only a very few types of small resistor can be obtained in values above about \(330 \mathrm{k} \Omega\). The Mullard CR25 range of carbon film resistors extends to \(10 \mathrm{M} \Omega\) and this is the value of \(\mathrm{R}_{1}\).

Resistor \(\mathrm{R}_{2}\) controls the drive level to the crystal and contributes to the feedback network attenuation constant. Its value should be about ten times the crystal series resistance \(R_{s}\), to give reduced dependence of frequency on the supply voltage.


The trimmer capacitor \(\mathrm{VC}_{1}\) is adjustable between 6 and 35 pF , giving a frequency adjustment of about \(\pm 1 \mathrm{~Hz}\) from the nominal 32.768 kHz . This represents a timing adjustment of about \(\pm 21 / 2\) seconds per day. \(\mathrm{VC}_{1}\) is a subminiature ceramic trimmer, the MTT-02, manufactured by Motorola to complement the MTQ-32 crystal.

\section*{Dividers}

The main watch integrated circuit (SCL-5424-F) requires an input of 64 Hz and this is provided by the oscillator and divider integrated circuit, the SCL-5425-AF.

Fig. 4 is a logical block diagram of the SCL-5425-AF. It consists of an inverter between pins 1 and 2 , to which are connected the frequency determining

Fig. 4. The logic diagram of the SCL-5425-AF.
components to form the oscillator, followed by nine binary dividers. There are two outputs, one at the input frequency divided by \(2^{9}\) (output l) and the other at the input frequency divided by \(2^{7}\) (output 2). With an input of 32.768 kHz , output l will be \(32768 \div 512=64 \mathrm{~Hz}\) and output 2 will be \(32768 \div 128=256 \mathrm{~Hz}\).

The binary dividers used in the 5425 are master/slave toggle flip-flops whose output transitions occur on the rising edge (logic 0 to logic 1 transition) of the

Fig. 5. Generation of low output duty cycles.

input clock. The logical construction of these toggle flip-flops can be seen in Fig. 4. The output from these divers has, of course, a \(50 \%\) duty cycle ( \(1: 1\) mark: space ratio). Resistive loads connected to the outputs would, under these conditions, dissipate an unacceptable amount of power, and the output pulse duty cycle is therefore reduced from \(50 \%\) to \(0.1 \%\) for output 1 and to \(0.4 \%\) for output 2. These low duty cycles are generated by the output pulse flip-flops which are set by the first logic 0 to logic 1 transition of \(T_{F}\) when \(T_{S}\) is high and reset by the next logic 1 to logic 0 transition of \(T_{F}\) (Fig. 5). Further changes in \(T_{F}\) have no effect until \(T_{S}\) has gone low and then high again, when another output pulse is generated. The net result of this is that the output pulse flip-flop gates one \(15 \mu\) s pulse of the input frequency at the repetition rate of the output frequency.
Output 1 is an uncommitted p-channel transistor and requires an external drain load of \(100 \mathrm{k} \Omega\). Output 2 is a conventional c.m.o.s. inverter with an output "on" resistance of \(1 \mathrm{k} \Omega\) at a current of \(300 \mu \mathrm{~A}\). This output of 256 Hz is primarily intended for driving voltage up-converters to produce the 10 to 15 volts required by many liquid-crystal displays, and it is not used in this design.

\section*{Main logic and display}

A block diagram of the SCL-5424-F watch is shown in Fig. 6. It accepts an input of 64 Hz from the oscillator and divider l.c. and directly drives the liquid crystal display. The 64 Hz input (pin 23) has an n-channel transistor connected down to \(V_{\text {ss }}\) with its gate connected to \(V_{D D}\). It is intended to provide a load for

the p-channel current source transistor in the SCL-5425-AF. It is only effective, however, with a supply of 15 volts; with \(V_{s s}=-4\) volts an external resistor of \(100 \mathrm{k} \Omega\) is required, since at this voltage the transistor has a very high channel resistance. This value of load resistor might appear to be rather low as it results in a peak current of \(40 \mu \mathrm{~A}\) ( \(I=4 \div 10^{5} \mathrm{~A}\) ) but, since there is only one \(15 \mu\) s pulse every 15 ms (duty cycle \(0.1 \%\) ). the mean current is only 40 nA . If this resistor is made too large, then the 64 Hz input pulse fall time will be too long and may cause incorrect operation of the divider stages following.
There are two "Reset" inputs (pins 29 and 30 ) which for normal operation are connected to \(V_{D D}(0 \mathrm{~V})\) through two \(1 M \Omega\) resistors \(\left(R_{4}\right.\) and \(\left.R_{5}\right)\). When reset 2 (pin 30) is taken to \(-V_{\text {ss }}\) (case potential) the hours increment at a 1 Hz rate. Connecting both resets \(i\) and 2 to \(-V_{s s}\) causes the minutes to increment as for the hours. Connecting reset 1 to \(-V_{\text {ss }}\) by itself, stops the watch and resets the divide-by-60 stage preceding the minutes counters. This is to enable the watch to be synchronized to a reference time source, for example, the Greenwich Time Signal.

Liquid crystal displays require a symmetrical a.c. waveform for correct operation. There must be no d.c. component present in this waveform or electrolytic effects within the cell will seriously damage the display, thus shortening its life. The SCL-5424-F watch chip, therefore, contains interface circuitry which produces the required symmetrical square waveform from the output of the seven-segment decoders: Fig. 7 shows one of these circuits together with the associated waveforms. The interface circuits consists, essentially, of two c.m.o.s. transmission gates connected so that the segment output can be either in phase
with the display common output, or \(180^{\circ}\) out of phase with it.
When all inputs to the segment decoding gate are at logic 1 , then its output (a) is logic 0 ; transmission gate \(S_{1}\) is on (conducting) and gate \(S_{2}\) is off. Under these conditions the 32 Hz waveforms at pins 28 and 26 are, therefore, out of phase and the net result is that segment \(\mathrm{E}_{1}\) "sees" a symmetrical square wave of 8 volts peak-to-peak, which turns it on. When this segment is

Fig. 6. Block diagram of the SCL-5424-F.

Fig. 7. Display interface circuits.


not required at least one of the inputs to the decoding NAND gate will be at logic 0 , its output is logic 1 and transmission gate \(S_{1}\) will be off, while gate \(S_{2}\) will be on. There is now no voltage across the cell for this segment, and it is, therefore, off.

Many liquid-crystal displays for wristwatches have a colon between the hours and minutes; the Brown Boveri display used in this design, however, has only a single point. The \(P\) output of the watch chip (pin 22) is driven by a 1 Hz waveform, through an interface circuit, which results in the display point flashing at a 1 Hz rate. This serves two purposes; it gives the wearer confidence that the watch is, in fact, operating, and it can be used as a seconds timer if one is prepared to count the seconds.

\section*{Power supply}

The SCL-5425-AF oscillator and divider i.c., being a silicon-gate device, will operate with a supply voltage between 1.2 and 10 volts: the main logic i.c. (SCL-5424-F), being an aluminium gate device, operates with a supply of between 3 and 15 volts, while the display requires a voltage of between 1.5 and 10 volts. Three 1.4 volt mercury cells, giving a supply of 4.2 volts, satisfy these requirements. The current consumed by the SCL-5425-AF is typically between 2 and \(5 \mu \mathrm{~A}\) at 1.4 volts; above this the current rises quite rapidly, until at 4 volts it will be about \(15 \mu \mathrm{~A}\). This is far too high for prolonged battery life, so this i.c. is supplied by only one of the three cells. The main logic i.c. and display together consume a maximum current of \(300 \mathrm{nA}(0.3 \mu \mathrm{~A})\) at 4 volts; the total current required by the complete

Fig. 8. Complete circuit diagram of the watch.
watch will, therefore, lie somewhere between 2.3 and \(5.3 \mu \mathrm{~A}\).
The capacity of the RM-312-H mercury cells used in this desigh is 36 mAH or, as it is more usefully quoted in this application, \(4 \mu\) Ayears. These cells will therefore last between nine and about eighteen months. For those constructors who would like to try to obtain one of the range of Mallory watch batteries, the WH1 cell is dimensionally the same as the RM312H but it has a slightly higher capacity of 45 mAH ( \(5 \mu\) Ayears). (Although the capacity of the RM312H cell is given in the data as 36 mAH , this is for a drain of about 2 milliamps and it may in practice have a slightly higher capacity. The capacity of the WH1 is quoted for a current drain of about \(50 \mu \mathrm{~A}\).)

Fig. 8 shows the circuit diagram of the complete watch, omitting only the display for clarity. (Constructional and operational details will be presented in Part 2 of the article.)

\section*{Vision cassette and cartridge recorders}

Thorn Electrical Industries have asked us to say that the price of the Radio Rentals Contracts Model 8200 V.C.R is \(£ 335\) plus v.a.t., or \(£ 132\) plus v.a.t. per annum when rented. The firm's address is now APEX House, Twickenham Road. Feltham, Middlesex.

\section*{HF prodictions}

Magnetic activity is still reaching disturbance level on more than fifty per cent of days. This feature developed rapidly in February 1974 and has persisted to date. The same feature was present in 1973 and terminated abruptly in July of that year.

Smoothed sunspot number is now very low with rate of change near zero. It should start increasing in a few months' time.






\section*{Josephson faster than transistors}

A US patent covering the fabrication of a new type of electronic switch, whose performance far exceeds that of transistors, describes a technique used to grow a thin insulating layer - only 10 to 30 atom layers thick - that is the heart of a device called a Josephson tunnel diode. (The Josephson effect was described in an article by B. D. Josephson in Wireless World, October 1966, entitled "New superconducting devices").
It has been recognized for some time that the Josephson effect could provide an extremely fast logic switch that would require very little energy. However, a device based on these effects requires an insulating layer far thinner than has previously been used in electronic devices. The new process, accredited to James H. Greiner of the IBM Thomas J. Watson Research Centre, New York, uses a glow discharge somewhat like that in a fluorescent lamp. When a gas such as oxygen is present in the discharge, an insulating oxide is formed on the surface of the sample up to a certain thickness which is dependent on the oxygen pressure and other factors. As the oxide approaches this thickness, the discharge begins to remove oxide at almost the same rate as it is produced. Thus the oxide layer quickly approaches an equilibrium at the desired thickness.
The Josphenson switch device is based on a phenomenon called electron tunnelling. Because electrons appear to behave as waves as well as particles, they can penetrate or "tunnel" through a barrier such as a thin layer of insulation which would be expected to stop them according to classical physics. The type of tunnelling exploited in the new device occurs only at very low temperatures, where some metals lose all resistance to current flow and become "superconductors." It was discovered in the early 1960s that two different types of tunnelling can occur through a thin insulator separating two
superconductors. In one type there is no voltage drop and the insulator acts like a weak superconductor itself. In the other type, there is a slight voltage drop across the insulator. The insulator can be switched from the no voltage drop state by a small magnetic field. (Discovery of these effects was recognised by the 1973 Nobel Prize in physics.)

\section*{1975 Spring trade shows}

The annual trade shows for the radio and television industry took place in London during May amid an air of surprising confidence and optimism from both retailers and suppliers. Perhaps also, the fact that this was the last show to be held in the London Hotels before the move next year to the Birmingham exhibition centre was the reason for the unusually large number of exhibitors.
It was very evident, from the range of hi-fi equipment introduced, that many manufacturers believe that one way of ensuring buoyant trade prospects is to move up-market to the very expensive (and very large!) end of the scale. A typical example of this philosophy was to be found at the Cumberland Hotel, where Sony (UK) Ltd were introducing a range of esoteric audio equipment of phenomenally high price. Among these were some loudspeakers priced at about \(£ 1,500\) a pair and a new reel-to-reel tape recorder priced at around \(£ 1,200\) !

In total contrast, AEG Telefunken were showing some brightly coloured pocket-sized portable radios that were of quite modest price. Significantly, no new developments appeared on show
for television, with the exception of an increase in the incidence of slot-mask tubes and the new 20 inch screen size.

Philips were showing a rather battered prototype Teletext decoder incorporated in a large screen television and since it did not seem to be fully functional, little interest was shown by those dealers present at the time.

At the end of the five days, most exhibitors reported a steady trade with dealers buying products, but in many cases, in a cautious way. So much new technology was shown, that this will form the subject of a brief report in the next issue of this journal.

In conclusion, the overall impression gained was of a very high morale and a determination to fight back against the trends of the current decline in consumer sales.

\section*{VAT muddle}

The introduction of the \(25 \%\) VAT rate on certain so-called luxury goods appears to have resulted in a good deal of confusion not only among component suppliers and kit companies but also among advertisers using magazines such as Wireless World which are aimed at a combined audience of professional engineers and enthusiasts.
As a result w.e have asked the Customs and Excise for clarification on a number of common questions. The question of VAT liability requires that a distinction be made between those who are VAT registered and those who are not.

For those who are registered, VAT is recoverable, so no change will result in accounting procedures. The changes affect the non-registered purchaser who

The Sony SS8150 loudspeaker is a typical example of a new technique announced during the show. The drive unit cones are loaded with carbon fibre filaments to give a very high stiffness.

is either a business with a turn-over less than \(£ 5,000\) per annum, or is a private purchaser. The types of goods and services subject to the high rate of VAT are defined in Notice 742 from Customs and Excise and are quite clear in all instances except where related to components and borderline products having a possible consumer application.

Taking components first; all those components forming parts of higher rated goods are subject to \(25 \%\) VAT. Those that have been specifically excluded by the VAT Liability Office may be rated at the higher rate, if they are fitted as a spare part by an engineer performing a service classified at the higher rate. Examples of such components would be those that are rated to a higher specification than that normally used in, say, audio amplifiers. Hence a high power thyristor is excluded and rated at \(8 \%\) unless it is used by a service engineer as a spare part in a domestic audio amplifier.

A telephone enquiry to the VAT Liability Office elicited the information that there are still many "grey" areas where final decisions on rating have yet to be made. They informed us that local VAT offices are issuing conflicting information and that enquiries concerning electronic and electrical goods not specifically mentioned in Notice 742 should be addressed via the appropriate trade association who will then negotiate with the London VAT Libaility Office. It is only this office that is in the position of making final decisions on specific exclusions.

The VAT officer went on to say that in the intervening period of uncertainty, manufacturers are expected to make. their own decisions regarding the rating of their components, in instances where Notice 742 has provided insufficient information.

Finally, two specific examples of liability in relation to advertising. Notice 742 states "Appliances . . . are generally regarded as being for domestic use if they are . . . advertised in those periodicals intended for the public.' We are informed by the VAT Liability. Office that this is only one of the criteria applied and that where the only advertising outlet for a professional product is through a publicly available journal than this would not result in the high rate being applied. For example, public address equipment is tentatively rated at \(8 \%\) (subject to discussion with the trade associations resulting in a permanent decision). Advertising in a magazine such as Wireless World would not result in the high rate being applied. Similarly professional discotheque equipment may be advertised in the Melody Maker and yet be rated at \(8 \%\).

All this note serves to show is that in areas of doubt final clarification can only be obtained from the central VAT Liability Office, preferably through a trade association.

\section*{Antenna system for AEROSAT}

A complete L-band aircraft antenna system of a type suitable for airliners using the projected AEROSAT aircraft/satellite communication system has been developed under contract to the Ministry of Defence in close co-operation with the Royal Aircraft Establishment and completed in time to be installed in one of RAE's Comet 4 aircraft for the AEROSAT system trials. The trials, based on the Azores, are organised by the European Space Research Organisation and started at the end of February. NASA's ATS6 satellite is being used to assess performance of the L-band system, which is of particular significance since in this geographical area the access angle from the aircraft to the satellite is low, resulting in appreciable noise temperature and accentuating possible multipath problems.

The antenna system consists of two antenna groups with two switching and phasing units with their associated cabling. The antenna groups are virtually flush mounted on each side of the aircraft fuselage at about \(40^{\circ}\) from the zenith. The switch units are installed in a convenient location inside the fuselage.

An antenna group consists of six slot-dipole elements, three transmitting and three receiving which give the required beam coverage with good multipath signal rejection. The slot-
"No madam, this is not Harrods." Pye Telecommunication's specially adapted "Westminster" mobile radiotelephone in use at the Silverstone Racetrack during recent police trials. The police motorcyclist is using the hand-set for transmitting, and a loudspeaker, mounted on the motorcycle's fairing, for receiving.

dipole element itself was developed by RAE's Radio and Navigation Department and was selected after detailed examination of a wide range of alternative elements. The L-band system is rated at 200 watts, \(50 \%\) duty, and has been designed to transmit on \(1640-1660 \mathrm{MHz}\) and receive on \(1540-1560 \mathrm{MHz}\) with omni azimuth coverage for elevation angles of \(10^{\prime \prime}\) and above. After two weeks and nearly 50 hours of flying time the antenna system was working well. There were several days of torrential rain when the Comet 4 remained on the tarmac, during which time the impedance of both the transmitter and receiver were measured several times and no change was observed.

\section*{Brema on VAT}

The following text of a telegram to Members of Parliament was issued by the British Radio Equipment Manufacturers' Association on 22nd April. "To all members of Parliament from Lord Thorneycroft. President of British Radio Equipment Manufacturers' Association. The recent budgetary proposals to increase VAT to 25 per cent will have the immediate effect of causing serious and permanent redundancies in this industry. At a special meeting of the Association today member companies estimate that permanent and unavoidable lay-offs of staff would exceed 6,000 at least 20 per cent of direct labour employed by the industry. These figures in addition to the 5,000 redundancies which occurred in the calendar year 1974, and exclude serious position which will undoubtedly occur in component and associated industries. Position is grossly aggravated by the retro-active effect of VAT proposals on rental side of industry. We wholeheartedly endorse representations already made by members of the National Television Rental Association. We emphasise that enforced reduction in production capacity now cannot fail to increase the cost of imports when the market next improves, with serious consequences on balance of payments position."

\section*{Is circularly polarized TV coming?}

The heading to this item was the title of a paper by M. S. Siukola presented in the IEEE Transactions on Broacasting, Vol. BC-21, No. 1, March 1975. According to the paper, there is on the horizon a new approach to the way TV signals are radiated. The technique is circular polarization, and while this has been in use for several years in f.m. broadcasting, it is now being viewed for TV as an
effective antidote for ghosting, spotty coverage, multipath, poor reception on whips and rabbit ears, misoriented antennas, co-channel and adjacentchannel interference - all ills that have plagued broadcasters and viewers since TV's inception. The conclusions reached in the paper indicate that the principal deterrent would seem to be the cost to the broadcaster, but this may well be completely compensated by the more solid coverage, increased viewer enthusiasm for the enhanced reception and the additional viewer audience that circularly polarized TV is expected to provide within existing coverage areas. Present receiving antennas would not be made obsolescent, but viewers would certainly benefit most by acquiring circularly polarized types. The designs for receiving antennas as well as transmitting types are available and the antennas can be built now.

\section*{Association of research contractors formed}

The Association of Independent Contract Research Organizations has been formed to represent and promote the resources of seven constituent founder members. Contract research is becoming increasingly important in its scope for serving industrial, commercial, institutional and governmental clients as a world-wide business. The seven major independent organizations based in the UK serve home and overseas markets. Between them they employ 2,250 staff of whom 800 are of professional consultant status. The Association aims to communicate on behalf of its members with international and intergovernmental bodies, with central governments in the UK and overseas, with industry - representational bodies and industry groups - and with commercial organizations able to benefit from contract research services. Further information can be obtained from D. McA. Craig, 7 Catherine Place, London SWIE 6EB.

\section*{Queen's awards to electronics}

Worthy of note are the following companies who were included in those honoured by the Queen earlier this year for their contribution to Britain's technological development and exports: Beckman Instruments for export achievements during the last three years; Mullard for outstanding export success and development; Micro Consultants for outstanding work in the field of ultra high speed analogue-to-digital conversion; EMI Sound and Vision Equipment for export achievement of the brain diagnostic EMI-Scanner;

For radio relay systems using the microwave range above \(3 G H z\) Siemens are now developing aluminium waveguides with rectangular cross sections which can be bent and twisted and which simplify the planning and installation of connecting lines between radio relay equipment and antennas.


Marconi-Elliott Avionic Systems for technological innovations in the sophisticated navigation and weapon aiming system NAVWASS, supplied for Jaguar aircraft; KEF Electronics for export achievement of loudspeakers; Sinclair Radionics for outstanding export achievement and for technological innovation in electronic calculators; British Aircraft Corporation for export achievement and for technical innovation in high performance flight radomes by the Reinforced and Microwave Plastics Group. Our congratulations go to all concerned.

\section*{Transistor assembly automated}

A recently developed transistor assembly system that can assemble a variety of transistor types by means of pattern recognition techniques comprises a minicomputer and image processors and will ultimately have 50 wire-bonding machines with visual functions to determine chip positions of transistors fed into the machines. The system has been installed at Hitachi's Takasaki Works, in Japan.

To recognise the position of transistor chips, an artificial eye is needed to replace the human eye. For this purpose, a microscope and a TV camera are mounted on each wire-bonding machine, so that the image signal from the camera is analyzed by a combination of the image processor and the computer to give a high-speed position
recognition rate of 0.2 seconds per chip average. Position data is fed back from the computer to the appropriate wirebonding' machine, whose servomechanism can stretch the gold wire between emitter and base electrodes on the chip and the corresponding outer leads. It is claimed that the production rate has more than doubled since replacement of traditional methods.

\section*{World markets decline}

An extract from the 1975 first quarter and stockholders meeting report issued by Texas Instruments indicated that the decline in demand for their electronics products experienced in 1974 was generated by the longest, deepest recession since recovery from World War II. The major difference between this and past recessions is the almost concurrent decline of all major economys. In 1970, while the US economy was declining, Japan and Europe continued to grow. In contrast, late 1973 industrial production turned down simultaneously in Japan, Europe and the US.

In the US real growth has dropped for the past five quarters. High unemployment, inventory liquidation and sluggish capital spending suggest they (TI) will not reach the bottom before the third quarter of 1975 , with at best a modest upturn this year and a slow recovery in 1976.

Japan appears close to the bottom of its recession, spring wage negotiations
influencing the rate of recovery. West Germany probably will have a moderate upturn in the second half of the year. France will have minimal real growth in 1975. In Italy, industrial production is falling still, but the trade balance is improving and inflation is down compared with 1974. The UK economy is expected to remain sluggish well into 1976.

\section*{Direct-drive a.c. motor}

Matsushita, who are represented in the UK by Symot, have announced a direct drive a.c. motor for use in record turntables. The unit, which is called the FF-2000 is basically a linear motor, which drives a light-weight aluminium platter, by eddy currents. Underneath the platter is a geared magnetic speed sensor which forms part of a feedback system for speed regulation. The motor is electronically controlled and requires an a.c. supply of \(18 \mathrm{~V}, 40 \mathrm{~mA}\). Performance of the FF-2000 is claimed to be equal to or better than the existing d.c. direct-drive motors used in the Technics range (also manufactured by Matsushita). We understand that these motors will cost around \(£ 12\). in production quantities, and will be available at the end of this year.

\section*{Ceefax, Oracle - now Tifax}

Texas Instruments announced at.a press conference given in May that they have now completed the design of a modular data processor which will decode the Teletext transmissions broadcast by the BBC and IBA. Although no product has yet appeared, samples of the first generation processor will become available later this year, followed by full production in 1976.

What makes the difference in the "Tifax" decoder, from those already designed by such companies as Decca and GEC, is that the Tifax unit is being offered as a p.c.b. module carrying a relatively small number of dedicated l.s.i. circuits.

The projected cost of the "Tifax" module is expected to be around \(£ 50\), reducing to \(£ 10-£ 15\) over a few years. Power consumption is said to be 5 W drawn from a regulated \(+5 \mathrm{~V} \pm 0.25 \mathrm{~V}\) supply with a maximum ripple of 10 mV \(\mathrm{pk}-\mathrm{pk}\). Interface to the receiver is by direct connection to the R.G.B. video drive stage from \(15 \mathrm{~V}, 20 \mathrm{~mA}\) current sink open collector outputs. The brightness display can be varied using three integral common base transistors. The video input requires a signal amplitude of \(2-3 \mathrm{~V}\) pk-pk, negative going sync, with an input impedance of typically \(10 \mathrm{k} \Omega\)


New microwave distance measuring equipment, the Tellurometer MRA5, indicates directly in metres and centimetres, operation being either fully automatic or manual at the choice of the operator. Measurement can be accomplished in less than 20 seconds.

\section*{Microwave Conference overwhelmed}

The organizers of the fifth European Microwave Conference, which takes place September 1-4, 1975, at the Congress Centrum, Hamburg, have announced the list of papers that have been selected by their technical programme Committee and paper review board for this annual event. The response to the conference call for papers has been overwhelming. Over 350 papers from 30 countries were submitted and from those, a total of 112 will be presented at Hamburg. The papers will be grouped into 20 sessions and the morning sessions will be preceded by a total of nine specially invited state-of-the-art survey papers to be given by a number of the world's leading microwave experts. Papers will be presented in English and are limited to 15 minutes duration. A book of abstracts for the conference was published during May. Further information can be obtained from the organizers, Microwave Exhibitions and Publishers Ltd, Temple House, 34-36 High Street, Sevenoaks, Kent TN 13 1JG.

\section*{TV deliveries down again}

Deliveries to UK distributors of UKmade and imported colour television receivers reached 139,000 in March, a \(26 \%\) decrease over March \(1974(188,000)\), according to the latest statistics compiled by the British Radio Equip-
ment Manufacturers' Association. This brought the year's total to 475,000 , a fall of \(23 \%\) compared with the same period in \(1974(619,000)\). Total monochrome television deliveries for March were 63,000 , a fall of \(22 \%\) compared with March 1974. BREMA members delivered 65,000 audio stereo systems in the month, a fall of \(10 \%\) compared with March 1974 (72,000). This brought the year's total to 192,000 , comparable with 202,000 for the same period in 1974. Deliveries of radio receivers reached 351,000 for the month, bringing the year's total to \(1,032,000\), compared with \(1,345,000\) in 1974, a fall of \(23 \%\).

\section*{Briefly}

IEA plus Electrex. The International Instruments, Electronics and Automation Exhibition running at Olympia since 1957 and the International Electrical Exhibition (Electrex) organised at Earls Court since 1953 are to be held as a combined event, short title IEA-Electrex, in 1976, at the new National Exhibition Centre, Birmingham.

VAT late extra. An itemized list of components on which specific agreement has been reached between HM Customs \& Excise and the Electronic Components Board is now available. It is recognized that there may be some individual products to which the application of these definitions is not entirely straightforward. In such cases, an individual ruling will be given by Customs \& Excise, the facts being initially reported to the Electronic Components Board.

\section*{Teletext}

We plan to publish in the near future a short series of articles on the Teletext television information system, culminating in a design for a decoder for use with domestic receivers. Teletext is a unified version of the BBC's CEEFAX system (Wireless World, May 1973, p.222) and the ORACLE system developed by the IBA (July 1973 issue, p.314). . Test transmissions were started by the BBC in September 1974 on BBC1, while a group of independent television companies (London Weekend, ITN and Thames) will be starting them in July 1975. The Teletext broadcasting standard was outlined in News of the Month, November 19.74 issue.

\title{
Active notch filters
}

\section*{Design theory behind the development of discrete frequency rejection circuits}

\author{
by Yishay Nezer, B.Sc.
}

We often need to separate a wanted signal from periodic interference. This may happen, for example, when a whistle or a power-line hum is disturbing a radio programme. In simple cases a filter which has zero transmission at one discrete frequency and unity transmission at ali other frequencies is sufficient. In contrast to a practical low-pass or high-pass filter, an almost ideal notch filter can be realized with only one section; moreover it can be voltage tuned or even automatically track the interference.

The major class of notch filters, both passive and active, is of the second order and has the following transfer function:
\[
\begin{equation*}
G(s)=\frac{s^{2}+\omega_{0}^{2}}{s^{2}+\frac{1_{0}}{Q_{0}} s+\omega_{0}^{2}} \tag{1}
\end{equation*}
\]
where \({ }^{\left(\omega_{0}\right.}\) is the rejection frequency and \(Q_{0}\) is the figure of merit of the filter, which is given by \(Q_{0}=-\frac{\omega_{0}}{\Lambda_{(j}}\) where \(\Delta(1)\) is the rejection bandwidth defined by the 3 dB attenuation points. Some typical frequency response curves are plotted in Fig. 1 with \(Q_{0}\) as the fixed parameter.

Many passive notch networks are known. This article will deal mainly with \(R C\) networks, since the use of coils is inconvenient, particularly at low frequencies. The best-known \(R C\) notch network is the symmetric twin-tee illustrated in Fig. 2(a), for this network \(\omega_{0}=1 / R C\) and \(Q_{0}=1 / 4\). The function is, of course, realized only if the network is fed by a voltage source and subjected to an infinite load.

Another well-known notch network is the Wien bridge. This network is characterized by \(\omega_{n}=1 / R C\) and \(Q_{0}=1 / 3\). The left side of the bridge shown in Fig. 2(b) is composed of equal resistors and capacitors and, in order to obtain an infinite null, the other two resistors must satisfy the relationship \(r_{1}=2 r_{2}\). The notch response, however, can be achieved even if the corresponding components in the reactive side of the bridge are not equal. The rejection frequency will then be \(\omega_{0}=1 / \sqrt{R_{1} R_{2} C_{1} C_{2}}\) but the ratio \(r_{1} / r_{2}\) will no longer equal two. An important special case occurs when \(R_{1}=2 R_{2}\) and \(C_{1}=C_{2} / 2\); we then have \(r_{1}=r_{2}\).

Fig. 1. Normalized phase and magnitude response curves of a notch filter for several values of \(Q_{0}\) :


A drawback of the above two networks is that in order to vary the centre frequency and still maintain the infinite null, two or three closely matching ganged variable components must be used. Several \(R C\) bridge networks are known in which a single component is sufficient to control the rejection frequency. However, their practical significance is limited because the frequency response becomes severely asymmetric as the rejection frequency is varied.

A more acceptable variable network was proposed by Hall. It is shown in Fig. 2(c). This network can be tuned by means of a single potentiometer and the tuning law is \(\omega_{0}=1 / R C \sqrt{a(1-a)}\) which in theory spans the whole frequency range. In practice the tuning range is quite limited due to the extreme nonlinear dependence of \(\left({ }_{1}\right)_{0}\) on \(a\). However, this network has unity gain on both sides of the null frequency, irrespective of the tuning.

However, unlike the twin-tee and the Wien bridge it is asymmetric on a logarithmic frequency scale. This follows from the fact that the transfer function of this network is not given by expression (1) but contains an additional real pole and real zero.

A similar potentiometer tuned null network based on the twin-tee was proposed by Andreyev \({ }^{2}\).

All the networks discussed so far are
characterized by low selectivity. In fact \({ }^{3}\), no passive \(R C\) notch network, however complex, is capable of achieving \(Q_{0}\) higher than 0.9 . If the notch filter must be passive, a relatively high \(Q_{0}\) may be achieved by including an inductance as in the bridged-tee network shown in Fig. 3. In order to achieve a complete null this network must satisfy the two conditions:
\[
\begin{align*}
& \omega_{0}^{2}=C_{1}+C_{2} / L C_{1} C_{2} \text { and } \\
& \omega_{0}^{2}=1 / r R C_{1} C_{2} \tag{2}
\end{align*}
\]

The figure of merit will then be \(Q_{0}=2 \omega_{0} L / r\), i.e. proportional to the quality factor of the coil.

\section*{Active notch filters}

As has been mentioned above, passive \(R C\) notch filters suffer from a low selectivity. A theoretically unlimited selectivity can be obtained by the use of active notch filters. These can be built by various active realizations of the transfer function given by expression (1). Simple active circuits are based on passive null networks in which the selectivity is raised by means of negative feedback.

One such scheme is shown in Fig. 4 and the effect of feedback can be explained as follows: When the feedback loop is open the network is simply a passive null network with a passband. gain of \(A_{0}\) represented by curve (a) in Fig. 5. When the feedback loop is closed,
the network tends to maintain a voltage gain of \(A_{0} /\left(1+A_{0}\right)\). However, it fails to do so where the forward gain is low, i.e. in the vicinity of \(\omega_{0}\). As a result, the response curve is compressed as shown in curve (b) and the rejection band is narrower. As an additional benefit, the active filter can now be cascaded without being subjected to loading.

The calculated transfer function of the active notch filter is:
\[
\begin{equation*}
G(s)=\frac{A_{0}}{1+A_{0}} \cdot \frac{s^{2}+\omega_{0}^{2}}{s^{2}+()_{0} s /\left(1+A_{0}\right) Q_{0}+\omega_{0}^{2}} \tag{3}
\end{equation*}
\]

A different realization is shown in Fig. 6 which relies on a single, less-than-unity gain amplifier. It can be seen that there are two feedback paths in the configuration, a positive unity-gain feedback which renders the effective gain of the amplifier equal to \(K /(1-K)\) instead of \(K\), and a negative feedback which subtracts the output voltage from the input. If \(K /(1-K)=A_{o}\) this method is equivalent to the former and the transfer function is:
\[
\begin{equation*}
G(s)=\frac{s^{2}+{ }^{(1)} 0_{0}^{2}}{s^{2}+\omega_{0} s(1-K) / Q_{0}+{ }^{(1)}{ }_{0}^{2}} \tag{4}
\end{equation*}
\]
in which the selectivity is multiplied by \(1 /(1-K)\).

\section*{Practical circuits}

The simplest amplifier for the above method is the emitter follower. How-


Fig. 2. Three RC null networks: (a) the symmetric twin-tee, (b) the Wien bridge, (c) a potentiometer-tuned network.


Fig. 3. Bridge-tee RCL null network, the selectivity of which depends on the \(Q\) factor of the coil.


Fig. 4. Basic active configuration for enhancing the selectivity of passive notch filters.


Fig. 5. Frequency characteristics of the network in Fig. 4 (a) open loop, (b) closed loop.


Fig. 6. Practical configuration for enhancing the selectivity of a passive notch network with a single voltage amplifier having a gain of less than unity.


Fig. 7. Simple potentiometer-tuned active notch filter based on the network in Fig. 2(c). Tuning range \(200 \pm 10 \mathrm{~Hz}\); rejection bandwidth 10 Hz (3dB).
(a)

 notch filter; (c) variable rejection frequency and bandwidth Wien-bridge active notch filter.


Fig. 9. Wider rejection bandwidth is attained by cascading two notch filters.


Fig. 10. Asymmetry in the frequency response curve of high \(Q\) notch filter as a result of excessive phase shift in the amplifier.
ever, it is not very suitable because in order to prevent the null network from being loaded by the relatively low-input impedance, the resistors must be relatively low and the capacitors must be correspondingly large.

It is obviously possible to replace the transistor by an f.e.t. and use smaller capacitors, but the increase in the selectivity would be limited due to the smaller gain usually associated with the f.e.t. The bootstrapped source follower benefits from high-input impedance and also a gain closer to unity and is shown in Fig. 7 together with the network of Fig. 2(c)

The networks discussed above have ideally an infinite attenuation at the notch frequency. Practically, the attention is limited by the tolerances of the components and is typically 40 dB for \(1 \%\) tolerance. This figure may be exceeded by trimming and is ultimately limited by stray capacitance.

The Wien bridge is attractive owing to its simplicity. However, it is not a three-terminal network, and cannot be activated directly.

The circuit in Fig. 8(a) is a Wien bridge built around an operational amplifier. In spite of being active, the factor of merit is only \(1 / 2\) instead of \(1 / 3\) in the passive bridge (it does not belong to either of the schemes shown in Figs. 4 and 6) yet, being a three-terminal network, its selectivity can be improved as shown in Fig. 6. Since the output impedance is already zero an additional buffer amplifier is unnecessary, so that we only have to decrease the gain to below unity by a voltage divider and close the feedback loop at \(r_{2}\). The network Fig. 8(b) then contains an equivalent amplifier whose gain and output impedance are:
\(K=R_{4} /\left(R_{3}+R_{4}\right)\) and \(R_{3} \| R_{4}\) respectively. Accordingly, the latter value must be subtracted from \(r_{2}\) or must be much -smaller. Alternatively the voltage divider can be buffered as in Fig. 8(c).

If we use \(V_{0}\) as the output of the filter instead of \(V^{\prime}{ }_{0}\), an advantage results with respect to the network of Fig. 6, in that the passband gain is unity instead of \(K\). However, as the internal amplifier's gain is \(K=R_{4} / R_{3} \times R_{4}\), the factor of merit will be
\[
\begin{equation*}
Q=Q_{0} /(1-K)=\left(1+R_{4} / R_{3}\right) / 2 \tag{5}
\end{equation*}
\]
and the rejection bandwidth can be varied by means of either \(R_{3}\) or \(R_{4}\). The null frequency can be varied, for example, by \(R_{1}\) and the notch depth can then be adjusted by means of \(r_{2}\).

If it is desired to vary the rejection frequency over a wide range, it is best to vary simult aneously resistors \(R_{1}\) and \(R_{2}\). If the tracking is good, the null will be maintained throughout the tuning range without further adjustments.

\section*{High \(Q\) notch filters}

At a frequency \(\omega=(1)(1 \pm \epsilon)\) close to the resonant frequency, that is \(\epsilon \ll 1 / 2 Q\), the response of a notch filter can be approximated by two


Fig. 11. (a) An active RCL notch filter; (b) a potentiometer-controlled simulated grounded coil.

Fig. 12. Programmed state variable filter provides low-pass, band-pass and high-pass outputs at the same time.

(c)
straight lines with slopes \(\pm 2 Q\), and the filter can be used as a frequency discriminator. If \(Q\) is large, very small frequency deviations can be observed. On the other hand, if a high \(Q\) notch filter is used to reject a power-line hum, for example, a slight deviation of the frequency from its nominal value will suffice to render the attenuation excessively low. In this case a filter with an infinite attenuation over a band of frequencies would be desirable. However, such a filter cannot be realized. It is then possible either to lower the \(Q\) of the filter or to stagger-tune two or more filters in cascade and obtain a frequency response as in Fig. 9. A more elaborate solution is to use an interference tracking notch filter as suggested in the last paragraph.

When dealing with high \(Q\) notch filters, the increasing sensitivity of the notch symmetry and depth to the tolerance of the passive components becomes a serious problem. A practical solution is to use stable capacitors and trim resistors for the required notch frequency and depth. It has been seen that the most suitable network from this standpoint is the Wien bridge, but for ultimate stability the state variable filter (see below) is required owing to its extreme stability.

Another problem in realizing high \(Q\) notch filters is the roll-off in the open loop gain of operational amplifiers at high frequencies. It is found that there is a limitation on the maximum possible \(Q\) which is inversely proportional to the rejection frequency. This limitation may cause asymmetric frequency
response (Fig. 10), even if the values of the passive components are accurate. With the increase in \(Q\), the size of the "the hump" increases to the appearance of oscillations. If the notch frequency is preset this can be rectified by adding an \(R C\) phase leading section at the input of the amplifier of Fig. 6 and experimentally adjusting the time constant. If the notch frequency must be variable, the only remedy is to use a wide bandwidth amplifier. However, at fairly high frequencies high \(Q\) inductors are available, and a passive filter such as the one in Fig. 3 may be preferable.

\section*{Simulated inductance}

The circuit of Fig. 11(a) is an active bridge similar to that shown in Fig. 8(a), but has a series resonant circuit in one of its arms. If \(R_{1} / R_{2}=r_{1} / r_{2}\), the circuit will behave as a notch filter whose rejection frequency and factor of merit are
\[
\begin{equation*}
\omega_{0}=1 / \sqrt{L C_{1}} \text { and } Q_{0}=\omega_{0} L / R_{2} \tag{6}
\end{equation*}
\]

In order to avoid using an inductance, the series connection of \(R_{2}\) and \(L\) can be replaced by the circuit of Fig. \(11(\mathrm{~b})^{4}\) which is equivalent to a coil whose value is \(L=C_{2} R_{2} a(1-a)\) in series with a resistor \(R_{2}\). The resulting notch filter has a rejection frequency and factor of merit given by:
\[
\begin{align*}
\omega_{0} & =1 \sqrt{C_{1} C_{2} R^{2}{ }_{2} \alpha(1-\alpha)} \\
\text { and } Q_{0} & =\alpha(1-\alpha) \cdot \sqrt{C_{2} / C_{1}} \tag{7}
\end{align*}
\]
respectively; the tuning law is thus exactly the same as that of Fig. 2(c).

This network can also be tuned by means of \(C_{1}\), which may consist of a small trimming capacitor if the simulated inductance is made appropriately large.

\section*{State variable filters}

A unique active notch filter may be realized by the so-called state variable method \({ }^{5}\). This method is based on a multiple feedback network containing integrators and adders. In spite of the rather large number of operational amplifiers, the number of capacitors needed for the realization of any arbitrary transfer function is minimal.

The basic building block shown in Fig. 12 simultaneously provides three transfer functions of the second order; these are high-pass, band-pass and low-pass function, given by:
\[
\begin{gather*}
V_{H}(s)=K s^{2} /\left(s^{2}+\left(\omega_{0} / Q_{0}\right) s+\omega_{0}^{2}\right)  \tag{8}\\
V_{B}(s)=K \frac{\frac{-1}{\tau_{1}} s}{s^{2}+\frac{\omega_{0}}{Q_{0}} s+\omega_{0}^{2}} \\
V_{L}(s)=K-\frac{\omega_{0}^{2}}{s^{2}+\frac{\omega_{0}}{Q_{0}} s+\omega_{0}^{2}}
\end{gather*}
\]

The resonant frequency \(\omega_{0}\) is determined by the time constants \(\tau_{1}, \tau_{2}\) of the integrators, and is given by \(\omega_{0}=1 / \sqrt{T_{1} \tau_{2}}\) The factor of merit is \(Q_{0}=1 / K \sqrt{T_{2} T_{l}}\) where \(K=1 /\left(1+R_{F} / 2 R_{Q}\right)\).

This configuration does not provide complex zeroes and in order to obtain
the symmetric notch response given by expression (1) we must sum the highpass and low-pass outputs. The filter obtained contains four operational amplifiers but has the following characteristics: if \(\tau_{2}\) varies, the rejection frequency is varied while the bandwidth \(\Delta \omega=\omega_{0} / Q_{0}\) remains unchanged; if \(\tau_{1}\) and \(\tau_{2}\) vary simultaneously, the rejection frequency varies linearly while the factor of merit \(Q_{0}\) remains unchanged; if \(K\) is varied with the aid of the resistor \(R_{Q}\), the rejection frequency remains unchanged and the rejection bandwidth and gain alone will change; the network is quite insensitive both to the values of the passive components and to the gain of the amplifier. Its stability approaches that of passive filters.

The transfer function of a conventional integrator is: \(G(s)=1 / \tau s=1 / R C s\) and the variation of \(\tau\) can be obtained by varying \(R\) or \(C\). If we connect an amplifier with a gain \(K\) in series with the integrator, the transfer function changes to \(G(s)=K / \tau s\); i.e., \(\tau\) is decreased without altering \(R\) or \(C\). If an analogue multiplier is substituted for the amplifier, an integrator is obtained, in which the time constant \(T\) is dependent on a control voltage. A notch filter with a constant \(Q\) and rejection frequency directly proportional to the control voltage can thus be built from two such integrators.

It has already been mentioned that the maximum \(Q\) factor which can be obtained in an active filter realization is limited - for a given resonant frequency - by the bandwidth of the operational amplifier. The state variable method is no exception to this rule. Design considerations resulting from these limitations were discussed by Thomas \({ }^{6}\).

\section*{Bandpass filter synthesis}

A common disadvantage which is probably shared by all accepted active bandpass realizations is that the bandwidth is inversely proportional to the midband gain; in other words an increase of \(Q\) is accompanied by a proportional rise in gain, which is often undesirable.

A different realization of bandpass filter is given in Fig. 13(a) based on the equation:
\[
\begin{equation*}
A\left(1-\frac{s^{2}+()_{0}^{2}}{s^{2}+\frac{(1)}{Q} s+(1)_{0}^{2}}\right)=A \frac{(s / Q) \cdot()_{0}}{s^{2}+\frac{\left(\omega_{0}\right.}{Q} s+()_{0}^{2}} \tag{9}
\end{equation*}
\]
which results in a bandpass transfer function whose midband gain is independent of \(Q\). The configuration operates as follows: at frequencies which are remote from \(\bar{\omega}_{0}\) the notch filter transmission is unity, and the input to the differential amplifier is zero. At frequency \(\left.{ }^{\prime}\right)_{n}\) the notch filter transmission is zero and the input to the amplifier is unity. As equation (9) shows, the resulting bandpass filter has the same \(Q\) as the notch filter. Now it is easy to realize notch filters in which the


Fig. 13. (a) Realization of constant variable-bandpass filter through the use of notch filter; (b) tracking notch filter, for rejecting a drifting interference.
selectivity is controlled by a single resistor, such as the one shown in Fig. 8. If such a filter is incorporated, a constant-gain variable bandpass filter is obtained.

\section*{Interference-tracking notch filter}

It has been previously mentioned that a sufficiently narrow-band notch filter may not be effective in rejecting interference which drifts in frequency. Such interference could in principle be tracked by a phase-locked loop, and the output of the loop, which is proportional to the frequency, then applied to a voltage-controlled notch filter. A drawback of such a method is that it is an open-loop system and any residual interference at the output due to imperfect tracking is not corrected for.

In contrast to the phase-locked loop, which is a signal-tracking oscillator, a signal-tracking band-pass filter can be easily built \({ }^{7}\). It is similar to the phaselocked loop and consists of a voltagecontrolled band-pass filter, a phase detector and a low-pass filter. The closed loop then centres the band-pass filter on the signal by maintaining an (ideally) zero phase shift between the interference and the output of the filter. This bandpass filter can be converted to a signal-tracking notch filter as shown in Fig. 13(b), in which the filtered interference is subtracted from the original input. However, unlike conventional notch filters, the input to this filter must contain a minimum of interference for locking to occur.

\section*{References}
1. Hall, Henry P., "RC networks with single-component frequency control," IRE Transactions-Circuit Theory, Vol. CT-2, No. 3, Sept. 1955, pp. 283-288.
2. Andreyev, Telecommunications, No. 2 (Pergamon Press Translations), 1960, p. 195. 3. Ramachandan, V., "High Selectivity Passive Resistance-Capacitance Null

Networks." Proc. IEEE, July 1968, pp. 1237-1238.
4. Harris, R. J., "The Design of Operational Amplifier Notch Filters," Proc. IEEE, October 1968, pp. 1722-1723.
5. Kerwin, W. J., and others, "State Variable Synthesis for Insensitive Circuit Transfer Functions," IEEE Journal of Solid State Circuits, Vol. SC-2, September 1967, pp. 87-92.
6. Thomas, Lee C., "The Riquad: Part 1 Some Practical Design Considerations," IEEE Transactions - Circuit Theory, Vol. CT-18, No. 3, May 1971, pp. 350-357.
7. Gordon, J. and others, "Automatically Tuned Filter uses IC Operational Amplifier," Electronic Design News, February 1972, pp. 38-41.

\section*{}

Dictionary of Data Processing by Jeff Maynard is designed mainly as a source of reference for those interested in, or using computers and data processing equipment. Over 4000 terms are defined, as well as acronyms and abbreviations, in alphabetical order. The final section of the book lists British and American standards relating to data processing. Price \(£ 3.90\). Pp.269. Butterworth \& Co. Ltd, Borough Green, Sevenoaks, Kent TN15 8PH.

Energy and Humanity edited by M. W. Thring and R. J. Crookes. as a former US Secretary of Commerce has pointed out, a finite world with finite energy resources cannot support an exponential growth rate. This book presents the problem as it exists now, with a view to what might be the situation at the turn of the century. An attempt has been made to cover the existing sources of energy along with their associated problems and to assess what might become available in the future. Much of the material has been drawn from an international conference on energy and humànity, held by the SSRS in September 1972. Price \(£ 5.50\). Pp.195. Peter Peregrinus Ltd, P.O. Box 8, Southgate House, Stevenage, Herts SGl 1HQ.

Recent, updated additions to the D.A.T.A. books range cover discontinued thyristors, m.s.i.-l.s.i. memories, diodes, linear i.c.s., microwave tubes, digital integrated circuits, and thyristors. As usual these books provide information on components from most of the producers in the world. Outline diagrams are provided together with pin configurations, and an index of manufacturers is also incorporated making these volumes an invaluable source of information. London Information Ltd, Index House, Ascot, Berks SL5 7EU.

The International VHF-FM Guide by Julian Baldwin and Kris Partridge. This booklet is a useful source of information for the radio amateur who wishes to operate through the VHF repeater networks both at home and abroad. Price \(25 p+5\) p postage and packing. Pp. 38. J. E. C. Baldwin, 50 Aldbourne Road, Burnham, Slough, SLl 7NJ.

\title{
Letters to the Editor
}
reject any noise which lies outside the required passband and will also attenuate any harmonics generated in the limiter.

If one wishes to have a tuner which provides optimum reception of weak signals in a crowded band, then additional filtering is required before the limiter. However, the front-end specified in my article contains a double tuned 10.7 MHz circuit before the emitter follower output stage and I felt that the overall selectivity was adequate for normal domestic reception.
I did experiment with an additional FM-4 filter between the front-end and the limiter input. This involved the use of a matching resistor ( 270 ohm) between the front-end and the filter and a 330 ohm resistor on the output side of the filter. An active circuit is required between the filter output and the limiter, since the input impedance of the latter is quoted as 135 ohms. An active circuit providing gain will also improve the a.m. rejection. However, it seemed that the published circuit was satisfactory for domestic reception and I felt its simplicity would appeal to many readers.

With reference to Mr Marshall's penultimate paragraph, I did try an extra FM-4 filter with the front-end which gave unsatisfactory results, but I still did not obtain audio output of satisfactory quality.
\(\overline{\mathrm{Dr}}\) A. Tip of FOM-Instituut Voor Atoom-En Molecuulfysica, Amsterdam, has kindly sent me details of his unpublished work with a more complex system which he uses to receive many UK transmissions. Unfortunately only a few brief details can be mentioned here. Dr Tip employs a BFY90 amplifier by his aerial, and a Valvo FDlA front-end which feeds a 3028A variable gain cascode stage. Four ceramic filters are used, followed by a LM733 stage (set for a gain of 100); the latter feeds the NE563 limiter, The a.g.c. output from the NE563 is fed to a transistor amplifier which provides a.g.c. for the 3028A stage; the amplified a.g.c. also feeds a signal strength meter which is unaffected by the setting of the 563 muting circuit.

In conclusion, may I mention that the NE563 masks are being modified in California? The new NE563 devices will have a different oscillator impedance and should operate more reliably with the Taiyo CR-9.8 ceramic resonators mentioned in my article; the parallel 2.2 kilohm resistor and 5 pF capacitor should not be required with the new NE 563. In addition, Signetics expect the new device will produce an output with less distortion, but no figures are available at the time of writing. In their current data Signetics suggest a value of 5.1 kilohm for \(R_{6}\) of my Fig. 1; this will give a slightly improved signal-to-noise ratio and a reduced bandwidth, but the difference is not very noticeable.
J. B. Dance,

Alcester, Warwickshire.

\section*{SILENT STEREO}

\section*{SWITCH}

Mr Moulana's article in the January 1975 issue, involving the use of f.e.ts for audio switching, prompts me to raise a couple of points:
(1) Using a switching f.e.t at the virtual earth point of an inverting amplifier in series with the input arm (as shown in Fig. 1) ensures low voltage swings at the

f.e.t. and takes care of biasing. This configuration is often used in audio equipment.
(2) It seems reasonable that an f.e.t with a low value of \(r_{d s}\) (on) should have a variation in this resistance with \(v_{d s}\) that is also of a low order (in absolute, if not proportional terms). Thus if an f.e.t. such as a TIS73L (Texas) is chosen, which has an \(r_{d s}\) (on) of 25 ohms maximum, we can see that the variation in \(r_{d s}\) (on) can be quite small.

Suppose that in the circuit of Fig. 1 we use the TIS73L, and make \(\mathrm{R}_{1}=\mathrm{R}_{2}\) (for unity gain \()=10 \mathrm{k}_{\Omega}\), then a variation in \(r_{d s}\) (on) of \(20 \%\) ( 5 ohms ) due to changing \(v_{d s}\) will give a rise to a distortion of approximately \(5 / 10^{4}\), or \(0.05 \%\). Attenuation of the input signal by 20 dB , and making \(\mathrm{R}_{2}=100 \mathrm{k} \Omega\) will obviously improve the distortion performance while retaining unity gain. Pinch-off voltage for the TIS73L is a maximum of - 11 volts, therefore control voltages in the off mode should be at least -12 volts. Choice of input arm resistance can


Fig. 2
optimize on/off ratio on the one hand, distortion and input impedance on the other.

As a postscript, a useful configuration when, for example, equalizations are to be switched, is shown in Fig. 21. In this circuit, using low impedance termination of the feedback networks at both ends, the required equalization time constant, \(\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{C}_{1}\) or \(\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right) \mathrm{C}_{2}\) in Fig. 2, is selected by turning the f.e.t \(\left(\operatorname{Tr}_{\downarrow}\right.\) or \(\mathrm{Tr}_{2}\) respectively) off, and all others on. Thus all feedback paths except that required are shunted to ground. If \(\mathrm{R}_{1}, 2\), \({ }_{3,4}\) are of the order of \(100 \mathrm{k} \Omega\) and \(\mathrm{Tr}_{1}\) and \(\mathrm{Tr}_{2}\) are TIS73L, attenuation of the unwanted f.b. is \((25+100 \mathrm{k}) / 25\), greater than 70 dB . Distortion is low because the selected f.b. path uses an f.e.t. in the "off" mode, and contributions from f.e.ts in the "on" mode are at very low level.
S. F. Bywaters,

London, N.W.11.

\section*{COMPUTER PQ́WER}

It is your privilege as editor to don the mantle of Cassandra from time to time; 'and we may have cause to be grateful to you for warning us (leader, May issue) of the latent threat of computer power.

Readers of your editorial may however care to join me as I hasten to bury my head in the sand. Or, as it might be, paper; since waste paper is the most obvious product of today's computers. What can be discovered in this mountain of paper is that a computer with remote terminal and interactive conversational language can take all the arithmetical grind out of hitherto laborious calculations in radio and electronics. And this generally involves only a minimal knowledge of computer programming - rather less, I suspect, than is currently mastered by schoolchildren. Indeed, readers who have no direct access to such computing facilities might well bribe sons and daughters to compute for them.

There is of course an additional bonus in speed and accuracy. For example, given the radio frequency range required together with the intermediate frequency, one can calculate component values for superheterodyne tracking to an accuracy much higher than the tolerances of actual components in less than five minutes. A similar time is required to plot the actual tracking error curve. If one then requires information on where the tracking curve moves to at the limits of specified component tolerances, another five minutes will suffice. Most of this total of fifteen minutes is spent by the system in organising itself and in printing actual computing time may be only two or three minutes.

The story is very similar if one wishes to perform calculations on coupled tuned circuits - the complex arithmetic takes much less time than printing the
(unneccessarily accurate) results.
Any reader who has problems with tedious calculations of this kind is welcome to contact me.
D. P. C. Thackeray,

Department of Chemical Physics University of Surrey,
Guildford, Surrey.

\section*{ELECTRODYNAMICALLY INDUCED E.M.F.}
"Cathode Ray's" article and Mr Meade's letter (February issue) have prompted some questions concerning a well known problem in school-boy physics:
"If an aeroplane flies a level course through a known vertical component of the earth's magnetic field, then its wings act as a flux cutting conductor and an e.m.f. is induced in them. Can this e.m.f. be measured and, hence, the speed of the aircraft deduced?"

The answer is, of course, no, because as "Cathode Ray" stated, connecting a voltmeter to the ends of the conductor (in this case the wings) would form a closed loop embracing a constant magnetic flux.

Not being well versed in the theory of electromagnetic induction, we would like to ask the following questions:
"Can the induced e.m.f. be measured if the meter leads are screened with a high permeability material?" and, naturally, "If not, why not?"
D. C. E. Todd and
N. G. S. Taylor,

Brunel University,
London.

\section*{DIRECTORY OF AUDIO COURSES}

The Audio Engineering Society is preparing a Directory of educational facilities and institutions in its field of interest, which embraces sound recording and reproduction, instrumentation, sound reinforcement etc. This information will appear in the Journal of the AES and be included in a career booklet eventually to be prepared by the Society.

As the UK representative of the AES Education Committee, I have been asked to act as a focal point for the collection of such information from schools, colleges and universities in the British Isles.

To simplify the listings, I can supply copies of a short questionnaire and I would urge all organisers of courses related to audio engineering to apply to me for copies as soon as possible.

\section*{John Borwick,}

Senior Lecturer,
Recording Techniques
University of Surrey,

\section*{Guildford,}

Surrey.

\section*{INSTRUMENT READ-OUT IN BRAILLE?}

I have recently become interested in the problems of teaching science to blind pupils. Present techniques offer analogue derived information in tactile or audible form. For example in typical science experiments one might wish to indicate the height of a liquid column or the reading of a meter. The liquid level would be located by a light probe whose audio tone would alter on discovering the surface; the meter pointer would be located either by the light probe or feeling the pointer in an instrument made specially for the blind. The actual reading is then taken from an adjacent Braille scale.

Of necessity these procedures are slow, clumsy and very approximate. It occurs to me that in the case of meter readings digital techniques could be exploited with considerable advantage. Many readouts are available in digital form - voltmeters, ammeters, frequency meters, multimeters, balances, calculators - and in many cases the electronics involves binary processing of numbers which in b.c.d. form is decoded for a visual readout such as a seven-segment device. Could not the b.c.d. be decoded direct to Braille format and used to operate a tactile display? It should be possible to devise an electromechanical Braille readout as only four pins are required as shown in the diagram. My guess, based on no direct experience, is that blind pupils would find the reading of electrical quantities more direct and so more meaningful. In the case of balances the accuracy of the weighing would certainly help science teaching. If it proved possible to use this idea with electronic calculator chips, perhaps a new era in teaching maths to the blind might follow also.

Recent progress in artificial vision, reported in your April issue, raises an even more powerful possibility, namely direct excitation of the optic nerve with numerical data. Whether this should be b.c.d., seven-segment, Braille, or some other format is a matter for speculation. Braille has already been used successfully ( \(W^{W} W\), April p.157) for text by this means.
J. M. Osborne,

London, SE5.

Binary coded decimal compared with numbers in Braille.

\title{
Wireless World Dolby noise reducer
}

\section*{3 - Kit alignment and calibration}

\author{
by Geoffrey Shorter
}

\begin{abstract}
Intended mainly for hiss reduction in magnetic-tape recording machines, this noise reduction unit can be switched to decode commercially-available Dolby B-encoded cassette tapes, Dolby B-encoded f.m. radio transmissions (current in the USA), or to encode blank tapes from any source. As an alternative it can be used in trading some of the noise improvement for reduced distortion at peak recorded levels. Part 1 in the May issue gave background to the Dolby system and part 2 gave circuit and constructional details together with some suggestions for circuit options and alignment procedure. This part shows how to set-up the kit version design without using additional equipment and gives calibration procedure.
\end{abstract}

Constructors who build a Dolby-B processor without using the full WW kit have the option of using the power supply included in the circuit of Fig. 12 or of using an alternative one, for instance one built into existing equipment. Component values for the circuit of Fig. 12 have been optimized to provide an overload margin of \(1 \overline{6 \mathrm{~dB}}\) (equivalent to \(1200 \mathrm{nWb} / \mathrm{m}\) on openreel) for a 15 -volt supply, but voltages between 15 and 24 volts could be used provided component voltage ratings are chosen appropriately. The main requirement is that supply ripple be less than \(200 \mu \mathrm{~V}\) r.m.s. Current consumption at 15 volts is 20 mA per processor; with \(\mathrm{IC}_{1}\) and \(\mathrm{IC}_{2}\) it is 30 mA . The voltage regulator \(\mathrm{IC}_{2}\), whose output is 15 volts \(\pm 5 \%\), is essential if the meter calibration oscillator of Fig. 14 is used. Input to the regulator should be not greater than 25 V and not less than 18.25 V .

\section*{Kit setting-up procedure}

The procedure for setting up the kit design is a little more elaborate than the basic alignment instructions because it is designed to eliminate necessity for additional equipment i.e. a.c. millivoltmeter and variable-frequency a.f. oscillator. It therefore includes a facility for. generating a 5 kHz circuit alignment tone, as well as a 400 Hz calibration tone. Two meter amplifiers, and a 580 mV source ( 1 kHz oscillator) to calibrate the meters, are included to obviate the need for an a.c. millivoltmeter.

In using the in-built meter scale in setting up, it is better to use close-tolerance resistors in an attenuator so that all measurements can be made at one meter reading ( 0 dB ). Errors in meter reading are minimized by this tech-
nique, and errors due to an inaccurate scale eliminated.
Right-channel meter calibration
The unit is aligned using part of \(\mathrm{IC}_{1}\) as a meter calibration oscillator. The amplifier section of \(\mathrm{IC}_{1}\) based on pins 10, 11 and 12 is first used as shown in Fig. 14. In this mode the amplifier is wired as an astable multivibrator switching between the 15 V supply rail and 0 V , with a mark-to-space ratio of about \(1: 1\) and a frequency of around 1 kHz . The real voltage swing is a little less due to saturation voltages, but is highly repeatable from one sample to another.

\section*{Typical performance}

Noise reduction: better than 9 dB weighted
Clipping level: 16.5 dB above Dolby level (measured at \(1 \%\) third harmonic content)
Harmonic distortion: \(0.1 \%\) at Dolby level (typically \(0.05 \%\) over most of band, rising to a maximum of 0.12\%)

Signal-to-noise ratio: \(66 \mathrm{~dB}(20 \mathrm{~Hz}\) to 20 kHz , signal at Dolby level)

Approximate voltage readings (AVO 8)
\begin{tabular}{lll}
\hline & & \\
& collector & emitter. \\
\(\mathrm{Tr}_{1}\) & 9.0 & 0.6 \\
\(\mathrm{Tr}_{2}\) & 14.3 & 1.5 \\
\(\mathrm{Tr}_{3}\) & 7.6 & rail \\
\(\mathrm{Tr}_{5}\) & rail & 7.6 \\
\(\mathrm{Tr}_{6}\) & 8.4 & 8.8 \\
\(\mathrm{Tr}_{7}\) & 8.4 & rail \\
\(\mathrm{Tr}_{8}\) & 8.0 & 2.6 \\
\hline IC & pin 4 & 6.8 V \\
& pin 5 & 7.7 V \\
\hline
\end{tabular}
-Connect resistor \(R_{59}(3.9 \mathrm{M} \Omega)\) from the pin at \(\mathrm{R}_{51}\) to pin 2 or the \(\mathrm{L}_{2}{ }^{\prime}\) position.
-Wire \(R_{58}(10 \mathrm{k} \Omega)\) in parallel with \(R_{47}\) ( \(1 \mathrm{M} \Omega\) ) across the pins at \(\mathrm{R}_{47}\) position.
-Form an attenuator with \(\mathrm{R}_{60}\) ( \(110 \mathrm{k} \Omega 2 \%\) ) and \(\mathrm{R}_{61}\) ( \(10 \mathrm{k} \Omega 2 \%\) ) in series, Fig. 14, earthing the end of \(\mathrm{R}_{61}\) by connecting to pin 3 of \(\mathrm{L}_{2}{ }^{\prime}\) and connecting \(\mathrm{R}_{60}\) to pin 1 .
-Solder one end each of \(R_{55}(330 \mathrm{k} \Omega\) \(2 \%\) ) and \(\mathrm{R}_{155}(330 \mathrm{k} \Omega)\) to their pins. Take the other end of \(\mathrm{R}_{55}\) to the junction of \(\mathrm{R}_{60}, \mathrm{R}_{61}\) ( \(\mathrm{R}_{155}\) remaining floating). Switch on.
-Adjust \(\mathrm{RV}_{8}\) (Fig. 15) until the r.h. meter reads 0dB. Switch off.
- Remove \(\mathrm{R}_{55}, \mathrm{R}_{58}, \mathrm{R}_{59}, \mathrm{R}_{60}, \mathrm{R}_{61}\) and do not alter the setting of \(\mathrm{RV}_{8}\).

\section*{Circuit alignment}

The now-calibrated r.h. meter is used to set the gain and f.e.t. bias controls of both left and right processors with the help of a \(5-\mathrm{kHz}\) oscillator, Fig. 14, adapted from the \(1-\mathrm{kHz}\) oscillator circuit by using arrangement (b).
- Solder \(\mathrm{C}_{30}\) in position, removing and replacing the p.c.b.
- Solder \(L_{2}\) on to pins 1 and 2 of the \(\mathrm{L}_{2}^{\prime}\) position. Gently screw in the core.

Right-channel circuit alignment.
-Connect \(R_{61}(10 \mathrm{k} \cap 2 \%)\) between the \(\mathrm{R}_{55}\) pin and test point 1 (TP1) on the sub-board.
-wire the oscillator pin, marked "osc." to the sub-board pin marked \(\mathrm{R}^{\prime}\) (input to processor).
-Set \(\mathrm{RV}_{5}\) (oscillator level) fully anticlockwise. Check that no plugs are connected into the sockets.

Set \(\mathrm{RV}_{2 ; 102}\) fully anticlockwise. Switch on.
-Select the auxiliary position for \(\mathrm{Sw}_{2}\). Set the balance control \(\mathrm{RV}_{9}\) to mid-position and the input level control \(\mathrm{RV}_{10}\) fully clockwise.
-Ensure the calibration tone switch \(\mathrm{Sw}_{3}\), the noise reduce switch \(\mathrm{Sw}_{4}\), and the \(19-\mathrm{kHz}\) filter switch \(\mathrm{Sw}_{6}\) are in the off position (out), and the check tape switch \(\mathrm{Sw}_{5}\) is in the normal position (out).
-Check that the f.e.t. gates have previously been shorted to ground by two looped links.
-Turn the law control \(R V_{1}\) fully clockwise to pinch-off f.e.t.
-Switch \(\mathrm{Sw}_{1}\) to record and adjust \(R V_{5}\) until the meter reads 0 dB (equivalent to 17.5 mV at TP 1 ). Switch off.
-Transfer the end of \(\mathrm{R}_{61}\) from TPl on the sub-board to TP2 and switch on. Meter should read within \(\pm 1 \mathrm{~dB}\) of the previous, \(0-\mathrm{dB}\) reading. Note actual reading *. Switch off.
-Solder \(\mathrm{R}_{62}(15 \mathrm{k} \Omega 2 \%)\) and \(\mathrm{R}_{63}\) ( \(6.8 \mathrm{k} \Omega\) ) in series with \(\mathrm{R}_{61}\) (i.e. between the \(R_{55}\) pin and TP2), decreasing meter sensitivity by 10 dB . Switch on and check meter reading reduces by roughly two thirds.
-Switch on noise reduction, \(\mathrm{Sw}_{4}\) and

Fig. 18. First part in setting-up procedure for kit version (left) shows arrangement used in calibrating the right-channel meter. For aligning the noise reduction circuit the meter calibration oscillator is changed to \(a\) 5 kHz oscillator, using \(L_{2}\) temporarily in the \(L_{2}^{\prime}\) position (centre). Its output, via the "osc" pin, is taken to the processor input ( \(R^{\prime}\) for the right channel). To calibrate the 400 Hz oscillator, \(L_{2}\) is put in its normal position, the i.c. oscillator disabled, and the oscillator output taken from TP1 or TP101 (right).


Amplitude response with and without 19 kHz filter.
adjust \(\mathrm{RV}_{2}\) (gain) to bring back meter reading to that noted above at *. Switch off.
-Cut the f.e.t. gate short for the right-hand channel with wire cutters and short-circuit \(\mathrm{R}_{63}\) increasing meter sensitivity by 2 dB . Switch on.
-Adjust \(\mathrm{RV}_{1}\) (law) until meter reads as noted above, at \({ }^{*}\). Switch off.
-Re-apply f.e.t. gate short and replace \(\mathrm{R}_{63}\). Switch on and check meter still reads as above, at *. Switch off. Remove gate short.

\section*{Encode/decode matching check.}
-Switch \(\mathrm{Sw}_{1}\) to play and switch noise reduction off, \(\mathrm{Sw}_{4}\).
-Short-circuit \(\mathrm{R}_{63}\), leaving \(\mathrm{R}_{61}\) and \(\mathrm{R}_{62}\) connected. Set \(\mathrm{RV}_{4,104}\) fully clockwise. Switch on.
-Adjust \(5-\mathrm{kHz}\) oscillator output level control \(\mathrm{RV}_{5}\) until meter reads 0 dB
(equivalent to 44 mV at TP2). Switch off.
-Switch noise reduction on, \(\mathrm{Sw}_{4}\). Short-circuit \(R_{62}\) and \(R_{63}\) so that only \(R_{61}\) is in circuit. Switch on. Meter should read 0dB to within \(\pm 1 \mathrm{dlB}\). Switch off.

Left-channel circuit alignment. Now repeat this: process for the left channel, starting from the point of connecting \(R_{61}\) betwee \(n\) the \(R_{55}\) pin, (not \(R_{155}\) ) and the test point - now to be TP101 - on the sub-board. Note that the right channel meiter, being calibrated, is still used in setting up the left channel, and that TP101 iss to be read for TP1, TP102 for TP2, \(R V_{1101}\) for \(R V_{1}, R V_{102}\) for \(R V_{2}\), and that the left-channel f.e.t. gateshorting loop is now implied. The "osc" pin is to be co nnected to the point \(L^{\prime}\) on the sub-board' at the appropriate time.


After repeating for the left channel switch off. The gain and law adjustments are now complete.
-Remove the f.e.t. gate shorts, \(\mathrm{R}_{61}\), \(\mathrm{R}_{62}\) and \(\mathrm{L}_{2}\), inserting \(\mathrm{L}_{2}\) into its. normal (final) location.

\section*{400 Hz oscillator calibration}
-Solder one end of \(\mathrm{R}_{55}\) to its pin and connect the other end to TPl
-Short pins 1 and \(3 \dagger\) at the \(\mathrm{I}_{2}\) position, and remove the wire from ose pin to point L'. Switch on.
-Switch \(\mathrm{Sw}_{1}\) to record, press the noise reduce switch \(\mathrm{Sw}_{4}\) off and switch on the \(400-\mathrm{Hz}\) calibration tone oscillator, \(\mathrm{Sw}_{3}\).
- Adjust \(\mathrm{RV}_{3}\) (oscillator level) until the right-channel meter reads 0 dB . Switch off.
-Transfer the end of \(\mathrm{R}_{55}\) from T'P1 to TP101 and switch on. Adjust \(\mathrm{RV}_{103}\) until the r.h. meter reads 0 dB .
-Repeat this procedure becausie of a slight interaction between \(\mathrm{R}^{\prime} \mathrm{V}_{3}\) and \(R V_{103}\). Switch off.

\section*{Left-channel meter calibration}
-Disconnect \(R_{55}\) from TP101 and connect the free end of: \(\mathrm{R}_{155}\) to TP101 and switch on.
-Adjust \(\mathrm{RV}_{108}\) to obtain 0 dB at the left-channel meter, being careful not to disturb \(\mathrm{RV}_{8}\). Switch off the cal. tone oscillator. Switc:h off.
texperience has shown that a be tter method of disabling the 5 kHz oscillator is to \(\mathrm{r} \%\) move \(\mathrm{R}_{47}\).

\section*{19 kHz filter adjustment}
-Wire \(R_{155}\) permanently onto the main board, replace \(R_{55}\) with \(R_{61}\) and connect free end to TPl.
-Connect an f.m. stereo tuner to the auxiliary input and with the auxtuner links wired in, switch on and tune to a BBC stereo test transmission.*
Alternatively, if a high accuracy \(( \pm 50 \mathrm{~Hz}) 19 \mathrm{kHz}\) oscillator is available, connect its output to point \(R^{\prime}\) on the sub-board.
- With zero a.f. modulation,* adjust the record level control \(R V_{10}\) to give a 0 dB meter reading. Switch the 19 kHz filter on, \(\mathrm{Sw}_{6}\).
- Adjust \(\mathrm{L}_{2}\) for minimum reading on the right-channel meter. Do not adjust \(\mathrm{L}_{1}\) or \(\mathrm{L}_{101}\). Increase record level for sharper null near tuning point.
Repeat for the left channel starting by transferring end of \(R_{61}\) from TP1 to TP101, and adjusting \(\mathrm{L}_{102}\) for minimum reading. (In using a 19 kHz oscillator, connect to point \(L^{\prime}\) on the sub-board and transfer \(\mathrm{R}_{61}\) lead from TP1 to TP101 before adjusting \(\mathrm{L}_{102}\).)

\section*{Calibration}

To ensure interchangeability of all Dolby B-encoded tapes and of Dolby
* Stereophonic test transmissions are broadcast about four minutes after the close of Radio 3 programmes on Mondays and Saturdays. The zero a.f. modulation part occurs about 11 minutes after the start and lasts for nearly two minutes.

B-equipped machines, the voltage levels in the processors must be related to flux levels on the tape. A certain amplitude level is used that bears a fixed relationship to the noise reduction parameters and to conditions between encoder and decoder. The level. chosen corresponds with a flux on open-reel tapes and cartridges of \(185 \mathrm{nWb} / \mathrm{m}\), with \(200 \mathrm{nWb} / \mathrm{m}\) for cassette tapes, with a deviation of 37.5 kHz on f.m. transmissions, and with a voltage level at the processor output of 580 mV r.m.s.

This level, often called Dolby level, should not be taken to imply an operating level. If the level-setting meters in the unit are to be used as modulation-depth meters, a mark may be made on the meter to indicate the reference level. Whilst setting this level equal to 0 VU on meters can often lead to reasonable modulation depths, this is not always the case: for cassette recorders it is best set at +3 VU .

The 400 Hz oscillator and tapes recorded with a 400 Hz tone to the above level are used in calibrating units, once the circuitry has been set up. When playing or recording the standard flux level, the 580 mV level is set by adjusting the play calibration potentiometers during play, and the record calibration potentiometers during recording.

Playback-only decks and units. As the signal levels on encoded tape cassettes are to be related to those in the decoder during playback only, the 400 Hz oscillator is not required and calibration is achieved with a calibration cassette, containing the reference flux.



An alternative to the kit design is this single-channel processor, using the circuit of Fig. 12 but excluding power supply, alignment and calibration circuitry. (Irack diagram will be given in a subsequent issue.)
- Switch noise reduction off.
- Play calibration tape. Set play gain control on tape deck to 0 VU on deck meter, if possible, or to mid-position otherwise.
- Adjust play cal. control for 580 mV on meter or Dolby level indication, depending on meter used.

Playback gain controls on the recorder in the signal path en route to the processor input should not now be disturbed.

\section*{Switchable encode/decode processors.}

\section*{Playback calibration}
- Switch to play and switch off noise reduction. Connect millivoltmeter to point \(G\) if meters not built-in.
- Play calibration tape. Set play gain control on tape deck if fitted to 0 VU on deck meter, if possible, otherwise to mid-position.
- Adjust play cal. control for 580 mV indication.

This completes playback calibration and the play gain controls on the tape deck should not be altered. Adjust listening level with the output level control following the decoder output (as in Fig.13).

Record calibration
Start by setting record gain control on tape deck to mid-position, if fitted. (If combined with playback gain, do not adjust.)
-Switch to record.
- Fit blank tape (as recommended by maker or for which bias is correctly adjusted) and feed in 400 Hz at points from external or internal oscillator. (If unit has been built into cassette machine and 400 Hz input is via line input socket, adjust record level control so that meter reads 580 mV , or Dolby level.)
-Record on tape for a few seconds, rewind and playback, switching to play on the noise reduction circuit as well as on the deck. Note whether meter shows about or below 580 mV , or Dolby level.
- Make small adjustment to record cal. controls in appropriate direction and record 400 Hz tone again, observing meter reading on playback. Repeat this procedure as many times as necessary to obtain correct reading.

This completes record calibration for tapes. If the circuit of Fig. 13 or similar has been adopted, recording level is adjusted with record balance and level controls on the noise reduction unit, the level being judged by the tape deck's normal meters.
When the noise reduction unit is connected to a three-head machine with a simultaneous monitoring facility the tape signal may be monitored in its encoded form by operating the check tape switch.

Simultaneous encode/decode circuits. Constructors with three-head machines having a simultaneous monitoring
facility can use single-processor boards permanently wired in the encode and decode modes. If provision for encoded f.m. transmissions is required switching must be arranged so that encoding does not take place during recording. A monitor switch can be provided at the input to the decoder, to switch from tape, via a play cal. potentiometer, to source i.e. a connection to the encoder output via a \(580-30 \mathrm{mV}\) attenuator, Fig 19.

Playback calibration procedure is as above, but record calibration is simplified.
- Set record level controls on tape recorder to mid-position. Set monitor switch to tape.
- Record on blank tape, operating the calibration tone switch or injecting a 400 Hz tone from an external oscillator.
- Adjust record cal. control so that meter reads 580 mV , or Dolby level.

FM calibration. If you wish to set the controls for encoded f.m. transmissions, currently being transmitted by stations in the USA, an approximate calibration can be achieved by tuning to a local station, switching to f.m. or Dolby f.m. and setting the f.m. cal. control to give meter readings similar to those obtained when playing pre-recorded tapes. More accurate adjustment can be obtained if a station can be received which transmits the 400 Hz calibration tone, identified by a characteristic warbling, or alternatively by using an f.m. generator. In this last-mentioned case, modulation frequency should be set to about 400 Hz with a peak deviation of 37.5 kHz (not including pilot tone).

\section*{Change of time-constant for encoded f.m. transmissions}

There are two commonly used pre-emphasis time constants, \(50 \mu \mathrm{~s}\) and \(75 \mu \mathrm{~s}\). Under certain conditions, these values can lead to reduced modulation at low and medium frequencies or severe amplitude distortion at high frequencies. In the USA the FCC has approved Dolby Laboratories' proposal of using \(25 \mu\) s for encoded transmissions, and to receive such broadcasts it is necessary to alter the de-emphasis time constant. In the circuit of Fig. 13 this is achieved with components \(\mathrm{R}_{\mathrm{X}}\) and \(\mathrm{C}_{\mathrm{X}}\), values being given in the components list on page 259 (June) for the change from 75 to \(25 \mu\) s and for a change from 50 to \(25 \mu\) s (not yet authorized in \(50 \mu \mathrm{~s}\) countries). When recording such broadcasts the encoding function of the noise reduction unit is clearly not required and the "Dolby f.m." switch position automatically switches off the encoding function. Application of the Dolby B system to f.m. broadcasting is discussed in two articles in the Journal of the Audio Engineering Society, June 1973, pp. \(351-62\), and briefly in the July 1974 issue of Wireless World, page 237.
- Tune in to whichever of these signals is available.
- Switch to record, and to either f.m. or Dolby f.m.
- Adjust f.m. cal. control so that meter reads 580 mV , or Dolby level.

\section*{Using the unit}

The calibration procedures described theoretically apply to the one tape speed used during calibration. Whether the calibration will hold for different tape speeds depends on the design of the deck, so check calibration when speed is changed. The calibration tape available can be used at 4.75 and \(19 \mathrm{~cm} / \mathrm{s}\), as well as \(9.5 \mathrm{~cm} / \mathrm{s}\). (For \(38 \mathrm{~cm} / \mathrm{s}\) tape speed, where the noise spectrum is wideband, applying the B-type system may result in the remaining mid and low-frequency noise becoming more apparent). When the brand of tape is changed it is usually necessary to readjust the record cal. controls, the play cal. setting remaining unchanged. The characteristics of cassette tapes are more critical, and changing brand will normally require adjustment of bias (and equalization when using \(\mathrm{CrO}_{2}\) tapes).

When the unit is connected to the normal input and output points of a tape recorder, the recorders own input and output controls from part of the calibrated system. The settings used during calibration should not be disturbed,

input and output level controls being provided on the noise reduction unit, and it is a good idea to mark the tape recorder control settings.

The amplitude response of the tape recorder must be flat and its gain unity, measured between point \(G\) of the processor in record and play, to ensure correct operation, so that the signal voltage in the decoder is the same as that at the encoder (to within 2 dB ). If there is a bandwidth restriction between encoder and decoder, e.g. if the response of the recorder does not extend up to at least 10 kHz , a noncomplementary situation arises, unless of course the encoder input bandwidth is similarly limited.
In using the unit don't forget that it will only reduce noise generated after
the encoder and before the decoder. If the input signal is noisy in itself or is made noisy by poor circuitry prior to encoding, this noise will be reproduced unaltered along with the signal. In some cassette decks, the line inputs are attenuated prior to amplification by a sometimes noisy microphone preamplifier.

As the sensitivity of the processor is of the order of 30 mV , a line input amplifier is not required when the circuits are built into a tape recorder, and the input signal should be taken directly to the input gain control via a switch, or socket with switch, to disconnect the microphone pre-amplifier. It's a good idea too to make sure any automatic level limiter operates only in the microphone input and not in the line input.


Complete kits for the Wireless World Dolby B noise reducer are available through the address given below. The two-channel design features:
- a weighted noise reduction of 9 dB
- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo muitiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes:
-complete set of components for a stereo processor
-regulated power supply components
-board-mounted DIN sockets and push-button switches
-fibreglass board designed for minimum wiring
-solid mahogany cabinet, chassis, two meters, front panel, knobs, mounting screws and nuts.
Price is \(£ 43\) inclusive.
A single-channel printed-circuit board, with f.e.t. costs \(£ 2.50\) and \(£ 8.63\) with all components inclusive (excluding edge connector, £ 1.37 extra). Selected field-effect transis-
tors cost 68 p each inclusive, \(£ 1.20\) for two and \(£ 2.20\) for four.

Calibration tapes are available, costing \(£ 1.94\) inclusive for \(9.5 \mathrm{~cm} / \mathrm{s}\) open-reel use and for cassette (specify which).

Send cash with order, making cheques payable to IPC Business Press Ltd, to:

Wireless World noise reducer
General sales department
Room 11. Dorset House.
Stamford Street
London SE1 9LU
Allow three weeks for delivery.

\title{
A 50 MHz oscilloscope
}

\author{
3 - E.h.t. oscillator, power supply and tube circuit
}

\author{
by C. M. J. Little, B.A.
}

\author{
Department of Electronics, Southampton University
}

The requirements of the c.r.t. are a negative supply of 1 kV with a current capability of 2 mA at maximum brilliance, and a positive supply of 3 kV , at a current of \(50 \mu \mathrm{~A}\). The e.h.t. supply must be stabilized in order to avoid changes in X and Y plate sensitivities with brilliance. Some oscilloscope designs use mains-derived e.h.t. and rely on the large current capability of the supply to avoid changes in voltage with loading. There are two major disadvantages of this system. First, the need for largevalue smoothing capacitors, and second, the danger of lethal electric shock. This design uses the alternative, which is a transistor inverter operating at about 20 kHz . Smoothing is easy at this frequency, and feedback stat lization can be used.

\section*{E.h.t. generator}

The circuit is shown in Fig. 11. \(\mathrm{Tr}_{82}\) and \(\mathrm{Tr}_{83}\) form a current-switched class D oscillator. This type of circuit produces
a sine wave, but has the high efficiency usually associated with square-wave inverters. The transistors act as switches with, ideally, zero voltage across the transistor for half the cycle. The waveforms are illustrated in Fig. 12. \(\mathrm{L}_{7}\) provides a constant current at the frequency of oscillation, and is uncritical as to exact value. The criterion is that its impedance at the working frequency should be large compared with the static resistance of the oscillator (supply voltage divided by supply current). The output voltage of this type of oscillator is very dependent on load.

The transformer \(\mathrm{T}_{2}\) resonates with its stray capacitance at about 18 kHz . The secondary winding steps up the voltage to about 1.5 kV peak, which is rectified to give \(-1 \mathrm{kV} \mathrm{d.c} .\mathrm{and} \mathrm{:} \mathrm{oltage} \mathrm{trebled} \mathrm{to}\) give about +3 kV d.c. The loading on the negative peaks is much greater than that on the positive so the trebler gives a higher voltage than one would expect. The feed to the stabilizer is taken from \(\mathrm{C}_{128}\) in order to avoid including the extra


Fig. 12. Waveforms in the e.h.t. class \(D\) oscillator.

Fig. 11. The e.n.t. generator.

pole \(\mathrm{R}_{232}\) and \(\mathrm{C}_{129}\) in the feedback loop.
The error amplifier is an integrated operational amplifier with current multiplication provided by \(\mathrm{Tr}_{80}\) and \(\mathrm{Tr}_{81}\). The amplifier is used in non-inverting mode and the negative e.h.t. is compared with the 18 V rail. \(\mathrm{R}_{226}\) and \(\mathrm{C}_{122}\) provide a dominant pole at 30 Hz . The gain at 50 Hz is high enough to eliminate mains hum from the e.h.t. voltages. If a 741 type of amplifier is used instead of a \(709, \mathrm{R}_{224}\) and \(\mathrm{C}_{121}\) may be left out. \(\mathrm{C}_{124}\) is probably unnecessary and could be left out, as the effect of \(\mathrm{C}_{123}, \mathrm{Tr}_{80}\) and \(\mathrm{Tr}_{81}\) will be equivalent to a large capacitor at this point.

\section*{C.r.t. and blanking}

The circuit associated with the cathode ray tube and the blanking amplifier are shown in Fig. 14. Before considering these, I would like to make some comments regarding the c.r.t. used in the instrument.

Of all the parts in an oscilloscope, the c.r.t. is the most critical, and the choice of tube will affect the performance that it is possible to obtain, and also the circuit techniques used. For these reasons I chose a currently available c.r.t. of modern design, instead of trying to find a surplus tube that might be satisfactory.

The c.r.t. specified has many modern features, such as a flat rectangular screen, built-in parallax-free graticule, spiral p.d.a. (post deflection acceleration) and high deflection sensitivities. It also has a second grid so that retrace blanking may be applied at earth potential. This greatly simplifies the blanking amplifier.

The penalty to be paid for this high performance, of course, is cost. The c.r.t., Mumetal shield, and base will cost about \(£ 40\). For those readers who would otherwise hurriedly stop reading this article, I will now give some suggestions for possible use of surplus tubes.


Fig. 13. The square-wave amplitude calibrator.

Fig. 14. The tube circuit and controls with (inset) the base connexions of the Brimar D13-47GH/26 tube. Base type is B12F.


Surplus p.d.a. tubes sometimes come on the market, and it is possible that a suitable one may be found. To aid bargain hunters, I have included, in Table 1, extracts from the manufacturers application data giving the main details of the c.r.t. The most important characteristics are the X and Y plate sensitivities, and it is necessary to use a tube with, at worst, sensitivities of \(2 / 3\) of these figures. If this is not adhered to, complete redesign of the amplifiers will be necessary. E.h.t. and other voltages are not usually so critical. If a tube is found that does not possess a second grid for blanking, but
is otherwise satisfactory, a circuit similar to Fig. 15 may be used.

An additional winding on the e.h.t. transformer is used to provide a floating supply of about 1.2 kV . This is used to add a sufficient negative voltage to the output of the blanking amplifier to come within the required range of brilliance control voltages on the grid. The blanking amplifier needs an additional inverting stage to maintain correct polarities. Apart from these ideas I can provide no other information on other c.r.t.s, and any constructor who tries some other tube must make his own decisions.


Fig. 15. Alternative grid drive when tube
in use does not possess second grid.
Fig. 16. Main power supply.

number of different rail voltages needed, and the provision of a \(6.3 \mathrm{~V}, 0.3 \mathrm{~A}\) a.c. supply for the c.r.t. heater. This winding floats at 1 kV from earth. The +50 volt and -50 volt rails are derived from full-wave-rectified 70 volt unstabilized supplies by simple shunt stabilizers, which give adequate regulation and smoothing. The +18 V rail is fed from a conventional negative-feedback stabilizer which uses the +50 V line as its input. A preset, \(\mathrm{R}_{286}\), is used to set the rail voltage. \(R_{283}\) provides short circuit protection by limiting the drive current to \(\mathrm{Tr}_{105}\).

The X amplifier and the blanking amplifier need a higher voltage than 50 V , in fact around 130 V . This is obtained from a voltage doubler óperating from one side of the \(50-0-50\). secondary on the transformer. The 130 volt rail is unstabilized. There is a fairly large amount of a.c. ripple on this rail, measured as 700 mV peak to peak, and a dropping resistor \(\mathrm{R}_{288}\) gives a smoothed voltage of +115 V which is used in some of the circuits.

An unstabilized 12 volt supply feeds the e.h.t. generator, and finally a highly stable +11 V and -11 V for the shift controls is obtained from \(D_{102}\) and \(D_{101}\).

The mains transformer is available from Osmabet Ltd, and its modification will be described in the section on construction.

\section*{Table 1}

Some extracts from the manufacturers data on the c.r.t. type D13-47GH

All voltages with respect to anode 1
4th anode (p.d.a.) \(+3 k V\)
voltage
3rd anoue voltage \(\quad-50 \mathrm{~V}\) to +50 V (as-
2nd anode voltage -600 V to -825 V (focus)
Cathode voltage
Grid 1 volts for cut -1000V -1065 V (brilliance)

Grid 2 volts for blanked trace
\(X\) plate sensitivity
\(Y\) plate sensitivity
Screen area
14.5 to \(17.5 \mathrm{~V} / \mathrm{cm}\)
6.7 to \(8.3 \mathrm{~V} / \mathrm{cm}\)
\(10 \times 6 \mathrm{~cm}\)

\section*{Capacitances}
\begin{tabular}{lr}
\(X_{1}\) to \(X_{2}\) & \(2 p F\) \\
\(X_{1}\) to all less \(X_{2}\) & \(6.8 p F\) \\
\(X_{2}\) to all less \(X_{1}\) & \(6.8 p F\) \\
\(Y_{1}\) to \(Y_{2}\) & \(1.5 p F\) \\
\(Y_{1}\) to all less \(Y_{2}\) & \(6.4 p F\) \\
\(Y_{2}\) to all less \(Y_{1}\) & \(6.4 p F\)
\end{tabular}

\section*{Refererce circuits}

Set 23 of Circards, covering reference circuits, is now available. (Because of space limitations the introductory article has been omitted from this issue.) Titles in the set are

\section*{Reference circuits}

Zener diode characteristics
Williams ring-of-two reference
Variable reference diodes
Bipolar references
Low temperature coefficient voltage reference
Voltage \& current calibrator
Compensated reference circuits
Simple current reference
Monolithic reference

\section*{New circuit book}
"Circuit designs - 1, Collected Circards" brings together the first ten sets of Circards, introductory articles to each of the subjects, and ten pages of additional circuits. The hardback A4 book contains 168 pages, in which 120 cards are rearranged so that each is laid out on one page. A brief introduction precedes the articles, which were previously published in Wireless World, and each of the ten subjects is followed by an up-dating page. Corrections have been incorporated where appropriate. "Circuit designs" is obtainable through leading bookstalls at \(£ 10\) per copy. In case of difficulty order direct by sending remittance for \(£ 10.40\) (includes postage and packing) to the address given later, making cheques payable to IPC Business Press Ltd. Advertisement appears on page 27.

Circards are a new method of collating and presenting data about circuits in a compact and easily retrievable way. The sets of \(203 \times 127 \mathrm{~mm}(8 \times 5 \mathrm{in})\) doublesided cards are designed for easy filing in standard boxes and for easy access at the desk or at the bench, where transparent plastic wallets keep the cards in good condition.
Each card normally describes operation of a selected circuit, gives measured performance data and graphs, component values and ranges, circuit limitations and modifications to alter performance. Suggestions for further reading are included together with cross references to related circuits. The Circard concept was outlined more fully in the October 1972 issue of Wireless World, pp.469/70.

\section*{How to get Circards}

Order a subscription by sending \(£ 13.50\) for a series of ten sets to:

Circards
IPC Electrical-Electronic Press Ltd
General Sales Department, Room 11
Dorset House
Stamford Street
London SE1 9LU
Specify which set your order should

\section*{Circards 23}
start with, if not the current one. One set costs \(£ 1.50\), postage included (all countries). Make cheques payable to IPC Business Press Ltd.

Topics covered so far in Circards are:
1 active filters
2 switching circuits (comparator and Schmitt circuits)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, tone controls, filters)
6 constant-current circuits
7 power amplifiers (classes A, B, C \& D)

8 astable multivibrator circuits
9 optoelectronics: devices and uses
10 micropower circuits
11 basic logic gates
2 wideband amplifiers
3 alarm circuits
4 digital counters
5 pulse modulators
16 current-differencing amplifiers signal processing
17 c.d.as-signal generation
18 c.d.as-measurement and detection
19 monostable circuits
20 transistor pairs
21 voltage to frequency converters
22 amplitude modulators.
23 reference circuits

\section*{Hermetic i.cs.}

A process introduced by RCA is claimed to have overcome the problems of obtaining a hermetic seal in a plasticpackaged integrated circuit at no increase in cost. A high degree of hermeticity has previously been obtainable only with relatively expensive ceramic or glass packages and seals, the package bearing the brunt of atmospheric attack. In the new "trimetal" process, the chip itself is sealed.

At the equivalent of the final oxide step in ordinary i.cs, a silicon nitride layer seals the junctions, a mask being used to gain access to contacts. Platinum is then sputtered over the wafer and sintered locally to provide: platinum silicide. Layers of titanium and platinum are now laid down, the platinum layer being etched to provide interconexions, which are then gold-plated. (Titanium is used to provide an easy bond between platinum and silicon nitride.) All this avoids the use of aluminium interconnecting runs, which are prone to attack by moisture. The new process is applied to six RCA linear i.cs, including the CA741G and 747 G which take the name of "Gold Chip" devices.

\title{
Electronic circuit calculations simplified
}

\section*{2 - Resistive circuits (continued)}

\author{
by S. W. Amos, B.Sc., M.I.E.E.
}

Two resistors in parallel. Every experimenter knows that the effective value of a resistor is reduced by connecting another resistor in parallel with it. But by how much is it reduced? To find out we can, of course, use the following well-known expression for the resistance of two resistors ( \(R_{1}\) and \(R_{2}\) ) connected in parallel:
effective resistance \(\left(R_{\text {eff }}\right)=\frac{R_{1} R_{2}}{R_{1}+R_{2}}\)
\[
=\frac{\text { product of individual resistances }}{\text { sum of individual resistances }} .
\]
-As an example a 33 -kilohm resistor in parallel with a 47 -kilohm resistor has an effective value given by:
\[
R_{e f f}=\frac{33 \mathrm{k} \times 47 \mathrm{k}}{33 \mathrm{k}+47 \mathrm{k}}=19.4 \mathrm{kilohms}
\]

In practice, however, problems concerning resistors in parallel are usually presented differently. Often we need to know what value of resistor must be connected in parallel with a given resistor to obtain a desired lower value of resistance. It is tedious and unnecessary to repeat the above calculation several times in order to obtain the answer. Instead the above expression can be rearranged as shown below to give the required information directly:
\[
\text { resistor to be added }\left(R_{2}\right)=\frac{R_{1} R_{\text {eff }}}{R_{1}-R_{\text {eff }}}
\]
\(=\frac{\)\begin{tabular}{c}
\text { product of original and } \\
\text { effective resistances }
\end{tabular}}{\begin{tabular}{c}
\text { difference of original and } \\
\text { effective resistances }
\end{tabular}}

As an example, if it is desired to reduce a resistor of 27 kilohms effectively to 22 kilohms, the resistance which must be connected in parallel is given by:
\[
R_{2}=\frac{27 \mathrm{k} \times 22 \mathrm{k}}{27 \mathrm{k}-22 \mathrm{k}}=120 \text { kilohms }
\]

The above expressions show that the value of a resistor is effectively halved by connecting an equal-value resistor in parallel with it. If the added resistor has twice the value of the original resistor, the net resistance is two thirds that of
the original resistor. If the added resistor has three times the resistance of the original, the net resistance is three quarters that of the original. In general if a resistor with \(n\) times the resistance of the original resistor is connected across the original, the net resistance is \(n /(n+1)\) that of the original resistor.

Another useful rule which can be deduced from the above expressions is that in order to reduce the effective value of a resistor by \(10 \%\), the parallel resistor must have a value 9 times that of the original. For a \(5 \%\) reduction, the parallel resistance must have 19 times the resistance of the original and for a \(1 \%\) reduction the parallel resistance must be 99 times the original resistance. These added resistances are respectively approximately 10 times, 20 times and 100 times the original resistance - in each case 100 times the reciprocal of the percentage reduction required. Thus to effect a \(2.5 \%\) reduction, the added resistance should be \(100 / 2.5\) i.e. 40 times the original resistance. In general to


Fig. 16. Current division in a circuit composed of two resistors in parallel.


Fig. 17. Simplified diagram of a two-stage current amplifier in which gain is determined by the negative feedback circuit \(R_{e} R_{\text {b }}\)
reduce the effective value of \(p \%\) the added resistance should have a value of \((100-p) / p\) times the original and if \(p\) is small compared with 100 , it can be neglected in the numerator of the fraction so that the added resistance is approximately \(100 / p\) as deduced from the numerical examples earlier.

Current divider. The current I which flows externally to a parallel combination of resistors divides between them in the inverse ratio of their resistances. Thus in Fig. 16 the current ( \(I_{1}\) ) flowing in \(R_{1}\) is given by
\[
I_{1}=\frac{R_{2}}{R_{1}+R_{2}} \cdot I
\]
and \(I_{2}\), the current in \(\mathrm{R}_{2}\), is given by
\[
I_{2}=\frac{R_{2}}{R_{1}+R_{2}} \cdot I
\]

It is useful to regard a parallel resistor combination as a current divider because such a combination is often used as the basic negative feedback circuit in a current amplifier, and this approach enables the resistor values needed to give a wanted value of current gain to be readily calculated. Alternatively it enables the current gain of an amplifier to be deduced from inspection of the resistor values used in the feedback circuit.

For example, in the simplified circuit diagram of Fig. 17, \(R_{e}\) and \(R_{b}\) are effectively in parallel, the current path through \(R_{b}\) being completed by the input resistance of \(\mathrm{Tr}_{1}\) which is normally small' compared with \(R_{b}\). The emitter current of \(\mathrm{Tr}_{2}\) splits at the junction of \(\mathrm{R}_{\mathrm{e}}\) and \(R_{b}\) and the fraction of it which is returned to \(\mathrm{Tr}_{1}\) base as a negative feedback signal is, as shown by the above expressions, given by \(R_{e} /\left(R_{e}+\right.\) \(R_{b}\) ). Normally \(R_{b}\) is large compared with \(R_{e}\) and the fraction is thus approximately \(R_{e} / R_{b}\). The current gain of the amplifier is equal to the reciprocal of this fraction i.e. \(R_{b} / R_{e}\). The values of \(R_{e}\) and \(R_{b}\) should thus be chosen to give the desired value of current gain. Now \(R_{e}\) is one of the components used for biasing \(\mathrm{Tr}_{2}\) and this consideration imposes limitations on its value: a likely value
for \(R_{e}\) is 100 ohms. \(R_{b}\), on the other hand, can be made almost any value and, to give a current gain of 100 , should have a value of \(100 \times 100\) ohms i.e. 10 kilohms. Only the essential signal-frequency components are shown in Fig. 17: in a practical circuit additional components may be necessary, e.g. for stabilising the mean emitter currents of the transistors.

Two resistors in series. The effective value of two resistors \(R_{1}\) and \(R_{2}\) connected in series is the arithmetical sum of the two thus
\[
R_{e f f}=R_{1}+R_{2}
\]

Thus is a small resistor is connected in series with a large one, the effective resistance is slightly greater than the larger. (If the resistors are connected in parallel, of course, the effective resistance is slightly less than the smaller of the two.)

Two resistors connected in series are often regarded as a potential divider because the voltage \(V_{\text {out }}\) across \(\mathrm{R}_{2}\) (Fig. 18) is a certain fraction of that ( \(V_{i n}\) ) applied to the combination: the fraction is determined by the resistor values according to the expression
\[
V_{\text {out }}=\frac{R_{2}}{R_{1}+R_{2}} \cdot V_{\text {in }}
\]
which is similar to the expression for the current in \(R_{1}\) in a parallel resistor combination.
Potential dividers are often used for biasing transistors and Fig. 19 shows a typical circuit using an f.e.t. The potential divider \(R_{1} R_{2}\) impresses a particular value of voltage on the gate of the f.e.t. and the external source resistance \(R_{s}\) then determines the drain current of the transistor. This bias circuit is preferable to that in Fig. 3 (June) because it gives better d.c. stability i.e. it defines the mean drain current more accurately in spite of manufacturing spreads in transistor parameters and variations in parameters with temperature.

As mentioned earlier one of the features of f.e.ts is that their input resistance is very high. Thus there is virtually no gate current and the resistors \(R_{1}\) and \(R_{2}\) are required solely to provide a particular voltage for the gate. The only current in \(R_{1}\) and \(R_{2}\) is therefore that which flows through them from the supply (the bleed current) and this can be made any desired value. Normally the bleed current is made very small because this enables the input resistance of the circuit to be kept high. To illustrate this let us assume that there is a \(15-\mathrm{V}\) supply and that the transistor is required to take 2 mA mean drain (and therefore source) current. For such a current the transistor will be assumed to require a gate-source bias voltage of -1.5 V . The gate voltage can be given any desired value up to \(15 \mathrm{~V}: 3 \mathrm{~V}\) is a convenient


Fig. 18. Potential division in a circuit composed of two resistors in series.


Fig. 19. Potential divider used to bias an f.e.t.
value. The mean source voltage must then be 4.5 V to give the required gate-source bias. Thus the voltage across \(R_{s}\) is 4.5 and the current required in it is 2 mA . Ohm's law gives the value of \(R_{s}\) as 2.2 kilohms.
The potential divider must give a gate voltage of 3 and the supply voltage is 15 . Let us assume a very low value of bleed current, say \(10 \mu \mathrm{~A}\). This is then the current in \(\mathrm{R}_{2}\) and the voltage across \(\mathrm{R}_{2}\) is 3 . Thus, from Ohm's law, the value of \(R_{2}\) is 300 kilohms. The current in \(\mathrm{R}_{1}\) is also \(10 \mu \mathrm{~A}\) and the voltage across it is 12 so that its value, also from Ohm's law, is 1.2 megohms. \(R_{1}\) is four times \(R_{2}\) and provided this ratio is maintained the gate voltage always has the same value of 3 : the particular values chosen for \(R_{1}\) and \(R_{2}\) determine the bleed current.
In practice we are often concerned about the input resistance of the circuit. The input resistance of the f.e.t. itself is practically infinite but the input resistance of the circuit depends on \(R_{1}\) and \(R_{2}\), which are effectively in parallel at signal frequencies. For the values of \(R_{1}\) and \(R_{2}\) calculated above the effective input resistance of the circuit is given by:
\[
\begin{aligned}
& \text { input resistance }=\frac{\text { product of } R_{1} \text { and } R_{2}}{\text { sum of } R_{1} \text { and } R_{2}} \\
& \qquad=\frac{1200 \mathrm{k} \times 300 \mathrm{k}}{1200 \mathrm{k}+300 \mathrm{k}}=240 \mathrm{kilohms}
\end{aligned}
\]

With f.e.ts it is possible to achieve much higher input resistances than this. For example, suppose we require an input resistance of 5 megohms: such a value might be required to terminate a capacitor or piezo-electric microphone or pickup cartridge. A useful way of calculating the values of \(R_{1}\) and \(R_{2}\) to give this value of input resistance as well as the required value of gate voltage is as follows. Let the ratio of the
gate voltage to supply voltage be \(a\). This \(a\) is also therefore the step-down voltage ratio of the potential divider. Then the resistor values to use in the potential divider are given by:


For the example in question \(a\) \(=3 / 15=0.2\)
\[
\begin{aligned}
& \therefore R_{1}=\frac{5}{0.2}=25 \text { megohms } \\
& \therefore R_{2}=\frac{5}{1-0.2}=6.25 \text { megohms }
\end{aligned}
\]
\(R_{1}\) is four times \(R_{2}\) which ensures the required gate voltage. A calculation of the resistance \(R_{1}\) and \(R_{2}\) in parallel shows that this is 5 megohms as required.

The circuit of Fig. 19 is also used to bias bipolar transistors but the design usually proceeds along entirely different lines from those described for f.e.ts. This is primarily because the bipolar transistor has a significant input (base) current: as a result the input resistance is low and, because this shunts both resistors of the potential divider, there is no point in using high-resistance components for \(R_{1}\) and \(R_{2}\). Indeed there is a good reason for using low-value resistors, namely that d.c. stability of the circuit is dependent on the value of these resistors, increasing as the resistor value is decreased. The resistors should therefore be made as low as possible subject to keeping the bleed current acceptable: in battery-operated equipment the potential divider should preferably not take as much current as the transistor itself.
A good starting point for the design is thus to decide on a value for the bleed current: Suppose the transistor is to take 1 mA mean collector current. Then it is reasonable to let the potential divider take 0.1 mA . Let the required base voltage be 3 V as before. Then a simple application of Ohm's law tells us that \(\mathrm{R}_{2}\) \(=3 /\left(0.1 \times 10^{-3}\right)=30\) kilohms. Now \(\mathrm{R}_{1}\) carries the base current of the transistor in addition to the bleed current of 0.1 mA . We can take the base current as \(1 / \beta\) of the collector current. If \(\beta\) is 100 then the base current is 0.01 mA and the total current in \(R_{1}\) is 0.11 mA . If the supply voltage is 12 than there are 9 V across \(R_{1}\) and the value of \(R_{1}\) is, from Ohm's law, \(9 /\left(0.11 \times 10^{-3}\right)\) i.e. 82 kilohms.

Finally we need to calculate the emitter resistor value. If the transistor is a germanium type the emitter potential is very nearly equal to the base potential and there is thus 3 V across \(\mathrm{R}_{\mathrm{e}}\). Since the current in \(R_{e}\) is 1 mA , the value of \(R_{e}\) is given by \(3 /\left(1 \times 10^{-3}\right)=3\) kilohms. If, however, the transistor is a silicon type there is an offset voltage of approximately 0.7 V between base and


Fig. 20. Simplified diagram of a two-stage voltage amplifier with emitter follower output in which the gain is determined by the negative feedback circuit \(R_{1} R_{2}\)
emitter potentials and the voltage across the emitter resistor is only 2.3 V , giving \(\mathrm{R}_{\mathrm{e}}\) as 2.3 kilohms.

If the base current had been ignored \(R_{1}\) would have been calculated as 90 kilohms instead of 81 kilohms. The difference is not great and to obtain approximate estimates of resistor values it is often permissible to neglect the base current.

A potential divider is often used as the basic element in the negative feedback circuit of a voltage amplifier and the values of the two resistors enable the gain of the amplifier to be set at a particular wanted value. Alternatively the gain of a voltage amplifier can be deduced from the values of the resistors in the negative feedback circuit. For example, in the simplified circuit diagram of Fig. \(20 \mathrm{Tr}_{1}\) and \(\mathrm{Tr}_{2}\) are common-emitter stages and \(\mathrm{Tr}_{3}\) is an emitter-follower stage which provides the amplifier with a low output resistance. \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) constitute the potential divider which defines the voltage gain of the amplifier. The step-down voltage ratio of the potential divider is \(R_{2} /\left(R_{1}+R_{2}\right)\) but \(R_{1}\) is usually large compared with \(R_{2}\) and the step-down ratio is therefore approximately \(R_{2} / R_{1}\). The voltage gain of the amplifier is equal to the reciprocal of this i.e. \(R_{1} / R_{2}\). Thus if voltage gain of 200 is required \(R_{1}\) must equal \(200 R_{2} . R_{2}\) is used to provide bias for \(\mathrm{Tr}_{1}\) and its value is to a large extent determined by this consideration: a likely value for \(R_{2}\) is 100 ohms. \(R_{1}\), on the other hand, can be given almost any value and, to give the desired value of voltage gain, should be \(200 \times 100\) i.e. 20 kilohms.

Only the essential signal-frequency components are shown in this circuit diagram: in a practical circuit additional components are necessary, e.g. for stabilising the mean collector currents of the transistors.

\section*{Announcemeints}

A one day conference in Cynernetics is being organized at Chelsea College, University of London, by the Cybernetics Society on September 1st, 1975. Topics will include artificial intelligence, pattern recognition, cybernetic medicine, systems theory and other topics relating to cybernetics. Further details about the conference or offers of papers can be obtained from the conference organizers: E. Insam, c/o The Cybernetics Society, Chelsea College, University of London, Pulton Place, London S.W. 6 or Dr. C. M. Elstob, Cybernetics Dept., Brunel University, Uxbridge, Middlesex. The Society also holds monthly meetings in London with speakers from various fields in cybernetics and other related topics. anyone interested in attending the meetings or becoming a member of the Society should contact Mr Kevin Clifton at the Cybernetics Society address or by telephone, 01-736 1244, ext 229.

Norse Audio Systems Ltd recently launched the Radionette range of audio and television equipment in the UK. The range, which is manufactured in Norway, includes colour television receivers, music centres, tuner-amplifiers, record decks, speakers. and transistor radios. Radionette (a subsidiary of the Tandberg organization) have said that the product range will be backed-up by a first-class after sales service.

Agreement has been reached to house the Vintage Wireless Museum of the Wireless Preservation Society in one of the Isle of Wight's "Stately Homes" - Arreton Manor, the home of Count and Countess Slade de Pomeroy. Arreton Manor already houses a Folk Museum, and a unique collection of dolls and dolls' houses.

Dieter Assmann Electronics Ltd, of Watford, manufacturers of a very wide range of components for printed circuit board assembly, have appointed' Giltech Components of 22 Portman Road, Reading, as their first distributor in the U.K. Initially, Giltech will hold stocks of the major Assmann lines such as i.c. and transistor sockets, terminals, connectors and heat sinks.
G. A. Stanley Palmer Ltd, Elmbridge Works, Island Farm Avenue, West Molesey Trading Estate, Surrey KT8 OUR, have been appointed exclusive U.K. representatives for the National Wire and Cable Corporation of Los Angeles, California. Products manufactured include connecting wire both screened and unscreened, microminiature low voltage instrument control cable in single or pairs, under water cables, ultra flexible wires, multiple (single and pair) signal and control cables, and digital data transmission cables.

Double R Electronics Ltd., Angus House, 13 Tilehouse Street, Hitchin, Herts SG5 2DU, have been appointed U.K. distributors for Ampower Semi-conductor Corporation in the United Kingdom.

\section*{Vision network switcher}

Logic-controlled network-switching equipment, recently installed at Yorkshire Television's Leeds studios, provides very simple routeing of signals from 34 inputs (studios, telecine, v.t.r., etc) to three main external outputs and several internal monitoring and recording stations.

The photograph shows the control panel of the switcher, which contains the releyant buttons for two of the external outputs, the other being on another panel. The top two banks (of 68 buttons) each consist of 34 buttons to select signal source, coupled with "on air" lamps. When switching codes, set up in memory by the selector buttons, are activated by output "take" buttons, the "on air" lamps illuminate. Outputs
are to the Emley Moor YTV transmitter, the national network and the YTV Belmont transmitter, the selectors for this being on a separate panel. The bottom bank of buttons select inputs for previewing or prelistening and the left-hand set controls feeds to internal monitoring stations, etc.

In essence, the control panel sets up in memory the switching configuration required, resulting logic states being used to control single-f.e.t. cross-point switches (reeds, in the case of audio cross-points).

The equipment was supplied by Crow of Reading, the cross-points originating with Sandar Electronics - a Norwegian company.


\title{
Noise - confusion in more ways than one
}

\title{
4-Noise figure and the design of front-ends
}

\author{
by K. L. Smith \\ University of Kent at Canterbury
}

\begin{abstract}
The quest for low equipment noise temperature has formed a large part of research and development effort in recent times. The maser, parametric amplifier and other aspects of low-noise technique are covered in this concluding article. Noise figure is still commonly used to characterise performance and this idea, together with the earlier discussion of noise temperature, is considered to show that basically they are saying the same thing.
\end{abstract}

Getting noise levels down at the front end of modern equipment has been a success story. In this section I will present an outline of some of the strides that have been made, but will not attempt a detailed description of actual front-end hardware, or specific devices and techniques. If you have any special interest requiring a little more detail, I have mentioned a few references for you to follow up.
The basic mechanism of noise generation in active devices is the shot effect, found, of course, in semiconductors as well as in thermionic emission devices. A serious limitation in microwave receivers has been the crystal mixer. Until the advent of low-noise r.f. stages such as the ruby maser and parametric amplifier, the crystal mixer was the front-end component. The crystal has a direct current flowing when operating and therefore shot noise is produced. This makes it appear "hotter" than an equivalent resistor under the same conditions. It also has a conversion loss. If you glance at equation 9 (Part 3), with \(L\) now standing for the mixer conversion loss and \(T_{L}\) somewhat above room temperature and related to the crystal noise temperature, then you will see that crystal mixers do not enhance the requirement for low effective input noise temperatures or microwave receivers.

One awkward point arises because of a traditional definition. The crystal noise temperature, \(T_{x}\), is defined as the effective temperature at the output of the mixer stage when the input is terminated with a matched source resistor at \(T_{0},(290 \mathrm{~K})\). So \(T_{x}\) includes the source contribution at \(T_{0}\). From this, taking care to account for the source contribution, we can write down an analogous equation to (9) for the \(T_{e}\) of the superhet with a crystal mixer front end and an i.f. amplifier whose effective
input noise temperature is \(T_{\text {iff. }}\).
\[
\begin{equation*}
T_{e}=L T_{x}-T_{0}+L T_{\mathrm{i} . \mathrm{f} .} \tag{11}
\end{equation*}
\]

The first term is the crystal noise temperature referred to the front end or input terminals; the second term is the subtraction of the standard source temperature, assumed in the definition of \(T_{x}\); and the third term is the i.f. amplifier input temperature referred forward to the front-end terminals. For good noise performance, a low \(T_{x}\) and small \(L\) is required. A manufacturer's catalogue shows the following for the 1N23C point-contact X-band mixer diode: \(t_{x}\left(=T_{x} / 290\right)=2, L=6 \mathrm{~dB}\), which is a loss of four times.

Putting these values into (11) gives
\[
T_{e}=4 \times 2 \times 290-290+4 \times 116 \approx 2500 \mathrm{~K} .
\]


Fig. 16. Quantum mechanics explains the pattern of energy levels obtained in crystal lattice structures (among other things). Example shown is for chromium ions in ruby crystals. Altering value of the magnetic flux \(B\), sets the levels 1,2,3 and 4 at convenient energy intervals for maser action.

I have assumed a low-noise i.f. amplifier, a temperature of \(T_{i, f}=116 \mathrm{~K}\). The noise temperature of 2500 K is not a very good performance. From the same catalogue, a modern Schottky-barrier mixer diode type P1906F would given an effective input noise temperature of 740 K if used in the same receiver.

Other hazards exist which I have ignored in the above discussion. An important one is the noise generated in the local oscillator. The noise sidebands from the oscillator mix to produce an appreciable output at the i.f. frequency. A balanced mixer should be used to reduce noise from this source. Another dodge is to lock the local oscillator to a low-noise stable frequency generator, such as a crystal oscillator and multiplier chain (which, incidentally, reduces the drift, frequency jumping and the f.m. noise of the local oscillator). The noise performance of the i.f. amplifier is critical with direct conversion receivers. The presence of the loss factor \(L\) makes this so, as you can see from (11).

The first stages of the amplifier require transistors specially selected for their good noise performance and the optimum matching conditions between mixer and i.f. input circuit is important. It is possible to obtain optimum performance empirically by switching on and off a gas-tube noise source coupled into the front end, attenuated if necessary, while adjusting the mixer, local oscillator, and i.f. couplings for minimum \(T_{e}\), as monitored by observing the changes on a power meter at the output of the system. The calculation of the optimum conditions for any given case, including the effects of parasitic reactance, etc, is extremely difficult. If you wish to follow this up, E. G. Nielsen \({ }^{14}\) wrote an interesting article on the topic.
You may recall the publicity, about a decade ago, in connection with the Goonhilly station system. The "signifi-
cant" results that the new maser amplifier was going to make possible were indeed achieved, after the usual teething troubles. We had visions of large Dewar flasks surrounded by liquid-nitrogen-produced vapour clouds and all the other complexities of the cryogenics. The cost and complexity of the maser hardware and cryogenics, and the relatively narrow bandwidth obtainable has meant a decline in their use, and the much more convenient parametric amplifier has taken over. In spite of this, the maser still offers the ultimate in low-noise performance, because not only are the "working bits-n-pieces" cooled to about 4 K with liquid helium, you will sometimes see negative temperatures mentioned! Of course, the physical temperature is never below absolute zero, but in some ways the maser acts as if it were.

The action of the solid-state maser depends on materials with paramagnetic ions in a crystal lattice, such as the chromium \({ }^{3+}\) ion in ruby. The spin and orbital motion in the:se atomic particles are quantized, which means that the only energies allowed them by the laws of quantum physics are very definite values. Any change in: energy of particles means a jump from one energy level to another with the absorption or emission of radiation of characteristic frequency. This is pictured in a diagram such as that in Fig. 16; (a) shows some of the chromium ion levels in ruby. The .lowest level is the only one of interest for maser work.

In this ion, there are three available eliectrons which contribute to the pa ramagnetic splitting. The three electro.ns give four possible energy levels and the fields of force in the crystal lattic'e split the levels; into two pairs 11.46- GHz apart (the en ergy difference is measu red in "frequenc \(y\) " - this being the frec puency of the radiation involved in any ju imp between the levels), see Fig. 16 (b). A long time ago a fellow named Zeeman in 1896 found that applying an external imagnetic field to atoms or molecules with levels which have the same energ. \(y\) (the jargon for this is that they are "de \({ }_{2}\) generate", bu't this does not mean that \(t_{\text {. hey }}\) suffer from anything nasty!) separa tes them, or as we say lifts

Fig. 17. Inconvel nience of maser amplifiers is mainly becausie of the complex cryogen.ic system required. Also, getting the s:ignal in cind out and the pump power in to the cr ystal is troublesome. Show \(n\) here i:s a typical example of a maser with rutile for the slow-wave structure and interacting element (a). Magnet ، could lbe a self-sustaining super-conducting one. Velocity of the wave in rut ile is very much less than the vel, ocity in free space, because of the \(h\) igh dielectric constant. One method o of feeding in the pump power that has be en proposed is to use a side radiating he irn, as shown at (b). (A. Fletcher).
the degeneracy by an amount depending on how strong the magnetic field is.
Sure enough, this happens with our chromium ions in ruby, see Fig. 16 (c). The low energy levels of the billions of particles in the crystal lattice are occupied according to the quantum laws, and the absolute temperature \(T\). The lowest levels are crowded while higher levels are only sparsely filled. The whole point of maser action is to invert this population distribution - by pumping, so that when dropping back to a low energy level, the electrons involved give energy to the passing signal wave, boosting its amplitude. The waves passing through the crystal (we are discussing a travelling-wave maser) need time to interact with the excited atoms, so a careful design is made of a slow wave structure for this purpose.

The correct populations can only be produced at very low temperatures hence the liquid helium involved. The magnetic field to split the energy levels to just the right value for the frequency of the signal and pump is often applied by the use of a "persistent current superconducting magnet" - a case of exploiting the very low temperature available and the resulting superconductivity in some materials. Fig. 17 (a) illustrates this and (b) shows diagrammatically the parts of the travellingwave maser.

We can sum up all of this by noting that the signal wave in a maser extracts energy in phase from the excited ions in
the crystal. The presence of the signal stimulates the emission - hence the name of the device, Microwave Amplification by Stimulated Emission of Radiation, as you probably already know. The extremely low effective noise temperature of this amplifying mechanism arises from the requirement to use liquid helium temperature, together with a further reduction of this already low temperature according to \(T_{e(\text { maser })}=T_{a m b} / I\), where \(T_{a m b} \approx 4.2 \mathrm{~K}\) (liquid helium) and \(I\) is the inversion ratio of the maser, usually about three and is the number of times the upper energy level is more densely populated than the lower, as a result of the pumping action.
Naturally, the signal has to be got into the amplifying part of the maser, and out again. Equation 9 shows that the effect of any attenuation in the feeder at the input, will very convincingly degrade the noise performance.
\[
\begin{equation*}
T_{e}=(L-1) T_{L}+\frac{L T_{a m b}}{I} \tag{12}
\end{equation*}
\]

If \(T_{L}\) is a mean temperature of around 100 K and \(L\) is a loss of only \(0.5 \mathrm{~dB}(1.112\) times), then \(T_{e}=(11.2+56) \mathrm{K}\). That is, the loss contributes about 11 K and the maser itself about 1.5 K . Herein lies a big difficulty with such amplifiers: how to get the signal down into the crystal in the Dewar, through the couplings and hardware of the front-end feeder system, without introducing prohibitive losses. Taking the signal out is all right, it has been amplified by the maser gain,

perhaps 45 dB or so. A good article on masers was presented in Philips Technical Review in 1965 if you can get nold of a copy \({ }^{15}\). The practical description of the Goonhilly Down maser is discussed fully.

\section*{Parametric amplifier}

The source of gain in the parametric amplifier is an entirely different physical mechanism to that in the maser system, although a pump oscillator is again employed. Most of the literature proudly states that Lord Rayleigh, and even Michael Faraday, spoke of the paramp principle way back in the last century. This is so, but the electronic realization of the principle for low-noise amplification is recent (the 1950s). Basically a reactive parameter, such as a capacitance, is varied and this feeds energy into a signal wave. Being a virtually noiseless parameter (reactance), the usual Johnson and current noise contributions are reduced. There is some loss in the active device, which is usually a varactor diode, and in the feeder hardware. Cooling will therefore lower the effective noise temperature. Noise contributions also arrive in the pump frequency oscillations and can degrade the performance.

Three frequencies are usually involved in a paramp; the signal frequency \(f_{s}\), the pump \(f_{p}\) and the idler frequency \(f_{i}\). The idler frequency is the mixing product of \(f_{s}\) and \(f_{p}\), i.e. \(f_{i}=f_{p}-f_{s}\). Much of the design work in parametric amplifier projects is involved with the correct design of the resonant structures for \(f_{s}\) and \(f_{i}\) and in ensuring the isolation between them. A circulator is required at the signal front end, because the varactor diode is a two-terminal device. (Tunnel diode amplifiers also have this drawback.) You are correct if you immediately assumed that isolators, circulators, switches or any other such lossy hardware in the input feeder are bad for low-noise performance, equation 9 or 12 operates again.

Fig. 18 gives some idea of the electrical arrangement of a pumped paramp of the "two-tank" variety. The imput signal arriving at port 1 of the circulator is diverted out of port 2 into the signal-tuned circuit \(\mathrm{CL}_{\mathrm{s}}\) in the paramp. The pump is, varying the capacitance of the varactor and energy is fed into the signal oscillations by this action. The amplified signal is passed back to port 2 of the circulator. (You could look upon all this as a. signal passing into the paramp on the input transmission line and there reflected with a reflection coefficient greater than unity back down the line.) The circulator passes the amplified signal out of port 3 to the load. The circuit \(\mathrm{CL}_{\mathbf{j}}\) resonates at the idler frequency and filters \(F_{i}\) and \(F_{s}\) reject the idler and signal frequencies respectively so keeping the various signals and oscillatory powers in their places.

There are various ways in which the realization of the scheme shown in Fig. 18 can be carried out. Fig. 19 shows just one possibility. The pump is much higher in frequency than the signal and is usually supplied via a waveguide, although microstrip techniques are increasingly being employed.

A theoretical analysis of Fig. 18 enables the gain,. noise temperature and bandwidth of the amplifier to be derived. If you are interested in some of the theoretical argument, you will find a very good discussion in reference 16. One factor of great importance is \(\gamma\), which is defined as
\[
\frac{C_{\max }-C_{\min }}{2\left(C_{\max }+C_{\min }\right)}
\]

This is a kind of goodness factor for the varactor diode and indicates the amount of capacitance variation obtainable by pumping. Another diode parameter is the cut-off frequency, \(f_{c}=1 / 2 \pi C R_{d}\), which must be way above the frequencies involved in the amplifier. Noise is contributed directly by the diode loss resistance \(R_{d}\) and also \(R_{i}\) in the idler circuit. It is in cooling these

that the improved performance at low frequencies is obtained. Quoting now the noise temperature expression (see reference 16)
\[
T_{e}=T\left[\frac{R_{d}}{R_{g}}+A \frac{f_{s}}{f_{i}}\left(1+\frac{R_{d}}{R_{g}}\right)\right]
\]
where \(R_{g} / R_{d}\) is often called the overcoupling ratio and \(T\) is the physical temperature. \(A\) is dependent on the gain, but is normally close to unity, especially at high gain. This means that if we make \(R_{\mathrm{g}} \gg R_{\mathrm{d}}\), then the effective noise temperature of the paramp is
\[
\begin{equation*}
T_{e} \approx T \cdot \frac{f_{\mathrm{s}}}{f_{i}} \tag{13}
\end{equation*}
\]

Under these conditions, we can see that if the pump frequency is high, so that \(f_{s}<f_{i}\) then the effective input noise temperature of the parametric amplifier can be made less than the physical temperature (i.e. by the fraction \(f_{s} / f_{i}\) ). Lest you think "Ah! let's push up the . idler frequency to millions of gigahertz - and get noise temperatures around absolute zero", life is not so kind. Remember \(f_{c}\) for the diode, and other losses limit the possibility of an unlimited rise in the: pump and therefore idler frequency. The noise temperature given by (13) is oversimplified and as the gain drops when \(f_{p}\) goes up the noise temperature will start to increase again. This would inclicate that there is a minimum noise temperature for an optimized pararnp with a given diode, packaging, and so on. It can be showia that
\[
T_{e(m i n)}=\frac{2 f_{s}}{\gamma f_{c}}
\]

As would be expected, a large \(\gamma\) and high \(f_{\mathrm{c}}\) for the dicode is the best way to a low \(T_{e}\) at any given signal frequer icy \(f_{s}\).

\section*{Handling the iclea of noise fig, ures}

The noise figure, \(F\), has alrea \({ }^{\text {dy }}\) been mentioned and you may recall from part 1 that H. T. Firiis and D. O. N orth were instrumental in getting the \(c\) :oncept off the ground. All the equatior is to calcuiate \(F\), are derived from, the basic definitions in a similar way to the expressions for \(T_{e}\). If we w'ent through it all again, it would mean a duplication of effort. The m:ain point \(n\) 'ow is to derive the relationslnip betwef \(n F\) and \(T_{e}\) so that all the earlier eduations can be written in ter ms of \(F\), if required. Friis defined \(F\) as the signal s to noise ratio at the input of a networ' \(k\) when the source resistance is at \(290^{\circ} \mathrm{K}\); divided by the signals-to-noise ratio at the output. Because sigrials-to noise ratios at the output of annplifie rs, receivers and so on, are always smiller than those at the input, then \(F\) is al' ways larger than one.

From the abov'e verbal definition you will see that
\(F=\frac{S_{i}}{P_{N i}} / \frac{S_{o}}{P_{N_{0}}}\), ar ad this tidies up to \(\frac{S_{i} P_{N o}}{P_{N_{i}} S_{o}}\)
If the networl s has a power gain of \(G_{A}\),
then \(S_{o}=G_{A} S_{i}\) and \(P_{N o}=G_{A} P_{N i}+P_{N a}\), by precisely the same argument that was made in part 2 (first paragraph). This means that
\[
\begin{equation*}
F=\frac{S_{i}\left(G_{\mathrm{A}} P_{\mathrm{Ni}}+P_{\mathrm{Na}}\right)}{P_{\mathrm{Ni}} G_{\mathrm{A}} S_{i}}=1+\frac{P_{\mathrm{Na}}}{G_{\mathrm{A}} P_{\mathrm{Ni}}} \tag{14}
\end{equation*}
\]

Immediately from the equation \(P_{N a}=G_{A} k T_{e} B\), (part 2) and \(P_{N i}=k(290) B\), so that from equation 14
\[
\begin{equation*}
F=1+\frac{T_{e}}{290} \tag{15}
\end{equation*}
\]

This is the relationship connecting \(F\) and \(T_{e}\) we set out to find.

I indicated at the beginning of this series that D. O. North also defined a noise factor. His definition dispensed with signals right from the start. You may like to see that his definition is just the same as that just given in (15), although North originally suggested 300 K for the standard temperature. North's definition went like this: " \(F\) is the ratio of the total noise power output from a system when its imput termination is at 290 K , to that part of the output which arises from the input termination only".

In symbols, this is
\[
F=\frac{P_{N o}\left(\text { when } T_{i} \text { is } 290 K\right)}{G_{A} k(290) B}
\]
but \(P_{\text {No }}=G_{A} k B\left(290+T_{e}\right)\), see part 2, p.169, and therefore
\[
F=1+\frac{T_{e}}{290}, \text { as before }
\]

Some early ideas connected with this topic was discussed in Wireless World by L. A. Moxon \({ }^{17}\).

We are now in a position to write down any noise expression in terms of \(F\) by using the fact that \(T_{e}=290(F-1)\) by transposing (15). You can see this from the following examples.
Substituting for \(\bar{T}_{e}\) in the equation on p. 171 (part 2) gives
\[
F=F_{1} \frac{F_{2}-1}{G_{i}}+\frac{F_{3}-1}{G_{1} G_{2}}
\]

From equation 6
\[
\begin{aligned}
& T_{e}=\frac{T_{\text {hot }}-A T_{\text {cold }}}{A-1} \text { or } \\
& 290(F-1)=\frac{T_{\text {hot }}-A T_{\text {cold }}}{A-1}, \\
& F=\frac{\frac{T_{\text {hot }}}{290}-A \frac{T_{\text {cold }}}{290}}{A-1}+1 \text { which is } \\
& F=\frac{\left(\frac{T_{\text {hot }}}{290}-1\right)-A\left(\frac{T_{\text {cold }}}{290}-1\right)}{A-1}
\end{aligned}
\]

The quantities in the brackets are excess noise ratios. Very often \(T_{\text {cold }}=290 \mathrm{~K}\), so that
\[
F=\frac{\frac{T_{\text {hot }}}{290}-1}{A-1}
\]


Fig. 19. Hardware of a parametric amplifier for the hundreds of megahertz to lower gigahertz region often consists of a mixture of coaxial and waveguide techniques. This illustration is based on a system described by Aitchison, Davies and Gibson of Mullard Research Labs.

View of Tony Fletcher's 35 GHz maser at the University of Kent. Pump power is obtained from a klystron operation at 80 GHz . The complexity of the cryogenics is obvious.


If \(A\) is made 2 by choosing the value of \(T_{\text {hot }}\) to make it so, then
\[
F=\frac{T_{\text {hot }}}{290}-1
\]

The last equation in part 2 shows this to be equal to \(20 I_{a} R\) for a noise diode, so that we have the interesting result \(F=20 I_{\alpha} R\), a well-known expression.

For the next example, we can look at (8), which when substituted gives
\[
F=1+\frac{(L-1) T_{L}}{290} .
\]

Similarly from (9)
\[
\begin{aligned}
290(F-1) & =(L-1) T_{L}+L\left(290\left[F_{R}-1\right]\right) \\
F & =1+(L-1) \frac{T_{L}}{290}+L\left(F_{R}-1\right) .
\end{aligned}
\]

Considering equation (11), we can now see why we had some argument about \(T_{x}\), because the original derivations were in terms of \(F\). We should expect to see a simplification when "going backwards" to \(F\), to the wellknown equation for crystal mixer performance. Now \(T_{e}=290(F-1)\) and \(T_{i, f}=290\left(F_{i, f}-1\right)\), also \(T_{0}=290 \mathrm{~K}\) all by definition, so that equation 11 gives
\[
\begin{gathered}
290(F-1)=L T_{x}-290+L 290\left(F_{i, f,}-1\right) \\
\ldots F=L\left(t_{x}+F_{i . f .}-1\right)
\end{gathered}
\]
where \(t_{x}=T_{x} / 290\). This is often seen quoted in discussions about crystal mixers.

And so we could go on. Notice that there is often a " 1 " for the first term on the right-hand side in noise figure
equations. This arises because of the contribution of the source at 290 K . When the division by 290 is made to obtain the ratio that is \(F\), the first term is " 1 ". This means (by subtracting the " 1 " from both sides) that the expresion \(F-1\) occurs frequently, hence the growth of the term excess noise figure for this. Because I am making a case for a decline in the use of \(F\) and an increase in thinking in terms of temperature, I will not labour the point any further.
If you would like to give more prominence to \(F\), and convert all the formulae, for instance, then you can go ahead. But, in this series of articles, I have attempted to show that the mysteries of "temperature" are only imaginary and that so long as care is taken to realise that the term has been extended to mean more than physical hotness, then the idea is valuable in noise discussions.
I suggest that the noise figure is not so clear as temperature, and is tied to " 290 K ", which is sometimes manipulated behind the scenes for the unwary, and this makes a mockery of " \(F\) ". \(F\) has

This is a typical low-noise (50K) commercially-made parametric amplifier. Example illustrated operates at a signal frequency of 1414 MHz . Coaxial circulator is seen at the bottom right and the pump power is obtained from the solid state oscillator at the bottom left, which feeds power to the varactor via a ferrite isolator. Amplifier was supplied to Cambridge University for radio astronomical observations around the hydrogen-line frequency. (Courtesy of Ferranti Ltd.)

a habit of being what anyone wants it to be (see the satirical article The Art of Noisemanship by J. C. Green \({ }^{18}\), also The Noise Figure Muddle by Seymour B: \(\mathrm{Cohn}^{19}\) ). As you might see, a lot of confusion can arise. If you have not yet embarked upon a course of advanced study in electronics, perhaps I have been able to give you an inkling of the interesting concepts concerning equipment limitations, meanings of temperature, etc, that you are likely to meet as part of your studies. If you are already doing some work in communications engineering, then a few of the points covered in these articles may show a little of what is "behind the scenes". Mastering the technique of handling \(T_{e}\), and especially \(T_{\text {op }}\) or \(T_{\text {syst }}\) gives you a direct route to the overall signals-tonoise ratio - which when all is said and done, is the vital parameter in modern communications systems.

\section*{\(\dot{R} e f e r e n c e s\)}
14. Nielsen, E.G. "Behaviour of noise figure in junction transistors", Proc. IRE, vol.45, 1957, p. 957.
15. Walling, J. C., and Smith, F. W. "Solidstate masers and their use in satellite communication systems", Philips Technical Review, vol.25, 1964, p. 289.
16. Van der Ziel, A "Solid State Electronics", Prentice-Hall.
17. Moxon, L. A. "Noise factor", Wireless World, vol.52, 1946, p.391; vol.53, 1947, p. 11.
18. Green, J. C. "The art of noisemanship", Proc. IRE, vol.49, 1961, p. 1223.
19. Cohn, S. B. "The noise figure muddle", Microwave Journal, vol.2, 1959, March, p. 7 .

\section*{Correction to part 2 (April issue)}

An error occurred in the discussion of noise bandwidths in Appendix B, page 173. The two equations for \(G_{A}\) at the top of the page are correct, but \(L\) and \(C\) have subsequently become transposed. There is a symmetry about \(L\) and \(C\), so the final result is correct, but the statement
\[
R=\omega C-\frac{1}{\omega L} \text { should read } R=\omega L-\frac{1}{\omega C}
\]
and all Ls and Cs should be interchanged from then on. (The error is obvious if you look at the statement \(B_{3 d B}=R / 2 \pi C\), which cannot be true because it is dimensionally incorrect. Replace \(C\) with \(L\) and it is then alright.)

\title{
Seemore. More to see.
}


See double on M-OV's new true double gun instrument CRT. 14 cm rectangular flat faceplate displays two sweep speeds simultaneously. M-OV E14-110GM.

See rapid waveforms on M-OV's large display 21 cm rectangular instrument CRTs. Electrostatic deflection. Fast writing speed. M-OV 2100 C .

See clearly at low cost on M-OV's less expensive CRTs like the 13 cm medium bandwidth tube. M-OV 1300Y.

For instrument CRTs, the M-OV range has the versatility to meet
a wide variety of specific needs.
Round or rectangular screens. Sizes from
\(7-21 \mathrm{~cm}\). Complete range of phosphors. Selection
 of graticules. Fibre optic types, too.

Plus the design and engineering capability to deliver precisely the tube you need.

Write for our new catalogue and data sheets on CRTs for instrument, radar including multi-colour, avionic, data display and TV studio applications.

Or if you have a specific problem, 'phone us.

\section*{EEVand M-OV know how.}

\section*{Comprehensive. Accurate. Portable. And really rugged. Yet only \(£ 59\) (PLUS VAT)}


State-of-the-art circuit design, incorporating high-quality components, has resulted in a professional, \(3 \frac{1}{2}\) digit instrument of outstanding performance and reliability at a realistic price.
A custom-designed MOS LSI digital processing IC controls the auto-polarity dual-slope-integration \(A\) to \(D\) converter. The circuit built around this IC uses a MOSFET op-amp input buffer with \(0.1 \%\) metal-film resistors. The result is excellent accuracy and stability with a very high basic input impedance.
The instrument reads to \(\pm 1999\) and has a basic accuracy on the 1 V DC range of \(0.3 \% \pm 1\) digit. Four 8 mm LED displays provide excellent legibility and angle of view. Battery operation allows complete independence of mains supply.
The Sinclair DM2 has all the capability you need. Just take a look at its features and compare them with higher-priced multimeters. You'll find the DM2 is their equal in virtually everything-except price!

\section*{Features of the Sinclair DM2}

5 functions giving 22 ranges
DC volts - 1 mV to 1000 V \(A C\) volts -1 mV to 500 V DC current - \(0.1: \mathrm{AA}\) to 1 A AC current - 1 is A to 1 A
Resistance -1 s 2 to 20 Ms ) Easy to use
Automatic polarity, bush-button selection for all ranges and modes from a single input terminal pair. Easy to read
Big, bright 8 mm LED display gives a quick, clear reading
3ì digit display
Display reads from 000 to 1999
Overload indicator.
Protected
Separate fuses for current and resistance circuits
Accurate
Dualslope integration High stability.

Rugged construction
Tough metal casing takes the
roughest treatment - try standing on It \({ }^{1}\)
Two powersources
Supplied with a 9 V battery. giving 60 -hour typical life. Mains adaptor also availdble
Portable
Weighs only \(2 \frac{1}{2} \mathrm{lb}\) approx.
including battery
Measures only 2 in \(\times 9\) in \(\times 6\) in approx.
Optional extras
Mains adaptor - £3.19 inc VAT.
Carrying case - \(£ 5.40\) inc VAT.
12-month no-quibble
guarantee


Use it in your laboratory. The DM2 sits rigidly on its combined carrying handle/stand.


Use it on the move. Keep the DM2 in its carrying case -it's always ready for use.


All you need to use the DM2 . . . anywhere. Mains adaptor... carrying case... multimeter... you're ready for quick, efficient metering - whatever the situation.

Take advantage of this money-back, no-risk offer today
Test the Sinclair DM2 for yourself. Simply send us a cheque, your Access/Barclaycard number, or an official company order, with the coupon below. And in the unlikely event you find it's not what you need, return it to us within 10 days and we'll refund your money in full.
Interested in a quantity discount?
Use the coupon to arrange a demonstration and get details of prices on 5 or more instruments.

Sinclair Radionics Ltd,
London Road, St Ives, Huntingdon,

\section*{Cambs., PE174HJ.}

\section*{Tel: St Ives (0480) 64646.}

VAT Registration No: 213817088.

\section*{The Sinc:lair DM2 Multimeter: full technical story}
\begin{tabular}{|c|c|c|c|}
\hline DC Volts Range & Ac:curacy & Input Impedance & Resolution \\
\hline 1 V & \(0 \cdot 3 \% \pm 1\) Digit & \(>100 \mathrm{M} \Omega\) & 1 mV \\
\hline 10 V & \(0.5 \%+1 \quad\) & \(10 \mathrm{M} \Omega\) & 10 mV \\
\hline 100 V & 0.5\% \(\pm 1\) & \(10 \mathrm{M} \Omega\) & 100 mV \\
\hline 1000 V & 0.5\% \(\pm 1\) & \(10 \mathrm{M} \Omega\) & 1 V \\
\hline \multicolumn{4}{|l|}{Maximum overload - 350 V on 1 V range} \\
\hline AC Volts Range & Accuracy & \begin{tabular}{l}
Input \\
Impedance
\end{tabular} & Frequency Range \\
\hline 1 V & 1.0\% \(\pm 2\) Digits & \(10 \mathrm{Ms} 2 / 40 \mathrm{pF}\) & \(20 \mathrm{~Hz}-3 \mathrm{KHz}\) \\
\hline 10 V & 1.0\% +2 . & \(10 \mathrm{Ms} / 40 \mathrm{pF}\) & \(20 \mathrm{~Hz}-3 \mathrm{KHz}\) \\
\hline 100 V & 2.0\% \(\pm 2\), & \(10 \mathrm{Ms} /{ }^{\text {/ }} 40 \mathrm{pF}\) & \(20 \mathrm{~Hz}-3 \mathrm{KHz}\) \\
\hline 1000 V & 2.0\% +2 & \(10 \mathrm{Ms} / 40 \mathrm{pF}\) & \(20 \mathrm{Hz-1} \mathrm{KHz}\) \\
\hline \multicolumn{4}{|l|}{\[
\begin{array}{r}
\text { Maximum overload- } 300 \mathrm{~V} \text { on } 1 \mathrm{Vrange} \\
500 \mathrm{~V} \text { onallotherranges. }
\end{array}
\]} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{DC Currens}} & \multicolumn{2}{|l|}{Input} \\
\hline & Accuracy & Impedance & Resolution \\
\hline \(100 \mu \mathrm{~A}\) & 2.0\% \(\ddagger 1\) Digit & 10 K S & 100 nA \\
\hline 1 mA & \(0.8 \% \pm 1\), & 1 K S & \(1 \mu \mathrm{~A}\) \\
\hline 10 mA & \(0.8 \% \pm 1\), & 100s & \(10 \mu \mathrm{~A}\) \\
\hline 100 mA & \(0 \cdot 8 \%+1\), & 10s 2 & \(100 \mu \mathrm{~A}\) \\
\hline 1000 mA & 2.0\% +1 & 1 S & 1 mA \\
\hline \multicolumn{4}{|l|}{Maximum overload-1A (fused).} \\
\hline \multicolumn{4}{|l|}{AC Curreint} \\
\hline Range & Accuracy & Frequency Range & \\
\hline 1 mA & 1-5\% \(\pm 2\) Digits & \(20 \mathrm{~Hz}-1 \mathrm{KHz}\) & \\
\hline 10 mA & \(1.5 \% \pm 2\), & \(20 \mathrm{~Hz}-1 \mathrm{KHz}\) & \\
\hline 100 mA & 1.5\% \(\pm 2\) & \(20 \mathrm{~Hz}-1 \mathrm{KHz}\) & \\
\hline 1000 mA & 2.0\% \(\pm 2\) & '20 Hz-1 KHz & \\
\hline \multicolumn{4}{|l|}{Maximum overload - 1A (fused).} \\
\hline
\end{tabular}

\section*{Resistance}
\begin{tabular}{clc} 
Range & Accuracy & \begin{tabular}{c} 
Measuring \\
Current
\end{tabular} \\
\(1 \mathrm{~K} \Omega\) & \(1.0 \% \pm 1\) Digit & 1 mA \\
\(10 \mathrm{~K} \Omega\) & \(1.0 \% \pm 1 \quad \prime\) & \(100 \mu \mathrm{~A}\) \\
\(100 \mathrm{~K} \Omega\) & \(1.0 \% \pm 1 \quad \prime\) & \(10 \mu \mathrm{~A}\) \\
\(1000 \mathrm{~K} \Omega\) & \(1.0 \% \pm 1 \mathrm{M}\) & \(1 \mu \mathrm{~A}\) \\
\(10 \mathrm{M} \Omega\) & \(2.0 \% \pm 1 \mathrm{~m}\) & 100 nA \\
Overloadprotection -50 mA (fused). &
\end{tabular}

\section*{,}
urren
\(00 \mu \mathrm{~A}\)
\(10 \mu A\)
10 MS \(2 \cdot 0 \% \pm 1\)., 100 nA
Overload protection - 50 mA (fused).

To: Sinclair Radionics Ltd, FREEPOST, St lves Huritingdon, Cambs., PE174BR.
Please send me
Multimeters "/" \(f 6372\)
inc VAT
Mains adaptors " \(£ 3.19\)
inc VAT.
Carrying cases " \(£ 540\)
inc VAT.
I am interested in 5 or more multimeters

Please arrange a
demonstration.
Please send details of
quantity discounts.
*I enclose a cheque for f
*My Access/B arclaycard number
*I enclose an offisial company order - signed and dated.
*Please complete or delete as applicable.

Name
Address

\section*{WATCH OUJR} NOW IT's BIGGER \& BETTER
More pages! Larger size! Extra features!


\section*{Special Features this month:}

\section*{LARGE SCREENTV OSCILLOSCOPE}

How a large-screen monochrome receiver can be converted for displaying television waveforms.

\section*{CEEFAX/ORACLERECEPTION}

Start of a new series explaining the principles and the practical techniques used for teletext news displays.

\author{
LATEST COLOURRECEIVER CIRCUITRY
}

An account of the many novel circuit techniques used in the latest Rank colour chassis.
VIDEOSIGNALEXTRACTION
Many VCRs require a v.f. input. K. Cummins presents a suitable circuit for extracting the video signal from a domestic TV set.
COLOUR RECEIVERSERVICING
Les Lawry-Johns deals with faults experienced on the Philips G6 colour chassis.

PLUS ALLTHEREGULAR FEATURES
JULY ISSUE OUT MONDAY 16th JUNE, PRICE 40p.

\section*{transformers}
mains, audio, microphone, ferrite core and other wound components

A wide range of transformers manufactured in production quantities to customers individual requirements

Prompt Prototype
Service available


MICROPHONE TRANSFORMER IN MUMETAL CAN

TRANSFORMER
WITH UNIVERSAL
END FRAMES AND TURRET LUG CONNECTIONS



\section*{s Limited}

Kennel Lane,
Billericay, Essex.

\title{
Resistance comparator
}

\title{
-with linear fractional off-balance indication
}
by D. Griffiths Ph.D.
Imperial College, London

\section*{A simple d.c. op-amp design featuring linear reading of percentage unbalance for any arbitrary value of reference resistor without recalibration in the range \(100 \Omega\) to \(10 k \Omega\).}

It was not very clear what the design objectives were at the beginning of this effort; they never seem to be in my experience. It appeared that we needed either (a) to display the variation of the reciprocal of the unknown resistance \(R_{x}\), about some nominal value \(R_{\beta}\) with zero output when \(1 / R_{x}=1 / R_{f}\) or (b) to give a strictly linear output proportional to the fractional deviation of \(R_{x}\) up to \(100 \%\) above and below \(R_{f}\), with zero output when \(R_{x}=R_{f}\) The further proposal that accurately-calibrated percentage deviations should be shown on plugging in any arbitrary value of reference resistor \(R_{f}\), without recalibration, did not seem to simplify matters.

In the event both requirements (a) and (b) were met in a single circuit design which also gave the proposed constant calibration of the fractional unbalance indication. An accuracy of order \(0.1 \%\) is achieved with full scale indications of unbalance between \(1 \%\) and \(100 \%\) in the range \(100 \Omega\) to \(10 \mathrm{k} \Omega\)

The design may be useful on small production runs where resistors have to be hand-trimmed within certain readily-seen percentages of different awkward values; the components used in the original bread-board can then be the master references during trimming. The original application however was with temperature sensors which could be of widely different values although all had
similar temperature coefficients of resistance when expressed as a percentage change; this circuit then gave the same loop gain to a process controller when used with different sensors.

As is often the case it was difficult to get away from the first lines of attack that occur to one at the initial doodling stage; I felt that something in the ratio transformer or Wheatstone bridge line would be required. After all, item (a) involved \(1 / R_{x}\), i.e. a conductance, and invited a ratio arm transformer technique; but it was not evident how to maintain a calibrated fractional unbalance indication with arbitrary values of \(R_{f}\), at least with a reasonably simple circuit (watch forthcoming Letters' columns). On the other hand alternative (b), which involved direct display of resistance variations, ruled out.a Wheatstone bridge scheme by the wide range of linearity said to be required.
The requirement (b) can be looked at thus: suppose we keep a constant and known voltage across \(R_{f}\); then if the current through \(R_{f}\) also flows through \(R_{x}\), the difference in the voltage drops across \(R_{f}\) and \(R_{x}\) will only depend on the fractional relation of \(R_{f}\) and \(R_{x}\) and not on their actual values. It then starts to look like an exercise in op-amp techniques, as indicated in Fig. 1. (Requirements (b) can also be met by interchanging \(R_{f}\) and \(R_{x}\).

In the prototype the voltage across \(R_{f}\) was set at I volt, a higher value bringing power dissipation problems in the test resistors. A proposed system accuracy of order \(0.1 \%\) implied keeping drifts and computing errors to less than 1 mV when referred to this 1 -volt level. Past experience suggested that a d.c. technique with type 741 op-amps would just suffice to achieve this, especially in view of the comparatively low values of resistance to be compared. (The use of an a.c. carrier scheme would enable \(V_{f}\) and the power in the test resistors to be set many orders of magnitude smaller but the circuitry would then be a good deal more complex.)

It just remained to convert these ideas into hardware. The functions required are: (1) to hold the voltage \(V_{f}\) across \(R_{f}\) constant at 1 volt; (2) to use a differential amplifier to monitor \(V_{x}\); and (3) to subtract \(V_{x}\) and \(V_{f}\), and scale the unbalance appropriately.

Consider first how to hold \(V_{f}\) constant. In an op-amp follower-with-gain circuit, drawn in the usual way in Fig. 2, the ideal action of the negative feed back is to maintain the inverting input terminal ( - ) at the same voltage as the non-inverting input ( + ). This will be so, irrespective of the value of \(R_{2}\), provided \(R_{1}\) is not so large as to cause the output of the amplifier to saturate at either full positive or negative excursion. Calling

Fig. 1


Fig. 2


\(R_{1}=R_{x}\) and \(R_{2}=R_{f}\), we can redraw Fig. 2 as in Fig. 3, where the voltage across \(R_{f}\) will be held at \(V_{\text {ref }}\), for an ideal amplifier. This is the first step in a realization of Fig. 1.

The second function to be achieved is that of causing the voltage across \(R_{x}\) to appear referenced to the common line, so it can be compared subsequently with the voltage appearing across \(R_{f}\); this is the function of a differential amplifier. Such an amplifier can have its input stage operating in the inverting mode, whereupon the common-mode rejection ratio (c.m.r.r.) of the amplifiers does not limit the achievable c.m.r.r. of the circuit. On the other hand, inverting stages usually have a much lower input resistance than follower stages, though in differential applications the latter are limited by the c.m.r.r. of the op-amps used. The choice is easily made here for \(R_{f}\) has a constant voltage across it which lessens the c.m.r.r. demands on the amplifier and we require a high input resistance to minimize the loading of \(R_{x}\); if \(R_{x}=10 \mathrm{k} \Omega\), an amplifier input resistance of \(10 \mathrm{M} \Omega\) will effectively lower this resistance by \(0.1 \%\).
Fig. 4(a) shows a high input resistance differential amplifier, while Fig. 4(b) is intended to show how the common-mode rejection occurs by
emphasizing the bridge action through drawing it in a more "Wheatstone" way. If \(R_{a}=R_{b}=R_{c}=R_{d}\), and if in Fig. 4(b) both points \(A\) and \(B\) move up and down in voltage together (i.e. \(V_{A B}=0\) ), then points C and D will experience equal voltage excursions of one half of this magnitude if \(E\) remains at ground potential. This absence of output from the op-amp is consistent with its zero input, \(V_{C D}=0\) as required.

In Fig. 4(a) the gain to differential input signals is -1 if all the bridge resistors are of equal value. This can perhaps be seen most easily by thinking of the differential input \(V_{A B}\) as riding on top of the common-mode signal \(V_{C M}\) and remembering that ideally \(V_{C M}\) does not affect the voltage at \(E\). Thus one can consider \(V_{C M}=0\) when thinking only of the differential signal and note that this makes point \(D\) at ground potential. Resistances \(R_{a}\) and \(R_{c}\) are then evidently seen as a unity-gain see-saw amplifier with phase inversion.
In the prototype circuit the maximum voltage across \(R_{f}\) had to be limited to 1 volt and to reduce the effects of voltage offset drifts the voltage across \(R_{f}\) and \(R_{x}\) was multiplied by three before passing it to the remaining op-amps. The differential amplifier of Fig. 4(a) can give gain by the addition of three resistors as shown in Fig. 5.


Fig. 4 (a) high input resistance differential amplifier, (b) diagram emphasizing bridge action of (a).


Fig. 5. Comparator with single-resistor gain adjustment.

If \(R_{3}=R_{5}\), the voltage gain of the input stage is \(+\left(1+2 R_{3} / R_{4}\right)\). At first glance one might expect the factor of two to be outside the bracket but inspection of Fig. 5 shows that
\(V_{A B}=V_{1}+V_{2}-V_{I N}\left(\operatorname{across} R_{4}\right)\)
\(=V_{I N}\left(\frac{R_{3}+R_{4}}{R_{4}}\right)+V_{I N}\left(\frac{R_{4}+R_{5}}{R_{4}}\right)-V_{I N}\)
\(=V_{I N}\left(1+\frac{2 R_{3}}{R_{4}}\right)\), if \(R_{3}=R_{5}\).
Compared with many other difference amplifiers that of Fig. 5 has two outstanding advantages. First, the gain can be adjusted by varying a single resistor, \(\mathrm{R}_{4}\). Secondly, setting of the gain is quite independent of trimming for best c.m.r.r. It should be noted that if \(R_{3}\) does not equal \(R_{5}\) exactly, then this only affects the gain and does not reduce the common mode rejection of the circuit.
The addition of a standard virtualearth summing amplifier to the circuits of Figs 3 and 5 finishes the design, the complete circuit of which is shown in Fig. 6. A saturated 741 o-amp with \(\pm\) 15 V supplies will have an output of 13 to 14 volts and gives only a modest overload to the meter which requires \(\pm 10 \mathrm{~V}\) at the output of \(\mathrm{A}_{6}\) for full-scale deflection. The \(2.2-\mu \mathrm{F}\) feedback capacitor reduces needle jitter below the visible limit with a \(90-\mathrm{mm}\) scale length meter.
One might imagine at first sight that a \(1 \%\) change in \(V_{\text {ref }}\) (and hence \(V_{f}\) ) would cause a full-scale change in meter reading when the output stage is on the \(1 \%\) f.s.d. setting. (If this were so it would place a stringent demand on the stability of \(V_{\text {ref }}\) and make the circuit rather unattractive.) This misconception can arise by visualizing a \(1 \%\) change in the voltage across \(R_{f}\) and seeing this as giving rise to a \(1 \%\) unbalance at the input of the summing amplifier. However, this overlooks the changed voltage across \(R_{x}\).

It is evident that if \(R_{x}\) exactly equals \(R_{f}\) then the output meter will register zero ideally for any value of \(V_{\text {re }}\). Suppose next that \(R_{x}=\left(R_{f}+1 / 2 \%\right)\) with \(V_{\text {ref }}=1 \mathrm{~V}\) and the output meter indicates \(+1 / 2 \%\) (i.e. half scale on the \(1 \%\) range). If now \(V_{\text {ref }}\) increases by \(1 \%\) say, then it is the extra voltage drop across the extra \(1 / 2 \%\) of \(R_{x}\) (compared with \(\bar{R}_{f}\) ) that is the unbalanced input to the summing amplifier and will come through to the output; the new output reading would be \((0.5 \times 101 / 100) \%=0.505 \%\). Thus it is the span of the final meter deflection which is affected in direct proportion to possible changes in \(V_{\text {ref }}\).
Fig. 6 shows that \(V_{\text {ref }}\) is derived here from the integrated power regulator output; the prototype used MVR15 devices from RS Components. These sort of devices have impressive output stability and modest price. Under constant load and in normal laboratory conditions their voltage drift is not

visible on a \(31 / 2\)-digit multimeter on its \(20-\mathrm{V}\) range after a few minutes from switch-on, i.e. the output is steady to better than 10 mV . In view of the insensitivity of this comparator circuit to changes in reference voltage, these regulators are more than adequate for supplying the reference voltage here.
Next we describe the procedure to trim the offsets of the op-amps, balance the differential amplifier and equalize the gains to the summing junction. It may sound a shade long-winded but it is quite straightforward and can be done in a few minutes, at least on the second time round.
Type 741 op-amps were used in all stages and the \(10-\mathrm{k} \Omega\) offset controls were standard miniature carbon presets. The use of cermet-track elements may give a better temperature stability to the balance of the amplifiers but the extra cost is considerable. When trimming these offset voltages it is necessary to short various resistors; constructors are reminded that (a) the resistance of a "short" can sometimes be significant and (b) the short may be carrying more current than was at first thought. A current of only 10 mA flowing through 6 inches (pardon, 15 cm ) of ordinary 2 -amp connecting wire ( \(7 / 0.2 \mathrm{~mm}, 0.22 \mathrm{~mm}^{2}\) ) produces a voltage drop of 0.1 mV . The zero stability of even ordinary unselected 741 amplifiers is sufficiently good that it is worthwhile zeroing them to at least 0.1 mV (referred to the input). As indicated in Fig. 6 a single point earthing scheme is a sensible precaution too. However, \(R_{x}\) can be quite distant from the rest of the circuit as the potential drop in the input leads to \(A_{3}\) and \(A_{4}\) is only that due to the \(0.2 \mu \mathrm{~A}\) bias currents of the 741 amplifiers.
A \(31 / 2\)-digit multimeter with least significant digit of 0.1 mV was used in setting up the prototype; zeroes were adjusted until the + and - polarity

Fig. 6. Complete circuit where \(V_{\text {ref }}\) is derived from the integrated power regulator having an output stable within 10 mV .
signals were flicking equally. If the \(10 \mathrm{k} \Omega\) preset used with a particular 741 has to be adjusted to more than say \(21 / 2 k \Omega\) from its mid-track position to balance the offset, it is perhaps prudent to select another 741 in this application.
The trimming procedure is as follows. (1) Short \(R_{x}\) trim the offset of \(\mathrm{A}_{3}\) and \(\mathrm{A}_{4}\) to give \(V_{A F}=V_{B F}=0\), checking \(V_{A B}=0\). (2) Keeping \(R_{x}\) shorted also short \(R_{f}\), measure \(V_{A B}\) (ideally zero) and trim \(A_{5}\) to give \(V_{C E}=-V_{A B}\). (3) With \(R_{f}\) and \(R_{x}\) still shorted, trim \(\mathrm{A}_{2}\) for zero output, put \(\mathrm{A}_{6}\) to the \(10 \mathrm{k} \Omega\) f.b. setting and trim \(\mathrm{A}_{6}\) to give an output of \(-3.3 \times V_{C E}\) (found in step 2). (4) With \(R_{x}\) shorted but restoring \(R_{f}\) to about \(500 \Omega\), adjust the balance of the differential \(10 \mathrm{k} \Omega\) bridge until \(V_{C E}\) remains constant when opening and closing the link across \(470 \Omega\) (marked "to check c.m.r.r."). (5) Select \(R_{x}\) and \(R_{f}\) to be exactly the same value (around \(2 \mathrm{~K} \Omega\) ) and adjust one of the \(3 \mathrm{k} \Omega\) summing resistors to \(\mathrm{A}_{6}\) until the output meter reads zero on the \(1 \%\) f.s.d. range. (6) See three paragraphs below.

If two resistors of known equality are not available for use in step(5) the comparator can still be used to set up two resistors to the necessary degree of equality. One of the nominally equal pair is made trimmable and adjustment carried out until interchanging these two resistors in the positions \(R_{f}\) and \(R_{x}\) causes no change in the output meter reading; it is of no importance if the reading is non-zero at this point since step (5) has not yet been completed.

The prototype on the \(1 \%\) range had \(a\) zero stability of about \(0.005 \%\) during a normal day and a drift from cold switch-on of about \(0.04 \%\).

The linearity of output was checked
on the \(100 \%\) and \(10 \%\) ranges with a \(31 / 2\)-digit d.v.m. on the output of \(\mathrm{A}_{6}\) and was found to be better than \(0.1 \%\) ( \(\pm 1\) digit) with \(R_{f}\) of \(200 \Omega, 1 \mathrm{k} \Omega\) and \(5 \mathrm{k} \Omega\) and full-scale unbalance on either side of equality. This good linearity makes scaling of the output ranges easy and the final item of the trimming procedure, step (6) is: With \(R_{x}=0\) and the output stage on the \(100 \%\) range, then for any value of \(R_{f}(100 \Omega\) to \(10 \mathrm{k} \Omega)\) the meter is made to read \(-100 \%\) by trimming the voltage divider giving the nominal 1 volt reference. Accuracy of the scale of the remaining ranges depends almost entirely on the accuracy of the f.h. resistors around \(\mathrm{A}_{6}\) since the open-loop gain of a 741 at zero frequency is typically about \(10^{5}\).

And what, you may ask is the fudge which is ill-concealed by the \(1-\mathrm{k} \Omega\) resistor forlornly stuck between the + terminal of \(\mathrm{A}_{1}\) and the point marked \(\mathrm{V}_{\text {ref }}\) in Fig. 6? Well, it is tied up with the \(100-\Omega\) and \(10-\mathrm{k} \Omega\) limits which were so casually mentioned earlier without explanation. The lower limit is set by \(A_{1}\) running out of the enthusiasm for supplying current much greater than 10 mA , at least to the \(0.1 \%\) accuracy required here. The prototype was satisfactory of \(R_{f}\) down to \(70 \Omega\) and lower values could doubtless be accomodated by buffering the output of \(\mathrm{A}_{1}\) with a power transistor. The upper limit arises from errors due to the bias currents in the increasing source resistance presented by \(A_{1}\) by \(R_{f}\) and \(R_{x}\) in parallel. Making the source resistance of \(V_{\text {ref }}\) about \(2 k \Omega\) (as seen by \(A_{1}\) ) distributes this offset equally for \(R_{f}=100 \Omega\) and \(10 \mathrm{k} \Omega\) : on the prototype this error amounted to \(\pm 0.07 \%\), causing high values of \(R_{x}\) to read low by this amount. Substituting superbeta or f.e.t.-input op-amps for the 741 would enable the upper resistance limit to be pushed up.

\title{
Realm of microwaves
}

\section*{10-Power and frequency measurements}

\author{
by M. W. Hosking, M.Sc.
}

British Aircraft Corporation, Filton

At the low frequencies, where a cyclical change of current and voltage can be recorded and where the wavelengths are many orders of magnitude greater than the transverse dimensions of a conductor or component, it is possible to insert a current- or voltage-measuring instrument into the circuit to determine these quantities. The instrument itself has either a negligible or precisely known (internal resistance) effect on the circuit and one knows, say in the case of an ammeter, that it is indicating the total current flowing at that point.
Consider, however, the case of a hollow, metal waveguide: to d.c. this is a single conductor and one has difficulty with the concept of a "potential difference". Furthermore, as shown earlier in this series, the microwave current flows in circulating loops confined closely to the metal surfaces, and even were it possible to measure this current directly one could not say that this was the total current associated with an overall potential. It thus becomes conceptively inconvenient to think in terms of current and voltage as well as impracti-
cal to measure, and so these more fundamental quantities are lumped together and it is the total, time-average power which is measured.

Compared with the accuracy to which d.c. or low-frequency power can be measured, the absolute determination of microwave power is rather poor. Typical day-to-day accuracies using standard commercial power meters lie between \(5 \%\) and \(10 \%\) and even national standards are only in the region of \(0.5 \%\) accurate. The fact that high-quality tracking and communication systems have evolved in spite of this limitation demonstrates that it is only on comparatively rare occasions that a highly accurate knowledge of power is necessary. Even then, it is usually required during the development of other

Fig. 1. Most common bolometric elements consist of either a very thin platinum wire having response curves shown in 1 (a) or else a thermistor bead having the opposite type of response shown in 1 (b).

instruments. In the majority of cases the important factor is the power difference between one space or time and that in another space or time, i.e. relative power. Using standard laboratory test gear relative microwave can be measured to within a small fraction of \(1 \%\).

As yet there is no practical, absolute method of microwave power measurement; that is, one which will indicate microwave power directly without calibration or transfer from some more primary effect. Although varied priciples and techniques have been proposed and demonstrated over the years, the most practical way of determining microwave power has been by using some element to absorb the power and then observing the resulting heat dissipation. Devices used can conveniently be placed in one of two categories:
- in which the dissipated power produces a change in the electrical resistance of the absorbing element (called a bolometer), or a voltage difference (called a thermocouple);
- in which the rise in temperature of the dissipating element is measured and calibrated to read power (called a calorimeter).
These two groups are by no means exhaustive and there exist both variations and completely different methods of indicating microwave power. However, this series is essentially concerned with the real world of microwave electronics and, in this context, the above categories are the only ones of practical use.

\section*{Bolometric devices}

Bolometers are temperature-sensitive resistances taking the form of either a thin resistive wire or film, called barreters, or small-bead thermistors. Calibration of these elements is carried out by low-frequency substitution; that is, the change in resistance with microwave power is noted and identified with the d.c. power necessary to produce the same change. Here one starts off with the chain of accumulating errors in the microwave powermeasuring system by asking: does the
d.c. power represent the total incident microwave power? The answer is that it need not do so and several requirements have to be met before the answer can be changed to "yes" with confidence.

These requirements are that the cross-sectional dimensions of the wire or thermistor should be similar to the skin depth at the operating frequency, so that the d.c. and a.c. densities are similar; and that the physical length of the device should be as small as possible to minimize the very significant inductive reactance.

As a consequence, the barreter is usually constructed from a length of silver-plated platinum wire having a section perhaps 1 mm long of the silver etched away, exposing the resistive platinum wire to the microwave field. This wire is very thin, typically 0.002 mm in diameter, and is mounted inside a sealed cartridge or on a dielectric support of suitable dimensions for mounting in a waveguide or coaxial monitor. Barreters have a positive temperature coefficient of resistance, and a resistance/power sensitivity shown in Fig. 1(a). They have a very short thermal time constant of several hundred microseconds, useful for fluctuating signals, but this can produce errors when measuring the average power of a pulsed waveform because of the tendency to respond to the signal peaks.
Most popular of the general run of power-sensing elements is the bead thermistor. Composed of semiconducting, sintered metallic oxides, the bead is about \(1 / 4 \mathrm{~mm}\) diameter with two very fine wire contacts and has a negative coefficient of resistance. Its resistance/ power sensitivity, shown in Fig. 1(b), is much greater than that of the barreter, operating temperature can be higher, it is more rugged and has a thermal time constant several times longer.

Whichever type of bolometer is used, most power-measuring instruments come in two units. One is the bolometer mount, consisting of the microwave input connection, either waveguide or coaxial, in which the wire or thermistor forms an absorbtive termination, plus a relatively large thermal mass. The second is the meter with associated circuitry, connected to the mount by flexible cable carrying d.c. or low-frequency bias signals.

Within the meter the basic circuit is the balanced bridge with automatic feedback shown in Fig. 2 in which the bolometer element forms one arm. A suitable resistance, usually 100 to 200 ohms, is selected for the element to balance the bridge and is achieved by passing low-frequency current through the element. Audio frequency power is usually chosen for ease of measurement and amplification and, in the case of the thermistor, Fig. 1(b) shows that the current required for a single bead lies between 1 and 15 mA .

At this stage, with no microwave power present, the bridge is balanced
and the meter reading will be zero. With microwave power present, however, the thermistor will be hotter, its resistance will decrease and, in order to maintain a balance, the audio power must decrease by an amount equal to the microwave' power, which can then be identified and displayed. There are many refinements adopted to preserve accuracy and stability in commercial instruments, but the balanced bridge remains the heart of the circuit. The dynamic range of these instruments is generally 40 dB with good sensitivity, switchable meter ranges lying between 10 microwatts full scale and 10 milliwatts full scale.

Within the bolometer mount itself lie the sensing elements, usually thermistors, a large thermal mass to help reduce fluctuating external temperatures and also a couple of other thermistors to sense changes in ambient temperature. These latter are not connected to the microwave circuit but form part of another bridge within the power meter and help to distinguish between

ambient temperature variations and changes in microwave power. With a large thermal mass, this may appear trivial but, when measuring a few microwatts of power, a \(25 \%\) meter drift can easily occur with an uncompensated mount.

To be accurate the sensing elements in the microwave circuit must, ideally, form a perfectly matched termination to the transmission line. In the case of standard 50 -ohm coaxial line, Fig. 3 shows a mount and method of thermistor attachment. Two beads are used and are mounted between the inner and outer conductors to give the type of electrical circuit shown in Fig. 4. \(C_{1}\) is a d.c. blocking capacitor to eliminate spurious effects from the source and of the circuit and, with a value of 1 to 2 nF , has a very low reactance at the microwave input frequency.

For convenience in biasing and matching, two thermistors are used and are connected in series as far as the audio frequency substitution circuit is

Fig. 2. Variations in bolometer resistance due to incident microwave power are detected by a resistive bridge. The substituted d.c. power to rebalance the bridge is an indication of the microwave power level.

Fig. 3. Coaxial thermistor head in which the thermistor beads terminate the transmission line in a good match and so absorb the microwave power. Head is electrically connected to the power meter bridge, amplifier and display unit.

concerned. They are biased to a value of 100 ohms each. Capacitor \(C_{2}\) is similar in value to \(C_{1}\) and thus also presents a low impedance to the input signal, the effect being to cause the thermistors to appear in parallel at r.f. Overall impedance presented to the 50 -ohm transmission line is thus 50 ohms and helps towards achieving a good match. The compensating thermistors are electrically isolated from the microwave circuit but are in close enough thermal proximity to experience, identically with the detection thermistors, any variation in ambient temperature.

With a range of waveguide mounts also available, the thermistor power meter is a sufficiently accurate and reliable instrument and, for many years, has been the backbone of engineering power measurements.

\section*{Thermocouple power meter}

A strong chalienge to the position of the thermistor is being made by the thin-film thermocouple and, with the improvements made in recent years, this device now offers several advan-tages such as very much greater temperature stability and higher burnout levels. The coaxial mount construction is very similar to that of the - thermistor except that, instead of fine wire supports, the favoured technology is that of thin film deposition on as thin as possible a substrate.


Fig. 4. Thermistors which terminate coaxial line appear in series to the d.c. substitution and bridge circuit but in parallel to the high-frequency microwaves. A large thermal mass together with twin compensating thermistors substantially eliminate ambient temperature fluctuations.

An example is shown in Fig. 5, the thermocouple being formed from evaporated bismuth and antimony with the hot junction lying in the gap between centre and outer conductors; the large semicircular contact pads are of gold.

Thermocouple resistance, and hence match, are controlled by the bismuth and antimony film thickness. Incident

microwave power absorbed at these hot junctions raises their temperature, giving rise to a thermoelectric voltage which is then amplified and displayed in terms of microwave power.

The voltage generated in this fashion can be as low as several hundred nanovolts and thus requires careful circuit design to avoid odd thermocouple effects creeping in from dissimilar metal junctions and other sources of noise. Amplification is carried out after first chopping the d.c. signal and the signal is then synchronously detected. Unlike the bolometric power element, instrument calibration is carried out by direct comparison with a national substandard and not by d.c. substitution.

Recently an improved form of thermocouple sensor has appeared on the market \({ }^{*}\) using a silicon p-n diffused region as one arm of the thermocouple with a gold contact to act as the cold junction and a resistive tantalum nitride contact as the hot junction. The complete element is less than 1 mm square and 0.005 mm thick and offers a better r.f. match because of lower reactance, a faster response time and greater long-term stability than the normal bismuth-antimony element.

\section*{Calorimeters}

In contrast to the devices so far mentioned, in which microwave power is measured by some calibrated change in an electrical property, the calorimeter relies upon dissipating the incident power within some absorbing medium and then measuring the associated rise in temperature. The microwave power can then either be calculated from a knowledge of the temperature rise versus time and the thermal mass, or a calibration can be made against known quantities of d.c. or low-frequency input power.

Commercially available calorimeters are bulky and expensive devices and have measurement rise times of several minutes. Consequently they are usually kept in the standards room of the user as a calibration reference for the more general-purpose bolometric instruments. Higher-order standards tend to be individually designed and vary from country to. country and are always being improved. Thus, although the operating principles are the same, there are many different types of calorimeter. Instead of enumerating these, it will probably be of greater interest to describe briefly one of the instruments which has recently been developed at the National Physical Laboratory for use as a national standard.

\section*{NPL calorimeter}

This device is a twin calorimeter and operates in the system shown in Fig. 6 between d.c. and \(6,000 \mathrm{MHz}\) and for input power levels of between 10 mW
and 100 mW . The instrument uses two coaxial transmission lines of 50 -ohm characteristic impedance, each terminated in a matched, power-absorbing, resistive load. Microwave power is fed into one of the lines and the resulting rise in temperature difference between the two matched loads is measured by the thermopile. This unit consists of 800 junction pairs of copper-contantan. The loads and thermopile at the end of the calorimeter are shown in Fig. 7. After the heating effect is noted the microwave power level can be determined by measuring the amount of d.c. power which must be applied to the load to produce the same effect. The symmetry of the calorimeter, together with the double-packed thermal insulation, helps to eliminate the effects of room-temperature fluctuations.

An interesting technique used in the development of this NPL calorimeter and in building up a thermal equivalent circuit was the determination of thermal resistances by localized heating with a laser beam. Instead of supplying heat to the calorimeter and noting the temperature response in different areas with thermocouples, these areas were painted black and irradiated with a laser beam, so producing an output from the thermopile. By calculating the local thermal capacities from a knowledge of dimensions and using the laser technique to measure the local resistances, a very comprehensive equivalent was obtained.

In practice, to speed up the reading time the calorimeter is operated in a feedback loop wherein the output from the thermopile is fed via an amplifier and frequency-compensating network back to the second input of the calorimeter. The load at the end of this line is thus heated to the same temperature as that terminating the microwave input and the microwave power can be determined from the substituted d.c. input power necessary to produce the same power in the feedback loop.

With corrections made for losses in the input lines, power lost in heating the thermopile, load mismatch error and d.c. instrumentation errors, the absolute accuracy in measuring the microwave power lies between \(0.2 \%\) and \(0.5 \%\) with a measurement time of several minutes.
So, even for a national standard, the accuracy with which microwave power can be measured is not as good as that for d.c. or low-frequency power. The uncertainty of the d.c. calibration power in the calorimeter, for instance, was an order of magnitude loss. Even so the general purpose commercial instruments are many times worse than this in absolute accuracy and it is worthwhile noting the prime causes of error.

\section*{Power measurement errors}

There are three main sources of error: -instrumentation error, -d.c. substitution error, - mismatch error.

The first is not particular to microwave measurements as it is caused by such things as amplifier non-linearities, range switching and meter display, but might typically lie in the region of \(1 \%\) of f.s.d. The substitution error has been mentioned previously and is due to the d.c. or low frequency power producing a slightly different heating effect than the microwave power. As such it is a function of the sensing element dimensions compared with the wavelength and is different for the barretter, thermistor and thermo-couple. Usually the error is quoted as an efficiency defined by

\section*{d.c. substituted power \\ dissipated microwave power}
and can be quite significant, typically lying between \(90 \%\) and \(99 \%\) depending upon frequency. The way round this error is by the instrument manufacturer maintaining a standard microwave power reference source and calibrating each sensing element. An efficiency versus frequency plot is then supplied with each mount and a manual control allows for compensation. By this means the substitution error can be made smaller than the other two main sources.


Fig. 6. Schematic of a twin calorimeter wherein the microwave power is absorbed in a resistive load and the resultant rise in temperature measured and calibrated.

Fig. 7. Rear view of the NPL calorimeter showing the resistive load terminations and thermopile coupling. (Courtesy National Physical Laboratory, Crown Copyright reserved.)

duced, the day-to-day practice is for manufacturers to design components to as low a v.s.w.r. as possible and for the user to accept the resultant error.
By way of illustration and to recap on previous subject matter: the ratio of the electric field magnitude reflected from a mismatch to that incident is termed the voltage reflection coefficient ( \(\rho\) ) and this reflected signal gives rise to a transmission-line standing wave pattern as shown in Fig. 1 of Part 9. The ratio of the electric field maximum to minimum of this pattern, which can be directly measured, is termed the voltage standing wave ratio \(S\) (v.s.w.r.), and is universally used as an indication of the degree of mismatch of a component. A perfect match is when \(S=1+\rho / 1-\rho\) remembering that, in general, \(\rho\) is the modulus of a more complete reflection coefficient containing phase information.

Now when two or more sources of mismatch are present the amount of power that is actually reflected from any one of them depends upon the way in which the reflected waves combine, that is, upon their relative phase, and this is the quantity usually unknown. It is, however, possible to define a worst case and a best case limit to the resultant mismatch from just a knowledge of the v.s.w.rs involved. Take the case of a microwave generator having v.s.w.r. \(S_{1}\) and power monitor of v.s.w.r. \(S_{2}\left(S_{2}>S_{1}\right)\), then the worst combination would be if one had a v.s.w.r. of \(S_{1} . S_{2}\) and the other unity, and the best case would be if one were \(S_{2} / S_{1}\) and the other unity.

Taking some practical values of \(S_{1}=1.30\) and \(S_{2}=1.50\), which are typical for general test equipment up to J-band \((12.4 \mathrm{GHz})\), the worst and best cases result in values of 1.95 and 1.15 corre-
sponding to values of \(\rho\) of 0.32 and 0.07 respectively. The power reflected is proportional to \(\rho^{2}\) and so, in this case, the power meter error will lie between \(-10.2 \%\) and \(-0.5 \%\) depending upon the way in which the mismatches combine. A reduction of the power monitor v.s.w.r. to, say, \(1: 2\) would have a significant effect on the error, reducing the uncertainty range to between \(-4.8 \%\) and \(0.2 \%\). The way in which other variations in match can effect the power measurement error is shown in Fig. 8 in which the above two cases are plotted as points \(A\) and \(B\). It can readily be seen how easy it is to introduce quite large errors into microwave power measurement and how important it is to minimize the mismatch loss of microwave components.

A final point concerning Fig. 8: the percentage error introduced by combining the v.s.w.rs on this basis is that compared to what would be delivered to a power monitor having an impedance equal to that of the transmission line.

\section*{Measurement of frequency}

In general the direct measurement of frequency is basically a measurement of time but, because of the manageable size of wavelengths in this region of the spectrum, frequency can also be determined by a measurement of length. An example of this latter method is the slotted line used for v.s.w.r. measurements previously dis-

Fig. 8. Effect of the mismatched source and load can be quite serious in terms of measurement error. This graph shows the limits of maximum and minimum loss set by two mismatches; the exact value cannot be determined without phase information, which is usually lacking.

cussed in Part 9. By moving the sliding carriage, the attached probe samples the periodic standing wave pattern in the transmission line which repeats itself every half wavelength. The position of the carriage is indicated by a calibrated venier scale like that used in vernier calipers or sometimes by a clock gauge. In either case position can, be measured to about \(0.1 \%\), but this accuracy is somewhat degraded when applied to measuring wavelength because of the error in finding the identical probe positions on different cycles of the pattern. This method is comparatively laborious and is only used nowadays either as a teaching aid or in those cases of dire emergency when one's own frequency counting system has broken down and one can't borrow a replacement from someone else.

A second frequency-measuring instrument, and the most widely used of all, is the wavemeter. Many designs exist but all are based on noting the response of a three-dimensional microwave cavity at its point of resonance, this point being adjustable. A popular method is shown in Fig. 9, which illustrates a cylindrical cavity into which slides an adjustable spindle. The cavity is loosely coupled to the main transmission line so that a small amount of microwave power can enter.

With the spindle withdrawn completely from the cavity avwaveguide mode can exist, and the cavity will appear as an electrically resonant circuit with a resonant frequency determined by its diameter. As the spindle is inserted the resonant frequency is reduced from this upper limit and becomes a function of the spindle length, \(L\), and the cavity now supports a hybrid mode consisting of the original waveguide one and a TEM mode due to the coaxial section formed by the spindle.

Finally, as the spindle penetration becomes greater, the fringing capacitance between the end of the spindle and the base of the cavity starts to influence the resonant frequency, which starts to decrease quite rapidly. The \(Q\) factor of this type of microwave resonant circuit is a function of the ratio of cavity to spindle diameters and can be in the vicinity of 1,000 .

A practical realization of the instrument is shown in Fig. 10, in this case for use with miniature coaxial connectors. The right-hand component is inserted in series with the coaxial line carrying the frequency to be measured so that the microwave power enters the left-hand connector, say, and leaves via the right-hand one, which might be terminated in either a crystal detector or a power meter. The hole by which a sample of the power can be coupled out can be clearly seen between the two connectors.

On the left of Fig. 10 is the other part of the wavemeter, which contains the cavity, spindle and frequency readout

Fig. 9. Popular version of the wavemeter cavity in which the resonant frequency is governed by the spindle penetration. Cavity is coupled electrically to the main transmission line and the frequency is indicated by the point at which the cavity absorbs power at resonance.

on the fundamental and is displayed on a digital readout. In arriving at this correct display it is necessary to know the fundamental oscillator frequency and this is counted directly by shift register in the low-frequency section. Here a reference oscillator accurately times the opening of a sample gate while the number of cycles passing is counted.

Accuracy of these counters is \(\pm\) one count in the low-frequency section, in this case at a nominal 100 MHz plus crystal stability. This latter is typically 1 in \(10^{7}\) per week or 2 in \(10^{-9}\) per second with high stability options giving 1 in \(10^{9}\) per day. Most instruments also possess a switchable a.f.c. loop which eliminates zero beat error in this case and also enables f.m. signals to be counted.

At present, commercial instruments are available with transfer oscillator plug-ins which enable frequencies of up to \(40,000-\mathrm{MHz}\) to be directly measured. But, in principle, the technique can be applied to higher frequencies still.

Acknowledgment Many thanks to my old friends at the Sanders Division of Marconi Instruments Ltd for the photographs used in Figs. 3, 5 and 10 and also to Dr Alan Fanton at the NPL for details of the 6 GHz calorimeter.

Fig. 10. Commercial wavemeter operating from about 5 to 18 GHz , showing the series-mounted section and coupling hole on the right. Bolt-on unit on the left comprises the tunable cavity and frequency readout.
and which bolts onto the other component. Thus, when measuring an unknown frequency, the large drum carrying the scale is slowly rotated, thereby turning also a micrometer thread carrying the spindle and varying its penetration into the cavity. When the point is reached where the cavity is resonant at the transmission line frequency, it will absorb energy from the main line and a sharp dip in output will be observed from the detector or power meter.

The instrument is calibrated from a frequency standard and the advantage of this type of readout is that it enables a large, finely graduated scale to be used. In this case the unwound scale length is about 2 m and the measurement accuracy is \(\pm 0.1 \%\). The larger type N connector in the photograph is an additional facility and enables the resonant condition to be identified by connecting a detector to monitor the power absorbed into the cavity.

Progressing in complexity (and cost), one comes to the frequency counter type of instrument which is a true
frequency meter in that it actually counts the cycles of a periodically varying waveform. For microwave frequencies the counter usually consists of two sections: a low-frequency part containing a crystal-controlled reference oscillator, digital counter and digital display and a high-frequency section containing a transfer oscillator, harmonic selector and r.f. input.
The transfer oscillator consists of a conventional low-frequency oscillator circuit operating at, say, 100 MHz and it could either be a highly stabilized one or tunable by several tens of MHz either side of the fundamental, depending upon the approach adopted by the manufacturer. Whichever it is, the output from the oscillator is fed to an harmonic generation circuit producing usable outputs up to, say, the 100th harmonic.

Taking the tunable version as an example, the oscillator output plus harmonics would be fed to a tunable mixer along with the input signal to be measured. Harmonic selection circuitry then allows the harmonic nearest to the unknown frequency to be selected, to producing a low i.f. from the mixer which is displayed on an integral c.r.t. The fundamental oscillator can then be tuned to a frequency which gives a zero beat between the two mixer inputs, at which point the unknown frequency is now a known number of harmonics up

\section*{Sixty Years Ago}

ONE of the earliest methods of viewing response curves, now the province of cathode-ray and pen recorder instruments, was described in the issue of Wireless World for July 1915. Designed by Dr. J. A. Fleming (Sir Ambrose, of diode fame) the instrument was named the "Campograph" and was reminiscent of the Duddell oscillograph, in that it was "all done by mirrors".
A long, narrow mirror, mounted with its long axis horizontal, was connected by a cord to the spindle of a rotary potentiometer (a new device invented for this instrument) and was tilted as the pot.was turned. The wiper of the pot.derived a voltage which was applied to the device under examination (detector, valve, etc.). A mirror galvanometer, whose light spot was directed on the long mirror, was deflected by the dependent variable signal, such as anode current, the two together forming \(X\) and \(Y\) axes of the display, projected either onto a screen or photographic plate. Alternatively, the pot. could be replaced by a variable capacitor, when the instrument could be used to plot resonance curves.

Examples of photographs obtained in this way were shown in the article and included valve characteristics, hysteresis curves of iron wire and resonance curves. An instrument which uses a similar principle was described by H. J. N. Riddle in the issue for November, 1971.


\section*{Amateurs and emergencies}

From time to time amateur radio finds itself firmly at the centre of the world stage - unfortunately most often in connection with major natural disasters that disrupt normal telecommunications leaving amateur stations as the only or first links with the stricken areas. Magazines from Australia and New Zealand reflect two such events: one last Christmas, the other in 1931.

Electronics Australia describes how when the cyclone struck Darwin on Christmas Day one of the first links to be established was from a mobile station in a car 13 km outside Darwin operated by VK2BNN, his wife VK2BYL and VK8JT. They made contact with amateurs in Victoria more than 1,600 miles away, providing one of the few channels for police and emergency traffic. On Boxing Day an emergency s.s.b. net was established on 14.111 MHz with VK3AUP, Melbourne acting as control. VK8CW at Alice Springs acted as a relay station when required. By December 27 the net had become a nationwide system with participating amateurs in Cairns, Townsville, Rockhampton, Mackay, Mt Isa, Brisbane, Lismore, Armidal, Sydney, Canberra, Cooma, Melbourne, Adelaide, Perth and Alice Springs.

The New Zealand journal Break-in reports the death of James Mills, ZL2BE of Hastings who for many years was a leading figure of amateur radio in that country and whose activities attracted world interest in February 1931 when a major earthquake shattered the towns of Napier and Hastings. James Mills was one of the few amateurs having a rotary generator that could be run from car batteries and was able to make contact on 3.5 MHz , first with other amateur stations and then with the official New Zealand Government station ZLW at Wellington, handling a very large number of emergency messages. Later a relief expedition to Napier was accompanied by ZL2BO who set up a station there. The events generated enormous goodwill towards amateur radio and the country still maintains an Amateur.

Radio Emergency Corps which is frequently called upon to help; two recently reported cases involved a search for lost hikers who got into difficulties crossing the Roaring Meg River and a coastal rescue when a trawler went ashore off New Plymouth.

In the United Kingdom the "Raynet" or Radio Amateurs' Emergency Network of the RSGB maintains preparedness for emergency operations through local controllers and groups and by regular exercises in conjunction with the British Red Cross Society, the St John Ambulance Brigade and the police. They are ready and authorised to provide communications assistance on request from the user organisations in conditions where there is a real risk to human life, in the belief that Raynet is a way in which radio amateurs can use their knowledge as a service to the community. Fortunately, the occasions on which Raynet is called upon in earnest are relatively few: most "on air" activity is during simulated emergencies. Nevertheless it is a service that believes in being ready and willing.

\section*{Hourly propagation forecasts from WWV}

For amateurs and short-wave listeners a source of hourly propagation data is the American standard frequency transmissions from WWV (Colarado) and WWVH (Hawaii) on 2.5, 5, 10, 15. 20 and 25 MHz . These now include at 14 minutes past each hour an indication of solar flux (in the form 72 plus 0.6 R ) and geomagnetic activity ( 0 to 9 K scale).
In general for good h.f. conditions the higher the solar flux figure the better (for the next few years this is unlikely very often to exceed 100); conversely a low K figure (preferably 2 or under) is a good sign. High K ratings indicate a significant influx of solar particles, usually resulting in weaker signals, increased fading and noise: over 4 usually indicates a solar storm; 3-4 unstable or unsettled conditions. Unfortunately at the present time the standard frequency transmissions heard most strongly in the UK are. seldom those from WWV or WWVH.

There is growing evidence to suggest we are now very close to the end of the present sunspot cycle, with its oddly distorted decay during 1972. Although it is unwise to make long term predictions about future sun-spot activity it looks increasingly as though the next cycle may have a relatively low maximum.
The ZB2VHF beacon station at Gibraltar is now in operation on 144.145 MHz beaming signals towards the UK.

\section*{Look no batteries!}

The energy crisis has made numbers of amateurs look quite seriously into the question of how radio communication could be maintained completely independently of mains supplies or primary batteries. Some recent experiments
have been based on solar batteries, wind generators and pedal- and hand-operated battery chargers. QST for example reports that a man on a jacked-up bicycle can generate 100 to 120 watts of power by driving a car generator at over 1,100 r.p.m. using the high gearing provided by a 27 -inch wheel (generators for this purpose were dropped by the RAF to the French resistance during World War II).
But for sheer ingenuity a prize must surely go to a Dutch amateur J. M. H. Wagenmans, PAOHWE who claims to have built a milliwatt transmitter powered entirely by the action of the Morse key! He does this by linking the moving arm of a Morse key to the cone of a moving-coil loudspeaker so that the movement produces an electrical output which is rectified and stored in a \(40,000 \mu \mathrm{~F}\) capacitor to power a transistor crystal oscillator to a d.c. input of 1.5 mW . Brass pounding with a vengeance; although a nagging doubt remains, despite the photographs and circuit details in the April issue of the Dutch journal Electron: April issues of amateur journals are notorious for elaborate technical spoofs, though it is difficult to fault this idea!

\section*{In brief}

The RSGB has stated that it appears that the \(25 \%\) VAT rating applies to all amateur radio equipment and components . . . The recent use of the callsign GB2IARU at Tonbridge School to mark the 50th anniversary of the formation of the IARU is believed to be the first time a four-letter callsign suffix has been authorised for amateur radio operation in the UK ... During 1976, the bicentennial year of the constitution of the United States, American amateurs will be able to use callsigns beginning with an " \(A\) " instead of "W" or "K": all prefixes will have two letters before the district number, ranging from AAl to AL7 and including AC4 which was formerly used by amateur stations in Tibet and thus one of the most eagerly sought after prefix of all time
American amateurs are concerned that a Dallas consulting firm has filed a proposal with the FCC for a new television channel that would result in the elimination of the 50 MHz amateur band. . A 10 GHz beacon station at a temporary site on the Isle of Wight has been heard at distances up to 65 km , the beacon uses an 80 mW oscillator on \(10,100 \pm 1 \mathrm{MHz}\) with an omnidirectional aerial with a gain of about 11 dB . Callsign is GB3IOW . . Among forthcoming mobile rallies are: Longleat near Warminster on June 29 by Bristol RSGB Group; Upton by Worcester society on July 6; Cornish RAC Rally, Camborne (provisional) on July 20 (details G3NKE); Polegate Steam Engine Rally on July 20 with exhibition station GB2SS.

PAT HAWKER, G3VA

\title{
75 Years of magnetic recording
} 5 - A diversity of applications
by Basil Lane

\author{
Assistant Editor, Wireless World
}

\begin{abstract}
Shortly after the end of World War II, event's took an unexpected turn for magnetic recording. Up to that time, although other uses had been suggested for this versatile storage method, the technology had not developed to the stage where they could be practically realized. However, the war effort had resulted in new electronic techniques becoming available and at he same time magnetic recording itself came of age. From that date forward, the number of applications for magnetic recording were to multiply.
\end{abstract}

Curiously, for the historian, the task of recording events in the recent past becomes more difficult the closer one approaches the present day. There could be many reasons for this, but in the case of magnetic recording it is because technology from 1945 advanced at such a rate that new developments followed one another at an incredible pace. This makes it difficult to say at times who was first in the field with a particular idea. One can only hope to describe from contemporary reports what happened.
A typical example is the computer. Where now we can hardly think of a computer without also thinking of the magnetic storage methods used, the earliest computers were without such an advantage. Suddenly, everyone seemed to be working on the idea of using magnetic tape as. a storage medium. In an historical broadsheet put out by 3 M a few years \(\mathrm{ago}^{68}\) it was suggested that flexible storage systems were one of the most significant steps taken by computer designers, and in the days just after the war a variety of memory devices were proposed including delay lines filled with gin!

Just about the earliest computer with a magnetic store was the ARC (Automatic Relay Calculator) made at Birkbeck College, London in 1947. Built for the British Rubber Research Association, it had a nickel plated drum store with a capacity for 256 numbers each of 21 binary digits. Shortly after, the experience gained in developing this computer was used to develop the SEC (Simple Electronic Computer), the first all-electronic computer with a drum store.

Also in 1947, Eckert and Mauchly built a machine called BINAC for the

Fig. 2. The TR-22 video recorder by \(R C A\), this was the first transistorized video recorder to enter service, May 7, 1961.

Northrop Corporation, this computer using a mercury delay-line memory of 512 words and being the first to use a magnetic tape input and output.
Although magnetic drum and disc scored for short term storage with fast, random access, there was an increasing requirement for long term serial data stores of greater versatility than the punched paper tape and card type. Thus in the early 1950 s several machines appeared with a tape storage system, one such machine being the IBM 701. This was the first of the IBM machines to use a combined drum and tape store, supplemented with Williams tubes to give a total memory capacity of 2048 words.
Most of the development from that time on, concentrated on the improvement of the magnetic media, not only to reduce the error rate due to drop-outs but also to increase the capacity of the media to record digital bits. Thus the capability rose from 100 bits per square inch in 1947 to 1500 in \(1965^{69}\) and as high as 6500 bits per square inch today although there are at the moment few, if any, machines that are capable of recording such a bit density. Although
plated metal discs had been used from time to time, the real development of this form of recording medium did not start until Zaponi \({ }^{70}\) developed a reliable plating technique in 1952. It is interesting to note that 46 years earlier, P. O. Pedersen had patented \({ }^{71}\) a plated magnetic carrier though this was of course intended for audio recording.
In modern computers a variety of storage media is used, with magnetic methods still paramount. Disc is used for random access and usually is manufactured as a pack of discs in a standard format. The magnetic layer may be acicular \(\mathrm{Fe}_{2} \mathrm{O}_{3}\), plated nickel-cobalt or other similar magnetic metals and the writing and reading are achieved by flying heads located in the appropriate position in the disc pack by high speed actuators. Magnetic tape is still strongly favoured for long term storage where access time is not so important and will be either ferric oxide, cobalt-doped ferric oxide or chromium dioxide, all of the latter having been developed from the early sixties.
The most popular material used in magnetic tapes is still the leader, this being gamma ferric oxide. Since the

early days of its use as the basis for a coating formulation for magnetic tape, it has been improved and the coating formulation itself developed almost beyond recognition. However, it was inevitable that some challenge to the supremacy of ferric oxide should come from other materials and the demands placed on magnetic tape by the invention of the video recorder and the data recorders for computers provided the impetus for this to happen during the 1960s. From around 1956, cobalt doping of ferric oxide had been studied as a method of improving the short wavelength response of tape and by 1967 an experimental tape had been made. However, the problems associated with this type of magnetic material (e.g. pressure instability of magnetisation) prevented it from becoming as popular as more conventional coatings.

Another line of research had been undertaken by Swoboda \({ }^{72}\) who had been concentrating on the problem of synthesizing chromium dioxide, a promising material for tape since it had a high remanence, which offered a very good short wavelength performance. In early 1961 this substance was produced successfully, though it was to be some time before it made its debut as a magnetic tape. As a matter of interest, it took ten years for \(\mathrm{CrO}_{2}\) to appear in a compact cassette, when Crolyn (the Du Pont name for \(\mathrm{CrO}_{2}\) ) appeared under labels such as Advent and Memorex.
It is interesting to note that, due to a quirk of American Patent law which allows applications to be patented as well as processes. Du Pont held the master patent for the use of \(\mathrm{CrO}_{2}\) as a magnetic recording medium in America. Process patents are held in all the other countries of the world where applications are not patentable, and it was this situation that led to Agfa Gevaert trying to circumvent the Du Pont patent in 1972. They too had invented a process for the manufacture of \(\mathrm{CrO}_{2}\), which differed from the Du Pont method, but were prevented from selling any tape in America because of the patent held by Du Pont. The ridiculous situation of being barred from one of their important markets eventually forced Agfa to take out a licence for the Du Pont process and pay for the privilege of selling \(\mathrm{CrO}_{2}\) tape in America.

Since the date of the appearance of \(\mathrm{CrO}_{2}\) as a magnetic medium for cassette tapes, other manufacturers and those who were licencees have been attempting to either equal the performance of this substance, using cheaper ferric oxide, or have been busy looking at other substances. One development that appeared to result from a parallel, but separate, development project was the dual layer coated tape. These had been proposed as early as 1953, when Kornei \({ }^{74}\) suggested that short wavelength performance could be improved if a multi-layer tape was prepared with a high coercivity surface layer, followed
with successively deeper layers using oxide of a lower coercivity. Another quite novel idea proposed by Gabor and Bauer \({ }^{74}\) was that a dual layer tape should be made with the top layer oriented in a vertical direction.

However, it was Sony and 3 M that eventually produced a practical dual layer tape, with Sony marketing its product in Japan in January 1974 and, later that same year, 3 M announcing its own product. Again, it would seem that the master patent is probably held in America by \(3 \mathrm{M},{ }^{75}\) so it is highly likely that Sony have had to come to some cross-licence agreement with 3 M in order to sell their tape in the USA.

\section*{Developments in heads}

No history of magnetic recording would be complete (and this one is far from being so) without a mention of the development of ferrite heads. With the appearance of \(\mathrm{CrO}_{2}\) tape, which is a much more abrasive material, there was a particular requirement for a hard wearing head to be produced which would withstand many hours of use. This was very important in video recording where the head to tape speed is high and the track width is narrow.
Early heads had been made of laminated Mumetal and although experiments had been made with harder materials such as Alfenol, this proved, until recent years, too intractable to be used as a substitute. Permalloy and other harder grades of metal have been used with increasing success, but it was the ferrite head that made the big news when it was first developed. One of the first descriptions of a ferrite head appeared \({ }^{76}\) in 1955, to be followed some years later by the classic paper by \(S\). Duinker \({ }^{77}\) of Philips, who described the method of using glass as a spacer and as a bonding material in the front gap of the head. This was a significant improvement that reduced the number of rejected heads that had suffered from chipping at the gap edges.
By 1968, Matsushita had developed the hot pressed ferrite head and about this same time Akai appeared with a glass-crystal ferrite head, made from a monocrystalline block of ferrite.

Other important head types used in specialist fields were the flux sensitive heads, either using a saturable limb in the magnetic circuit of the head, or the semiconductor Hall effect types described by Camras in the mid-1950s. It was Camras also that invented the cross-field head \({ }^{78}\) for audio use, this being described January 1952.

In recent years there has been an increasing interest in the fabrication of very precisely defined narrow track heads and to this end experiments have been undertaken to produce sputtered film \({ }^{79}\) cores in 1967 and later, in 1972, sputtered film heads using Sendust as the magnetic material. \({ }^{80}\)

\section*{Conclusion}

In as brief a series as this has been it is difficult to be as thoroughgoing as perhaps one should be, and I am certain that some important inventions have been left out. Little has been said of the p.c.m. recorders developed by the BBC \(^{81}\), Nippon Columbia \({ }^{82}\) and others \({ }^{83}\), nor has anything of note been mentioned of instrumentation recorders, including those used in the space effort. There are also the more exotic types of recorders such as the brilliant invention by Seimens \({ }^{84}\) of the slow and stop motion video disc recorder. However, I feel that all of the significant stages in the development of magnetic recording on the broad front have been covered.

It still seems remarkable that only 75 years ago Poulsen and Pedersen could have been responsible for the whole chain of ideas and inventions that resulted in the magnetic recording process that so invades the everyday life of every one of us.

My apologies to Mrs Pedersen who was kind enough to write and point out an error in spelling P. O. Pedersen's name in earlier parts of this series.

\section*{References}
68. The birth of the computer, pub. 3M Company 1971.
69. Dudson, M. F. and Davies, A. V. Magnetic recording for computers.
Proc. I. E. E. Reviews, Vol. 119, no. 8R, Aug. 1972, pp. 956-984.
70. U.S. Pat. 2.619,454. P. P. Zapponi, Nov. 25, 1952.
71. U.S. Pat. 836,339. P. O. Pedersen, Nov. 20, 1906.
72. Swoboda, T. J. et al. Synthesis and properties of ferromagnetic chromium dioxide. Journal App. Phys. Supplement to Vol. 32, No. 3, Mar. 1961, pp. 3745-3755.
73. U.S. Pat. 2,643,130. Kornei, June 1953.
74. U.S. Pat. 3,052,567. Gabor et al. Sept. 4, 1962.
75. U.S. Pat. 3,761,311. Perrington et al. Sept. 25, 1973.
76. Chynoweth, W. R. Ferrite heads for recording in the megacycle range. Tele Tech Aug. 1955, p. 85.
77. Duinker, S. Durable high resolution ferrite transducer heads employing bonding glass spacers. Philips Res. Reports, Vol. 15, 1960. pp. 342-367.
78. Camras, M. A new magnetic recording head. Journal S.M.P.T.E. Vol. 58, Jan. 1952, pp. 61-66.
79. Vodicka, V.W. Sputtering of ternary magnetic films and their use in the manufacture of magnetic recording heads. I.E.E. Conf. Publication (33) 1967, pp. 213-216.
80. Shibaya, Hiromichi. Fabrication of narrow-track video head with Sendust sputtered film. NHK Laboratory Note. Serial No. 154, July 1972.
81. Jones, A. H. and Bellis, F. A. Digital stereo sound recorder. Wireless World, Sept. 1972, pp. 432-435.
82. Iwamura, Hiroshi et al. Pulse code modulation recording system. Journal A.E.S. Voí. 21, No. 7, Sept. 1973, pp. 535-541.
83. Sato, N. PCM recorder. Journal A.E.S. Vol. 21, No. 7, Sept. 1973, pp. 542-548.
84. White, G. Video recording: record and replay systems. pub. Newnes Butterworth 1972.

\section*{New Products}

\section*{Thick-film amplifier}

A thick-film hybrid amplifier suitable for audio applications will deliver around 15 W (average) into an \(8 \Omega\) load. The class B quasi-complementary circuit has a frequency response from 0 to 80 kHz , an input sensitivity of 350 mV (typical), and a t.h.d. figure of \(0.2 \%\). The device is mounted on an integral heat sink measuring \(30 \times 30 \mathrm{~mm}\) which allows full rated output at a temperature of \(55^{\circ} \mathrm{C}\). Tadiran, 193 Regent Street, London W1.
WW 312 for further details

\section*{De-soldering instrument}

Adcola Products have introduced an automatic de-soldering instrument for removing d.i.l. i.cs from p.c. boards. The unit, which is called the Removic, consists of an operating gun powered from a control box which adjusts the temperature from 350 to \(750^{\circ} \mathrm{F}\). In


WW308

operation the gun is placed over an i.c., a handle is pressed which positions extractor claws and heater blocks on the i.c. When the solder melts the component is extracted by applying steady pressure on the handle. Adcola Products Ltd, Adcola House, Gauden Road, London SW4.
WW308 for further details.

\section*{Mini drill}

A small power drill manufactured by Expo operates from a 12 V 1 A supply and has a chuck speed of around 9000 r.p.m. The drill, which is supplied with a range of accessories which include twist drills, cutting, milling, reaming and grinding tools, is priced at \(£ 9.17\) plus v.a.t. and is available from Electroplan Ltd, P.O. Box 19, Orchard Road, Royston, Herts SG8 5 HH .
WW310 for further details

\section*{Alarm unit}

The Tellit is an audible alarm unit using a continuous loop of tape which may be recorded with any short message or warning specified by the user. Four basic types are available including an uncased playback mechanism for mounting into customers equipment. Highland Electronics Ltd, 33 Dallington Street, London EC1V 0DB.
WW311 for further details

\section*{Counter}

A \(75-\mathrm{MHz}\) counter/timer, model 5308 A , measures frequency, frequency ratio, period, period average, and time inter-
val. The instrument also offers an auto-range facility which selects the range that will give the best resolution within a measuring time from 0.11 to 1.1 s . Measurements are indicated by an eight-digit display housed in a \(31 / 2 \times 61 / 4 \times\) \(93 / 4\) in case. Hewlett-Packảrd Ltd, King Street Lane, Winnersh, Wokingham, Berks RGll 5AR.
WW303 for further details

\section*{Triacs}

ITT Semiconductors have made their first step into the triac market by announcing the TC range of devices. These components, which have been designed and manufactured in the UK, are available with current ratings of 4,6 , \(8,10,12\) and 16 A at voltages of 200,400 , 500 and 600 V . The complete range uses a centre-gate construction for improved di/dt capability, and has glass passivated chips which improve high-voltage protection. All of the devices are housed in the TO-220AB plastic package and are priced between \(£ 0.416\) and \(£ 1.88\) each depending on type and quantity. ITT Semiconductors, Foots Cray, Sidcup, Kent.
WW 335 for further details

\section*{Microwave coupler}

Walmore are now supplying the Norsal 4834 microwave coupler. This device, which is claimed to be the first to cover the range 2 to 12.4 GHz , has a v.s.w.r. of 1.4:1, amplitude imbalance of \(\pm 0.5 \mathrm{~dB}\), and a phase imbalance of \(\pm 7^{\circ}\). The coupler is designed to handle input powers of 20 W average with a 2 kW

WW303


WW302


WW゙313


WW309
peak rating. Microwave Division, Walmore Electronics Ltd, 11 Betterton Street, London WC2H 9BS
WW307 for further details

\section*{Variable-filters}

The EF3/03 and EF3/04 are recent additions to the Barr \& Stroud range of variable filters. The units are high-pass and low-pass filters respectively which may be switched into several modes including band-pass and band-stop. The cut-off frequency is variable from 0.1 Hz to 100 kHz with a stop-band attenuation rate of 48 dB /octave and a pass-band response from 0 to 700 kHz . Barr \& Stroud Ltd, Kinnaird House, 1 Pall Mall East, London SWIY 5AU.
WW302 for further details

\section*{Signal generator}

The Fluke synthesized signal generator, model 6010A offers a keyboard entry with a manual fine control, and a built-in microprocessor which can store up to nine programmes. Each programme consists of a frequency, a frequency range, an amplitude, and a modulation (c.w., a.m., or f.m.). These programmes can be recalled at any point in a testing sequence. The instrument has a frequency range from 10 Hz to 109 kHz in 0.1 Hz steps and 10 Hz to 10 MHz in 10 Hz steps, an accuracy of \(\pm 3\) parts in \(10^{6}\) in the temperature range 0 to \(+50^{\circ} \mathrm{C}\) and a variable output level from 0.25 mV to 5 V r.m.s. The selected frequency is indicated on a seven-digit l.e.d. display. Fluke (Nederland) B.V., Ledeboerstraat 27, Tilburg, Netherlands.
WW313 for further details

\section*{Testing system}

The type 8309 test set connects directly to a computer terminal and will transmit to, or receive messages from the terminal for the purpose of checking and/or fault analysis. The 8309 can be operated at data rates between 110 and 9600 bits/sec in a synchronous or asynchronous mode. In the former mode it responds to either the EBCDIC or ASCII SYN character set, while in the latter case the number of stop bits sent by the transmitter may be selected as required. Data Recognition Ltd, Loverock Road, Battle Farm Estate, Reading, Berks. WW309 for further details

\section*{Bezel}

A recent addition to the Roxburgh range of switches and accessories is a bezel incorporating a l.e.d. mounting facility. The bezel fits the J50, J60 and 800 J switches and accepts a 0.2 in l.e.d. Roxburgh Electronics Ltd, 22 Winchelsea Road, Rye, Sussex.
WW301 for further details

\title{
Products seen at Hi-Fidelity 75
}

\section*{Sansui tuner}

The TU-7700 stereo tuner is one of a series of amplifiers and tuners which Sansui have added to their range. This model will receive f.m. broadcasts within the frequency range \(88-108 \mathrm{MHz}\) and a.m. broadcasts in the range \(535-1605 \mathrm{kHz}\). Containing a high inte-grated-circuit count, the TU-7700 is to retail at a suggested price of \(£ 149.10\) plus VAT. Vernitron Ltd, Thornhill, Southampton SO9 5QF.

\section*{Four-channel tape deck}

Well known on the Continent, but new to the UK, the Dokorder range of reel-to-reel recorders is being distributed by Acoustico Enterprises. The top of the domestic range is the model 7140 which is fully equipped to record and replay up to four tracks on \(1 / 4\) in tape. The head block is interchangeable to offer two track stereo recording and a consequent improvement in signal-tonoise ratio.
A useful facility is offered by the so-called "Multi-Sync" which is a switching arrangement which connects one or more record head tracks to the replay amplifier to permit monitoring of previously recorded tracks, whilst adding in synchronism further recordings to remaining free tracks.
Other facilities include sound-onsound, echo, bias and record equalisation for two types of tape and A-B monitoring. Acoustico Enterprises Ltd, Unit 7, Space Waye, North Feltham Trading Estate, Feltham, Middx TW14 0TZ.

\section*{Eagle range}

Eagle International have added considerably to their range of products with the introduction of the 2000 series of equipment. This comprises the A2004 and A2006 amplifiers with a rated output of 20 W per channel and having a rather more complex range of tone controls than usual. A matching tuner amplifier, the A2008, provides for reception of the a.m. and f.m. bands and
also there is a synchronous motor, belt drive turntable, the D2005. A second turntable, the D2006, is classified by Eagle as a servo-monitor type, though exactly what this means is not quite clear. Finally the 2000 series is completed by a choice of five loudspeakers and two headphones. Eagle International, Heather Park Drive, Wembley, Middx HA0 1SU.

\section*{New belt drive turntables}

The BDS80 and BDS90 are two turntables added to the series produced by BSR McDonald. Both models are semiautomatic in that when a record has finished playing the arm lifts up, returns to rest, locks and switches off. Both decks are also fitted with a click suppressor and muting switch which prevent an unwanted noise being fed to the amplifier while the automatic set-down and switch off are in operation. A special feature of the BDS90, according to the manufacturers is a new low-resonance tubular aluminium tonearm, located in a concentric gimbal style mount which carries a calibrated stylus pressure control. The rumble figure for both units is stated to be 55 dB . Standard units are available for either \(100-125 \mathrm{~V} 60 \mathrm{~Hz}\) or \(200-240 \mathrm{~V} 50 \mathrm{~Hz}\). BSR Ltd, Monarch Works, Cradley Heath, Warley, Worcs.


\section*{Three new speakers}

A new range of loudspeakers from Celestion are the UL6, UL8 and UL10 models. The two smaller models in the range are both two-unit systems, the bass driver being supplemented by a passive auxiliary bass radiator unit. The largest model is the UL10 (see photograph) which houses three in-line drive units. Cabinet dimentions are 673 mm height, 317 mm width, 380 mm depth. Power handling is rated at 50 W continuous or 100 W peak music power. Sensitivity is sensibly rated using pink noise, an input of 12 volts r.m.s. being required to produce 96 dB s.p.l. at 1 metre. Frequency response is stated to be 40 Hz to \(20 \mathrm{kHz} \pm 2 \mathrm{~dB}\). Drive units consist of the HF2000 super tweeter, the MD7000 pressure-dome mid range unit and a 254 mm bass drive unit. Rola Celestion Ltd, Ditton Works, Foxhall Road, Ipswich, Suffolk IP3 8JP.

\section*{New life for Wharfedale}

Rank Radio introduced a new XP range of speakers carrying the well-known names of Denton, Linton and Glendale. All have greater power handling capability and are claimed to have improved performance over their predecessors. Taking the smallest in the range, the Denton 2XP, this is a two-way bookshelf enclosure of acoustic suspension


Sansui Tu-7700 stereo tuner
design. Main specifications are: power handling 25W (DIN), suitable for use with amplifiers rated from 3 to 30 W continuous; frequency response \(65-17 \mathrm{kHz}\) at -3 dB points; crossover frequency 1.4 kHz ; sensitivity is 96 dB at lm for 6 W input; impedance is \(6 \Omega\) nominal; dimensions are \(355 \times 246 \times 22 \mathrm{~mm}\). Finish is in teak or white. Rank Radio International Ltd, P.O. Box 596, Power Road, London W4 5PW.

\section*{Amplifier with limiter circuit}

The new Cambridge Classic One amplifier has several unusual features including l.e.d. monitoring of pre-amplifier signal level in 5 dB steps. An l.e.d. indicator is used as a power supply indicator. This also flashes at a regular rate whenever a power amplifier limiter circuit is brought into operation. A circuit in conjunction with the input selector switch is provided to limit the effect of switch-on transients causing 'thumps' through the loudspeakers. Main specifications are: power output at \(1 \mathrm{kHz}, 60 \mathrm{~W}\) per channel into \(8 \Omega\); t.h.d. is less than \(0.05 \%\) at all audio frequencies, typically \(0.005 \%\); signal-tonose ratio is 65 dB ref. 2 mV (pickup input), 75 dB ref. 250 mV (line inputs); input sensitivities are pickup \(2 \mathrm{mV} / 47 \mathrm{k} \Omega\), tuner 250 mV , cassette 100 mV and auxiliary 100 mV . The pickup input overload capability is rated at 45 dB . Facility for the simultaneous use of three tape recorders is also provided. Cambridge Audio Ltd, Lamb House, Church Street, London W3 2PB.

\section*{Solid State Devices}

Names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

\section*{Shift register}

A 512-bit dynamic shift register with built-in recirculating and command logic has a maximum operating speed of 4 MHz .
WW350 for further details
G.E.

\section*{Diodes}

The 501PD series of diodes has an average current rating of 500 A at an \(84^{\circ} \mathrm{C}\) case temperature, and are avallable over the voltage range 2 kV to 4 kV with non-repetitive ratings up to 4.4 kV . WW351 for further details
I.R.

\section*{R.a.m.}

The \(1103-1\) is a 1 k dynamic r.a.m. offering a 340 ns full-cycle time and a 150 ns read access time. All address inputs are fully decoded and typical power dissipation is \(0.4 \mathrm{~mW} /\) bit.
WW352 for further details
ITT

\section*{Schottky register}

A 4-bit register having three-state and standard t.t.l. outputs has been built using Schottky technology. The device is available in three packages and is priced from \(\$ 3.08100\) up.
WW353 for further details
AMD

\section*{Programmable op-amp}

Parameters of the MC3476 op-amp are programmed by an external resistor to suit power supplies from \(\pm 6\) to \(\pm 15 \mathrm{~V}\). The device does not require frequency compensation, has offset null capability and is protected against short circuits. WW354 for further details Motorola

\section*{Bridge rectifers}

A new range of bridge rectifiers has a built-in capacitor in parallel with each diode to absorb reverse voltage transients. The range has repetitive peakreverse voltage ratings from 50 to 600 V and an average direct current rating of 2A.
WW355 for further details
ME

\section*{Memory driver}

An n-channel m.o.s. memory driver i.c., type MC3459, contains four identical driver circuits and is capable of maintaining a propagation delay of 20 ns when driving a 360 pF load.
WW 356 for further details
Motorola

\section*{A-to-d converter}

The MC904 is claimed to be the first monolithic i.c. with all the functions necessary for a digital panel meter or multimeter. The device has a resolution of \(100 \mu \mathrm{~V}\) and an input impedance of \(1000 \mathrm{M} \Omega\) and is housed in a 28 -pin d.i.1. package.
WW358 for further details
Macro

\section*{Image sensor}

A new 1728-element charge-coupled linear image sensor, suitable for use in optical page scanning systems, has been introduced by Fairchild. The CCD121 is capable of reading a standard \(81 / 2 \times\) 11 -inch page in less than one second and up to 200 lines per inch can be resolved. WW 359 for further details Fairchild

\section*{Count/display i.c.}

A t.t.l.-compatible universal count/ display i.c., type ZN1040E, offers a count rate of over 5 MHz . The device requires a 5 V supply and is housed in a 28 pin d.i.l. package.
WW360 for further details Ferranti

\section*{Low-voltage sensor}

An i.c. intended for use with battery operated equipment, is internally set to trigger when a voltage drops to 2.4 V \(\pm 2 \%\). This value can be increased by adding a resistor.
WW361 for further details Bowmar

\section*{Sample/hold amp}

An adjustment-free sample/hold amplifier called the MN343 provides a droop rate of less than \(0.3 \mathrm{mV} / \mathrm{ms}\) and an acquisition time of better than \(10 \mu \mathrm{~s}\).
WW 362 for further details Tranchant

\section*{F.e.t. input amplifier}

The 3670 is a f.e.t.-input i.c. instrumentation amplifier. Gain adjustment, from 1 to \(1000 \mathrm{~V} / \mathrm{V}\), is made with one resistor. Maximum bias current is 10 pA , and the input impedance is \(10^{13} \mathrm{ohms}\).
WW363 for further details Burr Brown
G.E. Electronics (London) Ltd, 182/4 Campden Hill Road, Kensington, London W8 7AS.
International Rectifier, Hurst Green, Oxted, Surrey RH8 9BB.
ITT Semiconductors, Footscray, Sidcup, Kent.
Advanced Micro Devices Inc., 901 Thompson Place, Sunnyvale, California 94086, U.S.A.
Motorola Ltd, Semiconductor Products Division, York House, Empire Way, Wembley, Middx.
Micro Electronics Ltd, York House, Empire Way, Wembley, Middx.
Macro Marketing Ltd, 396 Bath Road, Slough, Bucks.
Fairchild Camera \& Instrument Corporation, Northway House, High Road, Whetstone, London N. 20.
Ferranti Ltd, Electronic Components Division, Gem Mill, Chadderton, Oldham, 0L9 8NP.
Bowmar Arizona, Inc., 2355 West Williams Field Road, Chandler, Arizona 85224, U.S.A.
Tranchant Electronics (UK) Ltd, Tranchant House, 100a High Street, Hampton. Middx.
Burr-Brown International, 25a King Street, W atford, WD1 8BT.

\section*{Industrial Action \({ }^{2}\) an JAMES SCOTT IMDU/TRIAL} ringrefequpment
 now offers industrial users a greater choice of alterriative systems in robust, industrial, cast alumi nium housings, for a wide variety of applic:ations.
The riange is made up of standard sub-assemblies which can be permutated to suit Individual applic.ation requirements.
Some Suggested Applications for these Units Level "zontrollers; Proximity alarms; Small object counters; Process control systems; Positioning system s: Door opening systems; Safety barriers; Presenc:e/detectors: Train control systems; Vibration sensing systems; Intruder alarms; Road vehicle systems;
If any cif the above are your problems or if you have a partic ular problem for which we could adapt a system ןlease write or telephone for further information and technical literature to

\(\mathbf{W}^{\prime} \mathbf{W}-007\) FOR FURTHER DETAILS

\section*{Sinclair Project 80}


\section*{The watts...}

14 different hi-fi modules.
Between them they cater for every variety of hi-fi set-up, from a tuner amp to a full CBS SQ quadrophonic system. The value for money's amazing. A genuine 25 W per channel quadraphonic amplifier for under \(£ 80\)
a 12 W per channel stereo amp for around £30.

And the satisfaction's even greater! If you can handle a soldering iron, you can handle Project 80. And if you can't. use Project 805 - the same modules but with solderless clip connections.

\section*{and the wherefores.}


Take a look at some of the hi-fi systems you can build.

Get the full technical
specifications
See what impartial hi-fi journals thought of its performance.

And read up on the rest of the Sinclair hi-fi range.

It's all in the Sinclair hi-fi range fact-file.

\section*{Send for Sinclair's}

\section*{fact-file - now!}

See if the answer's here the information on the component you've been



Much less for quantities Boplast cases are avalable with.clear

WEST HYDE NOW HAVE OVER 160 SIZES AND TYPES OF CASES, PLASTIC AND METAL

providing good access to the interior With \(3 / 16^{n}\) thick-sice removed, the The good-looking Swift case is made and satin anodised Only 8 parts and 8 screws The feet


WEST HYDE (WH
WEST HYOE DEVELOPMENTS L.t, Ayefield Cres., Northwood Hills, Northwood, Middx HA6 INN. Tol: Northwood 24941/26732

Telex: 923231

ROGERS
AUDIO TEST EQUIPMENT

A comprehensive, versatile range of test equipment primarily designed for the measurement of high quality audio equipment but with additional applications in the electronics industry in general. The equipment is of particular interest to the professional audio enginee recording studios, broadcasting authorities and educational
establishments.
DM344A Distortion Factor Meter. Designed to make accurate and rapid measurements of total harmonic distortion generated within high quality audio amplifiers, recording and transmission equipment. Selling Price: c/w IBench Case £175.00 + VAT.

S324 Low Distortion Oscillator. Generates a pure sine wave and \(h\) as been designed as a general purpose low distortion signal source. The primary application, used in conjunction with the DM344A, is the measuremerit of total harmonic distortion. Salling Price: c/w Bench Case \(£ 80.00+\) VA,T.

AM324 AF Millivoltmeter. Designed for voltage measurements in the audio and low RF ranges and principally for measuring low level signa is in high impedance circuits. Selling Price: c/w Bench Case E75.00 + V/AT.

PS1A. Regulated Mains Power Supply, Selling Price: \(£ 18.50+\) VAT.

Model 'A' Noise Genierator. A
 portable battery operated ui ut designed for carrying out listening tests on can be selected and our put can be continuous or burst Outp is is contin uously variable. Selling \(\mathbf{P}\) rice: \(\mathbf{£ 3 7 . 5 0}\) + VAT.
Full Colour Literature describing the complete range may be had on request
ROGERS DEVELOPMENTS (Electronics) LIM ITED 4/14 Barmeston Road, London SE6 3BN, Englaricl Telephone: 01-698 7424/4340

\section*{WW-030 FOR FURTHER DE゙IAILS}

\section*{HART ELECTRONIC!}

\section*{Audio Kit Specialists since 1'961}


BAILEY/BURROWS/QUILTER PRE AMP This Is the TOne comror section of the bes preamp kit currently avallable consider the advanages ations qualily fibregiass *Low nose carbon film and metal film resistors throughout *Finest quality low noise ganged controls with matched tracks and shatts cut to length. *Well en gineered layout for total stability *Special decoupling and earthing arrangements to elir unate hum loons. ELIMINATE switches and input sockets (We know of one pre amp \(k\) it which claims ts controls mdunt directly on the board-and so they do. by their shalt bu shes' You still have to wire them up \({ }^{11}\)
*We incorporate the Quilter modification which is most important as I 1 reduces distortion and increases the bass and treble controt range
As can be seen from the photograph the tone control unit is very slim tonly \(1 \frac{1}{2}\) " from
front to back and may therefore be used in many other applications nan our Balley METALWORK AND WOODEN CASES These have been under rev new for some ume F.M. TUNER This
F.M. TUNER This latest addition to our range is designed to offe it the best possible have taken great care to look ather the constructors point of vieiv and there are no colls to wind no RF circuits to wire and no albynment is required ir 1 fact the whole unit can be easily completed and working in an evening as there are on co imponsents we have abandoned the concept of having a tuner as large as the amplitier al id this new unit has a frontal size of only \(1 \frac{1}{2}\) in \(\times 4 \mathrm{in}\). It can be mounted on the side oif our sailey amplifier

 STUART TAPE CIRCUITS Our pinted circuits and components convert any suitable quality deck into a very high quality Stereo Tape unit Input and output levels suris offer tape heads as well if you want new ones.
FURTMER INFORMATION ON ALL KITS FREE if you send us 9 in . \(x 4 \mathrm{in}\). S.A.E. REPRINTS Post tree no VAT
Bailey 30W 18p.
STUART TAPE RECORDER All 3 articles under one cover 30p
Penylan Mill, Oswestry, Salop

\author{
Personal calers are always welcome, but please note we are clos on all day Saturday
}

\section*{More than just a catalogue！ PROJECTS FOR YOU TO BUILD}

4－digit clock， 6 －digit clock， 10 W high quality power amp．，High quality stereo pre－amp．，Stereo Tuner， F．M．Stereo decoder，etc．，etc．
CIRCUITS ．．．Frequency Doublers，Oscillators，Timers， Voltmeters，Power Supplies，Amplifiers，Capacitance Multiplier，etc．，etc
Full details and pictures of our wide range of components e．g．capacitors，cases，knobs，veroboards，edge connectors， plugs and sockets，lamps and lampholders，audio leads， aclaptor plugs，rotary and slide potentiometers；presets， relays，resistors（even \(1 \%\) types！），switches，interlocking pushbuttonswitches，pot cotes，transformers，cable and wire，panel meters，nuts and bolts，tools，organ componen keyboards，L．E．D．＇s， 7 －segment displays，heatsinks， transistors，diodes，integrated circuits，etc．，etc．，etc
Really good value for money at just 40p．


\section*{The 3600 SYNTHESISER}

The 3600 synthesiset includes the most popular features of the 4600 model，but is simpler．Faster to operate， 11 has a switch patching system rather than the matrix patchboard of the larger unit and is
particularly surtable for performance and portable use．
Please send
S．A．E．fo
oul price


\section*{GRAPHIC EQUALIZER}

A really superior
high quality stereo graphic equaliser as described Jan． 1975 issue of ETI．We stock all parts（except woodwork） including all the metal work
drilled and

printed as required to suit our components and PCB＇s
S．A．E．tor price list or complete reprint of article price \(15 p\) ．

The 4600 SYNTHESISER

We stock all the paris for this brilliantly designed symthesiser including all the PCB＇s，metalwork and a drilled and printed front panel，giving a superb professional finish．Opinions of authority agree the ETI International Synthesiser is iechnically superior to most of today＇s models．Complete construction details available shortly in our booklet price \(£ 1.50\) ，or S．A．E please
for specification

\section*{ELECTRONIC ORGAN}

Build yourself an exciting Electronic Organ．Our leaflet MES51，price 15p， deals with the basic theory of electron organs and describes the construction of a simple 49 －note instrument with a single keyboard and a limited number of stops． Leaflet MES52，price 15p，describes the extension of the organ to iwo keyboards each with five vorces and the extension by an octave of the organ＇s range


Solid－state switching and new footages along with a pedal boardi and a further extension of the organ＇s range are shown in leaflet MES53，also priced at 15 p

\section*{NO MORE DOUBTS ABOUT PRICES}

Now our prices are GUARANTEED（changes in VAT excluded）for iwo month periods．We＇ll tell you about price changes in advance for just 30p a year（refunded on purchases）．If you already have our catalogue send us an s．a．e and we＇ll send you our latest list of GUARANTEED prices．Send us 30p and we＇ll put you on our mailing list you＇ll receive immediately our latest price list thell every two months from the starting date shown on that list you＇ll receive detals of our prices for the next GUARANTEED period before the prices are implemented＇plus details of any new lines，special offers，interesting projects and coupons to spend on companents to repay your 30p
NOTE：The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essentia！ tirst step．

Call in at our shop． 284 London Rodd，Westclift on Sea，Essex． Please address all mall to




\title{
Marshallis
}

\author{
A. Marshall \& Son (London) Limited Dept w w \\ \& 85 West Regent Street Glasgow G2 20D Tel Tel 01-452 016 t \\ Everything you need is in our new 1975 catalogue. Available now price 25 p \\ Trade and export enquiries welcome
}

OUR RANGE COVERS OVER 7,000 ITEMS THE LARGEST SELECTION IN BRITAIN TOP 200 IC'S TTL CMOS \& LINEARS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline CA3018A & 0.85 & CDa 043 & 1.80 & NE565 & 4 A8 & SN7448 & 0.90 & & \\
\hline CA3020A & 1.80 & CD4044 & 180 & SL414 & 1.80 & SN7450 & 0.16 & SN74160 & 1.10 \\
\hline CA3028A & 0.79 & CD4045 & 2.85 & SL610C & 1.70 & SN7451 & 0.16 & SN74161 & 1.10 \\
\hline CA3035 & 1.37 & CD4046 & 2.84 & SL611C & 1.70 & SN7453 & 0.16 & SN74162 & 1.10 \\
\hline CA3046 & 0.70 & CD4047 & 1.66 & SL612C & 1.70 & SN7454 & 0.16 & SN74162 & 1.10 \\
\hline CA3048 & 2.11 & CD4049 & 0.81 & SL620C & 2.60 & SN7460 & 0.16 & SN74163 & 1.10 \\
\hline CA3052 & 1.62 & CD4050 & 0.68 & SL62 1C & 2.60 & SN7470 & 0.33 & SN74164
SN74165 & 2.01 \\
\hline CA3089E & 1.96 & LM301A & 0.48 & SL623C & 4.89 & SN7472 & 0.28 & SN74165 & 2.01 \\
\hline CA30900 & 4.23 & LM308 & 2.50 & SL640C & 3.10 & SN7473 & 0.38 & SN74167 & 4.10
1.25 \\
\hline CO4000 & 0.36 & L0057L & 1.50 & SN7400 & 0.16 & SN7474 & 0.36 & SN74174 & 1.25 \\
\hline CD4001 & 0.36 & LM380 & 1.10 & SN7401 & 0.16 & SN7475 & 0.60 & SN74175
SN74176 & 0.90 \\
\hline CD4002 & 0.36 & LM381 & 2.20 & SN7401AN & 0.38 & SN7476 & 0.35 & SN741780 & 1.44 \\
\hline CD4006 & 1.58 & LM702C & 0.75 & SN7402 & 0.16 & SN7480 & 0.50 & SN74181 & \\
\hline CD4007 & 0.36 & LM709 & 0.38 & SN7403 & 0.16 & SN7481 & 1.25 & SN74190 & 1.95
2.30 \\
\hline CD4008 & 1.63 & 8DIL & 0.45 & SN 7404 & 0.19 & SN7482 & 0.75 & SN74191 & 2.30
2.30 \\
\hline CD4009 & 1.18 & 14DIL & 0.40 & SN7405 & 0.19 & SN7483 & 0.95 & SN74192 & 2.30
1.15 \\
\hline CD4010 & 1.18 & LM710 & 0.47 & SN7406 & 0.45 & SN7484 & 0.95 & & \begin{tabular}{l}
1.15 \\
\hline 1.15
\end{tabular} \\
\hline CD4011 & 0.36 & LM723C & 0.90 & SN7407 & 0.45 & SN7485 & 1.25 & SN74193 & 1.18
7.60 \\
\hline CD4012 & 0.36 & LM741C & 0.00 & SN7408 & 0.19 & SN7486 & 0.32 & SN74197 & 1.60 \\
\hline CD4013 & 0.66 & 8 DH & 0.40 & SN7409 & 0.22 & SN7490 & 0.45 & & 1.58
2.25 \\
\hline CD4014 & 1.72 & 1401 L & 0.38 & SN7490 & 0.16 & SN7491 & 0.85 & SN74199 & 2.25 \\
\hline CD4015 & 1.72 & LM747 & 1.05 & SN7411 & 0.25 & SN7492 & 0.45 & SN76003N & 2.26
2.92 \\
\hline CD4016 & 0.68 & LM 748 & 0.60 & SN7412 & 0.28 & SN7493 & 0.45 & SN76013N & 1.92 \\
\hline CD4017 & 1.72 & LMI4DIL & 0.73 & SN7413 & 0.35 & SN7494 & 0.82 & SN76023N & \\
\hline CD4018 & 2.55 & LM3900 & 0.70 & SN7416 & 0.35 & SN7495 & 0.72 & SN76033N & 1.60
2.92 \\
\hline CD4019 & 0.86 & LM7805 & 2.00 & SN7417 & 0.35 & SN7496 & 0.75 & TAA263 & 1.10 \\
\hline CO4020 & 1.91 & LM 7812 & 2.50 & SN7420 & 0.18 & SN74100 & 1.25 & TAA300 & 0 \\
\hline C04021 & 1.72 & LM7815 & 2.50 & SN7423 & 0.29 & SN74107 & 0.38 & taA350A & 1.80
2.10 \\
\hline CD4022 & 1.68 & LM7824 & 2.50 & SN7425 & 0.29 & SN74118 & 1.00 & TAA550 & 2.10
0.60 \\
\hline CD4023 & 0.38 & MC1303L & 1.60 & SN7427 & 0.29 & SN74119 & 1.92 & taA61ic & 2.18 \\
\hline CD4024 & 1.24 & MC1310P & 2.59 & SN7430 & 0.16 & SN74121 & 0.37 & TAA621 & 2.03 \\
\hline CD4025 & 0.32 & MC1330P & 0.90 & SN7432 & 0.28 & SN74122 & 0.60 & TAA6618 & 1.32 \\
\hline CD4028 & 1.50 & MC1352P & 0.80
0.80 & SN7 7437
SN 7438 & 0.35 & SN74123 & 0.60 & TBA641B & 2.25 \\
\hline CD4029 & 3.50 & MC1466L & 3.60 & SN7440 & 0.16 & SN74141 & 0.85
0.90 & T8A65 \({ }^{\text {¢ }}\) & 1.69 \\
\hline CD4030 & 0.87 & MC1469R & 2.75 & SN7444AN & 0.85 & SN74150 & 1.60 & T8A800 & 1.40 \\
\hline CD4031 & 5.19 & NE555V & 0.70 & SN7442 & 0.65 & SN74151 & 0.86 & tBab20 & 1.15 \\
\hline CD4037 & 1.93 & NE556 & 1.30 & SN7445 & 0.90 & SN74153 & 0.86 & tBag20 & 4.00 \\
\hline CD4041 & 1.86
1.38 & NE560 & 4.48 & SN7446 & 0.96 & SN74154 & 1.50 & kets & \\
\hline
\end{tabular}

PW TELETENNIS KIT——42.50
Vat Reprint 75p TRY OUR GLASGOW SHOP

\section*{POPULAR SEMICONDUCTORS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 2N696 & 0.22 & 2N3906 & 0.27 & AF J 39 & 0.85 & 8D139 & 0.71 & MPSA56 & 0.31 \\
\hline 2 N 697 & 0.18 & \(2 N 4037\) & 0.42 & AF239 & 0.85 & 8 D 140 & 0.87 & OC28 & 0.765 \\
\hline 2N698 & 0.82 & 2 N 4036 & d. 67 & AF240 & 0.90 & BF115 & 0.36 & OC35 & 0.60 \\
\hline 2N699 & 0.69 & 2 N 4058 & \(0: 18\) & AF279 & 0.70 & 88117 & 0.65 & OC42 & 0.50 \\
\hline 2N706 & 0.14 & 2 N 4062 & 0.15 & AF280 & 0.79 & 8F154 & 0.20 & 0 C 45 & 0.32 \\
\hline 2N708 & 0.17 & 2N4289 & 0.34 & AL102 & 1.00 & 8 8F159 & 0.27 & TIP29A & 0.49 \\
\hline 2N916 & 0.28 & 2N4920 & 1.10 & BC107 & 0.14 & 8F 180 & 0.35 & TiP29C & 0.58 \\
\hline 2 N 918 & 0.32 & 2N4921 & 0.83 & BC 108 & 0.14 & 8F181 & 0.36 & TiP31A & 0.58
0.62 \\
\hline 2 N 1302 & 0.185 & 2 N 4923 & 1.00 & BC109 & 0.14 & BF 184 & 0.30 & tip32A & 0.74 \\
\hline 2N1304 & 0.26 & 2N5245 & 0.47 & BC1478 & 0.14 & BF194 & 0.12 & tip33a & 1.01 \\
\hline 2N1306 & 0.31 & 2N5294 & 0.48 & BC1488 & 0.15 & 8F195 & 0.12 & TIP34A & 1.51 \\
\hline 2N1308 & 0.47 & 2N5296 & 0.48 & BC1498 & 0.15 & 8 8196 & 0.13 & TIP35A & 2.90 \\
\hline 2N1711 & 0.45 & 2N5457 & 0.49 & BC157A & 0.16 & 8F197 & 0.15 & TIP36A & 2.90 \\
\hline 2N2102 & 0.60 & 2 N 5458 & 0.45 & BC 158A & 0.16 & 8F198 & 0.18 & TiP42A & 0.90 \\
\hline 2N2147 & 0.78 & 2N5459 & 0.49 & BC1678 & 0.15 & BF244 & 0.21 & TIP2955 & 0.98 \\
\hline 2N2148 & 0.94 & 2N6027 & 0.45 & 8C1688 & 0.15 & 8F257 & 0.47 & Tip3055 & 0.50 \\
\hline 2N2218A & 0.22 & 3N128 & 0.73 & BC1698 & 0.15 & 8F258 & 0.53 & TIS43 & 0.28 \\
\hline 2N2219A & 0.28 & 3N 140 & 1.00 & BC182 & 0.12 & BF259 & 0.58 & 2TX300 & 0.13 \\
\hline 2N2220 & 0.25 & 3N/41 & 0.81 & \({ }^{8 C 182 L}\) & 0.12 & 8F561 & 0.27 & 2TX301 & 0.13 \\
\hline 2N2221
2N2222 & 0.18 & 3N200 & 2.49 & BC183 & 0.12 & 8FS98 & 0.25 & \(21 \times 500\) & 0.15 \\
\hline 2N2222 & 0.20 & 40361 & 0.40 & \({ }^{\text {BC183L }}\) & 0.12 & BFA39 & 0.24 & 21)501 & 0.13 \\
\hline 2N2369 & 0.20 & 40362 & 0.46 & \(8 \mathrm{BC184}\) & 0.13 & 8FA79 & 0.24 & \(21 \times 502\) & 0.18 \\
\hline 2N2646
2N2904 & 0.55 & 40406 & 0.44 & BC184L & 0.13 & 8F×29 & 0.30 & 1N914 & 0.07 \\
\hline 2N2904 & 0.22 & 40407 & 0.35 & BC212A & 0.18 & BFX30 & 0.27 & iN3754 & 0.15 \\
\hline 2N2905 & 0.25 & 40408 & 0.50 & 8C212」A & 0.16 & \(8 \mathrm{~F} \times 84\) & 0.24 & 1N4007 & 0.10 \\
\hline 2N2906 & 0.19 & 40409 & 0.52 & BC213LA & 0.15 & BFX85 & 0.30 & IN4148 & 0.07 \\
\hline 2N2907 & 0.22 & 40410 & 0.52 & BC214L8 & 0.18 & \(8 \mathrm{BXB8}\) & 0.25 & IN5404 & 0.22 \\
\hline 2N2924 & 0.20 & 40411 & 2.00 & BC2378 & 0.18 & BFY50 & 0.225 & IN5408 & 0.30 \\
\hline 2N2926G & 0.12 & 40594 & 0.74 & BC238C & 0.15 & BFY51 & 0.23 & AA119 & 0.08 \\
\hline 2N3053 & 0.25 & 40595 & 0.84 & BC239C & 0.15 & BFY52 & 0.208 & BA102 & 0.25 \\
\hline 2N3054 & 0.60 & \(40 \leqslant 36\) & 1.10 & BC257A & 0.16 & BAY39 & 0.40 & BA145 & 0.26 \\
\hline 2N3055 & 0.75 & 40673 & 0.78 & 8C2588 & 0.16 & ME0402 & 0.20 & BA154 & 0.12 \\
\hline 2N339 1 & 0.28 & AC126 & 0.20 & BC2598 & 0.17 & ME0412 & 0.18 & BA155 & 0.12 \\
\hline 2N3392 & 0.15 & \({ }^{\text {A C }} 127\) & 0.20 & BC301 & 0.34 & ME4102 & 0.11 & 881038 & 0.23 \\
\hline 2N3393 & 0.15 & AC128 & 0.20 & 8С3078 & 0.17 & M J 488 & 0.96 & 881048 & 0.45 \\
\hline 2N3440 & 0.59 & \(A C 151\) & 0.27 & 8С308A & 0.15 & M J 481 & 1.20 & 8Y126 & 0.12 \\
\hline 2N3442 & 1.40 & \(A C 152\) & 0.49 & BC309C & 0.20 & MJ490 & 1.05 & BY127 & 0.15 \\
\hline 2N3638 & 0.15 & AC153 & 0.35 & BC327 & 0.23 & M J 49 9 & 1.46 & BYZ11 & 0.51 \\
\hline 2N3702 & 0.12 & AC176 & 0.30 & BC328 & 0.22 & MJ2955 & 1.00 & BYZ12 & 0.51 \\
\hline 2N3703 & 0.13 & AC187K & 0.36 & 8CY70 & 0.17 & MJE340 & 0.48 & Da47 & 0.06 \\
\hline 2N3704 & 0.15 & AC 188K & 0.40 & BCY 71 & 0.22 & MJE370 & 0.65 & OAB1 & 0.18 \\
\hline 2N3706 & 0.15 & AD143 & -0.68 & BCY72 & 0.15 & MJE371 & 0.75 & OA90 & 0.06 \\
\hline 2N3708 & 0.14 & AD161 & 0.50 & BD 121 & 1.00 & MJE520 & 0.60 & OA91 & 0.06 \\
\hline 2N3714 & 1.38 & AD162 & 0.50 & BD123 & 0.82 & MJE521 & 0.70 & WO21A200 & 0.32 \\
\hline 2N3716 & 1.80 & AF106 & 0.40 & BD 124 & 0.67 & MJE2955 & 1.20 & BY164 & 0.57 \\
\hline 2N3771 & 2.20 & AF109 & 0.40 & 8 D 131 & 0.40 & M Je3055 & 0.75 & ST2 diac & 0.20 \\
\hline 2N3773 & 2.65 & AF 115 & 0.35 & 8 8132 & 0.50 & MP俍13 & 0.47 & 40669 & 1.00 \\
\hline 2 N 3789 & 2.06 & AF 116 & 0.35 & 8 B 135 & 0.43 & MPF 102 & 0.39 & TiC44 & 0.29 \\
\hline 2 N 3819 & 0.37 & AF:17 & 0.35 & 8D136 & 0.47 & MPSA05 & 0.25 & C106D & 0.65 \\
\hline 2N3820 & 0.64 & AF 118 & 0.35 & 80137 & 0.55 & MPSA06 & 0.31 & ORP12 & 0.60 \\
\hline 2N3904 & 0.27 & AF 124 & 0.30 & BD138 & 0.08 & MPSA55 & 0.31 & - 12 & \\
\hline \multicolumn{10}{|l|}{Prices correct at May 1975, but all exclusive of V.A. P Post \& Package 25p} \\
\hline
\end{tabular}
\(5 p\)207

\section*{TRANSFORMERS}




\(\qquad\)38
38
38
45
53
67
\(9!\)
\(\vdots\)\begin{tabular}{c}
12.31 \\
24.20 \\
35.09 \\
\hline
\end{tabular}

LOW VOLTAGE TRANSFORMERS
PRIMARY 200-250 VOLTS 12 AND/OR 24 VOLT RANGE\(\begin{array}{cc}1.85 & { }^{p} \\ 1+35 & 23 \\ 1.74 & 30 \\ 2.29 & 38 \\ 2.86 & 38 \\ 4.12 & 35 \\ 4.56 & 45 \\ 5.54 & 45 \\ 5.14 & 53 \\ 5.52 & 53 \\ 1.28 & 60 \\ 10.39 & 73 \\ 13.59 & 85 \\ 16.83 & 85\end{array}\)
\begin{tabular}{cc}
\multicolumn{2}{c}{ Pap } \\
1.81 & \(p\) \\
\(\mathbf{1 . 4 0}\) & 38 \\
3.49 & 38 \\
4.53 & 45 \\
5.13 & 53 \\
6.41 & 53 \\
7.16 & 60 \\
9.90 & 67 \\
\(\mathbf{9 . 8 7}\) & 73
\end{tabular}
 ..... 10.45 . F
\begin{tabular}{|c}
12 \\
12 \\
8 \\
8 \\
8 \\
8 \\
8 \\
\hline
\end{tabular}

\(\qquad\)
So volt ran
secenarap tipt
p.50v
25

Aluo Tow





60
60
60 Vot
10.48.60
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{TRANSMITTING, INDUSTRIAL AND SPECIAL VALVES} \\
\hline \(2 \mathrm{C39A}\) & 8.50 & \({ }^{803}\) & 8.00 & 5796 & 12.00
2500 & \(8 T 19\)
BT45 & 13.00
20.00 & \({ }_{\text {KR }}^{\text {KR }}\) / 2 & 8.00
8.00 \\
\hline \({ }_{\text {2 }}^{2 \mathrm{E} 26}\) & 3.00
9.00 & 805
807 & \({ }^{14.00}\) & 5836
5837 & 25.00 & \({ }^{\text {Br }}\) 83 & 12.00 & \({ }_{\substack{\text { KRN2A } \\ \text { L101/ig }}}\) & 6.00
3.00
3.0 \\
\hline \(2 k 25\)
3828 & 4.00 & 808 & 3.00 & 5846 & 10.00 & \({ }^{\text {B789 }}\) & 8.00 & & 3.00
3.00 \\
\hline 3 C 45 & 8.00 & 810 & 15.00 & 5876 & \% 8.00 & \({ }_{\text {cie }}\) & 8.00 & MT17 & 9.00 \\
\hline \({ }^{3629}\) & 5.50 & 811
812
812 & 3.00
4.00 & & 30.00 & \({ }_{\text {C3E }}\) & 15.00 & MT57 & 13.00 \\
\hline \({ }_{4}^{465} \times 2508\) & 12.00
15.00 & \({ }^{8124}\) & 4.00
6.00 & - 6116 & 33.00 & \({ }^{\text {c3, }}\) & 8.00 & \({ }_{\text {NSP1 }}\) & 9.00 \\
\hline \(\times 1 \times 150 \mathrm{~A}\) & 9. 50 & 815 & 6.00 & \({ }_{6262}^{626}\) & 30.00 & \({ }_{\text {c }}\) & 9.00
4.00 & \({ }_{\text {ala }}\) & \\
\hline 4×1500 & 11.00 & 816 & 3.00 & \({ }_{6}^{62633}{ }_{6}^{6263}\) & -8.00 & \({ }_{\text {C6, }}\) & 10.00 & Covo 6.40 & 7.50 \\
\hline \({ }^{4 \times 500}{ }^{\text {a }}\) & 80.00 & \({ }_{8}^{828}\) & 12.00
5.50 & \({ }_{6264}^{6263}\) & \({ }_{8.00}\) & C1148 & 46.00 & a avo 7-50 & 23.00 \\
\hline \({ }_{1153}^{5 C 22}\) & 22.00
8.00 & 829 B
832 A & 5.50
4.50 & - \({ }_{6}^{6264}\) & \({ }_{7} 8.00\) & C1149/1 & 40.00 & 00203.20 & 28.00 \\
\hline & 3.75 & \({ }_{833 \mathrm{~A}}\) & 20.00 & 6336 & \({ }^{9.00}\) & \({ }_{\text {cV5 }}\) & \begin{tabular}{l}
11.00 \\
25.00 \\
\hline
\end{tabular} &  & 20.00 \\
\hline \(12 \mathrm{E} / 4\) & 8.00 & 8334 & \({ }^{4.50}\) & \({ }_{6}^{6363}\) & 30.00
30.00 & CV36 & 20.00 & Or4.250A & 18.00 \\
\hline \({ }^{1351}\) & 22.00 & 837
838 & 2.00
4.00 & & 12.00 & CV43 & 6.00 & Or4.400A & 20.00 \\
\hline \(13 \mathrm{El}{ }^{12}\) & \(\underset{8.00}{15.00}\) & \({ }_{866}\) & \({ }_{1} 1.50\) & 6386 & 7.00 & CV76 & 70.00 & \(\bigcirc\) & 50.00 \\
\hline 1963
1966 & \begin{tabular}{l}
6.00 \\
\hline 8
\end{tabular} & 866 E & 2.00 & 6442 & 10.00 & \({ }^{\text {OA42 }}\) & 7.00 & Or5-3000 & \\
\hline \(19 \mathrm{H1}\) & 4.00 & \({ }^{86651 / 2}\) & \({ }_{5}^{2.50}\) & 6469
6470 & 75.00
75.00 &  & \({ }_{10.00}\) & RGI-250 & 6.50 \\
\hline \({ }^{19+4}\) & \({ }^{15.50}\) & \begin{tabular}{l}
872 A \\
\hline 872 G
\end{tabular} & 5.00
8.00 & \({ }_{6484}^{6470}\) & \begin{tabular}{l}
75.00 \\
10.00 \\
\hline
\end{tabular} & DET23 & 10.00 & RG3412504 & 11.00 \\
\hline -1945 & \({ }_{6.50}\) & в89яa & & 7977 & 8.00 & \({ }_{\text {OEE } 24}\) & 10.00 & RR33.1250A & 14.00 \\
\hline \({ }_{100 E 1}\) & 28.00 & 931 A & 6.00 & \({ }^{8005}\) & \(\begin{array}{r}14.00 \\ 5.00 \\ \hline\end{array}\) & & \begin{tabular}{l} 
a \\
40.50 \\
\hline
\end{tabular} & S1/E12 & \({ }^{9.00}\) \\
\hline \({ }^{25014}\) & 20.00 & \({ }^{40048}\) & \begin{tabular}{l}
6.50 \\
3.25 \\
\hline
\end{tabular} & - \(\begin{aligned} & 8008 \\ & 8013\end{aligned}\) & \begin{tabular}{l} 
5.00 \\
3.00 \\
\hline
\end{tabular} & \({ }_{\text {FG617 }}\) & 9.00 & STV280/8 & 15.00 \\
\hline \({ }^{310 \mathrm{~A}}\) & 2.50
3.00 & \({ }_{40178}\) & 17.00 & 8013 A & 5.00 & \({ }^{\text {FX2 }} 15\) & 35.00 & TDO3.10 & 10.00 \\
\hline 322 & 16.00 & 40243 & 4.00 & 8025 & 7.00
26.00 & 61/235G & \begin{tabular}{l}
4.00 \\
8.50 \\
\hline
\end{tabular} & To03.10F & 11.00 \\
\hline 328 A & 4.00 & \({ }_{4033 \mathrm{AF}}^{4033 \mathrm{~A}}\) & 8.00
6.00 & A207
A1714 & \({ }^{26.00}\) & 650/16 & 4.00 & T004-20 & 10.00 \\
\hline 329 A
332 A & 4.00
8.00 & \(4033 \times\) & \({ }_{6}^{6.00}\) & \({ }_{\text {A2293 }}\) & 2.75 & 650/26 & \({ }_{4}^{4.00}\) & \({ }_{T T 22}\) & 4.75 \\
\hline 349 A & 200 & 4043 C & 12.00 & \({ }^{\text {A } 2426}\) & 8.00
8.00 & 655/1K & \({ }^{40.00}\) & & \({ }_{12.00}^{4.75}\) \\
\hline 393A & 7.00 & \({ }_{4}^{404960}\) & 18.00
35.00 & \({ }_{\text {A2900 }}^{2521}\) & 6.00
3.50 & 67536 & \({ }_{8} 8.00\) & \({ }_{T 3}+2.250 \mathrm{~A}\) & \({ }^{23.00}\) \\
\hline 394 A & 6.00
25.00 & \({ }_{4069 \mathrm{~A}}^{4050 \mathrm{a}}\) & 3500
60.00 & A2902
A3042 & \begin{tabular}{l}
3.00 \\
\hline .00
\end{tabular} & Gmu2 & 6.00 & TY4.500A & 3.00 \\
\hline 527 & \({ }^{29.00}\) & 41204 & 8.25 & ACT9 & 30.00 & GU18,
GU20,21 & 11.00
11.00
10.0 & Tr5.500A & 85.00
5
5 \\
\hline 583 & \({ }^{9} .00\) & 412 IAS & 5.50 & \({ }_{\text {ACT98 }}\) & 28.00
45.00 & \({ }_{\text {Gu50 }}^{\text {Gu20/21 }}\) & 11.00 & \(\times\) - \(\times\) ¢ \(2 / 6400\) & 30.00 \\
\hline \({ }^{7034}\) & 4.00
5.00 & \({ }_{4409}^{4242 A}\) & 4.00
10.00 & & & Gxu4 & 14.00 & XR1-1600 & 12.00 \\
\hline \({ }^{7054}\) & 5.00
7.00 & 4409
4687 & \({ }^{3} .00\) & \({ }_{\text {A H22 }}\) & 11.00 & \({ }_{6 \times 150}^{60}\) & \begin{tabular}{l}
5.50 \\
5.00 \\
\hline
\end{tabular} & XR1.1600
\(\times R 1.32004\) & 13.00
25.00 \\
\hline 708 A & & 5544 & 25.00
25.00 & \(4{ }^{4} 238\) & GU18 & \({ }_{k}^{\text {GX00 }}\) & 6.00
50.00 & XR1130 & 25.00
9.00 \\
\hline \({ }^{714 A Y}\) & 20.00
20.00 & ¢545 & \(\xrightarrow{25.00} 9\) & \({ }_{8}^{81800}\) & 35.00
40.00 & \({ }_{k 301}\) & 3.00 & YL1240 & 10.00 \\
\hline \({ }_{723 \mathrm{~A} / \mathrm{B}}^{720 \mathrm{C}}\) & \({ }^{20.00} 8\) & 5557
5644 & 3.00
3.00 & - 18803 & \({ }^{40.00}\) & K302 & 50.00 & 25045 & 5.00 \\
\hline \({ }_{725 A}\) & 25.00 & 5684
57 & 9.00 & \({ }^{\text {a }}\) & 13.00

7 &  &  & & \\
\hline 726 A
80 & 5.00
1.00 & 5721
5762 & ( \(\begin{array}{r}50.00 \\ 110.00\end{array}\) & \(\stackrel{\text { BT9A }}{\text { BT9 }}\) & 7.00 & k335 & 15.00 & & \\
\hline
\end{tabular}


MINIMUM ACCOUNT ORDER CHARGE £10.00 PLUS VAT. OTHERWISE CASH WITH ORDER PLEASE Our new Catalogue is ready. Please send \(£ 0.20\) for your copy.
Z \& I AERO SERVICES LTD
Tel. 7275641

\section*{C. T. ELECTRONICS}

We are open from 9.30 a.m.-6.00 p.m., Monday-Saturday
V.A.T.
Unless othurwise slated all prices are exclusive of
VAT Please check whether the goods you are Unless otherwise slated all prices are exclusive ar
VAT Please check wheinher the gooos vou are
ordering are \(25 \%\) or \(8 \%\) Carriage orders under ordering are \(25 \%\) or \(8 \%\) Carriage orders under
\(£ 5\) please add 33 O Orders over \(£ 10\) post tree.n \(4 K\) only This to be at our discretion

All mail order and enquiries to 270 Acton Lane, Chiswick, London W4 5DG. Tel: 01-994 6275

\section*{SEMICONDUCTORS}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{METAL BOXES .8\% VAT ALUMINIUM BOXES IDEAL FOR VEROBOARD WITH BASE \& P.K. SCREWS} \\
\hline  &  &  &  \\
\hline \multicolumn{4}{|l|}{ALUMINIUM BOXES WITH SLOPING TOP PANEL-IOEAL FOR SLIOER CONTROLS} \\
\hline \[
\begin{array}{|l|l}
A B 20 \\
A B 21 \\
A B 22
\end{array}
\] &  & &  \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|c|}{MULTI-CORE} \\
\hline \multicolumn{4}{|c|}{CABLE} \\
\hline \multicolumn{4}{|l|}{20 way \(14 / 0076+\) Screen at 70 p per yard + postage.} \\
\hline
\end{tabular}
\(\qquad\)
\begin{tabular}{|lll|}
\hline \multicolumn{3}{|c|}{ Phone for details. } \\
\hline POTENTIOMETERS & & \\
Linear or Log & Singie & Jouble \\
Rotary Pots & \(17 p\) \\
Rotary Switched & 25p & - \\
\hline
\end{tabular}


We rave made it just about as comprehensive and up-to-the-minute as possible.
Thousands of items from vast ranges of semi-conduciors including \(C\). tools, accessories, technical information and diagrams are included as well as a refund voucher worth \(25 \rho\) for spending on orders list value ES or more SEND NOW FOR YOUR COPY BY RETURN It s an investment in practical
money-saving and reliability!
+E.V. PRICE STABILIZATION POLICY
PRICES shown in Catalogue No 7 issue 3 have so far been mantained since the beginning of the year E V prices continue to be reviewed at 3 -month intervals Instead of making day-to day price changes next price review due July 1 st.
+E.V. DISCOUNT PLAN
Applies to al items except the few where prices are shown NETT. 5\% on orders from £5 to \(£ 1499 ; 10 \%\) on orders value \(£ 15\) or more
+FREE POST \& PACKING
In UK for pre-paid mait orders over \(£ 2\) (except Baxandall cabinets) If under there is an additicnal handling charge of 10 p
+ QUALITY GUARANTEE
All goods are sold on the understanding that they conform to makers specifications. No rejects seconds or sub-standard merchandise.

\section*{ELEGTROMALIE LTD}

All communcsations to Section 2
28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB Tolaphors Egham 3603. Telax 264475. Shop hours \(9-5.30\) daily. \(9-1\) p.m. Sots
NORTHERH BRANCH: 680 Burnage Lane, Burnage. Manchester Mig ina NORTHERN BRANCH: 680 Burnage Lane, Burnage. Manchester Mi9 1 NA U.S.A. CUSTDMERS are invited ho contact ELECTRDGLUE AMERICA p. \(m\). Sats

\section*{RADFORD HD250}

High Definition Stereo Amplifier


A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

Rated power output: 50 watt av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven

Maximum power output: 90 warts av, per channel into 5 ohme
Distortion, preamplifier: Virtually zero (cannot be identified or messured as it is below inherent circuit noise.)
Distortion, power amplifier: Typically \(0.006 \%\) at 25 watts, less than \(0.02 \%\) at rated output (Typically \(0.01 \%\) at 1 Khz)

Hum and noise: Disc, -83 dBV measured flat with noise band width 23 Khz (ref 5 mV ); -88 dBV " \(A\) " weighted (ref. 5 mv )

Line - 85 dBV measured flat (ref 100 v )
-88d BV " \(A\) " weighted (ref 100 v )

\section*{Hear the HD250 at}

\section*{SWIFT OF WILMSLOW}

5 Swan Street, Wilmslow, Cheshire (Tel. 26213) Mail Order and Personal Export enquiries: Wilmslow Audio, Swan Works, Bank
Square, Wilmslow (Tel. 29599) ALL RADFORD SPEAKER DRIVE UNITS \& CROSSOVERS IN STOCK

\section*{Sinclair hi-fi}


\section*{The watts...}

The Sinclair range of hi-fi products. Three different ways of achieving hi-fi excellence whatever area of hi-fi you're interested in.

And the Sinclair range fact-file gives you the full run-down on all of them.

On Project 80 - the build-as-you-please hi-fi module system.

On IC20-the revolutionary integrated circuit amplifier kit. And System 4000 r the luxury hi-fi amplifier and matching tuner.

\section*{and the wherefores.}


The Sinclair range fact-file shows you the whole story. Technical specifications. complete descriptions. big, clear pictures... and test reports by impartial hi-fi journals.

A real bundle of goodies.
Send for Sinclair's range
fact-file - now!
See if the answer's here the information on the component you've been looking for.

Simply cut the coupon and send it to the no-stamp-needed FREEPOST address below. We'll send you the Sinclair fact-file - giving you all you need to know about Sinclair hi-fi. And information about a few extras you're sure to find rather interesting.

Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE174HJ St Ives (0480) 64646


NONEY aACK IF NOT SATISFIED. LAROE STOCES. LOT PRJCEB ILL BRANS NE TYO GAADE YUL SPEC DEVLCES, CALLEAS FELGOAR eatalogue lic coce barclay Flammias Lid.
WINDSOR BERKS 5816O GROVE RD: IN U.K.DOS 150, EXPORTS BOD.

\section*{INTEGRATED} CIRCUITS


\section*{74T TTL}


\section*{TRANSISTORS \& DIODES}

\section*{\(\mathbf{V E r O}\) nextur Mrsy COPPER CLAD VEROBOARD 0.1}

\section*{Dinitho Disul|gys}

FLCORESCENT LIGHTS 12 V Made in U OIGITALELCECH

CASSETTE mechanics
HEW 8tk CARTRIDGE MECHANISM £ 8 STEREO CASSETTE MECHANISU E13.75 Suitable for 'PW ASCOT recorder
是\{3.7


 3)"x5" 31p 3ix 17" £1.50 DIL IC's BOARDS \(6 \times 4 \nmid{ }^{\prime \prime} \quad £ 1.50\) 24 way edge connector
36 way \(90 p\). PLAIN 3!"x17" FACE CUTTER 450 . FEC ETCH PAK 50 D


PRI
PRINTED CIRCUIT BOARD KIT \& 1.69
DECON NO YESS ETCH PAK NEW 69 p DECON NO MESS ETCK DESOLDER BRATD REEL 59p HEATSINKS
5F/T05 \& \(18 \mathrm{~F} / \mathrm{T} 018 \mathrm{sp}\) ea.TV4 15 p . TGS308 GAS DETECTOR £1.80 ea. LOGIC PROBE TTL TESTER PEN CAPACITORS
CERAMIC 22pf to 0.1 up 50 v 5 p ELECTROL.YTIC: \(10 / 50 / 100\) uf in \(10 \mathrm{v} 5 \mathrm{p} .25 \mathrm{v} 6 \mathrm{p} .50 \mathrm{v} 8 \mathrm{p} .2 \mathrm{uf} / 10 \mathrm{v} 5 \mathrm{p}\)
\(1000 \mathrm{uf} / 25 \mathrm{v} 18 \mathrm{p} .200 / 50025 \mathrm{v} 9 \mathrm{p}\) POTENT IOMETERS (POTS) AB or EGIN LIN or LOG ROTARY 13p.SHITCH 14p
DUAL 45 D. SLIDERS 29p. STEREO 57p KNOBS 7p. PRESETS GPRESISTORS 1ip SWITCHES: SPST 18p. DPDT 25p. Din plugs all 12p. SOCKEts 1 19p. AL1 CASES AB5/AB7 50p. AB13 65p TRANSFORMERS 1 A 6 v 6 v or 12 v 12 v DH sachets TEKAS GOLD
LOW PROFILE LOW PROFILE ea
\(8,14, \& 16\) PIN \(13 p\) \(8,14, k 16\) PIN 13 p
SOLUERCON STRIPS

\section*{AMATEURRADIO BULK BUYING GROUP}

Specialising in components and modules for the SWL, Radio Amateur and Hobbyist (Trade also supplied of course!) Try our prices

\section*{COMPONENTS FOR POCKET V.H.F. TRANSCEIVER}

By O. A. Tong (July and August 74 W W)
Filters: BFB-455A, 43p; CFR-455H, £16.20
Itegrated Circuits: SL612, £2.00; SL630, £1.87
Transistors etc: 40673, 61p; ŽTX500, 17p; IN4148, 7p
Also: FX1115, 1p; FX1886, 5p; \(21 / 2 \mathrm{in}\). 25 ohm L.S., £1.56
CMOS I.C.'s at LOWEST PRICES
4000. 30p; 4001. 30p; 4002. 30p; 4009. 73p; 4010. 73p; 4011, 30p; 4012 30p; 4013, 73p; \(4017, £ 2.03\); 4018 , £2.27; 4020, £2.27; 4023, 30p; 4024 £1.41; \(4025, \mathbf{3 0 p} ; 4026, £ 3.23 ; 4027, £ 1.09 ; 4028, £ 1.76 ; 4029, £ 2.44\); 4030. 76p; 4033, £3.23; 4049, 67p; 4050.67p; 4055, £1.35; 4056, £1.69; 4511. £2.63; 4518, £2.71; 4520. £2.71.

\section*{PLESSEY SL600 ics at LOWEST PRICES}

We carry the most comprehensive stocks of SL600 devices anywhere in the country-
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{available for in} \\
\hline SL610 & \(£ 2.00\) & SL6 13 & £4.30 & SL622 & \(£ 7.55\) & SL630 & \(£ 1\) \\
\hline SL611 & £2.00 & SL620 & £3.00 & SL623 & \(£ 5.57\) & SL640 & £3. \\
\hline SL6 12 & £2.00 & SL621 & \(£ 3.00\) & SL624 & £2.83 & SL641 & £3.65 \\
\hline Full & & & & und in & Data Ca & ue. 35 & \\
\hline
\end{tabular}

Full data sheets on all Sl 60 devices are included in our Data Catalogue 35 pages crammed with

\section*{UKW-BERICHTE VHFCOMMUNICATIONS MAGAZINE}

We are now the official U.K. agents for this VHF equipment constructors magazine.
Send for FREE index to past editions to see range of thems covered (SAE please) SUBSCRIPTION £3.20 for 1975 volume. Plastic Binders- £1.35. ALL POST PAID. Eack issues as tollows: 1970
\(1971-£ 245\) per year 1972 1973. \(1974-\Sigma 2.85\) per year Al,mited number of back issues now held in stock at \(85 p\) each post paid

\footnotetext{

} All prices include VAT Minimum post and packing charge
A.R.B.B.G., Dept. 506, 20 THORNTON CRESCENT OLD COULSDON, SURREY CR3 1 LH

\section*{Transonits}


Five million solid-state devices in stock daily, that is Covering over 2,000 different types, including all the current CMOS range

To keep up with the dozens of additions to our range each week, we are continually issuing new up-dated stock-lists. And they are automatically sent out to ali catalogue holders, as well as anyone else who wants them

So ask for your new Transonics catalogue today. And find out about our stocks of ICs, transistors and other solidstate devices by Mullard. ITT. Texas, RCA and other manufacturers. They're all part of the Transonics \(5,000.000\) daily stock figure - a vital statistic in your business.

Call us now on 01-723 3646 for O.E.M. Sales and 01-723 6603 for Distributor Sales. Or use Freepost. Transonics Ltd. Freepost London W2 6BR


\section*{Leeds Electronics Exhibition}

Department of
Electrical \& Electronic Engineering University of Leeds

Catalogues available; write
1st 2nd \& 3rd July 1975
Daily 10.00 am to 6.00 pm
Department of
Electrical \& Electronic Engineering University of Leeds LS2 9JT


\section*{MAKE \\ BIG REDUCTIONS WITH JACKSON}


CATALOGUE NO. 5870
The Jackson Friction Ball Drive Reduction Unit is unique. Simply because it's the only one of it's type and size available in the United Kingdom. It has sealed lubrication, with a hardened steel shaft and bearings to give it extra long life. And it's low in price. The unit has a 10:1 reduction ratio, with an output torque of 8 oz : ins. minimum.

Our skilled personnel can produce custom made components to suit your individual needs. And with 45 years of experience your guarantee is our reliability.

B.S. 9000

Approved.

\section*{Celestion Dittons for the perfectionist}


DITTON 44 MONITOR \(30 \times 14 \frac{1}{2} \times 10 \mathrm{~m}(76 \times 37 \times 25 \mathrm{~cm}) 44 \mathrm{w}\) Cut-away illustration showing the Celestion transducers - seen at the top HF 2000 Tweeter, now accepted as the world's finest; at centre, a FC6 mid range using special rubber suspension, 50,000 Maxwell magnet, and transmission line rear loading; at the base, a FC12, this rugged long coil low resonance unit being tuned to its 43.47 litre hermetically sealed enclosure. On test has accepted quite safely transient signals ten times greater than the rated maximum wattage. Now recognised as providing an exceptional standard of sound reproduction by independent reviewers in England, the USA and Europe. A thoroughbred monitor class loudspeaker for the discerning listener, priced absolutely realistıcally.


HADLEIGH \(133 / 3 \times 10 \times 9^{1 / 2}\) in
20w \((34 \times 25 \times 24 \mathrm{~cm})\)
The Hadleigh loudspeaker, was specially created to meet a public demand for a high quality speaker of compact proportions. Not a difficult task for Celestion who produce the most popular bookshelf - speaker ever (Ditton 15) - but we set out not only to produce an immaculate loudspeaker with a sparkling performance, but to do so at a budget price. For the enthusiast seeking a really excellent Hi.Fi system at reasonable outlay we recommend without hesitation the Hadleigh.

\section*{QUALITY AMPLIFIER KITS by POWERTRAN \\ WIRELESS WORLD AMPLIFIER DESIGNS \\ Component packs for a choice of three outstanding amplifiers are stocked together with packs \\ electronics} for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier - the Bailey-Burrows design which features six inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating.

\section*{30W BAILEY}

Pk. 1 F/Glass PC
Pk. 2 Resistors. capacitors pots
Pk. 3 Semiconductor set
2OW LINSLEY-HOOD
Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors, pots
Pk. 3 Semiconductor set
G0V REGULATED POWER SUPPLY
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors pots
Pk. 3 Serniconductor set
BAILEY-BURROWS PRE-AMP
Pk. 1 F/Glass PCB
Pk. 2 Resistors capacitors, pre-sets. transistors

Pk. 3R Rotary potentiometer se
f1.60
Pk. 35 Slider potentiometer set (with knobs)
\(£ 2.70\)
60.80
f 1.75 f 4.70
f0. 85
£2.40
£ 3.35
60.75
f 1.40
£ 1.40
\(\mathbf{£} 3.10\)
£ 2.05
f4. 95

\section*{STUART TAPE RECORDER}

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this high-performance Wireless World published design
TRRP Pk. 1 Reply amplifier F/Glass PCB £ 0.90 TRRC Pk. 1 Record amp./meter drive cct. F/Glass PCB F/Glass PCB F/Glass PCB
For detalls of component packs for this design please write for free list.

\section*{20 WATTS/CHANNEL}


SEMICONDUCTORS AS USED IN OUR RANGE OF QUALITY AMPLIFIERS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 2N699 & ¢0. 25 & 2N5459 & ¢0.45 & BC184L & ¢0.11 & MC1351 & ¢1.05 & SN72741P & f0.40 \\
\hline 2N1613 & £0. 20 & 2N5461 & £0.50 & 8C212L & c0.12' & MFC4010 & c0.95 & SN72748P & f0.40 \\
\hline 2N1711 & ¢0.25 & 2N5830 & £0.30 & BC214L & ¢0.14 & MJ481 & f1.20 & Til209 \({ }^{\text {a }}\) & ¢0. 30 \\
\hline 2N2926G & £0.10 & 40361 & £0.40 & 8 CY 72 & ¢0.13 & MJ491 & £1.30 & TIP29A & f0. 50 \\
\hline 2N3055 & ¢0.45 & 40362 & ¢0.45 & BD529 & ¢0.85 & MJE521 & f0.60 & TIP30A & f0.60 \\
\hline 2 N3442 & £1.20 & BC107 & £0.10 & B0530 & ¢0.85 & MPSAO5 & f0. 25 & TiP29C & ¢0.71 \\
\hline 2N3704 & c0. 10 & BC 108 & £0.10 & BDY56 & £1.60 & MPSA12 & ¢0.55 & TIP30C & ¢0.78 \\
\hline 2N3707 & ¢0.10 & BC109 & ¢0.10 & BF257 & ¢0.40 & MPSA 14 & f0. 35 & TIP41A & f0.74 \\
\hline \(2 N 3711\) & c0.09 & 8C109C & ¢0.12 & BF259 & ¢0.47 & MPSA55 & ¢0.25 & TIP42A & ¢0.90 \\
\hline 2N3904 & ¢0.17 & BC125 & £0.15 & BFR39 & £0.25 & MPSA65 & f0. 35 & IN914 & f0.07 \\
\hline 2N3906 & co. 20 & BC126 & £0.15 & BFR79 & £0.25 & MPSA66 & ¢0.40 & 1 N916 & ¢0.07 \\
\hline 2N4062 & c0.11 & BC182 & ¢0.10 & BFY51 & ¢0.20 & MPSU05 & ¢0.60 & 15920 & ¢0.10 \\
\hline 2N4302 & c0.60 & BC212 & £0.12 & BFY52 & f0. 20 & MPSU55 & £0.70 & 5805 & ¢1. 20 \\
\hline \(2 N 5087\) & c0. 42 & BC182K & ¢0.10 & CA3046 & £0.70 & SBA750A & f2.50 & FILTER & \\
\hline 2N5210 & c0.54 & BC212K & ¢0.12 & LP1186 & ¢5.50 & SL301 & f1.30 & FM4 & f0.80 \\
\hline 2N5457 & c0.45 & RC1B2L & £0.10 & MC1310 & \(\mathbf{£ 2 . 9 0}\) & SL3045 & ¢1.60 & SFG 10.7MA & \\
\hline
\end{tabular}

\section*{ACTIVE FILTER CROSSOVER}

An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately, though introducing reactive impedances between the amplifier and the speakers. result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegan solution to this problem. described by D. C. Read in Wireless World, involves the use of a series of active filters splitting the output of the pre-amplifier into three channels, of closely defined bandwidth, each of which is fed to the appropriate speaker by its own power amplifier. A design for a suitable 20 -watt amplifier, based on a proven Texas circuit. was also described by Mr Read. The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module

\section*{ACTIVE FILTER}

Pack
1 Fibreglass PCB (accommodates all filters for one channel)
2 Set of pre sets. solid tantalum capacitors 2\% metal oxide resistors, \(2 \%\) polvstyrene capacitors 3 Set of semiconductors £2 system \(\qquad\)
SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER DESIGNS

READ/TEXAS 20wamp.
\[
\begin{aligned}
& \text { citors) } \\
& \text { Sets of semiconductors }
\end{aligned}
\]
\[
3 \text { Sers of semiconductors }
\]4.20ᄃ2.6
\(4 \begin{gathered}\text { Special heat sink as } \\ \text { sembly for set of } 3\end{gathered}\)sembly for

5 Set of \(3 \mathrm{O} / \mathrm{P}\) coupling rapacitors 2 off packs 4,5 required for stereo system

POWER SUPPLY
for 2OW/CHANNEL STEREO
f0. 70
\begin{tabular}{lll}
\multicolumn{2}{l}{ Pack } & \\
1 & Fibreglass PCB & \(£ 0.50\) \\
2 & Set of rectifiers, zener & \\
& diode, capacitors, fuses. & \\
& fuse holders & \\
3 & Toroidal transformer & \(£ 2.60\) \\
& & \\
& &
\end{tabular}
3 Toroidal transformer

MORE KITS
ON PAGE 47!

\section*{TOROIDAL T20 + 20}

Developed from the famous Practical Wireless Texan
Designed by Texas engineers and published in a series of articles in Practical Wireless. The TEXAN was a remarkable breakthrough in delivering true \(\mathrm{Hi}-\mathrm{Fi}\) performance at excepdionally low cost. Now further developed to tionally low cost. Now further developed to inctude a true Toroidal transformer, this
slimline integrated circuit design. based upon slimline integrated circuit design. based upon
a single F/Glass PCB. features all the norma a single F/Glass PCB. features all the norma
facilities found on quality amplifiers. including scratch and rumble filters. adaptable input selector and headphones socket.


\section*{SPECIAL OFFER \(\star\)}


SLIDER POTENTIOMETER SALE!
Most values \(1 \mathrm{~K}-1 \mathrm{M}\) lin/log available
\begin{tabular}{lll} 
& Normal price & Sale Price \\
Single & \(35 p\) & \(25 p\) \\
Dual & \(55 p\) & \(35 p\) \\
Knob & \(15 p\) & \(10 p\) \\
\hline
\end{tabular}
V.A.T. Please add 25\%*
to all U.K. orders
(*or at current rate if changed)
U.K. ORDERS - Post free (mail order only)

SECURICOR DELIVERY - for this optional service (Mainland only) add \(2.00+\) VAT per kit OVERSEAS-Postage at cost +50 p special packing, handling

Dept. WWO6
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NN

\section*{Bargains in Sẹmi-Conductors, components, modules \& equipment.}

Bargains from our FREE Catalogue equipment, etc Send large S. A. E with 7 p stamp for your FREE copy of 6 th

TRANSISTOR PACKS ALL AT 50p EACH TESTED \& GUARANTEED
\begin{tabular}{|c|c|c|c|c|c|}
\hline B79 & 4 & in4007 Sil. Rec diodes 1.000 PIV 1 amp plastic & H39 & 6 & Integrated circuits 4 gates BMC 962. 2 flip flops BMC945 \\
\hline B81 & 10 & Reed Switches \(1^{\prime \prime}\) long \(1 / \mathrm{s}^{\prime \prime}\) dia High-speed PO type & H41 & 2 & \begin{tabular}{l}
BD131/BD132 \\
Complementary \\
Plastic Transistors
\end{tabular} \\
\hline H35 & 100 & Mixed Diodes. Germ. Gold bonded. ElC Marked and Unmarked & H65 & 4 & 40361 Type NPN Sil. Transistors TO-5 can comp to H66 \\
\hline H38 & 30 & \begin{tabular}{l}
Short lead. NPN \\
Stlicon Planar Ex
\end{tabular} & & 4 & Sil Transistors TO-5 can comp. to \\
\hline
\end{tabular}

UNMARKED \& UNTESTED PACKS-50p EACH
B1 \(\mathbf{5 0} \begin{aligned} & \text { Germanium Tran- } \\ & \text { sistors PNP. AF }\end{aligned} \quad\) B86 \(\mathbf{1 0 0} \begin{aligned} & \text { Sil Diodes sub. } \\ & \text { min. IN914 and }\end{aligned}\) sistors PNP. AF \(\begin{aligned} & \text { min IN914 a } \\ & \text { and RF }\end{aligned} \quad\) iN9 16 types B66 \(150 \begin{gathered}\text { Geranium } \\ \text { odes Min Gi- }\end{gathered} \underset{\text { Glass }}{\text { Di }} \quad\) H34 \(\quad 15 \begin{aligned} & \text { Power Transistors } \\ & \text { PNP Germ. NPN }\end{aligned}\) 884100 Silicon Diodes
\(00-7\) Min glass Silicon TO-3 Can D0-7 Min glass
equivalent to
IN4448

PLASTIC POWER TRANSISTORS
\begin{tabular}{lc} 
40 WATT SILICON \\
Type & Polarity \\
\(40 N 1\) & NPN \\
40 N 2 & NPN \\
40 P 1 & PNP \\
40 P 2 & PNP \\
90 WATT SILICON \\
& Polarity \\
90 N 1 & NPN \\
90 N 2 & NPN \\
90 P 1 & PNP \\
90 P 2 & PNP
\end{tabular}

\begin{tabular}{ll} 
VCE & Price \\
15 & \(\mathbf{2 0 p}\) \\
40 & \(\mathbf{3 0 p}\) \\
15 & \(\mathbf{2 0 p}\) \\
40 & \(\mathbf{3 0 p}\) \\
& \\
VCE & Price \\
15 & \(\mathbf{2 5 p}\) \\
40 & \(\mathbf{3 5 p}\) \\
15 & \(\mathbf{2 5 p}\) \\
40 & \(\mathbf{3 5 p}\)
\end{tabular}

 \begin{tabular}{|l|l|} 
data \\
PAK No. 1. Shot lead semiconduce \\
lors and \\
componemts on PCBs
\end{tabular}\(|\) THREESN \(\mathbf{7 4 0 0}\) Quad 2 input 1ors and componemts on PCBs
marked Up to 170 hertz Date 50 p [Nangate ICs CAPACITOR DISCHARGE IGNITION KIT
Smple to assemble and fit. Improves car pertormance.
saves on fuel \(P / P 30 \mathrm{P}\)
30.
Bi-Pre-Pak X-Hatch Generator Mk. 2
Four-pattern selector switch
\(3^{\prime \prime} \times 55^{\prime \prime} \times 3^{\prime \prime \prime}\)
Ready-built
and tested
In kit form \(\quad £ 9.9 \mathbf{3}^{*}\) Is invaluable to industrial and home user alike Improved circuitry assures reliability and still better accuracy Very compact, self-contained Robustly
built. Widely used by TV rental and other engineers. With reinforced fibreglass case instructions. but less batteries. (Three U2 iype required.)
TV SIGNAL STRENGTH METER

\section*{Complete kit as described in}
\(\begin{array}{ll}\text { MAINS TRANSFORMERS } & \\ \text { A } 18 \mathrm{~V} 1 \text { amp (suitable for SS 103) } & \text { £1.50 } \\ \text { B } 25 \mathrm{~V} 2 \text { amp (suitable for SS 110) } & \mathbf{£ 2 . 0 0}\end{array}\)
B 25 V 2 amp (sultable for SS 110)
C 30 V 2 amp (surtable for SS 140 )
£2.00
\(£ 4.50\)
BRIDGE RECTIFIERS
Type A 45V/iA 27p B \& C 100 V 2A _ 30p
MAINS RELAYS \(230,240 \mathrm{~V}\) AC 3 pole change-over Heavy ulay
contacts
\(\mathbf{6 0 p}\)
TO CLEAR. Hundreds of varous portable transistor radio chassis with FM
\& AM tuning Ideal for experimenters All components in good electronic
order but no instructions or tuning drives per chassis Each \(£ 1.00\)


\section*{}

222224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SSO SDF. TELEPHONE: SOUTHEND (0702) 46344.

Made and sold direct by Bi-Pre-Pak
Stirling Sounal
Today's most challenging values!

\section*{AMPLIFIER MODULES}
\begin{tabular}{|c|c|c|}
\hline SS100 & Active tone c & 1.60 \\
\hline SS101 & Pre-amp for stereo ceramic cartridges, radio and tape & £1.60 \\
\hline SS102 & Pre-amp for low-output stereo magnetic cartridges, radio & £2.25 \\
\hline SS103 & Compact I.C amp. 3 watts R.M S Single channel (mono). On P.C.B. size \(3^{1 / 2^{\prime \prime}} \times 2^{\prime \prime}\). Needs \(10-20 \mathrm{~V}\) supply & £1.75 \\
\hline SS103-3 & Stereo version of above (Two I.Cs.) & £3.25 \\
\hline \[
\begin{array}{|l|l}
\text { SS105 } \\
\text { Mk. } 2
\end{array}
\] & \begin{tabular}{l}
Improved design and performance. A compact all-purpose p \\
Can be run from 12 V car battery \\
Size \(312^{\prime \prime} \times 2^{\prime \prime}\) Useful \(5 w\) output (mono). Excellent value
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { SS110 } \\
& \text { Mk. } 2
\end{aligned}
\] & Similar in size 10 SS 105 Mk 2 but will give 10 w output (mono). Two in stereo give first-ciass results. suitable for many donestic applications & 2.75 \\
\hline SS140 & Beautifully designed. Will give up to 40 w R.M.S. into 4). Excellent SN.R and transient response. Fine for PA disco use etc. Operates from 45 VDC . Two in bridge formation will give 80 w R.M.S. into 80 & £3.60 \\
\hline
\end{tabular}

FM TUNER MODULES
SS201 \(\begin{aligned} & \text { slow-motion geared drive in robust housing. A. F. C } \\ & \text { facility. Requires 6-16V Excellent sensitivity. }\end{aligned}\)
SS202 IF Stage (with I. C) Designed to use with SS201. Uses \(\quad £ 5.25\) ner fol FM tune Suppled ready aligned \(A\) L.E.D can easily be fitted for stereo reception indication.

POWER SUPPLY STABILISER. Add this to your unstabilised
SS300 supply to obtain a steady working voltage from 16 to 60 V


TERMS OF BUSINESS: VAT at \(25^{\circ}\) must be adatol to mite valke of or rer inchadigg pustage and packing charges. For prices marked or \(\left\{8^{\circ}\right.\) ) please add \(8^{\circ}\) for VAT. NO VAT on Overseas orders. POST \& PAGKING Add 20; for UK orders. Minimum mail order acceplable - £1. Overseas orders. add \(£ 1\) for postage. Any ditference will be credited or charged. PRICES Subject to alteration without notice. AVAILABfLITY All items available at lime of going to press when every effort is made 10 ensure correctness of information

WESTCLIFF-ON-SEA, ESSEX
Please send
for which ! enclose
NAME
```

Pack
Pack Fibreglass printed crcult board for front
end. If strip. demodulator. AFC
and mute circuits
2 Set of metal oxide resistors, thermistor,
capacitors cermet preset for
mounting on pack 1
3)Set of transistors, diodes. LED, megrated
circuits for mounting on pack 1
4 Pre-algned front end module. coil
assembly, three-section ceramnc
assembly, three-section ceram
Fibreglass printed ci
6 Ser of metai oxide resistors. capacitors.
cermeet preset for decoder
Set of transistors LED integrated
Set of coult for decoder
Price P
Price
ck
Function switch. }10\mathrm{ turn tuning
potentiometer, knobs
porentiomerer, knobs
11 Torondal transformer with electrostatic
f8.60
£2.15
\$2.15
£4.80
Oidal transformer with electrostatic
f4.45
f capacitors. rectifers, voltage
regulator for power supply
regulator for power supply
of miscellaneous parts, mcluding
sockets. fuse holder.fuses, inter-
lom
screen printed facia panel. acrylic
silk screen printed tuning indicator
panel insert. internal screen. fixing
panel insert. internal screen. fixing
Marts. etc
Teak cabinet
required for complete stereo
FM tuner
FM tuner (rividually purchased packs ¢74.10
selector switch module including
libreglass printed circuit board.
log
l
f830
£6.25
13 Set of miscellaneous parts, mcluding
f2.95

```
                f 1.50

\section*{NOVEL STEREO FM TUNER}

In the April and May 1974 issues of Wireless World there was published by J. Skingley and N. C. Thompson a novel design for an f.m. tuner which combines consistent high performance with the elimination of the critical setting-up procedure required by too many earlier tuners. The front end is a ready built pre-aligned module which then feeds an amplifier driven screened three section ceramic filter leading to an integrated cırcuit five-stage limiting amplifier providing excellent a.m. rejection. This is followed by a single coil integrated balanced demodulator from which the audio output may be taken. Temperature compensated varicap tuning allows stations to be selected either by a ten-turn tuning potentiometer or by a choice of six preset push-button controls. Each of the preset controls can be adjusted on the front panel with the sertings being indicated by six LED lamps behind an acrylic silk screen printed facia panel insert. Additional circuitry includes temperature compensated AFC restricted to less than station spacing. inter-station muting. a single-lamp LED tuning indicator and a linear scale frequency meter. The stereo decoder, built on a separate board. is based on a well-proven integrated circuit phase-locked-loop to which has been added active filters to remove sub carrier harmonics and birdies. The power supply. to ensure station holding stability. uses an integrated crrcuit voltage regulator which is powered via a low-hum field specially designed TOROIDAL TRANSFORMER.
STYLED TO COMPLEMENT THE WORLD-WIDE aCCLAIMED LINSLEY-HOOD 75W AMPLIFIER

\section*{THE FM TUNER KIT YOU HAVE WAITED FOR!} *********************************

\title{
NEW! \\ POWERTRAN \\ MORE \\ FROM ELECTRONICS
}

\section*{DESIGNER APPROVED KIT}

In Hi-Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973) and a subsequent follow-up article (April 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage. power in excess of 75 watts whilst maintaining distortion at less than \(0.01 \%\) even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system, namely the equalization stage and tone control stage, positions where most conventional designs run out of gain at the extremes of the frequency spectrum. Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs. two equalized and two linear. each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer.

Full circuit description
in handbook
(pack 15-price 30p)

FREE
teak case with full kits
kir facte ony \(£ 62.40\)

Hi-Fi News Linsley-Hood 75W/Channel Amplifier
Mk III Version (inodifications as per HiFi News April 1974)
 carrage free (U.K.)
\({ }^{\text {Pack }}\) Fibreglass pented cicuit board
\(2 \begin{aligned} & \text { for power amp } \\ & \text { Sel of resistors. capacitors, pre-sets }\end{aligned}\)
of resistors. capac
tor poncr amp.
3 tor poucr amp. amp. inow using BDY56 BD529. BD530
air of 2 drilled. finned heat sinks
5 Fibreglass printed circuit board
6 Sel of low preamp
Set of low noise resistors capactors
pre sets for pre amp
Set of low noise. high gain semicon
8 Set of potentiometers inclliding
mans switch)
Sat of 4 push button switches.
rotary mode switch rotary mode switch
ordal transformer complete with magnetic screen/housing primary 0.17 .234 V . secondarıes:
33.0 .33 V 25.0 .25 V .

Price
\(£ 085\)
f1 70
66.50
\(£ 0.80\)
£1 30
\(£ 2.70\)
\(E 240\)
£2 05
E3 70

E9 15
\({ }^{\text {Pack }} 11\) Fibreglass printed-circuit board
12 Set of respower supply for power supply secondary fuses semicon. ductors for power supply
13 Set of miscellaneous parts including DiN skis. mains
input ski. fuse holder inter. connecting cable control knots of metalwork parts including
silk screen printed fascia silk screen printed fascia panel and all brackets. fixing pans eic 16 Teak cabrnet 2 each of packs \(1-7\) inclusive are required for complete Total cost of individually purchased packs

V A T Please add \(25 \%^{*}\) UK ORDERS-Post free imanl order only) SECURICOR DELIVERY: For Securicor delivery to mainland-add \(£ 2+\) VAT per kit. OVERSEAS - Postage at cost +50 p special packing
Dept. WWO6
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NN




NEW ITEMS THIS MONTH
AC mains aperated relay with single changeover 10 amp
contacts apen rype single screw fixing through the base conlacts apen type single. screw
50p each
Battery condition testers. This is another item which has been oul of stock rempotarly but we are pleased to say. In
stock again Price now f .50 .
 Hong Kong porrables. this has two main lunng seclions an
lour trimmers. apporox size \(1^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}\) 60p each
Bationy Battary chargor kit comprising 2 amp transtormer. 2 anip Sull wave rectifier and 2 amp meleir sutable for chargng
6v or \(12 v\) Special bargarn price \(f 1.50\) Ihe kit +30 post
MacConald record auto-changer with cueng arm and ceramict
 we c
pire
c

 handles, the bottom panel has 4
rubber feet These instrument cases would probably cosi
(round \(E 15\) each We have approx 100 not new but in


 main lramstor mer rectitier. smoothing and I I
and Instructions. Real snip \(n\) only \(£ 1,50\)
Soil heazing transformer, 4 v , 5 v or 6 v outpot. very heay
dury sceondary rated at 25 a amp, price \(\mathrm{f20}+\) cartage e 2 dury secondiry rated at 25 d amps, pricte \(20+\) cartiage E
first 100 miles then 11 pee 100 miles extra 7 watt stereo/mono amplififer with usual swiching and con-
trols. in attrative teak style case \(f 9\).

 Solanoid 4-6x. size approx \(1^{\prime \prime} \times 1\) " \(\times 04^{\prime \prime}\) thick, swon
coils give excellent pull Mounted in frame but eassly remov colls give excelient pull Mounted in frame but pasily remov-
able Irom this thame fitted with lever glving approx \(0.4^{4}\) push
or or pull Pilce 30peach
reader
ol the

a traction of its proper price. namely 20 p pach
Ditto but single pole changeovel. tits into a hole size \(1^{\prime \prime} \times \frac{1}{\text { \& }}\)."
Pitce 15p each
Note the two switches above do not require a knot as ther have a polished and tapered plunges I
Ditto bul dished knolk 10p extra with

REDIFON TELEPRINTER RELAY UNIT No. 12: ZA-41196 and power supply \(200-250 \mathrm{~V}\) a.c. Polarised relay type 3 SEITR. \(80-0 \mathrm{~V} 25 \mathrm{~mA}\). Two stabilised valves CV 286. Centre Zero Meter \(10-0-10\). Size 8 in . x 8 in . \(x\) 8in. New condition. \(£ 10\). Carr 75 p .
SOLARTRON PULSE GENERATOR TYPE GI101-2: \(£ 75.00\) each. Carr. \(£ 2.00\). TELEPRINTE \({ }^{\circ}\) TYPE 7B: Pageprinter 24 V d.c. power supply, speed 50 bauds pe min. second hand cond. (excellent order) no parts broken. \(£ 20\) each. Carriage \(£ 3\) INSULATION TEST SET: \(0-10 \mathrm{kV}\) negative, earth with amplifier provision for checking ionisation. \(110 / 230 \mathrm{va} \mathrm{c}\). input. S /hand, good cond. \(£ 35+£ 1 \mathrm{carr}\). BRIDGE MEGGER: 250V. (Evershed Vignoles) series 2. £30 each. Carr. £1. BRIDGE MEGGER: \(2,400 \mathrm{~V}\)., series \(1 . \mathfrak{£ 3 0}\) each. Carr. \(£ 1\)
CRYSTAL. TEST SET TYPE 193: used for checking crystals in freq range \(3000-10,000 \mathrm{KHz}\). Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction with a freq. meter. E25. Carr. E1.50
TYPE 174/1 FREQUENCY SHIFT ADAPTOR (Northern Radio Co.): Convert mark and space frequencies from the output of one or two Receivers into d.c pulses. Suitable to operate Teleprinters or similar devices. \(110 / 220 \mathrm{~V}\). Further details on request, s.a.e. \(£ 55\) each. Carr. \(£ 1.50\)
TELEGRAPH TERMINAL UNIT (A.T.E.) TYPE TFS3: Converts signals from Receivers into d.c. pulses. Complete with monitor. \(£ 75\) each. Carr. \(£ 2\).
FURZHILL SENSITIVE VALVE VOLTMETER V.200: Freq. \(10 \mathrm{~Hz} \cdot 6 \mathrm{MHz}\) (can be used beyond 6 MHz ). Probe in circuit - voltage range \(1 \mathrm{mV}-1 \mathrm{kV}\) in 6 decade ranges; full scale deflection \(10 \mathrm{mV}, 100 \mathrm{mV}-1 \mathrm{kV}\). Without probe \(100 \mu \mathrm{~V}-100 \mathrm{~V}\) in 6 decade ranges; full scale deflection 1 mV . \(10 \mathrm{mV}-100 \mathrm{~V}\). Accuracy \(\pm 5 \%\). \(\mathbf{£ 3 0}\) each. NOISE FIGURE METER TYPE II3A (Magnetic AB, Sweden): £125 each. Carr 1.

PRECISION PHASE DETECTOR TYPE 205: Freq. \(0.1-15 \mathrm{MHz}\) in 5 ranges. Variable time delay microseconds \(0-0.1 \mathrm{c}, 115 \mathrm{~V}\) input. \(\mathbf{£ 5 5}\) each. Carr. \(£ 1\). RHODE \& SCHWARZ HF MILLIVOLTMETER: \(30 \mathrm{~Hz}-30 \mathrm{MHz}\) Type UVH, 1 mV -1V in 7 ranges, 220 V . £75 each. Carr. £2
 current \(1 \mu \mathrm{~A}-25 \mathrm{amps}\). \(£ 30\) each. Carr, \(£ 1.00\)
PHILIPS VALVE VOLTMETER TYPE GM6014: \(1-300 \mathrm{mV}\) in 6 ranges. \(70-20 \mathrm{~dB}\) probe \(1000 \mathrm{~Hz}-30 \mathrm{MHz}, 300 \mathrm{mV}\) maximum. \(£ 35\) each. Carr. \(£ 1\).
TF-1345/2 DIGITAL FREQUENCY COUNTER: Range \(10 \mathrm{KHz}-100 \mathrm{MHz}\) with extension units. Details on request. s.a.e. £100. Carr. \(£ 2\).
UHF MICROWAVE MILLIWATTMETER TYPE 14: Direct reading, can be used to measure power from 100 MHz upwards. F.S.D. on 4 in . scale meter 2.5 mW . \(£ 40\) each. Carr. £1.
MARCONI HF SPECTRUM ANALYSER OA. 1094/3. Further details on request £250 each. Carr £5.
Q METER: \(30 \mathrm{MHz-200MHz}\). £55. Carr. £l. 2 . cır £ 1.50 .
ALL CARRIAGE QUOTES GIVEN ARE FOR 50-MILE RADIUS OF LONDON ONLY.

ALL U.K. ORDERS SUBJECT TO VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage)

SIGNAL GENERATOR AIRMEC TYPE, 701: \(30 \mathrm{KHz}-30 \mathrm{MHz}, 7\) ranges. £65. Carr €1.-1278/1 TRAVELLIVG TUBE WAVE AMPLIFIER: £25. Carr. £2.
BPL A.C. MILLIVOLTMETER TYPE VM.348-D Mk. 3: 2 millivolts- 2 volts, 6 ranges. £30. Carr. £
WAYNE KERR WAVEFORM ANALYSER A. 221 : Low scale \(0.1200 \mathrm{c} / \mathrm{s}\). High scale \(1.20 \mathrm{Kc} / \mathrm{s}\), 600 ohns. Harmonic level is \(0-55 \mathrm{~dB}\) in 12 steps. £75. Carr. \(£ 1.50\). SPECTRUM ANALYSER TYPE MW.69S (Decca): Further details on request £200.
MARCONI DUAL TRACE UNIT TM-6456: \(£ 30\). Post 60p
SIGNAL GENERATOR TS-403B/U (or LIRM-6IA): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios. antenna and transmission line characteristics, conversion gain. etc. Both the output freq. and power are indicated on direct-reading dials. \(115 \mathrm{~V} . \mathrm{AC} .50 \mathrm{c} / \mathrm{s}\). Freq. \(-1800-4000 \mathrm{Mc} / \mathrm{s} . \mathrm{CW}\) FM, Modulated Pulse - \(40-400\) pulses per sec. Pulse Width - 0.5-10 microsecs Timing - Undelayed or delayed from 3-300 microsecs from external or internal pulse. Output - 1 milliwatt max., 0 to -127 dB variable. Output Impedance 500 . Price: \(£ 120\) each \(+£ 2\) carr
H.V. TRANSFORMER: \(8000 / 8000\). Output 300 mA . rms. Size: 12 in . x 12 in . x 36 in 230 V input. £40. Carr. £4.
FIREPROOF TELEPHONES: \(£ 25.00\) each. carr. \(£ 1.50\).
POWER UNIT: \(110 / 230\) volts a.c. input. 28 volts d.c. at 40 amps output. \(£ 30.00\) each, carr. E3.00
SMOOTHING UNIT (for the abore): \(£ 10.00\) each. carr. £2.00
X-BAND MODULATOR CALIBRATOR TYPE MC -4420-X: Mnfr. James Scott. £125 each Carr fl
HP-766D DUAL DIRECTIONAL COUPLER: \(940-1975 \mathrm{MHz}\). £35 each. 75 post. BACKWARD WAVE OSCILLATOR TYPE SE-125: 6.3 heater. 105 V Anode. 7.9mA. Mnfr. Watkins \& Johnson. £85 each. Carr. £l.
TEKTRONIX TIME MARK GENERATOR TYPE 180-S1: 5, 10. 50 MHz . £65. TEKTRONIX TIME MARK GENERATOR TYPE 180-SI: 5, 10. 50 MHz . £6 Carr. £2.
TRANSISTOR ANALYSER TA 1001 (K. \&N. Electronics Ltd): £95. Carr. £3 CHRONOTON MODEL 25E: \(0.4-10\) seconds in seven ranges. £50. Carr. El. MARCONI SIGNAL GENERATOR TYPE TF-144G: Freg. \(85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}\) in 8 ranges. Incremental: \(\pm 1^{0}\) at 1 Mc 's. Output: continuously variable 1 microvolt o 1 volt. Output lmpedance: 1 microwolt to 100 millivolts. 10 ohms 100 mV - 1 volt 52.5 ohms. Imternal Modulation: \(400 \mathrm{c} / \mathrm{s}\) sinewate \(75^{\circ}{ }^{\circ}\) depth. External Modulation: Direct or via internal amplifier. A.C. mains \(200 / 250 \mathrm{~V} .40-100 \mathrm{c} / \mathrm{s}\). Consumption approx. 40 watts. Measurements \(29 i n\). x \(12^{\prime}+1 n\). x loin. Secondhand condition. \(£ 32.50\) each. Carr. \(£ 2.50\)
ROTARY INVERTERS: TYPE PE. 218 E - input \(24-28 \mathrm{~V}\) d.c. \(80 \mathrm{Amps} .4,800 \mathrm{rpm}\). Output 115 V a.c. 13 Amo \(400 \mathrm{c} / \mathrm{s}\). 1 Ph. P.F.9. \(£ 20.00\) each. Carr. E2.50.
 REQ


Teleng Malta Ltd., have capacity available for electronic sub-assembly work.

\author{
Now more than ever you need a low cost production are n order lo remain competitive. \\ In Malta you have the benefit of some of the lowest labour rates in Western Europe plus the advantages of \\ (1) Our skilled labour force backed by a fully qualified \\ engıneerıng teamand admınistrative staff \\ (ii) A modern factory which is only 3 hours from the major \\ European business centres
}
(iii) Advantageous customs rates-Malta is an associate member of the E.EC and therefore benefits from a ni tariff rating on most electronic products
(iv) Teleng s hourly rate of 86 Maltese cents excluding freigh and insurance (ie. D M. 5.6 or 0.99 p sterlıng)* subject to varialions in Exchange Rates
(v) Free feasibility studies which will be carried out by our experienced staft

\title{
Teleng Malta Limited
}

\title{
The langest selection
}


\section*{-the lowest pricesd}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|l|}{\begin{tabular}{l}
74 Series T.T.L. I.C’S \\
bI-PAK STILL LOWEST IN PRICE FULL BPECIFICATION GUARANTEED. ALL FAYOUS MANUPACTURERS
\end{tabular}} & \multicolumn{3}{|l|}{} \\
\hline & 1 & 25 & 10 & & & 25 & 100 & & & & \\
\hline SY7400 & & 0.14 & 0.13 & 8N7463 & 0.15 & 0.14 & \({ }^{0.13}\) & & \({ }_{¢ 1.70}^{81.00}\) & -0.95 & - 0.90 \\
\hline SN74 & & 14 & & & 15 & \({ }_{0} .14\) & 3 & & & & \({ }_{81.10}\) \\
\hline 8 Y 740 & & \({ }_{0}^{0.14}\) & \({ }_{0.13}\) & SN7470 & 0.32 & 0.28 & 0.27 & 8y & 81.20 & & \\
\hline six 704 & & 0.14 & 0.13 & 8x7472 & 0.32 & & & & & & \\
\hline s,7405 & & & 0.13 & & 0.41 & & & & & & \\
\hline 8 & & & 0.31 & & 0.41 & 0.39 & 0.35 & & & & \\
\hline & & & & & 0.60 & 0.58 & 0.58 & & & & \({ }_{81.30}\) \\
\hline & & & & 478 & 0.44 & \({ }_{0}^{0.43}\) & 0.42 & \(\mathrm{SN}^{1}\) & & & \\
\hline & & & 0.23 &  & & & & & & & \\
\hline & & 14 & 0.13 & 8-7482 & 0.90 & \({ }_{0} 8.85\) & 0.80 & & & & \\
\hline \({ }_{8 \times \sim}\) & 0.25
0.28 & 0.24
0.27
0 & \({ }_{0}^{0.2}\) & \({ }_{\text {S }} \mathbf{1 7 4 8 3}\) & \({ }^{1} 1.20\) & E1.15 & \&1.05 & SN7 & £1. 1 & \&1.55 & \(\varepsilon 1.50\) \\
\hline & 0.32 & 0.31 & 0.3 & & \({ }^{1} 1.00\) & 0.97 & 0.95 & & & 21.05 & \\
\hline 8 & 0.30
0.30 & \({ }_{0}^{0.29}\) & 0.28 & \% & 21.80 & \({ }^{1} 1.54\) & ع1.50 & Scializ & \(\underline{1}\) & 11.2 & 15 \\
\hline S. & & & 0.13 & 8×7489 & \({ }^{2} 4.00\) & ¢3.75 & \({ }_{8}{ }^{1} 3.50\) & 8x7417 & 1.25 & \&1 & \\
\hline & 0.30 & 0.29 & 0.28 &  & 0.65 & 0.63 & & & ع1.2 & \&1.2 & . 15 \\
\hline & 0.40 & 0.39 & & & \({ }^{1} 1.10\) & ¢1.05 & & SxT & & 13.85 & \\
\hline & 0.4 & & & \(8 \mathrm{8N}\) & 0.74 & 0.71 & 0.64 & 8×74182 & ¢1.25 & 1.2 & ¢1.15 \\
\hline SN744 & 0.40
0.40 & ( \(\begin{aligned} & 0.38 \\ & 0.38 \\ & 0\end{aligned}\) & O.
\(\begin{aligned} & 0.38 \\ & 0.38 \\ & 0\end{aligned}\) & s. & 0.74
0.85 & - 0.82 & \({ }_{0}^{0.84}\) & S \(\times 174184\) & \({ }^{1} 1.80\) & \({ }^{1.75}\) & ¢1.70 \\
\hline SN7428 & 0.45 & & 0.40 & & 0.85 & 0.82 & 0.75 & 7+190 & \({ }^{1} 1.95\) & & \\
\hline & & & 0.1 & & 0.98 & 0.93 & & 8x74191 & & & \\
\hline 9 & 0. & 38 & 0.38 & 8N74100 & \({ }^{\Sigma 1.50}\) & 1.45 & ז1.40 & 8. 7 74192 & \&1. & 11.90 & ع1.85 \\
\hline s & 0.42 & 0.40 & 0.38 &  & 0.80
0.60 & ( 0.58 & & 71193 & \({ }_{\text {¢ }} 1.95\) & \&1.90 & \({ }^{1} 1.85\) \\
\hline & & & - 0.30 & 8. & 0.44 & 0.42 & 0.40 & 8N7 & \&1.30 & \({ }^{1} 1\) & \(\underline{1.20}\) \\
\hline SN440 & & 0.14 & 0.13 & Sy & & 0.55 & 0 & 9x+195 & 11.10 & & \\
\hline 8N7411 & 0.74 & & & & \({ }^{0.90}\) & 0.8 & & \(8 \times 7+196\) & 81.20 & ¢1.15 & \({ }^{\text {c }} 1.10\) \\
\hline SN7442 & \({ }^{0.74}\) & & 0.84 & 8. & \({ }_{81.50}\) & \({ }_{1}^{1}\) & \({ }_{6}^{0.8}\) & SN74197 & \({ }^{\text {¢1.20 }}\) & \&1. & \({ }_{6} 1.10\) \\
\hline 7444 & \({ }^{51.20}\) & \({ }^{811.15}\) & \({ }^{\text {cl } 1.10}\) & - & \({ }_{0}\) & \({ }^{2} .48\) & & 8< \(\times 1+198\) & \&2.75 & \(\underline{22.70}\) & ¢2. 65 \\
\hline 9, 7445 & \({ }_{81} 1.60\) & 21.55 & \({ }_{21} 1.50\) & & 0.70 & 0.88 & 0.85 & \(8 \times 74199\) & & & . 30 \\
\hline 9x7446 & \({ }_{81.10} 1.20\) & c1.15 & \({ }_{8}^{81.10}\) & & 5 & & -0.70 & Devices & ay he & (TTL & quaniy \\
\hline SN448 & 81.10 & & \&1.05 & * & \&1.30 & \(\varepsilon_{1.25}\) & ع1.20 & & & lable & the \\
\hline - \({ }_{\text {SN7 }}\) & \begin{tabular}{l}
0.15 \\
0.15 \\
\hline
\end{tabular} & +114 & +13 &  & \({ }_{\substack{21.10}}^{1}\) & \({ }_{\text {c1 }}^{\substack{1.40}}\) & ¢1.30 & ve & & & \\
\hline
\end{tabular}

NOW WE GIVE YOU 50w PEAK (25w R.M.S.)PLUS THERMAL PROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £4. 25


FULLY BUILT-TESTED and GUARANTEED


\section*{STEREO PRE-AMPLIFIER TYPE PA100}


\section*{CĀPACITORS ( \(25 \%\) )}



FANS ( \(25 \%\) ). CENTRIFUGAL BLOWERS, VAC. PUMPS \& MOTORS ( \(8 \%\) )

W. \& B. MACFARLANE

126 UXBRIDGE ROAD, HANWELL, LONDON W7 3SL

\section*{P. F. RALFE 10 CHAPEL ST. LONDON NW1. Phone 01.7238753}

\section*{SIGNAL GENERATORS}

MARCONI TF8OID/IS. \(10-480 \mathrm{mHz}\) P.O.A.
MARCONI TF801B/2S. \(10-480 \mathrm{mHz}\). 225 .
MARCONI TFI44H \(10 \mathrm{kHz}-72 \mathrm{mHz}\) P.O.A. ADVANCE SG63D. AM/FM \(7.5-230 \mathrm{mHz} £ 125\) HGN MS4U AM/FM \(9.6-240 \mathrm{mHz}\). N.Dev.Fac.
ROHDE \& SCHWARZ SMLR \(15-30 \mathrm{mHz}\) power generator. P.O.A
RACAL/AIRMEC 201A. \(30 \mathrm{kHz}-30 \mathrm{mHz}\). As new. P.O.A.
ADVANCE SG2I VHF Square-wave generator \(9 \mathrm{kHz}-100 \mathrm{mHz}\). \(\mathbf{£ 2 5}\).

\section*{OSCILLOSCOPES}

TEKTRONIX 661 Sampling scope with 4 S 1 \& 5T1A
plug-in units. 3 GHz . \(\mathbf{E 2 0 0}\).
TEKTRONIX 545A with CA unit. DC- 30 mHZ . Price only \(£ 295.00\)
TEKTRONIX 531 DC-15 mHz with L type plug-in
TEKTRONIX 535 DC -15 mHz with L type plug-in
TEKTRONIX 545 B DC- 30 mHz with CA plug-in.
TEKTRONIX 585A. DC-80mHz with type 82 plug-in
TEKTRONIX 654B. Storage oscilloscope.
TEKTRONIX 502. 200uV. Sens. X-Y
TEKTRONIX C27 Polaroid Camera. Series 125 with 560 series adapter

\section*{MISCELLANEOUS TEST EQUIPMENT}

MARCONI TF1400S double pulse generator with TM6600/S secondary pulse unit. \(£ 105\).
MARCONI TF791D deviation meter. \(4-1024 \mathrm{mHz} \quad 0-100 \mathrm{kHz}\) deviation MARCONI 455E Wave Analyser £120.
MARCONI TF2600 Valve Voltmeter 1 mV -300V. Excellent \(£ 75\).
ROHDE \& SCHWARZ USVD calibrated receiver \(280-940 \mathrm{mHz}(4600 \mathrm{mHz})\)
ROHDE \& SCHWARZ A F. Wave Analyser type FTA \(0-20 \mathrm{kHz}\) plus \(\log / \operatorname{lin}\) AF meter incorporated. Excellent condition
ROHDE \& SCHWARZ URV milli-voltmeter
ROHDE \& SCHWARZ URV milli-voltmeter BN 10913 (late type) \(1 \mathrm{mV} \cdot 10 \mathrm{~V}\). With ' T ' type insertion unit, free probe and attenuator heads. \(1 \mathrm{kHz}-1,600 \mathrm{mHz} £ 175\).
COSSOR 1453 True RMS milli-voltmeter. Excellent. £75.
AIRMEC TYPE 210 modulation meter Excellent condition
ROHDE \& SCHWARZ "SCR"V.H.F Signal Generator \(1000-1900 \mathrm{mHz}\) ADVANCE type SG68 low distortion A.F. oscillator. \(1.5 \mathrm{~Hz}-150 \mathrm{kHZ}\) Sine and square wave. Battery operated. \(£ 75\).
MARCONI iype TF936 Impedance Bridge. \(£ 85 \mathbf{8 5 0}\).
GERTCH Phase Angle V. Meters. Range \(1 \mathrm{mV} \cdot 300 \mathrm{~V}\), in 12 ranges SOLARTRON oscillator type CO \(546.25 \mathrm{~Hz} .500 \mathrm{kHz}, £ \mathbf{3 0 . 0 0}\). SALARTRON OScilator 4 Decade Resistance Box. 1-11, 110 ohms GAMBR
E24.50.

\section*{BOXER INSTRUMENT \\ FANS \\ Dimensions \(4.5 \times 4.5 \times 1.5\) ins.
Very quiet running. precision fan Very quiet running. precision fan
specially designed for cooling electronic equipment, amplifiers etc. For \(l 10 \mathrm{~V}\). AC operation(practise is to run from split primary of mains transformer or use suitable mains dropper). CC only II Watts. List price over \(\subset 10\) each. Our price,
condition is \(£ 4.50\). \\ POWVER SUPPLIES \\ WEIR Electronics modular unit Model OCAR Regulated \& stabilised. O-7V@2A. £9.50. \\ APT Electronics, model TCV250. Dual-scaled metered supply. Current limiting Variable 0-50V @ 2 A £70.00. 0-40V @ \(3 \bar{A}\). £75.00.}

MANY TYPES of RF plugs and sockets in stock:-
BNC plugs \(50 \Omega\). 30 p. BNC sockets \(50 \Omega\). 25p. N. Type plugs 50 . 50 p. Burndept plugs. 40p. Burndept sockets. 40 p. Miniature PYE. 20p. Miniature sockets. 20p.
All connectors are brand new. Immediate delivery. Please add appropriate postage.
AEI miniature uniselectors. Type 2200C. 3 banks 1 bridging. non-bridging wipers 12 positions Coll resistance 50 ohms. Complete with bases. Brand new £4 50 each 20-way BPO Jack strips to accept 316 type Jack plugs Also quantity of 316 plugs avallable. All good condition.

AVO VALVE TESTERS Brief-case cype 160 . Full working condition throughout. \(\in 65\).

AERIAL CHANGE/OVER RELAYS of current manufacture designed especally for mobile equipments, coil voltage 2 v ., frequency up to 250 MHz at 50 wates. Small size only. 2 in. \(x i\) in. Offered brand new, boxed. Price \(E 1-50\), inc. P.\&P.
RACAL/AIRMEC VHF/UHF Millivoltmeter type 301 A . Frequency range \(50 \mathrm{~Hz}-900 \mathrm{mHz}\). Voltage range
\(300 \mu \mathrm{~V}-3 \mathrm{~V}\) in eight ranges. Co-axial input 50 and 75 ohms \(B N C\) connectors. DC Ranges \(100 \mu \mathrm{~V}\). 10 V in cen ranges. Light-weight mains operated instrument in as new condition with handbooks. Other makes of voltmeter also available from stock.

\section*{EDDYSTONE RECEIVER} type 770R
Continuous coverage from
27165 mHz AM FM Also 770 O . 150.500 mHz . andi model 770 S , \(500-1000 \mathrm{mHz}\) all in first clas condition Prices uimen application

HEWLETT PACKARD
BOONTON TYPE 8900 B
Peak-power calibrator. Measures true peak power \(\pm .6 \mathrm{db}\) absolute. Frequency range \(50-2000 \mathrm{Mhz}\). RF power range 200 mW peak, fullscale. RF Impedance 50 ohms.

MARCON1 TF995A2/M AM/FM R.F. SIGNAL GENERATORS.
1.5 .220 mHz . 0.100 kHz Deviation \(1.5 \cdot 220 \mathrm{mHz}\), o-100kHz Deviation. lent condition. P.O.A.

PLEASE ADD \(8 \%\) V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

\title{
Sinclair Scientific kit
}

Britain's most original calculator now inkit form
The Sinclair Scientific is an amazing calculator. It offers logs, trig, and true scientific notation over a 200-decade range - features normally found on calculators costing around \(£ 50\) or more.

Yet even ready-built, it costs a mere £ 21.55 (including VAT)

And as a kit it costs under \(£ 15\) !
Forget slide rules and four-figure tables On the Scientific, you can handle directly all three trig functions, their inverses,
\(\log _{10}\), antilog \({ }_{10}\), giving quick access/
to \(x^{y}\) (including square and other roots),
plus, of course, the four arithmetic functions and any calculation based on them.

In fact, virtually all complex scientific or mathematical calculations can be handled with ease.


\section*{Sinclair} Cambridge kit \({ }^{\text {( } \text { (inc. VaT) }}\)
B. 5529-01


So is the Scientific difficult to assemble?
No. Powerful though it is, the Sinclair Scientific is a model of tidy engineering All parts are supplied - all you need provide is a soldering iron and pair of cutters. Complete step-by-step
instructions are provided, and our Service Department will back you throughout if you've any queries or problems.

> Of course, we'll happily
supply the Scientific or the
Cambridge already built, if you prefer- they're still exceptional value. Use the order form.

Features of the Scientific
- 12 functions on a simple keyboard
- Scientific notation

200-decade range
- Reverse Polish logic
- 25-hour battery life
- Genuinely pocketable

At its new low price, the Sinclan Cambridge kit remains unbeatable value.

The Cambridge is now Britain's most popular pocket calculator. And it's not surprising. Check the features - then ask yourself what other calculator offers such a powerfulpackage at suchareasonableprice


Features of the Cambridge - Only \(4 \frac{1}{3}^{\prime \prime} \times 2^{\prime \prime} \times \frac{1}{1}_{6}^{\prime \prime}\). Weight \(3 \frac{1}{2}\) oz. - Fully-floating decimal point. - Algebraic logic.
- Constant on all four functions \((+-x-)\). - Constant and algebraic logic combine to act as limited memory. - Clear, bright 8 -digit display. - Operates for weeks on 4 AAA batteries.

Take advantage of this money-back no-risk offer today
The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee any correctly-assembled calculator for a year. This guarantee also applies to calculators supplied in built form

Simply fill in the preferential oider form below and post it - today!

To: Sinclair Radionics Ltd, FREEPOST. St Ives. Huntingdon. Cambs., PE174BR.

Please send me
Scientific kit - \(£ 14.95\) inc. VAT Scientific built - \(£ 21.55\) inc. VAT Cambridge kit- \(\mathbf{~} 9.55\) inc. VAT Cambridge built - \(£ 13.99\) inc. VAT
*I enclose a cheque for .......................made out to Sinclair Radionics Ltd, crossed. *Please debit my *Access/Barclaycard account number:

> *Delete as required

Signed Name
Address
Please print FREEPOST - no stamp required.



\section*{THE NEW SEMICONDUCTOR SOURCE}



\begin{tabular}{cc} 
THYRISTORS \\
50 Vmp T05 \\
100 V & 0.29 \\
200 V & 0.29 \\
\(400 \vee\) & 0.38 \\
\(600 \vee\) & 0.46 \\
\hline
\end{tabular}
TRIACS



\section*{SERVICE TRADING CO}



COIN MECHANISM (Ex-London Transport)


\section*{24 VOLT DC SOLENOIDS}


VARIABLE VOLTAGE TRANSFORMERS
 \(\begin{array}{ll}\text { Carriage extra } & \text { INPUT 230v.A.C. 50/60 } \\ \text { DUTPUT VARIABLE } 0 / 260 \text { v. A.C }\end{array}\) BRAND NEW. All types.
\(200 W\) (1 Amp)
0.5 KVA (Max. \(21 / 2\) Amp)
1 KVA (Max 5 Amp) \(£ 10.00\) E11.50 16.50 \(£ 30.00\) 833.00 \(£ 60.00\)
102.50 £10.00
300 VA ISOLATING TRANSFORMER
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{LTTRANSFORMERS} \\
\hline 0.612 volt " 10 amp & £5.60 Post 70p. \\
\hline 0.10.17 18 volt " 10 amp & £7.90 Posi 70 p \\
\hline O 6, 12 volt "20 amp & f9.00 Posi 70 p \\
\hline O. 12.24 vott "10 amp & £9.20 Post 700 \\
\hline 0.4 .6 .24 .32 volt " 12 amp & ¢9.90 Posi 70p \\
\hline 0.6121718 .20 voll " 20 amp . & £10.40 Post 70p. \\
\hline Oiner types to order at sthort notice & Phone your encquities. \\
\hline
\end{tabular}

AUTO TRANSFORMERS
Step up step down
f6.20 Post 60 p 500 watt \(\mathbf{£ 9 . 2 0}\) Post \(75 p 1000\) watt \(\mathbf{£ 1 2 . 0 0} 0\).
20 r.p.m. GEARED MOTOR
9/12 VOLT DC GOVERNED


When energized transmission is extremety powertul. 24 V d c at 240
MA OUR PRICE JUST \(£ 2.50\). Posi 30 p
NICKEL CADMIUM BATTERY


TRIAC


INSULATION TESTERS (NEW)


\section*{STide: STivien ITiove}
* FOUR EASY TO BUILD KITS USING XENON WHITE * LIGHT FLASH TUBES, SOLID STATE TIMING +
TRIGGERING CIRCUITS. PROVISION FOR EX-
TERNAL TRIGGERING. 230-250y. A.C. OPERATION. * RANGE OF 4 STROBE KITS FROM STOCK. - PRICES FROM £6.30-E22.00. SAE FOR
 \({ }^{*}\) BIG BLACK LIGHT

\(\qquad\)
\(\qquad\) black light fluorescent u.v. TUBES
 holders tor esther 9 " 1.30 . Poss 25 p. Compleve ballast un

\section*{METERS NEWV}

90 mm Diamoter.

\(\qquad\)
\(54 \mathrm{~mm} \times 56 \mathrm{mmRECTANGULAR}\)

'FRACMO' 240VOLTA.C. 50 cycle SINGLE PHASE GEARED MOTOR


\section*{A.C. MAINS TIMER UNIT}
\(\qquad\)
PROGRAMME TIMERS
\(\qquad\)

\(\mathbf{~} 2.00\) post 35 p
\(\mathbf{f} 2.50\) post 350

UNISELECTOR SWITCHES - NEW 4 BANK 25 WAY FULL WIPER 25 ohm coil, 24v. D. - peration E6.90. Post 30p.

BANK 25 WAY EULL IPER 25
coil, 24 v. D. C. 77.90 . Poss 30 P .
8 BANK 25 WAY FULL WIPER
SERVICE TRADING CO.

\title{
BARGAINS NOW AVAILABLE
}

Top class used instruments from such famous names as Téktronix, Hewlett-Packard, Solartron, Philips, STC, Racal, etc., etc.

\section*{ALL IN SUPERB CONDITION AND AT REDUCED PRICES!}


Manconi
TF1417/A. 6 Digits \(0-15 \mathrm{MHz}\)
DEVIATION METERS AND POWER METERS

\section*{Marconi}

TF7910. \(4-1024 \mathrm{MHz}\)
TF2502. Power Mete

\section*{DIGITAL VOLTMETERS}

Dena
3B00A. Digıtal Multimeter \(01 \%\) Max RDG 1999 £ \(98-£ 140\) 5230. DVM. \(0.02 \% 10 \mu V\) Max ROG \(119999 \quad £ 349-£ 450\)
5530 . DVM. \(0.02 \% ~ 1 \mu V\). Max RDG 119999

Oynamco
DM2022, D40 DC. \(0.02 \% 10 \mu \mathrm{~V}\) resolution-2kV £98-£340 DM2140/A1/B1 Mean AC Converters \(\mathbf{E 9 8 - £ 2 4 0}\) DM2140/A1/B3. RMS AC. Converters

\section*{Howlott Packard}

3440 and Range of plug-ins (Complete) 3480 Main Frame 5 Digits

Complete with 3482 DC plug-in
3484 Multimeter Plug-in


Solartron
LM \(1420.20 .05 \% 2.5 \mu \mathrm{~V}\) resolution to 1 kV DC \(\mathbf{£ 9 6 - £ 1 9 0}\) LM1219. A.C Converter \(30 \mathrm{mV}-300 \mathrm{~V}\) Mean Reading LM1219. A.C Converter \(30 \mathrm{mV}-300 \mathrm{~V}\) Mean Reading
\(£ 40-\mathrm{-} 190\) LM1480.3. Max. Rdg. \(299995 \mu \mathrm{~V}\)-2kV DC. Auto-ranging \(\begin{gathered}\text { £ } 280\end{gathered}\) LM1604. Max. Rdg. 19999. \(1 \mu \mathrm{~V}\). 1 kV DC. Auto-ranging LM1867 Max. Rdg 101999. \(10 \mu \mathrm{~V}\)-1 kV DC \(\begin{array}{r}\mathbf{£ 2 8 0 - \mathbf { E 4 2 0 }} \mathbf{£ 2 5 9}\end{array}\)
\#Requires heads and recalibration.


Call us now



SPECTRUM ANALYSERS Hewlert Packerd
B551B/B51. 10MHz-1 2GHz (Extends to 40GHz with extra accessories)
ith extra
\(\mathbf{£ 2 , 3 1 0}\)

\section*{SWEEP GENERATORS}

Howlet Packard
8693B 3.7-7. BGHz plug-ins (For use with 8690 Main Frame)

\section*{TELEPHONE TV AND MICROWAVE}

Hewlett Packard
\(3701 / 02 / 03\). Microwave Link Analyser

\section*{Marconi}

OA 2090A. White Noise Test Set
TF 2905/5 (Filters also available at extra charge)
£298
TF 2909 Grey Scale Gen Gen 525 lines \(60 \mathrm{~Hz} \underset{\text { £440-£750 }}{ }\) Philips
Prey Scale Gen 625 lines Philips
PM 5508B Pattern Gen 625 lines PAL UK Systems £159-£280


Bell \& Howell
5-127 Ultra Violet Light Beam 12 Channels \(\mathbf{8 2 6 9}\)
(Galvos to 13 kHz available at extra charge) Galvos to
OURCES
General Radio
1363. UHF Oscillator (needs power supply) £80 Muirtead

 TF \(144 \mathrm{H} / 4 \quad 10 \mathrm{kHz}-72 \mathrm{MHz}\). Xtal check Iṇ/Ext AM 50 TF8010/9 \(10 \mathrm{MHz}-470 \mathrm{MHz}\) Int/Ext AM and Pulse modulation \(£ 259\) Wayne Kerr
\(0.22 \mathrm{D} .10 \mathrm{KHz}-10 \mathrm{MHz}\) Video Oscillator


\section*{Richmand Hill}

TSP TV Studio Precision Signal Generator Sin 2 P \& B ,
Window. Starcase 525 lines Requires all drives (Modification to 625 lines arranged at extra charge) \(£ 290\) Siemons
REL3K53. Contact Fauit Locators. 1 MHz Test Signal Varıable
levels. High sensitivity
74166 Milliwatt Test Sets
74166 Milliwatt Test Sets \(\quad\) £36-£45
74184 B . Selective Measuring Sets \(\mathbf{E 3 6 - £ 8 5}\)
74306 B . Noise Generators. \(20 \mathrm{~Hz}-4 \mathrm{kHz} \quad \mathbf{£ 8 0 - £ 1 8 0}\)
( \(480-£ 110\)
74600 R F Attenuators. 10 steps each unit total Att 09
9090 Odb .
4B32B. Selective Level Measuring Set £80-£100
Wandel a Gotterman
TFPM43. 14 MHz . Selective Meters
VZMG1. Sampling Attachments (Complete) \(£ 310\)

\section*{TRANSFER FUNCTION ANALYSER}

JM1600/JX1639 \(000001 \mathrm{~Hz}-159 \mathrm{kHz}\) Phase resolution 10
minutes of arc
£1,800-£2,400
WAVE ANALYSERS
Airmec/ Racal
\(248 \mathrm{~A} .5-300 \mathrm{MHz}\). Harmonic Analysers £132
ASSOCIATED EQUIPMENT
Manconi
TF2606. Differential Voltmeter. 0 -1000V \(£ 120\)
Radiometer
\(\underset{\text { RV24. D C. Electronic Multimeter }}{\substack{\text { Siemens }}}\)
Siemens
Multizet R.F. Voltmerer \(0-100 \mathrm{~V}\)
Racal FM Tape Recorder. 4 channels 5 kHz at Hispeed.
CAT 9883 Headset and Mic/Amplifier Complete \(\mathbf{5 5 5 0}\)
\(\begin{array}{ll}\text { CAT } 9883 \text { Headset and Mic } / \text { Amplifier Complete } & \mathbf{£ 5 5 0} \\ \text { MP } \\ \text { Surface Pyrometer } 50-600^{\circ} \mathrm{C} \text { (with Probe) } & \mathbf{£ 1 9}\end{array}\)
£98 Uncalibrated

\section*{Carston Electronics Limited}

Shirley House, 27 Camden Road
London, NW1. Tel: 01-267 4257

\section*{HERE'S A LOGGGIL' SHOPPING LST YOU GONT OFFORD TO MISS!}

\section*{7400 Series TTL} \begin{tabular}{ll}
7400 & Series TTL \\
1 & 25 \\
& \(100+\) \\
\hline
\end{tabular} \(\begin{array}{llll} & 0.14 & 0.13 & 0.12 \\ \text { SN7401 } & 0.14 & 0.13 & 0.12\end{array}\) \(\begin{array}{llll}\text { SN7402 } & 0.14 & 0.13 & 0.12 \\ \text { SN7403 } & 0.14 & 0.13 & 0.12\end{array}\) SN7403
SN7404 \(\begin{array}{llll}\text { SN7404 } & 0.15 & 0.14 & 0.13\end{array}\) SN7406 SN7407 SN7408
SN7409 \(\begin{array}{llll} & 0.15 & 0.13 & 0.12 \\ & 0.15 & 0.13 & 0.12\end{array}\) \(\begin{array}{llll}\text { SN7410 } & 0.14 & 0.13 & 0.12\end{array}\) \(\begin{array}{llll}\text { SN7411 } & 0.23 & 0.22 & 0.21 \\ \text { SN7412 } & 0.19 & 0.18 & 0.17\end{array}\) \(\begin{array}{llll}\text { SN7412 } & 0.19 & 0.18 & 0.17 \\ \text { SN7413 } & 0.30 & 0.29 & 0.28\end{array}\) \(\begin{array}{llll}\text { SN7414 } & 0.71 & 0.70 & 0.69 \\ \text { SN7415 } & 0.30 & 0.29 & 0.27\end{array}\) \(\begin{array}{llll}\text { SN7415 } & 0.30 & 0.29 & 0.27 \\ \text { SN7416 } & 0.28 & 0.27 & 0.26\end{array}\) \(\begin{array}{llll}\text { SN7416 } & 0.28 & 0.27 & 0.26 \\ \text { SN7417 } & 0.28 & 0.27 & 0.26\end{array}\) \(\begin{array}{llll}\text { SN7420 } & 0.14 & 0.13 & 0.12\end{array}\) \(\begin{array}{llll}\text { SN7421 } & 0.95 & 0.94 & 0.93 \\ \text { SN7422 } & 0.25 & 0.94 & 0.23\end{array}\) \(\begin{array}{llll}\text { SN7422 } & 0.25 & 0.24 & 0.23\end{array}\) \(\begin{array}{llll}\text { SN7423 } & 0.26 & 0.25 & 0.22 \\ \text { SN7425 } & 0.26 & 0.25 & 0.22\end{array}\) \(\begin{array}{llll}\text { SN7425 } & 0.26 & 0.25 & 0.22 \\ \text { SN7426 } & 0.26 & 0.25 & 0.22\end{array}\) \(\begin{array}{llll}\text { SN7427 } & 0.26 & 0.25 & 0.22\end{array}\) \(\begin{array}{llll}\text { SN7428 } & 0.39 & 0.38 & 0.37\end{array}\) \begin{tabular}{llll} 
SN7430 & 0.14 & 0.13 & 0.12 \\
& 0.127432 & 0.25 & 0.24 \\
\hline
\end{tabular} \(\begin{array}{llll}\text { SN7432 } & 0.25 & 0.24 & 0.22 \\ \text { SM7433 } & 0.36 & 0.35 & 0.34\end{array}\) \(\begin{array}{llll}\text { SN7433 } & 0.36 & 0.35 & 0.34 \\ \text { SH7437 } & 0.27 & 0.26 & 0.22\end{array}\) \(\begin{array}{llll}\text { SN7437 } & 0.27 & 0.26 & 0.22 \\ \text { SN7438 } & 0.27 & 0.26 & 0.22\end{array}\) \(\begin{array}{llll}\text { SN7439 } & 1.10 & 1.08 & 1.06\end{array}\) \(\begin{array}{llll}\text { SN7440 } & 0.14 & 0.13 & 0.12\end{array}\) \(\begin{array}{llll}\text { SN7441 } & 0.70 & 0.69 & 0.66 \\ \text { SN7442 } & 0.63 & 0.60 & 0.53\end{array}\) \(\begin{array}{llll}\text { SN7443 } & 1.00 & 0.99 & 0.90\end{array}\) \(\begin{array}{llll}\text { SN7444 } & 1.08 & 1.07 & 1.05\end{array}\) \(\begin{array}{llll}\text { SN7445 } & 0.85 & 0.83 & 0.70\end{array}\) \(\begin{array}{llll}\text { SN7446 } & 1.03 & 1.00 & 0.85 \\ \text { SN74 } & 1.03 & 1.00 & 0.85\end{array}\) \(\begin{array}{llll}\text { SN7447 } & 1.03 & 1.00 & 0.85\end{array}\) \(\begin{array}{llll}\text { SN7448 } & 0.85 & 0.83 & 0.70\end{array}\) SN7450 SN7450 SN7451 \(\begin{array}{lll}0.14 & 0.13 & 0.12 \\ .14 & 0.13 & 0.12\end{array}\) \(\begin{array}{llll}\text { SN77453 } & 0.14 & 0.13 & 0.12 \\ \text { SN7454 } & 0.14 & 0.13 & 0.12\end{array}\) \(\begin{array}{llll}\text { SN7454 } & 0.14 & 0.13 & 0.12 \\ \text { SN7455 } & 0.40 & 0.39 & 0.38\end{array}\) SN7455 SN7460 \(\begin{array}{llll}\text { SN7460 } & 0.14 & 0.13 & 0.12 \\ \text { SN7462 } & 0.45 & 0.44 & 0.42\end{array}\) \(\begin{array}{llll}\text { SN7464 } & 0.45 & 0.44 & 0.42\end{array}\) \(\begin{array}{llll}\text { SN7465 } & 0.45 & 0.44 & 0.42\end{array}\) SN7470 \(0.30 \quad 0.27 \quad 0.25\) \(\begin{array}{llll}\text { SN7471 } & 0.60 & 0.59 & 0.58 \\ \text { SN7472 } & 0.25 & 0.24 & 0.21\end{array}\) \(\begin{array}{llll} & 0.25 & 0.24 & 0.21 \\ \text { SN7473 } & 0.30 & 0.27 & 0.26\end{array}\) \(\begin{array}{llll}\text { SN7474 } & 0.31 & 0.29 & 0.26\end{array}\) \(\begin{array}{llll}\text { SN7475 } & 0.40 & 0.39 & 0.38\end{array}\) \(\begin{array}{llll}\text { SN7476 } & 0.31 & 0.29 & 0.26\end{array}\) \(\begin{array}{llll}\text { SN7478 } & 0.65 & 0.63 & 0.61 \\ \text { SN7480 } & 0.43 & 0.41 & 0.36\end{array}\) \(\begin{array}{llll}\text { SN7480 } & 0.43 & 0.41 & 0.36 \\ \text { SM7481 } & 1.00 & 0.95 & 0.90\end{array}\) \(\begin{array}{llll}\text { SN7481 } & 1.00 & 0.95 & 0.90 \\ \text { SN7482 } & 0.75 & 0.70 & 0.62\end{array}\) \(\begin{array}{llll}\text { SN7483 } & 0.81 & 0.80 & 0.68 \\ \text { SN7483 } & 0.90 & 0.86 & 0.85\end{array}\) \(\begin{array}{llll}\text { SN7484 } & 0.90 & 0.86 & 0.85 \\ \text { SN7485 } & 1.25 & 1.15 & 1.00\end{array}\) \(\begin{array}{llll}\text { SN7485 } & 1.25 & 1.15 & 1.00\end{array}\) \(\begin{array}{llll}\text { SN7486 } & 0.31 & 0.28 & 0.25 \\ \text { SN7489 } & \mathbf{3 . 5 0} & \mathbf{3 . 2 0} & \mathbf{3 . 0 0}\end{array}\) \(\begin{array}{llll}\text { SN77490 } & 0.45 & 0.42 & 0.35 \\ \text { SN7490 } & 0.40 & 0.25 & 0.90\end{array}\) \(\begin{array}{llll}\text { SN7491 } & 1.00 & 0.95 & 0.90 \\ \text { SH7492 } & 0.45 & 0.42 & 0.35\end{array}\) SN7492 \(\begin{array}{llll}\text { SN7493 } & 0.45 & 0.42 & 0.35 \\ \text { SN7494 } & 0.48 & & \end{array}\) \(\begin{array}{llll}\text { SN7494 } & 0.48 & 0.45 & 0.40\end{array}\)

> 永 SN/495
SN7496 SN7496
SN7497 SN77100
\(1 \quad 25 \quad 100+\) 0.6 0.60
0.70
0.70
1.35
0.31 \(\begin{array}{lllll}\text { SN74105 } & 0.31 & 0.29 & 0.26 \\ \text { SN74107 } & 0.31 & 0.29 & 0.26\end{array}\) \(\begin{array}{llll}\text { SN74107 } & 0.31 & 0.29 & 0.26 \\ \text { SN74109 } & 1.00 & 0.97 & 0.95\end{array}\) \(\begin{array}{llll}\text { SN774110 } & 0.55 & 0.50 & 0.45 \\ \text { SN74111 } & 0.81 & 0.80 & 0.76\end{array}\) \(\begin{array}{llll}\text { SN74111 } & 0.81 & 0.80 & 0.76 \\ \text { SN74114 } & 1.00 & 0.97 & 0.95\end{array}\) \(\begin{array}{llll}\text { SN74115 } & 1.00 & 0.97 & 0.95 \\ \text { SN74118 } & 1.00 & 0.95 & 0.90\end{array}\) \(\begin{array}{llll}\text { SN74118 } & 1.00 & 0.95 & 0.90 \\ \text { SN74121 } & 0.31 & 0.29 & 0.25\end{array}\) \(\begin{array}{llll}\text { SN74122 } & 0.44 & 0.41 & 0.37 \\ \text { SM74123 } & 0.42 & 0.5 B & 0.50\end{array}\)

\section*{\(\begin{array}{llll}\text { SN74123 } & 0.62 & 0.58 & 0.50 \\ \text { SN74125 } & 0.70 & 0.65 & 0.60\end{array}\)} \(\begin{array}{lllll}\text { SN74126 } & 0.75 & 0.70 & 0.65 \\ \text { SN74128 } & .40 & 1.35 & 1.30\end{array}\) \(\begin{array}{llll}\text { SN74128 } & 1.40 & 1.35 & 1.30 \\ \text { SN74132 } & 2.10 & 2.05 & 2.00\end{array}\) \(\begin{array}{llll}\text { SN74136 } & 0.95 & 0.90 & 0.85 \\ \text { SN74140 } & 2.50 & 2.45 & 2.40\end{array}\) \(\begin{array}{llll}\text { SN74140 } & 2.50 & 2.45 & 2.40 \\ \text { SN74141 } & 0.75 & 0.70 & 0.62 \\ \text { SN74145 } & 1.15 & 1.10 & 1.05\end{array}\) \(\begin{array}{llll}\text { SN74145 } & 1.15 & 1.10 & 1.05 \\ \text { SN74147 } & 2.95 & 2.90 & 2.85\end{array}\) \(\begin{array}{llll}\text { SN74148 } & 2.30 & 2.25 & 2.20\end{array}\) \(\begin{array}{llll}\text { SN74150 } & 1.35 & 1.30 & 1.25 \\ \text { SN74151 } & 0.68 & 0.62 & 0.55\end{array}\) \(\begin{array}{llll}\text { SN74152 } & 1.55 & 1.50 & 1.45 \\ \text { SN74153 } & 0.68 & 0.62 & 0.55\end{array}\) \(\begin{array}{llll}\text { SN74153 } & 0.68 & 0.62 & 0.55 \\ \text { SN74154 } & 1.55 & 1.50 & 1.45\end{array}\) SN74155
\[
\begin{aligned}
& \text { SN74156 } \\
& \text { SN74157 } \\
& \text { SN7A150 }
\end{aligned}
\]
SN74160\(\begin{array}{lll}0.68 & 0.62 & 0.55 \\ 0.68 & 0.62 & 0.55\end{array}\)\begin{tabular}{lll}
0.90 & 0.62 & 0.55 \\
0.85 & 0.80 \\
\hline
\end{tabular}
点
C-MOS Types\(\begin{array}{lll}0.24 & 0.19 & 0.16 \\ 4.90 & 4.80 & 4.70\end{array}\)\(\begin{array}{llll}\text { 4004AE } & 4.90 & 4.80 & 4.70 \\ 4006 A E & 1.55 & 1.50 & 1.45\end{array}\)\(\begin{array}{llll}\text { 4000AE } & 1.55 & .15 & 1.45 \\ \text { 4007AE } & 0.24 & 0.19 & 0.16\end{array}\)\(\begin{array}{llll}4008 A E & 1.60 & 1.55 & 1.50\end{array}\)\(\begin{array}{llll}\text { 4009AE } & 0.35 & 0.34 & 0.30 \\ \text { 4010AE } & 0.50 & 0.48 & 0.46\end{array}\)\(\begin{array}{llll}\text { 4010AE } & 0.50 & 0.48 & 0.46 \\ \text { 4011AE } & 0.24 & 0.19 & 0.16\end{array}\)\(\begin{array}{llll}4011 A E & 0.24 & 0.19 & 0.16\end{array}\)\(\begin{array}{llll}\text { 4012AE } & 0.24 & 0.19 & 0.16 \\ \text { 4013AF } & 0.59 & 0.47 & 0.39\end{array}\)\(\begin{array}{llll}\text { 4013AE } & 0.59 & 0.47 & 0.39 \\ \text { 4014AE } & 1.65 & 1.33 & 1.10\end{array}\)\(\begin{array}{llll}\text { 4014AE } & 1.65 & 1.33 & 1.10 \\ \text { 4015AE } & 1.65 & 1.33 & 1.10\end{array}\)\(\begin{array}{llll}\text { 4015AE } & 1.65 & 1.33 & 1.10 \\ \text { 4016AE } & 0.62 & 0.50 & 0.41\end{array}\)\(\begin{array}{llll}\text { 4017AE } & 1.62 & 1.31 & 1.08 \\ \text { 4018AE } & 2.45 & 2.40 & 2.30\end{array}\)\(\begin{array}{llll}\text { 4018AE } & 2.45 & 2.40 & 2.30 \\ \text { 4019AF } & 0.62 & 0.50 & 0.41\end{array}\)\(\begin{array}{llll}\text { 4019AE } & 0.62 & 0.50 & 0.41 \\ \text { 4020AE } & 1.82 & 1.46 & 1.21\end{array}\)\(\begin{array}{llll}\text { 4020AE } & 1.82 & 1.46 & 1.21\end{array}\)\begin{tabular}{llll}
4021 AE & 1.65 & -1.33 & 1.10 \\
\hline 4022 AE & 1.65 & \(\frac{1.33}{}\) & 1.10
\end{tabular}\(\begin{array}{llll}\text { 4022AE } & 1.65 & 1.33 & 1.10 \\ \text { 4023AE } & 0.24 & 0.19 & 0.16\end{array}\)\(\begin{array}{llll}\text { 4024AE } & 0.24 & 0.19 & 0.16 \\ & 1.13 & 0.91 & 0.75\end{array}\)\(\begin{array}{llll}\text { 4025AE } & 0.24 & 0.19 & 0.16\end{array}\)\(\begin{array}{llll}\text { 4025AE } & 0.24 & 0.19 & 0.16 \\ \text { 4026AE } & 6.50 & 6.40 & 6.30\end{array}\)\(\begin{array}{llll}\text { 4027AE } & 0.42 & 0.41 & 6.30 \\ 40.40\end{array}\)\(\begin{array}{llll}\text { 4028AE } & 1.41 & 1.14 & 0.94\end{array}\)\(\begin{array}{llll}\text { 4029AE } & 1.95 & 1.57 & 1.30\end{array}\)\(\begin{array}{llll}\text { 4029AE } & 1.95 & 1.57 & 1.30 \\ \text { 4030AE } & 0.62 & 0.50 & 0.41\end{array}\)\(\begin{array}{llll}\text { 4030AE } & 0.62 & 0.50 & 0.41 \\ \text { 4033AE } & 2.80 & 2.70 & 2.60\end{array}\)\(\begin{array}{llll}\text { 4035AE } & 1.71 & 1.38 & 1.14\end{array}\)\(\begin{array}{llll}\text { 4040AE } & 1.82 & 1.46 & 1.21\end{array}\)\(\begin{array}{llll}4040 A E & 1.82 & 1.46 & 1.21\end{array}\)\(\begin{array}{llll}\text { 4041AE } & 0.90 & 0.85 & 0.80 \\ \text { 4042AE } & 1.00 & 0.90 & 0.80\end{array}\)\(\begin{array}{llll}\text { 4042AE } & 1.00 & 0.90 & 0.80 \\ \text { 4043AE } & 1.00 & 0.90 & 0.80\end{array}\)\(\begin{array}{llll}\text { 4042AE } & 1.00 & 0.90 & 0.80 \\ \text { 4043AE } & 1.00 & 0.90 & 0.80 \\ \text { 4044AE } & 1.00 & 0.90 & 0.80\end{array}\)\(\begin{array}{llll}4047 A E & 1.50 & 1.45 & 1.40\end{array}\)
    \(\begin{array}{llll}4047 \mathrm{AE} & 1.50 & 1.45 & 1.40 \\ & 1.30 & 1.25 & 1.20\end{array}\)
\(\begin{array}{llll}\text { 4048AE } & 1.30 & 1.25 & 1.20 \\ \text { 4049AE } & 0.54 & 0.44 & 0.36 \\ \text { 4050AE } & 0.54 & 0.44 & 0.36\end{array}\)
\(\begin{array}{llll} & 0.54 & 0.44 & 0.36 \\ & 0.54 & 0.44 & 0.36\end{array}\)
\(\begin{array}{llll}4051 \text { AE } & 1.77 & 1.43 & 1.18\end{array}\)
\(\begin{array}{lllll}4052 A E & 2.00 & 1.90 & 1.80 \\ & 2.70 & 2.60 & 2.50\end{array}\)
\(\begin{array}{llll}4053 A E & 2.70 & 2.60 & 2.50 \\ 4055 A E & 2.60 & 2.50 & 2.40\end{array}\)
\(\begin{array}{llll}4055 A E & 2.60 & 2.50 & 2.40 \\ 4056 A E & 1.35 & 1.09 & 0.90\end{array}\)
\begin{tabular}{llll} 
& 1.35 & 1.09 & 0.90 \\
\hline
\end{tabular}
\(\begin{array}{llll}\text { 4060AE } & 2.25 & 1.82 & 1.50 \\ \text { 4066AE } & 0.95 & 0.90 & 0.85\end{array}\)
\(\begin{array}{llll}\text { 4066AE } & 0.95 & 0.90 & 0.85 \\ \text { 4069AE } & 0.38 & 0.30 & 0.25\end{array}\)
\(\begin{array}{llll}\text { 4069AE } & 0.38 & 0.30 & 0.25 \\ \text { 4071AE } & 0.34 & 0.27 & 0.23\end{array}\)
\(\begin{array}{llll} & 0.34 & 0.27 & 0.23 \\ \text { 4076AE } & 1.45 & 1.40 & 1.35\end{array}\)
\begin{tabular}{lllll} 
& 1.45 & 1.40 & 1.35 \\
\hline OR1AE & 0.34 & 0.27 & 0.23
\end{tabular}
\(\begin{array}{llll}\text { 4081AE } & 0.34 & 0.27 & 0.23 \\ \text { 4510AE } & 1.75 & 1.70 & 1.65\end{array}\)
\(\begin{array}{llll}\text { 4516AE } & 1.76 & 1.70 & 1.65 \\ & 1.72 & 1.18\end{array}\)
\(\begin{array}{llll}4518 A E & 2.17 & 1.75 & 1.45\end{array}\)
    \(\begin{array}{llll}\text { 452AE } & 1.65 & 1.60 & 1.50\end{array}\)
    \(\begin{array}{llll}\text { 4520AE } & 1.65 & 1.60 & 1.50 \\ \text { 4901AE } & 0.37 & 0.35 & 0.33\end{array}\)
    \(\begin{array}{llll}\text { 4SOLAE } & 0.37 & 0.35 & 0.33 \\ \text { 4911AE } & 0.37 & 0.35 & 0.33\end{array}\)
    \begin{tabular}{lll|l}
0.95 & 0.90 & 0.80 & 4044AE \\
0.95 & 0.90 & 0.80 & 4047 AE \\
0.95 & 0.90 & 0.80 & 4048 AE \\
0.95 & 0.90 & 0.80 & 4049 AE \\
1.60 & 1.55 & 1.50 & 4050 AE \\
1.60 & 1.55 & 1.50 & 4051 AE \\
1.40 & 1.30 & 1.15 & 4052 AE \\
2.40 & 2.30 & 2.20 & 4053 AE \\
1.65 & 1.60 & 1.55 & 4055 AE \\
1.15 & 1.10 & 1.00 & 4056 AE \\
0.97 & 0.90 & 0.80 & 4060 AE \\
1.10 & 1.05 & 1.00 & 4066 AE \\
1.10 & 1.05 & 1.00 & 4069 AE \\
1.10 & 1.05 & 1.00 & 4071 AE \\
3.50 & 3.45 & 3.35 & 4076 AE \\
1.10 & 1.05 & 1.00 & 4081 AE \\
1.65 & 1.55 & 1.50 & 4510 AE \\
2.30 & 2.25 & 2.20 & 4516 AE \\
4.90 & 4.85 & 4.80 & 4518 AE \\
1.75 & 1.70 & 1.65 & 4520 AE \\
1.70 & 1.65 & 1.60 & 4901 AE \\
1.25 & 1.05 & 1.00 & 4911 AE
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{D.I.L. SOCKETS} \\
\hline & 1 & 100 & \(500+\) \\
\hline 8 -pin & 0.11 & 0.09 & 0.08 \\
\hline 14-pin & 0.13 & 0.11 & 0.10 \\
\hline 16-pin & 0.14 & 0.12 & 0.10 \\
\hline 18-pin & 0.15 & 0.13 & 0.11 \\
\hline \multicolumn{4}{|l|}{7-SEGMENT D} \\
\hline & 1 & 25 & \(100+\) \\
\hline \(0.3^{\prime \prime}\) & DIL 0.90 & 0.80 & 0.75 \\
\hline Comm. & Anode. 14-pin & DIL. & ed LED \\
\hline
\end{tabular}
\(0.24 \quad 0.19 \quad 0.16\)
\(0.24 \quad 0.19 \quad 0.16\)

\section*{SOLID-STATE ACCURAGY}

\author{
SOIAR POWERED \\ 100-Year Calendar Walch
}


SP- 1
This is the world's first solar-powered timepiece. Solar cells (similar to those used in the Skylab program) draw power from the sun ( 10 to 15 minutes per day) or from ambient light (slightly onger) to keeo batteries fully charged. Batteries operate up to 10 years without replacement. A true calendar watch- Lear 2100 . is programmed to provide a calendar to the year 2100 . automatically adjusting for 30 and 31 day months. even leap years. Automatic brightness control adjusts LED for perfect seconds or shows the date. Easily adjusts to reset hour or date mithout affecting calendar. Shock and water resistant. Accurate to 5 seconds per month. £298.50.

\section*{PRECISION TIMEPIECE WITH Brilliant LED Display}


TYPE LED-2

Press the button and the ume is visible, brilliantly displayed in large easily read LED numerals. Pulsating colon marks the passage of each second Quartz crystal assures highest possible band. £74.00.


\section*{PATTRICK \& KINNIE}

191 LONDON ROAD ROMFORD ESSEX
ROMFORD 44473
E.H.T. POWERUNIT. \(110 / 240 \mathrm{v}\) 50Hz giving 5 Kv ar \(50 \mathrm{~m} / \mathrm{a}\) METERED OUTPUT \(£ 18.50\). PP \(£ 1.50\)
\begin{tabular}{|c|}
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
COPPERLAMINATE P.C. BOARD \\
\(81 / 2 \times 6 \times 1 / 11\). inch. 3 for 75 p. PP \(25 p\) \(10 \times 4 \times 1 / 1 ;\) inch. 5 for 75 p. P.P 25 p \(101 / 2 \times 5 \frac{1}{2} \times 1 / 1\). inch 3 tor 75 p. PP \(25 p\) \(10 \times 8 \frac{1}{2} \times 1 / 11\) inch 3 for \(£ 1\). PP 25p \(17 \times 91 / 2 \times 1 / 16\) inch 2 for E1.20. P.P 25 p
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

PRECISION A.C. MILLIVOLTMETER (SOLARTRON)


OVERLOAD CUT-OUTS. Panel mounting

ALL PRICES INCLUDE V.A.T. EXCEPT WHERE

QUADROPHONIC DECODER MODULE. C.B S./S Q TYpe using I C. MC \(1312 P\) With slight modification direct substitut for PE RONDO" Board Complete with Data \(£ 4\) each \(15 \%\) VAT Surcharge
S.T.C.CRYSTALFILTERS ( 107 Mhz ) \(\quad 15 \%\) V.A.T. 445-tOU-901A (50 Khz spacing) £3. PP 20p Surcharge 445-LOU-901B (25 Khz spacing) E4. PP 20 p
V.H.F./U.H.F. POWERTRANSISTORS (Type BLY38) 3 wat V.H.F./U.H.F. POWER TRANSISTORS (Type BLY38) 3 watl
output at \(100-500 \mathrm{Mhz}\) £ 2.25 . P P 10p

H.D. ALARM BELLS. 6in. Dome 6/8v DC £2.75. PP

MULTICORE CABLE. 6-core \(\langle 6\) colours) \(14 / 0076\) MULTICORE CABLE. 6-core ( 6 colours) \(14 / 0076\)
Screened PV.C 22p per yard 100 vards at \(\mathbf{1 6 . 5 0}\). PP 2p a yard 7 -core ( 7 colours) \(7 / 22 \mathrm{~mm}\) Screened PVC
\(\mathbf{2 2 p}\) per yard, 100 yards \(\mathbf{£ 1 6 . 5 0 . ~ P P ~ 2 p ~ p e r ~ y a r d . ~} 30\)-core (15 colours) \(\mathbf{2 5 p}\) per yard. 100 yards \(\mathbf{E 2 0}\). Pp 2 p ) per RIBBON CABLE (8 colours) 10 m £1.65. PP 20p RiBBON CABLE
100 m
8 -core 7 mm
m monded side by side £11.50. P.P

WE REGRET THAT ALL ORDERS VALUE UNDER £5


RELAYS SIEMANS/VARLEY. PLUG-IN. Complete with iransparent dust cover and base 2 pole c/o. 45p: 6-make \(6.12-24-48 \mathrm{v}\) ivpes in stock
MINIATURE REED RELAYS (3/6v). 1 make ( \(30 \times 8 \mathrm{~mm}\) ) 20p; 2 make ( \(32 \times 12 \mathrm{~mm}\) ) 30p
12v. 2 c/o5 amp. H.D. RELAY, 65p. PP \(15 p\)
240V. A.C. RELAY (PLUG-IN TYPE). 3 c 010 amp conract
10 TURN POTENTIOMETERS (M.P.C.) 10 K ohm \(0.5 \%\) Lin \(38 \mathrm{~mm} \times 22 \mathrm{~mm} 14 \mathrm{~mm}\) Slandard Spindle £2. PP 15 p
(Diais \(\mathbf{5 0 p}\) each)
\begin{tabular}{|l} 
GARRARD PLINTH \& COVER. For Zero- 100 eic \\
beautifully finished in brushed aiuminium and black with \\
hinged smoke grey perspex lid \(£ 9.75 \mathrm{P} P \mathrm{P}\) £ 1 \\
\hline
\end{tabular}

24V. A.C. RELAY (PLUG-IN)
BULK COMPONENTS OFF
new romponents \(\mathbf{£ 2 5 0}\). P P 35p Triat orde capacitors 600 PP 20p \(15 \%\) V.A.T
REGULATED POWER SUPPLY. Input \(110 / 240 \mathrm{v}\) outpll
MINIATURE "ELAPSED TIME" INDICATORS. 10.5000

\section*{TRANSFORMERS}

ADVANCE TRANSFORMERS "VOLSTAT". InDUT 242 V
C.V.50. 38 v at 1 amp. 25 v at \(100 \mathrm{~m} / \mathrm{a} .75 \mathrm{v}\) at \(200 \mathrm{~m} / \mathrm{a}\) £2.50. P.P 65 p.
C.V.75. 25 v at \(21 / 2 \mathrm{amp}\) £3.PP 75 p
C.V. 100.50 V at 2 amp . 50 v at 100 m a £3.75. PP 75 p C.V.250. 25 v at 8 amp. 75 v at \(1 / 2 \mathrm{amp}\) E6.50. P. P \(£ 150\) C.V.500. 45 v at 3 amp 35 v at 2 amp £10. PP £ 175 H.T. TRANSFORMER
L.T.TRANSFORMER "TOROIDAL". Prim \(\angle 40 \mathrm{v}\) Sec 30 v at \(1 / 2\) amp Size 3 in dia thick £1.65. P P 20 p
L. T. TRANSFORMER. Prim 240v Sec \(27.0 .27 \mathrm{ar} 800 \mathrm{~m} / \mathrm{a}\)
75 amp £2.25. PP 50 p

MUST BE ACCOMPANIED BY THE REMITTANCE

HIGH-SPEED MAGNETIC COUNTERS. 4 digil (non reset) 24 P +5p
diglt (non resel) 24 v E1.15. P P


\section*{STEREO IC DECODER \\ HIGH PERFORMANCE PHASE LOCKED LOOP}

ORMANCE PHASE LOC
(as in 'W.W.' July '72)
MOTOROLA MC1310P EX STOCK DELIVERY

SPECIFICATION
Separation \(40 \mathrm{~dB} 50 \mathrm{~Hz} \cdot 15 \mathrm{kHz}\)


O/P level \(485 \mathrm{mistortion} 0.3 \\). \(1 / P\) level 560 mV rms all Will drive up to 75 mA stere Power requirements 8.14 V at 16 mA KIT COMPRISES FIBREGLASS PCB

ONL
£3.98 RED
GREEN \(29 p\)
Preset Potm \& Comprehensive Instructions
LIGHTEMITTING DIODE

MC1310P only £2.15 plus p.p. 10p
NOTE
As the suppler of the first MC1310P decoder kit. of which we have sold literally thousands. our customers can benefit from our wide experience

\section*{Plense add V.A.T. to all prices}

FI-COMP ELECTRONICS
PORTWOOD INDUSTRIAL ESTATE, CHURCH GRESLEY
BURTON-ON-TRENT, STAFFS. DE11 9PT
Wilkinsons wess
RELAYS AND 600 Built to your own specifications and require large variety of contact arrangements. Complete banks of contacts made to order and component parts supplied. We offer the highest quality at competitive prices with a quick delivery service. Quotations by return home and overseas. We are specialists in export orders.
MINIATUAE UNISELECTOA P.O. Type 2201 a 12 outlet 2 bridging non-bridging wipers This standard 3000 type Relay \(\mathbf{C 8} .50\) ea We can supply trom stock a compleve range of \(G E C\) minalure sealed and Ericsson cylindrical type Relays Post OHice type 88 and 89 series and type 100 AM \(2 \times 53\) Ohms all in stock
BRIDGE MEGGERS 1000 volts range 0.100 meq -ohms/intinity with resistance box \(\mathbf{E 9 5}\) ea BRTDGE MEGGERS 000 volts range 0 . MINIATURE OIGITAL INDICATOR size of digis in inch ill
weight \(3 \%\) ors leating 0 to 9 with decimal poinis \(\mathrm{E4} .50\) ea
CABLE 10 OU/0 P VC insulated 15 par E10 per 100 yard coll 20 part
PLESSEY speakers \(i 1\) ohins \(31 /\) inch dia with metal gritle two for \(£ 1.70\).
HIGH SPEED COUNTERS E1.75 sach \(31 / 2\) in \(\times 1\) in 10 counts per second with
4 flyures The following D C voltages art avalith
We are stockists of Stuan Tume, 40p extra
 dramage are all avalathle from us sent for hisis

\section*{DIRECT ELECTRONICS LTD.}

ELECTRONIC VOLTMETER CT 343 . Mains op. Steel-cised. \(12 \times 3^{\prime \prime}\) scalas. Min. read. \(100 / u \mathrm{~V}\) to 400 VIsd . Extl indn + ampl. outp. \(£ 35\) [ \(£ 2\) ). 19" unit. \(£ 30\).
SIG. GEN. CT420 same case. Bati. op. 200Hz-8KHz cont. range. Outp. \(4 \mathbf{y} / 5 \mathrm{k}\) 月 diract or \(1 \mathrm{~V} / 75 \mathrm{n}\) and GC221T 125 Kcs 20Mcs wil chars in Ca (E2).
ALLWEATHER RECT. UniA Ho. 25. A.C. mains to \(600 \mathrm{~V} / 80 \mathrm{ma}+12 \mathrm{~V} / 0.9 \mathrm{SA}\) Super-smoolhed \(+20 \mathrm{Yac} / 2 \mathrm{~A}\) Blas. £15 [€?).
Ditto No. 19. \(12 \mathrm{~V}+12 \mathrm{~V}\) for \(24 \mathrm{Vjac} 3 / 6 \mathrm{amps}\) Un-smoothed for charging. atc. \(£ 10\) [£1.50).
MINE DETECTOR No. 4A KIT No. I. Res. ZA27931/1. New in transit case. P.D.A.
TELEPRINTERS. Reperis.. High-speed Perls., Autt. TX. Spacial modern sleel desks, Terminal unils. Signal distortion Mass. panel. Ix signal test panel. spares + Covers. etc.
M.E.P. 1400 SERIES EQUIPMENT. Mostly new. Incl 80-0-80 power packs: VF Test Sets: Receiving Unlis: filters: Iransformers: Vibrator-Tunor, etc. P.U.A.

ET 3098 . D.P. \(4 / 5\) way and oft. Test/call back. White finish New. Suit Hotels. etc. P. D.A.
MODERM CABINETS \(3^{1 / 2}\) (1)

RELAYS\& UNISELECTORS. Telephone Iypes. Alto G.E.C.. Siemens. Plessey. Sealed Minialures. Contactors.
Thermo. Reods. etc. State requirsments.
GRAMM/TAPE MOTORS. IISvac. Use 2 or with transformer. Packaged 40p each (IOp): 10 for \(£ 3.50\) (pesi
Treal. Scr. \(270-0-270 / 80 \mathrm{ma}+45 \cdot 0 \cdot 45 / 40 \mathrm{ma}+6.3-0.6 .3 / 2\). 7 amp . \(£ 4.50\) ( 50 pl ). 250 VAA Torroldal Current Tapped . P.
 \(25.000 \mu \mathrm{~F}\). From 40p.

SPECIAL ITEM, SOUND REC. \& REPRO. UNIT. Type 2. Rack Equip. (ABA 10U/16873). Etched-film type. Handtook and Substantial Spares.
MARCONI EHT STABILISED Power Supphy. Klysiron controlled. Comprises 200-250 vaC STABMLSEA XTA75: 1.5.3.2KV adiustable + stabilised Unit XTA73: 700V stabills od with sweep generator Unit XIA72 Saw-looth/sq, wava/C.W. modulated. Amplitude + Frequancy controls. provision for oxt'| spme. All ia 6 hl . cobinet on castors. E2S0 + carr.
EST EQUIP.: CAMBRIDGE VERN. POT. Standard Cell Ref. Adjustable 0.5 HV steps [0.0000005 \(]\). Accly for Test Equip. Q01/.002\% (above min. settings). Iacl. Instruction card.
 mi-COSSOR ENGIME
W.COSN

SIG. GEN. CT 218 XTAL CHECK. 85Kc.s. \(30 \mathrm{Mc} / \mathrm{s}\). I V-10V. D-100dB. FM/CW/AM MOD 100/10000/1600/3000Hz. + Extl. \(£ 225\).
SIG.CEN. MARCONI TF8OIA. 185
CINTEL WIDE-RANGE CAP.BRIDGE Type \(186 z 0.1 \mathrm{~m} / \mathrm{A} .1 \cap 300 \mathrm{~m}\) O \(0.3 \mathrm{pF}-100 \mu \mathrm{~F}\)
RHOOE \& SCHWARZ SKTU Weise Genarator, 3.1000 MHz
SOLARTRON OSCILLATOR OS 101 . \(25 \mathrm{c} / \mathrm{s}\)-2SOKLC/s
THEA SIG. GENS., DSCIL

call in on us di write your re duirements. wholesale empuries welcomed. (u.k. carriage. etc.) SHOWH. ADO VAT TO TOTAL B\% WOUSTRIAL/25\% DOMESTICI. CASH WITH DRDEA EXCEPT BY PRIOR aRRAMGEMENT.

34 LISLE STREET. LONDON WC2H 7BD. TEL. 01-437 2524


\title{
The testequipment people
}

Come and visit Europe's first Electronic Instrumentation Centre

\section*{49-53 Pancras Road London NW1 20B Tel: 01-837 7781}

\section*{Next to KING'S CROSS} ST. PANCRAS


TEKTRONIX
produced by Tektronix to accept Multi trace Differential, Sampling. Spectrum Analysers, and spectal purpose
examples oftered below. |A1 -- DC \(50 \mathrm{Meg} .5 \mathrm{mV} / \mathrm{cm}\) Dual Trace 1 A 2 - DC \(50 \mathrm{Meg} 50 \mathrm{mV} / \mathrm{cm}\) Dual Trace \(\begin{array}{ll}C A \\ \text { - DC } 24 \mathrm{Meg} & \mathbf{£ 9 0 . 0 0} \\ \mathbf{8 6 9 . 5 0}\end{array}\)
 5458 DC to 33 Meg calibrated sweep delay 546 Dual time base/ Delayed sweep OC 50 \(\mathrm{Meg}_{547}\) £275.00 display DC 50 Meg \(£ 325.00\) HEWLETT PACKARD


Model 130C \(200 \mu \mathrm{~V} / \mathrm{cm}\) Oscilloscope This scope is a versatile all purpose instrument for measurements and medical applications. The outputs of rf detectors. stran gauges. ransducers. and other iow evel devices may be viewed directly without preamplification The Model 130C is easy to operate even by Base Range - \(1 \mu \mathrm{~s} / \mathrm{cm} 105 \mathrm{~s} / \mathrm{cm} 21\) ranges in a \(1.2,5\) seguence. accuracy \(\pm 3 \%\) vernier steps anci extends the \(5 \mathrm{~s} / \mathrm{cm}\) step to at least \(12.5 \mathrm{~s} / \mathrm{cm}\). Automatic migering (baseline displayed in the absence of an input signal) Verical and 'rorizontal amplifiers Bandwidth d.c. couplec de to 500 KHz ac coupled (input). Hz to 500 KHz ac coupled \begin{tabular}{l} 
deflection factor \\
\(£ 175\) \\
\hline
\end{tabular} Scope 175 A DC - 50 MHz Main trace Various plug-ins available for above \(£ \mathbf{2 5 - £ 5 5}\) each
¢ 750 Sampling Scpe 1858 DC. \(35 \mathrm{GHz} \quad £ 395\) MARCONI
Scope TF \(2200 \mathrm{~A} / 1\) c/w TV Differential plug
in TM 6457 A DC \(\quad 30 \mathrm{MHz} 50\) \(\mathrm{mV} / \mathrm{cm}\) £ \(£ 190\)
TELEQUIPMENT

\section*{DIGITAL VOLTMETERS}


DC Digital Voltmeter Solartron Type L.M \(1420.225 \mathrm{uV}-1 \mathrm{KV}\) in 6 Ranges \(0.05 \%\)
DC Accuracy 250 KHz Counter Facility \(\mathbf{£ 2 3 5}\) DYNAMCO
DM 2022 S 1
DM 2022S \(10 \mu \mathrm{~V}\) - 2 kV . Max reading 39999
Accuracy \(0.02 \%\)
\(\mathbf{£ 2 4 5}\) DVM DM2001 Mk. II \(\quad £ 125\) SOLARTRON

\section*{Autoranging Digit}

Accuracy: \(0005 \%\) Voltmeter LM 10480 Resolution 1 part in \(30.000 \quad 20.000 \mathrm{M}\) input resistance. 6 Operating modes Long term accuracy stability. Suitable for the Srandards


\section*{RECORD
ELECTRICA}
 to bulk purchase
\(£ 50\)
\(£ 60\)


Brand New
H 30208 mA FSD 5 Hz 80 mm per channel. event marker chart drive inc time and
 above £180, 3 pen £275, 5 jen £435 H390 AC/DC recorder 5 mA 5 5 -volis- \(500 \mathrm{~V} 20-5400 \mathrm{~mm} / \mathrm{hr} \quad\) E 78 H3100. Minature 1 mA DC. 80 mm chari

POWERSUPPLIES


Advance Power Module Type PM2 \(\quad 15-30 \mathrm{~V}\) at ADVANCE
Stabilised Power Supply (new) PP 1 0-600V DC @ \(300 \mathrm{~mA}-200 \mathrm{~V}\) DC Fixed \(50 \mathrm{~mA} 0-200 \mathrm{~V}\) at 5 mA 6.3 V AC at \(4 \mathrm{~A} \quad \mathbf{E} 49.50\) E.H.T Power Supply PP12. Variable \(0-5 \mathrm{kV}\) \(\begin{array}{ll}\text { DC Supply Unit DC6. } 24 V 5 A \quad & \mathbf{£ 3 9 . 5 0} \\ \text { DC } & \mathbf{£ 1 2 . 5 0}\end{array}\) DC Suoply Unit DC 22. AF 24V 5A \(£ 12.50\) OC Supply Unit DC8 88 V 4 A , \(\mathbf{£ 1 5}\) Power Module PM \(295-30 \mathrm{~V}\) Amp \(£ 1950\) Power Module PM 1. 4-15V 1 Amp \(£ 19.50\)
 Power Supply PM 4. 4-15V 3Amp £26 \(\begin{array}{ll}\text { Power Supply PM } 5.15-30 \mathrm{~V} 3 \mathrm{Amp} & \mathbf{£ 2 6} \\ \text { D C Power Supply DC } 6.24 \mathrm{~V} 5 \mathrm{~A} & \mathbf{7 5} 5\end{array}\) \(\begin{array}{lll}\text { D. C. Power Supply DC } 6 & 24 V \text { 5A } & \mathbf{£ 7 5} \\ \text { D. C. Power Supply DC B } & 48 \mathrm{~V} & 4 \mathrm{~A} \\ \text { P. } & \mathbf{1 5}\end{array}\) \(\begin{array}{ll}\text { Power Supply PP. } 13 & \text { £50 } \\ \text { Power Supply DC192A@1 20V 16A } & \text { £30 }\end{array}\) Power Supply DC 192A/2-10V @ 5.5 A.
\(-20 \mathrm{~V} @ 2.5 \mathrm{~A}+10 \mathrm{~V} @ 13 \mathrm{~A}\)
F 30
 Power Supply DCX \(194.6 .3 \mathrm{~V}(\mathrm{AC})\) @ 3.5 A
-40 V @ \(5 \mathrm{~A} \pm 24 \mathrm{~V}\) @ 4 AA
\(\mathrm{£30}\) Power Supply DC. 197 4A… Power Supply DC \(198 \ldots\)
Power Supply OC 200 I.B.M Power Supplies Input 115 V \(\begin{array}{llll} & £ 12 & 12 V 15 A & £ 29 \\ 3 V 5 A & £ 15 & 15 V 2.5 A & £ 15 \\ 3 V 8 A & £ 8 & 20 V 6 A & £ 20 \\ 6 V 2 A & £ 12 & 20 V 15 A & £ 25 \\ 6 V 6 A & \mathbf{~} & \end{array}\) \(\begin{array}{llll}6 V 6 A & £ 12 & 20 V 15 A & £ 25 \\ 6 V 8 A & £ 15 & 30 V 4 A & £ 12\end{array}\) \(\begin{array}{llll}6 V 12 A & £ 18 & 20 V 7 A & £ 20 \\ 6 V 16 A & £ 22 & 36 V 2 A & £ 12\end{array}\) £22 60V6A \(\quad \mathbf{6 4 9}\) A.P.T. ELECTRONICS (a) \(4.5 \mathrm{~A}+10 \mathrm{~V}\) (9 \(016017 \quad 20 \mathrm{~V}\) power Supply @ 300 mA \(-10 V @ 3 A+10 V @ 30020 V @ 45 A\) Power Supply SP.126A D17 20V @ 45 EA - 10V @ \(3 \mathrm{~A}+10 \mathrm{~V}\) @ 300 mA . P 14 -10 V @ 4A. + 10V@ 300 mA @ E 18

H30. Ten channel event recorder
RECORD \(500 \mu A\) single chan hr RECORD imA versio
 D C Vacuum Tube Voltmeter 412 A
\(1 \mathrm{mV}-1000 \mathrm{~V} 1 \%\) Accuracy Can also be used as Ohmeter
Sensitive Valve Volt
10 Hz 10 MHz Meter has dB scale facility \(\mathbf{E} 85\)


H F. Mullivoltmeter Philips Type GM 6014 Ranges 100 mV .30V Metar equipen a with dB also for \(100 \mathrm{mV}-30 \mathrm{~V}\). Metar equipped with dB scale. Accuracy at 30KRz less than \(3 \%\) F hewlett packard

ROKERS LIMITEDI:~
- 1

ADD 8\% VAT TO ALL PRICES


\section*{STD: SMMGIRSS
NATO \\ EX STOCK Requirement Schedules please}


FOR YOUR PRDDUCTION REQUIREMENTS USE ALPS PANEL METERS
FULL RANGEPRICE LIST-SAE PLEASE!


\section*{\(S_{\text {ervo and Electronic }} \delta_{a l e s}\) Ltd}

24 HIGH ST., LYDD, KENT. Tel. Lydd 20252 (STD 0679) VAT No. 201-1296-23 TELEX 965265



\section*{8 DECADE RESISTANCE BOX}

* \(1 \Omega-100 \mathrm{M} \Omega\)
* \(0.1 \%\) Accuracy
\(\star\) Colour coded digits, \(\Omega\) yellow, \(K \Omega\)
white, \(M \Omega\) red.

\section*{TIME ELECTRONICS LTD. Botany Industrial Estate Tonbridge Kent}

Tel. Tonbridge (07322) 5993, 3 lines


computir saies Peripherals and Systems for Data Processing Systems, Equipment and Components

Mini~ernouter Ixchemse
Our Mini Computer Exchange has systems for immediate
delivery at greaty reduced prices. A few examples of our
PDP8L 8K Processor (pictured below)
PDP11/154K Processor.
PDP11/20 24K Processor
RF11/RS11 Discs
DEC High Speed Reader Punch for PDP8I PDP8E Modules - Databreak, Bootstrap Powerfail
PDP \(11 / 20\) Processor housed in 6 ft rack
cabinet complete with console Teletype,
NOVA 800 Processor in Jumbo Chassis
DEC 6 ft . Rack Cabinets.
Ring now for prices. Other
models becoming available all the time -let
requirements.


PAPER TAPE PUNCHES \& READERS





\section*{Keyboards}

NEW REED-SWITCH KEYBOARDS BY CLARE- PENDAR WITH
 READ ONLY MEMORY ASCII CODED OUTPUT Ideal Ior communications equipment. Vous, prototype designs. elc.
68 -key posilions plus 11 insiruction keys. Positive logic. Input yoltage OUR INCREDIBLE PRICE
£29.50 [DUE TO SPECIAL PURCHASE]
- 1.00 P\&P


\section*{FHiRMAROMTE electronics}

Dept 5, 56, Fortis Green Road Muswell Hill, London. N1O 3HN telephone: 01-883 3705



The single instrument approach
to simplified testing of analogue networks.

Combines a sine and square wave oscillator, frequency counter, digital readout of volts/ decibels/harmonic distortion percentages, and tunable wave analyser in one unit.

Provides automatic tracking, ranging and bandwidth selection, and indicates when an out-of-range condition exists.

Available for rack or bench mounting; weighs under \(25 \mathrm{lbs}(11.36 \mathrm{~kg}\).\() . Power requirement\) \(115 / 230\) volts \(\pm 10 \%\).

\section*{ALSO AVAILABLE}

8100A-W Audio Flutter Meter/Wave Analyser 8300A-W IRIG Flutter Meter/Wave Analyser 610 A Sweep Generator \(-400 \mathrm{~Hz} / 2 \mathrm{MHz}\) 6275 IRIG FM Test Set
120A Instrumentation Recorder Reproducer


\section*{Semiconductor Data?}

\section*{THE SEMICON}
* international transistor index 1975/6 (Gth Edition) NOW AVAILABLE

Easy reference alpha-numeric listings of about 24,000 transistors of international origin. Over 400 pages. Updating guarantee for 1 year.

EXTENSIVE SUBSTITUTION GUIDE
CV \& BS NUMBERED DEVICES TERMINATION OUTLINE DRAWINGS

\author{
alternative \\ MANUFACTURERS \\ AND AGENTS ADDRESSES
}

ORDER NOW \(£ 9.40\) includes postage in UK. (outside UK add 80p postage by surface mail)

\section*{FROM}

SEMICON INDEXES LTD.
2(WW) DENMARK ST, WOKINGHAM. Berks. RG 11 2BB Tel: Wokingham (STD 0734) 786161
*
* This is Vol. 1 of the Semicon Index Series Vol. 2 (Diodes \& SCRs) and Vol. 3 (ICs) available soon All same price. \(10 \%\) discount if all 3 ordered together.


B H COMPONENT FACTORS LTD.

LEIGHTON ELECTRONICS CENTRE, 59 NORTH ST., LEIGHTON BUZZARD, BEDS. LU7 7EG. Tel. (05253) 2316.
 + VAT 96p Latest transistorised Telephone Amplifier is completely automatic with detachable plug-In speaker. Placing the recelver on to the crade way conversation with. out holding the hand-set. Many people can listen at a time. Increase efficiency in office, shop. workshop. Perfect for conference" calls: leaves the user's hands free to make notes. consult files. No long waiting. On/Off switch. volume control. Model with tape-recording tacility \(£ 1295\) + VAT £1 04 P \& P 65p CWO 10 -day price refund guarantee

4SEATIONTNTEICOM


This NEW. versatile De Luxe 4Station Transistorised Intercom (1 Master and 3 Subs) for desk or wall mounting can solve your com. munication problems instantly. Effec. tive range 300 ft . Callitalk'Isten from Master to Subs and Subs to Master. With selector switch. Ideally suitable tor office. shop. home or surgery. Adaptable for Mains. Complete with three 66 ft . connecting wires and accessories. On Off switch volume control. P. \& P. 65 p.

\section*{WEST LONDON DIRECT SUPPLIES (W/W)}

169 Kensington High Street, London W. 8

\section*{Ex-BEA CONTROL UNITS by UNIVAC A free-standing, modern style diecast case consisting of: \\ 2-50way gold-plated plug and sockets: sub-assembly with 3 -multiway switch assemblies: 4 -decade push button assembly with electrical reset; 2 -decade push button assembly with electrical reser: singlebank 8 -push button assembly: 1-decade lamp assembly: 1-2-decade lamp assembly: 1 - \(12 \times 3\)-lamp assembly; 4 -decade thumb wheel assembly; \(16=\) bit inline card code assembly; \(6-13\) way pius and sockets.}

\section*{Limited stocks at \(\mathbf{£ 1 2 . 5 0}\)}
ea plus \(£ 2\) carriage
WESTON THERMOPROBE -60 to +100 degrees Centigrade \(\mathbf{£ 7 0}\). WANDEL \& GOLTERMAN TFEK41 Level Meter \(\mathbf{£ 6 0}\).
PROSSER SCIENTIFIC INSTRUMENTS
Model A100 Waveform Generator. Multi wave forms \(£ 160\).
RHODE \& SCHWARZ Admittance Meter VLUK-BN3511. As new \(£ 140\).
HEWLETT PACKARD DB Oscilloscope type 175A. 3dB-50MHZ twice. Large \(6 \times 10 \mathrm{~cm}\) screen \(\mathbf{f 1 8 5 .}\)
AIRMEC 4 trace Oscilloscope. DC to 3 MHz . Good condition \(\mathbf{£ 5 0}\).
PYE SCALAMP GALVANOMETER. Hammer grey. Tested \(\mathbf{£ 5}\) ea.
SOLARTRON Multipurpose stab PU type 1094. Standard mains input. Outputs: +250 V DC 200MA: \(+18 \mathrm{VDC} 2 \mathrm{~A}:+6 \mathrm{VDC} 8 \mathrm{~A}:-3.5 \mathrm{VDC}\)

MARCONI TF801A/1 Signal Generator 10 to \(310 \mathrm{MHZ} \mathbf{f 5 5}\) ea.
MARCONI TF801B Signal Generator \(\mathbf{£ 1 2 0}\) ea. MARCONI TF801C Signal Generator \(£ 180\).
MARCONI TF791B Carrier Deviation Meter \(£ 30\) ea.
MARCONI TF934/2 FM Deviation Meter \(£ \mathbf{£ 3 5}\).
MARCONI TF1020A RF Power Meter 150 and 300 Watts. As New \(\mathbf{f 7 5}\) ea.
MARCONI TF 1020A RF Power Meter 50 and 100 Watts. As New \(\mathbf{£ 5 0}\) ea.
MARCONI TF 1094A/S HF Spectrum Analyser. Late model. Must go. \(\mathbf{£ 1 6 0}\).
MARCONI TF1434/2 Counter Range extension unit \(10-100 \mathrm{MHz} £ 25\) ea.
KELVIN \& HUGHES Single Channel Recorders with spare paper \(£ 18\) ea.
DAWE Digital Printer type 3094A. As new £27.50 ea.

\section*{ALSO MODERN STYLE TYPEWRITER KEYBOARD}
with 21 separate function keys. Housed in slimline diecast case. Transistorised. No information but a "buy" at £15 ea plus E 2 carriage

HARTLEY 13A Double Beam Oscilloscope TB 2c/s-750 \(\mathrm{kc} / \mathrm{s}\). Bandwidth \(5.5 \mathrm{Mc} / \mathrm{s}\). Sensitivity \(33 \mathrm{Mv} / \mathrm{cm}\). Calibration markers \(100 \mathrm{kc} / \mathrm{s}\) and \(1 \mathrm{Mc} / \mathrm{s} \mathbf{£ 3 0}\) each.

2 Twin 10/60 pf ceramic: 2 min strips with 4 preset \(5 / 20\) pf on each: 3 ar spaced preset \(30 / 100\) pf on ceramic base. ALL BRAND NEW \(25 p\) the LOT \(P\) \& \(P\). \(15 p\).
PHOTOCELLequivalent OCP7.1 13pea MULLARD OCP70 10 ea.
GRATICULES. 12 cm . by 14 cm . in High Quality plastic. 15 peach. \(P\) \& \(P .8 p\)

\section*{Vast quantity of good quality components - NO PASSING TRADE- so we offer} for \(\mathfrak{£} 170\) post paid
HF Crystal Dive Unit 19 in. rack mount. Standard 240 V input with superb crystal oven by Labgear tno crystals) \(\mathbf{5}\) ea. Carr. £2. ROTARY SWITCH PACK-6 Brand New switches 11 ceramic: \(1-4\) pole 2 way etc). 50p. P \& P 25p. GOURNS TRIMPOT POTENTIOMETERS.

EX-MINISTRY CT436 Double Beam Oscilloscope DC-6 megs. Max Sensitivity \(10 \mathrm{mv} / \mathrm{cm}\). Small compact. Size \(10 \times 10 \times 16 \mathrm{in}\). Suitable for Colour TV servicing. Price \(£ 85\) each including copy of manual.
CAPACITOR PACK 50 Brand new componerts only 50p P \& P. 27p.
P.C. MOUNT SKELETON PRE-SETS. Screwdriver adiust 105 and 25 Ma ap ea. IM 500250 and 25 K a 4 p ea Finger ad lust
25 k a 5 p ea. Min. P. \& P. 15 p .

> Beehive Trimmer 3/30 pf. Brand new. Qty 1-9 13 p ea \& \& 15 p : 10-99 10p ea. P. \& P 25 p: \(100-999\) 7p ea. P. \& P free.

DELIVERED TO YOUR DOOR 1 cwt , of Electronic Scrap chassis. boards. etc No
Rubbish. FOR ONLY f4. N Ireland f. 2 extra Rubbish. FOR ONLY £4. \(N\) treland \(£ 2\) extra P.C.B. PACK S \& D. Quantity 2 sq. ft -no
tiny pieces. 50 p plus P. \& P. 25 p iny pleces. 50 p plus P. \& P. 25p
TRIMMER PACK, 2 Twin 50/200 pf ceramic

\section*{LOW FREQUENCY WOBBULATOR}

DON'T FORGET
YOUR MANUALS
S.A.E. WITH REQUIREMENTS

For alignment of Receivers. Filters. etc. 250 KHz to 5 MHz . effective to 30 MHz on harmonics. Three controls-RF level. sweep For alignment of Receivers. Filters. etc. 250 KHz . 35 MHz .
width and frequency. Order LX63. Price \(\mathbf{£ 8 . 5 0}\) P. \& P. 35 p .
As above but can have extended cover range down to 20 KHz by addition of external capacitors. Order LX63E. Price \(\mathbf{£ 1 1 . 5 0} \mathrm{P}\). \& P . As ab
35 p . 35p. Both models can be used with any general-purpose oscilloscope. Requires 6.3 V AC input. Supplied connected for automatic 50 Hz sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability, with the exception of the controls (not cased. not calibrated).

\section*{20 HZ to 200 KHZ}

SINE AND SQUARE WAVE GENERATOR
In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. \(\mathbf{£ 8 . 8 5}\) each. P. \& P. 25 p. Sine Wave only £6. 85 each. P. \& P. 25 p.

\section*{WIDE RANGE WOBBULATOR}

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for \(10 \cdot 7\) or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only \(\mathbf{£ 6} \mathbf{7 5}\). P. \& P. 25p. (Not cased, not calibrated.)

MODERN STYLE 706 BLACK OR TWO-TONE GREY £3.75 ea. P. \& P 45p. STYLE 7006 TWO-TONE GREEN OR GREY £3.75 ea. P. \& P. 45 p HANDSETS --complete with 2 insets and lead 75p ea. P. \& P. 37p DIALS ONLY. 75p ea. P. \& P. 30p.
STILL AVAILABLE MODERN STANDARD TELEPHONES IN GREY OR GREEN WITH A PLACE TO PUT YOUR FINGERS LIKE THE 746. \(£ 3.00\) ea. P. \& P. 45p.

20: 50. 100 200. 500 ohms 25 K at 35 p ea ALL BRAND NEW
RELIANCE P.C.B. mounting 270; 470 500 ohms: 10 K at 35 p ea AIL BRAND NEW
VENNER Hour Meters- 5 dight wall mount - sealed case Standard mains. \(£ 3.75\) ea. P \& P 55p
TRANSFORMERS. All standard inputs. Gard/Parm/Part. \(450-400-0-400-450.180\) MA. \(2 \times 63 \mathrm{~F} \times 3 \mathrm{ea}\).
 65 p ea \(P\) \& P .20 p . Discount for
quantity
BREGLASS PRINTED CIRCUIT BOARD
FIBREGLASS PRINTED CIRCUIT BOARD
Brand New Single or Double sided

HIGH VALUE PRINTED BOARD PACK, no two boards the same-no short leaded computer boards \(\mathbf{£ 1 . 7 5}\) post pard
METER PACKS-3 different meters for \(\mathbf{E 2}\). P \& P 55p.
RESETTABLE COUNTERS-4 dign by Stanebridge/Sodeco. 1000 ohm coll \(\mathbf{£ 2}\) ea P. \& P 35 p



MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY £6.25. P. \& P. 25p.
STILL AVAILABLE our 20 MHZ version at £9.75. P. \& P. 25p.
IInless stated - please add \(£ 2.00\) carriage to all units.

VALUE ADDED TAX not included in prices-please add 8\%
Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
Open 9 a.m. to \(5.30 \mathrm{p} . \mathrm{m}\). Mon. to Sat.


7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

\title{
Forallwhowantto knowabout electronic circuits
}

Here's a book of very special appeal to ail concerned with designing, using or understanding electronic circuits. It comprises information previously included in the first ten sets of Wireless World's highly successful Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of the ten sets - ircluding additional circuits - in this magazine size hard cover book has been updated where necessary, and is preceded by an explanatory introduction. Circuit designs ( 1 ) is the first collection of its kind.

Circuits covered are
Basic active filters
Switching circuits
Waveform generators
AC measurements
Audio circuits
Constant-current circuits
Power amplifiers
Astable circuits
Optoelectronics


\section*{A newbook fromWirelessWorld} ORDER FORM

To: General Sales Department. IPC Busıness Press Limited, Room II, Dorset House,
Stamford Street, London SEI SLU.
Please send me
copy/copies of Circuit Designs - Number I at \(£ 10.40\) each inclusive. I enclose remittance value \(\ell\). . . . . . . (cheques payable to IPC Business Press Ltd.)

NAME (please print)
ADDRESS

Company registered m Engiand and a subsidiary of Reed International Limited Registered No 677128 Regd. office Dorset House, Stamford Street, London SEI 9LU.
G. F. MILWARD

\title{
ELECTRONIC COMPONENTS
}

369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339


\section*{Ifyou haven't got it already there's only one place youre going to find it.}
 RIGHT HIBR

World Radio TV Handbook 1975
The professional and enthusiast's fully comprehensive guide to the technical world of television and radio. Packed with valuable information including bands, DX programmes, time charts, short wave stations throughout the world and much, much more

Available from your bookshop or direct from the distributors, Argus Books Limited Station Road, Kings Langley, Hertfordshire, price \(£ 3.50\)

Billboard Publications Ltd., 7 Carnaby Street, London W1V 1PG.


\section*{APPOINTMENTS VACANT}

DISPLAYED APPOINTMENTS VACANT: \(£ 6.08\) per single col. centimetre ( min .3 cm ). LINE advertisements (run on): 86 p per line (approx. 7 words), minimum three lines. BOX NUMBERS: 35p extra. (Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU). PHONE: Allan Petters on 01-261 8508 or 01-261 8423

Advertisements accepted up to 12 noon Wednesday, July 2nd, for the August issue subject to space being available.

\section*{Advanced Electronics Technology your future - and ours}

At Marcon Space and Detence Systems. Hillend Fite we are constantly working at the fromters of modern tectnology - designima developing and manufacturing some of the works most advanced computer controlled Simulators and Automatic Tesi Equirment
As a result of our success in gaming several recent major contracts we require highly motivated and enthusastic staft to jon us in the tollowing areas -

\section*{Electronics}

\section*{Design Engineers}

To snecialise in particular aspects ot the tesmon and developnent of Simutators andior Automatic Test Equipment Ai leas! one years expermace in electronic design both analogue and digtal is essential and applicants should preterably hold a

relevant derree although sutably experienced appluants with HNC or HND qualificat:ons will also be considered

\section*{Test and Commissioning Engineers}

To assist in the commissioning of orototype builds including systems testing recording test resulis and diagnosing and correcting malfunctions of the equipment Applicants shoutd have at least two years experience in the test and commissioning of complex electronic equipmert, and should be qualfied to a minimum of ONC standard Service within HM Forces willalso be sutiable

Opportunites at senior level also exist in the above two categories All posts offer a high level of professional involvmient and excelient opportunities for advancement within our expanding organisation. Assistance will be given. where applicable. with relocation expenses to Fife - an attractive rural area offering relatively low-cost housing and outstanding sports and recrea:ional facilties.

For full detalis and an Application Form. please return the coupon to Mr D. D. Bennett: General Manager. Marconi Space \& Detence Systems Limited. Hillend Industrial Estate. By Duntermine Fife

\section*{Marconi}


\section*{A Great new opportunity for} TV Technicians in South Africa \(£ 375()\)

Now that Telerision has started in South Africa, OK Bazaars is all set to capture the major share of the market. We're the largest retail organisation in houthern drica and are building up the most extensive and professional 'TV' operation in the Republic. Because of the size of the Company's activities in this cxciting new derelopment we are able to offer outstanding prospects to experienced Persomel, and in order toensure first-rate service for our customers. we now need to colarge our already substantial staff by appointing TV' Technicians in various conters throughout the Countr:

The work will entail carrsing out repairs in the field and in the workshops, keeping records of time and materials imolved and fectling back information to management on recurrent faults and defects in apparatus.

Essential requirements are a recognised apprenticeship or training course on radio and 'T' servicing and at least three rears' experience in colour 'TV. Applicants should also possess a City \& Guilds Final Cirtificate with RTEB colour radorsement or an cquivalent qualification.
Salary will be at least K 3750 per annum with an extensive range of fringe benefits. including company assisted pension and medical aid schemes, full air passage. intial hotel accommodation and relocation allowances.
Interviews will be held in the LK.,so write now with eletails of age. qualifications, experience (t) Mrs. M. Dunn (IM"), Dustin Knight
 telephone number where you can be contacted.

Live and work in the sun

\section*{RADIO OFFICERS}

Do you have PMG I, PMG II, MPT 2 years' operating experience?
Possession of one of these qualifies you for consideration for a Radio Officer post with composite signals organisation.

On satisfactory completion of a 7 -month specialist training course, successful applicants are paid on a scale rising to \(£ 3,242\) pa; commencing salary according to age - 25 years and over \(£ 2,383\) pa. During training salary also by age, 25 and over \(£ 1,724\) pa with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised

Applications only from British-born UK residents up to 35 years of age ( 40 years if exceptionally well qualified) will be considered.

Full details from:

\section*{Recruitment Officer}

Government Communications Headquarters
Room A/1105, Priors Road, Oakley
Chelrenham, Glos GL52 5AJ
Telephone Cheltenham 21491 Ext 2270

\section*{CHELSEA COLLEGE UNIVERSITY OF LONDON ELECTRONICS TECHNICIAN GRADE 3}
required as soon as possible for the Department of Pharmacy.
The work is concerned mainly with servicing a variety of instruments used within the department and some design and construction work is called for.
Applicants should hold appropriate qualifications at Intermediate Level and possess three years' experience, including training. Enthusiasm and initiative are important.
Salary £2,013-£2,343 plus £410 per annum London Allowance.
Application forms from Manager of Technical Services, Department of Pharmacy, Chelsea College, Manresa Road, London, S.W. 3.

4752

\section*{"We aimto match the best ten companies in the rewards and conditions we offer"}

Engineers! If you are interested in electronics, data transmission, digital systems, this could mean a lot more to you than you imagineboth now and in the future.

What are the tangible results of this declared policy by Neville Cooper, STC Director with responsibility for personnel policies? What does it mean in terms of salaries and benefits, working conditions, prospects of promotion and develop ment within the company? What does it leave unsaid about STC's attitude to its people and their needs as individuals?

STC - one of the world's leading companies in telecommunications and a pioneer of the new British Telephone Switching System, TXE4 - is looking for professional and technical engineers at all levels of experience for Advanced Systems Development, Application Engineering, Systems Design and Integration, and Circuit and Logic Design.

\section*{STC - on record!}

To answer some of the questions you might be expected to ask about us, Ken Corfield, STC's Managing Director, and three of his colleagues Neville Cooper, Jock Marsh and Jeoff Samson have chosen to make a record, each explaining the thinking behind the tasks and challenges of his own specific area of responsibility, and outlining the opportunities within STC. In this way, you can build up a positive picture of the company as a whole: Its attitudes, approach to business, present and long-term views

You can have a free copy of this record now. Send for it. Play it. Listen to it. Consider whether you like the sound of us. It could mean a lot to you, your future - and ours!

Neville Cooper, Standard Telephones and Cables Limited 190 Strand. London WC2R 1DU
Please send me a free cony ot your record
"Just for the record, and the illustrated brochure that goes with it
Name
Address

Standard Telephones and Cables Limited
A British Company of IJT


\title{
Opportunities in Electronias
}

\section*{Train to be an Electronics Technician}

If you are 16-18 years old and would like a career in Electronics, our special 3 year training scheme provides the opportunity you are looking for. We are offering you the opportunity to become an Electronics Technician in a fast expanding industry with an ever increasing demand for those with the ability to
understand the practical workings of complex electronic equipment. Our scheme includes well paid employment whilst training and day release to attend college to study for the City and Guilds Electronics Technician Certificate. In addition to a practical interest in electronics you will require 'O' levels or CSE grades in

Maths, Physics and English.
Telephone or write to
R. F. Honnor.

Personnel Manager, G \& E BRADLEY LTD., Electral House, Neasden Lane, N.W. 10.
Tel. 01-450 7811.


A LUCAS COMPANY


\section*{COMPUTER ENGINEERS}

All Systems Go
Target to \(£ 4,500\) p a
+ Car or allowance Many locations

Eric Stack
MALESTAFF
01-388 1607
362 Euston Road
London, N.W. 1


UNIVERSITY OF GLASGOW ELECTRONIC RESEARCH ASSISTANT

Applications are invited for an Electronic Research Assistant in the Department of Physiology to join team working on electrical properties of nerve muscle and heart cells. No previous biological experience required Applicants of degree standard may register for a postgraduate degree on a part-time basis.
Salary according to qualifications and experience in electronics within national salary structure for research staff (Range 1B £1809-「2757 or Range 1A -2118-โ3990).
Applications to: Professor O. F. Hutter, Department of Physiology, University of Glasgow. G12 8QQ, from whom further particulars may be obtained.
In reply please quote Ref. No. 3681 FH .
4756

\section*{Her}

\section*{Majesty’s Government Communications Centre}

HANSLOPE PARK, MILTON KEYNES MK19 7BH
has vacancies in the following fields of \(R\) \& D work.
(a) VHF/UHF COMMUNICATIONS
(b) COMMUNICATION FIELD TRIALS
(c) ACOUSTICS
(d) MICROWAVES
(e) GENERAL CIRCUIT DESIGN - ANALOGUE, DIGITAL
(f) STATISTICS/OPERATIONAL ANALYSIS/SYSTEMS

\section*{ANALYSIS}

Most posts will be at Hanslope Park but some, in particular (f), will be in London. Posts in London carry a London allowance of £410 per annum in addition to the salaries quoted below.

Candidates for post (f) should be experienced scientists/engineers who have specialised later in one of the required fields. An ability to deal with non-technical people is essential.

Appointments will be made within the grades of Higher Scientific Officer except for (d) and ( \(f\) ) where appointments may also be made within the Senıor Scientific Officer grade. The appointments will be established within Government Service with a non-contributory pension scheme.

\section*{Higher Scientific Officer}

Applicants should be under 30 years of age but this requirement may be waived if special qualifications or experience can be offered They should have one of the following qualifications
(a) A degree in a scientific or engineering subject.
(b) Degree-standard membership of a Professional institution.
(c) A Higher National Certificate or Higher National Diploma in a scientific or engineering subject
(d) A qualification equivalent to (c) above

In addition the following relevant experience is required.
(a) Applicants with 1 st or 2 nd class honours degrees -- at least two years post-graduate experience.
(b) Applicants with other qualifications -- at least five years' post qualifications experience.

Salary Scale \(£ 3254\) - £ \(£ 454\) with entry point dependent upon experience beyond the minimum required
Senior Scientific Officer
Applicants should be at least 25 and under 32 years of age, although the upper age limit may be waived if experience of special value can be offered.

Applicants should have obtaned a 1 st or 2 nd class honours degree and have had a minımum of four years appropriate post-graduate experience.

Salary Scale £4185-£5778 Entry will normally be at the minmum of the scale but applicants with experience of special value may be entered above the minimum

Applications. stating the field of work and the grade required should be made to

\section*{Administration Officer}

HM GOVERNMENT COMMUNICATIONS CENTRE
Hanslope Park
Hanslope
MILTON KEYNES MK19 7BH

\section*{Looking}

\section*{a} new job?

\section*{Perhaps we can help!}

> We have regular contact with hundreds of Electronics and Electrical companies needing qualified technicians and engineers and can therefore help you find an interesting and well paid job. All you need do is to return the coupon below or give us a ring. Our service is confidential and costs you nothing.

TJB Technical Services Bureau, 3A South Bar, Banbury, Oxfordshire.
Banbury (0295) 53529


Technical Services Burea is a division of Technical \& Executive Personnel Ltd and is solely concerned with job placement in the Electronics and Electrical Industries

Please send me an "Application for Employment" form NAME
ADDRESS

\section*{Findyourplace in BritishGas}

\section*{Training in Engineering CONTROL AND INSTRUMENTATION}

British Gas has vacancies from time to time for control and instrumentation engineers at graduate level, technician engineer level and technician lesel. The posts concerned demand good standards of ability and a high sense of responsibility. To help fill them, we are prepared to train small numbers of selected men of suitable educational and technical ability who have previously worked in a related technological fied, such as light current electrical engineering, or electronic control engineering.
The courses are designed to train suitable men quickly to a standard which will enable them to contribute effectively to the Industry's work at the earliest possible stage, following which expertise will be developed through more advanced training.
If you are thinking of a change of carcer and would like to be involved in an undertaking which gives scope for personal development, and at the same time contributes to the wellbeing of the country, write in confidence, giving full details of your age, educational and technical qualifications and experience, and indicating the area of the country in which you would prefer to work, to:-
Mr. T. A. Lucas,
Communications and Instrumentation Dept. (WW),
British Gas, National Westminster House,
326 High Holborn, London WCIV 7PT.

\section*{LINK}


\section*{DEVELOPMENT ENGINEER}
to work in our audio group on the development of studio talkback and communications equipment used in TV studio broadcasting systems.
You should be 21-25, have HNC or equivalent plus 1-2 years' experience in the use and/or design of audio products.
As an independent and well established Company we have kept a young and flexible outlook and attach great importance to people fitting in. Apart from an above average salary we also offer free life and health insurance, pension scheme of course and a subsidised canteen, as well as a congenial environment which we think is very important. We will help with relocation expenses where necessary. Andover is a growing town in an attractive part of rural Hampshire, close to Salisbury and Winchester and within easy reach of London and the south coast.
Either telephone Mic Comber at Andover 61345 (reverse charge if you wish) or write with bref detals so that we can send you an application form.

Walworth Industrial Estate,
Walworth Industrial Estate,
Teiephone: Andover (0264) 61345
ELECTADNICS

\section*{C.C.T.V. SYSTEMS}

Teletape Video, U.K.'s most progressive video systems company, are seeking a top man to organise and run a new division formed to actively develop the C.C.T.V. security surveillance activities of the company. Existing international contracts run into six figures, and we hold distribution rights on all good agencies so the opportunities are unlimited.

We are looking for a man fully experienced in all aspects of this business with good product knowledge and capable of dealing at Government level on large contracts. He should be capable of working entirely on his own initiative and will report directly to the Managing Director.

We envisage a good basic salary plus a sensible incentive participation on sales, with a company vehicle, etc.

This is a unique opportunity.
Please apply in confidence to:
Ian Crammond
Managing Director
TELETAPE VIDEO
76 Brewer Street, W1 R 3PH
Telephone 7341319 or 4341267
(4758)


Men with analogue or digital qualifications / experience seeking higher paid posts in: TEST - SERVICE - DESIGN SALES.
Phone: Mike Gernat, Ref. W.W.
NEWMAN APPOINTMENTS 360 Oxford Street, W.1, 01-629 050:

\section*{Applied Physicist}

\section*{Electronics Engineer}
required by the Institute of Cancer Research at Sutton. Surrey, to join an active R and \(D\) programme on ultrasonic diagnosis of cancer. The work will be varied and responsible. in a foint hospital/research institute environment and will call for a range of practical abilities in and will call for a range of practical abilities in
the development and application of novel the development and application of novel
instrumentation. Previous experience in instrumentation. Previous experience in
ultrasonics would be useful but is not essential
Applointment will be on the MRC Technical Officer/JTO scale at a salary in the range \(£ 2.688-£ 3.792\) (TO) or £1.494-£2.592 (JTO) Dlus Threshold award of \(£ 229\) plus London allowance of \(£ 312\) Scales under review

Applicants should normally hold an appropriate degree or equivalent qualification and preferably have some \(R \& D\) or industrial experience Excepticnally possession of iwo appropriate "A" levels can be accepted for appointment to a junior post.
Applications with curriculum vitae in duplicate and naming two referees to: The Secretary, Institute of Cancer Research, 34 Sumner Place, London SW7 3NU, quoting ref. \(300 / \mathrm{G} / 85\).


Kensington and Chelsea and Westminster Area Health Authority
North East District

\section*{MEDICAL PHYSICS} TECHNICIAN

Applications are invited tor the posi of Medical Physics Technician Giade !V at the Middlesex Hospital Salay according to Whitey Council \(B\) Scales Duties will invoive is wide valiety of work in Physiological merisurement meluding work in the Department of Cardinkrgy Day release facilities for study at approved Colleges can be arranged
tablistureni Oftref The Middlesex Hospital तon WTN 8AA Closing date for applici. s 0 d 1975 for applic

\section*{RADIO ENGINEER}

Telerenters (London \& Provincial) Limited have vacancy for Senior Engineer at Watford
The Engineer should have detailed knowledge of RF and audio measurements and be familiar with European specifications to enable him to implement and manage a test laboratory for the type approval of domestic radio, audio and recording equipment. Factory experience essential.
Salary: \(£ 4,000-£ 5,000\)
Write giving brief details to: The Director, Telerenters (London \& Provincial) Limited, 155/159 Queen's Road, Watford, Herts WD1 2QH

\section*{RADIO TECHNICIANS}

Are you a Radio Technician with a City and Guilds Intermediate Telecommunications Certificate or equivalent, plus 1 year's practical work-shop experience? If so, then why not join the Home Office. We have a vacancy at Baldock, Hertfordshire to carry out installation, maintenance, modification and construction of complex specialised radio communications equipment and systems.

\section*{Pay}
\(£ 2010\) at \(17, £ 2230\) at 19 , rising to \(£ 3385\) a year.

\section*{A Secure Future}
with a non-contributory pension scheme, good prospects of promotion and a generous leave allowance. 5 -day week of 42 hours.

\section*{Interested?}

Then telephone or write for an application form to: Mr J J Willis, Directorate of Radio Technology, Room 514, Waterloo Bridge House, Waterloo Road, London, SE1 8UA. Telephone 01-275 3006.

4722

\section*{SERVICE ENGINEER}

Required to service our range of scientific and laboratory instruments, which include Fraction Collectors, U.V. Monitering, Ultromicrotomy equipment. The applicant should be resident in an area North of the Thames to Luton or prepared to move. A good working knowledge of modern electronics and a scientific background is desirable
The Company offers excellent working conditions including pension scheme, profit sharing bonus scheme, BUPA membership and Company car.
Write or telephone for an application form.

> The Service Manager LKB Instruments Limited

> 232 Addington Road Selsdon, South Croydon, Surrey

> 01-657 8822

\section*{CATV - MATV ENGINEERS}

\section*{AND}

\section*{PRODUCTION MANAGER}

Canada's Leader in Cable Television requires personnel for research and production departments.
Openings for research in amplifier, passives, converter, aerial designing your choice
Opening for CHIEF ENGINEER should have CATV or related experience. Electronics person strong in leadership. Methods and Mechanical Acumen required for capacity of PRODUCTION MANAGER.
Good salaries, generous benefits
Please Airmail complete Personal History and references to:

Mr. J. E. Thomas
Lindsay Speciality Products Ltd. 50 Mary Street
Lindsey, Ontario
Canada
(4759)

\section*{CHELSEA COLLEGE UNIVERSITY OF LONDON \\ ELECTRONICS TECHNICIAN}

\section*{GRADE 5}
required for interesting design and development work in an Electronics Workshop, catering for the prototype requirements for teaching and research in the Departments of Electronics and Physics.
Salary \(£ 2,849-£ 3,305\) per annum, including London Allowance.

Five-day, 371/2-hour week.
Generous holidays
Application forms and further details from Mr. M. E. Cane (5EW), Chelsea College, Pulton Place, London SW6 5PR.

4753

\section*{CHELSEA COLLEGE UNIVERSITY OF LONDON ELECTRONICS ENGINEER}
required to take charge of Electronics Workshop for the design and production of protntype electronic equipment for electronics and physics research and teaching, and also for the servicing and maintenance of a wide range of commercial electronic equipment.
A wide practical experience and a sound theoretical knowledge of electronics is essential. Experience in microwave instrumentation would be an advantage, five-day, \(371 / 2\)-hour week. Salary (Technical Staff Grade 6) \(\uparrow 3,254-£ 3,860\) per annum, including London Allowance
Further details and application form from Mr. M. E. Cane (EW7), Chelsea College (University of London), Departments of Electronics and Physics, Pulton Place, Fulham, London SW6 5PR.

4754

\title{
ELECTROSONIC LTD SE LONDON \\ SENIOR DEVELOPMENT ENGINEER AUDIO PRODUCTS c£4200 pa
}

Electrosonic Ltd are seeking a professional engineer with at least tive years experıence of developing audio equipment. He will primarily be required to make significant technical contributions to the company's new products which will range from AV replay equipment to studio mixers.

It is also expected that through his commercial awareness of the audio field he will help to define the product range and expansion in this important area of the company's business.

\section*{MANAGER}

\section*{ELECTRONIC TEST DEPARTMENT c£3,500 pa}

A candidate is required having wide experience in a production test shop. Technical ability in analogue and digital circuitry is essential together with experience of supervising the work of others.

Duties will include the organisation and day-to-day running of the test shop, providing technical oversight, training of junior engineers, the introduction and programming of automatic test equipment and supervision of quality control.

\section*{TEST AND SERVICE ENGINEERS}

\section*{£2,400-£2,800 pa}

Vacancies exist in both these departments for electronic engineers having a minimum of two years experience of control and/or audio systems. On the job training will be given and opportunities for advancement are available. Service engineers will be required to work both in the factory and on site and the holding of a current driving licence is desirable.

The company is leader in the rapidly expanding fields of lighting control, audio and audio visual systems and offers a wide range of interesting work in an attractive environment and excellent conditions of employment.

Apply: Personnel Director, Electrosonic Ltd, 815 Woolwich Road, Charlton SE7 8LT. Tel: 01-855 1101

\title{
Tinolour CCTV \\ Engineer
}

We are looking for a first-class electro-mechanical service engineer to maintain television, film, electronic and other equipment including Shibaden 1212 colour cameras, IVC colour ITRs, Sony L-matic recorders, ete. 'This equipment is sited in our theatre, studio, cinema and boardrooms in Shell Centre and at our Conference Centre at '「eddington.
The job also involves production of programmes, organisation of staff, design and building of prototypes of mechanical, optical and electronic units in our busy Al Centre.
Starting salary would be negotiable, dependent upon qualification experience. 5 day weck, contributory Pension Fund, free 3 -course lunches, +1 ecks annual holidal. Sports and social facilities in the building, including squash, badminton, swimming.
Telephone or write for an application form to: Shell International Petroleum Company Limited, I.P112, Shell Centre, I ondon SEı 7.N. or-93+2828.

\title{
GLASGOW COLLEGE OF TECHNOLOGY \\ Fart-TIME B.Sc. DEGREE (C.N.A.A.) \\ IN \\ ELECTRICAL ENGINEERING \\ with choices in Power or Electronic subjects
}

Holders of a good HNC or HND in Electrical/Electronic Engineering or related disciplines may be eligible to enter the above course commencing 18 th August, 1975. If you are interested in the above course, write or telephone now for application form and further details to:
The Academic Registrar, Glasgow College of Technology. North Hanover Place, Glasgow, G4 0BA. (Telephone: 041-332 7090).

\section*{BRITISH MEDICAL ASSOCIATION DEPARTMENT OF AUDIO/VISUAL COMMUNICATION \\ Electronics Officer}

\section*{Up to \(£ 3008\) (increase is currently being negotiated) \(+£ 410\) London Weighting}

With lively interest in Audio/Visual aids for education.
Duties will include liaising with medical teachers and providing information and advice on a wide range of equipment; supervising a workshop for repair and maintenance of closed circuit television and audio equipment for research purposes: supervising the design and construction of prototype equipment and an audio cassette duplication service; undertaking sound and television recordings in a small studio.
Applicants should have at least 5 years experience in the educational uses of audio/visual aids.
Starting salary according to qualifications and experience
Applications, with a full curriculum vitae and the names of two referees, to the Director, BMA House, Tavistock Square, London WC1H 9JP, not later than 11 th July.

THE ROYAL NATIONAL THROAT, NOSE \& EAR HOSPITAL
Gray's Inn Road, London WC1X 8DA

\section*{PHYSICIST}
(BASIC GRADE)

Applications are invited for a newly established post of Physicist (Basic Grade) for work in the field of hearing disorders and the applications of hearing aids. Suitable candidates will have a degree in Physics and should have experience in electronics and acoustics. \(\mathrm{He} /\) she will be based in a new elec-tronic-acoustics laboratory and in the Hearing Aid Centre.
Salary scale £2046-£2562+£312 London Weighting + current Threshold payments.
Applications giving details and names of two referees to Senior Administrative Assistant.

\section*{ELECTRONICS TECHNICIAN}

Grade 5
required for the Chemistry Department. Duties include the servicing and repair of a wide range of optical and electronic instruruentation, the design, construction and modification of electronic units concerned with instruments. Minimum qualification O.N.C. or equivalent. Salary on scale £2849 p.a.-£3305 p.a. (including London weighting) according to experience. Apply in writing giving full details to the Head Clerk (WW), University of London King's College, Strand WC2R 2LS.

\section*{CITY OF LONDON POLYTECHNIC}

\section*{TV ENGINEER}
(MAINTENANCE) REQUIRED to join a small team working on the installation and maintenance team working on the installation and maintenance
of a wide range of equipment from CCTV equipment to slide projectors.
Applicants must have a sound practical knowledge of electronics and mechanics; relevant qualifications an.ádvantage.
Salary Technician Grade 3 scale- \(£ 2,424-£ 2,754\) including London Weighting. Entry point according to qualifications and experience.
Application forms and further details from The Assistant Secretary. City of London Polytechnic, 117/119 Houndsditch, London EC3A 7BU.

14737

\section*{ELECTRONICS TECHNICIAN}

\section*{(Grade 5)}
required in the Department of Physiology to be responsible for the servicing of a wide range of sophisticated electronic instruments for both research prototype apparatus. Good electronic background and qualifications essential Some experience in medical or biological field preferable Salary on scale £2849 per annum- \(£ 3305\) per annum (including London weighting) according to age and qualifications, four weeks' annual holiday. Contributory Pension Scheme. Apply in writing with full details to the Head Clerk (WW), King's College, London, Strand WC2R 2LS.

\section*{TEST ENGINEERS}

\section*{S. LONDON}

UP TO £2,800 p.a.
Dolby Laboratories is a young, go-ahead company with a world wide reputation for their audio noise reduction system. Test Engineers with a good understanding of basic circuits are required to test and trouble shoot professional audio P.C.B.s and equipment. This is interesting and well paid work. We give over four weeks' holiday per annum.

\section*{Write or phone:}

Mr. C. Keys
Dolby Laboratories Inc.
346 Clapham Road London, S.W. 9
Tel. 01-720 1111

\section*{VIDEO ENGINEER}

Good all-rounder required by London's liveliest video dealers.

Due to continuing expansion in all departments we need another good engineer. Our team is small but very good so we are seeking someone with sound practical knowledge and wide product experience

In return we are prepared to pay a more than generous wage with fringe benefits

Please contact in confidence
Peter Ellis, Technical Manager TELETAPE VIDEO 76 Brewer Street London, WV1R3PH
Telephone 7431319 or 4341267

\section*{UNIVERSITY OF SOUTHAMPTON}

\author{
Research Fellow in
}

Optical Communications

> Applications are invited for a Researct, Fellow or Assistant to join an active group working on Optical Firbe Communications in the Depariment of Electronics. The work involves the use of tibres in multi-access communication systems including the development of couplers and functions. The normal qualifications required are a Ph. o or equivalent research experience although applicants with other qualitications witl be considered Some knowledge of electronics, communications or opto-electronics is desirable. Salary will depend on experience and qualifications and will be within the range E1 809 to \(\mathbb{E 3 . 8 1 3}\) (under review) plus Threshold payments

\title{
Opportunities for Electronics Engineers
}

To change to wider fields of electronics - join the EMI Service Team at Hayes.

Vacancies exist on repair and calibration of a wide range of electronic test gear including oscilloscopes, DVMs, pulse generators, power supplies etc.

\section*{Also}

Servicing and commissioning closed circuit television equipment including cameras, VTRs, Monitors etc
Applicants should have at least 5 years practical experience.
These positions offer varied and interesting work. Attractive starting salaries, subsidised lunches, 4 weeks holiday and excellent sick pay and pension schemes.
For further details telephone or write to :- M. Ford, 01-573 3888, Ext. 2167, EMI Service, 254 Blyth Road, Hayes, Middlesex


\section*{Directorate of Radio Technology Telecommunications Officers \\ (£4,190-£4,620)}
to be responsible for the study of radio propagation matters over the whole of the radio frequency spectrum \((10 \mathrm{kHz}-275 \mathrm{GHz})\) and for the forward planning, management and regulation of frequency bands allocated to broadcasting. fixed, maritime and land mobile, and space services
Duties also include: preparing specifications and type-approval of equipment for fixed and mobile services; application of computer techniques to frequency assignment problems; development of equipment for the location and suppression of radio interference; technical advice on all aspects of licensing of radio services and advice in connection with the international radio monitoring service
Candidates (aged at least 25) must have ONC in Engineering (with a pass in Electrical Engineering 'A') or in Applied Physics or an equivalent qualification. In addition they must have had at least 7 years' experience of skilled work on radio, radar or other electronic work
Salary, starting at \(£ 4,190\), rises to \(£ 4,625\). Good promotion prospects. Non-contributory pension scheme
For further details and an application form (to be returned by 10 July, 1975) write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours) or London 01-839 1992 (24 hour answering service).

Please quote ref T/9017

\section*{UNIVERSITY OF SURREY \\ ELECTRONIC ENGINEER}

Applications are invited for the above position in the Electronic Workshop of the Psychics Department. The person appointed will work, together with two other members of the technical staff, under the general direction of a Chinf Technician.
Applicants should have a good electronics background, a sound theoretical knowledge and should have experience in the development and construction of computer interfacing and be familiar with nucleonic instrumentation Qualification: HNC or equivalent. Salary scale: \(£ 2,844\) - \(£ 3,450\).
For further details and application forms please apply to the Staff Officer, University of Surrey, Guildford, Surrey GU2 \(5 \times H\) or Tel: Guildford 71281, Ext. 452.
(4654)

NORTHAMPTON
COLLEGE OF
TECHNOLOGY

\section*{DEPARTMENT OF ENGINEERING}

\section*{Lecturer Grade I in}

\section*{Electrical Engineering}

> Applicants should have had previous experience of light current/ electronic work and hold an H.N.C. or a final C.G.L.I. certificate with electronic subjects. Previous teaching is not essential, although desirable.
> Duties will commence on 1 st September 1975 . Salary scale (under review) \(£ 1869-£ 3633\) per annum plus threshold payment.
> On 1 st September 1975 the Northampton Colleges of Technology, Art and Education will amalgamate to form a new College of Higher Education (Nene College).
> Further particulars and application forms can be obtained from the Chief Administrative Officer, Northampton. College of Technology, St. George's Avenue, Northampton NN2 6JB. Telephone (O604) 713505 .

\title{
PRODUCTION MANAGER
}
for small quartz crystal manufacturing plant
in

\section*{NEW ZEALAND}

An opportunity exists for a Production Manager familiar with all aspects of quartz crystal manufacturing for the communications market. Past experience should encompass grinding, vacuum plating and finishing to frequency. The company, Hatfield Crystals Ltd, has recently entered the field of quartz crystal filter manufacture thus, although not an essential, it would be useful if the applicant has knowledge of quartz crystal design, particularly monolithic crystal filters in the 10.7 MHz band.
The successful applicant must be prepared to reside permanently in New Zealand and will be sponsored through the Migration Department of the New Zealand High Commission. The company is located at Napier, North Island, in a temperate climate not unlike the South of France. An attractive salary together with the usual fringe benefits will be offered.

Applicants to write in the first instance to
The Managing Director
HATFIELD INSTRUMENTS LTD.
Burrington Way
Plymouth, PL5 3LZ
Devon
4646


We have vacancies for Test Engineers to fault find and test a wide variety of quality control equipment, with experience of working on chemical, gas and oil analysis essential.
These positions would be ideal for ex-service personnel with relevant experience.
Good rates of pay, 4 weeks holiday, pension and sick pay schemes.
Ring Sylvia Borra 01-692 1271 Ext 393
or write to her at
The Personnel Department

GEC-ELIOTT PAOCEGE INETRUMENTE
Century Works, Connington Road
Lewisham, London SE13 7LN

SERVICE AND REPAIRS

THOR-HOLE CONVENTIONAL P.C.B.'s gold plating. roller tinning, prototypes, silk screening, drilling. All or part service. ELECTROCIRCUITS (P.C.) LTD. Delamare Road, Chesnut, Herts. Tel. Waltham Cross 38600 or 20344. (75

\section*{CAPACITY AVAILABLE}

\footnotetext{
DESIGN, development, repair, test and small DESIGN, development, repair, test and small
production of electronic equipment. Specialist production of electronic equipment. Specialis YOUNG ELECTRONICS LTD., 184 Royal Col lege Street, London NW1 9NN. 01-267 0201. (29
}

NEW GRAM AND SOUND EQUIPMENT
GLASGOW. Hi Fi, Cassette Decks. Tape Recorders, Video Equipment, always available we buy, sell and exchange for Hi Fi sets and photographic equipment, Vichle Street, Glasgow, G1, 8/10 Glassford Street, Glasgow, G2, 31 Sauchiehall Street, Tele: 041-221 8958. (11


HI-FI AUDIO ENGINEERS. We require experi enced Junior and Seniors and will pay top
rates to get them. Tell us about your abilities. rates to get them. Tell us about your abilities.
\(01.437{ }_{4607}\). ELECTRONICS TECHNICIAN required in Department of Psychology, University of Heading. Should have or be completing final \(C\) \& \(G\) in Electronic Servicing or equivalent. Salary in
scale \(£ 2434-2885\) p.a. (Grade \(\overline{3}\) ). Abply with scaie \(£ 2434-£ 2895\) p.a. (Grade 5 ). Apply with nanies of \(\underset{\text { Ref }}{ }{ }^{2}\) referees and full details, quoting, Ref. TZZ.23A tu Assistant Bursar (Personnel) Universoty of Reading. Whiteknights, Reading RG6 2AH.

\section*{ARTICLES FOR SALE}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{MINIATURE ALUMINIUM ELECTROLYTIC CAPACITORS. AxIE and Paulial Leads} \\
\hline MFD & 6.3 v & 10. & 16. & 35 & 35\% & 50. \\
\hline 10 & - & 6 p & & = & - & \(7 p\) \\
\hline 22 & - & & & 70 & & \\
\hline 33 & - & \(6 p\) & - & 7 p & - & \(7 p\) \\
\hline 47 & - & 6 p & - & Bp & \(8^{8}\) & 8 p \\
\hline 100 & - & \(\bar{\square}\) & 70 & \({ }^{9 p}\) & \(11 p\) & \(10^{p}\) \\
\hline 330 & - & 78 & 3 p & \({ }^{9} \mathrm{p}\) & & \\
\hline 470 & \(7 p\) & \(1{ }^{19}\) & 15 & \({ }_{18}{ }^{\text {p }}\) & \(17 p\) & 18p \\
\hline 1000 & \(15 p\) & & 18 p & 18 p & - & \\
\hline 2200 & 15p & 18 p & & & & \\
\hline 3300 & 15p & 18p & & & & - \\
\hline 4700 & 18p & & - & - & & \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{ SYSTEM TECHNIQUES (ELECTRONICS) LIMITED. \& Manor Houre Gardens, Edenbridge, Kant, TNS 5EG. Edenbridge 1073 271) 2610 .}} \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{TAPE RECORDING ETC.}

RECORDS MADE TO ORDER
DEMO DISCS
MASTERS FOR
VINYLITE
RECORD COMPANIES
PRESSINGS
Single discs. 120 Mono of Stereo. delivery 4 days from your tapes Quantity runs 25 10 1.000 reco; ds PRESSED IN VINYLITE IN OUR OWN PLANT Delivery \(3-4\) weeks Sleeves/Labels Finest quality NEUMANN STEREO, Mono Lathes We cut for many studios UK/OVERSEAS SAE list

DEROY RECORDS
PO Box 3, Hawk Street, Carnforth, Lancs. Tel. 2273

\section*{ELECTRONIC CRAFTSMEN}

\section*{Is your present job routine and uninteresting?}

We are a research establishment ana our craftsmen are engaged on a wide variety of work in the fields of prototype and small batch wiring and assemibly, test and inspection, maintenance fault finding and repair. Why not join us and enjoy working in first-class conditions in the country?

Earnings are good and our rates of pay are currently under review. We can offer good housing at low rental (for applicants who live outside the radius of our Assisted Travel Area) together with 3 weeks' paid holiday with holiday bonus, free pension and excellent sick benefit scheme.

Applicants who should have served a recognised apprenticeship or have had equivalent training together with experience in one of the fields detailed should 'phone Tadley 4111 (STD 073-56 4111) Ext. 5230, or write to:

INDUSTRIAL RECRUITMENT OFFICER
(PA/87/WW) PROCUREMENT EXECUTIVE
MINISTRY OF DEFENCE
AWRE ALDERMASTON
READING, BERKS.
RG7 4PR

\section*{SONY. Trainee V.T.R. Service Engineer}

Due to the continued growth in the sales of our products we have a vacancy for a qualified V T.R. Engineer in our Central Service Division. Ascot Road, Bedfont, Middlesex Ideally we require an engineer with previous experience of servicing Video products. but we are prepared to train engineers who have experience of televisions and tape-recorders

The duties will involve the servicing of our wide range of Video products. including recorders, cameras and microphones

We are offering an attractive salary which will be based on qualifications and experience and generous staff discounts on all of our products

Please apply to: The Personnel Officer, Sony (UK) Ltd., Pyrene House, Sunbury-on-Thames, Middlesex. Tel: Sunbury 87644.

\section*{MINISTRY OF DEFENCE (ARMY DEPARTMENT)}

A vacancy exists for a

\section*{CIVILIAN INSTRUCTIONAL OFFICER}

Grade III (Telecommunications), TV Servicing at 2 Resettlement Centre, Aldershot.
The post is open to men and women fully skilled and experienced in. Television Servicing.
Appropriate ONC, C \& G Certificate or equivalent qualification desirable. Selection is by test and interview.
Starting salary \(£ 2825\) to \(£ 3209\) (at age 28 or over), rising to \(\mathfrak{i} 3925\). Non-contributory pensionable employment.
Write for application forms to:
Commandant, 2 Resettlement Centre, Gallway Road Aldershot, Hants. GU11 2DG
Closing date: 16 th July, 1975 .

\section*{Radio Operators. How to see more of your wife without losing sight of the sea.}


In addition to your basic
salary, you'll get an average allowance of \(£ 450\) a year for shift duties and there are opportunities for overtime.

Other benefits include a good pension scheme, sick pay and prospects of promotion to Senior Management.

For more information, write to: ETE Maritime Radio Services Division (R/B/6).ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London, ECIA IAS.

\section*{HACKER \\ AREA SALES MANAGER}

\section*{(London Area, Kent, Surrey and Sussex)}

Applications are invited for this important position from experienced representatives with the following qualities:
1. Good sales experience in the field of high quality radio and audio equipment.
2. Enthusiasm and a determination to expand the Company's activities in this highly competitive field.
3. Preferred age group 28-40. A pleasing personality, presentable appearance and an attitude of diligent dedication are considered to be essential.

In return we offer:
1 An excellent șalary.
2. Quality Company car and all expenses.
3. First-class pension and life assurance scheme
4. The opportunity to play a real part in the further expansion of this quality conscious company.

Applications in writing to:
Mrs. J. Pollard
Hacker Radio Ltd., Norreys Drive
Cox Green, Maidenhead, Berks., SL6 4 BP

ARTICLES FOR SALE
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Economise on Semiconductors \\
All prices include new rate VAT
\end{tabular}} \\
\hline w Price cmos & \(\star\) Low price DII sockets \\
\hline Lower Price 741C & « Plastic 3 terminal Regulators \\
\hline
\end{tabular}


AY-5.1224 Digital Clock rC. 12 or 24 hr.. 7 segment or \(8 C 0\) outputs. drivas LED. Minitron displays. Simple interfacing. 16 pin DIL. IC + data + circuils \(£ 4.90\).
HP5082-7740 0.3"" digits \(£ 2.00\). IC \(+40.3^{\prime \prime}\) digils \(£ 12.30\). IC \(+40.3^{\prime \prime}\) digits + Iransistors + transiormer £14.30.
T8A810as 7 W Audio Amp with thermal protection + data + circuil \(\quad\) E1.25
TCA940 10W Audio Amp with ther mal protection + current limit + circuit
\(£ 2.40\)
TAD 100 Aladio IC + IF litter + circuit



\section*{The Shop Window for the Very Best..}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{TOSHIBA VALVES} & Type & \[
\begin{array}{r}
\text { Price } \\
\text { Each }(p)
\end{array}
\] & Typo & \[
\underset{\text { Pach }(\mathrm{p})}{\text { Price }}
\] & \[
\begin{aligned}
& \text { DIODES } \\
& \text { Type Each (p) }
\end{aligned}
\] & \multicolumn{2}{|l|}{integrated CIRCUITS} \\
\hline Type & Price (p) & & 40 & 8 D 124 & 75 & BA115 ? & Type & Each \\
\hline \(\mathrm{DYB}^{8}\) & \(30 \%\) & AD161 & 38 & \(8 \mathrm{CD131}\) & 45 & 8A145 & TAA550 & 49p \\
\hline 01802 & 300 & \({ }_{\text {AD }} 162\) & 38 & 80132 & 39 & \begin{tabular}{ll} 
BA148 \\
BA 154201 \\
\hline 19
\end{tabular} & TAA700 & -? 95 \\
\hline ECC82 & 280
295 & AF114 & 24 & 80160 & c1. 39 & B4154/201 & TBA120AS & ¢1.00 \\
\hline EF183 & 345 & AF115 & 21 & 80235 & 49 & \(\begin{array}{ll}\text { BY126 } \\ \text { BY:27 } & 11 \\ \text { BYi }\end{array}\) & traizoso & \({ }^{C 1} 1.00\) \\
\hline EF184 & 34.5 & AF116 & 22 & 80237 & 52 & 8Y199 27 & T8A480a & \(\underline{1.40}\) \\
\hline EH90 & 35.5 & AF117 & 19 & \(8 \mathrm{BD} \times 32\) & C2.40 & BY206 21 & T8A5200 & C2.35 \\
\hline PC900 & 24.5 & AF118 & 35 & 8 8F160 & \(\begin{array}{r}15 \\ \hline\end{array}\) & 8Y238 25 & tras300 & E1.75 \\
\hline PCC89 & 40.0 & AF139 & 45 & \({ }_{8 F} 867\) & 20 & OA90 6 & T8A560CO & \({ }^{\text {c }} 1.75\) \\
\hline PCC189 & 41.0 & AF178 & 45 & 8 BF 173 & 20
20 & OA202 7.5 & tras00 & C1. 50 \\
\hline PCF80 & 31.5 & AFF181 & 45 & \({ }_{8 F 178}\) & 35 & (N60 OA91 & TBA9200 & C2.90 \\
\hline PCF86 & 39.0 & AF239 & 40 & 8 F 179 & 40 & NEW TOSHIBA TUBES & tBA9900 & c2. 90 \\
\hline PCF801 & 42.0 & AF240 & 60 & 8F180 & 31 & 19*-449/151x 648.95 & TCA2700 & ¢2.90 \\
\hline PCF802 & 40.0 & \(8 \mathrm{BC107}\) & 11 & BF18: & 32 & 20" 5100 J82? 650.75 & ETTR6016 & ¢2.00 \\
\hline \({ }^{\mathrm{P} C 182}\) & 39.0 & BC108 & 10 & BF184 & 25 & \(22^{*}\) A56/120 654.25 & SN760t3N0 & ¢1.50 \\
\hline PCL84
PCL85 & 44.5 & 8 C 109 & 14 & BF185 & 25 & EHT MULTIPLIERS MO & ochrome & (BRC) \\
\hline PCL86 & 41.0 & \(8 \mathrm{Cl109C}\) & 14 & 8 FF 194 & 9 & & & Each \\
\hline PFL200 & 59.5 & 8 BC 113 & 13 & BF195 & 8 & 2HD 950ML1.960 & & c1. 10 \\
\hline PL36 & 55.5 & \({ }_{8}^{8 C 1164}\) & 19
14 & 8F196 & 10 & \(2 T 0950 \mathrm{Mk} 21400\) & & E1.85 \\
\hline PL84 & 25.0 & \({ }_{8 C 1} 8\) Cli & 14 & - \({ }_{\text {BFI9 }}\) & 23 & 20AK 1500 (17 \& 19) & & ¢1. 65 \\
\hline PL504 & 64.5 & \({ }_{8 C 1} \mathrm{ECl}^{25}\) & 25 & 8 F 2 Co & 25 & 2TAK 1500 ( \(23^{-} \& 24^{*}\) ) & & c2. 00 \\
\hline PL508 & 67.0 & BC135 & 15 & BF218 & 30 & EHT MULTIPLIERS - COL & our & \\
\hline PL519 & \(£ 1.50\) & 8 CL 37 & 19 & BF224 & 23 & litaliti zvei. 2 \& 3 & & \\
\hline PY88 & 35.5 & BC138 & 26 & - 2528 & 34 & ITN GEC Scibell & & ¢4.50 \\
\hline PY800 & 33.0
850 & 8 C 142 & 23 & 8F336 & 28 & 11 TAZ GEC 2110 & & ¢4.85 \\
\hline PY5004 & 85.0 & BC143 & 25 & 8F337 & 35 & 117 A'A Philps G8 & & [4.50 \\
\hline SEMI CO & NDUCTORS & BC147 & 11 & BF355 & 54 & 11 TBD Phildos 550 & & ¢4.50 \\
\hline & Price & \(8 \mathrm{Cl147A}\) & 11 & BFX86 & 28 & 3TCW Pye \(691 / 693\) & & 63.50 \\
\hline Type & Each (p) & 8C.148 & 10 & BFY50 & 19 & 1 TH Decea 30 Series & & ¢. 4.50 \\
\hline AC127 & 17 & 8 C 149 & 10 & - FY5 & 20 & 11 TAQ Decia Bradiord & & ¢4.50 \\
\hline AC128 & 13 & 8 C 153 & 15 & BSY52 & 35 & 3TCU Thors 3000/3500 & & ¢5.00 \\
\hline AC141K & 25 & BC154 & 15 & BT 106 & ¢1.20 & 11 HAA Thon 8000 & & [1.90 \\
\hline AC142K & 25 & BC157 & 14 & BU105/02 & f1.95 & 11 Has thon 8500 & & E4. 25 \\
\hline AC151 & 20 & BC158 & 10 & Bu108 & c2 10 & & & \\
\hline AC154 & 18 & BC159 & 11 & BU208 & C2.95 & & & \\
\hline AC155 & 18 & BC:73 & 18 & E1222 & 30 & All goeds subject & Settemen & \\
\hline AC156 & 20 & \(8 \mathrm{BC1788}\) & 20 & MJE340 & 45 & & & \\
\hline AC 176 & 22 & BC182L & 12 & 0 C 71 & 15 & & & \\
\hline AC187 & 19 & \(8 \mathrm{Cl} \mathrm{Bl}^{\text {a }}\) & 12 & 0 C 72 & 16 & & & \\
\hline AC187K & 24 & \(8 \mathrm{Cl187}\) & 25 & R20088 & c2.00 & No postage charg & minim & \\
\hline AC188 & 17 & BC2141 & 15 & R20108
RCA16334 & ¢2.00 80 & Write arphone for & & \\
\hline AC188K
AD142 & 26
45 & \({ }_{8 C 328}\) & 28
19 & RCA16334
RCA16335 & 80
80 & & & \\
\hline
\end{tabular}

\section*{uInPrices, Qualiby and Servica}

PMELECTRONIC SERVICES
CRYSTALS for professional AND AMATEUR USE

Ne can supply crystals to most commercial specifications, with an express service for that urgent arder. For the amateur we carry a large stock of the more popular frequencies, backed by a quick service for those "Specials
Please send SAE for details or telephone between 4.30-7 p.m and ask for Mr. Norcliffe.

7A ARROWE PARK ROAD, WIRRALL MERSEYSIDE L49 OUB
Tel. 051-6778918 (until 7 p.m.)

\section*{MICRO \\ ELECTRONIC TRANSMITTER Receive on a}

VHF RADIO

\section*{The smallest Transmitter}
available in the UK


Only \(2^{\prime \prime} \times{ }^{1 \prime \prime}\). Can pick up and transmit minute sounds and voices. Range 500 yards plus. Can be worn round the neck. held in the hand, or operated in a drawer Works almost anywhere, uses PP3 battery (very long life). Completely self contained, transistorised printed circuit Used the world over. Fully guaranteed Latest model now dispatched. Transmitter
£15.50
If required Pocket Radio for
receiving transmissions
P. \&P. 45p. MAIL ORDER AN

Mulhall Electronics, (WW)
Ardglass, Co. Down, UK. BT30 7SF Tel: 039-684 461

COLOUR. UHF and TV SPARES. Colour and UHF lists avaiable on request Signal strength meitable for Hi.Fi, Po P/P 35p. Television construction cross hatch \(\mathrm{k} / \mathrm{t}\). \(\mathrm{E} 3.60, \mathrm{P} / \mathrm{P} 15 \mathrm{p}\). Bush CTV 25 . New convergence panels plus yoke and blue lit \(£ 3.85\). \(\hat{P} / \mathrm{P} 40 \mathrm{p}\). New Philips single standard conver. sence panels complete, incl. 16 controls, coils. P.B. Switches, leads £3.75. P/P 50p. New Collour Scan Coils. Mullard or Plessey plus convergence yoke and blue lateral. \(£ 9.20\), \(P / P 55 p\). Mullard AT1025/05 Convergence Yoke, \(\mathrm{E}^{2} 230, \mathrm{P} / \mathrm{P}\) \(50 p\). Mullard or Plessey Blue Laterals, 75 p P/P 20p. BRC 3000 type scan Coils, \(82.00 \mathrm{P} / \mathrm{P}\) 40p. Delay Lines DL20. \(£ 3.50\), DLIE DL1, £1.00, P/P 35 p . Lum Ualay Lines. 50p, P/P 15p. EHT Colsur Quadrupler for Bush Murphy CTV 25 H1/174 series 77.50 P P/P 35p. EHT Colour Tripler 25 p GEC 2040 wold suitable must sets, 12.00 Coiour surplus/salvared Philips G8 P/P 25p. part complete. Decoder f2 50 iF incl 5 partules, \(£ 2.25\), T . Base. \(1.0 \mathrm{n}, \mathrm{P} / \mathrm{P} 25 \mathrm{p}\). CRT base. \(75 \mathrm{p}, \mathrm{P} / \mathrm{P} 15 \mathrm{p}\). (¿EC 2040 panels, for spares Decoder £3.50, Time Base piloo \(\mathrm{P} / \mathrm{P}\) \(50 p\). B9D valve base's \(10 \mathrm{p}, \mathrm{P} / \mathrm{P}\) 6p. VARICAP TUNERS. UHF ELC 1043 NEW, 4420 . ELCI043/㠶 55.00 . ELC1042 (VHF) £5.50. Salvaged VHF and UHF Varicap luners, £1.40. P/P 25p. UHF TUNERS NEW, Transistorised. Incl. slow motion drive, \(£ 3.80\). 4 position and 6 pos. push-button transistorised, \(£ 4.20\) All tuners P/P 45p. MURPHY \(6(6) / 700\) series complete UHF Conversion Kits incl tuner, drive assy 625 IF amplifier 7 valves, acressories housed in cabinet plinth assembly, \(£ 5.50\) P/P 6.5p
THORN 850 Dual standard time base panel 50p. P/P 50p. PHILIPS fi25 IF amoplifier panel 51p. P/P 50p. PHILIPS f25 IF amplifier panel
inc-1. cet. j0n P/P 45p. VHF turret uners \(1 T 76.0\) incl valves for K. B Featherlicht Phaips 197G170. GEC 2010, ete, £2.50. PYF, minisutute ineremental for 110 to 830 . Pam and Irvicta, £1.00. A.B. miniature with UHF injection suitable K.B. Baird, Ferguson, 75p. New fireball tuners Ferguson, HMV. Martuni E1.s0 P P all tuners 50p. Mullard dio mono scan coils new suitable all standard philips. Stelli, Pye, Ekco, Ferranti, Invicta. 22.00 . P/P 35 p Large selection LOPTs, FOPTs avaliable for most papular makes \(200+200+100\) Micro. farad 350y Electrolytic, fl.00 P/P 20p, MANOR SUPPLIES 172 WEST END LANE. LONDON, N.W.6. Shop premises, callers welcome (No, 28, 54,159 Buses or W. Hampstead Bakerlow
and brit. Rail). MAIL ORDER and brit. Rail). MAIL ORDER HA GOLDERS \(\mathbf{3 7 5 1}\). VAT PLEASE ADD \(25 \%\) TO ALL PRICES.

\section*{Hair Transplant}

For free brochure, clip this ad and send to: Room 6 HAIR TRANSPLANT INTERNATIONAL 502 Eccleshall Road. Sheffield
each value Tolatal ol 1425|' 'w. CB 35; 'W.E8.45.

\section*{Buld a mixer to your own \\ }

For full detalls contact Richard Brow at Zerc 88. 115 Hatfield Hoad St Albans Herts AL1 4JS Tel 637

\section*{B. BAMBER ELECTRONICS \\ 5 StATION ROAD, LITTLEPORT, CAMBS, CB6 10E \\ TEL: ELY ( 0353 ) 860185 (TUESDAY-SATURDAY)}

\section*{HANDI-PACKS}
T.V. PLUGS (metal type). 6 for 50p. T.V. SOCK ETS (meral type). 5 for 50p. T.V. LINE CONNECTORS (back-to-back skt.). 5 for 50 p . to3 transistor insulator sets, 10 for 50p
MIXED ELECTROLYtICS, large bag, \({ }^{\mathrm{Cl} 1.00} \mathrm{BO}\)
PC BOARD WITHDRAWAL HANDLES, mixed cols 8 for 50 p. 9 yds 25 p.
OA81 DIODES. 15 for 25p.
OC200 TRANSISTORS, 6 for 50 p .
PERSPEX COIL FORMERS, \(1 / 4 /\)
\(1 / 2\) in dia., 5 for 25p.
TURRET TAGS, \(1 / 16\) th in dia. 25p pack.
ROTARY SWITCHES, min 4 pole 2 way 2 for \({ }^{50} \mathrm{p}\).
TELIPHONE TYPE EARPIECE INSERT, 50p.
REEDS (tor reed relays) Single-pole make 5for 30p. TUBULAR CERAMIC
MULLARD THE TRIMMERS. \(1-18 \mathrm{pf}\). 6 for 50p.
(as featured in Rad Comm Jan. p. 25)
ICs, some coded. 14DIL type, untested mixed, 20 for \(\mathbf{2 5 p}\).
IF CANS, \(1 / 2\) in square. suitable for rewind. 6 tor 30p.
SMALL NEONS, 6 for 25 p
24V MIN. REED RELAYS, encapsulated single-pole make. 2 for 50 p.
24 V 2.8 W LAMPS, MES type. 6 for 20 p . CHASSIS TAGES. 25p pack CABLE CLIPS, for nalling cable. 15p mack MiNiature slider switches, 2 pole. 2 way \({ }^{5}\) for 50 p.
BSY
BSA TRANSISTORS 6 for 50 p 6.3V. O.3A CAPLESS LAMPS, 10 for 25p.
25p. AUDIO TYPE TOS TRANSISTORS. 12 for 25p.
BLACK PLASTIC KNOBS, \(7 / 8\) in dia \(1 / 4\) in spindle, 4 for 50 p .
RINGS MAGNETS, 7 mm outside dia, 20 \begin{tabular}{l} 
for 50 p \\
150 p \\
\hline
\end{tabular}
15082 MULLARD 150 V REG. (Equiy

ROTARY SWITCHES 9 way 4 pole (separ
each
FERR
FERRITE COILS on \(3 / a n\) di ferrite rings, 3 for 50 p.
HEATSINKS (Approx 3 in \(\times 4 i n \times 2 i n\). high). 12 tins (driwed for
transistor) Brand new. 45 peach VHF RF CHOKES (wound on \(22 \mathrm{~K} 1 / 2 \mathrm{~W}\) Resistors). 5 for 35 .
SMALL CHROME HANOLES, \(1 / 4\) in dia \(1^{1 / 4}\) in between holes. 1 in clearance. tapped 4 BA (with screws \& washers). 2 par for 40p.
RELAYS, single ploe, change over, 12 DC . approx \(3 / 1 / 1\) in. \(\times 1 / 21 n \times 11 / 411\). \(35 p\) each AT LAST WE HAVE A STOCK O the trimmers you've All been \(2-6 \mathrm{pt} 10 \mathrm{~mm}\) circular. cera
2-6p 10 mm circular. ceramic trimmers for Vhf UHF work). 3 pin mounting. 5 for CERAMIC high voltage pillars (metal ends. tapped 4BA), approx in long. 10 for 60 p .
CuRLY LEADS, 4 core telephone-type 18 in closed. approx 5 ft extended. 2 fo 20 p.
STUD RECTIFIERS. BYX42/300R 300 V at 10A, \(\mathbf{3 0} \mathrm{p}\) each, or 4 for \(£ 1.00\). TRANSISTOR HEATSINKS, to make \(2 x\) TO18 transistors. screw in clamps, block Size in 3 \%ounting, 3 for 50 p. DUBILIER ELECTROLYTICS. 50uF, 450V. 2 for 50p. 275 V , 2 for 50 p .
PLESSEY ELECTROLYTICS. 470uF, 63 V .3 for 50 p .
TCC ELECTROLYTICS. 1000uF. 30V. 3 for 60p.
plessey electrolytics.
180V. 40p each ( 3 for \(£ 1.00\) ).
DUBILIER ELECTROLYTICS. 5000 mid at 35 V 50 p each
DUBILIER ELECTROLYtICS. 5000uF 50V. 60p each
DUBILIER ELECTROLYTICS. 5000 mfd at 70 V 65 p each

\section*{TERMS OF BUSINESS: CASH WITH ORDER \\ ALL PRICES INCLUDE POST AND PACKING (UK ONLY) EXPORT ENQUIRIES WELCOME. CALLERS WELCOME TUES.-SAT PLEASE ADD \(25 \%\) VAT. MINIMUM̄ ORDER £1 PLEESE EICLISE STAMPED ADDRESSED EnvELOPE WITM ALL EMOUIRIES}

ITTELECTROLYTICS. 6800 mid at 25 V high grade. screw terminals, with mounting PLESSEY
PLESSEY ELECTR
10000 mfd at 63 V 75 p each
PLESSEY CATHODRAY CAPACITORS 004 uF at 125 KVDC . terminals. \(£ 1.50\) each.

\section*{PLUGS AND SOCKETS}

25-WAY ISEP PLUGS AND SOCKETS 40p set (1 plug +1 skt) Plugs and sockets sold separately at \(\mathbf{2 5 p}\) each
DIN SKTS, 5 pin. 250 deg .4 for 50 p. DIN SPEAKER SKTS, 2 -pin. 4 for 50p. STANDARD JACK PLUGS, \(1 / 4 \mathrm{I} \cap .4\) fo 50p.
ANDREWS 44AN FREE SKTS. (N-type) for \(\mathrm{FH} 4 / 50 \mathrm{~B}\) or \(\mathrm{FH}, \mathrm{J} 4 / 50 \mathrm{~B}\) cable \(£ 1.00\) each BULGIN ROUND FREE SKTS. 3 pin. fo mains input on test equipment. etc. 25 p SO239 BACK TO BACK SOCKETS, £1.25 each
BNC INSULATED SOCKETS (single hole type). 65 p each
PL259 PLUGS (PTFE). Brand new. 50p each, or 5 for \(£ 2.25\).
Reducers for above 15p each
SO239 SOCKETS (PTFE). Brand new (4 hole fixing type). 50 p each. or 5 for \(£ 2.25\) N-TYPE SKTS. (4 hole chassis mounting. 500 hms . small coax lead type). 50 p each BNC PLUGS (Amphenal. new. packed) 35p each (4 for £1.20).
\[
\begin{aligned}
& \text { BNC SOCKETS (4 hole chassis mo } \\
& \text { lead type). 35p each (4 for } £ 1.20 \text { ). }
\end{aligned}
\]
lead type). 35p each (4 for £1.20).
GREENPAR (GE 30015 ) CHASSIS LEAD TERMINATIONS (These are the units which bolt on to the chass:s. the lead is secured by screw cap, and the inner of
the coax passes through the chassis) \(\mathbf{3 0}\) each. 4 for \(£ 1.00\).

\section*{VALVES}

Qav03/10 (ex. equipment). 75p each \(2 \mathrm{C39A}\) (ex equipment). £1.00 each Qov02/6 (ex equipment), \(£ 1.00\) each 4CX250B (ex equipment), \(£ 2.10\) each \(4 \times 2508\) (ex. equipment), \(£ 1.50\) each. DET22 (ex equipment). 2 for \(£ 1.00\)

MAINS TRANSFORMERS All 240 V input, voltages quoted approx (Please quote Type No only when
TYPE 10/2 10-0-10V at 2A. £1.50.
TYPE 18/2 18 V at 2A, £1.65.
TYPE \(16 / 616 \mathrm{~V}\) at \(6 \mathrm{~A}, 45 \mathrm{~V}\) at 100 mA
E4.00.
TYPE 28/4 28 V at \(4 \mathrm{~A}, 125 \mathrm{~V}\) at 500 mA
C4.00.
TYPE 129400 V at 20 mA 200 V at 10 mA . 63 V at \(500 \mathrm{~mA}, £ 1.25\).
TYPE \(\mathbf{7 2 7 0 3} 400 \mathrm{~V}\) at \(10 \mathrm{~mA}, 200 \mathrm{~V}\) at TYPE 72703400 V at 10 mA .200 V at
\(5 \mathrm{~mA}, 63 \mathrm{~V}\) at \(400 \mathrm{~mA} . £ 1.25\). \(\begin{array}{ll}\text { TMA, } 6 \\ \text { TYPE } \\ 70462 \quad 250-0-250 \mathrm{~V} & 50-0-50 \mathrm{~V}\end{array}\) TYPE \(70462,250-0-250 \mathrm{~V}\)
\(6.3 \mathrm{~V}, \mathrm{E} .75\).
TYPE 125 BS , approx. 125 V at 30 mA \(65 p\).
MAINS ISOLATING TRANSFORMER (ex equip). in metal cases. totally enclosed. tapped mains input. 110.240 V etc , output AS ABOVE +12 V at \(05 \mathrm{~A}, £ 11.00\). \(3 A+22 V\) at \(25 A, £ 27.50\). RADIOSPARES 50OWATT AUTO TRANSFORMER, 100 / 110 / 150 / 200/220/240/250V tapped input and output step up or step down tacility, ex new equip. £6.00.
HIGH QUALITY SPEAKERS, 8 /8in \(\times 6 \mathrm{in}\) elliptical. 2 in. deep. 4 ohms. inverse magnet, rated up to 10 W . \(£ 1.50\) each, or 2 for \(£ 2.75\) (Quantity discount avalable) VARIABLE STABILISED PSU, Solid state, 240 V AC input output \(0-24 \mathrm{~V}\) DC at
\(500 \mathrm{~mA}+32 \mathrm{~V}\) at 50 mA (approx) Size \(500 \mathrm{~mA}+32 \mathrm{~V}\) at 5 mA (approx.) Size external 5 k ohm pot) (less 5 k ohm pot) external 5 k ohm pot) (less 5 k ohm po 5 k ohm pots MANUFACTURERS MANUFACTURERS -- SEND SAE FOR

PYERADIO-TELEPHONE EQUIPMENT
Cambridge. Westminster, Motofone, Europa series Send s.a e tor full details, stating requirements. frequency. channel spacing.

SERVICE AND REPAIRS

\section*{РНロTロ ЕТСН}
pl. LIMITED pel

9 LOWER QUEEN STREET PENZANCE, CORNWALL, TR18 4DF

Prototype or long run -- we will supply your printed circuit requirements Also facilities for Design, Assembly and Test
Prompt and efficient service assured
T penzance (bize) aate

AUDIOMASTER BACKGROUND MUSIC vice, sales. Tape programmes. P. Equip ments, 3 Onslow street, Guildford 4801. (12

TUBE POLISHING, Inono 55.63 , colour \(£ 5.94\) C.W.O. Return carriage and VAT paid. Phone: N.S. 300 , Retube Limited, North Somercoites, Lough, Lincs.

\section*{RECEIVERS AND AMPLIFIERS SURPLUS AND SECONDHAND}

HRO Rx5s, etc., AR88, CR100, BRT400, G209, S640, etc., etc., in stock, R. T. \& I. Electronics, \(\underset{\text { Ltd., Ashville }}{\text { Ley }}\) Old Hall, Ashville Rd., Londnn, \((65\) E11 Ley 4986.

SIGNAL Generators, Oscillosmpes, Output Meters, Wave Volmeters, Frequency Meters, Multi-range Meters, etc., etc.i. in stock. R. T. \(\& 1\). Electronics, Lid.. Ashville Old Hall, Ash-
vilie Rd., London, E.i1. Ley 4986 .


\section*{COLOUR TV SERVICING}

Learn the techniques of servicing Colour TV sets through new home study course provided by leading manufacturer Covers principles. practice and alignment with numerous illustrations and
Other courses for radio and audio servicing

Full details from ICS School of Electronics, Dept 327, Intertext House, London SW8 4UJ. Tel 01-622 9911 (all hours).

RADIO and Radar M.P.T. and C.G.L.I Courses. Write: Principal, Nautical College, Fleetwood, FY7 8JZ.
(25

\section*{VALVES WANTED}

WE BUY now valves, transistors and clean now components, large or small quantities, all details, quatation by return - Walton's, 55 Wor coster St., Wolverhampton

\section*{TECHNICAL TRAINING}

Get the training you need to move up into a higher paid job Take the first step now - write or phone ICS for details of ICS specialist homestudy courses on Radio TV Audio Eng and Servicing. Electronics. Computer also self-bulld radio kits
Full details from ICS School of Electronics, Dept 326, Intertext House, London SW8 4UJ. Tel. \(01-6229911\) (all hours).

\section*{CITY 8: GUILDS EXAMS}

Study for success with ICS An ICS home study course will ensure that you pass your C \& G exams Special courses for Telecoms Technicians Electrical Radio Amateurs

Full details from ICS School of Electronics, Dept 325 Intertext House, London SW8 4UJ. Tel. 01-6229911 (all hours).

\section*{SURPLUS BARGAINS}

\section*{EASTER LINEANGUS}
chart recorders model A601R 500-0-500u.a. f.s.d. 110 v AC as new. with manual. £35.00 (carr. E1)
Kent Chart recorders single point \(\mathbf{f 2 0}\) multipoint \(\mathbf{£ 3 0}\) (E 1.50 ).
A.E.I. 4-stage sequential transistorised electronic timer. many applications. inc
3 channel auto-light- flasher 1750 watts 240 V ). Circuits provided for fully interrupted and dim/bright flashing. Modification instructions and mains transformer. \(\mathbf{£ 4 . 5 0}\) only (50p).
Printed circuit Kits. £1.25 (30p)
Instant Heat Soldering Irons, 240 v 100 watt £2.65 (30p)
Veedor root 4 digit resettable counters 115 v
AC £1. 25 ( 10 p ).
AMPEX VIDIO Tape \(2^{\prime \prime} \times 1670^{\prime}\). New \(\mathbf{£ 9}\) (50p)
Ferric Chloride 25p lb (20p), 10 lbs for \(\mathbf{£} 2.50\) ( 45 p ).
TELEPRINTER PAPERS and TAPES. \(8 \frac{1^{\prime \prime}}{2}\) wide. 3-ply carbon. buff manilla 60p (35p) ditto 7 -ply NCR, no carbon required £i ditto - ply NCR. No carbon required \(£ 1\)
\((35 \mathrm{p})\). TAPES. \(\frac{7}{8}\) ", white \(£ 2\) per 8 rolls ( 65 p ) ( 35 p ). TAPES, \(\frac{7}{8}{ }^{\prime \prime}\), white \(£ 2\) per 8 rolls ( 65 p).
\(\frac{11 \prime \prime}{11^{\prime \prime}}\) buff \(£ 2\) per 10 rolls ( \(65 p\) ). \(1^{\prime \prime}\) tape suit \(\frac{11 " \prime}{16}\) buff f2 per 10 rolls ( 65 p ).
Friden. etc. \(\mathbf{f} 2\) per 7 rolls \((65 \mathrm{p})\).
\(B\) \& \(R\) VHF change over coaxial relays 50 v DC operating coil \(2 \frac{1}{4}^{\prime \prime} \times 2 \frac{1}{4}{ }^{\prime \prime} \times 2 \frac{1}{4}{ }^{\prime \prime} \mathrm{E1.25}\) (15p).
35 wait Mains transformer outputs 2, 3, 6 . 20. 24. 27. 30. £1. 25 (25p)

All prices plus ( \(p \& p\) ) total plus VAT \(8 \%\)
Large S.A.E. for list
CASEY BROS, 235 Boundary Rd, St Helens, Lancs.

\section*{BUDGET MINI AUDIO MIXERS}

\section*{With Professional Facilities}

Slider Faders \(\star\) Tone Controls \(\star\) Monitoring * VU Meter
Mono or Stereo \(\star\) Ready to use or kits
Details Ref. WW
PARTRIDGE ELECTRONICS 21.25 Hart Road, Benfleet, Essex

\section*{CRYSTALS}

Fast delivery

\section*{INCLUDING:}

\section*{Statek \\ Buckman
Astro \\ Astro
Jan}
crystals in 105 package F. clock and mobile radio crystals
Filter crystals Filter crystals
Interface Quartz Devices Limited 29 Market Street, Crewkeme, Somerse Tel. (046031) 2578 . Telex: 46283

\section*{AARVAK SOUNDLIGHT CONVERTORS E9:}
trmber tar Sequencers 227 (
\(\begin{array}{lll}\text { Bumper } & \text { Catalogue:- } & 98 \mathrm{a} \\ \text { Road, } & \text { N } 15 & 5 N S .01-80(065 .\end{array}\)
CHEAPEST EVER NATIONAL CHIP MM5. CHIP. MM534 now aavilable for only \(£ 3.78,10\) for \(532.40,24\) pin di], socket 85 p . Suitable red L.E.D. Displays \(0.3^{\prime \prime}\) high, Pin compatiblle with DL 707 etc. £1.08 each. 10 for 88.64 , 14 aible. 10 p for coatadogue. Postage quatities avail include VAT at current rates. Mail order only to G. Newman. \(1: 2\) Francie's Avenue, St. Albans AL3 6BK.
INTEGREX S-2020'A stereo tuner/amplifier Carefully built. performs to specification. 669.50 plus 95p post and packing. - I. G. Bowman.

16MM B \& H 631 Sound projectors c/w speaker and transformers flas. - Hilton Cine. 9 West SCOPE TUBES D14-121 GH with mumetal skield and hase. f20 cach. Suitable unassembled cases f9 each. - Tel 01-202 6282 .

\section*{TEKTRONIX power supply/mainframe PS503/} TH \(501+\) - \(20 \mathrm{v}-400 \mathrm{MA} \mathrm{SV}\) supplies new £180. Tektronix triple mainframe TM503 for
TM 500 modules new \(£ 100\). 359 0051. 48727

HUNDREDS of Dual Standard Colour TV's for sale Contact: S. II. C. 'relevisions Ltd., 024 -

\footnotetext{
VACUUM is our speciality, new and secondhand rotary pumps diffusion outfits, accessories, coaters, etc. Silicone rubber or varnish
outgassing equipment from \(£ 40\). V. N. Barrett (Sales) Lid., 1 Mayo Road, Croydon. 01-684 9917.
}


\section*{ELECTRONIC KITS}
requires reliable firms well connected in own markets for handling exclusive sales in countries where no organisation yet exists.

\section*{Send enquiries to:}

AMTRON

\section*{Casella Postale 4160, Milano, Italy}

60 KHz MSF Rugby and 75 KHZ Neuchatel Radio Receivers Signal and audio outputs. Small, compact units. Two avallabile versions. Toolex, Brlstol Road, Sherborne (3211), Dorset.

CONSTRUCTION AIDS - Screws, nuts, spacers, etc., in small quantities. Aluminium panels
punched 100 spec. or plaln sheet supplied. Fas-
cla panels etched cla panels etched aluminium to individual requirements. Printed circuit boards - masters, negatives and board, one-off or small numbers.
Send 9 p for \(l\) ist. Ramar Constructor Services, Send 9p for list. Ramar Constructor Services,
29 Shelbourne Road. Stratford on Avon, Warks. Tel. Stratford on Avon (STD 0789) 4879 ,
LOW COST IC MOUNTING. Use Soldercon IC socket pins for 8 to 40 pin DILs, 70p (plus 5p VAT) for strip of 100 pins, E1.50 (plus 12p for 1,000 . Instructions supplied. Send for sam. ple. Sintel, 53 c Aston Street. Oxford. Tel:
0865
43203.

DIGITAL CLOCK CHIP, AY-5-1224, with data and circult diagram, \(£ 3.68\) plus VAT. 'Jumbo' LED digits ( 16 mm high) type economy DL/747 only 22.04 each plus VAT, post free. Greenbank Electronics, 94 New Chester Road, Wirral, Merseyside L62 5AG.

TRANSFORMERS, Pri 200/240V\& Sec.12, 15, 20, 24, \({ }^{30 \mathrm{~V}} .1 \mathrm{~A} \mathrm{E}^{2} .10 \mathrm{p} . \mathrm{p} .38 \mathrm{p}, 2 \mathrm{~A} £ 3.10 \mathrm{p} . \mathrm{p} .38 \mathrm{p}\),


 \(48,60 \mathrm{~V} .1 \mathrm{~A}\) £ 2.75 p.p. \(38 \mathrm{p}, 2 \mathrm{~A} \quad £ 4.45\) p.p. 42 p
 p.p. \(67 \mathrm{p}, 6 \mathrm{~A}\) f10 p.p. 82 p , Open type, table 50 connections. Quotations for sizes up to 500 VA. Add \%" V.A.T. TRANKIT ELECTRICAL, \(\begin{array}{lll}192 & \text { SILVERTONHILL AVENUE, } \\ \text { ML3 } & \text { 7IPF. } & \text { IHAMLTON } \\ (4655)\end{array}\)
LADDERS unvarnished 14 ft lin, closed, 25 ft 4in extd. 521.40 delivered. Tel: Telford 586844.

INTEGREX NELSON-JONES TUNER fitted with Mark 2 Portus and Haywood decoder, \(£ 51.50\). plus 80p post and packing. - I. G. Bowman.

MULLARO ferrite cores la3 100 to 500 kHz \(50 \mathrm{p}, \mathrm{LA} 410\) to 30 kHz . 75 p ; LA 21003 to 200 kHz 50 p. Toroids approx sizes 0.D, 101. 6 M.M. 1.D \(50.8 \mathrm{M.M}\). Widely used in frequencies from
500 kHz to 2 Mhz . 50 p . Smat toroids 0 D \(\begin{array}{llll}500 & \mathrm{kHz} & \text { to }{ }^{2} \text { Mhz. } 50 \mathrm{p} \text {. Small toroids O.D. } \\ 127 \mathrm{M} . \mathrm{M} . & 1 . \mathrm{D}^{2} & 6.35 \mathrm{~min}\end{array}\) \(127 \mathrm{M} . \mathrm{M}\). \(1 . \mathrm{D} \quad 6.35 \mathrm{~min}\) effective permeability ferrites. cores. beads. tubes, etc. Coramic formers L23 M.M. diam. \(13 \mathrm{M} . \mathrm{M}\). Bore 1 end 8 M.M. other end 4 M.M. 100 for \(£ 1.50\). very large ciuantities of all above components ex. stock Also available large quantities of poly ester Ceramic. Polystyrene and Electrolytic capacitors relays. koy switches ctc. Please add \(25 \%\) V.A.T in all orders. Mail order only. Xeroza Radio. 1 East Street. Rishop's 'Tawton.
Devon.

\section*{ENAMELLED COPPER WIRE \\ \begin{tabular}{|c|c|c|}
\hline S.W.G. & \({ }_{17}\) Reel & Sild Reel \\
\hline 10-14 & ¢2.05 & £1.15 \\
\hline 15-19 & ¢2. 15 & £1.20 \\
\hline 20-24 & £2.20 & £1.25 \\
\hline 25-29 & ¢2.25 & £1.30 \\
\hline 30-34 & £2.35 & £1.38 \\
\hline 35.40 & ¢2.50 & £1.45 \\
\hline
\end{tabular}

COPPER SUPPLIES
102 Parrswood Road, Withington, Manchester 20 Telephone 061-445 8753

HEWLETT PACKETT Oscilloscope 175A, Verical Amplifier 175 B , Delayed Generator 1781 B , Abso lute mint condition with hand books, trolley and probes, 2 . D43 relequipment oscil scope mint condition \(£ 90\). - Box WW4762

\section*{ARTICLES WANTED}

\section*{WE SELL CONSTRUCTION PLANS}

Police-Radar-Detector, Open Channel, Electro Ball, Telephone Scrambler, Quarter Mike, Tail Transmitter, TV Camera, Infinity Transmitter Voice Typewriter, each plan are U.S. \(\$ 7.50\), Play TV Ping Pong \(\$ 11.50\), Infra Red TV Camera \$11.00, Infra Red Mike \$13.50 Martini Olive Mike \(\$ 13.50\). Catalogue \(\$ 0.75\).
\[
\text { T. Strik, Postbox } 618
\]

Rotterdam, HOLLAND

We BuY modern 16 mm sound projectors. Bur gess Lane \& Co. Ltd. Thornton Works, Thorn ton Avenue, Chiswick W. 4994 5752/5953. (4387

\section*{WANTED, all types of communications receivers and test equipment. Details to \(R\). T. \& I Rd., London, E.l'1. Ley 4986}

SURPLUS COMPONENTS, Equipment and Ciompurter panels wanted for cash. Ring Southamp ton 772501
('4748

WANTED surplus capacitors, resistors and tran sistors in bulk for cash. - Electronic Mail 70682) 3036.

\section*{CAPACITY AVAILABLE}

PRINTED CIRCUIT BOARDS - Quick deliveries, competitive prices, quotations on small batches, Jarger quantities available Jamiesons Automatics Ltd, 1-5 Westgate, Brid lington, N. Humberside, for the attention of Mr. J. Harrison. Tel: (0262) \(4738 / 77877\). (18)

LABELS, NAMEPLATES, FASCIAS on anodised aluminium ar perspex. Any quantity superb quality, fast delivery. G.S.M. Graphics Lid. 4443), Yorks. Lane, Guisborough (Tel. \(02873-\)

SMALL Batch Production, wiring assembly, to sample or drawings. Specialist in printing circuit assemblies. D. \& D. Electronics, 42 Bis hopsfield, Harlow, Essex. Tel: Harlow 33018.

CAPACITY available for the Assembly of Electronic or Electrical Components P.C.B.s, etc. Ltd., Jupiter Road, Norwich NR6 6SU. Remploy

CAPACITY available to the Electronic Industry Precision turned parts, engraving, milling and grinding both in metals and plastics. Limited capacity avallable on Mathey SP33 j1g borer.
Write for lists of full plant capacity to C.B. Write for lists of full plant capacity to C.B Industrial Engineering Ltd., 1 Mackinfosh Lane E9 6AB. Tel: 01-985 7057.

BareH groduction wiring and Assembly to sample or drawings. Deane Flectricals, \(10 B\) Station Parade, Ealing Common, London, W. 5. Tel: 01-992 897 h .

AIRTRONICS LTD., for Coll Winding - large small production runs. Also PC Boards Assem pltes. Suppliers to 1*.O. M.O.D., etc. Export enquiries welcomed. 3a Walerand Road, London SE13 7PE. Tel: 01.852 1706


Time and again we are asked for reprints of Wireless World constructional projects: tape, disc, radio, amplifiers, speakers, headphones. Demand continues long after copies are out of print. To meet the situation we have collected fifteen of the most sought after designs and put them in one inexpensive book. And we've updated specifications
where necessary to include new components which have become available. A complete range of instruments is presented, from the Stuart tape recorder and Nelson-Jones f.m. tuner, through the Bailey, Blomley and Linsley Hood amplifiers, to the Bailey and Baxandall loudspeakers - some of which have been accepted as standard in the industry.

\section*{highfidelity designs}
£I from newsagents and bookshops or \(£ 1.35\) (inclusive) by post from the publishers. A book from
WirelessWorld


\section*{Guide to Broadcasting Stations}

\author{
17th Edition
}

A title which has sold more than 250,000 copies. The bulk of the book is devoted to lists of stations broadcasting in the long, medium, short and v.h.f. bands in both frequency and geographical and alphabetical order. The book also contains useful information on radio receivers, aerials and earth, propagation, signal identification and reception reports.

1973206 pp., illustrated
\(059200081 £ 1.00\)

\section*{Illustrations in Applied Network Theory}

\author{
F. E. Rogers
}

A hundred numerical and algebraic illustrations designed to exemplify practical circuit problems and introduce, in analysis, principles consistent with studies of synthesis that may be pursued later

1973240 pp., illustrated \(040870425 \times\) cased \(£ 5.75\) \(0408704268 \mathrm{limp} £ 2.65\) Obtainable through any book. seller

\section*{NewnesButterworths}

BOROUGH GREEN SEVENOAKS KENT TN15 8PH


TAPE \(\star\) TAPE \(\star\) TAPE EMI PROFESSIONAL LOW NOISE TAPE
LP \(1800^{\prime}\) £2. 30 (10 for £21 100 ) \(10^{1 / 2 " 1}\) LP \(3600^{\prime}\) NAB \(£ 560(10\) for \(£ 5100)\) H-dynamic cassetres C90 64 p ( 10 for \(£ 6.30\) ) (1000 cassettes C90 \(\quad 89 \mathrm{p}\) ( 10 for \(£ 8\) 80) Please add 20p P\&P and then \(8 \%\) VAT to
fraser-manNing lid 40 TUDDENHAM ROAD, IPSWICH, IP4



EXCLUSIVE OFFERS

\section*{WEVORLD-WIDE RANGE}

COMPLETE TRANSPORTABLE H.F. COMMUNICA-
TIONS CENTRE housel in Air Conditioned THALLEH
 Receivers and one COLLIN\& lseceiver all iully tumpable
2 to \(30 \mathrm{~m} / \mathrm{cs}\) digital reatont aynthesised frequency control, with line auplitiert ausi inputs, operating pnaition and retuote control frailities and ancillary equipment. \(P\).
on application.
PHICO HC-150 POINT-TO-POINT STRIP RADIO HF RECEIVERS \(2 / 30\) nincs. Ten fuliy tuneane channels th


HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS Our Height Width CABINETS
Our Height
Ref. In inched
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Ref. in inches} & in minches & fr inche & pace in ins. & Price \\
\hline CL & 30 & 60 & 36 & 42 & C12.50 \\
\hline CR & 69 & 30 & 20 & \% & ¢24.00 \\
\hline DM & 70 & 20 & 26 & 138 & £21.00 \\
\hline FA & 85 & 22 & 36 & 160 & \({ }^{\text {¢22.00 }}\) \\
\hline FC & 52 & 25 & 22 & 47 & ¢17.00 \\
\hline FG & 11 & 19 & 18 & 10 & E11.00 \\
\hline FH & 15 & 21 & 17 & 11 & £12.00 \\
\hline FJ & 15 & 21 & 15 & 12 & E12.00 \\
\hline FN & 70. & 24 & 20 & 68 & ¢17.00 \\
\hline 1.16 & 11 & 21 & 17 & 9 & c15.00 \\
\hline LL7 & 16 & 20 & 12 & 14 & ¢15.00 \\
\hline LL. 8 & 10 & 20 & 10 & 9 & £15.00 \\
\hline LL9 & 17. & 21 & 17 & 14 & E15.00 \\
\hline LL. 10 & 52 & 21 & & 18 & £18.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{OPEN RACKS} \\
\hline Orr & Height & Channel & Rack \({ }^{\text {P }}\) & & \\
\hline Ref. & in inches & Depth & spare & Rase & \\
\hline RF & 8.3 & 3 & 79 & \(1{ }^{5}\) & 211.00 \\
\hline RG & 57 & 2 & 51 & 14 & £8.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{We have a large quantity of "bits amh pieces we cannot list-please send us wour rembirements we can prohably helf-atl cmpuiries ansucren.} \\
\hline \\
\hline
\end{tabular}

All Racal Units are in unused condition.
\begin{tabular}{|c|c|}
\hline Racal Rab3 S.S.B. Adaptors & 0.00 \\
\hline Racal Ra237 Long Wave Adaptors & ¢70.00 \\
\hline Racal RA. 17/177 Factory Test Rigs & E125.00 \\
\hline Racai RA 2381.5 S B Adaptors & ¢100.00 \\
\hline Racal RA 70 Converters & c30.00 \\
\hline Racal Front Panels RA.17. ete & C12.00 \\
\hline Racal MA 240 Modulators & ¢70.0 \\
\hline Racal MA 141 Distortion Units & E50.00 \\
\hline Racal MA 143 Oscitlators & E50.000 \\
\hline Apeco Lectro-stat Photo Copier Electrostatic & c50.00 \\
\hline Apeco Dial a Copy Photo Copier Electrostatic & c75.00 \\
\hline Omal Electromat Photo Copier Electrostatic & ¢25.00 \\
\hline Hewlett Packard 560A Digital Recorder & PU.R. \\
\hline Hewlett Packard 524C Digital Counter & P.U.R. \\
\hline Tektronic 519 Oscilloscopes 1 GMC & PU.R. \\
\hline Ferrograph Model 81818 Recorders & E45.00 \\
\hline Airmec 701 Sig Generators \(30 \mathrm{k} / \mathrm{cs} / 30 \mathrm{~m} / \mathrm{cs}\) & E30.00 \\
\hline Airmec 702 Sig. Generators \(30 \mathrm{cyc} / 30 \mathrm{k} / \mathrm{cs}\) & c23.00 \\
\hline CT 381 test Sets Freq. Response & ¢140.00 \\
\hline Rustrack Char Recordets \(1.0 .1 \mathrm{~m} / \mathrm{a}\) (New) & ¢30.00 \\
\hline [GG7/5 CRT's 21/3" and CV-2175 & c3.00 \\
\hline Laboratory Radio Interference Filters & c2.50 \\
\hline Adido 5/8 track Tape Punches & ¢48.00 \\
\hline Tally 5/8 Irack Tape Reader's 60 c.p.s. & c+8.00 \\
\hline Tally 5/8 track Tape Readers \(120 \mathrm{cp.s}\). & ¢65.00 \\
\hline Auto Electac Carilon Chmes & ¢250,00 \\
\hline Triangular Lattice Mast Sections. is" sides & E29.00 \\
\hline Ampex Audio Stereo Tape Machines & ¢250.00 \\
\hline Astrodata 5190 Time Code Generators & E60.00 \\
\hline Ljeotech 498.3 Helio Amplifier & 616.00 \\
\hline
\end{tabular}


\section*{Wilmslow Audio THE firm for speakers!}

Baker Group 25, 3, 8, or 15 Ohm Baker Group 35.3 8 or 15 ohm Baker Deluxe, 8 or 15 ohm Baker Major, 3,8 or 15 ohm Baker Regent, 8 or 15 ohm . Baker Superb, 8 or 15 hm Celestion HF 13008 or 15 ohm Celestion MF 1000 horn. 8 or 15 ohm EMI \(13 \times 8.150 \mathrm{~d} / \mathrm{c}, 3.8\) or 15 ohm
EMI \(13 \times 8.80 \mathrm{hm}\).
EMI \(13 \times 8,20\) watt bass
EMI \(21 / 4\) " tweeter 8 ohm EMI \(8 \times 5.10\) watt. \(\mathrm{d} / \mathrm{c}\), roll/s 8 ohm Elac 59RM \(10915 \mathrm{ohm}, 59\) RM 1148 ohm Elac \(61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll/s 8 ohm
Fane Pop 15 watt \(12^{\prime \prime}\)
Fane Pop 20T \(10^{\prime \prime} 20\) watt
Fane Pop 25 T 30 watt \(12^{\prime \prime}\)
Fane Pop 50 watt, \(12^{\prime \prime}\)
Fane Pop 55, 12" 60 watt
Fane Pop 60 watt. 15
Fane Pop 100 watt. 18
Fane Crescendo 12 A or B. 8 or 15 ohm Fane Crescendo 15, 8 or 15 ohm Fane Crescendo 18,8 or 15 ohm Fane Crescendo \(807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}\). rolls/s, 8 or 15 ohm Fane 801T \(8^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll/s 8 ohm Goodmans 8P 8 or 15 ohm Goodmans 10P 8 or 15 ohm Goodmans 12P 8 or 15 ohm Goodmans 12 P-D 8 or 15 ohms Goodmans 12P-G 8 or 15 ohms Goodmans Audiom 1008 or 15 ohm Goodmans Audiom 2008 ohm Goodmans Axent 1008 ohm Goodmans Axiom 4028 or 15 ohm Goodmans Twinaxiom \(8^{\prime \prime} 8\) or 15 ohm Goodmans Twinaxiom 10' 8 or 15 ohm Kef T27
Kef T15
Kef B1 10
Kef B1 10
Kef B139
Peerless Kolo DT Tweeter
Kef DN8
Kef DN1 2
Kef DN1 3
Richard Allan CG8T \(8^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll/s
STC 4001 G super tweeter
Baker Major Module, each
Goodmans Mezzo Twinkıt, pair
Goodmans DIN 20, 4 ohm, each
Helme XLK25. pair
Helme XLK30, pair
Helme XLK50, pair
Kefkit 1, pair
Kef kit III, each
Richard Allan Twinkit, each
Richard Allan Triple 8, each
Richard Allan Triple, each.
Richard Allan Super Triple, each
Richard Allan HP8B 8" 45 wat
Wharfedale Linton 2 kit (pair)
Wharfedale Glendale 3 kit. pair
Wharfedale Dovedale 3 ktt , pair
Decca London and \(X\) over
\(£ 8.64\)
\(£ 10.25\)
\(£ 13.75\)
£ 13.75
\(£ 1187\)
£11.87
\(£ 10.00\)
£ 18.12

All units are guaranteed new and perfect Prompt despatch
Carriage: Speakers 38 p each, \(12^{\prime \prime}\) and up 50 p each iweeters and cross-overs 25 p each. kits 75 p each ( 1.50 pair)

\section*{WILMSLOW AUDIO}

\section*{Dept. WW}

Loudspeakers E Export Dept: Swan Works, Bank Square, Wilmalow, Cheshire SK9 1HF Discount Hifi, PA etc: 10 Swan Street, Wilmslow. Radio, Hifi, TV: Swift of Wilmsiow, 5 Swan Street, Wilmslow. Tel. (Loudepeakers) Wilmslow 29599, (Hifi, etc.) Wilmslow 26213

\section*{VIDEO HIRE}

EQUIPMENT, EDITING, OPERATORS' STUDIO FACILITIES ETC.
THE MOST EXPERIENCED VIDEO COMPANY IN THE BUSINESS

\author{
R.E.W. \\ R.E.W. HOUSE, \\ 10,12 HIGH STREET, \\ COLLIERS WOOD.
}

LONDON, SW19 2BE PHONE: 01-540 9684

\section*{TONDON CENTRAL Radio stores}

TELEPHONE CABLE. Plastic covered grey 4 -core colour coded 10p per yard
ELECTRICITY SLOT METERS ( \(5 p\) in slot) for A.C mains. Fixed tariff to your requirements Suitable for hotels. etc. \(200 / 250 c \quad 15 A \quad\) £8.38. 20A £9.30. PP 75p Other amperages avalable. Reconditioned as new. 2 years
MODERN TYPE DESK PHONES, red, green, blue or 2tone grey or black. with internal bell and handsei with 0-1 dial \(£ 6.50\).
5-WAY PRESS-BUTTON INTER-COM TELEPHONES IT Bakelite case with junction box handset Throughly overhauled guaranleed Price \(£ 5.25\). Send sa
10-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with punction box handset Thoroughly overhauled Guaranteed \(£ 6.75\) per unit Send s.a e
20-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with function box Thoroughly overhauled. QUARTERIY CHECK METERS \(15 A\)
\(P \& P 50 \mathrm{P}\) Allprices subject to fluctuation
Multı Relay Units, Group selectors, Final end selectors and Relays in stock. 20 -way jack strips and tip ring and sleeve plugs For callers only

> 23 LISLE STREET, LONDON, W.C. 2 4372969 Open all day SaturdaV

\section*{EX-COMPUTER STABILISED POWER SUPPLIES}

RECONDITIONED, TESTED AND GUARANTEED

Ripple \(<10 \mathrm{mV}\). Over-voltage protection, 120-130v. \(50 \mathrm{c} / \mathrm{s}\). Stepdown transformer to suit about \&3. F \& P \(£ 1.80\).

5/6v. 12A. 114
PAPST FANS \(4 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \mathrm{in} .100 \mathrm{cfm} .240 \mathrm{v}\). \(50 / 60 \mathrm{c} / \mathrm{s}\). \(£ 3.50\) ( 35 p ).
PAPST FANS 6; dia \(\times 2 \frac{3}{14}\) deep, type 7576 65.00 (35p). 250w light dimmers \(\mathbf{6 2 . 7 0 \text { (15p) }}\) TRANSISTORS \(p \& p 10 p\)
BC107/8/9 BC147/8/9 BC157/8/9
BF 180 25p. BF \(182 / 340\) p. BF184 17 p BFW 10 all 9 pp BF 180 25p. BF182/340p. BF184 17p. BFW \(1055 p\).
2N3819 20p. BF336 35p. 7418 dil 28p. 2N3771 E1.10. BD13 40p. NE555 55p
ELECTROLYTICS
\(2.800 \mu 100 \vee 80 p\) (20p). \(2.240 \sim 100 v 75 p\) (20p). \(4.500 \mu 25 v 60 p\) (13p) 30.000 u \(25 v . .15 .000 \mu\)


EX COMPUTER PC PANELS \(2 \times 4 \mathrm{in}\). 25 boards \(\mathcal{E}\) ( \(35 p\) ).
OPCOA 7 seg led display \(\$\) LA- 77 mm characters with dec. point..
150 mixed HISTABS
250 mixed HI STABS.
250 mixed resistors................60p (1). (8p)
250 mixed capacitors . . . . . . . . . . . . . .606 60p (15p)
20A. 100 piv Si RECS . . . . . . . . . 4 for \(\& 1\) for \(\& 1 \quad\) (12p)
2N3055 Equiv. ..............
SMALL ELECTROLYTICS
\(22 u 10 / 16 \mathrm{v} .10 \mu 35 \mathrm{v} .50 \mathrm{~L} 40 \mathrm{v}\). 100 u 40 v. .
\(22 u 10 / 16 v .10 u 35 v . .50 u 40 v .100 u 40 v .1\)
\(100 u 6 v 150 \mu 10 v .64 \mu 10 v 300 \mu 10 v\)
PIHER PRESETS 100 mW
220, 470, 4k7, 10k, 100k
2 for 45p (7p)

Postage and packing shown in brackets

\section*{PIease add \(25 \%\) VAT to TOTAI}

\section*{KEYTRONICS}

Mail Order only.
44 EARLS COURT ROAD, LONDON, W. 8 04.4788499

TRANSFORMER LAMINATIONS enormous range in Radiometal. Mumetal and H.C.R.. ALSO "C" \& "E" cores. Case and Frame assemblies.

\section*{MULTICORE CABLE IN STOCK} CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K Various makes. Wholesale and Export nolv

\section*{J. Black}

OFFICE: 44 GREEN LANE, HENDON. NW4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD. N. 16 Tel: 01-249 2260

\section*{BROADFIELDS \& MAYCO} DISPOSALS
21 Lodge Lane, N. Finchley
London, N12 8JG
Telephone:
\(01-4450749 \quad 01-4452713 \quad 01-9587624\)

MAY WE ASSIST YOU TO DISPOSE OF YOUR SURPLUS AND REDUNDANT STOCKS
We will call anvwhere in the British Isles. and pay SPOT CASH for Electronic Components and Equipment

QUARTZ CRYSTAL
UNITS from
- 1.0-80.0 M H2
- fast delivedr
- migh stabilttr

J. LINSLEY HOOD

HIGH QUALITY AMPLIFIERS AND TEST EQUIPMENT available from

\section*{TELERADIO HI FI}

325 Fore Street, Edmonton London, N. 9 (01-807 3719)
Examples:
75 Watl Ampiliser P.A. Módule
Pre-amp Module
P.S. Units from
F.M. Tuner. Basic Kit

De Luxe Kit
Stereo Decoder. Made
Millivoltmerer Kit
Low Distortion Oscillator Kit
Tax extra. P\&P extra (min. 25p)
for detailed and lludsthated lists send s.a.E.

\author{
STEREO DISC AMP \\ for bropdrastieg and disc momitoring
 \\ 10-OUTLET DISTRIBUTION AMP \\ GENERAL Sulanced Inpur 10 , solated bianced dutputs Meess AMLIFIER *DRIVING FOLDGACK HEAUPHONES

}

PEAK PROGRAM METERS TO BS4297
also 200 K Hz version for high speed copying.
Drive circuit \(35 \times 80 \mathrm{~mm}\) tor 1 mA LH zero meter to BBC
ED 1477 Gold 8 way edge cun suppled Complete kit \(£ \mathbf{1 2 . 0 0}\) Buill and aligned ' \(\mathbf{£ 1 7 . 0 0}\) ERNEST TURNER PPM itreters sCalings 17 OR 22 . 4 Type \(642 \times 1 \times 56 \mathrm{~mm} \notin 12.60 .643 \times 102 \times 79 \mathrm{~mm} £ 15.00\)


PUBLIC ADORESS : SOUND REINFORCEMENT in any pubtic rdotress svstem where ine micropthones arki oundl uccurs if the amplifiodion twe eeds a criviat yalue By shifing the rudio spectrum fed to the hoeakers tiy a lew Herte
 destioved and an inc.
the onset of teedback
SHIFTERS \(\operatorname{IN}\) BOXES with owelloud LER shitt bybisb svallin
 nectors
nemp


Complete kit and board \(\mathrm{E24.00}\) Includngpsu and DESIGNER
Board built a nd aligned \(₹ 31.00\) mans transiormer APPROVED SPECTRUM SHIFTER: varisble shitts, \(0.1-1000 \mathrm{~Hz}\) for waird special offects and phasing. Ring for leafiots.
SURREY ELECTRONICS
The Forge, Lucks Green, Cranleigh,
Surrey GU6 7BG. (STD 04866) 5997

PRECISION POLYCARBONATE CAPACITORS

All High Stability - Exiremely Low Leakage \(440 \mathrm{VAC}( \pm 10 \%)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{440 VAC ( \(\pm 10 \%\) )} & 63 V Range & \(\pm 18\) & \(\pm 2 \%\) & \(\pm 5 \%\) \\
\hline 01 lu F & ( \(1 n^{\prime \prime} x^{\prime} z^{\prime \prime}\) ) & 50p & \(047 \mu \mathrm{~F}\) & 56p & 46p & 36p \\
\hline 0.22, \(\mathrm{F}^{\text {F }}\) &  & 59p & 1.0, F & 66p & 56p & 46 p \\
\hline \({ }^{11254.5}\) &  & \({ }^{62 p}\) & 2,2, F & 80 p & 65p & 55p \\
\hline \(0.47,{ }^{\text {a }}\) & (174" \(x^{3}{ }^{\prime \prime}\) ") & 71p & 4.74 F & £1. 30 & \(¢_{1.05}\) & \({ }_{85} 5\) \\
\hline \(0.5 \mu \mathrm{~F}\) &  & 75p & 6.84if & ¢1.64 & 61.29 & E1.09 \\
\hline \({ }^{15} 68\) ¢ \({ }^{\text {F }}\) & (2"x \({ }^{\text {a }}\), \({ }^{\text {a }}\) ) & \({ }^{80}\) & 10.0 \(\mathrm{mF}^{\text {F }}\) & £2.00 & £1.60 & £1.40 \\
\hline 1.04 \% & (2"x \({ }^{3}{ }^{\text {a }}\) ") & \(91 p\) & 15.0, F & £2.75 & ¢2.15 & E1.90 \\
\hline 2 OHF & (2"x1") & ¢1.22 & 22.0uF & E3.50 & \(£ 2.70\) & ¢2.55 \\
\hline
\end{tabular} TANTALLIM BFAD CAPACITORS - Values avalable
 16 V 20 V or \(25 \mathrm{~V} ; 22.0 \mu \mathrm{~F}\) at 6 V or \(16 \mathrm{~V} ; 33.0 \mu \mathrm{~F}\) at 6 V or 10 V : \(47.0{ }_{10} \mathrm{~F}\)
at 3 V or \(6 \mathrm{~V}: 100.0 \mu \mathrm{~F}\) at 3 V . ALL at \(10 \mathrm{peach}, 10\) for 95 p , 50 for \(\& 4\). TRANSISTOR
ACl28 19p
\(\mathrm{BCl} 107 / 8 / 9\)
BC 114
\({ }_{8}^{\mathrm{BC}} \mathrm{BC} 147 / 8 / 9\)
\(\begin{array}{ll}\mathrm{RCl} 17 / \mathrm{F} / 9 & 12 \mathrm{p} \\ \mathrm{BC} 153 / 7 / 8 & 12 \mathrm{p} \\ & 18\end{array}\)
 fur 4.5 p . 14 for \(90 \mathrm{p} ; 15445 \mathrm{pp}, 11\) for 50 p .24 for \(\mathrm{E1.00;} ; 1 \mathrm{~N} 41485 \mathrm{p}\). \(0036^{1} \mathrm{zp}: 0047 \mathrm{p}: 006\) 8p LOW PRICF ZFNFR HODES- 400 MW . T
Values a valable \(3 \mathrm{~V}, 3.3 \mathrm{~V} .3 .6 \mathrm{~V} .4 .7 \mathrm{~V}, 5.1 \mathrm{~V} .5 .6 \mathrm{~V} \cdot 6.2 \mathrm{~V} .6 . \mathrm{gV} .75 \mathrm{~V}\) \(\times .2 \mathrm{~V} .9 \mathrm{VV} .10 \mathrm{~V}, 11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}, 13.5 \mathrm{~V}, 15 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V} .20 \mathrm{~V}, 22 \mathrm{~V}\)
 RFSISTORS-High stability
 ach. 8 p for 10 of any one value. 70 p for 20020 2.20. ALL at 1 p SPECIAL PACK: 10 of each value 2.20 to 2.2 Ma ( 730 resistors)
sil ICON PLASTIC RECTIFIFRS- 15 amp . brand new wire (ended Do27. 100 P.I.V. 7 p ( + for 26p), 400 P.IV 8 p (t for 30p) RUICGF RFCTIFIERS- \(2^{2} \%\) amp. 200 V 40 p . 350 V 45 p . 600 V 55 p I'RMINIATURF VFR1ICAL PRESFTS-0lW only all at ip each. \(5001,10006.22001 .47099 .6800\). Ik \(12,3.2 \mathrm{k} 16.4 .7 \mathrm{k} 5.6 .8 \mathrm{~kg}\)


Pieasf add 15p post and packing on all orders BrLow ef. All EXPORT ORDERS ADD COST OF SFA/AIR MAII.

PIIEASE ADD \(25 \%\) VAT TO ORDERS
end S.A.E. for lists of additional ex-stock them
MARCO TRADING (Dept. D7)
The Old School, Edstaston, Nr. Wem Shropshire
Tel. Whixall (Shropshire] [STD 094872)

\section*{INTERNATIONAL TRANSISTOR SELECTOR}

Over 10,000 USA, EURO., JAP BRITISH TRANSISTORS, ELECTRICAL, MECHANICAL SPECIFICATIONS
MANUFACTURERS ÁND
AVAILABLE SUBSTITUTES
by T. D. Towers, M.B.E. Price \(£ 3.40\)
1975 EDITION
THE RADIO AMATEUR'S
by A.R.R.L HANDBOOK

VIDEOTAPE RECORDING
THEORY AND PRACTICE by J. F. Robinson Price £4.85

OPERATIONAL AMPLIFIERS
Design \& Application by Barr Brown Price \(£ 4.60\)

DIGITAL ELECTRONIC
CIRCUITS AND SYSTEMS by N. M. Morris Price \(\mathbf{£ 2 . 5 5}\)

COLOUR TV with Particular Ref to PAL SYSTEM
by G. N. Patchett Price \(£ 5.25\)
\(\star\) PRICE INCLUDES POSTAGE *

\section*{THE MODERN BOOK CO.}

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET,
LONDON, W2 INP
Phone 7234185
Closed Sat. 1 p.m

\section*{CLASSIFIED ADVERTISEMENTS}

\section*{Use this Form for your Sales and Wants}

\author{
To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9LU
}

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

Rate: 86p PER LINE. Average seven words per
line. Minimum THREE lines.
- Name and address to be included in charge if used in advertisement.
Box No. Allow two wards plus 35p.
Cheques, etc.. payable to "Wireless World" and crossed " \& Co.

NAME

ADDRESS


\section*{LOW FREQUENCY ANALYSER}
\(50 \mathrm{~Hz}-50 \mathrm{kHz}\) ASSEMBLY AND INSTRUCTION INFORMATION S.A.E.

PRICE \(£ 27 \mathrm{p} \& \mathrm{p} 75 \mathrm{p}\)
Board. modules and all components lexcluding P.U.).

\section*{12" CRT}

Magnetic Deflection. Blue Trace Yellow Afterglow (P7). Information and recommended circuits with all purchases. Brand new, boxed, f4 each. Carriage \(£ 2\).

\section*{100MHz SCOPE TUBES}

MULLARD D13-450GH-03. P31 PHOSPHOR. INTERNAL GRATICULE-6CM \(\times\) 10CM RECTANGULAR. Y SENSITIVITY 3V PER CM \(\times\) SENSITIVITY IIV PER CM. SINGLE GUN. DISTRIBUTED Y PLATES, TRACE ROTATE COILS.

BRAND NEW BOXED. \(\mathbf{f} \mathbf{3 0}\) each. Carriage \(£ 2\).

\section*{INDEX TO ADVERTISERS}

Appointments Vacant Advertisements appear on pages 73-90



\section*{3009 + LP12}

Information sheet No 3 details the use of our precision pick-up arms with this well-engineered British turntable.
We shall be pleased to send you a copy on request.

\section*{35N号}

The best pick-up arm in the world

Write to SME Limited
Steyning • Sussex • England
Telephone: Steyning (0903) 814321

\title{
Multicore Solder preforms, a little something for automatic processes.
}

\section*{Multicore Preforms.}

Multicore precision made solder preforms come in virtually any shape or size Rings, washers. discs pellets. and lengths of solder tape - in most soft solder alloys. Designed, with or without flux cores, to make the most of automatic soldering processes. a solder preform is simple and accurate to use it's just positioned between the parts to be soldered and the temperature of the metal surfaces raised to about \(50^{\circ} \mathrm{C}\) above the melting temperature of the solder. The solder preform does the rest. Heating techniques can include gas flame hot plate, oven conveyor. induction coils, resistance/electrode soldering hot gas and infra-red.

Multicore Solder Preforms just get on with the job. Automatically.


\section*{Our Solder Creams, something else again...}

New Multicore Solder Creams are designed for electronics assembly where quality is vital. Like manufacturing diodes, for instance, or making a tuner chassis. or soldering thickfilm circuits.

A finely graded solder alloy powder in a thixotropic organic vehicle. It's often quicker, cheaper. easier and more reliable than other soldering techniques. It's different. It doesn't spit or need stirring. It can be applied by syringe, automatic dispenser or screen printing - giving instant soldering with good spread. strong joints with low contact angles. It can act as a temporary adhesive during assembly and the clear colour flux residue - without solder globules -simplifies inspection.

There are three types of Multicore Solder Cream - one of them may be just what you ve been looking for. Approved USA Federal Specification OO-S-571E
\begin{tabular}{|c|c|c|c|}
\hline Multicore Product Ref. & XA127330 & XM27298 & XN27328 \\
\hline Alloy Composilion & 62/36/2 Sn/PbiAg & \(180 / 40 \mathrm{Sn} / \mathrm{Pb}\) & \(96 / 4 \mathrm{Sn} / \mathrm{A} \mathrm{C}\) \\
\hline Molling Point or Liquidus \({ }^{\circ} \mathrm{C}\). & 17! & 188 & 221 \\
\hline Recommended Flow Temperature \({ }^{\circ} \mathrm{C}\) & 239 & 250 & 280 \\
\hline Typical Application & Low Melting Point Soldering of silver and gold-plated surfaces & General purpose joinls requiring high quality solder cream & Higher temperature resistant juints. Lead free. Higher jeint strength than \(\mathrm{Sn} / \mathrm{Pb}\) \\
\hline
\end{tabular}
 On Qualified Products List of U.S.A. Defense Supply Agency


For full information on these or any other Multicore products. please write on your companys letterhead direct to: Multicore Solders Limited, Maylands Avenue, Hemel Hempstead. Hertfordshire HP2 7EP.
Tel: Hemel Hempstead 3636. Telex: 82363.```

