

There's no fun in being an mi product. Long before it begins its working life - way back as a design prototype, in fact - it's being vibrated, bumped, sent hot and cold, and subjected to other horrid experiences. And very much the same sort of things have happened to its components long before they got anywhere near it at all.

That's only the start. For instance during
production, an instrument may undergo as many as 60 separate electrical and mechanical inspections adding up to 120 hours on inspection alone - after having endured 500 hours of those shock tactics at design and trial batch stages.

That's typical mi thoroughness for you. In fact, when it comes to reliability you can be quite sure of one thing: at $\mathbf{m i}$ we're not playing at it.

In: THE PERFECTIONISTS

LOW COST TESTERS LEVELL

PORTABLE INSTRUMENTS

INSULATION TESTER

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV
$1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V .
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale.
Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre.
Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$.
Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA .

CURRENT RANGE

100pA to 100μ A on 6 decade logarithmic scale.
Accuracy of current measurement $\pm 15 \%$ of indicated value. Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
Maximum safe continuous overload is 50 mA .

MEASUREMENT TIME

<3 s for resistance on all ranges relative to CAL position. <10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V . Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position.
RECORDER OUTPUT
1 V per decade $\pm 2 \%$ with zero output at scale centre.
Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

TRANSISTOR TESTER

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $I_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is powered by a 9 V battery.
TRANSISTOR RANGES (PNP OR NPN)
${ }^{\prime}$ с в ${ }^{\&} I_{\text {E в }}: 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$ $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$, 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
BV CBO: $\quad 10$ or 100 V f.s.d.acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$
$\mathrm{I}_{\mathrm{B}}: \quad 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and $100 \mathrm{~mA} \mathrm{acc} . \pm 1 \%$.
$h_{\text {FE }}: \quad 3$ inverse scales of 2000 to 100, 400 to 30 and 100 to 10 convert I_{B} into $h_{\text {FE }}$ readings.
$V_{B E} \quad 1 \mathrm{Vf.s.d.acc} . \pm 20 \mathrm{mV}$ measured at conditions on $h_{\text {FE }}$ test.
$V_{\text {CE (sat) }} \quad 1 \mathrm{~V} . \mathrm{s.d}$. acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or 30 acc. $\pm 20 \%$.

DIODE \& ZENER DIODE RANGES

${ }^{1} \mathrm{DR}$:
As $\left.\right|_{\text {E b }}$ transistor ranges
$V_{Z}: \quad B r e a k d o w n$ ranges as $B V_{C B O}$ for transistors.
$V_{D F}: \quad 1 \mathrm{~V}$ f.s.d. acc. $\pm 20 \mathrm{mV}$ at I_{DF} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN5 5SD
Tel: 01-449 5028/440 8686

Prices include batteries and U.K. delivery. V.A.T. extra Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

Complete the coupon and wells sendyouour new catalogue.Completely free.

The new Heathkit catalogue is now out. Full as ever with exciting, new models. To make building a Heathkit even more interesting and satisfying.

And, naturally, being Heathkit;every kit is absolutely complete. Right down to the last nut and bolt. So you won't find yourself embarrassingly short of a vital component on a Saturday evening-when the shops are shut.

You'll also get a very easy to understand instruction manual that takes you step by step through the assembly.

Clip the coupon now and we'll send you your free copy to browse through.

With the world's largest range of electronic kits to choose from, there really is something for everyone.

Including our full range of test equipment, amateur radio gear, hi-f1 equipment and many general interest kits.

So, when you receive your catalogue you should have hours of pleasant reading.

And, if you happen to be in London or Gloucester, call in and see us. The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

At either one you'll be able to see for yourself the one thing the catalogue can't show you.

Namely, how well a completed Heathkit performs.
Heath (Gloucester) Limited, Dept.WW-45,Bristol Road, Gloucester, GL 2 6EE. Tel: Gloucester (0452) 29451.

A new oscilloscope from the Heathkit range. Marine direction finder with digitalread-out. Solid-state grid dip meter.

New Course in Digital Design

Understand the latest developments in calculators,

 computers, watches, telephones, television , automotive instrumentation. . . .Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 8 \frac{1}{4^{\prime \prime}}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental under. standing of the changing technological world around you.

Design of Digital Systems contains over twice as much information in each volume as the simpler course, Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents, also covers many more advanced topics.

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

Design of Digital Systems

$£ 5.95$

including packing and surface post anywhere in the world (VAT zero rated). Payments may be made in foreign currencies. Quantity discounts are available on request. Total packaged weight does not exceed 4 lb -please allow enough extra for air mail.

To: Cambridge Learning Enterprises,
FREEPOST. St. Ives, Huntingdon, Cambs PE17 4BR.
*Please send me.....set(s) of Design of Digital Systems at $£ 5.95$ each,
*or.....set(s) of Digital Computer Logic and Electronics at $£ 3.95$ each,
*or.....combined set(s) at $£ 9.25$ each.
\qquad
\qquad

AMDERS MERIS METERS...

REGAL RANGE

New 100° arc high quality meters at low prices.

- Rugged taut band construction - pivot and jewel available to orderSensitivities to $10 \mu \mathrm{~A}$
- Very competitively priced for OEM quantities
- Modern styled meters in matt black plastic cases with flattened arc giving long scale.

TWO MODELS
R55 2.5 in (63.5 mm) Scale length R65 3.2in (81.3 mm) Scale length

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Vulcan Moving Iron. 4 models, $1 \cdot 5^{\prime \prime}, 1 \cdot 8^{\prime \prime}, 2 \cdot 7^{\prime \prime}$, $3 \cdot 7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Kestrel Clear Front. 7 models, 1:3"-5.25" scales. DC moving coil, AC moving coil rectified. $A C$ moving iron.

Profile 350 edgewise $4 \cdot 3^{\prime \prime}$ scale. DC moving coil and AC moving coil rectified. Horizontal or vertical mounting.

Recorders 60 or 120 mm . charts. Non-ink marking. DC moving coil and AC rectified.

Stafford Long Scale 240° 6 models, $3 \cdot 5^{\prime \prime}-11 \cdot 5^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, AC moving iron. Also 98 scale.

Models KE1 and KE2
Miniature Edgewise
Meters. Nominal scale lengths $1.2^{\prime \prime}$ and $2^{\prime \prime}$. Available in sensitivities from 50 microamps Moving Coil.

Lancaster Long Scale 240 . 2 models, $4^{\prime \prime}, 5 \cdot 5^{\prime \prime}$ scales. DC moving coil and AC moving coil rectified.

Send for fully illustrated catalogue.
RIDERS ELETRRONILS LIMITED 48/56 Bayham Place, Bayham Street, London, N.W.1. Telephone 01-3879092.
Manufacturers and distributors of Electrical Measuring Instruments. Sole U.K. distributors of FRAHM Resonant Reed Frequency Meters and Tachometers. Manufacturers of purpose built electrical and electronic equipment to customers requirements.

It's a mod. mod. modular world.

The fact is that all too few music lovers realise that while certain high fidelity components can be less than best, there is one component that cannot endure a sacrifice in quality: the cartridge. Because the hi-fi cartridge functions as the source of sound (the point at which the recording is linked with the balance of the hi-fi system), its role is absolutely critical. Just as the camera can be no better than its lens, the finest hi-fi system in the world cannot compensate for an inferior cartridge. Suggestion: For a startling insight into the role of the cartridge in the overall hi-fi system, and a breathtaking re-creation of your favourite recording, see your nearby Shure cartridge dealer. He'll introduce you to the Shure cartridge that is correct for your system and your exchequer. Or, next best, send for our brochure:

for electronic valves (a really comprehensive range), semi-conductors (a wide variety), integrated circuits. Prices on request.

Teonex offers more than 3,000 devices. They are competitively priced and they are superlative in performance, because the company imposes strict quality control. Teonex concentrates entirely on export and now operates in more than sixty countries, on Government or private contract. All popular types in
the Teonex range are nearly always available for immediate delivery.
Write now for technical specifications and prices to Teonex Limited, 2a Westbourne Grove Mews, London W11 2RY. England.
Cables: Tosuply London W11. Telex: 262256 Electronic valves, semi-conductors and integrated circuits available only for export.

㐫ins sounds international

New Automatic PC.B.Tester Has60-point electronic scan

Testmatic TM62. designed as a selfcontained on-line test station, is a new addition to the Wayne Kerr range of lowcost automatic test equipment. Plug-in test panels can be changed-over in 5 seconds to suit different production lines. Operation is simple: assembly staff can check circuit boards as soon as éach one is completed.

The TM62 increases productivity and saves valuable fault-finding time.

All this adds up to reduced costs through early fault detection.

For all the technical data, and further information on the TM62, please fill in the coupon, or phone Bognor Regis (02433) 25811. It could well be the first step in saving your company money.

WAYNE KERR
 A member of the Wilmot Breeden group.

Please send me detalls of the TM62.
For the atuention or Mr
Company name and address
\qquad

Postio Wayne Ker. Durban Road. Bognor Regis. Sussex PO 22 9RL

New products have been introduced. New developments have taken place. New ideas have emerged. New faces have appeared.

On top of that the world has changed since the London Electronic Component Show in 1973! We've all had to come to grips with paying higher prices for basic raw materials. And meeting increased labour costs.

See the changes and how they relate to you - at the London Electronic Component Show 1975.

You'll find electronic components, assemblies, semi-conductors, circuit modules, special valves, professional electronic equipment and instruments, production equipment and tools, services and publications well represented. All of vital interest to the professional, industrial, military and consumer electronics industries.

The London Electronic Component Show 1975 keeps you up to date on the international electronics industry!

Special travel arrangements. Pay less

- and get more out of your visit - with the

Golden London Package. Exhibition, hotel, travel, entertainment, sightseeing it's all part of the Golden London Package which has been arranged for you by the exhibition travel organisers.

Organised by Industrial and Trade Fairs Limited, Radcliffe House, Blenheim Court, Solihull,West Midlands B91 2BG
Telephone: 021-705 6707.Telex: 337073, Cables: Indatfa Sol.

Sponsored by the Radio \& Electronic Component Manufacturers Federation. (RECMF).

24th international London Electronic Component Show Olympia-London 13-16 May 1975 Daily 0930-1730

ULTRA LOW OFFSET CURRENT

15A-71 "ELECTROMETER" VERSION

Designed for applications requiring extremely low current measurements and very high input impedances. 15A-71 is a MOSFET input device with a low current measurement capability surpassing that of most valve type electrometer instruments.

	15A-7	15A-71	units
Input offset current	1 (max)	-001	pA
Input offset current vs temp.	0.03	. 0001	pA / C
D.C. Open loop gain each input	500,000	250,000	
Input capacitance each input	8	8	pF
Input impedance non inverting	1014	1015	ohms
Output	$\pm 10 \mathrm{v}$ (i) 3 mA		
Common mode voltage	$\pm 100 \mathrm{~V}$		
Encapsulated module $1.5^{\prime \prime}$ (38 mm)	0.75"	mm) 2.3	(60mm)

transformers

 mains, audio, microphone, ferrite core and other wound componentsA wide range of transformers manufactured in production quantities to customers individual requirements

Prompt Prototype
Service available

MICROPHONE TRANSFORMER IN MUMETAL CAN

```
Drake Transformers Limited
```

Telephone: Billericay 51155

```
Kennel Lane,
Billericay, Essex.
```

TRANSFORMER WITH UNIVERSAL END FRAMES AND TURRET LUG CONNECTIONS

TRANSFORMER WITH
TWO HOLE CLAMP AND SOLDER TAG CONNECTIONS

The Greenwood guide to professional soldering.

Greenwood Electronics offer a range of highly advanced products specifically for professional soldering applications.

For more detailed information about the comprehensive Greenwood range, contact the address below.

1. The Iso-Tip. A safe, high-power iron which works anywhere without a mains lead. The breakthrough ? Nickel Cadmium cells that are re-chargeable. (A charging stand is included for 240 v or 115 v A.C.) Each charge gives at least 60 soldering joints. Weight? Only 6 oz .
2. The Oryx 50. A temperature controlled mains soldering iron. (Temperature control within $\pm 2 \%$). Adjustment ($200^{\circ}-400^{\circ} \mathrm{C}$) can be made whilst iron is operating, using the same tip. Light, compact, and easy to handle. A large 50W element loading gives rapid heating and high performance with constant tip temperature.
Also available: Oryx safety stand.
3. Oryx SR3A desoldering tool. Ideal where

Portman Road, Reading RG3 1NE. Tel: Reading (0734) 595844. Telex: 848659.
4. The Ersa Multitip. A top-quality iron that's ultra-light offering reliability so necessary to achieve constant production flow. A range of different shaped tips simply push onto the stem of the iron. It has the unique advantage that you can change the element in seconds.
5. The Ersa Sprint. Unique - it heats up to maximum temperature in only 10 seconds, and is the lightest gun on the UK market. Ideal for the service-man. With its light weight (only 7 oz .) and compact construction, it can be manoeuvred in even the most awkward areas.

INTERNATIONAL TRANSISTOR DATA MANUAL
lists over 20,000 transistors of international origin alpha-numerically. Single line entries with major characteristics over 14 columns makes quick and easy reference. 400 pages. Free updating service.

EXTENSIVE SUBSTITUTION GUIDE CV NUMBERED DEVICES OUTLINE DRAWINGS

ALTERNATIVE
MANUFACTURERS
AND AGENTS ADDRESSES
NEEDS SEEING TO BE APPRECIATED
ORDER NOW £8.80 includes postage (TO COUNTRIES OUTSIDE UK ADD 60p POSTAGE) FULL REFUND IF NOT COMPLETELY SATISFIED PUBLISHED BY
SEMICON INDEXES LTD.,
2 DENMARK ST, WOKINGHAM. Berks. RG11 2BB Tel: WOKINGHAM (STD 0734) 786161

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe, and internal $1 \frac{1}{2}$ volt standard size battery.
Model "Mini-On $1^{\prime \prime}$ measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price f17.50 Model "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price £20.00 (V.A.T. EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON),
138 GRAY'S INN ROAD, LONDON WC1X 8AX
('Phone 01-837 7937)
WW-094 FOR FURTHER DETAILS

Now suitable for U.K., European and American voltages...

Minimod, the versatile British made range of encapsulated power supplies first introduced in 1973. has now been extended to cover European and North American mains voltages (and is interchangeable with most American types). Normally available ex-stock, all units are fully stabilised with fold back current limiting - the 5 V models have over voltage crowbar too!

STANDARD MODELS

Type Number	Output Voltage	Output Current Amps	Short Circuit Current mA (Typical)	\% Regulation Line and Load (Typical)
PU01	5 ± 0.1	0.5	370	0.3
PU02	5 ± 0.1	1.0	770	0.5
PU03	$15-0-15 \pm 0.2$	0.10	37	0.1
PU04	$15-0-15 \pm 0.20 .20$	84	0.1	
PU05	$12-0-12 \pm 0.2$	0.12	45	0.1
PU06	$12-0-12 \pm 0.2$	0.24	120	0.2

Input voltage ranges $103-126 \mathrm{~V}, 200-240 \mathrm{~V}$. $210 \cdot 250 \mathrm{~V}$. Frequency $50-400 \mathrm{~Hz}$ all types.

Comprehensive specification given in brochure GT 29b which is available on request.
> - \star SPECIAL DESIGN SERVICE

> Custom built units for applications requiring different specifications are produced as part of our standard service. Try us first.

Gardners

Specialists in Electronic Transformers \& Power Supplies.

AUDIO MEASURING INSTRUMENTS

LOW DISTORTION OSCILLATOR SERIES 3

A continuously variable frequency laboratory oscillator: with a range $10 \mathrm{~Hz}-100 \mathrm{kHz}$, having virtually zero distortion over the audio frequency band with a fast settling time.

Specification:
Frequency range:
Output voltage:
Output source resistance:

Output attenuation:
Output attenuation accuracy: Sine wave distortion:

Square wave rise and fall time:
Monitor output meter:
Mains input:
Size:
.
$10 \mathrm{~Hz}-100 \mathrm{kHz}$ (4 bands)
10 volts r.m.s. max. 150 ohms unbalanced (optional 150 ohms unbalanced. plus $150 / 600$ ohms balanced/floating) $0-100 \mathrm{~dB}$ (eight. 10 dB steps plus $0-20 \mathrm{~dB}$ variable)
1\%
Less than $0.002 \% \quad 10 \mathrm{~Hz}-10 \mathrm{kHz}$ (typically below noise of measuring instrument)

40/60 n.secs.
Scaled 0-3, 0-10. and dBV.
Scaled $-3 \mathrm{~V}, \mathrm{O}^{2}$
$110 \mathrm{~V} / 130 \mathrm{~V}, 220 \mathrm{~V} / 240 \mathrm{~V}$
$17^{\prime \prime}(43 \mathrm{~cm}) \times 7^{\prime \prime}(18 \mathrm{~cm})$ high x $8 \frac{3^{\prime \prime}}{}{ }^{\prime \prime}(22 \mathrm{~cm})$ deep
Price: 150 ohms unbalanced output: $£ 250$
$150 / 600$ unbalanced/balanced floating output: $£ 300$

DISTORTION MEASURING SET, SERIES 3

(illustrated above)
A sensitive instrument with high input impedance for the measurement of total harmonic distortion. Designed for speedy and accurate use. Capable of measuring distortion products down to 0.001%. Direct reading from calibrated meter scale.
Specification:
Frequency range:
Distortion range (f.s.d.):
Input voltage measurement range:
Input resistance:
High pass filter:
Power requirement:
Size:
Price:
$5 \mathrm{~Hz}-50 \mathrm{kHz}$ (4 bands) $0.01 \%-100 \%$ (9 ranges)
$50 \mathrm{mv}-60 \mathrm{~V}$ (3 ranges) 47 K ohms on all ranges $12 \mathrm{~dB} /$ octave below 500 Hz
$2 \times$ PP9. included.
$17^{\prime \prime}(43 \mathrm{~cm}) \times 7^{\prime \prime}(18 \mathrm{~cm})$ high $\times 8 \frac{33^{\prime \prime}}{}$ $(22 \mathrm{~cm})$ deep
£200

Now available in reasonable delivery time

RADFORD LABORATORY INSTRUMENTS LIMITED

Bristol BS3 2HZ Telephone 0272662301

Audio TestSet

foramplifiers,mixers taperecorders

Checks... frequency response signal/noise ratio distortion cross-talk wow \& flutter drift
erasure sensitivity output power gain
in one compact unit.
Auxiliary Unit provides extra facilities for Studio testing.

Send for leaflet RTS2

Ferrograph Company Limited Auriema House 442 Bath Road Cippenham Slough Buckinghamshire SL1 6BB Telephone: Burnham (062 86) 62511 Telex: 847297

A member of the Wilmot Breeden group

ITT Instrument Services is a new concept in the supply of electronic instruments and power supplies based on the same business strategy as the already successful component
distributor ITT Electronic Services．The service is aimed at providing a very broad based line of test equipment from various suppliers both in the U．K． and abroad with deliveries from stock．

Products from：

DUMONT，SCOPEX HAMEG，GREENPAR FLUKE，DATRON，ITT GOERZ AVO GEC LINSTEAD，ANALOGIC EXEL，SIFAM，WAVETEK

LYONS，RACAL． JERMYN，MARCONI， EDGCUMBE PEEBLES， ADVANCE GRESHAM ZIRKON WEIR， KINGSHILL，BERCO

Broad range of products 5 experienced sales engineers
 S甘ヨคヨWIค7กW ヨกอO7VNV

Have you got ournew comprehensive catalogue

Manufacturers guarantees maintained No price differential（all at manufacturers prices） Immediate information and
service
Items available ex－stock New name and telephone number

Edinburgh Way，Harlow，Essex． Telex： 81146 （Sentercel Harlow） Telephone：Harlow 29522

ITT

instrument services

Purpose-bullt servo and actuator sytems usins standard components

McLennan Engineering Ltd. have considerable experience in the solution of actuator and servo problems using synchronous, stepping and DC motor techniques, an important facet of our skill lying in purpose-designing around standard components for speed and economy.

The illustrations show a selection of modules from the standard range and include the new EM/ 100/100A servo drive system. All items are available individually or can be supplied engineered to custom-built systems.

1. EM $100 / 100$ A SERVO AMPLIFIER. A new addition to the range. A complete servo drive system including power supply which is eminently suitable for driving printed circuit motors and other
servo motors up to $1 / 6 \mathrm{~h} . \mathrm{p}$. EM 100 - output
$\pm 24 \mathrm{~V}, 4$ amps continuous, 45 amps peak.
EM 100 A -output $\pm 24 \mathrm{~V}, 7 \mathrm{amps}$
continuous, 75 amps peak.
2. DC SERVO AM 1006S

With integral potentiometer. Max continuous output Torque
14.6 kgcm at 7 r.p.m.
3. LOW INERTIA DC SERVO MOTOR

Output 5W
4. CONTROL AMPLIFIER EM 40 Output $\pm 15 \mathrm{~V} 0.5 \mathrm{amp}$
5. TYPICAL PRECISION GEARS 120 to 32 DP
malennan
McLennan Engineering Ltd
Kings Road, Crowthorne, Berkshire.
Tel: Crowthorne 5757/8.

STRIP CHART RECORDERS

Made in USSR

Series H3020 Recorders

8mAF.S.D
Sensitivity:
5 Hz
Chart width:
Chart drive:
80 mm per channe 230-250V AC mains 0.1-0.2-0.5-1-2.5-$12.5-25 \mathrm{~mm} / \mathrm{sec}$
Time and event marker pens fitted.

PRICES:
Single pen model H3020-1 f80.00
Three pen model H3020-3 f130.00

MULTI-RANGE UNIVERSAL PORTABLE AC/DC RECORDING VOLTAMMETER H390

Measurements
ranges, $A C / D C:$

Accuracy:
Chart width:
Chart drive: $\quad 220-250 \mathrm{~V}$ AC mains
Chart speed:
PRICE: $\mathbf{£ 7 8 . 0 0}$

5-15-150-250$500 \mathrm{~mA}, 1.5-5 \mathrm{Amps}$ 5-15-150-250500 V 1.5% DC. $2.5 \% \mathrm{AC}$ 100 mm 20-60-180-600-$1800-5400 \mathrm{~mm} /$ hour

SWITCHBOARD PATTERN MINIATURE RECORDING MILLIAMMETER H3100

Fullscaledeflection: 1mAOC
Accuracy: 2.5\%
DC resistance of
the coil: $\quad 18,100 \Omega$
Chart width: $\quad 80 \mathrm{~mm}$
Chart drive: $\quad 220 / 250 \mathrm{~V}$ AC mains
Chart speeds:
PRICE:
£44.00

20-60-180-600-$1800-5400 \mathrm{~mm} /$ hour

ALL THE ABOVE PRICES ARE EXCLUSIVE OF CARRIAGE AND VAT, pLEASE WRITE FOR FULL DETAILS TO:

Z\&I AERO SERVICES LTD,

44A WESTBOURNE GROVE, LONDON W2 5SF
Tel: 01-7275641
Telex: 261306

THE TUNER YOU CAN TRUST

ONE YEAR AGO

this month, the design for this tuner was published in this magazine. At that time we offered kits of parts for the circuit boards and a guarantee that they would work as well for you as for us.
Today, our many satisfied customers confirm our confdence. The design remains unchanged.

NOW we can offer this superb tuner directly to you READYBUILT \dagger The same high standard of performance plus first class construction and a 5 YEAR GUARANTEE Try it at home for 10 days, full refund if not satisfied. £110 inc. vat.

THE ONLY TUNER WITH THESE FEATURES:

* Foolproof tuning
* Single lamp station indicator
* Push button and manual tuning
* Anti-birdy filter
* Powerful limited range A.F.C.
* Full muting of unwanted noises
\dagger U.K. only at present

Full kits still available ex-stock
at original prices, send
S.A.E. today for full details to:

WW—183 FOR FURTHER DETAILS

4 Wh
 SPEEDSERVICE
 A new service from one of the largest United Kingdom exporters of tubes and semiconductors

AEL • GATWICK HCUSE • HORLEY • SURREY • RH6 9SU Telex 87116 . Cables Aerocon Telex Horley . Telephone Horley 5353

MODEL
U-50DX

USEO THROUGHOUT THE WORLD, SANWA'S EXPERIENCE OF 30 YEARS ENSURES ACCURACY RELLABLLTY. VERSAILITY. UNSURPASSED TESTER PERFORMANCE COMES WTH EVEFY SANWI
 $\begin{array}{ll}\text { MODEL P28 } & \text { E9.76 MOOEL FBOTRD } \\ \text { MODEL JP5D } & \text { MOD }\end{array}$ ¢11.58 MODEL AI 45 £29.12 MODEL 3800 CE
f 15.28 MOEE M101
\qquad $\begin{array}{ll}\mathrm{f} 15.60 & \text { MODEL 460ED } \\ \mathrm{f} 17.45 & \text { MDDEL EM800 } \\ \mathrm{f} 24.01 & \text { MODEL }\end{array}$

Excollent Repair Senica MODEL BX 505 MODEL $38071 R$
MODEL U500X MODEL A303TRD £24.01 MODEL R1000CB

Please write for illustrated leaflet of these and other specialised Sanwa meters

47-49 HIGH STREET, KINGSTON-UPON-THAMES,SURREV. KT1 1LP Tel:01-546 4585

WW-182 FOR FURTHER DETAILS

Acclaimied as the World's leading telescopic iltover tower in the field of radio communication Models from 25° to 120^{\prime}

Look for the name
GTBUMEEM
Strumech Engineering Co Ltd Coppice Side, Brownhills, Walsall, Statts

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

WW-180 FOR FURTHER DETAILS

Switching problems? Rely on Zettler.

We resolve your switching problems rapidly and expertly. Please contact us for further details

ZETTLEER
Zettler UK Division
Equitable House, Lyon Road
Harrow, Middx. HA1 2DU, Tel. (01) 8636329
A member of the worldwide ZETTLER electrical engineering group, est. 1877

A revolution in the recording industry

Comprehensive facilities include sync on all channels, servo controlled capstan, modular electronics, variable speed (optional), relay solenoid operation.

Fully modular electronics using plug-in PCBs throughout. Separate sync and replay amps give identicall levels. Switchable VUs with slow decay. Individual oscillator for each channel. Dolby
A switching'facility.

此 \square T
Industrial Tape Applications, 5 Pratt Street. London NW1 OAE Tel: 01-485 6162/7833. Telex: 21879.

Whiteley Acoustic Hoods
 These strongly made hoods for both outdoor and indoor use are designed to specifications which meet Post Office approval. Suitable for desk, shelf or wall mounting, they are available with or without internal light fittings and doors if required.

WHITELEY ELECTRICAL RADIO CO. LTD., Mansfield, Notts, England. Tel. Mansfield 24762. London Office: 109 Kingsway. W.C.2. Tel. 01-405 3074 WW-116 FOR FURTHER DETAILS

WW—110 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Si 452
£ $\mathbf{3 5} .00$
Distortion Measuring Unit.
$15 \mathrm{~Hz}-20 \mathrm{KHz}-.01 \%$
Illustrated the Si 451 Millivoltmeter - pk-pk or RMS calibration with variable control for relative measurements. 40 calibrated ranges $£ \mathbf{4 2 . 5 0}$

Si 453
£50.00
Low distortion Oscillator.
Sine - Square - RIAA
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (09762) 2501 CARR STREET, CLECKHEATON, W. YORKS BD 19 5LA

WW-042 FOR FURTHER DETAILS

AEL GATWICK HOUSE, HORLEY, SURREY, ENGLANO Tel: Horley (02934) 5353.
Telex: 87116 (Aerocon Horley) Cables: Aerocon Telex Horley
WW- 026 FOR FURTHER DETAILS

Photo by Aerofilms Ltd.

Eddystone Radio Limited

Member of Marconi Communication Systems Limited
Alvechurch Road, Birmingham B31 3PP, England. Telephone: 021-475 2231 Telex: 337081
A GEC - Marconi Electronics Company

elophtir

You told us you enjoyed Elektor 1

Don't miss Elektor 2, out now

Elektor is a fund of well thought-out and thoroughly tested projects, new ideas using modern electronic components, objective comment on new developments.

Try it

In Elektor 2

[^0]
Nagra tape recoriers

overseas and home enquiries invited

Nagra III
Series Machines Fully
Overhauled
by Factory Trained
Personnel.
Guaranteed
for six months.
lease apply to the exclusive UK agents :
NAGRA KUDELISKI
HAYDEN

Hayden Laboratories Ltd.
Hayden House, 17 Chesham Road,

STARWET

Spectrum Analyser Module ST858

SPECIFICATION: Frequency range 10 MHz to 850 MHz in two calibrated ranges Sensitivity Better than 50 mv for 0.5 V per cm Resolution Better than 25 KHz . Dispersion From less than 1 MHz to 400 MHz variable Input Via 50 ohm BNC connector on front panel Output 1 Coax cable for connection to Y input on scope Output 2 Coax cable for connection to sync. input on scope Power requirements 240 volts AC 50 Hz 10 watts. (Other voltages and frequencies available as required) Size Width $11 \mathrm{in}(28 \mathrm{~cm}$.) Height 4.375 in . $(11.2 \mathrm{~cm}$.) Depth 8.5 in . $(21.6 \mathrm{~cm}$.) Nett weight $7.5 \mathrm{lbs}(3.4 \mathrm{Kg})$ Gross weight 1 Olbs (4.5 Kg .)

For further details contact the sole distributors of STARWET equipment:

7-9 ARTHUR ROAD, READING, BERKS (rear Tech College) Tel. Reading 582605

microphoner matter most.

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

SIEMENS

MKM stacked foil polycarbonate dielectric capacitors.

Giving them their full title, as above, tends to waste your time and ours. Instead, we would prefer that you concentrate your attention on the wide range of features offered by their revolutionary design.

Overall dimensions start at only 13 mmx $3.5 \mathrm{~mm} \times 7.5 \mathrm{~mm}$. And apart from the standard

10 mm size, there's a choice of 7.5 mm and 15 mm lead spacings, 100 v or 250 v types and capacitance values from $0.001 \mu \mathrm{~F}$ to $0.22 \mu \mathrm{~F}$.

A new protected range. From Siemens.

good thermal insulation during soldering.

All sealed in a heatshrunk plastic skin offering complete protection against levels of humidity specified for class F environment. With a resin base which gives a defined bearing section between the capacitors and mounting plate and

Add to these features an operational temperature range of $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, highly competitive prices, ex-stock availability and an even larger unprotected range - then waste no more time. Send for our leaflet now.

A perfect match when things get hot

1 st monolithic complementary darlington pair

TDA 1420/1410
Equivalent circuit

The TDA 1420 integrates a quasi-complementary (NPN/PNP) darlington pair and biasing diodes for perfect electrothermal matching. Applications for this versatile power IC include DC or stepping motor drivers, op amp power boosters, audio output stages, etc.

All this in Pentawatt ${ }^{\oplus}$, the rugged 5 -pin plastic pack.

For lower voltages try the TDA 1410.

Key parameters	TDA	TDA
$\mathrm{V}_{\text {cEO }}$	1420	1410
$\mathrm{~V}_{\text {CES }}$	44 V	36 V
I_{c}	60 V	50 V
$\mathrm{P}_{\text {tot }} @ \mathrm{~T}_{\mathrm{c}} \leqq 60^{\circ} \mathrm{C}$	3 A	3 A

PHILIPS

The plus factor* in test equipment

PAL TV
Pattern
Generator PM 5509

- Full coverage I•F•; Bands I, III, IV and V - Electronic tuning with 5 preset channels
- Io test patterns (colour and B \& W)
- Adjustable chroma/
burst and HF-amplitude
- Special sync, video and VCR outputs
- External video and sound modulation possibility
- NTSC version available: PM 5512

Pye Unicam Ltd
Philios Electronic Instruments Dept., York Street Cambridge England CB1 2PX
Tel: Cambridge (0223) 58866 Telex: 817331

Phoenix Electronics (Portsmouth) Ltd
139-141 Havant Road, Drayton, Portsmouth, Hants PO6 2AA

Full member of AFDEC-the industry's association of franchised electronic component distributors.
Our prices include VAT at the current rate-and carriage on all goods is free.

Send for our catalogue and price list - we'll mail that to you free, too.

THIS MONTH'S BARGAIN OFFERSpecial transistor kit. 4 each JFETs and PUJTs, 4 each plastic power NPN and PNP transistors, plus $4 \times 1 \mathrm{~A} / 400 \mathrm{~V}$ bridges catalogue value $£ 6.88$.
BARGAIN PACK PEP6- $\mathbf{£ 4 . 9 0}$

Please send your catalogue-free! Name
Address \qquad
\qquad

MANUFACTURERS OFAUDIO EQUIPMENT

NAP 160 POWER AMPLIFIER
NAC12 PRE-AMPLIFIER
NAM402 LOUDSPEAKER
With effect from Jan. 1, 1975, we are handling all export enquiries and orders ourselves. Please write direct to naim audio Itd.

You can now find our factory and showroum at... II Salt Lane, Salisbury, Wilts, SPIIDT The telephone number remains the same... SALISBURY 3746

TAKE A CLOSE LOOK

at a professional recorder that offers high performance, excellent reliability and is very easy to maintain. Ask yourself why so many commercial radio stations and recording studios are doing their best to wear them out. and not having much success. Decide if you need mono or stereo, console transportable or rack mounting versions and then inquire about prices.
We are sure you will be very pleasantly surprised.

BIAS ELECTRONICS LTD.
01-5408808 572 KINGSTON ROAD, LONDON SW20 8DR

The ISA DMM3 dual polarity portable digital multimeter

You could use the new ISA DMM3 right away. Just fill in the coupon and post with your cheque, now. ISA offers a full no-quibble guarantee. Trade and overseas orders welcome.

Size it up for yourself. For performance and value the new ISA DMM3 is just that little bit better. Easy touch buttons give 15 ranges in five functions: $D C$ volts $\pm 2 \mathrm{~V}-20 \mathrm{~V}-$ $200 \mathrm{~V}-2 \mathrm{KV} ; \mathrm{AC}$ volts $2 \mathrm{~V}-20 \mathrm{~V}-200 \mathrm{~V}-1 \mathrm{KV}$ $<15 \mathrm{KHz}$; AC-DC amps 200 mA - 2 A ; Resistance 2 K 200K - 2 M . The large 8 mm LED display has a maximum reading of ± 1999 with automatic polarity indication on DC, with overload indication by the flasting of the most significant digit (1).
Weighing in at two pounds and measuring just $7 \frac{1}{2}$ in $\times 4$ in x $2 \frac{1}{2}$ in the DMM3 is very handy, so there's no problem taking it to the job when you can't get the job to it. The easy-grip handle doubles as a stand when in use. and the rugged case resists impact damage. With dual slope integration, high accuracy and resolution, the DMM3 runs on either four HP2-type (D cells) batteries giving up to 30 hours life, or four MN1300's (alkaline) giving up to 90 hours. Optional extras include mains power pack or rechargeable cells.

Industrial Sub-Assemblies Limited

THE FG1 FUNCTION GENERATOR

WAVEFORMS AVAILABLE
Sine, square, triangles and ramps. Continuous swept, triggered, gated bursts, frequency modulated, externally sync'd.

AMPLITUDE

Max. 20V pk-pk into open circuit (10 V into 50Ω) on selected waveform at main output. Adjustable from 1 mV .
Four basic waveforms available simultaneously from 600Ω at fixed level of 2.5 V pk-pk.

ATTENUATOR

4 positions, 60 dB in 20 dB steps. For best possible resolution and signal to noise ratio at low signal levels.

FREQUENCY

0.02 Hz to 2 MHz in seven decade ranges - sine, square and triangle. 1000:1 continuous coarse and fine adjustment on each range. 0.01 Hz to 1 kHz in five decade ranges - ramp. Dial accuracy $\pm 3 \%$ of range max. 0.02 Hz to 200 kHz .

OFFSET

$\pm 5 \mathrm{~V}$ d.c. bias will offset waveform above or below zero. Push-pull adjustable control.

EXT. VCO
0 to +10 V gives 1000:1 frequency upshift from min. dial setting. 0 to -10 V gives 1000:1 frequency down shift from max. dial setting, within any selected range. Voltage may be a.c. or d.c. Frequency modulation of the output about a centre frequency is possible.

SWEEP

Range: 1000 to 1. Mode: Lin or log. Times 1 mS to 1000 S . Width: 5 position switch gives stepped reductions as a percentage of max.

SYNC
Sync. pulse ouput may be used to trigger an oscilloscope. X-Y plotter etc. Or the output frequency of the FG1 may be locked to a periodic reference signal for tests requiring coherent signals.

Real value for money at $\mathbf{£ 2 4 5}$ U.K.(exc/uding V.A.T.)

INSTRUMENTS DIVISION

farmell instruments limited, sandbeck way, wetherby, yorkshire LS22 40H TEL: 09373541 TELEX 557294 LONDON OFFICE TEL: 01-802 5359

The AVM500 gives accurate and immediate metering of airflow. The standard scale is between 0 and 30 metres/ second (70 mph). Other calibrations can be supplied at cost.
Airflow is measured by a constant temperature bridge, supported on a lightweight probe, which is connected by cable to the meter. Operation is by battery. The AVM500 is therefore extremely quick and easy to move and instal. A recording instrument is available.
Please send details of your AVM500. 1 am interested in wind measurement for \qquad
Name....... Position \qquad
\qquad
Address ... \qquad

WW2
Prosser Scientific Instruments Ltd Lady Lane Estate Hadleigh Suffolk Tel Hadleigh (047-338) 3005

$\frac{1}{2}$ watt TERMINATIONS IMPEDANCE TRANSFORMERS

MANUFACTURED BY ELCOM SYSTEMS INC.

LOW COST
FAST DELIVERIES
FROM

AWORID RRST TRM CAMBradie Alolo

THE NEW P60 INTEGRATED STEREO AMPLIFIER

Low profile design only $2^{\prime \prime}$ high.
Recording with or without tone correction.
*Peak level indicator for tape recording
Suitable for continual high power operation
Dual independent tape operation.
*Light Emitting Diodes for level monitoring in main and pre-amplifiers.
Toroidal mains transformer.

Facilities for three tape recorders.
*Separate main and pre-amp gain controls.
Fully protected output stages.
RIAA phono correction unaffected by cartridge inductance. Ultra low distortion circuits.
*New tape monitoring, $\mathrm{A}-\mathrm{B}$ and $\mathrm{A}-\mathrm{B}-\mathrm{C}$ facilities. International state-of-the-art circuitry from Cambridge Audio in Britain.
*To the best of our knowledge these features have never been included in a comparable amplifier hitherto.

for people who listen to music

GETIT WHILE IT'SGOING

This is the first ever Wireless World Annual. It's got 128 pages including features covering all aspects of electronics and communications - new and established techniques, some practical, some theoretical - all written to the high standard you'd expect from Wireless World. Contents include: A General Purpose Audio Oscillator by L. Nelson Jones (a constructional project specially commissioned for the annual); Constructional Design for a Small Boat Echo Sounder by John French; Scientific Calculations with an Arithmetic Calculator by R. E. Schemel. There is also a reference section packed with useful information.
£1 from newsagents or $£ 1.35$ inclusive by post from the publishers.

Wireless World Annual 1975

To: General Sales Department, Room 11, Dorset House, Stamford Street, London SE1 9LU.
Please send me...............copy/copies of Wireless World Annual 1975 at $£ 1.35$ each inclusive. I enclose remittance value f.... (cheques payable to IPC Business Press Ltd).
Name (please print)
Address.

wireless world annual 1975

COMMUNICATIONS • ELECTRONICS

KOWIT'S TIE AMERONMGOO

M600 POWER AMPLIFIER

Coupling two M600s together through a socket provided at the back of each amplifier produces a 140 Volt balanced output. This configuration is called an M2000, and produces 2 kilowatts into an 8 ohm load. A peak catching meter, and threshold lights provide convenient front panel output monitoring.

1350 watts
 DC-Coupled

The M600 amplifier is a new high-power amplifier capable of providing 1.350 watts RMS over a bandwidth of DC to $20 \mathrm{kHz}, 70$ volts RMS at the output terminals, very low noise, and distortion. AC/DC selector switch. plug-in front panel circuit board, built-in fan for cooling. and the ability to connect two M600s together to double the power. and output voltage. are just some of the features which place the Amcron M600 in the forefront when considering features which
Driving shakers, and vibrators, motors, and difficult speaker systems. providing Driving shakers, and vibrators, motors, and difficult speaker systems, providing
power for material or components testing. or used as a large distribution power for material or components
amplifier, the M600 is equally at home.

Brief specifications:
RMS power out

DC output
Power bandwidth Phase response Slew rate Damping factor (8Ω) Hum \& noise THD
Dimensions

750 watts into 8 ohms
1.350 watts into 4 ohms

20 amps (supply fuse limited)
DC to $20 \mathrm{kHz}+1 \mathrm{db} .-0 \mathrm{db} .600 \mathrm{~W}$ into 8Ω
$+0 \mathrm{db} .-15 \mathrm{db} \mathrm{DC}-20 \mathrm{kHz}$
$16 \mathrm{~V} / \mathrm{usecond}$
greater than $400 \mathrm{DC}-1 \mathrm{kHz}$
120 db below 600 Watts
less than $0.05 \% \mathrm{DC}-20 \mathrm{kHz} .600 \mathrm{~W}$ into 80
$19^{\prime \prime}$ std. rack. $8 \frac{3}{4}{ }^{\prime \prime}$ H. $16 \frac{1}{2}{ }^{\prime \prime}$ deep. Wt. 92 lb .

MACINNES HOUSE, CARLTON PARK INDUSTRIAL ESTATE,

Principles and Calculations for Radio Mechanics Part 1
R. A. Bravery and A. P. Gilbert
Part of the Radio, Television and Electronics Servicing Series, this volume deals with the subject matter for Part 1 of the City and Guilds Radio Mechanics Course 222.
1974 152pp., illustrated $0408001194 £ 1.50$

Obtainable through any bookseller or from NEWNES-BUTTERWORTH

Borough Green, Sevenoaks, Kent TN 15 8PH. Tel. Borough Green 2247.

WITH JACKSON

As the AM/FM wavebands grow more crowded all radio receivers will require finer tuning. Our new P503 variable capacitor incorporates integral gearing with a 3:1 reduction, three FM sections, all separately shielded from each other, plus two AM sections which can be fitted with trimmers if required. Yet it's no larger than the successful two gang P22. Our skilled personnel can produce custom made components to suit your individual needs. And with 45 years of experience your guarantee is our reliability.

TYPE P503 AM/FM CAPACITOR CATALOGUE NO. 4229.

Write for further information to:-
JACKSON BROTHERS (LONDON) LIMITED
Kingsway, Waddon, Croydon CR9 4DG Tel: 01-681 2754/7 Telex: 946849 U.S. Office: M. Swedgal, 258 Broadway,

BS 9000 Approved.

Eliminate TV receiver distortion with Celestion TELEFI

telefl
 At last you can enjoy TV entertain-

 ment with the added pleasure of true$\mathrm{Hi}-\mathrm{Fi}$ sound. Telefi is a unique electronic invention which picks up VHF from the TV and relays this through your own Hi -Fi equipment. Telefi ensures crisp, full-range, distortionfree reproduction of music and speech providing an improvement over ordinary TV sound which will amaze you. Telefi is safe and requires no permanent connection to the TV set. Telefi is indispensable to the TV viewer who requires Hi-Fi TV sound.

LOUDSPEAKERS

Celestion Loudspeakers are engineered to the highest standard and provide superlative sound reproduction. The cut-away illustration shows the high, mid and bass speakers used in the Ditton 44 Monitor, one of the most popular loudspeakers available to the discerning listener.
A range of models is available to suit your personal requirements, Celestion Hi-Fi Loudspeakers carry a five-year guarantee.

The Hadleigh loudspeaker, was specially created to meet a public demand for a high quality speaker of compact proportions. Not a difficult task for Celestion who produce the most popular bookshelf speaker ever (Ditton 15) - but we set out not only to produce an immaculate loudspeaker with a sparkling performance, but to do so at a budget price. For the enthusiast seeking a really excellent $\mathrm{Hi}-\mathrm{Fi}$ system at reasonable outlay we recommend without hesitation the Hadleigh.

Loudspeakers for the Perfectionist DITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 8JP.

wireless world

Electronics, Television, Radio, Audio

APRIL 1975 Vol 81 No 1472

Contents

151 Outlook for cable television
152 Using ferrite pot-cores by D. E. O'N. Waddington
155 Sixty years ago
155 April meetings
156 Artificial vision progresses by T. E. Ivall
158 Announcements
159 News of the month
TV standards converter
IEE on engineering profession
First production c.c.d.
16175 years of magnetic recording-2 by Basil Lane
165 Letters to the editor
169 Noise-confusion in more ways than one-2 by K. L. Smith
173 HF predictions
173 Wireless World noise reducer announcement
174 Space news
175 Circuit ideas
Deflection amplifier for 'scopes
Low battery voltage indicator
Sinewave oscillator uses c.d.a
177 An aerial rotator servo by D. J. Telfer
182 Loudspeaker developments
183 Circards 21: voltage to frequency converters by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams

185 Vision cassette recorders
190 Literature received
191 Transistor-aided ignition by G. F. Nudd
192 Project: National Electronics Council Link scheme
193 World of amateur radio
194 New products
198 Real and imaginary by "Vector"
a80 APPOINTMENTS VACANT
al04 INDEX TO ADVERTISERS

[^1]

This month's cover picture, showing part of an uncompleted implant for the human head and a thick film implant receiver, made by Eric Sayer, introduces the article on artificial vision on p. 156 of this issue. (Photographer Paul Brierley)

IN OUR NEXT ISSUE

Wireless World noise reducer

Constructional project based on the Dolby principle for which we are supplying a kit of parts (see page 173)

Build an oscilloscope

Professional standard design for home construction with $50 \mathrm{MHz} \quad Y$-amplifier bandwidth and extensive facilities

Display devices survey

Review of techniques used in alpha-numeric display devices and characteristics of types now on the market

ibpa

minain

Telequipment's new dual trace 10 MHz battery operated oscilloscope

$4 \times 9 \times 11$ inches! Weight, less than 10 lb ! Price, only $£ 275^{*}$.
Small in all but specification. Telequipment pack into the tiny frame of the D32 features normally associated with instruments twice its size.
Easily carried on any assignment the D32 is probably the smallest and least expensive scope of its kind in the world.

Priced at $£ 275^{*}$ (including re-chargeable batteries) this dual trace scope offers 10 MHz bandwidth at $10 \mathrm{mV} / \mathrm{div}$ sensitivity; automatic selection of chopped or alternate modes; automatic selection of TV line or frame displays; and the choice of battery or mains operation.
Size up the D32 for yourself and write or phone for a demonstration of this truly remarkable instrument now.

Telequipment gives you more scope for your budget
Telequipment \ll >
Tektronix U.K. Ltd.,

[^2]
wireless world

Outlook for cable television

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:

PHILIP DARRINGTON
Phone 01-261 8429

Technical Editor:

GEOFFREY SHORTER, B.Sc. Phone 0I-26I 8443

Assistant Editors:

BILL ANDERTON, B.Sc.
Phone 01-261 8620
BASIL LANE
Phone 01-261 8043
MIKE SAGIN
Phone 01-261 8429

Drawing Office:
LEONARD H. DARRAH

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
A. PETTERS (Classified Advertisements) Phone 01-261 8508 or 01-928 4597
JOHN GIBBON (Make-up and copy) Phone 01-261 8353
I.P.C. Electrical-Electronic Press Ltd Managing Director. George Fowkes Administration Director: George H. Mansell Publisher: Gordon Henderson

It's a pity that the cable television companies' experiments with local origination of programmes, at Bristol, Greenwich, Sheffield, Swindon and Wellingborough, have not proved very successful. Greenwich is virtually closed down (except for three hours at weekends when the station is run by outside volunteers), other stations are facing criticism about uninteresting programmes and some are doubtful whether they will be able to carry on after 1976. This may prove that the companies are not very good at producing programmes, that the type of material they are providing is not wanted or that they have insufficient finance from their private sources to produce the programmes they would like. It would be a pity, though, if this experience threw doubt on the whole principle of originating programmes locally and distributing them on cable, for this is what the cable television companies are well fitted technically to do, especially if in the future a large number of programmes and/or interactive information services is required.

Whereas in broadcasting the number of programmes that can be transmitted is limited by the amount of electromagnetic spectrum available, there is theoretically no limit, from an engineering point of view, to the number of programmes/information services that can be distributed by cable. In practice, judging from recent developments such as the "dial-a-programme" system and experimental work on using bundles of optical fibres for local distribution, it should be possible to bring $30-40$ interactive channels into a household. The fact that programme material is originated locally does not mean that it has to be about local affairs, in the manner of a local newspaper. By analogy with the education service it can be material of general or national interest but with a "mix" adjusted to local circumstances and demand.

But now into this scene steps the Post Office with a claim that it should take over the whole of cable television. In its evidence to the Annan Committee on the future of broadcasting it says "The transmission of information is Post Office business . . ." and "If and when there is an increase in television broadcasting, leading to a wide-scale requirement for cable-TV networks, the Post Office is, we believe, the organization to provide such networks on a national basis to meet the demands both for enhanced television and for the broadening range of telecommunication services-voice, vision and data-that we foresee".

Of course the Post Office is the right organization to handle the large-scale transmission of information-probably by integrated digital systems in the future-on trunk routes between cities. And this rightly includes the long distance transmission of television signals. But this doesn't mean that the Post Office is necessarily the best organization to handle local distribution. It certainly has extensive plans but lacks the experience of the cable television companies (at present it provides networks in six new towns) and as a public corporation it does not have the spur of competition that gives a keen assessment of the market and often leads to valuable technical developments.

The cable companies have made a considerable investment in their networks. This is not to say they should necessarily be guaranteed a good return-after all it was a risk they took. But this is also a national investment and as such should be taken into account in any plans for the future.

Using ferrite pot-cores

Basic inductor design for the development engineer

by D. E. O'N. Waddington, M.I.E.R.E

When, as a schoolboy, I became interested in radio, I blamed all my failures to persuade crystal sets to work on the coils. As I lived about 50 miles from the nearest transmitter which radiated a meagre 2 kW , I now feel that this was a bit unjust to the coils. Nevertheless, coil design remained a bogey for many years. One of the main reasons was that so many variables are involved that the design is always complicated. To design a single layer coil with a specified inductance value, one has to assume diameter, winding length, wire diameter and winding pitch before starting on the calculation of the number of turns. The odds are that the first try will produce a ridiculous answer and it will probably be necessary to try several times before a practical result is achieved. Even at the end of all this, there will be a nagging doubt as to whether the result is correct or not! Multi-layer coils are even worse, if possible, as the dimensions predicted by theory are seldom realizable in practice. In fact the only method appears to be to take an "educated" guess at the coil design and to check by calculation. Thus it was with a great sense of relief that I learned to use ferrite pot cores. At last here was an inductor which could be designed.(most of the time!).

I will start with a short description of the core material and manufacture. It is well known that placing a magnetic core inside a coil increases its self-inductance. However, the alternating magnetic field causes eddy currents to flow within the core absorbing energy from it and reducing the effective Q of the coil. This loss occurs mainly because of the low resistivity of the core material. It also increases with frequency. In transformers it is usual to reduce this loss by laminating the core material and insulating each lamination from its neighbour. The thinner the laminations, the lower the eddy current loss, and the higher the frequency to which the core may be operated. However, a practical limit is reached very quickly so that this technique, while giving a substantial improvement, does not provide the answer for radio-frequency coils

One method of overcoming the limitations of laminations is to use a powdered iron dust core in which finely divided
particles of iron, or other ferro-magnetic material, are suspended in an insulating medium and moulded into a core. This effectively insulates the particles from each other and reduces eddy current flow but, at the same time it reduces the effective permeability of the core to ten or less. Nevertheless, these iron dust cores are very useful at radio frequencies as not only do they increase the effective inductance of coils, but, when used in cup form, they tend to confine the magnetic fields within the coil, providing a measure of screening. For high frequency work iron dust cores are superior to ferrites both in performance and cost. The design methods which I will be describing can also be applied to iron dust cores.

Fig. 1. Cross section of a typical pot cure.

Fig. 2. Variation of permeability with temperature for a low-frequency ferrite material.

Unlike iron dust cores, ferrite cores are primarily made of non-conducting materials, which belong to the family of ferrites. The ferrites are non-metallic refractory materials composed of the oxides of iron and other metals, usually cobalt, copper, manganese, magnesium, nickel or zinc. The most important ferrites for pot cores are manganese zinc and nickel zinc-ferrite ${ }^{1}$. In manufacture the correct proportions of the relevant oxides are milled together so that they are thoroughly mixed. They are then moulded into the desired shape in a press and fired at a temperature in the range from $1000^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$. During this process chemical reactions occur and when the resultant cores are cooled to room temperature, they are hard and brittle. This firing or sintering process is a very critical one as the properties of the finished core depend largely upon the precise firing temperature and the time for which it is "cooked". The cores shrink appreciably (between 20 and 25%) during the firing process and, as the ferrite is very hard to machine, it is also essential that the density of the moulded core must be correct before firing as subsequent adjustment would be very costly. The cores used for inductors are said to be "soft". In this context soft means that the core does not remain magnetized to any appreciable extent after a magnetizing field has been applied. This is analogous to "soft" iron cores recommended in text books for electric bells, etcetera.

For use in inductors, the cores are usually made in the form of cups as shown in Fig. 1. The mating surfaces are ground smooth and polished so that the air gap is reduced to a minimum. The effective permeability of the basic core material will be of the order of 2000 for low frequency ferrites, reducing to 100 for high frequencies. This basic permeability is very sensitive to temperature variations, the degree of sensitivity depending upon the composition of the ferrite. Normally the permeability increases fairly steadily with temperature until it suddenly falls off very rapidly to the Curie point (see Fig. 2). Curie point is generally defined as the temperature at which the permeability has fallen to 10% of its maximum value and lies in the range from 150 to $200^{\circ} \mathrm{C}$ for
most ferrites although some ferrites have Curie points as high as $500^{\circ} \mathrm{C}$. For inductors, the cores are usually modified by grinding the centre spigot so that there is an air gap in the magnetic path. The working permeability of the finished core depends upon the length of this gap which also confers two very desirable properties. Firstly, the temperature coefficient is greatly reduced and now depends to a greater degree upon the physical dimensions of the core. Thus it is possible to specify the temperature coefficients of various cores with fair accuracy. Secondly, by adjusting the position of a ferrite slug so that it "bridges" the air gap, it is possible to adjust the working permeability of the core and hence the inductance of a coil wound on it. As would be expected, cores with small gaps (high permeability) have less adjustment range than those with large gaps although neither has a very large range (5% to 25%). In early cores. the adjuster was not a built-in feature and it was necessary for the user to grind the core himself to adjust the inductance. This was done by rubbing the core on fine emery paper taking great care to keep the surfaces flat. I mention this method as it still has its uses when an inductor is just out of the adjuster range. However I would not recommend its use as cores are easily cracked by the overheating which can be produced by too vigorous rubbing. For repeatable and stable performance. it is essential that the two halves of the core are adequately clamped together. Most manufacturers supply excellent clamping systems although gluing, with Araldite for example. is a very effective assembly method. Cores are usually made in matched pairs so it is best to keep them in pairs. Sorting is both tedious and frustrating.

Core losses

The losses which occur in ferrite cores are of three main types; hysteresis, eddycurrent and residual.

Hysteresis loss. This is usually very small compared with the other losses and, at low drive levels, it may be ignored. At high signal levels, however, it can contribute an undesirable effect in the form of nonlinear distortion, mainly third order. The degree of distortion depends upon the flux density and can be predicted by calculation ${ }^{1}$. Normally this effect is of little significance but, in some audio applications. it may become important. The cure is

Fig. 3. To work out the number of turns required to give a specified inductance value, lay a ruler across the abac connecting the required inductance (on scale A) with the A_{L} or α (on scale C) of the core used. The number of turns is read from scale B.
Note. For micro-henries use the right-hand calibration of scales A and B. For millihenries use the left-hand calibration of scales A and B. For henries use the same scales as for micro-henries but multiply the number of turns by 1000 .

Abac to determine number of turns from core data

either to run the core at a lower level or to use a larger core (which amounts to the same thing!).

Eddy-current loss. This depends mainly on the resistivity of the core material. Thus, in most ferrites this loss is small so that it is normally lumped in with the residual losses. There are exceptions where the eddy current losses "resonate" with the dimensions of the core at high frequencies ${ }^{2}$. The discussion of them, however, is beyond the scope of this article.

Residual losses. These depend upon the composition of the ferrite and will vary with the different grades. These losses are frequency dependent, usually increasing relatively slowly up to a "critical" frequency after which they increase drastically. Thus the grade of ferrite determines the high frequency operating limit.

Coil losses

These are far more severe than in air-cored coils because, in addition to skin effect, there are eddy-current losses in the conductors caused by proximity effects. This means that the Q of the inductor will also depend upon the type of wire used as well as the core losses. In general, solid conductors give a maximum Q at a very much lower frequency than that for maximum Q with stranded wire and the Q will also be lower. One manufacturer quotes the following:-

$$
\begin{array}{ll}
\text { Solid wire } & Q_{\max }=200 \mathrm{at} \\
& 20 \mathrm{kHz}(10-100 \mathrm{mH}) \\
\text { Stranded } .06 \mathrm{~mm} & Q_{\max }=600 \mathrm{at} \\
& 150 \mathrm{kHz}(.2-1 \mathrm{mH}) \\
\text { Stranded } .04 \mathrm{~mm} & Q_{\max }=700 \mathrm{at} \\
& 200 \mathrm{kHz}(.2-1 \mathrm{mH}
\end{array}
$$

This information is usually included in the manufacturers' data books in the form of typical ISO- Q curves although it is sometimes in tabular form. The word "typical" seems to have the meaning ascribed to it by a cynical engineer; namely "It has actually been achieved once!" In all fairness, however, the quoted Q can be attained under ideal conditions with all details fully under control. However, even if the final Q is less than that predicted, it should be far higher than could have been obtained using an air-cored coil and, of course, the dimensions of the coil will be considerably smaller.

Inductor design

The calculation of the number of turns necessary to achieve a particular inductance value is very easy as manufacturers quote either A_{L} (induction factor) or α (turns factor). These can be defined as follows:-
A_{L} (induction factor)-The self-inductance, in nano-henries, that a coil wound on the core should have if it consisted of a single turn.
$A_{L}=\frac{L}{N^{2}}$ or $N=\sqrt{\frac{L}{A_{L}}}$
L is in nano-henries
N is the number of turns.
The term α (sometimes C or K) is the turns factor or the number of turns required for a coil wound on the core to give an inductance of 1 milli-henry.

Fig. 4. This family of curves shows how the induction factor varies with the "fullness" of the available winding space for an 18 mm pot core. Other core sizes will exhibit similar variations.

Fig. 5(a). These curves apply to round cores conforming to B.S. 4061 range 2 or I.E.C. Pub. 133.

Fig. 5(b). These curves apply to R.M. (rectangular module) cores.
$\alpha=\frac{N}{\sqrt{L}}$ or $N=\alpha \sqrt{L}$

L is in milli-henries

N is the number of turns
e.g., required-a 9 mH inductor. The core selected has an A_{L} of 400 or α of 50 . $N=\sqrt{9 \times 10^{6} / 400}=3 \times 10^{3} / 20=150$ turns or $N=50 \times \sqrt{9}=50 \times 3=150$ turns The abac shown in Fig. 3 provides a simple alternative method of determining the number of turns. Lay a ruler across the abac connecting the A_{L} or α on the righthand scale with the required inductance value on the left-hand scale and read the number of turns from the centre scale.

Normally the winding factors given in the manufacturer's data will refer to a coil wound so that it fills a predetermined percentage of the winding space and it may be necessary to adjust the number of turns slightly depending upon whether the bobbin is fuller or emptier. Fig. 3 shows the sort of variations which can be expected with a typical core. In general it will be seen that, with high permeability (i.e., "small gap"), the degree of "fullness" of the bobbin has very little effect upon the turns factor. On the other hand, lower permeability cores (i.e., "large gap"), are more affected by the "fullness". This effect is caused by fringing of the magnetic field in the gap. It is good practice however to choose a wire gauge which fills the winding space as completely as possible. This gives the lowest d.c. resistance together with the highest Q value. Most core manufacturers give tables or charts showing the numbers of turns which will fill the various bobbins. Now that there has been a degree of standardization of core sizes (British Standard B.S. 4061 range 2 and International I.E.C. Pub.133) it has been possible to prepare some winding charts which have fairly universal application. Fig. 5(a) shows winding data for the round cores and Fig.5(b) gives data for r.m. (rectangular module) cores. The numbers of turns which should fit the cores are nominal so that it is generally safer to use a slightly thinner gauge than suggested by the chart.

I feel that a word of warning is necessary here. As George Orwell says, "All animals are equal but some are more equal than others." This comment could well be applied to ferrite pot cores. So far the standardization only goes as far as specifying the dimensions of the cores and formers and A_{L}. Nothing is said of clamping systems, termination methods or adjusters so far as I know. At least, if it is specified, it is frequently ignored. In general British manufacturers produce reasonably compatible systems but the same cannot be said for all the imported products. This means that it is necessary to study alternative core types very carefully before accepting them as equivalents.

Earlier in this article I referred to the temperature coefficient of the permeability. Obviously this will affect the stability of the finished inductor. In practice there are one or two more points to be watched if the best stability is to be obtained. Movement of the coil in the core will change the
inductance slightly so the coil should be locked in position. Similarly movement of the individual turns of the coil can also introduce instability. This makes it desirable to impregnate the coil. Actually, if moisture penetrates the coil it can degrade the Q so there is a second reason for impregnation.

If the impregnation is carried out with the coil fitted to the core care must be taken that the adjuster system is kept clear. While moisture does not affect the permeability of the basic core to any measurable extent, it can affect the adjuster system so that it is wise to check this point. Personally I have found that the adjusters which consist of a ferrite tube fitted on a plastic sleeve with a hole up their centres to screw onto a brass screw are the best. A further point to watch is a phenomenon known as "disaccommodation". This is a temporary change in permeability which occurs if the core is subjected to a thermal or mechanical shock. However, provided that final adjustment of the inductance is not carried out until 24 hours after the shock, this effect should not prove troublesome.

In conclusion I would like to thank Mullard Ltd for permission to reproduce illustrations of their cores and graphs.

References

1. Snelling, E. C. ${ }^{-}$Soft ferrites, properties and applications", Butterworths, London 1969.
2. Mullard Ferroxcube. Mullard Components Division, May 1955.

Sixty Years Ago

In 1915, spy. scares were getting well into their stride and the still-new invention of "wireless" was fuel to the fire. Suitcase transmitters were still in the future, however, and it seems that people's imaginations tended to become a little over-heated. A note in our April 1915 issue commented: "Mr Charles R. Gibson has been contributing long articles recently to the Glasgow Herald on the present use of wireless by the belligerents, and in the course of one of them tells an amusing story which, according to the writer, was repeated to him with portentous seriousness as an incident of the greatest gravity which had recently come under the narrator's personal observation:
'Two German workmen had been arrested as spies, and there had been discovered, hidden beneath the hearthstone of the kitchen in their two-roomed tenement house, a complete wireless installation capable of transmitting messages to Berlin.'

Mr Gibson comments that it is possible to send wireless messages as far as from here to Berlin, but not with apparatus that can be stowed away beneath a kitchen hearthstone, or even contained in a large room."

Meetings

LONDON

7th. IEE-"Mechanical shock protection in the design of electrical equipment" by L. A. Ward at 17.30 at Savoy Pl., WC2.

8th. IEE-Discussion on "Microprocessors versus programmable logic arrays" at 17.30 at Savoy Pl., WC2.

9th. IERE-Colloquium on "Radar and associated systems for vehicle guidance" at 14.00 at 9 Bedford Sq., WC 1 .

9th. IEE-Discussion on "Is there a future for pointer instruments?" opened by G. D. H. Keen, Dr R. B. D. Knight and A. H. Silcocks at 17.30 at Savoy Pl., WC2.

10th. IERE/IEE-Colloquium on "Computers in transport" at 10.00 at 9 Bedford Sq., WC I .

10th. IEE - "The work of the House of Commons Select Committee on Science and Technology" by Airey Neave followed by discussion at 17.30 at Savoy Pl., WC2.

10th. RST-The Fleming Memorial lecture "Television: parliament and the people" at 19.00 at the Royal Institution, Albemarle St., W I.

1 th. IEE--Colloquium on "Spectrum allocation management and engineering in radio communication" at 10.00 at Savoy PI., WC2.

11th. IEE-Colloquium on "Innovatory ideas in energy generation and conversion" at 10.30 at Savoy Pl., WC2.

14th. IEE-Colloquium on "Electronic counter measures--components and systems" at 10.30 at Savoy PI., WC2.

15th. IEE-"Replaceable control systems" by B. Welch at 17.30 at Savoy Pl., WC2.

15th. AES-"Speech perception and speech synthesis" by D. B. Fry at 19.15 at the IEE, Savoy Pl.. WC2.

16th. IEE-Colloquium on "Hardware and software aspects of parallel processors" at 11.00 at Savoy P1., WC2.

16th. BKSTS-"Portable power systems for cinematography" by V. F. Saunders, R. W. Scarr and F. R. Cloke at 19.30 at Thames Television Theatre, 308-316 Euston Rd., NW 1.

17th. IEE-Colloquium on "Techniques for designing for reliability" at 10.30 at Savoy Pl., WC2.

17th. IEE-"Engineering management and the professional unions" by A. Grosschalk at 17.30 at Savoy Pl., WC2.

18th. IEE-Colloquium on "Alpha numeric display devices" at 14.30 at Savoy PI., WC2.
23rd. IERE-Colloquium on "Recent developments in turntable design" at 10.00 at 9 Bedford Sq., WC1.
23rd. BKSTS - "The factors affecting the image quality of 16 mm film for television" by Arthur Branson at 19.30 at Thames Television Theatre, 308-316 Euston Rd., NW 1 .
24th. RTS-A.G.M. followed by "Television special effects using electronics and photography" by A. B. Palmer at 18.30 at London Weekend Television South Bank TV Centre, Upper Ground, SE1.
25th. IEE-Colloquium on "Digital microwave relay systems above 10 GHz " at 14.30 at Savoy Pl., WC2.

28th. IEE-Colloquium on "Message switching" at 10.30 at Savoy PI., WC2.

30th. IERE-Colloquium on "Trends in testing telecommunications materials" at 10.00 at 9 Bedford Sq., WC 1 .

30th. IEE-"Artificial vision" by P. E. K. Donaldson at 17.30 at Savoy PI., WC2.

BIRMINGHAM

9th. IEETE-EASCON 75 on "The Partnership? training-education" at 10.30 at the City of Birmingham Polytechnic.

EDINBURGH

28th. IEETE-"Electronics versus the criminal" by J. S. T. Charters at 19.00 at Carlton Hotel, North Bridge.

GLASGOW

29th. IEETE-"Electronics versus the criminnal" at 19.00 at Royal Stuart Hotel,

GRAVESEND
3rd. IERE-A.G.M. followed by "The application of digital computers to radar and navigation at sea" by Bruce Williams at 19.00 at the Tollgate Motel, Watling Street.

LIVERPOOL

8th. IEETE-"Automatic flying controls" by D. I. Jackson at 19.30 at MANWEB Social Club, Thingwall Road.

MANCHESTER

10th. IEETE-"Intruder alarms" by E. Tanham at 19.30 at UMIST, Reynold Building, Sackville St.

READING

8th. IERE-"Project management" by Dr. I. Maddock at 19.45 at the J. J. Thomson Physical Laboratory, University of Reading, Whiteknights Park.

SWINDON

29th. IEETE-"Technician engineers and tech-nicians-their role, status and qualifications" (speaker from IEETE secretariat) at 19.30 at The College, Regent Circus.

Tickets are required for some meetings: readers are advised therefore to communicate with the society concerned.

Literafure Received

ACTIVE DEVICES

We have received a 24 -page catalogue giving specification of the Siemens range of charge storage varactors, varactor diodes for frequency conversion. tuning varactor, PIN, Schottky, tunnel, backward. IMPATT diodes and Gunn elements. Siemens Ltd Great West House, Great West Road, Brentford. Middx TW8 9DG

WW401

Also available from Siemens is an applications booklet on the subject of surge voltage protection . WW402

A price list and complete set of data sheets describing the Monolthic Memories Inc. range of semiconductor memories is availabe from Memory Devices Ltd, Central Avenue, East Molesey, Surrey KT8 0SN . WW403

Books on c.m.o.s. logic devices and applications by Motorola are available from Jermyn. The McMOS Handbook (applications) is available free with each order for the McMOS Data Book, which is priced at $£ 2.50$. McMOS is the Motorola name for c.m.o.s. Jermyn Distribution, Sevenoaks, Kent.

The seven-volume set of RCA Data Books for 1975 is now available. The complete range of RCA semiconductors is described, including diodes, transistors, integrated circuits of all kinds, thyristors and microwave devices. Each volume costs ${ }^{*} £ 1.80$, the price for the complete set being $£ 8$. RCA Ltd, Solid-State-Europe. Sunbury-on-Thames, Middx.

We have received from OVUM a bibliography of charge-coupled devices, containing abstracts on general information, theory, technology, bucket brigades and several other subjects. The book is well-indexed and is entitled "International abstracts on charge-coupled devices 1970-74". It is available from Ovum Ltd, 22 Grays Inn Road, London WC 1 at $£ 30$.

Many applications of a variety of semiconductor devices are described in a new book by Siemens Both discrete semiconductors and integrated circuits, both digital and analogue, are dealt with in applications from industrial control to audio. The book is available free of charge from Marketing Services Department, Siemens Ltd, Great West House, Great West Road, Brentford, Middx. WW404

Artificial vision progresses

Improved design of microelectronic implant giving more stimulation points on the brain and greater reliability

by T. E. Ivall
Editor, Wireless World

Work by the Medical Research Council's Neurological Prostheses Unit in providing some degree of vision for blind people by means of microelectronic implants in the head was described in our May, 1971 issue*. Two implants have been made and fitted, one in a female patient in 1968 and one in a male patient in 1972, and both have given encouraging results. Since 1972 research and development led by P. E. K. Donaldson has been continued with the object of improving the design of the implant, notably to increase the number of electrical stimulation points on the visual cortex of the brain and to make the implanted electronic devices neater and more reliable.

The principle of the MRC's visual prosthesis is directly to stimulate a large number of points on the visual cortex of the brain of a person who has become blind, for example, through damage to the optic nerve ${ }^{1,2,3}$. As a result the patient "sees" spots of light, called phosphenes, which are fixed in the visual field. By suitably organizing the electrical stimula-

[^3]tion these phosphenes can be arranged into meaningful patterns for the patient, such as letters of the alphabet or Braille characters. The stimulation is applied by $500 \mu \mathrm{~s}$ pulses of current fed to electrodes mounted in two flexible silicone rubber cups which fit round the two occipital lobes of the brain. The stimulating pulses come from microelectronic inductive-loop receivers and logic units which are implanted, as packages in a silicone rubber "cap", between the skull and the scalp (Fig. 1). No implanted battery is needed as all the required power comes from the external bank of inductive-loop transmitters (mounted in a hat-shaped shell similar to a hair-drying hood) which activate the implanted receivers.

The d.c. outputs of the implanted receivers are electrically arranged to form a matrix of rows and columns, so that when a particular "row receiver" and a particular "column receiver" are energized simultaneously by their transmitters their d.c. outputs activate a particular AND gate (at the "intersection" of that row and that column). The d.c. output of the AND gate then provides the stimulating pulse for a particular electrode on the visual cortex.

Thus if there are x row receivers and y column receivers in the implant it is possible to identify $x y$ unique pairs of receivers and therefore to have $x y$ stimulating electrodes. The external transmitters are arranged in a corresponding matrix of rows and columns. Row-transmitters generate $500 \mu \mathrm{~s}$ pulses of r.f. at 10 MHz while alternate column-transmitters give 500μ s pulses at 8 MHz and 6 MHz (this arrangement of different frequencies for adjacent column-transmitters being a means of avoiding crosstalk).

In the implant described in our May, 1971 issue there were nine row receivers and 20 column receivers, giving 180 stimulation points. It was designed for a 64 -year-old male patient who had been blind for 30 years with retinitis pigmentosa. When a dummy of the device was handed over to the neurosurgeon who was to perform the implantation operation he said it was too big and he would have difficulty in closing the scalp over it. Would the engineers please think again? It was therefore decided to reduce the number of row receivers from nine to five and the number of column receivers from 20 to 15 . In addition it was decided to eliminate the $1.0 \mu \mathrm{~F}$ tantalum capacitors in series with all but three of the AND gate outputs (see May, 1971 issue, p.216). Capacitance is needed in these outputs to keep the mean stimulating current zero and so avoid electrolysis at the electrodes and consequent tissue damage, but it is possible to rely on the capacitance-like properties of the electrode-tissue interface. (More about this later.)

A dummy 5×15 device was accepted as satisfactory by the surgeon in July, 1971 and the actual 5×15 implant, giving 75 stimulation points instead of the 180 originally intended, was implanted into the patient on February 4, 1972. As a result of testing ${ }^{4}$ it was found that the

Fig. I. Completed second implant, showing the stimulating electrode assembly at the end of its cable (bottom left), before surgical implantation in the head of a 64-year-old male patient. See also front cover.
patient could in fact "see" 55 phosphenes of the theoretically possible 75. These, however, were disappointing for pattern organization purposes because the phosphenes were larger than those experienced by the first patient and when pairs were elicited simultaneously they tended to fuse together into a single, bigger phosphene. Finally six good phosphenes-bright and clearly defined-were chosen lying in two vertical columns of three, the format for Braille characters, and the subsequent tests on this patient were mainly confined to the reading of Braille text fed to the transmitters character by character by a punched tape apparatus.

Experience gained from this second implant clearly showed that it was desirable to provide many more stimulation points on the visual cortex to make possible more detailed patterns of phosphenes and to allow for possible failures of stimulation points after implantation. Moreover it was believed that the patient had himself inadvertently put some electrodes out of action simply by scratching and bumping his head, and this suggested some mechanical fragility in the wiring between the microelectronic packages. It was therefore decided to produce a third design of implant which would overcome these problems.

To provide more stimulation points it is of course necessary to put more receivers and AND gates into the implant, but in order to keep the implant size down to that required by the neurosurgeon the packages obviously have to be made smaller. The most bulky packages in the second implant were the hermetically sealed logic units containing transistor and diode AND gates. These logic units are also the most environmentally sensitive of the packages-the environment being a warm saline "mist" produced by the body fluid-hence the need for particular care in sealing them. It was decided, however, to do away with the hermetic sealing, which required rigid ceramic packages measuring $29 \mathrm{~mm} \times 20 \mathrm{~mm}$ with projecting connection tags. Instead, after experiments with various materials, straightforward encapsulation with silicone rubber adhesive was chosen. At first sight this seems a very unsuitable process, for silicone rubber has a high permeability and a low water absorption, and it must therefore transmit water vapour rapidly. But in fact hybrid electronic components are not very susceptible to water vapour. Thick film resistors, chip capacitors, cross-over glazes, conductors and passivated semiconductor devices can be operated successfully in the presence of such vapour. On the other hand, water as

Fig. 2. Thick-film microelectronic circuit of the logic package, carrying, on a $26 \mathrm{~mm} \times 6 \mathrm{~mm}$ substrate, transistors, diodes and resistors for 19 AND gates (see Fig. 3).

Fig. 3. One of the 16 logic packages fed by (left) one of the 16 row-receiver coils. Outputs from the 19 column-receivers are fed into the diodes. All resistors are $10 k \Omega$.
liquid affects the operation of the circuit in two ways: it can provide spurious conduction paths which cause malfunction; and it may allow electrolysis to occur, filling up the package with electrolytic debris, which causes further shorts, and allowing the generation of gas under enormous pressure. Water as liquid will condense from water vapour in any voids which may be present in the encapsulating material, and it is the voids at the interface between the encapsulant and the electronics which cause the trouble.

The requirements of the encapsulant in the implant packages are therefore not only the usual one, that it shall penetrate the surface convolutions of the microelectronic circuitry everywhere so that no voids are left when the device is first made, but also that it shall discourage the formation of new voids subsequently. This means that the adhesion of the encapsulant must be good, and that the encapsulant
should be a rubber and not a resin, so that small strains set up at the encapsulantelectronics interface (as a result of, say, slight swelling of the encapsulant because of its water load) do not nevertheless set up large stresses which break the adhesive bonds. Fortunately silicon rubber adhesives are both rubbers and very adhesive in the presence of water, and this is why they work. The conclusions of the MRC workers are, therefore, that moistureprotecting encapsulants work not because they are in any sense a wall, but because they displace water as liquid from the surface of the microelectronics.

Using this encapsulation technique, logic packages containing 19 AND gates have been produced measuring only 26 mm (long) by 7 mm (wide) by 3 mm (deep) as shown in Fig. 2. Unlike the previous hermetically sealed packages they have flying leads. The hybrid microelectronics forming the circuit (Fig. 3) are laid on a

$25 \mathrm{~mm} \times 6 \mathrm{~mm}$ ceramic substrate and the thick film parts of the circuit are successive layers of resistor material, palladium silver conducting pads and cross-overs, glass for insulation, and gold for transistor connecting pads and the two bus-bars shown in Fig. 3. The transistors and diodes attached to this thick film circuit are beam lead devices, and have a silicon nitride impermeable skin put over them.

Although there are fewer AND gates in this new logic package (19 as against the previous 20) the smaller size of the package allows more logic units to be used and in fact the third implant will contain 16 of these units (instead of nine). These will be fed with d.c. pulses from 16 row receivers (one is shown in Fig. 3) and 19 column receivers, giving 16×19 unique pairs of receivers on the matrix and therefore allowing 304 stimulating electrodes. Thus, relative to the second implant with its 75 outputs, the number of stimulation points will be quadrupled in this new implant.

The row and column receivers will be encapsulated in the same silicone rubber adhesive as is used for the logic packages. Samples of units made in this way have been tested by operating them under normal electrical conditions while immersed in a warm saline bath (1% sodium chloride solution at $50^{\circ} \mathrm{C}$--a more literal meaning for "soak testing"!-and in many months of continuous testing no insulation failures have been detected.

The thick film receiver circuits themselves have been modified to make them smaller and safer. Most notably the inductive pick-up coils are now made in thick-film form (see illustration on front cover) instead of being coils of copper wire. The coiled conductor deposited on the ceramic substrate is of platinum, gold plated to bring the coil resistance to below 2 ohms. This has the advantage of allowing a thinner receiver package and avoiding the use of copper, which could be chemically harmful to the patient. Moreover it allows more stringent cleaning methods to be used on the circuit. The tuning capacitors are chip devices while
the detector rectifiers are passivated diodes.

The final space-saving expedient is to do away with, as mentioned above, the $1.0 \mu \mathrm{~F}$ wet tantalum electrolytic capacitors connected between the outputs of the AND gates and the stimulating electrodes. In the project described in our May, 1971 issue these were housed in packages each containing 15 capacitors. The alternative, as explained, is to combine the capacitor and stimulating electrode into one by coating the electrodes with a suitable dielectric layer. Thus the metal electrode forms one plate of the capacitor while the surrounding biological tissue forms the other plate. Experiments at the MRC Unit have in fact shown that tantalum electrodes coated with tantalum pentoxide can perform stably as capacitor anodes when implanted into biological tissue ${ }^{5}$. Capacitances and leakages (typically $1 \mu \mathrm{~A}$ at 5 V in a $1 \mu \mathrm{~F}$ device) do not differ much from those obtained in the electrolytes of conventional tantalum capacitors. It therefore seems likely that this technique will be successful when such capacitorelectrodes are used in future implants.

Resistance to mechanical shear forces on the implant, with consequent breaking of inter-package wiring, will be sought by virtually wiring the implant with springs.

References

1. Brindley, G. S., and Lewin, W. S. "The sensations produced by the electrical stimulation of the visual cortex", J. Physiol., 1968, vol. 196, pp. 479-493.
2. Brindley, G. S. "Sensations produced by electrical stimulation of the occipital poles of the cerebral hemispheres, and their use in constructing visual prostheses", Ann. Roy. Coll. Surgeons, 1970, vol. 47, no. 2, pp. 106-108.
3. Donaldson, P. E. K., and Davies, J. G. "Microelectronic devices for surgical implantation", The Radio and Electronic Engineer, vol. 43, no. 1/2, Jan./Feb. 1973, pp. 125-132
4. Donaldson, P. E. K. "Experimental visual prostheses", Proc IEE, vol. 120, Feb. 1973, pp. 281-298.
5. Donaldson, P. E. K. Technical note: "The stability of tantalum-pentoxide films in vivo", Medical and Biological Engineering, Jan. 1974, pp. 131-135.

Fig. 4. Two of the new thick-film logic circuits compared in size with the hermetically sealed logic package (above) used in the second implant.

Announcements

The basic methods and techniques used in Industrial Digital Control Systems and their applications in both computer and non-computer systems. is the subject to be studied at a vacation school on Industrial Digital Control Systems. It is being organized by the Control and Automation Division of the Institution of Electrical Engineers, Savoy Place, London WC2R OBL, in association with the Institute of Measurement and Control, to take place at the University of Oxford between April 7 and 11th.

An agreement has been signed between Keighley Instruments, 1 Boulton Road, Reading, Berks RG2 0NL. and Neff instruments of Duarte, California, USA for marketing Neff's range of data amplifiers for laboratories in the UK and Ireland.

The fourth Salon International Audiovisual et Communication (International Audiovisual and Communication Show) will be held in Paris, Porte de Versailles, from April 2-8th. On April 3rd, the presentation-discussion will be concerned with "Cable Television in France Today".

Arrow-Hart (Europe) Ltd have announced the appointment of Radio Resistor Co Ltd, 9-11 Palmerston Road, Wealdstone, Harrow, HA4.7RS, to their network of stockists and distributors for Arrow switches including the subminiature ranges

GDS Sales Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks, has announced that its franchise for Hewlett Packard optoelectronic components has been extended. Under the new agreement GDS will be stocking HP Schottky and PIN v.h.f./u.h.f. diodes.

A new business ITT Instrument Services is being established by the Distribution Division of ITT Components Group, Edinburgh Way, Harlow, Essex, with effect from the beginning of February. ITT Instrument Services takes over from the Instrument Product Group of ITT Electronic Services. It is a much larger and independent marketing operation with its own field force, catalogue and internal sales engineers, but utilizes the computer system and stores operation of ITT's Distribution Division. The catalogue covers the following product areas: oscilloscopes, digital multimeters and voltmeters, analogue multimeters, analogue and digital panel meters, signal sources, counter timers, testers, modular power supplies, bench power supplies and variable transformers.

This year's AGM of the National Association of Hospital Broadcasting Organisations is to be held on April 12 and 13th. The host station will be Radio Whittington, Whittington Hospital, North London.

Calvert Engineers Ltd has moved to new premises at 44a Elmsdale Road, Walthamstow. London E17 6PW. CEL has been involved in the manufacture and installation of telecommunication equipment and with this new move production capacity is being increased to include cable television equipment.

Celdis Ltd. 37/39 Loverock Road, Reading, Berks RG3 IED have announced that they are the UK agents for the range of small electric motors manufactured by Papst Motoren KG in Germany.

The Electronic Component Show (RECMF) will this year be held at Olympia, London from May 13th to 16th, 09.30-17.30 daily. Organizers of the show are Industrial and Trade Fairs Holdings Ltd, Radcliffe House, Lennon Court, Lode Lane, Solihull, W Midlands.

DICE throws a double

Latest version of DICE, the Digital Intercontinental Conversion Equipment designed by engineers of the Independent Broadcasting Authority, can convert 525line NTSC colour pictures as used in the USA and Japan into 625 -line PAL or SECAM pictures used in most other parts of the world, and will now also operate in the reverse direction, taking advantage of the availability of higher-speed integrated circuits. Improvements are mainly in the field of vertical resolution, particularly relevant to pictures coming in to the UK. This two-way DICE was first demonstrated outside the IBA Engineering Laboratories in December 1974 and an agreement has recently been signed giving Marconi Communication Systems exclusive world-wide manufacturing and marketing rights.

The standards conversion is essential not only for "live" relays via satellite, but also where programme material or videotape is exchanged between countries working to different television picture standards. A number of different types of standards converters have been developed over the years, but IBA engineers were the first to develop the unit based on digital techniques to eliminate the need for careful alignment and adjustment and to provide conversion without perceptive picture impairment.

The latest DICE occupies no more floor space than the original unit and uses about 8,000 integrated circuits, while the main storage devices alone represent the equivalent of more than 15 million transistors. Five-line interpolation is now used rather than the three-line integration of the experimental digital converter and the spatial filters have been improved. The converter is available for operational use within 30 s of switching on from cold.

IEE recommends reconstruction of engineering profession

The following is a summary of the conclusions reached by a council of the Institution of Electrical Engineers concerned with the future organization of the engineering profession.*

The council agreed that the structure of the engineering profession was in need of change and endorsed the President's proposal that any change, whether in the form of an adjustment of the Council of Engineering Institutions or the setting up of a new central body to replace it, should be based on these principles:

- Authority and responsibility for learnedsociety and professional matters affecting special branches of engineering must remain in the hands of the individual specialized institutions.
- The central professional body should progressively become the single effective authority and instrument for qualifying chartered engineers, assisted wherever appropriate by experts nominated by the specialized institutions.
- The central body should not include technician engineers.
- The central body should not be federal in structure but should comprise individual engineers of all disciplines, the members of its council being elected in a suitable manner by the chartered engineers.
- Provision should be made to enable wellqualified members of certain non-chartered societies to become chartered engineers, provided that their education, training and experience were judged by the central body to be of sufficiently high standard.
- A person should not be eligible for registration as a chartered engineer unless he was a member of a specialized institution recognized for the purpose.
*"The importance of status", Wireless World,
Oct, 1974, p.363.

First production

 c.c.d. memoryThe first c.c.d. memory to be put into largescale production has been introduced. The new device is a 1 -kilobyte serial storage element claimed to represent a significant advance in the density of solid-state memory storage. It is aimed at memory applications in terminal buffers, video display refresh; microprocessor-control data stores and electronic switching in data communication networks. The memory utilizes a buried channel, ion-implanted barrier structure in the storage registers combined with nchannel silicon-gate m.o.s. structures for timing, charge detection and level conversion circuitry. The nine two-way data lines are t.t.l. compatible and have three-state output buffers for wired-OR application.
The device is organized as 1,024 words by nine bits each. It contains nine 1,024-bit low power c.c.d. registers which are shifted in parallel to provide storage and retrieval of nine-bit words in a byte-serial mode. Each register is accessed by its own two-way data line and all nine registers are serviced by common two-phase data transfer clocks and read/write control functions. The device operates in four modes: read, write, read/modify/write and recirculate. Power dissipation in the read and write modes is said to be 250 mW maximum and only 30 mW in standby recirculate mode. Average random byte access time is $200 \mu \mathrm{~s}$. The device uses simple two-phase clocking and is packaged in a standard 18 -pin ceramic

Engineer uses EMI's portable Privateer telephone scrambler device to transmit confidential information back to head office.

d.i.1. Data rate is 50 kHz to 3 MHz . Evaluation quantities of the CCD450, manufactured by Fairchild are available on fourweek delivery, while production quantities will be available in the fourth quarter of 1975.

High-speed waveform recorder

Since 1969 the National Research and Development Corporation has been supporting a work programme at the University of Manchester aimed at developing a novel type of storage cathode-ray tube to be used for signal averaging. A 16 -channel laboratory prototype has been built and NRDC would now like to hear from companies who would be interested in completing the development and assessment of the instrument and in its subsequent commercial exploitation.

The basic principle of the waveform recorder is as follows. The electron beam in a c.r.t. is focused so as to form a beam whose cross-section at the face of the tube is narrow (approximately 0.5 mm) in the x-direction but broad in the y-direction (approximately 1 cm). This rectangular beam falls upon a faceplate consisting of a series of parallel, electrically isolated strips of aluminium that are also narrow in the x-direction but broad in the y-direction. The electron beam can be scanned across the strips in the x-direction. The signal being investigated is fed to the c.r.t. electrodes controlling the y-deflection of the beam and the strips are located within the tube so that the amplitude of the signal determines how much of the beam's area falls upon any particular aluminium strip. With zero signal there is no overlap and when the signal is
maximum the entire beam falls on an aluminium strip. Each strip is connected to a storage capacitor which is charged by the impinging beam, the quantity of charge being determined by the degree of beam overlap. As the beam scans repeatedly in the x-direction, charge is accumulated and, by monitoring the potential of each capacitor, the average signal can be extracted.

Study on teleconferencing

The Stanford Research Institute in California has recently undertaken a ninemonth study of "teleconference" systems that enable people to communicate to a mass audience across the span of a continent. Audio and visual systems that are substitutes for bringing together conference participants offer an attractive means of saving costs, but only if people use them. An engineer-economist of the institute states, "We know a lot about the technology of such systems, but we need to know a lot more about their psychological and sociological aspects". The findings will document effectiveness of the systems, usage patterns over a period of time and how the cost, quality and types of capabilities offered by a system affect its usage. In the UK the Post Office runs a service of this type called Confravision.

TV deliveries still down

Deliveries to UK distributors of UK made and imported colour television receivers reached 165,000 in December, a 23% decrease compared with December 1973, according to the latest statistics compiled

Charge coupled

 image sensor, the 'eye"'of RCA's new tubeless TV cameraheld below. The image sensor and camera will be available in Europe early in 1976.by the British Radio Equipment Manufacturers' Association. This brought the total for the year to $2,209,000$, a fall of 20% compared with 1973.

Total monochrome television deliveries for December of 51,000 brought the total for the year to 821,000 , a fall of 42% compared with January to December 1973. BREMA members delivered 59,000 audio stereo systems in the month, a fall of 27% compared with December 1973, bringing the year's total to 831,000 , a fall of 17% compared with 1973. Deliveries of radio receivers reached 259,000 for the month, a 44% drop on December 1973, bringing the 1974 total to $4,798,000$ compared with $6,681,000$ in 1973 , a fall of 28%.

These figures are for deliveries of UK made and imported deliveries to home distributors including those to rental and relay companies.

Bell Laboratories celebrate fifty years

The research and development unit of the Bell System marked its 50th anniversary in January. In its first 50 years Bell Labs scientists and engineers have been awarded more than 17,000 US patents, two Nobel physics prizes (in 1956 for the invention of the transistor), three National Medals of Science and hundreds of other prizes.

One of the largest industrial laboratories in the world, Bell Labs is now an organization of about 16,000 employees, with 18 locations in nine states of the USA. It was established in New York City in 1925 with the reassignment of 3,600 staff members of Western Electric Co's engineering department and some additional supporting personnel from the American Telephone \& Telegraph Co.

Briefly

Radio City on v.h.f. The Independent Broadcasting Authority's new v.h.f. f.m. stereo transmitters at Allerton Park, Liverpool are now in operation on 96.7 MHz , carrying the programmes of Radio City, previously available only on 194 metres medium wave. The IBA's local 95.9 MHz relay station in Rotherham is also now in service, carrying the programmes of Radio Hallam.

Merseyside slant polarized. Since the start of programmes on January 24, the v.h.f. service of BBC Radio Merseyside $(95.8 \mathrm{MHz})$ has used slant polarization. This will provide improved reception for portable receivers and v.h.f. car radios, particularly towards the limit of the service area. Listeners using outdoor horizontal aerials should find reception unchanged.

New SERT president. The Council of the Society of Electronic and Radio Technicians has elected as its third President, Sir Cyril English, who took the chair on the occasion of SERT's 10th anniversary on January 30.

75 years of magnetic recording

2-The dark years

by Basil Lane

Assistant Editor, Wireless World

Up to about 1915 the use of valves had been extremely limited and rarely applied to the telegraphone type of recorder. However, from that date on until the mid-1950s it was to play a massive part in turning a declining technology into a brilliant new era. The dark years of World War II were also approaching to produce a remarkable dichotomy in recording media. In this article the story advances to 1945.

The combination of World War I and mismanagement of the technical development of the Telegraphone, brought about the demise of the Poulsen companies by about 1918. From then on there are only passing references to magnetic recording in the literature, mostly connected with Poulsen models or slight variants of them. As mentioned in Part I of this series, it was Kurt Stille who revived interest in magnetic recording and this through the medium of the Dailygraph, later developed into the Textophone ${ }^{-6}$, and a steel tape machine originally conceived for synchronized film sound track.

In Britain, Stille's ideas were exploited by Ludwig Blattner, who, according to a contemporary account. ${ }^{27}$ was a small, lively man with a keen showman's mind. He , with his engineers, developed a machine called the Blattnerphone, an early model of which was used to provide synchronized sound for demonstration films. These films were used as part of a sort of "circus show" where a public audience would come to see the "talkies" and in the intervals Ludwig Blattner, also a keen dancer, would pull ladies from the audience to dance with him on stage to recorded music from the Blattnerphone!

More seriously, the BBC took an interest in these machines and by 1931 at least one had been bought and installed at Savoy Hill (Fig. 1). This was a machine that used steel tape 6 mm wide running at a speed of 1.5 metres per second with a playing time of 20 minutes. Since the drive was by d.c. motor, it suffered from wow and speed drift, which had to be corrected by operating a rheostat and observing a stroboscope attached to the capstan.

Pressure was increasing within the BBC to provide an Empire Service and since the government of the day had taken so long to produce a decision to allocate

Fig. I. An early 6 mm Blattnerphone machine installed in Savoy Hill in 1931. (Courtesy BBC).
funds for the capital investment, the BBC took an independent decision to finance the initial stage and open service just after Christmas 1931. Since the longdistance transmissions had to be timed to obtain reasonable hours of receptionusually early evening local time-broadcasts were beamed by using directional aerials, with the transmitters switched to
each aerial at two hour intervals. Thus, to enable a programme broadcast to Australia to be heard in Canada the material had to be available for repeat. Disc recording had not been used in the BBC up to that time, and in any case the playing time was rather limited. The Blattnerphone seemed to provide just the right answer.

Fig. 2. A Marconi-Stille recorder installed in BBC Maida Vale studios from 1934.

Fig. 3. The Stille erase head assembly showing the saturating fux fields.

Fig. 4. The record head fux field of a Marconi-Stille machine.

Having pointed out the deficiencies in the 6 mm Blattnerphone, the BBC then encouraged an engineer, von Heising of the British Blattnerphone Company, to develop a machine meeting the BBC requirements ${ }^{28}$. After only three months, two prototypes were produced and installed, first at Savoy Hill and then at Broadcasting House. Further technical details on these and later machines follow, but for the moment, suffice it to say that the speed stability was improved and tape width reduced to 3 mm . Apart from the somewhat dangerous operating conditions, the steel tapes were also difficult to edit.

Nevertheless, it was obvious that this represented somewhat of a challenge to the engineers of the day, since several magazine programmes were broadcast during late 1932 and in 1933. One of these included a composite programme of the 1932 Economic Conference in Ottawa which was compiled from seven miles of recorded steel tape ${ }^{29}$. However, the fact that steel tape was a new recording medium coupled with the prospect of being able to erase the tapes made it unreliable, in the minds of the BBC, as a source of archival recordings. What confirmed this thought was that part of the first Christmas Day, 1932 feature programme was accidentally erased. Godfrey ${ }^{29}$ goes on to say that subsequently arrangements were made, with the British Homophone Company, to record highlights onto disc from Blattnerphone tapes, the signal being fed from Maida Vale to Kilburn by telephone lines. He also remarks that this must have been the first time discs were produced from magnetic recordings.
Shortly after 1932, the Marconi Company bought rights in the Blattnerphone machine and produced a slightly lighter version which was mounted on a wooden table. By 1934 this, however, was
superseded by what surely must have been one of the largest audio magnetic recorders ever - the Marconi-Stille machine. This was mechanically very sophisticated and six were ordered and installed in Maida Vale from 1934 (Fig 2). Two more were added during the war and these machines were in constant use during this period and after, the last one being taken out sometime around 1950.

A fascinating tale is told of one of the early Blattnerphones. This machine was one of the original two 3 mm recorders installed at Savoy Hill and as part of the move to Broadcasting House they had to be shifted overnight. It had just been connected, though not tested, when a telephone call came through to the tape room to get a machine going, whatever it took. The switches were thrown without further ado and with, it would seem, a good deal of finger crossing, to record an historic interview with Amelia Earhart. The date was May 21,1932 , the very day she landed after an epic flight across the Atlantic.

History was to repeat itself since during 1939 it was resurrected from the embryo BBC museum to be the first tape machine installed at the dispersed BBC wartime location in Worcestershire. Once again, the same engineer, with other colleagues, had hardly completed the installation when they were told to get the machine going, this time to record the Prime Minister. The date was September 3, 1939 and the Prime Minister was Chamberlain broadcasting the declaration of a state of war between Britain and Germany ${ }^{30}$.

This self-same machine was again resurrected to record some items for the 50th Anniversary of the BBC and now rests in a well earned retirement at Bristol City Museum, awaiting location in a new gallery.

Technical specification

The second generation Blattnerphones were driven with an a.c. synchronous motor which improved speed stability. Since this was an era before the adoption of a.c. bias, the tape was erased and biased with d.c. set from preset controls on the amplifier rack. The replay amplifier was a standard BBC type A amplifier ${ }^{31}$, modified to permit an equalization circuit to be connected to the grid of one of the valves. A power output stage, capable of giving up to 10 W , provided theloudspeaker monitoring facility. The microphone and head-driving amplifier were specially designed for the job. The Blattner machines were only fitted with three head block assemblies, the later Marconi types having five, the reason for which was not at first obvious to the author. Contact was therefore made with the engineer mentioned in the previous anecdotes, R. C. Patrick, for an explanation. It would seem that the idea originated with Patrick, who at that time was working in BBC Research. Marconi had just taken over the licence to produce the machines and had asked the BBC, as largest users of Blattnerphones, what improvements could
be made.
Editing of steel tapes was then quite common but unfortunately the actual edits, which consisted of a soldered joint, destroyed the knife-edge pole pieces of the record and replay heads. Patrick suggested that two standby heads, one record and one replay, were fitted which during operation of the machine were left out of contact with the tape. After the passage of an edit, the spare heads would then be quickly brought into contact and the damaged heads opened to permit replacement of the spring-loaded pole pieces and wait for another edit!

Of the three basic types of head assembly used, one was erase, one record and one replay. The design consisted of two simple pole pieces, solenoid wound, one on either side of the tape. The erasehead pole pieces had a flat contact surface with the tape and were made of Stalloy, also used for the record head. The assembly could be hinged open to facilitate threading.

Erasure was by saturation magnetization of the tape ${ }^{31}$, illustrated in Fig. 3. Briefly, a direct current of about 20 mA was passed through the coils connected in series. When the tape approached from the left, the field h_{t} applied, the strength being above tape saturation as it passed under the first pole piece. There then followed a reversal of flux under the influence of field h_{2} and finally another reversal caused by h_{3}. The tape was left in a saturated state in the direction of this field.

The record head was of similar construction, though the interchangeable pole pieces were this time shaped to a knife edge to improve short wavelength performance. Of the alternative arrangements possible, single pole piece or double narrow stagger, double wide stagger or double pole piece with one being idle, the BBC adopted the double pole narrow stagger arrangement (Fig. 4).

Again, the coils were connected in series and a 4 mA direct current bias applied with the signal. Here the tape saturation field h_{1} was reduced by field h_{2}, restored to saturation by h_{3} and finally subjected to the demagnetizing influence of h_{4}. Since h_{4} was also modulated by the signal the remanent flux in the tape followed the current fluctuations in the head.

Finally, the replay head used by the BBC. had only one pole piece, made of Permalloy, since the setting of two pole pieces, which produced better highfrequency performance, was too critical for practical purposes.

The actual tape deck of the MarconiStille machine represented a considerable advance on early models with the tape drive being achieved through three motors. Tape was drawn off the feed spool by drive No. 2 and fed into a box reservoir

Fig. 5. Tape drive system for the MarconiStille machine.

Fig. 6. The first model Magnetophone shown at the Berlin Radio Exhibition, August 1935.
where a loop would build up. When the earthed loop contacted a metal surface at the bottom of the box the bias was removed from the grid of a thyratron and a relay in the anode operated, to switch a resistance into the motor circuit, slowing the motor down.

The tape was drawn from this reservoir by a capstan drive, which in turn fed a loop of tape into a second, larger reservoir. Again, when the loop of tape contacted the bottom of a reservoir a thyratron operated relay would remove resistance from the winding motor circuit speeding the motor up.

Despite sterling service and a surprisingly good performance for its day, disc recording gained the ascendancy during the World War II and after 1947, the impact of plastic based tape was to sound the death knell for this remarkable machine.

Recording in Germany

Going back to the late 1920s the seeds were being sown, in Germany, of a new-
old idea which, in later years, was to revolutionize the art of magnetic recording. This was the revival of the idea of coating a flexible insulated base with a finely divided magnetizable substance. An independent engineer from Dresden, Fritz Pfleumer, was struggling to develop both a recording tape which had a flexible insulated base with a magnetizable surface and also a suitable machine. Presumably his funds and resources were too limited, since although he had secured a patent ${ }^{32}$ for such a tape (filed in February 1929), by 1930 he soon after sought the help of a German electrical company Allgemeine Elektrizitats Gesellschaft of Berlin (A.E.G.).

It is not too clear just how good a chemist Pfleumer was, since his early patent sounds rather more like a recipe for a pudding than a tape coating! In the introduction, he acknowledges that there prior inventions regarding the use of magnetizable substances on a flexible base but then goes on to describe the methods for his type of tape. I quote, ". . . a powder of soft iron is mixed with an organic binding medium such as

dissolved sugar, molasses or the like, which is then dried and finally caramelized or carbonized, that is, the carbon chemically combined in the iron by heating. The steel powder so produced is then, while in a heated state quenched in water or other liquid, dried and again powdered. The use of such a material has for its object that phonograms are thereby obtained which last many years without loss of strength of sound."

He went on to suggest that this powder could be then mixed with a water-insoluble binder and coated onto paper or cellulose type films. Also in the patent he suggests the coating of sound stripes on moving picture film. Several alternative magnetic materials were included in the specification, such as nickel-iron alloys, ferrosilicon or iron-hydrogen compounds. At least one reference ${ }^{33}$ indicates that Pfleumer did succeed in making paper tape, and also one coated on a cellulose hydrate film.

Fortunately for Pfleumer, A.E.G. were very interested in the proposition, but very soon realized that specialists would have to be used to manufacture a suitable tape. They chose I. G. Farbenindustrie Aktiengesellschaft of Ludwigshaven. This company specialized in the production of a wide variety of chemicals including fast opaque pigment dispersions and carbonyl iron used in the manufacture of loading (Pupin) coils for the telephone system.
Hermann Bücher of A.E.G. was soon in contact with a brilliant physical chemist at I. G. Farben, Wilhelm Gaus, who readily responded to the proposals and set to work on a suitable tape. The pace thus far seemed to have been a little slow from Pfleumer's first ideas, but now it increased-though not without quite a few problems, both technical and in company politics.

Some eighteen months after the initial approach Gaus reported back to Bücher that progress was good having received favourable reports on the quality of the first tapes delivered to A.E.G. In return, A.E.G. suggested that their machine was nearing completion and should be ready for launch in 1934 at the autumn Radio Exhibition in Berlin. With this air of optimism circulating, the two companies prepared for a grand launch. Designers at Ludwigshaven produced an exhibit which ran riot with ideas of the potential at domestic and broadcast level.

In July 1934, a decision to produce the first 10,000 metres of tape was taken, and by August this was in the hands of A.E.G. A further 40,000 metres was to be produced in time for the exhibition which was to be held from 17th to 27th August. With time getting short, internal politics started to show, since press releases and a prior announcement to a meeting of the TechnischLiterarische Gesellschaft du Berlin showed considerably greater restraint than the designers of the Ludwigshaven exhibit. Here an emphasis was laid on the speech recording aspect of the invention, rather than on music. Someone had suggested that any flaws in the performance would damage the prospects of the invention if exaggerated claims had been made initially. So, the plan was to underplay the potential, but as
events were to show, this sudden pessimism was the precursor to real problems. A joint meeting of management from both companies, was held one week before the exhibition and demonstration given. The result was that the recorder was withdrawn, delivery of tapes stopped and the press information suppressed as far as possible.

The trouble was two-fold, first that the prototype machine made in breadboard form, suffered from amplifier instability when condensed into a practical cabinet. Second, the performance did not come up to that of the competition. Remember, the Marconi-Stille and its predecessors had been in practical service in broadcasting for at least two years and similarly, in Germany C. Lorenz had introduced the StahltonBand Maschine ${ }^{34,35}$. This was a steel tape machine using Stille's principles, but considerably smaller than the British versions having a frequency response up to 5 kHz . The best achieved by the prototype A.E.G. machine was 3 kHz at a tape speed of $1 \mathrm{~m} / \mathrm{s}$. In addition the noise performance was hardly up to broadcast standards, so it was natural that there should be much soul-searching before taking any further commercial decisions.

Eight weeks later, the A.E.G. engineers announced that they had overcome the problems and a second demonstration was arranged. The resulting decision was favourable and so development went ahead to finally produce, in the summer of 1935 , a completely redesigned model meeting all requirements and available for the 1935 Radio Show in Berlin.

With a potential success on their hands, I. G. Farben suddenly ran into internal political problems with two of their factories -Ludwigshaven, who had developed and produced the first tape, and Wolfen entrenched in film coating, squabbling over who should mass-produce the tape. Wolfen, by the way, was later to be split, by an Occupying Forces Commission, away from I. G. Farben to become the Agfa tape and film concern-but that is a separate story to be told later. The final decision was delayed until 1938, due to vacillation by the Reichs-Rundfunk-Gesellschraft, (German Radio) on which recording system to adopt. By 1938. Ludwigshaven was so firmly in full production that no decision needed to be taken.

However, this takes us beyond August 1935 and the Radio Exhibition where the first eight A.E.G. machines, now called the Magnetophone, were shown and demonstrated with success, indeed with so much success, they were all immediately sold. The first Magnetophone tape was cellulose acetate, coated with carbonyl iron powder. Since at the time, the steel tape, wire, and direct-cut disc were firmly entrenched in broadcasting it was to be some years of hard selling before A.E.G. was successful in getting the Magnetophone accepted by the German broadcasting stations and during that time several stages of evolution were to occur. The first model (Fig. 6) was to be superseded by the FT2 an elegant console model, and the K3, a portable machine in three parts-deck, amplifier and loudspeaker. These appeared in 1937^{36}
to be followed later by the K4, a broadcast machine made in portable or rack-mounted form. One interesting incident occurred in 1936 during the period of promotion; Sir Thomas Beecham was invited, with the London Philharmonic Orchestra, to go to Ludwigshaven to record the first public concert on magnetic tape. Beecham, being quite interested in recording, accepted and on November 19, 1936 made a tape recording parts of which survive to this day.

However, even he could not have been too impressed with the Magnetophone, since during that season he purchased two German optical sound recorders and had them installed in Covent Garden, where he later made private recordings of his seasons in 1937 and 1938!

Iron powder produced by the carbonyl process was not ideal as a magnetic material for tape since it had low coercivity and the individual particles were still too large to permit high-frequency recording. In addition the particles were spherical, a disadvantage not realized until much later when a study of small particle magnetics was to reveal the advantages of shape anisotropy.

However, there were other promising materials and one of these was magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ suggested in 1934 by Erwin Leher. Some tape was eventually produced using this oxide, but it had rather too high a coercivity which made erasure a problem, and so brown gamma-ferric oxide, still with spherical particles, was eventually adopted.

It was in January 1938 that seal of success was to be set upon the Magnetophone when the technical manager of Reichs-Rundfunk Gesellschaft, Dr. HansJoachim von Braunmuhl gave an announcement at a lecture that the Magnetophone had been adopted by R.R.G. for broadcast service.

References

26. Aldous, D. W. Recording on steel tape. Wireless World June 29, 1939 pp. 611, 612.
27. Aldous, D. W. Private communication with the author.
28. Rust, N. M. The Marconi-Stille Recording and Reproducing Equipment. The Marconi Review. No 46, Jan-Feb 1934, pp 1-11.
29. Godfrey, James W. The history of BBC Sound recording. Sound Recording and Reproduction (B.S.R.A.) Vol 6 No 1, May 1959, p9.
30. Patrick, R. C. Private communication with the author.
31. Godfrey, James W. and S. W. Amos. Sound recording and reproduction. (BBC Engineering Training Manual) Pub. Iliffe \& Sons Ltd. 1952.
32. Pfleumer, Fritz. Brit. Pat. 333, 154. Aug 5, 1930. 33. Zimmermann, Paul A. Magnetic tapes, magnetic powders, electrodes. Vol 4 of series published by the Archives of Badische Anilin-\& Soda-Fabrik AG 1969.
33. G.W.O.H. The magnetic recording of sound. The Wireless Engineer Vol 13. No 151. April 1936, pp. 175-178.
34. "Die neue Stahlton-Band maschine" Lorenz Berichte Jan 1936 p49.
35. "Magnetophon, Universalgerät für Fonanfnahme und Wiedergabe" an A.E.G. catalogue issued Nov. 1937.
36. Hickman, C. N. Sound Recording on Magnetic Tape. Bell Laboratories Record Vol 16, April 1937, pp 165-177.
37. "BBC Mobile Recording equipment" Wireless World Vol 50, No 5. May 1944 pp 133-135.
38. Pulling, M. J. L. B.I.O.S. Final Report No 951.
39. Menard, James Z. FIAT Final Report No 705.

AMPLIFIER
CLAIMS
I was much amused by the letters from Mr Paravicini and Mr Radford in the January issue.

If one accepts that the best equipment from the two companies can look each other in the eye without too much neck stretching, then one must give Mr Rad ford the laurels for reaching this rarefied level with a much lower component count, and hence a better cost/price ratio.

Unfortunately, this does not guarantee success.

The lesson that British manufacturers, whether of amplifiers or motorcycles, have signally failed to learn is that the buying public is notoriously indifferent to specifications.

Lux will win the battle in the shops because, sadly, the most important parameter of all is the shiny knob area.
R. A. J. Glowacki,

London, N.W.3.

RIBBON
 MICROPHONES

John Dwyer's statements with regard to ribbon microphones in your "Microphone survey" in the October 1974 issue would seem to be drawn from references which relate to microphones produced in the 1930s and not of present day manufacture.

Beyer Dynamic have, for the last twelve years, been producing a hand held ribbon microphone. In fact within the range they have three different microphones serving the entertainment industry. All of these are supplied to broadcasting authorities and corporations throughout the world. They are also much in demand within the club circuits where microphones are not always treated very well and the Beyer microphones withstand the rough treatment in this area.

We would like to draw your attention to an extract from a letter we have received from the Revox Corporation of New York.
"I had thought that the English reviewers were somewhat more au fait with current ribbon microphone tech-
nology than their American counterparts, as here in America, I am constantly battling to overcome odious remarks and comparisons made against the ribbon transducer technique.
"It therefore came as some shock to note Mr Dwyer's same old hackneyed statements: to whit: 'The ribbon corrugations provide some control of the tension as well as increasing the mass of the ribbon and making it more rigid: it is still delicate, though, and susceptible to rumble and wind. The ribbon exhibits the worst susceptibility to handling noise.'
" 6
Ribbon microphones tended to be bulky in the past and their delicacy has tended to encourage them being abandoned in favour of the capacitor or moving coil types. They can be used for pressure operation by providing a cavity at the back of the ribbon to provide an acoustical resistance.'
"These damaging remarks, of course, cannot be applied to the Beyer ribbon. However, all ribbons seem to be 'tarred with the same brush' no matter whether they are described on your side of the Atlantic, or mine."

This we feel expresses the views of Beyer and, of course, of the Revox Corporation.
Douglas Ireland,
Eyeline Communications Ltd,
London WC2.

Mr Dwyer replies:

Naturally the ribbon microphone can be constructed in such a way as to make it as good as other types.

The article was intended as a guide to the basic principles of operation of the various types of transducer now in wide use for good quality sound reproduction. All of the various types of transducer have disadvantages of one kind or another if only the basic construction is used. It is obviously true that a well designed unit of any type can overcome its inherent limitations. Nevertheless it is equally true that the cost of doing so may become an added limitation, as may the complexity of the unit so produced, and I think, if I may suggest so, that the simpler a unit is the more reliable it is. This may explain why, on the numerous occasions on which I have visited recording studios, the type of microphones predominantly in use were those either of the capacitor or the moving coil type. Every studio has at least one ribbon, but the occasions on which it is used tend to be rather specialised. I can only rely on the use to which the microphones are put as a guide to their value, though it may be that British recording engineers, like those elsewhere, have been subjected to a propaganda campaign of massive proportions conducted by the makers of capacitor and moving coil types in concert. If that is the case I can only say that I am sorry I have become an unwitting instrument of such propaganda. In addition. I am sure that Beyer microphones mentioned in the letter are every bit as good as Mr Ireland says Beyer say they are. My remarks were not intended to suggest that no ribbon microphone
could be as robust or as rumble-free as any other type, and it would be misleading to suggest that that was what I was saying.

dB CONVERSION
 ON A SLIDE-RULE

The article by Mr Nelson-Jones "Electronic engineers" slide rule" in the February issue prompts me to mention a technique for dB conversion using the LL2 and LL3 scales on a standard slide rule. If " 6 " on the C scale is set opposite " 1000 " on the LL3 (corresponding to $60 \mathrm{~dB}=1000$), other ratios may be converted to dB by reading from the LL3 scale to the C scale; 6 on the C scale is also opposite 2 on LL2 (corresponding to $6 \mathrm{~dB}=2$) so lower ratios may be read from the LL2 scale to the C scale.

Certainly the new rule should be a great deal more convenient, but the above technique may be of use to someone.
R. A. Scott,

Bury St. Edmunds, Suffolk.

Mr Nelson-Jones replies:

I have tried the method suggested by Mr Scott and it is certainly ingenious, but I find it hard to remember which scale is which, and in addition the accuracy is not good. I am sure I would soon get used to the method, but I find it much easier to use the new scale with the A and B scales, and the accuracy is much higher. I had in fact heard of the method before, but had never tried it out until Mr Scott's letter arrived.

EMERGENCY POWER GENERATOR

Congratulations to Mr J. M. Caunter for tackling the power disruption problem (February issue), but I feel that the car dynamo could have been more effectively converted by making use of the principles embodied in the most recent alternators fitted to cars. In these designs it is the rotating armature which is excited by the battery and the fixed stator windings which are used to generate the a.c. This has several advantages: the currents flowing into the armature via the brushes are smaller, and steady, and the armature heat dissipation is lower. The stator, by contrast, being heavily heat-sinked can develop quite large amounts of power, and, since plenty of winding space is available, can be more readily wound for 240 V . In modern car alternators, the regulating equipment is carried within the frame of the alternator, and consists of a power transistor controlling (on/off system) the armature current. The armature current is reduced whenever the output voltage causes a zener diode to conduct, so that the armature current is rapidly pulsed. This method of control, though suitable for battery charging, would not be suitable for a mains-output
alternator, and a voltage-controlled current regulator with a non-pulsed output would be needed.
I. R. Sinclair,

Braintree,
Essex.

Mr Caunter replies:

While I agree with Mr Sinclair that most alternators work on the principles he describes, and there are several obvious advantages to be gained from using this method of construction, his suggestion is not applicable to the conversion of a dynamo for two important reasons.

Firstly, the dynamo has a solid steel yoke and cast-iron pole pieces and is therefore not designed for rotating field operation. If this were attempted, a large amount of power would be lost in circulating eddy currents within the solid stator. The armature, on the other hand is laminated to reduce this loss to a minimum when rotated within the stationary field supplied by the existing field winding. Secondly, since the stator is not of true annular form, the variation in reluctance of the magnetic circuit seen by the rotor as it rotated would produce serious distortion to the output waveform.

The best way to improve the performance of the alternator is to get as much copper as possible into the armature slots. This necessitates using a finer gauge wire to improve the filling factor, and either winding for 240 V in a single winding taking great care over the insulation, or by winding several parallel windings together and operating at a lower output voltage as in the present design. It is quite possible that the output could be increased to over 300 W in this way.

Incidentally, if anyone has been put off the idea of building this generator because of the machining needed to construct the slip rings, and has no scruples about passing a current through the dynamo bearings, the following suggestion passed to me by a colleague may be worth trying. Connect one end of the armature winding to the shaft and the other to all the commutator segments shorted together. With the earth brush removed, the output can now be taken from the alternator casing and the live (insulated) brush output.

A NOVEL CLASS B OUTPUT?

As far as I know all class B output configurations are based on the same principle: two emitter followers are tied together and the circuit is improved, in a more or less elaborate way, by replacing a single emitter follower by a two- or three-transistor circuit in an attempt to approach an "ideal" emitter follower.

An example of this is the Quad 303 which has two triplets in the output stage. Although a very fine amplifier, it exhibits clearly the shortcomings of this type of output circuit, which are: (a) the quiescent current has to be adjusted; (b)

the quiescent current is dependent on the temperature; and (c) too much quiescent current results in a kind of "take over distortion". This kind of distortion is due to a signal current flowing through the resistors R_{1} or R_{2} (Fig. 1), cutting off the quiescent current of the other stage, which results in a voltage shift at the input necessary to keep the output following the signal.

It is obvious that crossover distortion decreases with increasing bias current. From the facts mentioned before it is also obvious that an increasing bias current causes an increasing "take over distortion". So, with this type of output there is an optional value for the quiescent current.
It is possible to overcome all these shortcomings by using the circuit shown in Fig. 2. This circuit has none of the limitations mentioned in (a), (b) and (c). The quiescent current is set at 15 mA by Tr_{7}. (Later on 5 mA proved to be sufficient.) For d.c. this transistor forms a constant current source as long as diode D is not forward biased. For small signals $T r_{1}$ and $T r_{4}$ can be regarded as a long-tailed pair without a tail, for positive signal the upper half ($\operatorname{Tr}_{1}, T r_{2}, T r_{3}$ and $T r_{4}$) is active behaving as a super emitter follower. The same for negative signals,
but this time with $T r_{1}, T r_{4}, T r_{5}$ and $T r_{6}$.
Since $T r_{1}$ and $T r_{4}$ are used in both modes of operation and the output resistors are missing, no "take over distortion" is possible.

One advantage is a lower output impedance due to the missing output resistors.
Nico M. Visch,
Rotterdam,
Netherlands.

DIGITAL
 SPEEDOMETER

I read the articles on the digital speedometer by Bishop and Woodruff in the September and October issues with great interest, but I feel that "average speed" is not really the parameter of interest. What one really wants to know is the difference between the elapsed time and the time which should have been taken to travel that distance at a particular speed.
The above comment arises from the fact that one usually knows the distance to be travelled and a reasonable average speed which one can hope to maintain during the whole journey. What is required is an indication of how much time you have in hand or how far you are behind the clock at any time during the journey. This is the information provided mechanically by the Halda Speed Pilot used by many trials drivers.
I would thus be interested in a modification to the design of the average speed part of the project to substitute an electronic equivalent of the Speed Pilot. This only requires multiplying the actual distance travelled by the inverse of an

Fig. 2
average speed set in by hand and subtracing this from the actual time elapsed, to arrive at a plus or minus indication of the time in hand.
G. B. Weston,

Wooburn Moor,
Bucks.

SOUND BROADCASTING DYNAMIC RANGE

There has recently been comment in the press ${ }^{1,2}$ on the undesirability of a large (but relatively natural) orchestral dynamic range, as broadcast by the BBC . The opinion expressed is that a lightly compressed programme is unsuitable for domestic loudspeaker reproduction. Thus a reduction in transmitted dynamic range is demanded. Such a step would be regressive and could not be easily compensated for by those who have the facilities to appreciate a natural dynamic range.

My suggestion is that domestic amplifiers should incorporate a switchable dynamic range compressor. Thus the transmitted dynamic range could remain high, and those people (including myself, at times) who require music at reduced dynamic range could then adjust the compression as necessary, while retaining the option to appreciate the full dynamic range.

It is well known that simple compressors are unsatisfactory on high-quality equipment-manufacturers would be expected to fit circuits and controls appropriate to the quality of the rest of the equipment. It is my belief that most people who demand an increase in compression would not notice the transient distortion which automatic control introduces. This innovation would also encourage the record companies to decrease their compression.
J. M. Hughes,

The University,

Nottingham.

References

1. Angus McKenzie, Hi Fi News and Record Review, January 1975, p. 107.
2. Tim Souster, "The Mike Oldfield concert", The Listener, January 23, 1975.

TWIN VOLTAGE STABILIZED POWER SUPPLY

Mr Linsley Hood is to be congratulated on an excellent piece of writing and a very nicely conceived design ("Twin voltage stabilized power supply", January issue). Nevertheless there are one or two points about which I am not entirely happy, and on which he may care to comment:

1. An output smoothing capacitor has been used, of $32 \mu \mathrm{~F}$. This is far too big since it will make nonsense of the currentlimiting under conditions of initial connection (i.e., the current-limit won't work
until the capacitor has discharged its surplus coulombs into the luckless load). In theory there is no need for an output smoothing capacitor at all: in practice one will probably be found necessary to maintain stability, but it should not need to be greater than $1 \mu \mathrm{~F}$ or so.
2. I am not at all happy about the 12-volt reference supplies. As Mr Linsley Hood rightly points out, the overall performance of the whole circuit depends basically on the stability of the reference voltage; and the simple series-fed zener which he uses is not really good enough. A further defect is that he has chosen a 12 -volt zener, and this will have quite a large voltage/temperature coefficient. Three possible solutions to these defects present themselves: (a) change the zener voltage to 5.6 , which is a zener with practically zero temperature coefficient; (b) use two zeners in series $(8.2 \mathrm{~V}+3.9 \mathrm{~V}$, say) so that their temperature coefficients, which of course will be of opposite sign, cancel to near zero; (c) replace the zener with a suitable proprietary potted regulator.

Solutions (a) and (b) have, apart from the stated advantage regarding tempera-ture-coefficient, no other virtues. In fact they also have a number of fairly obvious drawbacks. Solution (c), on the other hand, is ideal-potted regulators are cheap (Signetics, for instance, do a very high quality one for 67 p); their stability, both long and short term, is excellent; and the external circuitry with them is not only simple but allows for a precise adjustment of regulated voltage. In short, a suitable choice of potted regulator provides such an obviously ideal reference source for Mr Linsley Hood's excellent design that I cannot for the life of me see why he has failed to use it!
J. F. K. Nosworthy,

Cranleigh School,

Surrey.

Mr Linsley Hood replies:

I am grateful to Mr Nosworthy for his kind letter and his helpful comments. To take his second point first, the suggestion of replacing the zener stabilization of the regulators appears to be an excellent one. I only wish I had thought of that idea myself! However, the intention of the design in its published form was not to provide a very high degree of precision and the simple arrangement shown was adequate in practice.

On Mr Nosworthy's first point, concerning the size of the output capacitor, and the magnitude of the energy stored in this, the answer is not so simple. In practice, all engineering design is a matter of compromise between conflicting requirements; between performance and economy of means; between versatility and simplicity. Depending on the design specification or the order in which the designer places his priorities, so the nature of the design which will be evolved.

Because, in this instance. I was prepared to accept the use of a $32 \mu \mathrm{~F}$ output capacitor, it became practicable to use a relatively simple loop stabilization con-
figuration, having a straightforward 20 dB / decade roll-off in open-loop gain and a good gain and phase margin with a wide range of output load reactances coupled with a very high d.c. stabilization factor. The use of a smaller output capacitor would have demanded a lower open-loop gain and a flatter open-loop frequency response, and a different balance between the conflicting requirements of source and load ripple rejection.

LOW-COST PRACTICE ELECTRONIC ORGAN

Electronic organs have continued to improve and prices are still competitive. In fact the "pop" enthusiast who is happy with a one-octave pedalboard is well catered for. However the "straight" organist who wishes to practise at home and needs two manuals and a 32 -note radiating and concave pedalboard to RCO dimensions has much less choice and faces a much higher outlay. A low-cost practice instrument is therefore proposed, on which one manual and the pedalboard are monophonic, i.e. capable of playing only one note each at a time. If the other manual is polyphonic (i.e. chords can be played on it) much of the classical repertory can then be practised on it, including Bach's trio sonatas. Much "pop" music can also be played on it.

Monophonic manuals already exist and the u.j.t. gives single-resistor tuning though not an ideal waveform; other circuits are available ${ }^{1}$ and tunable i.c. tone generators are now on sale. No monophonic pedalboard with 30 or 32 notes has yet been marketed, though a separate one-octave pedalboard is on sale. It would appear desirable to market a 32 -note monophonic pedalboard which could be used in conjunction with instruments lacking a pedalboard, and/or incorporated in the low-cost practice instrument proposed. In either event the pedalboard might be arranged to tip on end when not in use. 32 -note pedalboards are priced at $£ 40$ or more without circuits, and it might prove cheaper to mould the pedals etc. in plastic. A more drastic price reduction might perhaps be achieved by moulding the whole pedalboard in flexible plastic. The further alternative of moulding the whole pedalboard in rigid plastic and relying on proximity detectors to actuate the note played seems unlikely to find favour.

It is possible that a further reduction in cost might be achieved by limiting the polyphonic manual to a maximum of four notes at a time, as described by J. Asbery ${ }^{2}$; other methods might be developed for selecting from four tunable oscillators, e.g. by the interruption of light beams, but the devices used have of course to be shown to be cheaper than a conventional full range of oscillators. The practice organ might well have a headphone socket (with safe isolation), so that practice can be made inaudible to other people.

Opinions are invited from users as to
whether a low-cost practice instrument is worth developing, and if so what features should be included.
K. J. Young,

61 Madeley Street,
Derby DE3 8EZ.

References

1. Oscillators and networks with singlepotentiometer frequency control, Young, K. J. Electron. Compon., Vol. 12, No. 19, Oct. 1971. 2. Multiphonic organ, Asbery, J. Wireless World, June 1973.

IMPEDANCE OF A
 TRANSMISSION LINE

I read with interest the articles on transmission lines: "Graphical analysis of pulses on lines", in the September 1972 issue and "Transmission lines for the birdwatcher" by P. I. Day in the September 1974 issue. They have been very useful to me, as I could take some hints from them and they led me to a successful method of analytical and graphical resolution of transmission line problems which is different from that of the Smith Chart. I have been able to achieve a thorough knowledge of the Smith Chart, and it seems to me that it cannot help to solve the problem of matching a transistor to a line without a stub, as suggested in the second article. The problem in fact is to find the impedance of the matching line, and its length, and it is impossible to properly enter into the Smith Chart if the impedance of the line is unknown.

I am sending the resolution of the first part of that problem which may also help in the use of the Smith Chart to solve many other problems.

$$
R_{o}=\sqrt{R_{i} R_{t}-\frac{\overline{R_{i} X_{i}^{2}}}{R_{i}-R_{t}}}
$$

In the transistor-matching circuit of the example in the article ($R_{i}=50 ; R_{t}=$ $5+j 5$;) the impedance is 14.9 and the length 0.193λ. I think the formula is original, and hope it will be useful.
Romolo Aratari,
Gioia Dei Marsi,
Italy.

Mr Day replies:

Sr. Aratari has obtained a result which certainly enables one to enter directly the Smith Chart, but he is incorrect in assuming that the Smith Chart cannot be used to determine the line impedance. There is a very simple construction by which we can find the impedance of a line needed to transform from one complex impedance to another. Obviously the situation he describes when we are transforming to a resistance is a special case of the general construction.

Basically we rely on the fact that a circle centred on the Smith Chart real axis can be transformed by a change of normalizing impedance to a circle anywhere on the chart axis. So to match $5+j 5$ to 50 ohms, as in the example, a possible procedure is as follows.

Choose any normalizing impedance, say 10 ohms, then the normalized impedances are $r_{t}+j x_{t}=0.5+j 0.5$

$$
\text { and } r_{i}=5
$$

Enter both points on the Smith Chart and construct a circle passing through both with its centre on the axis. The circle intercepts the axis at 5 and 0.45 so the required line impedance is

$$
10 \sqrt{5 \times 0.45}=15 \mathrm{ohms}
$$

To find the line length the simplest method is to re-enter the Smith Chart using 15 ohms as the normalizing impedance. The original choice of normalizing impedance is completely arbitrary, but greater accuracy is obtained the nearer the circle is to being central.

The constructed circle must not intersect the chart boundary. If it does then the simple matching is insufficient: this condition is identical to the requirement that R_{o} be real, so R_{i} must lie outside the range $R_{t} \rightarrow R_{i}+X_{t}^{2} / R_{t}$.

Unfortunately I am not aware of any references covering the use of the Smith Chart in this off-centred mode, but undoubtedly they must exist somewhere in the technical literature.

ELECTROLYTIC CAPACITORS

I was most interested to read the survey on capacitors by Mr R. A. Fairs (December issue) and feel that the presentation was extremely useful. There is, however, one criticism which I would offer on his article, where he refers to the practice of etching aluminium foil in electrolytic capacitors (see p.512). The point is that etching does not increase the permittivity of aluminium oxide, which is generally between 7 and 10 . Eiching is applied to the base aluminium foil and this can increase the surface area by up to three times that of a plain foil. The oxide layer is then formed over the etched foil, resulting in the subminiature capacitors which we see today.

The etch factor and permittivity "con-
stants" can be better recognized when the formula for a capacitor is examined.

$$
\begin{aligned}
\text { i.e. } C_{p F} & =\frac{\Sigma \times A}{4 \pi t \times 9 \times 10^{11}} \\
\text { which becomes } & C_{p F}
\end{aligned}=\frac{0.0885 \Sigma A}{t}
$$

where $\Sigma=$ permittivity, i.e. $7-10$ for aluminium oxide, $A=$ the area of each plate in sq.cm, and $t=$ distance between plates in cm ; (in the case of electrolytic capacitors this is the thickness of the oxide layer).

The question of etched foil capacitors being unable to withstand high currents is not entirely correct as multi-tab internal connections ensure that the high peak and/or ripple currents can be applied. Certain limitations to ripple currents do exist with regard to low $C V$ products, due to the dissipation of heat (generated by the $I^{2} R$ loss inherent in the electrolyte and connections) from the surface area of the can, but, in the main, etching of the foil only marginally degrades the tangent of loss angle $(\tan \delta)$.

P. D. Habermel,

Mullard Ltd,
London W.C. 1.

Mr Fairs replies:

The statement concerning the increase in permittivity of etched aluminium foils was not entirely correct. The point here is that, although etching increases the effective area of the foil, it does not alter the thickness of aluminium oxide coating applied after etching has taken place.

In the early days of manufacture of etched aluminium electrolytic capacitors, the aluminium oxide coating may have been inconsistent due to imperfections in the etch; this explanation would support my statement on this matter, the material for this part of the article being drawn from several research papers on this topic.

I do take Mr Habermel's point on this "increase" in permittivity and support the arguments he gives showing that etching does not cause an increase in permittivity of the aluminium oxide in present-day manufacture of electrolytics.
As Mr Habermel points out, the current rating of etched foil electrolytic capacitors is only slightly different from plain foil types. My statements on this matter were not intended to deter any would-be purchasers of etched film capacitors (which are usually adequate for almost every application) but merely to point out the design limitation that exists between the two types. It was unfortunate that space in the article did not permit a more fuller discussion on the differences between the two types of capacitor.
There is not much I can add to Mr Habermel's informative letter except that one can argue a slightly greater dissipation factor in etched film electrolytics due to tortuous paths in the etched film followed by the oxide layer: this argument can be considered trivial in present-day technology.
I thank Mr Habermel for his kind comments and his interest in the article.

If you bought a Shure M55E cartridge in. say. 1970...

It's almost certainly time you bought a new stylus if you have not already done so.
Although the stylus tip is a finely polished diamond, wear cannot be eliminated entirely and a gradual, perhaps imperceptible, deterioration in performance has taken place since your system was installed.
Fit an N55E stylus to restore the performance to the original standard or consider replacing the cartridge to upgrade the performance of your system. Why not ask Shure Electronics Limited for their recommendation?

Shure Electronics Limited

Eccleston Road, Maidstone ME15 6AU Telephone: Maidstone (0622) 59881

I am at present using
\qquad
Cartridge
Amplifier

Name

Address

Please recommend the best Shure cartridge to upgrade my system.
$\longrightarrow \square \square \square$

The quality of EMI Colorline cable television equipment is proved daily in systems bringing high quality television to hundreds of thousands of people-particularly in Europe.

Now EMI introduces a new range of modular VHF network amplifiers offering full two-way facilities.

The new range-the Colorline RE1000 serieshas a basic forward bandwidth of $40-300 \mathrm{MHz}$ with optional reverse band-widths of $5-30 \mathrm{MHz}$ or $5-100 \mathrm{MHz}$. At the same time EMI also introduces a unique multi-channel VHF/UHF Distribution Converter. It enables up to seven channels to be converted from a VHF trunk network into the UHF bands for local distribution.

This new equipment, complemented by our Colorline RE900 series of VHF push-pull equipment and by the ME 690 modular series of VHF/UHF

MATV equipment provides the systems designer with an even greater variety of options to meet virtually every requirement of VHF and UHF cable distribution.

As pioneers in the development of high definition television, EMI has accumulated nearly forty years experience in every aspect of television broadcasting-embracing hardware, software and practical operating 'know-how'' This unique breadth of experience makes us highly competent to help you. Contact us at the planning stage.

That's what we're in business for.

EMI

EMI Telecommunications

A member of the EMI Group of Companies.
International leaders in music. electronics and leisure.
E.MI Telccommunications Division. EMI Limited 252. Blyth Road. Hayes. Middx.. England

Tel 01-573 3888 Telex 25145

Noise-confusion in more ways
 than one

2-Noise temperature and noise generators

by K. L. Smith
University of Kent at Canterbury

In part 1, temperature was shown to play a large part in discussions about noise. In this part the noise temperature concept is discussed more fully, together with methods of measurement at low frequencies using a noise generator.

If a resistor at room temperature is connected across the input terminals of an amplifier of bandwidth $B(\mathrm{~Hz})$, the available noise power $k T_{0} B$ is amplified by the gain G_{A}. This means that the output power from the amplifier is $G_{A} k T_{o} B$. The noise power added by the amplifier must also be taken into account. If this amplifier contribution is $P_{N a}$ at the output, it can be added to the above expression directly, because noise powers from different sources can simply be summed if they are unrelated. The total available output noise power $P_{N O}$ becomes $G_{A} k T_{0} B+P_{N a}$ as shown in Fig. 5(a).

This is the point at which we think up our first bit of convenient fiction. We imagine that the amplifier is completely noiseless and account for $P_{N a}$ by a (now fictitious) extra noise power available at the input terminals. So we write $P_{N a}=G_{A} k T_{e} B$. By this dodge we can replace a noisy amplifier by a noiseless equivalent, Fig. 5(b), whose output is

$$
\begin{gathered}
P_{N O}=G_{A} k T_{0} B+G_{A} k T_{e} B \\
P_{N O}=G_{A} k B\left(T_{o}+T_{e}\right) .
\end{gathered}
$$

The whole thing is equivalent to an input source resistor at a temperature of $T_{o}+T_{e}$ connected to a noise-free amplifier, where T_{o} is the room temperature of the actual

Fig. 5. It is more convenient to replace a noisy real amplifier (a) with a noiseless one (b), and account for the noise by inventing a fictitious noise temperature T_{e} at the input.
resistor at the input terminals ($=290 \mathrm{~K}$) and T_{e} is the effective input noise temperature of the amplifier. Like available gain, T_{e} varies with input matching conditions, so there is not a unique T_{e} for every system. It will depend on how the system is used. An amplifier with a low T_{e} is better noisewise than one with higher temperatures. other things being equal. The idea of T_{e} is a little abstract because it is not a physical temperature (the input of an amplifier with $T_{e}=4000 \mathrm{~K}$ would not be glowing white hot!).
One or two points arise at this stage. The first is that we are not limited to a source temperature of T_{0} in every case. Thus the noise power output for a receiver whose effective input temperature is T_{e} and connected to an aerial whose aerial temperature is T_{a} is

$$
P_{N O}=G_{A} k B\left(T_{a}+T_{e}\right)
$$

Another point arising is to do with the bandwidth $B-\mathrm{I}$ have been assuming that we know all about it. B is not the normal $3-\mathrm{dB}$ bandwidth used by radio engineers. but is the noise power equivalent bandwidth and involves notions about the available gain-bandwidth product. $\left(G_{A} B\right)$. I have relegated these ideas to a brief discussion in Appendix B.

There is another very easily overlooked complication and that is the possibility of more than one channel allowing signals and/or noise to pass through the system. An obvious example is the superhetrodyne receiver with a response at the image frequency. I often wonder how many experimenters measure the noise perform-
ance of their v.h.f. converters, oblivious of the fact that they have a wide open channel at the image frequency. Incidentally, this "improves" the (erroneously) measured single-channel noise performance figures. so one should beware of excellentlooking figures on some manufacturers equipment specifications.

A useful concept in connection with the above arguments is that of the operational noise temperature. $T_{o p}$. This is a measure of the overall system performance. A knowledge of $T_{o p}$ enables the all important output signal to noise ratio to be calculated. As an example of how this idea arises, consider a superhet with a gain G_{s} at the signal frequency and G_{i} at the image frequency, as outlined in Fig. 6. The noise bandwidth is usually $B_{I F}$ for all channels, because it is set by the i.f. amplifier. The signal may occupy a bandwidth $B_{s}\left(B_{s}<B_{I F}\right.$ because if the i.f. is narrow it will limit B_{s} to $B_{I F}$). The total available output noise power from this receiver will be

$$
\begin{gather*}
P_{N O}= \\
k\left(T_{s}+T_{e}\right) B_{I F} G_{s}+k\left(T_{i}+T_{e}\right) B_{I F} G_{i} \tag{3}
\end{gather*}
$$

where T_{s} is the temperature of the aerial. signal generator etc., at the frequency of the signal channel, and T_{i} is the same quantity but at the image frequency. If the temperature is constant over the two channels, then $T_{s}=T_{i}$.
The question arises. how do we handle $P_{N O}$ for signals to noise ratio purposes? The answer is that if the available output signal power is $P_{\text {so }}$, the signal-to-noise ratio is given directly by $P_{s o} / P_{N o}$, a little thought shows this to be the important

final parameter in any data link or communications system. The effect of the noise power is as though all of it is concentrated into the signal bandwidth B_{s}. Therefore we define another temperature, the operating noise temperature, $T_{o p}$ as $P_{N o} / k B_{s} G_{s}$.
Notice the particular gain bandwidth product used. You will be pleased to know this is about the limit of abstract thinking we need, so we will soon be back to more concrete things!) Substituting for $P_{N o}$. by using equation (3), and assuming for simplicity that $T_{s}=T_{i}$ and relabelling them T_{a}, the aerial temperature, operating noise tempetature becomes

$$
\begin{aligned}
T_{o p} & =\frac{\left(T_{a}+T_{e}\right) B_{I F}\left(G_{s}+G_{i}\right)}{B_{s} G_{s}} \\
& =\frac{B_{I F}}{B_{s}}\left(T_{a}+T_{e}\right)\left(1+\frac{G_{i}}{G_{s}}\right) .
\end{aligned}
$$

Fig. 7. Overall noise temperature of a cascade of amplifier stages can be deduced as. shown here.

This equation offers considerable meat to get one's teeth into. First, it illustrates the rationale of using temperatures in noise discussions. Awkward Boltzmann's constants cancel out and one is left with the various temperatures and parameters of the amplifier only. Clearly, the output signal to noise ratio degrades as $T_{\text {op }}$ becomes larger. The lowest T_{e} should be the aim when designing the equipment and is achieved by noise matching and low noise components in the front end.

Care should be taken to understand the significance of T_{a}. For instance, the signal from a satellite is not enhanced when it is originating from the direction of the sun! (T_{a} shoots up.) Significantly, simple but all too easily-forgotten pieces of work need to be attended to, such as making sure $B_{I F}$ is not greater than B_{s}. If the receiver bandwidth is twice as wide, say as that required to pass the signal, then $T_{o p}$ is doubled. The noise coming in via the image channel increases $T_{o p}$. If $G_{i}=G_{s}$ (as in microwave receivers) $T_{o p}$

Fig. 6. In a superhet receiver there are usually at least two channels through which noise can pass to the output. Unless signal information is also coming in via the image frequency f_{i}, it is always advantageous to reduce G_{i} to the smallest possible value. The "shape factor" of the i.f. bandpass, $B_{I F}$ also has a significant effect on the noise performance.
is again doubled. The receiver designer should reduce the bandwidth to the minimum (B_{s}) and filter out the image, (make $G_{i}=0$) to obtain the minimum operating noise temperature. Then $T_{o p}=T_{a}+T_{e}$.

There are certain wideband signals which are received with a sensitivity advantage if both channels are wide open. Radio astronomical signals are themselves wideband noise powers. This means that useful signal powers are received in both sidebands. In fact the wider the bandwidth of the radio astronomy receiver the more signal power will be received. There is a worsening of signal-to-noise ratio by a factor of two if a double-channel receiver is used to receive a single-channel signal.
If the gain of the first stage of an amplifier or receiver is high, intuition might suggest that noise power contributions by later stages are not significant. Although intuition is not very trustworthy sometimes, in this example it is all right, as the following argument shows.

If we consider the three stages with gains and effective temperatures as shown in Fig. 7 then the output noise power is

$$
\begin{equation*}
P_{N O}=G_{l} G_{2} G_{3} k B\left(T_{i}+T_{e}\right) \tag{4}
\end{equation*}
$$

The noise output of the first stage is the noise power from the resistor times G_{t} plus the contribution represented by $T_{e t}$.

Therefore the available noise output from stage one is $G_{I} k B\left(T_{i}+T_{e l}\right)$. The output from the second stage is its own noise, represented by $T_{e 2}$, plus the input from stage one multiplied by G_{2}. The output from stage two is

$$
G_{2} k B\left[G_{i}\left(T_{i}+T_{e l}\right)+T_{e 2}\right] .
$$

Similarly the output from stage three, which is the final output noise power, is

$$
G_{3} k B\left\{G_{2}\left[G_{I}\left(T_{i}+T_{e I}\right)+T_{e 2}\right]+T_{e 3}\right\}(5) .
$$

Equations (4) and (5) are both expressions for $P_{N 0}$, therefore,

$$
\begin{gathered}
G_{I} G_{2} G_{3} k B\left(T_{i}+T_{e}\right)= \\
G_{3} k B\left\{G_{2}\left[G_{l}\left(T_{i}+T_{e l}\right)+T_{e 2}\right]+T_{e 3}\right\} .
\end{gathered}
$$

Fig. 8. Still an extremely useful noise source for measurement purposes, the saturated thermionic diode is an absolute noise generator. (a) shows a typical circuit using an A2087, (b) is the equivalent' circuit for calculation purposes.

This cancels down to the final simple equation:

$$
T_{e}=T_{e I}+\frac{T_{e 2}}{G_{I}}+\frac{T_{e 3}}{G_{I} G_{2}} .
$$

Notice that the term containing T_{i} conveniently subtracts from both sides. This equation shows that if the first stage gain is, for example, 100 times and the effective noise temperature of the second stage is 300 K , then the contribution to the overall T_{e} by stage two is only 3 K . Usually the third term can be neglected, unless G_{2} is very small. The gain of stage three $\left(G_{3}\right)$ has not entered into the picture. The argument can be extended to any number of stages. The equation is conveniently termed the cascading formula and in effect describes how the various noise temperatures throughout a chain of stages can all be referred to the front-end terminals as a single T_{e}, the system of stages is regarded from then on as noiseless.

Measuring T_{e}

The way in which I have discussed the role of the absolute temperature in noise problems, shows the convenience of dividing the output noise power from a signal handling system into two parts. One part is the noise that comes in with the signal represented by T_{a} and the other is that introduced by the local equipment, which accounts for the T_{e} term. This means that all the various noise powers produced in the local equipment are lumped together under the title T_{e} -whether they originate as thermal noise in the resistors, shot effect in the transistors or valves, flicker noise and so on.

If you have just built a receiver or a
customer has ordered a system to be designed with a stated maximum $T_{o p}$, it is essential to be able to make fairly accurate measurements of T_{e}, so that you know what you are talking about. The basis for any noise measurements involves generating accurately known noise powers. The standard noise generators are based on physical mechanisms including the saturated thermionic diode, the gas discharge tube and the noise generated in a reverse biased semiconductor diode. Sinewave signal generators can be used as standard power sources, but because they produce narrow band signals, their use in noise measurements involves difficulties interpreting what bandwidths mean and errors are very likely.

Before going on to the construction of noise sources, I will discuss a technique for measuring T_{e}. The following way for determining T_{e} might be termed the ratio method. A noise source with an effective temperature $T_{\text {hot }}$ when it is fired, is coupled into the amplifier or receiver and the output $P_{\text {No(hal) }}$ is noted on a power meter. The noise source is now switched off but still connected to the system. The temperature when the noise source is not fired can be labelled $T_{\text {cold }}$, with a corresponding output power from the system, $P_{\text {Nofcold })}$. It is not necessary to know accurately the actual values of the output powers, only their ratio, A.

As an example, consider the superhet receiver for which equation (3) applies. Putting in the appropriate values for the "hot" and "cold" conditions, gives

$$
\begin{gathered}
P_{N O(h o l)}=k B_{I F}\left(T_{\text {hot }}+T_{e}\right)\left(G_{s}+G_{i}\right) \\
\text { and } P_{N O(\text { cold })}=k B_{I F}\left(T_{\text {cold }}+T_{e}\right)\left(G_{s}+G_{i}\right) .
\end{gathered}
$$

Dividing them gives A

$$
A=\frac{P_{\text {Norfolt }}}{P_{\text {NO(cold })}}=\frac{T_{\text {hot }}+T_{e}}{T_{\text {cold }}+T_{e}} .
$$

From which we get

$$
\begin{equation*}
T=\frac{T_{\text {hot }}-A T_{\text {cold }}}{A-1} \tag{6}
\end{equation*}
$$

All we require to know is $T_{\text {hot }}, T_{\text {cold }}$ and A. The bandwidths, gains and k have cancelled. This straightforward result applies for any system whether there are more channels than two or any other complexities. For best results, the value of A is often chosen to be two (the minimum error occurs near this value).
As usual, the assumptions made should be considered to avoid, or at least understand, errors that might creep in. $T_{\text {cold }}$ is usually taken to be T_{0}, but the temperature of the lab or workshop in which the measurements are made could very well differ by a few degrees from 290 K , and there will be a corresponding error introduced. $T_{\text {hot }}$ must be known accurately for the particular noise source. The matching conditions of the noise source to the receiver or amplifier should duplicate the conditions that will apply in the operational system. It is not certain that the source impedance of the noise generator when it is fired will be the same as when it is cold. Any difference that does exist will introduce an error in T_{e}, but it is difficult to establish any such impedance shift.
The output meter should be a true square-law device with voltage or current. In other words it should be accurately linear as a function of power. Any overloading or non-linearity in the amplifier will introduce errors. For instance, the common f.m. receiver is non-linear for amplitude changes, and cannot be investigated by the above method. (The front end could be checked separately, but we are discussing a.m. noise, which would normally be eliminated in this kind of receiver anyway. In f.m. systems the more difficult f.m. noise has to be considered). Errors also arise at the higher frequencies, mainly because of the usual effects of the stray reactances.

Sources of wideband noise, diode noise generators

One of the most useful noise generators for frequencies up to a few hundred megahertz is based on the temperature limited
diode. The full shot-noise generated by a thermionic diode operated under these conditions can be calculated exactly, but involves fairly complex statistical ideas such as Campbell's theorem. A treatment can be found in reference 9 (see part 1). Pierce derived the shot noise equation very simply but his method lacks the rigour demanded by, purists. It is an interesting derivation and I have included an outline of it in Appendix C. The full shot noise produced on a direct current I_{a} in a bandwidth B, is

$$
\overline{i_{\text {shot }}}=2 e I_{a} B
$$

where e is the charge on an electron.
Because the diode is saturated, the effective source resistance of the shot noise generator is very high indeed. Fig. 8 shows a typical circuit for a diode noise generator with a source resistance, R. The equivalent circuit is also shown. The total available noise power from the generator is the sum of the noise power from the shot source and that from R, which is at the ambient temperature T. The two sources of noise power are not correlated, so that their outputs add directly as we have seen earlier. From Fig. 8(b) the available power from the two current generators is

$$
P_{N}=\frac{\overline{i ⿻}^{2}}{4 G}=\frac{\overline{i n}_{\text {shot }}+{\overline{i^{2}}}^{2}}{4 G}
$$

where the conductance G is equal to $1 / R$.

$$
P_{N}=\frac{e I_{G} B R}{2}+k T B
$$

Excess noise temperature, T_{D}, for a saturated diode is obtained by equating the first term on the right hand side of this last equation to $k T_{D} B$, so that $T_{D}=e I_{a} R / 2 k$. The numerical values of the physical constants, e and k give the value 11,600 for the quotient e / k. Therefore $T_{D}=5800 I_{a} R$. The total noise temperature of the fired source is T_{D} plus the contribution from R

$$
\begin{equation*}
T_{h o t}=5800 I_{a} R+T \tag{7}
\end{equation*}
$$

The cold temperature is simply T, because with the diode off, $I_{a}=0$ and no contribution is forthcoming from the shot noise term. From these considerations we know the values of $T_{\text {hor }}$ and $T_{\text {cold }}$ to use in equation (6). Putting in the quantities gives

$$
T_{e}=\frac{5800 I_{a} R+T-A T}{A-1}
$$

which conveniently simplifies to

$$
T_{e}=\frac{5800 I_{a} R}{A-1}-T
$$

A number of authors have used the ideas of the noise ratio and excess noise ratio. I think we have enough detail from the preceding discussions to illustrate at this point, how these ideas are used. You may recall the definition involves the ratio of the temperature to 290 K or the ratio of the excess temperature to 290 K respectively. The ratios obtained are really
noise power ratios, in which the bandwidth and Boltzmann's constant cancel. Being a power ratio, the results are often expressed in decibels. By dividing the equation above by 290 K we obtain the noise ratio t_{e}

$$
t_{e}=\frac{T_{e}}{290}=\frac{20 I_{a} R}{A-1}-\frac{T}{290}
$$

Often T is taken equal to 290 K (but see my earlier cautionary note); in that instance this equation becomes

$$
t_{e}=\frac{T_{e}}{290}=\frac{20 I_{a} R}{A-1}-1
$$

The excess noise ratio for a diode generator can be obtained from equation (7) by subtracting 290 K from both sides, then dividing by 290 K

$$
\frac{T_{\text {hoi }}-1}{290}=20 I_{a} R+\frac{T}{290}-1
$$

and again if $T=290 \mathrm{~K}$

$$
\frac{T_{h o t}}{290}-1=20 I_{a} R
$$

The diode noise source is very convenient because the temperature and noise ratios are directly proportional to I_{a}, and by just winding up the filament temperature, I_{a} can be set to any convenient values on an accurate anode current meter. (With due care not to burn out the filament of course!)

Ordinary lumped-component circuitry begins to fail as the frequency of operation rises toward the GHz region. The diode noise generator is no exception and errors begin to affect the result when measuring at the frequencies in question. Another effect becomes important at the same time: transit time of the electrons across the cathode to anode space is significant in the hundreds of megahertz range and the shot noise equation begins to break down. To be continued

Appendix B

Noise equivalent bandwidth

Perhaps you have noticed in the discussion so far, I have blandly assumed that G_{A} is "the power gain", without any real attempt to discuss how this quantity varies with frequency. Most amplifiers, whether intended or not, are severely
limited in their frequency response. This means that G_{A} is a maximum somewhere near the centre of the band and drops off towards zero at both ends of the response, except for d.c. amplifiers. If you think of a constant distribution of energy over the frequency spectrum (white noise) then the bandpass function "weights" the contribution in each very small band at points across the response. The total output power is a sum of all these weighted contributions. This is the kind of reasoning we do when finding averages. Fig. B shows an example to make the point clear.
We can imagine G_{A} to stay at its maximum value for a bandwidth B, then drop off sharply to zero at each side. If the width B of this fictitious rectangular bandpass curve is such that the output power is the same as from the actual response, then B is defined as the "equivalent noise power bandwidth". What we have really said is that the area of the rectangular curve is made the same as the area of the actual curve. This gives us a clue about the mathematical approach to writing down the definition. If the available noise power is constant over the band then the available noise power in any small band $d f$, is $K d f . K$ is the constant level. Therefore the available output power is $G_{A}(\rho) K d f$ and the total outpat power is
$P_{N o}=K \int_{\text {bandpass }} G_{A}(\rho) d f$.
By definition, the total output power is also
$P_{N o}=K B G_{A(\text { max })}$
Equating these gives
$B=\frac{l_{\text {bandpass }} G_{A}(f) d f}{G_{A(\text { max })}}$
This is alright if you can do the integration or look it up in tables, but if, as usual, no simple function exists for $G_{A}(f)$, then the integral would have to be solved numerically. Equation (B1) shows that the amount of noise power emanating from the output of a system is proportional to the gain-bandwidth product $B G_{A(\max)}$.
Note that B is not the ordinary "halfpower" bandwidth; a simple exampleshows this to be true by relating the two bandwidths.
Consider the bandwidth to be limited by a series tuned circuit. The reactance at any frequency will be $X=\omega L-(1 / \omega C)$. Using the equation for G_{A} (p.110) available gain is

Fig. B. Area of the shaded rectangle is equal to area under response curve. Height is $G_{A}(\max)$ and width is definition of equivalent noise
bandwidth, B.

$$
G_{A}=\frac{K^{\prime} R_{i n}^{2} R_{g} n^{2}}{\left(n^{2} R_{g}+R_{i n}\right)^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}},
$$

which can be written

$$
G_{A}=\frac{\text { constant }}{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}
$$

where R has been written for $n^{2} R_{g}+R_{\text {in }}$. From this, $G_{A(\max)}$ is constant $/ R^{2}$. At the 3-dB points $|X|= \pm R$ because G_{A} is then equal to $\frac{1}{2} G_{A(\max)}$. This condition enables us to write down the frequencies of the 3-dB down points. From $R=\omega C-(1 / \omega L)$ and $-R=\omega C-(1 / \omega \quad L)$ we get two quadratic equations whose solutions are

$$
\begin{aligned}
\omega_{1} & =\frac{R}{2 C} \pm\left(\frac{R^{2}}{4 C^{2}}+\frac{1}{L C}\right)^{\frac{1}{2}} \\
\text { and } \quad \omega_{2} & =-\frac{R}{2 C} \pm\left(\frac{R^{2}}{4 C^{2}}+\frac{1}{L C}\right)^{\frac{1}{2}}
\end{aligned}
$$

Subtracting gives the frequency difference

$$
B_{3 d B}=f_{1}-f_{2}=\frac{\omega_{1}-\omega_{2}}{2 \pi}=\frac{R}{2 \pi C}
$$

Using equation (B2)

$$
B=\frac{1}{2 \pi} \int_{0}^{\infty} \frac{1}{1+\left(\frac{\omega C}{R}-\frac{1}{\omega L R}\right)^{2}} d \omega
$$

The integral is a "do-able" one, and involves $\tan ^{-1}$ type solutions. Carrying out this solution, B is $R / 4 C$, which means that the relationship between B and $B_{3 d B}$ for a single tuned circuit is $B=\pi B_{3 d B}^{\prime} / 2$. Thus B is somewhat wider than $B_{3 d B}$. The Table shows a few relationships for other band-limiting filters.

Circuit	Relationship
Two cascaded tuned	$B=1.22 B_{3 d B}$
circuits	
Three cascaded tuned	$B=1.16 B_{3 d B}$
circuits	$B=1.11 B_{3 d B}$
A staggered pair	$B=1.11 B_{3 d B}$
A 4-pole Butterworth	
filter	$B=1.05 B_{3 d B}$
A 6-pole Butterworth	
filter	

The noise bandwidth approaches the 3 dB bandwidth more and more closely as the "shape factor" improves. For ordinary i.f. amplifiers with a number of tuned stages, there is very little error if you assume $B \dot{=} B_{3 d B}$.

Appendix C

Shot noise equation

A simple but not very rigorous derivation of the shot noise current equation was ingeniously put forward in J. R. Pierce's paper, "Noise in Resistances and Electron Streams" published in the Bell System Technical Journal, volume 27 (1948). It goes something like this:

Fig. C. Artificial double cathode "diode" used by J. R. Pierce to derive the shot noise equation.

If a diode consisting of two emitting cathodes (Fig. C) has a potential V between them, a current I will pass equal to $I_{V}=I_{0} \exp (e V / k T)$, where I_{0} is the current that passes when $V=O$; that is, by the thermally energetic electrons "bridging the gap". Differentiating gives

$$
\frac{d I_{V}}{d V}=\frac{1}{r_{a}}=\frac{I_{o} e}{k T} e^{e V / k T}
$$

As the mean square noise current expected from a resistance r_{a} is $i^{2}=4 k T B / r_{a}$ and the diode "resistance" at zero volts is $r_{a}=k T / I_{o} e$, it follows that $\overline{i^{2}}=4 e I B$ after substituting for r_{a}. This is the total noise current produced by the special case of two cathodes exchanging current. Because noise powers add, then the mean square current of one cathode is half the value and therefore $\overline{i^{2}}=2 e I B$, which is the shot noise equation.

(To be continued)

Wireless World noise reducer

Next month's issue will contain the start of an article describing the Wireless World noise reducer, an add-on Dolby processor mainly for use with magnetic tape cassette machines. This constructional design, the only one of its kind, has been planned in close collaboration with Dolby Laboratories and will be available from Wireless World in kit form.

The unit includes a stereo Dolby B processor that is switchable for both encoding and decoding. This means that as well as decoding commercial Dolby B cassettes, encoded tapes can be prepared. For recording stereo broadcasts, a switched $\cdot 19 \mathrm{kHz}$ pilot-tone filter is included. And should B-type encoding be adopted for f.m. transmissions, as in the USA, the unit will also decode those. There is another use of the processor. Because of the improved signal-to-noise ratio obtained with the unit, recordings can be made at a lower level that would otherwise be possible. Consequently some of the noise reduction can be traded for a lower distortion level at peak recorded levels.

The Wireless World Dolby processor can be aligned without using additional instrumentation. The circuit board has been designed to include the required alignment facilities- 400 Hz and 5 kHz oscillators are constructed from components in the WW kit, together with a $1-\mathrm{kHz}$ meter calibration oscillator. Full alignment and calibration instructions are included in the article, which starts in the May issue with a description of the Dolby system and its functioning.

HF predictions

Predicted disturbed periods are March 23-28, April 4-10 and 19-25.

Seasonal trend and low solar activity combine to produce FOTs and LUFs which give a restricted choice of time and frequency for reliable day-to-day communication. The charts show that the restriction is severe when both ends of a circuit are in the northern hemisphere.

Seventh Intelsat IV Launch

The seventh in the series of Intelsat IV commercial communications satellites was launched on February 20 after a delay of two weeks from Cape Canaveral.

Final position of the 1400 kg satellite is on the equator over the Indian Ocean. When in position there will be three Intelsat IVs over the Atlantic Ocean, two over the Pacific and two over the Indian Ocean, completing the world-wide network originally planned. Each of these satellites is able to carry approximately 3,500 twoway telephone conversations and 12 television channels. Despite the growth already experienced, the pressure of rapidly growing demands for international telephone, television and data transmission has led to the development of even larger communications satellites. The first of a new series designated Intelsat IV-A, with twice the capacity of Intelsat IV is scheduled for launch in the summer of 1975. The satellites are owned by the International Telecommunications Satellite Organization. Frequency re-use by means of a modified communications subsystem using 20 transponders and a novel antenna configuration with separate antenna beams will aid the capacity doubling of the A series. The opening of the frequency spectrum above 10 GHz to satellite communications approved by the World Administrative Radio Conference in 1971 will eventually provide communications capacity at least five times higher than that available at the presently used frequencies of 4 and 6 GHz .
The delay in launching the most recent Intelsat IV satellite which was scheduled for launch on February 6, was due to the failure of a single electronic component in the spacecraft.

Weather Satellite for Western States

The second in a series of weather satellites, Synchronous Meteorological Satellite-B, was scheduled for launch by NASA from Cape Canaveral aboard a Delta rocket at the end of January.

SMS-B (called SMS-2 in orbit) is to be placed in geosynchronous orbit over the equator at $36,357 \mathrm{~km}$ altitude at 135
degrees west longitude, which is directly south of Sitka, Alaska, and about 15 degrees southeast of Hawaii. From this position it can view the western half of the United States and Hawaii while its sister spacecraft, SMS-1, can view the eastern US from its perch at 75 degrees west longitude on a line with New York City and just south of Bogota, Columbia.

The two spacecraft will be able to keep a 24 -hour watch on the western hemisphere and provide cloud-cover pictures every 30 minutes to weathermen of the National Oceanic and Atmospheric Administration. Each carries a visible and infrared spin-scan radiometer that returns visible light daytime pictures of 0.9 km resolution day and night. This continuous coverage is of special importance for short term phenomena such as the severe storm conditions that precede tornadoes. In addition, the west coast of Africa, breeding ground for hurricanes that strike the Caribbean, Florida, Gulf of Mexico and US east coast areas, will be kept under the surveillance of SMS-1. The primary types of data to be obtained consist of meteorological, seismic and

Copy of Indonesia's national communications satellite, scheduled to be in orbit after mid 1976, is pictured at Hughes Aircraft Company in California.

tsunami information. Both SMS spacecraft also carry a space environment monitoring system that monitors solar particle flux, X-ray emission and magnetic field direction and strength.

The US synchronous orbit spacecraft are expected to be joined, beginning in 1977, by similar spacecraft placed in orbit by the European Space Research Organization, Japan and Russia to form a global network of synchronous orbit satellites The two SMS spacecraft, including all on-board instrumentation cost about $\$ 60 \mathrm{~m}$, the Delta launch vehicles about $\$ 4.5 \mathrm{~m}$ each.

Self-repairing Memories

A technique for the self-checking of a faulty memory on board space-craft* is under development by Intertechnique, a firm best known for its nuclear instruments and minicomputers. The concept was reported at the Large Scale Integrated Circuits Conference in Paris early in December. The self-check of a memory removes the data stored in it so the feature would be of. little value in missiles after they have been fired but could be valuable for satellites. The check can be made after the memory is dumped and its contents transmitted to a ground station. but before it starts to store information again. Intertechnique's concept. which has been patented, is for the memory to check itself at two levels. The lower level is in the basic memory elements, made up of one or several shift registers. These basic elements are grouped together on a printed circuit board along with complementarym.o.s. test and control logic integrated on a custom chip. Each element has a set of control logic and when a test sequence reveals a faulty one, the associated logic. in effect, shunts it out of the shift-register chain. These so-called elementary cards in turn work under control of a "system card" which contains circuits that interface the memory with the rest of the telemetry system plus c.m.o.s. logic to start tests of the elementary cards. If the test logic on one of them is faulty, meaning that reorganization at the lower level can no longer be made, the system logic shunts around the card and reconfigures the memory accordingly. The European Space Research Organization has so far funded the work.
*Electronics International, December 1974. pp.14E, 16E, 18E.

Briefly

The Mariner-Jupiter mission scheduled by NASA for launch in 1977 will be the first deep-space probe to use X-band for telemetry and video transmission.

Skynet II, Europe's first communications satellite has recently been accepted as an operational system by the RAF acting on behalf of the Ministry of Defence.

Deflection amplifier for oscilloscopes

The circuit combines the advantages of a differential output stage and a high-impedance j.f.e.t. input stage. The silicon input diodes form a crude overload protection for the input of the f.e.t. amplifier. Transistors Tr_{1} and Tr_{2} act together as both an amplifier and a level shifter, the quiescent output voltage of Tr_{2} being set by R, to approximately 15 V . This also sets the gain of the amplifier unfortunately. A multi-turn preset was used for this purpose as the setting can be quite critical.
Transistors Tr_{3} and Tr_{4} form a differential output stage enabling an output saving of about 400 V pk -pk. Feedback
is introduced through the 220 ohm emitter resistors and high-frequency compensation is brought about by R_{2} and C_{1}. Resistor R_{3} forms the Y -shift control.

To set up for operation, set R_{2} and C_{1} to their maximum values. Set +15 V at the collector of Tr_{2} using \dot{R}_{1}. Inject a 10 kHz square wave into the amplifier and increase C_{I} to give the sharpest possible corner to the display without overshoot. Then increase R_{2} as far as possible without losing too much of the squareness of the display.
G. A. Johnston,

Stechford,
Birmingham.

Oscillator uses passive voltage-gain network

It is frequently necessary to make a simple oscillator when a limited range of components are available. Most phase sensitive networks used to define the frequency of oscillation have attenuation at zero phase shift. A Wien bridge attenuates three times, a three-stage RC iterative filter 29 times. It is therefore necessary to use an amplifier, but the bandwidth of the convenient 741 is limited and it is a significant item of expense in this context.

Consider the circuit of Fig. 1. When $a=2+2 \sqrt{2}$,

$$
\frac{V_{o}}{V_{i}}=\frac{2}{2 \sqrt{2}-1}=1.094
$$

for zero phase shift and $\omega C R=1$.
It is easy to obtain an output from an emitter follower greater than $1 / 1.094$.

The circuit of Fig. 2 was tried using a super-alpha pair.

An output of $20 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ was obtained. Factor a was fixed at $4.7 \approx 2+2 \sqrt{2}$ as a preferred value.
A $4-\mathrm{V}, 0.2 \mathrm{~W}$ capless pilot bulb was used to stabilize the loop gain to unity, rather than the rarer R 53 thermistor.
W. R. Jackson,

University of Bristol.

Low battery voltage indication

May I add something more to the interesting idea of P. C. J. Parsonage (Circuit Ideas, January 1973).

- The low battery voltage indicator circuit can be modified to work as a high battery voltage indicator, or simply a high voltage indicator, just by interchanging gate and cathode connections of the thyristor. In particular, say a battery voltage is 8.3 V and needs to be charged to 9 V , then the circuit of Fig. 1 can be used. The l.e.d. lights when battery charges to 9 V .

Fig. 2

Fig. 3

- The l.e.d. in the circuit of Fig. 2 lights up when the input voltage is $>$ or $<(V+\Delta V)$, where V is the normal voltage at which circuit is designed and ΔV is the change in input voltage at which I.e.d. lights up.
- The cost of the equipment can be cut slightly by replacing the thyristor with a less costly silicon switching transistor, Fig. 3. This circuit can return to its original state (l.e.d. off) when the voltage returns to its design value.
P. R. K. Chetty,

ISRO,
Bangalore.

Circuit Ideas

Sine oscillator uses c.d.a.

The circuit, new in realization but not in principle, produces moderately low-distortion sinewaves (typically 0.5% t.h.d.) which have negligible amplitude bounce on changing frequency. Further advantages are the ability to alter frequency with a single component and the low cost of the quad differential amplifier (LM3900N).

When the supply is switched on the comparator output initially goes to $+V_{c c} \dot{ }$ after about a second C_{4} has charged and the output rapidly slews to 0 V . This shocks the bandpass filter, formed by the two integrators $I C_{I a}, I C_{l c}$, and the inverting amplifier $I C_{l b}$, and causes it to ring. The resultant sinewave causes the comparator to produce a square wave which

is fed back into the loop to sustain oscillation. Sinewave amplitude is stabilized by virtue of the constant square wave input and is typically $0.25 \mathrm{~V}_{c c} \mathrm{pk}-\mathrm{pk}$, its purity being proportional to filter Q.

Frequency of oscillation $(2.34 \mathrm{kHz})$ and $Q(62)$ are:
$2 \pi f=\sqrt{\frac{R_{4}}{C_{1} R_{1} C_{2} R_{5} R_{3}}} \quad Q=\omega C_{1} R_{2}$
Note that owing to the internal compensation of the amplifiers significant Q -
enhancement occurs at frequencies greater than a few kHz and this may lead to oscillation of the filter itself.

To vary the frequency the inset network can be used in place of R_{3}, the effective impedance being

$$
R_{13}=R_{17}+R_{18}+\frac{R_{I 7} R_{I 8}}{R_{19}}
$$

T. J. M. Rossiter, Corpus Christi College, Cambridge.

Pulse height modulator

This circuit reduces the spike feedthrough in series f.e.t. gates by always limiting the gate voltage swing to between the source voltage and the pinch-off voltage. Referring to Fig. 1, if the input voltage (V_{i}) is

varied between 0 and 13 V , say from an op-amp, then the f.e.t. gate would have to be swung from +13 V to $-V_{p}$ volts (V_{p} is pinch-off voltage). Fig. 2 shows one version of a circuit used to limit the voltage swing on the f.e.t. gate to approximately $V_{i}-V_{p}$. Input voltage is monitored by the emitter followers Tr_{1} and $T r_{2}$ and $T r_{1}$ emitter is maintained at $V_{i}-V_{b e} \approx V_{i}-0.7 \mathrm{~V}$. Zener diode D_{2} is matched as nearly as possible to the measured V_{p} of the particular f.e.t. in use. If $V_{p}<1 V$ a forward-biased diode (e.g. 1N916) may be used. The emitter of Tr_{4} is therefore established at $V_{i}-V_{p}-1.4 \mathrm{~V}$. $\operatorname{Tr}_{2}, \operatorname{Tr}_{3}$ and D_{1} establish the upper limit of the voltage swing to $\approx V_{i}$. The switching waveform, a $\pm 15 \mathrm{~V}$ squarewave with
fast rise and fall times, drives the base of T_{5}. Clearly from Fig. 2 the output waveform cannot go below $V_{i}-V_{p}-1.4 \mathrm{~V}$ or above V_{i}.

Capacitors C_{3} and C_{4} are optional. Capacitor C_{4} increases the rise time of the output signal and C_{3} increases the fall time. Very slow turn off times can be obtained by suitable adjustment of C_{3} thereby giving further spike reduction. Resistor R, should be kept high because for low values of V_{p} and high values of V_{i} the emitter-base junction of Tr_{5} will become reverse biased. Alternatively a diode can be placed between the emitter and R_{5}.

The modulator was tried with a number of different types of f.e.ts and always reduced the spike amplitude when compared to the spike produced by a full $\pm 15 \mathrm{~V}$ swing on the gate. By using a slow fall time the spike amplitude for this edge could easily be reduced by an order of magnitude. The circuit may need slight modification to suit individual requirements but works well with a slowly changing analogue signal and with switching rise/fall time of the order of $1 \mu \mathrm{~s}$.
M. D. G. Dabbs,

Home Office Central Research Establishment, Aldermaston, Berks.

TO MINIMISE INVESTMENTS AND SOLVE STOCK PROBLEMS

You can increase your efficiency, too, by ordering large or small quantities of any one part, or making up an order of any number of assorted small quantities through the United-Carr Supplies service. We can deliver with more than usual promptitude because we carry such large and varied stocks of CINCH , DOT and FT electronic and electrical components.
Fastenings and assemblies.

So, make United-Carr Supplies your SINGLE SOURCE for

Products, including Barrier terminal strips, Edge Connectors, Subminiature Connectors, Rocker switches, Indicator lights, Press fasteners and Metal \& Plastic components.

Send now, stating possible requirements, for free and post free catalogue.

United-Carr Supplies Ltd., 112 Station Road, Ilkeston, Derbyshire DE7 5LF.
Tel: Ilkeston 78711 STD 0607278711 . Telex. $377117 . \quad$ C.H.F.A.d.

New. Sinclair IC20. 20 watts stereo amplifier kit for only $£ 7.95_{\text {мымит }}$

A build-it-yourself stereo power amplifier with latest integrated circuitry. . . 10 W RMS per channel output... full short-circuit and overheat protection.

Latest from Sinclair - the brand new IC20 power amp. It incorporates state-of-the-art integrated circuits 2 monolithic silicon chips each containing the equivalent of over 20 transistors! These deliver 10 W per channel into 4Ω speakers. And the IC20 has integral short-circuit protection and thermal cut-out -it's virtually indestructible!

How should I use the IC20?
Use the IC20 for converting your mono record player to stereo ... for upgrading your existing stereo... for improving your car radio/tape player. The IC20 runs off a $9-24 \mathrm{~V}$ power supply. If you're running the IC20 off the mains, simply add a Sinclair PZ20 power supply ($£ 4.95$ plus VAT).

Using the IC20 to improve your car radio/tape player's quality and volume ? Run the IC20 off the car battery direct. You don't need a separate power supply, and you're reducing the drain on the player's dry batteries.

$18 \mathrm{~V}, 9 \mathrm{~W}$ into $4 \mathrm{~s}-770 \mathrm{~mA}$ each channel Power output: 14 V supply, $4 \mathrm{\Omega} / \mathrm{load}$, 10% distortion $-5 \frac{1}{2}$ W RMS per channel, 20 V supply, 4Ω Ioad, 10% distortion 10 W RMS per channel
Total harmonic distortion : at 50 mW . 4 S2 load, 20 V supply - less than 0.1% Input sensitivity: for 9 Winto $4 \Omega-$ 90 mV .
Frequency response: -3 dB at 40 Hz and 16 KHz
Load impedance: 4Ω or 8Ω, but device is safe with any load.

Improve your audio equipment - today

Both the IC20 and the PZ20 are covered by the Sinclair one-year, no-quibble guarantee - if absolutely any defect arises, Sinclair will replace the whole unit - unconditionally.
You can find both the IC20 and the PZ20 at stores like Laskys and Henry's. But if you have any difficulty, send us a cheque direct and we'll send you an

IC20 and/or a PZ20 at once.
14-day money-back undertaking, naturally.

Sinclair Radionics Ltd,
London Road, St Ives,
Huntingdon, Cambs., PE174HJ.
Tel: St Ives (0480) 64646
VAT Registration number : 213817088.

An aerial rotator servo

by D. J. Telfer, A.R.I.C

Abstract

This article describes a circuit for remotely adjusting angular displacements in a drive shaft, for use with $12-24 \mathrm{~V}$ d.c. motors at continuous currents of up to 250 mA . The system is well suited to a wide range of applications and has been very successfully employed as an automatic aerial rotator. The advantages of proportional control are available while preserving low cost and simplicity of design.

Sometimes there are applications in which the full potential of elaborate control equipment may not be fully exploited. In such instances, a less complex and more economical system could adequately perform the required operations. The control system to be described in this article is simple and yet has been found to be reliable in operation and particularly well suited for use in automatic aerial rotators. Although it was initially designed, while the author was with the Department of Physics, UMIST, for remote positioning of furnace charges, the circuit lends itself to many other possible applications, not least in the teaching laboratory as a technique for demonstrating the use of feedback systems and the principles of proportional control.

Proportional control system

A block schematic diagram is shown in Fig. 1. Use of a Wheatstone bridge to provide positive or negative error signals follows conventional practice. The spindle of one potentiometer $R V_{1}$ is mechanically coupled to the final drive (signified by the dotted line) and the other potentiometer $R V_{2}$ is the final drive position selector. A difference in the relative positions of the wiper arms of $R V_{I}$ and $R V_{2}$ produces an error signal which is amplified, firstly by the differential amplifier A_{1} and then by an output stage A_{2} connected to the motor, whose direction and speed depend on polarity and magnitude, respectively, of the voltage applied across its terminals. The final-drive shaft keeps turning until the wiper arm position at the motor-driven potentiometer catches up with the selected setting of the control potentiometer. The error signal is thereby continually reduced until the motor stops with the final-drive shaft in the desired position. In the author's design, operational amplifiers are used for A_{1}, and A_{2} consists of two pairs of complementary emitter followers. An additional feature is the

Fig. 1. Block schematic diagram of the proportional control system.

Fig. 2. The final drive shaft of motor M is coupled to the wiper arm of $R V_{1}$.
electronic bridge shunt S, which is activated at the final stage of operation to ensure that the motor is switched off.

Amplifier. In Fig. 2 the d.c. error voltage is taken to a pair of differential amplifiers $I C_{1}$ and $I C_{2}$, whose gain is adjusted with preset potentiometers $R V_{3}$ and $R V_{4}$ respectively. When the wiper arm of $R V_{2}$ is more positive than that of $R V_{1}$, the output of $I C_{1}$ goes negative and that of $I C_{2}$ goes positive. Under these conditions, $T r_{2}$ and $T r_{3}$ are turned off, while $T r_{1}$ and $T r_{4}$ are turned on, affording a low resistance path through which the motor is connected across the supply. If the wiper arm of $R V_{1}$ is more positive than that of $R V_{2}, \cdot T r_{1}$ and $T r_{4}$ are turned off and conduction is through $T r_{2}$ and $T r_{3}$, whereupon polarity of the voltage applied to the motor is reversed.

Proportional control. The mode of operation is conveniently described by assigning three states to the system. Fig. 3(a) shows how the output voltage of $I C_{1}$ (V_{1}) and of $I C_{2}\left(V_{2}\right)$ varies with angular displacement, θ, of the driven potentiometer spindle with respect to the setting chosen for $R V_{1}$, which is represented by $\theta=0$ at A.

In region D-C, the input signal is large enough to saturate both amplifiers $I C_{1}$ and $I C_{2}$. Motor voltage, which depends upon the difference between V_{1} and V_{2}, is held at a maximum value. The final-drive shaft rotates at a constant angular velocity, and the spindle of $R V_{2}$ is driven towards the selected rest position that it will eventually take up at A.

At an angle θ_{2} from A, which is predetermined by the setting of $R V_{3}$, the error voltage falls below that level required to saturate $I C_{1}$, and V_{1} steadily decreases. Passage through C represents the onset of proportional control.

In the region $\mathrm{B}-\mathrm{A}$, amplifier $I C_{2}$ is no longer held at saturation. However, the setting of $R V_{4}$ is such that it has greater gain than $I C_{l}$. Its proportional control bandwidth, given by $2 \theta_{i}$, is correspondingly narrower than that of $I C_{1}$. The value of $V_{1}-V_{2}$ continues to fall, ideally reaching zero at A . If these conditions are faithfully transmitted to the motor, there is no residual current in the windings and the final-drive shaft comes to rest with the spindle of $R V_{2}$ exactly in the position determined by $R V_{1}$. In practice, the motor may stop when an appreciable voltage is still being applied to its terminals. Since at B the value of $V_{1}-V_{2}$ is just over half its maximum value at C, this event will be captured within the narrow region BA, provided that mechanical loading is not excessive and that the motor is not severely under-run. Although the author has experienced no difficulty on occasions when 24 V motors were run using a 12 V supply, it is recommended that the h.t. voltage should be at least 60% of the voltage rating for the motor.

The output voltages of $I C_{1}$ and $I C_{2}$ are not transmitted faithfully to the motor because of the emitter-base voltage drop incurred at the power transistors. In Fig.

3(b), the emitter voltages of transistor pairs $\operatorname{Tr}_{1}, \operatorname{Tr}_{3}\left(V_{13}\right)$ and of $\operatorname{Tr}_{2}, \operatorname{Tr}_{4}\left(V_{24}\right)$ converge to plateaux centred at A . The difference between V_{13} and V_{24} is therefore the voltage applied to the motor. However, the range of θ values over which the motor is stationary, SAS', may be compressed by increasing the gain of $I C_{2}$. This will not affect the overall proportional control bandwidth of the system, which is given by $2 \theta_{2}$, and is dependent on the gain of $I C_{1}$.

Protection of transistors. Quite low values of residual voltage across the motor can give rise to standing currents high enough to justify an automatic switching arrangement for protection of the conducting pair of output transistors, which will dissipate maximum power just before they become

Fig. 3(a). Voltage at IC outputs plotted against θ; at (b) is shown the voltage at emitters of power transistors plotted against θ. Limiting voltage of the motor is reached at S and S^{\prime}.

Fig. 4. Circuit diagram of bridge shunt.
biased to cut-off, when the emittercollector voltages approach their highest values. The motor may be made to cut out below a certain applied voltage, within the region BA of Fig. 3(b), by connecting a suitable relay across the motor. For example, a motor rated at 24 V maximum was run with 20 V on the h.t. rail of the circuit. Satisfactory action was obtained from a reed switch having a solenoid resistance of 800Ω, operating at 7 V .

Any such cut-out device must come into operation before the motor has actually stopped, resulting in a dead zone about A in Fig. 3(b) which is greater than SAS'. This state of affairs may be avoided by introducing a time delay so that the motor can stop at its limiting voltage before being switched off.

An alternative switching method, incorporating a delay, is shown in Fig. 4. This solid-state approach, which the author has found to be very effective, uses a complementary pair of transistors shunted across the bridge potentiometers. Conductance of the transistor pair $T r_{s}$ and $T r_{6}$ is appreciable only when both base voltages are within a limited range centred on half h.t. potential. The state of this circuit may first be considered with the input diodes D_{3} and D_{4} disconnected from the output of $I C_{2}$.

The bases of $T r_{s}$ and $T r_{6}$ are connected by a resistor through which most of the mutual base current will flow, since D_{3} and D_{4} are reverse-biased by the small potential difference reflected across this resistor. Base bias is forward at both transistors, which conduct and act as emitter followers. Their mutual load is the bridge, across which the voltage falls to a value approaching the sum of the voltages across the interbase resistor and the emitter-base junctions. In practice this total amounts to about 2 V .
Next the connexion of D_{3} and D_{4} to the output of $I C_{2}$ is restored, via a limiting resistor R. No significant change will occur at the bridge shunt until the small reverse bias voltage at either D_{3} or D_{4} is cancelled by a voltage swing at $I C_{2}$, transmitted through R. When the output of $I C_{2}$ goes sufficiently positive, conduction through $T r_{6}$ is maintained but $T r_{5}$ is cut off. Conversely, Tr_{5} conducts and Tr_{6} is turned off during negative excursions. The diodes D_{l} and D_{2} protect $T r_{5}$ and $T r_{6}$ from Zener breakdown of their baseemitter junctions under reverse biasing conditions.

Finally, the onset of shunting action is delayed by introducing a capacitor C between the input of the shunt circuit and ground. A suitable choice of time constant for $R C$ is about one-fifth of the duration of the proportional control régime.

Practical circuit

The circuit diagram of a practical design for use with 24 V d.c. motors appears in Fig. 5. An electronic bridge shunt is employed and the unit may be run from a 15 to 28 V supply. Feedback capacitors are included to lower the a.c. gain of the operational amplifiers in order to reduce transient response and provide a safe-

guard against instability at settings of high d.c. gain. An interference suppression capacitor is also connected across the motor terminals. Inclusion of offset null controls (the $10 \mathrm{k} \Omega$ potentiometers) is recommended. Adjustments are carried out with the wiper arms of the bridge potentiometers brought to the centre of their tracks and then short circuited together. The offset null potentiometers are then set to give an output of exactly half h.t. potential at each operational amplifier.

A panel meter for monitoring the behaviour of the motor is a useful asset. Totat current may be measured, as shown in Fig. 5, or, alternatively, motor voltage or current may be displayed, using a centre-zero instrument to follow directional changes.

The power supply should be capable of delivering 1 A at the operating voltage and be well smoothed. Otherwise, requirements are not critical.

Performance. Operation with the bridge shunt is not critically dependent upon supply voltage, so long as the input capacitor value fulfils the time constant requirements mentioned above. Fine adjustments may be made with the $220 \mathrm{k} \Omega$ preset potentiometer, which is normally set near mid-range. Efficacy of the shunt is improved if bridge resistance is high compared to the value of resistance presented by the shunt during its turn-on period. However, the values of bridge circuit resistors shown in Fig. 7 were found to be more than adequate and may be considered to represent an upper practical limit above which the performance of the differential amplifiers becomes adversely affected. This arises
because of the differences in d.c. input resistance of the inverting and non-inverting inputs, and variation in amplifier gain with wiper arm position at the bridge potentiometers. The operational amplifiers see highest source resistance, and experience concomitant reduction in gain, when the wiper arms are near track centre. In this region, therefore, the proportional control bandwidth becomes relatively expanded.

Measurements of amplifier output voltage were made with the bridge wiper arms positioned at similar track intervals and then shorted together. Experimental conditions and data are summarized in Table

1 for an h.t. of 15 V and feedback resistors of $680 \mathrm{k} \Omega\left(I C_{1}\right)$ and $4.7 \mathrm{M} \Omega\left(I C_{2}\right)$. The behaviour pattern shown in Fig. 6 represents the situation with the wiper arms at the positive end of the bridge. The crossover point did not deviate markedly from the $\theta=0$ axis, but was displaced in voltage, being more positive than the halfh.t. potential axis, which is taken as the zero of voltage reference. At the negative end of the bridge, an approximately equal negative displacement relative to a centre offset potential of 0.25 V was observed. The bridge shunt was removed during these measurements, which confirmed that the effective common mode gain of the amplifiers was near to unity. This tends to produce a degradation in symmetry of the proportional control characteristics, which change progressively from one end of the bridge to the other. Therefore, the ratio of voltage across the bridge to peak swing at the amplifier outputs should not exceed 0.15 if good symmetry is to be preserved.

Voltage reflected across the bridge is directly proportional to the supply voltage whether or not the bridge shunt is used, so that proportional control bandwidth at
given gain settings remains practically constant above 20 V h.t. At lower h.t. voltages the discrepancy between peak output swing of the operational amplifiers and the supply voltage must be taken into account. During conduction, approximately 1.5 mA base current flows at the power transistors. This loads the amplifiers sufficiently to produce a total discrepancy of about 1.5 V . As the supply voltage is reduced, there is little change in this value, but its effect in decreasing the bandwidth becomes more noticeable.

In addition, the difference between h.t. and peak motor voltage amounts to approximately four volts, and this becomes an important consideration when using the circuit to drive motors at lower peak voltages.

Circuit properties are considered further in the light of other practical experiments. A small 24 V d.c. motor (see Fig. 4) was connected to the circuit of Fig. 7, which was operated at 24 V h.t. and with fixed
feedback resistors; $330 \mathrm{k} \Omega$ for $I C_{I}$ and $4.7 \mathrm{M} \Omega$ for $I C_{2}$. Maximum potential across the bridge was 3 V , falling to 0.7 V at cut-off, when the motor current was reduced to less than one microamp.

An $x y$ plot of motor voltage against amplifier input voltage V_{i} measured at the bridge wiper arms is presented in Fig. 7. Total proportional control bandwidth CC' was 82 degrees, centred at mid-scale, for a driven potentiometer electrical rotation of 280 degrees. The bandwidth of $I C_{2}$ was seven degrees, giving a practical dead zone of ± 2.5 degrees for a limiting motor voltage of 3 V .

Potentiometer drive. There are various possible mechanical arrangements at the bridge potentiometers, and only the rotary type is considered. To cover rotation through a complete circle, a 360 -degree potentiometer with $1: 1$ coupling is required at the final-drive shaft and also at the control box. Alternatively, the more usual

pattern with electrical rotation in the region of 280 degrees may be used in conjunction with pulley, chain or gear coupling of the correct ratio. If the absence of a 90 -degree sector from the rotation range can be tolerated, direct $1: 1$ coupling may be retained, as in the rotator.

Aerial rotator

In point-to-point v.h.f. and u.h.f. communication, well-sited portable equipment incorporating a low-power transmitter can be capable of very encouraging results, particularly if a high-gain directional aerial is used, in conjunction with a reliable and accurate means of turning the mast. In aerial rotator applications the servo system may be used in conjunction with a variety of mechanical arrangements, depending on the requirements of the operator.

Basic construction of a portable aerial rotator for mounting on the roof-rack of a stationary vehicle is shown schematically in Fig. 8. The drive unit is readily demountable and an alternative type may be fitted if desired; Fig. 9 shows how the gearbox adapted by the author was installed. This was part of an ex-government switching unit having rubber mounting bushes and a 24 V d.c. motor coupled to the final-drive shaft through 625:1 reduction gearing.

Removal of the lower cover plate exposed the switch wafers, which were then discarded to allow a feedback potentiometer to be coupled to the finaldrive shaft through the $1: 1$ gearing as illustrated. Drive was transmitted to the mast through a simple dog clutch. A similar arrangement was employed at the potentiometer spindle, into which a slot was cut to accommodate a blade filed on the end of the coupling shaft. Although the potentiometer could have been mounted in a carefully positioned hole drilled in the lower cover plate, compactness was preserved by fixing the potentiometer case to the inside of the cover plate with soft solder, in the position shown. In order to mount the component in this way, the threaded part of the spindle collar was shortened. The spindle was of nylon to minimize damage in the event of accidental servo overruns at track limits.

Above the deck, short lengths of mild steel slotted angle were bolted together to act as a support for the vaned tube containing the aerial mast socket bush (Fig. 8). Grease was applied liberally to the mast socket bearing before fitting it to the bush. Positioning of the lower retention bolt allowed the mast socket assembly to be lifted just clear of the gearbox dog to permit easy and rapid alteration of the aerial reference direction by 180 degrees. An upper retention bolt was also fitted to secure the mast. Steel J-clamps were used to firmly fasten the rotator to a secure vehicle roof-rack (Fig. 10) and dimensions of the grooved mounting blocks were adjusted to suit the type of rack. Protection from the weather was afforded by fitting an aluminium cover over the gearbox and applying paint to exter nal surfaces.

Upper torsional limits for the above

Fig. 9. Underside view of rotator showing adapted gearbox unit with lower cover plate detached to expose the feedback potentiometer (bottom right). Final drive shaft and dog clutch are in the centre, with the motor at left centre.

Fig. 10. Rotator secured to horizontal roof-rack bars.
gearbox were approached in normal weather conditions with an eight-element conventional Yagi array cut for the twometre amateur band, which was supported at its centre of gravity on a five-foot mast. Aerials of greater physical size were not considered practicable on a free-standing mast fixed to this type of rotator.

Mechanical backlash in the blade and slot feedback potentiometer coupling has the effect of allowing the aerial to overrun its selected heading, but by judicious use of the relative sizes of blade and slot, can be made to correct any slight lag which may otherwise be present.

Feedback and control potentiometers should preferably have a linearity better than 2%, and the system be calibrated before operation.

In practice, the portable rotator has performed with consistent reliability in conjunction with the control unit described. Aerials have also included a 16 element aerial for the 70 cm amateur band. using a five-foot mast.

When the portable rotator was used with the above proportional control unit, time taken for complete rotation of a 2 m eight-element Yagi array was about 20 s at 15 V h.t.

Circuit assembly. Components in the prototype were mounted on a $2 \frac{1}{2}$ in square piece of 0.1 in matrix Veroboard, in a $4 \frac{1}{2} \times 3 \frac{1}{2} \times 2$ in diecast box, with the control potentiometer and dial on the largest face. A five-cored cable from the motor and driven potentiometer was plugged into a DIN socket on the control box, allowing different motor units to be activated.

If the motor connections are reversed, an aerial rotator will become an automatic beam heading avoider. Care must be taken to connect the control and driven potentiometers in the correct sense, and to prevent mechanical damage to the latter component, operational checking should be carried out with both wiper arms near track centre.

Other applications

In common with other proportional control systems, the above design commends itself to a wide variety of possible functions. Simple modifications may greatly extend its range of capabilities.

By connecting a suitable amplifier (such as another 741) in place of the driven potentiometer, the system may be coupled to external probes or sensors. For instance, the e.m.f. across a thermocouple junction may be used for remote automatic position-

ing of a furnace charge. Position is manually pre-set with the control potentiometer.

If the driven potentiometer is mechanically disengaged from the motor, the unit becomes a manually adjustable reversible motor speed controller.

Law and insurance

It is of the utmost importance to ensure that, as a load attached to a vehicle roofrack, the rotator and aerial conform to legal requirements.

There must be no danger to people inside or outside the vehicle. On a public highway the aerial and rotator also become illegal if any part extends beyond the front, rear or sides of the vehicle by more than 12 in .
Any effect that the presence of the aerial and rotator may have on the vehicle's insurance should be ascertained.

The author has found that the authorities are very willing to help in these matters, and if the operator has any doubts about his position, he should not hesitate
to seek advice from the Traffic Department of the local police.

Suppliers

Transistors and integrated circuits were obtained from Texas instruments. Minimum size of heat sinks for the power transistors will depend on circuit applications, and manufacturer's literature should be consulted. For the rotator, the TO-92 plastic encapsulation may be bonded to the diecast box with epoxy adhesive.

The surplus gearbox unit, and also separate d.c. motors, were obtained from North West Electrics, 769 Stockport Road, Manchester.
An extensive range of small gearboxes is manufactured and supplied by S. H. Muffet Limited, Mount Ephraim Works, Tunbridge Wells, Kent. For driving the rotator, the author recommends that a unit is chosen with an output ratio of $500-1,000$ which is capable of delivering at least 30 lb . in. continuous torque at the output shaft.

Recent loudspeaker developments

Consider the performance of a practical loudspeaker system in which the sealed volume of the enclosure, cone area and mass of the moving parts are kept constant. The results of changing the motor strength are plotted in Fig. 1. In the 70 to 500 Hz range, 'if $B l$ (product of magnet strength B and coil winding length l) is increased output will increase, if it is decreased output will decrease. However, around resonance the reverse happens. Increasing $B l$ decreases output and decreasing $B l$ increases output. In other words efficiency or cone velocity for a given input at frequencies above resonance are directly proportional to $B l$, while at frequencies around resonance these two factors are inversely proportional to $B l$.

It can be seen from Fig. 1 that for a given loudspeaker system, and where a flat amplitude response is desired, the motor must be of the correct strength. If the motor is too small, efficiency is low and there is a bump in the bass. If it is too large, efficiency is high, but the bass response is down. This also shows that purchasing the speaker with the larger magnet could result in the use of a speaker with less than optimum bass response. By juggling motor parameters, there is apparently an inevitable trade-off between bass response and efficiency in the flat band. Restating the requirements, then, we need a large motor for high efficiency above resonance and a smaller motor for similar efficiency at bass frequencies.

Dual motors

The usual practice for adjusting the power output of the motor is to vary the magnet strength, B. To construct a speaker with two different magnetic field densities to drive the same cone would be both expensive and difficult to manufacture. Suppose instead it was possible in effect to make l vary with frequency in such a manner that a lower value of $B l$ in one frequency range would not affect a higher $B l$ product in another range and vice versa. Fig. 2 shows a simple method.

A second voice coil is wound over or under the conventional voice coil and is driven via a series $L C$ resonant circuit adjusted to resonate at the same frequency as the fundamental mechanical/acoustical resonant frequency of the woofer. The $L C$ circuit presents almost zero impedance at resonance and a sufficiently high impedance one octave either side of resonance to effectively remove voice coil 2 from the circuit. Thus l of voice coil 2 can be adjusted to eliminate the high value of motional induced back e.m.f. at the fundamental resonance, f_{o}. A lower impedance path is provided at f_{o} to maintain current

Abstract

According to a recent article in the American journal Audio ${ }^{1}$ it is possible to adjust separately the amplitude response of the upper range and bass frequencies of a single loudspeaker drive unit without one affecting the other, thus reducing the necessity for the motor (coil and magnet system) to be of an optimum strength for a system.

flow and the bass response at f_{o} can be adjusted at will and independently of midrange response above f_{o}. In effect a second motor is added that generates less back e.m.f. and offers a lower impedance to the amplifier at the tuned frequency.

A voice coil gap of twice the width is not required to accommodate the extra voice coil. The output and inner clearance spaces are the same as usual and since a single layer coil with a notch in the top plate for the return end of the coil has apparently proved satisfactory, the gap width need only be increased by 25%.

Summarizing, the design (it is claimed) "does not involve trade-offs in areas of performance, requires no additional amplifier power or equalizer, has the

FREQUENCY (Hz)
Fig. 1. Loudspeaker amplitude response for different values of motor strength (a) motor too large, (b) motor optimum, (c) motor too small.

Fig. 2. Circuit for a dual motor woofer.
advantage of simplicity of construction and offers an improvement readily discernible on listening".

Soft speaker

Further to the item "Flexible speaker cone" (News of the Month, March issue), this system, under development in W. Germany by JWM Systems, has caused somewhat of a stir in the technical press, be it on an academic level of interest only. The flat diaphragm structure of this new loudspeaker is a flexible, highly viscous, elastic material. The diaphragm is driven at its centre by a conventional voice coil and magnet system. The area of radiation is inversely proportional to the radiated frequency.
To ensure that the radiation area is symmetrical around the centre point of the diaphragm, the voice coil is split into two, each section being fed with an offset current of opposite polarity. In similar manner to a differential input, like signals cancel so that the voice coil remains centred in the gap between magnet pole pieces. The system requires equalization to account for a 6 dB per octave drop in response above 6 kHz .
The new diaphragm ${ }^{2}$ consists of a flexible bearing structure and a filling compound. A mesh of polyamide threads is used as a bearer, which is capable of stretching. In its manufacture, the diaphragmis radially pre-loaded (stretched) to a small degree and the visco-elastic filling compound is applied as a lacteal dispersion which dries like varnish and becomes interlaced in the polyamide.
The diaphragm is held at its circumference by the speaker basket frame and in addition there is a firm star-shaped support in the centre. In operation, amplitude is limited to a maximum of 3 mm at the coupling point between voice coil and diaphragm. With the amplitude of vibration decreasing out from the centre, a smaller and smaller part of the diaphragm vibrates as frequency rises so that the large area required for moving a large air volume at bass levels and the low mass favourable for rapid movement at high levels is achieved with the single diaphragm. The prototype drive requires a continuous input of 3.2 W for 96 dB s.p.l. at 1 m at 1 kHz .

References

1. Watkins, W. H., "New Loudspeakers With Extended Bass", Audio (American journal), December, 1974, pp. 38-46
2. Pfau, E., "Ein neuer dynamischer Lautsprecher mit extrem nachgiebiger Membran", Funkschau (reprint), March 15, 1974.

Voltage-to-frequency converters

This article complements set 21 of Circards

by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams

Paisley College of Technology

Voltage-controlled oscillators-astable multivibrators-waveform generatorsfrequency modulators: under each of these headings one finds circuits that have an important common property, that the output frequency is a function of some reference or control signal. Such circuits are multi-variable systems in which several parameters of the output waveform are controlled singly or in various combinations by other parameters at the input. Thus the same circuit can appear under different headings depending on which input/output relationship is of priority concern.

As an example, some recent integrated circuits have been designed as waveform generators with square/triangle/sine wave outputs. If the output waveform is of no particular concern, the fact that the frequency of each output is proportional to a direct control voltage assumes a greater importance. The circuit can then be called a voltage-controlled oscillator. Now assume that the control voltage is set to a particular quiescent value with a smaller alternating voltage superimposed. Then the output frequency is modulated by the a.c. input, with the carrier frequency corresponding to the quiescent value of control voltage. The label for this circuit is frequency modulator.

In set 21 of Circards the primary property of interest is the relationship between an input voltage or current and the frequency of the output, with much less importance being attached to the wave shape or amplitude. A particularly desirable property is that the voltage-to-frequency relationship be linear, and in extreme cases departures from linearity of as little as 0.01% may be desired. In the process of achieving this, the output pulse height and width may have to be equally well controlled but these are a means to the end and not an end in themselves. There are other cases where the frequency needs to be varied only over a limited range, demanding only a small linear region to the V / f characteristic. A good example is found in the design of v.c.os for high-frequency phase-locked loops. Restriction of the frequency range and of linearity is a compromise accepted more or less willingly in exchange for a speed capability that matches that of the associated digital circuits.

In nearly all of these examples, the basic timing mechanism is that of charging a capacitor from a control voltage or current. The voltage change across the capacitor is sensed by some level-detecting circuit which activates an electronic switch

Fig. 1. Constant charging current allows repetition frequency to be made proportional to current.

Fig. 2. To cause charging cycle to recommence, a low-value resistor is switched across the capacitor to discharge it quickly.

Fig. 3. If discharge time is made small enough the charging current can remain connected. Level of capacitor voltage is used to operate discharge switch.

Fig. 4. Triangular waves with repetition frequency proportional to current are produced by reversing capacitor charging current.
to discharge the capacitor and restart the cycle. Two categories of circuit can be clearly distinguished:

- where the discharge time of the capacitor is made short compared with the shortest charging time and need not be under the control of the input voltage, and
- where both charge and discharge times are controlled in common by the input. The first-mentioned circuits produce sawtooth waveforms across the capacitor and short duration output pulses, while the lastmentioned commonly develops a triangular wave across the capacitor, in association with a square wave at a separate output.

These ideas are illustrated in Figs 1 to 4. In Fig. 1, constant current results in a constant rate-of-change of voltage across the capacitor, i.e. the time taken to charge to a given p.d, will be inverse to the charging current. If that level can be sensed and caused to end the cycle or half-cycle, then the repetition frequency (being inverse to the period of the waveform) will be proportional to the current and a linear I / f converter results. The simplest way of causing the cycle to recommence is to place a lowvalue resistor across the capacitor to discharge it in the shortest possible time. If the discharge current is large compared to the charging current, then it is immaterial whether the charging current is disabled or not and Fig. 3 represents the basic principle of many V / f converters, with the switch periodically closing at the instant when the p.d. across the capacitor reaches a defined value.

An alternative principle is shown in Fig. 4. The current generator is applied to the capacitor in the reverse direction giving an opposing slope to the ramp but of equal magnitude. The resulting waveform is triangular with the repetition frequency linearly related to the current if the points at which switching is initiated are defined. The provision of a purely electronic twopole change-over switch is difficult, and the reversal of current direction is more often achieved by using a single-pole switch or its equivalent to control the carrent generator directly.

A second problem that often arises is that the changing p.d. across the capacitor affects the nominally constant current. This is obvious in terms of the non-linearity of the ramp, but may not affect the linearity of the

Fig. 5. Using the charging capacitor in an op-amp integrator ensures current is independent of capacitor p.d.

Fig. 6. Simple form of triangular. wave generator uses principle of Fig. 5.

Fig. 7. Circuit provides equal $+V$ and -V inputs for Fig. 6 with an op-amp of -1 gain.
V / f function provided the waveshape is well controlled, e.g. accurate V / f conversion is possible with simple $R-C$ charge and discharge circuits though the wave shape is highly non-linear. Where waveshape is also of importance, the capacitor forms part of an operational amplifier integrator circuit, with the virtual earth action ensuring that the charging current is independent of the p.d. The discharge element now has no point connected to ground which can raise problems in activating it. (Fig. 5.)

This technique leads to a simple form of triangular-wave generator shown in Fig. 6 where both the $+V$ and $-V$ inputs have to vary together if the slopes are to remain of equal magnitude. By using both the input and the output of an amplifier with a voltage gain of -1 this is readily achieved (Fig. 7). Alternative methods include the design of amplifiers whose voltage gain is switched from +1 to -1 , and of integrators in which the direction of capacitor current is reversed by a switch while the magnitude is controlled by a single input voltage.

In all of these circuits there remains the problem of the level sensing circuitry that is to determine the instant of switching; both switching speed and accuracy of level are important making the design of a fast, accurate V / f converter a difficult one.

The term charge-dispensing is a big one in the literature on precision V / f converters. A feedback system is set up in which the output pulses from a generator (basically
monostable in form) are arranged to feed back a constant amount of charge for each output pulse. If these units of charge are combined at the input of the system with the control signal, and the overall feedback is negative, then the pulse rate will be proportional to the control signal.
In block-diagram form in Fig. 8, the principle is illustrated by a combination of V / f and an f / V converter. Assuming that the amplifier gain is high, and that the f / V convertor is very linear then the feedback overcomes any non-linearities in the V / f converter, i.e. $V_{o}=V$ to a high accuracy because of the feedback while $V_{o} \propto f$ ensuring that $f \propto V$ without reference to the linearity of the V / f converter. The f / V converter might be of the diode-pump variety which with suitable design can transfer a fixed charge into a load for each output pulse rate.

A level-sensing monostable gives an output pulse when the input level rises above a critical value. If the input then falls a second pulse is generated on the next excursion through the set level in the same sense. An important restriction is that the capacitor shall have been completely discharged prior to the second pulse-otherwise the time taken for recharging will be shortened and the output pulse-width reduced. The output of such a monostable would ideally be a train of constant-amplitude constantwidth pulses, which could be smoothed and fed back to the input amplifier as in Fig. 9.

Fig. 8. In this "charge-dispersing" system, a constant amount of charge for each output pulse is fed back so that pulse rate can be proportional to the control signal.

Fig. 9. Monostable circuil produces output pulse when input exceeds a certain level, in either sense.

Fig. 10. An alternative arrangement is to dispense charge into a summing integrator. Output pulse rate is a linear function of control voltage or current.

Fig. 11. Technique of using two current sources, but switching only the one having twice the value of the other, is used in some i.cs.

Fig. 12. Triangular wave generator using technique of Fig. 11 . Comparator reference inputs are set to $2 \mathrm{~V} / 3$ and $\mathrm{V} / 3$, the capacitor voltage ranging between these limits.

A better arrangement dispenses these units of charge into a summing integratorFig. 10. For positive pulses a negative control voltage is required, the integrator output ramping up until a pulse is produced from the monostable. The charge dispensed into the summing junction causes the output of the integrator to fall, again rising slowly under the action of the control current. On average, the net charge inflow has to be zero, the charge dispensed per pulse is constant and hence the pulse-rate is a linear function of the control voltage/ current.

Other recent i.cs revert to the separate constant current circuit for timing circuits and waveform generators, and the resulting I/f linearity can be accurate enough for many applications. One technique is to have two current sources one set by the external control voltage, the other of opposite polarity but of twice the magnitude-Fig. 11. Keeping the former permanently on and switching the latter on and off makes the net current in the capacitor change from $+I$ to $-I$. A circuit configuration to use this technique to produce a triangular-wave generator is shown in Fig. 12.

Two comparators sense the capacitor voltage, their reference inputs being set to $+V / 3$ and $+2 V / 3$ by an internal potential divider. Assume the current at I; the capacitor charges until its p.d. reaches $+2 V / 3$. Comparator 1 changes its output and resets the flip-flop. This reverses the direction of current flow until the capacitor discharges to $+V / 3$. The comparator 2 operates setting the flip-flop into its original state and restarting the cycle.

The one you can't ignore!

Push-button
tuner unit
(optional) with
built-in timer the heart of your cassette system. But where do you go from there?
You cannot do better than ask Bell \& Howell's Video Systems Division. It has six years' experience in supplementing the wide range of equipment it sells with a planning, installation and service organisation able to provide first-class video systems and ensure first-class results.
Bell \& Howell engineers work with IVC colour cameras and recorders, Electrohome monitors, Viscount, Thomson-CSF and Tamron products, and the JVC range from video cassette and portable recorders to cassette duplicators. They can design the system best suited to your needs - and your budget.
We'd like to tell you more. Telephone Bell \& Howell's Video Systems Division on 01-902 8812 or write to Bell \& Howell A-V Ltd., Freepost, Wembley, Middlesex HAO 1BR (no stamp required).
\square BelleHawell

MEET AND MATCH ALL YOUR VTR REQUIREMENTS WITH THE NEW SHIBADENSV630
No matter what your requirements in the application of colour VTR, the new Shibaden SV 630 Cartridge Video Recorder will help you in a wide range of differing applications in education, industry, and commerce.
The SV 630 is a $\frac{1}{2}$ " Colour Video Recorder that guarantees exceptional reliability and picture stability and conforms fully with the EIAJ standard. This extends to full tape compatibility with existing reel to reel EIAJ VTRs, in monochrome. Separate Audio and Video connections are provided in addition to the EIAJ standard connector. And the unit is capable of record/playback on PAL/SECAM colour standard.

Manual or Auto

Among the outstanding features of this new VTR is the facility to control input levels, both manually or automatically, on audio and video. AGC circuits are used to facilitate this feature while automatic colour control circuits are used in both record and playback circuits to ensure stable and high quality colour reproduction.

Really Easy Operation

Operating the SV 630 couldn't be easier. Once the cartridge is popped in, the keys operate at the touch of a finger putting you in complete command of play, record, fast forward and stop functions . . . the tape rewinds as soon as the programme has finished .. and pops out upon the completion of rewinding.
Anyone can control and operate this new unit right from the word 'go', ensuring a professional performance no matter what the circumstances or where the unit is used.
Write now for full technical specifications or telephone the Shibaden Technical Service at: 01-203 4242.

Hitachi

Shibaden (UK) Limited BROADCAST \& CCTV EQUIPMENT MANUFACTURERS Lodge House Lodge Road • Hendon London NW4 4DQ.

Telephone: 01-203 4242/6

Versatile

Meets in every respect all current specifications for measurement of Wow, Flutter and Drift on Optical and Magnetic sound recording/reproduction equipment using film, tape or disc

High accuracy
with crystal controlled oscillator
accepts wide range of input signals with no manual tuning or adjustment

Two models avallable:

Type $1742^{7}{ }^{\text {A }}$ BS-A847: 1972 DIN 45507 CC1R 409-2 Specifications Type 1742 'B' BS 1988: 1953 Rank Kalee Specifications

For furlher information please address your enquiry to Mrs B. Nodwell
Rank Film Equipment, PO Box 70 Great West Road, Brentford Middlesex TW8 9HR Tel: 01-5689222. Telex 24408. Cables Rankaudio Brentford
main agents for:-
SONY, PHILIPS, AKAI, DECCA \& KODAK
a complete service for
PROGRAMME PRODUCTION
EQUIPMENT SALE, LEASE,
HIRE \& REPAIR
CONTACT ALAN ENGLISH
TREC consultants ltd. 186 Park View Rd. Welling, Kent. 01-303 8406

Vision cassette and cartridge recorders

Facilities and performance of models on the UK market

In attempting to assess the current state of domestic, industrial and educational video activity, one is reminded of the sub-title of a recent article on the computer industry. It read: "Where âre we now, and how did we get into this mess?". For it seems that commercial and political considerations dictate that each new development is attended by a flurry of alternative ap-proaches-some only slightly different to each other-and that the eventual emergence of one or two practical solutions to the problem can take many years. It is all very wasteful, expensive and uncivilized, but nonetheless entertaining.

It seems likely that John Logie Baird, having worked out his system of seeing at a distance which, with fine impartiality he named "tele-vision", was the first to record a picture. There was, in 1927, nothing new needed to do this, as he simply used a 10 -in, 78 r.p.m. record and called it"Phonovision". Magnetic recording was not well developed and it was not until the 1950s that an acceptable, recorded image was possible. In 1951, Crosby Enterprises were using a longitudinally-recorded tape at $100 \mathrm{in} / \mathrm{s}$ for black-and-white pictures, in which the spectrum was separated in 10 bands, each being recorded separately, with two more tracks for control and sound. This was followed rapidly by RCA in 1953 with a longitudinal system capable of recording colour at $240 \mathrm{in} / \mathrm{s}$ on three tracks for RGB and two more for sync and sound. The longitudinal method, wherein the video tracks were recorded along the length of the tape as in audio tape recorders, was wasteful of tape (high speeds of up to 360 in/s for adéquate bandwidth) and caused problems of speed control, particularly in colour. Head-to-tape contact was difficult to ensure and even at high speeds, the theoretical maximum bandwidth of the tape recording process (10 octaves) is insufficient for the 20 or so octaves of a vision signal.

Ginsburg and Anderson, together with a man named Dolby, of Ampex, originated the modern approach to vision recording in 1956 with the transverse-track recorder, using frequency-modulated vision signals to avoid the bandwidth problem. In this principle, the tape is slowed to a canter and the tape-to-head speed is maintained by moving several heads. across the tape, giving transverse tracks. Four heads were
used by Ampex, and the term "quadruplex" was applied.

From then on, the transverse-scan recording method was to become standard throughout television broadcasting, using tape up to two inches wide and eventually producing a picture indistinguishable from the original. Much programme material is now transmitted from tape. Only the BBC continued the longitudinal method in

Fig. 1. The IVC cartridge of 1-in tape is shown at (a) and the tape path in the machine is at (b).
"VERA" (1956), but soon acknowledged that this was not the way to do it.

All this time, the idea of the domestic and educational use of television recording was being pursued, albeit rather spasmodically. RCA had a $\frac{1}{4}$-in tape system for home use in 1956, and throughout the 50s and 60s one saw optimistic announcements from time to time that the ideal had been achieved, but they all sank without trace. Many systems have been tried, but the "electronic" kinds have now narrowed to several types of tape recorder and a few systems using discs, optical and electro-mechanical. Several manufacturers produce tape systems with open-reel tape handling, but our impression is that, for domestic and educational use, the open-reel machine has had its day and that the enclosed tape storage machine will reign supreme within two or three years. Seven thousand are said to be in use in the UK now.

The tape enclosures take three forms. A cassette, familiar in one form as the audio cassette, possesses two spools mounted either side-by-side as in the Sony machines

or one on top of the other, as in machines made to the Philips pattern. A further type of tape enclosure is the cartridge, which possesses only one spool and is analogous to the 35 mm film cassette (we should, perhaps, have mentioned that it is all very confusing!) in which the tape is pulled out of the enclosure, past the heads and on to an external take-up spool contained in the machine. When the tape is used up, it is rewound into the cartridge and ejected, a process which points to one disadvantage of the cartridge-it cannot, unlike the cassette, be removed until the tape is rewound.
There is, as yet, very little standardization in the use of enclosed-tape machines. They differ in enclosure type, tape width, signal-processing, tape type and many smaller parameters. Sony and Philips are the leaders in their own fields, and there is standardization in machines using these two different systems as there is in another group, the EIAJ v.c.r. standard used by Matsushita and several others. Both types use helical scanning, which is a half-way stage between longitudinal and transverse scanning. The tape is pulled out of its enclosure and wrapped part of the way round a drum, rising or falling on the way round. The drum is provided with two, three or four heads, which revolve inside the drum about a vertical axis, "looking" at the tape through a circumferential slit in the drum.

As the tape is slightly inclined, moving on a helical path round its part of the drum, and the head axis is precisely vertical, the tracks recorded on the tape are inclined at about 3° to the horizontal. As one head finishes its track, the next one starts the next track and the effect is as though there were one continuous track, recorded at high speed instead of the five or seven inches per second of the actual tape speed. In this way, a low tape speed provides band width of up to 3.5 MHz and a horizontal picture resolution of up to 360 lines. Either two audio tracks or one audio and a control track are recorded along the edges of the tape in the normal way.

Signal processing is rather more complicated than in the ordinary audio tape recorder, particularly when a colour signal is being handled. As transmitted, the broadcast colour signal consists of a vestigial-sideband luminance carrier with the upper sideband extending to 5.5 MHz , and a chroma signal with a suppressed sub-carrier extending from 3 MHz to 5.5 MHz . Neither of these signals can be handled directly by the tape machine and must be turned into a recordable form.

The chroma signal is simply transposed to a centre frequency of 562.5 kHz (in the Philips system) with a bandwidth of 650 kHz and recorded in the normal way as a.m. The reduced bandwidth, and hence

resolution, does not have as serious an effect on colour as it would on the luminance information which determines the sharpness of the picture. Luminance is not recorded directly but is remodulated as f.m. with a deviation of $3-4.4 \mathrm{MHz}$, thereby avoiding the effects of imperfect head-totape contact and completely eliminating the need for tape bias, as the waveform is no longer important. Bias for the chroma signal is automatically provided by the luminance f.m. signal, the two being combined in the recording amplifier.

Problems are introduced by the transposition of the chroma signal to a different frequency and also by inevitable phase jitter in the tape transport. This would, of course, be disastrous for the chroma decoder and would also result in an increased amount of sub-carrier patterning on the screen due to the loss of interleaving of chroma sideband energy peaks between those due to time-base repetition rates. Circuitry is therefore needed to overcome this defect, and a description appeared in Wireless World, December 1972.

On playback, the luminance information is passed to an f.m. detector and the chroma is reinstated in its proper position at 4.43 MHz , prior to being impressed as modulation on a u.h.f. carrier and passed to the aerial socket of the television receiver. Not every recorder possesses an r.f. output and if the output is at video frequencies, modifications to the receiver are needed. Many receivers will need modification for other reasons in order to be compatible with video recorders. For instance, the fly-wheel time-constant will need to be shorter to accommodate the "drop-out" time-the time between one head finishing a track and the next one starting. During the time when no signal is being played back, the flywheel will try to compensate unnecessarily, only to be caught on one leg by the arrival, on time, of the next set of information. The result will be "hooking" or bending of verticals at the top of the picture as the time-base slowly comes back into sync and this effect

Fig. 2. Loading a Philips cassette. Lowering the cassette engages the pins behind the tape and takes it round the drum.
Fig. 3. A Sony cassette is loaded in roughly the same way as the Philips type.
Fig. 4. An IVC cartridge being loaded.

can, without modification, reach half-way down the screen. The time-constant must therefore be shortened so that the hooking occurs invisibly during the blanking time or during a small amount of over-scan. If, however, it is shortened too much, the object of having a flywheel is lost and noise again becomes a problem.

It seems possible that future television receivers will make some provision for the connexion of recorders, preferably in video form, thereby eliminating the cost of a u.h.f. modulator. There will then, of course, be the old question of live chassis, as manufacturers still have not found it necessary to use mains transformers. A. C. Smaal of Philips set out his views on this in Wireless World March 1975. On this question of compatibility, it should be pointed out that the different systems are mutually incompatible. The two cassette systems-Sony and Philips-are possibly the closest in conception, but are still incompatible because of the different tape width and cassette type. Compatibility between two machines of the same model is better than it initially was; control circuitry is improved and there does not appear to be an insuperable problem. Dealers have told us that they can choose any machine in stock and play any tape on it with every chance of success.

Some recorders possess their own u.h.f. tuner, which means that the recorder can receive and storeinformation on one channel while the television receiver is displaying another. Others take a video feed from the receiver, necessitating yet another modification.

The feeling expressed fairly freely is that off-air recording is not going to be enough to make a success of these machines. A supply of programme material is essential if they are to enjoy the success of an audio system, but the number of competing formats must be drastically reduced before any programme supplier is likely to commit himself. There is also the question of copyright. It is, after all, an infringement of the Copyright Act of 1956 to record a broadcast programme. The Whitford Committee are unlikely to report for some time and this unenforceable law will continue to be broken daily, but it is an unsatisfactory situation.

The other source of "programmes" is to buy a monochrome television camera (colour is far too expensive a proposition) and to use the camera and recorder as a kind of up-market home movie system, but one would have to be very single-minded about immortalizing Dad and the kids on tape to go to such lengths.

The facility of stop motion or still frame is obtained by stopping the tape feed, while the heads continue to turn. As each track contains one field of information, the same field is scanned continuously. There is a slight problem in that the heads do not now cross the tape at precisely the same angle as when it is moving, so that they may start on one track, cross the guard band between tracks and finish on another. A drop-out then exists and it is necessary to ensure that this drop-out occurs in the blanking interval between frames. Most
machines incorporate a drop-out compensator, the Philips type consisting of a dropout detector which, when a defect is noted, substitutes for the line of information containing the drop-out a previous line, delayed by $64 \mu s$. The difference between the two is usually negligible and preferable to a total loss of information.

Our impression of the two "standard" machines is that the Philips, being smaller, cheaper and possessing a tuner and timer is better suited to the domestic scene than the Sony, but that Sony's performance is a little better and should be more at home with a camera input for education and training.

Other systems

Although this article is intended to cover methods of video recording using tape in "convenience" form, it is well to note that several other contenders exist which use discs-an area of activity on which we intend to report in detail in the near future. Most of these (Thomson-CSF, Zenith, Philips/MCA) use optical methods in either the transmission or reflection modes and have playing times of between 20 and 30 minutes. The records are thin plastic or glass discs and the information is encoded in the form of pits or holes, which tends to render them somewhat vulnerable to dust and grease. The recent Philips/MCA link would appear to give the VLP (video long player) a distinct advantage over othersMCA have a vast library of material and are to manufacture the discs.

The Telefunken-Decca system (TeD) uses what is effectively an up-rated audio record of 8 -in diameter playing for ten minutes. Hill-and-dale recording is used. The disc systems were described in detail in Wireless World, November 1973.

A recently-announced development from BASF is the LVR (Longitudinal Video Recorder) which again employs a singlespool enclosure. As its name implies, longitudinal recording is used, but the extremely high rate of tape usage common to this method is avoided in the LVR by the 28-track format employed. Quarter-inch tape is used and playing time can be as long as 120 .minutes using $6 \mu \mathrm{~m}$ thick tape. Little is known of this machine at the time of writing, except than an unusual tape handling system is used. The cartridge opens to reveal the spool of tape, the leader being extracted by a large-diameter capstan, passed through the recording/playback station and again past the capstan onto the take-up spool. Feed spool, capstan and take-up spool are in continuous contact, leaving very little free tape. The extremely thin tape is therefore protected.

A speed of $3 \mathrm{~m} / \mathrm{s}$ is adopted, the reversing at the end of each of 28 passes taking 80 ms . Colour recording is offered in conjunction with several audio tracks. Bandwidth is 3 MHz . BASF claim that the area of tape used is less than a quarter of that used in the Sony system and even less than in the Philips method. The unit is not expected to make its appearance for at least two years.

A recent announcement is the MDR, developed by Erich Rabe. MDR is Mag-
netic Disc Recording and offers the facility of recording to the user-unlike the optical or stylus-pickup discs. An ordinary record turntable modified to run at 200 r.p.m. carries a disc whose inner section has a helical guidance groove which guides a stylus and, by a link, steers a magnetic head over the outer, magnetic, section of the record. All colour systems can be recorded and played for 15 minutes. Alternatively, the turntable can be slowed to 33 r.p.m. and used to record up to 16 hours of audio.

The RCA Selectavision Magtape, not yet available here, uses a new type of tape handling and head format. Four heads are used, a layout which, amongst other benefits, allows all the tape to remain in the two (side-by-side) reel cassette, as only 90° of the drum must be wrapped. The drum protrudes into the cassette to achieve this amount of wrap. Cassette size is $9 \times 6 \frac{1}{4}$ $\times 1 \frac{1}{2} \mathrm{in}$.

In the following section, the machines mentioned are the ones we have found to be available in the UK. There are many more, but they are not obtainable here and so have been omitted.

Philips
 N1500 VCR

Cassette-loading
(vertically-stacked
spools)
Record/playback of colour and monochrome
Tuner for off-air recording
U.h.f. modulator output

PAL standard 625/50
Two heads
$\frac{1}{2}$-in tape
Automatic tape threading
Cassette size: $12.7 \times 14.6 \times 4.1 \mathrm{~cm}$
Recording time: 30,45 or 60 min
Bandwidth: 2.7 MHz
Tape speed: $14.29 \mathrm{~cm} / \mathrm{s}$
Dimensions: $56 \times 33 \times 16 \mathrm{~cm}$ (with cassette lid up)
Sound is on two tracks on tape edges
Mains supply: $110-245 \mathrm{~V} \pm 10 \%$ at 50 Hz
$\pm 1 \%$. Any frequency drift must be slow to remain tolerable
Price: $£ 462.84$ (plus v.a.t.) (1500)
cassettes: $£ 11, £ 14.50$ and $£ 17.00$
($1500 / 15 \mathrm{M}$): $£ 537.04$ (plus v.a.t.)
This is one of the group leaders in these machines. It provides an acceptably sharp picture but not, perhaps, as finely resolved as in some others. It must be said that most dealers tend to demonstrate Philips machines on large-screen receivers, whereas other systems seem to be shown on small Trinitron sets-a procedure which does emphasize the difference. Controls are provided for tracking, audio record level auto/ manual, the usual function controls and a timer for use when recording a programme in one's absence. Cassettes are available for 30,45 or 60 minute playing times; the cassette holder is raised, the cassette inserted and the whole lowered, thereby engaging pins which pull out a loop of tape and wrap it round the scanning drum. The $1500 / 15 \mathrm{M}$ is similar, but the input and output are at video frequencies for direct connexion of colour or monochrome camera
and monitor. The 1520 , at $£ 820$, is a semiprofessional machine with no timer or tuner, having assemble and insert editing provision, and facility for sound dubbing on two sound channels. It has an extended bandwidth $(3.2 \mathrm{MHz})$ for monochrome, and is intended for a video input from a camera. Stop motion is possible, and the output can be either video or u.h.f. Head life on this range of machines is up to 500 hours with chrome tape, and replacement during the first year is free; after this the cost of new heads is $£ 35-£ 40$. The N1500 and $1500 / 15 \mathrm{M}$ are handled by Philips Electrical Ltd, Century House, Shaftesbury Avenue, London WC2H 8AS, and the N1520 by Pye Business Communications Ltd, Cromwell Road, Cambridge CB1 3HE.

Radio Rentals

Model 8200

This is based on the Philips N1500. The performance and appearance are the same essentially, but the programme timer and u.h.f. tuner are not included. The 8200 can be bought or rented (not privately) from Radio Rentals Contracts Ltd, 1/15 Clyde Road, Tottenham, London N15.

Sony

Vo-1810UK

Cassette: (Sony U-matic, spools side-byside)
Record/playback colour and mono-chrome U.h.f. output modulator/video input

PAL standard on 625/50
Two heads
$\frac{3}{4}$-in tape
Auto tape threading
Cassette size: $3.3 \times 22.1 \times 14 \mathrm{~cm}$
Recording time: 20, 30 or 60 min
Resolution: 300 lines monochrome, 240 lines colqur
Tape speed: $9.53 \mathrm{~cm} / \mathrm{s}$
Dimensions: $67.6 \times 23.8 \times 46.6 \mathrm{~cm}$
Two sound channels
Mains supply: $110-240 \mathrm{~V} \pm 5 \%$ at 50 Hz $\pm 0.5 \%$
Price: $£ 765$ (plus v.a.t.)
Cassettes: $£ 8.20, £ 9.80$ or $£ 14.50$
The leader of the U-matic group of recorders, that being a Sony trade mark. The operation of the two types of machine is broadly similar in all external essentials. The VO-1810UK uses chrome tape and possesces a tape winding memory feature, which enables continuous repeat of a full tape or part of a tape, starting and finishing points being pre-set by the operator. Sound dubbing on one channel is provided for. A u.h.f. tuner, type TU1000B is available for off-air recording at $£ 99$.

VO-1210

A similar machine to the VO-1810UK but intended solely for play-back of recorded cassettes.

VO-2850 U-matic is a semi-professional machine in the cassette format with assemble and insert editing facilities and sound dubbing. Stop-motion is offered. Price is $£ 2,500$.
Sony (UK) Ltd, Pyrene House, Sunbury-on-Thames, Middx.

Philips N1500

Radio Rentals 8200

Sony V0-1810UK

Action Video

Rentals

If you can't justify purchasing all the video equipment you occasionally need why not rent it from us. We have a vast stock of all types of video recorders, cameras etc.
(including complete monochrome and colour portable studio units).

Action Video
45 Great Marlborough St London W1V 1DB
Phone 01-734 7465/7
Midlands Representatives:
Foxall \& Chapman,
51 North Street,
Cheetham, Manchester.
Phone 061-834 5786

PHILIPS N1500 VCR

Low cost video cassette recorder for up to 1 hou recording time. With built-in tuner and fime clock Available from stock. SPECIAL OFFER $\mathbf{~} 425$ plus VAT N1500/M VIDEO INPUT AND OUTPUT VERSION. Available from stock. $\quad 539$ plus VAT N1520 ELECTRONIC EDIT VCR
Complete with electronic editing facility with insert and assemble modes • 2 audio tracks • extended band width • stop/motion facility. Available from stock. £850 pius VA

AKAI GREAT SAVING!

For one month only we are able to offer the Aka VTS-110 DX complete $\frac{1}{4}{ }^{\prime \prime}$ mono kit for an amazing $\mathbf{£ 2 5}+\mathrm{V}$ +.T. This is a saving of $£ 150$ on the normai price.
Incredibly versatile, the kit comprises portable video tape recorder, video camera, portable monitor and adaptor.
Power source is no problem. You operate from built in battery, mains, or a car battery. High quality pictures can be relayed from camera, "off air" or other VTR equipment, and can be played back through clip-on monitor, VTR monitor, or any UHF receiver.

With added benefits of still framing and sound dubbing, the Akai VTS-110 DX is excellent value at any time. At our price it's almost a give-away!

SONY V01810 UK

PAL NTSC U-MATIC RECORDER PLAYER High resolution colour, auto repeat and memory facilities, 2 audiotracks and R/F output. Available from stock. $\mathbf{E} 765$ plus VAT

SONY VP1210 UK PAL NTSC PLAYER ONLY Available from stock. $\mathbf{£ 6 4 5}$ plus VAT

Video Tapes

We offer highly competitive prices on all makes of $\frac{1}{2}$ in., 1 in., VCR and U-Matic Video Tapes including Sony, Scotch, Ampex, BASF, Philips and Memorex. Next time you are ordering tapes, ring our Sales office at Colliers Wood and let us quote you. You'll be surprised.

REW have been in the Video Industry for over 10 years and their accumulated wealih of experience offers you the finest Video service in the country. All the equipment you need is always available from stock and at their London Video Cassette Centre at Centrepoint in London you can view and compare all the latest equipment REW also offer first class studio and production facilities. Why not contact us when you want to talk video - REW know better than most. REW are Main Agents for:
AMPEX, AKAI, NATIONAL. PANASONIC, SONY, HITACHI-SHIBADEN. J.V.C NIVICO, MALHAM LIGHTING, ELECTROCRAFT, QUICKSET TRIPODS. ASTON, FUJINON, CANON, DECCA, RANK IANIRO, LIGHTING
In our Centrepoint showroom we have a permanent demonstration of the full range of Shibaden colour cameras, all available from stock.

DES COLOUR 18" RECEIVER/MONITOR

The DES monitor is based on the SONY KV1810 UB $18^{\prime \prime}$ Colour Receiver and provides full video and audio input and output facilities plus an EIA-JVTR connector
This high quality monitor is compatible with most video tape recorders and video Cassette recorders currently available on the market.

$\left.\begin{array}{c}\text { available } \\ \text { NOW } \\ \text { at ONLY }\end{array}\right] 36$

plus VAT.
Trade Enquiries Welcomed.

LEASING

Because of our unrivalled stock of all the latest equipment we can offer very realistic leasing terms for all your requirements. Why not contact us for quotations without obligation and compare our prices.

HIRING

Our new, enlarged Video Hire Division offers you everything you need by the day, the week or longer for inside or location recording including fully trained operators. Our 25 years experience is also at your disposal to help you with your programmes and presentations.

3

The most experienced Video Company in the business
London Showroom - Centrepoint, 21 St. Giles High Street, London WC2.
Telephone: 01-836 9183/9025 Ask for Tony Stevenson.
Head Office, Sales, Studios, Production and Servicing -
REW House, 10-12 High Street, Colliers Wood, London SW19 2BE

National NV-5120A-B

JVC CR-6000E

Hitachi Shibaden SV-630E(K)

National (Matsushita)

NV-5120A-B

Cartridge loading (one reel-one in machine) Record/playback of colour and monochrome U.h.f. output converter as optional extra

PAL standard 625/50
Two heads
$\frac{1}{2}$-in tape
Automatic tape threading
Cartridge size: $12.8 \times 13 \times 2.9 \mathrm{~cm}$
Recording time: 36 min
Bandwidth: $4 \mathrm{MHz}(-20 \mathrm{~dB})$ monochrome resolution 240 lines, $3 \mathrm{MHz}(-20 \mathrm{db}$) colour (resolution 260 lines)
Tape speed: $16.322 \mathrm{~cm} / \mathrm{s}$
Dimensions: $48.5 \times 38.8 \times 20.8 \mathrm{~cm}$
Mains supply: 240 V 50 Hz
Price: $£ 595$ (plus v.a.t.)
Tape: $£ 8.50$ for 36 mins (National tape)
A cartridge recorder which conforms to the only "standard" in existence, if one defines a standard as a specification arrived at by agreement rather than by force majeure. The A-matic cartridge uses a single reel, the tape having a stiffened leader which is automatically pulled past the heads onto the tape-up reel. A programmer for repeated playing of selected parts of the tape (search) is provided and there is provision for stop-motion. Controls are solenoid-operated. A timer is obtainable as an extra, as is a remote-control unit. Sound can be dubbed.

A point to note about the EIAJ $\frac{1}{2}$-inch cartridge is that it can be loaded by the user with $\frac{1}{2}$-inch tape, so that tape recorded on an open-reel machine can be used in cartridge form.
Collett Dickinson, Pearce \& Partners Ltd, Howhand House, 18 Howhand Street, London W1P 6AT.

JVC

CR-6000 E

Uses the U-matic $\frac{3}{4}$-inch cassette and is compatible with other U-matic equipment. Records and plays back in colour or monochrome with an r.f. or video input and video output (u.h.f. converter as an extra). It possesses the "search" facility, solenoidoperated controls, audio dubbing and two sound channels. A remote-control unit is an accessory. Playing time is up to 60 minutes. Price $£ 749$ plus v.a.t.
Bell and Howell, Alperton House, Bridgwater Road, Wembley, Middlesex.

Hitachi Shibaden

SV-630E(K)

A cartridge machine conforming to the A-matic (EIAJ) $\frac{1}{2}$ inch standard of the National NV-5120A-B, with a similar specification and range of facilities. A sound-dubbing facility is provided, as is automatic re-wind. The price is $£ 580$ plus v.a.t. The price of tape is $£ 12$ for 36 minutes (Shibaden tape).
Shibaden (UK) Ltd, Lodge House, Lodge Road, Hendon, London NW4.

Loewe-Opta

Optocord 700

Basically similar to the Philips $1500 / 15 \mathrm{M}$ but with r.f. and video in and out. Auto tracking is provided, as is drop-out compensation and a colour killer which operates on playback only, thereby
avoiding the possibility of recording colour in black and white. A sevenselector r.f. tuner is included, and a timer, and the machine offers stop-motion operation. Price $£ 744.17$ plus v.a.t. and the Optocord 700 uses the same type of cassette as the Philips machines. Hokushin Audio Visual Ltd, 2 Ambleside Avenue, London SWI 6 6AD.

IVC

VCR-101C

Cartridge loading (one spool)
Record/playback in colour
Video input and output
PAL on 625/50
One head (tape completely encircles drum)
1 -in tape
Automatic threading
NAB 8-in reel mounted in cartridge
Recording time: 60 min
Bandwidth: 3.2 MHz luminance, 1.4 MHz colour
Tape speed: $17.1 \mathrm{~cm} / \mathrm{s}$
Dimensions: $18 \times 13.5 \times 8.5$ in
Two sound channels
Mains supply
Price $£ 1812$ plus v.a.t.
Tape around $£ 21.00$ per hour
Yet another cartridge machine, this time using a standard 8 -in NAB reel of 1 -in tape,

IVC VCR-101C

with obvious compatibility with open-reel machines. Stop-motion is provided and the instruments (this is one of a range) are fitted with audioamplifiers and speakers. The machines are available in monochrome or PAL versions, and are controllable
electrically by t.t.l.-compatible voltage levels. The scanning mechanism is directdriven, having its own printed-circuit motor. Head life is claimed to be 2000 hours.
Bell and Howell, Alperton House, Bridgwater Road, Wembley, Middlesex.

Literature Received

A booklet entitled "Photocouplers" is now avail able from Mullard, describing the characteristics, operation and application of these devices. Requests for copies, on headed notepaper, should be sent to Computer Electronics Division, Mullard Ltd, Mullard House, Torrington Place, London WCIE 7HD.

EQUIPMENT

A leaflet describing a deglitched d.a.c. system, the DMC Digisweep, which takes in digital data and drives c.r.t. deflection amplifiers to draw vectors and write alpha-numerics, is available from Amplicon Electronics Ltd, Lion Mews, Hove BN3 5RAWW41I

A publication is available illustrating and giving technical data on radiotelephones types M202 (v.h.f.) and M212 (u.h.f.). Pye Telecommunications Ltd, Cambridge CB5 8PDWW412

A basic guide to data communications is the subject of a new brochure relating to computer installations where remote control terminals are connected by telephone lines to a control computer. SE Labs (EMI) Ltd, Spur Road, Feltham, Middlesex WW413

A catalogue from Burns describes a range of equipment intended for the amateur radio market, including a frequency standard, wavemeter, test oscillator and many modules for building into other equipment. Burns Electronics, 43a Chipstead Valley Road, Coulsdon, Surrey CR3 2RB WW4 14

The Spellman range of high-voltage power supplies is shown in a catalogue 7400 from Hartley. Solid-state, regulated and unregulated, miniature, rack-mounted and modular units are described. Hartley Measurements Ltd, HML House, London Road, Hartley Wintney, Basingstoke, Hants. WW415

We have received a leaflet on the lightweight v.h.f./ f.m. marine radiotelephone, Model RF-440, made by Harris. Complete performance details and facilities provided are described, as are several accessories. Harris Corporation, RF Communications Division, 1680 University Avenue, Rochester, New York 14610, U.S.A. WW416

Tally have sent us a leaflet on their latest range of paper tape peripheral equipment, which is designed for use with the PDPI1, Nova and Digico 16 V minicomputers on a plug-in basis. The.leaflet describes a reader and two punches for low and high speeds. Tally Ltd, 7 Cremyll Road, Reading RG1 8NQWW417

Farnell have produced a leaflet on the PG5000 series of five pulse generators. Types 5111 to 5222 provide between them, dual channel output with delay or positive or negative-going pulses. Repetition frequency is up to 5 MHz . Farnell Instruments Ltd, Sandbeck Way, Wetherby, Yorkshire LS22 4DHWW4 18

We have received a leaflet describing a loudspeaking intercommunication using mains-borne f.m. or a.m. and made by the NOA Corporation. The unit is the Model FN-113S and the leaflet is obtainable from Hadley Sales Services, 112 Gilbert Road, Smethwick, Birmíngham
. WW419
The latest Heathkit catalogue is now available. New equipment this time includes a digital clock/ radio, a scientific calculator, a car clock, a 15 MHz oscilloscope and a function generator. Heath (Gloucester) Ltd, Gloucester GL2 6EE $\therefore .$. WW420

A leaflet describing the Digipet electronic weighing machine for top-loading is available from Transducers (CEL). The weighers are by Shinko-Denshi,
provide a digital indication and automatically select ranges of $0-19.99 \mathrm{~g}$ or $0-199.9 \mathrm{~g}$. Transducers (CEL) Ltd, Trafford Road, Reading RGI 8JHWW42I

The recent informative advertisements for Wayne Kerr have been reprinted in booklet form entitled "Some Notes on Bridge Measurement". The publication is obtainable free from The Wayne Kerr Company Ltd, Durban Road, South Bersted, Bognor Regis, Sussex PO22 9RL

Peerless loudspeaker kits and drive units are described and pictured in a leaflet from Ross Electronics, 32 Rathbone Place, London W1P IAD

WW423
A description and specification of the Philips time division multiplexer type 3 TR 1500 is given in a brochure from Philips' Telecommunicatie Industrie BV, PO Box 32, Hilversum, The Netherlands WW424

MATERIALS

Data sheets describing the applications for and properties of four new silicone resins specially developed for use in the electrical and electronics industries are available. The resins M15 and P22 can be used for binding high-temperature-resistant impregnating varnishes, while PO5 and P15 are additives for use in the manufacture of base cements for electric bulbs. TH Goldschmidt Ltd, York House, Station Road, Harrow, Middlesex .. WW425

A booklet from DuPont describes the company's range of products for the manufacture of microcircuits, optoelectronics, and potentiometers, together with basic information on thick-film compositions. R. G. Paterson, DuPont Information Service, DuPont (UK) Ltd, 18 Bream's Buildings, Fetter Lane, London EC4A 1HT WW426

In a new leaflet, EGM Solders give full details of their ranges of solders, fluxes and chemicals. (EGM is the amalgamation of Enthoven, Grey and Morton and McKechnie.) EGM Solders Ltd, Wolseley Road, Mitcham, Surrey CR4 4JQ WW427

Transistor-aided ignition

A simple solid-state switch for ignition coils

by G. F. Nudd

The contact breaker is, in the author's opinion, the bugbear of a modern car. Many vehicles require the contact breaker to be adjusted, if not replaced, every three months or so. In a recent survey by the Automobile Association one in 15 breakdowns was found to be caused by points failure. Various types of electronic ignition have been designed to overcome the drawbacks of standard systems, notably the capacitor discharge method. However, in the case of mass-produced cars, these systems could be considered overdesigned as they are generally costly, usually requiring a special transformer. Also, in some cases, electronic revolution counters cease to operate correctly.

As a car works perfectly well when the points are in good condition and correctly adjusted all that is needed is an electronic switch to isolate the points from the heavy current and high-voltage backswing of the ignition coil. Until recently transistors capable of the 300 V or so needed were not readily available. Now one can obtain the so-called "triple diffused device" that not only offers high-voltage operation but a much better second breakdown region because of its higher switching speed. The author has used the Texas BUY23/23A which, when operated with ten ohms between base and emitter, is capable of withstanding 600 V . Some designs have used a high-voltage, high-power zener diode across the transistor for protection. This, however, has been found unnecessary with the author's circuit.

Concerning the driver circuitry, normal amplifying stages have been used in some designs. This, however, gives rise to excessive power dissipations in components when a worst-case circuit is designed for operation between 7 and 15 V limits. To overcome this problem, a constant-current driver is used, which results in quite reasonable dissipations, and the design is suitable for all cars using a 12 V ignition system. If the car does not have a ballast resistor system, R_{2} can be increased from 1.2 ohms to 2.2 ohms, giving less dissipation in the driver transistor. When using the positive-ground version, the ignition coil is connected to ground instead of battery voltage. The capacitor C can be a 600 V , electronic type or alternatively a "points" capacitor as normally used in the car, the normal capacitor being left in situ to facilitate disconnecting the unit. The capacitor
should be soldered into the i.a. unit because if, for example, it became disconnected through a faulty slide connector, the ensuing high voltage might damage the transistor. Diodes D_{4} and D_{5} are protection measures for the transistors against voltage transients.
The i.a. unit may be built on a piece of aluminium and attached to the car body under the bonnet for heat dissipation. In the case of glassfibre cars the chassis must be used. Also modern aluminium oxide insulating washers for the power transistors should be used.
The points should be replaced and the engine timed accurately when the unit is fitted. The sparking plugs should be replaced or regapped as normal. It has been remarked that when electronic ignition is fitted there is no need to check the
ignition system. This may, in fact, be true with an older type of car but with a more modern one the engine, timing must be within a couple of degrees accuracy to obtain optimum power output.

The unit has been functioning in two cars for many months with no troubles. The points themselves wear slowly, both parts receiving slight indentations which causes the unused outer surfaces to gradually be used leaving the engine timing unaltered. The fibre surface of the points which rubs on the cam also wears to the extent of one or two thou at the points-gap in a year.

Components list

Tr \quad BUY23A/BUY23
Texas Instruments
or BDY96/97/98 Mullard
$\mathrm{Tr}_{2} \quad$ 2N3789/90/91/92
$\mathrm{Tr}_{3} \quad 2 \mathrm{~N} 3055$
$D_{1,2,3,4} 1 \mathrm{~N} 4001$
$D_{5} \quad 18 \mathrm{~V}$ zener diode 400 mW
$R_{1} \quad 56 \Omega 2 \mathrm{~W}$
$R_{2} \quad 1.2 \Omega 2 \mathrm{~W}$ or $2.2 \Omega 2 \mathrm{~W}$, see text
$R_{3} \quad 1000.5 \mathrm{~W}$
$C 600 \mathrm{~V}$ d.c. working, same capacitance as the points capacitor, see text.
Aluminium oxide TO3 thermal insulating washers:
2 off for negative earth A26-2004
1 off for positive earth
Jermyn
Industries

Complete circuit diagrams for positive- and negative-ground systems.

National Electronics Council Link Scheme

The NEC Link scheme has just entered its second year of successful operation. It is an organization devoted to linking schools wanting to start electronics projects with advisers based in industry and commerce. A good example of a successful link is described in their newsletter and which is reproduced below with their kind permission. Those wishing to contact Link should write to The Organiser, Peter Noakes, Link Scheme, Department of Electrical Engineering Science, University of Essex, Colchester CO4 3SQ.

A link in operation

In October 1973, having received an offer of help from Mr Short, an engineer at Recording Designs (E.M.I.) Limited, Link Scheme put him in touch with Mr Ellerker, a teacher at the Robert Haining School, Surrey. Both were obvious electronics enthusiasts and after the initial introduction we retired to await the outcome. Following initial discussions concerning what each side expected to get from the link, it was decided to develop an introductory electronics course for 12 year olds. After considerable thought, careful design and preparation the course has now been introduced, and I was pleased to receive from the individuals involved in this link the following report. If you are interested in receiving more information, please contact directly any of the individuals mentioned at the end of the report.
Electronics at the Robert Haining School. The lives of most of us today are increasingly influenced by technological development; because of this we have organised a series of courses for our 12 year olds which expose them to a variety of technologies. The basic courses are intended to act as a stimulus, creating interest and enthusiasm.
Introduction to electronic work units. In the case of electronics a set of six work units offers the pupils the opportunity to gain familiarity with and confidence in handling components, plus intrigue and excitement through seeing and using their completed projects. They very soon show their newly gained knowledge through their ability to select resistors, capacitors, diodes and transistors with confidence.

In designing the units we had to look for efficient ways of producing attractive software which would involve the young
pupils at all stages. A short introduction describing the project and its possible uses is followed by an "items sheet" which involves the selection of components and the placing of them alongside their respective symbols on the sheet. On the next sheet is drawn a 1 cm square grid depicting the component positions as they appear on the actual circuit board and numbered and lettered to correspond with the items sheet. The pupils transfer the components from the items sheet to the grid. It is now a simple matter to transfer the components from the grid to identical positions on the circuit board.

The circuit board is made from white faced hardboard marked with a 1 cm square grid and numbered to assist in the transfer of the components. The components are held to the board by tension springs, mounted vertically, which may be stretched upwards to allow the component leads to be slipped between the coils of the spring. This technique is shown in diagrammatic form and is studied before the transfer takes place. A sheet of step-by-step instructions ensures that each component is placed correctly on the circuit board.

When the project is satisfactorily completed the pupils are required to fill in a questionnaire which is designed to test their understanding of the project.
Selection of projects. Selecting suitable projects for the six units of work was not a simple task. The choice was constrained by a number of factors, some dictated by the objectives of the course and others by practical considerations.

The most important objective is that the child should enjoy the work unit and this implies that each project should have a degree of novelty, such that when complete it is fun to use. A further implication of the "fun factor" is that the completed project must be guaranteed to work, provided the components are not faulty and are inserted in the correct positions. Many youngsters have been turned away from electronics as a pastime due to the repeated experience of building projects described in some of the many electronic magazines and finding they cannot make them work. To avoid this pitfall the circuits must be designed to tolerate wide variations in transistor gain, poor tolerance components and a variation in supply voltage consistent with battery operation.

Also, because battery supplies are used, current economy must be considered at the design stage.

A further objective of the course is to demonstrate a range of tasks to which electronics can be applied. However, certain categories of projects were not considered. For example, the obvious applications of electronics in radios and audio amplifiers were deliberately avoided. As 12 year olds do not own cars, electronic gadgets for cars were not included. Also, electronic test instruments were excluded because they have no appeal unless their purpose is understood. In all cases the theory of operation was not considered.

The projects finally selected were as follows:

1. Moisture detector
2. Simple electronic organ
3. Light beam burglar alarm
4. Sound operated switch
5. Two-way intercom
6. Reaction time tester

Future work. In order to provide continuity of work as the present group of 12 year olds moves up through the school, further courses will be developed. At present, consideration is being given to a set of work units based on circuit blocks such as multivibrators, amplifiers, level detectors etc. The object will be to demonstrate how a wide variety of tasks may be tackled by various arrangements of a small number of basic circuit blocks. At some stage it will be necessary to change from the "spring terminal" method of construction to the more conventional technique of soldering. To this end a work unit entitled "An Introduction to Soldering" is being produced, including a video tape presentation demonstrating the technique.

Anyone who would like further details of this work is welcome to contact either:
Ted Ellerker or Brian Burtsell,
Technical Studies Department, Robert Haining School,
Mytchett Place Road,
Mytchett, Surrey
or
Lawrence Short,
Recording Designs (EMI) Ltd., Victoria Avenue, Camberley, Surrey.

Proposed changes to American licences

The long-awaited FCC proposals for the major "restructuring" of amateur licence conditions in the United States have now been outlined in a 29 -page document, Docket 20282. Among the many changes suggested is a 2000 -watt p.e.p. output power limit for those holding an "Advanced Class" permit, thus effectively doubling the already very high powers permitted in the USA. Amateurs with h.f. licences would be restricted to operation below 29.0 MHz until they obtain an "Experimenter" licence. "Novice" licensees would be able to use up to 250 watts d.c. input (for c.w.-only operation) instead of 75 watts, and these licences would be renewable in five-year terms. A new "Communicator" class of licence would not require a Morse code test and would permit use of all amateur frequencies above 144 MHz but restricted to frequency-modulation (F3). "Extra" class licences for h.f. and v.h.f. would require a 20 w.p.m. Morse test but no further theoretical examination. Extra facilities on 50 and 144 MHz would be given to "Technician" class licensees.

Generally it seems that the FCC wants to make entry into the hobby easier and to give newcomers more facilities, including new Morse-free licences, but would retain the existing "incentive" structure by providing progressively more operating privileges. The FCC has invited comment by June 16,1975 , so it will be some time before these proposals become effectiveand of course they may yet be modified.

The r.t.t.y. facilities at ZS3B

Interest in radio-teleprinting continues to grow and many well-equipped stations are using this mode. But surely one of the most elaborate installations must be that of Gerhard Schlorf, ZS3B, in what used to be known as South-west Africa. The following description of his station appeared recently in Radio $Z S$: "The station operates auto start on 14075 kHz and offers a number of facilities. In response to a code contained in the incoming 45 baud, 170 Hz shift signal a message generator responds: 'ZS3B attended' or unattended, whichever is the case, or
'ZS3B printing'. In response to a different incoming coded signal, a stored message can be activated. Another form of coded input signal records the incoming signal which, if ended appropriately, would by using a memory, switch on the transmitter, switch off the receiver and retransmit the incoming signal to another address.
"Another feature permits an incoming 7 MHz signal to be retransmitted at the same time on 14 MHz , and vice versa, to allow retransmission to another area.
"The installation includes two teleprinters and the whole station is operative 24 hours of the day with any incoming signal printed, with those signals addressed specifically to ZS3B printed on one teleprinter, so that the operator need not wade through reams of paper to see if anything has come in for him.
"The 14075 kHz frequency is crystal controlled and maintained to within $\pm 30 \mathrm{~Hz}$. The station forms part of a world wide amateur network."

Good winter for "Top Band"

The low sunspot levels of activity which have restricted operation on 14 MHz (and above) fairly strictly to the hours of daylight this winter have brought compensating benefits to the considerable number of "Top Band" (1.8 MHz) dx enthusiasts, to judge by the latest Bulletin from Stewart Perry, W1BB. He reports that many amateurs have this season completed the by-no-means-easy feat of achieving "worked all continents" on this band (KV4FZ even completed a WAC in a space of eight hours!). Much sought after have been VS6DO in Hong Kong and a growing string of stations in South and Central America. Helena de Kertesz, YV5CKR, after a visit to Europe and the United States returned to Caracas, Venezuela, to become possibly the only "young lady" operator currently active on 1.8 MHz dx , and has made many longdistance c.w. contacts. One of the new countries to appear on the band this winter was ST2AY in the Sudan, operated by Roger Crofts, G3UPK. The "first-timers" tests were handicapped by rather poor conditions, but the ARRL 1.8 MHz tests in December provided many excellent contacts particularly on the second night. Stew Perry, W1BB, has this season worked 150 dx stations in 46 countries compared with 116 stations in 37 countries in the equivalent season of 1973-74.

50 years of REF

This month, French amateurs are marking the 50th anniversary of the formation of the Reseau des Emetteurs Français in April 1925. This society-long-established as the French national society for radio amateurs-was by no means the first radio society to be formed in France; for example, in 1914 there was the "Groupe Français des amateurs de TSF" and others in the early 1920s included the rather sinisterly named "Club des 8". But in 1925, Jack Lefebvre, F8GL, invited licensed amateurs to join an association that would
be concerned exclusively with amateur radio activities and promised to eschew the intrigues that were plaguing some of the other groups that were attempting to embrace also broadcast listeners. Some 50 amateurs responded and Jack Lefebvre became founder-president.

Although amateur activity has always been on a fairly modest scale in France (currently there are about 5000 French amateurs) at least two of Europe's most successful pioneers of h.f. were located there: Leon Deloy, F8AB of Nice and Pierre Louis, F8BF.

The South African Radio League similarly reaches it 50th anniversary in May.

From all quarters

A suggested "facsimile standard" for British amateurs is put forward in $C Q-T V$ by J. J. Wilcox, G8GGU: drum speed 3 Hz ; drum size 70 mm diameter by 70 mm long for $1: 1$ aspect ratio; scan rate 64 or 96 lines/inch; co-operation index 264 or 176; sync/phasing 15 second period, 4% white pulse in black level at start of line; scan direction left to right; modulation a.f.s.k. to A4, F4 or A4J; tones carrier 1700 Hz , white 1300 Hz , black 2100 Hz , stop 1100 Hz with pictuie inversion available.

The Radio Amateurs Old Timers Association (open to amateurs who have held a licence for 25 years) is holding its 1975 annual reunion on Friday, May 16 at the Bonnington Hotel, London WC1 (details Miss M. Gadsden, 79 New River Crescent, London N13 5RQ). Its official "net" is at - 1100 hours on the first Thursday of each month on 3740 kHz .
Following representations from the RSGB, the Home Office has agreed to a simplication of log-keeping for mobile operation. Logs will now have to show only time of the start and finish of the journey; starting and finishing points of the journey; and frequency bands used during the journey.

The Sunday-morning GB2RS news stations on v.h.f. are now all using the same frequency of 144.5 MHz .

In Brief

Letters reaching me from the RSGB are usually franked with the slogan "Radio Society of Great Britain guards the interest of the radio amateur"-but recently the Post Office substituted the rather perverse message: "Collect stamps a great hobby". . . To counter overcharging of the Oscar 6 battery amateurs can now make use of the morning "descending" orbits on Mondays, Wednesdays and Saturdays ... Allan Mears, G8SM, has been elected as President of the Thames Valley Amateur Radio Transmitters Society, now in its 42nd year . . . The Amateur Radio Mobile Society's 1975 rally will be on Sunday, May 18 at The Clinical Research Centre, Northwick Park Hospital, Watford Road, Harrow, Middx (near Northwick Park underground station).

PAT HAWKER, G3VA

New Products

Column indicator

This indicator consists of two columns of light, the lengths of which represent an analogue quantity. Two separate analogue values can be displayed on the columns which are formed by 100 elements, each being illuminated in turn to form a continuous column of light up to 126 mm long and 2.54 mm wide. The indicator is manufactured by Burroughs and available from Walmore Electronics Ltd, 11-15 Betterton St, London WC2H 9BS.
WW300 for further details

Temperature detector

The "thermafilm" temperature detector is a thick-film unit which matches the BS1904 and DIN43760 specifications and can therefore replace conventional wirewound platinum resistance detectors. Response time of the device is claimed to be half that of platinum detectors. Thermafilm can be used over a temperature range of -50 to $+600^{\circ} \mathrm{C}$. Matthey Printed Products Ltd, William Clowes Street, Burslem, Stoke-on-Trent, Staffs.
WW303 for further details

WW300

Microwave filters

Models TYG-100 and TYG-400 are con-tinuously-tunable bandpass filters having bandwidths from 1 to 20 GHz and 4 to 18 GHz respectively. These filters are YIG types offering an error of less than 1% and a resolution on the frequency dial of 10 MHz . Maximum average r.f. power from the instrument, which measures $4 \frac{1}{2} \times$ $4 \frac{1}{2} \times 3 \mathrm{in}$, is 100 mW . Telonic Industries UK, 2 Castle Hill Terrace, Maidenhead, Berks.
WW313 for further details

Heat-sinks

A range of black-anodized heat-sinks for TO-5 and TO- 100 packages have thermal resistances from $30^{\circ} \mathrm{C} / \mathrm{W}$ and are manufactured from copper-based alloys. Dau UK Ltd, 42A Main Road, Barnham, Sussex PO22 0ES.
WW327 for further details

Vacuum relays

Latest additions to the Kilovac Corporation range of vacuum relays are the $\mathrm{KC}-3$ rated at 8 kV , the $\mathrm{KC}-10$ and $\mathrm{H}-26$ both rated at 15 kV , and the $\mathrm{KC}-20$ rated at 28 kV . The relays offer a dielectric strength of around $1000 \mathrm{~V} / \mathrm{mil}$ when operating, which permits closer contact spacing and low-bounce mechanisms. Walmore Electronics Ltd, 11 Betterton Street, Drury Lane, London WC2H 9BS.
WW320 for further details

Frequency synthesizer

The Rockland model 5100 programmable frequency synthesizer uses digital techniques to provide outputs in 0.001 Hz steps from d.c. to 2 MHz . Programming is accomplished through t.t.l.-compatible circuits or contact-closures to ground.

WW303

WW313

Either a binary or 8.4 .2 . 1 b.c.d. format can be used, with up to 46 parallel bits or four 12 -bit bytes. Output amplitude of the instrument is variable continuously and in 1 dB steps to 85 dB from a maximum of 10 V pk-pk with 50Ω source impedance. Wessex Electronics Ltd, Stover Trading Estate, Yate, Bristol BS 17 5QP.
WW315 for further details

Contactless keyboard

Plessey Keyboards have announced a contactless electronic keyboard-the PCK 2000. The unit, which has been produced primarily for the professional computer market, features capacitance coupled keyswitches. These switches operate into encoding logic based on an l.s.i. r.o.m. which provides various design options. The options can be selected on the basis of specification or cost requirements. Plessey Keyboards, Wood Burcote Way, Towcester, Northants NN12 7JN.
WW316 for further details

Opto-isolated switches

Two new solid-state switches consist of a low-level voltage switching control, suitable for direct drive from logic pulses, and - optical isolation between input and output circuits. The input voltage range is from 3 to 32 V d.c., which will switch an alternating current of 10 A r.m.s. at a voltage of either 120 or 240 V . Hamlin Electronics Ltd, 14 New Road, Southampton.
WW317 for further details

Thick-film amplifiers

A 12 W class A power amplifier, type TF008, requires an input of 0.5 V for full rated output and a claimed distortion figure of 0.05%. The supply voltage range is from ± 12 to $\pm 20 \mathrm{~V}$, and the frequency response is 10 Hz to 30 kHz . Type TF 009 is a 25 W class B design requiring a supply voltage of between ± 17 and $\pm 25 \mathrm{~V}$ at 2 A maximum. Frequency response is

WW327

WW320

20 Hz to 60 kHz with a typical harmonic distortion figure of 0.2%. Both units require external power transistors, and measure $1.35 \times 1 \times 0.25$ in. Guest Distribution Ltd, Redlands, Coulsdon, Surrey CR3 2HT.
WW318 for further details

Phasor meter

The model STD 10,000 phase-sensitive multimeter will give direct readings; of in-phase and quadrature components of voltage or current, on two separate meters. Five voltage/current ranges from 500 mV to 500 V and 1 mA to 10 A f.s.d. are provided on the instrument, which operates at $50 / 60 \mathrm{~Hz}$ or 12 to 2400 Hz with the aid of an adaptor. J. J. Lloyd Instruments Ltd, 1 Brook Lane, Warsash, Southampton, Hants.
WW305 for further details

Digital multimeter

A multimeter offering a voltage range from $1 \mu \mathrm{~V}$ to 1000 V , a resistance range from $\operatorname{lm} \Omega$ to $2000 \mathrm{M} \Omega$, and a current range from 10 pA to 2 A has been introduced by Keithley Instruments. Other features of the model 160 B are a 1200 V floating capability, a $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ stability, and several options/accessories including a b.c.d. output, a r.f. probe, and a 50A shunt. Keithley Instruments Ltd, 1 Boulton Road, Reading, Berks.
WW325 for further details

Load simulator

The model EL750 is a portable d.c. power tester suitable for checking power supplies. The unit will dissipate up to 750 W d.c. and will operate in a constant-resistance or constant-current mode, selected manually in steps by push buttons. Load-current programming can be accomplished by applying an external direct voltage through a connector on the rear panel. Data Technology Corporation, Sherwood House, High Street, Crowthorne, Berks.
WW308 for further details

Silk-screen service

Circuitape Ltd have introduced a made-toorder service for silk-screen printed aluminium panels. The panels can be produced in any shape and size with punched holes to specific requirements. Silk-screening can be in any colour with legends in any language. Delivery is normally around five weeks, but a special rapid service is also available. Circuitape Ltd, New Street, Aylesbury, Bucks.
WW306 for further details

Elapse timers

A custom range of elapse timers from Longmore Systems enable time periods between 1 ms and 99990s to be measured. Five-decade selection is provided but different ranges may be specified. Control is by voltage-trigger and push-button startstop with separate reset. Instrument read-

WW305

WW325

WW308
out is on a four-digit display which is accurate to within 10 p.p.m. Longmore Systems Ltd, Environment House, 875 Sidcup Road, London SE9 3PP.
WW307 for further details

YIG counter

The model 331 microwave counter will automatically measure frequencies from 825 MHz to 18 GHz . The centre frequency of signals with up to 200 MHz f.m. devi ation can be measured directly and an optional plug-in circuit permits the measurement of signals as low as -25 dBm . Remote programming, b.c.d. output and rear input options are also available for systems application, where up to 80 readings a second can be made. Dana Electronics Ltd, Collingdon Street, Luton, Beds.
WW329 for further details

Function generator

The Hewlett-Packard model 3312A function generator contains two independent generators in one case. The main generator has a frequency range from 0.1 Hz to 13 MHz in eight ranges while the modulator generator delivers signals from 0.01 Hz to 10 kHz . Both generators provide sine, triangle, square, pulse and positive/negative ramps. By combining the generators, sweep, a.m., f.m. and tone
bursts can be created with an output, from the main generator, of 10 V pk-pk into 50』. A four-position attenuator with variable control adjusts the output over a 60dB range. Hewlett Packard Ltd, King Street Lane, Winnersh, Wokingham, Berks RG115AR.
WW326 for further details

36 position switch

A single-pole, 35 -way switch rated at 2 A continuous with a breaking figure of 50 mA at 300 V a.c./d.c. has been added to the N.S.F. range of rotary wafer switches. Both 10° and 20° indexing versions are available from N.S.F. Ltd, Keighley, Yorkshire DD2 15 EF .
WW302 for further details

Plastic pots?

Two ranges of conductive plastic potentiometers designated P4100/4200 and P4400, the latter being a low cast version of the former, are now available in the UK. The precision range is rated at 1.8 W and offers a resolution of 0.003% with 352° angle of rotation, a linearity within 0.2% and an operating torque of $0.2 \mathrm{~cm} . \mathrm{g}$. Both models are manufactured in servo size 13 and can be supplied with up to ten ganged tracks. Variohm Components, The Barn, Wood Burcote, Towcester, Northants NN 12 7JR. WW311 for further details

WW329

WW326

Active filter

The UAF31 is a two-pole active filter in which, with the addition of three or four external resistors, the Q -factor, resonant frequency and gain can be controlled. Three separate outputs provide low, high and band-pass transfer function-by summing the high and low pass outputs a band-reject transfer function can be obtained. Frequency accuracy is within 1% and the Q range is from 0.5 to 500. Burr-Brown International Ltd, 25A King Street, Watford, Herts WD1 8BT.
WW310 for further details

Pyrometer

The Litesold pyrometer has been designed for measuring soldering-iron bit temperatures. A fine thermocouple tip, which causes negligible cooling, is placed on the bit and temperature is read off a meter calibrated to $500^{\circ} \mathrm{C}$ f.s.d. Light Soldering Developments Ltd, 97 Gloucester Road, Croydon, Surrey.
WW332 for further details

Conductive plastics

3M have announced a conductive plastic called Velostat. This product is available as a material or as a variety of manufactured items. For the benefit of any organic-chemists that may be reading the material is a carbon-loaded polyolefin

WW302

WW332
plastic which is conductive throughout its volume. 3M UK Ltd, 3M House, Wigmore Street, London W 1A 1ET.
WW330 for further details

Logic panel meter

This panel meter has a six-digit display and can be used for frequency counting, time, and period measurements. The unit, which occupies 3.3×1.4 in of panel space, consists of three modules-a six digit decimal counting and display section, a pre-scaler and timing generator module, a clock and offset module which consists of an internal 500 kHz crystal oscillator and a programmable divider. Power requirements are $\pm 5 \mathrm{~V}$ at 800 mA . Tony Chapman Electronics Ltd, 80A High Street, Epping, Essex CM16 4AE.
WW331 for further details

Circuit tester

A pocket-sized tester that will check voltage, polarity and continuity is now available in the UK. The instrument has a l.e.d. indicator which glows when either a voltage between 3 and 600 V a.c. $/$ d.c. is present, continuity in a circuit exists, or the polarity of a circuit/component is correct with respect to the coloured probes. British Central Electrical Co Ltd, Ringwood, Hants.
WW321 for further details

Variable transformers

Cherishaw Ltd have introduced a new range of single- and three-phase variable transformers with current ratings from 2 to 28A. Each model is manufactured in either an open form for panel mounting or enclosed for bench use and all versions are designed for a 240 V supply. Cherishaw Ltd, 103 Mount Pleasant, Tunbridge Wells, Kent.
WW322 for further details

Inductors

The 1537 series of moulded r.f. inductors will operate in the temperature range -55° to $+125^{\circ} \mathrm{C}$ and are available in inductances from 0.15 to $240 \mu \mathrm{H}$. Maximum current ratings range from 115 mA , for the $240 \mu \mathrm{H}$ device, to 2.74 A for a $0.15 \mu \mathrm{H}$ type. The components measure 0.155 in dia $\times 0.375$ in and are manufactured by Amphenol Ltd, Thanet Way, Whitstable, Kent CT5 3TF.
WW323 for further details

P.r.o.m. eraser

An ultra-violet power source designed for erasing p.r.o.ms has a built-in timer, variable from $0-30$ minutes, and can erase up to six memories in a single run. The unit is manufactured by Stolz A.G. of Switzerland and is available in the UK from Memec Ltd, The Firs, Whitchurch, Aylesbury, Bucks.
WW324 for further details

Sinewave oscillators

A series of low-distortion, amplitude-stable signal sources manufactured by Frequency Devices Inc., provide a single, specified
frequency in the range 100 Hz to 10 kHz . Features include a stability of 0.02% per ${ }^{\circ} \mathrm{C}$, amplitude stability of 0.1 dB , adjustable output from 1 to 20 V p-p. Distortion of the device is 0.1% and the impedance is less than 10Ω. The oscillators are shortcircuit protected, measure $1.5 \times 2.0 \times$ 0.4 in and are available from Lyons Instruments Ltd, Hoddesdon, Herts.
WW304 for further details

Solid Stafe Devices

Names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

Photodiodes

The TIXL471 gallium-arsenide l.e.d. and the TIXL451 silicon avalanche photodiode are both high-speed diodes for use in fibre optic application. The devices will connect directly and self-align with Corning T-19H optical waveguide terminations. WW350 for further details

Texas

Regulators

Fixed-voltage regulators for both positive and negative supplies are available with outputs from 5 to 24 V and current ratings up to 1.5 A . The regulators are supplied in either a plastic package or TO-3 encapsulation.
WW351 for further details
GDS

Switching transistor

A triple diffused n-p-n- power transistor, type SCA100-120, appears as only a 0.002Ω resistance with a 100 A collector current. Saturation voltage at the maxi-mum-rated I_{c} is 1.7 V and the maximum voltage is 120 V .
WW352 for further details Impectron

Microprocessor

The Mostek eight-bit parallel microprocessor, type MK5065 is a 40 -pin single chip-device. It offers 51 basic instructions or 81 with modifications, and has t.t.l. compatible inputs and outputs.
WW353 for further details
Lock

Miniature bridges

A. new range of 1.5 A silicon full-wave rectifiers comprises seven devices-the MDA 100 to 110 designed for voltages between 50 and 1000 V . These bridges will operate over a junction-temperature range from -55 to $150^{\circ} \mathrm{C}$ and will withstand a 45 A surge for one cycle of operation.
WW354 for further details Motorola

Alarm i.cs

A range of i.cs designed for alarm application are now available in the U.K. Devices in the range include the 3010 tone alarm which compares an input signal to an adjustable reference voltage if the reference voltage is exceeded a pulsating
or constant tone for driving an external loudspeaker is generated. The 3020 tristage alert/alarm has three l.e.d. drivers. Each of the three drivers has two t.t.l. compatible inputs. The 3030 temperature alarm activates both a steady t.t.l. compatible output and a tone output if the temperature of the i.c. package exceeds a preset level.
WW355 for further details
Adrian Electronics

A/d system

A low-cost a/d system can be realized by using the MC14435 d.v.m. i.c. and the MC1505L dual-ramp generator and comparator i.c. One external capacitor and two potentiometers are required to complete the circuit.
WW356 for further details Semicomps

TV-sound i.c.

The TDA1 190 is capable of carrying out all the functions of a television sound channel. These functions include an i.f. amplifier/limiter, an active low-pass filter, f.m. detector, a d.c. volume control and a power amplifier.
WW357 for further details
SGS-Ates

Zener diodes

A new range of zener diodes are plastic package types with a power dissipation capability of 1.32 W and a zener voltage range from 3.3 to 200 V .
WW358 for further details
Siemens

C.m.o.s. a/d converter

Analog Devices Ltd have announced what is claimed to be the world's first micro-processor-compatible i.c. analogue-todigital converter to provide up to 10 -bit accuracy. The device, designated AD7570, uses c.m.o.s. construction and is designed specifically to interface with microprocessors, and is fully t.t.l./d.t.l./c.m.o.s. compatible. The AD 7570 features a conversion time of $20 \mu \mathrm{~s}$ and a throughput rate of 50 kHz .
WW359 for further details
Analog Devices
Texas Instruments Ltd, Manton Lane, Bedford.
GDS Sales Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.
Impectron Ltd, 23 King Street, London W3 9LH.
Lock Distribution, Neville Street, Middleton Road, Oldham, Lancs OL9 6LF.
Motorola Ltd, Semiconductor Products Division, York House, Empire Way, Wembley, Middx.
Adrian Electronics Ltd, 28 High Street, Winslow, Buckingham MK 18 3HF.
Semicomps Ltd, Northfield Industrial Estate, Beresford Avenue. Wembley, Middx HA0 1 SD.
SGS-Ates Componenti Elettronici SpA , Via C. Olivetti 2, 20041 Agrate Br., Milan. Italy.
Siemens Ltd, Great West House, Great West Road, Brentford, Middx.
Analog Devices Ltd, Central Avenue, East Molesey, Surrey.

There dwelt in the land of Brit certain high priests who served in the temples of Elektron, which is an invisible god who darteth around in ever-decreasing circles but never into his own nucleus. And the priests of Elektron were devout men, serving no other god but he. And Elektron looked with favour upon them and rewarded them each according to his worth with divers strange gifts. To some he gave power to converse with those from afar off and to others he brought visions of strange happenings in distant lands; yea, even of the United States cavalry in glorious Technicolor.

And to certain other of his high priests Elektron gave powers of levitation, so that they walked with their feet ever-soslightly off the ground; these dwelt in glass temples called, in the native tongue, Researchlabs or Funnifarms, which were set apart from the common people and to which entrance was denied to all, saving only those having scrips of authority from the chief priest. And these priests were called by the common people Egbonces which meaneth he who knoweth the square root of minus one. And the Egbonces were cunning at fashioning curious devices from boot-latchets and wax so that the populace were astonied and continually cried out, saying, Behold, these are great wonders but of what use be they?

Yet other high priests of Elektron were followers of the prophet Babbage and these were set in authority over divers machines that brought much benefit to the common people; some computed the numbers of the tribes and the taxes that each man should pay; others controlled the paycheks of those that laboured, so that each man received less than his hire, while others suggested that the inter-city chariots were tardy in arrival. And Elektron taught the high priests to feed the engines with curious symbols engraven upon tablets that they might print out likenesses of the sex-goddess Bardot devoid of her apparel, which gave satisfaction to many. And these priests likewise withdrew the hems of their garments from the common populace and, by conversing in the alien tongues of Fortran and Algol, preserved their mysteries jealously.

At this time the skies were filled with
heavier-than-air machines of many nations which flew with the noise of emasculated hornets and carried the peoples to and fro, even unto the ends of the earth. These machines were under the auspices of the god Hijak. And certain of the nations had air machines which could drop unpleasantness on the land beneath to discomfort the people; but certain other nations who were poor and backward and, as the saying goeth, not with it, did not possess these amenities. Thus it came to pass that the acquisition of such machines was regarded by all as an outward and visible sign that the possessor nation was emerging from savage practices and an ensample to others.

And certain rich merchants searched diligently and redeemed many heavier-than-air machines; some from the knacker's yard; some which fell from the back of an hangar and yet others which were dislodged privily from the Science Museum. And they purposed to sell these to the heathen for many shekels of gold and at great profit. So it came to pass that the merchants sent envoys to a far country, even to the kingdom of Tsetse-Tsetse.

And the envoys said unto the king of Tsetse-Tsetse, \mathbf{O} king live for ever but put not thy money upon it. And the king answered saying, What meanest thou? Then did the envoys reply saying, Surely thou knowest that thy neighbour the king of Beri-Beri hath cast covetous eyes upon thy lands and thy maidens? If only thou hadst an Air Force it would cause thine adversary to wind his neck in. Then did the king beat his breast crying, Woe is me! And the envoys made reply saying Not so, O king, for it so happeneth that we can supply thee with a squadron of Bleriot Mk.Is. And thus it came to pass that the king bought from the envoys for much fine gold and slept peacefully with his wives that night.

Then did the envoys depart and journeyed to the neighbouring land that is called Beri-Beri. And they said to the king of Beri-Beri, o king live for ever but begin not the reading of any long novels. And the king said What meanest thou? Whereupon the envoys replied saying, Knowest thou not that thy neighbour the king of Tsetse-Tsetse hath secretly purchased war-birds and purposeth to ravage thy country? At this the king went as pale as was possible and the end of the matter was that he became Commodore of a squadron of Cabbage White Mk. VIIs.

And it came to pass that in Brit the god Elektron gave unto his high priests the power to fashion magick bowls which could divine the presence and movements of heavier-than-air machines even at great distances. Yea, and not only this, for, by gazing into the bowl, yessels having their business in great waters could be made to broach each other with greater certainty. And on land its magick powers enabled the Fuzz to put the finger upon all charioteers who, like their forebear Jehu, drove furiously. And the name of this new wonder was radar, which, being translated, meaneth That which worketh by suction and mirrors.

And the rich merchants came unto the high priests of radar and said unto them, Lo, we have heard much of the wonders that thy god Elektron hath taught thee and it seemeth that we can do a deal with profit to all. Make for us great numbers of these magick bowls, we pray thee, that we may sell them to the nations for their greater safety. Do this and we will pay thee many shekels of gold; moreover, we will pull down thy temples which are but potting sheds and in their stead we will raise mighty glass temples to the greater glory of Elektron, wherein thou shalt find all the instruments that thy heart desirest. And we will clothe thee in white raiment and give thee charge over many. What sayest thou?

And the high priests conferred privily and agreed among themselves that they were on to a good thing. So it came to pass that the merchants caused mighty temples to be built wherein the god Elektron might be served, both by day and night; and the high priests, for their part, devised magick bowls with ever greater cunning and these the merchants sold to whoever was in the market place. Thus it came about that both the king of TsetseTsetse and the king of Beri-Beri were persuaded to buy the magick bowls with which to keep vigil each upon the other. Yea, both primary and secondary radar had they in plenty and certain inhabitants of the two countries were trained to interpret the signs and portents which appeared upon these bowls whenever an heavier-than-air machine was drawing nigh.

And behold, it came to pass that upon a certain night there was a watchman in the kingdom of Tsetse-Tsetse who was an exceeding dim lamp; moreover, when interpreting the symbols on the magick bowl, he was, as the saying is, unable to tell Squawk from Clutter. And this watchman, fearful of what he supposed he saw upon the face of the bowl, said unto himself The enemy is upon us, and thereupon smote the Panick Button. Whereupon the Bleriot Mk.Is rose (all excepting one which had broken its elastick band) and brought destruction to the sleeping land of Beri-Beri. But the Cabbage Whites, being forewarned by their magick bowls, were already riding the heavens and bringing affliction upon their neighbours. And, by morning, both countries were bathed in blood.

And in the temples of Elektron there was great commotion, for the hot lines were glowing red and the artificial moons which the high priests had raised were overburdened with coloured images of the slaughter, for the delectation of the common people. And when all was accomplished, overseers from the United Nations came and wagged their heads and voted Tsetse-Tsetse and Beri-Beri into their assemblies in recognition of their emergence.

Sanyo Video Tape Recorder Systems

In a changing world audio visual innovations and methods are developing with incredible speed. Keeping pace with this development is the range of uses to which this equipment can be applied Practical applications are virtually limitless and indeed appear to be bounded only by the employers imagination. Sanyo, acknowledged leaders in slow motion and 'stop frame' techniques, whose VTR products have been used world wide for many years in industry, commerce, education and sport have, with the aid of extensive research, produced a range of high quality competitively priced audio visual equipment. Cameras, recorders, monitors

- the best of their kind.

VCA 200 E Video camera kit with built-in viewfinder, microphone, zoom lens and tripod. For use with the VTR 1100 SLR and VTR 2000 3 " electronic viewfinder can also be used as a playback monitor.

VM 4120 (K) ponitor with R/F. Off-air portable video monitor/receiver with high resolution $12^{\prime \prime}$ CRT. Ideal for educational purposes. Can be used as conventional TV.

VTR 2000
A compact lightweight $\frac{1}{2}$ " Video Tape Recorder with a host of advanced reatures including an automatic level control system that eliminates video and audio signal adjustment, independent audio erasure for
re-recording and inserting commentaries
background music etc. a skew
and tracking control system. automatic shut off switch, tape counter and a perfect ferrite crystal head assembly. Weight less than 29lbs.

VC 1150
ra with swirchable internalexternal sync and ALC. For use with the VTR 1100 SLR and VTR 2000

VM 4155 (K) Robusi 16 industrial video monitor with sound channel

Low light level video camera Operates at very low light levels for security purposes. Also for use with infra-red lighting.

IP) IL.P.t.testronerevere

Mono electrical circuit diagram with interconnections for steren shown

The HY5 is a complete mono hybrid preamplifier, ideally suited for both mono and stereo applications. Internally the device consists of two high quality amplifiers- the first contains frequency equalisation and gain correction, white the second caters for tone control and
TECHN
NICAL SPECIFICATION
Inputs
Magnetic Pick-up $3 m$ V.RIAA
Ceramic Pick-up
Microphone
Tuner
Auxillary
Outputs
Tape
Tape $\quad 100 \mathrm{mV}$
Main output Oab (0.775 volts RMS)
Active Tone Controls
Treble $\pm 12 \mathrm{db}$ at 10 kHz
12 db at 100 Hz
Distortion $\quad 0.05 \%$ at 1 kHz
Signal/Noise Ratio $\quad 68 \mathrm{db}$
Overload Capability 40 db on most
$\begin{array}{ll}\text { Supply Voltage } & \begin{array}{l}\text { sensitive input } \\ \pm 16-25 \\ \end{array} \quad \begin{array}{l}\text { voits }\end{array}\end{array}$
PRICE E4. $50+0.36$ V.A.T. P \& P free
3 mV .RIAA
10 mv
100 mV
3.100 mV
$47 \mathrm{k} \Omega$ at 1 kHz
sitive input

- 25 volts

I.L.P. Electronics Ltd,
 Crossland House, Nackington, Canterbury,
 Kent CT4 7AD
 Tel (0227) 63218

Hi-Fi amplifier incorporating its own high conductivity heatsink hermetically sealed in black epoxy resin. Only five connec. tions are provided: input, output, power tines and earth.

TECHNICAL SPECIFICATION
Output Power 25 watts RMS into 8Ω Load Impedance $4-16 \Omega$
Input Sensitivity Odb (0.775 volts RMS) Input Impedance $47 \mathrm{k} \Omega$
Distortion Less than 0.1% at 25 watts typically 0.05%
Signal/Noise Ratio Better than 75 db
Frequency Response $10 \mathrm{~Hz}-50 \mathrm{kHz}+3 \mathrm{db}$ Supply Voltage ± 25 volts
Size $105 \times 50 \times 25 \mathrm{~mm}$.
PRICE $£ 5.98+0.48$ V.A.T. P \& P free

The PSU50 incorporated a specially designed transformer and can be used for either mono or stereo systems.

TECHNICAL SPECIFICATIONS Output voltage 50 volts ($25-0-25$)
input voltage $210-240$ volts
Size L.70. D.90. H. 60 mm .
PRICE $£ 6.00+0.48$ V.A.T. P \& P free.

TWO YEARS GUARANTEE ON ALL OUR PRODUCTS

Please Supply \qquad
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclay card account \square
Account number
Name \& Address
\qquad
Signature

AMPLIFIER KITS OF \mathscr{D} istinction

DESIGNER－APPROVED KIT

In Hi－Fi News there was published by Mr Linsley－Hood a series of four articles（November 1972－February 1973 and a subsequent follow－up article（April 1974）on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage，power in excess of 75 watts whilst maintaining distortion at less than 0.01% even at very low power levels．The power amplifier is complemented by a pre－amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system，namely the equalization stage and tone control stage，positions where most conventional designs run out of gain at the extremes of the frequency spectrum Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter．There is a choice of four inputs，two equalized and two linear，each having independently adjustable signal level．The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer

Hi－Fi News Linsley－Hood 75 W Amplifier
Mk III Version（modifications as per Hi－Fi News April 1974）

Full circuit description
in handbook
（pack 15－－price 30p）
${ }_{1}^{\text {Pack }}$ Fibreglass printed－circuit board
2 Set for power amp．
tor power amp．
Set of semiconductors for powe BD529．BD5301
of 2 drilled，finned heat sinks
5 Fibreglass printed－circuit board
－Set fre－amp
6 Set of low noise resistors capacitors pre－sets for pre－amp
Set of low noise，high gain
8 Set of potentiometers lincluding
－mains switch）
Set of 4 push－button switches 10 Toroidal transformer comple with magnetic screen／housing primary 0－117－234 V ．secondaries：

Price f0． 85
£1．70

£6．50

$£ 6.50$
$£ 0.80$

1.30

． 3
$£ 2.70$
£2．40
£2．05
£3．70
－9． 15
£9．15

Fibreglass printed－circuit board Set of resistors，supply fresistors，capacitors． secondary fuses，semicon ductors for power supply
Set of miscellaneous parts
including DiN skts．mains
input skt ，fuse holder，inter
connecting cable，control knobs
filk alwork parts including silk screen printed fascia panel and all brackets．fixing parts，etc．
Teandbook cabinet
2 each of packs 1－7 inclusive are required for complete Total cost of individualis purchased packs

FREE
teak case with full kits

\author{

V．A．T．Please add 8\％＊ to all U．K．orders （＊or at current rate if changed） SECURICOR DELIVERY：For this optional service （Mainland only）add £2．00＋VAT
 for further information please write for FREE LIST
 £0． 65
 £ 3.50
 £4．25
 | £6．30 |
| :---: |
| fo． 30 |
| 650 |

}

POWERTRAN

SLA7 RED LED $0.3^{\prime \prime}$ DIGIT 0－9DP 89p ea
GREEN\＆YELLOW $£ 1.40$ JUMBO LED $0.6^{\prime \prime} 747$ DISPLAY £2．25 ea．
3015 F
$0-9 \mathrm{DP}$ \＆ 1 ea ZENON FLASH TUBE 2ENON FLASH TUBE
\＆ 4. Data 15 p ． L［ D S rec f（

LEDS 209 STYLE ONLY 13p ea TIL 209 WITH CLIP RED $15 p$ ea TIL 211 \＆CLTP GREEN 29p ea LARGE 0．2＂\＆CLIP RED 17p ea LARGE O． $2^{\prime \prime}$ CLIP GREEN 30p ea INFRA RED LED ${ }^{2} 1$ 2N5777 33 p
PHOT（O ロC BfP TEC12 PHOTO AMP／SCMITT／RELAY DRIVER or LED TTL INTERFACE 81 p

FLUORESCENT LIGHTS 12V MADE IN UK DIGITRLELDEH
MM5311／4 ${ }_{6}^{6}$ DIGIT CLOCK ${ }^{\text {M }}$

CASSETTE
 mechanics

NEW 8tk CARTRIDGE MECHANISM £8 STEREO CASSETTE MĖCHANISM $£ 13.75$ Suitable for＇PW ASCOT＇recorder with heads etc．SEND 15p for DATA

INTEGRATED CIRCUITS

9 DIL14 29p	LM377 2x2W£2．87
555 TIMER 54p	LM380 2W AF 89p
$703 \mathrm{RF} / \mathrm{IF}$ 28p	LM381 2xPre ¢2
709 T099 23p	LM3900 4xOPA69p
709 DIL 14 28p	MC1303 £ 1.20
710 DIL 14 34p	MC1306 49p
723 Reg．54p	MC1310\％LEDE 2.65
741 DIL 8 27p	MC1312 SQ ¢2．10
741 DIL 14 29p	MC1330 69p
11 T099 29p	MC1339 2xPre £
747 2x741 70p	MC1350 55p
748 DIL 8 33p	NE536 fetOPA £2
$7805 \mathrm{SV} \quad 11.40$	E540 Driver
812 \＆ 15 £1．40	NE550 2vRef 79p
760136 W AF \＆ 1	NE555 Timer 55p
8038 SIG GEN £3	NE556 $2 \mathrm{x}^{\prime \prime}$ £ 1.20
CA3028 £ 1	NE560 PLL ¢ 3.15
3046 55p	NE561 PLL ¢3．15
3048 ¢2	NE562 PLL §3．19
A3052 £1．50	NE565 PLL § 2.69
A3054 £	SN72709 709 28p
LM300 2－20V £2	SN72741 741 26p
LM301 OPA 45p	SN72748 748 33p
LM304 $0-40 \mathrm{~V}$ £3	SN76660 IF £1
LM307 OPA 49p	SN76611 IF¢1．25
LM308 H1Bo 95p	TAD110 \％¢F
LM309K 5V ¢ 1.48	TBA810 7WAF 99p
LM372 IF £ 1.80	ZN414 RX $£ 1.09$
SPECIAL OFFERS	
2N3055 FULL HIGH SPEC 115W 37p 741 C 8PIN DIL 27p．MFC4000B 33p	
NE555 TIMER 55p．ZN414 RX £ 1，09	
BC109 9p．2N3819	16p．BFY51 15p

WINDSOR BERKS．
5月，6\％GROVE RD：

GTNEY BAGK IF NOT SATESEISO large straiks，wou prices， SME BRAMT NE TOF GRAEE VUGL Sat BARCLAYCAHM \＆AECKSS t POS芒，

TRANSISTORS
\＆DIODES

Price each	MATCHING
AC127 \＆ 128 16p	INS，BUSH SET10p
AC187 \＆ 188 19p	
AD149 43p	
AD161 \＆ 162 33p	
BC107 \＆ 108 9p	
BC109 10p	
C147／8／9 10p	TIS43 see2N26
c157／8／9 12p	TX109\＆301 13p
c167／8／9 12p	N4001 4p
BC177／8／9 18p	1 N 4004 \＆ 7 7p
BC182／3／4A\＆L10p	N4148 914 4p
BC212／3／4A\＆L11p	N697 14p
BCY 70／1／2 17p	N70688 11p
BD131 \＆ 132 39p	N2646 UJT 32p
BFR51	2N2904 \＆ 5 20p
FR50／51 23p	2N2926royg 9p
BFR50／51 23p	2N3053－17p
BFR88 250V 29	2N3055 115w 37p
BFY 50／1／2 15p	N3563 64 16p
BSX19／20／21 16p	49p
MJE2955 90p	2N3704 \＆ 5 10p
MJE3055 65p	2N3706 \＆ 7 9p
MPU131 PUT 49p	2 N 3708 \＆ 988
OA91 OA81 6p	2N3710 \＆11 10p
OA81 \＆OA91 6p	2N3819E FET 16p
TIP 29 \＆ 30 52p	2N3823E FET 17p
TIP 31 \＆ 32 69p	2N3904／5／6 15p
full selection in our free lists．	
NEW TRAMPUS FULL SPEC PAKS	
PAK A 10 RED LEDS our choice £ 1	
PAK C 4 2N3055 £1．D 12 BC109 £1	
PAK E 10 BC182 £1．F 11 2N3704 £ 1	
PAK G 8 BFY51 £1．H 9 2N3819e£ 1	
PAK	40 1N914
BZY88 $400 \mathrm{~mW} \quad 1 \mathrm{~A} / 50 \mathrm{~V}$ SCR 36p	
ZENER DIODES 9p	TAG1／400 55p
C106 \＆ 7 SCR D1	
50 V	SC1400V TRIAC ${ }^{53 p}$
BR100 DIAC 25p	10 A 400 V 75p

VErO natav pasy？

 COPPER CLAD VEROBOARD 0.1 3＂＂メ5＂31p 31x 17＂\＆1．50

DIL IC＇s BOARDS 6x4 $\frac{1}{2}$＂$£ 1.50$
24 way edge connector 60p． 36 way 90p．PLAIN 3 ＂n＂x17＂£1．
FACE CUTTER 45 ．FEC ETCH PAK 50

PRINTED CIRCUIT BOARD KIT £ 1.69 DECON NO MESS ETCH PAK NEW
DECON DESOLDER BRAID REEL
59 HEATSINKS
5F／T05 \＆18F／T018 5p ea．TV4 15p TV3／T03 16p．EXTRUDED 4＂4Y1 29p TGS308 GAS DETECTOR £ 1.80 ea． LOGIC PROBE TTL TESTER PEN £5 CAPACITORS
CERAMIC 22pp to 0.1 uf 50 v 5 p ， ELECTROLYTIC： $10 / 50 / 100$ uf in 10 v 5 p .25 v 6p．50v $8 \mathrm{p} .2 \mathrm{uf} / 10 \mathrm{v} 5 \mathrm{p}$ POTENTIOMETERS（POTS）AB or EGIN LIN or LOG ROTARY 13p．SWITCH 14 p DUAL 45p．SLIDERS 29p．STEREO 57p Knobs 7p．PRESETS 6PRESISTORS 1きp SWITCHES：SPST 18p．DPDT 25p， Din plugs all 12p．Sockets 10 p， ALI CASES AB5／AB7 50p．AB13 65p． TRANSFORMERS 1A 6 v 6 v or 12 v 12 v

Oll sachets

TEXAS GOLD
LOW PROFILE ea
SOLDERCON STRIPS
100 PINS 50p．1K £3．

FROM THE SPECIALISTS-POWERTRAN
 \section*{WIRELESS WORLD AMPLIFIER DESIGNS} ELECTRONICS

Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating.

30W BAILEY

Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors. pots Pk. 3 Semiconductor set 30W BLOMLEY Pk. 1 F/Glass PCB Pk. 2 Resistors. capacitors. pots Pk. 3 Semiconductor set 2OW LINSLEY-HOOD Pk. 1 F/Glass PCB Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set
£0.80
£ 1.75
$£ 4.70$
£ 0.85
$€ 2.15$
$£ 5.60$
£0.85
$£ 2.40$
$£ 3.35$

60V REGULATED POWER SUPPLY Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors. pots Pk. 3 Semiconductor set
BAILEY-BURROWS PRE-AMP Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors, pre-sets, transistors
Pk. 3R Rotary potentiometer set
Pk. 35 Slider potentiometer set (with knobs)
£0. 75
£ 1.40
£ 3.10
£2.05
£4.95
$£ 1.60$
£2.70

STUART TAPE RECORDER

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this highperformance Wireless World published design.

TRRP Pk. 1	Reply amplifier F/Glass PCB	£0.90
TRRC Pk. 1	Record amp./meter drive cct. F/Glass PCB	£1.40
TROS Pk. 1	Bias/erase/stabilizer cct. F/Glass PCB	£1.00

TOROIDAL T20 +20
Developed from the famous Practical Wireless Texan

20 WATTS/CHANNEL

Designed by Texas engineers and published in a series of articles in Practical Wireless. The TEXAN was a remarkable breakthrough in delivering true $\mathrm{Hi}-\mathrm{Fi}$ performance at exceptionally low cost. Now further developed to include a true Toroidal transformer, this slimline integrated circuit design, based upon a single F/Glass PCB, features all the normal facilities found on quality amplifiers. including scratch and rumble filters. adaptable input selector and headphones socket.

TEAK CASE and HANDBOOK with full kits
KIT PRICE

* stu omy $£ 28 . \mathbf{2 5}^{*}$

ACTIVE FILTER CROSSOVER

post free (U.K.)
An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately, though introducing reactive impedances between the amplifier and the speakers. result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant solution to this problem, described by D. C. Read in Wireless World. involves the use of a series of active filters splitting the output of the pre-amplifier into three channels. of closely defined band of active filters splitting the output of the pre-amplifier into three channels. of closely defined band-
width. each of which is fed to the appropriate speaker by its own power amplifier. A design for a width each of which is ted to the appropriate speaker by its own power amplifier. A design for a
suitable 20 -watt amplifier. based on a proven Texas circuit, was also described by Mr Read. The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.

ACTIVE FILTER

 Pack1 Fibreglass PCB (accommodates all filters for one channel)
2 Set of pre-sets, solid tantalum capacitors, 2% metal oxide resistors. 2\% polystyrene capacitors 3 Set of semiconductors 2 off each pack required for stereo system

SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER DESIGNS

READ/TEXAS 20wamp.
Pack

1 Fibreglass PCB Set of resistors, capacitors pre-sets (not includ ing O/P coupling capacitors)
3 Sets of semiconductors $3 \quad$ citors
6 Sets of semiconductors
6 off each pack required for stereo
system
4 Special heat sink as sembly fo
amplifiers
5 amplifiers
capacitors
2 off packs 4,5 required for stereo system
£0.85
£ 1.00
f0.85
$f 1.00$

POWER SUPPLY

FOR 2OW/CHANNEL STEREO
f0. 70 SYSTEM
Pack

1.10	2	Fibreglass PCB

2.402 Set of rectifiers, zener diode, capacitors, fuses. fuse holders 3 Toroidal transformer
$\rightarrow 2$

Pack

Pack		Price
1	Set of all low noise resistors	£0.80
2	Set of all small capacitors	£1.50
3	Set of 4 power supply capacitors	£1.40
4	Set of miscellaneous parts including DIN sockets. fuses, fuse holders, control knobs, etc.	£1.90
5	Set of slide and push-button switches	£0.90
6	Set of potentiometers and selector switch	£ 1.45
7	Set of all semiconductors	£8.25
8	Special Toroidal Transformer	£4.95
9	Fibreglass PC Panel	¢2.50
10	Complete chassis work. hardware and brackets	£4.20
11	Preformed cable/leads	£0.40
12	Handbook	¢0.25
13	Teak Cabinet	£2.75

V.A.T. Please add 8\%* to all U.K. orders
(*or at current rate if changed)

U.K. ORDERS—Post free (mail order

 only)SECURICOR DELIVERY-for this optional service (Mainland only) add $£ 2.00+$ VAT OVERSEAS—Postage at cost $+50 p$ special packing

Dept. WWO4
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP10 3NN

2 N 699	¢0. 25	2N4302	± 0.60	BC2 12 K	¢0.12	BFY5 1	£0.20	SN72748P	¢0.58
2N1613	¢0. 20	2N5087	¢0.42	BC182L	¢0.10	BFY52	E0.20	TIP29A	20.50
2 N 1711	¢0. 25	2N5210	c0.54	BC184L	¢0. 11	MJ481	£1.20	TIP30A	¢0.60
2N2926G	£0.10	2N5457	c0.45	BC212L	¢0.12	MJ491	f1. 30	TIP29C	c0. 71
2 N 3053	c0.15	2N5459	20.45	BC294L	c0.14	MJE521	¢0.60	TiP30C	c0.78
2N3055	50.45	2N5830	E0.30	BCY72	¢0.13	MPSA05	¢0. 30	TIP41A	¢0.74
2N3442	£1. 20	40361	¢0.40	80529	c0. 85	MPSA12	¢0.55	TIP42A	£0.90
2 N 3704	¢0.10	40362	c0.45	80530	¢0. 85	MPSA14	£0.35	IN914	¢0.07
2N3707	¢0.10	8 C 107	c0.10	BOY56	¢1.60	MPSA55	£0.35	IN916	¢0.07
2 N 3711	c0.09	$8 \mathrm{BC108}$	20.10	8F257	c0.40	MPSA65	¢0.35	15920	¢0. 10
2N3819	¢0. 23	BC109	c0.10	BF259	c0.47	MPSA66	± 0.40	5B05	£1.20
2N3904	c0. 17	BC125	c0.15	BFR39	c0. 25	MPSU05	¢0.60		
$2 N 3906$ 2N4062	¢0.20	${ }_{8 C 182 \mathrm{~K}}^{8 \mathrm{BC1}}$	$\mathbf{2 0 . 1 5}$ $\mathbf{c o . 1 0}$	BFR79 BFY50	60.25 $\mathbf{E 0 . 2 0}$	MPSU55 SN72721	f0. f0.58		

JOHN CRICHTON
 Eloctronic Equipment

558 Kingston Road, London, SW20 Inland VAT add 8\% Prices shown include $P \& P$. other
prices gladly on request. prices glady on request. Viewing by appointment please. Phone 01-540 9534

TEST SET FREQUENCY RESPONSE

 CT381Consisting of: sweep generator. indicator response curve. flat-faced tube long per-
sistance. Power supply. Calibrator frequency CT432. Frequency range: $10 \mathrm{kc} / \mathrm{s}-33 \mathrm{Mc} / \mathrm{s}$ in nine directly calibrated ranges. Accuracy $\pm 3 \%$ of the indicated centre frequency. F.M. deviation: (nominal). $0-500 \mathrm{kc} / \mathrm{s}$ above- $4 \mathrm{Mc} / \mathrm{s}$.
$0-400 \mathrm{kc} / \mathrm{s}$ at $1.5 \mathrm{Mc} / \mathrm{s}-4 \mathrm{Mc} / \mathrm{s}$. $0-165 \mathrm{kc} / \mathrm{s} \mathrm{at}$ $0-400 \mathrm{kc} / \mathrm{s}$ at $1.5 \mathrm{Mc} / \mathrm{s}-4 \mathrm{Mc} / \mathrm{s}$. $0-165 \mathrm{kc} / \mathrm{s}$ at
$600 \mathrm{kc} / \mathrm{s}-1.5 \mathrm{Mc} / \mathrm{s}$. falling to $3 \mathrm{kc} / \mathrm{s}$ at $10 \mathrm{kc} / \mathrm{s}$. $600 \mathrm{kc} / \mathrm{s}-1.5 \mathrm{Mc} / \mathrm{s}$. falling to $3 \mathrm{kc} / \mathrm{s}$ at $10 \mathrm{kc} / \mathrm{s}$.
Output impedance: 75 ohms resistive. Power Output impedance: 75 ohms resistive. Power
supplies: Mains $100-120 \mathrm{~V}$ and $180-250 \mathrm{~V}$. supplies: Mains
Frequency $50-500 \mathrm{c} / \mathrm{s}$. Consumption 340 W Frequency
(nominal). Price f 195.

HEWLETT
 PACKARD

185B. 1GHz SAN OSCILLOSCOPE

Horizontal Sweep speeds: 10 ranges. 10 $\mathrm{nsec} / \mathrm{cm}$ to $10 \mathrm{sec} / \mathrm{cm}$. accuracy within
$+5 \%$. Magnification: 7 calibrated X1, X2, X5, X10. $\times 20$. $\times 50$ and $\times 100$. Increases maximum calibrated sweep
speed to $0.1 \mathrm{nsec} / \mathrm{sm}$; with vernier maximum sweep speed is further extended to $0.04 \mathrm{nsec} / \mathrm{cm}$. Antensity and sampling intensity are not affected by magnification. High frequency: Input frequency: 50 to 1000 mc for sweep speeds 200 mv and $1000 \mathrm{mv}: \pm 3 \%$. Time: Approximately 5 sec
burst of 50 mc siewave. Frequency burst of 50 mc sinewave. Frequency
accuracy $\pm 2 \%$. In addition the Model 185B provides output signals for $X-\gamma$ recorders and provides means for controlling the display either manually or externally. Full specification on request. Price £295.
4168 RATIO METER
Four full scale ranes. Per cent reflection: and 3% scale ranges: 100%. 30\%. 10\%. efficients of 1.0 . 0.3 to reflection coEquivalent VSWR. Two ranges: 106 . 1.22 and 1.2 to 1.9. DB: Four ranges: 0 to $-10 . ~-10$ to -20 . -20 to -30.
and -30 to -40 db . For use with both Reflection Coefficient and equivalent VSWR scales. Full Spec. on request. Price E180.
430C Microwave power meter. $\mathbf{E 6 0}$ H01-8401A Leveller amplifier. 8709A Synchronizer. 87348 Pin modulator $7.0-12.4 \mathrm{GC}$. 8732A Pin Modulator $1.8-4.5 \mathrm{GC}$ 797D Directional Coupler 1.9-4. 797D Directional Coupler 1.9-4.1 GHz.E30
8436A Bandpass filter 8-12.4GC.

SOLARTRON

 CT. 436 Double Beam Owcilloscope.AC $2.5 \mathrm{c} / \mathrm{s}-6 \mathrm{Mc} / \mathrm{s}$ (-3 dB). Rise time: 60 musec (approxi. Sensitivity: $100 \mathrm{mV} / \mathrm{cm-}$
$100 \mathrm{~V} / \mathrm{cm}$ continuously variable. $\mathrm{AC} \times 10$. The gain of the amplifier is iscreased $\times 10$
on af the above ranges to give a sensitivity on ail the above ranges to give a sensitivity
range from $10 \mathrm{mV} / \mathrm{cm}-10 \mathrm{~V} / \mathrm{cm}$. Input impedance: Constant on all ranges. $1 \mathrm{M} \Omega$
in parallee with approximately 30 pF . Time base velocity: $1 \mathrm{~cm} / \mathrm{ssec}-1 \mathrm{~cm} / \mathrm{sec}$ con-
tinuously variable. Linearity: 1% adoroxitinuously variable. Linearity: 1% aoproxi-
mately (calculated). Amplitude: 15 V pk-pk. Cathode ray tube screen: $3 \frac{1}{2}^{\prime \prime}$ dia. flat face,
Dimensions: $10^{\prime \prime}$ high $\times 10^{\prime \prime}$ wide $\times 16^{\prime \prime}$ long. The overall length is increased to
$19^{\prime \prime}$ when the DC/AC converter is fitted. steps or $200-250 \mathrm{~V}$ in 10 V steps. $45-$
$400 \mathrm{c} / \mathrm{s}$. 100 VA . Price $£ 68$ plus VAT. Full spec on request. Modulator/Demodulator.
JF. 1601 .
JF. 1601 . JF .1601 enables measurement of
dynamic response to be made on systems and components employing AC carrier
techniques. The JF. 160% may be used techniques. The JF. 1601 may be used
independently as al general-purpose
Modulator or Demodulator. Full spec and price on request.
PYE Precision vernier potentiometer 7568. $1 \mu \mathrm{~V}$ to 1.90100 V in two ranges. Accuracy

TEKTRONIX

230 digital unit.

Digital readout parameters. Pulse amplitude. pulse risetime and falltime, pulse width. time interval.
R196. 10-NS PROGRAMMABLE PULSE GE
with Delay.

PASSIVE PROBE P6006 with 10X attenuation. designed for oscilloscopes attenuation. designed for os 1 megohm and input capacitance of up to 55pf. | and inpu: |
| :--- |
| Price $\mathbf{f 1 0}$ |

MUJRHEAD 2.PH. L.F. DECADE
OSCILLATOR Type D880.
Frequency range $0.01 \mathrm{c} / \mathrm{s}-11.2 \mathrm{kc} / \mathrm{s}$ (conV.L.F. $0.01 \mathrm{c} / \mathrm{s}-0.1 \mathrm{c} / \mathrm{s}$ in steps of $0.01 \mathrm{c} / \mathrm{s}$. Hourly trequency stability
$\left.\begin{array}{l}\text { Ranges X1. } \times 10 . \times 100 \pm 0.05 \% \\ \text { Ranges X0. 1.V.L.F. }+0.1\end{array}\right\} \begin{aligned} & \text { After }\end{aligned}$ T.F.B01D/1/SA.M.SIGNAL GENERATOR. Freq. range: 10 MHz to 485 MHz . Built-in a.m. External pulse modulation. Calibration Accuracy: Using erystal calibrator, within $\pm 0.2 \%$ over entire frequency range. R.F. outlevel $0.1 \mu \mathrm{~V}$ to 1 V source e.m.f.
OA.1094A/3 H.F. SPECTRUM ANALYSER with L.F. extension unit type TM6448.
Freq. range: 100 Hz to 30 MHz . Measures Freq range: 100 Hz to 30 MHz . Measures
relative amplitudes up to 60 dB . Spectrum width $0-30 \mathrm{KHz}$. Sweep duration: 0-1. 0.3 .1 . 3. 10.30 sec . and manual. Full spec on
request. E 250 as seen condition. buyer to collect.
OA.1094A/S H.F. SPECTRUM ANALYSER. Freq. range: 3 MHz to 30 MHz in nine steps. spectrum width 0 to 30 KHz . Sweep distortion: 0.1 .0 .3 .1 .3 .10 .30 secs. and
manual. Full spec. on request. manual. Full spec. on request. $\mathbf{£ 1 5 0}$ as seen ond
T. 111 ROBAND TRANSISTORIZED SUPPLY. Mains input 110 V or 230 V . output $0-50 \mathrm{~V}$ at 5 Amperes cont. variable. overload cut-out. As seen f15

REMSCOPE SO $1 / 740$ STORAGE
OSCILLOSCOPE.
Fluorescence: Yellow, resolution: 40 lines $/ \mathrm{cm}$ E.H.T.: 8 kV , display time: 10 mins-1 hr approx.. storage time: 1 week approx.
CD 1212 WIDE-BAND GENERAL-
PURPOSE OSCILLOSCOPE.
Employing plug-in pre-amplifiers for single or dual trace displays.
Wide-band pre-amplifier CX 1251. Bandwidth: $\mathrm{DC}-40 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB} \pm 1 \mathrm{~dB}): 2.5 \mathrm{C} / \mathrm{s}-40 \mathrm{Mc} / \mathrm{s}$ sec approx. Sensitivity: $50 \mathrm{mV} / \mathrm{cm}^{2}-50 \mathrm{~V} / \mathrm{cm}$ in nine calibrated ranges with fine gain control Dual trace pre-amplifier CX 1252. Bandwidt DC $-24 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~d} 8 \pm 1 \mathrm{~dB}) \mathrm{AC}$ coupled. Rise time: 14 nanosec approx. Sensitivity: $50 \mathrm{mV} /$ $\mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ in nine calibrated ranges with fine gain control. Full specification on request. $\mathbf{f 1 2 8}$.
T.F. $801 \mathrm{~B} / 3 / \mathrm{S}$ A.M. SIGNAL GENERATOR. Freq. range: 12 MHz to 485 MHz in five bands. Built-in crystal calibrator. Full spec. on
request. crequest.
CT. 373 TEST SET. Oscillator: $17 \mathrm{c} / \mathrm{s}-$ $170 \mathrm{kc} / \mathrm{s} . \pm 1 \% . \pm 1 \mathrm{c} / \mathrm{s}$ at ambient temp. $0^{\circ} \mathrm{C}-45^{\circ} \mathrm{C}$. Distortion Meter: Freq. range:
$20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$, distortion range: $10 \% .30 \%$. 100% f.s.d. 0.5% readable. Signal input: approx. 500 mV to 130 V basic range. 250 mV to 1300 V extreme limits. Full spec. on request. $\mathbf{E 3 0}$ as seen.
AVO MODEL 3 VALVE TESTER. Enables comprehensive characteristics to be plotted or measures vatves on a simple good/bad basis. 555 .
AVo CT 160 VALVE TESTER. As above but in portable valise form. $\mathbf{£ 6 5}$.
VOLTMETER VALVE CT54 (Micovac), with mains power supply (power supply not available separately). In strong metal case with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$ AC or DC in 6 ranges. I ohm to 10 Megohm
in 5 ranges. Indicated on 4 in. scaie
 meter. Complete with pr
MUIRHEAD FREQUENCY ANALYSER TYPE D.669-8.
Frequency range $30 \mathrm{c} / \mathrm{s}-30 \mathrm{kc} / \mathrm{s}$. Accuracy forter than 1.5%. Input voltage $300 \mu \mathrm{~V}-100 \mathrm{~V}$ $15 \mu \mathrm{~V}$. Maximum input voltage 300 V ims Price $\mathbf{\text { f95. Full spec. on request. }}$
TF. 937 F.M./A.M. SIGNAL GENERATOR. Freq. range 85 KHz to 30 MHz . The carrier freq. can be standardized against a built-in dual freq. crystal calibrator. which is complete with miniature loudspeaker as an aural beat detector. $\mathbf{f 3 0}$ as seen.
TF. $114 \mathrm{H} / \mathrm{S}$ SIGNAL GENERATOR. FIEquency range: 10 KHz .72 MHz . Stability: 0.002%. High discrimination. plus erystal calibrator. Good r.f. waveform at all frequencies. Protected thermocouple level moni-
TEST SET DEVIATION FM No 2. The carrier frequency range extends from $2.5 \mathrm{Mc} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ and from $20 \mathrm{Mc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$ in a total of eight bands: the deviation ranges ar

ments. Input sensitivity variable from 300MV to 9 V . three independent inputs. self-check etc. Full spec. on request

HART ELECTRONICS

Audio Kit Specialists since 1961

BAILEY/BURROWS/QUILTER PRE AMP This is the tone control section of the best pre-amp kit currently available. Consider the advantages:-FFirst quation of the best
printed circuits with roller tinned finish and all component locations printed on reverse. printed circuits with roller tinned finish and all component locations printed on reverse.
*Low noise carbon film and metal film resistors throughout. "Finast quality low-noise *Low noise carbon film and metal film resistors throughout. *Finest quality low-noise
ganged controls with matched tracks and shafts cut to length. *Well engineered layout for total stability. *Secial decoupling and earthing arrangements to eliminate hum loops.
*Controls. switches and input sockets mount directly on the boards to TOTALLY (Constols. switches and input sockets mount directly on the boards to TOTALLY
*LIMINATE wiring to these components. We know of one preamp kit which claims its ELIMINATE wiring to these components. We know of one pre-amp kit which claims its
controls mount directly on the board-and so they do. by their shaft bushesI You still have to wire them up!!
*We incorporate the Quilter modification which is most important as it reduces distortion and increases the bass and treble control range.
As can be seen from the photograph the tone control unit is vary slim lonly $1 \frac{1}{\frac{1}{2}^{\prime \prime}}$ from
front to back) and may therefore be used in many other apolications than our Bailey front to back) and may therefore be used in many other applications than our Bailey
metalwork which it is designed to fit. METALWORK AND WOODEN
please send for latest information.
F.M. TUNER This latest addition to our range is designed to offer the best possible performance allied to the ease of operation given by push button varicap tuning. We have taken great care to look after the constructors point of view and there ere no
coils to wind, no RF circuits to wire and no alignment is required, in fact the whole unit can be easily completed and working in an evening as there are only 3 transistors. one IC and two ready built and aligned modules comprising the active components. We have
abandoned the concept of having a tuner as large as the amplifier and this new unit has a
tron rrontal size of only $1 \frac{1}{2}$ in. $\times 4 \mathrm{in}$. It can be mounted on the side of our Bailey amplifier
metalwork thus turning it into a tuner/amplifier whilst only increasing its width by $1 \frac{1}{\frac{1}{2}}$ in. metalwork ther turnsis (no case) is $£ 22$ for mono. $£ 25.45$ for stereo. Metal case $£ 3.55$.
Cost of tuner chater An extended wooden case to fit tuner and emplifier will be offered shortly.
STUART TAPE CIRCUITS Our printed circuits and components offer the easy way to
convert any suitable quality deck into a very high quality Sereo Tape unit Input and convert any suitable quality deck into a very high quality Stereo Tape unit. Input and
output levels suit Bailey pre amp. Total cost varies, but around $£ 35$ is all you need. We can offer tape heads as well if you wont new ones.
All above kits have fibreglass PCB's. Prices exclude VAT but P\&P is included.
All above kits have fibreglass PCB's. Prices exclude VAT but P\&P is included.
FURTHER INFORMATION ON ALL KITS FREE if you send us a 9 in. x in. S.A.E. REPRINTS Post free. no VAT
Bailgy $30 W$ 18p.
STUARTAPRECORDER All 3 aricles under one cover 30p.
BAILEY/BURROWS/GUILTER Preamp circuits. layouts and ass
Penylan Mill, Oswestry, Salop

SEMICONDUCTORS

TRANSISTORS \& DIODES

AC126	0.15	BC267A	0.12	BFY50	0.20	2N1306	0.22
AC127	0.16	BC300	0.30	BFY51	0.18	2N1307	0.22
AC128	0.15	BC301	0.28	BFY52	0.19	2N1308	0.23
AC141	0.16	BC303	0.30	BSX19	0.14	2N1309	0.23
AC142	0.18	BC307B	0.10	BS $\times 20$	0.15	2N2102	0.32
AC176	0.16	BC328	0.15	BSX60	0.60	2N2904	0.17
AC187	0.20	BC338	0.15	CRS3/05	0.31	2N2905	0.18
AC188	0.20	BC377	0.20	CRS3/10	0.38	2N2905A	0.20
AC128K	0.25	BCY32	1.07	CRS3/20	0.42	2N2926G	0.10
AC141K	0.28	BCY39	1.25	CRS3/40	0.65	2N29260	0.10
AC142K	0.26	BCY70	0.13	OA5	0.60	2N2926Y	0.10
AC176K	0.28	BCY7 1	0.18	OA9	0.20	2N2926R	0.10
AC187K	0.30	BCY72	0.12	OA10	0.37	2N3053	0.15
AC188K	0.28	BDY60	0.61	OC44	0.08	2N3054	0.38
AD142	0.46	BDY61	0.53	$0 \mathrm{C45}$	0.08	2N3055	0.42
AD143	0.40	BDY62	0.45	OC70	0.08	2N3415	0.12
AD 149	0.48	BDY90	2.28	OC71	0.08	2N3442	0.80
AL102	0.65	BDY91	2.16	OC75	0.08	2N3714	1.16
AL103	0.65	BDY92	1.75	OC139	0.45	2N3715	1.21
BA102	0.15	BD131	0.32	OC140	0.65	2N3716	1.28
BC107	0.14	BD132	0.44	OC205	1.25	2N3771	1.25
BC108	0.13	BD135	0.32	OC206	1.25	2N3773	2.18
BC109	0.14	BD136	0.34	OC207	1.40	2N3904	0.12
BC147	0.10	BD137	0.36	TIC47	0.35	2N3906	0.12
BC148	0.10	BD138	0.38	2 N 697	0.11	2N4036	0.38
BC149	0.10	BD139	0.41	2N930	0.14	2N4123	0.12
BC153	0.15	LEDs		2N1302	0.15	2N4124	0.12
BC157	0.11	DL707 7 s	eg	2N1303	0.15	2N5064	0.25
BC158	0.11	led	0.90	2N1304	0.18	TBA641	0.88
BC159	0.11	MV54 led	axial	ICS		LM309K	1.80
BC160	0.28	lead red	0.15	TAA435	0.55		
BC161	0.30	BD140	0.45	TAA611	0.68	All prices i	clusive
BC171A	0.10	BDY10	0.85	TAA861	0.68	VAT. Post 8	acking
BC171B	0.10	BDY11	0.90	TBA560	2.90	0.20 extra.	trching
BC168B	0.10	BDY20	0.80	TBA570	1.20	charge (Ga	only)
BC261A	0.10	BDY38	0.60	2N1305	0.18	0.20 extra/pair	

The big three from Wireless World

WIRELESS WORLD ANNUAL 1975

The first ever Wireless World Annual contains 128 pages including features covering all aspects of electronics and communications, including new and established techniques both practical and theoretical. Content includes constructional projects for a general purpose audio oscillator and a small boat echo sounder. There is a reference section packed with useful information.

HIGH FIDELITY DESIGNS

In response to demand for reprints of Wireless World constructional projects, we have collected fifteen of the most popular designs in one book. It covers tape, disc, radio, amplifiers, speakers and headphones. Where necessary, specifications have been updated to incorporate new components which have become available.

HI-FI YEAR BOOK 1975

This is the book that tells you everything you need to know about the hi-fi equipment on the market. Separate illustrated sections cover every major category, together giving prices and specifications of over 2,000 products. And it's got a directory of dealers/manufacturers - plus a host of articles on the latest hi-fi developments and their application.

To: General Sales Department, Room 11,
ORDER FORM
Dorset House, Stamford Street, London SE1 9LU
Please send me books as indicated below (state number of copies of each) :
Wireless World Annual 1975 (u $£ 1.35$ each incl.
High Fidelity Designs ($n £ 1.35$ each incl.
Hi-Fi Year Book 1975 (n £ 2.00 each incl.
I enclose remittance value f
(cheques payable to IPC Business Press Ltd.)
Name
(please print)
Address
\qquad

THE AUDIO HANDBOOK

Gordon J. King

- Deals fully - with all aspects of audio recording and reproduction
- Describes all the component parts of a sound system in detail
- Gives full information on measurements and adjustments
- Includes the parameters on all the four-channel systems currently available
- Invaluable to the enthusiast, the audio dealer and student

ELEMENTS OF TRANSISTOR PULSE CIRCUITS 2nd Edition

T. D. Towers

- The new edition up-dates the coverage of switching transistors and diodes and includes substitutions for obsolete transistors
- Will enable the reader to make intelligent use of integrated circuits and choose between various interconnection methods
- Gives practical guidance on the selection of commercially available devices
- Will be of great value to bench engineers in research and development laboratories, electronics engineering students at ONC/HNC level upwards and also the electronics enthusiast
286 pages $255 \times 158 \mathrm{~mm}$ Illustrated ISBN $040800150 \times £ 4.90 \quad 198$ pages $222 \times 143 \mathrm{~mm}$ Illustrated ISBN $0408001304 £ 3.50$

[HROWMSOMNE electranics
 Dept 5
 56. Fortis Green Road, London, N10 3HN
 telephone: 01-883 3705

Quality capacitors without any risk

B32110

MKL Hi-rel lacquer film, with self healing capability - where safety comes first.
Some of the first
capacitors with moon experience.

B37448

One of the smallest ceramic capacitors available. 4 mm pin spacing $\cdot 01$ to $\cdot 2263$ volts.

B41070

CAN electrolytics $220 \mu-10,000 \mu \mathrm{~F}-$ $10 \%+50 \%$ tol Surge proof, highly compact, smaller than many you've used before.

B32540/1

Plug in polycarbonate $\cdot 001-1 \mu \mathrm{~F} 100 \mathrm{v} \& 250 \mathrm{v}$. 10 mm or 7.5 mm spacing, compact and reliable.

We now make available to the amateur all the advantages of dealing direct with a franchised distributor. Quality guaranteed - 9,000 line items. Send a SAE for details or 25 p for our catalogue.

CONCORDE

Concorde Instrument Company, Dept PW, 42 Cricklewood Broadway London NW2 3ET Tel: 01-452 0161/2/3 Telex: 21492 and at 85 West Regent Street Glasgow G2 2QD Tel: 041-332 4133

THE RADIO SHOP

16 CHERRY LANE TELEPHONE
BRISTOLBS13NG
$0272-421196$

TR\\|ACS					
1.6AMP PLASTIC		6.5AMP ISOLA		10AMP ISOLATE	
N/SO161W 100 V	. 27	NAS0651W 100V	46	Nasio01W 100V	63
NAS0161X TH0V	. 26	NAS0651X 100 V	44	NAS 1001 X 100 V	. 60
NAS0162W 200V	30	NAS0652W 200 V	58	NAS1002W 200V	78
N/450162X 200V	. 28	NAS0652X 200 V	56	N二S $1002 \times 200 \mathrm{~V}$. 74
NASO164W 400V	40	NASO654W 400 V	84	NAS 1004W 400 V	1.09
NASO164X 400V	. 38	NAS0654X 400 V	. 80	NAS $1004 \times 400 \mathrm{~V}$	1.04
NAS0166W AnOV	. 55	NAS0656W 600 V	1.05	NAS 1006 W 600 V	1.34
VASO166X F 00 V	. 52	NAS0656X 600V	1.00	NAS1006X 600V	1.28
3AMP "CLIPPED TAB'		8.5AMP ISOLATED TAB		1GAMP ISOLATED METAL	
NAS0301W 100V	. 30	NAS0851W 100 V	. 52	NAS1601W 10.5V	90
NAS0301X 100 V	. 28	NAS0851X 100 V	. 50	NAS1601X 100V	82
NAS0302W 200 V	. 36	NAS0852W 200 V	67	NAS1602W 200V	. 95
NASO302X 200 V	. 34	NAS0852X 200 V	64	NAS1602x 2000	. 88
NAS0304W 400 V	. 52	NAS0854W 400V	. 97	NAS1604W 400 V	1.40
HAS0304X 400V	. 50	NAS0854X 400 V	. 92	NAS $1604 \times 400 \mathrm{~V}$	1.32
HMS0306W 600V	. 70	NAS0856W 600 V	1.20	NAS 1606W 600V	1.85
NAS0306X 600 V	. 66	NAS0856X 600 V	1.14	NAS 1606x 600V	1.75
Devices with Inter	1 Tri	have "W" suffix.	- de	Standard Triac	

THYRISTORS

CLOCK CHIP CT7001
The unique 7001 represents a major breakthrough in Clock Chip design Incorporating many 365 DAY CAL.ENDAR - $12 / 24$ HR. OPERATION - ALARM - SNOOZE ALARM - SIX DIGIT CAPABILITY - DIRECT DRIVE TO LED DISPLAY - CONTINUOUS OPERATION DURING
MAINS FAILURES
Copy of data available-please send 10 p stamp
Special kit comprising $17001 \& 4$ LED 7 segment displays and data sheets and socket fio
704 LED-7 seg. display 3^{*}
f1.10 each
Liquid Crystal Display $3 \frac{1}{2}$ digit \quad E5.25
Please add 8\% VAT to all listed prices. Postage \& packing 15p per order. Send 13p for latest catalogue. Callers welcome

NEW TEACHING AID POSITION CONTROL SYSTEM

FEATURES

* Demonstration of basic principles of Feedback systems
* Continuous rotation system
* Loop gain and damping
adjustable
* Self-contained unit-no additional patching required
* Choice of mains or battery
operation
* Compact and portable-weight

8 lbs -dimensions $12^{\prime \prime} \times 8^{\frac{3}{4}} \times 5^{\prime \prime}$

* Open loop/closed loop changeover by a single switch
* Low cost

Particularly suitable for OND in Technology
Write for details to:
SJ System Designs, 4 Roundabout Lane, Welwyn, Herts AL6 OTH
WW-187 FOR FURTHER DETAILS

Audio Connectors
Broadcast pattern jackfields, jackcords, plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd.
90 Wardour Street,
London WIV 3LE
01-437 1892/3

ELEGTROVALIUE

 Catalogue 7 issue no 3 now ready
 * UP-DATED PRODUCT \& PRICE INFORMATION (REFUND VOUCHER

We have made it just about as comprehensive and up-to-the-minute as possible. Thousands of items from vast ranges of semi-conductors including I.Cs included as well as a refund voucher woth 25 p for spending and diagrams alue ft 5 or more. SEND NOW FOR YOUR COPY BY RETURN.
It's an investment in practical money-saving and reliability!
$\mathbf{3 0 p}$ post paid

+ E.V. PRICE STABILIZATION POLICY
PRICES shown in Catalogue No. 7 , issue 3 will be maintained until March 31st intervals. commencing April 1 st instead of making day-to-day price at 3 -month

+ E.V. DISCOUNT PLAN

Applies to all items except the few where prices are shown NETT. 5% on orders from $£ 5$ to $£ 14.99: 10 \%$ on orders value $£ 15$ or more

+ FREE POST \& PACKING

In UK for pre-paid mail orders over E 2 (except Baxandall cabinets). If under there is an additional handling charge of 10 p .

+ QUALITY GUARANTEE

specifications

ELEGTRONALIE LTD

All communications to Dept WW. 4.
28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB Telephone Egham 3603 Telex 264475 Shop hours $-9-530$ daily $9-1$ OHB. NORTHERN BRANCH: 680 Burnage Lane, Burnage, Manchester M 19 INA. Telephone (061) 432 4945. Shop hours: Dailh 9-5.30 p.m7 9-1 p.m. Sats. U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA. P.O. Box 27.Swarthmore PA 19081

AMATEURRADIO BULK BUYING GROUP

Why buy from us?

Since our inception we have always aimed at giving the following 5 STAR service
\star All components are brand new to manufacturers' full specifications

* All components carry manufacturer's full guarantee.
* Orders normally despatched within 48 hours of receipt
- All prices offered on any item not in stock

This service is difficult 10 .

COMPONENTS FOR POCKET V.H.F. TRANSCEIVER

By D. A. Tong (July and August 74 W.W
Fiters: BFB 455A, 37p; CFR $455 \mathrm{H}, \mathrm{C}$
Integrated Circuits: SL612, £1.71; SL630, £1.62 Transistors etc: 40673, 53p; ZTX500, 15p; IN41148, 6p Also: FX1115, ip; FX1886, 5 p; $2 \frac{1}{2}$ in. 250 hm L.S., $£ 1.35$

UKW-BERICHTE
VHFCOMMUNICATIONS volume. Plastic Binders- $\mathbf{f 1}$. issues now held in stock at 85 p each post paid

We are now the official U.K. agents for this VHF equipment constructors magazine. Send for FREE index to past editions to see range of items
covered (SAE please). SUBSCRIPTION: $\mathbf{£ 2 . 8 0}$ for $\mathbf{1 9 7 5}$

Back issues as follows: 1969, 1970, 1971- £2.30 per year; 1972. 1973, $1974-£ 2.65$ per year. A limited number of back

PLESSEY SL600 ics at LOWEST PRICES

availabie fors of sheo devices anywhere in the country-
 Full data sheets on all SL600 devices are inclucled in our Data Catalogue. 35 pages crammed with All components are available for the SL600 series SSB Transceiver described by G3ZVC in "Radio

DECON DALO PCB MARKER PEN

We also stock a wide range of spare tip and instruction sheet at only 85p.
converters. etc. Javbeam aerials KVG filters, etc. Write for free price list (encl, Microwave Modules 25p plus large 7 p sae for our Data Catalogue

3\%. Minimum post and packing Charge 15p. Orders should be semt
to our mail order address as to our main ordor address as follows
A.R.B.B.G., Dept. 503, 20 THORNTON CRESCENT, OLD COULSDON, SURREY CR3 1 LH

Transformers

SAFETY MAINS ISOLATING TRANSFORMERS
Pri $120 / 240 \mathrm{~V}$ Sec $120 / 240 \mathrm{~V}$ Centre Tapped \& Screened

Ref.	VA
No.	(Watt
07	20
149	60
150	100
154	200
152	250
153	350
154	500
155	750
156	1000
157	1590
158	2000
159	3000

10 oz
10 $\begin{array}{cc}1 b & 0 z \\ 1 & 8 \\ 3 & 12 \\ 5 & 8 \\ 8 & 0 \\ 13 & 12 \\ 15 & 0 \\ 19 & 8 \\ 29 & 0 \\ 38 & 0 \\ 46 & 0 \\ 60 & 0 \\ 85 & 0\end{array}$ $7.0 \times 7.0 \times 6.0$
$9.9 \times 7.7 \times 8.6$
$9.9 \times 8.9 \times 8.6$
$12.1 \times 9.3 \times 10.2$
$12.1 \times 11.8 \times 10$
$14.0 \times 10.8 \times 11$
$14.0 \times 13.4 \times 11$
$17.2 \times 14.0 \times 11$
$17.2 \times 16.6 \times 1$
$21.6 \times 83.4 \times 1$
$21.6 \times 15.3 \times 1$
$23.5 \times 17.8 \times 19$.

AUTO TRANSFORMERS

VA	Weight
(Watts)	16 oz
20	10
75	2
150	3
300	64
500	12
1000	19
1500	304
2000 3000	32 40

CASED AUTO TRANSFORMERS
115 V mains lead input and U.S.A. 2 pin outlets. 20VA $£ 3 \cdot 13$. P. \& P. 38p. 500 VA
LOW VOLTAGE TRANSFORMERS
PRIMARY 200-250 VOLTS 12 ANDIOR 24 VOLT RANG

Also stocked: SEMICONDUCTORS VALVES AVOMETERS - ELECTROSIL RESISTORS

PLEASE ADD 8\% FOR V.A.T. including P. \& P.

BABIXIE clectronics
 3, THE MINORIES, LONDON EC3N IBJ TELEPHONE: 01-488 3316/8
 NEAREST TUBE STATIONS ALDGATE \& LIVERPOOL ST.

OUR PRICE $\mathbf{f 3 . 2 5}$ PRP 15p
MODEL C1092

HIOKI 730X

$120,600 / 1200 \mathrm{VAC}$
$\begin{array}{l}60 / \mathrm{HA} \\ 30 \mathrm{~mA} / 300 \mathrm{~mA} .\end{array}$

 HIOKI 750X VOLT.OHM
 OUR PRICE f 11.95

(1)

 mognatic phono. tunem. tape and

 OUR PRICE 117.50 P\&P 50ρ SPECIAL offer! convert your STEREOSYSTEM TO 40 SOUND This clever unit enables you to add
4 D sound to vour existing Complet with simple connection dexsiss. Use his converter

 OUR PRICE $\$ 3.95$ PGP 50 P WALKIE TA
SKYFON NV7
Super low cos Super low co
usismiter ty ansmiterer
receivers. 100 MW with callbuzzer and
on/offolume
conto control 7
Telescopic
smremna DUR PRICE f31. 50 Par PaIR PAP 50D
NOT UCENSABLE electronic calculators

Weceriy a tramendous ràngeot Doth pocker and doesk calc
iors from es littie as es. 90 Owing to the demand it it not
possibie to inciude them in this paverit soment so send tor or or
latest price list or call into any
high quallty CONSTRUCTION KITS
WE ARE WE ARE
STOCKIS WEARE
$\begin{aligned} & \text { STOCKISTS AT } \\ & \text { Oxford Stroet. }\end{aligned} \mathbf{4 2}$ \&

 EICESTER NORTHAMPTO
 WOLVERHAMPTON Dranches or

All kitry sro compiowe with compres covered by tull warcentios.

AF

 ${ }^{M 1302} \mathbf{3}$ Víanistor resto M192 Siereo balance meter
Lh380
ATT AI 30 Phota cell whith umt

 GU330 Thannol ight

HF35 GP3 10 Stereo ore emplifer GP312 Cucuin boarr HF380 Whyth eanal amplitien $\mathrm{NT}^{10} \mathrm{Staballiged}$ power supply NT 300 Stabillsed p. suppoty
NT 310 Power Supoly 240

 Amateur Electronics b -covers the subiect tor the amateur Uos. Co to vanced electronic rechn AE1 10 AE 10 listedite elow.

AEEZ 100 Pe:2molifien

AEE Astabe multe vibrato.
A AER RC generatur

SEW PANEL METERS

USED EXTENSIVELY BY INDUSTRY GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC Over 200 ranges in stock-other ranges to order. Quantity discounts available. Send for tully illustrated brochure.
CL
S, L
50
50
10

$c \mid c$
$\substack{c \mid e \\ 500 \\ 500 \\ 500}$
500

-

We offer a speedy

and my number is
and efficient
service by mail
order. Remember
to add 8% VAT
to total value of
goods including
post and packing.
NAME
ADDRESS

CENTRAL LONDON	
$4810 \times$ Ford St	$01-4938641$
3 ULIESTST WC2	$01-4378204$
	01.739789
193 EDG Warero. W2	01.7236211
207 E0GWARERD. W2	01.7233271
31 l EDGWARE RD. w_{2}	-01.2620 2387
346 EDGWARE Ro. W2	0.1723453
le ${ }^{382 \text { EDGWARE AD. W2 }}$	-0.72341944
10 тоtтenhama ro	01-637 2131
27 тotrenham (T, RD.	01.6363715
	01.-336 2005

KENT
53/57 CAMDEN RD.. TUMBAIDGE WELLS
LEICESTERSHIRE

NO DEPOSIT TERMS available on most goods for personal callers
\qquad Hirh bantes can in

Mivices corroct at $13 / 1 / 75$ but WW4

ANALOGUE \& HYBRID COMPUTERS

C60 FEATURES:

Eight low drift, high gain. I operational amplifiers. 1% selection and meter switch ing. A four quadrant variable multiplier. Individual pot-se facilities. built-in stabilised
power supplies plus all of the features expected in our precision machines. Price $\mathbf{8 4 7 5}$ complete with patching leads and instruction book
We manufacture a wide range of analogue and hybrid computing equipment and can surprised at the cost of a computer built to your own requirement

STEREO IC DECODER
 GH PERFORMANCE PHASE LOCKED LOOP

MOTOROLA MC1310P EX STOCK DELIVERY
Soparation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$
specificatio
-
O/P leval 485 Distortion: 0.3\% $1 / \mathrm{P}$ ievel: 560 mV .ms Will drive up to 75 mA stereo

KIT COMPRISES FIBREGLASS PCB	ONLY	WHYPAY
(Roller timned), Resistors, I.C., Capacitors,	C3-98	MORE?
Preset Potm. \& Comprehensive Instructions	post free.	
LIGHT EMITTING DIODE	RED	29p
Suitable as stereo 'on indicator for above	GREEN	59p

MC1310P only £3.15 plus p.p. 6p
NOTE
As the supplier of the first MC1310P decoder kit, of
our customers can benefit from our wide experience.

Pa V.A.T. at 8% to all prices

FI-COMP ELECTRONICS
burton road, EgGinton, derby, deg 6Gy

REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and power supply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{~mA}$. Two stabilised valves CV 286 . Centre Zero Meter $10-0-10$. Size $8 \mathrm{in} . \times 8 \mathrm{in} . \times 8 \mathrm{in}$. New condition. $\mathrm{f}^{8.50}$. Carr. 75p.
SOLARTRON PULSE GENERATOR TYPE G1101-2: $£ 75.00$ each. Carr. $\AA 2.00$.
TEELPRINTER TYPE 7B; Pageprinter 24V d.c. power supply, speed 50 bauds per min. second hand cond. (excellent order) no parts broken. $£ 15$ each. Carriage
INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision for checking ionisation. $110 / 230 \mathrm{~V}$ a.c. input. $\mathrm{S} /$ hand good cond. $£ 30+f^{1} \mathrm{carr}$. BRIDGE MEGGER: 250V. (Evershed Vignoles) series 2. £30 each. Carr. £1. BRIDGE MEGGER: $2,500 \mathrm{~V}$., series 1 . $\mathbf{£ 3 0}$ each. Carr. $£ 1$.
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance.
with a freq. meter. $£ 17.50$. Carr. $£ 1.50$.
TYPE 174/1 FREQUENCY SHIFT ADAPTOR (Northern Radio Co.) : Convert. mark and space frequencies from the output of one or two Receivers into d.c. pulses. Suitable to operate Teleprinters or similar devices. 110/220V. Further etails on request, s.a.e. $f 5$
TELEGRAPH TERMINAL UNIT (A.T.E.) TYPE TFS3: Converts signals
from Receivers into d.c. pulses. Complete with monitor. $£ 75$ each. Carr. $£ 2$. from Receivers into d.c. pulses. Complete with monitor. $£ 75$ each. Carr. $£^{2}$. FURZHILL SENSITIVE VALVE VOLTMETER V. 200: Freq. $10 \mathrm{~Hz}-6 \mathrm{MHz}$ (can be used beyond 0 MHz). Probe in circuit-Voltage range $\mathrm{mv}-1 \mathrm{k}$ in 100 V in 6 decade ranges; full scale deflection $1 \mathrm{mV}, 10 \mathrm{mV}-100 \mathrm{~V}$. Accuracy $\pm 5 \%$. $£ 30$ each. Carr. $£ 1$.
NOISE FIGURE METER TYPE 113A (Magnetic AB, Sweden): $£ 125$ each. Carr. £1.
PRECISION PHASE DETECTOR TYPE 205: Freq. $0.1-15 \mathrm{MHz}$ in 5 ranges. Variable time delay microseconds $0-0.1 \mathrm{c}, 115 \mathrm{~V}$ input. $£ 55$ each. Carr. $£ 1$.
ROHDE \& SCHWARZ HF MILLIVOLTMETER: $30 \mathrm{~Hz}-30 \mathrm{MHz}$ Type UVH, $1 \mathrm{mV}-1 \mathrm{~V}$ in 7 ranges, 220 V . $£ 75$ each. Carr. $£ 2$.
ROHDE \& SCHWARZ VHF WATTMETER TYPE NAK: with matching indicator, 30 watts, $200-470 \mathrm{MHz}$. $£ 25$ each. Post 70 p .
PHILLIPS VALVE VOLTMETER TYPE GM6014: $1-300 \mathrm{mV}$ in 6 ranges, $70-20 \mathrm{~dB}$, probe $1000 \mathrm{~Hz}-30 \mathrm{MHz}, 300 \mathrm{mV}$ maximum. $£ 35$ each. Carr. $£ 1$.
TF-1345/2 DIGITAL FREQUENCY COUNTER: Range $10 \mathrm{KHz}-100 \mathrm{MHz}$ with extension units. Details on request, s.a.e. $£ 100$. Carr. $£ 2$.
UHF MICROWAVE MILLIWATTMETER- TYPE 14: Direct reading, can be used to measure power from 100 MHz upwards. F.S.D. on 4in. scale meter 2.5 mW . $£ 40$ each. Carr. $£ 1$.

MARCONI HF SPECTRUM ANALYSER OA. 1094/3. Further details on request. $£ 250$ each. Carr. $£ 5$.
Q METER: $30 \mathrm{MHz}-200 \mathrm{MHz}$. $£ 55$. Carr. $\mathcal{L} 1$.

SIGNAL GENERATOR AIRMEC TYPE 701: $30 \mathrm{KHz}-30 \mathrm{MHz}, 7$ ranges. f65. Carr. $£ 1.50$
TF-1278/1 TRAVELLING TUBE WAVE AMPLIFIER: $£ 125$. Carr. $£ 2$. BPL A.C. MILLIVOLTMETER TYPE VM.348-D Mk. 3: 2 millivolts- 2 volts, 6 ranges. f 30. Carr. $\notin 1$.
WAYNE KERR WAVEFORM ANALYSER A.321: Low scale 0-1200 c/s. High scale $1-20 \mathrm{Kc} / \mathrm{s}, 600$ ohms. Harmonic level is $0-55 \mathrm{~dB}$ in 12 steps. $£ 75$. Carr. $£ 1.50$.
SPECTRUM ANALYSER TYPE MW.69S (Decca): Further details on . 200.
MARCONI DUAL TRACE UNIT TM-6456: $£ 30$. Post 60p.
SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with $\mathrm{RF}_{\mathrm{Ra}}$ and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission indicated on CW, FM, Modurect-reading dials. $115 \mathrm{C}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq-- $1800-4000 \mathrm{Mc} / \mathrm{s}$ secs. Timing-Undelayed or delayed from $3-300$ Puise Width- $0.5-10$ microinternal pulse. Output-l milliwat max., 0 to -127 dB variable. Out put Impede ance-500. Price: $£ 120$ each $+£ 2$ carr.
H.V. TRANSFORMER: $8000 / 8000$. Output 300 mA . rms. Size: $12 \mathrm{in} . \times 12 \mathrm{in} . \times$ 36 in .230 V input. f^{40}. Carr. $£ 4$.
TELEPHONE CABLE: (Twin) $1,300 \mathrm{ft}$. on metal reel. $£ 7.50$ per reel. Carr. $£ 1$ FIRE-PROOF TELEPHONES: $£ 25 \cdot 00$ each, carr. $£ 1 \cdot 50$
TF. 2000 A.F. SIGNAL SOURCE: $£ 175 \cdot 00$, carr. $£ 1 \cdot 00$.
POWER UNIT: $110 / 230$ volts a.c. input. 28 volts d.c. at 40 amps output. $£ 30.00$ each, carr. $£ 3.00$.
SMOOTHING UNIT (for the above): $\boldsymbol{£ 1 0 . 0 0}$ each, carr. $£ 2.00$
X-BAND MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James Scott. $£ 125$ ea., Carr. $£ 1$.
HP-766D DUAL DIRECTIONAL COUPLER: $940-1975 \mathrm{MHz}$. $£ 35$ ea., 75 p post.
BACKWARD WAVE OSCILLATOR TYPE SE-215: 6.3 heater, 105V Anode, 7.9 mA . Mnfr. Watkins $\&$ Johnson. $£ 85$ ea., Carr. $£ 1$.

TEKTRONIX TIME MARK GENERATOR TYPE 180-S1: 5, $10,50 \mathrm{MHz}$ 665 . Carr. $£ 2$.
TRANSISTOR ANALYSER TA 1001 (K. \& N. Electronics Ltd.): £95. Carr. £3. POLRAD MICROWAVE RECEIVER MODEL R-B1: Complete with tuning unit RS-T $1,900-4,340 \mathrm{GHz}$. 150 . Carr. $£ 5$.
ABSORPTION FREQUENCY METER (Measurements Corporation) Consisting of 3 units $1-45,2.2-400,420-1000$ Megacycles. $£ 55$. Carr. $£ 1$
CHRONOTON MODEL 25E: $0.4-10$ seconds in seven ranges. 650 . Carr. $£ 1$ AIRMEC MODULATION METER TYPE 409: AM or FM, 3-600 MHz £95. Carr. ${ }^{2}{ }^{2}$.
LISTS OF EQUIPMENT AVAILABLE: MOTORS; TELEPRINTERS; AR88 SPARES; TEST EQUIPMENT ETC. Send 10 p for above lists ALL CARRIAGE
LONDON ONLY.
ALL CARRIAGE QUOTES GIVEN ARE FOR 50 MILE RADIUS OF
LONDON ONLY.

```
If wishing to call at FCF 3-B TRULOCK ROAD, LONDON,N17 0PG
storas, please talaphone
for appointment.
```

3-B TRULOCK ROAD, LONDON, N17 OPG
Phone: 01-808 9213 and Bedford 740605 (STD 0234).
 WW-066 FOR FURTHER DETAILS

A\& S T.V. COMPONENTS BRIAN ARDEL
 : Cavendish
 Herts.

Northwood 28571 Middx.
01-953 9724 (E1stree)
Stocklsts of semi-conductor devices for television and audio equipment.

Wholesalers and rental companies AND TELEVISION DEALERS SUPPLIED

Enquiries invited on 100 lots upwards. SPECIAL quotations given plus a FANTASTIC bonus for certain stock available.

Many other transistor devices available
Please add 8% for V.A.T. Minimum order $\mathbf{5 3 . 0 0}$. Under 56 add 25p. for P. \&. P. U.K. only. Terms of business C.W.O.

greet constructors with Exclusive Introductory Offers

SCIENTRONICS is a new companyorganised to develop and promote eleztronic designs of especial interest to constructors. We are privileged to offer. as our opening shot, a substantial quantity of selected items no longer part of the manufacturing programme of an internationally famous British manufacturer These include			by Ferranti. Tex to stringent with a guaran All these transist ranteed within the pecfications. S.A. n. Leads on com	s. ITT and ecifications ed gain at s are brand terms of our brings full ponents are
TRANSISTORS				
GENERAL MPN(N)	NPN(N)	Vce	HFE	mA
FRB771				1
E 536BA N	N	25	100	1
E53688 N	N	25	150	
E 5368C N	N	25	250	
ESW LEVEL 20 20				
E 5403 P	175	-36	100	10. A
E 5404 N	N	-30	100	100.4
E 5405	7.5	*30	100	$100 \cdot \mathrm{~A}$
E5370 N	N	20	$\binom{105}{100}$	500
E 5397	ค ${ }^{\text {P }}$	20	100	100
E 5398	P E	40	40	60
HIGH FREQUENCY (600 MHz FT)				
E 5399 N	N - $\mathrm{O}, 5$			
E5400	$\stackrel{\mathrm{N}}{\mathrm{N}}$	78	18	1
XK 6116 high Voltage	$\mathrm{N} \quad 8$	20		
E 5407 (9	65	50	10
E 5408 N N	N 75	55	50	10
QUANTITY DISCOUNTS tprices in pence per device)				
Singic 10			1000	
3 4:5	4.5	6		
\% in	,			
8. ${ }^{2}$	72		18	
8 ¢4	; 4		5	
9 ¢ 6	6 6		5.5	
*/ntanded for 10 V working guaramesed, but almost ast would pass for hugher vottage operation as undicatad-mast can be selfected for higher votiage worting of an extra change of $\frac{1}{2} p$ per device				
Send S.A.E. for lists capacitors, resistors, electrolytics, nixie displays, switches, transformers, etc. Trade enquiries invited				
ORDERING \& GUARANTEE. All goods guaranteed within terms of specification and instock at time of going to prass. Send cheque or money order with order. or if cash. send stock at time of going to prass. Send cheque or money order with order. or yous money relunded MIN. ORDER $£ 1$ All goods sent post paid in $U \mathrm{~K}$. Overseas postage charged				

FANS, CENTRIFUGAL BLOWERS \& MOTOR

 £23.00.
Woods Aerofoil short casing type S Ref
 cast alum. impeller 4 blades width casing
2量" total $5 \frac{1}{4}{ }^{\prime \prime}$ weight 5 dibs inct p.p. f13.00.
Aerofoil Code $7.5280 \mathrm{~K} 200 / 250 \mathrm{y}$ 1.0a 1 ph Aerofoil Code $7.5280 \mathrm{~K} 200 / 250 \mathrm{~V}$. 1.0 a 1 ph
50 c 2700 rpm 550 cm free air. $7 \frac{1}{2}^{\prime \prime}$ impeller

Service Electric Hi-Velocity Fans, Suitable for Gas conveying. Cooling Electronic equipment. Air blast to 575) Airblast Fan. 440 y 3 ph 50 c 0.75 hp 2850 rpm . price incl. carr. f45-00. Secomak model 350250 v . net weight 34 ibs. price incl. carr. $£ 30-00$.
Air Controls type VBL4 $200 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 110 \mathrm{cfm}$
free air weight 7
7 Type VBL5 $200 / 250 \mathrm{y}$ iph 50 c
Weight 10 Ilbs, price incl. p.p. $\mathbf{£ 1 9 . 5 0 .}$
William Allday Alcosa rotary vane oil free Single Stage phase induction motor $1 / 3 \mathrm{hp}$ cont $220 / 250 \mathrm{v}, 380 / 440 \mathrm{v}$. Class E ins. incl. carr. f28.00.

Gast MFG. Vacuum pump 0522-p702-R26X. Motor
 Oin Mercury in 2 mins maintains lass E. 10cuft to

Mercury. Or as

3 phase 2HP motor 60/50c.. 1800/1500 RPM. 208/220/440
Cat. 20263

Where p.p. not advised add 10 p per $£$ handing and post (in UK). Cash with order. Personal callers welcome. Open Mon. Wed. 9.30-5.00 Fri.-Sat,

W. \& B. MACFARLANE

126 UXBRIDGE ROAD, HANWELL, LONDON W7 3SL

Marshall's

A. Marshall \& Son (London) Limited Dept. w w
42.Cricklewood Broadway London NW2 3HD Tel: 01-452 0161 885 West Regent Street Glasgow G2 2QD Tel: 041-332 4133
Grerything you need is in our new 1975 catelogue. Avalibie now price 25 p

Trade and export enquiries welcome
OUR RANGE COVERS OVER 7,000 ITEMS THE LARGEST SELECTION IN BRITAIN

TOP 200 IC'S TLL, CMOS \& LINEARS

CA3018A	0.85	CD4043	1.80	NE565	4.48	SN7448	0.90	SN74157	
CA3020A	1.80	CD4044	1.80	SL414	1.80	SN7450	0.16	SN74160	1.10
CA3028A	0.79	CD4045	2.65	SL610C	1.70	SN7451	0.16	SN74161	1.10
CA3035	1.37	CD4046	2.84	SL611C	1.70	SN7453	0.16	SN74162	1.10
CA3046	0.70	CD4047	1.65	SL612C	1.70	SN7454	0.16	SN74163	1.10
CA3048	2.11	CD4049	0.81	SL620C	2.60	SN7460	0.16	SN74164	2.01
CA3052	1.62	CD4050	0.66	SL621C	2.60	SN7470	0.33	SN74165	2.01
CA3089E	1.96	LM301A	0.48	SL623C	4.59	SN7472	0.26	SN74167	4.10
CA30900	4.23	LM308	2.50	SL640C	3.10	SN7473	0.36	SN74174	1.25
CD4000	0.36	L005TL	1.50	SN7400	0.16	SN7474	0.36	SN74175	0.90
CD4001	0.36	LM380	1.10	SN7401	0.16	SN7475	0.50	SN74176	44
CD4002	0.36	LM381	2.20	SN7401AN	0.38	SN7476	0.35	SN74180	1.40
CD4006	1.58	LM702C	0.75	SN7402	0.16	SN7480	0.50	SN74181	1.95
CD4007	0.36	LM709	0.38	SN7403	0.16	SN7481	1.25	SN74190	2.30
C04008	1.63	8DIL	0.45	SN7404	0.19	SN7482	0.75	SN74191	2.30
CD4009	1.18	14DIL	0.40	SN7405	0.19	SN7483	0.95	SN74192	1.15
CD4010	1.18	LM710	0.47	SN7406	0.45	SN7484	0.95	SN74193	1.15
CD4011	0.36	LM723C	0.90	SN7407	0.45	SN7485	1.25	SN74196	1.60
CD4012	0.36	LM741C	0.40	SN7408	0.19	SN7486	0.32	SN74197	1.58
CD4013	0.66	8DIL	0.40	SN7409	0.22	SN7490	0.45	SN74198	2.25
CD4014	1.72	14DIL	0.38	SN7410	0.16	SN7491	0.85	SN74199	2.25
CD4015	1.72	LM 747	1.05	SN7411	0.25	SN7492	0.45	SN76003N	2.92
CD4016	0.66	LM 748	0.60	SN7412	0.28	SN7493	0.45	SN76013N	1.95
CD4017	1.72	LM14DIL	0.73	SN7413	0.35	SN7494	0.82	SN76023N	1.60
CD4018	2.55	LM3900	0.70	SN7416	0.35	SN7495	0.72	SN76033	2.92
CD4019	0.86	LM7805	2.00	SN7417	0.35	SN7496	0.75	TAA263	1.10
CD4020	1.91	LM7812	2.50	SN7420	0.16	SN74100	1.25	TAA300	7.80
CD4021	1.72	LM7815	2.50	SN7423	0.29	SN74107	0.36	TAA350A	2.10
CD4022	1.66	LM7824	2.50	SN7425	0.29	SN74118	1.00	TAA550	0.60
CD4023	0.36	MC1303L	1.50	SN7427	0.29	SN74119	1.92	TAA611C	2.18
CD4024	1.24	MC1310P	2.59	SN7430	0.16	SN74121	0.37	TAA621	2.03
CD4025	0.32	MC1330	0.90	SN7432	0.28	SN74122	0.50	TAA6618	1.32
CD4027	0.43	MC1351P	0.80	SN7437	0.35	SN74123	0.60	TBA641B	2.25
CD4028	1.50	MC1352P	0.80	SN7438	0.35	SN74141	0.85	TBA651	1.69
CD4029	3.50	MC1466L	3.50	SN7440	0.16	SN74145	0.90	tBa800	1.40
CD4030	0.87	MC1469R	2.75	SN7441AN	0.85	SN74150	1.50	tbab 10	1.40
CD4031	5.19	NE555V	0.70	SN7442	0.65	SN74151	0.85	tBa820	1.15
CD4037	1.93	NE556	1.30	SN7445	0.90	SN74153	0.85	tBA920	4.00
CD404 1	1.86	NE560	4.48	SN7446	0.95	SN74154	1.50	DIL socket	0.17
4042	1.38	61		44	0.95				

PW TELETENNIS KIT- $£ 42.50$ + VAT Reprint $75 p$ TRY OUR GLASGOW SHOP

POPULAR SEMICONDUCTORS

2N696	0.22	2N3906	0.27	AF139	0.65	BD139
2N697	0.16	2N4037	0.42	AF239	0.65	BD140
2N69B	0.82	2N4036	0.67	AF240	0.90	BF115
2N699	0.59	2N4058	0.18	AF279	0.70	BF117
2N706	0.14	2N4062	0.15	AF2B0	0.79	BF154
2N708	0.17	2N42B9	0.34	AL102	1.00	BF159
2N916	0.28	2N4920	1.10	BC107	0.14	BF 180
2N918	0.32	2N4921	0.83	BC108	0.14	8F181
2N1302	0.185	2N4923	1.00	BC109	0.14	8F184
2N1304	0.26	2N5245	0.47	8C1478	0.14	BF194
2N1306	0.31	2N5294	0.48	BC1488	0.15	8F195
2N1308	0.47	2N5296	0.48	8C1498	0.15	BF196
2N1711	0.45	2N5457	0.49	BC157A	0.16	8F197
2N2102	0.60	2N5458	0.46	BC15BA	0.16	BF198
2N2147	0.78	2N5459	0.49	8C1678	0.15	8F244
2N214B	0.94	2N6027	0.45	BC168B	0.15	BF257
2N2218A	0.22	3N128	0.73	8C1698	0.15	BF25B
2N2219A	0.26	3N140	1.00	8C182	0.12	BF259
2N2220	0.25	3N414	0.81	BC182L	0.12	BFS61
2N2221	0.18	3N200	2.49	BC183	0.12	BFS98
2N2222	0.20	40361	0.40	8C183L	0.12	BFR39
2N2369	0.20	40362	0.45	8C184	0.13	BFR79
2N2646	0.55	40406	0.44	BC184L	0.13	BFX29
2N2904	0.22	40407	0.35	BC212A	0.16	8 FX 30
2N 2905	0.25	40408	0.50	8C212LA	0.16	BFX84
2N2906	0.19	40409	0.52	BC213LA	0.15	BFX85
2N2907	0.22	40410	0.52	BC214LB	0.18	BFX88
2N2924	0.20	40411	2.00	BC237B	0.16	BFY50
2N2926G	0.12	40594	0.74	BC238C	0.15	BFY51
2N3053	0.25	40595	0.84	8C239C	0.15	BFY52
2N3054	0.60	40636	1.10	BC257A	0.16	BRY39
2N3055	0.75	40673	0.73	BC258B	0.16	ME0402
2N3391	0.28	AC126	0.20	BC259B	0.17	ME0412
2N3392	0.15	AC127	0.20	BC301	0.34	ME4102
2N3393	0.15	AC128	0.20	ВС307B	0.17	MJ480
2N3440	0.59	AC151	0.27	BC308A	0.15	MJ481
2N3442	1.40	AC152	0.49	BC309C	0.20	MJ490
2N3638	0.15	AC153	0.35	BC327	0.23	MJ491
2N3702	0.12	AC176	0.30	BC328	0.22	MJ2955
2N3703	0.13	AC187K	0.35	BCY70	0.17	MJE340
2N3704	0.15	AC188K	0.40	BCY71	0.22	MJE370
2N3706	0.15	AD143	0.68	BCY72	0.15	MJE371
2N3708	0.14	AD161	0.50	BD121	1.00	MJE520
2N3714	1.38	AD162	0.50	BD123	0.82	MJE512
2N3716	1.80	AF106	0.40	8D124	0.67	MJE2955
2N3771	2.20	AF109	0.40	BD13	0.40	MJE3055
2N3773	2.65	AF115	0.35	BD 132	0.50	MP8113
2N3789	2.06	AF 116	0.35	8D135	0.43	MPF 102
2N3819	0.37	AF117	0.35	BD136	0.47	MPSA05
2N3820	0.64	AF118	0.35	BD137	0.55	MPSA06
2N3904	0.27	AF124	0.30	BD138	0.63	MPSA55

OOOOOOAOOOOOABAAOOOOOONOOOOOOOOOOOOOOOOOOOOOOOO

Post 8. Package 25 p

HENRTE RAMO
 LARGEST SELECTION OF ELECTRONIC COMPONENTS AND EQUIPMENT. LOW PRICES- MEAN LESS VAT.

You can build thic Texan and Sterco FM Tuncr IEEAN $20+20$ WATT IG STEREO AMPLIJIER

 JOIN THE LARGE BAND

NEW SPECIAL PURC AM/FM TUNER MODULES Mullard type LP1179 and LP1171 tuner covering the long. medium and bands. Requires only 16 resistors and Supplied with circuits and spec. data. LP117 \qquad Sandwidth 30 Selectivity 35d Signal to noise $7-108 \mathrm{MHz}$ 300 KHz oise at lim ut 75 mV \qquad \qquad AMP $\begin{aligned} & \text { RS WITH } \\ & 12 \text { volt } 2 \frac{1}{2} \end{aligned}$ ONTROLS \square Mains 1 9 volt 1 12 volt \square	

AM/FM MODULES				
LP1157 AM/Module				¢2.50
LP1171 AM/FM Module				54.00
LP1179 AM/FM Front End				54.00
				$f 4.50$
				f4.20
Mullard Modutes				
LP $1157 \mathrm{AM} / \mathrm{T}_{\text {ype }}$				0.50
LP1185 10.71.F Unit				44.50
				44.85
				54.20
FM AND AM TUNERS AND DECODERS				
FM5231 (tu 2) 6 -volt FM tuner				87.95
FM5231 (tu 3) 12 -volt versionSD4912 decoder for tu 3				67.95
				77.95
SP621 6-volt stereo FM quner				f14.80
Sinclair FM tuner				¢11.95
Sinclair decoder for above				17.95
A1007 9 -volt MW-AM tuner				${ }^{\mathbf{5} 4.80}$
A1018	ed FM tuner			¢13.95
A 1005M (s) decoder for above				77.50
PREAMPLIFIERS				
Sinclair Stereo 60 Preamplifier				¢6.75
E1300E1310CART/TAPE/MICStereo 3-30mV m			NPUTS 9 volt	¢2.85
			mal cart 9 volt	64.75
FF3 Stereo 3mV tape			head 9 volt	¢4.95
3402EO25 StereoMono 3-20mVS			Mag. cert mains	f5. 95
			ape/cartiflat. 9 volt	$¢ 1.95$
POWER SUPPLIES - Mains input [* chassis-rest cased)				
$470 \mathrm{C} 6 / 7 \frac{1}{2} / 9 \mathrm{~V} 300 \mathrm{~mA}$			*P108145 volt 0.9A	£7.80
		¢2.25	P12 ${ }^{1} \frac{1}{2} 12$ volt	
P5009 volt 500 mA		¢3.20	0.41 amp	¢7.15
			SE101A 3/6/8/12	
			1 amp stabilised	
*P112	oit $\frac{1}{4}$ amp	${ }_{5} 53.30$	P1076 3/4 $\frac{1}{2} / 6 / 7 \frac{1}{2} / 9$	
*P1080	2 volt 1 A	${ }_{6} 8370$	volt $\frac{1}{3} \mathrm{amp}$	64.20

SINCLAIR MODULES AND KITS

Audio filter untit Aucio tilter unt
$Z 4015$ watt amplifier Z60 25 wat amplifier
PZ5 power supplies fo pZ6 power supplies (STA3) tor por 2240
PZ8 power sup PZ8 power supplies (STA3
tor 1 or $2 \mathrm{Z60}$ Transformer for PZ FM uner Stereo decoder
iC20 power a mup P220 power supply
tor 1 or 2 IC20

EMI SPEAKERS
Special Purchase

Special purchase 5 watt output 8-16 ohm load. 30 volt max DC operation complete with data. Price $£ 1.50$ ea. or 2 for $\mathbf{£ 2 . 8 5}$ Printed Circuit Panels 50p

tuners. UK operation. Brand new.
turne Post/packing 25 p each
TYPE A variable tuning. Slow
motion drive
TYPE B 4-button push-button
(adjustable) $£ 3.00$ (adjustable)

1450 RECHARGEABLE

 BATTERYPHILIPS 12 V
FLUORESCENT INVERTOR

TEST
EQUIPMENT
MULTIMETERS
(carr/packing 35p)

14311 Laboratory mete 04312 20KQv with case U4315 2OKQv with case 4431720 K Qv with cas U431320KRV steet case
4317 20K V with case tester steel case 0432320 KaV plus 1 KHz 465 KHz OSC with case T1-2 20KRV slim type THL33D (L33DX) 2 KDV
TP5SN 20K r V
(Case $\mathbf{f 2 . 0 0 |}$
TPS $10 \mathrm{~S} 2 \mathrm{~K} \Omega \mathrm{~V}$
W20S $20 \mathrm{~K} \cap \mathrm{~V}$
W50k 50K Ω V
ester
New Aevolutionerv
680 M Mulitestar
\dagger IE40 AC mutivolitite
TE1 15 Grid dip moreq
$440 \mathrm{KHz}-28 \mathrm{MHz}$
$\dagger+$ TEES 28 range valy valtmeter
TE200 RF yenerator

$20 \mathrm{~Hz}-200 \mathrm{KHz}$

${ }^{\text {rester }}$
TT1 145 Compact flansister tester

+ G3.36 R/C Osc
$20 \mathrm{~Hz}-200 \mathrm{KHz}$
C3042 SWF Meter
* SE350A Deflexe signel Iracer

C1-5 Scope 500.000 KHz t carir fle 1.001

TAPE HEADS

Marriot XRPS/ $17 \frac{1}{1}$-track high $£ 2.50$ Marriot XRPS $18 \frac{1}{4}$-track med $£ 3.50$ Marriot XRPS/63 $\frac{1}{2}$ track high $\mathbf{1 1 . 7 5}$ Marriot $\frac{1}{2}-\mathrm{fr}$. Erase $13 \times 12 \mathrm{E}$ 343
Marriot erase heads for XRPS 17/18/36 (XESII) R/RPI record/play $\frac{1}{2}$-rrack Bogen type UL290 erase Miniature stereo-cassette
reciplay

STC \& ITT
miniature relays
$\begin{array}{lll}150 \mathrm{~A} & 6 \mathrm{v} & 2 \text { p.c.o. } \\ 180 \mathrm{R} & 6 / 12 v & 2 \text { p.c.o. } \\ 185 \mathrm{R} & 12 \mathrm{v} & 2 \text { BRANB }\end{array}$

$\left.\begin{array}{l}1250 \mathrm{R} 12 / 55 \\ 1700 \mathrm{R} 1 \mathrm{~B} / 24 \mathrm{v} 2 \text { p.c.o. }\end{array}\right\}{ }_{60}$
$\left.\begin{array}{l}1700 \mathrm{R} 1 \mathrm{~B} / 24 \mathrm{v} 2 \text { p.c.o. } \\ 1800 \mathrm{R} 24 \mathrm{v} \quad 4 \text { p.c.o. }\end{array}\right\} \begin{aligned} & \text { p.p. } \\ & 15 p\end{aligned}$ 2500R 18
10.7 MHZ MINIATURE CERAMIC
FILTER 40p per pair p.p. 15 p
EP27 LOW COST SEVEN SEGMENT $\mathbf{\varepsilon 1 . 3 5}$ p.p. 15 p .

SL414

Plessey 5 w Pow
40KHZ ULTRA SONIC
TRANSDUCERS
f5.90 p.p. 25 p
TAA 96040 KH

VAT 8\% EXTRA

 ON ALL ITEMS
TRANSISTORS

AND INTEG RATED IC'S
TL " 7400 series" ICs from 16p each
Cosmos " 4000 series" ICs from 00p each Linear Op-Amps from 40p each Signotics Phase Lock ICs RCA Linear ICs
TO3 Power Devices in PNP and NPN $B C 107$ and " $B C$ range" from 12p Range of "OC" types Plastic Power Devices, Rectifiers, Zener Diodes up to 10 watts
Power Regulator ICs and many others. DIL SOCKETS 8 PIN 14p 14 PIN 15p 16 PIN 17p 24 PIN £1.15 28 PIN f1. 25

FREE:

SEND NOW FOR OUR NEW
FREE LIST NO. 36 FOR OUR COMPLETERANGEOF OVER COMPLEIE RANGEOFOVE
DEVICES AT NEW LOW PRICES

NOMBREX TEST

EQUIPMENT

MODEL 35 STABILISED POWER SUPPLY
A Short-circuit proof power supply delivery up to 30 V at 1 A . Built-in volts and ammeters. $£ \mathbf{3 4 . 0 0}$ MODEL 40 WIDE RANGE AUDIO SIGNAL GENERATOR
A high stability signal generator using the low distortion Wien bridge principle. Covering 10 Hz to 100 KHz in four ranges. Adjustable output from 1 mV to 1 v . Sine and Square wave output. $£ 34.00$ MODEL 41 RF SIGNAL GENERATOR
Covering 150 KHz to 220 MHz in eight ranges. Built-in AF mod. Output up to 50 mV . Crystal calibration facilities. Large linear scale with slow-motion drive. $£ 38.00$
MODEL 42 WIDE RANGE RF SIGNAL GENERATDR
Covering 150 KHz to 300 MHz in eight ranges. Highest range in harmonic. Built-in AF mod. Output up to 50 mV . Circular scale.

$\mathbf{£ 2 4 . 5 0}$

MODEL 43 RC BRIDGE
Null indicating bridge for resistors and capacitors. Resistance range 10 R to 10 M $\pm 2 \%$ at Centre Scale. Capacity range 10 pF to $10 \mathrm{pF} \pm 2 \%$ Centre Scale except 1 pF to 10 pF Range $\pm 5 \%$. Power Factor Measurement 0-70\%
23.50

MODEL 44 INDUCTANCE BRIDGE

Measures $1 \mu \mathrm{H}$ to 100 H in four ranges $\pm 5 \%$ accuracy. Q measurement from $0.1-1.000+10 \%$. $\mathbf{£ 3 4 . 0 0}$
MODEL 45 DIRECT READING FREQUENCY METER
10 Hz to 100 KHz in four ranges. Input from
10 mV to $5 \mathrm{~V} \quad \mathbf{£ 3 6 . 0 0}$

All models except Model 35 are internally powered from 9v battery (extra). Carriage and packing all models 37p.
NOW OPEN SUPERMARKET:-
COME AND BROWSE ROUND THE NEW COMPONENTS SUPERMARKET AT 404 EDGWARE ROAD. BARGAINS GALORE. GOODIE BAGS COMPONENTS, ETC. WATCH FOR FURTHER DEVELOPMENTS!

EXTRA DISCOUNTS

Semi-conductors. Any one type or mixed SN 74 Series 'IC' 12 + EXTRA $10 \% 25+$ EXTRA $15 \% 100$ + EXTRA 20%.

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

-the lowest prices!

NOW WE GIVE YOU 50w PEAK (25w R.M.S.)PLUS THERMAL PROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £4. 25

STABILISED POWER
£3.25 MODULE SPM80

SPm80 is especially designed to power 2 of the A' $\mathbf{L 6 0}$ Amplifiers, up to
15 watt (r.m.a.) per channet simultaneously. This module embodies the latest components and circuit techniques incorpos ating complete short cirevit protection. With the addition of the Mains "Transformer BaT80,
the unit will provide outputs of up to 1.5 amps ut 35 volts. Size: $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 20 \mathrm{~mm}$. These units ensble you to baild Audio Systems of the higheat quality at a hitherto uno btainable price. Also
ideal for many other applicationa ineludiag: Disco Bystems, Public

TRANSFORMER BMT80 $£ 2.75$ p. \& p. 40p
STEREO PRE-AMPLIFIER TYPE PA100

INTEGRATED CIRCUIT PAKS

 Manufacturers "Fall Oute" which include Functional and Part-Functional Units. These are classed as 'out-ot spec' from the maker's very rigid specifications, Lut are fdeal for learning about I.C's and experimental workPak No. Contents
Price
Pas No. Contents UIC $00=12 \pm 7400$ $\mathrm{UIC01}=12 \times 7401$
$\mathrm{UIC} 02=12 \times 7402$ UCCO2 $=12 \times 7402$
UTC03 $=12 \times 7403$ UC03 $=12 \times 7403$
UIC04 $=12 \times 7404$
UIC $05=12 \times 740$ UICO5 $=12 \times 7400$
UC06 $=8 \times 740 \mathrm{i}$
UIC UTC10 $=8 \times 7407$
UTC20 $=12 \times 7410$ UIC20 $=12 \times 7420$
UIC $30=12 \times 740$
UIC $40=12 \times 7440$ $\mathrm{UIC40}=12 \times 7440$
UIC41 $=6 \times 7441$ UIC4 $2=5 \times 7442$
UIC $4=5 \times 7443$
UIC $44=5 \times 744$ LINEAR I.C.'S—FULL SPEC

Built to a specification and NOT a price, and yet still the greatert value on the market,
the PA100 stereo preamplifler has been concelvei from the latest circuit techniques Designed for use with the ALfio power amplifier system, this quality made unit
incorporates no less than elght milicon pianar transigtors, two of these are specially selected low noise NPN devices for use in the input stager.
 Paloo, which aiso treble controls.
variable basg and tren

SPECIFICATION:			
Frequency reaponse	$20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 1 \mathrm{~dB}$	Bass control	${ }^{15 \mathrm{~dB}}$ at 20 Hz
Harmonic distortion	better than 0.1%	Treble control	$\pm 15 \mathrm{~dB}$ at 20 kHz
Inputa: 1. Tape head	3.25 mV into $50 \mathrm{~K} \Omega$	Filters: Rumble (high pass)	100 Hz
2. Radio, Tuner	75 mV into $50 \mathrm{~K} \Omega$	${ }_{\text {Signal/nolse ratio }}^{\text {Scrate (low }}$	${ }_{\text {better }} 8 \mathrm{kHz}$ than +65 dB
3. Magnethc P.U.	3 myV into $50 \mathrm{~K} \Omega$	Input overload	$+26 \mathrm{~dB}$
Tape and P.U. inputs equa	ised to RLAA curve	Supply	+35 voits at 20 mA
	20 kHz .	Dimensions	$292 \times 82 \times 35 \mathrm{~mm}$

MK 60 AUDIO KIT TEAK 60 AUDIO KIT

ALIO/AL20/AL30 AUDIO AMPLIFIER MODULES

 resulted in a range of output powers from
3 to 10 watts R.M.S. The versatility of their design makes them ideal for use in recoril players, tape reconders,
stereo amplifiers and cassette and cartridge
tipe plapers in the car and at honle.

Parameter	Conditions	Performance
harmonic digtortion	Po $=3$ WATT $\mathrm{f}=1 \mathrm{KHz}$	0.25\%
LOAD IMPEDANCE	-	8-1/is
INPUT TMPEDANCE	$\mathrm{f}=1 \mathrm{KHz}$	$100 \mathrm{k} \Omega$
FREQUENCY RESPONSE ± 3 3	$\mathrm{PO}=2$ WATTS	$50 \mathrm{Hz-25KHz}$
gENHITIVITY for kated o/P	$\mathrm{Vs}_{5}=25 \mathrm{~V} . \mathrm{Kl}=8 \mathrm{~S}_{2} \mathrm{f}=1 \mathrm{KHz}$	75 mV . RMS
DIMENSIONS	-	
The above tatble relates to the AL10. AL20 and AL30 modules. The following table outlines the differences in their working conditions.		
Parameter	All0 AL20	AL30
Maximurn Suphly Voltage	25 - 30	30
rower outwut fur 2% T.H.D. $(\mathrm{RL}=\kappa \Omega \mathrm{f}=1 \mathrm{KHz}$) PRTCE	3 watts RMS Min. 5 watts RMS Min. £2.50 22.85	10 watts RMS Min. £3. 20

TRANSFORMERS
T538(Use with AL20 \& AL30) \&2.30 P. \& P P. 22 p BMT80(Use with AL60) \&2.75P. \&P.40p.
POWER SUPPLIES
P8 12. . (Uee with ALIN, A
SPM 80 . (Use with AL60)
95 p

PA 12. PRE-AMPLIFIER SPECIFICATION
 Treble control-
$\pm 14 \mathrm{~dB}$
at 14 KHIz - Input 1 . Impedance 1 Mck. Ohm
Sensitivity 300 mV nyut 2. Impedance

3 TERMINAL POSITIVE
OLTAGE REGULATORS

G. F. MILWARD

ELECTRONIC COMPONENTS

Wholesale/Retail :

We are glad to say that it is now possible to supply from stock the following integrated circuits. ALL ARE BRANDED, FULL SPECIFICATION devices offered at unbeatable prices! This is YOUR chance to cut manufacturing costs and greatly increase profit margins!

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& $$
\begin{array}{r}
1 / 99 \\
60.15
\end{array}
$$ \& $100 / 499$
60.125 \& $500 / 1000$
60.10 \& \& $1 / 99$
60.645 \& $100 / 499$
60.537 \& 500/1000 \& \& $1 / 99$

60.495 \& 100/499 \& 500/1000

\hline 7400 \& $$
60 \cdot 15
$$ \& \[

60.125
\] \& 60.10 \& 7442 \& 60.645 \& 60.537 \& 60.43 \& 7494 \& 60.495 \& 60.412 \& ¢0.33

\hline 7401 \& 60.15 \& 60. 125 \& ¢0.10 \& 7443 \& 61.275 \& 61.062 \& ¢0.85 \& 7495 \& 60.63 \& 60.525 \& ¢0.42

\hline 7402 \& C0. 15 \& ¢0.125 \& 60.10 \& 7445 \& ¢0.855 \& C0.712 \& E0.57 \& 7496 \& 60.72 \& 60.60 \& 60.48

\hline 7403 \& E0. 15 \& 60. 125 \& c0. 10 \& 7446 \& ¢1.05 \& $\underline{60.875}$ \& 10.70 \& 74104 \& ¢0.315 \& 60.262 \& 60.21

\hline 7404 \& E0. 18 \& c0. 15 \& 60.12 \& 7446A \& ¢1.05 \& C0.875 \& E0.70 \& 74105 \& 60.315 \& C0. 262 \& ¢0.21

\hline 7405 \& 60.18 \& ¢0.15 \& ¢0.12 \& 7447 \& ¢1. 05 \& ¢0.875 \& E0.70 \& 74107 \& C0.315 \& ¢0.262 \& ¢0.21

\hline 7406 \& 60.375 \& <0.312 \& 60.25 \& 7447A \& ¢1. 05 \& C0.875 \& E0.70 \& 74121 \& 60.315 \& C0. 262 \& 60.21

\hline 7407 \& 60.375 \& 60.312 \& 60.25 \& 7448 \& 60.855 \& ¢0.712 \& $\underline{6} 57$ \& 74122 \& E0.45 \& C0. 375 \& 60.30

\hline 7408 \& £0. 15 \& 60.125 \& E0.10 \& 7450 \& 60.15 \& 60. 125 \& 60.10 \& 74123 \& ¢0.63 \& E0. 525 \& 60.42

\hline 7409 \& f0. 15 \& c0. 125 \& 60.10 \& 7451 \& 60.15 \& CO. 125 \& E0.10 \& 74141 \& 60.75 \& ¢0. 625 \& ¢0.50

\hline 7410 \& £0. 15 \& C0. 125 \& C0. 10 \& 7453 \& c0. 15 \& ¢0. 125 \& E0.10 \& 74151 \& ¢0.69 \& 60.575 \& ¢0.46

\hline 7412 \& E0.195 \& E0.162 \& c0. 13 \& 7454 \& 60.15 \& C0. 125 \& 60.10 \& 74153 \& ¢0.69 \& 60.575 \& ¢0.46

\hline 7413 \& 60.345 \& 60. 287 \& E0. 23 \& 7460 \& E0.15 \& 60. 125 \& 60.10 \& 74155 \& ¢0.69 \& 60.575 \& ¢0.46

\hline 7416 \& 60.345 \& 60.287 \& C0. 23 \& 7472 \& 60.255 \& ¢0.212 \& 60.17 \& 74156 \& ¢0.69 \& 60.575 \& ¢0.46

\hline 7417 \& £0.345 \& ¢0. 287 \& ¢0. 23 \& 7473 \& 60. 153 \& ¢0. 262 \& 60.21 \& 74160 \& E1.005 \& ¢0.837 \& 60.67

\hline 7420 \& c0. 15 \& ¢0. 125 \& c0. 10 \& 7474 \& c0. 315 \& 60. 262 \& ¢0.21 \& 74161 \& \&1.005 \& ¢0.837 \& 60.67

\hline 7423 \& 60.27 \& ¢0. 225 \& 60.18 \& 7475 \& 60.465 \& $\underline{60.387}$ \& ¢0.31 \& 74162 \& E1.005 \& ¢0.837 \& 60.67

\hline 7425 \& ¢0.27 \& ¢0. 225 \& 60.18 \& 7476 \& C0.315 \& c0. 262 \& 60.21 \& 74163 \& E1.005 \& 60.837 \& 60.67

\hline 7426 \& ¢0. 27 \& C0. 225 \& 60.18 \& 7480 \& ¢0.435 \& ¢0. 362 \& 60.29 \& 74166 \& 61.425 \& ¢1.187 \& 60.95

\hline 7427 \& 60.27 \& ¢0. 225 \& 60.18 \& 7482 \& 60.75 \& ¢0.625 \& 60.50 \& 74174 \& E1. 20 \& 61.00 \& 60.80

\hline 7430 \& 60. 15 \& c0:125 \& $60 \cdot 10$ \& 7483 \& ¢0.825 \& $\underline{60.687}$ \& $\underline{6} 0.55$ \& 74175 \& 60.975 \& 60.812 \& 60.65

\hline 7432 \& 60.25 \& 60. 225 \& 60. 18 \& 7485 \& ¢1. 275 \& ¢1. 062 \& 60.85 \& 74192 \& ¢1. 275 \& 61.062 \& 60.85

\hline 7437 \& ¢0.27 \& ¢0. 225 \& 60.18 \& 7486 \& C0.315 \& 60.262 \& 60.21 \& 74193 \& E1. 275 \& ¢1. 062 \& ¢0.85

\hline 7438 \& ¢0.27 \& C0. 225 \& 60.18 \& 7490 \& ¢0.465 \& ¢0. 387 \& ¢0.31 \& 74198 \& E2.10 \& C1.75 \& E1.40

\hline 7440 \& ¢0.15 \& 60.125 \& 60.10 \& 7492 \& 69.465 \& 60.387 \& ¢0.31 \& 74199 \& ¢2. 10 \& ¢1.75 \& E1.40

\hline 7441 A \& ¢0.825 \& ¢0.687 \& c0. 55 \& 7493 \& c0. 465 \& ¢0.387 \& c0.31 \& \& \& \&

\hline
\end{tabular}

To secure the above prices, all orders for these devices must exceed $£ 10$ in total value. Price rating is established by TOTAL NUMBER OF DEVICES ORDERED. Any mix may be made. For special quotations for large orders ring 021-327 2339 NOW!!

CL8300	mICROWAVE DEVICES Gunn effect oscillator	9.4 GHz	£40
CL8370	ditto	9.5 GHz	£10
CL8380	ditto	10.5 GHz	£10
CL8390	ditto	11.5 GHz	£10
CL8430	ditto	9.35 GHz	£40
CL8450	ditto	9.35 GHz	¢40
CL8470	ditto	9.35 GHz	£40
BXY27	Varacter Diode. "S' Band Cut-off	70 GHz	£1
BXY28	Varacter Diode Cut-off	100 GHz	£1
BXY 32	Frequency Multiplier. ' X " Band	150 GHz	£1
BXY35A/C	ditto	25 GHz	£1
BXY36C/D	ditto	75 GHz	£1
BXY37C/D	ditto	100 GHz	£1
BXY38C/E	ditio	120 GHz	£1
BXY39C/D	ditto	150 GHz	£1
BXY40D/E	ditto	180 GHz	£1
BXY41C/D/E	ditto	200 GHz	£1

12 VOLT FLUORESCENT LIGHTING

$\mathbf{1 , 0 0 0 , 0 0 0}$
POTENTIOMETERS
We have bought a huge
assortment of volume controls.
Pre-sest. sliders. etc. All are
in manufacturer's original
packing.
Manufacturing quantities of
some types available.
Write or phone for details.
Sample bag
$\mathbf{1 0 0}$ mixed $\mathbf{~} \mathbf{2 2 . 5 0}$

HOBBY CORNER!

BRAN TUB

\star Resistors

\star Resistors, Wire-wound and

- Capacitors, Silver-mica, Paper Ceramic, Polyester and Electrolytic - Controls Volume, Pre-set, Carbon, Wire
* Diodes, Silicon, Germanium,
- Transistors, Silicon, Ger-- Transist manium All th
stock. Stock.
We hav weight, all ap packs of 2lb gross and contain a mixture of in content, from the above list. This is a fantastic. unrepeatable offer that will enable you to get a good stock of spares at a tiny fraction of normal price! To make things even more interesting CONTAIN A POUND NOTE CONTAIN A POUND NOTE! VERY PLEASED INDEED!
And the price that we are asking? Only $£ 1.50$ including both postage
and VAT!
Rush your order now! This offer is only made to reduce our surplus stock! It is unlikely that in these days of rising prices we shall ever be able to repeat!

ELECTROLYTIC CAPACITORS
Several thousand of each of the following types. Silly price to clear!

ALL NEW STOCK

$5 \mu \mathrm{f} 10 \mathrm{~V}$	35p dozen
$10 \mu \mathrm{f} 10 \mathrm{~V}$	$\mathbf{3 5 p}$ dozen
$50 \mu \mathrm{f} 10 \mathrm{~V}$	$\mathbf{3 5 p}$ dozen
$100 \mu \mathrm{f} 10 \mathrm{~V}$	$\mathbf{3 5 p}$ dozen
$330 \mu \mathrm{f} 16 \mathrm{~V}$	$\mathbf{4 5 p}$ dozen
$330 \mu \mathrm{f} 25 \mathrm{~V}$	$\mathbf{6 0 p}$ dozen
$330 \mu \mathrm{f} \mathrm{35V}$	$\mathbf{8 0 p}$ dozen
$2200 \mu \mathrm{f} 16 \mathrm{~V}$	f1 dozen
$15000 \mu \mathrm{f} 25 \mathrm{~V}$	$\mathbf{5 0 p}$ each

100 放 WATT RESISTORS 100 EERAMIC capacito
100 100 ES
\qquad
 100 POLYSTYRENE POSTAGE 25p
ET $\begin{aligned} & 100 \text { RESISTORS } \\ & 100 \mathrm{CERAMIIC}\end{aligned}$ 100 CERAMIC
CAPACITORS CAPACITORS
50 MULLARO POLYESTER POSTAGE 25p PACITORS PACK No. 4

20 ASSORTEO UNUSEO MARKEO, TESTEO TRANSISTORS
BCTOBETC. POSTAGE $25 p \quad$ PACK No. 5
1 TRANSISTORISEO
SIGNALTRACEREIT
1 TRANSISTORISEO ITRANSISTORISEO
SIGNALINJECTORKIT POSTAGE 25p \qquad
9- 100 RESISTORS 100 CAPACITORS
(ASSORTED TYPES)
postage 25p
PACK No. 8

Mr A P PL ITN

STPPRUTITST

Includes dozens of useful and interesting circuits you can build; data; hundreds of pictures, transistor equivalents list and hundreds of new lines. Packed with information Only 40p

P.O. Box 3, Rayleigh, Essex. Tel: Southend-on-Sea (0702) 44101.

VAT. Please add 8% to the final total Post and packing FREE in U.K (15 p handling charge on orders under $£ 1$)
First-class post pre-paid envelope supplied free with every order

- organ
 CONSTRUCTION

A Full-Scale Electronic Organ that you can build FULL CONSTRUCTIONAL DETAILS in OUR LEAFLETS
Leaflet MES 51: price
15p. describes a fully polyphonic basic organ which can later be used sophisticated instrument. Leaflet MES 52: price 15p. continues the descrip-
 fion of the MES 50 series organs and shows you how to add a seand keyboard with lots Further
Further leaftets to follow at approx. two-

THE AMAZING DM02

digtal naster oscillator. Accurately generates the top omplete tuning of your organ to ONE SIMPLE adjustment. New design gives selectable C to C output ranges of (approx.) 4 k 108 k (highest) or 2 k to 4 k or 1 k to 2 k , etc.. right down to 16 H 32Hz! And his new compathesign is mar. DMO2T includes built-in
requency shift tremulan
DMO2 £12.25 DMO2T £14.25
SAJ 110: 7 -stage frequency divider in 14 -pi wave output may be converted to saw-tooth $\mathbf{1 . 8 0}$ each or $\mathbf{6}$ for $\mathbf{£ 9 . 9 4}$ or 12 for $\mathbf{£ 1 8 . 1 6}$.

- ORGAN

COMPONENTS
Flat front 48 quality. fully sprung $\begin{array}{ll}\text { Sioping-front } \mathbf{4 9} \text {-note C to C } & \mathbf{£ 1 5 . 9 5} \\ \mathbf{£ 1 5 . 9 5}\end{array}$ Sloping-front 61 -note C to $\mathrm{C} \quad \mathbf{£ 2 0 . 3 5}$ Swell pedal with $10 \mathrm{k} \log$. pot $£ 6.33$ Spring line unit (long) Reverberation $\quad \mathbf{£ 8 . 2 9}$ S. a.e. please, for full details: leaflet MES 24.3 Gold-clad phosphor-bronze wire 30p per yd (GB2) 22 Siop tabs. rocker type, not engraved (white. red,
grey or black) with DPDT switch grey or black) with DPDT switch 59p

"ELECTRDNICS TDDAY INTERNATIONAL 4600 SYNTHESISER

We stock all parts for this briliantly designed hosiser. Whis includes all the PCBs. meta work and drilled and printed front panel giving a gree the ETI International Synthesiser is echnically superior to most of today's models complete constructional details in our bookis. and specification. We also stock

sTor SYNCHROS

AVAILABLE IN 5 CASE SIZES FROM $£ 2.90$ (exc) TYPE TAD

AVAILABLEIN 3 CASE SIZES FROM £2.80 (exc)

 type sa

FOR YOUR PRODUCTION REQUIREMENTS USE ALPS PANEL METERS PRICE LIST-SAE PLEASE!

AVAILABLE IN 3 CASE SIZES FROM £2.85 (exc)
TYPE SR

RAPID DELIVERY!
LOW COST!
HIGH QUALITY
QUANTITY DISCOUNTS SA65E FROM
$\mathbf{£ 5 . 0 0}$ (exc) TYPE

SPECIALIST STOCKISTS OF SERVOMOTORS, SY,NCHROS, MAGSLIPS \& CONNECTORS Servo and Electronic Sales Ltd Post Orders and Technical enquiries to: 24 HIGH ST., LYDD, KENT. TEL: Lydd 20252 (STD 0679) VAT No. 201-1296-23 Also at 45a HIGH ST., ORPINGTON, KENT. TEL: ORP 31066 TELEX 965265

SOLAR CELLS. Ferranti silicon MSIIBE. active, area 390
sq. mm. Open CCT voltage 550 mV at 3000 lumens/sq. ft . Sht. sq. mm . Open CCT voltage 550 mV at 3000 lumens $/ \mathrm{sq}$. H . Sht.
Cct. Current 60 mA . Optımum load 90 ohms. Dia. 34 mm . Thickness, 6 mm . mtg thrd $1 / 4-28$ unf 2A. Ex made up panel. £1.35 TELEPRINTER PAP
 , U.K. Telex your order now
INDUCTION GENERATOR. Requires a supply voltage of 50 COHz and provides an output of 7V per 1000 rp.m variety of applications, e. ${ }^{\text {g.i. anemometrers. }}$ measuring shaft
speed etc. In brand new condition $£ 5.25$ post pard
ITT OFFICE INTERCOM. 20 -way with modern manual SWB acilties. Lightweight desk sets. Brand new in cartons $\mathbf{£ 1 6 0} \mathbf{n c}$ P. \& P. and VAT. Spare desk sets $\mathbf{£ 7 . 5 0}$ ea

50-FOOT TELESCOPIC (WIND UP) AERIAL MASTS omplete with guys. Reduce to "11 feet. Largest tube $5^{\prime \prime}$ dia. Non-rotatable f 85 inc. carr. up to 50 mls of Lydd and VAT
$\times S$. Carr. charged over this distance. One only rotatable al 100

UNREPEATABLE SPECIAL OFFER! HITACHI DESKTOP CALCULATORS

Ideal for technical
List Price , and commercia
$\mathbf{f} 249$

OUR
± 45 6000 SAVED
hese fine calculators made available by a company's cash flow problems (not ours by the way!), have a 16 digit display. ${ }^{2}$ performs addition, subtraction, multiplication, division, aises to power, extracts square roots, chain and constant Order with confidence by mail or send first for full details (S.A.E. pleasel.

Overall length 18.85 in . (Body length $1.1 \mathrm{In}_{\text {, }}$) Diameter 0.14 in . to 70 p per doz.; $£ 4 \cdot 10$ per 100 ; $£ 29.50$ per 1,000 ; $£ 270$ per 10,000 . All carriage paid U.K.
Heavy duty type (body length 2 in .) diameter 0.22 in . to 8 witeh up
doz.i $£ 1 . j 8$ per $100 ; £ 51 \cdot 40$ per 1,000; Changeover Heavy Duty type £2.70 per doz. All carriage paid U.K. Operating Magners 90p per doz.: $\mathbf{£ 6 . 8 0}$ per 100: $\mathbf{£ 6 5}$ per 1000.
All carriage paidu.K. All carriage paid U.K.
Operating Coils or 12 v supply to accept up to four standard
reeds $£ 2.20$ per doz.: $£ 12.30$ per 100 . All carriage paid U.K.
OVER 300,000 IN STOCK! MULTIWAY AND R.F. CONNECTORS by twenty different companies Send us your detailed requirements quoting Nato numbers if known. TELEX 965265.

WEE MEGGERS, 250 V £12.53. RECORD MEGGERS, 500 V

PATTRICK \& KINNIE

191 LONDON ROAD - ROMFORD • ESSEX ROMFORD 44473 RM7 9DD
E.H.T. POWERUNIT. $110 / 240 \mathrm{~V}, 50 \mathrm{~Hz}$ giving 5 Kv . E.H.T. POWERUNIT. $110 / 240 \mathrm{~V}$. 50 Hz giving 5 Kv . a

COPPER LAMINATE P.C. BOARD

$8 \frac{1}{2} \times 6 \times \frac{1}{10}$ inch, 25 p sheet. 3 for 65 p. P.P. 10 p $10 \times 4 \times$ 者 inch, 14 p sheet, 5 for 65p. P.P. 15 p $101 \times 5 \frac{1}{\frac{1}{2}} \times \frac{1}{10}$ inch, 25p sheet, 3 for 65p. P.P. 10 p. $14 \times 6 \frac{1}{2} \times \frac{1}{10}$ inch, $\mathbf{3 5 p}$ sheet, 3 for 90p. P.P. 15p Offcut pack, (smallest 4×2 inch), 65p. P.P. 10 p . (300 sq. inches).

PREGISION A.C. MILLIVOLTMETER (SOLARTRON) .5 mv . to $15 \mathrm{v} ., 60 \mathrm{~dB}$ to 20 dB .9 ranges. Excellent condition 22.50. P.P. £1.50.
TELEPHONE DIALS (New) \&1 each. EXTENSION TELEPHONES (Type 706). Various colours. £3.75. P.P. 60p. RATCHET RELAYS (310 ohm), Various types. $£ 1.10$. P.P. 15p. UNISELECTORS (New) 25 way, 12 Bank (Non bridging), 68 ohms. £6.
 P.P. 30p.

1,000 TYPE KEY SWITCHES. Single 2×4 c/o Locking. 50p. P.P. 10p. Bank of $4-$ $2 \times 4 \mathrm{c} / 0$ each switch (one biased), £1.20. P.P. 15p.
OVERLOAD CUT-OUTS. Panel mounting ($1=1 \frac{1}{4} \times \frac{1}{4} \mathrm{i}$.) $800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{amp} .-10 \mathrm{amp} .45 \mathrm{p}$. P.P. 5 p.
U.K. ORDERS 8\% V.A.T. SURCHARGE

QUADROPHONIC DECODER MODULE. C.B.S./S.O Type, using I.C. MC 1312 P . With slight modification direc substitute for P.E. "RONDO" Board. Complete with Data £4 each
S.T.C. CRYSTAL FILTERS (10.7 Mhz)

445-LQU-901A (50 Khz spacing), £3. P.P. 20p.
445-LQU-901B (25 Khz spacing), £4. P.P. 20p.
V.H.F./U.H.F. POWER TRANSISTORS (Type BLY38) 3 watt output at $100-500 \mathrm{Mhz}, \mathbf{£ 2 . 2 5}$. P.P. 10p.

HIGH GAPACITY ELECTROLYTICS

$2,200 \mu \mathrm{f}$. at 50 v . ($2 \times 1 \mathrm{in}$.) 50p. P.P. $10 \mathrm{p} .2,200 \mu \mathrm{f}$. at 100 v . ($1 \frac{1}{2} \times 4 \mathrm{in}$) 85 pp . P.P. 10 p .3 .150 ff. at 40 v . ($1: x$ 4 in.) 75 p. P.P. 10 p. $10,000 \mu$ f. at 25 v . $\left(1 \frac{1}{4} \times 4 \frac{1}{3} \mathrm{in}\right.$.) 75 p . P.P. $10 \mathrm{p} .16,000 \mu \mathrm{f}$. at 16 v . $(2 \times 4 \mathrm{in}$) 75 p . P.P. 10 p . $21,000 \mu$ f. at 40 V . ($2 \frac{1}{2} \times 4 \mathrm{in}$.) E1. P.P. $15 \mathrm{p} .28,000 \mu \mathrm{f}$. at 100 v . ($4 \times 2 \mathrm{in}$.) £1.10. P.P. 15p
H.D. ALARM BELLS. 6in. Dome, 6/8v. D.C. £2.50. P.P. 50p.

MULTICORE CABLE. 6-core (6 colours), 14/0076 Screened P.V.C. 20p per yard; 100 yards at £15. P.P. 1p per yard. 7 -core (7 colours) $7 / 22 \mathrm{~mm}$. Screened P.V.C. 20p per vard; 100 yards $£ 15$. P.P. 1 p per yard, 30 -core (15 colours) $\mathbf{2 5 p}$ per yard; 100 yards £20. P.P. 1 p per yard.

RIBBON CABLE (8 colours)
10 m . $£ 1.50$. P.P. $15 \mathrm{p} ; 100 \mathrm{~m}$. 8 -core, $7 / \mathrm{mm}$. Bonded side by side in ribbon form. E11. P.P. 50p.

TRANSFORMERS

ADVANCE TRANSFORMERS "VOLSTAT". Input 242v. A.C.
CV.50. 38v. at $1 \mathrm{amp} ; 25 \mathrm{v}$. at $100 \mathrm{~m} / \mathrm{a} ; 75 \mathrm{v}$. at $200 \mathrm{~m} / \mathrm{a}$. E2.25. P.P. 40p
CV.76. 25 v . at 21 amp . £3. P.P. 50p.
CV.100. 50v. at 2 amp.; 50 v . at $100 \mathrm{~m} / \mathrm{a}$. £3.50. P.P. 50p. CV.250. 25v. at $8 \mathrm{amp} ; 75 \mathrm{v}$. at \ddagger amp. E6. P.P. $£ 1$ CV. 500 . 45 v . at 3 amp . ; 35 v . at 2 amp .; 25v. at 3 amp . $\mathbf{£ 9}$. P.P. $£ 1.50$
H.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$, Sec. 400 v . $00 \mathrm{~m} / \mathrm{s}$. £2.25. P.P. 50p
L.T. TRANSFORMER "TOROIDAL". Prim. 240v. Sec. 30v. at 1.5 amp . Size 3 in . dia., tin . thick. E1.50. P.P. 10 p . L.T. TRANSFORMER. Prim. 240 v . Sec. $27-0-27$ at
$800 \mathrm{~m} / \mathrm{a} . ~$
7.5 amp at 1.5 amp . $£ 2$. P.P. 30 p .

L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. $0 / 24 / 40 \mathrm{v}$ 1 t amp. (Shrouded) E1.75. P.P. 30 p . $1 \ddagger$ amp. (Shrouded) £1.75. P.P. 30p.

L.T. TRANSFORMER. Prim. 200/250v. Sec. 20/40/60v at 2 amp . (Shrouded) £2.75. P.P. 40p.
L.T. TRANSFORMER (H.D.). Pijm. 200/250v. Sec. 18 v at 27 amp ; 40 v . at 9.8 amp .; 40 v . at 3.6 amp .; 52 v , at
$1 \mathrm{amp} ; 25 \mathrm{v}$. at 3.7 amp. £17. P.P. £2.
L.T. TRANSFORMER. Prim. 240v. Sec. 16-0-16v, at 2 amp. £1.85. P.P. 30 p.
L.T. TRANSFORMER. Prim. 110/240v, Sec. 23-0-23v. at 1.8 amp.; 50 v , at $300 \mathrm{~m} / \mathrm{a} . ; 3.15-0-3.15 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}$.
$\mathrm{E1.90}$. P.P. 30 p .

WE REGRET THAT ALL ORDERS VALUE UNDER £5 MUSTBE ACCOMPANIED BY THE REMITTANCE.

RELAYS. SIEMANS/VARLEY. PLUG-IN. Complete with transparent dust cover and base. 2 pole c/o. 35p; 6 -make contact 40p; 4-pole c/o contact 50p each. P.P. 5p each. -12-24-48v. types in stock.

12v. 2 c/o 5 amp. RELAY, 60p. P.P. 10 p.
240v. A.C. RELAY (PLUG-IN TYPE). $3 \mathrm{c} / \mathrm{o} 10 \mathrm{amp}$. contact with base. 85p. P.P. 10 p
P.A.R. BISTABLE RELAY (Latching) 24 v, D.C. $4 \mathrm{c} / \mathrm{o}$ contact. 75p. P.P. 10 p .

24v. A.C. RELAY (PLUG-IN). 3 pole c/o. 75p. P.P. 5p. -pole change over. 55p. P.P. 5p

BULK COMPONENTS OFFER. Resistors/Capacitors, 600 hew components. £2.50. P.P. 25p. Trial order 100pcs. 60p. P.P. 15 p .

RE GULATED POWER SUPPLY. Input 110/240v., output 9 v . D.C. $1 \frac{1}{1} \mathrm{amp}, 12 \mathrm{v}$. D.C. $500 \mathrm{~m} / \mathrm{a} . \mathbf{E 4 . 5 0}^{2}$ P.P. 40 p .

MINIATURE "ELAPSED TIME" INDICATORS. (O5000 houls), $45 \times 8 \mathrm{~mm} .75 \mathrm{p}$.

POWER UNIT (TRANSFORMER/RECTIFIER). Prim. 240v., output $17 \frac{1}{\mathrm{j}} \mathrm{v}$. (unsmoothed) at 1 amp. E1.50. P.P. 35p. L.T. TRANSFORMER (' ${ }^{\prime}{ }^{\prime \prime}$ ' CORE). Prim. 110/240v. Sec. $1 / 3 / 9 / 27 v$. at 10 amps. £7. P.P. £1
L.T. TRANSFORMER ('C'" CORE). Prim. 200/240v. Sec. 1-3-8-9v. All at 1.5 amp .; 50v. at 1 amp. £2.25. P.P. 30p. L.T. TRANSFORMER. Prim. 110/240v. ("C' CORE). Sec. 13.5 v , st 4 amp ; 39v, at 2 amp . £2.75. P.P. 30p.
L.T. TRANSFORMER. ("C'' CORE), 110/240v. 1-3-9-2020 v . All at 2 amps. £3.50. P.P. 40p. Same secondaries but at 4 amps . E5. P.P. 50p.
L.T.TRANSFORMER ("C" CORE). 110/240v. Sec.1-3-9v. All at $10 \mathrm{amps}: 35 \mathrm{v}$. at 1 amp .; 50 v . at $750 \mathrm{~m} / \mathrm{a} . \mathbf{£ 5 . 7 5}$. PP. 75p.

Ex-BEA CONTROL UNITS by UNIVAC

A free-standing, modern style diecast case consisting of:

2-50way gold-plated plug and sockets; sub-assembly with 3-multiway switch assemblies; 4-decade push button assembly with electrical reset; 2 -decade push button assembly with electrical reset; singlebank 8 -push button assembly; 1 -decade lamp assembly; 1 - 2 -decade lamp assembly; $1-12 \times 3$-lamp assembly; 4-decade thumb wheel assembly; 16-bit inline card code assembly; 6-15way plug and sockets.

Limited stocks at $\mathbf{£ 1 2 . 5 0}$ ea plus $£ 2$ carriage

ALSO MODERN STYLE TYPEWRITER KEYBOARD

with 21 separate function keys. Housed in slimline diecast case. Transistorised.
No information but a "buy" at $\mathbf{f 1 5}$ ea plus $£ 2$ carriage

EX-MINISTRY CT436 Double Beam Oscilloscope DC-6 megs. Beam Osciloscope DC-6 megs
Max Sensitivity $10 \mathrm{mv} / \mathrm{cm}$. Small Max Sensitivity $10 \mathrm{mv} / \mathrm{cm}$. Small
compact. Size $10 \times 10 \times 16 \mathrm{in}$. compact. Size $10 \times 10 \times 16 \mathrm{in}$.
Suitable for Colour TV servicing. Suitable for Colour TV servicing.
Price $£ 85$ each including copy of manual.

SOLARTRON CD 1212 with DUAL TRACE PLUG-IN DC-24MHz

TB-100 nanosecs per cm . to 5 secs. per cm . in 24 calibrated ranges. 20 nanosecs per cm . with times 5 expansion. $5^{\prime \prime}$ flat-faced tube. Trace locator. $0-2$ microsec. signal delay. Built-in calibrator. 1 KHz square wave. 200 micro volts to 100 volts in 18 calibrated ranges. Complete with manual, $\mathbf{f} 95$ each.

CLEARANCE LISTS AVAILABLE. S.A.E.

TELEPHONES

STANDARD $\mathbf{3 0 0}$ Series. BLACK only $\mathbf{£} 1.00$ ea. P. \& P. 50p. MODERN STYLE 706 BLACK OR TWO-TONE GREY £3.75 ea. P. \& P. 35p. STYLE 7006 TWO-TONE GREEN $£ 3.75$ ea. P. \& P. 35p. HANDSETS-complete with 2 insets and lead 75p ea. P. \& P. 37 p. DIALS ONLY. $75 p$ ea. P. \& P. 25 p.
Still available modern Standard telephones in GREY OR GREEN WITH A PLACE TO PUT YOUR FINGERS LIKE THE 746. A CHANCE NOT TO BE MISSED £3.00 ea. P. \& P. 35p.
HIGH-VALUE-PRINTED BOARD PACK
Hundreds of components. transistors. etc.-no two boards the sameno short-leaded transistor computer boards. $\mathbf{£ 1 . 7 5}$ post paid.

Vast quantity of good quality components
NO PASSING TRADE - so we offer
3 LB. of ELECTRONIC GOODIES for f 1.50 post paid.

CAPACITOR PACK 50 Brand new compo-
nents only $50 \mathrm{p} . \mathrm{P} . \& \mathrm{P} .17 \mathrm{p}$.
P.C. MOUNT SKELETON PRE-SETS. Screwdriver adjust 10, 5 and $2.5 \mathrm{M} @ 2 \mathrm{pea}$ $\lim _{\text {M }} 500,250$ and $20 \mathrm{~L}(a)$ 4p ea. Finger adjust 25 K a 5 ap ea. Min P. \& P P. 10 p .
1000pf FEED THRU CAPACITORS. Only sold in packs of $10-30$ p. P. \& P. 10p.
RECTANGULAR INSTRUMENT FANS.
 DELIVERED TO YOUR DOOR 1 cwt . of Electronic bcrap chassis. boards eic. No
P.C.B. PACK \& D. Quantity 2 sq. ft.-no P.C.B. PACK pieces 50p plus P \& P. 20 p .

TRIMMER PACK, 2 Twin 50/200 pf ceramic: 2 Twin $10 / 60$ pf ceramic: 2 min strips with 4 preset $5 / 20$ of on each: 3 air spaced preset
$30 / 100$ pf on ceramic base. ALL BRAND NEW $30 / 100$ pf on ceramic base. ALL BRAND NEW
25p the LOT P. \& P. 10p. PHOTOCELL equivalent OCP 71, 13pea. MULLARD OCP70 10pea. GRATICULES. 12 cm by 14 cm . in High Quality plastic. $15 p$ each. P. \& P. 5p.

TEKTRONIX VIDEO

WAVEFORM MONITORS
Type 527RM- $\mathbf{E 2 5 0}$.
Type 529RM—mod $188 \mathrm{~m} £ 45$.

FIBRE GLASS PRINTED GIRCUIT BOARD. Brand New. PRingle or Double sided BOARD. Brand New. Single or Double sided
Any size $1 \frac{1}{2}$ p per sq. in. Posiage 20p perorder. CRYSTALS. Colour 4.43 MHz . Brand New. f1.25 ea.P. \& P. 10 p . HF Crystal Drive Unit. 19 in. rack mount
Standard 240 V input with superb crystal oven Standard 240 input with superb crystal
by Labgear (no crystals) $£ 5$ ea. Carr. $£ 1.50$. ROTARY SWITCH PACK - 6 Brand New switches (1 ceramic: 1-4 pole 2 way etc.).
50p. P \& 20 p . 50p. P. \& P. 20p.
BOURNS TRIMPOT POTENTIOMETERS 20:50:100:200:500 ohms ; 1: 2: 2-5:5:10
25 K at 35p ea. ALL BRAND NEW. RELIANCE P.C.B. mounting. 270: 470 500 ohms: 10 K at 35p ea ALL BRAND NEW VENNER Hour Meters- 5 digit. wall mount
-sealed case. Standard mains. $£ 3.75$ ea. P. \& P. P. 45 p.

TRANSFORMERS. All standard inputs MA. $2 \times 6.3 \mathrm{v} . £ 3 \mathrm{ea}$

Miniature FANTASTIC VALUE

Minature Transformer. Standard 240 V input. 3 V
65p ea. ${ }^{1}$ amp output. Brand New. ${ }_{8}$ P. 15 p . Discount for $65 p$ ea.
quantity.

DON'T FORGET YOUR MANUALS S.A.E. WITH REQUIREMENTS

LOW FREQUENCY WOBBULATOR

For alignment of Receivers, Filters, etc, 250 KHz to 5 MHz , effective to 30 MHz on harmonics. Three controls-RF level, sweep width and frequency. Order LX63. Price $\mathbf{£ 8 . 5 0}$ P. \& P. 35p.
As above but can have extended cover range down to 20 KHz by addition of external capacitors. Order LX63E, Price f11.50 P. \& P. 35p.
Both models can be used with any general-purpose oscilloscope. Requires 6.3 V AC input. Supplied connected for automatic 50 Hz sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability. with the exception of the controls (not cased, not calibrated)

20HZ to 200KHZ

SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine, 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. $\mathbf{£ 8 . 8 5}$ each. P. \& P. 25 p. Sine Wave only $\mathbf{£ 6 . 8 5}$ each. P. \& P. 25 p.

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving All this for only $\mathbf{£ 6} \mathbf{7 5}$. P. \& P. 25p. (Not cased, not calibrated.)
TANSISTOR INVERTORS
TYPE A
Input: 12 VDC
Output: 1.3 kV AC 1.5 MA

TRANSISTOR INVERTORS Output: 1.3 kVAC 1.5MA

Input: 12V DC

Dutput: 13 KVO Input: 12 V to 24 V 0C
A
Dutput: 15 KV to 4 KV AC 0.5

Price $£ \mathbf{£} .45$

$$
\text { Price } £ 4.70
$$

Price $\mathbf{£ 6 . 3 5}$
Postage \& Packing 36p

TYPE D
Input: 12 V to 24 V DC
Output: 14 kV DC 100 micro amps at 24V Progressively reducing for lower input voltages Progressively reducing for \quad Price $\mathbf{f 1 1}$

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH
2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY £6.25. P. \& P. 25p.
STILL AVAILABLE our 20 MHZ version at $\mathbf{£ 9} \mathbf{7 5}$. P. \& P. 25p.

VALUE ADDED TAX not included in prices-please add 8\%
Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
Open 9 am to 6.30 pm any day (later by arrangement.)

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

 Bargains in Semi-Conductors, components, modules \& equipment.

\star Unmarked untested
PACKS ALL AT 50p EACH

$\text { B1 } 50$	Germanium Transistors PNP, AF and RF
866150	Germanium Diodes Min. glass type
883200	Transistors, manufacturers rejects. AF, RF, Sil. and Germs.
$\text { B84 } 100$	Silicon Diodes DO-7 glass equiv. to OA200. OA202
$\text { B86 } 100$	Sil. Diodes sub. min. IN914 and 1N916 types
$\text { H34 } 15$	Power Transistors, PNP, Germ. NPN Silicon TO-3 Can.
$\text { H67 } 10$	3819N Channel FETs plastic case type

Bi-Pre-Pak X-Hatch Generator Mk. 2

Four-pattern selector switch	
$3^{\prime \prime} \times 5 \frac{1}{4} \times 3^{\prime \prime}$ Ready-built	
and tested	$\mathbf{f 9 . 9 3}$
	$\mathbf{f 7 . 9 3}$

Is invaluable to industrial and home user alike. Improved circuitry assures reliability and still better accuracy. Very compact: self-contained. Robustly built. Widely used by TV rental and other engineers. With reinforced fibreglass case instructions, but less batteries. (Three U2 type required.)

SUNDRY

MAINS TRANSFORMERS
A. 18 V 1 amp (suitable for SS. 103)

BENTLEY ACOUSTIC CORPORATION LTD.

7 G GOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. Tel. 6743

 are unused and as.
m . Closed $1-2$ p.m. All goods
$9-5.30 \mathrm{p} . \mathrm{m}$.
Terms of $1.00 \mid$ Tranaistors

 120). 58 p per pack. Fet of 3 .
$24 \mathrm{v} ., 30$
 m8 of business, Cash or cheque with onder. Despatch charges:-Orders below $£ 10$ in valur,
$125 p$ frr post and packink. Orders over $\$ 10$ post and packiny free of charge, All orders cleared same day. Any pancel Insured dagaingt damage in transit for 3 p extra per parcel. Conditions of
sale available on request. Please enclose $\$$ A. E. for reply to any corregpondence. Many othery in
stock too numerous to list.

BULK BUYERS. We are clearing one of our stores and in consequence will have some extra special bargains for any of you who can buy in bulk. Prices given are ex our Croydon store or will be despatched carriage at cost. For sample, send double the lowest price and add sufficient for postage.
$16 \frac{1}{2}^{*}$ high on $8 \frac{1}{2}^{\frac{1}{2}}$ leps, teak veneerad on chipboard. f 4 each in lots of 100 or $\mathrm{f4} .50$ zach in lots of 50 . This extremely low price makes them worth cutting up and rebuilding into smailer :abinets for amplitiers on speakers
2 FIUORESCENT DIFFUSER 2 FLUORESCENT OIFFUSER to take one or wo 5^{\prime} tubes
This beautitul diffuser mada for Phitips sokd origanally at over $\mathrm{f6}$ These are in packs of 6 and we offer thase at the silly pnce of $\mathbf{5 4 . 5 0}$ per pack or $\mathbf{5 4}$ per pack in lots of 10 pacis of more
3 OVEN THERMOSTATS with capillary tube and sensos 15 amp 250 v switch. spindie for nomal type control knc
45 p each in lots of 100 or more. $4 \mathrm{~B}_{\mathrm{p}}$ each for 500 or more 45p each in lots of 100 or more, 40 asch for 500 or more
4. COOKER ELEMENT, M shope, approx $10^{\prime \prime} \times 8^{n} .1350 \mathrm{~W}$ 45p esch in lots of 50 or 40 p each in bots of 100
ASSORTED OVEN ELEMENTS

1. ASSORTED OVEN ELEMENTS,
in lots of 50 . 35 p each in lots of 100
in lots of 50 . 35 each in lots of 100
2. IF TRAMSFORMERS and oscillator coils, sub-miniature. used in modem Japanase radios. $2 p$ each per 1,000 made for the GLYW000 CASE sima apprax $11^{\prime} \times 8^{\prime} \times 3 \frac{1}{2}^{\prime \prime}$. 5^{*} spaaker and is drilled for rormal fast and star for standand condenser in the centre, and volume and wove changes swith on either side. f1 sach in lots of 100 or 75 p asch to clamer out total stock of approx. 1.000
B. SATCHWFLI DUOTRONIC CONTROLIER for the contral of ducting (through ZPM modulation motor which we can
suppply. These panals probably con f 50 - EBO ouch. fil each supplyl. These panels probably coant £50-EB0 esch. fit each
 good quality, brown bakelite. Sp each in lattr of 100
3. Dimio, but switched. Ep each in lots of 100
4. 24v POWFR PACK, part of the Muliand Unilex. We heve a large surplus of these and offer theman at the bargein price
of f 1.50 each in lots of 100 . The sransformer on its own mould cost more then this:
5. UEHTIMG MODULES for false ceilings comprising translucent parapex panel and motal tray above for housing
the tubes and the control gear. Sirs $4^{\prime} \times 2^{\prime}$ in lots of 10 for
 lots of 100 of 40p each to deer our stock of approx. 2.000
6. INVERTER UNIT TYPE YB designed, we undarstiand
to light it uses 22 Mullard OC 20 powel transistora
 400 cps We heve tested
to clear our stock of apprax 50
7. 20v 1 amp MAINS TRANSFORMERS designed im Mullard Unilex 80 p asch in lots of 100 or 70 pach to clax 20r stock of appoox 3.000
8. With The SLOT MECHAMISM, gives one hour tor Metal cassed size $8^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime},\{1.50$ each in lots of 100 17. $£ 1.25$ ach to clear our stock of approx 800 17. TYPE 600 RELAYS. Vanous coil values but mainhy
500 ohms and over. all with multiple spring sets compnang
 lots of 100 of $25 p$ pach to clesy der stock of approx 2.000
9. POST OFFICE TYPE UNISELECTORS, manhy 2.3 and 18. POST OFFICE TYPE UNISELECTORS, manty 2.3 and 4
bank, secondhand but usually only dity and will work pertectivy bank, secondhand but ussually only dirty and wilw work perrecty
once cleaned and adjusted 50 p each assorted tots of 50 ar 40p sach to clear our slock of approx 800
10. SMTHS CIOCK
11. SMITHS CLOCK SWITCHES without knobs or glass
fronts. as fitted to cookers. f 1.50 each in lots of 100 or f 1.35 froniz as fitted to cooker. f 1.50 each in
each in lots of 500 . f 1.25 each pel 1.000
each in lots of 500 . 51.25 each pel 1.000
12. IMSTRUMENTS. 400 vanous lab and workchop instur ments. signal generator, etc. Must have cost around $£ 50.000$ menis. signal generatior, etc. Must have cost around eswo.000
originally. not new but most are believed to be if working orider. [3.50 each if you taks the lot
13. INSTRUMENT MOTOR WITH GEAR BOXX. $16 \mathrm{r} . \mathrm{pm}$ mains 60 p sach in 100 tots, 60 p each in 1.000 lots or 45 p auch to clear our stock of approx 10,000 (Smuths)
SCREwS. We self-capping types. many are normal BA and Whitworth tmpes 10p pep pound tor the lot
14. COMMECTMG
15. CONMECTMG WIRE $15 \mathrm{mmp} 70 / 86$ p....c. Coveradsvailabe in yellow. black and vellow/red, on $500 \mathrm{Yd}$. dume
f 12 per drum in lots of 10 drums or f 10 per drum to clear our stock of apprax. 100 druma colours on 500 matra. drums. EA 4 per drum in late of 25 or f3.40 per drum to clear our stock of approx. 200 drums
16. TWIM COMMECTOAS (choc blocks) $\mathrm{f1.50}$ per 100 . f 12.50 per $1.000: \mathrm{f} 11.50$ per 1.000 to dear our stock of
17. MULIARD UNILEX STERE 0 , set of 4 modules-2
amplifiers. 1 pra-amp. I power unit f5.50 per set for 100 sets: 56 pei set for 50 sets: 66.50 pert sent for 25 sets
18. CHROMED CABIMET
 Decca 12^{-}high mith nubber ferrules. 25 p each in 100 lots ar
20 p each to clear our stock of approx. 2.000 $20 p$ each to cleer our stock of approx. 2.000
in test instruments. erc. 30 p each for 100:25p each for 500 20 p to clear our stock of approx 2.500
19. IF TRANSFOAMERS 465 KC British make aluminium cased 10 peach par 100: 8 p
clear our stock of apprax. 20.000
clear our slock of apprax. 20.000
30 AUDIO AM PLIFIER, Japanass made, 500 mW output needs only 12 v mains transformer to powar it from mains
Output for $3-8$ ohin speaker. f 1.50 each per 100 or $£ 1.25$ each to dear our stock of approx 500 31. MULLARD AF AMPLIFIER type 1172,1 watr output 75 p 日ach per 100 or 80 p gach to claar our stock of approx. 500
32 COMPUTER CAPACTORS. ranging from 2.000 mfot to 70.000 midd varying vothages 25 p each to clear our stock of epprox 10.000 assorted
20. AC WORKIMG SUP 33. AC WORKING SUPPAESSOR CONOENSERS. Philips 250w 3 leads giving $0.02+.02+.12 \mathrm{mfd}$. 15 p p acch per
100: 12 tp approx 5.000
21. SUPPRESSOR COMDENSER ali. rasa mith Conventional fixing lug, 1 mtd 250 AC 10 p each per 100: Ap each per 500 or Bp a ach to clear our stoct of approx. 5.000 35. FIRE SPIRALS 800 watt corvemtional size 20p per 100 a
18p per 500 . $15 p$ each to deer our stock of approa. 2.000 36. FNCORO SIMMERSTAT suttable for Conlin temperature of applances of up to 1 amp. made originasly for elecrric blankers. 75 p each per 100 : 6 Fjp each per 500 ar 50 p each to cleas sur stock of apprax 2.000 33. CODKER RINGS as fitted to Tricity and similar cookers
extemail diameter $6 \frac{1}{2}^{-1} 2,000$ watt $\mathrm{f1}$ each per 50 or 75 p Bach to clear our siock of apprax. 1.000
22. $4 \times 1 K$ ELEMENT BANK, hast ranging from 250-4.000 watts by S and \mathbf{P} switching $£ 1.50$ each for 50 or $\mathbf{5 1 . 2 5}$ each to dear aur stock of approx. 500
23. TORCH BULBS, Empres
24. TORCH BULBS, Empire made, 3.5 v in boxes of 25
30p per bax for 100 baxes: 25 p per bax of 500 boxes a 30 p per bax for 100 boxes: 25 p per bax of 500 boxes a
20 p per bax to deat our stack of spprox 2.000 boxes

TERMS: Add 8\% VAT. Send postage where quoted-other items, post free if order for
add 30 p.

J. BULL (ELECTRICAL) LTD.

(Dept. W.W.)
102/3. TAMWORTH ROAD, CROYDON CRO 1 XX
40. hi.vac numicator tube ref XN11. 75 p each pas 100 or 65 p asch to clear our stock of approx 1,50 41. PHILPS ELECTRONIC ENGINEER ADD.DN KITS EE1004 \% EE1005, beautifully packed in presentation boxes. 75 p
apprax 500
50.
42 FLUOAESCENT UGHTRNG CHOKE for 5 ' 65/80 wat tabos. polyester filled and silant running, 90p esch per 100
80p Bach for $500: 75 \mathrm{p}$ our stock of apprax. 5.000
43.100 WAT AMP
43. 100 WATT AMPLFEER. MAINS TRANSFORMER 50 v 2 amp and 6 v 1 amp. upnght mounting with matai
shrouds. 50 d ds primary 230 v tapped 210 y , 117 y and 110 v $\mathrm{f4} 50$ each per 100: $£ 4.00$ each per 500 or $£ 3.50$ each to dias our stock of approx 1.000
4. BATTERY BOX, takes $6 \times \mathrm{U} 2$ with snap-on contacts
25p aach par 100 or 20 pach to clear $25 p$ bach par fiDO or 20 p bach to clear oull stoch of approx
1.000
 each to degr ouf stock of 3pprox 1,000
46 BALANCEO ARMATURE
46 BALANCEO ARMATURE INSERT BOO ohm impedance per 500 or 20 p each to clear our stock of approx 4.000 47. GPO MAGMETIC EARPMONE, apprax. 80 ohm imperaacs now, perfectly flot 30 p asch per 100.2
20p each to cleas our stock of approx 4,000
48 BUZZER $12 v$ AC Operation open construction. 15 pach for 100: 13 p each for 500 or 12 p each to clear our stock of
49. CLOCK
49. CLOCKWOAK MOVEMENT in case with winder but
 sp 50. PAMOSTAT as used on ary electric cookers for simmening
90 p bach for 100 ; 80 p asch for 500 or 70 p each to dear our stock of approx. 1,000
51. THERMOSTAT WITH THERM OMETER Honeqwell rat
 $£ 1.90$ each to $100: £ 1.75$ za
clear our stoch of approx, 2.000
52 FLUORESCENT TUBE 3' WATt slim trpe bi-pin ends
white. $\mathbf{f 5}$ per box of 25 of $\mathbf{~} 4$ per box for 50 boxes or $\mathbf{~} 3.50$ per bax to clear our stock of approx 100 boxes
52 FLUORESCENT TUBE 1 METRE 40 WAIT normel bi-pin ands and normal $1 \frac{1^{-}}{}{ }^{-}$diameter This is a tube which
you be asked for incroassingly in tha futura. Available in whitu you be askod for increasingly in the future, Available in whiter
or deylight. $\mathrm{f4}$ per box of 25 or $\mathrm{f3} .50$ per bax for 50 boxes

TRANSFORMERS

MINIATURE \& EQUIPMENT

12
12 V
0.3
0.5
1
2
2
4
6
8
10
10
16
20
30
40
60

$$
1
$$

30 VOLTS

NEW!
$2^{\prime \prime}$ AND $4^{\prime \prime}$ PANEL METERS

$\frac{1}{4}$-WATT CARBON FILM RESISTORS also avalable $\frac{1}{4}$ watt at $70^{\circ} \mathrm{C} \mathrm{E} 12$ range
above $470 \mathrm{KK} \quad 10 \%$ tol. al 95 p per 100 .

MINIATURE NEONS

6 mm dia... 12 mm length leads length approx. 20 mm . Recommended ballast resistor 150 K ohms for 240 Voit
operation. Price: Packet of 10 for 50 p. Postage 100.40 .

PLEASE ADD 8\% FOR VAT

DEPT WW4, SIMMONDS RDAD, WINCHEAP CANTERBURY, KENT

SERVICE TRADING CO

 BLOWER UNI $200-240$ Volt A.C. BLOWER UNIT Palanced, quiet. continuously rated,
reversibie motor. Consumption 60 mA . reversible motor. Consumption 60 mA .
Size 120 mm . dia. x 60 mm . deep. Size 120 mm . dia. $\times 60 \mathrm{~mm}$. deep.
Price $£ J .00$. Post 300 . PRECISION CENTRIFUGAL BLOWER rated, Airfow Developments Litd, continuously
£6 50 Post 50 . $230 / 240 \mathrm{~V}$ A.C. motor

SUB-MINIATURE REED RELAY 3-9 VOLT D.C

COIN MECHANISM (Ex-London Transport) Unit containing. selector mechanism for 1 p .2 p \& 5 p coins
Micro switches. relays. solenoid-operated hopper. 24 voit D.C
Precision built to high standard. Incredible VALUE at only Micro swiches.
Precision built
$£ 2.50$ Post 60 p

230-250 VOLT A.C. SOLENOID

24 VOLT DC SOLENOIDS

at 1 in. travel. 2 solenolas ot approx. 1 ib . pull at 1 n . travel 6 solenoids of approx. 4 or. pull at in. travel. Plus 124 V D. C
1 heavy duty 1 make relay. Price: $\mathbf{f 2} \mathbf{5 0}$. Posi 60p. ABSOLUTE 1 heayy duty
BARGAIN.

VARIABLE VOLTAGE TRANSFORMERS

300 VA ISOLATING TRANSFORMER
$115 / 230-230 / 230$ volts. Screened. Primary two separate $0-115$
volts for 115 or 230 volts. Secondary two 115 volts at 150 VA
each for 115 or 230 volts output. Can be used in series or paraliel connections. Fuliy tropicalised. Length 13.5 cm . Width 11 cm .
Height 13.5 cm . Weight 15 lt . SPECIAL OFFER PRICE Only

LT TRANSFORMERS
o. 12 volt @ 20 amp.
o. 12.24 volt 10 amp.
$0.6 .12 .17 .18,20$ vot $@ 20 \mathrm{amp}$.
$\mathbf{£ 7 . 9 0}$ Post 60 p
$\mathrm{f9.00}$ Post 60
f9.20 Post 60p.
f10.40 Post 60 p .
AUTO TRANSFORMERS
Step up step down $0-115 / 200 / 220 / 240$ volts. At 75 watt $£ 2.64$ Post 36 p .150 watt $£ 3.18$ Post 36 p. 300 watt
$£ 6.20$ Post 50 p. 500 watt $£ 9.20$ Post 65 p. 1000 watt $\mathbf{£ 1 2 . 0 0}$ ost
20 r.p.m. GEARED MOTOR
9/12 VOLT DC GOVERNED
REVERSIBLE MOTOR
Machine-cut gear train. giving final speed of
2 r.p.m.. with cam driving 3 sub- miniarure mong-switches (removablel. Spindie 12 mm
long. 6 mm dia. Built to PO spec., in heavy
metal hinged case, $\mathbf{6 3 . 7 5}$ Post 25 p
BODINE TYPE N.C.I.
GEARED MOTOR
(Type 1) 71 r.p.m. torque 10 lb in .
Reversible $1 / 70 \mathrm{th}$ h.p. cycle .38 amp. (Type 2) 28 r.p.m. torque 20 ll, in. Reversible $1 / 80$ th h.p. 50 cycle -28 amp. The above two precisition maput voltage of motor are offered in as new 115 v A.C. Supplied com-
conter plete with transformer for $\mathbf{2 3 0 / 2 4 0 v}$ A.C. input.
Price. either type $£ 6.25$ Posi 50p. or less transformer $£ 3.75$ These motors are ideal for rotating aerials. drawing curtains.
display stands, vending machines, etc.

BENDIX MAGNETIC CLUTCH

 d.c. at 240 MA . OUR PRICE JUST $\mathbf{£ 2 . 5 0}$

New ceramic construction, vitreous; brush assembly, contlnuously rated. 25 WATT $10,25,100,150,250,500,1 \mathrm{k}, 1.5 \mathrm{k}, 2.5 \mathrm{k}$ ohm.
E 1.70 Post 10 p 50 WATT $1,5,10.25,50,100.500,1 \mathrm{k}$ onm $£ 210$ Post 10 p . 100 WATT $1 / 10 / 25 / 50 / 100 / 250 /$
$500 / 1 \mathrm{k} / 1.5 \mathrm{k} / 2.5 \mathrm{k} / 5 \mathrm{k} \mathrm{chm} \mathrm{E} .30$ Post 15 p
Black Silver Skirted knob calibrated in Nos. 1-9. I $\frac{1}{2}$

GENERAL ELECTRIC POWERGLAS TRIACS
10 amp. Glass passivated plastic. Triac. Latest device from
U.S.A. Long term relability. Type SC 146 E 10 amp. 500 PIV .
f1.00. Posi 5 p. (Inclusive of data and application sheet) suitable f1.00. Po
Diac 18p.

INSULATION TESTERS (NEW) Test to l.E.E. Spec. Rugged metal con-
struction, sultable for bench or fleid
work, constant speed clutch Size work, constant speed clutch. Size L. 8 in.,
W. ${ }^{4}$ in. H. 6 in. weight 6 ib.
500 vOLTS. 500 megohms $£ 28.00$. Post

* FOUR EASY TO BUILD KITS USING XENON WHITE
 * TRIGGERING CIRCUITS, PROVISION FOR EXRANGE OF 4 STROBE KITS FROM STOCK. * RANGE OF DETAILS. * COLOURWHEEL PROJECTOR

 required. The Kit includes Speaker, meter. Relay. Transtormer.
plus a host of other components and a 56 -page instruction leaflet. Some examples of the 50 possible Projects are: Sound
level Meter. 2 Transistor Radio. Amplifier etc. etc. Price $£ 7.75$
post 25 (price including VaT $\mathbf{8}$ Post $\mathbf{8} .64$.

'GENTS' $6^{\prime \prime}$ ALARM BELL

 GENTS 6 ALARM BELL200/250 volt AC/DC. Brand Now. Price:
£5.00 Post 60p. (Illustrated)
STC' 6" RED ALARM BELL

240 VA.C. SOLENOID OPERATED FLUID VALVE

UNISELECTOR SWITCHES - NEW 4 BANK 25 WAY FULL WIPER 25 ohm coil, 24v. D. operation 66.90 . Post 30 p
BANK 25 WAY FULL WIPER 25 ohm
coil, 24 V. D.C. E7.90. Post 30p
8 BANK 25 WAY FULL WIPER
VENNER TIME SWITCH
TYPE MSQP
$200 / 250$ Volt 2 -ON/2-OFF every 24 hours at any
manually pre-set time. 20 amp contacts. Fitted die-cast case. Tested and in good condition

A.C. MAINS

 TIMER UNIT

SERVICE TRADING co.

THE NEW NELSON-JONES FM TUNER

What are the important features to look for in an FM tuner kit? Naturally it must have an attractive appearance when built. but it must also embody the latest and best in circuit design such as:-
MOSFET front end for excellent cross modulation pertormance and low noise.
GANG tuning for high selectivity.
PHASE LOCKED Stereo decoder with Stereo mute, see below
LED fine tuning indicators.
PUSH BUTTON tuning (with AFC disable) over the FM band (88-104)
CERAMIC funing diodes in back to back
IC STABILISED and S/C protected power supply.
INTEGRATED circuit IF amplifiers for reliability and excellent limiting/AM rejection.
The Nelson-Jones Tuner has all of these features and many more, and more importantly the design is fully proven not just with a few prototypes but with many thousands of working tuners spread across the world.

Typ. Specn: 20 dB quieting 0.75 uV . Image rejection - 70 dB .I.F. Rejection -85 dB
Basic tuner module prices start as low as $£ 12.96$. with complete kits starting at $\mathbf{£ 2 6 . 9 5}$ (mono) + P.P. 65p. and of course all components are available separately
Our low cost alignment service is available to customers without access to a signal generator. Please send large SAE for our latest price lists which details all of the many options and special low prices for complete kits. All our other products remain available.
PORTUS AND HAYWOOD PHASE LOCKED DECODER (W.W. Sept. '70). Still the lowest distortion P.L. decoder available. THD typically 0.05% (at Nelson-Jones Tuner O/P level)! Supplied complete with Red LED.
Price $£ \mathbf{7} .02$ when bought with a complete $\dot{N}-J$ tuner kit or $\mathbf{£ 8 . 2 9}$ if bought separately (P.P. 21 p.)
PLEASE NOTE. Existing tuners are readily convertible and kits/parts are available for this purpose.
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph). Complete designer approved Texan kits are available at $\mathbf{£ 3 3 . 4 8}$ plus P.P. 65p including Teak Sleeve

NEW LOW COST STEREO TUNER Available as basic or complete k kis

Basic stereo tuner $\mathbf{f 1 5}$ post free. Basic mono tuner f12 post free. 6 position push button units with integral pots $£ \mathbf{3 . 2 4}$.
TYP. SPECIFICATION $2 \mu \mathrm{~V}$ for 30 dB S/N Image rejection 40 dB IF rejection 65dB

VAT at 8% is included in all prices

No alignment required. Mullard LP1186 front end module used with Ceramic IF and IC amplifier. Push button tuning (6 vosition) with Interstation Mute, restricted range AFC, single LED tuning indicator, phase locked IC decoder, and complete metalwork and veneered cabinet. Complete with IC regulated PSU and full assembly instructions. (Mechanically identical to $\mathrm{N}-\mathrm{J}$ Tuner.)

PRICE Complete stereo kit $£ 28.42$ Complete

ACCESS AND BARCLAYCARDS WELCOMED

INTEGREX LIMITED, Portwood Ind. Est., Church Gresley, Burton-on-Trent, Staffs DE11 9PT.
Phone Swadlincote (0283 87) 5432 Telex 377106

TAUT SUSPENSION MULTIMETERS

Made in USSR U4312-low sensitivity
 high accuracy AC/DC Multimeter. 39 ranges covering $\mathrm{AC} / \mathrm{DC}$ volts up to 900 V and $A C / D C$ current up to 6 amps. Mirror scale. Accuracy $1 \% \mathrm{DC}, 1.5 \% \mathrm{AC}$.

Price $£ 10.75$
U4313-high sensitivity high accuracy $A C / D C$ multimeter. 39 ranges covering $\mathrm{AC} / \mathrm{DC}$ volts up to 600 V and $\mathrm{AC} / \mathrm{DC}$ amps up to 1.5 A . Mirror scale. Accuracy 1.5\%AC. 2.5\%DC.

Price $£ 13.80$
U4315-high sensitivity medium accuracy AC/DC multimeter. 43 ranges covering $A C / D C$ volts up to 1000 V and $\mathrm{AC} / \mathrm{DC}$ current up to 2.5 A . Accuracy $2.5 \% \mathrm{DC}, 4 \% \mathrm{AC}$.

Price $£ 10.00$
Note: The above instruments, although extremely resistant to overload, do not incorporate any protection.

U4317-high sensitivity high accuracy AC/DC multimeter. 42 ranges covering AC/DC volts up to 1000 V and $A C / D C$ current up to 5 amps. Mirror scale. Accuracy $1.5 \% \mathrm{DC}, 2.5 \% \mathrm{DC}$. Meter incorporates transistorized cut-out protective relay. Price $\mathbf{£ 1 7 . 0 0}$

POWER TRANSISTORS			
OC22	$\mathbf{0 . 6 0}$	ASZ15	$\mathbf{0 . 8 0}$
OC23	$\mathbf{0 . 6 0}$	ASZ16	$\mathbf{0 . 8 0}$
OC24	$\mathbf{0 . 6 0}$	ASZ17	$\mathbf{0 . 8 0}$
OC25	$\mathbf{0 . 5 0}$	ASZ18	$\mathbf{0 . 8 0}$
OC26	$\mathbf{0 . 4 0}$	BD115	$\mathbf{0 . 8 0}$
OC28	$\mathbf{0 . 7 0}$	BD116	$\mathbf{0 . 6 5}$
OC29	$\mathbf{0 . 6 0}$	BD121	$\mathbf{0 . 6 5}$
OC35	$\mathbf{0 . 5 0}$	BD123	$\mathbf{0 . 8 0}$
OC36	$\mathbf{0 . 6 5}$	BD124	$\mathbf{0 . 6 0}$
AD149	$\mathbf{0 . 4 5}$	BD131	$\mathbf{0 . 4 0}$
AD161	$\mathbf{0 . 3 8}$	BD132	$\mathbf{0 . 5 0}$
AD162	$\mathbf{0 . 3 8}$	BD133	$\mathbf{0 . 5 5}$
ADZ11	$\mathbf{1 . 2 5}$	BD135	$\mathbf{0 . 3 0}$
ADZ12	$\mathbf{1 . 2 5}$	BD136	$\mathbf{0 . 3 2}$

AC CLAMP VOLT-
AMMETER

TYPE 491 Made in USSR

Measurement ranges: 10-25-100-250500A 300-600V Accuracy: 4\%

Price $£ 14.00$

our new catalogue covering VALVES, SEMICONDUCTORS. TEST EQUIPMENT AS PASSIVE COMPONENTS IS NOW READY. PLEASE SEND £O. 20 FOR YOUR COPY.

LINEAR INTEGRATED CIRCUITS
Please note reductions in pricesMullard TAA263. Direct coupled three stage low level amplifier for use from DC to $600 \mathrm{kc} / \mathrm{s}$. Supply voltage 6 -8v. Typical power gain 77 db. into 150Ω load. Output power 10 mW . To72 four-lead encapsulala rion TAA293. Medium frequency ant f0.65 Mullard TAA293. Medium frequency amplifies with frequèicy response of $600 \mathrm{kc} / \mathrm{s}$. Nominal supply voltage 6v. Typical power gain 89 db . Maximum power dissipation 160 mW . Power output 10 mW . into 150Ω load. TO7 4 ten-lead encapsulation f0.65* Mullard TAA320. Metal oxide silicon low frequency pre-amplifier consisting of a MOST stage followed by a bi-polar transistor. Gate to source voltage 9-14v. Total power dissipation 200 mW . Drain current $1 \mu \mathrm{~A}$. Dutput conductance 0.65 mmho . TO18 3-lead $\begin{array}{ll}\text { encapsulation } & \mathrm{f0.60} \\ \\ \end{array}$
L.E.D. TYPE HP5082/4850

Red Light GASP Light Emitting Diodes giving bright diffused light of 0.8 med at forward voltage of 1.6 V and $D C$ current of 20 mA . Plastic wide angle lens $0.200^{\prime \prime}$ diameter. Ideal for panel lights, etc. Price for 12 pieces $£ 1.75$ incl. VAT and $p . \& p$.

1-AMP SILICON RECTIFIERS
20 pieces

1 N 4001	50 p.i.v.	¢1.12
1 N4002	100 p.i.v.	f1.25
IN4003	200 p.i.v.	f1.35
1 N4004	400 p.i.v.	f1.45
1 N4005	600 p.i.v.	f1.55
1 N4006	800 p.i.v.	f1.85
1 N4007	1000 p.i.v.	£2.10
ecial offer and minimum quantity of 20 pcs dered. These prices are inclusive of PP.		

This is a special offer and minimum quantity of 20 pcs must be ordered. These prices are inclusive of P.P. and VAT.

Prices do not include VAT and carriage except where indicated. When remitting cash with order please add $£ 0.50$ per multimeter and $\mathbf{£ 0 . 1 5}$ per $£$ for other items. subject to a minimum charge of £0.25. VAT at prevailing rate shouid then be added to the total.

MINIMUM ACCOUNT ORDER CHARGE E10.00 PLUS VAT. OTHERWISE CASH WITH ORDER PLEASE Z \& I AERO SERVICES LTD

Tel. 727564144 WESTBOURNE GROVE, LONDON W2 5JF Telex 261306

In this updated list of high-quality equipment which is surplus to our present requirements we have included two excellent laboratory digital voltmeters and a limited number of DC Power Supplies. You will notice also that there are substantial price reductions.
Please check the availability of instruments and ask for a quotation by telephone or telex. Equipment may be viewed by prior appointment.
Calibration to BSC release may be arranged if required. Please ask for a guotation.
Delivery to any destination can be arranged.

	Sale Price Rang
AUDIO (Professional)	
Crown	
384.00-500.00	
Wayne Kerr	
6012. LCR Bridge. Wide frequency range	ge 192.00
SR268. Source \& Detector $\quad \mathbf{2 8 8 . 0 0}$	
CALCULATORS	
Canon	
Briefcase size with charger and printer	20.00
COUNTERS \& TIMERS	
Hewlett Packard	
5216 12MHz. 7 Digits 320.00	
5246 50MHz. 6 Digit Counters	180.00-270.00
5252 A 350 MHz . Pre-Scaler plug-ins $\quad 96.00-115.00$	
52538512 MHz . Converter plug-ins $\quad \mathbf{9 6 . 0 0 - 1 8 2 . 0 0}$	
Marconi	
TF1417/2.0-15MHz. 6 Digits 86.00	
TF2401. Main Frames	On Application
TM7558. Plug-ins On Application	
TM8094/1.0.3-2.5GHz. Plug-ins On Application DEVIATION METERS	
Marconi	
TF91D. 4 - 1024MHzDIGITAL VOLTMETERS	
Dana	
3800A Digital Multimeter	
0.1\%. Max RDG 1999 98.00-140.00	
K.	
\%	

5230 DVM. $0.02 \% 10 \mu \mathrm{~V}$
Max RDG 119999
5330 DVM. $0.02 \% 1 \mu \mathrm{~V}$
Max RDG 119999
Dynamco
DM2022. DV. 0.02\%
$10 \mu \mathrm{~V}$ resolution- 2 kV
DM2140/A1/B1. Mean AC. Converters DM2140/A1/B3 RMS AC. Conve DM2 40 A1/B3. Hewlett Packard
3440 and Range of plug-ins (complete)
360.00-450.00 Solartron
M1420. 2. DC. 0.05\%
$2.5 \mu \mathrm{~V}$ resolution to 1 kV
M1420.2. BA-DC and
RMS/Mean AC
96.00-190.00 $330.00-400.00$

OSCILLOSCOPES

Cossor
CDU 150. DC-35MHz.
$5 \mathrm{mV}-50 \mathrm{~V} / \mathrm{DIV}$ dual trace
Telequipment
D53S with $2 \times$ ' A ' amps. Storage.
Dual Trace
A. DC- 15 MHz . Single Trace
Amplifier plug-ins
POWER SUPPLIES
Farnell
30/10/5.0-30V. 10A. Pre-set 40.00-50.00 SSE. 0-15V. 1A. Pre-set
Roband
30/10.0-30V. 10A
RECORDERS
RECORDERS
Bell \& Howell
5-124 Ultra Violet Light Beam. 18
Channels (Galvos to 13 kHz avail-
able at extra charge)
$\begin{array}{ll}\text { able at extra charge) } & \mathbf{6 0 . 0 0} \\ 6-127 \text {. As above with } 12 \text { Channels } & \end{array}$ SIGNAL SOURCES

Advance

SG70: Audio Oscillator.

General Radio

General Radio		
1362. UHF Oscillator	(both need a	$\mathbf{8 0 . 0 0}$
1363. UHF Oscillator	power supply)	$\mathbf{9 0 . 0 0}$
Hewlett Packard		
200CD. Audio Oscillator		
612A.0.45-1.23GHz. Internal or	$\mathbf{3 0 . 0 0}$	$\mathbf{6 0 . 0 0}$
External Amplitude Modulation		$\mathbf{3 0 0 . 0 0}$

423A. 12.6GHz Crystal Detectors $\quad 28.00$
3701/02/03. Microwave Link Analyser $\quad \mathbf{2 , 4 2 0 . 0 0}$
OA 2090A. White Noise Test Set 712.00
Filters also available at extra charge)
F2909 TV Test Set. Grey Scale 625 lines
Price to be advised
Richmond Hill
SP. TV Studio Precision Signal
Generator Sin 2 P \& B.
Window. Staircase (Requires all drives)
310.00
Siemens
, Contact Fault Locators.
$\mathrm{MHz}^{\text {Test signal variable levels. }}$
High sensitivity

74166 . Milliwatt Test Sets
74184B. Selective Measuring Sets
74216. Noise Generator. $2 \mathrm{OHz}-4 \mathrm{kHz}$

74306 B . Oscillators $10 \mathrm{kHz}-20 \mathrm{MHz}$
74600. RF Attenuators. 10 steps each
unit total Att: 0.9: 9.0; 90.0dB
36.00-45.00
90.00-180.00 $80.00-180.00$

74832 B . 15.00
Wandel \& Golterman
TFPS75. 1.3 MHz . Selective Oscillators $\quad 140.00$
TFPM43. 14 MHz . Selective Meters
VZM1 Differential Phase Meters (TV)
VZMG1 Sampling Attachments (complete) $\mathbf{3 1 8 . 0 0}$

WAVEANALYSERS

$248 \mathrm{~A} .5-300 \mathrm{MHz}$. Harmonic Analysers
ASSOCIATED EQUIPMENT
Hewlett Packard
412A. DC Electronic Multimeter 20.00
TF893 Audio Power Meter $20 \mu \mathrm{~W}-10 \mathrm{~W} \quad 90.00$
$\begin{array}{ll}\text { TF2606 Differential Voltmeter. } 0-1000 \mathrm{~V} & \mathbf{1 2 0 . 0 0}\end{array}$
Radiometer
RV24. DC Electronic Multimeter $\quad \mathbf{6 0 . 0 0}$
Siamens
Multizet. RF Voltmeter $0-100 \mathrm{~V}$
5.00*
*Uncalibrated.
WHEN YOU NEED FIRST.CLASS EQUIPMENT TRY
CARSTON FIRST. YOU PAY LESS AND THE SERVICE IS UNCHANGED
REMEMBER—these prices are unaffected by inflationary pressures. JUST COMPARE the 1974/75 replacement values.

Carston Electronics Limited
Shirley House, 27 Camden Road, London NW1.
Tel: 01-2674257

Marconi
TF $144 \mathrm{H} / 4.10 \mathrm{kHz}-72 \mathrm{MHz}$. Xtal check
Int/Ext. AM. 50 Ohms
TF801D/1. $10 \mathrm{MHz}-470 \mathrm{MHz}$. Int/Ext. $A M$ and Pulse modulation
TF2005. $20 \mathrm{~Hz}-20 \mathrm{kHz}$
Twin Oscillators
\square
290.00-320.00
320.00

Wayne Kerr
220.00-290.00
$0.22 \mathrm{D} .10 \mathrm{kHz}-10 \mathrm{MHz}$. Video Oscillator
160.00

SPECTRUM ANALYSERS
Hewlett Packard
$8551 \mathrm{~B} / 851 \mathrm{~B} .10 \mathrm{MHz}-12 \mathrm{GHz}$
$2,310.00$
SWEEP GENERATOHS
Hewlett Packard
Hewlett Packard
86908 with $86938.3-7.8 \mathrm{GH}$
plug-ins
660.00-750.00

TELEPHONE TV AND MICROWAVE
Hewlett Packard

ת

LIMITED QUANTITY
Made to meet the most
stringent Government
Service Standards
DC 40 MHz
DUAL
TRACE
Solartron C.T. 484 oscilloscope.
3\% accuracy
plays. DUAL TRACE Y AMPLIFIER. Bandwisecs. D.C. $-24 \mathrm{Mc} / \mathrm{s}$. Rise time: Input Impedance
Sensitivity: $50 \mathrm{mV} / \mathrm{cm}$. ing Accuracy: $\pm 5 \%$ Sensitivity: 26 pF . Measuring
1 M.ohm
 direct. $+3 \%$. 100 nanosecs $/ \mathrm{cm}-5 \mathrm{secs} / \mathrm{cm}$ or
TIME BASE $12 \mathrm{secs} / \mathrm{cm}$. Time BASE variable up to $\mathbf{c o n t i n u o u s l y}+3 \%$. Sweep expansion Bandwidth: D.C. V / cm. Input X AMPLIFIER. $200 \mathrm{mV} / \mathrm{cm}$ and
Sensitivity:
 INTERNAL CALIBRATOR. ACCER PLUG ALSD

WIDE BAND YMPLFIER $-40 \mathrm{MC/S}$. RISE | WIDE BANE: Bandwidth: D.C. $40 \mathrm{Mc} / \mathrm{s}$. R/se |
| :--- |
| AVALLABLE |

 Input impedance: | input impedan direct. |
| :--- |
| Accuracy $\pm 5 \%$. |
| 3% with calibrator |

Power Supplies Various

Advance 4-15V 1 amp PM1 O-6V 5 amp PM18 15-30V 3 amp PM2 30-50V 1 amp PM3 30-50V 3 amp PM6

Coutant ACT 200/12/12 ED 200/12/12 ELV 100/6
P.O.A.

6V DOWEF SUODIES 25A

10\% variable voltage high current high stability high rellability
hiese power supplies were designed lor continnous opeation in Tor leng-term reliabity Manufactured to highest engineering stancard meters C Core Transtormer meters C C Core Transtormer
Manufacturer's price probably anufacturer's price probably in excess of £200.

FABULOUS RANGE OF SIGNAL GENERATORS

 H.P. VHF Signal Gen. 608B 10MHz to $400 \mathrm{MHz} \mathbf{E 1 7 5}$ H.P. UHF Signal Gen. 612A 450 MHz to $1250 \mathrm{MHz} £ 495$ H.P. UHF Signal Gen. 614 A 800MHz to 2100 MHz £225 H.P. Sweep Oscillator 693D 4 GHz to 8 GHz 801 B .3 TF10D E155 General Radio UHF Unit 0 $\mathbf{E} 275$ + PSU 250 MHz to 960 MHz р.о.a. Marconi PHM/AM Signal Generap.o.a. p.o.a. Marconi 801A as is f 25.00 CALLERS ONLY NO GUARANTEE

MULTI OUTPUT POWER SUPPLIES
Ex-Computer offered at mere fraction of original manufacturer's cost.
APT 13334 mk m
nput $200 / 240 \mathrm{~V} .+10 \mathrm{~V}-5 \mathrm{Amp}-10 \mathrm{~V}-2 \mathrm{Amp}+24 \mathrm{~V}-2 \mathrm{Amp}$
$+20 \mathrm{~V}-5 \mathrm{Amp} .-20 \mathrm{~V}-2 \mathrm{mp}$. Advances DC197 BRAND NEW MINIATURISED STRIP CHART RECORDER BY RUSTRAK Model 88

his recorder indicates the magnitude of applied currents of voltages by a continuous distortion free
line on pressure sensitive line on pressure sensitive paper. Moving coil
movement scale calibrated 1 milliamp D.C. internal resistance 100 ohms. Chart Drive motor Chart speeds $90^{\prime \prime}$ per hour $£ 39$

SINGLE PEN RECORDER by Record Electrical

AC CLAMP VOLTAMMETER

而 Specification
Measurement ranges:-Current 10-25-100 250-500 Amps. Voltage $300,600 \mathrm{~V}$ Accuracy 4%. Scale length 60 mm . Overall
dimensions $283 \times 94 \times 36 \mathrm{~mm}$. Weight 1.5 lbs .
£12.50

Combined Stroboscope-lachometer - 200 to 6000 200 to 6000 r.p.m. Accuracy 3\% or better. Beam angle 80° Flash Duration: 10 to 25 microseconds. Light colour Xenon white 500° Compact lightweight (27 oz .) easy to use one/off and on switch.

Carriage and packing charge extra on Please note: all instruments offered are second-hand and NEW CATALOGU all items unless otherwise stated. tested and guaranteed 12 months unless otherwise stated

ELECTRONIC BROKERS LIMITED

ALL MAIL ORDER BY RETURN, C.O.D. SERVICE WELCOME

 C. T. ELECTRONICS

 C. T. ELECTRONICS V.A.T. Uniess otherwise stated all prices are EXCLUSIVE of V.A.T. Please add 8% to ail orders. Carriage: orders under 25 plus 20 p. Over $£ 5$ post free.

We are open from 9.30 a.m. -6.00 p.m. Monday-Saturday
All mail order and enquiries to 270 Acton Lane, Chiswick, London, W4 5DG. Tel: 01-994 6275

촛SCIAL OFFERS $\boldsymbol{x} \boldsymbol{x}$
miniature mains transformer.
MINIATURE, MAINS TRANSFORMER,
PR1 240 V SEC, $12 \mathrm{~V}, 100 \mathrm{MA}$ Manuf.: Hinchley

SLOPING
BOXES WITH SLOPIP
EL-IDEAL FOR PRE-AMP
SLIDER CONTROLS
 $6 \cdot 2 \mathrm{~V}, 7-5 \mathrm{~V}, 9-1 \mathrm{~V}, 10 \mathrm{~V}$, Measured and tested $\mathrm{\Sigma} 1 \cdot 00$ Please state voltage reaulred.
50 GE Diode OA47 e zuivalent.
TRANSFORMER : DOUGLAS PRI, 0,115 ,
200, 220, 240 SEC. $25-0-25-0-6 \mathrm{~V}, 2$ 200, 220,
50p p.p.
TRANSFORMER
PRI. $0,115,160,205$, PRI. $0,115,160,20$.
E $4 \cdot 50+50 \mathrm{p}$ p.p.
MULTICORE CABLE. 25-way, individually Postage by welght.
IMHOFF 19" RACKING CABINETS. $13^{* *}$ $\mathrm{hlgh}, 22^{\prime \prime}$ wide, $13^{13^{\prime \prime}}$ deep. Brand new. $£ 10 \cdot 00$
each + V.A.T. Carriage $£ 1 \cdot 00$. SIEMENS CONTRACTORS. Over 1,000 Stock. Al types. Phone or write for detalis. METAL All values. 1 -off price 3p each. Discount on quantity. 10 TURN TRIMPOTS by Bourns, Mec, Painton, etc. All values in stock. 50p each.
Discount on

M309K 5V I.C. M309K 5V. IA.
Voltage Reg. $\mathbf{E 2 . 1 0}$ M723C $2 \cdot 37 \mathrm{~V}$. 150 m Voltage Reg. . E1.05 AFC 4000250 mW Audio 7
TBA800 5 Watt Audio $£ 1 \cdot 50$ 103C Op Amp D.I.L.
TO39
4.

 ${ }_{47 \mathrm{C}}^{\mathrm{D} . \mathrm{L} .}$ Dual Op ${ }^{75}$
 ?N414 Radio I.C. $£ 1.25$ TAD100 Radio I.C. Inc.
Filter \ldots...... $51 \cdot 80$
CA3014 $2^{\prime \prime}$ High at front $6^{\prime \prime}$ Slope to front With P.K. Screws

$$
\begin{aligned}
& \text { AB21 As above but to } 10^{\prime \prime} \text { Long } \\
& \text { AB22 As above but } 12^{\prime \prime} \text { Long }
\end{aligned}
$$

ELECTRONIC COMPONENTS BARGAIN COMPONENT PACKS E1 plus 25 p p.p. per pack, $\& 5$ for 5 packs p/free
s 25 p p.p. per pack, e5 for 5 pact
O.
Carbon resistors, $i, 1,1,2$ watt. 2100 Electrolytic Condensers.
3250 Ceramic, Polystyrene, Silver Mica,

4250 Polyester, Polycarbonate, Paper, etc., 525 Potentlometers, assorted. ${ }^{6} 550 \mathrm{H}$ Agh-stab. $1 \%, 2 \%, 5 \%$ resistors. 750 Assorted Tagstrips. ${ }_{25}^{\text {etc. Assorted }}$

$$
25 \text { Asmorted switches, rotary, lever, micro }
$$

$$
\begin{aligned}
& 25 \text { Assorted } \\
& \text { toggled etc. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { toggled, etc. } \\
& 1050 \text { Preset.Potentiometers. } \\
& 11 \text { Trlal mixed component pack }
\end{aligned}
$$

$$
\begin{aligned}
& 1050 \text { Preset.Potentiometers. } \\
& 11 \text { Trlal mixed component } \\
& 12 \text { Jumbo mixed pack } \& 5 \text {. }
\end{aligned}
$$

POTENTIOMETERS LInear or Log
Rotary Pots Rotary Pots
Rotary Swltched

BOARD SIZE	RESIST COATED FIBRE GLASS RESIST COATED												PAPER$1 / 16^{n}-102$	
	$5 / 64^{\prime \prime}$ or $3 / 32^{\prime \prime}$ or $1 / 88^{\prime \prime}-1$ oz				1/32"-1 02				1/16"-1 oz					
	Single Sided		Double Sided		Single Sided		Double Sided		Single Sided		Double Sided		Single Sided	
	Positive	Negative												
$75 \mathrm{~mm} \times 100 \mathrm{~mm}$	14p	12p	15p	13p	8p	8p	8p	8p	16p	15p	14p	13p	8p	8p
$100 \mathrm{~mm} \times 150 \mathrm{~mm}$	27p	24p	29p	26p	15p	14p	19p	15p	33p	30p	29p	26p	15p	14p
$150 \mathrm{~mm} \times 200 \mathrm{~mm}$	53p	48p	56p	51p	30p	27p	37p	30p	66p	60p	60p	54p	30p	27p
$200 \mathrm{~mm} \times 250 \mathrm{~mm}$	88p	80p	92p	84p	51p	45p	63p	51 p	£1.10	£1.00	£1.02	92p	51p	45p
$250 \mathrm{~mm} \times 250 \mathrm{~mm}$	£1.10	£1.00	£1.15	£1.05	65p	55p	80p	65p	£1.38	¢1.25	£1.30	£1.15	65p	55p
$12^{\prime \prime} \times 6^{\prime \prime}$	80p	70p	85p	75p	55p	45p	65p	55p	£1.00	90p	£1.10	£1.00	55p	45p
$12^{\prime \prime} \times 12^{\prime \prime}$	£1.60	£1.40	£1.65	£1.45	£1.05	85p	£1.25	£1.05	£1.95	£1.75	£2.10	£1.90	£1.05	85p

Extra Discounts 5 sheets $5 \%, 10$ sheets $10 \%, 20$ sheets 20%, 50 sheets and above 30%.
All goods add 8% VAT + post and packing 30p. 10 sheets or more free. Hurry limited stocks delivery subject to availability. Prices may be changed without notice.
P.S. We also specialise in printed circuit board manufacture. Lowest prices, fastest delivery.

FRENCH RADIO-ELECTRONIC WHOLESALER

would like to buy in Great Britain

ELECTRONIC COMPONENTS: Valves, Semi-conductors, Capacitors.
ACCESSORIES: Radios, Radiograms, Tape recorders, Audio leads, Plugs, Jacks, Stereo headphones, etc.
We are interested in buying HI-FI equipment, Stereo, Tape recorders, Pocket radios, etc.

S. A. CERUTTI \& CIE

201/203 Bd Victor Hugo, 59000 Lille, france

Robotics

John F. Young

The object of this book is to present a comprehensive and orderly account of the principles and practice of robotics. It will provide a valuable source of reference for research workers and those in related fields.
$1973 \mathbf{3 0 4}$ pp., illustrated 0408705222 £6.00
Obtainable through any bookseller or from
NEWNES-BUTTERWORTH
Borough Green, Sevenoaks,
Kent TNi5 8PH. Tel. Borough Green 2247.

PETITE PRECISION!

 A 12V DC POWER TOOL FOR THE DESIGN AND RESEARCH ENGINEERaV AILABLE IN KIT FORM OR SEPARATES
Diameter

33 mm
Weight
160 g
Length
125 mm
Torque
105 cmg RPM approx 3000 at 12 V DC Power 9/14V DC Batteries or AC/DC transformer
PRECISION EXAMPLE OF FRENCH ENGINEERING

Now in use by the following GPO, BBC, Atomic Energy Authority, British Nuclear Fuels, Weekend TV, Ministry of Defence, Hospitals, Opticians, etc.

UK DISTRIBUTOR

PRECISION PETITE LTD
(Les Applications Rationnelles Paris)
119A HIGH STREET, TEDDINGTON,
MIDDX, UK.

$$
\text { TEL. } 01-9770878
$$

SAE for leaflets, price list and order form

THESE DAIES ABE NOW MORE IMPDRTLNT THAN EVER APRIL 11-12.13

 HEATHROW HOTEL LONDON AIRPORT

THE ONIY SPRINGGIT-FI EXXIBITION

$$
\begin{array}{llll}
\text { FRIDAY APRIL } 11 & 10 \text { AM-8PM } \\
\text { SATURDAY APRIL } & 12 & 10 \mathrm{AM}-8 P M \\
\text { SUNDAY APRIL } 13 & 11 \text { AM-6PM }
\end{array}
$$

See and hear a wide variety of leading brand names inf the spacious comfort of the Heathrow Hotel. The list of famous names to be seen and heard at High Fidelity 75 includes:-

ALPHA AKG	FISHER	NIPPON SOUND PICKERING
	KARDON	POLY PLANER
		QUASAR REVOX
LOUDSPEAKERS	ISOPHON	$\begin{aligned} & \text { REVOX } \\ & \text { SALORA } \end{aligned}$
ATRON	JBL	SANSUI
$\begin{aligned} & \text { BIB } \\ & \text { BOSE } \end{aligned}$	JMR	SENNHEISER
		SERVO SOUND
	KENSONIC	STANTON
CAMBRIDGE AUDIO	ACCUPHASE	STAX.
		TEAC
	KLH	TDK TAPES
CELESTION	LEAK	TOSHIBA
DENON	LENTEK	TRIO
EAGLE	MARANTZ	VIDEOTONE
ESS	MARSDEN HALL	WHARFEDALE
	MONITOR AUDIO	YAMAHA
EPI	NAD	
MICROTOWER	NAKAMICHI	

LASKEYS SOUND ADVICE BUREAU

[^4]
는 든 The SECOND-USER Computer Specialists

compuifr sales Peripherals and Systems for Data Processing Systems, Equipment and Components
 PAPER TAPE PUNCHES \& READERS

Mini-Computer Systems

Available for immediate deliyery at greatly reduced prices due to special purchase

Little-used PDP8E 12 K system including: High Speed Paper
Tape Reader. High Speed Paper Tape Punch. Memory Drum Just arrived-PDP8L 4 K processor with 8 K extender box

A phone call could save you a bomb! Ring now for price. Other models becoming available all the time-let us know your requirements.

Peripherals

Thencormer ECONOMYRANGE OF 80 COLUMN HAND PUNCHES A69.50 Plus Carr. \& VAT

 Hand Verifies-f96.ad + carriage ${ }^{\text {\& }}$ VAT All machines supplied with
numenic keytops and dust cover and covered by our 12 month guarantee Optional extras: Alphanumeric Keytops. Chiptray and W Wreck Knic
Ideal for slock control. sales analssis. bach-up in Ideal for stock control, sales analysis,
installations. DP triining centres, schools, etc. Add 8\% VAT to all prices shown
Carriage extra-details on reques

DEC High-Spead Pap
Used. Our special rrice
DATA DYNAMICS
DATA DYNAMICS 1114 Rack.Mounted 110 cps Punch. as
new. Mounted in sound-reducing rack cabinet and complete with control and interface blectronics and power supply operation up to 110 cps . Our special price $£ 550$. FACIT 4060 Rack-Mounted 150 cps Punch. Heavy duty punch
suitable for all types of tape inc. Mylar. UNUSED SURPLUSsuitable for all types of
A BARGAIN AT £595.
INVAC P135 solenoid-
actuated punch 35 cps TELETYPE BRPE 110 5/6/7/8 channel. Compact $5 / 7 / 8$ Cps Synchonous Punch Power $\frac{71^{\prime \prime}}{} \times 6 \frac{1}{2}{ }^{\prime \prime} \times 5^{\prime \prime}$, $\begin{aligned} & \text { contained mains-opera- }\end{aligned}$ transport solenoids 26 V DC 2A. Punch solenaids 26 V 4.5 A , Punch return solenoids 26V 2A. Minimum pulse width 16 millicontained mains-opera-
ted unit consisting punch unit, base, motor and tape supply spool. and tape supply spool.
Price f145.00. Soundreducing cabin
able at $\mathbf{f} 25.00$. $\underset{\substack{\text { FACIT } \\ \text { Reader. } \\ \text { rack-mounted } \\ \text { 400. } \\ \text { Her- }}}{\text { Speed }}$ Reader. rack-mounted ver-
sion. $5 / 6 / 7 / 8$ channet dielectric reader for speeds
up to 500 cps for 1000 cps using separate spooler) One
BRAND NEW unit availate in original manufacturer's
 PRICE £895.00 ARGAIN used second hand unit also available at $\mathbf{f 6 5 0 . 0 0}$ TALLY 424 Brush Reader. Reads ali 5 to 8 channel tape
asynchronousiy at speeds up to 60 cps in either direction. Rack-mounted compiete with spools. $£ 125.00$.
FERRANTI TR5 photoelectric transistorised reader, 300 cps , $5 / 6 / 7 / 8$ chanmel tape. Mains-operated. Price $£ 90.00$ INVAC Photoelectric Reader. Motorless, solenoid-operated 20 cps. Compact unit ${ }^{63^{\prime \prime}} \times 4^{\prime \prime} \times 6^{\prime \prime}$. Power Requirements:
Solenoids 26 VOC 2 A . Amplifier -i2VDC 500 mA . Price f 55.00 . FERRANTI TR2 Photoelectric Reader. Mains operated up to CORE STORES

Keyboancls
ELECTRO-MECHANIC̄AL NUMERIC AND ALPHA-NUMERIC KEYBDARDS originally designed for 80 column card punch and verifier machines 8 instruction keys. Alpha-mumeric with 47 character keys and 8 instuction keys. Price Numeric $£ 4.50$. Alpha-numeric $£ 15$
PAPER TAPE PUNCH/VERIFIER KEYBOARDS. FU alphanumeric keyboard with 65 keys +4 shift keys in 4 -bank layout. ISO coded. Operating speed up to $25 \mathrm{ch} . / \mathrm{sec}$. Mounted in atractive case With control panel. Price E2S. REED-SWITCH 4-BANK ALPHA-NUMERIC KEYBOARD keys +2 shift keys andi 16 instructional keys. Ideal for data displays. computer programming. etc. Price $£ 30$

PHDTOELECTRIC ENCODED KEY-
BOARDS. No metallic switches or contacts BDARDS. No metallic switches or contacts.
Generates any eight-bit code to specification. Photoelectric keytoard combines Photo-
electric encoders and actuctuors. entocders and power-assisted solenaid

6 V 5 mA . Pice f45
 $26 \mathrm{VDCmA}-12 \mathrm{~V} 60 \mathrm{~mA}, 6 \mathrm{~V} 5 \mathrm{~mA}$. Fice

JUST ARRIVED-FABULOUS BRAND NEW KEY BOARDS WITH READ ONLY MEMORY. Input Voltage , 4 bank alphanumeric keyboard with 77 key
positions + bar. ideal for com. ment. Complete with associated integrated
 COMPUTER SALES \& SERVICES (EQUIPMENT) LIMITED 49/53 Pancras Road, London NW1 2QB. Tel: 01-278 5571

GIRO NO. 3317056 . Access secepted.
W.O. only. P \& P. TOp on orders telow f

\section*{| E3.58net |
| :---: |
| f3.77 net |}

 52.80 net

MULLARD POLYESTER CAPACITORS C280 SERIES
 MULLARD POLYESTER CAPACITORS C296 SERIES

POLYSTYRENE CAPACITORS $160 \mathrm{~V} 5 \%$

FACTORS LTD.
(W.W.) LEIGHTON ELECTRONICS CENTRE 59 NORTH STREET, LEIGHTON BUZZARD
B. H. COMPONENT

* For industrial use in instruments on circuit boards.
* For domestic use as indicators on washing machines, amplifiers. door bells. * Long life, high reliability * Low current drain *Smallsize

JH Associates Ltd Sales Office: 52 silver Street.
Sales Office: 52 Silver Street.
Stansted, Essex.(0279) 814929

TRANSDUCER and RECORDER AMPLIFIERS and SYSTEMS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard 19" crates small size-low weight-realistic prices.

49/51 Fylde Road Preston
PR1 2X0
PR1 2XQ
Telephone 077257560

APPOINTMENTS VACANT

DISPLA YED APPOINTMENTS VACANT: $£ 6.08$ per single col. centimetre (min. 3 cm)
LINE advertisements (run on): 86p per line (approx. 7 words), minimum three lines.
BOX NUMBERS: 35p extra. (Replies should be addressed to the Box number in the
advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU).
PHONE: Allan Petters on 01-261 8508 or 01-261 8423.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

We have a number of opportunities for instructors to train our customer engineers to service and maintain data processing equipment including the latest 370 Systems and Software.

If you're an experienced or potential instructor with a background in software and/or electronics, educated to HNC, C \& G standard or perhaps you've had similar service experience - now's the chance to find out more about these secure, well paid positions, based in NW London. Salaries start from£3000 and career development prospects and training are excellent.

If you are interested please write to: Anne Dare, IBM United Kingdom Limited, 389 Chiswick High Road, London W4 4AL. Quoting ref: WW/92418.

DRAUCHISM:Y/IUSTMITORS and T:BNIULLAUILDES

 Marine Electronics

 Marine Electronics
 West Country

The Plessey Marine Research Unit is engaged in a broad range of research and development in the field of electronics and underwater acoustics. New projects are now creating a number of openings for Draughtsmen/Illustrators and Technical Authors. They will be assisting in the preparation of Admiralty Handbooks describing advanced sonar systems. The equipments contain the most modern digital circuitry employing TTL Logic, ROM's, RAM's and thin film techniques. The research and design laboratories are situated on a country estate at Templecombe, Somerset. Good educational and housing facilities are available in nearby towns like Yeovil, Sherborne and Wincanton, while the Dorset coast is less than an hour away.

Principal Draughtsman/Illustrator

An experienced Draughtsman/Illustrator is required to take charge of the Illustration Section in a new Technical Publications Department.
The successful candidate must be capable of liaison with customers on technical matters relating to drawings and illustrations. He should be familiar with circuit diagram presentation to BS3939.
It will be an advantage if the candidate has been concerned with technical publications produced to Admiralty Specification NWS $1 / 70$

REF.DI. 50

Senior Draughtsmen/Illustrators

This is an ideal opportunity for illustrators to join an enthusiastic team in a new department engaged in the preparation of $M O D(N)$ Handbooks.
They will work in liaison with the Technical Authors and ideally have had a minimum of five years' relevant experience, with a sound knowledge of circuit diagram presentation to BS 3939. An understanding of reprographics is desirable.

REF.DI. 100

Draughtsmen/Illustrutors

They should have had a minimum of three years' experience as illustrators in the Electronic industry, but
draughtsmen with a leaning to illustrative work and the ability to prepare good quality diagrams for photographic reproduction should apply. An understanding of reprographics is desirable.

REF.DI. 200

Technical Authors

To prepare original material for publication, originate draft text illustrations; prepare final copy after approval; read and correct camera copy and printers' proofs. Would work largely on own initiative under limited supervision. Should be educated to O.N.C. standard in electrical engineering or equivalent standard in appropriate subjects coupled with an engineering apprenticeship or service in HM Forces, or other practical experience.

REF.TA. 516

[^5]4541

Radio Operators. How to see more of your wife without losing sight of the sea.

Post Office Maritime Service. We have openings for Radio Operators at several of our coastal stations. The work is just as interesting, just as rewarding as aboard ship, but you get home to see your wife and family more often. You need a United Kingdom General or First Class Certificate in Radiocommunications, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting pay for a man of 25 or over is $£ 2,270$, plus cost of living allowance with further

In addition to your basic salary, you'll get an average allowance of $£ 450$ a year for shift duties and there are opportunities for overtime. Other benefits include a good pension scheme, sick pay and prospects of promotion to Senior Management.

For more information, write to: ETE Maritime Radio Services Division (L533), ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London, ECIA 1AS.

RADIO OFFICERS

Do you have PMG 1, PMG II, MPT 2 years operating experience?

Possession of one of these qualifies you for consideration for a Radio Officer post with composite signals organisation.

On satisfactory completion of a 7-month specialist training course, successful applicants are paid on a scale rising to $£ 3.096$ pa; commencing salary according to age- 25 years and over $£ 2.276$ pa. During training salary also by age, 25 years and over $£ 1,724$ pa with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age $(40$ years if exceptionally well qualified) will be considered.

Full details from:

Recruitment Officer,

Government Communications Headquarters, Room A/1105, Priors Road, Oakley, Cheltenham, Glos GL52 5AJ
Telephone Cheltenham 21491 Ext 2270

STAFF REQUIREMENT

SAMUELSON FILM SERVICE LIMITED

require

TV TECHNICIAN

to develop their SAMCINEVISION Department.
The position calls for an enterprising, inventive and reliable technician who thoroughly understands CCTV and can maintain the range of equipment and TV viewfinder systems operating with Motion Picture Cameras. A certain amount of location work with film units will be involved and there will be a requirement to instruct others on the use of the Samcinevision TV Viewfinder Systems.
Further development and design possibilities will be part of the responsibility of the successful applicant.
Salary is negotiable, non-contributory pension scheme.
Please send written application, stating experience and salary expected, in confidence, to:

[^6]
Electronic Engineers

This can work from 1 to 45 MHz -can you?

The above power separating filter is only one example of the sort of work that our engineers do in the design and development laboratories of the Submarine Systems Division of S.T.C.

We are looking for graduate or similarly qualified engineers with experience of a year or more in electronic design and development. An analogue background will be preferred.

This is what we have to offer :-

A Secure Future:

We are the world's largest supplier of repeatered submarine telephone cable systems. Most of our product is exported and our order books are healthy. We are also the technological leaders in our field and through our design and development teams we are continuously improving on our fine record of innovation and reliability.

Benefits:

Excellent starting salary. Your salary progression will be determined by your performance, responsibilities and potential. First class large company benefits include 4 weeks, 2 days holiday. Generous relocation expenses will be paid where appropriate.

A Satisfying Job:

Working in an area of advanced technology, you will design and develop wideband analogue amplifiers, filter networks (using C.A.D.),
repeater supervisory circuits, terminal transmission equipment or advanced test gear. You will be designing a product of supreme quality, for once laid a system must operate for 25 years without fault or maintainance.

Training:

We shall offer training to those whose experience of analogue circuitry is limited. Encouragement is given to engineers who wish to obtain corporate membership of the I.E.E.

Career Development:

You will be given every opportunity to develop and take responsibility. There is much scope for advancement in the Engineering Department and other functions of the company. Promotion is given on the basis of merit.

Travel:

Opportunities may exist for you to spend periods abroad on cable laying and commissioning operations. In 1975 this might take you to Spain, Italy, the Greek Islands, Australia, New Zealand or New Guinea.

Interested?

If you would like our special information pack 'phone David Stenhouse on 01-4761401, or write to him at :-
Standard Telephones and Cables Limited, Submarine Systems Division, Henley Road, North Woolwich, London, E. 16

AVONICSINEDINBURCH ELECTRONIC ENGINEERS

FERRANTI in Edinburgh are involved in many important defence contracts including the Multi Role Combat Aircraft.

We need Engineers of experience and technical capability to join expert teams on a variety of interesting projects with high technological content. We are looking for

TEST SPECIFICATION WRITERS
 TEST ENGINEERS
 TRIALS ENGINEERS TECHNICAL AUTHORS SERVICE ENGINEERS

and would be particularly interested to hear from candidates withiqualifications and experience in any of the following areas: DIGITAL AND ANALOGUE TECHNIQUES, MICROWAVE ENGINEERING, LASERS AND OPTICS, ELECTRONIC DISPLAYS, AUTOMATIC TEST TECHNIQUES, AIRBORNE RADAR, INERTIAL NAVIGATIONAL SYSTEMS.

Priority will be given to incoming staff for Scottish Special Housing. The Company operates a contributory pension and life assurance scheme, and will assist with relocation expenses where necessary. Salary up to $£ 3,000$.

Apply in writing with details of qualifications and experience to the:
Staff Appointments Officer Ferranti Limited Ferry Road Edinburgh EH5 2XS
Tel: 031-332 2411
FERRANTI

IELEVISION IN SOUTH AFRICA

Leading Manufacturer of Sony and Blaupunkt television receivers wishes to engage Technical Personnel for Servicing Establishments in Johannesburg, Capetown, Durban, Pretoria, Port Elizabeth, Bloemfontein and Klerksdorp as follows

REGIONAL SERVICE CO-ORDINATORS

with Management and Workshop experience in colour television receiver servicing. SALARY up to R10,000 ($£ 6,250$) p.a

SENIOR COLOUR TV TECHNICIANS

with Supervisory experience in a Servicing Workshop. SALARY up to R8,000 ($£ 5,000$) p.a

BENCH and FIELD TECHNICIANS

with experience in Colour TV Receiver Installations and Servicing. SALARY up to $\mathrm{R7}, 000$ ($£ 4,375$) p.a.

Qualifications required are appropriate City and Guilds with Colour Endorsement or equivalent-or valid equivalent experience. ExNavy, Army and R.A.F. personnel with suitable service qualifications and experience will be considered.

Company vehicles are provided. A Pension and Medical Aid Scheme is available. Passages to South Africa and place of appointment are paid for selected applicants and their families.

Apply to
Mr. L. W. Turner,
Personnel \& Electronics Ltd., MBM Associates International, Warley Chambers,
Warley Road,
Hayes, Middx, UP4 OPX

GEC-ELMOTT PROCEGS INETAUMENTS
Cemtury Works, Connington Road
Lewisham, Londón SE13 7LN

FEDERAL STATUTORY CORPORATIONS SERVICE COMMISSION,

 LAGOS, NIGERIA
VACANCIES IN
 the nigerian ports authority

1. Applications are invited from suitably qualified candidates for the following vacancies in the Nigerian Ports Authority:
(i) Senior Communication Engineers
(ii) Communication Engineers Grade I
(iii) Communiction Engineers Grade II
2. (a) QUALIFICATIONS

A good University degree or its equivalent in Radio and Telecommunications Engineering giving exemption from the graduateship of a relevant and recognised professional institution.
(b) EXPERIENCE

Post-qualification experience in one or more of the following or related fields of:MF/HF/VHF Transmitters/Receivers, Radar, Echo Sounders, Telephones including private Automic Branch Exchange Equipment; plus a minimum of 5 years' post-qualification experience for (i) ; 4 years post-qualification experience for (ii) ; and 2 years post-qualification experience for (iii).
3. SALARY
(i) SAP. $2: \mathrm{N} 4,250 / \mathrm{N} 4,500 \times 130-\mathrm{N} 4,760$
(ii) SAP. 1 : (Upper) : N3,280 $\times 120-N 4,120$
(iii) SAP. 1 : N2.040 $\times 84-2,208 / 2,580 \times 110-$ N3,130/N3,280 $\times 120-N 4,120$.

4. CONDITIONS OF SERVICE

For Nigerian candidates pensionable appointment will normally be offered, although contract terms, if so preferred, may be approved. Non-Nigerian candidates will normally be offered contract terms which includes:-
(a) Contract addition of 50% of Basic Salary
(b) Outfit and other approved allowances
(c) Terminal Gratuity of 25% of total Contract Salary earned.
5. Furnished accommodation will be provided where possible at the rate of $8 \frac{1}{3} \%$ of salary, up to maximum of N300 per annum. Alternatively, rent subsidy may be granted in accordance with the current Conditions of Employment (Officers).
NOTE: For appointment on contract additional verifiable ability/effectiveness, at the right level, on installation/maintenance problems may be acceptable in lieu of the full formal qualifications stipulated above.

6. METHOD OF APPLICATION

Application forms are obtainable from:
The Nigerian Ports Authority Representative,
Nigeria House, 9, Northumberland Avenue, London, W.C.2.

7. CLOSING DATE

Completed application forms with photostat copies of certificates and two recent passport photographs of the applicant duly signed at the back by the applicant must be submitted to reach the Nigerian Ports Authority Representative at the above address not later than 15th March 1975.

. you most of all, naturally. Mainly because, by joining the world's largest exporter of radio-telephone equipment you will inevitably open up for yourself career advantages that very few companies can provide. Pye Telecom is growing at an ever-increasing rate - and the potential for its products has as yet been only fractionally utilised.
But the work you do will also be vital to an incredible number of others. Very frequently, life itself depends on the efficiency of the UHF and VHF equipment you'll be working on. Police, firemen and ambulance staff are a small sample of the extensive range of users. Which explains the exacting specifications of the test procedures in operation - and why previous fault-finding and testing experience is an essential requirement. If it relates to communications equipment, so much the better, but this is not absolutely essential. More important is practical proficiency, which may well have been gained in the armed forces.
Find out more right now by phoning or writing to Mrs Audrey Darkin at:

Pye Telecommunications Ltd
Cambridge Works, Elizabeth Way.
Cambridge CB4 1DW. Tel: Cambridge 58985

THE OPEN UNIVERSITY

OPERATIONS AREA

 SENIOR MAINTENANCE TECHNICIANA vacancy exists in the Audio-Visual Department of the Operations Area of the Open University for a Senior Maintenance Technician.
The person appointed will supervise the Audio Visual Workshop which handles repair and maintenance of videotape equipment, television cameras film projectors. professional broadcasting sound recording equipment, shide and overhead projectors and all equipment housed in the Lecture Theatre of the University. The operation of such equipment will also be necessary from time to time.
A lively interest in the audio-visual field is necessary to keep up to date on new develop ments and to modify and adapt equipment and
methods as required.

The successful candidate should have either HNC/ HND (Electronics) plus an electrical/electronics apprenticeship, and a minimum of 7 years relevant experience in inspection testing, maintenance o tronics) and a minimum of 3 years relevan experience.
Salary within scale Technican Grade 6: $£ 2844$ £3,450 per annum.
Further particulars and application forms are available from the Personnel Manager (OT4). The Open University, P.O. Box 75. Walton Hall. Milton Keynes, MK7 6AL. Applications should b returned as soon as possible.
[4510

MAJOR RECORD COMPANY IN WEST-END

requires
AUDIO ENGINEER
with Electronic and Mechanical experience for their Studios Technical Department.
For further details ring SUE CAMBRAY on: 01-262 5495
[4524

R.F. Engineer

Leading Manufacturers of Audio equipment have a vacancy on their development team at King's Lynn for an experienced R.F. Engineer who will be engaged in the development of their high quality products.

Good salary commensurate with experience.

Applicants write giving details of experience to:
Mr. D. J. Chesney
Personnel Manager,
Dynatron Radio Ltd.,
Hansa Road,
Hardwick Industrial Estate,
King's Lynn, Norfolk.

WIRELESS TECHNICIANS

There are vacancies at Home Office Wireless Depots throughout England and Wales for Wireless Technicians to assist with the installation and maintenance of VHF and UHF Systems. Ability to drive a car and possession of a current driving licence is desirable.

Salary

is $£ 1530$ (at 17), $£ 1865$ (at 21) and $£ 2210$ (at 25) rising to $£ 2575$ a year plus a cost of living supplement of $£ 19.14$ a month.
A London Weighting Allowance of up to $£ 410$ a year is also payable for staff employed in London.

A Secure Future

with a good pension scheme, good prospects of promotion and a generous leave allowance.

Qualifications

Candidates should have good experience in Telecommunications and preferably hold a City and Guilds Intermediate Telecommunications Certificate or equivalent.

Interested?

Then write or telephone for further details and application form to Mr C B Constable, Directorate of Telecommunications, Home Office, 60 Rochester Row, London SW1P 1JX. Telephone 01-828 9848 Extension 734.

BEW manufacturers of Monitor Loudspeakers

B \& W of Worthing is a fast-growing independent company manufacturing high-fidelity loudspeakers -acknowledged to be among the world's finest. Due to further planned development we are looking for a:

DESIGN ENGINEER

This new opening is a unique opportunity for a senior engineer (age 30-40) to join our research team, where laboratory facilities are probably better than any in the UK hi-fi industry.
Applicants should have good academic qualifications, preferably with a postgraduate degree to Ph.D. standard, and be capable of original thinking.
Salary will meet the requirements of the right man.
Please write with fullest details to the Managing Director.

BCW electronics

Meadow Road Worthing BN11 2RX Engineer to lead teams overseas.

The growth of Pye TVT, international manufacturer of TV broadcast systems and equipment, has created a vacancy for a Senior Installation and Commissioning Engineer to work on either studio or transmitter systems.
The man we want will be a self-reliant and fullyexperienced broadcast engineer capable of leading a small installation team. He will have to spend up to six months a year working overseas, mainly outside Europe.
We recognise the responsibilities of this position in the salary and generous overseas allowances we offer. Other company benefits include re-location expenses to Cambridge where applicable.
Please write, with brief details of qualifications and career so far, to:
Mrs J. A. Macnab. Personnel Manager

Oil Exploration

G.S.I. Ltd, a subsidiary of Texas Instruments requires technicians with approximately four years experience in maintenance and repair of digital and analogue electronic equipment and qualified to ONC/HNC or City \& Guilds (F.T.C.).

The openings available are in overseas marine seismic operations and are based on a 26 month contract with opportunities for home leave during this period.

The type of people we are looking
for are single men who want a career that involves travel, work on shipboard Texas Instruments navigation ${ }^{\text {" }}$ and seismic digital recording equipment but will still be prepared to get their hands dirty.

If you feel that you fit the qualifications listed and are looking for a job that is not " 9 a.m. to 5 p.m." * Contact David Kennedy, Personnel Department, G.S.I. Ltd, Canterbury House, Sydenham Road, Croydon, Surrey.Tel :01-686 6511, ext 257 .

Geophysical Service International Lid.

VISUAL AND
 AURAL AIDS TECHNICIAN

Applications are invited from suitably qualified persons to maintain and repair a range of Audio and Video equipment including T.V. Receivers in schools and other Education Establishments.
Average weekly earnings including bonus up to 650 per 40 hour week.

CROYDON

Applications to (or further particulars may be obtained from) The Superintendent, Croydon Education Committee, Service Centre, Princess Road, Croydon, CRO 2QZ. Tel: 01-684 9393.
[4506

THE MOTOR INDUSTRY RESEARCH ASSOCIATION

ELECTRONICS ENGINEER

Required

To work with a small team in the design, development and commissioning of a wide range of specialised instrumentation and test equipment. Practical experience should include the designand construction of equipment using analogue and digital integrated circuits. Preference will be given to graduate engineers, but applications are also invited from candidates with equivalent qualifications and didates with equi
relevant experience.
Apply in writing to the Personnel Manager, The Motor Industry Research Association, Watling Street, Nuneaton, Warwickshire CV10 OTU, giving age, experience, qualifications and current salary, and quoting CHGM. [4530

HER MAJESTY'S GOVERNMENT COMMUNICATIONS CENTRE

HANSLOPE PARK MILTON KEYNES MK19 7BH

has vacancies in the following fields of R \& D work:
(a) HF Communications
(b) VHF/UHF Communications
(c) Communication Field Trials
(d) Acoustics
(e) Optics including Infra-Red
(f) Microwave
(g) General Circuit Design—Analogue, Digital
(h) Statistics/Operational Analysis/Systems Analysis

Most posts will be at Hanslope Park but some will be in London.
Candidates for post (h) should be experienced scientists/engineers who have specialised later in one of the required fields. An ability to deal with nontechnical people is essential.
Appointments will be made within the grades of Higher Scientific Officer except for (e), (f) and (h) where appointments may also be made within the Senior Scientific Officer grade. In addition to the salary scales quoted, all posts attract the Threshold Agreement Payment ($£ 229$ p.a.) and a non-contributory pension.

HIGHER SCIENTIFIC OFFICER

Applicants should be under 30 years of age but this requirement may be waived if special qualification or experience can be offered. They should have one of the following qualifications:
(a) A degree in a scientific or engineering subject
(b) Degree-standard membership of a Professional Institution
(c) A Higher National Certificate or Higher National Diploma in a scientific or engineering subject
(d) A qualification equivalent to (c) above

In addition the following relevant experience is required:
(a) Applicants with Ist or 2nd class honours degrees-at least 2 years post-graduate experience.
(b) Applicants with other qualifications-at least 5 years post qualification experience.
Salary Scale: $£ 2,46 \mid-£ 3,371$ with entry point dependent upon experience beyond the minimum required.
SENIOR SCIENTIFIC OFFICER
Applicants should be at least 25 and under 32 years of age, although the upper age limit may be waived if experience of special value can be offered.
Applicants should have obtained a |st or 2nd class honours degree and have had a minimum of four years appropriate post-graduate experience. Salary Scale: $\{3,157-\{4,441$. Entry will normally be at the minimum of the scale but applicants with experience of special value may be entered above the minimum.

Applications, stating the field of work and grade required, should be made to
Administration Officer
HM Government Communications Centre
Hanslope Park
Hanslope
MILTON KEYNES MK19 7BH
[4478

PROJECT DEVELOPMENT ENGINEER

To consolidate and further develop an established product and also look after the engineering and test requirements of the product in production. H.N.C. in Electrical/Electronic Engineering, with some years electro-mechanical experience would be required.
Applications giving full career details should be sent in confidence to:

> Mrs. J. I. Standfield,
> Personnel Officer,
> GEC Medical Equipment Limited,
> East Lane,
> North Wembley,
> Middlesex.

OMAN

DHOFAR REGION TELEVISION SERVICE

We are recruiting on renewable one-year contracts

Staff-Engineers-Management

for the complete maintenance and operation of the television service.
If you work in television please apply for further information:
MANAGEMENT
PROGRAMME STAFF
ENGINEERS (STUDIO, TX \& M/W \& O.B.) OPERATIONS STAFF/ENGINEERS
ACCOUNTS \& ADMINISTRATION
OFFICE STAFF
LIGHTING
ELECTRICIANS
NEWSCASTING etc.
Let us discuss with you your abilities for these interesting and important positions.
Phone: Tony Owers 01-573 7352 for more information.

\star VERY GOOD SALARY

* FREE FAMILY PASSAGE
* NO INCOME TAX PAYABLE IN OMAN
* FREE FURNISHED ACCOMMODATION
\star SPECIAL END-OF-CONTRACT BONUS
\star WE PAY LOCAL EDUCATION FEES
* COMPREHENSIVE FREE INSURANCE, health. DENTAL, ETC.
* HARD WORK IS NECESSARY

PERSONNEL \& ELECTRONICS LTD.

GOVERNMENT OF BOTSWANA
 EXECUTIVE ENGINEER

Required by the Department of Posts and Telecommunications to be responsible to the Assistant Director of Telecommunications for (a) co-ordination of planning, installátion and maintenance of all telecommunications equipment, (b) supervision of Senior Assistant Engineers, (c) expenditure control, (d) preparation of annual estimates and (e) short term planning for network extension.
Candidates, between 40-55 years of age, must possess a recognised degree in Telecommunications Engineering and have at least 5 years' professional experience.
Starting salary up to maximum of $£ 4,610$ in scale $£ 2,800$ to $£ 5, \mathbf{3 5 0}$ according to qualifications and experience, which includes an allowance normally tax-free in scale $\mathbf{£ 6 6 0}$ to $\mathbf{£ 1 , 7 5 2}$.
Engagement is for one tour of 24-36 months in the first instance. Gratuity 25% of total basic salary. Generous leave. Subsidised accommodation. Family passages. Children's education allowances and holiday visit passages. Interest-free car loan and tax-free Appointment Grant payable in certain circumstances.
The post described is partly financed by Britain's programme of aid to the developing countries administered by the Ministry of Overseas Development.
For further particulars you should apply, giving brief details of experience to: CROWN AGENTS, M Division, 4 Millbank, London SW1P 3JD, quoting reference number M2K/740818/WF.

B-DNI
 agents

Technical Officer (Components)

British Airways Group Management Services has a vacancy for a Technical Officer to organise and supervise the Central Technical Stores of the Telecommunications Engineering Department.

He will be expected to maintain a close liaison with manufacturers and distributors and keep abreast of rapidly changing technology in the compartment field. He will also work closely with the Accounts and Purchasing sections of Group Management Services.

The responsibilities also include arranging for the shipping and transport of equipment and components to UK and overseas stations, clearing equipment through Customs as required, meeting the requirements of maintenance terms for the supply of components, advising of suitable alternatives where appropriate and providing a technical advisory service on components and accessories.
Applicants should have at least five years' experience in an electronics design or maintenance environment, and preferably an HNC or equivalent certificate in elec tronics or communications. Experience in purchasing and components supply would be an advantage.

The job is based at Heathrow Airport and carries a starting salary of $£ 3,341$ which includes a London Weighting Allowance of $£ 200$.
Additional benefits include an excellent contributory pension scheme, a first-class sports and social club and opportunities for concessional holiday air travel worldwide.
Please write, giving details of age and experience, quoting reference 458/WW/MA, to:
Manager Selection Services, British Airways, PO Box 10, Heathrow Airport-London. Hounslow TW6 2JA.

Applications are invited from Marine Electronic/ Communications Engineers

with a minimum of five years experience. The positions are available with a rapidly expanding Middle East Company and call for a wide background in the maintenance and servicing of Marime Electronics, Radar and Communications equipment Applicants should show evidence of having recognised and qualified experience in any three of the following fields:

1. Low and medium Power MF/HF

Transmitters and Receivers
2. Low Power Solid State SSB Transceivers.
3. Marine VHF Radio Telephone Equipments.
4. Marine navigating Radar equipments and' other navigational aids.
5. Gyro Compass and ship steering Servo Systems.
Successful applicants, following interviews in London will be engaged on a contract basis in the Arabian Gulf. Initial salary will be in the region of $£ 3,500-£ 4,000$ pa. plus fringe benefits and bachelor status accommodation, one month's overseas leave, return air passage paid annually, plus earned gratuity. Possibilities would be available for married status after proving ability in this area. Replies only will be sent to engineers actively servicing equipments at this time in a similar senior position. Reply in confidence to:

The Managing Director,
P.O. Box 1788.

Dubai,
United Arab Emirates.

UNIVERSITY OF

 NEWCASTLE UPON TYNE Department of 'Photography and Teaching Aids Laboratory
Colour
 Television Engineer

To be responsible to the Head of the Film and Television Section for the operation of an off-air colour recording. playback and transeription service. He will begin to assist in the immediate planning of a new colour system to be commissioned in 1976 for the new Dental School and Medical School and or the subsequent phased development of University.

Applicants should have several years' experi ence of colour programme origination and video tape recording, and preferably some planning. He must be familiar with colour and monochrome studio equipment of all types, and capable of establishing and maintaining professional standards.
Salary at a suitable point on the scale £1,683-£2,931 plus a threshold payment of E 229.68 per annum, according to age, qualifications and experience. For an exceptionally well qualified and experienced candidate the appointment may be made on the higher scale £2,757. £4,341 (plus threshold) (scales are under review). Membership of an appropriate University superannuation scheme will be required.
Further particulars may be obtained from the Registrar, The University. Newcastle upon Tyne, NEI 7RU, with whom applications (three copies) stating age, education, job experience, availabitity for interview and later than 30th April 1975. Please auote reference W.W. 4568

(1) | 1 LIMITED,

Manufacturers of modern FM radio communication systems for all branches of industry, transport and Public Authorities require additional

TEST TECHNICIANS

based in Camberley to assist in the final testing of personal and mobile radio equipment and sophisticated control systems.
Knowledge of RF, digital and thick film techniques desirable with academic levels to ONC or C. \& G. Final, but for an applicant with exceptional experience and knowledge these qualifications may be waived.
Pleasant working conditions, good salary and overtime. Opportunities for further study and training.
Hours: Monday-Thursday:
$8.15 \mathrm{am}-1.00 \mathrm{pm} .1 .30 \mathrm{pm}-4.45 \mathrm{pm}$. Friday:
$8.15 \mathrm{am}-1.00 \mathrm{pm} .1 .30 \mathrm{pm}-3.30 \mathrm{pm}$.
Apply: The Personnel Officer,

Storno LIMITED,

Frimley Road,
Camberley. Telephone: 027629131

-1 1 1 SERVES THE NATION.

14555

$\begin{array}{lllllll}M & E & R & C & \mathbf{U} & \mathbf{R} & \mathbf{Y}\end{array}$

PROJECT ENGINEERS BROADCAST TELEVISION

To cover and extend our increasing international commitments, we are seeking to further expand our team of engineers working on broadcast television systems design and installation.
This work involves both static studio installations and Outside Broadcast vehicle construction, and may be located at Uxbridge or Westbury, Wiltshire.
The potential ability and confidence to assume total responsibility for the planning and execution of complete broadcast systems is an essential requirement, together with the personality to deal with a wide variety of people in the course of this work.

The engineers we are looking for will have formal qualifications to at least HNC level or eguivalent, with detailed knowledge of one or more aspects of broadcast television. Experience of operational work within this sphere will be particularly useful. Overseas travel, occasionally for extended periods will be involved.
In return, we can offer you a varied, demanding and rewarding career with a young, vigorous company which is rapidly expanding and establishing a considerable reputation for itself in a highly competitive field.
Please write giving FULL details of your qualifications and experience or phone for an application form to:-

> UXBRIDGE 39876/39613 MERCURY ELECTRONICS, G ROCKINGHAM WHARF, ROCKINGHAM ROAD, UXBRIDGE, MIDDLESEX

ENGINEER (WithTVService Experience)

R.S. Components Limited, Britain's biggest distributor of electronic components, requires an experienced Engineer or Service Manager who is currently employed on TV service work. Ideally, he should be between 25-45 and possess a good academic background.

This is a new post and an exciting opportunity for an engineer who is eager to further his experience by becoming our technical adviser on component requirements in the field of TV and Audio Equipment servicing.

Duties will include component evaluation, specification and assisting in answering customers telephoned enquiries. Additionally, the candidate will be expected to maintain a close liaison with the service industry and manufacturers.

We can guarantee an interesting career which may occasionally involve travel in the U.K.

This new important post commands a good salary commensurate with ability and there is every opportunity for advancement. Excellent working conditions, generous holiday entitlement and pension scheme.

Write giving brief résumé of your career to date or ring for an application form to

Chief Engineer

R.S. Components Limited

13-17 Epworth Street, London
EC2P 2HA. Tel: 01-253 1222

- An Electrocomponents Group Company

CENTRAL BIRMINGHAM HEALTH DISTRICT

ELECTRONICS TECHNICIAN

(M.P.T. II)

A vacancy exists in the electronics section of the Medical Physics and Biomedical Engineering Department for an experienced Technician with H.N.C. or equivalent, competent to take responsibility for the servicing and development of biomedical electronic equipment throughout the Teaching District and to act as Deputy Head of the section. Experience of medical electronics advantageous, but good general electronic experience essential.

Salary: $£ 2,601-£ 3,390$ per annum, plus Threshold.

Further particulars and application form from the
PERSONNEL OFFICER,
QUEEN ELIZABETH MEDICAL CENTRE, EDGBASTON,
BIRMINGHAM B15 2TH.

TONGA

SUPERVISING BROADCASTING TECHNICIAN

required by the Tonga Broadcasting Commission to be responsible for the operation and maintenance of the Commission's two 10 Kilowatt sound transmitters, to install and maintain studio equipment, to run a radio retail store involving technical supervision in purchasing, selling and repairing of receivers and other equipment.
Candidates, under 55 years of age, MUST have a City and Guilds Telecommunications Technician Final Certificate Course 271 or equivalent with 10 years' experience in the operation of studio and transmitter equipment as well as in all aspects of a small broadcasting station with particular emphasis on sound transmitters.
Salary in scale $£ 2,125$ to $£ 3,400$ pa which includes an allowance normally tax free in scale $£ 504$ to $£ 1,404$ pa and $\mathbf{2 0 \%}$ cost of living allowance. Gratuity 20% of Local salary. Tour of 2 years.
Benefits include free passages, Government housing at moderate rental. Holiday visit passages and generous paid leave. An appointment grant of $£ 300$ and car loan of $£ 600$ may be payable.
The post described is partly financed by Britain's programme of aid to the developing countries administered by the Ministry of Overseas Development.
For further particulars you should apply, giving brief details of experience, to CROWN AGENTS, M Division, 4 Millbank, London SW1P 3JD, quoting reference number M2K/740928/WF.

CITY OF LONDON POLYTECHNIC

SENIOR ELECTRONICS TECHNICIAN

(GRADE 5)
required immediately in the Department of Biological Sciences for the maintenance, design and operation of electronic and other instruments, especially those used in Neurophysiology. The successful candidate must possess the relevant qualifications at HND/HNC or CGLI level, together with at least seven years relevant experience (including training period). Salary $£ 2,439-£ 2,895$ plus $£ 411$ London Weighting (starting point dependent on qualifications and experience). Apply, in writing, giving full details of qualification, experience, etc. and including the names and addresses of two referees, to the Laboratory Superintendent, Biological Sciences, Calcutta House Precinct, Old Castle Street, London EI 7NT.

University of Surrey

Audio Visual Aids Unit

TECHNICIANS

(T4 £2247-£2628)

(T2B £1860-£2187)
The AVA Unit is responsible for projection and allied services in 26 Central Lecture Theatres, and also provides services of photography, film and television for teaching and research throughout the University.

These new posts are for skilled technicians who will be responsible for installation, maintenance and repair of a wide range of Audio Visual equipment ranging from slide projectors to television. The Unit is well equipped for electronic and mechanical servicing, and instrument making and repair work.
For the Grade 2B post experience in one or more of these fields is essential, although training in specific techniques will be given where necessary:
For the Grade 4 post experience in electronic servicing is essential and candidates should hold an ONC or equivalent qualification.

Applications immediately on forms available from: Assistant Secretary (Personnel), University of Surrey, Guildford, or Tel: Guildford 71281 Ext. 452

SERVICE ENGINEER

We are the distributors of World renowned Tandberg Products and are looking for a Service Engineer who has had experience in the Service and Repair of domestic $\mathrm{Hi}-\mathrm{Fi}$ Equipment. Up to date Service Facilities and good working conditions, 5 day week with 3 weeks Annual Holiday. Wages up to $£ 2,500$ per annum depending on experience.

Please apply in writing with details of Career to date to Mr. D. D. Hamilton, London Manager, FarnellTandberg Ltd, 167, Hermitage Road, London N4 ILZ. 14578

Electronics Engineer

Our Research Function carries out innovative research through a number of project groups supported by certain essential specialised services. We are seeking an Electronics Engineer to join the Laboratory Services group in trouble shooting, maintenance and some development work.

Responsible to the Laboratory Manager, he will provide a service to all of the departments in our new research laboratories where the electronic equipment includes infra-red, ultra-violet, NMR and mass spectrometers as well as chromatographic equipment, calculators and recorders. There is also a Fourier transform NMR instrument incorporating a small computer.

The man we are looking for will be in his late twenties or thirties, qualified to HNC or possible degree level and he will have had some experience of service and development work preferably in a multi-disciplinary academic or industrial research laboratory. Specific experience in the field of NMR electronics would be an advantage. The person we appoint will be working largely without direct supervision and he should therefore be capable of accepting this degree of responsibility.

Roche Products Limited is part of one of the world's largest and most successful pharmaceutical companies and is itself one of the leading companies in the U.K. Working conditions are excellent and the Conditions of Service include some valuable fringe benefits.

Please apply in writing, quoting reference R50 to the Personnel Manager.

ROCHE

Roche Products Limited, PO Box 8, Welwyn Garden City, Herts AL7 3AY

Service Area

 PlanningEngineers£2488-£3019

The Independent Broadcasting Authority requires two Junior Engineers to assist Engineers in charge of field teams with the planning and execution of the UHF television service area surveys, RBL tests and other field work. The people appointed to the posts will also assist with the general UHF television and independent local radio planning work of the section.
Candidates should preferably be qualified to HNC or equivalent level and should have some basic knowledge of radio wave propagation and television principles, plus experience of radio frequency measurement.
The posts are based at Crawley Court, near Winchester, Hampshire, however a considerable amount of travelling throughout the UK will be involved for which appropriate allowances will be payable. Candidates should have a current driving licence and should preferably have the ability to climb acrial support structures up to about 150 feet.

INDEPENDENT BROADCASIING AUTHORITY

Please write or telephone for an application form quoting Ref. DT/2670 to:- Miss Vanessa Aldred, Independent Broadcasting Authority, Crawley Court, Winchester, Hants. SO2I 2QA. Tel: Winchester 822327.

4537

ELECTRONIC CRAFTSMEN

Is your present job routine and uninteresting?
We are a research establishment and our craftsmen are engaged on a wide variety of work in the fields of prototype and small batch wiring and assembly, test and inspection, maintenance fault finding and repair. Why not join us and enjoy working in first class conditions in the country.

You can expect gross earnings including overtime of $£ 45$ per week, and we can offer good housing at low rental (for applicants who reside outside the radius of our Assisted Travel Area) together with 3 weeks paid holiday with holiday bonus, free pension and excellent sick benefit scheme.

Applicants who should have served a recognised apprenticeship or have had equivalent training together with experience in one of the fields detailed should 'phone Tadley 4111 (STD 07356 4111) Ext. 5230, or write to:

INDUSTRIAL RECRUITMENT OFFICER
 (PA/79/WW) PROCUREMENT EXECUTIVE
 MINISTRY OF DEFENCE
 AWRE ALDERMASTON
 READING, BERKS.
 RG7 4PR.

ELECTRONICS TECHNICIAN JUNIOR ENGINEER

Systems Company requires 20/30 years old Engineer for development, Commissioning and Maintenance of minicomputer based remote batch terminals.

Good opportunity for either an experienced Man to establish himself in a fast growing and friendly Company or for a Young Man to acquire experience of the latest technology in mini computers and peripherals.
Full training will be given. Some travel U.K. Salary range $£ 1,800-£ 2,600$ p.a. Write or phone: Peter Rogers or Steve Clifford.

TASK TERMPNALS LTD.
117, Cleveland Street, London, W.I.
01-637 4516

SIEMENS
 MEDICAL ENGINEERING
 Service and Sales Engineering

Service and Sales Engineers required for Electro-Medical Department, to work in the London area. Previous experience in this field an advantage, but knowledge of electronics essential.
Applications to:

SIEREX LTD.,

Heron House, 109 Wembley Hill Road,
Wembley, Middlesex, HA9 8BZ.
[4570

HARINGEY

Education Services

Full-time

Luborafory Technician

required at Stationers' Company's School, Mayfield Road, N.8, to work 35 hours per week x 52 weeks per annum.
Salary rising to $£ 2,677$ per annum including threshold payments. Commencing salary according to qualifications and experience.
Minimum Qualifications: Ordinary National Certificate or Ordinary National Diploma; City and Guilds Laboratory Technicians Certificate; 4 G.C.E. passes with 2 at ' A ' Level in appropriate subjects; Membership of Institute of Science Technology OR an equivalent suitable qualification OR 5 years suitable experience. Qualifications in Electronies would be an advantage.
Candidates will be responsible for the maintenance of the Language Laboratory and will be required to of the Language Laboratory and will be required to
assist in the upkeep of Audio Visual aids throughout assist in the upkeep of Audio Visual aids throughou
the school and help monitor a computer link-line.
The post is ideal for a candidate who wishes to gain experience in the maintenance of a fairly wide range of equipment.
Application forms obtainable from Chief Education Officer, Somerset Road, N.I7, to be returnable 7th Mareh, 1975.

APPOINTMENTS

BRUNEI

TELEVISION ENGINEER

* Posting Bandar Seri Begawan
* Engagement for three years initially
* Gratuity 25\% of total salary drawn
* Free family passages
* Furnished quarters at reasonable rental
* Children's education allowances and holiday visit passages
* Interest free car loan
* There is no income tax payable in Brunei at present

The Brunei Television Service require a Supervisory Engineer (Transmitters) to be responsible to the Superintending Engineer for the efficient operation and maintenance of all transmitting equipment; also routine inspection and maintenance of aerials and feeders on towers $400 / 450 \mathrm{ft}$. high and to undertake the training of local staff. Candidates, preferably under 55 years of age, must hold a recognised qualification in colour television engineering, and have spent at least 5 years in a supervisory position in a PAL colour television transmitting station. Experience should include parallel operation of Band III transmitters of 5 KW and higher output towers and the installation. operation and maintenance of microwave link equipment. Salary. according to qualifications and experience in the scale $£ 3,166$ to £5.750 approximately.

For further particulars you should apply, giving brief details of experience, to CROWN AGENTS, M Division, 4 Mitlbank, London SW1P 3JD, quoting reference number M2K/740804/WF.

Maintenance Engineer

£3238-£.3928

We require an experienced Aerial Engineer in the Station Operations and Maintenance Department to be responsible for the maintenance of UHF, VHF and SHF Transmitting and Receiving Aerial Systems.
The post is based at the Authority's North Regional Office in Leeds and the duties will mainly be confined to stations within the North of England, although duties throughout the UK may from time to time be required.
The work will require the successful applicant to travel extensively in the fulfillment of his duties (a car will be provided). In addition, because of the nature of the broadcasting service, duties outside 'normal office hours' will be required.

A minimum of three years' experience in the microwave transmission field on work involving aerial arrays and coaxial line assemblies and filters used in broadcasting bands is essential.
Applicants should preferably be qualified to HNC level or equivalent and/or should be able to demonstrate a sound theoretical understanding of aerial and transmission line systems.
Applicants should possess a current driving licence and should be prepared to climb masts up to 1250 feet in height.
The commencing salary will be within the above range, depending upon qualifications and experience.

Please write or telephone for an application form quoting reference number 2596 to:
Vanessa Aldred, Independent Broadcasting Authority, Crawley Court, Winchester, Hants. Telephone: Winchester 822599.

GUY'S HOSpITAL

 MEDICAL PHYSICS

 MEDICAL PHYSICS TECHNICIAN GRADE II TECHNICIAN GRADE II AND AND

 ELECTRONICS TECHNICIAN/

 ELECTRONICS TECHNICIAN/ ENGINEER GRADE III ENGINEER GRADE III
 Department of Clinical Physics and Bioengineering

The Grade II Technician is a member of a team of physicists and technicians engaged in a variety of clinical instrumentation projects. ONC, HNC or higher qualification required together with 2 years electronics experience in Technician III Grade or other relevant technical experience. Basic salary from $£ 2,601-£ 3,390$, starting point according to experience.

The Grade III Technician post is for an Electronics Technician/Engineer engaged upon maintenance, repair and calibration of a wide maintenance, repair and calibration of a wide in electronics required plus at least 3 years elec. tronic instrument maintenance experience. Basic Salaryy from $£ 2,190-£ 2,817$.

Apply to Personnel, Guy's Hospital, London SE1 9RT. Telephone 01-407 3662 Ext. 68.
[4514

RADIO TECHNICIAN FOR
 CENTRAL AMERICA

Needed to work in Guatemala with the Radio Schools Movement, training a team of Guatemalans in the maintenance and repair of station equipment. A British Volunteer Pragramme post.
Information:
Paddy Coulter, Overseas Vołunteers/CIIR 41 Holland Park, London W.11. [\$577

KRLINGBECK HOSPITAL, YORK ROAD, LEEDS 14

AN

ELECTRONIC TECHNICIAN
 (MEDICAL PHYSICS TECHNICIAN III)

is required for the Cardiovascular Unit. The hospital is the Regional Cardiothoracic Centre.
The work involves the servicing of patient monitoring and biochemical analysis equipment.
Basic qualifications required: ONC, HNC or HND. Experience in repair of audioamplifiers or TV servicing would be an advantage.
 plus current cost of living allowance.
Application form and job description from Personnel Officer, Seacroft Hospital, York Road., Leeds LS14 6UH. Telephone 648164 Ext. 253.

BEACON BROADCASTING

the Local Radio Station for Wolverhampton and the Black Country

 invites applications for the post of
CHIEF
 enginetr

The applicant must have a sound technical knowledge of local sound broadcasting and should ideally have had experience in setting up a local station and all the I.B.A. technical requirements.
Write giving details of past experience to:
BEACON BROADCASTING LIMITED
56/57 QUEEN STREET, WOLVERHAMPTON

TEST ENGINEERS

Thorn Automation Limited, a recognised leader in the field of Electronic Industrial Control Equipment wish to appoint several Test Engineers to test a wide range of electronic industrial control equipment.
Applicants should have had experience in the testing of electronic control equipment, together with some experience in digital logic techniques and S.C.R. regulations.
The company is situated in pleasant rural surroundings within easy reach of new housing developments and several large towns.

If you would like to know more about these interesting and rewarding positions telephone or write to:

Peter Williams,

Personnel Officer.
THORN AUTOMATION LIMITED,
P.O. Box 4, Rugeley. Staffs WS 15 1DR

Telephone Rugeley 5151

APPOINTMENTS

R EDIFON TELECOMMUNICATIONS LTD., Lon don, S.W.18, have a vacancy for an enthusiastic, practical man with some experience of Volume Production Testing in the electronics industry. Phone 01-874 7281 and ask for Len Porter.
"HE MIDDLESEX HOSPITAL, London, W.1. tions are invited for the post of Medical ApplicaTechnician Grade III in the Department of Clinical Measurement. Qualifications will be based on Whitley Councils Professional and Technical ${ }^{\circ}$ Scales. Duties will include a wide variety of work with apparatus used for physiological measurement and candidates should possess suitable qualifications i.e. some electronics experience and an ONC; HNC, HND or some other appropriate science degree. Applications should be made to the Establishment Officer, The Middlesex Hospital, London WIN 8AA
as soon as possible. Psychological Medicine at St, Pancras Hospital. The post is funded by a Grant from the Leverhulme Trust and will be available for two years, Salary according to age and qualifications within the range of $£ 1,860$ to $£ 2,187$ plus London Weighting- $£ 410$ and Threshold Payments. Applications to and further particulars from Dr. D. A. Sturgeon, Department of Psychological Medicine, St. Pancras Hospital, 4, St.
Pancras Way, London, N.W.I.

SITVATIONS WANTED

CXPERIENCED Radio/Technician 23-years, seas/U.K. C \& G TT4, Fully conversant went overern radio telephones/UHF/VHF/control with modpractice. Available at reasonable short notice Box No. WW 4505.

SITUATIONS VACANT

ELECTRONICS ENGINEER required for Central London recording studio. Experience in audio electronic work. Must be keen and prepared to work long hours. Box No. WW 4548.
ELECTRONIC Wireman and Tester, A vacancy ing company for small, West Country manufacturon printed circuits, to lay out circuits, to work prototypes, to evaluate, test and fault-find on standard and prototype units, and to generally carry out quality control inspection. Applicants must have previous industrial experience of this work. Qualifications are not important, provided that the individual has experience and enthusiasm. Applica tions, giving full details of age, experience, etc., to Eox No. WW 4519.
CLECTRONIC engineer to design equipment for use of the physically handicapped. Knowledge/ munications, computers preferred. Interesting, comof work with small Company in pleasant location Grange Electronics Ltd., Stone Lane, Wimborne Dorset.
[4551

(1世 ARTICLES FOR SALE

A UTOMATIC TEST SET, teleprinter, tape punch, double 19 in . datum case on R. S. J. wheeled dolly. £60. Medway 55888 and 33168 . $[4546$
A ARVAK ELECTRONICS, 3 Channel SoundLight Converters from £17; Strobes, £21; Rainbow Strobes, £133. Free catalogue. 98A (W), West Green Road, (Side Door), London NI5 5NS. 01-800
8656. 23
BRENNEL M.K. 6 deck, new, unused, bought for WW Stuart Tape-Recorder project, but latter never built. Cost $£ 85$. Offers to Box No. WW 4503.
CLEARING distributor stocks, transistors, diodes, components, etc. Sample pack 65p incl., postage Lodge Close, Rickmansworth Herts. Mail Maple Only. [4499
CONSTRUCTION AIDS-Screws, nuts, spacers, etc., in small quantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia printed circuit boards-masters, hoard, one-off or small numbers. Send 9p for list Ramar Constructor Services, 29 Shelbourne Road, Stratford on Avon, Warwks. Tel. Stratford on Avon (std 0789) 4879. [28
DIGITAL CLOCK CHIP, AY-5-I224, with data and circuit diagram, $£ 3.66$ plus VAT. 'Jumbo' LED digits (16 mm high) type DL-747, only $£ 2.04$ 94 New Chester Road, Wirral, Merseyside L62 94 N .

$[83$

HEATH $10-102 \mathrm{DC}-5 \mathrm{MHz}$ Scope. Solid-State. 1 Like new. Less than 25 operating hours. £60. 26 Oberon Close, Hartford, Huntingdon, Cambs.

LADDERS unvarnished 14ft. 1in. closed, 25ft. 4 in .

Articles for Sale-Continmed
COLOUR. UHF and TV SPARES. Colour and UHF lists availabie on request. 625 IV. If unit, uitable for Hi-Fi amp or tape recording, f6.75, P/P P/P 15 p . Bush C「V 25 . New convergence panels plus P/P 15p. Bush CTV 25 . New convergence panels pius yoke and blue lat., $£ 3.85$, P/P 40 p . New Philips single trols, coils, P.B. switches, leads and yoke $£ 5.00, \mathrm{P} / \mathrm{P}$ 40p. New Colour Scan Coils, Mullard or Plessey plus conversence yoke and blue lateral. $£ 10.00, P / P 40$. Mullard Ari025/05 Convergence Yoke, £2.50, P/P 35p. Mullard or Piessey Blue Laterals, 75 p P/P 20p. BRC 3000 type Scan Coils, $£ 2.00 \mathrm{P} / \mathrm{P} 40 \mathrm{p}$. Delay Lines DL20, $£ 3.50$, DLIE, DL1. £1.50, P/P 25p. Lum Delay Lines, $50 \mathrm{p}, \mathrm{P} / \mathrm{P}$ 15p. EHI Colour Quadrupler for Bush Murphy CTV $25111 / 174$ series C8.25, P/P 35p. EHT Colour Tripler ITT TH25/1TH suitable most sets. $£ 2.00$ P/P 25p. KB CVCL Dual Stand, convergence panels complete incl. 22 controls Makers Colour surplus/salvaged Philips G8 panels Makers Complour surplus/salvaged 1 Philips $\mathbf{G 8}$ panes part complete; Decoder, $£ 2.50$, if incl. ${ }^{5}$ modules, 25.25. T. Base, $£ 1.00$, P/P 25p. CRT base, 75p, P/P 15p.00, P/P 35p. ORT Base 75p, P/P 20p. B9D valve bases $10 \mathrm{p}, \mathrm{P} / \mathrm{P}$ 6p. VARICAP' TUNERS. UHF ELC 1043 NEW, £4.50. Philips VHF for Band 1 and 3, £2.85 incl. data. Salvaged VHF and UHF Varicap tuners, $£ 1.50, \mathrm{P} / \mathrm{P}$ 25p. UHF TUNERS NEW, Transistorised. $£ 2.85$ or incl. slow motion drive, $£ 3.85$. 4 position and 6 pos. push-button transistorised, $£ 4.95$. All tuners P/P 35p, MURPHY 600/700 series complete UHF Conversion Kits incl. tuner, drive assy., 625 IF amplifier, 7 valves, accessories housed in cabinot plinth assembly, £7.50 P/P 50p. GEC 405/625 chassis incl. cet., $£ 1.50$ P/P 35 p THORN 850 Dual standard time base panel, 75 p P/P 35p. PHILIPS 625 IF amplifier panel incl. cct., 75p. P/P 30p. VHF
 Philips 19TG170, GEC 2010, etc., £2.50. PYE miniature incremental for 110 to 830 , Pam and Invicta, £1.00. A.B. -niniature with UHF injection suitable K.B. Baird, Ferguson, 75p. New fireball tuners Ferguson, HMV, Marconi, $£ 1.80$ P/P all tuners 30p. Mullard 110° mono scan coils, new suitable all standard Philips, Stella, Pye, Ekco, Ferranti, Invicta, $£ 2.00$, P/P 35p. Large selection LOPTs. FOPTs available for most popular makes. $200+200+100$ Microfarad 350 v Electrolytic, £1.00 P/P 20p. MANOR SUPPLIES, 172 WEST END LANE, LONDON, N.W.6. Shop premises, callers welcome. (No. 28, 59, 159 Buses or ORDER: 64 GOLDERS MANOR DRIVE, LONORDER: ${ }^{\text {DON. N.W.II. Tel. 01-794 }} 8751$.

LOW COST IC MOUNTING. Use Soldercon IC socket pins for 8 to 40 pin DIL's. 70p (plus $5 p$ VAT) for strip of 100 pins, £1.50 (plus 12 p VAT)
for 3 strips of $100, £ 4$ (plus 32 p VAT) for 1,000 . for 3 strips of $100, £ 4$ (plus 32 p VAT) for 1,000 53c Aston Street, Oxford. Tel: 086543203. [67

OLD COPIES, Wireless World, April 1913-14 (No. (Bound) July Bound), January 1929-June 1932 J. Greaves, 82, Hodge Hill Common, Birmingham B36 8AG.
D.D.P. 8 MINICOMPUTER with ASR 33 Interface; but without peripherals, £425. P.D.P. 8/S in rack cabinet, c/w A.S.R. 33 \& stats. software writer, £650. I.C.L. 2501 cassette tape unit, $\mathbf{f} 225$ Monroe Model 1210 'Monrobot', small desk COMPUTER incorporating A.S.R. 33 on stand $\&$ mag. memory drum, f225. A.S.R. 33 Teletype in A.S.C.I.I., $£ 225$. Elliott tape punch \& reader with handlers, $£ 32$. Friden tape reader, ${ }^{29}$. FLEXO WRITERS: Model 2 c/w desk etc. £385. Model 1, E125. Model 1 (upper case), ${ }^{\text {E4S }}$. Singer PRO step 5 memory fis Singer Calculator displaying step, 5 memory, ${ }^{\text {finc. Singer Calculator displaying }}$ D.T.L./T.T.L. \& offer interesting potential. Ferranti D.T.L./T.T.L. \& Off DR UM, £29. S Band Travelling Wave mag. memory DR MM, £2. S Band Travelling wave MATIC 'GOLFBALL' TYPEWRITERS and ITEL TERMINALS from $£ 250 \mathrm{~s} / \mathrm{hand}$, and $£ 700$ NEW. Descriptive Stock List, 25p (refundable). COM PUTER APPRECIATION, Castle St., Bletchingley Surrey RH1 4NX. Godstone 3106.

PYE VHF mobile AM10 Boot mount multi - channel Radio C/ with controls cables cradle accessories and Aerial just over-hauled as new, 450 .
[4550
Phone 01-464 8417 evenings.

THYRISTORS BT 106 Branded Product 95p each. 1 Tantalum Bead Capacitors 1 mfd 35 V 22 mfd . 16V. All at 10 p each. Prices are exclusive of VAT. CWO plus p. \& p. 10p. Pace Electronics Ltd., 138 Glebe Road, Deanshanger, Milton Keynes. MK19] [4497
6NB.

TRIO Model 9R-59DS Receiver very little use, $£ 25$ Griffiths, Eymore House, Trimpley, Bewdley,
Worcs. Tel. Arley 449 .

WACUUM is our speciality, new and second-hand. \checkmark rotary pumps, diffusion outfits, accessories, coaters, etc. Silicone rubber or varnish outgassing equipment from $£ 40$. V. N. Barrett (Sales) Ltd.
[Mayo Road, Croydon. $01-6849917$.

WALVES AND TRANSISTORS-Valves 19301975, 2,000 types stocked, many obsolete. List 15p. Transistors list 15p. Cox Radio (Sussex) Ltd. The Parade, East Wittering. Tel: West Wittering 2023.

60 KHz MSF Rugby and 75 KHz Neuchatel Radio Receivers. Signal and Audio outputs. Small compact units. Two available versions. Toolex
Bristol Road. Sherborne (3211), Dorset.

600,000 CAPACITORS-POLYESTER C280-250v \& 6400 v , values from 0.01 UF to 2.2 UF mixed 100 $£ 1.00,1000-£ 8.00$. Electrolytics from 1UF to 1000UF Mailorder, Ramsbottom, Bury, Lancs. [4531]

51 MM B. \& H. 631 Sound Projector C/W Hill Seaker \& Transformer, £135. Hilton, 9 Wes Hill, Dartford 20009.
writer, $£ 650$. $1 . \mathrm{C} . \mathrm{L}, 2501$ cassette tape unit, $£ 225$.

ARTICLES WANTED

SURPLUS Components, Equipment and Computer 772501 .

WANTED, all types of communications recelvers W and test equipment.-Details to R. T. \& I. Electronics, Ltd., Ashville Old Hall, Ashville Rd., WANTED WW copies for March 1971 and June price paid. Bovill, 12, Gorselands Close, Darinell Park. West Byfleet, Surrey. Tel: Byfleet 46163.

WE BUY modern 16 mm sound projectors. Burgess Avenue, Chiswick W.4. 994 5752/5953. Thornton

F CAPACITY AVATLABLE
 A IRTRONICS LTD., for Coil Winding-large or olies. Suppliers to P.O. M.O.D. Boards Assemplies. Suppliers to P.O.B. M.O.D., etc. Export SE 13 7PE. Tel. 01-852 1706 .
 BATCH Production Wiring and Assembly to sample or drawings. Deane Electricals, 19 B Station Parade, Ealing Common, London, W.S. Tel:

CAPACITY available to the Electronic Industry. Precision turned parts, engraving, milling and grinding both in metals and plastics. Limited capacity available on Mathey SP33 JIG BORER. Write or lists of Tel. 01-985 7057. I Mackintosh Lane, E9 6AB.

CAPACITY available for the Assembly of Elec-- tronic or Electrical Components P.C.B.'s, etc. Small or large batch production. Remploy Ltd., Jupiter Road, Norwich NR6 6SU.
DESIGN, development, repair, test and small production of electronic equipment. Specialist in Electronics Ltd., 184 Royal College Street, London NW 1 9NN. Tel: $01-2670201$.
CNGINEER makes anything unusual. Inventors C models, displays. Special tools and equipment. Seymour, 30 Devonshire Drive, Stapleford, Notting-
ham. ham.
CXPERIENCED Constructor Seeks P.C.B. Production Homework. Modest Fees. Please contact: John Francis, 8, Portnall House, Portnall Road,
London, W9 3BH. Phone: $01-969 \mathbf{3 7 4 2 .}$ LABELS, NAMEPLATES, FASCIAS on anodised Lualuminium or perspex. Any quantity, superb quality, fast delivery. RECTORY LANE, GUISBOROUGH (Tel: 02873-4443), YORKS.
$\mathbf{S}^{\text {MALL }}$ Batch Production, wiring assembly, to Sample or drawings. Specialist in printed circuit assemblics. D. \& D. Electronics,
H2 harlow, Essex. Tel: Harlow 33018.

BUSINESS OPPORTUNITIES

ONDON COMPANY requires Partner to establish ness in ondependent local branch of expanding busithe British isles. Box No. WW 4498.

COURSES

R ADIO and Radar M.P.T. and C.G.L.I. Courses. R Write: Principal, Nautical College, Fleetwood, FY7 8JZ.

NEW GAAM AND SOUND EQUIPMENT

GLASGOW HI FI, Recorders, Video, CommunicaCions Reciever always available we buy sell and Audinge for photographic equipment. Glasgow, G.2; 31 Sauchiehall Street, Glasgow, G.1; 8/10 Glassford Street, Glasgow, G.2. Tel: 041-221 8958.

RECEIVERS AND AMPLIFIERS- SURPLUS AND SECONDHAND

HRO RxSs, etc. AR88, CR100, BRT400, G209, , Old Hall, Ashville Rd., London, E. 11 Ley., 4986.

SIGNAL generators, oscilloscopes, output meters, S wave volimeters, frequency meters, multi-range meters, etc., etc., in stock.-R. T. \& I. Electronics, Ltd., Ashville Old Hall. Ashville Rd., London, E. 11.
[64
Ley. 4986 .

SERVICE AND REPAIRS

SCRATCHED TUBES. Our experienced polishing service can make your colour or monochrome tubes as new again for only $£ 2.75$, plus carriage $£ 1$. $\begin{array}{llll}\text { Somercote Louth, Lincs, or 'phone 0507-85 } & 300 . \\ {[27}\end{array}$

Abstract

TAPE TRECORDINA ETC IF QUALITY, durability matter, consult Britain's suitable tapes. (Excellent fund raisers for schools) Modern studio facilities with Steinway Grand.Sound News, 18 Blenheim Road, London, W.4. 01 9951661.

IF QUALITY, durability matter, consult Britain's - oldest transfer service. Quality records from your suitable tapes. (Excellent fund raisers for schools) Modern studio facilities with Steinway Grand. Sound News, 18 Blenheim Road, London, W.4. 019951661.

VALVES WANTED

[^7]
The Shop Window for the Very Best．．

TOSHIBA VALVES		Type	Price Each（p）	Type	Price Esch（p）	DIDOES Type Each（p）	INTEGRATED CIRCUITS	
Trpe	Price（p）					日A115 7		Price
DY87 DY802	30.0 30.0	AD149 AD164	318	［ ${ }^{\text {ED124 }}$	45	$8 \mathrm{BAT45}$ 14	Trpe ${ }_{\text {TAA550 }}$	Esch
DY802	30.0 28.0	${ }_{\text {ADt }} \mathrm{A} 22$	38	8 8132	39	9A148 19	TAA 700	c7．95
$\begin{aligned} & \text { ECCB2 } \\ & \text { EF8O } \end{aligned}$	28.0 29.5	AFF14	24	BD160	£1． 39	BA154／201 11	TBA120as	¢2．95
EF80 EF183	29.6 34.5	AF115	21	BD235	$4{ }^{4}$	BY126 11	tbat20Sa	ع1．00
EF184	34.6	AF116	22	80297	52	BY127 12	tba4800．	£1，40
EH90	35.5	AF117	19	B0x32	¢2．40	$\begin{array}{ll}8 Y 199 & 27 \\ \text { BY206 } & 21\end{array}$	TBA520Q	£2，35
PCgCo	24.6	AF118	50	BF115	20	BY238 25	TBA5300	61.75
PCC89	40.0	AF139	35	BF160	15	OA90 6	TBA5400	¢1．75
${ }^{\text {PCC6189 }}$	41.0	AF178	45	BF 167	20		TBA560CQ	¢2．40
PCF80	31.5	${ }_{\text {AFP }}^{\text {AF180 }}$	45 45	BF173	20	iN60／OA91 5	TBABOO	E150
PCF86	39.0	${ }_{\text {AF }}$ AF39	40	8F178	45	NEW TOSHIBA TUBES	T8A9200	E2．90
${ }^{\text {PCFP801 }}$	42.0	${ }_{\text {AF }}$ AF239	60	EF189	11	19＊A49／191X E48．95	TBA9900	£290
PCF602	40.0	${ }_{\text {ACP107 }}$	11	8Fisi	31	20－ 5100 JB22	TCA2700	£2．90
PCLE2	39.0	BC108	10	BFIB4	25	${ }^{22^{\circ}}$ A56／120X	ETTR6016	¢2．00
PCL84	39.0	${ }_{\text {BC109 }}$	14	BF185	25		SN76013ND	ct．50
PCL85	44.5	${ }_{\text {BClog }}$	14	BF194	25	EHT MULTIPLIERS MD	OCHROME	（BRC）
PCL86	41.0	${ }_{\text {BC113 }}$	13	日f130	8		Pric	Each
${ }^{\text {PFLL200 }}$	59.5 55.5	BC116A	19	EF196	10	2HD 950MK1． 960 2TO 950 MKZ 1400		¢1．10
${ }_{\text {PL84 }}$	55．5	$8 \mathrm{Cl17}$	14	BF197	12	20AK 1500 （ $17 \times *$ \＆19＊）		
PL504	64.5	BC1258	15	BF198	23	2 TAK 1500 （ 23^{*} \＆ 24^{*} ）		¢1．85 f2．00
PL508	67.0	${ }^{\text {BC132 }}$	25	BF200	25			
PL519	f1．60	8C135	15	BF218	10	EHT MULTIPLIERS－C	OUR	
PY88	35.5	BC137	19	BF224	23	11 TAQ ITT CVCI． 2 \＆ 3		E4．50
Pr800	33.0	BC138	25 23		34	ITN GEC／Sobell		C4．50
PY500A	85.0	BC_{8}	23	日F336．	23	11 TAL GEC 2110		c4．35
SEMI CONDUCTORS		${ }_{8 C 147}$	11	日f 日 353	35	11 TAM Philips G8		［4．50
	Prict	BC147 ${ }^{\text {B }}$	11	BFXP6	28	11 TBD Philips 550		C4．50
Trpe	Each（p）	BC148	10	3FY50	19	3TCW Pye 691／693		E3．50
AC127	17	BC149	10	BFY52	20	11 TAQ Decca Saradfort		24．60
AC128	13	BC153	15	85 Y52	15	3TCU Thorn 3000／3500		e55．00
AC141K	25	BC154	15	BT106	14．20	11 HAA Thom 8000		c1．90
AC142K	25	BC157	14	BU105／02	c1． 85	11 HAB Thorn 8500		64，25
AC151	20	BC158	10	BU108	¢2．10			
AC154	18	BC159	11	BU208	c2．96			
AC155	18	$8 \mathrm{Cl73}$	18	E1222	30	PRICES SUBJECT	8\％V．A．T．	
AC156	20	BC1788	20	M．je340	45	All goods subject ？	ertlement	
AC176	22	${ }^{\text {BCi }} 182 \mathrm{~L}$	12	OC71	15	discount of $5 \% 7$ da	and 2\％	
AC187	19	BC183L	12	OC72	18	monthly．		
AC187K	24	BC187	25	R2008B	¢2．00	No postage charge	or minimum	
AC188	17	BC2141	15	R2010	c2，00	order valuas．		
AC188K	26	BC328	28	RCA16334	80	Write or phone for	dillatis no	
AD142	45	BC337	19	RCA16335	80			

sin Prices，Qualty and Service

B．BAMBER ELECTRONICS

20 WELLINGTON STREET，LITTLEPORT，CAMBS TEL：ELY（0353） 860185 （TUESDAY－SATURDAY）

TEST EQUIPMENT
 FENLAND 6 －channel，separate ${ }^{3}$ AUSSIO MIXER，

 6－channel，separate bass．treble，and slider fade on each channel．Min condil．soltRACAL 125MHz DIGITAL FRE－ OUENCY METER．Type $801 R / 2$ ．
O．OIV to $1 V$ sensitivity， 8 －digit readout． new condition， $\mathbf{£ 2 7 5 . 0 0}$
ROHDE AND SCHWARZ SIGNAL GENERATOR．SMAF．${ }_{4}-300 \mathrm{MHZ}$ AM／FM，attenuation to 0.05 microvolt deviation and modulation metered complete．but needs attention．$£ \mathbf{£ 0 0 . 0 0}$ ROHDE AND SCHWARZ FRE－ QUENCY DEVIATION METER FMV，AM／FM， $20-300 \mathrm{MHz} £ 300.00$ MARCONI UHF SIGNAL GENERA TOR．TF762B． $300-600 \mathrm{MHz}$ ．$£ 50.00$ MARCONI STANDARD SIGNAL GENERATOR．
30MHZ．E100．00
MARCONI AMPLITUDE MODULA－ TOR．TF1102．E35．00
MARCONI VALVE MILLIVOIT MARCONI STANDARD SIGNAL GENERATOR．TF144H． 10 kHz 72 MHz ． 195.00
WAYNE KERR VHF FREQUENCY STANDARD． 12 －channel．f20．00
AIRMEC BRIDGE HETERODYNE DETECTOR．Type 775．E65．00
AIRMEC SIGNAL GENERATOR． HEWLETT PACKARD UHF SI GENERATOR．Type 614A．800－ 2300 MHz ． 175.00
SOLARTRON DIGITAL VOLTMETER Type．M1420／2 with TRUE RMS AC
UNIT．＇． 10 mV － 0 OOV． 5 －digit display． new condition．$£ 400.00$
ROHDE AND SCHWARZ POWER SIGNAL GENERATOR．SMLM．30－ GRESHAM 10 tIO output．$£ 300.00$ BAR／STAIRCASE GENERATOR， BAR．00
E25．0
TEKTRONIX 524D SCOPE．DC－
10 MHz ． $\mathbf{E 7 0 . 0 0}$

PYE MF TRANSMITTERS

$2 \times 58254 \mathrm{Ms}$ in final．VFO 340 to 540 kHz （can be modded upward）， $2 \times$ 58254 Ms in Modulator， $\mathrm{cw} / \mathrm{mcw}$（can be modded for AM）．units complete，but
no PSUs．（supplied with circuits of TX and PSU）brand new boxed，$£ 20.00$

PLUGS AND SOCKETS

TV PLUGS（matal type） 6 for 50 p TV SOCKETS（metal type）50p TV LINE CONNECTORS 5 for 50p PL259（PTFE）PLUGS 50p each or 5 or $\mathbf{£ 2 . 2 5}$
SO239（PTFE）SOCKETS 50p each 25－WAY ISEP PLUGS and SOCKETS 40 p set（ 1 plug +1 skt）．Plugs and sockets sold separately at 25p each CANNON Right－angled plugs XLR LNE 1575p
DIN SPEAKER SKTS．2－pin． 4 for 30p STANDARD JACK PLUGS．$\frac{1}{4}$ in．， 4 for
ANDREWS 44AN FREE SKTS（N TYPE）for FH4／50B or FHJ4／50B cable $\$ 1.00$ each
SO239 BACK－TO－BACK SOCKETS ， 25
BNC INSULATED SOCKETS（single－
hole type）65p each

VALVES

aOV03／10（ex equipment） 75 p each 2 C39A（ex equipment）$£ 1.00$ each agV02／6（ex equipment）$£ 1.00$ each 4 CX250日（ex equipment）$£ 2.10$ each 4X250B（ex equipment）$£ 1.50$ each DET－22（ex equipment） 2 for $\mathbf{E 1 . 0 0}$ ECC81（new）30p，ECC83（new）30p

HIGH－QUALITY SPEAKERS $8 \frac{3}{B}$ in．$\times 6$ in．elliptical． 2 in．deep， 4 ohms． nverse magnet．rated up to 10 Watts． discount available）．

TERMS OF BUSINESS：CASH WITH ORDER．ALL PRICES INCLUDE POST \＆PACKING（UK ONLY）．EXPORT ENQUIRIES WELCOME．

PLEASE ADD 8\％VAT．
CALLERS WELCOME BY APPOINTMENT
pLease enclose stamped addressed envelope with all enauiries
MINIMUM ORDERE1

ELECTROLYTIC CAPACITORS

AXIAL LEAD AND SINGLE ENDED MFD 6.3 V 10 V 16 V 25 V 35 V 50 V $\begin{array}{lllllll}22 & 30 p & - & - & - & -1 & 40 p \\ 33 & - & 30 p & 35 p & 40 p & 40 p & 45 p\end{array}$ $\begin{array}{lllllll}47 & - & - & - & 40 p & 45 p & 45 p \\ 100 & 35 p & 40 p & - & 45 p & 60 p & -\end{array}$ $\begin{array}{lllllll}220 & 40 \mathrm{p} & 40 \mathrm{p} & - & 50 \mathrm{p} & 75 \mathrm{p} & - \\ 330 & 40 \mathrm{p} & 45 \mathrm{p} & 60 \mathrm{p} & 75 \mathrm{p} & 95 \mathrm{p} & 95 \mathrm{p}\end{array}$

330095 p 95 p －
PRICES PER PACK OF
Trade enquiries welcome for quantity

MAINS TRANSFORMERS

240 V in．voltages quoted approx．RMS TYPE 125BS Approx 125 V ． 30 65p 62703 ， 10 mA 200V me 2703400 V at 12 TYPE $18 / 818 \mathrm{~V}$ at 8 A ．$£ 4.50$ ea
TYPE $16 / 616 \mathrm{~V}$ at 6 A .45 V at 100 mA ． E4．00
TYPE 28／4 28 V at 4 A .125 V at 500 mA ． f4．00
TYPE 129400 V at 20 mA .200 V at VPA． 704 at 500 mA ． 1.2
6.3 V ．£1．75

RADIOSPARES 500－WATT AUTO TRANSFORMER， $100 / 110 / 150 / 200$ $220 / 240 / 250 \mathrm{~V}$ tapped input and output． step up or step down lacility．ex new equip．£6．00
MAINS ISOLATING TRANSFOR－ MER． 375 VA ．tapped primary． 240 V output．new，E6．00
MAINS ISOLATING TRANSFOR－ MER．（ex equip），in metal cases，totally enclosed tapped mains input， $110-$ 240 V etc．${ }^{\text {ot }} 0.5 \mathrm{~A}$ ．$£ 11.00$
AS ABOVE．output 240 V at $12 \mathrm{~A}+12 \mathrm{~V}$ at 3 BA
carriage
£

ELECTRONICIGNITION

 FOR YOUR CARICut petrol costs by up to 15% ．Install Electronic Ignition in your car in minutes． Reduces petrol consumption．increases Reral performance．Prolongs contact ing so and spark－plug life．Makes stari－ manufacture）tested and guaranteed for 2 years／50．000 miles．IMPORTANT： TATE ordering． $\mathbf{£ 1 1 . 8 0 ~ + ~ V A T ~}$ 94p）．Post paid．

MISCELLANEOUS

MAGNETIC DEVICES PROGRAM－ MERS，contain 9 microswitches with 9 adjustable drums for period switching adow－motion motor to drive drum） many switching applications $\mathbf{£ 1 . 0 0 \text { each．}}$ HT HIGH－GRADE ELECTROLYTICS． 6800 mfd at 25 V ．screw terminals． mounting with capacitor clip for vertical available）
MULTICORE CABLE，$\frac{1^{\prime \prime}}{2}$ dia．PVC covered，in 22 ft ．lengths with plug and socket fitted， 24 core stranded +1
screened +1 twin screened（ideal mobile control lead）E2． 10 each．
TWIN HEAVY DUTY CABLE，PVC covered． $50 / 0.25 \mathrm{~mm}$ ． 15 p per metre or $\mathbf{£ 1 0 . 2 0}$ per 100 metre reel． CURLY LEADS， 4 －core telephone－type 18 in ．closed，approx． 5 ft ．extended， 2 for 20p．
STUD RECTIFIERS，BYX42／300R， 300 V at 10A． 30 p each or 4 for $f 1.00$ TRANSISTOR HEATSINKS to take $2 \times$ TO18 transistors．screw in clamps． Block size 1 in．$X \frac{1}{2}$ in．$X \frac{1}{4}$ in．with 2

PYE RADIO－TELEPHONE EQUIPMENT
Cambridge．Westminster．Motofone Europa series．Send s．a．e．for full details spacing，etc．

fibre optic suppliers

${ }_{\mathcal{E} 10.00}$ MRE'S TAIL Decorative Display. $22^{\prime \prime}$ dia. $7.000+$ Fibres
¢10.00
FIBROFLEX SIZE 1440 Strand Flexible Glass Light Conduit.

 Dia. 1.8 mm . O.D. 3.3 mm . $\mathbf{~} 1.20$ per m.i. $10 \mathrm{~m} \mathbf{8 9 . 0 0}$ PLASSIC OPTICAL MONOFIBRE FIexible Light Guide Dia. 10.
20.40 .60 thou. FP10 100 m E2.00. FP20 10.5 mm$) 100 \mathrm{~m} £ 4.00$
 OPTIKIT 1032 m CROFON $1610+5 \mathrm{~m}$ each FP20. FP40. FP6O

©2.90 RR5 Five Retro-Refiectors for Oprical/infra-Red beam
 CIRCULAR POLARISERS Reduce glare on all types of instrument. RED/AMBER/GREEN or NEUTRAL. 50 mm sq. $\mathbf{7 0 p}$: 75 mm Sq. F1.40
 MLED92 Infra Red Emiter 30p. MLS 203 Photo-Thyristor $£ 1.20$ 2N577 High Sensitivity Photo-Darlington $25 V 50 \mathrm{p}$ MRD150 2 mm High Speed Photo-Transistor (4 uS) $40 \mathrm{~V}, 70 \mathrm{p}$.

EXPRESS

Prototype Printed Circuits
Fastest in London Area
Also medium production runs, call-offs, etc.
Electronic \& Mechanical Sub-Assembly Co. Ltd.
Highfield House, West Kingsdown, Nr. Sevenoaks, Kent.
Tel: West Kingsdown 2344

Build a mixer to your own
spec. using our easy to wire
ALDID MDDLLES
For full details contact Richard Brown at Zero 88, 115 Hatfield Road,
St. Albans, Herts, AL1 4JS Tel. 63727
for sale

40kW
 Transmitters

Collins (USA) FRT-22
4-27 MHz, CW (AI) and teletype (FI), suitable for SSB (AJJ) with external exiter. Built-in crystal oscillator and frequency synthesizer, 10 autotune channels. Power requirements 230 V $50 / 60 \mathrm{~Hz}(3 \mathrm{ph})$, automatic voltage regulation.

Volume ca. 480 cu . ft., weight ca. 12.600 fb . There are two identical sets available. Transmitters are used and need overhaul. Several tubes and vacuum capacitors must be replaced, minor parts missing.

Price: DM 8,000 per set; DM 14,000 for two sets, ex-stock Munich, in seaworthy packing with complete technical documentation.

DR. HANS BÜRKLIN
8 München 2, Schillerstr. 40 (FRG)

TELEPHONE EXCHANGE Cordless PABX No. 4 Automatic

Telephone \& Electric Co. Limited. Installed 1961. Addition 1967.
300 Extensions 2 Manual Boards 28 Exchange Lines 4 Keycaller Units 2 Private Wires

Contact:
Mr. E. Strachan,
Site Electrical Engineer,
Rolls-Royce \& Associates Limited, Raynesway, Derby.
Tel : Derby 61461

STACKABLE EPICYCLIC GEARED ELECTRIC MOTORS MAILORDER only from AID-US PRODUCTS Dept. WW5, 8 Hillview Rd., Pinner HA5 4PA, Middlesex ${ }_{\text {\|45 }}$

SURPLUS BARGAINS

EASTER LINE ANGUS
chart recorders. model A601R 500-0-500u.a. f.s.d. 110 v AC, as new with manual. $£ 35.00$ (carr. £ 1):
Kent Chart recorders single point $\mathbf{£ 2 0}$. multipoint $£ \mathbf{3 0}$ ($£ 1.50$)
A.E.I. 4 -stage sequential transistorised electronic timer, many applications, inc 3 channel auto-light flasher (750 watts 240 v). Circuits provided for fully interrupted and dim/bright flashing. Modification instructions and mains transformer. $£ 4.50$ only (50p).
Printed circuit Kits. £1.25 (30p).
Instant Heat Soldering Irons, 240v 100 watt £2.65 (30p).
Veedor root 4 digit resettable counters 115 v AC $£ 1.25$ (10 p)
AMPEX VIDIO Tape $2^{*} \times 1670^{\prime}$. New $£ 9$ (50p).
Ferric Chloride 25p lb (20p). 10 lbs for $\mathbf{£ 2 . 5 0}(45 \mathrm{p}$).
TELEPRINTER PAPERS and TAPES, $8 \frac{1}{2}{ }^{\prime \prime}$ wide. 3 -ply carbon, buff manilla 60 p (35 p) ditto 7 -ply NCR, no carbon required $£ 1$ (35p). TAPES, $\frac{7^{\prime \prime \prime}}{8 \prime}$, white $\mathbf{£ 2} \mathbf{2}$ per 8 rolls (65 p). $1^{1 / 2}$ buff £2 per 10 rolls (65 p). 1" tape suit Friden, etc. $£ 2$ per 7 rolls (65 p)
B \& R VHF change over coaxial relays 50 v DC operating coil $2 \frac{1}{4}^{\prime \prime} \times 2 \frac{1}{4}^{\prime \prime} \times 2 \frac{1}{4}^{\prime \prime} \mathbf{£ 1 . 2 5}$ (15p)
35 watt Mains transformer outputs 2. 3. 6, 20. 24. 27. 30. $£ 1.25(25 p)$

All prices plus (p\&p) total plus VAT 8\%
Large S.A.E. for list.
CASEY BROS, 235 Boundary Rd, St Helens,

SALE OF SURPLUS RADIO EQUIPMENT

1-Marconi Type 210c VDF Equipment
${ }^{2}$ PX Pye Handi Cambridge VHF Portable RX/
3-Pye Bantam VHF TX/PX
2-Pye Battery Charger Type BCI
Quotations invited-addressed to:-
Supplies Officer, 59, Portiand Road,
lutom, LU4 BAU.
Further details avaikble from Telecommunications Officer. Telephone number Luton 36061 ext. 28.

PM ELECTRONIC SERVICES

CRYSTALS FOR PROFESSIONAL AND AMATEUR USE

We can supply crystals to most commercial specifications. with an express service for that urgent order. For the amateur we carry a large stock of the more popular frequencies. backed by a quick service for those 'Specials
Please send SAE for details or telephone between 4.30-7 p.m. and ask for Mr. Norcliffe

7A, ARROWE PARK ROAD, WIRRAL, MERSEYSIDE L49 OUB.
Tel: 051-677 8918 (until 7 p.m.)

PARTRIDGE ELECTRONICS

MAMUFACTURERS OF AUDIO MIXER SYSTEMS NEW PEAK READING * VU METER SYSTEMS

Which gives the advantages normally only assoclated with PPM systems at much lower cost. 21/25, Hart Rad. W.W. Wenfieet, Essex.
(Established 23 years)
(13

WE SELL
 CONSTRUCTION PLANS

Phonevision, Television Camera, Police Radar Detector, Voice typewriter, Scrambler. Answer ing machine. Wireless quart $\$ 7.50$ each.

COURSES

$\begin{array}{ll}\text { Detective-Electr, } \\ \$ 43.50 . & \text { Telephone Eng, } \$ 59 .\end{array}$ OVER 750 ITEMS
Ask for Catalogue-Airmalled $\$ 0.75$ T. STRIK,

Postbox 618, Rotterdam, Holland.
[44

MICRO

ELECTRONIC

 TRANSMITTERReceive on a
VHF RADIO
The smallest Transmitter
available in the UK.

Only $2^{\prime \prime} \times 1^{\prime \prime}$. Can pick up and transmit minute sounds and voices. Range 500 yards plus. Can be worn round the neck. held in the hand, or operated in a drawer. Works almost anywhere, uses PP3 battery (very long life). Completely selfcontained, transistorised printed circuit. Used the world over. Fully guaranteed. Latest model now dispatched.
Transmitter
£15.50
If required, suitable Radio for
receiving transmissions
£13.25
P. \& P. 45p. MAIL ORDER AND COD Welcome.

Mulhall Electronics, (WW)
Ardglass, Co. Down, UK. BT30 7SF.
Tel: 039-684 461.
(4575)

AUDIO FUNCTION

 GENERATOR1 Hz to 100 KHz in 5 ranges.
sine, square \& triangle outputs.
FM Modulation/Sweep INPUT.
PRICE e49.76 plus V.A.T.. excl. batteries.
APOLLO ELECTRONICS

* Mill LaNE, LONDON, NWE 1NG Tel: 01-794 8324
[4535

CRYSTALS

Fast delivery of prototypes and production runs. INCLUDING :
Statek LF crystals in TO5 package Buckman LF, clock, and mobile radio crystals Astro Filter crystals
Jan General purpose crystals
Interface Quartz Devices Limited,
29 Market Street, Crewkerne, Somerset. Tel : (046031) 2578 Telex: 46283

C AND G EXAMS

Make sure you succeed with an ICS home study course for C and G Electrical Installation Work \& Telecomms Technicians and Radio Amateurs

COLOUR TV SERVICING
Make the most of the current booml Learn the techniques of servicing Colour and Mono TV sets through new home study courses, approved by
leading manufacturers.

TECHNICAL TRAINING
Home study courses in Electronics and Electrical Engineering, Maintenance, Radio, TV, Audio, Computer Engineering and Programming. Also self-build radio kits. Get the qualifications you need to succeed.
INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept 734, Intertext House, London SW8 4U).
Or Phone-01-622 9911 (all hours). 14391

ARTICLES WANTED

TOP PRICES PAID

for semiconductor and component redundant or excess inventories

P.R.S. ELECTRONICS

126 Headstone Road
Harrow, Middlesex
Tel: 01-965 2243

TAPE RECORDING ETC.
 RECORDS MADE TO ORDER
 DEMO DISCS
 VINYLITE
 RECORD COMPANIES PRESSINGS

Single dises, 1-20, Mono or Stereo, delivery 4 days from your tapes. Quantity runs 25 to 1,000 records PRESSED IN VINYLITE IN OUR OWN PLANT. Defivery 3.4 weeks. Sleeves/Labels. Finest quality NEUMANN STEREOMOno Lathes. We cut for many Studios UK/OVERSEAS. SAE list. DEROY RECORDS
PO Box 3, Hawk Street, Carnforth, Lancs. Tel. 2273

BUSINESS OPPORTUNITIES

Hair
 Transplant

For free brochure, clip this ad. and send to:

Room 6 HAIR TRANSPLANT INTERNATIONAL
502 Eccleshall Road, Sheffield

CAPACITY AVAILABLE
WANTED SURPLUS
\star FACTORIES CLEARED \star
MACK'S ELECTRONICS
283 EDGWARE ROAD
LONDON WV 1BB
Tel: 01-262 8614

ARTICLES FOR SALE

ECONOMISE ON SEMICONDUCTORS
All prices inc/ude VAT

\star Lower 741C prices $100+24 p$
\star Plastic 3 terminal Regulators
\star Low Price CMOS $\quad \star$ Low price DIL sockets

			$1+$ 34	$10+$ 32	$25+$ 30 59	TTL M	rices	$10+$	$25+$
709C Op Amp + data 8 pin DIL723C Reg. + data 14 pin DIL			65	63	59	7400 7402	17	$1{ }^{16}$	15
			30	28	26	7403	17	16 16	15
748 C Op Amp + data 8 pin DIL				37	35	7404	18	17	16
NE555 Timer + data 8 pin DIL			65	62	59	7405 7410	18	17	16
CA3046 Array 14 pin DIL			76	73	69	7413	36	34	32
			100	92	85	74420 742	77	16 68	${ }_{63} 6$
TDA1412 Reg. 12 V 500 mA			100	92	85	7447	90	${ }_{85}$	80
			100	92	85	77473	38 35	36	34
TDA1415 Reg. 15 V 450mA$\mathrm{BC} 107.108,109$			10	9.5	9	7476	${ }_{38}^{35}$	$\stackrel{33}{36}$	31 34
			11	10.5	10	7486	${ }^{30}$	28	26
BC1 22,184BC212, 214			12	11.5	11	7490 7492	55 55	52 52	49 49
			18	16	15	7493	55	52	49
HP Red LED ${ }^{1 \prime \prime}$HP Red LEDO/2			19	17	16	74121	44	42	40
DIL Sockets,		8 pin1414 pin12		10	9	cmos mixed Prices			
low profil				11	10				
			in 13	12	11	4000 4001	27 27		25 25 25
						${ }_{4007}$	27		
BC109C	11	BZX88C-		1 N914	5	4011	27		25
BC177	18	3V3-15V	11	1 N4001	5				${ }_{54}^{25}$
BC178	18	2N3702	12	1 N4002	5	+4013	60 150		- 140
BF244	24	2N3704	12	1N4004	7	4023	157		140
BF244B	27	2N3708	10	1N4148	5	${ }_{4025}$	27		25
BFY51	17	2N3055	48			${ }_{4030}$	83 88		${ }_{87}^{82}$

AY-5-1224 Digital Clock IC, 12 or 24 hr .7 segment or BCD outputs, drives LED Minitron, LED
 £2.00. IC $+40.3^{\prime \prime}$ digits $£ 12$. IC $+40.3^{\prime \prime}$ digits + transistors + transformer $£ 14.00$
TBA810AS 7W Audio Amp. Thermal protection + data + circuit $\mathbf{£ 1 . 2 0}$
TCA940 10W Audio Amp. Thermal protection, current limit + data + circuit $\mathbf{£ 2 . 6 0}$
Carbon film High Stability $\frac{1}{4}$ W 5\% resistors 10 ohm- 2 m 2 1p ea., $109 \mathrm{p}, 100$ 80p same value.
By return service. Prices include VAT. P \& P 8p (UK) overseas at cost. All items new TI. Motorola, Mullard, SGS etc. SAE lists, enquiries. Data sheets 4 p . Colleges etc. supplied.

SILICON SEMICONDUCTOR SERVICES

41 Dunstable Road, Caddington, Luton LU1 4AL

Scholarship Awarded by

The Institution of Electrical Engineers
The Council of the Institution of Electrical Engineers will consider for award this year Undergraduate and Postgraduate Scholarships with a maximum value of 5600 per annum.
The closing date for the receipt of applications is 1st May, 1975 and late applications cannot be considered.
Full particulars of the conditions governing the award of these Scholarships may be obtained from:
The Director, Qualifications Department, The Insticution of Electrical Engineers, Savoy Place, Landon WC2R OBL
[4573

Sub-Miniature Mains Transformers

SCN-0-240v/12v-0-12v. $50 \mathrm{~m} / \mathrm{a}$ max. 28 mm
W, 20 mm H, 26 mm D
90p each inc. VAT, p. \& p. Orders 50 or over, 10\% discount. C.W.O
Phono Leads
Phono Plug to Phono Plug. Single Screened Grey Cable. Length 2 yards. Min. 5 for 90p inc. VAT, p. \& p. C.W.O. (Single sockets available with above, $5 p$ each inc. VAT.) OR Call at our retail shop, open every day except Sunday.

LINWAY ELECTRONICS

843 Uxbridge Road, Hayes End,
Mddx. UB4 8HZ
4580

MINIATURE FM/VHF TRANSMITTER

KIT REQUIRING FIVE SIMPLE CONNOLDERED CONNECTIONS. IZE $2^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}$ 500 YARDS.

COMPLETE WITH MICROPHONE AND BATTERY.

EXPORT ENQUIRIES WELCOME. OUR PRICE COMPLETE $\mathbf{C 6 . 7 5}$

Return post dalivery. Not licensable in U.K. EES, THE AIP further details. EES, THE AIRPORT, EXETER

CAREON FILM RESISTORS-E12 SERIES HIgh Stab. IW OR $\ddagger W$ 5\%. 1p, 75p/100, $\& 5-50 / 1000$ RE12 RIT 18 TOR KIT 8 220-1M 2 E12 SERIES

Regulated power Bupply modules. New in original Repulated power supply modules. New in orlopnel
packing. ATC $24 \mathrm{~V} / 2 \mathrm{~A}, ~ £ 10$. Fenlow $\pm 15 \mathrm{~V} / 1 \mathrm{~A}$, with plPanel, si2.50. NGN Vacuum Meters PRU3 (Used) ${ }^{2} 15$ Marcond D-A Converters TF2402, \&24. Code Converte Const Temp. Water Clirculators type F-Jundor (+0.10 Used, \&55. Transformers $50 \mathrm{~V} / 30 \mathrm{~A} £ 20.7 .5 \mathrm{KV} / 0.015 \mathrm{I}$ A, $\& 7$ Honeywell Chat Recorders \&54. Solartron VF252 Pre eision milivoltmeter $£ 35$. Solartron CAS12 V.S.W.R Hatfield Ins. PUM1/16 400 cycle Generators $£ 30$. Mulrhead . Declesc., METAL FILM KITS ALSO AVALABLE.
CATALOGUE No. 3 (Approx. 2000 Parts) 20p.
C.W.O. P, \& P, 10 on orders under $£ 5$ Overen.
B.H. COMPONENT FACTORS LTD Nr. Lelohton Buzzard, Bods. LU7 9AQ.
Chedd ngton (0296) 66944 CheddIngton (0296) 869446

EX－COMPUTER STABILISED POWER SUPPLIES

 RECONDITIONED，TESTED AND GUARANTEEDRipple $<10 \mathrm{mV}$ ．Over－voltage protection $120-130 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ input．Stepdown transformer to suit about $£ 3$.

Post \＆Packing $\mathbf{£ 1 . 7 0}$
56v．8A．£12 5－6v．16A．£16
5－6V． $12 A$ ．
PAPST
$4 \frac{1}{2} \times 4 \frac{1}{2} \times 2$ in． $100 \quad \mathrm{cfm}$. $240 \mathrm{v} .50 / 60 \mathrm{~Hz}$ ．$£ 3.50$（30p）．
PAPST FANS 6in．dia．\times 2trin．$^{3} \mathrm{in}$ deep．Type 7576 f5．00（30p）
LIGHT DIMMERS 250w $\mathbf{£ 2 . 6 0 \text {（13p）}}$
TRANSISTORS p\＆p10p
BC107／8／9 BC147／8／9 BC157／8／9 all ${ }^{\text {p }}$ \＆ BC107／8／9 BC147／8／9 BC157／8／9 all 9 P
BF180 25p BF182／3 40p BF184 17p BC167 BF180 25p BF18 BFW10 55p BF336 35p 7418 DIL 30p 2N3771 £1－10， 2 N 3441 50p，BD131 40p NE555 67p．
ELECTROLYTICS
$30,000 \mu 25 \mathrm{v}, 68,000 \mu 16 \mathrm{v}, 15,000 \mu 30 \mathrm{v}$ 65p （20p） $5,000 \mu 35 \mathrm{v} ., 40 \mathrm{p}$（12p） $4,700 \mu 63 \mathrm{v} ., 60 \mathrm{p}$ （12p） $2,000 \mu 50 \mathrm{v}$ ．，plus clip 35 p （8p） $2,200 \mu$ $63 v ., 35 \mathrm{p}$（ 8 p ）
EX－COMPUTER PC PANELS $2 \times 4 i n$ ． 25 boards for E1＇（30p）．
OH Bulbs，12v．55w．．．．．．．．．．．．50p（7p）
150 mixed HI－STABS．
250 Mixed Resistors．．
250 Mixed Capacitors
200Si Planar Diodes
Microswitches ．．．． 60p（13p）

Microswitches …．．．．．．．．．．．．．．．．．．．． 8 f0p（8p）
Min Glass Neons．．．．．．．．．．．． 8 for 50 p （78）
N3055 EQUIV ．．．．．．．．．．．．． 4 for $\mathbf{£ 1}$（10p）
SMALL ELECTROLYTICS
$2.2 \mu 10 / 16 \mathrm{v} ., 10 \mu 35 \mathrm{v} ., 50 \mu 40 \mathrm{v} ., 100 \mu 40 \mathrm{v} .$,
$100 \mu 6 \mathrm{v} ., 150 \mu 10 \mathrm{v} ., 64 \mu 10 \mathrm{v} .12$ for 45 p （6p）
PRESETS 100 mW PIHER
220，470，4k7，10k，100k 12 for 50p（6p）
Postage and packing shown in brackets
Please add 8\％VAT to TOTAL
KEYTRONICS
Mail Order only
44 EARLS COURT ROAD，LONDON，W． 8 01－478 8499

｜EF ELECTRONICS

$741 \mathrm{C} / 8$ pin ．．．．．．．．． 427.00 per 100 $741 \mathrm{C} / 14$ pin ．．．．．．．．．．$\leqslant 21.00$ per 100 $723 \mathrm{C}439 .00$ per 100 IN4001 ．．．．．．．．．．．．．．．．E3．00 per 100 1A 100V ．．．．．．．．．．．．．．．． $\mathbf{6 3 . 0 0}$ per 100 1A 400 V ．．．．．．．．．．．．．．．． 63.50 per 100 IN4007 \cdots ．．．．．．．．．．．．． 44.50 per 100 IN4148 …．．．．．．．．．．．．e2．80 per 100 Ge DIODES ．．．．．．．．．．．．．． 83.00 per 100 Prices Ex Stock at Copy Date VAT must be added Delivery 20p under 65 York House
York Drive，Grappenhal，Warrington，WA4 2Ej

BROADFIELDS \＆MAYCO DISPOSALS

21 Lodge Lane，N．Finchley， London，N12 8JG．

Telephone ：
$01-4450749 \quad 01-445 \quad 2713 \quad 01-958 \quad 7624$

MAY WE ASSIST YOU TO DIS－ POSE OF YOUR SURPLUS AND REDUNDANT STOCKS．

We will call anywhere in the British Isles，and pay SPOT CASH for Elec－ tronic Components and Equipment．

J．LINSLEY－HOOD

New Phase Locked Loop F．M．TUNER （As per Wireless World Annual）． Basic kit of parts
＊£29．95（tax £2．40）
Available in pack
form as follows：

form as follows．
Pack 1．Ras．and capacitors $\mathbf{f 3 . 0 0}$ 2．Semi conductors and I．C＇s 5．Chassis and tuad 5.50 4．P．C．boards and drawings $\mathbf{~ 1 . 5 0}$ 7．Teak finish slaeve $\mathbf{£ 3 . 0 0} 8$ ．Metar and muting module $\mathbf{£ 2 . 5 0}$ 7．Teak inish slaeve $\mathbf{E 3 . 0 0} 8$ ．Metar and muting module $\mathbf{E 2} .50$
9．Regulated power supply $\mathbf{f 5} 50010$ ．Stereo decoder．Ready made f7．50 11．Push button and trimmer pack $\mathbf{f} \mathbf{2 . 5 0}$（＊Excludes packs No．8． 10 and 11．／Tax extra．

TELERADIO ELECTRONICS
325 Fore Street．Edmonton，Lond on N9 OPE．01－807 3719. Closed Thursdays
SA．E．for further details of above and other Linsloy－Hood superiof low distortion designs．

Housing problems？
West Hyde will have a CONTILMOD－2 case to meet your MOD－3，SAMO needs．Check now．Ring AMTRON，MINO WEST HYDE ENVIRONMENTAL WEST HYDE DEVELOPMENTS LIMITED

WW－136 FOR FURTHER DETAILS

EXPRESS

PRINTED CIRCUITS－ROLLER TINNING GOLDPLATING－FLEXIBLE FILMS．ETC Electronic \＆Mechanica
Highfield House，West Kingsdown Nr．Sevenoaks，Kent
Tel：West Kingsdown 2344

EXCLUSIVE OFFERS
WORLD－WIDE RANGE
NEVER BEFORE OFFERED
COMPLETE TRABSPORTABLE HIF COMMOMICA－
 Receivern and one COLLINB Recelver sill fully tuneable
 control，with line amplifiers and inputs，operating
pooltion and remote control facilities and ancillary equipment Pow
on application．
PEILCO HC－150 POINT－TO－POINT STRIP RADIO HF
RECEIVERS $2 / 30 \mathrm{~m} / \mathrm{cs}$ ．Ten fuly tuneahle channels to RECEIVERSS $2 / 30 \mathrm{~m} / \mathrm{cs}$ ．Ten fully tuneable channels to on 18B，D88，gsB with 4 surb－bande
Full details and prices on applcatlon．

HIGHEST QUALITY 19^{*} RACK MOUNTING CABINETS \＆RACKS Our
Ref．
CD
CL
CR
DM
FA
FC
FD
FG
FH
FJ
FN
FL
LJ
LI．
LL8
LL9

	Height	Width	Depth n	cet Pand	Price
	in inches	in inches	in inches Sp	ce in ins．	
CD	${ }^{69}$	21	13	${ }^{88}$	£10．00
CL	30	60	36	42	£12．50
CR	69	30	20		224．00
DM	70	20	26	138	221.00
FA	86	22	36	160	222.00
FC	52	26	22	47	8170
FD	40	22	24	72	E14．00
FG	11	19	18	10	211．0000000
FH	15	21	17	11	E12．0
FJ	15	21	15	12	212.0
FN	70	24	20	68	817．00
FL	84	22	17	80	221．00
LJ 6	11	21	17	9	815.0
LI． 7	18	20	12	14	215．0
LL8	10	20	10	9	E15．00
LL9	17	21	17	14	215．00
	Also Con	nsoles，twin	and multi－w	y Cabinet	
			R RACE8		
	Height	Channel	Ract Panel		
RF	85	${ }_{3}$	79	15	211.00
RG	57	2	51	14	£9．00

we can prohably help－all enquiries anement

	M．V．R．Vldeodtec LP Player	P．U．		
	Orraph Series 4 Recorders			
	Airmec 701 sig．Generators 30 k			
381 Test Sets Freq				
	Rustrak Chart Recorders 1－0－1 m／a			
RA 8 Teleprinter Convertera				
Portable Maing Battery Floo				
＊	Airmec 245 L．F． 150 watt Oselilators			
	Solartion 5／25000 cyc．Oacillat			
	Southera Inst． 1800 F．M．Meters	504		
	Belling Lee T．V．Relay Equipment			
	ddo 8／8 track Tape Punc	析		
	Tally 5／8 track Tape Readers			
	80 column Card Hand Punches	do		
	Auto Electric Carillon Chimea			
	10 foot Triangular Lattice Mast Bections 6 inch eides			
	Ditto 15 foot with 15 inch sides			
	Casella Abamann Electric Hygrometers			
$\frac{t}{t}$	Racal Ra63 838 B Adaptere（New）			
	Ampex Audio Stereo Tape Machines			
亲	Astrodata 5190 Time Code Generator			
	Geotech 4983 Hello 4 mplifers			
	rome trims $1 \frac{1}{*}^{*}$ to $15^{\prime \prime} \mathrm{fr}$			
交	G7／5 CRT＇s $2{ }^{\text {² }}$			
	AP／31 CRT＇s：${ }^{\text {d }}$			
$\underset{\star}{\star}$	GGC－3 Lightweight Teleprinter			
	FX－1 Fuesihile Transistor＊Receivera			
	Telet pe 28， 3 －gpeed tape printers			
	54＂dia．Meteorological Balloons			
	Laboratory Radio Interference Filtera			
	We have a varied gasortment of indust profensional Cathode Ray Tubes available requent．	$\begin{aligned} & 1 \text { and } \\ & \text { ist on } \end{aligned}$		

COMPUTER HARDWARE
C CARD READER 80 col． 600 c．p．m． ＊TAPE READER High speed $5 / 8$ track \star TAPE READER，High speed $5 / 8$ track

Prices on Application
PLEASE ADD V．A．T．TO ABOVE
P．HARRIS
ORGANFORD－DORSET

STEREO DISC AMP Mains in Balanced lines out. Excellent distortion and 10-OUTLET DISTRIBUTION AMP AMPLIFIERS \& DRIVING FOLDBACK HEADPHONES Meets 1 BA signal path specification. Complete boxed unit $£ 94.00$. Set of parts less case and all XLR connectors $£ 55.00$.
 PEAK PROGRAM METERS TO BS4297
 Drive circuit. $35 \times 80 \mathrm{~mm}$. for 1 mA L.H. zero meter to BBC E1477. Gold 8 -way edge con supolied. $\begin{array}{llll}\text { Complete kit } & \mathbf{E 1 2 . 0 0} & \text { Built and aligned } & \mathbf{£ 1 7 . 0 0}\end{array}$ ERNEST TURNER PPM meters. scalings $1 / 7$ OR-22 $/+4$. Type $642,71 \times 56 \mathrm{~mm} £ 12.60 ; 643.102 \times 79 \mathrm{~mm} £ 15.00$ Twin movement. scale $86 \times 54 \mathrm{~mm} £ 37.00$.

PUBLIC ADDRESS :SOUND REINFORCEMENT In any public-address system, where the microphones and
loudspeakers are in the seme vicinity acoustic feedback (howlround) occurs if the amplification exceeds a critical value. By shitting the audio spectrum fed to the speakers by a fow Hertz the tendency to howling at room resonance frequencies is
destroyed and an increase in gain of $6-8 \mathrm{~dB}$ is possible before the onset of feedback
SHIFTERS IN BOXES with overload LED, shift/bypass switch 8 S4491 mains connector and housed in strong diecast boxes finished in attractive durable blue acrylic. Jack or XLR audio con-

SHIFTER CIRCUIT BOARDS FOR WW July 1973 article
 SPECTRUM SHIFTER: variable shifts, $\mathbf{0 . 1 - 1 0 0 0} \mathbf{H z}$. for weird apecial effects and phasing. Ring for leaflets.
SURREYELECTRONMCS
The Forge, Lucks Green, Cranleigh,
Surrey GU6 7BG. (STD 04866) 5997

PRECISION

polycarbonate capacitors
All Eigh Stability-Extremely Low Leakage

440 V AO ($\pm 10 \%$)		63V Rang			
	50p 59 p		$\pm 1 \%$	$\pm 2 \%$	$\pm{ }^{56 \%}$
	82p	$1.0 \mu \mathrm{~F}$	${ }_{68 p}$	568	48p
	71p	$2 \cdot 2$ ¢F	80 p	650	55D
$0.5 \mu \mathrm{~F}$ (18*) ${ }^{\text {\% }}$	75p	$4 \cdot 7 \mu \mathrm{~F}$	21.30	81.05	85 p
$0.68 \mathrm{uF}\left(2^{*} \times 1^{\prime \prime}\right)$	80 p	6.8uF	81.64	21.29	$\underline{81.09}$
1.0uF ($2^{*} \times \mathrm{P}^{\text {a }}$)	91 p	10.0 HF	82.00	81.60	81.40

$\begin{array}{llllll}\text { TANTALDE } & 21.22 & 15.0 \mu \mathrm{~F} & 22.75 & 22.15 & 21.90\end{array}$

 AlL at 10 p each, 10 for 85 p , 50 for 44 .
TRAFSISTORS
BC107/8/9

BC114/8/9 | BC153/7/8 | 10 p | BC547/558 |
| :--- | :--- | :--- |

 | | 13 p | 2 N 3055 | 12 p |
| :--- | :--- | :--- | :--- | :--- |
| 0 p | | | |

 each, 6 for 29p, 14 for 84p. SPECLAL OFFER: 100 Zeners Yor 25.
RESISTORS-High stabllity, low noise carbon film 5%.
 $2 \cdot 2 \mathrm{M} \Omega$. ALL at 1 p each, 8 p for 10 of any one value, ${ }^{70 \mathrm{p}}$
for 100 of any one value. SPECIAL PACK; 10 of each value $2-2 \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$ (730 resastors) 25 .
SILICON PLAASTIC RECTIFIERS- 1.5 amp. brand new
wire ended DO27; 100 P.I.V. 7 D (4 for 26 g) 400 P.I.V. 8 D wire ended DO27; 100 P.I.V. 7D (4 for 26 p) 400 P.I.V. 8 D
(4 for 30 p). BRIDGE RECTIFIERS- $2 \frac{1}{2}$ amp, 200 V 40 p ; 350 V 45 p ;
SUBMMNIATURE VERTICAL PRESETS- 0.1 W only. ALL at ${ }^{5} \mathrm{p}$ each; $50 \Omega, 100 \Omega, 220 \Omega, 470 \Omega, 680 \Omega, 1 \mathrm{k} \Omega$
$2.2 \mathrm{k} \Omega, 4.7 \mathrm{k} \Omega, 68 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 47 \mathrm{k} \Omega, 68 \mathrm{k} \Omega$; $100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega, 680 \mathrm{k} \Omega, 1 \mathrm{M} \Omega .2 \cdot 5 \mathrm{M} \Omega, 5 \mathrm{M} \Omega$.
PLEASE ADD 10p POST AND PACKING ON ALL
ORDERS BELOW 25 ALL EXPORT ORDERS ADD ORDERS BELOW EF . ALL
COST OF SEA/AIRMALL

PLEASE ADD 8\% V.A.T. TO ORDERS.
Send 8.A.E. for litts of additional ex-stock items.
Wholesale price lists available to bong flde companies.
MARCO TRADING (Dept. DII) The Old School, Edstaston, Nr. Wem, Shropshire Tel. Whixall (Shropshire) (STD 094872) 464/5

INIERNAIIONAL TRANSISTOR SELECTOR

Over 10,000 USA, EURO., JAP. BRITISH TRANSISTORS, ELECTRICAL, MECHANICAL SPECIFICATIONS,
MANUFACTURERS AND
AVAILABLE SUBSTITUTES
by T. D. Towers, M.B.E. \qquad Price $£ 3.15$
1975 EDITION
THE RADIO AMATEUR'S HANDBOOK
by A.R.R.L. \qquad Price $£ 3.50$

VIDEOTAPE RECORDING

THEORY AND PRACTICE
by J. F. Robinson \qquad Price $£ 4.80$

OPERATIONAL AMPLIFIERS Design \& Application by Barr Brown Price $£ 4.50$ DIGITAL ELECTRONIC CIRCUITS AND SYSTEMS by N. M. Morris TEMS
Price $£ 2.50$

COLOUR TV with Particular Ref to by G. N. Patchet SYSTEM Price $\mathbf{6 5 . 1 5}$ * PRICE INCLUDES POSTAGE *

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET LONDON, W2 1NP

Phone 7234185
Closed Sat. 1 p.m.

> ANY MAKE-UP OR COPY QUERIES CONTACT JOHN GIBBON 01-261 8353

Wilmslow Audio

THE firm for speakers!

Baker Group 25, 3, 8 or 15 ohm Baker Group 35, 3. 8 or 15 ohm Baker Deluxe. 8 or 15 ohm .
Baker Major، 3. B or 15 ohm Baker Major, 3. B or 15 ohm
Baker Regent. 8 or 15 ohm Baker Superb, 8 or 15 ohm Celestion HF 1300 Mk II Celestion MH 1000 horn. 8 or 15 ohm
EMI 13×8
EMI $13 \times 8,150 \mathrm{~d} / \mathrm{c}, 8 \mathrm{ohm}$ EMI $13 \times 8.450 \mathrm{t} / \mathrm{tw} .8 \mathrm{ohm}$ EMI $13 \times 8,350.8$ or 15 ohm EMI 13×8. 20 watt bass 8 ohm EMI 8×5.10 watt d / c. roll/s 4 or 8 ohm ELAC 59RM $10915 \mathrm{ohm} .59 R M 1148 \mathrm{ohm}$ ELAC $6 \frac{1}{2}{ }^{\prime \prime} \mathrm{d} / \mathrm{c}$. rolv/s 8 ohm Fane Crescendo 12A or 8.8 or 15 ohm Fane Crescendo 15, 8 or 15 ohm Fane Crescendo 18. 8 or 15 ohm Fane 701 Horn
Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$, roll/s 8 ohm
Goodmans 8P 8 or 15 ohm
Goodmans 10P 8 or 15 ohm Goodmans 12P 8 or 15 ohm
Goodmans 12P-D 8 or 15 ohm Goodmans 12P-G 8 or 15 ohm Goodmans Audiom 1008 or 15 ohm Goodmans Axtent 1008 ohm Goodmans Axiom 4028 or 15 ohm Goodmans Twin Axiom $8^{\prime \prime} 8$ or 15 ohm Goodmans Twin Axiom $10^{\prime \prime} 8$ or 15 ohm Kef T27
Kef B110
Kef B139
Kef T15
Kef DN8
Kef DN 12
Kef DN 13
Richard Allan CG8T 8 ohm
STC4001G Super Tweeter
Wharfedale Super 10 RS/DD
Castle Super 8 RS/DD
Tannoy $10^{\prime \prime}$ HPD
Tannoy $12^{\prime \prime} \mathrm{HPD}$
Radford BD25
Radford MD9
Radford HD3
Radford FN12
Baker Major Module
Goodmans DIN 20 (4 ohm)
Goodmans Mezzo Twinkit
Helme XLK25
Helme XLK30
Helme XLK50
Kef kit I
Peerless 20/2
Peerless 30/2
Peerless 20/3
Peerless 50/4
Peerless 3/15
Richard Allan Twinkit
Richard Allan Triple 8
Richard Allan Triple 12
Richard Allan Super 12
Wharfedale Linton 2 kit
Wharfedale Dovedale 3 ki

. $£ \mathbf{£ 8 . 7 5}$
. $£ 10.75$
.

. $\mathbf{£ 5 . 0 0}$. $\mathbf{£ 5 . 3 0}$

. $£ 12.95$

$\mathbf{£ 1 6 . 7 5}$

. $£ 15.75$
£12.00
. $£ 7.25$
$\begin{array}{r}£ 17.25 \\ \hline\end{array}$

$£ 9.00$

$£ 5.25$
. $£ 7.25$
$£ 14.25$
E .00
E
E .00
$\mathrm{f} \rightarrow 00$
£2.00
$£ 3.30$
€ 6.35
£6.35
f6.19
£12.95
.$£ 8.95$
$£ 57.00$
£59.00
$£ 75.00$
$£ 14.75$
.$£ 8.95$
$\mathbf{8 6 . 7 5}$
ach $\mathbf{E 1 0 . 7 5}$
each $£ 9.75$
pair $\mathbf{£ 4 5 . 0 0}$
pair $\mathbf{£ 2 2 . 0 0}$
pair $£ 14.95$
each £20.95
each £36.75
ach £14.95
each f20.95
each £22.95
each $£ 22.95$
each £15.00
each $£ 8.95$
each E13.75
each $£ 19.95$
each £23.75
pair $£ 19.25$
pair $£ 34.50$
. pair $£ 52.50$

PRICES INCLUDE VAT
Cabinets for PA and HiFi, wadding. Vynair etc.
Send stamp for free booklet "Choosing a Speaker
FREE with orders over $£ 7$-HiFi Loudspeaker Enclosures Book
All units are guaranteed new and perfect Prompt despatch
Carriage: Speakers 38peach, tweeters and cross-
Nine

WILMSLOW AUDIO
 Dept. WW

Loudspaakers: Swan Works, Bank Square, Wilmslow, Cheshire SK9 1HF. Discount HiFi PA etc: 10 Swan Street, Wilmsiow. Radio, HiFi, TV: Swift of Wilmslow, 5 Swan Street, Witmslow. Tel: (Loudspeakers) Wilmslow 29599, (HiFi etc.) Wilmslow 26213

WW-063 FOR FURTHER DETAILS

We enjoy solving other people's problems!

Jasmin take a slightly different approach to their customers and they are proud of the rapport they attain with them. Research and development staff are always available to offer advice on technical issues. This in turn means that Jasmin are able to offer a unique service if you have problems in the following spheres - Complex automatic text and evaluation apparatus. -Digitalized video and Ceefax/Oracle display equipment. - Mini computer orientated systems. - Specialist contract engineering.

BOSTON HOUSE, ABBEY PARK ROAD, LEICESTER LE4 5AN
TELEPHONE: 0533-58128/9 TELEX: 341581

ARISTOCRATS IN CONTROL

WW- 144 FOR FURTHER DETAILS

New models
 CALCULATOR ICs fiom THURLBY Lower prices

Increasing demand for the XE series high performance calculator chips high resulted in increases in scale allowing us to offer even better value for money.

Thurlby Electronics offer you the opportunity to build yourself an advanced electronic calculator at amazingly low cost using one of the XE series MOS single chip calculator I.C's.

Every IC is brand new, tested and guaranteed. It comes complete with full data, circuit diagrams and wiring details covering the use of different types of displays, describing how to construct both
very simple and more elaborate keyboards, and explaining the operation of the calculator - both in normal calculations and in more complex operations.

Full money back guarantee.
Cash with order.
Postage and packing 20p per order. Please add 8% VAT to total order value.

£3.25

$£ 2 \cdot 25^{\text {* }}$ *ar
Display driving interface chips
TK9 9 digit suitable for XE $\mathbf{3 0 3} \mathbf{£ 0 . 9 5}$ +VAT
Fifrimen

Cambs. CB4 5NH

Please supply

To Thurlby Electronics

[^8]for $£ \quad$ including VAT \& postage

Name
 Address

Address

LOW FREQUENCY ANALYSER

$50 \mathrm{~Hz}-50 \mathrm{KHz}$ ASSEMBLY AND INSTRUCTION INFORMATION S.A.E.

PRICE $£ \mathbf{2 7} \mathrm{p} \mathrm{\& p} 75 \mathrm{p}$
Board, modules and all components lexcluding P.U.).

100MHz SCOPE TUBES

MULLARD D13-450GH-03. P31 PHOSPHOR. INTERNAL GRATICULE-6CM \times 10CM RECTANGULAR. Y SENSITIVITY 3V PER CM $\times 11 \mathrm{~V}$ PER CM. SINGLE GUN. DISTRIBUTED Y PLATES, TRACEROTATE COILS.

BRAND NEW BOXED. $£ \mathbf{3 0}$ each. CARRIAGE £2.

INIDET TO AIDVERTISERS

Appointments Vacant Advertisements appear on pages 80-100

	Page	Page	Page
Action Video		Harris Electronics (London) Ltd. 13, 18	Quality Electronics Lid. 17
Aero Electronics Ltd.	17, 20	Harris, P. .. 101	Quartz Crystal Co. Ltd. 10.1
Ambientaccoustics	... 31	Hart Electronics 48	
Ancom Lid.	.. 10	Hayden Laboratories Ltd. 22	
Anders Electronics Lid.	. 4	Heath (Gloucester) Ltd. 2	
Arrow-Hart (Europe)	. 31	Hengstler G.B. Ltd. Readers' Card	Radford Audio Ltd. 14
Aspen Electronics Lid.	. 28	Henry's Radio Ltd. 59	Radio Shop, The .. 52
A.S.P. Lid. 70	H.H. Electronics 19	Radio T.V. Components 62
A. \& S. T.V. Components	. 57	Hi-Fidelity '75' ... 77	Rank Audio Visual 40
		Hi-Fi Designs .. 45	R.E.W. Audio Visual Co. 42
		Hitachi-Shibaden (U.K.) Lid. 40	Rola Celestion Ltd. ... 32
Barrie Electronics Ltd. 53			
Bell \& Howell Ltd. 39	Icon Design ... 17	
Bentley Acoustic Corp. Ltd. 69	I.L.P. (Electronics) Ltd. 68	
Bi-Pak Semiconductors	60,61	Industrial Sub Assembly Lid. 27	Sanyo Marubeni (U.K.) Ltd. 43
Bi-Pre Pak Ltd. 68	Industrial Tape Applications Lid. 19	Samsons (Electronics) Ltd. 70
Bias Electronics Ltd.	.. 27	Integrex Ltd. .. 72	Scientronics ... 57
B.H. Components Factors Ltd. 78	I.T.F.-L.E.C.S. ${ }^{\text {a }}$.	Semicron Indexes Lid. 13
Broadfields \& Mayco Disposals	$\ldots . .101$	I.T.T. Instrument Services 15	Scott. James Electronic Eng. Ltd. 12
Bul!, J. Electrical Ltd. 69			
		Jackson Bros. (London) Ltd. 32	
		Jasmin Electronics Ltd. .. 103	
Cambridge Learning	.. 3	J.E.F. Electronics \ldots................................... $10 . .$.	Shure Electronics Ltd. 23,35
Carston Electronics	.. 73	J.H. Assockates Ltd. 79	Sinclair Radionics Ltd. 38
Catronics	. 53		Sintel S.. 101
Cerutti, S.A. \& Cie. 77		S.J. System Designs ... 52
Chiltmead Ltd.	1,104	K.E.F. Electronics Ltd. ${ }^{7}{ }^{7}$	Sowater, E. A., Ltd. .. 101
Chromasonic Electronics Ltd.		Keytronics Ltd. .. 101	Sugden, J. E., \& Co. Ltd. 20.102 Surrey Electronics
Colomor (Electronics) Ltd.			Surrey Electronics 102
Computer Sales \& Services	. 78		
Concorde Instrument Co.	... 52		
Crichton, J.	48	Lynx Electronics .. 48	
C.T. Electronics Ltd. 76	Lynx Electronics .. 48	Telequipment Products (Tektronix U.K.) Ltd. 34
			Teleradio Special Products 101
		Macfarlane, W. \& B. 58	Teletape Video, The London Cassette Centre ... 41
		Macinnes Labs Ltd. .. 30.	Teonex Ltd. ... 6
Dixons Technical CCTV Ltd. Drake Transformers Ltd. 17	Maplin Electronic Supplies 65	Thurlby Electronics 103
	... 10	Marco Trading Co. 102	Trampus Electronics 46
		Marconi Instruments Ltd. cover ii	Trec Consultants Lid. 40
		Marshall, A., \& Sons (London) Ltd. 58 McKnight Crystal Co. .. 101	
East Cornwall Components	50	McLlennan Eng. Lid. 16	
Eddystone Radio Ltd. 21	Mills, W. .. 57	United-Carr Supplies 37
Electronic Brokers Ltd.	74, 75	Milward, G. F. ... 64	
Electronic Mech. Sub Assembly 101	Modern Book Co. ... 10.	
Electrovalue		Multicore Solders Ltd. cover iv	
Elektor Publications Ltd.	... 22		Valradio Ltd. 20
E.M.I. Telecommunications 36		Vero Electronics 18
Eurotype .. 27		Naim Audio Ltd. .. 26 Newnes Buterworths .. 50	Vortexion Ltd. cover iii
Farnell Instruments	.. 28	Ocli Optical Coatings Ltd. 12	Wayne, Kerr, The, Co. Ltd. 8
Ferrosraph, The, Co. Ltd.	... 14		West Hyde Developments Lid. 101
Fi-Comp Electronics	.. 56		Whiteley Electrical Radio Co. Ltd. 20
Future Film Development Lt			Wilkinson, L. (Croydon) Ltd. 57
F.W. Electronics 101	P. \& B. Electronics Lid. 76	
Fylde Electronic Labs. Ltd. 79	Pattrick \& Kinnie 66	Wireless World (3 in 1) 49
		Phoenix Electronics (Portsmouth) Lid. 26	Wireless World Annual 30
		Physical \& Elec. Labs. Ltd. 56	
Gardners Transformers Ltd.		Precision Petite Ltd. ... 77	
Grampian Reproducers Ltd.	. . 102	Prosser Scientific Insts. 28	Z. \& I. Aero Services Ltd. 16,72
Greenwood Electronics Ltd. 11	Pye Unicam ... 26	Zettler GmbH ... 19

[^9]
SYSTENDODOD

VORTEXION

A new range of sound equipment from Vortexion, System 2000 has been designed by our engineers to combine the aesthetics of design in the domestic equipment field with the near flexibility of a modular system. Like all our equipment Vortexion System 2000 is built to last.

No matter what your sound problem, whether hotel or local pop group, ask our Design Consultants how it can be solved with System 2000.

Ersin Multicorethe international solder

Ersin Multicore 5-Core Solder

The proved superiority of ERSIN Multicore Solder for over thirty years is due to many factors. We have specialised throughout this period in the manufacture of cored solders. Consequently our research and manufacturing staff have been able to devote all their energies to the development of Multicore Solders. All alloys are of highest purity, carefully formulated and checked.

Our unsurpassed ERSIN flux is rigorously tested before and after it is incorporated in the solder wire. Our five separate cores of flux ensure flux continuity, leave only an ultra-thin layer of solder separating flux from work for instant wetting and provide a more accurate ratio of flux to solder. It is therefore possible to
use less solder and obtain greater reliability.
Our Quality Control at all stages of manufacture is guaranteed and recorded by the batch number on every reel.

Needle fine gauges

In addition to our standard range of wire diameters (10-22 swg: $3.2-0.7 \mathrm{~mm}$) supplied on $2 \frac{1}{2} \mathrm{~kg}$ and $\frac{1}{2} \mathrm{~kg}$ reels we also massproduce needle-fine gauges (24-34 swg: 0.56-0.23 mm) on 2.50 g reels for microminiature soldering applications - still with 5 Cores of flux.

Savbit Solder

One of our most popular special ERSIN Multicore Solder alloys is SAVBITT alloy. Compared with ordinary tin/lead solders it dramatically reduces the erosion of soldering iron bits, copper wires and printed circuit conductors. It also saves costs and increases reliability. SAVBIT alloy containing 5-Cores ERSIN 362 flux has received special Ministry approval-under DTD. 900/4535 for Military applications.

Sectioned iron-plated bit, after 40.000 simulated uperations using (i0/40 Solder

Sertioned iron-plated bit, after 40,000 simulated operations using SAVBI' Solder.

$40 / 60 \mathrm{Sn} / \mathrm{Pb}$
$40 / 59.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}$
$30 / 70 \mathrm{Sn} / \mathrm{Pb}$
$20 / 80 \mathrm{Sn} / \mathrm{Pb}$
$15 / 85 \mathrm{Sn} / \mathrm{Pb}$
Pure Tin
$95 / 5 \mathrm{Sn} / \mathrm{Sb}$
5/93.5/1.5 $\mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag}$

Alloy

Composition (nominal major elements)
$50 / 33 / 17 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Cd}$
$\begin{aligned} & 62 / 36 / 2 \quad \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag} \\ & 62 / 35.7 / 2 / 0.3 \quad \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag} / \mathrm{Sb} \end{aligned}$
$63 / 36.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}$
$\begin{aligned} & 60 / 40 \mathrm{Sn} / \mathrm{Pb} \\ & 60 / 39.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / 5 \mathrm{~b} \end{aligned}$
$50 / 50 \mathrm{Sn} / \mathrm{Pb}$
50/49.7/0.3 Sn/Pb/Sb
$50 / 48.5 / 1.5 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Cu}$
45/55 Sn/Pb
$40 / 60 \mathrm{Sn} / \mathrm{Pb}$
40/59.7/0.3 Sn/Pb/Sb
$30 / 70 \mathrm{Sn} / \mathrm{Pb}$
$20 / 80 \mathrm{Sn} / \mathrm{Pb}$
$15 / 85 \mathrm{Sn} / \mathrm{Pb}$
Pure Tin
$95 / 5 \mathrm{Sn} / \mathrm{Sb}$
5/93.5/1.5 Sn/Pb/Ag

Grade	Melting Temperature		
	Soli	Liqu	Specification
TLC	145	145	LIN 1707
LMP	179	179	DIN 1707
Sn62	179	179	QQ-S-571E
Sn63	183	183	QQ-S-57 1E
K	183	188	B.S. 219
Sn60	183	188	QQ-S-571E
F	183	212	B.S. 219
Sn50	183	212	QQ-S-571E,
Savbit 1	183	215	DT1) 900/4535 IUIN 1707
R	183	224	B.S. 219
G	183	234	B.S. 219
Sn40	183	234	QQ-S-571E
J	183	255	B.S. 219
V	183	275	B.S. 219
-	225	290	-
P.T.	232	232	B.S. 3252
95A	236	243	B.S. 219
H.M.P.	296	301	B.S. 219

For full information on these and a Selector Guide to other MUITICORE products please write on your Company's letterhead direct to:
Multicore Solders Limited, Maylands Avenue, Hemel Hempstead, Hertfordshire HP2 7EP.
Tel: Hemel Hempstead 3636 Telex : 82363

[^0]: Write to us enclosing 35p P.O. or cheque for Elektor 2. If you would like a subscription for the next seven issues ($£ 3.60$ till end 1975), send no money, write or phone for subscription card. Elektor Publishers Ltd.
 6, Stour Street, Canterbury CT1 2XZ. Tel Canterbury (0227) 54439

[^1]: Price 30 p (Back numbers 50 p)
 Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
 Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
 Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London SE1."
 Subscription rates: 1 year, £6 UK and overseas ($\$ 15.60$ USA and Canada); 3 years. $£ 15.30$ UK and overseas ($\$ 39.80$ USA and Canada). Student rates: 1 year, $£ 3$ UK and overseas ($\$ 7.80$ USA and Canada); 3 years, $£ 7.70$ UK and overseas (\$20.00 USA and Canada).
 Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636.
 Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281.

 Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address. C I.P.C. Business Press Lid, 1975

[^2]: Beaverton House, P.O. Box 69, Harpenden, Herts.
 Telephone: Harpenden 63141 Telex: 25559

[^3]: *Artificial vision, Wireless World, May, 1971, pp. 214-217

[^4]: *No parking problems.
 *Continuous free bus service to and from Hounslow
 West tube station.
 *Choice of bars and restaurants.

[^5]: Plessey Marine employs in the region of 1,700 people divided between locations' in Somerset, Newport, S. Wales, and IIford, Essex. Highly competitive salaries and excellent conditions of employment are offered. Generous holiday entitlement. Pension/Life Assurance scheme. Relocation expenses will be paid.
 For further information please telephone, or write giving details of age, qualifications and experience, to The Personnel Manager, Plessey Marine Research Unit, Wilkinthroop House, Templecombe, Somerset. Tel: Templecombe (09637) 551.

[^6]: DAVID SAMUELSON,
 Samuelson Film Service Limited, 303, Cricklewood Broadway, London, N.W.2.

[^7]: w
 WE buy new valves, transistors and clean new components, large or small quantities, all details quotation by return.- Walton's, 55 Worcester ${ }^{\text {St. }}$.
 Wolverhampton.

[^8]: for which I enclose cash/cheque +PO

[^9]:
 of by way of Trade at a price in excess of the recomanended maximum price shown on the cover, and that it shall not bo

