MARCH 1975 30p

Home videotape and TV

 Simple fom.tuner

The design engineers at $\mathbf{m i}$ all have to shape up to one essential fact: we consider good design to be all-important.

By good design we don't just mean an attractive outward form, however aesthetically pleasing it may be. We mean design that is right both outside andin. No cover-up jobs. No cosmetic operations. No makeshift solutions. Because whoever pointed out that beauty is more than skin
deep knew what he was talking about.
The clean, compact, uncluttered lines of today's $\mathbf{m i}$ instruments signify more than good styling. They are the outcome of the most intensive application to the balance of form and function, of the eradication of any design that has failed to match our exacting standards.

In other words, they signify mi's conviction that correct designing means correct functioning.

MARCONI INSTRUMENTS LIMITED

LOW COST RC OSCILLATORS

PORTABLE INSTRUMENTS

ANALOGUE

FREQUENCY ACCURACY

3 Hz to 300 kHz in 5 decade ranges $\pm 2 \% \pm 0.1 \mathrm{~Hz}$ up to 100 kHz , increasing to $\pm 3 \%$ at 300 kHz .
sine output 2.5 V r.m.s. down to $<200 \mu \mathrm{~V}$. DISTORTION $<0.2 \%$ from 50 Hz to 50 kHz . sQuare output 2.5 V peak down to $<200 \mu \mathrm{~V}$. SYNC. OUTPUT 2.5 V r.m.s. sine.

METER SCALES $0 / 2.5 \mathrm{~V}$ \& $-10 /+10 \mathrm{~dB}$ on TG152DM
SIZE \&WEIGHT $\quad 7^{\prime \prime}$ high $\times 10 \frac{1}{4}$ " wide $\times 5 \frac{1}{2}$ " deep. 8 lbs .

TG152D
Without
meter
(
\&8

FREQUENCY

ACCURACY
SINE OUTPUT
DISTORTION
SQUARE OUTPUT
SYNC. OUTPUT SYNC. INPUT meter scales

SIZE \& WEIGHT

FREQUENCY
accuracy
sine output DISTORTION

METER SCALES
SIZE \& WEIGHT
TG66B
$\underset{\substack{\text { Bataey } \\ \text { modecter }}}{ } \mathbf{1} 156$

DIGITAL

0.2 Hz to 1.22 MHz on four decade controls.
$\pm 0.02 \mathrm{~Hz}$ below 6 Hz
$\pm 0.3 \%$ from 6 Hz to 100 kHz
$\pm 1 \%$ from 100 kHz to 300 kHz
$\pm 3 \%$ above 300 kHz .
5 V r.m.s. down to $30 \mu \mathrm{~V}$ with $\mathrm{Rs}=600 \Omega$
$<0.15 \%$ from 15 Hz to 15 kHz .
$<0.5 \%$ at 1.5 Hz and 150 kHz .
2 Expanded voltage \& $-2 /+4 \mathrm{dBm}$.
7 "high $\times 10 \frac{1}{4}$ " wide $\times 7$ " deep. 12 lbs .
TG66A
Mains \&
battery model.
f176

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited,
Electron House,
Cray Avenue, St. Mary Cray.
Orpington, Kent BR5 30J.
Telephone : Orpington 27099
Telex: 896141

Varley is one of Europe's bis names in miniature plus-in relays.

The Miniaturised Bi-stable polarised relay type VPR and the P.O. approved relay type 23 are but two from a range used and approved throughout

the electronics world
Each is built to uncompromising quality standards . . . with ultrasonic cleaning throughout coupled with exacting performance and timing checks.

The same goes for our new ACrange.

These miniature plug-in relays have the same physical dimensions as the DC range Shown: 2 and 4-contact Shown: 2
versions.
contact Varley Technicians now - or send for the catalogue

SOUND SENSE=VORTEXION

VORTEXION Design and manufacture public address equipment to meet a range of specific requirements for AIRPORTS, HOTELS, THEATRES, GOVERNMENT AUTHORITIES, LOCAL AUTHORITIES, SUPERMARKETS, SCHOOLS, SPORTING COMPLEXES, POP GROUPS AND THE LOCAL VILLAGE HALL.

The high fidelity amplifier illustrated has bass cut controls on each of the three low impedance balanced line microphone stages and a high impedance gram stage with bass and treble controls, plus the usual line or tape input. All the input stages are protected against overload by back to back low self capacity diodes and all use F.E.T. 's for low noise, low intermodulation distortion and freedom from radio breakthrough.

A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or 8-16 ohms output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected.

The mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output 0.3 V out on 600 ohms upwards.

50/70 WATT ALL SILICON AMPLIFIER WITH
BUILT-IN 4-WAY MIXER using the circuit of our reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T Mixer Amplifier, again fully protected against overload and radio breakthrough. The mixer is arranged for 2-30/60 Ω balanced line microphones, 1 -HiZ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output OR 5-15 Ω and 100 volt line.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 -channel F.E.T. mixer. 2-30/60 Ω balanced microphone inputs, 1-HiZ gram input and 1-auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. Standard model l-low mic. balanced input and HiZ gram. Outputs available 8/15 ohms OR 100 volt line.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms15 ohms and 100 volt line. Bass and treble controls fitted.

Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

200 WATT AMIPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is 120 watts on continuous sine wave. Input l mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$ Additional matching transformers for other impedances are available.
F.E.T. MIXERS and PPM's. Various types of mixers available. 3, 4, 6 and 8 channel with Peak Programme Meter. $4,6,8$ and 10 Way Mixers. Twin 3,4 and 5 channel Stereo, also twin 4 and 5 channel Stereo with 2 PPM's.

VORTEXION

Vortexion Ltd., 251-263 The Broadway, Wimbledon, SW19 1SF.
Telephone: 01-542 2814 and 01-542 6242/3/4.
Telegrams:"Vortexion London SW19"

MrA PM ITN
 STiPPU If

SUPERSOWIC SAME DAT-SERTICE-MEANS QUAITV COWPDVENTS-FASYI

	- RESISTORS T19 to 910k: 5\% E12 \& E24 1p each METAL OXIDE WIREWOUND Other ranges strocked. See our catalogue 12.10 .12 .15 .18 .22 .27 .33 .39 .47.
	- POTENTIOMETERS Rotary miniature carbon track $1^{\prime \prime}$ spindle. Values available: $5 k$. $10 \mathrm{k}, 25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}, 250 \mathrm{k}$. $500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}$. Log. signle-gang single-gang $(+1 k)$$\quad$ 16p. Lin. \qquad Log, or Lin. dual-gang without switch Slider 60 mm 號 Slider 60 mm track. Metal-cased: overall length 86.15 mm less knob 17p extra \qquad Log. or Lin. dual-gang 9 k . 5 k $10 \mathrm{k}, 25 \mathrm{k}, 50 \mathrm{k} .100 \mathrm{k}, 45 \mathrm{p}$ each. Presets: 0.1W Vertical or Moon, 220 , 470 $4 \mathrm{k} 7.10 \mathrm{k}, 22 \mathrm{k}, 47 \mathrm{k}, 100 \mathrm{k}, 220 \mathrm{k}$, 470 k .1 M 7p each.
	- CAPACITORS Ammanamome
	- SWITCHES Rotary adjustable stop. 1 pole $210 \quad 12$ way: 2 pote. 2 to 6 pole. 2 or 3 way $36 p$ each. Silide Sub-min. DPDT $9 p$ Push-on, push-off locking DPDT 250 V 4 A Rocker white DPST 250 V 10 A Rotary mains DPST $250 \mathrm{~V} \stackrel{40 \mathrm{~A}}{2 \mathrm{~A}}$ Toggle with ON/OFF plate DPDT 250 V 1.5 A $\mathbf{2 5 p}$ BCD OUTP PUT SLIDE SWITCH SWITCH Marks the \qquad With 7 -segment type read-out. Full details in our

P.O. Box 3, Rayleigh, Essex. Tel: Southend-on-Sea (0702) 44101

VAT. Please add 8% to the final total. Post and packing FREE in U.K. (15 p handling charge on orders under $f 1$)
First-class post pre-paid envelope supplied free with every order

Magnetic winner in the less-space race: the new Brimar M14-100.

BRIMAR

Thorn Radio Valves and Tubes Limited
Mollison Avenue, Brimsdown, Enfield, Middlesex, EN3 7NS.

Telephone: 01-804 1201.

Feathers and things

Take a diaphragm from a QUAD electrostatic loudspeaker. Let it fall and you can count up to ten before it reaches the ground. Try to do this with a cone from a moving coil speaker and you'll need a high speed computer to do the counting. Remember all that stuff at school about kinetic energy? How heavy things are hard to start and
hard to stop? That's why a QUAD loudspeaker responds immediately to every nuance in the music. It's obvious when you think of it. It's even more obvious when you hear it.
Send postcard for illustrated leaflet to Dept.WW Acoustical Manufacturing Co. Ltd., Huntingdon PE18 7DB. Telephone (0480) 52561.

QUAD

Products of The Acoustical Manufacturing Co.Ltd.

BEVГIL人 ІГГПટІОИО士 IHE THE ILLUSIONOF REALITY

 R50 monitor loudspeaker (and - we're proud to admit it) is a true labour of love. And we've spent hundreds of hours in choosing and evaluating the performance
characteristics of the four critically matched drive units that go into the R50. We exhaustively investigated the labyrinth paths of cabınet design. We developed sophisticated fabrication and testing techniques. in production we even go as far as to hand test and select each individual capacitor in the cross-
over network. In short, nothing is spared in our single minded effort to will you begin to understand how close we have come to reality
loud speaker
that can produce an absolutely convincing illusion of reality. But words alone cannot convey the experience awaiting you the first time you hear the R50. This extraordinary transducer with its exceptionally smooth frequency response, extended bass, superb high frequency dispersion and extremely low distortion has to be heard to be disbelieved. Only then

for people who listen to music Cambridge Audio Limited The River Mill St. Ives

CONTINUOUS
 IMPROVEMENT

We are always at work on better production methods and the use of new materials.

These cartridge fixing screws are moulded in glass reinforced nylon which is only one-third the weight of aluminium. At 73p per set you can probably afford them better than the weight of those you are using

We can send you as many sets as you want by return if you send us the money.

The best pick-up arm in the world

Write to SME Limited
Steyning - Sussex - England
Telephone: Steyning (0903) 814321

STRIP CHART RECORDERS
 Made in USSR
 MULTI-RANGE UNIVERSAL PORTABLE AC/DC RECORDING VOLTAMMETER H390

Series H3020 Recorders

Sensitivity:	$8 \mathrm{~mA} \mathrm{F.S.D}$.
Speed of response:	5 Hz
Chart width:	80 mm per channél
Chart drive:	$230-250 \mathrm{~V}$ AC mains
Chart speeds:	$0.1-0.2-0.5-1-2.5-$
	$12.5-25 \mathrm{~mm} / \mathrm{sec}$

Time and event marker pens fitted.

PRICES:
Single pen model H3020-1 $\mathbf{£ 8 0 . 0 0}$
Three pen model H3020-3 $£ 130.00$

Measurements	$5-15-150-250-$
ranges, $A C / D C:$	$500 \mathrm{~mA}, 1.5-5 \mathrm{Amps}$
	$5-15-150-250-$
	500 V
Accuracy:	$1.5 \% \mathrm{DC}, 2.5 \% \mathrm{AC}$
Chart width:	100 mm
Chart drive:	$220-250 \mathrm{~V}$ AC mains
Chart speed:	$20-60-180-600-$
	$1800-5400 \mathrm{~mm} /$
PRICE: $£ 78.00$	hour

SWITCHBOARD PATTERN MINIATURE RECORDING MILLIAMMETER H3100

Fullscale deflection: 1 mADC
Accuracy: 2.5\%
DC resistance of
the coil: 18.100
Chart width: $\quad 80 \mathrm{~mm}$
Chart drive: $\quad 220 / 250 \mathrm{~V}$ AC mains
Chart speeds: $\quad 20-60-180-600-$ $1800-5400 \mathrm{~mm} /$ hour
ALL the above prices are exclusive of Carriage and vat,
PLEASE WRITE FOR FULL DETAILS TO:

Z\&I AERO SERVICES LTD,
 44A WESTBOURNE GROVE, LONDON W2 5SF

Tel: 01-7275641

WW- 155 FOR FURTHER DETAILS

The Shibaden range of colour cameras are compact, easy to operate and versatile in their application through educational, medical, business and broadcasting studios. Shibaden Colour Cameras are designed with the customer in mind both from an application and performance stand point. They are fully backed by Shibaden's in-depth opto-electronic technology, which has proved to be superior through many years of application in a vast range of broadcasting equipment. When you buy Shibaden you buy the best

For further details on the Shibaden range of Colour Cameras, contact the Technical Service Department.

Hitachi

Shibaden (UK) Limited BROADCAST \& CCTV EGUIPMENT MANUFACTURERS Lodge House Lodge Road • Hendon London NW4 4DO.

Telephone: 01-203 4242/6

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. $1 \quad$ Phone: 01/837/7937
WW-093 FOR FURTHER DETAILS

Our manufacturing resources could contribute to your success, too! We've chalked up many years of service to ministries, government departments, armed forces, and a formidable list of significant names in industry. They all come to Whiteley for the specialist knowhow and resources we have developed. Can we help you? We can build to your drawings and specification, or put our design departments at your service, as needed. From a small component to a complete system, in audio work, relay switching circuits, control systems, and many other spheres-our facilities are ready. The Whiteley organisation is self-contained. The manufacturing resources are backed by our own toolroom, sheet metal working and press shops, plating and finishing lines, coil and transformer winding shop, plastics moulding shop and a modern new cabinet factory. Capitalise on all these Whiteley facilities-call us in for a look at your next electronics need. You'll be in good company!

ELECTRONIC \& ELECTRICAL DESIGN
PRODUCTION CAPABILITY
CABINET MAKINE
SHEET METAL FORMING/FINSHING
PLASTICS MOULDING
ENCAPSULATION
WHITELEY ELECTRICAL RADIO CO. LTD.
Mansfield, Notts, England. Tel. Mansfield 24762 London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074
ww- 096 FOR FURTHER DETAILS

PLARATIIP

You told us you enjoyed Elektor 1

Don't miss Elektor 2, out now

Elektor is a fund of well thought-out and thoroughly tested projects, new ideas using modern electronic components, objective comment on new developments.

Try it

Use the Elektor printed circuit board service for immediate delivery of high quality epoxy glass boards for all major projects.

In Elektor 2

Write to us enclosing 35p P.O. or cheque for Elek tor 2. If you would like a subscription for the next seven issues ($£ 3.60$ till end 1975), send no money, write or phone for subscription card.

Elektor Publishers Ltd.
6. Stour Street, Canterbury CT1 2XZ. Tel Canterbury (0227) 54439

LOW-COST INSTRUMENTS

745 COUNTER TIMER

Measures frequency, period, time and totalises 32 MHz frequency range (DC coupled) 5-digit . $3^{\prime \prime}$ LED display
6 Gate times/Time units, 10μ s to 15 in decades Sensitive, protected FET input

744 COUNTER TIMER
$\mathfrak{£ 7 4}+\mathfrak{£} 1.50$ p. \&p. + VAT
Measures frequency, period and time
30 MHz frequency range (DC coupled)
5-digit, long-life incandescent display
Sensitive, protected FET input

643 FUNCTION GENERATOR
$\mathbf{f 8 6}+$ £ 1.50 p. \&p. + VAT
Accurate digital frequency setting $.01 \mathrm{~Hz}-1 \mathrm{MHz}$
Wide range external control of frequency Triangle, Squarewave and Low Distortion
$50 \Omega+\begin{gathered}\text { Sinewave outputs } \\ \text { simultaneous outputs }\end{gathered}$
DC offset

Delivery is normally ex-stock-telephone for confirmation

OMB ELECTRONICS

Riverside, Eynsford, Kent DA4 0AE Tel. Farningham (0322) 863567

WW-150 FOR FURTHER DETAILS

Acdamed as the Worids leading telescopictillower towet in the fieid of radio comminucation Vodels tram 25° to 120^{\prime}

GTRUMECH Strumech Engineering Co Lid Coppice Side Brownhills, Walsail, Stafts

A NEW STANDARD FOR SOUND REPRODUCTION HD250 High Definition Stereo Control Amplifier

Designed for disc and tuner input and two tape machines, with complete recording and reproducing facilities.

The HD250 amplifier establishes a new standard in amplifiers for sound reproduction in the home. Improvements have been made in respect of performance, engineering design and quality of construction. We believe that no other amplifier in the world can match the overall specification of the HD250. Look at extracts from the specification below.

Power output.

50 watts average continuous power per channel, into any impedance from 4 to 8 ohms, both channels driven.
Maximum:
Distortion.
Pre-amplifier:

Power amplifier. at rated output: at 25 w output:

90 watts average power per channel into 5 ohms load.

Virtually zero. (Cannot be identified or measured as it is below inherent circuit noise.)

Less than 0.02% (typically 0.01% at 1 kHz).
Typically 0.006\%.

Overload margin
Disc input $\quad 40 \mathrm{~dB}$ min
Hum and noise output.
Disc:
-83dBV Measured flat with noise bandwidth of 23 kHz (ref. 5 mV .)
-88 dBV Measured with ' A ' weighted characteristic (ref. 5 mV .)
-85 dBV Measured flat (ref. 100 mV .)
-88 dBV ' A ' weighted (ref. 100 mV .)
17 inches $\times 4 \frac{3}{4}$ inches $\times 11$ inches deep overall.
21 lb .

Write or phone for leaflet which describes the design philosophy and conception of the HD250 together with a complete specification.

RADFORD AUDIO LIMITED, BRISTOL, BS3 2HZ Telephone: 0272662301

'BRENELL ENGINEERING CO LTD
231-5 Liverpool Road. London N1 1LY. Tel: 01-607.8271

Downtoyour last voltage stabiliser?

Don't give up.
EEV are still making a wide range of rugged, reliable voltage stabilisers and reference tubes.

We are still meeting all requirements-including equivalents for types now discontinued by other makers.

Write or'phone for voltage stabiliser data sheets and prices.

EEVandM-OV know how

TEAC 4-CHANNEL INDUSTRIAL RECORDER

Industrial Tape Applications

ITA 10-4 MODULAR MIXER

Ten inputs. Four output groups. Four limiters. Base, mid, treble EQ. Balanced inputs. Modular construction. Headphone monitoring.
IMMEDIATE DELIVERY.

$$
£ 590+V A T
$$

NOTE NEW ADDRESS~
5 Pratt Street, London NW1 OAE. Tel: 01-485 6162 Telex: 21879

Gardners line up

Line MatchingTransformers from Standard to Super Fidelity

"I MADE IT MYSELF"
Imagine the thrill you'll feel! Imagine how impressed people will be when they're hearing a programme on a modern radio you made yourself.

Now! Learn the secrets of radio and electronics by building your own modern transistor radio!

Practical lessons teach you sooner
than you would dream possible. than you would dream possible.

What a wonderful way to learn-and pave the way to a new, better-paid career! No dreary ploughing through page after page of dull facts and figures. With this fascinating technatron course, you learn by building!
You build a modern transistor radio . . . a burglar alarm. You learn radio and electronics by doing actual projects you enjoy -making things with your own hands that you'll be proud to own! No wonder it's so fast and easy to learn this way. Because learning becomes a hobby! And what a profitable hobby. Because opportunities in the field of radio and electronics are growing faster than they can find people to fill the jobs!

No soldering-yet you learn faster than you ever dreamed possible.
Yes! Faster than you can imagine, you pick up the technical knowyou pick up the technical know-
how you need. Specially prepared how you need. Specially prepared
step-by-step lessons show you step-by-step lessons show you
how to: read circuits-assemble how to: read circuits-assemble
components-build things-experi-components-build things-experi-
ment. You enjoy every minute of it! ment. You enjoy every minute of it!
You get everything you need. You get everything you need.
tools, components. Even a versatile tools. components. Even a versatile
multimeter that we teach you how to use. All included in the course AT NO EXTRA CHARGE! And this is a course anyone can afford. You can even pay for it by easy instalments.

So fast, so easy, this personalised course will teach you even if you don't know a thing today!
No matter how little you know No matter how little you know
now, no matter what your backnow, no matter what your background or education, we'll teach
you. Step by step. in simple easy-
to-understand language, you pick up the secrets of radio and electronics.
You become a man who makes things, not just another of the millions who don't understand. And you could pave the way to a great new career, to add to the thrill and pride you receive when you look at what you have achieved. Within weeks you could hold in your hand your own transistor radio. And after the course you can go on to acquire high-powered technical qualifications, because our famous courses go right up to City \& Guilds levels.

Send now for FREE

 76-page book-see how easy it is-read what others say!Find out more now! This is the gateway to a thrilling new career, or a wonderful hobby you'll enjoy for years. Send the coupon now. There's no obligation.

Pressure

Variable reluctance wet/wet differential for use with most corrosive pressure media

Established variable reluctance unit Pressure range 5 - 5000 p.s.i. gauge, differential or absolute. A.C. excitation only. Total error band less than 1.5%. Temperature range $-45^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.

SE42

DC/DC variable reluctance unit.
Pressures from 5 to 5000 p.s.i. gauge, absolute or differential. Temperatures from -45 to $+150^{\circ} \mathrm{C}$. Total error band less than $\pm 1.5 \%$.

SE40

DC/DC variable reluctance transducer. High level output $\pm 5 \mathrm{~V}$ d.c. Pressure range 5 to 5000 p.s.i. gauge, differential or absolute. Temperature range -45 to $+150^{\circ} \mathrm{C}$. Total error band less than 1.5%.

SE1150/W.G.
A.C. excitation variable reluctance transducer. 10-80 ins. water gauge. Ambient temperature. Total error band $\pm 1 \%$.

 wire 4.20 mA two wire ranges 5 to 500 PST gauge, differential or absolute compensated temperature range $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$. Total error band less than 0.25%.

SE4.88
Physiologicat transducer range 0 to $\pm 300 \mathrm{~mm}$ Hg sensitivity $5 \mathrm{mV} / 100 \mathrm{~mm} \mathrm{Hg}$ excitation 5 volts, autoclavable

of Transducers

Displacement DC/DC TYPES

MINIATURE

SE350 - free unguided armature, ranges $\pm 1 \mathrm{~mm}$ to $\pm 5 \mathrm{~mm}$. L'VDT with integral oscillator/demodulator. Excitation 9 to 15 volts output >1 volt at 12 volts excitation. Linearity 0.6\% FSD

SE351

As SE350 but with guided armature

SE352

As SE350 but with captive spring return armature

SE355

Electronic gauging head $\pm 1 \mathrm{~mm}$ to
$\pm 5 \mathrm{~mm}$. Long stroke

SE353 - free guided armature ranges $\pm 12.5 \mathrm{~mm}$ to $\pm 300 \mathrm{~mm}$ excitation 9 to 15 volts. Output

1 volt at 12 v excitation. Linearity 1.0\% FSD

SE354

As SE353 but with captive spring return armature maximum range $\pm 125 \mathrm{~mm}$

AC TYPES

Available to special order

SE/Entran

Piezoresistive Accelerometers

SE/Entran Accelerometers

Miniature piezoresistive accelerometers up to 5000 ' g ' range, available in various mounting configurations. Up to 500 mV full scale. Bi-axial and tri-axial versions available.

Pressure transducers

SE/Entran Pressure Transducers Miniature piezoresistive pressure transducers with ranges $0-5 \mathrm{lb} / \mathrm{in}^{2}$. Various configurations available, including hermetically sealed absolute versions. Up to 120 mV full scale.

Signal Conditioning

SE has a wide range of signal conditioning equipment to energise and rationalise all the transducers shown.

SE994/993 'MINI' system

Simple 6 channel d.c. signal conditioning. Variable excitation and bridge completion. Rationalised 1 volt output for indicators or magnetic tape or via the SE993 into an SE recorder.
 ditionBasic 6 or 2 channel a.c. condition-
ing. 5 V 3 KHz excitation. Simultaneous voltage and current outputs.

SE4000 Universal System

A sophisticated conditioning system of a.c. carriers, frequency/d.c. convertors, d.c. amplifiers. Completely interchangeable modules with a superb calibration system. 3 or 10 kHz . a.c. carrier, voltage (10 V) and current $(100 \mathrm{~mA})$ outputs.

SE Systems

We have an experienced team to prepare data acquisition and recording systems to customers requirements.

North Feltham Trading Estate, Feltham, Middlesex. Telephone: 01-890-1166 Telex 23995
Northern Sales Office, Bessell Lane, Stapleford, Nottingham. Telephone: Sandiacre 7255 Scottish Office, 18, Sycamore Drive. Hamilton, Lanarkshire. Tetephone: Hamiton 28674

Complete range of Switchcraft audio connectors for all studio and ancillary equipinents.
Versatile $-3,4,5$ or-6 pole; wide variety of matching plugs receep tacles; readily interchangeable with other leading makes.
Streamlined - simple positive snap-in connection;
cable clamping and latch lock.
Safe-self polarisation; captive insert screw provides̀ rigid assembly and electrical continuity; firm and constant ground contact between mating connector sliells through the use of an exclusive Ground Terminal and Contactors.

Low Bost Exstock: Quanitity Disedunts
 Write now for free descriptive literature.

Sole U.K. Agent for Switcheraft QG Connectors
F.WO.BAUCH LIMITED

49 Theobald Strect, Bureham Word. Herts. Wibg $4 \mathrm{R} \%$. Telephone: 0I-953 umot

TAKE A CLOSE LOOK

at a professional recorder that offers high performance, excellent reliability and is very easy to maintain. Ask yourself why so many commercial radio stations and recording studios are doing their best to wear them out, and not having much success. Decide if you need mono or stereo, console transportable or rack mounting versions and then inquire about prices.
We are sure you will be very pleasantly surprised.

BIAS ELECTRONICS LTD.
 01-5408808 572 KINGSTON ROAD, LONDON SW20 8DR

Our advanced hi-speed CRT's now available with colour

- high sensitivity, short length, electrostatic deflection.
- up to $15^{\prime \prime}$ diagonal and $16^{\prime \prime}$ diameter tubes.
- up to 850 MHz bandwidth.
- ruggedized types available.
for oscilloscope, radar and data display.

THOMSON-CSF ELECTRONIC TUBES LTD / RINGWAY HOUSE / BELL ROAD / DANESHILL / BASINGSTOKE RG24 OQG / TEL (O256) 29155 -TELEX : 858865
Frarce-THOMSON-CSF Groupement Tubes Electroniques /8, rue Chasseloup-Laubat / 75737 PAPIS CEDEX 15 / el (1) 5667004
Germany THOMSON-CSF Ele sironenrohren GmbH / Am Leonhardsbrunn 10 / 6 FRANKFURTTMAIN / Tel. (06-1) 702099
Italy - THOMSON-CSF Tubi Elettronici SRL / Viale degli Ammiragh 71 / ROMA / Tèl (6) 381458
Japan -THOMSON-CSF Japan K K. / Kyosho Buildıng / 19 3. Hirakawa-cho / Chiyoda-ku / TOKYJ / ₹ 102 / Tèl. (כ3) 2646341

U.S.A - THOMSON-CSF Electron Tubes Inc. 1750 Gloomfield Avenue / CLIFTON NJ 07015 / Tél. (201) 77ミt004

GETIT WHILE it'sconing

This is the first ever Wireless World Annual. It's got 128 pages including features covering all aspects of electronics and communications - new and established techniques, some practical, some theoretical - all written to the high standard you'd expect from Wireless World. Contents include: A General Purpose Audio Oscillator by L. Nelson Jones (a constructional project specially commissioned for the annual); Constructional Design for a Small Boat Echo Sounder by John French; Scientific Calculations with an Arithmetic Calculator by R. E. Schemel. There is also a reference section packed with useful information.
£1 from newsagents or $£ 1.35$ inclusive by post from the publishers.

Wireless World Annual 1975

To: General Sales Department, Room 11, Dorset House,
Stamford Street, London SE1 9LU.
Please send me.............copy/copies of Wireless World Annual 1975 at $\mathbf{£ 1 . 3 5}$ each inclusive. I enclose remittance value \mathbf{f}. (cheques payable to IPC Business Press Ltd).

Name (please print)
Address..

Encapsulated Power Supplies for PCB
mounting interchangeable with U.S. types.

Type	Output Volts	Output Current
PU 01	5	500 mA
PU 02	5	1000 mA
PU 03	$15-0-15$	100 mA
PU 04	$15-0-15$	200 mA
PU 05	$12-0-12$	120 mA
PU 06	$12-0-12$	240 mA

All units fully stabilised, competitively priced. Standard range normally ex-stock 'Specials' on short delivery.
Comprehensive specification given in Brochure GT29b which is available on request.

Gardners
Specialists in Electronic Transformers \& Power Supplies

TRANSFORMERS LIMITED

wireless world annual 1975

COMMUNICATIONS • ELECTRONICS

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.

Our product range comprises:
Low profile (flatform) Timing Miniature Low contact capacity Herme tically sealed - Stepping Mains switching - Latching Contact stacks•Solenoids

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals, Liquids, Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe, and internal $1 \frac{1}{2}$ volt standard size battery. Model "Mini-On $1^{\prime \prime}$ measures from - $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price £ 17.50 Model "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price $\mathbf{£ 2 0 . 0 0}$ (V.A.T. EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON), 138 GRAY'S INN ROAD, LONDON WC1X 8AX ('Phone 01-837 7937)

I would like to know more about Magnat loudspeakers. Please send me your 1975 brochure and price list. \square

I have your brochure, please send me the address of my nearest stockist. \square

Magnat Sound Systems Limited
Unit ' ${ }^{\prime}$ '
St. John's Industrial Estate
Penn
Bucks.

Name
Address

My present system consists of:
Amplifier/Rectifier
Turntable
Cassette unit
Speakers

New Course in Digital Design

Understand the latest developments in calculators, computers, watches, telephones,

television , automotive instrumentation

Each of the 6 volumes of this self-instruction course measures $11^{3} 4^{\prime \prime} \times 81 / 4^{\prime \prime}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flip flops and Registers

Offer Order this together with Design of Digital Systems for the bargain price of $£ 9.25$.
Design of Digital Systems contains over twice as much information in each volume as the simpler course, Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents, also covers many more advanced topics.

[^0]
Design of Digital Systems

A Self-Instruction Course in 6 Volumes

1 Computer Arithmetic

9 Boolean Logic
3 Arithmetic Circuits

4 Memories \& Counters

5 Calculator Design

 Computer Architecture
$£ 5.95$
including packing and surface post anywhere in the world (VAT zero rated). Payments may be made in foreign currencies. Quantity discounts are available on request. Total packaged weight does not exceed 4 lb -please allow enough extra for air mail.

To: Cambridge Learning Enterprises,
FREEPOST. St. Ives. Huntingdon. Cambs PE1 7 4BR. I
*Please send me.....set(s) of Design of Digital Systems at $£ 5.95$ each,
*or.....set(s) of Digital Computer Logic and Electronics at $£ 3.95$ each,
*or.....combined set(s) at $£ 9.25$ each.
Name.
Address..

fo: SLIMMER'SGUDE toPOWERSUPPLIES

Want to lose weight? (up to $80 \%^{\circ}$)
Trim off excessive dimensions? (up to 80\%*)
Increase efficiency? (up to 40% more *)

- and save money doing it?

Then you need to digest our diet sheet on Mains Inverter (DOLS) type power supplies. Complete, cut out and despatch the coupon or use the 'Bingo Card' for technical details and prices.

* Compared with some of our own conventional serres regu. lator units!

Send for chemils $70044!$

FARNELL INSTRUMENTS LIMITED
POWER SUPPLIES DIVISION
SANDBECK WAY. WETHERBY YORKSHIRELS22 4DH TEL: 09373541 TELEX 557294

SOLE IMPORTERS IN UK
47-49 HIGH STREET, KINGSTON-UPON-THAMES, SURREY. KT1 1LP
TEl:O1-546 4585
WW-013 FOR FURTHER DETAILS
WW- 013 FOR FURTHER DETAILS

WW-107 FOR FURTHER DETAILS

Don't call us! We'll call you!

We know how easily sophisticated instruments can drift imperceptibly away from standard. So, after we've repaired, calibrated and returned your equipment to you, we make a note to remind you when a periodic check or recalibration should be carried out.

Jogging the memory is just one of the little, extra details that help to make up the Bradley Repair and Calibration Service ; but, of course we need to hear from you in the first instance.
$R \& C$ is a separate division of Bradley Electronics with its own 20,000 sq. ft factory next door to the main London works. We've been rejuvenating instruments for more than 20 years, during which time we've handled virtually every type and make in common use - from simple meters to complicated systems. We will tackle anything in the frequency range $D C$ to 18 GHz and return it to you ready to plug in.
If you need authenticated performance in addition to our normal
guarantee, our Standards Laboratory is approved by the British Calibration Service. It will supply calibration certificates for AC, DC and RF measurements. And our standards, of course, are directly traceable to the NPL and the National Bureau of Standards

And just to add the finishing touch. we will collect and deliver anywhere in mainland Britain.

G \& E Bradley Ltd
Services Division Sales
Electral House
Neasden Lane
London NW10 1RR
A Lucas Company
Telephone:01-4507811 Telex:25583

TPASERIES integrated circulk pouler amplifier

TPA 50-D Specification
Power Output
100 watts rms into 4 ohms 65 watts rms into 15 ohms
Freq Response $\quad \pm 0.1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 KHz into 15 ohms. -1 dB at 150 KHz
Total harmonic Less than 0.04% at all levels up to
distortion
Input sensitivity 50 watts rms into 15 ohms
OdBm
$-100 \mathrm{~dB}$
2 u seconds
Price $£ 70$ plus V.A.T.
100 V Line (C.T.) and balanced inputs available.
For full technical information contact:

H|H ELECTRONIC

CAMBRIDGE ROAD, MILTON, CAMBS
 TELEPHONE CAMBRIDGE 65945/6/7
 wW-006 FOR FURTHER DETALLS

STARWET

Spectrum Analyser Module ST858

SPECIFICATION: Frequency range 10 MHz to 850 MHz in two calibrated ranges Sensitivity Better than 50 mv for 0.5 V per cm Resolution Better than 25 KHz . Dispersion From less than 1 MHz to 400 MHz variable Input Via 50 ohm BNC connector on front panel Output 1 Coax cable for connection to Y input on scope Output 2 Coax cable for connection to sync. input on scope Power requirements 240 volts $A C 50 \mathrm{~Hz} 10$ watts. (Other voltages and frequencies available as required) Size Width 11 in $\{28 \mathrm{~cm}$.) Height 4.375 in . (11.2 cm .) Depth $8.5 \mathrm{in} .(21.6 \mathrm{~cm}$.) Nett weight $7.51 \mathrm{bs}(3.4 \mathrm{Kg}$) Gross weight 1 Olbs (4.5 Kg .)

For further details contact the sole distributors of STARWET equipment:
CHILTTMEAㄴTD
7-9 ARTHUR ROAD, READING, BERKS (rear Tech College) Tel. Reading 582605

WirelessWorld FULLCOLOUR WALLCHART OF FREQUENCY ALLOCATIONS 80p

The wallchart shows the allocation of frequencies within the radio spectrum ranging from 3 kHz to 300 GHz and is scaled on eight logarithmic bands contriving 15 main categories of transmissions which are identified by colours. All the important spot frequencies and 'special interest' frequencies are marked. The information is taken from the ITU and has been condensed into easily read chart form. Measures $2^{\prime} 11^{\prime \prime} \times 1^{\prime} 11^{\prime \prime}$.

ORDER FORM
To : IPC Electrical-Electronic Press Ltd. General Sales Dept., Room 11. 32 Stamford Street, London SE1 9LU

Please send me_copies of the Wireless World Walichart of Frequency Allocations at 80p each inclusive.

I enclose remittance value $£$ (cheque/p.o. payable to IPC Business Press Ltd.)

Name
(please print)
Address

Registered in England No. 677128
Regd. office: Dorset House, Stamford Street, London SE1 9LU

Make light work of wiring with the NIW Sili ioniful Whis ithith

Countless uses in industry and offices *QUICK AND EASY TO APPLY Even in awkward places *SAVES damage to WOOd and paintwork *STIGKS ON INSTANTLY : HOLDS WIRE FIRMLY
You'll save enormous time and trouble with the new Brandauer adhesive staple. Just peel off the backing strip and press staple into place. Then bend clips over to hold wire firmly in position. No messing with pins, tacks, soldering or drilling. No damage to woodwork, e.g. skirting boards. Use the Brandauer Staple for any wall, frame or cabinet wiring jobs - it's wonderfully easy for fitting in those awkward corners.

Send now for details to:
SPECIAL PRODUCTS DISTRIBUTORS LTD. 81 Piccadilly, London WIV OHL. Tel:01-629 9556.

devonshire street cheltenham, glos.

Time and again we are asked for reprints of Wireless World constructional projects: tape, disc, radio, amplifiers, speakers, headphones. Demand continues long after copies are out of print. To meet the situation we have collected fifteen of the most sought after designs and put them in one inexpensive book. And we've updated specifications where necessary to include new components which have become available. A complete range of instruments is presented, from the Stuart tape recorder and Nelson-Jones f.m. tuner, through the Bailey, Blomley and Linsley Hood amplifiers, to the Bailey and Baxandall loudspeakers - some of which have been accepted as standard in the industry.

highfidelity designs

£I from newsagents and bookshops or $£ 1.35$ (inclusive) by post from the publishers. A book from WirelessWorld

To: General Sales Department, Room i i, Dorset House,
Stamford Street, London, SEI 9LU
Please send mecopy/copies of High Fidelity Designs |
at $£$ r. 35 inclusive. I enclose remittance value $£$.
(cheques payable to IPC Business Press Ltd.).
:

New automatic digital bridge fromWayne Kerr

Wayne Kerr's new B900 is one of the best value-for-money bridges in the world.

It is universal, has a wide range, and gives immediate digital readout of resistive and reactive terms-simultaneously.

On all ten ranges, for every type of measurement available, the displays provide a complete indication of the numerical value (up to 19999), polarity, decimal points and units-automatically and in half a second.

Direct measurements of Q, dissipation and dc volts. 2,3,\& 4-terminal. Automatic lead compensation. 4- Quadrant: + ve or - ve C, L, 1/C, G and R.
Overall coverage:

$$
\begin{array}{lll}
10 \mu \Omega & -200 \mathrm{M} \Omega & 1 \mathrm{nH} \\
0.001 \mathrm{pF} & -20,000 \mu \mathrm{~F} & 10 \mathrm{p} v
\end{array}
$$

Accuracy: $0.1 \%(10 \Omega-200 \mathrm{M} \Omega), 0.3 \%(10 \mathrm{~m} \Omega-10 \Omega)$ in all quadrants. Frequency: 1 kHz Outputs: Analog and TTL.

For more information phone Bognor (02433) 25811, or fill in the coupon.

Please send me details of the $B 900$.
For the attention of Mr
Company name and address \qquad

WAYNE KERR
A member of the Wilmot Breeden group.

THE NEW NELSON-JONES FM TUNER

PUSH-BUTTON VARICAP DIODE TUNING
 (6 Position)
 ('WW' JUNE '73)

Exclusive Designer Approved Kits
What are the important features to look for in an FM tuner kit? Naturally it must have an attractive appearance when built, but it must also embody the latest and best in circuit design such as:-
MOSFET front end for excellent cross modulation pertormance and low noise.
MGANG tuing for high sele etivity.
GARGAP tuning diodes in back to back configuration for low distortion.
CERAMIC
CERAMIC filters for defined IF Response.
PHASE LOCKED Stereo decoder with Stereo mute, see below
LED fine tuning indicators. PUSH B ATC disable) over the FM band (88 -104)
CSTABILISED and S/C
The Nelson-Jones Tuner has all of these features and many more, and more importantly the design is fully proven not just with a few prototypes but with many thousands of working tuners spread across the world. \quad Typ. Specn: 20 dB quieting 0.75 uV . Image rejection-70dB.I.F. Rejection -85 dB

Basic tuner module prices start as low as $\mathbf{£ 1 2 . 9 6}$, with complete kits starting at $\mathbf{£ 2 6 . 9 5}$ (mono) + P.P. 65p. and of course all components are available separately.
Our low cost alignment service is available to customers without access to a signal generator. Please send large SAE for our latest price lists which details all of the many options and special low prices for complete kits. All our other products remain available
remain available. HAYWOOD PHASE LOCKED DECODER (W.W. Sept. '70). Still the lowest distortion P.L. decoder available. THD typically 0.05% (at Nelson-Jones Tuner O/P level)! Supplied complete with Red LED.
Price $£ 7.02$ when bought with a complete N -J tuner kit or $\mathbf{£ 8 . 2 9}$ if bought separately (P.P. 21 p.)
PLEASE NOTE. Existing tuners are readily convertible and kits/parts are available for this purpose.
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph). Complete designer approved Texan kits are available at $£ 33.48$ plus P.P. 65 p including Teak Sleeve.

NEW LOW COST STEREO TUNER Avvilable as basic o o complete k kis

Basic stereo tuner $\mathbf{E 1 5}$ post free. Basic mono tuner £12 post free. 6 position push button units with integral pots $£ 3.24$.

TYP. SPECIFICATION $2 \mu \mathrm{~V}$ for $30 \mathrm{~dB} \mathbf{S} / \mathrm{N}$ Image rejection 40dB
IF rejection 65dB

VAT at 8% is included in all prices
Derby, DE1 1TW

No alignment required. Mullard LP1186 front end module used with Ceramic IF and IC amplifier. Push button tuning (6 position) with Interstation Mute, restricted range AFC, single LED tuning indicator, phase locked IC decoder, and complete metalwork and veneered cabinet. Complete with IC regulated PSU and full assembly instructions. (Mechanically identical to N-J Tuner.)

\section*{PRICE Complete stereo kit $£ 28.42$ Complete mono kit $£ 24.19$
 ACCESS AND BARCLAYCARDS

WELCOMED} P. \& P. 65p Phone Swadlincote (0283 87) 5432 Telex 377106

FREQUENCYCOUNTERS

HIGH PERFORMANCE REASONABLY PRICED ELECTRONIC INSTRUMENTS

TYPE 801
300 MHz 8 Digits 10 mv Sensitivity Stability 3 parts in 10^{6} Crystal Oven.
Two tone blue case $124^{\prime \prime} \times 8^{\prime \prime} \times 33^{3^{\prime \prime}} £ \mathbf{~} \mathbf{2 8 5}$

R. C. S. ELECTRONICS

NATIONAL WORKS, BATH ROAD. HOUNSLOW, MIDDX. TW4 7EE

Telephone: 01-572 0933/4

WW-026 FOR FURTHER DETAILS

Linstead TwinStabilised PowerSupplies

Each comprising:

Two powerful bench supplies. Continuously variable.
Independently operable, or in series, or parallel. Fully protected against overload and short circuit. In one compact robust case.

2×0 to 20 V 0 to 0.5 A
with twenty 1 volt steps and fine
control.
Voltage set by controls.
Current continuously monitored
0 to $100 \mathrm{~mA}, 0$ to 0.5 A .

plus VAT
Current limiting protection.

S7$2 \times 0$ to 30 V 0 to 1 A . Set by switches and fine control Meters switchable for volts 0 to 100 mA and 0 to 1 A Me-ontrant protection. Pilot indication of overload.

the best for less
BRITISH MADE BY LINSTEAD
Linstead Electronics, Roslyn Works, Roslyn Road London N15 5JB. Telephone 01-802 5144
Ireland, Lennox Laboratory Supplies Led., 3-4 South Leinster Street P.O. Box 212 A , Dublin 2

Denmark, Scanfysik, $13-15$ Hjorringeade, DK 2100, Copenhagen
Sweden, EMI Svenska A/B, Tritonvagen 17, Fack, 17119 Solna
Malaysia, Laboratory Equipment Sdn. Bhd., P.O. Box 60 , Biq

AUDIO MEASURING INSTRUMENTS

LOW DISTORTION OSCILLATOR SERIES 3

A continuously variable frequency laboratory oscillator with a range $10 \mathrm{~Hz}-100 \mathrm{kHz}$, having virtuallyzero distortion over the audio frequency band with a fast settling time.

Specification:

Frequency range:
Output voltage:
Output source resistance

Output attenuation

Output attenuation accuracy
Sine wave distortion:

Square wave rise and fall time:
Monitor output meter:
Mains input
Size
$10 \mathrm{~Hz}-100 \mathrm{kHz}$ (4 bands)
10 volts r.m.s. max
150 ohms unbalanced
(optional 150 ohms unbalanced plus 150/600 ohms balanced/floating) $0-100 \mathrm{~dB}$ (eight, 10 dB steps plus $0-20 \mathrm{~dB}$ variable)
1\%
Less than $0.002 \% \quad 10 \mathrm{~Hz}-10 \mathrm{kHz}$ (typically below noise of measuring instrument)

40/60 n.secs.
Scaled $0-3,0-10$, and $d B V$
$110 \mathrm{~V} / 130 \mathrm{~V} .220 \mathrm{~V} / 240 \mathrm{~V}$
$17^{\prime \prime}(43 \mathrm{~cm}) \times 7^{\prime \prime}(18 \mathrm{~cm})$ high x $8 \frac{33^{\prime \prime}}{}(22 \mathrm{~cm})$ deep

Price: 150 ohms unbalanced output: $£ 250$
$150 / 600$ unbalanced/balanced floating output: $£ 300$

DISTORTION MEASURING SET, SERIES 3

(illustrated above)
A sensitive instrument with high input impedance for the measurement of total harmonic distortion. Designed for speedy and accurate use. Capable of measuring distortion products down to 0.001%. Direct reading from calibrated meter scale.
Specification:
Frequency range
$5 \mathrm{~Hz}-50 \mathrm{kHz}$ (4 bands)
Distortion range (f.s.d.):
Input voltage measurement
range:
Input resistance
High pass filter:
Power requirement:
Size:
Price:
$0.01 \%-100 \%$ (9 ranges)
50 mv - 60 V (3 ranges)
47 K ohms on all ranges
$12 \mathrm{~dB} /$ octave below 500 Hz
$2 \times$ PP9, included
$17^{\prime \prime}(43 \mathrm{~cm}) \times 7^{\prime \prime}(18 \mathrm{~cm})$ high $\times 8 \frac{3_{4}^{\prime \prime}}{}$ $(22 \mathrm{~cm})$ deep
£200

Now available in reasonable delivery time
RADFORD LABORATORY INSTRUMENTS LIMITED

Bristol BS3 2HZ

 Telephone 0272662301

The Hadleigh loudspeaker, was specially created to meet a public demand for a high quality speaker of compact proportions. Not a difficult task for Celestion who produce the most popular bookshelf speaker ever (Ditton 15) - but we set out not only to produce an immaculate loudspeaker with a sparkling performance, but to do so at a budget price. For the enthusiast seeking a really excellent $\mathrm{Hi}-\mathrm{Fi}$ system at reasonable outlay we recommend without hesitation the Hadleigh.

Loudspeakers for the Perfectionist DITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 8JP.

Pin and varactordiodes for switching and tuning.

The types of PIN and varactor diodes listed here represent only a small part of the total AEI capability which includes devices widely used in both civil and military communications equipment. A number are available as DEF STAN types to Nato stock numbers.

With PIN diodes a wide range of silicon chips can be used in a number of outlines offering a large choice of switching speeds, breakdown voltage and resistance-vs-current values.

As for varactors, our diodes can be supplied singly, or in matched sets to a range of capacitance tolerances, breakdown voltages and Q's etc.

PIN SWTCHING DIODES Mıniature Epoxy-Package Dıodes

Type No.	Package	$\begin{gathered} V_{R} \\ (\mathrm{~m}!\mathrm{n}) \\ V \end{gathered}$	$R_{F}(\text { max. })$ ohms at mA	$\begin{gathered} \mathrm{Cd} \\ (\text { max. }) \\ \text { at } 50 \mathrm{~V} \\ \mathrm{pF} \end{gathered}$	Life. time (typ) $\mu \mathrm{S}$	$\begin{gathered} \text { Rth } \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	High Rel. types
DC1016	36	250	$\begin{aligned} & 075 \text { at } 100 \\ & 50 \text { at } 5 \end{aligned}$	0.7	1.0	40	-
DC1028A	08	250	$1 \cdot 1$ at 100	0.45	0.7	350	-

available to DEF STAN specification.
available to commercial High Rel. specificatıon.
WRE ENDED GLASS-PACKAGED DIODES

Type No.	Application	V_{B} Volts	$\begin{gathered} R_{f}(\max) \\ \text { at } 100 \mathrm{~mA} \\ \text { ohms } \end{gathered}$	Cd (max) at 100 V pF	$\begin{gathered} T \text { (typ) } \\ \mu S \end{gathered}$
DC2840E	General purpose	250	1.0	$0 \cdot 3$	0.3
DC2825E	General purpose	200	10	$0.4{ }^{\text { }}$	0.3
OC2841E	General purpose	200	1.5	0.4	03
DC2842E	General purpose	200	2.0	0.25	0.5
OC2843E	High speed	100	10	0.4	0.05
DC2844E	High speed	100	$1 \cdot 5$	0.4	0.05
OC2845E	Long lifetime	150	$3 \cdot 5$	0.3	1.5
DC2846E	Long lifetıme	150	$2 \cdot 5$	04	07

VARACTOR TUNING DIODES

Approximate frequency of application	$\begin{gathered} \mathrm{Cj}(-4 V) \\ \mathrm{pF} \end{gathered}$	Type No. (add sutf $1 x^{1}$)	$\mathrm{Q}(-4 \mathrm{~V})$ at stated freq.		Package
			Q	$\mathrm{F}(\mathrm{MH} \mathrm{z})$	
$\begin{aligned} & 500 \mathrm{MHz} \\ & \text { to } 10 \mathrm{GHz} \end{aligned}$	$2 \cdot 2$	DC4255B	500	50	35
	$2 \cdot 2$	DC4265B	550	50	00
	$2 \cdot 2$	DC4285B	550	50	06
	33	DC4256B	450	50	35
	$3 \cdot 3$	DC4266B	500	50	00
	$3 \cdot 3$	DC4286B	500	50	06
	$4 \cdot 7$	DC4267B	450	50	00
	6.8	DC4210B	450	50	7
5 MHz to 1 GHz	15	DC4214B	400	50	7
	27	DC4217B	300	50	7
	47	DC4225C	140	50	14
3 MHz	68	DC4227C	120	50	14
to 100 MHz	80	DC4228C	100	50	14^{*}
$\begin{aligned} & 1 \mathrm{MHz} \\ & \text { to } 30 \mathrm{MHz} \end{aligned}$	100	DC4232B	200	10	18*
	120	DC4233B	200	10	18
	150	DC4234B	200	10	18
$\begin{aligned} & 100 \mathrm{kHz} \\ & \text { to } 5 \mathrm{MHz} \end{aligned}$	210	DC4298	180^{2}	25	10
	270	DC4232C	750	1	78
	350	DC4299	200^{2}	25	10°
	350	DC4244C	500	1	78°

available to DEF STAN specification. " available to commercial High Rel. specification Notes: 'Suffices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ indicate MW at $25^{\circ} \mathrm{C}$ of $30 \mathrm{~V}, 60 \mathrm{~V}, 90 \mathrm{~V}$ respectively. Preferred types shown. ${ }^{2}$ Measured at -8 V
For full details of the complete range please write to AEI Semiconductors Ltd., Lincoln Telephone: 0522 29992,

semiconauctors
Part of GEC Electrical Components Group.
Also immediately available from: Black Arrow (Electronics) Ltd., Bristol (0272) 294313/Coventry Factors Ltd., Coventry (0203) 24091/Farnell Electronic Components Ltd., Leeds (0532) 636311/ LST Electronic Components Ltd., Chelmsford $\{0245\rangle 69543$ /W.S. Mc Millan \& Co. Ltd., East Kılbride 38641/4. / JVN Components, Bromley, Kent 01.464 1245/T1 Supply Ltd., Slough 33411/ SOS Components Ltd., Portsmouth 65311.

wireless world

Electronics, Television, Radio, Audio

MARCH 1975 Vol 81 No 1471

Contents

101 Professional advice
10275 years of magnetic recording by Basil Lane
106 Research notes
107 Noise-confusion in more ways than one by K. L. Smith
111 High quality f.m. tuner by J. B. Dance
114 News of the month
Voice controlled computers
Radio range dramatically increased
Flexible loudspeaker diaphragm
117 Low-noise wideband amplifier by J. A. Grocock
119 An i.c. telephone tone generator by R. Ball
120 Announcements
121 The use of video tape recorders with domestic TV by A. C. Smaal
125 Meetings
125 Sixty years ago
126 Letters to the editor
Horn loudspeaker output
Twin voltage power supply
"Settling time" in amplifiers
129 Solid state digital clock-2 by D. C. Clegg
133 Charge-coupled devices-4 by E. W. Williams
138 HF predictions
139 Power supply delayed switching by P. J. Briody
142 World of amateur radio
143 Kirchhoff's voltage law by M. G. Scroggie
146 New products
150 Real and imaginary by "Vector"
a77 APPOINTMENTS VACANT
a94 INDEX TO ADVERTISERS

This month's cover picture shows the inspection of printed circuits on a Compariscope before assembly at Weir Electronics Ltd, Bogńor Regis

IN OUR NEXT ISSUE

Video recorders survey

Review of techniques and performance of small helicalscan cassette and cartridge machines now on the market

Using ferrite pot-cores

Basic inductor design for the development engineer-a practical article well supplied with graphical design data

75 years of magnetic recording

The second part of this history continues with the BBC steel tape recorders and other developments from 1920 to 1945

SIXTY-FIFTH YEAR OF PUBLICATION

Price 30p (Back numbers 50p)
Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU
Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London SE1."
Subscription rates: 1 year, $£ 6$ UK and overseas ($\$ 15.60$ USA and Canada); 3 years, $£ 15.30$ UK and overseas ($\$ 39.80$ USA and Canada). Student rates: 1 year, $£ 3$ UK and overseas ($\$ 7.80$ USA and Canada); 3 years, $£ 7.70$ UK and overseas ($\$ 20.00$ USA and Canada).
Distribution: 40 Bowling Green Lane, London ECIR ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH 16 3DH. Telephone 044453281.

Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.
© I.P.C. Business Press Ltd, 1975

The most remarkable feature of Telequipment's DM64 Oscilloscope is the value for money it offers.

Priced at $£ 418 *$ this dual trace storage 'scope features a storage time of up to one hour a bandwidth of 10 MHz at $10 \mathrm{mV} /$ div sensitivity, X-Y operation by switching vertical amplifiers, and a time base range of $2 \mathrm{sec} / \mathrm{div}-100 \mathrm{~ns} / \mathrm{div}$ in 23 calibrated positions.
With today's demand for first class equipment at economical prices, the DM64 from Telequipment fits the bill.

For full details please write or telephone

TELEQUIPMENT

Tektronix U.K. Ltd.,
Beaverton House, P.O. Box 69, Harpenden, Herts.
Tel: Harpenden 63141 Telex : 25559
Telequipment gives you more scope for your budget

wireless world

Professional advice

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8429

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors:

BILL ANDERTON, B.Sc. Phone 01-261 8620
BASIL LANE
Phone 01-261 8043
MIKE SAGIN
Phone 01-261 8429

Drawing Office:
LEONARD H. DARRAH
Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
A. PETTERS (Classified Advertisements) Phone 01-261 8508 or 01-928 4597
JOHN GIBBON (Make-up and copy) Phone 01-261 8353
I.P.C. Electrical-Electronic Press Ltd Managing Director: George Fowkes Administration Director: George H. Mansell Publisher: Gordon Henderson

The electronics engineer, along with other technologists, is used to the idea that he is changing society through his inventions-computers, colour television, satellites, automatic control systems and the like. In this respect he appears as a somewhat sinister figure in a white coat, a modern Frankenstein, a creative force without responsibility. But all this could be changed if Sir Frederick Catherwood's idea of a "professional forum" to help the country becomes a reality. This forum would be a group of people representing all the professions which would advise the government on longterm national problems after carrying out extensive study and research. By participation in such a group the technologist would be able to influence events in a much more controlled and responsible way-as a human being concerned with the welfare of his fellow men.
Sir Frederick, who is chairman of the British Institute of Management, says the professions have an important role to play in Britain because they embody the knowledge of a society which is based on knowledge: "We cannot base our society on capital-other countries now have more than we have. We cannot base it on labourthere are thousands of millions of low-paid workers in the world. This small island, importing half its food and almost all its raw material, can base its standard of living only on knowledge. We are a knowledge-based society and we must forever keep our knowledge a step ahead." The professional forum could be a unifying force in the country, counteracting the polarization of those two powerful organizations, the TUC and the CBI. And it would try to remove from government what Sir Frederick describes as the twin evils of "the art of the possible" and "the art of the next best thing"' in decision-making on issues which are fundamentally non-party political.

Many people no doubt will view with misgiving the prospect of a council of professionals acquiring power in the country. It smacks of a technocracy, which could be as inhuman as the existing forces of capital and labour. George Bernard Shaw said that all professions are conspiracies against the laity (in The Doctor's Dilemma) and this is true to the extent that they are composed of people who band together for mutual support, sometimes for purposes which are against the interests of the rest of society. There is a feeling in the bones of the average Briton that governing the country is best entrusted to amateurs-hence our amateur Members of Parliament and our amateur Ministers of the Crown. But when our average Briton wants some particular service, e.g. brain surgery, he quickly changes his tune and demands the best professional that can be found.

Fortunately it is now being realized that you cannot run a highly complex industrial country without calling on the advice of those with specialized skills and knowledge. A scheme such as Catherwood's professional forum is an admirable way of harnessing these skills and knowledge to the needs of the country. And the electronics engineer, with his knowledge of modern means of information processing, communication and control, could well become an influential figure in the work of such an organization.

75 years of magnetic recording

by Basil Lane

Assistant Editor Wireless World

Abstract

The magnetic tape recorder has now, through the medium of the Compact Cassette become an almost everyday household sight and yet this has only come about in the past ten to fifteen years. Compared to other components in the audio system, the modern tape machine has had a history that is full of intrigue, disaster, politics, espionage and even war-mongering. Aspects of the technology have been discovered and re-discovered and the whole tale is laced with fascinating human anecdotes behind which were some men of great inventive genius.

The story begins unexpectedly early and is noted in a unique article by Peter Ford ${ }^{1}$ who, through careful research at the British Patent Office, discovered that the first projection of a magnetic recording (or rather playback) device was described by S. Tainter, Edison's assistant in a patent ${ }^{2}$ dated August 29, 1885 and granted, May 4, 1886. Ford notes that Tainter, working on lines suggested by Edison and carried out at the Volta Laboratory, recorded in his notebook for March 20. 1881, "A fountain-pen is attached to a diaphragm so as to be vibrated in a plane
parallel to the axis of a cylinder. The ink used in this pen to contain iron in a finely divided state, and the pen caused to trace a spiral line round the cylinder as it turned. The cylinder to be covered with a sheet of paper upon which the record is made. . . . This ink . . . can be rendered magnetic by means of a permanent magnet. The sounds were to be reproduced by simply substituting a magnet for the fountain-pen. ..."

Obviously these ideas did not work too well, as the later patent application suggested a rather different recording and

replay technique. Here, it was suggested that a standard hill-and-dale recording be made either on a cylinder or disc machine and from this master, a copper electrotype is produced, which in turn is used to provide a pattern for a mechanical engraver. This cuts an iron disc or cylinder, on which a prepared ridge has been cut. The graving tool thus removes varying amounts from the ridge, reproducing the original groove indentations in repoussé form.

Replaying this remarkable record was really quite simple and is illustrated in Fig. 1, adapted from the original patent drawings. A small needle of soft iron or steel is attached to one pole piece of a horseshoe magnet. The needle is also enclosed by a coil of wire wound on a bobbin. To replay the record, the tip of the needle was brought close to the surface of the rotating disc and maintained in its location just above the spiral ridge. Since the disc and its integral ridge represent an iron path for the flux between the pole pieces, the varying distances of closure produced by rotating the engraved ridge beneath the needle, would produce flux changes in the needle and coil. The generated electrical signal would then be reproduced by the telephone earpiece.

There is no evidence to hand to suggest that any of these machines were made, or even worked, but it showed that the inventors of those days certainly had very lively minds that ranged beyond the technology of the period.

Father of magnetic recording

Although Tainter's ideas were not completely oriented to both recording and replay by magnetic means, the next

[^1]account of a man thinking about the subject is the well-known article by Oberlin Smith ${ }^{3}$ published in 1888 and titled "Some possible forms of phonograph". Here Smith proposed the development of a machine to spin metallic dust into a cotton thread which could then be used as a carrier for magnetically recorded sound.

There then followed one of those odd quirks of technological development in general-a major step forward, but up what was eventually to prove a blind alley. One year after Smith wrote his article, the 24 -year-old Dane, Valdemar Poulsen, became a student and a year later obtained his first university degree. Madsen, in a potted biography ${ }^{4}$ of this engineering genius mentioned that Poulsen was to fail his entrance examination to the Polyteknisk Laerenstalt in Denmarkthe Technical University-due to a weakness in mathematics.

In 1893 he joined the Copenhagen Telegraph Company as a mechanic and worked in the fault-finding workshop. He apparently discovered the magnetic recording principle in that same year, by the very simple experiment of moving an electromagnet along a wood chisel, so strictly speaking one could say that this is the 82 nd year of magnetic recording. During the ensuing years Poulsen developed his ideas and finally on December 1, 1898, obtained a Danish patent ${ }^{5}$ for the device that was to become so well known as the Telegraphone. The British patent ${ }^{6}$ followed in March 1900 together with many others covering the same idea in most European countries, Russia and America. References to most of these early patents are given in the US Patent ${ }^{7}$.

This early machine is shown in Fig. 3, adapted from the original patent drawing. It consisted of a vertical fixed cylinder (A) upon which a helix of steel wire has been wound.

Suspended from the outer frame is a stirrup (B) which can be rotated by a clockwork motor in the base, the speed of rotation being regulated by a simple brake just inside the top of the cylinder. Mounted on one side of the stirrup is the recording/ replay head assembly, which is free to slide up and down the stirrup. When stationary, the head is out of contact with the wire and rests at the bottom of the stirrup.

To operate the machine, an electromagnetically operated brake (C) releases the clockwork drive which spins the stirrup round the cylinder via a gear drive just below the drum. The head is brought into contact with the wire by centrifugal force operating on a bob-weight mechanism (magnified view) attached to the head assembly. Since the head consists of a horseshoe electromagnet, or alternatively, two independent contiguous magnets the tips of which are shaped to fit over the wire, the whole head assembly is drawn up the stirrup by the guiding action of the wire helix on the drum.

When the head assembly reaches the top of the cylinder it breaks an electrical contact, releasing the electromagnetic

Fig. 2. Valdemar Poulsen, the "father" of magnetic recording. He was also responsible for many other inventions including the Poulsen arc generator used for spark gap radio transmission. (Photo courtesy Philips Gloeilampenfabrik.)
brake which stops the clockwork motor. With the effect of the centrifugal force removed, the bob-weight on the head assembly drops, allowing the head to be withdrawn from the wire by a spring (D) and, in turn, permitting the head assembly to slide down the stirrup guide, under the force of gravity, to the rest position. The machine, it would seem, was regarded as being suitable for use as a telephone answering device and was connected to the normal telephone set.

Although the machine illustrated never appeared commercially, a horizontal version looking rather like a phonograph
(Fig. 4) was produced in 1900 in com mercial quantities, the first models having been displayed at the Paris Exhibition in 1900. Other important features certainly mentioned in the British patent are the possibility of using steel tape fed from a reel, a disc of magnetizable material, or a sheet or strip of paper or other insulating medium covered with a magnetizable metallic dust-shades of Oberlin Smith! Erasure was to be effected by using d.c. from a battery passed through the recording head while it travelled over the steel wire on a separate pass. A second steel tape machine using the same principles is illustrated in the patent and bears a remarkable resemblance to a machine attributed to Mix and Genest ${ }^{4}$ and made in Berlin in 1900.

Either these patent applications produced a resulting development by others or, working on parallel lines, submitted patent applications coincidentally in the same year as Poulsen. But it is certainly a fact that the Mix and Genest machine was reported in 1900 and a George Kirkegaard filed a patent ${ }^{8}$ application for a "telephonograph" using similar principles on November 18, 1899, followed by another application from P. O. Pederson ${ }^{9}$ on June 21, 1901 and then from W. A. Rosenbaum ${ }^{10}$ on June 22, 1901.

The Pederson patent is interesting for two reasons, first that it concerns new magnetic carriers consisting of iron, nickel or other magnetizable materials plated onto a wire, disc or drum. Secondly, it is interesting because Pederson took up a partnership with Poulsen at about this point, subsequent patents often bearing their joint names. The Rosenbaum patent was intended as a development of Poulsen's principles, as the latter patent is referred to. The idea

was not taken up commercially.

Recognition, development

From 1900 onwards there followed a period of intense activity with great efforts being made by Poulsen to gain recognition for his invention. A model was shown at the Paris Exhibition in 1900, this being reported in a number of journals in America and Europe ${ }^{11,12}$. It was at this exhibition where the machine won the Grand Prix and gained the attention of Emperor Franz Joseph of Austria who made a recording at the exhibition, which survives to this very day. Companies to exploit the invention were later formed, appearing simultane-
ously in Denmark as the Dansk Telegrafonen Fabrik A/S and in the US as the American Telegraphon Company, in the year 1903. A British company was also formed which was to suffer a similar fate to all the Poulsen companies, final death through lack of commercial support, shortage of funds and failure to successfully appeal against a refusal to renew the expiring British patents. Both Ford ${ }^{1}$ and Mooney ${ }^{13}$ report a sorry tale of missed opportunities and even intrigue, mentioned in a little more detail in Begun's book ${ }^{14}$. However, although it was commercial factors that dictated the pattern of success, this short history is intended to document the technological develop-

ments and these did not stop.
The early telegraphone produced a transverse, "bipolar" recording, that is, the pole pieces of the record head were arranged to be diametrically opposite to each other, on each side of the wire or tape. The recording process would therefore produce areas of magnetization within the material that could be described as being transverse and having both a N and S pole across the thickness of the wire. However Poulsen and Pederson discovered ${ }^{15}$ that this had disadvantages at high speeds and small wire diameters, when self-demagnetization caused a considerable reduction in sensitivity. By staggering the position of the two-pole pieces along the direction of travel an inclined field was recorded with a subsequent improvement in performance.

Up to mid-1902, the recording method had been somewhat crude and involved no amplifiers. For that matter the telegraphone was never teamed with an amplifier commercially, although it seems that Lee de Forest, the inventor of the Audion valve, did successfully experiment along these lines with a machine borrowed from the American company. One big improvement did appear in 1902, however, this being the principle of d.c. bias ${ }^{16}$ to reduce distortion and improve sensitivity, the patent being finally granted in 1907.

Later in 1902 a more advanced telegraphone appeared ${ }^{17}$, being essentially a long-playing machine with a form of footage counter and a more complex remote control facility. Again, this machine was intended for use as a telephone recorder but also as a dictation machine. An amusing point is that that machine could be made to stop at any predetermined point using the footage counter and adjustable indexes-an early version of the "memory counters" recently introduced on modern machines and claimed as a modern innovation! Recording time was said to be 30 minutes with a capability for larger wire spools to be fitted.

In 1903, Poulsen filed yet another patent application ${ }^{18}$, this time relating to the use of iron drums, cones or discs as the "carrier" of the magnetic record. A disc machine was produced and has been illustrated ${ }^{4}$ (Fig. 5) and there were later copies by other companies such as EMI. This idea was quite interesting for it introduced the idea of recorded "tracks" adjacent to one another on a continuous magnetizable surface. Of course, in this instance the adjacent tracks were simply parts of a continuous helical or spiral recording. Poulsen noted that reducing the size of the recording head pole tip made it possible to increase the recording

Fig. 4. A commercial version of the telegraphon, circa 1900. The electrical drive motor is not shown. (Photo courtesy Philips Gloeilampenfabrik.)

Fig. 5. The disc form of the telegraphon which appeared after 1903. (Photo courtesy the Science Museum.)
density by increasing the effective length of the recording time for a fixed speed.

Although Poulsen's companies were dogged with troubles, the telegraphone found service with the British Post Office, the War Office and the US Navy right through World War I, but by the end of the war the Poulsen telegraphone seems to have commercially died. Thus, a chapter in the story of magnetic recording closed leaving the "Danish Edison" with a firm claim to be the father of magnetic recording.

The press agent of magnetic recording

Magnetic recording entered into a period of stagnation after World War I and perhaps this is why two quite important patents taken out in 1918 and 1921 remained unnoticed and unsung for many years. The first of these was filed by Leonard F. Fuller ${ }^{19}$ and suggested the use of a high frequency alternating current for erasure followed by a patent application in 1921 by Carlson and Carpenter ${ }^{20}$ for the use of a.c. bias on a wire telegraphone. The same patent links the machine to the audio output of a wireless circuit which must represent the earliest example of off-air magnetic recording.

Not to be overlooked, was the fact that on the domestic front the disc and phonograph were advancing into the home entertainment field, making it much more certain that any rebirth of magnetic recording was to be at a professional level and was to require something of an entrepreneur.
A man who, in the 1920s and for some little while on, was to fulfil this role and even acquire the appellation "the press agent of magnetic recording" was Dr Kurt Stille ${ }^{21}$. He was a German subject who formed, in the early 1920s, the Telegraphic Patent Syndikat, whose object it was to obtain the rights of various magnetic recording patents-and also originate some of its own-and license these out for commercial exploitation. One of the earliest patents taken out by Stille ${ }^{22}$ was applied for in April 1922 and described a telegraphone that used steel tubes as the carrier, in a similar fashion to the drum machines described by Poulsen in his 1903 patent. Mooney ${ }^{13}$, in his chronological listing of events, suggests that Stille marketed a modified version of the Telegraphon in 1920 in Germany, and it may well have been this that gave him the ideas for his later patent. Also in 1920, he mentions that a subsidiary of the Stille organization called Ecophone Co marketed a wire recorder called the Dailygraph, intended primarily às a dictating machine.

A more important development was contained within a second early British patent secured by Stille ${ }^{23}$ which described a method of producing sound, synchronized with a moving film. Up until then, the so-called "talkies" had been produced using synchronized disc recordings. The new technique involved the use of perforated steel tape driven by a sprocket which could easily be synchronized with the sprocket drive of the film projector. Also contained within the patent are suggestions for recording separate parallel
tracks using separate or stacked record head cores, and even methods for remote control of the projector using recorded impulses on a pilot track. Although the idea of synchronized magnetic recorders for film sound was not new, an earlier patent having been secured by H.C.Bullis ${ }^{24}$, Stille was the first man to indirectly demonstrate the idea successfully.

Pursuing the principle of licensing patents out for further development, Stille sold the rights of his machine to Louis Blattner who had formed the Blattner Colour and Sound Studios at Elstree near London. By 1929, Blattner had produced his first practical machine which was presented to the Press on October 18, 1929 and reported in The Electrician ${ }^{25}$ as follows. "A system of making and reproducing sound records, which seems to be destined to supersede the old system employing discs or cylinders, was demonstrated last week to pressmen and others, by Mr Louis Blattner, at the Blattner Colour and Sound Studios, at Elstree. The nucleus of the new system, which is now ready for commercial exploitation, was discovered some 40 years ago; Dr Kurt Stille began to work upon it 25 years ago, and the Ludwig Blattner Picture Corporation of London and the Telegraphie Patent Syndikat of Berlin have recently conducted laboratory and studio work which has resulted in bringing the system to a stage which indicates that the invention will probably revolutionize present-day practice. . . .
"The items in the demonstration referred to included a reproduction of a monologue recited by Mr Henry Ainley, whose enunciation was faithfully reproduced, and a 'talkie' picture of Miss Ivy St. Helier, .who sang, to her own piano accompaniment, and concluded her perfomance with an amusing talk. This picture was very realistic, and the sound record was distinct and well synchronized.
"The most intriguing application of the invention demonstrated, however, was its use as a recorder of telephone conversations. A conversation through the Post Office exchange system was recorded, and afterwards heard, completely and clearly, through the hand-set attached to the instrument.
"Records can be repeated in this manner immediately after the short interval necessitated by the running back of the wire.
"Performances of instrumental music were also given in the studio, and the advantages afforded by the ability of the apparatus to give an accurate and immediate play-back were again realized.
"Many uses of the recording telephone will readily suggest themselves, such as its utility as a dictating machine, a recorder of messages in the subscriber's absence, a 'file' of conversation for use as evidence, and the teaching of languages and scientific and other lessons in schools.
"It is stated that research work in progress at the Stille Laboratories, Berlin, includes the electromagnetic fixing and reproducing of optical signs on steel tape as a substitute for television."

The machine, called the Blattnerphone, was bought by the BBC, though it is believed that the particular form used employed a sprocketless tape. Incidentally, the first public broadcast made using this machine seems to have been when Lord Reith opened the Empire Service of the BBC in 1932. It must have been quitehorrifying to operate, since the steel tape passed through the machine at quite a high speed and a reel of tape was of considerable diameter. In the early machine, speed was manually controlled by observing a tachometer and breakages of the steel tape could cause considerable damage to anyone or anything nearby.

Steel tape machines were to become most important in broadcast organizations before World War II and shortly after Blattner's demonstration, the Marconi Company bought out the Blattnerphone and developed the Marconi-Stille steel tape machine.
However, it is around this time that we begin to move into a period of technology involving electronics-an aid which was never enjoyed by the telegraphone. And that, as they say, is another story-to appear in the second part of this article.
(To be continued)

References

1. Ford. Peter. History of Sound Recording, Part III. Sound Recording (B.S.R.A.), Vol. 3, No. 10, 1952.
2. U.S. Patent 341,287 , S. Tainter, 1886.
3. Smith, Oberlin. "Some possible forms of phonograph", The Electrical World, Sept. 8, 1888.
4. Madsen, E. R. "Loan collections honour Danish audio pioneers". J.A.E.S., Vol. 22, No. 6, 1974.
5. Danish Patent, 1260, V. Poulsen, 1898.
6. British Patent, 8961, V. Poulsen, 1899.
7. U.S. Patent 661,619, V. Poulsen, 1900.
8. U.S. Patent 900,392, G. Kirkegaard, 1908.
9. U.S. Patent 836,339, P. O. Pederson, 1906.
10. U.S. Patent 720,621, W. A. Rosenbaum, 1903.
11. Gavey, J. The Electrician, November 23, 1900.
12. Blondin, J. "Poulsen telegraphon", British Association Section B, Science Abstracts, Vol. 3, No. 1973, Part 9, 1900.
13. Mooney Jnr., Mark. "The history of magnetic recording", Hi-Fi Tape Recording, Vol. 5, No. 4, Feb., 1958, pp. 21-37.
14. Begun, S. J. Magnetic recording. Murray Hill Books Inc. 1949 and Thermionic Products Ltd, London 1950.
15. U.S. Patent 873,078 , P. O. Pederson and V. Poulsen, 1907.
16. U.S. Patent 873,033 , V. Poulsen and P. O. Pederson, 1907.
17. U.S. Patent 789,336, V. Poulsen, P. O. Pederson and Carl Schou, 1905.
18. British Patent 541, V. Poulsen, 1903.
19. U.S. Patent $1,459,202$, Leonard F. Fuller, filed 1918.
20. U.S. Patent $1,640,881$, W. L. Carlson and Glen W. Carpenter, 1927.
21. Tall, Joel. Techniques of magnetic recording. Macmillan Company, New York, 1958, p. 13.
22. British Patent 319,681, Kurt Stille, 1930.
23. British Patent 331,859, Kurt Stille, 1930.
24. U.S. Patent $1,213,150$, H. C. Bullis, 1915.
25. Anon. The Electrician, October 18, 1929.

LDEs-not from alien space probes

A communications scientist, Mr Tony Lawton, has been taking a careful look at the theory that long-delayed echoes (LDEs) of radio transmissions come from an alien space probe in the orbit of the moon. LDEs were first reported in the 1920s during the trials of a short-wave transmitter which later became part of Radio Hilversum. Many other occurrences were noted, some by researchers at King's College, London, and some at what is now the Appleton Laboratory. They are believed still to occur but are now much more difficult to detect because of all the man-made noise on the shortwave bands.

In 1960 it was suggested that an alien probe was relaying the transmissions in a way designed to attract attention to itself. In 1973 Lunan claimed that a time-analysis of the delays could be interpreted as a star chart indicating the source of the probe.

Lawton's explanation is less romantic, but interesting. It rests on the assumption that the ionosphere occasionally extends a lot farther into space than is usually assumed, or at least that there are areas of ionization at about the moon's orbit. The records of LDEs are nearly all consistent with the presence of ionized matter at one special area, near the so-called "trailing Lagrange point" 60° behind the position of the moon. This is one of three points in space where the earth's gravitation and the moon's gravitation cancel one another. There is obviously such a point somewhere along a straight line between the earth and the moon, but this marks the top of a "gravitational hill". Matter placed there would be in unstable equilibrium and would run down to the earth or the moon. The other two zerogravity points, the Lagrange points, one ahead of the moon and one behind it, are at the bottoms of gravitational valleys. Matter put there would tend to stay in place. (It would also tend to get ionized by radiation from the sun.)

Lawton thinks that matter occasionally gets swept into the trailing Lagrange area to form a sort of mini-ionosphere. Radio waves impinging on the area could then be
subject to known ionospheric actions which could account for the LDE phenomenon. The actions are similar to those which give rise to "whistlers" (l.f. radio noises triggered by thunderstorms). The arriving radio wave creates a plasma shock wave. This travels slowly through the ionized region, getting amplified as it goes along. These effects could account for both the delay times and the strength of LDEs. The shock waves are reconverted to radio waves before returning to the earth. Delays of up to several days are theoretically possible.

Dielectric waveguide materials

The possibility of conducting microwaves through dielectric guides (on the lines of fibre-optic guides for light) has been known for many years. The problem has been to find dielectric materials with low enough losses to make the system practicable. It now looks as if the answer may lie in ordinary plastic materials such as polythene and polypropylene prepared in an unusual way. If these materials are fabricated as castings rather than the usual extrusions and mouldings they show much reduced absorption of millimetric and far-infra-red radiation.

Gravity waves: more problems for detection

When crystalline solids are subjected to stress, changes occur in their microstructure which give rise to acoustic vibrations. Quite small stresses can produce outputs, so that a large mass of metal, say, will produce outputs under the influence of the internal stresses caused by its own weight.

This is bad news for would-be detectors of gravity waves from space. Until now these experimenters have used antivibration mountings for the large lumps of aluminium which are the basis of their detection systems, and hoped that any audio frequency resonances detected in the masses were the result of incoming gravity waves. It now appears that the microstructure of worked aluminium is likely to promote audio outputs due to internal stress which are on just the frequencies used in some gravity-wave detectors. Future attempts may have to make use of carefully annealed metal masses with resonant frequencies selected to keep clear of likely microstructure resonances.

Nature, vol. 252, p. 639, 1974.

Optical fibre modulators?

Glass optical fibres with cores of the non-linear optical material meta-nitroaniline in single-crystal form have been made at the Post Office Research Department. These fibres act as efficient polarizers and it is hoped that further work will yield low-frequency fibre-optic modulators.

At last! The solid-state radio valve

When transistors were invented it occurred to various people that the way seemed open to the making of an exact solid equivalent of the triode thermionic valve. Such a device would use an emitting junction layer in place of the heated cathode; on top of this would be a "grid" layer to control electron flow; then an insulating layer to correspond to the grid-anode spacing of the vacuum triode; and finally a collecting contact corresponding to the anode.

Something rather like this has appeared from Westinghouse Research Laboratories, in the form of the "vertical m.o.s. transistor". Its performance figures are good: 1.2 W output at 700 MHz , with a prospect of 5 W at 4 GHz . And it's said to be relatively cheap to make.

Insect tracking by radar

Dr Glyn Schaeffer of Loughborough University, well known for his work on the tracking of birds by radar, has been turning his attention to insects. It has proved possible to track a single locust at two miles and determine its sex at one mile from the fact that the male's wings beat faster than the female's. Other agriculturally important insects which can be tracked are the cotton boll-worm moth and the spruce bud-worm moth. One surprising finding is that many insects migrate every night by flying down-wind for anything up to 200 miles.

Locusts, when they fly in swarms, concentrate in long lines which move through the air like an advancing army, on a front over 100 miles long but only one mile deep. This moving swirl of insects, or "line vortex", can be tracked at long range and might be attacked by laying, from aircraft, aerosols of insecticide in its path. Wind-tunnel tests show that when an insect flies through such an aerosol it. picks up a lot more insecticide than it does when it is sitting on a crop plant which is sprayed. Thus the amount of insecticide needed for an airborne aerosol attack may be very small.

Tailpiece

The appearance of a handsomely coloured parrot on the cover of Nature, with the corresponding title page entry "Pupils of a talking parrot", sent readers hurrying to the article, where they found, not a report of parrots teaching humans, or even other parrots, but a lot of close-up pictures of the eye of the researchers' parrot Seraphita, each photo with an inset oscillogram taken at the same time. This data showed quite clearly that Seraphita's pupils contract when she speaks. The significance of this is as yet unknown, but the researchers hint at the possibility of "neural crosstalk".

Nature, vol. 252, p. 637, 1974.

Noise-confusion in more ways than one

1-Thermal noise and terminology

by K. L. Smith
University of Kent at Canterbury

Random fluctuations at the limit of sensitivity of radio receivers, amplifiers and other instruments that process tiny signals have become ever more significant in recent times. Because no single number exists for complete characterization of a system or device under all conditions, difficulties and confusion often arise when the quantities which have been suggested are misunderstood and used incorrectly. The ideas of the noise figure and noise temperature are discussed in this fourpart article, with practical hints on how they can be measured with a good chance that the values obtained will bear some approximation to the truth. At first sight, the many special terms seem to have little in common: this first article looks at some of the basic ideas.
While sitting on the banks of our lake in the woods near the University Electronics Laboratory, the students' group discussion turned to noise. Not the airport or motorway sort-nothing could have been further from our thoughts, in the rather idyllic setting we are fortunate enough to have. Lest readers become incensed at this point with visions of lazy good-for-nothing students sitting about and are tempted to demand their taxes back from the Exchequer, I hasten to add that we were working-quite hard, trying to sort out a little order in that maze of a subject, electronic noise and its effect on the ultimate sensitivity of communications systems.

At one point in this discussion I asked, "What temperature would you observe using a microwave receiver whose horn aerial was pointing up at the clear sky, with the waveguide plumbing at around room temperature?" A quick reply was forthcoming, "Oh, about 300 K ". Such a high value for the received temperature of a system forming the subject of my question was incorrect and I said so. "What is it then?" was asked and I replied "Around 10 K ". "What, within a few degrees of absolute zero and the waveguide at 300 K !" chorused back.

This serves to illustrate one of the first elementary fallacies found in the subject of noise in systems-that the temperatures everyone talks about must have something to do- with physical temperatures. Following the line to show up this fallacy,

I then pointed to another part of the sky and said, "Over there the same receiver could register an aerial temperature up to perhaps $10,000 \mathrm{~K}$ ". I was indicating in a direction towards the sun, of course.

The point is that the receiver measures the source effective temperature, not the actual physical temperature of the aerial components. To help drive the point home, the question was raised as to the temperature that would be seen if the horn "looked down" at a sheet of metal on the ground, which was therefore at the physical temperature of the earth (in other words, about 300 K). The answer is the same as before, 10 K .

The metal is so nearly a perfect reflector at centimetre wavelengths, that it is simply the sky that is seen. The sheet of metal hardly absorbs any r.f. signal power, therefore it hardly radiates any energy, even though it is at about 300 K . The metal is anything but the "black body" of Max Planck, radiating at 300 K . As it is such a poor absorber it is a very poor emitter indeed, its effective emission temperature probably being around a hundredth of a degree or less.

The noise figure muddie

The debate around the lake came to an end at this point, and with parting reminiscences of black bodies and Kirchoff's radiation laws reminding us that we had studied a little physics in the dim and distant past, thoughts turned to how much we owe to thermodynamics for the ideas which have enabled us to realize the ultimate limits of small-signal reception and to build low-noise equipment for handling the tiny signals near these limits, so often part of modern radar, satellite and radio-astronomical systems.

When looking at noise problems in communications one finds that misconceptions and confusion abound in the subject. Even the professionals cannot agree. William Mumford and Elmer Scheibe ${ }^{1}$ noted that no less than nine definitions of "noise figure" exist in the literature, so pity the poor student or junior engineer! Then we have all that talk about "temperatures". It is worth noting the range of quantities and concepts that exist around the subject of electronic noise, so that as these articles proceed we
stand a good chance of stripping some of the fuzziness away from these ideas and show how they relate and how some of them have arisen.
A cursory glance into the literature always turns up the well-known quantity F, the noise figure. Or is it noise factor? It was H. T. Friis ${ }^{2}$ who defined and named F the noise figure. D. O. North defined what amounted to the same thing in a paper published at about the same time, only he called it noise factor. Therefore noise figure and noise factor have the same meaning. One meets F as a simple ratio or as $10 \log _{10} F$ (i.e. noise figure in decibels).

The concept of excess noise figure is met. It turns out to be simply $F-1$. The spot noise figure, is the figure defined at one frequency, whereas the average noise figure, sometimes written F, is that effective over the whole bandwidth under discussion. A concept which may come into more general use is the operating noise figure, $F_{o p}$ defined by Dr North as long ago as 1942^{3}.
Turning now to the idea of using absolute temperatures to discuss noise performance, one finds a bewildering array of signs and symbols, but paradoxically, working with temperatures is actually more straightforward than the confusing noise figure muddle. If the common use of noise temperatures had developed before noise figures as a concept, we may have been saved the duplication. Temperature is fundamental, being related to (thermal) energy and power. Noise temperatures are especially convenient when dealing with low-noise receivers and amplifiers, and the use of noise temperature is slowly taking over as a parameter in performance measurements.

Other than the concept of a general noise temperature (represented by T_{N}, T_{i}, etc.) one finds in particular the aerial temperature, T_{a}; the effective input noise temperature, T_{e}; a standard reference temperature, T_{o} (we shall see that everyone has agreed to 290 K for T_{o}, after some persuasion by the American IEEE). There is the excess noise temperature, which turns out to be $T_{N}-T_{o}$, or the number of degrees in excess of 290 K , the standard room temperature. From this, a quantity known as the excess noise ratio is obtained,
$\left(T_{N}-T_{o}\right) / T_{o}$, which is written $t-1$, so that t is the noise ratio, T_{N} / T_{o}. Finally, there is the concept of an operating noise temperature, $T_{o p}$. Sometimes the system noise temperature, $T_{s y s}$, is used instead of $T_{o p}$ in some articles.

The fact that there has been this proliferation of concepts and quantities, shows that either there are hidden subtleties in the subject, or that some of the definitions are unsatisfactory, or both. Even so, there are one or two other definitions that are vital to an understanding of noise problems, but they are much more general and useful in other contexts as well. These are the ideas of the available power from a source and the related available power gain of an amplifier stage. (Or loss, if the gain is less than one, as in an attenuator.) Noise and signal bandwidths (B_{N} and B_{s}) are also of importance.

Thermal agitation

Ever since the fall of the old caloric theory centuries ago and the subsequent rise of the mechanical theory of heat as the energy of the random jostling of the molecules in substance, it was suspected that the warmth of an object might set the limit to the accuracy of measurements on it. This was found to be so in examples like the Brownian motion and the jumping around of the light spot of very sensitive galvanometers.

Thermal noise in electronic devices has received a great deal of attention since the theoretical discussion of H. Nyquist ${ }^{4}$ and the experimental work of J. B. Johnson ${ }^{5}$ was published in 1928. You can follow this up a little in Cathode Ray's articles, "Heads, Tails and Noise" and, "More about Noise" ${ }^{7}$ of some time ago. It is worth quoting a few opening remarks from J. B. Johnson's paper: ". . . a phenomenon has been described which is the result of spontaneous motion of the electricity in a conducting body. The electric charges in a conductor are found to be in a state of thermal agitation, in thermodynamic equilibrium with the heat motion of the atoms of the conductor. The manifestation of the phenomenon is a fluctuation of potential difference between the terminals of the conductor which can be measured by suitable instruments. . . ." The value of the mean of the voltage squared is found to be

$$
\overline{v^{2}}=4 k T R\left(f_{2}-f_{1}\right)
$$

and the power

$$
w=\frac{v^{2}}{R}=4 k T\left(f_{2}-f_{I}\right) .
$$

For an amplifier operated at room temperature and covering the approximate voice frequency range of 5 kHz , this power is 0.82×10^{-16} watt.

We have here the fundamental equation for the open-circuit noise e.m.f. derived experimentally by Johnson and theoretically by Nyquist

$$
\overline{v^{2}}=4 k T R B
$$

in which T is the absolute temperature of a resistor R, B is the noise bandwidth in

Hz , and k is Boltzmann's constant (see Cathode Ray's discussion of " k " in $W W$ November 1960^{8}).

Dr Nyquist's derivation of equation 1 is now standard bookwork, see for instance, Robinson ${ }^{9}$. An interesting point is that equation 1 predicts a uniform output over the entire frequency spectrum. This gives rise to the expression white noise by analogy to white light (all frequencies present), Fig. 1. The presence of the thermal

Fig. 1. White noise has a Gaussian distribution (upper oscillogram). After band limiting, white noise typically shows a Rayleigh distribution (lower oscillogram).
noise e.m.f. across a resistor means that power can be drawn by a load connected across it and the well-known equivalent circuit shown in Fig. 2 enables us to calculate the maximum, in this case thermal noise power, that can be drawn. From Fig. 2,

$$
\overline{i^{2}}=\frac{\overline{v^{2}}}{\left(R+R_{L}\right)^{2}}
$$

and the power dissipated in R_{L} is $\overline{\overline{2}} R_{L}$. If we now make $R_{L}=R$, we have the matched condition and the maximum power is drawn.

$$
N=\frac{\overline{v^{2}}}{4 R}=\frac{4 k T R B}{4 R}=k T B
$$

In this equation N is the noise power under matched conditions. Of course, in thermal equilibrium, the two resistors feed this much power to each other so no net transfer of energy takes place. This balance is also

Fig. 2. R_{L} is absorbing power from R. Maximum power is absorbed when $R=R_{l}$, according to the well-known matching theorem.
true for every frequency band, as well as overall. Suppose for a moment that this was not so, and imagine a tuned circuit in parallel with the two resistors, which acts as a selective filter, then the resistor which had a higher output at one frequency band could continually supply power to the other even though the temperatures of the two are equal. Thermodynamics has something quite definite to say about the impossibility of doing that, so the balance is maintained across the whole spectrum. The $k T B$ expression is called the available noise power. Equation 2 shows that the available noise power is directly proportional to the bandwidth B and absolute temperature T, but is independent of the value of R and of the frequency.

The above arguments about constancy with frequency begin to fail for frequencies around 1000 GHz at room temperature. This frequency is much higher than the radio frequency spectrum in current use. The error is about 1%. But at low temperatures, say 1 K , a 10% error already would exist at 10 GHz . This is because the correct expression for thermal noise derived rigorously from thermodynamics is

$$
\overline{v^{2}}=\frac{4 R B h f}{\exp (h f / k T)-1}
$$

What all this means is that at very high frequencies and/or very low absolute temperatures we are running into quantum effects. If you glance into a mathematics textbook, $\exp x$ or e^{x} will usually be found expanded into a power series

$$
=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{2.3}+\ldots
$$

If our x, which is $h f / k T$ is small the quantity $\exp (h f / k T)$ can be taken for all intents and purposes equal to the first two terms, that is $1+(h f / k T)$. Putting this into the equation, cancelling, etc., immediately gives Nyquist's simple form for $\overline{v^{2}}$.

Amplifiers and available gain

If amplifiers added no noise to signals they were processing, no problems would exist about gain and how much of it we could use. Also, it stands to reason that no amount of gain will put out a signal already buried in a large amount of noise. What is important is to amplify a weak signal already in noise so that it can resist further degradation by interference and while amplifying, to add the minimum amount of extra noise. Two requirements are needed for front-end amplifiers then: a high gain, and a low-noise performance. Even with the best amplifiers the output signal-to-noise ratio is worse than that at the input, because some noise will always be added by the circuit components.

There is some difficulty about what is meant by gain, which must be cleared up. Definitions of various gains abound in the electronics literature. There is the voltage gain, various power gains, current gain and so on. The usual requirement is to boost the power level of a weak signal so that it can operate fairly energetic transducers such as loudspeakers, pen recorders, etc.

Clearly, power gain is the idea we want. But, which power gain? If an amplifier has an extremely high input impedance, the input power is nearly zero. With a few watts output, a simple ratio of output power to input power is getting on for infinity! The best general definition to use is termed available power gain, G_{A}, and as can be seen from Fig. 3, is defined as $G_{A}=$
available power from the output terminals available power from the input signal source The point to remember now is that available power is the maximum that can be taken from a source or generator. In other words it is the matched power output into a load connected to a generator, as I mentioned earlier for noise power. It is at this stage that subtleties inviting confusion tend to crop up. The available power from the generator feeding some amplifier is, by definition, a fixed quantity depending only on the generator and its internal impedance.

It does not depend on the matching or otherwise at the input circuit. Similarly, the definition of output available power from an amplifier does not depend on the value of the load impedance. This is not to say that available power gain is independent of all matching conditions, because avail-

Appendix A

Available power
A very useful property resulting from the definition, is that available power from a source is unaltered if we put a network of reactances after it. On the other hand, a resistive network will change the available power, in practice always reducing it below the original value. You can see this by considering the examples shown in Fig. A1. The first shows a series reactance inserted after the generator. Available power from the generator on its own is $E_{g}^{2 / 4 R_{g}}$. All we have to do is cope with $+j X$ and the available power is again drawn.

Fig. A 1(b) shows the case of an ideal transformer with a step up ratio of $1: n$ The output voltage from the secondary will be $n E_{g}$, and the effective source impedance will be $n^{2} R_{g}$ from transformer theory. Available power will be $\left(n E_{g}\right)^{2} /$ $4 n^{2} R_{g}$, which is as before. The last example shows that if a series resistance R is placed after the generator, as in Fig. A1(c), available power is $E_{g}^{2} / 4\left(R_{g}+R\right)$ which is obviously less than $E_{g}^{2} / 4 R_{g}$.

Available power gain

Working from the definition for G_{A} above, we can write down the two available powers, take the ratio and thereby obtain G_{A}. As an example, Fig. A2(a) shows a voltage amplifier with input resistance $R_{t n}$ fed via a reactive network from a generator whose e.m.f. is E_{g}, with real internal impedance R_{g}. (Any imaginary part can

Fig. 3. A vailable power gain has no direct connection with matching, but maximum available power gain is only obtained when R_{s} matches the input resistance of the amplifier.
able output power is dependent on input matching. (In effect, available power from the source feeding the amplifier is a constant of the source, but actual power going into the input terminals does depend on matching.) Therefore, the definition of available power out includes the effects of any mismatching at the input, the conditions of which must be stated in the specifications of any particular case.
M. S. Gunston ${ }^{10}$ wrote a critique on the use of available power gain and attempted to introduce a mismatch factor M, because
of "errors" by using available gain ideas. I cannot agree and consider introducing more factors just adds complications. In the special case of complete input circuit matching, maximum available power gain is obtained. The idea of available power gain is versatile and useful. One or two cases are considered in the Appendix for readers who do not mind a few numbers. Whenever you see gain mentioned, I am talking of available power gain under the input conditions prevailing.

To be continued.
be taken into the reactive network.) From network theory, any arrangement of reactances can be reduced to an equivalent transformer with a series resistance, for a shunt susceptance. Resulting from this you will see that the equivalent circuit shown in Fig. A2(b) can be drawn. Going one stage further in the simplification we
arrive at Fig. A2(c), where the transformation of the generator voltage and internal resistance to $n E_{g}$ and $n^{2} R_{g}$ is shown. The magnitude of the voltage appearing across the terminals of the amplifier is

$$
E_{i n}=i_{i n} R_{i n}=\frac{n E_{g} R_{i n}}{\sqrt{\left(n^{2} R_{g}+R_{i n}\right)^{2}+X^{2}}}
$$

Fig. Al

(a)

Available power output will be some constant of the amplifier, times $E_{\text {in }}{ }^{2}$; or, what amounts to the same thing, it will be proportional to the square of the input terminal voltage.

$$
P_{\text {A(oul) }}=K \frac{E_{g}^{2} R_{\text {in }}{ }^{2}}{\left(n R_{g}+\frac{R_{\text {in }}}{n}\right)^{2}+\frac{X^{2}}{n^{2}}}
$$

Notice that I have deliberately rearranged n. As available input power is simply $E_{g}{ }^{2} / 4 R_{g}$,

$$
G_{A}=\frac{P_{A(o u l)}}{P_{A(n)}}=K^{\prime} \frac{R_{\text {in }}{ }^{2} R_{g}}{\left(n R_{g}+\frac{R_{\text {in }}}{n}\right)^{2}+\frac{X^{2}}{n^{2}}}
$$

where K^{\prime} is some constant.
Straightaway, you can see that for maximum available power gain, X should equal zero.
This means that any residual reactance should be tuned out at the front end. The term $\left[n R_{g}+\left(R_{i n} / n\right)\right]^{2}$ is left in the denominator and for maximum available gain this should be minimized. If n, the transformer ratio, is very large the first term in the bracket dominates and G_{A} is small. If n is tiny, the second term becomes large and again G_{A} is small. Somewhere between these extremes an optimum value for n occurs to minimize the bracketed term, and this gives the largest G_{A}. By using calculus we can easily show there is a minimum when $n^{2}=R_{\text {in }} / R_{g}$. This is the matching condition and gives the largest available power gain, as would be expected.

The whole idea of available gain is valid under any conditions, not just matching, as long as the conditions existing are given in any example. (In the example dis-

Fig. A2

(a)

(b)
(c)

cussed here, these conditions would be the values of $R_{i n}, R_{g}, X$ and n.)

Suppose now we consider a chain of amplifier stages with available gains G_{l}, G_{2}, G_{3}, etc., each under the source conditions offered by the preceding amplifier. Then we can see that $G_{l}=P_{l} / P_{s}$ where P_{1} is the output available power of amplifier number one, and P_{s} is the available power from the generator. Similarly for G_{2}, G_{3} etc. and so on. If we have N amplifiers, the last one will have a gain $G_{N}=P_{o} / P_{N-1}$.
Overall available gain is clearly $G_{A}=$ P_{o} / P_{s} and this is

$$
\begin{aligned}
& G_{A}=G_{1} G_{2} G_{3} \ldots G_{N}= \\
& \frac{P_{1}}{P_{s}}, \frac{P_{2}}{P_{1}}, \frac{P_{3}}{P_{2}} \ldots \frac{P_{o}}{P_{N-1}}=\frac{P_{o}}{P_{s}}
\end{aligned}
$$

So the overall gain of a series of stages is the product of the available gains, under the conditions prevailing at each input.

References

1. Mumford, W. W. and Scheibe, E. H. "Noise Performance Factors in Communication Systems", Horizon House.
2. Friis, H. T. "Noise figures radio receivers", Proc. IRE, vol. 32, 1944, p. 419.
3. North, D. O. "Absolute sensitivity of radio receivers", $R C A$, Review, vol. 6, 1942, p.3.
4. Nyquist, H. "Thermal agitation of electric charges in conductors," Phys. Rev., vol. 32, 1928, p. 110.
5. Johnson, J. B. "Thermal agitation of electricity in conductors," Phys. Rev., vol. 32, 1928, p. 97.
6. "Cathode Ray". "Heads, tails and noise," Wireless World, vol. 62, 1956, p. 235.
7. "Cathode Ray". "More about noise," Wireless World, vol. 62, 1956, p. 267.
8. "Cathode Ray". "k-and why it is 1.38×10^{23}," Wireless World, vol. 66, 1960, p. 567.
9. Robinson, F. N. H. "Noise in electrical circuits," chapter 4. Oxford University Press, 1962.
10. Gunston, M. A. R. "Errors and inconsistencies in the determination of system noise parameters," Marconi Review, 1969, p. 142.
11. Mumford, W. W. "Broad-band microwave noise source," Bell Systems Tech. Journal, vol. 28, 1949, p. 608.
12. Smith, K. L. "The ubiquitous phase sensitive detector,"Wireless World, vol. 78, 1972, p. 367.
13. Hosking, M. W. "Realm of microwaves, part 6 -microwave antennae," Wireless World, vol. 79, 1973, p. 501.
14. Nielsen, E. G. "Behaviour of noise figure in junction transistors," Proc. IRE, vol. 45, 1957, p. 957.
15. Walling, J. C. and Smith, F. W. "Solid-state masers and their use in satellite communication systems," Philips Technical Review, vol. 25, 1964, p. 289.
16. Van der Ziel, A. "Solid State Electronics," Prentice-Hall.
17. Moxon, L. A. "Noise Factor," Wireless World, 1946, p. 391 , and 1947, p. 11 .
18. Greene, J. C. "The art of noisemanship," Proc. IRE, vol. 49, 1961, p. 1223.
19. Cohn, Seymour B. "The noise figure muddle," Microwave Journal, vol. 2, March 1959, p.7.

Black holes: radiation transformers?

The concept of a black hole may seem so bizarre that to complicate matters by asking what might happen if the black hole were electrically charged might seem to be a case of scientific masochism. Nevertheless, the question has been asked, and answered, by Ulrich Gerlach of Ohio State University. The answer bears on the relationship between electromagnetism and gravitation. Gerlach calculates that if the charged black hole is immersed in an electromagnetic field then any electromagnetic radiation which comes near it will be transformed into gravitational radiation. The black hole acts as a catalyst which transforms one type of radiation into another.

The Psi particle

A new sub-atomic particle (or perhaps two similar ones) has been discovered independently at two US research laboratories (Brookhaven and Stanford). One team produced "Psi particles" by throwing protons at protons, the other by throwing electrons at protons. The Psi particle has a mass energy equivalent of 3 GeV , which makes it about three times as heavy as a proton. Most particles of such a mass have very short lifetimes in isolation. The Psi article is a surprise in that it lives for about 10,000 times as long as would be expected before decaying into an electron and a positron. Physicists are trying hard to explain it. The one thing they seem sure of is that the Psi particle is not the elusive quark.

New thermal imaging tube

A thermal camera capable of taking "recognizable images of human faces or hands" has been developed at SERL, Baldock. The tube has a germanium window, a target of the pyroelectric material triglycine sulphate which reflects low-energy electrons to an extent dependent on the incident heat and a fluorescent screen to turn the electron beam, after acceleration, into a visible image. Temperature differences of $1^{\circ} \mathrm{K}$ are detectable.

Lasers detect paint-peeling masterpieces

If deterioration in oil paintings is detected early it is possible to take action to preserve the paintings. Laser holography has been shown to make early detection possible. The technique is the same as that used to measure minute changes in any object. A laser hologram is taken, the temperature of the painting is raised a little, and another hologram taken. Detached regions of paint, caused by its beginning to peel off the backing material, dissipate heat at a different rate from the rest and expand faster. Pronounced interference fringes appear when the holograms are superimposed, and where peeling has begun there are kinks in the fringes.

High-quality f.m. tuner

A simple design using the NE563 integrated circuit

by J. B. Dance, M.Sc.

University of Birmingham

Abstract

This article shows how the amateur constructor can make a high-quality f.m. tuner with a minimum of effort. A commercially available front-end is employed with a new type of phase-locked loop demodulator circuit.

Although it is not very difficult to construct an f.m. front-end, the purchase of a complete front-end unit will save the constructor much work and should prevent the possibility of the performance being degraded by spurious oscillations. A varicap front-end was chosen for the circuit to be discussed, partly because this enables both switched and continuous tuning to be obtained without any of the problems associated with dials, gears or drive cords. In addition, the tuning controls can be some distance from the tuner unit itself.

Phase-locked loop demodulators are undoubtedly attractive because no inductors are required. However, the high frequency phase-locked loop integrated circuits which have been available in the past are rather more suitable for use in communications receivers than in high-fidelity equipment. The position has changed with the recent release of the Signetics NE563
device. This integrated circuit contains about 180 transistors and incorporates a high-gain amplifier/limiter in addition to circuitry for converting the i.f. signal to a lower frequency for the operation of the loop. The relatively large percentage frequency deviation at this lower frequency greatly influences the performance of the circuit.

Circuit

The circuit of the tuner (excluding the stereo decoder) is shown in Fig. 1 and the circuit for the tuning controls in Fig. 2.

A $0.01 \mu \mathrm{~F}$ series capacitor is included in the internal EF-5603U output circuit. The output of this front-end unit can therefore be directly connected to the input of the NE563 amplifier/limiter; the latter provides a gain of up to 60 dB with a bandwidth of about 22 MHz . The signal then passes through the standard Vernitron

FM-4 or Toko CFS ceramic filter marked F in Fig. 1. R_{1} and R_{2} are the filter matching resistors without which the desired band-pass characteristic ${ }^{1}$ will be degraded. The limiter output impedance is about 270Ω and the mixer input impedance about $1.25 \mathrm{k} \Omega$, so the effective impedance on each side of the filter is about 330Ω.

The signal from the filter passes through C_{5} into pin 2 of the NE563 and is mixed with a crystal-controlled 9.8 MHz local oscillator signal. The 900 kHz difference frequency is fed by an internal connexion to the phase-locked loop section of the NE563. The centre frequency of the loop is controlled by C_{9}. The loop filter connected to pins 13 and 14 controls the bandwidth and hence the noise level. The value of R_{6} may be reduced if a smaller bandwidth is required for any reason. The output impedance of the loop filter is about $6.2 \mathrm{k} \Omega$.

Fig. 1. The circuit of the tuner.

The output filter $R_{7}-C_{H /}$ attenuates radio frequencies, whilst $R_{8}-C_{10}$ provides the normal $50 \mu \mathrm{~s}$ de-emphasis for the monaural output. The effective resistance between pin 10 and ground should not be less than $2 \mathrm{k} \Omega$. A series capacitor (not shown in Fig. 1) will be required in each output circuit to prevent the steady component of the voltage at pin 10 from reaching the following audio amplifier or decoder.

The optional potentiometer $V R_{I}$ can be used to set the inter-station noise muting level. Muting will also be obtained if $V R_{t}$ is replaced by a fixed resistor of about $15 \mathrm{k} \Omega$, in which case a "mute defeat" switch should be included which can be used to connect pin 8 through a $100 \mathrm{k} \Omega$ resistor to the positive line. If an indication of signal strength is required, a highimpedance voltmeter (f.s.d. about 5 V) can be connected as shown by the dotted line joined to $V R_{I}$ in Fig. 1. The meter reading approximates to a logarithmic function of the input signal voltage and is affected somewhat by the setting of $V R_{l}$. The output impedance at pin 8 is about $20 \mathrm{k} \Omega$.

The writer has used a 9.8 MHz Cathodeon crystal, type CX, manufactured to code AO4851 with the NE563 and has also used a crystal of the same frequency manufactured by Aero Electronics Ltd. Both types were designed for use with a parallel capacitance of 30 pF and gave equally satisfactory results. The local oscillator input impedance is about 400Ω at 9.8 MHz .

It is possible to make a more economical circuit by using a 9.8 MHz ceramic resonator instead of the 9.8 MHz crystal. The writer has tried the economical Taiyo type CR-9.8 resonators which were obtained from the USA; they are about 8.5 mm square. One of these resonators was connected in parallel with a $2.2 \mathrm{k} \Omega$ resistor between pins 1 and $16, C_{6}$ being omitted. However, the performance was quite unsatisfactory. The trouble appeared to be due to spurious high frequencies being generated in the oscillator. It was found experimentally that a satisfactory performance could be obtained if a 5 pF capacitor was connected in parallel with the CR-9.8 resonator and the resistor.

Power supply

An SGS-Ates TBA 625B voltage regulator in a TO-5 encapsulation was used in the prototype tuner to ensure a very low hum level in the varicap supply. The use of this device enables a much smaller value of smoothing capacitor to be used than would otherwise be required. The regulator incorporates "fold-back" short-circuit protection; that is, if the +12 V line is shorted to ground, the current "folds back" to about 30 mA . Thus the use of the TBA 625B should protect the NE563 from damage if accidental shorting occurs during the preliminary experimental work. A Jermyn type 2215 heat sink was fitted to the regulator, although this was not really essential. The capacitor C_{12} should be soldered close to the regulator to prevent possible instability, whilst C_{2} should be soldered close to the EF-5603U and the

NE563. In the prototype separate decoupling of the NE563 was found to be unnecessary; the internal circuit of the device provides 33 dB of hum rejection at 100 Hz .

The EF-5603U consumes not more than 17 mA and the NE563 about 38 mA (maximum 42 mA). The regulator circuit can supply up to 130 mA , so it can also be used to supply current to the LM1310 stereo decoder and to a light-emitting diode stereo indicator lamp.

Tuning

The writer feels that switched tuning is far more convenient than continuous tuning for normal domestic reception. On the other hand, so many local stations are now appearing that continuous tuning is also very desirable. The tuning unit shown in Fig. 2 has the advantage that both switched and continuous tuning are available.

When S_{l} is in position 1, the Beckman 10 turn "Helipot" $V R_{2}$ is used to provide

Fig. 2. The preset and continuous tuning unit.

Fig. 3. A.m. rejection plotted against the signal input level to the NE563.

Fig. 4. Variation of the capture and lock ranges with the signal input level.
continuous coverage. The plastic type 7276 component used in the prototype is smaller and cheaper than the other types. A Beckman type RB dial was fitted to the Helipot. Although this is not calibrated in MHz , it does provide fine tuning facilities and can be accurately reset to any point without the constructor having to prepare a special scale.

The other five positions of S_{l} enable five pre-selected frequencies to be received. Beckman 15-turn "Helitrims" type 89P were used for $V R_{3}$ to $V R_{7}$ inclusive, since they can be set much more accurately than a single turn trimmer.

The frequency range covered is approximately 87 to 102 MHz for tuning voltages in the range 3 to 12 V . It can be extended to 109 MHz if a 25 V supply is available for the varicaps, but R_{9}, would then have to be reduced.

Performance

The EF-5603U front-end incorporates a m.o.s.f.e.t. input stage and has three varicap tuned circuits between this stage and the mixer. This enables a minimum rejection of spurious frequencies of 90 dB to be obtained. The noise figure is not more than 7 dB . This unit has recently become available from a retail source (Ambit International, 37 High St., Brentwood, Essex, CM14 4RH).

A similar front-end, the EF-5600U, has provision for the application of a.f.c. and a.g.c. Pin 15 of the NE563 is not connected if the EF-5603U is used, but will provide a.f.c. to the EF-5600U if the components shown dotted in Fig. 1 are included. Similarly, if a $10 \mathrm{k} \Omega$ resistor in parallel with a $0.1 \mu \mathrm{~F}$ capacitor is connected from pin 4 to ground, an a.g.c. voltage may be obtained from this pin. At low signal input levels the potential at pin 4 is about +2.7 V , but it starts to fall when the input to pin 7 approaches 1 mV . At input levels above 20 mV , the a.g.c. output is just over 0.6 V .

The writer initially tried the NE563 with a more economical front-end (not a varicap one), but the results were quite unsatisfactory. The output of this front-end contained spurious oscillator voltage which appeared to develop beat frequencies in the NE563 mixer stage. Any such beat frequencies cause distortion or may even prevent the loop locking onto the desired signal.

The total harmonic content of the NE563 audio output is now quoted as typically 0.4% when the frequency deviation is 75 kHz and the modulating frequency 1 kHz . Under the same conditions the typical audio output level is 380 mV r.m.s. The a.m. rejection is typically 65 dB or more at signal levels exceeding 2 mV at the limiter input; this is greater than that provided by other well-known demodulator circuits. However, this a.m. rejection figure falls at lower input levels as shown in Fig. 3.

The NE563 sensitivity is quoted as typically $9 \mu \mathrm{~V}$ (allowing for a 6 dB loss in the ceramic filter) for a 30 dB signal-tonoise ratio at 10.7 MHz , whilst the corresponding level at the mixer input (pin 2)

Fig. S. Free running frequency of the v.c.o. plotted against the capacitance connected between pins 11 and 12.
is about 1 mV . The front-end unit provides a minimum additional gain of 30 dB . In practice, it has been found that the tuner is very sensitive, low power monaural local radio stations having been received at distances of up to 50 miles using a length of wire as an indoor aerial.

The NE563 becomes warm and some drift of the centre frequency occurs for up to about a minute after the power is first applied. However, this drift is of little consequence unless the signal strength is very low. A crystal or ceramic resonator is required to stabilize the local oscillator frequency, although the device will oscillate if one merely connects a capacitor between pins 1 and 16. A 22 pF capacitor will produce a local oscillator frequency of about 9.8 MHz .

The capture and lock ranges are about $\pm 250 \mathrm{kHz}$ and $\pm 290 \mathrm{kHz}$ respectively at an input level of 10 mV when the loop filter shown in Fig. 1 is used. The variation of the capture and lock ranges with the input signal level is shown in Fig. 4; it can be seen that tuning becomes more critical at input levels under about $100 \mu \mathrm{~V}$.
The phase-locked loop section of the NE563 will operate from frequencies of less than 1 kHz up to several MHz , but the free-running frequency must be kept reasonably close to the input frequency for capture and locking to occur. The value of the capacitor connected between pins 11 and 12 determines the free-running frequency of the loop, as shown in Fig. 5. The value of C_{g} used in the prototype has been changed by up to about 20% and this merely resulted in the absence of locking with very weak signals. However, it is advisable to employ a component with a $\pm 5 \%$ tolerance for C_{9}. The v.c.o. temperature coefficient is of the order of $500 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}$ below $25^{\circ} \mathrm{C}$ and about half this figure at higher temperatures.

The stereo decoder circuit ${ }^{2}{ }^{3}$ is quite conventional and will therefore not be repeated here.

The writer is indebted to Mr Russ Hansen of Signetics, California, for providing detailed information on the NE563.

References

1. L. Nelson-Jones, "F.M. Stereo Tuner", Wireless World, 77, 175 and 245 (April and May, 1971).
2. T. D. Isbell and D. S. Mishler, "LM 1800 Phase-locked Loop FM Stereo Demodulator", National Semiconductor Application Report AN-81 (June 1973).
3. "Phase-Locked-Loop Stereo Decoder", Wireless World, 78, 315 (July 1972).

Sources of supply

Toko EF-5603U, CFS filter. Ambit International, 37 High Street, Brentwood, Essex CM14 4RH.
Signetics NE563. Signetics Ltd, 63 Croydon Road, London SE20, or advertisers in Wireless World.
Cathodeon Crystals Ltd, Linton, Cambridge CB1 6JU.
Beckman pots. Beckman Instruments Ltd, Components International, Queen's Way, Glenrothes, Fife KY7 5PU.
FM-4 filter. Vernitron Ltd, Thornhill, Southampton SO 9 5QF.
SGS-Ates TBA625B. ITT Electronic Services, Edinburgh Way, Harlow, Essex.
Doram REC 65 (order 261508). Doram Electronics Ltd, PO Box TR8, Wellington Road Industrial Estate, Wellington Bridge, Leeds LS1 2 2UF.

WIRELESS WORLD ANNUAL

We apologize to readers who may have been misled by advertisements for the 1975 Wireless World Annual stating that it would contain 140 pages. In fact 132 pages, including covers, were printed. This was not a deliberate attempt to deceive the reader but an error, which is very much regretted.

News of the Month

Celtic communications covered

Following the decision by the International Telecommunications Union to adopt "world-wide single-sideband telephony working", a comprehensive range of single-sideband communications is to be installed and tested at the Post Office station at Ilfracombe, providing ship-toshore radiotelephone and teleprinter communication for offshore oil rigs throughout the British sector of the Celtic Sea. A total of four 1 kW transmitters-one for telephony, one for telegraphy and two for standby-have been ordered for llfracombe. Operating on designated frequencies in the range of 1.6 MHz to 3.8 MHz , the installation will provide a reliable service to the oil rigs which will be shared by customers on a party-line basis.

Included in the equipment to be
supplied are 15 Autospec II radiotelegraph error correcting terminals. This system uses a special error correction code, which has been developed to allow reliable radio communication to be achieved in all but the worst conditions of fading and interference. The equipment also provides a visual indication of error detection which allows the operator to make an assessment of the circuit efficiency at any time. Marconi Communication Systems is to provide the equipment for the Post Office.

A further Post Office project to ensure high-quality communications for gas and oil production platforms working in the North Sea has been recently announced. The new project will link the country's telephone and telex networks to radio stations which are to serve production platforms. The new microwave routes will also provide an improved telephone service for people living in North-East Scotland, the Orkneys and the Shetlands. When the new service opens in 1977 it will be possible for production staff on platforms up to 200 miles offshore to send telex messages almost anywhere in the world without calling in the operator and to make world-wide telephone calls through the British Post Office system.

Errors reduced on radio-teleprinters

Dramatic error-rate reduction on h.f. and troposcatter 100 w.p.m. teleprinter circuits has been demonstrated using a recently developed time-diversity system. Under a United States Air Force programme. mobile h.f. communications vans were

Visitors to Mars

- it's only the tiny antenna that's going though, not the earthling who's peering at the communicator through its environmental dome. The S-bend antenna will make the II-month, 460 -million mile journey with the Viking spacecraft that is scheduled to land on Mars in 1976.
equipped with time-diversity modems developed by Barry Research Corporation for the purpose of evaluating the new technique. Simultaneous time-diversity and frequency-diversity circuits were established over a 1,000 mile h.f. path, Oklahoma to Georgia, in July 1974, and the error performances compared. Results showed that character-error-rate (c.e.r.) reduction factors of up to 1,000 were frequently obtained using time diversity, with an overall c.e.r. in a six-day period of 0.014% observed on the t.d. circuit and 1.7% on the f.d. circuit. More recently, similar performance has been demonstrated using the t.d. system with an Air Force microwave troposcatter system.

The equipment has been designed to overcome the effects of signal fading and impulsive noise interference encountered on radio circuits used to transmit teleprinter information. The system accepts synchronous or non-synchronous data, clear or encrypted, at rates up to 75 bits per second. Further information can be obtained from Interface International, 29 Market Street, Crewkerne, Somerset TA 18 7 JU .

Computers respond to human voice

A series of general-purpose computer systems which are controlled solely by the human voice has recently been introduced for operation in a wide range of industrial, scientific and commercial situations, from machinery control to banking transactions. These revolutionary systems can recognize words irrespective of accent or dialect and also against substantial background noise levels.

The first system unveiled in the series marketed by EMI Threshold is capable of accepting a vocabulary of up to 150 words or short phrases including digits. The equipment comprises a speech preprocessor unit measuring $18 \times 20 \times 26$ in, mini-computer, alpha-numeric display, microphone headset and standard teletypewriter. Communication with the equipment is not limited to one person. The system is quickly and easily programmed to accept instructions from up to 16 operators in sequence. The voice data of each person can be stored either in the system's memory, on orthodox punched paper tape or magnetic disc.

Initially the selected vocabulary is inserted by teletypewriter into the minicomputer, together with any programme of operations which the system will be carrying out later from spoken instructions. Users of the VIP 100 system then "train" the equipment to understand their individual pronunciation of the vocabulary by repeating each word either five or ten times into a noise cancelling microphone. The training time is less than 10 s for each word. Repetition of each word enables the system to obtain an average voice pattern from the slight variations which occur each time the speaker pronounces
the word. The speaker's pattern for each word is then stored in the memory against the relevant vocabulary data inserted by teletypewriter.

In use, each operator calls up his own voice pattern, identified by a reference number set on a control unit for speaker selection and word training. Each vocabulary word also has a reference number enabling the operator to call up any given word from the computer, at any time during use, for retraining should the operator's speech be affected by a cold or other causes since initially training the system. As each word is spoken, it appears on a visual display unit providing the user with instant verification that the computer has correctly "understood" the communication.

A control word such as "go" or "action" from the operator causes the system to despatch the inserted data either to whatever machine is linked to it such as a computer installation or machine tool or to the mini-computer's own memory. If when checking the data on the v.d.u., the operator discovers he has made an error, this can be deleted simply by using a second control word such as "erase" or "mistake".

A joint Anglo-American research programme into developing voice recognition techniques and applications still further is under way. At EMI's Central Research Laboratories the British research team's activities range from refining aspects of current voice recognition technology to long-term basic speech research associated with the voice control of future generations of machines. Future additions to the EMI Threshold range will include a system having specific relevance to the security field. It will have the facility to identify each voice by its individual and unique aural characteristics, offering potential applications including the control of access to restricted buildings.

Worldwide telephone link

A local telephone call to Loughborough now gives companies in Nottingham. Leicester. Derby and surrounding East Midland towns access via terminals to an extensive computer time-sharing service. The installation of a multiplexer in Loughborough by Honeywell opens up the Mark III service to the area at local call rates.

Based on a computer centre in Cleveland, Ohio, the Mark III service uses trans-Atlantic and trans-Pacific satellite and cable links to join North America. Japan, Australia and most of Western Europe. Terminals installed in users' own offices are connected to the Cleveland centre through the ordinary telephone system. The response at the terminal from the computer centre is a matter of seconds despite the distances involved and the technical complexity of the network. Honeywell estimates that it now offers
 frequencies.
local call access to Mark III to 85% of the potential commercial and industrial users in this country.

Test transmissions curtailed

In the light of its financial situation and the need to conserve fuel, the BBC has found it necessary to reconsider its trade test TV transmissions. which have been radiated throughout the day on BBC-2. The transmitters concerned use approximately 5.000 kW of electrical power.

It has been decided to curtail these transmissions by about five and a half hours each weekday, while still maintaining some transmissions in the daytime for the benefit of dealers and installers. From Monday. January 20, the BBC-2 network has been on the air from 10.30 to 11.30 each morning, with a bulletin of service information at 10.30 . Apart from any programme commitments. the network then closes until 16.00 , when it reopens with the test card continuing until the start of evening programmes.

Safety for school TVs

[^2]ceivers specially designed for use in schools for test and certification to the requirements of the British Safety Standard BS.415:1972, including amendments 1,2 and 3 . The tests will also take into account the safety requirements of clause 6 of BS.4958:1973 (specification for schools TV receivers and stands). Applicants should write to BEAB, Mark House, 153 London Road, Kingston-upon-Thames KT2 6NX. sending a list of models for which approval is required, together with descriptive literature. On receipt of this information BEAB will forward application forms and cost estimates for the necessary test work and certification fees.

Radio range increased twentyfold

The range of radio and television signals can be increased 20 times or even more by a new technique developed by a team of research scientists at Stanford Research Institute. California. The scientists have demonstrated that a temporary man-made bubble can be produced in the ionosphere which reflects radio signals back to earth. This makes possible an extension of their range to a point about 1.000 miles from the transmitter. Normally these signals would pass right through the ionosphere and are limited to a range of about 50 miles along a direct line from transmitter to receiver.

The bubble is produced by heating the ionosphere with a beam of shortwave radio signals from a ground-based "heating transmitter". The heating is based on principles similar to those on which microwave ovens are based. The bubble is typically about 100 miles in diameter. Invisible to the naked eye, the region can be photographed with an infra-red camera. When transmission is completed the reflecting irregularities disappear, leaving no pollution or ecological disruptions of any kind. The bubble would apparently be most useful for reflecting signals in the v.h.f. band. In essence, the heating transmitter required to produce the communications bubble is a 500 kW short-wave radio transmitter connected to a special antenna.

New video system

The Longitudinal Video Recorder (LVR) is a new video cassette system recently unveiled by BASF. Certain capabilities of the new system are claimed to extend beyond those of presently available video recorders. The new unit uses a small and compact cassette ($118 \times 110 \times 16 \mathrm{~mm}$) loaded with 6.28 mm wide chromium dioxide tape. Playing time is up to 120 minutes.

Recording and playback of video and sound signals are done with a fixed head. A system called "contact winding" allows the spool to move as the tape builds up on the spool with which the head is then able to maintain contact. Tape for an alternative 90 minutes playback time has a thickness of nine microns; the one for 120 minutes playback time is six microns. A single drive motor is used to provide a tape speed of $3 \mathrm{~m} / \mathrm{s}$. Recording and playback of either colour or black and white is accomplished on a total of 28 tracks between which switching occurs in a period of 80 ms . Compared with other video cassette systems, tape consumption is much lower and the cost for a playing time of one hour is expected to be around $£ 10$. Although a price for the LVR unit is not available yet, it should be approximately $£ 500$.

Laser pulses
 connect i.cs

Researchers have discovered a method of using laser pulses to form microscopic electrical connexions on fully-processed integrated circuit chips. The new technique provides a tool for repairing defective chips and for custom "wiring" of chips such as programmable logic arrays. Lasers have previously been used in electronic device fabrication for applications such as trimming resistors and cutting connexions. The key feature of the discovery, made by IBM scientists, is that laser pulses can

New flexible loudspeaker diaphragm material (see news item). Damping material is attached at the circumference and centre to prevent wave reflections within the material. Also attached to the diaphragm is the voice coil assembly. The chassis is shown at the top of the picture separately from the diaphragm.
also make new connexions through a layer of silicon dioxide, between an aluminium conductor on the surface of the chip and conducting channels in the silicon below. Connexions can be made without damaging adjacent fragile transistors or transistor-like structures.

The process involves a sequence of several short pulses (two to six nanoseconds) obtained from an organic dye laser. Longer pulses can cause extensive damage to surrounding regions. The sequence of pulses gives rise to three distinct processes. First, a small hole is produced by evaporation in the aluminium conductor. This is followed by explosive removal of the silicon dioxide between the aluminium and the underlying silicon at the connexion site. Finally the underlying silicon is melted and flows to the surface to form a connexion with the aluminium. The resulting connexion is less than five microns in diameter.

Flexible speaker

Demonstrated at an IEE lecture during January was a new type of loudspeaker diaphragm which apparently defies the accepted necessity for a rigid cone structure. The diaphragm, which is flat, is made of a spongy flexible material, to which the voice coil is attached. The diaphragm is fixed at its circumference. The spongy diaphragm material provides a linear force against any pressure exerted against it. The aim is to eliminate inertial force and surround compliance properties associated with the conventional diaphragm, whose values are non-linear with respect to frequency. The new material provides resistive loading only and this should have a constant value throughout the frequency range so that applied force is always
directly proportional to diaphragm velocity. In fact the response drops in a linear fashion above about 9 kHz , but this can be compensated by electrical equalization. Bass resonance depends on signal amplitude and can vary in the region 20 Hz to 40 Hz .

The diaphragm is damped by foam material (see photograph) at the centre and around the circumference to prevent any wave reflection occurring within the diaphragm.

Audio/visual show for the Midlands

The first audio/visual show in the Midlands is to be held on April 11th, 12th and 13th, 1975. The first day will be for trade and press only. Site of the exhibition will be the conference and exhibition complex at the National Agricultural Centre, Kenilworth, Warwickshire. Exhibitors' products at the show will encompass video record and replay equipment, lighting effects, educational aids, sales training work and business aids. In addition there will be the widely based consumer items including cassette, radio, cartridge and record equipment.

High Fidelity 75 expands

As a result of the success of High Fidelity 74 in April last year, this year's exhibition is to be increased from five days to six, allowing three days for trade and press only. Extra exhibition space is to be provided at the Heathrow Hotel, Heathrow and part of the show moved into the nearby Skyline Hotel to cater for the expected increase in the number of visitors. The exhibition will run from April 8th to 13th inclusively and the first three days will be trade and press only. Opening times will be: trade days 9 am to 7 pm ; public days 10 am to 8 pm and Sunday 11am to 6 pm . A regular, free coach service will link the Hounslow West Underground station with the exhibition.

Briefly

More power from the BBC. Radio London's medium wave service on 206 metres $(1457 \mathrm{kHz})$ is now transmitted from a new high-power transmitter at Brookmans Park, near Potters Bar. Throughout the service area reception should be improved.

First retailer to head RTEEB. The Council of Management of the Radio, Television \& Electronics Examination Board recently elected Mr Sydney Hetherington, Managing Director of Wright (Rental) Ltd of Coventry and Kenilworth, as its chairman.

Low-noise wideband amplifier

Design with paralleled transistors for use with low source resistances

by J. A. Grocock

The design of single transistor low noise pre-amplifiers is well known and a noise figure close to unity is achievable for source resistances in the range $10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$. In some applications, such as hot wire anemometry for measure, $n e n t$ of gas temperature and gas flow, the source resistance is very low, lying within the range 4Ω to 100Ω. Typical signal voltages are $1-10 \mu \mathrm{~V}$ peak over the frequency range 100 Hz to 200 kHz . Thus, a wideband low noise amplifier is required.

One method of solving this problem is to use a transformer to match the amplifier noise resistance to the source resistance; but when the bandwidth is as stated above the transformer design is difficult. A large primary inductance is necessary in order to obtain a suitable low frequency break point, but the requirements for the higher end of the frequency range are the opposite -minimum number of turns to reduce leakage inductance and winding capacitance. The use of transistors connected in parallel is a better solution and the principle will now be described. ${ }^{2}$
Transistors in parallel. Consider the two transistors connected as shown in Fig. 1 and the single transistor circuit shown in Fig. 2.

The collector signal current of each transistor in Fig. 1 flows through R_{L} and the signal gain is twice that of Fig. 2. (This assumes that Tr_{1} and Tr_{2} are identical and that $R_{I N} / 2 \gg R_{S}$, where $R_{I N}$ is the input resistance of $T r_{1}$ and $T r_{2}$.)

The collector noise currents of $T r_{1}$ and $T r_{2}$ in Fig. 1 are not correlated, ($I_{C_{N}}$ total $=$ $\sqrt{I_{C N_{1}}^{2}+I_{C N 2}^{2}} ; I_{C N I}=$ collector noise current of Tr_{1} and $I_{C N 2}=$ collector noise current of $T r_{2}$) and the total noise current in R_{L} is $\sqrt{2} I_{C N I}$. The signal/noise ratio of Fig. 1 is $2 I_{C S} / \sqrt{2 I}_{C N}$ and in Fig. 2 is $I_{C S} / I_{C N}$ where $I_{C S}$ is the collector signal current of Tr_{1} or Tr_{2}. Thus the signal/noise ratio for Fig. 1 is $\sqrt{2}$ times that for Fig. 2. If R_{s} is large then the above reasoning does not apply and the single transistor circuit has the best signal/ noise ratio.

It can be shown (see Appendix) that the effect of connecting two identical transistors in paraliel is to reduce the equivalent noise voltage resistance and equivalent noise current resistance by a factor of 2 . This means that the optimum
source resistance is also reduced by the same factor. Four transistors in paraliel would produce an optimum source resistance one quarter of that for a single transistor.

Obviously there is a limit to the number of transistors that one can connect in this way. Increased collector capacitance reduces the bandwidth and the collector current cannot be reduced indefinitely.

Practical circuit. The amplifier shown in Fig. 3 is driven from a 75Ω source and has a bandwidth of 7 Hz to $2.5 \mathrm{MHz}(-3 \mathrm{~dB})$. Two feedback paths are used, one to provide low d.c. gain and stabilize the bias voltages and the other to provide independent adjustment of a.c. gain. The circuit has a voltage gain of 70 and the output noise voltage was $67 \mu \mathrm{~V}$ r.m.s. over the frequency range of 15 Hz to 300 kHz .

The noise figure can be calculated as follows:
Total noise output power $=\frac{66.5^{2} \times 10^{-12}}{R_{L}}$ Noise volts V_{N} produced by R_{S} at room temperature $\approx \frac{1}{8} \sqrt{R(\mathrm{M} \Omega) \times \bar{B}(\mathrm{~Hz}) \mathrm{V}}$.

Fig. 1. Two transistors in parallel.

Fig. 2. Single transistor circuit.
Fig. 3. Amplifier design using transistors in parallel and having a bandwidth of $7 \mathrm{~Hz}-2.5 \mathrm{MHz}$. (Transistors are Ferranti types; resistors, carbon film; and capacitors, electrolytic.)

Fig. 4. Arrangement for using several of the Fig. 3 amplifiers and summing their outputs.
$V_{N}(75 \Omega)=\frac{1}{8} \sqrt{75 \times 10^{-6} \times 4.7 \times 10^{5}} \quad \mu \mathrm{~V}$ r.m.s. (noise bandwidth $=\frac{\pi}{2} \times 3 \mathrm{~dB}$ bandwidth $) \approx 0.75 \mu \mathrm{~V}$ r.m.s.
Noise output power due to R_{s} above, is

$$
\begin{gathered}
\frac{(70 \times 0.75)^{2} \times 10^{-12}}{R_{L}} \\
\mathrm{NF}=10 \log \frac{67^{2}}{52.5^{2}} \approx 2 \mathrm{~dB}
\end{gathered}
$$

Further improvements. A further reduction in noise figure can be obtained by using several of the amplifiers shown in Fig. 3 and summing their outputs as shown in Fig. 4. This technique would also be useful when the source resistance is lower than 75Ω.

Acknowledgements. My colleague Mr A. W. Doel has been of considerable help in the development of low noise amplifiers over the past year. Thanks are also due to RollsRoyce (1971) Limited for permission to publish this article.

References

1. "Noise in transistor circuits" by P. J. Baxandall. Wireless World, Nov. and Dec. 1968.
"Probing transistor noise." Application Note 137, Hewlett Packard.
2. "Optimum design of low noise amplifiers" by E. A. Faulkner. Electronics Letters, Vol. 2, No. 11,pp.426-427(Nov.1966).

Further reading

"Low noise audio amplifiers" by H. P. Walker, Wireless World, May 1972.
"Thermal noise in field effect transistors" by Van Der Ziel. Proc.IRE, August 1962.
"Analogue dialogue." Analogue Devices Ltd, March 1969.

Appendix

Consider the circuit shown below:

$T r_{1}$ and $T r_{2}$ are identical transistors with the same input resistance, current gain and noise generators.
Let:
$R_{I}=$ input resistance of Tr_{1} or Tr_{2};
$R_{v}=$ equivalent voltage noise resistance of Tr, or Tr_{2};
$R_{I}=$ equivalent current noise resistance of $T r_{1}$ or Tr_{2};
$V_{1}=T r_{1}$ input voltage;
$V_{2}=T r_{2}$ input voltage;
$I_{C I}=$ collector current produced by $T r_{1}$;
$I_{C 2}=$ collector current produced by $T r_{2}$;
$\beta=T r_{1}$ or Tr_{2} current gain;
$I_{N}=$ noise current in R_{L}.
The noise equivalent circuit is:

$\mathrm{NF}=\frac{\text { total noise output power }}{\text { noise output power produced by } R_{S}}$
The total noise output power can be calculated by considering each generator in turn and replacing all other generators with a short circuit or open circuit.
Taking $K_{V} \bar{R}_{s}$ first,
$V_{I}=K \sqrt{R_{S}}=V_{2}\left(R_{I} \gg R_{S}\right)$
$\therefore I_{C I}=A K \quad \sqrt{R_{s}=I_{C 2}}$
where $A=\frac{\beta}{R_{I}}=\frac{\beta}{R_{2}}$
These two currents are correlated and the total noise current in R_{L} is:

$$
I_{N}=2 A K_{\sqrt{ }} \bar{R}_{S}
$$

Next, considering the two generators $K_{V} \bar{R}_{V}$ each generator will produce an input voltage across its associated transistor only, and the collector currents produced will be uncorrelated.

$$
\begin{gathered}
V_{1}=K_{\checkmark} \bar{R}_{V}=V_{2}\left(R_{1} \text { and } R_{2} \gg R_{S}\right) \\
\therefore I_{C I}=\beta \frac{K_{v} \bar{R}_{V}}{R_{1}}=A K_{,} \bar{R}_{V} \text { where } A=\frac{\beta}{R_{1}} \\
I_{C 2}=A K_{V} \bar{R}_{V}
\end{gathered}
$$

I_{N} total noise current in R_{L} is
$\sqrt{A^{2} K^{2} R_{V}+A^{2} K^{2} R_{V}}=A K \sqrt{2 R_{V}}$
Finally, I_{N} produced by the current generators can be calculated with all voltage generators short circuit.

The noise voltage across R_{S} is the input voltage to both transistors.
$V_{I}=V_{2}=R_{S} \sqrt{\frac{K^{2}}{R_{I}}+\frac{K^{2}}{R_{I}}}=K R_{S} \sqrt{\frac{2}{R_{I}}}$
The two collector currents produced by this voltage are now correlated.

$$
\begin{aligned}
& I_{C I}=I_{C 2}=A K R_{S} \sqrt{\frac{2}{R_{I}}} \\
& \therefore I_{N}=2 A K R_{S} \sqrt{\frac{2}{R_{I}}}
\end{aligned}
$$

The total noise current in R_{L} can now be obtained:
$I_{N}($ total $)=\sqrt{4 A^{2} K^{2} R_{S}+A^{2} K^{2} 2 R_{V}+\frac{8 A^{2} K^{2} R_{S}{ }^{2}}{R_{I}}}$
Total noise power $=$

$$
A^{2} K^{2} R_{L}\left[4 R_{S}+2 R_{V}+\frac{8 R_{S}^{2}}{R_{I}}\right]
$$

Noise power produced by R_{S} alone $=$

$$
\begin{array}{r}
\mathrm{NF}=\frac{4 A^{2} K^{2} R_{L} R_{S}}{4 R_{S}+2 R_{V}+\frac{8 R_{S}^{2}}{R_{I}}} \\
\mathrm{NF}=1+\frac{R_{V}}{2 R_{S}}+\frac{2 R_{S}}{R_{I}} \\
=1+\frac{R_{V}}{R_{S}}+\frac{R_{S}}{R_{I}} \\
\frac{d(\mathrm{NF})}{d\left(R_{S}\right)} \cdot \frac{-R_{V}}{2 R_{S}^{2}}+\frac{2}{R_{I}}
\end{array}
$$

$$
\therefore R_{S} \text { optimum }=\sqrt{\frac{R_{V}}{2}}
$$

An i.c. telephone tone generator

A simple design suitable for use with elementary demonstration models of a telephone exchange

by R. Ball, B.Sc. (Eng)
Department of Electrical Engineering, Lanchester Polytechnic, Coventry

A tone generator was required for incorporating in a demonstration telephone exchange. The generator had to produce dialling tone, ringing tone, busy tone, and number unobtainable tone. The tones were required to be recognizable but did not have to conform rigidly to the normal specifications.

The tones that it was required to approximate were:
(a) Dialling tone-continuous $35-50 \mathrm{~Hz}$. (b) Ringing tone- 400 Hz modulated at 25 Hz and interrupted as follows: ON$400 \mathrm{~ms} ; \quad \mathrm{OFF}-200 \mathrm{~ms} ; \quad \mathrm{ON}-400 \mathrm{~ms}$; $\mathrm{OFF}-2 \mathrm{~s}$. (c) Busy tone- 400 Hz interrupted as follows: ON- 375 ms ; OFF375 ms . (d) Number unobtainable tone400 Hz continuous.

These had to be capable of driving up to four telephones at reasonable volume level.

It was decided that an electronic version would be suitable, and cheaper, than a version based on a motor, and a design was conceived using digital integrated circuits. It was also decided that the following tones would be recognizably close approximations to the standard tones, and would have advantages of economy in circuitry: (a) Dialling tone-continuous 30 Hz . (b) Ringing tone -400 Hz interrupted at 30 Hz and also interrupted as follows: ON- 375 ms ; OFF- 375 ms ; $\mathrm{ON}-375 \mathrm{~ms}$; OFF- 1.875 s . (c) Busy tone -400 Hz interrupted as follows: ON375 ms ; OFF- 375 ms . (d) Number 'unobtainable tone- 400 Hz continuous.

Design details

The design involved the use of three astable oscillators built up from 74 -series t.t.l. NAND gates. These were of conventional self-starting design (Fig. 1). The values of the capacitor C were as follows:

Oscillator $1,400 \mathrm{~Hz} ; C=3.2 \mu \mathrm{~F}$.
Oscillator $2,30 \mathrm{~Hz} ; C=40 \mu \mathrm{~F}$.
Oscillator $3,1.33 \mathrm{~Hz} ; C=500 \mu \mathrm{~F}$.
These use SN 7400 N i.cs. The 1.33 Hz signal was divided-by-two twice, using a D-type fip flop, SN 7474 N , giving frequencies of 0.67 Hz and 0.33 Hz .

The 400 Hz and the 30 Hz signals were used directly for the number unobtainable and dialling tones respectively. The 400 Hz signal was also fed into a NAND gate with

Fig. 1. Oscillator circuit assembled from t.t.l. NAND gates. For capacitor values for the three frequencies see text.

Fig. 2. System of gates used to obtain the ringing tone has inputs from all three oscillators, 400 Hz , 30 Hz and 1.33 Hz .

Fig. 3. Circuit used to protect output of tone generator from damage arising from uniselector voltages.

Fig. 4. Complete circuit diagram of the tone gaw: utor with voltage supply arrangements below.
the 1.33 Hz signal and the output was used for the busy tone. To obtain the ringing tone, the 400 Hz signal was first fed into a NAND gate with the 30 Hz signal and this output was connected to a second NAND gate with the 1.33 Hz signal. Finally this was then fed to a third NAND gate with the 0.33 Hz signal to give the required output. This is shown diagrammatically in Fig. 2.

It was found necessary to select the capacitors used in the oscillators to obtain the most realistically sounding tones.

Output circuitry. Since the tone generator was to be used in conjunction with a normal uniselector relay-type demonstration exchange, its output had to be protected to avoid damage which might be caused by a short circuit; continuous 50 V d.c. of either polarity; or fast high-level switching spikes; any of which might appear across the terminals.

This protection was achieved by using the circuit of Fig. 3. It was found that up to four telephone handsets could be connected to the output with an acceptable signal level in each.

Power supply. The tone generator was designed to run from a 12 V d.c. supply.

This voltage was used directly for the output transistors, and zener diodes were used to produce the supply voltage required by the integrated circuits.

The frequency of an astable multivibrator varies if the supply voltage is changed and it was found that if all the integrated
circuits were run from the same zenered supply intermodulation occurred due to supply regulation. It was thus necessary to run the circuitry from three supplies each zenered independently.

A full circuit diagram of the generator is shown in Fig. 4.

Announcements

The Department of Electrical Engineering Science, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, will be holding its annual Electronics Summer School for the week of July 7-11. Two courses will be run simultaneously. The first course, ESS 8-Linear Circuit Design-is concerned with the use of transistors and operational amplifiers in linear applications such as amplifiers, filters and power supplies. The second course, ESS 9 -Digital Circuit Design-concentrates on the use of the transistor as a switch and develops design, using integrated logic circuits; this leads on to combinational and sequential logic concepts. Both courses are aimed at the same introductory level and the Summer School is probably most suited to teachers running electronics clubs or taking " A " level science courses.

A new independent microprocessor consultancy, Pelco (Electronics) Ltd, 61 Lansdowne Place, Hove, Sussex BN3 1FL, has been formed, to provide
skilled advice as well as services not readily available from manufacturer or distributor, including hardware and software design programme testing and de-bugging. The consultancy is backed by Motorola in terms of technical resources.
Helios Electronics Ltd, manufacturer of professional multichannel mixing desks, has moved to Browells Lane, Feltham, Middlesex TW13 7ER.

Lohuis Electro BV of Holland have appointed Leron Electronics Ltd, 78 Central Buildings, 24 Southwark Street, London SE1 1TU, as their sole distributors in the UK. In addition to a comprehensive range of standard filament and neon instrument lamps, Leron Electronics are also able to supply special lamps to meet most application requirements.

Advance Electronics has appointed Sensors \& Systems Ltd as distributor for the Advance MT range of magnetic transducers. Sensors \& Systems, of Melbourne, Derbyshire, will handle all smallquantity orders (for below 20 devices) at a price of $£ 9$ per device. In addition, Sensors \& Systems will offer a service for the supply of complete systems incorporating transducers and other Advance control products.

Shake. rattle \& roll.

Welcome to our chamber of horrors. Inside the Shure Quality Control Iaboratory, some of the most brutal product tests ever devised are administered to Shure microphones. The illustration above shows a "shaking" machine at work on a Shure microphone and noise-isolation mount. It's only one in a battery of torturous tests that shake, rattle, roll, drop, heat, chill, dampen, bend, twist, and generally commit mechanical, electrical and acoustical mayhem on off-the-production-line samples of all Shure microphones. It's a treatment that could cause lesser microphones to become inoperative in minutes. This kind of continuing quality control makes ordinary "spot checks" pale by comparison. The point is that if Shure microphones can survive our chamber of horrors, they can survive the roughest in-the-field treatment you can give them! For your catalog, write:

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

WW-032 FOR FURTHER DETAILS

NEWLOW PRICES!

 Sinclair Scientific kit
(Was $£ 19.95$ - save $£ 5$!)

Britain's most original calculator now in kit form
The Sinclair Scientific is an altogether remarkable calculator.
It offers logs, trig, and true scientific notation over a 200 -decade range features normally found only on calculators costing around $£ 100$ or more.
Yet even ready-built, the Sinclair Scientific costs a mere $£ 21.55$ (including VAT).
And as a kit it costs under £15!
Forget slide rules and four-figure

tables!

With the functions available on the Scientific keyboard, you can handle directly
\sin and arcasin.
cos and arccos,
tan and arctan,
automatic squaring and
doubling,
$\log _{10}$ antilog ${ }_{10}$, giving quick
access to x^{y} (including square
and other roots).
plus, of course, addition, subtraction, multiplication, division, and any calculations based on them.
In fact, virtually all complex scientific or mathematical calculations can be handled with ease.

So is the Scientific difficult to assemble?

No. Powerful though it is, the Sinclair Scientific is a model of tidy engineering.
All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructionś are provided, and our Service Department will back you throughout if you've any queries or problems.
Of course, we'll happily supply the Scientific or the Cambridge already built, if you prefer - they're still exceptional value. Use the order form.

Components for Scientific kit (illustrated)

1. Coil
2. LSI chip
3. Interface chips
4. Case mouldings, with buttons, windows and light-up display in position
5. Printed circuit board
6. Keyboard panel
7. Electronic components pack (diodes, resistors, capacitors, etc.)
8. Battery assembly and on/off switch
9. Soft carrying wallet
10. Comprehensive instructions for use

Assembly time is about 3 hours.

Features of the Sinclair Scientific

B. $6529-01$

	${ }^{1 \mathrm{rad}}$	57.2958 ${ }^{\circ}$
Sirา달ir		$\begin{array}{r}2.30259 \\ 2.71188 \\ \hline\end{array}$
Scientific	π	3.14159

Scientific notation exponent, both signable

200-decaderange

12 functions on simple keyboard Basic logs and trig functions (and their inverses), all from a keyboard as simple as a normal arithmetic calculator's. 'Upper and lower case operation means basic arithmetic keys each have two extra

Display shows 5-digit mantissa, 2 -digit

- Reverse Polish Iogic

Post-fixed operators allow chain calculations of unlimited length eliminate need for an $=$ button.

25-hour battery life
4 AAA manganese alkaline batteries (e.g. MN 2400) give 25 hours continuous use. Complete independence from external power.

* Genuinely pocketable

 $41 / 3^{\prime \prime} \times 2^{\prime \prime} \times 11 / 16^{\prime \prime}$. Weight 4 oz . Attractively styled in grey, blue and white. money-back, no-risk offer today The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we'll refund your money without question.All parts are tested and checked before despatch - and we guarantee any correctly-assembled calculator for one year. (This guarantee also applies to calculators supplied in built form.) Simply fill in the preferential order form below and slip it in the post today.

Scientific

Price built $£ 21.55$ inc. VAT.
Cambridge
Price in kit form $£ 9.95$ inc. VAT.
Price built $£ 13.99$ inc. VAT.

At its new low price, the original Sinclair Cambridge kit remains unbeatable value
In less than a year, the Cambridge has become Britain's most popular pocket calculator.
It's not surprising. Check the features below - then ask yourself what other pocket calculator offers such a powerful package at such a reasonable price.

Components for Cambridge kit

1. Coil
2. LSI chip
3. Interface chip
4. Thick film resistor pack
5. Case mouldings, with buttons,
window and light-up display in position
6. Printed circuit board
7. Keyboard panel
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch
10. Soft wallet

Assembly time is about 3 hours.

Features of the Sinclair Cambridge

To: Sinclair Radionics Ltd, FREEPOST.St Ives, Huntingdon, Cambs. PE174BR

Please send me
\square Sinclair Scientific kit at $£ 14.95$
Sinclair Scientific built at $£ 21.55$ Sinclair Cambridge kit at $£ 9.95$
Sinclair Cambridge built at $£ 13.99$
All prices include 8% VAT
*i enclose a cheque for $£$
made out to Sinclair Radionics Lid. and crossed.
*Please debit my *B arclaycard/
Access account. Account number

Name

Address

Sinclair Radionics Ltd, FREEPOST,St Ives,
 Huntingdon, Cambs. PE174BR.

The quality of EMI Colorline cable television equipment is proved daily in systems bringing high quality television to hundreds of thousands of people-particularly in Europe.

Now EMI introduces a new range of modular VHF network amplifiers offering full two-way facilities.

The new range-the Colorline RE 1000 serieshas a basic forward bandwidth of $40-300 \mathrm{MHz}$ with optional reverse band-widths of $5-30 \mathrm{MHz}$ or $5-100 \mathrm{MHz}$. At the same time EMI also introduces a unique multi-channel VHF/UHF Distribution Converter. It enables up to seven channels to be converted from a VHF trunk network into the UHF bands for local distribution.

This new equipment, complemented by our Colorline RE900 series of VHF push-pull equipment and by the ME 690 modular series of VHF/UHF

MATV equipment provides the systems designer with an even greater variety of options to meet virtually every requirement of VHF and UHF cable distribution.

As pioneers in the development of high definition television, EMI has accumulated nearly forty years experience in every aspect of television broadcasting-embracing hardware, software and practical operating 'know-how'. This unique breadth of experience makes us highly competent to help you. Contact us at the planning stage.

That's what we're in business for.

EMI

EMI Telecommunications

A member of the EMI Group of Companies.
International leaders in music, electronics and leisure.
EMI Telecommunications Division. EMI Limited.
252. Blyth Road, Hayes. Middx.. England.

Tel: 01-573 3888. Telex: 25145
Cables: EMISOUND London.

The use of video tape recorders with domestic TV

by A.C. Smaal
Central Applications Laboratory N. V. Philips Gloeilampenfabrieken, Eindhoven

Abstract

Domestic television receivers were not developed with any other requirement in mind but the reception of broadcast signals. The anticipated growth of video tape recorders for domestic use will pose problems in that mains-transformerless receivers will require isolation from v.t.rs, while the video signal must not suffer deterioration. Additionally, the reduction in quality of the recorded signal compared with a broadcast signal will mean design changes in receiver time-base circuitry. This article examines these problems, posing some possible solutions.

A basic video tape recorder (v.t.r.) requires a video frequency signal during recording and produces a video frequency output on playback. When a domestic TV receiver is employed either as a signal source or as a display monitor in conjunction with a v.t.r., the video information should ideally be exchanged at video frequencies. The fact that domestic TV receivers are usually not isolated from the mains supply is a serious obstacle to such a straightforward signal transfer; the TV receiver must be isolated or provided with some form of isolating adapter.

There are several methods of isolating the receiver. An isolating transformer can be inserted between the mains supply and the receiver; this is an effective but expensive solution. Alternatively, an isolating switch-mode power supply ${ }^{1}$ could provide the answer, but at present this is not to be found in most receivers. It is also possible to employ a relay which automatically connects the receiver chassis to the mains neutral line, but this method requires that an earth connexion be available at the receiver, which is contrary to normal "entertainment" practice; furthermore, such an arrangement cannot be used with receivers containing a bridge rectifier power supply. Some form of chassisisolated video-frequency adapter is thus needed to act as a safe output and/or input for the receiver, without introducing distortion.

Video-frequency adapters. Apart from providing electrical separation from the mains supply, the adapter should obviously transfer the wideband video signal. One method which is currently employed consists in modulating the video information on to a carrier and subsequently injecting it into the receiver. However, processing the video information in this way involves expensive and cumbersome circuitry if loss of video information is to be avoided.

A more attractive solution has been found in the design of a special wide-band video transformer, which fulfils the most important safety requirement. An adapter using such a transformer has recently been developed with satisfactory results. Other systems are still under investigation, for example a light-coupler (a light-emitting diode combined with a photo-detector in a common envelope), which provides the required isolation. This method is particularly promising because the performance of light-couplers is improving while at the same time their price is going down. Other isolating signal-transfer devices using Hall generators and piezo-electric materials are undergoing evaluation.

Adapter functions. So far only the transfer of video information has been considered, but in a practical system the adapter will have other. functions to perform as well. It must transfer the audio signal, switching instructions and colour information, and, at the same time, it should not affect the proper operation of the receiver when the v.t.r. is connected.

There are no particular problems involved in the transfer of the audio signal. Isolating transformers with the necessary bandwidth are readily available.

The switching function is required to change the receiver from its normal state to one more suitable for monitoring. In particular the r.f., video and sound i.f. sections should be made inoperative to avoid interference by spurious signals while the receiver is acting as a monitor. Furthermore, v.t.rs may display considerable timebase errors so that the line flywheel constant in the receiver must be changed for optimum picture display.

Colour information may be transferred either in a composite signal, as in professional practice, or as decoded (chrominance separated from luminance) in the receiver; in the latter case the two
components are applied separately to the recorder where they are combined in a form suitable for recording. However, from the proposal now circulating within the IEC and DIN ${ }^{3}$, it appears likely that colour information transfer between receiver and recorder for domestic and educational purposes will be by means of a composite video signal.

If the receiver is to function correctly when used in conjunction with a v.t.r., the adapter must match the two equipments correctly and, moreover, ensure correct signal polarity, amplitude and level unless provision has been made in the receiver to do so.

The foregoing considerations are only general, and no attempt has been made to analyse the requirements of any particular adapter system. Because of the lack of standardization and the wide variety of both receivers and v.t.rs there would be little point in discussing a particular example. However, some degree of standardization has been achieved upon the introduction of the Philips video cassette recorder (VCR). The system used in this equipment has been accepted as a basis for standardization in Western Europe. (It is hoped that some standardization of the form and function of the connexion point provided for v.t.rs may also be achieved.) Wherever specific examples are required, the Philips VCR will therefore be cited.

Receiver design. The v.t.r. is the first equipment which is intended for connection to the domestic model TV receiver. ${ }^{2}$ Hitherto, the TV receiver designer has had considerable design latitude, and this has, in turn, resulted in many different types of receiver chassis. However, as home video equipment sales increase, many customers will expect a receiver to be so designed that it can be adapted to recording and/or reproducing apparatus.

The extent to which domestic TV sets
will need modification depends on the characteristics of the recording/reproducing equipment with which they are to be used. This article will therefore discuss the peculiarities of v.t.rs as these affect the monitoring apparatus.

Video tape-recording

The present-day v.t.r. is a largely mechanical device, and, as is to be expected, any shortcomings of its mechanical properties may seriously affect signal processing. Electronics can be used to help to maintain the played-back signal to the original broadcast standards by means of servo systems, electronically variable delay lines, dropout eliminators or other devices. Unfortunately, economic or other considerations will often prevent the application of such correction methods.

Mechanical shortcomings are apt to assume greater importance when a tape recorded on one machine is to be replayed on another. As a general principle, it is desirable that an acceptable picture should still result if a recording is made on a v.t.r. whose tolerances are all at one limit, and played back via another v.t.r. whose tolerances are at the other limit.

The effects of electrical and mechanical spreads may not be the same for all recording systems. Before examining video recorder faults in detail, we shall discuss some variants of the v.t.r. with reference to the direction of the video tracks on the magnetic tape.

In transverse recording, shown in Fig. 1, the tape is held in contact with the curved surface of a spinning drum which contains the video heads. The tape is moved past the heads in a direction parallel with the axis of rotation of the spinning drum, and a succession of parallel tracks is recorded which run almost perpendicular to the length of the tape. The very high scanning speed of the heads provides sufficient bandwidth to allow frequency-modulated recording of the complete TV signal. Unfortunately, the mechanical and electronic complexity of this system makes it economically unattractive for domestic applications.

Fig. 1. Pattern of the tracks recorded onto a video tape produced by a "transverse" mode v.t.r. The edge tracks a, b and c are available for sound, synchronization pulses, and cue.

In the longitudinal recording method of Fig. 2, the tape is drawn past a stationary video head at the high speed necessary to allow a video signal to be recorded. The resulting high tape consumption and short playing time for any one tape track are distinct drawbacks of this system. Domestic recorders using the longitudinal system are still in the experimental stage.

Fig. 2. Pattern of the tracks produced by a "longitudinal"' modev.t.r. Tracks a, b and c are also used for sound, synchronization pulses and cue.

In helical recording systems, of the Fig. 3 type, the tape is wrapped as a part turn of a helix around a revolving drum. The head rotates on the axis of the drum, and scans tracks at a small angle to the direction of motion of the tape. Recorders using the helical system are being used increasingly in applications wherever a picture quality less than broadcast standard is acceptable.

Fig. 3. Pattern of the track employed in helical recording. Again, a, b and care sound, synchronization and cue tracks.

Fig. 4. Representation of the contact angle.
V.t.rs are available with practically every variation on the helical theme: the tape contact angle in Fig. 4 may range from 90° to 360°, one or several heads and one or several fields per video track may be used, and there are various tape transport speeds and tape widths in use. Most v.t.rs for the entertainment sector, including the Philips v.c.r., are of the helical type.

Shortcomings of helical-scan recorders Line frequency deviation. The head-totape speed in a helical recorder has two components: the tape speed and the head speed. Provided the angle of the track with respect to the longitudinal direction of the tape is small, the effective head-totape speed is nearly equal to the algebraic sum of the two components.

If a tape receives a video recording at 'a given scanning speed and is played back at a different scanning speed, the line frequency observed at playback will be shifted in the ratio of the two scanning speeds. Head-to-tape speed in helical recorders is therefore controlled by means of synchronization pulses recorded on to the tape together with the programme material; one of the tracks a, b, or c of Figs. 1, 2 and 3 may be used for this purpose.

At playback these pulses can be applied to servomechanisms to control either the
rotational speed of the head or both the head and tape speed. If only the head speed is controlled, the tape speed being determined by a mains-driven synchronous motor, then any deviations in tape speed (whether caused by mains frequency or other variations) will directly affect the frequency of the synchronization pulses obtained from the tape and, hence, the head speed. In recorders using servo control of both head and tape speed the variation of the line frequency observed will be essentially determined by the stability of the reference oscillator from which the synchronization pulses are derived, and with which they are compared.

If the various factors which determine line frequency deviations fluctuate in time, the reproduced line frequency will be subject to continuous modulation. The magnitude of this frequency "wobbling" depends on the tolerances imposed on the head and tape speeds of the apparatus used.

Phase jump. When, during both recording and playback, the tape speed, head disc angular velocity, and tape contact angle are all kept constant, the scanning speed will vary if the drum diameter is subject to changes (due to temperature fluctuations). Since the rotational speed remains constant, a varying scanning speed will result in a line frequency deviation. If this occurs and the field frequency remains correct, the number of lines per field will change, and this will result in a jump in the position of the sync pulse and in the picture content as the heads change over from one track to another.

If the tape is distorted, whether as a result of humidity, tension, or changes in temperature, the track length will also be changed, and this will have the same effect as a varying drum diameter.

Gap. Another fault, which can be associated with the effect of mechanical spread, is the loss of lines in a raster, causing a gap. This may occur when the position of the video head orbit with respect to the tape is incorrect. Such changes are normally due to guiding errors.
Fig. 5 illustrates the effect of such a tape guiding error during recording. When the distance between the tape guide and the chassis during recording is h, then a track $P-Q$ is scanned (Fig. 5a). If, on playback this distance is h^{\prime} (Fig. 5b), the scanned track will be $P^{\prime}-Q^{\prime}$. Consequently, information recorded on $Q-Q^{\prime}$ is lost, and no signal is found on section $P-P^{\prime}$. As a result, a gap appears in the video signal. Since guiding errors do not influence the lengths $P-Q$ and $P^{\prime}-Q^{\prime}$, these errors will not affect the reproduced line frequency.
A similar effect is observed when the angles between the tape transport direction and the orbit of the video heads are not identical during recording and playback.
Lastly, a reduction in the angle of contact between the tape and the video head drum will lead to loss of video information since the recorded track will not be scanned at either end during playback.

(a)

(b)

Fig. 5. Effects of tape guiding errors.

The designer of a v.t.r. can arbitrarily choose the location of any gap which may occur during the field scan. If a phase jump is to occur it will take place immediately after the gap. It is logical that most of the picture disturbance resulting from a phase jump should be concealed by the frame blanking interval. This can be done by locating the gap either immediately before or after the vertical sync pulse.

Head position error. If two circumferentially mounted heads are not placed exactly opposite each other on the scanning disc, the intervals between their coming into contact with the tape will differ. Since the heads might both be either in or out of contact with the tape simultaneously, either two signals will be present together or there will be a momentary lack of video signal. In addition, the line scanned at the moment of head changeover will be alternately too long or too short.

Burst phase fault with slowed-down or "frozen" picture display. Unlike the other recording systems mentioned earlier, helical recording allows slow-motion or still picture display by simply slowing down or stopping the tape. As the tape speed is altered, the length of the track scanned by the video heads will become different from the track recorded. However, the servo system will keep the field time during which the track is scanned identical to that during which it was recorded, thus changing the number of lines in each field. If the tape moves against the direction of the heads, then the number of lines in a stationary picture field will be decreased, whereas the number will be increased if the tape moves with the heads.

If, in a "frozen" colour field, the number of lines is odd, the phase of the alternating burst (PAL) will be incorrect at each repetition at the beginning of each field, making it necessary for the receiver to reidentify every time. (This re-identification must occur sufficiently fast to obtain a correct colour picture.) For an even number of lines in the field, the burst phase will always be correct and repeated re-identification by the receiver will not be necessary.

Practical considerations. The errors so far described may occur independently of each other, and will thus seldom be present simultaneously. In fact they may compensate each other to some extent. For example, a variation of the drum temperature will affect the track length, but if this is accompanied by the same temperature variation of the tape, this tends to compensate for it.

Nevertheless, the errors described above may be so serious that they impair the operation of current model TV receivers. To minimize these errors, the key components should be manufactured to extremely close tolerances. Taking the scanning assembly of the Philips VCR as a case in point, the tolerance allowed on the drum diameter of 105 mm is only $22 \mu \mathrm{~m}$, and that on the angular separation of 180° of the video heads is within $5 \mu \mathrm{~m}$ of the mounting diameter, at the circumference of the disc. Further mechanical precision is hardly practicable in mass production, and the remaining errors may be corrected far more cheaply by adaptation of the TV receiver than by closer tolerance manufacture methods.

In order that the adaptation problems encountered by the receiver designer may be fully appreciated, some examples will be given of the size of the errors likely to be encountered. Pending international agreement on consumer v.t.r. standards, the errors quoted will be based either on those of the Philips VCR model N1500, or upon proposals, for the VCR system standard or for the interconnection between v.t.rs and TV receivers, made to the IEC and DIN.

First, five errors are dealt with which are essentially due to mechanical tolerances of the equipment. Subsequently three errors are considered which depend mainly on the electrical circuits employed.

Tolerances of the VCR video signal

 Mean line frequency deviations. In the IEC draft recommendation for 50 Hz 625-line PAL or SECAM VCR standards for other than professional-type equipment, tape speed and tolerances are as given in the Table. In equipment provided with only a head-disc servo system, the recorded linefrequency may deviate by $\pm 2 \%$. This implies that under worst-case conditions the variation between recorded and reproduced line frequencies may be $\pm 4 \%$.

In equipment provided with both head and tape speed servos, the mean line frequency deviation is restricted to 1% under worse-case conditions. This figure is mainly governed by the reference source (usually the mains electricity supply) which is used during playback.

Line frequency wobble. In addition to the mean value of the line frequency being subject to deviations, the line frequency may be modulated so that it wobbles. Because it is seldom practicable to determine the spectral components of this modulation theoretically, the permissible percentage of wobble is presented in the form of a graph, Fig. 6. The curve gives the limit of the permissible "wobble figure" W as a function of the modulation frequency; W is defined as the ratio of $f_{L n}$, the nominal line frequency, to Δf_{L}, the total frequency swing about $f_{L n}$.

Fig. 6 applies essentially to the presence of only one modulation frequency. It is difficult to predict the subjective effect on the picture when the line frequency is modulated by several wobble frequencies

Fig. 6. Limits imposed on the frequency components of line frequency "wobbling" in the Philips model VCR N1500. The wobble figure W is defined by $W=\Delta f_{L} / f_{L n}$ where $f_{L_{n}}$ is the nominal line frequency and Δf_{L} is the total frequency swing about $f_{L n}$.
simultaneously, since their amplitude and phase vary during playback. Experience has shown that the picture will be acceptable when the wobbling is within the limit shown in Fig. 6, provided that the line sync circuit of the monitoring receiver has been suitably modified for use with a v.t.r.

Gap width. The gap width does not exceed five lines.

Phase jump. The theoretical worst-case values of the phase jump are $+20 \mu \mathrm{~s}$ and $-20 \mu \mathrm{~s}$, but in practice it is sufficient to allow for a phase jump of $\pm 15 \mu \mathrm{~s}$.

Head position error. The maximum phase jumps occasioned by head location tolerances are $\pm 0.6 \mu \mathrm{~s}$, so that for the played back signal allowance should be made for a phase jump of $\pm 1.2 \mu \mathrm{~s}$ due to head position errors.

Gap. The gap and the video signal deterioration discussed below, which are to be attributed mainly to the electrical circuits,

Fig. 7. Signal parameters used for defining errors of the video signal.
will be discussed with reference to Fig. 7, which defines the various signal parameters.

The centre of the gap is located eight lines before the vertical sync pulse with a maximum spread of +7 and -5 lines. The signal level of the gap, V_{G}, and the interference level, V_{I}, do not exceed $0.3 V_{B}$ and $0.6 V_{S}$ respectively.

Video signal deterioration. Assuming the luminance and chrominance signals to be available separately, the peak-to-peak value of the signal $V_{B S}$ (including the sync pulse) produced across a 75Ω load, is 1.0 V , $\pm 3 \mathrm{~dB}, V_{S L}$ not exceeding 1.5 V . The ratio of the sync pulse to the signal amplitude, $V_{S} / V_{B S}$, during playback may differ up to 10% from this ratio during recording. The remainders of the carrier on the sync pulse, $V_{r 1}$ and $V_{r 2}$, do not exceed $0.2 V_{S}$ and $0.3 V_{S}$ respectively.

Chrominance deterioration. Again assuming the luminance and chrominance signals to be available separately, the peak-to-peak value of the colour burst amplitude of the VCR is $80 \mathrm{mV} \pm 3 \mathrm{dD}$. (In the composite video signal proposed it will be 300 mV , $+0,-6 \mathrm{~dB}$.)

The time difference between luminance and chrominance at playback is equal to that on recording. Subcarrier frequency fluctuations are kept within $\pm 150 \mathrm{~Hz}$ by a special frequency mixing system.

When a picture is "frozen" by stopping the tape transport mechanism, the number of lines is increased from 312.5 to 318 per field, which, from the considerations discussed previously, does not make it necessary for the receiver to re-identify for each field.

Special requirements imposed on the TV receiver

Because of the shortcomings which are associated with low-cost video recorders for the entertainment market, the video signal which the domestic v.t.r. delivers differs markedly from broadcast standards. Until the advent of the home v.t.r., a domestic TV receiver was only required to cope with standard signals, and considerable circuit refinement has been introduced which is intended to optimize sync performance on weak, but standard, signals.

Until an inexpensive v.t.r. equipment appears which delivers a high-standard video signal, optimal results from the combination of v.t.r. and TV receiver can be
achieved only if receiver manufacturers introduce certain design modifications. The following sections indicate some of the more important arguments on which these modifications should be based.

Synchronization. The quality of the picture on the screen of a TV receiver is largely dependent on the stability of the line timebase. Most modern receivers employ flywheel sync circuits, the time constants of which are a compromise between the large value required to reduce the influence of unwanted signals (noise, interference etc.), and the short value required to obtain a large catching range.

It is an inherent property of the flywheel circuit that the line oscillator will correct itself only slowly after any phase jump such as may be present in the v.t.r. signal. This effect is illustrated by the photographs of Figs. 8 and 9, which show a normal test pattern displayed by a receiver with a "standard" timebase, and the same test pattern, but with a $+16 \mu \mathrm{~s}$ phase jump, displayed on the same receiver.

Fig. 8. Test pattern displayed on the screen of a normal TV receiver; no specific abnormalities in the video signal, the receiver has a slow flywheel circuit.

Fig. 9.Test pattern of Fig. 8 applied to the same receiver. In this case the video signal is affected by $a+16 \mu s$ phase jump.

Evidently, when a domestic TV receiver is to be used with a v.t.r., optimum performance will not be obtained unless a new balance is struck between the conflicting requirements for the flywheel constant. If the phase jump disturbance, even when it is concealed in the vertical blanking pulse, is not to persist into the visible picture, then the flywheel circuit should meet the following characteristics:
-The maximum of the overshoot should be reached, at the latest, 20 lines after the phase jump.

Fig. 10. Same signal as in Fig. 9, but applied to a receiver with a faster flywheel circuit.

Fig. 11. To emphasize the effect of the speed of the flywheel circuit, the phase jump is made to appear in the centre. In (a) the receiver has the usual slow flywheel circuit, whereas in (b) the flywheel circuit of the same receiver has been speeded up.
-This maximum should not reach 5% of the phase jump.
-Following the maximum, the overshoot should decay linearly to zero.
Provided that these requirements are met, the distortion of the vertical lines will be scarcely perceptible. Comparison between slow and fast flywheel circuits is provided by Figs. 10 and 11, which show the effect of phase jumps with and without timebase modifications.

In arriving at the foregoing conclusions it has been assumed that the horizontal sync circuit control loop is continuously updated. This may not always be the case. If a coincidence detector is used in the sync pulse path, for example if updating information is supplied to the control loop only during flyback, or if phase comparison is carried out by means of short pulses instead of by means of the sync pulse and a sawtooth voltage, then the flow of control information can be interrupted by a large phase jump. The line timebase will then fail to be corrected immediately after the phase
jump, and distortion of the type shown in Fig. 11 will persist for a longer period of time. Such an effect may be observed, for instance, with the "Gassman" circuits. To avoid this type of difficulty, the line oscillator sync circuit should continue to function through phase jumps of $\pm 15 \mu \mathrm{~s}$.

A circuit in which all these requirements are met will generally have a larger noise bandwidth. Since this will increase the likelihood of interference to the picture during reproduction, the noise bandwidth increase should be minimized.

Since the parameters which determine the performance of the line sync circuit cannot be optimized for good response both during normal reception and v.t.r. monitoring, the flywheel constants should be altered during v.t.r. playback. The requirement for such a change is independent of the way in which the receiver is linked to the v.t.r. (r.f., i.f. or v.f.).

Picture distortion, image raggedness for example, may also result from line frequency fluctuations (wobbling). However, if the timebase characteristics have been modified to accommodate a $15 \mu \mathrm{~s}$ phase jump, this type of picture distortion will also be reduced to an acceptable level, at least theoretically.

When the video signal is transferred to the receiver by r.f. or i.f. signals the absence of line sync pulses must not influence the a.g.c. voltage applied to the r.f. or i.f. sections of the receiver. If the a.g.c. system were to respond to the loss of lines during a gap, the sync separator might detect part of the video signal.

Chrominance section. Line frequency deviations and phase jumps affect the time relationship between the sync pulse and the line flyback pulse. In colour receivers, where the burst key pulse is derived from the horizontal flyback, this effect may cause the burst detector to be fed with either the wrong information or none at all. The time constant of the colour killer circuit should therefore be such that reaction to misleading information of this sort is avoided. In addition, the time constants of the circuit must be such that the gain is kept substantially constant during this period.

The duration and extent of this unwanted situation depend on the behaviour of the line flywheel circuit during playback. Since the phase jump will be less than one line period, no lines are skipped, so the PAL alternating burst will have the correct phase at the start of each new frame and repeated identification by the receiver will not be necessary.

Subcarrier oscillator. The lock-in range of the reference oscillator must be large enough to ensure synchronization at the extremes of the deviations of the frequency of the reproduced subcarrier.

References

1. Wolf, G. 1973. Mains isolating switch-mode power supply, E.A.B. 32 (1): 28-43.
2. "Magnetic-tape cassette video recorders". Wireless World, Dec. 1972, p. 580.
3. International Electrotechnical Commission and Deutsche Industrie Normen.

March meetings
 LONDON

4th. IEE-"Stored programme control" by Dr K. Warren at 18.00 at Thames Polytechnic, Beresford St., SE18.

5th. IERE-Colloquium on "Exploiting. the PROM" at 14.00 at 9 Bedford Sq., WC1.

5th. AES-"A. D. Blumlein: inventor extraordinary" by F. P. Thomson, E. L. C. White and P. B. Vanderlyn at 19.00 at the Wellcome Lecture Hall, The Royal Society, 6 Carlton House Terrace. SW1.

5th. BKSTS-"Gevachrome II-a new colour reversal system for production and news" by R. Huybrechts and R. Verbrugghe at 19.30 at Thames Television Theatre, 308-316 Euston Road, NW1.

6th. IERE/IEE/IEETE/SERT-Colioquium on "Modular courses" at 10.00 at 9 Bedford Sq.. WC 1 .

6th. IEE-"The scanning electron microscope and other electron probe instruments" 66th Kelvin Lecture by Prof. Sir Charles Oatley at 17.30 at Savoy Pl., WC2.

6th. RTS-"How scientific programmes are put together" by P. D. J. Daly at 19.00 at London Weekend Television South Bank TV Centre. Upper Ground, SEI.

10th. IEE-"Microwave heating" by Dr R. B. Smith at 17.30 at Savoy Pl., WC2.

11th. IEE-Discussion on "On-line computing in a control systems teaching laboratory" at 17.30 at Savoy PI., WC2.

12th. RI of Naval Architects-"The changing situation in long-haul navigation" by A. White at 17.00 at 10 Upper Belgrave St., SW 1.

12th. IEE/IES-"The impact of electronics on lighting" by A. Isaacs at 17.30 at Savoy Pl.. WC2.

12th. IERE-"Acoustical holography" by J. W. R. Griffiths at 18.00 at 9 Bedford Sq., WC1.

17th. IEETE-Panel on "Europe today" at 17.45 at the IEE Lecture Theatre, Savoy PI., WC2.

18th. IEE-Discussion on "Have batteries a future in aircraft?" at 17.30 at Savoy PI., WC2.

19th. IERE-Colloquium on "Wedding calculators to instruments" at 10.00 at 9 Bedford Sq., WCI.

19th. IEE-Discussion on "Further degreesshould they be industry or college based?" at 14.00 at Savoy P1., WC2.

19th. BKSTS-"A review of electronic grading methods" by L. B. Happé at 19.30 at Thames Television Theatre, 308-316 Euston Road, NW1.
24th IEE-"Data transmission aspects of the British Railways T.O.P.S. project" by W. K. H. Dyer at 17.30 at Savoy P1., WC2.

25th. IEE/IERE-Colloquium on "Solid state serial stores" at 14.30 at Savoy PI., WC2.

25th. IEE-"Automated animation and the computer" by Dr A. Jebb at 17.30 at Savoy Pl., WC2.

26th. IEE-"Landing guidance systems for the future-who rules the microwaves?" by C. P. Sandbank at Savoy Pl., WC2.
26th. BKSTS-"BKSTS test films" by Ray Knight at 19.30 at Thames Television Theatre, 308-316 Euston Road, NW1.

CHATHAM

6th. IERE-"Flight recording in civil aviation" by P. Waller at 19.00 at the Lecture Theatre, 18 Medway and Maidstone College of Technology, Maidstone Rd.

CHELMSFORD

26th. IEE--"Sonar and underwater communications" by D. J. Creasey at 18.30 at the King Edward VI Grammar School, Broomfield Rd.

DORKING

19th. IEE-"X-ray astronomy" by Prof. R. L. S. Boyd at 19.30 at Mullard Space Science Laboratory, Holmbury St. Mary.

EDINBURGH

1lth. IEE-Faraday lecture-"The social computer" by Desmond H. Pitcher at 14.00 and 19.00 at the Usher Hall.

EXETER

6th. IEETE-"The Sony colour cartridge video cassette" by D. Hyde at 19.30 at Imperial Hotel, St. David's Hill.

LEEDS

20th. IEETE-"Electrical and electronic engineering in hospitals" by K. H. Dale and B. Collins at 19.00 at Kitson College, Cookridge St.

LIVERPOOL

24th. IEE-Faraday lecture-"The social computer" by Desmond H. Pitcher at 14.30 and 18.45 at the Philharmonic Hall.

LOUGHBOROUGH

4th. IEETE-"Digital techniques in telecommunications" by D. Crampsey and D. G. Bennett at 19.00 at King's Head Hotel, High St.

MAIDSTONE

3rd. IEE-"Electricity in medicine" by Dr. L. H. Green at 19.00 at the Royal Star Hotel.

MANCHESTER

6th. IEETE-"Planned maintenance" at 19.30
at UMIST, Reynold Building, Sackville St.
17th. IEE-Faraday lecture-"The social computer" by Desmond H. Pitcher at 19.30 at the Free Trade Hall.

18th. IEE-Faraday lecture-"The social computer" by Desmond H. Pitcher at 14.30 and 18.30 at the Free Trade Hall.

NEWCASTLE

4th. IEE-Faraday lecture-"The social computer" by Desmond H. Pitcher at 14.15 and 19.15 at the City Hall.

READING

6th. IERE-"Liquid crystals and device applications" by I. A. Shanks at 19.30 at the J. J. Thomson Physical Laboratory. University of Reading, Whiteknights Park.

Sixty Years Ago

March 1915, and Britain was well in the thick of World War I, with wireless playing quite a remarkable part considering its rather primitive nature. This short item from the Wireless World for that month describes an incident in which wireless was instrumental in aiding the destruction of the German warship Emden.
"The December 21 issue of The Katipo, the official organ of the New Zealand P. and T. Officers' Association, came recently to hand, and contains much interesting matter. In the account of the Emden capture, which figures in this number, we read: 'Now that the details are dribbling through, our service can throw its chest out in very aggressive style.' The narrative goes on to describe the good work done by Sapper W. C. Falconer, of the Eltham Staff, who was the first to pick up the messages from Cocos Island on November 9. It would appear that the Emden tried to block the message by continuous interruption, but by altering the tune of his receiver the operator continued to read the Cocos Island message, -and duly reported it to the Naval Transport Officer. The result we all know, the Sydney went in hot pursuit of the Emden and destroyed her. This stirring story our contemporary ends with the words, 'All honour to Sapper Falconer for a fine piece of work for the Empire.'"

HORN LOUDSPEAKER OUTPUT

I would like to draw attention to a common fallacy concerning horn loudspeaker operation, which is propagated in the March, 1974, article by Mr Dinsdale. Mr Dinsdale mentions ". . . the uneven bass response illustrated in Fig. 4", the diagram showing graphs of throat impedance component values plotted against frequency. Throat resistance is shown in solid lines, and the implication seems to be that the sound output is directly related to this value.

Inasmuch as Fig. 4 carries the connotation "(after Olson)", I will cite the appropriate areas of Acoustical Engineering in dispute of the implications drawn from the figure.

Firstly, sound output is a function of motional impedance for a given current flow (pp. 212-214). Mechanical impedance (here, horn throat value) is inversely related to motional impedance:

$$
Z_{E M}=\frac{(B I)^{2}}{z_{M}} \times 10^{-9}
$$

(equation 7.1, page 213)
$Z_{E M}$ is motional impedance; z_{M} is mechanical impedance.

Obviously it is not proper to associate frequency response directly with throat impedance, even neglecting reactive effects, since a rise in throat impedance will produce a drop in motional impedance and may tend to reduce the output.

Secondly, the magnitude of the effect of throat impedance variations on sound output cannot be simply stated, and in general will be less than the magnitude of the impedance variation (a very fortunate circumstance for the designer). For brevity I exclude the mathematical development and offer some short passages from the text:
". . . a relatively smooth output response frequency characteristic can be obtained from a horn having a mechanical impedance characteristic varying over wide limits."-page 220
". . . the throat acoustical resistance may vary over wide limits without introducing large variations in power output."-page 220
There is in this same section an example shown in which
"Although the variation in acoustical resistance is 6 to 1 , the variation (in) power output is only 2 dB ."
(This example includes a generator resistance, which will be close to zero in many amplifiers, but the effect is not dependent on its presence.)

In the 'thirties, the telephone company here produced a classic horn design. (I refer to the reference system done by Dr E. C. Wente, now deceased, of Bell Labs, who held patents for the invention of the multicellular horn, as originated for this system, in addition to those for the driving units and bass horn of the system. Possibly the condenser microphone would be the best known of his innumerable inventions-he in fact wrote to me that the speaker system was considered an easy design to do, trivial. This system was capable of outputs which exceed that of an entire symphony orchestra, with accuracy sufficient for facsimile reproduction in live vs. wired music demonstrations.) As the system was investigated, it was found necessary to position the highfrequency unit back from the folded bass section so as to preserve approximately equal (within about two feet) path lengths for the high and low notes. I believe that this piece of history is of value in considering the positioning of low- and highfrequency units of particular designs. (Cf. J. K. Hilliard, "Notes on How Phase and Delay Distortions Affect the Quality of Speech, Music and Sound Effects," IEEE Trans. Audio, vol. AU-12, pp. 23-25, Mar.-Apr., 1964.) It may be that the suggestions in the June issue for horn designs (the "no-compromise horn" and the "mini-horn") should be considered with these data in hand. I see that the final article in Mr Dinsdale's series, like the rest, contained no data on the parameters which affect efficiency.

Let me close on a humorous note: I see in the "References" listing of "Private communication", which seems a continuation of an unfortunate trend in horn literature, along with Klipsch's references to "Private correspondence", "Private communication", and Olson's gem, "Unpublished Report" of someone or other. If this keeps up we are going to have a terrible communication problem!
David R. Schaller,
Milwaukee,
Wisconsin, USA.

Mr Dinsdale replies:

I expressed the hope in the concluding paragraph of my final article on horn loudspeaker design (June 1974 issue) that engineers far more expert than myself in this subject might be persuaded to recount their own experiences, and I am delighted that Mr Schaller has responded.

His comments regarding the effects of variations in throat impedance on sound output are most valuable, and will be reassuring to all who are designing and building horns with restricted mouth dimensions.

I was also interested in Mr Schaller's warning that the high frequency unit in a multi-horn system should be positioned
back from the bass unit so as to preserve equal path lengths. I must confess that I have not so far experienced any audible distress from this cause in my own domestic listening, and I feel that it might be impossible to separate the two units as advocated in a relatively small horn system for domestic use.

I am not aware of any quantitative data being available regarding which parameters affect the efficiency of a horn loudspeaker, and I would be grateful if Mr Schaller or any other reader could enlighten me on this subject. I would of course respect the confidences expressed in any private correspondence which resulted from this request, and so I regret that it would inevitably be referred to once again as a "Private Communication".

BROADCASTING DUPLICATION

In your leader in the January issue you discuss frequency planning in a manner which is generally reasonable and impartial. However, I must take exception to the prejudice you display in applying the phrase "wasteful duplication" to m.f./ l.f. and v.h.f. radio services.

These services are not duplicated either in terms of coverage or of ease of use in a particular environment and often have totally different programme content. They are, in fact, complementary services each catering for the needs of particular sections of the total radio audience. The v.h.f. service is understandably the darling of most of your readers but it is nevertheless useless for car radios, saddles the housewife who carries her "transistor" around the house with a flapping telescopic aerial and drives the old folk scatty trying to meet its fiddling tuning requirements. For these and other good reasons, and despite attempts to dissuade them by propaganda and deliberate distortion of the programme material, the majority of ordinary radio listeners have preferred to use the m.f./l.f. services throughout the 18-year period that v.h.f. has been available. Why should they not continue to exercise their preference?

Later in the same issue in "News of the month", you exhibit a further touch of prejudice by inserting the word "allegedly" into the reason given by the International Radio Consultative Committee when rejecting the use of high degrees of signal compression on m.f./l.f. broadcast services. It is only necessary for you to switch on your radio to verify that the BBC's obsession with this technique results in their putting out some of the poorest quality m.f./l.f. transmissions in Europe. The IRCC recommendations embody the considered opinions of the cream of Europe's broadcasting engineers and, in a situation where we seem to be bedevilled by theoreticians who probably never actually listen to the radio but who itch to apply their ideas to perfectly satisfactory services, the recommendations represent a triumph for commonsense. I
only hope that the BBC will take heed of them and consign its compressors and bandwidth limiters to Lisle Street.
C. Higham,

Olney,
Bucks.

TWIN VOLTAGESTABILIZED POWER SUPPLY

I feel your readers may be interested in the following suggested modifications to the "Twin voltage-stabilized power supply" by J. L. Linsley Hood in the January 1975 issue. My first suggestion concerns the use of the supply as a permanent "splitrail" supply (I too dabble with amplifiers!) where the positive and negative outputs are required to be of the same magnitude, i.e., to track each other. Referring to Fig. 5 of the article, potentiometer $R_{I a}$ may be replaced by a $33 \mathrm{k} \Omega$ fixed resistor, and the $33 \mathrm{k} \Omega$ resistor which is shown connected to +12 V reference voltage disconnected therefrom and taken to the positive output terminal instead. The negative output will now track the positive output voltage, which is set up on R_{I} as before.
There are several advantages to be gained by making this modification:
(1) The output voltage meter may be permanently connected to one rail, thereby saving a switch (and precious time!).
(2) R_{I} may be a multi-turn potentiometer, instead of half a ganged potentiometer, which allows finer control over the output voltage.
(3) The accuracy of output tracking is no longer dependent on poorly matched "stereo" potentiometers-indeed, wellmatched linear ganged potentiometers are rare items-but on the accuracy of the divider components which may be 1% if required.
Finally, a sombre note. I would point out that if $T r_{l}$ (or for that matter $T r_{1 a}$) is of rather low gain then its base driver transistor can dissipate well over 5 watts under adverse loads. Failure of this transistor usually produces excessive base drive, and over full output voltage appears on the terminals with disastrous results! Of course, the obvious course of action is to provide base driver transistors of adequate ratings fitted with suitable heatsinks. Some degree of protection can, however, be afforded by the inclusion of resistors in the collectors of $T r_{2}$ and $T r_{2 a}$. This has two functions: (a) transistor dissipation is reduced; (b) in the now unlikely event of failure of these driver transistors-or for that matter failure in the remaining circuitry-the base drive to Tr_{1} (or $\mathrm{Tr}_{l a}$) is limited to a safe value. $470 \Omega 5$-watt resistors are suitable.

L. Cook,

Prescot,
Merseyside.
It is with trepidation that I, as a technician, voice doubts about a Linsley Hood design! But surely the twin voltage-
stabilized power supply of Fig. 5, page 44, January issue, cannot live up to its claim to supply safely $0-35 \mathrm{~V}$ at 2 A maximum.

Suppose one uses it to give $5 \mathrm{~V}, 2 \mathrm{~A}$. If $V_{R E S}$ (reservoir) is, say, 40 , we then have $\operatorname{Tr}_{l a}$ dissipating $2 \times 35=70 \mathrm{~W}$. But with a mica, even on a large $1.1^{\circ} \mathrm{C} / \mathrm{W}$ heatsink, this transistor, type 2 N 3055 , will stand only $55 \mathrm{~W}\left(30^{\circ} \mathrm{C}\right.$ summer ambience). Short-circuited by students or by a faulty audio amplifier, it wouldn't stand a chance. To live up to the claimed performance, $T r_{l}$ and $T r_{l a}$ would need to be shunt pairs (with 5Ω or 10Ω resistors in bases, to equalize power sharing).
A $2500 \mu \mathrm{~F}$ reservoir capacitor will blow up at 2A d.c. unless of high-ripple type. If of lower than marked value, peak ripple will exceed 3 V at 2 A . Thus with low mains voltage, negative ripple peaks may bring $V_{\text {RES }}$ below viable value, creating negative output-voltage notches. Using, say, two shunt $5000 \mu \mathrm{~F} / 50 \mathrm{~V}$ capacitors would be safer, if bulkier.
Surely the designation $33 \mathrm{~V}, 2 \mathrm{~A}$ on the transformers will lead the unwary to order transformers of 2 A a.c. rating, whereas 3 A a.c. rating will barely suffice with good ventilation for a 2A d.c. output.

The divisor-chain values ($100 \mathrm{k} \Omega$ pot. and $33 \mathrm{k} \Omega$ resistors) seem very high, both from the electrostatic field pick-up viewpoint (from the transformer) and from the 741 drift viewpoint. The drift would not be taken up round the feedback loop.

The use" of the pass transistors $T r_{l}$ and $\operatorname{Tr}_{r a}$ in the reverse mode from usual (page 43, third column) may be noted long before 1971. See General Electric's "Transistor Manual", 1964, p. 228.
Douglas Boxall,
Chelsea College,
University of London.

Mr Linsley Hood replies:

I would like to thank Mr Cook for his letter and his comments on my design. The use of one rail as a "reference" for the other is certainly an interesting possibility, especially if some decoupling is introduced in the "reference" feed to prevent one half from trying to reproduce any ripple on the other. I am also grateful for his suggestion for a resistor between $T r_{2}$ collector and $T r$, base. This was an oversight on my part, and is desirable. Also, I would like to add, with my apologies, that a 2 -amp, 50 -volt silicon diode should be connected (in their nonconducting mode) across each output to the 0 -volt line, to avoid the possibility of trouble if one "live" line is shorted to the other.

I would also like to thank Mr Boxall for drawing my attention to the earlier use of pass transistors in the reversed mode. It seems a useful method of operation which is very rarely employed. His comments on the need for components always to be used within their ratings are salutary and stand frequent repetition. However, in this particular instance I fear that he has overstated his case. The 2N3055 series of transistors have a permitted maximum dissipation of 80 watts
at a case temperature of $75^{\circ} \mathrm{C}$. Obviously one should provide adequate heatsinks for the use envisaged, but this is not impossible. Similarly, reservoir capacitors of normal type will survive use at a 2 -amp d.c. output without exploding. Finally, if one wishes to parallel the pass transistors in order to extend the output current range, 0.25 -ohm 2 -watt emitter circuit resistors will be found to be adequate, but a device having somewhat larger dissipation limits than the Motorola MPSU series would be advised for $T r_{2}$ and $T r_{2 a}$.

REDUCING AMPLIFIER DISTORTION

Techniques similar to Mr Sandman's (October 1974 issue, page 367) were described by J. C. H. Davis in 1958 (Electronic and Radio Engineer, vol. 35, no. 1, p. 40). Davis's circuits were based on valves, and contain transformers, but the underlying principle, which Davis called "total differential feedback", is essentially the same. He points out that the technique enables the amount of negative feedback to be "squared" (e.g., increased from 20 dB to 40 dB) without sacrifice of stability margin. The possibility of adding a third, fourth, etc., feedback path as suggested by Sandman is also referred to, with a note on the problems which then arise.

I have lost my reference, but I remember seeing the principle applied to repeater amplifiers for submarine telephone systems using valves. The advantage (which can be seen by referring to Sandman's Fig. 2) is that if one amplifier goes out of action because of failing emission in a valve the second carries on, giving much the same gain and output as before but with some increase in distortion.
G. W. Short,

South Croydon.

SETTLING TIME IN
 AUDIO AMPLIFIERS

Referring to Mr Linsley Hood's letter on audio amplifier settling times (January 1975 issue). I would like to point out that for many years I have been measuring and displaying this parameter in various reviews (in terms of step response function under conditions of both resistive and reactive loadings). I thoroughly agree with Mr Linsley Hood that the parameter would be better expressed actually in terms of settling time referred to a given error band, but to make the test universally meaningful a number of conditions would have to be properly understood and stipulated.
I would suggest:
(1) that the error band be $\pm 5 \%$;
(2) that the peak voltage across the test load correspond to that required for -3 dB of the amplifier's power capacity (some amplifiers would violently reject
to a greater peak voltage under stepped signal drive);
(3) that the load be of an impedive nature, preferably to correspond to the analogue of notoriously difficult loudspeaker loading (see later);
(4) that the settling time be defined as the time elapsed from the application of an ideal step function (in reality of rise time not greater than 100 ns) to the time that the amplifier enters and remains within the stipulated error band (not to the time required by the amplifier to settle within the linear small-signal region, which is sometimes the implied expression with operational amplifiers). The error band is thus $E_{o} \pm \Delta E$, where E_{o} is the final settling voltage, and the settling time, as just defined, can then be referred to $\Delta E / E_{o} \times 100$.

Because an amplifier with a high slewing rate may often exhibit a relatively long settling time, it cannot be concluded unconditionally that an amplifier with a small settling time will have all the characteristics required for the least transient intermodulation distortion (t.i.d.), but because a small settling time requires the amplifier to have a closed-loop response that is very slightly less than critically damped (i.e. open-loop response dominated by a singlepole roll-off filter) taking effect before slewing rate limiting, at least one of the requirements for minimal t.i.d. is achieved.

The overall picture is more clearly presented by also including the measured slewing rate, and this I have been doing in recent reviews and test reports.

I concur with Mr Linsley Hood regarding the tonal impairment that can arise with steep-slope low-pass filters but, provided this can be switched out, this is better than a $-20 \mathrm{~dB} /$ decade artifice which does little more than the treble control at full cut. A recent investigation of a long-settling amplifier exposed the use of a two-pole filter for preamplifier roll-off. In fact, this turned out to be the $12 \mathrm{~dB} /$ octave low-pass filter whose fascia switch merely shifted the turnover higher up the spectrum in the off position! Clearly, in the interest of the least t.i.d. (depending on the h.f. power response, amount of feedback, etc.) preamplifier treble response limiting is necessary, but this should be $-6 \mathrm{~dB} /$ octave $(-20 \mathrm{~dB} /$ decade) and exponential for the least tonal distortion.

Some designers appear to be obsessed with obtaining the fastest small-signal rise time possible. This, in general, is incompatible with the least t.i.d.; in any case, it is totally unnecessary since the effective transient speed of even high-quality programme signal is barely any smaller than $15 \mu \mathrm{~s}$. In view of this; measurements of t.i.d. with step functions as fast as 100 ns would appear to have no practical merit.

We hear about different "sounding" amplifiers even when the amplifiers have very comparable prime parameters. Much of this difference in my judgment results from the nature of the load the loudspeaker presents to the amplifier. Unfortunately, very few loudspeaker manufacturers publish load analogues;
and, conversely, very few amplifier manufacturers take full account of the varying and various nature of the load presented by the loudspeaker. It seems almost impossible for amplifier and loudspeaker designers to join in close technical liaison. Thus we are presented with the crazy situation where a highly engineered amplifier, and one which measures prime parameters faultlessly, gives a poorer sound from a similarly engineered loudspeaker of probably complex load impedance than from a less advanced model of relatively simple frequency-divider configuration.

The blame for this cannot be placed at the door of the amplifier designer. The loudspeaker designer should let him know exactly what kind of load to design for. Measurement of the settling time may help to pin-point those amplifiers which are particularly load sensitive-but the load for the test still has to be determined by the test engineer! The electrical analogues of some of the more difficult loudspeakers are being derived so as to make the test more meaningful.
Gordon J. King,
Brixham,
Devon.

Mr Linsley Hood replies:

I am most grateful to Gordon King for his interesting reply to my letter. It is indeed true, as he says, that the more thorough reviews of audio amplifier performance over the past few years have shown the square-wave response of the system under resistive and reactive load conditions, but the most commonly adopted reactive load analogue (8 ohms in parallel with $2 \mu \mathrm{~F}$) is not necessarily either the closest equivalence to an actual loudspeaker or the load circumstance which will produce the most unsatisfactory response from the amplifier within the range of those which are feasible. (For example, 8 ohms in parallel with $0.1 \mu \mathrm{~F}$ may sometimes be worse.)

Moreover, there has been a tendency for resistive load rise time to be optimized in the design stage, at the expense of the "settling time" under more realistic load circumstances. If Mr King can devise more appropriate analogues for "difficult" I.s. loads, this would be a valuable contribution to design optimization; to which I would like to add my hope that the measured "settling time" might be added to the existing photographic illustrations of square-wave performance.

DISTORTION TRANSMUTED?

Audio engineers have for some time been aware that amplifiers in general have serious shortcomings. Transient intermodulation distortion has been mooted as an explanation but is not generally accepted as the best answer.

It was my friend John Keble of the IERE who introduced me to "head-in-speaker" testing. This reveals all sorts of strange
sounds from a class B solid state amplifier that are absent from a class A non-feedback design.

It is with some diffidence that I advance yet another explanation of this phenomenon. It is generally understood that a physical quantity cannot be destroyed but can only be altered into something else, e.g. matter into energy in the Bomb. Now distortion is a physical quantity produced by modification of the signal and so cannot be destroyed, only changed into something else.

It can be argued that the ultimate fate of distortion in an amplifier with a feedback loop (which must have a delay before it operates) is to reappear as noise. An intermediate stage to this conversion is a sharpening up of wavefronts with a noticeable harshness in the reproduction.

All these effects are readily detectable by the "head-in-speaker" test, particularly when one conducts an A-B test with a low distortion non-feedback amplifier.

I personally feel that the feedback loop amplifier has had its day and we have got to go back to something like the $W W$ Quality Amplifier and start again.
T. Marshall,

Goldring Ltd,
London, E11.

AMERICAN
INSULARITY
We were amused to note that in a recent copy of Electronics (November 28, 1974, page 140) under "New Products", was described an ordinary hand-cranked Megger.

How have Americans checked insulation all these years? We know their electrical standards are low, but this is ridiculous! J. G. C. Fox, Royal Postgraduate Medical School, University of London,
London, W 12.

MORE THINGS IN HEAVEN AND EARTH

Further to "Vector's" article in the November issue, which certainly gave food for thought, could I put forward a rather plebeian explanation for the high incidence of gamma radiation in the vicinity of the mill cottage?
It was stated that a stream ran under the floor of the building, and presumably was dammed for the purpose of operating the mill wheel, so would it not be reasonable to suggest that radioactive particles contained in heavy particles of stone washed down from granite particles over the centuries had collected in this position, so causing a concentration at that position? I would respectfully suggest that the psychic matter was purely coincidental.
C. G. Warren,

Banstead,
Surrey.

Solid state digital clock

2-Construction and setting up

by David D. Clegg

The power supply circuits are designed to power both the logic and the display when the external supply is present, and to power only the logic, from the standby supply, when the external supply is absent. Furthermore, this changeover between the two supplies must be accomplished without a break, which would cause a loss of accuracy, or worse still, reset the time or alarm registers.

The circuit shown in Fig. 7 achieves this; when the external supply is present current from the display flows through D_{30}, while that from the logic flows through D_{31}. The external supply is greater than the standby supply (12 volts compared with 9 volts) and D_{32} is, therefore, reverse biased. If the standby supply is a re-chargeable battery, then it is charged by current flowing through D_{33} and R_{51}. (If a dry cell is used as the standby supply, D_{33} and $R_{5 /}$ are omitted from the p.c. board.) Failure of the external supply causes the display to be extinguished, D_{31} is reverse biased and the voltage at the anode of D_{32} falls from about 11.3 volts to about 8 volts, D_{32} becomes forward biased and the standby supply thus powers the logic. The display can be powered for short periods of time by pressing the "display" button, K_{12}. This shorts $V_{\text {display }}$ to $V_{d d}$; the standby supply then supplies both the logic and the display.

With R_{51} of the value shown (100Ω) the cell charging current was between 12 and 15 mA ; this resistor should be chosen to suit the cells used by individual constructors. Using the specified cells the clock will run for at least 48 hours, provided the display is not energised too often. If these cells are considered too large (NCB-55 has a capacity of 550 mAH) then the smaller NCB-20 (200 mAH) or the NCB-9 (90 mAH) might be considered; they are also much cheaper than the NCB-55.

Assembly

Before describing the assembly of the clock, it is worth mentioning that the p.m.o.s.-l.s.i. clock chip and the c.m.o.s. i.cs can all be damaged by quite small. static charges generated if carelessly handled: these i.cs will be supplied in conductive black plastic foam-resist the temptation to remove them from this until you are ready to install them in the board! The author did not use integrated circuit sockets on the prototype, but if preferred these can be used. Whether sockets are used, or not, the integrated circuits must be mounted on the board last.

The keys should be mounted on the board first; the two plastic locating pegs on the keys are not symmetrically displaced about the line joining the terminal pins,

> soldered
> connection to
p.c.board

they can, therefore, be mounted in only one way. When all the keys are mounted, and before soldering them in, check that the manufacturer's name and the type code (AKS) embossed on the top of the key all face the same way. It is possible to disassemble the keys, but a word of warning here; if they are re-assembled incorrectly, there may be interaction between adjacent keys on the board.

After mounting the keys, the remainder of the small components can be soldered on the board, taking care to check that the diodes are the correct way round. The marking on the 1N914 diodes is not at all clear sometimes, so if there is any doubt, check the polarity with a multimeter; remembering that on the majority of meters, the red terminal is negative with respect to the black terminal, on the ohms ranges.

The author found that it did not make any difference which way the resistors were wired in: it does make the board look neater. however, if the tolerance bands on the groups of resistors are all at the same end. The reed relay, crystal and the adjustable components can next be mounted on the board.

The crystal must be wired to the board directly, as there is not enough room for a socket. Solder about lin of tinned copper wire (22 s.w.g.) to the ends of the pins on the crystal taking care not to overheat it. Under no circumstances should any attempt be made to bend the pins on the crystal. This should support the crystal securely enough for most uses to which the clock might be put; if a more secure fixing is required, drill two small holes at each side, cover the underside of the crystal with a thin layer of silicone rubber and tie the crystal down with a short piece of thread.

The next components to be wired to the board are the i.c. sockets, or the i.cs themselves if sockets are not used. In addition to the possibility of damaging the i.cs by overheating them when soldering them in (in common with all other semiconductors) there is the possibility of destroying them due to static charges-on the soldering iron, for example. The following precautions must be taken whether sockets are used, or not.

The work surface must be conductive and earthed; a plain metal tray or a sheet of aluminium "kitchen" foil earthed. All the i.cs in the plastic foam, the partly
assembled p.c. board, the tools and the solder must rest on this surface during assembly. If the i.cs are to be soldered in, a small soldering iron with an earthed bit must be used. Under no circumstances should an iron with an isolated bit be used. It is also important that the constructor should be earthed, a condition which is best achieved by resting the hands on the work surface.

These precautions appear daunting, but if they are followed the chances of accidentally destroying an i.c. are very slight.

Testing and setting up

After assembly is complete, and before applying power to the board, check that all components are in their correct locations, and that polarised components (diodes, transistors, and integrated circuits) are in the right way round.

Set the variable resistors R_{31} and R_{32} to their mid positions, connect a milliammeter in series with the supply fuse and then switch on. The current should not be more than 140 mA and the display will show 88.88 .88 ; the alarm may also sound. Pressing the "set time" button will clear the display to 00.00 .00 ; if this button is now released, the seconds will start to increment. Check that the "update" buttons are functioning correctly by setting the clock to the right time; set the clock one minute fast, hold the "set time" button and release it as indicated by a suitable reference clock (for example the Speaking Clock).

Now push the "set display alarm" button, and the display should read 00.00 .00 . By holding this button down and simultaneously pressing the required "update" button, the alarm time is set. Releasing the "set display alarm" button should return the display to clock time which is not affected by looking at the alarm time. Check that the alarm and relay work correctly by setting the alarm time a few minutes ahead of the clock time.

During the above testing it might have become obvious that the accuracy of the clock is very poor indeed; the following setting up procedure will correct this.

The display multiplex frequency can be adjusted by setting the alarm so that it sounds, and adjusting R_{31} until the alarm tone is about 700 Hz ; the display multiplex frequency will then be about 100 kHz . This frequency is not at all critical, and this method of setting it by ear is perfectly adequate. If desired, it can be adjusted with the aid of a frequency counter.

Such an instrument is essential to adjust the crystal oscillator frequency and should have a high input impedance-at least $10 \mathrm{M} \Omega$-and low input capacitance. The counter should be connected to pin 2 of $I C_{1}$ (see Fig. 2); using a plastic trimming tool, adjust C_{5} until the frequency is 204.800 kHz . If the variable capacitor cannot adjust the frequency to this value, C_{4} may require adjustment; increasing C_{4} lowers the frequency and vice-versa.

Now observe the seconds count on the
display, and adjust R_{32} slightly clockwise until the intervals between successive seconds are obviously less than a true second; i.e. the clock is running fast. The "Standby 50 Hz " control $\left(R_{32}\right)$ should now be adjusted anticlockwise; the clock will slow down and at some point there will be no further change. This is the point at which the crystal oscillator "takes over" from the standby oscillator.

If a frequency counter is not available, the clock can be set up quite accurately by trial and error with reference to some standard time source, for example, the Speaking Clock. The time can be set correctly and then checked every 10 hours, adjustments being made as required. Using this technique, the author found that the clock could be adjusted to the required accuracy within a week.

In view of the fact that the overall dimensions of the clock are quite small, it was decided not to have an integral mains power supply as this would have occupied at least the same volume as the clock itself, if not more, and would have seriously limited its usefulness. Although the clock was designed for use with two

Fig. 9 (opposite). Printed-board pattern. Component side is shown at (a), reverse side at (b).

Fig. 8. Layout of components on printedcircuit board. Numbered circles are connecting pins on Figs. 6 and 7.

Fig. 10. The complete unit, assembled in a "tray" with the alarm speaker and batteries underneath the board.
supplies, a main one and a standby one, a number of different supply arrangements are possible. If, for example, it is thought that it is wasteful of power to display the time continuously, and a single reliable power source is available, then this may be connected between p.c. board connexions 4 (positive) and 7 (negative). A toggle switch can then be fitted to short circuit connexions 7 and 1 together when the display is required; the "display" button remaining operative for a "quick look".

The above is given only to illustrate that the power supply need not be exactly as shown in Fig. 7. There are, however, two "don'ts"; under no circumstances must power be applied to the display without the logic being powered, and do not exceed 12 volts.

Controls

Alarm on. This key enables the alarm so that at the set time the alarm sounds and the relay contact closes.
Alarm off. This key cancels the alarm if it is sounding (the relay contacts, however, remain closed) or prevents the alarm from sounding at the set time, if it is not. (The relay contact will not operate.)
Relay on. This key causes closure of the relay contact. It obviates the need to reset the alarm to operate the apparatus connected to the relay.

Relay off. This key opens the relay contact if it is closed.
Snooze. When the alarm sounds, this key will silence it for seven minutes, after which it will again sound. This can be repeated for up to an hour after the set alarm time. (There are, in fact, two "snooze" keys side by side. It was intended that they should be fitted with a double width button top; a suitable one is not, however, available.)

Display. The display consumes over 90% of the power required by the clock. When the external supply fails, the standby supply does not, therefore, power the display. This button allows it to do so when it is pressed.
Set/display alarm. This key causes the display to indicate the contents of the alarm register and in conjunction with the three "update" keys allows the alarm time to be set.
Set time. This key inhibits the counters in the clock, thereby freezing the time, and resets the seconds to " 00 ". It is used to synchronise the clock to an external time source, e.g. GTS.
Update hours. Pressing this key causes the hours to increment at the rate of about 2 hours per second. It may be operated with the "set time" key pressed or not, as required. It is therefore possible to update the hours without losing timekeeping accuracy. (This is useful when changing from G.M.T. to B.S.T. etc.)
Update tens minutes. Pressing this key causes the tens of minutes to increment as for the hours key.
Update units minutes. .Pressing this key causes the units of minutes to increment as above.

Suppliers

RCA Ceidis Ltd, 37-39 Loverock Road, Reading, RG3 1ED.
SASCO Ltd, P.O. Box 2000, Crawley, Sussex RH 10 2RU.
REL Equipment \& Components Ltd, Croft House, Bancroft, Hitchin, Herts. Semicomps Northern Ltd, 44 The Square, Kelso, Roxburghshire.
Monsanto Semicomps Ltd, 5 Northfield Industrial Estate, Beresford Avenue, Wembley, HA0 1SD.

Semiconductor Specialists (U.K.) Ltd, Premier House, Fairfield Road, Yiewsley, West Drayton, Middx.
Texas Blue Line Services, Edinburgh Way, Harlow, Essex.
Quartz Crystal Co., Wellington Crescent, New Malden, Surrey.
Alma Components Ltd, Diss, Norfolk.
MOSTEK SDS Components Ltd, Gunstore Road, Hilsea Industrial Estate, Portsmouth, PO3 5JW.
Bywood Electronics, 181 Ebberns Road, Hemel Hempstead, Herts.
A. M. Lock \& Co. Ltd., Neville Street, Middleton Road, Oldham, Lancs.
Trampus Electronics, 58-60 Grove Road, Windsor, Berks.
Doram. Electronics Ltd., P.O. Box TR8, Wellington Road Industrial Estate, Wellington Bridge, Leeds LS 12 2UF.

For elegant, versatile, stereo hi-fi systems designed and built by you!

Until recently, if you wanted a first-class hi-fi system you had two ways to get it.

You could buy the individual electronic components and build a system from scratch. If you were an electronics genius - fine

Or you had to buy ready-made units. Expensive - and dull. About the only creative pleasure vou'd get would be matching your amp and your speakers, or making your speaker enclosures

So what's new?
A comprehensive hi-fi system, combining the enjoyment and satisfaction of build-it-yourself (without too much struggle) ... a real value-for-monev feeling ... and results of the highest quality.

It's the new Sinclair Project 80.

How does Sinclair Project 80 work?

 Project 80 is a comprenensive set of hi-fi modules, or sub-assemblies. Amps ... pre-amps ...FM tuners ... stereo decoders...control units ... everything you need to assemble hi-fi units. They're all designed to look alike and they're all completely compatible with each other. Simply decide on the specifications of the unit you want to build.. buy the necessary modules...connect them... and house them.No need to buy everything at once for your eventual set-up. All the modules are designed so that vou can add to them as your system grows - whether or not it's based on Project 80.

This applies to refinements, like filters ... to up-grading, adding a second set of amps, sav, for greater output ... or to real innovation, like quad. (Add a Project 80 quad decoder, a power supply, a pair of amps, and a pair of speakers - and your stereo's gone quad.)

Is it difficult to build?

Not at all. The modules are complete in themselves. All you do is connect them to your turntable ... your speakers ... or to each other. It's absorbing, but if you can solder wires to a 5 -pin DIN plug, you can build a complete system with Project 80.

And if you're not so hot with a soldering iron? Use Project 805. Project 805 uses Project 80 modules, but provides special clip-on tagged wire connections absolutely no soldering required.

And, of course, both Project 80 and Project 805 come complete with instructions for easv, step-bv-step assembly. But if you do run into problems, just call our Consumer Advisorv Service who are always happy to help.

OK. Where dol go from here?

Over the page! There you'll see for yourself the exacting specifications to which Sinclair Project 80 modules are made, and you'll see some suggested systems.

As you skim the suggestions, remember all project 80 modules are backed by the remarkable no-quibble Sinclair guarantee. Should any defect arise from normal use within a vear, we'll service the modules free

Choose the Project 80 modules that are right for you.

Project 80 pre-amp/control unit

The control centre of Project 80 With its distinctive white-on-matt-black styling and plastic control sliders, it's a pleasure to look at, as well as to use.

Specification
(9 $1 / 2$ in $\times 2$ in $\times 3 / 4$ in.) Separate slider controls on each channel for treble, bass and volume. Inputs: PU magnetic - 3 mV (RIAA corrected). ceramic - 350 mV ;

Project 80 FM tuner

Excellent reception from a tuner only $31 / 2$ in long $x 3 / 4$ in deep Styled to match Project 80 control unit

Specification
($3_{1 / 2}$ in $\times 2$ in $\times 3 / 4$ in.) Tunes 87.5 MHz
to 108 MHz . Detector: IC balanced

Project 80 stereo decoder
Designed for use with Project 80 FM tuner. Sold separately to

Project $\mathbf{8 0}$ active filter unit

Eliminates scratch and rumble (high and low-frequency noise

Radio 100 mV ; Tape 30 mV S/N ratio: 60 dB. Frequency range: 20 Hz to $15 \mathrm{kHz} \pm 1 \mathrm{~dB}$. Outputs: 100 mV and tape plus AB monitoring. Press buttons for PU, radio and tape
Operating voltage: $20 \mathrm{~V}-35 \mathrm{~V}$
Price: $£ 13.95+$ VAT
coincidence (IC equivalent to 26 transistors). Distortion: 0.3\% at 1 kHz for 30% modulation Sensitivity: $5 \mu \mathrm{~V}$ for 30 dB signal to noise. Output: 100 mv for 30% modulation. Aerial imp: 75Ω or 240-300 . Features: dual Varicap tuning, 4-pole ceramic filter, switchable AFC.
Operating voltage: $23 \mathrm{~V}-30 \mathrm{~V}$.
Price: $£ 13.95+$ VAT
keep down the price of a mono FM system, but also to make the stereo decoder available for use with existing mono FM tuners.

Specification
($13 / 4$ in $\times 2$ in $\times 3 / 4$ in.) 1 IC equivalent to 19 transistors. LED stereo indicator glows red

Price: $£ 8.95+$ VAT

Project 80 power ampliflers
Two different amplifiers, designed to be used separately or combined, with Project 80 modules or as add-ons to existing equipment. Protected against short circuits and damage from mis-use

240 Specification
($21 / 4$ in $\times 3$ in $\times 3 / 4$ in.) 8 transistors nput sensitivity: 100 mV .
Output: 12 W RMS continuous into 8Ω (35 V). Frequency response: $30 \mathrm{~Hz}-100 \mathrm{kHz} \pm 3 \mathrm{~dB}$. S/N ratio: 64 dB . Distortion: 0.1%

Power supply units

Range of power supply units to maten desired specification of final system.
p25 Specification
Unstabilised. 30 V output. Including mains transformer

Price: $£ 5.95+$ VAT
at 10 W into 8Ω at 1 kHz . Voltage requirements: $12 \mathrm{~V}-35 \mathrm{~V}$. Loadimp: $4 \Omega-15 \Omega$; safe on open circuit. Protected against short circuit.

Price: $\mathbf{£ 5 . 9 5 + V A T}$
260 Specification
($21 / 4$ in $\times 3 / 5$ in $\times 3 / 4$ in.) 12 transistors. input sensitivity: $100 \mathrm{mV}-250 \mathrm{mV}$. Output: 25 WRMS continuous into $8 \Omega(50 \mathrm{~V})$. Frequency response: 10 Hz to more than $200 \mathrm{kHz} \pm 3 \mathrm{~dB} . \mathrm{S} / \mathrm{N}$ ratio: better than 70 dB . Distortion: 0.02% at 10 W into 8Ω at 1 kHz . Voltage requirements: $12 \mathrm{~V}-50 \mathrm{~V}$ Loadimp: 4Ω min; max safe on open circuit. Protected against short circuit.

Price: $£ 7.45+$ VAT

PZ6 Specification
Stabilised. 35 V output. Including mains transformer.
Price: $£ 8.95+$ VAT
pz8Specification
Stabilised. Output adjustable from 20 V to 60 V approx Re-entrant current limiting makes damage from overload or even shorting virtualiy impossible. Without mains transformer

Price $-£ 8.45+$ VAT

Project 80 SO quadraphonic decoder

Combines with and exactiv matches Project 80 control unit for true quadraphonics. This unit is based on the CBS SQ system and is a complete quadraphonic decoder, rear channel pre-amp and control unit.

Specification

(91/2 in $\times 2$ in $\times 3 / 4$ in.) Connects with tape socket on Project 80
control unit or similar facility on any stereo amplifier. Separate slider controls on each channel for treble, bass and volume. Frequency response: 15 Hz to $25 \mathrm{kHz} \pm 3 \mathrm{~dB}$. Distortion: 0.1\%. S/N ratio: 58 dB . Rated output: 100 mV . Phase shift network: $90 \pm 10 \cdot 100 \mathrm{~Hz}$ to 10 kHz . Operating voltage: $22 \mathrm{~V}-35 \mathrm{~V}$.
Price: $£ 18.95+$ VAT

Some system suggestions from Sinclair

Sinclair 016 speaker

Original and uniquely designed speaker of outstanding quality.

Specification

(93/8 in square $\times 43 / 4$ in deep.) Pedestal base. All-over black front. Teak surround. Balanced sealed sound chamber. Special driver assembly. Frequency response: 60 Hz to 16 kHz . Power handling: up to 14 W RMS Impedance: 8Ω.

Price: $£ 8.95+$ VAT

Project 805 amplifier kit

Contains following Project 80 units:
Project 80 control unit 2×240 power amplifier modules $1 \times$ PZ5 power supply unit Masterlink unit
On/offswitch
plus pre-cut wiring loom with clip-on tagged wire connections, nuts and bolts, instruction manual.
Price: $£ 39.95^{\circ}+$ VAT

Project 8050 quadraphonic

 add-on kitConverts your existing stereo hi-fi system to quad using solderless connections.
Contains following Project 80 units:

Project 80 SQ quad decoder/rear channel pre-amp and control unit
2×240 poweramps
PZ5 power supply unit
Masterlink unit
On/off switch
plus pre-cut wiring loom with clip-on tagged wire connections nuts and bolts, instruction manual.

Price: £ 44.95 + VAT

1. Quadraphonic system: 25 W per channel RMS

Pre-amp/control unit + quadraphonic decoder $+4 \times 260$ amps $+2 \times$ P28 mains power supplies $+(2 \times$ mains transformers $)+(4 \times$ equivalent speakers $)+$ (turntable $).$ Total Project 80 cost: $£ 79.60+$ VAT.
2. Stęreo amplifier: 12 W per channel RMS

Pre-amp/control unit + 2×240 amps + PZ6 power supply + 2×016 speakers. Total Project 80 cost: $£ 52.70+$ VAT.
3. Stereo tuner/amplifier: 12 W per channel RMS

Pre-amp/control unit + FM tuner + stereo decoder $+2 \times 240$ amps + P26 power supply $+2 \times$ Q16 speakers. Total Project 80 cost: $£ 75.60+$ VAT.

Other applications

4. PA system

(Mic) + pre-amp/control unit + 240 amp + P 26 power supply
$+2 \times 016$ speakers. Total Project 80 cost: $£ 46.75+$ VAT.
5. Convert existing mono record-player to stereo

Pre-amp/control unit + Z40 amp + Q16 speaker. Total Project 80 cost: $£ 28.25+$ VAT.

What more can we tell you?

The basic facts are covered on these two pages: And vou'll find Project 80 at stores like Laskys and Henry's.
But before you look, why not get really detailed information? Clip the FREEPOST coupon for the fullyillustrated Project 80 folder - todav!

Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ. Telephone: St Ives (0480) 64646.

If you bought a Shure M55E cartridge in. say. 1970...

It's almost certainly time you bought a new stylus if you have not already done so.
Although the stylus tip is a finely polished diamond, wear cannot be eliminated entirely and a gradual, perhaps imperceptible, deterioration in performance has taken place since your system was installed.
Fit an N55E stylus to restore the performance to the original standard or consider replacing the cartridge to upgrade the performance of your system. Why not ask Shure Electronics Limited for their recommendation?

Shure Electronics Limited

Eccleston Road, Maidstone ME15 6AU Telephone: Maidstone (0622) 59881

I am at present using
Arm or Unit
Cartridge

Amplifier

Name
Address

Please recommend the best Shure cartridge
to upgrade my system

Charge-coupled devices

4-Imaging applications

by Ted Williams
Royal Radar Establishment, now with ICI Ltd, Runcorn

The c.c.d. is a very flexible type of integrated circuit. Not only can it handle both digital and analogue electrical signals but it can also have charge injected into it optically. This final part of this series shows how this ability to accept optical injection of charge has produced some exciting applications. Whether these applications are turned into a commercial success will depend on many factors-scientific, economic and political.

Some of the technical problems associated with c.c.d. imagers are discussed later, but first consider what happens when a light spot falls on a c.c.d. line imager. A line imager is almost identical to a c.c.d. serial shift register, such as the two-bit c.c.d. shown in Fig. 2 of part 1 of this series'. The only difference is that the input or source diode is omitted because the electrical injection of charge is no longer needed.

Charge is generated by the light spot producing electron-hole pairs at and just below the silicon surface of the silicon dioxide interface. This charge is only generated by light which has a greater energy (or shorter wavelength) than the semiconductor energy band gap. In the case of silicon the band gap is in the infrared so visible light will effectively generate charge.
To collect this charge one of the clock pulses must be biased with a similar direct voltage to that used for signal processing applications (say -20 to -30 volts for p -channel or +10 volts for n -channel devices). This bias is applied for an integration time of the order of a few milliseconds. During this time the charge collects at the interface under the biased electrodes in a surface channel device. The amount of charge collected under each electrode is proportional to the light intensity in the gaps closest to the electrodes if the electrodes are of aluminium and not transparent to light. Hence an analogue charge "picture" of the light spot is built up in the imager. This picture is then read out in the normal signal processing manner by sequentially turning on the clock phase voltages. This sequence of integration and read out is then continuously repeated and the output fed via a suitable amplifier to a display monitor. The read-out time must be much faster (say $50 \mu \mathrm{~s}$) than the integration time if smear is to be prevented.

Fig. I. Possible applications for a c.c.d. line imager.

```
c.c.d. area
imager applications
```


Fig. 2. Three applications for c.c.d. area imagers.

To view a two-dimensional picture the image must be scanned continuously over the line imager to generate the full picture line by line. This can be done either by placing the picture on a rotating drum or by moving the imaging lens to produce a scan.

Charge loss occurs during the collection and transfer of charge by recombination at the interface states at the siliconsilicon dioxide interface and at trapping sites in the bulk of the silicon. These last mentioned trapping sites could be impurities of crystal defects. Loss also occurs during integration if the device is
saturated by the light. Hence light levels falling on the device need to be tailored to the device operating conditions and vice versa.

Finally, charge loss through residual charge loss is very important during the read-out time. This process was described in detail in part 3 of this series ${ }^{2}$. Residual charge loss can be minimized by choosing the right fabrication technique for the particular imaging application that is under consideration. Before we discuss this choice some of the possible applications for c.c.d. line and area imagers are discussed, together with the operation and design of an area imager.

Possible applications of line imagers

In the first figure some of the possible applications of line or serial imagers are shown. The page reader and the business security television camera are both applications for stationary cameras. The word stationary hints at the basic disadvantage of a line imager. Only one line of information can be read out at a time so the scene has to be mechanically scanned over the imager. However, they are much simpler to design and operate than the area imager because they have only one line of transfer electrodes and only one clock. This basic simplicity means that initially it is likely that they will be used in any fixed application where the camera system can be set up and left unattended. It is also possible that line imagers will be tried out on a first trial basis in hybrid systems in combination with signal processors and memories (see later).

Applications for area imagers

There is little doubt that as scientists and engineers working on c.c.d. imagers gain experience the line imager will take a back seat and the area imager will be increasingly adopted. This is because the area imager is portable and hence more versatile because the whole of the viewed scene can be imaged on to it while the camera is moving or stationary.

Since this change in emphasis from line to area imagers is already happening, and because the line imager can be operated in the same way as the serial signal-processing c.c.d., the rest of this

Fig-3. Lunar landscape photographs reproduced br' a c.c.d. camera (ref. 3) raken under three focus conditions.

Fig. 4. Composite of six c.c.d. camera pictures of a ship (ref. 3) taken inder three focus conditions.
article concentrates on the area imager. Nevertheless. much of what is said applies equally to line imagers.
The c.c.d. area imager could be used in all of the applications shown in Fig. 1. but in addition it is being used in research laboratories for the three areas shown in Fig. 2. Black and white and colour* television cameras have already been made with c.c.d. area imagers and these can either be hand held or mounted in a fixed position.

Examples of photographs taken with c.c.d. cameras are shown in Figs 3 to 6 . In Figs 3 and 4 the 100×100-bit Fairchild buried-channel imager was used ${ }^{3}$. In Fig. 3 the resolution for small moon craters is remarkable and in Fig. 4 a composite picture has been made of a ship by combining six c.c.d.camera photographs. The battery-operated portable camera made by Bell Labs and the 256 $\times 220$-element surface-channel c.c.d. chip that was used in it is shown in Fig. 5^{+}. A photograph of a picture taken with the camera is shown in Fig. $6{ }^{4}$. Absence of defects in the picture shows how much c.c.d. imager technology has advanced recently and makes the goal of full television resolution on a single silicon chip so much nearer.

Provided the c.c.d. camera can be made cheaply enough the market for office use could be enormous. In the medical field a c.c.d. colour camera would

[^3]
-4

be extremely useful as several specialists could be shown the patients* symptoms on large monitor screens in the comfort of their own homes. For library references a microfilm could be shown on a monitor in the library and the information transmitted with a c.c.d. camera to an office monitor which had a copier coupled 10 it so that any page of an article that was of interest could be duplicated.

For home use the c.c.d. camera is obviously an attractive possibility for home movies and a picturephone ${ }^{5}$. There are three snags. however. First. for home movies the present video tape recording systems are extremely expensive and this market still awats the invention of a cheaper system. Second. for picturephone. as a recent trial system has shown in America. it appears that most people do not want to see their mother-in law over the phone. Third. there are lamsmission problems because the bandwidth required is wider than that currenty used with teicphone transmission.

Low-light-level television cameras are an aren where the c.e.d. shows a great deal of promise. High sensitivity or low noise is required and the buried chammel stracture discussed in part 2 . is particu larly useful in this respect. Some degree ol cooling is still required with the present devices to get the noise level down to the low level required for some military uses.

The hybrid infrared television camera will be discussed in detail later. It will be particularly useful for military applications. As for the low-light-level camera. however. considerable sensitivity will be required if small temperature differences between targets and the background are to be detected. This high sensitivity will also be required for medical use. for example. for the detection of small tumours from hot spots on body temperature pictures. and also for satellite gcological survey temperature pictures.

A replacement for video camera lubes?

 The potential advantages of the c.c.d. camera in comparison with the currently used video camera tubes are listed below:c.c.d. cameras

Small size
Low power consumption
Self scanning
More rugged-all solid state
No warm up time
No colour fringing
No image lag
video camera tube Large High power consumption Electron-beam scanned Glass tube

Warm up

Colour fringing
Image lag

Difficulties do exist with the c.c.d. camera. but before discussing the problems the area imager and its operation areceamined in more detail.

How an area imager works

Fig. 7 shows a schematic diagram of a type of cec.d. area imager that was originally designed for the standard aluminiumgate surface-channel described in part 1 of this series ${ }^{6}$. This imager is known as the frame transfer type. The upper part

Fig. 5. Bather -operated telebision camera and the $256 \times$ 220 element c.c.d. area image sensor that nets used in it (ref. 子').

Fig. 6. Pholograph of a pictare repoduced with the camera shownin Fig. 5 (ref. t).

Fig. 7. Schematic diagram of a frame ransfer charge-coupled image area sensing arral (ref. 0).

of the array is called the optical integration section; the area of the device upon which the image of the scene falls.

During the integration period a quantity of charge which is proportional to the light intensity is generated in each storage element or bit. As with the signal processing devices one bit represents the minimum area resolution cell or picture element. Movement of charge from one cell of the device to another in the horizontal direction is prevented by the column channel-stop diffusion.

After the integration time the whole frame of charge is transferred or clocked into the read-out store. If resolution is not to be lost this store must be the same area as the optical integration section.

After this the whole frame is moved line-by-line out of the store into the output line or serial register. Finally, the charge is transferred out of this register to the output gate by pulsing the output gate. As all the charges are detected by only one small output diode the output capacitance is minimized and a good signal-to-noise ratio may be obtained.

The first video amplifiers were separate from the c.c.d. chip but more recently low-noise amplifiers have been integrated on chip and connected directly to the output diode.

Design choice for area imagers

Fig. 8 shows that there are two other types of design besides the frame transfer ones that have been used in c.c.d. area imagers ${ }^{7}$. The first of these is the interline transfer technique, where the storage columns are situated in between the imaging columns. This means that the charge from one resolution cell can be transferred into the neighbouring store with little loss of charge so that a higher signal-to-noise ratio results. In addition, on a multilevel gate structure the store and the image columns can overlap.

Interlacing increases the packing density of the resolution cell and improves the overall resolution. The disadvantage is that it is more difficult to make and can result in lower yields than those achievable for devices made with the frame transfer design.

The final design shown in Fig. 8 is the line transfer one. In this device one line at a time is read out by switching the transfer pulses on to each line in turn with a scan generator ${ }^{6}$.

Design choice

It has already been shown in part 2 of this series that the number of c.c.d. design techniques to choose from is large ${ }^{8}$. At the moment it seems that almost every company that makes c.c.d. imagers has its own pet technology. Fairchild makes buried-channel imagers with conventional m.o.s. polysilicon gates. Bell Telephone prefer surface channel with overlapping polysilicon-gate electrodes of their own unusual design. Texas Instruments have used their anodized aluminium technique to make thinned backside-illuminated

Fig. 8. Design choices-(a) frame transfer, (b) interline transfer, (c) line transfer (ref. 7).
imagers ${ }^{9}$. RCA have used overlapping polysilicon-gate technology and the conventional aluminium-gate structure. GEC in England have made both buried-channel and surface-channel devices. Plessey have also made buried-channel devices.

Of all these structures there are two in particular that have achieved low transfer efficiencies in the region of 10^{-5}. These are the Bell Telephone polysilicon-gate structure ${ }^{4}$ and the Fairchild buried-channel device ${ }^{10}$. Which of these two technologies is the best is open to argument. However, it appears to be generally agreed that for low-light-level applications the higher sensitivity of the buried-channel structure is ideal.

It is also agreed that the conventional aluminium-gate surface-channel technique is not very suitable for large area imagers. Even for 100×100 imagers the small gap of $2 \mu \mathrm{~m}$ between transfer electrodes is extremely difficult to reproduce over the area of the devices and shorts between
the electrodes are also quite a problem. In addition the electrodes are exposed and can easily be damaged if they are not sealed in with a deposited insulating, oxide overcoat.

One problem that is common to all techniques is the preparation of high purity and pinhole-free oxides. Production of high purity oxides was discussed previously ${ }^{8}$. Preparation of pinhole-free oxides over a large area requires considerable skill in silicon processing. The photolithography masks must also be made as defect-free as possible. Another technique for improving oxides is to grow two oxides one on top of the other using the mask in two different positions when the photoresist is exposed to define the oxide areas ${ }^{11}$. This ensures that any defects or holes in the oxide which are produced by spots or holes in the chrome or emulsion masks will be covered.

The three largest area imagers that have been operated are compared in Table 1^{7}. Fig. 6 shows a picture taken with one of them, the 256×220 element one ${ }^{4}$.

Back face imagers

All that has been said so far has been concerned with front surface imagers in which the scene is incident upon the front (gate) surface of the c.c.d. imager. These imagers suffer from optical reflection and absorption losses:
-Optical absorption in the blue region of the visible spectrum by the semitransparent polysilicon electrodes. This absorption varies depending on the angle of incidence of the light.
-The silicon dioxide insulator and the deposited protective layer are the wrong thickness to give an anti-reflection coating.
-Reflection from the metallic electrodes when aluminium-gate technology is used.
These disadvantages can be eliminated by thinning the silicon substrate to about 20μ and imaging on to the back face. To lower the surface recombination velocity and hence improve the quantum efficiency, the back face of the n-channel device is given a shallow p^{+}diffusion (p^{+}means a high doping level of about 10^{19} boron atoms per ml). On top of this p^{+}diffusion an anti-reflection coating is applied.

With these two modifications the back face imager generally has a higher resolution (modulation transfer function), improved grey scale and better spectral response at shorter wavelengths than the front surface imager.

TABLE 1 Large area c.c.d. imagers*

Number of non- overlapping image sensor elements	Chip size						
Horiz	Vert	$\mathbf{H}(\mathrm{mm})$	$\mathbf{V}(\mathrm{mm})$		Design type	Technique	Ref.
190	244	6.3	6.1	Interline transfer	Buried channiel polysilicon gate	7	
220	128	8.6	12.4	Frame transfer	Suface channel polysilicon gate Surface channel aluminium gate	4	
320	256	12.7	19.0	Frame transfer	12		

[^4]The disadvantages are, firstly, thinning the silicon uniformly and reproducibility is a problem. Thickness must not vary across the imager because different thicknesses can have different wavelength responsivities. And secondly, the extra diffusion step further complicates the technology.

Noise sources

In common with both front and backface imagers are the noise generating sources. Here is a list of some of them.
-Shot noise in the optical signal (photon noise).
-Shot noise in the dark current background level.
-Spikes in the dark current across the array. (Causes white spots on the monitor picture.)
-Transfer noise produced by poor transfer efficiency and local variations in transfer efficiency-dominated by interface-state noise. (Produces smearing on the picture.)
-Noise due to the "fat zero" used for surface channel devices.

- Noise due to the output amplifier.
- Clock noise.

Of these noise sources there is only one, the photon noise, that cannot be reduced in some way. Dark current background level can be reduced by cooling. Spikes in dark current can be reduced by improvements in processing. The exact origin or origins of the spikes are not understood but it is known that they can be caused by impurities or defects in the silicon and at the silicon-silicon dioxide interface producing recombination-generation centres. For the transfer noise, as has already been mentioned, improvements in fabrication have reduced this to a tolerable level. By going to buried channel techniques this noise source and "fat zero" noise are substantially reduced. Noise due to the amplifier has been considerably reduced by using on-chip amplifiers like the floating-gate amplifier ${ }^{7}$. Finally, clock noise is reduced by bringing all the output signals through a single output diode.

Blooming

In addition to noise, blooming can be quite a problem for many c.c.d. camera applications. Blooming is the spreading of charge outside a resolution cell when it is intensely illuminated by reflection from objects like glass lenses and windows. There are two types of blooming: bulk blooming and channel blooming.

Bulk blooming is produced by carrier diffusion in the undepleted substrate and results in distorted, large area, bright spots on the monitor. In area imagers it is reduced by the introduction of vertical or column overflow drains between each horizontal resolution cell in the imaging section in the same position as the channel-stop diffusion. The overflow drain diffusion or implant is a reverse-biased diode which collects or sinks excess charge carriers diffusing through the substrate or at the interface

with the oxide from any resolution cell to another.

Channel blooming is produced by excess light-generated carriers overflowing along the transfer channels in the imaging section of the device. One method that can be used to minimize this type of blooming is to reduce the voltage on the electrodes which are not being used during the light integration period so that the silicon surface under them is near accumulation ${ }^{13}$.

Hybrid imagers

The versatility of the c.c.d. for use in signal processing, imaging and memory applications makes it an attractive proposition for hybrid systems where two or more different types of operation are performed either on chip or on adjacently mounted devices. The system which has been looked at in most detail is the infrared imager-signal processor hybrid. A review of some of the different types of infrared hybrid imager has been given by Steckl et al. ${ }^{14}$ Fig. 9 shows a diagram of one of the imagers that he described.

This type is known as the direct injection hybrid c.c.d. because the photogenerated charge carriers are directly
introduced into the c.c.d. shift register The figure shows in part (a) the coupling concept for a single line array of $n-p$ infrared detecting diodes. The diodes are connected in parallel to a silicon coupling diode which is diffused into the same chip as the n channel c.c.d. The input gate of the c.c.d. is used to reverse-bias the infrared diode and the silicon coupling diode and the transfer gate is used to introduce the photogenerated carriers into the c.c.d. In this way the low noise properties of the c.c.d. can be fully used in processing the optically generated carriers. Direct injection devices using eight input taps into a 100 bit p-channel c.c.d. with an InSb diode array have been fabricated and operation at $80^{\circ} \mathrm{K}$ has been achieved. By adding or integrating detector signals in the c.c.d. the signal-to-noise ratio for an infrared detector array can be considerably improved because the noise from each detector is random and is therefore summed non-coherently. Fig. 9(b) shows the array layout.

Two other types of hybrid imager are indicated in Fig. 1. These use the visible imager-signal processor and the visible imager-memory systems. The first of these will undoubtedly be used where
improvements in picture quality are necessary and integration will be performed by directly coupling the c.c.d. imager into a c.c.d. signal processor. The second system is less likely to be developed as extensively because of the limitation of the c.c.d. memory operation to one second of storage times and the consequent requirement of refreshing the memory. However with the development of integrated c.c.d.m.n.o.s. memory systems with their longterm memories this position could change.

The combination of c.c.d. imaging, signal processing and memory on a single silicon chip is likely to be realized in the next year or two provided that interest in the c.c.d. continues at its present rate.

Final comments

In this series we have tried to show the remarkable progress of the c.c.d. in the four short years since it was invented. This has been achieved by the development of promising new techniques and the construction of c.c.d. signal processing, imaging and memory prototype systems.

The factors of small size and the ability to handle analogue, digital and optical signals have also made numerous new applications possible for the c.c.d.
Imaging. The large area imager has been developed to the point at which full television area resolution on a single silicon chip should be achieved in 1975. There is little doubt that $1,000 \times 1,000$ bit chips will also be produced in competition with the silicon diode array vidicons.

Whether these c.c.d. area imagers will find their way into the home movie camera market depends on two things. First, whether the promising high yields obtained with the recently developed technologies, like the buried channel and the surface channel-polysilicon overlapping gate, can be maintained when the devices go into production. And second, the invention of a cheap video tape recording system. The future for military and commercial infrared hybrid imagers also looks promising. The development of a buried-channel c.c.d. based on different semiconductors like gallium arsenide and indium antimonide in which both the infrared imaging and the signal processing could be done by the same chip also seems a possibility.
Signal processing. The future looks very bright for signal processing c.c.ds. The advantage of analogue signal processing, the recent achievement of linearity of response and the new non-destructive tapping techniques that have been invented have made the c.c.d. very attractive for radar systems applications such as movingtarget indication, frequency and matched filters. The lower power consumption and small size have also encouraged their early application in signal processing applications for frequencies up to 10 MHz . Applications for frequencies above this have been opened up by the development of a new family of devices called the peristaltic c.c.ds which, like the buriedchannel devices, uses transport of charge in the bulk silicon. In these devices operation at frequencies of 135 MHz have readily
been achieved with transfer inefficiencies as small as 5×10^{-5} (reference 15).

Memory. Little has been said about memory devices partly because some of what has been said about area imagers in this final article can also be applied to area memory arrays, and partly because commercial success in this area is not as certain as in the other application areas.

Adoption of c.c.d. serial memories will depend on the acceptability of this mode of organization rather than the m.o.s. random access type. It remains to be seen whether the c.c.d. memory will be developed on a long-term basis or if it will just be used on a short-term basis-say for the next five years-until the bubble memories are developed. Much will depend on the opinions of systems designers in the computer field to use new machine architecture, i.e. serial rather than read/write memories.

Acknowledgements. The author is grateful to John Mavor and Don MacLennan for their many helpful comments and to Chris Wareing for her rapid execution of the typing. Opinions expressed in these c.c.d. articles are those of the authors alone.

References

1. Williams, E. W. Wireless World, December 1974, page 473.
2. MacLennan, D. J. Wireless World, February 1975.
3. Campana, S. B. and Barbe, D. F. CCD 74 Proceedings, University of Edinburgh; Centre for Industrial Consultancy and Liaison, 1974, p.175/6.
4. Tompsett, M. F. CCD 74 Proceedings, 1974, p. 83.
5. Bell Laboratories Record, May/June 1969.
6. Tompsett, M. F. J. Vacuum Science and Technology, vol. 9, 1972, p. 1161.
7. Amelio, G. F. CCD 74 Proceedings, p. 133.
8. Mavor, J. Wireless World, January 1975.
9. Shortes. S. R., Chan, W. W., Rhines, W. C., Barton, J. B. and Collins, D. R. Applied Physics Letters, vol. 24, 1974, p. 565.
10. Kim, C. and Dyck, R. H. Proc. IEEE, 1973, p. 1146.
11. Vanstone, G. F. CCD Proceedings, 1974, p. 245.
12. Rodgers, R. L. IEEE Interconn '74, session 2 digest, 1974.
13. Sequin, C. H., Shankoff, T. A. and Sealer. D. A. IEEE Trans. of Electron Devices, vol. ED-21, 1974, p. 331.
14. Steckl, A. J., Nelson, R. D., French, B. T. and Schechter, D. CCD 74 Proceedings. 1974. p. 256. 15. Theunissen, M. J. J. and Esser, L. J. M. CCD 74 Proceedings, 1974, p. 106.

HF predikions

Summary of past conditions

	Solar Index		Disturbed days	
	1972	1974	1972	1974
Jan	58	7	10	6
Feb	78	12	4	10
Mar	100	27	8	21
Apr	90	19	4	20
May	90	23	4	22
Jun	82	21	2	16
Jul	94	29	2	18
Aug	96	20	10	21
Sep	83	25	7	22
Oct	80	26	11	25
Nov	56	22	5	17
Dec	49	16	6	19

Power supply delayed switching

Simple circuits for control of damaging current and voltage transients

by P. J. Briody

It is generally accepted that the switching of power supplies causes damaging transients in electronic loads. Some people go as far as to say that it is the greatest single cause of circuit failure and deterioration. Whether this extreme view is correct or not, theoretical and practical considerations tend to suggest that some more gentle methods of applying power would increase equipment life and reliability. One has only to hear the alarming loudspeaker switching thumps produced by some domestic audio amplifiers to be completely convinced that a remedy is necessary. Hence the purpose of this article is to examine the problem and describe some practical solutions with audio equipment mostly in mind.

Before finding a cure it is necessary to decide what transient would be acceptable to any amplifier. It should be safe to assume that a transient which has the dimensions of a normal amplifier signal would be harmless. Furthermore, if the ear is not to be offended, the highest frequency component of the switching waveform should be below the lower 3 dB point of the response curve. If both current and line voltage are gradually applied over a period of a few seconds then the goal will be achieved. All that remains is to find a method of doing this.

Fig. 1. Basic voltage control circuit.

These drawbacks force us to consider the merits of controlled current application instead of, or in addition to, voltage control.

Current control

An amplifier will usually switch on sharply at a fixed voltage to full quiescent current. If, however, the supply current is very gradually increased from zero, this transient may be eliminated altogether. Unfortunately some amplifiers have a negative resistance characteristic at the switch-on point and the sharp drop in voltage may be just as much of a problem as the current spike. Increasing the current run-up time will usually cure this secondary
problem. It is thought, therefore, that current control alone will in most cases be a complete remedy.

Current switching control can be achieved using the basic (and practical) circuit of Fig. 2. Operation of the switch will allow C_{I} to charge up with the time constant $C_{1} R_{1} R_{2} /\left(R_{1}+R_{2}\right)$. Opening the switch will allow C_{l} to discharge through R_{2}. The voltage and hence the current through the silicon power diode D_{I} is controlled by the voltage on C_{1}. Thus runup and run-down of the supply current is achieved. It should be noted that R_{3} is necessary to ensure that C does not limit supply current once the run-up time is complete. Also a power diode was chosen rather than a resistor to allow a wide span of control without too much of a supply voltage penalty. This circuit can be very effective indeed and most amplifiers produce no audible switching thump at all when fed by it. The steady-state drop across $A B$ is only 2 V at 2 A .

The tightness of current control by the circuit of Fig. 2 is naturally degraded by additional loads (i.e. several amplifiers in parallel). This can be overcome by using two such circuits in tandem as shown in Fig. 3. The original circuit forms the emitter load of Tr_{4} and much greater sensitivity is achieved.

Controlled application of power

Most regulated power pack circuits are easy to modify to produce gradual application of line voltage. A simple $R C$ network at the regulator reference point will suffice. If, however, the supply is not regulated then a circuit such as that shown in Fig. 1 will be necessary. Operation of switch S will cause the output voltage to rise and decay according to the time constants $C R_{1}$ and $C R_{1} R_{2} /\left(R_{1}+R_{2}\right)$. In a practical circuit $\operatorname{Tr}_{\text {, }}$ would be a Darlington combination of two or more transistors.

Unfortunately it is found that with many modern transistor power amplifiers, controlled line voltage application merely postpones the switching transient. There are two reasons for this-firstly most transistor amplifiers "switch on" sharply at fixed voltages-secondly the low output impedances of most power supplies allow large current spikes to be fed to the load even if the voltage is closely controlled.

Fig. 2. Current control alone will be adequate in most cases.

The circuits of Figs 2 and 3 are best used with unregulated supplies. If, however, the supply is regulated, the addition of current control is much simplified. Fig. 4 shows theoretically how this may be done for a supply fed from only one transformer secondary. Diode D_{s} ensures reasonable d.c. conditions in the differential amplifier prior to the run-up phase. The zener voltage should be less than the sum of all the series base-emitter voltages in the stabilizer so that the output voltage will be reduced to negligible proportions when $T r$, is fully conducting. The run-up phase is initiated by opening the switch S and C_{t} charges up with time constant $C_{1} R_{2} R_{3} /\left(R_{2}+R_{3}\right)$. Diode D_{4} has a zener voltage only about $1 V$ greater than D_{s} to keep the aiming voltage of C_{l} to a minimum. This will allow a low voltage, large value, electrolytic capacitor to be used for C_{r}. Once again a power diode is chosen as the current sensor. The forward voltage drop should be less than the excess (1V). voltage on D_{4}, if current limiting is not to occur during normal use of the supply. Opening of the switch S allows the supply current to decay with approximately the same time constant as the run-up. This can be arranged to "beat" the natural discharge of the smoothing capacitors. Conversely, the charge-up of

- the smoothing circuit will be much faster than the current run-up. This means that S may be simply a third pole on the power pack on/off switch rather than a relay.
A practical circuit based on Fig. 4 is shown in Fig. 5. This is the author's own $2 \mathrm{~A}, 40 \mathrm{~V}$ power pack regulator. The run-up and run-down times are a few seconds

Fig. 3. Practical tandem current control circuit for several parallel loads.

Fig. 4. Theoretical current control of regulated supply.

Fig. 5. Complete regulated power pack with current switching control.

AKG ARE PROUD TO NITRODUCE:
 The NEW Audio Digital Delay Unit TDU 7202

AKG ARE RENOWNED FOR THEIR POPULAR DYNAMIC \& CONDENSER MICROPHONES.

The NEW TOU TEEE will be demonstrated undel studio oanditions throughout the eountrya

Plaase ring for cotrailo:

TEE/4 Sampden Will haer:

The Sinclair DM2 Multimeter.
 Comprehensive. Accurate. Portable. And really rugged. Yet only £59.rpusanat

State-of-the-art circuit design, incorporating high-quality components, has resulted in a professional, $3 \frac{1}{2}$ digit instrument of outstanding performance and reliability at a realistic price.
A custom-designed MOS LSI digital processing IC controls the auto-polarity dual-slope-integration A to D converter. The circuit built around this IC uses a MOSFET op-amp input buffer with 0.1% metal-film resistors. The result is excellent accuracy and stability with a very high basic input impedance.

The instrument reads to ± 1999 and has a basic accuracy on the 1 VDC range of $0 \cdot 3 \% \pm 1$ digit. Four 8 mm LED displays provide excellent legibility and angle of view. Battery operation allows complete independence of mains supply.

The Sinclair DM2 has all the capability you need. Just take a look at its features and compare them with higher-priced multimeters. You'll find the DM2 is their equal in virtually everything-except price!

Features of the Sinclair DM2

5 functions giving 22 ranges DC volts -1 mV to 1000 V $A C$ volts -1 mV to 500 V DC current - $0.1 \mu \mathrm{~A}$ to 1 A AC current-1 $1 \mu \mathrm{~A}$ to 1 A Resistance - 1Ω to $20 \mathrm{M} / \Omega$ Easy to use
Automatic polarity, bush-button selection for all ranges and modes from a single input terminal pair. Easy to read
Big, bright 8 mm LED display gives
a quick, clear reading.
$3 \frac{1}{2}$ digit display
Display reads from 000 to 1999.
Overload indicator.
Protected
Separate fuses for current and resistance circuits.
Accurate
Dual slope integration. High stability.

Rugged construction Tough metal casing takes the roughest treatment - try standing onit!
Two nower sources
Supplied with a 9 V battery, giving 60 -hour typical life. Mains adaptor àlso available.
Portable
Weighs only $2 \frac{1}{2} \mathrm{lb}$ approx
including battery.
Measures only 2 in $\times 9$ in $\times 6$ in
approx.
Optional extras
Mains adaptor - £2.43 inc VAT.
Carrying case - £5.40 inc VAT.
12-month no-quibble
guarantee

Use it in your laboratory. The DM2 sits rigidly on its combined carrying handle/stand.

Use it on the move. Keep the DM2 in its carrying case - it's always ready for use.

All you need to use the DM2 . . . anywhere. Mains adaptor . . carrying case . . . multimeter . . . you're ready for quick, efficient metering - whatever the situation.

Take advantage of this money-back, no-risk offer today
Test the Sinclair DM2 for yourself. Simply send us a cheque, your Access/Barclaycard number, or an official company order, with the coupon below. And in the unlikely event you find it's not what you need, return it to us within 10 days and we'll refund your money in full.
Interested in a quantity discount?
Use the coupon to arrange a demonstration and get details of prices on 5 or more instruments.

Sinclair Radionics Ltd,

London Road, St Ives, Huntingdon,
Cambs., PE174HJ.
Tel: St lves (0480) 64646.
VAT Registration No : 213817088

The Sinclair DM2 Multimeter: full technical story

DC Volts Range	Accuracy	Input Impedance	Resolution
1 V	0.3\% ± 1 Digit	$>100 \mathrm{MS} 2$	1 mV
10 V	$0 \cdot 5 \%+1$.	$10 \mathrm{M} \Omega$	10 mV
100 V	0.5% 上 1 ..	$10 \mathrm{Ms}{ }^{\text {d }}$	100 mV
1000 V	0.5% 上 1	10 M S	1 V
Maximum overload -350V on 1 V range			

AC Volts			
Range	Accuracy	Input Impedance	Frequency Range
1 V	1.0\% +2 Digits	$10 \mathrm{Ms} 2 / 40 \mathrm{pF}$	$20 \mathrm{~Hz}-3 \mathrm{KHz}$
10 V	1.0\% $\ddagger 2$	$10 \mathrm{Ms} 2 / 40 \mathrm{pF}$	$20 \mathrm{~Hz}-3 \mathrm{KHz}$
100 V	2.0\% ± 2	$10 \mathrm{Ms} / 2 / 40 \mathrm{pF}$	$20 \mathrm{~Hz}-3 \mathrm{KHz}$
1000 V	2.0\% ± 2	$10 \mathrm{Ms} 2 / 40 \mathrm{pF}$	$20 \mathrm{~Hz}-1 \mathrm{KHz}$
Maximum overload - 300 V on 1 V range			

DC Current		Input	
Range	Accuracy	Impedance	Resolution
$100 \mu \mathrm{~A}$	2.0\% :- 1 Digit	10 Ks 2	100 nA
1 mA	$0.8 \%+1$,	1 KS 2	$1 \mu \mathrm{~A}$
10 mA	0.8\% 1 ,	100s2	$10 \mu \mathrm{~A}$
100 mA	0.8\% : 1.	$10 \Omega 2$	$100 \mu \mathrm{~A}$
1000 mA	2.0\% : 1.	1 s	1 mA
Maximum overload-1A (fused).			
Range	Accuracy	Frequency Range	
1 mA	1-5\% :: 2 Digits	$20 \mathrm{~Hz}-1 \mathrm{KHz}$	
10 mA	1.5\% : 2 .	$20 \mathrm{~Hz}-1 \mathrm{KHz}$	
100 mA	1.5\% 2 .,	$20 \mathrm{~Hz}-1 \mathrm{KHz}$	
1000 mA	2.0\% + 2	$20 \mathrm{~Hz}-1 \mathrm{KHz}$	
Maximum overload - IA (fused).			
Resistance			
Range	Accuracy	Measuring Current	
$1 \mathrm{~K} \Omega$	1.0\% +1 Digit	1 mA	
10 Ks 2	$1.0 \%+1$.,	$100 \mu \mathrm{~A}$	
100 Ks	1.0\% ± 1.	$10 \mu \mathrm{~A}$	
1000 K S 2	$1.0 \%+1$	$1 \mu \mathrm{~A}$	
10 MS S	2.0\% + 1	100 nA	
Overload protection-50mA (fused).			

相 nders menn5

KESTREL RANGE

- Modern styling, with clearfront plastic case.
- Seven models, scale lengths from 1.3" to $5.25^{\prime \prime}$.
- Extensively used by many leading manufacturers of electronic and electrical equipment.
- Available in all ranges, moving coil and moving iron.
- Competitive prices.

- PRODUCTION QUANTITIES NOW

 AVAILABLE EIGHT TO TEN WEEKSAnders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Vulcan Moving Iron. 4 models, $9 \cdot 5^{\prime \prime}, 9 \cdot 8^{\prime \prime}, 2 \cdot 7^{\prime \prime}$. $3 \cdot 7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Regal Range 100° flattened arc. 2 models $2.5^{\prime \prime}$ and $3.2^{\prime \prime}$ scales. Taut band. DC moving coil and $A C$ moving coil rectified.

Profile 350 edgewise $4 \cdot 3^{\prime \prime}$ scale. DC moving coil and AC moving coil rectified. Horizontal or vertical mounting.

Oxford Long Scale 240°. 2 models, $5 \cdot 5^{\prime \prime}, 8^{\prime \prime}$ scales. DC moving coil and AC moving coil rectified.

Stafford Long Scale 240 6 models, $3 \cdot 5^{\prime \prime}-11 \cdot 5^{\prime \prime}$ scales. DC moving coil, $A C$ moving coil rectified. AC moving iron. Also 98° scale.

Models KE1 and KE2 Miniature Edgewise Meters. Nominal scale lengths $1.2^{\prime \prime}$ and $2^{\prime \prime}$. Available in sensitivities from 50 microamps Moving Coil.

Lancaster Long Scale $240^{\circ} .2$ models, $4^{\prime \prime}, 5 \cdot 5^{\prime \prime}$ scales. DC moving coil and $A C$ moving coil rectified.

[^5]depending on the amplifier quiescent current. It is worth mentioning a couple of points on the regulator itself. Firstly the short-circuit protection circuit is the very elegant one by Dr A. R. Bailey*. Secondly, the constant current excitation is unusual in that it is collector-fed, thus losing the advantage of hum reduction offered by the emitter-fed version. It was arranged this way so that excitation current is drawn from the low impedance point A, allowing very low regulator output impedance but at the same time producing high control gain at point B. A power supply using this design is very cheap to build and gives outstanding regulation stability (less than 0.05% for $\pm 10 \%$ input variation). The output impedance for d.c. up to 1 A is less than 0.01Ω (not during run-up or run-down).

Conclusions

Having rejected voltage control at an early stage as a general solution to switching transients, three very basic current control circuits have been described in this article. Of these the last (Fig. 5) offers possibilities for further development. An interesting first step in this direction would be to replace the differential amplifier with a high gain i.c. version. With skill and care it should be possible to control current transients of magnitude less than 0.01% of the floating value during run-up. This would provide transient protection for preamplifier stages as well. For those wishing to simply eliminate large transients, any of the circuits of Figs 2,3 or 5 will suffice.

Reference

*Bailey, A. R., "Output Transistor Protection in A.F. Amplifiers," Wireless World, June 1968, p154.

Centenary of the crystal rectifier

In November 1874 Ferdinand Braun, a grammar school teacher in Leipzig, published an article on Current flow through metallic sulphides. Braun, wholater became full professor of experimental physics at Strasbourg University, drew the attention of his fellow scientists to a phenomenon he had discovered while investigating the conductivity of sulphide crystals: the intensity of the current flowing through the crystal depends on the direction of the current. Braun was not able to explain this departure from Ohm's Law, but he assumed that the rectifying effect was either caused by a gas layer between crystal and wire or was due to the crystal structure itself.

A similar effect was discovered in 1876 by Werner von Siemens while examining the light sensitivity of selenium. He also spoke of the rectifying effect as a "peculiar and contradictory phenomenon" and suspected that the cause lay in an electrolytically influenced boundary layer.

Twenty-five years passed before Braun used the crystal rectifier to prove the existence of electromagnetic waves and thus found a replacement for the "coherers". With the development of wireless telegraphy the crystal detector became more and more important. About 50 years ago the first wireless listeners sat with headphones on in front of the "detector", and fiddled around with the wire contact in an attempt to improve reception by applying it to just the right point on the crystal. The point contact rectifiers were followed by surface contact crystal rectifiers in the 1920s. The latter, which found a wide field of application in a.c. techniques, replaced the less stable electrolytic rectifiers. The first member of the series of "dry rectifiers" was the copperoxide rectifier in 1926, followed by the selenium rectifier in 1930.

Depletion layer theory

The principle underlying all crystal rectifiers was a metal semiconductor contact -or so everybody thought at that timeand efforts were made to find a physical explanation of the rectifying phenomenon. The most significant contribution came from Walter Schottky, who published his depletion layer theory in 1939: as a result of the differing work functions of electrons in a metal and a semiconductor, electrons can travel from the semiconductor to the metal (with suitably selected materials). A carrier-depleted space charge region, which acts as a barrier layer, is created. Depending on the polarity of the applied voltage, this depletion zone either disappears (conduction) or expands (blocking).

Around 1930 the point contact detector had to make way for the electron tube.

About ten years. later the point contact diode was once again in favour, because the delay effects inherent in thermionic diodes rule out their employment at very high frequencies, as is customary in radar engineering. The place of natural sulphur crystals was taken by pure germanium and silicon crystals with, a certain degree of doping. The Ge and Si point contact diodes were developed around 1940 and basically identical diodes are still in use today. Siemens was producing Ge rectifier elements in Berlin by the end of 1942.

Brattain and Bardeen discovered the transistor effect in 1948. Two point contacts, attached to a Ge crystal for the examination of surface properties, led to the crystal amplifier. Shockley put forward the theory of the p-n junction in 1949, which became the principle underlying the $p-n$ diode and the transistor. The rectifier mechanism of the metal-semiconductor contact could now be contrasted with that of the $\mathrm{p}-\mathrm{n}$ junction. It was even discovered that selenium rectifiers and germanium point contact diodes formed by a current pulse have $\mathrm{p}-\mathrm{n}$ junctions.

High voltage and current

The silicon p-n rectifier lent itself ideally to high voltage and current applications. Difficulties however arose in manufacturing pure-state silicon single crystals. In Germany E. Spenke and his team working in Pretzfeld near Erlangen succeeded in developing rectifiers made from pure-state silicon with-initially-an active area of a few mm^{2}. Nowadays, there are silicon rectifiers with crystal areas of up to $12 \mathrm{~cm}^{2}$, which can be used at voltages up to 6 kV and currents of over 1000 A . By inserting a weakly conducting zone between the p and n regions, the structure was expanded to obtain $\mathrm{p}-\mathrm{i}-\mathrm{n}$ and $\mathrm{p}-\mathrm{s}-\mathrm{n}$ rectifiers.
Transistor technology advanced in 25 years from the point contact transistor via the alloy transistor to mesa and planar transistors (1960). Silicon planar technology can, however, be used for metal-semiconductor contacts as well as for p-n junctions. The Schottky diode (since about 1963) combines the high frequency advantages of the Si point contact diode with the advantages of the mechanical and electrical stability of the planar semiconductor elements.

The most significant difference between the two types of rectifiers, $\mathbf{p}-\mathrm{n}$ diodes and Schottky diodes, lies in their dynamic behaviour. In the case of p-n diodes, charge carriers diffuse via the p-n junction when a current flows and increases the number of minority carriers in the neutral region. On switching over to the reverse direction, these charge carriers have to be swept away before the barrier layer effect can appear. Switchover is associated with an inertia effect. In the metal-semiconductor contact only majority carriers are involved; there is practically no storage effect. For this reason, metal-semiconductor diodes can also be used for microwave applications (varactors, mixers, avalanche diodes, etc). The Schottky contact has also found application as a clamping diode in bipolar integrated circuits, and in field effect transistors.

Milliwatts and coherent c.w

For many years, the patient art of achieving practical 1.8 MHz and h.f. communication using very low power has attracted the interest of numbers of radio amateurs. Most use input powers of the order of $1-5$ watts, but some think more in terms of milliwatts. For example, a few years back Bert Hammett, G3VWK, carried out some interesting experiments using an "active aerial" consisting of a conventional 1.8 MHz aerial with a $20-$ milliwatt integrated-circuit transmitter and battery suspended from the T -insulator and with the only lead from the aerial being the microphone lead. Using double-sideband suppressed-carrier techniques he achieved phone contacts exceeding 100 miles. Or again, in 1954 J. M. Osborne, G3HMO, made several 1.8 MHz contacts over distances up to 15 miles using as power supply 2 mA at 4 volts from a solar battery. In 1961 the New Zealand station, ZL1AAX, made a number of 3.5 MHz contacts of up to 160 miles or so using a single tunnel diode as a transmitter powered from a 1.5 -volt battery. And in the professional communications field, an RCA investigation over a decade ago showed that with a high-stability transmitter and receiver, so that receiver "noise bandwidths" of only a few hertz could be used, it was possible with a signalling rate of just three bits per minute to transmit messages at milliwatt levels reliably on h.f. over distances up to 2,000 miles. Transmitter stability was achieved by using body temperature to provide a "crystal oven". This work was aimed at such applications as allowing a crashed pilot to report his position. It is very largely a question of having good enough stability to allow the receiver bandwidth to be reduced to a very small figure and then avoiding using a frequency already occupied by a high-power station.

For some years, The Milliwatt, published at the University of South Dakota, has been encouraging this type of operation and is devoted exclusively to "under 5-watt amateur radio". P. J. Shephard of Maidstone, Kent, has drawn my attention
to some proposals in the journal by Raymond Petit, W7GHM, who has been using a novel type of "coherent c.w." technique which he claims can result in typically a 20 dB signal-to-noise-ratio improvement at moderate signalling rates. This requires stability of the order of $2-3 \mathrm{~Hz}$ and with an electronic keyer using an accurately controlled master clock. In practice all stations would transmit on 3550 kHz and have a high-stability 4 MHz oscillator which would provide outputs on 4 MHz (for receiver conversion to 450 kHz), 400 kHz (for second conversion to 50 kHz) and also $200 \mathrm{kHz}, 4 \mathrm{kHz}$ and 10 kHz for operation of a special "coherent receiving filter" and the clock of the electronic keyer. The system, in effect, depends on the receiving filter knowing in advance that if a dit or dah is to begin or end, it will do so at a precisely known time, allowing integration of the signal over a period of time.

World Radio Club

The BBC's World Service weekly programme "World Radio Club" has recently enrolled its 20,000 th memberrepresenting an increase of 4,000 during 1974. In a change of programme times it now goes out on Wednesdays at 1330 (times in GMT) and 2315, Fridays at 2030 and Sundays at 0815 . This means that the transmissions on medium-wave (1088 kHz) which are most reliably received in the UK from Crowborough is now at 2315 on Wednesdays instead of Fridays. The programme continues to be produced by Reg Kennedy, with Peter Barsby as presenter and Henry Hatch, G2CBB, as regular contributor.
Norman Fitch, G3FPK, has been appointed Vice President International of the Amateur Radio News Service-an independent American-based group who are anxious to help amateur radio clubs in the production of better club newsletters and in improving public relations (details from G3FPK, 40 Eskdale Gardens, Purley, Surrey).

IARU celebrates 50 years

When representatives from the 40 or so member societies of the Region 1 Division of the International Amateur Radio Union meet in Warsaw on April 14, it will be 50 years to the day since IARU was founded in Paris. This followed an earlier meeting in March, 1924, at which a provisional committee for an "International Union of Wireless Amateurs" had been set up at the prompting of Hiram Maxim, W1AW, then president of ARRL and General Ferrie, the noted French pioneer of radio, Gerald Marcuse, G2NM, and others.
In the 1925 meetings at the French Academy of Science there were over 250 delegates including 22 from Britain. Apart from discussing the setting up of the IARU the delegates surveyed arrangements for international tests, allocations of definite wavebands for international working, adoption of an auxiliary language (Esperanto was chosen), "intermediate letters" (the early form of international prefix). Headquarters facilities were to be provided by ARRL and there would be
individual members with subscriptions of $\$ 1$.

But the Union soon ran into teething troubles and many of the original high aims had to be put to one side. The idea of individual membership was abandoned and a new Constitution in 1928 made the IARU an international federation of the independent national societies. But despite its low-key profile it continued to do useful work to further amateur radio and protect frequencies. Then in 1950 a big step forward was taken with the setting up in Europe of the first of the Regional bureaux to take active steps to watch over and safeguard the amateur frequency allocations and to co-ordinate activities.

Now, in 1975, the Union is already actively preparing for the ITU World Administrative Radio Conference to be held in 1979 and the Warsaw meetings this April will concentrate on a plan for possible expansion of h.f. allocations which seems feasible in view of the transfer to communications satellites of many professional long-distance communications circuits. A few weeks earlier, from March 4 to 10, an IARU Region 3 Conference is being held in Hong Kong.

Italian FAX

Prof. Franco Franci, 14LCF, is anxious to encourage more use of facsimile transmission by amateurs. There is now a regular FAX net around Bologna on 144 MHz but he would like to arrange FAX schedules with amateurs in other countries, including the UK. He is normally active on 14.225 MHz about 1100 GMT on Sunday mornings. I have seen several examples of his FAX pictures using 120 rpm and 60 rpm machines and they seem of high standard. Unfortunately it still appears to be difficult (if not impossible) for British amateurs to obtain permission to transmit FAX on h.f. although slow-scan TV permits are, of course, issued.

In brief

The annual BERU contest is being held on March 8-9 and March also sees the second leg of the 41 st ARRL DX Contests (March 1-2 'phone, March 15-16 c.w.). \qquad . Canada is proposing to lift a number of restrictions on its 27 MHz General (Citizens Band) radio service, including allowing hobby and skip communications. . . . "Even though sunspots in general are at a low ebb don't ignore ten metres"-QST. \qquad The Midland Amateur Radio Society is holding the North Midlands Mobile Rally on Sunday, April 20, at Drayton Manor Park, Tamworth. . . . The Morse proficiency transmissions by G3BZU of the Royal Navy Amateur Radio Society on the first Tuesday of each month (3520 kHz) now includes a section at 15 wpm in addition to $20,25,30,35$ and $40 \mathrm{wpm} . \ldots$ The Vintage Wireless Museum of the Wireless Preservation Society has moved from Lincolnshire to the Isle of Wight (Mr Douglas Byrne, G3KPO, Alverstone Manor Hotel, Shanklin;(Tel Shanklin 2586).

PAT HAWKER, G3VA

Kirchhoff's voltage law

More about e.m.f. and p.d.

by M. G. Scroggie

"What is e.m.f.?" (in the August 1974 issue) stirred up quite a bit of controversy. I could hardly have asked for better evidence to support my case that people who are concerned with the practical applications of electricity (including of course electronics) tend to rely for their basic principles on hazy memories of old unhappy far-off things and lessons long ago. Most of the time one can get away with this. An accurate and comprehensive understanding of the laws of thermodynamics is not absolutely essential in order to utilize them for travelling from A to B by driving a motor car. But it is useful if one wants to design a better engine for the car. Or even for controlling its temperature to achieve the utmost fuel economy.

At the end of the aforementioned article I warned readers not to suppose that acceptance of the ideas about e.m.f. that I had put forward in some detail, or of any alternative treatments they could find elsewhere, would necessarily make the distinction between e.m.f. and p.d. quite clear, leaving no room for doubt or disagreement. If in spite of this warning there are any who do feel competent to sort out e.m.fs and p.ds in any situation, I invite them now to stay with us for a few minutes.

To make the discussion relate to something not too airy-fairy, let us consider Kirchhoff's voltage law. This is second only to Ohm's law in the ABC of circuits. Looking up a rather elderly book, I find it stated thus:
"In any closed circuit, the algebraic sum of the products of the current and resistance of each part of the circuit, is equal to the electromotive force in the circuit".
Applied to the simple circuit in Fig. 1, this would mean that

$$
I R_{1}+I R_{2}=E
$$

where I is the current throughout the circuit and E the e.m.f. of the battery. (If the resistance of the battery was not negligible, and was denoted by R_{b}, one would have to add $I R_{b}$ to the left-hand side.) $I R_{I}$ and $I R_{2}$ are, of course, the potential differences (p.ds) across R_{I} and R_{2} respectively. Often they are denoted by V_{1}, V_{2}, etc.

I don't know what German word was translated above as "circuit", but I'm quite

Fig. 1 Simple d.c. circuit for illustrating Kirchhoff's voltage law.
sure that Kirchhoff didn't mean what is understood nowadays by this word when we refer to the circuit of, say, a stereo amplifier. A better word would be "mesh". However complicated the circuit it consists of meshes, or closed paths. In Fig. 1 there could be circuit connections to other meshes at a, b and c. So it would be quite possible for the current in R_{I} not only to be different in value from that in R_{2}, but not even flowing in the same direction. Hence Kirchhoff's insistence on algebraic sum. We must take account of plus and minus. And that means we must have some reliable system for distinguishing between these throughout the mesh. It is no good following the example of many (including authors of textbooks on electrical engineering still being published) who, for some reason that has never been explained to me, identify V, etc. on a diagram by doubleheaded arrows, thereby obliterating the somewhat important distinction between positive and negative. (If you are a student and your teacher does this, do me a favour and ask why, and then tell me the answer.) Reliable systems for this purpose are the main subject of the book "Phasor Diagrams" mentioned in my previous article.

I have little doubt that if we had been able to suggest to Kirchhoff a slight elaboration of his law to cover circuits with more than one e.m.f., by amending the latter part of the wording to "is equal to the algebraic sum of the electromotive forces in the mesh" he would readily have replied "Ja wohl!".

So, in applying Kirchhoff's voltagè law to a mesh, especially one with a lot of e.m.fs and p.ds in it, forming part of a complicated circuit, one has to draw up a sort of balance sheet of voltages; $V \mathrm{~s}$ on one side and $E s$ on the other. As in every acceptable balance sheet, the sum on each side must be the same. And just as one cannot hope to draw up a reliable balance sheet without being able to tell the difference between an asset and a liability, so in applying Kirchhoff's law we have to be able to tell which voltages are Es (e.m.fs) and which are $V \mathrm{~s}$ (p.ds).

In ordinary d.c. circuits (which presumably, in 1847 , were the only sort Kirchhoff knew about) there is no problem. But what about a.c.?

We have become so accustomed to the concept of impedance that we may forget what a clever labour-saving idea it is. Without it, we would have to solve differential equations, usually of the second order, whenever we had to calculate even simple a.c. circuits. With it, we can bring them within the familiar d.c. circuit laws, such as Ohm's law and Kirchhoff's laws, by simply substituting the word "impedance" for "resistance". Of course we don't get this enormous advantage absolutely for free. Firstly, it is restricted to the sinusoidal waveform. But that covers, more or less, most practical cases. The other thing is that although the forms of the d.c. laws and equations are preserved, the use of them is rather more complicated because we have to take account of phase. There are various ways of doing this, such as drawing phasor diagrams, in which phase relationships are represented by angles; or the j method, in which separate account is kept of the resistance and reactance parts of impedance. I'm going to take all this as read, and concentrate on the application to a.c. circuits of Kirchhoff's voltage law.

Apart from the above-mentioned complication that arises when resistance is generalized into impedance, this might seem to be quite straightforward. But perusal of many textbooks on electrical engineering and circuit theory convinced me that it was not. That is, when Kirchhoff's voltage law is used in its original form-the one I quoted, in which all the voltages in the circuit have to be sorted
out into $V \mathrm{~s}$ and $E \mathrm{~s}$. Instead of

$$
\begin{aligned}
& I R_{1}+I R_{2}=E \\
& \text { or } V_{1}+V_{2}=E
\end{aligned}
$$

as in Fig. 1, we would have, for example, $I Z_{1}+I Z_{2}=E$
In Fig. $2, Z_{1}=R$ and $Z_{2}=j \omega L$, so we get $I R+j \omega L I=E$
No room for argument, surely?

Fig. 2 Simple circuit for illustrating
Kirchhoff's voltage law as extended to a.c.

Yet at this point the textbooks immediately fall into disarray. Before they get to the stage of ωL (or X_{L}) they will have had to explain that the voltage across $L\left(=I X_{L}\right)$ is "the e.m.f. of self-induction". There is also $I X_{C}$, which is treated exactly the same except for its opposite sign. But the books have nothing to say about a capacitive counterpart to the inductive e.m.f. Most of them maintain a discreet reserve on the subject, but one gets the impression that officially no e.m.f. is involved, in spite of the fact that it is easier to drive a current through a resistor with a charged capacitor than with a magnetized inductor!

Some of the books stick strictly to the impedance concept and the form of Kirchhoff's law. X_{L} and X_{C} are impedances, so they too should be multiplied by I and then classed as $V \mathrm{~s}$. The poor student, having learnt all about the e.m.f. of self-induction in one chapter may well be perplexed when in a later one he is told that this e.m.f. is not to be put on the e.m.f. side of the equation but on the other side! This seems to be outdoing Humpty Dumpty who made words mean just what he chose, by making them mean opposite things in different parts of the book. However, the analogy between reactance and resistance (though they are really quite different things) does make the circuit sums much easier, so the student may be prepared to accept this voltage volte face. But while it may be all right with a simple inductor, even when it is the primary winding of an unloaded transformer, what does he do if someone connects a generator to its secondary winding? Besides the "impedance p.d." across the "primary" there is now a voltage coming through from the "secondary", and surely this is an e.m.f.?

So some books put the voltage on the V side when it arises from an inductor and on the E side when it is a transformer. Another lot class $I X_{L}$ as an e.m.f. (more specifically, a "back e.m.f."). Others put "forward e.m.fs" on one side of the equation and "back e.m.fs" (even $I R$ has been
known to be so classified!) on the other. Again, they divide on the $I X_{C}$ issue.

So there does seem to be a need to look a little more closely at this "e.m.f. or p.d.?" question. If then we decide to put e.m.fs on the p.d. side of the Kirchhoff equation we shall at least be doing it with our eyes open.

The Bellman, preparing his crew for hunting the Snark, was able to tell them "the five unmistakable marks by which you may know, wherever you go, the warranted genuine Snarks". I'm afraid I won't be able to do as well as this for e.m.fs. One might begin with the revised British Standard* definition of e.m.f., which says it is "the p.d. in a staticelectrification field or in an induced electric field". According to this, then, not being a p.d. fails to qualify as an "unmistakable mark". But is the BS right about this? Reluctant though I am to question what the committee of wise men arrived at after due deliberation, I would respectfully draw their attention to Fig. 3 showing a crosssection of a core through which a magnetic flux is increasing at a constant rate, surrounded by a ring of uniform resistive wire. No p.d. can be found between any two points on this wire, yet there is undeniably an e.m.f. along it. So the BS definition immediately falls down.

Fig. 3 In this arrangement there is an e.m.f. but no p.d. So how can it be right to define e.m.f. in terms of p.d.?

Reading it once again, one might suppose that a "static-electrification field" was one due to opposite electric charges, say on the plates of a capacitor. But the definition says it is "an electric field brought on in a substance, or at the junction of two dissimilar substances, by one of various phenomena such as contact, thermal, photo or mechanical effects, or by a chemical reaction". This obviously refers, among other things, to batteries, thermocouples, photodiodes and rapidly removed nylon vests. But it does not seem to include capacitors, charged perhaps by a battery, which are covered by another definition, of "electric field". This definition does not include induced electric fields, nor, presumably, "static-electrification" fields, so it ought really to have been distinguished as, say, "charge field".

So, trying to make sense of a rather confusing set of definitions, I gather that electric fields can be sorted into three classes, according to cause: electromagnetic induction; electric charges separated by any of the agencies men-

[^6]tioned in the definition of staticelectrification field; and electric charges separated electrically. Fields are reckoned in volts per metre. The volts in all three classes are volts of p.d., but in the first two only they are also volts of e.m.f.
P.d. between two points is defined as numerically equal to the work of removing a unit negative charge from one point to the other. Unit charge being (in SI) one coulomb, or the charge which needs 1 gigavolt ($=10^{9}$ volts) to transfer from plate to plate of a lnF capacitor, I suspect that it might well affect the p.d. one was attempting to measure; but let that pass. There can be no doubt that if a p.d. exists between two points it tends to make a positive electric charge move from the more positive point to the other. Just as the gravitational difference of potential between the table and the floor can make a weight drop from one to the other. But to replace the weight, or put it there in the beginning, someone has to pick it up and do work on it, transferring energy from himself to it. And an e.m.f. is needed to transfer electric charges against a p.d.

Where disagreements begin again is over where the electrical energy provided by an e.m.f. can come from. Fig. 4(a) shows what looks like a circuit, in which a current I is being made to flow through R against an undoubted p.d., by the charged capacitor C. Fig. 4(b) looks remarkably like (a), and its actual behaviour is essentially the same. Both capacitor and cell can keep the current flowing as long as their store of energy lasts. The probability that the cell has more energy than the capacitor makes no difference to the principle. But in (a) the electrical energy being dissipated in R comes from electrical energy in C. And I believe most-but perhaps not all-would agree that one of the unmistakable marks of an e.m.f. is that the energy coming into the circuit must be from a non-electrical source. So (a) doesn't qualify, but (b) does because the driving energy is of a chemical nature.

Fig. 4(c) is a bit more tricky, as readers of "What is e.m.f.?" may recall. This circuit was the one then under discussion. L (but nothing else) is supposed to be in a steadily varying magnetic field, which causes in it what would, I'm sure, be generally agreed to be a steady e.m.f., also capable of driving a current through R. (I do realize that if you managed to read "Electricity and Magnetism?" in the September and October issues you would

Fig. 4 These three circuits look similar and are all doing the same thing, but do they all include e.m.fs? Are they all circuits?
be ready to point out that magnetism is only electricity in another manifestation, so if (a) doesn't qualify neither should (c). But please don't be awkward!)

Passing hastily on, we note that whereas in (b) and (c) the charges of which the current is composed can go right round the circuit (given time) in (a) they can go only from one capacitor plate, through R, to the other. So, strictly, (a) is not a circuit at all. And whereas in (a) some energy from outside is needed to carry a positive test charge from negative to positive plate of the capacitor by either route (via R or direct) in (b) and (c) it can pass freely from negative to positive, through the source of e.m.f. which exactly neutralizes the charge field from positive to negative. Not even any of the people who wrote in to disapprove of some feature or other of "What is e.m.f.?" questioned that in Fig. 4(c) there was an e.m.f., associated with L. (Yes; I do remember that we are supposed to be talking about Kirchhoff's law as applied to a.c. Although I haven't come across an a.c. battery, there is no difficulty in converting Fig. 4(c) to a.c. simply by putting L in a sinusoidally varying magnetic field, conveniently by making it the secondary winding of a transformer.)

All these things being so, there seems to be no doubt that in (b) and (c) there are e.m.fs and in (a) there is none, and that (b) and (c) are circuits but (a) is not. This corresponds to the three classes of electric field defined in BS 4727.

Fig. 5 Is this truly a circuit?
One result of the above conclusions is that we must stop calling Fig. 5 a circuit. It is just the same in principle as Fig. 4(a); merely a capacitor, with a rather elaborate system, including two sources of e.m.f., for periodically charging and discharging it. Your study of a.c. theory, which has taught you to treat L and C as opposite varieties of the same thing, has proved to be false. Their beautiful symmetry, seen to perfection in a tuned circuit, are opposed in L by the e.m.f. of self-induction and in C by something different. And Kirchhoff's law gets into a right old mess.

Appalled by the implications of what seem to be those inevitable conclusions, many teachers reinstate X_{L} and X_{C} as positive and negative kinds of the same thing. Fig. 5 is admitted as a circuit by using the idea of displacement current between the plates of C. (The same concept helps mightily with electromagnetic waves.) Admitting C (with reservations) as a source of e.m.f. ends the difficulty
with Kirchhoff's law, because every voltage is then either an e.m.f. or an $I R$ drop. Or does it? The fact remains that there is no consistent and generally agreed principle for deciding on how to classify voltages in a.c. circuits into $E \mathrm{~s}$ and $V \mathrm{~s}$.

Not only so, but the task of separating $E s$ from $V \mathrm{~s}$ is complicated by the fact that some circuit elements can behave sometimes as sources of energy and sometimes as receivers. This happens twice every cycle, of course, with L and C; but I mean longer-term behaviour. There was the transformer with a generator in the secondary circuit. And there are synchronous a.c. motors. With such circuits one would be kept busy transferring voltage entries from one side of the ledger to the other. The very object of the exercise of drawing phasor diagrams or making circuit calculations may be to find out which elements are generators and which are loads, so an equation that relies on sorting these out before one can begin is no help at all.

Going back to Kirchhoff we recall that his first or current law says that "the algebraic sum of the currents that meet at any point is zero". Since his time the principle of duality has been established, in which the "dual" of current is voltage, and the dual of a node (i.e., a place where currents meet) is a mesh. So the dual of the current law is a voltage law with no distinction between $E s$ and $V \mathrm{~s}$, so none of the arguments and problems we have been discussing. And the law in this form is quite general, ready-made for a.c. I'm quite sure that if the ghost of Kirchhoff were to be approached along these lines, his "Ja wohl!" to this second amendment to his second law could be confidently expected.

Many present-day teachers and textbook writers, with or without Kirchhoff's consent, do indeed state his second law as "The algebraic sum of the voltages around any mesh is zero". Briefly, in symbols, $\Sigma V \equiv 0$. The advantages are so numerous and manifest that one might expect that by now this form would be universal. But no; there are books that continue to follow the original version with all its disadvantages and limitations, thereby condemning their readers to the wholly unnecessary confusion and difficulties we have been reviewing. One wonders why.

The only trace of a justification put forward seems to be that "it is important to know which voltages are e.m.fs and which are not". But this is not something that need be known in advance; it is something that emerges when the circuit is examined and its phasor diagram drawn. Those voltage components that are in phase with the current are e.m.fs and those that are in antiphase are resistances or the equivalent. In a.c. circuits there are other phase relationships than these, so one resolves each voltage into two components: (1) directly for or against, 0° or 180°, and (2) quadrature, 90° or 270°. The (2) lot are associated with no average loss or gain of energy in the circuit, because the borrowings by pure L and C are fully
repaid every half-cycle. No question need arise as to whether the e.m.f. of selfinduction in L should be classed in Kirchhoff's law as a negative e.m.f., a positive back e.m.f., a potential drop, or whatever. It is just a voltage, "at right angles to" the current. Whether it is 90° or 270° depends on how current and voltage are identified. The most reliable identification for voltages is by naming the two points in the circuit between which it exists; e.g., $V_{a b}$ in Fig. 1. There is no need even to bother the printer or typist with subscripts; $a b$ is enough. If there are, for example, four nodes in a mesh, then the Kirchhoff voltage law equation can be written down at once without even seeing the diagram, $a b+$ $b c+c d+d a \equiv 0$, and it must always be true of any four-node mesh. The dual of a node is a mesh, so the most reliable way of identifying currents is in terms of the two labelled meshes between which it flows. But that is another story, told in "Phasor Diagrams".

Corrections

In "Silent switch for stereo pair comparisons" by K. Moulana, published in the January 1975 issue, the following corrections should be made. 1. In Fig. 2, the gate terminal of the f.e.t. should be pointing towards the source terminal, i.e., the one which is connected to the positive end of C_{6}.
2. In Fig. 3, the top plate of C_{13} should be marked positive.
3. On page 34 the second sentence following "Line-up procedure" should read: "Adjust R_{52} so that the ammeter reads 12 mA ."
4. On page 35 the first sentence of the first paragraph should read: "The switching speed of the unit was measured in terms of a parameter called the 'Fade-Time' which is defined as the time taken for the output level of the switch to change by 60 dB ."
In the final part of the article "Weather Satellites Ground Station" by G. R. Kennedy (January pp. 21-26), C_{100} should be 6.8μ and R_{105} is 390Ω. Under the heading Display system operation, the two unlabelled switches are S_{5} and S_{6} respectively. If difficulty is experienced obtaining the transistor 2 N 726 or 2 N 706 , types BC157 and 2N316 (or BF248) can be used respectively as alternatives. In the appendix, R_{57} should be R_{57} and C_{67} should be C_{68}.

OBITUARY NOTICE John Sargrove

The death is reported of John A. Sargrove, Ch.Eng, M.I.E.E., M.I.Prod.E., M.I.E.R.E., M.I.Mech.E., well known as the designer of ECME, a fully automatic circuit-making equipment. He was with the Tungsram Valve Company for many years, until forming his own company. He received the Clerk Maxwell award of the IEE in 1947.

New Products

Graphic equalizer

A recent addition to the Klark-Teknik range of equalizers is the 27 s comprising 27 overlapping l.c.r. filters arranged for boosting or cutting each audio band by up to 12 dB . The slider controls give a calibrated graphical display of the frequency response of the unit. Specifications for the unit include: a noise level of better than -89 dBm and a t.h.d. of less than 0.01%. KlarkTeknik Ltd. Summerfield, Kidderminster, DY11 7RE.
WW317 for further details

Double gun c.r.t.

A high-sensitivity double-gun instrument c.r.t. now in production at the M-O Valve Co features two identical electron guns with independent horizontal and vertical
deflection systems, enabling the user to display two different sweep speeds simultaneously. The tube, type E14-110GM, has a 14 cm diagonal rectangular faceplate. mesh post-deflection acceleration, alum-inium-backed screen and compensated deflection blanking system. The display area for each beam is $4 \times 10 \mathrm{~cm}$ and the overlap is 2 cm . The final anode voltage is 8 kV and the maximum deflection factors are $\mathrm{D}_{y}: 5 \mathrm{~V} / \mathrm{cm}$ and $\mathrm{D}_{x}: 12 \mathrm{~V} / \mathrm{cm} . \mathrm{M}-\mathrm{O}$ Valve Co Ltd, Brook Green Works. Hammersmith. London W6 7PE.
WW309 for further details

F.m. alignment generator

The Sound Technology 1000A alignment generator has been designed to permit fast and accurate adjustment of mono/stereo f.m. systems. A dual-sweep facility enables distortion and tuning characteristics of a receiver to be displayed on an oscilloscope by connecting the r.f. output of the 1000 A to the aerial terminals of the receiver and feeding the audio output from the receiver to the 1000A's built-in filter. Other features of the instrument are an r.f.-level piston attenuator calibrated from 0.5 to $30.000 \mu \mathrm{~V}$ which permits a comparison of receiver alignment against r.f. level, a total harmonic distortion for the r.f. output of less than 0.1%. and a stereo modulator, using crystalcontrolled digital circuits. which provides a claimed separation of better than 50 dB at 1 kHz . C. E. Hammond \& Co Ltd, Lamb House, Church Street, Chiswick, London W4 2PB.
WW303 for further details

WW317

Trimmer potentiometers

A new series of $\frac{3}{4}$ in multi-turn wirewound trimmer potentiometers, model 47, is available in four basic versions in a resistance range from 10Ω to $20 \mathrm{k} \Omega$. Features of the device include a multi-finger contact and a "T" slider block design which is claimed to be unique. The four versions available are standard, clear housing, 0.2 in pin configuration and a panel mounting version. Specifications for the potentiometer include: resistance tolerance $\pm 10 \%$, power rating 1 W at $40^{\circ} \mathrm{C}$ derated linearly to zero watts at $125^{\circ} \mathrm{C}$, rotational life 200 cycles minimum with a maximum change of $\pm 2 \%$ in total resistance. Spectrol Reliance Ltd, Drakes Way. Swindon, Wiltshire.
WW300 for further details

Multimeter

Electronic Brokers Ltd are now marketing the ICE Supertest 680R multimeter. This versatile instrument has a sensitivity of $20 \mathrm{k} \Omega / \mathrm{V}$ with an accuracy to within 1% d.c. and 2% a.c. of indicated reading. The tester has 11 alternating voltage ranges from 2 to 2500 V .13 direct voltage ranges from 100 mV to $2000 \mathrm{~V}, 11$ direct current ranges from $50 \mu \mathrm{~A}$ to 10 A , ten alternating current ranges from $250 \mu \mathrm{~A}$ to 5 A , five ohms ranges from X1 to X 10.000 plus a low-ohms scale. a detector reactance range from 0 to $10 \mathrm{M} \Omega$, two frequency ranges from 0 to 5 kHz , nine voltage output ranges from 10 to 2000 V , ten decibel ranges from -24 to +70 dB , and six capacity ranges from 0 to $20,000 \mu \mathrm{~F}$.

WW303

WW300

The multimeter costs $£ 18.50$ complete with case and probes from Electronic Brokers Ltd, 49/53 Pancras Road, London NW 1.
WW315 for further details

Function generator

The latest function generator from Interstate Electronics, the model F77, offers a total frequency range from 0.0002 Hz to 20 MHz with an output adjustable by a five-step, 60 dB attenuator up to a maximum of 15 V into 50Ω. Sweeps may be logarithmic or linear in continuous, triggered or sweep and hold modes, with sweep times variable from $10 \mu \mathrm{~s}$ to 1000 s . The start-stop phase of sine and triangle waveforms in the trigger and gate modes may be adjusted between $+90^{\circ}$ and -90° and a variable symmetry control permits 5% to 95% time symmetry adjustment of waveforms to 1 MHz , and fixes the duty cycle. Rise and fall times of output pulses are 15 ns and pulse width are adjustable from 30 ns to 10 ms . Euro Electronic Instruments Ltd, Shirley House, 27 Camden Road, London NW1.
WW311 for further details

Portable r.f.i. meter

The Singer model NM-65T radio-frequency interference meter can be powered from a rechargeable battery, which provides up to ten hours operation, or from a 240 V a.c. supply. The instrument measures field intensity, in the 1 to 10 GHz range, by means of the direct peak and slideback

WW307
peak methods. An i.f. and four simultaneous video outputs are provided by the NM-65T, as well as impulse bandwidths of $0.1,0.5$ and 5 MHz .

Specifications for the instrument are: an average c.w. sensitivity at the 100 kHz bandwidth of $0.7 \mu \mathrm{~V}$ rising to $4.9 \mu \mathrm{~V}$ at the 5 MHz bandwidth. Accuracy is within 2% of the indicated value. R.E.L. Equipment \& Components Ltd, Croft House, Bancroft. Hitchin. Herts SG5 1BU.
WW307 for further details

Proximity switch

A barrel-mounted all-metal-sensing proximity switch, model 8-220, will detect ferrous metal targets at a distance of 0.10 in and non-ferrous targets at 0.05 in with a repeatability of $\pm 10 \%$. The differential travel is from 0.001 to 0.010 in with a response time of 3 ms giving a switching rate of 20 k cycles per minute. The device operates from a $20-30 \mathrm{~V}$ d.c. supply in a temperature range from $-65^{\circ} \mathrm{F}$ to $+180^{\circ} \mathrm{F}$ and is available in a precision version. Elliott Relays, 70 Dudden Hill Lane, London NW 10 1DJ. WW301 for further details

Mains filter

Suppression Devices Ltd have incorporated a mains-transient filter inside an IEC line connector which complies with all current specifications applicable to detachable power lines. The filter is designed to suppress incoming mains transients and other electrical disturbances in the supply

WW301

WW311
system which could affect electronic equipment.

The device will operate from lines of $115 / 250 \mathrm{~V}, 50$ to 400 Hz and is available in current ranges of $0.5,1,2.5$ and 5 A . Suppression Devices (Burnley) Ltd, Woodfield Works, Trafalgar Street, Burnley, Lancs.
WW313 for further details

Spectrum analyzer

The Nelson Ross model 236 spectrum analyzer provides amplitude versus frequency displays from 100 Hz to 25 MHz . Specifications for the instrument include a 0 to 25 MHz preset scan, adjustable 0 to 10 MHz scan widths at any centre frequency. Resolution bandwidths: 100 Hz to 20 kHz automatic and selectable. a sensitivity of $1.25 \mu \mathrm{~V}$, and 60 dB logarithmic, linear and square law scales.

The instrument is also provided with crystal controlled marker combs at 100 kHz and 1 MHz intervals, which enable accurate frequency calibration. The display has a calibrated graticule and adjustable scale illumination. Wessex Electronics Ltd, Stover Trading Estate, Yate, Bristol BS175QP.
WW304 for further details

Amateur radio

A new range of kits for the amateur has been introduced by Heathkit. The range includes a s.s.b. transceiver capable of delivering 100 W , a station console which incorporates a 24 -hour digital clock, ten-

WW313

minute timer, r.f. wattmeter, s.w.r. bridge and a phone patch. Other items in the range are a station monitor which will monitor s.s.b., c.w. and a.m. signals up to 1 kW from 80 to 86 metres, a linear amplifier delivering up to 1200 W p.e.p. s.s.b., and an a.c. power supply which provides the 13.8 V d.c. required by the transceiver. Heathkit (Gloucester) Ltd, Gloucester GL2 6EE
WW312 for further details

Semiconductor test set

The Berkeley Instruments model 70 is a semiconductor test set which provides the capability of sophisticated systems by the addition of plug-in units to perform test procedures. The basic main frame contains power supplies and a metering system for setting bias conditions. The plug-in modules together with component adapters can be selected for the required tests. Test modules which are available include the measurement of beta under pulsed condition, hybrid parameters, saturation, low leakage and voltages, pulsed breakdown and d.c. parameters. Euro Electronic Instruments Ltd, Shirley House, 27 Camden Road, London NW1.
WW305 for further details

Standard-frequency receiver

The type 103 receiver provides a frequency standard by phase locking a 10 MHz crystal oscillator to the Droitwich transmission. This provides a short term stability of 1 part in 10^{8}, in the temperature range 0 to $40^{\circ} \mathrm{C}$, with outputs of 1 and 10 MHz at 3 V square wave. An automatic lock facility eliminates the need for manual controls. The instrument uses a ferrite rod aerial, and measures $8 \frac{3}{4} \times 7 \times 3 \frac{5}{8}$ in. R.C.S., National Works, Bath Road, Hounslow, Middx TW4 7EE. WW306 for further details

Noise generators

Lyons Instruments are now offering a range of solid-state noise generators manufactured by Elgenco Inc. The instruments have Gaussian amplitude probability distribution covering user-specified bands. Series 624A generators are available with lower frequency limits of $10,20,50$ or 200 Hz and upper limits of $20,50,100,200$ or 500 kHz with a spectral flatness specification between the selected upper and lower limits of $\pm 0.5 . \pm 1,2$ or 3 dB .

The output is 3 V r.m.s. maximum with a five-position attenuator and variable
amplitude vernier. The dynamic range is 3.5:1 peak to r.m.s. at full output. The instruments, which measure $5 \frac{1}{4} \times 8 \frac{5}{8} \times 1 \mathrm{lin}$, are priced from $£ 227$ plus v.a.t. Lyons Instruments Ltd, Hoddesdon, Herts.
WW302 for further details

Spray-proof relays

The new flat-form relays type AZ1530 and AZ1531 from Zettler are intended for p.c.b. use where flux and solvents may penetrate the contacts or cause damage to the coils. The base plates and caps of these relays are ultrasonically welded together to form an air-tight encapsulation. The relays are available with coil voltages from 6 to 60 V and switching capacities of 100 or 200 VA . Zettler UK Division, Equitable House, Lyon Road, Harrow, Middx HAl 2DU.
WW308 for further details

Cartridge preamplifier

A "no-compromise" audio preamplifier. the $\mathrm{JC}-1$, designed to operate in series between a turntable and the standard phono inputs of a preamplifier is available from Mark Levinson. Specifications for the unit include equivalent input noise -147 dBV ,

WW302

WW308

Now everybody's happy...

eintroduction of the 7050 Series instruments d a hole in the DVM marketplace.
esigned specifically for the benchman, ween the best-selling 7040 portable DMM
ated programmable instruments
se. Whatever your DVM needs, we to total capability.

Benchoperation...

Now everybody's happy...

... Betause fe introduction of the 7050 Series instruments has filld a hole in the DVM marketplace.
They ve been \&signed specifically for the benchman, bridging the zap between the best-selling 7040 portable DMM and the sophisticated programmable instruments in the Master Series range. Whatever your DVM needs, it's now easy to put a name to total capability.

Benchoperation...

It is the Master Serles of 17 programmable DVM's with true RMS - far and laway Europe's best-selling instruments - that has put Solartron-Schlumberger in the forefront of DVM technoldgy. Their modular concept lets them meet any systems requirement and they have the ability to respond to rapid changes of inputs from scanners while retaining $1 \mu \mathrm{~V}$ integrity. This ability to measure $1 \mu \mathrm{~V}$ sensitivity, with good noise rejection at high speed, distinguishes the systems compatible Master Series instruments from all other ordinary bench voltmeters on the market. Write forfull details, of mail the magazine's reader reply card.

The 7040 four 9's multimeter Europe's biggest selling DMM - shares the same-sized compact case as its $3 \frac{1}{2}$ digit brother, the 4440. A portable instrument has to be small enough to slip into a briefcase, light enough to carry long distances, rugged enough to take knocks, and operate from mains or batteries. Our DMM's do all that, and more, automatically.
Whether you travel from Aberdeen to Adelaide - or simply from bench to bench in your own laboratory - we've a true portable to meet your exact requirement. Write for details on the 7040 (4 digit mains./batt.), 4440 (selfcontained batts.), or 4445 (true r.m.s.), and our range of accessories. Or fill in the magazine's reader reply card.

Schlumberger Messgerate East European Area, A1120 Wien X11, Meidlinger, Hauptstrasse 46. Tel: Vienna 830223

Schlumberger Instruments 57 Rue de Paris 92222 Bagneux Tel: 6552211

SOLARTRON

The Solartron Electronic Group Ltd Victoria Road
Farnborough, Hampsnire Tel: 44433

Schlumberger GMbH
6079 Sprendlingen,
Robert Boschstrasse 32-38 Frankfurt
Tel: 63081 Sprendlingen

Schlumberger Italiana Spa Divisiorie
Strumentazione 20146 Milano
Via Pompeo Neri, 13.
Tel: 479038
Schlumberger A.B
Vesslevagen 2
POBox 94418109
Lidingo 9
Tel: 7652855

Zurich

Schlumberger Messgerate AG
8040 Zurich -
Badenerstrasse 333.
Tel: 528880

Collect Wireless World Circards. And build a valuable dossier on circuit design.
 Circards is a new and comprehensive system, launched by Wireless World, to provide professional engineers and enthusiasts with valuable and up-to-the-minute data on circuit design. Data not available from any other single source.
 Each Circard is $8^{\prime \prime} \times 5^{\prime \prime}$ and shows a specific circuit, a description of the circuit operation; component values and ranges; circuit limitations; circuit modifications; tested circuits; performance data and graphs.
 The double-sided format enables the Circard to be filed in standard boxes for easy reference. And the plastic wallet provided keeps the cards well-protected.
 Circard sets come in wallets and cost $£ 1.50$ per set. A subscription for 10 consecutive sets costs $£ 13.50$.
 Start your personal dossier on circuit design by completing and returning the coupon below.

Subjects already covered by Circards

1. Basic active filters. 2. Switching circuits, comparators and schmitts.
2. Waveform generators. 4. AC Measurements.
3. Audio circuits: preamplifiers, mixers, filters and tone controls.
4. Constant current circuits. 7. Power amplifiers.
5. Astables. 9. Opto-electronics.
6. Micropower circuits. 11. Basic logic gate circuits.
7. Wideband amplifiers. 13. Alarm circuits
8. Digital counters. 15. Pulse modulators.
9. Current differencing amplifiers-Signal processing.
10. Current differencing amplifiers-Signal generation.
11. Current differencing amplifiers-Measurement and detection. 19. Monostable circuits.
Subjects planned
Two-Transistor circuits, Multipliers and Dividers,
Code converters, DC Amplifiers and Choppers, Amplitude modulation and detection, Transistor arrays. Sets $18-25$ will be sent to subscribers separately after publication. We shall be pleased to receive your order.

1 To: General Sales Dept., IPC Business Press Ltd., Room II
I Dorset House, Stamford Street, London SEi 9LU
I
I Please send me set no(s)
(a) f_{5}. 50 each $\left.\square\right]^{*}$

I I wish to subscribe to set no(s)
(a) $£ 13.50 \square^{*}$

I
I enclose cheque/money order for $£$
I *Tick as required/Cheques to be made payable to IPC Business Press Ltd.
I
Name
I
Address
|
I.
Company registered in England. Registered address, Dorset House,
| Stamford Street, SEi 9LU England. Registered Number 677128

Europe's Largest Hi-Fi Retailers

give you the greatest choice

 plete with leads.
OUR PRICE $\mathbf{E 1 6 . 5 0 ~ P R P M O P ~}$

OUR PRICE E4.25 PRP 30p

TE1GATRANSISTORISE

200MHHz. Output
10 maximupu
$220 / 240 \mathrm{~A}$ AC
DUR PRICE $£ 37.50$

MODEL AF 105 VOM

totat of 20 ranges. The largencight
emiting diode display will read up
to 1999 . emitring diode display will read up
to 1999 and automatically indicate
polarity. Indication of positive and
negative overloed is also provided.
The
\qquad
\qquad
RANGES:
DC VOLTS $\quad 1 \mathrm{v}, 10.100 \mathrm{v}, 1000 \mathrm{v}$ AC VOITS $1 \mathrm{v} .10 \mathrm{v}, 100 \mathrm{v} .1000 \mathrm{~V}$.
DC CURRENT 1 mA .10 mA . $100 \mathrm{~mA}, 100 \mathrm{~mA}$.
AC CURRENT: $1 \mathrm{~mA}, 10 \mathrm{~mA}$,

internal batterios
Complet wht
instructions, leopds
c

 OUR PRICE E24.95 P\&P 50D BELCO AT201 Oecade ATTENUATOR
Frequency range 0 Frequency range 0-
200k Hz Arlamator
 OURPRICE E12.50 P\&P 50D OT 124
POWER
UNIT
220240 V
AC. InDut
STOTMS 9VOC 40 mA
OUR PRICE $£ 2.20$ P\&P 50 PS200 Regulated POWE SUPPLY UNIT
 OUR PRICE $£ 19.95$

VU METER TYPE 3

 amplifiet. This versatite unit has a
maximum output of 10 watts
RMS and DC source, negative or positive
ground and uses only $1.5 A$ atrated
output Su Siled output. Suplied complete with
mounting brockets etc. plus full
installation and operating OUR PRICE $\mathbf{£ 2 1 . 7 5 ~ P \& A P 5 0 p}$

RANK AUOID RA 210 STEREO AM PLIFIER magnetic pponc. tuner. rape and
aux. Sepafate baee, treble. Unrepeatable offer.
OUR PRICE 17.50 P\&P 50p
ALL PRICES EXCLUDE VAT

BRIDGE RECTIFIERS
30 VOLTS
PRIMARY 2001240V.
SECONDARY 12, $15,20,24$,

POWER UNIT TYPE

Output switched $3.4 .5 .6,7.5,9$ and 12
Volis at 500 mA DC. O perates from 240 V
 Record Plavers 9 mc Size 7.5
14.0 cm . Pice f 3.95. Post 250

AUTO TRANSFORMERS

NEW! ${ }^{2 / 2}{ }^{2}$ ANO 4 PANEL METERS

$2^{\prime \prime}$		$4^{\prime \prime}$	
SIEE: ${ }_{\text {comm }}$	Wide \times	SIZE: 110 mm	Wide x
${ }^{45 m m m}$ High	$\times 40 \mathrm{~mm}$	${ }_{\text {cosem }}^{82 \mathrm{~mm}}$ High	$\times 43 \mathrm{~mm}$
${ }_{\text {dep }}^{\text {Depement }}$ Movent	If.		
	Ohms		
$0-50$ micro A	1250	$0-50$ micto A.	1400
$0-100$ micra A		0	
0-500 mixa A.	170	$0-500$ micma	200
-	170	${ }_{0}^{0-5 m A}$	200
$0-10 \mathrm{~mA}$	6	$0-10 \mathrm{~mA}$	6
$0-50 \mathrm{~mA}$	05	$0-50 \mathrm{~mA}$	0.5
$0-100 \mathrm{~mA}$	0.5	0-100 mA	0.5
0-500 mA	0.5	0.500 mA	05
$0-1 /$ AMP	05	0-1 AMP	0.5
0-2 AMP	0.5	$0-2$ AMP	0.5
O-25 Vot	15 K	$0-25$ volt	15 K
$0-50$ Volt	50k	$0-50$ Volt	50k
$0-300 \mathrm{Volt}$	300k	$0-300$ Valt	${ }^{300 \mathrm{~K}}$
${ }^{1}$ M M Meter	5270	"gi Meer	${ }_{5}^{200}$
vu Meier	5250	Vu Meter	5250
VU Maters an Price $2^{\prime \prime}$ f 3 -15 per set.	$\begin{aligned} & \text { ecomplete } \\ & \mathrm{P} \text { ost } 10 \mathrm{iOp} . \mathrm{P} \end{aligned}$	detectors Mode ${ }^{4} 19.95$ Post	wide view. p. Lamps 55 p

C1000 MULTI-METER

mout | Input Resistance 1000 ohms per voit. | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Ranges: $A C$ Voits | $0-15$ | 50 | 250 |

 ${ }^{\text {DC C C Cusent }} 0-1 \mathrm{~mA} \quad 0-100 \mathrm{~mA}$ Resistance 0 - 150 K othms
Sire $60 \times 24 \times 90 \mathrm{~mm}$
omplete with: Battrenes. Test Prods
Special price $£ 3.25$ Post 20 p.

1-WATT CARBON FILM RESISTORS also avalable $\frac{1}{2}$ watt at $70^{\circ} \mathrm{C}$ E 12 ran
above 470 Ka 10\% tol at 95 p per 100

PLEASE ADD 8\% FOR VAT

Byre House, Simmonds Road Canterbury, Kent CT1 3RW

Tel: Canterbury (O227) 52436

TAUT SUSPENSION MULTIMETERS

Made in USSR
U4312-low
sensitivity high accuracy AC/DC Multimeter. 3.9 ranges covering $\mathrm{AC} / \mathrm{DC}$ volts up to 900 V and $A C / D C$ current up to 6 amps. Mirror scale. Accuracy $1 \% \mathrm{DC}, 1.5 \% \mathrm{AC}$

Price $£ 10.75$

U4313-high sensitivity high accuracy $A C / D C$ multimeter. 39 ranges covering $A C / D C$ volts up to 600 V and AC/DC amps up to 1.5 A . Mirror scale. Accuracy 1.5\%AC, 2.5\%DC.

Price $\mathbf{£ 1 3 . 8 0}$
U4315-high sensitivity medium accuracy AC/DC multimeter. 43 ranges covering $A C / D C$ volts up to 1000 V and $\mathrm{AC} / \mathrm{DC}$ current up to 2.5A. Accuracy 2.5% DC. $4 \% \mathrm{AC}$

Price $£ 10.00$
Note: The above instruments, although extremely resistant to overload, do not incorporate any protection.

U4317--high sensitivity high accuracy AC/DC multimeter. 42 ranges covering $\mathrm{AC} / \mathrm{DC}$ volts up to 1000 V and $A C / D C$ current up to 5 amps. Mirror scale. Accuracy $1.5 \% \mathrm{DC}, 2.5 \% \mathrm{DC}$. Meter incorporates transistorized cut-out protective relay. Price f17.00

POWER TRANSISTORS			
OC22	$\mathbf{0 . 6 0}$	ASZ15	$\mathbf{0 . 8 0}$
OC23	$\mathbf{0 . 6 0}$	ASZ16	$\mathbf{0 . 8 0}$
OC24	$\mathbf{0 . 6 0}$	ASZ17	$\mathbf{0 . 8 0}$
OC25	$\mathbf{0 . 5 0}$	ASZ18	$\mathbf{0 . 8 0}$
OC26	$\mathbf{0 . 4 0}$	BD115	$\mathbf{0 . 8 0}$
OC28	$\mathbf{0 . 7 0}$	BD116	$\mathbf{0 . 6 5}$
OC29	$\mathbf{0 . 6 0}$	BD121	$\mathbf{0 . 6 5}$
OC35	$\mathbf{0 . 5 0}$	BD123	$\mathbf{0 . 8 0}$
OC36	$\mathbf{0 . 6 5}$	BD124	$\mathbf{0 . 6 0}$
AD149	$\mathbf{0 . 4 5}$	BD131	$\mathbf{0 . 4 0}$
AD161	$\mathbf{0 . 3 8}$	BD132	$\mathbf{0 . 5 0}$
AD162	$\mathbf{0 . 3 8}$	BD133	$\mathbf{0 . 5 5}$
ADZ11	$\mathbf{1 . 2 5}$	BD135	$\mathbf{0 . 3 0}$
ADZ12	$\mathbf{1 . 2 5}$	BD136	$\mathbf{0 . 3 2}$

AC CLAMP VOLT AMMETER

TYPE U91
Made in USSR
Measurement ranges: 10-25-100-250500A 300-600V Accuracy: 4\%

Price $\mathbf{f 1 4 . 0 0}$

OUR NEW CATALOGUE COVERING VALVES, SEMICONDUCTORS, TEST EQUIPMENT AS PASSIVE COMPONENTS IS NOW READY. PLEASE SEND fO. 20 FOR YOUR COPY

LINEAR INTEGRATED CIRCUITS
Please note reductions in pricesMullard TAA263. Direct coupled three stage low leve amplifier for use from DC to $600 \mathrm{kc} / \mathrm{s}$. Supply voltage $6-8 \mathrm{v}$. Typical power gain 77 db . into 150Ω load. Output power 10 mW . T072 four-lead encapsula tion f0.65*
Mullard TAA293. Medium frequency amplifier with frequency response of $600 \mathrm{kc} / \mathrm{s}$. Nominal supply voltage 6 v . Typical power gain 89 db . Maximum power dissipation 160 mW . Power output 10 mW . int 150Ω load. T074 ten-lead encapsulation f0.65 Mullard TAA320. Metal oxide silicon low frequency pre-amplifier consisting of a MOST stage followed by a bi-polar transistor. Gate to source voltage 9-14v,
Total power dissipation 200 mW . Orain current Total power dissipation 200 mW . Orain current
$1 \mu \mathrm{~A}$. Output conductance 0.65 mmho . T018 3-lead encapsulation
f0.60*
L.E.D. TYPE HP5082/4850

Red Light GASP Light Emitting Diodes giving bright diffused light of 0.8 mcd at forward voltage of 1.6 V and DC current of 20 mA . Plastic wide angle lens $0.200^{\prime \prime}$ diameter. Ideal for panel lights. etc
Price for 12 pieces $\mathbf{f} 1.75$ incl. VAT and p. \&p

1-AMP SILICON RECTIFIERS			
20 pieces	1N4001	50 p.i.v.	$\mathbf{f 1 . 1 2}$
..	1N4002	100 p.i.v.	$\mathbf{f 1 . 2 5}$
$"$	1N4003	200 p.i.v.	$\mathbf{f 1 . 3 5}$
$"$	1N4004	400 p.i.v.	$\mathbf{£ 1 . 4 5}$
$"$	1N4005	600 p.i.v.	$\mathbf{f 1 . 5 5}$
$"$	1N4006	800 p.i.v.	$\mathbf{f 1 . 8 5}$
	1N4007	1000 p.i.v.	$\mathbf{£ 2 . 1 0}$

This is a special offer and minimum quantity of 20 pcs must be ordered. These prices are inclusive of P.P. and VAT.

Prices do not include VAT and carriage except where indicated When remitting cash with order please add $£ 0.50$ per multi-
 charge of $\mathfrak{£ 0} 25$. VAT at prevailing rate should then be added to the total.

MINIMUM ACCOUNT ORDER CHARGE £10.00 PLUS VAT. OTHERWISE CASH W.ITH ORDER PLEASE Z \& I AERO SERVICES LTD
Tel. 7275641 44A WESTBOURNE GROVE, LONDON W2 5JF Telex 261306

二

PACKS ALL AT 50p EACH

	Germanium Transistors PNP, AF and RF
$\mathrm{B66} 50$	Germanium Diodes Min. glass type
883200	Transistors, manufacturers rejects, AF, RF. Sil. and Germs.
$\mathrm{B} 84100$	Silicon Diodes DO-7 glass equiv. to OA200. OA2O2
$\mathrm{B86} \text { ? } 0$	Sil. Diodes sub. min. IN914 and IN916 types
$\text { H34 } 5$	Power Transistors, PNP, Germ. NPN Silicon TO-3 Can.
H67 10	3819N Channel FETs plastic case type

Bi-Pre-Pak X-Hatch Generator Mk. 2

> Four-patterns $3^{\prime \prime} \times 5 \frac{1}{4} \times 3^{\prime \prime}$ Ready-built and tested

In kit form
Is invaluable to industrial and home user alike. Improved circuitry assures reliability and still better accuracy. Very compact: self-contained. Robustly built. Widely used by TV rental and other engineers. With reinforced fibreglass case. instructions, but less batteries. (Three U2 type required.)

SUNDRY

MAINS TRANSFORMERS

A. 18 V 1 amp (suitable for SS. 103)
B. 25 V 2 amp (suitable for SS. 110) C. 30V 2 amp (suitable for SS. 140) BRIDGE RECTIFIERS
Type A 45V/1A $27 p$. B \& C $100 \mathrm{~V} / 2 \mathrm{~A}$
MAINS RELAYS
$230 / 240 V$ AC. 3 -pole change-over. Heavy duty contacts Ex-GPO Telephone Handsets, each

(s)

Made and sold direct by Bi-Pre-Pak
Stiring Suma

AMPLIFIER MODULES

SS100 Active tone control unit to provide Bass and Treble facilities (stereo). $\mathbf{f 1 . 6 0}$
SS101 Pre-amp for stereo ceramic cartridges, radio and tape. $\mathbf{f 1 . 6 0}$
SS102 Pre-amp for low-output stereo magnetic cartridges, radio and tape. $\mathbf{f 2 . 2 5}$
SS103 $\begin{gathered}\text { Compact I.C. amp. } 3 \text { watts R.M.S. Single channel } \\ \text { (mono). On P.C.B. size } 3^{\prime \prime} \times 2^{\prime \prime} \text {. Needs } 6-22 V \text { supply. }\end{gathered}$
SS103-3 Stereo version of above. (Two I.Cs.)

SS110 $\begin{gathered}\text { Similar in size to SS } 105 \text { but will give } 10 \mathrm{w} \text { output } \\ \text { (mono). Two in stereo give fivst }\end{gathered}$
SS110 (mono). Two in stereo give first-class results. suitable for many domestic applications.
Beautifully designed. Will give up to 40 w R.M.S. into
SS140 4Ω. Excellent S.N.R. and transient response.-Fine for P.A. disco use, etc. Operates from 45 V DC. Two in bridge formation will give $80 w$ R.M.S. into 8 .
FM Tuners
SS201
Front End Assembly. Ganged tuning with well engineered slow-motion geared drive in robust housing. A.F.C facility. Requires 6-16V. Excellent sensitivity. 88-108mHz.
£6.25
SS202 I.F. Stage (with I.C.). Designed to use with SS201 uses
SS203 Stereo Decoder. Designed essentially for use with SS201
SS203 and SS202, this excellent decoder can also make a stereo tuner of almost any single channel FM tuner. Supplied ready aligned. A L.E.M. can easily be fitted

SS300 POWER SUPPLY STABILISER. Add this to your unstabilised supply to obtain a steady working voltage from 16 to 60 V for your audio system. Money saving and very reliable.

- ALL MODULES TESTED \& GUARANTEED

F FULLY DETAILED \& WELL PRINTED INSTRUCTIONS

- Postage-Add 15p for packing \& postage (UK) +8\% VAT to total value.

Plastic Power Transistors

40 WATT SILICON

Type No. Gain VCE Polarity Price
4ON1 $15 \quad 15$ NPN 20p
40N2 $40 \quad 40$ NPN 30p
40P1 1515 PNP 20p
40P2 $40 \quad 40$ PNP 30p

222. 224 WEST ROAD,WESTCLIFF-ON-SEA, ESSEX SSO SDF.

 TELEPHONE: SOUTHEND (0702) 46344.There's more in our tatest catalogue: More bargains-better price values. Send large S.A.E. (6p stamp please) for your free copy. COMPONENTS, EOUIPMENT, AND OF COURSE. SEMI-CONDUCTORS.
TERMS OF BUSINESS VAT Add 8% to total value of order including postage and packing charges. No VAT on overseas orders. POST \& PACKING Add 15 p for UK orders. Minimum mail order acceptable- 50 p . Overseas orders, add f 1 . Any difference will be credited or charged PRICES Subject to alteration without notice. AVAILABILITY Ail items available at time of going to press when every effort is made to ensure correctness of information.

To BI-PRE-PAK, 222-224 WEST RD,
WESTCLIFF-ON-SEA, ESSEX
Please send
for which I enclose
NAME
ADDRESS
ww3

AMPLIFER KITS OF Vistinclion

DESIGNER-APPROVED KIT

In Hi-Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973 and a subsequent follow-up article (April 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage, power in excess of 75 watts whilst maintaining distortion at les than 0.01% even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system. namely the equalization stage and tone control stage, positions where most conventional designs run out of gain at the extremes of the frequency spectrum Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer.
in handboo
(pack 15-price 30p)
full circuit description

Hi-Fi News Linsley-Hood 75 W Amplifier
Mk III Version (modifications as per Hi. Fi News April 1974)

1 Fibreglass printed-circuit board 12 Set of resistors. capacitors. secondary fuses.: semicon ductors for power supply inclulaneous parts including DIN skts, mains input skt. fuse holder, inte connecting cable,
14 Set of metalwork parts includin silk screen printed fascia
panel and all-brackets. fixing parts, otc. 15 Handbook Teak cabinet
2 each of packs 1-7 inclusive are required
stereo system
Total cost of individually purchased packs

FREE
TEAK CASE WITH FULL KITS $£ 62.40$ KIT PRICE only Co 4 post free (U.K.)
€ 0.65
V.A.T. Please add 8\%* to all U.K. orders (*or at current rate if changed)
£4.25
for further information
E6.30
E0.30
E .3 .35
please write for FREE LIST
POWERTRAN

TRANSISTORS

${ }^{\text {Yype }}$ Pr

THYRISTORS, TRIACS AND TRIACS WITH TRIGGER

IF VRM:	50 V	100 V	200 V	400 V	
		-128/30	38	-150/52	7566
A		33/44/46	42/56/58	68/80/84	80/100/105
8A		38/50/52	47/64/61	75/92/97	90/114/120
10A		42/60/63	51/74/78	84/104/109	100/128/13
16A					

depends on current rating and device type. Connection data supplied depends on current rating and device type. Conn
with each device. Quantity enquiries welcomed.

INTEGRATED CIRCUITS

this month's special offers:

	$100+$	$1000+$
IN4001	2.8	2.3
IN4002	2.9	2.4
IN4003	3.2	2.7
IN4004	3.8	3.3
IN4005	4.4	3.7
IN4006	4.8	4.2
N4007	6.0	5.0
All prices in pence and	per unit.	

PLEASE ADD 8\% FOR V.A.T.
P. \& P.: U.K. $\mathcal{E} 0.08$ PER ORDER OVERSEAS AIR MAIL: AT COST
All items advertised ex-stock on
magazine copy date. All prices subject now available at 30 p (refundable).

EAST

CORNWALL COMPONENTS

CALLINGTON.

CORNWALL, PLI7 8PZ
Telephone: Stoke Climsland (05797) 439. Telex: 45
MERCURY CALGTON.

FROM THE SPECIALISTS-POWERTRAN
 \section*{WIRELESS WORLD AMPLIFIER DESIGNS}

Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating.

30W BAILEY
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors. pots Pk. 3 Semiconductor set 30W BLOMLEY
Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors, pots Pk. 3 Semiconductor set 20W LINSLEY-HOOD Pk. 1 F/Glass PCB Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set
$£ 0.80$
$£ 1.75$
£ 1.75
£0. 85
£2.15 $£ 5.60$
£0.85
£2.40
$£ 3.35$

60V REGULATED POWER SUPPLY

 Pk. 1 F/Glass PCB£0.75
$£ 1.40$
£3.10
£2.05
£4.95
£ 1.60
£2.70

STUART TAPE RECORDER

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this highperformance Wireless World published design.

TRRP Pk. 1	Reply amplifier F/Glass PCB	£.0.90
TRRC Pk. 1	Record amp./meter drive cct. F/Glass PCB	£ 1.40
TROS Pk. 1	Bias/erase/stabilizer cct. F/Glass PCB	£ 1.00
For details of component packs for this design please write		

For details of component packs for this design please write for free list.

TOROIDAL T20 + 20
Developed from the famous Practical Wireless Texan

20 WATTS/CHANNEL

Designed by Texas engineers and published in a series of articles in Practical Wireless. The TEXAN was a remarkable breakthrough in delivering true $\mathrm{Hi}-\mathrm{Fi}$ performance at exceptionally low cost. Now further developed to include a true Toroidal transformer, this slimline integrated circuit design, based upon a single F/Glass PCB. features all the normal facilities found on quality amplifiers, including scratch and rumble filters, adaptable input selector and headphones socket.

ACTIVE FILTER CROSSOVER

An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately, though introducing reactive impedances between the amplifier and the speakers, result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant solution to this problem. described by D. C. Read in Wireless World, 'involves the use of a series of active filters splitting the output of the pre-amplifier into three channels, of closely defined bandwidth, each of which is fed to the appropriate speaker by its own power amplifier. A design for a suitable 20-watt amplifier, based on a proven Texas circuit, was also described by Mr Read. The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module

ACTIVE FILTER

Pack
$1 \quad$ Fi
1 Fibreglass PCB laccommo dates all filters (accommo channel) tantalum capacitors 2\% tantalum capacitors. 2\%
metal oxide resistors. 2\% polystyrene capacitors 3 Set of semiconductors 2 off each pack required for stereo system

SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER DESIGNS

READ/TEXAS 20wamp
£ 1.05
$£ 1.05$
$£ 4.20 \quad 3$
E 4.20 6 off e

Pack
Fibreglass PCB Set of resistors, capacitors pre-sets (not including O/P coupling capacitors) ets of semiconductors em pack required for stereo
Special heat sink as
sembly for set of 3
5 amplifiers
Set of $3 \mathrm{O} / \mathrm{P}$
off packs 4 . 5 required for stereo system
£0.85

POWER SUPPLY
FOR 2OW/CHANNEL STEREO
£0.70 SYSTEM
Pack
$f 1.100^{1} \quad$ Fibreglass PCB
Fibreglass PCB
Set of rectifiers, zener
diode, capacitors, fuses.
fuse holders
£0.50
£2.60
$£ 4.95$
3 Toroidal transformer

For quality sets of speakers

SEMICONDUCTORS AS USED IN OUR RANGE OF QUALITY AMPLIFIERS

2N699	80.25	2N4302	¢0.60	BC 182L	¢0.10	MJ481	\$1.20	TIP29C	¢0.71
2 N 1613	£0. 20	$2 N 5087$	f0. 42	BC184L	¢0.11	MJ491	81.30	TIP30C	$\underline{50.78}$
2N1711	80.25	2N5210	¢0.54	BC212L	¢0.12	MJE521	20.60	TIP31A	E0.60
2N2926G	¢0.10	2N5457	¢0.45	BC214L	¢0.14	MPSA05	20. 30	TIP32A	¢0.70
2 N 3053	£0.15	2 N 5459	¢0.45	BCY72	c0. 13	MPSA12	¢0. 55	TIP33A	£1.00
2N3055	¢0.45	2N5830	¢0. 30	BD529	80.85	MPSA14	20.35	TIP34A	¢1.50
2N3442	\$1.20	40361	¢0. 40	BD530	¢0. 85	MPSA55	20.35	TIP4 1A	¢0.74
2N3704	¢0.10	40362	80.45	BDY56	£1.60	MPSA65	c0.35	TIP42A	E0.90
2N3707	± 0.10	BC 107	E0.10	BF257	¢0.40	MPSA66	¢0.40	IN914	$\underline{60.07}$
2N3711	¢0.09	BC10B	¢0.10	BF259	80.47	MPSUO5	20.60	IN916	$\underline{60.07}$
2N3819	£0. 23	BC109	£0.10	BFR39	¢0. 25	MPSU55	¢0.70	15920	¢0.10
2N3904	20.17	BCi25	E0.15	BFR79	¢0. 25	SN72721P	20.58	5805	¢1. 20
2N3906	¢0. 20	BC126	¢0.15	BFY50	£0.20	SN72748P	¢0.58		
2 N 4058	¢0.12	BC182K	80.10	BFY51	¢0.20	TIP29A	20.50		
2N4062	¢0.11	BC212K	f0.12	BFY52	¢0. 20	TIP30A	¢0.60		

for further information please write for FREE LIST NOW!

KIT PRICE only है $20-15$

post free (U.K.)

Pack		Price
	Set of all small capacitors	
	Set of 4 pow	
	Set of miscellaneous parts including DIN sockets, fuses, fuse holders.	
	set	
6	Set of pot	
	Set of alil semiconductors	
	Special Toroidal Transformer	
10	Fomolee chassis w	
	Cabin	

V.A.T. Please add 8\%*
to all U.K. orders
(*or at current rate if changed)
U.K. ORDERS-- Post free (mail order
only)
OVERSEAS - Postage at cost +50 p
special packing
Dept. Wwo3
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP10 3NN

¢¢	

\qquad

 | $\substack{\text { xi } \\ \text { xi } \\ \text { ze } \\ 2}$ |
| :--- | :--- |
| 2 |
| 2 |

TRANSISTORS $\begin{gathered}\text { Please write or phone for current price of any } \\ \text { of the transistors, diodes shown beiow. }\end{gathered}$

VAT 8%
EXTR

 BEST PRICES PAID FOR TEST AND COMMUNICATION
EQUIPMENT. Single itemi or quantities. Private or Induatrial.


```
RACAL RECEIVERE
Modele RAi7, RAA7 Mk. H, RA 17L,
RA17W, RAhs7E, In condition from
working "as seen" to brand new in working "as seen" to brand new in
cabinets. Prices on application. cabinets. Prices on application. TYPE
DIVEREITY MATERE, solid state, EA5.N.
```

KAHN SSB AOAPTOR MODEL RSSB=
 100 mV (max) input. Features: Electronic
A.F.C.. carrier frequency diversity to combat fading: 20 sec R.C. memory to maintain tuning during severe fading; individual carrier meters: dulator. Full spec \& P.O.A.

TEKTRONIX

OSCILLOSCOPES
 Separate time bases with delay and
magnifier. Time base A A. 0.05 microsecs
to 2 secm in 24 stages also con to 2 secicm in 24 stages also con-
tinuously variabie between steps. Time base
stages. Delay 1 microsac to 10 sec.
in
in stages. Delay type 81 adaptor enabling
Complete with
use of all tetter series plug-ins. Type 80 use of all tetter series plug-ins. Type
plug-in (less probe) also available.

541A-33 MHz. Choice of plug-ins. P.D.A. La285A(545A)-33MHz, separate tims bases with delay. P.O.A.
545-133MHz. Separate time bases with delay. Price on application
LUG-IM UMITS
CA-24 MHz dual trace $50 \mathrm{MV}-20 \mathrm{~V}$. G-20 MHz differential $50 \mathrm{MV}-20 \mathrm{~V}$. $\mathrm{L}-30 \mathrm{MHz}$ fast rise time $5 \mathrm{MV}-20 \mathrm{~V}$. D-High gain differential 1MV-50V. N 600 MHz sampling $10 \mathrm{MV}-\mathrm{cm}$. $53 / 54 \mathrm{C}$. Dual traca $33 \mathrm{MHz}, 60 \mathrm{MHz}$. $0,05 \cdot 20 \mathrm{v}$

BOONTON FM/AM SIGNALGENERATOR EHV POWER SUPPL EHV POWER STE

SOLARTRON

Open 9-12.30, 1.30-5.30 p.m. excepl Thursiay 9-1 p.m.
on request.

HEWLETT -

PACMARD
175A OSCILLOSCOPE with 1750 A
dual trace vert plug-in and 1781 B delay duai trace vert plug-in and 1781 B delay
time base plug-in. 50 MHz minimum
bandwidth at $50 \mathrm{mV} / \mathrm{CM}$. T / B modes bandwidth at $50 \mathrm{mV} / \mathrm{CM}$. T/B modes
main. main single, mixed. main delayed delaying. Full Spec \& P.O.A.
185A SAMPLING OSCILLOSCOPE. $185 A$ SAMPLING
800 MHz . complete with 1 B8A $1 \mathrm{mV} / \mathrm{CM}$ dual trace plog-in. 1 GHz probe and
manual. Full spec A P. O .
524 C . COUNTER/ 524C ELECTRONIC COUNTER/ tended to 500 MHz depending on con-
verter plug-in. also period and time verter plug-in. also period and time
measurement. 8 digit in-line display
on Nixie tubes. f165 with one plug-in (as below) 5248 model. spec as for 524 C but display on 6 neon lamp
decades and 2 meters $£ 115$ with one of the following plug-ins: 526 A Video amp.
 Measures frequency up to 12.4 gHz . May
be used on its own or with freq. counter be used on its own or with freq. counter. 200AB AUDIO OSCILLATOR 19 kHz ,
600ohm balanced or unbalanced. small size. £25. 300 HARMONIC WAVE ANALYSER Freq 0-18k Full spec \& PO

ROHDE \& SCHWARZ

Z.gZ DIAGRAPH 50 Directly measures multi-

 terminal networks. phase shits. phaseandle etc. with complementary POWER
SIGNAL GENERATOR TYPE SMLM High Freq. resolution. intemal/externa mod up to 3 V out. P.O.A. $0.5-400 \mathrm{MHz}$ 75A. P. WA.ATMETER \& MATCHING P.O.A. VOLTMETER TYPE UDND POAA WAVE POWER METER
MICROWAVE O-32OOMHZ at 50Ω. TYPE
$0-200 \mathrm{mWO}$ in $0-3200 \mathrm{MHz}$ at
4 calibration check with measuring head EREOUENCY SYNTHESIZER TYPE INDICATOR TYPE FKM. 15-30MHz $30-100 \mathrm{MHz}$.P.O.A.
InpHASE AUTO TRANEFORMER, wye 18kVA. Made by Weatinghouse of USA. Brand now in
UK tranaport.

 volts, decibele and power relative to thermal
nolse. Platon type atienuator. 50Ω output impedance. Internal modulation at 1 kHz
at up to 90% depth, aiso external sine and at up to 90% depth, also external zine and
pulse modulation. Built-ln 5 MHz crystal callora TF801 B/2. Spec as for TF801D but
circuiz differences. Working order, E95.

TF 14 MS DOUBLE PULEE GENERATOR WITH TM Cctop sis sich nucleonics, 'scopes, counters, filtere etc. SPEC. TF 14008. Rep. freq. 10 Hz to 100 kHz , pulse width 0.1 to 10041 sec., delay -1.5 to +30004 sec., riee time 30 N sec. SPEC. TM Se0/s. As for TFi400S except pulse width 0.5 to $23 \mu \mathrm{sec}$., delay 0 to $+300 \mu \mathrm{sec}$. c234.

MARCONI

SIGNAL GENERATOR. Four additional

 termination. Freq. Range $1.5-220 \mathrm{MHz}$
P.O.A.

FM SIG GEN TS 1077/1. Range 19.7 | FM SIG GEN TS |
| :--- |
| 102.5 MHz . $0.2 \mu \mathrm{v}-200 \mathrm{MV}$. Piston | attenuator at 52 ohms outpuz. FM

modulation at 1000 Hz at up to 100 kHz deviation inc. tuning. etc. E75. ANALYSER for analysis ond measurement of Radar Equipment. Frequency
range 190 to 230 MHz with crystal check
points. Sweep width 0.5 to 5 MHz . points. Sweep width 0.5 to 5 MHz ,
output pulse delay (a) $86-175 \mu \mathrm{Sec}$. (b) $0.7-1.4 \mathrm{mSec}$ with $\times 1$ and $\times 2$
multiplier and $\dot{\div} 2 \times 1 . \times 2$ multiplier.
Output $2 \mu \mathrm{v}$ to 200 mv with $\times 10$ multiplier E200. FACTOR METER
DISTORTION TF142F. Range $100 \mathrm{~Hz}-8 \mathrm{kHz}$. Distor-
tion range from $0.05 \%-50 \%$. 0.5 V input at 100 KN imp. E70.
NOISEATOR TF1053 (CT207). Range $100-600 \mathrm{MHz}$. Noise
factor up to $150(21.7 \mathrm{db})$ at 75 ohms. Audio power Up to 500MW. E95.
MARCONI OA 4094 N 3 SPECTRUM Freq. range 100 MHz . Full Spec. \& P.O.A.

TECHNICAL MATERIAL CORP: EXCITERTRAANSMITTING MODE crystal positions. Vemier tuning. 0-100Hz continuous frequency shift. Upto $\pm 600 \mathrm{~Hz}$ switched trequency correction.
\pm Modes F.A.X.: F.S.: M.S.C.i C.W. EEO.

RACAL UNIVEREAL COUNTER/TIMER digit in 8 A5s (CTAES)

ments. Input eensitivity varlable from 390 MV o 9 V . three independent inputs, self-check of g , three independent inputs, selif-check tic. Full spec. on requet. ह145. 500/2SOW MEDIUM WAVE BROAD. CAST TRANSMITTERS. Prlce and

PLEASE NOTE ALL EQUIPMENT
ordered from us is complately ovar hauled mechanically laboratories our FON EXPONT ONL
TRAN MITTERS: BC 810 Hallicrafters. RCA ET 4336 aleo modified verelon of increaged output to 700 w
COLLINS TYPE $23104 / 5 \mathrm{k}$ autotone and manual tuning. All above complete Instellation and epare part TRANSCEIVER C-13 TRANSMITTERS
RACAL COMMUNICATIONS EQUIPMENT We are able to offer a comprehensive
selectlon from the range of this modern high class equipment including, recelvera, L.F. Converters, SSB adaptora, panoramic adaptore, divereity
a witches, tranamitter driver unite. Inear amplifiers can be bulit to
cuatomere' requirements. Please end us your enquirles.
Arsa SPAnEs. We hold the largest atock
 TELEPHONE TYPE "J" (Troplcalieed) WITCHBOARO
TELEPHONOMATIC PRIVATE
Price of each of the above on application
for direct TEST EQUIPIENT
tor 01748549

PLEASE ADD

 8\% VAT Tel. 01-7430099

COLOUR
 TELEVISION SERVICING GORDON J. KING, RTechEng, MIPRE, FSRE, MRTS, FISTC

This comprehensive book deals straightforwardly with the servicing of PAL receivers, using a minimum of mathematics.

It is divided into three sections: the first surveys the colour TV system as a whole, the second studies the elements involved (e.g. picture tubes, conveyance systems, chroma channels) and the third is devoted exclusively to servicing.

0408000449328 pages illustrated 1971 £4.40

NEWNES-BUTTERWORTH

Borough Green, Sevenoaks, Kent TN15 8PH

AMATEURRADIO BULK BUYING GROUP
 \square

Specialising in components and modules for the SWL. Radio Amateur and Hobbyist. (Trade also sup plied, of coursel). Try our prices, thy
CMOS ics at LOWEST PRICES

		ef	full spec	nded	at low	ever pric	
4000	$26 p$	4018	¢ 1.96	4035	f1.85	4511	¢2. 27
4001	26 p	4020	¢1.96	4042	¢1.61	4543	f2. 35
4002	26p	4022	f1.78	4043	£1.57	74 COO	26 p
4009	63 p	4023	26p	4044	$£ 1.57$	74 CO 4	41p
4010	63 p	4025	26p	4049	59p	74 C 10	26p
4011	26p	4026	¢2.79	4050	59p	74 C 20	26p
4012	26p	4027	94p	4055	£1.17	$74 \mathrm{C42}$	E1.53
4013	26p	4028	¢1.53	4056	£1.46	74.74	26p
4016	67p	4030	67 p	4069	$41 p$	$74 C 76$	94p
4017	£1.75	4033	£2.79	4510	E2.11	$74 \mathrm{C95}$	E1.85

PLESSEY SL600 ics at LOWEST PRICES

where in the country available for immediate deli							
L6		13	E3.72	SL622	f6.58	SL630	¢1.62
S 16	¢1.7	SL620	[2.58	SL623			
SL612	1.7	SL62	¢2.58	SL624	[2.45		
Full data sheets on all SL600 devices are included in our Data-Catalogue- 35 pages. crammed with information for 25 p plus large $6 \frac{1}{2} \mathrm{p}$ sae All components are available for the SL600 series SS8 Transceiver described by G3ZVC in "Radio Communication". "Ham Radio" and other leading publications. Full details are in our free price list.							
DECON DALO PCB MARKER PEN Available from us complete with spare tip and instruction sheet at onty $85 p$							
DIGITAL FREQUENCY METER by CATRONICS LTD Catronics "smash the price barrier" with two models having features never before offered on an instrument in this price range!							
Model DFM2 5 -digit model with 4 -speed time base (1 S to 1 mS). The reading is then displayed for 1 second							
Model DFM3 7 -digit model with 4 -speed time base (10S to 10 mS) with buit-in automatic memory. Reading is displayed for 100 mS plus gate time and changes to display new reading from the i.c. memory. Automatic suppressed zero circuitry" is incorporated on the three leading digits.							
BOTH MODELS typically have an upper frequency limis of 50 MHz and an input sensitivity of 20 mV . Low frequency response extends below 50 Hz .							
The frequency accuracy is determined by a precision 10 MHz master oscillator having a stability of $\pm 2 \mathrm{ppm}$ over the normal ambient temperature range.							
Power supply is a fully stabilised 240 volt input unit, although operation from 12 volit battery supply (-ve earthi can be arranged Prices: DFM2-£75: DFM3- $990(+$ insured post- $£ 1.00)$. Write for full specification sheet							
We also stock a wide range of other products diodes transistors. Minitrons Microwave Modules converters etc. Javbeam aerials. KVG and Murata filters eic. Write for free price list lenclose sae please) or send $25 p$ plus large $6 \frac{1}{2} p$ sae for our Data-Catalogue							
	All pri	include should ., De CO	$\begin{aligned} & \text { th\%. M } \\ & 102,2 \\ & \text { DON, } \end{aligned}$	umpos il order HOR URR	king s as N C	ge 10p. ws: SCE	

TRANSFORMERS

SAFETY MAINS ISOLATING TRANSFORMERS

Ref.	VA	Pri 120/240		
No.	(Watts)			
07	20	1		
149	60		12	
150	100	5	8	
151	200			
152	250	13		
153	350	15		
154	500	19	8	
155	750	29	0	
156	1000	38	0	
157	15:00	46	0	
158	2000	60	0	
159	3000	85	0	

AUTO TRANSFORMER:

VA	Wzight	AUTO TRAN Sizecm.	Auto Taps	
(Watts)	$1 \mathrm{In}^{0}$			
20	10	$5.8 \times 5.1 \times 4.5$	0-115-210	-240
75	$? 4$	$7.0 \times 6.7 \times 6.1$	0-115-21	
150	34	$8.9 \times 7.7 \times 7.7$	0-115-20	220-2
300	34	$9.9 \times 9.6 \times 8.6$!	,
500		$12.1 \times 11.2 \times 10.2$	"	"
1000		$14.0 \times 13.4 \times 14.3$,	"
1500		$14.0 \times 15.9 \times 14.3$	"	"
2000	320	$17.2 \times 16.6 \times 14.0$,	"
3000	4) 0	$21.6 \times 13.4 \times 18.1$		

115 V mains lead inp it and U.S.A. 2 pln outlets. 20VA $£ 3.13$. P. \& P. 38p. 500 VA
LOW VOLTAGE TRANSFORMERS

$\begin{gathered}\text { ALL MAIL ORDER BY } \\ \text { RETURN.C.O.D, SERVICE } \\ \text { WELCOME }\end{gathered}$
 Unloss otherwise.a.t.

We are open from 9.30 a.m.-6.00 p.m. Monday-Saturday
All mail order and enquiries to 270 Acton Lane, Chiswick, London, W4 5DG. Tel: 01-994 6275

SLA7 RED LED 0.3
DIGIT $0-9 D P 89 p$ ea
GREE GREEN\&YELLOW $£ 1,40$
JUMBO LED $0.6^{\prime \prime} 747$ DISPLAY £2.25 ea. 3015F 0-9DP \& 1 ea. ZENON FLASH TUBE
LEDS 『ed 13
LEDS 209 STYLE ONLY 13p ea TIL 211 \% CLIP GREEN 29p ea $\begin{array}{llll}\text { LARGE } & 0.2 & 2^{\prime \prime} \\ \text { \& CLIP RED } & 17 p & \text { ea } \\ \text { LARGE } & 0.2 & \text { CLIP GREEN } & 30\end{array}$ 209 STYLE OR . 2 "ORANGE 39 p eR
 TEC12 PHOTO AMP/SCMITT/RELAY
DRIVER or LED TTL INTERFACE

FLUORESCENT LIGHTS 12 V MADE IN UK Digitaleldeh IC AY51224 4 DIGIT CLOCK £3.7

CASSETTE mochanics

NEW 8tk CARTRIDGE MECHANISM £8

 STEREO CASSETTE MECHANISM 133.75 with heads etc.SEND 15 p for DAT
INTEGRATED CIRCUITS

74π TTL

$\begin{array}{llll}1 / 1 & 7473 / 74 / 76 & 29 p\end{array}$ $\begin{array}{lll}7400 & \text { GATES } & 13 p \\ 740475 \\ \text { INVERT } & 17 \mathrm{p} & 7490\end{array}$ $7401 / 2 / 10 e t c 14 \mathrm{p} \quad 7491 / 2 / 3 / 4 \quad 39 \mathrm{p}$ 7413 SCMITT 31p 7410074175 $\begin{array}{lll}7440 & \text { BUFFER } & 14 \mathrm{p} \\ 744121 \\ \text { DRIVER } & 89 \mathrm{p} & 74123\end{array}$ $\begin{array}{lll}7470 \text { \& } 7472 & 29 p & 74141(\& 7441) 73 p\end{array}$

TRANSISTORS 8 DIODES

B2Y88 400 mW ENER DIODES $9 p$ BRIDGE RECT BR100 DIAC 25p

 COPPER CLAD VEROBOARD O.1 2ね"x5" 29p 2ix3\}" 26p.3ix3ł"31p DIL IC'DIL IC's BOARDS $6 \times 4 \frac{1}{\prime \prime} £ 1.50$ 36 way 90 p. PLAIN 3 " $\times 17^{\prime \prime}$ £1, FACE CUTTER 45p. FEC ETCH PAK 50p

PRINTED CIRCUIT BOARD KIT \&1.69 DECON DESOLDER BRAID REEL 59p HEATSINKS
5F/T05 \& $18 \mathrm{~F} / \mathrm{T} 018$ 5p ea.TV4 15p TGS308 GAS DETECTOR 41 29p LOGIC PROBE TTL TESTER PEN \&5 CAPACITORS
CERAMIC 22pf to 0,1uf 50v 5p ELECTROLYTIC: $10 / 50 / 100$ uf in $1000 \mathrm{uf} / 25 \mathrm{v} 18 \mathrm{p} .200 / 500 \mathrm{~g} 2 \mathrm{v}$ 9p. POTENT IOMETERS (POTS) AB or EGIN LIN or LOG ROTARY 13p,STITCH 14p KNOBS 7p. PRESETS 6PRESISTORS 1ip SWITCHES: SPST 18p. DPDT 25p Din plugs all 12p. Sockets 10p, ALI CASES AB5/AB7 50p.AB13 65p
TRANSFORMERS 1A $6 v 6 \mathrm{v}$ or 12 v 12 v

Dh 5 netets

TEXAS GOLD

8.14, 16 PIN 13 p

SOLDERCON STRIPS
100 PINS 50p. $1 K$

METAL BOXES

ALUMINIUM BOXES IDEEL FOR VERO-
BOARD WITH BASE \& P.K. SCREWS

 MINIATURE MAINS TRANSFORMER LM309K 5 V . 1A.
 Price 1-s5p. 100-60p. ea. $1,000-50 \mathrm{p}$. ean. 10,000- MFC
3 CORE PVCINSULATED MAINS CABLE. $1,000 \mathrm{~m}-635.10,000 \mathrm{~m}-£ 330$.
0.47 mfd .50 V MI YLAR FILM CAPACITOR
Size: $1^{17} \times 0.35^{"} \times 0.65^{\prime \prime}$ P.C. Mount. PrIce $100-4 \mathrm{p}$

 TRANSFORMER: DOUGLAS PRI, 0,115
$200,220,240$ SEC. $25-0-25-0-6 \mathrm{~V}, 214,24.50+$
50p P.p.
TRANSFORMER
TRA
PRI.
EN:50

MULTICORE CABLE.
screened, 14/0076. ${ }^{25}$-way individually
per yard + V.A. Postage by whote.
IMHOFF 10^{\prime} RACKING CABINETS. $131^{\prime \prime}$
high, $22^{\prime \prime}$ wide, $13^{\prime \prime}$ deep. Brand new. $£ 10^{\circ}$

SIEMENS CONTRACTORS, Over 1,000 in
METAL OXIDE RESISTORS TR4/S/A in
on quantity.
to TURN TRIMPOTS by Bourns, Mec
Painton, etc. All values in stock. sop each
Discount on quantly.
DIGITAL INTEGRATED CIRCUITS SN7400
SN7401
SN7402
SN743
SN740
SN740
SN74
SN74
SN74
SN7

42p	SN7443
50p	SN7445
20p	SN7446
42p	SN7477
50p	SN7448
55p	SN7450
SN7451	

Power Supplies - Mains input (* chassis-rest cased) $470 \mathrm{C} 6 / 7 \frac{1}{2} / 9 \mathrm{~V} 300 \mathrm{~mA} \quad$ *P108145 volt 0.9A $£ 7.80$ with adaptors $\{2.25$ P12 41 12 volt

NOW OPEN SUPERMARKET
 WATCH FOR FURTHER DEVELOPMENTS!

SINCLAIR MODULES AND KITS

		\%
ST80 stereo pre-amplifier Audio filter unit	$\begin{array}{r} £ 11.95 \\ \mathrm{f6.95} \end{array}$	Sinclair Project 80
24015 watt amplifier	¢5.45	
26025 watt amplifier	f6. 95	Pmackage Deals
PZ2 power supalies lor 10:22	¢4.98	(Carriage packing 35p)
P78 power supplies (STA3)		$2 \times 240.5780, P 25 \quad 125.00$
for 1 or $\mathbf{2 2 4 0}$	57.98	$2 \times$ Z60. S780. P28 $\quad 27.75$
PZ8 power supplies (STA3)		$2 \times 780,5780.988$
for 1 or 2260	[7.98	+ Trans $\quad 134.40$
Transtormer for	f3.95	Sinciait Special Purch
FM tuner	f11.95	- Project 60 sterso
Stereo decader	¢7.95	preamplifier 66.75 post 20p
IC.20 powet amp kit	¢7.95	- Project 605
P220 pomer supply		
for 1 or 21 cz 20	c5.45	- Cambridge calkulata
All above post paid (GB only)		bot $\quad 113.50$ post 15p

TEST
EQUIPMENT MULTIMETERS

 ,
 st

EMI SPEAKERS
Special Purchase

$13 \quad \times \quad 8$ chassis
speakers (carr/pack
ing $30 p$ ea or $50 p$ pr)
$\star 150$ TC 10 watt
8 ohm twin cone
$\mathbf{£ 2 . 2 0}$
EW 15 watt 8 ohm with tweeter $\mathbf{£ 5 . 2 5}$
35020 watt 8.15 ohm with tweeter
£7.80 each
*Polished wood cabinet $\mathbf{£ 4 . 8 0}$ carr..
e1c: 35p each or 50p pair
EXCLUSIVE
$\mathbf{5 W N A T I I C}$
AMPLIFIERS
Special purchase 5 watt output 8-16
ohm load. 30 volr max DC operation
complete with data.
Price $\mathbf{£ 1 . 5 0}$ ea. or 2 for $\mathbf{£ 2 . 8 5}$.
Printed Circuit Panels $\mathbf{5 0}$.

LHFTFM TLINERE

625-line receiver UHF transistorised
tuners. UK operation. Brand new.
tuners. UK operation.
(Post/packing 25p each)
TYPE C variable tuning
TYPE B 4-button push-butto
(adjustable)

(adjustable)

PA-DISCO-LIGHTING EQUIPMENT

Without doubt UK's best range of modular and complete equipment.
Lighting. mixing. microphones, accessories. speakers. amplifiers. enses.
etc., etc. FREE stock lists (Ref. No. 18) on request CALL IN AND SEE FOR
YOURSELF at HENRY'S DISCO CENTRE, 309 EDGWARE ROAD. 01 -723 6963.

CALCULATORS

1450 RECHARGEABLE BATTEAY
 2v 400mA/HR 50p p.p. 15p.

PHILIPS 12V FLUDRESCENT INVERTOR

to be built or serviced within their extemstrment then

prices include screv
fitmon wici WEST HYDE (IH
Increasas in postal charges, due in March, not included.
WEST HYDE DEVELOPMENTS Lud, Ryerield Cres., Morthwood Hilts, Morthwood, Middx HAG 1 NN Tel: Horthwood 24941/28732 WRIIE OR 'PHONE FOR NEW FREE CATALOGUE Tslex: 923231 WW-034 FOR FURTHER DETAILS

TRANSISTORS AND DIODES

CAPACITORS
 Type SU $103 / 1$ comprising capacitor Diode and Resistor 45 p p/p 10 p : Dubilier
Metalised Paper type $426100 \mu \mathrm{~F} 15 \mathrm{v} 60 \mathrm{p} \mathrm{p} / \mathrm{p} 25 \mathrm{p}$: RIC 1.8 fF 440 v a.c. 40 p p/p 10p.
FANS, CENTRIFUGAL BLOWERS \& MOTOR
Aluminium Type Miloy impeller \& casing (corres
Aluminium alloy impeller \& casing (corres-
ponds to current type 39657^{\prime}) 230 v . 425 cfm free air weight $9 \frac{1}{2} 1 \mathrm{bs}$. insulation 23.00

Woods Aerofoil short casing type S. Ref
 cast alum. impeller 4 blades width casing
$2 \mathbf{z}^{\prime \prime}$ total $5 d^{\prime \prime}$ weight 5 dibs inc| p.p. f13.00. Aerofoil Code $7.5280 \mathrm{~K} 200 / 250 \mathrm{v}$. 1.0 Oa 1 ph 14 blades incl p.p. £14.50.
Service Electric Hi-Velocity Fans, suitable for Gas conveying. Cooling Electronic equipment. Air blas for 01 burners. Secomak Model 365 (corresponds continuous 160 cfm 12 in w.g. price incl. carr. £45.00. Secomak model 350250 V

Air Controlss type VBL4 200/250v 1 ph 50 c 110 cfm
Type VBL5 200/250v $1 \mathrm{ph} 50 \mathrm{c} \quad 172 \mathrm{cfm}$ tree air ,.item Alday Alos.
William Allday Alcosa rotary vane oil free Single Stage phase induction motor $1 / 3 \mathrm{hp}$ cont $220 / 250 \mathrm{v}$. $380 / 440$ phase induction mator $1 / 3 \mathrm{hp}$.
Class E ins. incl. carr. $£ \mathbf{E R 8 - 0 0}$.
Alcose blower FAD 3.8 cfm at 5 psi . Rpm 1420
Motor EE 3 ph 50 c 4hp 1400 pm . incl. carr. 88.00.
Gast MF G. Vacuum pump 0522-P702-R26X. Motor
 1 ion Mercury in 2 mins maintains vacuum. 635 mm Mercury. Or as compressor 10 psi int. or 15 psi cont.
incl. carr. $£ 28.00$.

3 phase 2HP motor 60/50c.. 1800/1500 RPM. 208/220/440V
Cat. 2026391 Potter Instruments flange mounting capstan motor. 0.2 HP cont. Carriage
Where p.p. not advised add 10 p per $£$ handling and post (in UK). Cash with order. Pe:sonal callers welcome. Open Mon. Wed. 9.30-5.00 Fri.-Sat
W. \& B. MACFARLANE

126 UXERIDGE ROAD, HANWELL, LONDON W7 3SL

G. F. MILWARD

ELECTRONIC COMPONENTS

Wholesale/Retail:

	$1 / 99$ 60.15	$100 / 499$ 60.125	$500 / 1000$ $\times 0.10$		$1 / 99$ 60.645	$\begin{gathered} 100 / 499 \\ 60.537 \end{gathered}$	$500 / 1000$		$1 / 99$ 60.495	$\begin{array}{r} 100 / 499 \\ 60.412 \end{array}$	$\begin{array}{r} 500 / 1000 \\ E 0.33 \end{array}$
7400	60.15 60.15	$60 \cdot 125$ 60.125	$80 \cdot 10$	7442 7443	60.645 $¢ 1.275$	$\begin{array}{r} E 0.537 \\ \in 1.062 \end{array}$	$\begin{aligned} & 60.43 \\ & E 0.85 \end{aligned}$	7494 7495	180.495 60.63	$\mathbf{6 0 . 4 1 2}$ $\mathbf{E 0} \mathbf{5 2 5}$	60.42 60.48
7402	60.15	60. 125	60.10	7445	¢0.855	¢0.712	¢0.57	7496	60.72	60.60	C0.48
7403	c0. 15	c0. 125	c0.10	7446	E1.05	¢0.875	60.70	74104	60.315	60.262	E0. 21
7404	EO. 18	c0. 15	C0. 12	7446A	E1.05	¢0.875	$\underline{60.70}$	74105	60.315	¢0.262	¢0.21
7405	60.18	C0. 15	¢0. 12	7447	E1.05	60.875	E0.70	74107	60.315	E0. 262	60.21
7406	c0. 375	C0.312	60.25	7447A	E1.05	¢0.875	E0.70	74121	60.315	60.262	60.21
7407	C0. 375	60.312	20.25	7448	C0.855	60.712	60.57	74122	60.45	60.375	C0. 30
7408	£0.15	co. 125	c0. 10	7450	C0. 15	c0. 125	60.10	74123	60.63	C0.525	c0.42
7409	f0. 15	C0. 125	¢0.10	7451	C0. 15	C0. 125	60.10	74141	c0.75	60.625	60.50
7410	f0. 15	c0. 125	¢0.10	7453	60.15	60. 125	60. 10	74151	60.69	60.575	60.46
7412	c0.195	C0. 162	C0. 13	7454	60.15	¢0.125	60. 10	74153	60.69	60.575	60.46
7413	60.345	C0. 287	¢0. 23	7460	¢0.15	± 0.125	60.10	74155	60.69	E0.575	60.46
7416	60.345	C0.287	c0. 23	7472	¢0.255	E0.212	60.17	74156	60.69	60.575	60.46
7417	C0.345	60.287	60.23	7473	CO. 153	C0. 262	60. 21	74160	61. 005	60.837	60.67
7420	c0. 15	CO. 125	60. 10	7474	C0.315	60.262	60.21	74161	C1.005	60.837	80.67
7423	c0.27	C0.225	60.18	7475	60.465	60.387	60.31	74162	Cl 1005	60.837	¢0.67
7425	¢0. 27	60.225	60.18	7476	C0.315	C0.262	60.21	74163	¢1.005	60.837	60.67
7426	C0. 27	$\mathbf{C 0 . 2 2 5}$	60.18	7480	C0.435	C0. 362	60.29	74166	¢1.425	¢1.187	60.95
7427	c0.27	C0. 225	60.48	7482	¢0.75	60.625	60.50	74174	E1. 20	E1.00	60.80
7430	C0. 15	c0. 125	c0. 10	7483	60.825	C0.687	60.55	74175	60.975	60.812	60.65
7432	¢0.25	60.225	E0.18	7485	¢1. 275	E1.062	60.85	74192	Cl. 275	E1.062	60.85
7437	C0.27	80.225	c0.18	7486	60.315	C0. 262	60.21	74193	61. 275	E1.062	60.85
7438	c0. 27	C0. 225	E0. 18	7490	$\underline{60.465}$	60.387	60.31	74198	E2.10	E1.75	C1.40
7440	¢0.15	c0. 125	E0. 10	7492	¢0.465	60.387	C0.31	74199	E2.10	E1.75	C1.40
7441 A	¢0. 825	¢0.687	60.55	7493	60.465	60.387	c0.31				

To secure the above prices, all orders for these devices must exceed $£ 10$ in total value. Price rating is established by TOTAL NUMBER OF DEVICES ORDERED. Any mix may be made. For special quotations for large orders ring 021 -327 2339 NOW!!!

CL8300	MICROWAVE DEVICES Gunn effect oscillator	9.4 GHz	£40
CL8370	ditto	9.5 GHz	£10
CL8380	ditto	10.5 GHz	f10
CL8390	ditto	11.5 GHz	£10
CL8430	ditto	9.35 GHz	£40
CL8450	ditto	9.35 GHz	£40
CL8470	ditto	9.35 GHz	£40
BXY27	Varacter Diode. "S" Band. Cut-off	70 GHz	£1
BXY28	Varacter Diode. Cut-off	100 GHz	£1
BXY32	Frequency Multiplier. " X " Band	150 GHz	£1
BXY35A/C	ditto	25 GHz	£1
BXY36C/D	ditto	75 GHz	£1
BXY37C/D	ditto	100 GHz	£1
BXY38C/E	ditto	120 GHz	£1
BXY39C/D	ditto	150 GHz	£1
BXY40D/E	ditto	180 GHz	$£ 1$
BXY41C/D/E	ditto	200 GHz	£1

12 VOLT FLUORESCENT LIGHTING

Inverter transformers $13 / 15 \mathrm{~W}$ (circuit included)
Current economy" transistor (600 ma .)
Maximum light"' transistor (1.3A)
Resistors/capacitors to suit
Lampholders (long lead) (needed with cases)
Lampholders (long lead) (needed with cas
(short lead)
White enamel case 21 in (postage 30p)
Lampholders (long lead) (needed with cas
(short lead)
White enamel case 21 in (postage 30p)
es)
50p
(Note: tube only supplied if case ordered, to prevent postal damage).
$13 W$ fitting ready built and tested-including tube (postage 30p) $£ \mathbf{\$ 3 5}$
Post/packing. 25 p per order except where shown.

NEW!NEW!NEW!NEW!

An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly
Method: Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal manner.
Light sensitive aerosol spray
Developer and Etchant
$\mathbf{£ 1 . 0 0}$ plus postage

Single-sided Copper-clad Fibreglass Board 50p plus postage

75 p sq. ft.
Double-sided Copper-clad Fibreglass Board
81.00 sq . ft.

Boards cut to any multiple of $6^{\prime \prime}$ Max size $3^{\prime} \times 4$

1,000,000
POTENTIOMETERS
We have bought a huge
assortment of volume controls.
Pre-sets, sliders, etc. All are
in manufacturer's original
packing.
Manufacturing quantities of
some types available.
Write or phone for details.
Sample bag
100 mixed $£ 2.50$

ELECTROLYTIC CAPACITORS Several thousand of each of to clear!	
ALL NEW STOCK	
5 ff 10 V	35 p dozen
10uf 10 V	35p dozen
50 uf 10 V	${ }^{\mathbf{3 5 p}}$ dozen
100uf 10V	$\mathbf{3 5 p}$ dozen
330 ff 16 V	45p dozen
330 ff 25 V	60 p dozen
330 uf 35 V	80p dozen
2200 ff 16 V	$f 1$ dozen
$15000 \mu \mathrm{f} 25 \mathrm{~V}$	50p each

STEREO IC DECODER
 HIGH PERFORMANCE PHASE LOCKED LOOP
 as In 'W, w.' July '72

MOTOROLA MC1310P EX STOCK DELIVERY

 specificationSeparation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$.
I/P level: 560 mV rms
O/P level: 485 mV Distortion: 0.3% Power requirements: $8-16 \mathrm{~V}$ at 16 mA
Will drive up to 75 mA stereo 'on' lamp or LED.

KIT COMPRISES FIBREGLASS PCB (Roller tinned), Resistors, I.C., Capacitors, Preset Potm. \& Comprehensive Instructions	$\begin{aligned} & \text { ONLY } \\ & \text { f3.98 } \end{aligned}$	WHYPAY MORE? post free.
LIGHT EMITTING DIODE Suitable as stereo 'on' indicator for above	RED GREEN	$\begin{aligned} & 29 p \\ & \mathbf{5 9 p} \end{aligned}$

MC1310p only $\mathbf{E 3} 15$ plus p.p. $6 p$

NOTE

As the supplier of the first MC1310P decoder klt, of which we have sold literally thousands, our customers can benefit from our wide experience

Please add V.A.A.T. at 8% to all prices
FI-COMP ELECTRONICS
BURTON ROAD, EGGINTON, DERBY, DE6 GGY

QUADROPHONIC
 TAPE PLAYERS

Tape Transports
Ize 21 Mark slze 21 in . wide $\times 19 \mathrm{in}$. front to back and 10 ln . high overall Including deck. This below. Others are avallabie giving up to elght tracks. Price from $\boldsymbol{f} 11 \%$ Playback Pre-amplifiers

Quad Power Amplifiers
A complete amplifier size 7 In . $\times 10 \frac{1}{2} \mathrm{in}$. $\times 4 \mathrm{in}$. high with four plug-in powe
amplifiers each giving 8 W RMS into 8 ohms from $\mathrm{TIP} 31 / 32$ output stage. 30 V upply.
\qquad
Ask about tape controlled teaching equipment, with Illuminated panel display, for
DEIMOS LIMITED
Simmonds Road, Wincheap Industrial Estate,
Canterbury, Kent.
Tel: 022768597

SERVICE TRADING CO

VARIABLE VOLTAGE TRANSFORMERS
 INPUT 230 v. A.C. 50/60 DUTPUT VARIABLE $0 / 260$ v. A.C BRAND NEW. All types. 0.5 KVA (Max_ 21 Ampi 1 KVA (Max. 5 Amp) 3 KVA (Max. 15 Amp) 4 KVA (Max. 20 Amp) (Max. 37.5 Amp) $\mathbf{£ 9 . 0 0}$
$\mathbf{£ 1 0 . 0 0}$
$£ 14.70$
.$£ 28.10$
$£ 31.25$
$£ 72.50$
$\mathbf{f 1 0 2 . 5 0}$
.$£ 9.00$
300 VA ISOLATING TRANSFORMER
$115 / 230-230 / 230$ volts. Screened. Primary two separate 0-115
voits for 115 or 230 volts. Secondary two 115 volts at 150 VA ach for connections. Fully tropicalised. Length 13.5 cm . Width 11 cm .
Height 13.5 cm . Weight 15 lb . SPECIAL OFFER PRICE Only
E5.00. Carr. 80 p .

LTTRANSFORMERS

2 volt @ 20 amp. $£ 9.00$ Post 60 os .
, $6,12,17,18,20$ vot $@ 20$ amp. 10.40 Post 60 p
Other types to order at short notice- Phone your enqui
AUTO TRANSFORMERS
Step up step down 0-15/200/220/240 volts. At 75 watt $£ 2.64$ Post 36 p . 150 watt $£ 3.18$ Post 36 p .300 watt
fe. 20 Pots 50 p. 500 watt $£ 9.20$ Post 65 p . 1000 watt $£ 12.00$
Post 80 .
"GENTS' 6" ALARM BELL 200/250 volt AC/DC. Brand
E5.00 Post 60 p . (Illustrated)
'STC' $6^{\prime \prime}$ RED ALARM BELL

VENNER TIME SWITCH TYPE MSQP
200/250 Volt 2 -ON/2-OFF every 24 hours at any
manually pre-set time. 20 amp contacts. Fitted die-cast case. Tested and in good condition
\& 4.75 Post 25 p .

A.C. MAINS TIMER UNIT

 on for any length of time. from 10 mins. to
hrs. then switch oft. An additional 60 min
 60 mm . Price $£ 2.00$ Post 20 p . (Total inc. VAT \& Post $£ 2 \cdot 38$).
BENDIX MAGNETIC CLUTCH A superb example of Electro-mechanics
The main bood is in iwo sections. The coil section is fixed and has a zin. slevee. The
drive section rotating on the outer perimeters. The uniting plate has fin. ID
bearing concentric with main section and 18 -tooth cog wheel. When energized
d.c. at 240 MA . OUR PRICE JUST $\mathbf{E 2 . 5 0}$

VERY SPECIAL OFFER

Miniature Rollor Micro \mathbf{S} witch. $\mathbf{5}$ amp
c/o contacts: NEW. Price 10 for $\mathbf{£ 1 . 5 0}$
Co contacts. NEW. Pric
Post 100 . Min order 10 .
As above less rollert
As above less rollerfeaver 20 for $\mathbf{~ E 2 . 0 0 .}$. Post 10 p. (Min. order 20
Ditto. Press to make. 20 for $£ 1.50$ Post Ditto. Press to make. 20 for $£ 1.50$ Post 10 p
Ditto. Press to break. 20 for $£ 1.50$ Post 10 p

240 VA.C. SOLENOID OPERATED
FLUID VALVE
Rated 1 p.s.i. Will handle up to 7 p.s.i. Forged
brass body. stainless steel core and spring. $\frac{1}{2}$ in.
b.s.p. intevoutlet. Precison made. British
PRICE: E2.00. Post 25 p. NEW original packing.

All MAIL ORDERS: ALSO CALLERS AT: 57 BRIDGMAN ROAD. CHISWICK, LONDON, W4 5BB. Phone: 01 -995 1560

SIBDBE! STROEET SIBDBE!

FOUR EASY TO BUILD KITS USING XENON WHITE
LIGHT FLASH TUAES SOLID STATE TIMING + TRIGGERING CIRCUITS, PROVISION FOR EXERNAL TRIGGERING. $230-250 \mathrm{v}$. A.C. OPERATION. XPERIMENTERS "ECONOMY" KIT Ronents including Xenon Tubec. All electronic comPost 30p.
industrial kit
deally sultable for schools, laboratories etc. Roller output of Hy-Lyght. Price $£ 1400$. Post 50 p hY-LIte StRObe Mk IV
Designed for use in large rooms, halis and utillizes a slica lube, printed circuit. Speed adjustable $1-20$ f.p.s.
Light output greater than many (so called 4
Joule) strobes. Price £14.00. Post 50p.
'SUPER' HY-LIGHT KIT
Approx-4 thmes the light output of our well proven Vy-Lyght strobe.
Variable speed from 1-13 flash per sec.
light ONLY $£ 22.00$. Post 75 pucing an intense white ATTRACTIVE, ROBUST, FULLY VENTILATED METAL CASE for the Super Hy-Lyght Kit inciuding reflector $\mathbf{2 8} \cdot \mathbf{6 0}$. Post 60p. FOR HY-LYGHT STROBE incl. reflector, \&5.75. Pos! 25p.

COLOUR WHEEL PROJECTOR
Complete with ail filled colour wheel. 100 watt lamp. tremely efficient optical system. £20.50. Post 50p I R.P.M. MOTOR and
COLOUR WHEEL
 $200 / 240$ volt A.C. 1 r.p.m. motor and wheel $£ 5.60$. 1NCH COLOUR WHEEL ONLY. Price £4.50. Post
30 P . BIG BLACK LIGHT
 stage display. discos etc. P.F. ballast is essentia
with these bulbs Price of matched ballast and bulb
$\mathbf{£ 1 6 . 0 0}$. Post $£ 4$. Spare bulb $£ 7.00$ Post 40 .
 8LACK LIGHT FLUORESCENT UU.V. TUBES
 15 p . Complete ballast unit and ho. ens for either $\mathrm{g}^{\prime \prime}$
$12^{\prime \prime}$ tube. $£ 1.70$. Post 25 p. (9 in $\times 12$ in. measuresapprok.) U.D.1. SINGLE CHANNEL. 750 watt ${ }^{*}$ MANUAL/AUTO DIMMER
fode: Auto State Fader. with three functions. Manual position' rocker switch. Two ranges of cycling for Flashing' or 'Slow blending'. Ready built module $6^{\circ} \times 3$ more modules for top quality colour blending and

general electric powerglas triacs 10 amp. Glass passivated plastic Triac. Latest device from
U.S.A. Long term reliability. Type SC 146 E 10 amp. 500 PIV . f1.00. Post 5p. (Inclusive of data and application sheet) suitable
Diac 18p.

INSULATION TESTERS (NEW) Test to I.E.E. Spec. Rugged metal con struction, sultable for bench or fleld W. $4,4 \mathrm{ln}$. H. 6 in in, weight 6 ib
500 VOLTS. 500 meg.

60 D . 100 , 500 megohms $£ 28 \cdot 00$. Post

[^7]INSULATED TERMINALS Avaitable in black. red, white.
yeliow. blue and green. Now 12 p

RELAYS

SIEMENS PLESSEY,
MINIATURE RELAYS

52	4-8	2 do	70p	700	16-24	4M2B	600*
58	5-9	6 co	80 p	700	16-24	$4 \mathrm{c} / \mathrm{o}$	$80 p^{*}$
185	8-12	6 M	60p*	2500	$36-45$		$60{ }^{\text {p }}$
230	9-18	$2 \mathrm{c} / \mathrm{o}$	70p	2500	31-43	$2 \mathrm{c} / \mathrm{HO}$	60p*
308	9-14	4 \%	75p*	9000	40-70	2 co	60p*
430	+5-24	$4 \mathrm{c} / \mathrm{o}$	80p	15k	85-110		$60 p$

OPEN TYPE RELAYS
6 VOLT D.C. 1 make con. 35p. Post $10 p$
9 VOLT D.C. RELAY
12 VOLT D.C. RELAY
24 VOLT D.C. 3 c/o 600 ohm coil 75p. Post 10 p 2 HD c/o
$4 \mathrm{c} / \mathrm{o} 300$ ohm coil 75 p . Post 100 VOLT A.C
ENCLOSED TYPE RELAYS 24 VOLT D.C. 3 h.d. do contacts 95p. Post 10p 24 VOLT A 24 VOLT A.C. Mfg. by ITr. 2 h.d. c/o contacts. 55p 240 VOLT A.C. RELAYITT Price $\mathbf{7 5 p}$. Post 1Op. Octal base 15 p extra $\mathbf{2 2 0 / 2 4 0}$ VOLT AC RE LAY ARROW 230/240V AC 2 c/o 15 amp contacts. 110 VOLT A.C
CLARE-ELLIOT Type RP 7641 G8 Miniature relay, 675 ohm coil. 24 volt D.C. 2 co 70 p. P.P
MANY OTHERS FROM STOCK. PHONE FOR DETAILS.

230/240 VOLT A.C. EXTRACTOR FAN KIT Comprising of impeller, continuously rated motor,
motor housing and fixings as ill strated. Price
$\mathbf{£ 1 - 7 5}$. Post 25 . (Total inc. VAT $\&$ Post $\mathbf{£ 2} 16$)
230V FAN ASSEMBLY blades. Price E1.00. Post 20 .

20 r.p.m. GEARED MOTOR

9/12 VOLT DC GOVERNED
REVERSIBLE MOTOR

BODINE TYPE NCI
GEARED MOTOR
(Type 1) 71 r.p.m. torque 10 ib . in
Reversible $1 / 70 \mathrm{th}$ h.p. cycle .38 amp.
 precision. made U.S.A. motors are omp. The above two
condition. Input voltage of motor 115 v As new condition. Input voltage of motor $115 v$ A.C. Supplied com-
plete with transformer for $230 / 240 \mathrm{~A}$ A.C. input.
Price. either type $£ 6.25$ Post 50 . or less transformer $£ 3.75$ These motors are ideal for rotating aerials. drawing curtair
display stands. vending machines. etc. etc.
'FRACMO'240VOLTA.C 50 cycle SINGLE PHASE GEARED MOTOR

600 WATT DIMMER SWITCH
Easily fitted. Fully guaranteed by makers. Will control up to 600 watts of all lighting except fluor-
escent at mains voltage. Complete with simple 000 WATT POWER CONTROL

$$
\begin{aligned}
& \text { For Power toois. Heating. Lighting otc. incorporating } 13 \text { amp. } \\
& \text { outlet and mains lead. } \mathbf{E 8} .00 \text { post } 27 \mathrm{p} \text {. }
\end{aligned}
$$

METERS NEW! $2 \frac{1}{2} \mathrm{in}$. FLUSH ROUND avaitable as D.C. Amps $1,5,10.15$ or A. C. Amps
$1.5,10,15,20$. Both types $E 2.00$. Post $15 p$.
VoitMETER 0 . 300 .

$$
\begin{aligned}
& \text { with mounting feet. Brand New. }
\end{aligned}
$$

The largest selection

EX-COMPUTER STABILISED POWER MODULES
LOW COST CAPACITORS

FIBRE-GLASS PRINTED
CIRCUIT BOARDS
DECON-DALO 33pC Marker

VEROBOARDS

Packs containing approx
- 1 irese, all 0.1 matric 65 p

REPANCO CHOKES \& COILS

 $\underset{\text { DRXI }}{\text { COILS }}$

COIL FORMERS \& CORES

SWITCHES

DF/DT Toggle 36p sp/ist Toggle 30p

FUSES

EARPHONES

DYNAMIC MICROPHONES

3-WAY STEREO HEAD-
PHONE JUNCTION BOX
2-WAY CROSSOVER
NETWORK
K 4007. 80 ohme Imp. Insertion 10883 dB \&1.21
TRANSISTOR EQUIVALENT BOOK
 trankistors. Apporxmately, 9,000 typee with
more than
56,000 gubatitutes bave leen more than 56.000 subatitutes have then
neluded. The tables were compiled with the
 specificution. The most comprehenalve
Equivalents Book on the market today ONLY £2.30
INSTRUMENT CASES

BIB HI-FI ACCESSORIES

De Luxe Groov-Kleen
Model 42 E1.95 Chrome Finish Model 60 £1.50

Ref. B. Stylus and Turntable Cleanling Kit 34p
Ref. 36A. Recond/8tylua Cleaning Kit 33p Ref. 43. Record Care Kit 12.42 Ref. 31. Cassette Head Cleaner 58p Ref. 32. Tape editing Kit $81 \cdot 68$ Model 9. Wire Strippet/Cutter 83:

Ref. P. Hi-Fl Cleaner 31p
Ref. 32A. Style Bet
Ref. 32A. Stylus Balance $\mathbf{2 1} \cdot \mathbf{3 7}$

ANTEX SOLDERING IRONS x25. 25 watt 22.05
OCN 240.15 watt 22.48 Model G. 18 watt 22.26 SK2. Soldering Kit 83.25 STANDS: BT1 $\& 1$ SOLDER: $188 W$ W Multicore 702 ع1.61 22SWG 7oz 21.61. 188WG 22ft 51p 22SWG 7 oz $21 \cdot 61$.
22SWG Tube 33p
ANTEX BITS and ELEMENTS Bits No.
102 For model CN240 $\frac{3}{3}$ 104 For model CN240 $\frac{3}{1 /}$ 1100 For model CCN2 $40 \frac{1}{7}$
1101 For model CCN240 1101 For model CCN240 020 For model G240 弪"

Ref. J. Tape Head Cleaning Kit 62p Ref. 66. HI-Fi Stereo Hints \& Tips 42p

PLIGS PS 1 D.I.N
 PS 1 D.I.N. 2 Pln (Speaker)

 P8 2 D.I.N. 3 PinPS 3 D.I.N. 4 Pin
$\begin{array}{lll}\text { PS } & 4 \text { D.I.N. } 5 \text { Pin } 180^{\circ} \\ \text { PG } & 5 \text { D.I.N. } 5 \text { Pin } 240^{\circ}\end{array}$
PS 6 D.I.N, 6 Pin
PS 7 D.i.N. 7 Pin
PS 8 Jack $2 . \mathrm{Bmm}$ Screened
PS 10 Jack 3 bmm Screened
Ps 11 Jack 1" * Plastic
PS 12 Jack 1^{*} Screened
PS 13 Jack Stereo Screened PS 14 Phono
PS 15 Car Aertal
INLINE SOCKETS 1021 For model G240

PS 21 D.I.N. 2 Pin (Bpeaker) PS 22 D.I.N. 3 Pin PS 23 D.I.N. 5 Pin 180° PS 24 D.I.N. 5 Pin 240°
PS 25 Jack 2.5 mm Plastic PS 26 Jack 3.5 mm Plastic PS 27 Jack ${ }^{4}{ }^{\prime \prime}$ Plastic
PS 28 Jack ${ }^{\circ}{ }^{\prime \prime}$ Screened
PS 29 Jack Stereo Plastic
PS 30 Jack Stereo Soreened
PS 31 Phono Screened
Ps 32 Car Aerial
Ps 33 Co-Arial
and

SOCKETS

PS 35 D.I.N. 2 Pin (Speaker)
Ps 36 D.I.N. 3 Pin
PS 37 D.I.N. 5 Pin 180°
PS 38 D.IN. 5 Jock 2.Jran 8 witched
PS 40 Jack 3.5 mm Switched
PS 41 Jack ${ }^{\prime \prime}$ '
PS 43 Jack Stereo 8 witch
PS 44 Phono Double
Ps 46 Co Alabla
PS 46 Co-Arial Suriace
PS 47 Co-Axial Fluah

LEADS

LS 1 Speaker lead 2 pin D.I.N. plug to open
ends approx. 3 metres long (coded)
0.20

CABLES

CP 1 Single Lapped Screen
$\begin{array}{lll}\text { CP } & 2 & \text { Twin Common } \\ \text { CP } & 3 & \text { Stereo Screened }\end{array}$
Four Core Common Screen
Four Core Individually Screened 0.30 Microphone Fully Braided Cable 0.10 Three Core Mains Cable Twin Oval Maina Cable Speaker Cable
Low Loss Co-Ax

CARBON

POTENTIOMETERS
\log and Lin
$4 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$ 1M, 2M

Single Less Bwitch
Single D.P. Switch
VC 3 Tandem Less Switch
VC 5 100K Jog anti-Log

HORIZONTAL CARBON

PRESETS

$100,220,470,1 \mathrm{~K}, 2 \cdot 2 \mathrm{~K}, 4 \cdot 7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$,
$47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}, 4 \cdot 7 \mathrm{M}$
SELENIUM BRIDGE RECTIFIERS
18 V .2 A . Ideal for those building battery,
chargera. 15 peach .10 for 55 p
REPANCOTRANSFORMERS
2 from selected
$14 \mathrm{~V}, 15 \mathrm{~V}, 17 \mathrm{~V}$
$40 \mathrm{~V}, 50 \mathrm{~V}$, and

VISIT OUR COMPONENT SHOP

18 BALDOCK ST., WARE, HERTS. (A10)
Pen Mon Sat 9-5.30 p.m Tel 61593

Model No
 Simple tranaintor teste
 Signil Injector
 AM/FM Antemina Amplifer Mise Pre-amplifer Mise Pre-amplifier
 Radio Control Receltrol Transmitter
 'GCX2' Channel spliting unit $1,000 \& 2,000 \mathrm{~Hz}$
 Superhetrod gDe Radilo Contr VHF Tuner 120 to 160 MHz
 Rario Control Field Strength Meter
 Windscreen W'jper tim 4-Channel AF mixer
 Electronics Unit for Metal Detector
 Guitar pre-amplifier

WORLD SCOOPI
 JUMBO SEMICONDUCTOR PACK

Transistors-Germ and Silicon
Rectifiers-Diodes-Triacs-Thyristors
I,C's and Zenners ALL NEW AND CODED
APPROX 100 PIECES!
Offering the amateur a fantastic bargain Pak and an enormous saving-identification and data sheet
in every Pak
ONLY
\mathbf{E}
$\mathbf{2} p \& p 30 p$

MAMMOTH I.C. PAK

APPROX. 200 PIECES

Assorted fall-out integrated circuits including: Logic, 74 Series, Linear, Audio and D.T.L. Many coded devices but some unmarked-you to identify.

OUR SPECIAL PRICE
$\mathbf{£ 1 . 2 5}$ including V.A.T. \& p. \& p.

SPECIAL PURCHASE by BI-PAK

2N3055. Silicon Power Transistors NPN

 Famous manufacturers out-of-spec devices free from open and short defects-every one able 1115 watts TO3. Metal Case.OUR SPECIAL PRICE 8 for $\mathbf{f 1}$.

BOOK BARGAIN BUNDLE
8 Books comprising:
2 Translstor Equivient books Tradio $\&$ Electronic colour code and data chart
Radio valve guide PLUS
Other constructional
3 Other constructional books on
Receivers, EM Tuners, etc.
Ls I General construction
ALSO I General confruction book
£2p\&p10p.
BP1 $\begin{gathered}\text { Handbook of } \\ \text { Equivalents \& }\end{gathered} \begin{gathered}\text { Transistor } \\ \text { Substitute }\end{gathered}$
BP2
CYanoachylate c2 adhesive
The wonder bond which works in
seconds-bond plastic. rubber, transistors.
components permanent|y, immediately!
OUR PRICE ONLY 54p
for 2gm phial
BATTERY HOLDERS
Takes 6 h.p. 7s complete with terminal
clipand lead. 34p each.

CARTRIDGES

ACOS GP92-18C 200 mV at $1-2 \mathrm{cmB}$
ACOS GP93-1 280 mV at $1 \mathrm{~cm} / \mathrm{sec}$
ACOSGP93-1 280 mV at $1 \mathrm{~cm} / \mathrm{sec}$
ACOSGO6-1 100 mV at $1 \mathrm{~cm} / \mathrm{sec}$
TTC J-2005 Crystal/Hi Output
TTC J-2010C Crystal/Hi Output
TTC J-20068 Stereo/Hi Output
TTC J-2203 Magnetic $5 \mathrm{mV} / 5 \mathrm{~cm} / \mathrm{sec}$ Includiug stylus
TTC $\mathrm{J}-2203 \mathrm{~B}$ Repla

CARBON FILM RESISTORS The E12 Range of Carbon Film Resiators assorted into the following groups:-

150 Mixed 100 ohms- 820 ohms
$\begin{array}{ll}\text { R2 } & 50 \text { Mixed } 1 \mathrm{~K} \text { ohms } 8.2 \mathrm{~K} \text { ohms } \\ \text { R3 } & 50 \mathrm{Mixed} 10 \mathrm{~K} \text { ohms }-82 \mathrm{~K} \text { ohmas }\end{array}$
R4 50 Mixed 100 K ohms-1 Meg. ohms 50 D THESE ARE UNBEATABLE PRICES-

JUBT ip EACH INCL. V.A.T.
BI-PAKSUPERIOR QUALITY
LOW-NOISE CASSETTES
C60,32p C90,41p C120,52p
SEE OUR COMPLETE RANGE
IN
PRACTICAL ELECTRÓONICS,
PRACTICAL WIRELESS, RADIO CONSTRUCTOR, EVERYDAY ELECTRONICS

ELECTRONICS TODAY

INTERNATIONAL
OR SEND 5p. FOR THE
FULL LIST OF ALL
PRODUCTS

Type	Ampt	Price	\boldsymbol{P} \& P	INTERNATIONAL
MT50/¢	+	81-93	45p	OR SEND, 5p. FOR TH
MT50/1	1	42.42	$48 p$,	FULL LIST OF ALL BI-PAK
			60p	PRODUCTS

-the lowest pricesd

	74 Series T.T.L. I.C'S BI-PAK STILL LOWFST IN PRICE FULL 8PECIFICATION GUARANTEED. ALL FAMOUS MANUTACTURERS										
		25	$100+$			${ }^{25}$	100		1	28	
8N74	0.15	0.14	0.13	8N7	0.15	0.14	0.13	8N74153	${ }^{21.00}$		0.90
74	- 0.15	(0.14	0.13 0.13 0	(8N7454	O.15	0.14 0.14	0.13 0.13				
74	0.15	0.14	${ }_{0} 0.13$	SN7470	${ }_{0.32}$	0.14	${ }_{0.27}$	$\mathrm{SNF}^{\text {P }} 156$	${ }_{1} 1.20$		${ }_{\text {E1. }} 10$
74	15	0.14	0.13	8N7472	0.32	0.29	0.27	8N74157	ع1.00		0.90
8N740	15	0.14	0.13	8N7473	0.41	0.39	0.35	8 N 71160	ع1.40		1.30
8N74				8N	0.41	0.					${ }^{\text {ع } 1.30}$
8N74						0.58		${ }_{\text {8N74162 }}$			
	0.	0.24		- ${ }^{\text {8N7476 }}$ -	-	(0.43	0.55	8N7163	ع1.80	${ }_{81} 1.35$	${ }_{\text {c1. }}^{1.30}$
9N7409	(0.25	0.24 0.14 0	0.23 0.13	${ }_{8 N 7481}$	¢1.10		\&1.00	${ }_{8 N 74165}$	11.80		
7411	0.15 0.25	${ }_{0}^{0.24}$	${ }_{0} .23$	8N7482	0.90	0.85	${ }_{0}{ }^{0} 80$	$8 \mathrm{CN71168}$	¢1.60	${ }_{\& 1.55}$	
7412	0.88	0.27	0.2	SN748	${ }^{1} 1.20$	${ }^{1} 1.1$	11.0	8N7417	11.60	¢1.55	c1.50
88713 $8 N 7416$	0.32	0.31	0.	SN74	ع1.00	0.87		sN74175	21.10	${ }^{2} 1.05$	ع1.00
7418	0.30 0.30	($\begin{aligned} & 0.28 \\ & 0.29\end{aligned}$	0.2	8N74	21.80	1. 1.35	${ }^{1.1 .50}$	8N74176	${ }^{1} 1.25$	£1.20	¢1.15
8N74		0.14	0.13	8N7488	24.00	¢3.75	ع3.50	8N74177	ع1.25	\&1.20	81.15
8N7422	0.30	0.29	0.2	$8 \mathrm{SN7490}$	0.85	0.83		9N74180	. 25	\&1.20	¢1.15
	0.4			8N7491	${ }^{1.110}$	11.05		8N74181	83.95	ع3.85	75
8N7425	O.40	0.3		9N792			0.64	8N74182	¢1.25	11.20	
$\mathrm{SN}^{\text {d }}$	0.40	${ }_{0}^{0.38}$	${ }_{0} .38$	8 S 7494	${ }_{0}^{0.85}$	${ }_{0} .82$	0.75	8, ${ }^{\text {S74184 }}$	11.80	${ }^{\text {E1.75 }}$	ع1.70
8N7428	0.45	0.42	0.40	$8 \mathrm{SN795}$	0.85	0.82	0.75	SN74190	81.95	81.80	E1.85
7430	0.15	0.14	0.13		0.88	0.93		SN74191	ع1.95	\&1.80	$\underline{81.85}$
${ }_{743} 7$	0.40	0.38	0.36	8N74100	£1.50	¢1.45	ء1.	9N74192	${ }^{11.95}$	81.90	¢1.85
(SN7433	0.42	40	0.38 0.30	8N74104	0.80 0.80	0.58	0	gN74193	\&1.95	${ }^{1} 1.90$	${ }^{1} 1.85$
8N7438				8N74107	0.44	${ }_{0}^{0} .42$	0.40	8N74194	ع1.30	£1.25	${ }^{2} 1.20$
8N74	0.15	0.14	0.13	8N74110	0.80	0.55		SN74195	11.10	¢1.05	R1.00
8N74	0.74			8N74111	0.80	0.88	0.85	SN74193		¢1.15	1.10
-8N7442	${ }_{1}^{0.74}$	${ }_{\text {c1. }}^{0.15}$	${ }_{1}^{0.64}$	- ${ }_{\text {8N74t18 }}$	${ }_{\text {L1. }}^{1.00}$	${ }_{\kappa}^{0.405}$		8N71197	${ }_{81.20}$	11.15	21.10
gN7444	ع1.20	1-15		SN74121	0.50	0.48	${ }_{0} 0.45$	SNT74198	${ }^{22.75}$	£2.70	
			$\varepsilon 1.50$	${ }^{8 N} 74$	0.70	0.68	0.65	8N74199	£2.50	£2.40	\&2.30
			\&1.10	8N74123	0.75	0.73	0.70	Devices	ay be m	ded	qually
		07	\&1.05	8N74	85	0.82					
						ع1.25					
			0.13	8N74150	¢1.50	\&1.40					
N7461	0.	0.14	0.13	SN74151	$\underline{1.10}$	${ }_{21.05}$	21.00	form. Pric	e 35 p .		

NOW WE GIVE YOU 50w PEAK (25w
R.M.S.)PLUSTHERMALPROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £4. 25

- Max Heat Sink temp. $90^{\circ} \mathrm{C}$.
- | Propananog |
| ---: | :--- |
| to 000 KZZ |
- Ditation
- Sapply voltage $15-50$ volts
- Thermal Peedback - Latest Design Improvemen - Load-3, 4, 8 or 16 ohms - Overall size 63 mm

Eapceially designed to a atrict speeification. Only the finest compo-
nents have been used and the latest solid state circuitry incorporated nents have been used and the latest solid state circuitry incorporated
in this powerful litte amplifier which ahould satisfy the mott critical
FULLY BUILT-TESTED and GUARANTEED

- STABILISED POWER MODULE SPM80

SPm80 is especially designed to power 2 of the A'Lio Amplifers, up to
15 watt (r.m.s.) per channel inimultanueously. This moi ule embodies the latest components and circuit techniques incorporating complete short
circuit protection. With the addition of the Mains "Cransformer BmT80 the unit will provide outputs of up to 1.5 amps at 35 polts. Bize: $63 \mathrm{~mm} \times 105 \mathrm{mra} \times 20 \mathrm{mmin}$. These units ensble you to build Audio Systems of the highest quallty at a hitherto uno btainabie price. Also
fdeal for many other appllcations including: Iisco Syatems, Public TRANSFORMER BMT80 $£ 2.75$ p. \& p. 40p
STEREO PRE-AMPLIFIER TYPE PA100

EX-MINISTRY CT436 Double Beam Oscilloscope DC-6 megs. Max Sensitivity $10 \mathrm{mv} / \mathrm{cm}$. Small Max Sensitivity $10 \times 10 \times 16$ in. compact. Size Suitable for Colour TV servicing. Suitable for Colour TV servicing.
Price $£ 85$ each including copy of Price £85 each including copy of
manual.

SOLARTRON CD1212 with DUAL TRACE PLUG-IN DC-24MHz
TB-100 nanosecs per cm . to 5 secs. per cm . in 24 calibrated ranges 20 nanosecs per cm . with times 5 expansion. $5^{\prime \prime}$ flat-faced tube. Trace locator $0-2$ microsec signal delay. Built-in calibrator. 1 KHz square wave 200 micro volts to 100 volts in 18 calibrated ranges. Complete with manual. $£ 95$ each.

TEKTRONIX VIDEO

 WAVEFORM MONITORS Type 527RM- $£ 250$MARCONI TF 1041B Vacuum Tube Voltmeter £35 ea.
MARCONI TF899 Valve Millivolt meter. 20 mV to 2 V AC: 50 Hz to 100 mHz detected output for modulation monitoring. $£ 7$ ea.
MARCONI TFB01A/1 Signal Generator 10 to $310 \mathrm{mHz} £ 55 \mathrm{ea}$
MARCONI TF791D/3R Carrier Deviation Meter $\Varangle 90$.
MARCONI TF791B Carrier Deviation Meter $£ 30$.
MARCONI TF934/2 FM Deviation Meter $£ 35$. MARCONI TF142E Distortion Meter $\mathbf{£ 2 0}$.
MARCONI TF791C Carrier Deviation meter $\ddagger 55$.
MARCONI TF455E Wave Analyser $£ 55$.
MARCONI TF868B Universal Bridge $\mathbf{£ 9 0}$.
MARCONI TFIO20A RF Power Meter 150 and 300 Watts. As new $£ 85$ ea
MARCONI TF1020A RF Power Meter 50 and MARCONI TF $1020 A$
100 Watts. As new $£ 60$ ea.
MARCONI TF1094A/s.
MARCONI TF1094A/S
Analyser. Late model $\mathbf{£ 3 7 5}$.
Analyser. Late model $\mathbf{£ 3 7 5}$. Spectrum
MARCONI TF1371 Wideband Millivolt Meter £20.
MARCONI TF1434/2 Counter Range extension unit $10-100 \mathrm{MHz} \mathbf{£ 3 0}$.
MARCONI TF1434/2 Counter Range extension unit $10-100 \mathrm{MHZ} £ 30$.

KELVIN \& HUGHES Single Channel Recorders with spare paper. $£ 20$ ea.
 HEWLETT PACKARD Microwave Power Meter 430 C complete with Bolometer $\mathbf{£ 4 5}$.

HEWLETT PACKARD Power Meter 431B $\mathbf{f 8 5}$. HEWLETT PACKARD Valve voltmeter 19" rack $A C$ or DC 1 mV to 300 V dB scale. $£ 20$.
AIRMEC OHM METER $861 \mathbf{f 2 5 .}$
EMI WM8 Oscilloscope Plug-in units. New $£ 25$. DAWE Digital Printer type 3094A. As new £ 35 ea.
E.H. Pulse Generator Model 12320 MHz 20 E.H. - Pulse Gene

WESTON THERMOPROBE -60 to +100 degrees Centigrade $\mathbf{f 9 0}$.
WANDEL \& GOLTERMAN TFEK 41 Level meter $4-600 \mathrm{KHz}$ f65.
HEADWVY RESEARCH Photoresist Spinner and Speed Control f90.
INFRA-RED INDUSTRIES USA Tunable Microvolt meter type $601 £ 65$.
PROSSER SCIENTIFIC INSTRUMENTS Model A100 Waveform Generator Multi waveforms f185.
POLARAD Spectrum Analyser SA84. 10 MHz to 40 GHz . One unit. Superb. $£ 450$.
ROHDE \& SCHWARZ Admittance Meter ROHDE \& ${ }^{\text {\& }}$ SCHWARZ
VLUK-BN3511. As new $\mathbf{£ 1 6 0 .}$
TEKTRONIX Oscilloscope
TEKTRONIX Oscilloscope type 545B Main frame only. As new condition $£ 370$.

TEKTRONIX Plug-in Type 1L20. As new $\mathbf{£ 7 0 0}$. HEWLETT PACKARD DB Oscilloscope type 175 A 3dB- 50 MHz twice. Large $6 \times 10 \mathrm{~cm}$ 175A $3 \mathrm{~dB}-5$
screen. $\mathbf{\text { f185. }}$
LEYLAND SPECTRUM ANALYSER 5.1 to 5.9 GHz . Complete with $5^{\prime \prime}$ display $£ 45$.

AIRMEC 4 trace oscilloscope. DC to 3 MHz . Good condition $\mathbf{£ 5 0}$.
CLAUD LYONS Voltage Stabilisers. Compact. Transistorised. Output $240 \mathrm{~V}+0.25 \%$ at 12 amps £25 ea.
ADVANCE VOLSTAT. Input 95-130V or 190260 V Output 118 V RMS 250 W atts. $£ 20$ ea.
PYE SCALAMP GALVANOMETER. Hammer grey. Tested $\mathbf{£ 6 . 5 0}$ ea
MARCONI TF1374 Precision Crystal Calibrator $£ 25$.
MARCONI TF1400/S Pulse Generator. Good condition $£ 25$.
SOLARTRON Multipurpose stab PU type 1904. Standard mains input. Outputs: +250 V DC $200 \mathrm{MA}:+18 \mathrm{~V}$ DC 2A: +6 V DC $8 \mathrm{~A}:-3.5 \mathrm{~V}$ DC $100 \mathrm{MA}:-6 \mathrm{~V}$ DC $8 \mathrm{~A}:-18 \mathrm{~V}$ DC $4 \mathrm{~A} ; 25 \mathrm{~V}$ AC 150 MA . All DC lines will withstand short circuits to earth. With copy of manual $£ 25$ ea.
AMERICAN GENERATOR TYPE TRM3. AM/FM Sweep $15-400 \mathrm{MHz}$. Built-in display, markers, etc. Full info on request. Brand new £250 ea.

CLEARANCE LISTS AVAILABLE. S.A.E.

TELEPHONES

STANDARD 300 Series. BLACK only $\mathbf{E} 1.00$ ea. P. \& P. 50p. MODERN STYLE 706 BLACK OR TWO-TONE GREY £3.75 ea. P. \& P. 35p. STYLE 7006 TWO-TONE GREEN £3.75 ea. P. \& P. 35p. HANDSETS--complete with 2 insets and lead 75p ea. P. \& P. 37 p . DIALS ONLY. 75p ea. P. \& P. 25p.
SCOOP FIRST TIME MODERN STANDARD TELEPHONES IN GREY OR GREEN WITH A PLACE TO PUT YOUR FINGERS LIKE THE 746. A CHANCE NOT TO BE MISSED $£ 3.00$ ea. P. \& P. 35p.
HIGH-VALUE—PRINTED BOARD PACK
Hundreds of components transistors, etc.-no two boards the sameno short-leaded transistor computer boards. $£ 1.75$ post paid.
 10-99 10p ea, P
$7 p$ ea. $\&$ \& f. free

CAPACITOR PACK 50
nents only 50p. P. \& P. 17 p. nents only 50p. P. \& P. 17p. P.C. MOUNT SKELETON PRE-SETS.

1000pf FEED THRU CAPACITORS Only sold in packs of $10-30 \mathrm{p}$. P. \& P. 10p. RECTANGULAR INSTRUMENT FANS. American Ex-equ. Size $4 \frac{3}{4} \times 4 \frac{3}{2} \times 1 \frac{1}{2}$ ". 115
volt. Very quiet $£ 3$ ea. P. a P. 37 p . OELIVERED TO YOUR DOOR 1 cWt. of Electronic fcrap chassis. boards. etc. No
Rubbish. FOR ONLY $\mathbf{E 4}$. N. Ireland $£ 2$ extra Rubbish. FOR ONLY 14. N. reland E2 extra. P.C.B. PACK S \& D. Quantity 2 sq. ft.-no TRIMMER PACK, 2 Twin 50/200 pf ceramic 2 Twin $10 / 60$ of ceramic: 2 min strips with 4 preset $5 / 20$ pf on each: 3 air spaced preset
$30 / 100$ pf on ceramic base. ALL BRAND NEW $30 / 100$ pf on ceramic bas
$\mathbf{2 5 p}$ the LOT. P. \& P. 10 p .
PHOTOCELL equivalent OCP 71 13p ea. MULLARD OCP70 10p ea.

FIBRE GLASS PRINTED CIRCUIT BOARD. Brand New. Single or Double sided An size ${ }_{2} \mathrm{p}$ per sq. in. Postage 20p perorder CRYSTALS. Coiour 4.43 MHz . Brand New HF Crystal Prive Unit HF Crystal Drive Unit. 19 in , rack mount.
Standard 240 V input with superb-crystal oven Standard 240 input with superbrcrystal ove ROTARY SWITCH PACK-6 Brand New
switches (1 ceramic:
1-4 pole 2 way etc.). switches ${ }^{11}$ ceram
50p. P. \& P. 20 p.
BOURNS TRIMPOT POTENTIOMETERS 20: 50: 100: $200: 500$ ohms:
25 K at 35 p в. ALL BRAND NEW
RELIANCE P.C.B. mounting, 270:470
500 ohms; 10 K at 35 p ea ALL BRAND NEW VENNER Hou M VENNER Hour Meters- 5 digit. wall mount
-sealed case. Standard mains. $£ 3.75$ ea. P. \&ealed case. Standard mains. £3.75 ea

TRANSFORMERS. All standard inputs
Gard/Parm/Part. $450-400-0-400-450.180$ $\mathrm{MA} .2 \times 6.3 \mathrm{v} . \mathrm{E} 3 \mathrm{ea}$

Miniature FANTASTIC VALUE

Miniature Transformer. Standard 240 V
input. $3 \mathrm{~V} \quad 1$ amp output. Brand New input. $3 \mathrm{~V}, 1$ amp output. Brand New.
$65 p$ ea. P. $\&$ P. $15 p$. Discount for $65 p$ ees.
quantity.

LOW FREQUENCY WOBBULATOR

DON'T FORGET YOUR MANUALS S.A.E. WITH REQUIREMENTS

For alignment of Receivers, Filters, etc, 250 KHz to 5 MHz , effective to 30 MHz on harmonics. Three controls-RF level, sweep width and frequency. Order LX63. Price $£ 8.50$ P. \& P. 35p
As above but can have extended cover range down to 20 KHz by addition of external capacitors. Order LX63E. Price £11.50 P. \& P. $35 p$. moth models can be used with any general-purpose osciloscope. Requires 6.3 V AC input. Supplied connected for automatic 50 . sweeping. An external sweep voltage can

2OHZ to 200KHZ

SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine, 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. $\mathbf{£ 8} 85$ each. P. \& P. 25p. Sine Wave only f6. 85 each. P. \& P. 25 p.

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only $\mathbf{£ 6} \mathbf{7 5}$. P. \& P. 25p. (Not cased, not calibrated.)

TYPEA

Output: 1.3 kV AC 1.5 MA
Price $£ \mathbf{\$} .45$

TYPE B
Output: 1.3 kV DC 1.5 MA
Price $\mathbf{£ 4 . 7 0}$
.

TYPE C
Input: 12 V to 24 V DC
Output: 1.5 kV to 4 kV AC 0.5 MA
Price $\mathbf{f 6} \mathbf{6 5}$
Postage \& Packing 36p

TRANSISTOR INVERTORS

TYPED
Input: 12 V to 24 V DC
Dutput: 14 kV DC 100 micro amps at 24 V . Progressively reducing for lower input voltages Price $\mathbf{f 1} 1$

Unless stated - please add $\mathbf{£ 2 . 0 0}$ carriage to all units.
VALUE ADDED TAX not included in prices-please add 8\%
Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
Open 9 am to 6.30 pm any day (later by arrangement.)

LIGHT DEPENDENT RESISTORS SPECIAL OFFER

$\mathbf{f 1} \mathbf{5 0}$ for two pairs (minimum) 10 or more pairs $\mathbf{5 0 p}$ per pair incl. p. \&

PROGRAMME TIMER BY HONEYWELL
A bank of 12 micr--switches are each independently operated by
12 pairs of cams which in turn, are individually adiustable giving 12 pairs of cams which. in turn, are individualy adjustable giving
switching periods of zero to 12 sec. with infinitely variable combing switching periods of zero to 12 sec. with infinitely variable combina-
tions. A mains synchronous motor drives the cam shaft at 1 rev. per 4 sec.- 15 r.p.-m. Many applications where continuous sequence programmes are required such as lighting effects. etc. NEW in
original maker's cartons. First-class value at E8. 75 p pus 50 . \& p original maker's cartons. First-class value at $\mathbf{\epsilon 8} .75$ plus 50 p p. \& p

CROUZET

Open frame shaded pole motor, 115/240V a.c. 1425 r.p.m.

SHADED POLE MAINS MOTOR

SOLENOID BY WESTOOL
240 a.c. type MM6. 3ib. pulf.
$2 \frac{3}{4}$ in. $\times 1$ in. $\times 1 \frac{1}{4}$ in. Travel 1 in

MAINS SOLENOIDS

This little unit gives vertica hinged "elbow" Bracket inco minged elbow. Bracket incor of arm. $2 \frac{1}{2}$ in. 240 V , a.c. Pull at ximately 1 fb 1

MAGNETIC DEVICES SOLENOID

240 V a.c. 50 p.c., rated 18 lb . pulf. $1 \frac{1}{2}$ in, travel. push or pull $\times 3 \mathrm{i}$ in. high.

 p. \& p

MUFFIN 'PANCAKE'' FANS

RELAYS

voltages: 12 V a 48 V amp contacts following 11 £1 each plus base 15 p postage and packing 15 p
11 p/ 6 amp contacts. following vola 115 a.c. 48 d.c. 24 dc . all at $£ 1.25$ each, base
15 p plus 150 p. \&

FAN/ BLOWER
Precision-built in Germany. Dynamically balanced mains unit (200/240 continuous rated, reversible 60 MA
on run. Size: $5 \frac{1}{2} \mathrm{in}$, dia $\times 2 \frac{\text { tin }}{1} \mathrm{in}$ deep on run. Size: $5 \frac{1}{2}$ in, dia $\times 2 \frac{1}{1} \mathrm{in}$. deep.
8 ack plate is tapped for 4 fixing screws (supplied). Well under maker's
price at $\mathbf{£ 3}$. P. \& p. 40p.

OPEN FRAME shaded pole GEARED MOTORS 110 r.p.m

approximate overall size: $3 \frac{1}{2} \mathrm{in} . \times$
$3 \frac{1}{4}$ in. $\times 2 \frac{3}{4} \mathrm{in} .+$ spindle dia $\frac{1}{2}$ in. ONLY $£ 2$ plus 50 p p. \& p.

MEM LIMIT SWITCH

$\mathrm{l}^{\prime \prime}$ ". plus heavy duty roller plunger

pressed

 £2.20 plus p \&
ALL PRICES INCLUDE VAT

Educ we welcome official orders from established companies and Educational Departments. it is no longer practical to invoice goods under
amount
"SLO-SYN" 3-LEAD SYNCHRONOUS STEPPING MOTOR £15

Type SS 15. These fine motors are easily reversed. starting and stopping in less than 5° without electrical or mechanical braking. Simple relay circuit can be applied to give d.c a.c. synchronous
 per revolution with accuracy of 0.1° per step non-cumulative. Torque characteristics can
be modified by simple r.c. circuits. Dimensions: Dia 4in, body length $4 \frac{3}{\text { a }}$ in, spindle length be
$2 \frac{1}{2} \mathrm{in} . \times \frac{5}{8} \mathrm{in}$. dia. Weight $6 \frac{1}{2} 1 \mathrm{lb}$. BRAND NEW in maker's pack. Offered at less than hal

SPRITE "PANCAKE" FANS Similar to "Muffin". physically smalle high efficiency with minimum fuss. 115 50 Hz can be used in pairs from 240 V a.c
 special quotations). ONLY $\mathbf{E 3 . 9 5}$ plus 40 . $\&$

BENDIX MAGNETIC CLUTCH

the main body is in two sections. The ca section is fixed and has a fin. sleeve. The drive section rotating on the outer perimeters. The uniting plate has $\frac{3}{3}$ in. 10
bearing concentric with main section and bearing concentric with main section and
18 -tooth cog wheel. When energized 18 -tooth cog wheel. When energized
transmission is extremely powerful. 24 V d.c. at $\mathbf{2 4 0}$ MA. OUR PRICE JUST $\mathbf{£ 2} .70$ plus 30 p p. $\& \mathrm{p}$.

ASCO SOLENOID VALVES (2). $115 \mathrm{~V} 50 \mathrm{~Hz} \operatorname{tin}$. NPT 12 .
(2). 115 V 50 Hz din. NPT 12 p.s.i.
EITHER TYPE ONLY £1.80 plus 30 p . \& p.

WE ARE OPEN

6 Mon. to Sat call in and see the section of electronic and

 electro-mechanical items we have to offer plus a large range of
UNISELECTORS

12-bank, 25 -way doub
condition. $\mathbf{f 6}$ plus 50 p.
6 DIGIT 24V d.c. COUNTER
Non re-set 3 watts, size $1 \frac{15}{5}$ in. \times in. \times ikin

"LABGEAR" POWER SUPPLY UNIT

Fully stabilized. Input 90-240V. 50 Hz . Outputs $6 \mathrm{~V}, 6 \mathrm{a}$ d.c. and $6 \mathrm{~V}+2 \mathrm{~V} .100 \mathrm{MA}$. Hum and Ripple at full load-less than 3 MV
peak to peak. Stability improvement ratio for 50% mains $1 / 000: 1$. Output impedance 0.005 ohms. $9 \frac{1}{2} \mathrm{in} . \times 9 \frac{1}{4} \mathrm{in} . \times 12 \frac{1}{2} \mathrm{in}$. Weight 20, ib. f26 Carr \& Pkg f1 50 . In manufacturer's carton

"LABGEAR ELIMINAC"

P.S.U. $200-250 \mathrm{~V}$. $40 / 60 \mathrm{~Hz}$. Alternative outputs fully variable lvariac incorporated). Output 1.12 V at 5 a d.c. fully smoothed. 10 a.c. $2 \frac{1}{\mathrm{t} i \mathrm{in}} \times 2 \frac{1}{4} \mathrm{in} . \times 2 \mathrm{c}$ in. flush $0-20 \mathrm{~V}$ d.c. m / c meter. In attractive grey hamme
$\mathbf{E 7 . 5 0}$ Carr \& Pkg $\mathbf{E 1 . 5 0}$.

1	SILVANAA
	MAGNETIC SVITCH
	Now complete with reference magnet I A magnetically-activated switch, vacuum sealed in a glass envelope. Silver contacts, normally closed
1	Rated 3 amp at $120 \mathrm{~V} 1 \frac{1}{2} \mathrm{amp}$ at 240 V . Size: (approx) $1 \frac{7}{7 \mathrm{Tin}} \mathrm{in}$. long $\times \frac{1}{\frac{1}{2} \mathrm{in} \text {. dia. \|deal for burglar }}$ alarms, security systems. etc., and wherever non
1	15p. 50 for $£ 8.80$: 100 for $£ 16.50$. P. \& p. FREE over 10 .

315/317. EDGWARE ROAD
LONDON, W2.
Tel: 01-723 5667 01-402 5580

WEST LONDON DIRECT SUPPLIES (W/W) 169 Kensington High Street, London W. 8

in

 Phoenix Electronics (Portsmouth) Ltd139-141 Havant Road,
Drayton, Portsmouth, Hants PO6 2AA
Full member of AFDEC-the industry's association of franchised electronic component distributors

Our prices include VAT at the current rate-and carriage on all goods is free.
Send for our catalogue and price list-we'll mail that to you free. too

THIS MONTH'S BARGAIN OFFER-
Panel hardware kit
$2 \times$ F296 fuseholders, 10 fuses. 4 each K107. K430. K498. K499 knobs. $2 \times$ SM270 DPCO switches. $2 \times$ P429/P430 plugs and sockets 2 each crocodile and pin clips BARGAIN PACK PEP5— $\mathbf{£ 3 . 9 0}$

Please send your catalogue-free! Name

Address
\qquad

WW- 020 FOR FURTHER DETALLS
Audio Connectors
Broadcast pattern jackfields, jackcords.
plugs and jacks
Quick disconnect microphone connectors
Amphenol (Tuchell miniature connectors
with coupling nut
Hirshmann Banana plugs and test probes
xLR compatible in-line attenuators and
reversers

Low cost slider faders by Ruf \quad| Future Film Developments Ltd. |
| :--- |
| 90 Wardour Street. |
| London W1V 3LE |
| 01-437 1892/3 |

WW-109 FOR FURTHER DETAILS

MIL SYNCHROS EX STOCK

AVAILABLE IN 5 CASE SIZES FROM f2.90 (exc)
TYPE TAD

AVAILABLE IN 3 CASE SIZES FROM
 $\mathbf{£ 2 . 8 0}{ }_{\text {(axc) }}$
 tYPE SA

 FOR YOUR PRODUCTION REQUIREMENTS USE ALPS PANEL METERS
 PRICE LIST-SAE PLEASE!

Servo and Electronic Sales Ltd

 Post Orders and Technical enquiries to: 24 HIGH ST., LYDD, KENT. TEL: LYdd 20252 (STD 0679)VAT No. 201-1296-23 Also at 45a HIGH ST., ORPINGTON, KENT. TEL: ORP 31066 TELEX 965265 TELEPRINTER PAPER. Standard rolls. 1 ply $\mathbf{£ 3 . 8 0}$ per doz. P.Pd. U.K. Telex your order now!

 inc. P. \& P. and VAT

Metal Oxide Resistors (ELECTROSIL \& WELWYN) Tantalum Capacitors MANUFACTURING QUANTITIES

GAS CHOMATOGRAPHY RESEEARCH OVEN
 P40s/40st orther GC Hems in stoch

 changes of air per min. The oven has forced air cooled outer
surfaces when the internal temperature is high. $210-250 \mathrm{~V}$. 50 Hz . surfaces when the internat temperature is hi
2.6 KW . $£ 29.50$. (C.Pd. England and Wales).
A.C. SUPPLY PANEL for 191 in . rack mounting carrylng two 2kVA Variacs with double brush assemblies providing four
individually fused and metered outputs of up to $4 k V a$ and 270 on in excellent condition at $£ 48.50$ including carriage and V.A.T. U.K. mainland).

MITSUBISHI MEMOPACK MODEL T165, $7 \frac{1}{\mathrm{i}} \mathrm{in} . \times 3 \frac{1}{2}$ in. \times erase and bias. electronic speed control on capstan drive.
Powered by $4 \times 1.5 \mathrm{~V}$ penlight $\left(H \mathrm{P} 7\right.$) for 6 V sutt $\mathrm{Int}^{\prime \prime} 2^{\prime \prime} 8 \Omega \mathrm{~L} / \mathrm{S}$ Powered by $4 \times 1.5 \mathrm{~V}$ penlight (4 PT) for 6 Cutt int 208Ω L/S
3.5 mm jacks for ear/p and $200 \Omega \mathrm{mic}$ (STD cassette impedance). Recording time up to 80 mins. Takes 46 mm spools (No2) of $\frac{1}{2}$ in. tape recording at 1 z" P/S STD half track, Battery life 4 hours. Two
controls. Volume + play-Record-rewind switch. $£ 14.80$ inc.

PLESSEY GROUND BASED U.H.F. GROUND/AIA TX/RX
FOR EXPORT ONLY ORSALE TOLICENSED USERS.
FOR EXPORT ONLY OR SALE TO LICENSED USERS
Single Channel Receiver 5820-99-932-5694.
Single Channel Transmitter 5820-99-932.5698.
Single Channe Amplifier 5820-99.932-5701.
Power Unit for Amplifier 5820-99-932-5700.
Cooler Unit 5820-99-932-3995.
These assemble into a free standing rack unit providing U.H.F.
communications over 225.0 to 399.9 MHz , the $\mathrm{PX} / \mathrm{Amplifier}$ unit giving 100 Watts R.F. output into 50 Ohms. Spare sub-units availabie. All are guaranteed new and unused. Full details on
request.
Solartron Oscilloscopes in stock CD1183. CD1212, CD1220.
CO1400. P.O.A. and listrumemts SRS;51. 152. VP253. OS 103. CO546. JX641. JX641A. VF252. JX746. LM 1420 .
TD960. JX603. JM 1600 . etc. . . P.O.A.

DRY REED INSERTS

Overall Iength 1. .ssin, (Body tenoth 1 . Din.) Datameter 0.14 in. to
 All carriage paid U.K.
Heavy duty type (body length 2 in) diameter $0-22 i n$. to switch doz.; £A.78 per 100; £51-40 per 1,000; Changeover Heavy Duty
type 22.70 per doz. All carriage paid U.K. type £2.70 per doz. All carriage paid U.K. 100 ; $\mathbf{f 6 5}$ per 1000 Aparating Magnats 90 p per doz.: $\mathbf{E 6 . 8 0}$ per 100 . 65 per 1000 .
All carriage pid U.K. Oparating Coils for 12 v supply to accept up to four standard
reeds $£ 2.20$ par doz.: $£ 12.30$ per 100 . All carriage paid U.K. OVER 300,000 IN STOCK! MULTIWAY AND R.F. CONNECTORS by twenty different companies!
Send us your detailed requirements quoting Nato numbers if known. TELEX 965265.

WEE MEGGERS, 250 V £12.53. RECORD MEGGERS, 500 V
\&15.12 (inc. P. \& P. and VAT).

TEKTRONXX 585 A
OSCILLOSCOPE 80 MHz Dual Beam 80 MHz Dual
dual timebase dual timed
calibrated

$t 02 \mathrm{~S} / \mathrm{cm} \mathrm{TB}-\mathrm{B}$
$2 \mu \mathrm{~S} / \mathrm{cm}$ to $1 \mathrm{sm} . \mathrm{cm}$

SRICE $£ 525$
(IIMited Stock)

ADD
8%
VAT
TOALL
PRICES

9kes to 100 Mals conitis.

ADVANCE SQUARE WAVE GENERATOR SG21

Frequency Range $9 \mathrm{Kc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$, Rise time less than InS Ex-Demonstration. New condition in manufac turer's original carton. $\in-$

Misk Tim lies than
TRIGGER OUTPUT
$0.2 .04 .1 .0 .0 .0 V$
int 50 ohm external ier-

14 Slem to isicm.

 LIMIED STOCK PRICE $£ 69.50$ 2.83 Dual beam${ }^{0}$ OClLLOSCOPES

MODULAR PULSE GENERATOR PG52

ALPHANUMERIC ก|xIE TUBES B7971

P3 Clock Gen, P2 Width or Delay P1 P2 plete Modults, P5 Variabie Slope. Comto 30 MHz in Construction. Clock 0.1 Hz Delay 25 nS in switched decade steps, Delay 25 nS to is in switched decade
steps. steps. Output-up to 20 V in 500 Ohms Variable slope-rise and fall rates 1 nSN
to 100 mSN to 100 mSN independently adjustable over 10:1 range. Double pulse output ADVANCE Prtion. PRICE $£ 275$ DOUBIEE PG 56
DOUBLE PUULS GENERATOR
Independenty visible
Deflay
Thns-3

better than 1 Ons. 3 secs in 19 steps. is ise moth
rate generator
Advance TV PRICE f120
Hatch Generator and Cross
Output in tomm of modur SG7 73

Modulation 405 tines or 625 trimanics
Ex Demons tration, Arand
SPECIAL OFFER
THIS
THIS MONTH ONLY f29.50

NARY SUPERTESTER 680R

THE REVOLUTIONARY SENSITIVITY 20.000 Ohms per Vol FOUR INTERNATIONALP 80
OF MEASURE FEATURES:- against externa! magnetic fitids elt OUTSTANOING FEATURES: Volit sensivity © Fully Screened $1128 \times 32 \mathrm{~mm})$ © Accuracy and sadabily

 Without de-soldering More Molts and 4-20-100-500 $200 \mathrm{mV}-4 \mathrm{~V}-20-100 \mathrm{Amp}$ and $100 \mathrm{HA}-1$
 13 ranges. AMP D.C. = 12 ranges 10 Amp. AMP. A. 5000 Volts Amp. OHMS REA 10 Megaohms. FREQUEN-1000-2500
 mA-2.5 AMP and 5000 A A-5 Low Ohms. DETECH V OUTPUT VOLTAGE -24 to +70 db . CAPAC 0 to 200 . from $\times 100-\times 1000-\times 0.000$ and and from 0 to $518 E L S=10$ ranges: Hom and from 0 左 20 .

CO
Si
Si

Signal
Injector Amperclamp For me asuring
a.c. currentis trom 250 mA
500 amps. 500 amps
$\mathbf{E 1 1 . 9 5}$
Temperature Probe
from 2.000 and from 0
0 to
ondicate depress buttion.
indicate dopress burton. RE USED IN

 Covering the
range -50 to
$+200^{\circ} \mathrm{C} £ 11.95$

FANTASTIC NEW MICROTEST 80
 $90 \times 70 \times 18 \mathrm{ml}$ Y

at $£ 11.95$

 screened removable wimensions only e Printed circuit
ranges against externout solder

 $500 \mathrm{~mA}-5 \mathrm{~A}$ ranges A V . 1000 V A.C. $\mathbf{5}$ ranges:

 Indicator $\begin{aligned} \text { To indicate } \\ \text { Phe hase }\end{aligned}$ Indicator $\begin{aligned} & \text { the phase } \\ & \text { sequence }\end{aligned}$ OTHER ACCESSORIES AVALLABLE: UGHT METER f11.95. RESISTOA MURTRPLER f5.95, SHUNTS DC. 25.50 and 100 amps. 54.50 each CURRENT TRANSFRDMERS A.C. 25 and | CURREN |
| :--- |
| PRDEXEndS |

£18.50
with
shockproof

SPECIAL OFFER OF COLOUR T.V. AND F.M. MEASURING EQUIPMENT BY WANDEL AND GOLTERMANN VZM 1 Measuring set for measuring phase and ampiltud
tion distortion for Colour TV.V Sub carrier (PAL Svstems)
£495.00
VZM2 Measuring set for measuring phase and amplitude modula. io 1012 Mc . VZM83 Generator and Receiver used to measure transmission distortion on FM radio link syst

PROGRAMME BOARDS BY SEALECTRO
These boards are basically a multi-pole multi-throw switch device consisting of a $X-Y$ Matrix with two contact decks in the Z Plane shorting or plugging in pins. Ideal for prototype work. etc. Boards available in 2 planes. $24 \times 50 £ 29.20 \times 11 £ 15$. Pins now avaitable at $15 p$ each.

Stillipess

AMPEX SP-300 FM/DIRECT RECORDER/
REPRODUCER 4 Channels. Speed $1 \frac{1}{8}, 3 \frac{3}{4}, 7 \frac{1}{2} 15$ ips. Futter 0.15% at
Instrumentation 50 Hz to ips . Frequency Response:
at 15 ips. Audio 50 Hz to 18 Khz at 15 ips . f 1950

SPECIAL OFFER OF TELEPHONE

CARRIER TEST EQUIPMENT

 measurement of attenuation on telephone carrie measurent and wide band radio relay systems.SIEMENS sweep frequency system consisting of $3 W 518$ Level Oscillator $10 \mathrm{Kc} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}$: 3D335 Level Selective Meter $10 \mathrm{Kc} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}$; 3 W 933 Sweep Attach ment: 3D346 Large Screen Level Tracing Receiver Offered as a complete system as a 32 M 701
Special Offer less than Half-Price
Enquire for individual items P O. A L1950.00
£1950.00 of: 3 W 518 Selective Level Oscillator $10 \mathrm{Kc} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}$ 3D335 Selective Level Meter $10 \mathrm{Kk} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}$

Price Per Pair $\mathbf{f} 950.00$

LIMITED QUANTITY Made to meet the most stringent Government Service Standards DC40 MHz DUAL TRACE Standards

Solartron C.T. 484 oscilloscope. Solartron
$\mathbf{3} \%$ accuracy. Dual Trace Displays. DUAL TRACE Mise Time: 14 nanosese: O.C. 24 Mc. 50 . mV/cm. input impeyat $\pm 5 \%$ Sensitivivy: 56 FF . Measuring

 Sensivivity: 200 . ohm 40 pF .
Impedance: 1 Monmo
 AVAlLABLE: Bandwidth: D.C. $-40 \mathrm{mc} / \mathrm{mV} / \mathrm{cm}$. AVAlLa 8 nanosecs. Sensitivity. Me Measuring input impedance:
Accuracy $\pm 5 \%$ direct.
$+3 \%$ with calibrator. \&

INCREDIBLE DIGITAL VOLTMETERS

Digital Voltmeters Type LM $1420 £ 195$ Type 1420.2 £235
Type 1420.2 BC (Remote R anging) $£ 325$ Type 1420.2 BM (DC + Wide Band Mean Type 1420.2 DVM) $£ 395$
Wide Range of spares for Solartron Data Loggers Çompact 1 and Series 2 . Roband OM2004 Dynamco 2001 mk2

10% variable voltage high current HIGH STABILITY HIGH RELIABILITY These power supplies were designed for continous operation in
 neters. C Core Transtomer. melers. C Core Transtoumer.
Manulacturé's price probably in excess of E 200

FABULOUS RANGE OF

 SIGNAL GENERATORSH.P. VHF Signal Gen. 608B 10 MHz to $400 \mathrm{MHz} \quad \mathbf{E 1}^{1} 5$ H.P. VHF Signal Gen. 608 C 10 MHz to 480 MHz E4.95 H.P. UHF Signal Gen. 612A 450 MHz to 1250 MHz E495 H.P. UHF Signal Gen. 614A $800 \mathrm{MHz}^{2}$ to 2100 MHz £ H.P. Sweep Oscillator 693D 4 GHz to 8 GHz TF867
801 B. 3 TF810D E450
E139

+ PSU 250 URF Unit Oscillator Marconi PHM/AM 960 MHz p.o.a. Marconi PHM/AM Signal Generator TF2003 400 KHz to 12.5 MHz

£25

MULTI OUTPUT POWER SUPPLIES Ex-Computer offered at mere fraction of original manufacturer's cost.

 Advances DC197
 BRAND NEW MINIATURISED STRIP CHART RECORDER BY RUSTRAK Model 88
 This recorder indicates the magnitude of applied currents of voltages by a continuous distortion free line on pressure sensitive paper. Moving coil movement scale calibrated 1 milliamp D.C. internal resistance 100 ohms Chart Drive moto Chart speeds $90^{\prime \prime}$ per hour $£ 39$

SINGLEPEN RECORDER by Record Electrical $3^{\prime \prime}$ chart sensitivity ${ }^{1}$ milliamp chart speed
1 and 6^{4} per hr. Size $8^{\prime \prime} \times 11^{\prime \prime} \times 6^{\prime \prime}$. Offered complete with pen assembly. Listed at over
$\mathbf{£} 120$-this month's special price due to purchase.
1 mA version f50
$500 \mu \mathrm{~A}$ version f60

TEN TURN 3600° ROTATION

THREE TURN 780° ROTATION

FIFTEEN TURN 5400° ROTATION ${ }_{46}^{25 \mathrm{~K} / 25 \mathrm{KK}}$

Beckran B
10 watts

```
&650
```

NEW "Strobette" STROBOSCOPETACHOMETER

\square -

Combined Stroboscope-Tachometer
200 to 6000 flashes per minute. 200 to 6000 r.p.m. Accuracy 3% or better.

FANTASTIC BUYS IN PEN RECORDERS

10 Channel event RECDRDER RECORDER
Response time
100
milliseron

 255mm. Weigh 9 liss
pletem mith accessories £52.00

checker
 - 'Tour

- Direct reading. mo torror toss) measurements
- Hand poading. mirror tyos scale
- Accuracy: I 1% in f full 3202 . $1(0.9 \mathrm{~kg})$ - Reads on mase baked
- Marking tape providats as smallas inish - Complete solid-staded - Hish-button reading ONLY 589.50

portable ac/oc RECDRDING VOLTAMMETER RECORDING VOLTAMMETER Finted with separate rero-marking pen
Accuracy 1.5% DC. 2.5% AC. Measure ments ranges - $A C$ and oc: $5-15-150-$
$250-500 \mathrm{~mA} A .5-5$ Amps 5.15 .50 .150
 range 45 to only 150 mV . Frequency
100 mm . Chart speeds $20.60 .180 \cdot 600$ $1800-5400$ mminhour. Price complete f 78.00
 Flash Duration: 10 to 25 microseconds. Light colour Xenon white 500° Compact lightweight (27 oz.) easy to use one/off and on switch.

Carriage and packing charge extra on Please note: all instrumenta offered are second-hand and NEW CATALOGUE AVAILABLE EARLY IN THE NEW
ell items unless otherwise stated.
tested and guaranteed 12 months unless otherwisestated. YEAR. WRITE IF YOU WISH TO RECEIVE A COPY.
Please note: all instrumenta offered are second-hand and NEW CATALOCUE ELECTRONIC BROKERS LIMITED

Marshallis

A. Marshall \& Son (London) LImitod Dept. W W

42 Cricklewood Broadway London
Everything you need is in our new 1975
catalogue. Available now price 25p
Trade and export enquiries welcome

PW TELETENNIS KIT

As featured on BBC Nationwide and in the Daily Mail October 2. 1974 This exciting new game is now available in kit form. Due to popular demand we are ow able to offer a fantastic saving on list prices. Ideal game for whole fa need to modify your TV set. just plugs into aerial socket. Parts list as follows
$\begin{array}{lll}\text { A. Resistor Pack } \mathbf{£ 1 . 0 0} & \text { p\&p } 20 \mathrm{p} & \text { B. Potentiometer Pack } £ 1.25 \text { p\&p } 20 \text { p }\end{array}$ C. $\begin{array}{ll}\text { A. Resistor Pack } £ 1.00 \text { p\&p } 20 p & \text { B. Potentiometer Pack } £ 1.25 \text { p\&p } \\ \text { Capacitor Pack } £ 3.10 \text { p\&p 20p } & \text { D. Semiconductor Pack } £ 14.50 \text { p\& } 20 \text { p }\end{array}$ Capacitor Pack $£ 3.10 \mathrm{p} \mathrm{\& p} 20 \mathrm{p}$ D. Semiconductor Pack $\mathbf{£ 1 4 . 5 0}$. PCBs $£ 7.50$ IC Sockets $£ 4.00$ p\&p 20 p . Special prices-Complete kit (excluding case) $\mathbf{£ 4 2 . 0 0}$ p\&p 50 p. Sections A-F incl £23.50 p\&p 30p. Assembly instructions with complete kit or 75 p on request.

TRY OUR GLASGOW SHOP

Popular Semi-conductors

JOHN CRICHTON Electronic Equipment 558 Kingston Road, London, SW20
 Intand VAT add 8\%
 Prices shown include P \& P. other prices glady on request. liewing by appointment plass. Phone 01-540 9534

TEST SET FREQUENCY RESPONSE CT381
Consisting of: sweep generator, indicator response curve. flat-faced tube long perCT432. Frequency range: $10 \mathrm{kc} / \mathrm{s}-33 \mathrm{Mc} / \mathrm{s}$ in nine directly calibrated ranges. Accuracy $\pm 3 \%$ of the indicated centre frequency. F.M. deviation: (nominal). $0-500 \mathrm{kc} / \mathrm{s}$ above- $-4 \mathrm{Mc} / \mathrm{s}$. $0-400 \mathrm{kc} / \mathrm{s}$ at $1.5 \mathrm{Mc} / \mathrm{s}-4 \mathrm{Mc} / \mathrm{s}$. $0-165 \mathrm{kc} / \mathrm{s}$ a $600 \mathrm{kc} / \mathrm{s}-1.5 \mathrm{Mc} / \mathrm{s}$, falling to $3 \mathrm{ke} / \mathrm{s}$ at $10 \mathrm{kc} / \mathrm{s}$. Output impedance: 75 ohms resistive. Power Frequency $50-500 \mathrm{c} / \mathrm{s}$ Consumption 340 W Frequency $50-500 \mathrm{c} / \mathrm{s}$. Consumption 340 W

HEWLETT PACKARD

 185B. 1 GHz SAMOSCILLOSCOPE.
Horizontal Sweep speeds: 10 ranges. 10 $+5 \%$. Magnification: 7 calibrated wanges $\pm 5 \%$. Magnification: 7 calibrated ranges
$\times 1, \times 2, \times 5, \times 10, \times 20, \times 50$ and $\times 100$. Increases maximum calibrated sweep mum sweep speed is further extended to $0.04 \mathrm{nsec} / \mathrm{cm}$. Intensity and sampling in-
tensity are not affected by magnification. tensity are not affected by magnification. igh frequency: input frequency: 200 mv and
1000 mc for sweep speeds 200 mv , 1000 mc for sweep speeds
$1000 \mathrm{mv}: \pm 3 \%$. Time: Approximately 5 sec burst of 50 mc sinewave. Frequency accuracy $\pm 2 \%$. In addition the Model $185 B$ provides output signals for $X \cdot Y$ -
recorders and provides means for controling the display either manually or ex ternally. Full specification on request. Price $£ 295$.

430C Microwave power meter. £60 H01-8401A Leveller amplifie 8734B Pin modulator $7.0-12.4 \mathrm{GC}$. 8732A Pin Modulator 1.8-4.5 431A Bendpass filter 2-4 8436A Bandpass filter 8-12.4GC. | £95 |
| :--- |

SOLARTRON

AC $2.5 \mathrm{c} / \mathrm{s}-6 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB})$. Rise time: 60 musec (approx). Semsitivity: $100 \mathrm{mV} / \mathrm{cm}$
$100 \mathrm{~V} / \mathrm{cm}$ continuously variable. $\mathrm{AC} \times 10$
The gain of the amplifier is increased $\times 10$ The gain of the amplifier is increased $\times 10$
on all the above ranges to give a sensitivity range from $10 \mathrm{mv/cm}$ - 10 ranges. imp inpedance: Constant on all ranges. 1 MQ
in parallel with approximately 38 pF . Time
base velocity base velocity: $1 \mathrm{~cm} / \mu \mathrm{sec}-1 \mathrm{~cm} / \mathrm{sec}$ con-
tinuously variable. Linearity: 1% approximately (calculated). Amplitude: $15 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$
Cathode ray tube screen: $3 \frac{1}{2}$ "dia. flat face Dimensions: 10^{n} high $\times 10^{\prime \prime}$ wide $\times{ }^{6}{ }^{6}$
long. The overall length is increased to Power supply $A C$ input: $100-125 \mathrm{~V}$ in 5 V steps or $200-250 \mathrm{~V}$ in 10 V steps. $45-$
$400 \mathrm{c} / \mathrm{s}$. 100 VA . Price £ 68 plus VAT. Full spec on request. Modulator/Demodulato
JF. 1601 Mod JF. 1601 enables measurement dynamic response to be made on systems and components employing AC carrier
techniques. The JF. 160 may be used
independently as a general-purpose independently as a general-purpose
Modulator or Demodulator. Full spec and

Voltmeter Valve CT54 (Micovac), with availabte pewer supply (power supply no with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$ AC or DC in 6 ranges, 1 ohm to 10 Megohm 1 ranges. indicated on 4 in . scale p. and p. (Leads extra.)

MUIRHEAD FREQUENCY ANALYSER TYPE D-669-B
Frequency range $30 \mathrm{c} / \mathrm{s}-30 \mathrm{kc} / \mathrm{s}$. Accuracy better than 1.5\%. Input voltage $300 \mu \mathrm{~V}-100 \mathrm{~V}$ 15 JV . Maximum input voltage 300 V r.m.s.

TEKTRONIX

230 DIGITAL Darameters. Pulse ampli- tude. pulse risetime and falltime, pulse width. time interval.

PULSE GENERATOR

PASSIVE PROBE PBOOG with 10X attenuation. designed for oscilloscopes having an input resistance of 1 megohm and input capacitance of up to 55pf. Price $£ 10$.

MUIRHEAD 2-PH. L.F. DECADE
OSCILLATOR Type D880.
Frequency range $0.01 \mathrm{c} / \mathrm{s}-11.2 \mathrm{kc} / \mathrm{s}$ (continuously variable above $0.1 \mathrm{c} / \mathrm{s}$).
V.L.F. $0.01 \mathrm{c} / \mathrm{s}-0.1 \mathrm{c} / \mathrm{s}$ in steps of $0.01 \mathrm{c} / \mathrm{s}$. Panges $\times 1$ x 10×100
Ranges $\times 1 . \times 10 . \times 100 \pm 0.05 \%$
Ranges XO. 1 V.L.F ± 0.1
T.F.801D/1/SA.M.SIGNAL GENERATOR. Freq. range: 10 MHz to 485 MHz . Built-in a.m. External pulse modulation Calibration Accuracy: Using crystal calibrator within $\pm 0.2 \%$ over entire frequency range. R.F. outlevel $0.1 \mu \mathrm{~V}$ to 1 V source e.m.f.
OA. 1094 A/3 H.F.SPECTRUM ANALYSER with L.F. extension unit type TM6448. creq. range: 100 Hz to 30 MHz . Measures
relative amplitudes up to 60 dB . Spectrum width 0.30 KHz . Sweep duration: 0.1. 0.3. 1 . 3. 10.30 sec and manual. Full spec on
request. $£ 250$ as seen condition, buyer to request.
collect.
OA. 10944 S H.F. SPECTRUM ANALYSER. Freq. range: 3 MHz to 30 MHz in nine steps. spectrum widh 0 to 30 KHz . Sweep distorion: 0.1. 0.3, 1. 3. 10. 30 secs. and condition, buyer to collect
T. 111 ROBAND TRANSISTORIZED SUPPLY. Mains input 110 V or 230 V . output -50V at 5 Amper REMSCOPE SO1/740 STORAGE OSCILLOSCOPE.
Fluorescence: Yellow. resolution: 40 lines $/ \mathrm{cm}$ E.H.T.: 8 kV . dispiay time: 10 mins -1 hr

CD 1212 WIDE-BAND GENERAL
PURPOSE OSCILLOSCOPE.
Employing plug-in pre-amplifiers for single or
dual trace displays.
Wide-band pre-amplifier CX 1251. Bandwidth: $D C-40 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~d} 8 \pm 1 \mathrm{~dB}): 2.5 \mathrm{c} / \mathrm{s}-40 \mathrm{Mc} / \mathrm{s}$ AC coupled $-3 \mathrm{~dB} \pm$ 1d8). Rise time 8 nanosec approx. Sensitivity: $50 \mathrm{mV} / \mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ in nine calibrated ranges with fine gain control.
Oual trace pre-amolifier CX 1252 . Bandwidth: DC $-24 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB}+1 \mathrm{~dB}) \mathrm{AC}$ coupled Rise $\mathrm{DC}-24 \mathrm{Mc} / \mathrm{s},-3 \mathrm{~dB} \pm 1 \mathrm{~dB}) \mathrm{AC}$ coupled. Rise
time: 14 nanosec approx. Sensitivity: 50 mV / $\mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ in nine calibrated ranges with fine gain control. Full specification on request. $\mathbf{f 1 2 8 .}$
T.F.801 B/3/S A.M. SIGNAL GENERATOR. Freq. range: 12 MHz to 485 MHz in five bands. Built-in crystal calibrator. Full spec. on request.

CT. 373 TEST SET. Oscillator: $17 \mathrm{c} / \mathrm{s}-$ $170 \mathrm{kc} / \mathrm{s} \pm 1 \% . \pm 1 \mathrm{c} / \mathrm{s}$ at ambient temp. $0^{\circ} \mathrm{C}-45^{\circ} \mathrm{C}$. Distontion Meter: Freq. range: $20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. distortion range: 10%. 30%. 100% f.s.d. 0.5% readable. Signal input: approx. 500 mV to 130 V basic range. 250 mV
to 1300 V extreme limits. Fulf spec. on to 1300 V extreme
request. $£ 30$ as seen

AVO MODEL 3 VALVE TESTER. Enables comprehensive characteristics to be plotted or measures
basis. $\mathbf{5 5 5}$.

AVo CT 160 VALVE TESTER. As above but in portable valise form. $\mathbf{£ 6}$.

PYE Precision vernier potentiometer 7568. $1 \mu \mathrm{~V}$ to 1.90100 V in two ranges. Accuracy $1 \mu \mathrm{~V}$ to
0.002%.

Belling Loe radio frequency interference filter type Y2005s. 100 Amps 400 V 440 V . Single wave $£ 15$.

TF. 937 F.M./A.M. SIGNAL GENERATOR. Freq. range 85 KHz to 30 MHz . The carrier freq. can be standardized against a built-in dual freq. crystal calibrator, which is complete detector. $£ \mathbf{3 0}$ as seen

TF.114H/S SIGNAL GENERATOR. FIE quancy range: $10 \mathrm{KHz}-72 \mathrm{MHz}$. Stability: calibrator. Good r.f. waveform at atl frequencies. Protected thermocouple level moni tor. Full spec. on request. $£ \mathbf{2 2 0}$.
TEST SET DEVIATION FM No 2. The carrier frequency range extends from $2.5 \mathrm{Mc} / \mathrm{s}$ otal of eight bands: the deviation ranges are 0 to $5 \mathrm{kc} / \mathrm{s}$. 0 to $25 \mathrm{kc} / \mathrm{s}$ and 0 to $75 \mathrm{kc} / \mathrm{s}$. £48.

PAPST MOTORS Est. $1 / 20$ th h.p. Madde for $110-120$
volit working. but two of these work
ideallly together off our standard
240 volt mains. A really beautiful
motor, extremely quiet running motor, extremely quiet running
and reversible, $£ 1.95$ each +30 .

COMBINATION SWITCH
 As used in gutomatic switch boards. etc. 24 V . operated.
Now-all 25 way full wiper type. We have the following

3 Bank	¢4.80	5 Bank	.f7
3 Bank + C	¢4.80	8 Bank	69.70
3 Bank + Split C	E4.80	10 Bank	£10.90
4 Bank	¢6.00	12 Bank	f13.20

$\underset{\text { MEROX }}{\text { METIC CLUTCH }}$
no information on this 10-1110 PN866-10. We have section with coil firs to the spindle of the machine and
there is a contact plase to fit on the appears also that the clutch can be used as a partial break by putting reduced voltage into it. as a normal brake with normal voltage or as emergency stop by putting increased
voltage into it. American made and very well made at that. voltage into it
Price $£ 1.95$.
MULLARD THYRISTOR TRIGGER MODULE This produces puises for phase
control triggering. It has two control triggering. It has two
isolated outputs, so one thyristor
or two thyristors lin separate arms of briggel may be con-
trolled by one module. The timing circuit is synchronised to the mains frequency and control is by an external variable resistor or from a
voltage or current source. Provision is made for feed back where automatic control is required. Price $\mathbf{f 8 9 5}$ MULLARD AUDIO AMPLIFIERS
 All in module form, each
reaty built complete with
heat sinks and connection heat sinks and connection
tags. 1 data supplied.
Model 153500 mW power
Output 80p. Model 1172
750 mW power output 94 p . 750 mW power output 94p.
Model EP9000 4 watt power
Out putput $\mathrm{E1.75}$. EP9001 twin
channel or stereo pre amp.
TERMS: Add 8\% VAT. Send postage where quoted-other items, post free if order for these items is $\mathbf{£ 6}$, otherwise add 30p.

Infre-red Binoculars. Made for military purposes during end immediately after last war to enable
smipers. vehicle drivers. etc. to see in the dark The binoculars have, otc. to se fed in the dark
holtage high
voltage source (5 KV aporox.) and voltage source (5 KV approx.) and providing the
objects are in the rays of an infra-red beam. then the binoculars will eneble these objects to be seen. Each binocular eye tube contains a comThe binoculars are unused. believed to be in good order. In fact they were never issued and
are still in original cases. but since they were made a long time ago. they can hardly be are still in original cases. but since they were made a long time ago.
called new. Sold without guarantee. Price $\mathbf{£ 1 6 . 5 0}$ per set $+£ 1$ carriage.

12 VOLT $1 \frac{1}{3}$ AMP
POWER PACK
This comprises double-wound $230 / 240 \mathrm{~V}$ mains transformer with
full weve rectifier and 2000 mfd smoothing. Price $£ 2.50$. plus 30 p full wave rectifier
post and packing.

Heavy Duty Mains Power Pack. Output voltage adjustable from $15-40 \mathrm{~V}$ in steps-
maximum load 250 W - that is from 6 amp at 40 V to 15 amp at 15 V . This really is a high power heavy duty unit with dozens of workshop uses. Output voltage adjustment is very quick
simply interchange push on leads. Siticon rectifiers and smoothing by 3.000 mF . Price - simply interchange

DISTRIBUTION PANELS

Just what you need for work bench or lab. $4 \times 13 \mathrm{amp}$ on/off switch with neon warning light. Supplied complete with 6 feet of flex cable. Wired

CENTRIFUGAL BLOWER
Miniature mains driven blower centrifugal type blower unit by
Woods. Powerful but specielly built for quick running-driven by
cushioned induction motor with specially built low noise bearings cushioned induction motor with specially built low noise bearings
Overall size. $4 \frac{1}{2}^{\prime \prime} \times 4 \frac{1}{2} \times 4^{n}$. When mounted by flange. air is blown into the equipment but to suck air out, mount it from centre
using clamp. Ideal for cooling electrical equipment or fiting into a cooker hood, film drying cabinet or for removing fiux smoke when

DRILL CONTROLLER

Electronically changes speed from approximately 10 revs. 10 maximum. Full power at all speeds by fingertip control. Kit plus 25 p posit and insurance. Made-up model also available,
$=3.26$ ptus 30 ,

SWITCH TRIGGER MATS pressure. For burglar alarms, shop doors. etc.

TAPE DECK
In metal case with carrying hande, heavy fly wheel and capstan drive gupe speed
guide. Not new but in good order. Price $£ 1.95$ plus $£ 1$ post and insurance.

J. BULL (ELECTRICAL) LTD.
(Dept. W.W.) 102/3, TAMWORTH ROAD, CROYDON CRO 1XX

REDIFON TELEPRINTER RELAY UNTT NO. 12: ZA-41196 and power
supply 200-250V a.c. Polarised relay type 3SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{~mA}$. Two stabi-
 lised valves CV
condition. 88.50 . Carr. 75 p .
AUTO TRANSFORMER: $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$, 1000 watts. Mounted in strong steel case $5 \mathrm{in} . \times 6 \frac{1}{2} \mathrm{in} . \times 7 \mathrm{in}$. Bitumen impregnated. $£ 10$ each, Carr. $£ 1$.
TEELPRINTER TYPE 7B; Pageprinter 24 V d.c. power supply, speed 50 bauds per min. second hand cond. (excellent order) no parts broken. $£ 15$ each. Carriage INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision for checking ionisation. $110 / 230 \mathrm{~V}$ a.c. input. S/hand good cond. $£ 30+£ 1$ carr. BRIDGE MEGGER: 250V. (Evershed Vignoles) series 2. $£ 30$ each. Carr. £1. BRIDGE MEGGER: $2,500 \mathrm{~V}$., series 1 . $£ 30$ each. Carr. $£ 1$.
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction
with a freq. meter. $£ 17.50$. Carr. $£ 1.50$.
TYPE 174/1 FREQUENCY SHIFT ADAPTOR (Northern Radio Co.) : Convert mark and space frequencies from the output of one or two Receivers into d.c. pulses. Suitable to operate Teleprinters or similar devices. $110 / 220 \mathrm{~V}$. Further detalls on request, s.a.e. $\ddagger 55$ each. Carr. $£ 1.50$.
TELEGRAPH TERMINAL UNIT (A.T.E.) TYPE TFSS: Converts signals from Receivers into d.c. pulses. Complete with monitor. $£ 75$ each. Carr. ${ }^{2} 2$. FURZHILL SENSITIVE VALVE VOLTMETER V.200: Freq. $10 \mathrm{~Hz}-6 \mathrm{MHz}$ (can be used beyond 6 MHz). Probe in circuit-voltage range $1 \mathrm{mV}-1 \mathrm{kV}$ in 6 decade ranges; full scale deflection 10 mV , $100 \mathrm{mV}-1 \mathrm{kV}$. Without probe $100 \mu \mathrm{~V}$ -
100 V in 6 decade ranges; full scale deflection $1 \mathrm{mV}, 10 \mathrm{mV}-100 \mathrm{~V}$. Accuracy $\pm 5 \%$. ${ }^{100 V}$ in 6 decade ran
NOISE FIGURE METER TYPE 113A (Magnetic AB, Sweden): $£ 125$ each. Carr. £1.
PRECISION PHASE DETECTOR TYPE 205: Freq. $0.1-15 \mathrm{MHz}$ in 5 ranges. Variable time delay microseconds $0-0.1 \mathrm{c}, 115 \mathrm{~V}$ input. $£ 55$ each. Carr. $£ 1$. ROHDE \& SCHWARZ HF MILLIVOLTMETER: $30 \mathrm{~Hz}-30 \mathrm{MHz}$ Type UVH, $1 \mathrm{mV}-1 \mathrm{~V}$ in 7 ranges, 220 V . $£ 75$ each. Carr. $£ 2$.
ROHDE \& SCHWARZ YHF WATTMETER TYPE NAK: with matching indicator, 30 watts, $200-470 \mathrm{MHz}$. $£ 25$ each. Post 70 p .
ADVANCE PULSE GENERATOR PG55: $£ 40$ each. Carr. $£ 1$.
PHILLIPS VALVE VOLTMETER TYPE GM6014: $1-300 \mathrm{mV}$ in 6 ranges, $\underset{70-20 \mathrm{~dB}, \text { probe } 1000 \mathrm{~Hz}-30 \mathrm{MHz}, 300 \mathrm{mV} \text { maximum. } \mathrm{E} 35}{ } \mathbf{~ P a c h . ~ C a r r . ~} 61$ TF-1345/2 DIGITAL FREQUENCY COUNTER: Range $10 \mathrm{KHz}-100 \mathrm{MHz}$ with extension units. Details on request, s.a.e. $£ 100$. Carr. $£ 2$.
UHF MICROWAVE MILLIWATTMETER TYPE 14: Direct reading, can be used to measure power from 100 MHz upwards. F.S.D. on 4 in. scale meter 2.5 mW . 640 each Carr. $€ 1$

MARCONI HF SPECTRUM ANALYSER OA. 1094/3. Further details on request. $£ 250$ each. Carr. $£ 5$.
Q METER: $30 \mathrm{MHz}-200 \mathrm{MHz}$. £55. Carr. £1.

SIGNAL GENERATOR AIRMEC TYPE 701: $30 \mathrm{KHz}-30 \mathrm{MHz}, 7$ ranges. 65. Carr. $£ 1.50$

TF-1278/1 TRAVELLING TUBE WAVE AMPLIFIER: $£ 125$. Carr. $£^{2}$. BPL A.C. MILLIVOLTMETER TYPE VM.348-D Mk. 3: 2 millivolts- 2 volts, 6 ranges. $£ 30$. Carr. $€ 1$.
WAYNE KERR WAVEFORM ANALYSER A.321: Low scale $0-1200 \mathrm{c} / \mathrm{s}$. High scale $1-20 \mathrm{Kc} / \mathrm{s}, 600 \mathrm{ohms}$. Harmonic level is $0-55 \mathrm{~dB}$ in 12 steps. 875. Carr. $£ 1.50$.
SPECTRUM ANALYSER TYPE MW.69S (Decca): Further details on request. $£ 200$.
MARCONI DUAL TRACE UNIT TM-6456: £30. Post 60p.
SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq.- $1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM, Modulated Pulse- $40-4000$ pulses per sec. Pulse Width- $0.5-10$ microsecs. Timing-Undelayed or delayed from $3-300$ microsecs from external or internal pulse. Output- 1 milliwatt max., 0 to -127 dB variable. Output Impede ance- 0 . Price: 120 each $+\Sigma 2$ cax
H.V. TRANSFORMER: $8000 / 8000$. Output 300 mA. rms. Size: $12 \mathrm{in} . \times 12 \mathrm{in} . \times$ $36 i n .230$ input. t $^{40 .}$ Carr. $£ 4$.
FIRE-PROOF TELEPHOL $(T$ win) $1,300 \mathrm{ft}$. on metal reel. $\mathbf{£ 7 . 5 0}$ per reel. Carr. $£ 1$ FIRE-PROOF TELEPHONES: $£ 25 \cdot 00$ each, carr. $£ 1 \cdot 50$.
TF. 2000 A.F. SIGNAL SOURCE: $£ 175 \cdot 00$, carr. $£ 1 \cdot 00$.
POWER UNIT: $110 / 230$ volts a.c. input. 28 volts d.c. at 40 amps output. $£ 30.00$ each, carr. $£ 3.00$.
SMOOTHING UNIT (for the above): $£ 10.00$ each, carr. $£ 2.00$.
X-BAND MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James Scott. £125 ea., Carr. © 1.
HP-766D DUAL DIRECTIONAL COUPLER: $940-1975 \mathrm{MHz} .\{35$ ea., 75p post.
BACKWARD WAVE OSCILLATOR TYPE SE-215: 6.3 heater, 105V Anode, 7.9 mA . Mnfr. Watkins \& Johnson. $£ 85$ ea., Carr. $£ 1$.

TEKTRONIX TIME MARK GENERATOR TYPE 180-S1: 5, $10,50 \mathrm{MHz}$. ${ }^{6} 65$. Carr. $£ 2$.
TRANSISTOR ANALYSER TA 1001 (K. \& N. Electronics Ltd.) : $£ 95$. Carr. £3 POLRAD MICROWAVE RECEIVER MODEL R-B1: Complete with tuning unit RS-T $1,900-4,340 \mathrm{GHz}$. 1 150. Carr. $\ell 5$.
ABSORPTION FREQUENCY METER (Measurements Corporation): Consisting of 3 units $1-45,2.2-400,420-1000$ Megacycles. $£ 55$. Carr. $£ 1$.
CHRONOTON MODEL 25E: $0.4-10$ seconds in seven ranges. £50. Carr. $£ 1$. AIRMEC MODULATION METER TYPE 409: AM or FM, 3-600 MHz. c95. Carr. ${ }^{6} 2$.
LISTS OF EQUIPMENT AVAILABLE: MOTORS; TELEPRINTERS; AR88 SPARES; TEST EQUIPMENT ETC. Send $10 p$ for above lists
ALL CARRIAGE QUOTES GIVEN ARE FOR 50 MLIE RADIUS OF ALL CARRIAGE QUOTES GIVEN ARE FOR 50 MILE RADIUS OF

ALL U.K. ORDERS SUBJECT TO 8\% VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage).

CompUIER sAIEs Peripherals and Systems for Data Processing Systems, Equipment and Components

Minformoutrer - yyserins

Available for immediate delivery at greatly reduced prices due to special purchase

Little-used PDP8E 12 K system including: High Speed Paper
Tape Reader. High Speed Paper Tape Punch. Memory Drum. ASR33 Teletype. ${ }^{\text {Just arrived-PDP8L } 4 K}$ processor with 8K extender box.
A phone call could save you a bomb! Ring now for price. Other models becoming available all the time-let us know your requirements.

Peripherals

ECONOMY RANGE OF 80 COLUMN HAND PUNCHES E69.50 Plus Carr. \& VAT

 Optionad extres: Apphamumeric Keytops. Claptray and Wreck Knife. Ideal for stack comrol. salas analvzic
instritations. OP training cempres, schools. etc.

- var to all pric

Add 8\% VAT to all prices shown

PAPER TAPE PUNCHES \& READERS
DEC High-Speed Paper Tape
used Our special price $\mathbf{f 1} 1,500$.
DAT DYNAMICS 1114 Rack-Mounted 110 cps Punch, as new. Mounted in sound-reducing rack cabinet and com-
plete with control and interface electronics and power supply unit with short circuit and overload protection Asynchronous peration up to 110 cps . Our special price $\mathbf{E 5 5 0}$
FACIT 4060150 cps Rack-Mounted 150 cps Punch. Heavy
duty punch suitabie for all types of tape inc. Mylar. UNUSED dury punch suitabie for all types of t
SURPLUS-A BARGAIN AT E595.
TELETYPE BRPE 110 cps Synchronous Punch 5/7/8 channel. Self-contained mains-operated unit consisting. ${ }^{\circ}$.
punch unit. base, motor and tape supply spool. Price $\mathbb{£ 1 4 5 . 0 0}$ punch unit. base, motor and tape supply sp.
Sound-reducing cabinet available at $\mathbf{£ 1 5 . 0 0}$.
INVAC P135 solenoid-actuated punch. 35 cps . $5 / 6 / 7 / 8$ channel. Compact unit $7 \frac{1}{2}{ }^{\prime \prime} \times 61^{\prime \prime \prime} \times 5^{\prime \prime}$. Power Require. ments: Tape transport solenoids 26 V DC 2 A . Punch solenoids
26 V 4.5 A . Punch return solenoids 26 V 2A. Minimum pulse width 16 millisec. Price $\mathbf{E 6 9} 50$.
FACIT 4001 High Speed Reader. rack-mounted ver-
sion.
s/6/7/7
dielectric
channel up to 500 cps (or 1000 cps
sper using separate spooler). On
packing-OUR BARGAIN
PRICE £895.00. One little
tally 424 cps Brush Reader. Reads all 5 to 8 channel tape asynchronously at speeds up to 60 cps in either direction. , FERRANTI TR5 photoelectric transistorised reader. 300 cps .
$5 / 6 / 7 / 8$ channel tape. Mains-operated. Price $\mathbf{f 9 0 . 0 0}$.
INVAC Photoelectric Reader, Motorless. solenoid-operated
solid state unit to read any $5 / 6 / 7 / 8$ hole tape at speeds up to 20 cps . Compact unit $6 \frac{3}{2}^{\prime \prime} \times 4^{\prime \prime} \times 6^{\prime \prime}$. Power Requirements: 20 cps. Compact unit $63^{\prime \prime} \times 4^{\prime \prime} \times 6^{\prime \prime}$. Power Requirements:
Solenoids -26 VDC $2 A$. Amplifier $-12 V D C 500 \mathrm{~mA}$. Price E55.00.
FERRANTI TR2 Photoelectric Reader. Mains operated up to $200 \mathrm{cps} .5 / 7$ channel tape. Price $\mathbf{E 3 5 . 0 0}$.
CORE STORES
MULLARD 1 K 18 bit Core Stores. 4 matrix planes 64×32.

Keyboards

ELECTRO-MECHANICAL NUMERIC AND ALPHANUMERIC KEYBOARDS originally designed for 80 character poys and verifier machines. Numeric wich with 47 character keys and 8 instruction keys.

PAPER TAPE PUNCH/VERIFIER KEYBOARDS. FUII alphanumeric keyboard with 65 keys +4 shift keys in 4 -bank layout. ISO coded. Operating speed up to $25 \mathrm{ch} . / \mathrm{sec}$. Mounted in attractive case with control panel. Price $£ 25$.
Reed-Switch 4-bank Alphanumeric keyboard. mounted on PC board and housed in metal case. 43 character keys +2 shit keys and 16 instructional keys. Ideal for data displays. computer programming. etc. Price $£ 30$
PHOTO-ELECTRIC ENCODED KEYBOARDS. No metallic switches or contacts. Generates any eight bit code to specification. Photoelectric keyboard combines Photoelectric encoders and power assisted solenoid actuators. 45 key alphanumeric keyboard ${ }^{+}$space bar + key interlock. Output-Photocells 500 K to 2 Meg . for Logic $1.800 \mathrm{Ohm}-$ 2 KOhm for Logic 2. $-12 \mathrm{~V} \mathrm{DC}-\mathrm{OVDC}$ Logic 1. Voltage requirement
Price £45.

JUST ARRIVED-FABULOUS BRAND NEW KEY BOARDS WITH READ ONLY MEMORY. Input Voltage - 12 V DC: positive logic; TLL comp 4-bank alphanumeric kevboars win 77 key bar. Ideal for combar. . deal for com
munications equipment. Complete with associated integrated circuitry. Power supply connections and binary-coded outputs are made to a printed card connector at
of keyboard. OUR INCREDIBLE PRICE

HART ELECTRONICS

Audio Kit Specialists since 1961

BAILEY/BURROWS/QUILTER PRE AMP This is the tone control section of the best BAILEY/BURROWS/QUILTER PRE AMP This is the tone control section of the best
pre-amp kit currently available. Consider the advantages: FFirst quality fibreglass
printed circuits with roller tinned finish and ail component locations printed on reverse. printed circuits with roller tinned finish and ail component locations printed on reverse.
*Low noise carton film and metal film resisfors throughout. *Finest quatity low-noise *Low noise carton film and metal film resistors throughout. *Finest quatity low-noise total stability. *Special decoupling and earthong arrangements to eliminate hum loops. *Controls. switches and input sockets mount directly on the boards to TOTALLY
ELIMINATE wiring to these components. (We know of one pre-amp kit which claims its ELIMINATE wiring to these components. We know of one pre-amp kit which claims its controls mount directly on the board-and so they do. by their shaft bushes! You still have
to wire them up!!
*We incorporate the Ouilter modification which is most important as it reduces distortion *We incorporate the Quilter modification whic
and increases the bass and treble control range.
As can be seen from the photograph the tone control unit is very slim fonly $1 \frac{1}{2}$ " from front to back) and may therefore be used in many other applications than our Bailey METALWORK AND WOODEN CASES These have been under review for some time: please send for latest information.
F.M. TUNER This latest addition to our range is designed to offer the best possible
performance allied to the ease of operation given by push button varicap tuning We performance allied to the ease of operation given by push button varicap tuning. We
have taken great care to look after the constructors' point of view and there are no coils to wind. no RF circuits to wire and no alignment is required. in fact the whole unit can be easily completed and working in an evening as there are only 3 transistors. one IC and two ready built and aligned modules comprising the active components. We have
abandoned the concept of having a tuner as large as the amplifier and this new unit has a abandoned the concept of having in. It can be mounted on the side of our Bailey amplifier metalwork thus turning
Cost of into a tuner/amplifier whilst only increasing its width by $1 \frac{1}{2}$ in.
in
it Cost of tuner chassis (no case) is $£ 22$ for mono, $\mathbf{E 2 5 . 4 5}$ for stereo. Metal case $\mathbf{E 3 . 5 5}$. An extended wooden case CITS Our printed circuits and comed shents offer Sonvert any suitable quality deck into a very high quality Steroo Tape unit. Imput and convert any suitable quality deck into a very high quality Stereo Tape unit. Input and
output levels suit
Bailey pre amp. Total cost varies but around $\mathbf{E 3 5}$ is all you need. We can offer tape heads as well ig you want new ones.
All above kits have fibreglass PCB's. Prices exclude VAT but PB, P is included.
FURTHER INFORMATION ON ALL KITS FREE it you send us a 9 in. $\times 4$ in. S.A.E. REPRINTS Post free, no VAT.
Bailey $30 W$ 18p.
STUART TAPE RECORDER All 3 articles under one cover 30p.
STUART TAPE RECORDER All 3 articles under one cover 30p.
BAILEV/BURROWS/QUILTER Preamp circuits. layouts and assembly notes $15 p$
Penylan Mill, Oswestry, Salop
E.H.T. POWERUNIT. $110 / 240 \mathrm{v} .50 \mathrm{~Hz}$ giving $5 \mathrm{~K} . \mathrm{V}$. at $50 \mathrm{~m} / \mathrm{a}$. METERED OUTPUT. £17-50.

COPPER LAMINATE P.C. BOARD

 $8 \frac{1}{2} \times 6 \times \frac{1}{4}$ inch 20p sheet. 3 for 55 p . P.P. 10p. $10 \times 4 \times \frac{1}{10}$ inch 12p sheet. 5 for 50 p. P.P. $15 p$. $10 \frac{1}{2} \times 5 \frac{1}{3} \times \frac{1}{4}$ inch 20 p sheet. 3 for 55 p. P.P. 10 p$14 \times 6 \frac{1}{\frac{1}{2}} \times$ 立 $14 \times 6 \frac{1}{i} \times \frac{1}{\pi}$ inch 30p sheet. 3 ior 80p. P.P. $15 p$.
Officut pack (smallest 4×2 inch) 50p. 300 sq P.P. 5 p single sheet. 20p Bargain Packs.

TELEPHONE DIALS (New) £1 ea.

RELAYS (G.P.O. '3000'). All types, Brand EXTENSION ATE 10 up quotations only Various Colours $£ 3$ 50. P.P. 50p. Excellent condition.
RATCHET RELAYS. (310 ohm) Various Types 85p. P.P. 15p. UNISELECTORS (NEW) 25 way 12 Bank (Non Bridging) 68 ohms. E6.

PRECISION A.C. MILLIVOLTMETER (Solaition) $1.5 \mathrm{~m} . \mathrm{v}$ to 15 v : 60 db to 20 db . 9 ranges. Excelsent condition
f22.50. P.P. $f 1.50$.

HIGH CAPACITY ELECTROLYTICS

2,200 μ f. at 50v. (2×1 tin.) 40p. P.P. 5p. 2,200 μ f. 100 v ($1 \frac{1}{2} \times 4 \mathrm{in}$.) 75p. 3,150 1 f. 40 v . ($1 \div \times 4 \mathrm{in}$.) 60p. $10,000 \mu \mathrm{f}$. 25 v ($1 \frac{1}{2} \times 4$ in.) $60 \mathrm{p} .12,000 \mu \mathrm{f} .40 \mathrm{v}$. ($2 \times 4 \mathrm{in}$.) $75 \mathrm{p} .16,000 \mu \mathrm{p}$ 16 v . ($2 \times 4 \mathrm{in}$.) 60 p . $21,000 \mu \mathrm{ff} 40 \mathrm{v}$. ($2 \mathrm{f} \times 4 \mathrm{in}$.) $£ 1.2,800 \mu$ 100 v . ($4 \times 2 \mathrm{in}$.) 80p. $35,000 \mu \mathrm{ff}$. 40 v . ($3 \times 4 \frac{1}{2} \mathrm{in}$.) £1. P.P. 15 p H.D. ALARM BELLS. 6 in . Dome $6 / 8$ volt D.C. $£ 2 \cdot 25$. P.P. 50p.

OVERLOAD CUT-OUTS. Panel mounting ($1 \frac{3}{4} \times 1 \frac{1}{4} \times \frac{1}{2} i n$.) $800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{amp} / 10 \mathrm{amp} .35 \mathrm{p}$ ea. P.P. 5 p .
BULK COMPONENT OFFER. Resistors/Capacitors. All types and values. All new modern components. Over 500 pieces E2. P.P.20p. (Trial order 100pcs. 50p.) We are confident you wille-order
REGULATED POWER SUPPLY. Input 110/240v Output 9v. DC. $1 \frac{1}{1}$ amp. 12v. D.C. $500 \mathrm{~m} / \mathrm{a}$. E4. P.P. 40 p S. Q. C.B.S. DECODER MODULE

Complete with I.C. M.C. 1312 P.
With the removal of 6 components a direct electrical sub stute for P. E. 'RONDO' Board. $£ 4$ each.
U.K. ORDERS 8\% V.A.T. SURCHARGE

TRANSFORMERS

ADVANCE "VOLSTAT" TRANSFORMERS. Input 242v. A.C.
CV50. 38 v . at $1 \mathrm{amp}: 25 \mathrm{v}$. at $100 \mathrm{~m} / \mathrm{a} .75 \mathrm{v}$. at $200 \mathrm{~m} / \mathrm{a}$ £2 ea. P.P. 40p.
CV75. 25 v . at $2 \frac{1}{1} \mathrm{amp}$. $\mathbf{£ 2} \mathbf{5 0}$. P.P. 50p
CV100. 50v. at 2 amp : 50 v . at $100 \mathrm{~m} / \mathrm{a}$. £3. P.P. 50p. CV250. 25 v . at $8 \mathrm{amp}: 75 \mathrm{v}$. at amp . ©5. P.P. f1 CV500. 45 v at $3 \mathrm{amp}: 35 \mathrm{v}$. at $2 \mathrm{amp}: 25 \mathrm{v}$. at 3 amp . £7. P.P. £1-50.
L.T. TRANSFORMER "TOROIDAL": Prim. 240v Sec. 30 v . at 1.5 amp . Size 3 inch dia. finch thick at P.P. 10 p.
L.T. TRANSFORMER: Prim. 240v. Sec. 27-0-27 at $800 \mathrm{~m} / \mathrm{a} 7.5 \mathrm{v}$. at 1.5 amp . £1.75. P.P. 25 p .
L.T. TRANSFORMER. Prim. 240v. Sec. 24v. at $1 \frac{1}{2}$ amp. £1-20. P.P. 30 p.
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. $0 / 24 / 40 \mathrm{v}$ $1 \frac{1}{1}$ amp. (Shrouded). £1.50. P.P. 30p
L.T. TRANSFORMER. Prim. 200/250v. Sec. 20/40/60v. at 2 amp. (Shrouded). £2-25. P.P. 40p.
L.T. TRANSFORMER (H.D.) Prim. 200/250v. ec. 18 v . at $27 \mathrm{amp}: 40 \mathrm{v}$. at $9.8 \mathrm{amp}: 40 \mathrm{v}$. at 3.6 amp 52 v . at $1 \mathrm{amp}: 25 \mathrm{v}$. at $3 \cdot 7 \mathrm{amp}$. £15. P.P. £2.
h.t. Transformer. Pim. $110 / 240 \mathrm{v}$. Sec. 400 v . $100 \mathrm{~m} / \mathrm{a}$. £2. P.P. 50p.
E.H.T. TRANSFORMER. 240 v . Sec. 1800 v .50 mA . E2.50. P.P. 50p
1.T. TRANSFORMER. $110 / 240 \mathrm{~V}$. ('C. Core). Secs. $1 / 3 / 9 / 27 \mathrm{v}$. at 10 amps . £6.50. P.P. E1.
L.t. TRANSFORMER. Prim. 240v. Sec. 16/0/16v. at 2 amp . 1 1.60. P.P. 30p
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. 23/0/23v. at $1.8 \mathrm{amp}: 50 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}: 3 \cdot 15 / 0 / 3 \cdot 15 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}$. E1 75. P.P. 30p.
L.t. Transformer. Prim. 200/240v. ('C' Core). Secs. $1 \mathrm{v} . / 3 \mathrm{v} . / 8 \mathrm{v} . / 9 \mathrm{v}$. all at 1.5 A : 50 v . at 1 amp. £2. P.P. 30 p
L.T. TRANSFORMER. 110/240V. ('C' Core). Sec. 13.5v. 4A. : 39v. at 2A. E2.50. P.P. 30p.
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' Core) $1 \mathrm{v} . /$ 3v./9v./20v./20v. all at 2 amp. £3. P.P
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' Core). Secs. $1 \mathrm{v} . / 3 \mathrm{v} . / 9 \mathrm{v}$. all at $10 \mathrm{amp}: 35 \mathrm{v}$. at 1 amp : 50 v . at $750 \mathrm{~m} / \mathrm{a}$

HIGH-SPEED MAGNETIC COUNTERS. 4 digit (non reset) 24 v . 40p. P.P. 10p
5 digit (Non-reset) 24v. 75p. P.P. 10 p
3 digit $12 v$. (Rotary Reset) $2 \frac{1}{4} \times 1 \frac{1}{4} \times 1 \frac{1}{2} \mathrm{in} . £ 1$ each.
P.P. 10 p.
6 digit (Reset) 240v. A.C. E3.50. P.P. 10p.

RIBBON CABLE (8 colours) £1.25. P.P. 15p. 10 m : £10. P.P. 50 p. 100 m .8 cores $7 / . \mathrm{mm}$ bonded side by side ribbon form.
1000 Type KEY SWITCHES. Single $2 \times 4 \mathrm{c} / 0$ Locking 50p. P.P. 1 Op. Bank of $4.2 \times 4 \mathrm{c} / \mathrm{o}$ each switch (one biased). 1.20. P.P. 15 p.

RELAYS

SIEMENS/VARLEY PLUG-IN. Complete with transparent dust covers and bases. 2 pole c/o contacts 35p ea.; 6 make contacis 40 p ea., 4 pole c/o contacis 50p ea. P.P. $5 p$ ea. $6-12-24-48 \mathrm{v}$. types in stock.
12 VOLT H.D. RELAYS. 2 pole 3 way 40p. P.P. 10p. 240v. A.C. RELAYS. (Plug-in type), 3 change-over 10 amp. contacts. $75 p$ (with base). P.P. 10p.
P.A.R. BISTABLE RELAY (Latching) 24v. D.C. $4 \mathrm{c} / \mathrm{o}$ contacts 65 p. P.P. 10 D .
SILICON BRIDGES. 100 P.I.V. 1 amp $\frac{5}{f_{1}} \times \mathrm{f} \times \mathrm{t} \mathrm{in} .30 \mathrm{p}$. P.P. 5p. 200 P.I.V. 2 amp. 60p. P.P. 5 p.

24 VOLT A.C. RELAYS (Plug-in)
3 Pole Change-over 60p. P.P. 5p.
2 Pole Change-over 45p. P.P. 5p
S. T. C. CRYSTAL FILTERS. (10.7 Mhz)
$445-L Q U-901$ A (50Khz spacing) $\mathbf{~} 3$.
445 -LQU- 901 B (25 Khz spacing) 4 .

WE REGRET THAT ALL ORDERS VALUE UNDER E5 MUST BE ACCOMPANIED BY REMITTANCE.
 PO2-AO/2

NEVER!

But it's true, the new POLITEST pocket tester combines continuity tester voltage locator, phase tester, pole finder and an optional two-way communica tions unit all in one robust instrument. POLITEST gives audible and visual signals, indicates $A C$ or $D C$ and differentiates between harmless and dangerous $A C$ up to 500 V . The instrument illustrated is also suitable for two-way communication between distant test locations. No switching of leads or resetting necessary. Supplied complete with battery and 20" test leads. Diagrammatic test interpretation table available from: POLIGRAT LIMITED, P.O. BOX 177.

30 Graham Street,
30 Graham Street,
Birmingham B1 3LP
Tel: 021-236 1608
WW-167 FOR FURTHER DETAILS

JES AUDIO INSTRUMENTATION

 Si451
 $\mathbf{f 4 2 . 5 0}$
 Si453
 £50.00
 Comprehensive Millivoltmeter
 350μ Volts
 20 ranges
 sine - square - RIAA
 prices plus VAT
 J. E. SUGDEN \& CO. LTD. Tel. Cleckheaton (09762) 2501 CARR STREET, CLECKHEATON, YORKSHIRE

APPOINTMENTS VACANT

Electronics Engineers bring your skills to Scotland.....

And make full use of your knowledge and exper ience at Marconis Hillend establishment in Fife.

Our international pre-eminence in the field of computer controlled trainers, simulators and automatic test equipment continues to altract major new contracts from military and commercial organisations at home and abroad. creating new opportunities for enthusiastic engineers to contribute to specific aspects of Our technology.

Electronics Design Engineers

To work with closely integrated profect teams involved in all stages of development work. Applicants should have at least 1 years design experience ether analogue or digifal and should preterably be qualified to degree standard. although HNC/D will also be considered

Test and Commissioning Engineers/Technicians
 To assist in commissioning activities including sys

```
Marconi Space & Detence Systems Ltd
```

Hillend Industrial Estate.

By Dunfermine. File
Name Address
tems testing and diagnosis and correction of malfunctions. Applicants must have previous experience of systems testing on electronic equipment and should preferably be qualified to ONC/HNC slandard Service in H.M. Forces will also be considered

Quality Assurance Engineers

Stringent quality checksare enforced at every stage of design development and commissioning with Quality Assurance Engineers making a positive contribution to design and production. including liaison with government inspectorates and outside suppliers throughout the world Previous electronics experience and HNC level qualifications are essential and specific experience of RF work on trans mitters/receivers would be an advantage

All positions offer a genuine professional chalienge and excellent opportunities for advancement in a secure. expanding organisation Assislance in certain cases. may be given with relocation to one of the many attractive residential areas in Fife where local authority housing is readily avallable Success ful applicants will aiso enjoy the added bonus of the county's excellent rural and recreational facilites

For full details and an application form, just fill in the coupon below. Or phone Alan Smith on
inverkeithing (03834) 2131.

Marconi

Space \& Defence
Systems (hillend Fite)

Radio Operators. How to see more of your wife without losing sight of the sea. of your wife without losing sight of the sea. of your wife without losing sight of the sea.

 is just as interesting, just as rewarding as aboard ship, but you get home to see your wife and family more often. You need a United Kingdom General or First Class Certificate in Radiocommunications, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.Starting pay for a man of 25 or over is $£ 2,270$, plus cost of living allowance with further
 salary, you'll get an average allowance of $£ 450$ a year for shift duties and there are opportunities for overtime. Other benefits include a good pension scheme, sick pay and prospects of promotion to Senior Management.

For more information, write to: ETE Maritime Radio Services Division (L532), ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London, ECIA 1 AS.
?

Test Gear Engineers

Consumer Electronics

ITT, one of Europe's leaders in the field of consumer electronics, has achieved an enviable reputation for the high quality of its range of audio products and monochrome and colour TV. At Hastings we can offer excellent scope to Test Gear Engineers within the Industrial
Engineering Department.

Assistant Chief Engineer

To deputise for the Chief Engineer - Test Gear and co-ordinate the Test Gear Department in respect of appraisal of test gear requirements for new R \& D designs; design, development and manufacture of all test gear and its installation in the factory and at sub-contractors. In addition, he will be responsible for budgeting and project appropriation and all maintenance activities on test gear installations.
This position calls for an HNC and at least five years' experience in the organisation and design of complex test equipment in the consumer electronics industry.

Senior Test Gear Engineer

Reporting to the Chief Engineer-Test Gear, he will be responsible for supervising a team of test gear engineers engaged in installation and both routine preventative and emergency breakdown maintenance of all test equipment at Hastings and satellite locations.
Essential requirements are HNC coupled with several years' experience at senior level maintaining electronic equipment, covering audio to UHF frequencies and pulse techniques.
Attractive salaries will be offered together with a wide range of benefits including pension/sickness schemes and assistance with relocation expenses, where appropriate, to this particularly pleasant area. The Company is situated close to the sea with some of the most attractive countryside in the South East on the doorstep.
Write with details of your qualifications and experience to David Harris, Personnel Officer, ITT Consumer Products (UK) Limited,
Theaklen Drive, Hastings, Sussex.

HER MAJESTY'S GOVERNMENT COMMUNICATIONS CENTRE

HANSLOPE PARK MILTON KEYNES MK19 7BH

has vacancies in the following fields of R \& D work:
(a) HF Communications
(b) VHF/UHF Communications
(c) Communication Field Trials
(d) Acoustics
(e) Optics including Infra-Red
(f) Microwave
(g) General Circuit Design-Analogue, Digital
(h) Statistics/Operational Analysis/Systems Analysis

Most posts will be at Hanslope Park but some will be in London.
Candidates for post (h) should be experienced scientists/engineers who have specialised later in one of the required fields. An ability to deal with nontechnical people is essential.
Appointments will be made within the grades of Higher Scientific Officer except for (e), (f) and (h) where appointments may also be made within the Senior Scientific Officer grade. In addition to the salary scales quoted, all posts attract the Threshold Agreement Payment ($£ 229$ p.a.) and a non-contributory pension.

HIGHER SCIENTIFIC OFFICER

Applicants should be under 30 years of age but this requirement may be waived if special qualification or experience can be offered. They should have one of the following qualifications:
(a) A degree in a scientific or engineering subject
(b) Degree-standard membership of a Professional Institution
(c) A Higher National Certificate or Higher National Diploma in a scientific or engineering subject
(d) A qualification equivalent to (c) above

In addition the following relevant experience is required:
(a) Applicants with Ist or 2nd class honours degrees-at least 2 years post-graduate experience.
(b) Applicants with other qualifications-at least 5 years post qualification experience.
Salary Scale: $£ 2,461-£ 3,371$ with entry point dependent upon experience beyond the minimum required.

SENIOR SCIENTIFIC OFFICER

Applicants should be at least 25 and under 32 years of age, although the upper age limit may be waived if experience of special value can be offered.
Applicants should have obtained a lst or 2 nd class honours degree and have had a minimum of four years appropriate post-graduate experience. Salary Scale: $\{3,157-\{4,441$. Entry will normally be at the minimum of the scale but applicants with experience of special value may be entered above the minimum.

Applications, stating the field of work and grade required, should be made to
Administration Officer
HM Government Communications Centre
Hanslope Park
Hanslope
MILTON KEYNES MKI9 7BH
[4478

prowest

SENIOR DEVELOPMENT ENGINEER

Prowest Electronics Ltd, a leading Company in the field of Television, has a vacancy for an engineer with experience in the design of Television Receivers or Picture Monitors.

The successful candidate will be responsible for the design and development of the latest range of professional Monitors, both Monochrome and Colour.

This post could be of particular interest to an engineer who has already had experience in TV receiver design and now wishes to progress to a less "fettered" environment.

A minimum salary of $£ 3,500$ p.a. is envisaged, and an applicant of outstanding ability can expect appreciably in excess of this. The Company offers an excellent pension scheme and four weeks leave will be given.

Please write or telephone in the first instance to Mr A. Pratt, Chief Development Engineer.

Prowest Electronics Ltd.,
Alma Road, Windsor, Berkshire SL4 3JA.
Tel: Windsor 53111

ELECTRONICS ENGINEERS (Test/Test Equipment)

We seek to recruit Electronics Engineers (Test/Test Equipment) who have attained a technical education not less than HNC (Electronics), and who have acquired industrial experience in the design, operation and maintenance of test equipment used in a high-volume production unit. Applicants must be "self-starters" in every respect, knowledgeable, and able to motivate others in similar work.
Salary would be not less than $£ 2,600$ per annum but might be substantially more for entirely suitable applicants.

SENIOR QUALITY ENGINEER

Applicants must already possess the experiences of maintaining high quality standards on a production line capable of producing a very high volume of printed circuit board assemblies.
He must be completely conversant with the techniques applied to PCB production such as flow soldering and connected quality requirements. He must be able to initiate and operate quality control procedures required for "feedback" to production management.
Practical experience of the above work will outweigh technical/academic excellence, as we seek to employ an experienced, successful practitioner of quality engineering who is accustomed to handling high-volume PCB production quality requirements.
The salary range is naturally geared to the applicant's age and experience, but will be not less than $£ 2,700$ per annum to the right person.
The above posts are senior appointments carrying monthly salaried staff status and benefits. Relocation expenses, where applicable, will be admissible. Holidays are three weeks per annum plus statutory holidays. Our factories are located in Perth, Central Scotland, centre of great scenic and leisuretime amenities, and in a marvellous working environment.
Please write in the first instance giving your age, experience, present salary, marital status, etc., to:

J. Bandeen,

> G. R. INTERNATIONAL ELECTRONICS LTD, Almondbank, Perthshire, Scotland, PH1 3NQ.

AS A RESULT OF OUR PROGRAMME OF CONTINUED EXPANSION VACANCIES EXIST FOR THE FOLLOWING STAFF.

CCTV ENGINEER

Fully conversant with modern video recording systems. Circa $£ 3,000$.

INSTALLATION ENGINEERS

Experienced in installation of security systems and first line servicing. Company van supplied. Circa £2,500.

SALES ENGINEER

Of proven ability. Full sales back up given. Company car provided. Circa $£ 3,000$.

MANAGER

For thriving video and audio-visual hire department. Interesting and varied work. Salary around $£ 2,500$.

All positions are permanent and pensionable. Good working conditions in friendly atmosphere.

Applications in own hand writing, giving details of past three years employment to :

M Biddle

Dixons Technical Limited 3 Soho Square, London, W1

4468

SENIOR LOUDSPEAKER DESIGN ENGINEER

Minimum of 5 years' design experience in audio engineering required.
Professional background must include primary design responsibility for loudspeakers, acoustic enclosures, loudspeaker systems and related audio products for industrial and hi-fidelity markets.

Apply in writing, giving fullest details to Personnel Manager
Tannoy Products Limited Norwood Road, London SE27 9AB

UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG, SOUTH AFRICA Bernard Price Institute for Geophysical Research
Applications are invited for the following vacancies:

ELECTRONICS TECHNICIANMARINE RESEARCH

Involves construction, maintenance and repair of marine geophysical equipment. Two to three months of 1975 will be spent on scientific cruises in the Indian Ocean. During early 1976, there will be a two month cruise to Antarctica.

ELECTRONICS ENGINEER

or TECHNICIAN

Research project on mechanisms of rock deformation and tremors, requires experienced worker in electronics design and construction. Will work on electronics gear for (1) seismic recording and playback decks (II) ultra-sensitive tiltmeters (III) linear strain gauge arrays. Experienced man can soon assume responsibility for important part of project.
Starting salary for all posts will be determined according to qualifications and experience within the range $R 4,020-R 7,380 \quad(61=R 1.62$ approximately).
Intending applicants should obtain the information sheet relating to these posts from the Registrar, University of the Witwatersrand, Jan Smues Ave.. Johannesburg, South Africa to whom applications should be sent not later than 5th March, 1975. UK applicants may obtain the information sheet from the London Representative, University of the Witwatersrand, 278 Hiigh Holborn, London WCI to whom a copy of the application should be sent. [4467

ST. HELIER HOSPITAL Carshalton; Surrey
 MEDCAI PHYSICS IECHNCLIANGRADEII

required for District Medical Physics Department. Salary scale from $£ 2,601$ to $£ 3,390$ p.2. plus $£ 312$ London Weighting Allowance. Further details can be obtained from Chief Technical Officer-01-644 4343.
[4463

THE OPEN UNIVERSITY AUDIO-VISUAL DEPARTMENT

 MAINTENANCE TECHNICIANA vacancy exists in the Audio-Visual Department of the Operations Area for a Maintenance Technician.
The suitable applicant should have served a recognised apprenticeship followed by 6 years experience in the repair and maintenance of audio-visual equipment, including at least 2 years with CCTV and VCR equipmene.
Qualifications-ONC or City and Guilds Final Electronics.
Salary on Technicians Grade 4 scale: E2.247. £2.628 per annum.
Application forms and further particulars are available from the Personnel Manager (MT2), The Open University. P.O. Box 75, Walton Hall, Milton Keynes, MK7 6AA. Closing date Monday, 3rd March, 1975.

TOIOLOLOLOIOLOLOLOLOLO

 $\boxed{0}$ Electronics Test Engineers: career openings that affect all sorts of people...
you most of all, naturally. Mainly because, by joining the world's largest exporter of radio-telephone equipment you will inevitably open up for yourself career advantages that very few companies can provide. Pye Telecom is growing at an ever-increasing rate - and the potential for its products has as yet been only fractionally utilised. But the work you do will also be vital to an incredible number of others. Very frequently, life itself depends on the efficiency of the UHF and VHF equipment you'll be working on. Police, firemen and ambulance staff are a small sample of the extensive range of users. Which explains the exacting specifications of the tes ι procedures in operation - and why previous fault-finding and testing experience is an essential requirement. If it relates to communications equipment, so much the better, but this is not absolutely essential. More important is practical proficiency, which may well have been gained in the armed forces. Find out more right now by phoning or writing to Mrs Audrey Darkin at:

Pye Telecommunications Ltd

Cambridge Works, Elizabeth Way,
Cambridge CB4 1DW. Tel: Cambridge 58985

Young Electronics Engineers A mobilefuture inbroadcasting?

We require Engineers qualified, or about to qualify, to H.N.C. or equivalent level and possibly with a few years' experience, who will learn to operate and maintain the advanced electronic equipment at our Transmitting Stations throughout the country bringing Independent Television and Radio into millions of homes.
Our Engineers may be called upon to rectify a fault anywhere, anytime and in all weathers. It's a job that requires flexibility about when and where you work; you'll need a driving licence and you must be prepared to undertake a demanding training course.

Paid While You Train

IBA's special eighteen month training course, which combines theoretical study with practical 'on station training' will give you a comprehensive knowledge of operations and maintenance techniques, plus an additional recognised qualification, and you will be paid a training salary of not less than $£ 184$ I, more for those with experience.

The Future

On completion of your training, you will be in the field, full-time on a salary range of $£ 2861-£ 4167$. Further promotion to Team Leader and beyond is up to you.

Write or telephone for full details and an application form quoting ref. WW/I234 to: The Personnel Officer, Independent Broadcasting Authority, Crawley Court, Nr. Winchester, Hants. Tel : Winchester 822599.

Technician Engineers
 Marconi Elliott Avionics are recruiting electronics engineers and technicians who

 have a sound grounding in modern electronics theory with at least 2 years' practical experience in testing or servicing electronic equipment.These vacancies occur at two separate sites, and offer a secure future with bright prospects to competent technicians. Attractive salaries will be offered, together with generous relocation expenses where necessary.

STANMORE
 (Middlesex)

To service and overhaul up to date airborne electronic units from airline communica tion, navigation and radar systems.

BASILDON (Essex)

To carry out full range of final test on airborne communication/navigation equipment or on C.C.T.V systems. Also needed are test equipment engineers capable of the design and manufacture and commissioning of modern specialised test equipment.

Applications (stating location preferred) should be addressed, in the first instance. to:- Mr. R. A. Bezant, Senior Personnel Officer, Marconi Elliott Avionic Systems Limited, Christopher Martin Road, Basildon, Essex.

UNIVERSITY OF SURREY
 Department of Linguistic and Regional Studies

 IECHNICIANS

 IECHNICIANS}GRADE 3 £2,013 to $£ 2,343$

Two full time vacancies are available in this rapidly expanding Department. One candidate should have experience of servicing and maintaining tape recording. T.V. equipment and associated audio visual apparatus. Experience with TTL circuits would be an advantage. One candidate with experience in one or other of the following: Language Laboratories, Closed Circuit T.V., Cine Projectors.
Application forms may be obtained from the Staff Officer, University of Surrey, Guildford, Surrey, GU2 5XH, or tel: Guildford 71281, Ext. 452.
[4452

APPOINTMENIS

AVIONCSINEDNBURCH ELECTRONIC ENGINEERS

FERRANTI in Edinburgh are involved in many important defence contracts including the Multi Role Combat Aircraft.

We need Engineers of experience and technical capability to join expert teams on a variety of interesting projects with high technological content. We are looking for

TEST SPECIFICATION WRITERS
 TEST ENGINEERS
 TRIALS ENGINEERS
 TECHNICAL AUTHORS
 SERVICE ENGINEERS

and would be particularly interested to hear from candidates with qualifications and experience in any of the following areas: DIGITAL AND ANALOGUE TECHNIQUES, MICROWAVE ENGINEERING, LASERS AND OPTICS, ELECTRONIC DISPLAYS, AUTOMATIC TEST TECHNIQUES, AIRBORNE RADAR, INERTIAL NAVIGATIONALSYSTEMS.

Priority will be given to incoming staff for Scottish Special Housing. The Company operates a contributory pension and life assurance scheme, and will assist with relocation expenses where necessary. Salary up to $£ 3,000$.

Apply in writing with details of qualifications and experience to the:
Staff Appointments Officer
Ferranti Limited
Ferry Road
FERRANTI
Edinburgh EH5 2XS
Tel: 031-332 2411

Hertfordshire County Council LETCHWORTH COLLEGE OF TECHNOLOGY

RESEARCH ASSISTANT

post available for Graduate Engineer/ Physicist.
Higher Degree research work on new method of helping deaf children to acquire speec skills; in collaboration with the Departmen of Phonetics and Linguistics. University College, London
Salary: $£ 1.544 \times 655$ (2) to $£ 1,654$
Please write to The Principal, College of Technology, Broadway, Letchworth SG6 3PB.

University of Bradford TECHNICIAN (Grade 6)

required in Educational Technology. We have an interesting vacancy in our well-equipped Television Studio for a Technician to be concerned with all aspects of the operation and maintenance o equipment in use in the Television Studio Complex supervision and to deputise for the Head of the Television Studio in his absence. Candidates should be mature electronics engineers, preferably with experience in television. HNC or equivalent qualifications essential. Salary ranging from £2,844 £ 3.450 Der annum depending upon experience and qualifications
Application forms and further details (please quote ref $E T / T 6 / 1 / W W$ from the Personnel Dffice. BD7 1DP. $[4459$

KEF ELECTRONICS LIMITED have a vacancy for a

SERVICE MANAGER

The Service Manager controls and organises a small team of people responsible for servicing and repairing products supplied by the Company and maintaining and servicing equipment in use in the Company
We are seeking a mature person with a proven success in the Audio/ Electronics field, possessing a good personality and interested in maintaining our Company's image of quality, reliability and customer service. If you are interested in this position and feel that you have the necessary qualifications, please contact the undersigned. We will send you the appropriate application form.
C. J. Goodman-Production Director Kef Electronics Limited. Tovil, Maidstone, Kent Tel. No. Maidstone (0622) 57258

SCOTTISH HOME AND HEALTH DEPARTMENT

 WIRELESS TECHNICIANApplications are invited from men, aged 17 or over, for two posts of Wireless Technician in the Scottish Home and Health Department. The posts are located in the Montrose area.

QUALIFICATIONS

Sound theoretical and practical knowledge of Wireless Engineering, including HF, VHF and UHF and Communications equipment generally. Possession of an HN or C \& G certificate an advantage but provision may be made for those who wish to continue their studies for one of these qualifications. The work involves installation and maintenance of equipment located a considerable distance from headquarters. Candidates must be able to drive private and commercial vehicies and have a clean driving licence.

SALARY
£1,530 (age 17) to $£ 2,210$ (age 25 or over): scale maximum $£ 2,575$.
These are unestablished appointments with prospects of establishment after one year's continuous satisfactory service.

Application forms and further information may be obtained by writing to the Scottish Office Personnel Division, Room 220, 22/25 Queen Street, Edinburgh EHIL2 lLY quoting reference PM(PTS)2/2/75. Closing date for receipt of completed application forms is 19 March 1975.

RADIO TECHNICIANS

The Home Office has vacancies at Baldock, Hertfordshire for Radio Technicians to carry out installation, maintenance, modification and construction of complex specialised radio communications equipment and systems.

Pay:
is $£ 1695$ at 19 rising to $£ 2575$ plus a cost of living supplement which is at present $\mathbf{f} 19.14$ a month.

A Secure Future

with a good pension scheme, prospects of promotion and generous leave allowance. Five day week of 42 hours.

Qualifications:

City \& Guilds, Intermediate Telecommunications Certificate or equivalent together with 1 year's practical workshop experience

Interested?

Then write or telephone for an application form to Miss C. Philips, Home Office Whittington House, 19-30 Alfred Place, LONDON WC1E 7EJ. Telephone 01-637 2355 Ext. 87.

Opportunities in the ELECTRONICS

 FIELDMen with analogue or digital qualifications/ experience seeking higher paid posts in: TEST - SERVICE - DESIGN - SALES. Phone Mike Gernat. Ref. WW.

NEWMAN APPOINTMENTS

360 Oxford St. W1
01-629 7306

UNIVERSITY OF DUNDEE DEPARTMENT OF PSYCHOLOGY

Applications are invited from candidates with a degree or equivalent qualification in an appro pria
of

TECHNICALOFFICER

in the above Department.
The pasition offers the possibility of warking in a research-oriented environment and calls for the exercise of considerable personal initiative. The Technical Officer will be responsible for the administration of the Departmental workshop and will work in collaboration with members of staff on the design and mainterance of electronic equipment. The Department possesses two laboratory computers and some experience of interface design and construction would be an advantage

The Salary scale is $£ 2,118 . £ 2,931$ plus threshold agreement supplements and the post is superannuable under the University's own superannuation scheme. A grant will be made towards removal expenses to 8 Dundee.

Applications, quoting Ref. EST/108/75WW and including the names of two referees, shouid be sent to The Secretary. The University, Dundee DD 14 HN , as soon as possible.
[4460

CHELSEA COLEGE University of London
 ELECTRONICS TECHNICIANS

GRADE 3

required for the development, con struction and servicing of electronic research equipment. One post is for work in the development of automated teaching equipment for which a know ledge of optics, photography and cinematography is desirable. The second post is for work in an electronics workshop for prototype and servicing work mainly for research in Electronics and Physics. For both posts an interest in and -knowledge of electronics is essential. Day release facilities may be available for further study. Salary scale: $£ 2,423$ to $£ 2,753$ per annum including London Allowance
Application forms and further details from the:
Departmental Superintendent,
3.E1, Departments of Electronics and Physics
Pulton Place, London, SW6 5PR

DUNDEE COLLEGE OF EDUCATION

Applications are invited for the post of

TECHNICIAN

in the Television Service

The duties of the post cover all aspects of the operation, maintenance and development of an extensive and well equipped television facility.

Applicants should hold a Higher National Certificate (Electrical), although a City and Guilds Final Certificate in Telecommunications would be considered in lieu. They should be able to show evidence of ability in electronics and will preferably have experience of television techniques including video recording.
The salary scale attached to the post, based on NJC Technical Division, Grades C/D, will lie within the range $£ 2,244$ to $£ 2,982$, and the commencing salary will depend on age, present salary and experience. In addition, Threshold Agreements will be paid.

Forms of application, together with statement of duties and conditions of service, may be obtained from the Principal, Dundee College of Education, Park Place, Dundee, DD1 4HP, and should be returned to him not later than February 28, 1975.
experience?

RADIO OFFICERS

Do you have PMG I, PMG II, MPT 2 years operating

Possession of one of these qualifies you for consideration for a Radio Officer post with composite signals organisation.

On satisfactory completion of a 7 -month specialist training course, successful applicants are paid on a scale rising to $£ 3.096$ pa: commencing salary according to age- 25 years and over $£ 2.276 \mathrm{pa}$. During training salary also by age, 25 years and over $£ 1.724$ pa with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered.

Full details from:

Recruitment Officer,

Government Communications Headquarters, Room A/1105, Priors Road, Oakley, Cheltenham, Glos GL52 5AJ
Telephone Cheltenham 21491 Ext 2270

Radio
 Technicians

A secure future with Overseas Division of one of the world's largest airlines is within easy reach if you are interested in either aircraft or ground radio and have at least 5 years' experience.
The vacancies are at Heathrow Airport -London.
Starting pay is $£ 49.66$ per 40 hour week
and there are chances of rapid promotion to $£ 56.04$ per week.
Additional benefits include a contributory
pension scheme, a first-class sports and
social club and opportunities for concessocial club and opportunities for conces-
sional holiday air travel world wide.
Please write, quoting reference $430 / \mathrm{WW} /$ BW, to:
Manager Selection Services, British
Airways Overseas Division, PO Box 10,
Heathrow Airport-London, Heathrow
TW6 2JA
Heathrow Airport-London, Heathrow

TW6 2JA | her aircraft or ground radio and have |
| :--- |
| |

T.V. Engineers for New Zealand

Are you dissatisfied with your present position, feeling like a change of scene? Do something about it now! Be our guest-come down under and join the Tisco Team, N.Z.'s largest service organisation.
We are in service only and our engineers are all important people, every one of our 30 managers is an ex engineer.
We are now selecting staff to sponsor under the Immigration Scheme to arrive in N.Z. mid 1975.
If you,

- Have 5 years experience, preferably some in colour.
- Single or married with 3 children or less.
write now enclosing a photograph and details of past experience to:The Technical Staff Supervisor, Tisco Ltd, Private Bag, Royal Oak, AUCKLAND, NEW ZEALAND.
[4070

OMARCONI INSTRUMENTS Ltd. at St. ALBANS AND LUTON

We are a company that manufactures precision electronic measuring instruments and have a range of technical career vacancies within our Production and Engineering departments at St. Albans and Service Division at Luton. To fill these posts we are looking for people with a good electronic background, but not necessarily qualified. Attractive salaries are offered for the right candidates along with the normal benefits of staff employment.

Grampian
 Audio Systems Testers

Grampian. leaders in the field of industrial sound systems, manufacture a wide range of electronic and electro-acoustic equipment. Part of the Telephone Rentals groups, Grampian supply this equipment both for direct sale and also for long-term rental contract, where high reliability is a prime requisite. In order to maintain this reliability, whilst expanding production, there are vacancies for Systems and Final Testers. These positions offer excellent job security, competitive salaries, and pension and life assurance schemes. Applicants should have a sound, practical knowledge of electronics, and preferably previous test experience. particularly of audio equipment. Relevant formal qualifications would be an advantage.

Telephone Mr. Turner on 01-8949141. Or write for application form to: Grampian Reproducers Ltd.,
The Hanworth Trading Estate, Felthiam, Middlesex TW13 6EJ

Electronic/ Communications Engineer

- Rank Xerox is a name linked with the future. Cur rently we're engaged in the development of new and existing machines and communications equipment, including our telecopier. There is currently in hand an extensive programme of work on products which are destined to be among the most significant ever produced by the Company.

We have a requirement for an engineer to participate in the design of a new business system. They will work within a small team on the design and development of circuitry, which could involve very high frequencies.
Applicants should be qualified to honours degree level with two years experience in the electronics industry, preferably in the telecommunications field, Experience in the design and development of solid state circuitry at very high frequencies and digital circuitry would be an advantage.
The Company offers above average salaries and fringe benefits including generous assistance with relocation expenses where appropriate.

Please write or telephone to Alan Preston, Rank Xerox Limited, P.O. Box 17, Bessemer Road, Welwyn Garden City, Herts. Tel. Welwyn Garden 28177.

M.SC. COURSE IN ELECTRICAL ENGINEERING

with speciallsation in any one of the following:

Communication Systems
Electronic. Instrumentation Control Engineering and Digital Electronic Systems Design of Pulse and Digital Circuits and Systems

The Course, which commences in October 1975 May be taken on a Full Time, Part Time, Sandwich or Block Release basis, and wlil have graduated in Science or Engineering, or who will hold equivalent qualifications, by that date. The Science Research Council has accepted the Course as suitable for the tenure of its Advanced Course Studentships.
A Diploma Course, in some of the above topics or in Power Systems, is also open to applicants with the above or silghtly lower qualifications.

Research in

 Electrical Engineering Applications are also invited from similariy qualified persons who wish to pursue a course of research M.Phil. or Ph.D. in any of the above topics.Application forms and fur* Application forms and further particulars from the Head of the Department of Elactrical Engineering (Ref. M.Sc. Aston In Birmingham Blrmingham B4 7PB.

IN BRMINGHAM

Are you obtaining the full benefit from the disposal of your electronic and computer scrap?

As refiners of base and precious metals we purchase manufacturers and distributors' scrap arisings and redundant components

PRINTED CIRCUITS RELAYS TRANSISTORS P PLUGS CONNECTORS

ELECTRO-TECH COMPONENTS LTD.

Are buyers of all types of electronic components and equipment. They will be pleased to view clearance stocks anywhere in Great Britain at one or two days notice
and negotiate on the spot!
ELECTRO-TECH
COMPONENTS LTD.
315/317 Edgware Road, London, W. 2 Tel: 01-723 5667. 01-402 5580

[^8]
TOP PRICES PAID

for semiconductor and component redundant or excess inventories

P.R.S. ELECTRONICS
 126 Headstone Road Harrow, Middlesex Tel: 01-965 2243

For free brochure, clip this ad. and send to:

Room 6 HAIR TRANSPLANT INTERNATIONAL
502 Eccleshall Road, Sheffield

ECONOMISE ON SEMICONDUCTORS

All prices include VAT

\star Lower 741C prices $100+24 p$ 2 $\quad \star$ Plastic 3 terminal Regulators
\star Economical Digital Clock IC $\quad \star$ Low price DIL sockets

AY-5-1224 Digital Clock IC, 12 or 24 hr .7 segment or BCD outputs, drives LED Minitron, LED displays. Simple interfacing. 16 pin DIL. IC + data + circuits E4.65. HP 5082-7740 0.3" digits £2.00. IC $+40.3^{\prime \prime}$ digits $\mathbf{£ 1 2}$. IC $+40.3^{\prime \prime}$ digits + transistors + transformer $\mathbf{£ 1 4 . 0 0}$
TBA810AS 7W Audio Amp. Thermal protection + data + circuit $\mathbf{£ 1 . 6 0}$
TCA940 10W Audio Amp. Thermal protection, current limit + data + circuit $£ 2.60$
Carbon film High Stability $\frac{1}{4}$ W 5\% resistors 10 ohm-2m2 1p ea., 109 p. 10080 p same value
By return service. Prices include VAT. P \& P 8p (UK) overseas at cost. All items new TI, Motorola, Mullard, SGS etc. SAE lists, enquiries. Data sheets 4 p . Colleges etc. supplied.

SILICON SEMICONDUCTOR SERVICES
 41 Dunstable Road, Caddington, Luton LU1 4AL

CAPACITY AVAILAELE

WANTED SURPLUS
\star FACTORIES CLEARED \star
MACK'S ELECTRONICS
283 EDGWARE ROAD LONDON WV 1BB
Tel: 01-262 8614
[4014

EDUCATIONAL

C AND G EXAMS

Make sure you succeed with an ICS home study course for C and G Electrical Instaliation Work \& Technicians Radio/TV/Electronics Technician COLOUR TV SERVICING
Make the most of the current boom! Learn the techniques of servicing Colour and Mono TV sets through new home study courses, approved by leading manufacturers.

TECHNICAL TRAMRING

Home study courses in Electronics and Electrical Engineering, Maintenance, Radio, TV, Audio, Computer Engineering and the qualifications you need to succeed.
Free details from
INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept 734, Intertext House, London SW8 4UJ.
Or Phone 01-622 9911 (all hours).

FRARE RECORDING ETC.

RECORDS MADE TO ORDER	
DEMO DISCS	VINYLITE
MASTERS FOR	PRESSINGS
RECORD COMPANIES	

Single discs, 1-20, Mono or Stereo, delivery 4 days from your tapes. Quantity runs 25 to 1,000 records PRESSED IN VINYLITE IN OUR OWN PLANT. NEUMANN STEREO/Mono Lathes. We cut for many Studios UK/OVERSEAS. SAE list.

PO Box 3, Hawk Street, Carnforth, Lancs Tel. 2273

G. W. M. Radio Limited

 40-42 Portland Road, Worthing, West Sussex Tel: Worthing (0303) 34897D. 13 EQUIPMENT AND MASTS
竍
Aorel Inmalator Loed In No. 32-Z1ZA 51788
Oontral Zemoto-Z1/5820-99-900-6731. MWB/WO/689.
Interconneoting Box-ZA/54915 MWB.
Changeover Byttem-ZA 54989 MWB/XA/907.
Adaptor Aexin to Roceiver-ZA 54912-MWB/XE/866.
Adaptor Aeriel to Transmitter-ZA b6234-MWB/WK/932 Oparators Control Unit (M).
Control Indicator Redio Tranamittor D. $13-\mathrm{ZA} 56971 \mathrm{MWB} / \mathrm{WC} /$
Dummy Load-ZA 86235 MWB/E/AS 201 XA
Britoh Box-ZA 54985 MWB/WM/878.
reloprinter send/Rec. Bwiteh Type No. b4A3A. 104-416.
all items are in unured condition,
VACUUM CAPACITORS by JENNINGS

Variable 250 pt to 10 pf	55,000 volts.
Variable 2000 pt to 50 pf	12,000 volta.
Variable 500 pt to 20 pf	20,000 volts.
Variable 35 pt to 8 pt	35,000 volts.

Varimble 500 pt to $20 \mathrm{pf} \quad-\quad 20,000$ volte.
Fixed 25 pf $\quad 30,000$ volts.
These capactiora are production surplut and are 'as new'號

B. BAMBER ELECTRONICS

20 WELLINGTON STREET, LITTLEPORT, CAMBS.
TEL: ELY (0353) 860185 (TUESDAY-SATURDAY)

PYE AC10 POWER SUPPLY

 output. stabilized. fully enclosed. fused. used by tested $\mathbf{f} \mathbf{3 0} 000$
TEST EQUIPMENT

 MARCONI UHF SIGNAL GENERA TOR. TF762B. $300-600 \mathrm{MHZ}$. £50.00 MARCONI STANDARD SIGNAL GENERATOR. TF867/2, $15 \mathrm{kHz}-1$$30 \mathrm{MHz} . £ 100.00$ 30 MHz . 1100.00
MARCONI VALVE VOLTMETER. TF428C. $\mathbf{f 2 8 . 0 0}$
MARCONI AMPLITUDE MODULATOR.TF1102. $\mathbf{E 3 5} 5.00$
MARCONI VALVE
MARCONI VALVE MILLIVOLT MARCONI STANDARD SIGNAL GENERATOR. TF144H. 72MHz.£195.00
WAYNE KERA VHF FREQUENCY STANDARD. 12 -channel. $£ 20.00$ AIRMEC BRIDGE HETERODYNE DETECTOR. TYPe 775. £65.00
AIRMEC SIGNAL GENERATOR. Type 201. 30 kHz -30MHz. £75.00 HEWLETT PACKARD UHF SIGNAL
GENERATOR. Type $614 \mathrm{~A} .800-$ GENERATOR.
2300 MHz . $\mathrm{f175} .00$
SOLARTRON DIGITAL VOLTMETER. Type LM1420/2, with "TRUE RMS AC UNIT". 10mV-1000V. 5-digit display, new condition. $£ 400.00$
ROHDE AND SCHWARZ POWER SIGNAL GENERATOR. SMLM. 30300 MHz . y to 5 V output. E 300.00 GAR/STAIRCASE GENERATOR, BAR/ST
£25.00
TEKTRONIX 524D SCOPE. DC10 MHz . $£ 70.00$

HIGH-QUALITY SPEAKERS
8 等in. $\times 6$ 6in elliptical, 2in. deep, 4 ohms inverse magnet. rated up to 10 Watts $\mathbf{£ 1 . 5 0}$ each or 2 for $\mathbf{£ 2 . 7 5}$ (quantity discount available).

ELECTROLYTIC CAPACITORS AXIAL LEAD AND SINGLE ENDED
 $\begin{array}{lllllll}22 & 30 p & - & - & -7 & \bar{l} & \\ 33 & - & 30 p & 35 p & 40 p & 40 p & 45 p \\ 47 & - & - & - & 40 p & 45 p & -\end{array}$ $\begin{array}{llllll}47 & - & - & - & 40 p & 45 p \\ 100 & 35 p & 40 p & - & 45 p & 60 p \\ 220 & 40 p & 40 p & - & 50 p & 75 p \\ 330 & 40 p & 45 p & 60 p & 75 p & 95 p\end{array}$ $\begin{array}{lllllll}220 & 40 p & 40 p & - & 50 p & 75 p & - \\ 330 & 40 p & 45 p & 60 p & 75 p & 95 p & 95 p \\ 470 & 45 p & 60 p & & 95 p & 9 & \end{array}$ 1000 95p $95 p$
PRICES PER PACK OF 5
Trade enquiries welcome for quantity

MAINS TRANSFORMERS

240 V in, voltages quoted approx. RMS TYPE $10 / 210-0-10 \mathrm{~V}$ at $2 \mathrm{~A} . f 1.50$ TYPE 125BS Approx. 125 V at 30 mA . 65p
TYPE 72703400 V at 10 mA . 200 V at $5 \mathrm{~mA}, 6.3 \mathrm{~V}$ at 400 mA , $£ 1.25$
TYPE 18/8 18 V at 8 A . $\mathbf{f 4 . 5 0}$ each
TYPE 16/6 16 V at 6 A .45 V at 100 mA . E4.00
TYPE $28 / 428 \mathrm{~V}$ at 4 A .125 V at 500 mA TYPE
TYPE 129400 V at 20 mA . 200 V at TYPE 70462 250-0-250V $50-0-50 \mathrm{~V}$ 6.3 V . $\mathbf{£ 1 . 7 5}$

RADIOSPARES 500-WATT AUTO TRANSFORMER, $100 / 110 / 150 / 200 /$ $220 / 240 / 250 \mathrm{~V}$ tapped input and output. step up or step down facility. ex new equip. $\mathbf{f 6 . 0 0}$
MAINS ISOLATING TRANSFORMER. 375 VA . tapped primary, 240 V output, new, £6.00
MAINS ISOLATING TRANSFORMER. (ex equip), in metal cases, totally enclosed. tapped mains input. ${ }^{110-}$
240 V atc. output 240 V at $3 \mathrm{~A}+12 \mathrm{~V}$ at $0.5 A$. $£ 11.00$.
 at
carriage
£ ${ }^{+}$.

TERMS OF BUSINESS: CASH WITH ORDER. ALL PRICES INCLUDE POST \& PACKING (UK ONLY). EXPORT ENQUIRIES WELCOME.

PLEASE ADD 8\% VAT CALLERS WELCOME BY APPOINTMENT

MINIMUM ORDER £1
PLEASE ENCLOSE STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES

PLUGS AND SOCKETS TV PLUGS (metal type) 6 for 50 . TV LINE CONNECTORS 5 for 50 PL259 (PTFE) PLUGS 50p each or for $\mathbf{f 2 . 2 5}$
SO239 (PTFE) SOCKETS 50p each or 5 for $£ 2.25$
25-WAY ISEP PLUGS and SOCKETS 40 p set (1 plug +1 skt). Plugs and sockets sold separately at 25 p each CANNON Right-angled plugs XLR LNR 1575 P
DIN SPEAKER SKTS. 2 -pin. 4 for 30 p STANDARD JACK PLUGS. $\frac{1}{4}$ in. 4 for ${ }^{50 \mathrm{p}} \mathrm{AND}$
ANOREWS 44AN FREE SKTS (N TYPE) for $\mathrm{FH} 4 / 50 \mathrm{~B}$ or $\mathrm{FH} J 4 / 50 \mathrm{~B}$ cable SO239 BACK-TO-BACK SOCKETS £1.25 each BNC INSULATED SOCKETS (single hole type) 65p each

VALVES

QQVO3/20A (ex equipment) $£ 2.10$ each QQVO3/10 (ex equipment) 75p each 2C39A (ex equipment) $\mathbf{£ 1 . 0 0}$ each QQvo2/6 (ex equipment) $\mathbf{f 1 . 0 0}$ each $4 \mathrm{CX250B}$ (ex equipment) $\mathbf{4} 2.10$ each 4X250B (ex equipment) $\mathbf{£ 1 . 5 0}$ each DET-22 (ex equipment) 2 for $£ 1.00$ EF80 (new) 25p, EZ81 (new) 25p ECC81 (new) 30p. ECC83 (new) 30p

TEST EQUIPMENT

RACAL 125 MHz DIGITAL FRE QUENCY METER. Type 801R/2 new condition. $£ 275.00$
ROHDE AND SCHWARZ SIGNAL GENERATOR. SMAF. $4-300 \mathrm{MHz}$ AM/FM, attenuation to 0.05 microvolt. deviation and modulation metered, complete. but needs attention. $\mathbf{£ 3 0 0 . 0 0}$ ROHDE AND SCHWARZ FREQUENCY DEVIATION METER FMV. AM/FM. $20-300 \mathrm{MHz} £ 300.00$

PYE RADIO-TELEPHONE

 EQUIPMENTCambridge, Westminster, Motofone Europa series. Send s.a.e. for full details stating requirements, frequency. channe

MISCELLANEOUS

MAGNETIC DEVICES PROGRAM MERS. contain 9 microswitches with 9 adjustable drums for period switching many switching applications $\mathbf{f 1 . 0 0}$ each. ITT HIGH-GRADE ELECTROLYTICS 6800 mfd at 25 V LECTROLYTICS complete with capacitor clip forminals mounting. 50p each (quantity discount available).
MULTICORE CABLE, $\frac{1^{\prime \prime}}{2}$ dia. PVC covered, in 22 ft . lengths with plug and socket fitted. 24 core stranded + screened +1 twin screened (ideal mobile control lead) $£ 2.10$ each.
TWIN HEAVY DUTY CABLE, PVC covered, $50 / 0.25 \mathrm{~mm}$. 15 p per metre. or $£ 10.20$ per 100 metre reel. 18 in . closed. approx. 5 ft . extended. 2 for 18 in.
20p.
STUD
STUD RECTIFIERS, BYX42/300R, TRANSISTOR HEATSINKS $£ 1.00$ $2 \times$ TO18 transistors. screw in clamps Block size 1 in . $\times \frac{1}{2}$ in. $X \frac{1}{4}$ in. with 2 holes for mounting, 3 for 50 p mfd at 63 V , size $115 \times 51 \mathrm{~mm}$. 75 p each. Quantity discount available) NEW, TO5 SILICON PNP TRAN. SIST, unmarked, untested, approx.

PYE MF TRANSMITTERS

$2 \times 5 \mathrm{~B} 254 \mathrm{Ms}$ in final. VFO 340 to 540 kHz (can be modded upward). $2 \times$ $5 B 254 \mathrm{Ms}$ Modulator. $\mathrm{CW} / \mathrm{mcw}$ (can no PSUS. (supplied with circuits of TX and PSU) brand new. boxed, $£ 20.00$.

We've got prices to put power in your profits
 TDSHIBA VALVES
 eht rectifien tray assemb
 Goods Price
 Type
 TH Decca Col
 ITN GEC/SODe! 2 TO $1400+950 \mathrm{Mk}$
 2TAK 1500 + 550 Stick 2TAK OAF 15003 Stick 2HD 9503 Stick
 | Type | Goods Price |
| :---: | :---: | :---: | :---: | :---: |
| $19 "$ A49/191X | 48.00 |
| $20^{\prime \prime} 51001822$ | 49.75 |
| $22^{\prime \prime}$ A56/120X | 53.25 |

COMBINED PRECISION
COMPONENTS (PRESTON)LIMITED
194-200 North Road, Preston PR1 1 YP
Telephone: 55034 Telex: 677122 .

ARTS. FOR SALE-cont.

PM

CRYSTALS FOR PROFESSIONAL AND AMATEUR USE

We can supply crystals to most commercial specifications. with an express service for that urgent order. For the amateur we carry a large stock of the more popular frequencies, backed by a quick service for those "Specials
Please send SAE for details or telephone between 4.30-7 p.m. and ask for Mr. Norcliffe

7A, ARROWE PARK ROAD, WIRRAL, MERSEYSIDE L49 OUB.
Tel: 051-677 8918 (until 7 p.m.)

WE SELL CONSTRUCTION PLANS

Phonevision. Television Camera, Police Radar Detector, Voice typewriter, Scrambier, Answering machine.

COURSES

Detective-Electr. $\$ 36.50$. Security-Electr, $\$ 43.50$. Telephone Eng. \$59.

OVER 750 ITEMS
Ask for Catalogue-Airmailed $\mathbf{\$ 0 . 7 5}$ T. 5TRIK,

Postbox 618, Rotterdam, Holland.

PARTRIDGE ELECTRONICS

manufacturers of audio mixer systems NEW PEAK READING
\star VU Meter sYstems
Which gives the advantages normally only associated with PPM systems at much lower cost.

21/25, Hart Road, Wenfieet, Emex. (Established 23 years)

Piher Preset PT15ZH5: 5, 50, 500K Capacitors, Ceramic Disc: 0.1 uF $63 \mathrm{~V}, 3 \mathrm{3}, \ldots, 7 \mathrm{7}$. 500 V . 3 p . Capacitors, Electrolytic: 220 F iOV: 7p; 4.7uF 35v, 5p; 1uF 50V, 5p; 47uF 10V, 5p; 330 uF 10V. 6 p . IN $5406-3 \mathrm{amp}$ Diode: 10p; IN 4003. 4p. Transformers: 4 amp 12 Volt, high quality, £2.50. Fuse Holder Double: $1.25 i n$. long, 6p. Heatsink: T03; black/anodise, 20p. Rocker 12 V 5 digit, Ei .20 .
NE555, 52 p ; 7400, 14p; 7402. 14p; 7404, 16p; 7410, $14 \mathrm{p} ;$; 7413., 31p; 7420, 14p; 7425, 25p; 7427, 25p; 7448., 82p; 7450, 14p; 7451, 14p; 7474. 30p; 7483, 80p; 7486., 30p; 7490, 45p; 7493; 45p; 74107. 30p; 74153, 67p; 74161, 95p; 74121 , 40p. LM 323 K 3 3 mp 5 V Regulator: $\mathbf{6 3 . 5 0 .}$ includes VAT and Post and Packing
ELECTRONIC ENGINEERING SERVICES 23 Shaws Road, Altrincham, Cheshire

enAmelled Copper WIRE

S.w.G.	11 brael	${ }^{1} 1 / 8$ Reel
- $\begin{aligned} & 10-14 \\ & 15-19\end{aligned}$	${ }_{\substack{\text { f2 } \\ ¢ 2.05 \\ \hline 2.15}}$	¢1.15
20-24	f2.20	${ }_{\text {c1, }}$
$30-34$	f2.35	ع1.38
35-40	¢2.50	E1.45

[^9]102 Parrswood Rd, Withington, Manchester 20

MARX-LUDER STACKABLE EPICYCLIC GEARED ELECTRIC MOTORS

15. 18, 50,1
epicyclic gears
giving all the
gear ratios Four sizes of motor mach with pile gears and 6 v windings are avai
EM136P $1 \frac{1}{2}$ watts: $5000 \mathrm{rpm} ;$ size $24 \times 24 \times 74 \mathrm{~mm}$ I 5.70
Max. gearber
EM166/1 Spare gear setwith 3.4 .5 .6 ratios 1.70
EM141P8 watts: 5000 rpm:size $35 \times 35 \times 109 \mathrm{~mm}$
Max. gearbox torque $5 \mathrm{kg.cm}$
EM1410/1 Spare gear set with $3.4,5, \ldots$ ratios
EM 145 P 20 watts; 7000 rpm; size $52 \times 52 \times 180 \mathrm{~mm}$
Max. gearbox torque 10kg.cm

Max. gearbox torque $10 \mathrm{~kg} . \mathrm{cm}$

Gearbox pack
Gelid

MOTORS without gearboxes:

EM 1310.8 watts; $20 \mathrm{~g} . \mathrm{cm} ; 8000 \mathrm{rpm} ; 017 \mathrm{~mm} \ldots 4.05$
EM 1361.2 watts; $40 \mathrm{~g} \cdot \mathrm{~cm} ; 5000 \mathrm{rpm}: 021 \mathrm{~mm} \ldots 3.80$

3.60
.4 .20

SPECIALOFFER'. All motors above
14.00

Suggested applications. Laboratory equipment. stirrers, pump drives. servo systems, positioningof aerials, dampers doors. power for models trains. boats. drils, cutting whe
etc. SAE for DATA SHEETS
"Motivator" Curtain Cord Controllers A fow of these new units have just become available
Uitra slim design. e.g. size $40 \times 185 \times 185 \mathrm{~mm}$. Screws flat on wall behind curtains without showing. Can be con nected directly to existing corded curtains. Incorporates internal auto limit switches and power supply. May be operated remoty 8 with 2 year battery pack. Kit Motivator Model 8 with 2 vear battery pa
Fully assembled and tested as above Motivator Model M with mains power su 24.00 Fully assembled and tested as above supply. Kit . . 2200 Additional information gladly
prices are inclusive in U.K. only

AID-US PRODUCTS

Dept. WW4, 8 Hillview Rd., Pinner HA5 4PA, Middlesex 14274

SURPLUS BARGAINS

EASTER LINE ANGUS

 chart recorders. model A601R 500-0-500u.a. f.s.d. $190 v$ AC as new, with manual. $\mathbf{f 3 5 . 0 0}$ \square Kent Chart recorders single point $\mathbf{f 2 0}$. multipoint $£ \mathbf{3 0}$ ($\mathbf{£ 1 . 5 0 \text {) }) ~}$A.E.I. 4-stage sequential transistorised electronic timer, many applications, inc 3 channel auto-light flasher (750 watts 240 v). Circuits provided for fully interrupted and dim/bright flashing. Modification instructions and mains, transformer. £4.50 only (50p).
Printed circuit Kits. f1. 25 (30p)
Instant Heat Soldering Irons. 240 v 100 watt £2.65 (30p).
Veedor root 4 digit resettable counters 115 V AC £1. 25 (10 p)
AMPEX VIDIO Tape $2^{\prime \prime} \times 1670^{\prime}$. New $\mathbf{£ 9}$ (50p)
Ferric Chloride 25p lb (20p). 10 lbs for £2.50 (45p)
TELEPRINTER PAPERS and TAPES. 8 $\frac{1}{2}^{*}$ wide. 3-ply carbon. buff manilla 60p (35p), ditto 7 -ply NCR. no carbon required E1 (35 p). TAPES. $\frac{7}{8}{ }^{\prime \prime}$. white $f 2$ per 8 rolls ($65 p$). $\frac{11}{16}$ buff E 2 per 10 rolls (65 p). $1^{\prime \prime}$ tape suit Friden, etc, £2 per 7 rolls (65 p)
Friden, etc, $£ 2$ per 7 rols 24 volt input. $0-270 \mathrm{~V}$
VARIC Transformers 240 vol output. $2 \mathrm{amp} £ 3.50$ (75p). $8 \mathrm{amp} £ 9$ ($£ 1$). $20 \mathrm{amp} \mathrm{f18}$ (£2). 5 amp $110 v$ input $0-130 v$ output $£ 3.50$ (75 p).
All prices plus ($p \& p$) total plus VAT 8%.
Large S.A.E, for list.
CASEY BROS, 235 Boundary Rd, St Helens, Lancs.

WHOLESALE OFFERS
OC81D $£ 5 / 100$. BC116A £8/100. 1N914 £3/
100 BC267 £6/100. 1N4001 £3/100. $723 C$ 100 BC267 £6/100. 1N4001 £ £40/100. 1N4007 £5/100. 741C £19/100 $220 \mu \mathrm{~F} . \quad 25 \mathrm{~V} £ 5: 100,800 \mathrm{~V}$. $1 \frac{1}{2} \mathrm{~A} £ 5 / 100$, $1000 \mu \mathrm{~F}$. 63 V £18/100. Wire ended C28 $2 \mu F .250 V £ 8 / 100$.
Mixed capacitors. poly. ceramic. mica. etc.
5.000 f14: 15000 ³7. $5.000 £ 14: 15.000 £ 37$. Ferric Chloride, $£ 30 / 100$ $\underset{\text { DALO }}{ } \times$ pens. $\mathbf{f 7 . 5 0 / 1 2}$. Veroboard offcuts 1016 £25. Miniature -mains transformers. 100 mA secondaries: $6-0-6 \mathrm{~V} \mathbf{£ 5 . 5 0 / 1 0 ; 9 - 0 - 9 \mathrm { V } \mathbf { £ 6 } / 1 0 \text { : }}$ $12-0-12 \mathrm{~V}$ £6.50/10: $10 \mu \mathrm{~F} / 25 \mathrm{~V}$ £10/500 DIN speaker sockets $\mathbf{£ 4 / 1 0 0}$.
All goods full spec and branded. Add VAT and Carriage.

JUNIPER ELECTRONICS
PO Box 61, Southampton S097EE. Tel 772501

POLAROID CR9 OSCILLOSCOPE CAMERA

Various hoods available plus film packs.
Cost £50 1975, £30 ore
OMB 643 FUNCTION GENERATOR
Sine/Square/Triangle 0.01 HZ to 1 MHZ , output solid state compact design. Cost £75 1974. £50 o.n.o.
avo 160 VALVE TESTER PLUS MANUAL Portable military suitcase package.
Cost £180 1965. £50 o.n.o.
MAX PARKER
St. Albans 69236

CRYSTALS

Fast delivery of prototype and production military quality crystals. Competitive prices all frequencies: LF crystals a speciality Details from

INTERFACE INTERNATIONAL
29 Market Street, Crewkerne, Somerset
[35

CARBON FILM RESISTORS-E12 SERIES High Stab. IW OR iW 5\%. 1p, 75p/100, $\mathbf{~ E 5} \cdot 50 / 1000$ (22 Ω-1M Ω).
$10 E 12$ KIt W ec. 55 ; $25 E 12 \mathrm{KIT} 25$ of each value (Total of 1425) EQUIPMENT SALE
Regulated power supply modules. New in orlginal packing. ATC $24 V / 2 A$ E10. Fenlow $\pm 15 V / 1 A$, with
FIPanel, $£ 12 \cdot 50$. NGN Vacuum Meters PRU3 (Used) 1515 . Aarconi D-A Converters TF2402, $£ 20$. Code Converter TF2403 £20. Limits Indicator, 'TF2404, £20. HAAKE
 Honeywell Chart Recorders $£ 50$. Solartron VF252 Precision Mllivoltmeter £35. Solartron CA512 V.S.W.R Indicators $£ 25.4000,250 \mathrm{~mA}$ Bench Power Supplles $£ 15$. Hatfield Int. PUM1/16 400 eycle Generators ess. Mulrhea 2PH. Dec. Ose., esso. Many other lems availabie.
METAL FILM KITS ALSO AVAILABLE.
CATALOGUE No. 3 (Approx. 2000 Parts) 20p.
C.W.O. P. \& P. 10p on orders under 25 . Overseas at cost.
B.H. COMPONENT FACTORS LTD
Dept. WW, 61 Cheddington Road. PITSTONE,
Nr. Leighton Buzzard, Beds. LU7 $9 A Q$.

Nr. Lelohton Buzzard, Beds. LU7 1 AQ.
Cheddington (0298) 6884

Build a mixer to your own spec. using our easy to wire ALDID MDロLLES
 For full details contact Richard Brown at Zero 88, 115 Hatfield Road,
 St. Albans, Herts. AL1 4JS Tel. 63727

APPOINTMENTE

$\mathbf{R}^{\text {EDIFON TELECOMMUNICATIONS LTD., Lon- }}$ dis, have a vacancy for an enthusiastic practical S.W.18, have a vacancy for an ent Volume Production Testing in the expenics industry. Phone Production Tesuing in the electronics industry. Phone:
$01-874$
7281 and ask for Len Porter. SERVICE ENGINEERS for audio visual equipment negotiable. Burgess Lane \& Cosen Ltd. Thomarnton Works, Thornton Avenue, Chiswick W.4. $9945752 /$
5953 WE SEEK a talented young T/V colour service shop. In return a self-contained flat. Full particulars: Coles, 14 Wolborough \boldsymbol{K}. ., Newton Abbot, Devon

SITUATIONS WANTTD

$\mathbf{S}_{\text {panels }}^{\text {URPLUS Connponents, Equipment }}$ for cash Computer ${ }_{772501}$ pane.

SITUATIONS VACANT

$H_{\text {enced Junior and Seniors and we require experi- }}^{\text {A-FI }}$
Hencèd Junior and Seniors and will pay top rates
to get them. Tell us about your abilities. $01-4374607$
MANCHESTER POLYTECHNIC, Faculty of Ar Television Engineer. The post is one of responsibility and entails assisting the Senior Engineer with studio operations and maintenance in closed circuit tele casting Candidates should have experience of broad should be conversantional thelevision operations and studio production. Appropriate technical qualifica tions such as H.N.C. or City and Guilds
would be an advantage. Salary scale (T4) $£ 2,538$ would
$\mathrm{c} 2,880$ pe an advantage. Salary scale threshold payments and qualification £2,880 plus threshold payments and quable by 3
allowance. For application form (returnader March, 1975) please send a self addresse Mancheste marked " A A/210/1" to the Secretary, Manchester M15 6BX. \quad [4479 UNiVERSITY OF LEEDS. Electronic Technician (Grade 5) required in the School of Chemistry Electronic Workshop, to work on the construction and maintenance of electronic equipment used in the department. The applicant should preferably
have experience of Mass Spectromerry and Nuclear Magnetic Resonance equipment, however, the person required should be conversant-with Multi-channe Analysers, printed circuit techniques and electro mechanical transducers. Quate scale $£ 2,439$ to $£ 2,895$ a year. Applications to Mr. S. Walker, Supervisor of the Electronic Workshop, School of Chemistry, The
University of Leeds, Leeds LS2 9JT.
UNIVERSITY OF LEEDS. Electronics Technician Physiology. The person appointed would be resPhysiology. The person appointed would be res-
ponsible, under the head of the department ans ponsible, under the head of the department ani construction, modification and maintenance o.
eiectronic equipment associated with research an electronic equiprient associated with research an
teaching of biological studies. Must be capable of teaching of biological studies. Must be capable of
working from precise instructions, circuit diagrams, working from precise instructions, circuit dold ONC,
sketches and manuals. Applicants should hold or equivalent qualifications in relevant subjects. Salary is in the range of $£ 2,013-£ 2,343$ according to
qualifications and experience. Applications stating age, qualifications and full experience, together with the names and addresses of two referees should be addressed to Mr. E. French, Departmental Superintendent, Department of Physiology, Medical Multipurpose
Leeds LS2 9 NQ . $\mathbf{S}^{\text {HELDON }}$ and Associates-Professional commis candidates engineers would like to hear from and qualifications in the following fields for commissioning activities both at home and overseas:Power drives:-A knowledge of large scale Ward Leonard and Thyristor variable speed drives also a
working knowledge of thyristor trigger circuits and working knowledge of thyristor rigger circuits and
servo-positioning controls. Digital and analogue servo-positioning controls. Digital and analogue
systems:- A knowledge of digital controls, Data systems:- A knowledge of digital controls, Data
Processing,
relay and solid state logic, solid state Processing, relay and solid state logic, solid state
control, Telemetry etc. Remuneration is above average and candidates would be expected to takc
advantage of in-house training. Sheldon and Associates, Consulting and Commissioning Engineers, 73 Carterknowle Road, Sheffield S7 2DW.

ARTICLES FOR SALE

A ${ }_{\text {Light }}^{\text {ARVAK ELECTRONICS. }} 3$ Channel SoundBow Light Converters from £17; Strobes, £21; RainGreen Road, (Side Door), London N15 5NS. 01-800 8656.

A $_{2 N}^{\text {LL NEW }}$ COMPONENTS UNUSED. Transistors A 2N3055, ${ }^{46 p ;}$ BC 107 , 10 p . Diode, 400 v piv, 1A, 10p P\&P, plus 8% VAT. SAE for full lists: WW Res, Caps, Zeners, nuts and screws, etc. Nestra
Electronics Ltd., Scott St., Bognor Regis, Sussex. Tel: Bognor 25713 . A UDIO \& STEREO CABLES. Ex-stock delivery. core, twin fig. $814 / .12 \mathrm{~mm}$ Poly/PVC individually core, twin fig. $814 / .12 \mathrm{~mm}$
spiral
screened
stereo
cable,
\& core, circular $7 / .1 \mathrm{~mm}$ Poly $/ \mathrm{PVC}$ individually spiral screened audio cable, $£ 12.10$ per 100 m . Collective orders of over $1,000 \mathrm{~m}$ qualify for 10% bulk dis-
count. SAXONIA CABLES LIMITED, Roan Street, Greenwich, London S.E. 10. 01-858 3713.

COLOUR. UHF and TV SPARES. Colour and UHF hists availabec un request. 625 TV. If unit, 35p. Televisiun constructiun cross hatch kit, $£ 3.85$, P/P 15p. Bush CTV 25. New convergence panels plus yuke and blue lat., $£ 3.85$, P/P 40p. New Philips single standard convergence panels complete, incl. 16 controls, coils, P.B. switches, leads and yuke $£ 5.00$, P/P
40 p . New Culuur Scan Coils, Mullard or Plessey plus 40 p . New Culuur Scan Coils, Mullard or Plessey plus convergence yoke and blue lateral. $£ 10.00, \mathrm{P} / \mathrm{P}, \mathrm{P} /{ }^{\circ} \mathrm{P}$
Mullard ATIO25/05 Convergence Yoke, $£ 2.50, \mathrm{P} / \mathrm{P}$ 35 p
30 Mulard or Plessey Blue Laterals. 75 p
M ${ }^{20 \mathrm{p} . \mathrm{D}^{2}} \mathrm{BRC}$ Selay Lines DL20, £3.50, DL1E, DL1. £1.50, P / P 25p. Lum Delay Lines, 50 p . P/P 15 p . EHT Colou Q 8.25 P/P 35 p . EHT C suitable most sets, $£ 2.00 \mathrm{P} / \mathrm{P}$ 25p. KB CVCl Dual Stand, cunvergence pancls complete incl. 22 controls

 $£ 2.25$. T. Base, $£ 1.00$, P/P $/ \mathrm{P} 25 \mathrm{p}$. CRT base, $75 \mathrm{p}, \mathrm{P} / \mathrm{P}$
$15 \mathrm{p} . \mathrm{GEC} 2040$ panels, Decoder, $£ 3.50$ T. Base f1.00, P/P 35p. CRT Base 75p, P/P 20p. B9D valve
bases 10 p . P/P 6 p . VARICAP TUNERS. UHF ELC bases 10 p . P/P 6 p . VARICAP TUNERS. UHF ELC
1043 NEW, 44.50 , Philips VHF for Band 1 and 3 , $£ 2.85$ incl. data. Salvaged VHF and UHF Varicap
tuners, $£ 1.50, \mathrm{P} / \mathrm{P}$ 25p. UHF TUNERS NEW, Transistorised. $£ 2.85$ or incl. slow motion drive, $£ 3.85$ 1 ransistorised.
4 position and 62.85
6 4 position and 6 pos. push-button ransistorised, 4.95
All tuners P/P 35 p . MURPHY $600 / 700$ series com Alote UHF Conversion Kits incl. tuner, drive assy., 625 IF amplifier, 7 valves, accessories housed in cabi625 IF amplifier, valves, accessorises housed in cabi-
net plinth assembly, $£ 7.50 \mathrm{P} / \mathrm{P} 50 \mathrm{p}$. GEC $405 / 625$ Dual standard switchable IF amplifier and outpu standard time base panel, 75p P/P 35p. PHILIPS standard time base panel,
625 IF amplifier panel incl. cct., $75 \mathrm{P} . \mathrm{P} . \mathrm{P} / \mathrm{P}$. 30 p . VHF
V turret tuners AT7650 incl. valves for K.B. Featherlight Philips 19TG170. GEC 2010, etc., £2.50. PYE miniature incremental for 110 to $830 . ~ P a m ~ a n d ~ I n v i c t a, ~$
f1.00. A.B. miniature with UHF
injection suitable f1.00. A.B. miniature with UHF injection suitabl K.B. Baird, Ferguson, 75 p . New fireball cuners Ferguson, HMV, Marcuni, $81.80 \mathrm{P} / \mathrm{P}$ all tuners 30 p Mullard 110° mono scan coils, new suitable all stand-
ard Philips, Stella, Pye, Ekco, Ferranti, Invicta, $£ 2.00$, P / P 35p. star sye, Lkeo, Ferranti, hivicta, $2 . .0$ for most popular makes. $200+200+100$ Microfarad 350 v Electrolytic fl $00 \mathrm{P} / \mathrm{P} 20 \mathrm{p}$. MANOR SUPPLIES 172 WEST END LANE, LONDON. N.W.6. Shop premises, callers welcome. (No. 28, 59, 159 Buses or ORDER: 64 GOLDERS MAN Brit. Rail), MAIL DON. N.W.11. Tel. 01-794 8751.
COSSOR Double Beam Oscilloscope, type 1049 CONSTRUCTION AIDS-Screws, nuts, spacers eunched in small quantities. Aluminium panel panels etched aluminium to individual requirements. Printed circuit boards-masters, negatives and board, one-off or small numbers. Send 9p for list.
Ramar Constructor Services, 29 Shelbourne Road, Ramar Constructor Services, 29 Shelbourne Road, Stratford on Avon, Warwks. Tel. Stratford on Avon
(std 0789) 4879 .
HAVE YOU HAD YOUR CHIPS? AY-5-1224 H. Digital Clock chip+data and circuit diagram $£ 3.6$ L.E.D. display now only $£ 2.04$. All post free add L.E.D. display now ondy $£ 2.04$. All post free, add standard VAT.-GREENBANK ELECTRONICS, 94 5AG. 4405
H $_{\text {factory }}^{\text {EATH }}$ IG-37 FM Stereo Generator, brand new
Hill Road. Torquay, S. Devon. [440]
I. CREATE, 51 Midhurst Road, London W13 9XS Zero-X Relays 8 A
lated. Integral Heatsink. Input AC. Expoxy Encapsu-
10UA
2V. E5.

LADDERS unvarnished 14 ft . 1 in . closed, 25 ft .4 in
exi. 221.40 delivered. Tel: Telford 586644 .
OFFERS INVITED for 13 Vols. Electronic Engineering, $1951-52,1956-66$ (Jan. ${ }^{56}$ missing)
Vols. Control, $1958-66$ (No. Vol. 1 missing Copies are stripped for binding but not bound Copies are stripped for binding but not bound
Bound collects, North Yorks, Box No. WW.
$\mathrm{O}^{\text {SCILLOSCOPE (Cossor CDU 110) T/B Recon- }}$ ditioned as new $£ 255.00$. Telephone Mike Yorke 027-588 (Bitton) 2707 (daytime) o (Corsham) 713283 (evening).
PROBLEM getting awkward or unusual com , ponents? Let us help you find them, Also one off P.C.B.'s by
Electronics $027-588{ }^{\text {return }}$ (Bitton) of 2707 Post Service. York
. 44 i
PDP 8 MINICOMPUTER with ASR 33 Inter-
 tion only, installed and maintained FREE for 6 code, c / w desk, etc., $£ 385$. Teletype BRPE 20 Punch £45, Friden 1151 PROGRAMMABLE PRINTING CALCULATOR, 30 step, 5 memory, £55. Friden 2312 papertape reader, $£ 35$. Elliott ${ }^{2} 2$-202 photoelectric tape reader, £55. TTL Panel meter, $£ 6$ Electronic Associates VARIPLOTTER, £95. Ferrant Magnetic Memory DR UM, $£ 29$. Flexowriter, 5 -hole Paper Tape Typewriter, $£ 38.400 \mathrm{~Hz}$ Inverter, $£ 8$. EMI rotating drum audio echo unit, $£ 55$. Digital Tape unit, $£ 35$. ICL $1901 / 2$ PROCESSOR with KSR 33 CONSOLE TYPEWRITER, 6650 . 1 CL 2501 CASSITE TAPE for above, with 12 casseftes and some software, £225. (Installation and Maintenance MACHINES USING GOLFBARD PROCESSING ex-demo., from $£ 350$ (maintenance available from us). COMPUTER APPRECIATION, Castle St.

PHILIPS PM 3232, Oscilloscope for sale. Used only 327 B Hedon Road, Hull, Humberside.
PYE INDUSTRIAL CAMERA MARK IV, type 2081. Ser. 46. Camera control pancl type 3716 Ser type Industrial camera cuntrol unit type 2332c. Ser. 85.
One tripod to fit and three lengths of cable. $£ 400$ One tripod to fit and three lengths of cable. ${ }_{l} 4400$
o.n.0. Telephone Cambridge 55081 .
SOUND-LIGHTER Converter and sequence generator combined. Three Channels at 1 KW per channel capability. Includes a sound to sequence
function. $\{35$ complete. Please write Box No. WW 4448.

SPEAKER enclosures made from high density chipboard, finished in walnut with black
leatherette lop and back. 3 lin. by $13 \frac{1}{2}$ in. by 13 in. with damp tapered labyrinth to incorporate three drive units with an output of 25 watts ms. Stightly inlperficct. Tel: Mr. Edwards, St. Albans 66177

UHER 4000 S Mono in case, choice of eight, mostly in good working order. $£ 35$ each. No
guarantee. Telephone 9358161.
VaCUUM is our speciality, new and second-hand. rotary $\begin{aligned} & \text { pumps, } \\ & \text { coaters, etc. Silusion outfits, accessories, } \\ & \text { cubber or varnish outgassing }\end{aligned}$ equipment from $£ 40$. V. N. Barrett (Sates) Lid.

VACUUM is our speciality, new and secondhand. Pumps, Plant and equipment for degassing
silicone, Epoxy, Varnish, etc. Metallisers from 6 in to 36in. Catalogue, Barretts, Mayo Road Croyin. ${ }^{\text {to }} \mathrm{CRO}$ 2QP. Tel: 0 I- 6849917 .
Valves, TRANSISTORS, STYLI. Valves 1930 to 1975, 1500 types in stock. Many obsolete; List 15p. Diamond Styli, list 10 p ; iransistors, list 15 p,
S.A.E. for quotation. Cox Radio (Sussex) Led., The S.A.E. for quotation. Cox Radio (Sussex) Led., The
Parade, East Wittering, Sussex. West Wittering 2023 .
$[4027$

WIRELESS WORLD 100 copies 1919 to 1937 offers? BBC Year Books 9 copies 1928 to 1934
C5; Amplion Horn Speaker Type AR23 New $£ 15$; \checkmark alves (50), Coils. Transformers, all new 84 compo-

WOLTHAM 20W Audio Power Amplifier module. in world-wide use by industry, studios and laboratories. Confidenty chatenges any per-
formance at any price. \&8.80 inc. Sydney House
35 Villiers Road, Watford. 38757 . 4475

WOW and Flutter Meter (Tecnica WF971).
 (Corsham) 713283 (evening). (daytime) or $[4472$
60 KHz MSF Rugby and 75 KHz Neuchatel Radio Receivers. Signal and Audio outputs. Small,
compact units. Two available versions. Toolex
Bristol Road. Sherborne (3211),
$3000 \begin{aligned} & 10 \frac{1}{2} \text { reels } \frac{1}{2}^{\prime \prime} \text { computer tape. No reasonable } \\ & \text { offer refused. Southampton } 772501 .\end{aligned}$
500,000 CAPACITORS-POLYESTER C280-250v 6 and 400 v , values from 0.01 UF to 2.2 UF mixed $100-£ 1.00,1000-£ 8.00$. Electrolytics from 1 UF to
$1000 \mathrm{UF}, 10 \mathrm{v}$ to 63 v mixed, $100-\mathrm{f} 1.50,500-\mathrm{f6}, 00$. 1000UF, 10 y to 63 v mixed, $100-£ 1.50$, $500-£ 6,00$.
Electronic Mailorder, Ramsbotiom, Bury, Lancs.

ARTICLES WANTED

$W^{\text {ANTED, all }}$ types of communications receivers Electronics, Lest equipment.-Details to Ashville Old Hall, Ashville Re Rd.
L63
London, E.11. Ley. 4986. O NE COPY wanted of IEEE Audio Transactions, June 1967. Any price paid. Phone J. Hawthorne
Uxbridge 36428 .

CAPACITY AVAILABLE
 A IRTRONICS LTD., for Coil Winding-large or A smalı production runs. Also PC Boards Assem- plies. Suppliers to $\mathrm{P} . \mathrm{O}$., M.O.D., etc. Export enquiries welcomed, ${ }^{\text {3a }}$ Walerand Road, London, SE13 7 PE. Tel. $01-852$ 1706.
 A Vallable Capacity for Electronic Electrocableforms, design work undertaken if required. jackson Instruments, 74 Western Road, Leicester.
 $\mathbf{B}_{\text {sample Production wiring and Assembly to }}^{\text {to }}$ B sample or drawings. Deane Electricals, Station Parade, Ealing Common, London, W.5. Tel: $01-9928976$.

 Bample or drawings. Deane Electricals,
Station Parade, Ealing Common, London, W.5. Tel:
$01-9928976$.

CAPACITY available to the Electronic Industry. Precision turned parts, engraving, milling and grinding both in metals and plastics. Limited capafor lists of full plant capacity to C.B. Industrial Engineering Ltd., 1 Mackintosh Lane, E9 ${ }_{\text {Tel }}^{\text {6AB. }}$ [14
7057.

$D^{\text {ESIGN, development, repair, test and small pro- }}$ Duction of electronic equipment. Specialist in production of printed circuit assemblies. YOUNG | Electronics Litd, 184 Royal College Street. London, |
| :--- |
| NWI 9 NN . Tel: |
| 1 - 2670201 . |

$E^{\text {NGINEER }}$ makes anything unusual. Inventors C models, displays. Special tools and equipment. Seymour, 30 Devonshire Drive, Stapleford, Nottingham.

LGHT ENGINEERING firm required, able to Leroduce bett drive Turntable and low Mass
Pick-up arm. Box No. WW.
Abels, NAMEPLATES, FASCIAS on anodised aluminium or perspex. Any quantity, superb quality, fast delivery G.S.M. GRAPHICS LTD., 1-5 RECTORY LANE, GUISBOROUGH (Tel: 02873-4443), YORKS.
SMALL Batch Production, wiring assembly, 10 Sample or drawings. Specialist in printed circuit assemblics. D. D.
Harlow, Essex. Tel:

COURSES

R ADIO and Radar M.P.T. and C.G.L.I. Courses. Y7 8 J 7 . Principal, Nautical College. Fleetwood,

NEW GRAM AND SOUND EQUIPMENT

GLASGOW HI FI, Recorders, Video, Communications Reciever always available we buy sell and exchange for photographic equipment. Victor Morris Audio Visual Ltd, 340 Argyle Street, Glasgow, G.2; 31 Sauchichall Street, Glasgow, G.1; $8 / 10$ Glassford
Street, Glasgow, G. 2 Tel: 041 -221 8958.

RECETVEAS AND AMPLIRIEASE

SURPLUS AND SECONDHAND
HRO Rx5s, etc., AR88, CR100, BRT400, G209, S640, etc., etc., in stock.-R. T. \& I. Electronics, Ltd., Ashville Old Hall, Ashville Rd., London, E.II Ley. 4986.

SiGNAL generators, oscilloscopes, output meters wave voltmeters. frequency meters, multi-range Ltd. Ash., etc., in stock.-R. T. \& . Electronics Ley.' 4986.

SERVICE AND REPAIRS

SCRATCHED TUBES. Our experienced polishing service can make your colour or monochrome tubes as new again for only $£ 2.75$, plus carriage $£ 1$. With absolute confidence send to Retube Ltd.. North Somercote Louth, Lincs, or 'phone 0507-85 300.

TAPE RECORDING ETC.

FF QUALITY, durability matter, consult Britain's 1 oldest transfer service. Quality records from your suitable tapes. (Excellent fund raisers for schools). Modern studio facilities with Steinway Grand.9951661 . 18 Blenheim Road, London, W.4. 01

VALVES WANTEO

WE buy new valves, transistors and clean. new com ponents, large or small quantities, all details, quotation by return.-Walton's, 55 Worcester St. Wolverhampton.

EXCLUSIVE OFFERS

HIGHEST QUALITY I9* RACK MOUNTING CABINETS \& RACKS Our Height Width CABINETS Depth Rel pid
 OPEN RACES
Our Height
Rof. inimehes
Chantiel Rack Panel
Depth

Full details of all above on request. We have a large quantity of "blts and pleces" We cannot list-please send us your requirenents
we can prohably help-all encuiries answered.

COMPUTER HARDWARE

('ARD READER 80 col. $600 \mathrm{c} . \mathrm{p} . \mathrm{m}$ *PRINTER, High speed 1000 lines p.m. * TAPE READER, High speed $5 / 8$ track 800 c.p.m.

Prices on Application

PLEASE ADD V.A.T. TO ABOVE
P. HARRIS

ORGANFORD-DORSET BHI6 6ER

Wilmslow Audio

THE firm for speakers!

Baker Group 25, 3.8 or 15 ohm	¢7.75
Baker Group 35. 3.8 or 15 ohm	± 8.50
Baker Deluxe. 8 or 15 ohm	¢10.75
Baker Major, 3, 8 or 15 ohm	18.50
Baker Regent, 8 or 15 ohm	87.75
Baker Superb, 8 or 15 ohm	£14.50
Celestion PST8 (for Unilex)	f3. 25
Celestion MH 1000 horn. 8 or 15 ohm	£10.95
EMI $13 \times 8.3 .8$ or 15 ohm	£2. 25
EMI $13 \times 8.150 \mathrm{~d} / \mathrm{c} 3.8$ or 15 ohm	$\underline{2} .50$
EMI $13 \times 8.450 \mathrm{t} / \mathrm{tw}, 8 \mathrm{ohm}$	£3.75
EM1 $13 \times 8.350 .8$ or 15 ohm	£8.25
EMI 13×8.20 wattbass	£6.60
EM1 $2 \frac{1}{4}^{\prime \prime}$ tweeter 80 ohm	£0.65
EMI 8×5.10 watt. $/$ /c. $\mathrm{roll} / \mathrm{s} 8 \mathrm{ohm}$	£2.50
Elac 59RM 109150 hm . 59RM 1148 ohm	£2.80
Elac $6 \frac{1}{2}$ " $\mathrm{d} /$ cone. roll/ 880 hm	$£ 3.50$
Elac TW4 4" tweeter	f1.50
Fane Pop 15 watt 12"	$£ 5.25$
Fane Pop 25T 30 watt 12"	£7.25
Fane Pop 50 watt. 12"	£12.00
Fane Pop 55, 12" 60 watt	£12.50
Fane Pop 60 watt. 15"	£13.25
Fane Pop 100 watt. 18"	£24.50
Fane Crescendo 12A or B, 8 or 15 ohm	£29.00
Fane Crescendo 15, 8 or 15 ohm	£36.00
Fane Crescendo 18,8 or 15 ohm	£51.95
Fane 8071 $8^{\prime \prime} \cdot \mathrm{d} / \mathrm{c}$, roll/s, 8 or 15 ohm	£3.85
Fane 801 T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$. roll/s. 8 ohm	$\underline{7} .00$
Goodmans 8P 8 or 15 ohm	$£ 5.00$
Goodmans 10P 8 or 15 ohm	£5.30
Goodmans 12P 8 or 15 ohm	£12.95
Goodmans 12P-D 8 or 15 ohm	£16.75
Goodmans 12P-G 8 or 15 ohm	£15.75
Goodmans Audiom 1008 or 15 ohm	£12.00
Goodmans Axent 1008 ohm	¢7. 25
Goodmans Axiom 4018 or 15 ohm	£17.25
Goodmans Twinaxiom 8" 8 or 15 ohm	¢8.25
Goodmans Twinaxiom 10" 8 or 15 ohm	£9.00
Kef T27	f5.25
Kef T15	£6.00
Kef B110	$\underline{7.25}$
Kef B200	¢8.25
Kef 8139	£14.75
Kef DN8	¢2.00
Kef DN12	£4.95
Kef DN13	£3.30
Richard Allan CG8T 8"d/c roll/s	¢6.35
STC 4001 G super tweeter	£6.19
Fane 701 twin ribbon horn	£35.00
Baker Major Module each	£10.75
Goodmans Mezzo each	£45.00
Goodmans DIN 204 ohm each	£9.75
Helme XLK25 (pair)	$¢ 22.00$
Helme XLK30 (pair)	£14.95
Helme XLK50 (pair)	£39.95
Kefkit 1 each	£20.95
Kefkit 3 each	¢36.75
Peerless 3-15 (3 sp. system) each	£15.00
Richard Allan Twinkit each	£8.95
Richard Allan Triple 8 each	£13.75
Richard Allan Triple each	£19.95
Richard Allan Super Triple each	£23.75
Wharfedale Linton 2 kit (pair)	£19.25
Wharfedale Glendale 3 kit (pair)	£34.50
Wharfedale Dovedale 3 kit (pair)	£52.50

prices include vat

Cabinets for PA and HiFi, wadding, vynair, etc.
Send stamp for free booklet 'Choosing a Speaker
FREE with orders over $\mathbf{f 7}$-_" HiFi loudspeaker enclosures' book.
All units guaranteed new and perfect.
Prompt despatch.
Carriage: Speakers $38 p$ each. tweeters and crossovers 20p each, kits 75 p each (pair $£ 1.50$).

WILMSLOW AUDIO Dept WW

Swan Works, Bank Square, Wilmslow, Cheshire SK9 1 HF Tel. Wilmslow 29599 (Discount HiFi, PA and Radio at 10 Swan St, Wilmslow.)

INTERNATIONAL TRANSISTOR SELECTOR

Over 10,000 U.S.A., Euro. Jap. British Transistors, Electrical, Mechanical Specifications, Manufacturers \& Available Substitutes by T. D. Towers, M.B.E.

Price $£ 3.15$
THE RADIO AMATEUR'S HANDBOOK 1975 Edition by A. R. R. L. Price $\mathbf{6 3 . 5 0}$
VIDEOTAPE RECORDING THEORY \& PRACTICE by J. F. Robinson. Price $£ 4.80$
DIGITAL ELECTRONIC CIRCUITS \& SYSTEMS by N. M. Morris. Price $\mathbf{E 2 . 5 0}$
MC MOS HANDBOOK PRODUCTS CHARACTERISTICS - APPLICATIONS by MOTOROLA. Price $\mathbf{E 2} .80$
OPERATIONAL AMPLIFIERS DESIGN \& APPLICATIONS by Tobey. Price $\mathbf{£ 4 . 5 0}$
ELECTRONIC EQUIPMENT RELIABILITY by J. C. Cluley. Price $\mathbf{6 2 . 7 0}$
COLOUR T.V. WITH PARTICULAR REFERENCE TO THE PAL SYSTEM by G. N. Pa FIDELITY

HIGH FIDELITY AUDIO AMPLIFIER
CIRCUITS by Texas. Price $£ 1.10$
BASIC THEORY \& APPLICATION OF TRANSISTORS. Price $£ 1.60$

* PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS

19-21 PRAED STREET,

LONDON, W2 1NP
Phone 7234185
Closed Sat. I p.m.

SOWTER TRANSFORMERS
FOR'SOUND RECORDING AND REPRODUCING EQUIPMENT We are suppliers to many well-known companies,
studios and broadcasting authorities and were established in Ig4I. Early deliveries. Competitive prises. Large or small. quantities. Let us quote.

Tran for A. SOW TER LTD.
Transformer Manufacturers and Designers
Telephone 0473 52794 wich IP4 IJP

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

 SPOT CASH CHILTMEAD LTD. 7. 9, 11 Arthur Road, Readings, Berks. Tel: 582605
KINDON CENTRAR RADIO STORES

TELEPRONE CABLE. Plastic covered grey 4-core coloured coded. 7pp per yard. tarift to your requirements. Suitable for hotels, etc. 200/250v. 15 A .
$\mathbf{8 8} \cdot \mathbf{3 8} .20$ A. $\mathbf{2 9} 30$. P.P. 75 p . Other amperages available. Reconditioned ar new. 2 years guarantee.
MODERN DESK PHONES, red, green, blue or topaz, 2 -tone grey
or black, with internal hell and handet with 0.1 diai 95.50 or black, with internal bell and handset with 0.1 diai $\& 5 \cdot 50$.
$5-W A Y$ PRESS-BUTTON INTER-COM TELEPHONES in Baiclite case with Junction hox handset. Thoroughly overhauled, guaran teed. Price $25 \cdot 25$. Send s.a.e.
10-WAY PRESS-BUTTON. NATER-COM TELEPHONES in Bakelite case with Junction box handset. Thoroughly ov 20-WAY PRESS-BUTTON INTER-COM TELEPBONES Bakelite caae with Junction box. Thoroughly overhauled. Guarai
teed. 87.75 per unit. Sendl sat. teed. $\mathbf{, ~} 87.75$ per unlt. Send s.a.e.
 me/s. Crystal Controlled and operates from a dry battery H.T./ L.T. 94/1. v. I.E. Ruben Mallory Type No. 1 and employs the
following i 4 valves: 3Ait 1 off; 11.4 off; 1 T4 4 off; 1851 ont 1A3 2 of. \&6.50 plus 75p P. \& P . 6 onf 1T4 4 off; 1851 off; QUARTERLY CHECK METERS 15 A 23.90. 20A £4.22. P. \& P.
50 p . 50p.
All prices subject to fuctuation
Multi Relay Unita, Croup selectors, Final end selectors and
Kelays in stock, 20 -way fack strips and tip ring and ale Kelays in stock, 20 -way fack strips and tip ring and sleeve plugs.
For calters only.
23 IISIE SI. (2389) LONOON W.C. 2 Open all day Saturday

Guide to Broadcasting Stations

17th Edition

A new edition of a title which has sold more than 250,000 copies. The bulk of the book is devoted to lists of stations broadcasting in the long, medium, short and v.h.f. bands in both frequency and geo graphical and alphabetical order The book also contains useful information on radio receivers, aerials and earth, propagation, signal identification and reception reports.

1973206 pp., illustrated
059200081 75p

Illustrations

in Applied Network Theory

F. E. Rogers

A hundred numerical and algebraic illustrations designed to exemplify practical circuit problems and introduce, in analysis, principles consistent with studies of synthesis that may be pursued later.
1973240 pp.. illustrated
$040870425 \times$ cased $£ 5.00$ 0408704268 limp £2.50 Obtainable through any bookseller

Newnes-

Butterworths

EX-COMPUTER
 STABILISED POWER SUPPLIES

RECONDITIONED, TESTED AND GUARANTEED
Ripple $<10 \mathrm{mV}$. Over-voltage protection $120-130 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ input. Stepdown transformer to suit about $£ 3$.

Post \& Packing $\mathbf{£ 1} \mathbf{7 0}$
5-6v.8A. $\mathbf{E 1 2} \quad 5-6 \mathrm{v} .16 \mathrm{~A}$
f16
$5-6 \mathrm{~V} .12 \mathrm{~A}$.
f14
PAPST FANS $4 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \mathrm{in}$. 100 cfm . $240 \mathrm{v} .50 / 60 \mathrm{~Hz} . £ 3 \cdot 50$ (30p)
PAPST FANS 6in. dia. $\times 2 \frac{3}{17} \mathrm{in}$. deep. Type 7576 £5.00 (30p)
Few only 6 in. PAPST $\mathbf{f 4}(30 \mathrm{p}$)
TRANSISTORS p\&p10p BC107/8/9 BC147/8/9 BC157/8/9 all 9p BF180 25p BF182/3 40p BF184 17p BC167 13p BFW10 55p BF336 35p 7418 DIL 34p 2N3771 £1-10, 2N3441 50p, BD131 40p NE555 67p.
ELECTROLYTICS
$30,000 \mu 25 \mathrm{v}, 68,000 \mu 16 \mathrm{v}, 15,000 \mu 30 \mathrm{v} 65 \mathrm{p}$ (20p) $5,000 \mu 35 \mathrm{v} ., 40 \mathrm{p}$ (12p) $4,700 \mu 63 \mathrm{v} ., 50 \mathrm{p}$ (12p) $2,000 \mu 50 \mathrm{v}$., plus clip 35 p (8 p) $2,200 \mu$ $63 \mathrm{v}, \mathrm{35p}$ (8p)
EX-COMPUTER PC PANELS $2 \times 4 i n$. 25 boards for $£ 1$ (30 p).
QH Bulbs, 12 v . 55w.
250 Mixed Resistors.
250 Mixed Capacitors
200 SI Panar Diodes. Microswitches ... 60p 2N3055 EQUIV 8 for 50p (8p 2N3055 EQUIV 8 for 50 p (7p) SMALL ELECTROLYTICS
.4 for $\mathrm{E1}$ (10p)
$2.2 \mu 10 / 16 \mathrm{v} ., 10 \mu 35 \mathrm{v} ., 50 \mu 40 \mathrm{v} ., 100 \mu 40 \mathrm{v}$. $100 \mu 6 v ., 150 \mu 10 v ., 64 \mu 10 v .12$ for $45 p$ ($6 p$) PRESETS 100 mW
$220,470,1 \mathrm{k}, 4 \mathrm{k} 7,10 \mathrm{k}, 100 \mathrm{k} 12$ for 50 p (6p) Postage and packing shown in brackets Please add 8\% VAT to TOTAL

KEYTRONICS

Mail Order only.
44 EARLS COURT ROAD, LONDON, W. 8 01-4788499

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK
CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH el: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16

Tel: 01-249 2260

Grampian
 'SERIES 7' - Studio Monitor Version One of the worid's finest Amplifiers.

GRAMPIAN REPRODUCERS LIMITED
Hanworth Trading Estate. Feltham, Middlesex, Telephone:01-8949141.

EXPRESS

PRINTED CIRCUITS - ROLLER TINNING
GOLDPLATING - FLEXIBLE FILMS. ETC. Electronic \& Mechanica Sub-Assembly Co. Ltd
Highfield House, West Kingsdown Nr. Sevenoaks, Kent
Tel: West Kingadown 2344

PRECISION

POLYCARBONATE CAPACITORS
All High Stability-Extremely Low Leakage
440 V AC $(\pm 10 \%)$

 $0.1,0 \cdot 22,0.47,1 \cdot 0,2 \cdot 2,4-7,6-8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or 35 V ;
$10.0 \mu \mathrm{~F}$ at $16 \mathrm{~V} / 20 \mathrm{~V}$ or $25 \mathrm{~V} ; \quad 22.0 \mu \mathrm{~F}$ at $6 \mathrm{~V} / 10 \mathrm{~V}$ or 16 V ; $33.0 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V} ; 47.0 \mu \mathrm{~F}$ at 3 V or $6 \mathrm{~V} ; 100.0 \mu \mathrm{~F}$ at 3 V .

ALL at 10 p each, 10 for 95 p , 50 for Et .
TRANSISTORS
BC107/8/9

$\mathrm{BC1}$
$\mathrm{BC147}$

$\mathrm{BCl147} / 8 / 9$
$\mathrm{BC153/7/8}$
:---
BF196/1

 5 mA . Valuee available: $3 \mathrm{~V}, 3.3 \mathrm{~V}, 3 \cdot 8 \mathrm{~V}, 4.7 \mathrm{~V}, 5 \mathrm{~V}, 5 \cdot 8 \mathrm{~V}$,
$6.2 \mathrm{~V}, 6.8 \mathrm{~V}, 7.5 \mathrm{~V}, 8.2 \mathrm{~V}, 9 \mathrm{iV}, 10 \mathrm{~V}, 11 \mathrm{~V}, 12 \mathrm{~V}, \mathrm{BL}, 135 \mathrm{~V}$,
$15 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}, 33 \mathrm{~V}$. All at 7 p each, 6 for 39p, 14 for 84p. SPECLAL OPFER: 100 Zeners
for 25.50 .
RESISTORS-High stabllty, low noise carbon film 5%.
iW at $40^{\circ} \mathrm{C}$, +W at $70^{\circ} \mathrm{C}$. E12 series only-from 2.2Ω to
 for 100 of any one value. SPECLAL PACK; 10 of each value $2 \cdot 2 \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$ (730 renistors) 25 .
SILICON PLAASTIC RBCTIFIERS- 1.5 amp. brand new
wire ended DO27; 100 P.I.V. 7 p (4 for 26 p) 400 P.I.V. 8 p (4 for 30 p).
BRIDGE RECTIFIERS- $21 \mathrm{amp}, 200 \mathrm{~V} 40 \mathrm{p} ; 350 \mathrm{~V} 45 \mathrm{p}$; 600 V 55
sUBMINIATURE VERTICAL PRESETS- 0.1 W only. ${ }_{2} \cdot 2 \mathrm{k} \Omega, 4 \cdot 7 \mathrm{k} \Omega, 6 \cdot 8 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 47 \mathrm{k} \Omega, 68 \mathrm{k} \Omega$; $100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega, 680 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 2.5 \mathrm{M} \Omega, 5 \mathrm{M} \Omega$.
PLEASE ADD 10p POST AND PACKING ON ALL ORDERS BELOW R5. ALL EXPORT ORDERB ADD COST OF SEA/AIRMAIL.

PLEASE ADD 8\% V.A.T. TO ORDERS.
Send s.A.E. for lists of additional ex-gtock items.
MARCO TRADING (Dept. DII)
The Old School, Edstaston, Nr. Wem, Shropshire Tel. Whixall (Shropshire) (STD 094872) 464/5 (Proprs.: Minicost Trading Ltd.)

STEREO DISC AMP
FOR BROADCASTING AND DISC MONITORING
Mains in. Balanced lines out. Excellent disto
performance. MEETS IBA SPECIFICATION E95.
PEAK PROGRAM METERS TO BS4297
also 200 KHz version for high apeed copying. Drive circuit. $35 \times 80 \mathrm{~mm}$. tor 1 mA L.H. zero meter to BBC Complete kit $\quad \mathbf{1 0 . 0 0} 4 \mathrm{cff} 10$ off 50 oft $\begin{array}{llllll}\text { Complete kit } & \mathbf{f 1 0 . 0 0} & \mathbf{£ 9 . 5 0} & \mathbf{f 9 . 0 0} & \mathbf{£ 8 . 6 0} \\ \text { Built and aligned } & \mathbf{£ 1 4 . 0 0} & £ 13.30 & \mathbf{£ 1 2 . 6 0} & \mathbf{£ 1 1 . 9 0}\end{array}$

PUBLIC ADDRESS : SOUND REINFORCEMENT In any public-address system, where the microphones and
loudspeakers are in the same vicinity acoustic feedback (howl round) occurs if the amplification exceeds a critical value. By shifting the audio spectrum fed to the speakers by a few Hertu
the tendency to howling at room resonance frequencies is the tendency
destroyed and an increase in pain of $6-8 \mathrm{~dB}$ is possible before the onset of feedback.
SHIFTERS IN BOXES with overload LED. shif/bypass switch. BS4491 mains connector and housed in strong diecast boxes finished in attractive durable blue acrylic. Jack or XLR audio conType.

SHIFTER CIRCUIT BOARDS FOR WW July 1973 article
Complese kit and board $\quad 24.00$ Including p.s.u. and \quad DESIGNER
Board built and aligned
E31.00 mains tramsformer SPECTRUM SHIFTER: variable shifts, $0.1-1000 \mathrm{~Hz}$
or weird special offects and phasing. Ring for leaflets.
SURREY ELECTRONICS
The Forge, Lucks Green, Cranlieigh,
Surrey GU6 7BG. (STD O4866) 5997

Private enquiries, send 5 p in stamps for brochure
THE QUARIZ CRYSTAL CO.LTD. Q.C.C. WORKS, WELLINGTON CRESCENT NEW MALDEN, SURREY. 01-942-0334 $\& 2988$

J. LINSLEY-HOOD

New Phase Locked Loop F.M. TUNER (As per Wireless World Annual). Basic kit of parts
*£29.95 (tax £2.40) Available in pack
form as follows:

Pack 1. Res. and capacitors $£ 3.00$ 2. Semi conductors and I.C's £6.25 3. Tuner head $\mathbf{£ 5 . 5 0}$ 4. P.C. boards and drawings $£ 1.50$ 5. Chassis and tuning mechanism $\mathbf{5 5 . 0 0}$ 6. Ceramic filters $£ 1.50$ 7. Teak finish sleeve $£ 3.008$. Meter and muting module $\mathbf{£ 2 . 5 0}$ 9. Regulated power supply $£ 5.0010$. Stereo decoder. Ready made £7.50 11. Push button and trimmer pack $£ 2.50$ (*Excludes packs No. 8, 10 and 11.) Tax extra.

TELERADIO ELECTRONICS
325 Fore Street. Edmonton, Lond on N9 OPE. 01-807 3719.
SA.E. for further details of thed
ils of above and other Linsley-Hood suparior
low distortion designs.

JEF ELECTRONICS

BROADFIELDS \& MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N12 8JG. Telephone:
01-445 $0749 \quad 01-445 \quad 2713 \quad 01-958 \quad 7624$
MAY WE ASSIST YOU TO DISPOSE OF YOUR SURPLUS AND REDUNDANT STOCKS.
We will call anywhere in the British Isles, and pay SPOT CASH for Elec tronic Components and Equipment.

LOW FREQUENCY ANALYSER

$50 \mathrm{~Hz}-50 \mathrm{KHz}$ ASSEMB.LY AND INSTRUCTION INFORMATION S.A.E.
PRICE $£ \mathbf{£ 2 7} \mathrm{p} \mathrm{\& p} 75 \mathrm{p}$
Board, modules and all components lexcluding P.U.).

100MHz SCOPE TUBES

MULLARD D13-450GH-03. P31 PHOSPHOR. INTERNAL GRATICULE-6CM $\times 10 \mathrm{CM}$ RECTANGULAR. Y SENSITIVITY $3 V$ PER CM $\times 11 \mathrm{~V}$ PER CM. SINGLE GUN. DISTRIBUTED Y PLATES, TRACE ROTATE COILS.

BRAND NEW BOXED. $\mathbf{f 3 0}$ each. CARRIAGE $£ 2$. V.A.T. at 8%
chlltmean
7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College). Tel. Reading 582605

INIDEX TD ADVERTISERS

Appointments Vacant Advertisements appear on pages 77-91

[^10]
BARR \& STROUD ELECTRONIC FILTERS

The 3 aspects of our service

1. System EF3

A flexible system of filter instrumentation using a modular approach to give plug-in interchangeability. The mainframe carries a power unit and accepts up to two filter units of either Low Pass or High Pass function. Integral switching allows individual or cascade operation and can give Band Pass, Band Stop, Band Separate or Band Combine modes.

2. Active Filter Modules

These are compact, solid state, encapsulated units providing basic filter functions to be customer set for cut-off frequency and characteristic. The present range contains Low Pass and High Pass types with cut-off frequency coverage from 1.0 Hz to 30 kHz in overlapping ranges, with attenuation rates up to $24 \mathrm{~dB} /$ octave/module. Universal modules specifically for Band Pass and Band Stop operation are part of the range.

3. Custom Build Service

If our standard filter range does not meet your specification we welcome the opportunity to study your requirement. Broadly our capability stretches from d.c. to 25 MHz with experience in passive and active designs. We can work to normal commercial standards or strict defence requirements and construction can be as dictated by the environmental conditions of your application.

BARR \& STROUD LIMITED
London Office: 1 Pall Mall East, London SW1Y 5AU
Telephone : 01-930 1541 Telex : 261877

Glasgow and London

\section*{Whal's new in Soldering Chemicals?

\section*{Multicore's R \& D

Multicore's R \& D Laboratories are still making news-three important new chemicals for electronics manufacturers.

MULTICORE PC 26 ROSIN FOAM FLUX

A completely new general purpose liquid soldering flux particularly suitable for the automated soldering of all types of printed circuits. PC 26 provides a unique combination of desirable properties

- Complies with U.K. Ministry Flux Specification D.T.D. 599A.
- Eliminates "icicles" and "bridging".
- 0.5\% max. halide content and yet gives better soldering than non-approved fluxes with high halide contents.
- Leaves negligible flux residues so p.c. boards are dry after soldering, can be handled and inspected easily and have better sales appeal.

MULTICORE PC 81 SOLVENT CLEANER \& FLUX REMOVER

A unique blend of polar and non-polar solvents formulated for degreasing electronic hardware prior to soldering as well as for removing rosin flux residues including ionizable activators after soldering. Its intermediate boiling range of 71 to $80^{\circ} \mathrm{C}$ and selective solvency make it ideal for vapour degreasing.

The bolling range of PC. 81 is higher than fluorinated solvents (approx $46^{\circ} \mathrm{C}$) and lower than either trichloroethylene ($87^{\circ} \mathrm{C}$) or perchloroethylene ($121^{\circ} \mathrm{C}$). Also its solvency properties for rosin flux removal are superior to fluorinated solvents without in any way affecting most electronic hardware. As a result, PC. 81 solvent will performits vapour cleaning function longer and more effectively than fluorinated solvents whose vapour condensation ceases at $46^{\circ} \mathrm{C}$ with a consequent end to flux removal

Solvent evaporation rate is substantially lower than that of the fluorinated solvents, making it more economical to use in open tanks and vapour degreasers.
Multicore PC. 81 is a highlystabilized solvent blend, extremely resistant to thermal or chemical breakdown during prolonged heating or as a result of the introduction of activators from the solution of rosin during its working life. Its relatively narrow boiling range and high stability make it readily useable again without property changes after distillation.

PC. 81 can also be used for cold cleaning and to reinforce ultrasonic cleaning. Even though its toxicity is relatively low, well ventilated areas are required.

PC. 81 is expected to be particutarly welcome as it is non-flammable and non-combustible under the new British "Highly Inflammable Liquid" Regulations.

Supplied in one gallon metal cans and 45 gallon steel drums.
Specific Gravity ($20^{\circ} \mathrm{C}$) - $\mathbf{1 . 2 5 6}$
Boiling Range - $71-80^{\circ} \mathrm{C}$
Toxicity (TLV) \qquad 340 ppm
Residue on Evaporation- less than 10 ppm

MULTICORE PC 54 CONFORMAL COATING

Fully meets the requirements of the new U.K. Defence Standard 59-47/issue 2 and U.S. Spec. MIL-I-46058C, which are becoming mandatory for the protection of many electronics assemblies against adverse environment, contamination and attack bychemicals.

PC. 54 is a two-part epoxy resin system which is conveniently mixed in equal parts by volume. It may be applied by dip, spray or brush to either one or both sides of p.c. boards and components where it forms a thin tough coating after curing. PC. 54 will dry in 1 hour under normal ambient conditions and developits full propertiesafter several days at room temperature or it may be cured in 2 to 4 hours at $65^{\circ} \mathrm{C}$. A glass fibre brush can be used to remove the coating locally to enable rework and repair.

Other Multicore Soldering Chemicals include a complete range of liquid fluxes and the following special chemicals.

PC 2 Multicore Tarnish Remover
Cleans tarnish from metal surfaces prior to soldering.

PC10A Activated Surface Preservative
Applied after pre-cleaning, preserves solderability and need not be removed

PC10D

A special version of PC 10A for application by roller coating machines.
PC 90 Peeloff Solder Resist and

PC91 Thinners

A temporary solder resist for edge-connector contact areas etc. Replaces masking tape

PC41 and PC43

Solder Bath dross inhibitors
PC 52 Protective Coating
One-part conformal coating. Can be soldered through.

PC 70 Thinners

Compatible Solvent blend for use with all rosin fluxes, PC $10 A$ and PC 52.
Please write for Technical Bulletins on your Company's letterhead for products which interest you to:

MULTICORE SOLDERS LIMITED

Hemel Hempstead, Herts. HP2 7EP
Tel: Hemel Hempstead 3636 Telex 82363

[^0]: Designer Manager Enthusiast
 Scientist
 Engineer
 These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

 ## Guarantee-no risk to you

 If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

[^1]: Fig. 1. The magnetic replay system patented by Edison's assistant, Sumner Tainter.

[^2]: The British Electrotechnical Approvals Board is inviting manufacturers and vendors to submit monochrome and colour TV re-

[^3]: ${ }^{9}$ For a description of the colour c.c.d. camera see H. A. Watson, Bell Laboratories Record, October 1973, p. 266.

[^4]: *Adapted from Table 2 of reference 7

[^5]: Manufacturers and distributors of Electrical Measuring Instruments. Sole U.K. distributors of FRAHM Resonant Reed Frequency Meters and Tachometers. Manufacturers of purpose built electrical and electronic equipment to customers requirements.

[^6]: *BS 4727:Part 1:Group 01:1971.

[^7]: V/AT
 All prices are subject to 8\% VAT. (8 p in the E)
 To all orders add 8% VAT to total
 value of goods including carriage/
 packaging.

[^8]: $[37$

[^9]: COPPER SUPPLIES

[^10]:

 of by way of Trade at a price in excess of the recommended maximum price shown on the cover, and that it shall not be lent, re-sold, hired out or otherwhe disposed of in a mutilated condition or in any unsuthorised cover by way of Trade or affixed to or as part of any publication or advertialing, literary or plctorial matter whataoever.

