wireless

world

 JANUARY 1975 25p
Fectronics and oil Silent stereo switch

Australia
Belgium
Canada
Conada
FInland
Germany
Holland
Israel
Itraly

80 Cents Malaysia
Ff. 52.00 New Zaeland
Kr. 9.00
Fmk 4.50
Dm 4.00
Dfl 3.75
1£ 3.95 If 3.95
L. 700

New Zeeland
Norway Ks.
Norway Kı. 7
M\$2.60 South Africa $\quad 7.50$ inkl Moms
77 Cents Spain $\quad 77$ Cents
Pias 65.00 Sweden Kr. 5.35 ink Moms Switzerland 5 ink Moms

CoverStory

Some Marconi Instruments are designed to be mobile. Others are not - but do a lot of travelling all the same. In fact, nearly three-quarters of mi's total sales stem from export orders.

So there are plenty of people in Milwaukee or Mannheim or Melbourne or Montevideo who are just as discerning about Marconi Instruments as you are. And they're equally enthusiastic about mil service, too. We've service organisations in New Jersey, Munich, Paris and a whole lot of other
places to see to that.
There are $\mathbf{m i}$ distributors and representatives in more than 60 countries throughout the world and we have 14 associated companies in Africa, the Middle, Near and Far East, North and South America and Europe.
$\mathbf{m i}$, then, doesn't only cover all the intricacies of planning and producing some of the world's finest electronic testing and measuring instruments
it covers the world, as well.

mi:THE INTERNATIONALISTS

MARCONI INSTRUMENTS LIMITED

Langacres•St. Albans•Herffordshire AL4 0JN•England • Telephone: St. Albans 59292 • Telex: 23350

LOW COST TESTERS
 LEVELL

POBTABLE INSTRUMENTS

INSULATION TESTER

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV .
$1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V .
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale. Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre. Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$. Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA .

CURRENT RANGE

100 pA to $100 \mu \mathrm{~A}$ on 6 decade logarithmic scale.
Accuracy of current measurement $\pm 15 \%$ of indicated value. Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
Maximum safe continuous overload is 50 mA .

MEASUREMENT TIME

<3 s for resistance on all ranges relative to CAL position. <10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V . Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position.

RECORDER OUTPUT

1 V per decade $\pm 2 \%$ with zero output at scale centre.
Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

TRANSISTOR TESTER

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for I_{C} / I_{B} ratios of $10,20,30$. The instrument is powered by a 9 V battery.

TRANSISTOR RANGES (PNP OR NPN)

${ }^{1}$ С в $\mathcal{\&} I_{\text {E B }}: 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$, $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$, 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
$B V_{C B O} \quad 10 \mathrm{~V}$ or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
$I_{B}: \quad 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of. $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and 100 mA acc. $\pm 1 \%$.
$h_{\text {FE }} \quad 3$ inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I_{B} into $h_{F E}$ readings.
$V_{B E}: \quad 1 V$ f.s.d. acc. $\pm 20 \mathrm{mV}$ measured at conditions on $h_{\text {FE }}$ test.
$V_{C E(\text { sat })} \quad 1 \mathrm{~V}$ f.s.d. acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or 30 acc. $\pm 20 \%$.
DIODE \& ZENER DIODE RANGES
${ }^{1} \mathrm{DR}$: AsIEBO transistor ranges.
V_{Z} : Breakdown ranges as $B V_{C B O}$ for transistors.
$V_{D F}: \quad 1 \mathrm{Vf.s.d}$ acc. $\pm 20 \mathrm{mV}$ at I_{DF} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN5 5SD
Tel : 01-449 5028/440 8686

Prices include batteries and U.K. delivery, V.A.T. extra. Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

Who else but the Italians could have produced the most sophisticated range of mixing and fading facilities ever offered in such a beautifully designed range of equipment.

Yet still apply the most precise and exacting manufacturing standards to provide the operational stability and reliability such complex electronics demand

This is why we are able to guarantee all Goodmans/Galactron equipment for three years.

And your guarantee will be signed personally by the quality controller who tests it before it leaves the factory in It aly.

Galactron Mk 10

Stereo Integrated Amplifier

A remarkably compact pre and power amp combination with 90 watts RMS per channel. Features 5 mixable stereo inputs, 5 plug-in-modules-two of which can be cross-faded by slide potentiometer.

Galactron Mk 16

Stereo/Quad Amplifıer

No comparable equipment has all these 3 functions. 5 inputs, independently mixable and equalised by plug in modules. Twin graphic equalisers having

10 filters each $(\pm 16 \mathrm{~dB})$ at octave intervals from 32 Hz to 16 kHz . Plug-in quadrophonic decoder panels for discrete and matrix systems allied to 4 output level controls.

Galactron Mk 100

Stereo Power Amplifıer

Originally designed as a monitor amp for recording studios, the Mk 100 is designed for use with the Mk 16 preamplifier. 100 watts RMS per channel output.

Full facts and figures are available from Goodmans Loudspeakers Limited, Downley Road, Havant, Hants.

Goodmans

galactiran

Feathers and things

Take a diaphragm from a QUAD electrostatic loudspeaker. Let it fall and you can count up to ten before it reaches the ground. Try to do this with a cone from a moving coil speaker and you'll need a high speed computer to do the counting. Remember all that stuff at school about kinetic energy? How heavy things are hard to start and
hard to stop? That's why a QUAD loudspeaker responds immediately to every nuance in the music. It's obvious when you think of it. It's even more obvious when you hear it.
Send postcard for illustrated leaflet to Dept.WW Acoustical Manufacturing Co. Ltd.,
Huntingdon PE18 7DB. Telephone (0480) 52561.

Products of The Acoustical Manufacturing Co.Ltd.
for the closest approach to the original sound

SOUND SENSE=VORTEXION

VORTEXION Design and manufacture public address equipment to meet a range of specific requirements for AIRPORTS, HOTELS, THEATRES, GOVERNMENT AUTHORITIES, LOCAL AUTHORITIES, SUPERMARKETS, SCHOOLS, SPORTING COMPLEXES, POP GROUPS AND THE LOCAL VILLAGE HALL.

The high fidelity amplifier illustrated has bass cut controls on each of the three low impedance balanced line microphone stages and a high impedance gram stage with bass and treble controls, plus the usual line or tape input. All the input stages are protected against overload by back to back low self capacity diodes and all use F.E.T.'s for low noise, low intermodulation distortion and freedom from radio breakthrough.

A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16$ ohms output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected.

The mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output 0.3 V out on 600 ohms upwards.

50/70 WATT ALL SILICON AMPLIFIER WITH

BUILT-IN 4-WAY MIXER using the circuit of our reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T Mixer Amplifier, again fully protected against overload and radio breakthrough. The mixer is arranged for 2-30/60 Ω balanced line microphones, l-HiZ gram input and l-auxiliary input followed by bass and treble controls. 100 volt balanced line output OR 5-15 Ω and 100 volt line.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4-channel F.E.T. mixer. 2-30/60 Ω balanced microphone inputs, l-HiZ gram input and l-auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. Standard model l-low mic. balanced input and HiZ gram. Outputs available $8 / 15$ ohms OR 100 volt line.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms15 ohms and 100 volt line. Bass and treble controls fitted.

Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is 120 watts on continuous sine wave. Input 1 mW 600 ohms . Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.
F.E.T. MIXERS and PPM's. Various types of mixers available. 3, 4, 6 and 8 channel with Peak Programme Meter. 4, 6, 8 and 10 Way Mixers. Twin 3, 4 and 5 channel Stereo, also twin 4 and 5 channel Stereo with 2 PPM's.

VORTEXION

Vortexion Ltd., 257-263 The Broadway, Wimbledon, SW19 1SF. Telephone: 01-542 2814 and 01-542 6242/3/4. Telegrams: "Vortexion London SW19"

updating from

A regular and constant output

whatever the input

Bestselling voltage regulators now in plastic

Following the sweeping success of SGS-ATES' integrated fixed voltage regulators in TO-3 metal can, these circuits are now also available, ex stock, in SOT 32 plastic package.
Designated L129, L130 and L131, they are suitable for low cost applications in professional, industrial and consumer equipment requiring compact components with low/medium output current, such as

- desk calculators
- video displays
- computer peripherals - touch tuning and remote control for TV sets - TV subsystems, such as video IF, sound IF. sync and chroma stages
A particularly interesting area of application is in local regulation systems. The main advantages of this circuit technique over traditional single point regulation are the reduction in common ground and inter-circuit coupling, high noise immunity and the elimination of problems due to line voltage drops.

Special features of the circuits include

- tight tolerance on the output voltage
- load regulation less than 1% - ripple rejection 60 dB typical - internal overload protection - short circuit protection The L129, L130 and L131 are designed to operate in the $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. For the standard operating temperature range, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, these plastic voltage regulators are available with type numbers TDA 1405, 1412 and 1415.

-20° to $+85^{\circ} \mathrm{C}$	V_{0}	Ioreg.typical	0° to $+70^{\circ} \mathrm{C}$
L 129	$5 V$	850 mA	TDA 1405
L 130	12 V	720 mA	TDA 1412
L 131	15 V	600 mA	TDA 1415

Distributors in the UK: Distronic Ltd., Harlow, 02796-32947 - Electronic Component Supplies Ltd., Windsor. O7535-68101 - Hawnt Electronics Ltd., Birmingham, 021-3594301- ITT Electronic
Services, Harlow, 02796-26777-REL Equipment \& Components Lid., Hitchen. O462-50551 Quamdon Electronics Lid., Derby, 32651.

WIV- 121 FOR FURTHER DETAILS

You could easily make our 12-speed chart recorder faster than you thought possible.

Send away for our 12 -speed, $10^{\prime \prime}$ chart recorder kit-the IR-18M. And you'll receive a very clear, easy to understand instruction manual with it. Which explains every single step. To make light work of assembly and provide you with a high quality chart recorder a lot quicker than you thought.

And just look what you'll be getting. Multispeed capability. With fast, pushbutton switch selection of speeds from 5 seconds per inch to 200 minutes per inch. To give you all the versatility you need.

You'll also get two input ranges, giving accurate voltage measurements of 1 millivolt and 10 millivolts full scale. Excellent repeatability. And a full scale pen response time of one second many much higher the $1 \mathrm{G}-18$ Solid State kit too. Outputs able using repeatable

- ${ }^{\text {-comparing favourably with }}$ priced recorders. Take a look at Sine-Square Wave Generator Yrom 1 Hz to 100 KHz are availswitch selection.

And its sine and square wave outputs are available simultaneously. With less than 0.1% sine wave distortion. And less than 50 ns square wave rise time.

And, for quick accurate testing of diodes, FETs, transistors, SCRs and triacs, there's the IT-121 Tester kit.

You can see these and other Heathkit electronic kits at the London Heathkit Centre, 233 Tottenham Court Road. Or at our showroom in Bristol Roach, Gloucester. Otherwise just clip the coupon and we'll send you the complete Heathkit catalogue. Faster than you thought possible. Heath (Gloucester) Limited,
 Dept WW-15, Bristol Road, Gloucester, GL2 6EE. Tel: Gloucester (0452) 29451.

To: Heath (Gloucester) Limited, Dept WW-15, Gloucester, GL2 6EE.
Please send me my free Heathkit catalogue.
Name
Address

for electronic valves (a really comprehensive range), semi-conductors (a wide variety), integrated circuits. Prices on request.

Teonex offers more than 3,000 devices. They are competitively priced and they are superlative in performance, because the company imposes strict quality control. Teonex concentrates entirely on export and now operates in more than sixty countries, on Government or private contract. All popular types in
the Teonex range are nearly always available for immediate delivery.
Write now for technical specifications and prices to Teonex Limited, 2a Westbourne Grove Mews, London W11 2RY, England.
Cables: Tosuply London W11. Telex: 262256 Electronic valves, semi-conductors and integrated circuits available only for export.

畐 sounds international

Care The extra ingredient.

Every KEF speaker gets it.

It's a revelation, to watch a KEF speaker being made. No automated process, but one where the final result still depends on the hands that build it. And on the philosophy of the company . . . an exceptional concern that rejects cheaper materials or short cuts . . . searches always for design advances that lead to that ultimate in performance. A philosophy that takes care, even over the smallest details. Feed wires secured so that they never rattle. Ordinary wadding replaced by consistent pre-formed blocks of special acoustic foam. Every drive unit is KEF made, tested at every stage.
Even the build-it-yourself Kefkits are individually tested in the correct enclosure. The next time you hear a KEF speaker you'll know why it sounds better. Return the completed coupon for detailed literature. literature on the items ticked.
Reference Series
if you're serious about sound.

the speaker engineers Tovil Maidstone ME15 6QP Kent Telephone 062257258 Telex 96140

च니지

Pin and varactor diodes for switching and tuning.

The types of PIN and varactor diodes listed here represent only a small part of the total AEI capability which includes devices widely used in both civil and military communications equipment. A number are available as DEF STAN types to Nato stock numbers.

With PIN diodes a wide range of silicon chips can be used in a number of outines offering a large choice of switching speeds, breakdown voltage and resistance-vs-current values.

As for varactors, our diodes can be supplied singly, or in matched sets to a range of capacitance tolerances, breakdown voltages and Q's etc.

PIN SWICHING DIODES Miniature Epoxy-Package Diodes

Type No.	Package	$\begin{gathered} V_{R} \\ (m \text { mi.) } \\ V \end{gathered}$	R_{F} (max.) ohms at mA	$\begin{gathered} \mathrm{Cd} \\ (\text { max.) } \\ \text { at } 50 \mathrm{~V} \\ \mathrm{pF} \end{gathered}$	Lite. time (typ) $\mu \mathrm{S}$	$\begin{aligned} & \text { Rth } \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	High Rel. types
DC1016 DC1028A	36 08	250 250	$\begin{aligned} & 0.75 \text { at } 100 \\ & 5 \cdot 0 \text { at } 5 \\ & 1.1 \text { at } 100 \end{aligned}$	0.7 0.45	1.0 0.7	40 350	-

available to DEF STAN specification.

- available to commercial High Rel. specification.

WRE ENDED GLASS•PACKAGED DIODES

Type No.	Application	V_{8} Volts	R_{F} (max) at 100mA ohms	Cd (max) at looV pF	τ (typ) $\mu \mathrm{S}$
DC2840E	General purpose	250	$1 \cdot 0$	0.3	0.3
DC2825E	General purpose	200	1.0	0.4°	0.3
DC2841E	General purpose	200	1.5	0.4	0.3
DC2842E:	General purpose	200	2.0	0.25	0.5
DC2843E	High speed	100	1.0	0.4	0.05
DC2844E	High speed	100	1.5	0.4	0.05
DC2845E	Long lifetime	150	3.5	0.3	1.5
DC2846E	Long lifetime	150	2.5	0.4	0.7

at-50V

Approximate frequency of application	$\begin{gathered} \mathrm{Ci}(-4 \mathrm{~V}) \\ \mathrm{pF} \end{gathered}$	Type No. (add suffix')	$\mathrm{Q}(-4 \mathrm{~V})$ at stated freq.		Package
			Q	$F(\mathrm{MHz})$	
$\begin{aligned} & 500 \mathrm{MHz} \\ & \text { to } 10 \mathrm{GHz} \end{aligned}$	$2 \cdot 2$	DC4255B	500	50	35
	$2 \cdot 2$	DC4265B	550	50	00
	$2 \cdot 2$	DC4285B	550	50	06
	$3 \cdot 3$	DC4256B	450	50	35
	$3 \cdot 3$	DC4266B	500	50	00
	$3 \cdot 3$	DC4286B	500	50	06
	$4 \cdot 7$	DC4267B	450	50	00
	6.8	DC4210B	450	50	7
5 MHz to IGHz	15	DC4214B	400	50	7
	27	DC4217B	300	50	7
	47	DC4225C	140	50	14
$\begin{aligned} & 3 \mathrm{MHz} \\ & \text { to } 100 \mathrm{MHz} \end{aligned}$	68	DC4227C	120	50	14
	80	DC4228C	100	50	14^{*}
$\begin{aligned} & 1 \mathrm{MHz} \\ & \text { to } 30 \mathrm{MHz} \end{aligned}$	100	DC4232B	200	10	18°
	120	DC4233B	200	10	18
	150	DC4234B	200	10	18
$\begin{aligned} & 100 \mathrm{kHz} \\ & \text { to } 5 \mathrm{MHz} \end{aligned}$	210	DC4298	180^{2}	25	10
	270	DC4232C	750	1	78
	-350	DC4299	200^{2}	25	10^{*}
	350	DC4244C	500	1	78**

- available to DEF STAN specification. " available to commercial High Rel. specification. Notes: ${ }^{\text {S }}$ Suffices A, B, C indicate MW at $25^{\circ} \mathrm{C}$ of $30 \mathrm{~V}, 60 \mathrm{~V}, 90 \mathrm{~V}$ respectively. Preferred types shown. ${ }^{2}$ Measured at -8 V

For full details of the complete range please write to AEI Semiconductors L.td., Lincoln Telephone: 0522 29992, or call in at your local distributor.

Part of EiviluIIt
Also immediately available from: Black Arrow (Electronics) Ltd., Bristol (0272) 294313/Coventry Factors Ltd., Coventry (0203) 24091/Farnell Electronic Components Ltd., Leeds (0532) 636311/ LST Electronic Components Ltd., Chelmsford (0245) 69543/W.S. Mc Millan \& Co. Ltd., East Kıbride $38641 / 4$ / / JVN Components, Bromley, Kent $01-464$ 1245/T1 Supply Ltd., Slough 33411/ SDS Components Ltd., Portsmouth 65311 .

\section*{| 7° | RADFORD |
| :--- | :--- |}

AUDIO MEASURING INSTRUMENTS

LOW DISTORTION OSCILLATOR SERIES 3

A continuously variable frequency laboratory oscillator with a range $10 \mathrm{~Hz}-100 \mathrm{kHz}$, having virtuallyzerodistortion over the audio frequency band with a fast settling time.

Specification:

Frequency range:
Output voltage
Output source resistance:

Output attenuation:
Output attenuation accuracy:
Sine wave distortion

Square wave rise and fall
time:
Monitor output meter:
Mains input:
Size:
$10 \mathrm{~Hz}-100 \mathrm{kHz}$ (4 bands)
10 volts r.m.s. max.
150 ohms unbalanced
(optional 150 ohms unbalanced. plus 150/G00 ohms balanced/floating) $0-100 \mathrm{~dB}$ (eight. 10 dB steps plus $0-20 \mathrm{~dB}$ variable)
1\%
Less than $0.002 \% 10 \mathrm{~Hz}-10 \mathrm{kHz}$ (typically below noise of measuring instrument)

Price: 150 ohms unbalanced output:
150/600 unbalanced/balanced floating output: $£ 300$

DISTORTION MEASURING SET, SERIES 3

(illustrated above)
A sensitive instrument with high input impedance for the measurement of total harmonic distortion. Designed for speedy and accurate use. Capable of measuring distortion products down to 0.001%. Direct reading from calibrated meter scale.
Specification:
Frequency range:
Distortion range (f.s.d.):
Input voltage measurement range:
Input resistance:
High pass filter:
Power requirement:
Size:

Price:
$5 \mathrm{~Hz}-50 \mathrm{kHz}$ (4 bands) $0.01 \%-100 \%$ (9 ranges)
$50 \mathrm{mv}-60 \mathrm{~V}$ (3 ranges)
47 K ohms on all ranges
$12 \mathrm{~dB} /$ octave below 500 Hz
$2 \times$ PP9. included.
$17^{\prime \prime}(43 \mathrm{~cm}) \times 7^{\prime \prime}(18 \mathrm{~cm})$ high $\times 8 \frac{3{ }^{\prime \prime}}{}{ }^{\prime \prime}$ $(22 \mathrm{~cm})$ deep £200

Now available in reasonable delivery time

RADFORD LABORATORY INSTRUMENTS LIMITED

Bristol BS3 2HZ
Telephone 0272662301

More than 350 different types to choose from

Vitality's the name for

 miniature and sub-miniature lamps.If you can't find the lamp you need from the 350 different types of Vitality sub-miniature and miniature lamps just pick up the phone and ask for the Vitality applications service.

Miniature and sub-miniature lamps are Vitality's speciality and the range available is one of the most comprehensive in Europe.

Write for the Vitality catalogue for full details on the range and application notes, or phone us if you have a special requirement for conventional or unusual environments, wherever a light source is needed for illumination, reference, indication or warning.
Vitality Ltd 回
BEETONS WAY, BURY ST. EDMUNDS, SUFFOLK. TELEPHONE: 0284 62411.TELEX: 81295.
Authorised Distributors
Black Arrow Electronics Ltd.
Wirelect House, St. Thomas Street, Bristol BS1 6JW
Telephone: Bristol (0272) 294313. Telex: 449150
Farnell Electronic Components Ltd.
Canal Road, Leeds LS12 2TU
Telephone: Leeds (0532) 636311. Telex: 55147
Townsend-Coates Ltd., Coleman Rd., Leicester LE5 4LP
Telephone: Leicester (0533) 768561. Telex: 34321
Valiant Electrical Wholesale Company,
20 Lettice St., Fulham, London SW6 Tel: 01-736 8115

good reasons whyShibaden colour cameras are the best!

FP 1500 As the HV 1500 but fitted

A one-inch three tube \Rightarrow Plumbicon ${ }^{\sqrt{R}}$ Camera with freely detachable electronic viewfinder. Ideal for outside broadcast work and studio.
with a 3" viewfinder for studio use.

FP1212

HV1100 An extremely compact, lightweight three tube colour TV camera ideal for surveillance and observation applications.

The Shibaden range of colour cameras are compact easy to operate and versatile in their application through educational, medical, business and broadcas ing studios. Shibaden Colour Cameras are designed with the customer in mind both from an application and performance stand point. They are fully backed by Shibaden's in-depth opto-electronic technology, which has proved to be superior through many years of application in a vast range of broadcasting equipment.

WHITELEY ELECTRICAL RADIO CO. LTD., Mansfield, Notts, England. Tel. Mansfield 24762. London Office: $109 \mathrm{Kingsway}$. . W.C.2. Tel. $01-4053074$ WW-116 FOR FURTHER DETAILS

Digitize that Fluid Input
 McLennan Engineering are pioneering in the field

 of digitized liquid delivery. The equipment illustrated is suitable for medical, veterinary. chemical and general laboratory applications.
DIGITAL SYRINGE TYPE DS110

Fluid pulse 1.0 or 10 micro litres
Number of pulses presettable from 1-50,000
Pulse rate $400 \mathrm{~Hz}-1 \mathrm{~Hz}$ or .01 Hz in the case of frequency divider model
Digital 'fluid delivered' display monitors output at all times
External B.C.D. signals can programme the number of pulses
Remote multiple syringe facility
High reliability. Drive designed around Impex stepper motor system.

OTHER ITEMS MANUFACTURED BY McLENNAN ENGINEERING INCLUDE:
 Digital and analogue servo systems
 Peristatic pumps
 Process and machine tool control equipment Custom-built gearheads and actuator mechanisms Precision potentiometer drives.

If you have a problem in any of the above fields we shall be pleased to discuss your special requirements. Please get in touch - it costs nothing to talk.

THE NEW P60 INTEGRATED STEREO AMPLIFIER

Low profile design only $2^{\prime \prime}$ high.
Recording with or without tone correction
*Peak level indicator for tape recording
Suitable for continual high power operation.
Dual independent tape operation.
*Light Emitting Diodes for level monitoring in main and pre-amplifiers.

Toroidal mains transformer.

Facilities for three tape recorders.
*Separate main and pre-amp gain controls.
Fully protected output stages. RIAA phono correction unaffected by cartridge inductance.
Ultra low distortion circuits.
*New tape monitoring, $\mathrm{A}-\mathrm{B}$ and $\mathrm{A}-\mathrm{B}-\mathrm{C}$ facilities.
International state-of-the-art circuitry from Cambridge Audio in Britain.
*To the best of our knowledge these features have never been included in a comparable amplifier hitherto.

for people who listen to music

Light-beam Oscillographs

SE692 Portable Recorder 6 channels on a four speed 92 mm chart. Low cost galvanometers up to 2 kHz . AC mains and/or dc power input. Only 2.2 amps and weighing in at $7.6 \mathrm{~kg}-\mathrm{a}$ truly portable recording package at a good price.

SE3006 U.V. Recorder
The best "all rounder" for simple straight forward recordings. No fuss no frills performance at a very economical price. 6 in. chartwidth up to 12 channels.

SE3006DL U.V. Recorder De-Luxe performance at low cost, 6 in chartwidth, 12 channels. Full facility unit.

SE6008 U.V. Recorder
Our latest model - superb performance at really economical cost. 8 in . chartwidth, servo drive to $4 \mathrm{M} / \mathrm{sec}$. Up to 25 channel capability, many, many novel features.

SE3008 U.V. Recorder Tried and proven model - a general purpose "workhorse". 8 in. chartwidth. 25 channels. Many options.

SE2112U.V. Recorder
Another tried and proven model - 12 in . chartwidth econornically priced. Many options available. Up to 50 channel capability.

SE6012 U.V. Recorder Our ultimate model - the latest technology coupled with years of experience. 12 in chartwidth 50 channels. $5 \mathrm{M} / \mathrm{sec}$ forward, reverse drive, integral take up etc.

Galvanometers

SE precision galvanometers provide these oscillographs with measurement sensitivities from $0.8 \mu \mathrm{~A} / \mathrm{cm}$ to $36 \mathrm{~mA} / \mathrm{cm}$ and high fidelity recording capability from 0 to 8 kHz .

Potentiometric Recorders

SE3300 Series
A versatile series of recorders and modules for all applications of potentiometric recording. Single and two pen versions. A choice of writing mechanisms. Input modules for differing sensitivity requirements and many add on function modules eg. AC true RMS, integrating module, etc. Build up from a simple single channel unit to a complex 8 channel dot recorder!

Two new models for A3 operation to be announced shortly!

SE225 Mk II
A general purpose $X-Y$ recorder with a good specification at a realistic price. Choice of sensitivity configuration giving a maximum $0.05 \mathrm{~V} / \mathrm{cm}$ on an A4 chart. A compact unit with many features and a specification to equal more expensive recorders. Time base unit gives added verṣatility and there is also a chart adaptors available.
Galvanometric Heat Stylus Recorders Economical direct write units. Single double, triple channel recorders with vertical or horizontal chart travel. Frequency response to 100 Hz Sensitivities $10 \mathrm{mV} / \mathrm{mm}$ choice of chart speeds; full 50 mm pen travel; available in OEM or cased configurations.

Super 8
Superlative performance from this eight channel pen recorder. Unique variable drive from 0.25 to $100 \mathrm{~mm} /$ sec. Frequency response to 100 Hz ; Sensitivity $10 \mathrm{mV} / \mathrm{mm}$; channel width full 50 mm : OEM configura-

> Hire For a small charge you can hire any of the instruments shown here; singly or as part of a system or Buy which we can design for you.
> If you decide later to purchase the equipment, we can refund part of the hire fee to you.
> You save your capital and space. You beat obsolescence.
> Why not ring our Hire Department for details?
> Included in the range are Transducers, Recorders, Oscilloscopes, Digital Instruments, Data Systems, Magnetic Recorders, Computer Terminals, Modems, Hard Copy Printers, Facsimile Transceivers.

North Feltham Trading Estate, Feltham, Middlesex. Telephone: 01-890-1166 Telex 23995

HEPAIRE PATHOLOGICAL

Positive Immunity

Cabinet design ensures full protection for operative plus sterile working conditions. Filtration efficiency 99.999\% D.O.P. minimum on both main and dump filters. Minimum bench space required. Uses standard single phase electrics. Range of optional extras can be fitted. Extremely clean appearance.

Designed for Safety

Cabinet of fully recirculating type as shown in diagram. 90\% of air forced into plenum passes through main HEPA filter into working area and 10% is "dumped" through the HEPA filter in top of cabinet. 10\% "make-up" air is drawn in through the open front of the cabinet and passes through the narrow perforated strip immediately in front of the work surface, thus forming a barrier between the working area and outside atmosphere and ensuring that "dirty" air cannot leak from cabinet
For gassing out purposes the dump filter can be sealed by the blanking plate supplied and a separate screen clipped into place beneath the hinged front screen. Sterilising gas is introduced and extracted using the two gas taps provided.

Write for further technical details.

HEPAIRE MANUFACTURING LTD

 WATER LANE • STORRINGTON • SUSSEX RH2O 3DN Telephone: Storrington (STD 090-66) 2394INCREASED PRODUCTION MEANS REPRESENTATION REQUIRED IN MANY U.K. AREAS

WW-071 FOR FURTHER DETAILS

AnoERS menis meters...

PRESTIGE RANGE

High accuracy and stability

- Clear Sperry Display
- Automatic zero-ing
- High noise rejection (78 db CMR)
- Extremely versatile

Competitive prices.

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Vulcan Moving Iron. 4 models, $1 \cdot 5^{\prime \prime}, 1 \cdot 8^{\prime \prime}, 2 \cdot 7^{\prime \prime}$, $3 \cdot 7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Regal \cdot Range 100° flattened arc. 2 models $2.5^{\prime \prime}$ and $3.2^{\prime \prime}$ sciales. Taut band. DC moving coil and AC moving coil rectified.

Profile 350 edgewise $4 \cdot 3^{\prime \prime}$ scale.
DC moving coil and AC moving coil rectified. Horizontal or vertical mounting.

Recorders 60 or 120 mm charts. Non-ink marking. $D C$ moving coil and $A C$ rectified.

Stafford Long Scale 240°. 6 models, $3 \cdot 5^{\prime \prime}-11 \cdot 5^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, AC moving iron. Also 98° scale.

Kestrel Clear Front. 7 models, 1.3" - 5.25" scales. DC moving coil, AC moving coil rectified, $A C$ moving iron.

Lancaster Long Scale 240°. 2 models, $4^{\prime \prime}, 5 \cdot 5^{\prime \prime}$ scales. DC moving coil and $A C$ moving coil rectified.

Send for fully illustrated catalogue
RODERS EEECTROMITS LIMITED

[^0]
ALICE BROADCASTING GU 100

The 'ALICE' GU 100 turntable unit is a console mounted 'SPARTA' GT-12-SY turntable complete with a 'STANTON' tone arm, less cartridge. This, along with a comprehensive 'ALICE' cue/pre-amp unit is mounted into a hand finished teak console built by our own craftsmen to standards that are hard to beat. Locking castors are used to allow the console to be easily moved to any required operating position.

TECHNICAL SPECIFICATION

Input sensitivity
Freq. response Output level

Stereo separation Power requirements Remote start Cue amp Turntable acceleration Turntable platter

Platter weight Turntable speeds Console weight
Dimensions

5 millivotls for 0 dBm out at 1 kHz .
to R.I.A.A. curve.
0 dBm into $600 \Omega \mathrm{bal}$., other levels as requested.
Outputs appearing on switch craft XLRs.
70dB typical (electronics only).
240 V 50 Hz or 117 V 60 Hz .
Relay operated.
5 watts RMS to internal speaker.
less than $\frac{1}{16}$ turn to full rpm.
European (flat platter).
American (7 " record centre well).
$6 \mathrm{lb}(2.75 \mathrm{~kg})$.
45 \& $33 \frac{1}{3} \mathrm{rpm} .78 \mathrm{rpm}$ available.
$106 \mathrm{lb}(48 \mathrm{~kg})$.
$22 \frac{1}{2}^{\prime \prime}$ deep, $24^{\prime \prime}$ wide, $32 \frac{1}{2}^{\prime \prime}$ high to top of tone arm.

OTHER ALICE PRODUCTS INCLUDE
RACK MOUNTING DISTRIBUTION AMPS 6/24 RACK MOUNTING TELEPHONE BALANCING UNIT RACK MOUNTING PRE-VIEW MONITORS bROADCASTING AND RECORDING CONSOLES, ETC.

ALICE BROADCASTING 38 Alexandra Road, Windsor, Berks. Tel. 51056/7. (Stancoil Ltd)
WW-112 FOR FURTHER DETAILS

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

BRITAIN'S FASTEST SERVICE!

component specialists for the discerning amateur and professional

COSMOS LOGIC

A greatly increased range in DIL plastic, offering high noise immunity, high output levels, high speed operation and excellent reliability.
CD 4000 AE Dual 3 -input nor gate plus inverter
CD 4001AE Quad 2-input nor gate CD 4002 AE Dual 4 -input nor gate CD 4007 AE Dual complementary pair plus inverter
CD 4009 AE Hex buffer/converter (inverting)
CD 4010 AE Hex buffer/converter (non-inverting)
CD 4011 AE Quad 2 -input nand gate CD 4012 AE Dual 4 -input nand gate CD 4013 AE Dual d flip flop with set/reset
CD 4014 AE 8 stage static shift
register
CD 4015 AE Dual 4 stage static shift register
CD 4016 AE Quad bilateral switch CD 4017 AE Decade counter/divider CD 4018 AE Presettable divide-by n counter
CD 4019 AE Quad and/or select gate CD 4020 AE 14 stage binary/ripple counter
CD 4022 AE Divide-by-8 counter/ divider
CD 4023 AE Triple 3 -input nand gate
CD 4024 AE 7 stage binary
counter
CD 4025 AE Triple 3 -input nor gate
CD 4026 AE Decade counter/divider

46p	CD 4027 AE Dual-JK master-slave flip flop	f1.35
46 p	CD 4028 AE BCD-to-decimal	
46p	decoder	f1.97
	CD 4029 AE Presettable up/down	
46p	counter	¢3.06
	CD 4030 AE Quad exclusive -or gate	89p
91p	CD 4035 AE 4-stage parallel in/out shift register	¢2.23
91p	CD 4040 AE 12-stage counter	£2.70
46p	CD 4042 AE Quad clocked d latch	[1.80
46p	CD 4043 AE Ouad 3-stage nor r / s latch	f2. 02
83p	CD 4044 AE Ouad 3-stage nand r / s latch	£2. 02
¢2.27	CD 4046 AE Micro power phaselacked loop	f2. 42
£2.27	CD 4049 AE Hex buffer/converter	
86p	(inverting)	72p
£2.27	CD 4050 AE Hex buffer/converter (nan-inverting)	72p
¢2.27	CD 4051 AE Single 8-channel	
f1.04	multiplexer CD 4056 AE BCD to 7-segment	f2.36
f2.53	decoder/driver with "display frequency" output	f1.80
f2. 23	CD 4060 AE 14-stage ripple-carry	
46p	binary counter/divider oscillator	f3.56
	CD 4069 AE Hex inverter	pp
f1.62	Order as Type No. + "Cosmos"	
46p	Data on Cosmos Logic-per device	10p

RED L.E.D.s
NEW LOW PRICES TIL 209 30p LD 30A 29p

T2800D TRIAC 90p

400 PIV 7 AMPS PLASTIC 3 PAGE DATA 15p

MC 1310P I.C. £2.80
FM STEREO DEMODULATOR
REQUIRES NO COILS!
3 PAGE DATA 15p

TR1 DIAC

22p
SUITABLE FOR USE WITH 40669

OP. AMP

 741/8 DILNEW LOW PRICE 34p

MULLARD MODULES

LP 1185 FM IF MODULE $£ 46$
LP 1186 FM TUNER WITH DIODE
TUNING
LP 1400 HIGH PERFORMANCE STEREO
DECODER MODULE USING
FREQUENCY/MULTIPLEX SYSTEM £6.08 NOTE: PRICES ABOVE QUALIFY FOR OUR SPECIAL 10% discount.
I.C. PIN SOCKETS

NOW RECOGNISED AS THE
STANDARD I.C. MOUNTING
1000 PIN SOCKETS
£7.00
f1.00

TEST CLIP

FOR DILI.C.s

 14 \& 16 PINS ALSO USEFUL as REMOVAL TOOL $\mathbf{£ 1 . 9 5}$
SEVEN WATT AUDIO I.C.
 TBA 810 S $£ 1.32$

FEATURING THERMAL PROTECTION IDEAL FOR CAR RADIO APPLICATIONS SHORT FORM DATA AND CIRCUITS 15p

SUPERHET SYSTEM I.C.

 CA 3123E £1.40WITH RF AMP. IF AMP. MIXER OSC. GC DET. OR VOLTAGE REGULATOR IDEALFOR CAR RADIO APPLICATIONS DATA AND CIRCUIT 15p

TIMER I.C.

 NE 555vSHORTFORM DATA \& CIRCUITS 15 p

VHF 5 TRANSISTOR I.C. CA 3046
DC TO 120 MHz ARRAY
3 PAGE DATA 15p

RIMPIIIU SPECIALISE IN EDUCATIONAL AND GOVERNMENT ORDERS

- See catalogue for further details.

FPFIIL SERVICE PLUS
10% DISCOUNT OVER E4. ORDERS UNDER £2 PLEASE ADD 10p HANDLING. TOP QUALITY PRODUCTS ALWAYS BY RETURN COMPREHENSIVE CAT. \longrightarrow

Important Notice 'All prices are
exclusive of V A.T. Please add V.A.T. exclusive of to. A. Please add V.A.T.
to the final total of your order atter deducting any discount which may be due.:
v.A.T. No. 246062672

ARNDII EHEHPMDIDS ITI.
 COMPANY
 REGISTRATION No. 1062424

W̄W- 081 FOR FLRTHER DETAILS

CRYSTAL	
FREQUENCY	\ldots
STANDARD	

LATEST IN THE RANGE TYPE 101

OUTPUTS $1 \mathrm{MHz}, 100 \mathrm{KHz} .10 \mathrm{KHz}$ STABILITY 5 parts in 10^{10}

8 DIGIT INSTRUMENTS WITH CRYSTAL OVENS

FREQUENCY COUNTERS

5 DIGIT TYPE 30132 MHz
SENSITIVITY 50 mV
STABILITY 3 parts in $10^{6} \quad \mathbf{£ 7 5}$

6 DIGIT TYPE

 40132 MHzSENSITTVITY 10 mV
STABILITY 1 part in 10^{6} £115

TYPE 50132 MHz TYPE501 M 32MHz Mamon TYPE 701 50M Hz
£170 TYPE701M 50MHz wamon $£ 205$
 f180 TYPE901M 520MHz Memomen ont f370 Electronic START/STOP version PLUS $\mathbf{£ 1 2}$ Write for illustrated leaflet

Wherever there is appreciation of fine sound reproduction, insistence is upon British loudspeaker systems.

 discerning for their outstanding quality, the products of Mordaunt-Short Ltd. are specified by professionals and by enthusiasts the world over. Choose them for your home - where the finest most concerns you.

Mordaunt-Short Ltd Designers and Manufacturers of Quality Loudspeaker Systems

To receive immediately full information and the name and address of the
Stockists nearest to you, please complete this coupon and return it to us direct.

STARWET

Spectrum Analyser Module ST858

SPECIFICATION: Frequency range 10 MHz to 850 MHz in two calibrated ranges Sensitivity Better than 50 mv for 0.5 V per cm Resolution Better than 25 KHz . Disperaion From less than 1 MHz to 400 MHz variable Input Via 50 ohm BNC connector on front panel Output 1 Coax cable for connection to Y input on scope Output 2 Coax cable for connection to sync. input on scope Power requirements 240 volts AC 50 Hz 10 watts. (Other voltages and frequencies available as required) Size Width $11 \mathrm{in}(28 \mathrm{~cm}$.) Height 4.375 in . (11.2cm.) Depth 8.5 in . (21.6 cm .) Nett weight $7.5 \mathrm{lbs}(3.4 \mathrm{Kg}$) Gross weight $10 \mathrm{Hbs}(4.5 \mathrm{Kg}$.)

For further details contact the sole distributors of STARWET equipment:

7-9 ARTHUR ROAD, READING, BERKS (rear Tech College) Tel. Reading 582605

A NEW STANDARD FOR SOUND REPRODUCTION HD250 High Definition Stereo Control Amplifier

Designed for disc and tuner input and two tape machines, with complete recording and reproducing facilities.

The HD250 amplifier establishes a new standard in amplifiers for sound reproduction in the home. Improvements have been made in respect of performance, engineering design and quality of construction. We believe that no other amplifier in the world can match the overall specification of the HD250. Look at extracts from the specification below.

Power output.

Rated:

Maximum:
Distortion.
Pre-amplifier:

Power amplifier. at rated output: at 25 w output:

50 watts average continuous power per channel, into any impedance from 4 to 8 ohms, both channels driven.
90 watts average power per channel into 5 ohms load.

Virtually zero. (Cannot be identified or measured as it is below inherent circuit noise.)

Less than 0.02% (typically 0.01% at 1 kHz). Typically 0.006\%.

Overload margin.
Discinput 40 dB min.
Hum and noise output.
Disc: $\quad-83 \mathrm{dBV}$ Measured flat with noise bandwidth of 23 kHz (ref. 5 mV .) -88 dBV Measured with ' A ' weighted characteristic (ref. 5 mV .)
-85 dBV Measured flat (ref. 100 mV .) -88 dBV ' A^{\prime} weighted (ref. 100 mV .) 17 inches $\times 4 \frac{3}{4}$ inches $\times 11$ inches deep overall.
21 lb.

Write or phone for leaflet which describes the design philosophy and conception of the HD250 together with a complete specification.

RADFORD AUDIO LIMITED, BRISTOL, BS3 2HZ Telephone: 0272662301
WW- 060 FOR FURTHER DETAILS

GET IT WHILE IT'S GOING

This is the first ever Wireless World Annual. It's got 140 pages of features covering all aspects of electronics and communications - new and established techniques, some practical, some theoretical - all written to the high standard you'd expect from Wireless World. Contents include: A General Purpose Audio Oscillator by L. Nelson Jones (a constructional project specially commissioned for the annual) ; Constructional Design for a Small Boat Echo Sounder by John French ; Scientific Calculations with an Arithmetic Calculator by R. E. Schemel. There is also a reference section packed with useful information.
£1 from newsagents or $£ 1.35$ inclusive by post from the publishers.

Wireless World Annual 1975

To: General Sales Department, Room 11, Dorset House,

 Stamford Street, London SE1 9LU.Please send me..............copy/copies of Wireless World Annual 1975 at $£ 1.35$ each inclusive. I enclose remittance value $\mathbf{£}$... (cheques payable to IPC Business Press Ltd).
Name (please print)
Address...

COMMUNICATIONS •ELECTRONICS

THE NEW NELSON-JONES FM TUNER

PUSH-BUTTON VARICAP DIODE TUNING (6 Position)
 ('WW' JUNE '73)

Exclusive Designer Approved Kits
What are the important features to look for in an FM tuner kit? Naturally it must have an attractive appearance when built, but it must also embody the latest and best in circuit design such as:-
MOSFET front end for excellent cross modulation pertormance and low noise.
3 GANG tuning for high selectivity.
VARICAP tuning diodes in back to back configuration for low distortion.
CERAMIC filters for defined IF response
PHASE LOCKED Stereo decoder with Stereo mute, see below LED fine tuning Indlcators.
PUSH BUTTTON tuning (with AFC disable) over the FM band (88-104)
IC STABILISED and S/C protected power supply.
The Nelson-Jones Tuner has all of these features and many more, and more importantly the design is fully proven not just with a few prototypes but with many thousands of working tuners spread across the world.

Typ. Specn: 20 dB quieting 0.75 uV . Image rejection -70dB.I.F. Rejection -85 dB
Basic tuner module prices start as low as $\mathbf{f 1 2 . 3 1}$, with complete kits starting at £26.95 (mono) + P.P. 65p. and of course all components are available separately.
Our low cost alignment service is available to customers without access to a signal generator. Please send large SAE for our latest price lists which details all of the many options and special low prices for complete kits. All our other products remain available
PORTUS AND HAYWOOD PHASE LOCKED DECODER (W.W. Sept. '70). Still the lowest distortion P.L. decoder available. THD typically 0.05% (at Nelson-Jones Tuner O/P level) ! Supplied complete with Red LED.
Price $£ 7.02$ when bought with a complete N-J tuner kit or $\mathbf{£ 8 . 2 9}$ if bought separately (P.P. 21p.)
PLEASE NOTE. Existing tuners are readily convertible and kits/parts are available for this purpose.
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph). Complete designer approved Texan kits are available at $\mathbf{£ 3 0 . 7 8}$ plus P.P. 65p including Teak Sleeve.

NEW LOW COST STEREO TUNER Available as basic or complete k k its

Basic stereo tuner $\mathbf{£ 1 5}$ post free. Basic mono tuner $\mathbf{f 1 2}$ post free. 6 position push button units with integral pots $£ 2.92$.
TYP. SPECIFICATION $2 \mu \mathrm{~V}$ for $30 \mathrm{~dB} S / \mathrm{N}$
Image rejection 40dB
IF rejection 65 dB

VAT at 8% is included in all prices

No alignment required. Mullard LP1186 front end module used with Ceramic IF and IC amplifier. Push button tuning (6 position) with Interstation Mute, restricted range AFC, single LED tuning indicator, phase locked IC decoder, and complete metalwork and veneered cabinet. Complete with IC regulated PSU and full assembly instructions. (Mechanically identical to \mathbf{N}-J Tuner.)

PRICE Complete stereo kit $£ \mathbf{2 8} .42$ Complete mono kit $\mathbf{£ 2 4 . 1 9}$ P. \& P. 65p

Phone Swadlincote (0283 87) 5432 Telex 377106

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids, Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe, and internal $1 \frac{1}{2}$ volt standard size battery. Model "Mini-On $1^{\prime \prime}$ measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price $£ 17.50$ Model "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price £20.00 (V.A.T. EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON), 138 GRAY'S INN ROAD, LONDON WC1X 8AX ('Phone 01-837 7937)

Encapsulated Power Supplies for PCB
mounting interchangeable with U.S. types.

Type	Output Volts	Output Current
PU 01	5	500 mA
PU 02	5	1000 mA
PU 03	$15-0-15$	100 mA
PU 04	$15-0-15$	200 mA
PU 05	$12-0-12$	120 mA
PU 06	$12-0-12$	240 mA

All units fully stabilised, competitively priced. Standard range normally ex-stock 'Specials' on short delivery. Comprehensive specification given in Brochure GT29b which is available on request.

Specialists in Electronic Transformers \& Power Supplies GARDNERS TRANSFORMERS LIMITED
Gardners Transformers Limited, Christchurch, Dorset BH23 3PN Tel:Christchurch 2284 (STD 020-15-2284)Telex 41276 Gardners XCH

```
MEASURE FREQUENCY ANY-
WHERE WITH MULTIMETERSIZE INSTRUMENT POWERED BY FOUR PENCELLS
Latest technology miniature device uses four 0.3" LED digits to display frequency. 5 ranges with coupled decimal point give resolution of 0.1 Hz to \(\mathbf{1 k H z}\) in decade steps.
TAKES UP ALMOST NO BENCH SPACE.
LOW PRICE. \(£ 79.50\) inc \(p \& p\) ex vat. Mains PSU available which fits inside ready drilled case.
```


$\square / \mathrm{E} / / \square /$

MINIATURE BATTERY FREQUENCY METER FM-1
FOUR-DIGIT MEMORY DISPLAY FIVE RANGES 4 ppm CRYSTAL
SIZE $6 \frac{1}{4} \times 3 \frac{1}{4} \times 2 \frac{3}{4}$ in
一including knob and terminals

WW-114 FOR FURTHER DETAILS

A new service from one of the largest United Kingdom exporters of tubes and semiconductors

AEL - GATWICK HOUSE • HORLEY . SURREY • RH6 9SU Telex 87116 . Cables Aerocon Telex Horley - Telephone Horley 5353

J E S AUDIO INSTRUMENTATION

Si 452 $15 \mathrm{~Hz}-20 \mathrm{KHz}-.01 \%$

Ilustrated the Si 451 Millivoltmeter - pk-pk or RMS calibration with variable control for relative measurements. 40 calibrated ranges $£ 42.50$

Si 453 \qquad £50.00 Low distortion Oscillator. Sine - Square - RIAA J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (09762) 2501 CARR STREET, CLECKHEATON, W. YORKS BD19 5LA

hursit
 ELECTRONICS

92 Warwick Road, Ealing, London W5 5PT Telephone: 01-567 0424

HE 100
 100 WATT POWER AMP MODULE

\star Includes large black anodised heatsink-no further heatsinks required.
\star Top grade glass-fibre P.C.B.
\star Uses high quality components.
\star Fully protected-short/open circuit proof.
\star Only 5 external connections.
\star Fully guaranteed.

TECHNICAL SPECIFICATIONS

\star Power output	$: 106 \mathrm{~W}$. R.M.S. into 8Ω
\star Distortion	$: 0.8 \%$ at full $0 /$ P. Typ. 0.4%
\star Frequency response	$: 15 \mathrm{~Hz}-23 \mathrm{kHz}$
\star Signal to noise	$:$ Better than -96 dB
\star Input sensitivity	$: 0 \mathrm{~dB}(0.775 \mathrm{~V})$
\star Input impedance	$: 10 \mathrm{k} \Omega$
\star Supply volts	$: 45-0-45 \mathrm{~V}$

Price $£ \mathbf{1 5 . 9 8}$ inc. VAT. (ready built)

Power supply for HE100 (including transformer, capacitors, rectifier) $\mathbf{£ 9 . 4 0}$ inc. VAT. Postage \& packing 8.5 p.

Pre-amps etc., also available
SAE for details.

CALLERS WELCOME

Downto your last voltage stabiliser?

Don't give up.
EEV are still making a wide range of rugged, reliable voltage stabilisers and reference tubes.

We are still meeting all requirements-including equivalents for types now discontinued by other makers.

Write or 'phone for voltage stabiliser data sheets and prices.

EEVand M-OV

 know how
 WW-111 FOR FURTHER DETAILS

PARKER SHEET METALFOL DIN MAGHINES

bench model

$36^{\prime \prime} \times 18$ gauge capacity $\ldots .540 .00$ carr. free $24^{\prime \prime} \times 16$ gauge capacity … $\mathbf{f 3 8 . 0 0}$ carr. free Also the wall-known vice model of
$36^{n} \times 18$ gauge copacity ...e21.00 carr. froe $24^{\prime \prime} \times 18$ gauge сарвсiry $24^{\prime \prime} \times 18$ gauge capacity
$18^{\prime \prime} \times 16$ gauge capacity 18×16 gauge caparity Add 8% VAT to total price of machine

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.
One year's guarantee.
Monay back if not satisfied.
Send for details:
A. B. PARKER

FOLDING MACHINE WORKS UPPER GEORGE STREET, HECKMONDWIKE, YORKS. Telephone 403997

WW- 019 FOR FURTHER DETAILS

U-50DX

USED THROUGHOUT THE WORLD. SANWAS EXPEAIENCE OF 30 Years ENSURES AECURACY RELABBUUTV. VERSATILTY. UNSURPASSED IESIER PERFORMANCE COMES WITH EVEFY SANWA
 $\begin{array}{lrl}\text { MOOEL P2B } & \text { E9.78 } & \text { MODEL } \\ \text { MOOEL } & \text { SPSD } & \text { f1.58 } \\ \text { MODEL AT45 }\end{array}$
 MODEL 360 YTR
 $\begin{array}{lll}\text { MOOEL A3D3TRD } & \text { f15.80 } & \text { MODEL 480ED } \\ \text { MODEL K30THO } & \text { £ } 17.45 & \text { MODEL EM800 }\end{array}$
 Cases extre, zvailabla for most neters, but not sold saparatily.
Please write for illustrated leaflet of these and other specialised Sanwa meters
QUAIIIY ELEGTBONIGS LTD.
47-49 HIGH STREET. KINGSTON-UPON-THAMES, SURREY. KT1 1LP Tet:01-546 4585 WW-013 FOR FURTHER DETAILS

Teknik 27s Graphic Equaliser

Gardners

Specialists in Electronic Transformers and Power Supplies

GARDNERS

TRANSFORMERS LIMITED
Gardners Transformers Limited Christchurch Dorset BH23 3PN Telephone 02-015 2284 TELEX 41276 GARDNERS XCH. WW- 070 FOR FURTHER DETAILS

BRENELL ENGINEERING CO LTD
231-5 Liverpool Road. London N1 1LY. Tel: 01-607 8271
WW-077 FOR FURTHER DETAILS

WW-020 FOR FURTHER DETAILS

WW-026 FOR FURTHER DETAILS

WirelessWorld FULLCOLOUR WALLCHART OF FREQUENCY ALLOCATIONS 80p

The wallchart shows the allocation of frequencies within the radio spectrum ranging from 3 kHz to 300 GHz and is scaled on eight logarithmic bands contriving 15 main categories of transmissions which are identified by colours. All the important spot frequencies and 'special interest' frequencies are marked. The information is taken from the ITU and has been condensed into easily read chart form. Measures $2^{\prime} 11^{\prime \prime} \times 1^{\prime} 11^{\prime \prime}$.

TAKE A CLOSE LOOK

at a professional recorder that offers high performance. excellent reliability and is very easy to maintain. Ask yourself why so many commercial radio stations and recording studios are doing their best to wear them out. and not having much success. Decide if you need mono or stereo. console transportable or rack mounting versions and then inquire about prices.
We are sure you will be very pleasantly surprised.

ENGINEERS

Do you want promotion, a better job, higher pay? "New Opportunities" shows you how to every get them through a low-cost home study course. Send for this helpful 76 page There are no books to buy and you can pay-as- No obligation and nobody will call book now. you-learn. could be the best thing you ever did on you. It

HOME OF BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

New Course in Digital Design

Understand the latest developments in calculators, computers, watches, telephones,

 television, automotive instrumentation....Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 81 / 4^{\prime \prime}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
in 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical
Functions
4. Flip flops and Registers

Offer Order this together with Design of Digital Systems for the bargain price of $£ 9.25$.
Design of Digital Systems contains over twice as much information in each volume as the simpler course, Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents, also covers many more advanced topics.

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

Design of Digital Systems

A Self-Instruction Course in 6 Volumes

1 ComputerArithmetic

 2 BooleanLogic 3 Arithmetic Circuits 4 Memories \& Counters 5 Calculator Design 6 ComputerArchitecture
$£ 5.95$
including packing and surface post anywhere in the world (VAT zero rated). Payments may be made in foreign currencies. Quantity discounts are available on request. Total packaged weight does not exceed 4Ib —please allow enough extra for air mail.

To: Cambridge Learning Enterprises,
FREEPOST, St. Ives. Huntingdon. Cambs PE17 4BR.
*Please send me.....set(s) of Design of Digital Systems at $£ 5.95$ each,
*or.....set(s) of Digital Computer Logic and Electronics at $£ 3.95$ each,
*or.....combined set(s) at $£ 9.25$ each.
Name.
Address...

FROM JACKSON:

The new Tetfer Multiturn Trimmers from Jackson are singularly versatile - they're all available in vertical and horizontal PCB mounting style. The wide range ensures many applications in professional communications and instrumentation equipment. Maximum capacitance values of 10 pF , 15 pF or 25 pF can be chosen.

All have high mechanical stability and an H 5 environmental classification. What's more, the Power Factor allows use in UHF bands. All backed by 50 years' experience in the communications field. Highly skilled men. And Jackson Brothers' good name.

Eliminate TV receiver distortion with Celestion TELEFI

TELEFI

At last you can enjoy TV entertainment with the added pleasure of true
Hi - Fi sound. Telefi is a unique electronic invention which picks up VHF from the TV and relays this through your own Hi-Fi equipment. Telefi ensures crisp, full-range, distortionfree reproduction of music and speech providing an improvement over ordinary TV sound which will amaze you. Telefi is safe and requires no permanent connection to the TV set. Telefi is indispensable to the TV viewer who requires $\mathrm{Hi}-\mathrm{Fi}$ TV sound.

LOUDSPEAKERS

Celestion Loudspeakers are engineered to the highest standard and provide superlative sound reproduction. The cut-away illustration shows the high, mid and bass speakers used in the Ditton 44 Monitor, one of the most popular loudspeakers available to the discerning listener.
A range of models is available to suit your personal requirements, Celestion Hi-Fi Loudspeakers carry a five-year guarantee.

The Hadleigh loudspeaker, was specially created to meet a public demand for a high quality speaker of compact proportions. Not a difficult task for Celestion who produce the most popular bookshelf speaker ever (Ditton 15) - but we set out not only to produce an immaculate loudspeaker with a sparkling performance, but to do so at a budget price. For the enthusiast seeking a really excellent $\mathrm{Hi}-\mathrm{Fi}$ system at reasonable outlay we recommend without hesitation the Hadleigh.

Celestion

Loudspeakers for the Perfectionist DITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 8.JP.

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication. Please Use Capital Letters

If you are way down on the circulation list, you may rot be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription, place a tick in the box on one of the postage-free cards opposite and fill in your name and address.

Do not affix Postage Stamps if posted in Gt. Britain, Channel Islands or N. Ireland
BUSINESS REPLY SERVICE Licence No. 12045

WIRELESS WORLD,

 READER ENQUIRY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PSEnquiry Service for Professional WIRELESS WORLD Wireless World, January 1975

Readers

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided. Name .

Name of Company
Address

Telephone Number

PUBLISHERS USE ONLY			A/E			

Position in Company
Nature of Company/Business
No. of employees at this establishment
I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY
Postage will be paid by Licensee
Do not affix Postage Stamps if posted in
Gr . Britain, Channel Islands or N. Ireland

BUSINESS REPLY SERVICE
 Licence No. 12045

WIRELESS WORLD, reader enauiry service, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PS

Enquiry Service for Professional Readers

	WW	WW
ww	ww	ww
ww	ww	ww
ww	ww	WW
ww	ww	w
ww	ww	ww
ww	ww	aw
ww	ww	ww
ww	ww	
ww	ww	ww
ww	ww	ww.

WIRELESS WORLD Wireless World, January 1975

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name .

Address.

Telephone Number

PUBLISHERS USE ONLY				A/E		

Position in Company .
Nature of Company/Business
No. of employees at this establishment.
I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

Do not affix Postage Stamps if posted in
Gt. Britain, Channel Islands or N. Ireland
Postage will be paid by Licensee

WIRELESS WORLD, READER ENQUIRY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PS

Enquiry Service for Professional Readers

BUSINESS REPLY SERVICE Licence No. 12045

Wireless World, January 1975
WIRELESS WORLD
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name .

Name of Company .
Address.

Telephone Number

PUBLISHERS USE ONLY			A/E		

Nature of Company/Business
No: of emplovees at this establishment
I wish to subscribe to Wireless World Wras Worl Jan

Position in Company

|2

IF you buy electronic or electrical components, industrial or consumer fastenings...

As the largest stockists of Cinch, Dot \& FT products we shall be happy to deliver small or assorted quantities of anything you need. Let us have your next enquiry.

Make United-Carr Supplies your SINGLE SOURCE for

CINCH

Catalogues and samples available to Companies specifying their probable requirements.
United-Carr Supplies Ltd,
112 Station Road,
llkeston, Derbyshire, DF7 5LF.
Tel: llkeston 78711 STD 0607278711
Telex: 377117

wireless world

Electronics, Television, Radio, Audio JANUARY 1975 Vol 81 No 1469

SIXTY-FIFTH YEAR OF PUBLICATION

This month's front cover picture, from Philips Research Laboratories, shows an oil with extremely finely distributed iron oxide in suspension being attracted to the end of a rod magnet.

IN OUR NEXT ISSUE

Digital clock. A six-digit, crystal-controlled clock, with alarm and relay to control electrical appliances.
Navigation by satellite. Principles of the Navy Navigation Satellite System using five Transit satellites travelling in polar orbits.
Speech clipping. A comparison of a.f. and r.f. clipping to give increased transmitter efficiency.

Contents

1 Sharing the spectrum
2 Classifying f.e.ts by B. L. Hart
4 Electronics in oil by W. E. Anderton
10 News of the month
Broadcasting conference conclusions
Quadraphonic cassettes
New communications device
12 Circuit ideas
Click-free switching for tone controls
Passive solid-state antenna switch
Controlling division by one or two
13 Charge-coupled devices-2 by John Mavor
17 Conferences and exhibitions
18 Letters to the editor
"Settling time" in amplifiers
Circuit diagram layout
Amplifier claims
21 Weather satellites ground station-3 by G. R. Kennedy
27 Circards 19: the monostable by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams

30 January meetings
30 HFpredictions
31 Silent switch for stereo-pair comparisons by K. Moulana
35 Literature received
36 Research notes
37 Computer monitoring of TV signals by J. Schaffer
43 Twin stabilized power supply by J. L. Linsley Hood
45 Teletext receivers
46 World of amateur radio
47 New products
a74 APPOINTMENTS VACANT
a94 INDEX TO ADVERTISERS

ibpa

inturatume Bucsmess
I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson
© I.P.C. Business Press Lti, 1975
Brief extracts or comments are allowed provided acknowledgement to the journal is given

[^1]
Presenting Telequipmentis new baly

A Battery-Operated 10 MHz Dual Trace Oscilloscope

Brought into the world with the kind of loving care which characterizes all Telequipment's offsprings. A robust, beautifully-formed 10 lb baby appealing in every line of its tiny $4 \times 9 \times 11$ inch frame.

Christened the D32 and acclaimed as probably the smallest and least expensive scope of its kind in the world, this newcomer from Telequipment is worth its weight in gold.
Its vital characteristics include automatic selection of the chopped or alternate modes on the time base ; automatic selection of TV line or frame displays ; the
choice of battery or mains operation (with up to 4 hours continuous use when working from its rechargeable batteries) and bright line automatic triggering, Price $£ 250^{*}$ including batteries
To operate - its as easy as childs play.
Write now for full details of the
Telequipment brainchild -
you won't be disappointed.

Telequipment

< 䨋〉

Tektronix U.K. Ltd.
Beaverton House, P.O. Box 69, Harpenden, Herts
Telephone: Harpenden 63141 Telex: 25559

wireless world

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8429

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors:
BILL ANDERTON, B.Sc.
Phone 01-261 8620
BASIL LANE
Phone 01-261 8043

Drawing Office:
LEONARD H. DARRAH

Production:
D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)
A. PETTERS (Classified Advertisements) Phone 01-261 8508 or 01-928 4597

JOHN GIBBON (Make-up and copy) Phone 01-261 8353

Sharing the spectrum

In the next two years the Annan Committee will be deliberating on the future of broadcasting in the UK. No doubt it will consider the amount and variety of broadcasting that we should have-bearing in mind the new channels in the broadcasting frequency bands that are likely to become available. But there ought to be another committee, with a wider brief, advising Annan on the amount of broadcasting usage of the radio spectrum there should be in relation to the needs of other users. Of course, the block allocations of frequencies for broadcasting, communications etc. are decided by international agreements, but there is still room for manoeuvre by individual national governments. For example the section of the v.h.f. band 87.5 to 100 MHz is internationally allocated to broadcasting, but within the UK the section 97.6 to 102.1 MHz is at present occupied by Home Office mobile radio users (the fire, ambulance and police services).

The new channels for broadcasting will be available for both sound and television. The mobile radio users mentioned above will be cleared from the 97.6 to 100 MHz section, allowing one more national sound broadcasting network to be set up. Furthermore, the BBC, pointing to the even higher frequencies used for v.h.f. sound broadcasting in other countries, has said that "further clearance to 104 MHz is most desirable". This would entail moving out the v.h.f. military communications at present in the section 102.6 to 104 MHz . In television there is, of course, spectrum space available for a fourth national u.h.f. network (sometimes incorrectly called a "channel"), the use of which has yet to be decided; and when the present 405 -line transmissions in bands 1 and 3 are shut down there will be room here for two more networks of near national coverage or a large number of local television stations. In general the broadcasters' attitude seems to be "we keep what we hold" but the BBC has publicly shown itself to be sensitive about the wasteful duplication of its sound (m.f./l.f. and v.h.f.) and television (v.h.f. and u.h.f.) programmes, which can only be justified on historical grounds and the laudable desire to keep faith with certain groups of listeners and viewers.

It is, of course, mainly the mobile radio manufacturers and users who are interested in these v.h.f. and u.h.f. parts of the spectrum. They are very much aware that in the USA the FCC has recently made available 115 MHz of additional space for mobile users in the 900 MHz bands. A bold suggestion from one British company is that the broadcasters might be prepared to surrender some of bands 1 and 3 "in exchange for the extended band 2".

The greatest problem of any spectrum advisory committee would be how to weigh against each other the requirements for spectrum space of very different types of users. How is society's need for entertainment, for example, to be balanced against society's need for telecommunications? Such value judgements are in fact already being made because they are implicit in the existing frequency allocations. But they are made under the influence of politicking by interested parties and to this extent it is doubtful if they reflect the true needs of society.

Classifying f.e.ts

"'A unified view of the f.e.t. jungle"

by B. L. Hart
North East London Polytechnic

A field effect transistor (f.e.t.) is a semiconductor device in which the flow of charge carriers in a "channel" between two terminals, designated source and drain, is controlled by a transverse field resulting from the application of a potential difference between one of these terminals and a third, control, terminal known as the gate. This definition is a convenient starting point and can be extended to include those devices having two gates. The manner in which the control function is achieved, without the requirement of significant d.c. input power, permits a division of f.e.ts into two basic categories, each of which can be further sub-divided.

Junction-gate f.e.t.

The voltage applied to the reverse-biased p-n junction associated with the gate terminal determines the thickness of the junction depletion layers and this alters the effective dimensions of the conducting channel. The conducting channel may be p-type or n-type material. The jugfet is also known as a j.fet, p-n f.e.t., and sometimes, confusingly, just f.e.t.

Insulated-gate f.e.t.

The voltage applied to the gate terminal determines the charge induced in a semiconductor material which is electrically insulated from the gate. The induced charge can either establish a conducting channel where none existed before, which is the case with the p - and n -channel "en-hancement-mode" devices, or modulate the conductivity of an already existing or built-in channel. This is the case with the p - and n -channel "depletion mode" devices.

Early igfets were made using established bipolar integrated-circuit processing technology and, as a result, had a metal gate and an oxide insulator. This led to the description most (metal oxide semiconductor transistor) or mosfet. Although metal and oxide are not always used mosfet has tended to be used interchangeably with igfet as a generic description of this device type. Cisfet (conductor, insulator, semiconductor) is, arguably, the best description of this group but because of past usage the former terms are unlikely to be displaced.

General d.c. description

The pear-shaped symbol, shown at (a) opposite, represents an f.e.t. of unspecified type; the arrows represent the sign convention for positive $I_{D S}, V_{D S}, V_{G S}$. The relevant family of $\left|I_{D S}\right|$ versus $\left|V_{D S}\right|$ characteristics is shown at (b), opposite. It is apparent that $\left|I_{D S}\right| \approx 0$ at $V_{G S}=V_{r} ; V_{r}$ is thus a cut-in, cut-off, or a threshold-ofconduction voltage. For the jugfet, V_{γ} is usually known as pinch-off voltage and written V_{P}, whilst for the igfet V_{y} is normally referred to as the threshold voltage and written V_{T}. The form $\left|I_{D S}\right| \approx 0$, is used because V_{ν} is often conveniently measured at some specified low leak age current level of a few $\mu \mathrm{A}$.

When $\left|V_{D S}\right|<\left|V_{G S}-V_{\gamma}\right|$, the f.e.t. operates in the pre-pinch-off, triode, ohmic, or voltage saturation region. For $\left.\left|V_{D S}\right|\right\rangle$ $\left|V_{G S}-V_{y}\right|$, the f.e.t. operates in the pinchoff, . constant-current, current-saturation, or pentode region and since the curves are parallel to the $V_{D S}$ axis we can write an expression for $I_{D S}$ which does not involve $V_{D S}$:

$$
I_{D S}=\lambda\left(V_{G S}-V_{p}\right)^{2}
$$

in which λ is a device parameter dependent on material type, doping level, and geometry. The polarities of the quantities in this relationship for the six possible types of f.e.t. are given in the accompanying table.

Device type	Carrier type	$\lambda I_{\text {ds }}$	$V_{D S}$	V	V_{r}
n-channel enhancement igfet	electron	+ +	+	+	+
n-channel depletion igiet	electron	+ +	+	+	
n-channel jugfet	electron	+ +	+		
p-channel jugfet	hole			+	+
p -channel depletion igfet	hole		-		+
p-channel enhancement igfet	hole		-	-	-

The device d.c. relationship with appropriate parameter signs is the basis of the f.e.t. classification chart opposite, which links the transfer characteristic with symbolic representation and a simple cross-section of device construction. Note that the device is only on and in the pinchoff mode for that part of the $I_{D S}, V_{G S}$ parabola which has a positive slope.

The symbols shown, though not used in
all f.e.t. literature, arestrongly recommended because they permit instant recognition of device type without supplementary explanation. A thick continuous line connecting s and d indicates that for $V_{G S}=0 \quad\left|I_{D S}\right|=\left|I_{D S S}\right|>0$. All devices so drawn are termed depletion f.e.ts. In some texts depletion-mode igfets are referred to as normally-on or depletion/enhancement devices, but this can be confusing and is not recommended. A thick broken line connecting s and d indicates that for $V_{G S}=0,\left|I_{D S}\right| \approx 0$; as a result such a device has been referred to as a normallyoff igfet.

A horizontal arrow connected to a perpendicular line section indicates a p-n junction. The direction of the arrow is from p to n. Thus, an n-channel jugfet has a p-type gate. In the case of a pchannel enhancement igfet the arrow points from the p-type induced channel to the n-type substrate.

The horizontal section of the gate terminal is on the same level as the source. The igfet gate has a vertical section isolated from the rest of the device to emphasise the insulated nature of the terminal. The substrate, shown as b for bulk on the symbol, is sometimes internally connected to the source and in such cases the substrate is often not shown. When the substrate terminal is at the disposal of the circuit design engineer it must be connected to a potential which ensures that both the drain-substrate and source-substrate junctions never become forward biased. For n-channel igfets this is often, conveniently, the most negative potential in the circuit whilst for p channel types the most positive potential in the circuit is appropriate.

Fig. I. (a) F.e.t. of unspecified type, (b) Drain-source characteristics for (a).

Fig. 2. F.e.t. classification chart showing device inter-relationships.

Transfer characteristics refer to "pinchoff' region. Channel type, whether initially "built-in", or induced always - has the same polarity as the semiconductor material in contact with the source terminal.

Before we look at the role played by electronics and communications and how these systems are achieved, the scene must be set to reveal what conditions have encouraged the growth of the special and vital systems now in use for the discovery and recovery of undersea oil.

The type of drilling installation used (platforms, barges or ships on which drilling rigs are mounted) depends upon the depth of the sea and possible storm conditions. A jack-up unit-so called because the drilling platform is jacked up on legs (which rest on the sea bed) to above the water level-is normally used in less than 200 ft of water. This type of installation is
by W. E. Anderton Assistant Editor, Wireless World

A survey of the electronic systems used in the search for and recovery of oil under the sea-communications, telemetry, navigation and data collection with a brief look at special developments such as dynamic stationing of vessels and the national data buoy.

highly stable but can be moved only in calm seas and wasted time in waiting for these conditions may therefore run into several weeks. In deeper water, which will be typical of most future UK offshore operations, a floating installation will have to be employed, either a drill ship or a semisubmersible. A drill ship is fitted with a rig which operates through an aperture in the middle of the vessel or, in some cases over the ship's side. A semi-submersible, as the name suggests, has submerged pontoons which support the working deck well above wave level.

Floating installations are normally anchored to the sea bed, although dynamic

Tropospheric scatter aerials at Brimmond Hill which serve the B.P. platforms in the Forties Field (Marconi Communication Systems photograph).

Fig. 1. Tropospheric scatter link from the Phillips Group field production facilities at Ekofisk to the crude oil terminal facilities at Teesside (PS—pumping station).
positioning (explained in detail later) by propellors appropriately oriented to counter the effects of wind and current is now used. However, in the waters around Scotland, where very high waves and winds may occur, keeping the platform in position is a major problem whatever method is employed.

Of the installations now available, only the semi-submersible can operate in Scottish waters during the winter months, and then only with difficulty; drill ships are less able to smooth out wave-induced vertical rig movements and can operate only during the summer season. To help overcome these difficulties, a new generation of large semisubmersibles is being built and the number of exploration installations at work in the UK sector of the North Sea is now about 25.

To put the cost of these operations into this background perspective, the new generation of installations will cost about $£ 10 \mathrm{~m}$ each to build, and with the associated supply boats, helicopters, etc, as much as $£ 20,000$ per day to operate. To drill a $10,000-\mathrm{ft}$ well in 60 days, a company would have to lay out more than $£ 1 \mathrm{M}$.

In the North Sea, the ratio of successful wells to wells drilled is reasonably good (about one to six) but the ratio of commercially viable wells is only 1 to 20 or less, so that $£ 10 \mathrm{M}-£ 30 \mathrm{M}$ may have to be spent on a drilling before a commercial oilfield is discovered. Luck enters into it as well. Some licensees may spend this sum of money and still find nothing. Finding a field is just the end of the beginning and two or three more wells at least have to be drilled to determine whether or not the field is commercial.

The cost rises rapidly in proportion to the water depth. In deep water (e.g. the 500 or 600 feet of water off the Shetlands), it could rise to more than $£ 40 \mathrm{M}$. No platform has yet been constructed in such a depth of water anywhere in the world, and, although it is technically feasible, the immense cost has prompted a search for alternative methods. An entirely new field of technology is therefore emerging encompassing such developments as completing the well under water (without the need for a fixed platform) by remote controls, or using two-man submarines fitted with remotely operated arms, or a diving bell which locks onto a capsule enclosing the wellhead, so enabling the technician to work as if on land.

Communications

In the beginning, both needs and available facilities were simple-a straightforward radiotelephone link. Now the main service is provided by independent-sideband equip-

ment which caters for the simultaneous transmission of radioteleprinter on uppersideband and radiotelephony on lowersideband operating through special Post Office terminals at Humber and Stonehaven for rigs in the North Sea.

The radiotelephone and teleprinter are the two main types of communication link between the oil rig and the shore. A typical system supplied by Marconi Marine consists of independent-sideband or uppersideband only installations. The former permits simultaneous operation of both radiotelephone (l.s.b.) and teleprinter (u.s.b.) while the latter system allows both types of transmission but requires switching from one to the other.

Frequency shift keying is a modulation method used for teleprinter operation. For the mark/space teleprinter code an audio tone is deflected from "side to side". The teleprinter however generates positive or negative d.c. for transmission and requires the same for reception. To convert from d.c. into frequency shift keyed audio tones and vice versa, a voice frequency telegraph unit is required. Automatic high-speed telegraphy, particularly when used for data telex transmission requires the highest
standard of accuracy possible. The Post Office's specification W6652 calls for the fitting of single-path error correction equipment. A technique for satisfying this condition effectively doubles up on the normal teleprinter code to provide a "checking" signal with which the required signal can be compared. The result is a substantial improvement in accuracy on noisy transmission/reception paths. Tropospheric scatier systems also play a large part in rig-to-shore communication, explained in detail later.

Most communications from the oil rig to its supply vessels are carried out via v.h.f. links, but while rig to ship communication requires frequency modulated v.h.f., rig to helicopter radiotelephony requires amplitude modulated v.h.f. Usually only one or two channels in the band $121-123 \mathrm{MHz}$ are necessary.

Mičrowave systems

Telemetry systems provide vital information on the status of the pipeline, on supply, demand and product quality, providing control at any point. On land, telemetry information is generally carried over a conventional telephone circuit by connec-
tion into the local network, or provided by a special cable or radio-relay system. The communication link is vital, particularly in an emergency and the cable system must provide alternative routing and the radio relay system include independent standby equipment. Conventional relay links provide a solution to communication problems so long as the platform is within "line-of-sight".

Oversea paths are generally engineered with vertically spaced antennas to provide a diversity system, whereby when one antenna receives a low signal, the other is brought into use. The permissible offshore distance is thus dependent upon the available shore height and antenna spacing, the facility for both being strictly limited on most platforms because of the additional loading and hazard that the antennas present to helicopters. Whether the operating frequency is in the v.h.f., u.h.f., or s.h.f. band, the limit range for antenna heights of 30 to 60 m will be 30 to 50 km , a shore height of 300 m extending the range to 80 to 100 km .

Many offshore developments of which the North Sea is a particularly interesting example, are well in excess of the line-ofsight limit and the signal diffracted beyond the horizon is rapidly attenuated. As the diffraction loss becomes prohibitive in terms of effective radiated power, the scattered signal takes over. To provide the required service, typical data error rates must be in the order of not more than 1 in 10^{5} for 99.99 per cent of the time.

North Sea scatter communications operate in the 2.5 GHz band. ${ }^{1}$ Six- and ninemetre paraboloids give gains of 41.5 and 45 dB respectively, which with 1 kW amplifiers produce effective radiated powers of 10 to 30 MW . With modern uncooled parametric amplifiers having noise figures of

2 dB , quadruple diversity receivers with i.f. combining and threshold extension techniques, an f.m. threshold of -140 dB or better is achieved. A path loss of 250 dB can be tolerated before the error rate becomes significant, corresponding to a range of 300 km with the required 99.99 per cent circuit availability.

There is one outstanding problem affecting both radio relay and scatter communication links particularly relevant to the North Sea, the phenomenon of ducting. For short periods of time, signals far beyond the horizon may exceed the freespace value; the normally insignificant over-shoot to other stations may assume levels of serious interference. The distance between stations operating on the same frequency must ensure protection against both the scattered and the ducted signals.

Although the communication bands are very wide, the large number of users and the wide-band transmissions involved call for maximum economy in channel allocations. Thus many radio-relay systems carrying television and telephony traffic have a bandwidth of 30 MHz , as wide as the whole h.f. band. The use of frequency diversity for both the line-of-sight and scatter links, occupying two channels for the same traffic, is being discouraged in favour of space diversity.

The scatter system often uses two antennas at each end, providing four physical paths. The two transmitters must be identified by the respective receivers by virtue of their different frequencies or, with single frequency links, the polarization of the two transmissions.

One of the latest troposcatter links is being established between the North East field called Ekofisk and the coastline near Teesside. The system provides for two 40ft dish antennas to be erected on the

800 ft hill at Eston Nab along the coast just south of Teesside, with feedhorn arrays angled towards Ekofisk and towards one of two pumping stations, 70 miles off the coast. Similarly at Ekofisk, two 30 ft dish aerials will be built with feedhorn arrays towards Eston Nab and towards the other pumping station, 70 miles from Ekofisk. Two $20-\mathrm{ft}$ dishes will be installed at Pumping Station I and two $12-\mathrm{ft}$ dishes at Pumping Station II both sited along the piping line. Each dish antenna will have two dual polarized feedhorns to provide for quadruple diversity operation-dual space and dual polarization techniques combined to provide four separate radio paths without using additional frequencies.

The main link is to provide a basis for 72 telephone or telegraphy channels, while the pumping stations' links will carry 12 channels with a capacity of 24 . Both major stations will operate at 1 kW transmitter power but the links with Pumping Station II will have 2 W output from Eston Nab and 2 W on the return path. Transmitted power from Ekofisk to Pumping Station I will be 20W.

Accuracy in navigation

Marine seismic surveys are the commonest method of initiating exploration for offshore oil or gas fields which are indicated by certain geological formations. Sound waves are transmitted through the water and sea-bed and the reflections are recorded and analyzed to give a picture of the geological structure. The most favourable sites to drill and the depth at which prospective reservoir rocks are expected to occur are indicated by this picture, taken in conjunction with any other available information such as data on regional geology.

During the survey procedure it is essential that the area surveyed should be fixed and marked accurately, hence use has to be made of an accurate navigational system so that the survey ships know where they are, coupied with an equally accurate underwater system to define the limits of the area surveyed and to enable ships and drilling rigs to return to the same spot each time. ${ }^{2}$

Accurate navigation when reasonably close to the land can be obtained by a radio hyperbolic or ranging system. There are a number of such systems on the market, but in the North Sea surveys are often carried out using the Decca Survey Hi-Fix system. The present system consists of three shore stations working in the band 1700 to 2000 kHz . All three use the same frequency and transmit one after another. Receivers on board the survey ships measure the phase difference of the received continuous wave from two of the stations and so position themselves on a hyperbola. Then a further hyperbola is obtained using the third station and one of those already used. Where the two curves intersect is the ship's position. Hi-Fix has a range of about 150 miles and will produce a position accurate to within two metres under optimum conditions. Decca Survey have just developed an even more accurate system, known as Hi-Fix 6. This consists of up to six stations on-shore, all employing the same frequency.

For underwater fixing some form of transducer that can be activated by a ship's sonar is used. Such a system is particularly valuable when working at the limit of a radio hyperbolic system. Two or more transponders may be laid on the sea floor in known positions and ships interrogate them with their sonars. The transponders are triggered off and transmit return pulses. By measuring the time between the transmission of a pulse of energy and the reception of the transponder's return and noting the bearing on which the transmission was made, the ship's bearing and distance from the transponder can be deduced and thus the ship's position. By using more than one transponder a check can be made and an accurate position found. The transponders have a life of three to three and a half years and can be laid permanently in selected positions as navigational beacons, either for use when surveying or for positioning rigs or platforms.

To obtain an overall picture of the seabed the sonars used usually project their beams sideways and downwards and scan the bottom as their parent ship moves along. They will produce contour maps of the seabed and will show up such things as cables, wrecks, pipelines and areas of rock.

A hydrographic sonar, designed by the Admiralty Research Laboratory is being developed by Marconi Space and Defence Systems and is capable of producing both horizontal and vertical plan views of the seabed. The depth of objects on the seabed can be determined to an accuracy of within two feet to ranges of 200 yards.

Rig manoeuvres

It is possible to manoeuvre a drilling rig or ship into position without human interven-

tion, thereby increasing the accuracy of manoeuvres. A system made by Decca Sur${ }^{\text {c }}$ vey and known as Dynafix uses shore stations up to 40 miles distant and processes their signals in such a way that they are used to operate specially fitted manoeuvring propellers.

Dynamic positioning of a drilling, whereby the vessel is held in position over the well without the use of anchors, was first used in drilling for oil in deep water early in 1972. This was achieved by Sedco 445, a drillship designed to Shell specifications and equipped to conduct world-wide drilling operations in water depths of about 2000 feet. Dynamic positioning enables the drillship to hold its position despite wind, waves and tides. Eleven sidewaysacting propellers and two main screws are controlled by two computers in keeping the ship over the hole while drilling takes place.

The method and systems were pioneered in the United States by the Shell Oil Company. Its work with dynamic positioning began in 1961 when it participated in the development of a manually controlled drillship. In the same year it developed the first automatically controlled dynamic positioning system in the core drilling vessel Eureka.

Sedco 445 provides laboratory space for drilling, electrical logging, mud logging, diving, petroleum engineering, and geological and management services, all of which are designed to be independent of shore support. However, for emergency supplies, timely re-stocking, personnel access and safety stand-by the drilling unit is provided with a helicopter deck and will be accompanied by a large crew-standby boat and a work boat. Two acoustic reference systems measure vessel's position with respect to beacons at the wellhead. As a backup and for use during certain operations, two tiltmeters are used either on a taut
line to bottom over the side or on a guideline. Two gyro compasses measure heading for control. Two anemometers measure wind velocity and direction with respect to the ship and permit the control system to command an immediate and opposite thrust.

To assure the highest reliability complete backup equipment is provided throughout the dynamic stationing system. Two Honeywell computers are used; while only one of them at a time is issuing commands to the thrusters, both are continuously receiving data from position and environment sensing instruments, comparing them for validity, performing the control calculations and checking each other. Control automatically transfers to the standby computer on failure of the operating unit.

The computer's thrust commands are sent to thyristor modules which provide variable voltage d.c. power to reversible speed standard traction motors.

Sedco 445 can be navigated by satellite. ${ }^{3}$ Conventional navigational positioning systems use stationary wave patterns generated by fixed, land-based, radio transmitting stations, and have an accuracy of about 25 to 50 metres. However, they are limited to a range of about 200 miles from shore.

The Navy Navigation Satellite System (NNSS) consisting of orbiting satellites and accompanying ground facilities was made available for non-military use in 1967. NNSS enables work to be carried out quickly and conveniently-the vessel Lady Glorita using satellite navigation as its prime positioning system was able to carry out a seismic survey off Guyana in only four days, whereas the setting up of a conventional positioning system could have taken more than a month of expensive preparation. On a moving ship, given an accurate knowledge of the vessel's true

speed and course, an accuracy of about 100 metres can be obtained, with the added advantage of not being limited to a range of 200 miles from the shore.

The equipment needed to operate satellite navigation is portable and selfcontained aboard ship. It consists basically of two radio receivers, a small computer equipped with teletype print-out facilities and a reference oscillator. The system measures the v.h.f. radio signals transmitted from one of the orbiting satellites and, using the Doppler principle, computes the latitude and longitude of the signal receiver. NNSS has five satellites orbiting the earth at an altitude of about 600 miles. They travel at a speed of about 16,500 miles per hour. The satellites are in polar orbit and their orbit planes are at angles of about 45° from each other.

Each satellite is transmitting continuously two related stable frequencies at 150 and 400 MHz , while every two minutes it gives an accurate time check and its orbital position at that time. A ship with the necessary receiving equipment can compare the signal it receives from the satellites with the shipboard oscillator, which is fixed to a frequency slightly offset from the one transmitted by the satellite. The shipboard receiver measures the Doppler frequency by observing the changing relationship between the incoming frequency and the stable reference.

Satellite navigation is still in development. At its present state, it is unlikely to be used as the sole or primary means of navigational positioning except for cases such as seismic ships on roving commission. However, when combined with sonar Doppler into an integrated navigation system and used in shallow water, satellite navigation has shown that it has great potential for location fixing offshore work in the oil industry. (An article on satellite navigation by the NNSS will be published in the February issue.)

New weather buoy

The national Data Collection Buoy, presently being manufactured by the Seatek consortium, is to be placed on station in the North Sea in summer 1975.

The 7.6 -metre-diameter wave-riding welded steel buoy is to act as a development platform for oceanographic and meteorological sensors. These include air temperature, barometric pressure, wind speed and direction, humidity, rainfall and visibility. Sea-bed pressure instruments, connected to the buoy by cable, are included in the range of oceanographic sensors, and these will help produce storm surge warnings. Other sensors include acoustic and electromagnetic current meters near the ocean surface, and current speed and direction monitors at three sub-surface positions. One hundred

> Reception of worldwide weather chart transmissions of the international meteorological services demonstrated by the EMI Weatherfax system at the 1974 Offshore International Exhibition, London.

Artist's impression of the UK national data buoy D.B.I.
data channels are provided, some 50 being used by the initial suite of sensors. Measurements can be made at any time within the one-hour cycle, and then stored ready for the hourly transmission. A 1 MHz temperature compensated crystal oscillator provides not only the high accuracy clock (ten seconds per year) for automatic control but also a basic input to synthesize all frequencies required within the transmitter.

A six-watt transmitter at 4163.5 kHz feeds a ten-metre whip antenna and is used in conjunction with space-diversity reception at Lowestoft. The A9J emission is a modification of tiie Piccolo system with one audio tone per decimal digit.

A slow morse call sign (2N102) pre cedes a synchronizing signal, followed by three sequential scans of the data channels. Each channel uses three decimal digits to provide 0.1% resolution and each digit is transmitted as a tone lasting 300 ms .

Every third hour an additional 20minute transmission of buoy heave, pitch, roll and compass data provides highfrequency wave information. A fuel supply of 400 kg of propane on the buoy will last two years and the data handling equipment is designed to operate unattended for at least six months, but the oceanographic sensors may require more frequent visits due to fouling by marine growths.

Under-sea production

Research into the development of deep sea production facilities is being pressed forward in parallel with progress in drilling techniques in the deep oceans. Such facilities can either be on the sea floor or on the surface. Oil companies are exploring both routes in seeking solutions to the problems involved. The objective involved with the surface method when oil is found in commercial quantities
is to get the oil from the well to the surface as simply as possible, put it through production facilities on the surface and transport it away by tanker. This technique calls for man-controlled, remotely actuated devices, using electronic tools where necessary and embodying the means to feed continuous data on what is happening below back to the surface. If problems occur however there must be human access to the seat of the trouble-either by miniature submarines with mechanical arms or, dependent on depth, divers.

If large oilfields are found in very deep water far from shore, floating storage will have to be provided. A concept envisaged by the Shell companies is the use of a huge floating tube, the shape of a fisherman's float, suspended vertically in the water and with a storage capacity of perhaps 300,000 barrels (about 40,000 tons), linked by lines to the wellheads on the ocean floor. In very deep water, dynamic stationing equipment similar to that installed in the " 445 " would keep it in position.

A programme to build a complete oilfield on the seabed without any surface platforms and in deeper water than any existing wells is under way at Lockheed Petroleum Services. Several major oil companies are financing the programme. This gives a good indication of their interest in the project which is pioneering a range of subsea equipment to extract oil in up to $3,000 \mathrm{ft}$ of water. This is eight times deeper than any present oil well and yet is within a water depth where surveys indicate there could be major petroleum reserves in several areas throughout the world including the North Sea. A well-head on the sea floor is enclosed in a dry oneatmosphere, steel cellar which houses the
equipment normatly carried on surface platforms. It is serviced by engineers who travel to it in a one-atmosphere capsule from a surface support vessel. The capsule docks with the seabed cellar and engineers open a hatch to gain access and carry out their work in shirt-sleeve conditions with fresh air and electrical power supplied by umbilical cable from a surface support vessel. Lockheed is developing the system.

As a final note and with the sort of developments just mentioned in mind, there still remains a market of over $£ 2,000 \mathrm{M}$ in production wells and transportation over the next ten years and also on the many offshore and on land services associated with the oil business. Although much of the initial demand of the oil industry has been met by American and European suppliers, the United Kingdom's offshore oil business is a vast and expanding market that will stretch into the 1990s, and Britain now has not only the opportunity of rising to self-sufficiency in fossil fuels by the 1980s but also to evaluate the opportunities and establish itself as a major world supplier of products and services to the offshore industry. A report is due for publication in March by Industrial Market Research Ltd, London, containing up-to-date information on product and service opportunities in North Sea oil developments.

References

1. Anderson, E. W., "Microwave Communication Systems for the Offshore Oil and Gas Industry", Mariner, July/Aug. 1973, p.8-10.
2. Marriott, J., "Accuracy and instrumentation in offshore oil developments", Offshore International Exhibition and Conference publication, Oct. 1974.
3. "Satellite navigation", Shell Magazine. Vol. L11, No. 749, p.109, 110.

ITU first I.f./m.f. conference session

Further to the news item published in our December 1974 issue, the following is a summary of the conclusions reached by the first session of the regional administrative l.f./m.f. broadcasting conference which was "to prepare the technical and operational criteria which will serve as a basis for the preparation by the Second Session . . . of frequency assignment plans for the I.f./m.f. broadcasting bands in Regions 1 and 3 ".

For ground-wave propagation, the curves of the International Radio Consultative Committee Recommendation 368 -2, which cover propagation at low and medium frequencies for different values of ground conductivity, were adopted by the conference. The conference decided that any new frequency plan should be based on the continued use of double sideband amplitude modulation with full
carrier and rejected proposals for a reduced value of modulation bandwidth Similarly, proposals to base planning on high degrees of signal compression, thereby improving protection against interference, were rejected by the conference because of the allegedly adverse effect upon reception quality. No upper limit on the radiated power of individual transmitters has been recommended but use should be made of directional antennae to reduce power in those cases where assignment incompatibilities cannot be resolved by any other means.
The conference decided that for most purposes a protection ratio of 30 dB against interference from other transmitters operating in the same channel should be adopted. A consensus was quickly reached that the channel spacing should be uniform throughout the whole of Regions 1 and 3 and that the carrier frequencies should be integral multiples of the channel spacing. The revised channelling in the m.f. band will start with a carrier frequency of 531 kHz and proceed in 9 kHz steps up to the highest channel with a carrier frequency of 1602 kHz . The l.f. band remains unchanged with its present 9 kHz channelling and carrier frequencies which are not integral multiples of the channel spacing.

Liquid crystals for electron observation

A simple technique has been developed for the observation of electron pulses flowing through an integrated circuit. The technique employs liquid crystals. Conventional i.c. test equipment determines whether an i.c. is functioning properly but is of little value in determining exactly why and where it has failed. With the new

Laser system installed at the Beckman Instruments, Glenrothes, Scotland factory for resistance and functional trimming of their d.i.p. resistor networks, ladder networks and hybrid microcircuits.

technique, developed by RCA, it is possible to observe where the electron flow has been interrupted at a defect. This is made possible by the normally clear liquid crystal which reflects or refracts light when stimulated by an electric current.
A drop of nematic liquid crystal is placed on the surface of the i.c. so that all the rod-like molecules align in the same direction. The i.c. is placed in a conventional microscope and illuminated by light passed through a set of polarizers arranged so that none of the light reaches the microscope's eyepiece under normal conditions. However, when the i.c. is operating, the refractive index changes caused by the electrons' electric fields allow light to pass through the polarizers and, in effect, give the viewer a "live" picture of the pulses or signals flowing in the i.c. The circuits can be examined at various speeds and at normal operating voltages-eight to ten volts for m.o.s. circuits and as low as two or three volts for bipolars.

Paging the dead

A news release we recently received indicated that paging equipment installed at the South Essex Crematorium has contributed towards the efficiency of the organization. According to Multitone Electric, "the smooth operation of a crematorium in every detail is imperative by the very nature of the function which it discharges . . . At the South Essex Crematorium there was an additional problem in that the administrative offices are situated at the entrance to the grounds, some distance from the crematory itself. The new Multitone paging system has made things very much easier, however, "by ensuring that all key staff can be contacted immediately wherever they are". It is envisaged that the next application of radio paging will be its use by mediums to take some of the routine hard work out of their endeavours.

Quadraphonic cassettes

Although details had not reached this office at the time of going to press, we have heard that BASF has been experimenting with the duplication of quadraphonic cassettes. Unfortunately none of the output from the German duplicating plant appears in the UK so it is unlikely that such cassettes will be offered for sale here, unless one of our own duplicators follows suit.

It is believed that the extra information is recorded on the standard track format, but matrix encoded using the SQ system. Although such an arrangement is perfectly feasible, it is possible that the phase stability of the cassette recording process may have to be of an order higher than most average domestic machines to achieve acceptable decoding. Should the
recordings be of such a type, standard add-on decoders, or those built-in to amplifiers may prove quite suitable for use with this type of recording. Further details will be published as they become available.

New communications device

A control unit has recently been introduced which dispenses with space-wasting racks of switching and exchange equipment and condenses what would normally be a roomful of equipment into a space no larger than a small filing cabinet. The unit, MFC, was announced by Pye Business Communications as a new master control unit for its M100 speech intercom.

The MFC allows almost limitless expansion of M100 intercom systems while no conventional exchange or switching is required. The calling station initiates a pulse sequence which is in turn decoded by the receiving station. The control unit is constructed on a "plug-in" card principle, station capacity being decided by the number of cards employed.

When a call is initiated, the system memory is interrogated to confirm the availability of the required station and to evaluate the fastest method of connection. Should the called number be engaged, the system is able to keep trying the number every six seconds for up to 90 s to obtain a connection, or even arrange for it to call you back later. Extra features include automatic call transfer, three callers on line at once, connection to public address or pocket paging systems and the calling of all stations at once for emergency use.

Parrot power

After decades of experience, the engineers and researchers at Austral Standard Cables Pty, Sydney, Australia, could perhaps be excused for believing they had overcome almost every conceivable environmental challenge that could confront the industry. The sad truth is that the ASC people recently have been given the bird. Over several years they successfully wrestled with problems of cable moisture permeation, submarine cable protection, electrical interference, assorted "gremlin-inspired" technical difficulties and termite attacks. The termites were beaten when they introduced nylonsheathed cable. Now another menace has arisen in Western Australia. "Iron beaks" have been pecking through cables (Integral Bearer Cables) at Mt Newman, W.A., causing shorts and interference within a mining company's domestic communications network. ASC supplied most of the cable when this private telephone system was commissioned in 1968 and since then has met substantial orders for extension and upgrading of the network. The system's radiotelephone signals link
both the Newman township and mine to the PMG exchange at Port Hedland, 265 miles to the northwest.

In such a communications complex, any pests which mutiate part of the network obviously are unwelcome. The birds have concentrated on a relatively small stretch of line. They land on the bearer wire, bend under and peck right through the polythene-sheathed cable. The ASC planners in Melbourne don't claim to have a quick remedy for the problem, but have suggested that brass tape may stop the birds. It has been urged that for ease of handling and installation poly-sheathed cable be lashed on site to the bearer wire with brass tape. If that doesn't stop the parrots, ASC's engineering services may be in for some overtime.

Colour TV
 examination

The Radio, Television and Electronics Examination Board is introducing a certificate of competence in colour television servicing. The qualification has been established in response to demand from the industry to provide a recognized certificate in this field which is issued on passing a comprehensive practical test. It is open to those who have already established themselves in the servicing of colour television receivers, who hold a recognized technical qualification and who have had a minimum of one year's full time gainful experience. The award will take the form of a certificate and personal identity card issued by the Board.

The examination is a problem-solving exercise in which the candidate has to identify the problem and obtain the relevant test information. There is a limit on time (five faults in two hours) and the candidate is required to work on more than one type of receiver, designated in advance. Setting up of pre-set controls also forms part of the test. In addition to the practical assessment, a short written
test is concerned with safety and installation. The practical test involves faultfinding to component level and the candidate is to state correctly the symptom, the fault area, the stage and the component.

TV deliveries down

Deliveries to UK distributors of UK made and imported colour television receivers reached 153,000 in September-a 41% decrease on September $1973(259,000)$, according to the latest statistics compiled by the British Radio Equipment Manufacturers' Association. This brought the total for the first nine months to $1,638,000$, a fall of 18% compared with the same period of $1973(2,005,000)$. The share of imports of colour sets has fallen in the January to September period to 21% from 25% during the same period in 1973.
Total monochrome television deliveries for September of 72,000 brought the total for the year to 611,000 , a fall of 44% compared with January to September $1973(1,084,000)$. These figures are details of deliveries of UK made and imported deliveries, including those to rental and relay companies.

Briefly

The journal you like. More and more people are reading Wireless World. At the time of going to press the estimated circulation for 1974 was an average of 65,723 copies per month (to be confirmed by the Audit Bureau of Circulations). This was 5,000 up on the 1973 figure of 60,528 per month.

RTS Hon. Sec. retires. The retirement of Charles Marshall as honorary secretary of the Royal Television Society was recently marked at a society luncheon in London. Mr Marshall who is head of public relations at Mullard had held the post for 13 years.

Circuit Ideas

Control of a binary counter for division by one or two

This circuit provides a method of switching division by two into or out of a stream of clock pulses. The output is in phase with the input, and free from spikes due to race problems, which may occur with conventional gating methods. Only one D-type flip-flop and one inverter are used.

The logic circuit is shown below; action is as follows.
Control low; input low
$\mathrm{C}_{\mathrm{d}}, \mathrm{S}_{\mathrm{d}}$ both low, Q and Q both forced high.
Control low, input high
C_{d} high; $\overline{\mathrm{Q}}$ goes low (complement of Q).

Control high

C_{d} and S_{d} are both high. At the positive edge of the clock, the D input is trans-

ferred to Q . This is the normal connection for division by two, using a D flip-flop.
An inverter is added to restore the phase. Note that $K \neq \mathrm{Q}$ in the divide by one mode, since Q is held up, by S_{d} low. Hence the use of the inverter.
J. M. Firth,

National Research Council,
Ottawa.

Click-free switching for audio filters

It's often required in mixing consoles and other audio equipment to be able to insert a correction network for comparison purposes without producing transients or changes of level. The diagram shows how this can be achieved with a familiar Baxandall network, though of course the idea is applicable to other filters.

With S_{1} open and S_{2} closed, the circuit functions normally, but if the switch positions are simultaneously reversed, the response remains flat, regard-
less of the positions of the pots. The centre-frequency gain remains unchanged since the network is symmetrical and, furthermore, phase shift is unaltered.

The main value of this type of switching, however, is that with the controls in the flat position, there is no transient interruption of the signal, and with no d.c. in the network, no clicks either.
J. S. Wilson,

Amersham,
Bucks.

Passive solid-state antenna switch

A lot of antenna switch schemes have appeared in the past, but all used complicated tuned circuits and lots of diodes, or vacuum tubes that required high-voltage supplies. This circuit uses only two pairs of silicon diodes, one pair (D_{1} and D_{2}) which effectively shorts the receiver input during transmission, and the other (D_{3} and D_{4}) which disconnects the transmitter during reception.

Because of the high power from the transmitter, D_{3} and D_{4} conduct, and the power flows towards the antenna. Likewise, D_{1} and D_{2} in the receiving branch also conduct and put a short circuit across the line at the receiver (only 0.6 volts appear across D_{1} and D_{2}), thereby protecting the input
circuits of the receiver. As the short circuit is a quarter wavelength from the T-junction, the impedance in parallel with the antenna line at the junction is very high and does not affect the power travelling toward the antenna.

During reception, the impedance at the T-junction looking toward the transmitter is infinite because there is an open circuit half-a-wavelength away caused by nonconducting D_{3} and D_{4}. Looking toward the receiver there is a matched line, so all the power from the antenna goes into the receiver. The diodes are high-frequency switching diodes with current ratings depending on the transmitter power. The line is the same as the one used to feed the antenna.
Alejandro Lieber, LU1 FCR,
Edinburgh.

Charge-coupled devices

2-Techniques for making two-, three- and four-phase devices

by John Mavor
University of Edinburgh

In part 1 of this series of articles, the charge-coupled device concept was examined in relation to the simplest device embodiment; the three-phase single-level metallization structure (Fig. 1). Although c.c.d. structures are conceptually simple and essentially compatible with standard m.o.s. transistor processing, they do have an Achilles' heel. For acceptably high charge-transfer efficiency to be obtained, the formation of the very narrow interelectrode gaps (gate-to-gate spacings) must be produced.

Another important limitation to the simple, single-level metallization c.c.d., caused by the existence of the gaps, is that of stability and, ultimately, its longterm reliability.

For efficient transfer of charge carriers in c.c.ds, it was shown in part 1 that the silicon surface, just below the siliconsilicon dioxide interface, must be completely depleted between adjacent gates. Now for the silicon surface to be depleted, a voltage of a correct magnitude and polarity for repelling the substrate majority carriers must be applied across the insulator. For a given oxide thickness, a higher-doped substrate (with more majority carriers) will require a larger applied gate voltage than with lower doping (less majority carriers). For lightlydoped substrates of $20 \Omega \mathrm{~cm}\left(-10^{15} / \mathrm{cm}^{3}\right)$ about 10 V is required to allow a depletion layer depth into the silicon of $1 \mu \mathrm{~m}$. Because complete depletion is required between electrodes for good efficiency the gap length (t in Fig. 1) must be less than $3 \mu \mathrm{~m}$ in practice.

For integrated-circuit processing using conventional photolithography, $3-\mu \mathrm{m}$ gaps are possible but not always easily reproducible with high yield in a production environment. As the device yield will suffer, fabrication cost will inevitably rise. The problem of producing narrow gaps results in the increased probability of alignment errors in connection with masking. Also the masks which are used to define the gaps must be kept particularly clean and replaced frequently to avoid bad definition of the gaps. However, although the masks may be in good order, it is necessary to use a careful photoresistetching step to actually produce the narrow metal gaps.

Although single-level metal c.c.ds with acceptable yields may be fabricated, their performance may vary either after encapsulation or during life tests. For gaps of $3 \mu \mathrm{~m}$ or less, the substrate surface potential in the gap region is determined mainly by the fringing fields caused by the gate potentials. However, any charge present in the gaps, which could vary in location and size, will cause a second-order variation in device performance. This charge is due mainly to

- the "fixed", positive, surface-state charge, $Q_{s s}$, which exists just within the oxide near the silicon-silicon dioxide interface
- a charge component due to the "fast" surface states, $N_{s s}$. Their density varies with the size of the depletion region. These states have a major effect on the dynamic transfer of charge in the c.c.d, and
- any contaminant ions (usually sodium) which may be mobile within the gate insulator.
Any variation in location or size of these charge contributions will result in potential barriers and wells being formed in this region, Fig. 2. Although a value of gate-to-substrate voltage can usually be chosen to reduce charge loss owing to this variation, the required bias voltage for this condition to occur will change with time. Thus, c.c.ds with even partly exposed gate oxides have inherently unstable operating characteristics.

Oxide growth conditions

Processing investigations on single-level metallization structures have produced satisfactory gate insulator growth conditions to reduce instabilities. Although more elaborate gapless techniques have been developed to improve c.c.d. performance and produce stable devices suitable for systems applications, great care must be exercised whenever the gate insulator (oxide) is grown. Some of the steps which are normally taken in a c.c.d. process are
-The use of particular crystal-orientation substrates to reduce the minimum obtainable values of $Q_{s s}$ and $N_{s s}$.
-Stringent cleaning procedures to prepare the surface of the substrate, prior to oxidation.
-Furnace tubes are either double

Fig. 1. Plan view of three-phase, singlelevel metal c.c.d. showing channel-stop diffusions. Difficulty in obtaining reproducible electrode gap width (t) of less than $3 \mu \mathrm{~m}$ led to the "resistive sea" modification of Fig. 4.

Fig. 2. Variation in size or location of change in the electrode gaps (t in Fig. 1) forms potential barriers or wells. Charge loss can be minimized by suitable choice of substrate voltage, but required value changes with time.
walled, or are steamed out continuously to prevent ionic contamination.
-The use of specific growth conditions to provide low $Q_{S S}$ and $N_{S S}$ values, e.g. "dry" thermal oxide grown at $1050^{\circ} \mathrm{C}$. Conditions should be achieved for which both $Q_{S s}$ and $N_{s s}$ are at minimum values.
-Following oxide growth, a high temperature step in an inert atmosphere (say nitrogen), plus a low
temperature $\left(450^{\circ} \mathrm{C}\right)$ anneal; the former to reduce $Q_{s s}$, the latter to minimize $N_{s s}$.
-A phosphorus gettering step is often used to reduce the mobility of any mobile ions present in the gate insulator.
-Oxides are sometimes grown with a trace of HCl present, so that the contamination ion concentration is reduced.

Channel confinement

To avoid the loss of the signal charge which has been introduced into the c.c.d. depletion regions, it is necessary to introduce a barrier to the charge around the periphery of the clocked gates. Two methods are immediately available from integrated circuit technology.

Thick oxide isolation. In m.o.s. fabrication a thick oxide called the "field" is used to prevent the formation of parasitic transistors. The field oxide is normally deposited by chemical vapour deposition, and is typically $1-\mu \mathrm{m}$ thickness. For the c.c.d. example, if the gates are taken over the edge of the field and down on to a thin oxide well, then c.c.d. action will only occur within the confines of the well. The two main disadvantages of this isolation method are that an extra processing step is required to deposit the field oxide, and that the thin gate metal required for the production of narrow inter-electrode gaps can easily break at the corners of the step in the oxide between the thick and thin transition.

Channel-stop diffusion. When a highly doped ring of diffusion surrounds, but just underneath, the periphery of the c.c.d. gate area proper, then no charge loss can occur (see Fig. 1). For an n-type substrate, the n^{+}doped-up edge of the c.c.d., owing to the channel stop, cannot support a depletion region which would otherwise cause charge loss.

The disadvantage of this technique is that an additional diffusion must be made; however, no field oxide is required. Fig. 3 shows the basic processing steps used to fabricate a simple p -channel c.c.d. A further processing step is usually used to passivate the device, by coating the aluminium transfer electrodes with a vapour-deposited silicon oxide-Fig. 3(c).

\mathbf{N} versus P-channel c.c.ds

Charge-coupled devices-formed on n-type substrates, already studied in part 1 , have certain disadvantages over the performance of p-types, for a given gate arrangement.

For \mathbf{p}-channel, n-type substrate, devices, the channel must always be maintained in depletion. Otherwise the signal minority carrier charge, which is only located in the depletion region wells, will be lost. n-channel devices have a built-in surface depletion region owing to the positive $Q_{s s}$ charge which is located in the gate insulator (see Fig. 2). The $Q_{s s}$ charge tends to enhance the surface charge level in p-channel devices but deplete the surface in n-types.

Fig. 3. Basic single-level metal c.c.d. process steps: (a) drain, source and channel-stop diffusions, (b) gate-oxide grown, and (c) aluminium layer evaporated and etched to form individual gates.

Fig. 4. Two alternative c.c.d. structures to Fig. 1, for metal gates (a) or polysilicon gates (b).

Carrier mobility in an n-type substrate is higher than for p-types. This means that the ultimate speed limitation on an n-channel c.c.d. is inherently higher than for a p-channel device.

Finally, a p-channel device has a higher V_{T} than an n -channel device. This is an important consideration for both on-chip and also commercially available clock generators.

Modifications to single-level metal structure

Both an increased stability of the c.c.d. structure, and a reduction in the need for
narrow gaps can be achieved by using the "resistive sea" process modification ${ }^{1,2}$ which comes in several forms. For example Fig. 4(a), useful for metal gates, and Fig. 4(b), useful for polysilicon gates. The polysilicon is lightly doped or used as grown (undoped). However, its conductance is higher than the gate insulator so that it acts effectively as a conductor, and helps to stabilize the surface potential against variations in charge within the insulator.

An advantage of this process is that the inter-electrode gap can be increased substantially for the same operating performance of a narrow gap structure. However, the high-resistance conductor and the distributed, associated gate capacitance, makes the gap look like an electrical $R C$ transmission line. The characteristic delay associated with this equivalent circuit for the gap may severely limit the high frequency performance, even though the doping level of the polysilicon has been increased to reduce the delay to a practical minimum. This resistance between the gates presents an increased differential loading on the pulse generators which are driving the c.c.d.

Gapless c.c.d. structures

The solution to the instability problem, coupled with increased performance, can be achieved by using overlapping, or gapless gate techniques. There is usually also a slight easing of the alignment tolerances. The penalty to pay, normally, is a multi-level gate arrangement which involves a more involved processing schedule. Fig. 5(a) shows how a threephase, improved c.c.d. can be fabricated using doped polysilicon to produce a gapless gate arrangement ${ }^{3}$. Each gate overlaps, or is overlapped by, the next gate. A similar approach to this for the formation of the gates can be used to form a four-phase c.c.d. (see later). In this structure, the gates can be made by evaporated metal, and/or polysilicon gates ${ }^{4,5}$.

Two-phase c.c.ds

The main attractions of a c.c.d. which can be operated by a two-phase clock are the simplified clocking arrangement, and for a given gate length, a two-phase structure may take up less area. Directionality of charge flow can be obtained by a variety of techniques.
Stepped-oxide structure. Frequently the two levels of conductors (gates) are produced by a stepped-oxide structure ${ }^{6,7}$, Fig. 6(a), or by the two-phase clocking of a four-phase c.c.d. ${ }^{8}$, which has been fabricated with a deposited oxide and a thermally grown oxide, Fig. 6(b). These structures have the effect of producing gates with alternatively high, then low gate capacitances. Consequently, when the maximum value of the gate voltage on each phase is equal, then the size of the depletion regions (or the well depths) will have two values owing to the different gate insulator fields. This results in charge always propagating in one direction.

Essentially, the main disadvantage of a two-phase structure is that the chargecarrying capability, otherwise known as the dynamic range, is reduced for the same gate voltage size as in a three-phase structure. For a gate voltage, V_{g}, the charge-carrying capability, Q, of a c.c.d. can be written ${ }^{9}$

$$
Q=C\left(V_{G}-V_{J}\right)
$$

per unit gate area, where $C \propto 1 / t$ is the capacitance per unit area of an oxide of thickness, $t . V_{T}$ is the threshold voltage for the m.o.s. capacitor formed by a c.c.d. gate, its oxide and the substrate beneath it. It can easily be seen from this equation, that the charge-carrying capability increases by either increasing the gate voltage, or reducing the gate-oxide thickness. Notice that if charge is introduced into the oxide (see Fig. 6(e)) V_{T} will change its value, and so will the chargehandling capacity of the c.c.d.

Ion-implanted barriers. The complex processing of a two-level metallization technique can be eliminated by using a implanted barrier to achievedirectionality ${ }^{10}$, Fig. 6(c). This technique has two potential advantages over other two-phase c.c.d. structures in that it provides a fairly large dynamic range and the length of a shiftregister bit is just larger than two gate lengths (say $<20 \mu \mathrm{~m}$). However, using ionimplanted substrates does not solve the requirement for an overlapping gate arrangement to achieve high charge transfer efficiency.
D.C. offset voltage. Asymmetry in the depletion region depths can be obtained by using two-level clock amplitudes across a single-level metallization structure. However, rather than having to generate this clock pulse train, it is easier to have each of two clock phases connected to consecutive pairs of gates, but incorporating a d.c. bias to one gate of each pair, Fig. 6 (d).

Fixed oxide charge. When additional charge is introduced into the oxide of an m.o.s. capacitor the threshold voltage is altered. For a single-level metallization c.c.d. structure, when a charge is introduced into the insulator of alternate gates, the depletion regions will be different under consecutive gates. This will result in twophase operation, when pairs of gateseach pair having a corresponding insulator region with, and without introduced charge-are clocked.

Additional charge may be introduced conveniently when the gate insulator comprises two insulators, Fig. 6(e), having different conductivities, e.g. silicon nitride covering silicon dioxide (m.n.o.s.). When pulsed with a voltage, the m.n.o.s. capacitor threshold voltage changes ${ }^{11}$ in value and sign under certain conditions. This shift in threshold voltage is due to charge which accumulates at the nitrideoxide interface owing to tunnelling currents through the very thin $(\sim 50 \times$ $10^{-10} \mathrm{~m}$ gate oxide). The charge density should remain constant at the interface for many years when the applied insulator

Fig. 5. Gap problem is avoided in this gapless technique, at the expense of more complicated processing. This can also be applied to four-phase devices.

Fig. 6. Two-phase c.c.d. structures: stepped oxide (a), deposited oxide (b), ion implant (c), d.c. offset (d), m.n.o.s. (e), and profiled silicon (f).
voltages remain at normal c.c.d. clock levels ${ }^{12}(<20 \mathrm{~V})$.

This m.n.o.s. technique has been used to form a single-phase c.c.d. ${ }^{13}$, by introducing two levels of charge into the gate insulator. The device performance can be electrically programmed.

Profiled substrates. The necessary small lateral spacing between gate electrodes can be achieved by etching holes, say, 0.2 to $0.3-\mu \mathrm{m}$ deep in the silicon substrate, Fig. 6 (f). Metal, evaporated during some stage of the process, will form breaks at the discontinuity in silicon surface levels. Two- or three-phase devices can be made by this technique ${ }^{6}$ by selectively connecting the multi-level gates.

Four-phase c.c.ds

Superior clocking performance can be achieved using four-phase c.c.ds ${ }^{3,4}$ (Fig. 7). They employ two-level conductor arrangements, which provide all the advantages of a sealed channel technology. Four gates are used to form one bit of a c.c.d. analogue shift register. (This is also the area required for some two-phase devices.) The four-phase structure, being symmetrical, is thus electrically bidirectional and when the clock pulse train is reversed, the signal charge will propagate back along the c.c.d.

To understand the reason for this action, it is helpful to visualize the signal charge as being transferred along the device in a series of depletion-region wells, under the control of gate potential. Given a choice, signal charge will start to fill the deeper adjacent well. In three- and four-phase structures, which are both symmetrical in design, the direction of signal charge propagation is determined solely by the clocking sequence. Correct clocking operation for three-phase devices requires one phase being switched off slowly, as the next gate phase is switched on. Polarity of the clock pulses is also important, and depends on whether the substrate is p - or n -type.

Fabrication of four-phase c.c.ds

Silicon gates. Four-phase devices are often made using basically a standard silicongate m.o.s. process. The gate structure avoids critical mask-alignment problems by using an overlapping gate arrangement,
Fig. 7(b): - The gate oxide is thermally grown under stringent conditions. for low $Q_{s s}$ and $N_{s s}$.
-A polysilicon layer is then formed on the top of the oxide and doped to achieve low resistance gates.
-The doped polysilicon layer is etched to form individual gates.
-The slices are then placed again in an oxidation furnace to form a top insulator.
-Then aluminium is evaporated over the surface of the oxide and selectively etched to form the overlapping gates. A further layer of polysilicon could be used to replace the aluminium (see Fig. 5). This last-mentioned gate structure is
particularly useful for imaging applications, because the polysilicon gates are transparent ($200-\mathrm{nm}$ thick), whereas metal gates of practical thickness would reflect light.

Anodized aluminium. In one process ${ }^{5}$, c.c.ds are made by anodizing first-level aluminium gates, which are first evaporated on a thermal oxide. The oxide of aluminium, which is formed over the surface of the aluminium, provides the insulation between the two-levels of the metal gates-see Fig. 7(a). Anodization is performed at temperatures which will not affect the previously evaporated aluminium gates. A deposited oxide, at say $400^{\circ} \mathrm{C}$, could also be used to form the intergate insulator. Alternatively, a refractory metal that forms a controllable, good quality grown oxide could be used. Molybdenum is a possibility, but its oxide is fairly uncontrollable in thickness.

Fig. 7(c) shows the normal clocking arrangement for a four-phase n-channel device. Signal charge resides in turn in the depletion-region under each of the four gates. An alternative and most useful arrangement is called double clocking: Fig. 7(d). This is possible where the gate oxide under each gate is the same thickness and the gate areas are similar. The advantages of this clocking sequence are:
-The clocks are on for twice the normal duration, therefore twice the normal amount of charge can be propagated, leading to a larger dynamic range than normal.
-Efficiency increased because the area under an electrode is without carriers for a shorter time than normal.
-The possibility of simpler clocking because each pair of clocks, e.g. Φ_{l} and Φ_{3}, Φ_{2} and Φ_{4} are mirror images.
-The clock breakthrough can be significantly reduced because of the mirrored clocks.

Buried-channel c.c.ds

Basic device. Surface-channel c.c.ds suffer from the fact that charge moves at the surface of the silicon, in intimate contact with the fast surface states. Unfortunately, the density of these states cannot be reduced beyond a certain minimum value, and interaction with these states is a major contribution to the charge transfer efficiency. In a buried-channel device ${ }^{14,15}$, Fig. 8, the depletion region well starts to form below the surface, within the bulk of the semiconductor. The shape and location of the depletion region, and, consequently, where the signal charge resides, is determined by several factors: the doping level and profile of the substrate; the oxide thickness; and the applied voltage. Because the charge is made to move within the semiconductor, only bulk trapping centres affect η_{r} (these are normally at a low density as compared to $N_{S S}$ surface values). The carriers can move at higher velocities within the bulk because the bulk mobility is larger than the surface, inversion layer value. However, the charge handling capacity of the buried-channel
c.c.d. is lower than the surface version, owing to the larger effective distance of the charges to its gate electrode.
Construction. Buried-channel devices are usually made on n-type silicon layers on top of p-type substrates. the n-type layer is usually either ion-implanted with an n-type dopant, or epitaxially grown in an r.f. reactor.
The gate arrangements for buried-channel devices are usually three- or four-phase schemes which have been described

Fig. 7. Four-phase overlapping-gate c.c.ds can have anodized aluminium gates (a), or polysilicon ones (b)especially useful in imaging devices because of their transparency. Double clocking (d) allows twice the charge to be propagated and increases efficiency over normal clocking (c).

Fig. 8. In buried n-channel c.c.ds, carriers can move faster within the bulk because mobility is larger than the surface value.
earlier. Fig. 8 shows a simple buriedchannel c.c.d. with a three-phase gate arrangement. Four-phase devices can in some circumstances be driven by sinewave clocks at 5 or 6 volts peak-to-peak. This development is most significant for the advanced high-frequency applications of c.c.ds.

Testing

At the end of the fabrication process, the finished slice contains perhaps hundreds of potentially working c.c.ds and m.o.s.ts. Before the wafer is scribed-up to produce individual chips, the circuits are d.c. tested. A test computer is often used to control the current and voltage sources used in the test, set the test limits on the detectors, and store the test data in a memory which can be read-out at a later time.

The parameters which are usually monitored to determine the d.c. performance of the chip, and thus the probability that the circuits will work under dynamic conditions, are simple continuity tests (forward biasing diode junctions); the gate oxide breakdown voltage(usually measured on the clock phases); a test to establish if any shorts exist between clock phase lines, and the source and drain diode reverse leakage. A c.c.d. chip which fails any of these d.c. tests is rejected by inking the offending device with the prober "inker" and removing it after the slice is scribed.

Chip cost and yields

The chip cost calculation has basically three components:

- wafer processing cost-including labour and overheads;
- yield-proportional to the number of photoresist-masking steps required to fabricate the silicon slice, and
- area per bit required for a particular structure, which is a function of the number of bits in the device.
As the fabrication cost of a chip, and therefore the c.c.d. cost, depends exponentially on the chip area it is necessary to aim for a square layout. This has led to making c.c.d. shift registers, with many bits, in a serpentine shape and in some cases to serial-parallel-serial memory layouts ${ }^{16}$.

Future developments

The commercial future of c.c.ds largely depends on the degree of process compatibility with existing standard m.o.s. processes; especially silicon-gate m.o.s. devices. The applications areas where this is particularly relevant is in the massmemory market, where the cost per bit is a crucial parameter and high yields are essential. However, there will undoubtedly be applications, especially in the specialized military system area, where high component costs can be tolerated and therefore where non-standard processes are acceptable. A full treatment of the progress of c.c.ds in penetrating specific application areas will appear in later parts of this series.

As regards future developments in
c.c.d. technology, new techniques for producing sub-micron inter-electrode gaps, such as by electron-beam lithography, will undoubtedly have an important influence on device structures and therefore result in improved performance. Another possibility is fabricating devices in materials other than silicon. Silicon technology is established; and the processes for growing stable oxides and making good diodes is well understood.

However, materials exist which potentially offer improved c.c.d. performance, if a suitable technology based around the new material existed. A prime example is gallium arsenide. It has a mobility about four times higher than for silicon. Thus, c.c.ds based on gallium arsenide should have a significant speed advantage. Its optical properties compared with silicon make it an interesting proposition for imaging applications. However, before gallium arsenide devices become widely available the cost of the starting material will have to drop substantially, and the high surface state density, which occurs with this material, will have to be reduced by further research.

References

1. Kim, C. K. and Snow, E. H. Appl. Phys. Lett., vol. 20, 1972, p. 514.
2. Mifune, T. et al., Proceedings of the 4 th Conference on Solid State Devices: Supplement to J. Japanese Soc. of Appl. Phys., vol. 42, 1973, p. 207.
3. Sequin, C. H. et al., IEEE International Solid-State Circuits Conference, Dig. Tech. Papers, 1974, p. 24.
4. Engeler, W. E. et al., Appl. Phys. Lett., vol. 17. 1970, p. 469.
5. Collins, D. R. et al., J. Electrochem. Soc., 1973, p. 521.
6. Berglund, C. N. et al., Appl. Phys. Lett., vol. 20, 1972, pi 413.
7. Baker, I. M. et al., British Patent Application, 51950/72.
8. Kahng, D. and Nicollian, E. H. US Patent 3651349.
9. Boyle, W. S. and Smith, G. E. Bell System Techn. J., 1970, p. 587.
10. Krambeck, R. H. et al., Appl. Phys. Lett., vol. 19, 1971, p. 520.
11. Frohman-Bentchkowsky, D. and Lenzlinger, M. J. Apply. Phys., vol. 40, 1969, pp 3307.
12. Salama, C. A. T. Electronics Lett., vol. 8, 1972, p. 21.
13. Gelberger, P. P. and Salama, C. A. T. Proc. IEEE, 1972, p. 721.
14. Walden, R. H. et al., Bell System Techn. J., 1972, p. 1635.
15. Esser, L. J. M. Electronics Lett., vol. 8, 1972, p. 620.
16. Windle, D. J. et al., New Electronics, vol. 7, 1974, p. 18.

Conferences \& Exhibitions

LONDON

Spectrum Utilization in Radio Communication
Feb. 11-14
Savoy Place
(IEE Conference Department, Savoy Place, London WC2R 0BL)
Low Light and Thermal Imaging Systems
Mar. 4-7
Savoy Place
(IEE Conference Department, Savoy Place, London WC2R 0BL)
Satellite Communication Systems Technology
Apr. 7-10 Savoy Place
(IEE Conference Department, Savoy Place, London WC2R OBL)
Intermag 1975
Apr. 14-17
Imperial College
(The Secretariat, Intermag 1975, c/o Institute of Physics, 47 Belgrave Square, London SW1X 8QX)
Static Electrification 4th Conference
May 5-8 CEGB Headquarters
(The Institute of Physics, 47 Belgrave Square, London SW1X 8QX)
Antennas for Aircraft and Spacecraft
June 3-6
Savoy Place
(IEE Conference Department, Savoy Place, London WC2R OBL)
Film 75
June 23-27 Royal Lancaster Hotel
(BKSTS, 110-112 Victoria House,' Vernon Place, London WClB 4DJ)
Telecommunication Transmission
Sept. 9-11
Savoy Place
(IEE Conference Department, Savoy Place, London WC2R 0BL)
Optical Fibre Communication
Sept. 16-19
Savoy Place
(IEE Conference Department, Savoy Place, London WC2R OBL)
European Computing Conference
Sept. 23-25
Heathrow Hotel
(ONLINE, Brunel University, Uxbridge, Middlesex)
Piezoelectric and Pyroelectric Materials
Nov. 4-7
Savoy Place
(IEE Conference Department, Savoy Place, London WC2R OBL)
Signal Filtering
Dec. 1-4
Savoy Place
(IEE Conference Department, Savoy Place, London
WC2R OBL)
BANGOR
Instrumentation in Oceanography
Sept. 23-25
Univeristy College
(IERE, 8-9 Bedford Square, London WC 1B 3RG)
BIRMINGHAM
Advances in Automatic Testing Technology
Apr. 15-17 Birmingham University
(IERE Conference Sectetariat, 9 Bedford Square, London WC1B 3RG)
Midlands Hi-Fidelity Exhibition
May 9-11
Midland Hotel
(Exhibition \& Conference Services Ltd, Claremont
House, Victoria Avenue, Harrogate, Yorks)

BRIGHTON

Oceanology International
Mar. 17-21
Exhibition Centre
(BPS Exhibitions Ltd, 4 Seaford Court, 220-222
Great Portland Street, London W1N 5HH)
Remote Supervisory and Control Systems
(Exhib, and Conf.)
Nov. 25-28 Metropole Convention Centre (NETWORK, 84 High Street, Newport Pagnell,
Bucks MK 16 8EG)
CAMBRIDGE
Micro-electron Beam Technology
Mar. 18-20 University Engineering Dept. (Institute of Physics; 47 Belgrave Square, London

Dielectric Materials
July 21-25
Churchill College
(IEE Conference Department, Savoy Place, London WC2R 0BL)
European Electronics Circuit Techniques
Sept. 2-5 Churchill College
(IEE Conference Department, Savoy Place, London WC2R 0BL)
CRANFIELD
Aerospace Instrumentation Symposium
Mar. 24-27 Institute of Technology
(N. O. Matthews, Cranfield Inst. of Technology, Cranfield, Beds)
EDINBURGH
Atomic and Molecular Physics Conference
Apr. 8-11
Edinburgh University
(Institute of Physics, 47 Belgrave Square, London
SWIX 8QX)
GLASGOW
Engineering Uses of Coherent Optics
Apr. 8-11 Strathclyde University
(E. R. Robertson, Dept. of Mechanics of Materials,

University of Strathclyde, Glasgow)

HATFIELD

Theory and Applications of Walsh Functions
July 1-3 Hatfield Polytechnic
(P. D. Lines, Dept. of Electrical Engineering, Hat-
field Polytechnic, PO Box 109, Hatfield, Herts)
LOUGHBOROUGH
Symposium on Incoherent Light Sources
Apr.8-11 University of Technology
(Institute of Physics, 47 Belgrave Square, London
SWIX 8QX)
MANCHESTER
Solid State Physics Conference
Jan. 6-8 Manchester University
(Institute of Physics, 47 Belgrave Square, London
SW1X 8QX)
NOTTINGHAM
Phonon Scattering in Solids
Aug. 27-30
Nottingham University
(Dept. of Physics, University of Nottingham, Nottingham NG7 2RD)
OXFORD
Scientific Aids in Hospital Diagnosis
Apr. 15-17
Oxford University
(R. E. George, Dept. of Clinical Physics and Bioengineering, Guy’s Hospital, London SE1 9RT)
Quantum Electronics Conference
Sept. 2-4
St Catherine's College
(I. J. Spalding, UKAEA, Culham Laboratory, Abingdon, Oxon OX14 3DB)
TEDDINGTON
Temperature Measurement Conference
Apr. 9-11 National Physical Laboratory
(Institute of Physics, 47 Belgrave Square, London SW1X 8QX)
WARWICK
Thin Films on Surfaces Conference
Mar. 17-20
University of Warwick
(Institute of Physics, 47 Belgrave Square, London SW1X 8QX)

Binding WW volumes

If you wish to have your 1974 (or earlier) volume of Wireless World bound by our publishing company, please sent it to: Press Binders Ltd, 4-4a Iliffe Yard, Crampton Street, Walworth, London SE17, with your name and address enclosed. Also, please confirm your order and send it with the remittance ($£ 2.25$ each volume plus 18p VAT, making £2.43) to IPC Electrical-Electronic Press Ltd, Binding Department, Room 11, Dorset House, Stamford Street, London SE1 9LU. Please allow us up to ten weeks for delivery.

"SETTLING TIME" IN AUDIO AMPLIFIERS

In an earlier article in your pages ${ }^{1}$ I noted that there appeared to be a relationship between the tonal quality of an audio amplifier and the type of transient response of the amplifier following a step function input under reactive load conditions. This was more noticeable with complex l.s. systems, which might be presumed to offer more highly reactive load impedances at certain parts of the frequency spectrum, than with simple I.s. configurations.

Shortly afterwards there appeared the now celebrated paper by Dr Otala ${ }^{2}$ which looked at the problem of the transient behaviour of audio amplific's on a formal basis, and drew attention to the possibility of transient intermodulation phenomena when the rate of change of the input waveform applied to a feedback amplifier exceeded the possible rate of change of the feedback voltage (or current).

Recent work in the field of high-quality operational amplifiers has led to the widespread adoption and specification of the parameter "settling time" as a measure of the transient performance of such amplifiers under specified load conditions. This is defined as the time which-elapses between the application at the input of the amplifier of a notionally ideal step function, and the "settling" of the output signal at a level which is, and remains, within some specified error band about its final output voltage.

I would like to suggest the extension of this concept to the field of audio amplifiers, as a means of defining the transient performance, partly because it is a readily visible and measurable thing-as an examination of the published "square wave" oscillographs in normal amplifier reviews will readily confirm-but principally because the argument suggests itself that when the output of an amplifier has "settled", steady state conditions, as defined by conventional t.h.d. and intermodulation distortion characteristics, must surely apply.

Following this argument, I would like to suggest, therefore, that the target for goodquality audio amplifier design should be
that t.h.d. should be, and remain, below 0.1% within the useful audio spectrum and the whole of the output power range, and also that the transient performance of the amplifier, under the anticipated "worstcase" reactive load condition, should be such that the output voltage settles within an appropriate error band (a realistic figure is probably $\pm 0.5 \%$) within a time which is short in relation to the highest frequency signal the amplifier is likely to be called upon to handle; 5 microseconds seems an appropriate value.
(If an input $C R$ lag network is incorporated at the input of the amplifier, as part of the design, to limit the possible rate of change of the input voltage wave-form-which may well be a prudent thing to do-the true settling time may be less than the apparent rise time, but can be derived from the difference between the measured rise time and that predictable from the effect of the input $R C$ network.)

Apart from the questions which this hypothesis may raise in respect of the performance of available audio amplifier designs, it also raises a query as to the desirability in use of steep cut audio filters, which not only produce an increase in settling time when used, but also-demonstrably-will introduce colouration on a "white noise" signal, perhaps for this very reason.
J. L. Linsley Hood,

Taunton,
Somerset.

References

1. Linsley Hood, J. L. Wireless World, June 1970, p. 280.
2. Otala, M. Trans. I.E.E.E., $\mathrm{AU}-18$, pp. 234-239.

REDUCING AMPLIFIER DISTORTION

In his article in the October issue (page 367) Mr Sandman states that "In Fig. 1 the undistorted part of the output $V_{\text {in }} R_{2} / R_{1}$ balances off at the junction of R_{1} and R_{2} to produce zero voltage, the only voltage to appear at this point being proportional to the distortion".

This statement is not strictly accurate. In Fig. 1, and in other circuits, the amplifier input is connected to the junction of R_{1} and R_{2}. It is obvious, therefore, that the undistorted component of voltage at this point cannot be zero. If it were, the amplifier would have no input and could produce no output. If A is large the voltage approximates to $V_{\text {in }} R_{2} / A R_{1}$; it may well be that this is small compared with the distorted voltage fed back, but it can never be zero.

Referring again to Fig. 1, there is a point in the circuit at which the undistorted component of signal does balance to zero, to leave only a distorted component. This point is not at the junction of R_{1} and R_{2}, but is along R_{2} between the input and output of the amplifier A. To obtain a true balance to zero it is necessary to connect the input of A_{2} in

Fig. 2 to a tapping point on R_{2} instead of to the input of A_{1}. This point on R_{2} is critically dependent on the gain of A_{1}, however, and precise adjustment is needed to obtain the proper condition. As long as A_{l} is high enough, therefore, it is probable that Mr Sandman's non-critical arrangement is better in practice.

There is no mention in Mr Sandman's references to the work of W. Baggally ("Distortion cancellation in audio amplifiers", The Wireless Engineer and Experimental Wireless, August 1933, page 413). I referred to this in my letter in the April 1973 issue of Wireless World, page 192. In Baggally's scheme a phase-reversing main amplifier had a resistance with an adjustable tapping connected between its input and output. A non-phase-reversing amplifier was fed from this tapping and its output applied to the input to the main amplifier. Critical adjustments of tapping point and of subsidiary amplifier gain were required, which is probably why the circuit never achieved popularity.
W. T. Cocking,

Ewell, Surrey.

Mr Sandman replies.

The part of the article "It cannot be too strongly stressed . . ." (page 367) deals with the definition of distortion which I employ. Distortion includes frequency, amplitude, phase and non-linear distortion.

I am sure it is common ground that the output can be split up into two parts, undistorted

$$
\left(V_{i n} \frac{R_{2}}{R_{I}}\right)
$$

and distorted V_{D}.
It follows that $V_{\text {in }}$ and $V_{\text {in }} R_{2} / R_{j}$ balance off to zero at the input to A_{I} and A_{2} and that the voltage at this point is the distortion (V_{D}) attenuated by R_{I} and R_{2} (a small voltage). This attenuation is compensated by the gain of amplifier $R_{1}^{\prime}, R_{2}^{\prime}$. and A_{2} to produce $V_{D}{ }^{\prime}$ (the error take-off voltage as I now define it) which is taken off the output appearing across R_{L}.

If Mr Cocking were to build Fig. 11 incorporating the corrections in Wireless World, November 1974, page 454, I am sure his doubts would be laid to rest.

Mr Baggally's scheme falls down on both the principles of "non-interaction" and "rigidity of interconnection".

CIRCUIT DIAGRAM LAYOUT

The article by Mr Amos on circuit diagram layout (November issue) was certainly welcome in these days of atrocities typified by his Fig. 9.

While agreeing with most of his recommendations, the golden rule I like to follow is to draw everything that is more positive "northwards" of everything that is negative, so that travelling from the bottom to the top of the paper each conductor is in order of potential above
earth. This makes it easier to understand the circuit once one has recognized it.
Therefore I totally abhor Mr Amos's Fig. 6 which, although it may be "clearly a multivibrator", is not easy to understand. I suggest the following drawing is preferable:

The crossover is preserved and so are the polarities. Caution is still needed, however, or, like Mr Amos, one might miss the fact that this never was a multivibrator, but is a bistable which self-destructs when triggered!
David Williams,
London SE12.
Speaking as one who earns his daily bread in a world of circuit diagrams I must say I entirely agree with the admirable basic aims set out in your November 1974 editorial and the opening paragraph of Mr Amos's article on layout of circuit diagrams in the same issue.

However, I feel Mr Amos has missed the point in attempting to lay down standard circuit diagram patterns for every type of circuit. Since there are already countless different circuit configurations and new circuits are being designed every day, you can never hope to achieve a standard pattern for every circuit. The aim should be to assist a complete stranger to learn the function of a particular circuit configuration; if someone who is already familiar with the circuit can instantly stamp it with the name "Colpitts oscillator" (or whatever) then so much the better, but that should be a secondary aim.

I therefore suggest four basic rules for a good circuit diagram should be, in order of priority:
(i) current flow vertically downwards;
(ii) signal flow from left to right and top to bottom;
(iii) minimize the number of bends in connecting lines;
(iv) minimize the number of crossings of connecting lines.
I place (iii) above (iv) because a line is fairly easy to follow if it is straight, even if it does cross several others in its path.

In my experience, when one encounters a totally unfamiliar circuit configuration rule (i) is fundamental in attempting to understand its function. Fortunately nowadays most circuits are drawn to this convention, which enables one to visualize small voltage changes as "up or down" and to keep a clear track of the various
inversions a signal undergoes.
By this argument, Fig. 5 in the article is preferable to Fig. 6, contrary to Mr Amos's conclusions. Being able to stamp Fig. 6 with the name "multivibrator" does not help one to understand its operation, since it is unusual in that both transistors are on (or off) simultaneously.
Paul V.J. Adkins,
Braintree, Essex.

Mr Amos replies:

I am glad that Mr Williams welcomed my article in general and I like his redraw of the multivibrator circuit. I am puzzled, however, by his final sentence which seems to imply that a multivibrator cannot be bistable. In fact electronic circuitry bristles with bistable multivibrators usually abbreviated nowadays to just bistables. I take Mr Williams's point about my Fig. 6; I have perhaps oversimplified this in order to emphasize my argument. In a practical version of the circuit current-limiting resistors are necessary.
Mr Adkins also advocates the "current downwards" approach in circuit diagram layout and I think this has much to commend it in digital circuits. My article was, however, chiefly devoted to analogue circuits as I made clear in my first paragraph and here I think it is preferable to aim at preserving the standard pattern for well-used circuits no matter what the direction of standing currents. This is also the view of BSI as made clear in Section B2 of the Guiding Principles of BS3939.

TRACKING FILTERS

I was very interested in the article in your October issue by Messrs Knott and Unsworth, particularly in their implementation of the technique of 50 Hz rejection with modern methods and their analysis of the performance of the filter.

One of the earliest examples of this method was described in 1953 by Beard and Skomal'. They used a switched capacitor storage system to reject 60 Hz interference in a model of a geophysical prospecting situation.

The technique has also been widely used for rejecting all signals (as well as those from mains) which are not locked to the store switching rate. Three papers which have probably not received the credit they deserve, because of inaccessability, are by G. Suryan ${ }^{2,3,4}$. He used a synchronous magnetic store and his analysis showed clearly its behaviour as a comb filter.
A switched capacitor store was introduced by me for rejecting 50 Hz ; and all other signals not locked to the switching cycle, in 1951 and described more fully in 19535 . Although the electronics are obsolete the account of the method may be of interest because it outlines some of the precautions against stray capacitances and capacitor leakage which are needed
if a stored waveform is to retain its shape. This technique has now become a standard method of examination in man for delay of conduction in diseased nerves. Also it is used for examining transmission in the auditory pathway in children who cannot communicate.

The technique is now usually implemented by purely digital methods, but there may still be a use for capacitor stores in special purpose applications. So it seems well worthwhile emphasizing the more general applications of a system such as that described by Knott and Unsworth. It can be easily used to extract the response of any system which can be stimulated at a fixed time in relation to the store switching cycle. Also, with digital switching, the occurrence of store switching cycles and locked stimuli may be irregular, if this is an advantage.

G. D. Dawson,

Department of Physiology,
University College London.

References

1. Beard, C. I. and Skomal, E. N. RC memory commutator for signal to noise improvement, Rev.Sci.Instr. Vol. 24, 276-280, 1953.
2. Suryan, G. A new method of integration of weak nuclear magnetic resonance signals, Physical Review, Vol. 80, 119, 1950.
3. Suryan, G. The synchronous magnetic recorder and its applications, Part 1 theory, J. of the Indian Institute of Science, Vol. 35, No. 3, 1953.
4. Suryan, G. The synchronous magnetic recorder and its applications, Part 2 experimental, J. of the Indian Institute of Science, Vol. 35, No. 3, 1953.
5. Dawson, G. D. A summation technique for the detection of small evoked potentials, EEG Clin. Neurophysiol., Vol. 6, 65-84, 1954.

QUADRAPHONIC QUANDARY

It would be pointless to make a technical reply to Mr Bauer's letter (September 1974) which concludes that it is sufficient for the producer and recording director to make and approve the SQ record and so "the various , mathematical and philosophical arguments about quadraphony, therefore, become inconsequential".

How delightful! Quadraphony equals SQ. All controversial problems may now be set aside.
B. J. Shelley,

Rome,
Italy.

AMPLIFIER

CLAIMS

I have just noticed an advertisement in your May 1974 issue, placed by Radford Audio Ltd. I wish to make some comments on some of their claims, as they have made some very bold statements
which I doubt would stand the scrutiny of the Trade Descriptions Act.

First, their statement, "We believe no other amplifier in the world can match the specifications of the HD250". I don't believe that they have checked other makers' equipment from, say, the USA or Japan. There are several pre-amps and main amps made in both these countries that will equal it and better it by an easy margin-if the Radford specs are written in the same manner. They are not properly defined.

Secondly, to say distortion (pre-amp) is zero is a very bold statement, to say the least. According to the IHF method of measurement, the only true distortion figure to quote is what is called total harmonic distortion (t.h.d.) which is defined as including noise hum, all spurious and harmonics of the frequency being measured. Incidentally many British makers seem to "loophole" their way round amplifier distortion these days by stating only harmonic distortion, let alone which one! The reason for including noise is that all amplifying circuits add some noise which was not there on the original signal fed in, thereby distorting the original. (This I know is a hypothetical case.) So let's have a look at their case-making many assumptions. That the phono has a sensitivity of 2 mV at 1 kHz and the nominal output from the pre-amp is 1 volt, then the lowest distortion with reference to this can only be about 0.03%, not zero. The disc noise is given as -83 dBV bandwidth limited to 23 kHz , but with respect to what! The generally accepted method of quoting noise in Japan is on a wide band measurement up to 1 MHz and against a nominal 2.2 mV at 1 kHz sensitivity, and for auxiliary or other high level inputs a reference of 150 mV is used. Likewise whose " A " weighting do they mean? Overload margin of "disc" input is quoted at 40 dB ; nothing marvellous. I could find other points to grumble about in this advertisement.
Tim de Paravicini,
Lux Corporation,
Osaka, Japan.

Reply from Radford Audio Ltd:

Mr Paravicini's comments are a little inconsistent and misleading. Am I to understand that our current advertisements for the HD250 amplifier would not stand the scrutiny of the Trade Descriptions Act because the performance specification extracts appear too good to be true? If so, then how can it be that several preamplifiers and power amplifiers in USA and Japan "will equal it and better it by an easy margin"?

The phrase from our advertisement "We believe that no other amplifier in the world can match the specification of the HD 250 " is mis-quoted by him as "We believe no other amplifier in the world can match the specifications of the HD250'. Mr Paravicini's plural specification is taken to mean "some specification details". The word "specification"(singular) means the totality of all specification detail. This includes visual presentation,
engineering design, quality of manufacture, servicability, facilities and functions available, flexibility in use, performance characteristics, etc. Mr Paravicini appears to have become enmeshed by his loose reading and colloquial popular hi-fi jargon.

In the advertisement it quite clearly states that the performance details quoted are extracts, and the specification is therefore not complete. In it readers are invited to write for a 12-page leaflet which describes the design details of the HD250, together with a complete specification. It is not possible or desirable to give a complete specification in an advertisement. Nor is it expected that our potential customers will purchase amplifiers by just reading the advertisement, or even after studying the leaflet, but only after hearing and comparing the HD250 with other amplifiers in the dealer's showroom.

The fact that we believe that the specification of the HD250 cannot be matched by any other integrated amplifier does not make it a claim or a fact. Nevertheless it is reasonable to expect that we have done some work to justify our opinion. Our belief is based on measurements carried out on amplifiers available in this country, and in America with similar test equipment and under similar conditions of test, and not by studying manufacturers' literature. Mr Paravicini compares the performance details of the HD250 quoted with unspecified separate pre-amplifiers and power amplifiers. Although it is generally accepted that it is not possible to obtain some performance parameters as good in integrated amplifiers as in separate pre-amplifiers and power amplifiers it does not alter the fact that we know of no other pre-amplifier with a better overall performance characteristic than the pre-amplifier section of the HD250 (the pre-amplifier section of the HD250 is now also available as a separate unit, namely the ZD22 Pre-amplifier Control Unit).

Concerning distortion. We do not claim that the harmonic distortion of the preamplifier section is an unqualified zero as he states. In general text we say that the distortion is "virtually zero" or qualified as in the advertisement "cannot be identified or measured as it is below inherent circuit noise".

The IHF method of specifying total residual background under dynamic conditions of distortion measurement as "total harmonic distortion" makes sense generally as this is what distortion measuring sets measure. If, however, after rejection of the fundamental test frequency by the d.m.s. there are no measurable or observable harmonics left-just the' static inherent noise of the equipment under test plus measuring equipment noise if anythen to specify this residual as "total harmonic distortion" is nonsense in any language. When the IHF test specification was drafted such a condition was probably not envisaged. If the total harmonic distortion products generated by an amplifier at the working signal level do not add to the static inherent noise background, then the harmonic distortion can surely be said
to be "virtually zero". In the disc amplifier referred to, the harmonic distortion cannot be measured or detected at working signal level or even at 20 dB above. It will be appreciated that distortion levels below 0.01% are largely academic in practical amplifiers for sound reproduction, but this does not prevent engineers from designing better and better amplifiers. The virtual elimination of harmonic distortion in audio amplifiers up to output stage clipping level is a logical target of development.

It is conventional when making distortion measurements with a d.m.s. to display the residual output, after fundamental rejection, on one trace of an oscilloscope and the fundamental on the other. This enables an assessment to be made of the harmonic distortion structure, the character and energy content of noise, crossover spikes, and spurious responses. The contribution of hum can be ascertained by using a 1 kHz test signal with the 500 Hz filter.

I am baffled by the statement that "British manufacturers seem to 'loop hole" their way around amplifier distortion by stating only harmonic distortion, let alone which one". One could gather from this remark that British engineers have a crafty way of eliminating hum, noise and a dominant second harmonic and quoting only a lower amplitude third harmonic. British manufacturers, in common with American and Japanese manufacturers, use conventional total harmonic distortion measuring equipment in development and do not generally use wave analyzers. As my, company has supplied this type of equipment to the major audio manufacturers in this country (and the rest of the world) I am aware of the situation.

The " A " weighting characteristic is incorporated in standard noise measuring equipment and is also used by professional audio engineers in broadcast and recording studios. It was formulated to simulate the subjective hearing response in order to obtain significant noise figures. A bandwidth of 1 MHz for audio and acoustical noise measurement is unrelated and misleading.

The 40 dB disc overload margin is said to be "nothing marvellous". In itself it may not be extraordinary but if it is taken in conjuction with a noise level near the theoretical minimum and a "virtually zero" distortion at +20 dB above operating level and an RIAA accuracy of $\pm 0.2 \mathrm{~dB}$ then that is something. In the HD250 sales leaflet it clearly states that the signal-tonoise ratio is greater than 83 dB measured with a noise bandwidth of 23 kHz when used with a 5 mV output cartridge (1 mV / cm / s at reference velocity of $5 \mathrm{~cm} / \mathrm{s}$). This figure is considerably better than in any other amplifier we have tested.

I am unable to appreciate the object of Mr Paravicini's letter. Is it intended to be a general tilt at British manufacturers? Is he worried about the advanced state of British audio and acoustical technologyor is it just "I am the greatest"?
A. H. Radford,

Radford Audio Ltd,
Bristol.

Weather satellites ground station-3

Conclusion of this series with the display electronics described in full

by G. R. Kennedy

The block diagram of the picture display system is shown in Fig. 22.

The scheme of operations is as follows. Assume an input signal from a tape recording of an APT satellite signal at a moment when the signal is in the peak white between picture condition. The signal clock rate is determined by the limiters feeding the phase-lock loop, which locks on to the input signal rate. The phase-lock loop v.c.o. will then follow the apparent input clock rate, within the tracking range limits, and hence take account. of tape-recorder wow and flutter. The X ramp generator takes the p.1.1. v.c.o. frequency and produces a step-function
ramp from the buffered square wave signal locked to the input rate. Hence the X ramp also takes account of taperecorder speed errors. It should be borne in mind that a step-function ramp generator for the X axis is superior to an analogue integrator ramp generator, for the former takes account of signal rate/ phase changes cycle by cycle with the input signal, whereas the integrator sums the effect and due to the large time constant, may be lagging or leading the inputsignal rate by flyback. This would give a ragged edge to the picture, and displacement of picture details.

The dividers count down the clock rate
in synchronism with any rate changes and accurately trigger the flyback of the X ramp generator.

The start-sync circuit is quiescent during most of the satellite signal sequence. When the 300 Hz tone occurs, the circuit resets the decade counters in the divide chain to nine and the divide-by- 12 counter to zero at the beginning of one of the 12.5 ms black level periods in the five-second phasing period after the 300 Hz tone. After 12 cycles of the signal frequency the divide-by- 12 circuit changes state and sets the decade counters to zero, which resets the X ramp generator. The 12 cycles of the signal frequency delay the flyback

Fig. 23. Display electronics (a) input and limiter/filter stages (b) phase lock loop and divider stages (c) switching gate and ramp generators (d1) start synchronizing circuit.
(and start) of the X ramp by six ms or so. This forces the X ramp to approximately midway through successive black periods in the phasing sequence and centres the picture X scan lines so that there is a white border down each side of the displayed picture. The sync circuit keeps the reset line at logic low during the rest of the picture, until it sees more than 1.5 seconds of 300 Hz , whence the forcing action occurs again. The chances of the picture containing more than a few milliseconds of 300 Hz waveform are remote, but the sync circuit can be manually inhibited, if so required.

In the case of SR pictures such as sent by NOAA-2 there is no interpicture period -the sequence runs continuously-and it is convenient to manually phase the picture for either visible or infra-red picture on the left-hand side, using the lock/slip and slip-rate controls. These unlock the phase-lock loop v.c.o. and allow the p.l.l. output frequency to lag the satellite sub-carrier frequency. In practice it is a matter of moments to manually phase up the picture by observing the picture formation, and by slipping the desired picture border to the left-hand side. The lock position is then selected, and the picture will stay phased. Using the proposed circuit, it would be relatively easy to detect the $23.3 \mathrm{~ms}, 300 \mathrm{~Hz}$ burst in the NOAA-2 sequence which precedes each IR and visible picture line scan. As it stands, the burst is too short for the circuit to respond, but by switching in increased gain for the SR position, forcing of the counters could be carried out. Also, the 600 Hz burst every 30 seconds preceding an i.r. picture line scan could be detected using a 600 Hz filter, and the display phased automatically for lefthand IR pictures. For SR pictures, which run continuously during a pass, the Y ramp generator is switched to run much slower than for APT pictures. The rate can be set by a preset potentiometer on the APT/SR switch to set the picture to the correct Index of Co-operation. It is for this reason that an analogue integrator is used for the Y axis ramp generator, and not a step scan generator.

Fig. 24. Display electronics power supplies.

The complete display circuit is shown in Figs. 23, 24.

Input stage: the input transformer T_{2} is a multi-tapped standard speaker isolating transformer. The number shown refers to the tag number on this transformer. The outputs to the monitor loudspeaker, the sync circuit and to the Z axis output socket are variable by simple resistive coupling using potentiometers R_{72}, R_{73}, R_{75}. The voltage to the limiter is increased by auto-transformer action to double the input level. Shielding of the input transformer from any stray mains fields, particularly from the power supply transformer is essential to reduce 50 or 100 Hz patterning on the displayed picture.

Limiter/filter stage: two similar limiters are used in series ${ }^{7}$. The input waveform is clipped on each half cycle by the opposed diodes D_{14} through D_{17} and amplified and filtered by $T r_{15}$ and $T r_{16}$. The filter networks of $C_{77}, C_{78}, C_{79}, R_{80}$, R_{82} and $C_{85}, C_{86}, C_{87}, R_{86}, R_{88}$ are simple 180° phase-shift lead networks across the amplifier transistors. For the simple circuit shown, and taking single
values for R and C, the filter frequency is very approximately given by
$f \approx 1 / 2 \pi R C \sqrt{ } 10$
Phase-lock loop: an integrated circuit low frequency p.l.l. is used (Signetics NE565A). The usual detected output in unused, and the v.c.o. is $R C$ coupled to the following buffer stage. To avoid feedthrough problems, and for simplicity the circuit has its own ± 5 volt supplies derived from the $\pm 12 \overline{\mathrm{~V}}$ rails. The working point of the input is set by the bias resistors R_{90} and R_{91}.

The unlocked idle frequency is set by C_{91} and ten-turn trimming pot R_{94}. The internal v.c.o. output connection at pin 4 and the internal p.s.d. connection at pin 5 are broken and brought out to the lock/ slip switch, which closes the servo loop for locked operation and opens it for slipping the picture sync. In the latter state the resistive loading of R_{89} and R_{92} are sufficient to alter the v.c.o. frequency.

Schmitt trigger: as mentioned earlier, a gate or emitter follower could perform as well as the Schmitt trigger. The purpose of the stage is to buffer the p.l.1. output and

(e)

Fig. 23 (cont.) Display electronics (e) start synchronizing circuit.
allow fan-out to the ramp generator and dividers. The use of a digital i.c. gives a guaranteed and precise logic level output, and the dual nature of the NAND Schmitt trigger on the chip used allows for further development work.
X Ramp generator: The staircase ramp generator $\operatorname{Tr}_{17}, D_{20}, C_{97}, C_{98}$ is a standard diode transistor pump. The step rise per input pulse of $V_{\text {in }}$ is given by

$$
V_{o}=\frac{V_{i n} C_{97}}{C_{97}+C_{98}}
$$

assuming no loading of C_{98}. As it stands, the output across C_{98} is at very high impedance, and unless driving a high impedance device such as an oscilloscope amplifier, must be buffered. A simple f.e.t. source follower is suitable.

Flyback trigger: The voltage on ramp generator capacitor C_{98} is coupled via diode $D_{2 l}$ to the complementary pair $T r_{18}, T r_{19}$. In the quiescent state the anode of D_{22} is held at +8.7 volts, D_{22} is forward biased and $D_{2 I}$ is reverse biased, since the ramp on C_{98} does not approach 8 volts. Diode D_{21} is a silicon diode and does not present any appreciable discharge path to C_{98}. Transistors Tr_{18} and Tr_{19} are off, since the 8.2 V at Tr_{18} base due to potential divider $R_{I O 3}, R_{l 04}$
is insufficient to forward bias Tr_{18} base/ emitter diode with the forward conduction potential of D_{22} in series. When a positive trigger pulse arrives at C_{99} from the flyback trigger generator D_{22} cuts off, D_{21} remains cut off, $T r_{18}$ and $T r_{19}$ turn on and $D_{2 I}$ conducts forwards. Capacitor C_{98} is rapidly discharged to the level of the sum of the forward bias potentials of $D_{21}, \operatorname{Tr}_{18}$ and $T r_{19}$. When no further charge is transferred through C_{99} the circuit returns to its former state.

Divider stage: the divider stage comprises four NAND digital i.c. counter chips: a divide-by-12; a decade counter; an identical counter connected for divide-by-five; and a further divide-by-five counter. All the counters have two input NAND gates for zero setting, and the decade counters have also a two input NAND gate for binary coded decimal nine setting. The divide by 12 zero reset line and the decade counter nine reset line are taken to the output of the start sync stage. The line
nand gate truth table

a	b	c
0	0	1
1	0	1
0	1	1
1	1	0

Fig. 26. Start sync circuit block diagram.

Fig. 27. Start sync circuit waveforms.
is normally held at logic zero, and the counters count conventionally.

APT/SR switching gate: the APT/SR switch circuit is shown separately in Fig. 25. Three two-input NAND gates are used, A, B and C. The input to the final divide-by- 5 counter is fed in parallel to gate A. The output of the divide-by- 5 counter is fed to gate B, and the outputs of the gates feed gate C. Both of the second unused inputs of gates A and B are held at logic 1 by a direct connection through R_{147} or R_{148}, but can be set to logic O by the $\mathrm{APT} / \mathrm{SR}$ switch. If any NAND gate input is held at zero, no gate transmission can take place, and the output remains high. Hence, whichever gate is not held at zero conducts, and transmits the square wave input to the output, in inverted state. Since one gate is always held off at logic 1 output, gate C always toggles with the output of the other input gate, and inverts that output, returning the sign of the signal to that at the circuit input.

Start sync circuit: the block diagram of the start sync circuit is shown in Fig. 26, and the relevant waveforms in Fig. 27. Referring to the circuit Fig. 23(d), the input is taken from the input transformer via a potentiometer R_{73} and C_{101}. Transistor Tr_{20} forms a high gain saturated amplifier detector. The pi filter C_{103}, C_{104}, C_{105} removes the bulk of the 2.4 kHz subcarrier, and further amplification by Tr_{22} and $T r_{23}$ clips the detected signal to rapid transitions between high and low.

This signal is buffered by Tr_{24} and is converted to precise logic levels by Schmitt trigger $I C_{I 2 A}$. The Schmitt trigger output is fed in parallel to an inverter $I C_{14 A}$, one of six inverters on an inverter chip i.c., and to a 300 Hz filter at $\operatorname{Tr}_{25}, \operatorname{Tr}_{26}$. Components L_{22} and C_{108} are a circuit resonant at 300 Hz of low Q due to the shunting effect of $R_{I 34}, R_{I 35}$ and $R_{I 37}$ through $T r_{26}$ base/emitter diode. Transistor Tr_{26} collector drives the high gain p-n-p transistor amplifier Tr_{27}, which in turn feeds the capacitor C_{109}. When the potential at $T r_{26}$ base rises due to a 300 Hz tone, $T r_{26}$ switches on, which switches Tr_{27}, which charges C_{109} by the potential due to the collector current of Tr_{27} through R_{139}.

The potential rises on C_{109} at a rate determined by its capacity, shunting components $R_{139}, R_{140}, R_{141}$ and R_{142}, and by the length of the 300 Hz burst. Hence the effect of the 300 Hz burst is stored by C_{109}. Transistor Tr_{28} emitter follows the charge rise on C_{109} and depending on the value of potentiometer R_{142}, triggers Schmitt trigger $I C_{I 2 B}$, the second half of a dual Schmitt i.c. chip. This Schmitt output is inverted by $I C_{14 B}$, and the resultant signal applied to the second input of NAND gate $I C_{I 3}$, together with the inverted output of Schmitt trigger $I C_{12 A}$. Due to the fact that Schmitt $I C_{12 A}$ output is normally high, and hence its inverted signal is normally low, NAND gate $I C_{I}$ is normally disabled. When the input due to $I C_{I 2 B}$ via $I C_{I 4 B}$ goes high after a 300 Hz burst, a window is created when gate $I C_{I 3}$
can respond to its input from Schmitt trigger $I C_{12 A}$, carrying detected signal information.

For the window period, the length of which depends on the length of burst the setting of the storage capacitor shunt R_{14}, and the Schmitt trigger lever R_{142}, the NAND gate responds to the detected signal information. The period after the 300 Hz burst contains the 12.5 ms black pulses, and the gate goes low during these periods. The inverted output of the gate through inverter $I C_{14 C}$ therefore goes high. This output is connected to the divider chain counter reset line, and forces reset during the black periods within the 300 Hz store window. In practice, at the beginning of the window period, the 300 Hz tone will still be running, since it is three seconds long, and the reset line will be activated for several of the 300 Hz cycles. However, the counter will respond, as far as the picture display is concerned, to the last forced reset only.
Y ramp generator: the vertical ramp is generated by a conventional operational amplifier integrator, $I C_{I I}$. The feedback integrating capacitor C_{100} is shunted by a low resistance $R_{1 / 2 A}$ during reset via switch S_{5}. The integrator potential is derived from the negative rail by dividers $R_{110}, R_{H I}$ for APT and $R_{H / 0}, R_{1 / 1}, R_{I / 2}$ for SR, selected by switching. Both inputs are biased by resistors R_{108} and R_{109} Switch S_{6} is opened to allow linear integration of the potential on R_{110} wiper, with an optional negative potential being switched into the inverting input by S_{6} to set the integrator to maximum ramp voltage. The vertical output is taken across load $R_{I I}$ to earth. As the circuit stands it is manually controlled. The addition of gate control from the start sync circuit could be arranged relatively easily to automate the start/reset cycle.

Stabilized power supplies: the main stabilized power supply uses integrated circuit stabilizers. Two supplies are used and combined to give $\pm 12 \mathrm{~V}$ at 0.5 A . The rail is fed to a simple series transistor stabilizer, comprising an $n-p-n$ power transistor ${T r_{2 g}}$ with base potential stabilized by R_{146} zener diode D_{25} and is decoupled by C_{116} (Fig. 24).

Display device

The obvious display for the preceding circuitry is an oscilloscope. The basic requirements are: Z axis modulation capability; X axis input capability with stable d.c. coupled amplifier; Y axis stable d.c. coupled amplifier; small spot size; short persistence c.r.t. phosphor for photography, or long persistence for direct viewing; hum free supplies; and capability of disabling the beam blanking.

Display system operation

The display must first be set for X, Y and Z range limits. The X ramp is continuously available for setting up, as are the Y limits using S and S. On the oscilloscope the Z axis is the most difficult to set, due to the generally coarse controls for bright-
ness on most oscilloscopes. The interpicture maximum brightness signal is useful for setting this level, but the overall dynamic range, as determined by R_{75}, is a matter of trial and error. Once set, the tape may be run until the 300 Hz tone is heard on the monitor in the case of APT signals. The oscilloscope camera shutter, if used, can then be opened, and S_{5} switched to start. After the picture period, when the interpicture tone is heard, the shutter is closed and S_{5} switched to reset. In the case of SR pictures, as outlined earlier, the picture must be viewed, or a slave display arranged so that phasing can be carried out manually with the lock/slip switch $S_{l, 2}$. The simplest way to set up the correct Index of Co-operation for the SR pictures is to count the telemetry "teeth" which occur every 25 lines, and to apply the empirical relationship
$\frac{\text { width of actual picture (centimetres) }}{\text { telemetry "teeth" per centimetre }}=2.6$
Lastly, two practical points when using an oscilloscope for display can be useful. It may well be found that the X-axis amplifier is too insensitive for the generated X-ramp. One solution is to transpose the X and Y-axis outputs from the display electronics, since many oscilloscopes have a higher Y input sensitivity than X sensitivity, and the Y output of the display unit delivers a 0 to +11 volt ramp. Secondly, if the oscilloscope has a stable and accurate trigger circuit, the display unit step-derived ramp may be omitted and the oscilloscope internal timebase used to generate the X ramp. In this case, the 4 or $4 / 5 \mathrm{~Hz}$ output is coupled to the oscilloscope external trigger input and the timebase speed adjusted to suit.

Appendix
Capture and lock range for the Signetics NE565 phase lock loop. If the external frequency determining components at pins 8 and 9 (Fig. 19, Part 2) are R_{53} and C_{67} respectively:
free running frequency $f_{o} \approx 1.2 / 4 R_{53} C_{67}$. When the p.s.d. is in the limiting mode ($V_{m} \gg 200 \mathrm{mV} \mathrm{pp}$) the lock range is given by $2 \omega_{L}=2 K_{o} K_{d} A \theta_{d}$
where K_{o} is the v.c.o. conversion gain, K_{d} is the p.s.d. gain, A is the amplifier gain and θ_{d} is the maximum phase error for loop lock.
For the NE565 typical values are
$K_{o}=\frac{50 f_{o}}{V_{c c}}$ where $V_{c c}$ is the total voltage
supply to the circuit, $K_{d}=\frac{1.4}{\pi}$ volts/radian,
$\mathrm{A}=1.4$ and $Q_{d}=\pi / 2$ radians. Hence f_{L} $\approx \omega_{L} / 2 \pi \approx 8 f_{d} / V_{c c} \mathrm{~Hz}$ either side of the centre frequency or a total range of $2 f_{L} \approx 16 f_{o} / V_{c c} \mathrm{~Hz}$.

The capture range is given approximately by $2 \omega_{c} \approx 2 \vee \frac{\omega L}{\tau}$
where ω_{L} is the one sided lock range
$\omega_{L}=2 \pi f_{L}$, and $\omega_{C}=2 \pi f_{C}$
and τ is the time constant of the loop filter. $\tau=R C$ (C is the external filter capacitor on pin 7) with $\mathrm{R}=3.6 \mathrm{k} \Omega$ (internally on the chip).

$$
\begin{gathered}
\text { Re-writing, } f_{c} \approx \pm \frac{1}{2 \pi} /\left(\frac{2 \pi f_{L}}{\tau}\right) \\
= \pm\left[\frac{1}{2 \pi} /\left(\frac{16 \pi f_{0}}{\tau V_{c c}}\right)\right]
\end{gathered}
$$

Hz either side of centre or a total capture range of

$$
f_{c} \approx\left[\frac{1}{\pi} /\left(\frac{16 \pi f_{0}}{\tau V_{c c}}\right)\right]
$$

This approximation works well over narrow capture ranges when $f_{c}<f_{L} / 3$ but becomes too large as $f_{c} \rightarrow f_{L}$.

Components list Resistors-R					
Fig. 23(a)	72	1 k		111	15k
	73	5 k		112	100k
	74	33k		112A	100
	75	5k		113	10k
	76	10k	(d)	114	100k
	77	10k		115	1 k
	78	10k		116	4.7k
	79	330k		117	100 k
	80	10k		118	1 k
	81	1.5 k		119	4.7k
	82	10k		120	100k
	83	10k		121	2.2k
	84	15k		122	5.6k
	85	470k		123	100k
	86	10k		124	10k
	87	1 k		125	3.3k
	88	10k		126	220k
(b)	89	47k		127	100
	90	330		128	1 k
	91	330		129	2.2 k
	92	1M		130	10k
	93	150		131	100k
	94	5k		132	100k
	95	150		133	100
	96	2.2k		134	1 k
	97	470		135	1.7 k
	98	1k		136	1.8k
(c)	99	330 k		137	1k
	100	330k		138	100k
	101	5k		139	470k
	102	10k		140	10k
	103	470		141	250k
	104	1 k		142	5k
	105			143	470
	106	1 k		144	470
	107	1 k		145	1 k
	108	510k	Fig. 24	146	560,
	109	510 k	Fig. 25	147	33k
	110	500, t	turn	148	33k

Capacitors-C
Numbers 83 and 84 are not included

Fig. 23(a)	75	50n
	76	50n
	77	1.8p
	78	1.8 p
	79	1.8p
	80	470p
	81	50n
	82	50n
	85	1.8p
	86	1.8 p
	87	1.8 p
	88	470p
	89	50n
(b)	90	1 n
	91	32n
	92	$150 \mu / 15 \mathrm{~V}$
	93	100n
	94	$150 \mu / 15 \mathrm{~V}$
	95	47p
(c)	96	470p
	97	147p
	98	1.25μ
	99	680n
	100	6.8, mylar
	83	10 n
(d)	101	100 n
	102	10 n
	103	220 n
	104	1μ
	105	0.68 μ
	106	150n
	107	680 n
	108	320 n
	109	$10 \mu / 25 \mathrm{~V}$
Fig. 24	110	$10,000 \mu / 30 \mathrm{~V}$
	111	10,000 $\mu / 30 \mathrm{~V}$
	112	$400 \mu / 35 \mathrm{~V}$
	113	$400 \mu / 35 \mathrm{~V}$
	114	10 n
	115	10 n
	116	$10 \mu / 30 \mathrm{~V}$
	117	$400 \mu / 35 \mathrm{~V}$
	118	10 n
Diodes-D		
Fig. 23(a)	14	GEX34
	15	GEX34
	16	GEX34
	17	GEX34
(b)	18	MR56
-	19	MR56
(c)	20	IN400I
	21	1N4001
	22	1N4001
Fig. 24	23	REL65
	24	REL65
	25	MR51

Inductor-L
Fig. 23(d) 22500 mH
Transistors- $\mathbf{T r}$
Fig. 23(a) $15 \quad$ 2N2926
16 2N 2926
(c) $17 \quad 2 \mathrm{~N} 2926$

18 2N726
19 2N706
(d) $\quad 20 \quad 2 \mathrm{~N} 2926$

2N2926
22 2N2926
23 2N2926
2N2926
25 2N2926
26 2N 2926
27 2N2926
28 2N2926
Fig. $24 \quad 29 \quad 2 N 3054$

Integrated circuits-IC

	Fig.23(b)	4	NE565A
	5	SN7413N	
	6	SN7492N	
		7	SN7490N
	8	SN7490N	
	9	SN7490N	
	(c)	10	SN7400N
		11	SN72741N
	(d)	12	SN7413N
	13	SN7400N	
	14	SN7404N	
integrated stabilizer	15	MVR-12V	
integrated stabilizer	16	MVR-12V	

Transformers-T
Fig. 23(a) 2 RS Components Ltd, universal speaker isolating transformer.
Ratios w.r.t. i / p on pins 2 and 3.
pin 5-1.375: 1
pin 4-2.0: 1
pin 6-1.575:1
pins 7 and 8-0.475: 1
Fig. 24330 V rectifier transformer.

Author's biography

Gerry Kennedy is a Higher Scientific Officer with the Science Research Council at the Appleton Laboratory, Chilbolton Observatory. His private project was started in the Falkland Islands with Nimbus 3 ice cover pictures. This work was continued on his return to the UK to encompass more recent satellites. He is a radio amateur with the call signs VP8LZ and G30GK.

Corrections to Part 1

p.437, column 2, last line-diodes 3 to 13 (not 5 to 12).
p.438, column 1, line $2-D_{7}\left(\right.$ not $\left.D_{4}\right)$ line $11-R_{7}\left(\operatorname{not} R_{2}\right)$ line $24-R_{g}\left(\right.$ not $\left.R_{5}\right)$
p.439, column 1, line 15- $\operatorname{Tr}_{2}\left(\operatorname{not} \operatorname{Tr}_{I}\right)$ column 3, line 32- $L_{5}\left(\right.$ not $\left.L_{10}\right)$
p.440, components $R_{7}-1 \mathrm{M}($ not 111)
$C_{12}-1000$ (not 1)
Tr_{2}-MS175TB (not 11S-1757B)

Corrections to Part 2

p. 488 col. 3 line 15 -for R_{5} read R_{57}, line 16 for C_{3} read C_{69}, line 18 for C_{6} read C_{70}, line 19 for C_{4} read C_{71}, line 22 for C_{4} read C_{71}. p. 489 picture is upside down and back-tofront.
p. 490 components list R_{70} is 250 k .

Acknowledgement

The author would like to thank the Reverend Dr Paul Sollom OSB, of Douai Abbey for his encouragement and helpful advice, also NOAA for data supplied periodically and NASA for making the whole project possible.

References

7. Sollom, "Just Look at the Weather", Radio Communication, Radio Society of Great Britain, vol. 47, No. 12, Dec. 1971, p. 823.

The monostable .. . doth give us pause

Introducing set 19 of Circards

by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams

Paisley College of Technology

Not quite the words of Hamlet, but delay is one outstanding property of the monostable circuit. De Bono, in The Mechanism of Mind, could be describing another function of the circuit when he writes, "a short-term memory is just a way of extending the influence of an event beyond the real time of its occurrence along the dimension of time", e.g. a monostable will accept a transition at its input and respond with an output pulse, but for a finite time. A more formal description of the monostable (sometimes called a one-shot) circuit is having one stable state in which it remains until triggered by an external signal into a quasi-stable state, where it remains for a time determined by circuit parameters and subsequently returns to its stable state. This basic action allows the monostable to be used for a variety of purposes such as lengthening, delaying and regenerating pulses, sequential timing and delay applications and frequency division.

The nature of the monostable circuits can be widely different because they can be designed using $n-p-n$ and $p-n-p$ bipolar transistors (in cross-coupled emittercoupled and complementary modes), fieldeffect transistors, operational amplifiers, discrete and integrated-circuit logic gates, as well as purpose-designed monostable integrated circuits.

A very common type of monostable uses a cross-coupled configuration which can be thought of as being a modification of a symmetrical bistable where one resistive coupling is replaced by a capacitive coupling. Two can either be connected between the collector of a normally-off transistor to the base of a normally-on transistor, or between the collector of a normally-on transistor and the base of a normally-off transistor. Fig. 1 shows a circuit of the first type and Fig. 2 the associated current and voltage waveforms.

Transistor Tr_{2} is in a stable on state, until triggered, due to the base drive supplied through R_{2}. Transistor $T r_{I}$ is held in a stable off state as R_{4} is connected to Tr_{2} collector which is at the low saturation value of $v_{c e 2}$ and R_{3} is returned to the negative $V_{B B}$ rail. When a positive-going trigger pulse is applied to Tr_{I} base via C_{I} this transistor turns on causing its collector voltage to fall to almost zero.

Because the charge on C_{2} cannot change instantaneously, this negative-going transition is passed to $T r_{2}$ base which switches off. The transistors remain in these states while the charge on C_{2} changes via R_{2} causing
$v_{b e 2}$ to rise exponentially towards $+V_{c c}$. When $v_{\text {be2 }}$ passes through zero and rises positively to a value depending on the type of transistor used, which causes base current to flow in $T r_{2}$, this transistor begins

Fig. 1. A common monostable can be thought of as a bistable circuit with one resistive coupling replaced by a capacitative coupling. Two can be connected as shown.

Fig. 2. Waveforms associated with circuit of Fig. 1 .

Fig. 3. Switching speed of Fig. 1 circuit is improved by preventing saturation with diodes D_{1} and D_{2}. Clamping diode D_{3} reduces recovery time by connection to a supply less than $V_{\text {cr }}$.

to turn on. The resulting fall in $V_{C 2}$ is coupled to $T r_{l}$ base via $C_{3}, T r_{1}$ beginning to turn off; the regenerative feedback via C_{2} and C_{3} causes the circuit to restore to its stable state of $T r_{1}$ off and $T r_{2}$ on, the capacitor C_{2} recharging through R_{I}.

The switching speed of this kind of circuit can be improved by using higher speed switching transistors in a non-saturating circuit. To prevent saturation, germanium diode D_{1} and silicon diode D_{2} can be added as shown in Fig. 3. When $T r_{2}$ begins to turn on, to return the circuit to its stable state, D_{1} will be reverse-biased until $\boldsymbol{v}_{C_{2}}$ falls below ($v_{\text {be2 }}+v_{D 2}$) causing the excessive base drive current, which would otherwise saturate $T r_{2}$, to be diverted through D_{1}. Two series-connected germanium diodes can be used in place of the silicon diode D_{2}. The waveform at $T r_{I}$ collector can have a slow recovery time, especially when driving capacitive loads, and this can be reduced by the addition of the clamping diode D_{3} returned to a supply $V_{A}<V_{C C}$. The output voltage $v_{C I}$ attempts to rise towards a higher value with D_{3} present but becomes clamped at $\left(V_{A}+V_{D 3}\right)$ when D_{3} conducts.

Another method of reducing the recovery time is to include an emitter follower between R_{1} and C_{2} of Fig. 1, as shown in Fig. 4. As C_{2} is charged to almost the supply rail voltage, the emitter of $T r_{3}$ is normally close to $+V_{c c}$. The input trigger pulse switches the circuit to its quasi-stable state and as the charge on C_{2} changes, the emitter voltage of Tr_{3} rises above its base voltage ($v_{C I}$ on) cutting the transistor off. When $T r_{2}$ again begins to conduct, the circuit returns to its stable state with C_{2} being rapidly recharged by the emitter current of Tr_{3}.

The output from T_{1} collector can be made to more closely approach a rectangular pulse by the inclusion of an isolation diode D_{4} as shown in Fig. 5. When $T r_{l}$ is on the collector current flows through R_{1} and R_{7} in parallel and a faster recovery time is achieved by making $R_{7}<R_{\text {, }}$ so that when Tr_{l} switches off D_{4} is reverse biased and C_{2} recharges more rapidly, through R_{7}, than in the circuit shown in Fig. 1. Other methods of triggering this type of monostable include negative pulses to either $T r_{1}$ collector or Tr_{2} base or positive pulses to the base of another transistor having its collector and emitter respectively connected to Tr_{I} collector and emitter.

Another form of the cross-coupled monostable is shown in Fig. 6, the major difference compared with the foregoing circuits being that $T r_{1}$ is on and $T r_{2}$ is off in the stable state. This is achieved by correct choice of the potential-dividing chain and by D_{2} being forward-biased via R_{1}, holding the base-emitter junction of $T r_{2}$ reverse-biased. A negative-going input trigger pulse causes $T r_{I}$ to switch off and hence Tr_{2} to switch on and to remain in that state as C_{2} charges, part of the charging current being base drive to $T r_{2}$. Diode D_{2} is reverse-biased in this quasi-stable state which ends when the base drive to $T r_{2}$ has fallen to a level which will not maintain conduction. Transistor $T r_{2}$ then switches off causing $T r_{I}$ to return to the stable on state. No output is taken from Tr_{I} collector as a

Fig. 4. Recovery time can also be reduced with an emitter follower between R_{1} and C_{2} of Fig. 1 .

Fig. 5. Output from $T r_{1}$ is made more rectangular by isolation diode D_{4} and by making $R_{7}<R_{i}$.

Fig. 6. In this variant of the cross-coupled monostable, T_{1} is normally on and $T r_{2}$ normally off. Note trigger is of opposite polarity. Circuit has much faster recovery time.
load at that point significantly changes the off time of $T r_{2}$. This circuit has a much faster recovery time than the previous ones discussed.

A cross-coupled monostable which besides producing a time-constant-dependent output pulse may provide one due to the input pulse duration is shown in Fig. 7. In the stable state $T r_{1}$ is on and Tr_{2} is off, so when a short-duration trigger pulse is applied via D_{l} the circuit remains in its quasi-stable state for a time determined largely by $C_{1} R_{3}$. However, when a long input pulse is applied, $T r_{1}$, will remain off until the input is removed even if C_{I} completes its discharge during that interval.
Fig. 8 shows an emitter-coupled monostable where $T r_{2}$ is on and $T r_{1}$ is off in the stable state. Compared with the crosscoupled circuits, this type has the advan-
tages of only using a single supply and providing an output which is taken from a point having no internal coupling. When a negative-going trigger pulse is applied to $T r_{I}$ collector via C_{l} it is coupled to the base of $T r_{2}$ which switches off. The emitter voltage falls allowing $T r_{1}$ to switch on for a time determined by that required for C_{2} to discharge sufficiently to allow Tr_{2} to begin to conduct. The emitter voltage then rises, causing $T r_{I}$ to begin to switch off, and the resulting rise in \dot{r}_{1} collector voltage is coupled to Tr_{2} base which switches on, and $T r_{J}$ switches off to regain the stable state. Due to the presence of R_{4}, the output voltage swing does not approach $V_{C C}$ and the recovery time is not very fast, as R_{3} should be greater than R_{6} to ensure the correct switching action. Recovery time can be improved by the

Fig. 7. This circuit produces an output pulse dependent on input pulse duration.

Fig. 8. Emitter-coupled circuit needs only one supply line and gives a more isolated output.

Complementary transistors enable both transistors to be normally off (Fig. 9, above) or normally on (Fig. 10, right). Opposite-polarity outputs are available from Fig. 10.
addition of an emitter follower as was done in Fig. 4.

A monostable using a complementary pair of transistors, having both transistors off in the stable state, is shown in Fig. 9. A negative-going trigger pulse applied to $\operatorname{Tr}_{\text {, }}$ base causes this $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor to switch on, its collector current in R_{I} and R_{2} causing the base of $T r_{2}$ to go positive causing this $\mathrm{n}-\mathrm{p}$-n transistor to switch on also. The resulting collector current in R_{4} causes the output voltage to go negative and this change is coupled to Tr, base through C_{1} causing Tr_{1} and hence Tr_{2} to be switched hard on. In this quasi-stable state C_{1} charges through R_{3} and Tr_{2} towards $-V_{E E}$ and when the charging current is insufficient to maintain conduction in $T r_{1}$ this transistor switches off, as does Tr_{2} and the circuit returns to its stable

state.
Fig. 10 shows a complementary monostable in which both transistors are on in the stable state, and which provides a pair of opposite-polarity outputs simultaneously. A positive-going trigger pulse applied to Tr_{2} base turns both transistors off and after C_{1} charges sufficiently, through R_{2} and R_{4}, both transistors return to the stable on state regeneratively.

These and other types of monostable cir cuits are discussed in Circards, set 19, together with component values for tested circuits-see next column.

Titles of cards in set 19 of Circards (available shortly)
1 discrete-component monostables
2 complementary circuits
3 op-amp/comparator types
4 t.t.l.-gate monostables
5 compensated c.m.o.s. circuits
6 emitter-coupled monostables
7 voltage-controlled monostables
8 long-delay circuits
9 dual monostable applications
10 high duty-cycle types

What are Circards?

Circards are a new method of collating and presenting data about circuits in a compact and easily retrievable way. The sets of $203 \times 127 \mathrm{~mm}(8 \times 5 \mathrm{in})$ doublesided cards are designed for easy filing in standard boxes and for easy access at the desk or at the bench, where transparent plastic wallets keep the cards in good condition.

Each card normally describes operation of a selected circuit, gives measured performance data and graphs, component values and ranges, circuit limitations and modifications to alter performance. Suggestions for further reading are included together with cross references to related circuits. The Circard concept was outlined more fully in the October 1972 issue of Wireless World, pp.469/70.

How to get Circards

Order a subscription by sending $£ 13.50$ for a series of ten sets to:

Circards

IPC Electrical-Electronic Press Ltd
General Sales Department, Room 11
Dorset House
Stamford Street
London SE1 9LU
Specify which set your order should start with, if not the current one. One set costs $£ 1.50$, postage included (all countries). Make cheques payable to IPC Business Press Ltd.

Topics covered so far in Circards are:
1 active filters
2 switching circuits (comparator and Schmitt circuits)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, tone controls, filters)
6 constant-current circuits
7 power amplifiers (classes A, B, C \& D)
8 astable multivibrator circuits
9 optoelectronics: devices and uses
10 micropower circuits
11 basic logic gates
12 wideband amplifiers
13 alarm circuits
14 digital counters
15 pulse modulators
16 current-differencing amplifierssignal processing
17 c.d.as-signal generation
18 c.d.as-measurement and detection

Meetings

LONDON

2nd and 3rd. IEE-"The why and how of telephone exchanges". Christmas holiday lecture by C. A. May at 14.30 at Savoy PI., WC2.

6th. IEE-"Flat diaphragm loudspeakers" by
J. W. Manger at 17.30 at Savoy PI., WC2.

7th. IEE--"Protection performance as affected by the use of capacitor voltage transformers" by M. A. Hughes at 17.30 at Savoy Pl., WC2.

8th. IEE-Discussion on "Processor architecture for telecommunication switching" at 17.30 at Savoy Pl., WC2.

8th. IERE-"Train control developments on British Rail" by J. W. Birkby at 18.00 at 9 Bedford Sq., WCI.

8th. BKSTS-"The Turpin Colorflex system" by Gerry Turpin at 20.30 at NFT2, National Film Theatre, South Bank, Waterloo, SE1.

13th. IEE/IERE-"A review of electron microscopy" by Dr V. E. Cosslett at 17.30 at Savoy PI., WC2.

14th. IEE-Colloquium on "Applications of active, digital and passive filters" at 10.30 at Savoy PI., WC2.

14th. AES-"Practical design of magnetic heads" by Robert B. Dyer at 19.15 at the IEE, Savoy Pl., WC2.

15th. IEE-"Charge-coupled devices and their application" by D. Burt at 17.30 at Savoy Pl., WC2.

15th. IERE/RINav.-Colloquium on "Advances in airborne equipment for navigation and flight control" at 10.30 at the Royal Aeronautical Society, 4 Hamilton Pl., W1.

15th. IERE-"Good quality reception from medium-wave broadcasting" by Dr R. C. V. Macario at 18.00 at 9 Bedford Sq., WC 1 .

15th. I.Phys.-One-day meeting on "Surface effects on semiconductor devices" at 10.00 at Imperial College, SW7.
21st. IEE-Colloquium on "Standardization in geographically distributed control and telemetry systems" at I4.30 at Savoy Pl., WC2.
21st. IEE/IERE-"Designing machines for people" by Dr C. R. Evans at 17.30 at Savoy Pl., WC2.
22nd. IERE-Colloquium on "Thermionic emission devices" at 9 Bedford Sq., WCI.
22nd. IEE-"How to see in the dark" by Dr R. M. Hodgson at 18.30 at Savoy PI., WC2.
23rd. IEE-"Control of distributed parameter systems" by Prof. P. C. Parks at 17.30 at Savoy Pl., WC2.
27th. IEE-"Digital systems for sound programme transmission" by J. W. H. O'Clarey at 17.30 at Savoy PL., WC2.

28th. IEE-"The design of precision coaxial power meters" by Dr A. E. Fantom at 17.30 at Savoy Pl., WC2
28th. IEE--"The ESRO orbital test satellite" by Dr P. Bartholome at 17.30 at Savoy Pl., WC2.
29th. IEE/IERE-"Sensing, sizing and sorting of cells: the laser sorter" by D. F. Capellaro at 17.30 at Savoy Pl., WC2.
29th. IERE-"Speech engineering" by Dr A. J. Fourcin at 18.00 at the Haldane Theatre, Wolfson House, Stephensons Way, NWI.

BIRMINGHAM

15th. IERE/RTS-"The status of British broadcasting" by C. B. B. Wood at 19.00 at the A.T.V. Centre, Broad Street.

22nd. SERT-"Liquid crystal displays and their applications" by G. P. Stenning at 19.00 at the Byng Kenrick Suite of the University of Aston, Gosta Green.

BRIGHTON

9th. SERT-"Principles of video tape recording" by R. A. Bravery and K. G. A. Whittington at 19.45 at the TV Studio, Sussex University.

CHATHAM

2Ist. IERE-"Quadraphonics" by Dr K. Barker at 19.00 at the Lecture Theatre 18, Medway and Maidstone College of Technology, Maidstone Road.

CHELMSFORD
15th. IEE-"C-MOS and its applications" by R. Henderson at 18.30 at the King Edward V1 Grammar School, Broomfield Road.

HALTON
16th. IEE/R.Ae.S.-"Radar and meteorology" by Prof. E. Shearman at 19.30 at Kermode Hall, R.A.F. Halton, Bucks.

LEATHERHEAD

15th. IEE-"Man-made, God-made" by Prof E. R. Laithwaite at 19.30 at C.E.R.L. Offices, Kelvin Avenue.

LLANDAFF

15th. SERT-"The Pye 110° colour chassis" by P. E. Gibbs at 19.15 at Llandaff College of Technology.

MANCHESTER

23rd. SERT-"Mobile radio equipment" by M. Howard at 19.30 at the Granada Building, College of Building, Hardman Street.

MORDEN

29th. IEE-"Developments in superconductivity techniques" by J. A. Baylis at 19.00 at Merton Technical College, Morden Park, London Road.

READING

6th. SERT-"Colour television" at 19.30 at The Technical College.

20th. IEE-"Concorde systems design" by H. Hill at 19.30 at the University, Whiteknights Park.
23rd. IERE-"Optoelectronic devices" by M. Miller at 19.30 at the J. J. Thomson Physical Laboratory, University of Reading, Whiteknights Park.

SALISBURY

27th. SERT-"TEC, ERB and the technical engineer" by A. J. Kenward at 19.30 at Salisbury College of Technology.

SOUTHAMPTON

22nd. SERT-"Philips video tape recorder" by R. Adams at 19.00 at the College of Technology, East Park Terrace.

Tickets are required for some meetings: readers are advised therefore to check with the society concerned.

Wireless World lectures

H. W. Barnard, who was editor of our journal from 1965 until 1973, has been approached several times by societies, clubs and other organizations in the field of radio and electronics to address their members. With 48 years experience of $W . W$. , he is in a unique position to give a picture of the development of communications, broadcasting and the growth of "electronics" and it occurs to us that many other people would like to listen to an illustrated talk on this most fascinating subject.

If, therefore, secretaries of such bodies would like to write to us, we will try to arrange for Mr Barnard to give a lecture.

HF predictions

Solar Index is now less than 10 and will remain so throughout the year with the end of the current sunspot cycle expected in August. As their number decreases sunspots tend to concentrate at low solar latitudes, then when the number increases the new spots appear at high solar latitudes. Minima are therefore used to mark the duration of a cycle as they are much more clearly defined than maxima.

A year of poor communication conditions can be expected especially during summer months as HPFs and FOTs will be at their very lowest.

The heart of hi-fi.

Beauty is truth, truth beauty. The fact is that all too few music lovers realise that while certain high fidelity components can be less than best, there is one component that cannot endure a sacrifice in quality: the cartridge. Because the hi-fi cartridge functions as the source of sound (the point at which the recording is linked with the balance of the hi-fi system), its role is absolutely critical. Just as the camera can be no better than its lens, the finest hi-fi system in the world cannot compensate for an inferior cartridge. Suggestion: For a startling insight into the role of the cartridge in the overall hi-fi system, and a breathtaking re-creation of your favourite recording, see your nearby Shure cartridge dealer. He'll introduce you to the Shure cartridge that is correct for your system and your exchequer. Or, next best, send for our brochure:

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

To satisfy such a big customerEEV has the world's biggest output of image orthicons.

EEV makes more image orthicons than anyone else in the world. And is constantly making more of them - with improvements and new developments.

Every image orthicon user benefits from EEV experience and large-scale manufacturing capability.

Every EEV image orthicon is precision-made, with exclusive EEV ELCON target for high lifelong sensitivity and virtual elimination of image retention or 'sticking'.

Line-up is quick and on-target every time. Tube life is long with stable performance. $3^{\prime \prime}$ and $411^{\prime \prime}$ image orthicons are available now - at competitive prices with world-wide service facilities.

Write for data and prices. If you have a specific requirement, contact your local EEV agent or call Camera Tube Sales at Chelmsford, England.

EEVand M-OV know how.

Silent switch for stereo-pair comparisons

by K. Moulana, B.Sc.

University of Surrey/BBC Research Department

Design and printed circuit construction details are given for an f.e.t. electronic switch designed to meet stringent requirements.

During the course of a project the need arose for a silent switch with the following specification: an on/off ratio greater than 70 dB ; a switching time as fast as possible without introducing any audible transients; remote control switching facility by means of a single, mechanically silent on/off switch; output clipping level not less than +10 dBm into 600 ohms; overall unity gain into 600 ohms; an input impedance greater than $50 \mathrm{k} \Omega$ over the frequency range 30 Hz to 15 kHz ; output impedance of 600 ohms $\pm 2 \%$ over the above frequency range; amplitude/frequency response $\pm 0.2 \mathrm{~dB}$ over the above frequency range; hum and noise not greater than -70 dBm over a 15 kHz bandwidth and a total harmonic distortion not greater than 0.5% and void of high order harmonics.
A preliminary survey showed that a unit satisfying the above requirements was not readily available on the market and, therefore, one had to be designed. However, before the actual design procedure which was adopted is outlined, a brief study of the underlying requirements may serve as a useful introduction.
When a programme is switched by mechanical means, transients of two different kinds are transmitted through the system. The first type is caused by the rapid change in the d.c. at the point of switching which of course leads to an audible thump. The second and less objectionable variety is the result of terminating an a.c. signal when its waveform is not passing through zero.
In order to eliminate transients caused by changes in d.c. levels, either the signal carrying part of the circuit must be electrically isolated from the switching section, or measures must be taken to ensure that the d.c. biasing potentials remain unchanged at the instant of switching.

In the past, the majority of transient free switches employed a light-sensitive resistance as the signal carrying element, and the luminance of a lamp to control the degree of attenuation required. The main disadvantage of light-operated
switches is that they are not fast enough, because an incandescent lamp has a decaying luminance after the current through it has been stopped. In fact, the decay rate is inversely proportional to the normal standing current through the lamp; even with low current lamps the decay time is too long. Up to now, such switches have, in addition, suffered from poor on/ off ratios whenever small size, low current and hence low power lamps have been used. It should be pointed out that in recent years light emitting diodes have also been used instead of incandescent lamps.

The other group of silent switches or electronic attenuators often used may be conveniently classified under the heading of d.c. modulators. Such circuits are essentially amplitude modulators under various disguises. The programme signal is injected into the otherwise carrier input

Fig. 1. Anf.e.t. used as a voltage controlled resistor.

Fig. 2. Biasing arrangement for a symmetrical junction f.e.t.
and a d.c. potential is used instead of the modulation signal to control the amplitude of the programme. Basically, these circuits make excellent electronic attenuators over a finite range, and with additional refinements high on/off ratio switches can be designed. Unfortunately, the use of the above technique to achieve the desired specification would have resulted in a fairly complex circuit unless integrated circuits were employed. Furthermore, during the designing stages (two years ago) the author could not find any i.c. modulator or attenuator that would meet the requirements. Therefore, the only feasible alternative was to use an f.e.t. as a voltage controlled resistor which in fact constitutes the basis of the present design.

If an f.e.t. is biased near the origin of its output characteristics, the channel behaves like a pure resistance whose value is a function of the gate voltage. In other words, the device becomes a voltage controlled resistor. With suitable circuit arrangements, this property can be put to use as the basis of a transient free switch.

Essentially, an f.e.t. is used in conjunction with a resistance to form a voltage controlled potential divider shown in Fig. 1. When the f.e.t. is conducting, $V_{G S}$ is zero and the channel resistance, $r_{D S}$, is a minimum and therefore:

$$
\frac{E_{o}(o n)}{E_{l}}=\frac{R_{L}}{R_{L}+r_{D S} \min .}
$$

If $V_{G S}$ is greater or equal to the pinchoff voltage of the f.e.t, $r_{D S}$ becomes a maximum and thus:

$$
\frac{E_{o}(o f f)}{E_{i}}=\frac{R_{L}}{R_{L}+r_{D S} \max .}
$$

For a 2 N 3819 junction f.e.t., $r_{D S}$ (min) and $r_{D S}$ (max) are of the order of 100Ω and $10 \mathrm{M} \Omega$ respectively. If R_{L} is set at $3.3 \mathrm{k} \Omega$, an on/off ratio of 70 dB is achieved for the voltage controlled potential divider.

Let us now consider the biasing arrangement for the f.e.t. If the device is biased at the origin of the output charac-
teristics, the a.c. signal will swing symmetrically about that point, implying that the output characteristics of the f.e.t. must be symmetrical about the origin over the working range required. A symmetrical junction f.e.t. fulfils this requirement for small excursions about the origin of its characteristics.

Fig. 2 shows the basis of the biasing arrangement for a symmetrical junction f.e.t. The source and drain are both held at 12 V through R_{32} and R_{35} because the drain current is zero. When point KA is open circuited or at $12 \mathrm{~V}, V_{G S}$ becomes zero because the current through R_{37} is zero, and the f.e.t. is switched on. The function of D_{5} is to protect the gate against excessive forward bias. Taking KA to a voltage greater than the pinch-off voltage of the device, switches the f.e.t. off. In the actual circuit, point KA is in fact taken to earth.

So far as signal transmission is concerned, point F should ideally be at a.c. earth. In practice, the resistive path between F and true earth must be very small in comparison to R_{32} at the lowest frequency of interest, because the two form a potential divider between the input and true earth, and hence a fraction of the a.c. signal always present at the input leaks through to the output via R_{35} thus reducing the on/off ratio. In the actual circuit, a $5000 \mu \mathrm{~F}$ capacitor couples F to

Fig. 3. Complete circuit for one channel of a stereo pair. Parts enclosed in the broken line are repeated for the B channels. Points marked with identical letters are connected together. Circled numbers refer to pin connections and operating voltages as shown in the table of voltages.
earth giving a theoretical leakage factor of about -70 dB at 40 Hz .

Using a single f.e.t., signals of the order of -30 dBm can be passed without exceeding the distortion limit when the device is conducting. For larger swings, the incremental value of the channel resistance will no longer be the same as its d.c. resistance. In other words, the channel resistance will change during the actual a.c. cycle which of course leads to distortion. The effect can be minimized by using two complementary f.e.ts in parallel so that the change in the channel resistance of one is compensated by the other hence reducing changes in the total resistance during the a.c. cycle. The complementary changes in resistance is due to the fact while one f.e.t. is forward biased, the other is reversed biased and the incremental value of the channel resistances are in the opposite sense for the two biasing

modes. The use of a complementary pair of f.e.ts was found to increase the signal handling capability by some 20 dB .

Fig. 3 shows the complete circuit of the stereo silent switch. Transistors Tr_{14} and $\operatorname{Tr}_{I S}$ form the switching elements for the A channel of a stereo pair, while Tr_{16} and Tr_{17} serve the A channel of a second stereo pair. The circuit for the B channels is identical to that enclosed by the broken lines. Resistances R_{31}, R_{32} and R_{35} maintain the drains and sources of the four f.e.ts at about 12 V . Resistor R_{35} also acts as the a.c. load for both A channels. When points HA and KA are at about 12 V , f.e.ts $T r_{16}$ and $T r^{17}$ are switched on, and the signal present at their sources is developed across R_{35}. When point HA is at 24 V and KA is at zero volts, $V_{G S}$ for both T_{16} and $T r_{17}$ becomes greater than their corresponding pinch-off voltages and, therefore, they are both switched off. Furthermore, at any given time if $T r_{16}$ and $T r_{17}$ are conducting, $T r_{14}$ and $T r_{15}$ will be cut off and vice versa. Therefore, the signal developed across R_{35} is either that belonging to the A channel of one stereo pair or the corresponding signal of the other stereo pair. The advantage of this arrangement is that only one subsequent amplifier (consisting of $T r_{18}$ to $T r_{21}$) is required for two independent channels. However, the required d.c. switching for f.e.ts $T r_{16}$ and $T r_{17}$ is done by means of the phase splitter Tr_{8} which itself is driven by the differential amplifier consisting of transistors $T r_{1}, T r_{2}$ and $T r_{3}$. When $T r_{16}$ and $T r_{17}$ are on, $T r_{14}$ and $T r_{15}$ should be off and, therefore, points NA and PA are driven by the phase splitter Tr_{10} which is in turn driven in opposition to $T r_{s}$ by the differential amplifier.

The remaining a.c. carrying part of the circuit is fairly straightforward. The two input signals present on the bases of transistors $T r_{12}$ and $T r_{13}$ are attenuated by 20 dB before entering the switching elements in order to reduce harmonic distortion. The switching mode ensures that only one of the two input signals appears across R_{35}. The amplifier that follows the switching elements compensates for the initial 20 dB attenuation and therefore maintains the overall unity gain required. The amplifier proper is of the class A push-pull variety, the operation of which has been explained frequently in the literature.
The d.c. switching and indicating section was designed to operate by means of a single on/off switch S, which could also be paralleled with a second on/off switch to facilitate remote control switching. The differential output state of the amplifier $T r_{1}$ to $T r_{3}$ is governed by switch S, provided the base of Tr_{2} is connected to the junction of R_{3} and R_{4}. This corresponds to linking pins 7 and 8 on the printed circuit board. Alternatively, the switching could be done by an external d.c. signal of about 4-5 volts negative with respect to the 24 V supply rail. In that case, the switching voltage should be applied directly to the base of $T r_{2}$ with pins 7 and 8 isolated from each other. The magnitude of this switching voltage was chosen with t.t.l. compatibility in mind.

Lamps L_{I} and L_{2} are indicators for the

Component list

Resistors: $1 / 8 \mathrm{~W}, \pm 2 \%$ unless otherwise stated.

$R_{1} \& R_{2}$	$10 \mathrm{k} \Omega$	R_{23}	$150 \mathrm{k} \Omega$	R_{39}	$560 \mathrm{k} \Omega \pm 5 \%$
R_{3}	$30 \mathrm{k} \Omega$	R_{24}	$330 \mathrm{k} \Omega \pm 5 \%$	R_{40}	$220 \mathrm{k} \Omega$
R_{4}	$82 \mathrm{k} \Omega$	R_{25}	$150 \mathrm{k} \Omega$	R_{41}	27k Ω
$R_{\text {s }}$	$1.5 \mathrm{k} \Omega$	R_{26}	$330 \mathrm{k} \Omega \pm 5 \%$	R_{42}	$100 \mathrm{k} \Omega$
$R_{6} \& R_{7}$	$15 \mathrm{k} \Omega$	R_{27}	$4.7 \mathrm{k} \Omega$	R_{43}	$47 \mathrm{k} \Omega$
R_{8}	$10 \mathrm{k} \Omega$	R_{28}	680,	R_{44}	$2.2 \mathrm{k} \Omega$
R_{9}	$5.6 \mathrm{k} \Omega$	R_{29}	$4.7 \mathrm{k} \Omega$	R_{45}	$18 \mathrm{k} \Omega$
R_{10}	$3.9 \mathrm{k} \Omega$	R_{30}	680	R_{46}	$100 \mathrm{k} \Omega$
R_{R}	$\frac{1}{2} \mathrm{~W}, 160 \Omega \pm 5 \%$	$R_{31} \& R_{32}$	$3.3 \mathrm{k} \Omega$	R_{47}	560Ω
R_{12}	LW, $270 \Omega \pm 5 \%$	$R_{33} \& R_{34}$	$10 \mathrm{M} \Omega \pm 10 \%$	R_{48}	27,
R_{13}	$\frac{1}{2} \mathrm{~W}, 160 \Omega \pm 5 \%$	R_{35}	$3.3 \mathrm{k} \Omega$	$R_{49} \& R_{50}$	$470 \Omega \pm 10 \%$
R_{14}	$1 \mathrm{~W}, 270 \Omega \pm 5 \%$	$R_{36} \& R_{37}$	$10 \mathrm{M} \Omega \pm 10 \%$	R_{51}	$1 \mathrm{k} \Omega \pm 10 \%$
$R_{15}-R_{22}$	$120 \mathrm{k} \Omega$	R_{38}	$680 \mathrm{k} \Omega \pm 5 \%$	R_{52}	$100 \mathrm{k} \Omega \pm 10 \%$
				R_{53}	$100 \Omega \pm 10 \%$
Capacitors:					
C_{1}	$5000 \mu \mathrm{~F} / 12 \mathrm{~V}$	$C_{6} \& C_{7}$	$50 \mu \mathrm{~F} / 12 \mathrm{~V}$	C_{71}	33 pF
C_{2}	$1 \mu \mathrm{~F}$	C_{8}	$4 \mu \mathrm{~F} / 25 \mathrm{~V}$	C_{12}	$50 \mu \mathrm{~F} / 12 \mathrm{~V}$
C_{3}	$30 \mu \mathrm{~F} / 6 \mathrm{~V}$	C_{9}	$1 \mu \mathrm{~F}$	C_{13}	$100 \mu \mathrm{~F} / 25 \mathrm{~V}$
$C_{4} \& C_{5}$	$4 \mu \mathrm{~F} / 25 \mathrm{~V}$	C_{10}	$10 \mu \mathrm{~F} / 12 \mathrm{~V}$	C_{14}	$500 \mu \mathrm{~F} / 25 \mathrm{~V}$
Semiconductors:					
D_{1}	BZY88, C3V3	$T r_{5} \& \operatorname{Tr}_{6}$	2N930	Tr ${ }_{16}$	2N3820
$D_{2}-D_{5}$	IN916	Tr ${ }_{7}$	2N2219A	Tr_{17}	2N3819
		Tr ${ }_{8}-\operatorname{Tr}_{13}$	2N930	Tr_{18}	2N3702
$\operatorname{Tr}_{1}-\operatorname{Tr} 3$	2N3702	Tri4	2N3820	Trio-Tr 21	2N930
Tr ${ }_{4}$	2N2219A	Tr ${ }_{\text {I }}$	2N3819		
Lamps					
$L_{1} \& L_{2}$	$6 \mathrm{~V}, 40 \mathrm{~mA}$				

two stereo-pair programmes. When S is open, L_{l} lights and signals present at input pins 4 and 13 pass through to the output pins 2 and 12 respectively. Conversely, the closed position of the switch corresponds to L_{2} lighting and the signals at pins 5 and 14 appearing at output pins 2 and 12 respectively.

Finally, the $1 \mu \mathrm{~F}$ capacitor C_{2} is used to reduce the change-over speed at the output of the differential amplifier. In this way, transients otherwise generated by rapid switching of the a.c. signals are subjectively eliminated. Note that this capacitor alone determines the switching speed of the complete unit.

Construction

All components of the stereo silent switch except the two lamps and switch S are mounted on a printed circuit board shown in Fig. 4. The corresponding component layout is outlined in Fig. 5 which is immediately followed by relevant explanatory notes and the line-up procedure.

During assembly, it should be observed that the capacitor C_{2} is not in physical contact with the resistor R_{12} because the latter generates a certain amount of heat.

The length of the wires connecting switch S to the circuit are not critical. In fact, the circuit operates satisfactorily with remote control wires ten meters long. However, should the casing of switch S chosen be connected to any one of its pins, measures must be taken to eliminate the possibility of an inadvertent contact between the casing of that switch and earth. Otherwise, either a short circuit is created across the d.c. supply line, or a 21 V reverse bias will be imposed across the base to emitter junction of Tr_{3}.

Operating voltages			
Point	S open	0 Volts	$\boldsymbol{S c}$ closed
$1,3,6$ \& 11			
7	17.6		24.0
8	17.6		24.0
9	24.0		17.8
10	17.8		24.0
15		24.0	
C		20.8	
D		21.9	
E	18.3		21.4
F		11.8	
G	10.7		0
HA \& HB	23.7		12.4
I	11.9		0
J	0		11.9
KA \& KB	0.14		11.4
L	11.4		24.0
M	24.0		11.4
NA \& NB	12.4		23.7
0	0		10.7
PA \& PB	11.4		0.14
Q		23.0	
R		11.5	
T		8.8	
U		1.14	
V		19.4	
a		14.8	
f		12.1	
g		11.8	
h		11.8	
m	23.4		12.3
n		11.8	
q	0.43		10
r	12.3		23.4
t	10		0.43
u		14.7	

Performance tests

Objectively, the unit meets the required specification initially outlined. Total harmonic distortion, for example, is in fact less than 0.2% from 30 Hz to 15 kHz for an output level of +10 dBm into 600Ω. The distortion is predominantly second harmonic and its magnitude decreases with reduction in the output level.

Fig. 4. Printed circuit layout of silent
switch.

Fig. 5. Printed circuit component layout.

The d.c. switching and indicating section components are placed in the middle of the board. Components belonging to the signal carrying parts of the circuit are positioned to the left and right of the board for the A and B channels respectively.
External Connections. Connect points marked X to each other as indicated. DO NOT connect points Y at this stage. Connect the following:
HA to HA, KA to KA, NA to NA, PA to PA, FA to FA, ZA to ZA, etc.

Line-up Procedure. With no signal applied, connect an ammeter between points YA. Adjust R_{2} so that the ammeter reads 12 mA . Remove the ammeter and connect points YA together. Set R_{53} to obtain an output impedance of 600Ω. Terminate the output (pin 2) with a 600Ω load. Apply a $1 \mathrm{kHz},-10 \mathrm{dBm}$ signal (via a $100 \mu \mathrm{~F}$ capacitor with its positive end connected to the circuit) to either end of C_{9}. Adjust $R_{5 /}$ to obtain +10 dBm at the output. Connect pins 7 and 8 together. Apply a $1 \mathrm{kHz},+10 \mathrm{dBm}$ signal
to pin 4 (the input). Adjust R_{50} so that the output is at +10 dBm . Apply a $1 \mathrm{kHz},+10 \mathrm{dBm}$ signal to pin 5. Close switch S (see circuit diagram). Adjust R_{49} so that the output is also at +dBm .
Repeat the same procedure for the B channels.
Pins 1 to 15 are laid out for connection to a Painton 15 pole plug type $73 / 10 / 1501 / 10$. $T r_{20}$ and $T r_{2 /}$ should be matched.

The switching speed of the unit was measured in terms of a parameter called parameter implies "Fade-in" as well as time taken for the output level of the switch to change by 60 dB . Note that the parameter implies "Fade-in" as well as "Fade-out". This mode of measurement was adopted in preference to the other criteria generally used because it is subjectively meaningful and compatible with the properties of human hearing as well as other parameters in acoustical engineering. The justification generally accepted is that a 60 dB reduction in the sound pressure level of a programme makes it inaudible under average conditions. A figure of $25 \mathrm{~ms} \pm 20 \%$ was obtained as the FadeTime of the silent switch.

Subjectively, the switching was found to be free from transients for all programme materials including pure tone. Nevertheless, in order to investigate the subjective detectability of the actual transition, the same programme was fed to both inputs and the switch was operated so as to create a momentary interruption. The degree of the impairment caused by the transition was then judged by a few observers experienced in sound quality evaluations. It was found that the detectability of the transition was dependent on the programme used and the relative instant at which the switch was actuated. For speech and music if the change-over was made during the momentary silences of the programme, then the transition was not noticeable. However, if switching was done during the existence of a continuous passage, then the interruption was found to be noticeable but quite acceptable. The same judgment was also passed when continuous signals such as pink noise or pure tone were used.

Two units were manufactured, both of which were in continual daily use for about 14 months with satisfactory performance. The few problems encountered during this period were minor ones and their corresponding remedies have already been mentioned.

It is perhaps worth mentioning that during the designing stages, attempts were made to add electronic fading facility to the unit. Unfortunately, it was found that using f.e.ts as the fading element, realization of a unit capable of low distortion performance during an entire fade, in addition to high on/off and signal to noise ratios, was not really possible. However, the author has since designed a four-channel modulation type electronic fader, the details of which will hopefully be published soon!

Acknowledgement

The above paper presents an engineering aspect of a Ph.D. project financed by the University of Surrey but carried out at the BBC Research Department. I would like to thank both bodies for making this rather unusual but most productive arrangement possible.

Literature Received

APPLICATION NOTES
We have received a copy of the 256-page Sescosem linear i.c. application manual, Vol. 1, Les amplificateurs operationnels. The manual is published in French only. There are companion volumes on voltage regulators and active filters. Editions Radio, 9 rue Jacob, 75006 Paris, France. . . WW4 17 A Precision Monolithics leaflet on the realization of a high-speed, eight-bit a-d converter is available from Bourns (Trimpot) Ltd, Hodford House, 17/27 High Street, Hounslow, Middlesex TW3 1TE. WW4 18 The British Standards Institution have recently published BS5 102, "Phenolic resin bonded paper laminated sheets for electrical applications," which gives requirements for six types of sheet material and test methods. Copies are available at $£ 4$ from BSI Sales Department, 101 Pentonville Road, London N1 9ND.
A chart has been prepared by ERMA to provide information on the correct way to crimp a variety of r.f. connectors, using ERMA hand crimping tools. ERMA Ltd, Mount Pleasant, Alperton, Wembley, Middlesex. WW419 A bulletin (No. 2) is available from Qantex on the recovery of phase-encoded digital signals on magnetic tape in the ANSI four-track, $\frac{1}{4}$ in, 1600 bits per inch format. North Atlantic Industries Inc, Qantex Division, 200 Terminal Drive, Plainview, NY, USA. WW420 GIM have sent us a copy of their application note on the AY-5-9100 microcircuit for use in push-button telephone systems. The publication provides circuit information on the use of the i.c. in mains diallers, line-powered instruments, re-dialling and cardreading telephones and repertory diallers. General Instrument Microelectronics Ltd, 57-61 Mortimer Street, London WIN 7TD. WW421

EQUIPMENT

A brochure is available describing the interfaces produced to enable Datalab 900 transient recorders to work with computers, punches, typewriters and other peripherals. Data Laboratories Ltd, 28 Wates Way, Mitcham, Surrey CR4 4HR. WW408 Descriptions of paging systems, both loop and radio types, are contained in a publication from Sales Office, Multitone Electric Company Ltd, Underwood Street, London N1. WW409 We have received a leaflet on the Nea Lindberg 1 kVA static inverter, which provides a 50 Hz , 220 V sinusoidal output at up to 4.6 A from $20-30 \mathrm{~V}$ d.c. Efficiency is 75%. Avel-Lindbert Lid, South Ockendon, Essex.
.WW4 10
Teradyne have produced a book entitled "Highvolume testing for electronic device users" which is mainly concerned with the use of Teradyne automatic test equipment in the inspection of devices and assembilies. The publication costs $£ 1$ from Teradyne Ltd, Clive House, 12 Queens Road, Weybridge, Surrey.
A brochure on the CILCOM 1600 system for the conversion of magnetic tape computer output into a film record (COM for Computer Output onto Microfilm) has been sent to us by UCC/Computer Instrumentation Ltd, School Lane, Chandler's Ford, Eastleigh, Hants.WW411 The 1974/75 brochure of Pickering pickup cartridges is now available. The brochures are published in two editions, with six languages in each, and are obtainable from Highgate Acoustics, 38 Jamestown Road, London NW1 7EJ.
.WW412

We have received a brochure on the range of equipment marketed by Telephone Rentals, which includes telephones, data communications, staff location, time control, production control and fire and security equipment. Telephone Rentals Ltd, 197 Knightsbridge, London SW7 IRL. WW413 Ship-borne and shore station radio-telephone equipment is described in a brochure (RF-201M) sent to us by Harris Corporation, 1680 University Avenue, Rochester, New York. Specifications of six basic models are included. WW4 14
SE Labs have published the latest in a series of Complete Guides, this time to oscillographs, ultraviolet and other types. SE Labs (EMI) Ltd, North Feltham Trading Estate, Feltham, Middlesex TW 14 0TD.

WW415
Labgear have published a brochure on television and f.m. radio reception equipment, v.h.f./u.h.f. distribution equipment and television test instrumentation. Labgear Ltd, Abbey Walk, Cambridge CB1 2RQ.

WW4 16

PASSIVE DEVICES

Beckman have produced a 12 -page booklet describing their range of Resnet resistor networks in various packages. Beckman Instruments Ltd, Components International, Queensgate, Glenrothes, Fife, ScotlandWW406 Sprague have produced a wall-chart which gives brief details of a range of aluminium electrolytic capacitors. Sprague World Trade Corporation, Färberstrasse 6, 8008 Zürich, Switzerland. . WW407

ACTIVE DEVICES

Mullard have sent us a copy of their newly published 1974/75 data book. Valves, c.r.ts, semiconductors, resistors, capacitors, i.cs and assemblies for entertainment purposes are briefly described. The publication is available from booksellers or from Technical Press Ltd, Freeland, Oxford 0X7 2AP at 40 p .
Microwave Associates Ltd have sent us three leaflets, on a Gunn diode local oscillator for a 9470 MHz centre frequency (MA87635), the MA7701C series of tunnel diode detectors and a range of p-i-n diodes (Bulletin 4306). Available from Microwave Associates, Dunstable, Beds.WW401 Siliconix have sent us their latest short-form catalogue, which includes information on junction f.e.ts and dual-gate mosfets, a $3 \frac{1}{2}$-digit a-to-d converter, a triple op-amp and new driver gates. Siliconix Lid, 30A High Street, Thatcham, Newbury, Berks RG13 4JG.

WW402
ITT have produced a booklet on m.o.s. devices entitled "Everything you wanted to know about m.o.s". It explains the pros and cons of the process and there is a glossary. ITT also have their new short-form semiconductor catalogue. ITT Semiconductors, Footscray, Sidcup. Kent.
Booklet
WW403
Catalogue
WW404
A wall-chart from RCA presents mechanical and electrical information on their range of linear integrated circuits and includes a cross-reference between the RCA products and twelve other types. There is a list of application notes. RCA Ltd, Solid-state-Europe, Sunbury-on-Thames, Middlesex. WW405

GENERAL

The "Handbook of Electrical Connectors" has been published by Pye Connectors Ltd, Hitchin Street, Biggleswade, Beds. It is a loose-leaf folder in which is collected all the information on Pye's various types of connector, including the printed-circuit variety.

WW422
The solenoids in the Magnetic Devices range are described in a short-form catalogue which gives salient mechanical and performance information. Magnetic Devices Ltd, Exning Road, Newmarket, Suffolk.

WW423
A catalogue of small mechanical components and p.c.b. furniture is published by Dieter Assman Electronics Ltd, Victoria Works, Water Lane, Watford, Herts. The company markets the products of the German Assman KG company. No price list is provided. WW424

Research Notes

Enter the white hole

If a black hole in astronomy is a star which has collapsed to nothing then a white hole is the reverse, that is, matter which suddenly appears at a point in space. While there is no observational evidence that such a thing happens it is always of interest to astronomers to theorize about such things. Three Indian astronomers have been doing so. They conclude that the appearance of a white hole would be marked by a great burst of radiation, mostly at very short wavelengths (X-rays and gamma rays). The radiation is not very different from what is actually observed from certain types of galaxy, so the possibility that white holes exist in reality as well as in theory is open.

Nature, Oct. 18, 1974, vol. 251, p. 590.

Thermistor-stabilized oscillators

Low-distortion RC oscillators in which lamps or thermistors are used to stabilize the level of oscillation tend to suffer from "amplitude bounce". Any small disturbance to the circuit, such as the manipulation of a tuning control, causes the amplitude to jump about. Usually the effect dies away but in bad cases the bounce continues indefinitely, so that the output of the oscillator becomes an amplitude-modulated sine wave.

It has been known for a long time that bounce is an inherent property of lowdistortion oscillators and gets worse as the distortion of the maintaining amplifier is reduced. (Some commercial oscillators can be operated in two modes: a low-distortion mode for use when purity of waveform is important and a "fast-settling" mode for such work as measuring frequency responses where bounce is a nuisance.) In a thorough analysis, P. L. Taylor of the University of Salford shows that even a small amount of amplifier distortion (0.1% third harmonic) damps the bounce by a large factor (16) compared with the ideal case of a distortionless amplifier. Bounce in practice is less than predicted by simple theory, probably because the usual assumption that the temperature is uniform throughout the thermistor bead is in practice invalid. Non-uniformity changes the
effective thermal time constant, which is an important quantity in the bounce equation.

Distortion is caused by the thermistor itself heating and cooling a little during each half-cycle of oscillation. The distortion is worst at the lower frequencies $(0.1 \%$ at 10 Hz in a typical circuit). The distortion can be reduced (at the expense of increased bounce) by putting resistance in series with the thermistor.

Proc. I.E.E., Aug., 1973, vol. 120, no. 8.

Power from ocean waves

An Edinburgh scientist says that if the energy in the Atlantic waves which approach Britain's western shores could be extracted along a frontage of a few hundred kilometres it would be enough to supply the present power needs of these islands.

Most proposals for extracting energy from sea waves make use of the up-anddown boat-bobbing movement as the wave passes a floating object. This, however, does not extract the maximum amount of energy, because the particle motion in the wave itself is not up and down but circular. A mechanism has been tested in the laboratory which makes use of the circular motion. It has rollers of egg-shaped crosssection which rotate, turning first one way then the other as the wave passes. A floating breakwater containing these structures should extract nearly all the wave energy, leaving calm water on the shoreward side.

The intermittent flow of wave energy poses problems in conversion to steady electrical supplies. One possibility is to use the waves to drive, first, a pump which would build up a head of liquid then allow the liquid to escape steadily, driving a turbogenerator. Development of the idea is to be supported by a government grant.
Dept. of Mechanical Engineering, Univ. of Edinburgh.

First binary pulsar

The big radio telescope at Arecibo, Puerto Rico, has discovered a pulsar which is one partner in a double star, the other being an ordinary star. The ordinary star has not yet been detected, but its presence is deduced from the way in which the pulsar's period is Doppler-shifted every few hours, as it moves away from the earth then towards the earth in a highly elliptical orbit.

This discovery is of interest for the light it may cast on supernova explosions. Pulsars are currently thought to be neutron stars, small, very dense objects which may well be all that is left of a supernova. The fact that a normal star might have continued to exist in close proximity to a supernova in this present example lends support to the idea that the X -ray-emitting binaries recently discovered are also made up of supernova remnants.

Watching high-speed transistors in slow motion

The scanning electron microscope has been used for some years to image transistors in operation. Changes in the potential of the transistor surface affect the electron beam
and are therefore visible on the microscope's "TV screen". The University College of North Wales, Bangor, has a method of "strobing" its scanning electron microscope at up to 10 GHz , making it possible to "freeze" high-speed events in the transistor under examination.

Sunspots, Jupiter, and earthquakes

1982 should be a bumper year for sunspots -and earthquakes. So say J. Gribbin and S. Plagemann ("The Jupiter Effect," Macmillan, London). The basic idea is that the number of sunspots is affected by the gravitational pull of the planets on the sun; this is increased when two or more planets are in line. In 1982 all the planets will be in line, for the first time in 179 years. Sunspots are known to affect the climate on earth, and the authors argue that this in turn will produce a slight perturbation of the earth's rotation and trigger off any incipient earthquakes.

Meanwhile, astronomers and radiopropagation experts will be checking up on another sunspot relationship just reported by G. M. Brown of the University College of Wales, Aberystwyth. Solar activity produces ionospheric currents which interfere with the horizontal component of the earth's magnetic field. The field on a normal "quiet" day goes through a minimum at about 11.00 hours local time. However, there are also "abnormal quiet days" when the effect takes place at some quite different time. Examination of magnetic records for England (which go back to 1885) shows that these abnormal quiet days go through a cycle like the sunspots, but with a maximum which occurs at sunspot minimum. What is more to the point, for ionospheric predictions, is that the "AQD" count seems to be a good measure of the intensity of the sunspot maximum which will follow it, in about six years.

Nature, Oct. 18, 1974, vol. 251, p. 594.

Computer monitoring of TV signals

An experimental digital system for the monitoring of unmanned television transmitters.

by J. Schaffer, B.Sc., A.R.C.S.

Decca Radio and Television Ltd
(formerly Independent Broadcasting Authority)

Present methods of monitoring the quality of a television signal are almost invariably based on measurements of Insertion Test Signals (ITS). These signals are inserted into the field blanking interval of the signal, and usually accompany it from point of origin (studio) to destination (domestic TV receiver).

Over recent years the forms of the ITS have been agreed both nationally and internationally, and are shown in Fig. 1. Certain technical quality parameters based on the ITS are listed in Table 1.

Practical techniques for measuring the quality parameters may be divided into two categories-manual and automatic. Manual methods use oscilloscopes with special graticules for the measurement of white bar tilt and 2 T pulse K factors; for differential phase and gain, vectorscopes or special purpose measuring instruments are used. Manual measurement of nonlinearity is made with a differentiating filter acting upon the staircase waveform backed by a high gain amplifier ${ }^{1,2}$.

Automatic measuring methods may be sub-divided into the usual two categories of analogue and digital. There are now available automatic analogue machines ${ }^{3,4}$, which evaluate many of the parameters listed in Table 1. It is expected that auto-

Fig. 1. International Test Line Signals a, b, c and d, inserted on lines 17, 18, 330 and 331. The National Test Line Signals a and b are inserted on lines 19 and 32 , and lines 20 and 335.

Table 1

Quality Parameter	Waveform Used
Insertion gain	White bar
White bar tilt	White bar
Pulse to Bar K factor	White bar and 2T pulse Non-linearity
Sifferential gain	Staircase imposed sub-carrier
Differential phase	Staircase with super- imposed sub-carrier
Chrominance luminance delay	10T or 20T pulse

matic methods will predominate as more automatic correcting and control equipment is brought into service. The output signals (direct voltages) from these analogue machines are used to raise alarms or to actuate local control equipment should any of the quality parameters fall outside
certain pre-set limits. In addition, the analogue outputs may be converted into digital form by a digital voltmeter and the digitized data telemetered to a central control room. At the control room the received data may be used merely for record purposes, or to decide whether

(f)
remote control equipment should be actuated.

As far as is known there are no digital machines commercially available at present. There is, however, an experimental digital system, developed by the Independent Broadcasting Authority, which is being used to monitor unmanned television transmitters. This system has been undergoing field tests since November 1972 at the Lichfield control and monitoring centre of the Independent Broadcasting Authority ${ }^{5}$.

In its mode of operation, off-air signals are received at the monitoring centre from the unmanned transmitters in the vicinity, each transmitter being serviced in turn. After the received signal has been amplified and demodulated by a high-quality receiver, the ITS is extracted and applied to a fast sample-and-hold circuit backed by a fast analogue-to-digital converter. Evaluation of the quality parameters from the resulting digital data is performed by a general purpose digital computer. Results of the field tests show that good agreement is obtained with both manual measurements and with automatic analogue measurements. The off-air system of monitoring has the advantage that the main capital cost is concentrated at one location-the monitoring and control centre-giving a lower overall cost than a monitoring system using automatic measuring machines at each unmanned site.

Generally the signal-to-noise ratios met in off-air monitoring are poor compared to those met in on-site monitoring. Consequently the computer programmes which derive the quality parameters have been designed to operate in conditions of high noise by using averaging techniques to improve the signal to noise ratio ${ }^{6}$.

In passing it is worth noting that the relatively poor noise performance of analogue machines prevents their use in similar off-air monitoring systems.

Although the field tests have shown that adequate performance is obtained with off-air signals received at Lichfield, it was envisaged that cases would occur where the received signal-to-noise ratios would be too low for the system to operate, particularly where the unmanned station and the monitoring and control centre were located in hilly areas, or in conditions of severe co-channel interference.

To cover such cases the Independent Broadcasting Authority initiated the development of a digital telemetry system which could be dovetailed with the off-air monitoring system, using, as far as pos-

Fig. 3. Spectrum of the $2 T$ pulse.
sible, common digital hardware and software. The function of the digital telemetry system would be to transmit measurements made at the "difficult" sites back to the monitoring and control centres using either the public switched telephone network or private telephone lines.

Design of the digital telemetry system

An important factor in the design of the telemetry system is the need to minimize the cost of the measuring equipment installed at the sites to be monitored. Consequently it would seem that only the simplest measurements and processes should be undertaken on-site, with the bulk of the data processing carried out by the relatively expensive equipment at the monitoring and control centre. Unfortunately, it is found that this strategy dictates long data transmisssion times and a slow system response.

This can be seen by taking as an example the measurement of r.m.s. noise. To obtain a good estimate of noise about 200 samples need to be taken at a nominally constant part of the television waveform (preferably during the "quiet line"). If these samples are digitized by an eight-bit analogue-to-digital converter, the total number of bits equals 1,600 , and the time taken to transmit these bits over a 50-baud (bits per second) channel is 32 seconds. Coupled with the transmission time of the ITS data, which would be at least as long, it is seen that the total data transmission time is in the order of minutes. This time may be reduced if, instead of transmitting raw data, a small amount of digital processing is performed upon the data prior to transmission. A block diagram of a measuring system, incorporating the above ideas, is shown in Fig. 2.

Circuit design was begun using readonly memories (ROMs) to determine sample timings and random access

Fig. 2. The time taken to telemeter digital information over narrowband channels is reduced if a certain amount of processing is performed before transmission from a remote site to the control
output to
transmission ransmission
system
memories (RAMs) to hold the data prior to transmission-data processing was carried out by an adder/subtractor unit made up in t.t.l. It was soon realized that the design was merely reproducing, at a high cost, circuitry that was already available in commercial microcomputers, and the original development policy was abandoned, subsequent development being based on the use of a microcomputer containing a single chip four-bit central processing unit.

The need for cheapness also limits the performance of the analogue-to-digital converter employed. Some converters are able to convert in fractions of a microsecond and form the heart of equipments such as DICE ${ }^{7}$. Unfortunately these fast converters are too expensive for this application and a cheaper, slow converter was used, which converts to eight bits in about 12 microseconds. Using a slow converter means that only a small number of samples can be taken in the 64 -microsecond duration of each insertion test signal.

In practice, programming the microcomputer is simplified if only one sample is taken during each ITS, i.e., a sample rate of 25 Hz or 50 Hz . At this point it may be well to recall the well-known Sampling Theorem which states that a band limited signal may be reproduced, without error, from samples taken at a rate of at least twice the bandwidth of the signal. Sampling at field or picture rate would therefore apparently limit the bandwidth of the measurements to either 12.5 Hz or 25 Hz . This limitation is overcome by employing strobing techniques identical to those used in sampling oscilloscopes ${ }^{8}$, wherein the sample timing is advanced, between samples, by an amount not greater than half the period of the maximum frequency contained in the signal.

Measurement theory

Luminance parameters. Sufficient samples need to be taken at various points along the ITS to provide the required data for calculating the luminance quality parameters: white bar amplitude, white bar tilt, 2 T pulse response, and luminance non-linearity.

Measurement of white bar height and tilt requires four samples to be taken at appropriate points along the waveform. The accuracy of measurement is limited by the quantization errors of the analogue-to-digital converter, and may be estimated as follows. If the input signal is 1 volt peak to peak and it occupies, say, 0.7 of the full range of an eight-bit analogue-to-digital converter (thus allowing for a possible 3 dB increase in input signal level without overloading the converter), then the picture component would span $0.7 \times 0.7 \times 255=125$ quantization levels where the number 255 corresponds to the highest level of an eight-bit converter ($=2^{8}-1$). The measuring error for each sample due to quantization is $\pm \frac{1}{2}$ level; therefore the maximum error in bar height is ± 1 level since two measurements are used to evaluate the white bar height. The
fractional error is ± 1 in 125 or about $\pm 0.8 \%$. Error in tilt measurement expressed as a percentage of white bar height is likewise $\pm 0.8 \%$ maximum. These errors are usually quite acceptable for most television measuring purposes. In the case of luminance linearity, measured on the staircase, the situation is somewhat worse. Each staircase riser height is approximately 25 quantum levels and the error of ± 1 level corresponds to an error in the measurement of luminance linearity of 8%, a performance which is not satisfactory. Improved accuracy may be obtained by adding small amounts of noise to the signal and averaging over many samples ${ }^{6}$ or by superimposing subcarrier on the staircase and averaging over four, or multiples of four fields.

For the 2 T pulse, samples need to be taken at timing intervals short enough to permit the pulse to be reconstituted from the samples according to the Sampling Theorem. In Fig. 3 is shown the spectrum of the 2 T pulse, from which it is seen that there is little energy beyond 5.0 MHz , implying that the sample intervals should not exceed 100 nanoseconds.

As mentioned above, strobing techniques are used to obtain these short timing intervals, the samples, which in real time repeat at picture intervals (40 milliseconds), being advanced by the required sampling intervals until the whole of the 2 T pulse is covered. For reasons associated with the evaluation of the colour components of the Insertion Test Signal, the timing increments are derived from 13.5 MHz oscillator giving a minimum timing increment of 74.1 nanoseconds and a bandwidth of 6.75 MHz . The total number of pulses used for strobing the 2 T pulse is 27, covering 2 microseconds, including a half microsecond allowance for timing errors in the location of the 2 T pulse. In a similar manner, by strobing the line sync. pulse it is possible to measure sync., pulse amplitude, duration and rise times.

Colour components. At first glance the use of strobing techniques for evaluating chrominance data appears to be invalidated by the changes in sub-carrier phase which occur from field to field. Fortunately in the case of the PAL system these phase changes may be put to good use. It can be shown ${ }^{9}$ that the phase of the sub-carrier component of the Insertion Test Signal, when referred to the preceding line sync. pulse, varies from field to field in multiples of 90 degrees. Taking line 19 as reference, the relative phases are:

| Line No. 19 | 332 | 19 | 332 | 19 | 332 | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Phase | 0 | 90.3 | 270 | 0.3 | 180 | 270.3 | 90 | 180.3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

and so on, repeating in an eight-field sequence.

Suppose the amplitude of the Insertion Test Signal at a time relative to line sync. in given by:

$$
v=v_{L}+v_{c} \sin \left(2 \pi f_{s c} t+\phi\right),
$$

where $f_{s c}$ is the sub-carrier frequency, v_{L} is the luminance amplitude, $2 v_{c}$ is the peak to peak sub-carrier amplitude, and ϕ is an arbitrary phase angle. Then it follows that the ampli-
tudes of four consecutive samples, taken at picture rate, have the values:-

$$
\begin{gathered}
v_{n}=v_{L}+v_{c} \sin \theta \\
v_{n+l}=v_{L}-v_{c} \cos \theta \\
v_{n+2}=v_{L}-v_{c} \sin \theta \\
v_{n+3}=v_{L}+v_{c} \cos \theta \\
\text { where } \theta=2 \pi f_{s c} t+\phi
\end{gathered}
$$

In these equations it is assumed that samples are confined to either odd or even fields; the method may therefore be applied directly to the International Insertion Test Signals which differ on odd and even fields. (It is also possible that future UK practice will be to use insertion signals from different origins on odd and even fields.) The amplitude and phase of the sub-carrier and the luminance amplitude may be easily derived from these samples by forming the variables:

$$
\begin{gathered}
v_{I}=v_{n}-v_{n+2}=2 v_{c} \sin \phi, \\
v_{Q}=v_{n+3}-v_{n+1}=2 v_{c} \cos \phi, \\
v_{T}=v_{n}+v_{n+1}+v_{n+2}+v_{n+3}=4 v_{L}, \\
\text { giving } v_{L}=v_{T} / 4, \tan \theta=v_{I} / v_{Q}, \\
v_{c}=\frac{1}{2} \sqrt{2} v_{I}^{2}+v_{Q}^{2} .
\end{gathered}
$$

When evaluating chrominance-luminance delay the 10 T pulse is strobed, groups of four phase samples being taken at each sampling point. The microcomputer is programmed to calculate the values of v_{I}, v_{Q} and v_{T}, and it is these values which are telemetered. At the monitoring and control centre, the luminance amplitude v_{L} and the chrominance amplitude v_{C} are first evaluated. The values of v_{L} and v_{c} are then filtered in identical digital filters, in order to reduce noise and quantization errors and the luminance and chrominance 10 T pulses are reconstituted according to the Sampling Theorem. A further computer algorithm then evaluates the relative delay between the two 10 T pulses.

Unfortunately when evaluating differential gain and phase from the staircase waveform, the above equations when used directly, result in excessive quantization errors. With an eight-bit a-d.c. the 140 millivolt peak to peak sub-carrier superimposed on the staircase waveform spans approximately 25 quantum levels. The maximum quantization error in either v_{t} and ν_{Q} is 1 quantum level corresponding to an amplitude error of 4% and a possible error in differential gain of 8%. Maximum phase errors are about $1 / 25$ of a radian or $2 \frac{1}{2}^{\circ}$ approx., resulting in a possible error in differential phase of 5°.

A method has been devised which reduces these quantization errors by a process of summing a multiple of samples at each staircase level. At each staircase level, the sampling point is progressed along the sine wave by a small angle e, the values of v_{t} at each sampling point being added together to give a total S; likewise the values of v_{Q} are added together to give a total $\stackrel{Q}{C}$. If for each staircase step a total of n groups of fourphase samples are taken, it can be shown by summing sine and cosine series that

$$
S=2 v_{c} \sin \left(\theta+\left[\frac{n-1}{2}\right] e\right) \cdot \frac{\sin n e / 2}{\sin e / 2}
$$

$$
C=2 v_{c} \cos \left(\theta+\left[\frac{n-1}{2}\right] e\right) \cdot \frac{\sin n e / 2}{\sin e / 2}
$$

The relative sub-carrier phase and amplitude are again easily evaluated from S and C.

The luminance value L is equal to the sum of the sample values divided by $4 n$. In these sums quantization errors tend to cancel whereas the signal components reinforce. Although it has not been found possible to evaluate the errors theoretically, practical errors are approximately 1 degree in differential phase, 2% for differential gain, and 1% for luminance non-linearity. These values apply for $n=8$ corresponding to 32 samples being taken at each staircase level.

The required phase progression e is automatically obtained by deriving the sample timings from a 13.5 MHz oscillator, the output of which is divided by 864 to line frequency, and locked to the line synchronizing pulses. The resulting value of e is equal to -5.3°. Other timing oscillator frequencies are possible, $\frac{\sin n e / 2}{\sin e / 2}$ should not be small and that the $\sin e / 2$ division ratio to line frequency should be easy to realize in practice.
The analysis of the staircase waveform requires a well-defined sequence of sample timings. On a given step, a set of fourphase samples is taken at a constant time relative to the preceding line sync. pulse; the sample timing is then advanced by three cycles of the 13.5 MHz oscillator and another set of four-phase samples taken and so on until a total of n fourphase samples have been taken. The sample timing is then advanced to the next staircase step and the process repeated. The timing of each group of $4 n$ samples is made constant relative to the staircase risers, so that transients associated with staircase transitions, or tilt across the steps, affect each group of readings equally. Consequently in the above formulae the value of θ varies with the step number, and correction angles must be applied when evaluating differential phase. The values of the correcting angles are given by $\theta n=2 \pi f_{s c} n T$. where T is the time separation between the steps (4.00 microseconds) and n is the step number (1 to 5) whence

θ_{1}	θ_{2}	θ_{3}	θ_{4}	θ_{5}
-84.4	+11.2	-73.2	+22.4	-62.1

Another group of colour measurements often required is the amplitude, position, and rise and fall times of the colour burst envelope. The phase sequence of the colour burst differs from that of the Insertion Test Signals by virtue of the phase alternation which is inherent in the PAL system, and it is not possible to use the above method without modification. It can be shown ${ }^{10}$ that the phase of the colour burst, relative to line sync, on a given line and the corresponding line in the next field takes one of two phases 180° apart. Quadrature phases are only obtained when the samples are taken on
pairs of lines half a field apart, for example lines 19 and 175 . The sub-carrier amplitude may be evaluated from samples taken on these lines using the previous formula and by strobing the sampling point through the colour burst the required information may be obtained.

Noise measurement. Signal-to-r.m.s.-noise ratio is an important measure of signal quality. As indicated previously, about 200 samples taken at a nominally constant part of the signal, are required to obtain a good statistical estimate of the noise. It is of course possible to programme the microcomputer to compute the r.m.s. value of the samples directly, but the relatively complex squaring programme involved in this computation may be avoided by making use of a relationship ${ }^{11}$ between the mean square P and the mean deviation from the mean d, possessed by Gaussian (normal) noise:

$$
d^{2}=\frac{2}{\pi} P
$$

Using this relationship it may be shown ${ }^{12}$ that the signal-to-noise ratio (S / N) in dB is given by:

$$
(S / N)=20 \log _{10} \frac{(2 . B \cdot m)}{\left(\pi . S_{m}\right)},
$$

Where B is the white bar amplitude and S_{m} is the telemetered noise word formed by adding the magnitudes of the differences between consecutive noise samples for a total of $m+1$ samples.

For an eight-bit analogue-to-digital converter this method of noise measurement is accurate for signal-to-noise ratios less than approximately 49 dB .

Hardware

A block diagram of experimental equipment operating according to the above concepts in shown in Fig. 4. The video signal is clamped and applied to the input of the sample and hold circuit. Timing information from the microcomputer is compared, in a ten-bit comparator, with
the state of a divide-by-1,024 counter driven by 13.5 MHz crystal oscillator. When coincidence occurs a pulse is generated which, after gating by the output of a second comparator, actuates the sample and hold circuit. The second comparator ensures that sampling occurs only during the line selected by the microcomputer. Synchronism between the sequence of operations within the microcomputer and the television waveform is maintained by the line $3 / 316$ signals applied to the microcomputer.

The microcomputer itself, as used in the experimental equipment consists of a single-chip four-bit central processing unit, four ROM and four RAM packages and about 30 t.t.l. packages which are used for control purposes. The ROMs have a total capacity of 1,024 programme steps and the total RAM capacity is 1,280 bits.

Programming the microcomputer

As a first experimental application of these ideas, it was decided to programme the microcomputer to analyze the staircase waveform. The flow diagram of this programme is shown in Fig. 5, which is seen to consist of a main programme and a measuring subroutine labelled LABA. The main programme after defining the starting time for the scan at black level jumps to the measuring subroutine LABA.

On rejoining the main programme after completing sub-routine LABA the process is repeated for the next step and so on, until the five steps are scanned. At this point the processed measuring data are held in the RAM store and would, in the final system, be read out into the telemetry channel. However in the present experimental system the data are read out directly onto paper tape using a routine labelled PUNCH.

The heart of the staircase programme is the sub-routine LABA. This routine organizes the arithmetic operations made upon the digital measurements in accor-
dance with the foregoing equations. On entering the routine the sample counter is incremented, followed by a test to determine whether the sample count is a multiple of four. If so the sample timing counter is incremented by three which results in the sample timing being advanced by three cycles of the 13.5 MHz oscillator for each group of four samples. A test for the presence of the line three signal on an input line of the computer follows.

If the line three signal is not present the microcomputer enters a sub-loop which it can leave only on the presence of the line three signal. The latest timing information as determined by the state of the timing counter is then entered on to the ten output lines which are connected to the timing comparator in the measuring circuitry.

At this point in the programme, a delay is inserted which ensures that the a.-d.c. data accepted is derived from a sample taken at the new sampling time. The amount of delay required is estimated by dividing the c.p.u. instruction cycle time (which for this microcomputer is approximately ten microseconds) by the difference between the times that the sample timing data are outputted (T_{1}) and the timing (T_{2}) of the sample in line 19. The time difference between line three and line 19 corresponds to 102 instruction cycles: 16 instruction cycles are taken up between the detection of line three and T_{1}, and the delay must therefore be at least 86 instruction cycles. In practice the delay is made up by traversing a loop of 32 instruction cycles five times, giving a total delay of $160-$ well in excess of the required delay. It is permissible to waste programme time in this way since there is room for approximately 4,000 instructions in the 40 millisecond interval between samples, whereas only 50 are used in the present programme.

After the a.-d.c. output has been accepted, one of six RAM locations con-

Fig. 4. Measurement, timing and processing system used at the remote site.

(a)

taining the luminance totals is addressed according to the step being sampled ($n=0$ to 5) and the a.-d.c. reading added to the contents of this RAM location.

Next follows an algorithm for evaluating the chrominance data. A test which operates on the least significant bit of the sample counter determines whether to address the S_{n} or C_{n} RAM location. A further test on the second least significant bit of the sample counter determines whether the a.-d.c. reading is to be added or subtracted from the RAM store addressed.

Finally a test is made to check whether the samples taken total 32 . If so the main programme is rejoined after zeroing the sample counter. In the subroutine LABA there are two nested subroutines LABT and LABS, which respectively add and subtract the a.-d.c. readings from the appropriate RAM locations. These subroutines are necessary, for although the
c.p.u. possesses add and subtract machine instructions which occupy single instruction cycles, these instructions operate only on four-bit words, whereas in this application, to prevent overflow, 16-bit words are used. That 16 -bit words are required may be seen by considering the contents of the luminance store when sampling the fifth staircase step. Peak white corresponds to a quantum level of about 180 , giving for the total luminance content, 32×180 or 5760 , which in binary notation becomes the 13-bit word

1011010000000 . The basic word length of the c.p.u. is four bits and any arithmetic operation on a 13-bit word must necessarily involve four operations in cascade giving a working word length of 16 bits.

For chrominance measurements the 140-millivolt peak-to-peak chrominance amplitude on the staircase for the UK signal corresponds to 25 quantum levels, giving possible maximum values S and C of approximately 25×32 or 800 , which in binary notation becomes the ten-bit word 1100100000 . A difficulty now arises
because the values of S and C may be negative and a sign bit must be added. Further, if the higher level of subcarrier for the international test signal is taken into account, and a one-bit margin against overflow is allowed the total number of bits required for the chrominance values S and C also equals 13 . The net result is that both luminance and chrominance working word lengths are 16 bits long.

The subtraction operation in the c.p.u. uses two's-complement arithmetic requiring the 16 -bit S and C words to be interpreted in the following way. The 16th most significant bit (sign bit), if zero, signifies a positive number, with the remaining 15 bits regarded as a normally weighted binary number. If the sign bit is unity the number is negative, the magnitude of the number being equal to the binary complement of the remaining 15 bits plus one.

The next step in programming is to transform the flow diagram into a series of instructions using the instruction set belonging to the c.p.u. The c.p.u. here used has a set of 45 instructions, examples of which are:
ADD -Adds two four-bit numbers with carry
SUB -Subtracts two four-bit numbers with borrow
INC A-Increment contents of register A
LD X -Loads contents of register X into the accumulator
Completion of this stage of programming results in a series of machine instructions which are next translated into machine code. This translation is simple, since each member of the instruction set corresponds to a unique eight-bit machine code word. In machine code the programme consists of a sequence of eight-bit words; it is these words which are written in order into the Read Only Memory (ROM).

The task of programming the microcomputer is eased by using assembler and simulator programmes designed by the microcomputer manufacturer. With these programmes, which are accessed via computer time-sharing services, the microcomputer programmes may be checked for correct operation prior to entering them into the ROM, thereby decreasing the cost and time of programming. A product of the assembler programme is a paper-tape which contains the microcomputer programme as a sequence of machine code instructions. This tape is used in a special machine to programme the ROM automatically.

Results

Measurements made with the staircase programme may be taken to indicate the performance of the monitor based on this work since it involves appreciable on-site processing of the raw data and produces three quality parameters.

A single read-out from the staircase programme consists of 18 measurements made up of six sets of values L_{n}, S_{n}, C_{n}, where n varies from 0 to 5 . On paper tape these values are recorded as 36 words, each word having a length of eight bits.

TABLE 2

Col			2	3	4	5	6	7

TABLE 3

	Col 1	2	3	4	5	6	7	8	9	10
n	L_{n}	S_{n}	C_{n}	R_{n}	A_{n}	θ	θ^{\prime}	θ_{n}	θ_{f}	θ_{r}^{\prime}
0	1819	-162	+61	-	173	-69.4	0	0	0	0
1	2452	+79	+153	633	172	+27.3	+96.7	+84.4	+181.1	+1.1
2	3078	+145	-93	626	172	-57.6	+11.8	-11.2	+0.6	+0.6
3	3700	-107	-137	622	174	+38.0	+107.4	+73.2	+180.6	+0.6
4	4327	-125	+120	627	173	-46.2	+23.2	-22.4	+0.8	+0.8
5	4949	+131	+112	622	172	+49.5	+118.9	+62.1	181.0	+1.0

A typical set as read off from paper tape and converted to decimal notation is shown in Table 2. In column four of this table are evaluated the relative riser amplitudes, and in columns five and six the chrominance amplitude and phase. After normalizing to the phase at black level and correcting by θ_{n} the final phase is shown in column nine.

$$
\begin{gathered}
\text { Non-linearity is given by } \\
\mathrm{NL}=100 \frac{\left(R_{M A X}-R_{M / N}\right)}{R_{M A X}} \text { per cent }
\end{gathered}
$$

$$
=1.9 \%
$$

Differential gain is given by the largest in magnitude of

$$
100 \frac{\left(A_{n}-A_{0}\right)}{A_{0}} \text { per cent }
$$

$$
=2.0 \%
$$

Differential phase is the largest in magnitude of θ_{r}

$$
=+1.3^{\circ} .
$$

To give an idea of the repeatability of the measurements, results from the same signal measured at a level of -1.5 dB are given in Table 3.

These results give

$$
\mathrm{NL}=1.8 \%
$$

Differential gain $=+0.6 \%$ or -0.6% Differential phase $=+1.1^{\circ}$.
In evaluating differential phase in this case, an additional correction had to be made in column ten to compensate for the 180° ambiguity in the evaluation of arctangents. This correction is not always necessary but depends on the particular point in the eight-field sequence at which the summations of S and C commence.
Tables 2 and 3 show that the maximum difference in phase at each staircase step between these two sets of measurements is 0.9°, which is typical of results obtained.
Detailed measurements to determine the accuracy of the monitor in the presence of random noise have not been made. However it is expected that the effects of random noise will be reduced in the same manner as quantum noise, and the
accuracy will not be significantly impaired for signal-to-random-noise ratios exceeding about 46 dB .

Acknowledgement

This work was carried out whilst the author was employed by the Independent Broadcasting Authority, and the author wishes to thank the Director of Engineering of the Independent Broadcasting Authority for permission to publish this article. The author also wishes to acknowledge the important contribution made by Mr John Moore (formerly of the IBA now of Sumlock Anita Ltd) in producing the original programmes.

References

1. Savage, D. C. and Carter, D. A. Application of insertion test signals techniques to television chain operation, Proceedings of the Joint Conference on Television Measuring Techniques, May 1970, IERE.
2. Robinson, K. W. and Heinzl, J. J. Measurement of non-linear distortion on the video signal, Marconi Instrumentation, May 1972.
3. Shelley, I. J. and Williamson-Noble, G. E. Automatic measurement of insertion test signals, Joint Conference on Television Measuring Techniques, May 1970.
4. Provisional specification EMC-44 for insertion test signal analysis system PM5578, Philips Electrical Ltd.
5. McKenzie, G. A. Experiments with a computer in a television control and monitoring centre, IBC Conference Publication No. 68.
6. Vivian, R. H. Some methods of automatic analysis of television test signals, IBA Technical Review No. 1, Sept. 1972.
7. "DICE" IBA Technical Review No. 3, June 1973.
8. Grove, W. M. A new DC-4000MC sampling 'scope plug in with signal feed through capability, Hewlett Packard Journal, April 1964. 9. Schaffer, J. The phase of colour test signals, IBA Internal Report No. 4/70, Oct. 1970.
9. Schaffer, J. Identification of PAL phase sequences, IBA Automation and Control Section Design Note DN/11/71.
10. Weatherburn, C. E. A first course in mathematical statistics, page 27.
11. Schaffer, J. Computer simulation of a television digital noise meter, IBA Technical Memorandum No. 1/73 April 1973.

Twin voltage stabilized power supply

A simple high-quality practical design

by J. L. Linsley Hood

The classical series voltage stabilizer system using thermionic valves is shown in Fig. 1, and most transistor operated stabilized supply circuits are simple derivatives of this, of the form shown in Fig. 2. In both cases the h.t. output voltage is varied by altering the setting of R_{I}. Among the snags of this arrangement is the fact that the lowest output voltage at which the stabilized output can be obtained is roughly equal to the reference voltage $V_{r e f}$.

If a stable negative reference voltage is available, the circuit can be rearranged as shown in Fig. 3, to give an output variable down to 0 V . The performance of the stabilizer arrangement in this circuit has also been upgraded by including a monolithic op. amp. integrated circuit in the control loop, and a conventional "constant current" current limiting circuit has been included in the form of Tr_{3}. With some form of Darlington transistor arrangement as $T r_{I}$, this type of circuit forms the basic layout of the bulk of normal stabilizer arrangements.

However, as it stands, this circuit arrangement suffers from three significant drawbacks. These are: (1) the forward bias applied to the series pass transistor, $T r_{1}$, cannot be greater than the input-tooutput voltage drop less the base-emitter potential(s) of $T r_{I}$. Consequently, the value of R_{I} must be kept fairly low if adequate base bias current is to be provided for $T r_{1}$, which lowers the loop gain and increases the quiescent dissipation in Tr_{2}. Also, since at higher currents there will be some ripple on the input supply voltage, the forward minimum voltage drop must in fact be larger than simple calculations would suggest if output ripple is to be avoided; (2) since the operation of the current limit circuit is to "steal" the base current from Tr_{I}, and this current must flow in the output circuit, this sets the lower limit at which the short-circuit output current can be set; (3) under short-circuit conditions, the portion of the stabilizer which provides the high loop gain is removed from useful participation in the operation of the circuit, and in consequence, the output current under these conditions is much less well stabilized than when the circuit

Fig. 1. Traditional "series" valve voltage stabilizer.

Fig. 2. Conventional transistor voltage stabilizer circuit derived from Fig. 1.

is acting as a voltage controlled arrange ment.

These snags can be removed if the circuit is rearranged as shown in Fig. 4. In this the forward bias of the pass transistor Tr_{1} is obtained from the zero volts line, and is, in consequence, the whole of the input supply potential. Also, the amplifier transistor, Tr_{2}, now is required to pass current only when the load current requires it, and the static dissipation of the device is consequently much less. (The use of the pass transistor in this mode is probably due to Owen ${ }^{1}$.) As before, an operational amplifier is used to increase the

Fig. 4. Rearranged stabilizing circuit with Tr_{3} and op-amp inverted. The circuit of Tr_{3} is rearranged below to give re-entrant current limiting.

Fig. 3. Improved transistor stabilized supply with current limiting circuitry and op-amp to increase loop gain.

Fig. 5. Twin stabilized d.c. power supply. Capacitors of 0.1μ F may be connected across the transformer secondaries if r.f. modulation hum is found. Switches S_{1}, S_{2} and the two voltage adjustment potentiometers may be ganged.
low frequency loop gain, but this time in a shunt feedback mode.
Transistor Tr_{3} is used to give a "constant current" limiting effect, but this time by effectively bypassing the voltage adjustment potentiometer, and causing the circuit to voltage regulate at a sufficiently lower voltage that the load current reduces to the required limit value. By this means, the voltage regulator circuit is in operation all the time and the output performance is not degraded under "current limit" conditions. The capacitor across Tr_{3} serves to limit the gain of this device at h.f. and prevent loop oscillation due to the increased circuit gain when this transistor comes into operation.

Because of the very high open loop gain of the 741 at low frequencies, where no negative feedback is applied to it, the d.c. output voltage is extremely stable and shows none of the low frequency "noise" excursions to which simple stabilizer circuits are normally prone. In fact the performance is probably limited mainly by the quality of the negative reference line.

This circuit arrangement has been embodied in a twin output (positive and negative lines (bench stabilized supply, of which the circuit is shown in Fig. 5. Although, in principle, the two supplies could be quite independent, and use identical circuits, because of my interest in audio amplifier circuits which have a split (+ and -) supply, I have chosen the arrangement in which the input (+ and -) supply is used to provide the two 12 -volt lines which power the 741 s and provide the positive and negative reference rails. For economy in knobs on the front of the box I have also ganged the
two voltage adjustment potentiometers and the current limit switches.
The measured performance of the prototype is as follows.
Output voltage $0-35$ volts, positive and negative
Output current 2 amps max
Load regulation $\approx 2 \mathrm{mV}$. No load to full load
Output hum, noise and ripple approx. $150 \mu \mathrm{~V}$, not significantly affected by load
Limit currents (nom.) $5 \mathrm{~mA}, 20 \mathrm{~mA}, 100 \mathrm{~mA}$, 500 mA and 2 A
Adequate heat sinks should, of course, be used for the pass transistors $T r_{l}$ and $T r_{l a}$, and the output voltage sensing (the "live" ends of R_{l} and $R_{l a}$) should be taken from a point as close to the output terminals of the supply as possible. In practice, since the voltage control potentiometer will be mounted on the instrument front panel this is an easy requirement to satisfy. The small value output electrolytics are used to bypass

Fig. 6. Circuit configuration to give precise switched output voltages.
any h.f. noise and to assist in avoiding loop instability. Their stored energy should not be an embarrassment under short circuit conditions.

An interesting further possibility exists in the case of any supply circuit having a negative reference voltage line, and that is as shown in Fig. 6. If the current drawn from the reference supply is set to be precisely 1 mA , by means of the preset R_{2}, the output voltage can be adjusted in $0.1-, 1$, and 10 -volt increments by the switches S_{2}, S_{3} and S_{4}, with the output voltage as accurately set as the precision of the resistors allows.

Reference

Owen, T. R. E., "Circuit Ideas" Wireless World, May 1971, p234.

Teletext receivers

Engineers are now turning their minds to the design of receivers for Teletext, the unified Ceefax/Oracle system of information display now being experimentally transmitted (November issue, p.441). B. S. Barnaby of GEC and G. O. Crowther of Mullard presented a paper at the International Broadcasting Convention in London on the receiver techniques needed to take advantage of the transmissions, pointing out that the design philosophy that is eventually adopted will have been decided by economic factors, and that if it is not found possible to bring the cost of the extra circuitry down to an acceptable level then Teletext will probably not succeed. They also recognize that largescale integration will play a vital part in this exercise, though it seems likely that even larger-scale integration, bringing the cost down further still, will have to wait until the system has been accepted before semiconductor companies will feel impelled to spend several million pounds on the development.

Two possibilities exist: an add-on unit. with a tuner, i.f. and modulator, to feed the aerial socket of a receiver: and a combined television/Teletext receiver. With the former, one is not restricted to the television channel being used; while the latter, though cheaper, is a little restrictive.

The memory part of the circuit is, perhaps, the thorniest problem, and two techniques are considered-the shiftregister and RAM, both of the largescale m.o.s. type. The shift-register is a possibility, even though there is no random access, as transmission and use of the digital information is serial in form, as is shift-register operation. The authors conclude that the RAM offers the best chance of success in both cost and
ease of access, although the standard RAM does have binary organization, which is a slight disadvantage. The dynamic type of "refreshed" memory is acceptable with the information flow presented to it.

The data acquisition part of the decoder, which consists of instructions for the display character ROM and address information, will possibly be realized in the t.t.l. family of devices, because the data clock rate-nearly 7 MHz -is a little high for m.o.s. techniques. The user, incidentally, will be able to select the required page number by means.of either a thumbwheel switch or a calculator-type keyboard. It seems probable that some sort of remote control device (ultrasonic?) would eventually be used.

The display section uses the coded signals to produce the video character signals and the timing. The charactermemory, which produces characters in response to the transmitted instructions, is a "read-only" type (ROM), in the m.o.s. technique. Characters are on a 7×5 matrix, and the rather restricted character-forming facilities can be improved, at no expense in bandwidth, by using raster interlace to "fill in the corners". Upper- and lower-case characters can be generated, but a lower-cost, upper-case-only ROM gives a slight cost reduction. Timing circuits are in large-scale m.o.s. modules.

The test transmissions are to last two years, and one hopes that manufacturers will have the next generation of 1.s.i. circuits well considered before the end of this period, because the smaller-scale devices now available could lead to an overall decoder cost of up to $£ 150$, depending on whether "combined" receivers or add-on units are used.

The BBC "Ceefax" information display system was publicly demonstrated for the first time on our Audio Fair stand. A Wireless World staff member, Mike Sagin, demonstrates the equipment: the decoder can be seen in the centre. This is a BBC laboratory pro-totype-much larger than a commercial unit will be.

World of Amateur Radio

Oscar 7 up and working

The seventh amateur-radio space satellite, Oscar 7, was successfully launched into orbit on November 15, exactly 25 months after the launching of Oscar 6 which is still functioning, although to a restricted timetable. The new satellite-by far the most ambitious of the series-carries two linear repeaters: one (built in West Germany) that accepts signals on 432.125 to 432.175 MHz and retransmits them on 145.975 to 145.925 MHz ; the other provides a similar service to Oscar 6 , accepting signals in the 144 MHz band and retransmitting them on 29.4 to 29.5 MHz . The two transposers operate on alternate days. The anticipated 2304 MHz beacon could not be carried (apparently it proved impossible for the Americans to obtain permission to use this frequency in space) but it carries beacons on 29.50, 145.98 and 435.10 MHz . A feature of the new satellite is the use of circularly-polarized aerials for 144 and 432 MHz . The orbit is very similar to that of Oscar 6 (sun synchronous).

The president from Wales

When, on January 17 at Cardiff Castle, Cyril Parsons, GW8NP, formally takes over the insignia of president of the Radio Society of Great Britain he not only makes history as the first person with a "GW" (Wales) callsign to hold this office but is likely to find that, figuratively at least, the chain is not growing any lighter. For amateur radio, both in the UK and in many other parts of the world, is going through a period of uneasy change at a time when rapid inflation is undoubtedly pressing hard on many long-established societies. Although financially the RSGB has had two good years, undoubtedly costs are rising at a pace that is difficult to match with subscriptions; like many London-based societies there are persistent suggestions that a move to the provinces might reduce running costs. Again, amateur radio itself is increasingly subject to pressure to expand by making it ever easier to become an operator, yet experience has shown that where licences are easy to obtain they are valued less and tend to result in a form of Citizens Band approach to the hobby.

But in Cyril Parsons the national society will have as president someone who while clearly accepting that the hobby must be ready to change, does so from the viewpoint of one with a knowledge of experimental radio stretching back more than 50 years to the time when at the age of 14 he obtained (through a guardian as was then necessary) an "Experimental Receiving Licence" and soon progressed from a crystal receiver with loosecoupled aerial to a more sophisticated three-valve receiver using French R valves. By the end of the twenties an early interest in high-quality reproduction was reflected in constructing experimental moving-coil loudspeakers that did away with the need for an output transformer by winding 4000 -ohm speech coils (centretapped) and with a machined steel pot wound with wire capable of taking the necessary two amps to excite the gap.
Then, after an interval in which motorcycles and hydroplane racing played a part, Cyril Parsons came back to radio experimentation in 1934 with the call 2BPN, becoming GW8NP in February 1937. He was one of the considerable number of pre-war amateurs who joined the RAF Civilian Wireless Reserve in 1938 and was mobilised just before the outbreak of war in September 1939. He served as a Staff Signals Officer, retaining his interest in the Air Force for more than ten years after the war in the Royal Auxiliary Air Force with such units as No 3615 Fighter Control Radar, finally stepping down with the rank of Hon. Wing Commander and the Air Efficiency Award and Bar. From 1946 he was also again very active in amateur radio.

Cyril Parsons takes office at a time when there are a record number of over 20,000 licensed amateurs in the UK but with mode and band rivalries hardening and signs of differences of opinion between those with Class A and Class B licences. While by European standards the numbers here are large, there are today over 400,000 amateurs (about three-quarters of them in code-free categories) in Japan with an average age of 22 years. In the United States there are some 250,000 licensed operators (about 180,000 'active' stations) but with a growing belief that the FCC is shortly to introduce a new structure giving more facilities to code-free categories, including operating rights above 29 MHz . American amateurs are still puzzled at the recent unexpected decision of FCC to waive logging requirements.
A difficult maze for the new president to find his way through.

Commonwealth microwave record?

Murray Willis, ZL2THW, and Neil Lambert, ZL2TGC, established on August 12, 1974 a New Zealand record for 3.3 GHz of 144 miles. This is 46 miles better than the current UK band record and may well be a Commonwealth record. Equipment at both ends was a CV237 feeding a 3 ft dish aerial and using f.m. (transmitter power

60 mW) with signals " 59 " both ways.
From New Zealand's Break-in also comes news that a 28.17 MHz beacon station (ZL2MHF) is being installed by the very active Upper Hutt branch of NZART on Mount Climie. This follows an approach some time ago by the RSGB enquiring whether a ten-metre beacon could be installed in New Zealand to help propagation studies. There are over 20 v.h.f. beacons in Region 3.

Amateur television

The experiment of holding the 1974 British Amateur Television Club's convention at Rugby was a qualified success, with some disappointment in the attendance of about 100 members for what was a most interesting day. Among the demonstrations were those of the BATC "outsidebroadcast" vehicle "Monoculus", microwave and fibre optic experimental equipment, low-definition television and slow-scan television. Bob Roberts, G6NR, continues at president with Don Reid taking over as chairman from Malcolm Sparrow.

An experimental, low-definition, mechanical television system by D. C. Hodges, G6MXY/T, uses 30 lines at the high rate of 50 pictures/second (to allow the use of standard monitors) based on a Nipkow dise running at 3000 rpm .

In brief

Almost 6,000 people attended the 1974 ARRA amateur radio exhibition at the Granby Halls, Leicester . . . The RSGB Education Committee is presenting one of the Christmas holiday lecture demonstrations at the Science Museum. This will be at 11 am and 3 pm on Saturday, January 4. Ticket applications to J. D. Freeborn, Lecture Service, Science Museum, South Kensington, London SW7 2DD . . During the period May 16 to October 10 the Australian amateur VK3CZ heard on 1.8 MHz a number of North and South American amateurs but the only European amateur heard was the Czech station OKIDOK (August 6) although the German commercial station DHJ (commonly used as a Top Band "DX beacon") was heard on many occasions . . The March and District Amateur Radio Society emerged as overall winner of the 1974 VHF National Field Day. This was held under extremely bad weather conditions but nevertheless attracted 115 entries for operation on 70, 144,432 and 1296 MHz . Runners-up were Southampton RSGB Group . . . M. Hawkins of Chelmsford won the 1974 Direction Finding Contest as the first to locate three 1.8 MHz hidden transmitters

The RSGB affiliated societies contest is being held on January 11 to 12 (a changed date) . . Quote from Don Keith, WA4BDW: "So long as we depend on the publicly-owned frequencies for amateur radio's very existence we had better make sure the public knows who we are and what we do."

PAT HAWKER, G3VA

Mini oscilloscope

A miniature battery/mains-powered oscilloscope, the A1010, measures only $5.5 \times$ $13.5 \times 19 \mathrm{~cm}$. The y amplifier has a 10 MHz bandwidth, a $10 \mathrm{mV} /$ division sensitivity and the pre-amp stage can be isolated for use in conjunction with the external sweep input. The input attenuator is switched to give $\times 1, \times 10$ and $\times 100$ with a maximum input of 350 V a.c./d.c. The timebase is continuously variable on each of three switched ranges from $1 \mu \mathrm{~s}$ to $1 \mathrm{~s} /$ division. Built-in batteries provide four hours' operation before recharging is necessary, which takes place automatically when the instrument is powered from external $240 / 110 \mathrm{~V}$ a.c. or 12 V d.c. supplies. Lawtronics Ltd, 139 High Street, Edenbridge, Kent TN8 5AX.
WW313 for further details

Sweep generator

The model 7271 linear/logarithmic sweep generator offers sine, square, triangle, pulse and ramp waveforms over the range 0.0001 Hz to 20 MHz . The sweep width is set by two controls-one for start
frequency and the other for stop, over a three-decade range. The internal sweep generator, having a range of sweep times from 1000 s to 100 ns , may be triggered manually or externally. The pulse generator has variable pulse width and repetition rate which can be set independently. Several choices of d.c. offset, for vertical positioning of the waveform, are offered as well as a voltage-controlled offset for remote control. Dana Electronics Ltd, Collingden Street, Luton, Beds.
WW306 for further details

Optical transmission system

A fibre-optic data transmission system comprising an emitter, lightguide, and receiver is capable of transmitting a 16 -bit digital word or one analogue signal with a 12-bit accuracy. With an additional multiplexer, 16 analogue signals may be transmitted at the same accuracy. Plug-in p.c. cards are also available to expand the transmission capacity in steps of 32 bits up to a maximum of 320 bits. The system, which is noise immune, can operate over distances up to 100 metres. Triskelion AG, Leimatt 1, 6317-Oberwil/ZG, Switzerland.
WW305 for further details

Function generator

The latest function generator from the Heath/Schlumberger range of assembled instruments is the SG-1271. The instrument will provide sine, square, or triangle waveforms over the frequency range 0.1 Hz to 1 MHz . Frequency selection is by means of six variable ranges. The output delivers a 10 V peak-to-peak signal into a 50 ohm load. A calibrated step attenuator adjusts from 0 to 50 dB in 10 dB steps with a variable attenuator providing up to 20 dB attenuation in each step. Frequency accuracy for the generator is $\pm 3 \%$ with wave-

WW313

WW300
form symmetry within 10%. Heath (Gloucester) Ltd, Bristol Road, Gloucester, GL2 6EE.
WW302 for further details

Static-protection aids

A range of materials and accessories for the handling of devices sensitive to electrostatic-discharge damage is available from Semicomps Ltd. The range, which is constructed from electrically conductive material, includes items such as aprons, wrist straps, shoes and stool covers. The material is also available in $4 \mathrm{ft} \times 8 \mathrm{ft}$ sheet form for bench tops and foam sheets for shorting component leads. Semicomips Ltd, Northfield Industrial Estate, Beresford Avenue, Wembley, Middx.
WW303 for further details

Pushbutton potentiometer

A potentiometer, known as the 3680 knobpot, combines an incremental decade resistance-element with a digital display and pushbutton section in one package. Ratings for the device are a temperature coefficient of 100 p.p.m. $/{ }^{\circ} \mathrm{C}$, resistance tolerance of $\pm 1.0 \%$, resolution of $\pm 0.1 \%$ and a power rating of 2 W . Bourns Trimpot Ltd, Hodford House, 17/27 High Street, Hounslow, Middx.
WW307 for further details

Surge suppressor

A voltage-dependent resistor has been developed by Mullard for the suppression of mains-borne transients. The resistor; type 232259453912 , is made from zinc-oxide and has a higher degree of nonlinearity than the usual silicon-carbidebased components. Whereas the current through silicon-carbide components is proportional to the fifth power of the applied voltage, this figure becomes the

WW305

WW302

35th power for zinc-oxide types. In normal operating conditions with a 240 V a.c. supply the zinc-oxide v.d.r. dissipates a few milliwatts, an increasing voltage causes a rapidly falling resistance to effectively short circuit the transient. Under surge conditions the v.d.r. can pass currents of 100 A . Mullard Ltd, Mullard House, Torrington Place, London WCIE 7HD.

WW301 for further details

Multiplying oscilloscope

In addition to a full range of facilities, the Philips PM3265 dual-trace oscilloscope possesses a multiplying mode in which signals from both amplifiers are multiplied and displayed on one trace, the other displaying one of the original signals. The multiplying bandwidth is 100 MHz , which means that power products in high-speed logic circuitry can be displayed. Bandwidth of the y amplifiers is 150 MHz at 5 mV per cm and operating modes are A, B, chopped, alternate, added or multiplied. The horizontal deflection is by a delayed time-base, the delaying and delayed sweeps appearing apparently together, although, in fact, on alternate sweeps. Triggering, in a variety of modes, is workable with a signal up to 300 MHz . A $8 \times 10 \mathrm{~cm}$ screen is provided, the 20 kV accelerating potential making for a bright, sharp trace, which is stable with variations in beam current. Pye Unicam Ltd, York Street, Cambridge CB1 2PX. WW315 for further details

Instrument modules

A recently introduced instrument module system from Metrowatt comprises basic frame sizes ranging from volumes of 300 c.c. up to housings of 3500 or 10,000 c.c. Most of the frames are divided into two subframes. The upper frame accepts the
display movement and offers a variety of control layouts. There is also a choice of lower frames for various battery sizes and types. Blank circuit cards are available for all frame sizes together with ancillary components such as battery connectors, jacks and safety switches. Metrowatt UK Ltd, York House, Stevenage Road, Hitchin, Herts SG4 9DY.
WW308 for further details

Peak-reading voltmeter

The Semikron peak-reading storage voltmeter will read the maximum transient voltages on a line in any given period. The transients to be measured are selectable by filters for duration and amplitude. The instrument has six voltage ranges from 30 to $10,000 \mathrm{~V}$ and an input impedance of $10 \mathrm{M} \Omega$. A minimum pulse width is selectable from 1,10 or 100μ s and a selectable storage time from 1 to 20 s and infinity. The voltmeter is mains or battery powered with an automatic-charge circuit for the latter. An automatic reset facility is provided, so that if the meter is connected to a suitable recorder the voltmeter will give a history of supply variations. Semikron UK Ltd, Brewhouse Lane, Hertford.
WW312 for further details

Optical tachometer

Using the Power Instruments optical tachometer it is possible to take measurements up to two feet away from a revolving mechanism. The instrument uses the principle of a collimated beam and a high-speed response phototransistor. A small piece of reflective tape is attached to the rotating component, and the instrument receives only its own light to provide a reading. The instrument is self-calibrating from any fluorescent light operating from 50 or 60 Hz . Four ranges, from 0 to 30,000

WW315
r.p.m., are provided on the tachometer which has a claimed accuracy of $1 \frac{1}{2} \%$ of f.s.d. The instrument is battery powered and measures approximately $5 \times 7 \frac{1}{2} \times 2 \frac{1}{2}$ in with a 24 in probe cable. Electronic Brokers Ltd, 49/53 Pancras Road, London NW 1. WW300 for further details

Moisture-proof switch

A moisture-proof switch called the E7240A, is rated at $10.1 \mathrm{~A}, 186 \mathrm{~W}, 115$ / 250 V a.c., and is claimed to operate immersed in water. The switch measures approximately $1 \times \frac{7}{8} \times \frac{1}{3}$ in with $10 \mathrm{in}, 14$ gauge leads. The one-off price is $£ 0.60$ from Cherry Electrical Products UK Ltd, Lattimore Road, St Albans, Herts.
WW309 for further details

Frequency-to-voltage converter

Teledyne Philbrick have introduced a 10 kHz frequency-to-voltage converter. The device, which is known as the 4714 , has a 1 mV to 10 V output directly proportional to a 1 Hz to 10 kHz input frequency. A non-linearity of 0.08% of f.s. in four decade ranges is claimed for the device which is priced at $£ 19.75$ one off, from Teledyne Philbrick, Heathrow House, Bath Road, Cranford, Hounslow, Middx. WW310 for further details

Miniature power supply

A d.c. power supply in a d.i.l. package provides outputs of 5 or 12 V at 1 W . The total volume of the package, which fits into a standard i.c. socket, is 0.3 cubic in. Isolation is provided and the source is short-circuit proof with an automatic reset. TI Supply, 165 Bath Road, Slough, Bucks SLl 4AD.
WW311 for further details

WW308

WW312

Audio fair new products

Three-head cassette deck

Teac showed an unexpected new model of a three-head cassette tape deck at the Audio Fair. Designated the A-850 this machine is placed upright, thus occupying only the depth of a shelf. Three d.c. motors provide forward drive and fast wind functions via logic-controlled solenoid operation. In common with Sony and Nakamichi, dual capstans are used to improve control of the tape across the heads. Dolby noise reduction is included and calibration controls and a built-in test oscillator provide the flexibility to get the best out of all tapes. Separate three-position bias and equalization switches, a peak-reading facility for the VU meters and full microphone/ line mixing are included among the facilities. Price will be about $£ 400$. Acoustico Enterprises Ltd, Unit 7, Space Waye, North Feltham Trading Estate, Feltham, Middlesex TW14 0TZ.
WW327 for further details

Omal loudspeaker

The Omal TL6 "monitor" loudspeaker is designed to leave the listener with many options as to the kind of loudspeaker used. Using five drive units, with mid-range and h.f. units in both the front and rear, it is possible to operate in the forwardradiating mode or in the "omnidirectional" mode by adjustment of the level controls.

In the bass region there is a choice of mode brought about by mechanically

WW320
operated flaps which alter the loading of the bass unit, from a quarter-wave design to' either a distributed port or damped labyrinth.

Crossover frequencies are 400 Hz and 5 kHz using 12 and 18 dB /octave slopes. Mid- and high-frequency unit controls are switched with constant-resistance and Zobel impedance correction networks. Sensitivity in the direct mode, all controls set level, is quoted as $80 \mathrm{dBA} /$ watt. Distortion is claimed to be less than 1% above 65 Hz for 90 dB s.p.l. (at 1 kHz). Maximum amplifier rating should be 20 watts (into 8Ω) and maximum power handling figure is 50 watts. Ambionic Sound Reproducers Ltd, Omal House, North Circular Road, London NW 10 7UF.
WW320 for further details

Belt-drive turntable

With much of the emphasis on directdrive turntables at the top end of the market, it is unusual to see a competitive new belt-drive turntable. Sansui showed such a product, the SR-313, and claim that it can out-perform many types of direct-drive units. Complete with tone-arm, the SC-38 induced magnet cartridge, plinth and cover, the unit offers the following manufacturer's specification. Signal-tonoise ratios: $>50 \mathrm{~dB}$, frequency response: $20 \mathrm{~Hz}-20 \mathrm{kHz}, \pm 3 \mathrm{~dB}$, wow and flutter: $<0.06 \%$ w.r.m.s. Approximate price is $£ 142.86$ plus v.a.t. Vernitron Ltd, Thornhill, Southampton.
WW323 for further details

WW327

Professional CD-4 demodulator

A new high-performance CD-4 demodulator for professional use was demonstrated by JVC. Designated CD4-1000, it features lower distortion and improved signal-to-noise than the consumer model. The carrier-channel circuitry has been improved by use of a "crosstalkcancelling" circuit; the a.n.r.s. circuit has been upgraded to the standard of the recording circuit. Two switched filters are included-one giving a 3 dB loss at 18 Hz , the other giving a 6 dB loss at 10 kHz , with a slope of 6 dB /octave. Harmonic distortion quoted for the baseband channels is $0.03 \%(1 \mathrm{kHz})$. No distortion figures are issued for the carrier channels. Baseband amplitude frequency response can extend to $20 \mathrm{kHz}(-3 \mathrm{~dB})$. Victor Company of Japan Ltd, 1, 4-chome, NihonbashiHoncho, Chuo-ku, Tokyo 103.
WW324 for further details

Dolby cartridge recorder

The 3 M Company made quite a showing with a new range of equipment selected from the American Wollensak range. The first is an eight-track cartridge recorder, designated the Wollensak 8075 and is unique in as much as it is the first Dolby cartridge machine to be marketed in the UK.

In addition, a cassette deck based on the well-known Wollensak mechanism was shown, the model 4766. Again, this machine has Dolby noise reduction, plus a claimed wow and flutter of 0.07% w.r.m.s., twin VU meters and peak overload indicators. 3M United Kingdom Ltd, 3M House, Wigmore Street, London W1A IET.
WW321 for further details (8075)
WW322 for further details (4766)

WW323

Mini loudspeaker

An interesting design produced by Technics is the SB30 loudspeaker system. This consists of one full-range 9 cm loudspeaker mounted in a closed cabinet measuring only $10.3 \times 18.1 \times 12.7 \mathrm{~cm}$. Maximum input power to the nominal 8Ω unit is 20 W and 1 W will produce 86 dB at a distance of 1 m on axis. The weight of each speaker is 1.5 kg and the claimed frequency range is 50 Hz to 20 kHz , no limits being specified, however. Price is $£ 15$ each plus v.a.t. National Panasonic (UK) Ltd, 107-109 Whitby Road, Slough, Berks, SL1 3DR.
WW328 for further details

New valve amplifiers

One of the most surprising new products at Olympia was the Lux MQ-80 valve stereo power amplifier from Lux (perhaps not so surprising on reflection). A twin triode tube 6336A is used per channel at the output stage in a push-pull circuit. The output transformer in each output has bifilar windings to ensure maximum coupling with no leakage inductance. The transformer design also permits a claimed frequency response extending up to 200 kHz . Main specifications are: Power output: 40W (8Ω, each channel, both driven); t.h.d.: below 0.5%; frequency response: 10 Hz to $60 \mathrm{kHz}(-1 \mathrm{~dB})$; damping factor: 15 (8Ω load); residual noise: below 0.5 mW . Price $£ 398$ plus v.a.t.

Associated with this power amplifier is the Lux $35 /$ II valve pre-amplifier ($£ 298+$ v.a.t.). Howland West Ltd, 3-5 Eden Grove, London N7 8EQ.
(Howland West state that they do not keep these models as stock items but will order on request.)
WW329 for further details

Calibration cartridge

Wilmex, distributors of Stanton cartridges, showed the model 681 EEE which is claimed to represent a "state of the art" standard in magnetic cartridges. The stylus tip is a low mass (two-thirds the mass of its predecessor) nude diamond, 0.2×0.7 mil elliptical type. Frequency response: $10 \mathrm{~Hz}-12 \mathrm{kHz}, \pm 0.5 \mathrm{~dB}$, overall, $10 \mathrm{~Hz}-22 \mathrm{kHz}$. Nominal output for $5 \mathrm{~cm} / \mathrm{s}$ recorded velocity: $3.5 \mathrm{mV} \pm 2 \mathrm{~dB}$, channel separation: 35 dB , tracking force: $0.75-$ 1.5 g , total cartridge mass: 5.5 g . Wilmex Ltd, Import Division, Compton House, New Malden, Surrey KT3 4DE.
WW326 for further details

New Brahms speaker systems

An enclosure added to the Brahms range of loudspeakers is the SAL 3000, a design which incorporates an 8 in bass unit with an aluminium voice coil and rubber-roll suspension. It has a one-inch dome high-frequency unit mounted in a cabinet which measures $48 \times 27 \times 25 \mathrm{~cm}$. Power handling is rated at 30 W and nominal impedance is $4-8 \Omega$. Each cabinet weighs 9.5 kg and teak or walnut is the
choice of cabinet finishes. The manufacturers claim a good stereo image and a flat response to 22 kHz . Price is $£ 29.50$ each plus v.a.t.

The new Windsor loudspeaker system also has two units but the bass unit is a 10 in neoprene doped cone mounted in a larger cabinet measuring $61 \times 33 \times$ 28 cm . Finishes are also similar and the price $£ 34$ each plus v.a.t. Brahms also had a new range of German loudspeakers manufactured by Schilling on view at Olympia, which is due for release during January. These are similar in operating principle to the Sonab surround sound loudspeakers and the range consists of four models which range in price from $£ 31.93$ to $£ 95.81$ plus v.a.t. Brahms Manufacturing and Development Co, Unit E, Rochester Airport, Maidstone Road, Rochester, Kent ME1 3QJ.
WW325 for further details

Solid State Devices

The names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

Switching power-transistors

Three new series of switching transistors from Sescosem are constructed using the triple-diffused technology and have ratings for $V_{\text {CEO (sus) }}$ from 90 to 500 V at maximum collector currents from 15A to 30A.
WW350 for further details Sescosem

Quad opto-isolator

The 1LQ74 is a quad opto-isolator in a 16-pin d.i.l. package. Each channel has a typical isolation resistance of $100 \mathrm{M} \Omega$ and a minimum breakdown voltage of 1500 V . The coupler costs $£ 2.87$ for oneoff and $£ 1.65$ for 1,000 -off quantities. WW351 for further details Jermyn

80V op-amp

An op-amp designated the HA2-2645-5 is capable of operating from $\pm 40 \mathrm{~V}$ power rails. The device, which incorporates an output current limiter, will deliver an output swing of up to $\pm 35 \mathrm{~V}$ at $\pm 10 \mathrm{~mA}$ with a bandwidth of 4 MHz . Offset voltage is typically 2 mV and offset voltage drift is typically $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The op-amp costs $£ 2.65$ in $100+$ quantities.
WW352 for further details
Memec

Step-recovery diodes

The 5082-0800 series of step-recovery diodes has been designed for use in highand low-order harmonic generators. The
diodes have typical outputs of 0.3 W from 10 to 20 GHz and 6 W from 3 to 5 GHz . Junction capacitance for the two ranges is 0.1 pF minimum and 3.5 pF maximum respectively. Transition times range from 50 ps to 250 ps .
WW353 for further details Hewlett Packard

Buffer register

The AMI S1709 buffer register contains 13 parallel-in/parallel-out shift registers plus the control logic necessary to achieve a first-in/first-out memory configuration. External control signals allow cascading of several register arrays and the device may operate with independent input and output data rates. The S1709 is supplied in a 24 -pin di.i. package and costs $£ 8.69$ for $100+$ quantities. WW354 for further details

GDS

Liquid-crystal driver

A b.c.d.-to-seven segment latch/decoder/ driver called the MC14543 is designed for use with liquid-crystal readouts. The device is constructed using c.m.o.s. and offers direct l.e.d. driving capability, latch storage of code and readout blanking on all unpermitted combinations.
WW355 for further details
Lock

Suppliers

Hewlett-Packard Ltd, 224 Bath Road, Slough, Berks SL1 4DS.
GDS (Sales) Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Berks.
Lock Distribution, Neville Street, Middleton Road, Oldham, Lancs OL9 6LF.
Memec Ltd, The Firs, Whitchurch, Aylesbury, Bucks.
Jermyn Distribution, Sevenoaks, Kent.
Sescosem, 50 rue Jean Pierre, Timbaud, BP120, 92403 Coubevoie, France.

Semiconductor service

Amateur constructors and servicing technicians can now obtain small quantities of semiconductor devices at manufacturers' list prices from the distributor Semicomps through a new service started by its subsidiary SCS Components. The range available includes all discrete and integrated semiconductors from Mullard, Motorola, Signetics, General Instrument (Microelectronics), G.I. (UK), Ferranti, RCA, Monsanto, and Mostek. Data sheets are free on request. Passive components from Mullard, Seatronics and Centralab will be added to the range later. A catalogue is available free. SCS Components is at 5 c Northfield Industrial Estate, Beresford Avenue, Wembley, Middlesex, HA0 1SD, telephone 01-903 3168.

It's a mod. mod. modular world.

The fact is that all too few music lovers realise that while certain high fidelity components can be less than best, there is one component that cannot endure a sacrifice in quality: the cartridge. Because the hi-fi cartridge functions as the source of sound (the point at which the recording is linked with the balance of the hi-fi system), its role is absolutely critical. Just as the camera can be no better than its lens, the finest hi-fi system in the world cannot compensate for an inferior cartridge. Suggestion: For a startling insight into the role of the cartridge in the overall hi-fi system, and a breathtaking re-creation of your favourite recording, see your nearby Shure cartridge dealer. He'll introduce you to the Shure cartridge that is correct for your system and your exchequer. Or, next best, send for our brochure:

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

IP) IL.P. (tasetromestee

SHEER SIMPLICITY!

Mono electrical circuit diagram with interconnections for stereo shown

The HY5 is a complete mono hybrid preamplifier, ideally suited for both mono and stereo applications. Internally the device consists of two high quality amplifiers-the first contains frequency equalisation and gain correction, while the second caters for tone control and balance.
TECHNICAL SPECIFICATION
Inputs
Magnetic Pick-up $\quad 3 \mathrm{mV}$.RIAA
Ceramic Pick.up
Ceramic Pick-up
Microphone
Tuner
Input impedance
Outputs
Main output Odb
Active Tone Controls
Treble $\pm 12 \mathrm{db}$ at 10 kH
$\pm 12 \mathrm{db}$ at 100 Hz
Distortion $\quad 0.05 \%$ at 1 kHz
Signal/Noise Ratio 68 db
Overload Capability 40 db on most
Supply Voltage $\quad \pm 16-25$ volts.
PRICE $£ 4.50+0.36$ V.A.T. P \& P free.
TWO YEARS GUARANTEE ON ALL OUR PRODUCTS

The HY50 is a complete solid state hybrid Hi-Fi amplifier incorporating its own high conductivity heatsink hermetically sealed in black epoxy resin. Only five comnec. tions are provided: Input, output, power lines and earth.
TECHNICAL SPECIFICATION
Output Power 25 watts RMS into 8Ω Load Impedance 4-16S
Input Sensitivity Odb (0.775 volts RMS) Input Impedance $47 \mathrm{k} \Omega$
Distortion Less than 0.1% at 25 watts typically 0.05\%
Signal/Noise Ratio Better than 75 db
Frequency Response $10 \mathrm{~Hz}-50 \mathrm{kHz}+3 \mathrm{db}$
Supply Voltage ± 25 volts
Size $105 \times 50 \times 25 \mathrm{~mm}$.
PRICE $£ 5.98+0.48$ V.A.T. P \& P free

The PSUSO can be used for either mono or stereo systems.

TECHNICAL SPECIFICATIONS
Output voltage 25 volts
Input voltage $210-240$ volts
Size L.70, D.90, H. 60 mm
PRICE $£ 5.00+0.40$ V.A.T. P \& P free.

Please Supply \qquad
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclay card account \square
Account number \qquad
Name \& Address \qquad

New automatic digital bridge fromWayne Kerr

Wayne Kerr's new B900 is one of the best value-for-money bridges in the world.

It is universal, has a wide range, and gives immediate digital readout of resistive and reactive terms-simultaneously.

On all ten ranges, for every type of measurement available, the displays provide a complete indication of the numerical value (up to 19999), polarity, decimal points and units-automatically and in half a second.

Direct measurements of Q, dissipation and dc volts.
2,3,\& 4-terminal. Automatic lead compensation.
4-Quadrant: + ve or - ve C,L,1/C, G and R.
Overall coverage:

$10 \mu \Omega-200 \mathrm{M} \Omega$	1 nH
$0.001 \mathrm{pF}-20,000 \mu \mathrm{~F}$	$10 \mathrm{p} \cup$

Accuracy: $0.1 \%(10 \Omega-200 \mathrm{M} \Omega), 0.3 \%(10 \mathrm{~m} \Omega-10 \Omega)$ in all quadrants. Frequency: 1 kHz Outputs: Analog and TTL.

For more information phone Bognor (02433) 25811, or fill in the coupon.

Please send me details of the B900.
For the attention of Mr \qquad
Company name and address
Compand

Post to Wayne Kerr, Durban Road, Bognor Regis, Sussex PO229RL

WW-120 FOR FURTHER DETAILS

STEREO IC DECODER
 HIGH PERFORMANCE PHASE LOCKED LOOP (as In 'W.W.' July '72)

MOTOROLA MC1310P EX STOCK DELIVERY

 SPECIFICATIONSeparation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$ Plovel: 560 mV rms

O/P level: 485 mV ims per channel

Will drive up to 75mA stereo on' lamp or LeD.		
KIT COMPRISES FIBREGLASS PCB	ONLY	WHYPAY
(Roller tinned), Resistors, I.C., Capacitors,	E3-98	MORE?
Preset Potm. \& Comprehensive Instructions	post fre.	
LIGHT EMITTING DIODE	RED	29p
Suitable as stereo 'on' indicator for above	GREEN	$59 p$

MC1310p only e3.15 plus p.p. 6p
NOTE
As the supplier of the first MC1310P decoder kit, of which we have sold literally thousands, our customers can benefit from our wide experience.

Please add V.A.A.T.
FI-COMP ELECTRONICS BURTON ROAD, EGGINTON, DERBY, DES GGY

TELEVISION CAMERA KITS

Complete kits are available for both "Mullard" and "P.E. design. Each kit includes a comprehensive construction manual, and a completely FREE technical back-up service to ensure your success. VHF and UHF Modulator Kits also available to allow standard domestic T.V. to be used as monitor. All parts available separately. including a wide range of - lenses, vidicon tubes, special mains transformers and focus/scan coils. Also available P.W. tele-tennis game. Send $5^{\prime \prime} \times 7^{\prime \prime}$ S.A.E. for full details or come along for a demonstration and a chat with our technical staff.

CROFTON ELECTRONICS

124 Colne Road, Twickenham, Middlesex TW2 6RS.
Tel. 01-898 1569. Telex 934642 Cadanac LDN.

TEAC 4-CHANNEL INDUSTRIAL RECORDER

ITA 10-4

MODULAR MIXER

Ten inputs. Four output groups. Four limiters. Base, mid, treble EO. Balanced inputs. Modular construction. Heacphone monitoring.
IMMEDIATE DELIVERY.
f 590 + VAT

sole suppler: NOTE NEW ADDRESS~

Industrial Tape Applications

5 Pratt Street, London NM1 QAE.Tel: 01-485 6162 Telex: 21879
WW-130 FOR FURTHER DETAILS

$$
\text { SALISBURY } 3746
$$

You can now find our factory and showroum at... II Salt Lane, Salishury, Wilts, SPI1DT The telephone number remains the same...

WW-040 FOR FURTHER DETAILS

Full member of AFDEC-the industry's association of franchised electronic component distributors.

Our prices include VAT at the current rate-and carriage on all goods is free.
Send for our catalogue and price list - we'll mail that to you free. too.

Phoenix Electronics (Portsmouth) Ltd
139-141 Havant Road
Drayton. Portsmouth. Hants PO6 2AA

THIS MONTH'S BARGAIN OFFER-

74TTL digital logic kit. 6 gates, 2 flip-flops, decoder, decade counter
8 -bit shift register +5 DIL sockets
-catalogue value $£ 6.76$
BARGAIN PACK PEP3—£4.90

Please send your catalogue-free!

Name
Address \qquad
\qquad

R.S.T VALVE MAIL ORDER CO, Backwood hall. 16 Wellifidd Road London, SWIG 2BS Tol: 01-6772424 R.S.T.

\qquad

 \qquad

 \qquad
 \qquad
 \qquad

${ }^{24}$

| CV404 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CV |
| CV432 |

axuz	ME1403
${ }_{\text {GXU3 }}^{\text {GXU }}$	${ }_{\text {ME1404 }}^{\text {ME1500 }}$
ax ${ }^{\text {a }}$ 0	ME150;
ктв ${ }^{\text {¢ }}$	OA2

[^2] QS150/80
Q81200
Qs1202 QS1203
QS1205
QU QU37
QV03. 12 QV04.
QV0.-25
QV06-20 QY
QY-120
QY
Q 250 A QY4-400A
R10 R10
R17
R17 R18
811E12
8130 ${ }_{8130}^{8130}$ S130P
STV280/40
STV280/80 STV280
STV
SU1

SU42 \begin{tabular}{l}
SU4

SU42

\hline

 $\underset{\text { TT15 }}{\text { TD }}$

QQV03-20A \& TT21

QQV04-15 \& TTR31MR

QQV06-40 \& TZ40

QQV06-40A \& U17

Q870/20 \& U19

OS75 120 \& U19
\end{tabular} Q875/20

Q875/20

QS75/60 | Q875/60 | VLS631 |
| :--- | :--- |
| E883/3 | Z300 | 0.51 ${ }_{0.57}^{0.51}$ 74157

74170
74174
74175
74176
74190
74191
74192
74193
74194
74195
74196
74197
74198
74199

FROM $18 T$ APRIL ALL ORDERS SUBJECT TO Y.A.T. AT APPLICABLERATE. THIS MUST BE ADDED TO TOTAL ORDER PRICEINCLUDING POSTAGE.
Terms of Business: Mon, to Sat. Open to callers 9 a.m. to $5 \mathrm{p} . \mathrm{m}$. Closed Sat. $1 \mathrm{p} . \mathrm{m}$. to 3 p.m. Express postage $5 p$. for one valve; Ip each additional valve. specification if required. (Full valve availability list on request, S.A.E.) Prices correct when going to press.

LOW PROFILE SOCKETS 14 pin DIL, 16 p . Stockists of English Electric, Farranti, M.O. Valve Co.

Audio Connectors

Broadcast pattern jackfields, jackcords. plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd.
90 Wardour Street,
London W1V 3LE
01-437 1892/3

ELECTRONIC ORGAN KITS

There are 5 superb models in kit-form specially designed for kit-form specially designed for
the $D-1-Y$ enthusiast. With our free and generous after sales free and generous after sales service you can build in sections. and the whole project can be extended over several months. All specialised components can be purchased separately. We also stock keyboards, volume pedals, MOS master oscillators. ICs., transistors. ETC, for WM piano. Send $50 p$ for catalogue and vouchers worth $50 p$ or send our own parts list, enclosing SAE for quotation.

ELVINS ELECTRONIC MUSICAL INSTRUMENTS
12 Brett Rd.. Hackney, London E8 1JP. Tel: 01-9868455

Prices include panels. feet, P. \& P. and VAT. State whether $\frac{1}{4}, \frac{1}{2}$ or full panels required.
The Wast Hyde prestige case
The smartest of the West Hyde cases, all
anodised aluminium. with top and bottom
panels only: in black or-covered steel (plain or
brackets. Supplied ex-stock. fully assembled, with SS Pozidinium
 C21 (5 ${ }^{\frac{1}{2}}{ }^{\prime \prime}$ hatf rack) C31 (5 " ${ }^{\text {" }}$ whole rack £13.43
£10.91 £ 10.91
£ 15.46 £15.46

Pr. Brackets	Extrafor Louvre
$86 p$	$79 p$
$86 p$	$79 p$
$\mathbf{8 6} .22$	$79 p$
1.22	$79 p$

The new Oryx 50 is temperature controlled, light. small, easy to handle, rapid heating and high performance. It has a temperature control within $\pm 2 \mathrm{C}$ and adjusted in seconds whilst running to any value between 200 C and 400 C . Long life iron-coated tip as standard (11 sizes available).
Oryx De-Soldering Irons-smali model SR3A instantly removes solder from printed circuits, etc., accurate. reliable. simple. PTFE nozzle. Larger instrument SR2 gives more suck, less recoil as only piston moves.

汤度 Printed Circuit System is simple, inexpensive, and fits into low-cost West Hyde cases. The System comprises six
cards (two styles, three sizes). connectors cards itwo styles, three sizes). connectors double-sided and all contacts gold-plated Shown: Mod-301 case with boards 421 . guides 311. 21-way connectors. Prices

$$
\begin{aligned}
& \text { Mod-301 (including chassis) } \\
& \text { £4.06: Connector } 21 \text {-way }
\end{aligned}
$$

84p: Boards 421 \& 422 f1.11. (up to 8 DILS on each board): Card guide pairs $311 £ 1.78$. Prices include P. \& P. and 8% VAT. Much less
for quantities. for quantities.
LEDs with chromium-plated screwed case suitable for 5.5 mm . hole or unmounted LEDs 3.2 mm . dia.

 Much less for quantities. Send for catalogue. Prices correct Dec.

WEST HYDE
WEST HYDE DEVELOPMENTS Ltd, Ryefield Cres,, Northwood Hilks, Northwood, Middx HAG inN. Tel: Northwood 24941/26732 Tedex: 923231
Write or 'phone for new free catalogue. WW-133'FOR FURTHER DETAILS

eleltor

120,000 European electronics enthusiasts read Elektor. Now the first English edition is here, and British readers can join them.
Elektor is a fund of well thought-out and theroughly tested projects, new ideas using modern electronic components, objective comment on new developments.

Try it.

If you like it, we'll give you this month's issue free*

This month

\dagger	Motional feedback speaker circuit		One-chip MOS digital clock
\dagger	Varicap tuned masthead preamplifier		railways
t	High quality amplifier		switch
t	Distortion meter	t	Quadro systems

[^3]
TELEPRINTER EQUIPMENT LIMITED

Sales . . . Rentals . . . New . . . Refurbished . . . Installation Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries TELEPRINTERS Models 7B, 54, 75, 444
CREED EQUIPMENT

TELETYPE CORP. EQUIPMENT

SIEMENS

 EQUIPMENTOTHER
EQUIPMENT

SPECIAL EQUIPMENT

TAPE READERS 6S4, 6S5, 6S6, 6S6M, 92, 35, 71, 72, 74 HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.
TELEPRINTERS 15, 19, 20, 28, 32, 33, 35
all configurations
PERFORATORS 14, 19, 28 LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS $14,20,28$ LBXD \& LXD TRANSMIT GROUPS, etc.
TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.
KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN. CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE- HOLDERS.

COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED
 G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300,500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20-way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)—made to specifications
TERMINAL BLOCKS (DISTRIBUTION)-20-way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH $71(15 \times 4 B)$
POLARISED TELEGRAPH RELAYS AND UNISELECTORS—various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, $48 \mathrm{H}, 49 \mathrm{H}, 149 \mathrm{H}, 3 / 16,3 / 216,3 / 48 \mathrm{~A}, 3 / 43 \mathrm{~A}, 48 \mathrm{~J}$, etc.
FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

WW 201 FOR FURTHER DETAILS

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include:

> KEYBOARD PERFORATORS for offline tape preparation
> AUTOMATIC TAPE TRANSMITTERS with speeds up to 250 w.p.m.
> MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS
> UNDULATORS for automatic record and W/T signals up to 300 w.p.m.
> CODE CONVERTERS converting from 5 -unit tape to Morse and vice versa
> MORSE REPERFORATORS operating up to 200 w.p.m.
> TONE GENERATORS and all Students' requirements
> CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANSMITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS LAMPS, etc.

OUR PRICE f3. $25 \quad$ P\&P 15p

U4323 MULTIMETER 20.000opv. Simple unit with audiolf oscillator. Suitable unit with audio/if osillotor. Suitabe for geneal receiver tuning. Pangesesive $0.5 / 2.5 / 10 / 50 / 250$ $500 / 1000 \mathrm{~V}$ DC 2.5/10/15/250/500/1000V AC. $0.05 /$ $0.5 / 5 / 50 / 500 \mathrm{~mA}$ DC. Resistance: $0.5 / 5 / 50 / 500 \mathrm{~mA}$ DC. Resistance: $\times 10 . \times 100 \times 1,000, \times 10,000(50 \Omega$. $\times 10 . \times 100, \times 7,000 \times 10,000$ $5002.5 \mathrm{~K} \Omega 50 \mathrm{k}$ centra scale) Batten operated. Size: 160×97 Batter, opprated. Size: $160 \times 97 \times$ 40 mm . Supplidin carry ing case complote with test leads. OUR PRICE $£ 7.70$

HIOKI 730X

30,000 opv. Over
load protection. 6/30/60/300/600/ 1200 V DC. $12 / 60 /$ $120 / 600 / 1200 \mathrm{~V}$
$60 / \mu \mathrm{A}$ $30 \mathrm{~mA} / 300 \mathrm{~m}$
$2 \mathrm{~K} / 200 \mathrm{~K} /$ 2 Meg Ohm. -10 to 63 dB OUR PRICE $\mathbf{f 7 . 5 0}$ U4324

 0/120/600/12/30 DC. 3/6/15/60/150/
$300 / 600 / 900 \mathrm{AC}$ Current: $0.06 / 0.6$. 6/60/600mA/3A DD
$0.3 / 3 / 30 / 300 \mathrm{~mA}$ $25 / 500$ ohms/0.5/5/50/500k ohms/5 Mohms. Decibels: -10 to 122 tB . Size
$167 \times 98 \times 63 \mathrm{~mm}$. Supplied complete with test leads, spare diode and
instructions. OUR PRICE F9.25 P\&P 30p U435 MULTIMETER Arot

$$
\begin{aligned}
& \text { orms. Size: } 205 \times 110 \times 84 \mathrm{~mm} \text {. Sup. } \\
& \text { plime conmpene with leads. crocodile } \\
& \text { clips and steel carrying case. }
\end{aligned}
$$ clips and stoel carrying case.

and OUR PRICE E8.75 P\&P 30p U4312 MULTIMETER
 instrument for
general
gese 667 toctrical

 60050 DC \& 75 mV .
$900031.5 / 7.5130 /$ 60/150/300/600/ $900 V \mathrm{AC}, 0 / 300 \mathrm{~A}$
$1.5 / 6 / 15 / 150 / 60$ 600mA/1/1.5/6A
DC. $0 / 1.5 / 6 / 15 /$ $60 / 150 / 600 \mathrm{~mA} / \mathrm{l}$
$1.5 / 6 \mathrm{~A} A C$.
$0 / 200 / 3 \mathrm{k} / 30 \mathrm{k}$ ohms. DC accuracy 1\% AC 1.55 . Knite. odge
pointer, mirror scale. Complete with pointer, mirror scale. Complete withe
sturdy metal carrying case, leads and instructions.
OUR PRICE $£ 10.25$ P\&P50p

AMMETER

AMMETER
For measuring AC volt-
oge and currant age and current withou
breaking circuit. Ranges $300 / 600 \mathrm{~V}$ AC. . Rerrgent:
$10 / 25 / 100 / 250 / 500 \mathrm{l}$ $10 / 25 / 100 / 250 / 500 \mathrm{~A}$.
Accuracy 4%. Size 283 x Accuracy 4\%. Size 283x
$94 \times 36 m$. Compore
with carrying caspe. leacas with carryin
and fuses.
DUR PRICE f 13.50
 rivis

MODEL 500 30,000 opv with
 100/250/500/ 0/2.5/10/25/100/

 500 mA .12 ADC . C. megohm OUR PRICE $£ 13.95$ Case for above $£ 1.75$

HIOKI 750X VOLT-OHM

DUR PRICE EIT.OS PAP

HIOKI MODEL 700X	
100.000 opv, Overload	
(tatection. Mirror sca	
12/30/60/120/300	
600/1200V DC.	
1.5/3/6/12	
15/304A/3/6/30/6	
150/500 mA/6/12	
2k/200k	
OUR PRICE £14.95	

Model HT100B4 MULTIMETER Overload protected,
shock proof circuits.

switch. Ranges: $0.5 .52 .5 /$
$1 . / 50 / 250 / 550 / 1.000$

25011.000 Volts AC. DC resistence' 0 -20)
$200 \mathrm{k} / 2 / 20$ Meg. onms.
DC current:- $10 / 250 \mathrm{uA} / 2.5 / 25 / 250$
 batteries. Size: $180 \times 134 \times 79 \mathrm{~mm}$. OUR PRICE f17.50 P\&P 40p

MOOEL AS. 1000 VOM

 100,000 opv.Mirror scale.
Built-inmeter
protection. $0 / 3 /$
$12 / 60 / 120 / 300 /$
$12 / 60 / 120 / 300 /$
$600 / 1200 \mathrm{OC}$.
$0 / 6 / 30 / 120 / 300 /$ $6 / 60 / 300 \mathrm{~mA} /$
$200 \mathrm{~K} / 2 \mathrm{M} / 200$ Ohm. - 20 to - 17 dB
OUR PRICE f17.50
 $25 \mathrm{~mA} / 250 \mathrm{~mA}$. -20
to +68 dB . to +68 dB .

RICE 16.50 P \& P 30p

 KAMOOEN HM720B FET VOMInput impedence 10

KAMODEN 360 MULTIMETER High sansitvity,
DC 100kohm/

 $2.5 / 10 / 50 / 250 /$
$1000 \mathrm{~V} ~ 510 /$ $50 / 250 / 1000 \mathrm{~V}$ AC. Current:
$0.01 \mathrm{~mA} / 0,5 / 5 / 50 /$
$500 \mathrm{~mA} / 10 \mathrm{~A}$. Resistanc: ${ }^{0.1 /}$
$1 / 10 / 100$ ohms/ $1 / 10 / 100$ ohms/
$1 / 10100 \mathrm{k}$ ohms/
$10 / 100 \mathrm{M}$ ohms
 10/100M ohms.
Decibels -20 to
+62 dB . Battery Decibels -20 to
+62 dB . Battery operated. Size: $180 x$
$140 \times 80 \mathrm{~mm}$. Supplied complate with. test lead
OUR PRICE E17.50 P \& P 40p
TMK MODEL 117 FET ELECTRONIC VOLTMETER Battery operated.
11 Meg input, 26 ranges. Large 41/4" mirros. scarge Size :
$149 \times 117 \times 60 \mathrm{~mm}$. $149 \times 117 \times 60 \mathrm{~mm}$.
$0.3-12000 \mathrm{DC}$.
$3-300 \mathrm{~V}$ RS AC.
$8-800 \vee \mathrm{P}$.
 DC current $0.12-1$
12 mA . Resistenc 12mA. Resistence
4 p to 2000 MO .
+51 mB . Supecibels: -20 to +51 dB . Supplied complete with leads OUR PRICE 18.50 P\&P 20p

TMK 100K LAB TESTER

 100.000opv. $61 / \%^{\prime \prime}$scale. Buzzer scale. Buzzer
short circuit check.
Sensitivity 100000
opy DC. $5 k / V$ AC Sensitivity 100.000
opv DC. $5 \mathrm{k} / \mathrm{VAC}$
DC Voits: $0.5 / 2.5 /$
$10 / 50.250 / 1000 \mathrm{~V}$ 10/50/250/1000V
AC. $3 / 10 / 50 / 250 /$ AC.
$500 / 1000 \mathrm{~V} D \mathrm{DC}$

current $10 / 100 \mathrm{uA}$
$10 / 100 / 2.5 / 10 \mathrm{~A}$ $10 / 100 / 2.5 / 10 \mathrm{~A}$. Resistence:
$1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} / 10 . \mathrm{Meg} / 100$ Meg ohms.
Decibels: -10 to +450 B . Plastic case Decibels: -10 to +49 ydB . Plastic case
with carrying handle. Size: 190×172 $\times 99 \mathrm{~mm}$.
OUR PR
 KAMODEN 72.200 Multitester High sensitivity
tester. 200,00 opy tester. 200,000 opy
Overroad protected
Mirror scale.
Rangass:-0/06/.3
3/30/120/600 Rangess:-0/.06/.3
$3 / 30120 / 600 /$
1200 V 2 O 1200 V DC: $0 / 3$
$12 / 60 / 30011200$ $V \mathrm{AC} .0 / 6 \mathrm{AA} /$
$1.2 \mathrm{~mA} / 12 \mathrm{~mA} /$
600 mA 12 DC $600 \mathrm{~mA} / 12 \mathrm{~A}$ DC
$0 / 12 \mathrm{ACC}-20$ to
$+63 \mathrm{~dB} .0 / 2 \mathrm{k} / 200 \mathrm{k} /$

OUR PRICE $\mathrm{f} 22.50 \quad$ P\&P 30p U4317 MULTIMETER High sensitivity
instrument for field
and laboratory work.
Knife edge pointer,
86mm. mir ror scate. $86 m \mathrm{~mm}$, mir $\begin{aligned} & \text { ror scate. - } \\ & \text { Overoad protection. }\end{aligned}$
Ranqes: 100 mV I
$0.5 / 2.5 / 10 / 25 / 50 / 10$
0.5/2.5/10/25/50/100/250/500/1000 $500 / 1000 \mathrm{~V}$ AC. Current: 50 u A/0. 1/5/10/50/250mA/1/5A DC. 0.25) 0.5/1/5/10/50/250mA/1/5AAC. Res. stanco: 0.5/10/100/200 ohms/ $1 / 3 /$ Gattery operated. Size: $210 \times 115 \times$ 90 mm . Supplied in carrying case com
DUR PRICE $\mathbf{f 1 6 . 5 0 \quad \text { P\&P 40p }}$

5/300750ma
 30/75/150/300/750V DC. $/ 7 / 75 \mathrm{mV}$ AC. Automatic cut out devica. Suppand test certificates. DUR PRICE £52.00 P\&P 50p MODEL AF. 105 VOM 60,000 opv. M
scale. Meter
protection. protection.
$0 / 3 / 3 / 12 / 60 / 120 /$ $0 / 3 / 3 / 12 / 60 / 120 /$
$300 / 600 / 1200 \mathrm{~V} D$. 0/6/30/120/. 300/600/120 $0 / 30 \mu \mathrm{~A} / 6 /$
$60 / 300 \mathrm{~mA}$
12 Amp. $0 / 10 \mathrm{~K}$
$1 \mathrm{~m} / 10 \mathrm{~m} / 100$
 OUR PRICE E12.50 PGP 30p. Tests ICO and B . PNP/NPN. Operates
from 9V battery.
Instructions supplied OURtructions sur QUR PRICE
£3.95 P\&P 20p LB4 TRANSISTOR TESTER Tests PNP or NPN indication. Opdio
Operates on two 1.5 V
batteries. Complete batteries. Complet
with instructions OUR PRICE K4.50 P\&P 20p TRANSISTOR TESTER High quality
instrument to isst reverse leak
teurrent and DC current. Amplification factor of
NPN, PNP, diodes
 claar scale meter Operates from internal betteriex
Complete with Complete with
instructions, leads carrying handie.
DUR PRICE $£ 17.50$ P \& P 40 U4341 Multimeter 8 Transistor Tester 27 ranges. 16.700 opv Rvenges: $0.3 / 1.5 / 6 /$ $30 / 60 / 150 / 300 / 900 \mathrm{~V}$
$\mathrm{DC} .1 .5 / 7.5 / 30 / 150 /$ DC. $1.5 / 7.5 / 30 / 150 /$ Current: $0.06 / 0.6 /$
$6 / 60 / 600 \mathrm{~mA} 0 \mathrm{C}$ $6 / 60 / 600 \mathrm{~mA}$ DC.
$0.3 / 3 / 30 / 300 \mathrm{~mA}$
R Resistance: $0.08 / 2$
$0.6 / 2 / 6 / 20 / 60 / 200 \mathrm{k}$ Battory operated. Supplied complete
with probes, lads and stool carrying with probes, leads and stoel carrying
case. Size: $115 \times 215 \times-90 \mathrm{~mm}$. OUR PRICE E10.50 P\&P 30p S100TR MULTIMETER
TRANSISTOR TESTER $100,0000 \mathrm{pv}$. Mirror
scale. Ovarioad protection. $0 / 0.12 /$
$0.6 / 3 / 12 / 30 / 120 /$ 600 V DC. $0 / 6 / 30$ / 0/12/600u A/12 $300 \mathrm{~mA} / 6 / 12 \mathrm{~A} D C$ $0 / 10 \mathrm{k} / 1 \mathrm{Mag}$
100 Mieg.
-20 to +50 dg .
$0.01-0.2 \mathrm{MFD}$

$$
\begin{aligned}
& \text { VRMS/mm: 0.3-25 } \\
& \text { Preset triggered sweep } \\
& 1-3000 \text { sec. Fres ru }
\end{aligned}
$$

kHz in nine ranges. Calibg $20-200$ kHz in nine ranges. Calibrator pips.
$220 \times 360 \times 430 \mathrm{~mm}$. $115-230 \mathrm{~V}$ AC. OUR PRICE $\mathbf{4 3 . 0 0}$ Carr. paid

RUSSIAN CI16 Double Beam OSCILLOSCOPE 5 MHz pass band. Separate Y1 and Y2 amplifiers. Rectangular $5^{\prime \prime} \times 4^{\prime \prime}$ CRT. Calibrated triggered sweep from 0.2 usec. to $100 \mathrm{milli}-\mathrm{sec} / \mathrm{cm}$. Free running time base, $50 \mathrm{~Hz}-1 \mathrm{MHz}$. Built-in time base Calibrator and amplitude Calibrator. Supplied complete with all accessories and instruction manual.

OUR PRICE f17.50 P\&P 30p

WAVE AUDIO GENERATOR Range 19-
220.000 Hz Wave $19-100.000 \mathrm{~Hz}$ Square Wave. Size $180 \times 90 \times 90 \mathrm{~mm}$. Operation 220/240v. A.C.
OUR PRICE £I9. 95 POWER RHEOSTATS High quality ceram
construction. Windings embedded in
vitreous enamel. vitreous enamel.
Heavy duty brush
wiper Continuous wiper. Co
rating.
Single hole fixing. $1 / \mathbf{y}^{\prime \prime}$ dial
Bulk quantities
25 WATT * 10/25/50/100/500/1000/ 2500 ohms. £1.15 P\&P 10p 50 WATT 10/50/100/250/500/ $1500 / 5000$ ohms.

£1.62 P\&P 10p

100 WATT 1/5/10/25/50/250/500/

£2.34 P\&P 15p

PS200 Regulated POWER
SUPPLY UNIT

Solid state Variabl
output $5-20 \mathrm{z}$
10 DC

up to 2 Amp. inde-
psndent meters to
monitor voltage and
current. Output
$220 / 240 \vee \mathrm{AC}$.
Size: $190 \times 136 \times$
98 mm
OUR PRICE £19.95 P\&P50p
AUDIOTRONIC LE-102A
intercom

Beautifully made and finished in two tone ivory/buff, the LE-102A is
useful in the home, office or shop and is suitable for use as baby alarn. Wallordesk mounting 57 mm speaker/mic gives clear way communication with on/of
and volume control on master unit. Operates d́n 9 V batt. Approx OUR PRICE £3.95 P\& P 30p
TRITON 4318 PORTABLE 8 TRACK CARTRIDGE PLAYER WITH MW/LW RADIO
Will play 8
track ster
cartridge cartridge
monaurally. Channel
selector

switch. Cover

bands Volume and tone bands Volume and tone controls.
Earphone socket. Battery/Mains OUR PRICE $\mathbf{f 1 1 . 9 5 \quad P \& P 5 0 p}$

Headphone impedence 16 ohms. Mic.
rophone impedence 200 ohms. OUR PRICE E5.95 P\&P 30p

HANIMEX HRC 3075

CASSETTE RADIO

OUR PRICE E12.95BAIR P\&P 50p

FM TUNER CHASSIS
6 transistor
high quality
tuner. Size
andy
only $153 \times$
$101 \times 63 \mathrm{~mm}$
3 IF stages.
Double tuned

discriminator
Ample outpu
Ample output to feed most amplifiers.
Operates on $9 V$ battery. Covers $88-$ 108 MHz . Ready built. ready for use.
Fantastic value for money. OU'R PRICE $\mathrm{f8} 85$

We carrya tremendous range of
both pocket and desk calcula
both pocket and desk calculators from as little as $£ 9$.
possible to include them in this possible to include them in this
advertisement, so send for our advertisement, so send for our
latest price list or call into any
miniature organ MUSIC MASTER AM100

年 $\begin{gathered}\text { Spanning } \\ \text { nearly two } \\ \text { octaves. } \\ \text { including } \\ \text { semi. } \\ \text { tones }\end{gathered}$
 This instrument

 finished The family. Beautifully be adjusted to be in tune with can instrument Operates from internal 9 V battery. Fitted with on/off switch, vibrato switch. OUR PRICE f 7.95 P\&P 50 BINATONE DIGITAL CLOCK
A.C. 240 V operation.

OUR PRICE £4.50 P\&P 50p

SINCLAIR ICI2

integrated
CIRCUIT
AMPLIFIER $\dot{N} \mid$
printed circuit
mounting board.
OUR PRICE $\mathrm{f} 1.50 \quad$ P\&P $15 p$ SINCLAIR Project 80 Modules 240 Power Amp
260 Power Amp Stereo 80 Pre.Amp.
Active filte
FM Tuner
Stereo Decoder
P25 Power Supply
P25 Power Supply
P26 Power Supply
PZ8 power Supply
Transtormar for PZ8
$\begin{array}{ll}\text { Transformer for P28 } & \text { f4 } \\ \text { IC } 20 \text { Stereo Amp. kit } \\ \text { f7. } \\ \text { PZ20 Power Supplykit } \\ \text { \&5 }\end{array}$
SINCLAIR Project
$2 \times 240 /$ Stereo $80 /$ P25
$2 \times 2820 / 60$

TE1021 Stereo Listening Station and gain selection
of loud speakers
and gain solection
of loudspeakers
with additional
facility for stereo
headphone
sitheres witching. Two
gain controls, spaakers on-off stide OUR PRICE E2.25 PRP 15 p AUDIOTRONIC
LOW NOISE CASSETTES $\begin{array}{lccc}\text { TYPE } & 5 & 10 & 25 \\ \text { C60 } & £ 1.57 & £ 3.00 & £ 7.08 \\ \text { C90 } & £ 2.24 & £ 4.25 & £ 10.00 \\ C 120 & £ 2.73 & £ 5.17 & £ 12.24\end{array}$ P\&P 3p each. 10 and over Post Free
MP7 MIXER-PREAMPLIFIER SMicrophone
imputs each with individual gain $1+0$ complete mixing
facilities. Battery operated. Size: 235 $\times 127 \times 76 \mathrm{~mm}$. 1 nputs: Mics. $3 \times 3 \mathrm{mV}$
$50 \mathrm{k} ; 2 \times 3 \mathrm{mV} 600$ ohms. Phono. Mag. Meg. Output 250 mV 100k. OUR PRICE $\mathbf{E 8} .97$ P\&P 20p
AUDIOTRONIC AHA101 Stereo Headphone Amplifier

transistor, amplifier oper ates from mag netic, ceramic or tuner
 inputs w

twin stereo headphone outputs and
separate volume controls for each separate volume controls for each
channel. Operates from 9 V battery. ChPUTS: 5 mV and 100 mV .
OUTPUT: 50 mV per channt
OUTPUT: 50 mV per channel
OUR PRICE $£ 8.50$

HIGH QUALITY
CONSTRUCTION KITS
WE ARE APPOINTED STOCKISTS AT Oxford Street, 42 E
257 Tottenham Court Road. 34 Lisle Street, 152, Fleet Street 311 Edgware Road, CROYDO
BIRMINGHAM KINGSTON BIRMINGHAM KINGSTON SOUTHEND TUNBRIDGE WELLS WOLVERHAMPTON branches. o by Mail Order.
All kits are complete with compre hensive easy to follow instr
covered by full guarantee.
covered by full guarantee.
AF20 Mono amplifier.
AF25 Mixer.
AF30 Mono pre-amplifier
AF 800.5 W mic.
AF 305 intercon
AF305 interconli..
M160 Mult-vibrator.
M191 VU Meter.
M192 Stereo balance meter
LF380 Quadraphonic device.
AT5 Automatic light control.
AT30 Photo cell switch
AT50 400W triac light
AT56 $2,200 \mathrm{~W}$ triac light
dimmer/speed control....
AT65 3 channel light control
GU330 Tremolo unit.
HF61 Diode detector
HF65 FM transmiter
HF75FM receiver
HF310 FM tuner.
HF325 Deluxe FM turer.......
HF330 Decoder (HF310/325
GP3io Stereo pre-amplifier
GP312 Circuit board..
GP304 Circuit board..

HF380 lw/vhf aerial amplifier $£ 602$
HF395 broad band aerial amp. £ 10
NT 10 Stabilised power supply

NT 310 Power Supply 240 VAC
or $2 \times 18 \mathrm{VDC}$ NT305 Voltage converter
NT315 Power supply 240 V AC \qquad
Amateur Electronics by Josty-Kit, -covers the subject from basic prin cipals to advanced electronic techniq.
us. Complete with circuit board for OUR PRICE £3.30 (No VAT
P\&P 25 p plus VAT
$\begin{array}{lll}\text { AE } 1 & 100 \mathrm{~mW} \text { output stage.......... } & \text { £ } 1.55 \\ \text { AE } 2 \text { Pre.dmplifier................ } & \text { \& } 12\end{array}$
AE3 Diode recenver
AE5 Astable multi.vibrator....
AE6 Monostable mu
AE 8 Bass filter..

Also see previous page
 ALL PRICES

CLEAR PLASTIO MODEL SD640 Size: $85 \times 64 \mathrm{~mm}$			
50 u A	¢3.80		
100uA	63.75		
${ }^{2004 A}$ 500uA ${ }^{\text {a }}$....	¢3.70		
$50.0 .504 A^{\prime \prime} \cdot$	f3.75		
100.0.100u A..	¢3.70		
1 mA	53.65		
5 mA	¢3.85		
10mA..	13.65 $\mathbf{4} 3.65$	10 V DC	
100 mA	¢3.85	20 V DC	5
500 mA	¢3.65	50 V DC	f3.65
1ADC ..	3.65	300V DC ..	13.65
5A DC ..	53.65	15 V AC ..	$\underline{63.75}$
10ADC ..	53.65	300V AC ..	¢3.75
5 V DC	13.65	VU Meter	63.90
CLEAR PLASTIC MODEL SW100 Size: $100 \times 80 \mathrm{~mm}$			
50uA ..	54.60		
100uA	54.50		
	f4.30		
100.0.100uA..	14.45		
1 mA	E4.30		
1A DC	54.30		
	f4.30	150 V AC	¢4.45
50V DC ..	14.30	300 V AC ..	64.45
300 V DC..	54.30	VU Meter	64.90
EDGWISE MODEL PE70 Size: $90 \times 34 \mathrm{~mm}$			
MODEL ED107 EDUCATIONAL METER Size: $100 \times 90 \times 150 \mathrm{~mm}$ including terminats			
A range of high quality moving coil instruments ideal for school experiments and other bench applications. $3^{\prime \prime}$ mirror scale. The meter movement is easily accessible to demonstrate internal working.			
50 u A ..	88.50		
100 u A	67.90		
50.0 .50 u A	87.90		
1 mA	£7.60	20 V DC 50 C	
1-0-1mA	£7.60		
$1 A^{\text {D }}$ DC .. .	${ }^{6} 7.60$	$500 \mathrm{~mA} / 5 \ddot{\text { a }}$ D \ddot{C}	${ }_{68.60}$
5 5V DC	$\begin{aligned} & 57.60 \\ & 67.60 \end{aligned}$	$5 V / 50 \mathrm{~V}$ DC $5 \mathrm{~V} / 15 \mathrm{~V}$	18.60 $f 860$
10V OC ..	${ }_{67.60}$	5V/15V DC	$¢ 8.60$
15 V DC	67.60	1/5A DC 15 C	
CLEAR PLASTIC MODEL MR 85P Size: $120 \times 110 \mathrm{~mm}$			
${ }_{1004}^{501 .}$			
100-0-100uA.. 55.35			
1 mA 55.20			
5 mA 55.20			
10 mA .. ${ }^{\text {a }}$	15.20 55.20		
100 mA 55.20 300V DC 5520			
500mA	55.20	15 V AC ..	65.30
1 ADC 55.20 300V AC			
5A DC 55.20 SMeter 1mA.. 55.20			
$\begin{array}{llllll}\text { 15A DC } \\ \text { 30A DC } & . . & . . & \text { ¢5.20 } \\ \text { V }\end{array}$			
10 V DC 55.20 5A AC * 55.20			
$50 V$ DC			
150V DC..	f5.20	30A AC ..	f5.20

$\square \mathrm{BCDEL}$

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC.

about Hifi

call into your nearest

 LASKYS BRANCH OR SEND COUPON BELOW FOR NEW 32 PAGE HI-FI PRICE LIST
CENTRAL LONDON

481 OXFORD ST.

3 LISLE ST. WC2
34 LISLE ST. WC2
193 EDGWARE RD. W2
207 EDGWARE RD. W2
311 EDGWARERD. W2
346 EDGWARE RD. W2
382 EDGW ARE RD. W2
109 FLEET 5T. EC4
10 TOTTENHAM CT. RD.
27 TOITENHAM CT. RD.
33 TOTTENHAM CT, RD.
42/45 TOTIENHAM CI. RD 01.6362605
$\begin{array}{lll}257 / 8 \text { TOTTENHAM CT. RD. } & 01-6360845 \\ 01-580 & 0670\end{array}$

86 SOUTH ST. ROMFORD
205/206 CHURCHILL WES
VICTORIA CIRCUS, SOUTHEND 0702612241
KENT
53/57 CAMDEN RD., TUNBRIDGE WELLS
$0892-23242$
LEICESTERSHIRE
45 MARKET PLACE, LEICESTER

73 ABIN GTON STREET,
NORTHAMPTON 0604-35753

30 WULFRUM WAY, WOLVERHAMPTON 0902-23384

SURREY

1046 WHITGIFT CENTRE, CROYDON | 27 EDEN ST. KINGSION | $\begin{array}{l}01-6813027 \\ 01-5467845\end{array}$ |
| :--- | :--- |
| $18 / 50$ | | 38/40 EDEN SI., KINGSTON 01-546 127

WARWICKSHIRE
116'CORPORATION ST., BIRMIMGHAM $\begin{array}{r}\text { 02I-236 } 3503\end{array}$

EXPORT Personisl exports

NO DEPOSIT TERMS available on most goods for personal callers
cheaues to the value of fzo.
WITH BANKERS CARD. IN OTHER CASES
A HD FORAMOUWTS IN EXCESS OF f30.
please allow time for clearance
bankens dhafts accepied.
All prices corract at 6/11/74 tut
subject to change without notice E.\&O.E.

Only
 $£ 10$ 45p SPECIAL OFFER $p \& p$ LIMITED QUANTITY 6 watt music power each channel

 This excellent little amplifier is of the latest inte-grated circuit design, and will work into 4.8 or 16 ohm speakers. The reproduction is excellent for an amplifier of this size, only $8^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime} \times 2^{\prime \prime}$. The case is made of chromed metal

Tested and Guaranteed Paks

4	1 N4007 Sil. Rec. 1,000 PIV lamp pl	
B81 10		$50 p$
100	Mixed Diodes, Germ. Gold bonded etc. Marked and Unmarked	P
830		
H41 2	Power Transistors Comp. Pair BD 131/132	-
H63	2N3055 Type NPN Sil power transistors. Below spec. devices	
H65	40361 Type NPN Sil. transistors TO-5 can comp. to H66	-
H66	40362 Type PNP Sil. transistors TO. 5 can comp. to H65	Op
9	Integrated circuits DTL data supplied. Mixed Types. Flip Flops, Gates. Hex Inverters, etc.	

Osa Unmarked Untested Paks

Make a rev counter
for your car
aniy 0-1 A meder into a linear f1.00 each

Telephone dials

Standard Post Office type. Guaranteed in working order

oalv $25 p_{\text {ispeach }}^{+\mathrm{Pg}}$

Electronic Transistor Ignition £6.00

Nowtronic we offer this up-to-the-minute electronic ignition system. Simple to make, full
instructions supplied, with these outstanding instructions supplied, with these outconstarsity and conventional switchability. burglar-proof lock-up and
and positive compatibility.

New X-Hatch

Our new, vastly improved Mark Two Cros
Generator is now available. Essential for
alignment of colour guns on all TV receivers.
Featuring plug-in ICs and a more sensitive sync. pickup circuit. The case is virtually unbreakable-ideal for the engineer's toolbox-and only measures $3^{\prime \prime} \times 5 \frac{1^{\prime \prime}}{}$

We have just received a large consignment of LM380 ICs. These are specially selected to a hig
are marked with the number SL60745.
This fantestic little 3 watt sudio IC only requires two with volume and tone control. The quality is good and Our special
price

Over 1,000,000 Transistors
in stock
We hold a very large range of fully marked, tested and
Our very popular $4 p$ Transistors
TYPE "A" PNP Silicon alloy, TO-5 can.
TYPE "E" PNP Germanium AF or RF
YPE "F" NPN Silicon plastic encapsulation

8 Relays for $£ 1.00$

 Post 8Packing
270
for 625 line channels 21 to 65 Brand new by a famous manufacturer Data supplied $\mathbf{£ 2 . 5 0}$

TV Tunf Units TV Tuner Units

Plastic Power Transistors

40 WATT SILICON				
Type No.	Gain	vce	Polarity	Price
40 N 1	15	15	NPN	20p
40 N 2	40	40	NPN	30p
40P1	15	15	PNP	20p
40 P 2	40	40	PNP	30 p
90 WATT SILICON				
90 N 1	15	15	NPN	25p
90 N 2	40	40	NPN	35p
90 P 1	15	15	PNP	25p
90 P 2	40	40	PNP	35p

L.E.D's. Complete with mounting grommet

Red 25p Green 40p
INTEGRATED CIRCUITS
We stock a large range of I.Cs at very competitive prices. These are all listed in our FREE Catalogue. see

METRICATION CHARTS now evailable
This fantastically detailed conversion calculator carries thousands of classified references between metric and British (and U.S.A.) measurements of length. area. volume liquid measure, weights atc.
Pocket Size 12p. Wall Chart 18p.
LOW COST DUAL IN LINEI.C. SOCKETS
$\left.\begin{array}{l}14 \text { pin type at } 15 \text { peach } \\ 16 \text { pin type at } 17 \text { peach }\end{array}\right\}$ Now new low profile type.
Books
Books in stock
BUMPER BUNDLES
BUMPER BUNDLES
These parcels contain at types of surplus electronic These parcels contain ands.
2 LBS in weight for f 1.00

Our famous P1 Pak

is still leading in value
Full of Short Lead Semiconductors \& Electronic
Components, approx. 170. We guarantee at least 30 Components. approx. 170. We guarantee at least 30
really high quality factory marked Transistors PNP \& NPN and a host of Diodes \& Rectifiers mounted on \& NPN and a host of Diodes \& Rectifiers mounted on
Printed Circuit Panels Identification Chart supplied Please ask for Pak P.1. only $\mathbf{5} \mathbf{D}_{\mathrm{p}}$

PLEASE ADD VAT AT CURRENT RATE.
I enclose a large SAE with $5 p$ stamp.

Name

address
MINIMUM ORDER 50p. CASH WITH ORDER PLEASE Add $15 p$ post and packing per order OVERSEAS AD
EXTRA FOR POSTAGE.

AMPLIFIER KITS OF Vistinclion

DESIGNER-APPROVED KIT

In Hi-Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973) and a subsequent follow-up article (April 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage. power in excess of 75 watts whilst maintaining distortion at less than 0.01% even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system, namely the equalization stage and tone control stage. positions where most conventional designs run out of gain at the extremes of the frequency spectrum. Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs. two equalized and two linear. each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer

Hi-Fi News Linsley-Hood 75 W Amplifier
Mk III Version (modifications as per Hi-Fi News April 1974)

Full circuit description
in handbook
(pack 15-price 30p)

FREE
TEAK CASE WITH FULL KITS $£ 62.40$ KIT PRICE only 5 £0. 65
V.A.T. Please add 8\%* to all U.K. orders
(*or at current rate if changed)
f4. 25

for further information

$\underset{\substack{\text { f6. } \\ \mathrm{f0} .30}}{ }$ please write for FREE LIST
6.30
$£ .0 .30$
$\mathbf{f} .7 .35$
£69.75
E.M.T. POWERUNIT. $110 / 240 \mathrm{v}, 50 \mathrm{~Hz}$ giving $5 \mathrm{~K} . \mathrm{V}$. at $50 \mathrm{~m} / \mathrm{a}$. METERED OUTPUT. $£ 17.50$.

COPPER LAMINATE P.C. BOARD
$8 \frac{1}{1} \times 6 \times \frac{1}{4}$ inch 20p sheet. 3 for 55p. P.P. 10 p.
$10 \times 4 \times \frac{1}{10}$ inch $12 p$ sheet. 5 for 50p. P.P. 15 p.
$101 \times 51 \times$ 立 inch 20 p sheet. 3 for 55p. P.P. 10p. $14 \times 6 \frac{1}{4} \times \frac{1}{\pi /}$ inch 30p sheet. 3 for 80 p. P.P. 15 p . Offeut pack (smallest 4×2 inch) 50 p .300 sa. in. P.P. 5p single sheet. 20p Bargain Packs.

TELEPHONE DIALS (New) £1 ea.
reLays (G.P.O. ' 3000^{\prime} '). All types, Brand new from 37 tp ea. 10 up quotations only. EXTENSION TELEPHONES (TyPE 7O6) Various Colours $£ 3$.50. P.P. 50p. Excellent condition-
RATCHET RELAYS. (310 ohm) Various Types 85p. P.P. 15p.
Bank (Non Bridging) 6825 way 12 Bank (Non Bridging) 68 ohms. £6.

PRECISION A.C. MILLIVOLTMETER (Solartion) $1.5 \mathrm{~m} . \mathrm{v}$. to 15 v : 60 db to 20 db . 9 ranges. Excellent condition. £22.50. P.P. £1 50 .

MIGM CAPACITY ELECTROLYTICS

$2,200 \mu \mathrm{f}$. at 50 v . ($2 \times 1 \mathrm{iln}$) 40 p . P.P. $5 \mathrm{p} .2,200 \mu \mathrm{f} .100 \mathrm{v}$. $\left(1 \neq 4 \mathrm{in}\right.$.) 75p. 3,150 ff .40 v . ($1 \frac{1}{} \times 4 \mathrm{in}$.) $60 \mathrm{p} .10,000 \mu \mathrm{f}$. 25 v .
 $16 \mathrm{v} .(2 \times 4 \mathrm{in}) 60 \mathrm{p} .21,.00 \mu \mathrm{f} .40 \mathrm{v}$. $\left(2 \frac{1}{x} \times 4 \mathrm{in}\right.$. $) £ 1.2,800 \mu \mathrm{f}$.
$100 \mathrm{v} .(4 \times 2 \mathrm{in}) 80 \mathrm{p} .35,.000 \mu \mathrm{f} .40 \mathrm{v} .(3 \times 4 \mathrm{in}) £ 1.$. P.P. 15 p . H.D. ALARM BELLS. 6 in . Dome $6 / 8$ volt D.C. $\mathbf{£ 2} \mathbf{2 5}$. P.P. 50p.

OVERLOAD CUT-OUTS. Panel mounting ($1 \frac{2}{4} \times 1 \frac{1}{\frac{1}{2}} \times \frac{1}{i n}$.) $800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{amp} / 10 \mathrm{amp} .35 \mathrm{p}$ ea. P.P. 5 p .
BULK COMPONENT OFFER. Resistors/Capacitors. All types and values. All new modern components. Over 500 pieces £2. P.P.20p. (Trial order 100pcs. 50p.) We are confident you will re-order.
REGULATED POWER SUPPLY. Input 110/240v. Output 9 v . DC. $1 \frac{1}{1}$ amp. 12 v . D.C. $500 \mathrm{~m} / \mathrm{a}$. £4. P.P. 40p. S. a. C.B.S. DECODER MODULE

Complete with I.C. M.C. 1312 P .
With the removal of 6 components a direct electrical sub stute for P. E. 'RONDO' Board. $£ 4$ each.
U.K. ORDERS 8\% V.A.T. SURCHARGE

TRANSFORMERS

ADVANCE "VOLSTAT" TRANSFORMERS. Input 242v. A.C.
CV50. 38 v . at $1 \mathrm{amp}: \mathbf{2 5 v}$. at $100 \mathrm{~m} / \mathrm{a} .75 \mathrm{v}$. at $200 \mathrm{~m} / \mathrm{a}$. f:2 ea. P.P. 40p.
CV75. 25 v . at $2 \frac{1}{2}$ amp. £2.50. P.P. 50 p.
CV100. 50v. at 2 amp : 50v. at $100 \mathrm{~m} / \mathrm{a}$. £3. P.P. 50p. CV250. 25 v . at $8 \mathrm{amp}: 75 \mathrm{v}$. at $\frac{1}{\mathrm{~m}} \mathrm{mp}$. £5. P.P. £1.
CV500. 45 v at $3 \mathrm{amp}: 35 \mathrm{v}$. at $2 \mathrm{amp}: 25 \mathrm{v}$, at 3 amp . £7. P.P. £1-50.
L.T. TRANSFORMER "TOROIDAL": Prim. 240v. 5 Sc. 30v. at 1.5 amp . Size 3 inch dia. $\frac{3}{4}$ inch thick at f1.25. P.P. 10 p .
L.T. TRANSFORMER: Prim. 240v. Sec, 27-0-27 at $800 \mathrm{~m} / \mathrm{a} 7.5 \mathrm{v}$. at 1.5 amp . $£ 1.75$. P.P. 25p.
L.T. TRANSFORMER. Prim. 240 v . Sec. 24 v . at $1 \frac{1}{1}$ amp. f1-20. P.P. 30p.
L.T. TRANSFORMER. Prim. $110 / 240 v$. Sec. $0 / 24 / 40 \mathrm{~V}$ $1 \frac{1}{2}$ amp. (Shrouded). $£ 1$.50. P.P. 30p.
L.T.TRANSFORMER. Prim. 200/250v.Sec. 20/40/60v. at 2 amp. (Shrouded). £2-25. P.P. 40p.
L.T. TRANSFORMER (H.D.) Prim. 200/250v. Sec. 18 v , at $27 \mathrm{amp}: 40 \mathrm{v}$, at $9.8 \mathrm{amp}: 40 \mathrm{v}$, at 3.6 amp Sec. 18 v . at $27 \mathrm{amp}: 40 \mathrm{v}$. at $9.8 \mathrm{amp}: 40 \mathrm{v}$. at
$\mathbf{5 2 v}$. at $1 \mathrm{amp}: 25 \mathrm{v}$, at 3.7 amp . £15. P.P. £2.
M.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. 400 v . $100 \mathrm{~m} / \mathrm{a}$. £2. P.P. 50p.
E.H.T. TRANSFORMER. 240 v . Sec. 1800 v . 50 mA . £2.50. P.P. 50p.
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C. Core). Secs. 1/3/9/27v. at 10 amps. £6.50. P.P. £1. L.T. TRANSFORMER. Prim. 240 v . Sec, $16 / 0 / 16 \mathrm{v}$. at 2 amp. £1-60. P.P. 30p.
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. 23/0/23v. at $1.8 \mathrm{amp}: 50 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}: 3 \cdot 15 / 0 / 3 \cdot 15 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}$. £1-75. P.P. 30p.
L.T. TRANSFORMER. Prim. 200/240v. ('C' Core). Secs. $1 \mathrm{v} . / 3 \mathrm{v} . / 8 \mathrm{v} . / 9 \mathrm{v}$. all at 1.5 A : 50v. at 1 amp. £2. P.P. 30 p.
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' Cors). Sec. 13.5 v . 4 A .: 39 v . at 2 A , $£ 2$. 50 . P.P. 30 p .
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' Core) $1 \mathrm{v} . /$ 3v./9v./20v./20v. all at 2 amp. E3. P.P. Seconda
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' Core). Secs.
$1 \mathrm{v} . / 3 \mathrm{v} . / 9 \mathrm{v}$, all at $10 \mathrm{amp}: 35 \mathrm{v}$. at $1 \mathrm{amp}: 50 \mathrm{v}$. at $750 \mathrm{~m} / \mathrm{a}$ £5-25. P.P. 75p.

HIGH-SPEED MAGNETIC COUNTERS. 4 digit (non reset) 24 v . or 48 v . (state which) $4 \times 1 \times 1 \mathrm{in}$. 40p. P.P. 10 p . 5 digit (Non-reset) 24 v .75 p. P.P. 10 p. 3 digit 12 v . (Rotary Reset) $2 \frac{1}{4} \times 1 \frac{1}{\frac{7}{2}} \times 1 \frac{1}{\frac{1}{2} \mathrm{in}} \mathbf{~} \mathbf{£ 1}$ each. P.P. 10p. 6 digit (Reset) 240v. A.C. £3.50. P.P. 10 p.

RIBBON CABLE (8 colours) E1.25. P.P. 15p. 10 m : £10. P.P. 50 p. 100 m .8 cores $7 / \mathrm{mm}$ bonded side by side ribbon form.
1000 Type KEY SWITCHES. Single $2 \times 4 \mathrm{c} / \mathrm{o}$ Locking 50 p. P.P. 10 p . Bank of $4.2 \times 4 \mathrm{c} / \mathrm{o}$ each switch (one biased). £1.20. P.P.15p.

RELAYS

SIEMENS/VARLEY PLUG-IN. Complete with transparent dust covers and bases. 2 pole c/o contacts 35 p ea.; 6 make dust covers and bases. 2 pole c/o contacts 35p ea.; 6 make contacts 40p ea.; 4 in stock.
12 VOLT H.D. RELAYS. 2 pole 3 way 40p. P.P. $10 p$. 240v. A.C. RELAYS. (Plug-in type), 3 change-over 10 amp. contacts. 75p (with base). P.P. 10p.
P.A.R. BISTABLE RELAY (Latching) 24v. D.C. $4 \mathrm{c} / \mathrm{o}$ contacts 65p. P.P. 10p.
SILICON BRIDGES. 100 P.I.V. 1 amp $\times \frac{5}{} \times \frac{3}{} \mathrm{in}$. 30p. P.P. 5p. 200 P.I.V. 2 amp. 60p. P.P. 5p.

24 VOLT A.C. RELAYS (Plug-in).
3 Pole Change-over 60p. P.P. 5p
2 Pole Change-over 45p. P.P. 5p
S. T. C. CRYSTAL FILTERS. (10.7 Mhz)

445-LQU-901A (50Khz spacing) £3.
$445-\mathrm{LQU}-901 \mathrm{~B}$ (25 Khz spacing) $£ 4$.
WE REGRET THAT ALL ORDERS VALUE UNDER $£ 5$
MUST BE ACCOMPANIED BY REMITTANCE.

PATTRICK \& KINNIE

191 LONDON ROAD • ROMFORD • ESSEX
ROMFORD 44473
RM7 9DD

FROM THE SPECIALISTS-POWERTRAN ELECTRONICS
 \section*{WIRELESS WORLD AMPLIFIER DESIGNS}

Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply, suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating

30W BAILEY

Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors. pots
Pk. 3 Semiconductor set
30W BLOMLEY
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots
Pk. 3 Semiconductor set
2OW LINSLEY-HOOD
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set

60V REGULATED POWER SUPPLY Pk. 1 F/Glass PCB
£0.80
£ 1.75
f 4.70
£0.85
$£ 0.85$
$£ 2.15$
$£ 5.60$
£0. 85
£2.40
2.40

Pk. 2 Resistors. capacitors. pots Pk. 3 Semiconductor set BAILEY-BURROWS PRE-AMP Pk. 1 F/Glass PCB
P.k. 2 Resistors, capacitors. pre-sets. transistors
Pk. 3R Rotary potentiometer se
Pk. 35 Slider potentiometer set (with knobs)
60.75
£ 1.40
£3.10
£ 2.05
£4.95
f 1.60
£2.70

STUART TAPE RECORDER

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this highperformance Wireless World published design.
 for free list.

TOROIDAL T20 +20
Developed from the famous Practical Wireless Texan

Designed by Texas engineers and published in a series of articles in Practical Wireless. The TEXAN was a remarkable breakthrough in delivering true $\mathrm{Hi}-\mathrm{Fi}$ performance at exceptionally low cost. Now further developed to include a true Toroidal transformer, this slimline integrated circuit design. based upon a single F /Glass PCB, features all the normal facilities found on quality amplifiers, including scratch and rumble filters, adaptable input selector and headphones socket.

ACTIVE FILTER CROSSOVER

An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately, though introducing reactive impedances between the amplifier and the speakers, result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant solution to this problem, described by D. C. Read in Wireless World, involves the use of a series of active filters splitting the output of the pre-amplifier into three channels, of closely defined bandwidth, each of which is fed to the appropriate speaker by its own power amplifier. A design for a suitable 20 -watt amplifier, based on a proven Texas circuit, was also described by Mr Read. The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.

ACTIVE FILTER

Pack
1 Fibreglass PCB (accommodates all filters for one channel)

READ/TEXAS 20wamp.
POWER SUPPLY
Pack
1 Fibreglass PCB
FOR 20W
£0. 70 SYSTEM
2 Set of pre-sets. solid tantalum capacitors. 2%
metal oxide resistors, 2% metal oxide resistors, 2% polystyrene capacitors 3 Set of semiconductors 2 off each pack required for stereo system

SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER DESIGNS

2 Set of resistors. capaci-
Sets presests (not includ-
tors
ing $0 / \mathrm{P}$ coupling capacitors)
3 Sets of semiconductors
 $£ 4.20$
£2.65 system
4 Special heat sink as4 Special heat sink as sembly for
5 Set of $30 / P$ coupling capacitors 2 off packs 4,5 required for stereo system

$\begin{array}{r} \mathrm{f} 1.10 \\ \mathrm{f} 2.40 \\ \text { ereo } \end{array}$	Pack		
	1	Fibreglass PCB	¢0. 50
	2	Set of rectifiers. zener	
		diode. capacitors, fuses,	
		fuse holders	£2.60
	3	Toroidal transformer	£4.95
¢0. 85			
	ENQUIRIES WELCOME		
£1.00		For quality sets of spea	

SEMICONDUCTORS AS USED IN OUR RANGE OF QUALITY AMPLIFIERS

2N699	± 0.25	2 N 4302	± 0.60	BC182L	50.10	MJ487	£1. 20	TIP29C	50.71
2N1613	¢0. 20	2N5087	¢0.42	BC184L	¢0.11	MJ491	£1.30	TIP30C	10.78
2N1711	50.25	2N5210	£0.54	BC212L	f0.12	MJE521	f0.60	TIP31A	f0.60
2N2926G	c0.10	2N5457	¢0.45	BC214L	¢0.14	MPSAO5	¢0.30	TIP32A	50.70
2N3053	¢0.15	2N5459	¢0.45	BCY72	¢0.13	MPSA12	f0. 55	TIP33A	£1.00
2N3055	f0.45	2N5830	¢0.30	BD529	¢0.85	MPSA14	¢0.35	TIP34A	£1.50
2N3442	£1.20	40361	¢0.40	BD530	f0. 85	MPSA55	f0. 35	TIP41A	£0.74
2N3704	¢0.10	40362	¢0.45	BDY56	£1.60	MPSA65	¢0.35	TIP42A	£0.90
2N3707	f0.10	BC107	f0.10	BF257	f0.40	MPSA66	f0.40	IN914	f0.07
2N3711	80.09	BC108	¢0.10	BF259	¢0.47	MPSU05	¢0.60	IN916	£0.07
2 N 3819	f0. 23	BC109	f0. 10	BFR39	f0. 25	MPSU55	f0.70	IS920	f0. 10
2N3904	£0.17	8 C 125	¢0.15	8 8R79	f0. 25	SN72721P	c0.58	5805	£1.20
2N3906	f0. 20	BC126	f0.15	BFY50	¢0. 20	SN72748P	¢0.58		
2N4058	c0.12	BC182K	£0.10	BFY51	£0. 20	TIP29A	¢0.50		
2N4062	c0.11	BC212K	¢0.12	8 FY52	£0. 20	TIP30A	¢0.60		

for further information please write for FREE LIST NOW!

post free (U.K.)

Pack		Price
1	Set of all low noise resistors	£0.80
2	Set of all small capacitors	£1.50
3	Set of 4 power supply capacitors	ft. 40
4	Set of miscellaneous parts including DIN sockets, fuses, fuse holders. control knobs, etc.	£1.90
5	Set of slide and push-button switches	£0.90
6	Set of potentiometers and selector switch	£1.45
7	Set of all semiconductors	£8.25
8	Special Toroidal Transformer	£4.95
9	Fibreglass PC Panel	£2.50
10	Complete chassis work, hardware and brackets	£4.20
11	Preformed cable/leads	£0.40
12	Handbook	£0.25
13	Teak Cabinet	£2.75

V.A.T. Please add 8\%* to all U.K. orders
(*or at current rate if changed)
U.K. ORDERS—Post free (mail order only)
OVERSEAS—Postage at cost $+50 p$ special packing

Dept. WW 01

POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NN

"'SLO-SYN" 3-LEAD SYNCHRONOUS STEPPING MOTOR

mechanlcal braking. Simple relay circult can be

SMITHS RINGER-TIMER Rellable 15 minute times, spring wound (concurrent with time setting)
divislons, $15 \times 1 \mathrm{~min}$
between divlslons. Panel mounting with chrome

FEW ONLY

Fully stabilised "'Labgear" Power Supply Unit. Input
$90-240 \mathrm{v}$. 50 Hz . Outputs 6 v , 6 B D. C., and $6 \mathrm{v}+2 \mathrm{v}, 100 \mathrm{MA}$. Hum and ripple at full load-less than 3MV peak to peak. Stability improvement ratio for 15% mains
 facturer's carton.

"LABGEAR ELIMINAC"

P.S.U. $200-250 \mathrm{v} .40160 \mathrm{~Hz}$. Alternative outputs fully

 $0-20 v$ O.C. m/c meter. In attractive grey hammer finish

case. In maker's carton. $£ 27.50$. Carr. \& Pkg . $£ 1.50$.

 by Air Control Lta.
 Limited number only $£ 8.95{ }^{\text {P }}$ s. ${ }_{400}$.

SILVANIA MAGNETIC SWITCH
Now complete with reference magnet! A magnetlcally activated switch, vacuum sealed in a glass
 Ideal for burglar alarms, security systems etc. and where-
evar non-mechanical switching is requlred. io for $£ 2 ; P$

NORPLEX

 The famous American fibre-glass copper-clad laminate. Finest qualitywith woven glass base of Epoxy-resin. Excellent Mech. and Elec.
conductive properties. Heat resistant, ideal for P.C.'s etc. THIS IS A conductive properties. Heat res ONLY AVAILABLE WHILE STOCKS LAST! Sizes: $12^{\prime \prime} \times 12^{\prime \prime} ; 24^{\prime \prime} \times 12^{\prime \prime} ; 24^{\prime \prime} \times 24^{\prime \prime} ;$ FULL SHEET $43^{\prime \prime} \times 37$
(11 sq. tt.). Single-sided Copper with thickness of $1 / 32^{\prime \prime}, 3 / 64^{\prime \prime}, 3 / 32$
 Also double-sided $1 / 32^{\prime \prime}, 1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}$. \&1 per sq. ft. Cut sizes (1-10 8 q . tt.)
25p. P. \& P. Fuil Sheet \& each. Carr. \&1 for 1 st sheet plus 25 p each additional sheet.

FAN/
BLOWER
Precialon-bullt In Germany.
Dynamically balanced mains Dynamically balanced mains
unlt (200/240) contlinuou rated reversfble 60 MA on
run. Size: $5 t^{\prime \prime}$ dia. $\times 2 t^{\prime \prime}$ deep. Back plate la tapped
for fixing scraws (oupfor 4 fixing scraws (oup-

\qquad
ALL PRICES INCLUDE V.A.T.
Whilst we welcome official orders from established companies an $\$ 5$. Therefore, please remit cash with orders below thle amount.

Henry's radio

G. F. MILWARD

ELECTRONIC COMPONENTS

Wholesale/Retail:
369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339 CALLING All INDUSTRIAL BUYERS!!

We are glad to say that it is now possible to supply from stock the following integrated circuits. ALL ARE BRANDED, FULL SPECIFICATION devices offered at unbeatable prices! This is YOUR chance to cut manufacturing costs and greatly increase profit margins!

	1/99	100/499	500/1000		1/99	100/499	500/1000		1/99	100/499	500/1000
7400	60.15	60. 125	± 0.10	7442	60.645	60.537	CO. 43	7494	60.495	60.412	60.33
7401	60.15	C.0. 125	40.10	7443	61.275	61.062	60.85	7495	\$0.63	¢0.525	¢0.42
7402	60.15	CO. 125	40.10	7445	60.855	60.712	60.57	7496	60.72	C0.60	60.48
7403	60.15	60.125	60.10	7446	E1.05	60.875	60.70	74104	60.315	C0.262	c0.21
7404	60.18	60.15	¢0. 12	7446A	C1. 05	60.875	c0. 70	74105	60.315	60.262	C0.21
7405	60.18	60.15	¢0. 12	7447	C1. 05	¢0.875	c0.70	74107	60.315	60. 262	CO.21
7406	60.375	C0.312	60.25	7447A	E1.05	40.875	60.70	74121	60.315	60. 262	C0.21
7407	60.375	60.312	60.25	7448	60.855	60.712	60.57	74122	60.45	60.375	60. 30
7408	10.15	C0. 125	c0. 10	7450	¢0. 15	¢0. 125	60. 10	74123	60.63	C0.525	40. 42
7409	60.15	c0. 125	60.10	7451	60.15	¢0.125	<0. 10	74141	60.75	60.625	E0.50
7410	¢0.15	60.125	60.10	7453	60.15	60. 125	60.10	74151	60.69	60.575	¢0.46
7412	60.195	60.162	60.13	7454	60.15	60.125	60.10	74153	60.69	£0.575	¢0.46
7413	60.345	60.287	60.23	7460	60.15	¢0.125	60. 10	74155	60.69	¢0.575	C0.46
7416	60.345	c0. 287	60.23	7472	¢0.255	60.212	60.17	74156	60.69	¢0.575	60.46
7417	60.345	C0. 287	¢0.23	7473	60.153	60.262	60.21	74160	C1.005	60.837	60.67
7420	60.15	60.125	40.10	7474	60.315	c0.262	60.21	74161	¢1.005	¢0.837.	60.67
7423	60.27	C0. 225	40.18	7475	60.465	60.387	60.31	74162	E1. 005	60.837	60.67
7425	60.27	c0. 225	60.18	7476	60.315	60.262	40.21	74163	f1.005	60.837	60.67
7426	60.27	60.225	c0. 18	7480	60.435	60.362	60.29	74166	41.425	61.187	¢0.95
7427	60.27	C0. 225	¢0.18	7482	60.75	60.625	60.50	74174	¢1. 20	$\underline{1} 1.00$	80.80
7430	60.15	c0. 125	60.10	7483	60.825	¢0.687	60.55	74175	60.975	60.812	¢0.65
7432	C0. 25	60.225	60.18	7485	E1. 275	¢1.062	60.85	74192	¢1. 275	61.062	60.85
7437	60.27	60.225	¢0.18	7486	60.315	60.262	¢0.21	74193	¢1. 275	¢1.062	60.85
7438	60.27	60.225	c0. 18	7490	60.465	60.387	60.31	74198	C2. 10	E1.75	¢1.40
7440	60.15	60.125	60.10	7492	60.465	60.387	¢0.31	74199	$62 \cdot 10$	¢1.75	¢1.40
7441A	60.825	60.687	60.55	7493	60.465	60.387	¢0.31				

To secure the above prices, all orders for these devices must exceed $£ 25$ in total value. Price rating is established by TOTAL NUMBER OF DEVICES ORDERED. Any mix may be made. For special quotations for large orders ring 021-327 2339 NOW !!!

CL8300	MICROWAVE DEVICES Gunn effect oscillator	9.4 GHz	£40
CL8370	ditio	9.5 GHz	£10
CL8380	ditto	10.5 GHz	£10
CL8390	ditio	11.5 GHz	£10
CL8430	ditto	9.35 GHz	£40
CL8450	ditto	9.35 GHz	£40
CL8470	ditto	9.35 GHz	£40
BXY27	Varacter Diode. "S" Band. Cut-off	70 GHz	f1
BXY28	Varacter Diode. Cut-off	100 GHz	£1
BXY32	Frequency Multiplier. 'X' Band	150 GHz	E1
BXY35A/C	ditto	25 GHz	E1
BXY36C/D	ditto	75 GHz	£1
BXY37C/D	ditto	100 GHz	f1
BXY38C/E	ditto	120 GHz	f1
BXY39C/D	ditto	150 GHz	£1
BXY40D/E	ditto	180 GHz	£1
BXY41C/D/E	dito	200 GHz	E1

12 VOLT FLUORESCENT LIGHTING

Inverter transformers 13/15W (circuit included)
70p
Current economy" transistor (600 ma.) 50p
Maximum light" transistor (1.3A) 50p
Resistors/capacitors to suit
Lampholders (long lead) (needed with cases) 15p
Pair 30p
White enamel case 21 in (postage 30p) 20p
70p
$45 p$
Tube. $21 \mathrm{in}-13 \mathrm{~W}$
(Note: tube only supplied if case ordered, to prevent postal damage). 13 W fitting ready built and tested-including tube (postage 30p) $£ \mathbf{\$ 3 5}$ Post/packing. 25p per order except where shown.

NEW!NEW!NEW!NEW!

An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly
Method: Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal manner
Light sensitive aerosol spray
f1.00 plus
Developer and Etchant
50p postage
Single-sided Copper-clad Fibreglass Board
75p sq. ft.
Double-sided Copper-clad Fibreglass Board
$\mathbf{f 1 . 0 0}$ sq. ft
Boards cut to any multiple of $6^{\prime \prime}$ Max size $3^{\prime} \times 4^{\prime}$

POTENTIOMETERS

We have bought a huge assortment of volume controls.

Pre-sets, sliders. etc. All are in manufacturer's original packing

Manufacturing quantities of some types available

Write or phone for details

Sample bag

100 mixed f2.50

ELECTROLYTIC CAPACITORS
Several thousand of each of the following types. Silly price to clear!

ALL NEW STOCK
$5 \mu \mathrm{~F} 10 \mathrm{~V} \quad 35 \mathrm{p}$ dozen 10 $\mu \mathrm{f} 10 \mathrm{~V} \quad 35 \mathrm{p}$ dozen Ouf $10 \mathrm{~V} \quad 35 \mathrm{p}$ dozen $100 \mu \mathrm{f} 10 \mathrm{~V} \quad \mathbf{3 5 p}$ dozen $330 \mu \mathrm{f} 16 \mathrm{~V} \quad 45 \mathrm{p}$ dozen 330uf 25V 60p dozen 330uf 35V 80p dozen 2200uf $16 \mathrm{~V} \quad \mathbf{~} 1$ dozen $15000 \mu \mathrm{f} 25 \mathrm{~V} \quad 50 \mathrm{p}$ each

HOBBY CORNER!

BRAN TUB!!!
\star Kiesistors, Wire-wound and Carbon

* Capacitors, Silver-mica, Paper Ceramic Polyester and Electrolytic
\star Controls.
Carbon, Wire
\star Diodes, Silicon, Germanium Zener
* Transistors, Silicon, Ger manium
All the above are new and unused stock.
We have made up packs of 2 lb gross weight. all are different in content. from the above list. This is a fantastic. unrepeatable offer that will enable you to get a good stock of spares at a tiny fraction of normal price?
To make things even more interesting - TWENTY OF THESE BAGS ALSO CONTAIN A POUND NOTE VERY PLEASED INDEED! And the price that we are asking? And the price that we are asking? and VAT!
Rush your order now! This offer is only made to reduce our surplus stock! It is unlikely that in these days of rising prices we shall eve be able to repeat!
-9 100 CERAMIC RESISTORS CAPACITORS 100 DIODES

POSTAGE 25p \qquad

100 RESISTORS 100 CERAMIC
CAPACITORS 100 POLYSTYRENE
\qquad
100 RESISTORS 100 CERAMIC SAPACITORS CAPACITORS PACK No POSTAGE 25

20 ASSORTED UNUSED. MARKED, TESTED TRANSISTORS
BC108 ETC.

POSTAGE 25p \qquad PACK No. 5

- 1 STRANSISTORISED 1 TRANSISTORISED SIGNALINJECTOR KIT POSTAGE 25p

100 RESISTORS 100 CAPACITORS (ASSORTED TYPES)

POSTAGE 25p

VARIAB

300 VA ISOLATING TRANSFORMER
$115 / 230-230 / 230$ volts. Screened. Primary two separa
volts for 115 or 230 volts. Secondary two 115 volts
each for 115 or 230 volts output. Can be used in series or parallee connections. Fully tropicalised. Length 13.5 cm . Width 11 cm
Height 13.5 cm Weight 15 Ib. SPECIAL OFFER PRICE Oniv

VENNER TIME SWITCH TYPE MSQP
200/250 Volt 2 -ON/2-OFF every 24 hours at any
manually pre-set time. 20 amp contacts. Fitted die-clast case. Tested and in good condition
E4.75

A.C. MAINS TIMER UNIT

singe on an electric clock. with 25 amp singe-pole switch which can be preset for any period up to 12 hrs. ahead to swito

 any period up to 12 hrs. ahead to switcon tor any lenth of time from 10 mins. to
hrs. hen swith oft An additional 60 min
incornatated

UNISELECTOR SWITCHES - NEW
4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v . D operation ± 6.90. Post 30p.
8 BANK 25 WAY FULL WIPER 25 ohm
coil, 24 r. D.C. E7.90. Post 30p 8 BANK 25 WAY FULL WIPER

MINIATURE UNISELECTOR SWITCH

PROGRAMME TIMERS $230 / 240$ Volt AC 15 RPM Motors. Each cam operates a c/o micro switch, Ideal for
lighting effects. animated displays etc. Ex equipment tested. 2 cam model $\mathbf{£ 2 . 0 0}$ post 30 p .4 cam model $£ \mathbf{2} .50$ posi 30 p .
VERY SPECIAL OFFER
Miniature Roller Micro Switch. 5 amp.
c/0 contacts. NEW. Price 10 tor $\mathbf{£ 1 . 5 0}$
Post 10 p . (Min order 10. .
As above less rollefleaver 20 for $\mathbf{£ 2 . 0 0}$. Po
Ditto. Press to make. 20 for $\mathbf{£ 1} 50$ Post 10 p
Ditto. Press to break 20 for $\mathbf{£ 1 . 5 0 ~ P o s t ~} 10 p$
'HONEYWELL' PUSH BUTTON, PANEL MOUNTING MICRO SWITCH

 (Illustrated) in
for quantities.

240 V A.C.SOLENOID OPERATED FLUID VALVE

COIN MECHANISM (Ex-London Transport)
Unit containing, selector mechanism for 1p. 2p \& 5 p coins.
Micro switches. Precision built
$\mathbf{E 2} .50$ Post 60 p

230-250 VOLT A.C. SOLENOID

24 VOLT DC SOLENOIDS

UNIT containing: 1 heavy duty solenoid approx. 25 lb . pull
6 solenoids of approx. 4 oz . pull at $\bar{z} \mathrm{in}$. travel. Plus 124 V D.C 1 heavy duty
BARGAIN.
High Visibility
Panel Mounting
EDS
25 inch mounting. 16 inch lens. Typical parameters 2 volt
20 m a. all types. Supplied complete with snap in mountings $20 \mathrm{~m} . \mathrm{a}$. all types. Supplied complete with snap in mountings Post 10 p . (Min. order $£ 100$

LED READOUTS

E6.00 post paid.

* FOUR EASY TO BUILD KITS USING XENON WHITE TRIGGERING CIRCUITS, PROVISION FOR EXTERNAL TRIGGERING. 230-250V. A.C. OP
EXPERIMENTERS "ECONOMY" KIT Adjustable 1 to 30 Flash per sec. All electronic comPost 30p.
INDUSTRIAL KIT
in printed circuit. Adjustable 1 -80 f.p.
putput of Hy-Lyght. Price $\mathbf{f 1 4 0 0}$. Post 50p.
HY-LITE STROBE Mk IV
Designed for use in large rooms, halls and utillzes a Silica tube, printed circuit. Speed adjustable 1-20 f.p.s. strobes. Price f1400. Post 50p.
'SUPER' HY-LIGHT KIT
Approx. 4 times the light output of our well proven
Hy-Lyght strobe.
Variable speed from $1-13$ flash per sec.
Reactor control clrcuit prod
light. ONLY $£ 22.00$. Post 75 p
ATTRACTIVE, ROBUST, FULLY VENTILATED METAL CASE for the Super Hy-Lyght Kit inciuding reflector. £800. Post 60p.
FOR HY-LYGHT STROBE incl. reflector, £5.75. Post 25p

COLOUR WHEEL PROJECTOR Complete with oi! filled colour wheel. 100 watt lamp
$200 / 240 \mathrm{~V}$ AC. Fat tremely efficient optical system. $\mathbf{£ 2 0} 50$. Post 50p.

IR.P.M. MOTOR and

COLOUR WHEEL.
Post 40 . (Motor not available separarely.) and wheel $\mathbf{f 5} .60$.
30p.
BIG BLACK LIGHT
Extremely compact and pouwerfultra vource of of lamp. inumerabie industrial applications also ideal for
stage. display. discos etc. P.F. ballast is essential with these bulbs. Price of matched ballas
$£ 1600$. Post $£ 1$. Spare bulb $£ 7.00$. Post 40 p.

4 ft 40 watt
£4.25. Post 25 p. (For use in stan bily. $\mathbf{2 l}$ fitt. 20 watt
12 in . 8 watt $£ 1.60$. Post 15 p . 9 in. $6 \mathbf{w a t t} £ 1.30$. Po
15 p . Complete ballast unit and hoiders for either $9^{\prime \prime}$
12^{2} iube. $\mathbf{£ 1} 70$. Post 25 p. (9 in. $\times 12 \mathrm{in}$. measures approx.
U.D.1. SINGLE CHANNEL. 750 watt * MANUAL/AUTO DIMMER
fade: Auto State Fader, with three functions. Manual cycling up and down, Auto fade down. Automatic
position selected with three
rocker
switch. Two ranges of cycling for Position rocker switth. Two ranges of cycling for
Flashing" or Slow blending' Ready built module $6^{\prime \prime} \times 3^{n}$
glass fibre board incorporating 10 amp glass fibre board incorporating 10 amp TRIAC. Two or
more moduies for top quality colour blending and flashing effects. PRICE £15-00 Post 30p.

GENERAL ELECTRIC POWERGLAS TRIACS
10 amp. Glass passivated plastic Triac, Latest device from
U.S.A. Long term reliability. Type SC $146 \mathrm{E} \quad 10 \mathrm{amp}$. 500 PIV .
E1.00 Post 5 p. (Inclusive of data and application sheet) suitable
Diac 18 p .

INSULATION TESTERS (NEW) Test to I.E.E. Spec. Rugged metal con*
struction, suitable for bench or fleld Wrk, constant speed clutch.
W. 4 in. H. 6 in., weight 6
500 Voi'rs, 500 megohms $£ 28.00$. Post
£34.00, Post 60p

INSULATED TERMINALS Available in black, red, white.
yellow. blue and green. New 12 p

RELAYS

 SIEMENS PLESSEY (1) Coil ohms: (2) Working d.c. volts: (3) Contacts: (4)
Price $\mathrm{HD}=$ Heavy Duty. All Post Pald. ("including Base)

OPEN TYPE RELAYS 6 VOLT D.C. 9 VOLT D.C. RELAY 12 VOLT D.C. RELAY

24 VOLT D.
D.C. $3 \mathrm{c} / \mathrm{o} 600$ ohm coil 75 p . Post 10 100 VOLT A.C

PLASTIC COVERED RELAYS 24 VOLT D.C. 24 VOLT A.C. 240 VOLT A.C. RELAY ITT
240 A A.C. heavy duty c/o contacts. Octal plug in base. $220 / 240$ VOLT AC RELAY ARROW 230/240V AC $2 \mathrm{c} / 015 \mathrm{amp}$ contacts. 110 VOLT A.C CLARE-ELLIOT TYpeRP 7641 G8 MANY OTHERS FROM STOCK. PHONE FOR DETAILS.
 BLOWER UNI 200-240 Volt A.C. BLOWER UNIT
Precision German bull. Dynamicall precision, German buill. Dynamicali,
balanced,
quiet, continuousiy
rated reversiblee motor. Con sumplon 60 mA
Size 120 mm . Cia . 60 mm . deep.

PRECISION CENTRIFUGAL BLOWER

Mig. Airtiow Developments Lid. Heayy Duty.
continuously rated smooth running, 230/240v A.C. motor. Size: $16 \times 14 \mathrm{~cm}$. (case only).
OAL 15 cm . Aperture $6 \times 6 \mathrm{~cm} . £ 6.50$.

230/240 VOLT A.C. EXTRACTOR FAN KIT

230V FAN ASSEMBLY

BODINE TYPE N.C.I GEARED MOTOR
(Type 1) 71 f.p.m. torque 10 lb . in
Roversible $1 / 70 \mathrm{th}$ h.p. cycle .38 amp
(Type 2) 28 f.p.m. torque 20 lb in (Type 2) 28 r.p.m. torque 20 Ib. in
Reversible $1 / 8 \mathrm{Dth}$ h.p. 50 cycle 28 Reversible $1 / 8$ th h.p. 50 cycle 28 amp.
precision made U.S. A. motors are offered condition. Input voitage of motor 115 v A.C.
plete with transformer for $230 / 240 \mathrm{~A} . \mathrm{C}$. input. These motors are ideal for rotating aerials. drawing curtains.
display slands, vending machines. etc. etc.
'FRACMO' 240VOLTA.C. 50 cycle SINGLE PHASE GEARED MOTOR
3y r.p.m. 30 lb . ins. Reversible, fitted
with mounting feet. Brand New.
incl. VAT $£ 15.77$)

- 20600 WATT DIMMER SWITCH Easily fitted. Fully guaranteed by makers. Will control up to 600 warts of all lighting except fluorinsiructions. $£ 2.75$. Post $25 p$
2000 WATT POWER CONTROL For Power tools. Heating. Lighting etc. incorporating 13 amp
outlet and mains lead. f8.00 Post 27 p.
'GENTS' 6 " ALARM BELL $200 / 250$ volt AC/DC. Brand
$£ 5.00$ Post 60 p . (lliustrated) 'STC' ${ }^{\prime \prime}$ RED ALARM BELL

 METERS NEW! $2 \frac{1}{2} \mathrm{in}$. FLUSH ROUND available as D.
10
15, 15.2
VOLTMETER

SERVICE TRADING CO.

Quadraphony，Clocks and Counters

DIGITAL CLOCKS BY BYWOOD

Professional quality， 6 －digit， 12 or 24 hour display
Beautifully finished in executive case，also available as easy－build kit ．．．．．．．．．．．．．．．．．．．．．． FREQUENCY COUNTERS
Small，attractively－styled，up－to－the－minute design， $10 \mathrm{~Hz}-30 \mathrm{MHz} 6$－digit LED display，also available as easy－build kit
High－frequency model $10 \mathrm{~Hz}-220 \mathrm{MHz}$ minimum，still a full 6 －digits and LED display Also available as easy－build kit
QUADRAPHONY ALL PE RONDO SYSTEM PARTS SUPPLIED BY US
L1 Logic Decoder Kit
CBS－SQ Decoder，incorporating MC1312
Kit available
Stereo Decoder，incorporating MC1310
Kit available
Goldring G101 Turntable，less cartridge
Deutch－Elac Cartridge STS 144／17．List price $£ 17.90$
Quadraphonic Records supplied upon request．
Just arrived in time for Xmas－Top－Quality Koss Headphones．
Handy little aluminium boxes，unique sound sphere instrument cases and Foulsham－tab．books available．

A FUIL TECHNICAL AND AFTER－SALES－SERVICE IS PROVIDED．
AS MANUFACTURERS AND DISTRIBUTORS WE WEICOME TRADE AND EXPORT ENQUIRIES．
COMMUNICATIONS CONSULTANTS ．．INSTRUMENT DESIGNERS ．．．FOUR－CHANNEL SOUND SPECIALISTS．

New items！

£33．65＋£2．69 VAT
$\mathbf{E 2 9 . 6 5}+\mathbb{E} .37$ VAT

PRICES ON APPLICATION

$\mathbf{£ 2 8 . 5 0 + V A T}$
E11＋88p VAT
E8＋64p VAT
E6．95＋55p VAT
E5．95＋47p VAT
E23．90＋E1．91 VAT E7．90＋63p VAT
Details and prices on application
PLEASE LET US KNOW AFTER 7 dAYS $1 F$
YOUR ORDER IS NOT ACKNOWLEDGED．
YOUR ORDER IS NOT ACKNOWLEDGED．

NAME

ADDRESS

$\square \quad \nabla$ SE 0

Studid Electranics P．O．BOX 18 HAR LOW CM 18 ESH ESSEX．
Telephone：Harlow（stdロこフ9）25457

incl. P. \& P.
Ready-built unit. ready for connection to the IF stages of existing FM Radio or Tuner. The very latest second-generation coilless integrated circuit design, operating on the phase locked loop system offering even better stereo separation. Only owing to our bulk-buying capacity are we able to offer this at the old price LED Stereo indicator lights available. RED @ 25p GREEN@ 40p.

5W \& 10W AMPS

These matchbox size amplifiers have an exceptionally good tone and quality for the price. They are only $2 \frac{1}{4}$ " $\times 1 \frac{3}{4}$ ". The 5 W amp will run from a 12 V car battery making it very suitable for portable veice reinforcement such as public functions. Two amplifiers are ideal for stereo. Complete connection details and treble, bass, volume and balance control dircuit diagrams are supplied with each unit. Discounts are available for quantity orders. More details on request. Cheapest in the U.K. Built and tested.

Now available for 5\&10WAMPS

Pre-assembled printed circuit boards $2 " \times 3^{\prime \prime}$ available in stereo only. will fit .15 edge connector.
Stareo Pre-Amp 1 (Pre 1). This unit is for use with low gain crystal or ceramic pick up cartridges.
£1. 10
Stereo Pre-Amp 2 (Pre 2). This unit is for use with magnetic pick-up cartridges
£1.55
Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentiometers will give bass and treble boost and cut
£1.10
Instruction leaflet supplied with all units. Post and Packing included in Prices.

Please add VAT at current rate.

Decoders/ 3W Amps 10W Amps/ Stereo Pre-Amps 2
(Please insert quantities and delete those not applicable) Name
Address

P. F. RALFE
 10 CHAPEL ST. LONOON NW1. Phone 01-723 8753

SIGNAL GENERATORS

MARCONI TF80ID/IS. $10-480 \mathrm{mHz}$ P.O.A. MARCONI TF801B/2S. $10-480 \mathrm{mHz}$ E225. MARCONI TFI44H $10 \mathrm{kHz}-72 \mathrm{mHz}$ P.O.A.
 MARCONI TFI4H $10 \mathrm{kHz}-72 \mathrm{mHz}$ P.O.A. MARCONI TFI 370 RC Oscillator $10 \mathrm{kHz}-10 \mathrm{mHz}$. Sine/Square. ROHDE \& SCHWARZ SMAF (illustrated) AM/FM 4.300 mHz . ROHDE \& SCHWARZ SMLR $15-30 \mathrm{mHz}$ power generator. P.O.A. RACAL/AIRMEC 201 A. $30 \mathrm{kHz}-30 \mathrm{mHz}$. As new. P.O.A. ADVANCE SG21 VHF Square-wave generator $9 \mathbf{k H z}-100 \mathrm{mHz}$. $\mathbf{£ 2 5}$.

OSCILLOSCOPES

TEKTRONIX 555 (Late model) with two 'L' plugins and ' $21 A$ ' and ' $22 A$ ' plug-ins. TEKTRONIX $545 A$ with CA unit. DC- 30 mHz . Price only E 295.00 .
 TETRONIX $531 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in TETRONIX $535 \mathrm{DC}-15 \mathrm{mHz}$ with L typa plug-in ITT METRIX miniature portable scope. DC-10mHz. Brand new. 650. NB: Due to the fragile nature of CRTs we regret that these oscilloscopes cannot be despatched by post. Collection only or delivery could be arranged.

MISCELLANEOUS TEST EQUIPMENT

MARCONI TFI400S double pulse generator with TM6600/S secondary pulse unic. $\mathbf{E l} 105$.
MARCONI TF791D deviation meter. $4-1024 \mathrm{mHz} .0-100 \mathrm{kHz}$ deviation.
MARCONI TFI342 low-capacitance bridge 0.002pf-1,lllpf. Resistance I-1000M.ohm. $£ 85$.
ROHDE \& SCHWARZ USVD calibrated receiver $280-4,600 \mathrm{mHz}$. ROHDE \& SCHWARZ A.F. Wave Analyser type FTA $0-20 \mathrm{kHz}$ plus log/lin AF meter incorporated. Excellent condition.
ROHDE \& SCHWARZ URV milli-voltmeter BNI0913 (late type) ImV-IOV. With 'T' type insertion unit, free probe and attenuator heads. $1 \mathrm{kHz}-1,600 \mathrm{mHz}$. $£ 175$.
COSSOR 1453 True RMS milli-voltmeter. Excellent. $£ 75$.
ADVANCE PG54 Pulse generator. AS NEW.
SOLARTRON EMI006 production-line resistance tolerance check-set. $0-15 \mathrm{Mohm}$ digital read-out.
AIRMEC TYPE 210 modulation meter. Excelient condition. WAYNE KERR B52I LCR Bridge. Excellent condition. 255. EDDYSTONE $770 R$ VHF Receiver covering $19-165 \mathrm{mHz}$. As mew. $\mathrm{E}_{1} 25$

MUFFIN INSTRUMENT
FANS
Dimensions $4.5 \times 4.5 \times 1.5$ ins.
Very quiet running, precision fan
specially designed for cooling
electronic equipment amplifiers
etc. For IIOV. AC operation-
(practise is to run from split
primary of mains transformer or
use suitable mains dropper). CC
only 11 Watts. List price over $£ 10$
each. Our price, in brand new
condition, is $£ 3.50$.

POLARAD Model SABAWA SPECTRUM ANALYSER 10MHz-63GHz. 1.F. Markers. Spectrum calibrator. Loz/Lin scale. with the is not the instrument replace. Supplied in full working excellent condition. Guarantee.

MANY TYPES of RF plugs and sockets in stock:-
BNC plugs 50 . 30p. BNC sockets 50Ω. 25 p. N. Type plugs 50Ω. 50p. Burndept plugs. 40p. Burndept Miniature sockets. 20p.
All connectors are brand new. mmediate delivery. Please add appropriate postage.

DURATRAK VARIACS type 100 L 230 V . AC Input. $0-230 \mathrm{~V}$. AC Output, at 3 amps. Brand new units, less contro Carriage ©

MINI HELIPOTS

500Ω Beckman Linearity Tolerance 0.075% (10 Turn). IK Ω Beckman Linearity Tolerance 0.25% (10 Turn) 20Ω Colvern CLR 26/6310/9S (3 Turn) $5 K \Omega$ Colvern (10 Turn).

AVO VALVE TESTERS
Brief-case type 160 . Full working
condicion chroughouc. $\mathbf{6 5}$.
AERIAL CHANGE/OVER RELAYS of current manufacture designed especially for mobile equipments, coil voltage 12v., frequency up to 250 MHz at 50 watts. Small size only, 2 in . $x \neq \mathrm{in}$. Offered brand new. boxed. Price $£ 1 \cdot 50$, ine. P.\&P.
RACAL/AIRMEC VHF/UHF Millivolemeter type 301 A. Frequency range $50 \mathrm{~Hz}-900 \mathrm{mHz}$. Voltage range
$300 \mu \mathrm{~V}-3 \mathrm{~V}$ in eight ranges. Co-axial $300 \mu V-3 V$ in eight ranges. Co-axial
input 50 and 75 ohms BNC coninput 50 and
nectors. $D C$ Ranges $100 \mu \mathrm{~V}-10 \mathrm{~V}$ in ten ranges. Light-weight mains operated instrument in as new condition with handbooks. Other makes of voltmeter also available from stock.

HEWLETT-PACKARD RF

 POWER METERType $432 A$. Power range $l \mu W$ 10 mW in 7 ranges. Frequency range $10 \mathrm{mHz}-10 \mathrm{GHz}$. Automatic zeroing. With 478A co-ax mounts and carrying case. In excellent condition
HEWLETT PACKARD/
BOONTON TYPE 8900B
Peak-power calibrator. Measures
true peak power +.6 db absolute true peak power $\pm .6 \mathrm{db}$ absolute. Frequency range $50-2000 \mathrm{Mhx}$. RF
power range 200 mW peak, fullpowe RF Impedance so phms P.O.A.

POLARAD MICROWAVE RECEIVER

Model ' R ' with tuning unit type 7.65 . Frequency range 4.2 GHz 7.6SGHz. AM/FM.
condition. Price E75.

PLEASE ADD 8% V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and power supply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{~mA}$. Two stabi lised valves CV 286. Centre Zero Meter $10-0-10$. Size $8 \mathrm{in} . \times 8 \mathrm{in} . \times 8 \mathrm{in}$. New
condition. $£ 8.50$. Carr. 75 p.

AUTO TRANSFORMER: $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}, 1000$ watts. Mounted in strong steel case $5 \mathrm{in} . \times 6 \frac{1}{2} \mathrm{in} . \times 7 \mathrm{in}$, Bitumen impregnated. $£ 10$ each, Carr. $£ 1$.
TELEPRINTER TYPE 7B; Pageprinter 24 V d.c. power supply, speed 50 bauds per min. 'as new' cond. in original packing case, 25 each; or second hand cond (excellent order) no parts broken, $£ 15$ each. Carriage either type $£ 3 \cdot 00$.
INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision for checking ionisation. $110 / 230 \mathrm{~V}$ a.c. input. $S /$ hand good cond. $£ 30+£ 1$ carr BRIDGE MEGGER: 250V. (Evershed Vignoles) series 2, $£ 30$ each. Carr. £1. BRIDGE MEGGER: $2,500 \mathrm{~V}$., series $1 . £ 30$ each. Carr. $£ 1$.
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction
TYPE 174/1 FREQUENCY SHIFT ADAPTOR (Northern Radio Co.) : Convert mark and space frequencies from the output of one or two Receivers into d.c pulses. Suitable to operate Teleprinters or similar devices. $110 / 220 \mathrm{~V}$. Furthe
details on request, s.a.e. $£ 55$ each. Carr. $£ 1.50$.
TELEGRAPH TERMINAL UNIT (A.T.E.) TYPE TFS3: Converts signals from Receivers into d.c. pulses. Complete with monitor. $£ 75$ each. Carr. $£ 2$.
MUIRHEAD PAMETRADA WAVE ANALYSER D-489-EM: Primarily and power frequency waveforms from $19 \mathrm{~Hz}-21 \mathrm{KHz}$. Complete with power supply and power frequency waveforms from $19 \mathrm{~Hz}-21 \mathrm{KHz}$. Complete
unit 230 V 50 Hz . Secondhand, good condition. $£ 90$. Carr, $£ 3$,
FURZHILL SENSITIVE VALVE VOLTMETER V.200: Freq. $10 \mathrm{~Hz}-6 \mathrm{MHz}$ (can be used beyond 6 MHz), Probe in circuit-voltage range $1 \mathrm{mV}-1 \mathrm{kV}$ in 6 decade ranges; full scale deflection $10 \mathrm{mV}, 100 \mathrm{mV}-1 \mathrm{kV}$. Without probe $100 \mu \mathrm{~V}$ £ 30 each. Carr. 61 . NOISE FIGURE METER TYPE 113A (Magnetic AB, Sweden): $£ 125$ each. Carr. $£ 1$,
PRECISION PHASE DETECTOR TYPE 205: Freq, $0.1-15 \mathrm{MHz}$ in 5 ranges ROHDE \& SCHWARZ HF MILLIVOLTMETER: $30 \mathrm{~Hz}-30 \mathrm{MHz}$ Type UVH, $1 \mathrm{mV}-1 \mathrm{~V}$ in 7 ranges, 220 V . $£ 75$ each. Carr. $£ 2$.
ROHDE \& SCHWARZ VHF WATTMETER TYPE NAK: with matching indicator, 30 watts, $200-470 \mathrm{MHz}$, $£ 25$ each. Post 70 p
ADVANCE PULSE GENERATOR PG55: $£ 40$ each. Carr. £1.
PHILLIPS VALVE VOLTMETER TYPE GM6014: $1-300 \mathrm{mV}$ in 6 ranges, $70-20 \mathrm{~dB}$, probe $1000 \mathrm{~Hz}-30 \mathrm{MHz}, 300 \mathrm{mV}$ maximum. $£ 35$ each. Carr. $£ 1$. TF-1345/2 DIGITAL FREQUENCY COUNTER: Range $10 \mathrm{KHz}-100 \mathrm{MHz}$ with extension units. Details on request, s.a.e. $£ 100$. Carr, $£ 2$.

UHF MICROWAVE MILLIWATTMETER TYPE 14: Direct reading, can be used to measure power from 100 MHz upwards. F.S.D. on 4 in . scale meter 2.5 mW . $£ 40$ each. Carr. $£ 1$.

MARCONI HF SPECTRUM ANALYSER OA. 1094/3. Further details on request. $£ 250$ each. Carr. $£ 5$.
Q METER: $30 \mathrm{MHz}-200 \mathrm{MHz}$. $\mathbf{£ 5 5}$. Carr. $£ 1$
SIGNAL GENERATOR AIRMEC TYPE 701: $30 \mathrm{KHz}-30 \mathrm{MHz}, 7$ ranges. 665. Carr. §1.50.

TF-1278/1 TRAVELLING TUBE WAVE AMPLIFIER: £125. Carr. £2. BPL A.C. MILLIVOLTMETER TYPE VM.348-D Mk. 3: 2 millivolts- 2 volts, 6 ranges. $£ 30$. Carr. $£ 1$.
WAYNE KERR WAVEFORM ANALYSER A.321: Low scale 0-1200 c/s High scale $1-20 \mathrm{Kc} / \mathrm{s}, 600$ ohms. Harmonic level is $0-55 \mathrm{~dB}$ in 12 steps. $£ 75$. Carr. € 1.50 .
SPECTRUM ANALYSER TYPE MW.69S (Decca): Further details on request. $£ 200$.
MARCONI DUAL TRACE UNIT TM-6456: $£ 30$. Post 60p.
AVO TRANSISTOR TESTER CT. $446: \mathfrak{£} \mathbf{~} \mathbf{0}$. Carr. $£ 1$
SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq.- $1800-4000 \mathrm{Mc} / \mathrm{s}$ CW, FM, Modulated Pulse-40-4000 pulses per sec. Pulse Width-0.5-10 micro secs. Timing-Undelayed or delayed from 3-300 microsecs from external or internal pulse. Output-1 milliwatt max., 0 to -127 dB variable. Output Impede
ance- 500 . Price: $£ 120$ each $+£ 2$ carr,
H.V. TRANSFORMER: $8000 / 8000$. Output 300mA. rms. Size: $12 \mathrm{in} . \times 12 \mathrm{in} . \times$ $36 \mathrm{in}, 230 \mathrm{~V}$ input. $£ 40$. Carr. $£ 4$.
TELEPHONE CABLE: (Twin) $1,300 \mathrm{ft}$. on metal reel, $£ 7.50$ per reel. Carr, $£ 1$ FIRE-PROOF TELEPHONES: $£ 25.00$ each, carr. $£ 1 \cdot 50$.
TF. 2000 A.F. SIGNAL SOURCE: $£ 175 \cdot 00$, carr. $£ 1 \cdot 00$
POWER UNIT: $110 / 230$ volts a.c. input. 28 volts d.c. at 40 amps output. $£ \mathbf{~} \mathbf{3 0} \cdot \mathbf{0 0}$ each, carr. $£ 3.00$
SMOOTHING UNIT (for the above): $\mathbf{£ 1 0 . 0 0}$ each, carr. $£ 2.00$.
X-BAND MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James Scott. $£ 125$ ea., Carr. 61.
HP-766D DUAL DIRECTIONAL COUPLER: $940-1975 \mathrm{MHz}$. $£ 35 \mathrm{ea}$. , 75p post.
BACKWARD WAVE OSCILLATOR TYPE SE-215: 6.3 heater, 105 V Anode, 7.9 mA . Mnfr. Watkins \& Johnson. $£ 85$ ea., Carr. $£ 1$

LISTS OF EQUIPMENT AVAILABLE: MOTORS; TELEPRINTERS; AR88 SPARES; TEST EQUIPMENT ETC. Send 10 p for above lists.
ALL CARRIAGE QUOTES GIVEN ARE FOR 50 MILE RADIUS OF
LONDON ONLY.

ALL U.K. ORDERS SUBJECT TO 8\% VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage).
If wishing to call at
stores, plasse telephone
for appointment. 3-B TRULOCK ROAD, LONDON, N17 OPG

QUADROPHONIC

TAPE PLAYERS

Tape Transports

 rugged unit can be purchased separately or fitted with the amplifers described
below. Others are avallable giving up to eight tracks.
Playback Pre-amplifiers
A self-powered unlt size 19 in. $\times 51$ in. $\times 4 \frac{1}{2}$ in. deep with four plug-In low noise
preamplifiners giving $1 V$ output into 100 ohm line.

Quad Power Amplifiers

 Tax and carriage extra
Ask about lape controlled feaching equipment, with illuminated panel d/splay, for
typewriting and

DEIMOS LIMITED

Simmonds Road, Wincheap Industrial Estate, Canterbury, Kent.
Tel: 022768597
 169 Kensington High Street, London W. 8

ANALOGUE \& HYBRID COMPUTERS

 C60 FEATURES: Eight low drift, high gain, IC operational amplifiers. 1% operational amplifiers. accuracy. Automatic functionselection and meter switch ing. A four quadrant variable ing. A four quadrant variable multiplier. Meilidual pol-se facilities, built-in stabilised
power supplies plus all of the features expected in our precision machines. Price $\mathbf{£ 4 7 5}$ complete with patching leads and instruction book
We manufacture a wide range of analogue and hybrid computing equipment and can produce special machines built to your own specification. You will be pleasantly surprised at the cost of a computer built to your own requirements.

PHONE OR WRITE FOR DETAILS OF OUR ANALOGUE OR HYBAID APPARATUS
PHYSICAL \& ELECTRONIC LABORATORIES LTD.
MANUFACTURERS OF PRECISION ELECTRONIC INSTRUMENTS \& COMPUTERS
28 Athenaeum Road, Whetstone, London N20. Tel. 01-445 7683

Three Ways To Easier Golour Servicing

1.

Colour Bar Generator

* 10 test signals
* Variable amplitude of colour burst signa]
* 4 preselected channels on the RF output
* Small size. low weight

2.

Convergator

* Battery operated
* UHF output covers 10 channéls
* Video signal can be switched off for purity adjustment

3.

I.V. Visual Field Strength Meter

* Varicap tuner with four channel selectors
* High sensitivity
* $6^{\prime \prime}$ picture tube
* Mains or battery operation

The speed and efficiency of your colour servicing with this Decca test equipment will'save you time and therefore money. Send us the coupon or give us a call and we'll send you the full details

DEGCD

Decca Radio \& Television Ltd.
Educational and Industrial Services Division Ingate Place, Queenstown Road, London SW8 3NT (01-622 6677)

Please send me further details of your colour TV test and service equipment :

Name
Address

HART ELECTRONICS

Audio Kit Specialists since 1961

BAILEY/BURROWS/QUILTER PRE AMP This is the tone control section of the best pre:amp kit currently available. Consider the advantages:-FFirst quality fibreglass *Low noise carbon film and metal film resistors ganged controls with matched tracks fitm resistors throughout. *Finest quality low-noise otal stability. *Special decoupling and earthing arrangements to eliminate hum loops.
*Controls. switches and input sockets mount
directly on the boards to TOTALLY ELIMINATE wiring to these components. (We know of one preamp kit which claaims its controls mount it
*We incorporate the Quilter modification which
As can be seen from the photontrol range. control unit is very slim conly $1 \frac{1}{2}^{\prime \prime}$ trom Asont to back) and may therefore be used in many other applications than our Bailey METALWORK AND WOODEN F.M. TUNER Thest information.
performance allied latest addition to our range is designed to offer the best possible have taken great to the ease of operation given by push button varicap tuning. We coils to wind, no RF circuits to wire and no alignment is required in fact the whore no can be easily completed and working in an evening as there are only 3 transistors, one IC and two ready built and aligned modules comprising the active components. We heve abandoned the concept of having a tuner as large as the amplifier and this new unit has a
frontal size of only ${ }_{1}^{2} \frac{1}{2}$ in. $\times 4$ in. It can be mounted on the side of our Baitey amplifier metalwork thus turning it into a tuner/amplifier whilst only increasing its width by $1 \frac{1}{2}$ in. Cost of tuner chassis (no case) is $\mathbf{£ 2 2}$ tor mono. $\mathbf{£ 2 5 . 4 5}$ for stereo. Metal case $\mathbf{£ 3 . 5 5}$ STUART TAPE Convert any suitable quality deck printo a verry high quality Stereo Tape unit. Input and output levels suit Bailey pre amp. Total cost varies but around $\mathbf{f 3 5}$ is all you need. We can offer tape heads as well if you want new ones.
All above kits have fibreglass PCB's. Prices θx.lude VAT but P\&P is included.
FURTHER INFORMATION ON ALL KITS FREE if you send us a 9 in. $\times 4$ in. S.A.E. REPRINTS Post free, no VAT.
STUART TAPERECORDER All 3 articles under one cover 30p.
GAILEY/BURROWS/QUILTER Preamp circuits, layouts and assembly notes 15 p
Penylan Mill, Oswestry, Salop

SO QUADRAPHONIC DECODERS
SO the leading quadrabhonic systom, designed by CBS engineers, offers not onty 4 chamel ambiophony from the
fast expanding range of sa encoded discs but also immensely incressed depth and fulliness of sound from standard steree ocecordinges too feed 2 channels $1200-1000 \mathrm{mV}$ as obtainable trom most pre-amplifiers) inlo your chocte of any of our 3 decoders
ano take 4 channels out with no overall signel level reductuon On she 1 logic enhanced decocers Volume. Front Back. LFRE. LB-RB and Dimension controls can all be implemented by simple single gang potentiometers need tor exotic 4-gang units
These stare-ot-she-art circuits components oriy-fibre glass, used under ficence from CBS, are offered in ki: form comprising first grade resistors 2% metat oxde, all polystyrene and polycarbonate capacitors 5% or berter and in decoder \downarrow untra low m1 Basic A $18-0.5 \mathrm{~dB}$ tyo.) transtistors used th each amplifining stage. Circuit Board fer 54
 three specially
Board. $\mathbf{C 1 9} .80$
 Alikits nctude it sockets and construction notes. Pricas include CBS licence tee
Piease write for further detai sin $F R$ RE LIST
 800p\& p SURFACE MALL.

AMBENTACCOUSTITS
ANDOVER, HANTS SP10 3EQ

MIL SYNCHROS

EX STOCK

WE ARE ANXIOUS TO BUY Synchro Test Equipmen manufactured by Muirhead, Singer-Gersch etc. Test Dials.
Dividing He Heds. Bridges. etc. to expand our test facilities. SOLAR CELLS. Ferrantio slicicon MSIIBE. active area 390 Cct. Current 60 mA . Optimum load 90 ohms. Dia. 34 mmm . Thick-
ness. Emm . mtg thrd $1 / 4-28$ unt 2 A . Ex Made up panel. E 1.35 P. \& P. and VAT

PANEL DISPLAY RECORDING CAMERA. Manufactured A.G.I. Specifically for the recording of complex Instrument Shutter speeds $1 / 100,1 / 50,1 / 25 \mathrm{sec}$. and time exp. Focussing at 1,75 to 50 ft . In 18 steps. Aperture attge F 3.5 to F 22 . Prismatic viewfinder and facllity for vlewing direct on ground glass screen. Rotating filter attachment. Cord film advance and shutter cock
with septe. Button control and electrical release facillty (24 V DC) Spooi holds 40 exposures. Camera may be wall mounted on bracket supplied. Tripod mounting socket provided. In wooden case. Two orades avallable 'as new' Grade A \&35. 10 (inc. P.
and P. and VAT). Somewhat used but serviceable Grade B and P. and VAT). Somewhat
E2t. (inc. P. \& P. and VAT).
MITSUBISHI MEMOPACK MODEL T165, $7 \frac{1}{2} \mathrm{in} . \times 3 \frac{1}{2} \mathrm{in} . \times$ 2 in.. Weight 1.4 lbs. with batts. 8 transistor eircuit with D.C.
erase and bias, electronic speed control on capstan drive. erase and bias, electronic speed control on capstan drive.
Powered by $4 \times 1.5 \mathrm{~V}$ penlight (HP7) for 6 V sutt Int $2^{\prime \prime} 8 \mathrm{~S}^{\prime \prime} \mathrm{LS}$
3.5 mm jacks for ear/p and 200 mic (STD cassette impedance). Recording time up to 80 mins. Takes 46 mm spools (No2) of $\frac{1}{2}$ in. tape recording at $11^{\prime \prime}$ P/S STD half track. Battery
life 4 hours. Only two controls. Volume + play-Record--rewind switch. (No remote control. fast forward. rec level phone out-
put) $£ 6.50$ inc. P\&P. VAT.

TELEPRINTER PAPER. Standard rolls. 3 ply $\mathbf{£ 4 . 1 0}$ per doz. All P.Pd. U.K. Telex your order nowl
A.C. SUPPLY PANEL for 181 n , rack mounting carying two
$2 \mathrm{k} V \mathrm{~A}$ Varlacs with double brush assemblles Individuaily fused and metered outputs of up to 4 kVa and 270 V Individuaily fused and metered outputs of up to 4 kVa and 270 V
In exeellent condition at $\mathbf{\varepsilon 4 8 . 5 0}$ Including carriage and V.A.T.
(U.K. mainland). TAPE STORAGE CANS. Brand new finished steel cans
originally Intended for 16 mm film but ideal for storlng 7 in , reels
of tape. Cur last supply of these items was quickly exhausted at 30p each but as a result of a masslve new purchase we can
now offer a case of 55 at $£ 5.25$ inc. P . \& P. and V.A.T. Sample now offer a case of 55 at $\mathbf{8 5 . 2 5}$ inc. P. \&.P. and V.A.T. Sample
order 10 for $£ 1.10$ inc. P. \& P. and V.A.T.
Metal Oxide Resistors
(ELECTROSIL \& WELWYN)
Tantalum Capacitors
(KEMET, ITT, PLESSEY, ETC.)
Synchros and Servomotors
ALL AVAILABLE EX STOCK IN
mANUFACTURING QUANTITIES
.an wemen $\delta_{\text {ervo and }}$ Electronic $\mathcal{S}_{\text {ales }} £_{t d}$
Pont Orders and Technical enquiries to: 24, HIGH ST., LYDD, KENT. TEL: Lydd 20252 (STD 0679) V.A.T. Reg. No. 201-1296-23

Also at 45a HIGH ST., ORPINGTON, KENT. TEL: ORP 31066

Ano maroon

ADVANCE SQUARE WAVE GENERATOR SG21
Frequency Range $9 \mathrm{Kc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$ Rise time less than InS Ex-DemonRise time less condition in manufac
stration. New con turer's original carton.

PRICEE125

 Maximum output on
RISE TME less than
TIGEE OUTPUT RISE HME less than ins up to 500 mV .
TRIGGER OUTPUT 0.2. 0.4 , 1.02 .2 .0 V ino 50 ohm external ter mination maximiturn ourpus.
Riss time namingily $1.5 n s$
Fall time nominglyy 3.5 n . Size 7.1
WAST L
LA
OUR PRICE $£ \mathbf{3 5}$ P/P $£ 1.50$ Also available SG21A $100 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$.

HERE! NOW! FOR IMMEDIATE DELIVERY!

AV07 $£ 19.50$

Fully tested and checked, guaranteed 12 months with one free calibration. Leads and batteries extra. teather cases for above $£ \mathbf{3 . 5 0}$. Every-ready case enables the meter to be used while in its case $f 5$.

THE REVOLUTIONARY SUPERTESTER 680R V oir 10 FIELDS TOUR INTERNATIONAL PATENTS - SENSITIVITY 20.000 Ohms per Von $\%$. FOUREASUREMENT AND 80 RANGES. ACI
 20.000 ohms per vall sense dimensions (128) Simplicity and ease of use and is removable Scale width and in A.C.) of indicated reame overload Printed . VOLTS A.C. $=11$ ranges.
 - Full range of ercing More ranges $4-20-100-500$ and $200 \mathrm{mV}-4 \mathrm{~V}-20-100 \mathrm{Amp}$ and 100 HA -

 mA-2.5 Amp and 100 and Low Ohms. 500 Hz . V. OUTPU: from -24 to +70 to 2.0 . from 0 to 200 figures $\times 100 \times 1000-00.000$ and from 0 to 500 and $=10$ ranges: from mains and from 0 to 20 , batery. Bold figures V and $20-100-500-2000$ from 0 10 500.000 pard using tho
from 0 io 50.000 and an 0 to 0 to 2.000 and from 0

TOP VALUE $\begin{array}{ll}\text { AC/DC } \\ M U L T I- \\ M E T E R\end{array}$

Wihn taut band suspension
Senstivivity 20.000 ohms per v
senst 4000 ohms per volt on $A C$ Technical Data: ${ }_{0}^{0} 3-3 \cdot 30 \cdot 300 \mathrm{~mA} \cdot 3$ Amps AC 1200 Votis.

 range $-10{ }^{\text {to }}{ }^{\circ}$ and resisiance measure
$F S . D,-D C$ and ments +2.5 . $\mathbf{f 8} \mathbf{8 . 8 5}$

UNIQUE MULTI. METER/ SIGNAL GENERATOR

 250. 500.1000 mm . $0 . \mathrm{C}$ voltage ranges: 0.5 . 10 general
1000 C 1000V. D.C curren A.C voltage rangenges: 25, $0.5,2.5,10.50$
Sensitivity 20.0000 . $0.05 .0 .5,5.50,500,250.500$

 Accuracy: 5% of $\mathrm{F} . \mathrm{O}$ internal hater 3 v - $\mathrm{Im} \Omega$ mid-scale moditotor output: 1 kHz squal bater, 3 V dry cell.
minarewave. 465 kHz, minimum oy 1 kHz squarewave signal. 465 kHz sinewewave voitgage: Ive comple dimensions: with test leads. $\times 97 \times 40 \mathrm{~mm}$ in wartage: IV
AMAZING VALUE $\mathrm{f7} .50$

ALPHANUMERIC חासाE TUBES B7971

The Alphanumeric NixiE tube has the
abbility to display all
ability to display all the letters of the aiphabet. numerals 01 hru 9 and special haracters in a single tube

characteristics, the Alphoth readability and electrical Tmanyurique beneitits including lic Nuxe tube provides - Uniform contio All OCoperalion

* Menorm, continumus line characters of equal height
* Readabilith simple solid state drive circuits \star Remorywith simple solid statete drive circuits
Reigh
brightianess \star II

Price only 990 each plus 1

 OISco for above 60p eachCOUT GIVEN FOR QUANTITY ORDER Uitra-long life. high lindicatoatubes independent decimal points., Supply and
200 V D.C. $100 \mu \mathrm{~s}$. Characture Cut height 1 mA . Pupply voltage 1.4. Brand cture height 0.51 overall size
manufacturers new. guaranteed. Sult
 $1000+$ price on application $90 \mathrm{p} .100+80 \mathrm{p}$

SPECIAL OFFER OF COLOUR T.V AND F.M. MEASURING EQUIPMENT BY WANDEL AND GOLTERMANN VZM 1 Measuring set for measuring phase and amplitude modul

£495.00

VZM2 Measuring ser for measuring phase and a mplitude modulaup to $12 \mathrm{Mc} / \mathrm{s}$.

E295.00
VZM83 Generator and Receiver used to measure transmission
distortion on FM radio link systems. Superimposed signa distortion
$52 / 304 / 556 \mathrm{kHz}$.

E275.00

PROGRAMME BOARDS BY SEALECTRO
These boards are basically a multi-pole multi-throw switch device consisting of a $X-Y$ Matrix with two contact decks in the Z Plan running at 90 degrees to each orl for prototype work, etc. Board shorting or plugging in pins. Ideal available in 2 planes. $24 \times 50 \mathrm{Ezg}$

Stolrpes

TEKTRONIX 453A Listed at over £ 1300

Special Offer this month $\mathbf{£ 7 9 5}$.

SPECIAL OFFER OF TELEPHONE CARRIER TEST EQUIPMENT

An unusual offer of a system up to $15 \mathrm{Mc} / \mathrm{s}$ for the measurement of level attenuation on telephone carrier equipment and wide band radio relay systems.
SIEMENS sweep frequency system consisting of 3 W 518 Level Oscillator $10 \mathrm{Kc} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}$; 30335 Leve Selective Meter $10 \mathrm{Kc} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}$: 3 W 933 Sweep Attach ment: 3D346 Large Screen Level Tracing Receiver Offered as a complete system as a 32 M 701
Special Offer less than Half-Price
Enquire for individual items P.O.A.
$\mathbf{E 1 9 5 0 . 0 0}$ Enquire for individual items P.O.A Also available manual point to point system consisting of: 3 W 518 Selective Level Oscilator
30335 Selective Level Meter $10 \mathrm{Kc} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}$

Price Per Pail $\mathbf{£ 9 5 0 . 0 0}$

LIMITED QUANTITY Made to meet the most
stro stringent Government Service Standards. DC40 MHz DUAL TRACE Solartron C.T. 484 oscilloscope. 3\% accuracy. Dual Trace plays. TRACE Y AMPLIFIER. Bandwidth: DUAL TRACE Y AMPLIRE: 14 nanosecs. D.C. -24 Mic/s. $\mathrm{mV} / \mathrm{cm}$. Input impedance. Sensitivity: 26 pF . Measuring Accuracy.
1 M. ohm direct. $\pm 3 \%$ with calibrator. $/ \mathrm{cm}-5 \mathrm{secs} / \mathrm{cm}$ or TIME BASE, variable up to 12 secs/cm. continuouskansion $\times 5$. Accuracy: $\pm 380 \mathrm{Kc} / \mathrm{s}$.
Sweep expal X AMPLIFIER. Bandwidth: $1 . \mathrm{V} / \mathrm{cm}$. Input
 INTERNAL CALIBRATOR. ACCUR PLUG ALS WIDE BAND Bandwidth: D.C. $40 \mathrm{Mc} / \mathrm{s} . \mathrm{v} / \mathrm{cm}$.
AVAILABLE: Time: 8 nanosecs. Sensitivity. So Measuring Input Impedance:
Accuracy: $\pm 5 \%$ direc Input
Accuracy: $\pm 5 \%$ direc
$+3 \%$ with calibrato
$\pm 3 \%$
PO .

MULTI OUTPUT POWER SUPPLIES

Ex-Computer offered at mere fraction of original manufacturer's cost.
APT 13334 Mk III
Apput $200 / 240 \mathrm{~V}$. $+10 \mathrm{~V}-5 \mathrm{Amp}-10 \mathrm{~V}-2 \mathrm{Amp} .+24 \mathrm{~V}-2 \mathrm{Amp}$.
$+20 \mathrm{~V}-5 \mathrm{Amp}-20 \mathrm{~V}-2 \mathrm{mmp}-1$
$+20 \mathrm{~V}-5 \mathrm{Amp}$. $-20 \mathrm{~V}-2 \mathrm{Amp}$. PRICE E19.50 Advances DC197
BRAND NEW MINIATURISED STRIP CHART RECORDER BY RUSTRAK Model 88
 This recorder indicates the magnitude of applied
currents of voltages by a continuous distorion free currents of voltages by a continuous distortion free
line on pressure sensitive paper. Moving coil movement scale calibrated 1 milliamp D.C. 240 V 5 OHz .
Chart speeds $90^{\prime \prime}$ per hour $£ 39$
SINGLE PEN RECORDER by Record Electrical

 for long-term teliability
meters. C Core Transtormer.
Manufacturer's price probably in excess of $£ 200$.

DIGITAL VOLTMETER 1450 6 Ranges 20 mV to 1000 V . 10 NV Sensitity$\pm 0.05 \%$ of range. Isolated input-fully guarde 140 dB common mode rejection. 60 dB series filter. Internal Cailibration provico or decima versions per second. Plug in BCD or decimal fan out.
Brand now in original PRICE maker's packing. Fully tested
and guaranteed. $\mathrm{f150}$
SENSATIONAL SOLARTRON

*

* 0.5\% Long Term Stability Range
R 150 V f.s.d. Sensitivity Range
$20 \mu V$ Internal Noise
Gin. Linear Scale calibra:ed in volts and dB
* $>30 \mathrm{M} \Omega$ Input Resistance
* Isolated or Balanced Inpest

6 V
 25A
 Supplies

VERY SPECIAL OFFER COSSOR

400050 MHz Dual Trace 0 scilloscope

Solated or Balanced Inpeut

10% VARIABLE VOLTAGE HIGH CURRENT HIGH STABILITY HIGH RELIABILITY
These power supplies were designed for continupus øeeration in compuner equipment Manutactured to highest engimeerin standard
 magnified. To 2 S/DIV in a sweep range
facititione facilities. Uimebase 3% steps range $\times 10$
state state, Limited as XY Morde. Fully trigering stration. Fully quantity of Fully solid
spacial Special offer, filsted and quaramon-
$\times 10$ prcbes availabio. Manual $\geqslant 7$ eed

SPECAAPUACHASE

 OF ADVANCE EX-DEMONSTRATION TEST EQUPMENT
Advance PG56 Double Pulse

Generator
Independently variable. $2 \mathrm{~Hz}-3 \mathrm{MHz}$ Pulse Width. Delay $70 n \mathrm{~S}-0.2$ secs. in 19 steps. Rise Time better than 10 OS . External trigger and internal rate generator. $£ 120$

Advance PG52 Pulse Generator
Repetition frequency up to 20 MHz and output pulses up to 20 V into 5 ohms with rise and fall times of 5 nS . Also produces complex ramp wave forms not obtainable from conventional pulse generators. Fully protected against short circuit. $£ 275$

Advance T.V. Dot and Cross Hatch Generator SG73
Output in form of modulated signal at VHF and UHF at level suitable for aerial sockets of receiver. Two Ranges
Band III on fundamental (MOD)
Band IV \& V On Harmonics (MOD)
Modulation 405 Lines or 625 Lines
£49.50 EX-DEMONSTRATION
BRAND NEW

Carriage and packing charge extre on Please note: all instruments offered are second-hend end NEW CATALOGUE AVAILABLE EARLY IN THE NEW

RECTIFIER STACKS
GEX54181P2f688
 Sx $\times 751$ N1 181P1F $\cdots E 6.00$

INTEGRATED CIRCUITS | MC356G $3 \operatorname{lnp}$ OR/NOR |
| :--- |
| GATE |
| . | Fliiffol

MC365G Line Driver
E5.00 CA3020 Wideband
Amp
CA302 1 10. CAзO2 8 A
CA303sA Operational Amp
CA 3055 Pos. Voit. Regulator
CA 1.24085 Pos. Volt. Regulator

 Astable Multivibrator $£ \mathbf{E} \cdot 86$
THYRISTORS
GE2N1774 200v. 5a. $\mathbf{E 1} \cdot 20$ CR10-101 100 v
10a............ 51.00
CR10-017 10a

CAPACITORS

Daly Electrolytic 9000uf $25 \mathrm{v} 50 \mathrm{p} \mathrm{p} / \mathrm{p} 15 \mathrm{p}: 500 \mathrm{p}$ F $50 \mathrm{v} 30 \mathrm{p} \mathrm{p} / \mathrm{p} 10 \mathrm{p}:$ TCC $16 \mu \mathrm{~F}+16 \mu \mathrm{~F}$
 Metallised Paper type $426100 \mu \mathrm{~F} 150 \mathrm{v} 50 \mathrm{p}$ p' P 25 p : RIC 1.8 FF 440 V a.c. $35 \mathrm{p} \mathrm{P/p} 10 \mathrm{p}$. MOTORS
E.E. thp 230 v . 50 c 1 ph 50 c . 144 Trpm complete with cap $80 / 100 \mathrm{uf} 275 \mathrm{v}$..... $\mathbf{£ 1 5 . 5 0}$ 3 phase 2 HP motor 60/50c.. 1800/1500 RPM, 208/220/440v........... £21.50 Cat. 2026391 Potter Instruments flange mounting capstan motor. 0.2 HP cont. 110 DC 4 amp
FANS, CENTRIFUGAL BLOWERS Airmax Type M1/r3954 (3 blades) Cas A Ammint alloy imperier \& casing (corras 1 ph 50 c 2900rpm Class "A"" insulation 425 cfm free air weight $9 \frac{1}{2} \mathrm{tbs}$. incl. p.p. E21.00.
 impeiler incl. p.p. $\mathbf{E 1 1} \cdot 50$.
Woods Aerofoil Code 7.5280 K 200/250V
1.0 a a 1 ph 50 c 2700 rpm
550 ctm tree air. $7 \frac{1}{2}$ impeller 14 blades incl p.p. $£ 13$-50.
Service Electric Hi-Velocity Fans, Suitable for Gas combustion Systems. Steam exhausting. Pneumatic for Oil burners. Secomak Model 365 (corresponds to 575) Airblast Fan, 440 v 3 ph 50 c 0.75 hp 2850 rpm. price incl catr 41 100 secomak model 350250 v 1 oh 50 c 0.166 hp 2800 rpm continuous 50 cfm 2 in . w. net weight 34 lbs . price incl. carr. $\mathbf{£ 2 6 . 0 0}$ Alr Controls type VBL4 200/250viph 50
Type VBL5 $200 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c}$. 172 cfm free air. Weight 10 tibs, price incl. p.p. $\mathbf{£ 1 8}$-50.
William Allday Alcosa Single Stage Vacuum Pump Model HSPOB 8 HG. RPm 1420. E.E. 3 phase induction motor Class E ins. f 21.00 incl carriag
Class E ins. Ez 1.00 incl. carriage. 052 -P702-R26X Gastor 110/120v. A.C. 1 ph. 60 c 1725 rom. Class E. 10 cuft to 10 in Mercuiy in 2 mins maintains vacuum. 635 mm Mercury. Or as compressor 10 psi int. or 15 psi cont. $\mathbf{£ 2 5} \mathbf{0 0}$ incl. cart.
Where p.p. not advised add 10 p per $£$ handling and post (in UK). Cash $9.30-5.00$. Free Car Park adj. PRICES SHOWN ARE EXCLUSIVE OF V.A.T.

JOHN CRICHTON
 Eloctronic Equipment
 558 Kingston Road, London. SW20
 Inland VAT add 8% prices gladly on request
 Carriage extra for overseas orders. Phone 01-540 9534

TEST SET FREQUENCY RESPONSE CT381
Consisting of: sweep generator. indicator esponse curve. flat-faced tube long persistance. Power supply. Calibrator frequenc CT432. Frequency range: $10 \mathrm{kc} / \mathrm{s}-33 \mathrm{Mc} / \mathrm{s}$ in nine directly calibrated ranges. Accuracy $\pm 3 \%$ of the indicated centre frequency. F.M. devia tion: (nominal). $0-500 \mathrm{kc} / \mathrm{s}$ above $-4 \mathrm{Mc} / \mathrm{s}$.
$0-400 \mathrm{kc} / \mathrm{s}$ at $1.5 \mathrm{Mc} / \mathrm{s}-4 \mathrm{Mc} / \mathrm{s} .0-165 \mathrm{kc} / \mathrm{s}$ at $600 \mathrm{kc} / \mathrm{s}-1.5 \mathrm{Mc} / \mathrm{s}$. falling to $3 \mathrm{kc} / \mathrm{s}$ at $10 \mathrm{kc} / \mathrm{s}$. Output impedance: 75 ohms resistive. Powe supplies: Mains $100-120 \mathrm{~V}$ and $180-250 \mathrm{~V}$. requency 50-500c/s. Consumption 340 W fominall Price f195. Belling lee radi requency inteference filter type Y 20055 100 Amps. 400 W .440 V . Single wave $£ 15$.

HEWLETT PACKARD

OSCILLOSCOP
Horizontal Sweep speeds: 10 ranges. 10 nsec/cm to $10 \mathrm{sec} / \mathrm{cm}$. accuracy within $\pm 5 \%$. Magnification: 7 calibrated ranges
$\times 1 . \times 2 . \times 5 . \times 10 . \times 20 . \times 50$ and $\times 100$. $\mathrm{X1.X2}. \mathrm{X5}$. $\times 10, \times 20$. X50 and $\times 100$.
Increases maximum calibrated sweep Increases maximum calibrated sweep
speed to $0.1 \mathrm{nsec} / \mathrm{sm}$; with vemier maxispeed to $0.1 \mathrm{nsec} / \mathrm{sm}$. With vermier max $0.04 \mathrm{nsec} / \mathrm{cm}$. Intensity and sampling intensity are not affected by magnification High frequency: Input frequency: 50 to 1000 mc for sweep speeds 200 mv and 1000 mv : $\pm 3 \%$. Time: Approximately 5 sec burst of 50 mc sinewave. Frequency accuracy $\pm 2 \%$. In addition the Model
1858 provides output signals for $X-\gamma$ 1858 provides output signals for $X-Y$
recorders and provides means for conrecorders and provides means for con-
trolling the display either manually or extrolling the display either manually Price $£ 295$.
430C Microwave power meter. f60 H01-8401A Leveller amplifier. 8709A Synchronizer 8734 B Pin modulator $7.0-12.4 \mathrm{GC}$. $\begin{array}{r}\mathbf{E} 120 \\ \mathbf{E 9 5}\end{array}$ 8732A Pin Modulator $1.8-4.5 \mathrm{GC}$. 8431A Bandpass filter 2-4GC 797D Directional Coupler 1.9-4.1 GHz.E30 8436A Bandpass filter 8-12.4GC. $£ 95$ 185A 800 MHz Sampling osc
185B Sampling oscilloscope.

BRIDGE.

Measures DC resistance, self-inductance mutual inductance, capacity and frequenc ull specification on request. $\mathbf{E 9 5}$.
Voltmeter Valve CT54 (Micovac), with mains power supply (power supply no with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$ $A C$ or DC in 6 ranges. 1 ohm to 10 Megohm 5 ranges. Indicated on 4 in . sce meter. Complete with probe, $\mathbf{£ 1 2 . 5 0}$ including p. and p. (Leads extra.)

MUIRHEAD FREQUENCY ANALYSER TYPE D-669-8.
Prequency range $30 \mathrm{c} / \mathrm{s}-30 \mathrm{kc} / \mathrm{s}$. Accurac for full scale deflexion. Smallest indicatio $15 \mu \mathrm{~V}$. Maximum input voltage 300 V r.m.s. Price $£ 95$. Full spec. on request

TEIKTRONIX

 NON-PLUG-IN UNITOSCILLOSCOPE.
524 AD . DC-10MHz. $\mathbf{f 1 0 0}$ MAIN FRAME OSCILLOSCOPES 545. DC-30M Hz. 545A. DC-30M Hz 545 B . DC-33MHz.

PLUG-IN UNITS. $20 \mathrm{~V} / \mathrm{cm}$
Type CA. $0.05 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$.
Type D. $1 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$. Type.
$0.05 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$.
Type L. $5 \mathrm{mV} / \mathrm{cm}$ to $2 \mathrm{~V} / \mathrm{cm} .0 .05 \mathrm{~V} / \mathrm{cm}$ o $20 \mathrm{~V} / \mathrm{cm}$
230 DIGITAL UNIT
Digital readout parameters. Pulse ampli tude. pulse risetime and fallime. puls R116. 10-NS PROGRAMMABLE PULSE GENERATOR
with Delay.
PASSIVE PROBE P6006 with 10X attenuation, designed for oscilloscopes having an input resistance of 1 megohm and imput capacitance of up to 55 p . Price $£ 10$.
PROBE P6065 10X. 10 megohm 12.5 pf . 500 V D.C. max. Length 6 f

MUIFHEAD 2-PH. L.F. DECADE
OSCILLATOR TYpe D880.
Frequency range $0.01 \mathrm{c} / \mathrm{s}-11.2 \mathrm{kc} / \mathrm{s}$ (continuously variable above $0.1 \mathrm{c} / \mathrm{s}$)
V.L.F. $0.01 \mathrm{c} / \mathrm{s}-0.1 \mathrm{c} / \mathrm{s}$ in steps of $0.01 \mathrm{c} / \mathrm{s}$. Ranges $\times 1 . \times 10$. $\times 100 \pm 0.05 \%$ After Ranges XO. 1. V.L.F. ± 0.1
T.F.801D/1/SA.M.SIGNAL GENERATOR. Freq. range: 10 MHz to 485 MHz Built-in crystal calibrator. Internal and external sine a.m. External pulse modulation. Calibration Accuracy: Using crystal calibrator, within $\pm 0.2 \%$ over entire frequency range. R.F. out-

OA.1094A/3 H.F. SPECTRUM ANALYSER with L.F. extension unit type TM6448. Freq. range: 100 Hz to 30 MHz . Measures elative amplitudes up to 60 dB . Spectrum width 0.30 KHz , Sweep duration: 0.1. 0.3. 1. request. $£ 250$ as seen condition buyer to collect.
OA.1094A/S H.F. SPECTRUM ANALY SER. Freq. range: 3 MHz to 30 MHz in nine steps. spectrum width 0 to 30 KHz . Sweep distortion: 0.1. 0.3. 1. 3. 10. 30 secs. and condition, buyer to collect.
T. 111 ROBAND TRANSISTORIZED SUPPLY. Mains input 110 V or 230 V . output $0-50 \mathrm{~V}$ at 5 Amperes cont. variable. overload

REMSCOPE SO1/740 STORAGE OSCILLOSCOPE.
Fluorescence: Yellow. resolution: 40 lines $/ \mathrm{cm}$ E.H.T.: 8 kV , display time: 10 mins 1 hr CD 1212 WIDE-BAND QENE
PURPOSE OSCILLOSCOPE
Employing plug-in pre-amplifiers for single or dual trace displays.
Wide-band pre-amplifier Cx 1251 . Bandwidth: $D C-40 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB}+1 \mathrm{~dB}): 2.5 \mathrm{c} / \mathrm{s}-40 \mathrm{Mc} / \mathrm{s}$ $A C$ coupled ($-3 \mathrm{~dB} \pm 1 \mathrm{~dB}$). Rise time 8 nanosec approx. Sensitivity: $50 \mathrm{mV} / \mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ in nine calibrated ranges with fine gain control. Dual trace pre-amplifier CX 1252, Bandwidth: $D C-24 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB} \pm 1 \mathrm{~dB}) \mathrm{AC}$ coupled. Rise time: 14 nanosec approx. Sensitivity: $50 \mathrm{mV} /$ fine gain control. Full specification on request $£ 128$.
T.F.801B/3/S A.M. SIGNAL GENERATOR. Freq. range: 12 MHz to 485 MHz in five bands Built-in crystal calibrator. Full spec. on request.

CT. 373 TEST SET. Oscillator: $17 \mathrm{c} / \mathrm{s}-$ $170 \mathrm{kc} / \mathrm{s} \pm 1 \% . \pm 1 \mathrm{c} / \mathrm{s}$ at ambient temp. $0^{\circ} \mathrm{C}-45^{\circ} \mathrm{C}$. Distortion Meter: Freq. range $20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. distortion range: $10 \%, 30 \%$ 100% f.s.d. 0.5% readable. Signal inpu
approx. 500 mV to 130 V basic range, 250 mV opprox. 1300 V extreme limits. Full spec on request. £30.
AVO MODEL 3 VALVE TESTER. Enables comprehensive characteristics to be plotted valves on a simple good/bad basis. $\mathbf{f 5 5}$
AVO CT 160 Valve tester. As above but in portable valise form. $£ 65$
Viewing by appointment only.
TINSLEY TYPE 4363E AUTO VERNIER POTENTIOMETER
PYE Precision vemier potentiometer 7568. $1 \mu \mathrm{~V}$ to 1.90100 V in two ranges. Accuracy 0.002%.
DIE-CUT FOIL STRAIN GAUGES by dentonics TVPE M234C13L. Resistance in ohms $350 \pm .5$. Gauge factor $2.13 \pm 1 \%$. packet (5).
TF. 937 F.M./A.M. SIGNAL GENERATOR. Freq. range 85 KHz to 30 MHz . The carrier frea. can be standardized against a built-in with miniature crystal calibrator, which is complete detector. $\mathbf{E 8 7}$.
TF.114H/S SIGNAL GENERATOR. FIEquency range: $10 \mathrm{KHz}-72 \mathrm{MHz}$. Stability: 0.002%. High discrimination. plus crystal quencies. Protected thermocouple level monitor. Full spec. on request. $\mathbf{£ 2 2 0}$.
TEST SET DEVIATION FM No 2. The carrier frequency range extends from $2.5 \mathrm{Mc} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ and from $20 \mathrm{Mc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$ in a 0 to $5 \mathrm{kc} / \mathrm{s}$. 0 to $25 \mathrm{kc} / \mathrm{s}$ and 0 to $75 \mathrm{kc} / \mathrm{s}$. £48.

ELEGTRO/ALUE
 TO-DAY'S BEST VALUES IN QUALITY AND SERVICE IN COMPONENTS

EVERYTHING BRAND NEW AND TO SPEC \star GOOD DISCOUNTS \star FREE POSTAGE (U.K.)

POTENTIOMETERS
ROTARY, CARBON TRACK
ontact and Caneon thack
P. 20 SINGLE linear 100oomms to 4.7 megohms

 JP. 20 dual gang antilog 10 K only
2A DP mains swatich for any of baove $14 p$ extra.
Decades of 10.22 and 47 only availible in range
Deeades of 10.22 and 47 only available in ranges above
Skeleton Carbon Presets Tye $P R$ her Skeleton Carbon Presets Type PR . horizontal or vertical
6p each. SLIDER

polycarbonate
32540 Working Voltage- 250 V d
 $0.018: 0.022: 0.027: 0.033: 0.039: 0.047: 0.056:$
$0.082: 0.1$

Working volrage 100 V d.c.
$0.1=0.12 ; 0.154 \mathrm{p}: 0.185 \mathrm{~F}$

0.277p:0.338p:0.39:0.47.
0.56 12p:0.68
0.5612 p ; 0.68

7

silvered mica

CERAMIC DISC
$1000 \mathrm{pF} / 500,2000 / 500,5000 / 500,0.01 \mathrm{mF} / 50,0.02 \mathrm{mF} / 50$
$0.1 \mathrm{mF} / 3-$ each $2 \mathbf{p}: 0.05 \mathrm{mF} / 50 \mathrm{~V}-\mathbf{3 p}$
CERAMIC PLATE
In a a range of 26 values from 22 to $6800 \mathrm{p} / 50 \mathrm{~V}$ d.c.
each 2 p
COMPUTER-CONTROLLED STOCK

40 p

THE BEST 100 TRANSISTORS

${ }^{2} \mathrm{~N} 1307$	${ }^{47}$ p	AF200	70 p	8D 135	7 p
2N3053	26p	${ }_{\text {B1906 }}$	${ }_{36 \mathrm{p}}^{60 \mathrm{p}}$	BDY20	,
2N3054	60	bal 38	31 p	BF194	$15 p$
2N3055	700	88103	249	BFF39	23p
2N3702	11 p	B8105	$3{ }_{48}$	BFF79	23p
2N3703 2 N 3704	10p	${ }^{\text {B8109 }}$	${ }_{150}^{480}$	SF×29	- 370
2N3705	$1{ }_{10}$	${ }_{\text {BC }}{ }^{\text {B }} 1078$	${ }^{150}$	${ }_{\text {BFY51 }}$	23p
2 N 3794	18 p	BC1088	14 p	BRY39	45p
2N3819	${ }^{25 p}$	${ }^{\text {BCL }} 108 \mathrm{C}$	14 p		$1 p$
${ }_{2}^{2 N 409}$	11 p	${ }^{\text {BC1 }}$ BC1098	180	C10681	2p
2 N5062	42p	BC 147A	12 p	C1406	780
2 NE 163	20 p	BC147B	13 p	MJ481	f1.20
2 N 5459	32 p	${ }^{\text {BC1 }}$ - 148 B	129	M ${ }^{49915}$	${ }_{8} \mathrm{E}_{80} 1.35$
40361 40362	48 4	${ }_{8 C 15}{ }^{8 C 14}$	159	MJ2955	89p
40602	46 p	BC1598	15	MJE521	$81 p$
40636 40669	${ }_{\text {f11. }} 10$	BC 1678 BC 1688	130 120	MJE2955	${ }_{611.12}^{680}$
AC128	17 p	${ }_{\text {BC }} 1698$	12 p	OA91	${ }_{6}$
	${ }_{27}^{23 p}$	${ }_{8 C 1}$	年		
${ }_{\text {AC }}$ 153K	37 p	$\mathrm{BC}_{182 \mathrm{~L}}$	26	TiP32A	80p
AC176	24 p	${ }^{\text {BC1 }}$ 84L	${ }^{26 p}$	TiP41A	P
	38 p	BC2 ${ }_{\text {BC2 }}$	${ }_{14}^{129}$	Tip ${ }_{\text {Wo2 }}$	$\begin{array}{r}1.00 \\ 300 \\ \hline 10\end{array}$
AC18BK	290	BC257A	148	2Tx300	14 p
AD 133 ADi36	$\underset{\substack{\text { f1. } \\ \text { ¢11 } \\ \hline 102}}{ }$	8C2598	149 300	俍	23p
AD149	65	BD130	${ }_{480} 90$	2TX504	45p
ADI 161 AD 162			${ }_{52 \mathrm{p}}^{48 \mathrm{p}}$		
HUNDREDS MORE IN CATALOGUE 7					

$\mathrm{C}=$ carbon film, thigh stability, low noise.
$\mathrm{MO}=$ metal oxide. Electrosil TR5, ultra low noise

E24. the E12 decades. ${ }^{2} 1,13,16,20,24,30,36,43,51$ 62, 75, 91 and their decades
Tolerances:
5% except $W W 10 \% \pm 0.05 \Omega$ below $10 \cap$ and MO $\frac{1}{2} W 2 \%$.
Prices are in pence each for quantities of the same Prices are in pence each for quantities of the same
ohrnic value and power rating. NOT mixed values. ohrmic value and power rating. Not mixed values.
(Ignore fractions of one penny on total value of
resistor order.) Prices for 100 up in units of 100 only.
resistor order. Prices for 100 up in units of 100 only.

ELECTROLYTIC CAPACITORS

Afial Lead						
Q	6.3 V	10 V	16 V	25 V	40 V	63 V

9 F	3 V	6.3 V	10 V	16 V	25 V	40 V	63 V	100 V
0.47 1.0							11p	8 p
2.2					11p		8p	8p
4.7				11p		8p	9p	8 p
10					8 p	${ }^{9 p}$	8 p	8 p
22			$8 \mathrm{8p}$		9 p	8 p	8 8p	10p
47	8 p		${ }_{8 p}^{9 p}$	$8_{8 p}$	8 p	8p	10 p	13 p
100	9 p	8p	8p	8 p	9 p	10 p	12p	19p
220	8 p	8 p	9 p	10 p	10 p	$11 p$	17p	28p
470	9 p	10p	10 p	11p	13p	17p	24p	45p
1.000	11p	13p	13p	17p	20p	25p	41p	
2.200	15p	18p	23p	26p	37p	41p		
4.700 10.000	${ }_{42 \mathrm{p}} \mathbf{2 6 p}$	$30 p$ $46 p$	39p	44p	58p			-

ALUMINIUM BOXES

JACKS AND PLUGS

ANTEX soldering irons
$\begin{array}{llll}\text { CN240 } & \mathbf{~ 2 2 . 1 5} & \text { Spare bits } & \mathbf{3 2 p} \\ \text { CCN240 } & \mathbf{~} 2.76 & \text { Spare bits } & \mathbf{4 0 p}\end{array}$
$\underset{\text { 6ftstrip }}{\text { DESORBRAR }} \mathbf{6 6 p}$
WAVECHANGE SWITCHES
pole 12 way: 2 pole 6 way
pole 4 way 4 pole 3 way
each ${ }_{11 p}{ }^{29 p}$
NUTS, SCREWS, ETC.

4BA NUTS 28p: $\frac{1}{2} 48$ Screws 28p: Threaded pillars 6BA. $\frac{1^{n}}{}{ }^{n}$ hexagonal Plain spacers $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ round ${ }^{2}$ Other sizes available	

ENAMEL COPPER WIRE in 2 ounce reels $\begin{array}{ll}\text { 32. } 34.20 .22 \text { SWG 34p: } & 24,26.28 .30 \text { SWG 40p } \\ 36.38 .4054 p\end{array}$

YOU NEED CAT SEVEN
Catalo 7 - 112 green and velow coverst of Electrovalue accessories. materials. tools. Well illustrated and detailed information. 25 p post free with spending voucher worth 25 p

DISCOUNTS

Avaliable on all items except
thase
PRICES 10% with NET PRICES 10% on orders from
£5 to $£ 14.99 .15 \%$ on orders

FREE PACKING AND POSTAGE For mail orders for $£ 2$ list value and under there is an addirional
handing charge of 10 p orders-carriage charged at cost GIRO A/C No. 38/671/4002

ELEGTRONALIE LTD

Please address all communications, mail-orders, etc., to
head office at Englefield Greer and include SAE for first head oottice at Englefield Greer an

[^4]QUALITY GUARANTEE All goods are soid on the under-
standing that they contorm to manufacturers' specifications and such-no rejects. seconds sub-standard merchandise Prices quoted do not include V.A.T. for which 8% must be added to total nert value of
order. Every effor is made to order. Every effor is made
ensure the correctness of information and orices at time of going to press. Prices subfect
to alteration without notice.

The largest selection

EX COMPUTER BOARDS

Packed with tranaistors，diodes，capacitors
and resligtors－COMPONENT VALUE $11-60$ ．

4 for 30p +p \＆ p 20 p ．
FIBREGLASS PRINTED CIRCUIT BOARDS

DECON－DALO 33pC Marker ${ }^{\text {Etch }}$ rep each

VEROBOARDS

Packs containing approx．， 50 gq．ins．various
REPANCO CHOKES\＆COILS

DRXI Crystal get Sip DRR2 Dual range 45p
COIL FORMERS \＆CORES
NORMAN H^{*} Cores $\&$ F
z^{*} Cores \＆Formers lOp

SWITCHES

DF／DT Toggle 36p 3P／ST Toggle 30p

FUSES

$1 t^{*}{ }^{\text {and }} \quad 20 \mathrm{~mm}, 10 \mathrm{~mA}, 20 \mathrm{~mA}, 250 \mathrm{~mA}$
$500 \mathrm{~mA}, 1 \mathrm{~A}, 1.5 \mathrm{~A}, 2 \mathrm{Q}$ QUICK－BLOW bp ea

EARPHONES

Crystal
Crystal
3.5 mm plug
42 F
1

8 ohms 2.5 mmm plug 22 g
8 ohms 3.5 mm Plug 22 p
DYNAMIC MICROPHONES B123． 200 ohms plus on for
2.5 mum and 3.5 mm plugs 81.85

3．WAY STEREO HEAD－
PHONE JUNCTION BOX
2－WAY CROSSOVER
NETWORK
K 4007． 80 ohms Imp．Insertion loss 3 dB 81.21
TRANSISTOR EQUIVALENT BOOK

 more than 56,000 substitutes have been
included．The tables were complied with the intort care tram manufacturers own
ateclication．The most comprehensive Equivalents Book on the market today
ONEY £185

INSTRUMENT CASES

（Black Vinyl covered）
No．Length Width

BIB HI－FI ACCESSORIES

De Luxe Groov－KIeen
Model 42 £1．95
Chrome Finish
Model 60 \＆ 1.50

Ret．B．stylus and Turntable Cleaning Kit Ref．43．Record Care Kit 12.42 Ref．31．Cassette Head Cleaner 58p Ref．32．Tape editing Kit $\mathbf{2 1} \cdot 68$ Model 9．Wire Stripper／Cutter 88 ；

Ref，P．Hi－Fi Cleaner 31p
Ref．32A．Stylus Balance $\mathbf{5 1 - 3 7}$
Ref．J．Tape Head Cleaning Kit 62

Model No

simple transistor tester
Amplifier 1.5 W
AM／FM Antenna Amplifier
Mike Preamplifier
4－channel F radio Control Transmitter
－GCX2＇Channel splitting
＇GCX2＇Channel splitting unit $1,000 \& 2,000 \mathrm{~Hz}$
VHFerhetrodyne Tuner 120 to 160 MHz
VHF Tuner 120 to 160 MHz
Windscreen Wiper timer
4－Channel AF mixer
Electronler Unit for Metal Detector
Guitar preamplifier

ANTEX SOLDERING IRONS
x25． 25 watt 82.05
CON 240.15 watt $22 \cdot 48$ Model G． 18 watt 82.26 K2．Soldering Kit $8 \mathbf{8} .25$ STANDS：8T1 \＆1 SOLDER：18SWG Multicore oz 21.81 228wG 7oz 21．81．188WG 22ft 51p 228wG Tube 33p
ANTEX BITS and ELEMENTS
Bite No．
102 For model CN240 $\frac{3}{3}$
104 For model CN240 N．15 1100 For model CCN240 ${ }^{3}$
1101 For model CCN240 102 For model CCN240 $\frac{1}{4}$ 1020 For model G240 3／2＂ 021 For model G240 t＋ 022 For model $\mathbf{6 2 4 0} \frac{3}{10}$
50 For model X25 A웅
51 For model X25 ${ }^{*}$
52 For model X25 $\frac{7}{18}$
ELEMENTS
ECON 24041.32
EON $24021 \cdot 30$ ANTEX HEAT SINKS 10 VA T included in all prices，Please add
lop P．\＆P．（U．K．only）．Overseas orders－

please note：all our prices include v．a．t． MODEL AMTRON KITS

VISIT OUR COMPONENT SHOP

18 BALDOCK ST．，WARE，HERTS．（A10）

HORIZON PRESETS

$100,220,470,1 \mathrm{~K}, 2.2 \mathrm{~K}, 4 \mathrm{k}, 10 \mathrm{~K}, 22 \mathrm{~K}$
$47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 47 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}, 4.7 \mathrm{M}$
SELENIUM BRIDGE RECTIFIERS chargers．15p each． 10 for 55p
REPANCOTRANSFORMERS
REPANCO TRANSFORMERS
240 V ．Primary．Secondary voltage available
from selected tappings $4 \mathrm{~V}, 7 \mathrm{~V}, 8 \mathrm{~V}, 10 \mathrm{~V}$,
$14 \mathrm{~V}, 15 \mathrm{~V}, 17 \mathrm{~V}, 19 \mathrm{~V}, 21 \mathrm{~V}, 25 \mathrm{~V}, 31 \mathrm{~V}, 33 \mathrm{Ve}$ $14 \mathrm{~V}, 15 \mathrm{~V}, 17 \mathrm{~V}, 19 \mathrm{~V}, 21 \mathrm{~V}$
$40 \mathrm{~V}, 50 \mathrm{~V}$, and $26 \mathrm{~V}-0-25 \mathrm{~V}$
Type
MT50／I
MT50／，
MT50／1
MTEO／2
0.08 each
amp z
1

21－93

$21-93$
28.42
43.30

PLUGS

Ps 1 D．I．N． 2 Pin（Speaker）
PS 2 D．I．N． 3 Pin
PS 4 D．I．N． 5 Pin 18
Pg 5 DIN． 5 PIn 240°
Ps 6 D．I．N． 6 Pin
$\begin{array}{lll}\text { PS } & 7 & \text { D．I．N．} 7 \text { Pin } \\ \text { PS } & 8 & \text { Jack } 2.5 \mathrm{~mm} \text { Screened }\end{array}$
PS 9 Jack 3.5 mm Plastic
PS 10 Jack 3.5 mm Screened
PS 11 Jack $\frac{10}{2}$ Plastic
PS 13 Jack Stereo Screened PS 14 Phone
PS 15 Car Aerial
PS 16 CoAxial
INLINE SOCKETS
PS 21 D．I．N． 2 Pin（speaker）
PS 22 D．I．n． 3 Pin
PS 23 D．I．N． 5 Pin 180°
PS 24 D．I．N． 5 Pin 240°
PS 25 Jack 2.5 mm Plastic
PS 26 Jack 3.5 mm Plastic
PS 27 Jack ${ }^{\text {＂}}$ Plastic
PS 28 Jack $\frac{10}{}$ Screened
PS 29 Jack Stereo Plastic
PS 30 Jack Stereo Soreened PS 31 Phone Screened PS 32 Car Aerial
pS 33 CoAxial

SOCKETS

PS 35 D．I．N． 2 Pin（Speaker）
Ps 36 D．I．N． 3 Pin
PS 38 DIN． 5 Pin 240°
Ps 39 Jack 2.5 mm Switched
PS 40 Jack 3.5 mm switched
PS 41 Jack I＂Switched PS 42 Jack Stereo sk
PS 43 Phono Single

PB 44 Phone Doable PS 47 CoAxial Flush

LEADS

LS 1 Speaker lead 2 pIn D．I．N．plug to open
ends approx． 3 metres long（coded） 0.20

CABLES

CP 1 Single Lapped Screen
Twin Common Scr Stereo Screened
\qquad
\qquad Microphone Fully Braided
Three Core Mains Cable Three Core Mains Cable Speaker Cable
CP 10 Low L
POTENTIOMETERS
Log and Lin
$4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$, $1 \mathrm{M}, 2 \mathrm{M}$
VC 1 Single Less Switch
VC 3 Tandem Less Switch VC 4 UK LI Less switch VC 5 look Log anti－Log

HORIZONTAL CARBON

Open Mon．－Sat．9－5．30 p．m Tel． 61593

WORLD SCOOP！

JUMBO SEMICONDUCTOR PACK
Transistors－Germ and Silicon
Rectifiers－Diodes－Triacs－Thyristors
I，C＇s and Zenners ALL NEW AND CODED
APPROX 100 PIECES！

Offering the amateur a fantastic bargain Dak and an enormous saving－identification and data sheet | in every Pax |
| :---: |
| ONLY |
| $⿴ 囗 十 心$ |

MAMMOTH IC．PAK APPROX． 200 PIECES
Assorted fallout integrated circuits including：Logic， 74 Series，Linear，Audio and D．T．L．Many coded devices but some unmarked－you to identify．

OUR SPECIAL PRICE
£1．25 including V．A．T．\＆p ．\＆p ．

SPECIAL PURCHASE by BI－PAK

2N3055．Silicon Power Transistors NPN Famous manufacturers out－of－spec devices free from open and short defects－every one able I 115 watts ТОЗ． Metal Case．
OUR SPECIAL．PRICE 8 for $\mathrm{f1}$ ．

LOW COST CAPACITORS
 BOOK BARGAIN

CASSETTE CASES
Holds 12
81.30
It＇s new－It＇s powerful $(15+15 \mathrm{w}$. RMS $)$
and－it looks good！
the
LEGIONAIRE
STEREO
AMPLIFIE
ORDER NOW－
ONEY £39．95 p．\＆p．50p
OR Write for full details
BATTERY HOLDERS

CARTRIDGES

$\triangle C O S$ GP92－18C 200 mV at $1-2 \mathrm{cms} / \mathrm{sec} 81-3$
$A C O S G P 93-1280 \mathrm{mV}$ at $1 \mathrm{~cm} / \mathrm{sec} \quad 21.8$
ACOSGP96．1 100 mV at $1 \mathrm{~cm} / \mathrm{sec}$
TTC J－2005 Cryatal／Hi Output
TKO J． 2010 C Crystal／Hi Output
TTC J－20068 8tereo／Hi Output
TC $J .2203$ Magnetic $5 \mathrm{mV} / 5 \mathrm{~cm} / \mathrm{sec}$,
Including stylus
TTC J－2203s Replacement stylus for
above
TTC AT－5s Audlo－technlea
cartridge $4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$
CARBON FILM RESISTORS
The E12 Range of Carbon Film Resistors． watt available in PAK8 of 50
assorted into the following groups：－
assorted into the following groups：－
RI 50 Mired 100 ohms－ 820 ohms
R R2 50 Mired 1 K ohms－ $8 \cdot 2 \mathrm{~K}$ ohms
RS 50 Mired 10 K ohms－ 82 K ohms RA 50 Mired 100 K ohms－1 Meg．ohms 50 p tHESE ARE UNBEATABLE PRICES THESE ARE UNBEATABLE PRICES－
JUST lp EACH INCL．V．A．T．
BI－PAK SUPERIOR QUALITY
LOW－NOISE CASSETTES

BUNDLE
${ }_{2}^{8}$ Transistor Equivalent books Transistor Equivalent books
Radio \＆Electronle colour code data chart
1 Radio va
1 Radio valve guide PLUS
3 Other constructional books on
Receivers，EM Tuners，etc．
ALSO 1 General construction book
VALUE ES．OUR PRICE
£2 p \＆p 10p．
BP1 Handbook of Transistor
Handbook of Radio，T．V．${ }^{40 \mathrm{D}} \mathrm{B}$
Industrial Tube
Industrial Tube \＆Valve
BP $\begin{gathered}\text { Equiv．} \\ \text { Handbook of } \\ \text { sistor Circuits }\end{gathered} \quad \begin{gathered}\text { Tran ted } \\ \text { Trap } \\ 40 \mathrm{p}\end{gathered}$
International Handbook of
Radio Stations and FM／T．V．
Handbook of Simple Tran－
aistor Circuits
Radio and Electronics colour
Han
Radio and Electronics colour
codes and Data Charts 15 p
codes and Data Charts
Sound and Loudspeak
Manual
38 Practical Tested Dod
Circuits for the Home 38 Practical Tested Dod
Circuit r for the
constructor
Modern Cry
Bistor Set
beginners
11 Practical Tram

Second book of Transistor
Equivalents
Opp
Constructors Manual of Elect－
tronic Circuits for the
home
Universal Gram Motor speed
home
Universal Gram Motor spe
Indicator
How to make FM and T．
How to make FM
aerials Bands $1 / 2 / 3$
aerials Bands $1 / 2 / 3$
Radio Servielng for Am
High Fidelity Loudspeaker
enclosures
Transistor
Transistor Circuits Manual 15 p
No． 1 ．sign and Construction
Coll design and
Manual
Radio T．V

$\underset{\text { Data book }}{\text { Radio T．}}$

Tranilistor

receivers
Transistor Test Equipment ${ }^{3}$ \＆
Transistor Teat Equipment \＆
Servicing Manual 25 p
Servicing Manual
Manual of Transistor Audio
Amplifiers

Amplifiers

A comprehensive Radio Valve
Guide－Book 5 ．
Hop
How to receive foreign T．V．
programmes on your set by
simple modifications 33 p
AF－RF Reactance－Frequency
chart for Construction $15 p$
Handbook of Practical Elect－
Handbook of Practical Elect－
ironic Musical Novelties 50 p
Ironic Musical Novelties SOp
Practical Tranaiste fined Nov－

Handbook
Circuits
Oi Integrated
Equivalents
$\begin{array}{cc}\text { Circuits Equivalents } & \text { and } \\ \text { Subsutites } \\ \text { Resistor Colour } & \text { Code } \\ \text { Disc }\end{array}$ Disc
10
Calculator
مू
है

Calculator
－

G60，32p c90，41p C120，52p
SEE OUR COMPLETE RANGE

PRACTICAL ELECTRONICS，

Memernement

> PRACTICAL WIRELESS， RADIO CONSTRUCTOR， EVERYDAY ELECTRONICS
> ELECTRONICS TODAY
> INTERNATIONAL
> OR SEND Sp．FOR THE
> FULL LIST OF ALL BI－PAK
PRODUCTS
> PRODUCTS
$\xrightarrow{3}$
s
－

-the lowest prices!

NOW WE GIVE YOU 50w PEAK (25w R.M.S.)PLUSTHERMALPROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY $£ 4.25$

- Max Heat Sink temp. $90^{\circ} \mathrm{C}$.
- Freqrenoy Renponse 20EZ
- Distortion
- Sapply voltage $15-50$ volts

STABILISED POWER
£3.25 MODULE SPM80

SPm80 la especially designed to power 2 of the A' L60 Amplifiers, up to
15 watt (r.m.s.) per channel sinuutancousiy. This mod ule embodies the atest components and clrcuit techniques incorpor ating cornplete short the unit will provide outputs of up to 1.5 amps at 35 volts. Size: $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 20 \mathrm{~mm}$. These units ensble you to build Audlo Srstems of the highest quality at a hitherto unobtalnable price. Also
Ideal for many other applications including: Dicico 8 satems, Public TRANSFORMER BMT80 £2'15 p. \& p. 25p
STEREO PRE-AMPLIFIER TYPE PA100

INTEGRATED CIRCUIT PAKS

Paz No. Contenta	Price	Pak No. Contents	Price	PaE No. Contents	Prico
U1C00 $=12 \pm 7400$	0.54	UIC46=5 $\times 7446$	0.54	U1C90 $=5 \times 7490$	0.54
U1C01 $=12 \times 7401$	0.54	UIC48 $=5 \times 7448$	0.54	U1C91 $=5 \times 7491$	0.54
U1C02 $=12 \times 7402$	0.54	UIC50 $=12 \times 7450$	0.54	OIC92 $=5 \times 7492$	0.54
UIC03 $=12 \times 7403$	0.54	U1351 $=12 \times 7451$	0.54	UIC93 $=5 \times 7493$	0.54
UTC04 $=12 \times 7404$	0.64	UIC53 $=12 \times 7453$	0.54	UIC94 $=5 \times 7494$	0.54
UIC05 $=12 \times 7405$	0.54	UIC54 $=12 \times 7454$	0.54	UIC95 $=5 \times 7495$	0.54
UIC06 $=8 \times 7406$	0.54	U1C60 $=12 \times 7460$	0.54	UJC96 $=5 \times 7496$	0.54
$\mathrm{UIC07}=8 \times 7407$	0.54	UIC70 $=8 \times 7470$	0.54	UIC100 $=5 \times 74100$	0.54
$\mathrm{UIC10}=12 \times 7410$	0.54	UIC72 $=8 \times 7472$	0.54	UIC121 $=5 \times 74121$	0.54
UIC20 $=12 \times 7420$	0.54	$\mathrm{UIC73}=8 \times 7473$	0.54	UIC141 -5×74141	0.54
$\mathbf{U 1 C 3 0}=12 \times 7430$	0.54	UIC74 $=8 \times 7474$	0.54	$\mathrm{ULC151}=5 \times 74151$	0.54
UIC40 $=12 \times 7440$	0.54	UIC76 $=8 \times 7476$	0.54	$\mathrm{UIC154}=5 \times 74154$	0.54
UIC41 $=5 \times 7441$	0.54	UIC80 $=5 \times 7480$	0.54	U1C193 $=5 \times 74193$	0.54
UIC42 $=5 \times 7442$	0.54	UIC81 $=5 \times 7481$	0.54	UIC199 -5×74199	0.54
UIC48 $=5 \times 7.443$	0.54	UIC82 $=5 \times 7482$	0.54	UICXI-25 Assorte	1.55
UIC44 $=5 \times 7444$	0.54	UIC83 $=5 \times 7483$	0.54	Packs cannot be sp	125
U1C45 $=5 \times 7445$	0.54	UIC86 $=5 \times 7486$	0.54	arsorted pieces (our avallable as PAK	ix) is

TIMEAR 1.C.S-FULL SPEC.

Built to a apecification and NOT a price, and yet atill the greateat value on the market,
the PA100 stereo pre-amplifier has been concelved from the latest circuit technlques.
De Defigned for use with the AL60 power smplifier system, this quality made unit incorporates no lesa than eight silicon planar transistors,
selected Iow nolse NPN devices for use in the input stages. Three switched stereo inputs, and rumble and scratch filters are features of the
PA100, which aleo has a BTEREO/MONO switch, volume, balance and continuously
varloble bas and treble controls. varisble bass and treble controle. SPECIFICATION:

SPECIFICATION:			
Frequency response		Bass control	
Harmonic distortion	better than 0	Treble control	
Inputs: 1. Tape head	3.25 mV into 50 K	Filters: Rumble (bigh pass)	8 ckHz
2. Radio, Tuner	75 mV into $50 \mathrm{~K} \Omega$	Scratch (low pass)	${ }_{\text {better than }}+65 \mathrm{~dB}$
3. Marnetic P.U.	3 mV into $50 \mathrm{~K} \Omega$	Signal/notse ratio	better than +65 dB
	output of 250 mV .	Input overload	
nd P.U. Inputs equa	ised to RIAA carve	Supply	$\stackrel{+}{292 \times 82 \times 35 \mathrm{~mm}}$

MK 60 AUDIO KIT

only $£ 14.25$ TEAK 60 AUDIO KIT
 MODULES

The AL10, AL20 and AL30 units are
similar in thelr mppearance and in their
general specifcation. However in careiul general specifcation. However, carefin]
selection of the plastic power device has
resulted in a range of output
 The versatility of their desigg makes them
ideal for use in record players, tape recorders,
stereo amplifiers and cassette stereo amplifiers and cassette and cartridge
tupe players in the car and at home.

Perameter	Conditions	Performance
HARMONIC DIBTORTION	Po $=3$ WATTE $\mathrm{f}=1 \mathrm{KHz}$	0.25\%
LOAD Impedance	-	8-168
INPUT IMPEDANCE	$\mathrm{f}=1 \mathrm{KHz}$	100 kS 2
FREQUENCY RESPONSE $\pm 3 \mathrm{~dB}$	Po-2 WATTS	$50 \mathrm{~Hz}-26 \mathrm{KHz}$
SENSITIYITY for Rated o/P	$\mathrm{V}_{8}=25 \mathrm{~V} . \mathrm{R} 1=8 \Omega \mathrm{f}=1 \mathrm{KHz}$	Tōmv゙. RMS
DIMENSIONS	-	$3^{\prime \prime} \times 21^{\prime \prime} \times 1^{\prime \prime}$

The above table relates to the AL10. AL20 and AL30 modulea. The following table -

Parameter	AL10	AL20	AL30
Maxirnum Supply Voltage	25	30	30
$\begin{aligned} & \text { Power outhut fur } 2 \% \text { T.H.D. } \\ & (R L=\$ \Omega \mathrm{f}=1 \mathrm{KHz}) \end{aligned}$	3 watts RMS Min.	5 watts RMS Min.	10 patts RMSMIn.
PRICE	28.60	¢2.86	83.20

TRANSFORMERS

POWER SUPPLIES

PA 12. PRE-AMPLIFIER SPECIFICATION

 can be suppiied from their associated power supplies.
There are two stereo inputs, one has been designed for uie with Ceramic cartidgge wille the auxilisry input wil
sult most \uparrow Magnetic cartridges. Full detall
 Volume and onloff swithen, hamiancee bass and treble
$84 \mathrm{~mm} \times 35 \mathrm{~mm}$
\qquad ars control- 12 KB at 60 H Input $1+14 \mathrm{~dB}$ at $14 \mathrm{KH}_{7}$ Input 2. Sensitivity 300 m

TAUT SUSPENSION MULTIMETERS

Made in USSR
For ex-stock delivery

U4317 £16.50*

U4323 £7.70*

U4324 f9.25*

U4312 f10.25* U4313 f12.50* U4315 f9.00*
trade enouiries invited PLEASE WRITE FOR FULL DETAILS

LINEAR INTEGRATED CIRCUITS -Please note reductions in pricesMullard TAA263. Direct coupled three stage low level amplifier for use from DC to $600 \mathrm{kc} / \mathrm{s}$. Supply voltage $6-8 \mathrm{v}$. Typical power gain 77 db . into 150Ω load. Output power 10 mW . 1072 four-lead encapsulaMullard TAA293. Medium frequency amplifier with frequency response of $600 \mathrm{kc} / \mathrm{s}$. Nominal supply voltage 6 v . Typical power gain 89 db . Maximum power dissipation 160 mW . Power output 10 mW . int 150Ω load. 1074 ten-lead encapsulation $\begin{aligned} & \text { f0.65 } \\ & \text { Mullard TAA320. Metal oxide silicon low frequency }\end{aligned}$ pre-amplifier consisting of a MOST stage followed by a bi-polar transistor. Gate to source voltage 9-14v. Total power dissipation 200 mW . Drain current $1 \mu \mathrm{~A}$. Output conductance 0.65 mmho. T018 3-lead encapsulation
f0.60*

> L.E.D. TYPE HP5082/4850

Red Light GASP Light Emitting Diodes giving bright diffused light of 0.8 mcd at fonward voltage of 1.6 V and DC current of 20 mA . Plastic wide angle lens $0.200^{\prime \prime}$ diameter. Ideal for panel lights, etc. Price for 12 pieces $£ 1.75$ incl. VAT and p.\&p

1-AMP SILICON RECTIFIERS

20 pieces	1N4001	50 p.i.v.	f1.12
"	1 N4002	100 p.i.v.	f1. 25
"	1 N4003	200 p.i.v.	¢1.35
"	1N4004	400 pi.v.	£1.45
,	1N4005	600 p.i.v.	¢1.55
"	1N4006	800 p.i.v.	£1.85
	1N4007	1000 p.i.	¢21

This is a special offer and minimum quantity of 20 pes must be ordered. These prices are inclusive of P.P. and VAT.
Please write for full catalogue and Price List of Valves, Semi-cenductors, Test Equipment and Passive Components.

MINIMUM ACCOUNT ORDER CHARGE £10.00 PLUS VAT. OTHERWISE CASH WITH ORDER PLEASE

* Prices are exclusive of VAT

T - - The SECOND-USER comevir sairs Peripherals and Systems for Data Processing

 AND Stivices Systems, Equipment and Components
Vini-computer Systems

Available for immediate delivery at greatly reduced prices due to special purchase

Little-used PDP8E 12K system including: High Speed Paper Little-used PDP8E 12K system including: High Speed Paper
Tape Reader. High Speed Paper Tape Punch. Memory Drum. ASR33 Teletype.
Just arrived-PDPBL 4 K processor with $B K$ extender box
A phone call could save you a bomb! Ring now for price Other models becoming available all the time-lot us know your requirementa
4K add-on core for PDP8E—BRAND NEWI PRICE: $\mathbf{\text { C850. }}$. PDP Magnetic Tape Transport Model 580 IBM compatible. One only-Offer at under $\mathbf{£ 1 , 0 0 0 1}$ Reader Punch for PDP81.
DEC High-Speed Paper Tape Hardly used. Our special price \&1. 500 .
DATA DYNAMICS 1114 RACK MOUNTED 110 cps PUNCH. As new. Mounted in sound-reducing rack cabinet and complete
with control and interface electronics and power supply unit with control and interface electronics and power supply unit
with shor circuit and overload protection. Asynchronous operation up to 110 cps.
OUR SPECAL PIICE (list price © 790).
FACIT
OUR SPECIAL PRICE E550 (list price © 790).
FACIT 4001 HIGH SPEED PAPER TAPE READER, rackmounting version. $5 / 6 / 7 / 7$ channel dielectric reader for spaeds up to 500 cps ior 1000 cos using separate spooler). ONE
BAAND NEW UNIT AVAILABLE IN ORIGINAL MANUFACBAAND NEW UNIT AVAILABLE IN ORIGINAL MANUFAC-
TURER'S PACKING. OUR BARGAIN PRICE $£ 895$ (list price €1.128).
One second-hand (little used) unit also available at $\mathbf{\text { f850. }}$
FACIT 4060150 cps Rack-Mounted Paper Tape FACIT 4060150 cps Rack-Mounted Paper Tape Punch.
Suitable for all types of tape including Mylar. UNUSED Suitable for all types of tape including Mylar.
SURPLUS-A BARGAIN AT $\mathbf{~ E 5 9 5}$ (list price E 1.056).
Add 8\% VAT to all prices shown
Carriage extre-detalis on reques

Keyboards

Electro - mechanical numeric and alphariginall keyboards originally designed for 80 column card punch and verifier machines.
Numeric with 12 charNumeric with 12 char-
acter keys and 8 acter keys and
instruction instruction keys. character keys and 8 instructionkeys.
 Price: Numeric $£ 4.50$, Alphanumeric f15.
Paper Tape punch/verifier keyboards. Full alphanumeric keyboard with 65 keys +4 shift keys in 4 -bank layout. ISO coded Operating speed up to $25 \mathrm{ch} / \mathrm{sec}$. Mounted in attractive case with control panel. Price $£ 25$.
Reed-Switch 4-bank Alphanumeric keyboard. mounted on PC board and housed in metal case. 43 character keys +2 computer programming, etc. Price Ez3.
Photo-electric Encoded Keyboards. No metallic switches or contacts. Generates any eight bit code to specification. Photoelectric keyboard combines Photoelectric encoders and power assisted solenoid actuators. 45 key alphanumeric keyboard + space bar + key interlock. Output-Photocells 500 K to 2 Meg. for Logic 1. 800 Ohm-2 KOhm for Logic 2. - 12V DC$60 \mathrm{~mA} .+6 \mathrm{~V} 5 \mathrm{~mA}$. Price $\mathbf{E} 45$.
STOP PRESSI!
JUST ARRIVED-FABULOUS BRAND NEW KEYBOARDS WITH READ ONLY MEMORY. Input Voltage - 12 V DC positive logic: TLL compatible: odd parity 8 -bit., two-key roll over: strobed ROM.
4-bank alphanumeric keyboard with 77 key positions + space bar. Ideal for communications equipment. Complete with associated integrated circuitry. Power supply connections and binary-coded outputs are made to a printed card connector
at rear of keyboard. OUR INCREDI8LE PRICE 49.50

Peripherals

80 COLUMN HAND PUNCHES

ELECTRIC HAND VERIFIER

Punch Card
${ }_{024}^{\text {IBM Punch Card Equipment }} \begin{aligned} & \text { Automatic } \\ & \text { alphanumerical }\end{aligned}$ keypunch
026 Automatic alphanumerical printing keypunch
056 Verfier (for use with 024, 026)

Reads ail 5 to 8 cps Brush Reader. chrontously at speeds up to 60 charac ars per second in aither direction. Rack-mounted complete with spools. Also rom only $£ 125.00$ Also some fate models (punches and

RETU MAIL ORDER BY WELCOME	Gı E E E B A	

All mail order and enquiries to 270 Acton Lane SEMICONDUCTORS

VEROBOARD

Tel: 01-994 6275

ELECTRONIC

 COMPONENTS
BARGAIN COMPONENT PACKS

 ALL COMPONENTS NEW AND UNUSED £1 plus 25 p p.p. per pack, es for 5 packs plfree. Pack No.1500 Carbon resistors, $\frac{1}{2}, \frac{1}{1}, 1,2$ watt. 2100 Electrolytic Condensers.
3250 Ceramic, Polystyrene, Silver MIca, etc., Con-
4250 Polyest
densers.
525 Potentiometers, askorted.
6250 High-stab. $1 \%, 2 \%$ 5\% resistors.
750 Assorted Tagstrips.
8 1lb. Assorted nuts, bolts, washers, spacers, etc o 25 Assorted switches, rotary, lever, micro. toggled, etc.
10 50 Preset Potentiometers
11 Trial mixed component pack $£ 1$.
12 Jumbo mixed pack \&s.

We are open from 9.30 a.m.-6.00 p.m. Monday-Saturday.
We have the largest retail selection of components avallable. Phone or write if you are in difficulties obtaining a particular component.
C.O.D. service welcome. All mail order by return. Official orders welcome by Government establishments, Education
authorities, etc.

EX-BEA VISUAL DISPLAY UNITS

7" ELECTROSTATIC TUBE $11 \times 8 \mathrm{~cm}$ VIEWING AREA
 MANUFACTURED IN THE USA BY BUNKER-RAMO STANDARD 240 V 50 HZ MAINS INPUT

These units are inspected to see that no parts are missing. No circuit diagrams or information is available. We are in the process of obtaining circuits, information, etc, and a copy will be forwarded to all purchasers at the earliest possible time.
Therefore these units are sold as received at $\mathbf{£ 3 0}$ each.

AS WE ARE THE LARGEST SECONDHAND SCOPE DEALER IN THE U.K. TRY US

ALSO A LARGE RANGE OF GENERAL TEST GEAR
CLEARANCE LISTS AVAILABLE. S.A.E.

TELEPHONES

STANDARD 300 Series. BLACK only $\mathbf{£ 1 . 0 0}$ ea. P. \& P. 50p. MODERN STYLE 706 BLACK OR TWO-TONE GREY £3.75 ea. P. \& P. 35p. STYLE 7006 TWO-TONE GREEN £3.75 ea. P. \& P. 35p. HANDSETS-complete with 2 insets and lead 75p ea. P. \& P. 37p. DIALS ONLY. 75p ea. P. \& P. 25p.
SCOOP FIRST TIME MODERN STANDARD TELEPHONES IN GREY OR GREEN WITH A PLACE TO PUT YOUR FINGERS LIKE THE 746. A CHANCE NOT TO BE MISSED $\mathbf{£ 3 . 0 0}$ ea. P. \& P. 35p.

CAPACITOR PACK 50 Brand new compo-
nents only 50 p. P. \& P. 17 p .
P.C. MOUNT SKELETON PRE-SETS. $1 \mathrm{M}, 500,250$ and 25 K (a) 4 p ea. finger ad just 10.5 and 2.5 M @ 3 3p ea. 1M. Finger ad- 500.250
just $25 \mathrm{~K} @ 5 p$ ea. Min P. 8 P. 10 p .
1000pf FEED THRU CAPAC!TORS. OnIY sold in packs of 10-30p. P. \& P. 10p. RECTANGULAR INSTRUMENT FANS. American Ex-equ. Size $4 \frac{3}{2} \times 4 \frac{4}{2} \times 1 \frac{1}{2}^{\prime \prime} .115$
Volt. Very quiet E 3 ea. P. 8 P. 37 p . DELIVERED TO YOUR DOOR 1 cwt . of Electronic Scrap chassis, boards. etc. No Rubh. Fon only ed. N. P.C.B. PACK S \& D. Quantity 2 sq. ft.-no
tiny pieces. 50 p plus P. \& P. 20 p.

FIBRE GLASS as above $£ 1$ plus P. \& P. 20p. TRIMMER PACK. 2 Twin $50 / 200$ pf ceramic 2 Twin $10 / 60$ of ceramic: 2 min strips with 4 preset $5 / 20$ pf on each: 3 air spaced preset
$30 / 100$ pf on ceramic base. ALL BRAND NEW 25p the LOT. P. \& P. 10 p.
PHOTOCELL equivalent OCP $71,13 p$ ea. MULLARD OCP70 10pea.
GRATICULES. 12 cm . by 14 cm . in High Quality plastic. 15p each
FIBRE GLASS PRINTED CIRCUIT BOARD. Brand New. Single or Double sided Any size $1 \frac{1}{2} p$ per sq. in. Postage $10 p$ per order. CRYSTALS. Colour 4.43 MHz . Brand New.
£1.25 ea. P. \& P. 10 p.

HF Crystal Drive Unit. 19 in . rack mount. Standard 240 V input with superb crystal oven
by Labgear (no crystals) $£ 5$ ea. Carr. $£ \uparrow .50$. by Labgear (no crystals) 55 өa. Carr. $f 1.50$. ROTARY SWITCH PACK-6 Brand New switches (1 ceramic; 1-4 pole 2 way etc.).

Vast quantity of good quality components - NO PASSING TRADE- SO W日 offer for $£ 1.50$ post paid.

BOURNS TRIMPOT POTENTIOMETERS. 20; $50: 100 ; 200: 500$ ohms; 1:2; $2 \cdot 5: 5: 10$ 20: 50; 100; 200: 500 ohms; 1:
25K at 35 p ea. ALL BRAND NEW.
RELIANCE P.C.B. mounting. 270; 470: VERNER Hour Men 5 ditit VENNER Hour Meters- 5 digit. wall mount
-sealed case. Standard mains. $£ 3.75$ ea. P. \& Pealed cas.

TRANSFORMERS. All standard inputs. Gard/Parm/Part. 450

```
FANTASTIC VALUE
Miniature Transformer.Standard 240V
input. 3Volt 1 amp output. Brand New.
quantity.
```


LOW FREQUENCY WOBBULATOR

Primarily intended for the alignment of AM Radios: Communication Receivers; Filters, etc., in the range of 250 KHZ to 5 MHZ , but can be effectively used to 30 MHZ . Can be used with any general purpose oscilloscope. Requires 12 V AC input. Three controlsRF level; sweep width and frequency. Price $\mathbf{f 8} \mathbf{8 0}$. P. \& P. 35p.
A second model is available as above but which allows the range to be extended down in frequency to 20 KHZ by the addition of external capacitors. Price $£ 11 \cdot 50$. P. \& P. 35p.
Both models are supplied connected for automatic 50 HZ sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability, with the exception of the controls (not cased, not calibrated).

DON'T FORGET	MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW
YOUR MANUALS	LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and
S.A.E. WITH	connect to your scope and have two traces for ONLY £6.25. P. \& P. 25p.
REQUIREMENTS	STILL AVAILABLE our 20 MHZ version at $£ 9.75$. P. \& P. 25p.

LARGE QUANTITY OF

 OSCILLOSCOPE \& DISPLAY TUBES FROM $\mathbf{1 "}^{\prime \prime}$ to $\mathbf{2 4 "}^{\prime \prime}$S.A.E. FOR COMPREHENSIVE L/ST

All of our tubes can be supplied with nu-metal shields or Telcon nu-metal tape.

20HZ to 200KHZ

SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine, 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. $£ 8.85$ each. P. \& P. 25p. Sine Wave only $\mathbf{£ 6 . 8 5}$ each. P. \& P. 25 p.

WIDE RANGE WOBBULATOR

5 MiHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only $\mathbf{£ 6} \mathbf{- 7 5}$. P. \& P. 25p. (Not cased, not calibrated.)

TYPE A
Input: 12V DC
Output: 1.3kV AC 1.5MA
Price $£ \mathbf{£} .45$

TRANSISTOR INVERTORS
TYPE B
Input: 12V DC
Output: 1.3 kV DC 1.5 MA
Price $\mathbf{£ 4 . 7 0}$

TYPE C
Input: 12 V to 24 V DC
Output: 1.5 kV to 4 kV AC 0.5 MA
Price $\mathbf{£ 6 . 3 5}$
Postage \& Packing 36p

TYPE D
Input: 12 V to 24 V DC
Output: 14 kV DC 100 micro amps at 24 V . Progressively reducing for lower input voltages Price $£ 11$

Unless stated - please add $\mathbf{£ 2 . 0 0}$ carriage to all units.
VALUE ADDED TAX not included in prices-please add 8\% Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order Open 9 am to 6.30 pm any day (later by arrangement.)

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

Marshallis

A. Marshall \& Son (London) Limited Depr W W

42 Cricklewood Broadway London NW2 3HD Tel: : 01-452 0161
\& 85 West Regent Street Glasgow G2 2QD Tel: 041-332 4133
Everything you need is in our iew 1975 catalogue. Available now price 25p
Trade and export enquiries welcome

PW TELETENNIS KIT

As featured on BBC Nationwide and in the Daily Mail. October 2. 1974
This exciting new game is now available in kit form. Due to popular demand we are now able to offer a fantastic saving on list prices. Ideal game for whole family. No need to modify your TV set, just plugs into aerial socket. Parts list as follows A. Resistor Pack $\mathbf{£ 1 . 0 0} \mathrm{p} \mathrm{\& p} 20 \mathrm{p}$ B. Potentiometer Pack $\mathbf{£ 1 . 2 5} \mathrm{p} \mathrm{\& p} 20 \mathrm{p} \mathbf{C}$ $\begin{array}{ll}\text { IC Sockets } £ 4.00 \text { p\&p } 20 p & \text { F. Transformer } £ 1.15 \text { p\&p 25p } \\ \text { G. PCBs } & \mathbf{E 7 . 5 0}\end{array}$ $\mathrm{p} \& \mathrm{p} 20 \mathrm{p} \quad$ H. Switches $\mathbf{£ 4 . 5 0} \mathrm{p} \& \mathrm{p} 20 \mathrm{p} \quad$ I. UHF Modular Kit $£ 7.20$ p\&p 20p. Special prices-Complete kit (excluding case) $\mathbf{£ 4 2 . 0 0}$ p\&p 50 p. Sections A-F incl $£ 23.50$ p \&p 30p. Assembly instructions with complete kit or 75 p on request.

SN7400	16p	SN7420	¢p	SN7453	16p	SN7491	£1. 10
SN7401	16p	SN7423	37p	SN7454	16p	SN7492	75p
SN7401A	${ }^{38}$	SN7425	37p	SN7460	16p	SN7493	${ }^{65 p}$
SN7402	16p	SN7427	45p	SN7470	30p	SN7494	35p
SN7403	16p	SN7430	16 p	SN7472	38p	SN7495	80p
SN7404	24p	SN7432	45p	SN7473	44p	SN7496	£1.00
SN7405	24p	SN7437	35p	SN7474	48p	SN74100	E2.16
SN7406	45p	SN7438	35p	SN7475	59p	SN74107	43p
SN7407	45p	SN7440	16p	SN7476	45p	SN74118	£1.00
SN7408	25p	SN7441	85p	SN7480	75p	SN74119	£1.92
SN7409	33p	SN7442	$85 p$	SN7481	¢1.25	SN74121	57p
SN7410	${ }_{25} 16$	SN7445	18.59	SN7482	${ }^{87 p}$	SN74122	訨
SN7411	25p	SN7446	E2.00	SN7483	51.20	SN74123	72p
SN7412	28p	SN7447	E1.30	SN7484	95p	SN74141	£1.00
SN7413	50p	SN7448	$\underline{51.50}$	SN7485	¢1.58	SN74150	£1.44
SN7416	45p	SN7450	16p	SN7486	45p	SN74190	£1.95
SN7417	30p	SN7451	16p	SN7490	65p		

CMOS

4000	51p	CD4011	51p	CD4023	51p	CD4041	¢2.11
CD4001	51p	CD4015	${ }^{\text {f2. }}$. 6	C04024	¢1.90	CD4044	E2.11
4002	51	C04016	${ }^{\text {f1.02 }}$	CD4027	${ }^{\text {¢ } 1.56 ~}$	CD4047	1.65
CD4009	$\underset{\text { ¢1.07 }}{\substack{107}}$	CD4017	${ }_{\text {¢ }}^{\text {¢2.66 }} 9$	${ }^{\text {CD }} 4028$	${ }_{\text {¢ }}$ ¢2.34	CD4049	900
CD4010	¢1.07	CD4020	£2.96	CD4029	¢3.74	CD4050	90

Veroboard	Coppar	15	Plain	
2.5×3 \% ${ }^{\text {in }}$	36p	${ }_{26 p}$	0.1	17 p
2.5×5 in	40p	40 p	-	19 p
33 \times ¢ 3 3in	${ }_{45 p}^{45 p}$	40 p	-	
3 3 3 \times $\times 17$	${ }_{\text {E1.61 }}^{459}$	${ }_{\mathbf{4 7 1} \text { [} 26}$	£1.00	32p 920

TRY OUR GLASGOW SHOP

Popular Semi-conductors

TRANSFORMERS

SAFETY MAINS ISOLATING TRANSFORMERS
Ref.
No. Pizol-40V Sec 120/240V Centre Tapped \& Screened

Ref.
Ro.
113
64
4
66
66
67
84
93
95
73

LOW VOLTAGE TRANSFORMERS
 PRIMARY $200-250$ VOLT
Ref.

Also stocked: SEMICONDUCTORS VALVES AVOMETERS - ELECTROSIL RESISTORS

PLEASE ADD 8% FOR V.A.T. including P. \& P.
BARAIE electronics
3. THE MINORIES, LONDON EC3N 1BJ

TELEPHONE: 01-488 3316/8
NEAREST TUBE STATIONS ALDGATE \& LIVERPOOL ST.

APPOINTMENTS VACANT

DISPLAYED APPOINTMENTS VACANT: $£ 6.08$ per single col. centimetre (min. 3 cm). LINE advertisements (run-on): 86p per line (approx. 7 words), minimum three lines. BOX NUMBERS: 35p extra. (Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, SE1 9LU). PHONE: Allan Petters on 01-261 8508 or 01-261 8423.

> Advertisements accepted up to 12 noon Monday, January 6th for the February issue subject to space being

Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

We have a number of opportunities for instructors to train our customer engineers to service and maintain data processing equipment including the latest 370 Systems and Software.

If you're an experienced or potential instructor with a background in software and/or electronics, educated to HNC, C \& G standard or perhaps you've had similar service experience-now's the chance to find out more about these secure, well paid positions, based in NW London. Salaries start from£ 3000 and career development prospects and training are excellent.

If you are interested please write to: Anne Dare, IBM United Kingdom Limited, 389 Chiswick High Road, London W4 4AL. Quoting ref: WW/92418.

YoungElectronicsEngineers A mobilefuture inbroadcasting?

We require Engineers qualified, or about to qualify, to H.N.C. or equivalent level and possibly with a few years' experience, who will learn to operate and maintain the advanced electronic equipment at our Transmitting Stations throughout the country bringing Independent Television and Radio into millions of homes.
Our Engineers may be called upon to rectify a fault anywhere, anytime and in all weathers. It's a job that requires flexibility about when and where you work; you'll need a driving licence and you must be prepared to undertake a demanding training course.

Paid While You Train

IBA's special eighteen month training course, which combines theoretical study with practical 'on station training' will give you a comprehensive knowledge of operations and maintenance techniques, plus an additional recognised qualification, and you will be paid a training salary of not less than $£ 1841$, more for those with experience.

The Future

On completion of your training, you will be in the field, full-time on a salary range of $£ 2861-£ 4167$. Further promotion to Team Leader and beyond is up to you.

Write or telephone for full details and an application form quoting ref. WW/I234 to: The Personnel Officer, Independent Broadcasting Authority, Crawley Court, Nr. Winchester, Hants. Tel: Winchester 822599.

A place in the future for Electronic Test Engineers
 As leaders in advanced technology. Ferranti hold a very firm
 ability in electronics

place in the future electronic world.

We, have further vacancies for three Test Engineers to strengthen our team for the future. The successful applicants will join a busy, well-equipped organisation backed up by an excellent repair service. We test, and diagnose faults on, highquality Multi-layer Analogue and Digital Computer Panels (with over 300 different types). Ideally, applicants should have Analogue, Digital or Core Store experience, or have Forces training or hold a recognised qualification or have proven

If you think you're the right man for the job, telephone or write for an application form, quoting ref. no. D/530/WW, to:

The Personnel Manager.
Ferranti Limited,
Western Road,
Bracknell, Berks
or telephone Bracknell 3232, Recruitment Office ext. 471.

Radio Operators. How to see more of your wife without losing sight of the sea.

 Post Office Maritime Service. We have openings for Radio Operators at several of our coastal stations. The work is just as interesting, just as rewarding as aboard ship, but you get home to see your wife and family more often. You need a United Kingdom General or First Class Certificate in Radiocommunications, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting pay for a man of 25 or over is $£ 2,270$, plus cost of living allowance with further

In addition to your basic salary, you'll get an average allowance of $£ 450$ a year for shift duties and there are opportunities for overtime.

Other benefits include a good pension scheme, sick pay and prospects of promotion to Senior Management.

For more information, write to: ETE Maritime Radio Services Division (L531), ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London, ECIA IAS.

Here is your opportunity to enter the TV service industry as a

TRAINEE TV TECHNICIAN WITH REDIFFUSION

If you have some basic knowledge of TV or electronics, we will further your education with theoretical and practical training.

OUR MINIMUM REQUIREMENTS ARE
(1) A full (clean) driving licence.
(2) Age over 19 years.
(3) City and Guilds Part 1 in Radio \& TV/Electronics. Applicants possessing the General Certificate of Education or equivalent in Science, Maths and Physics will be considered.
(4) An ambition to become a fully qualified top grade technician.

If you are one of these people we offer :

* £30 per week whilst training, this will be increased if you successfully complete your training period.
* Regular courses at one of our training schools.
* A personalised vehicle when obtaining the higher grades.
* 3 weeks annual holiday after one year's service.
* Company Pension scheme.

INTERESTED? THEN APPLY IN WRITING TO:
The Service Supervisor,
Rediffusion (Redhire) Lid.,
727 Tudor Estate,
Twyford Abbey Road,
Párk Royal
NW10
Or Telephone 01-965 4554/5 during normal working hours.

VOICE OF KENYA MAINTENANCE ENGINEER (BROADCAST TRANSMITTER)

Required by the Ministry of Information and Broadcasting to introduce a revised maintenance system and assist in its implementation; to instruct staff and compile a maintenance instruction manual; to give occasional lectures on maintenance to engineering trainees.

Candidates $30-50$ years, should be graduates in Electronics with at least three years' experience in Telecommunications Broadcasting systems or holders of the City and Guilds Telecommunications Final with seven years' experience in Broadcasting Transmitters, two of which must have been in a Supervisory capacity. They must be able to organise and formulate radio transmitter maintenance routine procedures. Experience as an Instructor in maintenance techniques would be an advantage.
Salary in the range $£ 3,020$ to $£ 3,440$ which includes an allowance, normally tax free, of $£ 1,212$ to $£ 1,488$ pa. Terminal gratuity 25 per cent.

Other benefits include Subsidised accommodation, Education Allowances; Children's Holiday Visit Passages, Free Family Passages, Appointment grant $£ 150-£ 300.30$ month tour.
The post described is partly financed by Britain's programme of aid to the developing countries administered by the Ministry of Overseas Development.
For further particulars you should apply, giving brief details of experience to:

M Division, 4 Millbank, London SW1P 3JD, quoting reference number M2K/730923/WF.

The Royal Fleet Auxiliary requires
 $$
\begin{aligned} & \text { Radio } \\ & \text { Officers } \end{aligned}
$$

with Ist Class PMG or MPT General Certificate or (with previous experience) 2nd Class PMG Certificate and DOT Radio Maintenance Certificate.
Basic rates of pay at entry depend on experience e.g. less than six months sea service $£ 2,312$: over six months sea service $£ 2,570$. These rates are increased to take account of qualifications held.
Regular increments are awarded for Company service thereafter and there are excellent prospects for promotion into the Senior grade with salaries rising to £6, 156 per annum.

* Leave 183 days per annum served.
* Study leave on full pay.
* Generous sick leave and welfare arrangements.
* Special training courses on full pay.
* Opportunities for wives to travel.

The Royal Fleet Auxiliary is a career service offering an interesting and exciting way of life to young men of above average ability who seek a more challenging technical job at sea.
For further details write to:-
The Careers Office, Royal Fleet Auxiliary,
DGST(N) 74A, Room 603, Empress State Building,
London SW6 ITR. Or phone:-01-385 1244 ext. 2192. CX8117

VIDEOTAPE FIELD SERVICE ENGINEER

MIDDLE EAST/AFRICA

We require an engineer with extensive practical experience troubleshooting professional television broadcast equipment. especially videotape recorders.

Applicant must be willing to travel extensively and to be able to work in the field without direct supervision.

Necessary specialised training will be given on Company products. He will be based in Beirut, Lebanon, and assistance will be given with relocation costs.

An excellent salary is offered.
Written applications including resumé and personal details should be addressed to: Service Manager, Ampex World Operations SA., P.O. Box 8411 , Beirut, Lebanon.

Interesting work testing new electronic equipment made by the BBC for its colour television and stereo radio services, involving analogue and digital techniques over a frequency range from D.C. to U.H.F.

LABORATORY TECHNICIANS

Qualifications O.N.D., O.N.C. or C. \& G. Part II in Telecommunications or Electrical Technician certificate. Initial salary range normally £2127 to £2319 rising to £2952. Good opportunities for promotion to Senior Laboratory Technician.

SENIOR LABORATORY TECHNICIANS

Qualifications H.N.D.,H.N.C. or C. \& G.Full Technical Certificate in Telecommunications or Electrical Technician certificate. Initial salary range normally $£ 2679$ to $£ 2931$ rising to $£ 3762$. Opportunities exist for further promotion to Engineering grades.
Staff will be based at Equipment Department, Chiswick which is within easy reach of British Rail and London Transport services and the M4, North and South Circular roads. Good club and canteen facilities are available.
The posts are pensionable with four weeks leave annually. Requests for application forms to The Engineering Recruitment Officer, BBC, Broadcasting House, London, W1A 1AA, quoting reference 74.E.4105/WW. Please enclose an addressed envelope at least $9^{\prime \prime} \times 4^{\prime \prime}$ with your application; no stamp is required. Closing date for completed application forms is 14 days after publication.

S(1) II LIMITED,

Manufacturers of modern FM radio communication systems for all branches of industry, transport and Public Authorities require additional

TEST TECHNICIANS

based in Camberley to assist in the final testing of personal and mobile radio equipment and sophisticated control systems.
Knowledge of RF, digital and thick film techniques desirable with academic levels to ONC or C. \& G. Final, but for an applicant with exceptional experience and knowledge these qualifications may be waived.
Pleasant working conditions, good salary and overtime. Opportunities for further study and training.
Hours: Monday-Thursday:
$8.15 \mathrm{am}-1.00 \mathrm{pm} .1 .30 \mathrm{pm}-4.45 \mathrm{pm}$.
Friday:
$8.15 \mathrm{am}-1.00 \mathrm{pm} .1 .30 \mathrm{pm}-3.30 \mathrm{pm}$.
Apply: The Personnel Officer,

Stornil
 LIMITED,

Frimley Road.
Camberley. Telephone: 027629131

Avery-Hardoll

Manufacturers of Meter Pumps for Petrol and Fuelling Equipment for Aircraft, require a

TECHNICAL SERVICE ENGINEER

resident in West Yorkshire, who has reached ONC in electrics or electronics and preferably has had experience in electro-mechanical servicing.
The duties are concerned with the commissioning, diagnosis of faults, and rectification of electronic equipment associated with liquid flow measuring devices, mainly on readout and control.

Permanent staff position with a Company car, four weeks' holiday after one year of service, contributory pension scheme etc.

Please write with brief details of experience to date to: Personnel Manager, Avery-Hardoll Ltd., Downley Road, Havant, Hants PO9 2NW.

14358

AVIONCSINEDNBURCH ELECTRONIC ENGINEERS

FERRANTI in Edinburgh are involved in many importēnt defence contracts including the Multi Role Combat Aircraft.

We need Engineers of experience and technical capability to join expert teams on a variety of interesting projects with high technological content. We are looking for

TEST SPECIFICATION WRITERS
 TEST ENGINEERS
 TRIALS ENGINEERS
 TECHNICAL AUTHORS
 SERVICE ENGINEERS

and would be particularly interested to hear from candidates withqualifications and experience in any of the following areas: DIGITAL AND ANALOGUE TECHNIQUES, MICROWAVE ENGINEERING, LASERS AND OPTICS, ELECTRONIC DISPLAYS, AUTOMATIC TEST TECHNIQUES, AIRBORNE RADAR, INERTIAL NAVIGATIONAL SYSTEMS.

Priority will be given to incoming staff for Scottish Special Housing. The Company operates a contributory pension and life assurance scheme, and will assist with relocation expenses where necessary. Salary up to $£ 3,000$.

Apply in writing with details of qualifications and experience to the:
Staff Appointments Officer
Ferranti Limited
Ferry Road
FERRANTI Edinburgh EH5 2XS
Tel: 031-332 2411

A versatile and experienced

Radio and

 Audio Engineeris required to assist the Technical Director in the Service and Quality Control department of an established European Manufacturer/ Distributor.
Location N. London.
First-class salary in accordance with experience.
Contact Mr. A. Massing 01-837 3045.

TRAINEE
 WIRELESS TECHNICIAN

required by
EDINBURGH CITY POLICE
Salary scale $£ 888$ rising to $£ 1.923$ during training, 38 -hour week.
Applicants should hold ' O ' level Mathematics and Physics.
Applications to Recruiting Officer. Edinburgh City Police, Police Headquarters, Fettes Avenue, Edinburgh EH4 1RB. 4360

cramn

ENGINEERING INSPECTORS (TELECOMS)

required by the CROWN AGENTS for their Offices in Croydon and Walsall

The duties comprise the inspection and testing of materials, plant and equipment at manufacturers' works prior to shipment overseas.
Candidates should have served a recognised engineering apprenticeship or had an equivalent period of practical training and preferably hold HNC or equivalent. Preference will be given to candidates with experience of manufacturing processes and inspection/quality assurance procedures.

CROYDON-(Reference: M1S/741032)

Experience in Radio Systems (VHF, UHF or SHF) and preferably with some experience of either Transmission Systems, Common Control Exchange Equipment or Strowger Exchange Equipment.

WALSALL—(Reference: M1S/741034)

Experience in Common Control Telephone Exchange Equipment and preferably with experience of current electronic techniques and with some knowledge of either Transmission or Radio Systems.
Commencing salaries in the range $£ 2,200$ to $£ 2,770$ in a scale rising to $£ 3,140$. Five weeks annual holiday. Non-contributory pension scheme. The candidate appointed to the Croydon Office will also receive Outer London Weighting of $£ 260$ p.a.
Applicants must be prepared to travel in the UK and to undertake short visits and, exceptionally, tours of up to two vears duration overseas.

For further particulars you should apply. giving brief details of experience to: CROWN AGENTS. M Division, 4 Millbank, London SW1P 3JD, quoting reference number MIS/741032/4/WF.

BP Research Centre, Sunbury Technician Engineer

required at the BP Research Centre for the development and maintenance of a variety of proprietary and purpose-designed electronic equipment for use on refinery, biological and chemical processes as well as special purpose test rigs.
Candidates, aged 21-35, should have HNC or HND preferably with some experience of maintaining electronic equipment.
Salary will be dependent upon experience but is likely to be approximately $£ 2,700$ per annum. In addition London Allowance and Threshold Supplements are payable. Other fringe benefits include non-contributory pension scheme, four weeks' annual leave, restaurant lunches for $5 p$ per day, rising salary scale and excellent sports and social facilities.
For an application form please apply to: The Manager, Central Recruitment, The British Petroleum Company Limited, Britannic House, Moor Lane, London EC2Y 9BU.

14310

UNIVERSITY OF DURHAM-INSTITUTE OF EDUCATION Colleges of Education

Closed Circuit Television Recording Unit

An Engineer is needed to assist the Senior Engineer in the maintenance and operation of a well-equipped Mobile Closed Circuit Television Recording Unit serving a number of Colleges of Education in the area, and based at Neville's Cross College, Durham. Recordings are made through. out the County. Applicants should have a basic general knowledge of television techniques and equipment. Ability to drive is essential.
Salary: Local Authority Scale T3: $£ 2,187$ to $£ 2,538$, with initial placing according to age and qualifications. Conditions of service will be those applicable in a College of Education. The appointment is tenable from Ist February, 1975 or as soon as possible thereafter.
Applications, including the names of two referees should be sent to the Secretary, University of Durham, Institute of Education, 48 Old Elvet, Durham, not later than Friday, 17th January, 1975.

UNIVERSITY OF THE WITWATERSRAND

RESEARCH ELECTRONICS TECHNICIAN

Applications are invited from suitably qualified persons for a vacancy in the Electronics Workshop of the Nuclear Physics Research Unit. The duties encompass the maintenance and repair of existing electronic units associated with all aspects of the Unit's research interests as well as the design and construction of new equipment.
Salary will be determined according toqualifications and experience and applications should reach the Registrar, University of the Witwatersrand, Jan Smuts Avenue, Johannesburg, not later than 7th January 1975.
U.K. applicants may obtain the information sheet relating to this post from the London Representative, University of the Witwatersrand, 278 High Holborn, London W.C.I.
[4347

£2,000-£2,500

p.a. BASIC to

REPAIR ENGINEER

ACCORDING TO ABILITY
for servicing audio and photographic
(electronic flash) equipment, etc.
AXCO INSTRUMENTS LTD.
(Tel: 01-346 8302)
228, Regents Park Road, Finchley N3 3HP

HARINGEY

EDUCATION SERVICE

Laboratory Technician

required at Stationer's Company's School, Mayfield Road, N.8, to work 35 hours per week x 52 weeks per annum.
Salary rising to $£ 2,127$ per annum plus threshold payment. Commencing salary according to quali21 years of age).
Minimum Qualifications: Ordinary National Certificate or Ordinary National Diploma; City and Guilds Laboratory Technicians Certificate; 4 G.C.E. passes with 2 at ' A ' level in appropriate
subjects, Membership of Institute of Science Technology $O R$ an equivalent suitable qualification OR 5 years suitable experience. Qualifications in Electronics would be an advantage.
Candidates will be responsible for the maintenance of the Language Laboratory and will be required to assist in the upkeep of Audio-Visual aids throughout the school and help monitor a computer link-line.
The post is ideal for a candidate who wishes to gain experience in the maintenance of a fairly wide range of equipment.
An extensive range of improvements in employment conditions for officers has been approved, and is in the process of implementation, including an expansion of the assisted car purchase facilities in appropriate cases, annual bonus for continuous service, and disturbance travelling allowances for staff joining Haringey.
Application forms obtainable from Chief Education Officer, Somerset Road, N. 17 to be returnable by 27 December 1974.
[4318

CHELSEA COLLEGE University of London
 TELEVISION TECHNICIAN

A Television Technician (Grade 5) is required to operate and maintain a wide range of audio and video equipment. The successful candidate will be expected to work closely with academic staff and students, and assist in the interpretation of their requirements in television terms. The television service at the College is expanding and the installation and commissioning of new equipment wilt present additional responsibilities. Salary Scale: $£ 2,667-\{3,123$ per annum (including $£ 228$ London Allowance. which is under review).

Application forms from Personnel Officer WW, Chelsea College, Manresa Road, London, SW3 6LX.

OPPORTUNITY FOR GRADUATE IN ELECTRONICS

with some experience of industry to join fast expanding firm specializing in power supply and logic signalling equipment.

ALPHA OMETRIC LTD.,
HOLMDALE, SIDMOUTH, DEVON.
TEL: Sidmouth 5151.

AUDIO TEST ENGINEERS

Audix manufacture a wide range of public address, communications and broadcast studio equipment. To satisfy the increasing demand for our products we require engineers preferably with previous audio test/service experience and a good practical knowledge of transistor circuit techniques. Applicants will be expected to carry out systems and unit testing of custom built equipment, supervise junior staff and work, with the minimum of supervision. Vacancies also exist for junior engineers having ONC or equivalent qualifications who have a keen interest in audio equipment. The posts offered will be centred at a new factory now nearing completion at Saffron Walden, Essex.
Applications should be made in writing to:

AUDIX LMMITED
STANSTED ESSEX

TELEVISION ENGINEERS

A million television rental contracts, hi-fi and audio sales plus overseas interests means we need A mivion a lively support team to handle the many engineering proble to cope effectively with these diverse tasks which cover the following areas.
tasks which cover the following areas.

* Television and audio equipment type approval
* BS4 15 safety requirements
* Design changes and component evaluation
* Quality assurance
* Factory and field technical support
* Preparation of technical information

Senior and junior positions are offered at our Chessington laboratories, situated on the edge of the Surrey countryside.

Applicants should ideaily have some formal qualifications, but relevant experience is particularly important. Excellent salaries are offered and assistance with relocation expenses will be given where necessary.

If you are interested, or would like further information, contact:
J. Sinclair,

Rediffusion Consumer Electronics,
Fullers Way South,
Chessington,
Chessin
Surrey,
KT9 1HJ 01-397 5411

Under 3O? tr's your electronics experience wére after

If you are wondering what your future holds you should consider a career with International Computers Limited. If your experience is in radar, communications or electronic navigation equipment, we will train you to become a member of our field engineers team who maintain and service our installations from bases all over the country. You'll make use of all your knowledge and experience, but your personality and initiative will play a big part as well,

Your thorough training on ICL equipment, will stand you in excellent stead, whatever your future career path. We are

Europe's leading computer manufacturer, so you'll be dealing with our products over a wide range of customers, including government departments, universities, research organisations and industry.

This is not a 9-5 rut, hours are varied and prospects are excellent. Gross pay could be in excess of $£ 2000$ pa during initial training.

Don't gamble with your future, write now for an application form, quoting reference $W_{745} \mathrm{C}$, to J Cunnell, International Computers Limited, 85/91 Upper Richmond Road, Putney, London S.WI5. Computers
think computers-think ICL

Merton, Sutton \& Wandsworth Area Health Authority (Teaching)
 Wandsworth \& East Merton Teaching District
 ST. GEORGE'S HOSPITAL, LONDON SW1
 OPPORTUNITY IN ELECTRONICS

A vacancy exists in the Electronics Section of the Department of Medical Physics. The work involves the design, development and manufacture of a wide variety of medical and research instruments; in particular, the solution of problems arising from the use of cardiac pacemakers. Experience with digital integrated circuits very desirable.
The salary is on the MPT II scale, which is $£ 2.727-£ 3.516$ pa plus Threshold. Minimum qualification HNC or the
MPT III scale, which is $£ 2,316-£ 2.943$ pa plus Threshold. Minimum qualification ONC. The salary point on the above scale depends on experience and qualifications.

Further information and application forms are available from the Secretary,
Cardiac Department,
St. George's Hospital,
Hyde Park Corner, London SW1X 7EZ.

The Company is looking for engineers of various grades to work from their new service and installation dept. in Langley, near Slough.
Applicants should be conversant with CCTV systems and equipment. Salary in accordance with age and experience.

Write in the first instance to CHIEFENGINEER TVEYE Ltd., 23 Victoria Street, Windsor, BerksSL41HE.

SUNDERLAND POLYTECHNIC FACLLTY OF ENGINEERING

REEARCH ASSOCIIII

Applications are invited from good honours graduates in Electrical Engineering, Computer Systems or an allied field, for the position of Research Associate in the above Faculty.

The research, which is in the area of image analysis by min-computer, is jointly sponsored by the Polytechnic and Joyce Loebl Ltd. The appointment is for three years, subject to satisfactory progress, and candidates will be expected to register for a higher degree. A range of computers will be available for the project.

This is an interesting opportunity to enable ing field wh to gained in a new and expand

$$
\begin{aligned}
& \text { Salary Scale } £ 2,000 \text { by } 81 \text { (} 2 \text {) to } £ 2,162 \\
& \text { plus threshold payments (based on the } \\
& \text { Burnham Seales for Assistant Lecturers, plus } \\
& \text { an industrial subvention). }
\end{aligned}
$$

Application forms may be obtained from the Personnel Officer, Sunderland Polytechnic Chester Road, Sunderland SR1 3SD, and should be returned within 10 days of the appearance of this advertisement.

โ4333

SERVICE EHGINEFRS

ELECTRONIC and MEDICAL
LKB require two additional engineers.

1. A workshop based engineer to service our range of scientific and laboratory equipment. Good working knowledge of electronics required. Training given.
2. A Medical engineer to work from our office covering a wide area of England and Wales. Equipment includes Respirators and Artificial Kidney apparatus. Previous experience not essential. Car provided, training given.
The Company offers excellent working conditions, including Pension Scheme, Profit sharing bonus scheme, BUPA Membership.
Write for application form to:
The Service Manager,
LKB Instruments Limited,
232 Addington Road,
South Croydon,
Surrey CR2 8 YD.

ELECTRONIC VACANCIES

Engineers
Draughtsmen Designers
Service and Test Engineers
Technicians Technical Authors
Sales Engineers
£1,600-£5,000 ра
Permanent or Contract

四
01-387 0742
MALLA TECHNICAL STAFF LIMITED
376 Euston Rd., London NW1 3BG
195

UNIVERSITY COLLEGE OF NORTH WALES, BANGOR School of Physical and Molecular Sciences

ELECTRONICS TECHN|CAN GRADEE
Applications are invited for the post of
Electronics Technician Grade 5 in the above Electronics Technicia
mentioned School.
The successful appticant will be concerned with the development and construction of new specialised electronic equipment for research and teaching, and with the servicing and maintenance of existing equipment.
Applicants should have had several years practical experience in digital and linear sotid state electronics, preferably in industry or the services. coupled with theoretical knowledge to about H.N.C. standard.
Salary at an appropriate point on the scale:-
$62,439-62,895$ per annum $62.439-62.895$ per annum.
Applications (two copies), giving full details of age. qualifications and experience, together with the names and addresses of two referees should be submitted to the Secretary and Registrar, University College of North Wales. Bangor, not bater than the 23 rd December,
1974, 1974.
[4317

ROYAL HOLLOWAY COLLEGE (University of London)
Egham Hill, Egham, Surrey
EXPERIENCED
ELECTRONICS TECHNICIAN
(GRADE 4)
Required in the Physics Department for 1 year only. Salary on the scale f1,848-E2,163. Applications together with the names and addresses of two referees should be sent to the Personnel Officer (WW) as soon as possible.

Marine Radio Engineers for installation \& maintenance work

We need some more engineers to work from our Tilbury and Glasgow Depots on the service and installation of marine radio and associated equipment. Half the time will involve work on board ships, often at sea, and applicants must be ex-merchant navy radio officers with two or more years sea experience in equipment maintenance.
If interested, please write or phone: Jonathan Smith, International Marine Radio Co., Ltd., Peall Road, Croydon CR9 3AX. Telephone 01-684 9771.

ITT

Marine

COLOUR TELEVISION ENGINEER

We are a busy major international advertising agency working on household-name clients. To assist in the operation and maintenance of a growing colour-television installation we require a further television engineer. A sound basic knowledge of television is necessary together with operational experience of broadcast or closed-circuit television equipment. Experience in the operation and maintenance of a Rank Cintel Twin Lens Flying Spot Scanner would be particularly advantageous.
Excellent working conditions, five-day week, four weeks holiday, contributory pension scheme, free membership of BUPA.
Salary negotiable.

Applications to: Jean Powell, Personnel Manager, Leo Burnett Ltd, 48 St Martin's Lane, London WC2. Tel. 018362424.

FIJI

 TECHNICAL OFFICER

 TECHNICAL OFFICER
 HIGHER GRADE
 (TRANSMISSON CONSTRUCTION)

required by the Posts and Telecommunications department to lead a small team engaged in the installation and commissioning of VHF, UHF and SHF radio tinks, both single-channel and multi-channel and all associated equipment. May also be required to assist with detailed planning of systems and installations.

Candidates must hold a Final City and Guilds Certificate in Telecommunications (including Radio C) or equivalent plus five years' supervisory experience on maintenance or installation of VHF, UHF or SHF radio systems.
Salary in the range $£ 2,440$ to $£ 3,550$ pa which includes an allowance, normally tax free, of $£ 696$ to $£ 996$ pa. Terminal gratuity 20\% on basic salary, 25\% on allowance.

Other benefits include: low local income tax, generous paid leave, subsidised accommodation: free family passages, children's education allowances and holiday visit passages: (tour $2 \frac{1}{2}-3$ years), appointment or disturbance grant of up to £300, interest free car loan up to £600 may be payable.
The post described is partly financed by Britain's programme of aid to the developing countries administered by the Ministry of Overseas Development.

For further particulars you should apply, giving brief details of experience to:

M Division, 4 Millbank, London SW1P 3JD, quoting reference number M2K/740307/WF

4314

SERVICE MANAGER HI-FI

Do you have a good technical background in electronics with a flair for staff management and administration? Then you could be the man we need to take over and re-organise the service division of our organisation. The position entails close liaison with customers therefore a friendly personality and an awareness of public relations is important.

We are a fast-growing retail company specialising in audio, hi-fi and video products and this opportunity is at senior executive level responsible directly to the board. The person appointed will operate from our main service department at Watford.

An experienced man is envisaged with a proven record having spent at least five years in the audio/tape and television industry. He will command a salary commensurate with his abilities and the importance we attach to the position. The company has a non-contributory pension scheme with free life insurance and disability cover.

Applications in writing and in the strictest confidence to:
Alan A. Grove, Director, KJ Leisuresound Ltd., Bridle Path, Watford, Herts WD2 4BZ.

UNIVERSITY OF DURHAM

Department of Engineering Science

REQUIRES

ELECTRONICS
TECHNICIAN
Applications are invited for the post of Technician in the Department of Engineering Science. The successful candidate will be responsible for the existing electronic equipment in the department's laboratories and will be called on to develop novel circuits for teaching and research.
Salary will be at an appropriate point on the scale $E 2,01: 3$ to $£ 2,343$, according to experience.
Applications in writing giving full details of age, education, qualifications and experience together with copies of two testimonials to the PERSONNEL. OFFICE, Old Shire Hall, Durham.
[4287

MEDICAL PHYSICS TECHNICIAN

required for servicing hospital and hame-based kidney machines. Considerable travel in South East England, and there are opportunities for research. Previous experience of kidney machines is not essential but proven ability in this or similar fields of engineering is of greater importance. Academic achievement should at least be ONC or equivalent stańdard. Current driving licence essential. Salary according to qualifications and experience.
Apply:
Personnel,
GUY'S HOSPITIAL,
St. Thomas Street,
London, SE1 9RT
Tel: 01-407 3662 Ext. 68

TELEVISION ENGINEER

A vacancy occurs for an additional TV. Engineer with an expanding Rental and Retail company. Applicant will preferably have some colour experience. Large s / c flat available after trial period. Salary according to experience.

Hydes of Chertsey Ltd.,
56/60 Guildford Street, Chertsey 63243

THE POLYTECHNIC OF NORTH LONDON Holloway, London, N7 8DB
 TECHNICIAN VACANCIES

Applications are invited for the positions of Laboratory Technicians Grades 4 and 5 in the Department of Electronic and Communications Engineering.
Qualifications to C. \& G. Full Technological Certificate and practical experience in the general field of modern electronics are desirable: also the ability to accept responsibility for the routine organization and development of students' laboratory work, with, at least eight years' experience, for the grade 5 appointment, and at least seven years' experience for the grade 4 appointment.
Salary Scale:
Grade 5-£2181-£2556 per annum.
Grade $5-£ 2181-£ 2556$ per annum.
Grade $4-£ 2022-£ 2337$ per annum
Grade 4-£2022-£2337 per annum.
Inclusive of London Weighting Allowance Inclusive of London Weighting Allowance
(under review) plus the appropriate Threshlunder review
old payment.
Applications to: Establishment Officer. The Polytechnic of North London. Holloway Road, N7 8DE. Enquiries to S. A. Elfiott (01-607 6767 ext. 289).

4324

oudiointernakional

RECORDING STUDIOS LIMITED
require an engineer to
take charge of the
service and development of their multi-track recording equipment.

Contact:

The General Manager, Audio International Recording Studios Ltd., 18 Rodmarton Street, LONDON W1H 3FW.
Tel. 01-486 6466.

LONDON BOROUGH OF BRENT
Willesden College of Technology
Denzil Road, London, NW10 2XD

DEPARTMENT OF ELECTRICAL ENGINEERING

 REQUIRELECTURER (Grade I)
to teach both theory and practice on City and Guilds Radio/TV and Electronics Technician and Mechanic courses.
Applicants should have at least an appropriate City and Guilds Final Certificate and good industrial experience.
SALARY: $£ 2,317$ to $£ 3,391$ (including LA and Threshoild) with increments for relevant experience.
Further details and application forms may be obtained from the Registrar, to be returned within two weeks.

UNITED KINGDOM ATOMIC ENERGY AUTHORITY REACTOR DEVELOPMENT LABORATORIES WINDSCALE AND CALDER WORKS

require a number of

Instrument Mechanics

The Laboratories have interesting work on the development, assembly, commissioning and maintenance of a wide range of instruments, including electronic and physical types of inspection, control and measurement instrumentation. The work is associated with the Nuclear development programme.

Vacancies exist for instrument mechanics to join an existing section supporting these services. Applicants should have served a recognised apprenticeship and have some years experience in their trade.

* Rate of Pay: $£ 45.95$ for a 40-hour, 5 -day week after training and inclusive of incentive bonus earnings;
* Contributory Superannuation Scheme;
* 18 Days Paid Holiday a year;
* Housing on economic rents within easy reach of Eskdale, Wasdale and Ennerdale;
\star Hostel Accommodation for single men or married men awaiting housing.
Write for an application form quoting reference RG10 to:

Works Labour Manager

Windscale and Calder Works
Sellafield
Nr Seascale
Cumbria CA20 1PG
[4335

Electronics Engineer Supervisor

Join an expanding team in Walthamstow. As part of an International Leisure Group we manufacture and distribute thousands of best-selling pre-recorded tapes and records each week on labels which are household names.
Attractive career opportunities are offered to someone educated to ONC standard with around five years' electronics experience, who can undertake testing work and trouble-shooting.
If necessary we will give full supervisory training which will enable you to ensure the smooth functioning of our team in the Tape-Product department. The actual duties include the electronic servicing and commissioning of Musicassette equipment and development work on manufacturing equipment.
You will be based at our manufacturing complex in Walthamstow.
A good salary is offered, together with benefits which include annual bonus. long holidays and products at discount.
For an early interview phone or write to:
Ken Windsor,
Personnel Officer,
Phonodisc Ltd.,
Walthamstow Avenue,
London E.4.
Tel: 01-527 2256.

4313

 MARCONI INSTRUMENTS Ltd. AT ST. ALBANS AND LUTON

We are a company that manufactures precision electronic measuring instruments and have a range of technical career vacancies within our Production and Engineering departments at St. Albans and Service Division at Luton. To fill these posts we are looking for people with a good electronic background, but not necessarily qualified. Attractive salaries are offered for the right candidates along with the normal benefits of staff employment.
For further information and or application forms contact John Prodger, Mi Ltd., Longacres, St. Albans, Herts. Tel:59292. A G.E.C. Marconi Electronics Company.

Technical Advisers

To deal with problems of a technical nature and advise customers on queries relating to radio television, tape recorders, washing machines and all similar products.
This requires a good working knowledge of these products and the ability to convey technical information by telephone and correspondence. The work is interesting, varied and would provide a workshop engineer with the opportunity to use his technical abilities and further his career in the technical/commercial aspect of customer liaison. We provide, of course, product familiarisation training.
Excellent conditions of employment include monthly staff status, general annual bonus and annual salary reviews, pension/life assurance, sickness benefit scheme and one month's annual holiday.
Please write or phone for an application form.
Personnel Officer,
Combined Electronic Services Ltd.,
604 Purley Way,
Waddon, Croydon CR9 4DR
Tel. 6860505

ELECTRONIC CRAFTSMEN

Is your present job routine and uninteresting?

We are a research establishment and our craftsmen are engaged on a wide variety of work in the fields of prototype and small batch wiring and assembly, test and inspection, maintenance fault finding and repair. Why not join us and enjoy working in first class conditions in the country.

You can expect gross earnings including overtime of $£ 45$ per week, and we can offer good housing at low rental (for applicants who reside outside the radius of our Assisted Travel Area) together with 3 weeks paid holiday with holiday bonus, free pension and excellent sick benefit scheme.

Applicants who should have served a recognised apprenticeship or have had equivalent training together with experience in one of the fields detailed should 'phone Tadley 4111 (STD 07356 4111) Ext. 5230, or write to:

INDUSTRIAL RECRUITMENT OFFICER (PA/57/WW) PROCUREMENT EXECUTIVE MINISTRY OF DEFENCE AWRE ALDERMASTON READING, BERKS.
 RG7 4PR.

SITUATIONS WANTED

ELECTRONICS ENGINEER required for Central London recording studio. Experience in audio electronic work essential, must be keen and pre
pared to work long hours. Box No. WW 4344 .
$\mathbf{E}_{\text {for small }}^{\text {LECTR TECHNICIAN }}$, Grade 5, required $\Sigma_{\text {for small }}$ research group in Zoology \& Comparative Physiology Department, investigating ultrasonic communication and echolocation systems of animals. Responsibilities will include maintenance of of new equipment and techniques for investigating ultrasound in air. The appointment is temporary for ultrasound in air. The appointment is temporary for one
£2, 895 p.a. plus
¢ 228 weeks in total annual leave. Five day week. Letters weeks in tosial annua leave. Five alay week
only to Assistant Secretary (Establishment) ET / Z, Queen Mary College, Mile End Road, El 4NS, stating age, qualifications and experience. [4342 UNIVERSITY OF LEEDS. Electronics Technician (Grade 5) required in the School of Chemistry Electronic Workshop to work in the construction Department. The applicant must be conversant with multi-channel analysers, computor logic, printed circuit techniques and electrochemical transducers. Qualifications-H.N.C. or equivalent. Salary on the scale $£ 2,007-£ 2,382$ plus threshold (under review). Applications to Mr. S. Walker, Supervisor of the Electronics Workshop. School of Chemistry, The University of Leeds, Leeds LS2 9JT.

ARTICLES FOR SALE

A ARVAK ELECTRONICS, 3-channel sound-light A converters, from f18. Strobes, f2s. Rainbow Strobes, 1132 .-98A West Green Road (Side Door),
[23
London N15 5 NS. $01-800$ 8656.
CINTEL 3352 delayed pukse and sweep generator C 1 H 3 to 1 MHz variable width Pre pulse feature etc. G.W.O. £20. Wireless World 1968 to 1973 offers. Phone Wooley 248.

Cliselfeds contianed on p. 87

Chasifieds continued from p. 86
Articles WIL WINDING COPPER WIRE, sleeving and COIL WINDING COPPER WIRE, sleeving and of stocks surplus to its requirements. Contact-
[4290 COLOUR T.V.'s-Bush CTV25 displayed working C $£ 90+$ VAT. Large discounts for 3-up. Non-workers available. Rediffusion wired Mono T.V.'s all screen sizes, new condition. Sumiks, 1532 Pershore Road Birmingham, 30. Tel. 021-458 2208.
COLOUR. UHF and TV SPARES. Colour and C UHF lists available on request. 625 TV. If unit, suitable for $\mathrm{Hi-Fi} \mathrm{amp}$ or tape recording, $£ 6.75, \mathrm{P} / \mathrm{P}$ 35p. Television construction cross hatch kit, £3.85, P/P 15p. Bush CTV 25. New convergence panels plus yoke and blue dat., £3.85, P/P 40p. New Philips single standard convergence panels complete, incl. 16 controls, coils, P.B. switches, leads and yoke $£ 5.00$, P/P 40p. New Colour Scan Coils, Mullard or Plessey plus convergence yoke and blue lateral. £10.00, P/P P 40 . Mullard AT1025/05 Convergence Yoke, $22.50, \mathrm{P} / \mathrm{P}$ 35p. Mullard or Plessey Blue Laterals, $75 \mathrm{p} \quad \mathrm{P} / \mathrm{P}$ 20p. BRC 3000 type Scan DLIE, DL1. £1.50, P/P 25p. Lum Delay Lines, 50p, P/P 15p. EHT Colour Quadrupler for Bush Murphy CTV 25 111/174 series, Q8.25, P/P 35p. EHT Colour Tripler ITT TH25/ITH suitable most sets, £2.00 P/P 25p. KB CVC1 Dual Stand, convergence panels complete incl. 22 controls £2.75, P/P-35p. CR1 Base panel, 75p. P/P 15p. Makers Colour surplus/salvaged Philips G8 panels part complete; Decoder, $£ 2.50$, IF incl. 5 modules, £2.25. T. Base, $£ 1.00, \mathrm{P} / \mathrm{P}$ 25p. CRT base, $75 \mathrm{p}, \mathrm{P} / \mathrm{P}$ 15p. GEC 2040 panels, Decoder, £3.50. T. Base £1.00, P/P 35p. ORT Base 75p, P/P 20p. B9D valve bases $10 \mathrm{p}, \mathrm{P} / \mathrm{P}$ 6p. VARICAP TUNERS. UHF ELC 1043 NEW, £4.50, Philips VHF for Band 1 and 3, $£ 2.85$ incl. data. Salvaged VHF and UHF Varicap
tuners, fi.50, P/P 25p. UHF TUNERS NEW, tuners, $£ 1.50, \quad$ P/P 25 p . UHF TUNERS NEW, Transistorised. $£ 2.85$ or incl. slow motion drive, $£ 3.85$ 4 position and 6 pos. push-button transistorised, 4.9 All tuners P/P 35p. MURPHY 600/700 series com plete UHF Conversion Kits incl. tuner, drive assy." net plinth assembly, £7.50 P/P 50p. GEC 405/625 Dual standard switchable IF amplifier and output chassis incl. cot., $11.50 \mathrm{P} / \mathrm{P}$ 35p THORN 850 Dual standard time base panel, 75p P/P 35p. PHILIPS 625 IF amplifier panel incl. cct., 75p. P/P 30p. VHF urret tuners AT7650 incl. valves for K.B. Featherlight, Philips 19 TG170, GEC 2010, etc., $£ 2.50$. PYE miniature incremental for 110 to 830 , Pam and Invicta, 1.00. A.B. miniature with UHF injection suitable K.B. Baird, Ferguson, $\mathrm{fi} 80 \mathrm{P} / \mathrm{P}$ all tuners 30 p Mullard 110°, Mono scan coils, P , Mullard 110 mono scan coils, new suitable all $£ 2.00$ ard Philips, Stella, Pye, Ekco, Ferranti, Invicta, $\mathbf{~ L O P T s . ~ F O P T s ~ a v a i l a b l e ~}$ for most popular makes. $200+200+100$ Microfarad 350 v Electrolytic, £1.00 P/P 20p. MANOR SUPPLIES, 172 WEST END LANE, LONDON, N.W.6. Shop premises, callers welcome. (No. 28, 59, 159 Buses or W. Hampstead Bakerloo and Brit. Rail). MAlL ORDER: 64 GOLDERS MANOR DRIVE, LONDON. N.W.11. Tel. 01-794 8751.
CONSTRUCTION AIDS-Screws, nuts, spacers, C etc., in small quantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia panels etched aluminium to individual requirements. Printed circuit boards-masters, negatives and board, one-off or small numbers. Send $9 p$ for Road, Ramar Constructor Services, 29 Shelbourne Rav, Stratford on Avon, Warwks. Tel. Stratford on Avon
(std 0789) 4879. GOR SALE Handbook of space vehicles and satel. INFRA-RED monocular, £4.50; Avominor, as new £8.00; Sinclair digital multimeter, as new, £46.50. Box WW 4337.
FRIDEN 1151 PROGRAMMABLE PRINTING C CALCULATOR, 30 step, 5 memory, £68; Friden 2312 papertape reader. £45; Telequipment D 43 OSCILLOSCOPE with two 15 MHz Y-Amplifiers and Type 43B differential amplifier, £82; Digital panel meter, £10; Schneider cf 252100 MHz autorangeing Frequency Counter, £125 (NEW); Pair Cossor hand radiotelephones, £16; Good FLEXOWRITER, £110; Electronic Associates DRARPLOTTER, £95; Ferranti Magnetic Memory DRUM, £39; Singer 7102 Data Terminal, ASCII coded with £185; Telegraph Adapter, £15; H-P 6 speed mag. tape (new), £38; 400 Hz Inverter, $£ 9$; EMI Studio Echo, £55; NEW Digital Magtape (stepping motor, etc.), £45; ITEL WORD PROCESSOR USING GOLFBALL TYPEWRITER, from £350. (48-hour service facility in London area and South East.) COMPUTER APPRECIATION. Phone Raymond froulkes about Instrumentation, etc. (Godstone 3106), or Dr Richard Totman about Cord ProcesEQUIPMENT WANTED FOR CASH [4331
LADDERS unvarnished 14 ft . lin. closed, 25 ft . 4 in , TARGE surplus of brand new Fairchild transistors ARGE surplus of brand new Fairchild transistors Types BC207, BC208, and BC209. Price 3p each, Types BC207, BC208, and BC209. Price 3p each, Electronics Lid., Osborne Industrial Trading Estate, Electronics Waddington Street, Oldham, Lancs. Tel: 061-624 3474;

EON Television sound tuners. Completes your LHi-Fi system channels $21-68 \mathrm{UHF}$ self contained unit. Output Audio $200 \mathrm{HV} 36-50$ inc. VAT. Leon Electronics 14, Aintree Road, Crawley, Sussex. Crawley 20536.
L OW COST IC MOUNTING. Use Soldercon IC L socket pins for 8 to 40 pin DIL's. 70 p (plus $5 p$ VAT) for strip of 100 pins, $£ 1.50$ (plus 12 p VAT) for 3 strips of 100 , $£ 4$ (plus $32 p$ VAT) for 1,000 . 53 c Aston Street, Oxford. Tel: 0865 43203. [4358

T.V. Engineers for New Zealand

Are you dissatisfied with your present position, feeling like a change of scene? Do something about it now! Be our guest-come down under and join the Tisco Team, N.Z.'s largest service organisation,
We are in service only and our engineers are all important people, every one of our 30 managers is an ex engineer.
We are now selecting staff to sponsor under the Immigration Scheme to arrive in N.Z. mid 1975.

If you,

- Have 5 years experience, preferably some in colour.

Single or married with 3 children or less.
write now enclosing a photograph and details of past experience to:The Technical Staff Supervisor, Tisco Ltd, Private Bag, Royal Oak, AUCKLAND, NEW ZEALAND.

TELECOMMUNICATIONS ENGINEERS

Required by the CROWN AGENTS for their London (Waterloo) Office to plan and control projects overseas, prepare feasibility studies and draw up specifications. Candidates must be either MIEE or MIERE and must be prepared to travel overseas.
POST 1
Candidates must have had experience in a senior position with a telecommunications organisation or operating company overseas and have knowledge of telecommunications administrations and traffic matters. They should also have experience in the detailed technology of either switching. transmission or radio engineering in the fields of telephone, telegraph and telex operation.

POST 2

Candidates must have had experience with a telecommunications administration, preferably overseas, or a major manufacturer of telephone switching equipment. A knowledge of common control switching systems is essential and a knowledge of processor control switching systems and of national and international signalling systems is desirable

Commencing salary according to qualifications and experience in the range £4.167 to $£ 4.739$ in a scale rising to $£ 5.183$ p.a. $5 \frac{1}{2}$ weeks annual leave. Non-contributory pension scheme.

For further details you should apply, giving brief details of experience to: CROWN AGENTS. M Division, 4 Millbank, London SW1P 3JD, quoting reference number MIS/741045/WF. 4300

MUIRHEAD facsimile transmitter receiver and electronic power unit for sale. As new. Offers Tunbridge Wells, Kent. Tel. Langton 2779 . 14327 NELSON-JONES tuner built from Integrex Kit 1 Push button varicap tuning, Portus and Haywood decoder. Performs to specification. I. G. Bowman, 35 Park Hill Road, Torquay, S. Devon. $[4248$ OSCILLOSCOPE DuMont 115AC 1/P with spare tubes carrying case. Buyer collects. £15. Relays: SPDT 2 K OHM coil sealed cans, 40 mm x 18 mm diam., B7G base, 35p plus 5p P\&P. Carpenter type micropositioners, 3.3 KoHM each coil. Octal base, 50p plus 5 P P\& P. Radio Control Receiver: $406-420$ MHZ FM 28 V DC XTAL control (1 XTAL 34 (6) i2 at 7 (2), 12 AV 7 (6), $6 \mathrm{AL5}$ (3), 35 C 5 (3). 2 each of above relays. 33.5 M MHZ if strip contain2 each of above relays. 33.5 MHZ if strip contain-
ing R.F. L.O. and $0 / \mathrm{P}$ discrim. CCT diag, availing R.F. $£ 4.50$ each, 50 p P\&P. LB/HM/ATL/74-648/ able. E4.50 each, SOp P\&\&. Unit: used to switch

I/Ps from two ants to above RX at $600 \mathrm{e} / \mathrm{s}, 28 \mathrm{~V}$ OC, contains CK 6111 (2) 6 BC4 2. £1.50 each, 25p P\&P. Self addressed envelope with enquiries 14332 CWO to Box WW 4332.
DOWERTRAN Linsley Hood 75 watt Amplifier, Mark 3 version. Carefully built and modified to nclude switch click and mains borne interference suppression. £88.00. I. G. Bowman, 35 Park Hill Road, Torquay, S. Devon. TOSHIBA Cathode Ray Tubes Type 75AKBI. Jin. 1 Flat face high definition tube suitable for transistorised Oscilloscope. New and 68597.14286 UHF TEST GEAR $370-450$ Mcs. RCA signal generator type 710A, Receiver Oscilloscope Type
Wavemeter Type 1617. Also several VHF ransmitters and receivers for radio control systems. \& 100 for lot. South Hill Lodge, South Hill Avenue. Harrow. Tel. 01-427 1060 or $01-4276911$.

Chassifiods contimued on p. 93

BOTSWANA ASSISTANT FORCE COMMUNICATIONS OFFICER

Required by the Botswana Police to be responsible for the installation, operation and maintenance of the Police radio network and the supervision and training of local technicians in these duties.
Candidates, between 30 and 45 years of age should hold a City and Guilds Intermediate Certificate, or equivalent. or have extensive practical experience, preferably in the Police or Armed Forces, giving comparable ability. They should also have several years' experience in the electronics or radio field, preferably in connection with HF, SSB, VHF/FM and, ideally, in Police Communications.
Salary in scale $£ 2,910$ to $£ 4,290$ pa which includes an allowance normally tax-free in scale $\mathbf{£ 6 3 6}$ to $\mathbf{£ 1 , 3 4 4}$. This allowance is currently under review.
Other benefits include free pasșages; government housing at moderate rental; generous leave on full salary and children's holiday visit passages and education allowances. An appoint ment grant of up to $£ 300$ and car loan of $£ 600$ may be payable in certain circumstances.
The post described is partly financed by Britain's programme of aid to the developing countries administered by the Ministry of Overseas Development.
For further particulars you should apply, giving brief details of experience, to :

hromin eyents

M Division, 4 Millbank, London SW1P 3JD, quoting reference number M2K/740939/WF.

COURSES

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio \& Electronics School, P.O. Box 156, Jersey, C.I. Dept. WWC 15.
Please send FREE BROCHURE to
NAME
Block
ADDRESS Caps.

Please

BRITISH NATIONAL RADIO AND ELECTRONICS SCHOOL

RADIO OFFICERS

Do you have PMG I, PMG II, MPT 2 years operating experience?

Possession of one of these qualifies you for consideration for a Radio Officer post with composite signals organisation.

On satisfactory completion of a 7-month specialist training course, successful applicants are paid on a scale rising to $£ 3,096$ pa; commencing salary according to age -25 years and over $£ 2.276$ pa. During training salary also by age. 25 years and over $£ 1,724$ pa with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered.

Full details from:

Recruitment Officer,

Government Communications Headquarters,
Room A/1105, Priors Road, Oakley,
Cheltenham, Glos GL52 5AJ
Telephone Cheltenham 21491 Ext 2270

ARTICLES FOR SALE

ECONOMIZE ONSEMICONDUCTORS
 all prices include Vat

\star Special low prices on 741C 100+26p * Plastic 3 terminal Regulators
\star Economical Digital Clock IC $\quad \star$ Low-price DIL Sockets

				$\begin{gathered} 1+ \\ p \end{gathered}$	$10+$	$\begin{gathered} 25+ \\ p \end{gathered}$	TL Mixed Prices			
709C Op Amp 8 pin DIL				34	32	30			$10+$	$25+$
723C Reg	+ data	14 DIL		65	63	59		p		p
741C Op	mp 8 pi	DIL		32	30	28	7400	19	18	17
748C Op	mp 8 pi	DIL		39	37	35	7402	19	18	17
NF555 Ti	er + d	ta 8 DIL		76	73	69	7403	19	18	17
CA3046	ray 14	in DIL		76	73	69	7404	20	19	18
TDA1405	leg. 5 V	650 mA		100	92	85	7405	20	19	18
TDA1412	leg. 12	500 mA		100	92	85	7410	19	18	17
TDA1415	leg. 15	450 mA		100	92	85	7413	19	18	17
BC107. 1	8. 109			10	9.5	9	7420	19	18	17
BC182, 1				11	10.5	10	7430	19	18	17
BC212, 2				12	11.5	11	7442	80	76	73
H-P Red $\frac{1}{8}$	LED			18	16	15	7447	120	110	100
H-P Red 0	" LED			19	18	17	7473	42	40	38
							7474	40	38	36
	p		p			p	7476	46	43	41
BC109C	11	BZV88C-			IN914	5	7486	40	38	36
BC177	18	3V3-15V	11		1N4001	5	7490	65	60	57
BC178	18	2N3702	12		1N4002	5	7492	65	60	57
BF244	24	2N3704	12		1N4004	7	7493	65	60	57
BF244B	27	2N3708	10		1N4148	5	74121	50	46	43
BFY51	17	2N3055	48							

AY-5-1224 Digital Clock IC, 12 or 24 hr operation, 7 segment or BCD ouputs. Drives LED, Minitron, Neon displays, simple interfacing. 16 DIL pack + circuits. IC + data $£ 4.65$. H-P $5082-77400.3^{\prime \prime}$ digits $£ 2.20$. IC $+40.3^{\prime \prime}$ digits $£ 12.50$. IC, $40.3^{\prime \prime}$ digits, transistors and transformer $£ 15.00$.

TCA940 Audio Power Amplifier 10 W current limited + data + circuit $\mathbf{£ 2 . 6 0}$
TAD100 Radio IC + IF filter + circuit $\mathbf{£ 1 . 6 0}$
DIL Sockets 8 pin 11 p; 14 pin 12p; 18 pin 13p
Carbon film High Stability $\frac{\underset{4}{4} W}{} \mathbf{W} \%$ Resistors. 10 ohm-2M2 Ip ea, $109 \mathrm{9p}$. 10080 p same value.
By return service. Prices include VAT. P \& P 8p (UK). overseas atcost. Allitems new, TI, Motorola. Mullard, SGS, etc. SAE lists, enquiries. Colleges, etc., supplied.

SILICON SEMICONDUCTOR SERVICES

41 Dunstable Road, Caddington, Luton, Beds LU1 4AL

ARTICLES FOR SALE

We've got prices

 to put power in your profitsTOSHI8A VALVES

Type	Goods Price (p)
DY87	30.0
DY802	30.0
ECC82	28.0
EF80	29.5
EF183	34.5
EF184	34.5
EH90	31.5
PC900	24.5
PCC89	40.0
PCC189	41.0
PCF80	31.5
PCF86	39.0
PCF801	42.0
PCF802	40.0
PCL82	39.0
PCL84	34.0
PCL85	39.5
PCL86	41.0
PFL200	55.5
PL36	55.5
PL84	25.0
PL504	60.5

Type	Goods	Type
PL508	67.0	AFlis
PY88	35.5	AFII 6
PY500A	85.0	AFli 7
PY800	29.0	AFII8
SEMI-CON	CTORS	AFI39
ACI27	17p	AFI78
ACI 28	15p	AFI80
ACI4IK	$30 p$	AFI81
ACI42K	30p	AF239
ACI5I	20p	BA145
ACI54	18p	BC107
ACI55	18p	BC108
ACI56	20p	BCl09
ACI76	22p	BCII3
AC187	19p	BC116
ACI87K	30p	BC117
ACI8B	20p	BCI25
ACI88K	30p	8C132
ADI 42	45p	BC135
ADI49	40p	BCI 37
ADI61	38p	8 Cl 38
ADI62	38p	8 Cl 42
AFII4	24p	BCl43

Goods

Type ITH Decca Col.

11 TAM Philips G8
 2 TAK 15005 Stick
$\begin{array}{ll}£ 1.85 & 3 \text { TCU BRC } 3000 \\ \text { E2.00 } & 11 \text { TAZ GEC } 2010\end{array}$
$£ 1.00$
$£ 1.70$ TAZ GEC 2010
12 MONTHS

Type	Goods Price
BC147A	08p
BCI48	08p
BCI49	$12 p$
BC153	20p
BC\|54	22p
BC157	12p
BC158	10 p
BC159	14 p
BCI73	18p
BCI78B	20p
BCI82L	12 p
BCI83L	12p
BC187	28p
BC214L	15p
BDI24	70p
BD131	45p
BDI32	45p
BD235	49p
BD237	52p
BD×32	£2.40
BFII5	20p
BFI 160	20p
BFI67	200

Type Good
Goods Price

FULLY GUARANTEED
PRICES SUBVECT TO 8% VAT AII goods subject to setlomen discount $0 / 5 \% 7$ dars and 2% monthly. New Price Lat from sic. May 1674.

B. BAMBER ELECTRONICS
 20 WELLINGTON STREET, LITTLEPORT, CAMBS.

TEL: ELY (0353) 860185 (TUESDAY-SATURDAY)

PYE AC10 POWER SUPPLY 240 V input. 12 V (nominal) at 1 Oamp output. stabilized, full

TEST EQUIPMENT

MARCONI UHF SIGNAL GENERATOR, TF762日, $300-600 \mathrm{MHz}$, £50.00 MARCONI STANDARD SIGNAL GENERATOR. TF867/2. $15 \mathrm{kHz}-$ $30 \mathrm{MHz}, £ 100.00$
MARCONI TV SWEEP GENERATOR. TF $1104 / 1$, $\mathbf{£ 6 6 . 0 0}$
MARCONI VALVE VOLTMETER. TF428C, $£ 28.00$
MARCONI AMPLITUDE MODULAMARCONI VALVE
MARCONI VALVE MILLIVOLTMARCONI STANDARD SIGNAL GENERATOR, TF144H, 10 kHz $72 \mathrm{MHz}, \mathrm{£195.00}$
WAYNE KERR VHF FREQUENCY STANDARD, $12 \cdot$ channel, $£ 20.00$ AIRMEC BRIDGE HETERODYNE DETECTOR, Type 775, £65.00
AIRMEC SIGNAL GENERATOR, Type $201.30 \mathrm{kHz}-30 \mathrm{MHz}, £ 75.00$ ANALYSER, Mk II, £45.00
HEWLETT PACKARD UHF SIGNAI GENERATOR. Type 614A, 800$2300 \mathrm{MHz}, £ 175.00$
SOLARTRONDIGITALVOLTMETER. Type LM1420/2, with "TRUE RMS AC UNIT", $10 \mathrm{mV}-1000 \mathrm{~V}$, 5 -digit display. new condition, $£ 400.00$
RADIOSPARES 500-WATT AUTO TRANSFORMER, $100 / 110 / 150 / 200$ $220 / 240 / 250 \mathrm{~V}$ tapped input and output. step up or step down facility. ex new equip. $\mathbf{£ 6 . 0 0}$
HIGH-QUALITY SPEAKERS $8 \frac{3}{\text { in in. }} \times 6$ in. elliptical, 2 in . deep, 4 ohms $£ 1.50$ each. or 2 for $£ 2.75$ (quantity discount available)

ELECTROLYTIC CAPACITORS AXIAL LEAD AND SINGLE ENDED $\begin{array}{llllll}\text { MFD } 6.3 \mathrm{~V} & 10 \mathrm{~V} & 16 \mathrm{~V} & 25 \mathrm{~V} & 35 \mathrm{~V} & 50 \mathrm{~V} \\ 22 & 30 \mathrm{p} & - & - & - & - \\ 40 \mathrm{p}\end{array}$ $\begin{array}{lllllll}33 & - & 30 p & 35 p & 40 p & 40 p & 45 p \\ 47 & - & - & - & 40 p & 45 p & - \\ 100 & 35 p & 40 p & - & 45 p & 60 p & - \\ 720 & 40 p & 40 p & - & 50 p & 75 p & -\end{array}$ $\begin{array}{lllllll}220 & 40 p & 40 p & - & 50 p & 75 p & - \\ 330 & 40 p & 45 p & 60 p & 75 p & 95 p & 95 p \\ 470 & 45 p & 60 p & - & 95 p & - & -\end{array}$ 1000 45p 60p $95 p \quad 95 p$
3300 95p 95p
PRICES PER PACK OF 5
Trade enquiries welcome for quantity
ISOLATING TRANSFORMERS MAINS ISOLATING TRANSFORMAINS ISOLATING TRANSFOR-
MER. 375VA, tapped primary, 240 V MER. 375VA, tapp
output, new, £6.00.
MAINS ISOLATING TRANSFOR
MER. (ex equip), in metal cases, totally MER. (ex equip), in metal cases, totally 240 V etc. output 240 V at $3 \mathrm{~A}+12 \mathrm{~V}$ at $0.5 \mathrm{~A} £ 11.00$
AS ABOVE, output 240 V at $12 \mathrm{~A}+12 \mathrm{~V}$ carriage f 2 .

MAINS TRANSFORMERS

240 V in, voltages quoted approx. RMS
TYPE F27BS (ex Pye F27 base station TX) 500 V at $350 \mathrm{~mA}, 6.3 \mathrm{~V}$ at $8 \mathrm{~A}, \mathbf{£ 6 . 0 0}$ TYPE 40/2 40V at 2A. $£ 1.00$ each
TYPE 18/8 18 V at 8 A . $\mathbf{£ 4 . 5 0}$ each. carriage 50p.
. 16 V at $6 \mathrm{~A}, 45 \mathrm{~V}$ at 100 mA £4.00. carriage 50p.
E4.00 28/4 28 V at $4 \mathrm{~A}, 125 \mathrm{~V}$ at 500 mA
f4.00, carriage 50 p .
TYPE $63 / 1 \quad 6.3 \mathrm{~V}$ at $1 \mathrm{~A}, 85 \mathrm{p}$ each. 2 for $£ 1.50$.
TYPE 129400 V at $20 \mathrm{~mA}, 200 \mathrm{~V}$ at 10 mA .6 .3 V at $500 \mathrm{~mA}, \mathbf{£ 1 . 2 5}$.
TYPE 72700600 V at $20 \mathrm{~mA}, 18 \mathrm{~V}$ at 1 A twice, 50 V at $25 \mathrm{~mA}, 6.3 \mathrm{~V}$ at $15 \mathrm{FA}, \mathbf{£ 1 . 2 5 .}$ TYPE 72703400 V at $10 \mathrm{~mA}, 200 \mathrm{~V}$ a TYPE 6.3 V at 400 mA . £1.25.
$6.3 \mathrm{~V}, \mathrm{f} 1.75$.

TERMS OF BUSINESS: CASH WITH ORDER. ALL PRICES INCLUDE POST \& PACKING (UK ONLY). EXPORT ENQUIRIES WELCOME.

PLEASE ADD 8\% VAT
CALLERS WELCOME BY APPOINTMENT
PLEASE ENCLOSE STAMPED ADORESSED ENVELOPE WITH ALL ENQUIRIES

PLUGS AND SOCKETS TV PLUGS (metal type) 6 for 50 p TV SOCKETS (metal type) 50 p PL259 (PTFE) PLUGS 50 for 50 p for $£ 2.25$ (PTFE) SOCKETS 50p

25-WAY ISEP PLUGS and SOCKETS 40p set (1 plug +1 skt). Plugs and sockets sold separately at 25p each CANNON Right-angled plugs XLR LNR1575p
DIN SPEAKER SKTS, $2-\mathrm{pin} .4$ for 30 p STANDARD JACK PLUGS. tin.. 4 for 50p
ANDREWS 44AN FREE SKTS (NTYPE) for $\mathrm{FH} 4 / 50 \mathrm{~B}$ or $\mathrm{FHJ} 4 / 50 \mathrm{~B}$ cable f1.00 each
SO239 BACK-TO-BACK SOCKETS f1. 25 each hole type) 65p each

VALVES

QQV03/20A (ex equipment) $£ 2.10$ each QQV03/10 (ex equipment) 75 p each 2C39A (ex equipment) $£ 1.00$ each 4 CX250B (ex equipment) $£ 2.10$ each 4×250 B (ex equipment) $£ 1.50$ each DET-22 (ex equipment) 2 for $£ 1.00$ EF80 (new) 25p, EZ81 (new) 25p ECC81 (new) 30p, ECC83 (new) 30p

MISCELLANEOUS

MAGNETIC DEVICES PROGRAM MERS. contain 9 microswitches with 9 adjustable drums for period switching (needs slow-motion motor to drive drum many switching applications $£ 1.00$ each.
AS ABOVE but 15 switch units $£ 1.50$ each.
ITT HIGH-GRADE ELECTROLYTICS 6800 mfd at 25 V screw terminals complete with capacitor clip for vertica mounting, 50p each (quantity discount

PYE RADIO-TELEPHONE

 EQUIPMENT
Cambridge, Westminster. Motofone,

 Europa series. Send s.a.e. for full details. tang requirements, frequency. channel spacing, etc
TEST EQUIPMENT

RACAL 125 MHz DIGITAL FREQUENCY METER. Type $801 \mathrm{R} / 2$ 0.01 V to 1 V sensitivity, 8 -digit readout. new condition, $£ 275.00$
ROHDE AND SCHWARZ SIGNAL GENERATOR. SMAF, $4-300 \mathrm{MHz}$. AM/FM. attenuation to 0.05 microvolt. deviation and modulation metered omplete, but needs attention, $\mathbf{£ 3 0 0 . 0 0}$ ROHDE AND SCHWARZ FREQUENCY DEVIATION METER FMV. AM/FM, $20-300 \mathrm{MHz} £ 300.00$
ROHDE AND SCHWARZ POWER SIGNAL GENERATOR. SMLM, 300 MHz . up to 5 V output, $£ 300.00$ GRESHAM LION 625-LINE PULSE BAR/S
TEKTRONIX 524D SCOPE, DC$10 \mathrm{MHz}, £ 70.00$
PYE IF SIGNAL GENERATOR battery portable, 100 kHz , 455 kHz , $2 \mathrm{MHz}, 10.7 \mathrm{MHz}$ outputs. 10
volts to 100 mV . AM/CW. $£ 35.00$
BRITISH PHYSICAL LABS. CZ960 COMPONENT COMPARATOR. £40.00
BRITISH PHYSICAL LABS. C2457/3 COMPONENT COMPARATOR, with
Automator unit. CZU457/2. £65.00.

PYE MF TRANSMITTERS

X 58254 Ms in final. VFO 340 to B254Ms in Modulator cw/maw (can be modded for AM) units complete, but no PSUs (supplied with circuits of TX and PSU) brand new, boxed, $£ 20.00$

DOUGLAS For Transformers

\star Comprehensive stock range \star Rapid prototype service \star Quantity production orders.
Douglas Electronic Industries Ltd.,
Eastfield Road, Louth, Lincolnshire LN11 7AL.
Tel: Louth (05-07) 3643 Telex: 56260

S.I.G.A.
 TOROIDALTRANSFORMERS

\star LOW PROFILE $\quad \star$ LOW LEAKAGE FLUX
Especially suitable for Audio Amplifier Power Supplies.
Our comprehensive coil winding service also includes inductors. A.C. and D.C. Current Transformers.

S.I.G.A. ELECTRONICS LIMITED
Sunderland Road, Sandy, Beds SG19 1QY. Tel: Sandy (0767) 81266.

CARBON FILM RESISTORS-E12 SERIES High Stab. IW OR IW 5\%. 1p, 75p/100, $55.59 / 1000$
$(22 \Omega-1 \mathrm{M} \Omega)$. ($22 \Omega-1 \mathrm{M} \Omega$).

> EQUIPMENT SALE er suDDIy modules.

Regulated power supply modules. New in original
 Marconi D-A Converters TF2402, £20. Code Converter
TF2403, $£ 20$. LImits Indicator TF2404, $£ 20$. HAAKE Const Temp. Water Clicculators type F.Junior (土 0.10) Honeywell Chart Recordera \&50. Solartron VF252'Préclsion Millivoltmeter s35. Solartron CA512 V.S.W.R. Indlcators $£ 25.400 \mathrm{~V}, 250 \mathrm{~mA}$ Bench Power Supplies \&15. Hatfleld Ins. PUM1116 400 cycle Generators $£ 39$. Muirhead
2PH. Dec. Osc. 2PH. Dec. Please., add $£ 1$ carrlage and 8% VAT. METAL FILM KITS ALSO AVAILABLE.
CATALOGUE No. 3 (Approx. 2000 Parts) 20p.
C.W.O. P. \& P. 10 p on orders under $\mathbf{2 5}$. Oversens at cost.
B.H. COMPONENT FACTORS LTD

Dept. WW, 61 Cheddington Road, PITSTONE,
Nr. Lelghton Buzzard, Beds. LU7 OAQ.
Cheddington (0296) 668446
Cheddington (0296) 668446

CAPACITY AVAILABLE
General Sheet Metal Work including Fabrication of Chassis Panels, Boxes and Guards. Large and Small Runs
at highly Competitive Rates. Let us quote you now
ANGUS ASSOCIATES (WN) London NW4 1 RS Tel: $01-2034822$

CRYSTALS

Fast delivery of prototype and production military quality crystals. Competitive prices all frequencies; LF crystals a speciality. Details from

INTERFACE INTERNATIONAL
29 Market Street, Crewkerne, Somerset
Tel: (046031) 2578. Telex: 46283.

BUILDING or PURCHASING an AUDIO MIXER
pre-amp, autofade, V.U. or audio monitor, First consult:

PARTRIDGE ELECTRONICS Ref. W.W.
21-25 Hart Road, Benfleet, Essex
Established 23 years

G. W. M. Radio Limited

40-42 Portiand Road, Worthing, West Sussex Tsi: Worthing (0903) 34897
D. 13 EQUIPMENT AND MASTS

8with Box HATO mumber Z1/5930-90-900.6762. Teleprinter
Send/Rec. Switch-Identity HH30:0191-01.
Test set Radio-ZA 56236. MWB/WH/118s.
Aerial Ingulstor Land In No. 32-Z1ZA 51786
Control Remoto-Z1/8820-89-900-6731. MWB/WO/689
Interconneoting Box-ZA/54915 MWB.
Adaptor Aorial to Reoelver-ZA 54912-MWB/XE/8B6.
Adaptor Aerial to Tranamitter-ZA s6234-MWB/WK/932.
Operators Control Unit (M).
Control Indiostor Radio Transmitter D. $13-\mathrm{ZA} 56971 \mathrm{MWB} / \mathrm{WC} /$
124.

Dummy Lond-ZA 58235 MWB/E/AS 201 XA.
Briteh Box-ZA 54985 MWB/WM/878.
Toleprinter Send/Reo. 8witoh Type No. 54A3A.
Hast-Clark type, 8cam 40 ,
Mast-Clark type, Scam 40^{\prime} mast-NATO stock No. 6985-99-
104-415.
All items a
All items are in unused condition.
VACUUM CAPACITORS by JENNINGS
Variable 250 pf to 10 pt $\quad 55,000$ volts.
Variable 2000 pf to $50 \mathrm{pf} \quad 12,000$ voits.
Varlable 500 pf to 20 pf
20.000 volts.

Variable 35 pf to 8 p
35,000 volts.
Flxed 25 pt
35,000 volts.
30,000 volts.
These capacitors are production surplus and are 'bs new'
All equipment may be viewed by appolntment. Enquiries should
be apecific.
[4329

WE SELL

CONSTRUCTION PLANS
Phonevision, Television Camera, Police Radar ing machine, Wireless quarter mike. Plans: $\$ 7.50$ each.

COURSES

Defective-Electr, $\mathbf{\$ 3 6 . 5 0}$. Security-Electr, Detective-Electr, $\$ 36.50$.
$\$ 43.50$. Telephone Eng, $\$ 59$.

OVER 750 ITEMS
Ask for Catalogue-Airmalled $\$ 0.75$ T. STRIK,

Postbox 618, Rotterdam, Holland.

ARTICLES WANTED

ELECTRO-TECH COMPONENTS LTD.

Are buyers of all types of electronic components and equipment. They will be pleased to view clearance stocks anywhere in Great Britain at one or two days notice
and negotiate on the spot!

ELECTRO-TECH

COMPONENTS LTD.
315/317 Edgware Road, London, W. 2
Tel: 01-723 5667. 01-402 5580
[37

TOP PRICES PAID

for semiconductor and component redundant or excess inventories
P.R.S. ELECTRONICS

126 Headstone Road Harrow, Middlesex Tel: 01-965 6864

EXPRESS

Prototype Printed Circuits
Fastest in London Area

Wilmslow Audio

THE firm for
speakers!

Baker Group 25. 3.8 or 15 ohm Baker Group 35, 3, 8 or 15 ohm Baker Deluxe. 8 or 15 ohm Baker Major. 3, 8 or 15 ohm Baker Regent. 8 or 15 ohm Baker Superb, 8 (for Unilex Celestion MH 1000 horn. 8 or 15 ohm EMI $13 \times 8.3 .8$ or 15 ohm EMI $13 \times 8.150 \mathrm{~d} / \mathrm{c} 3.8$ or 15 ohm EMI $13 \times 8.450 \mathrm{t} / \mathrm{tw} 3.8 \mathrm{or} 15 \mathrm{ohm}$ EMI $13 \times 8.350 .8$ or 15 ohm EMI 13×8, 20 wattbass EMI $2 \frac{1}{4} \frac{11}{4}$ tweeter 8 ohm EMI 8×5.10 watt, d/c. roll/s 8 ohm Elac 59RM 10915 ohm. 59 RM 11480 hm Elac $6 \frac{1^{\prime \prime}}{2}$ d/cone, roll/s 8 ohm Elac TW4 4" tweeter Fane Pop 15 watt 12
Fane Pop $25 / 225$ watt 12 Fane Pop $25 / 225$ watt $12^{\prime \prime}$
Fane Pop $40.10^{\prime \prime} 40$ watt Fane Pop 50 watt, $12^{\prime \prime}$ Fane Pop 55. 12" 60 watt Fane Pop 60 watt, $15^{\prime \prime}$
Fane Pop 100 watt. $18^{\prime \prime}$ Fane Pop 100 watt. $18^{\prime \prime}$
Fane Crescendo 12A or 8.8 or 15 ohm Fane Crescendo 15.8 or 15 ohm Fane Crescendo 18.8 or 15 ohm Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$. roll/s. 8 or 15 ohm Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ c. roll/s. 8 ohm Goodmans 8P 8 or 15 ohm Goodmans 10P 8 or 15 ohm Goodmans 12P-D 8 or 15 ohm Goodmans 12P-G 8 or 15 ohm
 Goodmans Goodmans Audiom 1008 or 1 Goodmans Axent 1008 ohm Goodmas Axiom 4018 or 15 ohm Goodmans Twinaxiom $10^{\prime \prime} 8$ or 150 hm Goodmans winaxiom 10 or 15 ohm Kef T15
Kef B110
Kef B200
Kef B139
Kef DN12
Kef DN12
Kef DN13
Richard Allan CG8T 8"d/c roll/s STC4001G super tweeter Fane 701 twin ribbon horn Baker Major Module each Fane Model One each Goodmans DIN 204 ohm each Helme XLK25 (pair) Helme XLK30 (pair) Helme XLK50 (pair) Kefkit 2 each Kefkit 3 each
Peerless 3-15 (3 sp. system) each Richard Allan Twinkit each Richard Allan Triple 8 each Richard Allan Triple each Richard Allan Super Triple each Wharfedale Linton 2 kit (pair) Wharfedale Dovedale 3 kit (pair)

PRICES INCLUDE VAT

Cabinets for PA and HiFi , wadding. vynair, etc.
Send stamp for free booklet "Choosing a Speaker'
FREE with orders over $f 7$--'"HiFi loudspeaker enclosures" book.

All units guaranteed new and perfect

Carriage: Speakers $38 p$ each. iweeters and crossovers 20p each, kits 75 p each (pair f 1.50).

WILMSLOW AUDIO

 Dept WWSwan Works, Bank Square, Wilmslow, Cheshire SK9 1 HF Tel. Wilmslow 29599 (Discount HiFi, PA and Radio at 10 Swan St, Wilmslow.)

ww-023 FOR FURTHER DETAILS

> WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. SPOT CASH
> CHILTMEAD LTD.

7, 9, 11 Arthur Road, Reading. Berks.

Tel: 582605

EXCLUSIVE OFFERS NEVER BEFORE OFFERED

WORLD-WIDE RANGE COMPLETE TRAMSPORTABLE E.F. COIMMOMCA- TIONS CENTRE housed in Air Conditioned TRALLEE					
fitted two COLLINS KWT-6 300 W s.8.B. Transmitter-					
control, with line amplifiers and inputs, operatingpooition andremote controlfaclities and ancillary					
equipment. Power input 115 V or 230 V A.O. Full detalls on appication.					
PRILCO HC-150 POINT-TO-PONT 8TRIP RADIO EFP					
0.5 kca with syntheaisers. Single and diveralty reception on 18B, DSB, B8B with 4 sub-bands to each channel.					
HIGHEST QUALITY 19° RACK MOUNTING CABINETS \& RACKS					
1 HE					
	Height	Width	Depth	ack	
Ref.	in inches	in inches	in inches	ace in	
	69	21	13	88	
CE	30	60	36	42	£12.50
C	69	30	20		
DM	70	20	26	138	221.00
FA	85	22	36	160	
					no aldes
	52	5	22	4	
FD	40	${ }^{22}$	24	72	814.00
F	11	19	18	10	
FH	15	21	17	11	212.00
FJ	15	21	15	12	£12.00
FN	70	24	20	68	£17 00
FL	84	22	17	80	$\mathbf{2 2 1 . 0 0}$
Also Consoles, twin and multi-way Cabinets.					
	Heigh	annel	Rack Panel		
RF	inches	epth	Space	Base	Price
	85	3	79	15	811.00
H6	57	2	51	14	29.00
TB	3 Lin .8	Standard Bla	ank Panels		81.00
	54 ln . S	tandard Bla	nk Panela		E1.50
TD	7 in .8	tandard Blank	nk Panels		21.70
TE	1211n.	Standard B	lank Panels		23.00

We
we
we We have a large quantity of "bits and pleces"
we cannot list-please send ws your requirements
we We cannot list-please send us your requirements
we can probably help-all enquiriea answered.

COMPUTER HARDWARE

CARD READER 80 col. 600 c.p.m.
\star PRINTER, High speed 1000 lines p.m.

* TAPE READER, High speed 5/8 track

Prices on Application
PLEASE ADD V.A.T. TO ABOVE
P. HARRIS

ORGANFORD - DORSET
OURNEMOUTE-78505

COLOUR TV's

Bush CTV 25 displayed working $\mathbf{2 9 0}$ plus VAT Buas discount for 3 up non-workers available. Large discount for sizes, new condition.

SUMAKS
1532 Pershore Road, Birmingham 30 Tol: 021-458 2208

Guide to
 Broadcasting Stations

17th Edition

A new edition of a title which has sold more than 250,000 copies. The bulk of the book is devoted to lists of stations broadcasting in the long, medium, short and v.h.f. bands in both frequency and geo graphical and alphabetical order. The book also contains useful information on radio receivers aerials and earth, propagation. signal identification and reception reports.
1973206 pp., illustrated
059200081 75p

Illustrations

 in Applied Network TheoryF. E. Rogers

A hundred numerical and algebraic illustrations designed to exemplify practical circuit protlems and introduce in analysis, principles consistent with studies of synthesis that may be pursued later.
1973240 pp., illustrated
040870425 X cased $£ 5.00$
0408704268 limp $£ 2.50$
Obtainable through any bookseller

Newnes-
 Butterworths

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDOH, NY4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16

Tel: 01-249 2260

THE ONLY COMPREHENSIVE RANGE OF RECORD MAINTENANCE
EQUIPMENT
IN THE WORLD!
Send P.O. ${ }^{15 p}$ pplus 4 p postage) for 48 page booklet providing all necessary informa-
tion on Record Care tion on Record Care

CECIL E. WATTS LIMITED Darby House
Sunbury-on-Thames, Middx.

PEAK PROGRAM METERS TO BS4297
 also 200 KHz version for high speod copving.

 Orive circuit, $35 \times 80 \mathrm{~mm}$, for 1 mA L.H. zero meter to BBCED1477. Goid 8 -way edge

 $642.71 \times 56 \mathrm{~mm} \mathbf{1 2} .60: 643.102 \times 79 \mathrm{~mm} \mathbf{E 1 5 . 0 0}$.
Twin moveme

PUBLIC ADDRESS : SOUND REINFORCEMENT

 in any public-address system where the microphones and loudspeakers are in the same vicinity acoustic feedback (howlround occurs if the amplification exceeds a critical value. B, shifting the audio spectrum fed to the speakers by a few Hertiz the tendency to howling at room resonance frequencies is destroyed and an increase in gain of $6-8 d B$ is possible before
the onset of feedback. The 5 Az shift used is imperceptible on both speech and music.
SHIFTERS IN BOXES with overload LED. shifybypass switch BS4491 mains connector and housed in strong diecast boxes
finished in attractive durable blue acrylic. Jack or XLR audio con type

 SHIFTER CIRCUIT BOARDS FOR WW July 1973 article

SURREY ELECTRONICS

 The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG. (STD 04866) 5997CASH ITH ORDER, less 5\% UK post free, add VAT

QUARTZ CRYSTAL
UNITS from

- 1.0-88.0 MHZ

- fast deluvery

- high stabiat
- to def b271-A

WRITE FOR LEAFLET AT McKNIGHT CRYSTAL CO. haroley industrial ESTATE, HTHE. SOUTHAMPTON SO4 6ZY.
J. LINSLEY-HOOD 75 very low distortion Hi Fi Amp. Powor Amplifioe. Latest verelon
Complete kit of parrs to bulid, incl.

Power Supply Unit, Stresis.
Powor 8 upply Unlt. 8 soreo
Kit for 50 walt Stereo, Incl. p.c.b.
Kit for 50 watt Stereo, Incl. p.c.b.
Cape, res, tuses, edge connectors.
Capa, res, reses, ed, etc.

Punched all chassls and screws
Hardware
ProAre
KIt of Parts for Mono, Incl. Switches and Controls
Stereo version
$\stackrel{87.05}{8,25}$

Stool
CASE, EXCLUDING TAX
88.70
c 18.00

Materlal also avallable separately or in pack form. $\quad \mathbb{E 6 1 . 0 0}$
Article reprint 40p. Leaflete S.A.E.
Please add postage and V.A.T. at current rate.
TELERADIO HI FI
325-7 FORE STREET, LONDON N9 OPE 01-807 3712 Closed on Thureday:

BROADFIELDS \& MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N12 8JG.

Telephone:
$01-4450749 \quad 01-445 \quad 2713 \quad 01-9587624$

MAY WE ASSIST YOU TO DISPOSE OF YOUR SURPLUS AND REDUNDANT STOCKS.
We will call anywhere in the British Isles, and pay SPOT CASH for Electronic Components and Equipment.

GONDON CENTRAB Radio stopiss

TELEPHONE CABLE. Plastic covered grey 4 -core coloured coded 7LD per yand, tariff to your requirements. Sulta bie for hoteln, etc. 200/250v. 15 A
88.38. 20 A . 89.30 . P. 75 p . Other amperages Reconditioned as new. 2 years guarantee.
MODERN DESE PHONES, red, green, blue or topaz, 2 -tone grey or black, with internal bell and handset with 0-1 dial 25.50 . case with junction box handset. Thoroughly overbauled, guaranteed. Price 25.25 . Send s.a.e. 10-WAY PRESS-BUTTON INTER-COK TELEPEONES in
Bakelite case with function box handset. Thoroughly over-
 Bakelite case with junctlon box. Thoroughly overbauled. Guaranteed. $\mathbf{2 7 . 7 5}$ per unit. Send s.a.e.
 me/s. Crystal Controlled and operates frome a dry battery H.T./
L.T. $94 / 1$. L.T. 94/1. v. I.E. Ruben Mallory Type No. 1 and employs the
following 14 valves: 3 A4 1 off; 11.46 off; $1 \mathbf{T} 44$ off; 1s5 1 off; 1 A3 2 off. 26.50 plus 75 p P. \&
QUARTERLT CHECE KETERS 15A 23.90. 20A \&4.22. P. \& P. 50p.
All prices subject to fluctuation
Multi Relay Units, Group selectors, Final end aelectors and Relaye in atock, 20 -way fack stripe and tip ring and sleeve plus.
For callers only.
23 IISIE ST. ($\left.{ }_{22868}^{437}\right)$ LONDON W.C. 2 Open all day Saturdiay

PRECISION POLYCARBONATE CAPACITORS

All High stability-Extremely Low Laakage $440 \mathrm{VAC}(\pm 10 \%)$
$0.1 \mathrm{FF}\left(1 \dot{H}^{\prime} \times 1^{\prime \prime}\right)$
$0.22 \mu \mathrm{~F}$

 5 mA, Valueg available: $3 \mathrm{~V}, 3 \cdot 3 \mathrm{~V}, 3.6 \mathrm{~V}, 4 \cdot 7 \mathrm{~V}, 5 \cdot 1 \mathrm{~V}, 5 \cdot 6 \mathrm{~V}$,
$6.2 \mathrm{~V}, 6 \cdot 8 \mathrm{~V}, 7.5 \mathrm{~V}, 8-2 \mathrm{~V}, 89 \mathrm{~V}, 10 \mathrm{~V}, 11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}, 13.5 \mathrm{~V}$,
$15 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}, 33 \mathrm{~V}, 4 \mathrm{l}$

REGISTORS-High stability, low noise carbon film 5%,
$\frac{1}{3} W$ at $40^{\circ} \mathrm{C}, \frac{\mathrm{y}}{3} \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. E12 series only-from $2-2 \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$. ALL at 1 p each, 8 p for 10 of any one value, 70 p for 100 of any one value. SPECLAL PACK; 10 of each
value 2.2Ω to $2.2 \mathrm{M} \Omega$ (730 reaistors) 5 .

 BRIDGE RECTIFTERS-24 2mp, $200 \mathrm{~V} 40 \mathrm{p} ; 350 \mathrm{~V} 45 \mathrm{p}$;
600 V 50 p . SUBMINTATURE VERTICAL PREBETS- 0.1 W only. ALL, at 8 p each; $50 \Omega, 100 \Omega, 220 \Omega, 470 \Omega, 680 \Omega, 1 \mathrm{k} \Omega$ ${ }_{2}^{2} 250 \mathrm{k} \Omega, 4.7 \mathrm{k} \Omega, 6.8 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 47 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$

PLEASE ADD 10p POST AND PACKING ON ALL OOST OF BEA/AIRMAIL.

PLEASE ADD 8\% V.A.T. TO ORDERA.
Tholesale price lists available to bona fide companies.
MARCOTRADING (Dept. D\|)
The Old School, Edstaston, Nr. Wem, Shropshire Tal. Whixall (Shropshire) (STD 094872) 464/5 (Proprs.: Minlcost Trading Itd.)

Clasvifieds continued from p. 87
Anticles for Sale continued.
VACUUM COATING PLANT 12in. dia. Various
accessories. Box WW 4306 . Now and second-hand rotary pumps, diffusion outfits, accessories, coaters, etc. Silicone rubber or varnish outgassing equipment from £40. V. N. Barrett (Sales) Ltd. 60 KHz MSF Rugby and 75 KHz Neuchatel Radio compact units, Two available versions. Toolex
Bristol Road, Sherborne (3211), Dorset.

EIn ARTICLES WANTED
HEATH KIT. MA12 Amplifier; Valve Tester: 1 E.F. E.L. Series must be in good working order. Buyer will collect, Essex Box No. WW 4308 . panels wanted for cash. Ring: Southampton 772501.

TIL77 required to finish design project eight wanted Road, Mogerhanger, Bedford, MK44 3RA Te: Write Road, Mogerhanger, Bedford, MK44 3RA. Tel:
Biggleswade 40220. Biggleswade 40220.
WANTED, all types of communications recervers Electronics, Ltd., Ashville Old Hall, Ashville Rd. Electronics, Ltd. Ashville
London, E.11. Ley. 4986.
T^{v} and Electronic Publications, TV repair for manuals. £3.35, as used by the experts. Stamps Ashbourne, Derby.
[4237

CAPACITY AVAILABLE

A IRTRONICS LTD., for Coil Winding-large plies. Suppliers to Puns. Also PC Boards Assem plies. Suppliers to P.O., M.O.D., etc. Export SE13 7PE. Tel. 01-852 1706 .
$[61$ BATCH Production Wiring and Assembly to station Parade, Ealing Common, London, W.5. Tel: 01-992 8976.
CAPACITY available to the Electronic Industry. C Precision turned parts, engraving, milling and grinding both in metals and plastics. Limited capacity available on Mathey SP33 JIG BORER. Write for lists of full plant capacity to C.B. Industrial Engineering Ltd., 1 Mackintosh Lane, E9 6AB. Cot
CMPONENT ASSEMBLY, Wiring and Test of types.C.Bs, Electronic panels and Chassis, ProtoDAVANT ELECTRONICS, 11 Ellesmere Road, Shrewsbury. Tel. Shrewsbury 50550 or Bomere Heath (Shrews) 682.

SEMICOMDUCTOR DATA HANDBOOK

by General Electric

Price $\mathbf{£ 3 . 4 0}$

ELEMENTS OF TRANSISTOR PULSE CIRCUITS by T. D. Towers. Price $£ 3.70$
UNDERSTANDING IC OPERATIONAL AMPLIFIERS by R. Melen. Price $\mathbf{~} \mathbf{2 . 1 0}$ RECEIVING PAL COLOUR TELEVISION by A. G. Priestley. Price $\mathbf{E 5 . 2 5}$
ELECTRONIC EQUIPMENT RELIABILITY by J. C. Cluley. Price 62.70

DIGITAL ELECTRONIC CIRCUITS AND SYSTEMS by N. M. Morris. Price $£ 2.45$
OPERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS by Tobey. Price \& 4.20 DIGITAL LOGIC BASIC THEORY AND PRACTICE by J. H. Smith. Price $£ 1.65$
GE TRANSISTOR MANUAL. Price $£ 1.30$
TRANSISTOR FUNDAMENTALS AND SERVICING by B. Larson. Price $\mathbb{E 8 . 0 0}$
SERVICING ELECTRONIC ORGANS by M. H. Applebaum. Price $£ 2.00$
$\star A L L$ PRICES INCLUDE POSTAGE $*$

THE MODERN.BOOK CO.

SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS 19-21 PRAED STREET, LONDON, W2 1NP

Phone 7234185
Closed Sat. 1 p.m.
CONSULT US for all Electronic and Telecom. munications projects. High quality work by qualified staff at very favourable rates. Quotes free. D.C. Eliectronics. Tel: 0534 31814. D ESIGN, development and production of electronic circuits and systems. P.C.B. design, artwork and
production. Assembly and wiring of boards and production. Assembly and wiring of boards and equipment. Midand Eleotronic Services. 5 Pass Ave.,
Whittington, Staffs. Tel: 432086 . ENGINEER makes anything unusual. Inventors E models, displays. Special tools and equipment. Seymour, 30 Devonshire Drive, Stapleford, Notting-
ham.
$\mathrm{F}^{\text {LECTRONIC }}$ and Electro-Mechanical design and $\mathrm{E}_{\text {development }}^{\text {services offering one off design or }}$ developments to production. Single circuits or complete systems. D.C.A. Electronics, 19 Church Street, Warwick. Tel. Warwick 44992 , 4235° $\mathbf{S}^{M A L L}$ Batch Production, wiring assembly, to sample or drawings. Specialist in printed circuit assemblies. D. \& D. Electronics, 2 Bishopsfield, Harlow, Essex. Harlow 33018

COURSES

$\mathbf{R}^{\text {ADIO }}$ and Radar M.P.PT. and C.C.L.L.1. Courses. FY7 8JZ.
[25

BUSINESS OPPORTUNITIES

Hair Transplant

For free brochure, clip this ad. and send to:

Room 6
HAIR TRANSPLANT INTERNATIONAL
502 Eccleshall Road, Sheffield
133

RECEIVERS AND AMPLIFIERS

SURPLUS AND SECONDHAND
$\mathrm{H}_{\mathrm{S} 640} \mathrm{Rx5s}$, etc., AR88, CR100, BRT400, G209, Lt 6640 , etc., etc., in stock.-R. T. \& I. Electronics, Ley., Ashville Old Hall, Ashville Rd., London, E. 11.

Ex-COMPITER STABIILSED POWER SUPPIIES

RECONDITIONED, TESTED AND GUARANTEED
Ripple $<10 \mathrm{mV}$. Over-voltage protection 120-130v. $50 \mathrm{c} / \mathrm{s}$ input. Stepdown transformer to sult about 83
5-6v. 8A. Post \& Packing $£ 1 \cdot 70$ 5-6v. 12A. $\quad \sum_{£ 14}$ 5-6v. 18A. £16

PAPST FANS $4 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \mathrm{n} .100 \mathrm{cfm}$ $240 \mathrm{v} .50 / 60 \mathrm{~Hz} .63 .50$ (30p).
PAPST FANS 6in. dia. $\times 2$ tidn. deep Type 7576 £5.00 (30p)
Few only 6in. PAPST $£ 4$ (30p)

TRANSISTORS
 BC107/8/9 BC147/8/9 BC157/8/9 BF180 25p BF182/3/40p BF184 17p BC167 13p BFW10 55p BF336 35p 7418 DIL 34p
 2N3771 £1-10, 2N3441 50p, BD131 40p
 ELECTROLYTICS
 $30,000 \mu 25 \mathrm{v}, 68,000 \mu 16 \mathrm{v}, 15,000 \mu 30 \mathrm{v} 65 \mathrm{p}(20 \mathrm{p})$ $4000 \mu 70 \mathrm{v} ., 3,600 \mu 40 \mathrm{v} ., 4 \mathrm{l} \times 2 \mathrm{in}$. dla. 55 p (15 p) $5,000 \mu 35 \mathrm{v}$. 40 p (12p)
 EX-COMPUTER PC PANELS $2 \times 4 \mathrm{ln}$. 25 boards for $£ 1$ (30p).
 QH Bulbs, 12v. 55w.
 150 mixed HI-STABS 60p (11p) 60p (13p) 60p (11p) 250 Mixed Capacitors 200 SI Planar Diodes 50p (8p)
 Microswitches............... 8 for 50p (10p)
 Min. Glass Neons 8 for 50p (7p) 2N3055 EQUlV
 4 for $£ 1$ (10p)

Postage and packing shown in brackels
Please add $\mathbf{8 \%}$ VAT to TOTAL

KEYTRONICS

Mail Order only
44 EARLS COURT ROAD, LONDON, W.E 01-478 8498

SIGNAL generators, oscilloscopes, output meters wave voltmeters, frequency meters, multi-range meters, etc., etc., in stock.-R. T. \& I. Electronics Ley., Ashville Oid Hall, Ashvile Rd., London, E. 11
Led

NEW GRAM AND SOUND

 EQUIPMENTGLASGOW HI FI, Recorders, Video, Communica Etions Reciever always available we buy sell and exchange for photographic equipment. Victor Morris 31 Sauchiehall Street, Glasgow, G1: $8 / 10$ Glassfor 31 Sauchiehall Street, Glasgow, G.1; 8/10 Glassford
Street, Glasgow, G.2. Tel: $041-2218958$. 11

SERVICE AND REPAIRS

SCRATCHED TUBES. Our experienced polishing tubes as new again for only $£ 2.75$, plus carriage $£ 1$ With absolute confidence send to Retube Ltd., North $\begin{array}{ll}\text { Somercote Louth, Lincs, or 'phone 0507-85 } & 300 . \\ & 127\end{array}$

TAPE RECORDING ETC.

RECORDS MADE TO ORDER	
DEMO DISCS	VINYLITE
MASTERS FOR	
RECORD COMPANIES	PRESSINGS

Single discs, 1-20, Mono or Stereo, delivery 4 days from your tapes. Quantity runs 25 to 1,000 records PRESSED IN VINYLITE IN OUR OWN PLANT, Delivery $3-4$ weeks. Sleeves/Labels. Finest quality
NEUMANN STEREO/Mono Lathes. We cut for many Studios UK/OVERSEA5. SAE list.

PO Box 3, Hawk Street, Carn
alis
$[82$
TF QUALITY, durability matter, consult Britain's Ooldest transfer service. Quality records from your suitable tapes. (Excellent fund raisers for schools). Modern studio facilities with Steinway Grand.995 1661. ${ }^{[4302}$

VALVES WANTED

WE buy new valves, transistors and clean new comquotation by return - Walton's 55 Worcester ${ }^{\text {q }}$, Wolverhampton

STILL ON SPECIAL OFFER
 LOW FREOUENCY ANALYZER $50 \mathrm{~Hz}-50 \mathrm{KHz}$ ASSEMBLY AND INSTRUCTION INFORMATION S.A.E.
 100MHz SCOPE TUBES
 MULLARD D13-450GH-03. P31 PHOSPHOR. INTERNAL GRATICULE-6CM $\times 10 \mathrm{CM}$ RECTANGULAR. Y SENSITIVITY 3V PER CM $\times 11 \mathrm{~V}$ PER CM. SINGLE GUN. DISTRIBUTED YPLATES, TRACE ROTATE COILS.
 BRAND NEW BOXED. $£ \mathbf{3 0}$ each. CARRIAGE £2.

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 74-90

[^5]

$3009+$ SL120

This new turntable offers the
mechanical excellence of the SL110 in a more compact form.
Ideally suited to our precision pickup arms, its use is detailed in
information sheet No. 15, a copy of
which will be sent to you on request.
包四:
The best pick-up arm in the world

Write to SME Limited

Steyning Sussex England
Telephone: Steyning (0903) 814321

The life and efficiency of any piece of electronic equipment can rest entirely on the solder used in its assembly. That is why for utmost reliability leading electronic manufacturers in the USA and in 106 other countries throughout the world insist on using Ersin Multicore Solder It's the solder they have depended on for consistent high quality for more than 30 years

If you are not already using Ersin Multicore Solder it must be to your advantage to investigate the wide range of Specifications which are available. Besides achieving better joints - always - your labour costs will be reduced and subsequently savings in overall costs of solder may be possible

There are well over 1.000 Specifications, made to all International Standards to choose from, and here are just a few of the special solders that we manufacture

Savbit Alloy - dramatically reduces erosion of copper wires and printed circuits and also reduces the wear of soldering iron bits

96S Silver Solder - highest strength soft solder Melting point $221^{\circ} \mathrm{C}$. Bright and non-toxic. Replaces high temperature brazing alloys.

95 A alloy - Melting range $236-243^{\circ} \mathrm{C}$. For electrical connections subjected to peak temp of approx. $240^{\circ} \mathrm{C}$.
H.M.P. alloy - Melting range 296-301 C. Highest melting point soft solder for high service temperature applications.
T.L.C. alloy - Melting point 145 C. Lowest melting point Ersin Multicore solder for making joints on top of other solders and for heat sensitive components
L.M.P. alloy - Melting Point $179^{\circ} \mathrm{C}$. For soldering silver plated surfaces such as ceramic capacitors and soldering gold.

Alu-Sol Multicore Solder - for soldering aluminium
Arax acid-cored solder - for non-electrical applications or pre-tinning of parts of difficult solderability (flux residue must be removed) which can then be assembled with Ersin Multicore Solder

Write for Technical Bulletins, on your Company's letterhead, for products which interest you to

Multicore Solders Ltd.

Maylands Avenue,
Hemel Hempstead, Hertfordshire, HP2 7EP
Tel: Hemel Hempstead 3636 Telex : 82363

[^0]: Manufacturers and distrlbutors of Electrical Measuring Instruments. Sole U.K. distributors of FRAHM Resonant Reed Frequency Meters and Tachometers. Manufacturers of purpose built electrical and electronic equipment to customers" requirements.

[^1]: Price 25 p (Back numbers 50 p)
 Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
 Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
 Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."
 Subscription rates: 1 year, $£ 5$ UK and overseas ($\$ 13$ USA and Canada), 3 years, $£ 14$ UK and overseas ($\$ 36$ USA and Canada). Student rates: 1 year, $£ 2.50$ UK and overseas ($\$ 6.50$ USA and Canada), 3 years, £7 UK and overseas (\$18.20 USA and Canada).
 Distribution: 40 Bowling Green Lane, London ECIR 0NE. Telephone 01-837 3636.
 Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281 Subscribers are requested to notify a change of address four weeks in advance and to return enveiope bearing previous address.

[^2]: QS108/45 Q8150/30
 QS150/36
 Q8150/40
 OS5 $50 / 45$ QS150138
 Q8150/40
 QS150/45
 QS150/80

[^3]: *Write to us enclosing 45p P.O. or cheque for this month's Elektor. If you like Elektor and wish to receive the next eight issues, we offer you the subscription for the price of seven issues, $£ 3.60$ including postage.
 Elektor Publishers Ltd.
 6, Stour Street, Canterbury CT1 2XZ. Tel Canterbury (0227) 54439

[^4]: 28, ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB Telephone Egham 3603. Telex 264475 Shop hours: 9-5.30 dailv. 9-1 pm Sats. NORTHERN BRANCH: 680, Burnage Lane, Burnage, Manchester M19 1NA Telephone (061) 4324945
 Shop hours: Daily 9-5.30pm; 9-1pm Sats.
 U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA. P.O. Box 27
 Swarthmore PA 19081 .

[^5]:
 OF SALE AND SUPPLY. Thit perlodical ls mold mubject to the following conditions namely that to than not without the written consent of the publikhers first given be lent re-sold, hired out or otherwise diapoed of by way of Trade at a price in excess of the recommended maximum price shown on the cover, and that it ahall not t
 cover by way of Trade or afilixed to or as part of any publlcation or advertining, literary or pictorial matiter whationerer.

