

Balloon broadcasting

Reducing distortion

Spairline

We don't claim that $\mathbf{m i}$ actually runs its own airline, of course. But we do claim to be strategically sited for delivery to a remarkably large number of airports. Which is handy for getting those spares airborne in double-quick time. In fact most of our orders are shipped the day they're received.

Then, too, our servicing and spares set-up is unusually large. In fact, our three B.C.S.-approved laboratories in the U.K. issue more calibration certificates for electrical measurement than any other organisation in the country. And our Service Division at Luton Airport is the first organisation of
its kind to be registered on the M.o.D. defence contractors' list. We run our own sizeable fleet of vans to ensure the minimum of delay in collection and delivery.

Abroad, there are $\mathbf{~ m i}$ service operations in, among other places, France, Germany, Australia, U.S.A., Canada and South America.

Put all those facts together and you get what is probably the surest and speediest servicing operation in the business. And that holds good whether you're in Manchester or Marseilles, Sydney or São Paulo.

LOW COST TESTERS

PORTABLE INSTRUMENTS

INSULATION TESTER

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV .
$1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale. Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre. Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$. Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA .

CURRENT RANGE

100 pA to $100 \mu \mathrm{~A}$ on 6 decade logarithmic scale. Accuracy of current measurement $\pm 15 \%$ of indicated value. Input voltage drop is approximately 20 mV at $100 \mathrm{pA} ; 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
Maximum safe continuous overload is 50 mA .

MEASUREMENT TIME

<3 s for resistance on all ranges relative to CAL position.
<10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V .
Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position.

RECORDER OUTPUT

1 V per decade $\pm 2 \%$ with zero output at scale centre. Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

TRANSISTOR TESTER

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is powered by a 9 V battery.
TRANSISTOR RANGES (PNP OR NPN)
$I_{C B O} \mathcal{I}_{\text {E } B O:} 10 n A, 100 n A, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$, $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$, 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
BV Сво $\quad 10 \mathrm{~V}$ or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
$I_{B}: \quad 10 n \mathrm{~A}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu A, 10 \mu A, 100 \mu A$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and $10.0 \mathrm{~mA} \mathrm{acc} . \pm 1 \%$.
$h_{\text {FE }} \quad 3$ inverse scales of 2000 to 100, 400 to 30 and 100 to 10 convert I_{B} into h_{FE} readings.
$V_{B E}: \quad 1 V$ f.s.d. acc. $\pm 20 \mathrm{mV}$ measured at conditions on h_{FE} test.
$V_{C E(s a t)}: \quad 1 \mathrm{~V} . \mathrm{s.d.acc} . \pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or 30 acc. $\pm 20 \%$.
DIODE \& ZENER DIODE RANGES
IDR':
Aslebotransistor ranges.
$V_{Z}: \quad B r e a k d o w n$ ranges as $B V_{C B O}$ for transistors.
$V_{D F}: \quad 1 \mathrm{~V} . \mathrm{s.d}$. acc. $\pm 20 \mathrm{mV}$ at $I_{D F}$ of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .

LEVELL ELECTRONICS LTD.

Moxon Street, High Barnet, Herts. EN5 5SD
Tel : 01-4495028/440 8686

Prices include batteries and U.K. delivery, V.A.T. extra Optional extras are leather cases and mains power units Send for data covering our range of portable instruments.

Anoers menns meters...

PRESTIGE RANGE

- High accuracy and stability
. Clear Sperry Display
- Automatic zero-ing
- High noise rejection (78 db CMR)
- Extremely versatile

Competitive prices.

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Recorders 60 or 120 mm . charts. Non-ink marking. DC moving coil and AC rectified.

Stafford Long Scale 240°. 6 models, $3 \cdot 5^{\prime \prime}-11 \cdot 5^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, AC moving iron. Also 98° scale.

Profile 350 edgewise $4 \cdot 3^{\prime \prime}$ scale.
DC moving coil and AC moving coil rectified. Horizontal or vertical mounting.

Kestrel Clear Front. 7 models, $1 \cdot 3^{\prime \prime}-5 \cdot 25^{\prime \prime}$ scales. DC moving coil, $A C$ moving coil rectified, $A C$ moving iron.

Lancaster Long Scale 240°. 2 models, $4^{\prime \prime}, 5 \cdot 5^{\prime \prime}$ scales. DC moving coil and $A C$ moving coil rectified.

Hifis starts here

The quality of the sound you hear from your hi-fi depends on the quality of transcription from the record-so you won't want to skimp on quality. When you choose your turntable deck, you'll probably choose Garrard

Fifty-five years of Garrard experience and know-how in producing top-quality record playing equipment is concentrated in the range of record playing units now available. There are three modules complete with attractive bases and lift-off covers, ready-wired for instant installation.

The SP25 Mk IV is the most popular budget unit on the market. It features the famous Garrard four-pole synchronous riotor to ensure smooth, constant speeds, the finely engineered pickup arm with resiliently mounted counterbalance weight, calibrated bias compensation and damped čueing.

The 86SB represents just about the best buy in hi-fi today. It incorporates belt drive, the famous Garrard four-pole synchronous motor, high inertia turntable, contoured mat, precision pickup arm with fine stylus force adjustment and bias compensation calibrated for elliptical and conical styli.

The Zero 100SB has every quality feature you could expect to find on a record deck. What makes it truly unique is the tangential tracking pickup arm virtually eliminating tracking error and consequent harmonic distortion. Other features include adjustable, resiliently-mounted, counterbalance weight, fine stylus force

Carrard
 APLESSEY DUALITY PRODUCT

Garrard, Newcastle Street, Swindon, Wiltshíre
adjustment, magnetic bias compensation calibrated for elliptical and conical styli, high inertia turntable with contoured mat, a record counter and the famous Garrard four-pole synchronous motor.

Use the coupon to obtain your free copy of the fullcolour brochure on the complete range of Garrard record playing units.

Vorpexiarn QUALITY AMPLIFIERS FOR THE PROFESSIONAL

50/70 WATT ALL SILICON AMPLIFIER
WITH BUILT-IN 5-WAY MIXER USING F.E.T.s

PRICE
ON APPLICATION

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER

PRICE
ON APPLICATION

PRICES
ON APPLICATION

100 WATT ALL SILICON AMPLIFIER

THE 100 WATT MIXER AMPLIFIER

20/30 WATT MIXER AMPLIFIER
CP 50 AMPLIFIER

200 WATT AMPLIFIER

F.E.T. MIXERS AND PPMs

Vortexion Ihtd

TEL: 01.5422814 and $01.5426242 \cdot 3 \cdot 4$ TELEGRAMS: VORTEXION'LONDON SW 19 g 257-263 THE BROADWAY WIMBLEDON • S W19 1SF

Good News Travels Fast

Haltron service is always good news. Around the world, Governments and many other users of electronic valves, senniconductors and integrated circuits turn to Halton for service they can trust. Efficiency they can rely on. Haltron are International Specialists, supplying products of outstanding high quality and confirmed reliability. Our prices are competitive; and a policy of extensive stocking nieans speedy despatch to meet your requirements. Specify Haltron. Share in the good news yourself.

Hall Electric Limited,
Electron House.
Cray Avenue, St. Mary Cray,
Orpington, Kent, BR5 30J.
Telephone: Orpington 27099
Telex: 896141

3 sizes... 4 solutions

Four Westinghouse 67 cm diagonal TV colour tubes. Each one directly responding to the requirements of the European market

In 1971 we came out with the 90° A67-120X to meet set manufacturers' need for a 67 cm diag. tube. 1972 saw widespread construction of the "slim-line" set and we responded with the 10 cm shorter profile 110° A67-140X.

This year an improved version of this tube is available - the A67-410X

Its "fast-on" technology for solidstate circuitry permits European viewers to obtain a full colour image within $4-5 \mathrm{sec}$. following switch-on of their receiver.

And recently, owing to the employment by many manufacturers of a narrow neck system, we've introduced the compatible 110° narrow neck A67-150X.

All proving that at Westinghouse we make a point of developing finer products to match the dynamic
needs of the industries we serve. Here in Europe and throughout the world.

For further information on these tubes and the many hundreds of other precision devices for industrial and defense application, please write or call:

Electronic Tube Division,
Westinghouse Electric S. A. No. 1 Curfew Yard, Thames Street, Windsor Berks. Phone: 63392.

You could easily make our 12-speed chart recorder faster than you thought possible.

Send away for our 12 -speed, $10^{\prime \prime}$ chart recorder kit-the IR-18M. And you'll receive a very clear, easy to understand instruction manual with it. Which explains every single step. To make light work of assembly and provide you with a high quality chart recorder a lot quicker than you thought.

And just look what you'll be getting. Multispeed capability. With fast, pushbutton switch sclection of speeds from 5 seconds per inch to 200 minutes per inch. To give you all the versatility you need.

You'll also get two input ranges, giving accurate voltage measurements of 1 millivolt and 10 millivolts full scale. Excellent repeatability. And a full scale pen response time of one second many much higher the 1G-18 Solid State kit too. Outputs able using repeatable
$11^{\text {-comparing favourably with }}$ priced recorders. Take a look at I Sine-Square Wave Generator from 1 Hz to 100 KHz are availswitch selection.

And its sine and square wave outputs are available simultancously. With less than 0.1% sine wave distortion. And less than 50 ns square wave rise time.

And, for quick accurate testing of diodes, FETs, transistors, SCRs and triacs, there's the IT-121 Tester kit.

You can see these and other Heathkit electronic kits at the London Heathkit Centre, 233
Tottenham Court Road. Or at our showroom in Bristol Road, Gloucester. Otherwise just clip the coupon and we'll send you the complete Heathkit catalogue.

Faster than you thought possible. Heath (Gloucester) Linited,
 Dept WW-104, Bristol Road, Gloucester, GL2 6EE. Tel: Gloucester (0452) 29451.

The world's most universal audio bridges

Each of these bridges has ten decade ranges and can be used to measure any type of component or complex impedance. Transformer ratio-arms are used to cover a very wide range of measurement using a minimum number of standards which are set digitally. The three terminal facility provided by this type of bridge enables small values of capacitance or high values of resistance to be measured at the end of long lengths of cable. Components can also be effectively isolated electrically from a complex network allowing individual measurements to be made without disconnection from the circuit being necessary.

Wayne Kerr's B224 and B642

The B224 is a manually operated bridge, the resistive and reactive terms being independently set to a null indicated on the meter. A rechargeable battery is fitted in order to make the instrument portable.

The $\mathbf{B 6 4 2}$ balances itself automatically. The meters read real and quadrature terms and highly stable analogue outputs are provided which are directly proportional to capacitance and conductance above 10Ω impedance and also to inductance and resistance below 10』. One or two decades can be set to provide the first significant figures of the measurement, thereby increasing the meter sensitivity by 10 or 100 times. If a chart recorder is connected to the output of either term, drifts in component values to at least four significant figures can be observed.

For more information, telephone Bognor Regis on (02433) 25811 or write to the address below:

WAYNE KERR

Durban Road, Bognor Regis, Sussex PO22 9R2
 Telex: 86120. Cables: Waynkerr Bognor
 A member of the Wilmot Breeden group

SPECIFICATION				
	B224 (Manual balance)		B642 (Autobalance)	
	1592 Hz (internal) $200 \mathrm{~Hz}-50 \mathrm{kHz}$ (external)		1592 Hz (internal) $200 \mathrm{~Hz}-20 \mathrm{kHz}{ }^{*}$ (external)	
Ranges for specified accuracy				
	0.1\%	0.3\%	0.1\%	0.3\%
C	100fF - $10 \mu \mathrm{~F}$	10 hF - 10 mF	1 pF - $10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}-10 \mathrm{mF}$
G	100-100mU	100mu - 1k	10nO- 100 mO	$100 \mathrm{mu}-1000$
L	$1 \mathrm{mH}-10 \mathrm{kH}$	$100 \mathrm{nH}-1 \mathrm{mH}$	1 mH - 10 kH	$1 \mu \mathrm{H}-1 \mathrm{mH}$
R	10Q- 1G Ω	$1 \mathrm{~m} \Omega-10 \Omega$	10S-100M	$10 \mathrm{~m} \Omega-10 \Omega$

NOTE: 0.1% accuracy relates to parallel component measurements above 10Ω impedance. 0.3% accuracy relates to series component measurements below 10Ω impedance.
*Manual operation only.

[^0]
INIRODUCING A SPEAKER THAT SOUNDS TOO GOODTO BE TRUE

Who else can offer infinite variable control over all listening conditions and personal tastes.

Embodied in the LSL Revelation III is a bass response that can be modified by a simple mechanical adjustment converting the enclosure from infinite baffle to a tuned vented port This, coupled with finger-tipped electronic controls of both the midrange and tweeter, makes the Revelation III, without doubt, the most versatile unit available today - at any price. The possibilities are infinite. Tailor your own sound to complement your own personal tastes and environment.

The three drive units are controlled by a sophisticated cross-over network, researched by the eminent Dr. A. R. Bailey of Bradford University and specially designed to create a flat frequency response whilst minimising transient distortion.

Panel resonance is minimised by a robust hand made enclosure. Constructed with the world's finest materials and choicest veneers.

Distribution is restricted to specialist dealers in order that the potential customer receives the demonstration the speaker merits. Should -you experience difficulty locally,write to us for further information enclosing the name and address of your local specialist dealer. Technical Specifications
Overall frequency response $35 \mathrm{HZ}-22,000 \mathrm{HZ}$. Power Handling Capacity 60 watts speech and music power. 35 watts R.M.S Impedence .-..... Nominal 8 ohms. Minimal 6 ohms. Drive Units.

Tweeter Soft domed high frequency unit. Midrange 5 "unit. Bass $13 " \mathrm{x} 8$ "unit. Lack of colourisation and other forms of distortion enable the unit to be used at high sound levels without listener fatigue.

12. muarorn

Brookroyd Mills, Bradford Road, Batley, Yorkshire. Tel. Batley 473646

Electronic valves (a comprehensive range) semi-conductors (a wide variety) integrated circuits... and now a comprehensive range of Hybrid Microcircuits. Prices on request.

Teonex offers more than 3,000 devices. They are competitively priced and they are superlative in performance because the company imposes strict quality control. Teonex concentrates entirely on export and now operates in more than sixty countries on Government or private contract. All popular types in the Teonex range are nearly always available for immediate delivery. Write now for technical specifications and prices: Teonex Limited, 2a Westbourne Grove Mews, London W11 2RY, England. Cables : Tosuply London W11. Telex : 262256

updating from

PLASTIC VOLTAGE ATORS

A regular and constant output

whatever the input

Bestselling voltage regulators now in plastic

Following the sweeping success of SJS-ATES' integrated fixəd voltage regulators in TO-3 metal can, these circuits are now also available, ex stock, in SOT 32 plastic package.
Designated L129, L130 and L131, they are suitable for low cost applications in professional, industrial and consumer equipment requiring compact corrponents with Icw/medium output current, such as

- desk calculators
- video displays
- computer peripherals
- touch tuning and remote control for TV sets
- TV subsystems, such as video IF, sound IF, sync and chroma stages
A particularly interesting area of application is in local regulation syste $n s$ The main advantages of this circuit technique over traditional single point regulation are the reduction in common ground and inter-circuit coupling, high noise immunity and the elimination of problems due to line voltage drops.

Special features of the circuits include

- tight tolerance on the output voltage
- load regulation less than 1%
- ripple rejection 60 dB typical
- internal overload protection
- short circuit protection

The L129, L130 and L-31 are designed to operate in the $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. For the standard operating temperature rarge, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, these plastic voltage regulators are available with type numbers TDA 1405, 1412 and 1415.

NEW CORESSPECIFCALIY FORSWTCHEDMODEPOWER

Designers of switched mode power supplies no longer have to use transformer cores of a material and shape which are meant for quite different applications. A new range of ferrite cores being introduced by Mullard, the FX3700 series, is intended specifically for the job.

Insulation and safety, the special stresses of switched mode operation, winding economics, modes of circuit failure, mechanical specifications and BSI requirements have all been carefully considered in the design.

The cores may be used in units where the input is derived from rectified mains or from batteries,

and are suitable for designs covering a wide range of outputs. When used in 25 kHz push-pull circuits at the unfavourable end of the application spectrum (supplying low voltage, 5 V , output) d.c. output powers from 50 W to 500 W can be obtained. Higher outputs can be obtained in more favourable applications, and the cores can, of course, also be used in single-ended circuits
An application note is available which not only simplifies transformer design but helps to save time, money and trouble elsewhere in the circuit. For a free copy and data on the cores please write to Dept. C.I.H., Ref: CPS/C23, Mullard Ltd., New Road, Mitcham, Surrey CR4 4XY

Mullard

Linear power forS.S.B.

Three highly linear r.f. power transistors for single-sideband applications from manpacks to ship-to-shore transmitters are available from Mullard.

In all three the intermodulation products are typically more than 30 dB down on full rated output. Under some conditions this figure is even better than 40 dB . Furthermore, all three are electrically rugged and can withstand severe load mismatch.

The most powerful member of the family is the BLX15. Operating from supplies of up to 50 V in the range 1.6 to 28 MHz , it can supply 150 W p.e.p. síngly or 300 W p.e.p. in push-pull. Also, the full power rating is maintained up to 108 MHz in the c.w. mode.

The two companion types, the BLX13 and BLX14, operating from $24 / 28 \mathrm{~V}$ supplies over the range $1 \cdot 6$ to 28 MHz can supply p.e.p. outputs of 25 W and 50 W respectively

All three transistors are in plastic 'capstan' packages. For full data please use reader enquiry service no. WW074.

Key to colour cameratv reliability

Millions of burning hours are being registered by Plumbicon* colour camera tubes in television broadcasting in the U.K. Some programme companies are reporting lives of over 7,000 hours. In telecine equipment, lives of over 10,000 hours are not uncommon.

If you are 'tubing up for colour', Plumbicon tubes from Mullard are a wise choice. There are 36 types to choose from. Use reader enquiry service no. WW075 for a wallchart.

SINGLE-CHIP ERROR DETECTOR

What is virtually a complete sophisticated error detection system is contained in one 18-lead DL integrated circuit recently announced by Mullard. Designated type GZF1202, it is a LOCMOS (local oxidised silicon complementary MOS) device, and consequently has a low power consumption and can be used with TTL components.

In operation, a GZF1202 at the transmitter and another at the receiver divide the message by a polynomial expression and the remainders are compared. If they are different, an error has occurred. The message is transmitted in its original form with the remainder added to the end.

The GZF1202 provides for the use of six standard polynomials, and is thus suited for use in a variety of applications from modem interfaces to peripheral equipment such as disc stores. Samples of the IC are available for evaluation and data can be obtained

by using

 reader enquiry service no. WW076.

Image intensifiers which enable you to see on an overcast moonless night, by amplifying light by as much as 100,000 times, are fullyengineered items in regular production at Mullard.
The intensifiers manufactured include single- and multi-stage electrostatically focused types and electrostatically focused microchannel inverter types. For information on the range and its
special features use reader enquiry service no. WW077.

Contact coenmn

SECDND generation BRDADBAND TRANSISTDRS
The Mullard company is no newcomer to the supply of components for TV distribution systems and similar applications. For nearly a decade it has made available broadband transistors, and types such as the BFY90, BFW30 and BFW16A are now well established.

With demands for lower and lower cross-modulation distortion and more and more channel capacity, a second generation of Mullard broadband transistors has appeared. Prominent among them is the BFR94. This has an fT of 3 GHz which is maintained at currents up to the unusually high region of 125 mA . In this transistor, low cross-modulation, intermodulation and second-order distortion are combined with excellent broadband and low-noise performance.

Moreover, the low crossmodulation behaviour is straightforward and does not depend on operation at critically favourable collector currents and output voltages. A shift-due to a change in temperature, say-does not therefore result in a rapid rise in cross-modulation distortion.

Another second-generation broadband device, the BFR96, can be used to drive the BFR94. It covers the range 40 to 860 MHz , power gain is typically 8 dB and typical output voltage is 600 mV . Other types of transistor of similar interest are the BFR90 to BFR93. Data on all types mentioned can be obtained through the reader enquiry service no. WW078. by 'Electron'

\section*{| communcarions |
| :--- |
| FI |}

Wide rangeof TTL to Postoffice Spec
The Mullard range of TTL integrated circuits approved and provisionally approved to the stringent Post Office Specification D3000 now comprises 22 types. They are being supplied to Post Office contractors and are to be offered to other equipment manufacturers who are concerned with very high standards of reliability.

All types in the D3000 range are functionally equivalent to types in the well-known GFB7400D series. Encapsulation is ceramic 14-and 16-lead dual-in-line.

The specification includes important overstress and endurance tests with exacting internal inspection requirements. It assures an extremely high standard of reliability and long life performance, and users can expect a component life of forty years with cumulative failures not greater than 2 per cent. For a leaflet summarising the range use reader enquiry service no. WW069.

NEW MODULES

The highly successful u.h.f. amplifier modules manufactured by Mullard are to be followed up by two v.h.f. types. These are type numbers 437 BGY and 438BGY covering the frequency ranges $148-174 \mathrm{MHz}$ and $68-88 \mathrm{MHz}$ respectively.

Apart from their frequency range, both the v.h.f. modules provide the same performance: minimum output power 18 W for an input of 150 mW with a typical efficiency of 45%. Input and output impedances are 50Ω, and the nominal supply voltage is 12.5 V .

Among the operational features are the ability to withstand severe load mismatch and the provision for control of the output power by variation of the supply voltage. The operating temperature range is from -40° to $+90^{\circ} \mathrm{C}$.

By basing equipment on the modules, manufacturers can cut design time and also reduce
the number of assembly operations. Furthermore, as the modules are untuned, no adjustment is needed in the test room. For provisional data please use reader enquiry service no. WW070.

Space-saving circulators

Significant savings in space and weight can be made in communications and radar equipment by using Mullard miniature circulators. Despite their small size, they feature the same lowloss characteristics and wide bandwiths as their full-size counterparts.

There are eight ferrite 3-port types capable of handling up to 300 W in the u.h.f. region, and four microwave types rated at 50 W .

The u.h.f. types are divided into

Which

 Ferrite Core?A useful aid to finding the right type of ferrite inductor or transformer core for any particular application is provided by a new wallchart from Mullard. All preferred design types in their various shapes, sizes and materials are clearly summarised. For a copy please use reader enquīry service no. WW071.

100 W and 300 W families. Bandwidths fall within the spectrum 470 to 1000 MHz , and isolation is typically 25 dB . Connectors are N-type with the option of HF 7/16 DIN 47223 connectors for the high power circulators.

The four microwave circulators are broadband types providing
coverage through the S, C and X bands, and isolator versions are available of each type. Isolation depends on the band and is typically between 23 and 27 dB . Connectors are SMA coaxial.

For further information please use reader enquiry service no. WW072.

SEMICONDUCTORS FOR ULTRA-RELIABLE EQUIPMENT

 failure during equipment life are invited to contact Mullard.

The company supplies transistors and diodes to meet these stringent demands. Both Mullard semiconductor plants have BS9000 approval and can supply devices to BS9300 ' Q ' specification or, when a higher degree of assurance is needed, to BS9300 'P. specification. Several million devices to $B 59300$ were Mullard
released in 1973 by Mullard-more than by any other company.
Where additional checks are required, Mullard can provide precap visual inspection, mechanical and environmental tests and 100% 'burn-in'.

If your equipment demands semiconductors with special quality assurance, write to Mullard, reference CPS/C25, giving details of your requirement.

NEW! The 'Flip Top' Thick Film Frangible Resistor * dual purpose * easy diagnosis * low inductance

A totally new concept in pluggable, fusible resistors. Designed to fracture under a defined overload, the Erie 'Flip Tops' guarantee a complete circuit break.
Low surface temperature on a 'flipped top' ensures complete safety for surrounding components.

Average times for open circuit (assuming step increase) Type 7005-944 5 seconds at $15 \mathrm{~W}, 10$ seconds at 9 W Type 7005-945 20 seconds at $15 \mathrm{~W}, 30$ seconds at 9 W

Standard Thick Film
 Pluggable Resistors

* wide resistance value range
* space saving
* low inductance

The resistor elements are screened onto an alumina substrate and each complete circuit is protected by a green, flame-retardant silicone material.

Type 7005-934-Value range
0.3 ohms to 100 Mohms .

Thick Film H.V. Resistors

* space saving
 * high voltage
 * high value

Wire-terminated, thick film resistor screened onto an alumina substrate and each complete unit is protected by a glass overglaze. A superb range of small, high voltage, high value thick film resistors.

Tin Oxide Resistors

* BS 9000 and PO approved types * early delivery

Resistance range (ohms):
Type MO4 (BS/PO Approved) 100-100k
Type MO5 (BS/PO Approved) 91-100k
Type MOG4
10-200k
Type MOG5
10-270k
Type MOG6
10-500k

Low-cost pluggables (1 and 1.5 mm piercing) are also available - with BS 9000 Approval.

Wirewound Resistors * order now for rapid delivery

Hot moulded carbon track potentiometers

*standard range *custom designed *excellent delivery

Presets, including PO approved and lockable types, in $1 / 8,1 / 4$ and $1 / 2$ watt ratings. Edge operated and single/ganged spindle operated controls, with optional switch in $1 / 4$, $1 / 2$ and 1 watt ratings. Erie offer a custom designed service based on the moulded track technology which includes matched ganged versions.

FOR FULL DETAILS ON

 ALL COMPONENTS RING TECHNICAL SALES TODAY ON GREAT YARMOUTH (0493) 56122Erie Electronics Limited, South Denes, Great Yarmouth, Norfolk. Telex: 97421.

WHIliamps to Amps, Motorola leads with power devices.

Whatever your application and whatever your field, Motorola has the perfect power device for the job.

Automotive

Motorola leads with thyristors and transistors for high efficiency, high voltage ignition, and transistors for seat belt interlock systems.

Motorola improves reliability with transistorised voltage regulators and power rectifier bridges for alternators.

Computers

Motorola leads with low cost Darlington transistors, permitting CMOS and MOS to interface with large current devices-from milliamps to amps.

Motorola thyristors and triacs are in service in peripherals all over the world.

Consumer

Motorola leads with silicon, plastic and metal can transistors, and thyristors for TV convergence, deflection and power supply stages. And Motorola's NPN and PNP Darlington transistors are ideal for today's audio amplifiers.

Industrial

Motorola leads with a unique range of Beam-Fired thyristors for very high power DC to AC inverters.

Our high voltage power transistors and thyristors give smaller, more efficient switching power supplies.

And we're still' very much committed to Germanium - the most economic solution for low voltage/high current applications.

Silicon or Germanium transistors and there are 6 types of device construction available in plastic or metal packages - and monolithic Darlingtons mean that there's a reliable Motorola power device for every application.

(A) MOTOROLA
 Semiconductors

Motorola Semiconductors Ltd., York House. Empire Way. Wembley, Middlesex. Telephone: 01-902.8836.
European manufacturing facilities at Toulouse and East Kilbride.
Distributors: Celdif Ltd., Reading, East Kilbride;
GDS (Sales) Ltd., Slough, Dublin;
Jermyn, Sevenoaks; Lock Distribution,
Oldham; Semicomps Ltd., Wembley.

IP) IL.P. (tenetromeselee

SHEER SIMPLICITY!

New from AEI Semiconductors Four shapes for your diode requirement

These four new diodes - comprising the "M" range - have been developed to meet demands for maximum availability at the lower price sector of the market. A $16 \mathrm{amps}, 600 \mathrm{v}$ diode costs as little as 42 p for quantities of 1000 or more. The range covers 6 to $70 \mathrm{amps}, 50$ to 800 volts.

AEI Semiconductors Ltd., Lincoln. Tel:0522 29992
Part of GEC Electrical Components Group.
Also immediately available from:
Black Arrow (Electronics) Ltd:
Bristol (0272) 294313
Coventry Factors Ltd: Coventry (0203) 24091
Farnell Electronic Components Ltd:
Leeds (0532) 636311
LST Electronic Components Ltd:
Chelmsford 69543
W. S. McMillan \& Co. Ltd.: East Kilbride 38641/4

SDS Components Ltd.: Portsmouth 65311
T1 Supply Ltd: Slough 33411
J.V.N., Bromley, Kent: 01-464 1245

Now suitable for U.K., European and American voltages...

Minimod, the versatile British made range of encapsulated power supplies first introduced in 1973, has now been extended to cover European and North American mains voltages (and is interchangeable with most American types). Normally available ex-stock, all units are fully stabilised with fold back current limiting - the 5 V models have over voltage crowbar too!

STANDARD MODELS

Type Number	Output	Output Current Amps	Short Circuit Current mA (Typical)	\% Regulation Line and Load (Typical)
PU01	5 ± 0.1	0.5	370	0.3
PU02	5 ± 0.1	1.0	770	0.5
PU03	$15-0-15 \pm 0.2$	0.10	37	0.1
PU04	$15-0-15 \pm 0.2$	0.20	84	0.1
PU05	$12-0-12 \pm 0.2$	0.12	45	0.1
PU06	$12-0-12 \pm 0.2$	0.24	120	0.2

Input voltage ranges $103 \cdot 126 \mathrm{~V}, 200-240 \mathrm{~V}$. 210-250V. Frequency $50 \cdot 400 \mathrm{~Hz}$ all types.

Comprehensive specification given in brochure GT 29b which is available on request.
\star SPECIAL DESIGN SERVICE
Custom built units for applications requiring different specifications are produced as part of our standard service. Try us first.

Gardners

Specialists in Electronic Transformers \& Power Supplies.

GARDNERS
 TRANSFORMERS LIMITEO

Gardners Trańsformers Limited, Christchurch, Dorset/BH23 3PN Tel. Christchurch 2284 ISTD 02015 2284) Telex. 41276 GARDNERS \times CH WW-026 FOR FURTHER DETAILS

The symbol of sound quality.

Background Speakers

Outstanding results from small, inexpensive speaker enclosures. Sturdy cabinets either hand veneered in teak or covered in Black Vynide.

Power ratings from 1 watt RMS to 8 watts RMS.
S. One of a-range
four small speakers-
bookshelf or wall mounting-
slim line, square, wedge or corner cabinet fitting.

For further information and address of your local stockist write to: K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.
ww-013 FOR FURTHER DETAILS

used as standards in many industries

Accurate to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified
Not sensitive to voltage or temperature changes, within wide limits

- Unaffected by waveform errors. load, power factor or phase shift
- Operational on A.C., pulsating or interrupted D.C., and superimposed circuits
- Need only low jnput power
- Compact and self-contained
- Rugged and dependable

FRAHM Resonant Reed Frequency Meters are available in plastic and hermetically sealed cases to British and U.S. Government approved specification. Ranges
$10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometer available on request Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks* in the U.K. for off-the-shelf delivery.

ANDERSELECTRONICSLIMITED

48/56. Bayham Place, Bayham Street London NW1. Tel: Oi-387 9092

Anders means meters
WW- 058 FOR FURTHER DETAILS

If you install PA equipment with our name on it, it guarantees yours.

One of the best ways to pick up more business is through a satisfied client.

For your part you know you'll do a good job.
You also need to know the equipment you use won't let you down.

Over the years we've listened to professionals to tell us what people want.

Amplifiers with an RMS output of 120 watts. Or 65 watts. Or our 35 watt mains/mobile model.

Omni-directional and uni-directional mikes. Our PRO M25 boom-arm. The extra light PRO M5 with a special tie-clip and jack plug

Thirty five different kinds of speakers. Megaphones. Headphones.

Everything down to microphone stands and 100 volt line matching transformers.

We're confident enough to put a two year guarantee on anything we make

But if something goes wrong we have parts here to get
things back in working order without wasting time. That's how Eagle PA got its name for reliability. To keep your clients satisfied.

Eagile

The name on Britain's widest range of electronic equipment.

Please send me the Eagle 1974 PA Brochure and your latest Electronics Range Catalogue.

Name \qquad
Address

Eagle International Precision Centre Heather Park Drive Wembley HAO 1SU Telephone 01.9030144

WW-019 FOR FURTHER DETAILS

Economy! Simplicity!

1830 Series C.W, M.C.W, A.M, S.S.B

Crystal controlled
Transistorized HF/MF general purpose receiver
$120 \mathrm{kHz}-30 \mathrm{MHz}$ in 9 ranges
Rack mounting as standard
Cabinet optional extra
AC or battery operation
British MPT approved as ships reserve receiver

Illustrated brochure from:

Eddystone Radio Limited

Alvechurch Road, Birmingham B31 3PP. Tel: 021-475 2231. Telex 337081.

HIGH POWER DC-COUPLED AMPLIFIER

* UP TO 500 WATTS RMS FROM ONE CHANNEL
\star dC-COUPLED THROUGHOUT
* OPERATES INTO LOADS AS LOW AS 1 OHM
* FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
$\star 3$ YEAR WARRANTY ON PARTS AND LABOUR
The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth DC-20kHz@ 150 watts $+1 \mathrm{db},-0 \mathrm{db}$.
Power at clip point (1 chan)
Phase Response
Harmonic Distortion Intermod. Distortion Damping Factor Hum \& Noise ($20-20 \mathrm{kHz}$)

500 watts rms into 2.5 ohms $+0,-15^{\prime} \mathrm{DC}$ to $20 \mathrm{kHz}, 1$ watt 8Ω Below 0.05\% DC to 20 kHz Below $0.05 \% 0.01$ watt to 150 watts Greater than 200 DC to 1 kHz at 8Ω At least 110 db below 150 watts watts per channel

Slewing Rate Load impedance Input sensitivity Input Impedance Protection Power supply Dimensions

Wherever there is appreciation of fine sound

 reproduction, insistence is upon Britishloudspeaker systems.

Renowned among the discerning for their outstanding quality, the products of 4 Mordaunt-Short Ltd. are specified by professionals and by enthusiasts the world over. Choose them for your home - where the finest most concerns you.

Understand the latest developments in calculators, computers, watches, telephones,

television , automotive instrumentation
Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 814^{\prime \prime}$ and coritains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

Also availablē - a more elementary course assuming no prior knowledge except simple arithmetic.
In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions 4. Flip flops and Registers Offer Order this together with Design of Digital Systems for the bargain price of $£ 9.25$.

Design of Digital Systems contains over twice as much information in each volume as the simpler course, Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which. as you can see from its contents, also covers many more advanced topics.

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

Design of Digital Systems

A Solf-Instruction Course in 6 Volumes

1 ComputerArithmetic 2 Boolean Logic 3 Arithmetic Circuits 4 Memories \& Counters 5 Calculator Design Computer Architecture

Dexign of

Digial Systems

Book 1 .ine

$£ 5.95$

including packing and surface post anywhere in the world. (VAT zero rated). Payment may be made in foreign currencies. Quantity discounts are available on request.

To: Cambridge Learning Enterprises, Rivermill House, St. Ives, Huntingdon, Cambs.
*Please send me.....set(s) of Design of Digital Systems at $£ 5.95$ each,
*or.....set(s) of Digital Computer Logic and Electronics at $£ 3.95$ each,
*or.....combined set(s) at $£ 9.25$ each.
Name.
Address.

The symbol of soundquality.

Made from selected highdensity Swedist chipboard, the cabinets are handmade, hand-finished and matched in identically grained pairs.
Toensure consistentsound quality, all speakers are individually tested before leaving our factory.
Ask for a K.F. demonstration and hear for yourself.

Hi-Fi Speakers

The KR range consists of five outstanding speaker designs with power ratings from 18 watts (music power) to 90 watts
(music power).

KR10. A two way, two unit system, typical of K.F. quality and design
For further information and address of your local stockist write to: K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids, Machinery, etc., etc Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe, and internal $1 \frac{1}{2}$ volt standard size battery Model "Mini-On 1" measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price f17.50 Model "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price f20.00 (V.A.T. EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON),
138 GRAY'S INN ROAD, LONDON WC1X 8AX
('Phone 01-837 7937)

50mHz OSCILLOSCOPE TYPE C1-64

Made in USSR

Power supplies: $115 / 230 \mathrm{~V} \pm 10 \%, 50-40 \mathrm{~Hz}$.

Dimensions:

 $300 \times 200 \times 420 \mathrm{~mm}$.Weight:
19 kg .
PRICE, complete with full complement of connectors, cables, adaptors and accessories $\mathbf{£ 4 7 0}$ exclusive of VAT.

Lightweight, portable, transistorized, dual trace oscilloscope.
Display:
Rectangular CRT 6×10 div. $(48 \times 80 \mathrm{~mm})$ with illuminated graticule.
Vertical deflection:
Two input channels operated in alternate or chopped modes or algebraically summed.
Bandwidth:
DC to 50 mHz DC coupled.
3 Hz to 50 mHz AC coupled.
Sensitivity:
Channel I and II: $5 \mathrm{mV} / \mathrm{div}$. to $10 \mathrm{~V} / \mathrm{div}$.
Summing mode: $1 \mathrm{mV} /$ div. max.
Horizontal deflection:
Sweep 'A'-0.1 $\mu \mathrm{s} /$ div. to $1 \mathrm{~s} /$ div.
Sweep 'B'-0.1 $1 \mathrm{~s} / \mathrm{div}$. to $50 \mathrm{~ms} / \mathrm{div}$.
Sweep delay:
$1 \mu \mathrm{~s}$ to 10 s .
Time Base Modes:
' A ' only: ' B ' only: ' A ' brightens ' B '.
' B ' delayed by ' A ': ' A ' and ' B ' chopped or alternate.

Z \& I AERO SERVICES LTD.。

WW-081 FOR FURTHER DETAILS

Problem.

Where to obtain devices for push-pull audio power amplifiers which give good linearity and don't blow up on the slightest overload.

Solution.

M-OV audio beam tetrodes. A pair of KT66s will give up to 50 W and a pair of KT88s will give up to 100 W . And M-OV audio triodes, too: a pair of DA42s gives up to 200 W and a pair of DA 100 s gives up to 300 W .

EEVandM-OV know how.

LAP81

THE M-O VALVE CO LTD, Hammersmith, London, England W6 7 PE . Tel: 01-603 3431. Telex: 23435. Grams: Thermionic London. GEC 르 WW- 020 FOR FURTHER DETAILS

This swhy heriwe 50 Iperformsthe tunctionotu goods generctor

Voltage control sweep 1 decade linear 4 decades exponential

Fast rise time square <15 ns with current sinking capacity for 5 TTL loads.

Trigger pulse

FE툐물

KONTAKT 60

FOR INACCESSIBLE CONTACTS

- More than just a cleaner KONTAKT 60 guarantees perfect cleansing of contácts chemically
in accordance with today's technology

KONTAKT offers the following advantages:

1. Dissolves oxides and sulphides the safe way without attacking contact substances.
2. Contains carefully selected solvents which do not attack plastics whereas they do dissolve resinified contact greases and dirt.
3. Contains no silicone.
4. Contains a light lubricant in order to avoid the contact paths belng corroded.
5. Prevents further oxidation setting in.
6. Prevents 'creep' currents

Because of these outstanding properties Kontakt 60 is one of the best and mos Kontakt cons popular contact cleansing agents in the
world: Users include: Rolls-Royce Ltd., C.E.G.B., South of Scotland Electricity Board, Trinity House Workshops, Kolster Brandes, Mullard, Plessey Co., etc.

OTHER KONTAKT PRODUCTS ARE:

70 Protective Lacquer

72 Insulating Spray 75 Cold Spray for Fault Location

80 Special Siliconized Polish
100 Antistatic Agent for Plastics
101 Dehydration Fluid

Write for full details of above or complete range of Kontakt products to:
SPECIAE PRODUCTS DISTRIBUTORS LIMITED 81. Piccadilly, London, W. 1. 01-6299556

WW-009 FOR FURTHER DETAILS

WW- 063 FOR FURTHER DETAILS

TAKE A CLOSE LOOK

at a professional recorder that offers high performance, excellent reliability and is very easy to maintain. Ask yourself why so many commercial radio stations and recording studios are doing their best to wear them out, and not having much success. Decide if you need mono or stereo, console transportable or rack mounting versions and then inquire about prices.
We are sure you will be very pleasantly surprised.

Thesymbol of soundquality.

Unit Audio

Superbly made speaker enclosures containing high quality units designed to improve your listening pleasure. Ask for demonstrations of the KR6, PF6, PF8, MP6, MP138.

Power ratings from 8 watts (music power) to 20 watts (music power).

Illustrated here is the new MP6.

For further information and address of your local stockist write to: K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

WW-015 FOR FURTHER DETAILS

DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER

BRITEC LIMITED, 17 Devonshire Road, London SE23 3EN Tel: 01-699 8844 Telex: 896161

WW-105 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Si 452 $\mathbf{£ 3 5 . 0 0}$
Distortion Measuring Unit.
$15 \mathrm{~Hz}-20 \mathrm{KHz}-.01 \%$
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (09762) 2501

CARR STREET, CLECKHEATON, BD19 5LA

CATALOGUE NO. 5870
The Jackson Friction Ball Drive Reduction Unit is unique. Simply because it's the only one of it's type and size available in the United Kingdom. It has sealed lubrication, with a hardened steel shaft and bearings to give it extra long life. And it's low in price. The unit has a 10:1 reduction ratio, with an output torque of 8 oz . ins. minimum.

Our skilled personnel can produce custom made components to suit your individual needs. And with 45 years of experience your guarantee is our reliability.

Write for fully illustrated catalogue:
JACKSON BROTHERS (LONDON) LIMITED
Kingsway, Waddon, Croydon CR9 4DG Tel: $01-681$ 2754/7 Telex: 946849 U.S. Office: M. Swedgal, 258 Broadway, New York, N. Y. 10007

distortion with
 Celestion TELEFI

TELEFI

At last you can enjoy TV entertain-
ment with the added pleasure of true
$\mathrm{Hi}-\mathrm{Fi}$ sound. Telefi is a unique electronic invention which picks up VHF from the TV and relays this through your own $\mathrm{Hi}-\mathrm{Fi}$ equipment. Telefi ensures crisp, full-range, distortionfree reproduction of music and speech providing an improvement over ordinary TV sound which will amaze you. Telefi is safe and requires no permanent connection to the TV set. Telefi is indispensable to the TV viewer who requires $\mathrm{Hi}-\mathrm{Fi}$ TV sound.
"Ar uelected tor The Deifigncentre, Londen".

LOUDSPEAKERS

Celestion Loudspeakers are engineered to the highest standard and provide superlative sound reproduction. The cut-away illustration shows the high, mid and bass speakers used in the Ditton 44 Monitor, one of the most popular loudspeakers available to the discerning listener.
A range of models is available to suit your personai requirements, Celestion Hi-Fi Loudspeakers carry a five-year guarantee.

THE NEW P60 INTEGRATED STEREO AMPLIFIER

Low profile design only 2" high
Recording with or without tone correction.
*Peak level indicator for tape recording
Suitable for continual high power operation
Dual independent tape operation.
*Light Emitting Diodes for level monitoring in main and pre-amplifiers.
Toroidal mains transformer.

Facilities for three tape recorders.
*Separate main and pre-amp gain controls.
Fully protected output stages.
RIAA phono correction unaffected by cartridge inductance.
Ultra low distortion circuits.
*New tape monitoring, $A-B$ and $A-B-C$ facilities.
International state-of-the-art circuitry from Cambridge Audio in Britain.
*To the best of our knowledge these features have never been included in a comparable amplifier hitherto.

for people who listen to music

Life in the cells

SONNENSCHEIN dryfit - the lead-acid accumulators in which the electrolyte is retained in a jelly. They are absolutely maintenance-free, leak-proof and independent of operating position.
Available in many sizes, from 2 V to 12 V with ratings from 0.9 Ah to 36 Ah .

Dryit PC batteries -
for cyclical operation. Operating life of 3-4 years or approx 1,000 partial discharge cycles.

Also available
Dryfit ST batteries for float
or stand-by operation, giving 4-5 years life under these conditions.

Send for your brief today

F.W.O. Bauch Limited

49, Theobald Street,
Boreham Wood. Herts. WD6 4RZ
Tel: 01-953 0091 Telex: 27502

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 017837/7937

WW-051 FOR FURTHER DETAILS

The symbol of sound quality.

Ideal for mobile use. Finished in Vynair for style to match performance.
Power rating from 25 watts RMS to 100 watts RMS.
R12DXH. One of a range of six superb Power speakers

For further information and address of your local stockist write to:
K.F. Products Ltd.,

Ashton Road, Bredbury,
Stockport, Cheshire.

P.A. \& Disco Speakers

Designed to satisfy the demand for high quality sound required by Discotheques and advanced PA systems.

DECADE BOXES

Junior' Series-Resistance-1\%				
	Decades	Ohms Range	Ohms Resolution	£
J1	5	0-1.111.100	10	22.20*
J2	5	O- 111.110	1	22.00*
J3	4	O- 111.100	10	18.10*
J4	4	- 11.110	1	17.85*
J5	3	O- 11.100	10	14.80*
J6	3	$0-1.110$	1	14.74*
J60	6	O- 1,111,110	1	26.80*
J70	7	0-11.111.110	1	31.50*
"Junior" Series-Capacitance-1\%				
	Decades	pF Range	pF Resolution	f
JC1	3	100- 111.000	100	18.00*
JC2	$2+$ var	30- 11.140	"infinite"	18.90*
"Point One" Series--Resistance-0.1\%				
	Decades	Ohms Range	Ohms Resolution	£
R3	4	$0-1.111$	0.1	35.00
R4	4	O- 11.110	1	34.50
R5	4	O- 1111.110	10	34.00
R7	5	O- 1.111.100	10	42.00
R9	5	O- 111.110	1	42.50
R10	5	0- 11,111	0.1	43.00
R11	5	0-11.111.000	100	49.00
R20	6	O-1.111.110	1	51.00
R21	6	O- 111.111	0.1	51.50
R22	6	O- 11.111.1	0.01	56.00
R30	7	0-11.111.110	1	65.00
R31	7	O- 1,111.111	0.1	60.00
R32	7	O- 111.111.1	0.01	60.50
R41	8	0-11.111.111	0.1	73.00
R42	8	0-1.111.111.1	0.01	70.00
"Hundred" Series-Resistance-0.03\%				
	Decades	Ohms Range	Ohms Resolution	£
R400	4	O- 111.100	10	68.53
R401	4	$0-11.110$	1	71.66
R402	4	O- 1.111	0.1	73.04
R403	4	$0-111.1$	0.1	77.03
R600	6	0-11,111,100	10	93.54
R601	6	O- 1.111.110	1	94.97
R602	6	O- 111.111	0.1	96.70
R603	6	O- 11.111.1	0.01	101.20
R701	7	0-11.111.110	1	110.62
R702	7	0-1.111.111	0.1	112.35
R703	7	0- 111.111.1	0.01	116.88
R802	8	0-11.111.111	0.1	126.27

DECADE BOXES continued
R803
R803
High Dissipation-Resistance-
$\mathbf{1} \%$

High Dissipation-Resistance-1\%				
	Decades	Ohms Range	Ohms Resolution	£
HD1	5	O- 1.111 .100	10	75.00
HD1/L	5	O- 111.110	0.2	79.00
High Dissipation-Inductance-5\%				
	Decades	mH Range	mH Resolution	£
41	3	$1-1000$	1	60.00
L2	2	$1-100$	1	45.00
13	2	$10-1000$	10	50.00
"Hundred"' Series-Inductance-0.3\%				
	Decades	mH Range	mH Resolution	$\underline{1}$
L300	3	O- 1000	1	200.00
L400	4	$0-10.000$	1	260.00

Decades

	Decades p	pF Range	pF Resolution	Accuracy	£
C3	3	100-111.000	100	1\%	35.00
PC3	3	100-111.000	100	5\%	48.00
C4	4	100-1.111.000	100	1\%	50.00
PC4	4	100-1.111,000	100	5\%	75.00
Decade plus Variables					
	Decadesp	pF Range		Accuracy	f
VC4	3	50-111.150		1\%	44.00
VC5	4	50-1,111,150		1\%	61.00
PVC5	4	50-1,111.150		0.5\%	95.00
SVC5	4	50-1.111.150		0.1\%	390.00
C500	4	50-1.111,150		0.2\%	180.00

SVC5 special. Details on application. Variables

	pF Range			Accuracy	£
VC1	10-	260		1\%	20.00
PVC1 Mk. 2	$5-$	200		0.5\%	71.50
PVC2 Mk. 2	20-	1.120		0.5\%	65.00
VC2	20	1,130		1\%	30.00
PVC4	$0-$	10		1\%	50.00
PVC1/S	20-	120		0.5\%	45.00
Switched					
	uF Range		uF Resolution	Accuracy	f
C140	0	140	1.0	5\%	105.00†
C100	$0-$	100		5\%	$89.00 \dagger$
C60	$0-$		0.1	5\%	$80.00+$
C60P	$0-$			1\%	$166.00 \dagger$

D.D. Lloyd Imstruments tid

Brook Avenue, Warsash, Southampton SO3 6HP. Tel: Locks Heath 4221

> Special rate visits to Munich sponsored by Electronics Weekly and Wireless World in conjunction with Page \& Moy Ltd.

RETURN FLIGHT BY SCHEDULED AIRLINES VIA HEATHROW

HOTEL ACCOMMODATION
COACH TRANSFERS BETWEEN AIRPORT/HOTEL AND EXHIBITION
EXHIBITION CATALOGUE AND ENTRANCE TICKETS
RECEPTION PARTY IN MUNICH
ELECTRONICA 74
Electronica 74 is held every two years and is one of the top three European electronics exhibitions
Products on show this year range from components, semi-conductors to production equipment, instruments and materials. There will be over 1,700 exhibitors from 28 countries, including about 70 from the U.K.

SHORT STAY VISITS f87

You have a choice of three dates giving you 2 nights in Munich
(a) Thursday 21 st November to Saturday 23rd
(b) Saturday 23rd November to Monday 25th
(c) Monday 25th November to Wednesday 27th

For all 3 trips you have the choice of the following flights :
Day 1 - Depart Heathrow 09.35 arrive Munich 11.15
Day 3 - Depart Munich 12.00 arrive Heathrow 13.50 or
Day 1 - Depart Heathrow 14.45 arrive Munich 16.25 Day 3 - Depart Munich 17.15 arrive Heathrow 19.05
Return flight is by scheduled airline of British Airways or Lufthansa between London and Munich. Accommodation in twin bedded rooms on a bed and breakfast basis at the Esso Motor Hotel. Return coach transfers between hotel and airport. Three days coach transfers between hotel and exhibition. Exhibition catalogue and entrance tickets.
There will be a reception party to welcome you in Munich. A limited number of single rooms are available at a supplement of $£ 6.00$ per person.

EXTENDED STAY VISIT £135.00
If you wish to visit Munich for the duration of the Exhibition we have organised a visit from Tuesday 19th November to Thursday 28th November, allowing 10 days/ $/$ nights in Munich. The return flight is via Heathrow by scheduled airlines. Single room supplement of $£ 27.00$ per person

Further details may be obtained by using the form below or by ringing Louise Griffiths:
Tel. No. 0533-51211.

To : EWDS Electronica, Page and Moy Ltd., 136-138 London Road, Leicester LE2 1EB Please send me complete details of the short stay visits
the extended stay visit
(please tick which applicable)
Name (please print)
Address
\square
6th International Trade Fair for Components and Production Facilities 21st-27th November Munich 1974.

Barr \& Stroud's new EF3 Electronic Filter System means no more compromises when you buy variable filters. Now you can get the filter you need today, and additional plug-in units tomorrow. Today - the basic main frame and your choice of two modules to operate in low-pass, high-pass, band-pass, band-stop, band-separate, band-combine or cascade modes. Tomorrow - other interchangeable modules to meet your newest requirements. The first two modules;
already available, provide filtering with variable cut-offs between 0.01 Hz and 10.0 kHz , stop-band attenuation of $48 \mathrm{~dB} /$ oct. ($96 \mathrm{~dB} /$ oct. in cascade), and pass-band response from dc to 500 kHz . Get full details of EF3, the big breakthrough in electronic filtering from BARR \& STROUD LIMITED 1 Pall Mall East, London SW1Y 5AU Tel: 01-9301541 Telex: 261877
 Glasgow and London

WW-090 FOR FURTHER DETAILS

Please write for illustrated leaflet of these and other specialised Sanwa meters

SOLE IMPORTERS.N UK.

QUAIITY ELEGTRONIGS LTA.
47-49 HIGH STREET, KINGSTON-UPON-THANES, SURIREY, KT1FIP Tol:01-546 4585
WW— 055 FOR FURTHER DETAILS

AEL GATWICK house, horley, surrey, england Tel: Horley (02934) 5353
Telex: 87116 (Aerocon Horley) Cables; Aerocon Telex Horley

The symbol of sound quality.

Outdoor Weatherproof Speakers

Specially constructed for outdoor use with complete weather and water protection built in.
Power ratings up to 25 watts RMS.

An example of a weatherproof speaker An example of a weatherproof speak
from a range which even includes an underwater speaker

For further information and address of your local stockist write to: K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

THE MOST ADVANCED SINGLI TUBE COMPACCOIOURTVCAMERAYEI

 The HV-1500 from ShibadenCombining compact, lightweight design with excellent colour fidelity this new single tube Shibaden camera fills the need for a high performance camera, small and simple enough for every CCTV application.
The HV-1500 has a unique Filter Integrated Colour Vidicon which does away with the usual complicated optical separation system and replaces it with a special vidicon filter, complemented by simple colour separation circuitry. The result is beautiful colour pictures, even in low light conditions, with no overlapping of images.
This simplicity of design also contributes to the camera's sturdiness. Coupled with the built-in automatic light sensitivity control, this makes the HV-1500 as easy to operate as a black and white camera Besides being ideal for all studio and outside broadcast uses, the simplicity, compactness and colour quality of the HV-1500 make it the perfect camera for applications such as surveillance, medical diagnosis, research and development and process control.

To see the HV-1500 in action, or for complete technical information, contact Shibaden's Technical Service Department at $01-2034242 / 6$ or write to

(6) Hitachi

- Shibaden (UK) Limited broadcast \& Cctv equipment manufacturers Lodge House Lodge Road • Hendon London NW4 4DQ.

WW-119 FOR FURTHER DETAILS

Purpose-bullt servo and actuator sytems usins standard components

McLennan Engineering Ltd. have considerable experience in the solution of actuator and servo problems using synchronous, stepping and DC motor techniques, an important facet of our skill lying in purpose-designing around standard components for speed and economy.

The illustrations show a selection of modules from the standard range and include the new EM/ 100/100 A servo drive system. All items are available individually or can be supplied engineered to custom-built systems.

1. EM $100 / 100$ A SERVO AMPLIFIER. A new addition to the range. A complete servo drive system including power supply which is eminently suitable for driving printed circuit moiors and other servo motors up to $1 / 6 \mathrm{~h} . \mathrm{p}$. EM 100 -output $\pm 24 \mathrm{~V}, 4$ amps continuous, 45 amps peak. EM 100 A - output $\pm 24 \mathrm{~V}, 7 \mathrm{amps}$ continuous, 75 amps peak. 2. DC SERVO AM 1006 S With integral potentiometer. Max continuous output Torque 14.6 kgcm at $7 \mathrm{r} . \mathrm{p} . \mathrm{m}$. 3. LOW INERTIA DC SERVO MOTOR Output 5W
2. CONTROL AMPLIFIER EM 40 Output $\pm 15 \mathrm{~V} 0.5 \mathrm{amp}$
3. TYPICAL PRECISION GEARS 120 to 32 DP

Tel: Crowthorne 5757/8.

The ITC CTC- 3 X is a lot of camera for the money. $£ 5500$ buys you a high performance colour television camera, that can be used in studio, telecine, mobile or remote colourcasting.

It comes complete with f1,810:1 zoom lens, servo and cable controlled.

A view-finder monitor which can be easily re noved or tilted both upward and downward.

A camera control unit which gives you remote controls including colour balance, iris, R.B. channel positions and gain, and on-off power and beam.

A separate mains lead that allows camera to be operated without CCU

Plus features such as turret colour temperature correction filters.

A built-in colour bar generator.
A set of matched vidicon tubes. (Plumbicon ${ }^{\circledR}$ tubes available.)
A waveform colour sampler for easy colour balance adjustment

That's the ITC CTC-3X. A lot of camera for $£ 5500$.

Also available is the SC 701P Genlock colour sync. generator at $£ 1,100$.

Plus the MEA 7100 P six channel special effects generator at Ł2,100.

A two camera production unit featuring this equipment is available for hire with operators for $£ 200$ per day with a reducing rate for longer periods

At Dixons Technical, of course
Prices subject to VAT.

To: Dixons Technical,

3 Soho Square, London, W.1. Tel: 01-437 8811.
Please send me full details of the ITC CTC-3X
| colour camera and ancillary equipment.
NAME
ADDRESS

The first of a new range of high quality loudspeakers

This model employs three active drive units, the total range of which extends beyond the nine audible octaves.
By giving attention to all components and design detail the colouration and distortion is negligible and the energy distribution is as constant as possible.

Five year warranty

Because of the precision required in manufacturing loudspeakers to a consistent specified performance, we can confidently predict that the Achromat 400 will have a long and trouble-free life when correctly operated.
We can therefore offer a five-year warranty on this loudspeaker system.

Stand

The Achromat 400 will give its most accurate reproduction in normal conditions when spaced at a distance of $10-20 \mathrm{cms}$ above the floor.
The Goodmans Loudspeaker Stand CS3 is recommended and gives the option of vertical or 5° tilt positioning.

Goodmans Achromat*400

Specification

Drive units
Bass unit 26 cm dia long-throw
Mid-range unit 44mm dia viscous damped dome radiator. Flush mounted HF unit 25 mm dia viscous damped dome radiator.
 Flush mounted
Frequency range $40-22,000 \mathrm{~Hz} \pm 5 \mathrm{~dB}$
Nominal impedance 80 hms .
The loudspeaker is suitable for use with amplifiers rated at 4 or 8 ohms.
Recommended amplifier music power rating 25 to 75 Watts
Sensitivity 12 Watts for 96 dB at 1 metre Effective enclosure volume 39.5 litres
Dividing frequencies 900 and $3,500 \mathrm{~Hz}$ Weight 16.5 kg (36 lbs) net
Recommended Retail Price $£ 79.47+$ VAT
Stand £ $6.64+$ VAT
For illustrated details please write to Goodmans Loudspeakers Limited
Downley Road, Havant, Hants PO9 2NL

TEAC 4-CHANNEL INDUSTRIAL RECORDER

ITA 10-4
 MODULAR MIXER

Ten inputs. Four output groups. Four limiters. Base, mid, treble EQ. Balanced inputs. Modular construction. Headphone monitoring.
IMMEDIATE DELIVERY.

$$
£ 590+\text { VAT }
$$

sole suppler: NOTE NEW ADDRESS~

WW-115 FOR FURTHER DETAILS
 score read out on screen ard a so simulated sound.
Please send stamped addressed envelope for details and prices to:
LOGIC LEISURE LIMITED, Kingfisher House, 68 Park Road, New Barnet, Herts.
Telephone: 01-440 9173/4. Telex: 264397.

12 MHz DIGITAL RECORDER
$\boldsymbol{£ 5 9 0}_{\text {Ex vat }}$

- displays data \& clock on any standard oscilloscope in timing diagram form.
- 64×8 bits storage capacity.
- internal xtal clock.
- external clock
- variable threshold 1 -3v forTTL/OTL cIrcuits.
- external trigger.
- trigger word
- suitable for eduicational demonstrations Digital ic TESTER $\mathbf{2 9 8}$

- ttl.dTl \& Cmos compatible

Ex. VAT

- full function test.
- programable
- this simple to use instrument can help reduce time \& costs in laboratory a InsPECTION DEPARTMENTS.

IOMHz TTL DATA GENERATOR $£ 98$

- variable word lengih to 16 bits.
- internal clock to 1 mhz . external to 10 mHz
- fixed nizz format.
- single cycle or continuous
- external trigger.
- last bit output.

Ghene Blechomias Cta. CONTACT us FOR DETAILS 12 CHERTSEY ROAD, CHOBHAM, SURREY

TEL: CHOBHAM 7228 ASK FOR A DEMONSTRATION

WW-101 FOR FURTHER DETAILS

Spectrum Analyser Module ST858

SPECIFICATION: Frequency range 10 MHz to 850 MHz in two calibrated ranges Sensitivity Better than 50 mv for 0.5 V per cm Resolution 8etter than 25 KHz Dispersion From less than 1 MHz to 400 MHz variable Input Via 50 ohm BNC connector on front panel Output 1 Coax cable for connection to Y input on scope Output 2 Coax cable for connection to sync. input on scope Power requirements 240 volts AC 50 Hz 10 watts. (Other voltages and frequencies available as required) Size Width 11 in (28 cm .) Height 4.375 in . (11.2cm.) Depth 8.5 in . (21.6 cm .) Nett weight $7.5 \mathrm{lbs}(3.4 \mathrm{Kg})$ Gross weight 1 Olbs (4.5 Kg .)

For further details contact the sole distributors of STARWET equipment:

CHMTETMMEATLTD

7-9 ARTHUR ROAD, READING, BERKS (rear Tech College) Tel. Reading 582605

THINKING OF BUYING

THEN CONTACT THE APPOINTED U.K. DISTRIBUTORS:-
REPAIR AND recalibration SERVICE AVAILABLE ON AVO MULTIMETERS

FARNELL INSTRUMENTS LIMITED, SANDBECK WAY, WETHERBY, YORKSHIRE LS22 4DH TEL: 09373541 TELEX 557294 LONDON OFFICE TEL: 01-802 5359 WW-118 FOR FURTHER DETAILS

nsons	BUITT TO YOUR SPECIFICATVN LIVERY SERVICE, OUOTATION RETURN HOME AND OVERSEAS ACK 12 outlet. 2 bridging 1 non-bridging includ of unique design and occupies no more
	\%oimo
L	

$\star \operatorname{SIX}$ DECADES

* SCALE FACTOR \& REF LEVEL (adjustable)
$\star 1 \mathrm{nA}$ to 1 mA OPERATING RANGE (std)
* TRUE LOGARITHMIC FUNCTION
* SCALE FACTOR SLOPE iv per DECADE
* REF. LEVEL 0 Volts OUT for $1 \mu \mathrm{~A}$ IN
\star ACCURACY $\pm 0.25 \mathrm{db}$
* BUILT IN AMPLIFIER
\star ANTI-LOG MODULE AVAILABLE

REVOX A77 Series

Available in speeds from $\frac{15}{16}$ ips.
5 KHz band-width. Other configurations also available for immediate delivery.

REVOX A700 Series

3-speeds. Full deck logic. Four inputs Crystal servo control. Tape footage counter. Servo tape tension.

Write for full information. Scotch 207 -lowest UK price. IMMEDIATE DELIVERY-ALL MODELS NOTE NEW ADDRESS~

HIRE SERVICE AVAILABLE Industrial Tape Applications 5 Pratt Street,London NW1 OAE. Tel: 01-485 6162 Telex: 21879

WW— 116 FOR FURTHER DETAILS

WW--107 FOR FURTHER DETAILS

The symbol of soundquality.

Indoor Column Speakers
Ideal for Clubs, Cinemas, Concert Halls, Churches etc. ; particulariy suitable where acoustic difficulties are experienced-especially feedback.
Alternative finishes available are Black Vynide or Teak.
Power ratings from 10 watts RMS to 30 watts RMS.

W410: One of a range of 4 columns available. 15 ohms impedance, or 100 v line.

For further information and address of your local stockist write to: K.F. Products Ltd., Ashton Road, Bredhury, Stockport, Cheshire.

Audio Connectors

Broadcast pattern jackfields, jackcords, plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd.
90 Wardour Street,
London W1V 3LE
01-437 1892/3

...and this
 is standard equipment!

The
Capable MXT-200 Audio Mixer.

COMPARE YCUR REQUREMENIS WITH THESE FEATURES THEN DESIGN YOUR MXT-200

OR ASK US TO.

Inzut Facilities

* Up to 15 plug in Mono, 2 groüp, or.stereo injut modules per. combiner.
* Modules for RAicrophone gramophone. Tape, Radio Cine and line sources
* Exeptionally versatile bass and treble ecualisation on one easy to use control.
* Lisear motron faders for smooth mixing
* In e-locked pre-facla listen switching.

utput Facilities

N Nono or Stereo Combiners with large scale
VU or PPM metering, fit two combiners
for 2 group working.

* Linear motion fader and separate Bass and Treble controls for output signal adjustment
* line tevel output with high overload capability.
Nonitor Module with PFL/Output switching, headplione sochet and line leve output.

MXT-200 THE MIXER

The standard equipment is bult up in
19 inch frames, each 9 modules wide. The frames may be stacked or placed end to end and housed in a console, rack or cabinet. You only order the input modules you now need. Additional modules may be plugged in the frames as your
requirements change.

MANUFACTURERS OF SOUND SYSTEMS AND

AUDIX LIMITED STANSTED ESSEX CM24 8 HS TELEPHONE BISHOP'S STORTFORD 813132 (4lines) (STD 0279)

WW-111 FOR FURTHER DETAILS

ENGINEERS

Hill
 YOURSELF FORA

WW-005 FOR FURTHER DETAILS

A NEW STANDARD FOR SOUND REPRODUCTION HD250 High Definition Stereo Control Amplifier

Designed for disc and tuner input and two tape machines, with complete recording and reproducing facilities.

The HD250 amplifier establishes a new standard in amplifiers for sound reproduction in the home. Improvements have been made in respect of performance, engineering design and quality of construction. We believe that no other amplifier in the world can match the specification of the HD250. Look at extracts from the specification below.

Power output.

 Rated:Maximum:
Distortion.
Pre-amplifier:
Power amplifier. at rated output: at 25 w output:

50 watts average continuous power per channel, into any impedance from 4 to 8 ohms, both channels driven. 90 watts average power per channel into 5 ohms load.

Zero. (Cannot be identified or measured as it is below inherent circuit noise.)

Less than 0.02% (typically 0.01% at 1 kHz) Typically 0.006%.

Overload margin. Disc input

40 dB min.
Hum and noise output.
Disc:
-83 dBV Measured flat with noise bandwidth of 23 kHz

- 88 dBV Measured with ' A ' weighted characteristic
-85dBV Measured flat.
-88 dBV ' A ' weighted.
17 inches $\times 4 \frac{3}{4}$ inches $\times 11$ inches deep overall.
21 lb.

Write or phone for leaflet which describes the design philosophy and conception of the HD250 together with a complete specification.

RADFORD AUDIO LIMITED, BRISTOL, BS3 2HZ Telephone: 0272662301

reliable high performance \& practical controls individually powered modules-mains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight _realistic prices.

Fylde Electronic Laboratories Limited 49/51 Fylde Road, Preston PR1 2×0 Telephone: PRESTON 57560

INTERNATIONAL TRANSISTOR DATA MANUAL lists over 20,000 transistors of international origin enabling you to identify test and select the characteristics of a very wide range of discrete devices.

EXTENSIVE SUBSITUTION GUIDE CV NUMBERED DEVICES OUTLINE DRAWINGS

alternative
MANUFACTURERS
AND AGENTS ADDRESSES

PLUS - A FREE UPDATING SERVICE

ORDER NOW $£ 8.80$ includes postage (TO COUNTRIES OUTSIDE UK ADD 60p POSTAGE) FULL REFUND IF NOT COMPLETELY SATISFIED PUBLISHEDBY
SEMICON INDEXES LTD.
2, DENMARK ST, WOKINGHAM, Berks. RG11 2BB
Tel: WOKINGHAM (STD 0734) 786161

Abrand new portable from Telequipment The D32 Dual Trace 10MHz Battery-Operated Oscilloscope

Probably the smallest and least expensive 'scope of its kind in the world. Telequipment's D32 offers a generous performance specification yet remains in the realms of reality where price is concerned. Weighing 10 lb . and only $4 \times 9 \mathrm{xII}$ inches in size, the robustly built D32 can be carried comfortably on any assignment.

Packed into its tiny frame is a specification with features normally associated with instruments twice its size. Priced at $£ 250^{*}$ (including rechargeable batteries) this dual-trace 'scope offers 10 MHz bandwidth at $10 \mathrm{mV} / \mathrm{div}$. sensitivity; automatic selection of chopped or alternate modes; automatic selection of TV line or frame displays; the choice of battery or mains operation and a c.r.t. display which covers more than one third of its total front panel area.

Write now for full details and demonstration - you won't be disappointed.
exclusive of VAT.

Telequipment

TektronixU.K. Ltd.,

wireless world

Electronics, Television, Radio, Audio OCTOBER 1974 Vol 80 No 1466 SIXTY-FOURTH YEAR OF PUBLICATION

This month's cover picture shows one of the balloons used by the TCOM Corporation for broadcasting and communications and introduces an article on the system in this issue.

IN OUR NEXT ISSUE

(published October 23)
Quadraphonic broadcasting discusses current American proposals and suggests adopting a three-channel system that requires no increase in bandwidth.
Signal frequency meter. A digital instrument with an i.f. offset for the measurement of signals at receiver inputs.
Weather satellite station. A complete station for the reception of weather satellite cloud cover pictures transmitted in the 136 MHz band.

Contents

363 The importance of status
364 Balloon broadcasting and communications by R. A. Ilgner and A. A. Moghadam
367 Reducing amplifier distortion by A. M. Sandman
371 October meetings
372 Research notes
373 News of the month
Electronic licence plate
Super capacity cable
Simple f.d.m. with comb filters
375 Mains rejection tracking filter by K. F. Knott and L. Unsworth
380 Circuit ideas
Aunto switching for voltmeters
Egg timer
Null indicator using left-hand-zero meter
Touch control for rhythm device
382 Digital speedometer using c.m.o.s. -2 by A. Bishop and A. Woodruff
385 HF predictions
385 Literature received
386 Letters to the editor
Speaking meter
Electronic ignition
Logic nomenclature
389 Audio Fair preview
391 Circards-17; current differencing amplifiers-2 by J. Carruther, J. H. Evans, J. Kinsler and P. Williams

393 Electricity and magnetism?-2 by "Cathode Ray"
395 Low-loss optical fibre
395 Sixty years ago
396 Space news
397 Realm of microwaves- 9 by M. W. Hosking
401 Standard time satellite
402 Microphone survey by J. Dwyer
412 World of amateur radio
413 Synthesized communications receivers by R. F. E. Winn
417 Receiver for modulation studies
418 New products
a 104 APPOINTMENTS VACANT
a 126 INDEX TO ADVERTISERS

ibpa

Phers Aswocimes
I.P.C. Electrical-Electronic Press Led

Managing Director: George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson

Price 25p (Back numbers 50p)
Editorial \& Advertising offices: Dorset House, Stamford Street, London SEI 9LU.
Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Etha world, London S.E.1."
Subscription rates: 1 year, $£ 5$ UK and overseas (\$13 USA and Canada), 3 years, $£ 14$ UK and overseas $\$ 36$ USA and Canada). Student rates: 1 year, $£ 2.50$ UK and overseas ($\$ 6.50$ USA and Canada), 3 years, £7 UK and overseas (\$18.20 USA and Canada)
Distribution: 40 Bowling Green Lane, London ECIR ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281 Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

Choose industrial powerhere. EEVceramic powertriodes.

5
8
2
2

Name your r.f. heating application - metals, plastics, paper, food - and EEV makes the ceramic triode you need.

From 5 kW through to 240 kW , every EEV tube is rated and built for long life.

EEV has the experience and the service and is always ready with advice on the best tube for your equipment.

Write or telephone us at
Chelmsford for detailed information about our tubes.

EEVand M-OV know how.

wireless world

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON

Technical Editor:
GEOFFREY SHORTER, B.Sc.

Assistant Editors:
BILL ANDERTON, B.Sc.
BASIL LANE
Drawing Office:
LEONARD H. DARRAH

Production:
D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)

Phone 01-261 8339
A. PETTERS (Classified Advertisements) Phone 01-261 8508 or 01-928 4597
JOHN GIBBON (Make-up and copy) Phone 01-261 8353

The importance of status

The status of a job is more than an abstract consideration. It affects the way one is treated by other members of the community, in particular by one's employer (e.g. in the matter of salary), and it affects one's self-respect, which is important for psychological well-being. The status of people working in electronics is more bound up with that of technicians and engineers as a whole than with the subject or industry itself. It is therefore significant to many of us that in the past few months there have been two moves which could go some way towards improving the status of technicians and engineers as a whole.

First, the Technician Education Council has issued a policy statement which spells out in some detail the way it will put into effect its terms of reference, which are to "administer and keep under review the development of a unified national system of courses" for technicians and to "devise or approve suitable courses, establish and assess standards of performance and award certificates and diplomas as appropriate." Secondly, the Council of Engineering Institutions has been considering whether it might be replaced by a new, more influential body (an "Institution of Engineers") which would represent all chartered engineers directly instead of indirectly as at present. To do this the new organization would take over the "professional" as distinct from "learned society" activities of the existing engineering institutions. It would therefore be responsible for setting standards of education, training and experience, assessing qualifications of individual engineers, laying down rules of professional conduct and speaking with one voice-to the Government, the public, etc.-for engineers as a whole.

Welcome as these proposals for unification are, it is unlikely that such internal adjustments will provide the total answer to the status problem. They are rather like trying to pull oneself up by the bootlaces. Recognition of the status of engineers must essentially come from outside, from the public at large, and in relation to the status of other groups in the community. And such recognition depends on a number of psychological factors such as professional mystique (cf. medicine and the law), the power image resulting from collective action (cf. trade unions) and the aura of brilliant individuals (where in engineering are the equivalents of Einstein in science, Moore in sculpture or Solzhenitsyn in literature?). Another factor in the public recognition of status is the exclusiveness of certain honours. There is no Nobel Prize for engineering; one has difficulty in recalling whether any British engineer has been awarded the Order of Merit; and if there are some engineers who have become Fellows of the Royal Society it is only because they are by implication regarded as a kind of scientist. A more definite external standard against which British engineering workers are now being judged is the qualifications of similar workers in the other Common Market countries.

With these external conditions to contend with the British technician or engineer will certainly have a hard struggle to improve his status in society. But it is encouraging to see that those who represent him are at least starting the job by putting their houses in order.

Balloon broadcasting and communications

Airborne radio equipment for economical coverage of large areas

by R. A. Ilgner and A. A. Moghadam

TCOM Corporation, subsidiary of Westinghouse Electric, USA

The system described here uses helium filled tethered balloons as high altitude platforms to provide reliable and economical telecommunications and broadcast coverage over large ground areas. Lightweight electronic equipment is suspended beneath the balloon, on a stabilized payload, making point-to-point as well as omni-directional communications practicable. The operating altitude is typically between 3,000 and 4,500 metres above sea level. From these heights, line-of-sight extends to distances of 200 to 250 km , from the earth tether point, yielding ground coverage areas of 125,600 to 200,000 sq.km.

Lighter-than-air vehicles are not new to the communications industry. However, stability problems, lift restrictions and airborne powering difficulties curtailed their widespread use until recently when several technological advances were made. These include advances in materials technology, computer-aided aerodynamic design and electronic equipment miniaturization. The availability of light-weight, high strength materials such as Dacron, Mylar and Tedlar, together with new manufacturing techniques, have resulted in the production of a new aerodynamically stable tethered balloon, called an aerostat, which can lift large payloads to altitudes exceeding 4 km . Off-the-shelf, light-weight, reliable electronics with low power consumption, utilizing integrated circuits, thin film, thick film, stripline and microstrip techniques, form the payload package. This unusual telecommunications and broadcasting system has passed the development stage and is already in operation. A working system in the Bahamas, operating at an altitude of 3,000 metres above sea level, provides communications coverage over an area of 125,000 sq.km. with excellent performance. Fig. 1 shows a TCOM balloon and mooring system (TCOM stands for Tethered Communications).

The major components of the system are a balloon, a mooring system, power generation equipment, tether, telemetry and command equipment and the electronics payload.

The family of TCOM balloons ranges in size from the 1,400 cubic metres volume,

[^1]35 m long Mark V , to the 17,000 cubic metres volume, 85 m long Mark VIII. Selec tion of balloon size depends on lifting requirements and the operational altitude necessary for a particular application. Typical of these balloons is the Mark VII shown in Fig. 1. This $7,000 \mathrm{~m}^{3}$ volume vehicle has a length of 54 m , a diameter of 17 m , and a tail span of 25 m . It operates safely in $190 \mathrm{~km} / \mathrm{h}$ winds. There are four stabilizers spaced 90° apart on the aft section of the hull. The ratio of volume to surface is high and the aerodynamic drag is low. A lift to drag ratio of 3 to 1 is normally obtained. Electrically powered blowers and valves automatically maintain the correct pressurization of the hull ballonet*. The latest developments in material engineering have been utilized to produce the multilayer laminate material used for the balloon's hull. The laminate weighs $280 \mathrm{~g} / \mathrm{m}^{2}$ and consists of adhesive bonded layers of Tedlar, Mylar films and Dacron fabric arranged to give a high strength-to-weight ratio. The Tedlar film on the outside surface has excellent resistance to abrasion and weather. Two layers of Mylar film produce an effective gas barrier. The strong Dacron fabric provides the strength to withstand the loads induced by normal inflation, the attachment
of hardware, in-flight loading, and a safety margin of at least 100%. The Dacron has good dimensional stability and imparts a high degree of tear resistance to the multilayer material.
Electronics. A typical payload can include up to one ton of communications equipment to be lifted to an altitude of 3 km leaving at least 10% loading safety margin. This payload may include commercial and educational television, a.m. and f.m. radio broadcasting equipment; off-the-air receivers; translating equipment; high-density wideband communications equipment for multichannel voice and data transmission; mobile and maritime networks, and equipment performing numerous other functions such as: wide area paging, emergency radio broadcasting, wide area data collection, remote area meteorological observation, optical scanning and monitoring. Fig. 2 shows a typical payload package.
Broadcasting. The TCOM system has an inherent advantage over conventional broadcasting systems in its ability to cover a vastly greater area with a single transmission system. Lower costs, frequency conservation and performance improvement are the ultimate results. Since broadcasting in the United States is regulated by

Fig. 1. Balloon and mooring system.

Fig. 2. Typical airborne electronics equipment.
the FCC (Federal Communications Commission) the regulations of that body are used here as a basis for comparing the performance of the TCOM system with that of conventional broadcasting systems. The FCC describes coverage in terms of field strength leading to Grade A or B picture quality. Considering the lower v.h.f. band, the median field strengths required for channels 2-6 are $2,500 \mu \mathrm{~V} / \mathrm{m}(68 \mathrm{~dB} \mu)$ for Grade A, and $225 \mu \mathrm{~V} / \mathrm{m}(47 \mathrm{~dB} \mu)$ for Grade B service. The factors affecting the actual received field strength are so numerous and difficult to predict that a statistical approach is used. This approach predicts field strength present in the best 50% of receiving locations for 50% of the time. Using the results of actual observations and considering a typical receiver system with assumed noise figure and anténna gain, the FCC provides charts to be used for estimation of field strength ${ }^{1}$. Conventional transmission is normally restricted, by practical considerations, to an effective tower height of 300 metres. A TCOM relay is nominally at an altitude of 3,000 metres. Using FCC stand ards, the chart in Fig. 3 has been developed. This chart indicates the obvious advantages of the TCOM system over conventional broadcasting. A TCOM system, with a lower effective radiated power (e.r.p.) of 2.5 kW , provides a much larger and superior coverage than a conventional terrestrial system would provide with an e.r.p. of 10 kW .FCC signal quality is based on a typical receiver with a noise figure of 12 dB for v.h.f. and 15 dB for u.h.f. and antenna gains of 6 dB for v.h.f. and 13 dB for u.h.f. Low-cost receivers with 6 dB noise figure for v.h.f. and 8 dB for u.h.f. and antennas with 13 dB gain at $v . h . f$. and 18 dB at u.h.f. are now available which can be utilized to provide still further improvements. Similar statistical techniques are used to estimate f.m. broadcasting service quality on a $50-50 \%$ basis. The objective field strength on this basis is $5,000 \mu \mathrm{~V} / \mathrm{m}$ $(74 \mathrm{~dB} \mu)$ for principal cities, $1,000 \mu \mathrm{~V} / \mathrm{m}$ $(60 \mathrm{~dB} \mu)$ for urban areas, and $50 \mu \mathrm{~V} / \mathrm{m}$
$(34 \mathrm{~dB} \mu)$ for rural areas. Fig. 4 compares con ventional and TCOM systems for f.m. radio broadcast coverage at frequencies of 88 to 108 MHz .
Telecommunications. The TCOM platform, like a mini-satellite operating at a lower altitude, acts as a very tall tower for relaying wide-band telecommunications signals. In directional communications, parabolic antennas are mounted on this stabilized platform for reception and retransmission of wide-band communications signals carrying multichannel voice, data or programme messages.

Table 1 gives the performance analysis for a hypothetical path which satisfies national and international communications standards. In this table a typical 150 km microwave path has been considered, and a complete performance analysis is presented for 2,6 and 8 GHz . The size of the airborne antenna is limited by the space availability, while the size of the ground antenna is constrained by the maximum beamwidth that can be tolerated by the required performance level. With the pointing error and the indicated permissible blow-down figures, a blow-down and pointing loss, proportional to the calculated antenna beamwidth, is included in the table. Free space losses are calculated and atmospheric absorption is estimated for moderate rain conditions. ${ }^{2}$ Antenna gains are calculated for 55% efficiency. The assumed transmitter power of 20.0 watts is easily obtainable when a travelling wave tube is utilized. The circulator losses are included as transmitter and receiver losses for different frequencies. The receiver noise figures used are satisfied by typical off-the-shelf equipments.

The bandwidth used is adequate for highdensity multichannel voice or equivalent TV transmission. Receiver threshold is the calculated value for the parameters included in the table. Adequate available fade margins are obtained for this illustration. The TV signal-to-noise ratio is calculated for CCIR white noise weighting of the Msystem as used in the USA ${ }^{3}$. The worst channel noise figures, based on the receiver input power, can be realized by solid-state off-the-shelf equipment available on the market with the received signal strength

Fig. 3. Comparison of balloon borne and conventional broadcasting systems for coverage of v.h.f. television channels 2-6.

DISTANCE FROM TRANSMITTER (miles)
Fig. 4. Comparison of balloon borne and conventional transmission systems for coverage of f.m. radio broadcasting at $88-108 \mathrm{MHz}$.
indicated in the table. These figures meet or exceed all relevant CCIR requirements ${ }^{4}$. The system availabilities indicated in the table are based on CCIR reports', and show the high-performance quality of the TCOM system for high-density telecommunications and wide-band applications.

Frequency (GHz)	2	6	8
Distance (km)	150	150	150
Antenna diameter (m)	4.5	4.5	4.5
Antenna beamwidth (${ }^{\circ}$)	2.34	0.78	0.58
Antenna gain (dB) ground	36.88	46.42	48.92
Tx power (dBm) ${ }^{\text {a }}$ terminal	43.00	43.00	43.00
Tx losses (dB)	1.00	2.00	2.50
E/R $P^{\text {(}} \mathrm{dBm}$)	78.88	87.42	89.42
Free space loss (dB)	141.92	151.48	154.00
Permissible blowdown (km)	6.0	2.1	1.5
Blowdown \& pointing loss (dB)	1.50	3.50	4.50
Atmospheric absorption (dB)	0.15	7.00	10.50
Antenna diameter (m)	1.8	1.8	1.8
Antenna beamwidth $\left.{ }^{(}\right)$)	5.84	1.95	1.46
Antenna gain (dB)	28.92	38.47	40.97
Rx losses ($d B$) airborne	2.00	2.5	3.50
Rx input power (dBm) terminal	-37.77	-38.59	-42.11
Rx noise figure (dB)	8.00	9.00	10.00
Rx bandwidth (MHz)	30	30	30
Rx threshold (dBm)	-81.23	-80.23	-79.23
Available fade margin (dB)	43.46	41.64	37.12
TV s / n ratio weighted (dB)	78.16	76.34	71.82
Worst channel noise (pWpO)	85	90	150
Availability w/freq diversity (\%)	99.999	99.999	99.99

Mooring system. A typical site includes two balloons flown from launching pads spaced about 800 metres apart. Each pad is equipped with a mooring system similar to the one shown in Fig. 1. The major elements of the mooring system are: a mooring tower, four close haul winches, a nose line winch, a work platform and a diesel powered hydraulic tether winch. The hydraulic winch, which operates the tether cable in-haul and out-haul, has a maximum pull of $6,400 \mathrm{~kg}$ at a speed of 60 metres/minute. The complete mooring system is designed to freely rotate on a circular monorail track allowing the moored aerostat to weathervane, automatically minimizing the aerodynamic loads from surface winds. The work platform rotates with the balloon to maintain a steady relation to the aerostat.
Power generation equipment. The airborne power generation equipment typically consists of several Sachs-Wankel rotary engines of approximately $18 \mathrm{~h} . \mathrm{p}$. (at 4,500r.p.m.), each directly coupled to a static brushless generator with a static voltage regulator. Compared to conventional engines, the Wankel rotary combustion engine is lighter, has better remote starting characteristics and contains fewer moving parts. Fuel consumption is also low. For a 5 kW load, fuel consumption is slightly over $3 \mathrm{~kg} / \mathrm{h}$ (almost 5 litres per hour). The power equipment is suspended from a lightweight airframe structure and is easily removed for maintenance. The engine generator has proved capable of sustained power output of 5 kW at an altitude of 3.5 km . It is a three-phase brushless generator providing $400 \mathrm{~Hz}, 120 / 208$ volts a.c. with a statictype voltage regulator and a four-wire Wye winding.
Tethering cable. The general requirements for all balloon tethering cables are high tensile strength, high strength-to-weight ratio, low aerodynamic drag, low elongation, high flexibility, and good abrasion resistance. Nolaro cable satisfies these requirements and is one type of tethering cable used in TCOM systems. It consists of Dacron polyester filaments constructed in a no-lay (no twist) configuration and encased in a polyethylene sheath. The polyethylene sheath is impregnated with a carbon black compound to protect the inner Dacron filaments from ultra-violet radiation. Nolaro tethering cable with a diameter of 1.976 cm has a weight of $291 \mathrm{~g} / \mathrm{m}$ and a breaking strength of $12,258 \mathrm{~kg}$. Under development, and nearing completion, is a conductive steel tether. This electromechanical coaxial cable will consist of a copper inner conductor insulated with TPX and armoured with high-strength steel wires providing the strength member and the outer conductor. High voltage from a ground based source will be transmitted to the airborne payload package via the conductive tethering cable. Utilization of this conductive tether will extend the operating time (with the balloon raised) up to six months.
Telemetry and command system. The telemetry and command system controls and monitors all the communications equipment on-board, and monitors the vital balloon functions including altitude, pitch,

Fig. 5. Gimbal assembly for stabilization of the payload.
roll, heading, pressures, and temperatures. The system consists of a ground control section, typically housed in a mobile van, and an airborne section carried by the balloon. Depending on the project requirements, different means can be employed to perform this task. In one system, for example, low-power links carry high-speed data of up to $20 \mathrm{kbits} / \mathrm{s}$ on two different frequencies, one for command and the other for telemetry. In standard multichannel communications applications, one voice channel can accommodate the necessary telemetry and command functions.
Stabilization. A high degree of stabilization of the payload is achieved by an airborne mechanical system consisting of a two-axis gimbal, an azimuth drive and a slip ring assembly package. The gimbal assembly acts as a pivot from which the entire airborne payload is suspended, in pendulum fashion, from the bottom of the balloon's hull. Fig. 5 shows the two coplanar (horizontal) axes of the gimbal assembly which are perpendicular to each other. Each axis is damped by a rotary viscous damper. The upper linkage on the gimbal assembly is attached to the balloon through a light-weight truss structure that distributes the airborne package weight and inertial loads throughout the balloon skin. The fixed shaft of the azimuth drive (with respect to the balloon) is attached below the lower gimbal linkage. The azimuth drive is the mechanical portion of the azimuth heading servo loop. The drive system receives an electrical signal from the servo electronics and converts it into mechanical rotation of the payload package to maintain proper heading with respect to north, as the balloon moves. The slip-ring assembly incorporated into the airborne package allows unrestricted azimuth motion between the payload and the aerostat. The ring is located at the upper end of the azimuth drive where it is attached to the lower linkage of the gimbal.

An azimuth positioning of $\pm 0.5^{\circ}$ pointing accuracy, controllable in 0.1° increments is achieved. The gimbal assembly isolates payload mation with respect to aerostat motion by a factor of 10 to 1 .
Operational system. Since its inception, TCOM has established a number of facilities for development and operation of balloons and airborne electronics packages. In addition to TCOM executive offices in Rockville, Maryland, and the engineering and manufacturing offices at the Westinghouse Defense and Electronics Systems Center in Baltimore, Maryland, the TCOM corporation has established flight test facilities at Elizabeth City, North Carolina. In addition the corporation has set up an operational system at the Bahamas Evaluation, Test and Assembly Center on Grand Bahama Island. Numerous tests have been performed at this centre. A $4 / 6 \mathrm{GHz}$ microwave link connects the station to Nassau through the balloon. This link covers a distance of 200 km . With 100 W airborne transmitter power, a 1 metre parabolic balloon antenna, and a ground antenna of approximately 2 metres in diameter, the calculated signal strength of -35 dBm is observed. Frequency diversity on the uplink and space diversity on the downlink will be implemented in the near future. Airborne receivers on the balloon pick up TV signals from Palm Beach (channel 4) and Miami (channel 5) stations in Florida, translate either of them to channel 11 , and rebroadcast it over a $125,600 \mathrm{sq} . \mathrm{km}$ area A Grade B signal is obtained at the perimeters of the coverage area.
In-flight safety. Many factors are considered in selecting the operational site location. The required line-of-sight coverage establishes its general location. Within this general area, consideration is given to the air traffic flow patterns so that the site will be located outside aerodromes, approach and departure routes, airways and air corridors. An area of 6.3 km radius from the centre of the site, with a ceiling of 4.6 km , is reserved for a dual balloon station operating at 3.3 km altitude. This restricted area is then published in Notice to Airmen (NOTAMS) and other aeronautical information publications, and is noted on aeronautical charts. The on-station balloons with flashing, high intensity strobes and illuminated tether become virtually lighthouses in the sky and are used by pilots as a navigational checkpoint, visible from long distances both by day and night.

References

1. FCC: Volume III of the Rules and Regula tions of the Federal Communications Com mission 1972, Part 73, pages 289 and 291.
2. Bell Telephone Laboratories: Transmission Systems for Communications, 4th Ed.; 1970, pages 442-444.
3. CCIR Recommendation 421-1, Volume V, Part 2, Annex III, pages 188-189.
4. CCIR Recommendation 395-1, Volume IV, Part 1, page 43.
5. CCIR Report 338-1, Volume II, Part 1, pages 114-127.

Reducing amplifier distortion

Avoiding conventional negative feedback by "error take-off"

by A. M. Sandman, M.I.E.R.E.,
Royal College of Surgeons, London

Error take-off is a method of overcoming the basic limitation of negative feedback which is increasingly limited loop gain with increasing frequency. Two practical configurations are discussed, a new bridge circuit with low output impedance offering a finite and worth-while improvement and an iterative circuit with higher output impedance having the ability to reduce distortion, in principle, by any arbitrary amount. The bridge circuit uses basically four resistors and two amplifiers, and the iterative circuit uses three resistors and an amplifier plus three resistors and two amplifiers per distortion-reducing stage.

Negative feedback incorporates two essen tial features into one system. These are the measurement of error voltage at the output of an amplifier to produce a voltage proportional to this error voltage, and the amplification of this proportional error voltage in such a way as to reduce the distortion. Usually this is done with one amplifier, but this has the serious disadvantage of limiting the amount of error reduction, which typically falls with increasing frequency. The error in an amplifier cannot be reduced to an arbitrary amount by using negative feedback alone because the gain at a given frequency is inherently limited if oscillation is not to occur.

Error take-off, which avoids Nyquist
instability, can be used in principle to reduce error by any arbitrary amount. Basically the measurement of the voltage proportional to the error is very easy; it can be done with just two resistors when an inverting amplifier's output is compared with the system input (Fig. 1).
In audio and line transmission we are interested in non-linear distortion reduction rather than error, so I now refer to distortion rather than error as it is more evocative. Distortion is defined as the notional voltage $\left(V_{D}\right)$ which adds algebraically to the notionally undistorted signal $V_{i n} R_{2} / R_{t}$ at the output to produce the output of $V_{i n} R_{2} / R_{1}+V_{D}$.
It cannot be too strongly stressed that distortion in this sense includes any
fundamental components of the signal due to low gain as well as any noise and hum which the amplifier may have picked up. Once the simplicity of this concept of distortion is grasped the next step is to use a separate amplifier to take off the distortion from the distorted output.

Basic circuitry

It may be done in at least two ways: with a kind of bridge circuit shown in Fig. 2 (ref. 1) or by the iterative circuit of Fig. 3. In Fig. 1 the undistorted part of the output $V_{i n} R_{2} / R_{I}$ balances off at the junction of R_{1} and R_{2} to produce zero voltage, the only voltage to appear at this point being proportional to the distortion.

Applying this to Fig. 2 and making

Fig. 1. Undistorted part of the output of this circuit balances out at the junction of R_{1} and R_{2} leaving a voltage $V_{D} R_{I} /\left(R_{I}+R_{2}\right)$, which is proportional to the amount of distortion.

Fig. 2. The distorted part of the signal is taken offfrom the R_{1}, R_{2} junction of Fig. 1 and returned through A_{2} to the load to largely eliminate the distortion V_{D}.
$R_{I}^{\prime}=R_{L}$ and $R_{2}^{\prime}=R_{2}$ produces an output V_{D}^{\prime} at A_{2} which in both amplitude and phase matches V_{D}. By taking R_{L} to the output of A_{2} instead of to the usual earth the error is taken off the original distorted output.
Examination of Fig. 2 shows the basic way in which error take-off differs from negative feedback and also why it is less prone to oscillation. It is because the output of the second amplifier A_{2} in principle does not affect the output of A_{i}. This I call "non-interaction".

The iterative circuit of Fig. 3 is also based on a voltage proportional to the distortion appearing at the junction of R_{I} and R_{2}. But this time, although for $R_{A}=R_{B}=R_{C}$ the voltage amplitude is the same, V_{D}, it is inverted so that when the distortion V_{D}, is applied to R_{A} it is cancelled out by the voltage applied to R_{B}. The error in doing this, due to A_{2} being finite, is corrected by A_{3} and its associated resistors-a process which may be iterated indefinitely.

Examination of the circuit shows up an important design principle, that of "rigidity of interconnection". For $R_{A}=$ $R_{B}=R_{C}, V_{1}, V_{2}$ and V_{3} would have the same rigidly fixed effect on the output. In addition, R_{1} to R_{6} are rigid components, as distinct from the operational amplifiers which are not because their gain varies with frequency among other causes.

Fig. 3. Iterative circuit, in which the error is cancelling the distortion at \boldsymbol{R}_{A} through \boldsymbol{R}_{B} is corrected by a third signal from R_{C}, which process can be carried out indefinitely.

Fig. 4

Related techniques that pre-date error take-off are H. S. Black's feedforward, Figs. 4\&5, and McMillan's multiple feedback, Figs. 6\&7.

Historical note

There are two important schemes which predate error take-off. The first is Black's feedforward ${ }^{2}$ (Fig. 4) which falls down because of the unstabilized amplifiers. For this reason Black used negative feedback; in Black's own view he did not invent it: ". . . applicant uses negative feedback for a purpose quite different from that of the prior art . . ." in the process forgetting feedforward (ref. 3).

Feedforward surfaces again in another form in which a delay line and transformer play essential parts ${ }^{4}$; Fig. 5 is an example.

Just as I was telling myself that error take-off was novel, by pursuing references I found McMillan's multiple-feedback system ${ }^{5}$.

This is well-developed in theory but is incapable of achieving any worth-while practical results as in all the engineered circuits the distortion of the output transformer is not dealt with! Figs. 6 \& 7 are separate examples of theory and practice. To the best of my knowledge, however, the circuit of Fig. 2 is quite novel.

Although resistors are shown in Fig. 2, they could be impedances. If R_{I} and R_{I}^{\prime} were retained but R_{2} and R_{2}^{\prime} were replaced by capacitors then a very much more accurate integrator could be constructed than is possible using conventional circuitry.

Conditions for minimizing distortion (which are similar to those for balance in a bridge) are $R_{2} / R_{1}=R_{2}^{\prime} / R_{1}^{\prime}$ for Fig. 2 and for Fig. $31+\left(R_{2} / R_{t}\right)=R_{4} / R_{3}$ (assuming $R_{3} \gg R_{1}^{\prime}, R_{5} \gg R_{3}$ and $\left.R_{A}=R_{B}=R_{C}\right)$.

Limitation of negative feedback

Could a negative feedback system do what error take-off does? Consider the circuit of Fig. 8 and its amplitude-frequency plot, Fig. 9. For $R_{2} \gg R_{1}$ the feedback is as shown and the maximum amount that it is possible to apply without bursting into oscillation is depicted. This is a basic limit and cannot be overcome by additional amplification within the loop in the region P to Q which will usually cover the audio range. Additional amplification in the loop would help at frequencies below P but it would be essential for it to have a flat frequency response and a gain of one between P and Q .

Performance comparison

If the performance of the conventional virtual earth amplifier of Fig. 8 is compared with that of the error take-off circuit of Fig. 2 it can be shown by conventional theory that, in Fig. 8, the output voltage is

$$
\begin{aligned}
& V_{A}=V_{i n} \frac{R_{2}}{R_{1}}\left(\frac{\dot{1}}{1}+\frac{R_{2}}{A_{1} R_{t}}\right) \approx V_{i n} \frac{R_{2}}{R_{1}}\left(1-\frac{R_{2}}{A_{1} R_{t}}\right) \\
& \approx V_{\text {In }} \frac{R_{2}}{R_{1}}=V_{i}\left(\frac{R_{2}}{R_{I}}\right)^{2} \frac{1}{A_{1}} \quad \text { and the gain is } \\
& G=V_{A} / V_{t n} \text { or } \frac{R_{2}}{R_{I}}\left(1-\frac{R_{2}}{A_{I} R_{I}}\right)
\end{aligned}
$$

Now the voltage component due to $V_{\text {tn }} R_{2} / R_{I}$ (Fig. 2) is balanced to zero at the junction of R_{1} and R_{2} and so may be ignored when working out V_{D}^{\prime}, i.e. only the contribution of V_{D} need be considered, which has the value

$$
\begin{aligned}
\frac{V_{D} R_{I}}{R_{I}+R_{2}} & =V_{i n} \frac{R_{2}{ }^{2}}{A_{1} R_{I}{ }^{2}} \cdot \frac{R_{I}}{R_{I}+R_{2}} \\
& =V_{\text {in }} \frac{R_{2}{ }^{2}}{A_{1} R_{I}{ }^{2}} \cdot \beta \\
V_{D}^{\prime}=- & V_{i n}\left(\frac{R_{2}}{R_{I}}\right)^{2} \frac{1}{A_{1}}\left(\frac{\beta A_{2}}{1+\beta A_{2}}\right)
\end{aligned}
$$

where $\beta=R_{1} /\left(R_{1}+R_{2}\right), R_{t}=R_{1}^{\prime}, R_{2}=R_{2}^{\prime}$ and $A_{2} /\left(1+\beta A_{2}\right)$ is the gain for a conventional non-inverting amplifier (β in the numerator, which is the conventional feedback factor, allows for the attenuation of R_{I} and R_{2}).

$$
\therefore V_{D}^{\prime} \approx-V_{i n}\left(\frac{R_{2}}{R_{I}}\right)^{2} \cdot \frac{1}{A_{1}}+V_{1}\left(\frac{R_{2}}{R_{I}}\right)^{2} \frac{1}{\beta A_{1} A_{2}} .
$$

To find the voltage across R_{L} subtract $V_{D^{\prime}}$ from V_{A}

$$
V_{A}-V_{D}^{\prime}=V_{t n}\left(\frac{R_{2}}{R_{1}}-\left(\frac{R_{2}}{R_{I}}\right)^{2} \frac{1}{\beta A_{1} A_{2}}\right)
$$

Fig. 8. Distortion of the balanced error take-off circuit is reduced by βA_{2} compared with the virtual earth circuit above.

Fig. 10. Practical circuit of single-ended amplifier based on Fig. 3 circuit. Op-amps are 741 types, and power Darlington transistors type MJ4000.

Therefore the gain for the error take-off configuration, $G_{E T}$, is

$$
\frac{V_{A}-V_{D}}{V_{\text {in }}}=\frac{R_{2}}{R_{l}}\left(1-\frac{R_{2}}{R_{1} \beta A_{1} A_{2}}\right)
$$

Comparing the conventional circuits gain, $V_{A} / V_{i n}$, with $G_{E T}$, the distortion has fallen by an improvement factor βA_{2}, a considerable improvement.

The above analysis assumes accuratelyknown resistors. By setting the resistors R_{I}^{\prime} and R_{2}^{\prime} associated with A_{2} to $R_{1}(1+\Delta)$ and $R_{2}(1-\Delta)$ it can be shown that the distortion V_{D} is reduced to ΔV_{D} for $A \beta \gg 1$,
i.e. 1% resistors would reduce it to onehundredth of its former value. This demonstrates that the circuit is not abnormally sensitive to lack of stability in the circuit resistors.

Iterative circuit

By assuming that $R_{2} \gg R_{f}$ the attenuation from the output (Fig. 3) of A_{t} to the junction of R_{1} and $R_{2}, R_{1} /\left(R_{i}+R_{2}\right)$ may be approximated by R_{1} / R_{2}. In addition, for A_{1}, A_{2}, A_{3} etc., if we choose the lowest value of A for $A_{1} A_{2}$ we may write A^{2} and get a pessimistic answer, which is acceptable.

Fig. 11. Improved version of circuit based on Fig. 2, first published in Circuit Ideas, W.W., January 1973. Op-amps are 741 types and power Darlingtons MJ4000 and MJ4010.

Fig. 12. Output voltage, V_{P-Q}, at (a) compared with voltage $V_{P}(b)$, with the add-on signal (lower traces).

With these approximations and assuming $R_{A}=R_{B}=R_{C}$ the uncancelled error (Fig. 3) for two stages is $R_{2}{ }^{3} / A^{2} R_{1}^{3}$ and for n stages $R_{2}^{n+1} / A^{n} R_{1}^{n+1}$.

But the summing resistors attenuate the gain by a half for two stages and $1 / n$ for n stages, so that the gain for two stages is

$$
\frac{R_{2}}{2 R_{I}}-\frac{R_{2}^{3}}{2 A^{2} R_{I}^{3}}
$$

and for n stages

$$
\frac{R_{2}}{n r_{1}}-\frac{R_{2}^{(n+1)}}{n a^{n} R_{I}^{(n+1)}}
$$

Experimental circuits

Two separate circuits have been built, the first based on Fig. 2, the second on Fig. 3. The circuit around Fig. 2 has already been published ${ }^{1}$, so the single-ended version based on Fig. 3 will be described.

It is desirable for a circuit for general use to have a high input impedance and to be capable of working from a high impedance source. If R_{I} is connected directly to the voltage source (Fig. 3) then, if parasitic capacitances and the input current of A_{t} are to have negligible effect, R_{l} will be about $10 \mathrm{k} \Omega$, and the resistance of the signal source would enter directly into the take-off effect.

A normal voltage follower would solve this but at the cost of introducing some distortion. In the practical circuit, by bootstrapping the supply rails to A_{2} (Fig. 10), the distortion is much reduced because all A_{2} is called on to do, in effect, is maintain a low source impedance relative to a $10-\mathrm{k} \Omega$ load since its conditions are kept constant apart from what it sees as a current supplied to it by the $10-\mathrm{k} \Omega$ load. Amplifier A_{l} provides the bootstrap voltage. (Even a germanium transistor could have a wide bandwidth if used under no load conditions with a broad-band A_{l}.)

Amplifier A_{3} transmits the voltage at the junction of the two $10-\mathrm{k} \Omega$ resistors with negligible distortion since by the nature of things it is very small. Its function is to enable the $10-\mathrm{k} \Omega$ resistor plus $5-\mathrm{k} \Omega$ potentiometer associated with A_{5} to function without loading the two $10-\mathrm{k} \Omega$ feedback resistors. Amplifier A_{5} functions similarly while A_{7} is included to enable the effect of a further stage to be studied. This stage was found to have negligible effect and so was unsoldered.

The output of A_{3} is connected to A_{4}, which drives the output Darlington pair. The chain $A_{3}, A_{4}, T r_{1}$ forms a conventional operational amplifier. Devices A_{5}, A_{6}, $T r_{2}$ and $A_{7}, A_{8}, T r_{3}$ form two further operational amplifiers with different feedback resistors to provide different gains to compensate for the higher resistors R_{B}, R_{C} with which they are connected to the load point. Resistors R_{B} and R_{C} are, as far as the main amplifier $A_{3}, A_{4}, \operatorname{Tr}_{t}$ is concerned, part of the load and so it is necessary to have them as high in value as possible to avoid wasting output power.

Bridge circuit

An improved version of Fig. 2 will now be described. It is principally of interest as an
introductory circuit to the system; apart from its low output impedance its performance is not as good as the second circuit from the point of view of a power amplifier.

The input voltage is applied to the $1-\mathrm{k} \Omega$ resistor (Fig. 11) which is 1% of the $100 \mathrm{k} \Omega$ equivalent to R, of Fig. 2 so that if the source impedance varies from zero to infinity in resistance the error take-off signal at Q will vary by only 1%. The junction of the $1 \mathrm{M} \Omega$ and $100 \mathrm{k} \Omega$ resistors is coupled to the input of A_{2} by the $1-\mu \mathrm{F}$ capacitor, allowing d.c. conditions at P and Q to be adjusted independently to enable the standing current through the 20Ω resistor
to be designed. The $5-\mathrm{k} \Omega$ pre-set resistor enables the distortion to be adjusted to a minimum; a voltage is introduced on the $15 \mathrm{k} \Omega$ resistor for this purpose from the bias potential divider.

The waveforms (Fig. 12) of P to earth, the inverse of Q to earth, and the voltage between P and Q (Fig. 12) show clearly the effect of error take-off on distortion. The inverse of Q to earth is used as a reference on the waveforms.

I believe that the applications of error take-off are numerous and that this article has just scratched the surface. It should have application in those many problems where the negative feedback-zero mechan-
ism approach falls down because the speed of response is insufficient and more feedback is impossible to achieve on grounds of stability.

References

1. Reducing distortion by error add-on, Wireless World, January 1973 (Circuit Ideas, p.32).
2. US Patent 1686792 . Transtating system, by H. S. Black, 1928.
3. US Patent 2102671 , page 2 line 69 . Transtating system by H.S. Black.
4. Feedforward error control, Wireless World. May 1972, p. 232.
5. McMillan. Multiple-Feedback Systems. US Patent 2748201, May 1956.

October meetings

LONDON

2nd. BKSTS-"Commercial radio-first year of Capital" by G. O'Reilly at 19.30 at Thames Television Theatre, 308-316 Euston Road, NW 1.
3rd. RTS-Discussion on "The 'stars' in television" at 19.00 at South Bank TV Centre, Upper Ground, SE1.
4th. IEE-Discussion on "Instrument interfaces" opened by D. C. Loughry and R. C. M. Barnes at 14.30 at Savoy PI., WC2.

8th. IEE-Discussion on "Secure supply for instrumentation and computer loads" opened by K. Bishop, Dr M. James and A. S. Watters at 17.30 at Savoy Pl., WC2.
8th. AES-"Electroacoustic quantities and units" by Rex N. Baldock at 19.15 at the IEE, Savoy Place, WC2.
9th. IERE-Colloquium on "H.F. heating circuits and techniques" at 10.00 at 9 Bedford Sq., WC 1 .
9th. BKSTS-" 8 mm -precocious child or maturing adult?" by C. T. Davies at 19.30 at Thames Television Theatre, 308-316 Euston Road, NW1.
10th. IEE--"Engineering innovation in a service in-dustry-Post Office telecommunications" by J. H. H. Merriman at 17.30 at Savoy Pl., WC2.
1 Ith. IEE-Colloquium on "Low cost educational instruments" at 14.30 at Savoy P1., WC2.
14th. IEE-Colloquium on "Integrated communication systems for military applications" at 10.30 at Savoy PI., WC2.
15th. IEE-"Laser induced gas breakdown" by Prof. C. Grey Morgan at 17.30 at Savoy PI., WC2.

15th. IEE-"Automation in television and the theatre" by Dr I. R. Young at 17.30 at Savoy Pl., WC2. 16th. IEE-Colloquium on "Information systems" at 10.30 at Savoy Pl., WC2.
16th. IEE-"Acoustics in space and time-a developing technology" by Prof. E. A. Ash at 17.30 at Savoy PI., WC2.
16th. IERE/IEE-"Technician Education Council" by F. Fidgeon at 18.00 at 9 Bedford Sq., WC1.
16th. BKSTS-"Laser beam telerecording" by D.
Swan at 19.30 at Thames Television, 308-316 Euston Road, London NW1.
17th. IERE/IEE-Colloquium on "Electronics in audiology" at 10.00 at 9 Bedford Sq., WC1.
17th. IEE-Colloquium on "Kalman filtering-its application and limitations" at 14.30 at Savoy Pl., WC2.
17th. RTS-"Visual aids in training simulators" by Dr A. M. Spooner and C. Arthorne at 19.00 at South Bank TV Centre, Upper Ground, SE1.
18th. IEE-Colloquium on "Parametric amplifiers" at 10.30 at Savoy PI., WC2.
18th. IEE-"Distance-protection comparator with signal dependent phase-angle criterion" by Dr L. Jackson at 17.30 at Savoy PI., WC2.
24th. IEE-"Electrotechnology and economic prosperity" by Dr B. C. Lindley at 17.30 at Savoy PI., WC2.
24th. RTS-"The AVR2 video tape recorder" by M. Saiter at 19.00 at South Bank TV Centre, Upper Ground, SE1.

29th. IERE-Colloquium on "Signal processing in communications systems" at 10.00 at 9 Bedford Sq., WC1.
30th. BKSTS -"Electronic film making--past and present" by Walter Kemp, Dr Spooner et al at Thames Television Theatre, 308-316 Euston Road, NW1.

BATH

8th. IERE/IEE-Seminar on "Advances in telecommunications" at 18.00 at the University.

BOLTON

17th. IERE--"Current trends in semiconductors" by Dr K. J. Dean at 18.15 at Bolton Institute of Technology.

BRISTOL

15th. IEETE-"An introduction to space science and technology" by G. G. E. Lewis at 19.30 at Bristol Royal Hotel, College Green.

CAMBRIDGE

24th. IERE/IEE-"The electronic organ-the organ of the future?" by C. C. H. Washtell at 18:00 at Swaffham Prior Church, Swaffham Prior.

CARDIFF

9th. IERE-"Charge coupled devices" by Dr J. D. E. Beynon at 18.30 at Dept. of Applied Physics and Electronics, UWIST.

CHATHAM

17th. IERE-"Modern colour television receivers" at 19.00 at Lecture Theatre 18, Medway and Maidstone College of Technology, Maidstone Road.
23rd. IEETE-"Electronics to help the police" by A. T. Burrows at 19.30 at Medway and Maidstone College of Technology, Horsted Centre, Maidstone Road.

CHELMSFORD

24th. IERE-"Recent advances in display techniques" by D. W. G. Byatt at .18 .30 at the Civic Centre.

CHIPPENHAM

23rd. IERE/IEE-"The digital data network" by M. Foulkes at 18.00 at the Canteen, Westinghouse.

COSFORD

2nd. IERE/R.Ae.S.-"Redundancy in aviation systems" by R. K. Barltrop at 19.15 at RAF Cosford.

DORKING

9th. IEE-"Modern scientific techniques of art object authentication" by Dr S. J. Fleming at 19.30 at Seeboard, Burford Sports Pavilion.

EVESHAM
3rd. IERE-_"Digital television" by Speaker from I.B.A. at 19.30 at BBC (Evesham) Club.

FAREHAM
30th. IERE-"AUTONULL-the suppression of large interfering signals in single and multi equipment installations" by M. M. Zepler at 18.30 at H.M.S. Collingwood.

FARNBOROUGH, Hants.
24th. IERE/IEE-"Automatic weather stations" by H. R. S. Page at 19.00 at Farnborough Technical Coilege.

GLASGOW

29th. IEETE-" $\mathrm{Hi}-\mathrm{Fi}$ and stereo equipment" by T. D. Simmons at 19.00 at Institution of Engineers and Shipbuilders in Scotland, Rankine House, 183 Bath Street.

LEICESTER

17th. IERE-"Digital differential analysers and analogue computers" by W. Forsythe at 19.00 at the University.

LIVERPOOL

16th. IERE-"Colour television-from the studio to the viewer" by C. Whité at 19.00 at Dept. of Electrical Engineering and Electronics, the University. 28th. IEETE/IEE-"The future development of further education courses for technician engineers and technicians, related to the establishment of TEC" by A. T. Bardo at 18.30 at Electrical Engineering Laboratory Block, the University.

NEWCASTLE UPON TYNE

2nd. IERE-"Sonar and underwater communications" by Dr V. G. Welsby at 18.00 at Main Lecture Theatre, Ellison Building, Newcastle upon Tyne Polytechnic.

READING

16th. IERE-"Colour televison" by A. C. Maine at 19.30 at the J. J. Thomson Physical Laboratory, University of Reading, Whiteknights Park.

SOUTHAMPTON

23rd. IEETE -"The electronic organ" by speaker from Henri Selmer \& Co Ltd at 19.30 at the Polygon Hotel.

SW ANSEA

23rd. IERE/IEE-"What are the wild waves saying? -an early history of radio detection" by V. J. Phillips at 18.30 at University College of Swansea.

SWINDON

29th. IEETE-"Aerials and their uses" by Dr J. R. James at 19.30 at Kings Head Hotel, Wood Street.

WEYMOUTH

17th. IERE-"Underwater acoustic imaging" by S. O. Harrold at 18.30 at South Dorset Technical College.

Huge radio galaxies

Radio galaxies 3C236 and DA240 are now known to be among the largest objects in the universe. Their overall dimensions are typical, not of single galaxies but of large clusters of galaxies. This discovery may seem less surprising in that most of their bulk is made up of thin gas, nevertheless the sheer extent of these radio sources will give astronomers plenty to theorize about.

The new realization of the extent of these well-known radio sources comes as a result of measurements with the Westerbork Synthesis Radio Telescope (WSRT) in the Netherlands. The size of a radio galaxy is the size of the emitting region. The emissions are the result of "synchrotron radiation", in which very fast electrons travel through a magnetic field. Interaction with the field makes the electrons spiral along the lines of force, radiating radio frequency energy. Not surprisingly, the intensity of the radiation falls off towards the edges of a source and the problem is to get enough resolution from the radio telescope to be able to distinguish the weak outer areas from the intense inner ones.

One difficulty is that the dishes used in the telescopes have side lobes in their radiation patterns. In the WSRT, which has twelve 25 -metre dishes, the main side lobe has a response which amounts to some 4% of the main beam. Fortunately it is possible to allow for this in the computer processing of the results of an observation. In the case of the larger of the sources, 3C236, it proved possible to measure radiation from regions emitting only 0.001 of the power of the "brightest" regions. Contour maps of "brightness" have been prepared, also a simulation of what the sources would look like if they were transmitters of light not radio waves.

The enormous extent of these sources, especially 3C236, which is some 17 million light years across, means that, if they began life as small objects which exploded, they must have been radiating enormous amounts of energy since their creation tens or hundreds of millions of years ago. Another point arising from the observations depends on the fact that such source contains at least two strongly emitting regions. The fact that the energy from both regions must traverse adjacent parts of space to reach the earth will enable astronomers to
use the waves as "probes" to obtain information about the thin gas which exists in space between clusters of galaxies.
Nature, Aug. 23, 1974, p. 619 and p. 625

Magneto-electric material

A composite material which converts voltages into magnetic fields and vice versa has been produced by Philips Research Laboratories, Eindhoven. It is an alloy of barium titanate and cobalt ferrite. Barium titanate is piezo-electric and cobalt ferrite is piezo-magnetic. Applying an electric field causes the titanate to change shape, which in turn compresses the ferrite and produces a magnetic field. If a magnetic field is applied the reverse sequence takes place to give an electric output. The composite material is a better converter than the best known simple material (chromium sesquioxide) with similar converting properties.

Watching crickets' ears

Biologists at Cornell University are measuring the mechanical vibrations of the eardrum of the cricket as part of a programme of research on the mechanism of hearing. The ear of the cricket Gryllus pennsylvanicus is conveniently situated on the foreleg. A laser is used to illuminate the eardrum; back-scattered light is phasemodulated when the eardrum vibrates and this makes it possible, using an electronic system, to detect movements as small as 0.1 angstrom. The basis of the measuring system is to beat the back-scattered light with unscattered light in a photomultiplier. Any phase difference gives an output signal. Movement of the cricket's body also causes phase shifts. To enable such relatively slow gross movements to be cancelled a lock-in system is used. The back-scattered light passes through an optical phase shifter which is continuously modulated by vibrating a piezo-electric element which forms part of the phase-shift system. This provides a reference signal which enables the optical system to be automatically adjusted to keep the mean phase angle of the scattered light constant. Rapid variations about the mean can then be detected without interference from slow gross movements.
Science, July 5, 1974, p. 55

Solid state optical recorder

First steps have been taken towards the development of a solid state optical recorder. The initial steps include the advent of extended red film, development of (AlGa)As laser diodes that emit continuously at wavelengths in the 700 nm region and the use of a TeO_{2} acoustooptic beam deflector as the horizontal line scanner in a TV-rate laser display.

Wideband modulation data indicates that laser diodes can be conveniently modulated up to 250 MHz for wideband film recording applications. Frequency
response, distortion, spurious spectral component and noise data indicate that the quality of the modulated output is equal to or better than that achieved in the past using a gas laser and an external beam intensity modulator. It appears from the data taken to date that the exposure energy source requirements for 100 MHz wideband film recording systems are well satisfied by a laser diode of the type that has been tested, provided that the continuously emitted power is in the 10 to 15 mW region.

Data is currently being taken to determine the characteristics of the record spot that can be formed from the diode output and the quality of film recordings that can be made. Development work has been undertaken by RCA with partial NASA support in producing the 700 nm laser diodes.

Tuned reeds up to date

The tuned reed or vibrating cantilever resonator, once popular among radiocontrol enthusiasts, appeared in an interesting new form at the 1974 European Conference of Circuit Theory and Design at the IEE. H.M.S. Zakaria of RacalAmplivox Communications makes tiny reeds, only a few millimetres long, by a selective etching technique on a sort of printed circuit board. These are given a d.c. bias and driven electrostatically via coupling plates positioned below the free ends of the cantilevers. This makes for a compact, neat arrangement compatible with other kinds of miniaturized circuitry.

The Q of such a resonator is not particularly high (it rises to about 1000 if the resonator is put in an evacuated container) but is adequate for a number of applications for audio-frequency selective calling systems, etc. The capacitive coupling lends itself to an arrangement in which the input goes to one plate and the output is taken from another; an earthed plate between the active ones reduces stray coupling between input and output. If required, several output plates can be associated with each resonator to give a "fan-out". It is also possible, in theory at least, to couple resonators mechanically as well as electrically. In this way complex filters could be constructed. The useful frequency range is from a few tens of Hz to a few tens of kilohertz.

Pocket laser

A battery-powered neodymium-yttrium aluminium garnet laser has been designed at the Royal Radar Establishment, Malvern. It delivers 0.5 -joule pulses capable of making small welds or punching holes in metal foil. The size is $77 \times 70 \times 53 \mathrm{~mm}$ and the weight 420 grammes. The laser rod is energized by a photo-flash discharge lamp. This lamp is supplied with 40 -joule pulses from a $750 \mu \mathrm{~F}$ capacitor charged to 330 V approx. from a $12-\mathrm{V}$ nickel-cadmium battery and transistor inverter.
Optics and Laser Technology, Aug. 1974, p. 174

\title{

The Greenwood guide to professional soldering.

Greenwood Electronics offer a range of highly advanced products

Greenwood Electronics offer a range of highly advanced products

 specifically for professional soldering applications.For more detailed information about the comprehensive Greenwood range, contact the address below.

1. The Iso-Tip. A safe, high-power iron which works anywhere without a mains lead. The breakthrough ? Nickel Cadmium cells that are re-chargeable. (A charging stand is included for 240 v or 115 v A.C.) Each charge gives at least 60 soldering joints. Weight? Only 6 oz.
2. The Oryx 50. A temperature controlled mains soldering iron. (Temperature control within $\pm 2 \%$). Adjustment ($200^{\circ}-400^{\circ} \mathrm{C}$) can be made whilst iron is operating, using the same tip. Light, compact, and easy to handle. A large 50W element loading gives rapid heating and high performance with constant tip temperature.

Also available: Oryx safety
stand:
3. Oryx SR3A desoldering tool. Ideal where components are tightly grouped. Instantly removes unwanted solder from printed
circuitsetc. Accurate, reliable, speedy, and safe.
4. The Ersa Multitip. A top-quality iron that's ultra-light offering reliability so necessary to achieve constant production flow. A range of different shaped tips simply push onto the stem of the iron. It has the unique advantage that you can change the element in seconds.
5. The Ersa Sprint. Unique - it heats up to maximum temperature in only 10 seconds, and is the lightest gun on the UK market. Ideal for the service-man. With its light weight (only 7 oz .) and compact construction, it can be manoeuvred in even the most awkward areas.

21 Germain Street, Chesham, Bucks, HP5 1LL Tel: 024054808 Telex: 83647

A complete kit!

Actual size!

 $41 / 3$ long x 2 " wide $x^{11} / 16^{\prime \prime}$ deep

This valuable book - free!

If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.
But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.

How ? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations.
NOTES,
In all cases VAT chargeable is that prevailing at current rates

Why only Sinclair can make you this offer

The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 80 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And vou benefit!

Take advantage of this money-back, no-risks offer today

The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.

To Sinclair Radionics Ltd, London Road, St Ives, Hüntingdonshire, PE17 4HJ

Please send me
\square a Sinclair Cambridge calculator kit at $£ 13.59+£ 1.36$ VAT (Total : $£ 14.95$)
\square a Sinclair Cambridge calculator ready built at $£ 19.95+£ 2.00$ VAT (Total : $£ 21 \cdot 95$)
*। enclose cheque for $£$ \qquad made out to Sinclair Radionics Ltd, and crossed
*Please debit my *Barclaycard/Access account. Account number

- Delete as required.

Name
Address

3009 + V15 III + SL110

Can be seen but not heard

The best pick-up arm in the world

Write to SME Limited
Steyning • Sussex - England
Telephone:
Steyning (0903) 814321

Security for diamonds

A 14-camera security survey system is being installed in a diamond mine about 150 miles North-West of Francistown in Botswana. Each c.c.t.v. camera has its own associated picture monitor and a movement in any of the areas guarded by the alarms will automatically switch the output of the relevant camera on to a monitor providing a large screen picture. This will be recorded automatically on a time-lapse video tape recorder, which is employed to reduce tape usage by producing a series of "stills" rather than a continuous tape.

The monitors are located in a control centre which is approximately 400 metres from the camera locations. The chief security officer also has a master monitor which can be switched to any monitor plus a time-lapse v.t.r. in his office at a location 800 metres from the camera points. Particularly important in this installation are the precautions necessary to prevent corrosion due to the high saline content of the extremely large quantities of water used in the mining processes. The Orapa diamond mine which has a high output of industrial and other diamonds is being equipped with the EMI Surveyor c.c.t.v. system.

Electronic licence plate

The lowly licence plate, the last item considered when buying a car, someday may be the most important when it comes to highway safety, traffic control, anti-theft protection, vehicle inspection and automatic toll billing. It also may prove to be a very effective way of transmitting emergency radio messages between motorists and the police.

The key to such an automatic and almost instantaneous multi-purpose system is an electronic licence plate proposed by the RCA Microwave Technology Centre in Princeton, New Jersey. The system, which would cost only a few dollars when manufactured in quantity, would perform three basic functions: respond with a vehicle's identifying code number when electronically interrogated; receive and transmit radio messages to and from a vehicle; and serve as a transponder for use in a cooperative collision avoidance radar.

The heart of the licence plate is an
antenna system capable of receiving radio signals at one frequency and re-broadcasting the signals at double that frequency. The addition of an integrated circuit coder would enable the licence plate to transmit an electronic signal that distinctly identifies the vehicle carrying it.

This feature could be used in a number of ways. Electronic interrogators (microwave transmitters/receivers) placed along streets and highways as part of a data processing network could provide automatic vehicle monitoring of buses, police cars, ambulances, trucks and cabs. This information could be used to provide improved scheduling of buses and speedier and more efficient dispatching of ambulances, police cars, cabs and trucks. It also would enable truck ing firms to monitor vehicles carrying valuable cargoes, thus reducing the risk of highjacking.

In addition, the system could alert police as scon as the identifying number and location of a vehicle known to be stolen appears. Likewise, authorities could be alerted to vehicles whose owners had ignored summonses for traffic violations.

The electronic interrogators, equipped with Doppler radar speed sensors, could automatically record the identifying number of any vehicle exceeding the posted speed limit by a significant amount. A "you are speeding" signal could also be transmitted to the driver via the electronic licence plate.

The system could be expanded to limit access of vehicles to certain areas by adding special codes to the basic identification numbers. For example, entry to restricted parking lots could be limited to designated vehicles.

Vehicles with special codes could bypass coin toll collectors at bridges and turnpike entrances. The vehicle's identifying number would be automatically recorded from the electronic licence plate, and its owner would be periodically billed for accumulated toll charges.

Inspection stations, an RCA scientist points out, could be automated to test
vehicles to manufacturers' specifications. An electronic interrogator would read the car's identifying number and automatically programme the inspection equipment to check for compliance with the manufacturer's specifications for that particular car or truck. The licence plate could also be used to receive safety messages from fixed roadside transmitters or police cars. Examples of such messages are ice, snow, fog, or accident ahead, vehicle going the wrong way into a one-way street, or car going too fast for conditions.

The driver of a disabled car could use his electronic licence plate to transmit a coded call for assistance to either fixed roadside receivers or possibly to passing police cars or other public vehicles. The main components of the electronic licence plate are described as a "printed-circuit antenna covered by a visual display of the licence number of the vehicle, a frequency doubler, a modulator, and an r.f. detector." It would be 12 inches long, 6 inches high, and about a half inch thick. The electronic licence plate meets all of the requirements for a second harmonic reflector to be used in a highway collision avoidance system radar (see Wireless World May, June 1974 "Clutter free radar for cars").

Millimetre-wave radio

Scientists of the Nordern Division, United Aircraft Corporation in the US have developed a new millimetre-wave radio transceiver for frequencies of 22 and 39 GHz . The radio, which is an economical and practical answer to many applications for short-haul transmission of both voice and data, initiates a series of the Division's related telecommunications products. It is intended for point-to-point transmission of digital information and can transmit and receive voice and data information simultaneously. As an economical alternative to cable installations, the radio weighs less than 301 b and is 21 in in diameter and 21 in in depth. Error rate is claimed to be extremely low and the unit is constructed to withstand

Accurately controlled microwave power levels can be launched into this anechoic chamber being used by G. \& E. Bradley Ltd for the accurate calibration of measuring instruments for the monitoring of microwave radiation.
adverse weather including extremes of heat and cold. Power may be supplied from a station battery or from 115 V alternating supply.

The US Federal Communications Commission decided to open up new frequencies centred at 18.22 and 39 GHz to meet the growing demand for copmmunication facilities. Nordern's new millimetre-wave radio has been developed specially for operation at these frequencies.

Supercable

A cable capable of carrying 100,000 telephone conversations simultaneously is to form a new high-capacity backbone for Britain's telephone network linking Birmingham, Manchester and London by the end of the decade.

As the cable breaks new ground in laying techniques and even production technologies, several short lengths probably of no more than a few kilometres are expected to be laid during October to give suppliers experience of laying the new cable. The main laying operation will begin early next year and the Birmingham--Manchester section should be completed by May 1976. In terms of the number of calls it can handle, the cable capacity is such that it can carry twice as many telephone conversations as all the existing transmission systems at present serving its route.

The new cable has 18 coaxial pairs and will be equipped with 60 MHz systems, compared with the 12 -tube, 12 MHz equipped cables now widely used. Two coaxial pairs (one for each direction of transmission) can carry up to 10,800 telephone conversations or an equivalent mix of telephony, telex, computer data and TV.

The 60 MHz line system uses frequency division and multiplexing occupying the frequency spectrum between 4 and 60 MHz in which 12 broadbands of 900 circuits each can be assembled to give the capacity of 10,800 telephone circuits. In view of the probable use of digital transmission methods on the trunk telephone system within the working life of the cable, the Post Office has specified a stringent digital performance for the cable.

Oil rig communications

The use of radiotelegraph error-correcting equipment is to become more widespread in ship-to-shore communications for offshore oil rigs in the North Sea. Most of these rigs use teleprinters to transmit technical and commercial data, via the Post Office coast stations, to their offices ashore. To achieve the high degree of accuracy needed many of these rigs have installed Marconi Autospec terminals as part of their installation. Autospec enables radio communication to be achieved in all but the worst conditions of fading and interference without the need to employ a return radio path to request retransmission. The latest version, Autospec II, is more compact than its predecessor and provides a greater degree of accuracy. Both terminals are compatible although the special error correction code has been further developed and in Autospec II includes character element interleaving to overcome the effect of long
interference noise bursts and fades on the radio path. There is also a visual indication of error detection which allows the operator to make an assessment of the circuit efficiency at any time and take appropriate action when conditions on the radio path are unfavourable to reliable transmission.

Spare parts

The instant availability of commonly needed parts for mobile two-way radio is the aim of a product called Spare-Pac recently unveiled by Motorola Communications and Electronics. Each kit consists of the following classifications or parts: semiconductors, resistors, capacitors, potentiometers, fuses, switches, relays, speaker, microphone cartridge, coiled cord, coils, chokes, transformers, control knobs, pilot lamps, connectors, sockets and miscellaneous parts. The kits are designed primarily for the Mocom-70or Micor mobile two-way radios.

Simple f.d.m. using comb filters

A technique for combining two channels into one audio channel while allowing them to be retrieved with reasonable separation has been developed in Japan. It has especial attraction in telephone communication, allowing channel capacity to be effectively doubled. The technique, called comb frequency division duplex, can also be applied to howlback suppression in loudspeaking telephony allowing an excess loop gain of 20 dB . For ordinary telephony, a separation of 30 dB can be obtained.

In the duplex system, two input channels are fed through complementary comb filters, the pass bands of one filter cor-
responding with the stop bands of the other. They are then additively combined, transmitted on a single channel and, at the receiving terminal, fed through comb filters having similar characteristics to the input filters. Separation depends on the type of comb response chosen. For example, filters with squared cosine and sine amplitude characteristics give about 10 dB separation, and filters with fourthpower cosine and sine characteristics give about 23 dB separation. A modified fourthpower response can give as much as 30 dB separation. "Distance" between comb "teeth" is typically 200 Hz .
There is, of course, some degradation of speech quality but in expensive transmission systems, especially satellite communication systems, maximizing efficiency is a prime consideration, even at the expense of some quality. The technique is potentially much cheaper than the complicated vocoder systems, in which speech is synthesized from narrow-band control signals. The comb filter response can be derived by digital filter synthesis techniques and, with the advent of chargecoupled analogue delay lines, can be implemented without recourse to analogue-to-digital converters, shift registers and digital-to-analogue converters.

The technique was described at the recent International Congress on Acoustics, held at Imperial College, London, in July, by Yoshimutsu Hirata, of the department of electronics and communications, Waseda University, Tokyo.

Briefly

Beer on tap. A pocket paging system has been installed at the North Euston Hotel, Fleetwood-when the beer runs out, they simply radio for more.

Style plus the advantages of electronic push-button "dialling" are features of the latest telephones to be tried out in London. If trials go as the Post Office expects, the new 'phones will later be made available progressively in other parts of the country.

Mains rejection tracking filter

Using a tracking " n -path" filter with wide dynamic range

by K. F. Knott, B.Eng., Ph.D., M.I.E.E. and L. Unsworth, B.Sc.

University of Salford

The filter described greatly reduces inter ference at mains frequency and harmonics on wideband signals without seriously affecting these signals. It has the ability to track changes in the mains frequency, enabling very sharp rejection characteristics to be obtained. Useful rejection is maintained up to the 5th harmonic. The filter is based on the well-known principles of the commutating $C R$ network but several improvements have been made to extend the dynamic range of this network without sacrificing signal bandwidth. For example, at mains fundamental a rejection greater than 40 dB is maintained down to signal levels of 50 mV r.m.s., the signal bandwidth being 100 kHz . Consider the situation in which N identical capacitors are switched into a $C-R$ network in sequence at a rate of $N f_{o} \mathrm{~Hz}$ (Fig. 1).

Fig. 1

Fig. 2

The transfer characteristic of the network has the form indicated by Fig. 2(a), i.e. the network acts as a comb filter, the centre frequencies of which are set by the commutating frequency of the switch. ${ }^{1}$ Alternatively, if the output is taken across the resistor the transfer characteristic of Fig. 2(b) is obtained.

If the commutating frequency, $N f_{o}$, is controlled to follow variations in f_{o}, the filter has the ability to track varying-frequency input signals therefore enabling the use of sharp notches while maintaining high attenuation. This is in contrast to fixedfrequency notch filters such as the bridged-T network. Although the mathematical treatment of commutating filters is well established it is useful to describe their operation in a non-mathematical way for the purpose of discussing problems which arise in the design of an instrument.

Principle of operation

Suppose the input signal $v_{i n}$ in Fig. 1 is sinusoidal at a frequency $f \mathrm{~Hz}$. If f is equal to $n f_{o}$, where n is an integer, the input signal will be in synchronism with the switch and each individual capacitor will be switched in at the same instant in each cycle of the input waveform. Each capacitor will charge up to the corresponding instantaneous value of the input waveform. This is analagous to sampling the input waveform with N / n samples per cycle. Obviously the upper limit on n is $N / 2$.

The voltage waveform across C will not be sinusoidal but will resemble a "staircase" replica of the sinusoidal input voltage. The voltage across R will be the difference between the sine-wave and the staircase waveform. Consequently the action of the filter necessarily introduces high-frequency switching noise. An illustration of this noise is shown in the photograph of Fig. 3, which was taken for the case with $f_{o}=50 \mathrm{~Hz}$, $n=1, N=16$.

Consider now the action of the filter if f is a non-integral value of f_{o}. The input is no longer in synchronism with the switch and each individual capacitor will be switched in at varying points in successive cycles of the input waveform. The voltage across each capacitor will therefore be averaged to zero and the voltage across R will be equal to the input voltage. At input signal frequencies very much lower than f_{0} the

vert. $0.5 \mathrm{~V} / \mathrm{cm}$
horiz $5 \mathrm{msec} . / \mathrm{cm}$
Fig. 3
switch may be considered to be rotating so rapidly that all N capacitors appear to be connected simultaneously. The circuit can then be thought of as a simple network with a time constant of $N C R$ i.e. the voltage across R is down by 3 dB at a frequency $1 / 2 \pi N C R \mathrm{~Hz}$. At input frequencies much higher than f_{o} the switch may be considered stationary and the network thought of as a simple network with a time constant of $C R$. This usually means that the voltage across C is very much smaller than the input voltage at frequencies greater than $N f_{d} / 2$ even though the commutation is no longer effective. Hence the voltage across R will be almost equal to the input voltage. The switching has the effect of reflecting the loss-pass response about $f_{o}, 2 f_{o}$, etc, thereby generating the comb-filter response of Fig. 2(a). The bandwidth is $2 / N$ times the bandwidth of the original low-pass sections, i.e. $(2 / N)$ $(1 / 2 \pi C R)=1 / \pi N C R$.

Design considerations

The desirable characteristics of a tracking mains interference rejection filter may be summarized as follows.

1. Minimum degradation of the signal which is to be transmitted through the filter.
2. Wide dynamic range and signal bandwidth.
3. High rejection of the fundamental and lower harmonics of the mains frequencies bearing in mind that interference signals are liable to fluctuate in amplitude.
4. Ability to track changes and rates of change of the nominal mains frequency. As point 4 is subsidiary to the operation of the filter it is considered briefly before proceeding to a more detailed discussion of points $1,2 \& 3$.

Tracking requirements

Statutory limits of the mains frequency in this country are 49.5 Hz and 50.5 Hz , although the likelihood of these limits being reached is low under normal circumstances. The rate of change of mains frequency is governed by the inertia of the generating plant and it is extremely unlikely that a rate of change of $0.1 \mathrm{~Hz} / \mathrm{min}$. would be exceeded. The tracking requirements are modest therefore and the circuit described later has an adequate performance.

Rejection, signal bandwidth and dynamic range

A convenient way in which to discuss the performance of the filter is to consider the various properties of the basic circuit and then discuss how these properties may be improved. The basic filter, omitting the tracking loop, is shown in Fig. 4.

Fig. 4
Considering firstly the rejection characteristics of this circuit, as illustrated in Fig. 2(b), the sharpness of rejection is proportional to $N C R$. In theory one can obtain a very high Q factor by choosing an appropriately large value of $N C R$. But an interference signal is likely to have a fluctuating amplitude. Suppose, for the sake of argument, that a $50-\mathrm{Hz}$ interference signal was fluctuating sinusoidally in amplitudes with a period of ten seconds. Obviously this may be considered as a double-sideband signal with a carrier at 50 Hz and sidebands at $50 \pm 0.1 \mathrm{~Hz}$. If the Q of the filter at 50 Hz were greater than $50 / 0.2$ the sidebands would not be greatly affected. Although the analysis of sinusoidally modulated mains interference is a fictitious case it serves to illustrate that one must not have too high a Q-factor if fluctuating interference signals are to be rejected. Also, the step response of the filter is determined by its Q such that a slow response would result if a very high value of Q were used.

Theoretical magnitudes of rejection obtained at the synchronous frequencies can be found fairly easily by numerical analysis for specific values of N. The procedure is explained in the following paragraph.

Consider a sinusoidal input signal of frequency $n f_{o} \mathrm{~Hz}$. In the steady-state condition the voltage across each capacitor will reach the value of the input sine-wave averaged over the period for which the capacitor is connected. The voltage across each capacitor may be assumed constant provided that the $C R$ time constant is large compared with the time spent on each capacitor and also if there is negligible discharge of the capacitors during the time between consecutive connections, i.e. $1 / f_{o}$ sec. The waveform

Fig. 5
across the capacitors will thus be as illustrated in Fig. 5.

The Fourier analysis of this type of waveform appearing across the capacitors may be found numerically by the "jump" technique. ${ }^{2}$ As an example, suppose N were equal to 16 . The analysis yields the result that for input signals of frequency $f_{o}, 2 f_{o}$ and $3 f_{o}$, the fundamental components of the waveforms across the capacitors are respectively $0.97,0.95$ and 0.905 times the input. This would lead to rejections of 30.4, 26 and 20.4 dB respectively if these fundamental components alone were subtracted from the input signal. However, these figures may be improved by weighting one of the inputs of the subtractor. In this way infinite rejection can be achieved at one of the synchronous frequencies, i.e. $f_{o}, 2 f_{o}$ or $3 f_{o}$, etc. For example, if the circuit were trimmed to effectively increase the 0.97 figure to 1.00 , the theoretical rejections at $f_{o}, 2 f_{o}$ and $3 f_{o}$ would be $\infty, 33$ and 23 dB respectively.

Considering, secondly, the dynamic range of the circuit, it was mentioned previously that the commutating action of the filter introduced high-frequency switching noise. Being more specific, if a $50-\mathrm{Hz}$ signal were present at the input, switching noise would be introduced at $50 N+50,50 N, 100 N, 150 N$. . etc, Hz. Furthermore, amplitudes of the switching noise components are at fixed levels below the $50-\mathrm{Hz}$ signal. In general, the switchingnoise component amplitudes decrease as N increases. As there is obviously a practical limit to the value of N the output of the basic filter will contain components of switching noise which will limit the dynamic range of the filter.

The simplest way in which to improve the dynamic range is to add a low-pass filter to the output as shown in Fig. 6, this of course reducing the signal bandwidth. To exploit the rejection properties of the commutating filter this low-pass filter should have negligible attenuation up to say $(N / 2) 50 \mathrm{~Hz}$ and high attenuation at $N 50 \mathrm{~Hz}$. The inevitable choice would be an active $R: C$ filter.

Fig. 6

Good dynamic range and signal bandwidth can be achieved if a low-pass filter is inserted in the position shown in Fig. 7.

Fig. 7
The low-pass filter must again have a very sharp cut-off but unfortunately this cannot be achieved without introducing phaseshift in the pass-band. As a result the rejection decreases since the interference signals present at the differential amplifier inputs will no longer be exactly in phase.

This disadvantage may be overcome by inserting an all-pass filter in the signal path, having exactly the same phase response as the low-pass filter so that the interference signals present at the inputs of the differential amplifier are now always in phase, resulting in the final block diagram of Fig. 8.

Fig. 8

Unfortunately the wanted signal now undergoes the phase-shift of the all-pass filter. This may or may not be important depending on the application.
To summarize, the filters based on the block diagrams of Figs $6,7 \& 8$ have the following properties:
Fig. 6-high rejection, low signal bandwidth, good dynamic range
Fig. 7-high signal bandwidth, good dynamic range, moderate rejection
Fig. 8-high signal bandwidth, high rejection, good dynamic range but unsuitable for applications which require little phase-shift through the filter.
All of these characteristics may be obtained from the constituent parts of Fig. 8 by a suitable switching arrangement, though not simultaneously.

Choice of N and $C R$

Good rejection and tolerable levels of switching noise without overdue circuit complexity can be achieved with $N=16$. If a bandwidth of 1 Hz at 50 Hz is specified, i.e. $Q=50$, the filter will have a negligible effect on a wideband signal. Also, with a
half-bandwidth of 0.5 Hz reasonable rejection will still result at frequencies between 49.8 and 50.2 Hz , i.e. the filter would reject a $50-\mathrm{Hz}$ interference signal even if its amplitude were fluctuating over periods as short as 5 s and further with a Q of 50 , the time constant of the filter is 0.3 s so that a rapid response to step changes in interference level is achieved.

Complete layout

The complete block diagram of a practical mains rejection filter is shown in Fig. 9. A switching arrangement has been adopted to make maximum use of the characteristics of the commutating network.
In position 1 (cf. Fig. 8) there is high signal bandwidth, high mains rejection, good dynamic range but considerable phase-shift between input and output. Position 2 again yields high signal bandwidth and good dynamic range but moderate mains rejection (cf. Fig. 7). However, the phase-shift is now constant over the audio range of frequencies. This is accomplished simply by shorting out the all-pass filter. The effect of the phase shift of the low-pass filter is to reduce the rejection of mains frequencies. However, the $50-\mathrm{Hz}$ rejection is improved by introducing a simple lead network (C_{l}, R_{l})

Fig. 9

* nön-polarized polycarbonate

Fig. 10
chosen so that at 50 Hz , though not at higher harmonics, the interference signals are exactly in phase at the inputs of the differential amplifier.

Position 3 gives high mains rejection, good dynamic range but low signal bandwidth, determined by the low-pass filter (cf. Fig. 6). This position was found to be desirable in certain applications where high frequency signals cause problems.

The low-pass and all-pass filters are both non-inverting and need to be preceded by buffers. Because an adder is far easier to align than a subtractor with its four variables we made the buffer preceding the all-pass filter a follower and the other an inverter, thus enabling an adder to be used to derive the required difference between the interference signals.

The circuit diagram corresponding to the block diagram of Fig. 9 is shown in Fig. 10.

Commutation

The 16 capacitors must be commutated electronically at $16 \times$ mains frequency. Any one of a number of methods may be used to this end and the technique chosen is to drive two 8 -way multiplexers alternately, both consisting of eight m.o.s.f.e.ts, each of which is switched on in turn with consecutive input clock pulses. The multiplexers are connected thus

Fig. 11
The f.e.ts 1 to 16 are therefore arranged to switch on in turn. An $800-\mathrm{Hz}$ clock (described later) drives a four-stage binary counter, the output of which is a $50-\mathrm{Hz}$ square wave.

Fig. 12
In Fig. 12 all \mathbf{J} and K inputs are permanently high. The $800-\mathrm{Hz}$ clock is used to drive the two multiplexers. Consider just one multiplexer. Each f.e.t. is energized in turn as consecutive clock pulses appear at the input but, after eight pulses, the clock waveform must be diverted to the second multiplexer which then switches capacitors 9 to 16 and then back to the first multiplexer, etc.

multiplexers
Fig. 13

Referring to Fig. 13, switch S_{I} must toggle every eighth clock pulse. Now the output of the counter of Fig. 12 toggles every eighth clock pulse and so switch S_{i} may be simulated as follows

Fig. 14

When the counter output is high, gate G_{t} is enabled and its output will then consist of the $800-\mathrm{Hz}$ clock waveform. Meanwhile G_{2} is closed. After eight clock pulses the counter output assumes a low state and gate G_{2} is now enabled while G_{I} closes.

Tracking oscillator

A multivibrator with a pulse repetition rate of $N \times$ mains frequency will provide the clock waveform. If the mains frequency changes slightly, then so must the multivibrator repetition rate to maintain synchronism.

Consider the following circuit

The waveform at point A will be a $50-\mathrm{Hz}$ sinewave with a pulse superposed on it:

Fig. 16
When the multivibrator is synchronized to the mains frequency, the 0.5 ms pulse will sit on the sinewave at some particular point. If the mains frequency now changes slightly, the pulse will climb up or slide down the sinewave and if the peak value of the waveform of Fig. 16 is detected, the resulting voltage can be used to vary the multivibrator rate to maintain synchronism with the mains.

vert. $1 \mathrm{~V} / \mathrm{cm}$
horiz. $5 \mathrm{msec} / \mathrm{cm}$.
Fig. 17
Fig. 17 shows a photograph of the waveform at point A. The monostable of Fig. 15 is based on that given in reference 4.

A graph of p.r.r. versus mains frequency is shown below

Fig. 18

Fig. 15

Fig. 19

Fig. 20

vert. $0.2 \mathrm{~V} / \mathrm{cm}$
noriz. $5 \mathrm{msec} / \mathrm{cm}$
Fig. 21

Performance

In position 1 (see Fig. 19, top left), 50dB of rejection at 50 Hz was maintained down to 100 mV and up to 2 V rms and 40 dB of rejection down to 50 mV . A bandwidth of 100 kHz was maintained up to levels at which the slew rate of the operational amplifiers employed (709s) imposed restrictions.
The graphs on the right-hand side of Fig. 19 illustrate the relative amplitudes at the output terminals of an unwanted $50-\mathrm{Hz}$ signal and its associated switching components, the input $50-\mathrm{Hz}$ signal level being 0 dB .

In position $2,27 \mathrm{~dB}$ of rejection was achieved at 50 Hz , again from 100 mV to 2 V r.m.s. Phase response is shown flat from 2 Hz to 30 kHz in Fig. 20.

In position $3,50 \mathrm{~dB}$ of attenuation was measured between 100 mV and 2 V r.m.s.
The $3-\mathrm{dB}$ bandwidth of all the notches of the left-hand graphs was approximately 1 Hz .

Fig. 21 illustrates the effectiveness of the filter where the top trace shows a $1-\mathrm{kHz}$ sinewave swamped by 50 Hz and the lower trace displays the $1-\mathrm{kHz}$ signal after being processed by the filter.

References

1. Broeker, W. Commutating Techniques, Motorola application note AN534.
2. Kreyszig, E. Advanced Engineering Mathematics, Wiley 1964.
3. Unsworth, L. Using junction f.e.ts, Wireless World, vol. 781972 p. 222 (articlecovers pp. 219-22).
4. Cole, H. A. TTL trigger circuits, Wireless World, vol. 78, 1972, pp. $31 / 2$.

Circuit Ideas

Stereo/mono switching

In designing the channel switching for a stereo amplifier, it is desirable to achieve all the required stereo/mono configurations using as little hardware as possible. The most useful configurations are off; mono to left speaker, right speaker, or both; and stereo, left channel only, right channel only, both channels, and reversed. To achieve these eight combinations it is not necessary to use eight pushbuttons; as $2^{3}=8$, it can be done with just three pushbuttons. A simple logical reduction of the switching requirements leads to the circuit shown, which requires three 3-way pushbuttons.
J. V. Yelland,

Didcot, Berks.
In the t.t.l. monostable circuit by Mr Yelland (March 1973) the gates should have been shown as OR gates.

off
mono left
mono right
mono both
stereo
stereo (right only)
stereo (left only)
$\frac{\text { mono mono }{ }_{\text {stereo }}}{\text { rren }}$
mono mono stereo

Self-cancelling touch button control

This method of touch button control has the advantage that the buttons automatically cancel each other and that a defined button comes on when the power supplies are applied. The circuit is extendable to larger numbers of buttons by cascading further sections as shown in the dotted lines.

The system operates by detecting skin resistance across a pair of contacts. The 0 -volt contact would normally be the equipment front panel. Light-emitting
diodes indicate which button is currently actuated; any type of l.e.d. capable of handling 20 mA may be used. The supply voltage may be from 20 to 30 volts. Outputs may be used to drive f.e.t. analogue switches directly, varactor tuning diodes via a suitable diode resistor network, or relays via suitable buffer circuits. The capacitor briefly holds the transistor on when power is first applied, so ensuring that this stage always comes on first.
P. G. Hinch,

London SW15.

Auto polarity switching for voltmeters

This circuit converts most high-impedance voltmeters to auto reverse-polarity switching. To prevent meter shunting an f.e.t. is used as the input element, the comparator is referenced to a zener-stabilized voltage, and a cheap silicon planar transistor is
used as the zener for economy. Feedback is arranged in the comparator to provide fast switching. The relay can also be used to switch polarity indicators.
Hans Wedemeyer,
Vanse, Norway.

Simple flashing-I.e.d. timer

This circuit using only eight components is a unijunction oscillator controlled by an f.e.t. timer which causes the l.e.d. to flash after a time delay. In operation the unijunction passes a quiescent current of about lmA, the f.e.t. is off until the $100 \mu \mathrm{~F}$

capacitor has been charged to about 1 V via R_{I}. The f.e.t. then switches on and is part of the charging circuit for the unijunction oscillator with R_{2} and the $50 \mu \mathrm{~F}$ capacitor, which then pulses the l.e.d. at about 200 mA pk . The circuit was developed as a simple cheap circuit for an egg timer but has numerous applications.
J. Jeffrey,

Chelsea College,
University of London.

Sensitive null indicator

Intended as a tuning indicator for an f.m. tuner where the d.c. potential of the output is compared with a non-zero reference voltage, this circuit enables a standard left-hand zero meter to be used as a null indicator. It also has the advantage of presenting a high impedance to both the sense and reference voltages. It is an extension of the basic op-amp alternating voltmeter configuration, with the reference buffered by $I C_{2}$. A current i flows through the load R, such that $i R=$ $V_{\text {sense }}-V_{\text {ref }}$. This current also flows through the meter, the diode bridge ensur-
ing that there is always a positive deflection. The high gain and negative feedback around $I C_{1}$ overcomes the non-linearity of the bridge. As $V_{\text {sense }}$ approaches $V_{\text {ref }}$ the meter pointer moves towards zero, abruptly reversing its travel as the null point is passed. No setting up is needed, and with the component values shown f.s.d. occurs with a differential input of one volt. Diode $D_{\text {, }}$ protects the meter in the event of an overload. Any low leakage diodes can be used for the diode bridge.
A. S. Holden,

Leamington Spa.

Touch start of automatic rhythm device

Very few electronic organs manufactured before 1970 are equipped with facilities for remote control of an automatic rhythm device. This circuit is activated by an audio signal from the lower manual or pedal, making it possible for the performer to play the prelude on the upper manual and the pedal; when the first note is
played on the lower manual, the rhythm accompaniment starts.
In the front end of the circuit two alternatives are shown; a high impedance input for connection to the lower manual toneshaper output of an electronic organ, and an electromechanical Hammond organ connection using a transformer and
a series resistor. The transformer could be any radio output transformer. An incoming signal is amplified through Tr_{1} and $T r_{2}$ and turns on $T r_{3}$. If S_{1} is closed, a current passes through to Tr_{s}, triggering the bistable and causing the relay to pullin. S_{2} and S_{3} and are used for manual start and stop.
K. B. Sorensen, Copenhagen.

Digital speedometer using c.m.o.s.

2—Average-speed indication

by Adrian Bishop and Alan Woodruff*

RCA Ltd (*now with NRDC)

Abstract

Part 1 dealt with the principle and circuit design of a digital speedorheter constructed with c.m.o.s. digital integrated circuits. This second part describes an average-speed-calculating circuit that can be added to the basic speedometer. Calibration and power supply details for a complete speed and average-speed circuit are also given.

Average speed is simply distance travelled divided by the time taken. The general approach to performing this calculation is to accumulate pulses (representing distance) from the output of the speedometer phase-locked loop (CD4046AE) and then to divide this count by a second count representing elapsed time. The method of division is the customary logic technique of successive subtraction.

To keep the cost of the logic to a reasonable sum, a compromise between the rate of updating and the number of counters is inevitable. With the circuit shown in Fig. 10, an average-speeddetermining division occurs every three minutes. The capacities of the distance and elapsed time counters limit the distance and time over which average speed can be calculated. These limits are unlikely
to be exceeded in practice as the distance counter has a capacity of around 1500 miles and the time counter around 200 hours.
The sequence of events is as follows. -At the start of a journey, both the distance counter and the elapsed time counter are reset to zero.

- Accumulation of distance and time pulses will continue until one of the

Fig. 10. Speed averaging diagrams. Three of the inverters shown (two at top left and one at middle bottom) are formed by connecting together both inputs of three of the CD4011AE NAND gates. 14-pin dual in-line packages have pin 7 connected to $V_{\text {sS }}$ (earth) and pin 14 to $V_{D D}$. 16-pin packages have pin 8 for $V_{S S}$ and pin 16 for $V_{D D}$. CD4045AE however has pins 1 and 3 for $V_{D D}$ and pins 2 and 14 for $V_{s s}$. The CD4035AEs have pins 2 and 7 for $V_{D D}$ and pins 3 and 4 for $V_{S s}$.
counters overflows or the power to the circuit is removed.
-Division of the two counts is carried out at regular intervals, determined by an oscillator, using the CD4008AE 4-bit adder/subtractor.
-The numerical value of the average is obtained by repeatedly subtracting the number of pulses in the time counter from the number of pulses in the distance counter until a negative result is obtained and counting the number of subtractions needed to achieve this. This is performed by recycling the result of each subtraction through the subtractor using the CD4035AE shift register and the CD4019AE AND-OR select gate.

Distance counter

Pulses from the output of the speedometer phase-locked loop are counted by a series of three binary counters; two CD4040AE 12-stage counters and a CD4024AE seven-stage counter. The first CD4040AE divides the pulses by $512\left(2^{9}\right)$ to scale the output to manageable proportions. Taking the pulses without division means dealing with larger numbers of pulses and consequently more subtraction devices than are justified by the accuracy of a twodigit display.

The pulses used to represent distance are counted in the second CD4040AE and the CD4024AE. The outputs from the counters are connected to a series of four CD4019AE devices.

Elapsed time counter

A time standard consisting of a $50-\mathrm{kHz}$ oscillator, similar to the one used in the speedometer, is constructed using two NAND gates from a CD401IAE (other NAND gates on this chip are used elsewhere). Pulses from the oscillator are fed into a 21 -stage CD4045AE divider which produces a pulse approximately once every three minutes. This oscillator also serves as a clock for the subtractor section. Each pulse is defined to be one unit of elapsed time, and they are counted by a 12 -stage CD4040AE counter, which will be filled after approximately 200 h . However, unless you are participating in donkey cart endurance trials, the limiting element of the average speed circuit is the capacity of the distance counter.

Divider operation

Average speed can now be calculated from these representations of distance and elapsed time. The binary number representing distance is fed from the distance counter via the CD4019AEs into four CD4008AE four-bit adder/subtractor packages, and the binary number representing elapsed time is also fed into the CD4008AEs. The time number is subtracted from the distance number, and the answer is clocked into a memory (four CD4035AEs), the outputs of which are connected back into the CD4019AEs.

The role of the CD4019AEs is now apparent-they act as quad input digital multiplexers and are used to select the right input data at the right moment. For the first cycle of subtraction the

Fig. 11. In this speedometer power supply the logic system is protected by an 11-V Zener diode and two capacitors. A power transistor controls display brightness.

CD4019AEs allow the distance inputs into the subtractor; after this the control inputs on the CD4019AEs are changed to accept the output of the CD4035AEs until the repeated subtraction has been completed. Subtraction ceases when the result becomes a negative number, which state is indicated by a change in the state of the "sign" bit obtained from the output of the subtractors.

For each cycle of subtraction until there is a change in the sign bit the outputs of the subtractor are clocked into the parallel in/parallel out memory formed by the CD4035AE four-bit shift registers. Therefore the number of clock pulses needed to achieve a change in the sign bit (one clock pulse per subtraction) is the numerical value for average speed. These clock pulses are counted by two CD4029AEs-b-c.d. counters.

For simplicity only two digits display either speed or average speed. Common decoders and display drivers can therefore be used, and the desired inputs are selected by a switch that controls two CD4019AEs (Fig. 12).

Timing

The sequence of events begins on the negative going edge of the three-minute units time pulse, which appears at the output of the CD4045AE. This edge triggers two $R C$ timing circuits that produce narrow true and complement signals that are fed to the CD4019AEs, which allow the outputs of the distance counters CD4040AE and CD4024AE to be connected to the subtractor inputs.

The true signal generated by the timing network also gates on the clock, which allows the result of the subtraction to be stored in the CD4035AE parallel-in/ parallel-out memory. The clock signal used is the inversion of the 50 kHz clock (obtained from pin 15 of the CD4045AE), and this gives a very short dividing time.

The width of these control signals to the CD4019AE has been chosen to allow one clock pulse through to the CD4035AEs. When the control signals revert back to their normal state, the inputs to the subtractor become connected to the outputs of the CD4035AEs to allow the process of successive subtraction to proceed.

After the first cycle of subtraction, the clocking of the CD4035AE is allowed to
continue until there is a change in the sign bit, indicating a negative answer. When this occurs the clock is stopped and remains disabled until the next negativegoing edge of the units time pulse appears at the output of the CD4045AE. Then, irrespective of the sign bit indicating negative number, one clock pulse is allowed through to start the first subtraction, after which control of the clock is taken over by the sign bit.

Besides entering the CD4035AEs, the clock pulses are also counted by the CD4029AE counters. The division process takes only about 1 ms , and it is therefore not necessary to use a memory (i.e. latches) between the counters and the decoders, as the display cannot follow the rapid changes that occur during the division.

This completes the details of the average speed logic. All that remains now is to discuss the power supply requirements, calibration and switching arrangements.

Power supply

The 3 to $15-\mathrm{V}$ operating voltage range of c.m.o.s. permits the use of the simple 11-V Zener diode circuit, shown in Fig. 11, to power the logic system. Two decoupling capacitors across the Zener diode filter high-frequency and low-frequency noise from the battery voltage. The other diode protects the circuits should the speedometer be inadvertently connected to the battery the wrong way round.

A dimmer has been included so that the power supply to the display can be adjusted according to ambient lighting conditions. The dimmer is a simple variable voltage supply, from 0 to approximately 7 V , consisting of a $1 \mathrm{k} \Omega$ potentiometer with a limiting resistor controlling the base voltage of an emitter-follower power transistor, which must be provided with some form of heat sink. The displays can be turned completely off, or completely on for bright sunlight conditions.

Speedometer calibration

Drive ratios to speedometers vary from car to car; therefore some method of setting-up adjustment of the speed and average speed circuits is necessary and this has been achieved by the inclusion of a trimming potentiometer in each

Fig. 12. Modification of output of speedometer and speed-averaging circuit to enable use of a common two-digit display. Speed is normally indicated, with average speed displayed by operating selector switch.
circuit. The digital speedometer is simply calibrated against the original speedometer by persuading a friend to twiddle the potentiometer while you drive carefully at constant speed. Above this speed there may be discrepancies owing to the nonlinear response of conventional speedometers. The absolute accuracy of the instrument inevitably depends on the accuracy of the drive of the original speedometer, which depends on variations in tyre perimeter-a function of pressure, temperature and condition of the tyre. The digital speedometer is intrinsically more accurate than the conventional type inasmuch as it avoids the problem of the non-linear response of the cup to the whirling magnet. If you're really enthusiastic you can fit a calibrated bicycle wheel behind your car and take some sort of drive from that.

Assuming the speedometer has been set up as described, average speed can be set up without having to drive the car. This is achieved by capacitively coupling a signal from a separate $R C$ oscillator included on the average speed board to the input of the speedometer pick-up coil amplifier. This will produce a certain constant speed reading on the display, and effectively simulates the car moving at constant speed.

The average speed circuit is then set to zero, and after three minutes, this figure should be registered as the average speed. If it is not, as will almost certainly be the case, the potentiometer controlling the units time period should be adjusted in the appropriate direction, and the procedure repeated once again. Unfortunately this is an unavoidably time-consuming trial-anderror procedure. Nevertheless, once the average speed is correctly set up, the procedure should not need repeating unless
you swap the speedometer to another car. Disconnect the calibrating oscillator after setting up.

Switches

To make the speedometer as flexible as possible, a number of manually operated switches have been included, and it is as well to summarise their functions.

Assuming a negative earth vehicle, it is advisable that the positive supply connection for the speedometer circuits be wired through the ignition switch of the
car, to avoid unnecessary consumption of power when the car is parked. If you want to keep the average speed computation going while the ignition is off, as would be likely if you stopped for lunch or some other call of nature during a long journey, the best solution is to wire the positive supply for the logic via a separate switch direct to the battery and wire the display power supply through the ignition switch. A third possibility is to wire both logic and display supplies direct to the battery.

The function of the sample-rate

Connections for i.cs, omitted in Fig. 4 (part 1) and Fig. 10 (part 2). Note comments about connections for other i.cs in Fig. 10 caption.
selecting switch has already been described; it is a simple four-pole rotary switch that enables the display updating to proceed at an acceptable rate.

The display selector switch will determine whether speed or average speed is shown. Probably the best approach here is normally to display speed, and to obtain an average speed reading by depressing a push-to-hold switch. If it is preferred to display average speed continuously, a simple toggle switch can be used. Whatever type of switch is chosen, it also serves to ensure that the latches in the CD4056 decoders are enabled (see Fig. 12).

The reset switch is a single-pole, doublethrow switch that resets the distance and time counters to zero by connecting them to the positive logic supply rather than earth.

The possibility of keeping the logic circuits connected to the battery while the car is parked underlines the remarkably low power consumption of systems designed using c.m.o.s. devices. The speed and average speed logic circuits, which include 36 c.m.o.s. devices and one bipolar op-amp, draw typically only 3 mA , half of which is consumed by the op-amp. By comparision, the display drivers consume about 12 mA , and the displays themselves can consume up to 0.5 A , depending on the brightness setting.

Assembly hints

Assemble the boards with an earthed soldering iron to avoid the build-up of static charge on the c.m.o.s. devices

Location of the pick-up coil on the back of the speedometer is fairly crucial. Having located the coil, it may be necessary to experiment with different values for the integrating capacitor to prevent the system picking up noise. This noise manifests itself in the erratic behaviour of the display at low speeds. Unfortunately this is once again a question of trial and error; try a 47-nF capacitor first.

Once the boards are assembled, check the speedometer board first without the average-speed board connected. This can be done without installing it in the car by capacitively coupling the average-speedcalibrating oscillator to the amplifier input with the pick-up coil connected as well.

If when you try out the circuits things are not as you might have expected, look for obvious simple faults such as incorrect device orientation, dry joints, solder splashes on the printed-circuit board, missing components, or reversed power-supply connections. If you suffer unexplained persistent faults and you have access to an oscilloscope, check through the circuits stage by stage from the front inwards as is usual practice.

Printed-circuit boards and integrated circuits for a slightly modified (one i.c. less) version will be available from Integrex Ltd, at P.O. Box 45, Derby DE1 1TW. Integrated circuits are also available from RCA distributors.

ACTIVE DEVICES

All data sheets and application notes on Signetics semiconductors and circuits are now collected into two volumes, costing $£ 4.00$ for the pair. Semicomps Ltd, Northfield Industrial Estate, Beresford Avenue, Wembley, Middlesex.

PASSIVE DEVICES

Mullard have produced a wall-chart to assist engineers in the selection of ferroxcube cores and formers for transformers and inductors operating at up to 15 MHz . Mullard Ltd, Mullard House, Torrington Place, London WCIE 7HD

WW401
A catalogue is available from ITW Electronics which gives full information on the Micromatic range of polypropylene and polyester film capacitors. The method of manufacture of the Micromatic capacitors is illustrated. ITW Ltd, 263 Farnham Road, Slough, Bucks.

WW402

GENERAL CATALOGUES

The first Doram catalogue is now available. Doram is the new offshoot of RS Components (Radiospares) formed to make the RS range of components available to the general public. The catalogue is available at 25 p from Doram, P.O. Box TR8, Wellington Road Industrial Estate, Wellington Bridge, Leeds LS 12 2UF.

We have received a booklet from Inspec describing the abstracting, information retrieval and indexing services they provide. Inspec, Institution of Electrical Engineers, Savoy Place, London WC2R 0BL WW403

A brochure from EMI describes the full range of the company's activities from crime prevention to audio, from broadcasting to brain surgery. Publicity Department, EMI Ltd, 135 Blyth Road, Hayes, Middx \qquad WW404
Services in the aviation communications field are described in a brochure from International Aeradio Ltd, Aeradio House, Hayes Road, Southall, Middx.
.WW405

EQUIPMENT

Kemo have produced a brochure to describe their work in system design and manufacture to specification. The firm's experience is in filter design and they can tackle almost any analogue or digital system working between 0.001 Hz and 100 kHz . Kemo Ltd, $9-12$ Goodwood Parade, Elmers End, Beckenham, Kent. WW406
The range of Pertec peripheral units is described in a new leaflet from Computer Instrumentation Ltd, which covers both tape and disc systems. UCC/Computer Instrumentation Ltd, School Lane, Chandler's Ford, Eastleigh, Hants.WW407

HF predictions for October

The charts are based on a predicted solar index of 9 . Comparison with previous sunspot cycles indicates that solar index will remain at or just below this value for the next two years. Magnetic disturbance is almost a daily occurrence at present and will probably continue so until next spring.

Seasonal changes bring about an improvement in daytime conditions as the upper end of the h.f. band becomes usable in the northern hemisphere. Trans-equator paths are just past their peak since seasonal change in the southern hemisphere is to lower frequencies and high noise.

Speaking meter

The tactual instruments which enable the blind to make multimeter measurementsoriginating from R. S. Maddever (Jan. issue 1973) and elaborated upon by G. P. Roberts (April issue 1974) and T. C. R. S. Fowler (Aug. issue 1974)-are cheap to make and are, no doubt, effective. There is, however, an alternative which, although not easy to make, may be purchased for less than $£ 80$ at present. I refer to the servo-operated chart recorder; this, fitted with a Braille scale, would give an easily observable indication to the blind user.

However, there is a variation of the chart recorder which must be the ultimate as far as the blind are concerned. This variation, which I developed inlate 1971, first obtained notice as a speaking speedometer for car use, but at the time it was obviously an ideal instrument for the blind. Of course the idea is that the instrument speaks its readings, say between nought and 100 , and these vocalized readings can be made, electrically, to represent any unit one wishes. I enclose a photograph of one of these speaking meters which was constructed round an old chart recorder. A tape head is fixed to the pointer of the recorder and bears on the surface of a magnetic drum, revolving at about two revolutions per second. The drum, in this model, hās been recorded with a series of tracks ranging from nought to 100 in single digits, but other meters which I have constructed are

Mr Lloyd's speaking meter.
recorded with even numbers only. The circumferential position of the recording on each track must be co-ordinated with the recordings on adjacent tracks so that when the head exactly bridges two tracks the readings are heard consecutively and with equal loudness. The result is rather like two men (or women) arguing with each other, but the overall significance of the reading and the change in readings-is very easily assimilated by the brain, and indeed is much less prone to misinterpretation than is a visual pointer reading. Therefore it can be claimed that the speaking meter might have much greater application than to the blind alone; certainly where the eyes must be used for the monitoring of a process, while simultaneous meter readings must be taken (exactly as is the case with the car driver, by the way), then a meter which speaks its readings is ideal.
John T. Lloyd,
The University,
Glasgow.

Electronic piano design

I would like to reassure actual or potential constructors who may have been disturbed by Mr Mitchell's letter in the August issue.
The reliability and objectivity of Mr Mitchell's remarks leave something to be desired. He refers, without being specific, to "considerable circuit duplication". Now it should be clearly understood that while the piano does contain many duplicated circuits, none of these is redundant. Electronic pianos and organs can be designed along very much the same lines; the main differences being in the key circuits. Now in a polyphonic instrument (and any worth-while instrument must be polyphonic) each key must have an entirely separate piece of circuitry associated with it. In an organ these circuits are quite simple, but in a piano they are not, neither do they lend themselves to total integration.

On the subject of cost, it should be pointed out that the electronics represent only half of the total cost of the project. It does not seem to be possible to significantly cut the cost of the electronics even by a major redesign; they are already very simple and use cheap components.

There are only about three possible realizations of the oscillator section that are at all likely to be satisfactory in terms of frequency stability; these are $L C$ oscillators, $R C$ oscillators using high-gain $\mathrm{op}-\mathrm{amps}$, and full-octave synthesizers driven by a single oscillator. See the May 1974 Wireless World pp. 143-5 for details of the latter. Special i.cs of the " 555 " type probably are not stable enough. The most costly solution, the full-octave synthesizer i.c., is probably the best. The necessary buffers cost little.

I hope that those readers who ordered demonstration cassettes found them helpful; they were of course intended to. demonstrate the characteristic "electronicpiano" timbre which differs somewhat
from acoustic piano sound. My apologies are extended to anyone who was expecting anything musical; nothing of the sort was promised!
Geoff Cowie, London, N10.

Doppler in loudspeakers

I note Mr Edgar's suspicion (Letters, August issue) that the end result of the mathematics may not correctly indicate the physical process, a situation very reminiscent of the argument that continued for much of the 1930s about the physical reality of the sidebands that appear when a carrier is amplitude modulated.

That the measured values of the Doppler sidebands agree almost exactly with the calculated values is, I think, reasonable proof that they have a physical existence and are due to Doppler (f.m.) distortion. It seems impossible not to believe in their existence when both the measurements and the mathematics are in agreement. The experimental technique eliminated any response by the measuring system to components other than those f.m. components due to Doppler, a point that was carefully confirmed.

Doppler distortion is the result of the modulation of the velocity of the cone due to a high frequency signal, by the velocity of the cone due to the simultaneously applied low frequency signal. I find it more difficult to think of this in terms of the physical position of the cone than in terms of the cone velocity, but one is the derivative of the other. At this stage in the problem, I think that it must be conceded that Doppler distortion really exists, though difference of opinion about the significance is still possible. Under the conditions set out in the contribution, i.e. small cones, wideband signal, I am certain that Doppler distortion is a more significant cause of aural distress than the amplitude distortion that has previously been considered to be the cause. James Moir, Chipperfield, Herts.

Electronic ignition

I was most interested to read J. R. Watkinson's article on the application of electronics to car ignition systems (July issue). It seems, though, that it is necessary to rethink the process from scratch. My own thoughts lie along the following lines:
Timing. The requirement is to produce a triggering signal, to initiate spark generation, at an optimum point defined by the speed of the engine, its loading etc., to an accuracy of 1° or better. The main disadvantage of current practice is the error of the system:
(1) The transmission through a chain or belt drive to the camshaft, and a skew gear drive to the distributor shaft, introduces errors.
(2) Any inherent angular error is magnified by the half speed rotation of the camshaft.
(3) The actual ignition point is determined by the distributor cam profile, each cylinder being fired by a different cam, only one of which is considered in the set-up procedure. Minute differences in the cam profiles can produce appreciable angular errors.
(4) The system of governor weights to produce the required advance for a given engine speed can only approximate to the ideal advance curve.
(5) After quite a short period of use (say 20,000 miles) a significant amount of wear has occurred in the camshaft and distributor shaft drives, the distributor cam profiles, and the governor weights and springs, quite apart from the rapid wear of the contact points heel.

These disadvantages could be overcome by a completely electronic set-up. The best place to take the timing from is the largest part of the crankshaft assembly, the flywheel, to provide the smallest angular errors. Two magnetic sensors would be mounted in the bellhousing to bear on the flywheel rim. Slots cut in the rim would provide the impulses (see diagram).

The trigger pulse would occur 90° before t.d.c., and the reference pulse 90° before that. The correct advance θ would be given by delaying the trigger pulse by $90^{\circ}-\theta$. This would be calculated from the engine speed, represented by the time between the reference and trigger pulses.

Other information would be used to optimize the timing, such as manifold depression, engine loading, etc. Provision could be made to maximize performance by adjusting the timing, e.g. the timing could be advanced automatically to keep manifold depression at a maximum.

It should be possible to produce different programmes for the timing circuitry, so that one could adjust the timing from "maximum economy" to "maximum
performance" or "high speed cruising" to "town driving", at the flick of a switch. The complete control circuitry would be in the form of an i.c.
Ignition. The disadvantages of the current system are mainly a low energy spark, coupled with high losses and interference from the distribution system. "Conventional" c.d. ignition raises the spark energy, but makes the interference problems worse.

In a completely electrical system, a sensor would be substituted for the distributor, solely to indicate which cylinder is to be fired. The c.d. generated pulse would be electronically directed to the required cylinder, without mechanical switches or spark gaps, through a purpose-built pulse transformer, to a redesigned spark plug. The spark should be bigger ($\frac{1}{4}$ inch perhaps?) and of higher energy than produced by current systems. Such a spark would ignite a larger area of the localized concentration of fuel quicker, and obtain a still faster and more even burn, allowing smaller advance angles to be used.

I believe that such a system would provide a considerable fuel saving, apart from a cleaner engine, on top of the savings obtainable with current c.d. systems -factors which are becoming more important. Now that attention has been drawn to improving ignition, I only wish someone could be persuaded to improve carburation, and we would be well on the way to the $100 \mathrm{~m} . \mathrm{p} . \mathrm{g}$. car.
Paul Bloom,
Stamford,
Lincs.

"Data off the beat"

As a technical description of the experiment in providing personal radios with a data-handling facility which we and the Dorset Police have in hand, your article ("Data off the beat" p. 221 July issue) is a perfect model of accuracy and clarity.

I would like, however, to set your editorial mind at rest: the experiment is indeed designed to assess the operational worth of the facility, as recommended by you at page 215 of the same issue. Unless it proves to be genuinely worth having, neither the police service nor we want to spend ratepayer/taxpayer money on any largescale provision!
W. P. Nicol,

Director of Telecommunications,
Home Office,
London, SW 1.

E.m.f. and p.d.

Why the problems with e.m.f. and p.d.? ("What is e.m.f.?" August issue). Some considerable number of years ago when I was being lectured on these misquoted and misunderstood electrical properties, the lecturer in charge of the class adopted an approach which I have frequently used in explaining electrical phenomena to nonelectrical personnel. E.m.f. was quoted as
a source of electrical energy available either from an unloaded battery or generator. Immediately any external load circuitry was connected to this source of electro-motive-force a potential difference between the supply terminals and within the load was measurable.

I would suggest to Mr Scroggie and anyone else experiencing difficulty that they use this simple explanation of the difference between e.m.f. and p.d. rather than complicate the issue as at present our textbook authors seem to do.
C. A. Hill,

Kidderminster,
Worcs.

Electronic ignition

We read with interest the well balanced and informative article on electronic ignition by Mr Watkinson (July issue).

We would like to point out, however, that the principle of magnetic proximity detection in this application by sensing the desaturation of the trigger coil is unique to Mobelec Limited and is covered by our patent application.
Simon Baker,
for Mobelec Ltd.,
Oxted,
Surrey.

Communications services

In reply to "Vector's" Just Drop Me a Line (August issue) on the Post Office, IBA and BBC in which he commented upon the services they offer, in particular the conveyance of information and the parallel he made with similar American establishments; having just returned to the United Kingdom from a reasonably long visit to the United States, I am pleased to inform you that, in general, our communications media, in many ways, are superior to those of the United States. The American Telephone and Broadcasting Service should not be put forward as an example of "how to do it" in a vast area of information transmission.

Our telephone service offers more facilities, our television transmitters both monochrome and colour are frequently much better, our radio less prone to unwanted interference from adjacent stations and advertisements for chickens, sausages, etc. Rather than portray the United States as a country to copy, let us at least learn from their mistakes and make haste slowly. Examples of the reasoning behind this statement arise from the problems with NTSC and multi-path propagation which are considerably less with the PAL system.

Our radio personalities may be biased in their varied attitudes. However, regardless of whether or not one agrees with their particular comments, they are not cut off in mid sentence by Frank Purdue and his "personal chickens" and "the finest sausages" in the United States.

In general, having experienced the communications media in the United

States, I am extremely thankful for the services offered by the Post Office, IBA and the BBC. They should not rush in where wise electronics engineers fear to tread, other than gently.
C. A. Hill,

Kidderminster,
Worcs.

Damping factor

Referring to Mr Walker's letter on damping factor in your May issue, I should like to point out that another source or error is a by-product of distortion introduced by the feedback loop as well as the now familiar transient intermodulation distortions.

It is now well understood that the feedback loop is quiescent until a signal appears, and as it is usually several microseconds before the signal has reached the input via the feedback loop, during this short time the amplifier is operating without feedback and the output impedance is quite high, maybe several ohms.

This no doubt accounts for the woolly sounding "top" of present day amplifiers when compared with one that has no feedback loop, and means that it is quite nonsensical to quote damping factor figures, particularly the more impressive ones that are a by-product of excessively large feedback loops.

Finally, I recall that James Moir once wrote an article in this journal to the effect that in any case there is no point in increasing the damping factor beyond 4 .

T. Marshall,

Goldring Ltd,
London, E11.

Logic nomenclature

In the design of two-state logic circuitry various designations are given to each of the two levels, but for the purpose of this letter I shall employ the terms " 1 " and " 0 ". This is straightforward when considering the pure logic function only, but difficulties arise when electrical circuitry is involved and voltage levels have to be considered. Even here the situation would be simple if only one type of active semiconductor, say $\mathrm{n}-\mathrm{p}-\mathrm{n}$, existed. In this case the " 1 " level could well be a positive voltage (say +5 volts) and the " 0 " level nominally zero volts.

Let this be called the normal logic. It is well known, however, that the same device could be employed equally well (but differently) if inverse logic is employed, in which case a " 1 " level becomes zero volts and the " 0 " level +5 volts.

Both normal and inverse logic are freely employed in practice, but it is unfortunate that the name commonly applied to normal logic is "positive" logic, whilst inverse logic is increasingly being described as "negative" logic. This gives rise to confusion in cases where both n-p-n and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ devices are used in the same system. This commonly happens and in
such cases three logic voltage levels exist, namely a positive level (say +5 volts), a zero level, and a negative level (say -5 volts).
The simple use of the terms "positive logic" or "negative logic" is now ambiguous, and can only cause confusion. I submit, therefore, that these terms should be dropped and a return made to "normal" and "inverse" logic. The following terms would therefore completely remove ambiguity:
n - p -n devices:
positive normal logic
$" 1 "=+5 \mathrm{~V}, " 0 "=0 \mathrm{~V}$
positive inverse logic
$" 1 "=0 \mathrm{~V}, " 0 "=+5 \mathrm{~V}$
p-n-p devices:
negative normal logic
$" 1 "=-5 \mathrm{~V}, " 0 "=0 \mathrm{~V}$
negative inverse logic
$" 1 "=0 \mathrm{~V}, " 0 "=-5 \mathrm{~V}$
The present misuse of the terms positive and negative has been introduced by non-electrically-minded logic designers. It is regretted, however, that certain semiconductor manufacturers and, even more unfortunate, engineering examination bodies, have also adopted this ambiguous nomenclature.
C. H. Langton,

College of Further Education,
York.

Sound and light

While reading the interesting letter from Mr McNaughton (July issue) it occurred to me that perhaps the most common association between colour and music, supported by the common use of terms such as "brightness" and "sparkling" in description, is likely to be a correlation of excitement. If this were so, perhaps a scale of colour temperature would fit experience better than Rimington's spectrum scale.
I must confess to having never experienced a colour organ but it seems clear to me that a bassoon is brown (almost mahogany!) in the lower register, a low trombone brown flecked with bright ridges, chunks of Beethoven are a glowing rusty orange (strings) with brighter colours introduced by the woodwind; flutes are yellow-white and the piccolo approaches blue-white, especially at close quarters. "Light" music is tinted (unsaturated) while green is difficult to find: perhaps I could force it on the oboe or clarinet. Green is also difficult to see among the orchestra, or in the radiation from an incandescent black body.
R. G. Key,

Mottram-in-Longdendale, Cheshire.

Two stations on one receiver

I am prompted by the recent BBC experimental transmission in quadraphony, using the two stereo channels usually occupied by Radios 2 and 3, to wonder whether a single f.m. receiver could be modified to receive two stations at once.

A varicap tuned front end could be switched from one frequency to another by a step voltage at, say, 110 kHz and the output from the discriminator sampled during each voltage state. It would be necessary to have two a.f.c. circuits to control the levels of the master oscillator. The varicap diodes would have to be driven from a source with low impedance at the switching frequency but high impedance at v.h.f. The sampling frequency should be faster than twice the highest audio frequency transmitted in the composite stereo signal, which is about 53 kHz .

Obviously the technique would not be limited to just two stations, although perhaps the nine or so which are receivable in the London area would be a bit difficult. It is not clear that this method would be any cheaper than using a separate f.m. tuner for each station, however.
D. J. Jefferies,

Aberdeen University, Scotland.

3D display from c.r.t.

The item entitled "Colour TV tube developments" in your April issue, describing the use of vertically slotted shadow masks, prompts me to suggest a possible method of producing a threedimensional display.

It is proposed that a c.r.t. could be fitted with an electrode assembly and a shadow mask which would simultaneously display two different images. Instead of displaying each colour on every third vertical strip on the c.r.t., each of the two images would occupy alternate vertical strips on an all white screen. A second shadow mask, or a multiple lens, would be fitted to the viewing side of the screen in such a position that the viewers' left and right eyes would each see the appropriate image.

Such a device should produce a stereo vision effect, but in this simple form the black-and-white picture might be more useful for industrial monitors, computers and information displays than for entertainment purposes. It would be interesting to hear from you or your readers of any such developments.
N. C. Rogers,

Ealing,
London W.5.

F.m. tuning indicator

With reference to the article "Sensitive f.m. tuning indicator" in your June issue, does the author really believe that the concept of twin-lamp tuning is too difficult for the "non-technical user" to re-learn? Surely not.

And what of the merits of a two lamp system? Entering the listening area one can see at a glance if two lamps are of equal brilliance. But with a single lamp, there is no reference and one has to resort to turning the tuning knob.
J. Jaques,

Fane Acoustics Ltd,
Batley, Yorks.

Gardners
 line up

LineMatchingTransformers from Standard to Super Fidelity

It's easy to choose the right Line Matching Transformer from the five Gardners ranges.

The Super Fidelity Series, with a frequency response of 10 Hz to $80 \mathrm{kHz}-0.5 \mathrm{~dB}$, gives the widest possible bandwidth for high accuracy instrumentation and recording applications.

Then there's the Wide-and Extra Wide-band ranges. Outstanding performers with a frequency range 30 Hz 20 kHz or more - for the 0.5 dB points. Used a lot by broadcasting and recording companies throughout the world.

The Miniature and Standard ranges provide excellent bandwidth for most purposes, 30 Hz 22 kHz for the $1 \cdot 0 \mathrm{~dB}$ points.

Except for the very smaliest in the range, all Gardners Line Matching Transformers are fully magneti-

cally shielded, giving very high hum rejection ratios.

Prices start from $£ 3 \cdot 13$ (recommended retail price) and all types are usually available from stock.

Complete technical information is given in brochure GT. 5 'Audio Frequency Transformers' which we'll be glad to send on request.

So accurate is the balancing of the windings on some of these transformers that, when used as pairs in a hybrid circuit (as illustrated) we can guarantee a rejection of better than $-55 d B$ over the frequency range 50 Hz to 10 kHz and normal rejection of up to $-75 d B$ may be expected.

Specialists in Electronic Transformers and Power Supplies

GARDNERS

TRANSFORMERS LIMITED
Gardners Transformers Limited, Christchurch, Dorset BH23 3PN
Tel: Christchurch 2284 (STD 02015 2284) Telex: 41276 GARDNERS XCH.

\square

What's newat cALE

Come and see our new baby
the CALEGT201* at the Audio Fair, Olympia
We also have surprises from = \sim MICRO-ACOUSTICS Hervic\& Soundoraftomen
*Itdoes 0-60inunder 2 seconds with a top speed of 99 PSWe are no longer onlya loudspeaker company

Gale Electronics \& Design Limited 39 Upper Brook Street London WiY 1PE

International Audio Festival and Fair－1974

Rather than attempt to describe，however briefly，the new equipment to be presented this year，we considered that it might be more useful to indicate to which stands visitors should go to investigate new products in their particular area of interest．We have not tried to obtain pre－Fair information this year，because we think that the time to give detailed information is after the exhibition，not in somewhat sketchy form before it．

In our December issue，therefore，we will present our detailed examination of the new products as usual，together with a summary of the lectures and discussion．

Stand No．D3 will be occupied by Wireless World，and editorial staff will be on hand during the exhibition for consultation．We intend to show some of the constructional projects published recently and are again sponsoring some of the lectures．

At the time this issue went to press，our information was still not complete；there may，therefore，be blanks and changes in stand numbers．

		$\begin{aligned} & \frac{0}{4} \\ & \stackrel{y}{\mathbf{x}} \\ & \underset{4}{4} \end{aligned}$		$\frac{\sum_{2}^{\infty}}{\frac{2}{6 n}}$			$\frac{e n}{\frac{e}{5}}$					管		$\begin{gathered} \text { e2 } \\ \stackrel{y}{2} \\ \underset{Z}{2} \end{gathered}$			$\begin{aligned} & \text { u } \\ & \stackrel{a}{〔} \end{aligned}$	员	
			－			－		－						－				E6	Amstrad
Acoustical Mfg Co．			－					－						－				F2	Quad
Acoustico Enterprises			－					－			－	－		－	－	－		07	Teac
AEG Telefunken								－							－	－	－	F12	
AGFA Gevaert	－																－	018	
Antiference	－	－																G39	
Artifact Design	－																	E14	Encore
Audio Workshops		－																F8	Fuba
Bang and Olutsen	－		－	－				－		－	－				－	－		012	
BASF	－											－					－	C5	
J Beam Aerials	－	－																643	
Bib Hi－Fi Accessories	－												－					C15	
Boyd and Haas（Magnate）								－										F1	
Brahms			－	－		－		－										C14	
British Industrial Graphics	－																	640	
Chuo Senko																	－	B4	TDK
Comsar																		C19	
	－					－												020	
Diamond Stylus	－					－				－								E11	
Farnell Tandberg			－	－				－			－	－			－			E8	
JBL Feldon								－										A3	
Ferranti					－													642	
Ferrograph	＊		－					－			－	－		－				013	
Gale Electronics \＆Design								－								66	to	69	Hervic／Microacoustics SAE，Soundcraftsmen
Garrard																－		88	
Golding												－			－			659	
Goldring	－					－				－			－		－			E4	
Goodmans	－			－			－	－			－							C16	
Edwardus								－											
C．E．Hammond			－									－		－				C8	Revox，Fisher
Hayden Laboratories						－			－			－						F3	Sennheiser
Hi－Fi Aids	－																	G18	
Highgate Acoustics			－	－		－		－		－	－			－	－	－		A2	Pickering，Perpetuum－ Ebner，Harmon－Kardon， Alpha
Howland West	－		－			－		－		－			－		－			A7	Grado，Micro，Orbit，Lux， Luxor，Nikko
Impo Hi－Fi			－			－		－						－	－			E1	Dynaco，Major，Ess，Scintrex
Wireless World																		03.	
Josty Kit							－											G24	
JVC			－	－		－				－				－	－	－		C13	
KEF	－																	810	
G．\＆A．Kirsten																		815	
Klinger Controls			－	－				－										F4	
Uoytron Electronics				－		－		－		－		－		－	－	－		G34	
3M	－																－	A6	
I．Markovits	－																	B1	
Metrosound	－		－					－		－	－		\checkmark	－		－		89	Ortofon，Tharens
Modern Eng 8 Technology			－					－								－		G52	Gabraphone

The 1974 International Audio Festival and Fair will be held at Olympia between October 28 and November 3．Opening times of the exhibition are 12 noon to 9 pm on Monday and 10am to 9 pm on all other days except Sunday November 3，when Olympia closes at 7pm．Admis－ sion is 50 p ．

Garrard automatic single－play turntable．

Acoustic Research AR－3a／lmproved speaker：which is similar to the AR－3a but with an improved crossover．

Philips four-channel system, with SQ decoder. Designed for use with Philips motional feedback speakers.

Take a Quad 50E Amplifier (a good start for any installation)

plug it into your monitor system and it bridges 600Ω lines to drive your speakers.
Take that same amplifier and, without changing it in any way, plug it into another installation to deliver 50 watts into 100 volt line * from a 0.5 volt unbalanced source. This versatility and its attendant easing of stocking and maintenance problems is one reason why large organisations use the Quad 50E.

* or indeed any other impedance from 5 to 250 ohms.
Other advantages appropriate to users of all
sizes include: Excellent power and frequency response (-1 dB).
Low distortion $(0.1 \%$ at 1 kHz at all power levels).
Low background (better than 83 dB referred to full output).
Pre-set level control adjustable from front panel.
Unconditionally stable with any load.
Proof against misuse including open or short circuited output.
Small size ($\left.4 \frac{3^{\prime \prime}}{}{ }^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{}{ }^{\prime} \times 12 \frac{3}{4}^{\prime \prime}\right)-(120 \mathrm{~mm} \times 159 \mathrm{~mm} \times$ 324 mm).

[^2]| Sfecitications | Q0C-le | OOC-1s | ODC-19 |
| :---: | :---: | :---: | :---: |
| Stvius Conliguration (User Replaceable) | .0002 .0007 ellipical solid nude dlamond | 0005 soherical. solld nude diamond | Quadia-Point/CD-4 solid nude diamond |
| Frequency Response | 5 Hz to $20 \mathrm{kHz}=2 \mathrm{~dB}$ | 5 Hz to $20 \mathrm{kHz} \pm 2 \mathrm{~dB}$ | 5 Hzz to 50 kHz zz 3 dB |
| Tracking Force Range | 0.75 to 1.5 grams | 0.9 to 1.5 grams | 0.9 to 2 grams |
| Crannel Separation | Nominally 30 dB at 1 kHz Nominally 20 dB at 10 kHz | Nominally 30 dB at 1 kHz Nominally \qquad | Nominally 30 dB at 1 kHz Nominalty 15 dB at 20 kHz |
| OLtput Voliage | 3.5 my each chanme! at $5 \mathrm{~cm} / \mathrm{sec}$ peak recorded velocily | 3.5 mu each chamnel at $5 \mathrm{~cm} / \mathrm{sec}$ peak recorded velocity | 3mv each channel at $5 \mathrm{~cm} / \mathrm{sec}$ peak fecorded velocity |

Current-differencing amplifiers

2-signal generation

by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams

Paisley College of Technology

This article follows an earlier one on signal processing with current-differencing amplifiers of the CM3900 kind, circuits for which are given in Circards set 16. A third set of c.d.a. Circards will cover measurement and detection circuits. Details of how to obtain Circards appear at the end of this article.

The simple model of the current-differencing amplifier discussed in the previous article (August issue) is sufficient to explain the principles-but not enough to satisfy the customer placing his pennies on the counter. A fuller circuit is shown in Fig. 1 representing the relevant sections of one of these amplifiers; in this case the LM3900, though other manufacturers produce similar circuits. Transistors Tr_{9}, 10 constitute the input current mirror coupling a current into the external feedback network that is the difference between the two input currents. Transistor Tr $_{8}$ is the only stage contributing voltage gain and its collector is the highest impedance point in the system-the most convenient point to place the compensation capacitor C since a small capacitance is sufficient to bring the cut-off frequency down to the required avel. The single stage of voltage gain is buffered by $\operatorname{Tr}_{4,3}$ to give a reasonably low output impedance with a current source capability of tens of milliamps.

The open-loop voltage gain is very much less than is available from standard opamps, but at 60 to $70 \mathrm{~dB}(1,000$ to 3,000$)$ is ample for most applications. The reduced gain allows the open-loop cut-off frequency to be increased to about 1 kHz (c.f. the value of around 10 Hz for 741 op-amp) without instability occurring at high frequencies when 100% negative feedback is applied (Fig. 2). As a result the open-loop gain is 10 dB greater for these current-differencing amplifiers from 1 kHz to 1 MHz .

This is a fair statement for small-signal applications, but the slewing characteristics of the amplifiers are quite different. In the 741 and similar amplifiers the maximum current available for the capacitor is comparable for both positive and negative swings, bringing a slew-rate of about $0.5 \mathrm{~V} / \mu \mathrm{s}$ in both directions. In the current differencing amplifier described here, the capacitor C (Fig. 1) can be discharged rapidly by Tr_{g} if the latter is over-driven, and the negative slew-rate is about $20 \mathrm{~V} / \mu \mathrm{s}$. The charging path for the
capacitor is via Tr_{4} base and the slew rate is limited by the low base current to about $0.5 \mathrm{~V} / \mu \mathrm{s}$, giving asymmetry to the rise and fall times of a pulsed output (Fig. 3). The resulting large-signal response when used as an amplifier is limited to around 10 kHz by this positive slew-rate.

This is but the first generation of currentdifferencing amplifiers, designed for simplicity and economy. It is to be expected that circuits will gradually appear offering improvements in this and other diregtions. With the example of operational amplifiers as a guide, we can hope to see multi-megahertz current-differencing amplifiers before long. This could be achieved by removing or reducing the compensation capacitance, provided the circuit was not then used with heavy feedback.

It is possible to experiment with a similar circuit to see the general effects of operating at different currents and with different degrees of compensation. The

Fig. 1. Part of the LM 3900 currentdifferencing amplifier, to which the current mirror $\operatorname{Tr}_{9}, \operatorname{Tr}_{10}$ couples a current into an external feedback circuit, via emitter followers, that is the difference between the two input currents.

Fig. 2. Reduced gain of c.d.a. relative to 741 op-amp allows increased open-loop cut-off frequency. Open-loop gain is about 10 dB greater from 1 k to 1 MHz .

Fig. 3. Positive slew-rate is limited by the low base current in Tr_{4} (Fig. 1) to about $0.5 \mathrm{~V} / \mu \mathrm{s}$, giving asymmetry to the rise and fall time of a pulsed output.
circuit is shown in Fig. 4 and is based on one of the low-cost five-transistor packages such as CA3086, CA3046 etc. These have gain-bandwidths in excess of 500 MHz demanding care in construction if good results are to be obtained. Transistors $\operatorname{Tr}_{r_{1}}, T r_{2}$ compose the current mirror, Tr_{3} is the voltage amplifier and $T r_{4}$ the emitter follower. Transistor Tr_{5} acts as a constant-current load to the emitter follower though the slope resistance is less than that achieved by current mirrors. Bootstrapping the collector
load of $T r_{3}$ increases the voltage gain giving some of the effects provided by the constant-current stage in the commercial amplifier. This circuit is in no sense a competitor for the complete i.c. but may help in understanding the techniques and limitations. (Possible values are R_{1}, R_{2} $47 \mathrm{k} \Omega, R_{3} 470 \mathrm{k} \Omega, C 10 \mu \mathrm{~F}$, with a supply of +10 V .)
The control of direct voltages and currents is readily achieved with amplifiers of this class, with the simplest circuits requiring only the addition of a zener diode. Care has to be exercised if high stability is required since, as shown in Fig. 5, the output voltage depends on the direct voltage between the inverting input and ground. This is approximately 0.55 V , changing with temperature by about $-2.2 \mathrm{mV} / \mathrm{degC}$. As drawn, the zener current would be restricted to the amplifier input current of 30 nA and an additional resistor between inverting input and ground would be needed to bring the current up to the level appropriate to the zener.

Sine-wave generation is by passive resonant or phase-shift networks, with the one change; that it is the current into the amplifier that is of concern. While conventional passive networks such as the phase-shift network of Fig. 6 can be adapted by using a suitably large resistance R^{\prime} to force a current into the amplifier without loading the network, better results follow from designing alternative networks requiring a low-impedance

Fig. 4. By making a c.d.a. from a fivetransistor i.c. the effect of altering the compensation capacitor can be investigated, gain-bandwidth products of 500 MHz or more being possible.

Fig. 5. Stability of voltage level in c.d.as can be improved by simple addition of a zener diode.

Fig. 6. Phase-shift network can be adapted for use with a c.d.a. by using a large resistance R^{\prime} to force a current into the amplifier.

Fig. 7. Waveforms can be generated by subjecting a capacitor to alternate positive and negative current flows. Square/ triangle generators can be simplified by fixing V_{1} or V_{2} and switching the other -by a circuit that monitors integrator output.
load (i.e. the virtual-earth of the amplifier inverting input when used with shunt feedback).

A wide variety of waveforms can be generated by using the voltage across a capacitor subjected to alternate positive and negative current flows. Where the net charging current depends on the currentdifference at the two inputs, novel circuits result. In particular, simplification of square-triangle generators is achieved by keeping V_{1} or V_{2} (Fig. 7) constant while switching the other from some positive value to zero under the control of a levelsensing circuit that monitors the output of the integrator.

With suitable scaling of the voltages and resistors the polarity of the net current is reversed using only a single diode/ transistor/f.e.t., while the magnitude of that current is determined by an external control voltage. The resulting voltagecontrolled oscillator is markedly simpler than is normally possible. If one or more of the voltages is replaced by a pulsed source, then staircase/ramp waveforms are produced depending on the magnitude, polarity and timing of the pulses. In each of these circuits, the use of a second amplifier can cancel the input current of the integrator amplifier to a first order, reducing the drift to a very small level.

There is no one-to-one correspondence between the circuits designed around operational and current-differencing amplifiers. It will take considerable time and effort to make sure that the advantages of the latter are exploited. The effort will not be wasted.

Titles of cards in set 17 of Circards (available shortly)
1 Generators
2 RC oscillators
3 Voltage-controlled oscillators
4 Voltage regulators
5 Constant current circuits
6 Schmitts and comparators
7 Astable multivibrators
8 Monostable multivibrators
9 Flip-flops
10 Staircase generators

What are Circards?

Circards are a new method of collating and presenting data about circuits in a compact and easily retrievable way. The sets of $203 \times 127 \mathrm{~mm}(8 \times 5 \mathrm{in})$ doublesided cards are designed for easy filing in standard boxes and for easy access at the desk or at the bench, where transparent plastic wallets keep the cards in good condition.

Each card normally describes operation of a selected circuit, gives measured performance data and graphs, component values and ranges, circuit limitations and modifications to alter performance. Suggestions for further reading are included together with cross references to related circuits. The Circard concept was outlined more fully in the October 1972 issue of Wireless World, pp. 469/70.

How to get Circards

Order a subscription by sending $£ 13.50$
for a series of ten sets to
Circards
IPC Electrical-Electronic Press Ltd
General Sales Department, Room 11
Dorset House
Stamford Street
London SE1 9LU
Specify which set your order should start with, if not the current one. One set costs £1.50, postage included (all countries). Make cheques payable to IPC Business Press Ltd.

Topics covered so far in Circards are 1 active filters
2 switching circuits (comparator and Schmitt circuits)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, tone controls, filters)
6 constant-current circuits
7 power amplifiers (classes A, B, C \& D)
8 astable multivibrator circuits
9 optoelectronics: devices and uses
10 micropower circuits
11 basic logic gates
12 wideband amplifiers
13 alarm circuits
14 digital circuits
15 pulse modulators
16 current-differencing amplifiers (signal processing)

Electricity and magnetism?-2

Riding on an electron: a relativistic approach to the nature of magnetism

by "Cathode Ray"

Last month we asked whether electricity and magnetism were two separate but related things or just two faces of one thing and if so what thing. We discovered that what to one experimenter was a wholly electric field was seen (quite correctly) by another to be accompanied by a magnetic field. And vice versa. The cause of the disagreement was the fact that the observers concerned were moving relative to one another. And when, using the ordinary textbook laws of electricity and magnetism, we worked out a set of equations for converting the electric and magnetic field specifications at one position to those at another in relative motion, we found a discrepancy, which could only be eliminated by introducing into both sets of equations a factor we denoted by β (some people call it γ), equal to

$$
\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

in which v is the relative velocity of motion and c the velocity of light and radio waves in space.

This was very interesting, because by a simple approach to the problem through well-known elementary Electricity we discovered the necessity for what is also the essential factor in the Lorentz transformations relating length, mass and time in Einstein's Special Theory of Relativity. This theory, implausible though it may appear, was the only escape from certain discrepancies that exist if one assumes that these basic quantities are the same for all. One of these discrepancies we found for ourselves in electro-magnetism. Another is the fact that the speed of light in space (c) is found to be always the same, regardless of the velocity of the measurer or of the source of the light. This seems as nonsensical as if a person trying to stand up in a racing car, and another motionless on the track, both reported identical wind velocities. But it is an experimental fact. And we have found that the factor β, which defines the effects of motion on length, mass and time, does the same for electric and magnetic fields.

Suppose we have two cathode-ray tubes side by side, The dotted lines in Fig. 4 represent the two rays or beams

Fig. 4. The continuous and broken lines represent respectively the wire and cathode ray parts of two parallel circuits. Some curious results are obtained when the electric and magnetic forces between circuits are calculated in different ways.
consisting of streams of electrons moving from left to right. This is happening in a part of each tube between anode and screen at the same potential, so the velocity, v, of the electrons is constant. The charge on one electron is $e\left(1.6 \times 10^{-19}\right.$ coulombs) so, if there are n electrons per metre length of beam, the current (I), being the total charge passing a fixed point per second, is nev amps.

Now consider the wires carrying this current to the c.r. tubes. They have been laid parallel to one another at the same distance apart (d) as the electron beams. These wires are electrically neutral or uncharged, because for every electron there is a proton forming a fixed part of the structüre of the wire. So the negative and positive charges exactly cancel out. So there is no coulomb or electric force between the wires.

The textbooks tell us, however, that because of the magnetic interaction of currents two parallel wires carrying current in the same direction will attract one another with a force equal to
$\frac{\mu(n e v)^{2}}{2 \pi d}=\frac{\mu I^{2}}{2 \pi d}$ newtons per metre of
μ being the local permeability, normally the "magnetic space constant", μ_{o}. Although the electrons in the beams are travelling enormously faster than those in the wires, they are much more widely spaced, and as I is obviously the same at all points in the circuit we see that nev is the same in both places. So the beams too will be magnetically attracted. And they would consequently deflect themselves towards one another, were it not that here there are no protons to neutralize the negative charges of the electrons. Being of like sign, the beams will repel one another, and the textbooks tell us that this force is

$$
\begin{equation*}
\frac{n^{2} e^{2}}{2 \pi \epsilon d} \text { newtons per metre } \tag{7}
\end{equation*}
$$

ϵ being the local permittivity, normally the "electric space constant" ϵ_{0}. So there will be a tug-of-war between these forces.

It is easy to predict which will win. The magnetic attraction (6) can be arranged as

$$
\frac{n^{2} e^{2}}{2 \pi \epsilon_{0} d} \epsilon_{0} \mu_{0} v^{2}
$$

So, looking again at (7) we see that the ratio of magnetic to electric forces is $\epsilon_{0} \mu_{0} v^{2}$. We noted last month that $\epsilon_{0} \mu_{o}=$ $1 / c^{2}, c$ being the speed of light, so the ratio is v^{2} / c^{2}. The electrons can never move as fast as c, so the electric repulsion always wins. Even in a high-voltage c.r. tube v is much less than c, so v^{2} / c^{2} is a very small fraction, and the total or net force is nearly all electric.

Combining the expressions for the separate forces we see that the total force can be written as

$$
\begin{equation*}
\frac{n^{2} e^{2}}{2 \pi \epsilon_{o} d}\left(1-\frac{v^{2}}{c^{2}}\right) \tag{8}
\end{equation*}
$$

If the term in brackets looks familiar it is because it is closely related to the relativity factor, β, which we have just repeated from Part 1. So yet another version of the net force per metre is

$$
\frac{n^{2} e^{2}}{2 \pi \epsilon_{0} d} / \beta^{2}
$$

which we can write more briefly still as

$$
\frac{k}{\beta^{2}}
$$

k being the electric part of the force. Unless $v=0, \beta$ is always greater than 1 , so we see that the net force (though positive, showing conventionally that the electric repulsion prevails over the magnetic attraction) is less than if only the electric force operated.

So here we have β turning up yet again! We originally saw it creeping into the situation where we found that what to one observer was a purely electric field was to another observer in relative motion a mixture of electric and magnetic fields. Then we noted that it was the essential factor in the Special Theory of Relativity. And now we have used textbook "Electricity and Magnetism" to find that our two electron beams acted on one another with a mixture of electric and magnetic fields
and forces. But when we jumped on to an electron, so that all the electrons were (to us) standing still, there were no electric currents, so no magnetism, and the only force was what we are now calling (for short) k. Back in the lab., we were aware of the beam currents and the consequent magnetic force, $k v^{2} / c^{2}$.

So here we have a discrepancy between the force between the beams as measured at rest in the lab. (electric repulsion, slightly offset by magnetic attraction) and as measured by someone moving with the electrons, which to him are not a current, so magnetism doesn't enter in and the electric force is on its own.

But we have been using ordinary textbook formulae for these things, all innocent of relativity. So we naturally suspect that this discrepancy is another of those encountered when Einstein is ignored. The discovery that the discrepancy is β^{2} makes the suspicion a virtual certainty. So let us take account of relativity.

Fig. 5. This is an idealized model of the parallel wires in Fig. 4, showing the proons \oplus and electrons Θ.

Fig. 5 shows a sort of simplified model of the electric charges in a short section of the paralle! wires. The charges are assumed to be distributed along each wire with a density n (of each kind) per metre. So the charge per metre is $\pm n e$. The protons or positive charges, being parts of the wire, are fixed. The electrons are supposed to be moving to the right with velocity r . (So the current. by convention flowing to the left, is equal to nev.) Without relativity one would say that as there are equal numbers of positive and negative charges on each wire it is electrically neutral, so there is no net electric field or force between them. But because the electrons are moving relative to the protons, we do have to take account of relativity. Let us divide the force per metre into four parts:
(a) Between the two lots of protons (+ +)
(b) Between the lower lot of protons and the upper lot of electrons (+-)
(c) Between the upper lot of protons and the lower lot of electrons $(-+$)
(d) Between the two lots of electrons (--)
Force $(++)$ is a repulsion, so is $+k$
Force $(+-)$ is an attraction, so is $-k$
Force $(-+)$ is an attraction, so is $-k$
All these are as seen by the fixed protons, or by ourselves using suitable lab. gear.

No question can arise about (++), because all the charges concerned are at rest relative to us. But what about the moving electrons; doesn't some relativity correction have to be made where they are involved? However that may be, the
essential fact is that in our "frame of reference" (call it S) all the electrons pass the protons simultaneously, so they must be spaced the same distances apart, so their charge density must be the same as that of the protons and the normal calculation for k holds good. We see that the net result of all three forces (a) to (c) is $-k$.

Calculation of the last one, $(--)$, is different though. To estimate this force we have to run alongside the electrons, in their frame $\left(S^{\prime}\right)$, where they are stationary and we can apply the electric force equation quite normally, so long as we use dimensions that apply in S^{\prime}. The only factor in k that is subject to relativity is n, the number of electrons per metre. (d is at right angles to the direction of motion, so is unaffected.) The rest of k, $e^{2} / 2 \pi \epsilon_{0} d$, we can abbreviate for convenience to p. We shall distinguish the electric force of repulsion between the two sets of electrons in S^{\prime} as f_{e}^{\prime}, and the electron density here as n^{\prime}.

It might seem reasonable to argue that as the protons in S see the moving electrons spaced the same as themselves (because the coincidences in distance also coincide in time) the electrons in S^{\prime} see the (to them) backward-moving protons coinciding likewise and the spacings therefore equal. And before Einstein this argument certainly would have been unassailable. Even now most people find it obvious that if two events, such as electrons passing protons, occur exactly simultaneously (as seen, say, by someone stationed midway between the two events) they must be simultaneous, full stop. But Einstein showed that they are not simultaneous so far as anyone in relative motion is concerned. So if, having checked that when we are stationary relative to the protons the electrons coincide momentarily with them simultaneously all along the line, we transfer from S to S^{\prime} by moving along with the electrons, we find that this is no longer so.

The first thing that we notice when we settle down in our new abode is that the protons are moving past with velocity $-v$. And because distances in a moving system (in this case S) are reduced by the factor $1 / \beta$, according to Lorentz, the protons look closer together than they did when we were in S. And therefore there are β times more of them per metre. But that observation is really quite irrelevant, for we have done with the protons now and must concentrate exclusively on the

Fig. 6. In system S, in which the wires in Fig. 5 are stationary, each wire looks the same as in Fig. 5, (a). But in system S^{\prime}, in which the electrons are stationary, each wire looks as at (b).
electrons. We see these standing still, so their distances apart are not subject to Lorentz contraction. But they were so subject in S, so we can now say that in S^{\prime} the distances between electrons are decontracted, or expanded. So there are fewer electrons per metre. Because the distances between them are β times greater than in S, the number of them per metre must be $1 / \beta$ as many as in S. In symbols, $n^{\prime}=n / \beta$. Fig. 6 shows a piece of one wire as it appears in S and in S^{\prime}.

Because the electrons are standing still in S^{\prime} we can use the standard equation for the repulsive force per metre between the two wires without any relativity complications. In our abbreviated form it is

$$
f_{e}^{\prime}=\left(n^{\prime}\right)^{2} p
$$

Having taken that in, we get back into S. It is a principle of the theory of relativity that the laws of nature are the same in all inertial systems, which means systems that are not accelerating or decelerating. So

$$
\begin{gathered}
f_{e}=f_{e}^{\prime}=\left(n^{\prime}\right)^{2} p=\left(\frac{n}{\beta}\right)^{2} p=n^{2} p\left(1-\frac{v^{2}}{c^{2}}\right)= \\
k\left(1-\frac{v^{2}}{c^{2}}\right)
\end{gathered}
$$

If we add this to the sum of the three forces (a) to (c), which we found to be $-k$, we get as the sum of all four forces

$$
-k \frac{v^{2}}{c^{2}}, \text { or }-\frac{\mu_{o}(n e v)^{2}}{2 \pi d} \text {, or }-\frac{\mu_{o} P^{2}}{2 \pi d}
$$

Being negative it is conventionally a force of attraction. In fact, this is the standard formula (6) for the magnetic force of attraction between two parallel wires spaced d metres apart and each carrying a current I in the same direction. But from the way we arrived at it, it is a purely electrical force, due to an inequality in the balance of positive and negative charges in the wires when both are carrying current and account is taken of relativity - which we found we had to take into account last month in order to make sense of our assessments of fields existing in relatively moving systems, on a basis of schoolbook Electricity.

We also noted for future attention the voice of the sceptic who declared that magnetic forces couldn't possibly be actually the same as electric forces because one could distinguish between them by experiment. In particular, an electrically charged droplet floating in space is attracted by an opposite electric charge, but is totally unaffected by the strongest magnetic field. We now see that this argument is fallacious. The reason the charge doesn't respond to the "magnetic" field is that it is stationary therein, so it sees an exact balance between the positive and negative electric charges in the wires energizing the magnet, even though one lot of them is in motion. But directly the droplet itself moves it is in another frame of reference and sees an inequality of charge and therefore an electric field, which deflects it from its path.

The title question, then, has been
answered by the conclusion that "magnetism" can be accounted for by purely electric attraction and repulsion. Of course, this conclusion has been reached only for one simple case-parallel wires carrying equal currents in the same directionbut the principle is the main thing. The same demonstration can be very easily adapted to cover currents flowing in opposite directions, giving a force of opposite sign, repulsion. It is only a little more complicated to include unequal currents. In this case there are two different electron velocities, say v and u, and instead of v^{2} in the numerator we get $v u$: This shows that there is no force if either current is zero. It is noticeably more difficult to deal with charges moving along non-parallel paths, and if you want to go into this I suggest you study "Classical Electricity via Relativity" by W. G. B. Rosser, Chap. 3 (Butterworth, 1968).

Having discharged (if that is the right word) my brief, I might now be expected to conclude the whole session and release you to read more interesting parts of this issue. But you might just find it worth while to tarry yet a few minutes while together we do some rather remarkable arithmetic.

In our Fig. 4 the current in each circuit will probably be less than lmA, and the forces between beams and wires admittedly small. So let us take an example where the force should be quite appreciable; say 1 amp flowing in each wire having a cross-sectional area of $1 \mathrm{~mm}^{2}$. We know the current is equal to nev. Any book on electricity will tell us $e=1.6 \times 10^{-19}$ coulombs. And some books will tell us that in copper there are roughly 10^{29} movable electrons per cubic metre. In a metre of our wire the volume is 10^{-6} cubic metres, so n is 10^{23}. From $n e v=1$, then, v is $1 /\left(10^{23} \times 1.6 \times 10^{-19}\right)$, or about 6.3×10^{-5} metres per second, or 0.063 millimetres per second. Compared with which, a snail seems to be in a tearing hurry.

Seeing that the effects of relativity can normally be neglected even at supersonic jet speeds, can it seriously be maintained that velocities of this minute order can result in forces sufficient to drive electric motors? We found the ratio of "magnetic" to electric force between the beams to be v^{2} / c^{2}, and were it not for the chargeneutralizing effect of the protons this would apply to the wires too. The ratio of forces would be $\left(6.3 \times 10^{-5}\right)^{2} /\left(3 \times 10^{8}\right)^{2}$, or 4.4×10^{-26} !

This figure begins to look less utterly insignificant if we take the trouble to work out the unneutralized electric force per metre of wire in our example. We know well by now that it is k, or $n^{2} e^{2} / 2 \pi \epsilon_{o} d$. n is roughly $10^{23}, e$ is $1.6 \times 10^{-19}, \epsilon_{o}$ is nearly 9×10^{-12}, and let us suppose d is 0.01 metre $(1 \mathrm{~cm})$. Then the force is $4.6 \times$ 10^{20} newtons. Or $46,000,000,000,000,000$ tons! It is to this that the 4.4×10^{-26} ratio has to be applied. So the "magnetic" force turns out to be an appreciable 2×10^{-5} newtons, or 2 dynes. Which is the same as you would get by using the traditional formula for electrical attraction between parallel wires (equation 6).

Low-loss optical fibre

Interest in the potential use of optical fibre waveguides in the telephone network, has resulted in recent dramatic reductions in fibre attenuation. There has been considerable expenditure and effort in laboratories in this country, as well as abroad, which has produced silica-based fibres with remarkably low losses of around $2 \mathrm{~dB} / \mathrm{km}$. Groups at Standard Telecommunication Laboratories, Bell Telephone Laboratories and Corning Glass Works have used either germania or boric oxide to modify the properties of silica to produce an optical guiding structure.

However, á research team led by Professor W. A. Gambling at Southampton University has produced a new type of fibre with similarly low losses but based on an entirely different and unexpected material. The process by which the fibre is made is also new and has almost entirely eliminated the sharp absorption bands, associated with "water" impurity in the glass, that have affected most other fibres. This new solid-core fibre has extremely low loss over the entire wavelength range 0.4 to $1.1 \mu \mathrm{~m}$ with minimum values of $2 \mathrm{~dB} / \mathrm{km}$ at the gallium arsenide and neodymium laser wavelengths.

The fibre has a core material comprising a phosphosilicate ($\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{SiO}_{2}$) glass contained in a pure silica cladding. At first sight, this is an unlikely combination since glasses do not exist in bulk form having such a phosphosilicate composition. The big advantage is, however, that the addition of phosphorus pentoxide to silica does not increase the absorption and scattering losses as is the case with some of the additives (e.g., germania, titania) used by other workers. Further phosphorus is an abundant element, easily available and relatively cheap.

To produce the phosphosilicate glass a new technique comprising controlled chemical-vapour deposition has been devised. The starting materials are purified silicon tetra-chloride and phosphorus oxychloride, which are vaporized, mixed with oxygen and passed through a tube of silica cladding glass. The tube containing the flowing gas mixture is traversed through a fibre-pulling furnace which is operated at an appropriate temperature. Simultaneous oxidation and fusion occurs so that a clear phosphosilicate glass is deposited on the inner surface. A suitable thickness is obtained in about one hour. The composite tube is then collapsed

Spectral attenuation curve of 1.2 km length of new phosphosilicate-core silica cladded fibre developed at Southampton University.
and drawn into a fibre using a speciallydeveloped graphite resistance-heated furnace. Operating temperature, which can be in excess of $2,200^{\circ} \mathrm{C}$, is monitored by a thermocouple to allow accurate control and repeatability. The fibres typically have a core diameter of $50 \mu \mathrm{~m}$, an overall diameter of $150 \mu \mathrm{~m}$ and are drawn in lengths of about 1.2 km . Numerical aperture can be varied up to 0.18 or more as desired by control of the relative concentration of phosphorus pentoxide in the core. Either a uniform, or a graded, refractive index can be provided in the core.

Even though the loss already achieved is extremely low it has been shown that the phosphosilicate core material is capable of further improvement. It is confidently expected that a transmission loss of about $1 \mathrm{~dB} / \mathrm{km}$ will be achieved with further purification of the starting materials.

In addition to ultra-low loss the fibres exhibit very low values of pulse dispersion and are capable of bandwidths of more than a gigahertz over lengths of 1 km .

It will be recalled that two years ago the Southampton group announced a liquid-core fibre having the lowest loss $(5 \mathrm{~dB} / \mathrm{km})$ for any type of fibre at that time. It is still the best liquid-core fibre that has been produced anywhere and a 1 km length was used to give the world's first transmission of a live colour television programme by the BBC.

Sixty Years Ago
 From Wireless World, Oct. 1914:

The Amateur's Wish

Alas, Poldhu! thy blaring bugle note
Which oft at midnight pleased my list'ning ear; And Clifden, too, thy mighty waves which float Five miles apart, wide wafting signals clear,
For me are gone. My 'phones no longer sing
The music which was prompted by your sparks, Nor can they tell, if still ye nightly fling
Abroad, meteorological remarks.
My watch ticks on, unchecked; I cannot fix Its hands to Greenwich time, and set it right, For Paris purring "tas" and "tuts" and "ticks" Ne'er reach my ears. My aerial's gone from sight, Gone Cleethorpes' mystic messages that thrill,
And turn my thoughts to men, and ships, and might.
Gone, too, Madrid, whose plaintive whistling shrill
I've heard, with straining ears, across the night.
My jigger lies, with coils and aerial-lead In tight-packed drawer; it can no longer slide To tune, helped in its work, to let me read Far signals, by condensers on each side. Shall I complain? No, never! From it far, Such hobbies now must all aside be laid Since I have heard the "ta-te-ta-te-ta" My country sent to call me to her aid. And so instead I'm tuning up a gun, And learning how to shoot, to march, and wait With hope, to help in things which can be done By those who turn to drilling rather late. And if I'm called away to leave my home, Should I, before I go, just take a peep To see that all within my wireless room Is right, I know this thought will on me creep. "When peace again doth reign, and war is done, God grant my 'phones may sing of victory In notes that spell the words of England's tongue,
Sent out by British hands on Norddeich key." Aylmer A. Liardet.

British satellite launch

The second model of Britain's Skynet II, the first operational communications satellite to be built outside the USA or Russia is due for launch from Cape Canaveral in November by a Thor-Delta rocket. Coupled with this in Britain's space achievements is the scheduled launch of UK 5, the latest scientific satellite in the collaborative programme with NASA. This advanced X-ray satellite carries experiments provided by British and American researchers, and is designed to carry out the most comprehensive investigation yet initiated into X-ray sources in deep space including phenomena which might explain the existence of "black holes" in space.

Skynet II. This satellite will carry British defence communications over an area from the UK to the Far East. It will replace the smaller, US-designed and built Skynet I satellites. Skynet II is built in the form of a cylindrical drum with solar cells covering the entire curved surface. It measures approximately 78 in long with a diameter of 75 in . Launch weight is about 960 lb .

Transfer of the satellite from its original highly elliptical orbit into synchronous orbit will be achieved by firing a solid fuel

Skynet II undergoing check-out at the Marconi Space and Defence Systems' Portsmouth spacecraft factory.
apogee motor contained in the satellite. The complete satellite will be spin-stabilized at about 90 revolutions per minute from the time second-stage burning ceases. However, once in synchronous orbit the communications antenna will be de-spun and controlled to point constantly at the Earth.

During the initial manoeuvres and up to the time of its final positioning, the satellite will be controlled through an almost omnidirectional aerial system consisting of an array of cavity-backed dipoles operating at S -band and mounted in a single strip around the complete circumference of the satellite. Once the synchronous orbit has been achieved and the satellite has been turned into the correct position related to the Earth, a single horn antenna mounted on the spinning axis of the satellite can be brought into use to provide the main communications function of the satellite. This antenna, whose beamwidth is sufficient to cover the entire visible portion of the Earth's surface, will be mechanically de-spun and aimed at the Earth's centre. The S-band multi-dipole aerial will then be used to monitor all the functions of the spacecraft and to transmit commands to it.

UK 5. This all-British satellite was scheduled for launch by a US "Scout" rocket from an oil-rig-type platform situated three miles off the coast of Kenya. It is the first British satellite to carry a core store system for processing experimental data before it is transmitted to the ground and will also be the first British scientific satellite to use pulse code modulation for the telemetry link. UK 5 will carry a scientific payload of six X-ray experiments into a near equatorial orbit and should remain operational for at least one year. The experiments on board the satellite are designed to locate cosmic X-ray sources, including pulsars, and to measure their spectra, period, variation and polarization. The experiments are as follows: measurement of X-ray source positions and a sky survey in the energy range 0.3 to 30 keV , University College London; sky survey in the range 1.5 to 20 keV , University of Leicester; study of the spectra of individual sources in the 2 to 30 keV range, Mullard; measurement of the polarization of X-rays from 1.5 to 8 keV , University of Leicester; study of sources of high energy X-rays up to 2 MeV , Imperial College, London; an all sky monitor in the energy range 3 to 6 keV , Goddard Space Flight Centre.

The results of the six experiments will be fed in digital form through an interface unit into a data storage system. This will store the information gathered during each orbit and then transmit it to the ground as the satellite passes overhead the receiving network. Commands will be transmitted from the ground providing instructions to the spacecraft and its experiments for data collection in the next orbit.

Skynet II was designed and built for the Ministry of Defence by Marconi Space and Defence Systems Ltd, who were also prime contractors for UK 5 .

Supernova probe

The United States and Great Britain are to undertake a joint rocket mission next June to aim an X-ray telescope at the remnants of a distant supernova. The project calls for the launch of a British Skylark sounding rocket from the Woomera Rocket Range in Australia towards the Puppis A supernova remnant, an object of intensive study for several years.

A supernova can originate in a large star at the end of its life when the final collapse is a cataclysmic event that generates a violent explosion, blowing the innards of the star out into space. There the material mixes with the primeval hydrogen of the universe. Later in the history of the galaxy, new stars can be formed from this mixture. Consequently, the study of remnants of exploded stars such as Puppis A could provide important information on the evolution of stars and galaxies.

A Wolter type 1 glancing incidence X ray telescope designed and built by NASA will be used in conjunction with a high resolution position sensitive detector invented and developed by the Mullard group. The combination will permit structural details of the regions responsible for soft X-ray emission of Puppis A to be studied with high resolution.

Puppis A, the subject of previous study by sounding rockets and the Copernicus (OAO-3) satellite has been found to be one of the brightest soft X-ray sources in the sky. Telemetered data from the Skylark experiment will provide two-dimensional images of the X -ray-emitting regions of Puppis A which can be compared with previous observations to develop more precise models of the supernova phenomenon.

More about Apollo-Soyuz

Thie joint space-venture between the USA and Russia which involves the in-orbit docking of the Apollo command module with a Soyuz spacecraft is planned for launch on July 15, 1975 (see Space News, August 1974, p.287). During the mission, the crew will conduct important new technological and medical experiments. Atmospheric experiments will be conducted using a new technique for measuring constituents which are too chemically reactive to measure directly with a mass spectrometer. This will be accomplished by sending an optical signal from the command service module to a reflector on the Soyuz vehicle. The signal will be bounced back and scanned in the Apollo spacecraft to study the effects of the sun on atomic oxygen and nitrogen at orbital altitudes. Also included is an experiment in electrophoresis processing. An electric field is used to separate living cells and other biological materials from a flowing medium without decreasing their activity in near zero gravity conditions. Successful demonstration by the Apollo-Soyuz test project could lead to further development of space electrophoresis in shuttle missions, as a tool for medical research and therapy and contribute to such fields as immunology and cancer research.

Realm of microwaves

9-Basic measurements and instruments

by M. W. Hosking, M.Sc.

British Aircraft Corporation, Filton

Most of the techniques used, together with the method of approach, in measuring what goes on in a microwave circuit are sufficiently different from other electronics practice to make an interesting topic of their own. As with the preceding articles in this series, the presentation of the subject is intended, not to preach to the converted, but to highlight the considerable differences in technique and technology that exist in the microwave region.

The trend in microwave measurements is toward more automated systems and for individual instruments to cover wider bandwidths with the minimum of operator intervention. While mentioning some of the more advanced systems, this article concentrates on the basic quantities to be measured, like power, impedance and frequency, and on certain types of instruments which have become universally accepted as the basic measuring tools.

To start with, there is a great difference in the approach to both measurement and design at microwave frequencies than at the lower frequencies. Quantities such as voltage and current, while still existing, have little practical significance and little attempt is made to measure them. Consider, for example, the hollow, metal waveguide form of transmission line wherein the wavelength is usually of the order of centimetres. The system is a d.c. short circuit, so a potential difference can only exist in so far as the electric field is varying, so that voltage is a function of position along the guide.

Electric current does not exist as a steady stream of electrons travelling uniformly from one end of the guide to the other, but as periodically circulating currents near the surface of the walls. Even if some current monitor were invented it would not give the total current, but only the bit flowing at the particular measuring point. Consequently it is the microwave power which is always measured and this is done directly by absorbing it into some load and: either noting the rise in temperature or variation in resistance of this load.

Having either received or generated a microwave signal, one is then mainly concerned with transferring the power efficiently from one point to another, usually via other components such as filters, attenuators, isolators, directional couplers. Consequently, impedance becomes a vital parameter, governing the degree of mismatch between two points or
components. Each type of transmission line, be it waveguide, coaxial line or microstrip, has a characteristic impedance which, for a given electromagnetic field pattern (mode) within the line is a real quantity and is a function of the cross-sectional dimensions of the line. A component, say a receiving antenna, which may have a complex or different impedance to that of the line will appear as a mismatch, causing some of the microwave power to be reflected. When a mismatch does occur, it can be compensated for by deliberately introducing a second mismatch a certain electrical length away so that the combined reflections cancel out.

Microwave impedance

The measurement of impedance in the microwave region illustrates one of the main differences in approach to this type of problem. A good definition of the microwave spectrum is that in which the various components and transmission line crosssectional dimensions are comparable in size to the wavelength. The significance of this is that the electromagnetic field itself can be conveniently sampled and the perturbing effects of any obstacle in the transmission line can be readily measured.

The effect of a mismatch is to reflect some of the microwave power back down the transmission line, the exact amount depending on the degree of mismatch. This reflected power combines with the incident field to produce a resultant field pattern which is stationary in position along the guide as shown in Fig. 1. The quantities $E_{\max }$ and $E_{\text {min }}$ depend, in value, on the amplitude of the reflected wave, while the position of the standing-field pattern with
reference to the obstacle depends on the reactive effect of that obstacle. The distance between peak and null of the pattern is a quarter of the line wavelength, which can be different from the free-space wavelength.

Sufficient information is contained within a measurement of $E_{\max }, E_{\text {min }}$ and the minima position to determine the amount of reflected power, the obstacle impedance, whether the impedance has an inductive or capacitive component and the magnitude of this reactance. Also, a measurement of the distance between successive peaks or nulls of the standing-wave pattern yields the frequency. This impedance determination, either directly or indirectly, is the most common of all microwave measurements and the successful design of components and systems hinges upon it.

This is largely because microwave systems involve the transfer of power from one point to another, usually in applications where even small losses cannot be tolerated. Knowledge of such an impedance mismatch enables steps to be taken to either correct it or compensate for it. Again, the accuracy of most microwave instruments depends on the degree of mismatch that they present to the transmission line. With market competition high, such instruments have to operate over full waveguide bandwidths, or even wider in coaxial systems; so that the broadband mismatch is of fundamental interest to both the designer and the user.
Before going on to describe some ways and means of measuring impedance, it will be as well to list the parameters involved and their relationships with each other. Derivation of these equations will not be given here, but is simple enough and can be found

Fig. 1. Reflected wave from transmission-line discontinuity interferes with the incident wave to produce a standing-field pattern along the line.
in any of the wealth of literature dealing with transmission line theory.

Firstly then is a quantity called the voltage standing-wave ratio or v.s.w.r. and is obtained directly from probing the field pattern of Fig. 1. The v.s.w.r. is an indication of how well a load or an in-line component is matched to the transmission line impedance and is always quoted in the specifications of such devices. It is defined as the ratio $E_{\max } / E_{\text {min }}$ and, as such, can vary from unity for a perfect match $\left(E_{\max }=E_{\text {min }}\right.$) to infinity for a perfect short or open circuit ($E_{\text {min }}=0$).

It is also possible to define the v.s.w.r. as the reciprocal of this giving values of between unity and zero and this used to be the earlier method. Now, however, apart from a few die-hards in British industry, fashion has succumbed to New World and Continental influence and the former definition is used. Although a variation of from $1 \rightarrow \infty$ is possible, in practice the v.s.w.r. is small. To give a feel for the figures: octave and waveguide-band components seldom have v.s.w.rs worse than 1.7, while precision and narrow-band devices are better than 1.1.
It is possible to obtain the amount of reflected power from a mismatch by expressing the v.s.w.r. in terms of a reflection coefficient. The standing-wave pattern is produced from the combination of the incident and a reflected wave which can be given electric fields E_{i} and E_{r} at the positions of measurement. Then $E_{\max }$ is given by $E_{i}+E_{r}$ and $E_{\text {min }}$ by $E_{i}-E_{r}$, so that the v.s.w.r. becomes

$$
\begin{equation*}
\frac{E_{i}+E_{r}}{E_{i}-E_{r}} \tag{1}
\end{equation*}
$$

One can also define a voltage reflection coefficient, ρ, as the ratio of reflected to incident voltage E_{r} / E_{i}, whereupon equation 1 can be written as

$$
\begin{equation*}
\frac{1+\rho}{1-\rho} \tag{2}
\end{equation*}
$$

Taking the v.s.w.r. value of 1.7 mentioned above, the corresponding value of ρ is 0.26 and the power reflected, being proportional to the square of the voltage is thus 0.067 . That is, 6.7% of the power is reflected from a mismatched object having a v.s.w.r. of 1.7, while the corresponding figure for a v.s.w.r. of 1.1 is only 0.23%.

Strictly speaking, the voltage reflection coefficient used in equation 2 is the modulus of a more general reflection coefficient containing relative phase information about the reflected wave. Such information is necessary when evaluating the reactive component of a mismatch and can be simply obtained by noting the shift in position of the standing wave pattern when the mismatch is replaced by some phase reference-usually a short circuit.
Again, there is a simple relationship between the reflection coefficient and load impedance, Z_{L}, on a transmission line. In general these will be complex quantities, so that the reflection coefficient is more fully given by $\zeta=\rho \exp j \phi$ where $\rho=|1|$ and can then be written in terms

Fig. 2. Input impedance of loaded transmission line is a function of the position at which it is viewed; it repeats itself every half-wavelength (a) and inverts every quarter-wavelength (b). This latter facility is used to produce reflection less impedance transformers (c).
of the load as:

$$
\begin{equation*}
Z_{L}=Z_{0}\left[\frac{1+\zeta}{1-\zeta}\right] \tag{3}
\end{equation*}
$$

Z_{o} being the characteristic impedance of the line. Thus the absolute value of a complex load impedance can be obtained from an electric field measurement to give the ratio of $E_{\max }$ to $E_{\text {min }}$ a length measurement to give the phase of the reflection coefficient and a knowledge of the characteristic impedance of the lineusually calculated.

Determining the characteristic impedance presents problems, especially in the case of waveguide. Coaxial line, balanced stripline and, to a fair degree of accuracy, microstrip have only transverse components of electric and magnetic fields and it is possible to define a single constant of proportionality between these, called the characteristic impedance. Waveguide transmission, though, involves both longitudinal and transverse fields and it is not possible to define a unique characteristic impedance. For instance, in terms of voltage, current and power, impedance can be given by $V / I, P / I^{2}, V^{2} / P$ (r.m.s.), while strictly speaking V^{2} and I^{2} are the products of the complex and complex conjugate voltage and currents. Applying these familiar relationships to more everyday electrical problems will yield identical values of impedance, but not so in waveguide. In fact, the ratios of the different answers obtained are ($\pi / 4$): $\left(\pi^{2} / 16\right)$:

But, in the great majority of cases, the reason for measuring load impedance is
to tune out a mismatch and it is not necessary to know the absolute value, only that normalized to the characteristic impedance of the line. As the tuning device can also be normalized to the same impedance, it is satisfactory to treat the problem on a purely relative basis. In terms of the quantities actually measured, the impedance obtained is thus:

$$
\begin{equation*}
\frac{Z_{L}}{Z_{O}}=z_{L}=\frac{1+\zeta}{1-\zeta} \tag{4}
\end{equation*}
$$

Bearing in mind that z_{L} is likely to be a complex quantity having normalized resistive and reactive components ($r \pm j x$), and that ζ is also complex, it is a simple matter to fully characterize the load impedance. This impedance obtained by measuring the standing-wave pattern is that existing at the plane or effective "terminals" of the mismatch or load, but is not the whole story of microwave impedance.

A very important transmission line property can be exploited because of the physically small distances involved; that is the ability of a length of line placed between the observer and the load to change the input impedance. In the case of Fig. 1, if the terminal plane is moved toward the left it will pass through differing phase relations between the incident and reflected waves which will alter the real and imaginary parts of the impedance as seen at this plane. Again, there is a simple relationship governing the input impedance to a length of transmission line terminated by some load
which can be obtained by extension of equation 4 by adding to the phase of the incident and reflected waves, an amount of phase corresponding to the length of transmission line. With reference to Fig. 2(a)

$$
\begin{equation*}
z_{I N}=\frac{Z_{I N}}{Z_{0}}=\frac{z_{L}+j \tan \beta l}{1+j z_{L} \tan \beta l} \tag{5}
\end{equation*}
$$

where β is the phase constant and equal to $2 \pi / \lambda_{g}$, remembering the transmission line wavelength need not be equal to the free-space wavelength.
The usefulness of this impedance transforming effect will be seen later where it helps in the matching of components. But there are some special cases worth pointing out here. When the observation plane XX is moved to a position such that $l=\lambda_{g} / 2$ or multiples of $\lambda_{g} / 2$ then equation 5 reduces to $Z_{i n}=Z_{L}$, which is as if the load itself had been moved to the new terminal plane. A practical implication of this would be when some form of tuning device, say, had to be placed alongside a load or mismatch, which was inaccessible. If a suitable position could be found for the tuner which was a whole number of half-wavelengths away from the load, then the effect would be the same. This is only strictly applicable at one frequency and for large distances or lossy transmission media attenuation must be taken into account.

A second interesting effect occurs at the position where $l=\lambda_{g} / 4$ when equation 5 becomes $z_{i n}=1 / z_{L}$ and the load impedance viewed from this point has been inverted. Note that these are still normalized values if anybody is checking the units. This is an important property and is known as quarter-wave transforming and

(a)

(b)

Fig. 3. Short or open-circuited transmission line is purely reactive and can be inductive or capacitive with any value between \pm infinity depending on its length (a). This makes the series or shunt stub (b) a versatile matching element.
is widely used in microwave design. It performs the same function, without the isolation, as transformer matching does at lower frequencies, but without metres of wire for coils.

Consider Fig. 2(c) where the problem is to match sections of low impedance and high impedance line. We cannot just join the two sections together, for apart from causing a reflection due to the differing electrical impedance of the two lines, the physical discontinuity at the junction will disturb the field patterns and will appear as an additional susceptance. Looking from left to right in Fig. 2(c), the low impedance line $Z_{O L}$ can be considered as the load, separated from the main transmission line of high impedance $Z_{O H}$ by the $\lambda_{g} / 4$ section of impedance $Z_{O T}$.

Moving to the left, away from the load, just into the transformer section sees $Z_{O L}$ as the normalized impedance $Z_{O L} / Z_{O T}$ which, as the movement continues, varies in accordance with equation 5 . On reaching the end of the transformer, the impedance is inverted, to give $Z_{O T} / Z_{O L}$. To be matched, this should be made equal to the high impedance section, also normalized to $Z_{O T}$. Thus, $Z_{O T} / Z_{O L}=Z_{O H} / Z_{O T}$ or $Z_{O T}=$ $\sqrt{Z_{O H}} Z_{O L}$, which gives the required characteristic impedance of the quarter wave transformer as the geometric mean of the impedance to be matched. By this means, any real impedance values can be matched and, by increasing the number of transformer sections, the match can be maintained over wide frequency bands (an octave or more).

When computing the variation of a complex load impedance with frequency and at the same time searching for the value and location of the best matching structure, the algebra becomes lengthy and tiresome and it is not always easy to see the best direction to follow. An invaluable aid to this type of problem is the circle diagram or Smith chart, which is a grid of interlocking circles derived from the relationships given earlier between impedance, reflection coefficient and v.s.w.r. By plotting an impedance on this chart, one can obtain a speedy, visual picture of how it varies with frequency. Examples on the derivation and use of the Smith chart have already been published in Wireless World*. This article gives a very good explanation of the Smith chart and is well worth reading.

Apart from perhaps the characterization of some solid-state devices, the impedance or reflection coefficient obtained is required for the purpose of matching out the reflection, thereby maintaining an efficient power flow. For the instrument designer in particular, this is important to the measurement accuracy of the device he hopes to sell. Basically, the principle of matching is quite simple, although in practice it can be an extremely exacting task and uses the transforming property of a length of transmission line. By moving the plane of observation away from the load or mismatch, a point will be reached where the real part of the input impedance (load plus line) equals

[^3] World, Vol. 66, 1960, pp. 2-9, 82-5, 141-6.
the characteristic impedance and is thus a match. All that is left is a reactive component, either inductive or capacitive. If, then, another reactance, but of opposite type, is introduced at this point, the combined reflections will cancel out and the line will appear matched.

The spanner to be thrown into this idealsounding works is the fact that almost all microwave systems are required to work over a band of frequencies and so matching becomes a compromise between complexity and v.s.w.r. The amount of headache this produces really depends on which type of market the circuit designer is aiming for. An instrument designer has to make components which function accurately over at least the standard waveguide bandwidths (up to an octave) and wider in coax, while a radar systems designer is usually only concerned with bandwidths of a few per cent.

Having found the best place to position the matching device and determined by measurement and calculation the necessary reactance, it remains only to translate this reactance into a physical structure. And here is another aspect of microwave technique which is markedly different from the remainder of electronics engineering. If, say, a capacitive reactance were needed, then it would not be possible to use the conventional solid-dielectric or electrolytic capacitor, simply because neither would appear as a lumped element. Their physical size, being a significant portion of a wavelength, would make the capacitance itself frequency dependent and conducting paths within the component which perhaps were only tens of nanohenries inductive possess a large reactance at GHz frequencies.

Bearing in mind that a component is classed as inductive or capacitive depending on the way in which it influences the phase relationship between current and voltage, then all that is required at centimetre wavelengths is something which will perturb the local electric or magnetic field so as to produce a similar effect. One finds that metallic objects in the transmission line, a sudden change in cross-sectional dimensions, or a piece of dielectric can all produce inductive or capacitive effects. So too, as we have seen, can a length to transmission line itself and as well as transforming an impedance can also be used in reactive matching.
Suppose that, instead of the load Z_{L} of Fig.2, the line is terminated in a short circuit, then $Z_{L}=0$ and equation 5 reduces to $Z_{i n}=j Z_{o}$ tan βl. Thus, neglecting losses, the input impedance to a shortcircuited transmission line is a pure reactance, the exact value of which depends on the electrical length. As can be seen from Fig.3(a), when the stüb length is less than a quarter wavelength, the reactance is inductive and covers all values from zero to infinity. Between $\lambda_{g} / 4$ and $\lambda_{g} / 2$ in length, the line impedance is a capacitive reactance, again varying between zero and infinity. Any value of reactance can thus be obtained from such a length of line, making it a versatile and effective matching aid. Fig.3(b) shows how, in waveguide, such a stub line would be connected to appear in shunt

Fig. 4. Various reactive components: (a) inductive and capacitive crises, (b) inductive capacitive or resonant post, (c) microstrip capacitive step.
with the main line. Connecting it across the broad dimension of the guide would make it appear in series.

Some common microwave reactive components are shown in Fig. 4 and are capable of producing a wide range of practical values. Provided that the dimension of such an element in the direction of propagation is a small ($<1 / 20$) part of the wavelength, the actual inductance or capacitance is essentially independent of frequency. The ubiquitous screw, or post. is widely used as a matching and tuning device. For the first amount of penetration into the guide it appears capacitive, then passes through a resonant condition as penetration increases and finally becomes inductive. In waveguide or coaxial line the post provides a convenient method for tuning up the resonant sections of a filter and provides a method of mechanically varying the frequency of solid-state cavity oscillators. In the microstrip form of circuit discussed previously, components such as these are not so practical and the mechanical tuning of components is not normally done. When matching devices are required, then the appropriate reactance is produced either by an abrupt change in the transverse dimension of the strip component or by suitable stub-lines placed at right angles to the main line.

Impedance measurement

A lot of effort has been expended by manufacturers in producing test equipment and components of steadily increasing quality for the measurement of impedance and also progressing towards fully automated systems. All methods, however, are based on determining the magnitude and phase of the voltage reflection coefficient, usually as a function of frequency. The basic
component for measuring these quantities, still going strong as a laboratory instrument, is the slotted line shown schematically in Fig. 5. It consists of a section of waveguide or coaxial line with a narrow slot several wavelengths long cut along its axis. With the dominant mode propagating, the slot does not interfere with any of the field components and thus causes no significant radiation. A metal probe penetrates through the slot into the guide and is attached to a sliding carriage, the position of which can be determined accurately with either a vernier scale or a clock gauge. To one end of the instrument is connected a source of microwave power and to the other, the component under test.

As we have seen, any mismatch will produce a standing-wave pattern along the guide due to the interference between incident and reflected waves and the carriage probe will couple to the electric field of this pattern to yield a detected output voltage proportional to the wave amplitude. By moving the probe carriage along the slot, a voltage reading can thus be obtained for the maximum and minimum values of the standing-wave pattern and, hence, the v.s.w.r. (leading to the reflection coefficient magnitude) which is the ratio of these two. To determine the complex part of the reflection coefficient, and hence the impedance, it is necessary to know whether the mismatch is inductive or capacitive and this information is contained in the phase difference between the indicent and reflected waves.

Its value may be obtained by comparing the standing-wave pattern produced by the mismatch with that from a known phase reference, usually a short circuit. Being nearly non-dissipative and non-reactive, a practical short circuit placed across the transmission line will produce a very large v.s.w.r. and standing-wave minima spaced at $\lambda_{g} / 2$ intervals from the plane of the short itself. The measurement procedure is to place the short-circuit reference either at the same position as the unknown
impedance or a known distance from it and to note the position of one of the standingwave minima. This position will be different from that occupied by the minimum produced by the original mismatch and represents the phase angle of the impedance.

Fig. 5. Basic structure of slotted line in waveguide comprising probe, sliding carriage and detector. In practice, great mechanical precision is needed as well as careful electrical design.

Although accurate, the disadvantage of the above method is that it is restricted to spot-frequency measurements and thus, in the case of a wide-band component some poorly-matched areas might be missed. In addition, it is hardly a practical method to use for production quality control: a comprehensive check could price the component under test out of the market. However, with the advent of microwave sweep oscillators, now capable of covering almost any bandwidth and accurate test components, it is possible to obtain a continuous plot of impedance across the operating band of the device under test.

Fig. 6. Reflectometer set-up for the swept measurement of reflection coefficient (a) and the resultant recorder plot (b).

A test circuit for measuring the reflection coefficient on a swept frequency basis is shown in Fig. 6 (a).

Say the device to be measured is to operate over X-band ($8.2-12.4 \mathrm{GHz}$) then the microwave oscillator can be made to continuously sweep automatically across this band within times of typically many minutes to 0.01 seconds. If the measurement recorder were an oscilloscope, the latter rate would be chosen but for the XY recorder shown here, several tens of seconds for a sweep is more applicable. The X-travel of the recorder is synchronized electrically with the oscillator sweep. Forward and reflected signals are sampled by the directional couplers, shown here as 10 dB models, which means that arm 3 couples out $1 / 10$ th of the power in the main arm of the device travelling in the direction $1 \rightarrow 2$.

Ideally, no power should couple to arm 4 as this could give rise to an additional reflected wave. But, alas, nothing is perfect and this is a small source of error in the measurement. The purpose of the levelling loop connected to the first coupler is to provide a constant amplitude signal over the band, which can be used as a reference so that only variations in the reflected power need be measured. The first step is to calibrate a scale of reflection coefficient along the Y -axis of the recorder and, to this end, a short circuit is put in place of the component under test.

As far as the detector in the second coupler is concerned, the reflected signal amplitude which it sees with the attenuator set at OdB , represents a reflection coefficient of unity. If, however, attenuation is inserted into the line, then the decrease in amplitude can be interpreted by the detector as coming from a termination with a lower degree of mismatch. The two quantities are related by $-20 \log _{10} \rho$ and is called the return loss (dB). So a short circuit padded out with say 10 dB of loss appears as a reflection coefficient of 0.32 or a v.s.w.r. of 1.9. A calibrating grid can thus be drawn on the recorder for various values of return loss to simulate various
mismatches. Finally, the short is replaced by the test piece, the attenuator set back to zero and the actual measurement superposed on the calibration. The result might be as shown in Fig. 6 (b) where, if spot frequency checks had been relied on, the sharp resonance at 9 GHz could well have been missed.

One can go one step further and introduce a phase measurement and then display the swept plot in polar co-ordinates on an oscilloscope with a Smith chart graticule. By this means an empirical matching technique can be continuously monitored while the adjustment is going on, perhaps . saving weeks of design effort of the rejection of a production component. Then, if one has the money, a computer can be introduced and programmed to carry out sets of measurements while continuously carrying out circuit error analysis and correcting for it and displaying the data for both active and passive devices in many convenient ways.

Whichever technique is used, the basic fact remains that at the short microwave wavelengths it is possible to monitor the effects of a reflected electromagnetic field from a mismatch by quite simple methods. Then, knowing the wavelength, the impedance of a load or discontinuity can be easily defined in terms of the amplitude and phase of the reflection which it produces.

Standard time satellite

A successful two-year experiment in broadcasting time and standard frequency signals from an earth satellite has just been completed by the US National Bureau of Standards. In the experiment, a frequency modulated 149 MHz carrier wave was transmitted for two 15 -minute periods a day from the Bureau's Boulder, Colorado laboratories to the US National Aeronautics and Space Administration's ATS-3 geostationary satellite. The signal is rebroadcast to earth on a 135 MHz carrier to cover the North and South American continents, much of the Atlantic and Pacific Oceans and part of Europe and Africa, a total of 40% of the earth's surface.

Satellite-relayed signals have high signal-to-noise ratios, wide bandwidth (permitting flexibility in signal input) and line-of-sight propagation paths free from fading. In the future, a satellite system based on the experiment may offer continuous time and frequency broadcasts covering a large global area with a timing accuracy better than one one-hundredthousandth of a second. The relayed signals were based upon the Bureau's frequency standard and "co-ordinated universal time", both maintained at the Boulder laboratories. A standard frequency 1 kHz tone, second ticks, voice announcement of the time of day, satellite position and a time code were relayed to Earth within a bandwidth of 20 kHz during the daily transmitting periods.

Accurate time recovery depends primarily upon accurate satellite position information. For instance, a 300 -meter path represents a one-microsecond timing error. Charts prepared for users of the satellite time dissemination service give receiver-antenna direction information and propagation time delays.

The WW Annual

Wireless World proudly introduce their Annual. Having the same format as Wireless World, the Annual contains over 80 pages of editorial, including three major constructional features: an audio oscillator, a small-boat echo-sounder, and a double phase-locked loop f.m. tuner. Nomographs and formulae are presented for reference purposes and theoretical articles such as, "Estimating signal strength from v.h.f. aerials" and "Loudspeaker design" provide valuable basic design information.

Available from leading bookstalls in October, the Annual is priced at $\mathfrak{f l}$ or $£ 1.35$ by post from Room 11, General Sales Dept., Dorset House, Stamford St., S.E.1. Cheques and postal orders should be made payable to IPC Business Press Ltd.

Microphone survey

Principles of operation and construction followed by a tabular survey of professional and semi-professional microphones

by J. Dwyer

Abstract

The microphone is nearly a century old. The author gives a brief account of that century and then describes the major principles in the construction and operation of the basic instruments. Pressure, pressure gradient and phase shift operation are described as well as the three basic polar patterns to which those operations correspond and the author makes a plea for the more careful definition of the terms hyper- and super-cardioid.

According to a reliable account ${ }^{1}$ the first microphone diaphragm was Reis's sausage skin. ${ }^{2}$ Reis had used two intermittently connected metal contacts and could transmit tones of differing frequency, but not intelligible speech.

Alexander Graham Bell used the first microphone, in his moving armature transmitter and receiver on June 3, 1875. ${ }^{3,4}$ In the following years Bell improved upon it by using the diaphragm as the armature and using two pole pieces instead of one. The device was insensitive because the moving member required sufficient bulk to support the attractive force on the diaphragm. Balanced armature models were developed by Siemens, ${ }^{5}$ Watson, ${ }^{6}$ and Capps. ${ }^{7}$

Emile Berliner and Thomas Edison invented the variable contact carbon trans ${ }^{4}$ mitter almost simultaneously in 1877. The word "microphone" was coined by David Hughes the next year. He described the principle of using a large number of small grains of carbon, and Henry Hunnings built such a microphone the same year. Edison patented the granular carbon microphone in 1889.

The moving coil microphone principle was discovered simultaneously by Charles Cuttris and Jerome Redding, in the United States, and by E. W. Siemens in Germany in 1877. Patents followed. ${ }^{5,8}$ The modern instrument was developed by E. C. Wente and A. L. Thomas in $1931 .{ }^{9}$

The ribbon microphone was invented by Schottky and Gerlach in Germany in 1923. Although the pressure gradient principle had been explored by Pridham and Jensen, and Meissner (who filed his patent in 1919) for use in noise cancelling microphones it was H. F. Olson who made the first modern ribbon microphone in 1931, patented a year later. ${ }^{10,11,12,13}$

Olson, with J. Weinburger and F. Massa, also developed the combined unidirectional microphone. ${ }^{14}$ A combined ribbon and dynamic microphone was developed by R. N. Marchall and W. R. Harry.

Piezo-electric effects had been observed by Becquerel in 1820 but the first crystal microphone, using a Rochelle salt element, was made by A. M. Nicholson in 1919. It was not until the crystal bimorph was invented in 1931 by C. B. Sawyer that there was sufficient output for these microphones to be practically useful. ${ }^{15,16,17}$
A. E. Dolbear described the condenser
microphone in 1880 but a practical instrument did not arrive until that developed by E. C. Wente in 1916. ${ }^{18,19}$

Various other transducers have been used over the years ${ }^{13,20,21,22,23}$ but the foregoing account covers those now in common use.

Operating principles

The mode of operation of the transducer depends on its construction. If the capsule is totally enclosed apart from an atmospheric pressure equalisation tube, then the diaphragm will react only to rapid changes in air pressure. If the capsule is not so big as to interfere with the sound waves the diaphragm will respond to sound from any direction since it is a pressure transducer.

The second mode of operation is pressure gradient. The diaphragm (Fig. 3) is exposed on both sides. A sound wave coming from direction A strikes the front of the diaphragm first and then reaches the back. In doing so it will have to move distance x, the path difference between front and back. If the wavelength of the sound is long compared with d (Fig. 4) the pressure change which occurs while the wave travels distance x will not be great. In the limit, when the sound pressure is constant there will be no difference along the path length x at all. At low frequencies x will be small compared with the wavelength and it can be assumed that P_{1} to P_{2} is a linear portion of the pressure curve, so that $P_{1}-P_{2}$ genuinely represents the pressure gradient. Here the force on the diaphragm is proportional to frequency, and this is roughly true until

As the frequency rises, however, x becomes appreciable compared with the wavelength and, in the limit, reaches the point where $x=\lambda / 2$. Here the pressure differences will be maximum, corresponding to twice the amplitude of the pressure wave.

The pressure gradient diminishes again as the wavelength decreases, until the path difference between one side of the diaphragm and the other is equal to the wavelength, and the pressures on either side of the diaphragm are equal. Here the force on the diaphragm is zero.

If the path length x is small enough the force on the diaphragm will be proportional to frequency throughout the audible range but, as x decreases, so does the sensitivity.

The pressure gradient microphone will only respond to the component of the incident sound along the axis of the microphone. Sounds from position C in Fig. 3 will have no effect on the diaphragm since pressures on either side of it are equal. Sounds from D will have the same effect as those from A but will be phase reversed since they move the diaphragm in the opposite sense. Between these positions, the response will vary as the cosine of the angle

Fig. 1. Pressure operated diaphragm.

Fig. 2. Response of a pressure operated diaphragm.

Fig. 3. Pressure gradient operated diaphragm.

1
 for Sound Recording and Live Entertainment.

The general purpose directional microphone for PA, vocalists and amplified musical instruments.

C451EB

Standard version "flat" pre-a mplifier - complete with CK 1 cardioid capsule, SA 15 stand adapter or SA 7 quick release adapter (only for U.K.) C 452E (C 452C with DIN-socket on request): 48 volt preamplifier for phantom powering from mixing console.

D90
A keenly priced dynamic microphone yet offering a good directional response for tape recording, public address and vocalists.

C414
(C 414C comb. with DIN
plug on request.)
FET Studio microphone with large condenser capsule. Pattern selector on microphone for cardioid, omnidirectional, figure of eight and hyper-cardioid. Switchable - 10 db attenuator.

AKG DYNAMIC AND CONDENSER MICROPHONES ARE EXTENSIVELY USED IN BRITAIN'S BROADCAST, TELEVISION AND SOUND RECORDING STUDIOS.

A perfect match for all the other equipments, also by GRAMPIAN, for the complete sound installation.
GRAMPIAN REPRODUCERS LTD HANWORTH TRADING ESTATE, FELTHAM, MIDDLESEX. TELEPHONE: 01-894 9141. WW-037 FOR FURTHER DETAILS

CondenserMicrophones... at greatly condensed prices

Yes it's true! Unisound Electret Condenser Microphones are capturing the sound and the interest of the amateur and professional recordist, for at last the condenser microphone price barrier has been shattered and without any loss of performance.

The range includes Omni and Uni-Directional as well as Tie-Tack lapel models. The unique design employs a tiny UM-3 battery making bulky power packs obsolete yet providing sufficient power to maintain high sensitivity and a wide response ratio.

Get to know more about Unisound Electret Condenser Mikes - we have a very interesting technical leaflet available on request.

Condor c

The fastest bird in the business Condor Electronics Limited, 100 Coombe Lane, London, SW20 0AY Telephone: $01-9460033$ (4 Lines)

> Distributors of cartridges, styli, condenser microphones and headphones. Guaranteed 24-hour dispatch service

of incidence, giving a polar diagram as shown in Fig. 5. The response is called bidirectional or figure of eight.

Fig. 6 shows a phase shift operated microphone, in which the amount by which the phase of the incident wave is shifted between the front and the rear of the microphone is related to the angle of incidence of the sound wave. In the diaphragm shown the path difference for a sound behind the microphone is zero because $d_{1}=d_{2}$. This means that there will be no response to sounds coming from the back. If the sound comes from the front there will be a phase shift which will reinforce the motion of the

Fig. 4. Sound pressure versus path length for pressure gradient operation. See text.

Fig. 5. Polar diagram of a pressure gradient operated microphone.

1 Fig. 6. Phase shift operated microphone.

Fig. 7. Ported phase shift microphone to obtain an even response.
wave impinging on the front of the diaphragm. For the arrangement shown the reinforcement will be maximum when $d_{1}+d_{2}=\lambda / 2$, making the pattern frequency dependent, and in a practical microphone ports are provided for the high, medium and low frequencies to give a uniform response, as shown in Fig. 7. Here d_{1} is the distance to the low frequency port, d_{2} that to the mid frequency port and d_{3} is that to the high frequency port. The three ports can be replaced by a long slot. ${ }^{24}$ The direction pattern is described by $1+\cos \theta$.

As the size of the ports or aperture tends to zero the microphone will tend to become pressure operated. As the size of the ports tends towards infinity, where the back of the diaphragm is open, the microphone will tend toward pressure gradient operation. When the apertures are between these sizes the microphone will act in a combination of pressure and pressure gradient operation.

Simple omnidirectional pressure and bi-directional pressure gradient microphones do not behave ideally. At high frequencies the omnidirectional microphone becomes large compared with the sound wavelength and its bulk shades high frequencies from the diaphragm. In addition, off axis high frequency sounds may not make the diaphragm vibrate because a peak and a trough of pressure may be acting simultaneously on the diaphragm across
its diameter. On the other hand, high frequency reflections from a diaphragm with a diameter large compared with their wavelength may set up standing waves, causing pressure doubling, and tending to increase output at high frequencies. The result of all this is that the pressure microphone is directional at high frequencies.

Bi-directional microphones also have anomalies. The diaphragm of such a microphone may reflect high frequency pressure waves, which will not then reach the back of the diaphragm. As a result pressure operation gradually takes over at h.f. In theory any transducer can be made to operate in any mode. In practice some transducers are more suited to pressure and others to gradient operation.

Polar patterns and transducers

The derivations and combinations of various polar patterns are shown in Fig. 8. The distinction between super-cardioid and hyper cardioid seems unclear. The diagram shown in Fig. 8(e) is generally accepted as hypercardioid but is sometimes called supercardioid. It is obtained by the superimposition of a small omnidirectional pattern with a larger figure of eight diagram. It would be convenient if the supercardioid diaphragm were defined as the superimposition of a large omnidirectional pattern with
(a)

(b)

\equiv

$\bar{\Longrightarrow}$

\equiv

Fig. 8. Derivation of various polar patterns (a) omni-directional, (b) bi-directional or figure of eight, (c) uni-directional or cardioid, (d) supercardioid and (e) hypercardioid.
a smaller figure of eight. The BBC prefer not to use either expression and would refer to Fig. 8(e) as a Cottage Loaf.

Transducers are of two types. The constant amplitude type produces its maximum output when the displacement of the microphone diaphragm is maximum. For smooth frequency response the maximum displacement of the diaphragm must be constant.

Constant velocity transducers produce maximum output when the first derivative of the diaphragm's displacement is a maximum: in other words when the velocity of the diaphragm is maximum. For smooth frequency response the maximum velocity of the diaphragm, which is reached as it travels through its point of zero displacement, must be constant.

A diaphragm has a natural resonant frequency determined by its mass, size and the material used to make it. Fig. 9 shows the resonance curve. It will be seen that below the peak frequency the velocity of the diaphragm is rising at $6 \mathrm{~dB} /$ oct. This means that the amplitude of the diaphragm's motion is constant with frequency.

Below resonance, the compliance of the system is greater than its mass or resistance (an electrical analogy being that the system's capacitance is far greater than its resistance or inductance). The system is compliance controlled. Above resonance the mass of the system is the largest component of the mechanical impedance. This is mass control. At the peak the system becomes "resistive", as in an electrical circuit, and heavy damping, or "resistance control", can flatten out the peak to result in a flat response over a large part of the audible frequency range.

The construction of the crystal or ceramic microphone is shown in Fig. 10. The crystal microphone works on the piezoelectric principle, whereas ceramic microphones work on the different but related electrostrictive principle. Electrostriction is a form of elastic deformation induced by an electric field which is independent of reversal of the direction of the field. It is a property of all dielectrics and is thus distinguished from the converse piezo-electric effect, a field-induced strain which changes polarity upon field reversal and which only occurs in piezo-electric materials. ${ }^{25}$

Piezo-electric materials include Rochelle salt and ammonium dihydrogen phosphate. Two crystals are used in a bimorph to increase the output. The crystal or ceramic device is constant amplitude and so the diaphragm is compliance controlled to keep the resonant frequency well above the audible range. The diaphragm is made very stiff.

The source impedance of the crystal is mostly capacitive- 1,000 to $2,000 \mathrm{pF}$ and only short lengths of low capacitance cable can be used to convey the signal to an amplifier. The output level is high but the crystal is easily damaged by moisture and heat. Much the same applies to the ceramic microphone, though it is less sensitive to heat and moisture. When designed for practical output levels either type has a rough, limited frequency response making it unsuitable for high quality use. They are cheap, however, and

Fig. 9. Resonance curve of a constant velocity transducer.

Fig. 10. Construction of the crystal or ceramic microphone.
the ceramic types can give a respectable frequency response if the output is kept low.

The variable reluctance or moving iron microphone is now rarely used, for reasons already outlined. The principle is that a magnet with a coil wound round it is placed close to a metal diaphragm through which part of the magnetic field is conveyed. Variations in the position of the diaphragm cause variations in the distance between magnet and diaphragm and consequent variations in the reluctance of the magnetic field. These variations induce voltages in the coil, which are then amplified. The system is a constant velocity one and a constant output is obtained through resistance control by heavy damping.

Moving coil and ribbon microphones work on the same principle that a voltage will be induced in a conductor that cuts a magnetic field.

The moving coil microphone is a constant velocity device and so is resistance controlled. Often a piece of silk or felt is put behind the diaphragm to act as an acoustical resistance. Resonant cavities are also used to add other resonances to extend the range. The main resonance is set around 700 Hz .
The electrical impedance is about 30 ohms and a transformer us used to step this up to the usual $30,150,600$ or 50,000 ohms. The moving coil microphone is ideally suited to pressure operation.

The diaphragm must be small to avoid the effect of phase shift across the diaphragm for high frequency off axis sounds, but the smaller the diaphragm the lower the output, so a compromise is needed. The moving coil microphone, often called the dynamic microphone, has a good output level, a wide smooth frequency response, a good transient response, is reliable and inexpensive. It is more in use than any other.

An accurate cardioid pattern is more difficult to obtain with the moving coil microphone than with a capacitor. It has an extremely frequency-conscious polar pat-
tern when used as a cardioid, and various phase-shifting tubes, resonant chambers and apertures have to be used to overcome the problem. The sound quality of single element dynamic microphone is not as good as that of the ribbons or capacitors, but it is more robust than the ribbon and cheaper than the capacitor. Sometimes two frequency selective moving coil units and a crossover are combined in the same microphone.

A moving coil microphone with two cardioid units back to back can give an omnidirectional pattern when the two cardioids are added (Fig. 8a) or a figure of eight when they are subtracted (8b) or a simple cardioid with either out of circuit.

The ribbon microphone is a constant velocity device but resistance control cannot be used because the microphone is usually used as a bi-directional device, when
force on diaphragm \propto frequency
velocity of diaph. $=\frac{\text { force on diaphragm }}{\text { mechanical impedance }}$
Using mass control the impedance is proportional to frequency but so is the force on the diaphragm (because of pressuregradient operation). Therefore the velocity of the diaphragm is independent of frequency, which satisfies the requirements of a constant velocity transducer.

The result is to place the resonant frequency of the diaphragm or ribbon well below the audible range, from 3 to 12 Hz . The primary inductance of the output transformer provides electrical damping.

The ribbon corrugations provide some control of the tension as well as increasing the mass of the ribbon and making it more rigid. It is still delicate though, and susceptible to rumble and wind. The ribbon exhibits the worst susceptibility to handling noise. The impedance is low and has to be increased by a transformer.

The pressure gradient path difference for sound waves is not only that round the ribbon but around the casing and pole pieces as well. The off-axis frequency response is often very good and self-generated noise is very low. Sensitivity is low, since only one conductor is cutting a magnetic field across a gap much larger than that in the moving coil microphone.

Ribbon microphones tended to be bulky in the past and their delicacy has tended to encourage their being abandoned in favour of the capacitor or moving coil types. They can be used for pressure operation by providing a cavity at the back of the ribbon to provide acoustical resistance. This resistance is usually in the form of a folded damped pipe with an aperture in it. With the aperture closed the microphone would give a pressure, omnidirectional response. With the aperture open the response is cardioid. A variable output aperture and set input aperture to the microphone can produce a variable response ribbon mic. ${ }^{26}$

Composite microphones with a moving coil and a ribbon element have been around since the 1930s. The ribbon usually gives a bi-directional response while the moving coil gives an omnidirectional response. With the system shown in Fig. 13, where the

It's so good, it writes its own testimonial.

If you have a cassette or reel-to-reel recorder at least up to the DIN Hi-Fi 45500 Standard this is the microphone for you.

You don't have to take Philips word for its high standard. It comes with proof of performance - its own frequency curve, individually measured on a pen recorder.

You get a detachable wind-shield to guard against 'plop'. Also 3 metres of cable with a 3 pin $180^{\circ} \mathrm{DN}$ plug, and a table stand with a quick-release holder.

Current consumption is less than $100 \mu \mathrm{~A}$, so that a $1 \frac{1}{2}$ volt penlight cell provides ample power.

See your Phulips Audio Dealer. And for a brochure on all of Philips audio and recording accessories, write now to Philips Electrical Limited. Department SP. Century House, Shaftesbury Avenue, London WC 2 H 8AS.

Simply years ahead.

the 201 is something quite personal...

The M 201 Hypercardioid moving coil microphone is designed for recording or broadcasting. The M 201 offers excellent separation characteristics in extreme acoustical conditions.

Specifications:
Frequency Response: $40-18000 \mathrm{~Hz}$ Output Level at $1 \mathrm{kHz}: 0,14 \mathrm{mV} / \mu$ bar ' $\subseteq-56 \mathrm{dbm}(0 \mathrm{dbm} \simeq 1 \mathrm{~mW} / 10$ dynes/cm²). ElA Sensitivity Rating: -149 dbm . Hum Pickup Level: $5 \mu \mathrm{~V} / 5 \mu \mathrm{Tesla}(50 \mathrm{~Hz})$. Polar Pattern: Hypercardioid. Output Impedance: 2008 . Load Impedance:, > 1000 \&. Connections: M $201 \mathrm{~N}(\mathrm{C})=$ Cannon XLR-3-50 T or Switchcraft: $2+3=$ 200 Q, $1=$ ground. M $201 \mathrm{~N}=3$-pin DIN plug T 3262: $1+3=200 \Omega$ $2=$ ground. $\mathrm{M} 201 \mathrm{~N}(6)=6$ pin Tuchel.
Dimensions: length $6^{\prime \prime}$, shaft $\varnothing 0,95^{\prime \prime}$. Weight: $8,60 \mathrm{oz}$.

EEYER DYNAMIC

BEYER DYNAMIC (GB) LIMITED 1 Clair Road, Haywards Heath, Sussex. Tel:Haywards Heath 51003

P....BORED?

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB.
A fine-tipped marker charged with a free-flowing etch-resist ink. Simply draw the desired circuit onto copper laminated board-etchclean.

The circuit is ready to use.

NO MESS - NO MASKING A perfect circuit every time!
$\mathbf{£ 1 . 1 0}$ for one-off, $£ 4.40$ for six, $\mathbf{E 8 . 8 0}$ for twelve. VAT and post included. Available now in every country in Europe.

elements are connected in series, changes in connection can give omni, figure-of-eight, or cardioids in either direction. The sensitivities of the units must be nearly the same. The connections are as shown. The moving coil unit becomes more directional at high frequencies so the output of the ribbon is rolled off at h.f. as compensation. The polar response in the working range is only satisfactory in the horizontal plane.
The highest quality microphones are of the capacitor type. These have high output level, a wide smooth frequency response and an excellent transient response, but they are very expensive, sometimes fragile in construction and very complex, requiring an external power supply and an internal impedance converter which requires d.c. power.

The diaphragm and a fixed backplate form a capacitor. The capacitance between them varies as the diaphragm vibrates.

$$
\begin{gathered}
\text { capacitance } \propto \frac{\text { area of plates }}{\text { distance between plates }} \\
\text { voltage on plates }=Q / C
\end{gathered}
$$

\therefore plate voltage $\propto Q \times$ distance between plates If Q is a constant the voltage should be proportional to the distance between the plates. Thus the polarising supply is fed through a very large value resistor. Other methods of using thistype of microphone include putting it in a bridge circuit, which may drift, or using the variable capacitance to modulate an f.m. carrier.

The capacitor microphone is a constant amplitude device and the resonant frequency of the system is increased to well over the audio range by compliance control, making the diaphragm tension high. The advantage of the capacitor microphone over other kinds is that it is equally amenable to all forms of operation. If the back plate has a large number of holes drilled in it the microphone is a pressure-gradient operated device and if there are fewer holes it is half pressure gradient and half pressure, giving a cardioid response.
For a bi-directional microphone the mass and tension of the diaphragm are reduced but the mechanical damping is increased with resistive cavities at the back of the diaphragm in the plate. Thus there is resistance control, and the impedance is independent of frequency. The force on the diaphragm is proportional to frequency for pressure gradient operation and the velocity is given by $U=F / Z$. Impedance Z is constant so the velocity is proportional to frequency, which is constant amplitude operation.

If a diaphragm is placed either side of the fixed plate the capacitor becomes remarkably versatile. If only one of the diaphragms is activated and the other is electrically disconnected then the response will be cardioid. Thus these are two cardioids back-to-back. The electrical addition of the two responses will produce an omnidirectional response and their subtraction will make the device bi-directional. Not only that, but the response of each side of the device will vary with the polarising voltage. Thus the patterns are continuously variable from a remote point between cardioid, omni, figure-of-

Fig. 11. Construction of the moving coil microphone.

Fig. 12. Ribbon microphone constructional principle.

Fig. 13. Combination ribbon and moving coil system can provide different polar responses by changes of connection.
eight and hypercardioid.
The capacitor microphone also has a high level uniform frequency response. There might be a slight peak in the high frequency range but this can be advantageous in situations where, some distance from the sound source, the air tends to disperse high frequencies. The main problem with the capacitor microphone is that it is complicated.

They need a separate power supply and some diaphragms are made of metalflashed plastic, which can be affected by television lighting. The source impedance of the devices is a small capacitance, which means that there has to be an impedance converter right next to the capsules if the signal is not to be lost; a valve used to be used to give high input and low output impedance but nowadays an f.e.t. is favoured. Some microphones have d.c. to d.c. converters to step up a battery voltage to the required value. Some single diaphragm
mics have a push-pull arrangement with a polarised plate either side of the diaphragm.

Batteries tend to be a liability whatever their use. They may last a long or a short time. They have to be replaced. If a battery is weak the microphone may only just be working. If the battery leaks, the microphone may never work again.

If a piezo-electric crystal or electrostrictive ceramic is bent or twisted it shows a voltage. ${ }^{27}$ If that voltage is dischargedduring stress there will be a permanent voltage across the crystal when the stress is removed. This voltage can be used to polarise a capacitor microphone. The electret microphone is susceptible to high moisture and high temperature and the charge on the electret material may disappear after a few years; no-one knows how long electrets will last, though projections vary from a few months to a thousand years. ${ }^{28,29,30}$

Some of the electret mics now available have high output level, excellent transient response, low cost and are fairly reliable. But the frequency response is not yet as good as that of the dynamic and conventional capacitor designs and a battery is still needed to power the impedance converter.

These are the main types of microphone in wide use. The microphone in widest use is also the poorest-the carbon microphone. The possibility of replacing the carbon telephone microphone with an electret capacitor microphone ${ }^{31}$ has been investigated but little else seems to have been done.

There is not room here to describe other specialised microphones, such as the gun and parabolic reflector types. Those seeking further study should read Mr Robertson's classic work. ${ }^{32}$

The use of microphones is also beyond the scope of this article except to say that the subject is sometimes controversial. ${ }^{33}$ There are many good accounts of placing technique. ${ }^{34,35,36}$

References

1. Bauer, B. B. "A Century of Microphones", Proc. IRE, Vol. 50, No. 5, May 1962, pp.719-729.
2. Reis, J. P. "Ueber Telephone Durch Den Galvanischen Strom", Jahresbericht d. Physikalischen Vereins zu Frankfurt am Main, Germany, 1860-61, pp.57-64.
3. Bell, A. G., March 10, 1876. See Frederick, H. A., "The development of the Microphone", JASA, Vol. 3, part 2, July 1931, p.5.
4. Ibid p. 3 and A. G. Bell US patent 174,465, 1876.
5. Siemens, E. W. German Patent 2355, 1878.
6. Watson, T. A. US Patent 266,567, 1882.
7. Capps, F. L. US Patent $441,396,1890$.
8. Cuttris, C. \& Redding, J. US Patent 242.816, 1881.
9. Wente, E. C. \& Thuras, A. L. "Moving coil telephone receivers and microphones", JASA, Vol. 3, July-1931, pp.44-55.
10. Meissner, B. F. US Patent $1,507,081,1924$.
11. Olson, H. F. US Patent $1,885,001,1932$.
12. Encyclopaedia Britannica, "Microphones".
13. For an excellent account of microphone technology to date written by H. F. Olson, see the McGraw-Hill Encyclopaedia of Science and Technology, Vol. 8, p. 425.
14. Weinberger, T., Olson, H. F., \& Massa, F. "A Unidirectional Ribbon Microphone", JASA, Vol. 5, Oct. 1933/34, p. 139.

References (continued)

15. Becquerel, A. C. Bulletin des Sciences, Vol. 7, March, 1820, p. 149.
16. Curie, J. \& P. Bulletin de la societé Mineralo gique de France, Vol. 3, April 1880, p. 90.
17. Sawyer, C. B. The use of Rochelle Salt crystals for electrical reproducers and microphones", PROC.IRE, Vol. 19, November 1931, p. 2020.
18. Dolbear, A. E. US Patents 239,742 and 240,578. 19. Wente, E. C. "A condenser transmitter as a uni formly sensitive instrument for the absolute measurement of sound intensity". Physics Review, Vol. 10, July 1917, p. 39.
19. Forbes, G. "A thermal telephone transmitter", Proc. Royal Society, Vol. 42, Feb. 24, 1889, p. 141.
20. Duddel, W. "Rapid variations in the current through the direct current arc". The Electrician, December 14, 1900, p. 271.
21. Axtell, J. C. "Ionic loudspeakers", IRE Trans. on Audio, Vol. AU8, July 1952, p. 21.
22. deForest, L. US Patent $1,726,299,1924$.
23. Long, J. A Microphone Primer, Audio (US), December 1972, p. 26.
24. "Electrostriction", McGraw Hill Encyclopaedia of Science and Technology, Vol. 4, p. 613.
25. Ptacek, M. "Sensitivity of the ribbon microphones having a variable directional response", Slaboproudy Obzor (Czechoslovakia), Vol. 25, No. 12, 1964, pp.694-7.
26. "Electret Microphone", Wireless World, April 1968, p. 78.
27. Kogen, J. H. "Microphones-Quo Vadis?", Audio (US), April 1972, p. 24.
28. Fraim, F. \& Murphy, P. "Miniature Electret Microphones", JAES, Vol. 18, No. 5, October 1970. 30. Fisher, J. "Microphones", Studio Sound, Vol. 13, No. 12, December 1971, p. 637.
29. "An electret transmitter for the telephone", Electrochemical Technology (US), Vol. 16, No. 1-2, 6-10 (Jan.-Feb. 1968).
30. Robertson, A. E. "Microphones", Second edition, Iliffe, 1963.
31. Letters, Studio Sound, Vol. 15, No. 10; p.36, and Studio Sound, Vol. 15, No. 12, p.44, October and December 1973.
32. Thorne, M. "Studio Microphone Technique", Studio Sound, Vol. 15, No. 7, July, 1973, p. 64.
33. Nisbett, A. "The Technique of the Sound Studio", second edition, Focal Press, 1970.
34. Aldred, J. "Manual of Sound Recording", second edition, Fountain Press, 1971.

TABLE OF MICROPHONE PARAMETERS

Where information has been found difficult to obtain if has been omitted, also reference levels are omitted if not quoted in the manufacturer's literature. If prices are not quoted, these are available on application to the manufacturer. Sensitivity is expressed in mV (ref $\mu \mathrm{b}$) or dB (ref IV per $\mu \mathrm{b}$), unless otherwise stated and is consistent for each manufacturer.
$\left[\begin{array}{ll}\text { KEY- } \\ \text { MC-moving coil } & \text { G-gooseneck } \\ \text { C-capacitor } & \text { L-Lavalier } \\ \text { R-ribbon } & \text { H-hand } \\ \text { E-electret } & \text { S-stand } \\ \hline\end{array}\right.$

Maker \& Model No.	Polar Response	Transducer	Impedance (ohms)	Freq. Response (Hz)	Sensitivity	Mounting	Price Inc. v.a.t. (£)	Remarks
ACOS								
70/12	omni	MC	200	50-15k, - 10 dB	-80dB re IV/ub	Hors	5.30	
70/11	omni	MC	50k	200-3k. $\pm 3 \mathrm{~dB}$	-57 dB re $\mathrm{IV} / \mathrm{hb}$	H or S	7.08	
ADASTRA		-						
EX220	cardioid	C	600	50-15k	-70dB	Hors		
B7105	cardioid	C	600	30-16k	$-70 \mathrm{~dB}$	Hors		
B7107	cardioid	C	600	30-16k	-70dB	H ors		on-off switch
B1225	omni	MC	200/250	100-10k	$-77 \mathrm{~dB}$	H or S		on-off switch
B1238	omni	C	600	20-13k	$-74 d B$	Hors		on-off switch
AKAI								
ADM14	cardioid	MC	4.7	100-10k. $\pm 5 \mathrm{~dB}$		S	7.50	
AKG								
D200	cardioid	$2 \times \mathrm{MC}$	$250 \pm 20 \%$	30-17k	$0.14 \mathrm{mV} / \mu \mathrm{b}$	Hors	40.00	
D202	cardioid	$2 \times \mathrm{MC}$	$300 \pm 20 \%$	20-18k	$0.16 \mathrm{mV} / \mu \mathrm{b}$	Hors	54.00	
D224	cardioid	$2 \times \mathrm{MC}$	$250 \pm 15 \%$	20-20k	$0.13 \mathrm{mV} / \mu \mathrm{b}$	H or S	72.40	
C12A	variable	C	50 or 200	30-20k	$0.4 \mathrm{mV} / \mathrm{\mu b}$	S		
C24	variable	C	50 or 200	30-20k	$0.4 \mathrm{mV} / \mu \mathrm{b}$	S		
C451	variable	C	200	20-20k	$0.95 \mathrm{mV} / \mu \mathrm{b}$	S		
D11	cardioid	MC	500 or 50k		0.23 or 2.0	Hors		Front/back ratio 18 dB
D11S	cardioid	MC	200		0.15	S		Front/back ratio 18dB
D12	cardioid	MC	200	40-12k, $\pm 4 \mathrm{~dB}$	0.14	S	46.50	Front/back ratio 18 dB
D14S	cardioid	MC	200 or 40k	50-15k	0.22 ог 2.8	S	15.10	Front/back ratio 19dB
D58C	noise cancelling	MC	200 or 60	50-12k	0.08	S	19.45	Frontback ratio 19 dB
D160	omni	MC	240		0.13	S		
D190E	cardioid	MC	60 or 200	30-16k	0.23	S		Front/back ratio 18 dB
D501	cardioid	MC	200		0.22	Hor S		F/B ratio 18dB
D505	anti-noise	MC	200		0.2	Hors		
D707	cardioid	MC	200		0.16	Hors		F/B ratio 15dB
D900	hypercardioid	MC	200		0.3	Hors		Rifle, F/B 28dB
D1000	cardioid	MC	200		0.23	Hors		F/B, ratio 20dB
D109	omni	MC	60 or 200	50-15k, $\pm 3.5 \mathrm{~dB}$	-98dB	H or L.	20.50	H, ratio 20dB
C414	switchable	FET C	200	20-20k	$0.6 \mathrm{mV} / \mu \mathrm{b}$		173.00	switchable attenuator
BEYER								
M55ML	omni	MC	500 or 50k	70-16k. $\pm 4 \mathrm{~dB}$	0.17 or 1.5	H or S	13.40	
M57	omni	MC	200	$300-14 \mathrm{k}, \pm 3 \mathrm{~dB}$	0.2	Hors	17.68	
M64	cardioid	MC	200 or 37.5	100-10k, $\pm 3 \mathrm{~dB}$	0.2	S	15.35	
M67N	cardioid	MC	37.5 or 500	$40-18 \mathrm{k}, \pm 2.5 \mathrm{~dB}$	0.25	H ors	42.25	
M68	cardioid	MC	37.5 or 200	$100-10 \mathrm{k}, \pm 3 \mathrm{~dB}$	0.2	G	24.00	switch
M69	cardioid	MC	37.5 or 200	50-15k, $\pm 3 \mathrm{~dB}$	0.24	Hors	34.20	optional switch
M 81 HL	cardioid	MC	500 or 25k	$50-16 \mathrm{k}, \pm 3 \mathrm{~dB}$	0.23 or 1.7	H or S	17.20	
M88	hypercardioid	MC	200	$30-20 \mathrm{k}, \pm 2.5 \mathrm{~dB}$	0.25	Hors	83.00	cannon plug
M101N	omni	MC	200	$40-20 \mathrm{k} . \pm 2.5 \mathrm{~dB}$	0.13	Hors	41.00	
M111N	omni	MC	200	50-15k	0.08	L	58.50	
M160	hypercardioid	double R	37.5 or 200	40-18k. $\pm 2.5 \mathrm{~dB}$	0.1	H	90.70	
M260	hypercardioid	R	37.5 or 200	50-18k, $\pm 3 \mathrm{~dB}$	0.09	H	36.20	
M320	hypercardioid	R	200	30-18k, $\pm 3 \mathrm{~dB}$	0.1	S	43.25	
M360	cardioid	R	200 or 50	30-20k. $\pm 2.5 \mathrm{~dB}$	0.14	S	118.15	"hand made"
M410	cardioid	MC	200	300-12k, $\pm 3 \mathrm{~dB}$	0.25	Hors	26.00	heavy duty
M411N	cardioid	MC	200	200-12k	0.14	H ors	28.00	close speech
M500	hypercardioid	R	500	40-18k	0.13	H or S	40.70	
M818HL	cardioid	stereo MC	500 or 25k	50-16k, $\pm 3 \mathrm{~dB}$	0.17 or 1.5	S	37.50	matched pair
Soundstar XI	cardioid	MC	200 or switched	$30-18 \mathrm{k} . \pm 2.5 \mathrm{~dB}$	0.2 (low Z)	S	30.60	hum compensator
M550LM	omni	MC	500	70-18k	0.17		12.76	
M810N	cardioid	MC	500	50-16k	0.23		24.90	
M201N	hypercardioid	MC	200	40-18k	0.14	Hors	55.10	

Shake, rattle \& roll.

Welcome to our chamber of horrors. Inside the Shure Quality Control laboratory, some of the most brutal product tests ever devised are administered to Shure microphones. The illustration above shows a "shaking" machine at work on a Shure microphone and noise-isolation mount. It's only one in a battery of torturous tests that shake, rattle, roll, drop, heat, chill, dampen, bend, twist, and generally commit mechanical, electrical and acousticar mayhem on off-the-production-line samples of all Shure microphones. It's a treatment that could cause lesser microphones to become inoperative in minutes. This kind of continuing quality control makes ordinary "spot checks" pale by comparison. The point is that if Shure microphones can survive our chamber of horrors, they can survive the roughest in-the-field treatment you can give them! For your catalog, write: ${ }^{(8)}$

ABPearl Mikrofonlaboratorium.

DC21.
48 volt, cardioid, miniature Also available as omnidirectional DC20.

For further information on the camplete range of Pearl microphoies, contact:

Allotrope Limited

90 Wardour Street, London WlV 3LE.
Telephone: 01-437 1892. Telex: 21624.
U.K. Representatives for AB Pearl Mikrofonlaboratorium -
Sweden, Microphones \& accessories.
HES Electronics - Brussels, TSV
series telephone balancing units, and studio equipment.
Inovonics Incorporated - C ampbell
California U.S.A., Audio electronics.

Maker \& Model No.	Polar Response	Transducer	Impedance (ohms)	Freq. Response (Hz)	Sensitivity	Mounting	Price Inc. v.a.t. (£)	Remarks
CALREC								
CM450	cardioid	MC	200 or 37.5	$5-16 \mathrm{k}, \pm 3 \mathrm{~dB}$	0.24	Hor S		
CM600	omni	C	50 max	$20-20 \mathrm{k} . \pm 2 \mathrm{~dB}$	1.5 adjustable	Hors	48.00	
CM652	cardioid	C	50 max	$40-20 \mathrm{k}, \pm 2 \mathrm{~dB}$	1.5 adjustable	Hors	48.00	
CM654	cardioid	C	50 max	$40-20 \mathrm{k}, \pm 2 \mathrm{~dB}$	1.5 adjustable	Hors	48.00	reduced bass
CM655	cardioid	C	30 or 50k	40-20k	1.5 adjustable	Hors	52.00	
CM656	cardioid	C	50 max	$40-20 \mathrm{k}, \pm 2 \mathrm{~dB}$	1.5 adjustable	Hors		windshield
cc700	omni	c	250 bal	20-20k, $\pm 2 \mathrm{~dB}$	1.5 or 0.3	Hors		
CC752	cardioid	C		$20-20 \mathrm{k}, \pm 2 \mathrm{~dB}$		Hors		capsule
CC754	cardioid	c		$20-20 \mathrm{k}, \pm 2 \mathrm{~dB}$		Hors		capsule
CC756	cardioid	C		20-20k, $\pm 2 \mathrm{~dB}$		Hors		capsule
CM1000	omni	C	50 max	$20-20 \mathrm{k}, \pm 2 \mathrm{~dB}$	0.3	Hors	62.00	
CM1050	cardioid	C	50 max	$30-20 \mathrm{k} . \pm 2 \mathrm{~dB}$	0.3	Hors	62.00	
CM1051	cardioid	C	50 max	$30-20 \mathrm{k}, \pm 2 \mathrm{~dB}$	0.3	Hors	62.00	reduced bass
EAGLE								
PROM10	omni	C. E	600	30-17k	$-70 \mathrm{~dB}$	Hors	28.48	
PRO M20	cardioid	C, E	600	30-17k	-60dB	Hors boom -arm	28.48	
PRO M25	cardioid	C. E	600	20-18k	-70dBV	boom-arm	14.25	
PRO M5	special purpose	C. E	600	50-13k	-65dBV	tie clip	14.25	
C092	omni	C. E	600	30-16k	$-75 \mathrm{dBV}(170 \mu \mathrm{~V})$	Hors	12.50 17.08	
C096	cardioid	C, E	600	30-16k	$-70 \mathrm{dBV}(310 \mu \mathrm{~V})$	$\mathrm{Hors}^{\mathrm{S}}$	17.08	
UD76HL	cardioid	MC	600 or 50k	25-20k	-76dBVor-56dBV	Hors	17.16 10.67	
UD50HL	cardioid	MC	600 or 50k	40-14k	-74dBVor-54dBV	Hors Hors	10.67 9.53	
DM94	omni	MC	50k	80-10k	2.6 mV average o/p	Hors H	9.53 8.05	
DM73	omni	MC	50 k	60-14k	2.2mV average o/p	Hors	8.05 9.73	
DD6	special purpose	MC	600 or 50k	60-12k	$-74 \mathrm{dBVor}-54 \mathrm{dBV}$ $-70 \mathrm{~dB}(310 \mu \mathrm{~V}$	on base	12.20	
DD5	omni	C. E	600	600-9k	$-70 \mathrm{~dB}(310 \mu \mathrm{~V})$	on base	12.20	
DD7	cardioid	MC	50k	60-9k	$-54 \mathrm{~dB}(2.8 \mathrm{mV})$	on base Hor S	10.80 11.55	
DM18HL	omni	MC	600 or 50k	60-12k, $\pm 3 \mathrm{~dB}$	$-57 \mathrm{~dB}$	Hors	11.55	
electrovoice								
DS35	cardioid	MC	150	60-17k	$-56 \mathrm{~dB}$	Hor S		
RE20	cardioid	MC	50,150 or 250	45-18k	$-57 \mathrm{~dB}$	Hors		
RE55	omni	MC	150	40-20k	$-55 \mathrm{~dB}$	Hors		
635A	omni	MC	150	80-13k	$-55 \mathrm{~dB}$	Hors		
660	hypercardioid	MC	150 or hi Z	90-13k	-56 or -55.5 dB	Hors		adjustable 2
670 V	cardioid	MC	150 or hiz	60-14k	$-58 \mathrm{~dB}$	Hors		
671	cardioid	MC	150 or hi Z	60-14k	-61 or -60dB	Hors	40.15	
RE10	hypercardioid	MC	150	90-13k	- 150dB (EIA)	Hors	63.80	
RE11	hypercardioid	MC	150	90-13k	$-56 \mathrm{~dB}$	Hor S	68.20	
RE15	hypercardioid	MC	150	80-15k	$-56 \mathrm{~dB}$	Hors	109.45	
RE16	hypercardioid	MC	150	80-15k	$-56 \mathrm{~dB}$	Hors	113.30	
FOSTER								
DF1X	omni	MC	50,600 or 50k	100-10k	57 dB	Hor S H Sorl		with base
DF100	omni	MC	200	100-10k	82 dB	H, Sor		
MDF623C	cardioid	MC	600 or 50k	200-10k	82 dB	Hors		
DF72 BC	omni	MC	600 or 50 k	80-12k	60 dB	Hors		
DF104BC	omni	MC	600 or 50k	80-12k	76 dB	Hors		
MDF619BC	cardioid	MC	600 or 50k	200-10k	58 dB	Hors		
DF106C	uni	MC	600	$40-15 \mathrm{k}, \pm 4 \mathrm{~dB}$	74 dB	Hors		
MDF611BC	cardioid	MC	600 or 50k	100-10k	76 dB	S		
GRAMPIAN DP4	omni	MC	25-50k	15-15k		Hors		specify impedance on all mics
DP6	omni	MC	25-50k	15-15k				
DP8	omni	MC	25-50k	15-15k		Hor S		
GC2	cardioid	MC	25-50k	15-14k		Hors		
GC3	cardioid	MC	25-50k	15-14k		desk		
GR1	semi-cardioid	R	25-50k	15-15k		S		F/B ratio. 10dB
GR2	Fig. 8	R	25-50k	15-15k		S		
LUSTRAPHONE								
4-20	omni	MC	30, 200. 600. 50k	70-14k	-88dB@30^	Hors		
4-30	hypercardioid	MC	30, 200, 600. 50 k	70-14k	$-88 \mathrm{~dB}$	Hors		
5-03	omni	MC	25, 200, 600. 50 k	70-14k	$-74 \mathrm{~dB}$	desk		
5-30	cardioid	MC	25, 200.600.50k	50-15k	$-74 \mathrm{~dB}$	desk		
5-43	omni	MC	150, 600. 50k	200-11k	$-77 \mathrm{~dB}$	desk		tailored freq. response
MELODIUM								
RM6	Fig. 8	R	50 or 200	30-18k, $\pm 2 \mathrm{~dB}$	-81 or -76 dB	Hors		
76A	cardioid	MC	10 or 200	100-15k	-83 or -71 dB	H/S or G	21.84-23.18	industrial p.a.
78A	cardioid	MC	10 or 200	50-15k	-87 or -75 dB	Hors	26.04-27.44	industrial p.a.
77A	omni	MC	200	40-17k, $\pm 3 \mathrm{~dB}$	72 dB	Hors		
79A	omni	MC	10. 200 or 80k	$60-16 \mathrm{k}, \pm 3 \mathrm{~dB}$	$\begin{gathered} -92,-82 \text { or } \\ -56 \mathrm{~dB} \end{gathered}$	H or L	16.36-22.68	
88	omni	MC	10 or 200	50-17k	-90 or -78 dB	Hors		
C121	cardioìd	MC	10 or 200	150-14k	-89 or -77 dB	Hors	20.72-21.00	industrial p.a.
C133	cardioid	MC	$\begin{aligned} & 10,200,15 \mathrm{k} \text { or } \\ & 80 \mathrm{k} \end{aligned}$	50-15k	$\begin{aligned} & -83,-71,-61 \\ & \text { or }-48 \mathrm{~dB} \end{aligned}$	H/S or G	$27.80-41.87$	
NEUMANN								
KM83	omni	C	200	40-20k	$1.0 \mathrm{mV} / \mathrm{\mu b}$	Hors		
KM84	cardioid	C	200	40-20k	1.0	Hors		
KM85	cardioid	C	200	40-20k	1.0	Hors		
KMS85	cardioid	C	150	40-16k	0.6 or 0.3	Hors		
KM86	variable	C	200	40-20k	0.8	Hors		

Maker \& Model No.	Polar Response	Transducer	Impedance (ohms)	Freq. Response (Hz)	Sensitivity	Mounting	Price Inc. v.a.t. (f)	Remarks
487	variable	C	200	40-16k	0.8	S		adjustable bass response
KM88	variable	C	200	40-16k	0.8	H or S		
U47	cardioid	C	150	40-16k	0.8 or 0.4	S		
SM69	variable	stereo C	2×150	40-16k	1.8	S		
KMA	omni	C	800 unbal.	40-16k	0.5	L		
KM73	omni	C	200 unbal.	40-16k. $\pm 2 \mathrm{~dB}$	2.5	miniature		
KM74	cardioid	C	200 unbal.	$40-16 \mathrm{k}, \pm 2 \mathrm{~dB}$	2.5	miniature		
KM76	variable	C	200 unbal.	$40-16 \mathrm{k}, \pm 2 \mathrm{~dB}$	2.6	miniature		
KML	cardioid	C	50 or 200	$40-16 \mathrm{k}, \pm 2 \mathrm{~dB}$	0.5 or 1.8	L		
U77	variable	C	200	40-16k	2.6.5.0 or 3.0			bass cut sw.
PEARL								
FP92C or K	cardioid or omni	C. E	200	30-20k	$0.5 \mathrm{mV} / \mu \mathrm{b}$	Hors		
M68	Fig. 8	ceramic	600	200-5k	0.775	H ors		noise cancelling
ND68	Fig. 8	ceramic	600	50-5k	0.775	Hors		noise cancelling
D44LS or BS	cardioid	MC	200 or 200/hiz	100-13k	2.8	Hors		
LD18 or 19	omni	MC	200 or 200/hiz	80-16k	-74dB	Hors		
RD16	cardioid	MC	200	40-16k	-70dB	H ors	,	
RD34	cardioid	MC	200	40-16k	-74dB	H ors		
RD36	cardioid	MC	200 or hiz	40-16k	-74 or -54 dB	Hors		
F67LS	cardioid	MC	200	40-16k	-74dB	H ors		
F67BS	cardioid	MC	200 orhi Z	40-16k	-74 or -54 dB	Hors		
F69	cardioid	MC	200	$50-12 \mathrm{k}, \pm 3 \mathrm{~dB}$	$0.33 \mathrm{mV} / \mu \mathrm{b}$	Hors		
HM47	omni	MC	200	100-10k	0.15	L		
HM49	ormi	MC	200	80-18k. $\pm 3 \mathrm{~dB}$	-74dB	Hors		
CL3	omni	C. E	200	40-20k		L		
DC20	omni	C	200	30-20k	-56dB	H/S or L		
DC21	cardioid	C	200	30-20k		H/S or L		
DC63	variable	C	200	25-20k (omni)	-60dB	H/S or L		
DC73	cardioid	C	200	30-20k	-46dB	Hors		
DC73/12	cardioid	C	200	30-20k	-40dB	H ors		
DC96	cardioid	C	200	30-20k	-61dB	H ors		
EC71	cardioid	C	hi 2	40-18k, $\pm 3 \mathrm{~dB}$	$-58 \mathrm{~dB}$	L		
EK71	omni	C	hiz	$40-18 \mathrm{k}, \pm 3 \mathrm{~dB}$	$-58 \mathrm{~dB}$	L		
SP84	omni	C	200	30-20k	-42dB	Hors		
SP85	cardioid	C	200	30-20k	-42dB	H ors		
ST8	variable	stereo C	200	30-18k	-44dB	S		
TC4	cardioid	C	50 or 200	$30-20 \mathrm{k}, \pm 2 \mathrm{~dB}$	-52dB	Hors		
TC4B	Fig. 8	C	50 or 200	$30-20 \mathrm{k}, \pm 2 \mathrm{~dB}$	-56dB	Hors		
TC4K	omni	C	50 or 200	$30-20 \mathrm{k}, \pm 2 \mathrm{~dB}$	-56dB	Hors		
TC4V	variable	C	50 or 200	$30-20 \mathrm{k}, \pm 2 \mathrm{~dB}$	$-56 \mathrm{~dB}$	Hors		
VM40	omni	C	200	30-20k	-48dB	Hors	92.50	
VM40/12	omni	C	200	30-20k	-42dB	HorS	110.00	
VM41	cardioid	C	200	30-20k	-48dB	Hors	92.50	
VM4 1/12	cardioid	c	200	30-20k	-42dB	Hors	110.00	
M68	noise cancelling	ceramic	600	500-5k, -6dB		H ors	73.37	
HM49	omni	MC	200	50-18k, -6dB	-74dB	S	44.60	
HM47	omni	MC	200	100-10k, -6dB	-76dB	L	29.23	
RD34/36	cardioid	MC	200	40-16k, -6dB	$-74 \mathrm{~dB}$	S	20.52-27.48	
RD16	cardioid	MC	200	80-12k. -6dB	-70dB	L ors	19.90	
LD18/19	omni	MC	200	80-16k, -6dB	$-74 \mathrm{~dB}$	S	18.66-23.00	
D44LS/BS	cardioid	MC	200	100-13k, -6dB	-71dB	Lors	9.82-14.93	
FP92C/K	cardioid or omni	C	200	30-16k, -3dB	-66dB	S	78.97	
TCV4V	remotely variable	C	200	40-18k, -3dB	-56dB	S	123.74	
D696	cardioid	C	200	30-18k. -3dB	-61dB	S	107.25	
DC73	cardioid	C	200	40-17k, -3dB	-60dB	Hors	71.10	shock resistant
DC63	variable	C	200	30-18k. - 3 dB	-60dB	S	182.81	
DC20/21	omni or cardioid	C	200	30-18k	-56dB	S	54.10	
CL3	omni	C	200	80-17k. -3dB	$32 \mathrm{mV} / \mathrm{pa}$	tie-pin	104.06	
PYE								
LBB9020	cardioid	MC	200	80-17k, -6dB	$0.17 \mathrm{mV} / \mu \mathrm{b}$	H or S	43.20	-
LBB9050	cardioid	$2 \times \mathrm{MC}$	200	25-19k	0.14	H ors	41.00	
LBB9100	cardioid	MC	200	50-16k	0.15	H ors	43.20	
LBB9101	omni	MC	200	35-18k	0.16	Hors	43.20	
LBB9102	cardioid	MC	200	50-16k	0.15	H ors	43.20	
LBB9105	cardioid	MC	200	80-17k. -6dB	0.17	H ors	43.20	
EL6042	omni	MC	200	30-20k	0.12	H ors	45.40	
LB89003/05	special purpose	MC	200	50-15k		L	22.60	
LBB9005/05	cardioid	MC	200	50-16k		H ors	26.00	hum compensation
LBB9007/05	cardioid	MC	200	50-16k	-		32.40	on flexible stand
LB89008/05	cardioid	MC	200	50-16k			28.00	on flexible stand
LBB9018/05	noise cancelling	MC	250	200-12.5k		H or S	26.00	
PHILIPS								
N8206/50	omni	MC	500	150-14k	0.18	Hors	7.15	
N8208	omni	MC	500	125-12.5k	0.18	Hors	3.85	
N8500	hypercardioid	C. E	<1000	100-16k	0.25	H ors	16.00	
RESLOSOUND								
Reslogo	cardioid	MC	$\begin{gathered} 30,250,600 \\ \text { hiZ } \end{gathered}$	50-15k	-59dB (hi Z)	H or S	44.00	glows in u.v.
S90	cardioid	C, E	30,600.50k	40-20k	-52dB (hi Z)	H or S	47.00	F/B ratio. -14 dB
S80	cardioid	MC	$\begin{aligned} & 30.250 .600 \\ & \text { or hiz } \end{aligned}$	50-15k	-59dB (hi Z)	H ors	37.00	F/B ratio, -14 dB
UD1	cardioid	MC	$\begin{aligned} & 30.200,600 \\ & \text { or hi } \end{aligned}$	10-16k	-58dB (hi Z $)$	H ors	27.00	F/B ratio, -14 dB
UD3	cardioid	MC	30/600. 200/hiz	100-16k	-58dB	head	17.00	F/B ratio, - 14 dB
PD3	omni	MC	$\begin{gathered} 30,200,600 \\ \text { or hiz } \end{gathered}$	30-17k	-88dB	H ors	15.00	on-off switch

Maker \& Model No.	Polar Response	Transducer	Impedance (ohms)	Freq. Response (Hz)	Sensitivity	Mounting	Price Inc. v.a.t. (£)	Remarks
MPD	omni	MC	30-50	50-15k	$-88 \mathrm{~dB}$	head	11.00	
MPD/D	omni	MC	30-50	50-15k	$-88 \mathrm{~dB}$		20.00	desk stand
M 12	semi-cardioid	R	$\begin{aligned} & 30.200 .600 \\ & \text { or hi } Z \end{aligned}$	35-16k	-58dB (hi Z)	S	28.00	F/B ratio, - 10dB
EM 4000	omni	C. \mathbf{E}	1k	40-14k	$-68 \mathrm{~dB}$	tie clip	32.00	
EPM200	hypercardioid		150/600	150-15k	-42dB	parabolic gun		
Micom			300 basic	$\begin{aligned} & 200-3.4 \mathrm{k} \text { rising } \\ & 7 \mathrm{~dB} / \mathrm{oct} \pm 1 \mathrm{~dB} \end{aligned}$	-44dB			use with radio mics
ROSS								
RE320	omni	MC	50k	50-12k	-54dB @ 50k		10.31	
RE325	cardioid	MC	600/50k	50-14k	-54dB @ 50k	H or S	11.69	on-off switch
RE330	cardioid	MC	600/50k	50-15k	-55dB@ 50k	Hors	13.40	on-off switch
RE335	omni	MC	600/50k	50-17k	-57dB@ 50k	H or S	14.05	on-off switch, windshield
RE350	cardioid	MC	600/50k	50-15k	-56dB @ 50k Ω	H or S	14.65	-off
SCHOEPS								
CMT540U	cardioid	C	1 k load	-	$1.3 \mathrm{mV} / \mathrm{dyne} / \mathrm{sq} . \mathrm{cm}$.	H or S		1.f. filter
CMT441U	hypercardioid	C	1k	-	1.3 mV	H or S H or		
CMT55U	omni or cardioid	C	1k		$1.2 \mathrm{mV}, 1.5 \mathrm{mV}$	H or S		p. response switch
CMT56U	omni-cardioid -Fig. 8	C	1 k 1 k	-	$0.9 / 1.0 / 1.1 \mathrm{mV}$ switchable	Hors H orS		stereo mic
CMTS501U 32 U	switchable omni	C	1k	-	switchable 2.0 mV	H ors		
34 U	cardioid	c	1k	-	2.0 mV	H or S		
3400	cardioid	C	1k	-	2.0 mV	Hors		I.f. filter
341 U	hypercardioid	C	1 k	-	2.0 mV	Hors		
35 U	omni or cardioid	C	1 k	-	1.9/2.3mV	H or S		
36 U	switchable	c	1 k	-	switchable	Hors		
CMTS301U	switchable	c	1 k	-	switchable	Hors		stereo mic
CMT42	omni	c	1k		1.5 mV	Hors		
CMT44	cardioid	C	1k	-	1.5 mV	H or S		
CMT440	cardioid	C	1k		1.5 mV	H or S		I.f. filter
CMT441	hypercardioid	c	1k		1.5 mV	H or S		
CMT45	omni-cardioid	C	1k		1.4/1.7mV	Hors		switchable
CMT46	omni-cardioid -Fig. 8	C	1k	-	0.9/1.0/1.1mV	H or S		
CMT52U	omni	c	1k	-	1.3 mV	Hors		
CMT54U	cardioid	C	1k	-	1.3 mV	Hors		
CM62T	omni	C	1k	-	1.4 mV	H or S		
CM64T	cardioid	C	1k	-	1.4 mV	Hors		
CM640T	cardioid	c	1k	-	1.4 mV	Hors		
CM641T	hypercardioid	C	1k	-	1.4 mV	Hors		
MK2	omni	C	600 min	20-20k	1.2 mV	capsule		
MK3	omni	c	600 min	20-20k	1.0 mV	capsule		
MK4	cardioid	C	600 min	40-20k	1.2 mV	capsule		
MK40	cardioid	C	600 min	80-18k	1.6 mV	capsule		speech
MK41	hypercardioid	C	600 min	40-20k	$1.3 \mathrm{mV}$	capsule		
MK5	omni-cardioid	C	600 min	40-20k	$1.0 / 1.2 \mathrm{mV}$	capsule		switchable
MK6	omni-cardioid —Fig. 8	C	600min	40-16k	0.7/0.8/0.8	capsule		switchable
SENNHEISER								
MD441	supercardioid	MC	200	30-20k	-52 dBm ref $1 \mathrm{~mW} /$ 10dynes per cm^{2}	Hors	74.50	Bass and treble control
MD421	cardioid	MC	200	30-17k	$-52 \mathrm{dBm}$	Hors	53.50	bass attenuator
MD411HLM	supercardioid	MC	25k, 800, 200	50-12.5k	$\begin{array}{r} -35,-50 \\ -56 \mathrm{dBm} \end{array}$	S		switchable impedance
MD402LM	supercardioid	MC	750	80-12.5k	$-51 \mathrm{dBm}$	Hors	14.60	
MD413	cardioid	MC	200	50-15k	$-56 \mathrm{dBm}$	H or S	42.20	1 kHz notch filter 1 kHz notch filter
MD415	supercardioid	MC	200	60-15k	$-56 \mathrm{dBm}$	H ors		1 kHz notch filter
MD408N	supercardioid	MC	200	50-15k	$-56 \mathrm{dBm}$	G	$30.30-20$	
MD4	Fig. 8 variable	MC	200	50-10k	$-54 \mathrm{dBm}$	H/S or G	$36.00-40.00$ $23.80-27.50$	noise cancelling
MD420	supercardioid	MC	200	200-10k	$-53 \mathrm{dBm}$	H/S or G	23.80-27.50	
MD21	omni	MC	200	40-18k	$-52 \mathrm{dBm}$	H/S or G	32.20 33.70	
MD21HL	omni	MC	200 or 30k	40-18k	-52 or 30dBm	H/S or G	33.70	switchable impedance
MD214U3	omni	MC	200	60-15k	$-58 \mathrm{dBm}$	L	55.00	
MD214N	omni	MC	200	60-15k	$-58 \mathrm{dBm}$	L	55.00 5500	
MD2141	omni	MC	700	60-15k	$-58 \mathrm{dBm}$	${ }^{\text {L }}$ -	55.00 58.20	
MD211N	omni	MC	200	30-20k	$-56 \mathrm{dBm}$	Hors	58.20	
MD321N	omni	MC	200	50-15k	$-65 \mathrm{dBm}$	${ }_{\mathrm{H}}^{\mathrm{H}}$	81.80	
MD416	cardioid	MC	200	50-15k	-56dBm	H or S S	53.00	shockproof
MD409	cardioid	MC	200	50-15k	$0.18 \mathrm{mV} / \mu \mathrm{b}$	S	45.40	
MD412LM	cardioid	MC	700	50-12.5k		Hors	22.68	switchable filter
MKE201	omni	C. E	1.5 kmin . load	50-15k	$-32 \mathrm{dBm}$	Hors	34.65	
MKE401	hypercardioid	C. E	1.5 kmin . load	50-15k	$-27 \mathrm{dBm}$	Hors	40.45 140.50	
MKH415T	hypercardioid	C	20	40-20k	$-32 \mathrm{dBm}$	H or S	140.50	
MKH815T	hypercardioid	C	20	50-20k	$-26 \mathrm{dBm}$	boom	185.50 - 1550	
MKH124	omni	c	150	40-20k	$-48 \mathrm{dBm}$	L	155.50-167.00	
MKH125T	omni	C	10	40-20k	$-32 \mathrm{dBm}$	L	165.00-176.00	
MKH105T	omni	C	20	20-20k	$-32 \mathrm{dBm}$	Hors	116.50 143.20	
MKH110	omni	C	90	1-20k	$-32 \mathrm{dBm}$	Hors	143.20	instrumentation
MKH1101	omni	C	90	0.1-20k	$-52 \mathrm{dBm}$	Hors	143.20	instrumentation
SHURE								
Unidyne IV 548	cardioid	MC	low or hi	40-15k	$0.13 \mathrm{mV} / \mu$ bar or $1.76 \mathrm{mV} / \mu$ bar	Hors	42.90	basic model

Maker ${ }^{\text {\& }}$ Model No.	Polar Response	Transducer	Impedance (ohms)	Freq. Response (Hz)	Sensitivity	Mounting	Price Inc. v.a.t. (f)	Remarks
5485	cardioid	MC	low or hi	40-15k	$0.13 \mathrm{mV} / \mu$ bar or $1.76 \mathrm{mV} / \mu$ bar	S	44.88	
548SD	cardioid	MC	low or hi	40-15k	$0.13 \mathrm{mV} / \mu$ bar or $1.76 \mathrm{mV} / \mu$ bar	H or S	44.88	on-off switch
548SDCN	cardioid	MC	low or hi	40-15k	$0.13 \mathrm{mV} / \mu$ bar or $1.76 \mathrm{mV} / \mu$ bar	H or S	46.86	heavy cable
549 Unidyne III	cardioid	MC	25 to 50 or 250	40-15k	0.067 or 0.149	S		shock resistant
545	cardioid	MC	low or hi	50-15k	0.125 or 1.76	Hors	36.30-40.26	
545S	cardioid	MC	low or hi	50-15k	0.125 or 1.76	S	38.28	
545SD	cardioid	MC	low or hi	50-15k	0.125 or 1.76	Hors	38.28	on-off switch
545SDCN	cardioid	MC	low or hi	50-15k	0.125 or 1.76	Hors	40.26	heavy cable
545 L	cardioid	MC	low or hi	50-15k	0.125	L	29.70	
544	cardioid	MC	low or hi	50-15k	0.125 or 1.76	G	34.98	
546	cardioid	MC	25 or 250	50-15k	0.067 or 0.158	S		shock reisistant
Unidyne II								
55S	cardioid	MC	hi, med. low	50-15k	0.071 to 1.68	S	35.64	
55SW	cardioid	MC	hi, med, low	50-15k	0.071 to 1.68	S	36.30 to 40.26	on-off switch
55GS	cardioid	MC	hi. med. low	40-15k	0.67 to 1.58	S		heavy duty
Unidyne A								
580SA	cardioid	MC	high	50-13k	1.48	Hors		on-off switch
$580 \mathrm{SB}$	cardioid	MC	low	50-13k	0.105	Hors		on-off switch
515SA	cardioid	MC	high	80-13k	1.25	H or S	18.48	
515SB	cardioid	MC	25 to 250	80-13k	0.89	Hors	17.82	
515BG	cardioid	MC	25 to 250	80-13k	0.89	G	16.50	
515SBG	cardioid	MC	25 to 250	80-13k	0.89	G	17.16	push talk switch
515SBG18	cardioid	MC	25 to 250	80-13k	0.89	G		
Unisphere I								
565	cardioid	MC	150 or hi	50-15k	0.141 or 1.88	H or S	41.58	
565S	cardioid	MC	150 or hi	50-15k	0.141 or 1.88	S	42.90	on-off switch
565SD	cardioid	MC	150 or hi	50-15k	0.141 or 1.88	Hors	42.90	on-off switch
565SDCN	cardioid	MC	150 or hi	50-15k	0.141 or 1.88	H or S	44.88	heavy duty
566	cardioid	MC	dual	40-15k	0.071 or 0.154	S	62.04	shock resistant
Unisphere A								
585SA	cardioid	MC	high	50-13k	1.32	Hors	26.40	on-off switch
585SB	cardioid	MC	low	50-13k	0.105	Hors	25.08	on-off switch
585SAV	cardioid	MC	high	50-13k	1.32	H ors	31.68	vol. control
585SBV	cardioid	MC	low	50-13k	0.105	H or S		vol. control
Unisphere B	*							
588SA	cardioid	MC	high	80-13k	1.11	H or S	26.40	
588SB	cardioid	MC	low	80-13k	0.085	Hors	25.08	
588 SBCN	cardioid	MC	low	80-13k	0.085	H or S	27.06	heavy duty
330	cardioid	R	switchable	30-15k	switchable	S	52.80	
300	Fig. 8	R	switchable	30-15k	switchable	S	63.36	
315	Fig. 8	R	switchable	30-15k	switchable	S		
315 S	Fig. 8	R	switchable	30-15k	switchable	S	39.60	on-off switch
579SB	omni	MC	25 to 200	50-15k	0.1	Hors	28.38	on-off switch
578	omni	MC	150 or hi	50-17k	0.1 or 1.11	H or S		
5785	omni	MC	150 or hi	50-17k	0.1 or 1.11	S		on-off switch
576	omni	MC	25 or 150	40-20k	0.05 or 0.094	Hors		
533SA	omni	MC	high	40-11k	1.76	H or S	21.78	on-off switch
533SB	omni	MC	low	40-11k	0.141	H or S	21.12	on-off switch
533SAV	omni	MC	high	40-11k	1.76	H or S		vol. control
570	omni	MC	low	50-12k	0.084	L	41.58	
570 S	omni	MC	low	50-12k	0.084	L	44.88	on-off switch
571	omni	MC	25 to 250	50-10k	0.079	H/S or L	40.92	
572G	omni	MC	25 to 250	50-10k	0.079	G	46.86	
560	omni	MC	low or hi	40-10k	0.149 or 1.48	L	18.48	
561	omni	MC	25 to 250	40-10k	0.141	G	13.86	
Studio								
SM5B	cardioid	MC	150	50-15k. +2.6dB	$-79.5 \mathrm{~dB}$	boom	158.40	100 Hz filter
SM5C	cardioid	MC	50	70-15k, -3dB	-84.0dB	boom	158.40	100 Hz filter
SM7	cardioid	MC	150	40-16k, -5dB	$-79.5 \mathrm{~dB}$	boom	138.60	equalization
SM56	cardioid	MC	30-50, 150-250	40-15k	-83.5 or -76.5 dB	S	59.40	
SM57	cardioid	MC	30-50. 150-250	40-15k	-83.5 or -76.5 dB	Hors	46.20	imp. switch
SM53	cardioid	MC	50 to 250	70-16k	-81dB	Hors	92.40	
SM54	cardioid	MC	50 to 250	70-16k	-81dB	H ors	100.98	pop filters
SM33	super-cardioid	R	50 or 150	40-15k	-87 or -81 dB	S	92.40	
SM58	cardioid	MC	30-50 or 150-250	50-15k	-83.5 or -76.5 dB	Hors	59.4	pop filters
SM50	omni	MC	50 or 150	40-15k	-84.5 or -78.5 dB	Hors	49.50	
SM61	omni	MC	150	50-14k	$-82.0 \mathrm{~dB}$	H ors	40.92	
SM60	omni	MC	50-250	45-15k	$-81.5 \mathrm{~dB}$	Hors	30.36	
SM76	omni	MC	50 or 150	45-20k	$-87.5 \mathrm{~dB}$	H or S	74.58	
SM51	omni	MC	50-250	70-12k	-82dB	L	44.88	rises at $\mathbf{6 k H z}$

SONY								
F25S	cardioid	MC	320	80-13k	output 1 mV	HorS	3.85	
F96H	omni	MC	10k	70-14k	output 5 mV		3.85	
F96L	omni	MC	230	70-14k	output 1 mV		3.85	
98L	cardioid	MC	230	70-14k	output 1 mV		5.15	
998	stereo cardioid	MC	200	80-12k	output 0.7 mV		8.35	
ECM22P	cardioid	C. E	dual 600 or 250	20-20k	output 1.5 mV		59.95	
ECM95S	cardioid	C. E	1.5k	70-10k	output 2 mV		6.85	
ECM99	cardioid	C. E	250	50-12k	output 1.6 mV		15.95	
ECM170	omni	C. E	200	20-16k	output 1.6 mV		23.50	bass cut switch
ECM280	cardioid	C. E	200	30-18k	output 1.6 mV		32.35	bass cut switch

Maker 8 Model No．	Polar Response	Transducer	Impedance （ohms）	Freq．Response （Hz）	Sensitivity	Mounting	Price Inc．v．a．t． （£）	Remarks
STC								
4037	omni	MC	30 or 300	80－10k	－76dB	H or S S or		
4038	Fig． 8	R	30 or 300	30－15k	－85dB	S or boom		F／B ratio．15－20dB
4104	noise cancelling	R	30 or 300	60－10k	－82dB	tator＇s		
4105A	cardioid	MC	30	60－10k	－82dB	hand		F／B ratio．15－20dB
4136	cardioid	C	30 or 300	40－18k	－50dB＠300』			
4021	omni	MC	30	40－12k	$-80 \mathrm{~dB}$			ball and biscuit
4112	omini	MC	30	100－20k	－84dB	Lor		humsuppress
4115	noise cancelling	R	30	150－10k	85 dB			lightweight
4136								
THORN				，		S	10.69	
TA24	cardioid	moving coil	low					
TURNER						H or S	43.00	
2203	cardioid	MC	200 load	50－15k	－ 57 dB ref $1 \mathrm{mV} / \mu \mathrm{b}$	Hors	31.72	
2255	cardioid	MC	200 load	70－13k	－ 57 dB ref $1 \mathrm{mV} / \mu \mathrm{mb}$	Hors	38.60	built－in switch
2302	omni	MC	200 load	50－15k	－57dB ref $1 \mathrm{mV} / \mu \mathrm{b}$			
TTC						S	16.28	
MDFG11	cardioid	MC	dual 600 and 50 k		2.2 mV ＠${ }^{\text {a }}$	S	16.50	windshield
HDF619	cardioid	MC	dual 800	50－13k	－65dB	L	13.75	
B7110	omni	C．E	800	$50-13 \mathrm{k}$	－54dB＠50k』	S	9.90	
B1075	cardioid	MC	dual	100－9k	－76dB ${ }^{\text {－}}$	L	6.93	
DF100	omni	MC	600	100－9k	-74 dB	clip	9.90	
B1238	omni	C．E	600	30－13k	－74dB＠600	clip	9.46	
DF72BC	omni	MC	dual	80－12k	－76dB＠600』			
B1060	omni	MC	dual	80－13k	－59dB＠50k Ω		5.94	
DF1X	omni	MC	50.500 or 50k		$\begin{gathered} -110 .-76 \text { or } \\ -57 \mathrm{~dB} \end{gathered}$			
UHER						H or S	8.32	
M136	omni	MC	low	150－10k	$0.25 \mathrm{mV} / \mu \mathrm{b}$		20.5	remote control
M154 M517	omni	MC	low	50－15k	$0.28 \mathrm{mV} / \mu \mathrm{b}$	H ors	22.10	remote control
M517 M534	cardioid	MC	low	50－16k	$0.23 \mathrm{mV} / \mu \mathrm{b}$	Hors	20.00	
M534	cardioid	MC				L	22.00	
${ }^{\text {D } 109}$						H ors	29.70	
D190C						H ors	52.80	
D202CS						H or S	60.50	gun mic
D900C	hypercardioid cardioid	MC	500	40－18k	$0.23 \mathrm{mV} / \mu \mathrm{b}$	S	51.25	
M537	cardioid	MC	low	30－18k	$0.14 \mathrm{mV} / \mu \mathrm{b}$	S	80.50	
M539	omni	MC	low	40－17k	$0.18 \mathrm{mV} / \mu \mathrm{b}$	S	53.00	
M634	cardioid．stereo	MC	500	50－16k	$0.23 \mathrm{mV} / \mu \mathrm{b}$	S	42.70	$2 \times \mathrm{M} 534$
UNISOUND								
EM82	omni	C．E	600				13.00	
EM82H	ómni	C．E	50k	40－18k	$-46 \mathrm{~dB} \pm 3 \mathrm{~dB}$	Hors	15.00	
EM83	cardioid	C．E	1k	40－18k	$-65 d B \pm 3 \mathrm{~dB}$	Hors	15.00	
EM83	cardioid	C．E	50k	40－18k	$-51 \mathrm{~dB} \pm 3 \mathrm{~dB}$	H or S	15.00	
EM84		C．E	1k	40－16k	$-65 d B \pm 3 \mathrm{~dB}$	tie clip	13.00	

Manufacturers＇addresses

ACOS，Cosmocord Ltd，Eleanor Cross Road，Waltham Cross，Herts EN8 7NX．
ADASTRA Electronics Ltd，Unit N22， Cricklewood Trading Estate，Claremont Road，London NW2 1TU．
AKAI，Rank Audio Visual Ltd，PO Box 70，Great West Road，Brentford， Middlesex TW8 9HR．
AKG Equipment Ltd，182／184 Campden Hill Road，Kensington，London W8．
BEYER Dynamic（GB）Ltd， 1 Clair Road， Haywards Heath，Sussex．
CALREC Audio Ltd，Hangingroyd Lane， Hebden Bridge，Yorkshire HX7 7DD．
EAGLE International，Precision Centre， Heather Park Drive，Wembley HA0 1SU．
ELECTROVOICE，Gulton Europe Ltd， Special Products Division，The Hyde， Brighton BN2 4JU．

FOSTER，Adastra Electronics Ltd，Unit N22，Cricklewood Trading Estate， Claremont Road，London NW2 1TU．
GRAMPIAN Reproducers Ltd，Hanworth Trading Estate，Feltham，Middlesex．
LUSTRAPHONE Hi Fi Ltd，Unit 2 Browells Lane，Feltham，Middlesex TW13 7EL．
MELODIUM，Keith Monks Audio Ltd， 26－28 Reading Road South，Fleet，Near Aldershot，Hants．
NEUMANN，F．W．O．Bauch Ltd， 49 Theobald Street，Boreham Wood，Herts WD6 4RZ．
PEARL，Allotrope Ltd， 90 Wardour Street，London WIV 3LE．
PYE Business Communications Ltd， Cromwell $\overline{\text { Road，}}$ Cambridge CB1 3HE．
PHILIPS，Pye Business Communications Ltd，Cromwêl Road，Cambridge CB1 3HE．

ROSS Electronics， 32 Rathbone Place， London W1P 1AD．
SCHOEPS，Feldon Audio Ltd， 126 Great Portland Street，London WIN 5PH．
SENNHEISER，Hayden Laboratories Ltd，Hayden House， 17 Chesham Road， Amersham，Bucks HP6 5AG．
SHURE Electronics Ltd，Eccleston Road， Maidstone，Kent ME15 6AU．
SONY（UK）Ltd，Pyrene House，Sunbury Cross，Sunbury－on－Thames，Middlesex．
STC，Hampstead Hi－Fi， 91 Heath Street， Hampstead，London NW3．
THORN Consumer Electronics Ltd， 284 Southbury Road，Enfield，Middlesex．
TURNER，Millbank Electronics Ltd， Bellbrook Estate，Uckfield，Sussex．
TTC，Precision Centre，Heather Park Drive，Wembley，Middlesex HA0 ISU．
UHER（UK）Ltd， 15 Broomhills Estate， Braintree，Essex．
UNISOUND，Condor Electronics Ltd， 100 Coombe Lane，London SW20 0AY．

World of Amateur Radio

"Amateurs Girdle the World"

Exactly 50 years ago-in October 1924 British and New Zealand amateurs achieved what was perhaps their greatest triumph of all time: the spanning on "short waves" of the longest possible contacts that can be made on the Earth, a near antipodal path. They achieved this longdistance record not by chance but as the result of careful advance planning based on the realisation that because of the 12 -hour time difference and the apparent peaking of h.f. signals at sunrise and sunset, there seemed every chance that a particularly good path would exist between the UK and New Zealand at a time of the year when these events nearly coincided.

In the autumn of 1924, a small group of British amateurs began transmitting and listening daily during the sunrise period on about 95 metres, using a daily changing code word for positive identification. On October 16, 1924 at 0600 GMT E. J. Simmonds, (G)20D heard a New Zealand amateur Ralph Slade, Z4AG calling a station in the United States, but did not make contact. On October 17 no signals from the Antipodes were heard but a cable was received next day from Frank Dillon Bell, Z4AA of Otago reporting 20D's signals with the correct code word. Then on October 19, the young Cecil Goyder, operating 2 SZ , the station of Mill Hill School, London, successfully made contact with Frank Bell who then immediately afterwards made contact with Jack Partridge 2 KF . The same day Gerry Marcuse, 2NM made contact with both Z4AG and Z4AK and the next day 20D made contact with Z4AA. These events were reported in Wireless World under the headline "Amateurs Girdle the World" -and it would not be overstating the case to claim that this was the pinnacle of all the efforts of the early twenties to open up the short waves. Afterwards, DX on h.f. became something of an anticlimax and one finds such reports as that of Stan Lewer, 6 LJ logging 128 American stations at one sitting.

It is interesting to speculate, in the light of recent propagation research, whether these $3 / 3.5 \mathrm{MHz}$ contacts at the critical dawn/dusk period were made, not as usually supposed by "multi-hop" reflections, but rather by chordal hop (super-
mode) propagation. Certainly it is clear that the antipodal and twilight paths across the equator are still of very special interest to all concerned with long-distance h.f. propagation.

Morse outmoded?

On both sides of the Atlantic the age-old controversy about Morse seems to be raging once again. While it is understandable that many would-be h.f. operators resent what they feel to be a waste of time in learning the code in order to use s.s.b., it is noticeable that very few amateurs who have become reasonably proficient in Morse operation seem to share the view that this is now an outmoded system of communication. As I have written elsewhere: "Newcomers who really wish to learn Morse operating are few and far between. The majority view it as a necessary evil that has to be surmounted before a Class A licence can be obtained. Yet once achieved, mastery of the code opens up a new world to the shortwave enthusiast and proves a source of endless satisfaction." Or, as Geoffrey Vore, W9QBJ, has put it recently in QST: "The greatest reason of all for c.w. use remains its complete satisfaction as an operating medium. Solid contacts with moderate to low power, simplified equipment (and expense) and a minimum of ulcer-producing tensions make c.w. operation sheer pleasure."

But those who believe that any recognizable personal characteristics in sending the code is a deviation from perfection may be a little horrified at the attempt by John Myers, W9LA to resurrect the "sideswiper key" fashioned as ever from a short length of hacksaw blade to "give real character to one's fist". He reminds us of the regional and national "accents" that once made sideswiper keying as individually distinctive as a fingerprint: the draggy Southern drawl; the flat drawl of the mid-West; the clipped British accent; the stutter-all he claims were reflected in the sideswiper so popular (some will say too popular) in the days before the electronic keyer or the latest vogue for keyboard "keyers".

With the current inflation rate for Japanese s.s.b. transceivers now at over 20 per cent per annum, amateur radio may well be facing a period when the low costs of c.w. operation will become once more attractive.

Field Day results

The 1974 National Field Day Trophy of the RSGB has been gained by the Ariel Radio Group, a BBC club. Leading single-station entry (Bristol Trophy) goes to the East Barnet Amateur Radio Contest Club. This year only 17 clubs and groups entered the main "double-station" contest but there were 76 single-station entries, six more than last year. Ariel used Quad aerials on the 14, 21 and 28 MHz bands and this type of aerial was used also by East Barnet on 14
and 28 MHz . West of Scotland were clear leaders on 7 MHz using a Vee-beam with $1200-\mathrm{ft}$ "legs" beaming south.

Licence changes

Two new classes of the amateur (sound) licence are now being issued in the UK by the Home Office. Class G (fixed operation) and Class H (mobile) both for overseas visitors who hold the equivalent of the UK Class B (v.h.f. phone-only) licence. Callsigns are being issued for these classes in the sequence G5MAA, G5MAB onwards.

Any American amateur holding an Extra Class licence may soon be eligible to apply for any specific unassigned callsign that he might want (e.g. "two letter" callsigns or callsigns based on operator's initials) on payment of a fee; at present such applications can be made only after holding a licence for 25 years.

In brief

The Amateur Radio Retailers Association are holding the third Midland National Amateur Radio and Electronics Exhibition at the Granby Halls, Leicester from Thursday, October 31 to Saturday, November 2
R. J. Harry of the Directorate of Radio Technology of the Home Office will open a two-part RSGB meeting at the IEE, Savoy Place on the evening of Monday, November 25 on the subject of methods of interference investigation and suppression ... the ARRL whose journal is $Q S T$ is pained that the UK delegation should recently have proposed "QST" as a new Q -signal for the maritime radio service to mean "I hear your call, the approximate delay is ..." But after hearing US and Israeli delegates speak against the proposal the conference adopted QOT instead ... The ITU has instituted through the International Amateur Radio Club a new award for amateurs and shortwave listeners "Diplome des 100 " for contacts with or reception of stations in 100 different member countries of the ITU (contacts after January 1,1967 or after a country's ratification or accession to the Montreux Convention). Details from L. M. Rundlett, K4ZA, 206 East Amhurst Street, Sterling Park, Virginia, 22170, USA) . . FCC has warned American amateurs from using amateur nets for "swap and shop" activity though agreeing that amateurs can occasionally use their stations to discuss the availability of a piece of amateur radio equipment for disposal ... If you used any bands below 14.4 MHz you had to put a filter on your power supply; above this frequency raw a.c. was permissible; mobile operation only above $56 \mathrm{Mc} / \mathrm{s}$; you could operate on any frequency above $110 \mathrm{Mc} / \mathrm{s}$ (American amateur regulations at the time of the formation of the FCC exactly 40 years ago) . . . The RSGB has proposed that the Constitution of the International Amateur Radio Union should recognize the existence of the regional bureaux and all member societies are being invited to vote on the proposal.

PAT HAWKER, G3VA

Synthesized communications receiver

Principles of a synthesized receiver together with a description of the Racal RA1772 receiver

by R. F. E. Winn, B.Sc., M.I.E.E.
Racal Communications Ltd

The task of the communicator has always been to try to achieve a communication link for the highest possible percentage of the time. Use of the h.f. band, as an effective method of long-distance communication, increased rapidly as its possibilities became appreciated. Even with the introduction of submarine cables and satellites on high-density links, h.f. communication remains popular. A link is relatively inexpensive to set up, can be unobstrusive and ideal for medium-density traffic or person-to-person links. For military users the difficulty of interfering with a multi-frequency h.f. link is another attraction. Increasing traffic comes from maritime users because their requirement is both mobile and long-distance.

All of these reasons mean that the h.f. band is crowded and likely to remain so. Broadcasting, teletype, common carrier links, diplomatic channels and personal or amateur radio channels are only a few users of the band. In these conditions the engineer responsible for introducing or extending his radio equipment must try to ensure that the equipment does not have limitations which reduce the effectiveness of communication. Considering the task of the receiver which, when connected to a large antenna, may be faced with a mass of signals extending over $30,000 \mathrm{kHz}$, requiring sometimes to be selective over a fraction of one kHz , with a range of signal levels which simultaneously may exceed $1,000,000: 1$ it is no wonder that the task is difficult, especially when the required signal is the smallest. Some specialist receivers are now in use which meet the requirements with limited flexibility. The receiver to be described meets the requirements with complete flexibility and some of its design considerations and characteristics are discussed.

Frequency selection

When assessing the requirements for a new receiver installation, the question of frequency selection is of prime importance. Most links are established on fixed frequency allocations and it is thus possible to consider crystal controlled receivers. An advantage of crystal control is frequency stability; a disadvantage is lack of flexibility. As the number of channels
increases the attractions of frequency synthesis also increase.

Early synthesizer designs left much to be desired. The system of "direct" synthesis used a series of dividers and filters to produce the smallest required increments and then added, mixed and multiplied the resulting products to the output via yet more filters. This was bulky and expensive. The system is still used but although active filters have reduced sizes somewhat it is still expensive and it is only used where very fast frequency changing is a necessity. The "indirect" system of synthesis was introduced to counter the stringent filter requirements. A typical system works by using a voltage-controlled oscillator at the output frequency, mixing the frequency down with a selected one from a "comb" of frequencies and comparing it with a reference frequency which produces a locking voltage to the output oscillator. The system can be extended down to achieve the smallest frequency increment desired by a repetitive divide-and-add process. Whilst this system works adequately it still uses several filters and phase-lock loops and, as is the case with most linear circuitry, cannot easily be implemented in integrated circuit form without custom-built circuits. The advent of digital integrated circuitry provided the incentive to consider another method of "indirect" synthesis, where the phase-lock oscillator is merely divided down by a variable divider to a fixed frequency derived from the frequency standard. In the simplest system the comparison frequency is also the smallest incremental step, so that the complete synthesizer comprises one phase-lock loop. Using digital i.cs this can be compact, and ideal for packsets. With the present state-of-the-art it is possible to achieve variable frequency division from approximately 50 MHz down to 100 Hz and thus have 100 Hz steps. Higher output frequencies, up to 100 MHz , would require a prescaler of $\div 2$ and have a step size of 200 Hz if the comparison frequency were maintained.

A more sophisticated form of digital synthesizer can be used which has a smaller step size than the comparison frequency; again, a divide-and-add system is employed. The advantage of the small size is maintained so that the synthesizer's inclusion
within the framework of the receiver can be effected.

Oscillator purity

When used as the receiver local oscillator the synthesizer offers flexibility in the choice of frequency but an output must be produced which is pure enough to match the receiver requirements, because any spurious signals on the output will cause the receiver to have spurious responses. Fortunately with careful circuit design the output can be maintained to a purity of 100 dB relative to the main output. Moreover with a digital synthesizer the number of spurious mechanisms is very small compared with those produced in a more traditional mixing-type system.
Noise on the output of the synthesizer is another form of spurious signal. This can also be minimized by ensuring that the maintaining circuit of the output oscillator has as high a Q as is practicable and by running the oscillator at the highest level possible. These requirements are somewhat contradictory in a semiconductor circuit especially when using varactors. Using a field effect transistor BFW 10 and maintaining an in-circuit Q of 50 it is possible to achieve a relative level of 100 dB measured in a 3 kHz bandwidth at 20 kHz off. Reciprocal mixing is another term for the adjacent channel noise effect where a large unwanted signal offset from the wanted signal mixes with the noise sidebands of the local oscillator to produce a noise signal at the i.f., thus reducing the effective selectivity of the receiver filters as shown in Fig. 1.

One hazard which should be recognized in the simple, single-loop, digital synthesizer is the relatively "loose" method of control. Because the loop contains a high division ratio divider the loop gain is low. This means that any disturbance due to mechanical shock on the oscillator tuned circuits caused by sudden temperature changes may not be instantly corrected and this is true in any system with long intervals between correction. Correction can only occur at the comparison frequency intervals and faster or shorter-term errors remain uncorrected. For sophisticated transmission systems such as Kineplex a simple loop system is not good enough so that a multiple
loop arrangement is required to maintain high speed correction and minimize the division ratio per loop. A further advantage of maintaining a high comparison frequency is that the speed of locking to a new frequency is also high.

The free-tune synthesizer

A synthesized receiver covering the h.f. band in 10 Hz steps requires seven decadic switches which makes it difficult to tune in a s.s.b. signal. An alternative method of selection which is provided in the RA 1772 receiver shown in Fig. 2, consists of a shaft encoder coupled to a v.f.o.-type knob. The encoder changes the frequency of the synthesizer in 10 Hz steps dependent on the rate at which the knob is rotated. In operation the illusion of a v.f.o. is obtained because the synthesizer locks very rapidly and the step size is small. For searching and monitoring, the free tune facility is provided whilst at the same time absolute frequency accuracy is maintained.

Receiver parameters

It is important to have a receiver which is sensitive to weak signals although there is a fundamental limit to sensitivity set by thermal noise in the receiver input circuits. Sensitivity is directly related to the amount by which thermal noise in the equivalent input resistance of the receiver is increased by the input circuits, the amount being defined as the noise figure. A noise figure of up to 10 dB is the lowest level which can be reasonably specified in a h.f. production receiver although 7 dB might be typical for the same equipment. This would be equivalent to a $s+n / n$ ratio of 15 dB for a $1 \mu \mathrm{~V}$ signal using a 3 kHz i.f. bandwidth or, providing the post filter noise is insignificant, 5 dB for a $0.1 \mu \mathrm{~V}$ signal using a 300 Hz bandwidth. The latter figures demonstrate the reason for the continued popularity of c.w. over difficult links.
In practice, however, it is not normally the noise figure of the receiver which limits the detection of the small wanted signal but the simultaneous existence of atmospheric and man-made noise on the antenna. A far more severe limitation comes from the large unwanted signals also present,

Fig. 1. Response of double superhet showing effect of reciprocal mixing, 3 kHz bandwidth.
whose effect is often disguised. It is not sufficient to provide a high degree of singlesignal selectivity, the dynamic selectivity must also be of a high order. Cross-modulation is a recognized effect where a large unwanted modulated signal transfers its modulation to the smaller wanted signal. It is a broadband effect, due to front end non-linearities and occurs in many receivers with unwanted signal levels of a few millivolts. In this respect the transistorized receiver is at a definite disadvantage with respect to the older valve types because a bi-polar transistor is basically a non-linear device. Some benefit may be obtained by front-end tuning to reduce the number of large signals entering the receiver but real immunity is only achieved by designing for a very high linearity. In the RA 1772 this is obtained by using high-level field effect transistors achieving levels of 300 mV . At this level the effect is no longer a problem unless co-sited transmitters are set up in duplex operation or a mile-long Beverage antenna is pointed near a broadcast station. Blocking is also a broadband effect which results in the reduction of the wanted signal by a large nearby unwanted signal. It has been traditional to specify the unwanted level at which 3 dB of level reduction is measured; this now occurs at such a high level, 500 mV minimum, that other effects disguise and can prevent more than 1 dB reduction from being seen.

Fig 2. RA 1772 general purpose synthesized receiver.

Intermodulation. A rather more insidious effect than those mentioned is due to intermodulation distortion between two or more unwanted signals which produce discrete unwanted products. The unwanted products for second order i.ps occur at $f_{1} \pm f_{2}$ e.g. at 10 MHz for unwanted signals of 4.5 and 5.5 MHz or 10.02 and 20.02 MHz . Fortunately one of the two unwanted signals must be at least one octave removed from the position of the product which is, if interfering, the tuned position, so that r.f. tuning can reduce the level of one signal and hence that of the product. Half octave filters are selective enough for this purpose and are commonly employed. Third order intermodulation products are more difficult to remove. These occur at $2 f_{1} \pm f_{2}$ e.g. at 10 MHz for signals of 10.02 and 10.04 MHz or 9.98 MHz and 9.96 MHz . Obviously it is impossible to remove these with conventional $L C$ tuning and the only satisfactory solution is to arrange for a very low natural level of third order distortion. Specification methods vary but the most accepted method specifies the level of the two unwanted signals which together produce an unwanted product of $0 \mathrm{~dB} \mu \mathrm{~V}(1 \mu \mathrm{~V})$. Most existing receivers if measured close-in (without benefit of r.f. tuning), would give a level of up to approximately $70 \mathrm{~dB} \mu \mathrm{~V}$ $(3 \mathrm{mV})$. The equivalent performance of the RA 1772 receiver is $90 \mathrm{~dB} \mu \mathrm{~V}(30 \mathrm{mV})$, an order better. Since, however, third order intermodulation product levels increase at three-times the rate that the level of the unwanted signals increase, the unwanted level from a $70 \mathrm{~dB} \mu \mathrm{~V}$ receiver when fed with signals of $90 \mathrm{~dB} \mu \mathrm{~V}$ is at $60 \mathrm{~dB} \mu \mathrm{~V}(1 \mathrm{mV})$. Measured on this scale the improvement in level is three orders. It is only possible to assess the overall effect of third order intermodulation by analysing the total pattern of signals being received by the antenna. If the antenna is a large rhombic, for example, there may be several thousand signals received of levels up to 100 mV and all these will combine in the receiver front end to produce many thousands of products. It is possible to deduce where the products fall, and at what level, from the pattern and level of the primary signals, and from the amount and degree of receiver preselection. Shown in Fig. 3 is the result of an analysis on a rhombic antenna where the highest level signals between 30 and 100 mV were between 9 and 15 MHz . The graph shows the mean
signal strength requirement to overcome various effects and give a 10 dB signal to noise ratio in a 3 kHz bandwidth. The most obvious conclusion is that the $70 \mathrm{~dB} \mu \mathrm{~V}$ i.p. receiver could not be used wideband on such a big antenna, (curve 4), even with 12% tuning, (curve 5), a mean signal of above $300 \mu \mathrm{~V}$ must be arranged at around 11 MHz . If an improvement in linearity to $90 \mathrm{~dB} \mu \mathrm{~V}$ i.ps can be achieved then both curves 4 and 5 drop by 60 dB to reduce the level to that of atmospheric noise. Curve 6 is that due to reciprocal mixing, a reduction in level of 30 dB can be achieved so that, again, atmospheric noise becomes dominant. A common control in most h.f. receivers is the antenna attenuator. This control which reduces the level of all signals into the receiver is used since the intermodulation products fall faster than the wanted signal. It is, however, of little use if the wanted signal is already weak and near noise level. Fortunately at the level of performance achieved this can be dispensed with completely. A more detailed analysis with results are given in ref. 1.

It is not always evident that the receiver's limitations are preventing reception; as stated earlier, the effects are often disguised. One example is when a large unwanted signal intermodulates with a noisy signal or with atmospheric noise itself to give a noise-like signal on-tune. It is only the very experienced user who can determine that this is due to the receiver and not merely interference.

Receiver design

It is worth examining some of the ways in which the receiver design can be improved to the point of immunity from the problems mentioned. The h.f. superhet receiver has as its final i.f. a frequency convenient for large amounts of stable and variable amplification, typically up to 100 dB . The frequency must also be one for which it is possible to construct narrow filters of defined characteristics. It is common to use crystal filters since these are stable and need

Fig. 3. Mean signal strength required for $10 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio, showing effect of 70 dB third order i.ps and reciprocal mixing with large rhombic antenna.
no adjustment during the life-time of the equipment. No single frequency is standard but 1.4 MHz is a good compromise because at this frequency the crystals are relatively compact and four to eight pole filters can be obtained in a package of $76 \times 28 \times 31 \mathrm{~mm}$. Single superhet receivers are constructed using a 1.4 MHz i.f. but there is a problem of removing the image frequency at 2.8 MHz off-tune and narrow r.f. filters become a necessity. It is often easier and more flexible to build a double superhet with a high first i.f. to remove the image from the h.f. band entirely. A first i.f. of 35.4 MHz means an image frequency of 70.8 MHz off-tune with the intermediate frequency also out of the h.f. band. A single low-pass filter before the first mixer which cuts above 30 MHz is then all that is required to attenuate image and i.f. breakthrough to the specified levels, typically 90 dB down (see Fig. 4).

Although it is sometimes beneficial to frequency selection it is never advantageous to the receiver performance if the first i.f. bandwidth is wider than the final output bandwidth. The highest possible amount of single-signal and dynamic selectivity are required both of which are obtained if the bandwidth is made narrow as soon as possible. It can be arranged for all fre-
quency selection processes to be made in the first mixer, with fixed frequency injection in the subsequent mixer(s), so that a narrow first i.f. filter can be used. This filter can also be a crystal type so that its bandwidth need only be wide enough to pass the widest i.f. bandwidth envisaged, normally $\pm 6 \mathrm{kHz}$. This allows protection to subsequent stages against signals farther off-tune than 10 kHz and considerable protection at 20 kHz off-tune. Having such protection we may concentrate on providing a very high linearity in the stages which are wide-band, particularly the first mixer and r.f. amplifier.

The front-end. The first mixer is the section where the greatest amount of development effort has been concentrated in recent years. The problem is to achieve mixing and maintain linearity to signals at the input in a function that is basically non-linear. The mixer must be non-linear to signals on two inputs but linear to signals on the same input. A solution lies with the switching type of balanced mixer in which the input signals are switched through to the output in-phase and out-of-phase alternately at the local oscillator repetition frequency. It is important to maintain this linear switching even at input voltages of several hundred millivolts which requires several volts for switching. All parts of the mixer are important when designing for the order of linearity described. The mixer transformers must be carefully balanced and non-linear ferrites avoided. If the frequency band to be covered is wide, then transmission line transformers are useful to maintain inductance whilst keeping core and self capacitance losses low-ref. 2. Balance is important not only to reduce the level of direct i.f. noise from the local oscillator but also to reduce the level of the oscillator appearing at the antenna input. The level of this "re-radiation" has to be kept very low in a communications centre (C.C.I.R. recommendation $10 \mu \mathrm{~V}$ max.) particularly if several receivers share a common antenna

Fig. 4. Block diagram of the RA 1772 receiver.

Fig 5. Typical level chart.
distribution network. Another advantage of the high i.f. is that the input l.p.f. gives a high rejection to all feedback of local oscillator frequencies, these frequencies being outside the h.f. band.

Designing for high linearity means attention to all parts of the system including those which normally do not give rise to i.ps. The first i.f. crystal filter for example; it might be thought that since this contains purely passive components no problems could arise. This has proved to be far from the case in the RA 1772. Not only have all ferrite transformers had to be removed in favour of iron-dust but the crystals need to be manufactured very carefully to avoid any minute metalization to quartz discontinuities. Care must also be taken to ensure that the characteristics of the mixer are known from l.f. to u.h.f. because many mixer products up to frequencies of 1000 MHz and beyond are produced of which only one is required. A noise figure around 15 dB would be acceptable in most cases where the receiver is directly coupled to a receiving antenna, certainly up to 20 MHz , because here the system would be atmospheric or man-made noise limited. If it is not directly coupled then a lower receiver noise figure is desirable. To achieve a worst-case noise figure of 10 dB an r.f. amplifier is necessary which again needs a high linearity and signal handling capacity. In our case the gain as shown in Fig. 5 is 10 dB so that the first mixer must provide third order i.ps of better than 90 for two 100 mV signals.
I.F. stages. Stages subsequent to the first i.f. filter are protected against signals offtune but have to be capable of providing linear amplification to signals inside the passband. One measure of linearity is percentage distortion to the audio output after detection. The product detector as used for s.s.b. demodulation is capable of a higher linearity than the envelope detector and overall figures of 1 to 2% can be maintained. A.m. is thus often received using the sideband filters and product detector with, as a further bonus, the choice of sideband to minimize interference. Another measure of distortion is the in-band i.ps where the accepted minimum requirement is -40 dB .

Fig. 6. Signal-to-noise ratio showing effect of reciprocal mixing and cross-modulation.

This limit arises because in a multichannel v.f.t. system unwanted products spread into the tone frequencies of another channel and cause errors. Large range a.g.c. is a requirement and, whilst it is agreed that the output level change should be as small as possible, there is disagreement over timeconstants. For a.m. and f.s.k. signals both attack and decay times should be short, in the order of a few tens of milliseconds, whereas for c.w. and s.s.b. signals the decay time should be long. Therefore a choice of time constant is usual, "short" and "long". Ideally in "long" there should be no a.g.c. decay when receiving s.s.b. until the transmission ceases, because otherwise an annoying increase in background noise returns between syllables of speech. A solution is to incorporate a "hold" period or decay time which lasts for two seconds, followed by a fairly fast decay of one second. The "hold" is readily achieved by storing the a.g.c. voltage on a capacitor which is fed to
a high input impedance f.e.t. or m.o.s.f.e.t. until the end of the "hold" period when a discharge resistor is switched in. No a.g.c. is applied to the first i.f. amplifier until the signal reaches $300 \mu \mathrm{~V}$. This ensures that the signal-to-noise ratio increases with a signal strength as fast as possible until 50 dB is achieved. Further requirements are a voltage/gain characteristic which is reasonably linear and defined, so that a.g.c. stability is maintained even with narrow filter bandwidths, and so that when using two receivers in diversity their two a.g.c. lines can be connected ensuring control of the higher signal strength receiver.

R.F. attenuation. No a.g.c. or attenuation

 is applied before the mixer, because with the linearity achieved in the mixer it is not necessary. This means that the small wanted signal is never attenuated. A method of extending the cross-modulation specification of a receiver is by using front end

Fig. 7. Maximum unwanted signal level for 20 dB s/n ratio.
attenuation determined by the level of the nearby unwanted signal. This is necessary if the natural cross-modulation level is lower than that of the anticipated signals but the result is of necessity a compromise. Shown in Fig. 6 is the s / n ratio achieved for two wanted signal levels against unwanted signals of different offsets. The diagonal limits are due to reciprocal mixing, the frontend attenuation would have to be arranged to follow the 20 kHz line if the cross-modulation level was naturally lower than 300 mV and specified at 20 kHz . The disadvantage would be that unwanted signals further off-tune than 20 kHz would also have the effect of causing the attenuator to operate and the extra signal to noise obtained in area A would not be obtained. Furthermore unless the attenuator was also coupled to the wanted level, line XY would extend to 2 and area B would also be lost. A more conventional representation, Fig. 7, shows the maximum level of unwanted signal for $20 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio as a function of wanted signal. The same effect is illustrated as in the previous figure, i.e. there is no real substitute for a very high real crossmodulation level to match a very low reciprocal mixing level.

The author wishes to thank the directors of Racal Communications Ltd for permission to publish this paper and credit is due to the members of the engineering laboratories who have contributed to the successful development of the receivers.

References

1. Winn, R. F. E. Effect of Receiver Design in Communication Systems, I.E.R.E. Proceedings of the Conference on Radio Receivers and Associated Systems, 4th-6th July 1972, pp. 193-204.
2. Ruthroff, C. L., Some Broad-Band Transformers, Proceedings of the I.R.E., August 1959, pp. 1337-1342.

Receiver for modulation studies

Facilities for s.s.b. and i.s.b.

The radio receiver in the picture looks quite conventional but is in fact rather special. It is designed for studies of the possibilities of new methods of modulation in the m.f./.f.f. sound broadcasting bands- notably singlesideband and independent-sideband. Replanning exercises for the European medium- and long-wave broadcasting bands (see August issue, pp. 266-271) have the unenviable task of attempting to maintain the present service, in which there are invested millions of broadcast receivers and associated transmitting stations, yet pave the way towards better spectrum utilisation and accommodating more radio channels. At present two technical expedients appear to go some way towards a solution of the above conflicting requirements. These are: (a) Place all the channels on a regular frequency spacing of 8 kHz , with nominal carrier frequencies being an integral multiple of the carrier spacing. (This has the effect of reducing intermodulation and TV interference, making receiver design easier and allowing more channels.) (b) Consider the gradual introduction of independent single-sideband transmissions. (This makes possible stereo broadcasting compatible with a.m., later on two language channels, or ultimately double the number of channels.)

Incremental tuning

The receiver in fact contains battery powered circuits which respond to the two factors just described, but at the same time operates nearly conventionally on the existing m.f. sound radio transmissions. The differences introduced are as follows. First, the receiver tuning only settles down at 1 kHz increments, even though controlled with a conventional continuous scale. The present channel frequency spacings are 8,9 or 10 kHz , so the receiver can "capture" all existing stations. If the beneficial change to 8 kHz comes about (by slightly retuning
the existing transmitters) a simple change in the receiver's c.m.o.s. logic will make the receiver only settle on every channel-a very much easier thing to achieve, by the way, than on every 1 kHz . Secondly, the push-buttons give listening mode options of a.m., lower sideband, upper sideband or independent sideband. Two loudspeakers are provided, as in unit audio, but in this equipment the lower sideband comes from the left-hand speaker and the upper sideband from the right-hand speaker. Sideband separation is accomplished by the phasing method of demodulation, with the receiver carrier phase locked to the incoming transmitted carrier.

Bi-aural listening

The overall sideband response is flat from 300 Hz to 3000 Hz , which compares well with a normal a.m. receiver. On present broadcasts one can listen bi-aurally, with a.m., or as i.s.b., or one sideband at a time in one speaker (if there is interference in the other). Apart from the fact that one soon recognises the potential of, say, two independent sideband broadcasts (expedient (b) above), the improvement in the quality of night-time broadcasts as received on the sideband method is a fact which has been recognised for some considerable time.

A single dual output amplifier i.c. provides a total power of 1 W , controlled by the single dual volume control. The front end of the receiver is conventional, with its tuned ferrite rod aerial housed in the receiver cabinet together with all the other circuits. A full description of the receiver is to be found in the June 1974 issue of the EBU Review (Technical), No. 145. The development of the receiver, in the Electrical and Electronic Engineering department of the University College of Swansea, was supported by a grant from the UK Science Research Council.

The experimental receiver, showing the two loudspeakers.

New Products

H.f. receiver

Plessey Avionics have announced the introduction of a new solid-state tenchannel h.f. radio receiver for applications such as ground-to-air services, point-topoint links, and net operation. Designated PRD 535/1, the receiver provides reception of up to ten selected frequencies within the 1.6 to 22 MHz range with all channels independently located over the band. The standard mode of reception is s.s.b. (u.s.b. and I.s.b. switchable) with optional facilities to provide double sideband (a.m.) and independent sideband (i.s.b.) reception. A further option is also available for the reception of f.s.k. transmissions which uses an additional plug-in module and an

WW309

WW317
external converter/keyer. Audio output into an internal loudspeaker or headphone jack, together with a separate output for a 600 ohm balanced line connexion, is standard. A crystal oven is employed, which gives a frequency stability of 1 part in 10^{6}. A builtin front panel meter gives an indication of the signal strength or the audio output level at the $600-\mathrm{ohm}$ outlet. Plessey Avionics and Communications, Martin Road, West Leigh, Havant, Hants.
WW309 for further details

X-Y recorder

The $2500 \mathrm{XY} / \mathrm{t}$ recorder from Bryans is an A4 size instrument featuring a writing speed of $35 \mathrm{~cm} / \mathrm{sec}$ on both axes. The acceleration is $935 \mathrm{~cm} / \mathrm{sec}^{2}$ on both axes and a timebase is built into the x axis, with a sweep range of 0.1 to $10 \mathrm{sec} / \mathrm{cm}$. A range of transducers for measuring pressure, force, acceleration or load is available for connexion to the recorder. Bryans Southern Instruments Ltd, 1 Willow Lane, Mitcham, Surrey CR4 4UL.
WW317 for further details

Mains disturbance monitor

Mains-supply switching transients and surges can be investigated by using the DLO19 power line disturbance monitor, now available from Datalab. It is intended for use with a digital-memory waveform recorder to detect and record disturbances up to 2000 V peak-to-peak. Connexion is made via a high-voltage fixed plug, and front panel switching allows the selection of phase-to-phase or phase-to-neutral voltages. A $50 / 60 \mathrm{~Hz}$ filter removes the

WW327
fundamental frequency, and a direct or filtered output can be connected to the recorder. Triggering can be selected from positive going transients, negative going transients, or both. A trigger level control is also provided. Data Laboratories Ltd, Wates Way, Mitcham, Surrey.
WW327 for further details

V.h.f./u.h.f. display

The Eddystone 1061B/1 panoramic display will monitor a band of frequencies on a continuous basis and provide a visual display. The unit, which has been designed for use with receivers having appropriate i.f. outputs, is suitable for an i.f. of 10.7 MHz , but other i.f. outputs can be accommodated to meet special requirements. The display provides an independently-variable sweep width from $20 \mathrm{kHz} / \mathrm{cm}$ to $1 \mathrm{MHz} / \mathrm{cm}$ and a continuously-variable sweep speed. A 6 kHz resolution enables mobile radio signals of 12.5 kHz channel spacing to be separated on the switchable 40 dB logarithmic or 26 dB linear display.

The sensitivity of $10 \mu \mathrm{~V} / \mathrm{cm}$ can be controlled over 0 to 40 dB with a switched attenuator in 10 dB steps and a separate, continuously-variable adjustment of 20 dB . The screen measures $10 \times 6 \mathrm{~cm}$ and the complete unit is suitable for rack mounting or can be supplied in cabinet form. Eddystone Radio Ltd, Marconi House, Chelmsford, Essex CM1 IPL.
WW328 for further details

Rechargeable batteries

A range of rechargeable batteries suitable for use in emergency lighting and similar applications is available from Hakuto. These batteries are totally enclosed in styrene cases and the manufacturers claim that no electrolyte leakage is possible, regardless of the working position. The range, which is known as Hisealed, is rechargeable 200 times when the rated capacity is exhausted and 1000 times when the full capacity is partially discharged. A safety valve protects the batteries by lowering the internal voltage if an overcharge condition is detected. Hakuto International Ltd, 557-563 Rayleigh Road, Leigh-on-Sea, Essex SS9 5HP. WW313 for further details

WW328

Microwave source

The model 524 , first in a new range of compact microwave sources, has up to six programmable crystal-controlled frequencies and covers the 8.5 to 9.6 GHz band. The long-term stability is 1 part in 10^{6} per month and the frequency stability is 0.005% over the temperature range 0 to $+70^{\circ} \mathrm{C}$. A spurious harmonic level of better than -50 dB is claimed and a f.m. noise of 95 dB at 2 kHz off carrier with an a.m. noise of -125 dB also at 2 kHz . G. \& E. Bradley Ltd, Electral House, Neasden Lane, London N.W. 10 .

WW300 for further details

Harness-tying gun

A harness-tying tool designated TR-300 will tie cables at the rate of one per second. The instrument, which is pneumatically operated, can be counterbalanced to minimize fatigue. Tension of the tie can be preset and the tool automatically adjusts to the harness diameter from $\frac{1}{16}$ to $\frac{5}{8} \mathrm{in}$. The installed ties are approved to MIL-S 23190 under MS 3367-4 type 1 class 2. Thomas \& Betts Ltd, 90-93 Cowcross Street, London EC1M 6JR.
WW302 for further details

WW300

WW302

WW305

Accelerometers

The SA series of accelerometers is constructed using a spring plate, one end of which forms the sensing element, on to which semiconductor strain gauges are bonded. A small seismic mass is also fixed to the spring plate. The whole element is in a gasproof light metal case filled with oil to provide the necessary damping. The SA 108 device features a frequency response from 0 to 600 Hz with a linearity/hysteresis of $\pm 1 \%$. A nominal output of 200 mV is available from a supply of up to 10 V d.c. Vibro-Meter Ltd, Newby Road, Hazel Grove, Stockport, SK 7 5EE.
WW305 for further details

High-frequency oscilloscope

Hewlett-Packard have introduced a 257 MHz oscilloscope called the 1720 A . This instrument has a sensitivity of $10 \mathrm{mV} / \mathrm{cm}$ on each channel, and a sweep speed up to $1 \mathrm{~ns} / \mathrm{cm}$. The y attenuator accuracy is 2% on all ranges $(10 \mathrm{mV} / \mathrm{cm}$ to $5 \mathrm{~V} / \mathrm{cm}$) and the input impedance is selectable from 50Ω or $1 \mathrm{M} \Omega$ with an 11 pF shunt capacitance. Triggering is claimed to be stable for all displays requiring only 1 cm of vertical deflection to 300 MHz . The graticule can be illuminated by a flood gun, providing even exposure for photography. Focus is automatic and the oscilloscope retains all the performance characteristics over the temperature range 0° to $55^{\circ} \mathrm{C}$. The UK price is $£ 1,928$ including accessories. Hewlett-Packard Ltd, 224 Bath Road, Slough.
WW316 for further details

Coaxial-line attenuator

Flann Microwave have introduced a continuously variable, coaxial-line attenuator providing an attenuation range from 0 to 40 dB when calibrated at 2.5 GHz and from 0 to 60 dB when calibrated at 10 GHz . The insertion loss is 0.5 dB maximum and the v.s.w.r.
is less than 1.35. The attenuator is direct reading and special models are available for narrow frequency bands within the 1 to 2.5 GHz range. Flann Microwave Instruments Ltd, Dunmere Road, Bodmin, Cornwall PL31 2QL.
WW314 for further details

Delay timer

An electronic timer, type ETA, will provide delay times from three seconds to 20 minutes with a choice of four time ranges. Repeat accuracy on continuous cycling is around 1%, and a change of 5% in the supply voltage will only alter the timing by about 1.5% The unit is available with an inbuilt or remote potentiometer for adjustment of the delay. The output relay has double pole changeover contacts rated at 3 A 250 V a.c. with a 5A option available. Appliance Components Ltd, Cordwallis Street, Maidenhead, Berks, SL6 7BQ.
WW329 for further details

High-voltage probe

A hand-held probe designed for measuring up to 30 kV has been introduced by Brandenburg Ltd. The probe is constructed from moulded polypropylene with a nylon insulated tip and a brass contact point. A safety feature incorporated in the design is the arrangement of the e.h.t. cable, which is brought out of the probe in front of the hand shield. The probe measures 260 mm with an 85 mm diameter shield, and weighs 75 grams. The price, including 2 metres of e.h.t. cable, is $£ 5$ plus v.a.t. Brandenburg Ltd, 939 London Road, Thornton Heath, Surrey CR4 6JE.
WW312 for further details

Drop-proof multimeter

The latest addition to the DaystromSchlumberger range of drop-proof multimeters is the 666. This model has been designed with semiconductor-circuit trouble-

shooting in mind. The instrument has a $10 \mathrm{M} \Omega$ input impedance and ohms-range with low voltage-drops. Plug-in circuit boards are used for easy maintenance and they can be calibrated without removing the instrument from its case. Compensation against temperature effects and a diode protected mechanism are provided in the meter which measures $7 \times 5 \times 2 \frac{1}{2}$ in and costs around $£ 33$. Daystrom-Schlumberger, Bristol Road, Gloucester GL2 6EE.
WW307 for further details

Tunable quadrature oscillators

Now available from Lyons Instruments is the Frequency Devices Inc. range of precision sinewave oscillators. The 440 series of resistive tunable oscillators offer a distortion of 0.08% and two buffered outputs $90^{\circ} \pm 0.1^{\circ}$ out of phase, with a claimed amplitude tracking of better than 100 p.p. $\mathrm{m} /{ }^{\circ} \mathrm{C}$. Tuning over a $1000: 1$ range is possible with two equal resistors. The three models, 440,442 and 444 , cover the ranges 0.05 to $50 \mathrm{~Hz}, 0.5$ to 500 Hz and 20 Hz to 20 kHz respectively. The units are priced at $£ 39.50$ plus v.a.t. (100 off). Lyons Instruments Ltd, Hoddesdon, Herts.
WW301 for further details

Laser power meter

A meter called the model 504 provides direct power read out at any wavelength from 440 nm to 680 nm in 1 nm steps. The wavelength to be monitored is dialled on the front panel and the power range is selected from seven scales between 10 mW and 10 W . The unit is suitable for use with any type of visible c.w. laser from the sub-milliwatt devices through to the 10 W argon lasers. The instrument, which is battery powered, incorporates a 0 to 50 mV socket for recording purposes and is priced at $\$ 495$ including the attenuators for operation up to the 3 W range. The optional

WW307
attenuator required for the 10 W range is priced at $\$ 75$. Lexel Corporation, 928 East Meadow Drive, Palo Alto, California, USA. WW315 for further details

Liquid crystal displays

A range of l.c. digital displays are available in either the transparent or reflective mode. The digits, which come in different sizes, are encapsulated in bezels ready for mounting. The voltages range from 18 to 35 V a.c. with a frequency from 50 to 300 Hz . Consumption is 3 nA per segment, and the rise time is $4-9 \mathrm{~ms}$ with a decay time of 100 150 ms . The contrast ratio for the transparent type is $80: 1$ and $20: 1$ for the refiective type. An average life of 25,000 hours is claimed in an operating temperature range from -20 to $+80^{\circ} \mathrm{C}$. Nimrod Electronics Ltd, Vann Lane, Chiddingfold, Surrey GU8 4TP.
WW311 for further details

Heat sinks

The latest range of heat sinks from Jermyn is the ACH and BCH series for plastic TO66 and TO3 devices respectively. Each of the series is available in two versions for mounting either one or two devices. Thermal resistance figures for single and double ACH types are $28^{\circ} \mathrm{C} / \mathrm{W}-12.5^{\circ} \mathrm{C} / \mathrm{W}$ respectively, and $15.5^{\circ} \mathrm{C} / \mathrm{W}-10^{\circ} \mathrm{C} / \mathrm{W}$ for the BCH type. Jermyn Manufacturing, Sevenoaks, Kent.
WW304 for further details

WW315

WW311

WW304

Solid State Devices

The names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

Time-base generator

A recent addition to the Motorola c.m.o.s. family is the MC14566 time-base generator. This device consists of two pulse shapers, a divide-by-ten ripple counter, a divide-by-five (or six) ripple counter and a monostable multivibrator. A single MC14566 can be arranged to divide by 50 or 60 to produce one pulse per second from a 50 or 60 Hz input. In addition, a b.c.d. output indicating tenths of a second is available.

A second device can be connected in cascade with the first to provide one pulse per minute and a b.c.d. output of up to 59 seconds. With a third chip a complete digital clock can be constructed.
WW350 for further details
Motorola

Switch debouncer

National have introduced an i.c. called the DM8544 which performs switch-debounce functions for four switches. The device consists of four RS flip-flops with internal pull-up resistors. A strobe control is provided which allows the switch state information to be sampled at a predetermined time. All control inputs/outputs are t.t.l. compatible for the device which operates in a temperature range from 0 to $+70^{\circ} \mathrm{C}$.

WW351 for further details

National Semiconductor

A.g.c. attenuator diode

The 1 N 5957 PIN diode has been designed as a current-controlled variable-resistance element suitable for a.g.c. circuits. The diode has a resistance range of four decades in a temperature range from -195 to $+300^{\circ} \mathrm{C}$. A carrier lifetime of 1.5 to $2 \mu \mathrm{~s}$ is claimed for the device, with a leakage current of $10 \mu \mathrm{~A}$ and a total capacitance of 0.4 pF .

WW352 for further details G.E. Electronics

L.e.d. incorporating logic

A complex i.c. from SDS combines a sevensegment l.e.d. display with a b.c.d. counter, display storage latches, a b.c.d. to sevensegment decoder and constant current display drives. The device counts input pulses at up to 18 MHz and displays the result. Using this chip it is possible to construct a high-speed multi-digit fully synchronous counter system without any external logic.

WW353 for further details

SDS

Suppliers

Motorola Inc., Semiconductor Products Division, PO Box 8, 16 Chemin de la Voie-Creuse, 1211 Geneva 20, Switzerland. National Semiconductor UK Ltd, The Precinct, Broxbourne, Herts EN 10 7HY. G.E. Electronics (London) Ltd, Eardley House, 182/184 Campden Hill Road, Kensington, London W8 7AS
SDS Components Ltd, Hilsea Trading Estate, Portsmouth, Hants PO35JW.

Recommended retail price £199 plus VAT. In easy to build kit form only $\mathbf{£ 9 8}$ plus VAT !!!

This must be the best value for money calculator offer ever made. In fact, the first programmable calculator, as far as we know, ever sold in kit form.

Below we're showing you just what it can do. For you, or for your company.

But don't make up your mind now. Use the coupon and we'll send you a full pack of information absolutely free.

Here's what you get in an Advance 162P programmable calculator.

(Remember, you get all this for only $£ 98$ plus VAT)

- 40 steps of programme. Two independent accumulating memories. An automatic accumulate mode on both memories. - Straightforward algebraic logic entry. 16 digits of resolution. - An exponent capability of 10^{48}. Square roots just by pressing a key. A live $\%$ key. Reciprocals by using the exchange key. - A sign change key to change from positive to negative.
- Decimal point fully floating or fixed from 0 to 6 places.
- Lots of other features and facilities which are fully described in our literature. A full, one-year guarantee from Advance Electronics with the manufacturers servicing facilities available.

In the unlikely event that anything goes wrong a minimum charge of $£ 5$ will be made where damage due to incorrect assembly has occurred.

Applications

Works costing, commercial mark up, compound interest, equal repayments, statistical calculations and many, many other roles. Probably the most versatile business calculator ever produced!

Just complete this coupon and we will send you, without any obligation, full information on the Advance 162P programmable calculator immediately.

The pack includes a data sheet, a special introduction to the 162 P giving a simplified guide to its potential, a how to programme' document and no
 fewer than eight sample programmes. They're all yours for the asking.
To Calculator Division, Advance Electronics Limited, Raynham Road, Bishop's Stortford, Herts. Telex: 81510.
Please send me, without any obligation, full information on the Advance 162P programmable calculator which is on special offer to readers of Wireless World.
Name
(please use block capital lethers)
Address \qquad

Advance Calculators,
Raynham Road, Bishop's Stortford, Herts.
Telephone: 027955155 Telex: 81510

WirelessWorld FULLCOLOUR WALLCHART OF FREQUENCY ALLOCATIONS 80p

The wallchart shows the allocation of frequencies within the radio spectrum ranging from 3 kHz to 300 GHz and is scaled on eight logarithmic bands contriving 15 main categories of transmissions which are identified by colours. All the important spot frequencies and 'special interest' frequencies are marked. The information is taken from the ITU and has been condensed into easily read chart form. Measures $2^{\prime} 11^{\prime \prime} \times 1^{\prime} 11^{\prime \prime}$.

9 \& 10 CHAPEL ST., LONDON, N.W.I 01.7237851

TRANSFORMERS FOR LINSLEY HOOD AMPLIFIERS Fully shrouded, terminal block connections. Pri. 220-240v. Screen
tap. Sec. $30-25-0-25-30 \mathrm{v}, 2 \mathrm{mps}$. 54.75 , car. 40 p . Heavy duty type tap. Sec. $30-25-0-25-30 \mathrm{v}$. 2 amps. $£ 4.75$, c
$36-25-0-25-35 \mathrm{v}$. 5 amps . $£ 975$, carr. 50 p.

STEP DOWN 240/110V AUTO TRANSFORMERS 3000 watts. Built into steel case with two American 2 pin grounded
socket outlets. Carry handle. 6 tt. mains lead. $£ 29.50$, carr. $£ 2$ Withoul case and tittings $£ 22.00$, carr. $£ 1.50$.
Other Types Available. $80-1500$ watts, fully shrouded, with
American socket outlet and 6 ft . mains lead. Let us know your American soc
requirements.

H.T. SMOOTHING CHOKES GARDNER 'C1 core lypes. 10H 250
M/A $£ 2.00$, post. $40 \mathrm{p} .20 \mathrm{H} \quad 180 \mathrm{M} / \mathrm{A}$ m / A. 2.00 , post. 40 p . $20 \mathrm{H} 180 \mathrm{M} / \mathrm{A}$
$£ 200$ post. 40 p . 12 H 10 C M/A 85 p , post.

DAVENSET ISOLATION TRANSFORMERS
Pri. $10-0.200-240 \mathrm{v}$. Sec. 240 v . Centre
tapped 1.2 kva Cons. tapped 1.2 kva Conservatively $\begin{aligned} & \text { Cated. } \\ & \text { Size } 8 \frac{1}{2} \times 7 \times 8 \frac{1}{2} \text { ins. Wgt. } 59 \text { Ibs. Open }\end{aligned}$ Size $8 \frac{3}{3} \times 7 \times 8 \frac{1}{2}$ ins. Wgt. 59 Ibs. Open
frame type, terminal connections.
fraction of Frame type, terminal connections.
craction of maker's price. $£ 17.00$,
carr. $£ 1.50$. G . E. potted Sealed Type. Pri. $220-230-240-250 \mathrm{v}$. Sec. Type. 230 v .
4 amp. Size $8 \times 7 \times 6$ ins. $£ 15.00$, ${ }^{4}$ amp. Size $8 \times 7 \times 6$ ins. $£ 15.00$, carr.

DRAKE ISOLATION 240/110 Pri. Tapped $10-0-200-220-240$ Sec. 110 v
40 watts. Shrouded. $£ 6.50$, carr. 75 p .
 unshrouded. Table top connections.
E2.25, p.p. 40 p. HEAVY DUTY ISOLATION
 PARMEKO Admiralty. Pattern.
Pri. 230v. Sec. 230 v . C.T. 20 amps.
Very conservatively rated. Test to Very conservatively rated, Test 10
earth 2000 s Size $17 \times 14 \times 16$ ins.
Weight 320 Ibs. $£ 50-00$ ex warehouse.

AUTO TRANSFORMERS Partridge. Tapped $0-220-230-240-250 \mathrm{~V}$
500 watts 500 watts unshrouded table top con-
nections $£ 250$, carr. 40 p . Lemark nections $£ 2.50$ carr. 40 p . Lemark
tapped $0-240115 \mathrm{v} 500$ watts unshrouded table top connections 55.00 , carr. 60 p . 300 watts E3.50, carr 50 .
12 volt 2 amp TRANSFORMER enclosed in metal case. Size $5 \times 4 \frac{1}{2} \times 3$
ins. with fitted input and output fuses. On/off switch. Output sockets and 4
240 v . malns lead. $£ 2.75$ D. D. 35 p . DRAKE L.T. TRANSFORMERS
 nections,
$220-240 \mathrm{v}$, Sec. 1,30 , 37 rr .6 A . Sec. 2 . 37 v . $2 \mathrm{~A}, 21 \mathrm{~V}, 11 \mathrm{~A}$, open frame table top
connections, $£ 9.50$, carr. $£ 1$.

LEMARK Pri. 240v. Sec. 40v. 6a. 5-0-5v
 24v. $630 \mathrm{~m} / \mathrm{a}$ twice. $24 \mathrm{v} .65 \mathrm{~m} /$.a and 115 v .
2a. auto tap on primary. Open frame table top connections $£ 3.50$ carr, 50 p
 have a screen winding.

HIOKI 730X

OUR PRICE $£ 7.50$
 ohms. Size 205×1 plied complete with leads, crocodile
clips and steel carrying case. OUR PRICE $£ 8.75$

U4312 MULTIMETER

 extremely sturdyinstrument for
general general electrical $00350 / 50.5 / 30 /$
$600150 / 300 / 600 /$ $\mathbf{9 O O V D C} 875 \mathrm{mV}$.
$0 / 0.31 .5 / 7.5130 /$
 $600 \mathrm{~mA} / 1 / 1.5 / 6 \mathrm{~A}$
DC
$0 / 1.56 / 15 /$
 accuracy 1%. AC 1.5%. Knife edge
pointer, mirror scale. Complete with Decibels: $/ 10$ to +17 dB . Output:-
$0-3 / 6 / 15 / 30 / 60 / 120 / 300 \mathrm{~V}$. Accur acy $\pm 3 \% \mathrm{DC}, \pm 4 \%$ AC. Sensitivity
50,000 opv DC, 5,000 opv AC. 4 inch meter. Built in protection. Size: 57×153
$102 \times 153 \mathrm{~mm}$. OUR PRICE E11.95 P\&P40p

TMK MODEL TW50K
46 ranges, mirror
5 cale $50 \mathrm{k} N \mathrm{NDC}$
$50 \mathrm{k} N \mathrm{AC}$.
DC Volts. $0.125 /$
$0.251,25 / 5 / 5 / 10 /$ 25/50/125/250) 1.5/3/5/10/25/5 1000. DC curren $25 / 504 \mathrm{~A} / 2.5 / 5 / 25 /$
$50 / 250 / 500 \mathrm{~mA} / 5$! 10A. Resistence: $10 \mathrm{k} / 100 \mathrm{k} / 1 \mathrm{Meg}$
 10 Me . OUR PRICE f12.50 P\&P 20p

Model HT100B4 MULTIMETER

 Overload protected,shock proof circuits.

mirror scale. Sensitivity 100 kV . Polarity change

 switch. Rolarity change$1-/ 50 / 250 / 500 / 1,000.5$
Volts Volts DC. $2.5 / 10 / 500$
$250 / 1,000$ Volts AC.
DC resistence' $0-20$, $200 \mathrm{k} / 2 / 20 \mathrm{Meg}$. ohms. DC current:- $10 / 250 \mathrm{uA} / 2.5 / 25 / 250$
$\mathrm{~mA} / 10 \mathrm{~A}$. AC current: $-0-10 \mathrm{~A} .-20$
to +62 dB . Operates from $2 \times 1.5 \mathrm{~V}$ batteries. Size: $180 \times 134 \times 79 \mathrm{~mm}$. OUR PRICE E17.50 P\&P 40p

MODEL AS.100D VOM 100.000 opv.

 100.000 opv.Mirror scale. Mirror scale.
Built-inmeter protection. 0/3/3/
$12 / 60 / 120 / 300 /$ $600 / 1200 \mathrm{VDC}$.
$0 / 6 / 30 / 120 / 300 /$ $600 \mathrm{VAC} .0 / 10 \mu \mathrm{~A}$ 6/60/300mA $12 \mathrm{Amp} .0 / 2 \mathrm{~K} /$
$200 \mathrm{~K} / 2 \mathrm{M} / 200 \mathrm{Me}$
 OUR PRICE f1750 PGP30
 centrescale) D

$2.5 \mathrm{~m} / \mathrm{A} / 250$ $10+68 \mathrm{~dB}$

OUR PRI

Kamoden 360 multimeter

$$
80 \times
$$

MODEL C7208FM

$$
-1-1-1
$$

30.000 opv DC $15,000 \mathrm{opVAC}$.
$6 / 3 / 15 / 60 / 300$ $\times 50$. $100 . \times 1000$ (50Ω centrescale)
DC Current 30 uA OUR PRICE £8.95 P \& P 30p MODEL AF. 105 VOM 50,000 opv. Mi
scale. Meter protection.
$0 / 3 / 3 / 12 / 60 / 120 /$ 300/600/1200V DC 0/6/30/120/
$300 / 600 / 1200$ $0 / 30 \mu \mathrm{~A} / 6 /$
$60 / 300 \mathrm{~mA}$
12 Amp. $0 / 10 \mathrm{~K}$

$1 \mathrm{~m} / 10 \mathrm{~m} / 100$

OUR PRICE £ 12.50 PGP 30p. Tests ICO and B.
PNP/NPN Oper from $9 V$ battery.
Instructions supplie OUR PRICE
E3.95 P\&P 20
LB4 TRANSISTOR TESTER
Tests PNP or NPN
transistors. Audio indication. Operates
on two batteries. Complete OUR PRICE
E4.50 P\&P 20p U4341 Multimeter 8 Transistor Tester 27 ranges. 16,700opv. Ranges: $0.3 / 1.5 / 6$. Ranges: $0.3 / 3.5 / 6 /$
$30 / 60 / 150 / 300 / 900 \mathrm{~V}$ DC. 1.5/7.5/30/150/ $300 / 750 \mathrm{~V}$ AC. Current: 0.06/0.6 $0.3 / 3 / 30 / 300 \mathrm{~mA} \mathrm{AC}$. Resistance: 0.06) $0.6 / 2 / 6 / 20 / 60 / 200 \mathrm{k}$ ohms $/ 2$ Mohms.
Battery operated. Supplied complete with probes, leads and steel carrying
case Size: $115 \times 215 \times 90 \mathrm{~m}$ OUR PRICE E10.50 P\&P 30p S100TR MULTIMETER TRANSISTOR TESTER 100,000opv. Mirror
scale. Overload scale. Overload
protection. $0 / 0.12 /$ $.6 / 3 / 12 / 30 / 120 /$
00 V DC. $0 / 6 / 30 /$ 120/600V AC. $10 / 12 / 600 \mathrm{u} A / 12 /$
$300 \mathrm{~mA} / 6 / 12 \mathrm{AC}$ $0 / 10 \mathrm{k} / 1 \mathrm{Meg} /$
-20 to +50 dB .
Transistor tester measures Alpha, Bota and 1 istor tester measures Alpha, Beta
andere with instructions. batteries and leads. OUR PRICE f19.95 P\&P 25p CI5 PULSE OSCILLOSCOPE For display of pulse
and periodic waveforms in electronic
circuits. VERT. AMP Bandwidth: 10 MHz .
Sensitivity at 100 kH
俍 Vensitivity at 100 k
VRMS/mm: $0.1-25$
HOR. AMP Band HOR. AMP Band width: 500 kHz
Sensitivity ay 100 kHz
VRMS $/ \mathrm{mm}: 0.3-25$
 VRMS/mm: 0.3-25

0 2 0
 5

 $5 \mathrm{Meg} / 50 \mathrm{Me}$ OUR PRICE $£ 19.95$ P\&P 30p KAMODEN 72.200 Multitester High sensitivitytester. 200,000 tester. 200,000 op
Overload protected
Mirror scale.
Ranges: - $0 / .06 / .3$ $3 / 30 / 120 / 600 / 3$
$1200 \mathrm{VC} 0 / 3$ 12/60/300/11200 $V A C \cdot 0 / 6 u A /$
$1.2 \mathrm{~mA} / 120 \mathrm{~mA} /$ $600 \mathrm{~mA} / 12 \mathrm{mDC}$ +63 A AC . 20 20
$+63 \mathrm{~dB} .012 \mathrm{k} / 200 \mathrm{k} /$
OUR PRICE $\mathbf{f} 22.50 \quad$ P\&P $30 p$ U4317 MULTIMETER

Ranges: $100 \mathrm{mV} /$
$0.5 / 2.5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$
V DC. $0.5 / 2.5 / 10 / 25 / 50 / 100 / 250 /$ 500/1000V AC. Current: 50uA/0.5/ 1/5/10/50/250mA/1/5A DC. 0.25/ 0.5/1/5/10/50/250mA/1/5AAC. Res. istance:
$30 / 300 \mathrm{k}$ ohms. Decibels: -5 to +10 dB Battery operated. Size: $210 \times 115 \times$ 90 mm . Supplied in carrying case com
OUR PRICE $£ 16.50 \quad$ P\&P 40p MODEL U4311 Sub-standard Multi-range Volt-Ammeter Sensitivity 330
Ohms $/$ Volt AC and DC. Accuracy 0.5\%
DC. 1% AC. Scale length:
165 mm . Preset triggered sweep
$1-3000$ usec. Free running 20-200 $1-3000$ usec. Free running $20-200$
kHz in nine ranges. Calibrator pips.
$220 \times 360 \times 430 \mathrm{~mm} .115-230 \mathrm{~V}$ AC. OUR PRICE $£ 43.00 \quad$ Carr. paid RUSSIAN CI16 Double Beam OSCILLOSCOPE 5 MHz pass band.
Separate $Y 1$ and Y 2
amplifiers amplifiers. Pectang-
ular $5^{\prime \prime} \times 4^{\prime \prime} \mathrm{CRT}$. Ular $5^{\prime \prime} \times 4^{\prime \prime}$ CRT
Calibrated triggered Calibrated triggered
sweep from 0.2 zsec .
to 100 milli-sec/cm. Free running time
base $50 \mathrm{~Hz}-1 \mathrm{MHz}$
Buil base, bulitin time base Calibrator and amplitude Calibrator. Supplied complete with all accessories
and instruction manual. OUR PRICE f 870

SWR METER Model SWR3

Handy SWR meter for
transmitter antenna align
ment with built-in field ment, with built-in field
strength meter. Accuracy strength meter. Accuracy
5% Impedence 52 Indic
ator 100 uA DC. Full ator 100 uA DC. Full
sate 5 section collapsiblen scale 5 section collapsible
antenna. Size $145 \times 50 \times$ 60 mm .

MODEL TE15

TRANSISTORISED L.C.R. A.C BR/8 MEASURING BRIDGE
 A new portable
bridge offering excellent range and accuracy at low
cost. Resistance ohm-11.1 megohm $\pm 1 \%$ inducthenries $\pm 2 \%$ Capacity: 6 ranges $10 \mathrm{pf}-1110 \mathrm{mfd} \pm 2 \%$ Turns Ratio
6 ranges: $1: 1 / 1000-1.11100 ~$
1% Bridge Voltage at $1,000 \mathrm{cps}$. Opera amp meter indication. Size 7 inn n $5^{\prime \prime} \times 2^{\prime \prime}$ OUR PRICE $£ 25.00$ P\&P 30p

TE16A TRANSISTORISED SIGNAL GENERATOR
 Size: $149 \times 149 \times 92 \mathrm{~mm}$. Complete
with instructions and leads.
OUR PRICE $£ 8.97$
 200/250V
AC operation. Supplied brand now
guaranteed, with instruction manual
and leads. OUR PRICE £24.95 P\&P 50p
 $220 / 240 \mathrm{~V} A C$ operation. Complete OUR PRICE $\mathbf{\$ 3 7 . 5 0 ~ P \& P 5 0 p}$

MODEL MG 100 SINE SQUARE
 WAVE AUDIO GENERATOR Range 19 .
220.000 Hz 220.000 Hz Sine Wave $19-100,000 \mathrm{~Hz}$ Square Wave. Size $180 \times 90 \times 90 \mathrm{~mm}$. Operation OUR PRICE £19.95

SPECIAL BARGAIN! FERGUSDN $3406 \mathrm{HI}-\mathrm{FI}$ SPEAKERS
High quality 2 way speaker sy stems.
25 Watts $4-8$ ohms. $40 \mathrm{~Hz}-18 \mathrm{kHz}$.
 OUR PRICE $£ 22.50$ PR: P\&P $£ 1$

POWER RHEOSTATS
High quality ceramic
construction. Wind-
ings emberdded in
vitreous enamel.
Heavy duty brush
wiper: Continuous
rating. Single hole fixing. $1 /{ }^{\prime \prime}$ " diam
Bulk quantities available.
25 WATT 10/25/50/100/500/1000, 2500 ohms. $\quad £ 1.15$ P\&P 10p 50 WATT 10/50/100/250/500/ $1500 / 5000$ ohms. $£ 1.62$ P\&P 10p 100 WATT $1 / 5 / 10 / 25 / 50 / 250 / 500 /$ 2500 ohms. 500 Ohms
$£ 2.34$ P\&P 15p KE630 3 Station INTERCOM

PS200 Regulated POWER

 SUPPLY UNIT

AUDIOTRONIC LE-102A INTERCOMS
 useful in the home, office or shop and is suitable for use as baby alarm. Wall or desk mounting 57 mm speaker/mic gives clear 2 way communication with on/off
and volume control on master unit. Operates on 9vbatt. Approx.
60ft lead
OUR PRICE $\mathbf{~} 3.95 \quad$ P \& P 30 p
TRITON 4318 PORTABLE 8 TRACK CARTRIDGE PLAYER WITH MW/LW

medium and long wave
bands. Volume and tone controls. Earphone socket. Battery/Mains

OUR PRICE E11.95 P\&P50p

EA41 REVERBERATION AMPLIFIER Self contained, transistorised, tattery battery operat Simply plug in microphone, guitar etc, and outpur your amplifier. Volume control and depth of reverberation control. Beandep th of reverberation control. Beas- walnut cabinet. $184 \times 77 \times 108 \mathrm{~mm}$. OUR PRICE $£ 7.50 \quad$ P\&P 30p

OUR PRICE $£ 1.97$ P\&P 30p
DH02S STEREO HEADPHONES Wonderful value
and exceflent and excellent
performance combinad. Adjus
able head band. 1 mpedence 8 oh
$20-12,000 \mathrm{~Hz}$. Complete with
OUR PRICE $\mathbf{f 2 . 2 5}$

TE1035 Stereo HEADPHONES Lewnt response. Foam
ell bber earcups. Adjus. nubber earcups. Adjust-
able headband. 8 ohms impedidnce. Frequency
response $25 \mathrm{~Hz}-18 \mathrm{~Hz}$
and stereo jack plug.
OUR PRICE $£ 2.60 \quad$ P\&P 30p

BH001 HEADSET and Boom
$\begin{array}{l}\text { Microphone } \\ \text { Moving coil. Ideal } \\ \text { for language } \\ \text { teaching, } \\ \text { coming } \\ \text { cations. } \\ \text { Headphone. imperence } 16 \text { ohms. Mic. }\end{array}$

Headphone impedence 16 ohms. Mic-
rophone impedence 200 ohms.
OUR PRICE £5.95 P\&P 30 p

HANIMEX HRC 3075

CASSETTE RADIO

OUR PRICE $£ 12.95$ PAIR P\&P 50p
FM TUNER CHASSIS F transistor
high quality
tuner

tuner. Size only $153 x$ 10y jor

only 153 x
$101 \times 63 \mathrm{~mm}$
3 IF stages
Double tuned

discriminator. Ample output to terd most amplifiers.
Operates on 90
oattery. Covers 88 Operm Hz, Ready built, ready for 4 use,
F OUR PRICE f8.95 P\&P 20 p

SPECIAL OFFER! SAVE OVER 50% $\frac{\square}{0.20}$

AMSTRAD 8000/2 Stereo amplifier watts per channel rms. Inputs ocket. List price $£ 29.95$
OUR PRICE £12.95 P \& P 60p
SPECIAL DFFER! CONVERT YOUR STEREO SYSTEM TO 40 SOUNO FOR UNDER $£ 16$.

$000 \Leftrightarrow 80$

Exclusive offer of GOODWIN 4CHANNEL CONVERTER and a pair speakers enables you to add 40 sound to your existing system Complete with simple connection details. Normal retail value $£ 25.50$ OUR PRICE £15.80 P \& P E1 GOODWIN CONVERTER available separately £3.95 P \& P 50p

Model TUNER
 31F stages and double tuned For use with. most amplifiers. Covers 88-108MHz. Powered by $9 V$ battery. OUR PRICE £ 13.50
 electronic calculators

We carry a tremendous range o both pocket and desk calcula tors from as liztie as $£ 9$ Owing to the demand is is not
possible to include them in this advertisement, so send for our latest price list or call into any branch.

SINCLAIR SYSTEM 2000 STEREO AMPLIFIER and tuner

万人
 AMPLIFIER

Amplifier output 8 watts per channel RMS. Distortion less than
0.06%. Silicon transistors. 0.06%. Silicon transistors. Two
pick-up plus radio and tape inputs, tape output and scratch filter Excellent Value.
OUR PRICE £27.50 P\&P60p

FM TUNER

Excellent selectivity and sensitivity. Twin dual-varicap tuning
4 pole ceramic filter. 19 transisto sterso demodulator giving 40 dB separation. Distortion 0. 2% output. OUR PRICE 127.50 P \& P $60 p$.

SINCLAIR ICI2
INTEGRATED
CIRCUIT
AMPLIEIER
AMPLIFIER
complete with
printed circuit
OUR PRICE £ 1.50
SINCLAIR Project 80 Modules
 Sterbo 80 Pre-Amp Active Filter
Project 805.
PZ5 Power Supply
P26 Power Supply
P28 Power Supply.... $£ 7.988$ of \& P 30 p SINCLAIR Pr PZ8, £4.05.P \& \& ${ }^{2} 50 \mathrm{p}$ SINCLAIR Project 80 Packages $2 \times 240 /$ Stereo $80 / P Z 5$
$2 \times 240 /$ Stereo $80 / P 26$ $2 \times 260 /$ Stereo $80 / P 28$.
POST \& PACKING 35p each

TE1021/ Stereo Listening Station
For balancing
and gain selection
of toudspeakers
with additional
facility for stereo
headphone
switching. Two
gain controls, speakers on-off slide
switch, stereo headphone socket.
OUR PRICE $£ 2.25$ AUDIOTRONIC

8 TRACK CARTRIDGES $\begin{array}{lcrr}\text { TYPE } & \text { Each } & 5 & 10 \\ 40 \mathrm{M} & 85 p & £ 4.00 & £ 7.50 \\ 80 \mathrm{M} & £ 1.15 & £ 5.40 & £ 10.25 \\ \text { P\&P Cassettes } & 30, \text { Cartridges } & 50\end{array}$ | P\&.P Cassettes 30, Cartridges 5P each |
| :--- |
| OVER 10 of either POST FREE! | MP7 MIXER-PREAMPLIFIER 5 Microphone

inputs each with individual gain

controls enabling

facilities. Battery operated. Size: 235 facilities. Battery operated. Size: 235
$\times 127 \times 76 \mathrm{~mm}$. Inputs: Mics. $3 \times 3 \mathrm{mV}$
$50 \mathrm{k}: 2 \times 3 \mathrm{mV} 600$ ohms. $\times 027 \times 3 \mathrm{mv}$. 600 ohms. Phono. Mag.
$50 \mathrm{k} ; 2 \times 30 \mathrm{mics} .3 \times 2 \mathrm{mV}$
$4 \mathrm{mV} 50 \mathrm{k} ;$ Phono Ceramic 100 mV 1 OUR PRICE CB 97

AUDIOTRONIC AHA10
Stereo Headphone Amplifier All silicon,
transistor
 twin stereo headphone outputs and
separate volume controls for each
channel. Operates from $9 v$ battery. channei. Operates from $9 V$
INPUTS: $5 \mathrm{mV} V$ and 100 mV .
OUR PRICE 5850

All kits are complete with comprehensive easy to follow instructions and
covered by full guarantee covered by full guarantee.
Post and Packing 15p p
AF 20 Mono amplifier.......
AF 25 Mixer...............
AF 30 Mono pre-amplifie
AF30 Mono preamplitier
AF 800.5 W mic. amplifier.
AF 305 interconl
AF 3102 Mono An
M160 Multi-vibrator.
M191 VU Meler...
M192 Stereo balan
LF380 Quadraphonic device
AT30 Photo cell switch unit...
AT56 2,200W triac light
dimmer/sped control...... $£ 675$
AT601 channel light control.. $£ 10.82$
AT65 3 channel light control... 16.52
GU330 Tremolo unit
HF61 Diode detector.
HF65 FM transmitter
HF65 FM transmitt
HF75 FM receiver.
HF310 FM tuner...
HF325 Deluxe FM tuner
HF330 Decoder HF $310 / 325$
GP310 Stereo preamplifier
for use with $2 \times A F 310$.
GP312 Circuit board.
GP304 Circuit board
$£ 5.61$
$£ 3.29$
$£ 3.20$
$£ 242$
(1).... $£ 533$

HF 380 Iw/vht aerial amplifier
HF 395 broadband aerial amp. $£ 21002$ NT10 Stabilised power supply
 NT 310 Power Supply 240 VAC
or $2 \times 18 \vee \mathrm{DC}$ at 2 amps
E .64 NT315 Power supply 240 V NT 315 Power supply 240 VAC
$104,5 / 15 \mathrm{~V}$ DC, $500 \mathrm{~mA} \ldots \ldots$
$£ 12.06$.
Amateur Electronics by Josty. Kit,
the professional book for the amateur the professional book for the amateur
-covers the subject from basic principas. Complete with circuit board for
AE1 to AE10 listed below.
OUR PRICE $£ 3.30$ (No VAT)
P\&P 25p plus VAT.
$\begin{array}{lll}\text { AE } 1 & 100 \mathrm{~mW} \text { output stage } ~ & \text { £ } 1.55 \\ \text { AE } 2 \text { Pre-amplifier............... } & \text { \& } 1.32\end{array}$
AE3 Uiode receiver.
AE5 Astable multi-vitrator
AE MCC generatur.
AE9 Treble fititer

Also see previous page
 ALL PRICES
 exclude vat

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC. Over $\mathbf{2 0 0}$ ranges in stock-other ranges to order: Quantity discounts available. Send for fully illustrated brochure

CALL INTO YOUR NEAREST LASKYS BRANCH OR SEND COUPON BELDW FOR NEW 16 PAGE HI-FI PRICE LIST

CENTRAL LONDON

48I OXFORD St.	01.4938641
3 LISLE ST. WC2	01-4378204
34 LISLE ST. WC2	01-4379155
118 EDGWARE RD. W2	01-723-9789
193 EDGWARE RD. W2	01.7236211
207 EDGWARE RD. W2	01.7233271
311 EDGWARE RD. W2	01-262 0387
346 EDGWARE RD. W2	01.7234453
382 EDGWARE RD. W2	01.7234194
109 FLEET ST. EC4	01.3535812
152/3 FIEET ST. EC4	01.3532833
10 TOTTENHAM CT. RD.	$01-6372232$
27 TOTTENHAM CT. RD.	$01-6363715$
33 TOTTENHAM CT. RD.	$01-6362605$
42/45 TOTTENHAM CT. RD.	01.6360845
257/8 TOTTENHAM CT. RD.	$01-5800670$
ESSEX	
86 SOUTH ST. ROMFORD	20218
205/206 CHURCHILL WES VICTORIA CIRCUS, SOUTH	0702612241
KENT	
53/57 CAMDEN RD., TUNBRIDGE WELLS$0892-23242$	
LEICESTERSM1RE	

45 MARKET PLACE, LEICESTER 0533.537678
 73 ABINGTON STREET, 73 ABINGTON STREET,
NORTHAMPTON (Opening beto October)

STAFFORDSHITIE (Opening late September) 1046 WHITGIFT CENTRE, CROYDON $\begin{array}{ll}27 \text { EDEN ST. KINGSTON } & 01-6813027 \\ 01.5467845\end{array}$ $\begin{array}{ll}\text { 38/40 EDEN ST. KINGSTON } & 01-5461271 \\ 32 \text { HILL ST. RICHMOND } & 01.9481441\end{array}$ 32 HILL ST. RICHMOND 01.9481441
WARWICKSHREE
116 CORPORATION ST., BIRMINGHAM 021-236 3503

NO DEPOSIT TERMS available on most goods for personal callers

CHEDUES TO THE VALUE OF fJo. ACCEPTED FRDM PERSONAL SHO ACCEPTEO FRDM PERSONAL SHOPPERS WITH BANKERS CARD. IN OTHER CASFS AND FOR AMDUNTS IN EXCESS OF E30 PLEASEALIOW TIMEE FIR CLEARANCE bankers drafts accepted.

EMROMASOMP Electronics

 Corner
COM PLETE TELEPHONES NORMAL ETUSEHOLD TPE AS Only $99 p$

879	4	1N4007 Sil. Rec. diodes. 1.000 PIV lamp plastic	50p
B81	10	Reed Switches $1^{\prime \prime}$ long $\frac{1}{\frac{1}{1}}{ }^{\prime \prime}$ dia High speed P.O. type	50p
н35	100	Mixed Diodes. Germ. Gold bonded etc. Marked and Unmarked	50p
H38	30	Short lead Transistors. NPN Silicon Planar types	
H39	6	Integrated circuits, 4 Gates BMC 962, 2 Flip Flops BMC 945	50p
H41	2	Power Transistors Comp. Pair BD 131/132	Sop
H63	4	2N3055 Type NPN Sil. power transistors. Below spec. devices	
H65	4	40361 Type NPN Sil. transistors TO-5 can comp. to H66	50p
H66	4	40362 Type PNP Sil. trans TO-5 can comp. to H65	

Unmarked
 Untested Paks

50	Germanium Transistors $\quad 50 \mathrm{p}$ PNP, AF and $R F$.
${ }^{866} 150$	Germanium Diodes Min. glass type $\quad \mathbf{5 0 p}$
${ }^{884} 100$	Silicon Diodes DO-7 glass Equiv. to OA200. OA202 $\quad \mathbf{5 0 p}$
${ }^{886} 100$	Sil. Diodes sub. min. ing 14 and 1 IN 916 types $\quad \mathbf{5 0 p}$
${ }^{883} 200$	Transistors. manufacturers. rejects, AF, RF, sil and germ. $\quad 50 p$
${ }^{\text {H26 }} 40$	NPN Silicon Trans. 2N3707-11 $\quad \mathbf{5 0 p}$ range. low noise amp.
H34	Power Transistors, PNP, Germ. NPN 50 p Silicon TO-3 Can. P \& P $5 p$ extra.
H67 10	3819 N Channel FETs plastic case type

Make a rev counter for your car
 The TACHO BLOCK. This encapsulated block will turn any $0-1 \mathrm{~mA}$ me for any car with f1.00 each fo

EXTENSION TELEPHONES

Electronic Transistor Ignition $\mathbf{f 6} \mathbf{0 0}$

Now in kit form we offer this "up-to-the-minute
electronic ignition system. Simple to make full electronic ignition system. simple to make. full
instuctions supplied. with these outstanding feat_ures: transistor and conventional switchability.
burglar-proof lock-up and automatic alarm, negative and positive compatibility.

New X-Hatch

Our new, vastly improved Mark Two Cross. Hatch Generator is now avaitable. Essential for

Featuring plug-in ICs and a more sensitive sync. up circuit. The case is virtually unbreakable-ideal for the engineer's tooboo-and only measures $3^{\prime \prime} \times 5 \frac{1_{6}^{\prime \prime}}{6}$

Ready built unit only $\quad \mathrm{E} 9.95 \quad$| Complete |
| :---: |
| kit |
| 1.95 |

(includes P \& P, but no batteries) Lublo ic $_{10} 380$ We-have just received a large consignment of LM380
ICs. These are specially selected to a thigher grade and are marked with the number SL60745.
This fantastic lititle 3watt audio IC only requires two capacitors and two potentiometers to make an ampler with volume and rone control. The qualiy is good and
151.00 complate with data complete with data
and projects book

Over 1,000,000 Transistors in stock

We hold a very large range of fully marked, tested and guaranteed Transistors. Diodes and Rectifiers at very

Dar very mopnlar ApTransistors
TYPE " A " PNP Silicon alloy. TO- 5 can.
TYPE "B" PNP Silicon, plastic encapsulation.
TYPE E* PNP Germanium AF or RF
TYPE "F"NPN Silicon plastic encapsulation.
TYPE "G"NPN Silicon, similar 21×300 rang
TYPE "G" NPN Silicon, similar $2 T \times 300$ range
TYPE "H" PNP Silicon, similar ZTX $\times 500$ range

UHF
 TV Tuner Units

Brand new by a famous manufacturer
Data supplied $\mathbf{£ 2 . 5 0}$

Plastic Power Transistors

[^4]
Our famous P1 Pak

is still leading in value
Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30
really high quality factory marked Transistors PNP really high quality factory marked Transistors PNP
\& NPN and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied

Please ask for Pak P.1. only $5 \mathbf{D}_{\mathrm{p}}$

Please send me the FREE Bi-Pre-Pak Catalogue
I enclose a large SAE with $5 p$ stamp.
PLEASE ADD VAT AT CURRENT RATE
NAME
ADDRESS

MINIMUM ORDER 50p. CASH WITH ORDER PLEASE
Add 15 p post and packing per order. OVERSEAS ADD
EXTRA FOR POSTAGE.
Buy these goods with Access.

Project 80
 a brilliant new concept in modular hiffi

Project 80 is going to be the ultimate in modular hi-fi construction for a very long time to come. It combines the qualities most demanded of any modern domestic system - good circuitry, reliability and fine performance - with other features to be
found nowhere else in the world. For example, compactness - Project 80 contral units are $\frac{3^{\prime \prime}}{4}$ deep $\times 2^{\prime \prime}$ high, and each one is completely self-contained.
Elegance - all of Sinclair's design leadership has been concentrated on producing designs of outstanding functional elegance unsurpassed for styling and simplicity. Flexibility -
the size and styling of Project 80 modules makes them the most versatile units ever. Combine them how you will, where you will, the Project 80 System
of your choice gives you the best.

Sinclair Project 80

technically the world's most advanced

Project 80 gives you choice from a range of 9 different modules for combining in a variety of ways to suit your requirements. The Stereo 80 is a versatile pre-amp control unit designed to meet all domestic hi-fi requirements including tape monitoring, high sensitivity magnetic cartridge input, and of course, individual slide controls on each channel for precise output matching. By separating the F.M. tuner and stereo decoder, useful economies can be effected where stereo radio reception is not needed. Two power amplifiers - Z.40 (18 watts RMS continuous into 4 ohms using 35 V) and $Z .60$ (25 watts RMS continuous into 8 ohms using 50 V) are available with choice of 3 different power supply units. The PZ. 8 with its virtually indestructible circuitry is particularly recommended. For the final word in system building; the Active Filter Unit puts the finishing touch of quality to what are easily the world's most technically advanced hi-fi modules. Any further units likely to be added to Project 80 range will be compatible with those already available.

Guarantee

If. within 3 months of purchasing any product direct from us, you are dissatisfied with it. your money will be refunded on production of receipt of payment. Many Sinclair appointed stockists also offer this guarantee. Should any defect arise in normal use, we will service it without charge

Stereo 80 Control Unit size $-260 \times 50 \times 20 \mathrm{~mm}$ ($10 \frac{1}{2} \times 2 \times$ 3ins) Finish - Black with white indicators and transparent sliders Inputs - Magnetic pick-up 3 mV RIAA corrected: Ceramic pick-up 350 mV Radio 100 mV : Tape 30 mV Signal/noise ratio - 60 db Frequency range - 20 Hz to 15 KHz $\pm 1 \mathrm{~dB} ; 10 \mathrm{~Hz}$ to $25 \mathrm{KHz} \pm 3 \mathrm{~dB}$ Power requirements -20 to 35 volts Outputs $100 \mathrm{mV}+\mathrm{AB}$ montoring for tape Controls - Press button tape radio and P.U. Sliders on each channel for volume bass treble (add $£ 1.19 \mathrm{~V} . \mathrm{A} . \mathrm{T})$.
Project 80 FM Tuner size $-85 \times 50 \times 20 \mathrm{~mm}$ ($3 \dot{\mathrm{z}} \times 2 \times \mathrm{z}$ ins) Tuning range Dual varicap - 87.5 to 108 MHz Detector - I.C. balanced coincidence One I.C. equal to 26 transistors Distortion -0.2% at 1 KHz for 30% modulation 4 pole ceramic filter in I.F. section Aerial impedance -75Ω or $240-300 \Omega$ Sensitivity -5 microvolts for 30 dB S $/ \mathrm{N}$ ratio Output -300 mV for 30% modulation Power requirements -25 to 35 volts $\mathrm{R} . \mathrm{R} . \mathrm{P}$ (add $£ 1.19 \mathrm{~V}$. A. f) 11.95
Project 80 Stereo Decoder Size $-47 \times 50 \times 20 \mathrm{~mm}\left(1 \frac{1}{6} \times 2 \times\right.$ $\frac{3}{4}$ ins) One 19 transistor I.C. Channel separation greater than 30 dB Power requirements -25 V Output 150 mV per channel \quad (add 74 p V.A.T.) f 7.45
Active Filter Unit separate controls on each channel. Size $108 \times 50 \times 20 \mathrm{~mm}\left(4 \frac{1}{4} \times 2 \times \frac{3}{4} 1 \mathrm{~ns}\right)$ Voltage gain - minus 0.2 dB Frequency response -40 Hz to 22 KHz controls minimum Distortion - at $1 \mathrm{KHz}-0.03 \%$ using 30 V supply H.F. cut off (scratch) -22 KHz to $55 \mathrm{KHz} .12 \mathrm{~dB} /$ oct. slope L.F. cut off (rumble) -28 dB at 20 Hz . $9 \mathrm{~dB} / \begin{gathered}\text { oct. slope R.R.P. } \\ \text { (add } 69 \mathrm{p} V \mathrm{~A} . \text {) }\end{gathered} \mathrm{f} \mathbf{6} 95$
 transistors Input sensitivity -100 mV Output 18 watts RMS continuous into $4 \Omega(35 \mathrm{~V})$ Frequency response $-30 \mathrm{~Hz}-100 \mathrm{KHz} \pm 3 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio -64 dB Distortion - at 10 watts into 8Ω less than 0.1% Power requirements -12 to 35 volis; built in protection against overload. \quad (add 54 p.R.P. $\mathcal{E} 5.40$
Z. 60 Power Amplifier size - $55 \times 98 \times 15 \mathrm{~mm}\left(22 \times 3 \frac{3}{2} \times \frac{2}{2}\right.$ ins $) 12$ transistors Input sensitivity - 100-250mV Output - 25 watts RMS continuous into $8 \Omega(50 \mathrm{~V}$). Distortion - typically 0.03% Frequency response -15 Hz to more than $200 \mathrm{KHz} \pm 3 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio - better than 70 dB Built-in protection

Power Supply Units pz. 8 Stabilised. Re-entrant current limiting makes damage from overload or even direct shorting impossible. Normal working voltage (adjustable) 50 V . R.R.P. $£ 7 \cdot 98+79 \mathrm{p}$ V.A.T. Without mains transformer PZ. $6 \quad 35 \mathrm{~V}$. stabilised R.R.P. $£ 7 \cdot 98+79 \mathrm{p}$ V.A.T. PZ. 530 V un-

To Sinclair Radionics Ltd. St. Ives Huntingdon PE17 4HJ
Please send post paid
for which l enclose Cash/Cheque for $\mathbf{£}$ \qquad including V A.T \qquad

Name
Address
Sinclair Radionics Ltd London Rd., St. Ives Telephone
St. Ives (0480) 64646
WW-06I FOR FURTHER DETAILS

AMPLIFIER KITS OF \mathscr{C} isfinclion

DESIGNER-APPROVED KIT

In Hi-Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973) and a subsequent follow-up article (April 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage, power in excess of 75 watts whilst maintaining distortion at less than 0.01% even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system, namely the equalization stage and tone control stage. positions where most conventional designs control stage. positions where most conventional designs
run out of gain at the extremes of the frequency spectrum. run out of gain at the extremes of the frequency spectrum.
Unusual features of the design are the variable transition Unusual features of the design are the variable transition
frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs, two equalized and two linear. each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer
${ }_{1}$ Pack Fibreglass printed-circuit board'
for power amp.
2 Set of resistors, capacitors, pre-sets
3 Set of semiconductors for power amp, (now using 8 DY 56.
BD529 8D530) BD529. BD530)
4 Pair of 2 drilled, finned heat sinks
5 Fibreglass printed circuit board
6 Set of low pre-amp. noise resistors. ca
Set of low noise resiscors. capacitors
Set of low noise, high gain semicon
ductors for pre-amp.
Set of potentiomerers (including
mains switch
Set of 4 push-button switches.
o Toroidal transformer complete
with magnetic screen/housing primary
$0-117-234 \mathrm{~V}$. secondaries
$33-0-33 \mathrm{~V}, 25-0-25 \mathrm{~V}$.

11 Fibreglass printed-circuit board
12 Set of resistors supply
12 Set of resistors, capacitors. secondary tuses, semicon
ductors for power supply
13 Set of miscellaneous parts including DIN skts. mains mput skt fuse holder interconnecting cable, cont knobs
silk screen prints including panel and all brackets. fixing parts etc.
Handbook
Teak cabine
Teak cabinet
2 each of packs $1-7$ inclusive are required
stereo system Total cost of individually purchased packs

Hi-Fi News Linsley-Hood 75 W Amplifier
Mk III Version (modifications as per Hi-Fi News April 1974

Full circuit description in handbook
(pack 15-price 30p)

FREE
TEAK CASE WITH FULL KITS
kranecem $£ 62.40$ post free (U.K.)

MAPLIN ELECTRONIC SUPPLIES

P.O. Box 3, Rayleigh, Essex. Tel: Southend-on-Sea (0702) 44101

VATPlease add 8% to the final total. Post and Packing FREE in U.K. (15 p handling charge on orders under $£ 1$)

First-class post pre-paid envelope supplied free with every order.

CATALOGUE

Send just 25 p NOW! for our superb 80 -page CATALOGUE. It's packed with photographs, illustrations. and pages and pages of detailed data on our complete range of transistors, diodes. I.C.s etc., etc. Seeing exactly what you're buying makes ordering so easy!

LEAFLET MES 24: Describes a reverberation module with a choice of two different spring units. (Just send s.a.e. please for leaflet.)

LEAFLET MES 51: Describes a complete electronic organ which can be constructed using our highquality component parts. These are designed so that they may be used later as the basis of a series of larger and more sophisticated designs. (Please send 15p for Leaflet MES 51.)

Centurion
PROFESSIONAL QUALITY
INSTRUMENT CASES

rear panel, blue hammer. Detach
able aluminium front panel finished in whte.
Dimensions in inches

SYNTHESISERS

We stock all the parts for the "Electronics Today International" synthesiser including all the P.C.B.s required and all the metalwork including a drilled and printed front panel for a truly professional finish. Some of the circuits in this brilliant design are entirely original. Independent authoritative opinions agree, the E.T.I. International Synthesiser is technically superior to practically all synthesisers available today. S.a.e. please for our detailed price lists.

FROM THE SPECIALISTS-POWERTRAN
 \section*{WIRELESS WORLD AMPLIFIER DESIGNS} ELECTRONICS

Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating.

30W BAILEY

Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set 30W BLOMLEY
30W BLOMLEY
Pk. 1 F/Glass PCB
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots
Pk. 3 Semiconductor set
20W LINSLEY-HOOD Pk. 1 F/Glass PCB Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set
$£ 0.80$
$£ 1.75$
E .75
£0.85
£2.15
$£ 5.60$
£0. 85
£2.40
£3.35

G0V REGULATED POWER SUPPLY

 Pk. 1 F/Glass PCB£ 0.75
f 1.40
£3.10
Pk. 3 Semiconductor se:
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pre-sets, transistors
£2.05
$£ 4.95$
£ 1.60
Pk. 3R Rotary potentiometer set
Pk. 35 Slider potentiometer set (with knobs)

STUART TAPE RECORDER

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this highperformance Wireless World published design.
TRRP Pk. 1 Reply amplifier F/Glass PCB £0.90 TRRC Pk. 1 Record amp./meter drive cct F/Glass PCB £1.40 TROS Pk. $1 \quad \begin{array}{ll}\text { Bias/erase/stabilizer cct. } \\ & \text { F/Glass PCB }\end{array} \quad £ 1.00$ For detaifs of component packs for this design please write for free list.

TOROIDAL T20 +20
Developed from the famous Practical Wireless Texan

20 WATTS/CHANNEL

FREE

Designed by Texas engineers and published in a series of articles in Practical Wireless. The TEXAN was a remarkable breakthrough in delivering true $\mathrm{Hi}-\mathrm{Fi}$ performance at exceptionally low cost. Now further developed to include a true Toroidal transformer, this slimline integrated circuit design, based upon a single F/Glass PCB, features all the normal facilities found on quality amplifiers, including scratch and rumble filters, adaptable input selector and headphones socket.

TEAK CASE and HANDBOOK with full kits

ACTIVE FILTER CROSSOVER

An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately. though introducing reactive impedances between the amplifier and the speakers, result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant solution to this problem, described by D. C. Read in Wireless World, involves the use of a series of active filters splitting the output of the pre-amplifier into three channels. of closely defined bandwidth, each of which is fed to the appropriate speaker by its own power amplifier. A design for a suitable 20 -watt amplifier, based on a proven Texas circuit, was also described by Mr Read. The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.

ACTIVE FILTER Pack
Pack
1 Fibreglass PCB (accommo
dates all filters for one dates all filters for one
channel)
2 Set of pre-sets, eolid £1.05
Set of pre-sets, solid tantalum capacitors, 2\%
metal oxide resistors, 2\% polystyrene capacitors 3 Set of semiconductors 2 off each pack required for stereo system

SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER DESIGNS
£ 1.05

READ/TEXAS 20wamp.
Pack
1 Fibreglass PCB Set of resistors, capacilors pre-sets (not inclu ing O / P coupling capa 3 Sets of semiconductors 4.206 off each pack required forstereo £ 2.65 system 4 Special heat sink as sembly for set of 3 amplifiers
5 Set of $3 \mathrm{O} / \mathrm{P}$ coupling 2 off packs 4. 5 required for 2 off packs 4.
stereo system

POWER SUPPLY
FOR 2OW/CHANNEL STEREO
£0.70 SYSTEM
Pack

Fibreglass PCB
£0. 50
Set of rectifiers. zener duse hopacitors, fuses.
3 Toroidal transformer
£0.85
ENQUIRIES WELCOME £1.00 For quality sets of speakers

SEMICONDUCTORS AS USED IN OUR RANGE OF QUALITY AMPLIFIERS

2N699	f0. 25	2N4302	f0.60	BC182	50.10	MJ481	E1. 20	TIP29C	£0.71
2N1613	£0. 20	2N5087	¢0. 42	BC184L	f0. 11	MJ491	¢1. 30	TIP30C	£0.78
2N1711	£0. 25	2N5210	¢0.54	BC212L	c0. 12	MJE52 1	¢0.60	TIP31A	¢0.60
2N2926G	f0. 10	2N5457	± 0.45	BC214L	f0.14	MPSA05	c0. 30	TIP32A	$£ 0.70$
2 N3053	± 0.15	2N5459	80.45	BCY72	c0.13	MPSAF2	c0. 55	TIP33A	£1.00
2N3055	f0.45	2N5830	f0. 30	BD529	c0. 85	MPSA14	c0. 35	TIP34A	£1.50
2N3442	£1.20	40361	50.40	8D530	¢0. 85	MPSA55	c0. 35	TIP4 1A	¢0.74
2 N 3704	f0.10	40362	¢0.45	BDY56	£1.60	MPSA65	c0. 35	TIP42A	f0.90
2N3707	£0.10	BC107	E0. 10	BF257	c0. 40	MPSA66	¢0.40	IN914	£0.07
2N3711	f0.09	BC108	f0. 10	BF259	c0.47	MPSU05	¢0.60	IN916	¢0.07
2N3819	± 0.23	BC109	80.10	BFR39	c0. 25	MPSU55	co. 70	IS920	¢0. 10
2N3904	f0. 17	BC125	f0.15	BFR79	c0. 25	SN72721P	¢0.58	5B05	£1.20
2N3906	50.20	BC126	E0.15	BFY50	c0. 20	SN72748P	¢0. 58		
2N4058	f0.12	BC182K	f0.10	BFY51	c0. 20	TIP29A	£0. 50		
2N4062	£0.11	BC212K	¢0.12	BFY52	c0. 20	TIP30A	£0.60		

for further information please write for FREE LIST NOW!

KIT PRICE only 5
post free (U.K.)

Pack		ce
1	Set of all low noise resistors	£0.80
2	Set of all small capacitors	£1.50
3	Set of 4 power supply capac	£ 1.40
4	Set of miscellaneous parts including DIN sockets, fuses, fuse holders.	
	control knobs, etc.	£1.90
5	Set of slide and push-button switches	£0.90
6	Set of potentiometers and	
	Set of all semicond	25
	pe	
	Fibreglass PC Panel	¢2.50
10	Complete chassis work. hardware and brackets	¢4.20
11	Preformed cable/leads	¢0.40
12	Handbook	f0. 25
13	Teak Cabinet	£2.75

V.A.T. Please add 8\%* to all U.K. orders
(*or at current rate if changed)
U.K. ORDERS-Post free (mail order only)
OVERSEAS - Postage at cost $+50 p$ special packing

Dept. WW10
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NN

COMPONENTS AND EQUIPMENT. LOW PRICES MEAN LESS VAT.

You can build the Texan and Stereo FM Tuner TEXAN $20+20$ WATT IC STEREO AMPLIFIERS

Features glass-fibre PC board. Gardners low field transformer, 6-IC's. for Henry's ad. P.W. 1972. Supplied with full chassis work, detailed construction handbook and all necessary parts. Full input and control facilities. Stabilised supply, overall size $15 \frac{1}{4}$ in $\times 2 \frac{3}{4}$ in $\times 6 \frac{5}{6}$ in mains operated. Free teak sleeve with every kit. $\mathbf{f} 28.50$ (GB post paid)

STEREO FM TUNER

Features capacity diode tuning, led and tuning meter indicators, stabilized power supply-mains operated. High performance and sensitivity with unique station indic
8in $\times 2 \frac{3}{3}$ in $\times 6$ 年in.
Complete kit with teak sleeve $£ 21.00$ (GB post paid). Join the large band of Complete kit with teak

TRANSISTORISED MODULES

Tuners-Power Suppliers-Amplifiers

QUALITY CASSETTE TAPES

'Living Sound" made specially for Henry's by EMP Tapes Ltd 5 screw type with library case. Post paid (GB)

EMI
SPEAKERS
Special Purchase
13×8 chassis speakers (carr/packi
or 50 p pr) $\star 150$ TC 10 wa
twin cone $£ 2.20$

* 45010 watt 4, 8, 15 ohm with twi tweeters and crossover $£ 3.85$ each FW 15 watt 8 ohm with tweeter $\mathbf{f 5} .25$ 35020 watt 8.15 ohm with tweet 57.80 each
Polished wood cabinet $\mathbf{~} \mathbf{4 . 8 0}$ carr., etc.
35 p each or 50 p pair

EXCLUSIVE NTIT

 5 WATT IC AMPLIFIERSSpecial purchase 5 watt output 8-16 ohm load. 30 volt max DC operation complete with data.
Price $£ 1.50$ ea or 2 for $£ 2.85$

UHF TV

 TUNERS

625 -line receiver UHF iransistorised tuners FM. UK operation. Brand new.
(Post/packing 25p each)
TYPE A Geared variable as illustrated $\mathbf{£ 2 . 5 0}$ TYPE B 4 -button push-button (adjustable) E3.50

SPECIAL EOUIPMENT

Brand new ex-WD portable radiation detectors 0-10r complete with power unit. $\mathbf{~} 9.97$ carr/packing $£ 1.00$.
Brand new seal photo multiplier units (de signed FM fuel tank fire detective) $£ 3.50$.

SPECIAL OFFER

Cassette
Storage
Rotating unit up to 32 II
cassettes stackable $\mathbf{£ 3} \mathbf{6 0}$ pp 15p Car unit with bracket for 10 cassettes $£ 2.80$ pp 10 p

TEST EQUIPMENT mULTIMETERS
(carr/packing 35p)

U4324 20 K

 with case U435 20 KV With steel caseE8.75
U4313 20kV U 431320 KV
steel case steel case
U4317 20 KV with case $\quad 16.50$ tester steel case U4323 20 KV plus IKHzd 465 KHz OSC with case ITI-2 2OKV slim type THL33D (L33DX) 2 KV TP5SN 10 KV (Case f2.00) AF105 50KV De-luxe (Case £1.90)
S100TR 100 KV plus transistor tester

HENRY'S HOME ENTERTAINMENT CENTRES LTD

London
354/6 Edgware Rid. W2 376/8 Edgware Rd. W2 372 Edgware Rd. W2 120 Shaftesbury Ave. WI 230 Tottenham Court Rd, W1 144 Burnt Oak B'way. Burnt Oak
Edgware

01-4025854 $01-7230818$ $01-4028140$ $01-4379692$ 5801785
$01-9527402$

90/4 Station Rd. Harrow Middlesex

Out of Town
256 Banbury Rd. Summertown
0xford (0865)54181
55 Gloucester Rd. Bristol 7 (0272) 45791

FREE STOCK

LISTS

No 36 Transistors/valves. No 18 Disco lighting high power sound.
No 17 Hi-Fi, TV-tape equipment.
Send large stamped addressed envelope with al enquiries

General Test
 Equipment

* 3100 ima strip chant recoudar	00
+ Tk46 AC mulivollimeter	119.75
+ Tk15 Grid dip meter	
440 KHz -28MHz	$\ldots 16.50$
+ Tk65 28 range vave voltrmeter	22.50
+ Tk20. RF pentrator	
$120 \mathrm{KHz}-500 \mathrm{MHz}$	¢18.95
\dagger Tk220 AF peneratos	
2 OHz 200 KHz	9.95
* C3025 Compaet transistor tester	f6.95
* T145 De-luxe meter 1-300 MHz	f44.75
+ 63.38 ANCasc 20hz-200kHz	f19.75
- C3042 SWR Metar	¢5.75
* SE350A De-luxe siqnal tracer	f12.95
* SE4G0 Minimbalil in one mezar	f15.50
${ }^{\text {c }}+5$ S Scope 500.000 KHz Learr f1.001	[43.00
* C3043 5 CH F/A melee 1-300MHz	[575
Ressstance sub box \{ Past	E2.40
Capacitator \{ 30p	¢2.10
2 amp variabie transformers carr f 1 \|	68.55
Ratio astivity counter 0-10r (carn $£ 1)$	¢9.97
Mairss unit for above (carr 50p)	53.75

SINCLAIR MODULES AND KITS

STBO stereo pre-a Aucio fitter unit

Audia lititer unit
24015 att amplifier
26025 wart amplifier

P26 power supplies (S. Tab) 2240 £4.98
ior 1 or 2240
 for 1 or 22600
Transtormer for PZB
FM Fransiormer for
FM tunef
Siereo decoder Sterso decodet
All above post paid (GB only)

SINCLAIR

 CALCULATOR KITComplete kit NOW £13.59

Also built $\mathbf{£ 1 9 . 9 5}+\mathrm{VAT}$

ultra Pheclion CENTRIIUGAL BIOWER

by Air Control Ltd. 30 segments individually balanced in
heavy cast alloy case. 2,300
n.p.m.

1

SILVANIA MAGNETIC SWITCH
 Now complete with reference magnet!

NORPLEX

The famous American fibre-glass copper-clad laminate. Finest quadit:
wih woven glass base of Epoxy-resin. Excelient Mech. and Elec.

 25p. P. \& P. Full Sheet $£ \mathbf{I}$ each. Carr. $£ 1$ tor 1 st sheet plus 25 p each
additional sheet.

FAN/
BLOWER
Precision-bult in Germany. unlf $(200 / 240)$ continuou
rated, reverstble 60 MA on

plled). Well under makers price at $£ 3$. P. \& P. 20 p .
Similar unit to above but $71^{\prime \prime}$ dia. $\times 3^{\prime \prime}$ deep. $\& 4.50$.
ALL PRICES INCLUDE V.A.T
Whilst we welcome official orders from established companies and
Educational Departments, it is no longer practical to invoice goods under

and
Phoenix Electronics
(Portsmouth) Ltd
139-141 Havant Road,
Drayton. Portsmouth. Hants PO6 2AA
Full member of AFDEC-the industry's association of franchised electronic component distributors.
Our prices include VAT at the current rate-and carriage on all goods is free.
Send for our catalogue and price list - we ll mail that to you free, too.

THIS MONTH'S BARGAIN OFFERSpecial transistor kit. 4 each JFETs and PUJTs. 4 each plastic power NPN and PNP transistors, plus $4 \times 1 \mathrm{~A} / 400 \mathrm{~V}$ bridgescatalogue value f 6.88 BARGAIN PACK PEP6-£4.90

WW-011 FOR FURTHER DETAILS

STEREO IC DECODER

HIGH PERFORMANCE PHASE LOCKED LOOP (as in 'W.W.' July '72)

MOTOROLA MC1310P EX STOCK DELIVERY

 SPECIFICATIONSoparation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$.
specification
I/P level: 560 mV rms
O/P level: 485 mV Distortion: 0-3\%
Input impedance: $50 \mathrm{k} \Omega$. Power tequirements: $\mathrm{Bms}-16 \mathrm{~V}$ at 16 mA
KIT COMPRISES FIBREGLASS PCB
(Roller tinned), Resistors, I.C., Capacitors.
Preset Potm. E Comprehensive Instructions
LIGHT EMITTING DIODE
Suitable as stereo 'on indicator for above

ONLY WHYPAY	
ES-98	MORE?
post free.	
RED	$29 p$
GREEN	$59 p$

MC1310P only £3.15 plus p.p. 6p
NOTE
As the supplier of the first MC1310P decoder kit, of which we have sold literally thousands our customers can benefit from our wide experience.

TRANSFORMERS

Also stocked: SEMICONDUCTORS - VALVES AVOMETERS - ELECTROSIL RESISTORS

PLEASE ADD 8\% FOR V.A.T. including P. \& P.

R．S．T．VALVE MAIL ORDER CO． London，SWI6 2BS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline VALVES \& \& ECP82 0.40 \& EFY8 EFI83 \& $$
\begin{aligned}
& 0.75 \\
& 0.30
\end{aligned}
$$ \& E781 0.29 \& $$
\begin{array}{ll}
\hline \mathrm{OA} 2 & 0.40 \\
\mathrm{OB} 2 & 0.40
\end{array}
$$ \& $$
\text { PD500 } 1.30
$$ \& PY83

\hline AZ31 \& DY802 0.37 \& ECH 421.00 \& EFI84 \& 0．35 \& EZ90 0.40 \& OZ4 0 \& 0.75 \& PY5

\hline AZ41 0．60 \& EAbC80 \& ECR81 0.30 \& EH90 \& 0.55 \& \& PC86 0.60 \& PFL2000．85 \& PY8

\hline cbla 1.00 \& 0.38 \& ECH83 0.45 \& El33 \& 1.75 \& GY501 0.80 \& PC88 0.60 \& PL36 $0 \cdot 63$ \& BP41

\hline CL33 1.50 \& EAF42 0.75 \& ECH84 0.45 \& EL34 \& 0－60 \& GZ30 0.45 \& PCy00 0.48 \& PL38 1.25 \& ${ }^{\text {PP61 }}$

\hline CY31 0.50 \& EAF8010．50 \& ECLx0 0.55 \& EL237 \& 2.50 \& 0.5 \& PCC84 0.40 \& PL81 0.50 \& T41

\hline DAF91 0－30 \& EbLiss 1.00 \& ECL82 0.35 \& EL41 \& 0.90 \& 0.65 \& PCC89 0.50 \& PL82 0.45 \& 25

\hline DAF96 0.50 \& EBC41 0.75 \& ECL86 0.40 \& EL42 \& 0.90 \& H63 $\quad 0.90$ \& PCC189 0 －60 \& PL83 0.45 \& U26

\hline DCC90 1－35 \& EBC81 0.33 \& ECLL800 \& EL84 \& 0.28 \& \& PCF80 0.40 \& PLS4 40 \& U191

\hline DF91 0.30 \& EBF80 0.40 \& 3－20 \& EL9 \& 0.50 \& HLido 0. \& PCP86 0.60 \& P1as00 0.80 \& U40

\hline DF96 0.50 \& EBF83 0.40 \& EF37A 1.20 \& EL95 \& 0.40
1.25 \& HN309 $\begin{aligned} & 0.75 \\ & 1.50\end{aligned}$ \& PCF8010．50 \& PL504 0.80 \& U80

\hline DK91 0．45 \& EBF89 0.32 \& \& ELIL80 \& 1.25 \& KT61 1.75 \& \& PL508 0.90 \&

\hline $\begin{array}{ll}\text { DK92 } & 0.70 \\ \text { DK } 96 & 0.60\end{array}$ \& EBL31
ECC40
1．00 \& $\begin{array}{ll}\text { EF41 } & 0.65 \\ \text { EF52 } & 1.25\end{array}$ \& ELL80 \& 1.25
0.45 \& $\begin{array}{ll}\text { KT61 } & 1.75 \\ \text { KTths } & 2.50\end{array}$ \& PCFAn50．90
PCF8060．75 \& $\begin{array}{ll}\text { P1509 } & 1.55\end{array}$ \&

\hline DL92 0.40 \& ECC81 0.40 \& EF80 0.25 \& EM81 \& 0.60 \& KT81（7С̆） \& PCFAIM 0.90 \& PL801 1－00 \&

\hline DL94 0.48 \& ECC82 0.33 \& EF ${ }^{\text {P5 }} 0$ \& EM84 \& 0.35 \& 1.30 \& PCL82 0.35 \& PLR02 0.95 \&

\hline DL96 0.55 \& ECC83 0.33 \& EF88j
EF89

0 \& ${ }_{\text {EY }}$ \& 0.40
0.40 \& KT8M 2.90 \& \& \&

\hline DM70 0.60 \& Eccss 0 \& $\begin{array}{ll}\text { EF89 } & 0.28 \\ \text { EF91 } & 0.37\end{array}$ \& EZ40 \& ${ }_{0}^{0.75}$ \& KTW62 1.00 \& \& ${ }^{\text {PYY }}$ \&

\hline DY8：／7 0.36 \& ECF80 0.35 \& EF92 0.50 \& EZ41 \& 0.75 \& N78 2.75 \& PCL86 0.45 \& 0.50 \&

\hline \multicolumn{2}{|l|}{TRANSISTORS} \& ${ }^{2} \mathrm{~N} 3$ \& AFI \& 0.25 \& $\begin{array}{lll}\text { BF195 } & 0.13 \\ \\ \text { BP196 }\end{array}$ \& Cras3－40 \& $\begin{array}{lll}\text { G57M } & 0.50\end{array}$ \&

\hline N21 0．17 \& 2N708 0.15 \& ${ }^{2 N} 37$ \& AF117 \& $0 \cdot 20$ \& BF196
0.15 \& 0.55 \& K8100A0．20 \&

\hline 1N23 0．35 \& 2N1302 0.18 \& 2N3819 035 \& AFZ12 \& 1.50 \& BFsti 0.25 \& \& 0.25 \&

\hline 1N40010．06 \& 2以13n 018 \& 2N＋286 015 \& BC107 \& 0.12 \& BF＇398 0 0．25 \& CV143 0 0．18 \& matle \&

\hline IN 40020.07 \& 2N1304 0.22 \& 2N4289 015 \& BC108 \& 0.12 \& BFI50 020 \& $\mathrm{CV} 253^{1-00}$ \& 0．20 \&

\hline IN 40030.08 \& 2 N 131350.22 \& $\mathrm{ACl}^{24} 025$ \& BC109 \& 0.12 \& BFY51 0.20 \& CV2154 2－00 \& MA \&

\hline IN40040．08 \& 2N1306 0.28 \& $\begin{array}{ll}\text { AC127 } & 0.25\end{array}$ \& BC115 \& 0.20 \& BFY52 0.20 \& cV2155 2．00 \& 0.25 \&

\hline IN40013 0.12 \& 2N1307029 \& $\begin{array}{lll}\mathrm{ACl} 188 & 0.20\end{array}$ \& BCl16 \& 0.20 \& BTY79］ \& cvi1083．50 \& MJE3700 68 \&

\hline 18111025 \& 2N21470．75 \& AC176 025 \& BC117 \& 0.21 \& 100P． 0.75 \& cV－1093．50 \& MJE5200．65 \&

\hline 181310.13 \& 2N2218 $0 \cdot 23$ \& AC187 0.20 \& BC169 \& 0.14 \& BY100 0.15 \& DD000 0－15 \& MJE2955 \&

\hline 181320013 \& $2 \mathrm{~N} 244+1.99$ \& $\begin{array}{ll}\text { AC188 } & 0.20\end{array}$ \& BCY3： \& 0.45 \& BY126 014 \& DDu06 0－25 \& $1 \cdot 10$ \&

\hline 2 C 2200.63 \& $2 \mathrm{Na}^{2 t+4} 050$ \& ACY17 0.35 \& BD121 \& 1.00 \& BY127
0 \& GET1020．50 \& MJ E3055 \&

\hline $2 \mathrm{C301} 0.40$ \& 2N2926 0.10 \& AD140 0.50 \& BD123 \& 1.00 \& BZY88 \& GET1030－40 \& 0.75 \&

\hline 203020.40 \& 2N3702 0．11 \& AD149 0.50 \& BF115 \& 0.22 \& Serien 0．10 \& GET1160 85 \& MPF102 \&

\hline 2 N 6960.15 \& 2N3703 0．12 \& AD161 0.39 \& BF173 \& 0.28 \& CRE1／05 \& G178750－40 \& 0.40 \&

\hline 2 N 6970.15 \& 2\x $\times 1014$ \& AD162 0.39 \& BF180 \& 0.35 \& 0.30 \& GEX 661.25 \& MPF1030．36 \&

\hline 2NJut 0.10 \& 2N3705 0.15 \& AF114 0.25 \& BFi8 1 \& $0 \cdot 35$ \& Cus1．40 \& GEX541 \& MPF104 \&

\hline 2N70ida． 12 \& 2ソ3ヶッ 0.13 \& AF115 0.25 \& BFI94 \& 0.13 \& 0.45 \& 0.7 \& 0.35 \&

\hline
\end{tabular}

Industrial Valves			${ }_{12}^{12 \mathrm{E} 1}$	${ }_{888}^{815}$	$5726 /$	${ }_{6}^{6923}$	CV28	CV404
			13D14	${ }_{8298}^{828}$		6939	CV31	$\mathrm{CVF}_{\text {c }} \mathbf{4 1 5}$
1894	3 B 29	6AF4A	13 E 1	${ }_{830 \mathrm{~B}}$	${ }^{\text {2 }}$ 21W	7193	CV53	${ }_{\text {CV4 }}$

lbsat		5	${ }_{13 \mathrm{E}}^{12 \mathrm{El}}$	${ }_{8298}$	6A	693	CV31	CV415
${ }_{1824}^{183 G 7}$	3 Ba 28 3 B 29	6AF4A	${ }^{13 \mathrm{DEl}}$	829 B 830 B	${ }^{5727 /}$ 2D21W	7193	${ }_{\text {CV5 }}$	CV416
1 B 35 A	3 C 22	6AK5	${ }_{2807}$	860	5749	7203	Cv73	CV428
$1 \mathrm{BP3} 3$	3 C 23	6am5	2901	816	5750	7360	CV74	CV434
1 N 21	3C24／24G	6AM6	53 KU	8664	5751	7586	CV85	CV447
1N21B	3 C 45	6an5	75 Bl	866 E	5802		CV118	CV449
1 N 23 B	$3 \mathrm{CX100A5}$	GAN8	75 Cl	827A	5814	8013	CV121	CV466
1 N 23 CR	3 E 29	6AR5	83A1	881 E	5823	8025 A	CV124	CV469
1X2A	$35 / 121 \mathrm{E}$	6486	85A1	891 R	5840		CV128	CV488
$1 \times 2 \mathrm{~B}$	$33 / 160 \mathrm{E}$	6AU4GTA	85A2		5963	9001	CV131	CV491
	$3 \mathrm{~J} / 170 \mathrm{E}$	6AU5GT	90 AG	954	5965	9002	CV132	CV492
2 A 3	3Q／150E	6AU6	90 AV	955		9003	CV133	CV493
2 A315	34／195E	6AV5GTA	90 Cl	956	6005／	9004	CV135	cV717
2 C 26 A	3 s 4	6aw8a	90 CG	957	6AQ5W	9005	CV136	CV808
2 C 34	3V／340B	6A 5 ［GT	90 CV		6021	9006	CV137	CV1072
2 C 39 A	$3 \mathrm{~V} / 390 \mathrm{~A}$	6B4G	95 Al	1625	60.57		CV138	CV1076
2 C 43	$3 \mathrm{~V} / 390 \mathrm{~B}$	6BA8A	100 TH		6058	13201A	CV140	CV1092
2 D 21		6BK4	150 B 2	2050	6059		CV144	CV1218
2D21W	4－125A	6BK7A	150B3	2050w	6060	A1834	CV160	CV1343
2 E 26	4－250A	6BL7GTA	150 Cl	2051	6061	A2087	cV173	CV1475
2 J 31	4－400A	6BN6	150 C 2		6062	A2134	CV187	CV1476
2 2，33	41322	${ }_{6} 6 \mathrm{BR} 7$	150 C 3	4003A	6063	A2293	CV188	CV147
2 J 50	4 C 35	$6 \mathrm{6B87}$	150 C 4	4212 D or E	6064	A2426	CV190	CV1478
2554	$4 \mathrm{CX250B}$	6BX7GT	250TH	4242A	6065	12521	CV220	CV179
2 2 56 A	${ }_{4}{ }^{\text {E27 }}$	$6 \mathrm{BZ6}$	328	4313 C	6067	A2900	CV261	CV1480
2 K 25	4.550	$6 \mathrm{CB6}$	329	4328 A	6072	ACT6	CV273	CV1481
${ }^{2 \mathrm{~K} 26}$	4552	6CH6	$631 . \mathrm{Pl}$	4687	6073	ACT9	CV284	CV1482
2 K 28	4J52A	6CL6		5544	6074		CV286	CV1787
2 K 45	4.558	60W4	705A	5545	6080	B1C 1E	CV287	CV1832
$2 \times 2 \mathrm{~A}$	4X150A	6DK6	715A		6097C	BS90	CV315	CV1833
	$4 \times 150 \mathrm{D}$	6DQ6B	715 B	5642	6130	B8156	CY329	CV1835
3A／107A	4X250B	6EA8	723A／B	5644	6136	BT5	CV337	CV1994
3A／108A		6 F 33	725A	5651	6189	BT35	CY342	CV2000
$3 \mathrm{~A} / 108 \mathrm{~B}$	5B／251M	${ }^{6} \mathrm{H} \mathbf{6}$（metal）		5670	6197	BT45	cv345	CV2131
$3 \mathrm{~A} / 109 \mathrm{~B}$	5B／252M	$6 \mathrm{K7GT}$	801	5672	6201	BT79	cv354	CV2164
3A／110A	$5 \mathrm{BB} / 254 \mathrm{M}$	6 U 8 A	803	5676	6202	BT83	CV359	CV2155
3A／110B	5B／255M	6V6GT	805	5687	6203		cv360	cV2160
3A／146．	513／256m		807	5696	6205	ClC	cv371	cV2179
3A／167M	5B／257M	11 E 3	808	5702	6360	C1K	cv372	CV2235
$3{ }^{35}$	5 C 22	$11 \mathrm{El3}$	811	5718	6442	CAA322	cV378	CV2237
3B／240M	6 D 21	12AY7	811 A	5719	6463	Cv5	cV391	cV2238
$3 \mathrm{~B} / 241 \mathrm{M}$	5 LAGY	12B4A	812 A	5725／	6550	CV25	CV396	cV2253
3 B 24	5U4GB	12BY7A	813	6AS6W	6807	CV26	CV397	CV2289

FROM 1ST APRIL ALL ORDERS SUBJECTTO V．A．T AT APPLICABLE RATE．THIS MÜST BE ADDED TO TOTALORDER PRIIEEINCLUDING POSTAGE

\section*{| Integrated Circuits | $\begin{array}{l}7410 \\ 7411\end{array}$ | .$:$ | \because | 0 |
| :--- | :--- | :--- | :--- | :--- |}

Integrat	Circuits	${ }^{7410}$
	－0.20 0.20 0.20	${ }_{7413}^{7412}$
${ }_{7403}^{7402}$ ：	$\because \quad 0.20$ 0.20	${ }_{2416}$
$\xrightarrow{7404}$	$\cdots \quad 0.20$	${ }_{7420}$
${ }_{7}^{7006}$ 707	$\because \begin{gathered}0.40 \\ 0.40 \\ 0\end{gathered}$	${ }_{7423}$
7408 \％		${ }^{7425}$

0.4	
${ }_{\substack{0.43 \\ 0.20}}^{\substack{7480 \\ 7482}}$	
（0．85	
	${ }_{7493}^{7493}$
	${ }_{7495}^{7495}$

${ }^{784157}$

LOW PROFILE SOCKETS 14 pin DIL， 15 p ． Stockists of English Electric，Ferranti，M．O．Valve Co． Mullard，S．T．C．

specification if required．（Full valve availability list on request，S．A．E．）Prices correct when going to press．

LOGIC PROBE

£6．45

+ VAT
\star For use on TTL or any 5 V system
\star Distinguishes logic 0 ．logic 1 ． and open circuit
\star Audible indicator．
\star No distracting meter or lampsetc．
\star Self contained power source．

For further details contact：
THAMES ELECTRONICS 77－83 Westdale Rd．London SE18 3BQ 01－317 8885

AUTOMATIC TRANSISTOR CHECKER

£14．95
＋VAT
＊Checks PNP／NPN．silicon or ger manium，power or small signal．
\star Very fast operation．
\star LED go／no－go indication．
\star Fully automatic
\star Checks gain and leakage．
\star Can be used to identify PNP／NPN
＊Battery operated．

ELEGTRO/ALUE

EVERYTHING BRAND NEW and to SPEC \star GOOd discounts \star free postage (U.K.)

POTENTIOMETERS
ROTARY, CARBON TRACK. Double wipers for good contact and long working ift
. 20 SINGLE linear 1000 ohms to 2.2 megohms JP. 20 DUAL GANG 4.7 Kohms to 2.2 megohms JP. 20 DUAL GANG log, 4.7Kohms to 2.2 megohms JP. 20 DUAL GANG Log/antilog 10 K .22 K .47 K JP. 20 DU DUAL GANG antilog 10 K only
ea. 14p 2A DP mains switch for any of above 14 pexta Decades of 10.22 and 47 only available in ranges above.
Skeleton Carbon Presets Type PR, horizontal or vertical
6p each 6p each.

SLIDER

Matched tracks. Type PG58ST. Lin of log from 47 K to 1 meg	
Linear or $\log .4 .7 \mathrm{~K}$ to 1 meg. in all popular values	
Escutcheon plates , black. white or light grey	
Control knobs. bik/wht/red	

CAPACITORS

POIYESTER C. 280
Radial leads for P.C.B. mounting. Working voltage 250 V d.c.
$0.01 .0 .015 .0 .022 .0 .033,0.047$ 0.22. $5 p: 0.33 .7 p: 0.47$ 8p: 0.68.11p:10. 14p: 1-5. 21p:

```
TANTALUM BEAD
0.1.0.22,0.47,1.0 mF/35V,1.5/20V
lol
POLYCARBONATE
Type B32540 Working Vottage-250V d.c
Values in MF: 0.0047; 0.0068; 0.0082; 0.1; 0.012;
0.015: 0.022: 0.027; 0.033: 0.039: 0.047:0.056; 0.068:
0.082:0.1 ea. 4p
Working vottage 100V d.c. 
0.27 7p;0.338p

\section*{SILVERED MICA}
```

Values in pFs-2.2 to 820 in 32 stages \quad ea. 6 p

```

``` CERAMIC DISC
\(1000 \mathrm{pF} / 500,2000 / 500,5000 / 500,0.01 \mathrm{mF} / 50,0.02 \mathrm{mF} / 50\)
\(0.1 \mathrm{mF} / 3\)-each \(2 \mathbf{p}: 0.05 \mathrm{mF} / 50 \mathrm{~V}-3 \mathrm{p}\)
CERAMIC PLATE
In a range of 26 values from 22 to \(6800 \mathrm{pF} / 50 \mathrm{~V}\) d.c.
each 2 p
```


## ZENER DIODES

 iW: 6.8 V to $82 \mathrm{~V}, 21 \mathrm{p}$ each: $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to $75 \mathrm{~V}, 67 \mathrm{p}$ each.20 W 7.5 V to 75 V 94 p . Clip to increase 1.5 W rating to 3 watts (type 266F). 5p.
20 W 7.5 V to 75 V 69p each

## VEROBOARD

Copper citd 0.1 matrix- $2.5 \times 3.75$ ins. 27 p: $3.75 \times 3.75$
ins. $\mathbf{3 0 p}: 2.5 \times 5$ ins. $\mathbf{3 0 p} 3.75 \times 5$ ins. $-\mathbf{3 3 p}$. Copper clad 0.15 in. matrix $2.5 \times 3.75$ ins. 20 p: $3.75 \times 3.75$ ins. $\mathbf{3 0 p}: 2.5 \times 5$ ins. $\mathbf{3 0 p}: 3.75 \times 5$ ins.- $\mathbf{3 E p}$.
0.040 pins (for 0.1 matrix) per $100-\mathbf{3 5 p}$
0.052 pins (for 0.15 matrix) per $100-\mathbf{3 5 p}$.

MINITRON DIGITAL INDICATORS
3015 F Seven segment fiament. compatible with standard 16 lead DIL.
1010 Suitable BCD decoder driver 7447
$\mathbf{3 0 1 5 G}$ showing + or - \& 1 \& dec. pt

LEDS (Light Emitting Diodes) f 1.15
f 1.20

## DISCOUNTS

hose shown with NETI PRICES $10 \%$ on orders from
F5 to $£ 14.99 .15 \%$ on orders

## FREE PACKING

 AND POSTAGE U.K. for pre-paid mail order For maik orders for $£ 2$ list valueand under there is an additionat and under there is an additional
handling charge of 10 p . Overseas orders-carriage charged at cos GIRO A/C No. 38/671/4002

THE BEST 100 TRANSISTORS			
		-	
(ex			
		como	
			隹
${ }^{\text {ado }} 136$			
161	${ }_{\text {diol }}$		

## RESISTORS



MO = metal high stability low noise.
$\mathrm{MO}=$ metal oxide. Electros
 E24: as E12 plus $11,13,16,20,24,30,36,43.51$ 62, 75, 91 and their decades.
 $5 \%$ except $10 \% \pm 0.05 \Omega$ below $10 \Omega$ and MO $\frac{1}{2} \mathrm{~W} 2 \%$, ohmic value and power rating. NOT mixed values.
(Ignore fractions of one penny on total value of IIgnore fractions of one penny on total value of
resistor order.) Prices for 100 up in units of 100 only.

## ELECTROLYTIC CAPACITORS



Aluminium boxes



JACKS AND PLUGS

2 circuit unswitched S1/SS2 circuit 2 break contacts S1/BB3 circuit unswithed (Not GPO/ S3/SSS3 circuit with 3 break contacts S3/BBB2 circuit with chrome nut and black/w

PLUGS


INSULATED SCREW TERMINALS
In moulded polypropylene, with nickel plate on brass.
With insulating set. washers. tag and nuts. $15 \mathrm{~A} / 250 \mathrm{~V}$ in
TP. 1 black/brown/red/vellow/green/blue/grey/white. $\begin{aligned} & \text { Type } \\ & \text { ea. } 14 \text { p }\end{aligned}$ DIN CONNECTORS

2 way louds peaker	Socket 10p	Plug
3 way audio	Socket 10p	Plug
5 way audio $180^{\circ}$	Socket 12p	Plug 15
5 way audio $240^{\circ}$	Socket 12p	Plug
6 way eudio	Socket 13p	Plug

S-DEC
Unsurpassed for "breadboard work" can be used indefinitely without deterioration. Components just push into plug hole and connect automatically. Slot for contro panel. TO holes E1.9 T-DEC
f3.63 (Cariors contacts in 38 rows. Will tak
COVERS \& HEATSINKS
Many types including:
To3Transistor cover. clip-on
HEATSINK
HEATSINK
Type 6WI Extruded aluminium $1^{\circ} \mathrm{CW}$. undrilled $\quad \mathbf{6 0 p}, ~$
drilled $2 \times$ T03 $\quad 10$
ANTEX soldering irons
CN340
C1.95
Spare bits

DESOLDER BRAID $66 p$
WAVECHANGE SWITCHES
1 pole 12 way: 2 pole 6 way
3 pole 4 way: 4 pole 3 way
TAG STRIP 28 way

NUTS, SCREWS, ETC.

## 4BA NUTS 28p: <br> " 4 B Screws 28p:

6BA NUTS 28p
$A_{i} \frac{1}{2} d^{\prime \prime}$ hexagonal
" 6BA Screws 24
Plain spacers $\frac{1_{2}}{2}$, roun

ENAMEL COPPER WIRE in 2 ounce reels 32.34 46p: $\quad 24.26,28,30$ SWG 40p


## YOU NEED CAT SEVEN

Second printing (green and yellow covers) of Electrovalue Catalogue 7-112 pages-thousands of items-components accessories. materias, toors. Well

## ELEGTROVALUE LTD <br> Please address all communications, mail-orders, etc. to head office at Englefield Green and include SAE for first head office at Englefield Green and enquiries needing a written answer.

28, ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB
Telephone Egham 3603, Telex 264475 Shop hours: 9-5.30 daily, 9-1 pm Sats.
NORTHERN BRANCH: 680, Burnage Lane, Burnage, Manchester M19 1 NA Telephone (061) 4324945
Shop hours: Daily 9-1 and 2-5.30pm; 9-1pm Sats.
U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA, P.O. Box 27 Swarthmore PA 19081.

All goods are sold on the unde standing that they conform to
manufacturers" specifications and manufacturers is geecications and
satisfaction is guanteed as sach_no reje
such-no
sub-standard sub-standard
offered for sale Prices quoted do not include $V . A T$. for which $8 \%$ must be
added to total nett talue bo added to total neth value of
order. Every effort is made to order, Every effort is made io
ensure the correctness of
intormation and orices at time of intormation and prices at time of
going to press. Prices subject going to press. Prices subject
to afteration without notice.

# (4) I MATIPIS <br> GEETMORDEGETV <br> 58-60 GROVE ROAD, WINDSOR , BERKS. 

MONEY BACK IF NOT SATISFIED.
LARGE STOCKS. LOW PRICES.
ALL BRAND NEW TOP GRADE FULL
SPEC DEVICES.CALLERS WELCOME

FAST SERVICE.
Send C.w.o. add vat to all prices in u.k. p\&p 15p. Eurobe 25p.uverseas 65p. CATALOGUE/LIST FREE SEND S.A.E

## 



MINI PIN SOURCE OR RED UIFFUSE TIL209 RED bIG \&" RED LED \& CLIP 18p ea orange \& Green leds: MINI 25p ea.BIG \& CLIP 33p ea INFRA RED LED $51.2 N 5777$ 33P.

## DIGITAL ELDEH

MOS INTEGRATED CIRCUITS AY51224 4 DIGIT CLOCN supplied MM5311/14 6 DIGIT CLOCK with
28 pin socket $\&$ data
$\$ 7.50$ $\begin{array}{ll}\text { 3ZDIGIT DVM AY53500 } & \$ 7.50 \\ \text { 4DIGIT COUNTER/DRIVIER } & \$ 7.50\end{array}$

## CASSETTE

 mechanics
## STEREO CASSETTH NHCHINISH

As used in inported types
costing Eloo. Only requires
a case \& electronics.lleads

## A

 702 OPA$70.3 \mathrm{RF} / 1 \mathrm{~F}$ $703 \mathrm{RF} / 1 \mathrm{~F}$
$709 \mathrm{TO9}$
$\square$




OU@
SPECIAL OFFERS
741 29p MFC 4000 35p
55567 p 2N414 11.09
BC107, $\mathrm{BC} 108, \mathrm{BClO9} 9 \mathrm{p}$ ea
2N3055 39p Three for ¢i
115W/T03 or 90 W plastic
2N3819E 16p 2N3053 17p
BFY50/51/52/53 all 18p
1/150Vrect $4 \mathrm{pea} 1 \times 144 \mathrm{p}$


Price each:-			
AC127/128	16p	TIP2955	90 p
AC187/188	19p	T1P3055	55 p
AD 161/162	35p	TISt3 UJT'	'25p
BC107/8/9	9 p	IV 4001	4 p
BCI32/4/7	18 p	[ N 1004	6 p
$\mathrm{BC} 1+7 / 8 / 9$	10 p	LN4148/914	4 p
BC157/8/9	12 p	2 N 697	1.5 p
BC167/8/9	12 p	2, $\mathrm{N} / \mathrm{O6} / 8$	10p
BC $177 / 8 / 9$	18 p	$2 \times 2646$	49 p
BC182/3/4*	$11 p$	$2 \times 2904 / 5$	20p
BC212/3/4*	12 p	2N2920royg	
*A or L		2N3053	17 p
BCY70/1/2	$1.5 p$	2N3055	39p
131.31/2	39p	2N3614	49 p
BFY50/1/2	18p	213702/3	9 p
BFY53	17p	213701/5	10p
13S $\times 20$	12 p	2.13700/7	9 p
MJE2955	$95 p$	2:3708/9	8 p
MJIS3055	62 p	2:3710/11	${ }^{9} \mathrm{p}$
MPUl3! put	+9p	2.3563/64	16 p
0.491	${ }_{8} \mathrm{p}$	$2 \times 3500 / 67$	16p
11929.1	48p	2, 33638	16p
TIP30才	57 p	2. $\mathrm{V} 3011 / 2$	16 p
T1p31.	61 p	2N3819E	16 p
TP324	73 p	$2 \times 58321$	17 p
TIP11A	78 p	2,3901/6	14 p
'11P421	89p	$2 \mathrm{~N}+249$	16 p



 DIL IC's BOARDS $6 \times 41^{\prime \prime} \mathbb{S}_{1} .50$
24 way edge connector 60 p 36 way 90p. PLAIN 3 "x17 I1

##  <br> PRINTED CIRCUIT BOARI) KIT $£ 1.6$

 COPPER BOARD $6 \times 4^{\prime \prime} 40 \mathrm{p}$.DESOLDER BRAID reel $59 p$ HEATSINKS
 CAPACITORS
 POTS ABoregin
 SLIDERS:SINGLE 26p. UOUBLE $48 p$.
 BENCH POWER SUPPLY $3-12 \mathrm{~V}$ £ 5 DIN PLUGS all 13 p ea. Sockets
TRANSFORMERS $1 \mathrm{~A} 6 / 12 \mathrm{~V} 51.34$ TRANSFORMERS $1 A \mathrm{~A} 6 / 12 \mathrm{~V}$ 51.3
BHA 0002 IIODULE 15 WATT MMP Ent oo five trinut
Oll sochets
PROFESSIONAL
GOLD PLATED

## WW- 048 FOR FURTHER DETAILS



TELEPHONE DIALS (New) £1 ea RELAYS (G.P.O. ' 3000 '). All types. Brand
 EXTENSION TELEPHONES (TYpe 7O6)
Various Colours E3-50. P.P. 25p. Excellent condition.
RATCHET RELAYS. ( 310 ohm ) Various Types 85p. PP 5p.
UNISELECTORS (NEW) 25 way 12
Bank (Non Bridging) 68 ohms. $\mathbf{f 6}$.


PRECISION A.C. MILLIVOLTMETER (Solartron) $1.5 \mathrm{~m} . \mathrm{v}$. to 15 v : 60 db to 20 db . 9 ranges. Excellent condition.
f22.50. P.P. f1.50.
HIGH CAPACITY ELECTROLYTICS
 $10,000 \mu \mathrm{f} .25 \mathrm{v}$. ( $1 \pm \times 4 \mathrm{in}$.) $60 \mathrm{p} .12,000 \mu \mathrm{ff} .40 \mathrm{v} .(2 \times 4 \mathrm{in}$.)

 H.D. ALARM BELLS. 6 in. Dome $6 / 8$ volt D.C. $£ 225$ P.P. 50p.

HIGH VACUUM DIFFUSION PUMPS (Metrovac 093C). New condition. £40, P.P. £2. A.E.I. P10. ION Pump Control Units. £17.50.
OVERLOAD CUT-OUTS. Panel mounting ( $1 \frac{1}{4} \times 1 \frac{1}{6} \times \frac{1}{2} \mathrm{in}$.) $800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{amp} / 10 \mathrm{amp}$. 35p ea. P.P. 5 p .
BULK COMPONENT OFFER. Resistors/Capacitors. Ali pieces $\mathbf{£ 2}$. (Trial order 100 pcs . 50 p.) We are confident you will re-order.
REGULATED POWER SUPPLY. Input $110 / 240 v$ Output 9v. DC. $1 \frac{1}{2}$ amp. 12 v . D.C. $500 \mathrm{~m} / \mathrm{a}$. £4. P.P. 30 p.
U.K. ORDERS 8\% V.A.T. SURCHARGE

## TRANSFORMERS

ADVANCE "VOLSTAT" TRANSFORMERS. InPut CV50. 38 v . at $1 \mathrm{amp}: 25 \mathrm{v}$. at $100 \mathrm{~m} / \mathrm{a} .75 \mathrm{v}$. at $200 \mathrm{~m} / \mathrm{a}$. £2 ea. P.P. $40 \rho$.

## CV75. 25 v. at $2 \frac{1}{8}$ amp. £250. P.P. 50p.

CV100. 50v. at 2 amp: 50 v . at $100 \mathrm{~m} / \mathrm{a}$. E3. P.P. 50p. CV250. 25v. at $8 \mathrm{amp}: 75 \mathrm{v}$. at $\frac{1}{2}$ amp. f5. P.P. £1. CV500. 45 v . at $3 \mathrm{amp}: 35 \mathrm{v}$. at $2 \mathrm{amp}: 25 \mathrm{v}$. at 3 amp . £7. P.P. £1.
L.T. TRANSFORMER. Prim. 240v. Sec. 13 v . 15 amp .75 p. P.P. 15 p .
L.T. TRANSFORMER. Prim. 240 v . Sec. 24 v . a $1 \frac{1}{4}$ amp. £1-20. P.P. 20 p.
L.T. TRANSFORMER. Prim. 110/240v. Sec. 0/24/40v. $1 \frac{1}{\frac{1}{2}}$ amp. (Shrouded). E1.50. P.P. 30p.
L.T.TRANSFORMER. Prim. 200/250v. Sec. 20/40/60 v. at 2 amp . (Shtouded). £2-25. P.P. 40p
L.T. TRANSFORMER (H.D.) Prim. 200/250v. Sec. 18 v . at $27 \mathrm{amp}: 40 \mathrm{v}$. at $9.8 \mathrm{amp}: 40 \mathrm{v}$. at 3.6 amp 52 v . at $1 \mathrm{amp}: 25 \mathrm{v}$. at 3.7 amp . £15. P.P. £2.
H.T. TRANSFORMER. Prim $110 / 240 \mathrm{v}$. Sec. 400 v . $100 \mathrm{~m} / \mathrm{a}$. £2. P.P. 50 p .
E.H.T. TRANSFORMER. 240 v . Sec. 1800 v . 50 mA . £2.50. P.P. 50 p.
1000W. ISOLATION TRANSFORMER. 220/240V 242v. ('C' Core type). £12. P.P. £1.50.
1000W. STEP.DOWN TRANSFORMER. (Double wound) $240 / 110 \mathrm{v} .50 \mathrm{HZ}$. £12. P.P. £2.
L.T. TRANSFORMER. Prim. 240v. Sec. 16/0/16v. at 2 amp. £1-60. P.P. 20p.
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. 23/0/23v. at $1.8 \mathrm{amp}: 50 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}: 3.15 / 0 / 3.15 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}$. £1.7
L.T. TRANSFORMER. Prim. 200/240v. ('C' Core).
Secs. $1 \mathrm{v} . / 3 \mathrm{v} . / 8 \mathrm{v} . / 9 \mathrm{v}$. all at $1.5 \mathrm{~A}: 50 \mathrm{v}$. at 1 amp. $\mathbf{f 2}$. Secs. $1 \mathrm{v} . / 3 \mathrm{v} . / 8 \mathrm{v} . / 9 \mathrm{v}$. all at 1.5 A : 50 v . at 1 amp . $£ 2$.
P.P. 25 p . P.P. 25p.
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' Core). Sec. 13.5 v . 4 A .: 39 v . at $2 \mathrm{~A} . \mathbf{£ 2} \mathbf{5 0}$. P.P. 25p. L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' Core) $1 \mathrm{v} . /$ Secondaries but st 4 amp. £4-25. P.P. 40p. L.T. TRANSFORMER. $110 / 240 \mathrm{~V}$. ( ${ }^{\circ} \mathrm{C}$ ' Core). Secs. $1 \mathrm{v} . / 3 \mathrm{v} . / 9 \mathrm{v}$ v. all at $10 \mathrm{amp}: 35 \mathrm{v}$. at $1 \mathrm{amp}: 50 \mathrm{v}$. at $750 \mathrm{~m} / \mathrm{a}$

## HIGH-SPEED MAGNETIC COUNTERS. 4 digit (non reset) 24 v 40p. P.P. 50 <br> 5 digit (non-reset) 6-12-24-48v. (state which) 75p. P.P. 5 p. (state which) 75p. P.P. 5p. <br> 3 digit 12v. (Rotary Reset) $2 \frac{1}{4} \times 1 \frac{1}{4}$ 3 digit 12v. (Reset) $31 \times 1 \times 1$ in $\times 2.25$. each 5 digit (Reset) 12v. E3. P.P. 5p.

MULTICORE CABLE (P.V.C.)
6 cole ( 6 colours) 3 screened, $14 / 0048.15 \mathrm{p}$. yd. 100 vds 20 core
20 core ( 2 screened) $17 \frac{1}{2} \mathrm{p}$ yd. $100 \mathrm{yds}. \mathbf{\Sigma 1 5}$.
30 core ( 15 colours) $\mathbf{2 2 : p}$ ip. yd. 100 yds. $£ 18 \cdot 50$
Minimum order 10 yds
RIBBON CABLE (8 colours)
E1-25
10 m.
8 cores. $7 / \cdot \mathrm{mm}$. bonded side by side in ribbon form. 100 m. SMALL MOTOR ( $1 / 50$ H.P.) 900 R.P.M. $230 / 250$ V. A.C.
$\mathbf{£ 1} 50$. P.P. 30 p. £1-50. P.P. 30p.

## RELAYS

SIEMENS/VARLEY PLUG-IN. Complete with transparent dust covers and bases. 2 pole c/o contacts 35 p ea : 6 make types in stock.
12 VOLT H.D. RELAYS ( $3 \times 2 \times 1 \mathrm{in}$.) with 10 amp . silver contacts 2 pole c/o 40p ea.; 2 pole 3 way 40p. PP. 5 p. 24 VOLT H.D. RELAYS ( $2 \times 2 \times \frac{3}{4} \mathrm{in}$ ) 10 amp contacts. 4 pole c/o. 40p ea: P.P. 5 p

240v. A.C. RELAYS. (Plug-in type). 3 change-over 10 amp contacts. 75p (with base). P.P. 5p.
P.A.R. BISTABLE RELAY (Latching) 24v. D.C. $4 \mathrm{c} / \mathrm{o}$ contacts 65p. P.P. 5p
SILICON BRIDGES. 100 P.I.V. 1 amp ( $\mathbf{~} \times \boldsymbol{1} \times \mathrm{in}$.) 30p 200 P.I.V. 2 amp. 60p.
24 VOLTA.C. RELAYS (Plug-in)
3 Pole Change-over 60p.
2 Pole Change-over 45p.
PATTRICK \& KINNIE
19I LONDON ROAD - ROMFORD • ESSEX
ROMFORD 44473 RM7 9DD

# HALF PRICE OFFER! LIMITED PERIOD ONLY! 

## KODAK RESIST COATED PRINTED CIRCUIT BOARD

$\begin{aligned} & \text { BOARD } \\ & \text { SIZE } \end{aligned}$	FIBRE GLASS												PAPER$\dot{v}^{\prime \prime}-10_{2}$	
	$\frac{18}{12}-102$								-1"-102					
	Single Sided		Double Sided		Single Sided		Double Sided		Single Sided		Double Sided		Single Sided	
	Positive	Negative												
$75 \mathrm{~mm} \times 100 \mathrm{~mm}$	14p	12p	15p	13p	8p	8p	8p	8p	16p	15p	14p	13p	8p	8p
$100 \mathrm{~mm} \times 150 \mathrm{~mm}$	27p	24p	29p	26p	15p	14p	19p	15p	33p	30p	29p	26p	15p	14p
$150 \mathrm{~mm} \times 200 \mathrm{~mm}$	53p	48p	56p	51 p	30p	27p	37p	30p	66p	60p	60p	54p	30p	27p
$200 \mathrm{~mm} \times 250 \mathrm{~mm}$	88p	80p	92p	84p	51 p	45p	63p	51 p	f1. 10	£1.00	£1.02	92p	51 p	45p
$250 \mathrm{~mm} \times 250 \mathrm{~mm}$	£1-10	f1.00	£1-15	£1.05	65p	55p	$80 p$	65p	£1-38	£1-25	£1-30	£1-15	65p	55p
$12^{\prime \prime} \times 6^{\prime \prime}$	80p	70p	85p	75p	55p	45p	65p	55p	£1.00	90p	f1 10	f1. 00	55p	45p
$12^{\prime \prime} \times 12^{\prime \prime}$	f1 60	£1-40	£1.65	£1-45	£1.05	85p	f1.25	f1.05	£1.95	£1.75	£2.10	f1 90	£1.05	85p

EXTRA DISCOUNTS!
if above sizes do not match your requirements, ask for quote-cut to your size. this is an offer that you cannot afford to missl act nowl

## SMALL ELECTROLYTICS

Ref. No.	Capacity	Voitage	Price	Ref. No.	Capaciry	Voitage	Price
H8/2	$2.5 \mu \mathrm{~F}$	16 V	4p	H7/5	$80 \mu \mathrm{~F}$	16 V	4p
H8/3	$3 \mu \mathrm{~F}$	50 V	4p	H7/7	$100 \mu \mathrm{~F}$	10 V	4p
H8/3A	$4 \mu \mathrm{~F}$	50 V	4p	H7/7A	150 $\mu \mathrm{F}$	16 V	5p
H8/5	$5 \mu \mathrm{~F}$	10 V	4p	H7/9A	$125 \mu \mathrm{~F}$	4 V	4p
H8/6A	10رF	10 V	4p	H7/10A	$160 \mu \mathrm{~F}$	25 V	3p
H8/8A	$16 \mu \mathrm{~F}$	16 V	4p	H7/11	$160 \mu \mathrm{~F}$	25 V	6p
H8/9A	20uF	70 V	4p	H7/11A	$150 \mu \mathrm{~F}$	10 V	$5 p$
H8/10	$22 \mu \mathrm{~F}$	50 V	4p	H7/13A	$200 \mu \mathrm{~F}$	25 V	8p
H8/11	$25 \mu \mathrm{~F}$	12 V	4p	H7/14	220, F	50 V	10p
H8/12	$32 \mu \mathrm{~F}$	15 V	4p	H7/14A	220 1 F	16 V	6p
H8/12A	$30 \mu \mathrm{~F}$	10 V	4p	H7/15	$220 \mu \mathrm{~F}$	25 V	5p
H8/13A	$32 \mu \mathrm{~F}$	50 V	4p	H7/15A	$220 \mu \mathrm{~F}$	35 V	10p
H8/14	$40 \mu \mathrm{~F}$	25 V	5 p	H6/1A	$250 \mu \mathrm{~F}$	4 V	3p
H8/14A	$40 \mu \mathrm{~F}$	16 V	4p	H6/3A	$320 \mu \mathrm{~F}$	2.5 V	3p
H8/15A	$40 \mu \mathrm{~F}$	35 V	4p	H6/4	$320 \mu \mathrm{~F}$	10 V	4p
H7/1A	$50 \mu \mathrm{~F}$	10 V	4p	H6/4A	$330 \mu \mathrm{~F}$	16 V	5p
H7/2A	$64 \mu \mathrm{~F}$	2.5 V	2p	H6/5	$330 \mu \mathrm{~F}$	25 V	10p
H7/4	$64 \mu \mathrm{~F}$	15 V	4p	H6/5A	$330 \mu \mathrm{~F}$	35 V	15p

## NEW! NEW! NEW! NEW!

An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly.
Method Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal neod to
Light sensitive aerosol spray
$£ 1.00$ plus Developer and Etchant 50p postage

## MULLARD ELECTROLYTIC CAPACITORS

Working Capacitance Max. Ripple					
Type No. Vol	tage	Vdc. $\quad$ LF	Current at $50^{\circ} \mathrm{C}$	Weight	Price
07116332	25	3300	3.7 amps	10z	17p
07115472	16	4700	3.9 amps	$10 z$	17p
07115682	16	6800	5.8 amps	$1 \frac{1}{\text { doz }}$	22p
07215752	16	$7500+7500$	10.5 mps	302	37p
07215113	16	$11000+11000$	13.8 amps	$4 \frac{1}{2} \mathrm{Oz}$	49p
07214113	10	$11000+1000$	10.6 amps	$3 \frac{1}{2} \mathrm{Oz}$	37p
07216502	25	$5000+5000$	9.6 amps	3! $\frac{1}{\text { ¢ }}$	37p
07216752	25	$7500+7500$	12.6 amps	$4 \frac{1}{2} 02$	49p
07118681	63	680	2.1 amps	102	15p
07214173	10	$16500+16500$	13.4 amps	$4 \frac{1}{2} 02$	49d
106 and 107 series					
10616223	25	22000	17 amps	100z	£1.12
10710222	100	2200	10 amps	$5 \frac{1}{2}$ ¢ 2	74p
Type No. Voltage		Capacitance	Weight		Price
10215163	16	16000	802		40p
10490003	20	39000	1602		50p
10216802	25	8000	$70 z$		50p
10490002	40	21000	$160 z$	-	£1
A further 10\% discount on lots of 100 of any one type.					
Please calculate the weight of your order and inciude appropriate postage.					
Not over		Ordinary Parcels	Not over $12 \mathrm{lb}$	Ordin	$\begin{aligned} \text { Parcels } \\ 53 \mathrm{p} \end{aligned}$
	216	23p	141 b		58 p
41 b		30p	16 lb		63 p
616		36p	18 lb		68 p
816		42p	2016		73p
101 b		48p	221b		78p

[^5]
## JOHN CRICHTON <br> Electronic Equipment <br> 558 Kingston Road. London, SW20 Inlard VAT add 8\% rices shown include P \& P . oth prices gladly on request.  Phone 01-540 9534

TEST SET FREQUENCY RESPONSE CT381
Frequency range
$10 \mathrm{kc} / \mathrm{s}-33 \mathrm{Mc} / \mathrm{s}$ in nine directly calibrated
ranges. Accuracy $+3 \%$ of the indicated ranges. Accuracy $\pm 3 \%$ of the indicated centre frequency.
F.M. deviation: (nominal)
$0-500 \mathrm{kc} / \mathrm{s}$ above $-4 \mathrm{Mc} / \mathrm{s}$
$0-400 \mathrm{kc} / \mathrm{s}$ at $1.5 \mathrm{Mc} / \mathrm{s}-4 \mathrm{Mc} / \mathrm{s}$
$0-165 \mathrm{kc} / \mathrm{s}$ at $600 \mathrm{kc} / \mathrm{s}-1.5 \mathrm{Mc} / \mathrm{s}$
$0-165 \mathrm{kc} / \mathrm{s}$ at $600 \mathrm{kc} / \mathrm{s}-1.5 \mathrm{Mc} / \mathrm{s}$
falling to $3 \mathrm{kc} / \mathrm{s}$ at $10 \mathrm{kc} / \mathrm{s}$.
Output impedance:
75 ohms resistive.
Power supplies:
Mains $100-120 \mathrm{~V}$ and $180-250 \mathrm{~V}$. Frequency $50-500 \mathrm{c} / \mathrm{s}$. Consumption 340 W (nominal). Belling Lee radio frequency interference filter type Y 2005 S . $100 \mathrm{Amps}, 400 \mathrm{~W} .440 \mathrm{~V}$.
Single wave $\mathbf{f 1 5}$. Single wave $\mathbf{f 1 5}$.

## HEWLETT PACKARD

430C Microwave power meter. H01-8401A Leveller a mplifier. 8709A Synchronizer.
8707A RF unit hoider
8734 B Pin modulator $7.0-12.4 \mathrm{GC}$ 8732A Pin Modulator 1.8-4.5 GC 8431 A Bandpass filter 2-4GC. 797D Directional Coupler $1.9-4.1 \mathrm{GHz} \mathbf{£ 4 0}$ 8436A Bandpass fitter 8-12.4GC. £95 185B Sampling oscilloscope

TINSLEY TYPE 4363E AUTO VERNIER POTENTIOMETER.
PYE Precision vernier potentiometer 7568. 0 V to 1.90100 V in two ranges. Accuracy
SULLIVAN T2100 PRECISION POTENTIAL DIVIDER.

## Range:

Input: 1, 2, 5, 10. 20, 50, 100, 200, 500. 1000 V . Output: 1 V .200 ohms N . Accuracy of Ratio: $0.001 \%$ or better
CROPICO TYPE P10
CROPICO TYPE P1O PRECISION D.C.
POTENTIOMETER POTE NTIOMETER.
Main Dial: 17 steps of 0.1 or 0.01 V porating a double range selected incordia. copper studs faced with a $10 \%$ gold sitver alloy, the multileaf phosphor-bronze brushes are self cleaning. Accuracy $\pm 0.001 \%$. L30047 CAMBRIDGE UNIVERSAL
BRIDGE. BRIDGE
Voltmeter Valve CT54 (Micovac), with
mains power mains power supply (power supply not
available separately). In strong metal case with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$ $A C$ or $D C$ in 6 ranges 1 ohm to $10 \mathrm{Me}-480 \mathrm{~V}$ in 5 ranges. Indicated on 4 in. scale meter. Complete with probe, $\mathbf{f 1 2 . 5 0} \mathbf{i n c l u d i n g}$

## TEKTRONIX

NON-PLUG-IN UNI
OSCILLOSCOPE.
515A. DC- 15 MHz . 150.
524AD. DC-10M Hz £100.
MAIN FRAME OSCILLOSCOPES
543. DC-30MHz $547 . \mathrm{DC}-50 \mathrm{MHz}$. 545. DC-30M Hz. 545A. DC-30M Hz 545B. DC- 33 MHz . 551. DC- 27 MHz .
PLUG-IN UNITS. PLUG-IN UNITS.

 Type B, $0.005 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm} .0 .05 \mathrm{~V} /$ cm to $20 \mathrm{~V} / \mathrm{cm}$.
Type CA. $0.05 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$.
Type D. $1 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$. Type G $0.05 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$
Type L. $5 \mathrm{miV} / \mathrm{cm}$ to $2 \mathrm{~V} / \mathrm{cm} .0 .05 \mathrm{~V} / \mathrm{cm}$
to $20 \mathrm{~V} / \mathrm{cm}$. ${ }^{\text {Type } \mathrm{M}, 0.02 \mathrm{~V} / \mathrm{cm} \text { to } 10 \mathrm{~V} / \mathrm{cm} .}$
230 DIGITAL UNIT.
Digital readout parameters. Puise ampliinde. pulse risetime and faltime. pulse
turame width, time interval.
R116. 10-NS PROGRAMMABLE PULSE GENERATOR
with Delay
PASSIVE PROBE P6006 with 10X attenuation, designed for oscilloscopes and input capacitance of up to 55 p t. and input capacitance of up to 55 pt .
Price $\mathbf{f 1 0}$. PROBE P6065 10X. 10 megohm. 12.5 pf .500 V D.C. max. Length 6ft.
Price f 15.

MUIRHEAD FREQUENCY ANALYSER TYPE D-669-B.
Frequency range $30 \mathrm{c} / \mathrm{s}-30 \mathrm{kc} / \mathrm{s}$. Accuracy
better than $1.5 \%$. Input voltage $300 \mathrm{VV}-100 \mathrm{l}$ better than $1.5 \%$. Input voltage $300 \mu \mathrm{~V}-100 \mathrm{~V}$ for full scale deflexion. Smallest indication $15 \mu \mathrm{~V}$, Maximum input voltage 300 V r.m.s.
Price $\mathbf{\text { E95. Full spec. on request. }}$ Price E95. ful spec. On
MUIRHEAD 2-PH. L.F. DECADE OSCILLATOR Type D880.
OSCILLATOR Type D8BO.
Frequency range $0.01 \mathrm{c} / \mathrm{s}-11.2 \mathrm{kc} / \mathrm{s}$ icon-
tinuously tinuously variable above $0.1 \mathrm{c} / \mathrm{s}$ ). V.L.F. $0.01 \mathrm{c} / \mathrm{s}-0.1 \mathrm{c} / \mathrm{s}$ in steps of $0.01 \mathrm{c} / \mathrm{s}$.
Hourly frequency Hourly frequency stability
Ranges $\times 1, \times 10, \times 100 \pm 0.05 \% \quad$ After
Ranges $\times 0, V 15$ $\left.\begin{array}{l}\text { Ranges Xo, i. V.L.F. } \pm 0.1 \\ \text { T.F.801D/1/SA.M SIGNAL GE }\end{array}\right\} 3$ hours. T.F.801D/1/SA.M.SIGNALGENERATOR. Freq. range: $10 \mathrm{MHz}^{\text {to }} 485 \mathrm{MHz}$. Built-in crystal calibrator. Internal and external sine
a.m. External pulse modulation, Calibration Accuracy: Using crystal calibrator within Accuracy: Using crystal calibrator, within
$\pm 0.2 \%$ over entire frequency range. R.F. outout level $0.1 \mu \mathrm{~V}$ to 1 V source e.m.f. $£ 249$. OA. 1094A/3 H.F. SPECTRUMANALYSER with L.F. extension unit type TM6448. Freq. range: 100 Hz to 30 MHz . Measures relative amplitudes up to 60 dB . Spectrum width 0.30 KHz . Sweep duration: $0.1 .0 .3,1$. 3, 10. 30 sec . and manual. Full spec on request. £695.
OA. FiA/S H.F. SPECTRUM ANALYSER. Freq. range: 3 MHz to 30 MHz in nine distortion: $0.1,0.3,3,10 \quad 30$. Sweep manual. Full spec. on request. $\mathbf{f} 44$.
T. 111 ROBAND TRANSISTORIZED SUPPLY. Mains input 110 V or 230 V . output $0-50 \mathrm{~V}$ at 5 Amperes cont. variable, overioad cut-out. $f 49$.

## REMSCOPE SO $1 / 740$ STORAGE

OSCILLOSCOPE.
Fluorescence: Yellow, resolution: 40 lines $/ \mathrm{cm}$
E.H.T.: $\quad 8 \mathrm{kV}$. display E.H.T.: BkV. display time: $10 \mathrm{mins-1} \mathrm{hr}$
approx., storage time: 1 week approx.. storage time: 1 week approx. $\mathbf{\text { CD }} 1212$ WIDE-BAND GENERAL. PURPOSE OSCILLOSCOPE.
Employing plug-in pre-amplifiers for single or
dual trace displays.
Wide-band pre-amplifier CX 1251. Bandwidth: DC $-40 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB} \pm 1 \mathrm{~dB}): 2.5 \mathrm{c} / \mathrm{s}-40 \mathrm{Mc} / \mathrm{s}$ AC coupled ( $-3 \mathrm{~dB} \pm 1 \mathrm{~dB}$ ). Rise time B nanosec approx. Sensitivity: $50 \mathrm{mV} / \mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ in
nine calibrated ranges whe nine calibrated ranges with fine gain control.
Dual trace pre-amplifier CX 1252 . Bandwidt. Dual trace pre-amplifier CX 1252. Bandwidth:
DC $-24 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB} \pm 1 \mathrm{~dB}) \mathrm{AC}$ coupled. Rise time: 14 nanosec approx. Sensitivity: $50 \mathrm{mV} /$ $\mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ in nine calibrated ranges with
fine gain control. Full specification an fine gain co
request. $f 128$
T.F.8018/3/SA.M. SIGNAL GENERATOR Freq. range: 12 MHz to 485 MHz in five bands. Built-in crystal calibrator. Full spec. on request. $£ 220$.
CT. 373 TEST SET. Oscillator: $17 \mathrm{c} / \mathrm{s}-1$
$170 \mathrm{kc} / \mathrm{s}+1 \%$. $170 \mathrm{kc} / \mathrm{s}+1 \%, \pm 1 \mathrm{c} / \mathrm{s}$ at ambient temp. $0^{\circ} \mathrm{C}-45^{\circ} \mathrm{C}$. Distortion Meter: Freq. range:
$20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. distortion range $10 \% / 30 \%$ $\begin{array}{ll}20 \mathrm{c} / \mathrm{s} \\ 100 \% & \text { f.s.d. } 2 \mathrm{kc} / \mathrm{s} \text {. distortion range: } 10 \%, 30 \% \\ \text {, }\end{array}$ $100 \%$ f.s.d. $0.5 \%$ readable. Signal input:
approx. 500 mV to 130 V basic range 250 mV to 1300 V extreme limits. Full spec. on request. $\mathbf{A} 98$. AVO MODEL 3 VALVE TESTER. Enables
comprehensive characteristics to be plotted comprehensive characteristics to be plotted
or measures valves on a simple good/bad or measu
basis. $\mathbf{5 5 5}$.
AVO CT 160 Valve tester. As above but in portable valise form. $\mathbf{£ 6 5}$.

## JOHN FLUKE <br> 821A VOLTMETER: $\pm 0.01 \%$ absolute

accuracy. infinite input resistance at nil
over entire $0-500 \mathrm{~V}$ range, standard over entire $0-500 \mathrm{~V}$ range, standard
cell reference cell reference, polarity switch, taut-band suspension meter, in-line readout with automatic lighted decimal, no zero controls
803. D BO3. DIFFERENTIAL DC/AC VOLT METER. AC voltage $0-500 \mathrm{~V}$ in 3
ranges, DC voltage $0-500 \mathrm{~V}$ in 4 ranges. Fult spec. on request.
TF. 937 F.M./A.M. SIGNAL GENERATOR Freq. range $85 \mathrm{KHz}_{2}$ to 30 MHz . The carrier
freq. can be standardized against a built-in dual free. crystal calibrator, which is complete with miniature loudspeaker as an aural beat detector $£ 87$.
TF.114H/S SIGNAL GENERATOR. Frequency range: $10 \mathrm{KHz}-72 \mathrm{MHz}$. Stability: 0.002\%. High discrimination, plus crystal calibrator. Good r.f. waveform at all fre quencies. Protected thermocoup
tor. Full spec. on request. $\mathbf{£ 2 2 0}$.
TEST SET DEVIATION FM
TEST SET DEVIATION FM No 2. The carrier frequency range extends from $2.5 \mathrm{Mc} / \mathrm{s}$
to $10 \mathrm{Mc} / \mathrm{s}$ and from $20 \mathrm{Mc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$ in a total of eight bands: the deviation ranges are 0 to $5 \mathrm{kc} / \mathrm{s}$. 0 to $25 \mathrm{kc} / \mathrm{s}$ and 0 to $75 \mathrm{kc} / \mathrm{s}$. $\mathbf{f 4 8}$.


EnCase environmental housing

A cleverly designed pro tected polycarbonate enclosure: weatherproof hoseproof and damp and dust protecting. Its high impact strength will withstand rough handling. The stand rough handing. The
seven sizes can interconnect and any case will extend and any case will extend both, while maintaining full protection. Send for new catalogue.
$\rightarrow$ D

samos
shation ome
in easy-to-work blue and
white PVC/steel in the lower half; complete before springing cover into place-four Pozidrives, two to hinge it, two to fasten it. Carries four P.C. boards horizontally, or two vertically: four required for each board, two each case).


## Wid Printed Circuit System

is simple, inexpensive, and fits into low-cost West Hyde cases. The System comprises six cards (two styles, three sizes). connectors double-sided and all contacts gold-plated Shown: Mod-301 case with boards 421 . guides 311. 21 -way connectors. Prices: (1) $\begin{aligned} & \mathrm{Mod}-301 \text { (including chassis) } \\ & \mathbf{~ 7 3 . 9 5} \text { : Boards } 421 \text { 21-way }\end{aligned}$


> \$39b: Boards 421 \& 422 £1 lup to eight DILs on each bor
(up to eight DILs on each board): Card guide pairs $311 \mathbf{f 2 . 2 6}$. Prices LEDs with chromium-plated screwed case suitables. unmounted LEDs 3.2 mm . dia. unmounted LEDs 3.2 mm . dia

1 off inc. P \& P and 8\% VAT
Cased red
$\begin{array}{ll}\text { 59p } & \text { w/o case } \\ \text { 70p } & \text { w/o case }\end{array}$
$\mathbf{3 0 p}$
48p




Prices include screws, rubber feet, one or two chassis according to size, P \& P and 8\% VAT. Prices correct August 1974.

## WEST HYDE WH

WEST HYDE DEVELOPMENTS Ltd, Fyyefiedd Cres., Northwood Hilks, Northwood, Middx HA6 INN. Te: Northwood 24941/26732

Telex: 923231
Write or 'phone for new free catalogue. WW- $\mathbf{0 9 6}$ FOR FURTHER DETAILS

# INTRODUCTORY OFFERS A VCO FXII by FHACHI 1 Hz to 100 KHz for $£ 3.85$ P.\&P. 15 p. 

Size: 2 in . long; $1 \frac{1}{8} \mathrm{in}$. wide; $\frac{5}{8} \mathrm{in}$. high. Input: 12 to 24 V DC (not centre tapped) 18 V input giving 10 volt constant amplitude output
Requires only a 1 meg ohm potentiometer to tune entire range - or can be swept with a sawtooth input. Enormous possibilities-music; synthesizers; filters; communications; frequency modulation. etc.

Detailed application sheet with all purchases.

## FHACHI RAMP MODULE FX21

24 volt DC input for 18 volt sawtooth output. Requires only external capacitor and 100 K ohm potentiometer to control frequency range up to 100 KHZ leg 50 mfd electrolytic gives sweep of approx 1 cm per second). In or out sync capability. Price $\mathbf{£ 3 . 8 5}$. P.\&P. 15p.

TEKTRONIX 545B Oscilloscopes. From As
TEKTRONIX $545 B$ Oscilloscopes. From As
New to well used condition. Main frame.

AT LAST- $\mathbf{5 0}$ MHZ TWICE for under HEWLETT PACKARD Oscilloscope
type 175 f for $£ 195$.
AMERICAN SWEEP GENERATOR TYDE TRM 315 to 400 MHZ. E300.
AMERICAN AM GENERATOR Type 497. 4 to 400 MHZ . Supplied with leads. etc. for

## BRAND-NEW 12in.

LONG PERSISTENCE TUBES
New stocks-new price. Only $£ 6.50$
Ideal for SSTV: educational Type 12DP7A. connections, voltages etc. Type 12DP7A, connections, voltages etc.
Price includes carriage \& VAT.

MODERN TELEPHONES type 706. Two-


Ideal EXTENSION Telephones with standard
GPO type dial. bell and lead coding, $\mathbf{E 1 . 7 5}$ ea. GPO type dial. bell and lead coding. $\mathbf{f 1 . 7 5} \mathrm{ea}$
P. \& P. 25 p. All telephones complete with bell and dial
CONSTANT VOLTAGE
TRANSFORMERSS
1 Kilowattec.
S.A.E. With requirements.

FENLOW LOW FREQUENCY ANALYSER type SA2 with recorder. $£ 175$.
SOLARTRON CD523 Single Beam Oscilloscope 3 db at $10 \mathrm{MHZ}, 1 \mathrm{mV}$ max sensitivity.
DC coupled down to 1 vol. 4 in . flat faced PDA tube. TB from 1 secs. per cm . to 0.1 microsecs. per cm . plus times 5 expansion $£ 50$.
MARCONI TF 195M-0/40 KHZ Sine Wave Generator $0 / 40$ Volts output Metered. These must go £7.25.
MARCONI TF 801E. AM SIGNAL GEN ERATOR.
MARCONI VVM TF1041 £22.50.
MARCONI TF 428C. Measures AC 100MV to 150 V 2 HZ to 15 MHZ . Measures DC 40 MV
to 300 V . Complete with probe. Standard 240 V to 300 V . Complete with probe. Standard 240 V operation. 99 ea
MARCONI TF899. Measures 20MV to 2 V AC. 50 HZ to 100 MHZ f10 each
POTENTIOMETERS
COLVERN 3 watt. Brand new. 25 K at 13 p ea. MORGANITE Special Brand new, 2-5: 10: 100; 250: 500K: 1in. sealed. 17p ea
BERCO $2 \frac{1}{2}$ Watt. Brand new. 5; 10: 50:250:
ohms: $1: 2.5: 10 ; 25: 50 \mathrm{~K}$ at 15 ea.
STANDARD 2 meg. log pots. Current type $15 p e a$.
NSTRUMENT 3in. Colvern 5 ohm 35p ea KK and 100K 50p ea.
BOURNS TRIMPOT POTENTIOMETERS. 20, $50 ; 100: 200 ; 500$ ohms : $12: 2 \cdot 5: 5: 10$
25 K at 35 pea . ALL BRAND NEW
RELIANCE P.C.B. mounting. 270; 470;
VENNER Hour Meters- 5 digit, wall mount
-sealed case. Standard mains. $£ 3.75$ ea -sealed case. Standard mains. $\mathbf{E 3 . 7 5}$ ea TRANSFORMERS. All standard inputs. Gard/Parm/Part. 450-400-0-400-450. 180

FANTASTIC VALUE   Miniature Transformer. Standard 240 V input. 3 Volt 1 amp output. Brand New. 65 p ea. P. \& P. 15p. Discount for quantity.

## LOW FREQUENCY WOBBULATOR

Primarily intended for the alignment of AM Radios; Communication Receivers; Filters, etc., in the range of 250 KHZ to 5 MHZ , but can be effectively used to 30 MHZ . Can be used with any general purpose oscilloscope. Requires 12 V AC input. Three controlsRF level: sweep width and frequency. Price $\mathbf{£ 8} \mathbf{5 0}$.
A second model is available as above but which allows the range to be extended down in frequency to 2 OH K Z by the addition of external capacitors. Price £11.50.
Both models are supplied connected for automatic 50 HZ sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability, with the exception of the controls (not cased, not calibrated).


CRYSTALS. Colour 4.43 MHz . Brand New

## Beehive Trimmer $3 / 30 \mathrm{pf}$. 

CAPACITOR PACK 50 Brand new comp hents only 50p. P. \& P. 17p.

POTS 10 different values. Brand new. 50p. P. \& P. 17p.

COMPONENT PACK consisting of 5 pots various values. 250 resistors $\frac{1}{4}$ and $\frac{1}{2}$ watt etc.. many high stabs. All brand new. Fine value at 50p per pack. P. \& P. 27 p .
DELIVERED TO YOUR DOOR 1 cwt . of Electronic Scrap chassis, boards, etc. No
Rubbish. FOR ONLY $£ 3.50$. N. Ireland $£ 2$ extra. C.B. PACK S \& D. iny pieces. 50 p plus P. \& P. 20 p .
FIBRE GLASS as above $£ 1$ plus P. \& P. 20p.
TRIMMER PACK, 2 Twin 50/200 pf ceramic Twin 10/60 pf ceramic: 2 min strips with reset $5 / 20$ pf on each. 3 air spaced 25p the LOT. P. \& P. 10p.

ALMA precision resistors 200K: 400K : 497K. 20p ea. $0.1 \%$ 27p өа.: $3.25 \mathrm{~K}, 5.6 \mathrm{~K}, 13 \mathrm{~K}-0.1 \%$

RELAYS
Varley VP4 plastic covers 4 pole c/o 15 K -
Varley VP4 plastic covers 4 pole c/o $15 \mathrm{~K}-$
$\mathbf{3 3 p}: 5.8 \mathrm{~K}-40 \mathrm{pea}$

## HF Crystal Drive Unit. 19 in. rack mount. Sy Labgear (no crystals) $£ 5$ ea. Carr. $£ 1.50$. ROTARY SWITCH PACK-6 Brand New switches (1 ceramic: $1-4$ pole 2 way etc.). Modern Version of VCR 138. Flat faced. Side BASES for above 20p. P. \& P. 15 p GRATICULES 12 cm by 14 cm . in High Quality plastic. $15 p$ each. P. \& P. 5p. PANEL mounting lamp holders. Red or green. 9p ears- 10 V 15 MA 5 pea . <br> BECK MAN MULTITURN DIAL Model RB. Brand new. Model RB. Brand new. £1.90. P. \& P. 10p.

FIBRE-GLASS PRINTED CIRCUIT BOARD. Brand New. Single or Double sided.
Any size $1 \frac{1}{1}$ p per sq. in. Postage 10 p per order.

LIGHT EMITTING DIODES (Red) from Hewlett-Packard. Brand New. 38p ea
Information 5p. Holders 1p.

METERS. Ernest Turner Model 402, 100 micro amps. BRAND NEW. Lousy scale-
METERS by SIFAM type M 42, 25-0-25 micro amp. Scaled $25-0-25$ green; $250-0-$
250 red: linear. As new. £2.95 ea. P. \& P. 37p.

VISCONOL EHT CAPACITORS 0.05 mfd 2.5 kv 5 p ea. 0.01 mfd 5 kv 40 pea .
0.05 mfd
8 kv 50 p ea. 0.01 mfd 10 kv 50 pea . BLOCK PAPER CAPACITORS AVAILABLE S.A.E with requirements. PHOTOCELL equivalent OCP 71. 13p eá. MULLARD OCP70 10p ea

## FHACHI FILTER MODULE FX31

Designed for use with VCO FX11 and RAMP FX21. This completes the 3 building blocks required for a basic low-frequency Spectrum Analyser that covers 100 HZ to 50 KHZ . The additional components required are discrete resistors and capacitors, etc. (No inductances or specialized components are needed.) Price £9.35. P.\&P. 30p.

DON'T FORGET	MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW
YOUR MANUALS	LOW PRICED SOLID STATE SWITCH.
S.A.E. WITH	connect to your scope and have two traces for ONLY £6-25. P. \& P. 25p.
REQUIREMENTS	STILL AVAILABLE our 20 MHZ version at £9.75. P. \& P. 25p.

## 20 HZ to 200 KHZ <br> SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine, 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. $\mathbf{£ 8 . 8 5}$ each. P. \& P. 25p. Sine Wave only f6. 85 each. P. \& P. 25 p.

## WIDE RANGE WOBBULATOR

HARTLEY 13A Double Beam Oscilloscope TB $2 \mathrm{c} / \mathrm{s}-750 \mathrm{kc} / \mathrm{s}$. Band width 5.5 mcs . Sensitivity $33 \mathrm{Mv} / \mathrm{cm}$. Calibration markers $100 \mathrm{kc} / \mathrm{s}$ and $1 \mathrm{Mc} / \mathrm{s}$. $£ 25$ each. With accessories $£ \mathbf{2 7 . 5 0}$ ea.

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency, Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only $\mathbf{£ 6} \mathbf{7 5}$. P. \& P. 25p. (Not cased, not calibrated.)

Unless stated-please add $£ 1.50$ carriage to all units.
VALUE ADDED TAX not included in prices-please add 8\% Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

Open 9 am to 6.30 pm any day (later by arrangement.)


7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

## The largest selection

## BRAND NEW FULLY GUARANTEED DEVICES



## -the lowest prices!

## 74 Series T.T.L. I.C'S

bi-pak still lowest in price full gpecrication GUARAMTEED, ALL FAMOUB BANUFACTURERS


NOW WE GIVE YOU 50w PEAK (25w R.M.S.)PLUSTHERMAL PROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £3.95

- Max Heat Sink temp. $90^{\circ} \mathrm{C}$.
- Frequeney Response 20 Hz
- Distortion better than $0.1 \%$
- Supply voltage $15-50$ volts
- Thermal Feedback
- Latest Design Improvements
- Load-8, 4, 8 or 18 ohms Overall size 63 mm
105 mm .. 13 mm

Especially designed to a strict apecification. Only the finest compo-
nents have been used and the latest solid state circuitry incorporated in this powerful little amplifier which should satisiy the most critica
A.F. enthusiast.
FULIY BUIIT-TESTED and GUARANTEED


## E MODULE SPM80

£3.25

SPm80 is especialily designed to power 2 of the A' L60 Amplifiers, up to
15 watt (r.m. latest components and circuit techunques incorpor ating completes short circuit protection. With the addition of the Mains Pransformer RmT80,
the unit will provide outputs of up to 1.5 amps at 35 volts. Blze: the unit will provide outputs of up to $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 20 \mathrm{~mm}$. These unite enable you to build Audio Systems of the highest quality at a hitherto unobtainable price. Also
tdeal for many other applications including: Disco Bystems, Public TRANSFORMER BMT80 £2. 15 p. \& p. 25p
STEREO PRE-AMPLIFIER TYPE PA100


dual.in-line SOCKETS $14 \& 16$ Lead So
DUAL-FN-LINE I.
PROFESHEN PUALIN-LINE I.C'S. TWO Ranges
PROEESONAL \& NEW LOW COAT.
PROF TYPE NA


 NUMERICAL
INDICATOR TUBES


 CD 66 Characters Hga 21.90 | CATALOGUE \& LISTS |
| :--- | :--- | :--- |
| Send S.A.E. and 10p |

The STEREO 20


# Built to a specification and NOT a price, and yet still the greatest value on the market 

 the PAl00 stereo pre-amplifer has been conceived from the latest circuit techniquesDesigned for use with the AL60 power amplifier system, this quality made unit Designed for use with the AL60 power amplifier system, this quality made unit
incorporates no less than eight illicon planar transistors, two of these are specially selected low noise NPN devices for use in the input stages.
Three switched stereo inputs, and rumble and acratch filters are features of the
PA100, which also has a BTEREO/MONO switch, volume, balance and continuousl SPECIFICATION:

Frequency response	$20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 1 \mathrm{~dB}$	Bass control
Harmonic distortion	better than 0.1\%	Treble control
Inputa: 1. Tape head	3.25 mV into $50 \mathrm{~K} \Omega$	Filters: Rumble (high pass)
2. Radio, Tuner	75 mV into $50 \mathrm{~K} \Omega$	Scratch (low pass)
3. Magnetic P.U.	3 mV into $50 \mathrm{~K} \Omega$	Signal/noise ratio
input voltages are for	n output of 250 mV .	Input overload
e and P.U. Inputs equ	lised to rLas curve	Supply
hin +1 dB from 20 Hz	20 kHz .	Dimensiona

$\pm 15 \mathrm{~dB}$ at 20 Hz
$\pm 15 \mathrm{~dB}$ at 20 kHz
100 Hz 100 Hz
8 kHz


## MK 60 AUDIO KIT

only $£ 13 \cdot 15$ TEAK 60 AUDIO KIT



The above table relates to the AL10, AL20 and AL30 modules. The following table

Parsmeter	AL10	AL20	AL30
Maximum Suptly Voltage	25	30	30
Power outuut fur $2 \%$ T.H.D.   ( $\mathrm{RL}=\boldsymbol{*} \Omega \mathrm{f}=1 \mathrm{KHz}$ )	3 watts RMS Min.	5 watta RMS Min.	$\begin{aligned} & 10 \text { watts } \\ & \text { RMS Min. } \end{aligned}$
PRICE	42.20	82. 59	43.3

$8_{\text {HP80 }}$ BTEREO HEADPEONES, $4-16$ ohm $i_{\text {mpedance. Frequency response }} 20$ to $20,000 \mathrm{~Hz}$
Sterea/mono switch and volume controls

## TRANSFORMERS



POWER SUPPLIES


PA 12. PRE-AMPLIFIER SPECIFICATION
The PA 12 pre-amplifer has been deeigned to match into
moot toudget otereo systems. It is compatible with the
mrequency response-
$20 \mathrm{~Hz}-50 \mathrm{KHz}\langle-3 \mathrm{~dB}$
 can be rupptied from their asgociated power supplies.
There are two stereo inputs, one has been designed for use

 controls are, from left to right:
Volume and on/orf ewitch, balance,



## Calculators, Clocks and Counters

DIGITAL CLOCKS
Professional quality, 6 -digit, 12 or 24 hour display
Beautifully finished in executive case, also available as easy-build kit .....................
FREQUENCY COUNTERS
Small, attractively-styled, up-to-the-minute design, $10 \mathrm{~Hz}-30 \mathrm{MHz} 6$-digit
LED display, also available as easy-build kit
High-frequency model $10 \mathrm{~Hz}-220 \mathrm{MHz}$ minimum, still a full 6 -digits and LED display.
Also available as easy-build kit

## New items!

## SPECIAL OFFER

## CALCULATORS

All prices VAT inclusive until 1st October. 1974. British made by Advance 162P 40-step programme desk top
162 R as 162 but includes $\sqrt{ }$
161R. 1 memory, \%, 16-digit $\sqrt{ }$
882 memory $\% \sqrt{ }$, hand-held, with rechargeable batteries, charger, case \& desk stand

## QUAD

Latest-We have CBS-SQ Logic ICs in stock now! Full logic kit available
ALL ITEMS FOR PE RONDO QUADRAPHONIC SYSTEM SUPPLIED BY US ALL PRICES ARE POST FREE

## A FULL TECHNICAL AND AFTER-SALES-SERVICE IS PROVIDED

AS MANUFACTURERS AND DISTRIBUTORS WE WELCOME TRADE AND EXPORT ENOUIRIES.
COMMUNICATIONS CONSULTANTS ... INSTRUMENT DESIGNERS . . FOUR-CHANNEL SOUND SPECIALISTS.


$\mathbf{£ 3 3 . 5 0}+\mathbf{E 2} .68$ VAT<br>$\mathbf{E 2 9 . 5 0}+\mathbb{E 2} .36$ VAT<br>E55 + £4.40 VAT<br>$\mathbf{E 4 5}+\mathbf{E 3} .60$ VAT<br>$\mathrm{E97}+\mathbb{E} 7.76$ VAT<br>$\mathbf{£ 7 5}+\mathbf{E 6} .00$ VAT

```
|..E199
.E175
.£108|モ99
```

$\mathbf{£ 2 7 . 0 0 + £ 2 . 1 6 ~ V A T ~}$
please let us know after todays if YOUR ORDER IS NOT ACKNOWLEDGED.

ADDRESS
$\square$


MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microin 8 ranges. Incremental: $\pm 1 \%$ at 1 Mc/s.
 Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$. Modulation: Direct or via internal Measurements $29 \times 12 \downarrow \times 10 \mathrm{in}$. Secondhand Consumption approx. 40 watts. Me.
condition. $£ 27.50$ each, Carr. $£ 2.00$.
POWER SUPPLY UNIT PN-12A: 230 V a.c. input $50-60 \mathrm{c} / \mathrm{s}, 513 \mathrm{~V}$ and 1025 V at $420 \mathrm{~m} / \mathrm{A}$ o/put. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament transformer 230 V a.c. input. 4 Rectifying valves type $5 \mathrm{Z3}$. $2 \times 5 \mathrm{~V}$ windings at 3 Amps each and 5 V at 6 Amp and 4 V at 0.25 Amps . Mounted on steel base 19in. W $\times 1$ in. H $\times 14 \mathrm{in}$. D. (All connections at the rear.) Excellent cond. $£ 8.50$ each, Carr. $£ 2$.
MODULATOR UNIT: 50 watt, part of BC- 640 , complete with $2 \times 811$ valves, microphone and modulator transformers etc. $£ 7.50$ each, Carr. $£^{2.00}$.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $\mathbf{x 3} .50$ each, post 50 p. APN-1 INDICATOR METER, $270^{\circ}$ Movement. Ideal for making rev, counter. £1-25, post 30 p .
AIRCRAFT SOLENOID UNIT S.P.S.T.: $24 \mathrm{~V}, 200 \mathrm{Amps}$, $\boldsymbol{£ 2}$ each, 30 p post. VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at $2 \mathrm{Amps} . \mathrm{£} 3$ each. 75p post.
RACK CABINETS: (totally enclosed) for Std. 19 in. Panels. Size 6 ft . high $\times 21$ in. wide $\times 16$ in. deep, with rear door. $£ 12$ each, Carr. $£_{2}^{2} 50$.
CLASS "D" WAVEMETER NO. I MK. II: Crystal controlled heterodyne frequency meter covering $2-8 \mathrm{MHz}$. Power supply 6 V d.c. Good secondhand cond. 67.50 each. Post 60 p .

ROTARY INVERTERS: TYPE PE.218E-input $24-28 \mathrm{~V}$ d.c., 80 Amps. 4,800 rpm. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}$. 1 Ph . P.F.9. $£ 17 \cdot 50$ each. Carr. $£^{2}-00$. REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and power supply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{~mA}$. Two stabilised valves CV 286. Centre Zero Meter 10-0-10. Size 8in. $\times 8$ in. $\times$ 8in. New condition 67.50 , Carr. 75 p .
TS 15C/AP FLUXMETER: Used to provide qualitative measurements of flux densities between pole faces of magnets. Range $1200-9600$ gausses. $\pm 2 \%$. S/hand good cond. $£^{25}+60 \mathrm{p}$ post.
AUTO TRANSFORMER: $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}, 1000$ watts. Mounted in strong steel case $5 \mathrm{in} . \times 6$ tin. $\times 7 \mathrm{in}$. Bitumen impregnated. $£ 10$ each, Carr. $£ 1$.
UHF ASSEMBLY: (suitable for 1000 MHz conversion) incl. UHF valves; $2 \mathrm{C42}$, 2C46, 1B40. Complete with associated capacitors and screening; 3 manual counters $0-999$. Valves 6 AL 5 and $8 \times 6 \mathrm{AK} 5$. $£ 10$ each, 60 p post.
TELEPRINTER TYPE 7B; Pageprinter 24 V d.c. power supply, speed 50 bauds per min. 'as new' cond. in original packing case, $£ 25$ each; or second hand cond. (excellent order) no parts broken, fi5 each. Carriage either type $£ 3$. 00 .
INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision for checking ionisation. $110 / 230 \mathrm{~V}$ a.c. input. S/hand good cond. $£ 30+£ 1$ carr. AUTOMATIC VIBRATION EXCITER CONTROL UNIT TYPE 1016: Manufactured by Bruel \& Kjocr. 5-5000c/s per sec. S/hand V. good cond. $£ 90$,
 Input voltage 24 v . d.c. Weight 801 bs . $£ 35 \cdot 00$ each, carr. $£ 3.00$.

RACAL OSCILLATOR: $1-100,000 \mathrm{KHz}$ in 1 KHz steps with digital readout BFO, CWN, FSK, CWW, LSB, USB, ISB, DSB. Line 1 and 2. $£ 200$ each. Carr. f 5.

> 50-LINE TELEPHONE SWITCHBOARD: Complete with all plugs etc., excellent cond. ${ }^{40}$ each. Carriage $\mathscr{L}^{5}$.
10-WAY TELEPHONE SOCKET
> 10-WAY TELEPHONE SOCKET STRIPS: 3 connections and 10 jack plugs to suit. Similar to PL68. Complete with 6 ft . cord. Ex-equipment, good cond. ${ }^{\text {f4 }}$ each. Post 50 p .
10-WAY TELEPHONE LAMP STRIP: Suitable for use with the above. $£^{10}$ each Post 30 p .
> the above items. f $^{2}$ each. Post 40p.
10-WAY TELEEPONE SOCKET STRIP: 3 connections. Takes standard P.O. Jackplugs ; 20 or 316; and 10-WAY TELEPHONE LAMP STRIP. f3 the pair. Post 50p.
20-LINE TELEPHO
> switches in metal case NE UNIT: With plugs; magnetic indicators; and

BRIDGE MEGGER: 250V. (Evershed Vignoles) series 2. $£ 30$ each. Carr. $£ 1$ BRIDGE MEGGER: 2,500V, series 1 . $£ 30$ each. Carr. $£ 1$.
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction with a freq meter. $£ 15$. Carr. $£ 150$.
DELPENA RF GENERATOR TYPE E.15: 15 kW at 500 Hz ; input 440 V 3 ph . 50 Hz . $£ 275$. Carr. at cost.
H.V. TRANSFORMER: $8000 / 8000$. Output 300 mA . rms. Size $: 12 \mathrm{in} . \times 12 \mathrm{in} . \times$ 36 in . 230 V input. $£ 35$, Carr. $£ 4 \cdot 00$.
TELEPHONE CABLE: (Twin) $1,350 \mathrm{ft}$. on metal reel. $£ 5$ per reel. Carr. $£ 1$
ANTENNA MAST 30 ft . consisting of $10 \times 3 \mathrm{ft}$. tubular screw sections ( $\bar{z}^{\prime \prime}$ dia.) with base guyropes and stays etc. $f 5$ each, Carr. $£ 2$.
APN-1 ALTIMETER TX/RX: Freq. approx. 410 MHz . Complete wil. 28 V dynamotor, 3 relays, precision resistors, 11 valves. Useful breakdown for parts. ${ }^{\text {dynamotor, }} \mathbf{6} 4$ each, Carr. $f 150$
AVO VALVE TESTER CT.160: (Portable) similar to Avo Mk. 3 Characteristic Meter. Good cond. $£ 35$ each, Carr. $£ 1.50$.
MODULATOR UNIT: Complete with mod. transformer and $2 \times 807$ Valves Mounted $19^{\prime \prime}$ chassis, $8^{\prime \prime} \times 8^{\prime \prime}$. "As new" cond. $£ 8$ each; or secondhand $£ 5$ each. Carr. both types $£ 1.50$.
FIRE-PROOF TELEPHONES: $£ \mathbf{2 5} \cdot \mathbf{0 0}$ each, carr. $£ 1.50$
TF. 2000 A.F. SIGNAL SOURCE: $£ 175 \cdot 00$, carr. $£ 1 \cdot 00$.
WESTON INDUSTRIAL THERMOMETER MODEL 221: 0-100 3 inch dia. scale. Accuracy $1 \%$. $£ 3 \cdot 00$, post 30 p.
POWER UNIT: $110 / 230$ volts a.c. input. 28 volts d.c. at 40 amps output. $\mathbf{f 3 0} \cdot \mathbf{0 0}$ each, carr. f3.00
SMOOTHING UNIT (for the above): $\mathbf{£ 1 0 . 0 0}$ each, carr. $£^{2 \cdot 00}$.
LISTS OF EQUIPMENT AVAILABLE: MOTORS; TELEPRINTERS; AR88 SPARES; TEST EQUIPMENT ETC. Send 10p for above lists.
ALL GARRIAGE QUOTES GIVEN ARE FOR 50 MILE RADIUS OF LONDON ONLY.

ALL U.K. ORDERS SUBJECT TO 8\% VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage).

If wishing to call at
stores, please telephone
for appointment.

## Principles and Culculations for Radio Mechanics Part 1

R. A. Bravery and A. P. Gilbert

Part of the Radio, Television and Electronics Servicing Series, this volume deals with the subject matter for Part 1 of the City and Guilds Radio Mechanics Course 222.
1974152 pp., illustrated 0408001194 £1.50

## Rapid Servicing of Transistor Equipment 2nd Edition

Gordon J. King
This completely revised second edition takes account of recent developments such as capacitor-diodes, f.e.t.s and integrated circuits.
1973 180pp., illustrated $040800116 \times$ E1.90

## Robolics

John F. Young
The object of this book is to present a comprehensive and orderly account of the principles and practice of robotics. It will provide a valuable source of reference for research workers and those in related fields.
$1973 \mathbf{3 0 4}$ pp., illustrated $\mathbf{0 4 0 8 7 0 5 2 2 2} \mathbf{f 6 . 0 0}$ Obtainable through any bookseller or from NEWNES-BUTTERWORTH Borough Green, Sevenoaks, Kent TN15 8PH. Tel. Borough Green 2247

## HART ELECTRONICS

AUDIO KITS

F.M. TUNER This latest addition to our range will be in production late March '74, It is designed to offer the best possible performance allied to the ease of operation given by
push button varicap tuning. We have taken great care to look after the constructors' point push button varicap tuning. We have taken great care to look atter the constructors point
of view and there are no coils to wind. no RF circuits to wire and no alignment is required. in tact the whole unit can be easily completed and working in an evening as there are
only 3 transistors, one IC and two ready buitt and aligned modules comprising the active only 3 transistors. one IC and two ready buit and aligned modules comprising the active

components. We have abandoned the concept of having a tuner as large as the amplifier | components. We have abandoned the concept of having a tuner as |
| :--- |
| and this new unit has a frontal size of only $1 \frac{1}{2}$ in. $\times 4$ in. It can be mounted on the side | of our Bailey amplifier metalwork thus turning it into a tuner/amplifier whilst only increasing its width by $1 \frac{1}{2}$ in. Cost of luner chassis (no case) is $\mathbf{£ 2 2}$ for mono. $\mathbf{£ 2 5 . 4 5}$ for stereo.

An extended wooden case to fit tuner and amplifier will be offered shortly BAILEY/BURROWS/QUILTER PRE AMP. The best engineered kit available of the combined best of three pre-amp designs. This is the kit with no wiring to the controls. switches or inputs. A complete and sophisticated 5 input signal processing stage for any
power amplifier requiring up to $1 \frac{1}{2} \mathrm{~V}$ input for only $\mathbf{E 2 0 . 5 0}$. Front end only E10.44. Tone power amplifier req.
controt only $£ 11.41$.
BAILEY 30 WATT POWER AMPS. Our best selling power amplifier, you can't better its
performance or the quality of the kit and at only $f 9.88$ per channel. it's amazing value for money.
STUART TAPE CIRCUITS Our printed circuits and components offer the easy way to convert any suitable quality deck into a very high quality Stereo Tape unit. Input and
output levels suit Bailey pre amp. Total cost varies but around $£ 35$ is all you need. We can output levels suit Bailey pre amp. Total cost
offer tape heads as well if you want new ones.
All above kits have fibeeglass PCB's. Prices excl
All above kits have fibreglass PC8's. Prices exclude VAT but P\&PP is included.
FURTHER INFORMATION ON ALL KITS FREE if you send us a $9 \mathrm{in} . \times 4 \mathrm{in}$. S.A.E. REPRINTS Post free, no VAT Bailey 30W 18p.
STUART TAPE RECORDER All 3 articles under one cover 30p.
BAILEY/BURROWS/QUILTER Preamp circuits, layouts and ass
Penylan Mill, Oswestry, Salop



SWITCHES
Edwards High Vacuum "Speedivac" model VSK1B range 25.760 tort contact ratings
250 v . 5 a volume 4.2 cu cm . max working 250 v . $5 a$. volume $4 \cdot 2 \mathrm{cu} . \mathrm{cm}$. max. working
pressure $15 \mathrm{lb} / \mathrm{sq}$. in. gauge set weight 17 ozs . Belling Delay hand reset L415 ...........£1 10 Stackpole min, rocker 125v. 10a.250v.
$5 \mathrm{a} . \ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 p ~$
Tippalite Rocker 12 v 60p
CIRCUIT BREAKERS 250 V AC each $\mathbf{E 1 . 2 0}$

2.0	-	Westingh 550
4.0		Securex 5000
7.0	Inst.	Westingh. 550
7.0	4	Heinemann 160 c .
8.0	Inst.	Westingh. 550
8.0		Securex 5000
9.0	Inst.	Westingh. 550
10.0		Securex 5000
20.0	-	ETA Magnetic

DIGITAL COUNTERS
Veeder Root Mech Reset 4 dig ....50p
STABILIZED POWER SUPPLIES
Gresham Lion GX60/10a-60v. io amp. set Lambda CC28v-Inp 205-265v carriage $28 \mathrm{vdc}+5 \% \quad 3.4 \mathrm{amp} \mathbf{~} \mathbf{~} 38.50$ incl. $\& \mathrm{p}$. Power Elect. inp 240 v outputs 20 v 6.5 a 10 v $3.4 \mathrm{amp}+10 \mathrm{v} 300 \mathrm{ma}$ … $\mathbf{£ 8} \mathbf{5 0}$ inc. carr.
RELAYS

## Varley Min. $700 \Omega 12 \mathrm{~V}$ <br> Magnetic Oev Min. $12 / 15 v . .$.

CONNECTORS
McMurdo Red Range. Plug RP24
McMurdo Red Range. SKT RS32
Eng. Elect. Edge. 36 way 0.2 inch
Sylvania Edge. 48 way 0.125 inch
Amphenol MS31068-36-10 pair 40p

=3-FRE-MAK AdDIO BARCAIIS STEREO D DECOOER $\leqslant 00 \%$ 分
incl. P. \& P.
A ready built unit ready for connection to the I.F. stages of existing F.M. Radio or Tuner. A tell-tale light can be connected. The unit is a small printed circuit. no further adjustment necessary. A L.E.D. is recommended as the indicating light, suitable device available from us at $\mathbf{2 5 p}$. Instructions included.

## 3Wr...s.I.C. AMP  <br> On P.C. Board with all componente or 2 on  These amps, are supplied with a free booklat on connecting up. specifications and easy to build projects using the I.C.A. 1

## 5W \& 10W AMPS



These matchbox size amplifiers have an exceptionally good tone and quality for the price. They are only $2 \frac{1}{4}^{\prime \prime \prime} \times 1 \frac{33^{\prime \prime}}{}{ }^{\prime \prime}$. The 5 W amp will run from a 12 V car battery making it very suitable for portable voice reinforcement such as public functions. Two amplifiers are ideal for stereo. Complete connection details and treble, bass, volume and balance control dircuit diagrams are supplied with each unit. Discounts are available for quantity orders. More details on request. Cheapest in the U.K. Built and tested.

## Now available for 5\&10W AMPS

Pre-assembled printed circuit boards $2^{\prime \prime} \times 3^{\prime \prime}$ available in stereo only. will fit . 15 edge connector.
Stereo Pre-Amp 1 (Pre 1). This unit is for use with low gain crystal or ceramic pick up cartridges. $\mathbf{~} 1.10$
Stereo Pre-Amp 2 (Pre 2). This unit is for use with magnetic pick-up
cartridges
f1.55
Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentiometers will give bass and treble boost and cut.
£1.10
Instruction leaflet supplied with all units. Post and Packing included in Prices.
Please add VAT at current rate.

126 UXBRIDGE ROAD. HANWELL, LONDON W7 3SL

## TAUT SUSPENSION MULTIMETERS

Made in USSR


Type $\mathbf{U 4 3 2 4}$
£9.25*
Sensitivity: $\quad 20,000 \Omega / v D C ; 4,000 \Omega / v A C$. DC current: $\quad 0.06-0.6-6-60-600 \mathrm{~mA}-3$ Amps. $A C$ current: $\quad 0.3-30-300 \mathrm{~mA}-3$ Amps. DC voltage: $\quad 0.6-1.2-3-12-30-60-120-$
AC voltage: $\quad 3-6-15-60-150-300-600-$ 900 V .
Resistance: $\quad 0.5-5-50-500 \mathrm{k} \Omega$.
Diode protected movement. Supplied complete with test leads, spare rectifier diode, operating instructions and fibreboard storage case. Mercury cells $4.2 \mathrm{~V} \quad \mathrm{f} 1.00$ extra.

£16.50*
Sensitivity: $\quad 20,000 \Omega / \mathrm{DCC}: 4,000 \Omega / \mathrm{NAC}$.
DC current: $\quad 50 \mu \mathrm{~A}-0.5-1-5-10-50-250$ mA-1-5 Amps.
AC current: $\quad 0.25-0.5-1-5-10-50-250 \mathrm{~mA}$ 1-5 Amps.
DC voltage: $\quad 100 \mathrm{mV}-0.5-2.5-10-25-50-$
100-250-500-1.000V.
$A C$ voltage: $\quad 0.5-2.5-10-25-50-100-250-$ $500-1,000 \mathrm{~V}$.
Resistance: $0.5 \Omega$ to $300 \mathrm{k} \Omega$.
Automatic cut-out to protect the movement. Supplied complete with test leads, batteries, operating instructions and carrying case.


Type F4313
£22.00*
Sensitivity: $\quad 20,000 \Omega / \mathrm{v}$.
AC/DC current: $60-120-600 \mu \mathrm{~A}-3-12-60-$
$300 \mathrm{~mA}-1.2-6 \mathrm{Amps}$.
AC/DC voltage: $60-300 \mathrm{mV}-1.2-6-30-120-$
300-600-1.200V.
Resistance: $\quad 0-1 \mathrm{M} \Omega$.
Movement is fully protected by transistorized cutout circuit. Transistor amplifier is used on all AC ranges, thus achieving a common linear scale for both $A C$ and DC measurements.
Supplied complete with test leads, batteries, operating instructions and carrying case.
*Prices are exclusive of VAT
Z \& I AERO SERVICES LTD
44A, WESTBOURNE GROVE, LONDON W2 5JF please write for full catalogue and price list of test equipment.

## THE NEW NELSON-JONES FM TUNER



## PUSH-BUTTON VARICAP DIODE TUNING <br> (6 Position) <br> ('WW' JUNE '73) <br> Exclusive Designer Approved Kits

What are the important features to look for in an FM tuner kit? Naturally it must have an attractive appearance when built, but it must also embody the latest and best in circuit design such as:-
MOSFET front end for excellent cross modulation pertormance and low noise.
3 GANG tuning ior high selectivity.
VARICAP tuning diodes in back to back configuration for low distortion.
PHASE LOCKED Stereo decoder with Stereo mute, see below
PHASE LOCKED Stereo
LED fine tuning indicators.
PUSH BUTTYN tuning (with AFC disable) over the FM band (88-104)
IC STABILISED and S/C protected power supply,
CABINET double veneered against warp.
CERAMIC filters for defined IF response.
The Nelson-Jones Tuner has all of these features and many more, and more importantly the design is fully proven not just with a few prototypes but with many thousands of working tuners spread across the world.

Typ. Specn: 20 dB quieting 0.75 uV . Image rejection - 70 dB .I.F. Rejection -85 dB
Basic tuner module prices start as low as $£ 12.31$. with complete kits starting at $£ 26.95$ (mono) + P.P. 65p. and of course all components are available separately.
Our low cost alignment service is available to customers without access to a signal generator. Please send large SAE for our latest price lists which details all of the many options and special low prices for complete kits. All our other products the many option
remain available.
PORTUS AND HAYWOOD PHASE LOCKED DECODER (W.W. Sept. 70). Still the lowest distortion P.L. decoder available. THD typically $0.05 \%$ (at Nelson-Jones lowest distortion P.L. decoder available. THD typically $0.05 \%$ (at Nelson-Jones
Tuner O/P level)! Supplied complete with Red LED.
Price $£ 7.02$ when bought with a complete $N$-J tuner kit or $\mathbf{£ 8 . 2 9}$ if bought separately (P.P. 21 p.)
PLEASE NOTE. Existing tuners are readily convertible and kits/parts are available for this purpose.
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph). Complete designer approved Texan kits


## NEW LOW COST STEREO TUNER <br> Available as basic or complete kits

Basic stereo tuner $\mathbf{£ 1 5}$ post free. Basic mono tuner $£ 12$ post free. 6 position push button units with integral pots $\mathbf{£ 2} 92$.
TYP. SPECIFICATION $2 \mu \mathrm{~V}$ for 30 dB S/N Image rejection 40 dB IF rejection 65 dB

No alignment required. Mullard LP1186 front end module used with Ceramic IF and IC amplifier. Push button tuning ( 6 position) with Interstation Mute, restricted range AFC, single LED tuning indicator, phase locked IC decoder, and complete metaiwork and veneered cabinet. Complete with IC regulated PSU and full assembly instructions. (Mechanically identical to $\mathrm{N}-\mathrm{J}$ Tuner.)

PRICE Complete stereo kit $\mathbf{£ 2 8 . 4 2}$ Complete mono kit $£ \mathbf{£ 4 . 1 9}$ P. \& P. 65p


## Popular Semiconductors

| 2 N 456 | 0.75 | 2 N 2906 A | 0.37 | $2 \mathrm{~N} 42 \mathrm{B9}$ | 0.34 |
| :--- | :--- | :--- | :--- | :--- | :--- | | 2N456A | 0.75 | 2N2907 | 0.40 | $2 N 4919$ | 0.8 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2N457A | 1.35 | 2N2907A | 0.45 | 2 N4920 | 0.9 | | 2N457A | 1.35 | 2N2907A | 0.45 | 2N492O |
| :--- | :--- | :--- | :--- | :--- |
| 2N490 | 3.16 | 2N2926 | 0.11 | 2N4921 |

2N491
2 N 491
2 N 493
2N493
2N696
2N697
2N697
2N698
2N699
2N706
2N706A
2N708
2N709
2N711
2N711
2N718
2N718A
2N720
2N721
2N914
2N914
2N916
2N918
2N918
2N929
2 N 1302
2N1302
$2 N 1303$
$2 N 1304$
2N1304
$2 N 1305$
$2 N 1306$
$2 N_{1}$
$2 N_{1}$
$2 N_{1}$
$2 N_{1}$
2 N 1
2 N 1
2 N 1
$2 \mathrm{~N}_{1}$
$2 \mathrm{~N}_{1}$
$2 \mathrm{~N}_{1}$

## $2 N_{1}$ $2 N_{1}$ $2 N_{1}$

2 N
2 N 2
2 N 2
2

## 2N2

2N2
2N2
2N2
$2 N 2$

## 2 N 2 2 N 2 2

## 2N2 2N2 2N2

## 2N2

2N
2N2222A
2N2368
2 N 2369
$\begin{array}{ll}\text { 2N2369A } \\ \text { 2N2646 } & 0.2 \\ \text { 2N }\end{array}$
2N2647
2N2904
$\begin{array}{ll}\text { 2N2904A } & 0 \\ \text { 2N2905 } & 0-4 \\ \text { 2N2905A } & 0.51\end{array}$
$\begin{array}{ll}\text { 2N2905A } & 0.50 \\ \text { 2N2906 } & 0.31\end{array}$
-
Integrated Circuits TTL



Cathode Stud Only
Cathode Stud Only



 $\begin{array}{llll}\text { AA129 } & 0.15 & \text { BA142 } & 0.17 \\ \text { BA100 } & 0.15 & \text { BA144 } & 0.12\end{array}$
$\begin{array}{llll}\text { BA145 } & 0.17 & \text { BY237 } & 0.12 \frac{1}{2}\end{array}$ $\begin{array}{llllllll}\text { BY100 } & 0.15 & \text { BYZ } 11 & 0.32 & \text { OA73 } & 0.07 \frac{1}{2} & \text { OA9 } 1 & 0.07 \\ \text { BY } 120 & 0.15 & \text { OYZ1 } & 0.30 & 0.79 & 0.07\end{array}$ $\begin{array}{llllllll}\text { BY126 } & 0.15 & \text { BYZ12 } & 0.30 & \text { OA79 } & 0.07 & \text { OA2200 } & 0.07 \\ 0.17 t & 0 A 9 & 0.10 & \text { OA81 } & 0.08 & 0 A 202 & 0.10\end{array}$ $\begin{array}{llllllll}\text { BYi4O } & 0.1 \frac{1}{2} & \text { OA9 } & 0.10 & \text { OA10 } & 0.20 & \text { OA85 } & 0.08 \\ 0.10 & \text { OA210 } & 0.27 & 0.27 \frac{1}{2}\end{array}$

Bridge Rectifiers

Plastic				
	$1 A$	$2 A$	$4 A$	$6 A$
50	0.24	0.32	0.60	0.62
100	0.36	0.37	0.70	0.75
200	0.30	0.41	0.75	0.80
400	0.36	0.45	0.85	1.10
600	0.40	0.52	0.95	1.25
Metal	Professional quality			
	$5 A$	$15 A$	$25 A$	$50 A$
50	2.22	2.64	3.36	12.30
100	2.24	3.00	3.60	12.36
200	2.82	3.78	4.32	14.40
400	3.12	4.20	5.40	16.38

Teletennis.
Played on your own TV. SAE for detais-as
described in
$\rho W$.
July.
I described
discouns!

Liquid Crystals.
${ }^{\text {E }}$ E1300 Ex-stock. SAE for details of CMOS
battery operated dock kit using ICDs.
Scorpio Car Ignition Kit.

f1.05 Transformer $£ 2.75$
11440 V
${ }^{\mathrm{f}} \mathrm{f} .10 \mathrm{M}$ MINITRON


PC Marker Pen.
Dalo 33PC Price 87/
Zeners 400 MW 11p
iw 17p 3.3V-4V
Heatsinks.


Resistors			Tant Beads	
	Tol	Price	Value	
$\stackrel{1}{1}$	5\%	1 p	1/35	14 p
$\stackrel{1}{1}$	5\%	1.58	.22/35	140
$\frac{1}{2}$	5\%	${ }^{2}$	. $47 / 35$	14 p
1	10\%	2.58	2/3/35	14 p
2	10\%	$6_{0}$	4.7/35	180
$2 \frac{1}{2}$	5\%	${ }^{1 p}$	10/16V	${ }^{180}$
5	5\%	$9_{0}$	47/6.3V	200
10	5\%	100	100/3V	${ }^{20}$


Potentiometers
$\begin{array}{lll}\text { Linear or Log } & \text { Single } & \text { Double } \\ \text { Rotary Pots } & 18 p & 45 p\end{array}$
Sliders
Full range of capacitors stocked See catalogue for details
PRESETS
$0.2 W 6 p$

## Construction Kits

AV7	Aerial Amps
UH570	Transmitter
MUE7	Receiver for ab
W 8	Electronic dice
20	Electronic dice + sens
Mail Order   vAT all prices exclusive p\&p 15 p .	
U	EW GLASG

## TELEPRINTER EQUIPMENT LIMITED

Sales .... Rentals . . . New ... Refurbished ... Installation . . .
Maintenance ... Overhauls ... Spare Parts . . Prompt Deliveries
TELEPRINTERS Models 7B, 54, 75, 444
CREED EQUIPMENT

## TELETYPE CORP.

 EQUIPMENT
## SIEMENS EQUIPMENT <br> OTHER <br> EQUIPMENT

## SPECIAL EQUIPMENT

TAPE READERS 6S4, 6S5, 6S6, 6S6M, 92, 35, 71, 72, 74 HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.
TELEPRINTERS 15, 19, 20, 28, 32, 33, 35
all configurations
PERFORATORS 14, 19, 28 LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS $14,20,28$ LBXD \& LXD TRANSMIT GROUPS, etc.
TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.

KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS. WW 200 FOR FURTHER DETALIS

# COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED <br> G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY 

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603-3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300,500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19,20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)—made to specifications
TERMINAL BLOCKS (DISTRIBUTION) - 20 -way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH 71 ( $15 \times 4 \mathrm{~B}$ )
POLARISED TELEGRAPH RELAYS AND UNISELECTORS—various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, $48 \mathrm{H}, 49 \mathrm{H}, 149 \mathrm{H}, 3 / 16,3 / 216,3 / 48 \mathrm{~A}, 3 / 43 \mathrm{~A}, 48 \mathrm{~J}$, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$ COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

WW 201 FOR FURTHER DETAILS

## MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include :

[^6]
## SERVICE TRADING CO <br> VARIABLE VOLTAGE TRANSFORMERS  BRAND NEW. All types. 200W (1 Amp) <br>  0.5 KVA (Max. $2 \frac{1}{2}$ Amp) 1 KVA (Max. 5 Amp) 2 KVA (Max. 10 Amp) 2 KVA (Max. 10 Amp ) 3 KVA (Max. 15 Amp) $4 \mathrm{KVA}($ Max. 20 Amp ) (Max. 37.5 Amp ) 1 Amp OPEN TYPE 1 Amp OPEN TYPE (Panel Mounting) f10.00 £14.70 $\begin{array}{r}\text { F } £ 28.70 \\ -51.10 \\ \hline\end{array}$ £ 21.25 m 72.50 .772 .50 f 102.50 . $\mathbf{f 9} .00$

 c. Taps


 Large selection of other types in stock, phone for $\mathbf{9 . 0 0} 50$ 300 VA ISOLATING TRANSFORMER $115 / 230-230 / 230$ volts. Screened. Primary two separate $0-115$
volts for 115 or 230 volts. Secondary two 115 volts at 150 VA each for 115 or 230 volts output. Can be used in series or paralie
connections. Fully tropicalised. Length 13.5 cm . Width 11 cm . Height 13.5 cm . Weight 15 ib . SPECIAL OFFER PRICE Oniy
$£ 5.00$. Carr, 80 p .

VENNER ELECTRIC TIME SWITCH $200 / 250$ volt. Ex-GPO. Tested, perfect condition.
Two ON, two OFF every 24 hours at any manully
pre-set time. Price for 20 amp model' $\mathbf{3} .75$ post 25p.

## A.C. MAINS

 TIMER UNIT hrs. then switch off. An additional 60 min . audible timer is also
incorporated. Ideal for Tape Recorders. Lights. Electric Blankets. etc. Attractive satin copper finish. Size $135 \mathrm{~mm} \times 130 \mathrm{~mm} \times$
60 mm . Price $£ 2.00$. Post 20p. (Total inc. VAT \& Post $£ \mathbf{2} \mathbf{3 8}$ ),
UNISELECTOR SWITCHES - NEW 4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v . D.C opera
coil 24 DC 67 90 Post 25 oh 8 BANK 25 WAY FULL WIPER 8 BANK 25 WAY FULL WIPER
24 v . D.C. operation $\mathbf{\$ 9 . 5 0}$. Post 40 p
MINIATURE UNISELECTOR SWITCH


PROGRAMME TIMERS
$230 / 240$ Volt A.C. 15 RPM Motors Each cam operates a clo micro
switch, Ideal for lighting effects,
animated displays etc. Ex equip. animated dis
ment tested. 2 cam model f2.00 post 30 p
$\mathbf{f 2} .50$ post 30 p 6 cam model
6 cam model 3 RPM £3.25 post 30p

VERY SPECIAL OFFER Miniature Roller Micro Switch. 5 amp
co contacts. Mfg. BONNELLA. NEW. Price As above without roller. 20 for $\mathbf{£ 2 . 0 0}$. Post 10 p . ( Min . order 20 )
'HONEYWELL' PUSH BUTTON, PANEL MOUNTING MICROSWITCH ASSEMBLY
Each bank comprises of a change-over
rated at 10 amps 240 volt A.C. Black knob 1 in. dia. Fixing hole tin. Prices:
1-bank $30 \mathrm{p}, 2$ bank 40 p
3 (Illustrated)
for quantifes

COIN MECHANISM (Ex-London Transport)
Unit containing. selector mechanism for $1 \mathrm{p} .2 \mathrm{p} \& \mathrm{R}^{2} \mathrm{p}$ coins.
Micro switches. relays. solenoid-operated hopper. 24 volt D.C. Precision built to high standard. Incredibie VALUE at only
$£ 2.50$ Post 60 p.

230-250 VOLT A.C. SOLENOID


24 VOLT DC SOLENOIDS
UNIT containing: $\frac{1}{}$ heavy duty solenoid approx. 25 lb . pull at 1 in . travel. 2 solenolos of approx. Th. pull at in travel.
6 solenoids of approx. 4 oz. pull at in. travel. Plus 124 V D. C. 1 heavy dut
BARGAIN.

INSULATED TERMINALS Available in black. red, white,
yellow. blue and green. New $12 p$.


RELAYS SIEMENS PLESSEY,
MINIATURE RELAYS


DRY REED RELAYS

## M.f.g. by ERG 12 vott D.C. encapsulated. Single c/o 65 p. Post Paid. Two c/o 85 p . Post Paid.

STC 280 ohm coil $6 / 12$ V D.C. 3 make contacts metal

BLOWER UNIT
$200-240$ Volt A.C. BLOWER UNIT Precision German built. Dynamically balanced,
reversille
quiet,
motor.
Continuously rated
Consumption 60 mA reversize 120 mm . Ćia. $\times 60 \mathrm{~mm}$. deep.
Stice $£ 3.00$. Post 30 p .

PRECISION CENTRIFUGAL BLOWER Mfg. Airflow Developments Ltd., Heerv Dity,
continuously rated, smooth running, $230 / 240 \mathrm{v}$ A.C. mot
OAL 15
Post 50 p .

230/240 VOLT A.C. EXTRACTOR FAN KIT Comprising of impeller, continuously rated motor.
motor housing and fixings as illustrated. Price

230V FAN ASSEMBLY
Continuously rated. removable aluminium
blades. Price $£ \mathbf{7 T}$. Post 20 p
230/240V SYNCHRONOUS GEARED MOTOR Manufactured by either Sangamo,
Haydon or $S$ mith. Built-in gearbox $2 \mathrm{RPH}, 3$ RPH, 6 RPH.


CONSTANT SPEED, PRECISION MADE,


PARVALUX TYPE SD2. 200/250 VOLT A.C. D.C. HIGH SPEED MOTOR Speed 9.000 r.p.m. approx. or 3.200 r. p.m. if used
with built-in
wovernor. or variable speed over a Dimmer Switch, illustrated below
$£ 2.00$. Post 35 p ,


600 WATT DIMMER SWITCH
Easily fitted. Fully guaranteed by makers. W contro up 10600 watts of all lighting except fiuor-
escent at mains voltage. Complete with simple
instructions instructions. $£ 2.75$. Post 25 p .
TT POWER CONTROL
2000 WATT POWER CONTROL For Power tools, Heating. Lighting etc. incorporating 13 amp.
outlet and mains lead. £8 00 post 27 p . High Visibility
Panel Mounting LEDS
25 inch mounting. 16 inch lens. Typical parameters 2 vol and data. Red 4 for $£ 1.00$, Green 3 tor $£ 1.00$, Yellow 3 for $£ 1.00$. Post 10 p . (Min. order $£ 1-00$.)

## LED READOUTS

Available in red or green. $\mathbf{£ 1 . 6 5}$, post 10p; 4 fo $\mathbf{E 6 . 0 0}$ post paid.
METERS NEW! $2 \frac{1}{2}$ in. FLUSH ROUND available as D.C. Amps i, 5. 10. 15 or A.C. Amps
1.5 .10 .15 . 20 . Both types $£ 2-00$. Post 15 p 1.5.10. 15. 20 Both types £2.00. Pos 15p.
VOLTMETER $0-300$ V.A.C. £2.00. Post 150.

SERVICE TRADING CO.

## SHOWROOMS NOW OPEN

AMPLE PARKING



TEXTRONIC 585 OSCILLOSCOPE with delay and $5 X$ magniffer．Time base A： 0.05 microsecs to $2 \mathrm{sec} / \mathrm{cm}$ in 24 stages also continuously variable between steps．Time base B： 2 micro－ secs to 10 sec in 18 stages．Delay 1 microsec to 10 sec．Complete with type 81 adaptor enabling use of all letter serles plug ins．Type 80 plug－in （less probe）also avallable．

MARCONI TF 1050 SIGNAL GENERA－ directly calibrated band．Output platon
 ohms．Modulation：internal signal 1000 Xz
at $30 \%$ ．External pulse 1 microsec or longer at $30 \%$ ．Exter
at 30 min ．

> SOLOTRON CD 1400 OSCILOSCOPE SYSTEM Avallable with a chotee of "Y" or "X" plughins: wide band 15MHZ, high galn differential, standard time base, siow speed, delayed sweep. Prices on applicatlon depending on comblnation selected.

## S0e／250W MEDIUM WAVE BROAD－ CABT TRAMS MITTERS，Price and detalls on appilication．

M．O．for ET ${ }^{3336}$ TX（see descrption in previous lssues）£ 5 ： 50 ．P．\＆P．£1．50．
HIGH CAPACITY CONDENSERS HIGH CAPACITY CONDENSERS （40VDC）surge $81 \cdot 10$
8 PRAGUE 20.000 MFD $55 V D C ~$
E1． 30 MALLLORY 20,000 MFD 30 V （ 45 VDC surge） MALLORY 35,000 MFD 13 V （20VDC surge） SANGAMO 20，000 MFD 50V $81 \cdot 30$ ． SIGNAL GENERATOR TF s01B as for Tf $801 \mathrm{D} / 1 / 3$ except for minor circuit changes，
e．g． 1 and $2 \mathrm{MHz} \mathrm{switched} \mathrm{callbrator} £$,175.00 ． SCHLUMBERGER 500 SYNC．OSCIL－ LATOR $200-500 \mathrm{MHz}$ ．ES5－00 DIVERSITY PLEESEY PR 524 DUAL DIVERSITY
RECEIVER．Freq．2－30 MHz，Solid state，six pre－selected channels with motorised tuning， Complete with FSK terminal unlt and spare top cabinet．$£ 100.00$ ．Als top cabinet．E100．00
ROHDE S SCHWARTZ MICROWAVE
POWER METER． POWER METER． 3200 MHz ，bullt－In call－ TF 1102 ．
TF 1102 AMPLITUDE MODULATOR or F．M．output of any signal generator with a frequency ratige of 100 kHz to 500 MHz ． Input waverorms to the modulator may be： up to H1 impedance，Mod level monitored

Open 9－12．30，1．30－5．30 p．m． except Thursday $9-1$ p．m．


TFJ041C VTVM A．C．voltage range 300 MV
 E62．50．
TFita．Spec．as for 1041C．E52．50．

## HEWLETT－PACKARD

185A 800 MHz SAMPLING OSCILLO SCOPE WITH 188A DUAL TRACE PLUG－IN，Full spec．and P．O．A． 175A 50MHz Oscilloscope
5248 COUNTER FREQUENCY MEA SUREMENT： 10 Hz to $10,1 \mathrm{MHz}$ Accuracy ： 1 count．Automatic position－ ing of decimal point．Period measure－ ment： $0-10 \mathrm{kHz}$ ，reads in seconds， milliseconds or microseconds，decimal point automatically positioned．Display on 6 neon lamp decades and 2 meters． Complete with manual and following plug－ins：525A 10 to $100 \mathrm{MHz}, 525 \mathrm{~B} 100$ plug－ins：525A 10 to 100 MHz ， 525 B 100
to $220 \mathrm{MHz}, 526 \mathrm{~A}$ video amplifier．Price o $220 \mathrm{MHz}, 526 \mathrm{~A}$ video amplifier．Pric 200CD application． WIDE RANGE OSCILLATOR 5 Hz to 600 kHz f60．00．
616B SHF SIGNAL GENERATOR Freq．range $1,75 \mathrm{GHz}-4,2 \mathrm{GHz}$ ，Mod． F．M．，C．W．Pulse and Ext．A．M．，output $0,1 \mathrm{uV}-200 \mathrm{~mW}$ ．Price on application． TF 12siA VHF SPECTRUM ANALYBER tor analyala and measurement of Radar
Equipment．Frequency range 100 to 230 MH With cryutal check polnte．Sweep width 0 －s to $8 \mathrm{MHz}_{\text {，output pulse delay（a）}} 85-175 \mathrm{HSec}$
（b） $0.7-1 \cdot 4 \mathrm{mSec}$ with $\times 1$ and $\times 2$ multipile and -2 ，$\times 1, \times 2$ multiplier．Outout $2 u v$ to $20 \mathrm{~m} V$ with $\times 10$ multiplier．$\& 200$ ．

## TF 1370 R－C OSCILLATOR， SQUARE AND－SIME WAVE，Freq， SInewave $10 \mathrm{~Hz}-10 \mathrm{MHz}$ squarewave Slnewave $10 \mathrm{~Hz}-10 \mathrm{MHz}$ ，squarewave $10 \mathrm{~Hz}-100 \mathrm{kHz}$ ．Direct output：sinewave： $10 \mathrm{~Hz}-100 \mathrm{kHz}$ ．Direct output：sinewave $0-31.6 \mathrm{~V}$ rms．， $10 \mathrm{~Hz}-1 \mathrm{MHz}_{\text {，}}$ squarewave $0-73.2 \mathrm{pD} 10 \mathrm{~Hz}-100 \mathrm{kHz}$ ．Attenuator 75， $100.600 \Omega$ ．Price upon application

 TYPE AS 170.4 eurrent ilmiting power THYRISTOR TEST SET complete un tested ESO ．| $\begin{aligned} & \mathrm{OC}_{26} \\ & \mathrm{OC}_{42} \end{aligned}$ | $\begin{aligned} & \text { SX754 } \\ & \text { SR11 } \end{aligned}$ |
| :---: | :---: |
| OC44 | 2R21 |
| $0 \mathrm{OC45}$ | 1 N 23 A |
| OC70 | 1 N25 |
| 0 O 73 | 1N32A |
| OC78 | 1N38A |
| OC78D | 1 N 43 |
| OC81 | 1N70 |
| 0 C 82 | 1N277 |
| OC82D | 1N415C |
| －C82DM | 1 $\mathrm{S}_{1} 148$ |
| －C83 | 2N456A |
| OC139 | 2N708 |
| OC140 | 2 N 918 |
| OC170 | 2 N 1304 |
| OC172 | 2N1305 |
| OC200 | 2N1307 |
| OC206 | 2N1309 |
| OTHERSIN STOCK Inc． integrated circufls，CRT |  |
|  |  |
| Mail Order Elves．Min． |  |
| Postage E1－E2，17p， $52-3$ ， |  |
| 22 p ，over £3 free．C．O．D． |  |
| 250 extra． |  |


 6L6G
$6 L 7 G$
$6 S A 7$
$6 S A 7$
$6 S C 7 G T$
$6 S G 7$
$6 S J 7$
$6 S J 7 G$
$6 S K 7$
$6 S L 7 G$
$6 S N 7 G T$
$6 S O 7$
$6 V 6 G$
$6 V 6 G T$
$6 X 4$
$6 \times 5 G$
$6 X 5 G T$
$6 Y 6 G$
$6 Z 4$
$630 L 2$
$7 B 7$
$7 Y 4$
$9 D 6$
9 し゚人
$\kappa$
1.00
1.00
1.10
0.90
0.95
0.95
1.00
1.00
0.95
1.101957
$\varepsilon$
0.50
BEST PRICES PAID FOR TEST AND COMMUNICATION EQUIPMENT．Single items or quantities．Private or Industrial


TF EO1D／H／S SIGNAL GENERATOR Range $10-485 \mathrm{MHz}$ In five ranges．R．F．outpu
$0 \cdot 1$ uV－IV source e．m．f．Dial callbrated In volis，decibels and power relative to thermal nolse．Plston type attenuator， $50 \Omega 2$ outpu
Impedance．Internal modulation at 1 kHz Impedance．Internal modulation at 1 kHz
at up to $90 \%$ depth，also external sine and pulse modulation．Bullt－ln 5 MHz crysta
callorator．Separate R．F．and mod，meters．

## TEKTRONIX

OSCILLOSCOPES
571A－600MHz，separate P．S．U．£150
complete．
$561 \mathrm{~A}-10 \mathrm{MHz}$ ，solid state，complete with 3A1 dual trace vert．and $3 B 3$ delay time base plug－ins P．O．A．
$541 \mathrm{~A}-33 \mathrm{MHz}$ ．Choice of plug－ins．P．O．A LA265A（545A）－33MHz，separate time bases with delay．P．O．A．
$545-15 \mathrm{M} \mathrm{Hz}$ ．Separate time bases with delay．Price on application
PLUG－IN UNITS
CA－24 MHz dual trace $50 \mathrm{MV}-20 \mathrm{~V}$ $\mathrm{G}-20 \mathrm{MHz}$ differential $50 \mathrm{MV}-20 \mathrm{~V}$ ． $\mathrm{L}-30 \mathrm{MHz}$ fast rise time $5 \mathrm{MV}-20 \mathrm{~V}$ ． D－High gain differential $1 \mathrm{MV}-50 \mathrm{~V}$ ． N 600 MHz sampling $10 \mathrm{MV}-\mathrm{cm}$ ． $53 / 54 \mathrm{C}$ ．Dual trace $33 \mathrm{MHz}, 60 \mathrm{MHz}$ ， $0.05-20 \mathrm{v}$ ．
3 PHASE AUTO TRANSFORMER，WYe Input 400 V ，wye output $241.5 / 2301218.5 \mathrm{~V} 50 \mathrm{C}$
18 kVA ．Made by Westlighouse of USA． Brand new In original cases $£ 60,00$ Including
UK transport．

## PLEASE ADD 8\％VAT

ast TF AUDIO TESTER．Comblned A．F． Generator $(0-25 \mathrm{kHz})$ ，Output meter（up to
2 W ．at 600,15 and $3 \Omega$ ，）and valve voltmeter （ $0-800 \mathrm{~V}$ ．），with sfepped and variable attenua－



Model：RACAL RECEIVERS RA고 Mk． RA17W，RAis7E，in condition from working＂as seen＂to brand
cabinels．Prices on apolicatlon． DIVERSITY SWITCH ${ }^{\text {MA16EB，solid state }}$ TYPE

## PLEASE NOTE

Unless offered as＇＂as seen ALL EQUIPMENT
ordered from us is completely over－
in our own laboratories

FOR EXPORT OMLY TRANSMITTERS：
BC 610 Hallicrafters
RCA ET 4336 also modifled verslon of
Increased output to 700 w
COLLINS TYPE 231D 4／5kw．， 10 channel，
complete installation and spare parto．
TRANSCEIVERE
C＇13 TRANSMITTERS
RACAL COMMUNICATIO
EQUIPMENT
We are able to offer a comprehensive
selectlon from the range of this modern
high class equlpment including．
receivers，L．F．Converters，SSB adap．
tors，panoramic adaptors，diveralty
tches，transmitter driver units
linear amplifiers can
custor ampliners
stomers＇require
us your enquiries．

Anas SPARES．We hold the largest tock
In U．K．Write tor list． R．F．METER 0－8 amp．2t＂（U．S．A．）Efet TELEPHONE TYPE＂J＂（Troplcalised）
EWITCHEOARD
SE IInE AUTOMATIC PRIVATE
TELEPHONE SWITCHBOARD

COLOMOR（ELECTHONICS）
170 Goldhawk Rd．，Lel．${ }^{\text {Tel．} 01}$－ 7430999

# C. T. ELECTRONICS <br> NOW AT 267 AND 270 ACTON LANE, LONDON W. 4 

Now open. Our New Components Shop. These premises are very much larger and will enable us to have greater stocks than we already have. Having all the components under one roof will now guarantee you apeedier service on the counter, and on the mail order side. Wo have problems getting your components then come along. We are open from $9.30 \mathrm{a} . \mathrm{m}$. through till $6.0 \mathrm{p} . \mathrm{m}$. Monday to Saturday. The nearest Underground is Chiswick Park, and there are no parking restrictions

## SEMICONDUCTORS



DIGITAL INTEGRATED CIRCUITS

SN7400	20p	SN7428	50 p	SN7473	40 p
SN7401	20p	SN7430	20p	SN7474	40p
SN7402	20p	SN7432	42 p	SN7475	55p
SN7403	20 p	SN7433	70p	SN7476	45p
SN7404	20D	SN7437	${ }^{65 p}$	SN7480	p
SN7405	20p	SN7436	${ }^{55}$	SN7481	£1.25
SN7406	30p	SN7440	20p	SN7482	87 p
SN7407	30 p	SN741AN	75p	SN7483	£1.00
SN7408	20p	SN7442	75p	SN7484	${ }^{90} \mathrm{p}$
SN7409	45p	SN7443	¢1.00	SN7486	45p
SN7410	20p	SN7445	E2.00	SN7490	75p
SN7411	23p	SN7446	E2.00	SN7491A	
SN7412	42p	SN7447	¢1.75	SN7492	$75 p$
SN7413	30p	SN7448	¢1.75	SN7493	75p
SN7416	30p	SN7450	20p	SN7494	${ }^{\text {80p }}$
SN7417	30p	SN7451	20p	SN7495	10 p
SN7420	200	SN4753	20 p	SN7496	E1.00
SN7422	48p	SN7454	20p	SN7497	E¢
SN7423	48D	SN7460	200	SN74100	E2.50
SN7425	48p	SN7470	30.p	SN74104	£1.45
SN7427	42p	SN7472	30p	SN74105	E1.00


$\star \star$ SPECIAL OFFERS $\star \star$ MINIATURE MAINS TRANSFORMER. PRI.
240 V . SEC, 12 V . 100 MA Manuf.: Hinchley.
Size $36 \times 45 \times 40 \mathrm{~mm}$. F.C. 53 mm . Price $1-65$ p. $100-60$ p ea. $1,000-50$ p ea. $10,000-40 \mathrm{p}$ ea. GRORE PVC INSULATED MAINS CABLE,
GREY ML6 650.
$3 \times 7 / 0 \cdot 2 \mathrm{~mm}$ Price $100 \mathrm{~m}-£ 4 \cdot 50$. 1000 m 0.47 mfd . $50 V$ MYLAR FILM CAPACITOR.
 240V. A.C

 Please state voltage required.
50 GE DIode OA47 equlalen
TRA NSFORMER: DOUGLAS PRI, 0, 115, 200, 220 240 SEC. $25-0-25-0-6 \mathrm{~V}, 2 \ddagger \mathrm{~A}, ~ £ 4.58+50 \mathrm{p}$ р. TRANSFORMER
PRI. $0,115,160,205$,
CA. 0 , 115, 160, 205, 225, 245. SEC. 35-0.35, 1-2A MULLARD TUBULAR CERAMIC UHF TRIMType 092 0.8-2.2p

QUANTITY DISCOUNTS PLEASE TELEPHONE tooopp Feedthrough capacitor
Minlature tubular P.C. trimmers


VEROBOARD	0.1	0.15
$21 \times 3$	32p	23p
$2 \times 5$	${ }^{35 p}$	35p
$3 \times 3$	35p	$35 p$
3) $\times 5$	$40 \%$	41p
$17 \times 24$	E1.05	79 p
$17 \times 3 \frac{1}{4}$	$\Sigma 1.43$	¢1.12
$17 \times 5$	¢1.84	
PIN INS. TOOL	72p	72p
SP.F.CUTTER	52p	52p
100 PINS SS	30p	30p
100 PINS DS	30p	30 p
500 PINS SS	¢1.20	¢1.20
500 PINS DS	¢1-20	E1-20
Prices Correct June		

NEW SERIES TRANSISTOR DATA BOOKS 2N21 UNA Band 3 Transistor Characteristics 2. THT Thyristor, Triac, Diac, Put, UJT's. 2SA, 2SB, 2SC, 2SD numbers. 4. Band 1. Transistor Characterlistics.
European numbers $A C$, $A F, B C$, BF, etc. Eurdean numbers $A C, A F, B C, ~ B F, ~$
TVT. Transi stor Equivalent Tabies. conductor outilines. pin connections and sem
PRICE. £ 110 per book. $\mathbf{6} 6$ per $\mathbf{6}$ books inc. post.
V.A.T.

Unless otherwise stated all prices are EXCLU
SIVE of V.A.T. Please add $10 \%$ to all orders. Carriage
post free

## AUDIO ACCESSORY SHOP, 17 TURNHAM GREEN TERRACE, CHISWICK W. 4

## michophones

CM10
CM20
CM73
C092 Omnl Directional Capacitor Microphon............................................ CO96 Cardioid Capacitor Microphone as above both types with Switch, both 600 ohms..............


PROM5 Livaller Capactor Microoho
PROM20 6 metres Cable. 600 ohms .................... PROM25 Capacitor Cable. 600 ohms............................ UD50HL Cardoid Dual Impedance Mlcrophone with




Frequency Range $9 \mathrm{Kc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$, Rise time less than InS Ex-Demonstration. New condition in manufacturer's original carton.
$9 \mathrm{Ke} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$ continuously variable.
Accuracy $\pm 4 \%, \pm 1 \% \mathrm{FS}$.
Malv into 50 ohm externa Accuracy
MAIN OUTPUT $20 \mathrm{mV}-1 \mathrm{~V}$ into 50
termination continuously veriable.
termination conc.
Accuracy $\pm 5 \%$.
Maximum output on open circuit 2 V Maximum time less than 1 nS up to 500 mV .
RISE
TRIGCER TRIGGER OUTPUT into 50 ohm external ter--
O.2. 0.4. 1.0 .2 .0 V ino 0.2. o.t. .o. maximum output on open circuil $4 V$
mination mat
Rise time nominally 1.5 ns. Fall ume nominally 3.5 nS
Size 11 inW 5 . 5 int
. inD . WL. 7.1 I b .
LAST USTED PRICE 955

OUR PRICE $\mathbf{~} \mathbf{3 5}$ P/P $£ 1.50$ Also available SG21A

## ADVANCE SQUARE WAVE GENERATOR SG21


$\qquad$ (

## ALPHANUMERIC DGE TUBES B7971

The Alphanumeric NIIIE tube has the ability to display all the letterss of the alphabet. numerals 0 thru 9 and special characters in a single tube.


MEMORY DRUMS-
SAVE OVER 50\% ON ORIGINAL COST
Sperry Floating Head J101 Memory System

* 256 Data Tracks
* 1000 bits/inch
* 8 Megabits
* Speed 3000 rpm
* Access time 10 millisec
* Data transfer rate 1.65 megabits/sec.
* Recording bit density 1050 bpi
* Complete with electronics for interfacing to DEC PDP8
Vermont 1004 Memory Drum
* 128 Data Tracks
* 650 bits/inch
* 4.4 Megabits
* Speed 3000 rpm

RING NOW FOR LATEST ON BRAND NEW DRUMS OR EX-DEMONSTRATION MODELS

WIDE RANGE OF SPARES FOR THE FOLLOWING COMPUTERS ICI 1500, ICL 1900, SYSTEM 4, 4100 803,AMPEX, etc.
COSSOR VISUAL DISPLAY DID400. Consisting of Keybuard \& Display 402 stand alone capabilify for diphanumeric datai en
from E5\%. Please phone for details.

Little used DEC PDP8 systems available for immediate delivery at special prices as a result of cancelled project


PDP8E 12 K Processor complete with
Facit 4001 High Speed Reader ( 500 cps ) Data Dynamics BRPE 114 Punch ( 110 cps ) ASR33 Teletype
Sperry J1018 megabit Memory Drum
Line Printer
Rack-mounted in double cabinet
PDP8E 4 K Processor complete with
Facit 4001 High Speed Reader ( 500 cps ) Data Dynamics BRPE 114 Punch ( 110 cps ) ASR33 Teletype

## A PHONE CALL CAN SAVE YOU A BOMB! RING NOW FOR PRICE!

## WANDEL \& GOLTERMANN

Distortion Measuring Set VZM-1 for colour t.v. 625 lines PAL. $£ 750$.
Distortion Measuring Set VZM-2 $556 \mathrm{KHz}-12 \mathrm{MHz}$ £250.
Distortion Measuring Set VZM-83 52/304/556KHz comprises a generator and receiver used mainly to measure transmission distortion on FM radio link systems. £245
Voltage \& Level Meter $10 \mathrm{KHz}-14 \mathrm{MHz}$ TFPM 43 measuring range $8 v-40 \mathrm{uv}(+20-86 \mathrm{~dB})$ ) $£ 339$
Selective Level Oscillator $10 \mathrm{KHz}-14 \mathrm{MHz}$ TFPS 42
$£ 349$. £349.
electrical chandpocteristitics, the Aldphianumeric NIXXIE $\star$ All DC operation trique benefitis including characters of equal theinh Unorm, continuous lime

* Memory with simple.
solid state drive circuits * Readabitity in
high ambient light
high ambient light. 200 foatlambents
* Long life with no loss of brightness
${ }^{2}$
Price only 990 each plus $16 p$
JUST ARRIVED NIXIE TUBES
NUMERIC ONIY. PHONE FOR

HERE! NOW! FOR IMMEDIATE DELIVERY!


AVO 7 f 19.50
Fully tested and chocked, guar
months with one free calibration.
AVO
AVO

## MOOEL 7 X f24

Leads and batteries extra.
Leather cases for
Ever-ready case fove e3.50. meter to be used whies the *Pleas. while in its tropicalised, $X$ stands for fully mu-metal shield. Splash-proof and

## TELETYPE PUNCH

BRPE High-speed punch. Self-contained consists of punch
unit, base. motor unit. For use in many data communication
 systems. Operating speemm up to 100
characters per second characters per second (1100 words per
minute). Availabie for punching 5 . 7


WELMEC 7 \& 8 HOLE ELECTRO-MECHANICAL PUNCHES \& READER

## ICT KEYBOARDS

## ICT KEYBOARDS

Magnetic Tape Transporters AMPEX TM4. TM2. TM7. FR300 IBM 7330 . POTTER. From £89.00.

## TAPE READERS

Photo-electric feaders for all colour paper tapes up to 1 in.
CL Type $2640(250 \mathrm{cps})$. Elliott T2/94 (250
cps) Elliout D4/4) Cps). Elliott D4/42 (500-1.000 cps). Available with full
Prices from $£ 220$.

## HEWLETT PACKARD DIGITAL RECORDER MODEL 565A Data Entry. parallel to second. PRICE $£ 85.00$

## Stin IPRES

VERY LATEST TEKTRONIX " 100 MHz Dual Trace Oscilloscope 465.
Listed at over $£ 1000$. Our Price $£ 775$.
TEKTRONIX 453A Listed at over $£ 1300$
Special Offer this month $£ 795$.

## 合

## SPECIAL OFFER

Brand New Digital Volt Meter NEW LOW, LOW PRICE £ 37.50
Made to meet the most stringent Government DCService Standards 40 MHz DUAL TRACE
 Solartron C.T. 484 oscilloscope. 3\% accuracy. Dual Trace Dis plays. TRACE Y AMPLIFIER Bandwidth:
DUAL
TIME:




$X$ AMPLIFL: $200 \mathrm{mV} / \mathrm{cm}$ and
Sensitivit: 1 M .0 mm 40 pF .
Smpedance: 1 M. MRATOR Accuracy: $\pm 3 \%$.
INTERNAL CALBRATSO INTERNALCAL Y AMPLIFIER PL MC/s. Rise
WIDE BAND AVALLABLE: Bandw. Sensitivity: $50 \mathrm{mV} / \mathrm{cm}$
Time: 8 nanosecs. Time:
input impedance: 1 in.
Accuracy $\pm 5 \%$ direct. Accuracy: $\pm 5 \%$ direct.
$\pm \mathbf{4 9} \mathbf{5 0}$
P.O.A.

OSCILLOSCOPE CT 436
Commercial Designation Solartron CD1014
General Purpose Dual Beam DC- 6 MHz flat faced double gun cathode ray tube operating at 1.6 kV . The time base velocity is continuously variable between $1 \mathrm{~cm} / \mathrm{usec}$. and $1 \mathrm{~cm} / \mathrm{sec}$.
TIME BASE Free running or triggered from positive or negative pulses. Sweep speed $1 \mathrm{~cm} / \mathrm{usec}$ to $1 \mathrm{~cm} / \mathrm{sec}$.
Synchronisation: positive or negative going internal from either channel or external continuous waves. Internal 3 mm P/P.
External $100 \mathrm{mVP} / \mathrm{P}$
Sensitivity $100 \mathrm{mV} / \mathrm{cm}$, maximum on Y 2 amplifier $1 \mathrm{mV} / \mathrm{cm}$.
Size $9 \frac{1}{2}^{\prime \prime} \times 11 \frac{1}{2}^{\prime \prime} \times 15^{\prime \prime}$. Wt. 25 lb .
PRICE: $\mathbf{6} 69.50$.

## RCA 301 TAPE DECK

 MODEL 381Technical Data. $\frac{z^{\prime \prime}}{}$ wide Magnetic Tape. Power supplies: Input 208-230V AC 60
c/s. Single phase Magnetic recording head C/s. Single phase Magnetic recording head.
read/write and erase. Seven channels each PRICE $£ 29.50$ read speed $30 / \mathrm{sec}$, forward or reverse. $90^{\prime \prime} / \mathrm{sec}$. during rewind. The recording density of 333 characters per inch is maintained. thus giving the nominal read and write rate of 10,000 characters per second. Maximum diameter of $8^{\prime \prime}$ tape reel. Accommodates 1200 tr. of Magnetic Tape, which gives a minimum of 1.150 ft . available for recording.

## MINITRON

K.G.M. Type 3015F 7 Segment display showing
figures o-9 plus decimai point. Character pf 9 mm height. In 16 DIL case
NEW LOW PRICE $\mathbf{5 1 . 2 5}$
SN7447N BCD



FIFTEEN TURN $5400^{\circ}$ ROTATION



## SPECIAL PURCHASE OF ADVANCE EX-DEMONSTRATION TEST EQUIPMENT

## Advance PG56 Double Pulse

## Generator

Independently variable. $2 \mathrm{~Hz}-3 \mathrm{MHz}$ Pulse Width Delay $70 n \mathrm{~S}-0.2$ secs. in 19 steps. Rise Time better than 10 nS . External trigger and interna rate generator. $£ 120$

## Advance PG52 Pulse Generator

Repetition frequency up to 20 MHz and outpu pulses up to 20 V into 5 ohms with rise and fall times of 5 nS . Also produces complex ramp wave forms not obtainable from conventional pulse generators. Fully protected against short cir cuit. £275

Advance T.V. Dot and Cross Hatch Generator SG73
Output in form of modulated signal at VHF and UHF at level suitable for aerial sockets of receive Two Ranges
Band III on fundamental (MOD)
Band IV \& V On Harmonics ( - MOD)
Modulation 405 Lines or 625 Lines
£49.50 EX-DEMONSTRATION
BRAND NEW


## AM HILEE BRUNINFMAN」



## MINIATURE PEN RECORDER AT A MINIATURE PRICE

## Provides permanent record of DC

 currents up to 1 mA . Eminenntly suitztle for use where space istime marker pen provided Cher width time marker pen provided. Chart speds:
80 mm. Chart length 40 Ott. Chart spe Slow $2(1,60-180 \mathrm{~mm}$ /ionensions 120 x $1800-5400 \mathrm{~mm} /$ hour. Dimensions 12.12 kg . $120 \times 285 \mathrm{~mm}$. Weight 7.7 ibs.
Price complete with accessories
£39.00

## SPECIAL OFFER

The Sinclair Scientific. Logs, trig and arithmetic. All at the touch of a button. At last there's a pocket calculator which gives you log and trig functions instantly. Full $\mathbf{1 2 - f u r c t i o n ~ m a c h i n e ~}$ With te functions available on the scien-
tific keyboard. you can tific keyboard. you can
handie directly $\log$ to. handie directly
antiog 10.
sin and ancsin. cos and arccos.
and tan and arctan, automatic
matic
squaring.
doubling, $x^{\text {auto- }}$ lincludirg square and other roots). plus. of course. addition. subtraction. multiplication, division and any calcu-
lations based on them. lations based on 14 nend 7-digit scientific notation, 200 -


At last! A Signal Generator covering 140 KHz to 110 MHz

## NEW "Strobette" STROBOSCOPETACHOMETER


remark-
abbe price. It's a stroboscope because it is
capl capable of optically stopping. or slowing.
any moving obbect while the obect is in
motion And it's a taclometer sinct it cin motion. And it's a tachometer since it can
measure the speed. or rate of motion, of a rotating or moving object. Strabette: is a tool, analyser. messuring device. fault
detector for
engineers. detector
inspectors. teachers.
WIDE W5Dectors. RANGEE: Stroboscope-200 to
W.000 flashes per minute, Tachometer6.000 flashes per minute, Tachometer-
200 to 6.000 RPM. ACCURACY: $3 \%$ or better. CIRCUITRY: $100 \%$ solid state. BEAM ANGLE: ${ }^{8 \circ}$, CALIBRATION:
At 3.600 FPM aginst any known At 3.600 FPM against any known
synchronous speed-7200. 3600 . 1800 synchronous Speed- FLASH DURATION: Approximately 10 to 25 microseconds. UGHT COLOUR: Xenon white $500^{\circ} \mathrm{K}$.
COMPACT, LIGHTWEIGHT: Can be carried in tool box. weighs only 27 oz.
EASY TO USE: One on-off switch and one dial.

ONLY £49.50

> IDEAL FOR TESTING SMALL PRODUCTION BATCHES


RCL bhidge Type Poes dinsipation frecort of RCL and cappeciter
merit O . Consisto of inductom figura of able bridges. $1 \mathrm{KHz}_{2}$ averem of switch Buitable for testing of of smarlil Paricularny
batchess and paramereter. and selection of comperion Resiasuremenent ranges:
 Accuracc: from
D: from $1.10-3$ 1\%
from 0.10 to
£245.00

Full transistorised output power meter covering 1 mW to 10 W from 20 Hz to 50 KHz

£129.00


## 

 CONJUNCTIN
ALSO IN MANY CASES WITH
OF TEST M LAR MAK



THE REVOLUTIONARY SUPERTESTER 680R
FDUR internationai patents - SEnsmivity
20.000 Dhms per Voit 10 fielos dF MEAS
AND 80 RANGES. ACCURMENT
OUTSTANDING FEATYRES. $2 \%$ in A.C
20.000 Omm FEATURES:

Scale width against external sensitivity - Fully $95 \times 32 \mathrm{~mm}$ ) Accuracy dimensions (128× D.C., $2 \%$ in A.C.) of indicated stability $(1 \%$ in
of accessories ease of use and readability -
board is removable withes overload - Printed ranges
than any other meter. vithout de-soldering Printed circuit
and 4-20-100-500 and 2000 Vots. $\mathrm{AC}=11$ ranges 2-10-50-250 ranges
$500-1000$ Volts $2000_{m V-4 V-20-100-400} 50 / 4-500 \mathrm{C} .=13$ ranges: $100 \mathrm{mV}-2 \mathrm{~V}-2500$. Volts



 +70 th. CAPACITY $=6$ ranges: from 0 to 50.000 and from 0 . DECIBELS $=10$ ranges: from -24 to
 Bold figures indicate depress button. Case


ADD 8\% VAT TO ALL PRICES ALL ITEMS ON THIS PAGE POST FREE

## P. F. RALFE <br> 10 CHAPEL ST. LONDON NW1. <br> Phone 01-723 8753

## SIGNAL GENERATORS

MARCONI TFBOID/IS. $10-480 \mathrm{mHz}$ P.O.A. MARCONI TFBOIB/2S. $10-480 \mathrm{mHz} \in 225$. MARCONI TFI44H $10 \mathrm{kHz}-72 \mathrm{mHz}$ P.O.A.
MARCONI TFI 370 RC Oscillator $10 \mathrm{kHz}-10 \mathrm{mHz}$. Sine/Square ROHDE \& SCHWARZ SMAF (illustrated) AM/FM $4-300 \mathrm{mHz}$. ROHDE \& SCHWARZ SMLR $15-30 \mathrm{mHz}$ power generator. P.O.A. ROHDE \& SHWARZ SMLR $15-30 \mathrm{mHz}$ power genera
RACAL/AIRMEC 201 A. $30 \mathrm{kHz}-30 \mathrm{mHz}$. As new. P.O.A. ADVANCE SG2I VHF Square-wave generator $9 \mathrm{kHz}-100 \mathrm{mHz}$. $£ 25$.

## OSCILLOSCOPES

TEKTRONIX 555 (Late model) with two ' $L$ ' plugins and ' 21 A ' and ' 22 A ' plug-ins.
TEKTRONIX $545 A$ with CA unit. DC -30 mHz
Price only $\mathbf{E 2 9 5 . 0 0}$.


TETRONIX 531 DC- 15 mHz with $L$ type plug-in TETRONIX $5355^{\circ} \mathrm{DC}-15 \mathrm{mHz}$ with $L$ typa plug-in
ITT METRIX miniature portable scope.DC-10mHz. Brand new. $\mathbf{6 5 0}$. NB: Due to the fragile nature of CRTs we regret that these oscilloscopes cannot be despatched by post. Collection only or delivery could be arranged.

## MISCELLANEOUS TEST EQUIPMENT

MARCONI TFI400S double pulse generator with TM6600/S secondary pulse unit. $£ 105$.
MARCONI TF79ID deviation meter. $4-1024 \mathrm{mHz} .0-100 \mathrm{kHz}$ deviation.
MARCONI TFI342 low-capacitance bridge 0.002pf-1,111pf. Resistance 1-1000M.ohm. $\mathbf{E 8 5}$.
ROHDE \& SCHWARZ USVD calibrated receiver $280-4,600 \mathrm{mHz}$. ROHDE \& SCHWARZ A.F. Wave Analyser type FTA $0-20 \mathrm{kHz}$ plus log/lin AF meter incorporated. Excellent condition.
ROHDE \& SCHWARZ URV milli-voltmeter BNIO913 (late type) ImV-IOV. With 'T' type insertion unit, free probe and attenuator heads. $1 \mathrm{kHz}-1,600 \mathrm{mHz}$. $£ 175$.
COSSOR 1453 True RMS milli-voltmeter. Excellent. $£ 75$.
ADVANCE PG54 Pulse generator. AS NEW.
SOLARTRON EMI006 production-line resistance tolerance check-set. $0-15 \mathrm{Mohm}$ digital read-out.
AIRMEC TYPE 210 modulation meter. Excellent condition.
WAYNE KERR B52I LCR Bridge. Excellent condition. $\mathbf{£ 5 5}$.
EDDYSTONE 770R VHF Receiver covering $19-165 \mathrm{mHz}$.
As mew. $£{ }^{125}$

## MUFFIN INSTRUMENT FANS <br> Dimensions $4.5 \times 4.5 \times 1.5$ ins. Very quiet running, precision fan specially designed for cooling electronic equipment, amplifiers etc. For $l l o V$. AC operation- (practise is to run from split (practise is mains transformer or primary of mains transformer or use suitable mains dropper). CC only 11 Watts. List price over $£ 10$ each. Our price, in brand new condition, is $£ 3.50$.

POLARAD Model SAB4WA SPECTRUM ANALYSER
IOMHz-63GHz. I.F. Markers. Spectrum calibrator. Log/Lin scale. NB. This is not the instrument with the expensive TWT to replace. Supplied in full working, excellent condition. Guarantee.

MANY TYPES of RF plugs and sockets in stock:-
BNC plugs 50 . 30p. BNC sockets $50 \Omega$. 25p. N. Type plugs 50 . 50 p . Burndept plugs. 40p. Burndept sockets. 40p. Miniarure PYE. 20p. Miniature sockets. 20p.

All connectors are brand new. Immediate delivery. Please add appropriate postage.

DURATRAK VARIACS type $100 L$ 230V. AC Input. 0-230V. AC Output, a 8 amps. Brand new units, less control knobs. Price only $\mathbf{6} \mathbf{5 \cdot 0 0}$. Carriage El . MINI HELIPOTS
$500 \Omega$ Beckman Linearity Tolerance $0.075 \%$ ( 10 Turn). IK $\Omega$ Beckman $20 \Omega$ Colvern CIR $26 / 6310 / 95$ (3 Turn) $5 \mathrm{~K} \Omega$ Colvern ( 10 Turn).


AERIAL CHANGE/OVER RELAYS of current manufacture designed especially for mobile equipments, coil voltage 12 v . frequency up co 250 MHz at 50 watts. Small size only, 2 in. $\times \frac{7}{}$ in. Offered brand new, boxed. Price $\& 1 \cdot 50$, inc. P.\&P
RACAL/AIRMEC VHF/UHF Millivoltmeter type 301 A . Frequency range $50 \mathrm{~Hz}-900 \mathrm{mHz}$. Voltage range
$300 \mu \mathrm{~V}-3 \mathrm{~V}$ in eight ranges. Co-axial input 50 and 75 ohms BNC connectors. DC Ranges $100 \mu \vee$ - $10 \vee$ in ten ranges. Light-weight mains operated instrument in as new condition with handbooks. Other makes of voltmeter also available

## HEWLETT-PACKARD RF

 POWER METERType 432A. Power range $1 \mu W$ lomW in 7 ranges. Frequency range zeroing. With 478 BA co-ax momatic and carrying case. In excellent condition. HEWL.
HEWLETT PACKARD/
BOONTON TYPE 8900B
Peak-power calibrator. Measures true peak power $\pm .6 \mathrm{db}$ absolute. prequency range $50-2000 \mathrm{Mhz}$. RF scale. RF impedance 50 ohms. P.O.A.

[^7]
## hursit <br> ELECTRONICS

92 Warwick Road, Ealing, London W5 5PT
Telephone: 01-567 0424

## HE 100 <br> 100 WATT POWER AMP MODULE


$\star$ Includes large black anodised heatsink-no further heatsinks required.
$\star$ Top grade glass-fibre P.C.B.
$\star$ Uses high quality components.
$\star$ Fully protected—short/open circuit proof.
$\star$ Only 5 external connections.
$\star$ Fully guaranteed.

## TECHNICAL SPECIFICATIONS

$\star$ Power output	$: 106$ W. R.M.S. into $8 \Omega$
$\star$ Distortion	$: 0.8 \%$ at full $0 / \mathrm{P}$. Typ. $0.4 \%$
$\star$ Signal to noise	$:$ Better than -96 dB.
$\star$ Input sensitivity	$: 0 \mathrm{~dB}(0.775 \mathrm{~V})$.
$\star$ Supply volts	$: 45-0-45 \mathrm{~V}$.

Price $£ 15.12$ inc. VAT. (ready built)
OR
Complete kit (including P.C.B. and all components) f11.88 inc. VAT. Enclose 50p postage \& packing.

Power supply for HE100 (including transformer, capacitors, rectifier) $\mathbf{f 8 . 9 5}$ inc. VAT. Postage \& packing 85 p.

Pre-amps etc., also available. SAE for details.




## 










$\square$
$\square$
0.42


MIL SYNCHROS AVAILABLE EX-STOCK in sizes $08,11,15,16$, 18 and 23 for 50 , 60 and 400 Hz operation Synchro Controit Tanstormers
Synchro Control Transmitters

Synchro Control Transmitters
Synchro Control Differential Transmitters
Synchro Torque Transmitters and Receivers Synchro Resolvers
WE ARE ANXIOUS TO BUY Synchro Test Equipment manufactured by Muirhead, Singer-Gertsch exc. ${ }^{\text {est }}$,
Dividing Heads, Bridges, Standards etc. to expand our testing faclifties.

SPECIAL OFFERS!


PSU35. A stabilised 0-20v. D.C. 1 A P.S.U. in kit form. Deviaload. Voltage range $0-20 \mathrm{v}$ currelt $0-100 \mathrm{~mA}$ and $0-1 \mathrm{~A}$. Input
110 or

 Sisind


Special discount to educational establishments. Your
choice of any 20 kits . Subject to further $10 \%$ discount.
ETHER-TRANSITROL TEMPERATURE CONTROLLERS. $0-1,000^{\circ} \mathrm{C}$ for Chromel-Alumel Thermocouples. $£ 27.50$ including

Metal Oxide Resistors (ELECTROSIL \& WELWYN) Tantalum Capacitors (KEMET, ITT, PLESSEY, ETC.) Synchros and Servomotors ALL AVAILABLE EX STOCK IN MANUFACTURING QUANTITIES

## derroo and Electronic dales Ltd

 Post Orders and Technical enquiries to: 24, HIGH ST., LYDD, KENT. TEL: Lydd 20252 (STD 0679) V.A.T. Reg. No. 201-1296-23 Also at 45a HIGH ST., ORPINGTON, KENT. TEL: ORP 31066HEWLETT PACKARD SAMPLING 'SCOPE HP185A, A vo mulTIMINORS Mk. IV in case in excellent condition
and individually calibrated at $£ 11.50$ inc. P.P. U.K. V.A.T. RADAR CABLEFORM INSULATION TESTER for checking insulation between Individual conductors and each olher
and ground at preselected voltages up to 10 Kv . Full details on

## APEX 4! MEETUS NATIONAL AUTOMATED

 PRODUCTION EXHIBITION AT bELLE VUE, MANCHESTER STAND 73 11-15 NOVEMBER, 1974Tickets available to professional readers S.A.E. Please

STAINLESS STEEL VACUUM CONTAINERS FOR LIQUIDS. Capacity 2 U.S. Galls. fitted with delivery taps.
Brand new in cartons- $\mathbf{2 5}$ (C. Pd. U.K.). N.E.P. Mod. 10506 Channel U/V Recorder. Fitted 5 galvos.

FI-CORD MODEL 202 PORTABLE RECORDER with case
 and 2 K phone output. Remote control socket. Twin cassettes
take 8 miniature lead acid bafteries. $9 \times 6 \frac{1}{2} \times 4 \frac{1}{2} \ln$. Wt. $6 \frac{1}{2} \mathrm{lbs}$. take 8 miniature lead acid batteries.
Fuil data s.a.e. E30 inc. P.P. $\& V . A . T$

## DRY REED INSERTS

Overall length 1.85 in . (Body length 1.7 in .) Diameter 0-14in. to
switch up to 500 mA at uo to 250 v . D.C. Gold clad contacts switch up to 500 mA at un to 250 . D.C. Gold clad contacts
70 p per doz.; $£ 4 \cdot 10$ per $100 ; £ 29.80$ per 1,$000 ; £ 270$ per 10,000 .

Heavy duty type (body length 2 in.) diameter 0-22in. to switch
up to 1 A. at up to 250 V . A.C. Gold clad contacts, $\mathrm{E1} 38$ pe doz.; £6.78 per 100 : $£ 51 \cdot 40$ per 1,900; Changeover Heavy Duty ype $£ 2 \%$ per doz. All carriage paid U.K.
Operating Magnets 65p perdoz.; $£ 4.45$ per 100; $£ 38 \cdot 00$ per 1000.
All carriage paid U.K. Operating Coils tor $12 v$ supply to accept up to four standard
reeds $£ 220$ per doz.; $£ 12.30$ per 100 . All carriage pald U.K.

ALL PRICES INCLUDE 8\% V.A.T.
LEMANIA AIRCREW CHRONOGRAPHS


Stainless Steel case with screw back; luminous hands
and markings. One fifth sec sweep hand controlled Inde-
pendently of main movement pendently of main movement
by press to start, stop and by press to start. stop and
return to zero button. 5 J ewel return to zero button. 15 ewel
movement. Many of these
watches are as new but all watches are as new but all
have been completely overhauled and checked for
sile.25, Black ace $£ 19.20$ inc.
 GS WATCHES all with brushed stainless steel case wit screw back and black faces. Manufactured by CY will try to mee
RECORD, etc., to a standard speciflcation. We will be of ome manufacturer's production. Completely over
 We also have itmited quantities of these watches by OMEGA
LONGINES. BUREN. JAEGER LE COULTRE at $£ 15-25$ inc.
TELEPRINTER PAPER. Standard rolls. 2 ply $£ 3.80$ per doz. 3 ply ex. 10 per
your order now!
A.C. SUPPLY PANEL for 19in. rack mounting carrying two 2 kVA Variacs with double brush assemblies providing four in excellent condition at $£ 48.50$ including carriage and $V$.

TAPE STORAGE CANS. Brand new finished steel can originally intended for 16 mm film but ideal for storing 7 in . reets
of tape. Our last supoly of these items was quickly exhausted at 30 p each but as a result of a massive new purchase we ca now offer a case of 55 at 2
OVER 300,000 IN STOCK! Multiway and R.F. Connectors by twenty different companies! Send us your detailed requirements quoting Nato numbers if known. TELEX 965265.

## APPOINTMENTS VACANT

DISPLAYED APPOINTMENTS VACANT: $£ 4.68$ per single col. centimetre (min. 3 cm ).
LINE advertisements (run-on): 66p per line (approx. 7 words), minimum two lines.
BOX NUMBERS: 30p extra. (Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.) PHONE: Allan Petters on 01-261 8508 or 01-261 8423.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Advertisements accepted up to 12 noon Tuesday, October 8th for the November issue subject to space being available.

## OH

## Television

## in South Africa

In anticipation of the introduction of television in South Africa, and in order to maintain its established reputation for efficient and reliable service, O.K. Bazaars wishes to recruit the following technical personnel for various centres in the Republic of South Africa.

## Senior Television Technicians:

R7000-R8000 p.a. ( $£ 4375-£_{5} 5000$ p.a.)
Responsible to a Service Branch Manager for the direct supervision of a workshop and all activities of the service staff, to undertake personally certain major and difficult repairs, to expedite and inspect all repairs carried out in the Workshop, and to report on recurrent faults in apparatus, to train and instruct apprentices.
Should have served a recognised apprenticeship in radio and T.V. and have at least two or three years experience in colour T.V. Should be in possession of City and Guilds final with R.T.E.B. colour endorsement or equivalent.

## Television Technicians:

## $\mathrm{R}_{5} 500-\mathrm{R} 7000$ р.a. ( $£_{3400-£ 4375 \text { p.a.) }}$

To undertake repairs in the field and in the workshops, and to keep accurate records of time and materials involved, to provide feed-back to management on recurrent faults and defects in apparatus.
Should have served a recognised apprenticeship in radio and T.V. and have two or three years experience in colour T.V. Should be in possession of City and Guilds intermediate with R.T.E.B. colour endorsement or equivalent.
O.K. Bazaars is the largest retail organisation in Southern Africa and will certainly have the most extensive and professional T.V. organisation in the Republic. The Company's expected major share of the T.V. market will ensure outstanding long-term prospects for able people in the T.V. field.
Full fringe benefits are provided including Pension Fund, and Medical Aid.
South African Government non-refundable passage grant plus Company
financial assistance. Interviews will be held locally.
Please apply to:-SAMORGAN (OK)
19, Castle Street, Liverpool. L2 4SS.
or telephone 051-227 1549

## Tann Synchronome Limited require a

## Chief Installation Service Engineer

An experienced engineer is required to maintain existing and future installation of card based access control systems. He will need an electronics background and will need an electronics background and
will be required eventually to organise his own department. Company car provided. Excellent salary and fringe benefits.
Please apply to Mr. R. Fossey, John Tann Security Ltd., Stirling Corner, Borehamwood, Herts. Telephone 01-953 2021.
[4090


# Our Telecommunications programme will make the best of your skills and ambition 

TXE4 is the new British Telephone Switching System currently being manufactured and installed. Designed by STC, it will satisfy the requirements of high traffic density and lead into fully electronic computer-controlled digital switching systems. A further joint development programme with the British Post Office enables STC to make appointments at varying levels of seniority which offer considerable potential technically and in terms of reponsibility.

## Tomorrow's Telephone Exchange Today



## System Development Engineering

The TXE4 System will be further developed to meet traffic demands beyond the end of the century.

This will involve extension of the current TXE4 technology to meet traffic density, system security and compatibility with Switching Systems abroad.

The appropriate background for this work is in depth experience of Telephone Switching development and System design.

## System Integration Engineering

The design of the TXE4 System is such that it can be widely applied in various networks, and Integration Engineering interfaces with, and provides a bridge between, system design and application engineering.

Principal duties involve translation of design options into practical choices for application engineering and the specification of rules for exchange lay-outs taking account of transmission and power requirements.

Integration Engineering also contributes in large measure to new developments within the system.

Thorough knowledge of Switching Systems, together with practical experience of large scale installation, commissioning or job engineering, is essential for the work described.

## Senior Customer Liaison Engineering

This refers to work on the more advanced version of TXE4 which is being developed. It involves negotiating with the Post Office and overseas telephone authorities on the facilities to be provided and preparing tenders from the customers' specifications.

Each tender preparation will be a design and development exercise in itself. It will include work on space division switching, line and inter-register signalling, exchange sub-systems, exchange and network facilities, exchange loading and traffic analysis.

Qualifications for this post are a degree or City and Guilds Final Certificate in Telecommunications and between five and ten years' experience in the design of Switching Systems. Knowledge of Post Office facilities would be an advantage.

Salaries and conditions of employment are competitive.

For an application form, please telephone Diana Hunt on 01-368 1200 Ext 3141 or write to her at Department 32211 Electronic Switching Division, Standard Telephones and Cables Limited, Oakleigh Road South, New Southgate, London, N11 1 HB .

# RF Engineers Interested in the future of CableTV? 

## Our latest contracts call for an expansion of our development teams working on new programmes in this field of community communications.

As one of Europe's largest suppliers of cable television products we can offer you a stimulating career in a Company noted for it's technology in the field of television.

Competitive salaries will be offered up to $£ 3,000$ or higher for those Engineers who can make a significant contribution. A threshold supplement is also being paid. There are good fringe benefits including a contributory Pension Scheme and assistance with removal expenses where appropriate.

If you are qualified to degree/HNC level with a minimum of two years experience in VHF/UHF circuit design, preferably in the field of television, we would like to hear from you.

There are also vacancies for technicians qualified to ONC level for work in this field.
Please write giving brief details of qualifications and experience to:

## TELECOMHUNICATIONS DIVISION EMO SOUND \& MDSDON EOURPMNENTR MTD

 K. E. Goodman, Personnel Department, EMI Limited, I 35 Blyth Road, Hayes, Middlesex.
## RADIO OFFICERS

Here is your invitation to apply to join the Diplomatic Service

Qualifications:

1. MPT/PMG 1 (or equivalent City \& Guilds Certificate)
2. Skill in the operation of H.F. radio communications equipment.
3. Competence in sending and receiving morse.
Further particulars can be obtained from:
Communications Administration Department,
Foreign and Commonwealth Office,
Hanslope Park,
Hanslope,
Milton Keynes MK19 7BH.


IBM Information Services Limited at Havant, Hampshire, is responsible for the installation and maintenance of the Company's internal telecommunications network. It provides international access to the USA, Europe and Middle East for a complex network of voice, telegraph and on-line data systems.

We are looking for a Telecommunications Technician to work on the operational installation and maintenance of this network. The job is Havant based with occasional international travel when on-site support of our overseas installations is necessary.

You should have experience or knowledge of $F D M, T D M$ or Datel techniques and of telegraphic and data transmis-
sion systems from 50 baud upwards. Educated to HNC, City and Guilds or equivalent standard you must be prepared to work a rotating shift covering the hours between $7.00 \mathrm{a} . \mathrm{m}$. and midnight. We offer good starting salaries plus a premium for working shifts, a comprehensive employee benefits scheme, generous assistance with removal expenses and an opportunity to live in one of the most pleasant parts of the south coast

Please send details of age,
experience and qualifications to Mrs Jill Christison, Personnel Officer, IBM Information Services Limited, PO Box Il, Langstone Road, Havant, Hampshire P09 1RQ.

# A world of interest for Test Engineers 

And up to £2900 pa for you in Data Communications


There are excellent career opportunities within the final inspection department of IAL open to engineers who have a sound theoretical and practical understanding of basic electronics.

These positions of responsibility involve varied and interesting work associated with a wide range of communication equipment including Control and Monitoring Aids for Data Handling Centres, Air Traffic Control Consoles, with associated hardware, and M.F. Navaids.

Applicants should be able to demonstrate competence in standard electronic test procedures.

To find out more, and to arrange an interview please contact: Mr. R. Radcliffe, Personnel

## IAL

## Officer (U.K.)

Aeradio House,
Hayes Road, Southall, Middlesex. Tel: 01-574 2411.

# SPERRY MARINE SYSIEMS 

## AMONG THE WORLD LEADERS IN THE FIELD Of MARINE NAVIGATIONAL AIDS AND SYSTEMS

 requires
## ENGINEERS

The Division has been engaged in the introduction of computerised ships' integrated navigation systems. We now need engineers to help consolidate our successes in this field. We are looking for people with the personal qualities to enable them to liaise with all levels of management in any part of the world.

The qualification level will be an engineering degree or H.N.C. experience will be in one or more of the following areas:

## 1. Digital Techniques;

2. Radar or Doppler Techniques;
3. Transistor/Integrated Circuit Design;
4. Electro/Mechanical Design;
5. Installation Planning of Complex Systems.

The work is interesting and requires world-wide travel for short periods.

In return for your services, we will train you on the latest products, introduce you to management techniques, give you a salary commensurate with the responsibilities entailed and offer you the opportunity for career advancement. We will also provide free life assurance, sick pay and contributory pension schemes.

Telephone or write in confidence with C.V. to:

## BRIAN D. ROFFEY

## SPERRY MARIINE SYSTEMS

dIVISION OF SPERRY RAND LIMITED DOWNSHIRE WAY, BRACKNELL, BERKSHIRE, RG 12 IQL
Telephone: Bracknell 3222, ext. 167

## Electronics Appointments Register

## We know a lot of companies who would like to meet you.

Even if you scour the Sits Vac columns you won't find all the good jobs to fit your qualifications. Because the best jobs aren't always advertised.

More and more companies are using the Electronics Appointments Register to find qualified men and women.

Join one of our Registers and soon you could be on a short list for a better job. Our confidential service costs you nothing.

Send in the coupon-we'll mail you by return.


Graduate Appointments Register
Please send me details of how to enrolon one of your Appointment Registers:
Name
Address
Age limits 20-45.
Post to G.A.R. 76 Dean Street London W. 1. 01-7346536

## ELECTRONICS ENGINEER

If you are experienced in the use of low noise amplifiers, solid state control and analogue/digital circuitry, continue reading.
The right person, preferably between 23 and 30 years of age, will share the responsibility of research, development, and construction in electronic systems for resistance, fusion and friction welding equipment.
The job is based at Inverness, and starting salary will be $£ 2,225$ per annum.

Applications, in writing, are invited, to:-
R. G. FORBES
A. I.WELDERSLIMITED

Academy Street, Inverness IV1 1LZ

# NATIONAL PHYSICAL LABORATORY, division of maritime science 

vacancies at<br>TEDDINGTON, MIDDLESEX<br>and

HYTHE, HAMPSHIRE.

## ELECTRONIC DEVELOPMENT

A number of interesting posts with a wide range of duties are available at the above locations.
We use analogue and digital circuits, audio and radio frequencies, land and sea based equipment, together with computers to handle our results.
Assistant Scientific Officers, with an interest in electronics, are required to join small teams at both sites to help us maintain and develop our systems, and to assist in trials on ships and offshore structures.
Excellent opportunities exist to obtain broad practical experience and to study for higher qualifications leading to a worthwhile career.
The minimum qualifications are 4 GCE or CSE Grade 1 subjects, to include Maths, Science and English Language.
Salary ranges from $£ 887$ (at age 16 ) to $£ 1,547$ (at age 25 ) rising to $£ 1,899$.
If you would like further details you may telephone Mr. R. F. Johnson or Mr. R. W. Cuffe at the numbers shown.

Mr. R. F. JOHNSON: 01-977 3222 Ext. 4165 during working hours or Woking 65942 evenings and weekends.
MR. R. W. CUFFE: Hythe, (Hants) 3065 (STD 042-14) in working hours, or Hythe 6804 evenings and weekends.
Alternatively, write to Mr. H. B. Boyle, Officer-in-Charge, Department of Industry, National Physical Laboratory, Division of Maritime Science, St John's Street, Hythe, Southampton, Hampshire, SO4 6YS, quoting Reference MS/INST.
[4072


Challenge and reward go hand-in-hand in the perpetual sunshine of this new and fast-developing nation. 3-year contracts bring attractive salaries. lower rates of tax, minimal-cost furnished accommodation, free air passages for you and your immediate family, baggage allowance. car loans and $25 \%$ terminal gratuity-normally tax free.

## Radio Specialists to become Police Inspectors

These positions are in the Signals Section of Zambia's Police Force, and location may be anywhere within Zambia. Essential requirements are: at least 5 years' practical, posttraining experience in low and medium-power HF. VHF and UHF radio equipment; advanced knowledge of Multiplex equipment and crossbar telephone exchanges and a working knowledge of diesel and petrol-driven generators. In addition. Final or Full Technological C \& G Certificate will be needed. Upper age limit is 40 .
Salary: K2,688-K3.624 (c. $£ 1,800-$ c. $£ 2,420$ ). Supplement: approx. $£ 1,000$.
Salary Scales: Entry point on salary scale shown will be Salary Scales: Ent
Note on Supplements:- British citizens are normally Note on Supplements:- British citizens are normally
eligible for the Overseas Supplement which is shown eligible for the Overseas Supplement which is shown
against each post. Details of this Annual Supplement. against each post. Details of this Annual Supplement.
including eligibility. will be sent on request. The supplement including eligibility. will be sent on request. The supplement
is paid into the Officer's own bank account in Britain or is paid into the Officer's ow
Ireland and is normally tax free.


Please apply by sending full personal and professional details to: Recruitment Officer, Zambia High Commission, 7-11 Cavendish Place, London W1.

# Radio Operators. How to see more of your wife without losing sight of the sea. 



Join the Post Office Maritime Service. We have openings for Radio Operators at several of our coastal stations.

The work is just as interesting, just as rewarding as aboard ship, but you get home to see your wife and family more often. You need a United Kingdom General or First Class Certificate in Radiocommunications, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting pay for a man of 25 or over is $£ 2,270$, plus cost of living allowance with further

In addition to your basic salary, you'll get an average allowance of $£ 450$ a year for shift duties and there are opportunities for overtime.

Other benefits include a good pension scheme, sick pay and prospects of promotion to Senior Management.

For more information, write to: ETE Maritime Radio Services Division (L527), ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London, ECIA IAS.


## TECHNICAL OFFICERS -RADIO COMMUNICATIONS

Required by the CROWN AGENTS for their London (Westminster) Office.
Candidates should preferably have had five years' experience as a Contracts Engineer in one or more of the areas of communications detailed below and possess ONC or equivalent in an appropriate discipline. Practical experience of the equipment desirable.
(a) Ground Navigational Aids (Radar, ILS, VOR/DME, etc.).
(b) HF, VHF, UHF Communication Equipment.
(c) Microwave Equipment and Systems.

The duties include the checking of specifications, preparation of tender documents, technical and commercial correspondence connected with contracts, the evaluation of tenders and the placing of contracts. Candidates must be prepared to undertake occasional visits to works and to oversea principals.
Commencing salary according to age, qualifications and experience up to $£ 2.998$ in a scale rising to $£ 3,366$ (under review). Noncontributory pensions scheme.

Write for further details and application form to the Crown Agents, 4 Millbank, London SW1P 3JD stating brief details of qualifications and experience and quoting reference number M1S/OFFICE VI (RC)/WF.

## CCTV ENGINEER

Applications are invited for the post of CCTV Engineer at Hatra, the research centre for the knitting, dyeing and making up industry.
Hatra's main use of television is the recording of studio programmes to disseminate research information. Recordings are also made in factories to assist in training and other industrial uses.
The successful candidate will be responsible for servicing and maintaining television equipment which includes Shibaden cameras, Ampex one-inch VTR and VEL control equipment and Philips VCRs. He will also be expected to assist in the control room when programmes are made.
Desirable qualifications are HNC electronics or equivalent and practical experience in close circuit television.
Please apply in writing to:

> The Secretary,
> HATRA,
> 7 Gregory Boulevard, Nottingham

THAMES WATER AUTHORITY THAMES CONSERVANCY DIVISION

## ELECTRONICS TECHNICIAN

(2 POSTS)
Reference: WRCE
Applications are invited for these posts in a Telecommunications and Electronics section based, at Reading.
Preference will be given to applicants holding an O.N.C. Electronics or equivalent C. and G. Certificates.
A sound understanding of electronic principles applied to one or more of the following fields is essential:-

Digital Telemetry;
UHF Radio link equipment;
Communications test equipment.
Some general experience of instrumentation would also be of advantage.
This is an opportunity to be in at the start of a project for a Computer controlled radio telemetry Data Acquisition System, the first comprehensive system in the recently reorganised Water Industry.
Salarjes offered in the range, Grades T4 and 5, $\mathbf{E 1 , 7 6 1}$ to $£ 2,394$ per annum, depending on age and experience, with opportunities to age and experience, with opportunities to annum with suitable qualifications.
Threshold Agreement in operation.
Excellent leave entitlement and sickness benefits. Flexible working hours scheme based on a 35 -hour 5 -day week. Superannuation Scheme. Staff Restaurant and Social Club.
Applications, giving details of age, qualifications, experience and present salary should be addressed to Divisional Manager, Thames Conservancy Division, Thames Water Authority, 8DB, to arrive not later than noon on the 7th October, 1974. (No forms.)

## TELEVISION ENGINEER

A vacancy occurs for an additional TV. Engineer with an expanding Rental and Retail company. Applicant will preferably have some colour experience. Large $s / c$ flat available after trial period. Salary according to experience.

Hydes of Chertsey Ltd.,
56/60 Guildford Street, Chertsey 63243
139

## UNIVERSITY OF SURREY TECHNICIAN GRADE 4 -£1,848-£2,163 \&

TECHNICIAN GRADE 3 - $£ 1,650-£ 1,920$ in Audio Visual/Audio Lingual Laboratory
Two full time vacancies are now available in this rapidly expanding Department. The successful candidates will take a prominent part in the day-to-day running of the Department's language laboratories. Technical experience with tape-recording apparatus and associated equipment, and experience of film, slide or film-strip projection are essential skills.
Application forms may be obtained from the Staff Officer, University of Surrey, Guildford, Surrey GU2 5XH or Tel: Guildford 71281, Ext. 452 and should be returned as soon as possible.

# Calling Ex-Radio Officers oso? MiImco 

We have something to tell you about the changes that have taken place since you came ashore. Salaries, allowances and leave entitlements have recently been substantially increased - rates range from $£ 2,000$ p.a. at the start to well over $£ 4,000$ at the top of the scales. Full account will be taken of previous service if you come back now. For
example, with three years service you could re-start at $£ 3,050$ p.a. Immediate employment is available for those who left within the last 2 years - if it was longer ago than that, don't be put off, we may still be able to help with financial support while you revalidate your qualification.

send me full details of salary and employment prospects. What can you lose? Please return the coupon now. Name

## Marconi Marine careers

Post to: R. C. Seaton, The Marconi International Marine Co. Ltd., Elettra House, Westway,

## THE OPEN UNIVERSITY <br> Audio-Visual Aids Department TICHNICAL MANAGER

Applications are invited for the post of Technical Manager in the Audio-Visual Aids Department of the Open University, based at Walton Hall.
The person appointed will supervise the work of the staff in the Department, be responsible for the co-ordination and progressing of production of discs, tapes and equipment required in connection with course material, the maintenance of audiovisual hardware, technical liaison with the BBC, evaluation of audio-visual hardware systems and advising on the updating of equipment used on Campus.
A sound knowledge of audio-visual hardware systems would be required, and a ware systems would be required, and a
minimum of five years' relevant experience, after qualification, preferably including appointment in industry. Formal qualification as a Registered Technician Engineer (CEI) will be required.
The post carries Non-academic F.S.S.U. Terms and Conditions of Service. Salary scale (with effect from 1st October 1974) £2,580-£3,636 per annum.
Application forms and further particulars are available from the Personnel Manager, The Open University (AT3), P.O. Box 75 Walton Hall, Milton Keynes MK7 6AL. Applications should be returned as soon as possible.

## MINISTRY OF DEFENCE, SIGNALS ENGINEERING LABORATORY, ROYAL AIR FORCE, NORTHOLT.

## ASSISTANT SCIENTIFIC OFFICER

Required to assist a qualified team in design, construction, testing and field trials of prototype communications and data processing equipment for operational use by the Royal Air Force.
Experience is not essential but candidates must have keen interest in modern electronic techniques and be prepared to undertake further study on day release.
Work will be mainly at Northolt but visits to other RAF stations in this country and abroad will be involved.
Candidates should normally be under 26 years of age and possess at least four " $O$ " levels (or equivalent) including at least an English subject and a science or mathematical subject; or an ONC/OND in an Electrical Engineering subject.
Salary $£ 1122$ (at age 16 ), $£ 1732$ (at age 21 ), $£ 1932$ (at age 25 ) rising to $£ 2134$.
Application Forms obtainable from Mrs. M. C. E. Kinner, Admin, Headquarters No. 90 (Signals) Group, RAF Medmenham, Marlow, Bucks, or telephone Marlow 6969 Ext. 294.

## Electronics Technician Engineers do you like to get about the country? <br> TELECOMMUNICATION TEST AND SYSTEM COMMISSIONING TECHNICIANS

 We have vacancies for staff in the following categories to commission telephone, telegraph, data and television transmission systems within the UK and Eire.Immediately, we are seeking suitable men for our Coaxial Line and Multiplex Commissioning Teams.

## Installation Technicians

To take charge of Commissioning Teams in the field for Coaxial Line and Multiplex systems. For these posts we need people between the ages of 25 and 35 with a full City and Guilds Certificate or equivalent qualification in telecommunications and with at least 3 years field experience. Applicants with previous supervisory experience are preferred but we will provide opportunities for the right men to develop this capacity.

## Testers

To work as members of the Commissioning Team. We are looking for people educated to City and Guilds Intermediate Certificate standard in telecommunications between the ages of 20 to 30 years.
Previous similar experience, possibly obtained in H.M. Services, will be an advantage.
Applicants for all these positions must hold a current Driving Licence We offer attractive salaries, a contributory pension scheme and other big-company fringe benefits. There are good career prospects with this internationally renowned telecommunications company.
Please telephone or write for an application form to:- Mrs. S. Hughes, (Ref: WW 10174), Personnel Department, Standard Telephones and Cables Ltd. Chester Hall Lane, Basildon, Essex SS14 3BW. Basildon 3040 Ext. 261.

## Standard Telephones and Cables Limited

 A British Company of IIT
## RADIO OFFICERS

Do you have PMG I, PMG II, MPT 2 years operating experience?
Possession of one of these qualifies you for consideration for a Radio Officer post with composite signals organisation.

On satisfactory completion of a 7-month specialist training course, successful applicants are paid on a scale rising to $£ 3,096$ pa;commencing salary according to age- 25 years and over $£ 2,276$ pa. During training salary also by age, 25 years and over $£ 1,724$ pa with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age ( 40 years if exceptionally well qualified) will be considered.

Full details from:
Government Communications Headquarters,
Room A/1105, Priors Road, Oakley,
Cheltenham, Glos GL52' 5AJ
Telephone Cheltenham 21491 Ext 2270

## ROYAL FREE HOSPITAL HAMPSTEAD

## MEDICAL PHYSICS TECHNICIANS (ELECTRONICS)

Two vacancies-one permanent and one locum ( 6 months from 1 st November, 1974) exist in the Electronics Workshop of this brand new major Teaching Hospital. Applicants should hold the Final City and Guilds or an equivalent qualification. Some knowledge of analogue and digital circuit techniques desirable.

Salary on a scale $£ 1,899$ to $£ 2,589$ dependent on qualifications and experience.

Application forms (to be returned by 5th November) from Personnel Dept., Royal Free Hospital, 21 Pond Street, London, NW3. Tel: 01-794 0431.
[4097

AYON AREA HEALTH AUTHORITY (TEACHING)

## BASIC GRADE PHYSICIST

Required for a two year research post at Frenchay Hospital. Bristol, aimed at improving prosthetic devices fitted following the removat of the larynx. Experience of physiological pressure monitoring or allied fields Would be an advantage. Salary scale $\mathbf{£ 2}, 160$. E2,565. Applications should be sent to Miss H. Inman, Personnel Officer, 10 Marlborough October.
[4088

## RADIO TECHNICIAN NEW ZEALAND

Vacancies exist at our Wanganui, Hastings and New Plymouth service departments for competent Radio Technicians to repair and maintain land mobile, marine and aircraft radio telephone equipment. A thorough practical knowledge of V.H.F., H.F. (D.S.B. and S.S.B.) equipment is essential.

If you are planning emigrating to New Zealand in the near future, then please write airmail, with full personal and career details to:
Barlows Radio Telephone Service Ltd.,
P.O. Box 611 ,

WANGANUI,
NEW ZEALAND.

## ELECTRONIC VACANCIES

Engineers
Draughtsmen - Designers
Service and Test Engineers
Technicians Technical Authors
Sales Engineers

## £1,600-£5,000

 paPermanent or Contract
Phone MICHAEL NORTH
01-387 0742 MALLA TECHNICAL STAFF LIMITED
334 Euston Rd., London NW1 3BG
•95

## The Hatfield Polytechnic

TECHNICIAN
for Psychological Laboratory
for maintenance and construction of a variety of electronic, mechanical, audiovisual and medical equipment. The person appointed will work with a Senior Technician. Applicants should preferably hold an appropriate Intermediate or National Certificate or City and Guilds qualification, but this is not essential. Further study is encouraged and day release facilities are available.
Salary on a scale rising to $£ 1,889$ per annum including a local weighting allowance and threshold agreement. Application form and further details from the Staffing Officer, The Hatfield Polytechnic, PO Box 109, Hatfield, Herts, or ring Hatfield 68100, Extn 309. Please quote ref: 542.
[4086

UNIVERSITY OF LIVERPOOL
Department of Physics

## TECHNICIAN

required to assist with the preparation, commissioning and running of research apparatus. Training will be provided. An H.N.C. or equivalent qualification is necessary. Some knowledge of electronics or vacuum work and experience of workshop and general laboratory practice would be an advantage. Initiative and willingness to work in a team are important. Salary within a range up to $£ 2.163$ per annum according to qualifications and experience. plus threshold payments. Pension scheme, sports and social facilities. Application forms may be obtained from the Registrar, The University. P.O. Box 147. Liverpool L69 3BX. Quote ref RV/276196~WW.

MARCONI INSTRUMENTS LIMITED

## ELECTRONIC TECHNICIANS

are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Test Technicians, Senior Test Technicians or Technician Engineers according to experience and qualifications. Our production and servicing programme, geared to our recognised export achievement, provides employment combined with prospects of advancement, not only within these grades, but into other technical and supervisory posts within the Company at St. Albans and Luton.

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please write or telephone, quoting reference WW749, for application form to:

Mr. P. Elsip,
Personnel Officer,
Marconi Instruments Ltd, Longacres, St. Albans, Herts. Tel: St. Albans 59292

Member of GEC-Marconi Electronics


## Join the EMI ServiceTeamat Hayes

 we urgently require

The international music. electronics and leisure Group.

Electronic Repair \& EMI Calibration Engineers
required for the repair and calibration of a wide range of electronic instrumentation, inciuding oscilloscopes, DVMs, pulse generators, power supplies etc.
Applicants should be aged at least 18 years and should have had at least two years background in electronics. Further training will be given in appropriate cases.

## Close Circuit Television Engineers <br> for the servicing and commissioning of CCTV, VTRs etc.

Applicants should beaged at least 19 years, and must have had some experience in television receiver servicing.
For both of these positions, starting salary will be up to $£ 2,300$ per annum according to age, experience and ability. $37 \frac{1}{2}$ hour week, plus paid overtime.

Don't delay, for further details telephone or write to M. Ford, 01-573 3888 Ext. 2268, EMI Service, 254 Blyth Road, Hayes, Middlesex.

## AUDIO-VISUAL ENGINEERS

The Heathrow Hotel features Europe's most sophisticated conference complex, complementing the hotel's fine restaurants, bars and first-class accommodation.
The finest audio-visual facilities are available to clients using our conference facilities and due to increased business the following vacancies are now available:

## SENIOR AUDIO-VISUAL ENGINEER £2,800-£3,200

To operate and maintain a wide range of CCTV and colour studio equipment including broadcast cameras and one inch helical scan VTR's. Applicants should be between 25-35, have severā years' experience of studio work in broadcàsting or education and possess relevant technical qualifications.

## AUDIO-VISUAL ENGINEER

To operate and maintain a wide range of audio-visual equipment including CCTV.
Applicants should preferably be between 20-25, have several years' experience of CCTV maintenance and possess relevant technical qualifications.
Excellent company benefits include 17 days' holiday, non-contributory pension scheme and free life insurance.
Please apply with relevaht details to The Personnel Department, The Heathrow Hotel, Bath Road, Heathrow, Hounslow, Middlesex or telephone 01-897 2419 for application form.


A Lex Hotel


## UNIVERSITY OF EDINBURGH TELEVISION ENGINEER

Required by the DEPARTMENT OF AUDIO VISUAL SERVICES to be responsible for the day-to-day operation and maintenance of the television studio, mobile recording, all University television facilities, and the deployment of five technical staff. Experideployment of five technical staff. Experi-
ence in educational closed circuit or ence in educational closed circuit or
broadcast television studios is essential, broadcast television studios is essential,
with a sound knowledge of helical scan with a sound knowledge of helical scan
video tape recorders. If necessary. assistance with relocation expenses will be given.
Salary will be on the scale $\mathrm{f} 2.817-\mathrm{f} 3.201$ p.a. (under review), plus threshold payment. Holidays: 4 weeks and 4 days.
Applications, quoting the post reference no. A051, and including the names and addresses of two referees familiar with addresses of two referees familiar with
applicant's technical background, should be addressed to the Personnel Officer, Univer sity of Edinburgh, 63 South Bridge, Edinburgh EH1 1LS. Telephone O31 6671011 , ext. 4446.

14065

## MAXE MONEY FROM YOUR HOBBY

Sell a range of nationally advertised Hi-Fi speakers from home and make some real money fast. The range has already become wellknown and very favourable reviews have been carried out. You sell only a brand-new fully
guaranteed product with full support from guaranteed product with full support from
the manufacturer. Your mark up is $67 \%$ and the manufacturer. Your mark up is $67 \%$ and
maximum investment is $£ 140$. This is a direct selling opportunity and not part of any pyramid scheme.
Write for full details to:
ELBAR INDUSTRIES,
Dept. 6,
2 Greystones Close,
Kemsing, Sevenoaks, Kent
[4098

## ELECTRONICS TECHNICIAN

GELLER BUSINESS EQUIPMENT LTD.,
distributors of electronic calculating and dictating equipment, require a young man 17 plus as a trainee electronics technician. A well paid interesting career for an intelligent person prepared to work and study.
Write or phone to:
GELLER BUSINESS EQUIPMENT LTD.
15 PERCY STREET, LONDON, W1 Tel: 01-580 1614
[4125

## THE UNIVERSITY OF LEEDS DEPARTMENT OF PHYSIOLOGY CARDIOVASCULAR UNIT

[^8] degree is required. Responsibilities include PDP 12 and PDP8 computers, electronic equipment in three physiological laboratories and three hospital catheter laboratories, and the supervision of four electronics technicians. Salary scale 61,752 to ©2.376. Preliminary enquiries may be made to the Physiology. The University Physiology. The University, Leeds LS2 9JT.
Forms of application and further particulars from the Registrar, The University, Leeds LS2 9JT (please quote $43 / 13 / \mathrm{Cl}$ ), to whom applications should be returned as soon as possible.

## HER MAJESTY'S GOVERNMENT COMMUNICATIONS CENTRE <br> HANSLOPE PARK, MILTON KEYNES MKI9 7BH

has vacancies in the following fields of $R \& D$ work
(a) HF Communications
(b) VHF/UHF Communications
(c) Communication Field Trials
(d) Acoustics
(e) Optics including Infra-Red
(f) Small Mechanisms
(g) Component reliability and environmental testing
(h) Statistics/Operational Analysis/Systems Analysis

Most posts will be at Hanslope Park but some will be in London.
Candidates for post (h) should be experienced scientists/ engineers who have specialised later in one of the required fields. An ability to deal with non-technical people is essential. Appointments will be made within the grades of Scientific Officer, Higher Scientific Officer and Senior Scientific Officer in accordance with the definitions given below. In addition to the salary scales quoted, all posts attract the Threshold Agreement Payment (at present $£ 125$ p.a. extra) and a noncontributory pension.

## SCIENTIFIC OFFICER

Applicants should not be more than 27 years of age and should have one of the following qualifications:
(a) A degree in a scientific or engineering subject
(b) Degree-standard membership of a Professional Institution
(c) A Higher National Certificate or Higher National Diploma in a scientific or engineering subject
(d) A qualification equivalent to (c) above

Salary Scales: $£ 1,592$ to $£ 2.675$ with the entry point determined by qualifications and experience.

## HIGHER SCIENTIFIC OFFICER

Applicants should be under 30 years of age but this requirement may be waived if special qualifications or experience can be offered. Formal qualifications are the same as for Scientific Officer above but in addition the following experience is required:
(a) Applicants with 1 st or 2 nd class honours degreesat least 2 years post-graduate experience
(b) Applicants with other qualifications-at least 5 years post qualification experience
Salary Scale: $£ 2,461$ to $£ 3,371$ with entry point dependent upon experience beyond the minimum required.

## SENIOR SCIENTIFIC OFFICER

Applicants should be at least 25 and under 32 years of age, although the upper age limit may be waived if experience of special value can be offered.
Applicants should have obtained a 1 st or 2 nd class honours degree and have had a minimum of four years appropriate post-graduate experience.

Salary Scale: $£ 3.157$ to $£ 4,441$. Entry will normally be at the minimum of the scale but applicants with experience of special value may be entered above the minimum.
Applications, stating the field of work and grade required, should be made to:

[^9]
## EIECTRONICS DEVEIOPMENT ENGINEERS

Required by the Engineering Group of a goahead company engaged in the design and manufacture of a range of scientific instruments involving the use of digital computers, pulse counting techniques and linear and digital circuit involvement.

Applications are invited from qualified engineers, HNC minimum, with three or four years' experience in the relevant areas. The successful applicants will be able to demonstrate initiative with prospects of leading advanced development projects.

SALARY : $£ 2,500$ to $£ 3,500$

## PRODUCTION ENGINEER

Required by a company specialising in the manufacture and development of scientific instruments involving precision mechanical engineering coupled with sophisticated electrical and electronic measuring and control systems.

The job entails taking new products from the development stage through to production on a small batch basis and requires enthusiasm, initiative and an ability to get on well with people.

A minimum qualification of HNC (Electrical) is required together with a knowledge of modern electronic circuit and packing techniques. Applicants must be familiar with Drawing Office procedures.

SALARY: $£ 2,500$ to $£ 3,500$

## EIECTRO-MECHANICAL <br> DESIGN DRAUGHTSMAN

Required by a company specialising in the manufacture and development of scientific instruments involving electrical, electronic, mechanical and optical assemblies
Applicants should have a minimum qualification of HNC with two or three years' drawing office design experience. An ability to prepare modern printed circuit masters and design associated hardware is essential. An ability to lay out and detail mechanical assemblies is desirable.
Sound experience in a fast moving environment of development, production engineering and manufacture will be required.
SALARY: $£ 2,300$ to $£ 2,800$
Apply: Mrs. P. DIXON, PERSONNELDEPT.,
APPLIED RESEARCH LABORATORIES LTD., WINGATE RD.
LUTON,
BEDFORDSHIRE LU4 8PU
Tel: LUTON 53474

## INTERNATIONAL MANAGEMENT CONSULTANTS LIMITED TECHNOLOGY AND SCIENCE CENTRE

## ELECTRONICS TECHNICIAN/STUDENT TECHNICIAN

PA Technology and Science Centre at present located in Cambridge, but shortly moving to Melbourn, has vacancies for Technicians to do varied and responsible work within the Electronics Engineering Group.

## TECHNICIAN

Applicants should be familiar with wiring and construction techniques for electronic equipment, and be capable of working to the highest standards with minimum supervision. Duties will include prototype circuit wiring and testing, in close cooperation with the Group's Engineers.

## STUDENT TECHNICIAN

A unique opportunity for a student with some practical experience in the Industry. Age group 18-21 years with some further education targets, eg: O.N.C./H.N.C., City and Guilds F.T.C. Day release for further education would be supplemented by personal training from professional Engineers and Technicians.

Working conditions are good, and sensible salaries will be offered, subject to regular review.
If you are interested in either of these positions, telephone Cambridge 66661, Extension 21, or write to:

## Dr D. G. Buchannan, <br> PA Technology and Science Centre, Winship Road, Milton,

Cambridge CB4 4BE—marking your envelope 'Confidential'

## T.V. Engineers for

Are you dissatisfied with your present position, feeling like a change of scene? Do something about it now! Be our guest-come down under and join the Tisco Team, N.Z.'s largest service organisation.
We are in service only and our engineers are all important people, every one of our 30 managers is an ex engineer.
We are now selecting staff to sponsor under the Immigration Scheme to arrive in N.Z. mid 1975.
If you,

* Have 5 years experience, preferably some in colour.
- Single or married with 3 children or less.
write now enclosing a photograph and details of past experience to:The Technical Staff Supervisor, Tisco Ltd, Private Bag, Royal Oak, AUCKLAND, NEW ZEALAND.


## Senior C.C.T.V. Technician

Required as soon as possible to head a team responsible for the maintenance of closed circuit television equipment and other audic-visual aids.
Applicants should possess a City and Guilds Final Certificate in Radio and Television Servicing and have had relevant practical experience.

Salary payable within grade $T 4$ ( $£ 1,644$ to $£ 1,926$ ). These scales are currently under review. An additional payment may be made in accordance with the local authorities Threshold Agreement.

Application form and derails available from Chief Administrative Officer, Brighton Technical College, Pelham Street, Brighton, BN1 4FA (Tel: 685971).

## ELECTRONIC ENGINEER OR PHYSICIST

required for a Hospital department concerned with the investigation of brain functions. The successful applicant, who would work under the direction of the Principal Physicist. will be expected to develop electronic apparatus for research purposes. Supervision of the maintenance of existing apparatus would also be necessary. A good knowledge of electronics is required together with the ability to produce protorype apparatus. Sur interests are high gain amplifiers for Tow frequencies and digital timing apparatus. The
appointment can be as a Physicist (salary range $£ 1,623 . £ 2,385$ ) or as a Medical Physics Technician (salary range $\in 2,727-£ 3,516$ ) depending upon qualifications and experience. Applications, together with the names of two referees, to Geoffrey A. Robinson, Secretary to the Board of Governors. The National Hospitals for Nervous Diseases, Queen Square, London WCIN 3BG.

## FREELANCE ENGINEER

wanted to rebuild a limited number of ITEL paper tape Word Processing machines. $£ 50.00$ paid per machine.

Apply Box WW4071

## HUMBERSIDE AREA HEALTH AUTHORITY HULL DISTRICT ELECTRONICS TECHNICIAN

Salary range $\mathbb{\in 2 , 1 9 0}$ to $\mathbb{\in 2 , 8 1 7}$ p.a. Candidates should possess H.N.C. or equivalent qualifications, but consideration will be given to suitably qualified and experienced candidates in these fields
Successful candidáte will be a member of a new and expanding department, servicing a wide range of electronic/ bio-medical and diagnostic X-ray equipment.
Application forms and job description can be obtained from the Personnel
Officer Humberside Area Health Authority, Humberside Area Health House, Park Street, Hull. Tel: 223961. [4103

## Devon Area Health Authority

## Medicul Physics Technician IV

( $£ 1,773-£ 2,463$ per annum) Plus threshold agreement.

Applications are invited for the above post in the Electronics Division of the Physics Service based at the new District Hospital at Wonford, Exeter. Duties under the direction of a graduate electronics specialist will include the planned maintenance and servicing of patient orientated electronic equipment in the area.
Some modification and construction of instruments will also be required.

For further information ring 0392/72261. Ext. 27 (Mr. E. D. James). Application form and job description obtainable from Personnel Officer, Royal Devon and Exeter Hospital (Wonford), Barrack Road, Exeter, EX2 5DW.

## ELECTROSONIC

 SE LONDON TEST/SERVICE ENGINEERS£2,000-£2,800

Electrosonic Ltd. A leading company in the rapidly expanding fields of audio, audio-visual and lighting control systems, require test/service engineers. Applicants should have a sound knowledge of basic electronics and some years' experience of test and service work. An academic training to ONC level or equivalent qualification is desirable. The post is based in S.E. London but some travelling is required. The company offers an attractive working environment and excellent conditions of employment.
Applications should be made in writing to:
Mr. R. D. Naisbitt, Personnel Director, ELECTROSONIC LTD
815 Woolwich Road, Charlton, London SE7 8LT
Telephone 01-855 1101

## AUDIOTELEVISION TECHNICIAN

Required by Communication Media Unit la University servicel. Duties include operating and maintaining Audio and Video recording system, closed-circuit television, synchronized sound for film production, tape-slide systems, and public address. On occasions when the film projectionists are overloaded, the Audio-Television Technician may be called upon to help them. A sound theoretical and practical knowledge of electronics is called for. Salary within the scale $£ 1.848-£ 2.163$ p.a.
Application forms from the Establishment Officer, The University of Aston in Birmingham, Gosta Green, Birmingham B4 7PT quoting reference L/693/W.
$[4102$
THE UNIVERSITY OF ASTON IN BIRMINGHAM

## Laboratory Technician

## For the Scientific Services Department

A Technician is required for the workshop of a Research and Development Department based initially at Cockfosters. The workshop staff are to be rebased at Gravesend during the next two to three years.
Applicants should have served a Craft Apprenticeship and hold an ONC or equivalent qualifications. The work is concerned with the manufacture of experiment rigs and apparatus and some experience of this type of work is desirable.
Salary is within a range which rises to $£ 3238$ per annum.

Applications, quoting vacancy No. 1283/74WW and giving age, details of experience and qualifications, should be forwarded to the Personnel Officer (Recruitment), CEGB, Bankside House, Sumner Street, London SE1, to arrive by October 9, 1974.

Central Electricity Generating Board South Eastern Region

## Skilled in T.V. Electronics?

## Here's a job to put you to the test

With the coming of colour TV, there has been a tremendous upsurge of opportunities for electronics people. It's an industry which is growing fast and at ITT' in Hastings, this growth has been particularly apparent. Production is increasing rapidly to keep pace with the continuing demand for our sets throughout Europe.

Here in Hastings, we're looking for top-notch senicr engineers to join our Test Engineering team. It's a job calling for formal electronics training followed by extensive practical experience of TV test as a Service Engineer, in the Forces or in industry.

If you'd like to put your ability to the test with ITT, we'd like to hear from you. It's an opportunity which, if you have the expertise we are looking for, could take you into the training areas of the Company. Generous additional benefits include pension and sickness schemes and assistance with relocation expenses where appropriate.

Write now with full details of your qualifications and experience to: David Harris, Personnel Officer, ITT Consumer Products (UK) Ltd., Theaklen Drive, Hastings, Sussex TN34 I YL.

## YOUR CAREER in RADIO \& ELECTRONICS ?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio \& Electronics School, P.O. Box 156, Jersey, C.I. Dept. WWC 94.
Please send FREE BROCHURE to
NAME
Block
ADDRESS ....................................................... Caps.
$\qquad$
$\qquad$

BRITISH NATIONAL RADIO AND ELECTRONICS SCHOOL
$\lceil 3996$

## SITUATIONS VACANT

HI-FI AUDIO ENGINEERS. We require experito get them. Tell us about your abilities. $01-4374607$ INTERNATIONAL discotheque company requires experienced Audio/Installation engineer for work in England and abroad. Telephonc 01-491 $\begin{gathered}7455 . \\ {[4107}\end{gathered}$

TECHNICLAN required in Departments of PhysioI logy and Biochemistry and Zoology, University be able to advise on design of equipment. Salary be able to advise on design of equipment. Salary
in the scale $£ 2,007$ to $£ 2,382$ p.a. (Grade 5). Apply in writing, with details of experience and qualifications and names of 2 referces, quoting Ref. T71, to Assistant Bursar (Personnel), University of Reading, Whiteknights, Reading RG6 2AH.

## ARTICLES FOR SALE

A.V.O. COIL WINDING MACHINES (2). MultiWinders with Paper Interleave Attachment. Com plete with Gears. Spares, etc. Very good condition,
OFFERS. Tel. $01-5047009$.

A ARVAK ELECTRONICS, 3-channel sound-light Strobes, $£ 132$ _- 98 A West Green Road (Side Door) London N15 5NS. 01-800 8656. Road (Side Door),
[23

COLOUR VALVES, PLS08, PL509, PY500/A. bottom, Bury, Lancs. Tel. (Std 070 682) 3036

COLOUR T.V.'s-Bush CTV25 displayed working - $90+$ VAT Large discounts for 3 -up. Non-workers ayailable. Rediffusion wired Mono T.V.s all screen sizes, new condition. Sumiks, 1532 Pershore Road,
Birmingham, 30 . Tel. 021-458 2208 .

CONSTRUCTION AIDS-Screws, nuts, spacers, Cetc., in small quantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia panels etched aluminium to individual requirements. Printed circuit boards-masters, negatives and board, one-off or small numbers. Send 9p for list. Ramar Constructor Services, 29 Shelbourne Road, Stratford on Avon, Warwks. Tel. Stratford on Avon

COLOUR, UHF and TV SPARES. Colour and suitable for $\mathrm{Hi}-\mathrm{Fi}$ amp or tape recording, $\mathrm{£6.75}, \mathrm{P} / \mathrm{P}$ suitable for Hi-Fi amp or tape recording, $26.75, \mathrm{P} / \mathrm{P}$
35 p . Bush CTV25 colour, new power units complete, incl. mains TX, Electrolytics, rectifiers, etc., $£ 2.50$, incl. mains NX, Electrolytics, rectifiers, ent convergence panels plus yoke and blue lat., $£ 3.85, \mathrm{P} / \mathrm{P} 40 \mathrm{p}$. New Philips single standard convergence panels complete, incl. 16 controls, coils, P.B. switches, leads and yoke $£ 5.00, \mathrm{P} / \mathrm{P} 40 \mathrm{p}$. New Colour Scan Coils, Mullard or Plessey plus convergence yoke and blue lateral, $£ 10.00, \mathrm{P} / \mathrm{P} 40$. Mullard AT1025/05 Convergence Yoke, $£ 2.50, \mathrm{P} / \mathrm{P}$ 35p. Mullard or Plessey Blue Laterals, 75 p P/P 20p. BRC 3000 type ${ }^{\text {Scan Coils, }} £ 2.00, \mathrm{P} / \mathrm{P} \quad 40 \mathrm{p}$. Delay Lines DL20, £3 50, DL1E, DL1. E1.50, P/P
25 p. Lum. Delay Lines, S0p, P/P 15p. EHT Colour 25p. Lum. Delay Lines, 50p, P/P
Quadrupler for Bush Murphy CTV
25
111/174 series, Quadrupler for Bush Murphy CTV 25 II1/174 series, £8.25, P/P 35p. EHT Colour Tripler ITT TH25/ITH Stand. convergence panels complete incl. 22 controls. £3.75, P/P 35p. CRT Base Panel, £1.75, P/P 15p. Makers Colour surplus/salvaged Philips G8 panels part complete; Decoder, $£ 2.50$, IF incl. 5 modules, £2.25. T. Base, $£ 1.00$, P/P 25p. CRT base, $75 \mathrm{p}, \mathrm{P} / \mathrm{P}$ 15p. GEC 2040 panels, Decoder, £3.50. T. Base, ${ }_{75 \mathrm{p}, \mathrm{P} / \mathrm{P} 20 \mathrm{p} \text {. B9D }}^{11.00 \text {. }}$. CAP P/P 20p. B9D valve bases 10p, P/P 1043 NEW, £4.50, Philips VHF for Band 1 and 3 , $£ 2.85$ incl. data. Salvaged VHF for Band 1 and $3, £ 2.85$ incl. data. Salvaged
VHF and UHF Varicap tuners, $£ 1.50, \mathrm{P} / \mathrm{P}$ 25p. UHF TUNERS NEW, Transistorised. $£ 2.85$ or incl. slow motion drive, $£ 3.85$. 4 position and 6 pos. pushbutton transistorised, £4.95, All tuners P/P 35p. MURPHY $600 / 700$ series complete UHF Conversion Kits incl. tuner, drive assy., 625 IF amplifier, 7 valves, accessories housed in cabinet plinth assembly, £7.50 P/P 50p. SOBELL/GEC $405 / 625$ Dual standard switchable IF amplifier and output chassis incl. cct.. base panel, $£ 1.00$ P/P 35p PHILIPS 625 IF ard time base panel, £1.00 P/P 35 p . PHILIPS 625 IF amplifier
panel
incl. cct. $£ 1.00 \mathrm{P} / \mathrm{P}$ 30p. VHF turret tuners AT7650 incl. valves for K.B. Featherlight, Philips 19TG170, GEC 2010 , etc., $£ 2.50$. PYE miniature incremental for 110 to 830 , Pam and Invicta, $£ 1$. 00 . A.B miniature with UHF injection suitable K.B, Baird, Ferguson, $75 p$. New fireball tuners Ferguson, HMV , Marconi, $£ 1.90 \mathrm{P} / \mathrm{P}$ all tuners 30 p . Mullard $110^{\circ}$ mono scan coils, new. suitable all standard Philips, Stella, Pye, Ekco, Ferranti, Invicta, $£ 2.00$, P/P 35p. Large selection LOPTs. FOPTs available for most popular makes. PYE/LABGEAR transistd. Mast3 p or Setback battery operated UHF Booster, £4.65 $\mathrm{P} / \mathrm{P} \quad 30 \mathrm{p} .200+200+100$ Microfarad 350 v Electrolytic, £1.00 P/P 20p. MANOR SUPPLIES, 172 WEST END LANE, LONDON. N.W. 6 (No. 28, 59, 159 Buses or W. Hampstead Bakerloo and Brit. Rail). MAIL ORDER: 64 GOI DERS MANOR DRIVE, LONDON. N.W.11. Tel. 01-794 8751 .

DIGITAL CLOCK CONSTRUCTORS : The price Darrier is broken! AY-5-1224 cluck chip plus four
$0.3^{\prime \prime}$ seven segment L.E.D. displays type 707 . £ 1155 $0.3^{\prime \prime}$ seven segment L.E.D. displays type 707: £11.55 plus VAT post free. For the short sighted: as above,
but $0.6^{\prime \prime}$ high displays type 747: $£ 13.75$ plus VAT Clock chip alone is $£ 475$ plus VAT. Circuit diagram

## Test Engineers

Practical electronic engineers with experience on systems testing and finite equipment will be interested in these positions. A minimum of HNC electrical engineering and practical interest in constantly changing technology is essential. A knowledge of analogue and digital techniques is desirable.

These positions would suit engineers between 22 and 35 years old with at
least 3--5 years industrial experience.
Salaries will be according to qualifications and experience, and we offer excellent company benefits.

If you're interested in any of these positions phone or write to; J. Phillips, Crosfield Electronics Ltd., 766 Holloway Road, London N19. Tel: 01-2727766.

## CROSFIELD ELECTRONICS LIMITED



1972
TAPE RECORDING ETC.

RECORDS MADE TO ORDER	
DEMO DISCS	
MASTERSFOR	VINYLITE
RECORD COMPANIES	PRESSINGS

Build a mixer to your own spec using our easy to wire ALDID MロロLLES
For full details contact Richard Brown at Zero 88, 115 Hatfield Road St. Albans, Herts, AL1 4JS Tel 63727

Single discs, 1-20, Mono or Stereo, delivery 4 days from your tapes. Quantity runs 25 to 1,000 records PRESSED IN VINYLITE IN OUR OWN PLANT. Delivery ${ }^{3-4}$ weeks. Sleeves/Labels. Finest quality NEUMANN STEREO/Mono Lathes. We cut for many Studios UK/OVERSEAS. SAE list. DEROY RECORDS
PO Box 3, Hawk Street, Carnforth, Lancs.

# DOUGLAS For Transformers 

Comprehensive stock range $\star$ Rapid prototype service $\star$ Quantity production orders.

## Douglas Electronic Industries Ltd.,

Eastfield Road, Louth, Lincolnshire LN11 7AL.
Tel: Louth (05-07) 3643 Telex: 56260

## CONSTRUCTION PLANS

Cameras, Transmitters, Scramblers, Detective Electronics,

PLUS MANY MORE
new hobby catalogue AIRMALLED $\$ 1.00$

TS
Post Box 618, Rotterdam, Holland


TRONICS, 94 New Chester Ruad. Wirral, Merseyside L62 5AG

4078 GEC. BRT 400 . General coverage communicaC.tions receiver. Very good condition. ${ }^{\text {E }} 55$. BACK
NUMBERS OF P.W. also available. Oct. 63 to March '69 (some missing). Lucas, 29 Myton Crescent Warwick. Tel: Warwick (0926) 42196. [4093
I ADDERS 8 ft 10 in closed- 21 ft extended, $£ 23.54$, $L$ defivered. Home Sales Ladder Centre (WW2), Haldane (North) Halesfield (1) Telford, Shropshire.

Low cost ic mounting. Use Soldercon IC $\checkmark$ socket pins for 8 to 40 pin DIL's. 70 p (plus 5 p VAT) for strip of 100 pins, 11.50 (plus 12 p , for

53 c Aston Street, Oxford. Low cost IC MOUNTING. Use, Soldercon IC L socket pins for 8 to 40 pin DiL's. 70 p (plus 5 p VAT for strip of 100 pins; $£ 1.50$ (plus 12 p VAT) for 3 strips of 100: $£ 4.00$ (plus 32 p VAT) for 1000 . | Instruetions supplied. SINTEL, 53c Aswon $\begin{array}{l}\text { Itreet, } \\ \text { Oxford. }\end{array}$. 116 |
| :--- |

\section*{We've got prices to put power in your profits <br> TDSHIBA VALVES <br> TDSHIBA VALVES <br> |  | Goods |  | Goods |  |
| :---: | :---: | :---: | :---: | :---: |
| Type | Price | Type | Price | Type |
| PL508 | 67.0 | AFII5 | 23p | BCI47A |
| PY88 | 35.5 | AFII6 | 23p | BC148 |
| PY500A | 85.0 | AFli 7 | 23p | BC149 |
| PY800 | 29.0 | AFII8 | 50p | BC153 |
| SEMI-CON | CTORS | AF139 | 42p | BC154 |
| AC127 | 17p | AFI78 | 45p | BC157 |
| ACl28 | 15p | AFI80 | 45p | BC158 |
| ACI4IK | 30p | AFI81 | 45p | BCI59 |
| ACI42K | 30p | AF239 | 45p | BC173 |
| ACI51 | 20p | BA145 | 14 p | BCI78B |
| AC154 | 18p | BC107 | $11 p$ | BCI82L |
| AC155 | 18p | BCl08 | $11 p$ | BCI83L |
| ACl 56 | 20p | BCl09 | 12p | BC187 |
| ACI76 | 22p | BCII3 | 25p | BC214L |
| AC187 | 19p | BCII6 | 25p | BD124 |
| ACI87K | 30p | BC117 | 20p | BDI31 |
| ACI88 | 20p | BC125 | 25p | BD132 |
| ACI88K | 30p | BC132 | 25p | BD235 |
| ADI42 | 45p | BCI35 | 20p | BD237 |
| ADI49 | 40p | BC137 | 25p | BD×32 |
| AD161 | 38p | BCI38 | 40p | BFII5 |
| ADI62 | 38p | BC142 | 26p | BFI60 |
| AF114 | 24p | BCI43 | 30p | BF167 | <br> Goods

Price
08p
08p
$12 p$
20p
22p
$12 p$
$10 p$
$14 p$
$18 p$
$20 p$
$12 p$
$12 p$
$28 p$
$15 p$
$70 p$
$45 p$
$45 p$
$49 p$
$52 p$
42. 40
$20 p$
$20 p$

$20 p$ <br> | Type | Price (p) |
| :--- | ---: |
| DY87 | 30.0 |
| DY802 | 30.0 |
| ECC82 | 28.0 |
| EF80 | 29.5 |
| EFI83 | 34.5 |
| EFI84 | 34.5 |
| EH90 | 31.5 |
| PC900 | 24.5 |
| PCC89 | 40.0 |
| PCCI89 | 41.0 |
| PCF80 | 31.5 |
| PCF86 | 39.0 |
| PCF801 | 42.0 |
| PCF802 | 40.0 |
| PCL82 | 39.0 |
| PCL84 | 34.0 |
| PCL85 | 39.5 |
| PCL86 | 41.0 |
| PFL200 | 55.5 |
| PL36 | 55.5 |
| PL84 | 25.0 |
| PL504 | 60.5 | <br>  <br> Type

BFI73
BFI78
BFI79
BFIB0
BFI8I
BFI84
BFI85
BFI94
BFI95
BFI96
BFI97
BFI98
BF200
BF218
BF224
BF258
BF336
BF337
BFX86
BFY50
BFY52
BSY52

BTIO6 <br> \begin{tabular}{|c|c|c|}
\hline Goods \& \& Goods <br>
\hline Price \& Type \& Price <br>
\hline 25p \& BUIO8 \& E2.10 <br>
\hline 35p \& BY126 \& 11 p <br>
\hline 40p \& BY127 \& 12p <br>
\hline 35p \& E. 1222 \& 30p <br>
\hline $35 p$ \& IN60 \& 05p <br>
\hline $21 p$ \& MJE340 \& 45p <br>
\hline $21 p$ \& OA202 \& 7.5p <br>
\hline 15p \& OC71 \& 15 p <br>
\hline 15p \& OC72 \& 15p <br>
\hline 20p \& BU105/02 \& £2.40 <br>
\hline 17p \& 2SCl1728 \& £2.40 <br>
\hline 23p \& R2008B \& £2.00 <br>
\hline 25p \& R20108 \& £2.00 <br>
\hline 30 p \& INTEGRATEO \& <br>
\hline 35 p \& CIRCUITS \& <br>
\hline 40p \& TAA550 \& 49p <br>
\hline 28p \& TBAI20AS \& £ 1.00 <br>
\hline 35p \& TBAI20SQ \& £ 1.00 <br>
\hline 28p \& TBA540Q \& £1.75 <br>
\hline 22p \& TBA560CQ \& ¢2.40 <br>
\hline 20p \& TBA920Q \& £2.90 <br>
\hline 35p \& TBA9900 \& 62.90 <br>
\hline ¢1.40 \& SN76013ND \& \$1.50 <br>
\hline

 <br> 

\hline NEW TOSHIBA COLOUR TUBES <br>
HP" \& GOOds Price <br>
19"AA9/191X \& 48.00 <br>
$20^{\prime \prime} 51004822$ \& 49.75 <br>
$22^{\prime \prime}$ A56/120X \& 53.25 <br>
FULLY GUARANTEED <br>
\hline
\end{tabular} CES <br> ITH Decca Cor.

ITN GEC/Sobell 2 TQ $1400+950$ MK I 2 TAK 15005 Stick 2DAF 15003 Stic <br> ع 1.70 <br> 12 MONTHS GUARANTEE}

COMBINED PRECISION COMPONENTS (PRESTON)LIMITED 194-200 North Road, Preston PR1 1 YP Telephone: 55034 Telex: 677122

PRECISION POLYCARBONATE CAPACITORS All high stability-extremely low leakag
$040 \mathrm{VAC}( \pm 10 \%) \quad 63 \mathrm{R}$ Range $\pm 1 \% ~ \pm 2$ 440 F
0.9 F
$0.22 \mu \mathrm{~F}$
$0.25 \mu \mathrm{~F}$
0.47 F
$0.5 \mu \mathrm{~F}$
$0.68 \mu \mathrm{~F}$
$1.0 \mu \mathrm{~F}$
$2.0 \mu \mathrm{~F}$
TANT
 $16 \dot{\mathrm{~V}} 120 \mathrm{~V}, 0.47,1 \cdot 0,2 \cdot 2,4 \cdot 7.6 \cdot 8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or $35 \mathrm{~V} ; 10.0 \mu \mathrm{~F}$ at $47.0 \mu \mathrm{~F}$ at 3 V or 6 V : 100.0 uF at 3 V . ALL AT 10 D EACH: 10 to 95P: 50 for 14.00 .
TRANSISTORS:
 POPULAR DIODES: All brand new and marked
 LOW PRICE ZENER DIODES: 400 mW : Tol. $\pm 5 \%$ at 5 mA $8.2 \mathrm{~V}, 9.1 \mathrm{~V}, 10 \mathrm{~V}, 11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}, 13.5 \mathrm{~V}, 15 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}$
 SPECIAL OFFER: 100 Zeners for $\mathbf{5 5} 50$.
RESISTORS: HIgh stability, low noise carbon film; $\frac{1}{i} W$ at

$40^{\circ} \mathrm{C}$; +W at $70^{\circ} \mathrm{C}$. E12 series only-from $2 \cdot 2 \Omega$ to $2.2 \mathrm{M} \Omega$. | $40^{\circ} \mathrm{C}$ : $\frac{1}{3} \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. E12 series only-from $2 \cdot 2 \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$. |
| :--- |
| ALL $A^{2} T \mathrm{D}$ |
| 1 | any one value. SPECIAL PACK: 10 of each value $2.2 \Omega$ to 2.2 MS ( 730 resistors) $£ 500$.

SILICON PLASTIC RECTIFIERS-1.5 Amp-Brand new
wire ended DO27: 100 P.I.V.-7p-(4/26p). 400 P.I.V. -p 4/30p) 800 P IV-11p (4/42p)
BRIDGE RECTIFIERS: $2 \frac{1}{2}$ A mp.
$200 \mathrm{~V}-40 \mathrm{p} . \quad 350 \mathrm{~V}-45 \mathrm{p} . \quad 600 \mathrm{~V}-55 \mathrm{p}$
SUBMINIATURE VERTICAL PRESETS-0.1 W only ALL AT 5 p EACH: $50 \Omega, 100 \Omega, 220 \Omega, 470 \Omega, 680 \Omega, 1 \mathrm{~K}, 2 \cdot 2 \mathrm{~K}$,
$4.7 \mathrm{~K}, 6.8 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 250 \mathrm{~K}, 68 \mathrm{~K}, 1 \mathrm{M}, 2 \cdot 5 \mathrm{M}, 5 \mathrm{M}$. PLEASE ADD 10 D POST AND PACKING ON ALL Low
PLEASE ADD © V.AT TO ORDERS.
Send S.A.E. for lists of additional ex-stock items. Wholesale price lists available to bona fide companies. MARCO TRADING
Dept. D9, The Maltings, Station Road, WEM, Shropshire. Tel: Na (Props: Minicost Trading Ltd.)

[^10]CARBON FILM RESISTORS-E12 SERIES
High Stab. 1 W OR iW $5 \%$. $1 p_{1} 75 \mathrm{p} / 100, \quad \mathrm{E} 5.50 / 1000$ ( $22 \Omega$-1M $\Omega$ ).
RESISTOR KITS $22 \Omega-1 M \Omega$ E12 SERIES KIT 10 of each value (Total of 570 ) 1 W , $£ 3.65$;
$£ 3.85 ; .25 \mathrm{E} 12 \mathrm{KIT} 25$ of each value (Total of 1425)

METAL FJLM KITS ALSO AVAILABLE
CATALOGUE No. 3 (Approx. 2000 Parts) 20p.
C.W.O. P. \&P. 10p on orders under \&5. Overseas at cos
B.H. COMPONENT FACTORS LTD

Dept. WW, 61 Cheddington Road, PITSTONE,
Nr. Leighton Buzzard, Beds. LU7 9 AQ.
ighton Buzzard, Beds. LU7
Cheddington (0296) 688446
(32

ENAMELLED COPPER WIRE

102 Parswood Rd., Withington, Manchester 20 [85

## CRYSTALS

Fast delivery of prototype and production mill frequencies. Crystals. Competitive price Details from

INTERFACE INTERNATIONAL
29 Market Street, Crewkerne, Somerse
Tel: (046031) 2578. Telex: 46283.

## SURPLUS BARGAINS KLEINSCHMIDT S.C.M. TELEPRINTER OUTFITS



Comprising. Teletypewriter (page printer) type $\Pi$-2718/FG (known as Kleinschmidt 160) Reperforator-Transmitter (tape printer) type T-272A/FG with table FN-65/FG. Both units re supplied win change wheers. The whote equipment operates on 115 ELECTRONIC ELECTRONIC TIMER KITS 0.8 sec to 100 sec comprises A.E.1. Transistorised Module. Relay and all electrical 20 p. Veeder root 4 -digit resettable counters 115 V £ 1.25 (8p). Printed Circuit Kits, £ 1.25 (25p) total with VAT £ 1.65. AMPEX VIDEO TAPE $2 \mathrm{in} . \times 1670$ NEW $£ 9$ (50p). AVO CT38 Electronic Test Meters $£ 18$ (f1). FERRIC CHLORIDE 25 p a lb. ( 16 p ). $10 \mathrm{lb} £ 2.50$ (paid). Kent Chart recorders 25 V AC 120 NOSPR Multipoint Kent Chan $8 t$ in rolls 3 -ply carbon/butf manilla 60 p per roll (32p) $8 \frac{1}{2} \mathrm{in}$. rolls 7 -ply NCR no carton required, white, $f 1 / 32 \mathrm{p}$ $\frac{y^{2}}{2} \mathrm{in} .2 \mathrm{in}$. core, white. $£ 2$ per box of 8 rolls $\frac{1}{6}$ in.. 2 in . core. buff, E 2 per box of 10 rolls ( 52 p ). zriden Tape $\boldsymbol{£ 2}$ per box of 6 rolls ( 52 p). Loads of surplus to clear. Large SAE for List.

## CASEY BROS.

233-237, Boundary Road, St. Helens, Lancs. 86

BUILDING or PURCHASING an AUDIO MIXER
pre-amp, autofade, V.U. or audio monitor First consult:

PARTRIDGE ELECTRONICS Ref. W.W.
21-25 Hart Road, Benfleet, Essex
Established 23 years
143


Classifieds continued from page 119
Articles for Sale-continued
MIRROR, Aluminising, optical filters and comM1 ponents, vacuum coatings. Frew-Smith Optics,


MULLARD ferrite cores, LA3 100 to 500 k Hz . 200 k Hz , 50 p . Enquires invited for other ferrites, rings, beads, rods, etc. Mc. Murdo PP10 edge plugs ex brand new equipment, 12p; also 10 ways Ps 10 sockets ex brand new equipment, $14 p$; covers for sockets with cable clamps and screws, $3 p$ each. Mc. Murdo B11A relay sockets ex new equipment, 10p each; 100 for $£ 7.00 ; 1000$ for $£ 50$. Ceramic formers length 23 mm O.D., 13 mm internal bore, 1 end 8 mm internal bore, other end 4 mm . 100 for $£ 1.50$. very large quantities of all above components ex stock. Also available large quantities of Polyester
ceramic, Polystyrene and electrolytic capacitors relays, key switches, etc Add $8 \%$ VAT to all orders Mail order only. Xeroza Radio, 1 East Street Bishop's Tawton, Devon. Radio, Last

MURPHY solid state $405 / 625$ S \& V I.F. Sweep V generator with marker pips; Accs and Manual. As new. Cost ${ }^{\text {f120. Offers. Ring: New Milton }} \begin{aligned} & \text { (Hants) } 610660 \text {. }\end{aligned}$ (4004

NELSON.JONES TUNER built from Integrex Kit. High gain, Push Button Varicap Tuning, Portus and Haywood decoder. Performs to Specification £44.00. I. G. Bowman, 35 Park Hill Road, Torquay S. Devon.

PHOTO ELECTRIC COUNTERS, Batch's coun ters, fast and accurate counting at low cost ville Road, Wandsworth Common, London, S.W. 18

PRINTED CIRCUIT, Manufacture, design, Art work, Pholography, Electro-plating in Gold, Rhodium or Tin. Tinning imersion or Roller, Screenprinting. Runslimit 500 units. Estimates by return post or Phone: Whitwell, Worksop, Notts. Tel: 695

R AD10, T.V. and other valves, large stocks, 1930 R 1974. Many obsolete. S.A.E. for quotation, Price list 15 p . Also available a large range of transistor and Styli Cox Radio, The Parade, East Wittering
Sussex. WEST WITTERING 2023.

SELLING Wireless • World monthlies ( 1930 s ).
dozen. Jones. 43 Dundonald Road, Colwyn $\underset{1410}{ }$
SOLARTRON CD $1014-2$ twin beam scope Only $\mathbf{N}_{\text {f25, }}$ but needs some attention. Tel: 01-878 Only evenings.

CUPERB Ingtrument Cases by Bazelli, manufac $N$ tured from heavy duty PVC faced steel, choic of 212 types. Send for free list. Brazelii Instrumen Cases, Dept. 22, St. Wilfrids. Foundry Lane Halton, LA2 6LT, near Lancaster. 14111
TAPE deck and transporter believed to be Potter 1 MT75 computer type. Brand new, ideal D.J. out fit. What offers or any exchange. Tel: 01-778 0101

TEKTRONIX 524AD Oscilloscope with mains lead 1 manual and XI probe, £100. Tel: 051 4265138
$T E L E Q U I P M E N T$ DOUBLE BEAM 'SCOPE D54 leigh", Threshers Road, Crediton, Devon. TELEVISION VALVES, ANY 5-50p, ANY 100 - -6.50 . ECC82 EF80, EF183, EF184, PC86/88 PCF80/802, PCL82/84/85/805/86, PL36/504, PY33/ 88/800_ P\&P 10p. Electronic Mailorder, Rams bottom Bury, Lancs. Tel (Std 070 682) $\begin{aligned} & 3036 . \\ & \\ & {[3997}\end{aligned}$

VACUUM is our speciality. New and second-hand rotary pumps, diffusion outfits, accessories, coaters. etc. Silicone rubber or varnish outgassing equipment from £40. N. Barrett (Sales) Lid.

## ARTICLES WANTED

FERROGRAPH'S model 632 H wanted by univer sity. Excellent working condition essential, mus have monitor head. Tel: Cardiff 40171, ext. 42.
[4095

GRAMPIAN or B.B.C. type Cutterheads complete WW or in parts. Any condition accceptable. Box No WW 4029

WANTED, all types of communications recelver and test equipment.-Details to R. T. \& I Electronics, Ltd. Ashville Old Hall, Ashville Rd.
London, E.11. Ley. 4986 .

QUANTITY of NKT 301 or NKT 302 Transistors Wa required, singles or hundreds. Details please to Wance ELECTRONICS, Queen Street, Lancaster

RADIO TELEPHONES required, ITT type MS ELECT ELECTRONICS, Queen Street, Lancaster, Lancs. ${ }_{[4084}$

## CAPACITY AVAILABLE

A IRTRONICS LTD., for Coil Winding-large or plies. Suppliers to Puns. Also PC Boards Assem plies. Suppliers to P.O., M.O.D., etc. Expor enquiries welcomed 3a Walerand Road, London
SE13 7PE. Tel. 01-852 1706 .

BATCH Production Wiring and Assembly sample or drawings. Deane Electricals, 19B Station Parade, Eading Common, London, W.5: Tel

CAPACITY available to the Electronic Industry. Prinding both in metals and plastics. Limited capagrinding both in metals and plastics. Limited capa
city available on Mathey SP33 JIG BORER. Write for lists of full plant capacity to C.B. Industria


COMPLETE Printed Circuit Documentation includC ing artwork masters, assembly drawings, mechanical drawings, circuit diagrams, etc., prepared from your basic design details. Single and double-sided PC boards. Assembled prototypes supplied. J. T Electronics, Box No. WW 4076.

WW-056 FOR FURTHER DETAILS

Component assembly, wiring and Test of C.C.Bs, Electronic panels and Chassis. Proto types designed, Batch production undertaken. DALANT ELECTRONICS, 11 Ellesmere Road Shrewsbury. Tel. Shrewsbury 50550 or Bomere Heat
(408
Shrews) 682 .
[4080
DESIGN and development of electronic circuits and Systems. Experienced and qualificd Engineer WW 3966.

ELECTRONIC and Electro-Mechanical design and $L$ development services offering one off design or developments to production. Single circuits or complete systems. D.C.A. Electronics, 19 Church Street
Warwick. Tel. Warwick 44992.

ABELS, Nameplates, Fascias on anodised L aluminium. Any quantity, superb quality, fas delivery. G. S. M. Graphics Lid., 1-5 Rectory Lane Guisborough (02873-4443), Yorks.

DRINTED CIRCUITS, quick service. competitive prices, roller tinning, drilling etcetera. Short run North Humberside YO16 4QB. Tel (0262) 4738 77877 Humbers YB. Tel. (0262) 4738

PS.Bs. Assembled and Tested, sub units wired Retc. medical electronics a speciality. Tel
Hedingham $(0787) 61174$.

SMALL Batch Production, wiring assembly, to sample or drawings. Specialist in printed circuit assemblies. D. \& D. Electronics, 2 Bishopsfield Harlow, Essex. Harlow 33018.
SOLDERING, Assembly, and Wiring. Small proNed duction capacity available. Competitive prices
Ned Callan Lid. Tel. $01-998$ 3101.
$[4079$

## COURSES

R ADIO AMATEUR well planned postal course Details from Electronic Publications, 53 Warren Court, Westcliffe Rd., Southport, Lancs
R ADIO and Radar M.P.T. and C.G.L.I. Courses Write: Principal, Nautical College, Fleetwood

## NEW GRAM AND SOUND EQUIPMENT

CLASGOW HI FI, Recorders, Video, Communica tions Reciever always available we buy sell and exchange for photographic equipment. Victor Morri Audio Visual Ltd., 340 Argyle Street, Glasgow, G. 2 31 Sauchiehall Strect, Glasgow, G.1: 8/10
Street, Glasgow, G.2. Tel. 041-221 8958.

## RECEIVERS AND AMPLIFIERS- <br> SURPLUS AND SECONDHAND

HRO Rx5s, etc., AR88, CR100, BRT400, G209 td., Ashville Old Hall, Ashville Rd., London, E. 11 Ley. 4986.

SIGNAL generators, oscilloscopes, output meters wave voltmeters, frequency meters, multi-rang neters, etc., etc., in stock.-R. T. \& I. Electronics Ltd., Ashville Old Hall, Ashville Rd., London, E. 11

## SERVICE AND REPAIRS

CCRATCHED TUBES. Our experienced polishing service can make your colour or monochrome tubes as new again for only $£ 2.75$, plus carriage $£ 1$ Oomercotolute confidence send to Retube Ltd. North $\begin{array}{r}37 \\ \hline 27\end{array}$

## TAPE RECORDING ETC

TF quality, durability matter, consult Britain's - oldest transfer service. Quality records from your suitable tapes. (Excellent fond raisers for schools) Moder New 18 Blenh Tel. 01-995 1661. [4009

## VALVES WANTED

We buy new valves, transistors and clean new com quotation by return.- Walton's, 55 Worcester St . Wolverhampton.



Time and again we are asked for reprints of Wireless World constructional projects: tape, disc, radio, amplifiers, speakers, headphones. Demand continues long after copies are out of print. To meet the situation we have collected fifteen of the most sought after designs and put them in one inexpensive book. And we've updated specifications where necessary to include new components which have become
available. A complete range of instruments is presented, from the Stuart tape recorder and Nelson-Jones f.m. tuner, through the Bailey, Blomley and Linsley Hood amplifiers, to the Bailey and Baxandall loudspeakers - some of which have been accepted as standard in the industry.

## highfidelity designs

fi from newsagents and bookshops or $£ 1.35$ (inclusive) by post from the publishers. A book from WirelessWorld



WW-045 FOR FURTHER DETAILS


Flatform Relay AZ 531
2 independent changeover contacts
with dustproof cover.
Contact material :
Fine silver, silver cadmium oxide, fine silver with hard gold flashing.
Switching 1 Al 2.5 A
capability 110 V/D.C. $125 \mathrm{~V} \sim$
Operating
power 30 W/100 VA
ca. 220 mW
Coil voltage maximum 110 V D.C. Surface area $27.5 \times 22.5 \mathrm{~mm}$
Height 11 mm

## ZETTLER

 Zettler UK Division

Equitable House, Lyon Rd., Harrow, Middx. HA1 2 OU Tel. (01) 8636329

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK
CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

## J. Black

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH
Tel: 01-203 1855. 01-203 3033
STORE: LESWIN ROAD, N. 16 Tel: 01-249 2260

QUARTZ CRYSTAL
UNITS from

- 1.0-60.0 MHZ
- fast deliverr
- high stability
- TO DEF 6271-A


WRITE FOR
Leaflet At-1
MCKNIGHT
CRYSTAL CO hatoley inoustriál ESTATE, HYTHE, SOUTHAMPTON SO4 6ZY.

EXCLUSIVEOFFERS NEVER BEFORE OFFERED

## WORLD-WIDE RANGE

 TIONS CENTRE houged in Air Conditioned TRAILER Bited two COLDINS KWT-6 500W S.S.B. Transmitter Receivery and one COLLINs Receiver all fully tuneable2 to $30 \mathrm{~m} / \mathrm{cs}$ digital readout synthesised frequency control, with line amplifiers and inputs, operating position and remote control facilities and ancillary
equipment. Power input 115 V or 230 V A.C. Full details equipment,
on application.
PHILCO HC-150 POINT-TO-POINT STRIP RADIO H PHILCO HC-150 POINT-TO-POINT STRIP RADIO
RECEIVERS $2 / 30$ mics. Ten fully tuneable channels 0.5 kcs with synthesisers. Single and diversity reception
on ISB, DSB, SSB wih 4 sub-bands to each channe Ftill details and prices on application. HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS Our Heioht Width CABNETS Ref. in inches Width Depth Rack Panol

	. in inch	in inches	in inchen	Space in in	Prico
CD	69	21	13	68	210.00
CL	30	60	36	42	212.50
CR	69	30	20		£24.00
DM	-70	20	26	138	221 00
FA	85	22	36	160	£22.00
FB	74	21	22	70	no gides E18.00
FC	52	25	22	47	217.00
FD	40	22	24	72	£14.00
FE	72	22	21	18	818.00
FG	11	19	18	10	£11.00
FH	15	21	17	11	212.00
FJ	15	21	15	12	£12.00
FN	70	24	20	188	21700
FL	84	22	17	80	£21.00
FM	70	72	27	120	£20.00
FP	76	22	18	70	£18.00
	Also Consolea. twin and multi-way Cabinets.   OPEN RACKS				
Onr	Hoight in	Channel	Rack Panel		
Ref	. inches	Dopth	Space	Base	Price
RF	85	3	79	15	211.00

We cannot lint-please send us your requirements Wo cannot liet-please rend us your requirements
we can probably help-all onquiries snswered * $15^{\circ}$ diaa. Reel flbreboard Transit Cases,


| $\star$ Flann Microwave Attenuators $4 / 12$ GMC $\quad £ 40.00$ |
| :---: | :---: | :---: |
| $40-\mathrm{page}$ list of over $\mathbf{1 , 0 0 0}$ diferent items in atook |

INSTRUMENTATION TAPE RECORDER-REPRODUCERS


## COMPUTER HARDWARE

$\star$ CARD READER 80 col. 600 c.p.m.

* TAPE READER, High speed 5/8 track 800 c.p.m.
Prices on Application
PLEASE ADD V.A.T. TO ABOVE
P. HARRIS

ORGANFORD - DORSET BH16 GER
BOURNEMOUTH-8.

## Wilmslow Audio

THE firm for
speakers!

Baker Group 25, 3. 8 or 15 ohm Baker Group 35.3.8 or 15 ohm Baker Deluxe 8 or 15 ohm
Baker Major, 3,8 or 15 oh $\mathbf{7} .75$
$\mathbf{E 8 . 5 0}$ Baker Major, 3, 8 or 15 ohm Baker Regent. 8 or 15 ohm
Baker Superb. 8 or 15 ohm Celestion PST8 (for Unilex Celestion MH 1000 horn. 8 or 15 ohm EMI $13 \times 8.3 .8$ or 15 ohm EMI $13 \times 8.150 \mathrm{~d} / \mathrm{c} 3.8$ or 15 ohm EMI $13 \times 8.450 \mathrm{t} / \mathrm{tw} 3.8$ or 15 ohm EMI $13 \times 8.350 .8$ or 15 ohm EMI $13 \times 8.20$ wattbass EMI 2 ${ }^{4}$ " tweeter 8 ohm EMI $8 \times 5.10$ watt, $\mathrm{d} / \mathrm{c}$, rollis 8 ohm
Elac 59 RM 10915 Elac59RM 10915 ohm .597 M 1148 ohm Elac $6 \frac{1}{2}{ }^{\prime \prime} \mathrm{d} /$ cone, roll/s 8 ohm Elac TW4 4" tweeter Fane Pop 15 watt $12^{\prime \prime}$
Fane Pop 25/2 25 watt 12 Fane Pop 25/2 25 watt $12^{\prime \prime}$ Fane Pop 40, $10^{\prime \prime} 40$ watt Fane Pop 50 watt, $12^{\prime \prime}$ Fane Pop 55, $12^{\prime \prime} 60$ watt Fane Pop 60 watt, $15^{\prime \prime}$
Fane Pop 100 watt, $18^{\prime \prime}$
Fane Crescendo 12A or B, 8 or 15 ohm Fane Crescendo 15.8 or 15 ohm Fane Crescendo 18.8 or 15 ohm Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$. roll/s. 8 or 15 ohm Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}, \mathrm{roll} / \mathrm{s}, 8 \mathrm{ohm}$ Goodmans 8 P 8 or 15 ohm Goodmans 12P 8 or 15 ohm Goodmans 12P 8 or 15 ohm Goodmans 12P-D 8 or 15 ohm Goodmans Audiom 1008 or 15 ohm Goodmans Audiom 1008 or Goodmans Axent 1008 ohm Goodmans Axiom 4018 or 15 ohm Goodmans Twinaxiom 10" 8 or 15 hm Goodmans Twinaxiom 108 or 15 ohm Kef T27
Kef T15
Kef B110
Kef B200
Kef B200
Kef B139
Kef B139
Kef DN8
Kef DN8
Kef DN12
Kef DN12
Kef DN13
Richard Allan CG8T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s
STC4001G super tweeter
Wharfedale Super 1 ORS/DD 8 ohm
Fane 701 twin ribbon horn
Baker Major Module each
Fane Model One each
Goodmans DIN 204 ohm each
Helme XLK25 (pair)
Helme XLK30 (pair)
Helme XLK50 (pair)
Kefkit 2 each
Peerless 3-15 (3 sp. system) each
Richard Allan Twinkit each
Richard Allan Triple 8 each
Richard Allan Triple each
Richard Allan Super Triple each
Wharfedale Linton 2 kit (pair)
Wharfedale Glendale 3 kit (pair)
Wharfedale Dovedale 3 kit (pair)

PRICES INClUDE VAT

Cabinets for PA and Hiff, wadding, vynair, etc.
Send stamp for tree booklet 'Choosing a Speaker'
FREE with orders over $£ 7$--"HiFi loudspeaker enclosures" book

All units guaranteed new and perfect.

## Prompt despatch.

Carriage: Speakers 38p each tweeters and crossovers 20 p each. kits $75 p$ each (pair $£ 1.50$ )

## WILMSLOW AUDIO

Dept WW
Swan Works, Bank Square, Wilmslow, Cheshiré SK9 1HF Tel. Wilmslow 29599 (Discount Hifi, PA and Radio al 10 Swan St, Wilmslow.)


## EX-COMPUTER STABILISED POWER SUPPIIES

 RECONDITIONED, TESTED AND GUARANTEEDRipple $<10 \mathrm{mV}$. Over-voltage protection 120-130v. $50 \mathrm{c} / \mathrm{s}$ input. Stepdown transformer to sult about $£ 3$.
5-6v. 8A Post \& Packing £1.70
$5-6 v .8 A$.
$5-6 v, 12 A$
$£ 125-6 \mathrm{v} .16 \mathrm{~A}$.
£16
5-6v. 12A
E14
PAPST FANS $4 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \ln .100 \mathrm{ctm}$. 240v. 50/60 Hz. $£ 3-50$ ( 30 p ).
PAPST FANS 6in. dia. $x$ 2tioin. deep Type 7576 £5:00 (30p).
TRANSISTORS p\&p10p
BC107/8/9 BC147/8/9 BC157/8/9 al 9p BF180 25p BF182/3/40p BF184 17p BC16713p BFW10 55p BF336 35p 7418 DIL 34p 2 23771 fl 10
ELECTROLYTICS
$30,000 \mu 25 v$
65p (20p)
$4000 \mu 70 \mathrm{v} ., 3,600 \mu 40 \mathrm{v} ., 4 \frac{1}{2} \times 2 \mathrm{in}$. dia. 55 p (15p)
$10,000 \mu 35 v .5,000 \mu 35 v ., 40 p$ (12p)
$4,000 \mu 100 \mathrm{v} ., 4 \frac{1}{2} \times 2 \frac{1}{2} 55 p(22 p)$
EX-COMPUTER PC PANELS $2 \times 4 i n$ 25 boards for $£ 1$ (30p).
QH Bulbs, 12v. 55 w . $\qquad$
250 Mixed Resistors 60p (13p 250 Mixed Capacitors 60p (11p

200 SI Planar Diodes
50 p (8p)
Microswitches ....... . . . 8 for 50p (10p) Min. Glass Neons .......... 8 for 50p (7p)

Postage and package shown in brackets
Please add 10\% VAT to TOTAL
KEYTRONICS
Mail Order only
44 EARLS COURT ROAD, LONDON, W. $01-4788499$


THE QUARTZ CRYSTAL CO.LTD.
Q.C.C WORKS, WELLINGTON CRESCENT, NEW MALDEN, SURREY. $01-942-0334 \& 2988$


THE ONLY
COMPREHENSIVE RANGE OF RECORD MAINTENANCE
 EQUIPMENT IN THE WORLD!

Send P.O. $15 p$ (plus $4 p$
postage) for 48 page booklet postage) for 48 page booklet providing all necessary information on Record Care

CECIL E WATTS LIMITED
Darby House
Sunbury-on-Thames, Middx

BUILD A VERY HIGH QUALITY LOW DISTORTION

## LINSLEY-HOOD AMPLIFIER

Class A. 10 watts. Kit $\mathbf{£ 5 . 2 5}$, made $\mathbf{£ 8 . 0 0}$. Class AB. 20-50 watts. Kit $\mathbf{4 9 . 7 0}$, made $\mathbf{4 1 4 . 0 0}$. Also pre-amps, F.M. Tuners and 50 other Kits KEF Speaker units B139 Ell, B110 £6.95, B200 67.60, T15 5.50 , T27 \&4.75. Crossovers from C2.50.

Tax and Carriage extra
Send S.A.E. for appropriate lists.
TELERADIO HI FI
325/7 FORE STREET, EDMONTON,
$01-8073719$
LONDON, N. 9
maneren

SYNTHESISER SOUNDS SUPREME BY DEWTRON-THE UP-FRONT PEOPLE YOU can build professional standard synth. equipment from our modules if you can read and solder! E.g. pitch-to-voltage enables your creation to play itself from sound of voice, sax, clarinet, guitar etc. Send 15 p NOW for full catalogue. 10
years experience from-
D.E.W. LTD.

254 Ringwood Road, Ferndown, Dorset.


## COLOUR TV's

Bush CTV 25 displayed working $£ 90$ plus VAT Large discount for 3 up non-workers available. REDIFFUSION WIRED MONO TV's. all screen sizes, new condition.

SUMIKS
1532 Pershore Road, Birmingham 30 Tel: 021-458 2208

WE PURCHASE ALL FORMS
OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. SPOT CASH
CHILTMEAD LTD. 7, 9, 11 Arthur Road, Reading, Herks.

Tel: 582605

SPECIAL NOTICE
TO ALL MANUFACTURERS
in the

ELECTRONIC, RADIO, TELEVISION
and Allied Trades.
Please note that we will purchase any redundant and surplus stocks which you may have available after stocktaking, or wishing to make space for more important items. We are particularly interested in large quantities of components, raw materials, etc

BROADFIELD \& MAYCO
DISPOSALS LTD.
21 Lodge Lane, N. Finchley,
London, N12 8JG.
Telephone:
$01-4452713$
$01-9587624$

PEAK PROGRAM METERS TO BS4297
also 200 KHz version for high speed copying. Drive circuit, $35 \times 80 \mathrm{~mm}$, for 1 mA L.H. zero meter to BBC
ED1477. Goid 8 -way edge con supplied. Complete it $\begin{array}{lrrrr}\text { Complete kit } & \mathbf{£ 1 0 . 0 0} & \mathbf{£ 9 . 5 0} & \mathbf{£ 9 . 0 0} & \mathbf{£ 8 . 5 0} \\ \text { Builf and alined } & \mathbf{£ 1 4 . 0 0} & \mathbf{£ 1 3 . 3 0} & \mathbf{£ 1 2 . 6 0} & \mathbf{8 1 1 . 9 0}\end{array}$ ERNEST TURNER PPM meters. scalings $1 / 70 \mathrm{OR}-22 /+4$. Type $642.71 \times 56 \mathrm{~mm} £ 1090: 643.102 \times 79 \mathrm{~mm} £ 12.90$. Twin movement, scale $86 \times 54 \mathrm{~mm} £ 31.00$


PUBLIC ADDRESS : SOUND REINFORCEMENT in any public-address system where the microphones and loudspeakers are in the same vicinity acouss if the amplification exceeds a critical value. By shifting the audio spectrum fed to the speakers by a few Hertz the tendency to howling at room resonance frequencies is destroyed and an increase in gain of 68 dB is possible before
the onset of feedback. The 5 Hz shift used is imperceptible on
both speech and music.
SHIFTERS IN BOXES with overload LED, shift/bypass switch. BS4491 mains connector and housed in strong diecast boxes finished in attractive durable blue acrylic. Jack or XLR audio conType

 SHIFTER CIRCUIT BOARDS FOR WW July 1973 a Complete kit and board $\mathbf{£ 2 1 . 0 0}$ including p s.u and DESIGNER Board built and aligned EELECTRRONICS

The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG. (STD 04866) 5997

## MOTOBOLA

 Linearlineyrciedelicruils DATA BOOKPrice $\mathbf{E 2 . 0 0}$
ELECTRONIC SECURITY SYSTEMS by L. G. Sands. Price $\mathbf{E 3 . 3 0}$

MANUAL OF ACTIVE FILTER DESIGN by Hilburn. Price 66.45
LOGICAL DESIGN OF SWITCHING CIRCUITS by D. Lewin. Price $\mathbf{6 5 . 0 0}$
INTEGRATED ELECTRONICS by Miliman Price 64.20
INDUSTRIAL ELECTRONICS by N. M. Morris. Price $\mathbf{E 2 . 7 5}$
DIGITAL INTEGRATED CIRCUITS by National Semiconductors. Price 62.00
APPLICATIONS OF OPERATIONAL AMPLIFIERS by J. G. Graeme. Price $\in 7.90$
FIELD EFFECT TRANSISTORS IN IN. TEGRATED CIRCUITS by Wallmark. Price

A GUIDE TO FORTRAN IV PROGRAM MING by D. McCracken. Price $\mathbf{6 3 . 7 0}$
CIRCUIT DESIGN IDEA HANDBOOK by B. Furlow. Price 68.25
*ALL PRICES INCLUDE POSTAGE

## THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS
19-21 PRAED STREET, LONDON, W2 1NP

Phone 7234185
Closed Sat. 1 p.m


New surplus stock as illustrated. AC 240 voits. Input power 100VA. Instant heat at touch of trigger switch in handle. Constructed in robust plastic casing with work light in font and $4 \times 3$-core cable.
PROGRAMME
 and hot water on/off twice a day. Suitable for any electrical appliance up to 3 amps 240 volts A.C.


VAT paid
New surplus stock as illustrated. Size $7^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$
Smiths Time Switch with 24 -hour dial which is simple to set 10 switch on/off twice per day at any times required. Also fitted with wo lever switches which can be set to operate two circuits which can each be set to operate on Time Switch twice per day, all day, continuous. or off. Mounted in robust white plastic casing. Drilled for fixing on back supplied with waring instructions. Ideal for shop lighting and mary other applications.
SAE FOR CATALOGUE WITH MANY OTHER BARGAINS TO C. W. WHEELHOUSE \& SON

9/13 BELL ROAD. HOUNSLOW.

## CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and WantsTo "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9LU

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

Rate: 66p PER LINE. Average seven words per line. Minimum THREE lines.

- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus 30p.
- Cheques, etc., payable to "Wireless World" and crossed " \& Co."
Press Day October 8th, 1974 for November, 1974 issure. Subject to space being available.

NAME

ADDRESS
$\qquad$
$\qquad$


NEW RANGE-TRANSISTOR INVERTORS<br>TYPE A<br>Input: 12V DC<br>Output: 1.3kV AC 1.5MA<br>Price $\mathbf{£ 3 . 4 5}$<br>TYPE B<br>Input: 12V DC<br>Output: 1.3kV DC 1.5MA<br>Price $\mathbf{£ 4 . 7 0}$<br>\section*{TYPE C}<br>Input: 12V to 24V DC<br>Output: 1.5kV to 4kV AC 0.5MA<br>Price $\mathbf{£ 6 . 3 5}$<br>TYPE D<br>Input: 12V to 24V DC Output: 14kV DC 100 microamps at 24 V . Progressively reducing for lower input voltages.<br>Price $\mathbf{£ 1 1}$<br>Postage \& Packing 36p. Add V.A.T. at 8\% EHILTMEAV LTD<br>7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College). Tel. Reading 582605)

## INIEX TO ADVERTISERS

## Appointments Vacant Advertisements appear on pages 104-121

Page	Page	Page
		Nombrex (1969) Lid.
Acoustical Mfg. Co. Ltd. ........................... 57	Future Film Development Lid. ................... 44	
Acoustic Transducer Ltd. ..................... cover iii	Fylde Electronics Labs. Ltd. ...................... 47	Pattrick \& Kinnie $\qquad$ 82
Advance Electronies Ltd. ........................... 65		Philips Electrical Ltd................................................... 61
Adcola Products Lid. ......................................... 26		Phoenix Electronics (Portsmouth) Ltd. ............. 79
A.E.I. Semiconductors Lid. .............................. 21		Powertran Electronics .......................... 74. 75
A.K.G. ................................................ 59	Garrard Eng. Ltd. ...................................... 3	
Allotrope Ltd. ....................................... 64	Goodmans Loudspeakers Lid. ...................... 40	Quality Electronics Ltd. ........................... 37
Ancom Ltd. .......................................... 42	Grampian Reproducers Ltd. ....................... 60	Quartz Crystal Co. Ltd. ................................. 124
Anders Electronics Ltd. ......................... 2, 22	Greenwood Electronics .............................. 51	
A.S.P.		
Audix Ltd. ........................................... 45		Radio Masts Ltd. $\qquad$ 47
	Hall Electric Ltd.	Ralfe, P. .................................................... 102
	Harris Electronics (London) Ltd. ............... 28, 34	Rola, Celestion Ltd. ........................................ 32
B. \& T. Electronics (U.K.) ........................ ${ }^{46}$	Harris, P. ........................................... 123	R.S.T. Valves Ltd.
Barr \& Stroud ...................................... 37	Hart Electronics ..................................... 89	
Barrie Electronics Ltd. .............................. ${ }^{\text {B }}$, 79	Heath (Gloucester) Ltd. ............................ ${ }^{7}$	Samsons (Electronics) Ltd. ......................... 66
Bauch, Fentley Acoustic Corp. Ltd. ...................... 103		Scopex Instruments Lid. ................................ 24
Bentley, K. J. \& Partners Lid. ...................... 124	Hi Fidelity Designs ........................................ 122	Scout, James (Elec. Eng.) Lid. ........................ 21
Beyer Dynamic (G.B.) Ltd. ......................... 62	Hitachi-Shibaden (U.K.) Lid. ......................... 38	Semicon Indexes Ltd. ............................. 47
B.I.E.T. ............................................. 46	Hurst Electronics ....................................... 102	Service Trading Co. ................................ 95
Bi-Pak Semiconductors ......................... 86. 87		
Bi-Pre Pak Lid. Bias Electronics Lid.		
Blas Electronics Ltd. .................................................... 123	I.L.P. (Electronics) Ltd. .......................... 20	Sinclair Radionics Led. .................... $52,53,72.73$
Britec Litd. . ............................................................ 31	Industrial Tape Applications Ltd. ............ 41, 43	Sintel
Broadfields \& Mayco Disposals ..................... 124	Integrex Ltd.	S.M.E. Ltd. ........................................... 54
	I.P.C. Wall Chart ........................................ 66	Sowter, E. A., Ltd. .................................... 124
		Special Product Distributors Ltd. ................. 30
Cambridge Audio ................................... 33		
Cambridge Learning ................................. 27	J.H. Associates Lid. ............................... 121	Sugden, J. E., \& Co. Lid. ............................. 81
Chiltmead Ltd. ...................... 42, 85, 124, 126	Jackson Bros. (U.D.N.) Lid. ...................... 32	Sumiks ................................................. 124
Chromasonic Electronics Lrd. ...................... 70	Jermyn Industries J .	Surrey Electronics ................................................... 125
Clyne Elec. Led. ....................................... 42	J. J. Lloyd Insts. Lid. .......................... 28, 35	
Cole Electronics Lid. . Co ............................ 46		Technomatic Itd 00
Colomor (Electronics) Ltd. ......................... 96		
mmuniqué		Teleprinter Equipment $\dddot{L}$ Lid............................................... 96
Condor Electronics Ltd		Telequipment Products (Tektronix U.K.) Lid..... 48
C.T. Electronics Lid. ........................................ 97		Teleradio Specia! Products ......................... 124
	Lampit, J. 80	Teonex Lid. ........................................... 10
	Laskys ...................................................77, 68, 69	Thames Electronics
Danavox (G.B.) Ltd. ............................... 11	Levell Electronics Lid. .............................. 1	Toko (U.K.) Ltd. ................................. 31
D.E.W. Ltd. . ${ }^{\text {did.................................... } 124}$		Trampus Electronics ......................................... 82
Decon Labs. Ltd. ${ }_{\text {Dixons }}$	Logic Leisure Ltd. $\qquad$ 41	Trampus Electronics ................................. 82
Dixons Technical CCTV Ltd. ..................... 39		United-Carr Supplies ................... Readers Card
Eagle International ................................. 23		Valradio Ltd. ........................................ 43
East Cornwall Components ..................... 78	Macfarlane. W. \& B. .............................. 91	Vero Electronics Ltd. ............................. 44
Eddystone Radio Ltd. .............................. 24	Macinnes Labs. Ltd. ................................... 25	Vortexion Lid. ..................................... 4
Eleotronica '74 ................................... 36	Maplin Electronic Supplies ........................... 74	
Electronic Brokers Ltd. ........... 98. 99. 100. 101	Marconi Instruments Ltd. ............................. cover ii	
Electronic Mech. Sub Assembly Co. Ltd. ........ 124	Marshall, A.. \& Sons (London) Led. .............. 93	
Electro-Tech. Components Ltd. ...................... 78 Electrovalue ............................................ 8	MeKnight Crystal Co. ............................. 123	West Hyde Developments Ltd. ....................... 84
Elvins Electronic Musical Insts. ........................ 84	MeLlennan Eng. Ltd. .............................. 38	Westinghouse Electric .............................. ${ }^{6}$
English Electric Valve Co. Ltd. ..................... 50	Milward, G. F............................................... 83	Wheelhouse ....................................... 125
Erie Electronics .................................... 18	Modern Book Co. ........................................ 125	Wilkinson, L. (Croydon) Ltd. ...................... 42
	Mordaunt-Short Ltd. ................................. 25	
	Motorola Semiconductors Ltd. ................... 19	
Farnell Instruments Ltd. ........................... ${ }_{\text {Feedback Lid }}{ }_{3}^{42}$	M.O. Valve Co. Lid. ............................ ${ }^{29}$	es Ltd. ................. 29, 92
Fi-Comp Electronics ........................................ 79	Multicore Solders Ltd.	Zettler GmbH ........................................ 123

[^11]
# Pierhouse Laundry, <br> Strand on the Green, <br> Chiswick, London W4, Great Britain. 

## Ersin Multicorethe international solder

## Ersin Multicore 5-Core Solder

The proved superiority of ERSIN Multicore Solder for over thirty years is due to many factors. We have specialised throughout this period in the manufacture of cored solders. Consequently our research and manufacturing staff have been able to devote all their energies to the development of Multicore Solders. All alloys are of highest purity, carefully formulated and checked.

Our unsurpassed ERSIN flux is rigorously tested before and after it is incorporated in the solder wire. Our five separate cores of flux ensure flux continuity, leave only an ultra-thin layer of solder separating flux from work for instant wetting and provide a more accurate ratio of flux to solder. It is therefore possible to
use less solder and obtain greater reliability.

Our Quality Control at all stages of manufacture is guaranteed and recorded by the batch number on every reel.

## Needle fine gauges



In addition to our standard range of wire diameters (10-22 swg: 3.2-0.7 mm) supplied on $2 \frac{1}{2} \mathrm{~kg}$ and $\frac{1}{2} \mathrm{~kg}$ reels we also massproduce needle-fine gauges (24-34 swg: $0.56-0.23 \mathrm{~mm}$ ) on 250 g reels for microminiature soldering applications-still with 5 Cores of flux.

## Savbit Solder

One of our most popular special ERSIN Multicore Solder alloys is SAVBIT alloy. Compared with ordinary tin/lead solders it dramatically reduces the erosion of soldering iron bits, copper wires and printed circuit conductors. It also saves costs and increases reliability. SAVBIT alloy containing 5 -Cores ERSIN 362 flux has received special Ministry approval—under DTD. 900/4535 for Military applications.


Sectioned iron-plated bit, after 40,000 simulated operations using 60/40 Solder.


Sectioned iron-plated bit, after 40,000 simulated operations using SAVBIT Solder.
$40 / 59.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}$
$30 / 70 \mathrm{Sn} / \mathrm{Pb}$
$20 / 80 \mathrm{Sn} / \mathrm{Pb}$
$15 / 85 \mathrm{Sn} / \mathrm{Pb}$
Pure Tin
$95 / 5 \mathrm{Sn} / \mathrm{Sb}$
$5 / 93.5 / 1.5 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag}$

Grade	Melting T Solidus ${ }^{\circ} \mathrm{C}$	empe Liqu	Specification
'II.C	145	145	DIN 1707
LMP	179	179	DIN 1707
Sn62	179	179	QQ-S-571E
Sn63	183	183	QQ-S-57 1E
K	183	188	B.S. 219
Sn60	183	188	QQ-S-57 1F
F	183	212	B.S. 219
Sn50	183	212	QQ-S-571E
Savbit 1	183	215	DTD 900/4535 DIN 1707
R	183	224	B.S. 219
G	183	234	B.S. 219
Sn40	183	234	QQ-S-57 1E
J	183	255	B.S. 219
V	183	275	B.S. 219
$\underline{-}$	225	290	-
P.T.	232	232	B.S. 3252
95A	236	243	B.S. 219
H.M.P.	296	301	B.S. 219



[^12]
[^0]:    AGENTS: PARIS: TEKELEC-AIRTRONIC 626-02-35LORRACH: BRINDI GMBH 07621-10742 STOCKHOLM: SCANTELE AE 245825 OSLO: FEIRING INSTRUMENTS AS 68.63.60. BRUXELLES: ETABLISSEMENTS MIRAVOXS.P.R.L. 35.41.73 MILAN: BELOTTI 54.20.51 KOBENHAVN NV: HANS BUCH \& CO ASTA 5170 RIJSWIJK (Z.H.):C.N.ROODN.V.99.63.60. WW-030 FOR FURTHER DETAILS

[^1]:    *An air compartment within the balloon envelope, used to adjust for changes of volume in the filler gas.

[^2]:    Sole UK Distributor:
    Cale Electronics: Desion Limited 39 Upper Brook Street London WiY 1PE

[^3]:    *Hickson, R. A. "The Smith Chart". Wireless

[^4]:    NOW IN TWO RANGE
    These are 40 W and gow Silicon Plastic Power Transistors of the very latest design, available in NPN or
    PNP at the most shatteringly low prices of all time. We have been selling these successfully in quanticy to ail parts of the world and we are proud io offer them under our Tested and Guaranteed terms.
    $\begin{array}{llllll}\text { RANGE } 1 \text { VCE. Min. } 15 & 1.12 & 13.25 & 26.50\end{array}$
    $\begin{array}{llll}40 \text { Watt } & 20 p & 18 p & 16 p \\ 90 \text { Watt } & 24 p & 22 p & 20 p\end{array}$
    Range 2VCE Min 40
    $\begin{array}{llll}40 \text { Watt } & 30 p & 28 \mathrm{p} & 26 p \\ 90 \text { Watt } & 35 p & 33 p & 30 p\end{array}$
    Please state NPN or PNP on order.
    High-speed magnetic counters ex. G P.O
    digit (nom-reset) 4" $\times 1^{\prime \prime} \times 1^{\prime \prime} 30 \mathrm{p}$
    INTEGRATED CIRCUITS
    We stock a large range of I.Cs at very competitive FREE Catalogue see coupon below.

    METRICATION CHARTS nOw available
    This fantastically detailed conversion calculator carries thousands of classified references between metric and British land U.S.A.) meastrements of length, area. Pocket Size 15 p . Wall Chart $\mathbf{1 8 p}$

    LOW COST DUALIN LINEIC. SOCKETS 14 pin type at $15 p$ each
    16 pin type at 17p each $\}$ Now new low profile type
    We have a large BOOKS
    Books in stock.
    Books

    BUMPER BUNDLES
    These parcels contain all types of surplus electronic components. printed panels. switches, potentiometers.

    2 LBS in weight for $\mathbf{f 1}$-00

[^5]:    G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order 20p.

[^6]:    KEYBOARD PERFORATORS for offline tape preparation
    AUTOMATIC TAPE TRANSMITTERS with speeds up to 250 w.p.m.
    MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS
    UNDULATORS for automatic record and W/T signals up to 300 w.p.m.
    CODE CONVERTERS converting from 5 -unit tape to Morse and vice versa
    MORSE REPERFORATORS operating up to 200 w.p.m.
    TONE GENERATORS and all Students' requirements
    CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANSMITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS LAMPS, etc.

[^7]:    POLARAD MICROWAVE RECEIVER
    Model 'R' with tuning unit typ RMT. Frequency range 4.2 GHz 7.65 GHz . AM/FM. In working condition. Price $£ 75$.

[^8]:    Applications are invited for the post of EXPERIMENTAL OFFICER in Electronics A

[^9]:    HM Government Communications Centre
    Administration Officer
    Hanslope Park
    Hanslope
    MILTON KEYNES MK19 7BH.

[^10]:    HI FIDELITY MODULES made and tested.
     Linsley Hood, D.C. coupled 75W ......... $£ 14.00^{*}$ Linsley Hood, pre-amp (75W) ............. $£ 13.50$ Bailey Qunter, pre-amp .... 18.50
    $\$ 12.00$ *Excl. Heat Sinks.
    TELERADIO HIFI, 325 Fore St., London, N9 OPE. $01-807$ 3719. (Closed Thursday.) $\quad$ [33

[^11]:     $01-261$
    Gordon $\&$ Gotch Litd.
     diaposed of by way of Trade at a price in excess of the recompended marimum price anown on the cover, and that it ahall not be lent, re-sold, hired out or otherwise disposed of in a mutilated conditlon or in any

[^12]:    For full information on these and a Selector Guide to other MULTICORE products please write on your Company's letterhead direct to:
    Multicore Solders Limited, Maylands Avenue, Hemel Hempstead. Hertfordshire HP2 7EP. Tel: Hemel Hempstead 3636 Telex : 82363

