

Fiom millions of hours craviling experience come for : ": N Promicicon "Cameri Tones.

Just because over 80% of the world's colour TV cameras use our Plumbicon Camera Tubes, doesn't mean that we can rest on our laurels. At Mullard, experience has taught us to anticipate your needs to keep that extre step ahead. Hence we novz offer you four NEW 25 mm Plumbicon Tubes (XQ1083 to 1086) ; that's

Behind Mullard's capability

Mullard's background in electron optics is based on a trorough understanding of vacuum and glass technologies. At Mitcham, part of Europe's biggest Electronoptics capability-complete with its own fibre optic drawing plant, we make night vision and low light level TV devices. Years of experience in the design ard manufacture of image intensifiers and other electron aptical devices has resulted in a capability well geared $t 3$ today's and tomorrew's requirements. Whether your need is for high volume standard devices, or custom-built \leqslant pecials, Mullard have the experience and the resources to meet it.

For full cetails about Plumbicon and other camera tubes, contéct
Mullard Limited, Mullard House,
Torrington Place, London WC1E 7HD.

* registered trade mark for Television Camera Tubes

LOW COST TESTERS

PORTABLE IWSTRUMENTS

INSULATION TESTER

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safery and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV .
$1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale. Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mv}$ at scale centre. Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$. Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA .

CURRENT RANGE

100 pA to $100 \mu \mathrm{~A}$ on 6 decade logarithmic scale. Accuracy of current measurement $\pm 15 \%$ of indicated value. Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
Maximum safe continuous overload is 50 mA .

MEASUREMENT TIME

<3 s for resistance on all ranges relative to CAL position.
<10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V .
Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position.

RECORDER OUTPUT

1 V per decade $\pm 2 \%$ with zero output at scale centre. Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

TRANSISTOR TESTER

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is powered by a 9 V battery.

TRANSISTOR RANGES (PNP OR NPN)

${ }^{1}$ CBO ${ }^{\&} I_{\text {EBO }}: 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$. $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$ 120 V , and $150 \mathrm{Vacc}, \pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
$B V_{\text {CBO }} \quad 10 \mathrm{~V}$ or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
$I_{B}: \quad 10 n A, 100 n A, 1 \mu A \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and 100 mA acc. $\pm 1 \%$.
$h_{\text {FE }} \quad 3$ inverse scales of 2000 to 100, 400 to 30 and 100 to 10 convert I_{B} into $h_{\text {FE }}$ readings.
$V_{B E} \quad 1 \mathrm{Vf.s.d}$ acc. $\pm 20 \mathrm{mV}$ measured at conditions on $h_{\text {FE }}$ test
$V_{\text {CE (sat) }} \quad 1 \mathrm{~V} . \mathrm{s.d}$. acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or 30 acc. $\pm 20 \%$.
DIODE \& ZENER DIODE RANGES
${ }^{\prime} \mathrm{DR}$
As IEBO transistor ranges.
V_{Z} : Breakdown ranges as $B V_{C B O}$ for transistors.
$V_{D F}: \quad 1 \mathrm{Vf.s.d}$ acc. $\pm 20 \mathrm{mV}$ at $I_{D F}$ of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN5 5SD
Tel: 01-4495028/440 8686

Prices include batteries and U.K. delivery, V.A.T. extra. Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

audix at The WORLD' BUSIST INTERNATIONAL AIRPORT

The Acoustically matched 800 watt audio system incluides automatic noise sensing announcement level adjustment devićes, multi access and routing facilities emergency back-up power supply and a range of loudspeakers including the unique Super Cardioid Golf Ball Speaker.

FLICHT DEPARTURE INFORMATION AND PASSENGER ANNOUNCEMENT SYSTEM, OPERATING AT THE INTERCONTINENTAL TERMINAL 3 HEATHROW AIRPORT LONDON

The one you

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the warld. Haltron product quality and reliability are clearly confirmed. The product range is very very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited,
Electron House,
Cray Avenue, St. Mary Cray.
Orpington, Kent BR5 30 J.
Telephone: Orpingtor 27098
Telex: 896141

The Greenwood guide to professional soldering.

specifically for professional soldering applications.
 For more detailed information about the comprehensive Greenwood range, contact the address below.

1. The Iso-Tip. A safe, high-power iron which works anywhere without a mains lead. The breakthrough? Nickel Cadmium cells that are re-chargeable. (A charging stand is included for 240 v or 115 v A.C.) Each charge gives at least 60 soldering joints. Weight? Only 6 oz. Price: $£ 10.95$ \& VAT.
2. The Oryx 50. A temperature controlled mains soldering iron. (Temperature control within $\pm 2 \%$). Adjustment ($200^{\circ}-400^{\circ} \mathrm{C}$) can be made whilst iron is operating, using the same tip. Light, compact, and easy to handle. A large 50W element loading gives rapid heating and high performance with constant tip temperature.
Price: $£ 5.90$ \& VAT. Also available: Oryx safety stand: £2.10 \& VAT.
3. Oryx SR3A desoldering tool. Ideal where components are tightly grouped. Instantly removes unwanted solder from printed
circuits etc. Accurate, reliable, speedy, and safe.
Price: $£ 4.50$ \& VAT.
4. The Ersa Multitip. A top-quality iron that's ultra-light offering reliability so necessary to achieve constant production flow. A range of different shaped tips simply push onto the stem of the iron. It has the unique advantage that you can change the element in seconds. Price: £3.52 \& VAT.
5. The Ersa Sprint. Unique - it heats up to maximum temperature in only 10 seconds, and is the lightest gun on the UK market. Ideal for the service-man. With its light weight (only 7 oz .) and compact construction, it can be manoe uvred in even the most awkward areas. Price: $£ 6.55$ \& VAT.

21 Germain Street, Chesham, Bucks, HP5 1LL Tel: 024054808 Telex: 83647

TWO WAY STRETCH by Chessell

 DIAL-A-SPAN PROVIDES THE BREAKTHROUGH IN THREE-CHANNEL PEN RECORDER FLEXIBILITY

SUPRESSION OR ELEVATION ON EACH OF 450 SPANS PER CHANNEL.

1999 CALIBRATED DATUM SHIFT SETTINGS

1 METRE CHART WIDTH RESOLUTION ON 100 mm CHART

PLUS Chassell ENGINEERING

CHESSELL LIMITED Broadwater Trading Estate - Worthing - Sussex Tel. Worthing 205222

3009 + 160

In response to many requests we have made available the TD160/3009
Mounting Kit with which either of our Series II Improved precision pick-up arms can be fitted to this popular turntable.

Full details are given in information sheet No. 14. a copy of which we shall be pleased to send you.

The best pick-up arm in the world

Write to SME Limited Steyning • Sussex - England Telephone: Steyning (0903) 814321

Communications systems in out nuclear submarines use biast-proof speakers supplied to the Admiralty by Whitetey.

For British Rail, Whiteley have supplied complete traffic contrcl telecom systems, staff call and public address systems.

Marine and defonce radar systems
frequently include Whiteley com+
ponents and electronic assemblies

Whiteley is one company you can't pin down to a stereotyped product range. One company that prefers to keep lively by applying its many skills to a wide variety of contracts. Cabinets, switchboards, acoustic hoods? Whiteley make them. Complete systems for public address or telecommunications? Whiteley make them. Components or subassemblies, transformers, amplifiers, test sets? Whiteley make them. Think of us as specialist suppliers to the electronics industry. We grew up with it. Giving the Whiteley touch to any item they needed from us. Today, the three Whiteley factories serve an impressive list of customers ... the Post Office, Ministry of Defence,

Government bodies, British Rail, BAC, the C.E.G.B., and many top names in industry. You could reap the same benefits by adding your name to the list . . . adding Whiteley to your manufacturing resources. Here is a company at your service, with the whole spectrum of facilities from design through to assembly. Ready to offer any or all of them, as you need. A company to keep in touch with.

Whiteley Electrical Radio Co. Ltd.,
Mansfield, Notts. England. Tel: Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel: 01-405 3074

Six figures in six seconds

A precision bridge that balances itself the Wayne Kerr B331

This bridge was designed for use in Standards Laboratories, but ease of operation combined with an in-line readout giving up to 6 figure discrimination has enabled many other applications to be covered.

The B331 measures directly a wide range of capacitance and conductance values to 0.01% accuracy. The three terminal facility enables small values of capacitance and high values of resistance to be measured at the end of long cables.

Automatic compensation for the series. impedance of the measurement leads is given by an advanced design of Kelvin clip, and a low impedance range directly calibrated in resistance and inductance permits four terminal measurements to be made.

Up to four significant figures can be set on each measurement term with push buttons.

The bridge automatically balances itself. the meters indicatıng the remainder of the measurement value on linear scales. As each pair of decades is introduced with these buttons, the meter sensitivity is increased by a factor of 10 giving an indication of the next figures required in the digital setting sequence. Analog output of both terms permit recording of changing values.

Precision standards are incorporated in the B331. A nitrogen filled capacitor with a temperature coefficient of less than 5 p.p.m. forms the reactive standard and loose wire wound resistors with temperature coefficients of 5 p.p.m. are connected to each set of conductance decades.

SPECIFICATION

For more information, either Telephone Bognor Regis
(02433) 25811 or write to the address below:

WAYNE KERR
Durban Road, Bognor Regis, Sussex PO22 9RL.
Telex:36120.
A member ofthe Wilmot Breeden group

Range (for 0.01% accuracy)
derived reciprocal values
Low Impedance Range
derived reciprocal values $10 \mu \mathrm{~F}$ to 1 F
Frequency (internal) $1591.55 \mathrm{~Hz}+0: 5 \mathrm{~Hz}$ (1000.00 Hz to special order)
(external) 200 Hz to 20 kHz

From Goldring. New support for the belief that what goes into a record ought to come out of it.

The Theory is perfectly simple.
A good cartridge should take from a record all the subtle shades of original sound that are stored there, and re-create them for your enjoyment.

The Practice is a little more difficult.
Now Goldring bring the ideal closer with the new 820 series.

A brand new family of cartridges that builds on the advances already achieved by the Goldring 800 series. Providing cartridges that are not only capable of making the most of all that good recording can offer now, but have the capacity to keep pace with new developments in the art of quality recordings.

The 820 series retains the true transparency of sound and the true transduction techniques of earlier designs.

It brings advances in every aspect of design.
The small low-mass diamond point which is mounted on a new type of specially polished lightweight aluminium tube, combined with the new visco-elastic material used for the pivot pad, makes for greater tracking ability.

A special 'tie wire' minimises fore and aft stylus movement, reducing non-linear distortion to a minimum.

The total effect is a cartridge that, other equipment being equal, can narrow almost to vanishing point the difference between the original recording and the sound that comes out of your speakers.

There are three models in the range. The 820 with spherical stylus. The 820 E and 820 Super E, both with bi-radial styli. Write for details and full specifications. And satisfy yourself that 'what goes in comes out'.

The 820-one of the models in the modelsin the new range. Performance characteristics
Sensitivity @ $5 \mathrm{~cm} / \mathrm{sec}-1 \mathrm{Khz}: 5 \mathrm{mV}$. Separation@ $1 \mathrm{Khz}: 20 \mathrm{~dB}$. 2 grammes.

The new 820 series

 The experis cartidge by Goldring ©The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Slewing Rate Load impedance Input sensitivity Input Impedance Protection Power supply Dimensions D150-150 watts per channel

8 volts per microsecond
1 ohm to infinity
1.75 V for 150 watts into 8Ω

10K ohms to 100 K ohms
Short, mismatch \& open cct. protection
$120-256 \mathrm{~V}, 50-400 \mathrm{~Hz}$
19" Rackmount, 7" High, 93" ${ }^{\prime \prime}$ Deep

WW-019 FOR FURTHER DETAILS

The new Rank WOW \& FLUTTER Meter Type 1742

Fully transistorised for high reliability

Versatile

Meets in every respect all current specifications for measurement of Wow, Flutter and Drift. on Optical and Magnetic sound recording/reproduction equipment using film, tape or disc

High accuracy

with crystal controlled oscillator

Simple to use

accepts wide range of input signals with no manual tuning or adjustment

Two models available:

Type 1742 'A' BS 4847: 1972 DIN 45507
CC1R 409-2 Specifications
Type 1742 'B' BS 1988: 1953 Rank Kalee Specifications

For further information please address your enquiry to Mrs B. Nodwell
Rank Film Equipment, POBox 70
Great West Road, Brentford
Middlesex TW89HR
Tel: 01-568 9222. Telex 24408. Cables Rankaudio Brentford
$w W-020$ FOR FURTHER DETAILS

MOTOROLA
F.M. Multiple
Four Channe
OP Power T
OP Power
SIGNETICS

I/C Timer	NE555V	$\mathbf{£ 0 . 8 0}$
Dual I/C Timer	NE556A	$\mathbf{£ 1 . 4 0}$
High Phased Locked Loop	NE560B	$£ 4.20$
High Phased Locked Loop with AM Demod	NE561B	$£ 4.20$
High Phased Locked Loop with Open VCO	NE562B	$£ 4.20$
Precision Phased Locked Loop	NE565A	$£ 2.90$
Function Generator	NE5666	$£ 1.55$
Tone Decoder	NE567V	$\mathbf{£ 2 . 9 0}$

G.I.M.

Eight Digit Calculator Chip
$3 \frac{1}{2}$ Decade DVM Chip
Decade Counter, Latch, Driver
ORGAN CIRCUITS
7 Stage Generator
7 Stage Divider
4 Stage Divider
5 Stage Divider
6 Stage Divider
STATIC SHIFT REGISTERS
Static Shift Register

FERRANTI
Radio Receivet
ZN414
f1-20

ELECTRONIC CALCULATOR

Details of the Offer
1-eight-digit calculator i.e. (General Instrument Microelectronics. Type C500), plus
8-seven-segment I.e.d. alpha-numeric displays (Monsanto, Type MAN3).

> Data sheets are supplied
> Price for the "package" offer: $£ \mathbf{1 4 . 0 0}$
> plus 10% V.A.T.

Data information supplied with each device.
Write for free catalogue of our large stocks of Ferranti, Motorola, G.I., Monsanto, Mullard, Signetics and R.C.A. components.

On total of order add 20 p postage and packing $+10 \%$ V.A.T. on total of order.

S.C.S.,

P.O. Box No 26, (Dept WW) Wembley, Middlesex HA0 1SD, England

Every KEF speaker gets it.
 It's a revelation, to watch a KEF speaker being made. No automated process, but

 one where the final result still depends on the hands that build it. And on the philosophy of the company ...an exceptional concern that rejects cheaper materials or short cuts ... searches always for design advances that lead to that ultimate in performance. A philosophy that takes care, even over the smallest details. Feed wires secured so that they never rattle. Ordinary wadding replaced by consistent pre-formed blocks of special acoustic foam. Every drive unit is KEF made, tested at every stage. Even the build-it-yourself Kefkits are individually tested in the correct enclosure. The next time you hear a KEF speaker you'll know why it sounds better. Return the completed coupon for detailed literature.
if you're serious about sound.

the speaker engineers literature on the items ticked. Reference Series \square

KEFKITS

Chassis Units
Name
Address

K K KEF
KEF Electronics Limited
Tovil Maidstone ME15 6QP Kent Telephone 062257258 Telex 96140

Linstead Laboratory Instrumenis

Two powerful bench supplies.
Continuously variable.
Independently operable, or in series, or parallel.
Fully protected against overload and short circuit. In one compact robust case.

TWIN STABILISED POWER SUPPLY 2×0 to 30 V o to 1 A . Set by switches and fine control. Meters switchable Full overload protection and indication

WIDE BAND SIGMAL GENERATOR
Sine square wave wide band high power signal generator $10 \mathrm{~Hz}-1 \mathrm{MHz}$, $0-6$ volts r.m.e. 3 watts into 5 ohms incorporating short circuit protection. Fully transistorised.
 Nufineld Spectication 181 diue vat

the best for less british made by limstead
Linstead Electronics, Roslyn Works, Roslyn Road London N15 5JB. Telephone 01-802 5144
Iraland, Lennox Leboratory Suppliex Led., 3 , 4 South Leimster Street
p.O. Box $212 \mathrm{~A}, \mathrm{Dublin} 2$
Donmark, Scmnfyaik, 13-15 Hjorringeade, DK 2100 , Copenhagen Wwoden, EMI Svenska A/B, Tritonvagen 17, Fack, I7I 19 Solna Malayia, Laborazory Equipment Sdn. Bhd., P.O. Bonice, Batu Pahas

Benolux, A.S.E. Led., Nationalestreyt 38, B-2000 Antwerp

BIGBOOST FORTHEGARDNERS RANGE
50Hz: S(O)VA Square Wave Inverters

It it s produced by Gardners it must be something speciai, and it is! Now available, models 107A and B are Drecision built inverters providing 240 vort act rom 12 and 24 vol battery systems.

Both models offer unusually high output ratings enabling the user to operate many conventional loads such as lighting and small power tools in situations where main power supplies are not available.

Gardners inverters are designed to drive any mains operated equipment which is not unduly sensitive to the difference between sine and square waveforms. Incandescent lamps. TV sets electric drills are typical of a wide field of possible applications Both the 107A and B models are rated at 300 VA (300W U.P.F.) and will accommodate reasonable short term overloads. Price f 67 plus VAT. Brochure GT 28 gladly sent on request

Gardners
Specialists in Electronic Transformers and Power Supplies

GARDNERS
 TRANSFORMERS LIMITED

Gardners Transformers Limited Christchurch Hampshire BH23 3PN Telephone 02-015 2284 TELEX 41276 GARDNERS XCH

WW- 024 FOR FURTHER DETAILS

The symbol of sound quality.

Background Speakers

Outstanding results from small, inexpensive speaker enclosures. Sturdy cabinets either hand veneered in teak or covered in Black Vynide.

Power ratings from 1 watt RMS to 8 watts RMS.

W8DS. One of a range of
four small speakersbookshelf or wall mounting slim line, square, wedge or corner cabinet fitting

For further information and address of your local stockist write to K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. $1 \quad$ Phone: $01 / 837 / 7937$

DAVENPORT

FULLRANGE
LINE SOURCE

SPEAKER UNITS

Twelve 8' $\times 5^{\prime}$ elliptical and one $12^{\prime \prime}$ twin cone CABINET HEIGHT 66° PUBLIC ADDRESS

Eight $8^{\prime \prime} \times 5^{\prime \prime}$ elliptical and one 10° twin cone CABINET HEIGHT 48.

A BROCHURE GIVING FULL SPECIFICATION; INCLUDING SPECIFIC SOUND PRESSURE LEVELS, FREQUENCY RESPONSE GRAPHS AND POLAR DIAGRAMS. AVAILABLE FROM THE MANUFACTURERS.
S. B. DAVENPORT LTD. ELLES RD., FARNBOROUGH, HAMPSHIRE, ENGLAND TELEPHONE FARNBOROUGH (HANTS) 514551

Five RCA VOM's priced from

 £8.00 to ${ }^{*}$ £ 32.50

There are 14 additional RCA Voltmeters to choose from

STRIP CHART RECORDERS

MINIATURE SINGLE-PEN SWITCHBOARD PATTERN RECORDING MILLIAMMETER TYPE H3100

SPECIAL FEATURES

Rectilinear recording.
Large capacity ink-well.
Provision of separate time marker pen energized from a 24 V D.C. source.
High/low speed switch for selecting high or low chart speed for each set of change

Chart width 80 mm .
Chart length 40ft.
Chart speeds: 20-60-180-
600-1800-5400mm/hour.
Overall dimensions:
$120 \times 120 \times 285 \mathrm{~mm}$.
Price $\mathbf{£ 4 4 . 0 0}$
gears
Full scale deflection 1 mA D.C.
D.C. resistance 18100Ω.

Chart drive $220 / 250 \mathrm{~V}$ AC.

TEN-CHANNEL EVENT

 RECORDER TYPE H30 Ten individually energized pens providing time analysis of switching and sequence of separate operations6 chart speeds from 20 to $5400 \mathrm{~mm} /$ hour. Chart 110 mm wide 50 ft long PRICE complete with 10 charts and accessories $\mathbf{£ 6 2 . 0 0}$

Single channel multiRANGE UNIVERSAL PORTABLE RECORDING VOLTAMMETER TYPE H390
Voltage ranges: 5 to $500 \mathrm{VAC} / \mathrm{DC}$. Current ranges: 5 mA to $5 \mathrm{~A} A C / D C$. 6 chart speeds: $20-5400 \mathrm{~mm} /$ hour. Chart width: 100 mm Chart length: 50 ft .
PRICE, complete with 10 charts and accessories $\mathbf{£ 7 8 . 0 0}$

2 \& I AERO SERVICES LTD.
 44A WESTBOURNE GROVE, LONDON W. 2

WW-029 FOR FURTHER DETAILS

used as standards in many industries

Accurate to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified
Not sensitive to voltage or temperature changes. within wide limits

- Unaffected by waveform errors. load, power factor or phase shift
- Operational on A.C., pulsating or interrupted D.C. and superimposed circuits
- Need only low input power - Compact and self-contained - Rugged and dependable

FRAHM Resonant Reed Frequency Meters are available in plastic and hermetically sealed cases to British and U.S. Government approved specification. Ranges $10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers Resonant Reed Tachombe on request. available on request.
Manufacture and Distribution Manufacture and Distrib
of Electrical Measuring of Electrical Measuring
Instruments and Electronic Equipment. The targest stocks in the U.K. for off-the-shelf delivery

A new way to improve your rifital display

OCLI's recently-introduced range of Indium Oxide Conductive Coatings now gives Design Engineers a new way of achieving optimum presentation of digital data.

These coatings, which are available in standard $10 \mathrm{in} . \times 18 \mathrm{in}$. or $11 \frac{1}{2} \mathrm{in} . \times 15 \mathrm{in}$. sheets, can be made transmissive or reflective. The transmissive type can also be supplied with a transparent dielectric barrier between the glass and the coating, making it especially suitable for liquid crystal displays. This high transmissive coating minimises detection of the etched pattern in the OFF mode. The colour of the reflection coating can be modified to suit specific applications.

OCLI

TO OCLI OPTICAL COATINGS LTD.
Hillend Industrial Estate, Dunfermline,
Fife KY11 5JE. (TeI. Inverkeithing 3631).
Please tell me more about
OCLI CONDUCTIVE COATINGS.
Name \qquad
Position
Company
Address

Thesymbolof sound quality.

Indoor Column Speakers
Ideal for Clubs, Cinemas, Concert Halls, Churches etc. ; particularly suitable where acoustic difficulties are experienced-especially feedback.
Alternative finishes available are Black Vynide or Teak.
Power ratings from 10 watts RMS to 30 watts RMS.

W410: One of a range of 4 columns available 15 ohms impedance, or 100 v line.

For further information and address of your local stockist write to: K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

WW-033 FOR FURTHER DETAILS

NEW
 LOW COST INSTRUMENTS

Accurate Digital Frequency Setting Wide Range External Control of Frequency Triangle, Squarewave and Low Distortion Sinewave Outputs Simultaneous Outputs

Measures Frequency, Period and Time 30 MHz Frequency Range
Sensitive, Protected FET Input
OMB ELECTRONICS, RIVERSIDE, EYNSFORD, KENT Tel FARNINGHAM (0322) 863567

The
 Great Sound of Vitavox

Nothing succeeds like success.
You met the new Vitavox power range last year. Its success was instantaneous, and has been growing ever since.
Good - but not good enough for us. We have been, and are, continuously improving our units. We want to give you the best value and performance - so now we offer you, improved on 1973. the latest . .

> S3 Pressure Unit
> AK 156 Loudspeaker
> H.F. Horn
> Dividing Netwark

The matchless range ~now better than ever... Giving You ...

Power

YMTAMOX
Westmoreland Road, London NW9 9RJ Telephone: 01-2044234

Please send me further information on your product range
Name
Company \qquad
Address

WW- 035 FOR FURTHER DETAILS

Free catalogues

 to top quality electronic instrumentation

Heath (Gloucester) Ltd., the internationally known producers of electronic instruments in kit or assembled form, offer you these two comprehensive catalogues.
The Heathkit Catalogue's Instrument Section contains: Oscilloscopes, Frequency Counters and Scalers, Digital Multimeters, Distortion Meter, Function Generators, Decade Boxes, Stabilised Power Supplies, Transistor Testers, Chart Recorders, plus a wide range of low cost testers and general purpose instruments.
Other products include Hi-Fi Systems, Radios, Burglar Alarms, Metal Detectors, Intercoms and a Portable Television.
The Heath Assembled Instrument Catalogue contains fully assembled and calibrated instruments designed for laboratory, educational and industrial applications. Included are Timers, Chart Recorder Systems, Frequency Counters, Oscilloscopes and Function Generators.
All models are available at direct-from-the-factory prices.
Send now for your FREE catalogues.

More than 350 different types to choose

 from the name for miniature and sub-miniature lamps.If you can't find the lamp you need from the 350 different types of Vitality sub-miniature and miniature lamps just pick up the phone and ask for the Vitality applications service.

Miniature and sub-miniature lamps are Vitality's speciality and the range available is one of the most comprehensive in Europe.

Write for the Vitality catalogue for full details on the range and application notes, or phone us if you have a special requirement for conventional or unusual environments, wherever a light source is needed for illumination, reference, indication or warning.

Vitality Ltd 回

BEETONS WAY, BURY ST. EDMUNDS, SUFFOLK. TELEPHONE: 028462411 .TELEX: 81295.

Authorised Distributors

Townsend Coates Ltd., Coleman Road, Leicester LE5 4LP. Telephone: 0533768561 . Telex: 34321.
Farnell Electronic Components Ltd., Canal Road, Leeds LS12 2TU. Telephone: Leeds 636311. Telex: 55147. WW-037 FOR FURTHER DETAILS

(
 Minimod
 Made in Britain by Gardners...

First of a new range of all-British miniature encapsulated power supplies, the Minimod series is designed and manufactured by Gardners to provide reliable,
regulated power supplies in a neat pack designed to plug into your P.C.
board. Minimod simplifies development or production of
equipment by providing power where
you need it. Minimod provides a choice of a standard 5 volt output (available up to 1 Amp) for digital circuits or 12-0-12 or 15-0-15 volts for linear circuits, using a 230 volt input. Each unit is fully stabilised with fold back current limiting, and in the case of 5 volt units, over voltage crowbar is provided . . .

Ask Gardners to tell you more about Minimod. Standard or special models can be supplied.

Specialists in Electronic Transformers and Power Supplies.

GARDNERS
 TRANSFORMERS LIMITED

Gardners Transformers Limited, Christchurch, Hampshire BH23 3PN Telephone 02-015 2284 Telex 41276 Gardners XCH WW- 038 FOR FURTHER DETAILS

Jermyn now offer a stereo decoder module that simply and easily converts your existing mono tuner for. stereo reception. Multiplex output equipped tuners simply have the module plugged in, older types need the de-emphasis capacitor disconnected.

The unit will do justice to the most expensive equipment.
Channel separation: Typically 40 dB
Distortion: Typically 0.3% at 560 mV RMS
Composite input signal
Stereo switching: Automatic with lighted indicator Power supply: $10-16$ volts.
Assembled and fully tested with a no-strings 12 month guarantee the module costs an astonishing £6.90. Excluding VAT. (Also available as a Kit at $£ 4.90$.) Beat that!
-To Jermyn Industries Please rush $\overline{m e} \square$ Kit(s). $\bar{\square}$ made up $\overline{\text { Stereo decoders. }} \bar{\square}$ 151 Vestry Estate I enclose cheque/postal order for $£$
Sevenoaks Kent
Name Address
\rightarrow
$\underset{\substack{\text { BARCIAYCARD } \\ \text { PHFI }}}{+\infty}$ WW-039 FOR FURTHER DETAILS

BRITAIN'S FASTEST SERVICE!

component specialists for the discerning amateur and professional

SOLDERING IRONS

A new range by "ANTEX"
Soldering irons of the highest technizal standard, low current
leakage, rapid heating, high efficiency.
SK2 Soldering kit including $240 v 15 w$ Iron $£ 3.20$ each
MLX12 12 volt portable $25 w$ Iron for car or boat. 15 ft . lead. In protective wallet.
£2.50 each
$\mathbf{X 2 5 / 2 2 0}$ General purpose 240 V 25 watt Iron. $\mathbf{f 1 . 9 5}$ each
$\mathbf{X 5 0 / T C}$ Temperature controlled Iron. Sensitive SCR controlled temperature sensing. Bit is controlled to within $2^{\circ} \mathrm{C}$ of the set temperature. For 240 v mains operation.
$\mathbf{~} 5.95$ each
Order as "Soldering Irons" + Part No.

SPARE BITS

Type No.	Size	Suits	Plating	Price
2	$\frac{3}{3 / 2}{ }^{\prime \prime}$	SK2	Nickel	32p
3	$\frac{5}{32}$	SK2	Nickel	32p
4	$\frac{3}{16}^{16}$	SK2	Nickel	32p
50		$\times 25$	Iron	44p
51		and	Iron	44p
52	3"	MLX12	Iron	44p

RED L.E.D's NEW LOW PRICES TIL $209 \quad 30 \mathbf{3 0}$ HP 5082 30p 29p

MC 1310P I.C. $\mathbf{£ 2} \mathbf{2 . 8 0}$ FM STEREO DEMODULATOR REQUIRES NO COILS! PRICE INCLUDES DATA

40669 TRIAC £1.00
400 PIV 8 AMPS PLASTIC 3 PAGE DATA

15p

TR1 DIAC

 20pSUITABLE FOR USE WITH 40669
I.C. PIN SOCKETS

NOV/ RECOGNISED AS THE
STANDARD I.C. MOUNTING 1000 P N SOCKETS $\quad \mathbf{£ 7 . 0 0}$ 100 PIV SOCKETS

TEST CLIP

FOR DILI.C.s 14 \& 16 PINS. ALSO USEFUL AS REMOVAL TOOL $£ 1.95$

SEVEN WATT AUDIO I.C.

TBA 810 S £1.68

FEATURING THERMAL PROTECTION IDEAL FOR CAR RADIO APPLICATIONS SHORT FORM DATA AND CIRCUITS 15p

SUPERHET SYSTEM I.C.

 CA 3123EWITH RF AMP IF AMP MIXER GC DET. OR VOLTAGE REGULATOR IDEALFOR CAR RADIOAPPLICATIONS

DATA AND CIRCUIT 15p

VHF 5 TRANSISTOR I.C.
 CA 3046
 DC TO 120MHz 70p ARRAY 3 PAGE DATA 15p

MITRIDIL SPECIALISE IN EDUCATIONAL
AND GOVERNMENT ORDERS
-See catalogue fcr further details.
FRPRILI SERVICE PLUS
10\% DISCOUNT OVER £4. NO POSTAGE AND PACKING. TCIP QUALITY PRO. AND PACKNG. TIP QUALTY
DUCTS ALWAYS EY RETURN $\xrightarrow{\begin{array}{l}\text { DUCTS ALWAYS EYRETURN } \\ \text { COMPREHENSIVE CAT. }\end{array}}$
Important Notice "FIl prices are exclusive of V.A.T. Plee se add 10% to the final total of your order after deducting any discourt which may be due."

品 7 COPTFOLD ROAD BRENTWOOD

 Company
 hegistration

WW-048 FOR FURTHER DETAILS

PARKER SHEET METALEULDNG MANHWNES

BENCH MODEL
$36^{\prime \prime} \times 18$ gauge capacity $36^{\prime \prime} \times 18$ gauge capacity
$\mathbf{\$ 4 0 . 0 0}$ carr. free £38.00 carr. free Also the well-known vice model of $36^{-} \times 18$ gauge capacity ... $£ 21.00$ carr. free $24^{\prime \prime} \times 18$ gauge capacity ... $£ 15.00$ carr. free $\mathbf{1 8}^{\prime \prime} \times 16$ gauge capacity ... $\mathbf{£ 1 5 . 0 0}$ carr. free Add 10% VAT to total price of machine

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.
One year's juarantee. Money back if not satisfied. Send for details:
A. B. PARKER

FOLDING MACHINE WORKS, UPPER GEORE STREET. HECKMOND WIKE, YORKS. Telephone 403997

MINIATURE ILLUMINATED PUSH-SWITCHES

$8 \mathrm{~mm} \times 8.7 \mathrm{~mm} \times 55 \mathrm{~mm}$ (or 88 mm ganged)
 Momentary or Latching (optional interlocks) Mechanical life: over 1 million operations

BRITEC LIMITED
17 Devonshire Road, London SE23 3EN Tel: 01-699 8844

Telex: 896161

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe, and internal $1 \frac{1}{2}$ volt standard size battery. Model "Mini-On $1^{1 "}$ measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price f 17.50 Model "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price £20.00 (V.A.T. EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON),
138 GRAY'S INN ROAD, LONDON WC1X 8AX ('Phone 01-837 7937)

WW-051 FOR FURTHER DETAILS

The symbol of sound quality.

Ideal for mobile use. Finished in Vynair for style to match performance. Power rating from 25 watts RMS to 100 watts RMS.
R12DXH. One of a range of six superb Power speakers.

For further information and address of your local stockist write to:
K.F. Products Ltd. Asnton Road, Bredbury, Stockport, Cheshire.

P.A. \& Disco Speakers

Designed to satisfy the demand for high quality sound required by Discotheques and advanced PA systems.

WW - POR FURTHER DETAILS

DC/AC SINEWAVE TRANSVERTORS

(transistorised Invertors/Convertors)

Many world famous car manufacturers such as FORD. BRITISH LEYLAND, including ROVER-TRIUMPH, VAUXHALL, develop their cars under exact laboratory conditions. The AC electric power to drive the precision instruments and computers is provided by Valradio Transvertors.

Type	Input Volts	Output	
10% VAT			
$\mathrm{C} 12 / 30 \mathrm{~S}$	12	$115 / 230 \mathrm{v} 50 \mathrm{~Hz} 30 \mathrm{~W}$ Sine Wave	$£ 35.70$
$\mathrm{R} 12 / 250 / 24 \mathrm{R}$	12	247 A DC	$£ 75.55$
$\mathrm{R} 24 / 250 / 50 \mathrm{R}$	24	503 A Regulated	$£ 97.25$
$\mathrm{D} 12 / 400 \mathrm{~S}$	12	$115 / 230400 \mathrm{~W} 5 \mathrm{~Hz}$ Sine Wave E 197.00	
$\mathrm{D} 24 / 500 \mathrm{~S}$	24	$115 / 230500 \mathrm{~W} 50 \mathrm{~Hz}$ Sine Wave $£ 197.00$	

All prices $+10 \%$ VAT. All $50 \mathrm{~Hz} \pm \frac{1}{4} \mathrm{~Hz}$. Also available $60 \mathrm{~Hz} \pm \frac{1}{4} \mathrm{~Hz}$ at same price.
For operating frequency and wave form sensitive equipment such as sound tape recorders, video tape recorders. professional film cameras, sensitive instruments, etc
Other models available for inputs of $24,50,110$ and 220 volts DC. Square waveform output also available. generally from stock. Send for informative brochure.

VALRADIO LIMITED
 BROWELLS LANE, FELTHAM, MIDDLESEX

 TW13 7EN, ENGLANDTEL: 01-890 4242/4837

Available from Amphenal Distributors

Invader Components Ltd.,	S.A.S.C.O. Lid.,	Townsend-Coates Ltd.,
30 Tribune Drive,	P.O. Box No. 2000,	Coleman Road,
Trinity Trading Estate,	Gatwick Road,	Leicester.
Milton, Sittingbourne, Kent.	Crawley, Sussex.	Tel. Leicester (0533) 768561
Tel: Sitt. (0795) 70533	Tel: Crawley (0293) 28700	Telex: 34321
Telex: 965313.	Telex: 87131.	

WW-055 FOR FURTHER DETAILS

$\star 4$ RANGES. $10 \mathrm{~Hz}-100 \mathrm{KHz}$.
\star SINE AND SQUARE WAVE OUTPUT.

* DUAL CALIBRATED ATTENUATOR.
* STABILIZED OUTPUT LEVEL 1 V .

Trade and Export enquiries welcome
Send for full technical leaflets.
Post and Packing 35p per unit
NOMBREX (1969) LTD., EXMOUTH, DEVON.
Tel: 03-952 3515

ENGINEERS

YOURSELF FORA BETTER JOB wru

The Ble.

Do you want promotion, a better job, higher pay? New opportunities shows Bou how to get them chrough a low-cost books to buy and you can pay-as-younow. No obligation and nobody will call
learn.
on you. It could be the best thing you
ever did.

CHOOSE A BRAND NEW FUTURE HERE!
Tick or state subject of interest. Post to the address below.

Problem.

Where to obtain devices for push-pull audio power amplifiers which give good linearity and don't blow up on the slightest overload.

Solution.

M-OV audio beam tetrodes. A pair of KT66s will give up to 50 W and a pair of KT88s will give up to 100 W .
And M-OV audio triodes, too: a pair of DA42s gives up to 200W and a pair of DA 100 s gives up to 300 W .

EEV and M-OV know how.

THE M-O VALVE CO LTD, Hammersmith, London, England W6 7PE医

WW-059 FOR FURTHER DETAILS
WW-057 FOR FURTHER DETAILS

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator SPECIAL FEATURES:

\star very low distortion content-less than 0.05%
\star an output conforming to RIAA recording characteristic
\star battery operation for no ripple or hum loop
\star square wave output of fast rise time
$£ 45.00$
also available
$\star 20$ ranges also with variable control permitting easy reading of relative frequency response.

Join the Digital Revolution

A Self-instructional Course
Book 1

Logical
circlit
elements

Designing circuits
to carry out
logical functions
Fipflops
and
registers

Teach yourself the latest techniques of digitalelectronics

Computers and calculators are only the beginning of the digital revolution in electronics. Telephones, wristwatches, TV. automobile instrumentation - these will be just some of the application areas in the next few years.

Are you prepared to cope with these developments?

This course of four volumes - each $11 \frac{34^{\prime \prime}}{} \times 8 \frac{1}{4}^{\prime \prime}$ - guides you step-by-step with hundreds of diagrams and questions through number systems, Boolean algebra, truth tables, de Morgan's theorem, flipflops, registers, counters and adders. All from first principles. The only initial ability assumed is simple arithmetic.

At the end of the course you will have broadened your horizons, career prospects and your fundamental understanding of the changing world around you.

£3.95 A complete programmed learning course in 4 volumes

$£ 3.95$

including packing \&

surface post anywhere in the world. (VAT zero rated).
Payment may be made in foreign currencies.
Quantity discounts are available on request.

Guarantee-No risk to you

If you are not entirely satisfied with Digital Computer Logic and Electronics you may return it to us and your money will be refunded in full, no questions asked.
Designer
Manager
Enthusiast
Scientist
Engineer
Student

This course is written to meet your needs in coming to grips with the theory and practice of digital logic and electronics. The programmed instruction system ensures a high level of retention of everything you learn.

To: Cambridge Learning Enterprises, 49 Main Street. Hartford, Huntingdon.
Please send meset(s) of Digital Computer Logic and Electronics at $£ 3.95$ for which I enclose cheque/PO/money order value

Name

Address

The new air dielectric non-rotating piston trimmer is smaller than any other capacitor of its style. Yet gives greatly improved tuning linearity over conventional types

It's specially developed for high precision UHF and microwave applications.

Air dielectric and a glass body give low loss with high stability. Parts are precision turned silver plated brass. Constant length gives better space usage for layout engineers.

The built-in slipping clutch mechanism prevents accidental damage and non-shorting end stops eliminate circuit malfunctions.

All backed, by 50 years' experience in the communications field. Highly skilled men. And Jackson Brothers' good name.

Write for further information to:-

JACKSON BROTHERS (LONDON) LIMITED

Kingsway, Waddon, Croydon CR9 4DG Tel: 01-681 2754/7 Telex: 946849 U.S. Office: M. Swedgal, 258 Broadway, New York, N. Y. 10007

Celestion Loudispeaker Engineering advances the state of the art to a new plateau.

Ditton 66 Studio Monitor

 tweeter. 2.) New design 'pressure' mid-range unit. 3.) Ultra Linear 12". Bass drive unit. 4.) A.B.R ensures controlled bass down to 16 Hz .
5.) Precision crossover for perfectsystem integration.

A new Loudspeaker of advanced design suitable for studio use and for home installations of the highest quality.
UNETS: HF $\mathbf{2 0 J 0}$ (dome 'pressure' type) MF 500 (Mid-range Dome 'pressure' type) Ultra linear $12^{\prime \prime}$ bass driver and 12" A32. The crossover has resulted from considerable re-sea-ch and crossover points are at 500 Hz and 5000 Hz 80 Vizats Maximum, 4-8 ohm. This monitor loudspeaker system hes an exceftionally wide and flat frequency response. $V=r y$ low onder harronic and inter-modulation distortion. Precise response to transients. Beautifully maintained polar response ersures absence of unwanted directional effects and provides a highly satisfactory stereo image throughout che listenine area. Matched pairs.
SEE $40 \times 15 \times 1 / \frac{1}{2}$ Natural Teak or Walnut Cabinet

Celestion

Loudspeakers for the Perfectionist ROLA CELESTION LTD. GITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 8JP

sole suppler: NOTE NEW ADDRESS~

Communications

Order your copy of the Conference Proceedings

This is a unique publication sovering a attending the proceedings as presented to June 4-7. 4 days of priceless Conference in Brighton from advances in communications information on the very latest advances in their fields. technology, presented Order your copy today.

Life in the cells

SONNENSCHEIN dryfit - the lead-acid accumulators in which the electrolyte is retained in a jelly. They are absolutely maintenance-free, leak-proof and
independent of operating position
Available in many sizes, from 2 V to 12 V ,
with ratings from 0.9 Ah to 36 Ah
Dryfit PC batteries -
for cyclical operation. Operating life of 3-4 years or approx 1,000 partial discharge cycles.

Also available,
Dryfit ST' batteries for float or stand-by operation, giving 4-5 years life under these conditions.

Send for your brief today

F.W.O. Bauch Limited

49, Theobald Street
Boreham Wood, Herts. WD6 4RZ
Tel: 01-9530091 Telex: 27502

the new Brandenhurg 812 solid state HV module has all the advantages
 An Alpha Range stabilised HV supply in modular form - that's

 our new Model 812, a further example of Brandenburg's specialised design and engineering facilities. It is really compact has exceptional stability, can be 'bult-in' or used free standing. is available in positive or negative form, and has front panel mounted controls. Solid state inverters, operating at high frequency into a ferrite cored transformer, provide the required voltage rectified by a conventional Cockroft Walton multiplier. A high stability resıstor chain provides feed-back to the comparator amplifier. Send for full details now.$$
\begin{aligned}
& \text { Input voltage } 28 \mathrm{~V} \text { d.c. } \pm 4 \mathrm{~V} \text {. } \\
& \text { Output voltage } 15 \text { to } 30 \mathrm{kV} \text { d.c. } \\
& \text { Output current } 500 \mu \mathrm{~A} \text {. } \\
& \text { Factory reversible. } \\
& \text { Output ripple }<3 \mathrm{~V} \text {. } \\
& \text { Stability } 40 \text { PPM for } 15 \mathrm{MIN} \text {. }
\end{aligned}
$$

Yet another Brandenburg piece in the high voltage game.

Brandenburg Limited, 939 London Road, Thornton Heath, Surrey CR4 6JE, England. Telephone : 01-689 0441. Telex : 946149.
Agents or distributors in most principal countries.

REVOX A77 Series

Available in speeds from $\frac{15}{16} \mathrm{ips}$.
5 KHz band-width. Other configurations also available for immediate delivery.

REVOX A700 Series

fandeni nimil f-min

3-speeds. Full deck logic. Four inputs. Crystal servo control. Tape footage counter. Servo tape tension.

Write for full information. Scotch 207-lowest UK price: IMMEDLATE DELIVERY—ALL MODELS NOTE NEW ADDRESS~

17A

Industrial Tape Applications

 5 Pratt Street,London NW1 OAE. Tel: 01-485 6162 Telex: 21879WW-067 FOR FURTHER DETAILS

Electronic valves (a comprehensive range) semi-conductors (a wide variety) integrated circuits ... and now a comprehensive range of Hybrid Microcircuits. Prices on request

Teonex offers more than 3,000 devices. They are competrively priced and they are superlative in performance because the company imposes strict quality control Teonex concentrates entirely on export and now operates in more than sixty countries on Government or private contract. All popular types in the Teonex range are nearly always available for immediate defivery. Write now for 2a Westboume England. Cables: Tosuply London W11. Telex 262256
\qquad
\qquad

WW - 069 FOR FLRTHER DETAILS

50MHzDual Trace for only $\& 495^{\circ}$

That's Telequipment's D83 - a brilliant combination of performance and plug-in versatility.

Look what you get -a $6 \frac{1}{2}$ in. CRT operating at 15 kV which provides brighter traces and 50% more viewing area than $8 \times 10 \mathrm{~cm}$ CRT's.
Dual trace operation in alternate and chopped modes with $5 \mathrm{mV} /$ div sensitivity all the way up to 50 MHz .
Chcice of a High Gain Differential Amplifier operating down to $50 \mathrm{uV} /$ div sensitivity.
Easier and faster measurements of cemplex waveforms with the MIXED SWEEP
feature built into the DELAYED SWEEP TIME BASE. Think of the advantages of two selectable sweep speeds on a single trace!
Stability of a high order due to the adoption of the latest solid-state circuit technology, ensuring trouble-free operation over long periods.
These are only some of the advantages offered by the D83 - find out the rest by sending now for full specification and demonstration of this truly high performer.

TELEQUIPMENT < 霜>

- Exclusive of V.AT

Tektronix U.K. Ltd.,
Beaverton House,
P.O. Box 69, Harpenden, Herts.

Tel: Harpenden 63141
Telex: 25559

wireless world

Electronics, Television, Radio, Audio

JULY 1974 Vol 80 No 1463
SIXTY-FOURTH YEAR OF PUBLICATION

Contents

215 Personal data
216 Electronic ignition techniques by J. R. Watkinson
219 Books received
220 News of the month
New magnetic tape
Loudspeaker holography
Flat TV display
222 On the dilemma of a horn by Heather Ann Dinsdale
223 Audio f.e.t. power transistors
224 Digital tuning aid by Winthrop S. Pike
228 Letters to the editor
Damping factor
Using pocket calculators
Sound and light
231 A digital clock and calendar by J.F. K. Nosworthy and N. J. Roffe
234 ICs for radio, audio and television
235 Quadraphonic quandary by B. J. Shelley
236 HF predictions
237 Dolby transmissions in the U.K.?
239 Circuit ideas
Wide-range joystick control
Active sum and difference circuit Improved a.f.c. for Neson-Jones tuner
240 APRS exhibition
241 Electronic telephone exchanges-2 by M. T. Hills
244 World of amateur radio
245 Pocket v.h.f. transceiver-1 by D. A. Tong
253 Ohms per volt by Cathode Ray
254 Literature received
255 Radio interference review-2 by A. S. McLachlan, J. H. Ainley and R. J. Harry
259 Miniature TV cathode-ray tube
260 New products
264 Real and imaginary by "Vector"
a88 APPOINTMENTS VACANT
allo INDEX TO ADVERTISERS

ibpa

I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson

Next timereplace with EEV.

Replacing power tetrodes or triodes?

You avoid problems by replacing with an EEV direct equivalent.

Dependability, delivery and in-depth service are assured from one of the world's largest makers of professional electron tubes.

If you would like further advice, write or telephone EEV at Chelmsford.

EEVand M-OV know how.

wireless world

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON

Technical Editor:
GEOFFREY SHORTER, B.Sc.

Assistant Editors:
BILL ANDERTON, B.Sc.
BASIL LANE

Drawing Office:
LEONARD H. DARRAH

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager) Phone 01-261 8339

KEITH NEWTON

Phone 01-261 8515
A. PETTERS (Classified Advertisements) Phone 01-261 8508 or 01-928 4597

JOHN GIBBON (Make-up and copy)
Phone 01-261 8353

Personal data

It's sometimes suggested that the most important thing to know about a girl is certain personal statistics such as 36-24-34 (British girls are not yet fully SI), but it might also be important in special circumstances to know her telephone number, paging code, employee number, map reference or other identification data. It is now technically possible for individual workers such as policemen to transmit such data back to base by personal hand-held radio sets fitted with data input switches. In another context it is technically possible for private citizens at home to receive data of personal interest on their television sets by means of the CEEFAX/ORACLE type of system. It is all technically possible but we don't yet know whether it is really wanted.

With modern technology, invention seems to be the mother of necessity. There are engineering advantages in being able to send data over existing systems such as domestic TV or mobile radio, and the engineer therefore feels that the public ought to be able to think up ways of using these advantages. The wide bandwidth and inherent redundancy of the television signal allow binary pulses to be inserted into the field blanking period of the transmitted video waveform; with mobile radio, signalling tones occupying only a few hertz of bandwidth can be slotted into a speech channel without difficulty. At the transmitting end alpha-numerical data may be assembled at any speed suitable to the user, stored and transmitted at a speed suitable to the system. At the receiving end the data may again be stored to await the requirements of a visual display unit, TV set or other form of read-out. The whole thing can be designed for economical utilization of time, space, power and bandwidth according to the principles of communication theory.

In one sense these techniques might seem retrogressive. What is data communications, after all, but the 19th century Wheatstone telegraph and wireless telegraphy in modern dress? One avoids the redundancy of speech for conveying information, but that very redundancy in fact carries a wealth of inteligence in various non-verbal expressions, such as urgency or anger, and all the nuances that go in the spaces between words. What one gains by data communications are the advantages of literal methods -symbols held on a screen or paper to be read and analyzed; permanent storage and data processing if required; and syntactical and numerical precision. With personal data communications, whether for the policeman on his beat or the citizen at his TV set, these advantages have to be considered against the immediacy of speech and the instant visual recognition of spatial patterns in pictures. The cognitive processes involved must be studied as part of the communicating systems.

The attraction of literal methods of conveying intelligence can be already seen from the growth of fixed data communications, such as the Post Office's Datel services. Mobile data communications for vehicles is following fast. We have now to see if the idea will move off on Shanks's pony.

Electronic ignition techniques

Current methods applied to engines

by J. R. Watkinson, M.Sc.

The present day petrol-engined motor vehicle, with few exceptions, relies on an ignition system devised last century. The mass production orientated motor industry has largely resisted incorporating electronics into motor vehicles on both economic and reliability grounds. Modern electronic component developments, coupled with a dramatic change in the role of the private motor car, have given rise to a number of attempts to improve on the traditional ignition system. This article describes a number of ways in which the shortcomings of the contact breaker are minimized or eliminated, and outlines the capacitor discharge system which does not rely on a coil for storage of the spark energy.

For the mass market, the main targets of electronic ignition are lengthened servicing intervals and improved cold-weather starting. However, these features will not be adopted if there is a cost penalty. Other benefits possible with some systems are improved acceleration, better fuel consumption, reduced exhaust emission, increased plug life and lower current consumption.

Electronic ignition systems fall into one of two major categories: electromagnetic storage and electrostatic storage. The firstmentioned (e-m for short) uses a coil or inductor, and the last-mentioned (c.d. for short) uses a capacitor. Either may be controlled by a conventional contact breaker, or by a number of devices which replace it. Thus there are a large number of combinations possible, and most of these are available commercially. The Table compares the relative merits of these techniques taken singly and together. It shows the effect of using a particular technique with all other parameters remaining equal. The fact that many of the systems allow parameters to be changed should be borne in mind.

Current techniques used in ignition systems are now described, beginning with the simplest and most economic systems. Methods of eliminating the contacts are next dealt with followed by an explanation of capacitor discharge techniques. Finally there is a look at areas of development.

Ignition ballast resistor with
conventional ignition
This is hardly "electronic" but merits inclusion firstly because it has proved effective and secondly because it is sometimes used in conjunction with more complex systems. Battery output on starting may fall to only seven volts, and this problem is overcome by using a seven-volt coil, connected to the battery through a
ballast resistor to prevent coil overheating. When the starter motor is operated, the ballast resistor is shorted out and the coil can still operate at full power. The technique is widely used in production vehicles, because the only extra cost is that of the resistor and an extra contact on the starter solenoid or switch.

Assisted contacts

This was the first truly electronic ignition system, developed about ten years ago. The coil and contact breaker are retained, but the coil primary current is switched by a power transistor, and the contacts only handle the base current and battery voltage. As contact wear is thereby reduced, the intervals between servicing are lengthened. With this technique, however, the transistor is presented with an arduous task, and in many systems it is protected against over-voltage by a zener diode. The system is often used in conjunction with the ballast resistor technique, and some types require additional resistors for optimum performance.

Elimination of contact breaker

There are several approaches:

- magnetic induction
- magnetic proximity detection
- rotating transformer
- optoelectronic

Magnetic induction. Inside the distributor, a toothed rotor of permeable material turns within an internally toothed ring. The number of teeth on each is equal to the number of engine cylinders. A ring magnet beneath the stator provides a source of m.m.f. and as the rotating teeth pass the stationary teeth, the flux rises and falls. This induces a waveform in a coil wound round the flux path, which can be amplified to trigger the ignition circuitry. The shape of the pole pieces varies between manufacturers ${ }^{2,7}$. As the output voltage is proportional to $d \phi / d t$ (rate of change of flux), a problem may arise at very low speed, i.e. starting the engine with a handle. The waveform induced is shown in Fig. 1, and the falling edge where it passes zero is readily detected as a repeatable signal.

Effects of improvements made to ignition systems

Improvement Technique	Cold weather starting	Acceleration or fuel cons.	Increased rev/min	Servicing intervals	Plug lifo	Lower ignition current
Coil resistor	-					See note 2
Assisted contacts	See note 1	See note 1		-		See note 2
Eliminate contacts	See note 1	-	-	-		See note 2
C.D. with contacts	-	-	See note 3	-	-	-
Contactless c.d.	\bullet	-	-	-	-	-

[^0]
Characteristic of spark plugs

The spark plug can be represented as a gap with a certain breakdown voltage, V_{b}, in parallel with the stray capacitance, C_{p}, of the plug and its associated leads (Fig. A). Voltage V_{b} depends on the spacing between the electrodes, the pressure of the mixture and its temperature, the worst case being wide spacing, high pressure and low temperature. To charge the stray capacity to V_{b}, an amount of energy given by $\frac{1}{2} C_{p} V_{b}{ }^{2}$ is necessary. If this is not exceeded, sparking will notoccur. As soon as the gap breaks down, it ionizes and conducts, rather like a neon lamp.

The source impedance then reduces the voltage across the gap, so it is very difficult to say how much energy is actually dissipated in the spark, but it is not more than a few percent of the total energy consumed by the ignition system. To illustrate this point, experiment has shown ${ }^{1}$ that as little as 1 mJ of spark energy will ignite a mixture, but practical ignition systems may unleash as much as 50 mJ to achieve the same end. How much loss the distributor causes is also unknown.
Typically a conventional spark plug requires at least 15 kV for satisfactory operation, but another type exists called a surface discharge plug, which will operate on as low as 3 kV . These are primarily used on outboard motors, power-saws and "snowmobiles", where damp can present an even more severe problem than that which the car encounters.

Fig. A

Fig. B

Operation and drawbacks of conventional Kettering system

The primary of the coil, of inductance L and resistance R, is in series with the battery V and the contact breaker CB (Fig. B). When the contact breaker closes, current begins to flow in the coil primary. Because of the presence of the inductance a finite time is taken to build up the current to a maximum value dictated by the resistance, when the energy stored in the coil will be $\frac{1}{2} L I^{2}$. When the points open the flux in the coil collapses, and in doing so generates a high voltage in the secondary, which has many turns. Unfortunately, several hundred volts are also developed across the contact breaker, which in conjunction with the high current switched causes rapid wear and pitting of the points. To
alleviate this and to give a faster collapse of flux, leading to a higher secondary voltage, a capacitor is connected across the contact breaker, which forms a kind of resonant circuit with the coil.
At high engine speeds, particularly with six- and eight-cylinder engines where the spark rate is high, the primary current will have insufficient time to rise to its maximum value between sparks so the amount of stored energy per spark will fall. As the sprung contact breaker points can be considered as a mass/compliance system, then at high speeds they may bounce apart momentarily just after closing. The combination of the two effects causes misfiring and roughness.

Probably of more interest to the average motorist is the poor starting performance obtained with a conventional ignition system. In cold weather, the torque needed to turn an engine from rest is greater, and the starter motor may draw over 200A from the battery. Unfortunately, a cold battery resents this kind of exercise, and its output may fall to around seven volts. This means that the energy released by the coil is only about a third of the maximum. At low engine speeds the contact breaker opens slowly, and the rise time of the secondary voltage is low. Under these conditions it needs only a little leakage, caused by damp, to completely prevent ignition.

Perhaps the only saving grace of Kettering ignition is that it is not beyond the ability of the average motorist to fix it.

Magnetic proximity detection. Intended primarily as a conversion for existing vehicles ${ }^{3}$, the contacts are removed and replaced by a magnetic sensor unit, which uses the existing cam to complete its flux path (Fig. 2). When one of the lobes of the cam is close to the sensor, magnetic saturation is reached, and as one of the flats approaches, the point where the flux path comes out of saturation is detected.

As most of the existing distributor is retained after conversion, the cost is low, and fitting the device is simple.

Rotating transformer. This system ${ }^{4}$ also uses a permeable rotor, but instead of a permanent magnet, the field is provided by a high-frequency oscillator which drives the primary coil of the stator. The "carrier" frequency is induced into the secondary winding on the stator, and its envelope varies in amplitude with the coupling as the rotor turns. The waveform is rectified to provide a trigger signal.

Theoretically this system can work down to zero rev/min, but the circuit complexity raises costs, and reliability might suffer.

Fig. 2. Designed to quickly convert conventional contact breakers, the magnetic proximity detector (3) is bolted to "action plate" (2) to use existing cam (1).

Fig. 1. In the magnetic induction contact breaker, rotation of the toothed rotor (1) within the stator (2) varies reluctance of flux path (shown with broken line) of ring magnet (3), resulting in the waveform shown from the coil (4).

Optoelectronic. Designed for conversion, this system uses an infra-red beam, generated by a light-emitting diode. A toothed disc clipped to the existing cam interrupts the beam, which is detected by a phototransistor, see Fig. 3. The recent increase in production of optoelectronic components is a point in favour of this system, and costs could be very low. Many manufacturers have shied away from this approach because of a fear that dirt could obstruct the light path, but one manufacturer ${ }^{5}$ claims to have perfected a system which will still work with 95% of the light obscured.

Capacitor discharge

The energy stored in an inductor is given by $\frac{1}{2} L I^{2}$, and the energy stored in a capacitor by $\frac{1}{2} C V^{2}$. As it is easier to generate a high voltage than a high current, the squared term means that it should be possible to deliver more energy with a capacitive system.

There are many different types of c.d. ignition, but all share certain basic features, see Fig. 4. A d.c.-powered invertor/rectifier provides a high voltage to charge the capacitor. In most systems the invertor automatically compensates for reduced battery voltage without the output voltage falling. On cost and reliability grounds, most systems use around 400 V on the capacitor, so the conventional coil is retained, but used instead as a pulse transformer, to step up the capacitor voltage. A type of c.d. ignition exists for surface discharge plugs, in which the capacitor is charged to several kilovolts and fed directly to the plug. As no coil is required, the extra cost of the high voltage capacitor is absorbed. This technique is used on certain aircraft engines. Returning to Fig. 4, the obvious semiconductor to employ for the discharge is a thyristor, and for this reason the system is also called thyristor ignition.

When the capacitor has been charged through the coil, the thyristor can be triggered. When this is done, the capacitor and the coil inductance form a resonant circuit, and the first half-cycle of current flows through the thyristor, which then turns off. The next half-cycle of current flows in the reverse direction through the rectifier and partially recharges the capacitor. As the thyristor is no longer triggered, no further oscillation takes place, and the inverter fully recharges the capacitor.

The advantages of capacitor discharge are many. The rise time of the voltage is very short-less than $50 \mu \mathrm{~s}$-better than one fifth of that of the conventional system. This means that the breakdown voltage of the plug is reached before resistive losses have absorbed much energy. Up to 35 kV is available, which is more than adequate to fire a plug in any conditions. The near symmetry of the spark current reduces material transfer at the electrode tips, giving longer plug life. The high spark power, i.e. rate of delivery of energy, is a more effective igniter, as the longer a spark lasts the more energy is required to achieve ignition. Partial recharging of

Fig. 3. Optoelectronic contact breaker shown also uses existing cam (3), the rotor (1) being clipped to it. Rotor interrupts light beam from source to detector (2).

Fig. 4. Energy storage is achieved by a capacitor instead of inductor in the c.d. or thyristor system. Inverter charges the capacitor (1) which is discharged at appropriate times by thyristor (2) into pulse transformer (3).
the capacitor makes the system very efficient, and the invertor can be of low power. One manufacturer of such a system ${ }^{3}$ claims that the reduction in power consumption is such that a heated-rear window can be used on a vehicle so equipped where it was not previousiy possible.

With some systems the vehicle can be push started with a six-volt dry battery in place of the car battery. There are two types of c.d. ignition system for motorcycles; one ${ }^{6}$ uses a rechargeable battery to power the unit (BCDI) and the other ${ }^{7}$ uses the windings of the magneto to charge the capacitor (MCDI). In both cases the system is independent of the generator, and for racing purposes none need be fitted, giving more engine power for performance needs.

The only drawback to the c.d. principle is that in some systems the spark duration is occasionally insufficient to ignite a very lean mixture ${ }^{1}$. The reason is that a very lean mixture is not homogenous, but appears to consist of pockets of ignitable mixture in a relatively inert medium. If the spark is of very short duration, no pocket of mixture may have passed the electrodes before its extinction. Knowledge in this field is still lacking, but it appears that a minimum spark duration of $100 \mu \mathrm{~s}$
is desirable. Matching the coil inductance to the capacitor is a useful step. It is, however, very unlikely that the above effect can be observed on mildly tuned mass-produced engines, therefore the c.d. system is potentially still. superior to the e-m system, as the Table shows. Despite the extra circuit complexity, there are no highly stressed components by modern standards.

It is evident from Fig. 4 that when the thyristor fires, it places a dead short across the invertor. The potentially damaging effect of this is eliminated in a variety of ingenious ways.

The one-shot invertor. In the Delcotronic system ${ }^{8}$, the invertor is capable of charging the capacitor in one cycle. During starting the invertor runs continuously, but as soon as the engine fires it reverts to single-shot mode. As the invertor runs between sparks, the intermittent short of the thyristor has no effect on it. Although this is an unusual approach, it has the advantage that an extra winding on the invertor transformer can feed a tachometer at spark rate.

Inhibited invertor. In this system ${ }^{9}$ the invertor runs continuously, and can be of lower instantaneous power than the above. The trigger signal which fires the thyristor is also fed to the invertor via a monostable type circuit, so that oscillation cannot occur for the duration of the firing cycle.

Short-circuit proof invertor. This is possibly the most elegant solution ${ }^{10}$ as the minimum of components are used. The invertor transformer is deliberately wound with some leakage inductance. The con-tinuously-running invertor shifts its operating frequency when shorted to a higher frequency determined by the leakage inductance. Careful circuit design will ensure that the transition occurs smoothly and instantaneously.

The frequency of invertors used varies from design to design, but obviously the higher the frequency used, the less the mass of the transformer required. It is not economic to use ferrite transformers, so that a laminated iron transformer operating near the top of its frequency range seems to be the most cost effective choice.

Areas of development

In all the techniques so far described, it is only the contact breaker which has been eliminated, and the timing advance with engine speed is still achieved mechanically. It is established that there is a fairly constant delay between the firing of the spark plug and the onset of pressure rise in the cylinder. Obviously the faster the engine runs, the greater must be the advance in spark timing. In all of the systems described above, advance is achieved by centrifugal weights which fly out against springs and turn the cam or rotor and rotor arm relative to the distributor shaft. The moving parts are prone to wear, and the springs fatigue with age.

detector output
advance angles for three values
of $V_{\text {ref }}$ (low, medium \& high rev/min)
Fig. 5. Output from a capacitative transducer is compared with an engine-derived reference to give automatic advance of ignition timing.

In addition to the centrifugal advance, the so-called vacuum advance alters the timing to correspond with the inlet manifold depression. This is achieved by turning the "action plate" (that part of the distributor which normally holds the contacts) with a diaphragm mechanism.

The next encroachment of electronics into ignition systems will be replacement of these mechanisms with circuitry which performs the same task without wear.

The timing advance angle is not linear with engine speed and the shape of the advance curve partly determines the torque versus speed curve of the engine. What this means to the driver is that a "highly tuned" engine needs to be operated near to its peak power engine speed with a great deal of use of the gearbox, whereas a "flexible" engine although developing less peak power, will deliver power over a wider speed band. The important point is that the advance curve must not vary as the vehicle ages, or performance will suffer.

At present there are two known techniques. It is self evident that an "advance" circuit as such cannot be built, as it is not possible to generate an output before the input! It is, however, possible to use the output from the previous timing mark, and delay the firing point by an amount which varies with engine speed. The alternative is to start afresh at the source of the timing information. With this approach the device which replaces the contact breaker assembly is made to give a continuous output which can be decoded to generate pulses at any advance angle required.

Some kind of carrier frequency system is needed, with coupling either through a rotating transformer assembly, or through a capacitive transducer. The output of such a device is a sawtooth-like waveform, and comparison of the output voltage with an engine-speed derived
reference will give the correct advance. Waveforms are shown approximately in Fig. 5.
The capacitive transducer has the advantage that the advance curve can be incorporated in the shape of the plates ${ }^{11}$, and by using a printed circuit transducer, a common distributor body can accommodate a whole family of curves simply by changing the circuit board. The vacuum advance can be either of the mechanical type or a vacuum transducer can be used to influence the reference voltage to give vacuum advance with no moving parts.

The amount of electronics in motor vehicles is certain to increase rapidly. It is hoped that servicing techniques will keep pace with the technology, or many of the advantages of electronics will be lost. Perhaps the keen motor enthusiast of the future will pay as much attention to his oscilloscope as he now does to his oil pressure gauge.

References

1. Hurtley, D. Electronic ignition: theory, practice and hardware. Automotive Design Engineering, Jan. 1973.
2. Delco-Remy Service Bulletin, 1D-155.
3. Literature received from Mobelec Ltd, Oxted, Surrey.
4. Lucas OPUS (oscillating pick up system).
5. Literature received from Lumenition Ltd, 27-85 Newington Causeway, London SE1 6BD.
6. Literature received from Future Tecmatics, Waldeck Road, Maidenhead, Berks.
7. Literature received from Bosch Ltd.
8. Delco-Remy Service Bulletin 1D-171
9. Gibbs, D. S. and Shaw, I. M. Scorpio electronic ignition system Practical Electronics Oct. 1971.
10. Soar, S. Electronic ignition Practical Wireless, June 1971.
11. One of the Bowstock Systems incorporates such a device.

Books Received

Medical Electronics Vol. 2, by D. W. Hill and B. W. Watson, is designed to be a source of reference material to those involved or interested in medical electronics. Subjects discussed include microelectrodes and input amplifiers, fundamental properties of physiological electrodes, cardiac pacemakers and myoelectric control. Price £4. Pp. 172. Peter Peregrinus Ltd, P.O. Box 8, Southgate House, Stevenage, Herts SG7 1HQ.

Electronic circuits for the Amateur Photo grapher and Second Book of Hi-Fi Loudspeaker Enclosures, both by B. B. Babani. The former has 13 circuits including timers, electronic flash and an enlarging exposure calculator. The latter provides constructional details on most types of speaker enclosures from p.a. to omnidirectional. Both are priced 60 p and have 80 and 96 pages respectively. Babani Press, The Grampians, Shepherd's Bush Road, London W6 7NF.

Applications of Operational Amplifiers, by Jerald G. Graeme, describes applications which have evolved since the publication of a companion volume. The book shows the use of operational amplifiers in a variety of electronic equipment such as signal conditioners, waveform generators and processors. Price $£ 7.70$. Pp. 233. McGraw-Hill Publishing Co UK Ltd, Shoppenhangers Road, Maidenhead, Berks SL6 2QL.

New books in the Foulsham-Tab series include Servicing the Solid State Chassis, by Homer L. Davidson, Installing Hi-Fi Systems, by Jeff Maskell and Jay Stanton, both priced at $£ 1 \cdot 40$. How to Repair Musical Instrument Amplifiers, by Byron Wels, New Ways to Diagnose Electronic Troubles, by Jack Darr, both priced at $£ 1.50$. Foulsham-Tab Ltd, Yeovil Road, Slough, Berks.

Electrical insulating materials and their application, by R. W. Sillars, provides the reader with a background enabling him to understand current practice on electrical insulation. It describes recent developments in materials and methods including mechanical, thermal and electrical behaviour of polymeric materials. The second half of the book deals with individual materials indicat ing their various properties and limitations. Price £7. Pp. 287. Peter Peregrinus Ltd, PO Box 8, Southgate House, Stevenage, Herts SG1 7HQ.

Automotive Electronics is an analysis of electronics in the American motor industry. The book deals briefly with the complete industry and then looks at the market and the segmentation occurring in it. Automobile entertainment, electronic test equipment, braking controls, ignition and regulators are some of the categories dealt with. The analysis concludes with sections on technology and competition within the industry. Most of the divisions are supplemented with tables, graphs and figures. Price \$450. Pp 53. Creative Strategies Incorporated, The Executive Building, 1032 Elwell, Suite 100, Palo Alto, California 94303, USA

News of the Month

Advance in magnetic-tape technology

Some months ago news was received from Japan of a new development in audio mag-netic-tape technology. Manufactured by Sony under the name Duad, the new tape is incorporated into a compact cassette and should appear here in the late autumn. The special feature of the tape is a dual layer construction with conventional ferric oxide as the base layer and a thin skin of chromium dioxide on the top. This takes advantage of two factors which determine the high-frequency performance of tape and machine. Normal biasing for a tape tends to produce optimum performance in the mid-frequency range at the expense of the high-frequency, short-wavelength record-
ing. Reduction of bias current to improve short-wavelength response correspondingly reduces mid-range performance. By using a higher coercivity material on the surface of the tape, the bias current setting can be optimized for ferric oxide at mid-frequencies and will, because of the higher coercivity of the CrO_{2} surface layer, be optimized for short wavelengths also.
However, Sony appear to have been beaten to the starting post (at least in the UK) by 3 M who have announced a new range of tapes generically called the Classic range, and included among these is a new cassette tape using precisely the same technology. The correct bias setting is claimed to be that for CrO_{2} and the tape is said to produce up to 7 dB improvement in highfrequency dynamic range over the previous Scotch High Energy cassettes, with a 2 dB improvement in the mid-range.

Also in Japan, Fuji have produced a dual layer "ferri-chrome" tape using similar technology, but it is unlikely to appear in the UK since at the present no distributors have been appointed.

Flat-screen television sets?

The June 8 issue of The Economist carried a full-page advertisement by Hitachi announcing "the world's first working prototype for a flat-profile colour tv". The Daily Telegraph for that day picked up the lead, but there were no details of how it was done in the original advertisement, neither were there in the Daily Telegraph

The BBC are seeking Government approval to put their unique new-standard Ceefax transmissions (see May 1973 issue, page 222) on a pilot basis, carrying useful rather than "dummy" information to help gauge in what areas of information demand will occur. In addition to news, sports results, weather data, superposed sub-titles and newsflashes, simple diagrams of the kind shown are possible. Transmissions are on lines 17 and 18 (330 and 331 in the alternate field) from all BBC-1 transmitters and, by the autumn, should comprise a 100 -page magazine transmitted over a 24 -second period.
report; nor in the subsequent report that appeared in a trade paper, which picked it up from the Daily Telegraph!

We are hoping to receive full details from Japan but meanwhile, from a brief note translated from the Japanese by Hitachi UK, the display device appears to be a gas-discharge panel, similar to one being developed at Philips Research Laboratories, Eindhoven, and reported in the August 1973 issue of $W W$ (page 408).

A well-known technique in flat-panel displays is to use a gas-discharge matrix, in which a matrix of gas-filled holes is placed between a transparent front electrode with, say, horizontal conductors, and a back electrode with vertical conductors. The problem is how to get coloured displays.

What Philips have done, and what Hitachi also appear to have done, is to use a positive-column gas discharge, as in "neon" signs, instead of the negative glow of small neon lamps, thus allowing the use of ultraviolet-sensitive phosphor coatings on the inside of the matrix holes to get the required colours. In applying the technique to television Hitachi feed the "fluorescent diode" cathodes with timing information derived from the sync signals and the video modulation is fed to the anodes.

Problems with this kind of display are the relatively high ignition potentials, $700-$ 800 V , which in the Philips panel is reduced to 250 V using an auxiliary anode, and luminous efficiency which though higher than neon lamps is lower than c.r.t. phosphor screens.

Holography of loudspeaker drive units

A new technique for examining the behaviour of loudspeakers under dynamic conditions has been developed from earlier applications of laser holography, the method being refined by Dr Fryer of the Acoustics Laboratory at Rank Radio.

The drive unit to be examined has a monomolecular layer of aluminium sputtered on to the cone to render it reflective and the unit is then illuminated by a fraction of the total output of a laser via a beamsplitting mirror. The direct and reflected light is then recorded as a holographic interference pattern by a photographic plate.

By driving the loudspeaker drive unit with a sine wave signal and interrupting the reflected light from the cone with a rotating shutter, a series of images representing the behaviour of the cone over a complete cycle can be recorded on one hologram. The series of images thus produced can be reproduced as separate photographs which look rather like a contour map and indeed this is what they are since the pattern produced shows the location of standing wave nodes and antinodes for the particular driving frequency.

Changes in the input signal frequency can be made and the pattern examined for
signs of cone break-up, poor mechanical impedance matching of cone-to-edge surround, or points where spurious vibration occurs, such as at the point of attachment of voice-coil connections.

Rank Radio claim that the holographic technique has been valuable in the development of new mechanical damping materials for use on drive-unit cones, for improving cone design and finally for improving reliability under conditions of abuse.

Future of calculators

Development of the electronic calculator market is expected to reveal a continuing rapid increase in the number of calculators sold, but a much slower growth in the value of the market (at 1974 prices). Japanese manufacturers are showing signs of closing the technology gap in l.s.i. and also ir producing calculator displays, but the Americans now have such a strong lead in the market that they are unlikely to lose itunless the Japanese can come up with a major technical innovation.

At present, calculators which print out their results take a relatively small share of the market, because of their high cost. If the $£ 100$ price barrier can be broken, a very large market would be opened up. The strongest possibility of breaking this barrier is with the thermal printer. In this device, heat-emitting components generate numerals as a pattern of fine dots on sensitized paper. The mechanism promises to be silent, fast, reliable, easy to manufacture and cheap, but the drawback at present is that it needs expensive special papers. The first manufacturer to find a way round this problem will have a valuable lead in the printing-calculator market.

These are extracts from a Finresearch report "Electronic calculator markets and suppliers", available at $£ 36$ from Ovum Ltd, 22 Grays Inn Road, London WC1.

New type of u.h.f. relay

The first of a new design of u.h.f. television relay stations to be introduced by the Independent Broadcasting Authority over the next few years was opened at Luton, Bedfordshire, during June. This new lowpower station on Channel 59 provides 625-line colour and black-and-white pictures from Anglia Television. It will improve reception for about 16,000 viewers in those parts of Luton where reception of the high-power transmitters at Sandy Heath or Crystal Palace is unsatisfactory.

The new design relies entirely on semiconductors instead of incorporating valves to provide the power output. It is expected to increase reliability.

All earlier IBA local transposer (channelchanging) relay stations have used thermionic devices (tetrodes or travelling-wave tubes) in the power amplifier, providing output powers of from 50 watts to 1 kW . The new range of semiconductor units have a maximum output of only 10 watts although the effective radiated power may be over 100 watts, depending on the power-gain

Making the Teldec video disc. In orderto achieve studio quality, the master lacquer is cut at a fraction of playback speed. Recording speed is at 60 r.p.m. and playback at 1500 or 1800 r.p.m. depending on the TV line and field system used. The disc will be launched in Germany later this year.

provided by the transmitting aerial. The amplifier stage in this type of station consists of four u.h.f. power transistors whose outputs are combined to give an output of 10 watts. An important feature of the new equipment, apart from the greater reliability and stability that it is hoped to achieve with semiconductors, is that no special test equipment is needed at the station. A built-in meter indicates any faulty modular sub-unit which is then exchanged, using spares carried by the maintenance team.
This permits the equipment to be designed for installation in compact prefabricated buildings. In future stations of this type, an increasing amount of installation work will be carried out centrally before the prefabricated building or container is taken to the site.

About 200 of these low-power local relay stations are expected to be brought into operation over the next five years or so to provide good reception in small unserved areas where local hills screen viewers from the higher power stations. While the Luton relay will benefit some 16,000 viewers many of the low-power relays will normally serve 2000 to 9000 people. The maximum range of a low-power transmitter (e.g. 100 watts e.r.p.) depends on many factors, including local topography and the directional characteristics of the transmitting aerial, but could be about three to four miles in the absence of intervening hills.

Data off the beat

Dorset and Bournemouth police are about to start an experiment at Poole with data transmission from hand-held u.h.f. personal
radios carried by policemen on foot. For this purpose the Home Office Directorate of Telecommunications is providing them with 30 hand-held transmitter/receivers fitted with data encoders and miniature data input switches. Data transmission will be in one direction only, from personal transmitter to base receiver. The format of the encoded information will be: three numbers designating the transmitter unit or user; one letter for the map area in which the unit is operating; two numbers for the duty (or status) engaged upon; and two letters designating the location within the map area.

Having set the encoding switches, the user will operate the radio transmitter button, followed some time later by a "data" button. Both switches will be held until the data sequence has run through. This will be very short-a second or less. The microphone transducer will probably be brought into circuit as a loudspeaker when the data switch is operated, so that the encoding tones are audible and will thus indicate when the sequence has finished. This will also give the user confidence that the unit is working correctly. If the radio transmitter button only is operated, the unit will function for speech communication.

A decoder unit at the base station will check the incoming codes to ensure that they have the correct format and, if correct, will "signal back" to the personal radio receiver with an acknowledgement tone. Although all users on the channel will receive this tone, the last policeman signalling in data will assume that the acknowledgement is intended for him. The code received at the base will have a suitable extra character added to it, to indicate that it originated from a personal radio.

On the dilemma of a horn

by Heather Ann Dinsdale

When I wrote about my husband's antics with amplifiers', I thought that I had become reasonably well accustomed ("housetrained", he called it) to having an audio engineer in the house, and that little else was likely to surprise me. But this was before the coming of the horns. I have always considered myself reasonably adaptable and easy-going, and I quickly got used to the large loudspeakers we listened to in the "good old days"; in fact, I was lulled into such a sense of false security that I missed the first early warning signs that anything might be going wrong. We often have friends in to a "coffee and hi-fi" evening, and while the men discuss crossover distortion and feedback, we wives talk about prams, babies and bringing the feed forward. (Of course we also get feed back from babies, but that is a different story.) Sometimes I used to keep one ear open to the men's conversation (that is what continuous listening to stereo does for one) and I began to hear the word "horn" repeated with suspicious frequency. After a while I deduced that this was not the musical instrument, but a form of loudspeaker, and still the awful truth failed to dawn. My husband continued to express his firm belief that horns offered the most realistic sound and it eventually occurred to me that he was not referring to the early twenties-he meant now. Any illusions I may have had about reverting to primitive early gramophones were shattered one day when he announced that he was thinking of building a pair of horns to replace our existing loudspeakers (I suddenly realized how attached I had become to these). "How big will they be?" I asked tremulously. "Oh, about 15 ft long and with 8 -sq.-ft mouths," he replied, "but of course I'll have to fold them." I still could not grasp the full facts; 15 ft is longer than our living room, and he couldn't possibly mean that. "I suppose there will be two for stereo," I commented knowledgeably. "Oh no. Four for quadrasonic," he replied in all seriousness-and at that moment I knew that our lives were about to suffer another earthquake.

The next week panels of wood arrived and the work began. Luckily we have a good working arrangement for carpentry (he makes cupboards and shelves fairly
frequently) and I comforted myself that this would be no worse than another cupboard. But when the horns appeared, I was speechless. For a start they had to sit in the corners ("But if you move them out of the corners, you'll have to double the mouth area, and you know you wouldn't like that'), and I suddenly realized how useful corners can be-once you no longer have them. The early horns were still "in the white", and hardly resembled furniture, but the sound was fantastic. The first time he played the record of breaking glass, I was about to punish the children before I realized they were all safely asleep in bed. As for the organ music, the whole house shook to the pedal notes, and the neighbours came round to ask if everything was o.k. Luckily they too appreciate good music, and the evening ended happily -at 3 a.m.

But this wasn't the end. We had, many years ago, been through the craze for sewage pipes ("column-loading", I mean). 1 arrived home from a Suckerware party one evening (I always end up as the sucker who buys something) to find two large, dirty, concrete sewage pipes standing on the living room carpet. "Concrete columns," he said as I opened my mouth to scream, "I picked them up at the building site. They've been used, but I've cleaned them
out." I shuddered as I thought about what they must have been used for, and then I simply gave up and went to bed. Even when coated with matching wallpaper they still looked like sewage pipes. These disappeared after a while, and we reverted to the rectangular boxes until one evening I returned from baby sitting and couldn't believe my eyes: there in my living room were two lavatory pans. "I picked them up from a builder-they're cracked, no good to anyone." "What are they here for?" I asked in bewilderment. "Listen to this," was the reply, and out of the sitting part came music! You mount the loudspeaker in the S -bend and the whole thing acts as a horn. Luckily they didn't last. A friend christened the system "Loohorn" and it provided a topic of conversation between records (one advantage of a complex hi-fi installation is that it takes longer to put a record on than to play it, so we have not lost the art of conversation-yet).

Now horns are clearly here to stay. We moved house last November, and it was the disused living room chimney adjacent to the integral garage that finally clinched the deal. We can build the horns partly inside the chimney, and partly over the top of the garage (which will then only be suitable for a Mini). The sound will be superb, my husband will be satisfied (for a while at least) and I will not have to sacrifice my corners. Sorry, my enthusiasm has carried me away. I had forgotten that we are due to go four-channel next year. The corners will be needed, after all, and I can't even light the fire. But who cares? My husband is happy, we have a ready topic of conversation, and I am about to apply for my first patent: did you know that the finale of Mahler's 8th symphony is an excellent mechanism for cleaning chimneys? The soot simply pours down just as the chorus ...

Reference

1. Dinsdale, Heather Ann, "Living with Hi-Fi," Wireless World, Nov. 1969, pp. 526-527.

Audio f.e.t. power transistors

New technology for amplifiers developed in Japan

Present day solid-state high power amplifiers use dual, triple or even more transistors in parallel to obtain high output power. Unless the transistors are perfectly matched, problems can be presented by unbalanced standing currents resulting in increased distortion. In this case, low distortion and wide bandwidth can be obtained only by applying large amounts of negative feedback. This is turn confronts the circuit designer with problems regarding closed loop stability, especially when the widely varying types of loudspeakers that the amplifier may have to drive are taken into consideration. To obtain an amplification device of initial low distortion, good linearity and high power output, the audio development group of the Japanese Yamaha company has successfully created a series of f.e.ts for audio application and a high grade, high power prototype amplifier with direct coupling of all stages using these f.e.ts. The new device is based on an invention by Prof. Jun'ichi Nishizawa of the Electronic Telecommunications Research Laboratory of Tohuku University. Development work was undertaken by Yamaha who were commissioned by the Japan Technology Development Foundation.

Structure and characteristics

As the channel (current route) cross-sectional area of a conventional f.e.t. is changed by the depletion layer, drain current, I_{D}, is controlled (Fig. 1). When $V_{G S}$ $=0$ and when the depletion layer just reaches its maximum width, $V_{D S}$ is then defined as the pinch-off voltage. No matter how much $V_{D S}$ may rise above this value, I_{D} exhibits saturation characteristics which do not rise. When $V_{G S}$ rises, the value of maximum depletion layer thickness may drop below that for $V_{G S}=0$, so that the saturation current drops, giving rise to the output curves shown in Fig. 2.

The characteristics of the conventional junction-type f.e.t. make it a voltage driven active element capable of controlling output current according to changes in gate voltage. Saturation is caused by high internal channel resistance so the conventional f.e.t. construction does not lend itself to high power applications.

A model of the newly developed "vertical" f.e.t. is shown in Fig. 3 together with its equivalent circuit. On top of the $n+$
base silicon wafer, a high resistance $\mathrm{n}-$ silicon layer is formed by an epitaxial method in vapour. After selective diffusion of the highly doped $p+$ gate, an n-type silicon layer is again formed by the vapour epitaxial method. The gate differs from conventional f.e.ts with a control condition interposed between the source and drain, analagous to a valve grid.
The output characteristics of the vertical f.e.t. are shown in Fig. 4. The voltage amplitude versus frequency curve is shown in Fig. 5.

Bipolar power transistors have inherent disadvantages when compared with the f.e.t. and include tendency to secondary breakdown, thermal instability and, more important, the carrier storage effect which causes notch distortion.

Prototype amplifier

The output stage of the prototype amplifier is equipped with high power f.e.ts of 300 W permissible drain dissipation, 2Ω resistance when switched fully on, a voltage amplification factor of 5, breakdown voltage of

Fig. 1. Conventional f.e.t. and its operating principle: (a) condition of depletion layer across the channel when $V_{G S}=0$ and $V_{D S}=0$, (b) depletion layer condition when $V_{G S}=0$ and $V_{D S}$ is increased to the point at which pinch-off occurs, (c) condition when $V_{G S}$ is raised and $V_{D S}$ reaches saturation.

Fig. 2. Conventional f.e.t. output characteristics.

Fig. 3. (a) Model of the vertical type f.e.t. and (b) equivalent circuit.

Fig. 4. Output characteristics of the vertical f.e.t.

Fig. 5. Amplitude response as measured from the test circuit shown.

over 200 V and drain current of 10A. The driver stage is also from vertical junction type f.e.ts of high voltage breakdown and high voltage gain of 50 .

The output circuit delivers 150 W per channel into 8Ω loads over the 20 Hz to

20 kHz band with both channels driven. Single push-pull construction permits easy selection of matched pairs and aids high operating stability. Total harmonic distortion at $1 \mathrm{kHz}, 8 \Omega$ load and 100 W per channel (both driven) is claimed to be
below 0.01%, while over the 20 Hz to 20 kHz band, it remains below 0.03%. Frequency response, improved by the low drive impedance of all stages, goes from 5 Hz to $100 \mathrm{kHz}+0,-1 \mathrm{~dB}$ and the damping factor at 1 kHz relative to 8Ω is approximately 100 .

The circuit is a quite conventional design with two-stage differential amplification and source-follower direct coupled symmetrical drive. Bias to the driver and power f.e.ts is stabilized by a method permitting correct circuit operation even without a stabilized power supply. Differences in f.e.t. characteristics can be compensated with a semi-fixed variable resistor.

Temperature compensation, a requirement absolutely necessary in bipolar transistor amplifiers, becomes superfluous because of the much smaller current fluctuation caused by temperature changes in f.e.ts-their tendency is to reduce current flow at high temperatures and no thermal run-away can occur. An independent power supply has been provided for each channel so that output per channel remains the same irrespective of whether a single channel or both are driven.
Amplifiers using f.e.t. power transistors have also been produced by Pioneer, Toshiba, JVC and Sony, although Yamaha only seem to have overcome the problem of high current dissipation and hold the patent application in Japan for the process involved in producing the vertical f.e.t.

Digital tuning aid

Rapid tuning of keyboard instruments in equal temperament

by Winthrop S. Pike

RCA Laboratories, Princeton, N.J.

The equal tempered scale is virtually the only scale in wide usage today for keyboard instruments such as the organ, piano and harpsichord. Though many experimenters and amateur musicians might like to try tuning their own instruments, it is not easy for most nonprofessionals to tune a musical instrument correctly in equal temperament. With the aid of the digital tuning aid described, anyone who can hear beats between two tones sounded together can tune in equal temperament with an accuracy approaching that of a veteran tuner. The tuning aid, shown in Fig. 1, accurately generates all 12 notes of one actave. It is portable, battery operated, convenient to use and relatively inexpensive to construct.

A full explanation of the theory of equal temperament would unduly lengthen this paper. For such an explanation the reader should consult one of the standard
musical texts ${ }^{1,2}$. Suffice to say that in equal temperament the only true intervals are the octaves. For this reason, one cannot tune other intervals (the violinist's fifths, for instance) to exact zero beat. One must "temper" them-in effect, slightly mistune them. Further, the mistuning must be skilfully distributed among the 12 notes of the octave in a prescribed pattern. Mathematically, the tempering process divides the octave into 12 equal semitones, each of which differs in frequency from its neighbours by the 12th root of two, a factor of 1.0594 . How much to "temper" each note to obtain this state of affairs is the bette noire of the novice tuner.

Frequency division is the working principle of the digital tuning aid. As shown in the block diagram, Fig. 2, a master oscillator operating at a frequency much higher than that of the notes pro-
duced drives a programmable frequency divider which digitally divides the master oscillator frequency by any one of 12 switch-selected factors ranging from 959 to 508. The output of the divider system is filtered and applied to an audio amplifier and loudspeaker. With this technique, the intervals between notes are determined only by the divisors chosen. They cannot get out of tune if the master oscillator is stable and the dividers are correctly wired. On the other hand, the overall pitch level of all the notes produced is determined by the master oscillator. It can be moved higher or lower to accommodate various tuning situations without impairing the relative accuracy of the intervals.

A practical choice of master oscillator frequency is 250.830 kHz . Using this frequency and the range of divisors quoted above, all twelve tones of the "middle C" octave (from 261.6225 Hz to 493.8833 Hz)
can be generated using only five integrated circuit packages in the programmable divider. Three of these are decade dividers and the remaining two are multiunit gates. Table I lists the frequencies desired, the frequencies actually produced, the divisors used for each note and the resulting errors. The errors are about equally distributed above and below the correct frequencies and the largest absolute error occurs on the note F. It is only 0.033%. Much more important is the fact that the largest relative error between any two tones is approximately 0.06%. This is about equal to one musical cent or the 100th part of a semi-tone and represents quite sufficient accuracy for tuning purposes.

The particular set of divisors chosen here is not the only possible set ${ }^{3,4}$. In theory, if one makes the master oscillator frequency arbitrarily high and the divisors arbitrarily large, one may approach arbitrarily close to the desired frequencies. However, aside from the greater complexity and expense of such an approach, it turns out that the reduction of frequency errors so produced is not monotonic. There are sizeable fluctuations and certain sets of divisors are much better than others. Hence, though it might appear advisable to use the highest divisor available in the programmable divider (here 1,000) for the lowest note, this would produce larger errors among the other 11 notes. Mathematically inclined readers with access to an electronic calculator may amuse themselves by verifying this phenomenon.

Circuit description

The inner workings of the device are shown in Fig. 2. It breaks down logically into a number of modules, each of which can be built separately and then assembled into the final device. They are readily identifiable in Fig. 6, and their detailed circuit diagrams are given in Figs. 3, 4 and 5.

The master oscillator unit, Fig. 3, is a good module to build first. It is similar to a Colpitts circuit but the oscillator transistor $T r_{1}$ is tapped well down on the coil by the capacitive divider C_{2}, C_{3} and C_{4}. This reduces the tuned circuit loading, thereby improving the circuit " Q " and the oscillator stability. The prototype oscillator, for example, changed frequency only 0.002% when the power supply voltage was reduced from 9 volts to 5 volts. Tr_{2} interfaces the oscillator with the logic levels required by the integrated circuits. Capacitor C_{l} trims the frequency so that the tuning screw of inductor L_{t} protrudes far enough from the coil so that a knob may be mounted on it for vernier tuning.

The programmable divider, shown in Fig. 4, comprises integrated circuits $I C_{2}$ through $I C_{5}$. These units, RCA $\operatorname{COS} /$ MOS devices, were selected for their very low power consumption. Signal from the master oscillator is buffered in one section of $I C_{1}$, a triple NAND gate, then fed to decade dividers $I C_{3}, I C_{4}$ and $I C_{5}$. Each divider has built-in decoding of its ten possible states, a feature which con-
siderably reduces the number of integrated circuits required in the tuning aid. The remaining gates in $I C_{I}$ and $I C_{2}$ are used in conjunction with the note selector switch S_{2} to reset the divider to zero each time the desired count is reached. A detailed explanation of the reset system may be found in the manufacturer's application notes ${ }^{5}$.

An output signal is taken from pin 7 of the last decade divider, $I C_{5}$ to drive the audio amplifier shown in Fig. 5. An integrated circuit audio amplifier ${ }^{6}$ is shown although the prototype tuning aid actually used an amplifier "liberated" (with a hacksaw!) from a transistor radio in which the "front end" had become defunct. As it handles only a single tone at a time, neither the distortion, frequency response nor power of the amplifier is at all critical. A power of 100 milliwatts is entirely adequate for most situations? ${ }^{7}$.

Fig. 1 The digital tuning aid.

Fig. 2 Block diagram of digital tuning aid.

Fig. 3 Master oscillator circuit.

Correct \quad\begin{tabular}{llll}
Frequency

Fote \& 261.6225 \& TABLE I \& | Actual |
| :--- |
| Frequency |

C \& Disisor \& | Per Cent |
| :--- |
| Error |

C\# \& 277.1826 \& 959 \& 261.5537
\end{tabular}

The above is based on a master oscillator frequency of 250.830 kHz .

Fig. 4 Programmable divider circuit.

In the amplifier, the signal from the programmable divider is first filtered by R_{6}, R_{7}, C_{6} and C_{7} to reduce some of the unpleasant-sounding higher harmonics of the pulse output waveform of the divider. It is then applied to the volume control R_{8}. A 220 ohm resistor R_{9} has been placed in series with the low end of the volume control. This prevents the user from reducing the digital tuner's output to zero even when the control is turned all the way down. Thus, the unit cannot be left on without making its presence known audibly, a simple expedient which consumes less power than a pilot light and is quite effective.

Construction

An advantage of the COS/MOS integrated circuits is a high noise immunity. This

Fig. 5 Audio amplifier circuit.
means that the programmable divider is not particularly vulnerable to false triggering due to stray capacitances or faulty layout. In the prototype, the master oscillator is constructed on one piece of pin-board, the divider on a second and the audio amplifier on a third. The dual-in-line integrated circuits comprising the divider sub-assembly are mounted by simply bending the thin portions of their leads out into a plane parallel to the flat top of each package and soldering each corner lead. Thin wire is then used to make the necessary interconnections.

One other mechanical problem is worth comment. The length of the master oscillator coil $L_{\text {, slightly exceeded the depth of }}$ the meter box in which the prototype was constructed. As this component had to be mounted with its tuning screw protruding
through the panel for use as a frequency vernier, special mounting provisions were necessary. The solution was to cut a hole in the top of the box large enough to clear the coil terminals and mounting. As can be seen in Fig. 1, an aluminium plate was then cut to cover this hole (and that for switch S_{2}). The coil was mounted to this plate and the plate connected to the common negative terminal of the battery to ground the coil tuning screw and alleviate possible hand capacitance effects. The dial markings for the vernier tuner and note selection switch were placed on the aluminium plate with a rub-on lettering set, the end result being quite neat in appearance.

The total power consumption of the prototype measured 72 milliwatts (8 mA at 9 volts) at a moderately loud sound level. As the audio amplifier operates Class B, its power consumption is dependent on its operating level.

Calibration

After wiring the unit, there is only one adjustment to prepare it for use. The master oscillator must be set on frequency. If you have access to a frequency meter, connect the loudspeaker of the tuning aid temporarily to it. Set the note selector switch S_{2} on the note A and adjust the frequency vernier control, L_{i}, for a frequency of 440 Hz . If you wish, a mechanical stop may now be placed on this knob to keep it from being rotated more than one turn and the dial may be calibrated as in the prototype. Fortuitously, one turn of the vernier tuning knob will change the frequency of the note A about $\pm 5 \mathrm{~Hz}$, a comfortable range which is quite ample for most situations.

If you do not have a counter, probably the simplest procedure is to audibly zero beat the tuning aid against a freshly tuned piano or electronic organ. Another durable, portable and inexpensive standard is the classical tuning fork. Some music stores carry them and an $A(440 \mathrm{~Hz})$ fork usually costs only a few pounds. Once tuned, the master oscillator will be found very stable, but it is easy to recheck it against a fork or other standard at any time. When the tuning aid is correctly set for A it will inherently be correct for all other notes too. This is worth remembering. Suppose, for example, that you encounter an organ or other instrument tuned to the older ($A=$ 435 Hz) standard. There is no problem. Simply match the tuning device A to the A from the instrument to be tuned, then tune the remaining notes.

Using the tuning aid is simple. Suppose one wishes to tune an electronic organ. First, if the organ has a tremolo stop, vibrato stop or one of the popular rotatung loudspeaker devices such as the Leslie, turn it off while tuning. All of these devices produce a periodic undulation of the organ sound which will hopelessly confuse the process of listening for beats. Next, turn on an eight-foot or four-foot stop of moderate harmonic content such as a Principal or Diapason on one of the organ

- manual keyboards. Avoid using a stop of very dull tone, such as a Flute, or very highly coloured tone such as a Clarinet. Extremes of timbre make the zero beating process more difficult. Set the tuning aid note selector to C and sound "Middle C " on the organ. For easiest tuning, adjust the volume control of the tuning aid to make its apparent loudness about the same as that of the organ note being tuned. Now, successively tune each of the 12 notes of the "Middle C" octave to the appropriate note of the tuning aid. Take your time on each of these 12 notes. They are to be the substandard to which the rest of the organ will be tuned. Listen for at least ten seconds to each note after you think it is in tune. If you do not hear any beats in this time interval, you have tuned to an accuracy of about 0.1 Hz . Obviously, the accuracy can be improved by listening for a longer interval.

If your organ is of the frequency divider type, having only 12 tuning adjustments, the job is done. If it is the individual oscillator type, you must now tune the remaining notes of the keyboard in octaves to the middle octave which has just been tuned. The tuning aid can be dispensed with at this point. Beats between notes an octave apart are quite easy to hear on a Principal stop but often quiet difficult on a Flute stop, hence the original choice of a Principal. Once the Principal is completely in tune over the whole keyboard, any other stops perhaps derived from a different set of tone generators may be tuned to it note for note. One precaution is appropriate here. If the organ has a celeste stop (Voix Celestes, Flute Celeste) using a separate rank of oscillators, leave it until last. It should then be tuned note for note very slightly sharp or flat to the already tuned rank with which it is normally used. You may have to experiment a bit to find out how

Parts List	
Capacitors:	
C_{1}	68pF. Mica, 10\%
C_{2}	680 pF . Mica, 10\%
C_{3}	$0.0033 \mu \mathrm{~F}$. Mylar, 10\%
C_{4}	$0.015 \mu \mathrm{~F}$. Mylar, 10%
C_{5}	$100 \mu \mathrm{~F} .15$ volt, electrolytic
C_{7}, C_{12}	$0.047 \mu \mathrm{~F}$. Not critical
$\mathrm{C}_{8}, \mathrm{C}_{9}$	$5 \mu \mathrm{~F} .12$ volt, electrolytic
C_{10}, C_{6}	$0.01 \mu \mathrm{~F}$. Not critical
	$1 \mu \mathrm{~F}, 6$ volt, electrolytic
Resistors:	
R_{1}	360 k ת
R_{2}	$1 \mathrm{k} \Omega$
R_{3}	$2.2 \mathrm{k} \Omega$
R_{4}	$100 \mathrm{k} \Omega$
R_{5}	$8.2 \mathrm{k} \Omega$
R_{6}, R_{7}	39 k ,
R_{8}	volume control potentiometer, $10 \mathrm{k} \Omega$, audio taper, with switch
R_{9}	220 ohm
R_{10}	$470 \mathrm{k} \Omega$
$R_{1 /}$	$4.7 \mathrm{k} \Omega$
R_{12}	1 ohm
All fixed resistors $\frac{1}{4} \mathrm{~W}, 10 \%$.	
Transistors:	
Tr ${ }_{1}$	RCA SK 3124 or Motorola 2N4 124
Tr ${ }_{2}$	RCA SK 3114 or Motorola 2N4125
Coils:	
T_{I}	transformer, primary 200 ohms c.t., secondary 3.2 or
	8 ohms to match loudspeaker.
Switches:	
S_{l}	part of volume control
S_{2}	3 pole, 12 position, non shorting
Loudspeaker:	
8 ohms, 2 in or equivalent.	
ITT die-cast box 0077B or equivalent, about $7 \times 5 \times 2 \mathrm{in}$.	
Battery:	
9 volt	
Integrated Circuits:	
$I C_{1}$	RCA CD4023 triple 3-input NAND gate
	RCA CD4001 quad 2-input NOR gate
$I C_{3,4,5}$	RCA CD4017 decade counter/ divider
$I C_{6}$	RCA amplifier kit KC-4003 (includes a p.c. board, transformer T_{l} and associated resistors and capacitors).

sharp or flat to tune it for the most pleasing effect. It is impossible to give further detailed instructions as different makes and models of organs will have different requirements.

The same general principles will apply in tuning other keyboard instruments although the non-sustained nature of the tone of the piano and harpsichord makes the beats slightly more difficult to hear until one has gained a little experience. Do not, by the way, tackle a good piano without a proper tuning wrench. Anything else may seriously damage the tuning pins.

Fig. 6 Interior of tuning aid.

In conclusion, the goal of this project has been to design and construct a simple, accurate and inexpensive tuning aid. Though other features such as a crystal frequency standard or additional dividers for other octavely related notes might have been included, their deliberate omission has been in the interests of economy and portability. Over a year's experience in using the device on a variety of pipe and electronic organs as well as harpsichords and pianos has amply proven the design objectives.

Acknowledgement

The encouragement of Dr J. J. Brandinger and the photographic assistance of Mr William Cobb are gratefully acknowledged.

References

1. "Harvard Dictionary of Music", Willi Appel, Harvard University Press.
2. "Musical Engineering", Harry F. Olson, McGraw Hill.
3. "Approximating the Frequencies of the Musical Scale with Digital Counter Circuits", Stapelfeldt, Roelif, JASA, 46:478(L) 1969.
4. "Tempered Scale Generation from a Single Frequency Source", R. B. Cotton, Jr., Journal of the AES., Vol. 20, No. 5, June 1972. 5. Application Note ICAN-6166, RCA Solid State Division, Somerville, N.J., 08876.
5. RCA HM-91 Hobby Circuits Manual, RCA Solid State Division, Somerville, N.J., 08876.
6. There are other options for audio amplifiers. For example, several radio supply houses stock inexpensive 100 milliwatt amplifiers. Most of these have either three or four transistors and require input signals of 5 to 50 millivolts for full output, thus having an excess of gain for this application. However, they may be successfully interfaced with the output of the programmable divider in the tuning aid by the simple expedient of adding some series resistance (51 to $220 \mathrm{k} \Omega$) between the junction of R_{7} and C_{7} and the volume control R_{8}. Alternatively, these amplifiers often have a bypassed emitter resistor in the first stage. Simply clipping out the by-pass capacitor may reduce the gain sufficiently.

A quick scan of back issues of Wireless World also turned up another possibility which may be attractive to UK readers. A readily adaptable general purpose 150 milliwatt design may be found on page 2.36 of the May, 1970 issue.

Letters to the Editor

Damping factor

Referring to Mr Walker's letter on damping factor (May issue) it would appear that even more confusion has been added to the subject. The equation is very nice, but I can't see a prospective amplifier buyer going around with test equipment, slide rule and a thermometer. The very high damping factors quoted in manufacturers' specifications are impressive but academic in so far as the performance of the system is concerned. When calculating the damping factor, as was rightly pointed out, one assumes two components, $Z_{i c}$, the speaker's impedance, and R_{s}, the amplifier's source resistance. (The reactive component of a well-designed amplifier is small compared to that of even a moderately efficient speaker, especially below resonance.) So with a speaker of 8 ohms impedance and an amplifier of 0.5 ohms, the rated damping factor is 16 . In reality, what the speaker "sees" is not only the amplifier's source resistance but also the speaker leads' resistance-not as low as one would like to think sometimes -the crossover's resistance, and, not the least important, the loudspeaker's own voice coil d.c. resistance. So the equation should read:

$$
\frac{Z_{v c}}{R_{s}+R_{v c}+R_{L}+R_{c r}}
$$

Forgetting the crossover's and speaker leads' resistance, a voice coil d.c. resistance of typically 6 ohms will actually provide a damping factor of 1.23 . Doing a series of similar calculations with various values of R_{s}, it can be seen that any improvement of the rated damping factor over 15 provides little if any difference to the actual damping factor. As for the voice coil's d.c. resistance changing significantly with "The first four bars of Beethoven's fifth played at any reasonable level . . "-any loudspeaker which does that should be filed under the Trade Descriptions Act.

So, assuming that the third paragraph in the letter wasn't meant to cover two entirely different phenomena (back e.m.f.?), it means that unless a user intends to feed a 2 -ohm array of efficient speakers with 50 ft of bell wire, he is unlikely to hear any difference whether the amplifier has a rated
damping factor of 15 or 115 . It is only when the amplifier's source offers a rated damping factor of significantly less than this that he is likely to meet any problems, which in the case of Mr Walker's amplifier I imagine is a highly pertinent point.
S. J. Court,

Dennington Acoustics,
London, N.W.6.

Mr Walker replies:

Confusion arises because the same amplifier comes up with very different damping factor ratings depending upon which laboratory does the measurement, hence my letter drawing attention to the appropriate British Standard. The procedure involves the measurement of two voltages and is simple in the extreme. I also gave a formula, shorn of inessentials, to show the damping of simple loudspeaker system in order to indicate that if a single figure for damping factor is required the BSI method is the most appropriate.

Damping factor is a property of the amplifier (its regulation). It should not be confused with loudspeaker damping since the connection between the two is remote and, in the case of many modern loudspeakers with more than one degree of freedom, the relationship can reversean increase in damping factor actually reducing the loudspeaker damping (the rate at which the stored energy is dissipated).

There is nothing particularly wrong with a high damping factor and its name certainly gives it a high emotional appeal. Nevertheless, in drawing attention to the method of measurement I thought it wise to put it in proper perspective by the perfectly sound statement that "The first four bars of Beethoven's fifth" played at a reasonable level will warm up the speech coil and change the loudspeaker damping by an amount greater than any difference in amplifier specifications.
Take an 8Ω loudspeaker, feed it with 3 and 4 watts for just three or four seconds whilst monitoring the d.c. resistance. It will grow around half an ohm during the process. Now whether or not this does any harm to the loudspeaker damping, it quite clearly will have exactly the same effect whether we consider the $\frac{1}{2} \Omega$ to be added to the speech coil resistance or to the amplifier internal source resistance. But if we consider the latter viewpoint it would mean that an amplifier's super damping factor of 200 (say) has been reduced to a measly 15 , enough to make many an audiophile turn off in disgust.

Now I am reliably informed that high quality monitor speakers in recording studios on a pop programme frequently reach such a temperature that the speech coil resistance doubles. No prize for the horrifying answer expressed as an equivalent change in amplifier damping factor.

If the zealot next door will turn down the volume a bit, it will spare his neighbours and do wonders for his "damping factor".

Current flow controversy

As "Cathode Ray" has kindly offered some further comment about current flow (Letters, May) may I also add a few more?

I see no point now in entering into argument about his explanation of what he means by the "positive direction of current" nor his example of the jargon used only by British railwaymen, because I note that in spite of his defence of "conventional current" against, presumably, "unconventional current" he nevertheless thinks that "if we could start from scratch, we in electronics would almost certainly vote for the direction of electron flow". Because a handful of people started off one way, we surely do not have to go on for ever following this convention if a better alternative turns up.

Changes occur all the time in all fields of learning. Certainly we are rarely able to re-start anything from scratch, and if changes could be made only under such circumstances there would indeed be very few changes made no matter how desirable.

Since my original letter was published I have been pleasantly surprised to learn how many teachers and books already deal with electron flow as current and it would seem to be only a matter of time for the change-over to be complete. I think it was Aristotle who said of the old something like "... in all things they err on extreme caution".

Perhaps it is better in some cases to make changes gradually, such as we are doing in the change to decimals, so long as the changes do eventually get made.
C. H. Banthorpe,

Northwood,
Middlesex.

Using pocket calculators

Regarding your leader in the May issue on "Pocket numeracy", may I please comment? Calculator errors need not go undetected. We can still re-check a wrong entry via the keyboard. Repeating takes little time. Errors in the machines-I have not met any faults other than low battery voltage in two years with experience of several different models-are likely to be so gross as to give ridiculous results. If $7 \times 8=54$ or $6 \times 9=56$ is in one's head as part of a calculation, an immediate re-check is unlikely to eliminate such an error, temporarily fixed in one's own short-term memory.

In electronics (as I suppose in most numerate activities) calculations tend to be crude, in "cut and try" development, or precise. May I quote two typical recent examples from personal experience? (1) I wanted to increase the current through a resistor of $1 \mathrm{k} \Omega$ by some 10% so I chose $10 \mathrm{k} \Omega$ to put in parallel. This is mental arithmetic. (If it had been to correct a shunt on a calibrated meter, I should have used a calculator for the "right" answer and a close tolerance resistor.) (2) I wanted a precise audio frequency of 364.05 Hz (what for is another story). I did think of making a
self-maintained tuning fork and grincing an F or loading an F-sharp fork for it. However, I have a box of odd assorted quartz crystals with marked frequencies mostly ranging from 1.8 to 10 MHz . I soon found that a crystal of nominal frequency 2.096 MHz could be divided by $10,12,12$ and 4 to bring it close to my goal. A judicious rub of the rock with turpentine and carborundum on a piece of plate glass, a final slight pull with a 40 pF series trimmer in the crystal oscillator and four cheap SN74 series (7490/92/92/part 93) gave me what I wanted. I doubt whether I would have had the patience to do the preliminary arithmetic on 20 crystals without the calculator.
John Osborne,
Westminster School,
London, S.W.1.

Printed circuits the easy way

The letter from Mr Rowe (Sept. 1973) contains many useful points but I find it much easier when transferring the drawing to the board to use a piece of Vero board as a drilling jig. If the holes required are marked on a suitable piece of 0.1 in matrix Vero board, which is then clamped to the blank circuit board, the holes can be drilled easily and accurately. The copper can then be cleaned and any burrs removed before adding the lines and etching.

Drilling the holes before etching does not appear detrimental to the finished product in any way and the holes are easier to see than centre pop marks, They show clearly even when covered with the resist if the board is laid on an illuminated glass.
J. S. Worthington,

Wallasey,
Merseyside.

Soldering-iron leakage

Mr Adamson is, I am sure, living in a world of his own, if he believes that a threecore mains lead obviates the problem of earth leakage currents (Letters, May) The truth of the matter is that, deplorable though it may seem, there are, and I suspect always will be, those engaged in electronics who, in order to facilitate modifications to their breadboard circuits whilst still operating, remove the earth connection to allow their soldering iron to assume the potential of the joint they are soldering.

The second problem, which I believe is the cause of Mr Sproxton's worries (Letters, March) is more likely to be caused by static charges accumulating on any one of a number of objects usually found in the process of soldering. Static is most likely to damage devices such as f.e.ts, particularly insulated gate devices, either in discrete or integrated form. The objects I refer to are the pliers, cutters, and nonearthed soldering irons, which are usually left lying on a plastic work top, the poly-
thene reels of solder, and most important, the operator with his nylon shirt, rubbersoled shoes, etc.

The professional electronics industry is becoming aware of this problem, and is taking steps to reduce the vulnerability of insulated gate devices, and using conductive rubber work tops and wrist straps to bond the operator to his work.

As far as Mr Sproxton is concerned, he should, in my opinion, advise those of his customers purchasing sensitive devices to work on a metal sheet such as cooking foil, to which he should connect himself and his tools by way of a suitable piece of wire, the connection to his person being made via a metallic watch strap or bracelet. In the interest of safety, he should ensure that any mains operated equipment complies with the relevant British Standard and that, where earthing is required, this has not been disconnected.
Peter M. Clare,
PMC Consultants,
Basingstoke,
Hants.

Sound and light

Having been associated with the design and manufacture of "sound-to-light" units for some years, I was particularly interested in the "Colour-sound system design" by J. R. Penketh in the May issue. Mr Penketh says that he is not aware of any published work relating to the relationship between pitch and colour. While this subject is not easy to investigate, I have come across some references which may be of interest.

It would appear that the first publication on this subject was "Sound and Colour" by J. D. McDonald, published in 1869. In 1883, F. J. Hughes wrote a book entitled "Harmonics of Tones", suggesting a system of matching colours to notes, and in 1884 D. D. Jameson wrote "Colour Music", which proposed additional theories on sound-colour combinations. Building upon these theories, Professor Alexander Wallace, of Queen's College in London, began work on a note-to-colour matching theory, using a mathematical scheme for assigning colour to sounds. His version of the theory states:-
"Taking the spectrum band as the basis of all colours, there are two remarkable points of resemblance between it and the musical octave. The first of them is that the different colours of the one, and the different notes of the other, are both due to the various rates of vibration, acting on the eye or the ear ...
. . . If we measure the rate of vibration at the first visible point at the red end of the spectrum, we shall find it is approximately one half of what it is at the extreme violet end. Now in music, as we all know, this relationship is the
same. If we take the first and last notes of the octave, the latter has nearly double the number of air vibrations and the first note of the new octave has exactly double. This is the case also with the spectrum band. So far as one octave is concerned, the lowest red stands for the first note of the octave and the highest violet for the 12 th or last note . . ."
By the late 1800 s, using these basic analogies, Rimington had conceived a complete sound-to-colour scale (reproduced here) which allowed him to translate musical scores into colour.

In 1925 Mary Hallock Greenewalt, a "colour musician" of the time, decided to challenge the, by now, classic theory of Rimington. She maintained that no sound finds an exact counterpart in any one colour. She also noted that few musical compositions excited the same sensations in every performer or listener. Her feeling was that colours should not be tied inflexibly to notes, but that each "colour organist" should be free to interpret for himself the colour composition of the music which he was playing.
B. J. McNaughton,

Dabar Electronic Products,
Walsall,
Staffs.

A rather special environmental plea

In an excellent review of the uses of and pressures on the radio spectrum "No room in the radio spectrum" (New Scientist 30 May, 1974, page 533), some brief references were made to radio amateurs. There is plenty of evidence that amateurs are regarded by commercial and political interests as uneconomic users of valuable (though limited) bands. They produce neither revenue nor propaganda.

Most of the population is aware of the many pressures from government and big business to reduce or exclude his right ${ }^{-}$ as an individual to enjoy special parts of environment. New Scientist has pointed out examples such as military occupation of beautiful country, mining in national parks, offshore oil rigs near beautiful coastlines, property development in green belts around cities and so on.

The pressures on the radio amateur are more subtle because his case is not likely to be understood by the population at large. Being a small scattered minority unlikely to be able to produce effective pressure groups and effective influence to protect his interests at critical moments, his position in the spectrum is tenuous and vulnerable. Perhaps the only large body of opinion which can appreciate his case is the scientifically orientated part of the community, broadly represented

Wavelength of light.	395	433	466	500	533	566	600	633	666	700	733	757	$\begin{aligned} & \text { Imvis- } \\ & \text { ible } \end{aligned}$
Approximate colour	$\begin{aligned} & \text { deep } \\ & \text { red } \end{aligned}$	crimson	orange/ crimson	orange	yellow	yellow/ green	green	bluish green	$\begin{aligned} & \hline \text { blue/ } \\ & \text { green } \\ & \hline \end{aligned}$	indigo	$\begin{aligned} & \text { deep } \\ & \text { blue } \\ & \hline \end{aligned}$	violet	
Musical note	middle C	C\#	0	D\#	E	F	F\#	G	G\#	A	A\#	B	C_{1}
Frequency of sound Hz	256	277	298	319	341	362	383	405	426	447	469	490	512

by your readership and that of New Scientist.

Over the years following Marconi's demonstration that he could do the scientifically impossible, enthusiastic amateurs have been doing the same in parts of the spectrum often allocated to them in the first place as being of little commercial value.

In practice the radio amateur is so individualistic as to defy classification beyond an interest in some form of radio. He is both classless and ageless; numbered among his ranks are schoolboys and Post Office engineers, country parsons and executives in the electronics industry. However, we do tend to fall into two main groups; communicators and experimenters. The communicator is the one who is on the air whenever his wife and his work will let him. He may natter across the parish on top band shared with "fish phone". Or from under the high multikilowatt power propaganda stations in the East, operating illegally in the amateur bands, he may winkle out another amateur, both using morse code and internationally recognized amateur jargon, in a remote Pacific island. Such communication is strictly non-commercial and, more important, non-political. Not only do radio amateurs bridge the generation gap but we feel very much part of the "brotherhood of nations".

Then there is the experimenter, such as myself. We use little time on the air, being for ever rebuilding to try something new. But we do need the equivalent of national parks and uninhabited mountains in the form of wavebands where we can roam as the fancy takes us. From our ranks come some of the most inventive and productive electronic engineers, frequently contributing more to the welfare of their firm than those who may have better paper qualifications. In the last world war the radio amateurs' know-how provided a nucleus of reserve specialists whose invaluable contribution to the war effort can hardly be over-estimated, whether in MI5 or the radar valve factory. God forbid the need should arise again but in times of natural disaster the radio amateur again and again has, with inbuilt gift for improvisation, provided communication from within the disaster area when other forms of communication have been completely disrupted.

From the one-valve transmitter in the boy's bedroom to the Californian Kilowatter, we need our recreational space in the electromagnetic spectrum.
G3HMO.

Calculator i.c.

I agree with Mr Coppin that a b.c.d. output of the calculator chip recently advertised for building in to "extended ability" calculators would ease the design problem. Although the full truth table (see below) for the conversion to b.c.d. from 7-segment code suggests a lot of gates. fortunately the 7 -segment code is highly redundant

and there are some useful "accidents" in the design of numbers. For example, the absence of illumination of the "e" segment occurs on numbers $1,3,4,5,7$ and 9 , allowing simple elimination of the 4 to give the "A" line of the b.c.d. code by inversion.

The converter for my home-brewed calculator built round the GIM C500 chip uses four t.t.l. i.cs (costing a total of 80 p) arranged as in the diagram. I have chosen to indicate the minus symbol as the 11th code. All gates are NANDs.

Display	Truth table	
	7-segment input*	b.c.d. output
	abcdefg	DCBA
0	1111110	0000
1	0110000	0001
2	1101101	0010
3	1111001	0011
4	0110011	0100
5	1011011	0101
6	1011111	0110
7	1110000	0111
8	1111111	1000
9	1111011	1001
-	0000001	1010

*Illuminated segment $=1$
D. N. Gregory,

Welwyn Garden City,
Herts.

"A problem of measurement"

I was very interested to read in Thomas Roddam's article "A problem of measurement" (May issue) of his use of the analogy of the Class D amplifier to show that any number of harmonics can be eliminated from a digital waveform similar to his Fig. 2 since the Class D amplifier is in fact forced to do this. Naturally the waveform with its abrupt transitions must contain copious high harmonics but these are, of course, removed by the filter.
(In the Class D amplifier the load is switched via filtering means, alternately to the positive and negative supply lines, at some tens of kHz . The filtered output is made to conform to an audio input by negative feedback to a discriminator, and the result is a modulation of the complementary duty cycles of the two switching output transistors. This secures a modula-
tion of the amplitude of the filtered output. Its attraction is the high efficiency and the small output transistors that may be used.)

I have been using the same "Class D transform" as it might be called, to think about using sequential-access r.o.ms of, say, 64 bits to give fancy digital waveforms which when filtered would be right for electronic organ tones. The class D business obliges by proving that this is possible (though 60 bits would be better) but this is not seen as an alternative to filtering one single pulse per cycle, as the latter gives good opportunities for harmonics from 5th to 20th and on up. It is, however, an alternative to using digital-toanalogue converters fed with sequential data words, which is what computers do when they play little tunes to entertain visitors.
Bernard Jones,
London, WI.

Amateur radio book

Many readers of Wireless World are also members of the Radio Society of Great Britain, and will be familiar with the book "World" at Their Finger Tips". This was written by the late John Clarricoats and covers the work of many of its members from 1913 to 1963.

The RSGB have honoured me with the task of writing a sequel to this book in order to bring the society's historical records up to date. In order for me to make a success of this and do the society justice I must have information; therefore I appeal to RSGB members who read this journal to send me details of their radio achievements during the past ten years. I would like to have this information by August 31 , because there is a lot to do, and I hope to have the work complete within a couple of years.

Ron Ham,

Faraday,
Greyfriars,
Storrington,
Sussex.

TMFEPT

 A digital clock and calendar

 A digital clock and calendar}

Part 1: A quartz crystal controlled digital clock combined with a ten-millennium calendar, which formed a school project at Cranleigh School, is described by the authors.

by J. F. K. Nosworthy, M.A., Grad.I.E.E. and N. J. Roffe

Ten years ago the construction of a digital electronic clock as a school project would have been considered impossible. The multitude of discrete components, their cost, and the consequent near-certainty of frequent breakdowns in service, would have ruled the project out of consideration. Today, of course, digital integrated circuits have completely reversed this. Provided one has the mental agility to cope with logic design, the digital approach is in many ways much easier than the analogue one, and in most fields results indeed in a better end product. When therefore we decided three years back to commence work on an electronic clock, one of the reasons for this choice of project was that it would provide for the boys and the teaching staff involved a thorough practical introduction to modern digital electronic practice and logic design.

With this criterion in mind, we decided to carry the digital programme through to the point of incorporating with the clock a perpetual calendar since this would take us, via a gentle introduction in the form
of digital dividers and counters, right through to memory circuits and multivariable programming. To complete the job, we also decided that the frequency source for the unit should be a highaccuracy crystal oscillator; that we would incorporate a running monitor of accuracy by comparing our frequency with that of the BBC 200 kHz transmission; and that we would incorporate such refinements as stand-by power supply with automatic changeover, electronically lockable controls, and a "hold seconds" device which would give us a partial stopwatch facility. The programming, we decided, should be really 100% and contain all the fixed conditions of which we had advance knowledge, so that no routine adjustments or alterations to the clock and calendar should be necessary during its designed cycle. Thus, not only are the number of days in each month automatically adjusted, but a further adjustment is made in each leap year, and a further adjustment still in each century leap year. We set the total
cycle of the clock at 10 millennia, since this allowed us to display all four digits of the year and also set the end of the cycle to a point in time sufficiently remote for us not to have to worry about the adverse comments which would occur on the day when it would finally read a long row of noughts! (Dec 31, 9999 is, we consider, a reasonable time ahead). The total number of digits displayed by the clock is therefore 15 ; comprising the year (4 digits), the month (2 digits), the day (2 digits), the hour (2 digits, 24-hour basis), the minute (2 digits), the second (2 digits), and tenths of seconds (1 digit). The displays are by Nixie tubes, the choice of display methods being determined mainly on grounds of capital cost. The complete unit is made up of five rack-mounting panels. The top panel houses the oscillator, divider chain down to the $0.1-\mathrm{Hz}$ point, the BBC comparator and the setting-totime controls. There aretwo smallindicators which monitor the functioning of the crystal oven. The next panel contains all the display tubes (starting with years on

the left, finishing with $1 / 10$ th sec. on the right); a small l.e.d. indicator to the left of the years shows leap years; the switch above the seconds aperture is the "hold seconds" control. This panel also houses the remainder of the divider chain, i.e., down to one pulse per millennium, plus the drive units for the Nixies, plus the calendar logic. The two remaining panels are concerned with power supply, that for the Nixies being the topmost and the main power unit being the lower of the two.

The overall measurement of the assembly is $36 \times 24 \times 12 \mathrm{in}$. Much of this space is in fact wasted because the layout had to be designed so that a number of boys could work on each unit simultaneously, which implies a larger than necessary number of physical subunits each containing only a few components. Actually an exception to this principle had to be made for the more complex units such as the calendar logic board and the BBC comparator, which could be allocated to relatively skilled individuals.
Fig. 1 gives the (simplified) overall block diagram. The main circuit-chain for the clock unit is perfectly conventional, starting with a 200 kHz quartz crystalcontrolled oscillator and finishing with the display of hours-these are displayed on a 24 -hour basis, the 24 th hour registering as 00 for the sake of simplicity in the hours reset circuitry. The three seconds displays are fed via storage elements so as to provide the facility for "freezing" the seconds and tenths count for spot-readings (i.e., semi-stopwatch facility). We are not
describing the divider-chain circuitry in this article since it has been done several times before. However, the crystal oscillator circuit and waveform shaper may be of interest and is given in Fig. 2. The production of a stable frequency and its interfacing with t.t.l. does in fact present a certain amount of difficulty. It will be seen that the crystal is resonated in the series-resonance mode, and whatever the oscillator circuit adopted it is vital that the mode of resonance should be firmly delineated by the circuit conditions. Certain commonly used crystal oscillator circuits show indecision as to whether the crystal shall resonate in the series mode or the parallel one; and since the two modes are almost invariably not synonymous (although they may be close), hunting between the two can occur, giving effectively frequency modulation of the output at a sub-harmonic of the crystal frequency.

Running parallel with the clock divider chain are the circuit blocks providing setting to time and adjustment facilities. These are, in essence, simply bypasses for selected portions of the divider chain, allowing various degrees of fast running, also a "Stop" facility. The fastest setting speed provided bypasses the oscillator straight through to the calendar unit (i.e., days input), giving a multiplication of $17,280,000,000$ and allowing the entire ten-millennium loop to be run through in 18.25 seconds (this is rather fun to play with). Simple mechanical switches, at first sight the obvious way to do the job, cannot be used because it would be
difficult to render them inoperative. Instead, the bridging is achieved by logic blocks. (See Fig. 3.) In each block, the output follows either of the two inputs according to the setting of S_{1}, the fast-run switch. All the fast-run switches are locked out of operation simply by lifting their common earth via S_{2}, which is a key-lock switch. S_{3} gives the "Stop" facility, and this is also locked out by S_{2}. This circuit could in fact be simplified by the use of AND-OR-INVERT gating, but our method gives the advantage of using components already required in quantity for the rest of the clock.

Accuracy monitor. The circuit diagram for this is given in Fig 4. The monitor is, as has been said, a running comparison of the clock oscillator frequency with that of the BBC Droitwich 200 kHz transmission. So far as we are concerned, the latter may be regarded as a frequency standard, since it is maintained to within two parts in 10^{11} (representing a clock accuracy of within 0.0006 seconds per year). The monitoring method adopted is a continuous display of the phase angle between the two frequency sources; we are not of course concerned with the angle itself but with whether or not it changes, and if so at what rate. The phase angle is displayed on a centre-zero meter which will therefore, as the wave trains move relative to each other, beat from + ve f.s.d. to 0 to $-v e$ f.s.d., corresponding to relative phase angles of 0° to 90° to 180°. Simple arithmetic reveals that one complete cycle of the meter movement

Fig. 2. Circuit of oscillator chain and t.t.l. buffer.
indicates an accumulated time error of $1 / 200,000$ th sec. Our design accuracy is 1 part in 10^{7}, so that it is necessary that the beat frequency shall be less than one cycle per 42 seconds.

It is necessary to process the BBC signal to a pure carrier wave, i.e., the a.m. signal content must be removed. This is done by means of a phase-locked loop, $I C_{1}$ Fig. 4. Detailed explanations of p.1.1. action can be obtained by reference to manufacturers' literature (Signetics do an excellent publication), and was also covered in outline in a previous Wireless World article ${ }^{1}$. The sensitivity of the device is high, but its input impedance is
low; and since also it works best in the balanced-input mode we found the frontend circuitry to be necessary. Capacitor C_{13} sets the nominal v.c.o. frequency of the p.1.1. and has been quoted at varying figures by different authorities for the same frequency $(200 \mathrm{kHz}$ in this case). The manufacturers show a very small-scale graph in their data sheet of C versus frequency, which leaves the exact value pretty vague. The answer appears to be to adjust on test, as we did; so that the value shown should perhaps not be taken as authoritative. The output from the p.1.1. contains a d.c. component (6 V), accounting for buffer capacitor C_{17}. The a.c. output
is a square wave, of equal mark-space ratio, locked precisely in frequency to the incoming carrier, and of amplitude 0.6 V $\mathrm{pk}-\mathrm{pk}$. This amplitude is too small for direct use, so two stages of amplification follow, $T r_{9}$ and $T r_{10}$; the latter being driven between saturation and cut-off so that a total swing of $V_{c c}$ magnitude $(15 \mathrm{~V}$ in this case) is obtained at the top end of R_{29}. Between the p.1.1. output and this amplifier, $T r_{8}$ is inserted as a buffer and impedance-converter. This was found to be necessary in order to preserve the squareness of the waveform, which is essential for correct operation of the phase angle comparator.

Fig. 4. Circuit of the accuracy monitor which compares oscillator output with a BBC transmission.

Comparison of the relative phase angle is carried out by $I C_{2}$ and $T r_{1 l}$, the two inputs being fed in at points marked X and Y on the diagram (note Tr_{12} buffer for the other channel input). This part of the circuit has been recently dealt with in this journal ${ }^{2}$.

The output from $I C_{2}$ is fed to a centrezero meter M_{1} via integrating network R_{39}, C_{27}, so that provided the relative drift frequency is sufficiently low the meter will give a direct reading of instantaneous phase difference. The resistor R_{39} adjusts for meter sensitivity (it also in fact changes the integration time-constant, but this is unimportant in this application). Resistor R_{40} is provided to adjust for zero offset voltage at the output of $I C_{2}$, which would otherwise appear as a constant
added to the reading on M_{i}. It should be noted that $\operatorname{Tr}_{l /}$ must be a p-channel f.e.t., since it is fed with a + ve-going signal. The magnitude of this signal must be such that it swings $T r_{I I}$ fully between the fully-conducting and the cut-off states; this is why we have first of all amplified the X signal to approximately full V_{α} magnitude, to ensure full positive swing, and then attenuated it by tapping down on the R_{29}, R_{30} network in order to avoid overloading of $T r_{I I}$. In our initial design we did in fact allow for R_{29}, R_{30} to be adjustable, but in the event such precision proved to be unnecessary.

One rather interesting point which emerges from analysing this comparator circuit is its action on a square waveform for both channels. The circuit is
usually analysed with a sine wave applied to the controlled channel (Y) and a square wave to the controlling channel (X). Under these conditions, the d.c. output from $I C_{2}$ is proportional to the cosine of the relative phase angle (i.e., to $\cos \phi$). With two square waves, however, the output is proportional to ϕ direct, i.e., the meter could be scaled linearly in degrees or radians.
(To be continued)

References

1. Osborne, J. M. High standard low frequency source. Wireless World, January 1973, pp.20/1.
2. Clayton, G. B. Op-amp used as phase sensitive detector. Wireless World, July 1973, pp. $355 / 6$.

I.Cs for radio, audio and television

The Electronics Components and Materials division of Philips at Eindhoven recently showed us a range of integrated circuits for use in consumer applications. The remarkable total of 26 new circuits has been released-or will be towards the end of the year- 16 of them intended for use in television receivers, 10 for radio and audio equipment. In some cases, the new i.cs replace first-generation types, others offering the advantages of integration for circuit functions not previously attacked.
The intention has been, in developing these more comprehensive modules, to reduce the number of adjustments and peripheral components a manufacturer has to cope with, not simply to reduce the number of i.cs by larger-scale integration. For example, a TV receiver using the new circuits needs the adjustment of 10 controls, in contrast with one using the older units which required 20 adjustments. Again, the receiver now needs 160 external components against a previous minimum of 320 . All this has been brought about by the ability to use a larger chip in the same technology as before.

Television

Two new vision i.f. circuits, TDA2540 and 2541, for $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ tuners respectively, are 3 -stage, low-noise amplifiers with a.g.c. on each stage ($\mathrm{S}: \mathrm{N}-56 \mathrm{~dB}$ at 40 dB a.g.c.). Interference spikes are clipped and inverted, giving a grey rather than a peak white spot. Several combinations of i.cs can be used in colour decoders -a no-compromise set including the TDA2500, the TDA2510 and TDA2520. Contrast and Luminance control, chrominance processing and demodulation are carried out, the two colour reference signals being obtained by digital means from a crystal-controlled oscillator.

The TDA2650 vertical deflection chip, working in Class B and capable of supplying 4A p.p. with current feedback, contains trigger-pulse shaper, oscillator, S-correction and height adjustment. The
current is sufficient for monochrome and small colour receivers; for larger colour tubes, the i.c. supplies half the deflection current, being assisted by a BD201 transistor. The switched-mode deflection circuit TDA2600 dissipates less than half the power of the TDA2650, and contains sawtooth oscillator, switched-mode amplifier and pre-amplifier subjected to currentderived feedback for linearity and temperature-insensitivity.

Three touch-control i.cs, the TDA2620, 2630 and 2631 provide selection for up to 16 channels, indicating the selected programme by gas-filled indicator, mute the sound during selection and allow a chosen programme to be always selected on switch-on.
Other television i.cs include Sync. processor units and a switched-mode power supply drive. The TDA2570 sync. module is unusual in that the frame sync. is derived from the line frequency by a digital 625 divider.

Sound reproduction

The TBA570 a.m./f.m. receiver includes on the one chip, mixer, local oscillator, i.f. amplifier, a.g.c. amplifier and detector for a.m., a 10.7 MHz amplifier and limiter for f.m., a front-end bias stabilizer for f.m. and most of the audio section. External circuitry is limited to the front ends, i.f. filter, f.m. detector and audio output.

Most of the functions of a tape-recorder are provided by the TDA1002 and 1003. The former incorporates a preamplifier for use as mic. input stage or playback preamplifier, and a recording amplifier with automatic level control, which operates as a dynamic limiter. The TDA1003 provides for motor speed control, delivering a voltage-stabilized motor drive, and, as the speed control is only operative when a pulse train produced by the spool mechanism holds off the stop circuit, the automatic stop function is built in. On the same chip is a temperature-stabilized voltage reference source with an a.g.c. amplifier which controls the bias and
erase oscillator-also on the chip.
Several car radios and audio power amplifiers are included in the new range and some of the i.cs are specifically intended for use in high-fidelity sound systems. There are stereo decoders, a.m./ f.m. receiver chips, preamplifiers and some very interesting d.c control circuits for volume, balance, contour (loudness) and tone controls. These, the TCA730 and TCA740 (tone) employ differential amplifiers for remote control. The controlling potentiometers can be mounted where convenient, for the signal is not required to leave the chip. Rumble and scratch filtering is afforded by the use of a tone control chip, the function needed being selected by external components. An additional benefit conferred by the use of these chips is that single potentiometers control both channels.

Two modules have been produced for use in electronic tuning systems. TCA530 provides a stabilized tuning voltage, the reference diode being on the chip, together with a heater and thermostat. A.f.c. is generated and is automatically disconnected during tuning. The same functions are contained in TCA750 (external reference diode needed) with the addition of two extra voltage stabilizers to power receiver stages and a stereo indicator. A search tuning facility is provided.

An interference suppressor for f.m. reception, the TDA 1001 works by delaying the audio signal in a low-pass filter and amplifier, deriving a trigger pulse from it to initiate a gating waveform at the onset of an interference spike and interrupting the delayed audio signal by means of the gating pulse. The audio signal is kept constant during this period, as is the 19 kHz pilot tone.

The new circuits are the result of cooperation between development teams in the Netherlands, Germany and the U.K., and represent a considerable European lead in the consumer application of integrated circuitry.

Quadraphonic quandary

Comments on surround-sound development

by B. J. Shelley
International Recording Studios, Rome

If we can succeed for a while in subduing the recent quadraphonic-ambisonic-tetra-phonic-pantophonic pantomime of wordbuilding, and should we succeed in controlling our possibly premature matrixidal tendencies, it might be possible to produce some kind of clear over-all view of the current philosophies, practices, and possibilities, in a rather more methodical and illuminating fashion. This might give us a better idea about the present consensus, if any, of technical opinion and psychoacoustic knowledge concerning augmented stereo systems.

One ought to be very appreciative of every serious contribution which helps to advance the recording art, and of every theoretical discussion which can throw useful light on a very confused situation. Some of the more recent articles appear to have originated with such intention, but have in many instances caused greater confusion.

What, for instance, is one to make of the statement that two channels can only carry two channels-worth of information, followed a moment later by the assertion that two channels can be encoded to carry unambiguous directional information, not only round a circle but also over a whole sphere?' Is the phrase "unambiguous directional information" to be interpreted as meaning signals which the ears can use to obtain an adequate directional impression in a prescribed listening arrangement? How many loudspeakers are required? Pressure radiators or dipole? If the "information" is "encoded" does that mean that it has to be "decoded" for playback? What role does ear-summation play in such a system? Does it satisfy the inherent requirement for simultaneous spatial image distribution? What prevents the adoption of such a system where only two channels are postulated for 360° of directional effect, or is there some practical objection to this two channels-worth? Does it fail, perhaps, to hold to a reasonably benign limit the effects of cue perversity? Or is the "unambiguous directional information" merely an academic device for describing a set of relationships within a frame of reference not quite relevant to the purposes of the ears of a listener using a small number of discrete loudspeaker sources? Is the "in-
formation" not accessible, or is it just wrong?

Questions of this sort must arise in the mind of any serious enquirer when critical points of a subject are presented with such evident, though possibly unintended, semantic abuse.

Controversy in the evolution of various technologies is no novelty and its usefulness is recognized in many cases. In the present confused state of multichannel development it is difficult to avoid the impression that controversy has sprouted a disproportionately large growth of loose and premature conclusions. Thus, contrast the statement of Bauer ${ }^{2}$ that 90° of phase shift spreads the image over the whole span of the loudspeakers, with that of Cooper and Shiga ${ }^{3}$ that there is no stereo source spread when 90° of phase shift are imposed. There is obviously something amiss here.
> "Contrast the statement of Bauer that 90° of phase shift spreads the image over the whole span of the loudspeakers with that of Cooper and Shiga that there is no stereo source spread when 90° of phase shift are imposed."

Or again, contrast the position of Bauer ${ }^{2}$ when he declares that the efficacy of a system or matrix is to be appraised by asking how well it replicates the sound of an original master tape, with that of Fellgett ${ }^{4}$ who condemns as a fallacy the supposition that the objective is to imitate a blended four-channel tape. Or the suggestion of Fellgett" that the "overhead" quality experienced by some listeners to normal stereo may be the result of an incorrect relation between pressure and particle velocity, with the work of Leakey ${ }^{5}$ who demonstrated by a mathematical analysis that head movement can explain the ofttimes apparent elevation of a stereo image.

Faced with such apparently opposed positions the quadraphonic quagmire comes as no surprise.

I do not propose to investigate the important details underlying the existing controversy. But much can be learned by re-
tracing one particularly important step in the development of stereophony.

The very earliest proposals in stereo were based on the extremely rational concept of a system in which the "ears of the auditor are effectively transferred to an original sound scene" by means of a double channel using a dummy head and earphones. This theoretically ideal system, with its then dazzling superiority to mono somehow gave birth to an almost unconscious traditional idea and subsequent misdescription of a stereo system as the transmission of an original sound field. Whereas, of course, it is the transmission of signals from a very limited number of representative static points of a sound field-two in the binaural case about eight inches apart-but producing for a listener with headphones a remarkable stereophonic illusion.

It is this two-points-to-two-points that constituted the "effective transfer" to the original sound field. The subjective impression may indeed be overwhelming but there is no doubt that the listener's head has not been placed into a sound field or that an original sound field has been recreated. Physically, we have merely presented him with the pressure variations corresponding to two selected points of a complex original field.

All this may be well enough known and understood, so that the point may seem to be rather laboured. But the curious deceptive habit of thinking in terms of the transmission of a sound field was probably
> ". . . we are still at the present time in need of much more psychoacoustic knowledge about mu/tiple-source listening and localization."

one of the main reasons for the continued fallacious use of the dummy-head technique with loudspeakers, long after the time that spaced loudspeakers came to be used. The fallacy was noted and explained ${ }^{6}$ in 1931 but passed unnoticed for many years.

The important step in development, i.e. the use of spaced loudspeakers, required for its proper implementation that the signals be generated in quite a new way to fit the changed pattern of listening,
where each loudspeaker contributes a crossed-over signal to the ears. Some good results were obtained on an empirical basis*. Even better results were forthcoming by noting experimental and theoretical findings which demonstrated the need to fill certain basic requirements, such as the creation of appropriate intensity differences in the two channels.

The "recreated sound field" now becomes an array of virtual images. These result from the interaction at the listener's ears of two signals so processed as to give a composite interaural relationship adequate for an illusion of spatial distribution. We do not recreate for him an original sound field. We give him suitable raw materials and his ears and brain do the rest. If this were not so we would not have the problem of the whole thing moving when the listener moves.

Thus, neglecting reflections, what is physically present in the room is two distinct intersecting wave systems, one from each loudspeaker; not an original sound field. Similarly in the case of quadraphony, and again neglecting room effects, what is physically present is four intersecting waves radiated by four separate loudspeakers. There is just no purely physical mechanism whereby these four wave systems are made to combine or interact so as to modify their fixed source positions. This can be done only by the ears, if the four signals have been suitably tailored. And the operative word here is suitably. It is in order to find out what is suitable that we are compelled to study those practical and scientific findings which apply to the four-source listening pattern.

Abstract

". . . It is no tragedy that the first clarinet is 15° off true position... Nevertheless it is not easy to escape the conviction that proper directionality is desirable at least as a design objective in a standardized listoning pattern."

Any tendency to proceed on the basis of creating or recreating a sound field, divorced from considerations of the earsummation process, is merely a continuance of the previously-noted fallacy. After over a decade of schooling in two-channel stereo techniques it is perplexing not to find a wider awareness of this ideational trap. Fanciful diagrams of a reproduced sound field, of "rotational symmetry", and so on, all need very cautious evaluation. They may have definite validity if clearly used as psychophysical models, i.e. as subjective projections by an average listener. But even when such representations are clearly so intended we are still at the present time in need of much more psychoacoustic knowledge about multiplesource listening and localization.

[^1]The new four-source listening proposal makes it necessary to extend the more limited previous frontal localization studies. For example, where previously we were concerned with a listening angle of about 60° we now have a new frontal angle closer to 90° with the additional two sources at the rear. Assuming that empirical and/or theoretical laws for computing localization are of practical usefulness in the design of such a system, it seems obvious that the rules applicable to the two-channel case may not be quite suitable for this new and more complex pattern. This may apply especially to the stereophonic law of sines ${ }^{5}$, which was in any case rather imprecise, as noted by Leakey, notwithstanding its later adherents and notwithstanding its continued widespread use and the existence of improved computational formulae ${ }^{5}$.

Of course, one can agree with Crowhurst ${ }^{7}$ that it is no tragedy if the first clarinet is 15° off true position as long as all the instruments sound real and individual. Nevertheless it is not easy to escape the conviction that proper directionality is desirable at least as a design objective in a standardized listening pattern. The posttransmission variables may be quite numerous (exact speaker placement, room quality, etc.), but this is no reason to produce a system whose characteristics might turn out to be quite outside the normal expected range of variations of this sort.

In spite of flagrant claims it is doubtful if we are yet in a position to draw up a relatively valid specification of signal relationships for four-speaker listening with separate channels. Gerzon's assertion that "the optimum characteristic is not known" in regard to a particular tetraphonic technique ${ }^{8}$ could be equally well applied to any quadraphonic system. . The optimum characteristic is still very much in the melting pot, and its refinement therein seems to have been slowed down by the premature addition of an ingredient called 4-2-4 matrixing. The resulting alloy: optimum characteristic plus 4-2-4 matrix, might turn out to be quite an attractive compromise; but I have the feeling that the whole process would benefit greatly from an independent refining of the first and principal component.

References

1. Fellgett, P. Quadraphonics queried, Hi-Fi News, July 1973.
2. Bauer, B. B. et al, Compatible stereo quadraphonic recording system, J. Audio Eng. Soc., Vol. 19 1971, pp. 638-46.
3. Cooper, D. H. and Shiga, T. Discrete matrix multichannel stereo, J. Audio Eng. Soc., Vol. 20 1972,pp 346-60.
4. Fellgett, P. B. Directional information in reproduced sound, Wireless World, Vol. 78 1972, pp.413-7.
5. Leakey, D. M. J. Acoustical Soc. Amer., Vol. 31 1959, p. 977.
6. Blumlein, A. D. British Patent no 394325; p. 9 .
7. Crowhurst, N. H. Theory and practice, $d B$, August 1970, p. 14.
8. Gerzon, M. Experimental tetrahedral recording, Studio Sound, Vol. 13 1971, p. 475.

HF predictions for July

For consistent day to day communication operating frequencies should lie between FOT and LUF. Outside these limits reliability decreases. For example 14 MHz for South Africa will fade in between 04 and 06 GMT, stay open until 08 GMT, come in again at 15 GMT and fade out between 18 and 22 GMT.

Magnetically disturbed days are forecast as June 26 to 30 , July 7 to 18 and 22 to 27.

Dolby f.m. transmission in the UK?

by Basil Lane

Assistant Editor, Wireless World

The name Dolby has become almost a household word amongst those hi-fi enthusiasts and professionals who specialize in cassette and, for that matter, reel-toreel tape recorders. This is because it has now become a universally popular method of reducing the noise contribution introduced by the recording process. At the domestic level, the less complex B System has been applied with considerable success in a wide variety of products. However, it now seems possible that the Dolby noise reduction system will become an even more familiar term in the near future.

In America, over the past year, many f.m. broadcast stations have been examining the possibilities of using the B system to reduce high-frequency distortion, improve s / n ratio and produce an improvement in the area of stereo coverage and a reduction in the likelihood of interference. Such has been the response by the broadcast stations who have tried the system, that recently the American Federal Commission gave permission for Dolby B transmissions to be made on a regular basis and also, in conjunction with the introduction of the noise reduction processor, to reduce signal pre-emphasis time constant to $25 \mu \mathrm{~s}$ from $75 \mu \mathrm{~s}$.

This move has lent weight to a recent request made by Gerry O'Reilly, Chief Engineer of Capital Radio, to the IBA for permission to experiment with the Dolby B processed transmissions. Using this system it is hoped that an improvement in the quality of reception in its area of London and the surrounding districts will be obtained. At the moment, the IBA is actively considering this proposal and is having meetings with Dolby Laboratories. It is to be hoped that this will produce a rapid and favourable decision as, in the opinion of this author, any experiment likely to result in an improvement of broadcast quality is worth carrying out. However, it may be apposite to consider the proposals in detail and further examine the likely impact upon the listener as seen in the light of the American experience. First, however, a brief description of the Dolby B process as applied to broadcasting.

Dolby B and f.m. broadcasting

Two papers have been published on this topic, one of which ${ }^{1}$ outlines the system and the results of a full-time broadcast
experiment made in New York. The second ${ }^{2}$ provides more comprehensive description of the proposals, from which the following has been drawn.

The B-type noise reduction system is complementary, that is to say a compressor is required at the transmitter and an expandor at the receiver. Since, subjectively, it has been shown that the perception of noise is mostly confined to the high frequencies, the B system is designed to take advantage of this and operates only on high frequencies. The processor used for companding consists of a main signal path and a side chain containing a variable-bandwidth filter which continually adjusts itself to accommodate changes in the amplitude and frequency content of the incoming signal.

Although the B-type system has seen its widest application in the sphere of the cassette recorder, it was designed from the outset with f.m. broadcast applications in mind and it is fortunate that the noise problems are in many ways similar to those of tape recording. Taking this into account, it was also considered by the designers to be a useful opportunity to correct any minor faults in the present system of f.m. broadcasting which can be eliminated as a result of the introduction of the B-type noise reduction system.

One prominent problem with modern f.m. transmissions lies in the value of preemphasis applied. In America, the time constant used at the moment is $75 \mu \mathrm{~s}$ and here and in Europe a $50 \mu \mathrm{~s}$ standard is applied. This results in 3 dB boost points at around 2 kHz and 3 kHz respectively and a final boost at 10 kHz of about 14 dB and 10 dB respectively. In recent years, with an improvement in the bandwidth of microphones and line transmission systems and, above all, the development of modern styles of music with greater high-frequency energy content, this has been a cause of some embarrassment to the transmitter engineer. The possibilities of overmodulating the transmitter at these frequencies has increased so much that now it has become recognized practice to accept the unpleasant requirement for a signal limiter before the transmitter.
Dolby claims that the introduction of the B-type system makes a unique opportunity to correct for this problem by reducing the time constant and to correct the subjective effect that such a reduction
in time constant produces, by taking advantage of the happy coincidence that the subjective effect of B-type compression is the opposite to reduction in time constant. In this way, the combination of the two can produce a reduction of high-frequency distortion by eliminating the need for limiting, and a reduction of noise received by using the B-type processor.

A principal factor which brought the original problems to light was the introduction of the present stereo transmission system which results in a poorer received signal-to-noise ratio than the monophonic transmission. The actual values are 23 dB for $75 \mu \mathrm{~s}$ and 21.5 dB for $50 \mu \mathrm{~s}$. Using the reduced time constant proposal and adding the B-type compressor makes it possible for broadcasters to increase modulation levels and thus improve the stereo coverage in areas of poor signal strength. The remaining factor to be considered is the problem of receiver compatibility, since this has been one of the principal factors which has prevented a change of time constant in the past.

Compatibility

The subjective effect of a B-type transmission is to provide a signal which is bright, with the high frequencies being boosted by up to 10 dB . However, the reduction in the time constant of preemphasis nicely compensates for this and Dolby claims that the final effect upon an unmodified receiver is a very satisfactory compatibility, with no improvement in signal-to-noise ratio.

Naturally, there are, as yet, few receivers available which incorporate the B-type noise reduction processors and to cope with this Dolby recommend the addition of the so-called B-type adaptor at the output from the decoder or tuner together with the addition of a simple compensator to reduce the receiver time constant to $25 \mu \mathrm{~s}$. A circuit recommended for such a purpose by Dolby is reproduced in Fig. 1 together with a graph of its effect in Fig. 2.

Since it seems likely that experimental transmissions of the B-type processed form are likely to start fairly soon, it may be worth considering purchasing and making these units up, should any reader wish to listen in and obtain the full advantage of the improvements. How-

Fig. 1 Time constant compensator for use with non-Dolby tuners and receivers and tape recorders.

Fig. 2 The characteristics of the timeconstant compensator.

Fig. 3 (a) Noise performance of a Sony ST-5000FW for stereo and mono signals. (b) Noise performance of the Radford FMT2 MPX.
ever, please note that announcements about the commencement of any such experiments will be made on Capital before the event and readers should be patient if these seem to be some time coming. Further developments and a questionnaire will be published in a future issue of Wireless World to enable readers to report on the standard of reception to the Chief Engineer at Capital and a report will also follow in the journal.

Experimental results

Experiments have been made at several levels to evaluate the results of these proposals, the first of these being laboratory experiments made by Dolby Laboratories of London. These involved the use of a Radiometer SMG1 Multiplex generator connected through calibrated attenuators to two tuners. These were the Sony ST-500FW and the Radford FMT2 MPX. With the signal calibrated in terms of that produced by a dipole in a field of given strength, the wideband signal-to-noise ratio of each of the tuners was plotted for given signal strengths and with mono and stereo transmissions. An additional measurement was also made using the DIN weighting characteristic. All measurements were made using the $50 \mu \mathrm{~s}$ characteristic and the results are reproduced in Fig. 3. In both instances the tuners required a signal strength of about $1 \mathrm{mV} / \mathrm{m}$ to produce the signal-tonoise ratio of 60 dB and, in addition, the increase in noise predicted theoretically for a stereo signal is confirmed by the measurements. The weighting characteristic used for the DIN measurement demonstrates that the main effect is an increase in high-frequency noise when switching from mono to stereo.

Further experiments showed that when B-type encoding was employed, the signal strengths required to produce an equal signal-to-noise ratio to the non-encoded signal dropped by about 9 dB for the Sony tuner. It was also reported that listening tests under conditions of 40 dB or better signal-to-noise ratio confirmed that a drop in signal strength of up to 10 dB was adequately compensated for by the introduction of B-type processing and the time constant change.

Subsequent to these experiments, demonstrations were carried out by WFMT broadcast station in Chicago in which listeners were invited to report on the standard perceived by them of both processed and non-processed signals. Some had been properly equipped with Dolby receivers, others had made modifications of their own and added Dolby adaptors. The results were broken down into several categories and of those who were properly equipped, 85% reported an improvement in signal-to-noise ratio. In the non-equipped sector, receivers were subdivided into hi-fi and low-fi. In the former case, 80% preferred the encoded transmission and 12% indicated no particular preference, whilst in the low-fi bracket, 60% showed a preference for the encoded signal and 25% were "don't know".

Subsequent to these experiments, several American stations have commenced fulltime broadcasting of Dolby processed signals and such is the mark of their success that the FCC have given approval for the use of the combination of Dolby processed transmissions using the $25 \mu \mathrm{~s}$ characteristic.

Calibration

Since the B-type process is complementary and involves the use of both compressor and expandor and it does not rely upon pilot tones to provide a reference for the correct restoration of the received signal, it is of great importance to ensure that the complete system, from compressor to expandor, is properly aligned.

This alignment can be achieved through the use of a reference tone which, in the case of the f.m. system, corresponds to a modulation level of 50%, or a deviation of $\pm 37.5 \mathrm{kHz}$. Normally the decoders incorporated at the time of manufacture can be adjusted to the correct calibration during the production process, but in the case of the add-on units, a tone will have to be broadcast at intervals to permit the correct threshold to be set.

As far as the transmitting end is concerned, no alterations are required apart from incorporating the compandor since it has built-in adjustment for the pre-emphasis.

For those who have a Dolby equipped tape recorder or cassette recorder, it is possible, with the use of the compensator, to record the Dolby transmissions direct without the use of the processor and then to subsequently decode the signal using the tape recorder's own processor. The broadcast calibration tones should be used to set up the tape recorder in the usual way as outlined in the user manual.

Conclusion

This, then, represents the state at the present moment; Capital feel confident that the use of this system will bring advantages to their listeners and have asked for the co-operation of Wireless World readers in checking on quality. It is hoped that the IBA will arrive at a favourable decision for the early experiments and should these take place in the near future, a questionnaire will appear in this journal to enable readers to take part in what could be a significant development in UK broadcasting.

References

1. Robinson, D. P., JAES, June 1973, Vol. 21, No. 5, p 351.
2. Dolby, Ray M., JAES, June 1973, Vol. 21, No. 5, p 357.

Circuit Ideas

action occurs. As the load resistance is reduced below that which produces limiting the output current decreases progressively until at short circuit the output current is only that flowing through the zener bias resistor and D_{3}. At low current settings, the output is immediately bootstrapped down to the zener resistor current, but will bootstrap itself up again with a small increase in load resistance.

Foldback limiting characteristics are of course preferable to crowbar or fuse protection because the circuit is self-starting as

soon as the overload is removed. They are also usually preferable to current-limiting characteristics as they produce shutdown of both the power supply and any driven circuit, avoiding the worst case of heat dissipation on short-circuit.
P. C. Bury,

Victorian College of Pharmacy,
Parkville, Australia.

Foldback in current-limited supply

A simple and useful addition to the currentlimiting supply of A. E. T. Nye ($W W$ June 1973, page 285) is a diode which will provide current foldback with overload conditions.

The diode D_{3} is added between the zener point and the load. This normally has a small reverse voltage across it, and does not affect the operation of the circuit until current limiting occurs (see Nye for mechanism) and the load voltage starts to drop. It will then become conducting, diverting current from the zener diode, reducing the zener point voltage and hence the load voltage further. At high output current settings (output current limit is set by R : high means currents above the β maximum for $T r_{2}$) a current foldback

Improved a.f.c. for f.m. tuners

A simple d.c. amplifier can be added to the a.f.c. circuit of virtually any f.m. tuner, and, for all practical purposes, will eliminate tuning errors over the entire lock-in range of the existing circuit. This has proved particularly useful with the NelsonJones tuner, where the loop gain is rather
low, and where conversion to varicap tuning has introduced several potential sources of drift. The additional components cost less than 50 p , and can be mounted on a piece of $1+1 \frac{1}{2}$-in fibreglass p.c.b.
J. S. Wilson,

Amersham,
Bucks.

Active sum and difference circuit

The first circuit below shows a simple, economical and effective method for summing and differencing two signals and is particularly effective in stereo and quadraphonic applications. When $R_{1}=R_{2}$ $=R_{3}=R_{4}$ the upper output is $-\frac{1}{2}(A+B)$ and the lower output is $-\frac{1}{2}(A-B)$. Using the values shown in Fig. 2, with $V=15 \mathrm{~V}$ and $I=2 \mathrm{~mA}$, input signals up to 1.4 volts

r.m.s. may be applied. Transistors may be BC109 or similar. Slight adjustment to R_{4} may be made to obtain exact null for equal antiphase inputs. By using other values for the resistors in the collector and emitter leads different weighting factors can be easily obtained. An A output is also available at the lower emitter, and a B output at the upper emitter, both at fairly low impedance and with low crosstalk. NB: Bottom of the $68-\mathrm{k} \Omega$ resistor should be earthed.
B. J. Shelley,

Rome.

Phase-locked loop teleprinter unit. K. S. Beddoe, whose circuit was published in the December issue page 605, tells us the following components should be added to the MC131OP integrated circuit:
250 nF capacitor between pins 8 \& 9
50 nF capacitor between pins 3 \& 11
$5.1 \mathrm{k} \Omega$ resistor from pin 4 to the +12 V rail $5.1 \mathrm{k} \Omega$ resistor from pin 5 to the +12 V rail.

Wide-range "joystick" control

Joystick control potentiometers are finding new applications, but some of these are hindered by the necessity of obtaining or modifying potentiometers to work with the relatively small 60° or so movement given by a joystick lever. Normally, standard potentiometers are modified by the inclusion of a tapping at the 60° point (approximately) or by special manufacture of potentiometers for specific applications. This is not only expensive but can also create problems if replacement potentiometers are required at short notice.

The circuit shown is versatile, inexpensive (certainly compared to obtaining special potentiometers), and due to the negative feedback of the two-stage amplifier, can give significant saving in current drain for a given output impedance. Additional power supplies are unnecessary.

The two-stage feedback amplifier compares the output with the voltage at the wiper of the control potentiometer. The preset control allows the gain of the amplifier to be set to any required value, and thus match any given mechanical movement of a standard potentiometer to the output voltage swing required. In practice, this matching is achieved much more easily than by exact mechanical matching of the angle of travel of a special potentiometer to a particular joystick unit. It has the further advantage that as the control potentiometer is always operated well away from its terminations; there is no "jump-on" non-linearity.
I. R. Francis,

Flight Link Control Ltd,
Hounslow.

Seventy-two exhibitors displayed the latest equipment in the field of professional sound recording at the Connaught Rooms, Kingsway, London, on June 21 and 22. About 2,000 visitors including 122 representatives from overseas attended the 7th annual exhibition. Many developments in equipment and techniques have taken place over recent years in the industry (see "Professional Sound Recording" June issue, p.211) and this was reflected in the high quality and wide range of facilities offered by the equipment on display.
Items of interest included a multichannel peak programme meter utilizing a colour TV tube. The meter can indicate the levels of up to 28 channels in groups of four by vertical bars of changing length. In the overload condition the colour of the displayed bars changes to red and, in order to identify particular channels, the colour of these bars may be changed remotely from the monitor desk. The scale is electronically generated, while the video signal is based on the 625 -line TV standard. The RGB output enables a standard colour TV monitor to be used. Cost for 16 -track plus four master channel displays is around $£ 1,700$ and the unit type $377-100$ is manufactured by NTP Electronik, Copenhagen.

The MSR series 2000 disc-cutting lathe system is the result of several years' development and has been designed to cut monophonic and stereophonic masters and direct replay acetates to exacting requirements. A range of four turntable speeds has been arranged to facilitate half-speed cutting of quadraphonic masters. The 16 in diameter turntable weighs 401 b and is driven direct by a servo controlled d.c. motor without the need for belts, idler wheels, flexible gears, etc. An optoelectronic device mounted on a motor shaft generates pulses relative to the turntable speed; these pulses are compared with a reference pulse train derived from a crystal controlled clock and any error is fed back for correction to the motor driving the turntable. The shaft of the motor and the turntable conveys a vacuum to retain the recording blank and also serves to collect swarf from a point directly behind the cutting stylus. A method of "varigroove/ varidepth" control enables optimum use to be made of the available record surface. This requires three programme inputs from the tape replay machine, namely left and right advance head channels and the left programme channel. These signals are analyzed for programme level and fre-
quency spectrum, and equalized to the RIAA recording characteristic, thus making space available on disc for the stylus excursions due to programme modulation. Control information applied to the above signals is used to compute both the vertical and lateral mode of operation.

The Millbank Electronics group were exhibiting a new input module for studio mixers, designed for incorporation into recording desks for replacement or new installations. Circuitry is mounted on a small p.c. board which can be plugged into separate controls. It is expected that in its final form the facilities offered will be mic (low Z balanced and line) inputs, l.f., m.f., and h.f. equalization, echo send and pan control. Another new Millbank product on display was an announcement machine, designed for use in broadcast stations to announce forthcoming events, jingles, etc., at the press of a button. The unit automatically fades out programme material, which can be in mono or stereo.

The Studio 8 series of professional recording machines shown by Ferrograph are now of adaptable construction and were on view in transportable and console arrangements. Trolley and rack-mounting versions will be produced later.

An interesting cartridge, designed specifically for broadcast and studio applications where a closely controlled frequency response and a robust stylus assembly for back-cueing are required, is the model SC35C available from Shure. The bluecoloured stylus grip has a cut-away for improved visibility of the irradiant orangecoloured stylus tip for accurate positioning when cueing. A "heavy duty" shield minimizes stray electromagnetic hum pickup.

A new standard level studio tape is now available from Pyral (UK). This is a ferric oxide polyester based tape, CJ86, available in $\frac{1}{4}, \frac{1}{2}, 1$ and 2 in widths. The main specifications for this tape are: coating $11 \mu \mathrm{~m}$: backing $35 \mu \mathrm{~m}$; intrinsic coercivity $25 \times 10^{3} \mathrm{~A} / \mathrm{m}$; remanent induction $0.092 \mathrm{~Wb} / \mathrm{m}^{2}$; output level for 3% distortion $+11 \mathrm{~dB} ; \mathrm{s} / \mathrm{n}$ ratio 58 dB , s/printthrough ratio 62 dB ; stability at 10 kHz is $\pm 0.01 \mathrm{~dB}$ (this is an improvement over the previous specification due to coating on a new type of machine), reference level is $320 \mathrm{nWb} / \mathrm{m}$. A standard $\frac{1}{4}$ in sample at $38 \mathrm{~cm} / \mathrm{sec}$ will give an output of +2 dB at $1 \mathrm{kHz},+2 \mathrm{~dB}$ at 10 kHz and +3 dB at 15 kHz .

The show was organized by the Association of Professional Recording Studios.

Hewlett-Packard offers total capability in RF signal generators

The Hewlett-Packard range of RF Signal Generators provides you with a state-of-the-art instrument for almost every application and every budget.

It begins with the compact Model 8654A, ideal for use in field service conditions or as an economical instrument in lab and production applications.

Then comes the high performance Model 8640 in two versions, the " A " with dial readout and the " B " with 6 -digit counter readout and phase-lock, both suitable for the stringent fullperformance testing of virtually any type of HF, VHF and UHF receiver.

And finally, the plug-in Model 8660 system, combining the precision, stability and programmability of a synthesizer with the modulation and output control features of a signal generator. Also available in two versions, the "A" for systems applications and the "B" with its calculator derived keyboard for bench use, the 8660 is ideally suited for testing modern communications systems and for use in automatic test applications.

Outstanding spectral purity and noise performance are just two of the features of the Hewlett-Fackard family of signal generators. There is a lot more that would interest you. You ought to get the details.
Just write to Hewlett-Packard Ltd, 224 Bath Road, Slough, Berks. SL1 4DS.

Sales, service and support in 172 centres in 65 countries.

The Sinclair Scientific. Logs,trig and arithmetic.

All at the touch of a button.

Forget four-figure tables. Forget slide rules. At last there's a pocket calculator which gives you log and trig functions instantly - and carries on to complete the calculations which use them - at a price that makes sense.
Because the new Sinclair Scientific costs a mere $£ 49$ (plus VAT).

Here's what you can do
With the functions available on the Scientific keyboard, you can handle directly
$\boldsymbol{\operatorname { l o g }}_{10}$, antilog ${ }_{10}$, sin and aresin, cos and arccos, tan and arctan, automatic squaring, automatic doubling,
x^{y} (including square and other roots),
plus, of course, addition, subtraction, multiplication, division, and any calculations based on them.

In fact, virtually all complex scientific or mathematical calculations can be handled with ease.

Here's what you get
A full 12-function machine The keyboard is as simple as a normal arithmetic calculator's. ('Upper and lower case' operation means the basic arithmetic keys each have two extra functions.)
7-digit scientific notation Display shows 5 -digit mantissa, 2-digit exponent, both signable.
200-decade range 10^{-99} to 10^{+99}
Reverse Polish logic
Post-fixed operators allow chain calculations of unlimited length.
25-hour battery life
The Scientific gives about 25 hours continuous use from 4 AAA manganese alkaline batteries (e.g. MN2400). Complete independence from external power.
Genuinely pocketable format Illustration shows calculator life size ($4 \frac{1}{3}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11}{16}$ "). Weight 4 oz . Attractively styled in grey, blue and white.
Comprehensive guarantee

And all for around $£ 49$.

Here's how to find out more

The Sinclair Scientific is the latest in a long line of Sinclair firsts. Its logic is built into a unique, single integrated circuit, which we designed, and which is exclusive to us. No other machine offers it.
You'll find the Scientific at all the dealers listed. See it, handle it, skim the instructions - find out for yourself how powerful it is, and how convenient to use.

If you've any difficulty, send us a cheque direct. We'll be happy to send you a Scientific in return - calculator, carrying case, instructions, batteries, everything. All on a full 10-day money-back undertaking, of course

Or simply ask for the literature. The Scientific is fully described in a comprehensive, full-colour brochure, with plenty of real-life

$$
\text { E. } 6529-01
$$

Sinclair Scientific available from: Ryman, Dixons, Underwoods, Henry's Radio, Lasky's, Wallace Heaton, larger branches of Boots and Currys; Harrods and Selfridges ; department stores; leading office equipment, electrical and photographic suppliers; and other good stores everywhere. Educational distributors: British Thornton, Philip Harris.
ww- 073 FOR FURTHER DETAILS

What you see is what you get.

The extraordinary Shure SM7 professional microphone features something you've never seen before: a built-in Visual Indication Response Tailoring System that offers you four different'frequency response curves-and shows you the curve you've selected with a grapinic readout (see above) at the back of the microphone! Choose: 1. flat response; 2. bass roll-off; 3. presence boost; 4. combination of roll-off and presence. And there's more: the SM7 delivers exceptional noise isolation with a revolutionary pneumatic suspension mount . . . an ultra-wide, ultra-smooth frequency response . . . an integral "pop" and wind filter . . . and a cardioid pickup pattern that looks "text-book perfect." The Shure SM7 Studio Microphone was extensively field-tested in recording studios and broadcasting stations! Write:

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881
$\Rightarrow \mathrm{CH} \underset{ }{ }$

Electronic telephone exchanges

Conclusion: computer-controlled systems

by M. T. Hills
Department of Electrical Engineering Science, University of Essex

The previous article explained the requirements of a telephone exchange designed to work with the existing network. It also explained the role of electronic techniques, which was primarily in the control rather than the actual switch. This article deals exclusively with the application of computers to the control of telephone exchanges. This type of system is frequently referred to as stored programme control (s.p.c.), In general the computers used are specially designed for the purpose in order to meet the very stringent system reliability requirements and the switches they control are still electro-mechanical as explained in the earlier article.

The major advantage accruing from the use of s.p.c. is that of flexibility. Since a telephone exchange has a life of 20-40 years then many changes are necessary as the system evolves. If the system is controlled by a computer, it is a simpler process to modify the programme than to institute wiring changes and the design and construction of additional relay sets. A further advantage is the possibility of providing remote supervision and maintenance of an exchange via a data link.

A computer-controlled exchange can, in addition, provide a range of new facilities for the actual subscriber, some of which are described later. However, there is little that an s.p.c. system can provide that cannot also be provided by other modern exchanges but usually with less convenience.

From the manufacturers' viewpoint, the advantage of s.p.c. is that hardware can be provided to cater for a wide variety of practical needs and it is possible to produce a family of systems by means of standard processors which interface the appropriate memory and switching equipment.

Principle of s.p.c. system

The first major system based on this principle was the No. 1 ESS designed by Bell Telephone in the USA and put into service in 1965. The general diagram of this system is shown in Fig. 13. The switching network itself consists of "ferreeds" (Fig. 14) which are a modification of a reed relay using magnetic latching rather than an electrical latching.

The complete system is under the control of a central processor which communicates with the switching network by

Fig. 14 A "ferreed"- a magnetically latching reed relay.

Fig. 13 Block diagram of No. 1 ESS stored programme control exchange.

means of a scanner to sense the state of subscribers' lines and relays, and a distributor which operates relays on instructions from the processor. Within the processor there is a real-time clock which interrupts the normal operation of the processor every 10 ms and forces it to start a scan programme. The processor then issues a series of instructions which sequentially interrogate the line conditions of all subscribers. The line condition is detected by means of a device called a ferrod; this is a saturable transformer whose windings are in series with the subscriber's line. To interrogate the line a pulse is applied to one winding, and if there is no line current the device acts as a normal transformer and the pulse may be detected at a sense winding. When there is line current flowing, the device saturates and no output is obtained.

On each 10 ms interruption a proportion of the lines are scanned, so that each line is scanned at least once every 200 ms . Within the computer memory is stored the result of the previous scan and this is compared with the current result to determine whether any change has occurred. If a change has occurred then the address of the line, together with the change, is placed on a list within the computer member for further processing.

When the processor discovers that a subscriber's line has gone from open to closed circuit, it is necessary to connect that subscriber to a register to receive the routing information. The scan programme would have placed the address of the calling subscriber in a list associated with the set-up programme. This set-up programme is initiated at regular intervals and first checks whether the calling subscriber has any special facilities, such as tone signalling. The programme must now find a suitable free register, a path between the calling subscriber and that register and then operate the switch to set up that path.

In order to find the free register and suitable path, the processor maintains a map in its memory of the state of the network. Within the store there is one bit
for each register and each link. If the register or link is busy then that bit is set to " 1 ". A simple check of the appropriate bits will find the free items needed. Instructions are then issued to the distributor to operate the relevant relays and the appropriate bits within the map are set to " 1 ". When call clear down is detected the processor must instruct the distributor to release the relevant relays and clear the appropriate bits within the map.

Once the subscriber is connected to the register he will receive dial tone. If the subscriber has dial pulse signalling the computer can determine the dialled code if it samples the line condition every 10 ms . A simple programme counts the number of make and break pulses to interpret the digits.

When enough digits have been received the programme can determine their meaning which will usually be to a subscriber within the same exchange or to an outgoing trunk line to a particular route. By use of the map in its memory the computer can find the free path and set it up.

It is at this stage that the power of an s.p.c. system may be felt since quite complicated programmes may be used to interpret the dialled digits into actions. Some of the functions that may be performed are described later.

Processor organization

The processor is a specially designed system and has three separate memories.

1 Programme. This contains all the sequences of instructions needed to operate the exchange and provide all the diagnostic aids needed. In the original No. 1 ESS this consisted of a mechanically alterable read-only store. A more recent development of the No. 1 ESS uses an electrically alterable read-only store.

2 Data store. This contains the transient information pertaining to a particular call. In effect it provides the register function. It uses a form of magnetic core store.

3 Translator store. In any particular

The Plessey System 250 multi-processor.
telephone exchange there is a large amount of fixed data which gives information about the directory number and facilities of individual subscribers, the route translations corresponding to the dialled codes, etc. Since the system is designed to have the same programme in all exchanges, the translation data also includes the parameters giving the size and configuration of the particular exchange. In the original design this, too, was a mechanically alterable read-only store and this, too, is converted to an electrically alterable read-only store in the recent developments.

One of the main design problems of a computer-controlled system is that of reliability. A single fault in the processor could make the complete exchange inoperative. Existing electromechanical systems have a very high system reliability and the probability of an electromechanical system going off the air for more than a few seconds is of the order of once in 50 years. The mean time between failure for a processor is far below this. In the No. 1 ESS system the processor is completely duplicated. There are two memories, two processors, two highways, two scanners, etc. A number of fault-detection circuits are incorporated in the system and if any malfunction is detected then both processors are automatically put into a selfdiagnosis routine in order to find which processor is working and which subsystems, such as translator memory, are working. Unless the detected fault is severe this self-diagnosis will merely deny service requests for a few seconds and it will not affect established calls. However, if the fault has been such that the stored information has been corrupted it may be necessary to break down all established calls and restart the programme with a clear memory.

Because of the self-diagnosis and the necessity for a range of restart procedures depending upon the severity of the fault, this part of the programme can be as much as that used for normal processing. In the No. 1 ESS the total programme size is over 100,000 words, each of 44 bits.

The cost of this type of system is high and it is therefore only economic when it is controlling a large number of lines. Another area of application is the exchanges providing access to the international network, where the signalling requirements for the many different international circuits are complex.

The other main area where computercontrolled systems will have an immediate application is in the computerization of operator-assistance positions. The use of a computer-controlled system can provide a wide range of additional facilities to the operator and thereby make her work more efficient. This represents a large saving to her administration and therefore pays for the computer system. A further saving in this application results from the use of p.c.m., since it is possible to locate the operator boards up to several hundred miles away from the actual switch and interconnect via p.c.m. links. This
means that the operators may be located in places where there is a ready availability of labour and one does not have to rely on their location at the centre of large cities where accommodation and labour are scarce.

Additional facilities offered by s.p.c.

The main economic advantage of s.p.c. is to the administration in that it can save manpower in the process of managing the exchange. For instance, with an s.p.c. system it is possible to change the subscriber's information by means of a teletype situated at some central point. One use of this would be to set in the data store information which indicated to the programme that a subscriber was barred outgoing calls. Thus when a subscriber is late in paying his bill, all the administration need do is to type his number plus a code, rather than send an engineer to the local exchange to make a wiring change. Other management facilities are traffic measurement, remote maintenance, etc.

A wide range of additional facilities is also available to the subscriber himself, but it is not yet clear how much more he would be prepared to pay for these services. Some examples of services are:

Personal code calling. Each subscriber can maintain a list in the exchange of frequently called numbers. If this list has fewer than 100 numbers they can be recalled by means of a two-digit code only.

Transfer of calls. By dialling a special prefix code followed by another number the computer can arrange that any future calls to the subscriber's number will be transferred to the new number. This is a service which is currently provided for doctors but needs prior arrangement with the Post Office. Under computer control the facility would be available to anybody and to any other number (within the same exchange area). This could be very useful if someone was visiting a neighbour but expecting a telephone call.
"Follow-me." This is an alternative version of the transfer of calls, whereby a person may dial a special code followed by his own telephone number which will divert calls made to his number to the telephone at which he initiates the request. In other words his calls can be made to "follow him around". Naturally, precautions must be taken to prevent unauthorized use of this facility.

Call waiting. When a subscriber is already on a call, if a further person tries to ring him he may be given a short tone to inform him that somebody else is trying to get him. He then has the option of terminating his existing conversation, in which case he will be rung as normal, or, in some cases, by sending a signal to the exchange he can switch to the new call and talk privately to this person while still holding the original call.

Fig. 15 Principle of multi-processor control system.

Alarm-clock calls. By dialling a code followed by a time the subscriber can arrange for his telephone to be rung at that time and connected to some recorded announcement.

These are only a few of the facilities that can be offered, but at the present time these are just a useful bonus to the use of s.p.c. rather than an economic justification for s.p.c. itself.

Current developments in computer systems

In order to increase the area of application of computer-controlled systems, a considerable reduction in their cost is necessary for the smaller exchanges. Current development of systems in North America and Europe is aimed at reducing the cost of the existing systems by using up-to-date technology and more streamlined construction. Since a high proportion of the cost resides in the programme memory. ways have to be found to either reduce the cost of the memory or reduce the amount of the memory that is necessary. In a duplicated system there are two copies of the programme contained in a magnetic core store (or possibly semiconductor memory store). Alternative approaches to duplication are being developed in the UK by GEC and Plessey. These aim to reduce the total cost of the memory and increase the reliability of the system by using what is called a multi-processor system. In this type of system (shown in Fig. 15) the processor part of the computer is separate from the memory and two or more processors each have access to all memory banks. In general only one copy of the programme is stored in the memory bank, and sophisticated hardware checks are used to ensure that it has not been corrupted. A spare copy of the programme is kept on some form of backing store such as a magnetic drum. This type of backing store provides a much lower cost storage medium but the access time would be too slow for normal use. However, under fault conditions it is possible to copy a new version of the programme into a magnetic core store. The GEC Mk. IIB and the Plessey system PP250 are both examples of this type of organization.

An alternative approach to cost reduction, being pursued by the British Post Office as well as by many other administrations abroad, is that of area control. Although a particular exchange may need extensions of only 1,000 or so lines in any particular year, within an area the total number of lines installed in a year could be sufficient to justify a computer-controlled exchange. The concept of area control envisages a computer centre which can control a number of remote extensions by means of data links. Thus the cost of the centralized processor system may be shared by a number of installations.

One of the other design problems of a computer-controlled system is the massive programme needed to control and maintain the system. Of recent years much effort has been put into the development of software aids to simplify the programming tasks and to make possible the modification of the programming to add new facilities, etc., once the system has been accepted into service. The first conference on software Engineering for Telecommunication Switching Systems took place at the University of Essex. This drew an international audience of experts from as far away as Australia to discuss and compare the techniques that have been developed, which include high-level real-time programming languages and other software aids.

The future

The British Post Office has recently announced its plans for the modernization of the telephone network. This provides for a gradual replacement of Strowger equipment by more modern systems which are capable of providing not only improvement in service quality but also additional customer facilities. These plans involve a continuation of cross-bar systems and the introduction of the new TXE4 reed-relay system for the new large exchanges. Development is proceeding towards what has been called System X for the future, which is likely to be introduced from about 1980. The details of System X and the balance between electronic switching, computer control, digital transmission and so on, is currently being decided. The next few years should be very exciting for the telephone engineer.

World of Amateur Radio

Solid-state 1296 MHz beacon

More than a thousand man-hours of work spread over nine months have enabled Dunstable Downs Radio Club to bring on the air an all-solid-state 1296.05 MHz beacon station, GB3DD. This is located near Luton, Bedfordshire, with the fre-quency-shift-keyed transmitter providing 18 watts output.
An HB9CV-type two-element aerial enclosed in a glass-reinforced plastic sphere is mounted 130 ft above ground (805 ft above sea level) with the main lobe directed northwards. The crystal-controlled exciter built by club members provides 600 mW drive at 1296 MHz from a MA4661 varactor multiplier driven by 5 watts from a 2 N 3632 transistor. The drive is fed to the power amplifier through a tuned filter which reduces all spuriae to better than 45 dB below the 1296 MHz signal.

The power amplifier (2N6265/2N6266/ TA8695) has been specially developed for the club as an experimental project of the RF Applications Division of RCA, Sunbury-on-Thames, using strip-line construction for the tuned lines and matching sections. The diode-matrix keyer repeats the callsign every 15 seconds with 800 Hz frequency shift.

Reception reports will be welcomed by the beacon keeper (G3ZFP). Early reports confirmed reception of the station up to about 30 miles away with reduced power.

A clearer Top-Band?

Stewart Perry, W1BB, in his latest " 160 metre DX bulletin" reports that there is a good chance that the Loran A transmissions just under 2 MHz may be fully phased out by July 1, 1980, in favour of low-frequency Loran C or Omega navigational aids. Loran A pulse transmissions have been a major source of clutter on the band ever since World War II. American amateurs are hoping that as a result the full 1.8 MHz band will be restored to them.

Stew Perry also comments on the recent kidnapping of Fred Laun, LU5HFI (a prominent DX station on 1.8 MHz and h.f. bands), from his house in Cordoba,

Argentina; later to be shot and left gravely wounded on a river bank. Fred Laun is an American amateur, W9SZR, who as a member of the US Information Service, has in recent years been very active both in Argentina and in the Far East under such callsigns as XV5AV, HS5ABD. It seems that his elaborate amateur station caused him to be suspected by local guerillas of clandestine activities and his equipment was taken by them.

Interest in long-distance operation on 1.8 MHz continues unabated although W1BB urges amateurs to "check the band more often, several times when conditions have been good there has been no one on to take advantage of them". W4HYY now has 45 ground radials, from $20 f$ to 130 ft long, under his 75 -ft tower. G3RBP has a $600-$ ft -long wire aerial, 150 ft high. The general view is that vertical aerials are best for long-distance working but only if used with a very good earth system. W1BB believes that the ideal system is to have a vertical and a dipole plus several different receiving aerials such as Beverage and a loop-the use of loop receiving aerials which allow Loran or other interference to be nulled out has become increasingly popular. One recent design for a receiving loop uses 20 ft of coaxial cable to provide a shielded construction; another popular design consists of several turns of wire on a frame with about 40 -in sides.

Gaps in the ranks

Sadly, the deaths of a number of well-known amateurs have been reported in recent months. Prof. Werner Nestel, DL1ZB, was very well known in professional as well as amateur circles for his pioneer work in encouraging v.h.f. broadcasting in West Germany just after the war and his distinguished career with AEG-Telefunken. Jean Lips, HB9J, was one of the first European amateurs ever to work 100 countries in the 'thirties. Leslie Cooper, G5LC, was the 1953 president of RSGB and for some years the president of the Thames Valley Amateur Radio Transmitters' Society.

Realistic aerial gain?

One of the problems of the amateur operator (and the professionals) is that of accurately measuring the radiation from an aerial. Over the years this has led to the creation of various myths and "old wives' tales". One well-known example is the widely held belief that even a moderate v.s.w.r. on coaxial cables, say 1.5 to 2.5 , implies that considerable power is being lost by reflection. Similarly h.f. aerial gain from rotary beams is still frequently overestimated despite considerable efforts by Leslie Moxon, G6XN, to show that very few rotary h.f. beams can expect to break a "gain barrier" of about 6 dB (reference dipole) and that much of the time, effort and money spent on constructing monster arrays could be put to more effective use by resting
content with a two-element beam but putting it at the maximum possible height; he also disputes the view that there are "optimum" heights for horizontally polarized aerials that produce more low-angle radiation when erected over "real" earth. One method of breaking the gain barrier is to use two separate two-element arrays which even without careful phasing can provide up to 8 dB of power gain. But despite his efforts one still finds many claims of rotary h.f. aerials giving power gains of from 8.5 to 10 dB .

In brief

The Crystal Palace repeater transmitter, GB3LO, may be operational by about mid-July. . . . During May the $150-\mathrm{ft}$ dish aerial of the Stanford Research Institute in California was used for a series of 144 MHz moonbounce tests, with WA6LET transmitting on 144.080 MHz and listening 144.075 to 144.105 MHz . \qquad There appears to have been a marked reduction of Sporadic E in late spring this year compared with 1973. . . . Ionospheric solar activity predictions have been revised downwards and by late autumn may be very low and approaching minimum. . . . Although FCC figures show that less than 1% of US radio frequency interference complaints are actually due to amateur transmissions, the ARRL recognizes that this is still an important source of tension between amateurs and their neighbours and has set up a new "RFI task group" to co-ordinate efforts to obtain new legislation on receiver immunity and to improve consumer education about r.f.i. . . . The British Amateur Radio Teleprinter Group recently sampled opinions of members on the use of 45.5 or 50.0 bauds for v.h.f. and h.f. teleprinter operation; in both cases there was a better than two-to-one vote in favour of 50.0 bauds. . . . A US Supreme Court ruling has postponed the higher licence fees that FCC were seeking to impose and one result is that American amateurs will continue to pay $\$ 9$ for a licence lasting five years. . . . An ARRL Foundation has been formed with a view to funding worthwhile projects including support for Amsat (Radio Amateurs Satellite Corporation).... In proposing a basic frequency allocation plan for 40 GHz and above, the FCC has proposed that amateurs should share the following bands with radiolocation services: 48-50, 71-76, 165-170, 240250 GHz and all above 300 GHz . . . Senator Barry Goldwater, K7UGA/K3UIG, has received the new David Sarnoff Award of the Radio Club of America-and a firm recently announced "We will gladly install your beam antenna on the White House at no charge".

PAT HAWKER, G3VA

Continuous "on-call" facilities with long battery-life

1 -Design considerations

by D. A. Tong, B.Sc., Ph.D. (G8ENN)

Abstract

Working in the amateur band, $144-146 \mathrm{MHz}$, the transceiver described provides reliable communication between identical units at ranges up to three miles. A continuous on-call mode provides for a "bleep" tone call-warning.

Pocket radiotelephones are no longer unusual in the commercial world but commercial and amateur requirements are different in some respects and this is reflected in the detailed specification of the units described here. Although the r.f. design is obviously crucial to the success of any transceiver, other more unusual parts of the design are equally important in equipment of this type. They arise from the requirements that the receiver must be able to monitor a frequency for long periods without flattening the battery or annoying the operator, and therefore, it must emit no sound when not receiving a genuine call, and that controls must be reduced to an absolute minimum (in this case on/off, volume, push-to-talk, and preset squelch).

Further points which apply especially to the amateur situation are as follows. The transceiver is likely to be carried in a variety of locations such as pocket, handbag, or briefcase, and it is essential that any call should be easily heard despite high acoustic noise levels. This makes some kind of loud calling device essential. Good weak-signal reception is more important than high signal-to-noise ratios when the signal is fairly strong and therefore amplitude modulation seems more appropriate than narrowband frequency modulation. S.s.b. and d.s.b.s.c. were ruled out (but only just) at the time of construction for reasons of complexity and therefore ordinary clipped a.m. was chosen. Traffic on the channel is liable to be very sparse since there will be few stations in the net. In a typical twelve hour period the transceivers tend to be used for only about five minutes in all. The minimum duration of an initiating call is about ten seconds since one is obliged by the terms of the amateur licence to recite two call-signs of four or five letters each. The equipment need not meet such stringent spurious response and emission regulations as in the commercial case.

The very low active periods allow the power consumption problem to be solved at the expense of circuit complexity by making the receiver function for only 200 ms in every three second period; the mean current drain on standby is then only

2 mA . If a signal is present during the "on"period the receiver must lock on and open the squelch, and this must occur reliably even though the signal is very weak. In this receiver a signal of 0.2 microvolts measured at the aerial socket is sufficient to do this. Such a signal is not quite intelligible and therefore the system is fail-safe since any usable signal is certain to be detected.

It is important to the user that false alarms beं very rare and this means that the squelch setting has to be independent of temperature, interference levels, and the state of charge of the battery. In this design compensation against these parameters is such that the squelch control can be preset. When, however, the battery voltage begins to fall rapidly at the end of its charge, the squelch sensitivity alters and the receiver unmutes as a warning. This feature relies on the very flat voltage versus time characteristic of sintered plate nickel cadmium bat-

General view of the pair of two-metre transceivers ready for use. Also shown is the mains battery-charging unit which plugs directly into a 13 amp power point.
teries. When discharge is nearly complete the battery voltage drops rapidly. This type of battery is by far the most economical and practical choice for this kind of equipment. Its operational lifetime is over two hundred charge cycles, its low internal resistance simplifying decoupling problems and allowing quite large currents to be taken on "transmit". In this design the battery is soldered in and the transceiver case need only be opened for servicing.

Mechanically the transceivers are designed around the battery and loudspeaker since these determine the thickness of the complete unit. Overall dimensions of the transceiver case are $122 \times 67 \times 28 \mathrm{~mm}$, which is smaller than any of the commercial equipment known to the author.

Although details of the printed circuit layout are given later it must be realized that the construction of the transceiver requires a lot of dexterity, skill and patience, and also access to test equipment. Failure to appreciate this could result in the waste or even destruction of some quite expensive components. Construction should only be attempted by those with successful previous experience of miniaturized construction, and with large amounts of patience and a steady hand. On the other hand if the circuitry were built on a larger scale the construction would be much simplified. It is believed that the basic circuit is fairly reproducible and, indeed, this was one of the design criteria. Two identical units have been built by the author and a third complete unit existed during development in the form of a bread-board three square feet in area. All worked satisfactorily. It is still likely however that some combinations of components may require slight changes in component values and this is where a full understanding of the circuit operation and much manual dexterity become essential.

The transmitter

On the basis of previous experience with a portable transceiver ${ }^{1}$ and in the interests of battery life, the average r.f. power output is limited to a nominal 100 mW . With such low power it is very important that the modulation percentage is kept high but that over-
modulation is prevented. Further, to obtain maximum "talk-power" it is essential that the mean-to-peak amplitude ratio of the speech waveform is increased by clipping. Clipping to the extent of 20 dB causes little reduction in the intelligibility of a received signal but increases its "loudness" enormously. A modulator with speech clipping imposes several requirements. The clipping should be symmetrical so that only odd harmonics are generated and distortion is therefore reduced. Clipping levels should be proportional to battery voltage so that a constant modulation depth is maintained. A low-pass filter must follow the clipper, otherwise the harmonics of the audio signal which are generated in the clipping process greatly broaden the transmitted bandwidth and cause interference on adjacent channels. The frequency response of the modulator after the clipper should extend to very low frequencies to avoid differentiation of the square low-frequency waveforms from the clipper. Pre-emphasis of high frequencies is desirable before the clipper so that the more intense low frequencies in the speech waveform do not dominate the clipping process. The signal-to-noise ratio of the microphone amplifier should be good in view of the high gain involved.

All of these properties are achieved with an unusual economy of components in the modulator section of the complete trans-
mitter circuit shown in Fig. 1. Advantage is taken of the high gain and low offset of the 741 operational amplifier. Moreover, the 741 has a very clean overload response and its output voltage swing limits at about 1 volt and ($V_{c c}-1$) volts so it performs well as an amplifier and supply voltage-compensated clipper. Because of its internal frequency compensation the open loop gain of a 741 falls from 100 dB at d.c. to only 50 dB at 3 kHz . The gain needed between the microphone and pin 6 of the 741 is that needed to raise the microphone output with a quiet talker (say 20 mV peak-to-peak) to ($V_{\text {cc }}-2$) volts peak-to-peak plus an extra 20 dB to allow for the clipping. The total gain is therefore $20+20 \log 7.6 / 0.02=72 \mathrm{~dB}$ and therefore the gain of the 741 alone is insufficient, especially since negative feedback is desirable at 3 kHz . Because of this a further low-noise transistor $T r_{1}$ is included in the feedback loop. Remembering that an op. amp. in a negative feedback configuration tries to maintain its two inputs at the same potential, it will be seen from Fig. 1 that the d.c. feedback loop will act so as to bring pin 3 of $I C_{1}$ to the potential defined by the potential divider $R_{9,10,11}$. But the base-to-emitter voltage of a silicon planar transistor remains close to 600 mV for a wide range of input currents; therefore, since the junction of R_{9} and R_{10} has a welldefined voltage, so has the base of Tr_{1}. In

Fig. I. Circuit of transmitter and modulator. Points labelled A, B, C, D, E refer to corresponding points in Fig. 3.
turn, this means that so does the output terminal (pin 6) of the op. amp. and by suitable choice of $R_{7,8,9,10,11}$ the mean output voltage of the op. amp. can be made to remain midway between the two clipping voltages i.e., at a voltage of $\left(\left(V_{c c}-1\right)+1\right) / 2$ $=4.8$ volts. The full d.c. gains of $I C_{1}$ and $T r_{1}$ are available to maintain this condition which is subject only to the small temperature variation of base-to-emitter voltage of $T r_{1}$.

The gain to a.c. is given by ($R_{12} \cdot Z_{C 14}$)/ $\left(Z_{C 14}+R_{12}\right)\left(Z_{C 12}+R_{6}\right)$ and these values were chosen to give a rising response up to about 3 kHz and then a falling response.

Great care is necessary in high gain modulators to avoid rectification of the modulated r.f. signal in the input circuits of the speech amplifier, otherwise serious instability is likely. Stability is ensured here by isolating $T r_{1}$ from r.f. with the two r.f. chokes $R F C_{3,4}$ and resistor R_{7}. The connection between the transistor case and these components must be as short as possible (less than say 6 mm). It is also very desirable (possibly essential) to use a version of the 741 in an earthed metal can. Pins 1 and 5 (offset null) should also be clipped off at source to reduce pick-up.

The function of $\operatorname{Tr}_{2,3,4}$ is firstly, to bring the +1 to $+(9.6-1)$ voltage swing at pin 6 of $I C_{1}$ nearer to the nominal 0 to +9.6 swing, at low source impedance, required for the supply to the r.f. power amplifier $T r_{7}$. Secondly they provide the low-pass filter function and therefore saturation or cut-off in $T r_{4}$ must be avoided. The output voltage at $T r_{4}$ collector is an amplified version of the voltage at the base of $T r_{2}$ minus the 0.6 volt base-emitter drop of Tr_{2}. Thus if R_{13} and R_{14} are such that the minimum voltage at pin 6 of $I C_{1}$ (i.e., 1 volt) is reduced to just above 0.6 volts, that at T_{4} collector will be close to zero. The ratio of R_{16} and R_{17} will not affect this lower end of the output swing but can be chosen to give the correct voltage gain to make the upper end of the voltage swing nearly cause Tr_{4} to cut-off.

Between the emitter and base of Tr_{2} there is close to unit voltage gain and this fact is utilized to form a Sallen and Key type of low-pass filter with a cut-off frequency of about $3 \mathrm{kHz} . \operatorname{Tr}_{3}$ is used to increase the power gain of Tr_{4}.
Turning now to the r.f. section of the transmitter, only three stages are needed to generate 500 mW peak power. $T r_{5}$ is used in a conventional overtone oscillator circuit and uses a p-n-p transistor to allow directcoupling to the following class \mathbf{B} doubler stage, Tr_{6}. The power amplifier uses a 2N4427 which has good v.h.f. power gain at low supply voltages and is proof against almost any abuse, such as transmitting without an aerial, when used at this power level. The interstage matching networks are conventional in form but unconventional in that fixed capacitors are used in the final construction. Tuning is carried out by altering the pitch of the coils, which are initially close wound with 34 s.w.g. enamelled copper wire using miniature $1 / 8$ th watt carbon resistors as formers. The actual component values were determined during initial test . work on the bread board circuit. Several
versions of this design have also been built up in larger form for use as separate lowpower transmitters and it is then more convenient to use film dielectric trimmers for $C_{1,6,7,10,11}$ (e.g., Mullard 80801001, 5 to 60 pF for C_{1} and 80800006,2 to 20 pF for the others).

The send/receive switching for the aerial is novel and purely electronic. In the transmit mode the supply voltage is applied to the crystal oscillator and doubler stages and therefore Tr_{7} draws current and this current passes through D_{2}. The dynamic impedance of this diode ($R_{D 2}$) is then low and the r.f. voltage at C_{9}, and hence that fed to the receiver, is equal to the voltage at Tr_{7} collector multiplied by $R_{D 2} / Z_{L 3}$. This fraction will be small and the receiver is fully protected but little or no transmitter power is wasted. When receiving, on the other hand, $T r_{7}$ has no drive and its collector is effectively isolated from base or emitter except for interelectrode capacitance. Moreover D_{2} anode is at chassis potential (because pin 6 of $I C_{1}$ is also at chassis potential) but D_{2} cathode is at +9.6 volts because of R_{5}. Hence D_{2} is reverse biased and behaves like a small capacitor of say 2 pF . The equivalent circuit is now as shown in Fig. 2, where C_{x} is the capacitance of D_{2} and C_{y} is the output capacitance of Tr_{7}. In effect, the receiver is connected to the aerial via a low-pass filter and matching network and very little attenuation occurs.

Receiver

General description. Because of its quite stringent and unusual performance requirements the receiver section of these transceivers is much more complex than the transmitter. For this reason, after an initial outline of its overall design, the discussion will be split into sections dealing with major aspects of the complete circuit.

Unlike most amateur receivers, the actual radio frequency sections of this receiver comprise only about 50% of the total hardware. The rest includes the equally essential squelch, battery-saving and "bleeper" circuitry. In order to fit all this into a small space integrated circuits have been used wherever possible. This has other advantages also. Integrated circuit i.f. strips generally comprise a broad-band amplifier with a.g.c. followed by an active detector. It is then practicable to "lump" all the i.f. selectivity into one filter unit so that no alignment or coil winding is required. Also, since gain is cheap and convenient to obtain in integrated circuit form, it is feasible to trade gain for convenience in other parts of the circuit. In this case, for example, m.o.s.f.e.t. mixers are used with resistive loads in order to eliminate a wound tuned circuit. In the control parts of the receiver, i.e., in the squelch, battery saving, supply routing, and bleeper sections integrated logic circuits are used and allow complex properties to be built-in using very little extra space.

One disadvantage of i.cs is that many of them consume more supply current than a design using discrete transistors. When this is taken into account, the number of devices suitable for equipment of this type is drastically reduced. The LM372 (National Semiconductor (U.K.) Ltd.) is exceptional in

Fig. 2. Equivalent circuit of transmitter r.f. output network in the receive mode. C_{x} is the capacitance of D_{2} and C_{y} is the output capacitance of Tr_{7}.
consuming only 2 mA total supply current while providing a coinplete a.m. i.f. strip with a.g.c. and active detector. Its internal biasing is also well temperature compensated and this is exploited in the squelch design. The Plessey Semiconductors SL600 communications series of i.cs also have a high performance which it would be uneconomical to match with a discrete design, and two of these, the SL612 i.f. amplifier and SL630 class-B push-pull audio amplifier are used here. The first consumes only 4 mA at 6 volts and the second 5 mA (quiescent) at 6 volts. Of the many logic families now available, only the m.o.s.f.e.t. types have a power consumption low enough for use in the battery saver. The reason is that the logic circuitry is continuously energized and its consumption must therefore be negligible compared to the time-averaged receiver current during stand-by (2 mA).

As yet there are no competitive i.cs available for use as low-noise input amplifiers at signal frequencies as high as 145 MHz . A dual-gate m.o.s.f.e.t. is therefore used. Similarly, although a double-balanced i.c. mixer operating up to 200 MHz (but with unspecified balance figures) with 2 mA current drain is available (Siemens SO 42P), its use would incur a size penalty compared with a dualgate m.o.s.f.e.t. and a significantly better performance seems unlikely. The more sophisticated Plessey SL640 double-balanced mixer has a quoted upper limit of 150 MHz at reduced performance but consumes about 12 mA .
R.f. design. In the preceding discussion the superheterodyne type of receiver was assumed. This choice is dictated partly by the high radio frequency involved but mainly by the availability of suitable filters and i.cs. In fact a double conversion design was chosen with intermediate frequencies of 10.7 MHz and 455 kHz , despite the current trend to single conversion in commercial equipment. Every conversion process introduces possible spurious responses and complicates the overload properties, but the former are not quite so important in amateur work and are more than outweighed by the following considerations. Quartz crystal block filters at 10.7 MHz tend to be larger and more expensive than ceramic filters operating at 455 kHz ; the low-current LM372 i.f. strip has a specified upper frequency limit of only 2 MHz ; monolithic ceramic block filters at 10.7 MHz with a bandwidth of 300 kHz and 50 dB stop-band attenuation are readily and cheaply avail-
able because of their widespread use in domestic f.m. tuners. The use of two of these filters virtually eliminates the second image response which is often a serious problem in amateur v.h.f. receivers since, when translated up by the first mixer, the second image frequency lies within the amateur band. (By "second image" is meant the response at $10.245-0.455 \mathrm{MHz}$, where 10.245 MHz is the second local oscillator frequency.)

The complete circuit diagram of the receiver is shown in Fig. 3 and the r.f. sections will now be discussed in detail. The signal input is applied via the tuned circuit, $L_{5}-C_{42}$, to gate 1 of a 40673 dual-gate m.o.s.f.e.t., Tr_{21}. After amplification, the signal is coupled to the first mixer, Tr_{22}, inductively through two further tuned circuits. This gives over 40 dB rejection of the first image frequency at $f_{\text {in }}-(2 \times 10.7) \mathrm{M} \mathrm{Hz}$ which is adequate in this application. The high input and output impedances of f.e.ts are a great help in obtaining good working Q values. Local oscillator injection is applied to gate 2 of Tr_{22}, again by inductive coupling between two tuned circuits (L_{8} and L_{9}) since good selectivity at the injection frequency is important in reducing other spurious responses. The local oscillator Tr_{23} functions as a combined overtone oscillator and frequency doubler. Oscillation at the correct overtone is ensured by $L_{10}-C_{53}$ which tune to the quoted crystal overtone frequency, whereas $L_{9}-C_{51}$ are resonant at the second harmonic of this. Remote selection of alternative crystals can be achieved using diode switches as shown in the alternative local oscillator circuit shown in Fig. 4. Separate trimming capacitors are then required for each crystal frequency. The receiver could easily be made to tune the whole two-metre band if a suitable tunable oscillator replaced the crystal controlled oscillator.
Instead of the usual tuned circuit, a resistor is used as the load for Tr_{22} and the 10.7 M Hz ceramic filter (Vernitron FM4) is directly connected. Similarly the output of the filter is directly coupled to the input of the first i.f. amplifier, $I C_{8}$. The quoted input and output impedances of the FM4 are only 330 ohms but mismatches affect the passband ripple rather than the stopband attenuation and the former is of little importance in this application. A load resistor of $1.8 \mathrm{k} \Omega$ is therefore used since the use of a 330 ohm load would throw away too much gain.

The SL612 has a noise figure of 3 dB , a voltage gain of 50 defined by internal negative feedback, and an a.g.c. range of 70 dB . Gain decreases as the voltage at pin 7 rises from +2 to +5 volts (nominal). The few connections to the SL612 amplifier typify the simplicity of circuitry using the SL600 series. Note however the need to treat the input earth connection (pin 4) independently of the output earth (pin 8) to avoid "common impedance" instability. The supply voltage to $I C_{8}$ is dropped by R_{65} and r.f. decoupling is "on-chip". Because of the excellent a.g.c. range of the SL612 and the intentionally low gain preceding it, it has not been found necessary to apply a.g.c. to the r.f. stage.
A second FM4 filter (FL2) is used to couple the output of the SL612 to gate 1 of
the second mixer, Tr_{9}. Again the mismatching is deliberate. On the other hand the main selectivity-determining filter at 455 kHz (FL1) must be correctly terminated and the load resistor $\left(R_{25}\right)$ for $T r_{9}$ is close to the value of $2 \mathrm{k} \Omega$ quoted for the filter (Murata type CFS-4551). The latter is a 15 -element ladder filter with a bandwidth of 4 kHz at -6 dB and 10 kHz at -70 dB . The insertion loss is $10 \mathrm{~d} \dot{\mathrm{~B}}$ and overall dimensions are only $29.0 \times 9.5 \times 7.5 \mathrm{~mm}$ wide. Unfortunately the importers are unable to supply one-off quantities of this filter but Wireless World have made arrangements to supply the filters to intending constructors. The worst spurious response quoted for the filter is 52 dB below the passband and is at about 1.1 MHz . In order to further attenuate this and other weaker responses a single ceramic resonator (Murata type BFB-455A) is used to bypass the source of Tr_{9}.

The second local oscillator, Tr_{8}, is crystal controlled at the frequency 10.245 MHz . Although quite good, its waveform purity is not so important as for the first oscillator because of the better selectivity preceding the second mixer.

The remaining part of the r.f. section is the 455 kHz a.g.c. unit, gain block, and active detector ($I C_{2}$). The• LM372 contains two amplifiers, the first of which has an a.g.c.
range of about 60 dB and the second of which has a fixed gain. Coupling between them is by C_{22}. The output of the detector (pin 6) consists of a steady voltage, V_{0} (about 1.6 volts), superimposed on a voltage proportional to the carrier level of an incoming signal, V_{1}, and an alternating component representing its modulation (e.g. $V_{1} \sin \omega t$ for 100% modulation). An internal resistor of $50 \mathrm{k} \Omega$ connects pin 6 to the a.g.c. point (pin 5) and in conjunction with an external capacitor removes the modulation component. For reasons explained in the battery saver section, the a.g.c. capacitor, C_{61}, is gated by a f.e.t., Tr_{24}, whose "on" resistance is too great to allow good r.f. bypassing and therefore C_{25} is also added. Pin 5 of the LM372 is an internal feedback point and must be decoupled to a.c. by C_{24}. The remaining d.c. connections to $/ C_{2}$ are used for squelch, noise-limiter, and first i.f. a.g.c. purposes and these are discussed later.

It will be noted that there are no wound inductors after the first mixer. This was deliberate and greatly simplifies the stable miniature construction and alignment of the complete receiver. Further the inductive coupling at both inputs to the first mixer reduces the component count and yet allows ready adjustment of overall gain and oscil-
lator injection level. Fixed capacitors are used for the r.f. tuned circuit and alignment is carried out as in the transmitter (details are given later).

Audio section. In this receiver the audio power amplifier ($I C_{7}$, an SL630) has a dual function. On receipt of a call after a period of stand-by operation it is made to act as an audio-frequency oscillator to generate a loud calling tone in the loudspeaker. Having served this alerting purpose it must then function as a normal linear amplifier. Two audio gates are used to achieve this. The first, Tr_{19}, is a p-channel junction f.e.t. and gates the path from the demodulator in $I C_{2}$ to the input of $I C_{7}(\operatorname{pin} 5)$. The second, D_{10}, controls a positive feedback path between output (pin 1) and input of $I C_{7}$. The frequency of oscillation depends on C_{38}, the current through D_{10}, and the loudspeaker impedance. Both audio gates are controlled by a logic system (see later section). The gain of the SL630 depends logarithmically on the potential at pin 8 and is controlled by the volume control, $V R_{2}$. Since, however, $V R_{2}$ is fed from the logic system, the latter can always increase the gain to maximum when oscillations are required by lowering the voltage on $V R_{2}$ to chassis potential.
The SL630 can be muted by shorting pin 7

to pin 10 and this is done by Tr_{20} when'so commanded by the squelch and noise limiter circuitry. An odd backlash effect during squelch operation was cured by adding C_{62} to the unused differential input (pin 6). Highfrequency roll-off in the frequency response curve is obtained with C_{37}. The available audio power output is about 100 mW and is quite adequate for the internal speaker.

Squelch and noise silencer. The combined squelch and noise silencer system used in this receiver is believed to be novel and uses a single audio gate which is opened when an incoming signal exceeds a preset threshold level but which closes momentarily for the duration of any interference pulse which exceeds the level of 100% modulation on the incoming signal. Moreover the squelch is noise-compensated so that impulse interference does not remove the muting. We first discuss the squelch aspects of the circuit.

The provision of reliable squelch for a.m. receivers is complicated by the similarity in the smoothed detector output resulting from both genuine a.m. signals and the many forms of interference. The weakest signal to
be detected will produce only a small voltage change at the detector and the squelch circuitry must be designed as a low-drift d.c. amplifier. In the case of integrated i.f. strips, the built-in detector usually has a much larger quiescent voltage superimposed on its signal-derived output and even small drifts in this quiescent level due to temperature and supply voltage can be large relative to changes caused by the wanted signal. A more subtle point related to this is that when a battery saving technique is used, the chip temperature and hence the quiescent output voltage, will depend on whether or not the supply voltage is being pulsed or is on continuously. If neglected, this effect causes the squelch threshold in the two cases to differ : a highly undesirable result.

These difficulties have been overcome by using a differential system and this is made possible by the fact that the d.c. feedback point (pin 5) on the LM372 has virtually the same voltage shift with temperature and supply voltage as does the detector output. Fig. 5 shows the squelch part of the circuitry in simplified form. Tr_{12} and the composite transistor formed by $\operatorname{Tr}_{10.11}$ form a

Fig. 3. Circuit of receiver including send-receive switching components.
long-tailed pair amplifier fed differentially from the a.g.c. line and the voltage at pin 5 of the LM372 (1.26 volts). The complementary pair, $\operatorname{Tr}_{10,11}$, are used so as to avoid loading pin 7 (its internal resistance is $50 \mathrm{k} \Omega$) but without the extra temperature-dependent offset voltage that an ordinary Darlington pair would introduce. In the absence of a signal, Tr_{20} must conduct to mute $I C_{7}$ and therefore so must $T r_{12}$. This is arranged by adding a small, variable voltage increment to $T r_{12}$ base from the squelch potentiometer $V R_{1}$, which is adjusted so that just enough current flows in R_{32} to bring the gate of the m.o.s.f.e.t. below its threshold potential (about $+V_{c c}-4$ volts relative to chassis). Then, when the a.g.c. line rises slightly Tr_{12} tends to turn off and therefore so do the m.o.s.f.e.t. and $T r_{20}$ and the muting is removed. The overall gain is sufficient to give "snap-action" without any backlash.
It will be observed that $V R_{1}$ introduces a non-compensated fraction of supply voltage variation into the otherwise balanced system. This is however an advantage since it tends to cancel out the effect of increased gain in the r.f. section of the receiver when the battery voltage is high.
The m.o.s.f.e.t. shown in Fig. 5 is in fact an input transistor in a logic gate. Its high input impedance is essential for the battery saver circuit which is described later.
The noise silencer part of the circuit must compare the detector output voltage with a threshold voltage which is equal to the detector output on peaks of 100% modulation for any incoming signal strength. Then whenever the detector output exceeds the threshold, the squelch gate must close. In practice it is more convenient to use the a.g.c. potential as the threshold and to halve the amplitude of the demodulated audio signal before the comparison. These voltage relationships are shown in Fig. 6. The differential amplifier is readily altered to include this extra comparator function. The a.c. component at the detector output is attenuated by the pair of resistors R_{29} and R_{30} which are connected in series and returned to pin 5 , which carries no a.c. component. It is then simply added to the input to Tr_{12}. When $V R_{1}$ is set so that the receiver is just muted with no signal the noise silencer threshold is automatically correct.
The mere addition of R_{29} to the circuit of Fig. 5 gives a squelch threshold which is not well defined because of the high output of random noise from the receiver at full sensitivity. A smoothing network is required between $T r_{12}$ and $I C_{3 a}$ to give a sharp squelch threshold, yet fast negative-going transitions at $T r_{12}$ collector must still be transmitted without delay or attenuation. This result is achieved by Tr_{14} and associated components. Rapid negative pulses are transmitted by C_{28} to the base of Tr_{14} causing it to conduct and clamp the input of $I C_{3 a}$ to chassis potential. In the absence of noise spikes however, Tr_{14} is effectively disconnected and R_{37} and C_{29} ensure that the input to the m.o.s.f.e.t. is well smoothed. A fast rise-time for the noise gating pulses is essential and is ensured by having active pull-down or pull-up at each stage. Thus large load resistors can still be used to reduce current consumption.

Fig. 4. Alternative crystal oscillator circuit for the receiver. The two trimming capacitors are used to trim the frequencies of oscillation. L_{10} tunes to the crystal overtone frequency and L_{9}, to its second harmonic.

A further important function of $T r_{14}$ is to compensate the squelch against noise. Every time Tr_{14} conducts, an increment of charge is subtracted from C_{29} via R_{38} and the squelch threshold is raised. By suitable choice of R_{38} relative to R_{37} this is made to balance the effect on C_{29} of charge build-up in the a.g.c. capacitor from impulse interference. Moreover some compensation for changes in receiver "hiss" level is obtained since these random noise components are rectified by $T r_{14}$, thereby reducing the charge in C_{29}. Modulation components on an incoming signal do this only to a negligible extent both because \underline{C}_{28} has a low value and because, whereas the mean amplitude of an audio waveform is one half of the peak amplitude, that of random noise is much less. This means that very little modulation component appears at $T r_{12}$ collector. Compensation is also improved slightly by allowing D_{13} and R_{71} to apply negative feedback to the detector output on large impulse noise spikes, thus helping to reduce charge build-up in C_{61}.
Car ignition noise is inaudible in the
receiver when no incoming signal is present and with the squelch advanced just sufficiently to unmute the receiver. Each interference spike is stretched from its original sub-microsecond width to one of nearly 2 ms by the narrow i.f. filter so that when their repetition rate is greater than about 500 Hz the receiver becomes desensitized (e.g., from 0.2 microvolts to 1 microvolt at a pulse rate of 1 kHz). Noise silencers which use gating prior to the main filter can handle far higher p.r.fs ${ }^{2,3}$ but the present circuit is quite effective in most situations.

Automatic gain control. A.g.c. for the second i.f. amplifier is built-into the LM372 and it is desirable that the first 20 dB of gain reduction (approx.) should occur there so that wideband noise is reduced. Thereafter the gain control should occur in the SL612 so that overload is avoided in the second mixer and in the SL6 12 itself. Finally when the limit of the gain control range in the SL612 is reached the gain of the LM372 should be further reduced.
These properties are obtained by using an a.g.c. amplifier to drive pin 7 of the SL612. When the receiver is not muted (i.e., signal present), Tr_{12} will be cut-off and can be neglected. $T r_{13}$ then performs as a comparator in conjunction with Tr_{10} and Tr_{11}, and when a threshold set by R_{35}, R_{36}, and the breakdown voltage of D_{4}, is exceeded by the LM372 a.g.c. voltage, the collector voltage of Tr_{13} begins to rise and the gain of I_{8} is reduced. The fairly high gain of the differential amplifier ensures that most of the resulting gain control occurs in the SL612 until Tr_{13} is cut-off. Stability in the feedback loop is ensured by C_{27}.
The overall a.g.c. performance is such that, with the squelch advanced, the audio volume is subjectively independent of signal strength with a well modulated signal. With no signal the output is entirely random noise whereas with signals above about 2 microvolts it is mainly modulation. The overload point depends on the exact choice of a.g.c. threshold for the first i.f. but, typically, one transceiver has to transmit

Fig. 5. Simplified version of the squelch circuitry.

increasing signal strength
Fig. 6. Voltage relationships in the noisesilencer circuit. The receiver input is assumed to be a 100% sine wave modulated carrier whose amplitude increases steadily. A noise impulse is superimposed.
within ten feet of the other to cause obvious distortion when using helical whips on each.

Battery saver and h.t. switching. This section of the receiver is part of the logic control system and determines whether the receiver, transmitter, or neither receive supply current at any particular time. The logic circuits are energized continuously. The following design for a battery saving system represents an improved and more up-todate version of one previously described by the author ${ }^{4}$.
M.o.s.f.e.t. logic is used because of its very low power consumption, and high input impedance. Logic gates are also used as d.c. amplifiers for the squelch section. The more recent complementary m.o.s. logic (e.g., RCA "COSMOS" or Motorola "McMOS") would be ideal but conventional m.o.s. logic based on p-channel enhancement m.o.s.f.e.ts is just as satisfactory in this application if the internal active f.e.t. load resistors are replaced by external resistors of high value. At the supply voltages used in this equipment this occurs automatically but in any case can be achieved by connecting the negative supply voltage terminal to the positive terminal of the integrated logic circuits. (In the printed circuit board described later this was not done due to lack of foresight.) The internal connections of the two devices used, the Plessey MP104B and MP102B, are shown in Fig. 7. In terms of "negative logic", i.e., logical " 1 " represented by a logic level close to the negative supply rail, these are dual three-input NOR and NAND gates respectively. This same logic convention is used in the following discussion since it corresponds with that used in the data sheet. The terms "high" and "low" will, however, be used to denote voltage levels close to the positive and negative supply rails respectively. Thus "high" here corresponds to logical " 0 ". Further, a logic gate will be said to be "on" when current flows in its load resistor.
The design philosophy is that the operator should not need to be aware that the receiver does not operate continuously. Two modes of operation will. be distinguished. In the "normal" mode the receiver is energized continuously, whereas in the "stand-by" mode the receiver is energized for only

200 ms in every 3 -second period. The logic system has the properties that when the transceiver is first switched on it enters the stand-by mode, any signal which exceeds the squelch threshold during the 200 ms ontime causing the receiver to enter the normal mode. The receiver remains in its normal mode for ten to fifteen seconds after such a signal has disappeared and then reverts to the stand-by mode, and the same thing happens after a period (even momentary) of transmission.

These properties are obtained by using a multivibrator ($I C_{4 a, b}$) which can also be forced to remain in either of its two states. The basic multivibrator circuit is shown in Fig. 8 and is an interesting application of enhancement m.o.s.f.e.ts. Only one capacitor is needed to define the duration of both states. Assume that $T r_{1}$ and $T r_{2}$ have just turned off and on respectively. The drain of $T r_{1}$ has therefore just dropped to 0 volts from $V_{c c}$ and therefore the gate of Tr_{2} has received a negative step of magnitude $V_{c c}$ because of the capacitor. The latter then charges via R_{1} the diode from the drain potential of Tr_{2}, i.e., close to $V_{c c}$. As soon as the gate potential of $T r_{2}$ reaches the threshold potential, typically 4 volts negative with respect to source for the MP102 and MP104, Tr_{2} turns off, its drain potential drops to 0 volts and $T r_{1}$ goes on. The rapid rise to $V_{c c}$ at the drain of $T r_{1}$ raises the gate of $T r_{2}$ by the increment $V_{c c}$ via the capacitor, and the latter subsequently discharges via R_{1} from the drain potential of Tr_{2} (now 0 volts). The mark-to-space ratio is unity if $R_{2}=0$ but can be made otherwise by choosing R_{1} and R_{2} accordingly.

The multivibrator is inhibited by adding extra m.o.s.f.e.t. switches in series with Tr_{1} and $T r_{2}$. Thus if the source of $T r_{2}$ is disconnected from $V_{c c}$, the drain of Tr_{2} cannot go positive even though the multivibrator reaches the state where $T r_{2}$ has a gate potential of zero (i.e., $T r_{1}$ on and C fully discharged). Multivibrator action resumes however, the instant that $T r_{2}$ source is reconnected to $V_{c c}$, and $T r_{2}$ and $T r_{1}$ will then go on and off respectively.

The MP102 is used in the actual receiver circuit (Fig. 3) and each half of the circuit is gated separately. In the stand-by mode, $I C_{4 a}$ is on for 200 ms and off for 3 seconds. Pins 2 and 7 are then both low. $/ C_{3 a, b}$ are used as squelch amplifiers and pin 1 of $I C_{3}$ goes high when a signal is present and low otherwise. If the squelch output goes high during the receiver on-time, C_{30} charges via D_{6}, and pin 2 of $I C_{4 b}$ goes high, inhibiting the gate and ensuring that $I C_{4 a}$ and the receiver remain on. When pin I of $I C_{3 b}$ goes low again C_{30} begins to discharge via the reverse resistance of D_{6}. After about ten seconds pin 2 of $I C_{4 b}$ reaches its threshold voltage and $I C_{4 b}$ begins to conduct and multivibrator action restarts. In order to speed up the transition between modes, C_{30} is returned to the junction of R_{44} and R_{45} instead of to chassis thereby introducing positive feedback.

When the transmit button is pressed, the battery is connected to the transmitter, and at the same time $I C_{4 a}$ is cut off (pin 7) and the receiver power supply is removed. Further, $I C_{3 a}$ is also held off (via pin 6) and
this has the same effect as when a signal is received in that C_{30} is charged. The receiver then remains on for at least ten seconds when the transmit button is subsequently released.

Interruption of supply current to the receiver uses two separate switches, $T r_{16}$ and Tr_{18}, one of which is exclusive to the class B power amplifier to avoid decoupling or motor-boating problems. None of the receiver circuitry requires a stabilized supply and $T r_{16}$ is connected in common emitter to give minimum voltage drop. Base current is the collector current of an emitter follower, Tr_{15}, which is also used to reduce the output impedance of $I C_{4 a}$ enough to drive the timing capacitor C_{31} and C_{32}. The audio amplifier has to be switched relatively slowly otherwise loud clicks are produced by the loudspeaker in the stand-by mode. Also the quiescent current drain of the SL630 increases with supply voltage and it is better to drop the supply voltage to 6 volts. $T r_{17}$ and $T r_{18}$ are used as a complementary emitter follower and are fed from the emitter of Tr_{15} via a suitably long time constant. The total voltage drop is increased to about 2.8 volts by adding a light-emitting diode, D_{8}, in series with the supply to $I C_{7}$. The power consumed by the lamp is "free" yet it gives a useful indication of the receiver mode and that it is switched on. No decoupling capacitors larger than 1 microfarad are required in the complete transceiver and tantalum bead capacitors provide this in a very small volume.
It is essential that when the supply to the receiver is interrupted or restored by the
multivibrator, C_{30} is not charged by any transient. If it were the stand-by mode would never be achieved. This requires that the switching be rapid, especially relative to any voltage changes at the output of $I C_{2}$. This is ensured by the decoupling components C_{23} and R_{26}. Once the $V_{c c}$-end of R_{32} has dropped to 0 volts there is no further possibility of C_{30} being affected. Similarly, when the supply is reapplied, the base of Tr_{10} must rise more slowly than that of Tr_{12} because of the capacitors connected to pin 7 of the LM372, and therefore there is no switch-on transient large enough to charge C_{30}.
In order that the squelch threshold be independent of receiver on-time, more subtle effects must be considered. There are two time constants which are long compared with the on-time during sampling; these are the a.g.c. time constants of $50 \mathrm{k} \Omega$ and C_{61} and the squelch smoothing (R_{37} and C_{29}). Both these capacitors must therefore be made to store their charge during the receiver off-time. Isolation of the a.g.c. capacitor, C_{61}, is the function of Tr_{24}, which is driven via C_{64} from the switched supply line to the receiver. When the receiver goes off, a negative step appears at the gate of $T r_{24}$ and its channel becomes effectively an open circuit. Isolation of C_{29} is carried out through diodes D_{14} and D_{3}. When $V_{c c}$ drops to zero, D_{3} is reverse biased and therefore C_{29} is isolated from the supply line. Provided $T r_{12}$ remains fully cut off, C_{29} is fully isolated and this is ensured by adding D_{14} to actively pull down the base of Tr_{12}. Since $I C_{3 a}$ has a m.o.s.f.e.t. input the only significant leakage from C_{29} is via its own leakage

Fig. 7. Internal circuit of MP102 and MP104 logic gates.
resistance which for a tantalum electrolytic is negligible in this application.

The thresholds for the squelch and the battery saver lock-on process should be the same and this is ensured by a suitable choice for R_{54} and R_{55} which are best adjusted on test.
"Bleeper". As mentioned in an earlier section, the audio output amplifier $I C_{7}$ functions either as a normal amplifier or as a power oscillator. The control logic which determines which mode is selected comprises two NOR gates $\left(I C_{5}\right)$ and two NAND gates ($I C_{6}$). The former pair are used as a bistable memory and the second as a gated astable multivibrator with a period of about two seconds and with unity mark-to-space ratio. The astable is included to make the loud warning tone intermittent since it is then far more noticeable in high ambient noise levels. The power consumption is also halved.

The two stable states of the astable will be referred to as "bleep-enabled" and "bleep inhibited". In the former state Q_{19} is a very high resistance and the only input to $I C_{7}$ is from the positive feedback capacitor C_{38}. This feedback is interrupted by the bistable since gate D_{10} is driven from its output (pin 9 of $I C_{6 a}$). The fact that pin 4 of $I C_{5}$ is low means that the astable is enabled (via pins 3 and 7) and that the audio stage is set to maximum gain via the volume control (and pin 8 of $I C_{7}$). Muting transistor, Tr_{20}, is still effective however so that in the bleepenabled state, whenever the squelch threshold is exceeded, the receiver bleeps loudly.

In normal operation (i.e., during a conversation) the receiver must not bleep but a bleep on-off switch is undesirable; this is the reason for the bistable. Whenever the supply to the receiver transfers from high to low the bistable is set (via C_{34} and R_{47}) into the bleep-enabled condition. Therefore this condition occurs automatically whenever the stand-by mode is regained and the next incoming call activates the bleeper. On receipt of a call the bistable must be reset manually to the bleep-inhibited state and this is done by momentarily depressing the transmit button. Whenever the transmitter supply line is high, D_{9} conducts and pins 4 and 7 of $I C_{5}$ are latched high. During a conversation the bleep-enabled condition cannot be regained. Spare gate inputs on $I C_{6}$ (pins 6 and 4) are used to disable the multivibrator when the receiver is not operating.

The aerial

The aerial plays a crucial part in determining the practicability of equipment that must remain operational in the pocket. Conventional telescopic whips are unsuitable both because they might be left retracted and because of their fragility. A flexible wire can be fitted into clothing but complicates the manipulation of the set. Internal tuned loops are often used at u.h.f. in commercial equipment but this demands a plastic case and also is less effective at v.h.f. The aerial finally adopted for the author's pair of transceivers is the "normal-mode helix" 5 made from a steel spring and this has proved extremely convenient and effective.

Fig. 8. Basic circuit of the multivibrators used for the battery saver and the "bleep" interruptor.

Fig. 9. Helical aerial used with the transceiver. The helix was made from a steel spring and the coaxial plug is a subminiature Belling Lee type. Although not applied to the originals, copper plating should reduce the losses slightly.

A wire helix with diameter and pitch small compared to a wavelength in free space $\left(\lambda_{0}\right)$ has the property that electromagnetic waves travel along it at a reduced velocity which depends on its dimensions. A velocity reduction of one third gives an effective quarter wavelength of only six inches at 145 MHz compared to nineteen inches for a straight whip. On the other hand the more an aerial is shrunk the more its Tr increases and therefore the more difficult it is to maintain it in tune. Design information for normal-mode-helix aerials is given in reference 6 and the following expression for the total number of turns (N) in the helix is derived from formulae given therein:

$$
\log _{10} \frac{N}{h}=\frac{1}{2.5} \cdot \log _{10}\left\{\left[\left(\frac{\lambda_{0}}{4 h}\right)^{2}-1\right] \frac{\sqrt{\lambda_{0}}}{20 d^{3}}\right\}
$$

In this equation h is the overall length of the helix, λ_{0} is the wavelength in free space, d is the diameter of the helix.

The helices used by the author have the dimensions shown in Fig. 9 and were obtained by adjusting empirically the helix predicted by the above equation. The diameter and number of turns are critical and interdependent. If two helices have diameters and numbers of turns equal to d_{1}, N_{1} and d_{2}, N_{2} respectively and if they are to resonate at the same frequency in the same physical length, the following equation holds:

$$
\left(\frac{N_{2}}{N_{1}}\right)^{2.5}=\left(\frac{d_{1}}{d_{2}}\right)^{3}
$$

This result can be used to convert the details in Fig. 9 to suit other springs. Note however that springs with diameter much less than the one shown tend to be less efficient.
The input impedance of a parallel helix is less than that of a straight whip and it is best
to match the transmitter to the helix using a field strength meter (e.g., the one shown in Fig. 11) placed several yards away. First the helix is adjusted in length for the best output and then the transmitter matching is adjusted. Both are then readjusted iteratively. Satisfactory results are still obtained when the transceiver is used with a 50 or 75 ohm fixed aerial installation.

Performance

Both sets have been in continuous daily use by the author (G8ENN) and his wife (G8ENO) since July 1972. Reliable contact is usually obtained back to a 30 ft high outside aerial when using the helix within a radius of two to three miles. From particularly favourable locations this limit increases to at least forty miles and when propagation conditions have also been good ranges of up to 150 miles to a well-sited high gain aerial have been achieved using the helix. The helix-to-helix range is much more limited and is typically about one mile in a suburban area. From favourable locations however a range of ten miles helix-to-helix is obtainable.
The squelch and noise limiter system has proved very satisfactory and false triggers are very rare, even with the helix inside a car. Unless interference levels are severe the receiver bleeps reliably on signals which are too weak to read. If the squelch is set for maximum sensitivity (0.2 microvolts) when the battery is on the flat part of its discharge characteristic (i.e., discharged to between 30 and 80% of total capacity and battery voltage 9.6), the squelch sensitivity in the first few hours after removal from the charger is reduced to about 0.8 microvolts, unless the squelch is temporarily readjusted. At about 80% discharge the battery voltage begins to drop and the receiver begins to unmute on background noise. This provides a warning and after a single subsequent squelch adjustment about one day of normal use (say ten hours stand-by and five minutes of talking) remains before recharge is essential. With normal use in the author's system charging is required only every five days. Apart from this no attention is required.
(To be continued)

Communications

Copies are now available of the proceedings of the Communications 74 conference, held at Brighton June 4-7.
The proceedings, which were received by all delegates attending the conference, comprise a book of 297 pages. This volume contains the full texts and illustrations of 42 papers and summaries of 10 .

Limited quantities can now be supplied to those unable to attend the conference, price $\mathfrak{f} 15.25$ including postage, cash with order only. Orders should be sent to: IPC Electrical-Electronic Press Ltd, General Sales Department, Room 11, Dorset House, Stamford Street, London SE1 9LU.

IT PAYS TO KEEP IN TOUCH WITH BURNDEPT

Whatever kind of communication you need, Burndept are ideally suited to supply it-anything from a complete command and control system to a single radio-telephone.

In fact your problems are our business.

The Burndept Total Communication Service has been built up over 50 years in radio to offer you the most advanced British equipment, expert planning help and follow up service with national UK coverage.

Want to know more?

So get in touch with Burndept now. Just get your secretary to cut out the Burndept symbol from this page, clip it to your business letterhead and post it to us.

We will get in touch with you. Fast.

BURNDEPT ELECTRONICS (E.R.) LTD

St.Fidelis Road, Erith, Kent DA81AU. Telephone: Erith 39121 Telex: 896299

Not the biggest-just the best

An advanced 4-function calculator in kit form

The Cambridge kit is the world's largest-selling calculator kit.
It's not surprising - no other calculator matches the Sinclair Cambridge in functional value for money; and buying in kit form, you make a substantial saving.
Now, simplified manufacture and continuing demand mean we can reduce even the kit price by a handsome $£ 12 \cdot 50$. For under $£ 15$ you get the power to handle complex calculations in a compact reliable package - plus the interest and entertainment of building it yourself !

Truly pocket-sized

With all its calculating capability, the Cambridge still measures just $4 \frac{1}{3} " \times 2$ " $\times \frac{11}{16}$ ". That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on U16-type batteries which gives weeks of normal use before replacement.

Easy to assemble

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.

Total cost ? Just £14.95!

The Sinclair Cambridge kit is supplied to you direct from the manufacturer. Ready assembled, it costs $£ 21 \cdot 95$ - so you're saving $£ 7$! Of course we'll be happy to supply you with one ready-assembled if you prefer - it's still far and away the best calculator value on the market.

Features of the Sinclair Cambridge

*Uniquely handy package.
$4 \frac{1}{3}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11}{16}$ ", weight $3 \frac{1}{2}$ oz.
*Standard keyboard. All you need for complex calculations.
*Clear-last-entry feature.
*Fully-floating decimal point.
*Algebraic logic.
兴Four operators $(+,-, x, \div)$, with constant on all four.

* Constant acts as last entry in a calculation.
* Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than £15.
*Calculates to 8 significant digits.
* Clear, bright 8-digit display.
*Operates for weeks on
four U16-type batteries
(MN 2400
recommended)

A complete kit!

Actual size!
 3.1415927

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch.
10. Soft wallet.

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge. Assembly time is about 3 hours.
Contents:

A NEW STANDARD FOR SOUND REPRODUCTION HD250 High Definition Stereo Control Amplifier

Designed for disc and tuner input and two tape machines, with complete recording and reproducing facilities.

The HD250 amplifier establishes a new standard in amplifiers for sound reproduction in the home. Improvements have been made in respect of performance, engineering design and quality of construction. We believe that no other amplifier in the world can match the specification of the HD250. Look at extracts from the specification below.

Power output.

Rated:

Maximum:
Distortion.
Pre-amplifier
Power amplifier. at rated output: at 25 w output:

50 watts average continuous power per channel, into any impedance from 4 to 8 ohms, both channels driven. 90 watts average power per channel into 5 ohms load.

Zero. (Cannot be identified or measured as it is below inherent circuit noise.)

Less than 0.02% (typically 0.01% at 1 kHz). Typically 0.006\%.

Overload margin
Disc input 40 dB min

Hum and noise output.

Disc:

- 83dBV Measured flat with noise band width of 23 kHz
- 88dBV Measured with 'A' weighted characteristic
-85dBV Measured flat
-88 dBV ' A ' weighted.
17 inches $\times 4 \frac{3}{4}$ inches $\times 11$ inches deep overall.
21 b.

Write or phone for leaflet which describes the design philosophy and conception of the HD250 together with a complete specification.

RADFORD AUDIO LIMITED, BRISTOL, BS3 2HZ Telephone: 0272662301
WW—077 FOR FURTHER DETAILS

A question of voltmeter manufacture

by "Cathode Ray"

Having to keep up an appearance of infallibility is one of the stresses of youth that cause many to die young. But those that escape it, or with maturity learn better, enjoy not adding loss of face to the discomforts of old age. Thus, instead of being upset by receiving a letter from Mr A. J. Sargent pointing out a slip in my treatise on magnetism in the January 1973 issue I was happy to see in it an excuse for further chat.

The said slip had nothing to do with magnetism, so would not have occurred if I'd stuck to the point. It was a slightly faulty buzz from a particularly energetic bee escaping from my well-stocked bonnet. Its motive force was the practice of voltmeter makers of specifying the current load of their products in ohms per volt. My correspondent pointed out to me that it was the reciprocal of current that was so specified. He tactfully refrained from adding "Fancy Cathode Ray forgetting Ohm's Law!".

Well of course he was perfectly right, and although I doubt if anyone was misled by my error, and it was only the generally accepted kind of sloppiness of speech we use in reckoning petrol consumption in miles per gallon. I really ought always to practise what I preach and use my words carefully.

This particular side swipe comes out at the slightest pretext (such as an article on magnetism) because I hope some day to provoike a voltmeter maker into explaining why he specifies the current load of his meters not only reciprocally but also clumsily in ohms per volt. One doesn't ask for a 13 volts-per-ohm plug, suitable for a 240 amp ohms power supply.

It is in fact an even clumsier practice than at first appears, for in full it has to read "ohms per volt of full-scale reading". So if you want to know how much current is leaking away through your $20,000 \mathrm{ohms}$ per volt voltmeter (to impress you the makers always say $20,000 \Omega$. not $20 \mathrm{k} \Omega$) when it is reading. say, 195 V on the $300-\mathrm{V}$ range, you have to divide 195 by 300 times 20,000; and if you concentrate on it sufficiently you get $32.5 \mu \mathrm{~A}$ as the answer. Personally I think it would be a lot easier if below the voltage scales there was a voltmeter leakage (or load) scale, 0 to $50 \mu \mathrm{~A}$, in grey to be distinc̣t from the volt scales and less conspicuous, but there whenever you wanted it. The deflection that indicated the voltage would at the same time show the voltmeter current.

If you did want to know the voltmeter
resistance on any range you would simply divide that range (in volts) by the $50 \mu \mathrm{~A}$ or whatever full-scale current was shown on that particular instrument. In our example, on the $300-\mathrm{V}$ range it would be $300 / 50$, which (as the current is in $\mu \mathrm{A}$) is $6 \mathrm{M} \Omega$.
Most voltmeters use the same current on all ranges, hence the simplicity of specifying that figure. As for the exceptions that are complicated by more than one full-scale current, note that equally they have more than one ohms-per-volt of full-scale voltage. I'm still waiting to hear why the makers prefer to work in the latter involved terms. M. G. Scroggie, who is very much at one with me in such matters, has been waiting at least 12 years, since the question was first put bluntly in Radio \& Electronic Laboratory Handbook, 7th edition, and again in the 8th.

What we really want to know, of course, is neither the current nor the resistance. We want to know the voltage between A and B before we connected the voltmeter to those two points. Being very accommodating we would settle for the drop in voltage due to the connecting; it is easy enough to add this to the indicated voltage to give the true reading (subject of course to the possible meter error; and if you haven't studied the relevant British Standard, BS 89, you'd be surprised to see how large that could be. For example, if the reading at $0^{\circ} \mathrm{C}$ on a portable multi-range moving-coil instrument with a 3 in scale was 30 V on the $100-\mathrm{V}$ range, the true reading within the tolerances allowed in the Industrial Grade-previously called British Standard First Grade-could be anything from 24.75 and 35.25 V . So there would be no sense in logging it to several places of decimals!).

Unfortunately the load error, which is extra, depends on the impedance of the circuit to which the voltmeter is connected. If that is hundreds of times less than the voltmeter resistance then you have little to worry about. But we rarely know what it is, and (especially in circuits subject to feedback) may not even be able to make a reliable guess at the order of magnitude.

One particular but often occurring case is the potential divider (see Figure). Let's suppose it is connected across a relatively low-resistance d.c. source. That puts R_{1} and R_{2} practically in parallel, so far as the resistance in series with the voltage source and the voltmeter V is concerned. If you have any hesitation about accepting that state-

Current load with a potential divider.
ment, study of the theorem ascribed to Thévenin (by the French) and Helmholtz (by the Germans) is indicated. Note that this effective source resistance is the same regardless of whether one is measuring the voltage across R_{1} and R_{2}. It is equal to $R_{1} R_{2} /\left(R_{1}+R_{2}\right)$. Call it R_{s}. The drop in voltage in it due to V is of course $I_{t} R_{5}$, where I_{r} is the current taken by the voltmeter, read off the scale which the voltmeter manufacturing industry will be rushing to insert when it has finished reading this article. (Oh yes?) So we just add $I_{v} R_{s}$ to the voltage reading.

If we haven't a clue what the source resistance is, or alternatively have but can't be bothered to perform the above simple calculation or tap it out on the pocket computer, we can get a correction by shunting V by a resistance equal to the resistance of V. Doing this will reduce the reading. This drop is the correction we should add to the first reading. If it is more than about 10% then the correction itself is appreciably inaccurate and we should get a higherresistance voltmeter.
The late Bainbridge-Bell described a method in which a multi-range voltmeter itself is used to provide an alternative resistance. A reading is obtained on two ranges, the ratio of the higher voltmeter resistance to the lower being m. In most instruments it is the same as the ratio of full-scale readings. Then if V_{1} and V_{2} are the readings on the upper and lower ranges respectively, the corrected voltage is

$$
\frac{(m-1) V_{1} V_{2}}{m V_{2}-V_{1}}
$$

A disadvantage of this method is that readings which come low on the scale are less accurate. Both these altered-resistance
methods rely on the circuit as a whole being ohmic (i.e., linear) so may not work well in electronic circuits. In transistor circuits it may be helpful to remember that the base-to-emitter voltage is fairly constant at about $0.55-0.6 \mathrm{~V}$ for silicon and $0.16-0.2 \mathrm{~V}$ for germanium.

These methods of correction can be used for a.v. provided also that the a.v. voltmeter is not used on a non-linear part of its range (most of them include a rectifier). And if the circuit is reactive the correction is likely to be very inaccurate. Remember too that a.v. voltmeters are in general less accurate than d.v.

Another curious thing about the habits of meter makers is that although their most popular products measure current as well as voltage (for which they specify voltmeter ohms per volt of full-scale reading) rarely if ever do they act logically by specifying the ammeter in siemens per ampere of full-scale reading. Again, I wonder why, and hope an answer may be forthcoming. Now that the voltages in most electronic circuits are so much lower than they used to be, the voltage lost in the meter when measuring current is correspondingly more significant and ought to be allowed for, or at least allowable for by those who want to do so. But the information is not given. Of course the S/A of f.s.r. form of supplying it is logical only in the context of the illogical Ω / V of f.s.r. which I've been busy deploring. The sensible way would be to have an unobtrusive voltage-drop scale for use when reading current.

I have no doubt that if any instrument makers are taking a blind bit of notice of my constructive criticisms they will be already asking their dictating machines to take a letter pointing out that there are already too many scales to have to find room for on their multi-range test meters, and adopting my suggestions would only make confusion worse confounded. (I don't think on second thoughts they would phrase it just like that.) Perhaps so, but now that a branch of industrial endeavour dignified by the name of ergonomics has been introduced why not use it? If however even this resource fails, at least may we have the fullscale voltmeter current and ammeter voltage included in the specifications in place of the ohms-per-volt rubbish?

MARCH 1974 ISSUE

The issue number on the spine of the March 1974 issue was incorrectly printed as 1461. It should have been 1459 , as correctly printed on the contents page. We apologize to readers, librarians and others to whom this error may have caused inconvenience.

Literafure Received

PASSIVE DEVICES

Advance Filmcap have sent us a copy of their new capacitor data book, which gives full information on ranges of polycarbonate, polyester, a.c. types, electrolytics and film types of capacitor. Advance Filmcap Ltd, Rhosymedre, Wrexham, Denbighshire WW40I
Erie have sent us a wall-chart which covers capacitance ranges and working voltages of their ceramic, electrolytic, paper and film capacitors, together with outline drawings. Erie Electronics Ltd, South Denes, Gt. Yarmouth, Norfolk WW402

EQUIPMENT

A short-form catalogue describing a range of pulse generators, word generators, a.f. oscillators and distortion meters has been published by Lyons Instruments Ltd, Hoddesdon, Herts WW403
Two new product ranges are described in a supplement to the Radiatron short-form catalogue. The Electromatic range of timing, sensing and control modules with relay output is listed and there is a description of the Hopt electromechanical and electronic . counters. Radiatron Components Ltd, 76 Crown Road, Twickenham, Middlesex WW404
Constant-potential battery chargers are the subject of a leaflet from Erskine Systems Ltd, Newby, Scarborough, Yorkshire, YO12 6UE. Chargers of capacity from $24 \mathrm{~V}, 3 \mathrm{~A}$ to 220 V , 15 A are described in both chassis and cubicle forms WW405

Two low-noise microwave sources are fully described in leaflets from Microwave Associates. The ML13000 series, on Bulletin L/0013, provides signals in the range 1.25 GHz to 17 GHz , while Bulletin L/0009 details the performance of the ML12000 multichannel series, working between 1.7 and 10.3 GHz . Microwave Associates Ltd, Dunstable, Bedfordshire LU5 4SX WW406
Intended principally as an IEA promotional leaflet, a publication by Feedback, "Teaching Technology", forms a short-form catalogue of a range of equipment for the teaching of electrical, mechanical and contro technology. Feedback Instruments Lid, Park Road. Crowborough, Sussex
Moore Reed have sent us a leaflet on their VT111 "Intelligent" video display terminal, which is fieldprogrammable, containing a central processing unit and a 4k memory. Moore Reed \& Co Ltd, Walworth Industrial Estate, Andover, Hants
. WW408
We have received a leaflet describing a range of kilovoltmeters measuring up to 200 kV or more from Hipotronics Inc, Brewster, NY, USA \qquad WW409
Bulletins 7602 and 7603 describe a series of Gunn oscillators intended for use as local oscillators in remodulation-type link equipment receivers, between 5.855 GHz and 13.27 GHz at 3 W nominal. Microwave Associates Inc, Burlington, Mass., USA WW4 10

Data sheets are now available on the Mini 400 series of bench power supplies by Weir Instrumentation Ltd, Durban Road, Bognor Regis, Sussex .. WW411
We have received from Bradley a wall-chart which, in addition to brief information on their range of measuring instruments and microwave sources, contains some interesting general information in the form of conversion tables, pulse parameters, Fourier analysis and the like. G. \& E. Bradley Led, Electral House, Neasden Lane, London NW10 IRR WW412

APPLICATIONS

We have received from Nordmende a bookdet, in English and German, intended to assist technicians in the servicing of digitally-controlled TV receivers by Nordmende. The booklet is a very simple introduction to basic logic circuitry in addition to the television information on the Telecontrol II system. Norddeutsche Mende Rundfunk KG, Zentralkundendienst, 28 Bremen, Postfach 448508 , Germany

WW413

Mullard have reprinted an article, originally in Mullard Technical Communications, entitled "Cleaning Processes for Mullard Resistors and Capacitors on Printed-wiring Boards", which deals with the use of various types of cleaning agent and their effect on component materials. Ref. TP1448, Instrumentation and Control Electronics Division, Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD WW4 14
Equipment designed by the BBC Designs Department is often described on information sheets for the benefit of manufacturers who may wish to exploit the designs commercially. We have recently received EP14/1, CO8/501 and RLE, describing a.f. test equipment, 8 -bit a-to-d, and d-to-a converters and radio link equipment. BBC Designs Department Liaison Unit, BBC, London W1A 1AA WW415

GENERAL CATALOGUES

A catalogue of liquid-tight fittings, strain-relief terminations, Ty-rap harnessing, connectors, tools and wire-markers, has been produced by Thomas and Betts Ltd, Greenhill House, 90/93 Cowcross Street, London EC1M 6JRWW4 16

The 1974 index and price list from ECS is now available, covering products from RCA, SGS-Ates, IR, Keyswitch, AEG/Telefunken, Emihus, Seatronics, Allen Bradley, Guest International, Semitron and Litesold. ECS (Windsor) Ltd, Thomas Avenue, Windsor, Berks.

MISCELLANEOUS

The Final Acts of the World Administ fative Telegraph \& Telephone Conference held in Geneva in 1973 has just been published by the ITU. The Acts contains Telegraph and Telephone Regulations which come into force in September 1974, and are published in French, English and Spanish. Each volume costs 17 Swiss Francs from Sales Service, International Telecommunications Union, Place des Nations, $\mathrm{CH}-1211$ Geneva 20, Switzerland.

About People

Howard Steele, ACGI, B.Sc(Eng), FIEE, Direc tor of Engineering of the IBA, was awarded an Honorary Fellowship of the British Kinematograph, Sound and Television Society at the Fellows' Luncheon in May. The award is in recognition of his "unremitting efforts to progress the highest standards of motion picture film technology and usage in colour television broadcasting". Mr Steele played an important part in the selection of the European colour television system and was awarded two Royal Television Society premiums for his contributions.

Senri Miyaoka, manager of television tube development at Sony, received the 1974 Vladimir K. Zworykin Prize Award for his contribution to the development of new concepts in colour television tubes. Mr Miyaoka was responsible for the development of the singlegun, three-beam tube-the Trinitron, released in 1968. An article on this tube by Mr Miyaoka appeared in our December, 1971 issue.

Radio interference

Concluding a review: methods of measurement

by A. S. McLachlan, J. H. Ainley and R. J. Harry

Directorate of Radio Technology, Home Office

For successful control of interference it is necessary to ensure that the bulk of equipment is suppressed before being placed on the market. Because of the wide variety of equipment which may cause interference and the great diversity in the design of any particular type of equipment it is not possible to prescribe a single physical form of suppression which will meet every case. Instead it is necessary to lay down limits in a particular form for each class of equipment in conjunction with a standardized method of measurement ${ }^{9}$ and a method of production control. There are generally four different ways in which interference may be coupled from an equipment to a receiving installation: by conduction along leads such as mains supply wiring, telephone or control cables; direct radiation from the equipment itself; radiation from the leads; or radiation from an aerial connected to a radio transmitter or receiver.
Thus there are requirements for two basic forms of measurement-a voltage measurement at the power supply terminals (and in the case of radio transmitters or receivers at the aerial terminals) of the equipment and a radiated field strength measurement.
For equipment which itself radiates, it is generally necessary to apply both methods in the frequency range up to 30 MHz but because power at higher frequencies is poorly conducted along wires a radiation measurement only is necessary at frequencies above 30 MHz . For equipments such as small domestic appliances which do not themselves radiate appreciably, a terminal voltage measurement only is necessary in the frequency range up to 30 MHz to control conducted interference, with some other form of measurement to control the radiation from the leads in the frequency ranges above 30 MHz . The terminal voltage measurement on all equipment with the exception of television receivers is made using a standard V network in which the measured voltages V_{1} and V_{2} are a combination of the symmetric voltage, e_{s}, and the asymmetric voltage e_{a} which are shown in the equivalent circuit in Fig. 4. The 150 ohms termination is chosen to represent the mains impedance which has been shown to have a median value of this order. For'television receivers a delta network is used in which the symmetric and asymmetric voltages are measured separately.
At frequencies above about 30 MHz con-
ducted interference ceases to be important and coupling is mainly by radiation from the equipment and its leads. When radiation takes place from the equipment itself, e.g. from motor vehicle ignition systems and large radio frequency heating devices, measurement of radiated field strength must be made. This is done in a standard manner usually at a distance of $3 \mathrm{~m}, 30 \mathrm{~m}, 100 \mathrm{~m}$ or 300 m from the appliance, depending upon the frequency range and size and power of the source. The measurement of ignition interference at a distance of 10 m is shown in Fig. 5.
Field strength measurements are difficult and expensive; their accuracy and repeatability with normal equipment and techniques tends to be low and the measurements usually have to be made outdoors. To overcome the drawbacks of the direct measurement of field strengths the CISPR has developed substitution methods of measurement in which the results are quoted in terms of c.w. power from a signal generator to give the same output on the measuring receiver as the equipment or appliance under test.
Two different methods are in use. In the first, which is used for battery operated appliances with self-contained batteries in the frequency range $30-300 \mathrm{MHz}$ and for microwave ovens in the frequency range 1 to 18 GHz , the equipment is placed on a turntable at a convenient distance from a measuring aerial and rotated for maximum indication on the measuring receiver. The
equipment is then replaced by a half-wave dipole fed from a standard signal generator which is adjusted to give the same output on the measuring receiver. The interference power of the equipment is then quoted as the power (pW) at the terminals of the dipole. The second method utilizes a ferrite current transformer and associated power absorbing ferrite rings arranged in a manner to be described later. ${ }^{10}$ The transformer and associated ferrite rings are moved along the supply lead to obtain a maximum indication on the measuring receiver. The interference power of the equipment is quoted as the c.w. power from a standard signal generator to give the same output on the measuring receiver under defined conditions. This method is used in the frequency range $30-$ 300 MHz for domestic and other appliances which radiate mainly from the supply leads.
At present in the UK and a number of other countries the greatest number of complaints from a single source of interference are those caused by contacts, mainly of thermostats. Measurement of the discontinuous interference caused by contacts presents difficult problems. The solutions in current use are not entirely satisfactory and the resultant methods of measurement which have developed over a great number of years are very complicated and not readily understood. Originally discontinuous interference ("clicks") was distinguished from continuous interference ("buzzes") by listening in the audio circuits of the measuring set. Clicks, which were disturbances
 appliance connected to a V-network.
judged to last less than 200 ms , were counted by the operator and a weighting factor of $20 \log _{10} 30 / N$, where N equals the number of clicks per minute, was added to the limit for continuous interference to arrive at that for the discontinuous interference for the appliance under test. The appliance was then judged to pass or fail the test by the appli-

Fig. 5. Measurement of ignition interference.
cation of the upper quartile method in which if more than 25% of clicks exceeded the limit the equipment was rejected.
This method is extremely tedious and time consuming and, relying as it does on the judgement of individual operators, yields results which are far too inconsistent for use in modern conditions. Recently, as an interim measure to enable test houses and laboratories to speed up measurements and achieve more consistent results, especially on programmed appliances such as automatic washing machines, the CISPR has rationalized its recommendations on discontinuous interference and has produced a more rigid definition of a "click" to enable the measurement of duration and repetition rate to be made using a special electronic counter specified in CISPR Recommendation No. 41. Fig. 6 shows the block schematic of the method of measurement in the v.h.f. range.
A click is now defined as a disturbance which lasts not more than 200 ms and is separated from a subsequent disturbance by at least 200 ms . If more than two of these clicks appear in any two-second interval the limit for continuous interference applies. For clocks which are repeated less often than twice in two seconds the weighting factor 20 $\log _{10} 30 / N$ applies as before.
The method of counting the number of clicks during the observation time is im -

Fig. 6. Measurement of discontinuous interference in the frequency range $30-300 \mathrm{M} \mathrm{Hz}$.

Fig. 7. Pulse response curve $25-1000 \mathrm{MHz}$ of CISPR interference measuring receiver
portant and where possible, i.e. in general for simple appliances, the number of openings and closings of the switch or thermostat is used. For programmed appliances and other complex equipment where it is impossible to count the number of openings and closings of contacts the number of clicks which exceed the limit for continuous interference is counted by the interference analyser and the upper quartile analysis is then applied as before.
The input to the disturbance analyser is taken from the i.f. stage of the measuring set which retains the function of the measurement of amplitude. The disturbance analyser's functions are the counting of clicks and the assessment of duration and repetition rate. The operation is semiautomatic in that the apparatus may be set up and left unattended for the duration of each test which may last as long as several hours.

Limits of interference

When suitable methods of measurement have been developed it is then possible to fix limits of interference. To a large extent these are a compromise between that which will give protection in all circumstances and that which it is possible to achieve economically without affecting the operation or safety of appliances to be suppressed. For the broadcasting bands the limits are based on calculations which take into account the minimum field strength at which a particular broadcasting service is expected to provide satisfactory reception, the median value of the measured decoupling factor between an appliance and sound radio or television installations in homes, the protection ratio required for satisfactory reception and the effective length of the receiving aerial. It is then common practice to monitor the effectiveness of these limits by analysing the statistics of complaints as described earlier. Limits used in the UK are in general in accordance with the recommendations of the CISPR which are based on compliance in production of 80% with a confidence of 80% assuming a gaussian distribution.

Measuring apparatus

Measuring receivers. Interference measuring equipment was first designed for use in the protection of amplitude-modulated sound broadcasting in the 1.f. and m.f. bands. Extensive testing was undertaken to determine the electrical characteristics required to give measured values corresponding to the subjective effect of disturbances. For the l.f. and m.f. bands this resulted in a specification for an r.f. value voltmeter having a bandwidth of 9 kHz and detector time constants of 1 ms charge and 160 ms discharge. The bandwidth of 9 kHz was, of course, chosen to represent the bandwidth of the a.m. sound broadcast receivers in use at the time. For the protection of other type of services it would be ideal to have measuring apparatus specially designed to correspond to each service. Unfortunately for general use this would be uneconomic and also there would be a difficulty in correlating the results of measurement by different apparatus to achieve
a common limit to apply to interfering equipment. The CISPR therefore decided to standardize on fixed bandwidth receivers with specified time constants. There are three specifications for the frequency range $0.15-1000 \mathrm{MHz}$, the essential characteristics of which are shown in Table 2. The use of the specified characteristics in a CISPR receiver has the effect of requiring a larger amplitude input to give the same output as the pulse repetition rate decreases. Fig. 7 shows the pulse response curve for the frequency range $25-$ 1000 MHz . A measuring receiver built to the CISPR specification is essentially of the superheterodyne type with solely manual gain control by means of calibrated attenuators and a built-in calibrator for setting the receiver gain to a standard value.

Impulsive interference is unlikely to be a problem at frequencies above 1 GHz . At present the only likely major source of interference at these frequencies is the microwave oven which is designed to operate at a frequency of $2450 \pm 50 \mathrm{MHz}$ or $5280 \pm$ 100 MHz but which also generates energy at other frequencies not necessarily harmonically related to the fundamental but extending throughout the spectrum from the l.f. band up to the s.h.f. bands. Experience has shown that each such spurious radiation may occupy a bandwidth in excess of 50 MHz and that the energy is not uniformly distributed over this bandwidth. Thus measuring receivers with different bandwidths may give different results and it is not possible to apply accurate correction for bandwidth in order to correlate them.

1t has been argued that the best correlation with the disturbing effects of this type of interference would be obtained with the use of a measuring receiver having a very wide bandwidth and an r.m.s. detector. The CISPR, however, has taken the view that the construction of a special receiver for the measurement of interference from microwave ovens would be so expensive that very few would be built and that effective control would be much more likely to be achieved if it were based on a commercially available receiver which is already in widespread use. It has therefore recommended the use of a spectrum analyser having the characteristics shown in Table 3.

Fig. 8. Basic circuit of a delta "artificial mains" network.

TABLE 2
CHARACTERISTICS OF CISPR QUASI-PEAK MEASURING APPARATUS

Characteristics	Frequency range (MHz)		
	0.015 to 0.15	0.15 to $\mathbf{3 0}$	25 to 1000
	200 Hz	9 kHz	120 kHz
Bandwidth at 6dB	45 ms	1 ms	1 ms
Charge time constant	500 ms	160 ms	500 ms
Discharge time constant	100 ms	100 ms	100 ms
Mechanical time constant of meter	24 dB	30 dB	43.5 dB
Overload factor (r.f. and i.f.amplifiers)	12 dB	12 dB	6 dB
Overload factor d.c. amplifier			

(a)

(b)

Fig. 9. Construction and use of the CISPR ferrite clamp.

Fig. 10.' The CISPR ferrite clamp.

TABLE 3

Characteristics of a spectrum analyser for use in the frequency range $0.3-18 \mathrm{GHz}$

Spurious responses: 40 dB below response at the instantaneous tuned frequency. (A preselector may be used.)
Bandwidth: $125 \pm 25 \mathrm{kHz}$.
Variable attenuation in both r.f. and i.f. sections of receiver.
Screening effectiveness: 60 dB .
Sweep time: variable from at least 0.1 sec . to 10 secs.
Display tube: storage type (or other means of storing information).

Note: During measurements a filter shall be provided at the input of the analyser, having at least 30 dB attenuation at the operating frequency of the equipment under test.

Fig. 11. Method of calibration of CISPR ferrite clamp.

QUASI-PEAK
MEASURING SET

DISPLAYS

Fig. 12. Typical disturbance analyser.

Auxiliary apparatus. As already stated the interference measuring receiver is essentially a valve voltmeter and has to be used in conjunction with certain auxiliary apparatus including antennae and terminating networks. For field strength and substitution measurements the use of a half wave dipole antenna is normally specified with the proviso that broadband and other types of antenna such as horns may be used where these can be shown to give the same results.

For measuring terminal voltages in the frequency range up to 30 MHz terminating networks of specified form are used. These range from simple attentuators for antenna terminal voltage measurements to V and delta'1 "artificial mains" networks for measurement on mains supply and other lines. Fig. 8 shows an example of a basic delta network for measuring r.f. voltages on the supply terminals of television receivers. The network is required to provide a defined impedance, at radio frequencies, between the mains input terminals of the television receiver and between each of these terminals and earth. In addition a suitable filter is incorporated to isolate the measuring receiver from radio frequency voltages on the supply mains. In practice this is somewhat difficult to use and a modified version using a balun is employed.

For the assessment of interference radiated from the mains lead of an appliance in the frequency range $30-300 \mathrm{MHz}$ a ferrite clamp is used. The construction and use of a typical CISPR ferrite clamp ${ }^{10}$ is shown in Fig. 9. It consists basically of a ferrite cored current transformer in which the mains cord of the appliance under test is one winding and the lead to the measuring set is the other. To stabilize the impedance at the point of measurement and provide some r.f. isolation from the mains, a large number of ferrite rings, usually between 50 and 65 , are placed over the mains lead as shown in Fig. 9(b). A like number of rings are placed round the lead to the measuring set to reduce standing waves on the screen. In practice the rings are split and mounted in a hinged plastic case as shown in the photograph in Fig. 10. This allows appliances having mains leads with moulded-on plugs to be measured without cutting or changing the lead. At each frequency of measurement the clamp is moved along the stretched out main lead to give maximum reading on the meter at the current antinode closest to the appliance. At this point the clamp presents to the appliance a substantially resistive impedance of between 100 and 250 ohms.

The clamp method of measurement is essentially a substitution one in which the appliance is replaced by a standard signal generator. The interference power is taken to be that from the generator at the input to the clamp. To avoid the tedious process of substituting the signal generator on every measurement a calibration curve is prepared for each clamp under defined conditions. Fig. 11 shows the details of the calibration in which the clamp is placed 1 m above a non-metallic surface and connected to a signal generator and a measuring set to enable a measurement of insertion loss to be made. Radio interference measuring re-
ceivers are usually calibrated to give voltage readings in $\mathrm{dB}(\mu \mathrm{V})$ (i.e. decibels relative to $1 \mu \mathrm{~V}$). To convert a voltage across a 50 -ohm resistor expressed in $\mathrm{dB}(\mu \mathrm{V})$ to power in the resistor expressed in $\mathrm{dB}(\mathrm{pW})$ (i.e. decibels relative to 1 pW) it is necessary to subtract 17 (i.e. $10 \log _{10} 50$). Quite fortuitously the insertion loss of a well-made clamp connected between 50 -ohm impedances is nearly equal to 17 dB , thus for many purposes it is possible to read the interference power in $\mathrm{dB}(\mathrm{pW})$ directly from a measuring receiver which is calibrated in $\mathrm{dB}(\mu \mathrm{V})$. For greater accuracy the calibration curve for the particular clamp can be used
The clamp has been developed empirically and the precise theory is not yet well understood. For instance the selection of the correct grade of ferrite presents a difficulty and is essentially a matter of trial and error. Nevertheless the performance of correctly constructed clamps has been checked in many different countries and it has been confirmed that it provides a most satisfactory method for the measurement in the v.h.f. bands of interference from equipment which radiates mainly from the supply leads.

For the measurement of discontinuous interference an automatic analyser has been developed. A schematic diagram of a typical analyser is shown in Fig. 12. The function of the disturbance analyser is the recognition and recording of different durations and repetition rates of interference generated by switching devices. Measurement of the amplitude of these disturbances remains the function of the quasi-peak measuring set. The disturbances which are being measured are of fairly high amplitude and comparatively long duration and there are thus none of the problems of coping with short duration, fast risetime pulses of low amplitude. The main problems have been the difficulty, because of the varying delay times, of associating each pulse in the intermediate frequency stage with the corresponding meter deflection, and the precise interpretation of the various, sometimes conflicting, requirements which had beeen laid down at different times in different CISPR recommendations. The CISPR, as already mentioned, has rationalized the requirement for the measurement of discontinuous interference and included all of them in one recommendation. This has removed one difficulty. The other problem has been tackled in different ways in different countries and it will require further work to standardize the analysers to ensure reasonable correlation of results.

Conclusions

A large measure of success has been achieved both nationally and internationally in the control of radio interference. There is still much to do, however, and the rapid changes which are taking place in every facet of modern life make it essential to keep existing equipment and practices under review.

For the present, the emphasis, from a standardization and regulatory point of view, has shifted to the treatment of radio interference measurement and suppression requirements so that they no longer form a possible barrier to trade. In the UK this
will mean a change from a predominantly voluntary system of co-operation to one in which almost all equipment will be required by law to be suppressed at the time of manufacture. This in turn may lead eventually to the extension to other products of the type testing and conformity marking scheme now in operation for motor cars.
Acknowledgement is made to W. Goldsmith for his contribution on international aspects, to the staff of the Ministry's radio interference laboratory for their assistance in the preparation of the article and to the Director of Radio Technology for permission to publish it.

References

9. Towards Standardization of Radio Interference Measuring Equipment and Techniques: G. A. Jackson. Proceeding of the Joint Conference on Radio Interference Measurements and Standards, Proc. No. 10: IERE Conference Proceedings No. 10.
10. La Pince Absorbante. J. H. L. Meyer de Stadelhofen, Bulletin Technique PPT Suisse. No. 3, 1969, pp. 96-104.
11. IEC Publications 106 and 106A. Recommended methods of measurement of radiation from receivers for amplitude-modulation, fre-quency-modulation and television broadcast transmissions.

The short view

The cathode-ray tube in the photograph has been designed by A. V. de V. Krause for the Sinclair television receiver, now under development. The tube is .100 mm long and presents a picture which is about the same size as a $35-\mathrm{mm}$ slide. The directlyheated filament, working at 0.75 V , consumes 30 mW . Electrostatic deflection is used, requiring 100 V p.p. per 1000 V on the third anode, which is run at $1-2 \mathrm{kV}$ (beam current $35 \mu \mathrm{~A}$). Grid voltage for cutoff is -20 V per kV of first anode potential. Novel techniques are used in the tube construction, the body being made in two parts, split longitudinally. No graphite coating is applied, a metal shield being used to collect the beam current-screening has not been found necessary. It is intended that the tube should be mounted directly on a p.c. board by its lead-out wires.

Miniature tube for television and applications in other types of display.

New Products

Distortion analyser

The model DA1A combined harmonic distortion measuring set, low distortion oscillator and voltmeter features a switched high-pass filter, an input level of 500 mV with an optional level of a 100 mV minimum and isolated earths between the oscillator and distortion measuring set by the use of separate supplies.

The meter has eight ranges in a $1,3,10$ sequence covering 0.03% to 100% f.s.d. Six spot frequencies are used from 30 Hz to 10 kHz with an oscillator distortion of 0.03% and 0.003% respectively. The total noise plus distortion for the instrument is
typically 0.005% at 1 kHz . The DA 1 A is available with either mains or battery power and priced at $£ 120$ (battery power). Two complementary instruments are also available, the AFU1 audio band pass filter priced at $£ 57$ and the IMD1 intermodulation distortion analyser priced at $£ 76$. Marshall Penrose Instruments, 70 Heybridge Avenue, London SW 16 3DX.
WW 319 for further details

F.m. aerial

Now available in Britain is the Fuba UKA Stereo 8 aerial. This model has a detachable junction box with correct matching for either 75Ω coaxial cable or 300Ω balanced feeder. An average gain of 9.0 dB , average front-to-back ratio of 24 dB , typical standing wave ratio of 1.2 and a horizontal/ vertical angle of acceptance of 49° and 70° respectively is offered by the aerial. The unit, which measures $255 \times 180 \mathrm{~cm}$, has a retail price of $£ 18.90$ inc. VAT. Audio Workshops Ltd, 29 High Street, Robertsbridge, Sussex. WW311 for further details

Crimping kit

A termination kit comprising ten terminal packs, a crimping/stripping tool and metal case is available at the price of $£ 16.50$. Replacement packs of ring, spade and lug

WW319

WW301
types in 36 styles of termination are available at the standard price of 96 p . Invader Components Ltd, 30 Tribune Drive, Trinity Trading Estate, Milton, Sittingbourne, Kent. WW 317 for further details

Turns counting dial

A potentiometer turns-counting dial, model 2626, provides ten-turn adjustment with readings of $1 / 50$ of a turn. The dial mounts on a $\frac{1}{4}$ in shaft and projects 0.9 in from the panel surface. A positivelocking mechanism prevents accidental changes in setting due to vibration. Beckman Instruments Ltd, Queensgate, Glenrothes, Fife.
WW313 for further details

Real-time analyser

The real-time narrow-band analyser type 3348 produces a 400 -channel constantbandwidth calibrated spectrum which is updated every 45 ms . This spectrum is displayed on a 12 in c.r.t. The system features 11 internally selectable frequency ranges between 0 to 10 Hz and 0 to 20 kHz in a $1,2,5$ sequence. The system may be used to analyse continuous signals in real time, within the selected frequency range. Short duration, shock and transient signals may also be analysed using a transient capture function. The controls of the 3348 feature electronic interlocking for error-free operation. All of the important functions can be controlled externally, for example in con-

WW310

WW311
nection with an on-line computer or simply with a pre-wired plug. B \& K Laboratories Ltd, Cross Lances Road, Hounslow, Middx TW3 2AE.
WW 301 for further details

Plug-in power supply

The 90202-D plug-in power supply will provide up to 1400 V d.c. accelerating potential, and filament heating power for small and medium size c.r.t. displays. With a 1.1 mA external d.c. load the ripple voltage is less than 1.5 V r.m.s., rising to less than 3 V for a 3 mA load. This power supply is not regulated or stabilized and the output voltage is therefore proportional to the input voltage. It is possible to adjust the output voltage within reasonable limits by varying the load current. The circuit allows grounding of either the positive or negative terminal of the d.c. high voltage. James Millen Manufacturing Company Inc, Malden, Massachusetts 02148 , USA.
WW314 for further details

D.c. voltage calibrator

The model 501 is a high-speed programmable d.c. voltage calibrator with a resolution of $10 \mu \mathrm{~V}$ from 0 to 10 V d.c. and an optional range of 100 mV with a resolution up to $0.1 \mu \mathrm{~V}$. The instrument features a settling time of less than $100 \mu \mathrm{~s}$ to within 0.01% of programmed value. Programming inputs accept standard t.t.l.

WW317

WW314
or d.t.l. positive logic levels with an option on negative logic. The b.c.d. 8-4-2-1 format is standard, and all industry-accepted codes including ASCII can be interfaced by plugin accessory boards. Hepworth Electronics, Bank Buildings, Kidderminster DY10 1BG. WW 315 for further details

D.i.l. pin headers

A range of 14 -, 16 - and 24 -pin "plus" assemblies with either a high or low profile is available from Jermyn. The low-profile version can be used with multicolour flat cable to provide an inexpensive means of board-to-board connection. The highprofile type is suitable for constructing potted circuits. Discrete components can be soldered across the pins and once the snap-on cover is in place potting compound can be injected through a hole or slot in the assembly. Jermyn Manufacturing, Sevenoaks, Kent.
WW 306 for further details

Photometer

The lightmaster, which is suitable for measurements of interior and exterior lighting, gives readings of $0-100,0-1000$ and $0-10,000$ lux for interior and $\times 10$ for exterior lighting. A $0-20$ lux scale can be supplied for low light levels. Each photometer is individually calibrated against a standard test lamp, verified by the NPL. The complete unit is housed in a leather

WW313

carrying case, measuring $25 \times 13 \times 10 \mathrm{~cm}$. Diffusion Systems, 43 Rosebank Road, London W7.
WW310 for further details

Ten watt i.c.

The TCA940 monolithic audio-amplifier features thermal shut-down and powerlimiting short-circuit protection. The amplifier will deliver 10 W into 4Ω at 10% distortion with a 20 V supply. Input bias current is $0.5 \mu \mathrm{~A}$ and the standby current is 20 mA . An input resistance of $5 \mathrm{M} \Omega$ with an open-loop voltage gain of 75 dB and a 40 Hz to 20 kHz bandwidth is offered by the device, which is available in a 12-pin package. SGS-Ates Componenti Elettronici SpA, Via C. Olivetti, 220041 Agrate Brianza, Milan, Italy.
WW312 for further details

Gas monitors

The Neotronics series of gas monitors automatically samples the atmosphere at four-minute intervals and assesses the concentrations of any inflammable gases that may be present. An audible and visual alarm is given at a concentration which, although it is still safe, indicates a potential danger of explosion. The monitor will not respond to non-explosive fumes such as cigarette smoke. The basic sensing element is a pellistor which is a catalytic detector. This sensor is operated in a pulse mode which extends the useful life appreciably.

WW315

WW300

There are two basic types of monitor in the series, a portable model and a model for fixed installation. Special features of the instrument include a self-checking operation at four-minute intervals. In the event of a critical component failure a "fault" signal is given. In addition, a gas-test control is provided which artificially simulates a gas alarm condition for operational checks. Neotronics Ltd, Building 102, FSTS Site, Stansted Airport, Stansted, Essex CM24 8CX.
WW 300 for further details

Open pocket-plate batteries

Ever Ready are introducing a range of open nickel cadmium storage batteries using the pocket plate construction technique. This range is divided into two groups: the T range for continuous discharge and the TS range for high current loads and impulse discharge. The cells are available in either sheet steel or plastic cases depending on capacities. In addition a range of battery crates is available of either wooden or plastic construction. Ever Ready (Special Batteries) Ltd, Hockley, Essex SS5 4AH.
WW 318 for further details

Multicolour penetration screens

The penetration screen is made of two separate fluorescing phosphors of different colours and/or different persistences, separated by a barrier layer. The low-energy electrons (e.g. 9 keV) excite the first phosphor and are stopped by the layer. The phosphor fluoresces according to its absorption characteristics. Higher-energy electrons (e.g. 17 keV) penetrate the layer and excite the second phosphor to give its characteristic emission. The absence of a mask results in improved resolution and brilliance. If the tube is driven by conventionallogic, pictures with four colours may be obtained. The penetration screens are available in deflected c.r.ts ranging from small-diameter types to 22 in round or 2 lin rectangular face-

plate sizes. Thomson-CSF Electronic Tubes Ltd, Bilton House, Uxbridge Road, Ealing, London W5 2TT.
WW 309 for further details

Isolation amplifier

A high-voltage isolation amplifier, type 709, has been designed to transmit a.c. and d.c. signals produced at or near ground potential to circuits having potentials up to 4 kV with respect to ground. The amplifier will also amplify the input signal up to $\times 100$, providing an output of 200 V peak-to-peak. The input impedance is not less than $100 \mathrm{k} \Omega$, load current is 25 mA maximum, drift is in the order of 1% and the frequency response is 0 to $60 \mathrm{kHz}, 3 \mathrm{~dB}$ down at half full output. Microtest Ltd, 18 Normandy Way, Bodmin, Cornwall. WW 304 for further details

R.m.s. to d.c. converter

A true r.m.s. to d.c. converter, designated 4340, in a hermetic and shielded packaging, offers an unadjusted reading of $\pm 2 \mathrm{mV}$ $\pm 0.2 \%$. By adding two external resistors this can be improved to $\pm 0.3 \mathrm{mV} \pm 0.1 \%$ reading. The 4340 will accept input voltages from 0 to 20 V peak-to-peak and give a d.c. output, the amplitude of which is equal to the r.m.s. value of the input voltage. The device has an input impedance of $5 \mathrm{k} \Omega$, an output impedance of 1Ω and will supply 5 mA at +10 V d.c. Input and output protection is incorporated for overvoltage and short-circuit conditions. Burr-Brown Research Corporation, International Airport Industrial Park, Tucson, Arizona 85734, USA.
WW 316 for further details

Miniature load cell

A load cell called the SELF-1000 is only 0.150 in thick and can be used as a load washer or under direct compression. The device is constructed from a bridge of
piezoresistive sensors giving a full-scale output of 250 mV at low impedance. The case is constructed from stainless steel and is designed to withstand rugged environments. Linearity/hysteresis is $\pm 1 \%$ full scale, thermal zero shift is $\pm 1 \%$ full scale per $100^{\circ} \mathrm{F}$ and thermal sensitivity shift is $\pm 2 \%$ full scale per $100^{\circ} \mathrm{F}$. The SELF- 1000 is available in a range of 10 to 1000 lb . SE Laboratories (EMI) Ltd, North Feltham Trading Estate, Feltham, Middx.
WW 308 for further details

Crystal frequency standard

The RCS 101 provides t.t.l.-compatible square wave outputs of $10 \mathrm{kHz}, 100 \mathrm{kHz}$ and 1 MHz at 3 V peak-to-peak. The shortterm stability is 5 parts in 10^{9} with an ageing rate of 1 part in 10^{8} per day. An internal battery supply is provided in addition to the normal mains supply. This battery is kept continuously on trickle charge by an internal charging circuit. In the event of a power failure an emergency power supply is available for up to five hours. Radio Control Specialists Ltd, National Works, Bath Road, Hounslow, Middx TW4 7EE.
WW 302 for further details

Random noise generator

The NS1 10 uses a solid-state noise source and wide-band amplifiers to produce an output of 150 mV r.m.s. (typical) from a 9 V 12 mA supply. The amplifiers are separate and connections are brought out to terminal pins which allows the introduction of a filter or attenuator. The output amplifier presents an impedance of 600Ω for matching to standard equipment. Spectral uniformity is $\pm 1 \mathrm{~dB}$ (model NS110S) and $\pm 3 \mathrm{~dB}$ (model NSi10G) over the range $60 \mathrm{~Hz}-300 \mathrm{kHz}$ and $\pm 5 \mathrm{~dB}$ $\pm 10 \mathrm{~dB}$ respectively over 20 Hz to 3 MHz . The module measures $51 \times 29 \times 16 \mathrm{~mm}$. ADM Electronics Division, Siliconix Ltd, Morriston, Swansea SA6 6NE. WW 307 for further details

WW304
ww318

Printed-circuit switch

A miniature p.c.b. switch measuring $10.5 \times$ $5 \times 6 \mathrm{~mm}$ has a breaking capacity of 12 V d.c. 0.5 A to 24 V d.c. 0.3 A . The switch, which has three switching options, is constructed from fibreglass, and the contacts are plated with 0.5 microns gold on 2 microns nickel. The dielectric strength between contacts is 500 V at 50 Hz with a contact resistance for 2 V of less than 20 milliohms, and a capacitance between contacts of less than 1 pF . A life of 5000 operations is quoted in an operating temperature range of -40 to $+85^{\circ} \mathrm{C}$. The 100 -up price for the switch is 50 p . Souriau UK Ltd, Shirley Avenue, Windsor, Berks.
WW 303 for further details

Ceramic capacitors

A range of axial, glass-encapsulated ceramic ITT capacitors feature high capacitance with stability over a wide temperature range. Layers of the ceramic dielectric and noble metal electrodes are stacked alternately and fired at high temperature to produce a fused monolithic structure. The capacitance range is 220 to 33000 pF with rated voltages of 50 and 100 V d.c. and a rated temperature range of -55 to $+125^{\circ} \mathrm{C}$. ITT Components Group Europe, Standard Telephones and Cables Ltd, Capacitor Division, Brixham Road, Paignton, Devon. WW 305 for further details

Solid Stufe Devices

The names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

40ns rectifiers

Fast recovery rectifiers rated at 6 A forward current and 100 V repetitive peak reverse voltage are now available from GDS Sales Ltd. These stud-mounted rectifiers have a maximum reverse recovery
time of 40 ns making them suitable for use in modern switching power supplies. Two versions are available, the EF100N6 with cathode connected to stud, and the EF100R6 with anode to stud. An additional feature of these epitaxial rectifiers is the high surge current rating; peak forward overload current is 125 A for 20 ms . Supplied in the standard British SO-10 package, the EF100N6 and EF100R6 are available from stock.
WW358 for further details
GDS

Three-phase 50A bridge rectifiers

Semtech have introduced their Alpac R-50 SC3BK05-6 series. Alpac, short for aluminium package, features insulated terminals and efficient thermal design. This construction secures and insulates the internal components to temperatures above $300^{\circ} \mathrm{C}$. Alpac-R50 is designed for utilization in power supplies, a.c. to d.c. converters, motor control circuits.
WW359 for further details
Bourns

Schmitt trigger i.cs

New from Sprague are four trigger threshold detector i.cs which will sustain battery reversal indefinitely without damage. Two single and two dual triggers are available in eight-pin mini-d.i.l. plastic packages. All circuits are capable of operating over a supply voltage range of $2 \cdot 2-6.0 \mathrm{~V}$ and at temperatures between -40 and $+100^{\circ} \mathrm{C}$, featuring high-output breakdown voltage, stable switching levels and input-to-output isolation. Type ULN3303M, a single Schmitt trigger with complementary outputs can switch a 75 nA resistive load with less than 50 mA input current. Type ULN-3304M, also a single Schmitt trigger, but with a zener diode clamped output can control a 150 nA inductive load with less than 50 mA input current. The dual Schmitt trigger type ULN-3305M contains two ULN-3303M devices while the ULN03306M has a zener diode clamped output for driving inductive loads and contains one ULN 03304 M device plus a second Schmitt trigger circuit in one package.
WW360 for further details Sprague

Latching trigger module

An encapsulated switching device capable of switching 1A continuous is actuated by either a short or open circuit input and reset by switching off and then on again. The device operates from a 12 V supply and has a current drain of 2.5 mA . The unit, which was designed for use in burglar alarms, measures $1.75 \times 1.15 \times$ lin and cost $£ 2.90$ plus VAT, plus 20p post and packing. WW 350 for further details

Franken Systems

256-bit c.m.o.s. RAM

The type MCM. 14537 is a 256 -bit static RAM which has eight address inputs, one data input, one write enable input, one strobe input, two chip enable inputs and
one data output. If the chip enable inputs are used in conjunction with the address inputs, four MCM 14537s can be connected together to form a 1,024-bit RAM without any additional circuitry being needed. With a power supply of 10 V , access time is typically 700 ns and power consumption is $10 \mu \mathrm{~W}$ (quiescent state) in a temperature range from -55 to $+125^{\circ} \mathrm{C}$.
WW 351 for further details

Motorola

Low-leakage tuning diodes

The SQ5461A-76A series of tuning diodes cover a 6.8 to 100 pF range in 16 types with corresponding Q values ranging from 600 to 250 at 4 V bias and at 50 MHz . The diodes exhibit a four nanoamp reverse current rating at 30 V which minimizes spurious f.m. noise that originates from reverse diode current in r.f. circuits.
WW 352 for further details
MSI

Low-noise transistors

The K6000 series of low-noise transistors for use in i.f. amplifiers exhibit maximum noise figures of 1.0 dB at 60 MHz and 1.6 dB at 450 MHz . Typical 1 dB compression points are +16 dB at both 60 and 450 MHz at 5 mA IC.
WW353 for further details
Microwave Associates

Current-regulated I.e.ds

A range of l.e.ds known as the red-lit C200 series, features an integral current-regulating i.c. This ensures constant brightness over a range of input voltages from 4.5 to 12.5 V for the RLC200, and 4.5 to 16 V for the RLC201. The RLC210 is a miniature version giving a constant intensity between 4.5 and 11 V .

WW 354 for further details
Guest

Opto-couplers

A range of opto-coupler modules, manufactured by Morirca of Japan, is now available from Photain Controls. The photocell used is a cadmium selenide device which provides a variable resistance directly proportional to the light emission of the diode. These devices can operate at voltages up to 200 v a.c. or d.c. and have a power dissipation of 125 mW with a response time better than 1 ms in an-operating temperature range from -30 to $+80^{\circ} \mathrm{C}$.
WW 355 for further details Photain

Suppliers

Franken Systems and Supply Ltd, 18 Greenacres Road, Oldham, Lancs.
Motorola Inc, Semiconductor Products Division, European Headquarters, PO Box 8, 16 Chemin de la Voie-Creuse, 1211 Geneva 20, Switzerland.
MSI Electronics Inc, 34-32 57th Street, Woodside, NY 11377, USA.
Microwave Associates Ltd, Dunstable LU5 4SX, Bedfordshire.
Guest Electronic Distribution Ltd, Redlands, Coulsden, Surrey CR 3 2HT.
Photain Controls Ltd, Randalls Road, Leatherhead, Surrey.
GDS Sales Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Berks.
Bourns (Trimpot) Ltd, Hodford House, 17/27 High Street, Hounslow, Middx.
Sprague Electric (UK) Ltd, PO Box 32, 159 High Street, Yiewsley, West Drayton, Middx.

Real and Imaginary

by "Vector"

ELECTRONICS:
 THE ROAD AHEAD?

Guglielmo Marconi, I see, once asked "Have I done the world good or have I added a menace?" Now, that's what I call a jackpot question. Perhaps, with his vision, he saw what was coming to us, like Wonderful Radio One; in which case it wasn't any wonder that the poor chap got depressed.

I'm not really changing the subject, but did you read about those recent experiments at Yale University? If you didn't, the set-up, briefly, was that a volunteer citizen was set down in front of an impressive switchboard and a row of 30 switches labelled from 15 V to 450 V in progressive steps. The object of the exercise, he was told, was to see whether electric shocks would prove to be an aid to learning, and he was to be the "teacher". Another subject, "the learner", was strapped into a kind of electric chair; the idea was that he should be asked questions; if he answered incorrectly it was the teacher's job to operate the first switch and administer a mild shock. Further incor-rectly-answered questions called for progressively increasing shocks; the "teacher" had first to call out the applied voltage and then dish it out, right up to the 450 V maximum. Just to show him what it was all about, he was given a sample shock from the third switch. The whole operation was in the charge of a stern-faced laboratory man with an authoritative manner.

As if you haven't guessed, the whole thing was a "con", with the teacher as the guinea-pig. The victim in the chair was an actor who got no shocks whatsoever but simulated an appropriate reaction whenever he (intentionally) gave a wrong answer. These reflexes graduated from slight twitches through to grunts, agonized screams, appeals to stop, pleadings of a heart condition, on to a final stage of incoherence and frenzied drumming of his feet. Whenever the "teacher" showed signs of wanting to give up, the experimenter in charge told him firmly, but without threats, that he must carry on.

Forty people, chosen at random over a cross-section of the social structure, participated. Of these, no fewer than twenty-six completed the exercise right through to the final " 450 V ", inflicting, (as they believed) considerable suffering. Sixty-five per cent.

Not hand-picked sadists; just ordinary human beings. I don't know how you react to this but it quietly scares the pants off me.

Are we, I wonder, losing our capacity for compassion because of over-familiarization with suffering at second hand? At almost any hour of the day or night the turn of a switch permits a retreat into an escapist world-and, by and large, a violent world it is, too. After an hour or so of a gangster film it becomes difficult to appreciate that those bodies lying in a Belfast gutter aren't actors too.

In warfare, also, electronics is steadily divorcing us from reality. Aerial dogfights are in the museum; no longer is the victor confronted with the horror of an aircraft plunging earthwards with its crew roasting alive. Miles away from the hostile object an order is given, a button is pressed and a target-homing missile is on its way. A symbol disappears from a radar screen and that's that. Its the difference between having to go into a slaughterhouse and hack a chunk of meat from an animal corpse and strolling into a supermarket and selecting a nicelypackaged chop. And who's morally responsible? The designer of the electronics weaponry? Those who built it? The chap who gave the order? The one who pressed the button? Or who? The text-books don't tell us, neither do the technical journals. And yet, the fundamental importance of electronics, as Marconi foresaw, lies not in the challenge of devising clever-clever circuitry but in its impact on human nature and relationships.

I hope I'm wrong, but the way electronics is developing could be conditioning us towards acceptance of a computercontrolled society. After all, shorn of their emotive content, the problems which consistently baffle Harold, Ted and Co. become elementary arithmetic to a super numbercruncher. How, to make the UK selfsupporting? Simple. With a population of around 60 million and a comfortable selfsufficiency for only 10 million, a computer's amoral and unsentimental memory-banks would merely order the extermination of everybody over the age of 50 and all those unable or unwilling to work. And that's just for starters. Population-stability could be achieved by introducing Pill-like ingredients into all food, with permits issued to selected breeding pairs enabling them to obtain non-contraceptive foodstuff for a requisite period. The realization of the materialist millenium needs only the applied logic of a computer.

The last time we met, if you remember, the subject under discussion was the crisis over the impending famine of raw materials. If you don't altogether fancy the computer recipe for salvation (and at least all readers over the half-century mark will be agin it, I fancy), there are fortunately other ways in which electronics could help to stave off disaster.

For instance, we could re-deploy the world's research effort into tapping a virtually inexhaustible source of energy which is at present largely going to waste. I
mean, of course, the sun. The whole of the earth's supplies of coal and oil were laid down by the equivalent of three days of sunlight. What's the sense in scrabbling dangerously for second-hand sunlight when we could get our power supplies by direct down-conversion from the 1.3 kW per square metre which is the mean rate at which solar energy falls on the earth's surface?

As "Cathode Ray" reminded us in the Feb. 1961 issue of $W W$ there are at least three main ways of doing this. One is by magnetohydrodynamics (MHD), in which a conducting fluid or plasma cuts a magnetic field. In this application, sunenergy could probably be used to heat the plasma; thus, the approach would eliminate fossil fuel, steam boiler, turbine and the rotary aspect of the alternator. Another approach is by thermionic generation. In this a cathode is heated non-electrically (sun-energy?) to a high temperature, boiling off electrons which reach an anode and create a voltage between it and the cathode. The third method is by thermoelectric generation, in which a current is produced when one of the junctions between two dissimilar metals is heated.

There are other means as well. Solar energy systems for heating or cooling houses and commercial buildings are now coming into use-a new addition to the RCA Building in New York is a recent case in point. Solar voltaic cells could, by intelligently-planned mass production, be fabricated very cheaply and the coverage of a hundred square miles or so of presently-useless Sahara Desert could provide the power requirements of Europe and Africa.

Neither is direct sunlight our only bet. The sun generates high-velocity winds, and chains of wind-driven rotors of advanced design could provide much useful power. Tides and thunderstorms have been neglected as energy sources. The earth itself is a vast reservoir of heat for direct conversion and in many places it's virtually on the surface. Hot spring areas and volcanoes provide immense power sources.

With direct-conversion systems, present efficiencies are not good, but not so bad as you might think, so that's where concentrated research would pay off, particularly in semiconductor areas. Just as a multi-stage turbine extracts as much energy as possible from steam, so too might MHD, thermionic and thermoelectric "engines" be combined into a highly-efficient threestage generator, with the waste heat from the first fed into the second and then the third. And, after all, the overall coal-toelectricity efficiency of a large, modern power station is only about 32% anyway.

But we shall probably go along the same old tram-tracks, taking orders and the line of least resistance simultaneously; in that event, Guglielmo Marconi's premonition will be justified. The Science Museum has called his centenary exhibition "A Girdle Round About the Earth". Perhaps if Marconi could see the road we've taken since his time he might want it amended to "My Girdle's Killing Me".

Accurate measurement of radio interference and field strength and determination of hazards caused by microwave radiation

VHF interference measuring set type HFV 25 to 300 MHz (continuously tuned without band switching). The techniques employed in this design have been chosen to ensure full compliance with the C.I.S.P.R. recommendations, while giving operational ease such that accurate measurements may be made by relatively unskilled personnel. Special attention has been paid to obtaining high image and I.F. rejection and low intermodulation products, points of special importance to a C.I.S.P.R. measuring set. A built-in calibrator is provided so that the unit can be quickly and easily calibrated at any frequency. An I.F. output is provided for connection to other equipments.
The HVF can also be used as a selective microvoltmeter or field strength meter, F.M. and A.M. demodulation facilities are provided. A.M. detection modes are average, peak and quasi peak.

Noise voltage and interfering field strength can be measured with the set as supplied, interfering signal power can be determined in conjunction with the absorbing clamp MDS 20. This combination is recommended by the F.T.Z. (German Central Telecommunications Authority).

Other measuring sets and accessories are available to cover 25 MHz to 1300 MHz and a full range of microwave hazard measuring equipment is available. Please contact

AVELEY ELECTRIC LTD ROEBUCK ROAD, CHESSINGTON, SURREY. 01-3978771

Project 80

 a brilliant new concept in modular hiff

 a brilliant new concept in modular hiff}

Project 80 is going to be the ultimate in modular hi- fi construction for a very long time to come. It combines the qualities most demanded of any modern domestic system - good circuitry, reliability and fine performance - with other features tc be
found nowhere else in the world. For example, compactness - Project 80 control units are $\frac{3^{\prime \prime}}{4}$ deep $\times 2^{\prime \prime}$ high, and each one is completely self-contained.
Elegance - all of Sinclair's design leadership has been concentrated on producing designs of outstanding functional elegance unsurpassed for styling and simplicity. Flexibility -
the size and styling of Project 80 modules makes them the most versatile units ever. Combine them how you will, where you will, the Project 80 System of your choice gives you the best.

Sinclair Project 80

technically the world's most advanced

Project 80 gives you choice from a range of 9 different modules for combining in a variety of ways to suit your requirements. The Stereo 80 is a versatile pre-amp control unit designed to meet all domestic hi-fi requirements including tape monitoring, high sensitivity magnetic cartridge input, and of course, individual slide controls on each channel for precise output matching. By separating the F.M. tuner and stereo decoder, useful economies can be effected where stereo radio reception is not needed. Two power amplifiers - Z.40 (18 watts RMS continuous into 4 ohms using 35 V) and Z.60 (25 watts RMS continuous into 8 ohms using 50 V) are available with choice of 3 different power supply units. The PZ. 8 with its virtually indestructible circuitry is particularly recommended. For the final word in system building, the Active Filter Unit puts the finishing touch of quality to what are easily the world's most technically advanced hi-fi modules Any further units likely to be added to Project 80 range will be compatible with those already available.

Guarantee

If. within 3 months of purchasing any product direct from us, you are dissatisfied with it. your money will be refunded on production of rece pt of payment. Many Sinclair appointed stockists also offer this guarantee Shou'd any defect arise in normal use. we will service it without charge.

Stereo 80 Control Unit Size $-260 \times 50 \times 20 \mathrm{~mm}(101 \times 2 \times$ ins $)$ Finish - Black with white Indicators and transparent sliders Inputs - Magnetic pick-up 3 mV RIAA corrected; Ceramic pick-up 350 mV Radio 100 mV . Tape 30 mV Signal/noise ratio - 60 db Frequency range -20 Hz to 15 KH $\pm 1 \mathrm{~dB} ; 10 \mathrm{~Hz}$ to $25 \mathrm{KHz} \pm 3 \mathrm{~dB}$ Power requirements -20 to 35 volts Outputs $100 \mathrm{mV}+\mathrm{AB}$ monitoring for tape Controls - Press button tape radio and P.U. Sliders on each channel for volume bass treble \quad (add $£ 1.19$ V.A.T.) $f 11.95$
Project 80 FM Tuner size $-85 \times 50 \times 20 \mathrm{~mm}$ ($3 \mathrm{~B} \times 2 \times 2 \times \mathrm{zns}$) Tuning range Dual varicap -87.5 to 108 MHz Detector - I.C. balanced Tuning range Dual varicap - 87.5 to 108 MHz Detector - I.C. balanced
coincidence One I.C. equal to 26 transistors Distortion -0.2% at 1 KHz for coincidence
30% modulation 4 pole ceramic filter in I.F. section Aerial impedance -75Ω or $240-300 \Omega$ Sensitivity -5 microvolts for $30 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio Output - 300 mV for 30% modulation Power requirements -25 to 35 volts $f 11.95$
R.R.P. (add $£ 1.19$ V.A.T.) $£ 11.95$

Project 80 Stereo Decoder size $-47 \times 50 \times 20 \mathrm{~mm}(17 \times 2 \times$ $\frac{3}{4}$ Ins) One 19 transistor I.C. Chanriel separation greater than 30 dB Power requirements -25 V Output 150 mV per channel $\underset{\text { (add } 74 \text { pV.A.T.) } f 7.45}{5}$
Active Filter Unit Separate controls on each channel Size $108 \times 50 \times 20 \mathrm{~mm}$ ($4 \frac{1}{4} \times 2 \times \frac{3}{4} \mathrm{~ms}$) Voltage gain - mınus 0.2 dB Frequency response -40 Hz to 22 KHz controls minımum Distortion - at $1 \mathrm{KHz}-0.03 \%$ using 30 V supply H.F. cut off (scrazch) -22 KHz to $5.5 \mathrm{KHz}, 12 \mathrm{~dB} / o \mathrm{ct}$. slope L.F. cut off (rumble) -28 dB at 20 Hz . 9dB/oct. slope R.R.P f 65
Z.40 Power Amplifier size - $55.80 \times 20 \mathrm{~mm}\left(2 \frac{1}{1} \times 3 \frac{1}{1} \times \frac{3}{4} \mathrm{Ins}\right) 9$ transistors Input sensitivity -100 mV Output 18 watts RMS continuous into 4Ω (35 V) Frequency response $-30 \mathrm{~Hz}-100 \mathrm{KHz} \pm 3 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio -64 dB Distortion - at 10 watts into 8Ω less than 0.1% Power requirements -12 to 35 volts: built-in protection against overload. R.R.P. f 40
Z. 60 Power Amplifier size $-55 \times 98 \times 15 \mathrm{~mm}(2 \mathrm{t} \times 3 \mathrm{3} \times \mathrm{Zns}) 12$ transistors Input sensitivity $-100-250 \mathrm{mV}$ Output -25 watts RMS continuous into $8 \Omega(50 \mathrm{~V})$. Distortion - typically 0.03% Frequency response -15 Hz to more than $200 \mathrm{KHz} \pm 3 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio - better than 70 dB Bult-in protection against transient overload and short circuiting Load impedance f 695 -4Ω min. safe on open circuit
Power Supply Units pz. 8 Stabilised. Re-entrant current limiting makes damage from overload or even direct shorting impossible. Normal working voltage (adjustable) 50V. R.R.P. $£ 7.98+79 p$ V A.T. Without mans ransformer PZ. 635 V . stabilised R.R P. $£ 7 \cdot 98+79 \mathrm{p}$ V A.T. PZ. 530 V unstabilısed R.R.P. $\mathbf{£ 4} \cdot 98+49$ p V.A.T

To Sinclair Radionics Ltd. St. Ives Huntingdon PE17 4HJ
Please send post paid \qquad
for which I enclose Cash/Cheque for $£$ \qquad ncluding V.A.T

Name
Address

Sinclaır Radıonics Litd London Rd.. St. Ives Huntingdon PE174HJ Telephone
St. Ives $(0480) 64646$

asked ve
 ked

£ from newsagents and bookshops. A book from

MAPLIN ELECTRONIC SUPPLIES

First-class post pre-paid envelope supplied free with every order

CATALOGUE

Send just 25p NOW! for our superb 80-page CATALOGUE. It's packed with photographs, illustrations, and pages and pages of detailed data on our complete range of transistors, diodes, I.C.s etc., etc. Seeing exactly what you're buying makes ordering so easy!

LEAFLET MES 24: Describes a reverberation module with a choice of two different spring units. (Jusi send s.a.e. please for leaflet.)

LEAFLET MES 51: Describes a complete electronic organ which can be constructed using our high quality component parts. These are designed so that they may be used later as the basis of a series of larger and more sophisticated designs. (Please send 15p for Leafiel MES 15.)

Centurion
PROFESSIONAL QUALITY

INSTRUMENT CASES

4 Models				
Model 120 all-aluminium two-par construction. Top and sides, bue				
hammer finish, front, rear andbase: white. Oihers.' mild steel				
base: white. Onsers: midid steel				
Top, base, sides and detachable				
rear panel, blue hammer. Detach- Model 320				
Dimensions in inches.				
Model	W			
	8	24	6	$\underline{\$ 2.87}$
220	8	6	$3{ }^{1}$	53.78
221	8	6	6	¢4.07
320	120	8	12	¢8.42
Chassis for model 320 f2.34 extra.				

SYNTHESISERS

We stock all the parts for the "Electronics Today International" synthesiser including all the P.C.B.s required and all the metalwork: including a drilled and printed front panel for a truly professional finish. Some of the circuits in this brilliant design are entirely original. Independent authoritative opinions agree. the E.T.I. International Synthesiser is technically superior to practically all synthesisers available today. S.a.e. please for our detailed price lists.

At least £2,500 for Closed Circuit
 TV Engineers

Dixons Technical need CCTV Engineers with a good grounding in Philips (and allied) systems.
We pay well. At least $£ 2,500$, more for more experience. And a lot of opportunities if you've got the ambition. Plus 3 weeks annual holiday and all the benefits a big but friendly company can offer.

Phone Mike Biddle on 01-7345668 or write to him at DIXONS TECHNICAL, 3 SOHO SQUARE, LONDON W1 (Today.) Electronics

Full member of AFDEC-the industry's association of franchised electronic component distributors

Our prices include VAT at the current rate-and carriage on all goods is free.

Send for our catalogue and price list-we'll mail that to you free, too

Please send your catalogue-free!
Name
Address \qquad

EHiOMASOMIC electronics

Dept. 5
56, Fortis Green Road, London, N1O:3HN telephone: D1-883 3705

Var INCEXSIVE PRICRS

AUDIOTRONIC Model ATM1 Top value 1,000
opv pocker multi-
 test leads.
OUR PRICE £3.25 P\&\& 15p

OUR PRICE E3.50 P\&P 15p

MODEL TH12
$20,000 \mathrm{opv}$. Overioad
protection. Slide switch
selector $0 / 0.25 / 2.5 / 10 /$
$50 / 150 / 1000 \mathrm{~V}$ DC. $0 / 10 /$
$50 / 250 / 1000$ AC. $0 /$
$504 \mathrm{u} / 25 / 250 \mathrm{mAC} \mathrm{DC}$
$0 / 3 \mathrm{k} / 30 \mathrm{k} / 300 \mathrm{k} / 3 \mathrm{Mi}$

+50 dB .
OUR PRICE $£ 5.95$
P\&P 30p
HIOKI Model 720X VOM

MODEL PL436 8000 op AC . Mirror scale
$6 / 3 / 12 / 30 / 120 /$
600 V DC. $3 / 30 /$
 $50 / 600 \mu \mathrm{~A} / 60$ i $50 / 600 \mu \mathrm{~A}$
600 mA.
$10 / 100 \mathrm{~K} / 1 \mathrm{Meg}$
-20 to 46 dB OUR PRICE E6.97 P\&P30p.

HIOKI 750X VOLT-OHMMILLIAMETER
 $0-3 / 300 \mathrm{k} / 3 / 30 \mathrm{Mohms}$.
Decibels: 10 to +17 dB, Output:-
$0-3 / 6 / 15 / 30 / 60 / 120 / 300 \mathrm{~V}$ Accur. acy $\pm 3 \%$ DC, $\pm 4 \% \mathrm{AC}$. Sensitivity:
$50,000 \mathrm{opv}$ DC, $5,000 \mathrm{opv} \mathrm{AC} .4$ inch meter. Built in protection. Size: $57 \times$
$102 \times 153 \mathrm{~mm}$. OUR PRICE E11,95 P\&P 40p

U4324 MULTIMETER
High sensititity,
load
10,
20.00 otece ted.
20.600 opy Ranges
$0.6 / 1.23 / 12 / 30$
$60 / 120 / 600 / 1200 \mathrm{~V}$
DC. $3 / 6 / 15 / 60 / 150 /$
$300 / 60 / 900 \mathrm{~V}$ DC. $3 / 6 / 15 / 60 / 150 /$
$300 / 600 / 900 \mathrm{~V}$ AC.
Current: $0.06 / 0 \mathrm{Gi}$. Current: $0.06 / 0.6$ /
$6 / 60600 \mathrm{~mA} / 3 \mathrm{DDC}$
$0.3 / 3 / 30 / 300 \mathrm{~mA}$. $0.3 / 3 / 30 / 300 \mathrm{~mA} /$
$3 A A C$. Resistence 25/500 ohms $/ 0.5 / 5 / 50 / 500 \mathrm{k}$ Mohms. Docibels: -10 to +12 dB . Size
$167 \times 98 \times 63 \mathrm{~mm}$ Supplied complete with test leads, spare diode and OUR PRICE E8.00 P\&P 30p
U435 MUL TIMETER
20.000 opv. Overioad 20.000opv. Overioa
protected. Ranges:
$75 \mathrm{mV} / 2.5 / 10 / 25$; $100 / 250 / 500 / 1000 \mathrm{~V}$ DC. $2.5 / 10 / 25 / 100 /$
$250 / 500 / 1000 \mathrm{~V}$ AC Current: $50, \mathrm{u} / 1 / 1 / 5$ i
25/100mA/0.5/2.5A DC. $5 / 25 / 100 \mathrm{mAl}$ A $0.5 / 2.5 \mathrm{~A}$ AC. Resist-
ance: $0.3 / 3 / 30 / 300 \mathrm{k}$
ahms. Size: $205 \times 110 \times 84 \mathrm{~mm}$. Sup
plied complete with leads, crocodile clips and steel carrying case
OUR PRICE 88.75
OUR PRICE E8.75 P\&P 30p
U4312 MULTIMETER extremely sturdy
instrument for
general electrical use. 667opv.
$0 / 0.3 / 1.5 / 7.530 /$ $60 / 150 / 300 / 600 /$ 9/0 $1 / 1.5 / 7.5 / 30 /$
$60 / 150 / 300 / 600 /$ 900 V AC $0 / 300 \mathrm{u}$ A
$1.5 / 6 / 15 / 150 / 60 /$ $600 \mathrm{~mA} / 1 / 1.5 / 6 \mathrm{~A}$ DC. $0 / 1.5 / 6 / 15$ /
$60 / 150 / 600 \mathrm{~mA}$
1.5/6A AC. 0/200/3k/30k ohms. DC
accuracy 1% AC 1.5% Knife edge pointer, mirror scale. Complete with
sturdy metal carrying case. leads and sturdy meta
instruetions
OUR PRICE $\mathbf{~} 9.75$

U91 Clamp AMMETER
 For measuring $A C$ yolt- age and current without breaking cirreuit. Ranges: $300 / 600 \mathrm{~V}$ 10/25/100/250/500At: Accuracy 4%. Size $283 \times$ $94 \times 36 \mathrm{~mm}$. Complete with carrying case, leads and fuses.

 P\&P 30p

 OUR PRICE $\mathbf{1 1 0 . 5 0}$

Model HT100B4 MULTIMETER

 Overload protected.Shock proof fircuits. 9.5uA Meter With
mirror scale. Sensitivity
100 kV . Polarity change switch. Rangess $0.5 / 2.5$.
$1-/ 50 / 250 / 500 / 1.000$ 1-/50/250/500/1.000
Volts DC. $2.5 / 10 / 50 /$ Volts DC. $2.5 / 10 / 50$.
$250 / 1.000$
Volts $A C$. DC resistence' $0-20 /$
$200 \mathrm{k} / 2 / 20 \mathrm{M}$ Meg. ohms.
DC current:- $10 / 250$ A mA/10A. AC current: $-0-10 A .-20$
to +62 dB . Operates from $2 \times 1.5 \mathrm{~V}$ batteries. Size: $180 \times 134 \times 79 \mathrm{~mm}$.
OUR PRICE $\mathbf{1 1 7 . 5 0}$ P\&P 40p

MODEL AS. 100 D VM

 100.000 opv.Mirrorscale.

Built-inmeter
protection. $0{ }^{3}$
$12 / 60 / 120 / 300$
$600 / 1200 \mathrm{~V}$ DC.
$0,6 / 30,120 / 300$
600 V AC $0 \quad 10$
$6,60,300 \mathrm{~mA}$
12 Amp .0 .2 K ,

OUR PRICE E17.50 P\&P 30p

KAMODEN TT35

TRANSISTOR TESTER
High quality
instrument
test reverse lo leak
current and DC
current. Ampli.
fication Amplor of
NPN PNP diodes
transistors. SCR's.
etc. 4" square
clear scale mete
clear scale meter
Operates from
internal batteries.
Complete with
instructions, leads
OUR PRICE £17

KAMODEN 360 multimeter High sensitivity
DC
100kohm/V AC 10kohm $/ V$
$5^{\prime \prime}$ mirror scale. A. mirror scale,
overload protect
ed. Ranges: 0.5 / 2.5/10/50/250/ 1000 V DC. $5 / 10 /$
$50 / 250 / 1000 \mathrm{~V}$ AC. Current: $0.01 \mathrm{~mA} / 0,5 / 5 / 50$ $500 \mathrm{~mA} / 10 \mathrm{~A}$.
Resistance: 0.1, Resistance: $0.1 /$
$1 / 10 / 100$ ohms//
$1 / 10 / 100 \mathrm{k}$ ohms/ $1 / 10 / 100 \mathrm{k}$ ohms
$10 / 100 \mathrm{M}$ ohms.

Decibels- 20 to
+62dB. Battery operated. Size: $180 \times$
$140 \times 80 \mathrm{~mm}$. Supplied complete with
test leads etc.
OUR PRICE $\mathbf{~} 17.50 \quad P \& P 40 p$
TMK IOOK LAB TESTER
100,000opv. 61/2"
scale. Buzzer
short circuit check.
Sensitivity 100,000
Sensitivity 100,000
opv DC. 5k $/ V$ AC
DC Volts: $0.5 / 2.5 /$ DC $10 / 50 /$ s50/1000V
AC. $3 / 10 / 50 / 250 /$ AC. $3 / 10 / 50 / 250 /$
$500 / 1000 \mathrm{~V}$ D

current 10/100uA/10/
10/100/500mA/2.5/10A. Resistence: Decibels: -10 to +49 dB . Piastic case with earrying handle. Size: 190×172
$\times 99 \mathrm{~mm}$.
OUR PRICE £19.95
P\&P30p
370WTR MULTIMETER
 OUR PRICE f22.50 P\&P 30p U4317 MUL TIMETER instrument for field and laboratory work
K nife edge pointer, 86 mm . mirror scale
Ranges: 100 mV 1
Ranges: $0.5 / 2.5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ $V \mathrm{DC}$ 0.5/2.5/10/25/50/100/250/
$5000 / 1000 \mathrm{~V}$ AC. Current: $50 \mathrm{uA} / 0.5$ / $1 / 5 / 10 / 50 / 250 \mathrm{~mA} A 1 / 5 A$ DC. $0.25 /$
$0.5 / 1 / 5 / 10 / 50 / 250 \mathrm{~mA} / 5 \mathrm{~A}$ istance: $0.5 / 10 / 100 / 200$ ohms $/ 1 / 3 /$ 30300 k ohms. Decibels: -5 to +10 dB
Battery Battery. operated. Size: $210 \times 115 \times$
90 mm . Supplied in carrying case complete with leads. OUR PRICE E15.00 P\&P 40p
MODEL U4311 Sub-standard Multi-range Volt-Ammeter Sensitivity 330
Ohms $/$ olt AC And DC. Scale length:
165mm. $0 / 300 / 750$ a $1.5 / 3 / 7.5 / 15 /$
$30 / 75 / 150 / 300 /$
$750 \mathrm{~mA} / 1.5 / 3 /$
$7.5 A D C .0 / 3 /$
$7.5 / 15 / 30 / 75 /$
$150 / 300 / 750 \mathrm{~m}$
1.5/3/7.5A AC.
$0 / 75 / 150 / 300 / 750 \mathrm{mV} / 1.5 / 3 / 7.5 / 15 /$
$30 / 75 / 150 / 30 / 750 \mathrm{~V}$ $1.5 / 3 / 7.5 / 15 / 30 / 75 / 150 / 300 / 750 \mathrm{~V}$ AC. Automatic cut out device. Supp
lied complete with test leads, manual and test certificates.
OUR PRICE E49.00 P\&P 50p TE65 VALVE VOLTMETER 28 ranges. DC volts
$1.5-1500 \mathrm{~V} . A C$ volts $1.5-1500 \mathrm{~V}$.
Resistance up to Resistance up to
1 ल00 Megohms. 1000 Megohms,
$200 / 240 \mathrm{~V}$ AC operation. Com-
plete with probe
and instructions.

LB3 TRANSISTOR TESTER
Tests ICO and B.
PNP/NPN. Operat
from 9 V battery.
Instructions supplied.
OUR PRICE
£3.95 P\&P 20
meter $4^{4} \times 4$ " $^{\prime \prime}$ ". Complete with
deluxe carrying daluxe carrying
case, batteries and instructions. OUR PRICE E19.95 P\&P 30p CI5 PULSE OSCILLOSCOPE For display of pulsed
and periodic wave forms in electronic
circuits. VERT. AMP circuits. VERT. AMP
Bandwidth: 10 MHz. Bandwidth: 10 MHz .
Sensitivity at 100 kHz
VRMS/mit VRMS/mm: $0.1-25$;
HOR. AMP. Bandwidth: 500 k Hz . Sensitivity ay 100 kHz
VRMS $/ \mathrm{mm}: 0.3-25$
 Press trigger ed swee $1-3000$ usec. Free running 20-200
$\mathbf{k H z}$ in nine ranges
220 in kHz in nine ranges. Calibrator pipg.
$220 \times 360 \times 430 \mathrm{~mm}$. $115-230 \mathrm{~V}$ AC. OUR PRICE £39.00 Carr. paid
RUSSIAN CI16 Double Beam OSCILLOSCOPE 5 MHz pass band.
Separate V_{1} and Y amplifiers. Rectang-
ular $5^{\prime \prime} \times 4^{\prime \prime}$ CRT. Calibrated triggered to 100 milli-sec/cm. Free running time
base $50 \mathrm{~Hz}-1 \mathrm{MHz}$.
Buil tin time hase Calibrator and amplitude Calibrator. Supplied complete with all accessories OUR PRICE 88700

MODEL TE15
GRID DIP ME TER Transistorised.
ates as Grid Dip.
Oscillator, Absorb.
tion wave Meter and
Oscillating. Detector.
requency range
$440 \mathrm{kHz}-280 \mathrm{NHz}_{\mathrm{Hz}}$
in six coils. 500uA
meter. 9 V battery
operation. Size:
$180 \times 80 \times 40 \mathrm{~mm}$.
OUR PRICE E 19.95

MODEL AF. 105 VOM scale. Meter protection. $0 / 3 / 3 / 12 / 60 / 120 /$
$300 / 600 / 1200 \mathrm{~V}$ DC $300 / 600 / 1200 \mathrm{VDC}$
$0 / 6 / 30 / 120 /$ $0 / 6 / 30 / 120 /$
$300 / 600 / 1200 \mathrm{~V} D$ $0 / 30 \mu \mathrm{~A} / 6 /$
$60 / 300 \mathrm{~mA}$
12 Amp. 0/10K/
$1 \mathrm{~m} / 10 \mathrm{~m} / 100$

LB4 TRANSISTOR

TESTER

Tests PNP or NPN transistors. Audio indication. Operates
on two 1.5 V batteries. Complete
with instructions tic OUR PRICE

U4341 Multimeter \&
Transistor Tester
27 ranges. $16,700 \mathrm{opv}$. Ranges: $0.3 / 1.5 / 6 /$
$30 / 60 / 150 / 300 / 900 \mathrm{~V}$ DC. 1.5/7.5/30/150/ $300 / 750 \mathrm{~V} \mathrm{AC}$
Current: $0.06 / 0.6 /$ $6 / 60 / 600 \mathrm{~mA} \mathrm{DC}$
$0.3 / 3 / 30 / 300 \mathrm{~m}$ Resistance: 0.06/
Battery $20 / 60 / 200 \mathrm{k}$ ohms/2 Mohms. Battery operated. Supplied complete
with probes, leads and steal carrying OUR PRICE $£ 10.50 \quad$ P\&P 30p
S100TR MULTIMETER
TRANSISTOR TESTER
100,000opv. Mirro
scale. Overload scate. Ovithoad
protection. $0 / 12 /$
$0.6 / 3 / 12 / 30 / 120 /$ 600 V DC. $0 / 6 / 30 /$ $0 / 12 / 600 \mathrm{~A} A / 12 /$
$300 \mathrm{~mA} / 6 / 12 \mathrm{AC}$
$0 / 10 \mathrm{k} / 1 \mathrm{Meg} /$
100 Meg
-20 to +50 dB .
$0.01-0.2 \mathrm{dFD}$

Transistor tester measuras Alpha, Beta
and ICO. Complate with instructions, batterias and leads.
OUR PRICE f19.95 P\&P 25p
KAMODEN HMG500
insulation resistance tester
Range 0-1,000
Megohms, 500 V

Also see following pages
ALL PRICES EXCLUDE VAT

SWR METER Model SWR3 Handy SWR moter for transmitter entenna align
mont, with built-in field strength meter. Accuracy
5%, Impedance 5 ' Indic 5\%, Impedence 52 Indic ator 5 suction collapsible antenna. Size $145 \times 50 \times$ OUR PRICE $\mathbf{~} 4.25$

AT201 Decade ATTENUATDR Froquency range 0--
200kHz. Attenuato

$0-111 \mathrm{~dB}, 0.1 \mathrm{~dB}$
stepe Impedonce 600 ohms. Input $90 \times 55 \mathrm{~mm}$
OUR PRICE £12.50 P\&P 50p

TRANSISTORISED L.C.R. A.C BR/8' MEASURING BRIDGE

bridge oftering -xcetiont range and securacy at low cost. Resistance: 6 ranges: 0.1 ohm-11.1 megohm $\pm 1 \%$ Inductance: 6 ranges: 1 microhenry-111
henries $\pm 2 \%$ Capacity: 6 ranges: 10pf-1110 mfd $\pm 2 \%$ Turns Ratio: 6 ranges: 1:1/1000-1:11100 $\pm 1 \%$ Bridge Voltage at 1.000 cps . Opera. ted from 9 -volt battery. 100 microamp meter indication. Size 71" \times
$5^{\prime \prime} \times 2^{\prime \prime}$ OUR PRICE 525.00 Pep 30 p

TE16A TRANSISTORISED SIGNAL GENERATOR

MODEL TE20 RF SIGNAL GENERATOR
Six bends 120 kHz -
RF terminals. Sopprato
 Accuracy $\pm 2 \%$. Audio
output to $8 \mathrm{8V}$. Power requirements;
$105-125 \mathrm{~V}$ 220-240V AC. Size:193 $\times 265 \times 150 \mathrm{~mm}$. Complete with test OUR PRICE E17.50 P\&P 50p

TE-200 RF SIGNAL
GENERATOR
Accurate wide range
signal genertor
covering 120 kHz -500
MHz on 6 bands.
Directly callorated. Variable R.F. attenuator audio ourpun. Xtal socket for alaibration. 220/240V ©.c. Size $140 \mathrm{~mm} \times 215 \mathrm{~mm} \times 170$ OUR PRICE £17.50 PEP 50p

TE22 SINE SQUARE WAVE AUDIO GENERATOR Sin 20 css to 200 Hz on 4 banids. Squars 20 cps to 30 kHz. Output impedence sobo $200 / 250 \mathrm{~V}$. AC operation. Supplied brand now guarminted, with instruction manual OUR PRICE £24.95 P\&P 50p
 ARF 300 AF/RF SIGNAL GENERATOR All transistorisad portable. AF sine wave 18 Hz to 220 kHz . AF square wove 18 Hz to 100 k Hz . Output Squar Sine wave 10 V . PPRF 100 kHz to IV maximum.
 220/240V AC operation. OUR PRICE $£ 37.50$ P\&P 50p

Also see previous page

MODEL MG 100 SINE SQUARE
 220.000 Hz Sin Wave 19-100.000 Hz Square Wave Size $180 \times 90 \times 90 \mathrm{~mm}$.Operation 220/240v. A.C.
OUR PRICE £19. 95

PS200 Regulated POWER SUPPLY UNIT Solid state. Variable
output $5-20 \mathrm{~V}$ DC
up to 2 Amp. Inde-
pendent meters to
monitor volt toge and
current. Ouput
$220 / 240 \mathrm{~V}$ AC.
Size: $190 \times 136 \times 2$ OUR PRICE $£ 19.95$ P\&P 50p

25 WATT 10/25/50/100/500/1000 2500 ohms. $£ 1.15$ P\&P 10p 50 WATT 10/50/100/250/500/ £1.62 P\& P 10p 100 WATT 1/5/10/25/50/250/500 2500 ohms. 300 Ohms $£ 2.34$ P\& P 15p
YAMABISHI VARIABLE
VOLTAGE TRANSFORMERS Excellent quality at low cost. Input:
$230 \mathrm{~V} 50 / 66 \mathrm{~Hz}$. Wutput $0-260 \mathrm{~V}$. MODEL S260 BENCH MOUNTING

40A £120.00 £1.50 $\begin{array}{lll}1 \mathrm{~A} & £ 10.00 & 60 \mathrm{p} \\ 2.5 A & £ 12.00 & 50 \mathrm{p}\end{array}$

2400 Wide Angle ImA METERS
MW $1-660 \times 60 \mathrm{~mm}$

Carefully machined top grade steel Contains
$11 / 8^{\prime \prime}$ punches complete with gripper OUR PRICE E3.00 P\&P 40p HITACHI FLUORESCENT
LANTERN LI901 LANTERN LI901
A portable battery operated lante ideat for home. motoring. camp
etc. Approx. 10 tall. Provides
brillient light from 9 1.5 v betteries (not supplied).
OUR PRIC
P\&P 50p
KE630 3 Station INTERCOM
 Master and two sub-stations. Can be
ussed on desk or wall mounted. Complete with cable and batteri
OUR PRICE E5.25 P\&P 50p
SINCLAIR ICI2
INTEGRATED
CIRCUIT
AMPLIFIER
complete with
printed circuit
mounting board.
OUR PRICE £2.35

DT55G DIGITAL CLOCK MECHANISM

\section*{
 | sot |
| :---: |
| ond |
| and |}

$\xrightarrow{\substack{20 \\ \text { ond } \\ \text { in } \\ \hline}}$
ary dial with hours. ilfuminated rotonds. Automatically, minutes and setTV, light etc. and with auto-switch-
ing wilf turn on again when requid ing will turn on again when required.
240 V
AC 240 V AC operation. Switch rating
$250 \mathrm{~V}-3$ Amp 250V-3 Amp.
OUR PRICE E5.95 P\&P 30p
 and excellent
performance performance combined. Adjus
able head band. Impedence 8 oh
$20-12,000 \mathrm{~Hz}$. Complate with

 lead and plug. | OUR PRICE $£ 2.25 \quad$ P\&P 30p |
| :--- |
| TE1035 Stereo HEADPHONES | Low cost with exc-

ellent reaponse. Foam
rubbor earcups. Adjust-
abor hesdband. 8 ohms
impedence. Frequency
rapponse $25 \mathrm{~Hz}-18 \mathrm{kHz}$.
Complete with cable
and stereo jack plug.
OUR PRICE $£ 2.60$

cations etc.
cations etc.
Headphone impedence 16 ohms. Mic.
rophone impedence 200 ohms.
OUR PRICE $£ 5.95 \quad$ P\&P 30p
EMI LOUDSPEAKERS
Model $35013 \times 8^{\prime \prime}$ with
single tweater/crossover.
20-20,000Hz. 15 watts
20-20,000 Hz. 15 watts
RMS. Available 8 or
15 ohms.
OUR PRICE $£ 7.50$ each P\&P 37 p
Model $45013 \times 8^{\prime \prime}$ with twin tweeter/crossover.
$55-13000 \mathrm{~Hz}$. 8 watts
 OUR PRICE $£ 3.62$ aach P\&P 35p

SPECIAL

BARGAIN!

FERGUSON

3406 HI-FI
High quality 2 way spaaker systems.
 25 . $560 \times 340 \times 255 \mathrm{~mm}$ approx.
Wood grain finish with black fronts. Wood grain ing with back fronts.
OUR PRICE $£ 26.95$ PR. P\&P $£ 1$

HIGH QUALITY CONSTRUCTION KITS WE ARE APPOINTED
STOCKISTS AT ALL BRANCHES 8 watts RMS, 16 Complts peak. Din lead.
mplate with comprohensive enay to follow instructions and covered by foll oumine.
Post and Packing 15p per kit.

OUR PRICE $\mathrm{f}^{44.50}$
P\& P 25 p
SINCLAIR SYSTEM 2000 STEREO AMPLIFIER AND TUNER

7東 (1) (1) (

AMPLIFIER
Amplifier output 8 watts per 0.06%. Silicon transistors. Two pick-up plus radio and tape inputs tape output and scratch filter OUR PRICE £28.50 P\& P60p

Examin

FM TUNER

Excellent selectivity and sensi Evity. Twin dual-varicap runing stereo demodulator giving 40 dB Fantastic Value OUR PRICE £28.50 P \& P 60p.

SINCLAIR Project 80 Modules 240 Power Amp £5.45 P \& P 150 240 Power Amp 65.45 \& \& P $15 p$
Z60 Power Amp
Stareo 80 Pre-Amp 11.95 P 11.95 P 150 Active Filter Unit...... $66.95 P$ a P P $5 p$ Project 805 £26.95 P A P 50 p
 ransformer for Pž. £4.05 P \& P 50p SINCLAIR Project 80 Packages
$2 \times 240 /$ Stereo $80 /$ P25........ $£ 25.00$ $2 \times 240 /$ Stereo $80 /$ PZ5.......... $£ 25.00$
$2 \times 240 /$ Stereo $80 /$ 8Z6....... $£ 27.75$
$2 \times 260 /$ Stereo $80 /$ PZ8........ $£ 30.45$ POST \& PACKING 35p each.

AUDIOTRONIC AHA101
 Stereo Headphone Amplifier
 All silicon.
 transistor amplifier
 ates from mag.
 netic, ceram or tuner inputs
 inputs with

 channal. Operates from 9 V battery.INPUTS: 5 mV and 100 mV INPUTS: 5 mV and 100 mV .
OUTPUT: 50 mV per chenne
OUR PRICE $£ 8.50$
twin stereo headphone outputs and

AF20 Mono amplifier.......
AF25 Mix*r...................
AF36 Emittier amplifiey...
AF306 Intercom Amplifiè
AF310/2 Mono
AF310/2 Mono Amplifier...

ATEO 40, 40 enlice litht un

ATB0 1 channel AT85 3 chanid ithe comtrol.. E14.ES
GP310 Stwo prompifion 2×1.27

UES Complota with circult b.
OUR PRICE $\sum_{\text {P3.30 }}$ (No VAT)

AE9 Tratis firtite...

1021 Sturno Listeminy Stavion and gain edetio of loudiomerers with additional facility for stareo howiphore gein comtrols, speaters on-oft side OUR PRICE $\mathbf{E 2}^{2} 25$

AUDIOTRONIC
LOW NOISE CASSETTES

TYPE	5	10	
C60	$£ 1.57$	$£ 3.00$	$£ 7.08$
C90	$£ 2.24$	$£ 4.25$	$£ 10.00$
C120	$£ 2.73$	$£ 5.17$	$£ 12.24$

Cr02 CASSETTES
$\begin{array}{lccc}\text { TYPE } & 5 & 10 & 25 \\ \text { CR60 } & £ \mathbf{E} .92 & £ 7.72 & £ 19.12 \\ \text { CR90 } & £ 5.32 & £ 10.46 & £ 25.22\end{array}$ AUDIOTRONIC
8 TRACK CARTRIDGES $\begin{array}{lccc}\text { TYPE } & \text { Each } & 5 & 10 \\ 40 \mathrm{M} & 85 \mathrm{p} & £ 4.00 & \text { E7.50 } \\ 80 \mathrm{M} & \mathbf{£ 1 . 1 5} & \mathbf{£ 5 . 4 0} & £ 10.26\end{array}$ P\&P Cassottos 3 P , Cartridgos E10.z6
OVER 10 of aither POSTFRE:

MP7 MIXER-PREAMPLIFIER 5 Microphone indivitual genin
controis encoing
06966
facilities Bertery operated. Size: 235
$\times 127 \times 78 \mathrm{~mm}$. Inputs: Micis $3 \times 3 \mathrm{mV}$ $50 \mathrm{k} ; 2 \times 3 \mathrm{mV} .600$ ohms, Phono. Mas.
4 mV 50 k ; Phono Ceremic 100 mV 4 mV 50 k ; Phono Ceremic
Meg. Output 250mV 100k. OUR PRICE £8.97

P\&P 20p

EA41 REVERBERATION

AMPLIFIER Self contained,
transistorised,
battery operated
Simply plug in

microphone, g
ricrophona, gritar atc. and ou tput to
your amplifier, V olume control and depth of reverberstion control.
walnu OUR PRICE £7.50 P\&P 30p

ul pricess Excluog hat

SEW CLEAR PLASTIC PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC. Over 200 ranges in stock-other ranges to order. Quantity discounts available. Send for fully illustrated brochure.

CLEAR PLASTIC MODEL SD640 Size: $85 \times 64 \mathrm{~mm}$			
504 A	¢3.80		
100uA	¢3.75		
200uA	63.70 63.85		
50-0.50uA	$\underline{6} 3.75$		
100-0-100u A.	¢3.70		
1 mA	f3.06		
5 mA	¢3.65		
10 mA .	43.66		
50 mA .	63.68	10V DC	C3.65
100 mA	63.86	20 V DC	¢3.65
1A DC ..	[3.66	300 VCC	13.85 13.65
5 D DC	63.65	15 V AC	63.75
10A DC	¢3.65	300 V AC ..	13.75
5 DDC ..	63.65	VU Meter	13.90
CLEAR PLASTIC MODEL SW100 Size: $100 \times 80 \mathrm{~mm}$			
50wa ..	84.60		
100uA	64.50		
500uA 50-0.50,	64.30 64.60	A	
100-0-100 A ..	64.45		
1 mA	84.30		
1A DC	f4.30		
5ADC	$\underline{64.30}$		
20V DC $50 .$.	$\begin{aligned} & \mathbf{f 4 . 3 0} \\ & f 4.30 \end{aligned}$	150 V AC .. 300 V AC ..	$\begin{aligned} & € 4.45 \\ & £ 4.45 \end{aligned}$
300 V DC..	f4.30	VU Meter	84.90
EDGWISE MODEL PE70 Size: $90 \times 34 \mathrm{~mm}$			
OuA 84.15			
100uA	64.10		
200uA	$¢ 4.05$		
500uA	53.90 $\mathbf{8 4 . 1 0}$		
100-0-100uA ..	44.05		
1 mA	¢ 3.85		
300V AC	$\$ 3.95$ $\mathbf{6 4 3 0}$		
VU Moter	84.30		
MODEL ED107 EDUCATIONAL METER Size: $100 \times 90 \times 150 \mathrm{~mm}$ including terminals			
A revee of high quality moving coil instrumenes ideal for school experimentre and other bench applications. $3^{\prime \prime}$ mirror cole. The meter movement is eneily eccesstible to. demomatrate internal working.			
50uA	f8.50		
$1004 a$	67.90		
50-0-60	67.90		
1 mA	£7.60	50V DC	67.60 67.60
$1.0-1 \mathrm{~mA}$.	£7.60	300 V DC..	67.80
1ADC	17.60 87.60	500mA/5A DCO	88.80
EA DC	67.60 57.60	$5 \mathrm{5} / 50 \mathrm{DCC}$..	f8.80
10VDC	$\underline{87.60}$	EV/15V DC	$f 8.60$
16V DC	67.60	1/5A DC	c8.60
CLEAR PLASTIC MODEL MR 85P \%			
\%00uA			
$\begin{array}{lll}\text { 500-0-600UA... } & 55.35 \\ 500\end{array}$			
$1 \mathrm{~mA} \mathrm{O}^{\text {a }}$.. .. 55.20			
$\begin{array}{llllr}1.0-1 m A & . . & . . & \mathbf{5 5 . 2 0} \\ 5 \mathrm{~mA} & . . & . . & . . & \mathbf{5 5 . 2 0}\end{array}$			
10 mA 55.20			
50 mA	$\underline{56} 20$		
100mA			
1ADC 55.20 300V AC $\mathbf{5 5 . 3 0}$			
5ADC 65.20 S Meter 1mA.. 56.20			
20V DC			
150V DC 55.20 30A AC *5.20			

 Please send me the following items NAME

CENTRAL LONDON

401 OXFORD ST. 3 LISLE ST. WC2

01-493 8641
$01-4378204$ 34 LISLESS. WC2 118 EDGWARE RD. W2
193 EDGWARE RD. W2 193 EDGWARERD. W2 207 EDGWARE RD. W2 311 EDGWARE RD. W2 346 EDGWARE RD. W2 109 FLEET ST. EC4 152/3 FLEET ST. EC4 10 TOTEEMHAM G. RD. 27 TOTTENHAM CT. RD 33 IOTIENHAM CT. RD. $\quad 01-636371$ 42/45 TOTTENHAM CT. RD. $01-6363945$ 257/8 TOTTENHAM CT. RD. $01-5809670$ 87 TOTTENHAM CT. RD. O1. 5803739 Is now our Wost End Service Department

ESSEX	
86 SOUTH ST. ROMFORD	$70-20218$

KENT

53/57 CAMDEN RD., TUMBRIDGE WELLS
$0992-2324$
LEICESTERSHIRE
45 MARKET PLACE, LEICESTER
$0533-537678$

SURREY	
1046 WHIT GIFT CEWTRE, CHOVDON	
	$01-6813027$
27 EDEN ST. KINGSTON	01.5467845
32 HILL ST. RICHHOND	$01-9481441$

W/ARWICKSHIRE
II6 CORPORATION ST., BIRMINGHAM
$021-2363503$
ALL BRANCHES OPEN FROM
9am to opm MON TO SAT.

CHEQUES TO THE VALUE OF f 30 ACCEPTED FROM PERSDNAL SHOPPERS WITH BANKERS CARO. IN OTHER CASES AND FOR AMOUNTS IN EXCESS OF f30, PLEASE ALLOW TIME FOR CLEARANCE. BANKERS ORAFTS ACCEPTED.

All prices correct at 13/6/74 but
 EXCLUDE VAT
 FOR MAIL ORDER $\begin{aligned} & \text { by mat to order. Remember to add } 10 \%\end{aligned}$

TO LASKYS HEAD OFFICE AND MAIL ORDER DEPARTMENT Audiotronic House, The Hyde, London NW9 6JJ. Tel: 01-205 5651/3735

 DON'T RELY ON YOUR MEMORY BUY NOW AT BARGAIN PRICES Hi Fi and Transistors - Up to date Brochures on request
 EARN YOURSELF EASY MONEY. WITH PORTABLE DISCO EQUIPMENT DIsco MINI A complete porfable disco
fitted mixer|preamp, 2 decks all facilities As above but with Slider Controls ع3. 50 100 watt amplifier for above SDLS100 100 watt mixer/amplifier with slider conirols
RSS
50 840.50

R100 100 watt mixer/amplifier E69.00 RISCO watt mixer/amolitier cel
E57.50 Disco Anp 100 watt mixer/amplifier $£ 73-00$
400, 40 watt Mlxer Amplifie 537.50 800 , 80 watt Mixer Amplifier e45-6 DISCO MIXER/PREAMP LIFIERS
${ }^{\text {SDLL }}$ (rotary controls)
sDL (rotary controis)
SDLII (silder control
DISCO VOX (silider controis) the complete disco preamp C48-50 DJ1e 100 ET2** O.J301 Matt power amplifier for above $£ 40-50$ DJ39L Mk III Slider Controls D.J DISCLITE As 30L.II + Variable speed flashes

MINIATURE AMPLIFIERS IT

AMPLIFIERS (earr. etc. 20p)

Carlsbro Reverberation Unit Disco anti-feedback microphone 150 watt Ol liquid wheel projector Spare Effects and Llauid cassettes large range of patterns
Gin. whools $85-50$. Va in spot bank fitted 3 lamps Auto rimite (mini with flashers)
Bubblemaker with it gali. Liquid
 FREE stock list ret. No. 18 on request.
AKG/RESLOIOJ/CARLSBROIEAGLE Mics, Stands. Mixers, Cabinets, Chassis and complete Speaker Systems, Megaphones, Turntables, Public Address
FIBRE OPTICS
0.01 diam. Mono Filament $£ 5.50$ per 100 metre ree 0.13 diam. 64 Fibres Sheathed, $£ 1.00$ per me
SPRAYS 45 mm . dlam. Mares Talls. $£ .50$.

BUILD THE NEW

HENELEC

STEREO FM TUNER

A completely new high stability stereo FM
 performance with a realistic price to give high and constructional details Ref. No. 5 30p.) Kit price £21.00 (+VAT)
OR BUILT AND TESTED E24.95 (+VAT)

 stages, LED indicators. Tuning meter, AFC, eas, to construct and use.
Mains operated. Slim modern design with flbre glass PC, toak cabinet

LOW COST HI-FI SPEAKERS

MULTIMETERS

OTHER EQUIPMENT SE250B Pocket Signal injector TE15 Grid DIP meter 440 kHz TE40 AC Mllivoltmeter. 280 mH efe TE65 \quad| $1 \cdot 2 \mathrm{mHz}$ \& Range valve |
| :---: |
| 28 | 28 Range valve

coltmeter $£ 22.50$ carr. 40 $120 \mathrm{kHz}-500 \mathrm{~m}$ TE22D 20 Hz -200kHz carr. 40 SE350A Gelux E 49.95 carr. 40 SE400 Volts/ohmsis carr. 20 p Volts/ohms/R-C sub.
RF fieldiRF gen. NEW REVOLUTIONARY SUPER TESTER GBOR The complete testing system Volts $A C=11$ ranges from 2 V to 2500 V
Volts $D C=13$ ranges from 100 mV to
AKV $D C=12$ ranges from 500A to 10 A Amp AC $=10$ ranges from 200 uA to 5 A Ohms: $=6$ ranges from one tenth o
Ohm to toomQ Reactance $=1$ range from 0 to 10 MQ
Capacity $=6$ ranges from 0 to 500 pF Capacity $=6$ ranges from 0 to 500 pF
and from 0 to $0.5 \mu \mathrm{~F}$ and from 0 to $50 \cdot 000 \mathrm{pF}$ 號 Frequency $=2$ ranges from 0 to 500 Hz and from 0 to 5000 Hz
Output Voltage $=9$ ranges 10 V to 2500 V Decibels $=10$ ranges from -24 to +70 dB

EXCLUSIVE
 DECCA

KELLY SPEAKERS
12 watt speaker Tweeter systems.
81 n . Bass/Midrobs and Melinex 8in. sass/Midrobe and Melinex £12.50 per palr of systems (carr./pkg,

Electronics Supplies

Specialists in electronlcs for more
than 30 years. Trade and industry supplies-every type of component

U.K.' s largest range with discount and U.K. S largest range with discount and
demonstrations for caliers. Lates stock lists on request (Ret. No. 17)
Phone 01-402-4736 for Barclay/Access Phone 01-402-4736 for Barclay/Access
Card Direct orders and latest prices.

ALWAYS BARGAINS FOR CALLERS

NEW FROM A.S.P. CARBON FILM RESISTORS

97p
trans-
FORMERS
Cased versions
are 240 Volt
anins

ste cased
units coated in tuse and 115 Volt American type socket up to
500 VA , above 500 VA cable entry. VA (Watts) Ret. No. PRICE VA(Watts) Ref. No. PRICE PRICE
CASED OPEN POST
Tapped at $115,220,240$ Volts.

POWER UNIT Type P6200

 Supolying200 mA In moulded case foit DC at ${ }_{5} \mathrm{~A}$ mains plug. 2 metre output iead with 4-way mm sockets and 3.5 mm plugs. Price $£ 2 \cdot 25$. Post 10p.

QUALITY INSTRUMENT CASE Strongly moulded in
High Gloss Grey Plastic High Gloss Grey Plastic
CFlame Retardant ABS).
Two interiocking halves Two interlicking halves
secured by four corner boits (supplied).
Interior S ize:

Weioht 11 ness: -
Weight: 11 il ors.
Price $\mathrm{E1}$. 50 . Post 15 p .

TRANSFORMERS

SAFETY ISOLATING

$\underset{\text { Prim. } 120 / 240 \mathrm{~V} \text {. Sec. } 120 / 240 \mathrm{~V} \text {. Centre Tap with screen }}{\text { PRICE }}$
 CASED VERSION in plastic coated steel case
with Powerlead. Please state 115 V or 240 V output British or American outlet sockets up to 500 V A Over 500 V A Cable Entry.

\section*{MINIATURE \& EQUIPMENT
 | VOL | S | MILL | AMPS | TYPE | PRICE | Post |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sec. 1 | Sec. 2 | Sec, 1 | Sec. 2 | No. | ¢ | f |
| 3-0-3 | | 200 | | 238 | 1.23 | 0.10 |
| 0-6 | 0-6 | 500 | 500 | 234 | 1.30 | 0.10 |
| 0-5 | 0-6 | 1008 | 1000 | 212 | 1.68 | 0.22 |
| 9-0-9 | | 100 | | 13 | $1 \cdot 23$ | 0.10 |
| 0-9 | 0-9 | 330 | 330 | 235 | 1.43 | 0.10 |
| 0-8-9 | 0-8-9 | 500 | 500 | 207 | 2.28 | 0.22 |
| 0-8-9 | 0-8-9 | 1000 | 1000 | 208 | 3.03 | $0 \cdot 30$ |
| 15-0-15 | | 40 | | 240 | 1.23 | $0 \cdot 10$ |
| 0-15 | 0-15 | 200 | 200 | 236 | 1.30 | $0 \cdot 10$ |
| 20-0-20 | - | 30 | - | 241 | 1.23 | $0 \cdot 10$ |
| 0-20 | 0-20 | 150 | 150 | 237 | 1.30 | 0.10 |
| 0-15-20 | 0-15-20 | 500 | 500 | 205 | 2.97 | $0 \cdot 38$ |
| $0-20$ | 0-20 | 300 | 300 | 214 | 1.76 | 0.22 |
| 0-20 | | 3500 | No Screen | 1116 | 3.00 | 0.40 |
| 20-12-0- | - | 700 | | 221 | 1.55 | 0.30 |
| 12-20 | | (D.C.) | | | | |
| 0-15-20 | 0-15-20 | 1000 | 1000 | 206 | 3.80 | 0.38 |
| 0-15-27 | 0-15-27 | 500 | 500 | 203 | 3.08 | 0.38 |
| 0-15-27 | 0-15-27 | 1000 | 1000 | 204 | 3.24 | 0.38 |

30 VOLTS
PRIMARY 200/240V.
SECONDARY 12, 15, 20, 24,
SECONDAR Ref. Price Post
AMPS

				betare switching adustable. Max Load: 400 VA or
AMPS	Ref.	Price	Post	
				1000 Watts reslstive.
0.5	112	1.58	0.22	
1	79	2.20 3.19	$0 \cdot 38$	2 in . Fittings Instructions
2	20	3.19 3.96	0.38 0.42	included. Trade Price:
3	21	3.96	0.42	£580. Post 20p.

MAINS KEYNECTOR The sate, quick, connector for electrical appliances, 13 Amp rating,
fused will connect a number of appliances quickly and safely to the malns,
ideal for testing, demonideal for testing, demon-
strating, window dlsplays, strating, window dsplays,-
etc., Warning Light, interlocked to prevent connecting when live. ${ }^{\text {Trade Price: }} \mathbf{E 2}$. Post Trade
25p.

PLEASE ADD 10\% FOR V.A.T

CD

BYRE HOUSE, SIMMONDS RD. WINCHEAP, CANTERBURY KENT CT1 3RW
Tel: Canterbury (0227) 52436

WW-086 FOR FURTHER DETAILS

Collins TCS R/T $1 \cdot 5-12$ mcs in 3 bands, v.f.o. plus crystals 25 watt out	¢25.00	P.P. 2.00	Dubilier Radio noise filters 9-20 amps Inverter 24 v . input out 28 v .400 kys	$\begin{array}{r} 75 p \\ \qquad 3.00 \\ \qquad 60.00 \end{array}$	$\begin{aligned} & \text { P.P. } \\ & \text { fo. } 50 \\ & £ 0.75 \end{aligned}$
Frequency meter $125-20,000 \mathrm{kcs}$ w/calibration books with A/C power supply	¢35.00	61.50	Stand and 4 Plug-in Units- 220 mcs. Good condition Beckman Digital Voltmeter Type BIE 2116 and Ratio		
Solartron Storage Scope QD $910 . . .$.		63.00 61.50	Meters Vacuum Compressor Pump with 240 V	$E 25.00$ $E 15.00$	12.00 ¢1.50
Cossor D/B Rough	¢6.00 $\mathbf{1 0 . 0 0}$	11.50 $¢ 1.00$	RCA Marine Direction Finder and Radio	£28.00	¢1.00
Telectrd TV Line Selector Type L $190 \ldots$.	£10.00	¢1:00	Telequipment Test Card C Generator	£30.00	¢5.00
Voltage Regulator Lang Thompson 220 or 240 out at 100 BA	¢45.00	£3.00	Ferrograph 3 Speed Series 6. Frequency Counter Marconi TF 1345/2 Complete with	¢60.00	62.00 65.00
Pye Rangers VHF Transistorised Radio Telephones				660.00 $£ 35.00$	65.00 $£ 2.00$
762C 299-610 mcs	¢40.00	¢2.00	Output Power Meter TF 340	610.00	¢1.00
Wayne Kerr VHF Frequency Standard..........	68.00	¢1.00	Airmec Signal Generator 300 kcs to 30 mcs 7 Bands. S_{B} Standard Siznal Generator GRC (USA) Type 205/B	± 20.00	
Avo Valve Voltmeter	£10.00	¢1.00	7 Bands 9.5 kcs to 30 mcs	635.0	¢2.00
Communication Receiver Skyrider $500 \mathrm{kcs}-60 \mathrm{mcs}$. Poor condition	£16.00	E2.00	Spectrum Signal Analiser Model SB/12 with Tuning Head 2 mcs-4umcs	¢150.00	66.00
Test Card C Videcon	$\underline{10.00}$	¢1.00	Signal Generator TF 93785 kcs -30 mes 8 Bands Effecti		
1 "Videcon	$\begin{aligned} & \ell 7.00 \\ & \qquad 8.00 \end{aligned}$	10.50 $¢ 1.00$	L. Length of film Scale 50	40	E2.00
Aircraft Modulator Unit (Radio/Tel) 440-LRV 3 ${ }^{\text {B }}$	¢4.00	¢1.00	Invertors Leland Airbourne Products 28 v DC Input Output $115 / 200$ - 115 v 2.2 to 6.5 amps		
Radar Aircraft No Indicato	¢ 15.00 10.00	$f 1.50$ +1.00	$400 \mathrm{cs} 750 / 750 \mathrm{vg} 3 / 1$ Phase with Built-in Stabilisers.	¢10.00	¢2.00
Tape Cartridge Players Built-in Watt	E8.00	¢ 1.50 +1.50	600/I Electrical Gearbox High Torque 12-24v Electronic		
As above with VHF Radio........	¢15.00	£1.50	Brake. Rough exterior.		00
Phamphomic 25 Watt Amplifier and 4 way Mixer with			Racal Digital Frequency Meter Modul SAS20. As new condition	£48.00	£2.50
I* Tube Oscilloscope Rack Mo.	${ }_{\text {¢ }} 10.00$	¢1.00	Electrolytic Capacitors 60v Working. Brand New.		
Delay Lines I-300 Milli Secs Adjustable	¢12.00	¢1.50	Unused	60.45	20.10
Marine Radio Telephone Rediphon	¢25.00	£2.50	Mixed Surplus Components Pack. Not less than		
Decca Radar Marine Complete	£175.00	65.00	useful components		
Metrix Wobulator 1.20 mcs	¢ 12.00	fl.00	Modern Design Telephones		¢0.55
Resistance Bridge	E10.00	¢1.00	Klaxon Horns 24v 240v 250v		
Sperry Gyro's MK 4	88.00	¢0.50	Capacitors 22uF 12 v Working		

Mail order only to: DEPARTMENT (M)

B \& T ELECTRONICS (U.K.)

TELEPRINTER EQUIPMENT LIMITED

Sales . . . Rentals . . . New . . . Refurhished . . . Installation . . .
Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries TELEPRINTERS Models 7B, 54, 75, 444

CREED EQUIPMENT

TELETYPE CORP. EQUIPMENT

SIEMENS EQUIPMENT
OTHER EQUIPMENT

SPECIAL EQUIPMENT

PERFORATORS 7PN, 85/86, PR75, 25
TAPE READERS 6S4, 6S5, 6S6, 6S6M, 92, 35, 71, 72, 74 HIGH-SPEED TAPE WINDERS $80-0-80 \mathrm{~V}$ POWER SUPPLY UNITS, etc.
TELEPRINTERS 15, 19, 20, 28, 32, 33, 35
all configurations
PERFORATORS 14, 19, 28 LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS $14,20,28$ LBXD \& LXD TRANSMIT GROUPS, etc.
TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.
KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN. CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS.

WW-088 FOR FURTHER DETAILS

COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED
 G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603-3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300, 500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10-way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)—made to specifications
TERMINAL BLOCKS (DISTRIBUTION) - 20 -way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH 71 ($15 \times 4 B$)
POLARISED TELEGRAPH RELAYS AND UNISELECTORS-various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, 48H, 49H, 149H, 3/16, 3/216, 3/48A, 3/43A, 48J, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

WW-089 FOR FURTHER DETAILS

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include:

KEYBOARD PERFORATORS for offline tape preparation
AUTOMATIC TAPE TRANSMITTERS with speeds up to 250 w.p.m.
MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS
UNDULATORS for automatic record and W/T signals up to 300 w.p.m.
CODE CONVERTERS converting from 5 -unit tape to Morse and vice versa
MORSE REPERFORATORS operating up to 200 w.p.m.
TONE GENERATORS and all Students' requirements
CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANSMITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS
LAMPS, etc.
WW-090 FOR FURTHER DETAILS

Telephone: Tring 4011, STD: 0442-82 Telex 82362, Answerback: Batelcom Tring

YATES ELECTRONICS
 (FLITWICK) LTD. DEPT. WW ELSTOW STORAGE DEPOT KEMPSTONHARDWICK BEDFORD

C.W.O PLEASE. POST AND PACKING PLEASE ADD IOP TO ORDERS UNDER EL.

Catalogue which contains data sheets for most of the components listed will be sent free on request. 10p stamp appreciated.

CALLERS WELCOME

PLEASE ADD 10% V.A.T.

RESISTORS

1W lekra high scability carbon film-vory low noise-capless construction. $\frac{1}{2}$ W Mullard CR2S carbon film-very small body size $7.5 \times 2.5 \mathrm{~mm}$. tW 2% ELECTROSIL TR5. Power
wnets

Range	Values
available	
$3.7 M \Omega-2.2 M \Omega$	$E 24$
$10 \Omega-10 M \Omega$	$E 12$
$10-3.9 \Omega$	$E 24$
$4.7 \Omega-1 M \Omega$	$E 12$
10	$E 12$

$\begin{array}{cc}1.99 & \text { Price } \\ 100+ \\ 1.3 p & 1.1 p \\ 1.3 p & 1.1 p \\ 3.5 p & 3 p \\ 1.3 p & 1.1 p \\ 1.3 p & 1.1 p \\ 8 p & 7 p\end{array}$
Quantity price applies for any selection. Ignore fractions on total order.

DEVELOPMENT PACK

0.5 watt 5% lskra resistors 5 of eech value 4.7Ω to $1 \mathrm{M} \Omega$.

E12 peck 325 rexistors $\mathbf{0} \cdot \mathbf{4}$. E24 pack 650 resistors E4.70.

POTENTIOMETERS

Carbon track $5 k \Omega$ to 2 MR , log or linear ($\log \ddagger \mathrm{W}$, lin $\frac{1}{2} \mathrm{~W}$).
Carbon track $5 k \Omega$ to 2 M , log or linear (log ${ }^{\text {W. }}$ W, lin $\frac{1}{2}$ W).

SKELETON PRESET POTENTIOMETERS
Linear: $100,250,5002$ and decedes to $5 \mathrm{M} \Omega$. Horizontal or vertical P.C. mounting 0.1 matrix).

Sub-miniature O.IW, 5p each. Miniature 0.25W, 7p each.

SMOKE AND COMBUSTIBLE GAS DETECTOR-GDI
The GOI is the world's first semiconductor that can convert a concentration of gas or moke into in electrical signal. The sensor decreases iks electrical resistance when it methane, propane, alcohol, North Sea gas, as well as carbon-dust containing air or smoke. This decrease is usually large enough to be utilized without amplification. Full details and circuits are supplied with each detector.
Detector GDI, 22 . Kit of parts for mains operated detector including GDI but excluding case, 15.C. Suitable case \&1.50. Kit of parts for 12 or 24 V battery operation, including GDI and P.C. Board, E7.70. As above for PP9 battery 66.90. NOTE: The battery operated kits incorporate our patented circuit to minimise battery-drain typically 90 mA for 24 V .

97P
PRINTED BOARD MARKER Draw the planned circuit on to a copper laminate board with the P.C. Pen, all and immerse the board in the etchant. On removal the circuit remains in high relief.

MULLARD POLYESTER CAPACITORS C2\% SERIES $400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 3 \mathrm{3p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}$, $0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 5 \mathrm{p} .0 .15 \mu \mathrm{~F}, 6 \mathrm{p} .0 .22 \mu \mathrm{~F}, 7 \frac{1}{2} \mathrm{p} .0 .33 \mu \mathrm{~F}$, 31 p . $0.47 \mu \mathrm{~F}, 13 \mathrm{p}$.
160 V .
41 p. $0.22 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F},{ }^{3} \mathrm{p} .0 .1 \mu \mathrm{~F}, 3 \mathrm{p} .0 .15 \mu \mathrm{~F}$, 4 p. $0.22 \mu \mathrm{~F}$, 5p. $0.33 \mu \mathrm{~F}, 6 \mathrm{p} .0 .47 \mu \mathrm{~F}, 7 \frac{1}{2} \mathrm{p} .0 .6 \mu \mathrm{~F}$,

MULLARD POLYESTER CAPACITORS C200 SERIES

 $1 \cdot 5 \mu \mathrm{~F}, 20 \mathrm{p}$. $2 \cdot 2 \mu \mathrm{~F}, 24 \mathrm{p}$.

MYLAN FILM CAPACITORS 100 V $0.001 \mu F, 0.002 \mu F, 0.005 \mu F, 0.01 \mu F, 0.02 \mu \mathrm{~F}$,
 CERAMIC DISC CAPACITORS

 3p. $0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}$, 4p.ELECTROLYTIC CAPACITORS MULLARD O15/6/7
$(\mu F / v) 1 / 63,1 \cdot 5 / 63,2 \cdot 2 / 63,3 \cdot 3 / 63,4 \cdot 7 / 63,6 \cdot 8 / 40,6 \cdot 8 / 63,10 / 25,10 / 63,15 / 16,15 / 40,15 / 63$, $22 / 10,22 / 25,22 / 63,33 / 6 \cdot 3,33 / 16,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,68 / 6 \cdot 3,68 / 16,100 / 4$,
$100 / 10,100 / 25,150 / 6 \cdot 3,150 / 16,220 / 4,270 / 6 \cdot 3,220 / 16,330 / 4,47 / 43,100 / 40,150 / 55$ $100 / 10,100 / 25,150 / 6 \cdot 3,150 / 16,220 / 4,220 / 6 \cdot 3,220 / 16,330 / 4,6 p, 47 / 63,100 / 40,150 / 25$,
$220 / 25,330 / 10,470 / 6 \cdot 3,7 \mathrm{p} .68 / 63,150 / 40,220 / 40,330 / 16,1000 / 4,100.470 / 10,680 / 6 \cdot 3$, $220 / 25,330 / 10,470 / 6 \cdot 3,7 \mathrm{p} .68 / 63,150 / 40,220 / 40,330 / 16,1000 / 4,10 p .470 / 10,680 / 6 \cdot 3$,
$11 \mathrm{p} .100 / 63,150 / 63,220 / 63,1000 / 10,12 \mathrm{p} .470 / 25,680 / 16,1500 / 6 \cdot 3,13 \mathrm{p} .470 / 40,680 / 25$, $11 \mathrm{p} .100 / 63,15 / 63,220 / 63,1000 / 10,1 / \mathrm{p} .470 / 25,600 / 16,1500 / 6 \cdot 3,13 \mathrm{p} .47 / 40,680 / 25$, 4700/4, 21 p .
SOLID TANTALUM BEAD CAPACITORS

12p

$0.1 \mu \mathrm{~F}$	35 V	$2.2 \mu \mathrm{~F}$	35 V	
$0.22 \mu \mathrm{~F}$	35 V	$22 \mu \mathrm{~F}$	16 V	
$0.47 \mu \mathrm{~F}$	35 V	$4.7 \mu \mathrm{~F}$	35 V	$33 \mu \mathrm{~V}$
$1.0 \mu \mathrm{~F}$	35 V	$10 \mu \mathrm{~F}$	25 V	10
		$10 \mu \mathrm{~F}$	25 V	$47 \mu \mathrm{~F}$
	$6.3 V$			

VEROBOARD	
21×37	24p 20p
21×5	28p 28p
34×34	28p 28p
3×5	32p 32p
17×21	85p 67p
17×3	120p 108p
17×3 (plain)	76p 52p
17×21 (plain)	$41 p$
$2 \frac{1}{2} \times 5$ (plain)	12p
$2 \frac{1}{2} \times 37$ (plain)	$11 p$
Pin insertion tool	62p 62p
Spor face cutter	52p 52p
Pkt. 50 pins	20p 20p

JACK PLUGS AND SOCK
Standard screened 28p 2.5 mm insulated Standard insulated $18 \mathrm{p} \quad 3.5 \mathrm{~mm}$ insulated Stereo screened $\quad 40 \mathrm{p} \quad 3.5 \mathrm{~mm}$ screoned Stereo socket $\quad 30 \mathrm{p} \quad 3.5 \mathrm{~mm}$ socket
D.I.N. PLUGS AND SOCKETS 2 pin, 3 pin, 5 pin $180^{\circ}, 5$ pin $240^{\circ}, 6$ pin, 7 pin Plug 12 p . Socket 8 p .
4 way screened cable, 25p/metre.
6 way screened cable, $30 \mathrm{p} /$ metre.
BATTERY ELIMINATOR \&1.70
9 V mains power supply. Same size as PP9 battery.

Train for television

Course commences 4th September, 1974
This is your opportunity to train as a television and radio engineer on our full-time Two-Year College Diploma Course specially designed to cover the examinations of the City and Guilds Radio, Television and Electronics Technicians' Certificate. Full theoretical and practical instruction on all types of modern receivers-including the latest colour sets.

Minimum entrance requirements are Senior Cambridge or ' O ' Level, or equivalent in Mathematics and English.

Please send free prospectus to: Name

Address

THE PEMBRIDGE COLLEGE OF ELECTRONICS

(Dept: WWI) 34a Hereford Rd., London W2 5AJ

HART ELECTRONICS
auno kits

F.M. TUNER This latest addition to our range will be in production late March '74. It is designed to offer the best possible performance allied to the ease of operation given by
push button varicap tuning. We have taken great care to look after the constructors' poim push button varicap tuning. We have taken great care to look after the constructors' point
of view and there are no coils to wind. no FF circuits to wire and no alignment is required in fact the whole unit can be easily completed and working in an evening as there are only 3 transistors, one IC and two ready built and aligned modutes comprising the active components. We heve abandoned the concept of having a tuner as large as the amplifier
and this new unit has a frontal size of only $p \frac{1}{2}$ in. $X 4$ in. It can be mounted on the side and this new unit has a frontal size of only ${ }^{\frac{1}{2}}$ in. x a $\mathbf{i n}$. It can be mounted on the silay amplifier metalwork thus turning it into a tuner/amplifier whilst only increasing its width by $1 \frac{1}{2}$ in.
Cost of tuner chassis (no case) is $\mathbf{\Sigma 2 2}$ for mono. $\mathbf{£ 2 5 . 4 5}$ for stereo. Metal case $\mathbf{£ 2 . 5 6}$. Cost of tuner chassis (no case) is $\mathbf{E 2 2}$ for mono. $\mathbf{£ 2 5 . 4 5}$ for stereo.
An extended wooden case to fit tuner and amplifier will be offered shortly.
BAILEY/BURROWS/QUILTER PRE AMP. The best engineered kit available of the
combined best of three pre-amp designs. This is the kit with no wiring to the controls. combined best of three pre-amp designs. This is the kit with no wiring to the controls.
switches or inputs. A complete and sophisticated 5 input signal processing stage for any
 power amplifier req
control only $£ 11.41$.
BAILEY 30 WATT POWER AMPS. Our best selling power amplifier. you can't better its
performance or the quality of the kit and at only $\mathbf{E 9 . 8 9}$ per channel, it's emazing value for performance or the quality of the kit and at only $\mathbf{6 9 . 8 8}$ per channel, it's amazing value for monev.
STUART TAPE CIRCUITS Our printed circuits and components offer the easy way to convert any suitable quality deck into a very high quality Stereo Tape unit. Input and
output levels suit Bailey pre amp. Total cost varies but around $£ 35$ is all you need. We can output levels suit Bailey pre amp. Total cost
offer tape heads as well if you want new ones.
All above kits have fibreglass PCB's. Pricess exclude VAT but P\&P is included.
Further information is in our lists FREE if you send us a 9 in. $\times 4$ in. S.A.E.
Further information is in our lists FREE I you send
STUART TAPE RECORDER All 3 articles under one cover 30p.
BAILEV/BURROWS/QUILTER Preamp circuits. Iayouts and ass
Penylan Mill, Oswestry, Salop

TRANSFORMERS

115 V 500 VA cased transformer, with mains lead and two 115 V
P \& P 67p. A 20 Watt verslon 2.02 P 22 p
LOW VOLTAGE TRANSFORMERS

Ref.	PRIMAR	RY 200	OLTS 1: Size cm.	ID/OR 24 VOLT RAN Secondary Windings	$P \& P$	
No.	12 V 24 V	15 oz			ε	p
111	0.50 .25	8	$4.8 \times 2.9 \times=5$	$0-12 \mathrm{~V}$ at $0.25 \mathrm{~A} \times 2$	$1 \cdot 34$	22
213	1.005	4	$6.1 \times 5.8 \times 8.8$	$0-12 \mathrm{~V}$ at 0.5A $\times 2$	1.58	22
71	21	112	$7.0 \times 6.4 \times \mathrm{E} .1$	$0-12 V$ at $1 A \times 2$	2.09	22
18	42	212	$8.3 \times 7.7 \times-0$	$0 \cdot 12 \mathrm{~V}$ at $2 \mathrm{~A} \times 2$	2.95	36
70	63	38	$8.9 \times 8.0 \times 7.7$	$0-12 V$ at $3 A \times 2$	3.52	42
108	84	58	$9.9 \times 8.9 \times 3.6$	$0-12 \mathrm{~V}$ at $4 \mathrm{~A} \times 2$	3.96	52
72	10	64	$9.9 \times 9.6 \times 3.6$	$0-12 \mathrm{~V}$ at 5A×2	4.67	52
116	126	612	$9.9 \times 10.2 \times 86$	$0-12 \mathrm{~V}$ at 5A×2	$5 \cdot 61$	52
17	168	812	$12.1 \times 9.9 \times 1{ }^{1} 2$	$0-12 \mathrm{~V}$ at 8A×2	7.22	52
115	$20 \quad 10$	188	$14.0 \times 9.6 \times 11.8$	$0-12 \mathrm{~V}$ at 10A $\times 2$	9.20	67
187	3015	158	$14.0 \times 12.1 \times 11.8$	$0-12 \mathrm{~V}$ at 15A $\times 2$	16.94	82
228	$60 \quad 30$	320	$17.2 \times 15.3 \times 14.0$	$0-12 \mathrm{~V}$ at 30A×2	22.50	
Ref	Amps.	Weight	Size cm.	30 VOLT RANGE Secondary Taps		P\&P
No.		It oz			E	
112	0.5	14	$6.1 \times 5.8 \times 4.8$	0-12-15-20-24-30V	156	22
79	1.0	24	$7.0 \times 6.7 \times 6.1$	" ${ }^{\text {" }}$	$2 \cdot 11$	36
3	2.0	34	$8.9 \times 7.7 \times 7.7$.	$3 \cdot 1$	36
20	3.0	48	$9.9 \times 8.3 \times 8.6$	"	3.85	42
21	4.0	64	$9.9 \times 9.6 \times 8.6$	" "	467	52
51	$5 \cdot 0$	612	$12.1 \times 8.6 \times 10.2$	" ${ }^{\prime}$	5.83	52
117	6.0	80	$12.1 \times 9.3 \times 10.2$	" "	6.94	52
88	8.0	120	$12.1 \times 11.8 \times 10.2$	" "	9.00	67 67
89	10.0	1312	$14.0 \times 10.2 \times \pi \cdot 8$		11-36	67
Ref.	Amps.	Weight	Size cm.	50 VOLT RANGE		P\&P
No.		lb oz			$\underline{1}$	p
102	0.5	112	$70 \times 6.4 \times 6.1$	0-19-25-33-40-50 V	2.09	30
103	1.0	212	$8.3 \times 7.4 \times 7.0$	"	3.08	36
104	${ }^{2.0}$	58	$9.9 \times 8.9 \times 8.6$	"	4.26	42
105	3.0	612	$9.9 \times 10.2 \times 8.6$	"	$5 \cdot 79$	52
106	4.0	100	$12.1 \times 10.5 \times 10.2$., ..	7.69	52
107	6.0	120	$14.0 \times 10.2 \times 1.8$	".	11.38	67
118	8.0	180	$14.0 \times 12.7 \times 1.8$	"	12.40	97
119	10.0	250	$17.2 \times 12.7 \times 4.0$		18. 62	
Ref.	Amps.	Weight	Size cm	so Volt range		$P \& P$
No.		1500			\%	P
124	0.5	24	$7.0 \times 6.7 \times 6.1$	$0-24-30-40-48-60 \mathrm{~V}$	2.12	36
126	1.0	34	$8.9 \times 7.7 \times 7.7$	"	2.97	36
127	2.0	${ }^{6} 4$	9.9×9.988	"	4.67	42
125	3.0	812	$12.1 \times 9.9 \times 0.2$	" ${ }^{\prime}$	7.11	52
123	4.0	1312	$12.1 \times 11.8 \times-0.2$.	. 28	67
40	5.0	1200	$14.0 \times 10.2 \times-1.8$	". .,	10.83	67
121	6.0	158	$14.0 \times 12.1 \times 11.8$	" ${ }^{\text {" }}$	13.35	82
122	10.0	250	$17.2 \times 12.7 \times 4.0$	"	15.00	
189	12.0	2900	$17.2 \times 14.0 \times 14.0$		21.60	
	MA MINI	WTure	TRAMSFORME	RS WITH SCREENS		
No.	MA	lb oz	Size cm			P P ${ }^{\text {P }}$
238	200		$2.8 \times 2.6 \times 2.4$	3-0-3	8.44	10
212	1A 1A	14	$6.1 \times 5.8 \times 4.8$	0-6 0-6	1.67	22
13	100	4	$3.9 \times 2.6 \times 2.4$	9-0-9	$1 \cdot 23$	10
235	330, 330	4	$4.8 \times 2.9 \times 3.5$	0-9, 0-9	1.67	10
207	500, 500	100	$6.1 \times 5.4 \times 4.8$	0-8-9, 0-8-9	2.23	22
208	1A, 1A	112	$7.0 \times 6.4 \times 6$	0-8-9, 0-8-9	$3 \cdot 0$	30
236	200, 200	4	$4.8 \times 2.9 \times 3.5$	0-15, 0-15	1.67	10
214	300, 300	14	$6.1 \times 5.8 \times 4.8$	0-20, 0-20	1.76	22
221	700 (D.C.)) 18	$7.0 \times 6.1 \times 6$	20-12-0-12-20	8.55	30
206	$1 \mathrm{~A}, 1 \mathrm{~A}$	212	$8.3 \times 7.7 \times 7$.	0-15-20, 0-15-20	4.05	38
203	500,500	24	$8.3 \times 7.0 \times 7$.	0-15-27, 0-15-27.	$3 \cdot 10$	38
204	1A, 1A		$8.9 \times 7.7 \times 7$.	0-15-27, 0-15-27	$3 \cdot 15$	38

Also stocked: SEMICCNDUCTORS VALVES AVOMETERS - ELECTROSIL RESISTORS

PLEASE ADD 10% FOR V.A.T. including P. \& P.

BARBIE electronics
 3, THE MINORIES. LONDON EC3N 1EJ TELEPHONE: 01-488 3316/8
 NEAREST TUBE STATIONS ALDGATE \& LIVERPOOL ST

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

-the lowest prices!

	74 Series T.T.L. I.C’S bi-paE athl lowest in prige pull spadirication 										
	0.18	$\begin{aligned} & 26 \\ & 0-17 \end{aligned}$	$100+$ 0.16	EN7451	0.18	$\begin{aligned} & 26 \\ & 0.17 \end{aligned}$	$10+1$ 0.18	SN	$81 \cdot 65$	125	$\begin{aligned} & 100+ \\ & 81 \\ & \hline 45 \end{aligned}$
${ }_{\text {GN7 }}^{\text {GN401 }}$	$\begin{aligned} & 0.18 \\ & 0.18 \end{aligned}$	0.17	${ }_{0}^{0.16}$	BN7453	0.18	0.17	0.18	GN74150	88.90		2.70
7402	0.18	0.17	0.16	BN7454	0.18	0.17	0.18	8N74151	21.10	1.06	81.00
	0.18	0.17	$0 \cdot 16$	BN7460	0.18	0.17	0.18	8N74153	11.80	1.20	
8N740	0.18	0.17	0.14	BN7470	0.82	0.29	0.27	8N74154	${ }^{31}$	1.80	. 78
BN7405	0.18	0.17	0.18	8N7472	0	$0 \cdot 89$	$0 \cdot 8$	8N74156	81.50	11.45	${ }^{11} 185$
8 N 7408	0.38	0.84	0.81	8N7473	0.1	0.89	0.	8N74156			
BN7407	0.80	0.84	0.81	${ }^{\text {BN }} 7474$	0. 61	0.88	0.	SN74157	22.00	\% 00	21. 80
8N7408	0.20	- 19	0.18	BN7475	0.80	0.48	${ }_{0} 0.46$	8N74161	29.10	200	21.80
	0.20	0.19	${ }_{0}^{0.18}$	GN7480	0.74	0.71	0.64	BN74182	440	$4 \cdot 16$	48.85
8N7410	0.18	9.17 0.87	0.88	GN7481	11.80	41.28		BN74163	4.40	4.15	88.85
8N7411		0. 27	0.81	8N7482	0.8	0.05	0.64	BN74184	28		
8N7412	0.2	0.91	0.80	8N7489	21.80	21.15	81.06	QN74165	28.20	22.10	20800
gN7418	-	0.4	0.48	8N7487	81.10	n.05	81.00	8N74106	8.20	$8 \cdot 10$	88.00
8N7417	0.48	0.4	0.42	SN7485	23.50	8. 40	8880	SN741	A.50		
gN7490	0.18	0.17	0.16	8N7486	0.35	0.94	0.88	BN74175	A.78	1.68	
887422	$0 \cdot 5$	0.88	0.60	SN7489	0.9	0.7	0.8	8N7417\%	31.85		81.68
8NTCS	0	0.	0.	8N	0.7	81.05	-1.00	BN\% 4180	1.to		
N743			1	6N7402	0.74	0.71	0.04	BN74191	\%	$4 \cdot 50$	4.00
8N7428			0.4	8N7409	0.74	0-72	$0 \cdot 4$	8N74182			
9N7427	0.6	$0 \cdot 4$	0.4	SN7494	0.86	0.89	0.7	8N74184	88.20	$88 \cdot 10$	88.00
ON7428	0.55	0.88	0.60	${ }_{\text {BN7494 }}^{\text {BN7495 }}$	0.86	0.8	0.7	82274100	[$5 \cdot 16$	c8. 10	82.00
8N7430	0.18	0.17	0.18	EN7406	0.98	d. 28	0.8	SN74191	-	$2 \cdot 10$	28.00
QN7432	0.50	0.48	0.70	${ }_{\text {GN7 }}+100$	81.50	${ }^{1} \cdot 5$	${ }_{11}$	8N74198	20.15	48-10	48.00
8N7438	0.75	0.78 0.68	${ }_{0}^{0.70}$	${ }_{\text {GN7 }}$ SN74100	81.07	${ }_{3}$	81.00	SN74188	20.15	88.10	5.00
EN7437	0.70	0.68	0.86 0.65	${ }_{\text {gN74 }}$	81.07	51.0	81.00	BN74194		28.8	53.78
BN7438	0.70	0.68	-8.68	SN74105	81.07	31.0	11.00	BN741\%	28.0	11.96	81.90
8N7440	0.18 0.7	0.17 0.71	${ }_{0}^{0.16}$	BN74107	0.44	0.4	0.40	8N74108	${ }^{1}$	11.80	21.85
ON741	${ }_{0}^{0 \cdot 6}$	0.7	0.64	8N74110	0.60	0.58	0.50	8N74197	馹	11.0	81.85
8N74t8	${ }_{0}$	81.15	81.10	BN74111	21.38	91.27	81.81	8N74188	85	4.78	24.80
BN7444	1	81.15	31.10	BN74118	21.10	51.05	81.00	8N74189	S 0	4	
8N7443	n**	41.9	20.90	BN74119	${ }^{1160}$	0.48	6.4	Dorrees	y be	d	Serles
8N7448	31.80	81.15	81.10	8N74121	0.60						
8N7447	\$2.10	81.07		8N74122 8N74123	${ }^{81} 8.00$	0	2.80	above en	len of	in b	form.
N7448	31	0.07	8	8N74123	${ }_{0.85}$	0.88	0.7	Price 3 p			

NOW WE GIVE YOU 50w PEAK (25w R.M.S.) PLUS THERMAL PROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £3.95
 - Prequency Rerponse $80{ }^{\circ} \mathrm{C}$.
 Pregnency to 100 k 友 0.1% Distortion
 - Distortion better than 1%
 - sapply voltage $10-8 s^{5}$ volla
 - Thermal Peedback
 Especially deadmed to a stretet specification. Only the finest comprinenta have been prod and the latest solld stats clrenitry incorporated thustast.
 FULLY BUILT-TESTED and GUARANTEED
 STABILISED POWER MODULE SPMBO

 15 wat (r.m.e.) pee chansel simultaneous y. This nherule embod les the latest coraponent and circuit techniques
ctrcait protection. With the addition of the Mals Transtormer M T80,
the anit will proride outputs of up to $1 \cdot 5$ amps at 35 volts. Size:
 8ystems of the hifhert quality at a hitherto unobtainable price. Aiso
ideal for many other applications including: Dhsco Bystems, Public Addresa, Intercom Unita, etc. Hand book a valiable, 10p.
TRANSFORMER BMT80 £2.15 p. \& p. 25p
STEREO PRE-AMPLIFIER TYPE PA100
Bult to aspectication mod NOT a pribe, and yet sell the greatest value on the market.
the PAloo ateroo promplifer hap been conceived fom the latert circuit techniques. the PA100 aterto pro-mplitier han boenconcelved symer ander this quality made unit

Three swiththed sterso linputs, and rumble and Beratch fiters are featurea of the
 vartable bew and treble controls. svecirication:

Treble control Signal/notse ratio Signal/uoise ratlo
Input overload Enput overio
Supply
Dimensions
 All hput votagen ant for an oumv into of 50 Kg . Tappe and P. D. Inputs equalised to RIAA
Fithin $\pm 1 \mathrm{~dB}$ from 20 H to 20 k . SPECIAL COMPLETE KIT COMPRISING 2 AL50's.

ALI0/AL20/AL30 AUDIO AMPLIFIER MODULES

or nesens LOGicl.C:
 BP 9
BP 9
BP 9 BP9344
BP945
BP946

BP948 | $\mathrm{BP945}$ |
| :--- |
| BP 948 |
| BP 948 |

The STEREO 20 The 'Etereo 20' amplifier is mounted, ready wired and texted on a one-plece chasis measuring $20 \mathrm{~cm} . \times$ $14 \mathrm{~cm} . \times 5.5 \mathrm{~cm}$. This rompact unit comes complete with on/ofl switch volume control, balance, bass and treble controls, Transformer, Power sapply fand Power amps. Attractively printed front panel and matchIng control knobs. The stereo 20 has been designed to fit into moat carntable plinth without interiering with the mechanigm or, alternatively, into a aeparate cablnet. Output power 20 w peak. Input 1 (Cer.) 300 mV into 1 M . Freq. res. $25 \mathrm{~Hz} \cdot 25 \mathrm{kHz}$. Input 2 (Aux.) 4 mV into 30 K . Harmonic distortion. Base control $\pm 12 \mathrm{dH}$ at 60 Hz distordon. Baas control $\pm 12 \mathrm{~dB}$ at 60 Hz typlcally 0.25% at 1 watt. Treble con. $\mathbf{A} .45$ $\pm 14 \mathrm{~dB}$ at 14 kHz .	

Finko, Oontentio	Prion
U1090 $=5 \times 7480$	O.E
U1091 $=5 \times 7491$	0.54
U1C92 $=5 \times 7492$	0.65
USCsy -5×7493	0.5
U1004 $=5 \times 749$	0.55
UIOS0 $=5 \times 7485$	0
U1000 $=5 \times 7486$	0.55
Viciou-5 $\times 74100$	0.5
UlCisi -5×74181	0.
U1C341-5 $\times 74141$	$0 \cdot 3$
U10151 $=5 \times 74151$	0
U10154 $=5 \times 74154$	0.
UlCI98-5 $\times 74193$	S
019109-5 $\times 74100$. ${ }^{8}$
UICXI-20 Amorte	:1-66

TRANSFORMERS

 BMT8) (Uee with AL.30 *AL50)

POWER SUPPLIES
 POWER PUPPLIES

Preta cannot be oplit, but 25 sasortod Type No. Come STEREO 20
TC 20. 23.55 pep 30p MK 50 KIT
E.M.I. LEK 350 Londspeaker Systom Enclosure kit in teak Rec. retail price $£ 45.50$ per pr. OUR SPECIAL PRICE 50 per pair P. G P. E1

| |
| :---: | | hase and treble |
| :--- |
| $84 \mathrm{~mm} \times 3 \mathrm{mmm}$ | m

FRONT PANELS FP12 with knobs $£ 1 \cdot \mathbf{2 0}$

 Treble control- $\pm 12 \mathrm{~dB}$ at 60 H Treble control-
$\pm 14 \mathrm{~dB}$
-Input 1. Impedance -Input 1. Impedance Input 2. Impedance $\begin{aligned} & \text { setiditivity } 300 \mathrm{mV} \\ & 3\end{aligned}$

THE NEW NELSON-JONES FM TUNER

 PUSH-BUTTON VARICAP DIODE TUNING (6 Position)
 Exclusive Designer Approved Kits
 What are the important features to look for in an FM tuner kit ? Naturaliy it must have an attractive appearance when built, but it must also embody

 the latest and best in circuit design such as:-${ }_{3}$ MOSFET front end for excellent cross modulation pertormance and low noise.
YARICAP tuning diodes In back \qquad
PHASE LOCKED Stereo decoder with Stereo mute, see below
LED fine tuning indicators.
PUSHBUTTON tuning (with AFC disable) over the FM band (88-104)
IC STABILSED and S/C protected power supply.
CERAMIC filters for defined IF response.
IC STABILSED and S/C protected power supply
The Nelson-Jones Tuner has all of these features and many more, and more importantly the design is fully proven not just with a few prototypes but with many thousands of working tuners spread across the world.

Basic tuner module prices start as low as $£ 11.40$, with complete kits starting at $£ \mathbf{£ 4 . 9 5}$ (mono) + PP 60p. and of course all components are available separately.
Please cond large SAE service is available to customers without access to a signal generator. Please send large SAE for our latest price lists which detail all of the many options and special low prices for complete kits. All our other products remain available.
PORTUS AND HAYWOOD PHASE LOCKED DECODER (W.W. Sept. '70). Still the lowest distortion P.L. decoder available. THD typically 0.05\% (at Nelson-Jones Tuner O/P level) I Supplied complete with Red LED.
Price $£ 6.50$ when bought with a complete N-J tuner kit or $£ 7.68$ if bought separately (P.P. 19p.)

PLEASE NOTE. Existing tuners are readily convertible and kits/parts are available for this purpose
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph). Complete designer approved Texan kits are available at

You can order these goods by Telephone on Access. Simply quote your Access Number

NEW LOW COST STEREO TUNER

PLEASE PHONE OR WRITE FOR FULL DETAILS No alignment required. Mullard LP1186 front end module used with Ceramic IF and IC amplifier. Push button tuning (6 position) with Interstation Mute, restricted range AFC, single LED tuning indicator, phase locked IC decoder, and complete metalwork and veneered cabinet. Complete with IC regulated PSU and full assembly instructions. (Mechanically identical to $\mathrm{N}-\mathrm{J}$ Tuner.)

ELEGTROMLIUE
 Present ELECTRONIC COMPONENTS FOR THE WIDEST POSSIBLE RANGE OF APPLICATIONS
 evervthing brand new and to SPEC \star GOOd discounts \star free postage (U.K.)

ELECTROVALUE "SPECIALS"

Amongst an extensive range of specialised electronic
components which we stock are Magneto Resistors Magneto Resistors
Liquid Crystal Display Hall Effect Probes Touch Switch I.C.s Magnetically operated I.C.s
Photo-electronic devices

FERRITE COMPONENTS

pot cores in a wide range of useful sizes
Double Aperture Cores
Ring Cores

TRANSISTORS

$V e r y$
and wide range of types is shown together with grouped
tabulated
specifications for and tabulated specifications for each one. Outlizes are
illustrated, and there is a full range of supporting hardware. illustrated, and there a
Also near-equivalent tables are given.

A.C.s

Here too a wide range of TTL types are shown. together with diagrams as well as much other useful information is included.

MINITRON DIGITALINDICATORS
lith seven segment filament. compatible with stand 16 lead Dil.
Suitabie BCD decoder driver 7447
$\mathbf{3 0 1 5 G}$

CAPACITORS

Radial leads for P.C. B. mounting. Working voltage 250 V d. $0.068 .0 .1,0.15$ $0.22,54 p$
$2.2,24 p$

TANTALUM BEAD
$0.1 .0 .22,0.47,1.0 \mathrm{mF} / 35 \mathrm{~V} .1 .5 / 20 \mathrm{~V} \quad$ ea. 14 p $\begin{array}{ll}2.2 / 16 \mathrm{~V} .2 .2 / 35 \mathrm{~V}, 4.7 / 16 \mathrm{~V}, 10 / 6.3 \mathrm{~V} & \text { ea. } 14 \mathrm{p} \\ 4.7 / 35 \mathrm{~V} .10 / 16 \mathrm{~V}, 22 / 6.3 \mathrm{~V}, 10 / 3 \mathrm{~V}, 6.8 / 25 \mathrm{~V} .15 / 25 \mathrm{~V} & \text { ea. } 18 \mathrm{p} \\ 10 / 25 \mathrm{~V} .22 / 16 \mathrm{~V} .47 / 6.3 \mathrm{~V}, 100\end{array}$ POLYCARBONATE
Type B32540 Working Voltage-250V d.c.
values in mF: 0.0047: 0.0068: 0.0082 ; $0.1: 0.012$ $\begin{array}{ll}0.018 ; 0.022: 0.027: 0.033: 0.039: 0.047: 0.056: ~ & 0.068 \\ 0.082: 0.1\end{array}$

Working voltage 100 V d.c.
$277 p: 0.338 \mathrm{p}: 0.39: 0.47$
0.56 12p:0.68

SILVERED MICA
 1000.1500 7p: 1800 8p: 2200 10p: 2700. 3600 12p

CERAMIC DISC
$1000 \mathrm{pF} / 500.2000 / 500.5000 / 500,0.01 \mathrm{mF} / 50.0 .02 \mathrm{mF} / 50$ CERAMIC PLATE

```
ln a rang
```


POTENTIOMETERS

[^2]
Shop hours: 9-5.30 daily, 9-1 pm Sats
NORTHERN BRANCH: 680, Burnage Lane, Burnage, Manchester M191NA
Telephone (061) 4324945
Shop hours: Daily 9-1 and 2-5.30pm; 9-1pm Sats.
U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA, P.O. Box 27 Swarthmore PA 19081.
ELEGTROVALIUE LTD All postal communications. mail orderse etc.. to Head Office
at Egham address. Dept WW5 S.A.E. with enquiries requiring
EGHAM SURREY TW20 OHB

CATALOGUE 7

SECOND PRINTING (green \& yellow cover)
112 pages, thousands of items, illustrations, diagrams, much useful tectnical information. The 2nd printing of this catalogue has been updated as much as possible on prices. It still costs only 25 p post free and still includes a refund voucher for $25 p$ for spending when ordering goods list value $£ 5$ or more.

COVERS \& HEATSINKS
Many types including:
TO3 Transistor cover. clip- on
trilled 2×1 Extrugled aluminium $1^{\circ} \mathrm{CW}$. undrilled
60p

KNOBS

All for $\frac{1}{4}$ " shafts in a very wide range of types from utilitarian to modern solid aluminium
S-DEC
Unsurpassed for "breadboard work" can be used indefinitely without detericration. Components just push into plug holes T-DEC
for more advanced work with 208 contacts in 38 rows Will take DESOLDER BRAID 64 strip
25 mir. reel
$66 p$
f7.15
ELECTROLYTIC CAPACITORS

${ }_{q} \mathrm{~F}$	V	6.3 V	10 V	16 V	25 V	40 V	63 V	100 V
0.47								8 p
1.0	-	-	-	-		11p		8 p
2.2					11p		8 p	9 p
4.7	-	-	-	11p		8 p	9 p	8 p
10					8 p	9 p	8 p	8 p
22		-	${ }_{9 p}^{8 p}$			8p	8p	10p
47	8 p		9 p	8 p	8		$10 p$	13p
100	9 p	8 p	8 p	8 p	9p	10p	12p	19p
220	8 p	8 p	$9 p$	10p	10p	11p	17 p	28p
470	9 p	10p	10p	11p	13p	17p	24p	45p
1,000	11 p	13p	${ }^{13}$	${ }^{17 p}$	20p	25p	41p	
2.200	15p	18p	23p	26p	37p	41p		
4.700	26p	30p	39p	44p	58p			
10.000	42p	46p				-		

This is EV Service

GIRO ACCOUNT No. 38/671/4002 DISCOUNTS
PRICES. 10% on orders from $£ 5$ to $£ 14.99$. 15% with NETT FREE PACKING AND POSTAGE in U.K. for pre-paid mail orders. For mail orders for $£ 2$ list
value and inder there is an additional handling charge of 10 p .

GUARANTEE OF QUALITY

All goods are sold on the understanding that they conform s such-no rejects. 'seconds' or sub-standard merchandise is offered fer sale.
Prices quoted do not include V.A.T. for which 10% must be ensure the correctness of information and prices in this advertisement at time of going to press. Prices subject to
afteration without notice

APPOINTED DISTRIBUTORS FOR SIEMENS FINE QUALITY PRODUCTS

ZENER DIODES
values: $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to $36 \mathrm{~V}, 14 \mathrm{p}$ each WW: 6.8 V to $82 \mathrm{~V}, 21 \mathrm{p}$ each: $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to $75 \mathrm{~V}, 67 \mathrm{p}$ each.
20 W 7.5 V to 75 V 94 p . Clip to increase 1.5 W rating to 3 watts (type 266F). 5 p
20 W 7.5 V to 75 V 69 p each

VEROBOARD
Copper clad 0.1 matrix- -5×3.75 ins. 27 p 3.75×3.75
ns. $\mathbf{3 0 p}: 2.5 \times 5$ ins $-\mathbf{3 0 p}: 3.75 \times 5$ ins. $-\mathbf{3 3 p}$. Copper lad 0.15 in. matrix 2.5×3.75 ins. -20 p. 3.75×3.75 ins. $30 \mathrm{p}: 2.5 \times 5$ ins. $\mathbf{3 0 p} 3.75 \times 5$ ins.- 36 p Vero spot face cutter (any matrix) 0.040 pins (for 0.1 matrix) per $100-35$

JACKS AND PLUGS

2 circuit unswitched S1/SS
crevir
${ }_{170}^{1720}$
2 circuit with chrome nut and black/white/red/green or
with 2 break contacts S5/BB

PLUGS
side entry SEP 1 top entry P
Line socket mono 231
3 circuit unscreened. black/grey/white P4
3 circuit screen top entry P3
Miniature 3.5 mm 2 circuit screened $P 5$

INSULATED SCREW TERMINALS
In moulded polypropylene, with nickel plate on brass.
With insulating set. washers, tag and nuts. 15 A 250 V
In black/brown/red/yellow/green/blue/grey/white. Type

DIN CONNECTORS
2 way loudspeaker
3 way audio
5 way audio 180°
5 way audio 240°
6 way audio

Socket	10p	Plug 12p
Socket	10p	Plug 12p
Socket	$12 p$	Plug 15p
Socket	$12 p$	Plug 15p
Socket	13p	Ptug 15p

RESISTORS

E.H.T. POWERUNIT. $110 / 240 \mathrm{~V} .50 \mathrm{~Hz}$ giving $5 \mathrm{~K} . \mathrm{V}$. at $50 \mathrm{~m} / \mathrm{a}$. METERED OUTPUT. £17.50.

COPPER LAMINATE PAC. BOARD

$11 \times 3 \ddagger \times \frac{1}{10} \mathrm{in} .12 \mathrm{p}$ sheet. 5 for 50 p .
$10 \times 4 \times$ 而 in. 12 p sheet. 5 for 50p.
$10 \mathrm{i} \times 5 \frac{t}{4} \times \frac{1}{6}$ in. 15 p sheer. 4 for 50 p .
Oficut pack (smallest 4×2 in)
Offer pack (small 400 sq. in
P\&P single sheet Ap. Bargain packs 20p

TELEPHONE DIALS (New) £1 ea relays (G.P.O. '3000'). All types. Brand now from 37竐p ea. 10 up quotations only. EXTENSION TELEPHONES (Type 706) Various Colours $\mathbf{\text { E3.50. P.P. 25p. Excellent }}$ condition.
RATCHET RELAYS. (310 ohm) Various Types sEp. PP $5 p$.
UNISELECTORS (NEW) 25 way 12
Bank (NOn Bridging) 68 (${ }^{2}$. Bank (Non Bridging) 68 ohms. $\mathbf{E 6}$.

PRECISION A.C. MILLIVOLTMETER (Solation) $1.5 \mathrm{~m} . \mathrm{v}$.

 to 15v: 60 db to 20 db. 9 ranges. Excellent condition. £22-50. P.P. £1.50
high capacity electrolytic

$2,200 \mathrm{uf}$. 100 v . ($1 \mathrm{i} \times 4 \mathrm{in}$.) 75p. $3,150 \mathrm{uf}$. 40 v . (1 i $\times 4 \mathrm{in}$.) 60 p . $10,000 \mu \mathrm{ff}$. 25 v v ($1 \ddagger \times 4$ 4 in.) $60 \mathrm{p} .12,000 \mathrm{uf} .40 \mathrm{v}$. ($2 \times 4 \mathrm{in}$.) 4 in .) $£ 1.2,800 \mathrm{ur}$. 100 v . ($4 \times 2 \mathrm{in}$.) 80 p . $15,000 \mathrm{uf}$. 63 v . $(4 \mathrm{t} \times 2$ tin. $) \mathrm{E1} .35,000 \mu \mathrm{f}$. 40 v . $(3 \times 4 \mathrm{kin}$.) ET. P. \& P. 8 p . hid. alarm bells. 6 in. Dome $6 / 8$ volt D.C. ez. 25 PIP. 5 AL.
HIGH VACUUM DIFFUSION PUMPS (Metrovac P93C). New condition. £40. P.P. £2. A.E.I. P10. ION
OVERLOAD CUT-OUTS. Panel mounting ($1 \frac{1}{2} \times 1 \frac{1}{6} \times \frac{1}{i n}$.) $800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{amp} / 10 \mathrm{amp}$. 35p ea. P.P. 5 p .
BULK COMPONENT OFFER. Resistors/Capacitors. All types and values. All new modern components. Over 500 pieces $£ 2$. (Trial order 100pcs. 50p.) We are confident you will reorder.
REGULATED POWER SUPPLY. Input $110 / 240 \mathrm{~V}$ Output iv. DC. $1 \frac{1}{\frac{1}{2}} \mathrm{amp}$. 12 v . D.C. $500 \mathrm{~m} /$ a. $\mathbf{£ 4}$. P.P. 30 p .
U.K. ORDERS 10% V.A.T. SURCHARGE

TRANSFORMERS

ADVANCE "volstat" transformers. Input
CV BO. 38 v . at $1 \mathrm{amp}: 25 \mathrm{v}$, at $100 \mathrm{~m} / \mathrm{a} .75 \mathrm{v}$. at $200 \mathrm{~m} / \mathrm{a}$.
E2 ea. P. 40 .
C 1775 . 25 v . at 2 t amp. $\mathbf{\text { E2-50. PP. } 5 0 \text { p. }}$
CV100. 50 v . at 2 amp : 50 v . at $100 \mathrm{~m} / \mathrm{a}$. £3. P.P. 50 p . CV250. 25 v . at 8 amp : 75 v . at $\ddagger \mathrm{amp}$. £5. P.P. E 1 . CV 500. 45 v , at $3 \mathrm{amp}: 35 \mathrm{v}$, at $2 \mathrm{amp}: 25 \mathrm{v}$. at 3 amp . £7. P.P. £1.
Lit. TRANSFORMER. Prim. 240v. Sec. 13v. at 1.5 amp. 75p. P.P. 15 p.
L.T. TRANSFORMER. Prom. 240 v . Sec. 24 v . at 11 amp. £1-20. P.P. 20p
L.T. TRANSFORMER. Prim. 110/240v. Sec. 0/24/40v. $1 \frac{1}{2}$ amp. (Shrouded). £1.50. P.P. 30 p.
L.T.TRANSFORMER. Prim. 200/250v. Sec. 20/40/60v. at 2 amp . (Shrouded). £2-25. P.P. 40p.
L.t. TRANSFORMER (H.D.) Prim. 200/250v Sec. 18 v . at $27 \mathrm{amp}: 40 \mathrm{v}$. at $9.8 \mathrm{amp}: 40 \mathrm{v}$. at 3.6 amp 52 v . at 1 amp : 25 v . at 3.7 amp . £15. P.P. £2.
hiT. TRANSFORMER. Prim $110 / 240 \mathrm{v}$. Sec. 400 v . $100 \mathrm{~m} / \mathrm{a}$. £2. P.P. 50p.
E.H.T. TRANSFORMER. 240 v . Sec. 1800 v . 50 mA . £2.50. P.P. 50p.
1000W. ISOLATION TRANSFORMER. 220/240v. 242v. ('C' Core type). £12. P.P. £1.50
1000W. STEP-DOWN TRANSFORMER. (Double wound) $240 / 110 \mathrm{v} .50 \mathrm{HZ}$. £12. P.P. £2.
L.T. TRANSFORMER. Prim. 240 V . Soc. $16 / 0 / 16 \mathrm{v}$. at 2 amp. £1 60. PP. 20 p.
L.T. TRANSFORMER. PrIm. $110 / 240 \mathrm{v}$. Sec. 23/0/23v. at 1.8 amp : 50 v . at $300 \mathrm{~m} / \mathrm{a}: 3.15 / 0 / 3.15 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}$.
£1.75. P.P. 20 p .
L.t. TRANSFORMER. Prim. 200/240v. ('C' Core) Secs. $1 \mathrm{v} . / 3 \mathrm{v} . / 8 \mathrm{v} . / 9 \mathrm{v}$. all at $1.5 \mathrm{~A}: 50 \mathrm{v}$. at 1 amp . $£ 2$
L.T. TRANSFORMER. 110/240v. ('C' Core). Sec. 13.5v. 4A.: 39v. at 2A. $\mathbf{£ 2} \mathbf{5 0}$. P.P. 25p.

LT. TRANSFORMER. $110 / 240 \mathrm{v}$. (' C ' Core) $1 \mathrm{v} . /$ $3 \mathrm{v} . / 9 \mathrm{v} . / 20 \mathrm{v}, / 2 \mathrm{v}$. all at 2 amp . fl. P.P. 35p. Same Secondaries but st 4 amp. £4.25. P.P. 40 P.
LT. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' Core). Secs. $1 \mathrm{v} / 3 \mathrm{v} . / 9 \mathrm{v}$. all at $10 \mathrm{amp}: 35 \mathrm{v}$. at $1 \mathrm{amp}: 50 \mathrm{v}$. at $750 \mathrm{~m} / \mathrm{a}$

HIGM-SPEED MAGNETIC COUNTERS. 4 digit (non reset) 24 v of 48 V . (state 40 p . P.P. 5 p .
 5 digit (non-reset) 6-12-24-48V (state which) Tsp. P.P. Sp.
 3 digit 12 v . (Rotary Reset) $2 \div \times 1 \div \times 1 \frac{1}{2}$ in. 51 each 3 digit 12v. (Reset) $3 ; \times 1 \times 1 \mathrm{in}$. £2-25. P.P. 5 p .
 5 digit (Reset) 12v. £3. P.P. Fp.

MULTICORE CABLE (P.V.C.).
core (6 colours) 3 screened, $14 / 0048$. 1 Bp. yd. 100 yds $12 \cdot 50$
20 core (2 screened) 171 p yd. 100 yds . $£ 15$.
30 core (15 colours) 22 p . yd. 100 yds . £ 17.50 .
Minimum order 10 yds
RIBBON CABLE (8 colours)
f1-25
10 m.
8 cores. $7 / \cdot \mathrm{mm}$. bonded side by side in ribbon form. SMALL MOTOR ($1 / 50$ H.P.) 900 R.P.M. $230 / 250$ v. A.C E1-50. P.P. 30p.

RELAYS

SIEMENS/VARLEY PLUG-IN. Complete with transparent dust covers and bases. 2 pole coo contacts 35 p ea ; 6 make types in stock.

12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$.) with 10 amp. silver contacts 2 pole c/o 40 p ea.; 2 pole 3 way 40 p. P.P. 5 p 24 VOLT H.D. RELAYS ($2 \times 2 \times \frac{1}{4} \mathrm{in}$.) 10 amp. contacts. 4 pole c/o. 40p ea. P.P. 5
240v. A.C. RELAYS. (Plug-in type). 3 change-over 10 amp contacts. 75 p (with base). P.P. Sp.
P.A.R. BISTABLE RELAY (Latching) $24 v$. DC. $4 \mathrm{c} / \mathrm{o}$ contacts 65p. P.P. 50
SILICON BRIDGES. 100 P.I.V. 1 amp . $(\mathbf{t} \times \mathbf{t} \times \mathbf{i n}$.) $\mathbf{3 0 p}$ 200 P.I.V. 2 amp. 60p.

24 VOLT A.C. RELAYS (Plugin)
3 Pole Change-ovel 60p.
2 Pole Changeover 45p.

IKHIIIPUS
 MONEY BACK IF NOT SATISFIED

 Free fabulous NEW catalogue. Send SA.E.red + spice LED's 17p! Til209
data

BIG'ri panelcli \& RED LED 28p GREEN \&clip 22p
BIG'4 panel clip \& RED LED 28p. GREEN \&clip 59p
IN R RAvELED
Calculator
Minitron type $0-9$ dpDIL $£ 1 \cdot 19$. SOCKETS 13 p
from£25 LC DIGITAL ELDCHchips.

Texas etc with 4 displays $£ 12$. 6 displays $\&$ chip $£ 14$ Mostek date $\&$ alarm chips with 6 displays $£ 19$

 ${ }^{19}$. pcbel
hit: All parts \& case. National chip. 4 dig it $£ 20.6$

ruthtegrated circuits

23.

741: 8pin 29p, to 99 \& 14 pin 27p 74833 p 709 21 kiT £ 469 710 35p 723 59p. $555_{\text {timer } 79 \text { p ZN 414 rx.fl|to built }}$ £8 703 rf if $28 \mathrm{p} \mathrm{mcl} 1310 \&$ led $£ 2.76 \mathrm{mc} 1339 £ 1-20$ TAD 100 \& if $£ 2$ 1AMP+ REGULATOR 7805,5 (87 -20)V. also $12 \& 15 \mathrm{~V} £ 1.49$ AUDIO AMPS:mfc4ooo 50p; 1\& $2 \mathrm{~W} £ 1 \cdot 19 ; 3 \mathrm{~W} £ 1 \cdot 29 ; 6 \mathrm{~W} .$.

Tm TTL NEW 16 pin counter/driver $90 / 47 £ 2.25$

2M3055 33p.four El.
 BC 107, BC 108, BC 109 all Ip od

 FETS: 2N3819 19p 2N3823E LOp 4416 E 25P BC 182/3/4 10 P

POTS IIP.Switch+11PDUal55P.ULTRASONIC TRANSDUCERS \&2 ${ }^{\text {ea }}$
Trompus
ADD 10% VAT TO PRICES. P.\& P. LOP CFO.
algaitionias poo. BOX 29,BRACKNELL,BERKS.

R.S.T. VALVE MAIL ORDER CO.
 Blackwood Hall, IG London, SWI6 2BS

\qquad
PES54
PFL20
PL36
PL38
PL81
PL82
PL83
PL84
PL50
PL50
PL50
PL50
PL80
PL80
PY32
PY33

2N706A0.12, $2 \mathrm{2N} 37070.18$
Industrial Valves

USEO THROUGHOUT THE WORLL, SANWA'S EXPERIENCE OF 30 YEARS ENSURES ACCURACY, RELLABIUTY, VERSATLITT, UNSURPASSEO TESTER PERFORPMANCE
COMES WITH EVERY SANWA 6 Months' Guaramte MODEL P2B
MODEL JP50 MOOEE $360 Y$ PTR MODEL U500X
MDEL
AODSTRO MDOEL K30 THO MODEL F8OTRO
THESE PRECE

PRACES ARE SUBIECT TO AN ADDITIONAL CHARGE OF 10% FOR VA.T.
Ceses extra, availeble for most meters, hat not solid separately.

Coses extra, aveileble mor thons, hut hot sold sepparatel|.

Audio Connectors

Broadcast pattern jackfields, jackcords. plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes
XLR compatible in-line attenuators and

Low cost slider faders by Ruf

Future Film Developments Ltd.
90 Wardour Street,
London WiV 3LE
01-437 1892/3

G. F. MILWARD

ELECTRONIC COMPONENTS

Wholesale/Retail :

HALF PRICE OFFER! LIMITED PERIOD ONLY!

RESIST COATED PRINTED CIRCUIT BOARD

$\begin{aligned} & \text { BOARD } \\ & \text { SIZE } \end{aligned}$	FIBRE GLASS												PAPER$\frac{1}{10}-1 \text { or }$	
	$\frac{1}{12}{ }^{2}-102$				敉"-202				${ }^{\text {n }}{ }^{-1} 02$					
	Single Sided		Double Sided		Single Sided		Double Sided		Singie Sided		Double Sided		Singie Sided	
	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Negative	Pasitive	Negative	Positive	Negative	Positive	Negative
$75 \mathrm{~mm} \times 100 \mathrm{~mm}$	14p	12p	15p	13p	8 p	8p	8p	8p	16p	15p	14p	13p	8p	8p
$100 \mathrm{~mm} \times 150 \mathrm{~mm}$	27p	24p	29p	26p	15p	14p	19p	15p	33p	30p	29p	26p	15p	14p
$150 \mathrm{~mm} \times 200 \mathrm{~mm}$	53p	48p	56p	51 p	30p	27p	37p	30p	66p	60p	60p	54p	30p	27p
$200 \mathrm{~mm} \times 250 \mathrm{~mm}$	88p	80p	92p	84p	51 p	45p	63p	51 p	£1.10	£1.00	£1.02	92p	51 p	45p
$250 \mathrm{~mm} \times 250 \mathrm{~mm}$	£1-10	£1.00	f1-15	f1.05	65p	55p	80p	65p	£1-38	£1-25	£1-30	£1-15	65p	55p
$12^{\prime \prime} \times 6^{\prime \prime}$	80p	70p	85p	75p	55p	45p	65p	55p	f1.00	90p	£1-10	£1.00	55p	45p
$12^{\prime \prime} \times 12^{\prime \prime}$	f1-60\|	£1.40	£1.65	£1.45	£1.05	85p	£1.25	f1. 05	£1.95	£1.75	£2.10	f1.90	f1.05	85 p

EXTRA DISCOUNTS!
ORDER 25 SHEETS OF ANY ONE TYPE-DEDUCT 20\% ORDER 100 SHEETS OF ANY ONE TYPE-DEDUCT 30%
IF ABOVE SIZES DO NOT MATCH YOUR REQUIREMENTS, ASK FOR QUOTE-CUT TO YOUR SIZE. THIS IS AN OFFER THAT YOU CANNOT AFFORD TO MISSI ACT NOWI

SMALL ELECTROLYTICS

Ref. No.	Capacity	Voitage	Price	Ref. No.	Capacity	Voltage	Price
H8/2A	$3 \cdot 3 \mu \mathrm{~F}$	25 V	4p	H7/5	$80 \mu \mathrm{~F}$	16 V	4p
H8/3	$3 \mu \mathrm{~F}$	50 V	4p				
H8/3A	$4 \mu \mathrm{~F}$	50 V	4p	H7/8	$125 \mu \mathrm{~F}$	16 V	5 p
H8/4	$4.7 \mu \mathrm{~F}$	25 V	4p	H7/8A	$100 \mu \mathrm{~F}$	35 V	6p
				H7/9	$100 \mu \mathrm{~F}$	63 V	6 p
H8/5	$5 \mu \mathrm{~F}$	10 V	4p	H7/9A	$125 \mu \mathrm{~F}$	4 V	4p
				H7/10	$125 \mu \mathrm{~F}$	25 V	6p
$\begin{aligned} & \text { H8/6A } \\ & \text { H8/7 } \end{aligned}$	$10 \mu \mathrm{~F}$	10 V	4p	H7/10A	$160 \mu \mathrm{~F}$	265 V	3p
	$10 \mu \mathrm{~F}$	70 V	4p	H7/11	$160 \mu \mathrm{~F}$	25 V	$6 p$
				H7/11A	$150 \mu \mathrm{~F}$	10 V	$5 p$
$\begin{aligned} & \text { H8/8A } \\ & \text { H8/9 } \\ & \text { H8/9A } \\ & \text { H8/10 } \end{aligned}$	$16 \mu \mathrm{~F}$	16 V	4p	H7/13A	200 $\mu \mathrm{F}$	25 V	8p
	$20 \mu \mathrm{~F}$	6 V	2p	H7/14	$220 \mu \mathrm{~F}$	50 V	10p
	$20 \mu \mathrm{~F}$	70 V	4p	H7/14A	$220 \mu \mathrm{~F}$	16 V	6p
	$22 \mu \mathrm{~F}$	50 V	4p	H7/15	$220 \mu \mathrm{~F}$	25 V	5p
				H7/15A	$220 \mu \mathrm{~F}$	35 V	10p
$\begin{aligned} & H 8 / 11 \\ & H 8 / 11 A \\ & H 8 / 12 \end{aligned}$	$25 \mu \mathrm{~F}$	$12 \mathrm{~V}$	4p	H6/1A	$250 \mu \mathrm{~F}$	4 V	3p
	$24 \mu \mathrm{~F}$	275 V	4p	H6/2	250رF	25 V	3p
	$32 \mu \mathrm{~F}$	15 V	4p	H6/3A	$320 \mu \mathrm{~F}$	2.5 V	3p
H8/12A	$30 \mu \mathrm{~F}$	10 V	4p	H6/4	$320 \mu \mathrm{~F}$	10 V	4p
H8/13A	$32 \mu \mathrm{~F}$	50 V	4p	H6/4A	$330 \mu \mathrm{~F}$	16 V	5p
H8/14	$40 \mu \mathrm{~F}$	25 V	5p	H6/5	$330 \mu \mathrm{~F}$	25 V	10p
H8/14A	$40 \mu \mathrm{~F}$	16 V	4p	H6/5A	$330 \mu \mathrm{~F}$	35 V	15p
H8/15	$47 \mu \mathrm{~F}$	50 V	4p				
H8/15A	$40 \mu \mathrm{~F}$	35 V	4p	H6/8A	$470 \mu \mathrm{~F}$	35 V	20p
H7/1A	$50 \mu \mathrm{~F}$	10 V	4p				
H7/2A	$64 \mu \mathrm{~F}$	2.5 V	2p				
H7/4	$64 \mu \mathrm{~F}$	15 V	4p				

MULLARD ELECTROLYTIC CAPACITORS

071 and 072 series					
Type No. Vo	Itage V	Vdc. $\mu \mathrm{F}$	Current at $50^{\circ} \mathrm{C}$	Weight	Price
07115332	16	3300	2.4 amps	102	15p
07115472	16	4700	3.9 amps	102	17p
07115682	16	6800	5.8 amps	1 toz	22p
07215752	16	$7500+7500$	10.5 amps	302	37p
07215113	16	$11000+11000$	13.8 amps	4102	49p
07116472	25	4700	5.4 amps	1 102	22p
07216502	25	$5000+5000$	9.6 amps	$3 \frac{1}{2} 02$	37p
07216752	25	$7500+7500$	12.6 amps	$4 \frac{1}{2} 0 \mathrm{z}$	49p
07118881	63	680	$2 \cdot 1 \mathrm{amps}$	102	$15 p$
106 and 107 series					
10616223	25	22000	17 amps	$100 z$	¢1. 12
10617103	40	10000	12 amps	710z	94p
10710222	100	2200	10 amps	5toz	74p
Type No. Voltage		Capacitance	Weight		Price
10215163	16	16000	802		40p
10490003	20	39000	$160 z$		50p
10216802	25	8000	$70 z$		50p
10490001	45	20000	$160 z$		E1.00
A further 10\% discount on lots of 100 of any one type.					
Please calculate the weight of your order and include appropriate postage.					
Not Over		Ordinary Parcels	Not over $12 \mathrm{lb}$	Ordina	Parcels 53p
2 lb		23p	141b		58p
41 b		30p	16Ib		63p
61b		36p	18 lb		68p
81 b		42p	20 lb		73p
101 b		48p	221b		78p

[^3]
Prices include screws, rubber feet, one or two chassis according to size, and P. \& P
and Val
WEST HYDE DEVELOPMENTS Ltd, Ryefield Cres., Northweiod Hills, Northwoad. Middx HA6 1 NN Tei: Northwood 24941/26732 Telex: 923231

El-prepak AdDIO BARGAINS STEREO O DECOOER

 incl. P. \& P. and VAT

A ready built unit ready for connection to the I.F. stages of existing F:M. Radio or Tuner. A tell-tale light can be connected. The unit is a small printed circuit no further adjustment necessary. A L.E.D. is recommended as the indicating light. suitable device available from us at $36 \frac{1}{2} p$. Instructions included.

5W \& 10W AMPS

These matchbox size amplifiers have an exceptionally good tone and quality for the price. They are only $2 \frac{1^{\prime \prime}}{} \times 1 \frac{3^{\prime \prime}}{4}$. The 5 W amp will run from a 12 V car battery making it very suitable for portable voice reinforcement such as public tunctions. Two amplifiers are ideal for stereo. Complete connection details and treble, bass, volume and balance control dircuit diagrams are supplied with each unit. Dis counts are available for quantity orders. More details on request. Cheapest in the U.K. Built and tested.

Now available for 5\&10WAMPS

Pre-assembled printed circuit boards $2^{\prime \prime} \times 3^{\prime \prime}$ available in stereo only will fit 15 edge connector.
Stereo Pre-Amp 1 (Pre 1). This unit is for use with low gain crystal or ceramic pick up cartridges. $\mathbf{£ 1 . 2 1 .}$
Stereo Pre-Amp 2 (Pre 2). This unit is for use with magnetic pick-up cartridges.
£1.69
Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentiometers will give bass and treble boost and cut.
f1. 21
instruction leaflot supplied with all units. Post and Packing and VAT included in Prices.

Decoders
3W Amps \qquad Stereo Pre Amps 2

5W Amps
Stereo Pre-Amps 1 Stereo Tone Controls (Please insert guantities and delete those not applicable) Name

Address

Cegt 8222 224 WEST ROAD WESTCLIFF ON SEA. ESSEX SSO 9DF
TELEPHOME SOUTHENO (0702) 46344

DESIGNER-APPROVED KIT

In Hi-Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973) and a subsequent follow-up article (April 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage, power in excess of 75 watts whilst maintaining distortion at less than 0.01% even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the discrete component operational amplifier referred to as the
Liniac which is employed in the two most critical points Liniac which is employed in the two most critical points
of the system, namely the equalization stage and tone of the system, namely the equalization stage and tone
control stage, positions where most conventional designs control stage, positions where most conventional designs Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer.

```
Pack
    Fibreglass printed-circuit board
    for power amp.
2.Set of resistors, capa,
    Set of semiconductors for power
        amp. (now using BDY56.
        8D529. BD530)
4 Pair of 2 drilled.finned heat sinks
    Fibreglass printed-circuit board
    for pre-amp.
    Set of low noise resistors, capacitors.
    \mathrm{ pre-sets for pre-amp.}
        dow noise. high gain
    Set of potentiometers fincluding
        mains switch;
    potary mode sw switches.
    Toroidal transformer complet
        with magnetic screen/housing primary:
        0-117-234 V. secondaries
        0-117-234 V. secondaries:
2 Set of resistors. capacitors, pre-sets
                R
                                ¢0.85
f1.70
6.50
£0.80
£2.70
C2.05
£3.70
£9.15
    Fibreglass printed-circuit board
    for power supply
        resistors. capacitors.
        secondary fuses, semicon
        uctors for power suppl
    13 Set of miscellaneous parts
        including DIN skts, mains
        input skt. fuse holder, inter-
        connecting cable. control
        knobs
```

Hi-Fi News Linsley-Hood 75 W Amplifier
Mk III Version (modifications as per Hi-Fi News April 1974)

Full circuit description
in handbook
(pack 15-price 30p)

FREE
TEAK CASE WITH FULL KITS $£ 62.40$ post free (U.K.)
KIT PRICE only
V.A.T. Please add 10\%* to all U.K. orders (*or at current rate if changed)

Z \& I AERO SERVICES LTD.

THE MANAGEMENT ANNOUNCES WITH REGRET THAT DUE TO RISING COSTS AND STAFF SHORTAGES OUR MAIL ORDER SERVICE WILL HAVE TO BE CURTAILED. NO MAIL ORDERS WILL BE ACCEPTED BELOW £5.00 PLUS VAT, 1.E. £5.50 VAT PAID. OUR EQUIPMENT WILL STILL BE AVAILABLE TO PERSONAL CALLERS ONLY AT OUR RETAIL BRANCH, 85 TOTTENHAM COURT ROAD AND TRADE COUNTER, 44A WESTBOURNE GROVE, W2, WHERE THE ABOVE LIMIT WILL NOT APPLY, MINIMUM ORDER CHARGE FOR ACCOUNT CUSTOMERS IS £10.00.

U4324: 32 ranges
AC/DC Volts and Amps. Sensitivity $\begin{array}{ll}\text { 20.000/4.000 o.p.V. } \\ \text { Accuracy } & 2.5 / 4 \%\end{array}$ £9.25

U4317. 42-ranges AC/ DC Volts and Amps. $\begin{array}{ll}\text { Sensitivity } \\ 4,000 & 20,000\end{array}$ scale. Transistorized high-speed trigger pro tection. Mirror scal Accuracy $\quad 1.5 / 2.5 \%$ f16.50

U4323; 22 ranges $A C / D C$ Volts. DC Amps only. Sensitivity 20.000 o.p.v. Built-in AF/IF and 465 KHz . and 465 Hz . Accuracy 5\%

U4312: 39-ranges $A C / D C$ Volts and Amps Sensitivity 667 o.p.v. U4313: 31-ranges AC/DC Volts and Amps Sensitivity 20.000 o.p.v./2.000 Sensitivity 20.000 1.5/2.5\% £12.50

OUR CATALOGUE OF VALVES. SEMICONDUCTORS AND TEST EQUIPMENT IS AVAILABLE; PLEASE SEND 0.15 P FOR YOUR COPY
Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2
Tel: 727 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only)
85 TOTTENHAM COURT RD.
LONDON W.2. Tel: 5808403

WE WANT TO BUY:

SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.
C.A.A. Approved for inspection and release of electronic valves, tubes klystrons. etc.

FROM THE SPECIALISTS-POWERTRAN ELECTRONICS
 \section*{WIRELESS WORLD AMPLIFIER DESIGNS}

Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating.

30W BAILEY
Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors, pote Pk. 3 Semiconductor set 3HN BLOMLEY
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capecitors. pots Pk. 3 Semiconductor sot 20W LHESLEY-HOOD Pk. 1 F/Glass PCB Pk. 2 Resistors. capacitors. pots Pk. 3 Semiconductor set

QOY REOULATEO POWER SUPPLY

£0.80 Pk. 1 F/Glass PCB 60.75
Pk. 2 Resistors, capacitors. pots $£ 1.40$
£4.70 Pk. 3 Semiconductor set
BMLEY-EURROWR PRE-AMP
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pre-sets.
transistors
Pk. 3R Rotary potentiometer set
Pk. 36 Sidider potentiometer set (with knotas)
f 1.40
f 3.10
¢2.05
$€ 4.95$
f 1.60
£2.70

STUART TAPE RECORDER

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this highperformance Wireless World publistred design.

TRRP P\%. 1	Reply amplifier F/Glass PCB	50.90
TRRC Pk. 1	Record amp/meter drive cct. F/Glass PCB	¢1.40
TROS Pk. 1	Bies/erase/stabilizer cct. F/Glass PCB	¢1.00

TOROIDAL T20 + 20
Developed from the famous Practical Wireless Texan
Designed by Texas engineers and published in a series of articles in Practical Wireless. The TEXAN was a remarkable breakthrough in delivering true Hi-Fi performance at exceptionally low cost. Now further developed to include a true Toroidal transformer, this slimline integrated circuit design. based upon a single F/Glass PCB. features all the normal facilities found on quality amplifiers, including scratch and rumble filters. adaptable input selector and headphones socket.

FREE

TEAK CASE and HANDBOOK with full kits

ACTIVE FILTER CROSSOVER

An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately, though introducing reactive impedances between the amplifier and the speakers. result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant solution to this problem, described by D. C. Read in Wireless Word. involves the use of a series of active filters splitting the output of the pre-amplifier into three channels, of closely defined bandwidth. each of which is fed to the appropriate speaker by its own power amplifier. A design for a suitable 20-watt amplifier, based on a proven Texas che, was also printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.

ACTIVE FILTER

 Pack1 Fibreglass PCB \{accommodates all filters for one channel)
Set of pre-sets, solid tantalum capacitors. 2\% metal oxide resistors. 2\% polystyrene capacitors Set of semiconductors 2 off each pack required for stereo system

SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER DESIGNS

READ/TEXAS $20 w$ amp.

 Pack1 Fibreglass PC3 £1.05

Set of resistors, capacirors pre-sets (not inctudcitorsi

POWER SUPPLY

FOR 20W/CHANNEL STEREO 0.70 SYSTEM

3 Sets af semiconductors 4.20 6 off each pack required for stereo

Pack
1
2 Sibreglass PCB
2 Set of rectifiers. zener diode. capacitors. fuses. 3 Toroidal transformer $€ 0.50$ 4 Special heat sink assembly for
amplifiers Set of 3 O/P Set of $30 / P$
capacitors capaciors 5 coquird stereo system

SEMICONDUCTORS AS USED IN OUR RANGE OF QUALITY AMPLIFIERS

				BC182L	¢0.10	MJ481	f1. 20	TIP29C	80.71
2N699	80.25	2N43027	80.60	BC184L	¢0. 11	MJ491	81.30	TIP30C	¢0.78
2 N 1711	¢0.25	2N5210	c0.54	BC212L	¢0.12	MJES21	80.60	TIP31A	¢0.60
2N2926G	80.10	$2 N 5457$	¢0.45	8 BC 14	${ }_{\text {f00 }}$	MPSA12	${ }_{20.55}$	TIP33A	E1.00
2N3053	c0. 15	2 N 459	E0.45			MPSA14	¢0. 35	TIP34A	$E 1.50$
2N3055	80.45	2 N 5830	20.30	80529	${ }_{\text {f00.85 }}$	MPSA55	${ }_{20} 0.35$	TIP41A	c0. 74
2 N 3442	£1.20	40361	¢0.40	8 8Y56	¢1.60	MPSA65	¢0.35	TIP42A	c0.90
2N3704	¢0.10	${ }^{40362}$	¢0.10	BF257	¢0.40	MPSA66	80.40	IN914	80.07
2N3711	¢0.09	8 C 108	¢0.10	BF259	¢0.47	MPSUO5	£0.60	IN916	80.07
2N3819	¢0. 23	BC109	¢0.10	BFR39	¢0.25	MPSU55	80.70 40.58	${ }_{58}$	E1. 20
2N3904	¢0. 27	BC125	20.15	BFR79	¢0.25	SN72748P	40.58		
2N3906	¢0. 20	$8 \mathrm{BC126}$	¢0.15	BFY50	¢0.20	TIP29A	¢0.60		
2 N 4058	£0.12	${ }_{\text {BC1 }}$	¢0.12	BFY52	¢0.20	TIP30A	¢0.80		

for further information please write for FREE LIST NOW!

KIT PRICE only 를

post free (U.K.)

Pack		Price
1	Set of all low noise resistors	£0.80
2	Set of all small capacitors	£ 1.50
3	Set of 4 power supply capacitors	£1.40
4	Set of miscellaneous parts including DIN sockets. fuses. fuse holders. control knobs, eic.	£1.90
5	Set of slide and push-button switches	$¢ 0.90$
6	Set of potentiometers and selector switch	£1.45
7	Set of all semiconductors	¢8. 25
8	Special Toroidal Transformer	¢4.95
9	Fibreglass PC Panel	£2.50
10	Complete chassis work. hardware and brackets	£4.20
11	Preformed cable/leads	¢0.40
12	Handbook	£0.25
13	Teak Cabinet	£2.75

V.A.T. Please add 10\%* to all U.K. orders
(*or at current rate if changed)
U.K. ORDERS-Post free (mail order only)
OVERSEAS--Postage at cost + special packing

Dept. WW06. POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP1O 3NN

Popular
 Semiconductors

Telephone Comer

COMPLETE TELEPHONES NORMAL HOUSEEOLO TYPE AS
SUPPIEO TO THE POSY OFFICE EX
only $£ 1.05$
R....an

TELEPHONE OIALS
Only $27 \frac{1}{2}$ p рариетреасн

Tested and Guaranteed Paks

879	4	iN4007 Sit. Rec. diodes. 1.000 PIV lamp plastic	P
881	10	Reed Switches ${ }^{1 " 1}$ long $\frac{1}{\frac{1}{3} " ~ d i s . ~}$ High speed P.O. type	1
	0	Mixed Diodes. Germ. Gold bonded etc. Marked and Unmarked	
н38	30	Short lead Transistors. NPN Silicon Planar types	5 p
H39	6	Integrated circuits. 4 Gates BMC 962. 2 Filip Flops BMC 945	55p
41	2	Power Transistors Comp. Pair BD 131/132	
H63	4	2N3055 Type NPN Sil. power tran sistors. Below spec. devices	p
H65	4	40361 Type NPN Sil. transistors TO-5 can comp. to H66	p
H66		40362 Type PNP Sil. transistors TO-5 can comp. to H65	p

Das Unmarked Untested Paks

	50	Germanium Tran	5p
15	50	Germanium Diodes Min. glass type	55p
10	00	Silicon Diodes DO-7 glass	55p
10	00	Sil. Diodes sub. min. N914 and IN916 type	$5 p$
${ }^{883} 200$	00	Transistors manufacturers.	5p
${ }^{\text {H26 }}$	40	NPN Silicon Trans. 2N3707-11 ange low noise amp	5 p
1	15	Power Transistors. PNP. Germ. Silicon TO-3 Can. P \& P $5 p$ extra	
1	10	3819 N Channet FET's plastic case type	55p

Make a rev counter

for your car

The 'TACHO BLOCK'. This encapsulated block will turn for any car with nomal coil ignition system

£ $1 \cdot 10$ each

Ex GPO Push-button Intercom Telephones

Exactly as internal tolephone systems still in everyday use where automatic internal exchanges have not ve with circuits and instructions. Price of each instrumem is independent of the number of ways. Please phone for latest details of cabto.

f2.75

EXTENSION TELEPHONES $71 \frac{1}{2}$ e each p.p. $27 \frac{1}{2} p . ⿷ 1.37 \frac{1}{2}$ for 2 p.p. 55 p. Thes

New X-Hatch

Our now, vasty lnapeved Mark Two Cross-Hatch

Conerator is now evalimble. Essential for
allennent of colour ame on all TV recolvers. Featuring plug-in ICs and a more sensitive sync. pick up circuit. The case is virtually unbreakable-ideal for
the engineer's zoolbox-and only measures $3^{\prime \prime} \times 5 y^{\prime \prime}$

(Includes VAT $\bmod P$ \& P, but no betteries)

.

LM AUDIO IC
We have just received a large consignment of LM3Bo Cs. These are specially selected to a higher grade and are marked with the number SL60745. This fantastic little 3 watt audio IC only requires two capacitors and two potentiometers to make an amplitier with volume and tone control. The quality is good and Our special f1.10 completo with data Over 1,000,000 in stack

We hold a very large range of fully marked, tested and guaranteed Transistors. Diodes and Rectifiers at very

Our very popular 4 p Transistors FULLY TESTED \& GUARANTEED
TYPE "A" PNF Silicon alloy. TO-5 can. TYPE "A" PNF Silicon alloy. TO-5 can.
TYPE "B" PNP Silicon. plastic encapsulat TYPE "E" PNP Germanium AF or RF
TYPE 'F'NPN Silicon plastic encapsulation TYPE '"H' PNP Silicon. similar ZTX500 range
 High-speed magnetic counters

Plastic Power

 Transistors
HOW IN TWO RAMEE:

Theee are 40W and gow Silicon Plastic Power Tran sistors of the very latest dosign, availabie in NPN or PNP at the moet shatteringly low prices of all time We hava been selling these succeasfully in quantity undier oer Tested and Guaranteed torms.
$\begin{array}{lllll}\text { RANGE } 1 \text { VCE. MIn. } 15 & 1.12 & 13-25 & 26-50\end{array}$ hfe. Min. 15
90 Wat
$\begin{array}{lll}22 p & 20 p & 18 p \\ 26 \frac{1}{2} p & 24 \frac{1}{2} p & 22 p\end{array}$
RANGE 2 VCEE. Min. 40
RANGE 2VCE. Min 40
40 Wat
$33 \mathrm{p} \quad 31 \mathrm{p} \quad 29 \mathrm{p}$
meonare cincuit
We stcck a large range of $1 . C_{8}$ at very competitive prices from $11 p$ each). These are all listed in our FREE Catalogue, see coupon below.

METRICATION CHARTS now avmilable
This fantastically derailed conversion calculator carries housands of classified references between metric and British (and U.S.A.) measurements of lerigth, area
Pocket Size 18p.

LOW COST DUALIN LINE I.C. SOCRETS 4 pin type at 18 $\frac{10}{}{ }^{2}$ each $\}$ pow new low profile type 6 pin type at 18p each $\}$

Books
We have a large selection of Reference and Technical Books in stock.

BUMPER BUNDLES
these parcels contain all types of surplus electronic
2 LBS in weight for $\mathrm{f} 1-10$ Post and Packing 27

Dur famous P1 Pak

is still leading in value

> Full of Short Lead Semiconductors \& Electronic Components, approx. 170 . We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. only 55p

ALL PRICES INCLUDE 10\% VAT

NAME

ADDRESS

MINIMUM ORDER 50p CASH WITH ORDER PLEASE
Add 11 p post and packing per order OVERSEAS ADD EXTRA FOR POSTAGE. \qquad

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance 11 microvolt to 100 millivolts, 10 ohms 100 mV - 1 volt -52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $29 \times 121 \times 10 \mathrm{in}$. Secondhand POWER SUPPLY UNIT PN $12 A$
POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s}$, 513 V and 1025 V at $420 \mathrm{~m} / \mathrm{A}$ o/put. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mif
$2 \times 5 \mathrm{~V}$ windings at 3 Amps each and 5 V at 6 Amp and 4 V at 0.25 Amps . Mounted on steel base 19 in . $W \times 1 \mathrm{lin} . \mathrm{H} \times 14 \mathrm{in}$. D. (All connections at the rear.) Excellent cond. $£ 8 \cdot 50$ each, Carr. $£ 2$.
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $£ 7 \cdot 50$ each, Carr. $£ 2 \cdot 00$
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EGl (CV1526) colour green, medium persistence complete with nu-metal screen, \&3.50 each, post 50p. APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. £1.25, post 30 p .
AIRCRAFT SOLENOID UNIT S.P.S.T.: $24 \mathrm{~V}, 200 \mathrm{Amps}$, $\mathbf{£ 2}$ each, 30 p post. VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at 2 Amps . 83 each. 75p post.
RACK CABINETS: (totally enclosed) for Std, 19 in. Panels. Size 6 ft . high $\times 21$ in. wide $\times 16 \mathrm{in}$. deep, with rear door. $£ 12$ each, Carr. $£ 2 \cdot 50$. CLASS "D" WAVEMETER NO. 1 MK. II: Crystal controlled heterodyne frequency meter covering $2-8 \mathrm{MHz}$. Power supply 6 V d.c. Good secondhand cond. ROTARY INVERTERS: TYPE PE.218E-input $24-28 V$ d.c., 80 Amps. ROTARY ONVERIERS: 13 YPE $400 \mathrm{c} / \mathrm{s}$. 1 Ph. P.F.9. $£ 17.50$ each. Carr. $£ 2.00$. REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and power
 condition $£ 7.50$, Carr. 75p.
TS 15C/AP FLUXMETER: Used to provide qualitative measurements of flux densities between pole faces of magnets. Range $1200-9600$ gausses. $\pm 2 \%$. S/hand good cond. $£^{25}+60$ p post.
AUTO TRANSFORMER: $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}, 1000$ watts. Mounted in strong steel case $5 \mathrm{in} . \times 6 \frac{1}{2} \mathrm{in} . \times 7 \mathrm{in}$. Bitumen impregnated. $£ 10$ each, Carr. $£ 1$.
UHF ASSEMBLY: (suitable for 1000 MHz conversion) incl. UHF valves; 2C42, 2C46, 1B40. Complete with associated capacitors and screening; 3 manual counters $0-999$. Valves 6AL5 and $8 \times 6 \mathrm{AK} 5$. £ 10 each, 60 p post.
TELEPPRINTER TYPE 7B; Pageprinter 24 V d.c. power supply, speed 50 bauds per min. 'as new' cond. in original packing case, $£ 25$ each; or second hand cond INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision for checking ionisation. $110 / 230 \mathrm{~V}$ a.c. input. S/hand good cond. $£ 30+£ 1$ carr. AUTOMATIC VIBRATION EXCITER CONTROL UNIT TYPE 1016:
Manufactured by Bruel \& Kioer $5-5000 \mathrm{c} / \mathrm{s}$ per sec. S/hand V, good cond, 690 , Manufactured by Bruel \& Kjoer. $5-5000 \mathrm{c} / \mathrm{s}$ per sec. S/hand V. good cond. $£ 90$,
Carr. 22 . SOLAS II SURVIVAL RADIO TX/RX: Automatic morse key or speech.

RACAL OSCILLATOR: $1-100,000 \mathrm{KHz}$ in 1 KHz steps with digital readout BFO, CWN, FSK, CWW, LSB, USB, ISB, DSB. Line 1 and 2. E200 each Carr. ©5.

50-LINE TELEPHONE SWITCHBOARD: Complete with all plugs etc., excellent cond. 440 each. Carriage £5.
10-WAY TELEPHONE SOCKET STRIPS: 3 connections and 10 jackplugs to suit. Similar to PL68. Complete with 6 ft . cord. Ex-equipment, plugs to suit. Similar to PL68.
good cond. $\mathbb{1}$ each. Post 50 p . 10-WAY TELEPHONE MAGNETIC INDICATOR: 50V. For use with the above items. £2 each. Post 40 p . 10-WAY TELEPHONE SOCKET STRIP: 3 connections. Takes standard P.O. Jackplugs; 201 or 316 ; and 10-WAY TELEPHONE LAMP STRIP. £3 the pair. Post 50p. 20-LINE TELEPHONE UNIT: With plugs; magnetic
switches in metal case. Size $8 \times 8 \times 19 \mathrm{in}$. 5 each. Carr. $\ell 1$.

BRIDGE MEGGER: 250V. (Evershed Vignoles) series 2. £30 each. Carr. 11. BRIDGE MEGGER: 2500 ., series 1 . $\mathbf{~} 30$ each. Carr. f 1 .
BRIDGE MEGGER: 2,500 V., series 1. ©30 each. Carr. £l.
TRANSMITTER BC-624: Complete with power supply for 230 V .5 channel, TRANSMITTER BC-624: Complete with power supply for 230 V .5 channel,
crystal controlled. Can be modified for 2 metres. Size $19 \times 19 \times 12 \mathrm{in}$. approx. crystal controlled. Can be modified for 2 metres. Size
Secondhand, excellent cond. $£ 12 \cdot 50$ each. Carr. $£ 2$.
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction DELPENA RF GENERATOR TYPE E.15: 15 kW at 500 Hz ; input 440 V 3 ph . 50 Hz . £275. Carr. at cost. $8000 / 8000$. Output 300 mA . rms. Size: $12 \mathrm{in} . \times 12 \mathrm{in}$. \times 36 in. 230 V input. $£ 35$, Carr. $£ 4 \cdot 00$.
COPPER WIRE AERIAL: with insulators, looft. long. 1150 . Post 40 p TELEPHONE CABLE: (Twin) PVC covered suitable for extension speakers, burglar alarms etc. 200 yds. per roll. $£ 2.50$ a roll. Post 50 p.
TELEPHONE CABLE: (Twin) $1,350 f$. on metal reel. $£ 5$ per reel. Carr. $£ 1$.
ANTENNA MAST 30 ft . consisting of $10 \times 3 \mathrm{ft}$. tubular screw sections (${ }^{\prime \prime}{ }^{\prime \prime}$ dia.) ANTENNA MAST 30 ft . consisting of $10 \times 3 \mathrm{ft}$. tub
with base, guyropes and stays etc. $£ 5$ each, $\mathrm{Carr} . £ 2$.
ANTENNA MAST 12 ft . 3 sections with suitable base to mount on the above ANTENNA MAS Extends to 42 ft . $£ 1.50$ each, Carr. $£ 1$.
APN-1 ALTIMETER TX/RX: Freq. approx. 410 MHz . Complete with 28 V APN-i ALIMETER $\mathbf{~ d y n a m o t o r , ~} 3$ relays, precision resistors, 11 valves. Useful breakdown for parts f4 each, Carr. Cl 1.50 .
AVO VALVE TESTER CT. 160: (Portable) similar to Avo Mk. 3 Characteristic Meter. Good cond. $£ 35$ each, Carr. $£ 1.50$.
MODULATOR UNIT: Complete with mod. transformer and 2×807 Valves. Mounted $19^{\prime \prime}$ chassis, $8^{\prime \prime} \times 8^{\prime \prime}$."As new" cond. $£ 8$ each; or secondhand $£ 5$ each Carr. both types $£ 1.50$.
LISTS OF EQUHPMENT AVAILABLE: MOTORS; TELEPRINTERS; AR88 SPARES; TEST EQUIPMENT ETC. Send 10 p for above lists. ALL CARRIAGE QUOTES GIVEN ARE FOR 50 MILE RADIUS OF LONDON ONLY. ALL U.K. ORDERS SUBJECT TO 10\% VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage).

 All'P.Pd. U.K.
TAPE STORAGE CANS. Brand new finished steel can originally intended for 1 Bmm. film but ideal for storing 7 in. reeis
of tape. Our last supply of the se items was quickly exhausted at 30 pepen but as a presull of at massive new purch ase we car
now offer a case of 55 (Minimum order) at $E 5$. 30 inc. P. \& P. and now offer a case of 55 (Minimum order) at $85 \cdot 30$ inc. P. \& P. and
V.A.T. Sample can available at 38 B inc. P . \& P. and V.A.T
Fenlow Electronics LOW FREQUENCY SPECTRUM ANA
LYSER covering 0 3Hz-1kHz. E175 ©0 including carrlage and

Seov. MEGGERS "RECORO" in leather case. mid scal ravding 1 MR calibrated to $50 \mathrm{M} \Omega, 6 \times 4 \times 4$ in. $E 1650$ inc. pos

 reading $1 \mathrm{M} \Omega$ calibrated to $50 \mathrm{M} \Omega, 6 \times 4 \times 4 \mathrm{in}$. $£ 1650 \mathrm{inc}$. posand V.A.T.
OVER 300,000 IN STOCK! Multiway and R.F. Connectors by twenty different companies! Send us your detailed requirements quoting Nato numbers if known. TELEX 965265.
WE ARE ANXIOUS TO BUY Synchro Test Equipment
manutactured by Muirhead, Binger-Gertsch etc. Test Dials, manutactured by Muirhead, Singer- \mathbf{l} ertsch etc. Test Dials,
Dividing Heads, Bridges. Standards etc. to expand our testing
tacilities. facilities

TELEX 965265
 MANUFACTURERS!!

Post Orders and Technical enquiries to: 24, HIGH ST., LYDD, KENT. Lydd 20252 (STD 0679) V.A.T, Reg. No. 201-1296-23

Metal Oxide Resistors (ELECTROSIL \& WELWYN)
Tantalum Capacitors (KEMET, ITT, PLESSEY, ETC.)

Scientific Instruments

Electronic Test Instruments

Synchros and Servomotors ALL AVAILABLE EX STOCK! WE HAVE ONE OF THE LARGEST STOCKS IN THE
COUNTRY OF INSTRUMENTSEAND COMPONEETS
MANUFACTURERS. TELEX $\$ 65265$. RE AVAILABILITY.
SOLARTRON 'SCOPES CDI220, D.C to 48 MHz . Y sensitivity $50 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}, \mathrm{X}$ sensitivity $100 \mathrm{~ms} / \mathrm{cm}$ to
5 secs/cm calibrated, 5 in. flush faced POAC.R.T. $24 \times 13 \times$

400 Hz . HIGH FREQUENCY ROTARY CONVERTERS 27 SV . 150 A . Input 115 V . 400 Hz 2500 VA . ourtput. Not new but in excellent condition; fitted with control box containing switch-
gear and voltage and frequency adjustmemt circuits. These gear and voltage and frequency adjustment clrcuits. These
are extremely small for their capacity only 15 in . long and 13 in ape exiremely small
high overall including the control box which also carries the
circuit diagram. $£ 3190$ (C. Pd. U.K. Mainld.). Also Type $153{ }^{24-28 V}$. D.C. input, output 115V. 3 phase, 750 W.
400 Hz .08 FF . E21 50 (C. Pd. U.K. Mainld.). Type 153A, $100-116 \mathrm{~V}$. D.C. input, output 115
Type A, 24 V . D.C. input, output 115 V Type $100 \mathrm{~B} .22-28 \mathrm{~V}$. D.C. input, 115 V . 3 phese $400 \mathrm{~Hz}, 950 \mathrm{VA}$.
$0.8 \mathrm{pF} . £ 56.50$ (C. Pd. U.K. Mainid.).
Type $200,25-28 \mathrm{~V}$. D.C. input, 115 V . 1 phase $360 \mathrm{~W} ., 1600 \mathrm{~Hz}$. Type $200,25-28 \mathrm{~V}$. D.C. input, 115V. t phase 360 W ., 1600 Hz .
output, $£ 15-50$ (C. Pd. U.K. Mainid.). Type 200 A . Input $25-28 \mathrm{~V}$. D.C. 115 V . 1 phase, $360 \mathrm{VA} .1 \cdot 0 \mathrm{pF}$
600 Hz output, 118.50 (C. Pd. U.K. Mainld.). Type 7, $22-29 \mathrm{~V}$ D.C. input 80 V . 1 phase, $240 \mathrm{VA} .1 \mathrm{pF}, 1600 \mathrm{~Hz}$
output, $£ 13$ (C. Pd. U.K. Malnid.).
Type 2, 24 V . D.C. input, 40 amps, 30 V . A.C. $5-25$ ohms, (5 KVA Type 2, 24 V . D.C. input, 40 amps, 80 V . A.C. $5-25$ ohms, (5 KVA
1pF 1100 Hz output. $\mathrm{EP33}$ (C. Pd. U.K. Mainld.).

GAS CHROMATOGRAPHY RESEARCH OVEM

PV4051/4056
A large capacity oven of tow thermal mass for use between 35 and $350^{\circ} \mathrm{C}$. Provides a forced air circulating system yielding
i000 changes of air per min. The oven has forced air cooled
outer surfaces when the internal temperature is hlgh. $210-250 \mathrm{~V}$. $50 \mathrm{~Hz}, 2.6 \mathrm{KW}$, $\mathbf{x 2 5} 60$. (C.Pd. England and Wales for CWO) IONISATION AMPLIFIER PV4075 A modern high grade low noise solid state amplifier to feed
potentiometer recorder. 18 input ranges from $10-12$ to 5×10^{-7} A with 5 outputs of 1 mV to 100 mV . Linearity 0.9% f.s. Noise less
than $0.5 \% \mathrm{f.s.at}$ at max. sensitivity. Back of facility. Dimensions
$28 \times 10 \times 43 \mathrm{~cm}$ deep. With Operating Information $£ 27.50$ 28. $\times \begin{aligned} & \text { (Cd. U.K.) } \\ & \text { Details of these three and other gas ehromatography items are } \\ & \text { avallable-price } 25 \text { p } \\ & \text { (C.W.O. only) Handhooks (complete) }\end{aligned}$ Avallable. PRICES INCLUDE 10% V.A.T. PLESSEY GROUND BASED U.H.F. GROUNDIAIR TXIRX
FOR EXPORT ONLY OR SALE TO LICENSED USERS. This equipment comprises:
Single Channel Receiver 5820-99-932-5694
Single hannel ransmiter 580-99-932-569
Sower Unit for Amplifier 5820-99-932-5700
Cooler Unit 5820-99-932-3995
These assemble-into a free standing rack unit providing U.H.F
communications over 225.0 to 399.9 MHz , the $T X / A m p l i f i e r ~ u n i t e r ~$ giving 100 W atts R.F. output into 50 Ohms. We have sufficien of these units to form 12 complete instaflations with a number
of spare sub-units. Alt are guaranteed new and unused. Fuf of spare sub-unit
details on request
SOLARTRON 'SCOPES CDI183 D.C. to 10 MHz . Y sensi livity 100 mV - $50 \mathrm{~V} / \mathrm{cm}$. ($10 \mathrm{mV} / \mathrm{cm}$ on reduced bandwidth)
sensitivity $0.5 \mu \mathrm{~S} / \mathrm{cm}$ to 5 secs $/ \mathrm{cm}$. Dual trace, $£ 75$ inc. $V A$.. Plus carriage PACKARD SAMPLING 'SCOPE HP185A DRY REED INSERTS

Overall length 1.85 in . (Body length 1.1 in .) Diameter 0.14 in . to
 69 p per doz.i $\mathrm{EA} \cdot 12$ pe
All carriage paid U.K.
Heavydutytype(body length 2 in .) diameter 0.22 in . to switch up
to 1 A . at up to 250 V . A.C. Gold clad contacts, Ex .37 per doz to 1 A . at up to 250 V . A.C. Gold clad contacts, $£ 1.37$ per doz.:
£6.-83 per $100 ;$; $£ 52.25$ per 1,000 ; Changeover type $£ 2.75$ per doz. All carriage paid U.K.
Operating Magnets s1p per doz.: $\mathbf{5 4 \cdot 4 0}$ per 100; $\mathbf{5 3 8 \cdot 5 0}$ per 1000 .
All carriage paid U.K. Aperating Coils for 122 supply to accept up to four standard
Opeels $£ 1.80$ per doz. $£ 12$ per 100 All carriage paid UK

ADVANCE CALCULATORS PROGRAMMABLE ONLY £199!

 88 POCKET 2 MEMORY, \% SQUARE ROOT £99! FULL RANGE OF QUADRAPHONIC \& STEREO SYSTEMS AVAILABLE, INCLUDING PE RONDOAdvanced off-air frequency reference. Phase-locked. with Signal Monitor. A lab standard
Signal source, type 1. Precision frequency roference
Osbarne sourca (W.W. Jan '73), de luxe version
Kit for construction of an Oaborne-based signal source
Full range of items for Quadrophomy (full lists sent with all goods supplied)
CBS-SO Matix Decoder using MC1312P (see W.W. Nov 1973) kit ($\frac{1}{2}-\mathrm{hr}$. to build)
CBS-SO Decoder as above, built and tested production board, fits any set-full instructions supplied
Advanced phase-lock-loop Stereo Oecoder on board, regulator provision, typically 40dB separation
Stereo Decoder, as above, but in kit form (about 30 mins to build) (usas MC1310P in holder, inc. LED)
Superb 20W 8Ω Loudspeakers, as used for "P.E. Rondo", built in white or teak per pair
Easy-to-build Kits for above Loudspeakers, per pair
Goldring G101/2 Turntable Chassis, less cartridge
Deutsche-Elac STS 144/17 Cartridge, ideal high-quelity, low priced unit for Matrix quad
Good Stereo Heatsets with volume controls

WW-098 FOR FURTHER DETAILS

WirelessWorld FULL COLOUR WALLCHART OF FREQUENCY ALLOCATIONS 80p

 Studio ElectronicsP. BOX 18 HARLOW
CM 18 SSH ESSEX
Telephone: Hartow[stdロ279]25457

AMERICAM SWEEP GENESATOR GYP 452. Covers from 5 to 100 MHZ. Has bullt in
display and 101 DE Push Bufton RF Attenuator In one DB stepz, plus Callbrated Marker
Generator covering 5 to 100 MHZ continuus.
Amerlcan Government Contract, so quallity American Government Contract, so quality eluge and leads. Slze 131.
p 70 each. Carrlage E 1.50 .
AMERICAN SWEEP GENERATOR TYD TRM 315 to 400 MHZ . 5300.
AMERACAM AM GENERATOR type 497. 8 to ${ }^{400} \mathrm{MHZ}$. Supplled w.
240 V 50 HZ operation E 35 .

12" LONG

PERSISTANCE TUBES
Ideal for SSTV; educational purposes.
Type 12DP7A. Connettions, voltages etc. Brand New Boxed E7.50 each including
carrlage and VAT.

SPECIAL MHZ SCOPE SOLARTRON CDis12 onty ese. Has to be a enag. There
 24 callarated ranges. 20 nannesecs per cm.
with times 5 expansion. 5^{7} flat faced tube. with timas expansion. ${ }^{\text {Trace }}$ locator. $0-2$ microcec. elgnal deley. Built In calibrator. 1 KHZ square wave. 200 micro volts to 100 volts in 18 callibrated ranges.
Tube sensitivity 3 VICM MAIN FRAM Y AMP booste this to better than 200 mV per cm . at 40 MHZ . 240 V . 50 HZ Input. Complete with full manual Incleding plug-in clircults. Come
and see one working or Carrlage $£ 1-50$.

SiNOLE TRACE 40 MHZ PLWO-IM8 for
CD1212
oscilloscopes now available at CD1
$£ 25 \mathrm{ea}$. P. \& P. 75 p .

SOLARTRON PRECISIO
Dacilloscope type CD843, DC-15MHz.

solartron CD sz3 Single Baam Oscillocope sab at 10 MHZ; 1 mV max sensitivily. DC POA tubed down to from 1 seca.. per cm . to 0.1 0.1 microsecs. per cm . plue times 5 expansion

MARCOM TF stam-olut KHZ Sine Wave muat 90 E7.zs.
MARCONI TF EOHES AM SIONAL GEN. ERATOR. 12 to 470 MHZ . In good working condition Esp.
Warconi TF sas (CTA4). Absorption Wattmeter 10 mW to 6 Watts . Input Impedance
$\mathrm{Q} \cdot \mathrm{5}$ ohma to 20 K ohms. Froa. response flat $\mathrm{a} \cdot 5 \mathrm{ohma}$ to 20 K ohms. Freg. response flat
at 20 KHZ . Callbrated in volts and dbs. 5in. m rror backed meter E 7 7.50 ea. P. \& P. 75p. MARCONI VVM TFIOHIA ع22.50.
MARCONI TF 48 CC . Measures AC 100 MV to 150 V 20 HZ to 15 MHZ , Measures DC 40 MV
to 300 V . Complete with probe. Standard 240 V operation $\mathrm{E} 12 \cdot 5 \mathrm{e}$ each.
MARCON1 TFAsp. Measures 20MV to $2 V$ AC. 50 HZ to 100 MHZ . $£ 10$ each.
MAACONI VVM TF 1300 . Measures AC 50 MV to $100 \mathrm{~V}, 20 \mathrm{HZ}$ to $300 \mathrm{MHZ}, \mathrm{DC} 100 \mathrm{MV}$
to 300 V . Ohms 50 to 5 Meg Ohm . In fine condition Elit each.
E.H.T. TRANSFORMERS, e.g. 5 KV at
0.125 Amps and others. All 240 volts input. BRAND NEW AMERICAN HIGH VOLTAGE CAPACITORS. 0.15 mfd 120 kV working. E en each. Carriage at cost.

MODERN TiLIPMONES type 706. Two tone

Ideal EXTEM8ION Telephones with standard GPO type dial, bell and lead coding. $£ 1.75 \mathrm{ea}$.
P. \& P. 25p.
All telephones complete with bell and dial.

POTENTIOMETERE

COLVER.
at 13p ea.
moreanite special Brand new, 2.5; 10; 100; 250; 500K; tin. sealed, 17p ea.
BERCO 24 Watt. Brand new, 5; 10; 50; 250;
ohms; 1; $2.5 ;$ to; $25 ; 50 \mathrm{~K}$ at 15p ea, Standand 2 meg. log pots. Current type 15p ea.
 GOURN: TRIMPOT POTENTIOMETERS.

RELAMCE P.C.B. mounting: 270; 470 ;
500 ohms $10 K$ an
aip ea. ALL BRAND NEW.
 0.1% 2up ea.

RELAYE

Varlay VP4 Plastic covers 4 pole c/o. 15 K -
33p ee.
CARPENTERS polarised Single pole c/o 20 and 65 ohm coll as new 37 D each. 14 ohm
coll 34 e each. 45 ohm coil 33 p each.
TRANBFORMERS. All standard inputs. Gard/Parm/Part. $450-400-0-400-450.180 \mathrm{MA}$.
$2 \times 6.3 \mathrm{v} . \hat{\mathrm{E}} \mathrm{ea}$. $2 \times 6.3 v$. \&3 ea.
Neptune Series. Multi 6.3 volts to give 48 V at Large quantity LT, HT, EHT transformere and Large qua
chokes.

Vast quantity of good quality componento 3 LBS. of ELECTRONIC GOODIES for E1-50 post pald.

CAY\&TALS. Colour 4.43 MHz . Brand New.
E1.26 es. P. \& P. 10 p.
EI_{1} WORTH OF 'UFs'. Six Brand New capacitors all between 15 V and 100 V . Total capacl-
tance not less than $7,000 \mathrm{mfd}$. P. \& P. 4 sp .

CAPACITOR PACK 50 Brand new componentis only 50p. P. \& P. 17p.
POTs. 10 different values. Brand new. 50p.
P. 1 . 170 . COMPONENT PACK consisting of 5 pots various values, 250 resistors $\frac{1}{\frac{1}{2}}$ and $\frac{1}{t}$ watt
etc. many high stabs. All brand now. Fine value at EOp per pack. P. \& P. 27p.
DELUVERED TO YOUR DOOR 1 cwt . OI Electronic Scrap chassis, boards, etc. No
Rubbish. FOR ONLY \& 3 , 50 . N. Ireland E 2 extra.
P.C.E. PACK S \& D. Quantity 2 sq. H.-no tiny pieces. 50p plus P. \& P. 20p.
FIBent class as above ei plus P. \& P. 20p.
5 CRYATALS 70 to 90 kHz . Our choice, 25 p . P. AP. 15p.

Thangin PACK, 2 Twin 50/200 pt ceramic: 2 Twin $10 / 60$ pf ceramic; $\frac{2}{} \mathrm{~min} \mathrm{strlps}$ with a
preset $5 / 20$ of on each; 3 air spaced preset 304100 pf on cerambic base. ALL BRAND
NEW 25 p the LOT. P. 1 P. 10 p .

ROTARY SWITCH PACK-6 Brand New

Rephement TUBEE for COS8OR 1035 \% 3. Used-guaranteed. E3 ea. P. \& P. 37p. C.R.T.'E 5^{n} type CV1385/ACR13. Brand new
with spec. sheet. E3D ea. P. \& P. 35p. TUBE type VCR138 £2 ea. P. \& P. 37 p. Numetal shields mp ea.
BASES for CV1385 or VCRt38 20p ax. P. \& P. 5p.
GRATICULES. 12 cm. by ${ }^{14} \mathrm{~cm}$. in High
Qually plastic. 15 p each. P. \& P . 5 p .
PANEL mounting lamp holders. Red or green. poa. Miniature. PANEL mounting lamp with
,
 complete with dial. $100 \mathrm{k} 3 \%$ Tol
only 82.3 .3 8.
Also $450 \mathrm{~K} 0.5 \%$ with dial $82 \cdot 13$ ea.

EECKMAN 10 TURN DIALS ONLY.
Brand new $E 2.25$ ea. P. \& P. 10 O .

ELECTROSTATIC VOLTMETERS from
$0-300$ Volts to $0-10 \mathrm{KV}$. S.A.E. with your $0-300$ Volts to $0-10 \mathrm{KV}$. S.A.E. with your equirements.
DECADE DIAL UP SWITCH-5 DIGIT. igures. Size 41 ln . Iong \times ilack with white igures. Size \&in. long x in. high $\times{ }^{1} 1$ in.

LIGHT EMITTING DIODES (Red) from Hewlett-Packard. Brand Now
Information 5p. Hold irs Ip.

FIBREGGLASS PRINTED CIRCUIT BOARD. Brand New. Single or Double sided.
Any size $1 \frac{1}{2} \mathrm{p}$ per sq.in. Postage $\mathbf{1 0 p}$ per order. METERS. Ernest Turner. Model 402. 100 micro amps. BRAND NEW.
hence 2.25 ea. P. \& P. 25 p .
METERS by SIFAM Type M 42. 25-0-25 250 red: linear. As new. E3-50 ga. P. \& P. P. 37p.

VISCONOL EHT CAPACITORS

BLOCK PAPER CAPACITORS AVAILABLE, S.A.E. with requirements
PHOTOCELL equivalent OCP 71, 13p ea MULLARD OCP70 10p each.

NEW-LOW PRICED 12" DISPLAY UNITS

12" DISPLAY UNIT COMPLETE WITH X + Y AMPLIFIERS AND SHIFT CONTROLS: BLANK SECTION FOR HOUSING YOUR OWN CIRCUITRY. $\mathbf{£ 8 2} \cdot 50$
$12^{\prime \prime}$ DISPLAY UNIT WITH BUILT-IN WOBBULATOR IUSING OUR WIDE RANGE OF WOBBULATOR). £73.00

VERY BASIC $12^{\prime \prime}$ DISPLAY UNIT INPUT TERMINALS DIRECTLY LINKED TO SCAN COILS £48.50

All units completely cased; transistorised EHT, standard mains operation. S.A.E for all details.
Due to increases-
these prices applicable to 31 at July only.

5 VOLT $\frac{1}{2}$ AMP LOGIC (I.C's) POWER SUPPLY Standard Mains Input. £2.75 each. P. \& P. 25p.

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED 8OLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY E5.50. P. \& P. 25p.
STILL AVAILABLE our 20 MHZ version at E9-25. P. \& P. 25p.

20 HZ to 200 KHZ

SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine, 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. $£ 7.85$ each. P \& P 25 p. Sine Wave only E5.85 each. P \& P 25p.

DON'Tं FORGET
YOUR MANUALS
S.A.E. WITH REQUIREMENTS

NEW WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GMZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for $10 \cdot 7$ or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only £6.75. P. \& P. 25p.

Unless stated—please add $\mathbf{£ 1 . 5 0}$ carriage to all units.

VALUE ADDED TAX not included in prices-please add 10\%

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
Open 9 am to 6.30 pm any day (later by arrangement.)

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

Now open. Our New Components Shop. These premises are very much larger and will enable us to have greater stocks than we already have. Having all the components under one roof will now guarantee you peedier service on the counter, and on the mail order side. We have an enormous range of components to choose from. If you are having problems getting your components then come along. We are open from 9.30 a.m. through till 6.0 p.m. Monday to Saturday. The nearest Underground is Chiswick Park, and there are no parking restrictions

AUDIO ACCESSORY SHOP, 17 TURNHAM GREEN TERRACE, CHISWICK W. 4

Type H -202 Features. Mono/stereo switch, Volume controls on each channel.
Frea. response $20-20,000 \mathrm{~Hz}$. Impedance $4-16$ ohms. EA -50.

Full Range of Eagle and TTC Products available at Discount Prices.

Secondhand Bargain

 Basement Now Open High Quality Hi-Fi and Audio Equipment.8in. HI-FI SPEAKER
Dual cone plasticised roll surround. Large ceramic mag-
net. $50-10,000 \mathrm{c} / \mathrm{s}$. Bass
 Imped.

$$
£ 3.755_{\mathrm{EACH}}
$$

Post 25 p.
E.M.I. $13 \frac{13}{2} \times$ 8in. SPEAKER SAIE!

With twin tweeters and $£ 4.50$
Post 25p.

ALSO IN STOCK

CHASSIS SPEAKERS: Goodmans, Fane, Celestion, etc.
Reel to Reel Tape by BASF, E.M.I., etc.
Cassettes: Memorex, Phillips, etc.
Generous discounts on bulk purchases. Please send S.A.E. for price list.

ת

ADVANCE SQUARE WAVE GENERATOR SG21
Frequency Range $9 \mathrm{Kc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$, Rise time less than 1nS Ex-Demonstration. New condition in manufac turer's original carton.

ADVANCE T.V. DOT
 MAIN OUTPUT $20 \mathrm{mV-1}, \mathrm{inio}$
termination continuously varible
Accuracy
Maximum output on open circ cuit 2 V .
RIS
 TRIGGER OU 2.20 into 50 othm external ter-
$0.2,0.4,10.2$.

ADD

10\%
VAT
TO ALL
PRICES

AND CROSS HATCH

SG73
GENERATOR SGIT Ouput in fotm of modul suited

 $£ 49.50 \begin{gathered}\text { E.DEMONSTR } \\ \text { BRANO NEN }\end{gathered}$
mination maxumurn output
Rise time nominally $1.5 n 5$.
Rise time nominally 1.5 ns
Fall time nominall 3.5 ns
Size: 11 inW. $5 \frac{1}{2}$ int 9 SinD.
W:. 7.1 ID.
LAST LISTED PRICE 995
OUR PRICE E45. P/P f 1.5 5 .
Also available SG21A
$100 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$.

Bomputarsfiberssaries

MEMORY DRUMS-
SAVE OVER 50\% ON ORIGINAL COST

Sperry Floating Head J101 Memory System * 256 Data Tracks

* 1000 bits/inch
* 8 Megabits
* Speed 3000 rpm
* Access time 10 millisec
* Data transfer rate 1.65 megabits $/ \mathrm{sec}$
* Recording bit density 1050 bpi
* Complete with electronics for interfacing to DEC PDP8
Vermont 1004 Memory Drum
* 128 Data Tracks
* 650 bits/inch
* 4.4 Megabits
* Speed 3000 rpm

RING NOW FOR LATEST

 ON BRAND NEW DRUMS OR EX-DEMONSTRATION MODELSWIDE RANGE OF SPARES FOR THE FOLLOWING COMPUTERS ICI 1500, ICL 1900, SYSTEM 4, 4100 803.AMPEX, etc

COSSOR VISUAL DISPLAY DID400. sisting of Keyboard \& Display 402 stand alone
capability for alphanumeric data entry. Available capability for alphanumeric data e
from $£ 50$. Please phone for details.

ALPHANUMERIC nixle TUBES B7971
The Alphanumeric NIXIE tube has the ability to display all the letters of the alphabet, numerals 0 thru 9 and special
characters in a single characters in a single tube.

From the standpoint of both readability and
elecetrical characteristics the elecrical characteristics, the Alphanumeric NIXIE
tube provides many unique benefits * All OC operation \star Uniform, continuous line characters of equal height

* Mermory with simple

high ambient light ... 200 foatlamberts
- Character heigh 2 bin orightiness

Price only 990
ch plus $16 p$
JUST ARRIVED NIXIE TUBES
NUMERIC ONLY. PHONE FOR
DETAILS LARGE QUANTITIES

Little used DEC PDP8 systems available for immediate delivery at special prices as a result of cancelled project

PDP8E 12 K Processar complete with
Facit 4001 High Speed Reader (500 cps) Data Dynamics BRPE 114 Punch (110 cps) ASR33 Teletype
Sperry J1018 megabit Memory Drum
Line Printer
Rack-mounted in double cabinet
PDP8E $4 K$ Processor complete with
Facit 4001 High Speed Reader (500 cps) Data Dynamics BRPE 114 Punch (110 cps) ASR33 Teletype

A PHONE CALL CAN SAVE YOU

 A BOMB! RING NOW FOR PRICE!SUBSTANTIAL SAVINGS FROM LIST PRICE OF THIS DEC
MINI COMPUTER
PDP8I 8K Processor
Facit High Speed Reader
ASR33 Teletype
ASR33 Teletype
£1,950

HERE! NOW! FOR

 IMMEDIATE DELIVERY!

AVO's 7 \& 8
full
AVO with one free calibre, guaranteod 12
$7 x$,
6.00
$8 \mathrm{x}, \mathrm{E} 33.00$
similar to specificationatic Avo
Leads and batteries extra 137.00
Leather cases fors extra.
Ever-ready case above E3.50.
used while in its enables th *Please note : X case $E 5$. splash-proof : \boldsymbol{X} standa for fully plash-proof and mu-metal shield tro

TELETYPE PUNCH

BRPE High-speed punch. Self-contained, consists of punch

WELMEC 7 \& 8 HOLE ELECTRO-MECHANICAL PUNCHES \& READER
Models Silo and R82C. 17 char. per sec. Rebuilt. available

ICT KEYBOARDS

ICT KEYBOARDS
In originat packing-Alpha-numeric. Prices from $\mathbf{£ 1 5 . 0 0}$
Magnetic Tape Transporters AMPEX TM4. TM2. TM7. fR300. IBM 7330. POTTER. From £89.00.

TAPE READERS

Photo-electric Readers for all colour paper tapes up to 1 in.
1CL Type $2640(250 \mathrm{cps})$. Elliott T2/94 1250 $\mathrm{cps})$. Elliott D4/42 (500-1.000 cps). Prices from $£ \mathbf{£ 2 0}$.
HEWLETT PACKARD DIGITAL RECORDER MODEL 565A
Data Entr. parallel to 11 columns. Print speed 5 lines per
second. PRicE $£ 85.00$.

OSCILLOSCOPE CT 436

Commercial Designation Solarton CD1014.
General Puppose Dual beam DC-GMH flar faced double gun cathode fay tube General purpose Dual Boam OC-6MHz flal faced double gun cathode ray tube
operating at 1.6 kV . The time base ve:ocity is contimuousiy variable between
tcmusec. and $1 \mathrm{~cm} / \mathrm{sec}$. TIME BASE Free running or eriggered from positive or negative pulses. Sweep speed $1 \mathrm{~cm} / \mathrm{sec}$ to $1 \mathrm{cri} / \mathrm{sec}$
Synchronisation: positive

SIze $9 \frac{1}{2}^{\prime \prime} \times 111^{\prime \prime}$
PRICE: 699.50 .

HIGHLY STABILISED POWER SUPPLIES YOURS AT A FRACTION of original cost

Power Supplies

Portable Power Supply

+7 Volts $-0-7$ Volts at 1.5 Amps . Solid State Stabilised four outputs,
tigh limit +or -10 Volt at 1 Amp. Low limit + or -5.6 Volt at 2 Amp ncredible Savings. Cost over $£ 25$ to produce.
PRICE: $£ 12.50$

7-TRACK DIGITAL MAGNETIC TAPE STORAGE DECK

These machines. originally ex-computer, ane multi-
track recording units track recording units. rdeal for data storage. Record and Replay Heads encased in one common
unit. Low resistance heads. Frequency response appreximately o K K / s to $50 \mathrm{Kc} / \mathrm{s}$ s Bit
density 557 b.p. ensity 557 b.p.i. $\frac{1}{2}$ in...
$10 \frac{1}{2}$ in. spoois. 230 V to

380 V . Capstan | 380 V . Capstan motor |
| :--- |
| speed |
| 1500 V to | $\begin{array}{cc}380 \mathrm{~V} . & \text { Capstan motor } \\ \text { speed } & 1.500 \text { r.p.m. } 48 \mathrm{~V} \\ \text { cumm assembly. Finished in }\end{array}$ brush aluminium and matt black. Size 27 in. $\times 26$ in. $\times 8$ in. Weight 90 lbs. Price $£ 89.50$.

RCA 301 TAPE DECK MODEL 381
Technical Data,
Power supplies:
$\frac{1}{2}$
"nput
wide Magnetic Tape.
208-230V AC 60 c/s. Single phase Magnetic recording head. PRICE $\mathbf{f 3 5}$ read/write and erase. Seven channels each head. Speed $30^{\prime \prime} / \mathrm{sec}$. forward or reverse, $901 / \mathrm{sec}$. during rewind. The recording density of 333 charasters per 10.000 characters per second. Maximum diameter of $8^{\prime \prime}$ tape reel. Accommodates 1200 tt . of Magnetic Tape. which gives a minimum of 1.150 ft , available for recording.

MINITRON

K.G.M. Type 3015 F 7 Segment display s.owing
figures $0-9$ plus decimal point Character pitan igures abs plus decimal point. Charaster pi NEW LOW PRICE £1.25 SN7447N BCRICE E1-25 Decoder Driver $\mathbf{£ 1 . 0 0}$.

TEN TURN 3600° ROTATION

WANDEL \& GOLTERMANN

Distortion Measuring Set VZM-1 for colour t.v. 625 lines PAL. $£ 750$ Distortion Measuring Set VZM-2 556 KHz . 12 MHz . £250. generator and receiver used mainly to measure transmission distor tion on FM radio link systems. $\mathbf{£ 2 4 5}$.
Voltage \& Level Meter $10 \mathrm{KHz}-14 \mathrm{MHz}$ TFPM 43 measuring range
$8 v-40$ uv $1+2085 \mathrm{dBl}$ f 339 . Selective Level Oscillator $10 \mathrm{KHz}-14 \mathrm{MHz}$ TFPS 42 . ©349.

Solartron C.T. 484 oscilloscope. DC-40 M Hz.
3\% accuracy. Dual Trace Displays.
TIME BASE, 100 nanosecs/cm-5
secs/cm or continuously variable up secs $/ \mathrm{cm}$ or continuously variable up
to 12 secs/crt. Sweep expansion $\times 5$. Accuracy: $\pm ₹ \%$.
\times AMPLIFIER. Bandwidth: D.C$150 \mathrm{Kc} / \mathrm{s}$. Sensitivity: $200 \mathrm{mV} / \mathrm{cm}$
and $1 \mathrm{~V} / \mathrm{cm}$ Input Impedance: 1 M.ohm 40 pF INTERNAL
curacy: $+3 \%$ dual trace DUAL TRACE Y AMPLIFIER. Time: 14 nariosecs. Sensitivity: 50

£149.50 $\mathrm{mV} / \mathrm{cm}$. Input Impedance: 1 M.
$\%$ direct. $\pm 3 \%$ with calibrator
WIDE BAND Y AMPLIFIER PLUG ALSO AVAILABLE. Bandwidth: D.C. $-40 \mathrm{Mc} / \mathrm{s}$. Rise Time: 8 nanosecs. Sensitivity: 50 $\mathrm{mV} / \mathrm{cm}-50 \mathrm{~V} / \mathrm{mm}$. Input Impedance: 1 m .0 hm 22 pF . Measuring Accuracy: $+5 \%$ direct. $\pm 3 \%$ with calibrator P.O.A

THEDPRS

PROGRAMME BOARDS BY SEALECTRO
These boards are basically a multi-pole multi-throw switch device consisting of a $X-Y$ Matrix with two contact decks in the Z Plane shorting or plugging in pins. Ideal for prototype work. etc. Boards

anliens Band Levond

JUST OUT-NEW CATALOGUE ON FULL RANGE OF PEN RECORDERS. SEND READER'S CARD FOR FREE COPY (WW 117)

10 CHANNEL EVENT RECORDER Designed for recording seouences of up to ten different operations, e.g.
sequence of machine tool operation. seauence of machine tool operation,
syvitching sequences. etc. Record is prespnted in the form of savare "pulses". When energised, pen moves by approximately 4 mm , 10 the right of zero line
Response time 100 milliseconds. Chart Response time 100 milliseconds. Chart
width 110 mm . Chart length 50 ft Inv. capacity 72 hours. Chart speeds Inv. capacity 72 hours Chari speeds
$20-60-180-600-1800-5400 \mathrm{~mm} / \mathrm{hour}$ Size $160 \times 160 \times 255 \mathrm{~mm}$. Weight 9 ibs. Price complete with accessories
$\mathbf{£ 5 2 . 0 0}$
miniature pen recorder

NEW HIGH SPEED PEN RECORDERS 3 MODELS AVAILABLE SINGLE CHANNEL $\mathbf{£ 1 8 0}:$ THREE CHANNEL $£ 310$: FIVE CHANNEL $£ 42 C$ Frequency range OC to 100 Hz . Recording presented in curvelinear coordinales by means of ink or
paper. Built-1 sold state amplifter (one per channel) provides 8 calibrated sensitivity steps. Tws marker pens are provided: one of these can be connected to internal time marker oscillator providint I second puises. This pen can also be used as a process marker to mark a desired event on the chant Second marker pencran' be used as 'zero' 'referencencel line marker or as another event market. Ful range of chart speeds is immediately available by means of push bution comerol.
SPECIFICATIOM, Basic error 4\%. Frequency response from OC to $100 \mathrm{~Hz}, 2 \mathrm{db}$. Calibrated sensitivity V/cm $0.02,0.05,01.0 .2 .0 .5,1,2.5$. With of each recording channel 40 mm . Chart speeds $\mathrm{mm} / \mathrm{sec}: 1,2,5,10.25$ 50. 125 . 250 Internal calibrating voltage: $40 \mathrm{~m} V$. Chart lengith: 50 meters. Voltage: $220 / 250$. COM PLEMEWT 0
ACCESSOAIES AVAILABLE.

Duplison Series 211 Loading Machine

NEW ALL-IN-ONE CASSETTE loading and winding machine World's first and fastest integral unit
New tape loading and winding machine which combines three items of equipmen into one integral unit. The desk size unit is designed to wind tape pancakes into stand ard $\mathrm{C}-0$ cassettes, and semi-automatic operation allows a production rate in excess of 1,400 tapes every 8 hours, with only one operator-said to be the fastest of its type machine has all TLL logic controls, with an auto-regulated tape tension control. and built-in vacuum pump and splicer Several models are available for pre recorded tape, blank tape and a mode compatible for both types of tape. Precision alignment of the splicing operation and tape control is designed to reduce con siderably the number
up the entire operation.

\square OBTAINABLE ONLY FROM ELECTRONIC BROKERS. SEND READER'S CARD FOR FREE CATALOGUE OF TEST EQUIPMENT (WW 118)
 Permits fast and accurate calibration of modern radio receivers. Suitable for calibration and testing in the laboratory,
AM frequency range: from 140 KHz to AM frequency range: from 140 KHz to
46 MHz in 6 ranges expended range 46 MHz
$430-530 \quad \mathrm{KHz}$. FM frequency range: 9.5-12 MHz: B5-110 MHz. Frequency accuracy: better than 1%. RF output voltage: adjustable from $0.1 \mu \mathrm{~N}$ to 0.1 V Output impedance: 75 Ohm constant. Modulation: $A M$: $F M$: $A M+F M$. Amplitude modulation: 400 Hz ; from 0-
50% 50% adjust. Frequency modulation:
1000 Hz adjust. Deviation from $0-+1$ -50 KHz . External modulation: AM: $F M$: from 30 Hz to 15 kHz .
$\mathbf{£ 2 5 9 . 0 0}$
$7-3$
-12
2

RCL BRIDGE Type P 966

For measurement of RCL and capacitor dissipation factor and inductors figure of merit Q. Consists of a system of switchable bridges. a 1 KHz generator, and a sensitive tuned detector. Particularly suitable for testing of small production parameters.
Measurement ranges
Resistance: from 0.1 Ohm to 11 MOhm . Capacitance: from 1 PF to $1100 \mu \mathrm{~F}$ Inductance: from $10 \mu \mathrm{H}$ to 1100 H D: from 1 10-3 1050 Oul D: from $1.10^{-3} 1050$. Quality Factor Q:
from 0.02 to 1000 . Internal oscillator: from 0.02 to 1000. Internal oscillato
1 KHz
£245.00

DISTORTIDN METER Type D 566 B Fully transistorised for measurement of overall distortion of signals with frequencies between 10 Hz and 1 MHz . Built-in electronic voitmeter can also be
used separately for measuring AC voltage, basic noise. gain or attenuation voltage, basic noise. gain or
over a wide frequency range.
over a wide freque
Distortion meter:-
Frequency range (in 5 ranges): from 10 Hz to 1 MHz . Distortion factor lin 7 ranges): from 0.03% to 100 . Minimum testing voltage: 300 mV approx. Input impedance: 100 KOhm ; 40 pF approx Millivoltmeter
Voltage range (in 12 ranges): from 1 mV to 300 V f.s.d. Level range (rel. to 0.776
v): from $"+52 \mathrm{~dB}$ to -75 dB . Frequency V): from +52 dB to -75 dB . Frequency
range from 10 Hz to 2 MHz . Bandwidth range from 10 Hz to 2 MHz . Bandwidth
(within 3 dB): up to 8 MHz . Accuracy: better than 5%. Input impedance: 2 £319.00

OUTPUPOWE TYPE MU 964 This instrument basically consists of a transistorized amplifier voltmeter whic measures the voltage across a specified load. It is provided with 40 loa values ranging from $2,50 \mathrm{hm}$ to 20 KOhm As the loads are purely resistive. the value $\begin{aligned} & \text { frequency. A special negative feedbacr }\end{aligned}$ loop allows a nearly linear scale to be obtained. No damages to the instrumer result from errors in presetting the load values or the power ranges
Power measuring range
(in 4 ranges)
Level measuring range
Ref. 1 mW
Fraquency rang
Accuracy
Load input resistances
Whad inpul resislances 40 Vatues
Ress istances accurac Instrument Calibration bether th.
£129.00

THESE ACCESSORIES CAN BE USEO IN CONJUNCTION WITH THE SUPERTESTER G80R. ALSO IN MANY CASES WITH POPULAR MAKES OF TEST METERS.

Transistor Tester lester For tran-
sistors and diodes
f 11.95

FREE NEW CATALOGUE NOW AVAILABLE SEND READER'S CARD WW 119

THE REVOLUTIONARY SUPERTESTER 680R

FOUR international

20.000 Ohms per Volt
to fields of measurement
ANO 80 RANGES. ACCURACY 1% in D.C. 2 \%inA.C
OUTSTANDING FEATURES. OUTSTANDING FEATURES 20.000 Ohm per Volt sensitivity © Fully
screened against external magnatic Scale width and small case dimensions $1128 \times$ $95 \times 32 \mathrm{~mm}$) Accuracy and stability $(1 \%$ in D.C., 2% in A.C.) of indicated reading Simplicity and ease of use and readability - Full ranges of accessories - 1000 times overload - Printed circuit board is removable without de-soldering - More ranges than any other meter. VOLTS AC $=11$ ranges: $2-10-50-250-1000-500$. Vohs and $420100-500$ and 2000 Vatra VOLTS $0 . C .=13$ manges: 100 mV - $\mathrm{VV}-1 \mathrm{IT}-50-200-$
$500-1000$ Vots 200 mV -4V-20-100-400 and 2000 Voits AMP D.C $=2$ ranges:
$50 / \mathrm{A}-500 \mathrm{\mu A}-5 \mathrm{~mA} \cdot 50 \mathrm{~mA}-500 \mathrm{~mA}-50 \mathrm{Amp}$ and $100 / \mathrm{A} \cdot 1 \mathrm{~mA}-10 \mathrm{~mA} \cdot 100 \mathrm{~mA}-1 \mathrm{Amp}$ and 10 Amp .
$\mathrm{AMP} \mathrm{AC}=10$ ranges: $250 \mu \mathrm{~A}-2.5 \mathrm{~mA}-25 \mathrm{~mA} \cdot 250 \mathrm{~mA} \cdot 2.5 \mathrm{Amp}$ and $500 / \mathrm{A}-5 \mathrm{~mA}-50 \mathrm{~mA}-500 \mathrm{~mA}-5 \mathrm{Amp}$.
 0 to 10 Megaohms. FREOUENCY $=2$ ranges: Trom 0 to 500 and frem 0 to 5000 Hz V OUTPUTVOLTAGE $=9$
ranges: $10-50-250-1000-2500 \mathrm{~V}$ and $20-100-500-2000$ Votts. DECIBELS +70 dh CAPACITY $=6$ ranges: from 0 to 50.000 and from 0 to 5000,000 pF using the mains and frome to thockproof 20. from 0 to 200 , from 0 to 2.000 and from 0 to 20.000 Micro farat using the incuporated 3 Volts battery. Case

ALL I.C.E. EQUIPMENT POST FREE

VARIABLE VOLTAGE TRANSFORMERS NPUI 230 v. A.C. 50/60 OUTPUT VARIABLE $0 / 260$ v. A.C. BRAND NEW. All types 0.5 KVA (Max. $2 \frac{1}{2} \mathrm{Amp}$)
1 KVA (Max. 5 Amp) 1 KVA (Max. 5 Amp) 3 KVA (Max. 15 Amp) 3 KVA (Max. 15 Amp)
4 KVA (Max. 20 Amp) 4 KVA (Max. 37.5 Amp) 1 Max. 1 Amp OPEN TYPE (Panel Mounting)

$\mathbf{f 1 0 . 0 0}$ $£ 14.70$ ∓ 81.25
$\mathbf{F} 1.25$ $£ 31.25$
$\mathbf{f 7 2} 50$ 672.50
$\mathbf{8} 02.50$. $\mathbf{f} 9.00$ $€ 9.00$

Large selection of other types in stock, phone for details.

VOLTAGE CHANGING
TRANSFORMER
M.f. to highest W. D. spec. Auto wound, and tapped 0.130 ,
$160-200-250$ at least $2 K V A . C a n ~ a l s o ~ b e ~ u s e d ~ a s ~$
$230-240 \mathrm{~V}$. Input 160-200-250 at least
115 V . out for U.S. A. equipment, or reverse to obtain 240 V . for
115 V . The Ideal transiormer for making up solid state constant voltage unit, by use of taps the following voltages may be
obtained: $30-40-50-70-90$ volts at 10 amps. Weight 40 lbs., obtained: $30-40-50-70-90$ volts at 10 amps. Weight 40 Ibs.
length 260 mm ., height 190 mm .. width 230 mmi . In original

300 VA ISOLATING TRANSFORMER
$115 / 230-230 / 230$ volts. Screened. Primary 1 wo separate $0-115$
volts for 115 or 230 volts. Secondary two 115 volts at 150 VA
each for 115 or 230 volts output. Can be used in series or parallel connections. Fulty tropicalised, Length 13.5 cm . Width 11 cm .
Height 13.5 cm . Weight 15 ib SPECIAL OFFER PRICE Only
$£ 5.00$ Carp 80 .
$240 V$ A.C. SOLENOID OPERATED

FLUID VALVE
 Rated 1 p.s.i. will handle up to 7 p.s.I. Forged brass body, stainless steel core and spring. $i n$ in. b.s. inlet/outlet. Precision made. British mig b.s.p. inlet/outlet. Precision made. British ming. PRICE: £1.75. Post 25p. Speclal quantity. NEW in oiginal packing. or $0+3+3$
 FOOT SWITCH
 Suitable for Motors, Drills, etc.. etc. 5 amp. 250 Voit. Price 75 p . Post 15 p .

VENNER TIME SWITCH TYPE MSQP
200/250 Volt 2 -ON/2-OFF every 24 hours at any
manually pre-set time. 20 amp contacts. Fitted die-cast case. Tested and in good condition
£ 4.75 Post 25 p .

A.C. MAINS TIMER UNIT

A.C. MAINS TIMER UNIT
Based on an electric clock. with 25 amp.
single-pole switch. which can be preset for
any period up to 12 hrs. athead to switch
on for any length of time. from 10 mins to 6
hrs. then switch off. An additional 60 min. aud,ble timer is also
incorporated. ddeal for Tape Recorders. Lights. Electric Blankets.
etc. Atractive satin copper finish (Size 135 mm $\times 130 \mathrm{~mm}$
60 mm . Price $£ 2.00$. Post 20 . 1 . (Total inc. VAT \& Post $£ 2.42$).
UNISELECTOR SWITCHES - NEW 4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 I. D.C
operation E6-90. Post 30 p.
8 BANK 25 WAY FULL WIPER 25 ohm Coil, 24 v. D.C. 67.90 . Post 30 p
8 BANK 25 WAY FULL WIPER 24 V . D.C. operation 69.50 . Post
MINIATURE UNISELECTOR SWITCH

VERY SPECIAL OFFER

'HONEYWELL' PUSH BUTTON, PANEL MOUNTING MICRO SWITCH
ASSEMBLY
Each bank comprises ot change-over
fated at 10 amps 20 or olt A.C. Black
rated at 10 amps 240 volt A.C. Black
nnob 1 in. dia. Fixing hole t in. Prices.

24 VOLT DC SOLENOIDS
UNIT containing: 1 heavy duty solenoid approx. 25 tb, pull

SIROBE! STROBEI SIRDEE!

four easy to build kits using xenon white * FOUR EASY TO BUILD KITS USING XENON WHITE
LIGHT FLASH TUEES. SOLIDINTAIE TIMING
KIN. LIGHT FLASH CIUESUITS, PROVISION FOR EYX.
TEIGGEING
TERNAL TRIGGERING. 230-250v. A.C. OPERATION. ternal triggering. 230-250v. A.C. OPERATION.
EXPERIMENTERS "ECONOMY" KIT
Adjustable 1 to 30 Flash per sec. All electionic com-
ponents including Xenon Tube + instructions $£ 6.30$. ponents in
industrial kit
Ideally suitable for schools. laboratories etc. Roller output of Hy-Lyght. Price $\mathbf{£ 1 4 . 0 0}$. Post 50p.
HY-LITE STROBE Mk IV
Designed for use in large rooms, halls and utillzes a Light output greater than many (so called 4 doule)
'SUPER' HY-LIGHT KIT
Hy-Lyght strobe.
Variable speed ifom 1 1.13 flash per sec.
Reactor control circuit procucing and
eht. ONLY E22.00. Post 75p
ATTRACTIVE, ROBUST, FULLY VENTILATED METAL CASE Cor the Su
reflector \& 800 . Post 60 p .
For hy-lyght strobe
曻 COLOUR WHEEL PROJECTOR Complete with oil filled
colour wheel. 100 watt lamp. 200/240V AC. Features ex tremely
system.
efficicient
opt
opt IR.P.M. MOTOR and OOLOUR WHEEL

 $\frac{\star \star \star}{\text { AUTO FADE }}$

PROGRAMME TIMERS
2301240 Volt A.C. 15 RPM Motors
Each cam
 ment tested. 4 cam model
6 cam model
12 cam model

E2. 50 post 300 .

High Visibility
Panel Mounting
LED'S
25 inch mounting. 16 inch lens. Typical parameters 2 volt
20 m a alif types. Supplied complete with snap in mountings and data. Red 4 tor $£ 1.00$, Green 3 for $£ 1.00$. Yeilow 3 for $£ 1.00$.
Post 50 . Min. order $£ 1.00$.

GENERAL ELECTRIC POWER GLAS TRIACS
U.S. A. Long term rellability. Type SC 166 D (10 amp. 40 form

LED READOUTS

Available in red or green. $£ 1.65$, posi 10 p: 4 for

RELAYS

 SIEMENS PLESSEY,

DRY REED RELAYS
Singe c/o 65 p . Post Paid. Two c/o 85p. Post Paid.
STR 280 ohm coil $6 / 12$ V D.C. 3 make contacts metal shrouded
60p. Post Pald. Large range of other types available.

PRECISION CENTRIFUGAL BLOWER

A.C. MOTOR M.fg. AE

230/240V SYNGHRONOUS GEARED MOTOR Manufactured by either Sangamo.
Haydon or Smith. Builtin gearbox

CONSTANT SPEED, PRECISION MADE

METERS NEW! $2 \frac{1}{2}$ in. FLUSH ROUND available as D.C. Amps
$1,5,10,15,20$ Both typ
VOLTMETER $0-300 \mathrm{~V}$

ALL MAIL ORDERS, ALSO CALLERS AT
57 BRIDGMAN ROAD
LONDON, W4 5BB. Phone: 01-995 1560

SERVICE TRADING CO.

Tel.: O1-437 0576

WW109 FOR FURTHER DETAILS

Principles and Calculations for Radio Mechanics Part 1

R. A. Bravery and A. P. Gilbert

Part of the Radio, Television and Electronics Servicing Series, this volume deals with the subject matter for Part 1 of the City and Guilds Radio Mechanics Course 222.
$1974 \quad 152$ pp., illustrated 0408001194 £1.50

Rapid Servicing of Transistor Equipment 2nd Edition

Gordon J. King
This completely revised second edition takes account of recent developments such as capacitor-diodes, f.e.t.s and integrated circuits. 1973 180pp., illustrated 040800116 X £1.90

Robotics

John F. Young
The object of this book is to present a comprehensive and orderly account of the principles and practice of robotics. It will provide a valuable source of reference for research workers and those in related fields. $1973 \mathbf{3 0 4}$ pp., illustrated 0408705222 £6.00 Obtainable through any bookseller or from The Butterworth Group
Borough Green, Sevenoaks,
Kent TNi5 8PH. Tel. Borough Green 2247

STAY ONTHE BUTTON!

where of the radio and electrical business, this is the book to have around it's the essential reference work for the busy retailer. Contents include lists of manufacturers, suppliers, concessionaires and wholesalers - all entered alphabetically with addresses and telephone numbers. And there's a guide to propretary names, a legal section a technical section and maps showing uhf service areas and vhf field strengths. This 1974 edition is completely ELECTRICAL AND ELECTRONICTRADER YEAR BOOK 1974

```
Mail this coupon NOW.
```

 o. IPC Electrical-Electronic Press Limited. General
 Sates Department. Room 11, 32 Stamford Stree
 London SE1 9LU
Please send me Cocies of the Electrical and
Electronic Trader Year Bock 1974. I enclose cheque/p.0
number
(12.25
number
per copy inclusive). Cheques made payable to
per copy inclusive). Lid
IPC Business Press Ltd
Name
Address
Company registered in England. Registered address
Dorset House. Stamford Siteet. SEI 9LU
Registered number :677128
ALL ORDERS UNDER 15

P. F. RALFE
 10 CHAPEL ST. LONDON NW1. Phone 01-723 8753

SIGNAL GENERATORS

MARCONI TF8OID/IS. $10-480 \mathrm{mHz}$ P.O.A. MARCONI TF8OIB/2S. $10-480 \mathrm{mHz}$ E225. MARCONI TFI44H $10 \mathrm{kHz}-72 \mathrm{mHz}$ P.O.A MARCONI TF144H 10kHz-72 mHz P.O.A. \quad. MARCONI TFI370 RC Oscillator $10 \mathrm{kHz}-10 \mathrm{mHz}$. Sine/Square.
ROHDE \& SCHWARZ SMAF (illustrated) AM/FM $4-300 \mathrm{mHz}$. ROHDE \& SCHWARZ SMAF (illustrated) AM/FM $4-300 \mathrm{mHz}$
ROHDE \& SCHWARZ SMLR $15-30 \mathrm{mHz}$ power generator. P.O.A RACAL/AIRMEC 201 A. $30 \mathrm{kHz}-30 \mathrm{mHz}$. As new. P.O.A. ADVANCE SG21 VHF Square-wave generator $9 \mathrm{kHz}-100 \mathrm{mHz}$. $£ 25$.

OSCILLOSCOPES

TEKTRONIX 555 (Late model) with two 'L' plug ins and ' 21 A' and ' $22 A^{\prime}$ ' plug-ins.
TEKTRONIX 545A with CA unit. DC -30 mHz . Price only $\mathbf{E 2 9 5 0 0}$.

DYNAMCO D7100 with IY2 and IX2 plug-ins. DC- $\mathbf{3 0 m H z}$. $\mathbf{~} 249 \cdot 50$ ITT METRIX miniature portable scope. DC-10mHz. Brand new. 150 . NB: Due to the fragile nature of CRTs we regret that these oscilloscopes cannot be despatched by post. Collection only or delivery could be arranged.

MISCELLANEOUS TEST EQUIPMENT

MARCONI TFI245 Q.METER with 1246 \& 1247 oscillators. Excellent.
MARCONI TFI400S double pulse generator with TM6600/S secondary pulse unit. \&105. MARCONI TF791D deviation meter. $4-1024 \mathrm{mHz} .0-100 \mathrm{kHz}$ deviation.
MARCONI TFI342 low-capacitance bridge 0.002 pf -l,Illpf. Resistance l-1000M.ohm. $£ 85$.
Resistance \& SCHWARZ USVD calibrated receiver $280-4,600 \mathrm{mHz}$. ROHDE \& SCHWARZ A.F. Wave Analyser type FTA $0-20 \mathrm{kHz}$ ROHDE \& SCHWARZ A.F. Wave Analyser type
plus log/lin AF meter incorporated. Excellent condition.
plus log/lin AF meter incorporated. Excellent condition.
ROHDE SCHWARZ URV milli-voltmeter BNIO913 (late type) ImV-10V. With 'T' type insertion unit, free probe and attenuator heads. $1 \mathrm{kHz}-1,600 \mathrm{mHz}$. $£ 175$.
COSSOR 1453 True RMS milli-voltmeter. Excellent. $£ 75$
ORION ELECTRONICS CORP. type ME30 milli-voltmeter. $1 \mathrm{mV}-300 \mathrm{mHz}$. 665.
ADVANCE PG54 Pulse generator. AS NEW
SOLARTRON EM 1006 production-line resistance tolerance check-set. 0 -15Mohm digital read-out.
AIRMEC TYPE 210 modulation meter. Excellent condition. WAYNE KERR B52I LCR Bridge. Excellent condition. $£ 55$.

Abstract

MUFFIN INSTRUMENT FANS Dimensions $4.5 \times 4.5 \times 1.5$ ins Very quiet running, precision fan specially designed for cooling electronic equipment, amplifiers etc. For (practise is to run from split (practise is to run from split primary of mains transformer or primary of mains transformer or use suitable mains dropper). CC use suitable mains $\begin{aligned} & \text { only } 11 \text { Watts. List price over } £ 10\end{aligned}$ each. Our price, in brand new condition, is $£ 3.50$.

POLARAD Model SABAWA POLARAD Model SA84 SPECTRUM ANALYSER loMHz-63GHz. I.F. Markers. Spec crum calibrator. Log/Lin scale
NB. This is not the instrument NB. This is not the instrumen
with the expensive TWT to replace. Supplied in full working excellent condition. Guarantee.

DIGITAL FREQUENCY

 METER type 'FT300'—reads as frequency meter up co 99.99 KHz in three ranges or as tachometer99,990 RPM. Solid-state instrument. Clear read-ouc. Size only 8 in . by 5 in . by $2 \frac{\mathrm{l}}{\mathrm{in}} \mathrm{in}$. Weight $4 \frac{1}{2} \mathrm{lbs}$. $B C D$ outpucs. Operacing voltage IIO/240 V. AC. Made by famous manufacturer. These units are brand new in original makers cartons. Our

500 MHz FREQUENCY DIVIDER TCD 500 . Sensitivity $10 \mathrm{mV}(1-300 \mathrm{MHz})$ $50 \mathrm{mV}(300-500 \mathrm{MHz})$. The TCD500 is esigned to extend che range of existin maximum of 500 MHz . Complecely self a maximum of 500 MHz . Completely self quired. The TCD500 is suitable for any cype frequency councer over 5 MHz . Solid-state, small size. Brand new.

AVO VALVE TESTERS Brief-case type 160. Full working condition throughout. 665 .

AERIAL CHANGE/OVER RELAYS of current manufacture designed espec ally for mobile equipments, coil voltag 12v., frequency up to 250 MHzat 50 watts small size only, 2 in. $x i$ in. Offered brand new, boxed. Price $£ 1 \cdot 50$, inc. P.\&P

STODDART R.F.I. RECEIVERS STODDART R.F.I. RECEIVERS
NM2OB $\quad 150 \mathrm{kHz}-25 \mathrm{mHz}$ (in 7 NM20B \quad bands). $\mu \mathrm{V}$ Shz-25mitivity. Batcery pands).
PMM22A. Mains powered. 150 kHz 32 mHz . Sens. $1 \mu \mathrm{~V}$.
NM30A. Mains powered. 20 mHz 400 mHz . Sens. $1 \mu \mathrm{~V}$.

HEWLETT.PACKARD RF

POWER METER
Type 432A. Power range $1 \mu W$ 10 mW in 7 ranges. Frequency
range $10 \mathrm{mHz}-10 \mathrm{GHz}$. Automatic range zeroing. With 478A co-ax mounts and carrying case: In excellen condition.
HEWLETT PACKARD
BOONTON TYPE 8900 B
Peak-power calibrator. Measure rue peak power $\pm .6 \mathrm{db}$ absolute true peak power $\frac{ \pm}{} \cdot 6$ db absolute
Frequency range $50-2000 \mathrm{Mhz}$. RF power range 200 mW peak, full scale. RF Impedance 50 ohms P.O.A.

POLARAD MICROWAVE

 RECEIVERModel ' R ' with tuning unit type 7 RM . Frequency range 4.2GHz 7.65GHz. AM/FM. In working
condition. Price $£ 75$.

> WEST LONDON DIRECT SUPPLIES (W/W) 169 Kensington High Street, London W. 8

STEREO IC DECODER
 hIOH PERFORMANCE PHASE LOCKED LOO
 (as In 'W.W.' July '72)

MOTOROLA MC1310P EX STOCK DELIVERY
Separation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$
$1 / P$ level: 560 mV rms
SPECIFICATION
O/P leval. 485 mV Distortion: 0.3\%
Input impedance: $50 \mathrm{k} \Omega$.
Power requirements: $8-16 \mathrm{~V}$ at 18 mA
KIT COMPRISES FIBREGLASS PCB
(Roiler tinned), Resistors. I.C., Capacitors,
Preser Potm. \& Comprehensive Instruction
LIGHT EMITTING DIODE

ONLY WHYPAY E3-98 MORE? RED 29p

 Preser Potm. \& Comprehensive Instructions LIGHT EMITTING DIODE MC1310P only $£ 3.15$ plus p.p. $\mathbf{6 p}$note
As the supplier of the first MC1310P decoder kit, of which we have sold literally thousands, Please add V.A.T.T.
FI-COMP ELECT BURTON ROAD, EGGINTON, DERBY, DE6 6GY

WW-101 FOR FURTHER DETAILS

UNIT AUDIO
Built to professional standards for the dis criminating listener FROM
$£ 74.95$ + VAT

* Amplifier comprises over 200 high quality components assembled on a fibreglass P.C.B
\star Advanced design provides excellent standard of reproduction combined with unrivalled reliability.
\star Choice of MP60 single play deck or autochanger OTHER AUDIO PRODUCTS ALSO AVAILABLE
For further details contact
THAMES ELECTRONICS 77-83 Westdale Rd. London SE18 3BO 01-317 8885
WW—102 FOR FURTHER DETAILS

Thermistors

F. J. Hyde, DSc, MSc, BSc
"Provides a very comprehensive account of the properties and applications of both negative and positive temperature coefficient types of thermistors. An extremely useful reference work on this essential circuit component - thoroughly recommended as essential reading for all control engineers.
Instrument and Control Engineering.
0592028070208 pages illustrated $1971 £ 3.20$
Available from leading booksellers or
The Butterworth Group
88 Kingsway London WC2B 6AB
Showrooms and Trade Counter 4-5 Bell Yard London WC2

Do you know anyone who may need EEIBA's help?

The help provided by EEIBA takes many forms. Last year more than 800 people who are, or had been, employed in the electrical and electronics industries received urgently needed money totalling $£ 94,000$.

It provided new homes in the EEIBA flats in Birmingham, an automatic invalid chair at the Lady Nelson Home, a new sewing machine for a disabled woman, a cooker for an elderly pensioner-and a brand new minicar as a prize for those contributing more funds for the continuation of EEIBA's work.

More important than any of these items was the friendship and reassurance given to people in need by the Association's voluntary workers all over the country.

This active and growing benevolent association helps people who are in need through illness, disability, accident or general hard times. Many employers
already know about EEIBA and support it generously. But we need the support of many thousands of employees who can give small regular contributions.
If you would like to receive more details about EEIBA, or if you know of any employee or former employee whom you feel should be helped by the Association, please write stra ght away to Tom Killick, the Director and Secretary.

The Electrical and Electronics Industries Benevolent Association 8 Station Parade, Balham High Road London SW12 9BH. Telephone: 01-6730131

APPOINTMENTS VACANT

 noon Wednesday, July 31st for the August issue subject to space being available.
TECHNICAL SUPPORT STAFF

Central Electrioity Research Laboratories

Kelvin Avenue, Leatherhead, Surrey KT22 7SE
The Central Instrumentation Group invite applications for appointments as either Scientific Assistant, Senior Scientific Assistant or Laboratory Technician, according to age, experience and qualifications.
The Group is responsible for supplying the instrumentation needs of the Laboratories and two types of vacancy exist.
Post 1 The successful candidate will join a group involved in using small computers and digital apparatus to collect and analyse data from experiments. Candidates should preferably have some experience of hardware and software interaction, but the work is predominantly that of software development. A good knowledge of a computer language is essential and experience with a mini computer assembler language would be especially useful.
Post 2 The successful candidate will be involved in the testing, calibration and maintenance of a diverse and challenging range of novel and conventional instruments. Work on the design and construction of special instruments and systems will also be required. The emphasis is on electronics equipment, and occasional work outside the Laboratories is involved. Candidates should have good experience with commercial and scientific instruments and equipment, possess a good basic knowledge of electronics, and be capable of working on their own initiative.
SENIOR SCIENTIFIC ASSISTANTS should possess an appropriate qualification up to but not above HNC or HND standard. Those with lesser or no formal qualifications, but with relevant experience, who are at least 26 years of age, will also be considered. The salary will be within the range $£ 1890-£ 3040$ p.a.
LABORATORY TECHNICIANS must be at least 25 years of age, have served a recognised craft apprenticeship and have obtained ONC or an equivalent qualification. The salary will be within the range £1890-£3040 p.a.
SCIENTIFIC ASSISTANTS should have 5 'O' levels at age 16 and 2 'A' levels at age 18 in appropriate science subjects. This post may be more suited to an 'A' level person. Day release for further study to HNC level will be given. The salary will be within the range $£ 969$ to £1581 p.a.
In addition, a Threshold Supplement is payable for all posts
Write to the Personnel Officer for application forms or telephone Leatherhead 74488 Ext. 363, quoting reference CERL/53/74.

CENTRAL ELECTRICITY GENERATING BOARD HEADQUARTERS

Taking our torpedo from Portsmouth through a Scottish loch to the open sea needn't be such a trial

Not, that is, for experienced Trials Engineers. Marconi Space and Defence Systems in Portsmouth are building up a trials team, at the Applied Electronics Laboratories, to work on the assembly, test and commissioning of the new NASR 7511 lightweight torpedo. The following grades of staff are required, some to remain in Portsmouth, others to spend 50% of their time off-site, on trials in Scotland and at sea.

2 Senior Trials Engineers

to supervise preparation work, assembly and test.

Trials Engineer

who mustbequalified to HNC or Forces equivalent.

Trials Technicians

aged $30-32$ years, qualified to ONC standard or Forces equivalent.

The areas of operation to be covered are assembly and test to prepared schedules, utilising the latest automated test equipment employing digital techniques, through to the designed-proving stage in forward areas including on-the-spot troubleshooting and refurbishment.
This is an excellent opportunity to join a company where the policy is progressionand that includes your career. Salaries will be realistic and there are many generous company benefits. Assistance with relocation expenses will be given, where appropriate, to this part of the South Coast that has so much to offer in terms of recreation and amenities.
Please apply for an application form to W. Lamin, Marconi Space \& Defence Systems Limited, The Applied Electronics Laboratory, The Airport, Portsmouth PO3 5PH. Tel: Portsmouth 64966.

Marconi

ELECTRONICS ENGINEER/SUPERVISOR

Join an expanding team in Walthamstow. As part of an International Leisure Group we manufacture and distribute thousands of best-selling pre-recorded tapes and records each week on labels which are household names.

Attractive career opportunities are offered to someone educated to ONC standard with around 5 years' electronics experience, who can undertake testing work and trouble-shooting

If necessary we will give you full supervisory training which will enable you to ensure the smooth functioning of our team in the Tape-Product department. The actual duties include the electronic servicing and commissioning of Musicassette equipment and development work on manufacturing equipment.

You will initially be based at our manufacturing complex in Walthamstow and you will be transferred at a later date to a new building at Chadwell Heath, near Ilford.

A good salary is offered, together with benefits which include annual bonus, long holidays, (this years' arrangements honoured) and products at discount.

For an early interview phone or write to:
Alan Burnett,
Personnel Officer,
Phonodisc Ltd,
Walthamstow Avenue,
London, E.4.
01-527 2256.

Television Engineers

Thames Television have vacancies for Engineers at both their Teddington Studios in Middlesex and at their Euston Studios in London.

The successful applicants will assist with specific duties in our engineering complex, involving the maintenance and operation of video-tape, teleciné, master control and central apparatus room equipment.

Applicants, aged between 20 and 30 , should have general engineering experience, a basic knowledge of electronics and be educated to ONC level or equivalent. Initiative and a keen interest in television engineering are essential personal characteristics.

The salary for these positions will be in the range of $£ 2.100$ per annum to $£ 3,150$ per annum, depending upon experience. Other benefits include an excellent pension scheme, good restaurant facilities and an active sports and social club

Written applications should be addressed to: The Staff Relations Officer. Thames Television Limited, Teddington Lock. Teddington, Middlesex.

TELEVISION ENGINEER

required to join a small but enthusiastic team operating a

TELEVISION UNIT FOR HORSERACING

If you have an HNC, City and Guilds, or equivalent qualification and have experience in operating and maintaining outside broadcast television equipment and VTRs together with a willingness to travel and to work in a demanding field, then this Company offers you:-

1 the opportunity to join an organisation that is forward looking and is planning to develop and expand in the field of television and electronics;
2 a job that is located in varied surroundings on British racecourses;
3 a basic salary of between $£ 2,700-£ 2,900$ plus expenses when on location.

If you are interested, please write or telephone for a
Company form to:-
Mr. F. T. Dixon, Racecourse Technical Services Ltd., 88 Bushey Road, London, S.W. 20

Tel: 01-947 3333

APPOINTMENTS

Now at an advanced stage of planning, Britain's finest radio station to serve well over two million people in the Greater Merseyside area are now recruiting the following staff:
Engineers/Technicians/ Operators
with broadcast experience for installation, maintenance and operation of superbly equipped, fully stereophonic studios and $O B$ units. Willing to take a very active programme interest.

Production Manager

A technical and creative genius to take charge of an ultra-modern purpose built production studio and provide a commercials production service for local and national advertisers.

At all levels we shall be looking for a high degree of flair, flexibility and the ability to join an ambitious and enthusiastic team. Application forms (which will be dealt with in strict confidence) from:-

Radio City (Sound of Merseyside) Ltd.
P.O. Box 194, Liverpool L69 1LD

Lots of good jobs aren't advertised. So how can you know about them?

Even if you scour the Sits Vac columns you won't find all the good jobs to fit your qualifications. Because the best jobs aren't always advertised.

More and more companies are using the Electronics Appointments Register to find qualified men and women.

Join one of our Registers and soon you could be on a short list for a better job. Our confidential service costs you nothing.

Send in the coupon-we'll mail you by return.

Graduate Appointments Register
Please send me details of how to enrolon one of your Appointment Registers:
Name
Address

[^4]Post to G.A.R. 76 Dean Strcet London W.I. $01-7346536$

A job in the Post Office Maritime Service is the key to an interesting career, whether you have recently qualified and are looking for a shore-based job, or are seagoing and wish to swallow the anchor. A progressive future in the Post Office could be yours if you hold a General Certificate in Radiocommunications, issued by the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting pay at age 19 is $£ 1,567$ a year, including contributions to a compulsory pension scheme, with an additional allowance averaging $£ 300$ for shift duties. After two years' satisfactory service your pay becomes $£ 2,054$, rising to a maximum of $£ 2,622$ at age 25 years. If you are over 19 years of age your salary is dependent upon age at entry.

There are opportunities for further promotion to positions with a basic salary of $£ 3,475$ and prospects for advancement into Senior Management.

For further information, write to the Inspector of Wireless Telegraphy (L525), MRSD/ET17. Room 643, Armour House. St. Martin's-le-Grand, London ECIAIAR.

Telecommunications Technical Officers

(men and women)

Join NATS and share in the varied and interesting telecommunications work associated with Air Traffic Control and Air Navigation.
The National Air Traffic Services of the Civil Aviation Authority has vacancies in its Telecommunications Division for Telecommunications Technical Officers Grade III.

Qualifications and Experience

You should be at least 21 years of age and have obtained either the Ordinary National Certificate in Engineering with a pass in Electrical Engineering A (or the equivalent electronics paper), or City and Guilds Telecommunications Technicians Course No 270 Part I Certificate and passes in Course No 271 Part II (T3) Mathematics 'B'
Telecommunications Principles ' B ' and Radio and Line Transmission ' B.' In addition you should have had skilled working experience in radio, radar or another branch of electronics.
Once appointed, you would supervise or personally carry out the work of installing, calibrating, and maintaining some of the worlds most advanced
radio and radar, air navigational and landing aids, and computer and data processing equipment at Civil Airports and Air Traffic Control Centres.

The work is challenging and requires the ability to keep abreast of the most up to date electronic techniques.

At present the majority of posts are located in the South East of England.

Salary c. $£ 1745$ at age 21 to c. $£ 2365$ at age 28 or over, scale maximum c. $£ 2587$. Posts in the London area receive an additional allowance and some posts attract shift duty payments.

There are excellent promotion prospects and opportunity and assistance may be given to study for higher qualifications.

Write to the address below for an application form, which should be completed and returned by 17 th August 1974.

Mre f'Savage C. Eng., MIEE Personnel Branch (P2), Room 518, Civil Aviation Authority, Aviation House, 129 Kingsway, London WC2B 6NN

National Air Traffic Services

Technicians

TELEVISION AND ELECTRONICS TECHNICIANS

For the Educational Television Unit at Guildford County College of Technology. To join, at both senior and junior levels, an existing team in this expanding college television service
Duties include the operation and maintenance of television studio and mobile equipment and other audio-visual aids. The work is interesting and varied with excellent opportunities for training advancement.
Salary up to $£ 1,488$ or $£ 1,998$ (including qualification allowances) according to age, qualifications and experience.
Further details and application form from Vice Principal, Guildford College of Technology, Guildford, Surrey. Tel: Guildford 73201.

INSTALLATIONS MANAGER

Sound Developments Ltd., require an InstaliaSound Manager to work from their office in London. The work involves the planning and installation of many types of sound equipment. and the maintenance of existing installations undertaken by the company. The right person will be required to supervise the electrical staff and the electronic maintenance engineers and the arrangements for the purchase and delivery of the components required for the installations. Some quotation work is involved.
The applicant should have a background of engineering knowledge, a university degree in electronic engineering is desirable. Experience with most aspects of sound equipment, including
public address, recording and broadcasting, is public ad aress, recording and broadcastingo is
essential and some knowledge of theatre lighting installations and digital techniques would be useful. The successful applicant is required to start as soon as possible. The ability to drive is essential, some travel within the UK may be involved. Salary negotiable from 22.400 p.a. with expenises paid where applicable.
Please apply in writing or telephone
Alan Brill Esq.. Sound Developments Ltd.. Unit 11 Spencer Court, 7. Chalcot Road, London. N.W.I. 01.5864488.
[3882

UNIVERSITY OF BATH
 SCHOOL OF ENGINEERING

ASSISTANT EXPERIMENTAL OFFICER

An Assistant Experimental Officer is required to join the School of Engineering Instrumentation Service.
The applicant should have an HNC or Degree in electrical or electronic engineering with an interest in data collection and processing involving up-to-date digital and analogue techniques.
The post is tenable for a period of 2 years and results from a Science Research Council grant relating to computer-aided design.
Salary in the range $£ 1,848$ to $£ 2,163$ p.a.

Application forms, obtainable from The Registrar(S), University of Bath, BATH BA2 7AY, quoting reference $74 / 113$, should be returned as soon as possible.
[3893

ROYAL COLLEGE OF ART

Applications are invited for a part-time appointment (two or three days per week) as

TECHNICIAN

in the
DEPARTMENT OF ENVIRONMENTAL MEDIA
Applicants should have expert knowledge within at least two of the following areas and the capacity to make both technical and creative contributions to the Department.

Audio Workshop
Research in Light and Colour
(including Lasers and holography)
Electronics Systems Research
Plastics, Resins and Glass
Film and Video
Please write in the first instance giving full details to Mr H. W. Denyer, Royal College of Art, Kensington Gore, London SWT 2EU.
[3909

THE UNIVERSITY OF LEEDS DEPARTMENT OF PHYSIOLOGY CARDIOVASCULAR UNIT

Applications are invited for the post of EXis required. Responsibilities Electronics. A A degree PDP8 computers, electronic equipment in thre
physiological laboratorles and three hospital physiological laboratorles and three hospital
catheter laboratories. and the supervision of tatheter laboratories. and the supervision af
four electronics technicians. salary scale $£ 1.563$.
$\mathbf{E} 2.187$. Preliminary enauiries may be £2.187. Preliminary enquiries may be made to ment of Physiology, The University, Leeds LS2 9 JT .
Forms of application and further particulars trom (please quote $43 / 12 / \mathrm{CI}$). Closing date 20 July please quote 43/12/CI). Closing date 20 July (3876)

Department of

Electrical Engineering
ONLY one 'A' level (Maths or Physics)?
Looking for a degree-type course and employment with career prospects?
Would you prefer an electrical and electronic course with a strong practical element?

HND ELECTRICAL \& ELECTRONIC ENGINEERING

3-year Sandwich Course-Industrial Training arranged.
Student residence available Apply to Head of Department of Electrical Engineering, Norwich City College, Ipswich Road, Norwich. NR2 2LJ.
Norwich City College

ELECTRONICS TEST ENGINEERS are made. not born

Pye Telecommunications are always interested in talking to qualified Production Test Engineers but we are well aware that there is no substitute for hard practical experience. So the people we need to fill these posts must, above all, have good solid experience of fault-finding and testing on electronic equipment - preferably communications equipment. If you've also got technical qualifications, we'd be delighted. You would be checking VHF and UHF radio-telephone equipment to very exacting specifications before delivery to our customers. We are the world's largest exporter of radio-telephone equipment and have achieved this position, and our reputation, by the quality of our products. The ever increasing need for our equipment means that we are constantly expanding, so promotion prospects are excellent. These are real career opportunities. Write, or telephone, now, for an application form to Mrs. A. E. Darkin.

Pye Telecommunications Ltd
Cambridge Works, Elizabeth Way.
Cambridge, CB4 1 DW
Tel: Cambridge 58985

RADIO OFFICERS

Do you have PMG I, PMG II, MPT 2 years operating experience?
Possession of one of these qualifies you for consideration for a Radio Officer post with composite signals organisation.
On satisfactory completion of a 7 -month specialist training course, successful applicants are paid on a scale rising to $£ 3,096 \mathrm{pa}$; commencing salary according to age- 25 years and over $£ 2,245 \mathrm{pa}$. During training salary also by age, 25 years and over $£ 1,724$ pa with free accommodation.

The future holds good opportunities for established status, service overseas and promotion
Training courses commence at intervals throughout the year. Earliest possible application advised

Applications only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered.
Full details from
Reeruitment Officer
Government Communications Headquarters,
Room A/1105, Priors Road, Oakley
Cheltenham, Glos GL52 5A
Telephone Cheltenham 21491 Ext 2270

13836

GOVERNMENT COMMUNICATIONS HEADQUARTERS

RADIO TECHNICIANS

Applications are invited for posts in the London area and elsewhere in the U.K.
Applicants must be at least 19, have had two years practical workshop experience, and hold EITHER

C \& G Telecomms Technicians Intermediate Certificate or equivalent technical qualifications

OR

GCE "O" level in English Language, Maths and Physics.
Salary scale is from $£ 1,500$ at age 19 to $£ 2,309$ plus London Weighting allowances as appropriate. Posts are unestablished, but opportunities exist for establishment.

Apply to:
Recruitment Officer, G.C.H.Q.,
Block 2, Government Buildings,
Eastcote Road, RUISLIP,
Middx. HA4 8BS.

EAST AFRICAN POSTS AND TELECOMMUNICATIONS aSSISTANT ENGINEERS

required for the following duties in Kenya and Tanzania.
A. Surveys for single and multichannel VHF, UHF and microwave routes; radio path calculations: installation and commissioning of VHF . UHF and microwave equipment; preparation of plans estimates and indents for transmission and radio projects.
B. Maintenance of single and multichannel single and multi hop VHF and UHF radio systems and associated aerials, feeders and power plant (excluding prime mover plant): knowledge of tropospheric scatter and microwave equipment an advantage.
C. Installation acceptance and commissioning of microwave radio systems and associated aerials and power plant.

Candidates (over 25) must have an Intermediate City and Guilds Certificate.
SALARY in the range $£ 2,350$ to $£ 3,210$ p.a. which includes an allowance, normally tax free, of $\mathbb{C 8 9 0}$ to $\mathbb{E 1 , 3 3 0}$ p.a. Terminal gratulty $\mathbf{2 5 \%}$
For a married man with two children paying tax at the standard rate the total emoluments described above, including gratuity, approximate to a gross (i.e. before tax) UK return of $£ 3,950$ to $£ 4,950$ and for a single man about $£ 3,800$ to $£ 4,750$ p.a.
Other benefits include low income tax, subsidised accommodation, education allowances and holiday visit passages, free family passages, appointment grant $£ 100$ or $£ 200$ and car loan $£ 600$, normally payable, 2 or 3-year tour.

The post described is partly financed by Britain's programme of aid to the developing countries administered by the Overseas Development Administration of the Foreign and Commonwealth Office.
For further particulars you should apply, giving brief details of experience to:

crown agents

M Division, 4 Millbank, London SWIP 3JD, quoting reference number M2K/730669/WF.

INTERNATIONAL COMPANY

requires
EIECTRONCS

FIELD SERVICE ENGINEER

to instal and maintain analogue and digital computers supplying a service to the colour printing industry.

Applicants must have sound electronic knowledge, fault finding experience and mechanical aptitude.
Successful applicant will receive training in U.K. on completion of which he will be expected to take up residence in Northern Italy although travel in Western Europe can be anticipated.

Good salary and overseas allowances.
Box W.W. 3902

Making a career in Electronics is a fine time to think about Graphic Art

Mention Crosfield Electronics to anyone in the graphic arts or printing industry and you're liable to hear some pretty interesting stories. Like the one about our electronic scanners in colour reproduction, our industrial cameras/ enlargers, our computers, electro mechanical systems, and the fact that our Magnascan was the first digital enlarging colour scanner to be marketed in the world
And that's just a beginning.
If you'd like to join the electronic leaders in the graphic arts and printing field, are interested in the potential of perhaps living and working abroad, see if one of these positions fits your ambitions.

Installation/
 Service Engineers

For experienced electronic engineers capable of applying their experience to a wide range of industrial applications, there are quite a few interesting positions open.
There's the chance to travel abroad extensively providing a complete installation and back-up service for complex colour scanner/separators in trade houses. Young men at least 22 years old with experience in computers, radar/fixed/variable pulse techniques will also be considered.

Test Engineers

Practical electronic engineers with experience on systems testing and finite equipment will be interested in these positions. A minimum of $H N C$ electrical engineering and a practical interest in constantly changing technology is essential. Knowledge of analogue and digital techniques is desirable.
These positions would suit engineers between 22 and 35 years old with at least 3 to 5 years industrial experience.

Technicians

Successful technicians with ONC or equivalent qualifications will get a tremendous amount of experience at the bench testing electronic sub assemblies, and repairing, modifying and testing relevant design specifications. Excellent opportunities for College or University graduates, or young technicians with some industrial experience behind them.
Salaries will be according to qualifications and experience, and we offer excellent company benefits.
If you are interested in any of these positions phone or write to: J. Phillips, Crosfield Electronics Ltd., 766 Holloway Road, London, N. 19. Tel:01-2727766.

1972

LONDON BOROUGH OF WALTHAM FOREST

WALTHAM FOREST COLLEGE

aUDIO VISUAL AIDS TECHNICIAN

Grade V-Salary Scale $£ 1,926$ to $£ 2,235$ plus London Allowance £105 and threshold agreement to be responsible for servicing, maintenance and operation of audio visual aids equipment including video tape records, closed circuit television, proectors, photographic and film making equipment. He will be required to prepare material and service equipment in each of the College annexes. Candidates should hold the City \& Guilds Radio and Television Servicing Certificate and have appropriate experience plus current driving licence. Ability to instruct in operation of equipment would be an advantage.
Housing accommodation and mortgage facilities available in approved cases. Application forms from the Personnel Officer, Town Hall, Forest Road, London E17 4JF. Tel. 527 5544 Ext. 207. Quote ref. Q. 995.

13896

Are You Interested In

Radio, T.V. or Electronics

and have some knowledge or practical experience in any of these fields
then the Metropolitan Police may have a job for you as a Radio Technician
we offer
Good pay
Excellent prospects
Secure employment
4 weeks holiday
Day release

Phone our Engineer Mr. H. G. Fielding on 01-653 6681, during office hours, to arrange an informal interview, or write to Metropolitan Police, Telecommunications Dept., Room 1627, New Scotland Yard, Victoria Street, London SW1H 0BG.

ENGINEERING INSPECTORS (TELECOMS)

required by the CROWN AGENTS for their Offices in Croydon and Walsall. The duties comprise the inspection and testing of materials plant and equipment at manufacturers works prior to shipment overseas

Candidates should have served a recognised engineering apprenticeship or had an equivalent period of practical training and preferably hold H.N.C. or equivalent. Preference will be given to candidates with experience of manufacturing processes and inspection quality assurance procedures.

CROYDON

Experience in Radio Systems (VHF, UHF or SHF) and with some experience of either Transmission Systems, Common Control Exchange Equipment or Strowger Exchange Equipment. (Reference: M1S/OFFICE/EPN1 (CRO)NF).

WALSALL

Experience in Exchange Equipment (Common Control or Strowger) and with some experience of eitherTransmission Systems or Radio Systems. (Reference: M1 S/OFFICE/EPN1/(WAL)/WF). Commencing salaries in the range $£ 2.000$ to $£ 2,554$ in a scale rising to $£ 2,888$. Salary scale currently under review. Five weeks' annual holiday. Non-contributory pension scheme.
Applicants must be prepared to travel in the UK and to undertake short visits and exceptionally tours of up to two years' duration overseas.

For further particulars you should apply, giving brief details of experience to: CROWN AGENTS, M Division, 4 Millbank, London SW1P 3JD, quoting appropriate reference number.

AUDIO-VISUAL EMGINEERS

The Heathrow Hotel features Europe's most sophisticated conference complex, complementing the hotel's fine restaurants, bars and first-class accom modation.
The finest audio-visual facilities are available to clients using our conference facilities and due to increased business the following vacancies are now available:

SENIOR AUDIO-VISUAL ENGINEER £2,800-£3,200

To operate and maintain a wide range of CCTV and colour studio equipment including broadcast cameras and one-inch helical scan VTRs. Applicants should be between 25-35, have several years' experience of studio work in broadcasting or education and possess relevant technical qualifications.

AUDIO-VISUAL ENGINEER $£ 1,800-£ 2,400$

To operate and maintain a wide range of audio-visual equipment including CCTV.
Applicants should preferably be between $20-25$, have several years' experience of CCTV maintenance and possess relevant technical qualifications
Excellent company benefits include 17 days' holiday, non-contributory pension scheme and free life insurance.
Please apply with relevant details to The Personnel Department, The Heathrow Hotel, Bath Road, Heathrow, Hounslow, Middlesex or telephone 01-897 2419 for application form.

A Lex Hotel

> ELECTRONICS TECHNICIAN GRADE T1-3

required to join a team providing a Resources service to the College.
The person we are seeking will have knowledge and skills in some of the following servicing fields: VIDEO (CCTV), AUDIO, COMPUTERS, REEL and CASSETTE RECORDERS A proven capacity for fault finding on electronic equipment will count more than formal qualifications.
The job provides varied and interesting work, pleasant working conditions and opportunities for overtime. Day release for further study is available, and there are promotion prospects for the right person.

Salary scale up to $£ 1,644$ per annum, according to age, qualifications and experience.

Application forms from the: College Administrative Officer, THURROCK
TECHNICAL COLLEGE, WOODVIEW, GRAYS, ESSEX, to whom they should be returned as soon as possible.

SERVICE ENGINEDIRS

Accounting Machines ... $£ 1,700+$ p.a.
Calculator $£ 2,000+$ p.a.
Computers $£ 2,500+$ p.a.
Dictating $£ 1,800+$ p.a.
Photocopiers $£ 1,700+$ p.a.
Typewriters $£ 1,800+$ p.a.
Company vehicle/allowance Eric Stack - 6370781 ATA SELECTION

TRAINEE/SCHOOL LEAVER

required to assist in the maintenance and repair of undergraduate teaching laboratory equipment in the department of Psychology, University of Surrey.

Excellent opportunity for gaining experience of operating and maintaining audio-visual aids equipment.

Day Release. Salary according to age.

TECHNICIAN WITH ONC ELECTRONIC ENGINEERING

to be responsible for construction, the maintenance and repair of undergraduate teaching laboratory equipment in the department of Psychology. This involves a wide range of bench skills, with particular emphasis on basic electronics. Assistance will also be given on postgraduate research, and attendance at laboratory classes may be required.

Some experience of operating audiovisual aids equipment an advantage. Applicants should hold City \& Guilds or O.N.C. Electronic Engineering, and have some previous experience of working in a laboratory.

Salary up to $£ 1,920$ per annum.
Application forms may be obtained from the Staff Officer, University of Surrey, Guildford GU2 5 XH , or Tel: Guildford 71281, Ext. 452.

13919

Northampton College of Technology
Department of Engineering

LECTURER I

To teach Telecommunication Technician course students, and have specialist knowledge in Telephony. Applicants should possess appropriate qualifications and have suitable industrial experience. Applicants will be expected to commence duties on 1st September, 1974 or as soon as possible thereafter. Salary Scale $£ 1,800-£ 2,874$, according to experience and qualifications.
Forms of application and further particulars may be obtained from the Chief Administrative Officer, Northampton College of Technology, St. George's Avenue, Northampton NN2 6JB, telephone 34285, to whom completed applications should be returned as soon as possible.

APPOINTMENTS

TEKTRONIX UK LTD

 ELECTRONIC SERVICE ENGINEERSWe have vacancies for Service Engineers who are seeking interesting and varied work servicing oscilloscopes and measuring instruments.

Applicants should have a good basic knowledge of electronics and preferably ONC or RTEB considered. Would appeal to engineers who have experience in servicing of electronic equipment or the television servicing industry.

Holiday arrangements honoured, competitive salary plus profit share scheme, day release negotiable, sick pay, non-contributory life assurance and pension scheme after qualifying period.

Write or phone
Mr. R. A. Jonas
TEKTRONIX UK LTD

Coldharbour Lane
Tel: Harpenden 63141

HIECTRONIC DVEIIOPMENT ENGINEFPS
 Radio Frequency

Multitone-world leaders in specialised radiocommunications systems-are looking for senior and junior development engineers to be responsible for the design and development of radio frequency equipments.

We are interested in meeting engineers who have experience in the design of radio receivers and transmitters, and who now want to use that experience to extend their career opportunities.

A background of one or two years in these activities is required for the junior posts and at least four years for the more senior positions.

A degree, HNC, etc., is required, and for the senior posts the ability to manage complete projects is a decided advantage. Please apply, giving relevant career details to date, to:

Personnel Manager.

Multitone Electric Co.Ltd.
10-28 Underwood Street, London N1 7JT. Tel: 01-253 7611

ELECTRONIC VACANCIES

Engineers
Draughtsmen - Designers
Service and Test Engineers
Technicians - Technical Authors
Sales Engineers

£1,600-£5,000
 pa

Permanent or Contract

m
Phone Michael north
01-388 0918
MALLA TECHNICAL STAFF LIMITED
334 Euston Rd., London NW1 3BG
195

ELECTROSONIC LIMITED s.E. LONDON PROJECT ENGINEER

SALARY $£ 2,500 / \in 3,000$ p.a.
Electrosonic Limited, a leading company in the rapidly expanding fields of lighting control, audio and audio-visual systems, require an Audio Project Engineer for design installation and commissioning of professional sound systems.
Applicants aged $25+$ should have systems design experience, initiative and a capacity for hard work.
Excellent working environment, pension scheme, good prospects and interesting opportunities.
Apply:
ELECTROSONIC LIMITED
sis Woolwich Road,
Chalton, London SE7 8 BLT.
Telephone: $01-855$ 1101.
Telephone: 01-855 1101.
[3922

KINGSTON POLYTECHNIC

CCTV
 Technician

required for educational closed-circuit TV. Sound basic knowledge and competance in the maintenance and repair of TV equipment including cameras and video recorders. Keen interest in the development of TV facilities within the Polytechnic and ability to co-operate with academic staff essential. Desirable qualifications: HNC in electronics or equivalent C \& G Cert. Previous experience in educational TV and advantage. Salary range $T 3 / 4 \quad 11,521-£ 2,031$.
Application forms from Assistant Registrar, Kingston Polytechnic, Penrhyn Road, Kingston upon Thames KTI 2EE. $01-5491366$.

TEST/
 COMMISSIONING ENGINEERS

Are you in an ever deepening rut?

Why not join a progressive Company engaged in the production of sophisticated equipment for use in the Graphic Arts Industry? This is interesting work in the field of Digital Electro/Optical Phototypesetting. Advanced digital display technology is used in conjunction with Digital Computing Techniques. Test and Commissioning Engineers of all grades are required for our rapidly expanding production programme. We offer good salaries, excellent terms and conditions of employment, but most of all an exciting working environment.

Ring 01-205 0123—ask for Maurice Alberts. He will tell you more.

LINOTYPE-PAUL LTD.
Kingsbury Works, Kingsbury Road, London NW9 8UT.

UNIVERSITY OF NEWCASTLE UPON TYNE

Department of Photography and Teaching Aids Laboratory Film and Television Section
Applications are invited for the post of

COLOUR CCTV ENGINEER

which will become vacant in September. The duties are to provide and maintain an off-air recording/transcription and playback system in colour, partly mobile, and to supervise a loan facility of a monochrome camera and recorder.
Salary at a point on the scale $£ 1,494-£ 2,718$ (from October 1974 the scale is $£ 1,683$ 62,931) according to age, qualifications and experience. Membership of F.S.S.U. required.
Applications, as soon as possible, with full details of age, education, job experience, names of two referees, and availability for interview should be sent to C. J. Duncan Director, Department of Photography \& Teaching Aids Laboratory, The University, Newcastle upon Tyne NEI 7RU, from whom further details may be obtained.
[3925

TV staff

REQUIRED IN SOUTH AFRICA

stake your claim to a place in our sun
D-day for the South African Broadcasting Corporation's television service is approaching fast and we need the following staff urgently!

Television Studio and Transmitter Engineers
at all levels - Johannesburg and also other centres

Programme and Operational staff

with several years' experience - Johannesburg

SCENERY DESIGNERS
SCENERY IMPROVERS
GRAPHIC ARTISTS
NEWS CAMERAMEN
FILM COLOUR GRADERS
FILM LABORATORY TECHNICIANS
MAKE-UP ARTISTS
TV NEWS EDITORS RIGGER/DRIVERS OUTSIDE BROADCAST PLANNERS CAMERAMEN VISION MIXERS SOUND OPERATORS

REQUIREMENTS : \star Experienced males or unmarried females \star Fluency in English * Under 40 years of age
WE OFFER: \star Contract or permanent appointments \star Good starting salaries \star Excellent Pension or Provident Fund \star Life Assurance and Medical Aid Scheme « Generous leave benefits * Excellent opportunities for advancement \star Transportation to South Africa \star Assistance with transporting of personal belongings * Settling Allowance

These are excellent career opportunities. Interested? Then write immediately, giving full details. Don't forget to mention the type of post applied for. The most promising candidates will be required to attend an interview in the U.K. or Europe during August/September, 1974. Therefore, please provide a telephone number. Applications should be airmailed to the address below, to reach us not later than July 31, 1974.
The Director: Personnel, S.A.B.C., P.O. Box 8606, JOHANNESBURG 2000, Republic of South Africa.
$\infty \sqrt{\infty} \sqrt{D} \sqrt{\square} \sqrt{\square}$

TIMEX CORPORATION

Research \& Development Laboratory engaged in Design \& Development of special purpose instrumentation \& control systems has the following vacancies in

ELECTRONIC SECTION

ENGINEER

-H.N.C. or equivalent familiar with design \& development of low frequency linear \& digital circuitry. Opportunity to work on interesting projects from inception to completion, excellent salary \& prospeots.

DRAUGHTSMAN

-Fully experienced in P.C. layouts circuit diagrams, chassis work. This is a unique position within the Laboratory and offers considerable scope for personal initiative.

Apply in the first instance giving brief details of experience to date plus present salary to:

Personnel Officer,

Timex Corporation
River Gardens,
North Feltham Trading Estate,
Feltham, MIddlesex.
Tel: 01-890 3611.

TECHNICIANS AND ENGINEERS FOR ST. ALBANS AND LUTON
 QUALIFIED OR NOT!

OPPORTUNITIES for challenging work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.
APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ExServices technicians.
HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits. Overtime normally available.
GENEROUS RE-LOCATION EXPENSES available in most instances.
CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
$37 \frac{1}{2}$ hour, 5 -day, working week.
WRITE or phone for application forms quoting reference WW

MARCONI INSTRUMENTS LTD,
Longacres, St. Albans, Herts
Tel : St. Albans 59292
Luton Airport, Luton, Beds
Tel : Luton 33866
A GEC-Marconi Electronics Company

Findyour place in BritishGas

SENIOR TECHNICIAN

Communications

We need a Senior Technician for the Communications Section of the Engineering Department and based at Headquarters, Potters Bar.
You will be involved in assisting the Radio Planning Engineer in all aspects of planning, designing and commissioning of micro-wave radio links, etc., conducting field trials and survey work.
You should preferably possess an HNC or equivalent qualification but consideration will be given to all applicants. A working knowledge of micro-wave techniques, frequency division multiplex, UHF, VHF and control systems would be essential.
A current driving licence is necessary and you must be prepared to travel throughout East Anglia and the Home Counties and to climb towers and structures as the necessity arises.
Salary will be within the range $£ 2203-£ 2571$ per annum.
Please write or telephone for an application form to Mr. H. A. Lloyd, Personnel Officer, Eastern Gas, Star House, Potters Bar, Herts. Telephone Potters Bar 51151.

BERKSHIRE

COLLEGE OF EDUCATION
Educational Technology Department

SENIOR
 TELEVISION TECHNICIAN

Senior Television Technician for a Closed Circuit System required as soon as possible to take responsibility for the operational efficiency of: a three Vidicon camera television studio, a lightweight mobile Unit, Sony, Ampex helical scan V.T.R.S, Phillips V.C.R.s and a V.H.F. distribution system. The Studio is attached to a Resource Centre and in addition to the services of $2 n$ assistant technician the are available.
Salary Scale Technician Grade VI $£ 2,235$ \&2.535 (Salary award pending)
Application forms, together with further particulars, available from the Senior Administrative Officer, Berkshire College of Education, Bulmershe Court, Woodlands Avenue, Earley, Reading RG6 IHY to be returned within 10 days.
[3833

Abstract

\section*{SITUATIONS VACANT}

HI-FI AUDIO ENGINEERS. We require experito enced Junior and Seniors and will pay top rates

INSTALLATION ENGINEERS and Test Engineers I for the servicing, testing and installation of lighting control, audio and audio visual equipment and systems. An excellent opportunity for applicants with ability, initiative and a sound knowledge of basic electronics. Starting salary according to ability. The company offers an attractive working environment and opportunities for travel. Apply Personnel DirecS.E.7. Telephone 01-855 1101.

TECHNICAL ASSISTANT required to work for the period of six months (full or part-time) with University CUNICATIONS STUDIES GROUP at University College London, to build new telecommunications equipment for use in laboratory experiments. The Communications Studies Group
is an interdisciplinary group of engineers, psycholo-
gists, operational researchers and survey researchers gists, operational researchers and survey researchers
working on the assessment of new telecommunicaworking on the assessment of new telecommunica-
tions systems, particularly video (e.g. videophone) hons suster, parte of users. Electrical engineering or similar technical background would be required and the work would involve designing, building and and the work would involve designing, building and about $£ 1,860$ per annum (part-time rate negotiable) depending on age and experience. Applications giving full details of qualifications and experience to Dr. Ederyn Williams, Communications Studies Group, 172 Tottenham Court Road, London W1P 0BS.
TECHNICAL WRITER (ex RAF Radar) available 1 for work on electronic and radar subjects on freelance basis. Write Box No. WW 3903.

YOUNG ELECTRONICS TECHNICIAN required - for the construction, testing and servicing of electronic equipment at our works in N.W.1. Very varied work. Qualifications: ONC or C\&G or exapprentice or similar desirable. Excellent oppor company. Please write for an application form to: Young Electronics Ltd., 54 Lawford Road, London, NW5 2 LN .
[3816
VOUNG Medical electronic technician required for a vision research unit. Previous knowledge and experience in workshop and electronics and a genuine interest in scientific research are psease. Day release for pursuing studies available. Please contact Mr. Kneller, Physiology Dept., St. Thomas' Hospital Medical
SE1 7 EH . Tel: 01-928 9292 Ex. 2241 or 2247 . [3916

[^5]
Classifieds continued from p. 10

Articles for Sale continued
COLOUR, UHF and TV SPARES. Colour and C UHF lists available on request. New Philips G6 16 single standard convergence paitans, leads, etc. and 16 controls. coils, P.B. switches, 1 eads, etc. and Colour Scan Coils, Mullard or Plessey plus convergence yoke and blue lateral, $£ 10.00$, $P / P 40$. Mullard AT1025/05 Convergence Yoke, 22.50 , \mathbf{P} / \mathbf{P} 25 p. Mullard or Plessey Blue Laterals, $£ 1.25$. \mathbf{P} / \mathbf{P} 10p. BRC 3000 type Scan Coils, £4.00, P/P 40p. Delay Lines DL20, £3.50, DL1E, DL1, £1.50. P/P 25p. Lum. Delay Lines, Sop, P/P 15 p . EHT Colour Quadrupler for Bush Murphy CTV 25 111/174 series. £8.25, P/P 25p. EHT Colour Tripler ITT TH25/1TH suitable most sets, $£ 2.00$, P/P 25 p. KB CVC1 Dual
 Makers Colour surplus/salvaged Philips G8 panels Makers Complete: Decoder incl. I/C, £2.50, IF incl. 5 modules, $£ 2.50$ T. Base, $£ 1.00$, P/P 25 p. CRT base, 75p, P/P 15p. GEC 2040 panels, Decoder. $£ 3.50$. T. Base, $£ 1.00$, RGB and Sound, $£ 1.00, \mathbf{P} / \mathbf{P}$ 25p. Pye CT70 Colour LOPT assembly incl. EHT output and Focus Control, £3.50, P/P 35p. B9D valve bases $10 \mathrm{p}, \mathbf{P} / \mathbf{P}$ 6p. VARICAP TUNERS, UHF ELC 1043 NEW, £4.50, Philips VHF for Band 1 and 3, $£ 2.85$ incl. data. Salvaged VHF and UHF Varicap tuners, $£ 1.50, \underset{\text { P }}{ } / \mathbf{P}$ 25p. UHF TUNERS NEW, Tran4 position and 6 pos. push-button transistd. $£ 4.95$. UHF/VHF basic intograted tuners, £3.25, Cyldon UHF valve tuners, $£ 1.50$. All tuners $\mathbf{P} / \mathbf{P} 30 \mathrm{p}$ Transistd, UHF/VHF IF panels salvaged, £2.50 P/P 25p. MURPHY 600/700 series complete UHF Conversion Kits incl. tuner, drive assy., 625 IF amplifier, 7 valves, accessories housed in cabinet plinth assembly, £7.50 P/P 50p. SOBELL/GEC 405/625 Dual standard switchable IF amplifier and output chassis incl. cet., £1.50 P/P 35p. THORN 85 DUAL standard time base panel, AT7650 incl. valves for K.B. Featherlight, Philips 19TG170, GEC 2010, etc. $£ 2.50$. PYE miniature incremental for 110 to 830 , Pam and Invicta, $£ 1.95$ A.B miniature with UHF injection suitable K.B. Baird, Ferguson, 75p. New fireball tuners Ferguson, HMV, Marconi, £1.90 P/P all tuners 30p. Large selection LOPTs, Scan Coils, FOPTs available for most popular makes, PYE/LABGEAR transistd. Masthead UHF Booster, £5.75, Power Unit, £4,65 P/P 30p or Setback battery operated UHF Booster. £4.65 LANE IONDON NW. 6 No 2859159 Buses LANE, LONDON, N.W. 6 (No. 28 , 59 , 159il Buses or ORDER. 64 GOLDERS MANOR DRIVE LONDON N.W.11. Tel. 01-794 8751

CONSTRUCTION AIDS-Screws, nuts, spacers etc.
in small quantities. Aluminium paneis punched to spec. or plain sheet supplied. Fascia panels etched aluminium to individual requirements. Printed circuit small numbers. Send 60 for list. Ramar Constructor Services. 29 Shelbourne Road, Stratford on Ayon Warwks. FENLOW Data Recotder. D.C. to 100 c.p.s. tape puts for dual recording of temperature gauges puts in gauges, accelerometers, etc, $£ 75.00 .35 \mathrm{~mm}$ Cosser oscilograph camera with cassettes, veriable speed drive, $£ 15.00$. Vectron A.G.C. mic., output 15 mV , A.G.C. range 60 dB , input threshold gives 'no signal' conditions to background noise, $£ 10.00$. R. M. Smith, 20 Elmsmere Road, Didsbury Manchester, M20 0FL. Tel: $061-445$ 3303. [3900 GENEVAC EC/12/4/i vacuum coating unit. Sub-061-428 3235. [3458 BBM GOLFBALL Typewriter on desk, f68. IBM 1 Standard, £19. AMPEX FR1400 14 channel In f185. KIENZLE 4800° Computer, £185. FLEXOWRITER (paper tape typewriter), $£ 38$. Immaculate Creed Teleprinter with tape read and punch $£ 38$ Ekco tti counter-timer, f18. Singer 7151 Telegraph Adapter Unit, f15. H-P 6 speed mag. tape (new), £38. FRIDEN 5 register, 13 digit calculator display ing on CRT, $£ 35.400 \mathrm{~Hz}$ Inverter, $£ 12$. EMI Studio Echo, £75. 14 dc Amplifiers (a lot), f14. HIGHEST QUALITY WORD PROCESSING MACHINES ALWAYS AVAILABLE. Computer Appreciation, IADDERS 8 ft 10 in closed-21ft cxtended, $£ 23.54$, L delivered. Home Sales Ladder Centre (WW2), Haldane (North) Halesfield (1) Telford, Shropshire.
MIROR Aluminising, optical filters and com-
 70003.

OFFERS WANTED, Wireless World 1937 to missing, bound, indexed; 1946 to 1958 wireless missing, less ${ }^{\text {adverts; }}$ Harmsworths pre-1961 together. Parlour, 30 St. Andrews Road, Enfield, Middlesex. PRINTED Circuit Board in 6 widths: 2 in., $2 \frac{1}{2}$ in., in. 3 in., $3 \frac{3}{2}$ in., 4 in. and 5 in. x any length; $1 / 16$ sided $1 p$ per sq. in P \& $P{ }_{P}$ per order. SAE quotations for other sizes and quantity discounts.J. Knopp, 11 Connaught Gardens, Braintree, Essex, CM7 6LY. Tel. Braintree 25254.
SUPERB Instrument Cases by Bazelli, manufacS tured from heavy duty PVC faced steel, choice of 70 types. Send for free list. Bazenli Instrument Cases, Dept. 22, St. Wilfrids, Foundry Lane, Halton, LA2 6LT, near Lancaster.

Custoner Enineess

 Even computers need alittle understandingComputers may make life more simple, but they're pretty complex themselves, and sometimes they need the understanding of a trained Customer Engineer to sort out their problems.

IBM's expandingsales and the continuous development of new, more sophisticated systems means that we need more Customer Engineers. Men like you who already have a knowledge of electronics and are looking for a place in the front line of computer technology.

We'll give you the sort of training it takes to service and maintain our medium and large-scale systems. An on-going training matched to IBM's evolving range of computer products, to keep your expertise right up to the minute.

In addition to electronics knowledge, to ONC/HNC qualification level (or equivalent), you'll need a logical approach to mechanical problems and the ability to get on well with people at all levels in a wide range of businesses.

In return we'll start you on a good salary, with the best big-company benefits, and the prospects you'd expect from IBM - where promotion is on merit.

Find out more about the opportunities in Computer Servicing with IBM in the London area by writing today with brief details of career to date to: Anne Dare, IBM United Kingdom Limited,
389 Chiswick High Road,
London W4 4AL, quoting
ref: WW/92275.
[3886 [3908

T^{E}EST LOGIC WITHOUT A 'SCOPE. New probe completely analyses TTL and DTL. Send S.A.E. for details and honus offer to SAPPHIRE IN-
STRUMENTS CO., 25 Friar Road, Brighton, BN1 6NG. Euy direct from Manufacturers and Save Money [3889
TELEQUIP. D53, £140; sol. CD1400 with extra splitter f5, E120; Heathkit 10 18U, $\mathbf{1 3 5}$; BeamVALVES FOR SALE. Valves, large stocks, 1930 to 1974, many obsolete types. S.A.E. for quota tion list 10 p. Cox Radio, The Parade, East
Witterimg, Sussex.
VACUUM is our speciality. New and second-han rotary pumps, diffusion outfits, accessories coaters, etc. Silicone rubber or varnish outgassing equipment from $£ 40$. V. N. Barrett (Sales) Lid. 1 Mayo Road, Croydon. 016849917.
VALVES, large stocks, 1930 to 1974, many obsolete types. S.A.E. for quotation. List, 10p. Cox Radio The Parade, East Wittering, Sussex

UIREL
WIRELESS WORLD bound volumes 1947-1963 [3646

12.5 Ministry approved. Exchange price f7.50 Austen. Burgess Hill 3409. [3880 60 Receivers. Rugby and 75 KHz Neuchatel Radio compact units. Two available versions $£ 35$ and $£ 60$. Toolex, Bristol Road, Sherborne (3211), Dorset.

CIUNETARTICLES WANTEO

CASH AVAILABLE for surplus semiconductors and I.C. Phone 01-452 2583.
Private Collector wishes to purchase service sheets, manuals, catalogues, etc., for pre-war Also magazines, books, etc. Collection arranged. W.W. EOX No. 3881.

TOP PRICES paid for surplus materials, components, semiconductors. Chandlers of Brighton, 4 Wentworth Street, Brighton, Sussex. 0273-688010 13884
WANTED. To complete collection. Wireless World, August 1969 and January 1973 issues. Apply to

ANTARCTIC EXPEDITION
 Observatory and Ionospheric Physicists, Electronic Technicians

and
Electronic Engineers
Qualifications: According to post from Honours Degree to O.N.C. or appropriate Armed Seivice training.
Thorough training is given in all cases and the tour of duty covers two Antarctic winters involving an absence from the United Kingdom of about 30 months. Some categories will be required to work on their field data for up to a year after their return from Antarctica.
Free messing, clothing and canteen. Low income tax.
Applicaints must be single and aged 22-30.
If you are interested in seeing a largely unknown, remote and fascinating part of the world please write to:

The Establishments Officer,
British Antarctic Survey,
30, Gillingham Street, London SW1V 1HY.
Tel: (01) 8343687.

NATURAL ENVIRONMENT RESEARCH COUNCIL

RADIO MAINTENANGE ENGINEER

An opportunity to work in a very small team in the Central Office of Information as a Maintenance Engineer in their Overseas Press and Radio Division. Applicants with suitable qualifications should have at least 5 years' experience which must include a thorough knowledge of mains and battery operated professional tape recording equipment and ancillary studio equipment. The ability to construct all kinds of audio amplifiers, equalisers and relay circuits, and experience in faultfinding in electromechanical equipment are also necessary. Knowledge of Post Office line plant would be an advantage. The job is located in London. Salary within the scale $£ 1,920-£ 2,445$ plus $£ 120$ London Weighting. Non-contributory pension scheme. Please send postcard for full details and application form to Central Office of Information, Atlantic House, Room 53, Floor I, Holborn Viaduct, London ECIN 2PD, quoting reference number COI/OPR/6WW. Closing date for completed forms 5 August 1974.
[3835

VISUAL AND AURAL AIDS TECHNICIAN

Fully experienced person required to assist in the installation, repair and maintenance of Radios, Tape Recorders, Projectors, Televisions, etc., in schools and other educational establishments.

Average weekly earnings up to $£ 38$ including bonus payment.
CROYDON
Applications to, or further particulars may be obtained from: The Stores Assistant, London Borough of Croydon, Service Centre, Princess Road, Croydon CRO 2QZ. Tel. 01-684 9393.

Classifieds continued from p. 101
Articles Wanted continued
WANTED, all types of communications recelvers Electron test equipment.-Details to R. T. \& I. Electronics, Ltd., Ashville Old Hall, Ashville Rd.
London, E.1l. Ley. 4986.

WÁNTED. Up to three ITT UHF Type M5 Radio Telephones. Price please to WASCO ELECTRONICS, 40 Hill Street, Carnforth, Lancs. ${ }_{[3893}$

WANTED-good OSCILLOSCOPE (under \&80), Vood MULTIMETER (under £40), private buyer. Anything considered. Box No. 3911 W.W.

WANTED-Wireless Worid, Jan. '71, in good Burnham (Bucks.) 63785 (Mr. Crowe). \quad [3907

BOOKS, INSTAUCTIONS, ETC.

COMMERCLAL RADIO INFORMATION Bulletin Packed with facts on the IBA local radio stations. Radio Luxembourg and the offshore stations. Send 20 p for sample copy or $£ 1.50$ for 10 issues to ComLondon WC2A 1AF. Agency, 67-69 Chancery Lane

CAPACITY AVAILABLE

A IRTRONICS LTD., for Coil Winding-large or A smal! production runs. Also PC Boards Assem plies. Suppliers to P.O., M.O.D., etc. Export enquiries welcomed. 3a Walerand Road, London SE13 7PE. Tel. 01-852 1706.
A SSEMBLY, alignment and wiring work underAtaken. Outworker can do up to 50 hours per week to a high standard. Collection and delivery by arrangement. Ian Bowden, 165 Lancaster Road, New Barnet. Herts. 01-440 2979. [358 BATCH Production Wiring and Assembly to Station Ple or drawings. Deane Electricals, 19B Station Parade, Ealing Common, London, W.S. Tel:
$01-9928976$.
[20
CAPACITY AVAILABLE for design, construction
C and assembly of electronic/electrical prototypes, test tigs and panels, Tecalemit Development Ltd., Valley Road, Plympton, Plymouth. PL7 3RN. Tel: 075236661.

「3883
CAPACITY available to the Electronic Industry C Precision turned parts, engraving, milling and grinding both in metals and plastics. Limited capacity available on Mathey SP33 JIG BORER. Write for lists of full plant capacity to C.B. Industrial Engineering Ltd., 1 Mackintosh Lane, E9 6AB DESIGN, development, repair, test and small proDroduction of electronic equipment. Specialist in production of printed circuit assemblies. YOUNC 01-267 0201. London, NW

COURSES

R ADIO AMATEUR well planned postal course R Details from Electronic Publications, 5 Warren Court, Westcliffe Rd., Southport, Lancs.
R ADIO and Radar M.P.T. and C.G.L.I. Courses FY7 8JZ. Principal, Nautical College, Fleetwood

EQUIPMENT
GLASGOW.-Recorders bought, sold, exchanged; cameras, etc., exchanged for recorders or vice versa.-Victor Morris, 343 Argyle St., Glasgow, C.2

RECEIVERS AND AMPLIFIERS-
 SURPLUS AND SECONDHAND

HRO Rx5s, etc., AR88, CR100, BRT400, G209 S640. etc., etc.. in stock.-R. T. \& I. Electronics Lev., Ashville Old Hall, Ashville Rd., London, E. 11 PLECTR ELECTRONIC test equipment repair service A.M./F.M./C.W./A.F., Frequency Counters, A.M./F.M./C.W./A.F., Frequency Counters,
D.V.M.s. P.S.U.s. Oscilloscopes. Production test problems? Why not try us. "Q"' Services Electronic (Camberley) Ltd., 29 Lawford Crescent, Yateley

SIGNAL generators, oscilloscopes, output meters Wave voltmeters, frequency meters, multi-range Lid., Ashville Oid Hall. Ashville Rd., London, E.11 Ley. 4986.

SERVICE \& REPAIRS

SCRATCHED TUBES. Our experienced polishing service can make your colour or monochrome tubes as new again for only $£ 2.75$, plus carriage 75 p. With absolute confidence sent to Retube Ltd.. North Somercote, Louth, Lincs, or 'phone 0507-85 300. [27

VALVES WANTED

WE buy new valves, transistors and clean new components. large or small quantities, all details quotation by return.- Walton's. 55 Worcester ${ }^{\text {St }}$ Wolverhampton.

B. BAMBER EIECTRONICS

AIRMEC BRIDGE HETERODYNE DETEC. , ype 775, £65.00
HEWLETT PACKARD UHF SIGMAL E175-00
MARCONI EQUIPMENT
SIGNAL GENERATOR, TF762B, $300-600 \mathrm{MHz}$, ${ }_{\text {E } 50.00}$
VIDEO OSCILLATOR, TF885A, $0-12 \mathrm{MHz}$,
£ 15.00
SIGNAL GENERATOR, TF144G, B5 KHZ -
$25 \mathrm{MHz}, ~$
£25.00
SIGNAL GENERATOR, TFB67/2, 15 kHz
SIGNAL GE
30MHz $£ 100 \cdot 00$
PULSE GENERATOR, TF675E, $100 \mathrm{~Hz}-50 \mathrm{kHz}$, e35.00
STEP ATTENUATOR, 100dB, VHF, TF1073, £20.00
VSWR INDICATOR. TF1289, $£ 50 \cdot 00$
NOISE GENERATOR, RF1237, $£ 50.00$
VALVE VOLTMETER, TF428C, £28.00
$\underset{30 \mathrm{kHz} \text {-30MHz, } \mathrm{E} 75.00}{\text { AIRMEC }} \mathbf{2 0 1}$ SIGNAL GENERATOR, ${ }_{30 \mathrm{KHz}-30 \mathrm{MHz}, £ 75.00}^{201}$
DARD, 12-channel, $£ 20.00$
PYEELECTROSTATIC GALVANOMETER -12kV, £15.00
BRIT. PHYS. LABS. CZO6O COMPONENT
COMPARATOR, £40.00
BRIT. PHYS. LABS. CZA57/3 COMPON-
ENT COMPARATOR, with automator Unit ENT COMPAR
TEKTRONIX OSCILLOSCOPE, 524D, DC$10 \mathrm{MHz}, \mathrm{E}_{70} 00$
REKTRONIX OSCILLOSCOPE, 524AD,
NC-10MHZ,
NAGARD DOUBLE PULSE GENERATOR,
type $5002 \mathrm{~A} .0 ., 1 \mathrm{~Hz}-1 \mathrm{MHz}, £ 65 \cdot 00$, 265.00
FRIDEN FLEXOWRITER, good condition, FRIDEN FLEXOWRITER
FRIDEN FLEXOWRITER, less tape reader,
suitable for $\$ p a r e s, ~$
$£ 80-00$ suitable for spares, wha
GRESHAM LION WAVEFORM GENERA.
GRESHAM LION WAVEFOR
TOR, 405-line staircase, E15.00

RHODE AND SCHWARZ DIAGRAPH, BN3561, $30-300 \mathrm{MHz}$, $£ 300.00$
BERCO MAINS STABILISER, Type CVSA,
240 V 32 AMP $£ 75.00$
PYE MF TRANSMITTERS, $2 \times 5 B 254 M \mathrm{Ms}$ in Pinall, $V F O$ in $340-340 \mathrm{kHz}$, can be modded, $2 \times 8 \mathrm{~B} 54 \mathrm{Ms}$ in modulator, $\mathrm{CW} / \mathrm{MCW}$, easily converted for speech, units complete, but no
PSUs, with circults, brand new, $£ 20 \cdot 00$, carriage PSUs,
E1-50
RACK VENTILATION UNITS, 19 in, In. corporating mains blower, $£ 5 \cdot 50$, carriage 50 p SAVAGE SOOWATT PA AMPLIFIER, Bft, 19in. rack sultable for factory PA system,
coniains $12 \times \mathrm{KT} 88 \mathrm{~s}$, with all power supply coniains units, no details, offers please. 2
PHILIPS MONITOR DECODER PANELS, MAINS POWER SUPPLY UNITS, 191 n
rack mount, $190-280 \mathrm{~V}$ at 500 mA , preset, stabirack mount, $190-280 \mathrm{~V}$ at 500 mA , preset, stabl-
lised, plus 6.3 V at 5 A twice, E 5.00 , carringe £1.50
MAINS ISOLATING TRANSFORMERS,
375 YA
, 3755 A , tapped primary, 240 V output, new $55 \cdot \mathrm{~m}$, carrage
MAINS ISOLATING TRANSFORMERS, (ex equipment), in metal cases, totally enclosed, tapped mains input, $110,240 \mathrm{~V}$ etc., output 240 V
at 3 A, plus 12 V at $0.5 \mathrm{~A}, \mathrm{E} 0.00$, carriage $£ 1.00$ AS ABOVE, output 240 V at 20 A , plus 12 V a A, plus 22V at $2 \cdot 5 \mathrm{~A}, ~ £ 25.00$, carriage $£ 2.00$ $\begin{array}{ll}\text { RADIOSPARES } & 500 \text { WATT AUTO } \\ \text { TRANSFORMER, } & 100-110-150-200-220-240\end{array}$ 250 V tapped input and output, step up or step down facility, ex-new-equipment, $\$ 5.00$ cartiage 50p
PHOTOMULTIPLIER TUBES, EMI 6094C, new, (bases to fit, only supplied with tube
500), $£ 30.00$ each PYE MIKE INSERTS, 2.4 Kohm impedence Sop each
KNOBS, black, with shirt and metal insert,
BULGIM MAINS PLUGS, 3 oln 25 p each
CANNON RIGHT ANGLED MAINS PLUS, NB, TSp each
PABST FANS, type $1200,101 / 127$ V $_{\text {, }}$ with
suitable star capacitor, $£ 2.00$, carriage 50 p MULLARD TUBULAR CERAMIC TRIMMERS, screw fixing, 1 1-18
£ $10-00$ per 100 , carriage 50 p

Phone (0353) 860185 (Tues. - Sat.)

MAINS TRANSFORMERS
500 V at 350 mA , plus 6.3 V at $8 \mathrm{~A}, ~ 25.00 \mathrm{each}$, carriage 50p
125 V at 30 mA ap
50 p each (5 for $£ 2$)
40 V at $2 \mathrm{~A}, 80 \mathrm{p}$ each, carriage 25p 18 V at $8 \mathrm{~A}, £ 3.75$ each, carrlage 50 p 16 V at $6 \mathrm{~A}, £ 3.20$ each, carriage 50 p
28 V at $4 \mathrm{~A}, £ 3.20$ each, carriage 50 p 28 V at $4 \mathrm{~A}, 23.20$ each, carriage 50 p
$20-0-20 \mathrm{~V}$ at $1.5 \mathrm{~A}, 60 \mathrm{p}$ each, 2 for $£ 1$ $13-0-13 V$ at $100 \mathrm{~mA}, 40 \mathrm{p}$ each, 3 for $£ 1$ 6.3 V at $1 \mathrm{~A}, 70 \mathrm{peach}, 2$ for $£ 1-25$

HIGH QUALITY SPEAKERS, $61 n x$ lin HIGH QUALITY SPEAKERS, $81 / \mathrm{in} \times 6 . \mathrm{n}$ eliptical, 2 in deep, recess magne
$10 \mathrm{Watts}, \mathrm{E}_{1} .50$ each, 2 for $£ 2.75$
DIN SPEAKER SOCKETS, 2 pin flat and round) 4 for 30 p
REDUCED TO CLEAR...LAST FEW RHODE SCHWARZ, SIGNAL GENERA${ }^{1} 280 \cdot 00$
RHODE SCHWARZ, SIGNAL GENERA. TOR, BN4 $1404,4300 \mathrm{MHz}$, AM/FM metered,
RHODE SCHWARZ, DEVIATION METER,
RHODE $8 C H W A R Z, ~ D E V I$
BN4620, $20300 \mathrm{MHz}, ~ £ 280 \cdot 00$
EQUIPMENT CASES, Grey hammer finish, 17 in wide $\times 6$ in high $\times 13$ in deep, front arsd
back open to fit 17 in $\times 5$ in panels (not supplied) new, $£ 2 \cdot 20$, carriage 50 p
ISEP RACKING, 191n wide $\times 6 \frac{1}{2}$ In high x 15 in deep, with two thirds addapted to take 5 in
high panels, new, $£ 2.50$, carrlage 50 p high panels, new, $£ 2 \cdot 50$, carrlage 50 D
ISEP RACKING, 19 in wide $\times 8$ iln high x 7 in deep, new, £2.00 carrlage 50p
4-CORE CABLE, PVC covered, suitable for rotator control, 10 p per metre, (minimum order of 10 metres).
BY $25 / 600$ STUD RECTIFIERS, 20A at
600 V , on curved heatsink, 20 p each or 3 for 50 p (Ideal for Linear)
HT SMOOTHING CHOKES, 4H, 0.24A-DC, brand new. 75p each.
SELF-TAPP SCREW PACK, mixed sizes,
300

4BA HANK BUSH PACK (ideal for making aluminium cases, Just drill tiln hole, push In, Mimiture
MINIATURE UNISELECTOR BASES (42 Din) 400 each.
REELS OF 1 STRAND COPPER WIRE, Pink PVC covered, 0.5 mm , ideal for long wire
TWIN HEAVY DUTY CABLE, PVC covered,
 15 p per
E 1.00)
PYE CAMBRIDGE AMI0D, dash mount ow-band only, medium cond, complete bu PYE CAMBRIDGE FM10D, dash Mout PYE CAMBRIDGE FM10D, dash mount, low-band only, medium cond., complete
untested, with circuits, e26. 50 , carrlage 50 p 20.25 kHz XTALS, glass B7G, for 405 -line 20.25kHz
SPG. new, $£ 2 \cdot 20$ each

Iin. VIDEO TAPE SPOOLS, empty, $91 n$.
STAINLESS STEEL CASES 7 in x 4 in $1 \frac{1}{2}$, open end $4 \mathrm{in} x \frac{1}{6} \mathrm{in}$, ideal for portable or screening box, 550 each
WESTMINSTER CONVERTERS, (W24),
24 V-DC, in, 12 V -DC out, for W15, etc., $£ 5 \cdot 50$
valves
QQV03/20A (ex equipment) $£ 2.00$
DET22 (ex equipment) $£ 1.00$
2C39A (ex equipment) 1.00
CX2508 (ex equipment) $£ 2.00$
EZel new 25p
EF30 new 25p
PLEASE ADD 10\% V.A.T.
TERMS OF BUSINESS
CASH WITH ORDER
Post and packing: $£ 1.50$ on all test equip.,
25p on small orders, unless stated.
S.A.E. FOR ALL ENQUIRIES PLEASE
CALLERS WELCOME
BY APPOINTMENT

SURPLUS BARGAINS KLEINSCHMIDT S.C.M. TELEPRINTER OUTFITS

Comprising. Teletypewriter lpage printer) type T-2718/FG (knownas Kleinschmidt 160) Reperforator-Transmitter (tape printer) type $T T-272 A / F G$ with table $\operatorname{FN}-65 /$ FG. 8oth units are supplied with change wheels. the whole equipment operates on 11
f55. (carr $£ 4$).
f55. (carr f4).
ELECTRONIC TIMER KITS 0.8 sec to 100 sec comprises A.E.I. Transistorised Module. Relay and all electrical components for 115 or 240 V AC operation $\mathrm{f} .75(25 \mathrm{p}) \mathrm{VAT}$ 20p. Veeder root 4 -digit resettable counters
(8 p). Printed Circuit Kits. E 1.25 (25p) total with VAT E1-65. (8p). Printed Circuit Kits. $1.25(20 p)$
AMPEX VIDEO TAPE 2 in. $\times 1670$ NEW f 9 (50 p). AVO AMPEX Electronic Test Meters £18 (E1): FERFIC CT38 Electronic fest Meters ${ }^{\text {CHLORIDE } 25 p}$ a $\mathrm{ib} .(16 \mathrm{p}$). $10 \mathrm{lb} £ 2.50$ (paid). Kent Chart recorders 115 V AC $£ 20$ (1-50). Multipoint Kent Chart recorders $£ 30$ (E 1.50). TELEPRINTER Papers and Tape. $8 \frac{1}{2} \mathrm{in}$. rolls 3 -ply. carbon/buff manilla 60 per roll (32 p) $8 \frac{1}{2} \mathrm{in}$. rolls 7 -ply NCR no carbon required. white. $£ 1(32 \mathrm{p}$)
 $\frac{11}{1 / i n . ~} 2 \mathrm{in}$. core. buff. E 2 per box of
Friden Tape f 2 per box of 6 rolls (52 p). Loads of surplus to Friden Tape $£ 2$ per box of
clear. Large SAE for List.

CASEY BROS.

233-237, Boundery Road, St. Helena, Lanca. 86

[^6]
SIGNAL DIODES

CG2H at 7p, CG46H at 7p, CG61 at 8p, CG62at 7p, CG63 at 8 p,
$\mathrm{CG65}$ at

 Bonded Diodes at $£ 3$ per 1000.250 mW VOLTAGE REFERENCE
DODES type MR3A at $44 \mathrm{M}, \mathrm{MR4A}$ at 44 A . G.E. S.C.R.'s
DOD PIV 100 .
 COMMUNICATION SERIES OF I.C.'s Untested consisting of
$1 \times R$. F., 3×1 F., $2 \times$ VOGAD, $2 \times A G C$, $1 \times$ Mike AmD, $2 \times$ Double
 PRESS FIT THYRISTORS. 8 a mp 50 PIV at 22p, 100 PIV at PRESS FIT THYRISTORS, 8 a mp 50 PIV at $22 \mathrm{p}, 100$
$\mathbf{2 5 p} \mathbf{p} 300$ PIV at 33p, 400 PiV at $44 \mathrm{p}, 500$ PiV at 50 p. 14 PIN DIL NPN TRANSISTOR ARRAY like CA 3046 untested with data 5 for 55p.
X BAND GUNN DIODES with data at $\mathbf{£ 1 . 6 5}$.
STRIP LINE $2 G H z$ TRANSISTORS at $£ 3$ each.
YHF TUNING VARACTORS 80 pf at 4 volt, 57pf at 8 volt at
45p each. 15p each.
DIVIDE BY 4 COUNTERS 180 MHz untested with data 4 for
E1.50. E1-50.

J. BIRKETT

25 The Strait, Lincoln LN2 IJF. Tel. 20767

CONSTRUCTION PLANS

Cameras, Transmitters, Scramblers, Detective Electronics, plus many more
New hobby Catalogue AIRMAILED $\$ 1.00$

TS
Post Box 618, Rotterdam, Holland [3924

25in. WIRED COLOUR TVS. Bush CTV25 (domestic chassis) with colour bars displayed $£ 45$
+VAT: Non Workers Tube O.K. $£ 35+$ VAT: Non Workers Tube U.S. $£ 20+$ VAT. i 9 in. G.E.C. 2028 available. Quantity discount over 10 Sets, C.W.O. 25 in. AERIAL COLOUR TVs. Bush CTV25 Thorn 2000 G.E.C. 2028 E90+VAT (displayed working). SECONDHAND COLOUR, Lower Church Street; Stokenchurch, ${ }^{2}$ gh Wycombe, Butk 40 : 024 026 (Radnage) 3321. (2 mins. off M40 Motor-
way. West Wycombe turnoff,)
G.W.M. RADIO LIMITED 40/42 Portland Roadd, Worthing, Sussex Prices inciude Posticarriage and VAT
Clark SCAM 40 Pneumatic Masts. NATO No. 6985-99-10415 Extending to 40 th used in makers crates, complete with pump and rigging. Gross weight 4 cwt.
TRANSMITTER O13 (Model HS28). Quantity of teleprinter switch Units, operator control units, changeover boxes, standard switch boxes, line terminating units, Aerial tuning Mnits and transmitter less EHT unit. VACUUM
VACUUM CAPACitors by dennings.

Variable 500 pift to $20 \mathrm{pf} \quad 20,000$ volit.

All these capacitors are production surplus.
The above equipment may be viewed by appointment. Enquiries should be specific.
ARCONI Absorption Wattmeter AF No. 1 (CT44). Good
DEAC Battery Chargers. AC Mains 250v. Cossor CC97 to charge twelve DEAC batteries as fitted to CC2/8 personal RIT sets. 12 each.
LOUOSPEAKERS. Sin. Home Office "Motor Cycle" type LOUDSPEAKERS. Weather resistant Bi-directional, 12in. dia. stoved grey case. Adjustabie mounting bracket. 100 volt line. Suitable Industrial or Marine use. $\mathbf{5 1 0}$ each.
Many one-off bargains for catiers. Hours 10 a.m. to 6 pm . Closed 1-2.15 and 1 o'clock Wednesdays.

CARBON FILM RESISTORS-EI2 SERIES $\underset{\text { (22R-1M Stab. IW OR iW }}{\text { High }}$ ME12 RESISTOR KITS 22ת-1Mת E12 SERIES
喠W, £3.85; .25E12 KIT 25 of each value (Total of 14: METAL FILM KITS ALSO AVAILABLE
CATALOGUE No. 3 (Approx. 2000 Parts) 15p. C.W.O. P. \& P. 10 p on orders under $£ 5$. Overseas at cost. B.H. COMPONENT FACTORS LTD Nr. Leighton Buzzar Road, PIT Cheddington (0296) 668446

TAPE RECORDING

RECORDS MADE TO ORDER	
DEMO DISCS	VINYYITE
MASTERS FOR	
RECORD COMPANIES	PRESSINGS

Single discs, 1-20. Mono or Stereo, delivery 4 days from your tapes. Quantity runs 25 to 1.000 records PRESSED IN VINYLITE IN OUR OWN PLANT. NEUMANN STEREO/Mono Lathes. We cut for many Studios UK/OVERSEAS. SAE list.

PO Box 3 DEROY RECORDS
PO Box 3, Hawk Street, Carnforth, Lanes.

COURSES
The Polytechnic of North London

3 year full-time course for student with 2 " A " levels. ONC or equivalent to become

Chartered Electronic and Radio Engineers

This modern course in electronics and communications engineering. starting in October 1974, prepares students for entry into the Institution of Electronic and Radio Engineers and the Institution of Electrical Engineers.
Details from: The Department of Electronic \& Communications Engineering. The Polytechnic of North London Holloway, London N7 8DB

BUILD OR BUYa

The smallest transmitter available in the UK. Only $2^{\prime \prime} \times 1^{\text {. }}$. Fits in the palm of your hand. Can pick up and ransmit voices and minute sounds. Receive on a VHF radio. Excellent range. Can be worn round the neck. held in the hand or operated on a shelf. Works almost anywhere. Uses PP3 battery (very Long Life). Simply switch on: no other connections. Completely self con tained. Transistorised. printed circuit. Used the world over. Many applications. Fully g'teed
Kit with step-by-step assembly in £15.50

If required suitable radio for receiving £17.50
transmitter
Insurance/P. \& P. 45 p
MAIL ORDER (all items)
MULHALL ELECTRONICS (WW)
Ardglass, Co. Down, UK, BT30 75 F DIRECT SALES (constructed items only) Peter Spencer (London Agemt). 39 Oxford Gerdens, London, W10. RAE licence required

36

IAN CRYSTALS

Fast delivery of prototype and production military quality crystals. Competitive price Details from

INTERFACE INTERNATIONAL
29 Market Street, Crewkerne, Somerse
Tel: (046031) 2578. Telex: 46377.
[35

GLASS FIBRE P.C. KITS

SIMPLE, PRECISION, CUT-STRIP PROCESS For amateurs, laboratories and industry: one-off's, prototypes on single-sided 1 oz board. Draw circuit layout on resist with pen, pencil, etc. p.c.b. to pre-packed etching Add water and materials supplied in standard chemicals. All $3^{\prime \prime} \times 4^{\prime \prime} £ 2.25 ; 2$ of $4^{\prime \prime} \times 6^{\prime \prime} £ 3.00$; 2 off $4.5^{\prime \prime} \times 45^{\prime \prime}$ $£ 2.50$; 1 off $4.5^{\prime \prime} \times 8^{\prime \prime} £ 2.25$; $P \& P 12 p$

$$
\begin{aligned}
& \text { of } 4.5 \times 8 . £ 2.25 ; \text { P \& P } 12 p \\
& \text { GLASS FIBRE P.C. BOARDS }
\end{aligned}
$$

1 oz copper in widths up to $8^{\prime \prime}$. Single-sided: piting charge. p \& p esided: $1 p$ per sq in. No BARGAIN PACK
Double-sided $2 \underset{\text { small }}{ } \mathrm{ft}$.00; \mathbf{P} \& $\mathbf{P} 20 \mathrm{p}$. No
KELTRONIX LTD
15 Barra St., Glasgow G20 0AX
041-946 1600
[3818

Build a mixer to your own

spec. using our easy to wire
AUDID MDロLLES
For full details contact Richard Brown
at Zero 88, 115 Hatfield Road,
St. Albans, Herts, AL1 4JS Tel. 63727

TOP PRICES PAID

for semiconductor and component redundant or excess inventories

P.R.S. ELECTRONICS

126 Headstone Road Harrow, Middlesex
Tel: 01-965 6864

ELECTRO-TECH COMPONENTS LTD.

Are buyers of all types of electronic components and equipment. They will be pleased to view clearance stocks anywhere in Great Britain at one or two days notice
and negotiate on the spot/

ELECTRO-TECH COMPONENTS LTD.

315/317 Edgware Road, London, W. 2 Tel: 01-723 5667. 01-402 5580

METRICATION

With effect from the August issue all displayed classified advertisements in Wireless World will be measured and priced in single column centimetres with three centimetres replacing the inch as the minimum.

Orders will be accepted in imperial measure but will be charged on the basis of their equivalent metric size. Depth will be taken to the nearest centimetre.

The rate per single column centimetre will be $£ 4.68$ and our classified sales team will be pleased to give any assistance required.

Lineage advertisements are not affected.
Phone 01-261 8508

BOOKS
 ON ELECTRONICS

Basic Engineering Craft StudiesGeneral (O1)

Edited by
P. H. M. Bourbousson, CIMarE, and R. Ashworth, CEng, MIMechE, MIProdE

Written for students studying for the City and Guilds of London Institute 500 Courses on Basic Engineering Craft Studies (Part 1), this book together with a companion volume covers all the topics required for each of the courses. The General 01 volume contains basic material and should be used in conjunction with the appropriate complementary volume covering the syllabus relating to the required craft or trade bias.
0408000619182 pages illustrated 1971
f1.50

F.M. Radio Servicing Handbook/2nd Edition

Gordon J. King, RTech Eng, MIPRE, FSRE, MRTS, FISTC

This handbook has been written by an experienced radio engineer with the aim of providing the theoretical and practical knowledge of FM radio receivers in a form hetpful to all concerned with service work. The book is intended not only for professional service engineers, however, but also for amateur enthusiasts interested in the construction of FM equipment and for radio students. The style is straightforward and, as far as possible, non-mathematical.
0408000236206 pages illustrated 1970 £3.00

Semiconductors: Basic Theory and Devices

Ian Kampel, C Eng, MIERE
Although this book covers a wider range of devices than is usually dealt with on any one course, it nevertheless provides a useful introductory text for students. All topics are explained in straightforward graphical terms without complicated formulae. It begins with an explanation of elementary atomic theory and gradually progresses through diodes, transistors and the more sophisticated devices that are available today.
0408000406272 pages illustrated 1971
£2.50

Electroacoustics:
 Microphones, Earphones and Loudspeakers

(An STC Monograph)
M. L. Gayford, BSc., CEng, MIEE, ACGI, DIC

This book gives a unique insicht into the audio and electroacoustics field dealing in particular with the theory, design and practical realisation of the various types of microphones, earphones and loudspeakers used in sound reproduction, telephony, broadcasting and acoustic measurements. It will be of special value to students, engineers and research workers engaged in telecommunications, broadcasting and sound reproduction.
$0408000260 \quad 300$ pages illustrated 1970
£4:50

Colour Television Servicing

Gordon J. King, RTechEng, MIPRE, FSRE, MRTS, FISTC
This comprehensive book deals straightforwardly with the servicing of PAL receivers, using a minimum of mathematics. It is divided into three sections: the first surveys the colour TV system as a whole, the second studies the elements involved (e.g. picture tubes, conveyance systems, chroma channels) and the third is devoted exclusively to servicing.
0408000449328 pages illustrated 1971
£4.40

Solid-State Devices and Applications

Rhys Lewis, BScTech, CEng, MIEE

Since the first appearance of the transistor in 1948, the field of solid-state devices has expanded so rapidly that it has become increasingly difficult to keep abreast of new developments. This book presents a concise summary of currently available devices, their theory, manufacture and applications.
0408000503 cased 264 pages illustrated 1971 £3.00
0408000511 limp
£2.00

A Simplified Approach to Solid State Physics

M. M. Rudden, BSc, PhD, AlnstP, and J. Wilson, BSc, PhD, AlnstP

This book provides a broad survey of some of the more important concepts of solid state physics and will be suitable for first year university or technical college students. The approach throughout is essentially qualitative and the aim of the authors is to establish the fundamentals of the subject in as easy a manner as possible. To this end, frequent reference is made to experimental evidence in support of the theoretical concepts.
0408700033 cased 196 pages illustrated $1971 \mathbf{£ 2 . 9 0}$ 0408700203 limp
£1.70

BENTLEY ACOUSTIC CORPORATION LTD.

TA GLOUCESTER ROAD LITTLEHAMPTON SUSSEX Tel ALL PRICES SHOWN INCLUDE V.A.T

身

0.73
0.595
0.61
GD

THE TEXAN

SPECIAL NOTICE
TO ALL MANUFACTURERS in the
ELECTRONIC, RADIO, TELEVISION and ALLIED TRADES.
Please note that we will purchase any redundant and surplus stocks which you may have available after stocktaking, or wishing to make space for more important items. We are particularly interested in large quantities of components, raw materials, etc. BROADFIELD \& MAYCO DISPOSALS LTD.
21 Lodge Lane, N. Finchley, London, N12 8JG.

Telephone
01-445 2713 01-958 7624
01-445 0749

QUARTZ CRYSTAL UNITS from

- 1.0-80.0 MHz - fast oelvery - hign stabitity

TEL. HYTHE 8961
STD CODE 04214

SOWTER TRANSFORMERS

WE PURCHASE ALL FORMS AND COMPONENTS, ETC. SPOT CASH
CHILTMEAD LTD.
7, 9, 11 Arthur Road, Reading,
Berks.
Tel: 582605

Wilmslow Audio

 THE firmfor
speakers!

Baker Group 25. 3.8 or 15 ohm Baker Group 35. 3.8 or 15 ohm Baker Deluxe. 8 or 15 ohm Baker Major. 3. 8 or 15 ohm Baker Regent, 8 or 15 ohm
Baker Superb. 8 or 15 ohm
Celestion PST8 (for Unilex) 15 ohm
Celestion MH 1000 horn. 8 or 150.
EMI $13 \times 8.3 .8$ or 150 hm
EMI $13 \times 8 \times 8.150 \mathrm{~d} / \mathrm{c} 3.8$ or 15 ohm
EMI 13×8.450 t/w 3.8 or 15 ohm
EMI 13×8.30 watt 15 o
EMI $21^{n} \times 8,20$ wattbas
EMI $8{ }^{4} \times 5$. 10 watt d / c, roll/s 8 ohm Elac 59RM 10915 ohm .59 RM 1148 ohm Elac $6 \frac{1}{2}^{\prime \prime} \mathrm{d} /$ cone, roll/s 8 ohm
Elac TW4 4" tweeter
Fane Pop 15 watt $12^{\prime \prime}$
Fane Pop $25 / 225$ watt
Fane Pop 40. $10^{\prime \prime} 40$ watt
Fane Pop 50 watt, $12^{\prime \prime}$
Fane Pop 55, $12^{\prime \prime} 60$ watt
Fane Pop 100 watt. 18
Fane Crescendo 12A or B. 8 or 15 ohm
Fane Crescendo 15.8 or 15 ohm
Fane 807T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$. roll/s. 8 or 15 ohm
Fane 801T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$. roll/s. 8 ohm
Goodmans 8 P 8 or 150 hm
Goodmans 12P8 or 15 ohm
Goodmans 12P-D8 or 15 ohm
Goodmans 12P-G 8 or 15 ohm
Goodmans Audiom 1008 or 15 ohm Goodmans Axent 1008 ohm Goodmans Axiom 4018 or 15 ohm Goodmans Twinaxiom 8 " 8 or 15 ohm Goodmans Twinaxiom $10^{\prime \prime} 8$ or 15 ohm Kef T27
KefT15
Kef B1 10
Kef B200
Kef B139
Kef DN8
Kef DN12
Kef DN 13
Richard Allan CG8T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/
STC400 G super tweeter
Wharfedale Super 1ORS/DD 8 ohm
Fane 701 twin ribbon horn
Baker Major Module each
Fane Model One each
Goodmans DIN 204 ohm each
Helme XLK 25 (pair)
Helme XLK 30 (pair)
Kelme XLK50 (pair)
Kefkit 3 each
Kefkit 3 eac
eerless 3-15 (3 sp. system) each Richard Allan Twinkit each Richard Allan Triple each Richard Allan Super Triple eac Wharfedale Linton 2 kit (pair) Wharfedale Glendale 3 kit (pair) Wharfedale Dovedale 3 kit (pair)

PRICESINCLUDE VAT

Cabinets for PA and HiFi. wadding. vynair, etc.
Send stamp for free booklet "Choosing a Speaker'
FREE with orders over f 7 -"HiFi loudspeaker enclosures" brook

All units guaranteed new and perfect.
Prompt despatch
Carriage: Speakers 38p each. tweeters and crossovers 20 p each, kits 75 p each (pair E 1.50).

WILMSLOW AUDIO

Dept WW

Swan Works, Bank Square, Wilmslow, Cheshire SK9 1HF Tel. Wilmslow 29599 Discount HiFi, PA and Radio at 10 Swan St, Wilmslow.)

WW-104 FOR FURTHER DETAILS

SYNTHESISER SOUNDS SUPREME
BY DEWTRON -THE UP-FRONT PEOPLE YOU can build professional standard synth. equipsolder! E a pitch-to-yoltage enables your creation solder! E.8. pitch-to-voltage enables your creation
to flay itself from sound of voice, sax. clarinet. guitar etc. Send 1 Sp NOW for full catalogue. 10 year: experience from-
D.E.W. LTD.

254 Ringwood Road, Ferndown, Dorset.

SINTEL 234500

HP 5082-7731. $3^{\prime \prime}$ Red LED digital display $£ 1.90+$ VAT $=\mathbf{£ 2 . 0 9}$
 CT7001 Alarm/Calendar Clock IC ... £1650 + VAT
 NO P\&P CHARGE-Data supplied with device. Send 20p
stamps if you like. for full data and circuits on all of above, or send a $3 \frac{1}{2} p$ stamp for our product list to:
SINTEL, 53 ASTON STREET, OXFORD

EXCLUSIVE OFFERS
NEVER BEFORE OFFERED

We bave a large guantity of "bite and pieces" wo cannot list-pleate send us your requirementa we can probably belp-all onquirios anowered.		
400 channel Pulse Feight Spectrum Analyzers		
	Racal 8A 21 and SA 62 Counters	
	Airmec 245 L. F. 150 wait Osclllat	
	Solartion CD 1015 Oscilloscopes	0
	Eddystone Receiver Cabinets	
	Solartion 5/25000 cyc. Obellat	0
	Dawe ti30 Phase Meter	
	Southern Inst. 1800 F.M. Met	
	Belling Lee T.V. Relay Equipmen	
	Addo 5/8 track Tape Puaches	
	Tally 5/8 track Tape Readers	
	80 collumn Card Hand Punches	
	75 foot sectional self supporting Towers	
	Aute Electric Carillon Chimes	
	CV-157 Hoftman 18B/8s8 Co	
	10 foot Triangular Lattice Mast Sections	
	Ditto 15 foot with 15 inch pides	
	Casella Absmann Klectric $\mathbf{H y}$	
	Racal MA-160 Synthesteers	
We have a varied assortment of industrial and professional Cathode Ray Tubes available. List on requesh.		
	Racal MA-250 Decade Gen	2125.00
	Racal RA-98 S.S.B./D.8,B.	
	Avo Geiger Counters, new	28.00
	Servamex 2 KVA Voltage Regulator	
	Double Co-sxial Blowers 6×6220 v. A.C.	
	Amper S.E. 10 Auto Degaubser	
	Unleelectors 10 bank 25 way full wipe	
	R.C.A. 5 element $420 \mathrm{~m} / \mathrm{cs}$ Yagi Beams	
	Hayces 500 watt $230 \mathrm{v} . / 115 \mathrm{v}$. Isolation	
	Transformera	
	Muirbead D. 888 Anal	
	Labo-atory Radio Interference Filter	
	Cawkell Type 1471 Variable Filt	
	541 n . dia. Meteorological Balloo	
	Flanm Microwave Attenuatora 4/12 GMC	24000
FREE 40-page lint of ovar 1,000 difierent itemi in stook available-keep one by you.		

INSTRUMENTATION TAPE RECORDER-REPRODUCERS

COMPUTER HARDWARE

* CARD READER $80 \mathrm{col} .600 \mathrm{c} . \mathrm{p} . \mathrm{m}$
\star PRINTER, High speed 1000 lines p.m. ER, High speed 5/8 track

> Prices on Application

PLEASE ADD V.A.T. TO ABOVE

P. HARRIS

ORGANFORD - DORSET
BOURNEMOUTH-65051

Designed to

New surpius stock as illustrated. AC 240 volts. Input power 100va. Instant heat at touch of trigger switch in handle. Constructed
PROGRAMME TIME SWITCHES

switch central heating
and hot water on/off twice a day. Suitable for any electrical appliance up to 3 amps 240 volts A.C

E5-50 唚品

w surplus stock as illustrated. Size $7^{\prime \prime} \times 4^{\prime \prime} \times 3$
Smiths Time Switch with 24 -hour dial which is simple to set to switch on/off twice per day at any times required. Also fitted with two lever switches which can be set to operate two circuits which can each be set to operate on Time Switch twice per day. all day. confixing on back supplied with wiring instructions. Ideal for shop lighting and mary other applications.
SAE FDR CATALOGUE WITH MANY DTHER BARGAINS TO C. W. WHEELHOUSE \& SON 9/13 BELL RDAD, HOUNSLOW. PHONE 01-570 3501

WW-105 FOR FURTHER DETAILS

GOMOON CENTRAL Radio stores

TELEPEONE CABLE. Plaatic ecvered grey 4 -core coloured RECORD STORAGE UNITS. Brand new. Anti-warp. 'Compact 300 ben 200 recru. ELECTRICITY SLOT METERS (5 p In inlot) for A.C. mains. Fixed $15 \mathrm{~A} . £ 7.42 .20 \mathrm{~A}$. $£ 8.25$ P P 75 p for hotels, etc. $200 / 250 \mathrm{v}$ Reconditioned as new. 2 years guarantee. amperages avahable or black, with 5 -WAY PRESS-BUTTON INTER-COM TELEPBONES in Bake lite case with junction box handset. Thoroughly overhauled $10-$ WAY PRESS-BUTTON INTER-COM TELEPEONES in Bakelite case with junction box handset. Thoroughly overhanled.
Guaranteed. $£ 6.75$ per unlt. Wiring diagram on request, send 2.i.e. $\mathrm{F} A Y$ PRESS-BUTTON INTER-COM TELEPHONES in Bake-
 The " 88 ' Set. This transceiver, welghs approx. St the, and measurcs 3 in. $x 5$ in. $x 9$ in. It is a 4 frequency channel set H.T. T T Q $/ 1$ Y. E Ruben Mallory Tys No 1 and the following 14 valves. $3 \mathrm{~A} 4,1$ off; 1 LA . 6 off; $1 \mathrm{~T} 4,4$ off; $1 \mathrm{N5}, 1$ ofli, AA, 2 oft. £6. 50 plus 75 p P. \& P .
23 IISIE ST. (2as6) LONOON W.C. 2
Open all day Saturday

HENGSTLER
 Manufacturers of counters and counting systems

TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO
single and multichannel SIMMONDS ROAD, WINCHEAP CANTEREURY, KENT 0227-68597

PEAK PROGRAM METERS TO BS4297

also 200 KHz version for high speed copying.
Drive circuit, $35 \times 80 \mathrm{~mm}$, for 1 mA L.H. zero meter to BBC
 $\begin{array}{llllll}\text { Bumplete kit } & \mathbf{£ 1 0 . 0 0} & \mathbf{£ 9 . 5 0} & \mathbf{£ 9 . 0 0} & \mathbf{£ 8} 50 \\ \text { Buit and aligned } & \mathbf{£ 1 4 . 0 0} & \mathbf{£ 1 3 . 3 0} & \mathbf{£ 1 2 . 6 0} & \mathbf{£ 1 1 9 0}\end{array}$ Buit and aligned
ERNEST TURNER PPM meters. scalings $1 / 7$ OR-2 $2 /+4$. Type $642,71 \times 56 \mathrm{~mm} £ 10.90: 643.102 \times 79 \mathrm{~mm} £ 12.90$.

PUBLIC ADDRESS : SOUND REINFORCEMENT in any public-address system where the microphones and round) occurs if the amplification exceeds a critical value. By shifting the audio spectrum fed to the speakers by a few Hertz the tendency to howling at room resonance frequencies is destroved and ann increase in gain of 6-8d8 is possible betore
the onset of feedback. The 5 Hz shift used is imperceptible on
both speech and music.
SHIPTERS IN BOXES with overload LED. shitchbypass switch. BS4491 mains connector and housed in strong diecast bowes finished in attractive durable blue acrylic. Jack of XIR audio connectors.

 SHIFTER CIRCUIT BOARDS FOR WW July 1973 article Complete kit and board $\in 21.00$ induting $\rho s u$ and DESIGNER APPROVED
SURREY ELECTRONICS The Forge, Lucks Green, Cranleigh Surrey GU6 7BG. (STD 04866) 5997

WW-107 FOR FURTHER DETAILS

RADIO \& TELEVISION SERVICING 1973-1974 MODELS

price 15.75

PIEZOELECTRIC CERAMICS by Mullard. Price $\mathbf{£ 4 . 2 0}$

STEREO F.M. RADIO HANDBOOK by P. Harvey. Price $\mathbf{£ 2 . 6 0}$

VIDEO RECORDING RECORD AND REPLAY SYSTEMS by G. White. Price $\mathbf{£ 3} \mathbf{3 5}$
SILICON RECTIFIER HANDBOOK by Motorola. Price $\boldsymbol{E l} \cdot \mathbf{3 0}$
THE RADIO AMATEUR'S HANDBOOK 1974 by A.R.R.L. Price $£ 2 \cdot 95$
DIGITAL LOGIC BASIC THEORY AND PRACtICE by J. H. Smith. Price 11.60

RADIO AND ELECTRONIC LABORATORY HANDBOOK by M. G. Scroggie. Price $\mathbf{E 5} 50$
TEST EQUIPMENT FOR THE RADIO AMATEUR by H. L. Gibson. Price $\mathbf{E 2 . 0 0}$
RADIO WAVE PROPAGATION by A. Piequenard. Price $£ 10.00$

MOS INTEGRATED CIRCUIT DESIGN by E. Wolfendale. Price $£ 4.20$
$\star A L L$ PRICES INCLUDE POSTAGE \star

THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS
19-21 PRAED STREET, LONDON, W2 1NP

Phone 7234185 closed Sat. I p.m

EX-COMPTIER
 STABIISED POWFR SUPPIIES

RECONDITIONED, TESTED AND GUARANTEED
Rippile $<10 \mathrm{mV}$. Over-voltage protection on all except 24 v . 7 A . unit. $120-130 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ input. Stepdown transformer to sult about $\propto 3$.
5-6v. 8A. Post \& Packing $£ 1.50$
£12 24v. 7A. £14
5-6v. 16A 214 30v. 7A
$£ 14$
PAFST FANS $4 \frac{1}{1} \times 4 \frac{1}{2} \times 2 \mathrm{in} .100 \mathrm{cfm}$. 63.50 (30p).

PAPST FANS 6in. dia. $\times 2 \frac{1}{16} \mathrm{in}$. deep
Type $7576 \ldots 5 \cdot 00$ (30p).
WOODS FANS 6 in . Plastic rotor $£ 6.00$ (36p).
COMPUTER GRADE
ELECTROLYTICS
12,000 $100 \mathrm{v}, 5 \times 2 \frac{1}{2}$ dia \quad f1 (25p) $30,000 \mu 25 \mathrm{~V}$
$65 p$ (20p)
ELECTROLYTICS
$4000 \mu 70 \mathrm{v} ., 3,600 \mu 40 \mathrm{v} ., 4 \frac{1}{3} \times 2 \mathrm{in}$. dia. 55p (14p)
$10,000 \mu 35 \mathrm{v} .5,000 \mu 35 \mathrm{v} ., 40 \mathrm{p}$ (12p)
$10,000 \mu 35 \mathrm{v} .5,000 \mu 35 \mathrm{v} ., 40 \mathrm{p}$
$4,000 \mu 100 \mathrm{v} ., 4 \frac{1}{2} \times 2 \frac{1}{2} 55 \mathrm{p}(22 \mathrm{p})$
EX-COMPUTER PC PANELS $2 \times 4 \mathrm{in}$., min. 35 transistors with data 50p (12p). 25 boards for $£ 1$ (30p).
QH Bulbs, 12v. 55w.
250 Mixed Resistors
250 Mixed Capacitors 60p (91p)
250 Mixed Capacitors 60p (91p)
200 SI Planar Dlodes 50p (7p)
Microswitches 8 for 50p (9p)
Min. Glass Neons 8 for 50p (6p)
10-way Terminal Blocks ... 10 for 55p (15p)
Postage and package shown in brackels
Please add 10% VAT to TOTAL
KEYTRONICS
Mall Order only.
44 EARLS COURT ROAD, LONDON, w.s 01-478 8499

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and WantsTo "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

Rate: 66p PER LINE. Average seven words per line. Minimum two Hines.

Name and address to be included in charge if used in advertisement.

Box No. Allow two words plus 30p.

- Cheques "etc., payable to "Wirctess" World" and crossed "\& Co."
- Press Day July 23, 1974 for August, 1974 issure.
P-

Please write in block letters with ball pen or pencil. CLASSIFICATION
NUMBER OF INSERTIONS

NEW RANGE-TRANSISTOR INVERTORS

TYPE A

Input: 12V DC
Output: 1.3kV AC 1.5MA

Price $\mathbf{£ 2} \mathbf{2 5}$

TYPE B

Input: 12V DC
Output: 1.3kV DC 1.5MA

Price $\mathbf{£ 4} \mathbf{- 2 0}$

TYPE C

Input: 12V to 24V DC
Output: 1.5 kV to 5 kV AC 0.5MA
Price $\mathbf{£ 5} \mathbf{5} \mathbf{8 5}$

TYPE D

Input: 12V to 24V DC Output: 14kV DC 100 microamps at 24V. Progressively reducing for lower input voltages.

Price $\mathbf{£ 1 1}$

Postage \& Packing 36p. Add V.A.T. at 10\%

7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College). Tel. Reading 582605)

INIDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 88-104

[^7]

The issues are quite regular-and they discuss issues of vital importance to everyone who uses electronic test equipment.

The periodical, Marconi Instrumentation, which is mailed out free to all $\mathbf{~ m i}$ customers three times annually, contains technical articles about our latest instruments and up-to-the-minute information on their application to the solutions of measurement problems. It is written by engineers for engineers in English with summaries in four other languages.

And that's not all, by any means. $\mathbf{m i l}$ Contact is a newspaper published six times a year to keep you
in fouch with news and progress in the measurement business. Then there are our hardback publications, too. Already, there is a volume on TV Video Transmisson Measurement written by the Head of BBC Measurement Systems Laboratory, and another book discusses the techniques and development of 'white noise' testing. Shortly we will be publishing a book on pulse code modulation, by a senior Post Office engineer.

There are technical data sheets, applications notes, catalogues, concise catalogues and product jrochures, all aimed to help you measure.

Are you reading us?

Ersin Multicorethe international solder

Ersin Multicore 5-Core Solder

The proved superiority of ERSIN Multicore Solder for over thirty years is due to many factors. We have specialised throughout this period in the manufacture of cored solders. Consequently our research and manufacturing staff have been able to devote all their energies to the development of Multicore Solders. All alloys are of highest purity, carefully formulated and checked.
Our unsurpassed ERSIN flux is rigorously tested before and after it is incorporated in the solder wire. Our five separate cores of flux ensure flux continuity, leave only an ultra-thin layer of solder separating flux from work for instant wetting and provide a more accurate ratio of flux to solder. It is therefore possible to
use less solder and obtain greater reliability.

Our Quality Control at all stages of manufacture is guaranteed and recorded by the batch number on every reel.
Needle fine gauges

In addition to our standard range of wire diameters (10-22 swg: 3.2-0.7 mm) supplied on $2^{\frac{1}{2}} \mathrm{~kg}$ and $\frac{1}{2} \mathrm{~kg}$ reels we also massproduce needle-fine gauges (24-34 swg: 0.56-0.23 mm) on 250 g reels for microminiature soldering applications-still with 5 Cores of flux.

Savbit Solder

One of our most popular special ERSIN Multicore Solder alloys is SAVBIT alloy. Compared with ordinary tin/lead solders it dramatically reduces the erosion of soldering iron bits, copper wires and printed circuit conductors. It also saves costs and increases reliability. SAVBIT alloy containing 5 -Cores ERSIN 362 flux has received special Ministry approval-under DTD. 900/4535 for Military applications.

Sectioned iron-plated bit. after 40,000 simulated operations using 60/40 Solder.

Sectioned iron-plated bit, after 40,000 simulated operations using SAVBIT Solder.
$40 / 60 \mathrm{Sn} / \mathrm{Pb}$
40/59.7/0.3 Sn/Pb/Sb
$30 / 70 \mathrm{Sn} / \mathrm{Pb}$
$20 / 80 \mathrm{Sn} / \mathrm{Pb}$
$15 / 85 \mathrm{Sn} / \mathrm{Pb}$
Pure Tin
95/5 Sn/Sb
5/93.5/1.5 Sn/Pb/Ag

Composition
 nominal major elements)

$50 / 33 / 17 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Cd}$
$62 / 36 / 2 \quad \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag}$
$62 / 35.7 / 2 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag} / \mathrm{Sb}$
$63 / 36.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}$
$60 / 40 \mathrm{Sn} / \mathrm{Pb}$
60/39.7/0.3Sn/Pb/5b
$50 / 50 \mathrm{Sn} / \mathrm{Pb}$
$50 / 49.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}$
50/48.5/1.5 Sn/Pb/Cu
$45 / 55 \mathrm{Sn} / \mathrm{Pb}$
$40 / 60 \mathrm{Sn} / \mathrm{Pb}$
$40 / 59.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}$
$30 / 70 \mathrm{Sn} / \mathrm{Pb}$
$20 / 80 \mathrm{Sn} / \mathrm{Pb}$
Pure Tin
$95 / 5 \mathrm{Sn} / \mathrm{Sb}$
5/93.5/1.5 Sn/Pb/Ag

Grade	Melting Temperature		
	Solidus ${ }^{\circ} \mathbf{C}$		Specification
TLC	145	145	DIN 1707
LMP	179	179	DIN 1707
Sn62	179	179	QQ-S-57 1E
Sn63	183	183	QQ-S-57 1E
K	183	188	B.S. 219
Sn60	183	188	QQ-S-57 1E
F	183	212	B.S. 219
Sn50	183	212	QQ-S-57 1E
Savbit 1	183	215	DTD 900/4535 DIN 1707
R	183	224	B.S. 219
G	183	234	B.S. 219
Sn40	183	234	QQ-S-57 1E
J	183	255	B.S. 219
V	183	275	B.S. 219
-	225	290	-
P,T.	232	232	B.S. 3252
95A	236	243	B.S. 219
H.M.P.	296	301	B.S. 219

For full information on these and a Selector Guide to other MULTICORE products please write on your Company's letterhead direct to:
Multicore Solders Limited, Maylands Avenue, Hemel Hempstead, Hertfordshire HP2 7EP.
Tel: Hemel Hempstead 3636 Telex: 82363

[^0]: Notes 1: When coil resistor is used.
 2 2: Some systems increase current demand.
 Notes 1 : When coil resistor is used.
 2 2: Some systems increase current demand.
 3: Anti-bounce firing circuits can be used to retain existing contact breaker at high rev/min.

 - Improvement
 - Further improvement

[^1]: *The remarkable fact that some kind of improvement or enhancement results for many people with almost any kind of two-source listening is not surprising. The optimization process may be regarded as still unfinished.

[^2]: ROTARY, CARBON TRACK
 P. 20 SINGLE line ar 1000 hms to 2.2 megohms

 JP. 20 DUAL GANG lin 4.7 Kohms to 2.2 megohms
 JP. 20 DUAL GANG log. 4.7 Kohms to 2.2 meg ghm
 JP. 20 DUAL GANG antilog 10 K only
 2A DP mains switch for any of above 14p extra
 Decades of 10.22 and 47 only available in ranges above 6 peach Carbon Presets Type PR. horizontal or vertical

 SLIDER
 Linear or log. 4.7 K to 1 meg . in all popular values Escutcheon plates, black. white or light grey ea. $14 p$
 ea. $14 p$ ea. 48 p
 ea. 48 p ea. 48 p $48 \mathrm{4p}$
 ea. $10 p$

[^3]: G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order 20p.

[^4]: Age limits 20-45.

[^5]: ## ARTICLES FOR SALE

 A ARVAK ELECTRONICS, 3-channel sound-light Strobes, £132.—12A Bruce Grove, N17 6RA. 01-808 9096.

 BRENELL TAPE DECK Mk. 6, brushed 3 aluminium, with cabinet and 3 quarter track Bogen heads for transistor circuit, e.g. J. R. Stuart design, $£ 65.00$. Tel: 01-223 1986 (Battersea, London).
 [3894
 BUILD IT in a DEWBOX quality plastic cabinet B_{2} in. $\times 21$ in. x any length. D.E.W. Ltd. (W.), Ringwood Rd. Fernwood, Dorset. S.A.E. for leaflet Write now-Right now.

[^6]: HI FIDELITY MODULES made and tested.
 Linsley Hood, D.C. coupled 75W $\mathbb{C 1 4 . 0 0 ^ { * }}$
 Linsley Hood, pre-amp (75W) 13.50 Linsley Hood, pre-amp (75W) Bailey Quilter, pre-amp
 Toshiba I.C. Stereo, pre-amp
 12.00 *Excl. Heat Sinks.
 TELERADIO HIFI, 325 Fore St., London, N9 OPE.
 $01.807 \quad 3719$. (Closed Thursday.) 133

[^7]:

 strpply. Thls periodical is sold subject to the following conditions nameiy that it shall not without the written consent of the publighers first given be lent re-sold, hired out or otherwise diaposed of by way of Trade
 it a price in excess of the recommended maximum price shown obthe cover, and that it hall not be lent, re-sold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade
 ir aftied to or as part of any publicatlon or advertieing, literary or pictorial matter whatsoever.

