wiress
 ladar foestars
 olour sound system
 ren ent the

U.S.A. $\$ 1.00$

MODEL X25 220-240 Volts or $100-120$ Volts. The leakage current of the NEW $\times 25$ is only a few microamps and cannot harm the most delicate equipment even when soldered "live". Tested at 1500 v . A.C. This 25 watt iron with its truly remarkable heat-capacity will easily "out-solder any conventionally made 40 and 60 watt soldering irons, due to its unique construction advantages. Fitted long-life iron-coated bit $1 / 8^{\prime \prime}$. 2 other bits available $3 / 32^{\prime \prime}$ and 3/16". Totally enclosed element ceramic and steel shaft. Bits do not "freeze" and can easily be removed. PRICE $£ 2.15$
(rec. retail) P \& P 10 p . Suitable for production work and as a general purpose iron.

MODEL SK. 1 KIT
Contains 15 watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and 3/32", heat sink solder, stand and
"How to Solder" booklet

The

You know his type...always blowing hot and cold... getting overheated just when you need him to be controlled and efficient. It's the same with some people's soldering irons.

Hopelessly inefficient heat control can make soldering operations a nightmare; if this is what soldering means to you 'it's time you woke up to Antex.

Choose a new model from the comprehensive Antex range of soldering instruments, with low-leakage characteristics,
unique construction advantages and really precise heat control.

Choose ANTEX-the warm

 P\& \& 10 p .

4 MODEL CCN

220 volts or 240 volts
The 15 watt miniature model CCN also has negligible leakage. Test voltage 4000v. A.C.
Totally enclosed element in ceramic shaft
Fitted long-life iron-coated bit $3 / 32^{\prime \prime}$. 4 other bits available $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}$ and $3 / 64^{\prime \prime}$ inċluding Heat Shield. PRICE £2.48 (rec. retail) P \& P 10 p .

MODEL MLX KIT
Battery operated 12 v . 25 watt iron fitted with 15 lead and 2 heavy clips for connection to car battery. Packed in strong plastic wallet with booklet "How to Solder"

PRICE $\mathbf{\Sigma 2 . 7 6}$
(rec. retail) P \& P 12 p .

MODELSK. 2 KIT
Contains 15 watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$ heat sink, solder, and "How to Solder" booklet.
PRICE £3.53 (rec. retail)
P \& P $10 p$.

car accessory shops or in case of difficulty direct from: ANTEX LTD. FREEPOST

ST3 Staind - This stand is made from high grade insulation material with a chromium plated strong steel spring. It is suitable for all models and replaces all previous stands, The two sponges at the side which are easily replaceable serve to keep the soldering bits clean. Spare bits can be accommodated as shown on the illustration.

PRICE: $£ 1.00$ retail) P \& P $10 p$. (Giro No. 258 1000)

Good News Travels Fast

Haltron service is always good news. Around the world, Governments and many other users of electronic valves, semiconductors and integrated circuits turn to Halton for service they can trust. Efficiency they can rely on.
Haltron are International Specialists, supplying products of outstanding high quali y and confirmed reliability. Our prices are competitive; and a policy of exter sive stocking means speedy despatch to meet your requirements. Specify Haltron. Share in the good news yourself.

Häll Bectric Limited
Electron House,
Cray avenue, St. Mary Cray,
Orpinjton, Kent, BR5 30J.
Telephone: Orpington 27099
Telex: 896141

Feathers and things

Take a diaphragm from a QUAD electrostatic loudspeaker. Let it fall and you can count up to ten before it reaches the ground. Try to do this with a cone from a moving coil speaker and you'll need a high speed computer to do the counting.
Remember all that stuff at school about kinetic energy? How heavy things are hard to start and
hard to stop? That's why a QUAD loudspeaker responds immediately to every nuance in the music. It's obvious when you think of it. It's even more obvious when you hear it.
Send postcard for illustrated leafet to Dept.WW Acoustical Manufacturing Co. Ltd.,
Huntingdon PE18 7DB. Telephone (0480) 52561.

QUAD
Products of The Acoustical Manufacturing Co.Ltd.
for the closest approach to the original sound
QUAD is a Registered Trade Mark

Motorola LED sentries never die.

They come in three colours - red, yellow and greenand in viewing angles to suit all applications.

We're so confident of your determination to be up-to-date, that we've invested heavily to give you the LEDs you want, when you want them. Use indicator lamps that are worthy of your equipment. Use Motorola LEDs as sentries to watch over it.
To find out more about the design possibilities of these high-reliability products, just send for the new Motorola Opto Electronics brochure, which gives you information about our light detectors and couplers too. You'll find it profitable reading.

PROFESSIONAL USER?

Have you seen our latest catalogue?

AKG Equipment Ltd 182/4 Campden Hill Road London WE 7AS. Telephone 01-229 3695.

1 an

 KESTREL RANGE- Modern styling, with clearfront plastic case.
- Seven models, scale lengths from 1.3" to $5.25^{\prime \prime}$.
- Extensively used by many leading manufacturers of electronic and electrical equipment.
- Available in all ranges, moving coil and moving iron.
- Competitive prices.

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Vulcan Moving Iron. 4 models, 1•5", 1•8", 2•7", $3 \cdot 7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Regal Range 100° flattened arc. 2 models $2.5^{\prime \prime}$ and $3.2^{\prime \prime}$ scales. Taut band. DC moving coil and AC moving coil rectified.

Profile 350 edgewise $4 \cdot 3^{\prime \prime}$ scale. DC moving coil and $A C$ moving coil rectified. Horizontal or vertical mounting.

Oxford Long Scale 240°. 2 models, $5 \cdot 5^{\prime \prime}, 8^{\prime \prime}$ scales. DC moving coil and AC moving coil rectified.

Stafford Long Scale 240 6 models, $3 \cdot 5^{\prime \prime}-11 \cdot 5^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, AC moving iron. Also 98° scale.

Models KE1 and KE2
Miniature Edgewise Meters. Nominal scale lengths $1.2^{\prime \prime}$ and $2^{\prime \prime}$
Available in sensitivities from 50 microamps Moving Coil

Lancaster Long Scale $240^{\circ} .2$ models, $4^{\prime \prime}, 5 \cdot 5^{\prime \prime}$ scales. DC moving cois and $A C$ moving coil rectified.

From millions of hous operuling experience come four New Pumbicon Cumer Tohes.

Just because over 80% of the world's colour TV cameras use our Plumbicon Camera Tubes, doesn't mean that we can rest on our laurels. At Mullard, experience has taught us to anticipate your needs, to keep that extra step ahead. Hence we now offer you four NEW 25 mm Plumbicon Tubes (XQ1083 to 1086) ; that's

in addition to a rance already 16 strong. The most advanced 25 mm camera tubes available anywhere in the world, they feature the anti-comettail gun, enhanced red response, anti-halation discs and low output capacitance producing improved signal to noise performance. They also incorporate a light biassing system for reduced lag.

Behind Mullard's capability

Mullard's backgıound ir electron optics is based on a thorough understanding of vacuum and glass technologies. At Nitchan, part of Europe's biggest Electron optics capability-ccmplete with its own fibre optic drawing plant, we make night vision and low light level TV devices. Years of experience in the design and manufacture of image intensifiers and other electron optical devices has resulted in a capability well geared to today's and tomorrow's requirements. Whether your need is for high volume standard devices, or custom-built specials, Mullard have the experience and the resources to meet it.

For full details about Plumbicon and other camera tubes, contact :
Mullard Limited, Mullard House,
Torrington Place, London WC1E 7HD.
*registered trade mark for Tétevision Cemera Tubes

Electronic valves (a comprehensive range) semi-conductors (a wide variety) integrated circuits... and now a comprehensive range of Hybrid Microcircuits. Prices on request.

Teonex offers more than 3,000 devices. They are competitively priced and they are superlative in performance because the company imposes strict quality control. Teonex concentrates entirely on export and now operates in more than sixty countries on Government or private contract. All popular types in the Teonex range are nearly always available for immediate delivery. Write now for technical specifications and prices: Teonex Limited, 2a Westbourne Grove Mews, London W11 2RY, England. Cables: Tosuply London W11. Telex : 262256

AVAILABLE ONLY FOR EXPORT

The extra
ingredient.

Every KEF speaker gets it.

It's a revelation, to watch a KEF speaker being made. No automated process, but one where the final result still depends on the hands that build it. And on the philosophy of the company ... an exceptional concern that rejects cheaper materials or short cuts . . . searches always for cesign advances that lead to that ultimate in performance. A philosophy that takes care, even over the smallest details. Feed wires secured so that they never rattle. Ordinary wadding replaced by consistent pre-formed blocks of special acoustic foam. Every drive unit is KEF made, tested at every stage. Even the build-it-yourself Kefkits are individually tested in the correct enclosure. The next time you hear a KEF speaker you'll know why it sounds better. Return the completed coupon for detailed literature.
 literature on the items ticked.
Reference Series
C Series
KEFKITS
Chassis Units
Name
Address
\% KEF

Testmatic answers testing problems

Edith Parker easily handles all the Testmatic work in a sub-assembly department of 32 people. When a board leaves that department, it's faultless.

If your product uses elaborate circuitry, it takes skill to faultfind by standard test department methods. But if you put skilled staff on repetitive work, you don't deserve to keep them.

Ansafone's answer was the Testmatic TM30. Repetitive work is what it thrives on-like all machines. It frees qualified staff to do what they were trained to do. And it has other advantages that are just as important.

Mr.S.P. Robinson, a Director of Ansafone states: "An obvious benefit of the Testmatic is that it helps us educate people working on assembly. If they get faulty boards back at once, they feel that much more involved and more responsible. In fact, we don't even see the Testmatic as a tool of the Test Department but as a tool of the Production Department."

Furthermore, the Testmatic makes money by saving time. Ansafone predict that it will help them reduce routine testing time by half. This is a cool and cautious estimate. There will be people
saying "I-told-you-so" if the saving turns out to be even more dramatic than that.

Once again, that is not peculiar to Ansafone. The common experience is that from the time the TM30 is set up ("set up" rather than "programmed,"because the procedure is so simple), it pays for itself in months if not weeks.

[^0]

Are anti-reflection coatings just an afterthought in your laser system?

Here's why Ferranti specified OCLI laser coatings at the design stage of their aircraft Laser Ranger and Marked Target Seeker.

Ferranti realised right at the start that it was vital to specify high-quality optical coatings for their aircraft laser systems if optimum performance from mirrors, lenses, prisms, and other components was to be achieved. Laser system requirements not only push the performance of optical components, including coatings, to their limits, but also make any latent shortcomings and flaws more evident. For these reasons, transmission and reflection efficiencies in Ferranti's laser systems were required to be in the $99+\%$ range.
Such efficiencies can only be obtained with welldesigned and properly-applied optical coatings, such as those produced by OCLI Optical Coatings Limited.

OCLI OFFERS A FULL LINE OF COATINGS AND OPTICS FOR USE IN ALMOST ANY LASER AND F.L.I.R. SYSTEM.

OCLI

OCLI Optical Coatings Ltd., Hillend Industrial Estate, Dunfermline, Fife KY11 5JÉ. Telephone: Inverkeithing 3631 (038-34 3631)

WW-018 FOR FURTHER DETAILS

NEW STANDARD CASES from OLSON NEW SERVICE FROM STOCK - DESPATCHED BY RETURN OF POST

TYPE	WIDTH	HEIGHT	DEPTH	FRONT PAN DIM.	PRICE	LEG EXTRA
21	$6 \frac{1}{2}{ }^{\prime \prime}$	$4 \frac{1}{2}^{\prime \prime}$	$4 \frac{1}{2}^{\prime \prime}$	6"×4"	£2.95	70 p
22	$8 \frac{1}{2}^{\prime \prime}$	$5 \frac{1}{2}{ }^{\prime \prime}$	$5 \frac{1}{2}^{\prime \prime}$	8"X5"	f3. 30	70p
23	$10 \frac{1}{2}{ }^{\text {" }}$	$6 \frac{1}{2}^{\prime \prime}$	$6 \frac{1}{2}{ }^{\prime \prime}$	$10^{\prime \prime} \times 6$ "	f3.95	75p
24	$12 \frac{1}{2}^{\prime \prime}$	$7 \frac{1}{2}^{\prime \prime}$	71^{2} "	$12^{\prime \prime} \times 7^{\prime \prime}$	f4.30	75p

Our Trade Counter is open for personal callers from 9 a.m. to 5.30 p.m. Monday-Friday
POSTAGE EXTRA + 10\% V.A.T.
OLSON ELECTRONICS LTD., FACTORY NO. 8, 5-7 LONG ST., LONDON E2 8HJ.
Cases made from 20swg. zinc coated m / s. Front \& rear panels 16 swg . aluminium. Cases finished in Olive green hammertone with front panels in light straw shade 384. All cases fitted with ventilated rear panels and a very attractive chrome plated retractable leg can be fitted as an optional extra.

The Greenwood guide to professional soldering.
 Greenwood Electronics offer a range of highly advanced products

 specifically for professional soldering applications.For more detailed information about the comprehensive Greenwood range, contact the address below.

1. The Iso-Tip. A safe, high-power iron which works anywhere without a mains lead. The breakthrough? Nickel Cadmium cells that are re-chargeable. (A charging stand is included for 240 v or 115 v A.C.) Each charge gives at least 60 soldering joints. Weight? Only 6 oz . Price: $£ 10.70$ \& VAT.
2. The Oryx 50. A temperature controlled mains soldering iron. (Temperature control within $\pm 2 \%$). Adjustment ($200^{\circ}-400^{\circ} \mathrm{C}$) can be made whilst iron is operating, using the same tip. Light, compact, and easy to handle. A large 50 W element loading gives rapid heating and high performance with constant tip temperature.
Price: E5.90 \& VAT. Also available: Oryx safety stand: $£ 2.10$ \& VAT.
3. Oryx SR3A desoldering tool. Ideal where components are tightly grouped. Instantly removes unwanted solder from printed
circuits etc. Accurate, reliable, speedy, and safe. Price: $£ 4.50$ \& VAT.
4. The Ersa Multitip. A top-quality iron that's ultra-light offering reliability so necessary to achieve constant production flow. A range of different shaped tips simply push onto the stem of the iron. It has the unique advantage that you can change the element in seconds.

Price: $£ 3.20$ \& VAT.
5. The Ersa Sprint. Unique -it heats up to maximum
temperature in only 10
1
?
seconds, and is the lightest gun on the UK market. Ideal for the service-man. With its light weight (only 7 oz .) and compact construction, it can be manoeuvred in even the most awkward areas. Price: $£ 5.95$ \& VAT.

21 Germain Street, Chesham, Bucks, HP5 1LL Tel: 024054808 Telex: 83647

The FP 210K, I'Plumbiticn' camera

This is the camera that will operate anywhere - in the studio or on outside location - and guarantee excellent results for a wide range of T.V. requirements in the fields of industry, education and commercial applications.
Equipped with a $5^{\prime \prime}$ electronic viewfinder for accurate picture composition and focus, the FP 210 K is automated to ensure all major functions are easily handled.
If you prefer, a separate mesh type vidicon tube can be used, which, like the $1^{\prime \prime}$ Plumbicon ${ }^{\circledR}$ gives high definition picture reproduction.
To see the FP 210 K in action, or for complete technical information, contact Shibaden's Technical Service Department at 01-203 4242/6 or write to:

HITACHI SHIBADEN (U.K.) LIMITED
 BRDADCAST \& CCTV EQUIPMENT MANUFACTURERS

 Lodge House Lodge Road Hendon London NW4 4DO. Telephone: 01-203 4242,6
FEATURES

- Built in $2-1$ interlace syme geareter for single camera operation and external driving featere for multi-camera ozeration.
- Negative/Pusitive switch and scen reverse featlre.
- Ruilt in intersom and tally circuie.
* Automatic or remote iris control far zoom
lens.
Wide range of lense available.
 Shihadens latest

Looked at closely

The best pick-up arm in the world
$\square \square \sqrt{\square}$
Write to SME Limited
Steyning - Sussex • England
Telephorie : Steyníng (0903) 814321

How can you justify buying a new public address system at a time like this?

Nobody's going to forget the 3-day week overnight. It'll take time to catch up on lost production.

But for the smart, efficient company it's a time to get ahead of competition. A chance to catch up first.

More than ever you'll need to keep everyone on their toes, ready for last minute instructions, always available for an unexpected meeting.

One of the best ways we know of doing this is a good public address system. Like the equipment you see here from the Eagle range.

WALL MOUNTING SPEAKERS.
Imagine how much time you'd save with every member of staff at your receptionist's fingertips.

At the touch of a switch she could reach anyone you wanted - whether they were out in the loading bay in one of speody attersassen loull the offices, on the factory floor. Anywhere. two year guarantee.

If it only saves you a few minutes a day over the next critical months, your profits will be looking up again sooner than you expected.

And who knows, maybe sooner than anyone else's.

CA\&
Eagle International, Precision Centre, Heather Park Drive, Wembley HAO ISU. Telephone 01-9030144.
$\sqrt{\text { Please send }} \mathrm{me}$ more information on Eagle PA and details of how it can help towards more efficient running of my firm.
Name
Company
|Address

ITelephone No. \qquad wn 1

Mr. W. Morrow, Eagle International, Precision Centre, Heather Park Drive, Wembley, Middlesex HAO ISU, I Tel. No. 01-903 0144.
If you need specific details urgently, please don't hesitate to contact Mr. Morrow personally.

Heathkit for

 Frequency CountersCHOOSE KITS OR FACTORY ASSEMBLED AND CALIBRATED MODELS
IB-1101 100 MHz counter with 5 -digit resolution- 8 digit capability; 50 100 mV sensitivity; wide range input.
Price - Assembled IB-1101 $\mathrm{f} 108.50+$ VAT.
IB-1102 120 MHz counter with 8 -digit readout; $45-125 \mathrm{mV}$ sensitivity; time-base stability better than $\pm 1 \mathrm{ppm}$.
IB-1103 180 MHz counter with phase-locked frequency multiplier ; $8 \frac{1}{2}$ digit display plus overrange; $50-100 \mathrm{mV}$ sensitivity; time-base stability better than $\pm 1 \mathrm{ppm}$.
Send for comprehensive catalogue containing complete instrument range.

Free Catalogue

Please send me the FREE Heathkit Cata logue $\&$ details of Monthly budget plans.

ADDRESS

HEATH (GLOS.) LTD. DEPT. WW/5/74 Bristol Road,
Gloucester GL2-6EE

> IF YOU'RE STILL NOT CONVINCED THAT AMTRON ELECTRONIC KITS ARE A GREAT SALES PROMOTIONTHINK ABOUT OUR 'SALE ORRETURN' OFFER

*And that there are over 200 different kits for your customers to choose from appealing to hobbyists,
students, teachers, technicians, etc. etc.
*And that Rec. Ret. Prices vary from $£ 1.56$ to $£ 96.00$ -a very wide market.
*And that we look after all after-sales services and similar worries for you.
*And that we pass on'all the numerous enquiries that we get everyday straight to our dealers.
*And that we support yoد with constant national advertising.
*And that we supply you with all the necessary brochures, catalogues and price lists, etc., that you need, along with very attractive point-of-sale material and useful sales-aids.
*In fact, if you don't already stock AMTRON Kits you're missing out. So u hat are you waiting for?
Contact us today for further information.

THE BIG NAME IN ELECTRONIC KITS
AMTRON U.K., $4 \& 7$ CASTLE STREET, HASTINGS, SUSSEX TN34 3DY. Telephone HASTINGS 437875

 Minimod
 Made in Britain by Gardners...

First of a new range of all-British miniature encapsulated power supplies, the Minimod series is designed and manufactured by Gardners to provide reliable regulated power supplies in a. neat pack designed to plug into your P.C.
board. Minimod simplifies
development or production of
equipment by providing power where
you need it. Minimod provides a choice of a standard 5 volt output (available up to 1 Amp) for digital circuits or 12-0-12 or 15-0-15 volts for linear circuits, using a 230 volt input. Each unit is fully stabilised with fold back current limiting, and in the case of 5 volt units, over voltage crowbar is provided...
more about Minimod
Ask Gardners to tell you more about Minimod
Standard or special models can be supplied.

Gardners

Specialists in Electronic Transformers and Power Supplies.

TRANSFORMERS LIMITED
Gardners Transformers Limited, Christchurch, Hampshire BH23 3PN Telephone 02-015 2284 Telex 41276 Gardners XCH WW- 027 FOR FURTHER DETAILS

GRIDUNETM METERS

used as standards in many industries

- Accurate to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified
- Not sensitive to voltage or temperature changes. within wide limits
- Unaffected by waveform errors load, power factor or phase shift
- Operational on A.C., pulsating or interrupted D.C., and super imposed circuits
- Need only low input power
- Compact and self-contained
- Rugged and dependable

FRAHM Resonant Reed Frequency Meters are available in plastic and hermetically sealed cases to British and U.S. Government approved specification. Ranges $10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers available on request. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery

ANDERS ELECTRONICS LIMITED
48/56 Bayham Place, Bayham Street,
Anders means meters London NW1. Tel: 01-387 9092

Fully transistorised
for high reliability

Versatile

Meets in every respect all current specifications for measurement of Wow, Flutter and Drift on Optical and Magnetic sound recording/reproduction equipment using film, tape or disc

High accuracy

with crystal controlled oscillator

Simple to use

accepts wide range of input signals with no manual tuning or adjustment

Two models available:

Type 1742 'A' BS 4847: 1972 DIN 45507
CC1R 409-2 Specifications
Type 1742 'B' BS 1988: 1953 Rank Kalee Specifications

For further information please address your enquiry to Mrs B. Nodwell
Rank Film Equipment, PO Box 70
Great West Road, Brentford Middlesex TW89HR
Tel: 01-5689222. Telex 24408. Cables Rankaudio Brentford

1"and $1 / 2 / 2$ Video Tape from Dixons Technical. At very non-technical prices.

Average recommended Dixons price price (Exc. VAT)

1075 ft on $8^{\prime \prime} \times 1^{\prime \prime}$
NAB Metal Spool
£15.00
$£ 7.00$

1500 ft on $8^{\prime \prime} \times 1^{\prime \prime}$ NAB Metal Spool	£19.50	£7.50
$\begin{aligned} & 2150 \mathrm{ft} \text { on } 8^{\prime \prime} \times 1^{\prime \prime} \\ & \text { NAB Metal Spool } \end{aligned}$	$£ 20.75$	£9.50
3000 ft on $9 \frac{3}{4}{ }^{\prime \prime} \times 1^{\prime \prime}$ NAB Metal Spool	£26.50	£9.50

All Dixtec Video Tapes are of the highest quality; we supply $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ in air-tight containers. also $1^{\prime \prime}$ on metal spools. Current stocks are high, but so is demand. We recommend you place your order quickly.

Size Length Dixons Price
TOTAL PRICE:
I enclose a cheque made payable to Dixons Technical Limited.

NAME
ADDRESS

WWNT/S

 ONE ELEVENTH.

One of our customers puts the achievement of the G800 on record!

This letter is typical of many received by Golding. If you would like some further evidence, start by writing for a full descriptive leaflet on Goldring Cartridges to: Goldring Limited, 10 Bayford Street, Hackney, London E8 3SE.

Golding ©

transformers

mains, audio, microphone, ferrite core and other wound components

A wide range of transformers manufactured in production quantities to customers individual requirements

TRANSFORMER WITH UNIVERSAL END FRAMES AND turret lug connections

Prompt Prototype
Service available

MICROPHONE TRANSFORMER IN MUMETAL CAN
 SOLDER TAG CONNECTIONS

Drake Transformers Limited

Telephone:
Billericay 51155

Kennel Lane,
Billericay, Essex.

Barr \& Stroud's new EF3 Electronic Filter System means no more compromises when you buy variable filters. Now you can get the filter you need today, and additional plug-in units tomorrow. Today - the basic main frame and your choice of two modules to operate in low-pass, high-pass, band-pass, band-stop, band-separate, band-combine or cascade modes. Tomorrow - other interchangeable modules to meet your newest requirements. The first two modules,
already available, provide filtering with variable cut-offs between 0.01 Hz and 10.0 kHz , stop-band attenuation of $48 \mathrm{~dB} /$ oct. ($96 \mathrm{~dB} /$ oct. in cascade), and pass-band response from dc to 500 kHz . Get full details of EF3, the big breakthrough in electronic filtering from BARR \& STROUD LIMITED 1 Pall Mall East, London SW1Y 5AU Tel : 01-930 1541 Telex: 261877

WW-038 FOR FURTHER DETAILS

nombrex

MODEL 41 R.F.SIGNAL GENERATOR

Price $£ \mathbf{~} \mathbf{3 8 . 5 0}$

* $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals

PLUS 10\% FOR V.A.T.

* 8 clear scales - Totaliength 130 mm .
* Spin-Wheel Slow Motion Drive 11-1 ratio.
- Overall Accuracy - $2 \frac{1}{2} \%$.
- Modulation, Variable depth and frequency.
- Internal Crystal Oscillator providing calibration checks throughout all ranges.
* Mechanical scale adjustment for accurate alignment against internal 1 MHz crystal oscillator.
- Powered by 9V Battery.

Trade and Export enquiries we/come.
Send for full technical leaflets.
Post and Packing 50p. extra.
NOMBREX (1969) LTD., EXMOUTH, DEVON. Tel: 03-952 3515

JUST ONE OF A RANGE

$32 \mathrm{MHz}, 50 \mathrm{mV}$ Sensitivity. STABILITY 3 parts in 10
DELIVERY...EX-STOCK TO 10 DAYS THE HIGHEST PERFORMANCE DIGITAL FREQUENCY COUNTERS AT THE PRICE IN THE WORLD EVERYBODY BUYS THEM

OTHERS IN THE RANGE:-

4016 DIGIT. 32 MHz
STABILITY 1 part in 10° SENSITIVITY 10 mV
5018 dIGIT. 32 MHz
5018 DIGIT. 32 MHz
STABILITY 3 parts in 10^{8} STABILITY 3 par
(crystal oven) SENSITIVITY 10 mv

ELECTRONIC START STOP version PLUS $£ 12$ MEMORY version PLUS £25 DIRECTLY COUPLED INPUT AND SPECIALS AS REQUIRED Write for illustrated leaflet
Supplied to and acc/aimed by professional engineers evenwhere who have purchased our electronic instruments for the past 10 vears

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE

A Thermometer designed to operate as an Electronic Test Meter．Will measure temperature of Air，Metals，Liquids，Machinery，etc．，etc． Just plug－in the Probe，and read the temperature on the large open scale meter．Supplied in zippered vinyl case with transparent front and carrying loop．Probe，and internal $1 \frac{1}{2}$ volt standard size battery． Model＂Mini－On 1＂measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ，price f17．50 Model＂Mini－On Hi＂measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$ ，price £20．00（V．A．T．EXTRA）
Write for further details to
HARRIS ELECTRONICS（LONDON）， 138 GRAY＇S INN ROAD，LONDON WC1X 8AX
（＇Phone 01－837 7937）
WW－ 047 FOR FURTHER DETAILS

Gardners line up

Line MatchingTransformers
from Standard to Super Fidelity

Gardners）

GARDNERS
 TRANSFORMERS LIMITED

As a result of continued expansion， Dixons Technical require CCTV engineers to work in their new showrooms and workshops．

Applicants should be fully experienced in the installation and maintenance of PalColour cameras， videotape recorders and all makes of CCTV equipment．

Salaries around $£ 3500$ can be expected along with a pension scheme and all other benefits associated with a large company．

D）工凡日 Technical Ltd

Write or telephone
Mike Biddle，Managing Director，Dixons Technicalltd 3 Soho Square London W1 01－4378811

Importers of ITC Palca Fora equipment．
Agents for National Fanasonic，Akai，Philips，Shibaden．
 tweeter. 2.) New design 'pressure' mid-range unit. 3.) Ultra Linear 12^{*}. Bass drive unit. 4.) A.B.R ensures controlled bass down to 16 Hz . 5.) Precision crossover for perfact system integration.

A new Loudspeaker of advanced design suitable for studio use and for home installations of the highest quality.
UNITS: HF 2000 (dome 'pressure' sype) MF 500 (Mid-range Dame 'pressure' type) Ultra linear $12^{\prime \prime}$ bass driver and 12" ARR. The crossover has resulted from considerable research and crossover points are at 500 Hz and 5000 Hz 80 Watts aximum, 4-8 ohm. This monitor loudspeaker system has an exceptionally wide and flat frequency response. Very low order harmonic and inter-modulation distortion. Precise fesponse to transients. Beautifully maintained polar response ensures absence of unwanted directional effects and provides a highly satisfactory stereo image throughout the listening area. Matched pairs.
SIZE $40 \times 15 \times 11 \div$ Natural Teak or Walnut Cabinet
Celestion $\sqrt{6}$
Loudspeakers for the Perfectionist ROLA CELESTION LTD. DITTOH WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 8.JP

IF you buy electronic or electrical components, industrial or consumer fastenings...

As the largest stockists of Cinch, Dot \& FT products we shall be happy to deliver small or assorted quantities of anything you need. Let us have your next enquiry.

Make United-Carr Supplies your SINGLE SOURCE for

United-Carr Supplies Ltd., 112 Station Road,
Ilkeston, Derbyshire, DE7 5LF.
Tel: Ilkeston 78711 STD 06072 78711. Telex: 377117
wW-051 FOR FURTHER DETAILS

DO
 YOUWANT

 to use your a IMHz pen recorder?oscilloscope for storage with digital readout

to capture one-shot waveforms

Then see the datalab

range of transient recorders on stand 623

IEA, or details from:
DL901

DL905

Data Laboratories Limited, 28 Wates Way, MITCHAM CR4 4HR, Surrey Tel: 01-648 4643/4 Telex: 947680

HIGH POWER DC-COUPLED AMPLIFIER


```
* UP TO 500 WATTS RMS FROM ONE CHANNEL * DC-COUPLED THROUGHOUT
* OPERATES INTO LOADS AS LOW AS 1 OHM
\(\star\) FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
```

* 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ablily of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm , and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth DC-20kHz@ 150 watts + 1db. - Odb.
Power at clip point (1 chan)
Phase Response
Harmonic Distortion
Intermod. Distortion
Damping Factor
Hum \& Noise $(20-20 \mathrm{kHz})$
Other models in the range: D60 - 60 watts per channel

Slewing Rate 500 watts rms into 2.5 ohms
$+0,-15 \mathrm{DC}$ to 20 kHz .1 watt 8Ω Below 0.05\% DC to 20 kHz Below 0.05\% 0.01 watt to 150 watts Greater than 200 DC to 1 kHz at 8Ω At least 110 db below 150 watts

Load impedance Input sensitivity Input Impedance Protection Power supply Dimensions

8 volts per microsecond
1 ohm to infinity
1.75 V for 150 watts into 8Ω

10 K ohms to 100 K ohms
Short, mismatch \& open cct. protection
$120-256 \mathrm{~V}, 50-400 \mathrm{~Hz}$
19" Rackmount. 7" High. 93군 Deep

MACINNES LABORATORIES LTD

MACINNES HOUSE. CARLTON PARK INDUSTRIAL ESTATE,
SAXMUNDHAM, SUFFOLK IP17 2NL
TEL: (0728) 22622615

A NEW STANDARD FOR SOUND REPRODUCTION HD250 High Definition Stereo Control Amplifier

Designed for disc and tuner input and two tape machines, with complete recording and reproducing facilities.

The HD250 amplifier establishes a new standard in amplifiers for sound reproduction in the home. Improvements have been made in respect of performance, engineering design and quality of construction. We believe that no other amplifier in the world can match the specification of the HD250. Look at extracts from the specification below.

Power output. Rated:

Maximum:

Distortion.

Pre-amplifier:
Power amplifier at rated output at 25 w output:

50 watts average continuous power per channel. into any impedance from 4 to 8 ohms, both channels driven. 90 watts average power per channel into 5 ohms load.

Zero. (Cannot be identified or measured as it is below inherent circuit noise.)

Less than 0.02% (typically 0.01% at 1 kHz). Typically 0.006%.

Overload margin.

$$
\text { Disc input } \quad 40 \mathrm{~dB} \mathrm{~min} \text {. }
$$

Hum and noise output.
Dis
Disc:

Line:
Size:
Weight:

83 dBV Measured flat with noise bandwidth of 23 kHz .
-88 dBV Measured with ' A ' weighted characteristic
-85dBV Measured flat.
-88 dBV ' A ' weighted.
17 inches $\times 4 \frac{3}{4}$ inches $\times 11$ inches deep overall.
21 lb .

Write or phone for leaflet which describes the design philosophy and conception of the HD250 together with a complete specification.

RADFORD AUDIO LIMITED, BRISTOL, BS3 2HZ Telephone: 0272662301

updating from

TBA 800-TBA 820

ARE YOU LOOKING FOR COMMUNICATION ANTENNAS?

HY-Q ANTENNAS LIMITED, a newly formed company with technical staff having 10 years experience in the development of radio telephone ship to shore, satellite tracking. telemetry and broadcasting antenna, together with a well equipped laboratory are now offering Professional Communication Antennas.
At this time we are able to offer VHF and UHF Yagis. Centre Fed Dipoles covering low and high bands and are rapidly developing further new ranges. Stocks are being maintained and in instances where your orders cannot be supplied from stock, we guarantee delivery within 7 days. We would greatly welcome your enquiries and details of specifications and prices may be obtained by telephoning in the absence of our printed catalogue.

HY-Q ANTENNAS LIMITED

Pondwood Close, Moulton Park Industrial Estate, Northampton.
Tel : Northampton 48129 Cable Address: Hikeant, Northampton, England.

Problem

Where to obtain a low-cost device to use as a linear output stage for mobile and marine radio under SSB conditions.

Solution

M-OV long-life beam tetrodes. A single TT21/22 gives 100W PEP at 1200 V H.T. and one TT100 delivers 180W PEP at 850 V H.T.

EEVand M-OV know how.

LAD 80

THE M-O VALVE CO LTD, Hammersmith, London, England W6 7PE. Tel: 01-603 3431. Telex: 234356. Grams: Thermionic London. S\&C WW-061 FOR FURTHER DETAILS

DC/AC SINEWAVE TRANSVERTORS

(transistorised Invertors/Convertors)

Many world famous car manufacturers such as FORD, BRITISH LEYLAND, including ROVER-TRIUMPH, VAUXHALL, develop their cars under exact laboratory conditions. The AC electric power to drive the precision instruments and computers is provided by Valradio Transvertors.

Type	Input Volts	Output	 10% VAT
C12/30S	12	$115 / 230 v 50 \mathrm{~Hz} 30 \mathrm{~W}$ Sine Wave	$£ 35.70$
R12/250/24R	12	247 ADC	£75.55
R24/250/50R	24	503 A Regulated	$£ 97.25$
D12/400S	12	$115 / 230400 \mathrm{~W} 50 \mathrm{~Hz}$ Sine Wave	f 197.00
D24/500S	24	$115 / 230500 \mathrm{~W} 50 \mathrm{~Hz}$ Sine Wave	f 197.00

All prices $+10 \%$ VAT. All $50 \mathrm{~Hz} \pm \frac{1}{4} \mathrm{~Hz}$. Also available $60 \mathrm{~Hz} \pm \frac{1}{4} \mathrm{~Hz}$ at same price.
For operating frequency and wave form sensitive equipment such as sound tape recorders, video tape recorders, professional film cameras. sensitive instruments. etc.
Other models available for inputs of $24,50,110$ and 220 volts DC. Square waveform output also available. generally from stock. Send for informative brochure.

VALRADIO LIMITED BROWELLS LANE, FELTHAM, MIDDLESEX TW13 7EN, ENGLAND TEL: 01.890 4242/4837

More than 350 different types to choose from

Vitality's the name for

 miniature and sub-miniature lamps.If you can't find the lamp you need from the 350 different types of Vitality sub-miniature and miniature lamps just pick up the phone and ask for the Vitality applications service.

Miniature and sub-miniature lamps are Vitality's speciality and the range available is one of the most comprehensive in Europe.

Write for the Vitality catalogue for full details on the range and application notes, or phone us if you have a special requirement for conventional or unusual environments, wherever a light source is needed for illumination, reference, indication or warning.

Vitality Ltd 回

BEETONS WAY, BURY ST. EDMUNDS, SUFFOLK. TELEPHONE: 0284 62411.TELEX: 81295.

Authorised Distributors

Townsend Coates Ltd., Coleman Road, Leicester LE5 4LP. Telephone: 0533768561 . Telex: 34321.
FarnellElectronic Components Ltd., Canal Road, Leeds LS12 2TU. Telephone: Leeds 636311. Telex: 55147.

ADVANCE CALCULATORS PROGRAMMABLE ONLY £199!
 88 POCKET 2 MEMORY. \% SOUARE ROOT £99!

FULL RANGE OF QUADRAPHONIC \& STEREO SYSTEMS

AVAILABLE, ALSO GARRARD TURNTABLES

Advanced off-air frequency reference. Phase-locked, with Signal Monitor. A lab standard
Signal source. type 1. Precision frequency reference
Dsborne source (W.W. Jan '73), de luxe version
Kit for construction of an Osborne-based signal source
Full range of items for Quadrophony (full lists sent with all goods supplied)
CBS-SO Matrix Decoder using MC1312P (see W.W. Nov 1973) kit ($\frac{1}{2}$-hr. to build)
CBS-SQ Decoder as above, built and tested production board, fits any set-full instructions supplied
Advanced phase-lock-loop Stereo Decoder on board, regulator provision, typically 40dB separation
Stereo Decoder. as above, but in kit form (about 30 mins to build) (uses MC1310P in holder, inc. LED)
Superb 20W 8Ω Loudspeakers, as used for "P.E. Rondo", built in white or teak per pair
Easy-to-build Kits for above Loudspeakers, per pair
...

Goldring G101/2 Turntable Chassis, less cartridge .
or teak per pair
Deutsche-Elac STS 144/17 Cartridge, ideal high-quality. low priced unit for Matrix quad
Instrument Cases, attractively featured with black Vinyl-covered steel top and sides, aluminium fronts and backs
Good Stereo Headsets with volume controls
Case B $11^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$ nom. $\mathbf{f 1 . 9 5}$
Case C $9^{\prime \prime} \times 5^{\prime \prime} \times 2 \frac{1}{2}{ }^{\prime \prime} \mathbf{f 1} 170$
Case A $8^{\prime \prime} \times 5^{\prime \prime} \times 2^{\prime \prime}$ nom. $\mathbf{£ 1 . 4 5}$
Handy little Aluminium Boxes, with lids and screws: Box $1-5 \frac{1}{4}{ }^{\prime \prime} \times 2 \frac{3}{4}{ }^{\prime \prime} \times 1 \frac{1_{2}^{\prime \prime}}{2}=42 \mathrm{p}$. Box $2-4^{\prime \prime} \times 4^{\prime \prime} \times 1 \frac{1}{2}{ }^{\prime \prime}=42 \mathrm{p}$. Box $3-4^{\prime \prime} \times 2 \frac{33^{\prime \prime}}{4} \times 1 \frac{1}{2}=42 p$. Box $4-5 \frac{1}{4}^{\prime \prime} \times 4^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{2}=47 p$. Box $5-4^{\prime \prime} \times 2 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime}=42 p$. Box6- $3^{\prime \prime} \times 2^{\prime \prime}$ $\times 1^{\prime \prime}=34$ р. Вох $7-7^{\prime \prime} \times 5^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}=66 \mathrm{p}$. Вох $8-8^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}=84$ p. Box $^{9}-6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}=54 \mathrm{p}$.
Babani \& Bernards books stocked-lists available.
UK ORDERS-All prices carriage free. Please add 10\% VAT.
OVERSEAS ORDERS—Please send to Studio Electronics International at Harlow. No VAT chargeable. Please add ample carriage allowance-we credit or refund the excess.
A FUIL TECHNICAL AND AFTER-SALES-SERVICE IS PROVIDED.
AS MANUFACTURERS AND DISTRIBUTORS WE WELCOME TRADE AND EXPORT ENQUIRIES.
COMMUNICATIONS CONSULTANTS ... INSTRUMENT DESIGNERS . . FOUR-CHANNEL SOUND SPECIALISTS

Ploass print clasty and detach coupon along the dottrad ling		
P.R.O.G. . . .	f199.00	
88	f99.00	NEW
O.A.F.R.	£85.00	CAT.
S.S.I.	£66.00	CAT.
D/LOS.S	f44.50	OUT
OS.S.K.	f30.00	SOON.
SQ-DEC. K.	f8.00	ARE
SQ-DEC. B. \& T.	f11.00	YOU
PLL-DEC. B. \& T.	f6.95	ON
PLL-DEC.K. .	f5-95	
PR/LS/teakwhite	¢44.00	OUR
$2 \mathrm{~K} / \mathrm{LS} /$ /eak/white	£37-50	LIST?
G101/2	£23.90	
STS 144/17	£7.90	S.A.E.
Phones	£4.95	APPRE-
Case A f 1.45	CIATED.
Case B $£ 1.95$	
Case C 11.70	
Box No. aty		
Box No. aty		
TOTAL		
+ VAT		
Money enclosed f by cheque/P.D./M.D./bank draft.		
please let us know after 7 days if		
NAME		
ADDRESS		
		ww5/74

WW-064 FOR FURTHER DETAILS

A NOVEL STEREO FM TUNER

Kits of parts for this tuner are now available from us. All parts are to the designers' specification including P.C. board, filter, I.Cs, etc. and are of the highest quality. Our confidence of your success is backed by a performance guarantee. Send now for details (S.A.E. please) to:

ICON DESIGN

33 RESTROP VIEW, PURTON, WILTS SN5 9DG.

Audio Connectors

Broadcast pattern jackfields. jackcords, plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd. 90 Wardour Street,
London WIV 3LE
01-4371892/3

Si451 Millivoltmeter

* 20 ranges also with variable control permitting easy reading of relative frequency response

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

 SPECIAL FEATURES:* very low distortion content-less than 0.05\%
* an output conforming to RIAA recording characteristic
\star battery operation for no ripple or hum loop
* square wave output of fast rise time
£45.00
a/so available

Si452 Distortion Measuring Unit

* low cost distortion measurement down to 0.01% with comprehensive facilities including L.F. cut switch. etc.

REVOX A77 Series

 figurations, inc. $\frac{1}{2}$ track. full track, $\frac{1}{4}$ track. Tape speeds $1 \frac{7}{8}$ ips to 30 ips.

REVOX A700 Series

3-speeds. Full deck logic. Four inputs. Crystal servo control. Tape footage counter. Servo tape tension.

Write for full information. Scotch 207-lowest UK price. IMMEDIATE DELIVERY—ALL MODELS
NOTE NEW ADDRESS~

Industrial Tape Applications
5 Pratt Street, London NW1 OAE. Tel: 01-485 6162 Telex: 21879
WW-068 FOR FURTHER DETAILS

The STARWET spectrum analyser module ST 858 is the latest item to stem from the STARWET design team. The result of several years work it incorporates new concepts based on a different approach to spectrum analysing. The outcome being an ultra reliable instrument with an excellent specification (by any standards) at a price hitherto thought impossible for equipment of this calibre and type.

SPECIFICATION: Frequency range 10 MHz to 850 MHz in two calibrated ranges Sensitivity Better than 50 mv for 0.5 V per cm Resolution Better than 25 KHz . Dispersion From less than 1 MHz to 400 MHz variable Input Via 50 ohm BNC connector on front panel Output 1 Coax cable for connection to Y input on scope Output 2 Coax cable for connection to sync. input on scope Power requirements 240 volts AC 50 Hz 10 watts. (Other voltages and frequencies available as required) Size Width $11 \mathrm{in}(28 \mathrm{~cm}$.) Height 4.375 in . (11.2 cm .) Depth 8.5 in . (21.6 cm .) Nett weight 7.5 lbs (3.4 Kg) Gross weight $10 \mathrm{lbs}(4.5 \mathrm{Kg}$.)

For further details contact the sole distributors of STARWET equipment:

7-9 ARTHUR ROAD, READING, BERKS (rear Tech College) Tel. Reading 582605

Acclamed as the Woild's leading ielescopic tiltover toner in the field of radio commumication Models from 25 10120°

ST-IMNEPM

Strumech Engineering Co Lid Coppice Side Brownhills. Walsall, Staffs

ENGINEERS

higher pay? "New Opportunities" shows you how to get them through a low-cost B.I.E.T. home stud y course. There are no B.I.E.T. home study course. There are no
books to buy and you can pay-as-you-

The B.I.E.T. guide to success should be read by every ambitious engineer. Send for this helpful 76 page FREE book now. No obligation and nobody will cal ever did.

POSㄱ CHOOSE A BRAND HEW FUTURE HERE!
 Tick or state subject of interest. Post to the addres below.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

BIAS ELECTRONICS

PROFESSIONAL RECORDERS

for broadcasting and studio use
Our range includes console, transportable and rack mounting machines.
Mono-stereo $\frac{1^{\prime \prime}}{4}, 4$ track $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}, 4$ track $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ slow speed radio station loggers all to IBA requirements.

BIAS ELECTRONICS LTD.
01-540 8808
572 Kingston Road, London SW20 8DR

TEAC 4-CHANNEL INDUSTRIAL RECORDER

ITA 10-4
 MODULAR MIXER

Ten inputs. Four output greups. Four limiters. Base. mid. treble EQ. Balanced inputs. Modular construction. Headphone monitoring.
IMMEDIATE DELIVERY. $£ 590+$ VAT

ITA-TEAC

sole suppler: NOTE NEW ADDRESS~

17A

Industrial Tape Applications 5 Pratt Street,London NW1 OAE.Tel: 01-485 6162 Telex: 21879

WW-073 FOR FURTHER DETAILS
ANTENNAS AND RADIO MASTS
TRANSMISSION LINES AND ANTENNA ROTATORS
Manufacturers \& Suppliers of-
Antenna Systems.
From centre fed dipoles.
Vertical radiators, radio masts including telescopic \& tiltover, transportable, permanent tubular masts. Lattice masts. Telescopic tiltover towers.
Transmission line equipment.
Coaxial cable.
Coaxial connectors.
Suppliers to-
Government Ministries,
Crown Agents, principal
manufacturers of telecommunications equipment, local governments, overseas governments and administrations.

When replying please refer to this advertisement and indicate nature of enquiry.

SOUTH MIDLAND CONSTRUCTION LTD

S. M. House, Osborne Road, Totton, Hants. Telephone Totton 2785/4930 Cable Aerial Southampton

BRITAIN'S FASTEST SERVICE!

component specialists for the discerning amateur and professional

SOLDERING IRONS

A new range by " $A N T E X$ '
Soldering irons of the highest technical standard, low current leakage, rapid heating. high efficiency
SK2 Soldering kit including 240v 15 w Iron $£ \mathbf{3} \mathbf{2 0}$ each
MLX12 12 volt portable $25 w$ Iron for car or boat
15 ft . lead. In protective wallet.
$\mathbf{£ 2 . 5 0}$ each
$\mathbf{X 2 5 / 2 2 0}$ General purpose $240 v 25$ watt Iron. $\mathbf{£ 1 . 9 5 \text { each }}$
$\mathbf{x 5 0 / T C}$ Temperature controlled Iron. Sensitive SCR controlled temperature sensing. Bit is controlled to within $2^{\circ} \mathrm{C}$ of the set temperature. For 240 v mains operation.

Order as "Soldering Irons"' + Part No.

SPARE BITS

Type No.	Size	Suits	Plating	Price
2	$\frac{3}{37}$	SK2	Nickel	32p
3	$\frac{511}{32}$	SK2	Nickel	32p
4	${ }^{\frac{3}{16}}{ }^{\prime \prime}$	SK2	Nickel	32p
50		$\times 25$	Iron	44p
51		and	Iron	44p
52	$\frac{311}{10}$	MLX12	Iron	44p
Order as Type No. + Spare Bits				

RED L.E.D's NEW LOW PRICES TIL 209 30p HP 5082 29p

MC 1310P I.C. $£ 2.80$
FM STEREO DEMODULATOR REQUIRES NO COILS!
PRICE INCLUDES DATA

40669 TRIAC £1.00 400 PIV 8 AMPS PLASTIC 3 PAGE DATA

15p

TR1 DIAC

 20pSUITABLE FOR USE WITH 40669

OP. AMP 741/8 DIL NEW LOW PRICE 34p

LOGIC CHECKER

FAST \& EFFECTIVE METHOD OF CHECKING DIGITALDILI.C.S IN CIRCUIT. INSTANTL.E.D. DISPLAY. FULL INSTRUCTIONS £25.85

I.C. PIN SOCKETS

NOW RECOGNISED AS THE
STANDARD I.C. MOUNTING 1000 PIN SOCKETS $\quad \mathbf{~ 7 . 0 0}$ 100 PIN SOCKETS $\quad \mathbf{1 . 0 0}$

TEST CLIP

FOR DILI.C.s
14 \& 16 PINS ALSO USEFUL as removal TOOL $£ 1.95$

SEVEN WATT AUDIO I.C.
 TBA 810 S
 f1. 68
 FEATURING THERMAL PROTECTION
 IDEAL FOR CAR RADIO APPLICATIONS
 SHORT FORM DATA AND CIRCUITS 15p

TIMERI.C.

 NE 555vSHORTFORM DATA \& CIRCUITS $\mathbf{1 5 p}$

SUPERHET SYSTEM I.C.

 CA 3123E
£1.80

WITH RF AMP. IF AMP. MIXER OSC. GC DET. OR VOLTAGE REGULATOR IDEALFOR CAR RADIOAPPLICATIONS DATA AND CIRCUIT 15p

VHF 5 TRANSISTOR I.C. CA 3046
DC TO 120 MHz ARRAY 3 PAGE 15p

ARPIDI HEHRMOIIS
 DEPT. WW4
 7 COPTFOLD ROAD
 BRENTWOOD
 EsSEX

FRTPIILI SPECIALISE IN EDUCATIONAL and government orders

- See catalogue for further details.

FRFIIIL SERVICE PLUS
10% DISCOUNT OVER E4. NO POSTAGE AND PACKING. TOP OUALITY PRODUCTS ALWAYS BY RETURN COMPREHENSIVE CAT. \longrightarrow

Important Notice "All prices are exclusive of V . A. T. Please add $10 \% \mathrm{~V}$.
to the final total of your order after deducting any discount which may
be due."
v.A.T. No.
10

WW— 075 FOR FURTHER DETAILS

The photo above shows the newly designed motor tunable HF mobile Aerial LTA 10 and this will be on demonstration at the Communications
' 74 show, along with the other fine Bantex aerials.
Come and see us at Stand No. 84.

Bantex Ltd

ABBEY ROAD, PARK ROYAL, LONDON NW10

WW-077 FOR FURTHER DETAILS

TPA 50-D Specification
Power Output 100 watts rms into 4 ohms 65 watts rms into 15 ohms
Freq Response $\pm 0.1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 KHz into 15 ohms. -1dB at 150 KHz
Total harmonic Less than 0-04\% at all levels up to distortion 6 Input sensitivity OdBm
Noise -100 dB
Rise time 2 u seconds
Price \quad E59 plus V.A.T
100 V Line (C.T.) and balanced inputs avzilable.
For full technical information contact:
H|h ELECTRONIC
CAMBRIDGE ROAD, MILTON, CAMBS
TELEPHONE CAMBRIDGE 65945/6/7

JVETU VER

video cassette recorder/player

Two outstanding models:-
CR-6000E 3/4" U-type video cassette recorder/player CP-5000E $3 / 4^{\prime \prime}$ U-type video cassette player

For further details telephone or write today to:-
Video Systems Division, Bell \& Howell A-V Ltd., Freepost,
Wembley, Middx. HAO 1BR Ino stamp required).Tel:01-902 8812
\square BelleHowell

WW-078 FOR: FURTHER DETAILS

Are you an inventor?

Newnes-Butterworths, the technical publishers, invite you to enter for -

THE NEWNESBUTTERWORTHS PRIZE

- Worth $£ 250$

- Awarded for the ${ }^{\text {-1 most }}$

 novel application of an electronic device".- Judged by a distinguished panel of experts.
Entry forms should be available at your local bookseller, but in case of difficulty please contact the publisher direct.

184

Newnes-Butterworths

The big name in technical publishing
Borough Green, Sevenoaks, Kent TN15 8PH

A SPARK OF GENIUS

onPhoenix Electronics (Portsmouth) Ltd

139-141 Havant Road Drayton, Portsmouth, Hants PO6 2AA

Full member of AFDEC-the industry's association of franchised electronic component distributors

Our prices include VAT at the current rate-and carriage on all goods is free.

Send for our catalogue and price list-we'll mail that to you free, too. instant all-weather starting, up to 20\% fuel saving, longer battery
life. higher top speed, faster acceleration. spark plugs last acceleration. spark plugs last
about 5 times longer. misfire due to contact breaker bounce electronically eliminated burer electronically eliminated. purer exhaust emission resulting in
less air pollution. contact breaker burn eliminated. (Suitable for petrol engined cars up to 8 cylinders.)

PRICE ONLY $£ 11.62$ Ready built $£ 14.85$ (state + or - earth) We can supply a Sparkrite Ignition (ready-built) to fit all petrol engined vehicles (boats. motor cycles. etc.) with coil and contact breaker ignition. Prices on application. (or send S.A.E, for
full brochure.)

THE SPARKRITE MK 2 ELECTRONIC IGNITION KIT

WHEN COMPLETE
THE SYSTEM CAN BE FITTED IN ONLY 15 MINUTES TO GIVE:

Please send your catalogue-free!
Name
Address

The above kit comprises: Ready-drilled case and metalwork, cables, coil connectors. silicon grease, printed circuit board. All 5 -year guaranteed components, and full instructions to make this fascinating, very efficient capacitive discharge system in either positive earth or negative earth forms.

ORDER
 NOW FROM:

TEMS
 I.C.E. ELECTRONIC SYSTEMS 114 Park Farm Road, Birmingham, B43 70H

WW-081 FOR FURTHER DETAILS

So you think you know what hi-fi really sounds like

You know that the room in which you play your Hi-Fi equipment affects the sound reproduction. But have you given the same thought to your speakers? The quality of most speaker enclosures is one step up from orange boxes, and the sound is probably delivered by two or three mass-produced drive units. Which means that you get an arbitrary, non-directed, mass produced sound.

There is, however. a speaker unit with a difference.
For more than thirty years, one of the most respected names in the $\mathrm{Hi}-\mathrm{Fi}$ world has been developing and perfecting a speaker work of art. His name is Chave. He brings together a speaker enclosure that is a masterpiece of handcraftsmanship with drive units that provide optimum efficiency over the entire audio frequency range.

The Lowther speaker cabinets are hand-built, pressure driven, folded exponential horns-a fundamental design dating back thousands of years. This ensures a free and spacious reproduction of the lower sound frequencies.

Built into these horn enclosures is the world's most sophisticated transducer magnetic system, ensuring that every part of a complex sound wave created by an instrument or human voice is clearly audible when electro-acoustically reproduced.

This is truly a speaker for the $\mathrm{Hi}-\mathrm{Fi}$ intellectual. Because the entire unit is hand-made, of course, quantity is limited. We invite the most demanding audiophil to visit our workshops and test the speakers on our own equipment. We're sure you will agree that the Lowther Folded Horn speaker unit provides the finest sound reproduction possible today.

We make these speakers in two price levels. $£ 48+$ VAT each if you don't mind an unnoticeable cabinet defect or $£ 76$ when perfect.

LSL PRICE £48

PER SPEAKER + $\mathbf{1 0 \%}$ VAT (cabinet only-£22)

Loudspeakers Limited

Cheque with order, please, or write/telephone for further details. Loudspeakers Ltd., Brook royd Mills, Bradford Road, Batley, Yorks. Tel: Batley 473646.

WW-082 FOR FURTHER DETAILS

ELEETRADITVKIT

Electronic fun for all ages

All components are beautifully encapsulated in unbreakable transparent plastic blocks. Perfect connections are made WITHOUT SOLDERING, SCREWING OR WIRING.
$\frac{\text { INCREDIBLE VALUE, Build, dismantle and }}{\text { rebuild projects any number of times }}$ rebuild projects any number of times and
invent your own experiments too.
COMPLETELY SAFE, instructive and FUN - all kits operate from $9 v$. battery only. VALUABLE MANUALS included
Kit 2A-30 projects $£ 10.45$ $\frac{\text { Kit } 2 A-30 \text { projects }}{\text { Radios, } 10.45}$ microphones 2 morser etc:$\frac{\text { Kit } 3 A-100 \text { projectse } 20}{\text { As 2A plus electronic }}$ birds, cats, sirens, organs, metronome, guns, light and sound burglar alarms, etc. 3ADX-105 projects e25.25 As 3 A plus solar cell
experiments and complet sophisticated control panel2 etc.
4ADX-150 projects $£ 33.95$ As 3ADX plus Relay and Meter experiments: ion concentration-, volume-, output-, field intensity volt-, resistance meters, ammeter, illuminometer,
and-many PRICES FULLY INCLUSIVE.

Cheque/p.0.(or 6p. for

NEW
 PRACTICAL PAPERBACKS FGEN FOULGHAM-TAE

125 Typical Electronic Circuits	
Analysed and Repaired by Art Margolis	£1.45
Understanding and using the	
Oscilloscope by Clayton Hallmark	£1.70
Pictorial Guide to Colour TV Circuit Troubles by Forest Belt	£1.60
How to Repair Small Petrol Engines by Paul Dempsey	£1.75
Troubleshooting Solid State Amplifiers by Ben Gaddis	£1.60
Fun with Electricity by Tom Kennedy Jnr.	f1. 30
Transistors-How to Test How to Build by Tab Editorial	$\text { £1. } 20$
How to Fix Radios and Printed Circuits by Leonard C. Lane	£1.60
Handbook of Magnetic Recording by Finn Jorgensen	£1.45
Landsailing from RC Models to Big Ones by George Sipposs	£1.45

Small Appliance Repair Guide £1.50 by Lemons \& Montgomery

Basic Colour TV Course $£ 2.20$ by Stan Prentiss

Electronics Hobbyist IC Project Handbook by Robert M. Brown

Radio Communication Transreceiver Servicing by Burns \& Sands

99 Ways to Use the Oscilloscope by Albert Saunders

On the Colour TV Service Bench
by Jay Shane
Basic Radio Course by John T. Frye

How to Repair Home and Car Air Conditioners by Lemons \& Price

Complete Mini Bike Handbook by Paul Dempsey

FOULSHAM-TAB LTD. YEOVIL ROAD. SLOUGH.BUCKS.

DAVENPORT

FULLRANGE LINE SOURCE PUBLIC ADDRESS SPEAKERS

Eight $8^{\circ} \times 5^{\circ}$ elliptical and one 10" twin cone CABINET HEIGHT 48'

A BROGHURE GIVING FULL SPECIFICATION, INGLUDING SPECIFIC SOUND PRESSURE LEVELS, FREQUENCY RESPONSE GRAPHS AND POLAR DIAGRAMS. AVAILABLE FRON THE MANUFACTURERS.

S. B. DAVENPORT LTD.

 ELLES RD., FARNBOROUGH, HAMPSHIRE, ENGLAND TELEPHONE FARNBOROUGH (HANTS) 514551WW-085 FOR FURTHER DETAILS
WW- 086 FOR FURTHER DETAILS

That's the new D61 from Telequipment.

- Simple Controls
Dual Trace
10 mV Sensitivity at
10 MHz
\square Automatic Triggering
X-Y Displays
\square TV Frame and Line
\square Bright $8 \times 10, \mathrm{~cm}$ Display
- Easy to Carry

Developed for use in the field or on the bench, and it's small in size too - just hotv

TELEQUIPMENT \ll
small you'll discover when placing it on the busiest of benches.
But don't imagine that performance has been precluded by its size. or the fact that it costs only $£ 115$. On the contrary, this little fellow features several facilit es looked for on heftier,
higher-cost oscilloscopes.
Write or telephone now for full specification (you won't be disappointed)

Tektronix U.K. Ltd.,
Beaverton House,
P.O. Box 69, Harpenden, Herts.

Tel: Harpenden 63141
Telex: 25559

wireless world

Electronics, Television, Radio, Audio

MAY 1974 Vol 80 No 1461

SIXTY-FOURTH YEAR OF PUBLICATION

Contents

09 Pocket numeracy
110 Colour-sound system design by J. R. Penketh
114 AES convention, Copenhagen
115 News of the month
TV information service standard
Picture telephone system
Queen's awards to industry
117 Clutter-free radar for cars by J. Shefer, R. J. Klensch, G. Kaplan and H. C. Johnson

122 Sixty years ago
123 Circuit ideas
Simple t.t.l. oscillator
High-performance voltage reference
10 -digit combination lock
124 Novel stereo f.m. tuner-2 by J. A. Skingley and N. C. Thompson
130 Circards-14: introduction to digital counters by J. Carruthers, J. H. Evans,
J. Kinsler and P. Williams

133 Horn loudspeaker design-2 by J. Dinsdale
139 Radio astronomy as a school activity by J. C. Codling
143 Electronic piano design-3 by G. Cowie
145 H.F. predictions
146 World of amateur radio
147 Communications' 74
148 Letters to the Editor
Damping factor
Howl suppression
Active filter crossover networks
151 Realm of microwaves-8: lenses and radomes by M. W. Hosking
155 Scottish search for gravity waves
156 A problem of measurement by Thomas Roddam
158 New products
a98 APPOINTMENTS VACANT
a 122 INDEX TO ADVERTISERS

Now EMIColorlineCableTV has even longer reach

EMI Colorline is now available with two new competitively-priced longreach trunk amplifiers for systems with trunk routes up to 35.5 km . The RE984 Amplifier ($40-270 \mathrm{MHz}$) is designed for systems requiring a large number of units in cascade. The RE993 Long-reach Low Frequency Amplifier ($30-120 \mathrm{MHz}$) is for Supertrunk lines, and operates on a limited bandwidth to achieve even longer reach. Automatic gain (ALSC)

versions of both amplifiers are also available. Another new device is the EMI outlet plate (complying with the recommendations of IEC 169-2) for Colorline or other cable television systems.

Colorline is a multichannel push-pull system with high channel capacity, low distortion and high cascadeability, and is supported by unrivalled experience of European cable TV requirements.

EMII EMI Sound \& Vision

Telecommunications Division, EMI Sound \& Vision Equipment Limited, 252, Blyth Road Hayes, Middlesex.
Telephone: 01-573 3888 Telex: 25145
A member of the EMI Group of Companies
International leaders in music, electronics and leisure

wireless world

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON

Technical Editor:
GEOFFREY SHORTER, B.Sc.

Assistant Editors:
BILL ANDERTON, B.Sc.
BASIL LANE

Drawing Office:
LEONARD H. DARRAH

Production:
D. R, BRAY

Advertisements:

G. BENTON ROWELL (Manager)

Phone 01-261 8339
KEITH NEWTON
Phone 01-261 8515
A. PETTERS (Classified Advertisements) Phone 01-261 8508 or 01-928 4597
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353

Pocket numeracy

The pocket electronic calculator is another case of a technology that has found its market. The availability of c.m.o.s. integrated circuits with their low power consumption and low supply voltage has made possible an instrument of about the same size as a cigarette-case at a price within the reach of private individuals. In one sense the product was forced on the general public, because it was one of those things by which the American semiconductor manufacturers created a new market for their devices after the cutback in spending on the Vietnam war and the space programme. On the other hand, the public seems to have been very willing to buy the product. What we don't yet know is the motivation behind the buying. Does the pocket calculator fill a real need that has existed for 2,000 years or more? Or is it beirg bought mainly as a new toy, or as a status symbol for impressing one's friends or colleagues, to be discarded when the novelty has worn off? Whatever the answer, the manufacturers are not worried as long as the buying continues.

One of the problems that this new tool brings with it is its effect on our mental powers. If it results in mental arithmetic being largely abandoned will our ability to manipulate numbers atrophy, putting us even more at the mercy of the machine? For example, a school-child equipped with a pocket calculator does not need to learn multiplication tables. This could mean a relief from time-consuming drudgery or it could mean a loss of an elementary and therefore important faculty in the handling and understanding of numbers. When we do mental arithmetic, perhaps with the aid of pencil and paper, we are constantly aware of our fallibility-as an animal is constantly on the alert for dangers that threaten it-and we therefore check and re-check what we have done. When we use a calculator, an error-perhaps caused by incorrect key operation or an electrical fault-could go undetected. But to set against this dependence on the machine the advantages it may bring for mental development seem greater. One school science master we know considers that because a pupil with a calculator can handle numerical data at a vastly greater rate than normal his intuitive feel for numbers will be tremendously enhanced. The same way well apply to other users. If this is so, the pocket calculator could be an important step on the road to universal numeracy-the lack of which has been so often deplored by people concerned with science and engineering education.

In the end probably a compromise will be found between usage of the brain and usage of the machine for arithmetic. It should be possible to achieve a balance between the alleviation of mental drudgery and the cultivation of a good understanding of numbers and ability to manipulate them. As with many other products of advanced technology placed suddenly in our hands, we must learn to use this new instrument wisely.

Colour-sound system design

Providing coloured illumination as functions of sound frequency and intensity

by J. R. Penketh, B.Sc., M.I.E.E.
Highbury Technical College, Portsmouth

Abstract

The compact system to be described for construction provides coloured illumination of a reflecting or opalescent surface, the brightness and colour being functions of the frequency and amplitude of an audio input. The circuitry is based on the 741 op-amp and its dual version the 747. Triacs control the mean lamp power which is a maximum of approximately $\mathbf{2 k W}$ for each of three channels.

The sound intensity and light intensity correlation of a colour-sound system is based on the premise that related simultaneous sensory activity of ear and eye will produce a reaction to which most people will be sympathetic. The relationship between pitch and colour (that is between the frequencies of sound and light) is not at all critical, probably because of the very different responses of the brain to these phenomena-few people, except possibly physicists, consciously relate colour to frequency.
Other systems are possible. For example, a sound intensity/colour correlation may be sought, coupled with a pitch/light intensity correlation. Whilst the author is not aware of any published work in this field, it is likely that aesthetic appreciation of such a system would require a considerable training programme. This would necessarily severely restrict the enjoyment of an untrained majority of observers.

A gate pulsing arrangement is used for each controlling triac which relates the firing angle to the instantaneous peak output voltage from the appropriate filter. In this way the conduction angle is closely proportional to the sound intensity, resulting in a good correlation between brightness and sound intensity. Tungsten filament lamps form the light sources. Fluorescent tubes could be used as an alternative.

Design philosophy

A block diagram of the colour-sound system and the waveforms at the various points in the system are shown in Figs. 1 and 2.

The incoming mains voltage $\left(V_{1}\right)$ is squared (V_{2}) and integrated to provide a linear time varying voltage $\left(V_{3}\right)$ in each half cycle. This is compared with the peak rectified filter output voltage $\left(V_{4}\right)$ to advance or retard the triac firing angle α in sympathy with the amplitude of the audio input to the filter. Voltage V_{4} is arranged to increase towards zero from
+10 V for control during the positive mains half cycle and from -10 V during the negative mains half cycle. The output from the level detector $\left(V_{5}\right)$ is arranged to rest at zero volts when

$$
\begin{equation*}
\left(-12+V_{4}\right)<V_{3}<\left(12-V_{4}\right) \tag{1}
\end{equation*}
$$

to be +10 V when

$$
\begin{equation*}
V_{3}>\left(12-V_{4}\right) \tag{2}
\end{equation*}
$$

and to be -10 V when

$$
\begin{equation*}
V_{3}<\left(-12+V_{4}\right) \tag{3}
\end{equation*}
$$

Fig. 1. Block diagram of one channel of the colour-sound system. See Fig. 2 for the waveforms marked at V_{1}, V_{2}, etc.

Fig. 2. Waveforms at the points indicated (V) in Fig. 1. See text for full explanation.

The positive and negative edges occurring at the times set by the above relationships (2) and (3) initiate narrow pulses $\left(V_{6}\right)$ which fire the triac appropriately.

Three channels are used to cover the frequency ranges below.

Bass:	$30 \mathrm{~Hz}-125 \mathrm{~Hz}$
Mid:	$125 \mathrm{~Hz}-500 \mathrm{~Hz}$
Treble:	$500 \mathrm{~Hz}-2000 \mathrm{~Hz}$

These frequency ranges cover adequately the range of fundamental frequencies in music. The rest of the audio spectrum above 2000 Hz carries principally harmonic information for aural identification

of particular instruments. The lower limit of the bass range is judged to be a reasonable compromise between adequate bass instrument coverage and the exclusion of mechanically originated signals such as turntable rumble. Harmonics from the bass and middle range tones of instruments cannot be excluded from the filter if they lie within the pass band. Subjective tests with various types of music indicate, however, that no serious problems arise from these harmonics.

Circuit description

The circuit diagram is shown in Fig. 3.
The filters are low pass/high pass combinations based on the voltage controlled source (v.c.v.s.) circuit. The requirement for this application is to have no pronounced peaks in the response curves of either the low or the high pass sections (see Appendix).

The filter output rectifier is of conventional design and provides two symmetrical outputs. Under no-signal conditions the outputs settle to potentials $\pm V_{B}$ close to $\pm 10 \mathrm{~V}$, determined by R_{15}, R_{16} and R_{17}. Voltage V_{3} sets a minimum conduction angle for the triac and so. provides a minimum brightness facility. This is desirable to ensure that lamps respond visibly to small input signals. Trimming is provided by R_{26} which controls the slope of the integrator output. Alternatively R_{17} may be made a preset resistor, but integrator slope control has the advantage of taking up the tolerance in the feedback capacitor. Resistors R_{13} and R_{14} are included to limit the maximum output current from the amplifier to a safe value. Time constants $C_{7} R_{15}$ and $C_{8} R_{16}$ are chosen as a compromise between reasonable smoothing of the lowest audio
frequency and rapid decay so that musical transients are tolerably handled.

An amplifier with a non-linear feedback loop comprising zener diodes D_{11} and D_{12} squares the transformed mains waveform. The zero-resetting integrator time constant $C_{12}\left(R_{26}+R_{27}\right)$ is calculated from

$$
V_{3}=\left(1 / C_{12} R_{T}\right) \int_{t}^{0} V_{2} d t
$$

where V_{3} is the integrator output, V_{2} the input square wave, and $R_{T}=\left(R_{26}+R_{27}\right)$. With $\pm 12 \mathrm{~V}$ supplies, a 741 amplifier has a useful output voltage range of $\pm 11 \mathrm{~V}$. Hence, $V_{3}=11 \mathrm{~V}$ at $t=10 \mathrm{~ms}$. Therefore

$$
\begin{aligned}
& 11=V_{2} / C_{12} R_{T} \times 10 \times 10^{-3} \\
& C_{12} R_{T}=0.91 \times 10^{-3} \times V_{2}
\end{aligned}
$$

But $V_{2}=10 \mathrm{~V}$ so $C_{12} R_{T}=9.1 \mathrm{~ms}$, and C_{12} is made $0.1 \mu \mathrm{~F}$ and $R_{T} 91 \mathrm{k} \Omega$.
Resistor R_{T} is conveniently formed by a series combination of $68 \mathrm{k} \Omega$ and a preset $50 \mathrm{k} \Omega$. Transistor Tr_{1} or Tr_{2} is pulsed momentarily at the end of the mains half cycle to discharge C_{12} rapidly through R_{30} Which transistor is pulsed depends on the direction of the square wave edge and it is arranged that the transistor with the appropriate collector polarity at this time turns on. The emitters are at earth potential because of the virtual earth property of the amplifier.

Resistor R_{30} limits the capacitor discharge current to a safe value for Tr_{1} and Tr_{2} but still provides a very short discharge time constant.

Diodes D_{13} and D_{14} prevent spurious reverse bias effects of $T r_{1}$ and $T r_{2}$ affecting the integration.

Transistors $T r_{1}$ and $T r_{2}$ must conduct for long enough to fully discharge C_{12} but for a short time compared with the
mains half cycle duration of 10 ms .
Assuming $R_{S A T}=0$ for Tr_{1} and Tr_{2}, C_{12} will discharge in approximately $5 C_{12} R_{30}$ secs. Inserting values yields a discharge time of

$$
t=5 \times 0.1 \times 330 \times 10^{-6}=165 \mu \mathrm{~s}
$$

Allowing 200μ s for safety, C_{11} can be estimated from a knowledge of the baseemitter resistance R_{b} of $T r_{1}$ and $T r_{2}$. The calculation will be approximate because of the non-linear nature of R_{b}, and the natural spread of this parameter between transistors. Resistors $R_{28,29}$ limit the peak base current.

Assuming $R_{b}=3 \mathrm{k} \Omega$ and a base turn-on voltage of 0.7 V , then the turn-off potential is $(4 / 3) \times 0.7=1 \mathrm{~V}$. Therefore

$$
1=V_{2} \exp \left(-t / C_{11} R\right) \text { where }
$$

$R=R_{b}+R_{28}$ and the applied squarewave amplitude, V_{2}, is 10 V . Then,

$$
C_{11}=t / R \log _{\mathrm{e}} 10=22 \mathrm{nF}
$$

A standard 22 nF capacitor suffices for C_{11}. Care must be taken not to make C_{11} too large since it prolongs transistor conduction and impairs the integration waveform.

The two outputs from the rectifier are compared with the integrator output using the differential input facility of the 741 amplifier.

For amplifier 3, diode D_{5} holds the output $\left(V_{5}\right)$ at +10 V unless the integrator output $\left(V_{3}\right)$ voltage is greater than the appropriate (positive) filter rectifier output $\left(V_{4}\right)$.

When $V_{3}>V_{4}, V_{5}$ falls to a value $V_{4}-V_{z}$ where V_{z} is the zener voltage of D_{6}.

A similar result but inverted is obtained

Fig. 3. Complete circuit of the colour-sound system. A voltage stabilizer for the mains power supply from T_{1} is shown in Fig. 5.
from amplifier 4 when the negative rectifier output falls below V_{4}, in the negative half cycle.

Resistors R_{18} and R_{19} provide the zener current and should not be large. A value of $1 \mathrm{k} \Omega$ is satisfactory.

The networks $C_{9,}, R_{20,} D_{9}$ and C_{10}, R_{21}, D_{10} provide short negative and positive pulses respectively generated from the leading edges of the level detector outputs. These are summed and squared by amplifier 5 which provides gating pulses to the triac.
Transformer coupling to the triac (T_{2} in Fig. 3 and T_{2-4} in Fig. 8) is used to provide isolation of the control circuitry from the mains.

It is useful to have a separate manual gain control for each channel. Since the audio input comes from a low-impedance (i.e., loudspeaker terminals) a simple network such as that in Fig. 4 gives excellent results.
The current demand per channel is approximately 20 mA . A regulated power supply based on zener diode stabilization of the base of a transistor is shown in Fig. 5.

It is desirable when using linear i.cs to decouple the supply rails close to the amplifier. Capacitors C_{x} of value $0.1 \mu \mathrm{~F}$ are used for this as shown and are placed close to the filter amplifier in each channel, and close to the integrator.

Triac circuitry and layout

Triacs are constructed usually with the A_{2} anode in contact with the heat sink. To simplify the mounting of the three triacs a single heat sink is used and all anodes are thus in contact. The lamps are placed in the \mathbf{A}_{1} anode leads and the gating transformer secondaries connected between gate and A_{1} anode. The electrical arrangement appears in Fig. 6.

The main system (filter channels, resetting integrator and power supply) are conveniently laid out on a single 0.1 in pitch stripboard. The prototype main system used single 741 amplifiers and was laid out as in Fig. 7. The input attenuator, triacs, mains transformer, input and output sockets are mounted separately to suit the installation. The prototype used the layout in Fig. 8.

Lamps and displays

The triacs specified are capable of handling up to 8A r.m.s. which corresponds to approximately 2 kW per channel. Filament lamps of this order of power tend to have long thermal time constants and do not follow a sound intensity pattern as well as do lamps of lower power. Very satisfactory results are obtained with filament lamps up to 150 W . Three of these are considered adequate for a domestic installation (i.e., one per channel). For larger installations in dance halls, discos and exhibitions, banks of 150 W lamps are recommended.

The author has found it more satisfactory to use a reflecting surface than a transmitting opalescent medium for display since attention tends to be drawn

Components				Transistors-Tr				
Resistors-R				1	BC108	3	AC176	
1	100 lin $1 W$	11.12	10k	2	2S303	4	AC128	
2,3.4	$1 \mathrm{k} \operatorname{lin} \frac{1}{2} \mathrm{~W}$	13.14	470	Triacs All MAC11				
5	12k lowrange	15,16	22k					
	3.3 k mid range		150k					
	820 high range	18.19	1k	Opamp				
6	12 k low range	20.21	2.2 k	All 7418 -pin di.i.l.				
	3.3 k mid range	22,23	10k					
	820 high range	24	$47 \frac{1}{4} \mathrm{~W}$	Sockets-SK				
7.8	10k	25	6.8 k	1,2,3	2-pin 250V5A	4	jack	
9	56k low range		50 k lin preset					
	12 k mid range		68k	Transformers- T				
	3.3 k high range	28,29	1k		Radiospares 12 V miniature primary 300 mH and $<5 \Omega$ turns ratio			
10	56 klowrange		330	2.3.4				
	12 kmid range	31,32	560		3:1.			
	3.3k high range		100k		Insulation to withstand 1000V flash			
All resistors $\frac{1}{8} \mathrm{~W} 5 \%$ unless stated otherwise.					test between prim	m.		
Capacitors-C				Suppression				
1,2,3,4	0.1 $\mu \pm 20 \%$		0.1 $\mu \pm 20 \%$		$47 \frac{1}{4} W$			
5,6,7,8	10 $\mu / 25 \mathrm{~V}$		$+1000 \pm / 25 \mathrm{~V}$		$0.05 \mu / 400 \mathrm{~V}$			
9,10	0.1 $\mu \pm 20 \%$		0.1 $\mu \pm 10 \%$		0.2 mH non-saturating			
11	$22 \mathrm{n} \pm 20 \%$				up to full load cu			
Diodes-D				Heatsinks, switch, stripboard				
					Triac sinks-aluminium			
1-5	OA200	$\begin{aligned} & 11,12 \text { BZY88-C9V1 } \\ & 13,140 \text { OA200 } \end{aligned}$		$150 \mathrm{~mm} \times 40 \mathrm{~mm} \times 16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$.				
6	BZY88-C9V1			$T_{5}-T r_{4}$ sinks-aluminium				
7	0A200	15.16 0A210		$80 \mathrm{~mm} \times 40 \mathrm{~mm} \times 16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$.				
8	BZY88-C9V1	17.18 BZY95-C12		Switch-250V, 5 A				
9.10	0A200			Striphoa	-0.1in pitch 34			

Fig. 4. Input attenuator which can provide separate manual gain control for each channel.

Fig. 6. Lamp and triac circuitry. Mounting the three triacs is simplified by using a single heat sink.

Fig. 5. Regulated power supply based on the zener diode stabilization at the base of a transistor.

Fig. 7. Layout of one filter channel (top), resetting integrator and power supply from the component side. Strips 1-11 (top) are continuous to 35 (not shown) to facilitate the remaining two channels. These strips (1-35) are continuous with the lower diagram. * 12 V from T_{1} secondary in phase with line (mains) input.

to the brightest parts of a transmitting system, namely the lamp filaments. A simple but effective display for domestic purposes consists of three lamps mounted separately in ventilated boxes with gelatine colour filters on the fronts and aluminium foil reflectors behind the bulbs. Set about a yard apart and tilted upwards to illuminate a white or cream wall some pleasing results are obtained.
The rapid switching of triacs every half cycle gives rise to a wide spectrum of harmonics in the mains current waveform. These must be properly filtered to prevent interference with television reception. Present practice with lamp dimming circuits is to employ an r.f. choke/ capacitor arrangement as shown in Fig. 6.

Appendix

Filter design

The v.c.v.s. (Fig. 9) is chosen for this application because of its very high input impedance and low output impedance, and its tolerance of variations in component values.

Moreover, the parameter H_{o} (see below) in the filter transfer function is a free parameter equal to the v.c.v.s. gain constant K. This makes mid-band gain simple

Fig. 8. Layout in the prototype.

Fig. 9. Configuration of the voltagecontrolled voltage source circuit.

Fig. 10. Response curves for various values of $\alpha=1 / Q$.
The equivalent high pass case is given by ω_{o} / ω.
to control for the cascaded sections. The design equations are:

$$
\begin{aligned}
V_{o} / V_{1}=K & =1+R_{b} / R_{a} \\
H_{o} & =K
\end{aligned}
$$

Low pass section:

$$
\begin{aligned}
& R_{6}=\frac{\alpha}{2 \omega_{0} C}\left(1+\sqrt{\frac{\left.1+\overline{4\left(H_{0}\right.}-2\right)}{\alpha^{2}}}\right) \\
& R_{5}=1 / \omega_{0}^{2} R_{0} C^{2}
\end{aligned}
$$

High pass section:

$$
\begin{aligned}
& R_{9}=\frac{\alpha}{4 \omega_{0} C}\left(1+\sqrt{\left.\frac{1+8(\overline{K-1})}{\alpha^{2}}\right)}\right. \\
& R_{10}=1 / \omega_{0}^{2} R_{9} C^{2} \text { where } \alpha=1 / Q
\end{aligned}
$$

and ω_{o} is the undamped natural frequency of the two-pole filter.

The curves of Fig. 10 show the generalized responses for various values of K. From this it is clear that $\alpha=1$ provides the type of response suitable for the present application.

The input voltage will be that appearing across the terminals of a loudspeaker. Adopting a nominal 2 V r.m.s. for full brightness the overall mid-band gain of the filter should be, by assigning the same value K to each section and assuming a peak output of 11 V from amplifier 2 ,

$$
K^{2}=11 / 2 \sqrt{ } 2=389
$$

This leads to a nominal K value per section of 2 . Inserting these results in the above formulae gives:
low pass: $R_{2}=1 / \omega_{o} C$ and $R_{1}=R_{2}$
high pass: $R_{1}=1 / \omega_{o} C$ and $R_{2}=R_{1}$.
The procedure is now to choose C for convenience and calculate R_{1} and R_{2}. Resistors R_{b} and R_{a} are chosen for a K value of 2 and for minimal output loading of the amplifiers.

The design of these sections has been such as to ensure overlap of responses between the three bands. Some frequencies, therefore, will excite responses from two adjacent lamps. Additive or subtrac-
tive combinations of colours can be so produced to the requirements of a particular installation. Should wider band separation or different bandwidths be required for a particular application it is a simple matter to apply the above formulae. Only four resistors per channel need be altered to tailor responses to suit these requirements provided the $0.1 \mu \mathrm{~F}$ filter capacitor value is unchanged.

AES ConventionCopenhagen

Copenhagen's Scandinavia Hotel was the site of the 1974 European Section Convention of the American Audio Engineering Society held from March 23rd to 30th. The choice of Copenhagen this year was particularly apt as the work of Valdemar Poulsen "the father of magnetic recording", P. O. Pedersen, Holger Lauridsen and other Danish engineers, has given Denmark a surprisingly large contribution to the history of audio technology development.

Seventy-nine papers in 12 sub-groups were presented to members (compared with fewer than 50 at the 1973 Convention in Rotterdam). The papers covered subjects ranging from "Acoustics and Psychoacoustics" through "Design Considerations For a Multi-Track Sound Recording Vehicle" to "Digital Techniques in Audio".

While space does not permit detailed comment on the material read, it was interesting to note that some papers dealing with quite basic subjects had universal interest. James Moir described a method of sound power measurement which avoids the complication of calculating power from the output of a hemispherical multimicrophone array at many frequencies or the equally difficult alternative of using a single microphone in a very large reverberant room of special design. Moir's method involves introducing an amount of noise from a calibrated amplifier/loudspeaker combination until the sound pressure level of both the signal under test and the calibrated source is 3 dB
higher than the pressure level created by the signal under test alone. The method offers independence from room acoustics and can be used when checking loudspeaker efficiency and sound power output of permanently sited industrial machinery.

Hugh Ford presented a paper of great topical interest-especially in the United States-on the Admissibility of Magnetic Tapes as Evidence in Law. Mr Ford's extensively researched paper concluded that while it is possible to detect alteration to recordings in some cases, present techniques are not able to detect interference with the material in every case.

Automation in multi-track studio recording and quadraphony have both excited a great deal of attention at past AES conventions. Both fields were treated cursorily in Copenhagen although both Sansui and Nippon Columbia operated demonstration suites equipped with their respective systems.

Forty-six companies exhibited commercial audio equipment. The exhibits representing the greatest commercial value were those relating to multi-track sound recording. European tapemachinery of this category was exhibited by Lyrec, Studer and Telefunken and American 3M, Ampex and MCI multi-track machines were also shown. Twenty-four track, two-inch tape recording seems well established now in spite of its departure from the four-track/halfinch, eight-track/one-inch, sixteen-track/twoinch progression.

Electronic tape-noise reduction equipment by Dolby and DBX Inc., was shown. The DBX system claims to improve the signal to noise ratio of a transmission medium by some 39 dB -more than enough to defeat the 16 dB noise build-up encountered when mixing down 24track master tapes. Discs encoded with the DBX noise reduction system demonstrating this figure of noise reduction, were played in the JBL loudspeaker booth.

BASF, again, showed the "Unisette", their extremely well engineered 6.3 mm professional tape cassette. The Unisette has no internal tape guides as it is intended that these be built into the transports with which the cassette is used. Although the intended area of application is audio, the cassette is sure to find use in data recording when suitable transports are available.

Frequency allocations wallchart

A wallchart showing frequency allocations for the UK and Europe is the subject of a special offer to be made by coupon in the June issue. Designed by Wireless World and printed in colour, the chart covers the electromagnetic spectrum from 3 kHz to 300 GHz . It is scaled on eight logarithmic bands containing 15 main categories of transmissions identified by colours. All the important spot frequencies are marked, as well as "special interest" frequencies. The special-offer price, available only to readers of Wireless World, is 30 p including VAT, postage and packing. Normal price is 80 p including VAT, postage and packing. See the June issue for details of how to order the wallchart.

News of the Month

the information is being monitored by an engineer it is simultaneously recorded into a computer.

The most critical time for use of the equipment is when the satellite separates from the rocket booster after launching. From then on the spacecraft's behaviour must be known precisely and continuously in order to determine when to fire the onboard apogee motor to shift the satellite from its elliptical transfer orbit into the final circular orbit 22,300 miles above the equator.

Colour recording by laser

Images in colour and other multi-spectral data can be recorded on black-and-white film by a laser system developed by RCA. The system can be used to display and interpret information generated by sensors used in aircraft and spacecraft, and can also be used with other colour scanners in facsimile systems. Recording is accomplished by combining three modulated video signals to drive a single light modulator. The modulated laser beam is expanded and focused via scanning mirrors into a small spot on the film. At present a laboratory model records the information on long lengths of five-inch-wide film.

A simple, portable display device enabling the recorded images to be viewed in full colour has also been developed. This viewer is small enough to fit in a typewriter case and weighs 11 lb . It contains three lamps, each with a filter so that three primary colours are provided. Colour balance is achieved by thumbwheels which adjust the brightness of the lamps.

Portable colour camera

A portable version of their Mark VIII colour television camera has been produced by Marconi Communication Systems. In its hand-held form the camera fits on to a harness which rests on the operator's shoulder. A light-weight tripod is also available, while an alternative mounting unit permits the use of studio tripods and heads. A range of lenses is provided, and

The new Marconi portable colour television camera.
lens changes are made by a quick-release coupler.
The camera head contains the optical assembly, three one-inch light-weight scanning yokes and four printed circuit boards carrying the scanning circuits, tube supplies and amplifiers. The design retains the Mark VIII features of automatic alignment and automatic colour balance, which are particularly important for portable cameras because they are sometimes subjected to rough treatment. Brightness and contrast controls are provided for the cameraman and there is a built-in "crispening" circuit for enhancing the sharpness of the picture. The viewfinder is a removable unit, using a high-definition one-inch c.r.t. with an optical magnifier to obtain the required image size.
Up to 150 ft of 13 mm cable may be used between the camera and its auxiliary pack, which is designed primarily to be mounted on a trolley but may be carried on a harness by the cameraman or his assistant.

Call China by satellite

Britain's telephone service with the People's Republic of China, which had been available for only three hours a day, has now become full time with a change to satellite working. The move follows the opening in China of a satellite earth station using the INTELSAT-IV communications satellite positioned 22,300 miles above the Indian Ocean. Telephone calls from Britain to China are now transmitted from the Post Office satellite earth station at Goonhilly Downs, Cornwall, and received by China's new earth station near Peking.

The sateliite link replaces a highfrequency radio route ($08.00-11.00$ hours GMT) and gives an immediate improvement in service. Clarity of speech is much greater, while continuity of communi-cations-always difficult to maintain on h.f. radio, which can be affected by weather conditions-is greatly improved. The satellite link consists of one telephone circuit but can be readily increased to three if there is sufficient demand.

The cost of telephone calls to China remains unchanged, with a minimum charge of $£ 3-75$ for the first three minutes and $£ 1.25$ for each additional minute (plus VAT at standard rate of 10 per cent).

Queen's Awards for 1974

Technical innovations in the electronics industry which have this year received the Queen's Award to Industry encompassed the fields of solid state TV, sound and vision transmission and production of high-performance silicon integrated circuits.

A two-dimensional self-scanned photosensor array which forms the heart of a miniature solid-state TV system is the award-winning development from Integrated Photomatrix. The prototype camera contains a $\frac{1}{4}$ in sq. light-sensing array. At
present, this technology has applications from screening of medical slides to dimension monitoring in inspection systems but will result eventually in a complete miniaturized solid-state TV camera.

The now well-known "sound in syncs" system developed by the BBC for the transmission of sound and vision signals over a single vision link has also received an award. The system was brought into use progressively throughout the country in 1972 and is already in regular use for the international exchange of television programmes over much of the Eurovision network.

An award for a new production process which permits the production of integrated circuits of greater complexity and with improved performance was made to Plessey for their Bipolar Process III, first reported in Wireless World, News of the Month, March 1973.

Congratulations to all award-winning companies for their outstanding contributions to Britain's industrial development.

Display terminals for news pages

Composition of display advertisements and full newspaper pages can be built up on a new video display system and then stored for use in automated typesetting and printing processes. The system is known as CAM (for Composition and Make Up). In use, an operator calls up copy and graphics from a computer store which are displayed on a video display. The displayed material is then positioned by means of the equipment's keyboard, a cursor, and a table of digital/graphic information. When the most effective composition is obtained, the presentation is stored for later use.

Raytheon Company's equipment division. Massachusetts, is to develop the CAM terminal for the automated fullpage composition system being developed by the Newspaper System Development

Group. The first CAM system, consisting of three operative terminals, should be delivered for testing in early 1975.

Electrical measurements seminar

A residential specialist seminar on "Electrical Measurements in Europe" will be held at the Université Libre de Bruxelles, Belgium, from September 2-5, 1974. It is being organized jointly by the Institution of Electrical Engineers and the Société Royale Belge des Electriciens in association with the British Calibration Service.

The seminar will provide a forum for a supranational review of electrical measurements in Europe and is intended to promote harmonization in this field of technology by surveying the scene, identifying industrial needs, highlighting problems and postulating solutions to such needs and problems. The five half-day sessions will be devoted to specification and certification, national standards and problems of traceability, national calibration facilities, the market for electrical instruments, and prospects of European co-operation.

Attendance will be by invitation, and those wishing to be considered are asked to write to the Divisional Secretary LS(S), IEE, Savoy Place, London WC2R 0BL, England.

Picture telephone system

An experimental picture telephone system is being tried out in Holland between establishments of the Dutch PTT and the Philips company. It interconnects offices and laboratories at Waalre (20 subscribers), Eindhoven (10 subscribers), Hilversum (11 subscribers), The Hague (4 subscribers) and Leidschendam (9 subscribers). The PTT provides the transmission paths via radio relays and cables, while Philips Telecommunicatie Industrie supplies the equipment. For the local sections of the

Floating a 70ton load on air. Application of the hovercraft principle allows the British Post Office to move cable loads with ease. The system is to be used at the new cableship depot being built at Southampton.
network, transmission is over the conductors of existing telephone cables.

In order to reduce the bandwidth from the 5 MHz television standard to about 1 MHz , the number of lines used in picture scanning has been reduced from 625 to 325 . The number of picture elements per line has been reduced proportionally. This has resulted in a bandwidth of 1.3 MHz .

During frame flyback a digital code word is transmitted which accurately defines the end of the past frame period and the start of a new one. During part of the line flyback a series of short pulses ensures that an oscillator in the receiver remains in synchronism with a similar oscillator in the transmitter. The remaining part of the line flyback time is used on a "sound in sync" basis to transmit a delta-modulated sound signal. The visual information is transmitted in the conventional way by an analogue signal. Transmission of the combined picture, sound and sync signals takes place on one pair of conductors for each direction. Thus a four-wire connection is available for the sound signal, which means that crosstalk will not occur in the transmission path.

The camera has an automatic lighting control system, which adapts the camera to any changes in lighting conditions. The picture tube has a screen size of about $19 \mathrm{~cm} \times 14 \mathrm{~cm}$.

Data Act

The Swedish Data Act, a comprehensive piece of legislation directed against misuse of computerized files, has aroused widespread interest abroad. This has prompted the Federation of Swedish Industries to publish in English a 22-page booklet on the Act.

The Swedish Data Act is divided into five parts. The first is concerned with the definition of terms. The second prescribes basic regulations on the issue of permits to create a personal information file. The third lays down the obligations and duties of those holding such files. The fourth specifies how the files should be supervised. The fifth deals with penalties, award of damages, etc.

Two important provisions of the Actpart of which came into force on July 1, 1973, the rest becoming operative a year later-are that permits to create a personal information file must be issued by a special body, the Data Inspection Board, and that organizations holding files must inform those recorded in them of their contents.

Pro-Electron goes passive

The Pro-Electron system of codification of active devices in operation in Europe is to be extended to include all passive components. The eventual object is to achieve a standard codification for both active and non-active components for all consumer, professional and government interests in the latter half of this decade. This was decided when the Pro-Electron association held its eighth general meeting in Brussels.

Clutter-free radar for cars

by J. Shefer, R. J. Klensch, G. Kaplan and H. C. Johnson
RCA Laboratories, New Jersey

A radar system using second harmonic reflection that monitors the distance and closing rate of the car in front as well as the ground speed of the driver's car but remains immune to 'blinding"' and "clutter" from surrounding objects.

During 1970, in the USA, there were 12.3 million collisions involving two or more vehicles. Of this number, 3.8 million, 2 close to one-third, were rear-end collisions. ${ }^{1}$ An experimental car radar has been demonstrated which is designed to avoid rear-end collisions. A completely passive reflector, mounted on the back of vehicles, returns the second harmonic of the frequency transmitted from the trailing vehicle. The radar is immune to clutter since its receiver is tuned to the second harmonic frequency only. It is also immune to blinding by cars travelling in the opposite direction, as well as to other interference problems inherent in a "dense" environment.

System considerations

RCA Laboratories have developed a radar system that will aid the driver in maintaining a safe distance from the car in front by constantly monitoring the distance and the closing rate, as well as his own ground speed. The driver would be warned by sound or light signals whenever the combination of these parameters indicates that the separation between his car and the car in front becomes unsafe. As a further step in the system's development, the brakes would at the same time be activated automatically. Throttle control can eventually be added for completely automated headway control.

A viable radar for cars on highways must first be immune to clutter, which includes reflections from the roadway, trees, highway signs, overpasses, bridges, and similar highway fixtures. The seriousness of clutter can be assessed when it is recognized that the radar cross-section of an overhead sign can be 30 dB larger than the radar crosssection of the back of a small car. Other car radar systems try to cope with this problem by excluding any returns from objects that are stationary with respect to the ground. That kind of processing does eliminate clutter from stationary objects. Unfortunately, it also eliminates the return from a car standing in one's own lane. This is a serious deficiency, especially since a majority of all rear-end collisions occur at a time when the car in front has completely

Fig. 1. Harmonic radar configuration.
stopped. When we add to the picture a large number of other cars carrying the same kind of radar and travelling in both directions of a highway, a whole new family of mutual interference problems arise. These can be characterized as blinding, masking, and cross-talk types of interference, which can cause false alarms or mask true alarms in conventional radar systems. In the harmonic radar system, however, they have been completely eliminated. Minimizing the incidence of false alarms is of prime importance if automobile radar systems are ever to become a reality. When false alarms occur more often than at a very low threshold rate, users are likely to lose faith in the system and either override it or shut it off completely.

The harmonic radar concept

The radar receiver shown in Fig. 1 is tuned to the second harmonic of the transmitted frequency and the car in front is equipped with a special reflector that efficiently returns the second harmonic only. (In extensive testing so far we have not found any natural objects that will produce a detectable second harmonic frequency.) Thus clutter is eliminated because the sources, such as signs and overpasses do not produce radar echoes at the second harmonic. Blinding is eliminated because all radar receivers respond only to signals
at the second harmonic of the transmitted frequency.

Blinding interference

Car A in Fig. 2 is travelling behind car E, with its conventional radar measuring distance to car E. Car D, going in the opposite direction, will deliver an enormously large signal to car A's receiver, compared with the reflection from car E. Quantitatively, the blinding signal can be 50 dB or 60 dB higher than the echo being looked for. This blinding transmission will therefore be seen from a long distance ahead and may cause a false alarm, as well as saturate the receiver of car A. The sidelobes from cars B and C may have the same effect. In the harmonic radar system, however, the receiver of car A will reject all signals other than the second harmonic of its transmitted frequency.

Cross-talk interference

Indicated in Fig. 3 is another kind of interference, inherent in conventional radar, which may be called cross-talk interference. Car C in Fig. 3(a) may receive a false alarm even though it is in no danger of running into car B . With a harmonic radar, as in Fig. 3(b), the return signal is shaped into a well-defined beam, covering the width of one lane only.

In the situation on a curve, as in Fig. 4(a),

Fig. 3. Conventional versus harmonic radar: "cross talk" from adjacent lanes.

Fig. 4. Conventional versus harmonic radar: road curves.
quite evidently we do not need a third car to produce a false alarm. The skin of car B will respond to the transmission from a fundamental radar and may cause a false alarm at car A. Fig. 4(b) shows that with a well-defined narrow beam reflected from car B, if any reflection occurs at all, the possibility of a false alarm is drastically reduced.

Masking interference

Illustrated in Fig. 5 is yet another problem inherent in a conventional radar which uses the car's body as the reflector. Radar crosssections of rears of cars can vary tremendously: the back of a lorry may have a radar cross-section several hundred times larger than a small car. The effect is then the masking of the desired return from a close vehicle by a larger vehicle much farther down the road. With the harmonic radar, all radar cross-sections of reflectors are the same, unless designed otherwise. If all reflectors are mounted at a standard height, only the nearest reflector can be "seen" while all others will be blocked.

The radar system described in this paper is unique in its ability to eliminate false targets and clutter, in 'its immunity to blinding by radars of similarly equipped vehicles, and in its potential of providing automatic braking for specifically "tagged" objects, such as known off-highway collision hazards or wrong-way entrances to one-way streets and highway access ramps.

When in general use, it also has the potential for safely providing higher traffic packing densities without running the risks of massive "pile-ups".

Although it is a co-operative system, in that all vehicles must carry the harmonic reflector, the reflector is completely passive, quite inexpensive in mass production, and can easily be fitted on existing vehicles. The co-operation required is not more burdensome than the requirement for red tail-light assemblies; and the purpose is the sameto aid in preventing collisions.

The radar uses solid-state components throughout, and is easily adaptable to integration and printed circuit techniques. It uses a frequency spectrum region that is still not crowded and, with a power density over the antenna aperture of $0.15 \mathrm{~mW} / \mathrm{cm}^{2}$, it does not constitute a radiation hazard even in the immediate vicinity of the radar.

General description of harmonic radar system

The harmonic radar system is shown in the block diagram of Fig. 6. A varactor-tuned transferred-electron oscillator (t.e.o.) generates c.w. power at X-band. A triangular waveform is used to frequency modulate the t.e.o. with a total frequency excursion of ΔF at a rate of f_{m} as shown in Fig. 7. The frequency-swept power is radiated from antenna A_{1} mounted on the front of the trailing car (see Fig. 6). This power impinges on a similar antenna A_{2} which is a part of the harmonic reflector mounted on the back of the front car. The passive doubler generates the second harmonic frequency of the power incident on

Fig. 5. Conventional versus harmonic radar: masking.

antenna A_{2} and radiates it back to the trailing car via antenna A_{3}. This frequency is in Ku -band. The receiving antenna A_{4} delivers the received power, which is at the second harmonic frequency, to the mixer, where it is mixed with a sample of the doubled frequency of the transmitter power.

The returned signal is shifted in frequency from the second harmonic of the transmitted frequency due to the round trip time delay $\tau=2 R / c$ (R is the distance between cars and c is the velocity of light). The frequency shift (or difference frequency, f_{R}) is given by

$$
f_{R}=\frac{d f}{d t} \cdot \tau=\frac{8 \Delta F f_{m} R}{c}
$$

A measurement of the frequency shift yields the range since the time delay is proportional to the distance between cars.
Two techniques for measuring this frequency shift have been investigated for the automotive radar. The first, for which the bulk of the experimental effort has been carried out, will be described first.
The output of the mixer is amplified, filtered and then fed into a counting

Fig. 7. Modulation scheme of harmonic radar.
circuit. This counting circuit develops a voltage which is proportional to the rate of zero crossings of the input signal and therefore the range. In addition, the radar processing circuitry derives a voltage which is proportional to the first derivative of the range, i.e., the closing rate. To make a
proper decision for a "safe distance", a third piece of information-the ground speed of the vehicle-is used. The ground speed is derived from an independent microwave Doppler speed sensor. The radar processor combines the three measurements of range, closing rate and
ground speed in a predetermined fashion, depending on the criteria chosen for "safe distance", which are, of course, dependent on weather and road conditions. When a dangerous driving situation is detected, an audible warning is sounded and a light is flashed. In our experimental unit, with the system switched to the automatic braking mode, the brakes are also applied for dangerous driving situations. The range, closing rate and ground speed are displayed on three panel meters mounted on the dashboard. In an operational system, it is not expected that these measured quantities would be displayed.

Quantization effects

As shown in Fig. 7, the difference frequency f_{R} is given by

$$
\begin{equation*}
f_{R}=8 \Delta F f_{n} R / c \tag{1}
\end{equation*}
$$

where R is the distance between vehicles, ΔF is the total frequency excursion at X band, and f_{m} is the modulation frequency. The choice of parameters ΔF and f_{m} is closely related to the presence of a step error (or quantization error) in distance
measurements with frequency modulated radar. The conventional signal processing technique ${ }^{2}$ which measures the return frequency by counting the number of zero crossings that occur within a fixed time interval leads to a result which is quantized in frequency and therefore in range. The quantization arises because the difference frequency waveform is periodic in f_{m}. Therefore the average measured frequency (as measured by using the entire waveform and counting zero crossings in a fixed time interval) must be a multiple of f_{m}. The quantization step in range ΔR is therefore (from equation (1)) equal to

$$
\Delta R=c / 8 \Delta F
$$

To minimize this basic "granularity" in distance readings, ΔF should be chosen as large as possible. In practice, bandwidth limitations in the doubler and mixing circuits, as well as regulations requiring the efficient use of frequency spectrum do not allow ΔF to exceed a few tens of MHz . In the experimental system, a good compromise was found to be ΔF equal to 25 MHz , resulting in a range quantization of 1.5 metres. This quantization error can

Fig. 8. Typical difference frequency waveform.

Fig. 9. Doppler shifts with moving vehicles.
be tolerated in a distance measurement for collision avoidance where the relative motion of the two vehicles tends to have an error-smoothing effect.
A different processing technique has also been investigated. This technique processes the difference frequency waveform in a digital manner allowing accurate range measurements to be made without the quantization limitation just described. This technique can allow the radar to operate with a smaller frequency deviation ΔF which in turn simplifies the bandwidth requirements at the t.e.o., mixer, doubler, etc., as well as conserving r.f. spectrum.
To understand how this signal processor overcomes the quantization limitation refer to Fig. 8, which depicts a typical difference frequency versus time waveform. The number of zero crossings in a given time interval is quantized, with the quantization effects arising because of the phase reversals occurring every $1 / 2 \cdot f_{m}$ seconds. However, if we restrict our attention to portions of the difference frequency waveform that are removed from the phase reversals, then we see that the time between zero crossings of this restricted portion of the waveform is not quantized.
If an accurate measurement of this time period $\left(p_{0}\right)$ were made, then a non-quantized frequency $\left(1 / 2 p_{0}\right)$ could be found by generating the reciprocal of the measured period. This non-quantized frequency could then be converted to range via the relationship shown in eq. (1). Further details of the non-quantized signal processing technique are presented in the video circuits and signal processing sections of this paper.

Modulation parameters

The frequency excursion at X -band is 25 MHz while the modulation frequency is 3 kHz . This was chosen as a compromise because if f_{m} is made very high, the video bandwidth needed to accommodate the expected variation in range becomes very large while if f_{m} is made very low, there are various components of noise (in excess of thermal noise) which behave as $1 / f$ noise, limiting system performance. For the parameters chosen, the frequency versus range slope is $2 \mathrm{kHz} / \mathrm{m}$ resulting in a $10 \mathrm{kHz}-200 \mathrm{kHz}$ range for the difference frequency as the distance varies from 5 to 100 metres.

Doppler shifts

As seen in Fig. 9, relative movement between vehicles will have the effect of shifting the difference frequency by an amount equal to the Doppler frequency. It will be a positive shift during one half of the modulation cycle and an equal but negative shift during the other half. The average difference frequency (averaged over many cycles of f_{m}) will be the same as for a stationary car at the same average distance. The range reading is therefore independent of the Doppler shifts. An updown counter switched in synchronism with f_{m} could be used to detect the closing rate. In the present system, however, the closing rate is derived by differentiation of R.

Frequency doubler

The success of the harmonic radar concept was critically dependent on developing an efficient, passive harmonic reflector, i.e., finding a solid-state device which in a suitable circuit will generate the second harmonic with the required efficiency. For the car radar application it was felt strongly that the reflector must be completely passive, with no wiring to the car's electrical system to insure reliable operation and inexpensive installation.

The above needs have been met by the device shown in Photo 1. A silicon Schottky barrier diode is mounted in a microstrip circuit. A 0.8thou'-diameter diode chip is seen connected across a gap, located for best impedance match in a $\lambda / 2$ (fundamental resonator). Input at X -band is coupled at a voltage maximum point of the fundamental frequency, output is coupled at a voltage maximum point of the second harmonic, with a $\lambda / 4$ open section coupled to the output line to reflect the fundamental frequency back into the circuit. Fig. 10 shows the conversion efficiency of the doubler circuit. As one would expect, at the lower levels the power output at the second harmonic varies as the square of the power input at the fundamental, following a law of

$$
P_{\text {out }}=K P_{\text {in }}{ }^{2}
$$

with K equal to $2500 \mathrm{~W}^{-1}$. The bandwidth of the doubler is approximately 75 MHz , centred within the Ku-band in the experimental unit.

A similar doubler circuit is used to provide a sample of double frequency transmitter power to the local oscillator port of the mixer, but this circuit is operating at high power levels. A 50 mW input at Xband yields a conversion efficiency of 10% over a 200 MHz band.

Antennas

The choice of antennas and the r.f. frequency are closely related. For reasonable trafficlane discrimination, a maximum horizontal beamwidth of 5° requires a horizontal aperture width of ten wavelengths. To achieve this aperture in a 12 in physical size (approximately licence plate size) necessarily places us somewhere in Xband. A $10 \lambda \times 10 \lambda$ aperture with 50% efficiency has a gain of 28 dB , which makes transmitter power requirements quite reasonable. Also, solid-state power sources at X -band frequencies are readily available, and spectrum space at X -band is still under-utilized.

Printed antenna design was found quite suitable for our system. The X-band antenna has an aperture of $13 \times 7 \frac{1}{2} \mathrm{in}$, a gain of 26 dB at 9 GHz , and a 10% bandwidth. It consists of 128 fan-shaped dipoles printed on both sides of a $1 / 32$-in thick polyethylene sheet, phased into a 50Ω input through a succession of quarterwave balanced transmission lines. An 18 GHz antenna has been produced by scaling up in frequency from the X-band design, with similar electrical characteristics.

By using a polarization of the Ku-band antenna at 90° to the polarization of the

Photo 1. Frequency doubler microstrip circuit.

Fig. 10. Harmonic generation efficiency of frequency doubler.

X -band antenna, we get additional rejection of spurious second harmonic power generated at the source and received either directly from an oncoming vehicle or reflected from "nontagged" objects. This is in addition to second-harmonic filtering at the low-pass filter and isolators in the transmitter circuit. Total rejection of spurious second harmonic amounts to 150 dB , reducing it to well below receiver noise level.

Doppler speed sensor

A low-power microwave Doppler speed sensor was developed for use on cars and lorries to provide true ground speed for both anti-skid braking and speedometer applications. In an anti-skid system, the true ground speed and wheel speed are compared to accurately determine wheel slip during braking.

The speed sensor, which is shown in photo 2 and diagrammatically in Fig.11, is a completely self-contained radar including transmitter, receiver, antenna, d.c. and signal processing circuits. A smaller version of the printed antenna in the collision avoidance radar is used for transmitting to and receiving signals from the road surface. The radar is mounted on the vehicle so that the beam lies in a vertical plane, with the vehicle's velocity vector at an acute angle θ (typically 45°) to the road surface. Part of the transmitted signal is diffusely reflected from the road surface back to the antenna. If the vehicle is moving with a velocity ν, the reflected signal is shifted by the Doppler effect and the difference between transmitted and reflected frequencies is given by $F_{D}=2 v$ $\cos \theta / \tau$ where τ is the wavelength of the transmitted signal. This difference frequency is extracted from the mixer and is converted to a series of fixed width pulses having a repetition rate proportional to speed. The pulses may be counted to indicate total distance or may be averaged for analogue speed information as is the case for the collision avoidance system. These radar speedometers have an operating

Fig. 11. Block diagram of Doppler radar module.
temperature range of -60 to $+75^{\circ} \mathrm{C}$ and, once calibrated, have demonstrated inaccuracies of about 1% or less on dry road surfaces for speeds of $20-70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

Signal propagation

Assuming free-space propagation conditions, effective antenna apertures of A_{f} and $A_{2 f}$ for the X -band and Ku-band antennas, respectively, a target at distance R will present to the receiver a signal power of

$$
\begin{equation*}
P_{r}=(4 K) P_{0}{ }^{2} A_{f}^{4} A_{2 f}^{2} / \lambda^{6} R^{6} \tag{2}
\end{equation*}
$$

where P_{0} is the transmitter power at the fundamental wavelength λ and K is the doubler coefficient when operating in its square law region where $P_{\text {out }}$ equals $K\left(P_{\mathrm{in}}\right)^{2}$.

The signal strength at the receiver is modified by ground reflections. Power will reach the antennas via a ground reflection in addition to the direct path. For the car, radar angles of incidence are between 5° and 0.5°. At such small angles, the reflection coefficients for horizontal and vertical polarization are similar (about 0.7 to 0.8 in magnitude and a phase shift of close to π radians). As a result of the ground reflected component, the range equation (2) has to be modified. Assuming an ideal case (not far from reality) where the reflection coeficient is equal to -1 ,

$$
\begin{aligned}
P_{r}^{\prime}= & P_{r}\left[64 \sin ^{4}\left(2 \pi h_{1} h_{2} / \lambda R\right) \times\right. \\
& \left.\sin ^{2}\left(4 \pi h_{1} h_{2} / \lambda R\right)\right]
\end{aligned}
$$

where h_{1}, h_{2} are heights above ground of the active radar and passive reflector antennas, respectively, and λ is the fundamental wavelength. As R changes, we expect a series of reinforcements and partial cancellations of signal strength. A partial cancellation will occur wherever $R=$ $4 h_{1} h_{2} / n \lambda$, where $n=1,2,3 \ldots$ and for the values $h_{1}=h_{2}=0.52 \mathrm{~m}$ of the experimental radar. A signal minimum is expected at $R_{n=1}$ equals 32 m and $R_{n=2}$ equal to 16 m , with more below $R_{\text {min }}$.

For distances where $R>10 h_{1} h_{2} / \lambda$, the trigonometric functions in eq. (3) can be replaced by the arguments, resulting in a received signal of

$$
P_{r}^{\prime \prime} a P_{0}^{2} A_{f}^{4} A_{2 f}^{2}\left(h_{1} h_{2}\right)^{6} /(\lambda R)^{12}
$$

indicating a drop-off with distance as steep as R^{-12}.

It is obviously more advantageous, relative to conventional radar systems, to increase the source power, and, for a given total aperture, to allocate the larger area to the fundamental antenna. In our radar, this aperture ratio is $4: 1$, giving the same gain to the two antennas. The very steep decrease of signal strength with distance has an advantage in that interference effects caused by out-of-range targets will be greatly reduced.

Measured signal strength as a function of distance is shown in Fig. 12 for the experimental radar over dry asphalt.

Source of noise

There are several sources of noise in the present radar system which limit the range. These sources include thermal noise, essentially "white" across the systembandwidth

$$
B=f_{R \max }-f_{R \min }
$$

Photo 2. Doppler ground speed radar.

Fig. 12. Signal strength versus distance. (Antenna is 21 in above road surface.)

Local oscillator noise, generated by beat products of the t.e.o. noise spectrum in a bandwidth B away from the carrier ${ }^{3,4}$. This noise source varies with the "corner" at $f=100 \mathrm{kHz}$. It is possible to reduce the effects of noise source by using a balanced mixer. For the radar parameters, with a mixer balance reduction of 20 dB , the local oscillator noise becomes less than thermal. Amplitude modulation at the local oscillator, caused by the dependence of t.e.o. output power on frequency as frequency is varied over a range ΔF. This noise source has frequency components at f_{m} and its harmonics. Use of a balanced mixer and a t.e.o. power variation of less than 0.1 dB over ΔF ensure that this noise source is of minor importance. Mixer sensitivity and balance are strongly. dependent on frequency. This is partly caused by the fact that the isolation between the r.f. ports is rather poor ($\sim 6 \mathrm{~dB}$), causing multiple reflections of the local oscillator power and its harmonics at the imperfectly matched isolator, antenna, and high-pass filter (see Fig. 6). When swept over a range of frequencies ΔF, a noise signal at f_{m} is generated at the i.f. output port, the harmonics of which enter the video band, $f_{R \text { min }}$ to $f_{R \max }$, of the system. The magnitude of this noise signal varies with the mixer diodes in use and the
choice of centre frequency. With careful matching of components and adjustment of cable lengths it can be reduced, but in practice it is the dominant noise source, exceeding the first two contributions by $10-20 \mathrm{~dB}$. Therefore, the current design is not operating at its theoretical Johnson noise limit regarding signal-to-noise ratios, and consequently its maximum range of 100 m is below a theoretical noise limited system.

Improvement in the future can be achieved by using a balanced mixer design which has better isolation and is less prone to generating spurious signals at f_{m} and its harmonics. One could also attempt matched filtering in the video amplifier chain to improve matching between the amplitude and range characteristic of the radar system. Should increased range become necessary a more sophisticated and complex design may be used, incorporating a tracking, narrow-band filter.

In the present design, a signal of $P_{\text {min }}$ equal to -80 dBm is required at the receiver input for a 10 dB overall s / n ratio. (To be continued)

References

1. "Accident Facts", published by National Safety Council, Chicago, III., 1971 Edition.
2. Luck, D. G. C., "Frequency Modulation Radar", McGraw-Hill (1949).
3. Narayan, S. Y., and Sterzer, F.,"Transferred Electron Amplifiers and Oscillators," IEEE Trans. on Microwave Theory and Techniques (November 1970).
4. Ohtomo. M., "Experimental Evaluation of Noise Parameters in Gunn and Avalanche Oscillators", IEEE Trans. on Microwave Theory and Techniques (July 1972).

Sixty Years Ago

In these days of "light current" electronics, and the professional, highly qualified radio engineer, it is worth remembering that it was not always thus. This extract from Wireless World, May 1914, may give some inkling of the sort of thing your average engineer came up against.
'Wireless Engineer' sends us the following two recipes for a cheap mixture for covering boilers in order to prevent loss of heat:
(1) Take 1 bushel of fireclay, 1 bushel of ordinary clay, 1 bushel of cow-dung, $\frac{1}{4}$ bushel of ashes (not the finest dust), $\frac{1}{2}$ gal. of coaltar, and a little plasterers' hair as a binder; mix well together . . ."

And now we grumble when integrated circuits are in short supply!

Circuit Ideas

Ten-digit code-operated switch or combination lock

The circuit is that of a switch which is only operated by the insertion of a tendigit code. On pushing either the " 1 " or " 0 " button, a positive-going clock pulse is applied to the clock input of the shift registers which then clocks into the first bit whatever is present at the serial input. With the serial input connected as shown, it is clear that pushing the " 1 " or " 0 " button will clock into the shift registers a " 1 " and " 0 " respectively. One requirement of the shift registers is that the information be present at the serial input before the clocking pulse occurs. This is clearly achieved in this design. The pair of cross-coupled NAND gates associated with each switch is to prevent the undesired effects of contact bounce.

Each output of the shift registers. is applied either directly or through an inverter to a NAND gate which, when all inputs are high, will cause the point X to go high. Thus the insertion of an inverter between a shift register output and the NAND gate will make it necessary for that particular output to be " 0 " before X goes high. As two five-bit shift registers are used, then clearly a ten-digit code will be required to operate the switch. Though the shift registers have a "clear" input, it was found that its use was unnecessary as any states present at switch-on are virtually no help in obtaining the code.

The theoretical probability of obtaining the correct code is one in 2^{10} or 1 in 1024, assuming that one knows that ten digits are required. The average code breaker will not know this, and so the odds against him will be much larger.

Seven Texas monolithic positive-logic chips are used in the present design. The NAND gates 1, 2, 3, 4, are part of a SN7400N package. Likewise are gates $5,6,7,8$. The 12 inverters are formed by using two SN7404N packages, each of which contains six inverters. The eightinput NAND gate is a SN7430N, and each of the two shift registers is a SN7496N.

If one chooses a code with only four zeros, then only one SN7404N will be required. The system operates with a $5-\mathrm{V}$ supply rail and consumes 100 mA , excluding relay current.
K. E. Potter,

University of Sheffield.

Stable t.t.I. oscillator

This circuit satisfied my requirements for a self-starting t.t.l. oscillator which was more than the usual Schmitt trigger circuit. Components R_{3}, C_{3} provide a starting pulse at switch on.

Period of oscillation is approximately $\log _{e} 2\left(C_{1} R_{1}+C_{2} R_{2}\right)+$ sum of propagation delays (about 45 ns each).
Stability is approximately 0.07% change in frequency for a supply change from 4.75 to 5.25 V , and approximately $0.015 \% /$ $\operatorname{deg} \mathrm{C}$ for a 1 MHz oscillator. For reliable operation $R_{1} C_{1} \approx R_{2} C_{2}$.
M. Walne,

Brighouse,
Yorks.

High performance reference

Using only six components this reference circuit has exceptionally good characteristics. Current through the zener diode is held constant because it is derived from the stabilized output. With the equipment at my disposal I have been unable to measure most of the parameters of the circuit and so can only quote limits to these values.

Regulation $<0.005 \%$ i.e. when the input rose from 10 to 30 V the output changed by less than 1 mV .
Output resistance approximately 0.1Ω.
Short-circuit current approximately 20 mA .
Ripple rejection $<80 \mathrm{~dB}$; with an input ripple of 10 V pk -pk output ripple was less than 1 mV pk -pk.
Temperature coefficient typically $0.003 \% / \mathrm{deg} \mathrm{C}$ although this can be reduced to zero by adjustment of the resistors.
Circuit can be rearranged to give either positive or negative outputs, and other values of output voltage.
M. Walne,

Brighouse,
Yorks.

Novel stereo f.m. tuner

2 -Stereo decoder, assembly and setting up

by J. A. Skingley and N. C. Thompson

Plessey Company Ltd, Swindon

Abstract

Using a ready-made front-end, integrated circuits and only one inductor, this tuner design is simple to operate, construct and set up. Part 1 gave novel circuitry for interstation muting, a.f.c. restricted to less than station spacing, a single-lamp tuning indicator, and temperature compensated varicap tuning allowing stations to be preset. This second article gives a stereo decoder circuit that uses active filters to eliminate "birdies" and subcarrier harmonics, assembly instructions, setting up procedure and a linear-scale frequency meter circuit.

Fig. 7 shows the internal circuit of the SBA750. Pins 3 and 4 receive the input from the i.f. which is passed along the chain of five limiting amplifiers to pins 6 and 7. From here the signal is passed internally direct to the quadrature detector, and also externally via the quadrature coil and pins 8 and 9 . The demodulated signal is then available at pins 10 and 11 , and it is from here that the drive for the a.f.c. and tuning indicator is taken. This audio signal is taken internally to an amplifier giving a single-ended output on pin 12.
The stereo signal is taken from this pin and fed to the stereo decode board. It is also coupled via C_{11} to pin 1, and after further amplification is available de-emphasized as a mono signal on pin 15. De-emphasis is accomplished by C_{13} on pin 16. Both stereo
and high-level mono outputs are therefore available.
The amplifier output to pin 12 can be attenuated by varying the current fed into pin 13. In this design pin 13 is open circuited to fully mute the amplifier while preserving the a.f.c. drive from pins 10 and 11. This ensures that the receiver captures a station from the muted condition.

Improved stereo decoder

The stereo decoder is shown in Fig. 8..When this decoder integrated circuit was first used "birdy"-type interference was experienced under certain conditions. The causes of this have been reported elsewhere, but it is worthy of further explanation judging by the lack of effort to remove it in expensive receivers.

The nature of a frequency modulated signal is such that a bandwidth many times that of the deviation is needed for accurate transmission and reception, around 300 kHz often being used. The spacing of broadcast programmes is however only 100 kHz and this inevitably results in frequencies from one station arriving at the detector of a tuner receiving an adjacent station. The products from the detection are however normally supersonic and therefore inaudible.
This is fine until we introduce stereo reception which involves demodulation of the stereo channel at 38 kHz usually using square-wave switching. This process also demodulates signals around the odd harmonics of 38 kHz , i.e. $114,190,266 \mathrm{kHz}$ etc. The first two of these will produce audible signals from the adjacent channels at 100 and 200 kHz away from the wanted station, giving interference centred on 14 and 10 kHz respectively. These sound like highpitched twittering sounds commonly called birdies.

Knowing the cause, the effect can be greatly reduced, if not completely eliminated. The wanted stereo information extends up to 53 kHz , so by filtering the signal above this frequency before the stereo decoder, the unwanted adjacent channel signals can be attenuated. This also brings about an improvement in signal-to-noise ratio during stereo reception, as noise above 53 kHz is also reduced. Such noise can be demodulated down to the audio band by the harmonics of the 38 kHz switching frequency in a similar fashion to the adjacent channel signals if it is not removed.

The filtering required is carried out by $T r_{1}$ in Fig. 8, which also shows the complete stereo decoder. (This circuit has been built on a separate board, and for this reason the components have been numbered independently). Transistor Tr_{1} forms an active filter of the Sallen and Key type and provides a second-order response. There is an addi-
tional pole supplied by C_{10} between pins 10 and 11 of the SBA750 and this, together with the two poles of the active filter, combine to give a three-pole optimally flat response up to 53 kHz , followed by a sharp roll off of 18 dB per octave. This transistor is directly coupled and biased from pin 12 of the SBA750, and its output fed to the input of the decoder integrated circuit.

This decoder is of the phase-locked loop type, and in appreciating the advantages of this form of decoder, it is worth looking briefly at the conventional type. These decoders work by generating the necessary 38 kHz switching frequency either by converting up the 19 kHz pilot tone, or by phase locking a local oscillator to this pilot tone. The 38 kHz signal may then be used to switch the multiplex signal into its two separate paths. Obviously, this switching must not only be at the correct frequency but it must also be in synchronism with the original coding. In other words the phase of the coding and decoding signals must be identical. If a tuned circuit is used as in the conventional decoder to separate the 19 kHz from the audio, then a high-Q tuned circuit must be used to avoid phase jitter from the residual audio. A high-Q tuned circuit however has a high phase shift for a small amount of mis-tuning. For this reason a low Q would be required. Hence there is a compromise.

The phase-locked decoder operates by generating a 38 kHz signal (in this case a 76 kHz signal divided by two). This is divided by two to give 19 kHz which is compared in phase with the pilot tone. The difference between the two is used to provide

Fig. 7. Internal circuit of SEA750A i.c. includes circuitry i.f. amplifier (below) balanced quadrature detector and a.f. preamplifier (used on mono only). Signal to unmute output is applied from Fig. 4 to pin 13. Drive for a.f.c. and indicator circuit is taken from pins 10 and 11 via circuit of Fig. 5 and drive for mute circuit is taken from pin 6.

Fig. 8. Decoder circuit includes an active filter to roll-off response at 18 dB per octave above 53 kHz to prevent "birdies" that result from interference between odd harmonics of 38 kHz and adjacent carriers. Two further active filters remove the $38-\mathrm{kHz}$ harmonics from the outputs.
feedback, and hence phase lock the local oscillator to the pilot tone. The time constant of the feedback path may be made long so as to reduce the phase jitter to a negligible amount. This is equivalent to producing a high-Q tuned circuit, but one which cannot drift in phase provided the loop gain of the feedback path is high. This system also has the advantage that no coils are required The complexity required dictates the use of integrated circuits on economic grounds, which has the added advantage that fewer corners need be cut in the design stage, so that the full potential of the system may be realized

Two more active filters have been added, one per channel, formed by $T r_{2}$ and $T r_{3}$ (Fig. 8) and these are directly biased from the integrated circuit. Their function is to remove unwanted signals from the outputs, such as the 38 kHz sub-carrier and its harmonics, which could otherwise cause trouble when tape recording.
The MC1310 has a direct output for a stereo indicator lamp and the facility for disabling the decoding process if desired. In the tuner described this is implemented by a second pole to the switch which also stops the oscillator to prevent any possible interference. The stereo decoding may need to be stopped if the signal is weak and a poor signal-to-noise ratio is obtained. Reverting to mono reception will provide an improvement. You may prefer to use the mono output provided from the receiver board, but this will need attenuation to give a compatible level when switching to mono. The tuner will, of course, automatically give a mono output in the absence of a pilot signal.

Construction

Layout and general presentation of the tuner is largely a matter of personal choice, and in this connection the mechanics de-
scribed represent only our solution, offered as a suggestion. The layout of the printed boards are critical, and it is strongly advised that the board design offered here is used. The system employs a generous amount of gain at high frequencies and even small deviations from the layout given could prove troublesome. This layout, given in Figs 9 and 10, follows good engineering practice and ensures stable performance.
When assembling a board of this com-
plexity it is a good idea to insert a few components at a time, solder these and clip their leads before inserting a few more. Start with the passive components and finally the transistors, integrated circuits, filter and front end. There are four wire links and these are made using discarded resistor ends. The single coil is 15 turns of 33 s.w.g. cotton cord wire, close-wound on a Neosid type A screened assembly using an F16 screw core. Before soldering the wire ends of this, insert the capacitor $C_{9}(100 \mathrm{pF})$ into the same pins

Fig. 9. Component layout for Fig. 6 is critical and p.c. hoard shown in Fig. 10 should be used. Points A and B connect to the a.f.c. switch and points C and D to the mute switch.

Fig. 10. Copper side of printed board, actual size Component side shown above.
as the coil. This capacitor is slim and is easily accommodated within the can.

The emitters of the transistors are adjacent to the tag on the can. Transistors Tr_{1} and $T r_{2}$ are an exception to this. Insert so that the flat face of the plastic package is on the opposite side to the base of the triangle. If the centre (case) lead is bent forward towards the flat all these leads will fall into place.

Finally, solder twisted-pair wires at points A and B for the a.f.c. switch and C and D for the mute switch, together with pairs for the tuning indicator lamp (observe polarity), audio outputs and 15 -volt power supplies. Mount the two boards on $\frac{1}{2}$ in brass pillars at the four corners, preferably on a metal chassis to ensure good earthing and screening.

The chassis system (Fig. 12) was constructed from 16 s.w.g. aluminium sheet, a piece 1 lin square being required. After drilling the chassis is bent into a U-shape where shown, and the front panel fitted on $\frac{1}{2}$ in brass pillars. This can be made of aluminium, sprayed and marked with Letraset. Alternatively, perspex may be used, marked in mirror image and sprayed on the reverse side. There are many ways open to home constructors these days, and the production of a professional finish is largely a matter of ingenuity and personal taste.

The front panel is made $\frac{1}{4}$ in deeper than the front edge of the chassis to allow the use of rubber feet on the chassis, yet leaving a smaller clearance beneath the front panel. A false front panel has the advantage of hiding most of the screws and allowing the push buttons and meter to protrude the correct distance. It also allows space for a hidden pilot lamp to illuminate the meter. A cover made of polished wood or sprayed metal may easily be made to fit over this chassis, consisting of inverted U shape forming the sides and top. This should be about 8 or $8 \frac{1}{2}$ in from front to back, depending on the front and back overhang desired, and the sides the same drop as the front panel.

The only difficulty is in mounting the tenturn potentiometer which has a short spindle and must be brought forward $\frac{1}{4}$ in from the chassis. This is achieved by cutting a clearance hole in the chassis 1 -in square and mounting the potentiometer on a strip 1×2 in held on $\frac{1}{4}$ in pillars, or long srews and double nuts. The spindle will then protrude from the front panel by the correct distance.

The prototype used six push buttons for pre-selected stations mounted on a printed board with the pre-set potentiometers between them. This resulted in a compact switch unit, but the method necessitated a minor trimming of the width of the potentiometer by rubbing their faces with emery paper until a sliding fit was obtained. This board also held a drive circuit for the meter used to display the frequency. This is shown in Fig. 13, and the p.c.b. in Fig. 14. This unit may be mounted on 0.1 in pitch Letrokit board and hand wired if preferred, using the p.c.b. layout as a guide

The meter drive circuit is basically an emitter follower driven from the tuning voltage, but the addition of a Plessey SL301 matched pair as shown results in a tempera-

Fig. 11. Stereo decoder layout. Points A, B and C connect to mono/stereo switch shown actual size.

ture-stable law-bending circuit producing a linear frequency scale from the non-linear law of the front-end varicaps. The meter is and RS Components miniature edge meter MR42A, 25-0-25 $\mu \mathrm{A}$. By removing the two screws the case may be removed and the scale lifted from its mounts. A wipe with acetone or nail varnish remover removes the lettering which may then be replaced with a suitable frequency scale using Letra-set-or free-hand if you have a steady one! Take care to avoid damage to the pointer, and the case should be replaced to exclude dust while the scale is being redrawn. Final calibration is done by mechanical adjustment of the zero adjuster while receiving a known station.

It is important that the power supply should be free of ripple and temperature stable, and this is achieved by a regulator. integrated circuit RS Components MVR15V. This, together with bridge rectifier REC70, $1000 \mu \mathrm{~F}$ capacitor, and transformer (634) from the same supplier complete a stable power supply for little effort.

Top-grade components were used to ensure reliability and consistency of performance. It is strongly recommended that the components specified are used. There are parts of the circuit which require 2% resistors, for example, to ensure correct biasing and balance of the tuning point and a.f.c. circuitry.

Setting up and testing

When the boards have been wired and mounted make the appropriate interconnections. Connect 1.e.ds and switches and check everything before switching on. Put switches in the a.f.c.-off and mute disabled

Chassis for complete receiver can be made from an 11 in square 16-s.w.g. sheet of aluminium, bent into a U-shape (Fig. 12, above). Separate front panel and cover improve appearance. Drive circuit for frequency meter gives linear frequency scale, varicap non-linearity being matched by matched-pair integrated circuit (Fig. 13, below). Layout on right shows pre-set potentiometers and frequency meter components (Fig. 14).

Tuner performance

Components for suitable power circuit, above, were listed in part 1.
positions, and leave the aerial unconnected. Do not adjust the front-end module which is pre-aligned and should not be touched. Under these conditions there will be a band of noise defined by the i.f. filter passing through the limiting amplifier to the detector. If the core of the single coilis adjusted until the tuning lamp responds and be trimmed for maximum brilliance, the detector will be correctly adjusted to the centre of the i.f. pass band.

Now connect an audio amplifier and speaker. A loud smooth hiss should be heard. If the mute switch is operated this hiss should be silenced and the tuning lamp extinguished. Connect the aerial-a short length of wire may receive several stationsand, with all push-buttons out, adjust the ten-turn potentiometer to find stations. Observe a.f.c. action by mis-tuning a station until the tuning indicator is just extinguished and the output muted. Switching in the a.f.c. should recover the station.

A good aerial will now reveal anything around a dozen stations. The three least noisy should prove to be the national stations, and the frequencies of these are given in the local Radio Times. Trim the meter using the internal adjuster and obtain pre-set stations by pressing the appropriate button and adjusting the adjacent pre-set potentiometer. If this adjustment procedure cannot be achieved switch off and check all components and interconnections. Particularly check for incorrect polarity 1.e.ds and capacitors, misplaced $n-\mathrm{p}-\mathrm{n}$ an $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors, capacitors omitted in coil assembly or wrong number of turns.
If the alignment of the main board is achieved set the stereo decoder. This involves adjusting the oscillator using the single pre-set potentiometer. First find a transmission known to be stereo; check with the Radio Times. Ensure that decoding is not disabled by the switch provided and adjust until the stereo indicator lights. Now

Components (stereo decoder) Transistors BC109 IC MCl310 Diode 5082-4403 (l.e.d.)	
Resistors	
R_{1}	5.6k Ω
R_{2}	$9.1 \mathrm{k} \Omega$
R_{3}, R_{11}, R_{15}	$10 \mathrm{k} \Omega$
R_{4}	$16 \mathrm{k} \Omega$
R_{5}	${ }^{1 k} \Omega$
R_{6}, R_{7}	$5.1 \mathrm{k} \Omega$
	${ }^{680 \Omega}$
$R_{9,}, R_{10}, R_{13}, R_{14}$ R_{12}, R_{16} $R V_{16}$, $R_{14} \begin{array}{r}15 \mathrm{k} \Omega \\ 470 \mathrm{k} \Omega\end{array}$
${ }_{\text {R }} \mathrm{R}_{12} \mathrm{~V}_{1}, R_{16} \mathrm{~N}_{16}$	$4.7 \mathrm{k} \Omega$
Capacitors	
$\mathrm{C}_{1} \quad 620$	620pF (polystyrene)
$\mathrm{C}_{2} \quad 150$	150 pF (polystyrene)
$\mathrm{C}_{3} \quad 10 \mathrm{~F}$	$1 \mu \mathrm{~F}$ (polycarbonate)
$C_{4}, C_{5} \quad 10 \mathrm{~F}$	10 nF (polycarbonate)
	470pF (polystyrene)
C_{7}, C_{10}	${ }^{0.224 \mathrm{~F}}$ (polycarbonate)
C_{8}, C_{13}, C_{15}	$0.47 \mu \mathrm{~F}$ (polycarbonate)
$\mathrm{C}_{9}{ }_{C_{5}} \mathrm{C}_{14}$	47nF (polycarbonate)
C_{11}, C_{14}	1.5 nF (polystyrene)
$C_{12}, C_{15} \quad 680$	${ }^{680 \mathrm{pF}}$ (polystyrene)
	22 nF (polycarbonate)

release and pre-press the stereo switch and adjust the potentiometer until the l.e.d. lights in the shortest possible time after the switch is pressed. This is the correct setting.

Finally, a word about aerials. This tuner will receive stations on a few feet of wire, but if the full potential and maximum signal-to-noise ratio is to be obtained, a good aerial is essential. Any system can only be as good as its signal source, be it a pick-up cartridge, tape head or radio aerial, and this can easily be the weakest link in the chain.

Tuner kit. A kit of parts will be available for this tuner from Icon Design at 33 Restrop View, Purton, Wilts SN5 9DG. See advertisement on page 40 for details.
Modification. A resistor (R_{53}) of $2 \mathrm{k} \Omega$ should be added in place of the wire link shown just below R_{43} in Fig.9. Because Motorola have altered the specification for the MC1310, a $150-\Omega$ resistor should be added in the supply line to the decoder board, returning the l.e.d. current directly to the +15 V rail. Increase C_{17} to $20 \mu \mathrm{~F}$ to decouple this.

An introduction to digital counters

-to accompany series 14 of Circards

by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams
Paisley College of Technology

A digital counter comprises an interconnection of bistable or two-state memory circuits or, colloquially, flip-flops. The counter embraces those circuits which accumulate pulses according to a specific code as they appear at the input, frequency dividers, sequence generators and pulse waveform generators. The application requirement will generally determine how the collection of flip-flops is identified, but in this article the generic name of counter will be used.
The basic flip-flop has one or two control inputs, and two outputs termed Q and $\overline{\mathrm{Q}}$ (not -Q), where $\overline{\mathrm{Q}}$ represents the opposite state of Q . The logic state of these outputs may be termed set or reset, high or low, 1 or 0 , and the change of state may occur on 0 to 1 or 1 to 0 transitions at the input, depending on the type used. The varieties of flip-flops used in counters are normally described by the control inputs and are termed D-type, T-type, RS and JK. The triggering input, called the clock-pulse input, ensures that a change of state will only take place on the occurrence of a pulse at the clock-input. Other facilities that may be available are preset and clear inputs which allow a flip-flop to be set $(\mathrm{Q}=1)$ or reset $(\mathrm{Q}=0)$, independently of the control inputs. Typical symbols for these flip-flops are shown in Fig. 1. Other variations include operation by positive or negative logic,
triggering on positive or negative pulse edges or a combination of these as in master-slave flip-flops.

A basic RS flip-flop using NAND gates is shown in Fig. 2. To represent the dependence of the Q output on the control inputs when a clock pulse occurs, a truthtable is used to demonstrate the state of Q at the nth clock pulse $\left(\mathrm{Q}_{n}\right)$, and after the next clock pulse $\left(Q_{n+1}\right)$-Fig. 3. For example, if S and R are both at logic zero when a clock pulse occurs, the output Q will not change state, but remain as it was before the clock pulse. However, if $S=1$, $\mathbf{R}=0$, then Q becomes logic 1, i.e. if it was previously logic 0 a change of state occurs, and if it was logic 1 , it remains so.

The indeterminate state of Q for the condition that $\mathbf{R}=\mathbf{S}=1$ exists because of a race condition between gates and is one disadvantage of this flip-flop-such a condition must be avoided. The JK flipflop, however, does not have this disad-vantage-all output conditions are predictable, as shown in Fig. 4. The last combination of $\mathbf{J}=\mathrm{K}=1$ permits a useful toggle action in which the output changes state on the occurrence of every clock pulse.

Counters are generally classified as asynchronous or synchronous. The basic asynchronous circuit is implemented with cascaded toggle flip-flops, where the output of a previous flip-flop is the clock-
input for the next in sequence. Alternatively, the drive inputs may come from Boolean combinations of other outputs. In either case, a disadvantage is that each flip-flop changes state at a different time in a sequence. For each flip-flop a propagation delay exists between the occurrence of a trigger pulse and the next state of the output, and this delay "ripplesthrough" the counter. This restricts the maximum operational speed of the counter, since the maximum ripple-through delay must be less than the time between input pulses.

In integrated circuit technology, these counters have the advantage that each flip-flop operates at half the frequency of the preceding one. This allows a trade-off in high-speed (high-power dissipation) circuits to be used in the first stage, with lower speed (low-power) configurations being used in later stages. The maximum count (including zero) of a counter containing n flip-flops is 2^{n}, feedforward or feedback techniques allowing counts less than this to be achieved. The number of distinguishable states through which the counter cycles is known as the modulus of the counter, and this may be fixed when implemented with individual flip-flops, but some m.s.i. packages are available that permit variation of the modulus by a simple connection or change or simple gating. If the outputs of ripple-counters are to be

Fig. 1. Four basic types of fip-flop.

Fig. 2. Nand-gate RS fip-flop.

Fig. 4. Truth table for JK fip-flop.

S	R	Q_{n+1}
0	0	Q_{n}
1	0	1
0	1	0
1	1	undefined

Fig. 3. Truth table for Fig. 2.

J	K	Q_{n+1}
0	O	Q_{n}
1	0	1
0	1	0
1	1	\bar{Q}_{n}

decoded, care must be taken to ensure that the decoder network is enabled only when it is certain that all intermediate state changes have occurred.
The disadvantage of the asynchronous counter is avoided by the synchronous or parallel counter, in which all flip-flops change state in synchronism with a common clock-pulse. The speed of operation is limited by one flip-flop delay and that of any gating necessary, and these will depend on the type of hardware being used, e.g. c.m.o.s., t.t.1., e.c.l. Recent Schottky synchronous counter packages have internal circuitry which eliminates all external gating, and counting speeds up to 70 MHz are claimed, and e.c.l. packages are available for speeds up to 110 MHz .

Any sequence may be generated using individual JK flip-flops and associated gating. The design is more complicated than the asynchronous types, but one technique simplifies the design problem using Karnaugh maps. ${ }^{1}$

The map is a two-dimensional representation of all possible combinations of a number of variables, where each square is one unique combination and adjacent squares are identical except for one variable. The rows and columns are arranged in accordance with the Gray code representation of decimal numbers, in which only one bit changes as we progress through adjacent numbers (Fig. 5). A Karnaugh map for four variables, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , is shown in Fig. 6, where a 1 in a square means the existence of logical "ANDed" variables, identified by the row and column common to that square.

The 1 squares are connected by the logical OR function, and the Boolean expression represented by Fig. 6 is $\mathrm{F}=\overline{\text { A.B.B.C.D }}+\mathrm{A} \cdot \mathrm{B} \cdot \bar{C} \cdot \mathrm{D}+$ A.B.C.D + A.B.C.D. A 0 in a square indicates that this particular combination does not exist. The advantage of the map is that minimization of the Boolean expression is simplified by being able to group adjacent squares in pairs, fours, etc. Two squares can be combined to eliminate one variable, and these two squares can be combined with another two adjacent squares to eliminate one more variable. The four squares may be looped as shown, because of their adjacency, thus A and C become redundant as both states of each are included in these squares reducing the function to $\mathrm{F}=$ B.D. This can be confirmed by a Boolean minimization. Note that adjacency of squares exists at the extreme ends of horizontal rows, and at the extreme ends of vertical columns.

A design of a modulo-6 Johnson counter is considered as an example of the technique. The maximum modulus of an m-stage Johnson counter is $2 m$, hence a minimum of three flip-flops is required. It is assumed that the outputs are taken from the Q output of the flip-flops designated A, B and C , and the map is used to minimize the gating necessary to obtain the prescribed sequence Fig. 8. As all possible combinations of the variables are not used, the "can't happen" or redundant states are denoted by a
combination of one and zero (0) in the state table (Fig. 9) because the states are not specified and may be made 1 or 0 at will. In this case they will be considered as 1s. The state table shows the desired outputs at A, B and C on the occurrence of the numbered clock pulse, where 0 and 6 are equivalent, i.e. the 6th pulse resets the counter to zero. It will be assumed that the counter commences from the zero state.

The design technique requires the preparation of a Karnaugh map for the \mathbf{J} and K input of each flip-flop to determine the control levels required at each input for every step of the sequence, by deriving a minimal Boolean expression for each map, though as these are derived independently
the circuit may not necessarily be minimal. This then determines the internal gating required.

An excitation table for the JK flip-flop is derived from the JK truth-table shown earlier. This table (Fig. 7) shows the necessary J and K inputs to either hold the flip-flop in a 1 condition or a 0 condition, or to cause a 1 to 0 or 0 to 1 transition, all on the occurrence of an input clock-pulse. The X indicates that it does not matter what that particular J or K state is, provided the other control input is in the correct state.

For example, if it is assumed that $\mathrm{Q}=1$, and a transition to logic 0 is required on the occurrence of a clockpulse, then from the truth-table either

Fig. 5. Gray code for decimal numbers.

Fig. 6. Karnaugh map for four variables.

Q_{n}	Q_{n+1}	J	k
0	0	0	x
0	1	1	x
1	0	x	1
1	1	x	0

Fig. 7. Excitation table for JK fip-flop.

C	E	A	input				
pulse no.1				$	$	0	0
:---:	:---:						
0	0						
0	1						
0	1						
1	1						
1	1						

Fig. 8. Johnson counter sequence.

\[

\]

Fig. 9. State table for Fig. 8.

$\mathbf{J}=0, \mathbf{K}=1$, or $\mathbf{J}=1, \mathrm{~K}=1$ will cause this change, i.e. provided $K=1$, J may be either 0 or 1 . As each input pulse occurs, the flip-flops should change in accordance with the truth-table of Fig. 8. The steps involved in filing the JK maps are as follows.

The can't-happen conditions of the statetable are transferred to equivalent squares on the separate J and K maps. Consider the J_{A} and K_{A} maps. On the occurrence of the first pulse, Q_{A} should hold at logic 1 , hence an X is put in the J_{A} map square representing pulse no. 1 , and a 0 in the K_{A} map square. This is repeated for pulse no. 2. At pulse no. 3 a 1 to 0 transition is required, hence an X is put in J_{A} map square for pulse no. 3 , and a 1 in K_{A} map. A 0 is maintained for pulse no. 4 , hence a O in J_{A} and X in the K_{A} square for pulse no. 4 is necessary. This is continued until all squares for each map are filled.

As an example of the minimization, notice that symbols 0 or X may be 1 , hence a loop of four adjacent squares is available in the J_{A} map, i.e. the minimal solution for J_{A} is given by C . Similar loops of four are obtained for each of the other maps, the circuit being implemented in Fig. 11. No external gates are required in this circuit, because the complemented outputs are already available from each flip-flop.

Common arrangements using this technique are b.c.d. counters, decade counters, up-down counters, though some are also available in m.s.i. packages.
The implementation of Fig. 11 has been described as a modulo-6 Johnson ring counter. However, examination of Fig. 8 shows that each output Q_{A}, Q_{B} and Q_{C} has one pulse for every six of the input so that the device could be regarded as a divide-by-six frequency divider. Most frequency dividers, on the other hand, allow one to divide by an arbitrary
number so it cannot be regarded as a very good frequency divider.

The device of Fig. 11 can also be regarded as a sequence generator, in that, given an input pulse sequence, one obtains a different output pulse sequenceadmittedly not a very interesting one.

There is an infinite number of sequence generators that one could build but of particular interest are those which produce so-called maximal length binary sequences (M-sequences). Used in many areas, such as data communication system identification and correlation methods, M-sequences are generated by synthronous shift registers with feedback from various stages being used to determine the next state to be fed in. Feedback complexity is not proportional to the register length and very long sequences can be generated by very simple feedback arrangements. Feedback is performed by modulo-2 addition, i.e. via exclusive-OR gates (Fig. 12).

The properties of these sequences depend on the clock rate, f_{c}, and on the number of stages in the shift register, n, but all of the sequences possess to some degree properties close to those of band-limited white noise. (Hence the name pseudo-random binary sequences or p.r.b.s.) The signal bandwidth is given approximately by $f_{c} / 3$ and the greater the value of n the more closely do the properties resemble those of random noise. The sequences are not in fact random because they are binary in nature and because they are cyclic, the cycle length being $2^{n}-1$ clock periods. The binary nature of the signals is easily removed by passing them through simple first- or second-order filters so that the signal becomes continuous and has a probability density function which is close to Gaussian. The cyclic nature of the signal is in fact one of the advantages of M -sequence and is one of the non-random features one would wish to retain. This is
because experiments can be repeated for checking purposes over a cycle length without the statistical difficulties of genuine random noise. From this point of view it is therefore desirable to limit n.

Design is greatly facilitated by tables which indicate what feedback paths are necessary to produce an M -sequence of given length. ${ }^{2}$ The problem comes down to one of choice of f_{c} and of n for the particular application in mind.

References

1. Dean, K. J., "Design of bidirectional coherent counters". Proc. . IEE, vol. 1i3, 1966, pp. 1751-54.
2. Davies, W. D. T., "Generation and properties of M-sequences", Control, June, July and August 1966.
Titles or cards in series 14 are:
Basic binary counters
One out of n ring counter
Johnson counters
Reversible counters
Reversible Johnson counter
Divide by n counters
High-power counters
High-speed counters
Low-power counters
Decade counters
M -sequence generators
Glossary: flip-flops and b.c.d. codes

How to get Circards

Order a subscription by sending $£ 13.50$
for a series of ten sets to:
Circards
I.P.C. Electrical-Electronic Press Ltd General Sales Dept
Room 11
Dorset House
Stamford Street
London SE1 9LU
Specify which set your order should start with if not the current one. One set costs £1.50, postage included.

Cheques should be made payable to
I.P.C. Business Press Ltd.

Topics covered in Circards are
1 active filters
2 switching circuits (comparators \& Schmitts)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, tone control, filters)
6 constant-current circuits
7 power amplifiers (classes A, B, C, D)
8 astable circuits
8 optoelectronics: devices and uses
10 micropower circuits
11 basic logic gates
12 wideband amplifiers
13 alarm circuits
14 digital counters
Next issue will cover pulse modulators. Introductory articles in Wireless World indicate availability of Circards, which are normally ready for despatch on the 14th of the month. The Circard concept was outlined in the October 1972 issue, pages 469/70.

Horn loudspeaker design-2

Continuing the development of design theories and techniques

by J. Dinsdale, M.A., M.Sc.
Cranfield Unit for Precision Engineering

The previous sections have outlined the physical principles underlying the operation of horns, and have shown how, provided certain basic rules are followed, sound reproduction of startling clarity and realism is possible from horns. However, it will also be clear by now that, unless one is prepared to accept extremely large and costly structures, it is all too easy to lose many of the potential qualities of horns through attempts to reduce the size to more acceptable proportions. This section now considers the procedures to be adopted in designing a domestic horn enclosure.
It has already been stated that the horn behaves as a transformer, converting acoustic energy at high pressure and low velocity at the throat to energy at low pressure and high velocity at the mouth. As with the analogous electrical transformer in which electrical voltage and current correspond to acoustical pressure and velocity, the basic requirements of the acoustical horn are that: (a) the primary (throat) should be correctly matched to the signal source (loudspeaker motor); (b) the secondary (mouth) should be correctly matched to the load (listening room); (c) the horn should be designed to handle the specified power level and frequency range. There are four principal parameters of the horn, namely mouth area, throat area, flare contour, and axial length. Any three of these will determine the fourth, and hence the characteristics of the horn itself. Once non-circular cross-section and non-linear axes are adopted, the problem becomes far more complex, and mathematical and physical concepts are no longer sufficient to design a horn. Nevertheless, the basic characteristics even of folded horns are determined to a large extent by known acoustic principles, and the most effective method of design is to work from these principles, ensuring that any deviation from theory is made on scientific grounds where possible.

Flare profile

Previous sections discussed the most commonly considered flare profiles, and it was concluded that a contour which allowed an exponential increase of the area of the wavefront as it travelled from throat to mouth provided the best compromise between the extremely gradual expansion of the hyperbola (giving optimum loading of the motor, but excessive throat distortion) and the
rapid expansion of parabolic and conical horns (giving minimum throat distortion but poor loading of the motor). However, the exact shape of the wavefront within a horn of curved profile is uncertain, and therefore assumptions have to be made, ranging from Wilson's modified exponential (lying a little inside the true exponential) to Voigt's tractrix, (which commences in a virtually identical manner to the true exponential, but departs substantially outside it in the region of the mouth). Which contour one adopts must be largely a matter of personal preference based preferably on careful listening experience.

Mouth geometry

The mouth of the horn couples the horn itself to the listening room. One of the commonly raised disadvantages of horns is that they require a very large mouth area if bass notes are to be properly reproduced. To some extent this is true; one cannot get a double bass out of a piccolo. However, there are a number of ways in which the mouth area may be reduced to manageable proportions without significantly sacrificing bass response.
As a sound wavefront travels up the steadily increasing bore of the horn, it should not meet any major discontinuity. However, it is clear that, unless the length and mouth diameter of the horn are infinite, there must be some discontinuity as the wavefront emerges and is no longer constrained by the walls of the horn. Although the cut-off frequency of the exponential horn is determined by the flare constant, the linearity with frequency of the acoustical resistance and reactance are determined by the mouth area, which, for a given throat area and flare constant will also determine the overall length of the horn. Strictly speaking, for no
discontinuity, the mouth should have infinite area. However, Olson ${ }^{3}$ has shown that provided the perimeter of the mouth of an exponential horn is greater than four times the cut-off wavelength,
i.e.

$$
p_{m}>4 \lambda_{c}
$$

there will be no significant deviation of mouth resistance from that of the infinite horn.

A more important result is that for only 6 dB variation in acoustic resistance, the mouth perimeter may be made equal to the cut-off wavelength, i.e. mouth area $=$ $\lambda_{c}{ }^{2} / 4 \pi$ where λ_{c} is the cut-off wavelength. As the mouth area is reduced below this value, the non-linearity of the acoustical resistance and reactance will increase.
Now these figures refer to the situation where the horn is suspended in free space, i.e. it radiates into an angle of 4π solid radians. In practice, this situation never occurs: even if the horn were placed on the ground at the centre of an infinite field, the mouth would only radiate into half a solid angle, or 2π solid radians; against the centre of a wall the mouth would be loaded by π solid radians, and in a corner formed by two walls and the floor the mouth will be loaded by only $\pi / 2$ solid radians. The significance of this is that, whereas the minimum mouth area for a circular horn has been shown to be $\lambda_{c}{ }^{2} / 4 \pi$ when loaded by 4π solid radians, this value may be divided by a factor of two each time the solid angle is halved. Thus the mouth area may be reduced to a size more in keeping with domestic conditions, e.g. a horn with a cut-off frequency of 56 Hz (wavelength 20 ft) would require a mouth area of 32 sq ft in space, but only 8 sq ft against a wall and 4 sq ft in a corner position, to give variations in loading of less than $6 \mathbf{d B}$.

Fig. 8. Solid angles presented to a horn in different positions.

This situation which is illustrated in Fig. 8 may be compared with the mouth of a single horn placed at the intersection of eight rooms: four on the ground floor and four on the first floor. The bass response of the original horn will not be impaired, even though a listener in each room will see only one eighth of the total mouth area. One seldom gets anything for nothing in this world, and those who adopt corner speaker positioning in order to obtain a purer extended bass response from as small an enclosure as possible, may have to live with the eigentones such a position produces.

A plan view of a corner horn shows that the room itself provides a natural extension of the horn mouth. Many listeners have observed that corner horns can provide bass notes from fore-shortened horns, well below the limit dictated by the mouth area ${ }^{25}$. It is tempting to reduce the mouth area still further below the 3dB limit established earlier and rely instead on the corner placement itself to supply the additional mouth area and horn length. In the author's experience, this technique cannot be justified because although the bass response is undoubtedly there, careful listening reveals an uneven response over the first two octaves above the cut-off frequency which will often detract from the realism offered by the horn. It is therefore recommended that in cases where overall enclosure size is a limitation, a correctly-designed horn with a cut-off frequency of (say) 80 Hz will give a more satisfying and linear response than a foreshortened horn whose expansion constant has been set to 40 Hz but whose length has been limited to give a mouth area corresponding to 80 Hz .

Most domestic horns will be of rectangular cross-section for ease and cheapness of manufacture. The foregoing comments regarding horns of circular section apply also to rectangular sections, although it is clear that the wavefront must behave in a most complex way at the corners, thereby reducing slightly the effective cross-sectional area. Provided that the ratio between the major and minor axes at the mouth does not exceed $4: 3$, rectangular horns may be employed to good effect.

Tabular design data is given for horns of both round and square section, with mouth areas computed for both corner positioning ($\pi / 2$ solid radians) and wall positioning (π solid radians).

Throat geometry

The throat of the horn couples the wavefronts from the loudspeaker, which should ideally be plane at this point, to the horn itself. It has previously been shown that the horn is an acoustic transformer, converting acoustic radiation of high pressure/low velocity at the throat to low pressure/high velocity at the mouth. It is clearly of advantage to have a high pressure (and hence a low velocity) at the throat, because the low velocity will result in smaller movement of the loudspeaker cone, thus reducing the distortion produced by non-linearities in the magnetic field and the suspension. One way of increasing the pressure, and also of ensuring a higher degree of "plane-ness" of the wavefronts is to employ a throat area
substantially smaller than that of the loudspeaker itself. Tests carried out on a number of loudspeakers have shown that the "equivalent piston area" is approximately 70% of the speech cone area, i.e. the loudspeaker diaphragm in the shape of a truncated cone gives the same acoustic output as a plane piston with 70% of its area.

There are a number of practical reasons why modern loudspeakers are not manufactured as plane pistons; one of the unfortunate results of employing conical diaphragms is that the resulting wavefronts are in general not planar. However it has been found empirically that a throat area of between one quarter and one half the "equivalent piston a rea" of the loudspeaker provides satisfactory coupling between the loudspeaker and the horn, and also gives an approximation to plane wavefronts at wavelengths well in excess of the throat dimensions. It must be emphasized that for higher frequencies, where the wavelengths are of the same order as the physical dimensions of the loudspeaker diaphragm, the throat area should be made the same as that of the loudspeaker, and the horn should be of circular section, at least at the throat, so as to minimize standing waves across the horn itself.

The phenomenon of air overload distortion is caused by the non-linear relationship between pressure and volume of the air in the throat of the horn as it undergoes adiabatic compression and expansion. Beranek ${ }^{4}$ has derived the relationship for 2 nd harmonic distortion at the throat of an infinite exponential horn as:
$\%$ 2nd harmonic distortion
$=1.73\left(f / f_{c}\right) I_{\mathrm{t}} \times 10^{-2}$
where $f=$ driving frequency $f_{c}=$ cut-off frequency $I_{t}=$ intensity (watts $/ \mathrm{sq}$ in) at the throat.

This expression is also closely correct for finite horns because most of the distortion occurs near the throat. This expression has been plotted in Fig. 9 from which the throat area for given power and distortion may be obtained.

It is important to appreciate that the acoustic power radiated by musical instruments is extremely small ${ }^{26}$, and that the higher the frequency the lower is the acoustic power to give the same subjective effect at the human ear. With the exception of full orchestra and pipe organ, which in the author's view it is futile to attempt to reproduce in domestic surroundings at anything

Fig. 9. Distortion caused by air overload at the throat.
approaching normal volume level, the acoustic power levels are extremely small, and an aim-point of (say) 3 watts and 1% distortion at the cut-off frequency, reducing to 0.05 watts and 0.5% distortion at four times the cut-off frequency, is likely to prove entirely satisfactory for domestic listening ${ }^{27}$.

The above proposals for power and distortion give a throat area of around 10 sq cm , from Fig. 9, which compares not unfavourably with the effective piston area of 43 sq cm for a $3 \frac{1}{2} \mathrm{in}$ loudspeaker, one quarter of which is a little over 10 sq cm . Of course, if the throat area is increased, as would be the case with larger loudspeakers, the available power for a given level of distortion will also increase.

Having established the throat and mouth areas and the flare profile, the length of the horn and hence its area at any point may be obtained mathematically or graphically.

The horn as a filter

The foregoing sections have indicated how the horn can act as a bandpass filter - the lower pass frequency of which is determined by the expansion coefficient and the upper by the volume of the cavity between the loudspeaker and the throat of the horn. It is important that the response should be as linear and free from distortion as possible over this passband, and as far as the lower frequencies are concerned, careful choice of mouth area, in conjunction with a knowledge of the solid angle into which the horn will radiate and the flare constant, can ensure that non-linearities in the frequency response are kept to a satisfactorily low level.

However, with regard to higher frequencies, non-linearities of increasing amplitude become apparent at frequencies exceeding about four times the cut-off frequency, due to internal cross-reflections and standing waves set up within the horn itself. These non-linearities will be more serious if the material of which the horn is constructed can resonate, and they are also accentuated if the horn is folded, when wavefronts at the higher frequencies will be distorted at bends. In fact, there is also a practical limit beyond which folding becomes undesirable: folding should not occur beyond the point at which the lowest wavelength (highest frequency) to be transmitted exceeds 0.6 of the diameter of the horn. More will be said of this limitation during the discussion on folding, but it clearly points to a practical limit on the highest frequency a horn may accurately transmit.

Yet a further limitation becomes apparent from the graph of throat distortion versus frequency (Fig. 9). As the frequency increases, the percentage distortion for a given power density at the throat will also increase, and although it is generally true that in the majority of complex musical sounds the energy level reduces with increasing frequency there will still be a frequency above which throat distortion becomes unacceptable.

A commonly used and quite adequate rule of thumb is that a horn should not handle frequencies higher than four octaves above its cut-off frequency, although purists may prefer to limit at only three octaves in order to ensure lower distortion levels.

The complete multi-horn system

The maximum frequency range to be handled by a wide-range high-quality loudspeaker is about 9 octaves, i.e. 40 Hz to 20 kHz . This is clearly too wide a range to be handled by a single horn, for the reasons already noted, but it can conveniently be divided into three ranges, i.e. 40 Hz to $320 \mathrm{~Hz}, 320 \mathrm{~Hz}$ to 2.5 kHz and 2.5 kHz to 20 kHz . In practice, a 10% overlap should be allowed to ensure that there are no troughs in the response at the crossover points, and a case could be made for a fourhorn system to cover a wider range.

It is worth considering a more modest instrument. If the cut-off frequency is limited from 80 Hz to 18 kHz and a two-horn system is considered with each horn handling a little under four octaves, the frequency ranges become 80 Hz to 1.2 kHz and 1.2 kHz to 18 kHz . Again, about 10% frequency overlap should be allowed.

The great attraction of a two-horn system is that only a single loudspeaker is required: the bass horn will be loaded from the rear of the loudspeaker; while the middle and treble horns will be loaded from the front of the loudspeaker, to eliminate interference and diffraction effects caused by the frame and magnet assembly at lower wavelengths. It has already been emphasized that the throat of the horn should match exactly the loudspeaker dimensions at these higher frequencies, and this arrangement is particularly attractive if a twin-cone speaker is employed. Treble wavefronts may be prevented from going down the bass horn by the cavity. To show the ease and utility of this approach, this article will include the design of a "mini-horn" utilising both sides of a single loudspeaker in a cabinet of reasonable size and cost for small domestic living rooms.

Purists may claim that the curtailed frequency range of 80 Hz to 18 kHz is in adequate. It is however the author's experience that the flat relatively distortionless response between these limits, together with
the sense of presence afforded by the horn's transformer action, make the mini-horn sound more attractive than many commercial loudspeaker systems of similar size but two or three times its price.
Once one adopts a multi-horn approach, there will be a number of frequencies which fall within the compass of two horns, i.e. 320 Hz and 2.5 kHz in the case of the threehorn system, and 1.2 kHz for the two-horn system. It is essential that the radiation from the relevant pair of horns should be reasonably in phase at the crossover frequency, to avoid the presence of troughs in the frequency response, because the bass horn will be folded to bring its mouth adjacent to the other horns (it is not normally necessary or desirable to fold the middle and treble horns). This requirement places a restriction on the length of the horn, which has until now been regarded as a parameter to be determined solely by the throat and mouth diameters and the flare constant, and it is now apparent that the length of the lower horn of each pair should be either an odd or even number of half wavelengths of the crossover frequency, depending on whether the radiation wavefronts at the throats of the two horns are respectively in or out of phase.
Thus, if separate loudspeakers are used and the voice coils are connected in phase, the combined length of the horns from the loudspeakers to the plane of the mouths should be an even number of half wavelengths. Conversely, if a single loudspeaker is used to feed two horns, the radiation from the front and rear of the cone will be out of phase and the combined length of the two horns should be an odd number of half wavelengths. In practice, the lower horn will be considerably longer than the upper, and will effectively determine the design.

Folding, cabinets and room placing

Hitherto, discussion has been confined to ideal horns, of circular cross-section and straight axis, constructed of very stiff ma-
terial. Although typical dimensions for practical horns have not been calculated formally, it will be clear from many of the tables and diagrams that the dimensions of bass horns are almost certainly too large for comfortable accommodation in an average living room. Two further points must therefore be added to the design procedure, adoption of rectangular sections and folding the horn into a compact size.
Rayleigh showed that bends in tubes of constant cross-section will have no effect on transmitted sounds if the wavelength is large compared with the diameter, but that any cross vibrations set up will have a fundamental wavelength of 1.7 times the tube diameter. Wilson ${ }^{11}$ has summarized the three principal rules of folding horns as follows: the wavefronts must not be twisted across the horn; the horn diameter (or width if rectangular) must be less than 0.6 times the lowest wavelength to be transmitted by that horn; the wavefront should be accelerated round bends to preserve its form.

As soon as one departs from the straight horn of circular cross-section, the scientific design principles described cease to be so relevant and become of more approximate value, although the three basic rules quoted above, together with the choice of a suitably stiff material for construction, provide very acceptable results.
A folding technique which twists the wavefront across the horn is difficult to achieve in practice, and may be eliminated by folding always in one plane. The requirement to "accelerate the wavefront around bends to preserve its form" is difficult to achieve when more than one fold is involved, since it requires a rectangular cross-section before the bend to become trapezoidal around the bend itself ${ }^{11}$, and then revert to a different rectangular section after the bend. If one considers a multi-fold horn, concertina-fashion within an overall rectangular enclosure, this is not really a practical proposition, and is unnecessary because

Fig. 10. Methods of folding horns (a) Olson, (b) Olson and Massa, (c) Lowther, (d) Newcombe, (e) Klipsch.
subsequent bends correct the waveform. But for single bends it can be adopted, and the mini-horn design described later could utilize this feature.
Examination of the Patent Office records for folded horn designs registered during the 1920s and 30 s provides a fascinating monument to the ingenuity of acoustical designers, and Fig. 10 illustrates a number of the more well-known methods of folding. The restriction of horn width at a bend to 0.6 times the highest wavelength to be transmitted suggests initially that folding can only be attempted over the first few feet of the length of a horn; after that point the width will have reached the limiting value. However, this limitation may be overcome by bifurcating the horn (splitting into two equal channels) at each point when the width limits. Thus the mouth of a horn may comprise four equal mouths (brought together for convenience and to ensure audio realism) and the four "quarter-horns" may be folded far closer to the mouth than would otherwise be possible. Rayleigh has shown ${ }^{7}$ in Art. 264 that bifurcating a conduit will have no effect on the transmission of sound provided the lengths of the two portions are equal and the sum of their areas at corresponding points is equal to that of the original conduit.

In many cases, the front side of a loudspeaker, whose reverse side is horn loaded, will be physically close to the mouth of the horn itself, and it is commonly feared that there will be concellation at certain frequencies caused by interference between the two radiations in anti-phase. However, the direct radiation from the unloaded front of the cone is only a few percent of that through the horn, and so the amount of cancellation is negligible.

Frequency handling

Although it has been shown that each horn acts as an acoustic bandpass filter, the lower cut-off frequency being determined by the expansion coefficient and the upper cut-off frequency by the throat cavity, there are important reasons why the full audio signal should not be applied directly to all horns regardless of their frequency handling capability. At the low frequency end of the spectrum, examination of Fig. 3 (Part 1) shows that the horn provides the loudspeaker with no resistive acoustic loading below its cut-off frequency. Thus any applied signals below this frequency will cause excessive movement of the loudspeaker diaphragm, which will be constrained only by the mechanical and electro-magnetic factors. This excessive movement can cause unpleasantly high intermodulation distortion, and can also lead to further non-linear distortion when the loudspeaker moves outside its linear range. At the upper frequency end, signals of excessive power can also give rise to distortion products due to deficiencies in the cavity/throat relationship. It is therefore beneficial to restrict the bandwidth of the electrical signal reaching each loudspeaker to match the acoustic bandwith of its corresponding horn.

Although most commercial multi-unit loudspeaker systems use passive $L C$ crossover networks between power amplifier and

Fig. 11. Circuit for an active filter network. See appendix for component details.
loudspeaker to route signals of the appropriate bandwidth to each loudspeaker, careful comparative listening tests show that these units undoubtedly introduce a "dullness" or loss of "brilliance" into the audio output. Many explanations have been offered for this situation; in the author's opinion, the most likely reason being the loss of "direct drive" from the output of the amplifier, allied with a significant reduction in the degree of electro-magnetic damping afforded by the low output impedance of the amplifier.

Recent correspondence in Wireless World ${ }^{28}$ and elsewhere has extolled the virtues of splitting the frequency range at low signal level, and employing a separate power amplifier directly coupled to each loudspeaker. The author has devised such a circuit, which consists of three (or four) parallel frequency-selective channels comprising Sallen \& Key active filters giving preset low and high-pass characteristics in series in each channel, together with some gain adjustment to allow for the inevitable differences in sensitivity of each loudspeaker/horn combination. The active filters provide 2nd order Butterworth characteristics, a response which appears to give the least displeasing effects at the cross-over frequencies. (There will inevitably be phaseshifts associated with any filter circuit, and the effects of these on transients can produce a marked difference in their character.) This circuit is in Fig. 11 and the Appendix.

Thus, some form of electrical cross-over is generally necessary in addition to the acoustic cross-over provided by the horn itself. An exception is of course the case where a single loudspeakerdrives two horns: one loading the front and one loading the rear of the diaphragm. In this situation, some compromise will be necessary in the acceptable distortion level and bandwidth of the loudspeaker system.

Directional horns

This article has extolled the ability of the horn to propagate wavefronts that are nearly plane at its mouth. However, there are situations where it is desirable to propagate wavefronts with different characteristics in the vertical and horizontal planes, particularly when middle and treble horns are used in stereophonic systems; it is often desirable to spread the wavefronts in the vertical plane while preserving more of a "point-source" in the horizontal plane. There are a number of different techniques
for achieving this, based on diffraction and refraction effects at the horn mouth with the comparatively short wavelengths (a few inches or less) with which these high frequency horns are concerned.
The design and manufacture of multicellular horns, distributed-source horns, diffraction horns and reciprocal-flare horns is beyond the scope of this article, and with the exception of the first two mentioned is probably outside the capability of most amateur constructors. Those interested should refer to the papers by Smith ${ }^{29}$, Winslow ${ }^{30}$ and to the relevant chapters by Olson ${ }^{3}$ and Cohen ${ }^{5}$.
Klipsch ${ }^{16,17}$ has described the design of his high frequency horn, in which the length/breadth ratio of the (rectangular) mouth assumes a value in excess of $4: 1$ c.f. the ratio of near unity advocated for bass horns). The optimum dimensions, length/ breadth ratio, and apportionment of flare to the long and short axes depend on a number of complex factors, however, an aspect ratio between $2: 1$ and $4: 1$ with the flare apportioned in similar ratio has been found to give good practical results, and these parameters have been adopted for the "no-compromise horn" to be described. Although the high frequency horn of the "mini-horn" system is specified as circular (in view of its handling the relatively large wavelengths at 1 kHz) an alternative rectangular mouth with aspect ratio of 2.5:1 has also been described.

Detailed design procedure

The previous sections have dealt in some detail with the basic theory of the horn, and the essential design procedures have been outlined for a series of horns which can cover the complete audio range. The final sections will consider the detail design of two horns: a "mini-horn" and a "nocompromise horn".
Because all horns are designed to slightly different requirements, and inevitably many readers will wish to "bend" the specification to a greater or lesser extent in order to satisfy their own needs, the designs are presented here by means of tables so that they represent a comprehensive design code for a wide range of horns.

Bass horn design

The bass horn should be examined initially, commencing with the mouth. Tables 1,2 and 3 indicate the relationship between continued over page

Table 1

Freq. $(\mathbf{H z})$	Wave- length $(f t)$	Diameter (ft)	Area (sq. ft)
30	37.5	11.94	111.98
40	28.13	8.95	62.92
50	22.5	7.16	40.27
60	18.75	5.97	28.0
70	16.07	5.12	20.59
80	14.06	4.48	15.77
90	12.5	3.98	12.44
100	11.25	3.58	10.07
110	10.23	3.25	8.30
120	9.38	2.98	6.98

Table 1. Minimum mouth dimensions for bass horn (free loading).

Table 2

Freq. $(\mathbf{H z})$	Area $(\mathbf{s q .} \mathbf{f t})$	Dia. (ft)	Sq. side (ft)	Rect. sides $(\mathbf{f t)}$	
30	28	5.97	5.29	4.69	5.97
40	15.73	4.47	3.96	3.52	4.47
50	10.07	3.58	3.17	2.81	3.58
60	7.0	2.98	2.64	2.34	2.98
70	5.15	2.56	2.27	2.01	2.56
80	3.94	2.24	1.98	1.76	2.24
90	3.11	1.99	1.76	1.56	1.99
100	2.52	1.79	1.58	1.41	1.79
110	2.07	1.62	1.44	1.27	1.62
120	1.74	1.49	1.32	1.17	1.49

Table 2. Minimum mouth dimensions for bass horn (wall position).

Table 3

Freq. $(\mathbf{H z})$	Area (sq. $\mathbf{f t})$	Dia. $(\mathbf{f t})$	Sq. side $(\mathbf{f t})$	Rect. sides $(\mathbf{f t})$	
30	14.0	4.22	3.75	3.32	4.22
40	7.87	3.16	2.81	2.49	3.16
50	5.03	2.53	2.24	1.99	2.53
60	3.5	2.11	1.87	1.66	2.11
70	2.57	1.80	1.60	1.42	1.80
80	1.97	1.58	1.40	1.24	1.58
90	1.55	1.41	1.25	1.10	1.41
100	1.26	1.27	1.12	0.995	1.27
110	1.04	1.15	1.02	0.904	1.15
120	0.87	1.05	0.93	0.829	1.05

Table 3. Minimum mouth dimensions for bass horn (corner position).

Table 4

Freq. (Hz)	Wavelength (in)	Dia. (in)	Area (sq. in)	Sq. side (in)	Rect. sides (in)
200	67.5	32.2	815.4	28.6	25.332 .2
250	54.0	25.8	522.9	22.3	20.325 .8
300	45.0	21.5	365.1	19.1	16.921 .5
350	38.57	18.4	265.9	16.3	14.518 .4
400	33.75	16.1	203.6	14.3	12.616 .1
450	30	14.3	160.6	12.7	11.314 .3
500	27.0	12.9	130.7	11.4	10.112 .9
550	24.55	11.7	107.5	10.4	9.211 .7
600	22.5	10.7	89.9	9.5	8.410 .7
700	19.28	9.2	66.5	8.2	7.29 .2
800	16.88	8.1	51.5	7.2	6.388
900	15	7.2	40.7	6.4	5.678
1000	13.5	6.4	32.2	5.7	5.16 .4
1100	12.27	5.9	27.3	5.2	4.65
1200	11.25	5.4	22.9	4.8	4.25 .4
1300	10.38	4.9	18.8	4.3	$\begin{array}{ll}3.9 & 4.9\end{array}$
1400	9.64	4.6	16.6	4.1	3.64 .6
1500	9	4.3	14.5	3.8	3.44 .3
2000	6.75	3.2	8.0	2.8	$\begin{array}{ll}2.5 & 3.2\end{array}$
2500	5.40	2.6	5.3	2.3	$2.0 \quad 2.6$

Table 4. Minimum mouth dimensions for mid/top horn (free loading).

Table 5

Freq. $(\mathbf{H z})$	Cut- off freq. $(\mathbf{H z})$	Flare (oeff. $\left(\mathrm{ft}^{-1}\right)$	Area increase $\left(\% \mathrm{ft}^{-1}\right)$	Doub- ling dist. (ft)
30	25	.278	32	2.49
40	33	.366	44	1.89
50	42	.466	59	1.49
60	50	.555	74	1.25
70	58	.644	90	1.08
80	66	.733	108	.945
90	75	.833	130	.832
100	84	.932	154	.744
110	92	1.02	178	.679
120	100	1.11	205	.624

Table 7

Nom. dia. (in)	Area (sq. in)	Effec- tive area (sq. in)	Throat area (sq. in)	Throat area (sq. ft)
$3 \frac{1}{2}$	9.62	6.74	2.02	.014
5^{2}	19.64	13.75	4.12	.029
$6 \frac{1}{2}$	33.19	23.23	6.97	.048
8	50.27	35.19	10.56	.073
10	78.55	54.99	16.50	.114
Table 7. Throat dimensions.				

Table 7. Throat dimensions.

Table 5. Exponential constants for bass horn.

Table 6

Freq. (Hz)	Cutoff freq (Hz)	Flare coeff (in ${ }^{-1}$)	$\begin{gathered} \text { Area } \\ \text { increase } \\ \left(\% \text { in }^{-1}\right) \end{gathered}$	Doubling dist. (in)	Table Freq. (Hz)	31	5	61	8
200	166	155	17	4.48	200	30.9	26.3	22.9	20.3
250	208	. 193	21	3.59	250	22.5	18.8	16.1	14.0
300	250	. 233	26	2.97	300	17.1	14.0	11.8	10.0
350	292	. 271	31	2.56	350	13.6	10.9	8.98	7.46
400	330	. 307	36	2.26	400	11.1	8.78	7.07	5.73
450	375	. 349	42	1.98	450	9.09	7.05	5.55	
500	420	. 391	48	1.77	500	7.58	5.77	4.42	
550	458	. 426	53	1.63	550	6.51	4.84		
600	500	. 465	59	1.49	600	5.56			
700	580	. 539	71	1.29	700	4.24			
800	660	. 614	85	1.13	800	3.31			
900	750	. 698	101	. 993	900	2.58			

Table 10. Length of mid/top horn (in), free loading. Since the mouth perimeter equals 1.5 times the highest working wavelength, the tractrix cannot be used. Tractrix contours can however be incorporated if the mouth perimeter is reduced to one wavelength.

Table 6. Exponential constants for mid/ top horn.

Table 8

Freq. (Hz)	$3 \frac{1}{2}$		5		61		8		10	
	Ex	Tr								
30	27.3	25.1	24.7	22.5	22.9	20.7	21.4	19.2	19.8	17.6
40	19.2	17.6	17.2	15.6	15.8	14.2	14.7	13.1	13.5	11.9
50	14.1	12.8	12.6	11.3	11.5	10.2	10.6	9.3	9.62	8.30
60	11.2	10.1	9.88	8.78	8.98	7.88	8.22	7.12	7.42	6.32
70	9.17	8.23	8.05	7.11	7.25	6.31	6.60	5.66	5.92	4.98
80	7.69	6.83	6.70	5.84	6.01	5.15	5.44	4.58	4.83	3.97
90	6.48	5.75	5.61	4.88	5.00	4.27	4.50	3.77	3.97	3.24
100	5.57	4.91	4.79	4.13	4.25	3.59	3.80	3.14	3.32	2.66
110	4.90	4.30	4.18	3.58	3.69	3.09	3.28	2.68	2.84	2.24
120	4.34	3.79	3.68	3.13	3.23	2.68	2.85	2.30	2.46	1.91

Table 8. Length of bass horn (ft) for different flare constants, wall position. Exexponential, Tr-tractrix. N.B. The tractrix lengths are approximate.

Table 9

Freq. (Hz)	$3 \frac{1}{2}$		5		$6 \frac{1}{2}$		8		10	
	Ex	Tr								
30	24.8	22.6	22.2	20.0	20.4	18.2	18.9	16.7	17.3	15.1
40	17.3	15.7	15.3	13.7	13.9	12.3	12.8	11.2	11.6	10.0
50	12.6	11.3	11.1	9.8	9.98	8.66	9.08	7.76	8.12	6.80
60	9.95	8.85	8.64	7.54	7.73	6.63	6.97	5.87	6.17	5.07
70	8.10	7.16	6.96	6.02	6.18	5.24	5.53	4.59	4.83	3.89
80	6.75	5.89	5.75	4.89	5.07	4.21	4.50	3.64	3.89	3.03
90	5.65	4.92	4.78	4.05	4.17	3.44	3.67	2.94		
100	4.83	4.17	4.05	3.39	3.51	2.85				
110	4.22	3.62	3.51	2.91						
120	3.72	3.17								

Table 9. Length of brass horn (ft) for different flare constants, corner position.
Ex-exponential, Tr -tractrix. N.B. The tractrix lengths are approximate.
minimum frequency and mouth dimensions for horns positioned in free air (4π solid radians) at a wall (π solid radians), and in a corner ($\pi / 2$ solid radians). In table 1 , the speed of sound has been taken as $1125 \mathrm{ft} /$ sec, and the mouth perimeter as the wavelength. The mouth areas in tables 2 and 3 are equal to $\frac{1}{4}$ and $\frac{1}{8}$ respectively of the mouth area in free air, and the dimensions for the circular, square and rectangular mouths are derived from these areas. It is tempting to reduce the areas of the square and rectangular horns so as to give a perimeter equivalent to the wavelength (suitably scaled for wall or corner positioning) but this is not recommended. However, the shorter side of the rectangular horn has been derived in this way (i.e. a square horn with this side would have the appropriate perimeter).

After settling the mouth dimensions, the throat may be determined from the chosen loudspeaker unit. Table 7 gives suggested throat areas for five typical mean loudspeaker sizes. In some designs, the choice of loudspeaker will be influenced by considerations of overall size (the length of the horn is greatest for the smallest loudspeaker) and whether the loudspeaker is to perform as both bass and mid/top driver, using two separate horns on either side. Many loudspeakers will possess different dimensions, and in these cases table 7 will be of little value. The effective area (piston area) has been taken as 0.7 of the area derived from the mean (quoted) diameter, and the throat area as 0.3 of the effective area. Although there is obviously scope for experiment here, the quoted dimensions should give very acceptable results.

Having decided the throat and mouth areas, tables 8 and 9 give the overall lengths of horns with true exponential and tractrix contours for both wall and corner placing for horns with the five derived throat areas at each of the cut-off frequencies specified in table 1. The factor of 1.2 applied to the cut-off frequency in table 5 when calculating the flare coefficient is to ensure a fairly linear frequency relationship throughout the working range of the horn. The flare coefficient m is thus given by

$$
m=(4 \pi / c)(f / 1.2)
$$

where c is the speed of sound ($1125 \mathrm{ft} / \mathrm{sec}$) and f is the lowest frequency to be reproduced.

The area increase is given by $\left(e^{m}-1\right) \%$ and the doubling distance by $\left(\log _{\mathrm{e}}{ }^{2}\right) / m$ for each frequency. The length of the exponential horn is given by $(1 / m) \log _{\mathrm{e}} S_{m} / S_{T}$ for each specified set of areas, and the length of the tractrix horn will be $r_{m}\left(1-\log _{e}{ }^{2}\right)$ shorter than the true exponential, where $S_{m}=$ mouth area, $S_{T}=$ throat area, $r_{m}=$ mouth radius.
N.B. The tractrix lengths given in tables 8 and 9 are approximations, being based on the fully developed tractrix referred to the flare cut-off frequency, whereas the mouth radius is referred to the lowest bass frequency to be reproduced.

Middle top horn design

Attention should now be directed to the middle and high frequency horns. The
mouth perimeter should not be less than the wavelength of the lowest working frequency, and in practice a perimeter of 1.5 times the lowest working frequency has been found to give good results. Table 4 is based on this factor of 1.5 , and gives the recommended minimum mouth dimensions for free air loading. It is safest to assume free air loading to apply at these higher frequencies, because diffraction and reflection effects at short wavelengths prevent true wall or corner loading from being achieved, and it is for this same reason that the perimeter has been specified at 1.5 times the wavelength of the lowest working frequency. The dimensions of square and rectangular horns have been derived in the same way as those in tables 2 and 3. The throat dimensions of middle and high frequency horns should match the drive unit directly, and may be taken as the mean diameter and area of the chosen loudspeaker, shown in table 7. Tables 6 and 10 give the flare constants and lengths of exponential horns assuming the throat and mouth dimensions of tables 7 and 4 respectively.

Integration of multiple horns

It has been emphasized that the radiation from the mouths of each pair of horns at their common crossover frequency should be in-phase. Assuming that the mouths of all the horns will lie in the same plane, the total length of each pair of horns should be compared with the multiples of half wavelengths of the crossover frequency set out in table 11. If the drive signals at both throats are in-phase (separate loudspeakers), the total length should be an even number of half-wavelengths; if the drive signals are out-of-phase (single speaker horn-loaded at both front and rear) the total length should be an odd number of half wavelengths. If necessary, small changes may be made to the crossover frequency (with subsequent re-design of the higher frequency horn) to ensure optimum conditions at crossover.

The complete design

The bass horn will generally be folded. Originally it was intended to provide a table giving the maximum permitted length of horn before folding should cease because the horn diameter has become equal to 0.6 times the lowest wavelength to be transmitted. However, examination has shown that at frequencies up to five times the bass cut-off frequency (i.e. 4 octaves bandwidth) this restriction does not apply to the cornerpositioned horn (due to the small mouth dimensions) and with the wall-positioned horn the limitation lies between 92% and 95% of the full exponential length. It may therefore be assumed that provided the wall-positioned horn is not folded within the final 10% of its length, the problem of cross reflections will not arise.

Finally, the cavities at the throats of the lower frequency horns should be designed in accordance with the formula already given, remembering to allow for the loss of cavity volume due to the frame, magnet and cone assembly of the loudspeaker itself.

The design procedure laid down in this part has been applied to two different designs of horn to follow, and further examples
of overall horn design are given in refs 34 to 37 , and also in ref. 5.

Appendix

A variable bandpass active filter for feeding a 3 horn loudspeaker system (see Fig. 11):

Low-pass filter

Frequency (Hz)	R_{t} $(\mathrm{k} \Omega)$	R_{2} $(\mathrm{k} \Omega)$	C_{1} (pF)	C_{2} (pF)
200	59	59	20,000	10,000
1 k	12	12	20,000	10,000
2 k	59	59	2,000	1,000
10 k	12	12	2,000	1,000
6 k	59	59	680	330
30 k	12	12.	680	330

N.B. $R_{1} \& R_{2}$ to be realized as 12 k in series with $47 \mathrm{k} \log$ pots.

High-pass filter				
Frequency (Hz)	$\begin{aligned} & R_{3} \\ & (\mathrm{k} \Omega) \end{aligned}$	$\begin{aligned} & R_{4} \\ & (\mathrm{k} \Omega) \end{aligned}$	$\begin{aligned} & C_{3} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{aligned} & C_{4} \\ & (\mathrm{pF}) \end{aligned}$
25	28	57	160,000	160,000
100	7	14	160,000	160,000
250	28	57	16,000	16,000
1k	7	14	16,000	16,000
4k	28	57	1,000	1,000
16k	7	14	1,000	1,000

N.B. R_{3} to be realized as 6.8 k in series with $22 \mathrm{k} \log$ pot. R_{4} to be realized as 12 k in series with $47 \mathrm{k} \log$ pot.
All i.cs to be Signetics N5741V, etc. R_{5} $10 \mathrm{k} \log , R_{6} 22 \mathrm{k}, R_{7} 100 \mathrm{k}$.

REFERENCES

28. "Biamplifier Loudspeakers", correspondence in Wireless World, Mar., May, June, Aug., Sept., 1973.
29. Smith, R. H., "A Distributed-Source Horn", Audio Engineering, Jan. 1951
30. Winslow, "Two-way Speaker System", Audio Engineering, Nov. 1947.
31. Sanial, A. J., "Graphs for Exponential Horn Design", RCA Review.
32. "The Design of Acoustic Exponential Horns", Electronic Engineering, Sept. 1947.
33. Newcombe, A. L., Jr., 'Home Installation, Design and Performance of an Exponential Low-frequency Horn", IEE Trans, Audio \& Electro-acoustics, Vol. AU-1 5 No. 4, Dec. 1967.
34. Massa, F., "Loudspeakers for High Fidelity Large-scale Reproduction of Sound", J. Acoust. Soc. Am., Vol. 8, Oct. 1936.
35. Olson, H. F. \& Hackley, R. A., "Combination Horn and Direct Radiator Loudspeaker", Proc. I.R.E., Vol. 24, No. 12, Dec. 1936.
36. Olson, H. F. \& Massa, F., "A Compound Horn Loudspeaker", J. Acoust. Soc. Am., Vol. 8, July 1936.
37. McProud, C. G., "A New Corner Speaker Design", Audio Engineering, Jan./Feb. 1949.
38. Keele, D. B., Jnr., "Optimum Horn Mouth Size".*
39. Gilliam, J. R., "Optimising Horn Loudspeaker Performance".*
*Papers presented at the 46th Convention of the Audio Engineering Society, New York, Sept. 1973.

Radio astronomy as a school activity

by J. C. Codling,* F.R.A.S.

As readers of this journal will know, there have, in recent years, been many important changes at all levels in the teaching of science in our schools. These have included not only important changes in the curriculum but also in the way science is presented to pupils of all levels of ability.

Very briefly, curriculum changes have brought science, and physics in particular, more into line with the world outside the classroom, while the emphasis has shifted from teaching to learning. Pure blackboard and lecture demonstration methods have largely given way to pupil-based activities either individually or in small groups using an impressive array of modern apparatus. Topics which were once the preserve of " A " level and above are now introduced much lower down in the school. So now, it is not uncommon to see basic courses in electronics introduced in the first and second years, i.e. with 11-to 13 -year-old children, while higher up in the school their colleagues often reach a remarkable level of ability and are encouraged to design and build interesting projects based on their earlier mastery of fundamentals. Their physics
*Gipsy Hill College of Education
lessons are no longer complete in themselves because the children are actively encouraged to apply this knowledge to problems they will meet in the world of technology outside the classroom. Nowhere has this trend been more evident than in the field of electronics, which is now well established in physics syllabi from CSE level upwards. A recent series of articles in this journal by a distinguished colleague well illustrates the sort of advanced projects which are being successfully undertaken by schools up and down the country.'

It is against this background of change that the work described below was started in a Suffolk school and continues now with students undergoing a three-year course of teacher training.

The boys concerned with this project were already following a course in practical electronics as part of their physics work in the school. As they progressed from the simple experiments of the first and second years they became used to handling test equipment such as oscilloscopes, signal generators and valve voltmeters. At different stages of the course they constructed projects of increasing difficulty from simple logic circuits using relays or transistors to
oscillators, model binary computers and amplifiers. Some of these have been described elsewhere. ${ }^{2}$

The school already had a flourishing astronomical group who made regular observations with a six-inch telescope and small home-constructed refractors. As part of their work they took photographs of the moon, of star trails and carried out a variety of astronomical measurements both at school and at home. It seemed an exciting idea to extend these to include a regular radio watch of the sun over the recent maximum period and try to relate the results to any optical activity observed on the disc. By choosing a frequency of 136 MHz they could at the same time monitor the many American scientific satellites transmitting beacon and telemetry signals on this band. As we wished to record not only the more intense radio storms but also the continuous level of the quiet sun (of the order of $10^{-2 x} \mathrm{~W}\left(\mathrm{Hzm}^{-1}\right)^{-2}$ of aerial power) we decided in spite of the added circuit complexity and the extra amount of setting up involved, a phase-switching interferometer would best serve our purpose (Fig.1).

In this arrangement the signals are

received by two aerials on an east-west baseline spaced an exact number of electrical wavelengths apart. The aerials can be altered in altitude to allow for the changing $\mathrm{N}-\mathrm{S}$ swing of the sun during the year, but they are fixed in azimuth. The polar diagram of one aerial is shifted by half a lobe when an extra half wavelength of coaxial cable is switched into its feeder by a conventional multivibrator operating at a low frequency, in this instance, 600 Hz . In position A of Fig. 2 the signals reach the aerials by equal paths, in position B all previous lobe maxima become minima and vice versa. If a signal source is on a fringe maximum at moment A, the aerial outputs will add and the detector output will be, say, positive. The next moment B they will cancel and the detector output will be zero. Noise is neglected in both cases.

$$
\text { Output }=\frac{A}{(2 S+N)}-\frac{B}{(O+N)}=2 S
$$

When the source has moved half a fringe:

$$
\text { Output }=\frac{A}{(O+N)}-\frac{B}{(2 S+N)}=-2 S
$$

Here S is the signal from one aerial and N is the receiver noise. The fringe amplitude thus remains unchanged but reverses in sign as the phase of one aerial is reversed. By adding a $\lambda / 2$ piece of coaxial cable to one of the aerial feeders the fringe pattern will be shifted so that peaks will occur where nulls used to be. By switching the loop in and out at a rapid rate the fringes scan back and forth between two adjacent regions of the sky. If one of these regions contains a local source like the sun, for one half cycle the receiver will see the source, whilst on the other half cycle it will not. So the interferometer will generate an alternating signal which is easily detected and amplified. A broad source like the Milky Way gives rise to little or no signal, since the receiver sees virtually the same intensity for both fringe positions. The lobe-switching interferometer is highly effective in picking out small sources from background interference and also reduces problems of receiver noise and stability.

The aerials

Ready-made Yagi aerials are expensive and not easily modified for other frequencies. Parabolas provide excellent reflectors giving full illumination and could be built by students at minimum cost. Accordingly the graph of $y=\frac{x^{2}}{72}$ was plotted and enlarged on the workshop floor so that the end formers could be bent to this shape. These were bolted to 12 -ft-long galvanized pipes. The reflecting surface consisted of lengths of Post Office wire spaced at one-inch intervals-more than adequate for this frequency. The six folded dipoles, three for each aerial, were cut from aluminium strip supported at their earthy ends on angle iron. The dipoles were sited along the latus rectum of the reflector and fed by twin 300Ω feeders in parallel and one wavelength long (Fig. 3). In order to match the balanced aerials to the unbalanced input of the aerial ampli-

Fig. 2. Polar diagram of parabolic aerial shown with shifted lobes introduced by $\lambda / 2$ addition of feeder cable.
fiers, a quarter wave balun was used and sealed in wax to protect it from the weather.

Receiver components

Power supplies All d.c. power supplies are stabilized against mains fluctuations. These include h.t. stabilization for the valve sections of the receiver and lowvoltage supplies of 14 V for the f.e.t. converter and aerial head amplifiers-the latter fed up the coaxial feeders. To make fault-finding easier all voltages and currents are monitored by meters on the power supply panel. Alternating current for the heaters is supplied from a constant-voltage transformer.
Phase switch and switching generator (Fig. 4). The half wave loop in the phase switch and other stubs were cut to resonance by driving them with an oscillator at the operating frequency and cutting off small pieces at a time until a simple reflectometer showed the best forward/backward standing wave ratio. The half wavelength loop in the phase switch is switched in and out of the feeder of the east aerial by using square wave to block off two OA47 diodes connected between the feeder and the loop. The frequency and amplitude of the square wave was checked with an oscilloscope and the mark to space ratio adjusted for unity.
R.f. and i.f. units (Fig. 1) The r.f. unit is a current $A B$ Electronics f.e.t. television tuner realigned for the $150-153 \mathrm{MHz}$ band and with its i.f. output increased to 45 MHz . The i.f. strip is an ex-radar unit Type 7925 with a centre frequency of 45 MHz and a band width of 5 MHz . This is a more recent
unit than the previous wartime i.f. strip which used EF50 valves, and after some modifications to the suppressor and bias circuits has proved reliable and free from faults over a long period of continuous use. After the diode detector the usual cathode follower feeds the valved low-frequency sections of the receiver.
Low-frequency sections From the cathode follower of the i.f. strip, the signal is passed to a selective amplifier tuned to the narrow pass band of the switching frequency. It was here that resistor and capacitor values had to be selected with some. care using decade boxes whilst watching the output waveform on the oscilloscope. This output is applied to two EB91 diodes, each diode connected in series with its partner. The detector is synchronized to the frequency of the lobe switch by the other square wave output from the multivibrator. The output waveform at the anode cathode junction of one diode pair is shown on the oscilloscope in Fig. 5 and shows receiver noise contained within the square wave envelope.

The output of this phase-sensitive detector is fed via an integrating circuit of a $1 \mathrm{M} \Omega$ resistor and suitable paper capacitors of values required to smooth out small impulsive interference, depending on the chart speed of the particular recording. It was found, for example, that with the slow excursion of the sun across the aerials at a chart speed of $\mathrm{lin} / \mathrm{hr}$, a time constant of $1 \mathrm{M} \Omega$ and $8 \mu \mathrm{~F}$ was adequate.
When the telescope started recording solar noise, by far the most serious problem was interference from strong aircraft transmissions near the original operating frequency of 136 MHz . Due to the exceptional sensitivity of the receiver and the wide bandwidth used, these signals frequently obliterated the trace due to the quiet sun. The problem was further aggravated because cross modulation by these signals was occurring through the original germanium transistors in the head amplifiers.

At this stage we decided to apply to the Royal Society Research in Schools Committee for a grant to purchase two highgain f.e.t. head amplifiers. This proved to be a double blessing for not only did we obtain new head amplifiers but also the Royal Society appointed Professor Anthony Hewish, F.R.S., as our adviser. It is largely due to his interest and help that the project advanced beyond this stage. At his suggestion we also changed our operating frequency to $150-153 \mathrm{MHz}$ so that aircraft interference was greatly reduced. Although we lost contact with the scientific satellites on 136 MHz we still occasionally record those operating near the amateur two-metre band.
Calibration The instrument is calibrated by allowing the Cassiopeia " A " radio source to drift across the aerials during the night and the maximum pen deflection (Fig. 6) is measured. The mean amplitude of the solar fringe pattern is measured at noon each day and, after conversion, for convenience to a logarithmic scale, is plotted on a monthly summary chart (Fig. 7) which also shows the level of the calibration source. Solar flares show as peaks on top of the interference fringes and are drawn on top
of these with a scale to represent duration in minutes or hours. A much faster pen recorder is connected to the output of the i.f. detector to record details of these shortlived bursts. A more complete picture is seen if any optical activity on the sun's disc is recorded on the same time scale.

Solar activity 1968-1973
We have tried to keep a continuous radio watch on the sun over this, the 21 st recorded solar cycle. From mid-1965 onwards, there was a rapid rise of active areas to a peak during 1969-1970. One of the most interesting observations has been the number of intense storms in the period 1970-1972, the last major one recorded being of exceptional intensity occurring during August 1972, after a relatively quiet July. From worldwide reports this gave rise to brilliant aurorae, severe interruption of microwave radio reception and a noticeable increase in solar wind recorded by Pioneer 9 at the beginning of August. A glance at the Wireless World h.f. predictions for August 1972 will confirm the many results of this storm. At present it looks as if the predicted minimum of 1973-1974 will be extended to 1975 or even 1976. Certainly, there have been two or three peaks of activity over the whole four years or so of the maxima. The most intense storm for years originating in a 100,000 -mile-diameter group of spots was first detected by OSO7 on July 28, 1972. The 28,21 and 14 MHz amateur bands were subject to almost complete blackout. This was certainly the highest energy solar storm ever recorded.

A glance at the two summary charts for March/April 1972 and January/February 1970 (Fig. 6) will show the high levels of two of these storms which have been a characteristic of this late and prolonged maximum period. For comparison these peaks, often of days duration, should be compared to the level of the calibration source and that of the quiet sun-all on the vertical \log scale. During the prolonged storm of October 1970 a second interferometer on 610 MHz was brought into use, and although this receiver was handicapped by low collecting power of single Yagi aerials, the recorder indicated sufficient amplitude to confirm the activity on the v.h.f. band.

Looking forward to the next active sunspot period we should hope by then to compare results continuously on both v.h.f. and u.h.f. bands, together with some detail of shorter bursts with a faster speed recorder.

Looking back over the years since the project started it is difficult to assess the success of the enterprise since no current examination could possibly do this justice. There are, however, several interesting facts which emerge which those of us interested in education in its broadest sense would do well to note.

1. Most of the boys involved in this project have now gone on at different levels according to their ability to make their careers in the electronics industry, and a fair number with the GPO Engineering Branch. All these boys, including those who completed university courses success-

Fig. 3. East aerial showing the folded dipoles at the focus.

Fig. 5. Square wave enclosing received noise, at the anode-cathode junction of phase-sensitive detector.

Fig. 6. (a) Pen recording at lin/hr showing the noise from a quiet sun. (b) Recording at same chart speed showing a full-scale deflection obtained during a solar storm recorded in 1970.

Fig. 7. (a) Summary chart for Jan./Feb. 1970. The horizontal line shows the passage of a major sunspot group. (b) Summary chart for Jan./Feb. 1970. The horizontal line shows a major storm from Aug. 1 to Aug. 10.

-Fig. 8. Complete interferometer receiver and recording equipment.
fully, had failed the selection examination as 11 -year-olds.
2. Reports of their success beyond " O " level, i.e. ONC, HNC and degree courses, have shown consistently that they not only did well in these examinations but in their practical work they showed a much broader grasp of the subject than the examinations themselves demanded.
3. Probably, most of all, they have learnt to apply branches of their school physics to the solution of problems, some of which presented considerable difficulties. They were certainly tremendously enthusiastic about the work and looked upon the many difficulties we encountered as problems which we could solve together, sometimes with help from interested people in the world of electronics outside the school. For these reasons, amongst others, I personally welcome the approach to science which the Schools Council Project Technology is now advocating at this level.

Finally, this enterprise could never have succeeded but for the generous help of the people and organizations listed below. Nowadays schools who wish to embark on such projects have a ready-made organization for liaison with the electronics industry. One of the conclusions of the Committee established by the Working Group on Scientific and Technological Manpower states, "There is almost universal goodwill in industry towards schools, there is a widespread desire among teachers for practical and improved contacts with industry at local level. ${ }^{3}$ Long before this report was written, we had to make our own contacts not only locally but nationwide and everywhere we found such a desire to help that we wondered why this great pool of goodwill had not been used before.

Acknowledgments

The author would like to acknowledge the following without whose help this project would not have succeeded.
The Royal Society Research in Schools Committee.
Professor Anthony Hewish, F.R.S., of the Mullard Radio Astronomy Observatory, Cambridge.
Mr J. R. Smith, Director of the British Astronomical Association, Radio Astronomy Section.
Mr V. Lewis, and staff of AB Electronics Components Ltd.
Mr F. R. Howe of the NE Technical College, Colchester.
Marconi Communication Systems Ltd.
Pye Telecommunications Ltd, Cambridge.
The Directors, Solartron Ltd, Farnborough. The Director, Sensitised Coatings Ltd.
Photography by Mr Peter Smith of the Audio-Visual Aids Department, Gipsy Hill College of Education.

References

1. "Receiving Weather Pictures from Satellites", J. M. Osborne, Wireless World, October/ November 1971.
2. "Computer Circuits", J. C. Codling, School Science Review, November 1966.
3. "The Electronics Industry and the Schools", NEDO, May 1972.

Shake. rattle \& roll.

Welcome to our chamber of horrors. Inside the Shure Quality Control laboratory, some of the most brutal product tests ever devised are administered to Shure microphones. The illustration above shows a "shaking" machine at work on a Shure microphone and noise-isolation mount. It's only one in a bettery of torturous tests that shake, rattle, roll, drop, heat, chill, dampen, bend, twis', and generally commit mechanical, electrical and acoustical mayhem on off-the-f roduction-line samples of al Shure microphones. It's a treatment that could cause lesser microphones to become inoperative in minutes. This kind of continuing quality control makes ordinary "spot checks" pale by comparison. Thき point is that if Shure microphones can survive our chamber of horrors, they cal survive the roughest in-the-field treatment you can give them! For your catalog, writ?:

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

And all for around $£ 49$. ruskn)

Here's how to find out more

The Sinclair Scientific is the latest in a long line of Sinclair firsts. Its logic is built into a unique, single integrated circuit, which we designed, and which is exclusive to us. No other machine offers it.
You'll find the Scientific at all the dealers listed. See it, handle it, skim the instructions - find out for yourself how powerful it is, and how convenient to use.

If you've any difficulty, send us a cheque for $£ 49$ direct. We'll be happy to send you a Scientific in return - calculator, carrying case, instructions, batteries, everything. All on a full 10-day money-back undertaking, of course.

Or simply ask for the literature. The Scientific is fully described in a comprehensive, full-colour brochure, with plenty of real-life
B. GE29-01

Sinclair Scientific available from:
Ryman, Dixons, Underwoods, Henry's Radio, Lasky's, Wallace Heaton, larger branches of Boots; Harrods and Selfridges; department stores; leading office equipment, electrical and photographic suppliers; and othergood stores everywhere

SOUND SYSTEMS AND ELECTRONICS

...and this is standard equipment!

The
Capable MXT-200 Audio Mixer.

COMPARE YOUR REQUIREMENTS WITH THESEFEATURES THEN DESIGN YOUR MXT-200

OR ASK US TO.

Input facilities

* Up to 15 plug in Mono, 2 group, or stereo imput modules per combiner
*Modules for Microplione, gramophone. Tape, Radio Cine and line sources.
* Exceptionally versatile bass and treble equalisation on one easy to use control
* Linear motion faders for smooth mixing. * Interlocked pre-fade listen switching.

Outpur Facilities

* Mono or Stereo Combiners with large scale

VU or PPM metering, it livo combiners
for 2 group working.

* Linear riotion fader and separate Bass and Treble controls for output signal
adjustrent.
* Line level outpul with high overload
capablitiy.
* Monito - Module with PFL/Qutput switching, headphone socket and line level output.

MXT-200 THE MIXER

The standard equipment is built up in
19 inch frames, each 9 modules wide. The frames may be stacked or placed end to
end and housed in a console, rack or
cabinet. You only order the input modules you now need. Additional modules may be plugged in the frames as your
requirements change.

Electronic piano design

Part 3-tuning the touch-sensitive design, an m.o.s. master oscillator and other optional circuits.

by G. Cowie, B.Sc.

This simple and inexpensive design retains the touch-sensitive feature of string pianos, unlike most electronic keyboard instruments. The first article (vol. 80 no. 1459) described design concepts together with circuit and component details and the second part (vol. 80 no. 1460) gave constructional procedure. This final article includes circuits for suppressing "thump", hiss due to leakage and an m.o.s. master oscillator to simplify tuning.

When you have completed the wiring of the piano the remaining work is to commission and tune it. In a project of this complexity it is inevitable that a number of faults and wiring errors will occur and the purpose of the commissioning stage is to weed these out and make various adjustment.
Start by applying power and making the following voltage checks
supply busbars, $0 \mathrm{~V},+5 \mathrm{~V},-5 \mathrm{~V}$
collector busbar, about 0.5 V
switch busbar (after R_{507}), 7 to 8 V
damper busbar, about -0.4 V
bias busbar, about +0.8 V
output busbar, +0.4 V .
Turn both potentiometers on the amplifier board to mid-position, and check that the pre-amp and amplifier outputs are about 0 V before proceeding further.
Connect headphones or an audio amplifier to one of the output sockets. A hiss and probably some whistles will be audible but ignore this for the moment. If nothing is heard, check the output amplifier and preamplifier. Check that a note is heard when each key is struck, and that the pitches are more or less in the right order, bearing in mind that the oscillators are not tuned.
The system is organized in such a way that with a little thought any fault evident can be localized to one or two connecting lines, or a few components either in a letter-group or in a key circuit. Absence of signal from a key circuit will most likely be caused by absence of input signal, resulting from a reversed diode, or a misconnection at a divider or oscillator. Whistles, traceable by their pitch, will be caused by leaky transistors or bias connection faults, or damper faults. Faint notes will be caused by collector open-circuits. Open or bent key-switches will show up as faults. The sort of defects to look for are missing wires, missing links near i.cs, bad soldered joints, assembly mistakes, solder bridges, parts touching where they should not touch, tracks not cut. It may possibly be necessary to add power supply decoupling capacitors on the various circuit boards.

If the power supply uses a 9 -volt transformer, R_{507} must be increased to about 18 ohms to drop the raw direct voltage to the 8 V required for the switch busbar.
Check that each note ceases when its key is released, then short-circuit the sustain pedal socket and check that the notes now are sustained after the keys are released.
When all the circuits have been made to work, several finer adjustments can be made. Disconnect the positive-signal input of the summing preamplifier from 0 V and extend it from the edge-connector with about 30 in of flex wire. Solder the wire to the end of resistor R_{401} and then attach R_{401} to the $0-\mathrm{V}$ busbar on the key circuit boards, in a position that gives minimum pick-up of unwanted signals. Run the positive signal lead alongside the output busbar as far as possible. It is important to arrange the $0-\mathrm{V}$ lines carefully, to minimize stray signals. Connect a lead directly between the key circuits $0-\mathrm{V}$ busbar and the preamplifier
ground. Hiss should be inaudible while the instrument is being played.

If there is still too much background hiss,* then reduce the value of R_{501}, until the hiss is reduced to a low level. If the resistance is reduced too much there will be an undesirable effect whereby the keys refuse to work at all when pressed down very slowly.

If the damper action is felt to be too abrupt then the potential of the damper bus can be raised by connecting a resistance of a few hundred ohms in series with R_{502}, and connecting the base of Tr_{502} to the junction of the resistors.
If the action of any of the keys is noticeably different from that of the majority, the cause should be looked for and put right, otherwise it will be a permanent irritation when playing the instrument.
It is important to alter the light spring-
*If a hiss present while the piano is not being played is annoying, it can be eliminated with a "squelch" circuit, given later.

Fig. 21. To simulate the inertial load of the keying action, a piece of foam plastics material is inserted between the key undersides and the lower flange on the keyboard chassis.
loaded feel of the keys if the touch-sensitive action is to be satisfactory. The ideal arrangement would compromise 61 viscous dampers simulating inertial loads, but in the prototype a much simpler device was adopted which proved to give an acceptable result.
Cut a piece of flexible foam plastics material to dimensions of $2 \times \frac{3}{8} \times 33 \mathrm{in}$. If a piece 33 -in long cannot be found then use shorter lengths. Push this into place between the white key undersides and the lower flange on the key chassis (see Figs $10 \& 21$). In this position the black keys will rub against the foam and the white keys will deform it so that a drag is felt on the keys. Key action will not be satisfactory unless this is done.

Tuning

The easiest and most satisfactory way of tuning the oscillators is to remove the oscillator board from the instrument and take it to a laboratory which has a suitable digital timer/counter and d.c. power supplies. The oscillators should be connected to a $\pm 5-\mathrm{V}$ supply. They should be monitored at the op-amp output where a clean square wave is present. It is advisable to use an oscilloscope to look at the waveforms and see that all is well.

The oscillators can then be adjusted to the frequencies in Table 1 (part 1) by the tuning pots to an accuracy of ± 2 parts in 1000. If an adjustment is outside the span of
add padding resistors. Label the oscillators after they are set so that they can be wired up without confusion.

If you do not have access to the above equipment, either through work or friends, the oscillators must be tuned in situ, by ear. The person doing the tuning must have a musical ear and be equipped with an "A" tuning fork. The piano case must be open so that the tuning pots are accessible. Tune the A group of notes against the fork. Notes F are next tuned against the A; the interval should be a major third. Next tune C by means of the major chord $\mathrm{F}-\mathrm{A}-\mathrm{C}$, and adjust F again if necessary. Use C to tune E, the interval being a major third, then tune G in the major chord $C-E-G$. Use G to tune B (major third) then tune D using the major chord $G-B-D$. This completes the white notes.

Tune E_{b} using the chord $\mathrm{F}-\mathrm{A}-\mathrm{C}-\mathrm{E}_{b}$ and $B b$ using the major chord $E_{b}-G-B$. Tune Ab using the chord $B_{b}-D-F-A_{b}$ or the major third $C-A b$. Tune F^{*} using the major third $\mathrm{D}-\mathrm{F}^{\#}$. Tune $\mathrm{C}^{\#}$ using the major chord $A-C^{\#}-E$. You will probably need to go over the process several times. Fortunately the electronic piano is much easier to tune than a string piano, which has over two hundred adjustment points.

If you use a m.o.s top-octave synthesizer i.c., only one tuning adjustment will be necessary, and will take only a few minutes (see later).
the potentiometers it will be necessary to

Fig. 22. This alternative tone generator, which can replace the twelve $R C$ oscillators used in the original design, avoids conventional tuning procedures.

Fig. 23. Power unit to provide appropriate supplies for the m.o.s. tone generator also feeds the preamplifier and headphone amplifier. If the m.o.s. circuit is used, the $-5 V$ supply in Fig. 8 (part 1) can be omitted.

Circuit options

On the key circuit boards (Fig. 18), remove the links between track 24, to which resistors R_{2} are grounded, and track 23. Link the tracks by a silicon signal diode on each board, connecting the cathodes to track 23. This modification is based on work done after the prototype was completed, and if carried out should slightly improve the keying action at the "soft" end of the dynamic range.
The prototype is a basic instrument in that no attempt is made to modify the inherent tone of its working waveform, except by a single low-pass filter. It is purely by coincidence and the laws of physics that it sounds as much like a harpsichord as anything. If this tone is not acceptable then additional wave-shaping can be added fairly easily. There is room on the keying boards to fit a low-pass filter betweten D_{1} and R_{5}. I fitted filters on the 16 lowest notes to take harshness out, with resistors of $10 \mathrm{k} \Omega$ and capacitors of 20 nF . More complex circuits could be built on a separate board, linked by a 61 -way cableform.
A power amplifier could be fitted inside the case, but as this would need a separate power supply it does not seem worthwhile. Similarly, loudspeakers could be fitted in the case, but as fairly large speakers will be needed to reproduce the bass notes properly, and as the case is not designed as a loudspeaker enclosure, this is not recommended.

A tremolo circuit could easily be fitted after the preamplifier. It is not known whether vibrato can be applied to the oscillators successfully, and anyway this seems inappropriate.
The headphone amplifier could be replaced by an integrated circuit. The MFC 4000 is a cheap i.c. designed for the output stage of transistor portable radios.
A board containing twelve $L-C$ oscillators could be made as a plug-in replacement, but as discussed in part 1 , relaxation oscillators are preferred for several reasons.

Amplification

For low-power amplification, as for practising, almost any amplifier and speaker can be used provided that the speaker is of adequate size. A speaker of 8 in diameter should give good results, bearing in mind that the bass notes have more fundamental than those of an acoustic piano. If high powers are wanted then it is essential to use heavy-duty speakers of the type used for electric guitars. The speakers should have a higher nominal rating than the amplifier otherwise the percussive piano waveform will probably damage them.
A standard volume control pedal may be bought and fitted between the piano and amplifier, and R_{403} preset to a suitable level.

M.O.S. master tone generator

The r.f. oscillator and AY-1-0212 master tone generator replace twelve oscillators (Fig. 22). The frequencies generated are within 0.1% of an equal-temperament scale, so the piano will work perfectly well without being tuned at all! It can easily be tuned against another instrument or a frequency counter if desired. It would be possible to

Parts for
 m.o.s. tone generator

AY-1-0212 i.c. from General Instrument Microcircuit Sales, 57 Mortimer Street, London WIN 7TD.
$470-\mathrm{kHz}$ i.f. transformer, 2:1 turns ratio, with ferrite core
2N3708-Tr 601 (twelve)
2N3706
2N3905
Capacitors- $50 \mathrm{pF}, 680 \mathrm{pF}\left(C_{602}\right), 4.7 \mathrm{nF}$
Resistors-1k (two), 100k, $39 \mathrm{k} \Omega$
(twelve)
16-pin d.i.l. socket
Power unit (Fig. 23)
12-V, $50-\mathrm{mA}$ transformer
Capacitors- $1000 \mu \mathrm{~F}, 25 \mathrm{~V}$ (three)
Resistors-270, 22Ω
1N47001 diodes (two)
BZY88-C12V zener diode
2N697 or BFY52 transistor

AY-1-0212 connections

$\mathrm{V}_{\mathrm{ss}}+12 \mathrm{~V}$	$9 \mathrm{~V}_{\mathrm{GG}}-15 \mathrm{~V}$
2 in 500 or 334 kHz	$10 \mathrm{~V} \mathrm{VD}^{0} \mathrm{~V}$
$3 \mathrm{C}^{*}$ or F^{*}	$11 \mathrm{~A}^{*}$ or D*
4 E or A	12 A or D
5 G or C	$13 \mathrm{~F}^{*}$ or B
$6 \mathrm{G}^{*}$ or C*	14 F or A^{*}
7 B or E	$15 \mathrm{D}^{*}$ or G^{*}
8 C or F	16 D or G

Fig. 24. Optional "anti-thump" circuit comprises three additional components to the circuit of Fig. 7.
arrange the circuit for rapid transposing; this is impracticable with twelve oscillator generators. It is still necessary to have twelve interface circuits to the t.t.1. dividers.

An extra power supply is necessary also. The circuit shown (Fig. 23) provides regulated +12 V and smoothed unregulated -15 V for the $\mathrm{AY}-1-0212$. The -5 V supply of the original piano design is omitted. The preamplifier and headphone amplifier should be powered from the $+12 \mathrm{~V},-15 \mathrm{~V}$ power supply.
A coil of the 470 kHz , i.f. type, with a $2: 1$ turns ratio is needed. It may be necessary to change C_{602} to get the frequency into adjustment range of the ferrite screw core. The circuit will oscillate with any coil of about the right turns ratio.
The AY-1-0212 will stand a certain amount of abuse but should nevertheless be treated with care. It should be mounted in a 16 -pin dual in-line socket. The one-off price is about $£ 5.90$. A Veroboard of $3 \times 4 \mathrm{in}$ should give ample room for the oscillator, i.c. and the transistor/resistor array. It is advisable to bring the connections out at the edge of the board in scale order; the i.c. outputs are in a random order.
If high-frequency noise causes trouble on the lower octaves, additional power line filter capacitors should be fitted on the circuit board, or lnF capacitors can be fitted at the Tr_{601} collectors or bases.

Squelch and anti-thump circuits

Some degree of "thump" will always be present where waveforms are not generated symmetrically about ground potential. Fig. 24 shows the anti-thump circuit now fitted in the prototype.
Hiss due to leakage though the reversedbiased diodes D_{1} is very low, but can be completely eliminated by the "squelch" circuit of Fig. 25. Connect between points B-B in Fig. 7.

Correction. In the text on page 11 of part 1 (March issue) a line was omitted between lines 16 and 17. The missing line is ". . . that in the high state it acts as a current . .." In Fig. 3 the annotations S_{2} and S_{3} should be transposed. In Fig. 18 of part 2 (key circuit board) diode D_{2} should be reversed.
Parts kit. Elvins Electronics will supply a kit of parts for the piano design. Details from 12 Brett Road, London E8.

Fig. 25. Use this squelch circuit to eliminate "hiss" due to leakage currents that may be evident during standby. Suitable values for potential divider are $10 k \Omega$ and $5 k \Omega$ for the preset resistor.

H.F. Predictions for May

The charts are based on an ionospheric index of 8 giving FOT curves two or three MHz lower than those for May 1973 when the index was 40. Magnetic disturbances are likely on all days except between the 7th and 14th. This gloomy outlook should be brightened by sporadic-E propagation considerable modifying FOT curves on at least 20% of the days as follows: Hongkong peaking to 21 MHz at 10GMT. Johannesburg rising to 22 MHz at 09GMT and remaining so until 15GMT. Montreal maintaining 10 MHz from 23 to 08GMT. Buenos Aires dip between 06 and 10GMT smoothed out.

World of Amateur Radio

10 GHz to Guernsey

What is believed to be the first-ever amateur microwave contact between the Channel Islands and the mainland of England was effected at 1000 GMT on Saturday, March 30. This was between Dr Dain Evans, G3RPE, operating portable at Prawle Point, south Devon, and Gordon Lean, G3WJG, operating as GC3WJG/P at Torteval, Guernsey, both on the 10 GHz amateur band. The distance spanned was 111 km from sites 100 ft (Devon) and 250ft (Guernsey) above sea level. The transmitter used by G3RPE consisted of a 1 W klystron and 3 ft dish reflector; for GC3WJG a Gunn-diode oscillator provided 20 mW of microwave power into a 4 ft dish aerial. Further contacts were made at hourly intervals with the mainland signals received in Guernsey at least RS56, although there were times when signals from GC3WJG could not be heard in Devon; for the initial contact reports were RS59-plus at both ends.

The following day contacts on 10 GHz were established between GC3WJG/P and A. R. Williams, G3KSU/P, at St Catherine's Point on the Isle of Wight from a site 750 ft above sea level and where the equipment included a Gunn-diode oscillator providing 5 mW output to a large horn aerial with a gain of 27 dB . On Guernsey signals from this station varied from not readable up to RS56. The incoming signals at G3KSU/P were RS59 and at times the carrier/noise ratio varied from 18 dB to as high as about 28 dB . Path length is 161 km . To assist the setting up of the microwave links, contact between the stations was made initially on 70 MHz . It had been hoped to complete the triangle with contacts between Devon and the Isle of Wight but this was not possible in the time available.

On the other side of the world a new long-distance record for 2304 MHz has been claimed by two Californian amateurs, W6FZJ and WA6HXW. With both stations operating from home locations and using "homebrew" equipment a 330 mile c.w. contact was made by means of tropo-scatter mode. Both stations used 6 ft aerial dishes but W6FZJ had a power of only 5 W compared with the 1 kW input at WA6HXW.

Notes and news

The proposal to install a 144 MHz f.m. repeater at the Crystal Palace (see March issue) has now been approved in principle by the Ministry and a licence has been applied for.
Contacts through the amateur satellite Oscar 6 are now being limited to the ascending orbits (afternoon and evenings) on Mondays, Thursdays and Saturdays in an effort to preserve battery life-hopefully until the launch of Oscar 7 later this year. Oscar 6 has already achieved an operational lifetime of 18 months, 50 per cent longer than the predicted lifetime of one year.

The International Amateur Radio Union has introduced new "five-band" and "sixband" categories of their "Worked All Continents" award with a view to promoting more uniform use of the h.f. bands for international communication. To qualify for these new versions of the popular WAC award contacts must have been made on or after January 1, 1974. While the original award is relatively easy to achieve using the 14 and 21 MHz bands, a five-band or six-band award, for which two-way communication must be achieved with the six continental areas of the world on each band, represents no mean achievement.

The regular news and code-practice "broadcasts" from PAoAA in the Netherlands (see August, 1973, issue) on Friday evenings have been extended to "Top Band". PAoAA now transmits on 1827 kHz , $3600 \mathrm{kHz}, \quad 14.1 \mathrm{MHz}$ and 144.8 MHz (changed from 145.14 MHz) with news in English at 1915GMT, beginners' code practice at 1930GMT, advanced code practice at 2000 GMT , r.t.t.y. news bulletin (45 baud) at 2030GMT and news in English again at 2115 GMT . Proficiency tests at various Morse speeds are transmitted on the last Friday in each month at 2130GMT.

On the h.f. bands

Following a longish period of subdued "sunspot minimum" conditions on the h.f. bands, conditions perked upnoticeably over the Easter holiday period with many Japanese and other Far Eastern signals on 21 MHz and extremely strong North and South American signals in the evenings on 14 MHz . Many amateurs are beginning to wonder if we shall soon reach the end of the present sunspot cycle; this would agree with forecasts made over a decade ago that mid1974 might see the beginning of the next suspot cycle. On the other hand, the curious and still unexplained high level of sunspot activity throughout the summer of 1972 could mean that the old cycle still has some time to run. But once past the low point, a new cycle usually sees a fairly rapid rise in sunspot levels and consequent rise in usable frequencies to the benefit of users of 14,21 and 28 MHz .

Some amateurs can indeed claim to have experienced a considerable number of sunspot cycles. A recent QSL card from Robert Galea, 9HIE (one-time ZB1E and VP3E), mentions that he was first on the air as long ago as January, 1914. A personal
reminder of passing years and sunspot cycles came when working VX1AW at St John's, Newfoundland, on Good Friday; it so happens that the very first long-distance contact ever made from G3VA was with VO1B, St John's, and that was 35 years ago on Good Friday 1939. I have to admit, however, to no longer using an $0-\mathrm{v}-1$ twovalve "straight" receiver and 10W transmitter as in 1939!

And 50 years ago (April/June, 1924) saw the biggest threat ever to British amateur operation (or "experimental" operation as it was then called) in the form of new licence conditions which stated that "Messages shall be transmitted only to stations in Great Britain or Northern Ireland which are actually co-operating in the licensee's experiments and shall relate solely to such experiments". It was this condition, which would have eliminated all casual and all international contacts, that caused Wireless World to offer to provide $£ 500$ to support the RSGB in a test case in the Courts. However, the authorities gradually gave way although they insisted that British amateurs should not use the general call "CQ" and this remained in force until 1946.

In brief

Callsigns in the sequence G4DAA are now being issued. . . . A meeting of the executive committee of the IARU Region 1 Division is to be held in The Hague from October 11 to 13. . . . Class-B type licences with a ZR prefix are being issued in South Africa for use on 144 MHz and above to those who have passed all the conditions for the amateur licence except the Morse test. . . Rosario Vollero, I8KRV, is the new president of the Italian amateur society ARI.... From the Newsletter of the Wirral Amateur Radio Society comes the following advice on successful low-power operation: "Stable transmitter, good operating technique, intelligent use of propagation, patience, perserverance, the courage to 'have a go' realizing that once you become an addict, you are 'hooked for life'." . . . The Hull and District Amateur Radio Society is holding a mobile rally on Sunday, May 26, at the East Riding College of Agriculture, Bishop Burton on the A 1079 York to Beverley road with talk-in stations on 1980 kHz and 145 MHz a.m. and 144.3 MHz s.s.b. with a full programme of events (last year over 1,000 people attended). . . The fifth Elvaston Castle Mobile Radio Rally is on Sunday, June 9, organized by the Nunsfield House Community Association amateur radio group. Elvaston Castle, near Derby, is on the B5010 some five miles south-east of Derby, just off the A6 and within easy access of the MI (junction 24). The rally aims at providing a "family day out" of interest to the general public as well as to the radio amateur himself. . . . A meeting of the International Amateur Radio Club in Geneva will immediately follow the XIIIth Plenary Assembly of the CCIR, July 27 to 28, at the ITU headquarters building with a technical panel on "CCIR studies and the radio amateur".

PAT HAWKER, G3VA

Communications

 Radio \& Data Communications

 Radio \& Data Communications}

Exhibition and Conference Brighton June 2-7

Encouraged by the success of Communications ' 72 held in 1972 the organizers are putting on a similar, but larger, conference and exhibition this year at the Metropole Convention Centre, Brighton, from June 4 to 7. Devoted to radio and data communications, it enjoys the full support of Government departments such as the DTI and the Ministry of Defence and of the industry's Electronic Engineering Association. The exhibition is a four-day event, embracing data, mobile radio, fixed radio and defence communications and has over 100 exhibitors. The conference call for papers attracted well over 100 papers from all parts of the world and 56 of these are to be read in a four-day, 14 -session conference organized by Electronics Weekly and Wireless World. Six "inward missions" of senior users of radio and data communications equipment are being brought into the UK at a time to coincide with the event. These "missions" are sponsored by the EEA. For further information on the exhibition contact: ETV Cybernetics Ltd, BETA, 109 Kingsway, London WC2 6PU. For further information on the conference contact: Roger Woolnough, IPC Electrical-Electronic Press, Dorset House, Stamford Street, London SE1 9LU.

Marconi Spector automatic error correction unit

List of exhibitors

Airtech
Abbey Electronics
Antenna Specialists UK
Astro Communication Laboratory
Automation \& Technical Services Bantex
Barkway Electronics
J. Beam Engineering

Bell Telephone Manufacturing Co
Belling \& Lee
Boyden Data Papers
British Aircraft Corporation
Burndept Electronics
Cable \& Wireless
Campbell-Bruce Electronics
Cescom Electronics
Cole Electronics
Communication Accessories \& Equipment
Computer \& Systems Engineering
Cossor Electronics
Data \& Control Equipment
Decca (KW Communications)
Dictaphone Company
Digital Systems
Dymar Electronics
Eddystone Radio
Electro-Acoustic Industries
Ever Ready Company (GB)
The Exchange Telegraph Co
Farnell Instruments
Ferranti Limited
Frederick Electronics
The GEC Electronic Tube Co
Goodacre \& Davenport Semiconductors
Granger Associates
Gretag AG
Hatfield Instruments
Hayden Laboratories
HCD Research
The Home Office
Honeywell
International Aeradio
Interscan-dex
IPC Electrical \& Electronic Press
Italtel SPA
ITT Creed
Knowles Electronics
Logica
Marconi Space \& Defence Systems
Marconi Communications Systems
Marconi Instruments
MEL Equipment Company
Micro Computer Systems
Ministry of Defence
Ministry of Posts \& Telecommunications
Motorola
Muirhead
Mullard
Multitone Electric Company
New Electronics
Panorama Radio Co
Plantronics
The Plessey Company
Post Office Telecommunications
Pyral (UK)
continued from previous page
Racal Electronics
Racal Communications
Racal BCC
Racal Mobilcal
Racal Antennas
Racal Amplivox Communications
S. G. Brown Communications

Racal Instruments
Racal Milgo
Racal Thermionic
Racal-Zonal
Rank Telecommunications
Rank Xerox (UK)
Redifon Telecommunications
REL Equipment \& Components
RF Communications
RFL Electronics
Scientific Atlanta (UK)
Security Systems International
Solartron/Schlumberger
Standard Radio \& Telefon AB
Data Equip. \& Syst. Div. STC
STC Priv. Comms. Div.
Sperry Gyroscope Division
Storno
Tektronix (UK)
Teleprinter Equipment
Texas Instruments
Thomson-CSF
Transtel Communications
Trend Communications
Varta (GB)
Wandel \& Goltermann (UK)
Watkins Johnson International
Wragby Plastics
Zellweger Uster

Racal transportable station including a solid-state $1 k W$ transmitter (right), h.f. receiver and a radiotelephone terminal (centre)

The conference

June 4 is "data communications day" and has sessions on data communications, equipment design and mobile communications. A "highlight" paper is on the Post Office and its data customers-teleprocessing now and in the future.
June 5 is "mobile communications day" and has sessions on mobile communications, equipment design and maritime communications. A "highlight" paper is on computerized frequency assignment for the private land mobile services.
June 6 is "fixed communications day" and has sessions on fixed communications, equipment design and defence communications. A "highlight" paper is on tropospheric scatter.
June 7 is "defence communications day" and has sessions on defence communications (featuring the Clansman system), equipment design and instruments. A "highlight" paper is on electromagnetic compatibility-the army's outlook and the work of the army.

Letters to the Editor

Damping factor

More and more do we see damping factor incorrectly stated as the ratio of loudspeaker impedance to amplifiers internal (source) impedance. Figures quoted because of this assumption are often many hundred percent in error, errors arising largely because the source impedance of an amplifier is for very good reasons seldom resistive at low frequencies.
The method of measurement laid down by the British Standards Institution in BS 3860:1965 obviates these errors and should always be used if damping factor is to be quoted.

To the user, of course, damping factor is largely irrelevant because as soon as music is played via a moving coil loudspeaker the speech coil will warm up and change its resistance. The first four bars of Beethoven's fifth played at any reasonable level will change the loudspeaker damping by an amount greater than any variations between amplifier specifications.
The damping (in terms of circuit Q) of a moving-coil loudspeaker at resonance is approximated by

$$
\frac{2 \pi f M}{B^{2} l^{2}}\left\{\frac{\left(R_{E}+R_{G}\right)^{2}+X_{G}^{2}}{R_{E}+R_{G}}\right\}
$$

The relevant terms in the bracket are: R_{E}, d.c. resistance of speech coil (varying by 0.4% per degree centigrade); R_{G}, source resistance of amplifier; and X_{G}, source reactance of amplifier at loudspeaker resonant frequency.

P. J. Walker

The Acoustical Manufacturing Co. Ltd, Huntingdon

Printed circuits kit

I have been following your recent correspondence on printed circuits with considerable interest and I wish to offer the following information in response to M. R. Yeo's letter "One-off printed circuit boards" (March 1974 issue).

For some time we have been marketing a printed circuit kit which was designed to provide the enthusiast, laboratories, educational establishments, etc., with a method of making low-cost, one-offs or prototypes to a reasonable degree of precision. The use of self-adhesive, paper-surfaced resist allows the user to draw, or trace, the desired
pattern with any normal writing implement such as a pencil, ball-point, etc. A scalpel is used to cut and strip the unwanted resist. Chemicals are pre-packed for the convenience of the user who merely adds water, and the printed circuit board, for the etching process which can be observed as it proceeds.

J. H. Evans,

Keltronix Ltd,
15 Barra Street,
Glasgow G200AX,

Howl suppression

I agree with K. J. Young (Letters, March 1974) that, where there are one or two dominant peaks in the overall frequency response of a public address system, tunable rejection filters can be helpful in reducing acoustic feedback problems. Such equalization is often achieved nowadays by the incorporation of an octaveband or third-octave-band graphic equalizer.

However, one is still left with the inevitable response irregularity of the room itself, where adjacent peaks and dips are typically only a few hertz apart (Fig. 2 in my original article, W.W. July 1973, p.317). The smoothing of such a response is an impossible task for conventional filters, but the frequency shifter is able to overcome the ill-effects of such irregularity and effect a significant improvement in available gain prior to feedback.

I should be the last to deny that frequency shifting on music is a highly controversial subject. When I first designed and used the howl suppressor, it was solely with speech applications in mind; I expected the technique to be unacceptable for music. It was therefore with some surprise that I found the frequency shift usable for musical performances. The 5 Hz beat, which, as I mentioned in the article, is sometimes audible on long continuous notes, is the only unusual effect. There are just one or two instruments, such as organ and electric guitar, where the beating is obvious, being heard as a sort of "stereo vibrato" between the original sound and the frequency-shifted version.

I found the absence of a beat in the majority of musical applications rather mystifying at first, but the answer was found to lie in the delay between direct and amplified sound. Virtually all public address systems exhibit such a delay, which occurs because of the difference in sound path lengths; in a well-designed system the direct sound is arranged to arrive at the listener first, exploiting the "Haas effect" to produce the correct apparent sound direction. To investigate the effect of time delays on beats, I tried mixing a music signal and its frequency-shifted version and feeding the signal to headphones. Strong 5 Hz beats were audible on all types of music. When, however, an adjustable time delay was interposed in the frequencyshifted channel, a time difference of 3 ms was found to be sufficient to destroy coherence between the two signals on most types of music, thus eliminating beats.

Exceptions were found in the cases of organ and electric guitar, where even delays as long as 100 milliseconds did not destroy coherence, owing to the steady pitch and level of the notes produced. The beats produced on these instruments become very much less obvious if the frequency shift is reduced to 2.5 Hz by doubling the values of capacitors C_{2}, C_{3}, and C_{10} in the oscillator circuit to 200 nF . This change usually involves a slight loss (typically 2 dB) in the amount of feedback reduction available, but it is worth trying if beats are audible.
I should be very interested to hear reports, whether favourable or otherwise, from any readers who have used the frequency shifter in a music amplification system.
M. Hartley Jones,

University of Manchester, Institute of Science and Technology, Manchester.

Current flow controversy

The letters by Messrs D. V. Ellis and C. H. Banthorpe in your December 1973 issue each has a final paragraph of such graceful compliment that it largely defuses what I might otherwise have said about what went before. Fortunately I feel I can confidently leave readers to draw their own conclusions on most of the arguments put forward, so that replying to them all in detail would be superfluous.

For example, if, as Mr Ellis suggests, my ideas on cathode rays are freakish and absurd, how is it that since those ideas were introduced into Foundations of Wireless (and Electronics) 22 years ago about 100,000 copies have been bought, and (many of them being in public and college libraries) the number of readers must be considerably greater, yet not a single one of them has pointed out the difficulties arising from use of the conventional direction of current flow in connection with that subject or with any other in that or any other of my works, but on the contrary people continue in large numbers to vote with their purses right up to the present day?

One thing I have ascertained from Mr Ellis's second letter is that he advocates reversing the current-flow convention but not the polarity conventions. So he does have to teach that his current flows from negative to positive, i.e., from a deficit to a surplus, presumably on the principle that "to him that hath shall be given and from him that hath not shall be taken away even that which he hath"-another paradox, but not one applicable to electric circuits. And yet by some logic that escapes me he reconciles this with water flow! This, in addition to teaching that the rules in the textbooks mean the opposite of what they say, and the arrows in device symbols are there to show the direction the current does not flow! And yet in August he found unacceptable an imaginary situation in which a horse described as black had to be taken as white!

Mr Banthorpe seems not to know what "the positive direction of current" means. May I try to enlighten him? The actual direction of current (conventional or electronic) from A to B in a complicated circuit may not be known; in fact, that may be what is to be found. So let us agree to call current from A to B (say) positive. Then if our calculations result in a positive value of current in that branch it does indeed flow from A : to B. A negative value means it flows from B to A.

May I reiterate that "the direction of current flow" cannot be established consistently on a basis of physical facts, since an electric current can be constituted by physical movements in either or both directions. So it is a convention; and whichever of the two possible ones is adopted students and others will have to accept that some current carriers will move "against" the current. (In spite of what Mr Ellis says, the existence of negative ions does not get rid of this awkward fact.) If we could start from scratch we in electronics would almost certainly vote for the direction of electron flow, but Mr Smethurst has wisely reminded us that we are not the only pebbles on the beach of science. The important thing is that everyone should use the same conventions.

For about a century and a half there has been an accepted convention among British railwaymen that trains going in the general direction of London are referred to as "up" trains and those going in the opposite direction are "down" trains. If signalmen in cabins where this convention is manifestly absurd, because the track thereabouts goes uphill in the "down" direction, decided to take the "sensible" view and report as "down" all trains they saw going downhill, confusion in British Rail would be as great as during a work-to-rule. Much less confusing, when nobody can be literally right all the time, to stick to the convention that has been in use for so long. So it is, surely, with current.
"Cathode Ray"

Soldering-iron leakage

I was interested to read the letter from Mr Sproxton of Home Radio in your March issue. As far as I.know only one soldering-iron manufacturer makes an issue of leakage currents but, I suspect, misguidedly.

The point really is that to solder semiconductor devices safely it is necessary to ensure that no voltage appears on the bit of the iron. Provided that the iron is fitted with a three-core flex which in turn is properly connected to a three-pin plug, then the bit must always be at earth potential, and it would take a very large leakage current indeed to make it otherwise. If the earth connection is not used, then even the smallest leakage current will cause a possibly damaging potential to build up on the bit.

Incidentally, nearly all temperaturecontrolled irons also produce switching
transients which can damage the more delicate (and expensive): devices since they use mechanical or thyristor switching techniques. It was for this reason that we developed the special transistor switching circuit for our variable temperature ETC/1 system.
C. P. Adamson,

Light Soldering Developments Ltd,
Croydon,
Surrey.

Active filter crossover networks

Mr Read's article "Active filter crossover networks" (December) raised interesting ideas, which could prove very fruitful to audio experimenters. Indeed, I intend to experiment with such networks when student finances permit. However, I was astonished to read "Peak powers of 20 W occurred in all the three bands". Could the author possibly enlarge as to how he measured these peak powers, and under what circumstances?
D. J. Bradshaw,

University College,
Oxford.

The author replies:

In answer to Mr Bradshaw's query regarding amplifier power requirements the following details of tests and observations made when setting up the 2×3-way arrangement described in my article may be helpful.

With the three KEF units (types B139 for l.f., B110 for m.f. and T27 for h.f.) installed in the transmission-line enclosure each speaker input signal was monitored by display on a storage oscilloscope during repeated runs of the same test programme comprising music from full orchestra, choir and solo female singer. The storage oscilloscope persistence control was set so that the decay time was of the same order as the test programme duration; the brightness control was at a suitably low setting to avoid "overloading" the phosphor during that period. In this way, the three filter outputs were (sequentially) displayed to indicate and record:
(1) Instantaneous peak power. Voltage amplitude was here considered proportional to instantaneous power; because of the change of load impedance with frequemcy. However, such an assumption was valid only for the intended purpose of comparative estimate.
(2) Integrated peak power. The differing trace brightness at various voltage levels showed the proportion of programme time spent at these levels and hence, taking the brightest level in each instance, the average peak power during the programme run. Again, this test is more concerned with intelligent observation than measurement-the human eye is a poor judge of brightness difference even by direct comparison and is still worse if it has to "remember" a previous
image. But, as the results show, the observed differences were sufficiently large to justify the conclusions reached.

The results were:
(a) The highest peak voltages (instantaneous powers) were those handled by the B139 (l.f. unit), being about 6 dB more than for the B110 mid-range speaker.
(b) The integrated peak power was obviously much larger for the B110 unit -say 75% of the total compared to 20% for the B139.
(c) The T27 tweeter received the least amount of energy during the programme -in fact, the estimated figure for integrated peak power was only a few percent. But, and this is of prime importance, the input to this unit included short-duration peaks of nearly the same amplitude as the maximum recorded for the B110. Hence it was concluded that the instantaneous power requirement here was similar to that for the midrange units.

Further tests were done using the same technique but for an input of typical "pop" music. As might be expected with the heavy bass component normal in this type of music, the results indicated a shift in power distribution between the m.f. and l.f. speakers such that their "integratedpower" percentage figures were more or less equal. In all other respects there was little difference as compared with the previous test.

I hope that above serves to show why the amplifiers feeding h.f. units required the full 20 -watt capability and also why the output-stage heat sinks in both "l.f." and "m.f." amplifiers were chosen to be of the same size as the circuit boards themselves ($3 \frac{1}{2}$ in $\times 4 \frac{1}{2}$ in) whereas those for the "h.f." amplifiers were made smaller.

Finally, two other points should perhaps be mentioned. First, to obtain an overall level response (according to measurement in an anechoic chamber) the gain of amplifiers driving the l.f. units was made 5 dB greater than for the other amplifiers. Secondly, considering the wide variation in speaker characteristic impedance, at some frequencies it is obviously the available supply voltage (and hence the maximum possible voltage swing) which sets the limit on amplifier output rather than its power handling capability.
D. C. Read

Fast printed circuit etching

I was appalled to read Mr Langvad's letter in the December 1973 issue of your magazine and fervently hope that my comments may prevent the occurrence of a very serious accident. Your correspondent recommends that printed circuits be etched with a mixture of hydrochloric acid and hydrogen peroxide. Although he issues a fairly gentle warning about the use of these chemicals, I would like to emphasize that the two are very vicious substances indeed, and hydrogen peroxide at the suggested concentration in particular is very, very
hazardous to handle. The use of these should only be permitted in a laboratory and not in any amateur's workshop. Your correspondent may also be unaware that the result of the reaction between hydrogen peroxide and hydrochloric acid, as shown in the following overall equation

$$
\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{HCl} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}
$$

is chlorine gas, which, as everyone knows, is a very toxic gas.
E. I. Szabó,

Ottawa,
Canada.

Radio and TV museum

As part of educational technology, I am attempting to build a small museum of radio and television equipment to show the change in components and design philosophy since the inception of radio.

I would be most appreciative of any suitable equipment, however small, or technical literature, for the period 1900 to 1930. I must make it plain that the above would be in the form of a gift, as I have no finance for this project.
C. Matthews,

School of Engineering Science,
University of Edinburgh,
King's Buildings,
Mayfield Road,
Edinburgh EH9 3JL.

Valve amplifiers

Recently a "Williamson" amplifier fell into my hands, displaying the fault of falling gain over a period of hours of operation. (The older hands may remember that the Williamson design was first published in 1947 and modified in 1949-I,'personally, wasn't born then!) On examination I discovered two major faults: (1) a cracked wire in the negative feedback meant that there was no negative feedback; and (2) a shortcircuited decoupling capacitor was preventing half the output stages from functioning.

Yet, despite the faults, the amplifier was producing quite acceptable results. It makes one wonder if we were a little hasty in abandoning valves so absolutely.

D. J. Bradshaw,

University College,
Oxford.

"Recording by ear"

I was rather amused to read of the efforts of the scientists at the Battelle Institute (December, News of the Month). During 1963 I constructed an intercom system for use between the rider and passenger of a motor-cycle combination. As those with two- or three-wheel experience will know, high noise levels are prevalent. However, communication was secured as follows. Mounted in the toe of the sidecar was a 7×4 elliptical loudspeaker driven by a 2 -watt amplifier. The passenger spoke into a hand-held noisecancelling microphone which was permanently live. This arrangement gave useful sidetone with no howl. The rider for his part listened through a miniature earphone let into the earflap of his crash
helmet. This, however, pressed snugly against the ear, and doubled as a microphone operated by a push-button on the handlebars. Bystanders might be seen giving anxious and startled looks as a loud male voice apparently issued from the female resident of the sidecar. A. Puffett, Stevington,
Beds.

Calculator I.C.

I read with interest your article on the GIM C500 calculator chip in the March issue. I am in the process of designing and building a more ambitious calculator using this chip. Additional features are: 20 fixed functions (pi, reciprocals, \%, metric conversion, etc.)
Automatic squaring and square root.
1 non-calculating store.
1 -inch-high home-made display.
Left and right shift on decimal point.
The point of this letter is to air a criticism that all the above would have been far simpler if the manufacturers had provided a b.c.d. output instead of sevensegment. After all one can buy (quite cheaply) a chip to convert from b.c.d. to seven segment, but not the reverse.

Messrs GIM have expressed the wish that by releasing the C500 at a competitive price it would encourage its use in fields other than calculators, but the above remarks place limitations on interfacing with other logic. The m.o.s. inputs and outputs can be overcome with suitable circuitry.
A. M. Coppin,

Feltham,
Middlesex.

Return to c / s ?

I am sure you will find your new feature Project very rewarding, especially as it will have the backing and experience of Wireless World behind it. Writing as a teacher of long experience, could I make one observation which I think would improve the physics masters' lot quite considerably?

Ever since the introduction of the term "hertz" instead of "cycles per second" there has been uncertainty as to its meaning. I noticed some hesitation and difficulty by lecturers on two occasions while giving the Christmas lectures, and on another occasion a member of the BBC television "Tomorrow's World" team" deliberately used the old-fashioned "cycles per second" as it expressed what he wanted to say.

After all, Heinrich Hertz was investigating electromagnetic waves radiated through space, and if the term "hertz" were confined to this, then cycles per second could be applied to sound-wave frequencies. In fact, I would suggest that all wave frequencies below 20 kHz , including the 50 Hz mains, should revert to its more meaningful description.
G. A. Cozens,

Bartley,
Southampton.

Probably the most popular series of general purpose d.c. power supplies in Europe!

Nine models, all of which may be set to provide constant voltage or constant current. Very stable, low ripple, well protected against overloads and short-circuits. Two models (*) feature adjustable overvoltage crowbar, this additional protection making

- and powerful value at that!

LABORATORY BENCH POWER SUPPLIES : CONSTANT VOLTAGE/CONSTANT CURRENT 'L'SERIES

(excluding V.A.T.)
For full details contact:
Fumell

The Sinclair Cambridge... no other calculator is so powerful and so compact.

Complete kit-£24-95!
 (PLUS VAT)

The Cambridge - new from

 SinclairThe Cambridge is a new electronic calculator from Sinclair, Europe's largest calculator manufacturer. It offers the power to handle complex calculations, in a compact,
reliable package. No other calculator can approach the specification below at anything like the price - and by building it yourself you can save a further $£ 5 \cdot 50$!
Truly pocket-sized
With all its calculating capability, the Cambridge still measures just $4 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11}{16}{ }^{\prime \prime}$. That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on U16- type batteries which gives weeks of life before replacement.

Easy to assemble

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.

Total cost? Just $£ \mathbf{2 7} \cdot \mathbf{4 5}$!

The Sinclair Cambridge kit is supplied to you direct from the manufacturer. Ready assembled, it costs $£ 32.95$ - so you're saving $£ 5.50$! Of course we'll be happy to supply you with one ready-assembled if you prefer - it's still far and away the best calculator value on the market.

Features of the Sinclair Cambridge * Uniquely handy package.
$4 \frac{1}{2} \times 2^{\prime \prime} \times \frac{11}{16}$, weight $3 \frac{1}{2}$ oz.

* Standard keyboard. All you need for complex calculations.
*Clear-last-entry feature.
*Fully-floating decimal point.
* Algebraic logic.
* Four operators ($+,-x, \div$), with constant on all four.
* Constant acts as last entry in a calculation.
* Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than $£ 30$.
* Calculates to 8 significant digits, with exponent range from 10^{-20} to 10^{79}.
* Clear, bright 8-digit display.
* Operates for weeks on four U16-type batteries.
(MN 2400
recommended.)

A complete kit!

Actual size!

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge. Assembly time is about 3 hours.
Contents:

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor).
9. Battery clips and on/off switch.
10. Soft wallet.

This valuable book - free!

If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.
But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.

How ? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations

Why only Sinclair can make you this offer

The reason's simple : only Sinctair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale.
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 60 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small caiculator technology
And you benefit!
Take advantage of this money-back, no-risks offer today
The Sinclair Cambridge is fully guaranteed. Return yourkit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.
Price in kit form : $\mathbf{£ 2 4 . 9 5}+\mathbf{£ 2} \mathbf{5 0}$ VAT. (Total : $£ 27.45$)
Price fully built: $\mathbf{£ 2 9 . 9 5 + £ \mathbf { ~ } \mathbf { 3 } . 0 0 \text { VAT. (Total : } £ \mathbf { £ 2 } 2 \cdot 9 5 \text {) }) ~}$

Please send me
\square a Sinclair Cambridge calculator kit at $\mathrm{£} 24.95+£ 2.50$ VAT (Total : £27.45)

Name
Address
\square a Sinclair Cambridge calculator ready built at $£ 29.95+£ 3.00$ VAT (Total : £32.95)
*I enclose cheque for f \qquad made out to Sinclair Radionics L.td, and crossed. *Please debit my *Barclaycard/Access account. Account number * Delete as required

The Dymar i7II is a VHF/UHF Millivoltmeter with a number of clever, and extremely useful, differences.
Take the compact, lightweight RF probe. This houses two high speed rectifying diodes in a full-wave circuit. The resulting low level DC voltage is amplified in a low noise chopper-stabilized DC amplifier. The rectifying characteristic of these diodes is such that below approxi-

mately 30 mV they follow a square law. The result? True rms response.
Then there are the special linearising circuits used on each of the eight voltage
ranges provided. These ensure completely linear readings between one-third fsd and full scale.

And, as you would expect from Dymar, the instrument is fully portable and provided with a comprehensive range of accessories.

Take a look at this brief spec.

Frequency range:	50 kHz to 850 MHz
Voltage range:	ImV fsd to 3 V
$\overline{\text { Minimum reading: }}$	300 V
RMS response:	True below 30 mV

Need to know more? Use the Reader Reply Service or contact Dymar direct.

DTMTE
 the name in radiotelephones

DYMAR ELECTRONICS LIMITED, Colonial Way, Radlett Road, Watford, Herts. WD2 4LA. Tel: Watford 3732 I. Telex: 923035. Cables: Dymar Watford.

Realm of microwaves

8-Lenses and radomes

by M. W. Hosking, M.Sc.
British Aircraft Corporation, Stevenage

From the last two articles it should be apparent that the most usual antenna function is to direct as much radiated energy as possible within a specified beamwidth. The efficiency with which this can be achieved depends on how closely the radiation from the antenna system approximates to a plane wavefront; that is, a constant phase across the aperture. An obvious and good example of this is the paraboloid reflector which converts the generally spherical wavefront of the primary feed to a plane-wavefront radiated beam. Such a situation implies equal electrical path lengths for all rays from the feed to the aperture plane and this can also be achieved by a microwave lens.

Microwave lens design can be approached along similar lines to those in optics but, because certain lens dimensions are comparable to the wavelength, diffraction effects cannot always be ignored. These lenses fall conveniently into three categories, although not every type of lens is discussed within each category.
Firstly, there is the uniform dielectric type of lens constructed from some solid material and behaving in much the same way as its optical counterpart. Secondly, there is the artificial dielectric lens wherein, as the name implies, an effective dielectric constant is produced by means other than the bulk property of a material. Thirdly, the non-uniform dielectric lens of which the dielectric constant is not, in fact, constant throughout the lens, but varies with distance in some prescribed manner.

Dielectric lens

Bringing back memories of school physics, the design of solid dielectric lenses can be based on the methods of geometrical optics. Analogous to the optical transparency is the dielectric loss tangent of the lens so for microwaves there is a much wider choice of materials. The lens does not have to be optically transparent and, being the same order of size in thickness as the wavelength, the overall transmission loss is low. However, when the mechanical, environmental and fabrication requirements are taken into account, the range of suitable materials is reduced; those most generally applicable being plastics such as the polyolefins, polystyrene and p.t.f.e.

Refractive index is one of the main design parameters, but microwave materials are
characterized by their dielectric constant. There is, however, a direct relationship between the two. Refractive index is defined as the ratio of the speed of light or electromagnetic propagation in free space to that in material; that is, $n=c / v$. These speeds can be expressed in terms of the relative and absolute permeability and permittivity as

Fig. 1. Refraction of a plane wave at a dielectric interface (a). A point source, spherical wavefront can be converted to a plane wavefront by a suitably curved surface (b). In this case the contour can be hyperbolic or elliptical depending on whether n is greater or less than unity.

Fig. 2. Zoning the microwave lens saves weight, although at a sacrifice in bandwidth for the solid lens.
$c^{2}=1 / \mu_{o} \varepsilon_{o}$ and $v^{2} \doteq 1 / \mu_{o} \mu_{r} \varepsilon_{o} \varepsilon_{r}$. Manipulation of these relationships shows that $n=\sqrt{\varepsilon_{r}}$ for the case when $\mu_{r}=1$. A word of caution here in that n is not necessarily the same as the optical refractive index, because the dielectric constant may vary with frequency between the microwave and optical bands.
Another important characteristic of the uniform lens is that Snell's law is obeyed so that $\sin i=n \sin r$ using the notation of Fig. 1(a). This makes ray-path tracing easier and simplifies equations for the lens surfaces; which brings us to Fig. 1(b). The requirement of the lens shown is to convert the spherical wavefront from a source at the focus into a transmitted plane wavefront. For this to happen, all of the ray-paths into and out of the lens must be equal electrically and defining one surface of the lens as plane, the problem is to find the equation for the other one. From the geometry shown, this means that $r+n t^{\prime}$ must equal $f+n t$, or $r-f=n\left(t-t^{\prime}\right)$. The term ($t-t^{\prime}$) can be expressed as $(r \cos \theta)-f$ resulting in the surface equation

$$
r=\frac{f(n-1)}{(n \cos \theta)-1} .
$$

For values of refractive index greater than unity this is the equation of a hyperbola of eccentricity n. So a simple microwave lens might be made from, say, polystyrene having a microwave refractive index of 1.6 and would be plano-convex in shape with the convex surface being a hyperbola facing the incident radiation.

If such a lens were to have an appreciable diameter, then the thickness would be large and the weight would consequently be high: both undesirable features. It is, however, possible to remove material from the lens in a controlled fashion and to drastically reduce the weight; the process being termed zoning, Fig. 2 showing end result. By "controlled" is meant removing a section of the lens such that the last ray, so to speak, in the dielectric, A of Fig. 2(a), differs in path length from the adjacent ray B in the air-gap left by a whole number of 2π phase changes. In this way the phase relationship between all rays is maintained at the correct value and, electrically, the lens does not know that pieces have been removed. The price paid is a reduction in bandwidth due to the frequency-sensitive nature of the steps,
together with a reduction in aperture efficiency due to a diffraction at the edges of each step.
Although the dielectric lens antenna holds promise of greater ease of beam scanning by just moving the feed, it is up against severe competition from the reflector antenna and the phased array and is not nearly so widely used. Possibly its main application is as a phase corrector for microwave horns. The horn itself was reviewed in an earlier article and it can readily be appreciated that, due to the changing path length within the horn, there can be considerable phase change across the aperture causing inefficient radiation. By placing a lens in the aperture, the efficiency can be raised from something like 50 to about 80% together with a reduction in spill-over and back radiation.

Artificial dielectrics

It is possible to calculate, with varying degrees of success, the dielectric constant of a material from a knowledge of its molecular structure. In general, this means the determination of a quantity called polarizability, which is a measure of the ease with which an applied electric field can induce a directional charge in each atom. Normally, each molecule with its atoms and orbiting electrons has no preferential charge on it and is electrically neutral. But when brought under the influence of an electric field, some electron re-positioning occurs, producing a preferential alignment of charge in the same direction as the field-thedielectric becomes polarized.
Polarization also occurs in metallic conductors due to an applied electric field re-positioning surface charge and has led to a class of artificial dielectrics wherein metallic particles of various shapes are used to simulate the molecules and so form what is really a large-scale model of a molecular structure. Knowing the shape of the particles, their polarizability, and hence dielectric constant, can be fairly simply calculated (compared with an atomic structure) from an electrostatic approach.

Things are not that simple in practice, due largely to variations in particle size and shape and in uniformity of distribution. The particles can be of a variety of shapes: spheres, discs or flakes, filaments and strips being commonly used, with cross-sectional dimensions typically lying between 0.05 and 0.01 of a wavelength. Dielectric constant depends on the particle shape used and
whether the particles have a preferred orientation. Spheres, for example, place an upper limit of about $1.6(n=1.27)$ on the dielectric constant, but being symmetrical this does not vary with the direction of propagation through the material. A disc on the other hand allows any value (theoretically) to be obtained, provided that both the electric and magnetic fields are tangential to the disc's surface. This means that the dielectric constant becomes a function of direction, to say nothing of alignment problems in producing the material itself. Whichever shape is selected, the particles themselves must be supported in some way and distributed as evenly as possible. The most popular supporting medium is polystyrene or polyurethene foams as these are light, easy to produce and have a very low refractive index.
Having selected the particle shape and distribution to give a particular refractive index, together with the binding medium the lens design can proceed as for the solid dielectric. The main advantage of this type of artificial dielectric is its low density, resulting in significant weight saving and not only in lens design. The material can also be used for radomes (see later). Possibly the largest problem facing its use is that of obtaining a uniform and repeatable dispersion of the metallic particles within the supporting medium.

There is another, widely-used method of creating an artificial dielectric constant which makes use of the guiding properties of parallel metal plates. A stack of such plates is shown in Fig. 3(a) with an incident electric field parallel to the plate surface. Under these conditions, the plates will support a waveguide mode, the wavelength of which then becomes governed by the plate spacing. It may be recalled from an earlier part of this series that the guide wavelength can be expressed as $1 / \lambda_{g}{ }^{2}=\left(1 / \lambda_{o}{ }^{2}\right)-\left(1 / 4 a^{2}\right)$ where the quantity $2 a$ represents a cut-off wavelength above which energy will not propagate in the guide. The refractive index, $n=c / v$, which is the same as $n=\lambda_{o} / \lambda_{g}$, as the frequency remains constant. Therefore, by using the above expression for waveguide wavelength, a refractive index for the parallel plate system can be written as $n=\left[1-\left(\lambda_{0} / 2 a\right)^{2}\right]^{\frac{1}{2}}$. Some limitations are put on this expression as the spacing, a, must be greater than $\lambda_{o} / 2$ to remain above cut-off and must be less than λ_{o} to avoid risking the propagation of the next-order waveguide mode.

Fig. 3. Equivalent dielectric constant of less than unity can be produced by constraining the wave to pass through metal plates (a). By shaping the plate surface (b), a further type of microwave lens can be produced.

An interesting feature of this type of structure is that the refractive index is less than unity, implying that the velocity within the guide is greater than that of light. However, the overall velocity within any substance can be considered as the geometric mean of two velocities. One being that at which signal energy is carried, called group velocity and which cannot exceed c, and the other called phase velocity, which describes the movement of the phase front and which can be greater than c. For a non-dispersive medium the two are equal, but that is not the case here and v is the phase velocity.

We thus have another artificial dielectric with an equivalent refractive index and, in similar fashion to the solid dielectric case, wish to find the profile of one surface to produce a lens. The first equation can be used again, but with $n<1$ is re-written $r=f(1-n) /(n \cos \theta)-1$ which is now the equation of an ellipse. Thus, a metal plate lens might appear something like Fig. 3(b) in general profile.

Many other types of lens are possible and the methods of producing artificial refractive indices and lenticular effects are many and varied, although often having little practical application. Consequently, there is little to be gained in reviewing these further; rather the intention has been to introduce to the reader the concept of a microwave lens and to highlight differences in physical form between it and the more familiar optical counterpart. Anyone interested in delving further into the subject could obtain the basic groundwork.* There is one other lens from the category of nonuniform dielectrics which is well worth mentioning; partly because of its novelty. and partly because it is the most widely used of all microwave lenses.

The Luneberg lens

This was first propounded in a treatise on optics but proved impractical to construct at those wavelengths. The idea is to produce a lens that will focus energy from a point on one side to a point on the other, with particular attention paid to the limiting case where one of these points is on the surface of the lens and the other point is at infinity. In other words, to derive another spherical to plane wave-front convertor. The lens itself is a sphere having the general ray geometry shown in Fig. 4(a) wherein radiation from a point-source feed on the surface follows elliptical ray paths through the lens and, if all of these ray paths can be made electrically equivalent, emerges as a plane wavefront. A fairly complicated mathematical analysis of this lens shows that to provide the necessary phase variations within the lens, the dielectric constant must vary with the distance from the centre of the lens, r, in the simple fashion given by: $\varepsilon_{r}(r)=2-\left(r / r_{o}\right)^{2}$. In other words, the refractive index must vary continuously from unity at the lens surface $\left(r=r_{o}\right)$ to $\sqrt{2}(r=0)$ at the lens' centre.

When one gets down to constructing the Luneberg lens such a variation is not really practicable, so an equivalent approach

[^1]must be found. One which gives exceedingly good results and also permits a simple manufacturing process is to divide the lens into a series of hemispherical shells as in Fig. 5. Each shell has a definite dielectric constant, but different from its neighbour and so the variation of the last equation is achieved in step fashion instead of continuously. Provided the thickness of each shell is chosen so that the phase errors are not cumulative, the lens performs very well.

Because of its symmetry, the Luneberg lens is capable of scanning a beam in all directions and without distortion by just moving the feed. Its widest use, however, is as a radar reflector wherein the feed is replaced by a metal cap as shown in Fig. 4(b) onto which an incident plane wavefront is focused and then reflected back again in the same direction. Such reflectors are used in enhancing the radar return from small airborne targets, calibrating radar systems and acting as marker buoys.

Radomes

This topic is lumped together with that of the lens because, to my mind, the two have many similarities. Both are constructed from dielectric materials, either solid or artificial, both strive for maximum power transmission, and both involve the same basic design problem of an incident electromagnetic field at a dielectric air interface. Often a "tail-end Charlie" in system design and perhaps in receipt of less fundamental design attention than other components, the radome is nonetheless a vital part of radar and communication systems.

The radome is an unwanted extra in the majority of systems and it would always be an advantage, electrically, to do without it. This is seldom possible, as the prime function of the radome is to provide weather protection for the microwave and electronic equipment beneath it. Also, in the case of aircraft and missiles, the radome must form a part of the aerodynamic profile and therefore has to contend with the harsher set of environmental conditions which this imposes. Thus, the radome designer must be a fairly versatile character as he must produce
(a)

(b)

Fig. 4. Spherical Luneberg lens can convert a point source on its surface to a plane radiated wavefront by suitable radial grading of its refractive index (a). By placing a metal cap on the surface the lens can be converted into an efficient reflector (b).

Fig. 5. Continuous radial variation of refractive index is not practically possible, so the lens is constructed of hemispherical shells, each with a slightly different refractive index.
an equipment cover that is electrically invisible, will withstand rain, snow, ice and extremes of temperature, is mechanically strong and is often aerodynamically profiled. Needless to say, these diverse requirements are not mutually compatible.

It is not reasonable to try and cover here the mechanical and environmental side, except to highlight major points, as this is really a materials technology problem. On the electrical design, however, radomes can be divided into fairly definite categories according to their method of construction and the design itself boils down to that of proper phasing of the reflections which occur at the various material boundaries.

Suppose a radome consists of a sheet of some plastics material of thickness d and dielectric constant ε_{r}. A wave travelling along in free space will see the dielectric as an abrupt change in the characteristic impedance of its environment. The net result will be a reflection of some power at the interface with an amplitude depending on ε_{r} and having a maximum possible value of $R=\left(\varepsilon_{r}-1\right)^{2} /\left(\varepsilon_{r}+1\right)^{2}$.

In addition, the phase of this reflected wave will be opposite to that of the incoming radiation. Having traversed the sheet, the wave now meets another impedance change as it emerges back into free space and this gives rise to a second reflected wave, equal in amplitude to the first but without the phase change. In summation, there will thus be two reflected waves emerging from our plastic sheet, one from the front surface and one from the back and, depending on the phase relationship between them (remember that one wave has traversed the panel twice), they will form a resultant. Such a resultant wave, by interfering with the incident radiation, will cause a further loss in the transmission performance of the radome and it is here that the radome designer steps in.

Fig. 6(a) shows how, for normal inci-
dence, the power transmission of a dielectric sheet varies with its thickness, the features to note being the periodic nature of the curves and the existence of optimum values of d / λ_{0}. These optimum values to give maximum power transmission occur when the two reflected waves from the radome combine in such a way that their resultant is zero. In other words, one must be π radians out of phase with the other. Bearing in mind that because of the nature of the impedance change (high to low) the reflection from the front surface is 180° out of phase with the incident wave, the condition for cancellation is that the second wave should travel

(b)

Fig. 6. Variation in power transmission through a dielectric sheet as a function of thickness for normal incidence (a). Transmission properties are different for perpendicular and parallel polarizations, that for perpendicular always being worst (b).

Fig. 7. Main types of radome construction are, from left to right: thin skin, half-wave and three A-sandwiches with different cores.
multiples of 2π radians before combining with the first. As 2π radians corresponds to one wavelength, the radome should therefore be a half-wavelength thick. This means the wavelength within dielectric; i.e. $\lambda_{0} / \sqrt{\varepsilon_{r}}$.

This feature of a dielectric sheet gives one of the main radome classifications: the halfwave type which finds application at frequencies generally above X-band (above about 10 GHz . While many dielectrics are convenient for manufacture, the most popular material by far is fibreglass/resin laminate. Its loss tangent may leave something to be desired at about 0.01 , but this is made up for by ease of fabrication, good weathering properties and great strength. With a dielectric constant of four, a fibreglass, half-wave radome designed to operate at 15 GHz would thus be a nominal 0.5 cm thick.

A second radome type, really a limiting case of the half-wave, is the thin-skin radome which, as its name implies, has a thickness small compared with the wavelength. Generally, this means less than $\lambda_{0} / 20$ and Fig. 6(a) shows that, for a fibreglass laminate, 85% power transmission is still achieved at this upper limit. Glass-fibre is still a commonly used material for the thin-skin radome but, when circumstance permits, relatively cheap radomes in polyolefin or polystyrene types of plastic can be made using vacuum forming. Example of a thin-skin and a half-wave radome are shown in the two left-hand items of Fig. 7.

The three other samples shown in this figure are from a third main type of radome: the sandwich. In this case, they are of an A-sandwich which consists of two highdielectric constant thin skins and a lowdielectric constant core. There is also a less-used B-sandwich in which the core is of higher dielectric constant than the skins and a C-sandwich which is really a double A-sandwich. The main reason for going to a structure such as the A-sandwich is that of weight saving, at the same time main-
taining good strength and rigidity. Electrically, the idea is to arrange the spacing of the two skins so that the reflection from the front skin cancels out the one from the rear. For this to happen, a 180° phase difference must exist, which means that the skins must be $\lambda / 4$ (in the core material) apart. If the difference between this situation and the halfwave radome is not at first apparent, remember that the sandwich reflections arise at two high/low impedance interfaces whereas those of the half-wave come from a high/low and low/high transformation.

Construction-wise, the outer skins of the A-sandwich are usually of fibreglass and the core can be made from a number of lowdensity, low ε_{r} materials. The left-hand and centre sandwiches of Fig. 7 have cores of polyurethane foam and the end one uses a honeycomb or resin-impregnated fibreglass. Typical dielectric constants range from 1.1 to 1.2.

So far, the transmission properties of radome materials have been maintained with radiation incident only normal to the surface, but in practice angles of incidence as high as 80° can be encountered. The design situation then becomes much more complicated because the transmission coefficient varies both with incidence angle and polarization of the E-field vector. Before looking at this in more detail, it is necessary to define what is meant by E-field polarization. If this page represents the radome surface, then it is possible to define a plane of incidence formed by the normal to the page and a line indicating the direction of the incident wave. There are then two polarizations: vertical when the E-vector is perpendicular to the plane and parallel polarization when the E-vector is parallel to the plane. The transmission properties are different for each type. This difference is marked and is shown in Fig. 6(b) for fibreglass sheet of $\varepsilon_{r}=4$. At normal incidence, the power transmission is limited by the reflection coefficient of the last equation
giving $T=0.64$. As the incidence increases, the transmission coefficient for perpendicular polarization steadily decreases to zero for 90° incidence, while that for parallel polarization increases and eventually reaches 100% transmission.

The incidence angle at which this occurs is the Brewster angle and is equal to $\tan ^{-1} \sqrt{\varepsilon_{r}}$. Having passed this angle, the transmission falls off rapidly to zero at 90°. Over the whole range of incidence angles, the transmission of parallel polarization is always better than that for perpendicular which makes it much more difficult to design the more streamlined type of radome having a wide range of incidence angles. This is particularly so for the case of the sandwich radome as its transmission properties are more susceptible to changes in incidence angle than are those of the halfwave type. Fig. 8(a) shows a sample of aircraft and missile radomes of thin-skin; half-wave and sandwich construction where it can be seen that the designs range from the relatively straightforward, normal incidence, hemispherical radomes to types having a very high fineness. An advanced half-wave radome, both production-wise and design-wise, is the Concorde radome shown in Fig. 8(b). It is made from epoxy resin fibreglass, is 11 ft high and has a slightly elliptical cross-section. Fig. 8(c) shows an example of a large A-sandwich radome 14 ft diameter for a ship-borne radar.

Because of the imperfect transmission properties and the way in which these vary with incidence and polarization, the placing of a radome over an antenna system gives rise to various types of performance degradation which it is the designer's job to minimize. One of these is the straightforward reduction of radiated power due to the mismatch reflections from the radome wall and the attenuation in passing through the lossy dielectric medium. Usually, these losses can be kept to around 0.5 dB .

Another effect, generally called boresight error, causes the radiated beam to point in a slightly different direction from that of the antenna. The cause is diffraction effects at the radome and the amount of error is largely dependent upon the variation in phase across the radome surface. Depending on the method of construction, the boresight error is generally less than 20 minutes of arc, which may not sound much but can be most important to certain types of radar: missile homing systems, for example. Once again, due to phase variations, the radome can distort the antenna pattern, usually manifesting itself as a broadening of the beam and an increase in sidelobe level.

Although the main types of radome have been reviewed here there are, needless to say, many variations. The core of the A-sandwich, for example, could be made of lightweight artificial dielectric of the same ε_{r} as the skins, thereby forming the less polarization-sensitive half-wave radome but at a much-reduced weight. Thickness and weight can again be saved by embedding wires in thin radome skins to produce lumped inductive or capacitive elements instead of the distributed transmission path through the normal radome. When one

(a)

(c)

(b)

Fig. 8. Aircraft and missile radomes of different metheds of construction illustrate the wide range of radome shapes (a). Half-wave Concorde radome and part of its $3 \frac{1}{2}$-ton mould (b) and a large A-sandwich radome (c).
adds to these electrical design considerations the severe environmental and mechanical requirements such as imposed by most aircraft and missile systems, the design of a radome becomes a most interesting topic involving many areas of technology.

Scottish search for gravity waves

For the last few years the detection of "gravity waves" from outer space has been claimed by the American physicist J. Weber. Gravity waves are bursts of gravitational energy which are expected to be emitted when a star is swallowed by a "black hole". Gravity waves travel at the speed of light and are detectable by measuring the movement produced when they traverse a freely suspended mass. (Piezoelectric transducers convert the movements into voltages which are then amplified and recorded.)

Weber detects about one short-duration (less than 500 milliseconds) gravitational "event" per day. This has presented astronomers with a problem. If each "event" marks the destruction of a star at the centre of our galaxy, and the process has been going on indefinitely at the same rate, then the entire galaxy should have been consumed long ago. This is one reason why other attempts to check on Weber's measurements are being made.

The detection problem is difficult
because the incoming gravity waves are weak, and apt to be obscured by local noise. This noise may be caused by external (seismic) vibrations or by internal temperature effects (thermal vibrations). Seismic effects are excluded by using two detectors, spaced well apart, and correlating their outputs. Thermal noise has to be combated by signal-processing techniques.
An improved type of detector is in use at Glasgow University. In this, each freely-suspended mass (a 300 kg aluminium bar) is divided into two equal parts, with the piezoelectric transducers between them, acting as mechanical couplers. The transducers detect relative movements of the two half-bars. This arrangement is much more sensitive than the earlier ones in which transducers were fixed to the surface of the suspended mass.
Thermal noise sets the detector-mass vibrating on its resonant frequency of about 1 kHz . The arrival of a signal impulse from outside interferes with this resonance signal, producing an increase,
decrease, or phase shift. Any such modulation of the output requires the existence of other frequencies. If the natural resonance signal is eliminated by a notch filter, the true incoming signals can be distinguished.

In the Glasgow apparatus the outputs of the six stacks of piezoelectric transducers at each detector are pre-amplified by f.e.t. amplifiers and filtered by a broad bandpass filter centred on the fundamental resonance frequency of the detector mass. The fundamental output frequency is eliminated by a passive $L C R$ bridged-T notch filter.

The two detectors are separated by 50 metres. Their outputs are applied to coincidence circuitry and then recorded in various forms. So far, "events" have been recorded very infrequently in comparison with Weber's results, though there is still a possibility that Weber may have detected events of much larger duration than the short (a few milliseconds) events predicted and searched for at Glasgow.

A problem of measurement

Rectifier-meter readings with distorted waveforms

by Thomas Roddam

At an exhibition last season, or maybe it was the season before, I was surprised, and then alarmed, to find quoted for a piece of equipment two figures which seemed incompatible. The alarm came when the chief engineer of the company concerned said he could see nothing wrong with them. The equipment was, if you are sitting on the edge of your chair with excitement, a sine wave power source. I have forgotten the exact numbers, but typically they were 10% distortion and an output voltage constant to within 2%. Readers who remember the old engine-driven aircraft generator with its carbon-pile regulator will also remember that the most certain way of burning out the valve heaters in flight was to set up the carbon-pile regulator using an averagereading voltmeter.

For much of the time most of us are content to use a rectifier meter, which reads, i.e. responds to, the average voltage but is calibrated to indicate the root-mean-square voltage of a pure sinewave giving the same meter reading. To what extent should we turn away from this easy and inexpensive practice now that our power supplies may no longer have the same purity of waveform as that supplied by the Generating Board?

Until twenty years ago there was no question about it. The one really critical voltage inside a piece of equipment was the valve heater voltage. If the heaters were too hot, the life was shortened : if they were too cold, some circuits, though none of mine, just would not work. Looking back more critically, however, we did accept quite wide variations by modern standards. The 12.6 volt line of a wide range of valves was a 12 volt battery, and no one expected that to be closer than $\pm 10 \%$.

Technically it is not difficult to measure r.m.s. voltage, although the simple measuring techniques all have flaws. The old and tried method was the use of a thermocouple, calibrated in my young days against d.c. for each measurement or group of measurements. Accident-prone and slow, I do not regret that we no longer see this. Thermistor circuits are also slow, and I suspect that they are temperature dependent. Then there are tricks, using a number of diodes to build up the parabolic characteristic in a set of arcs.

I used this method a long time ago in a psophometer but I am not sure how good it is over a wide temperature range. More recently all kinds of clever devices have come into use. A Hall multiplier will produce V^{2}, and one can also do the multipli-
cation by using length and amplitude modulation of a sampling train of pulses. In fact you can buy an expensive box of tricks.

Is this refinement necessary? How much does it really mean? In this article I propose to look at the error caused by distortion and on some of the other factors which are involved.

In order to make life easy, because, as I have never failed to preach, any examination of principles should not allow a passion for generality to complicate the argument, I shall examine only the effect of the third harmonic. As this is usually the main source of error, we do not lose much by this limitation. It is often, though not always, the predominating harmonic in an imperfect power supply. We therefore take a supply waveform

$$
\sin \theta+h \sin (3 \theta+\phi)
$$

where h is the fraction of harmonic; θ is ωt; and ϕ the phase of the harmonic, which is very important.

We need to consider the value of the function over the range from $\theta=0$ to $\theta=\pi$, a half cycle, since we are dealing with only odd terms. The average value is quite simply given by

$$
\begin{aligned}
V_{A V} & =\frac{1}{\pi} \int_{0}^{\pi} \sin \theta+h \sin (3 \theta+\phi) \mathrm{d} \theta \\
& =\frac{-1}{\pi}\left[\cos \theta+\frac{h}{3} \cos (3 \theta+\phi)\right]_{0}^{\pi} \\
& =-\frac{1}{\pi}\left(-2+\frac{2 h}{3} \cos \phi\right) \\
& =\frac{2}{\pi}\left(1-\frac{h}{3} \cos \phi\right)
\end{aligned}
$$

The value of $\cos \phi$ may be anything from -1 to +1 .

For the r.m.s. value we can do some rather more complicated mathematics. However, the whole point of using r.m.s. measurement is that it adds up the component powers, and the result is that

$$
V_{r m s}=0.707\left(1+h^{2}\right)^{\frac{1}{2}}
$$

or, if h is reasonably small,

$$
V_{r m s}=0.707(1+h / 2)
$$

The factors $2 / \pi$ and 0.707 are always wrapped up inside the measuring device, and so we see that a true r.m.s. meter will be reading ($1+h / 2$) when an average-sensing meter reads something between ($1+h / 3$) and ($1-h / 3$). It is very convenient to look
at this for a waveform with 6% distortion. The r.m.s. meter indicates 1.03 , while the other meter may read anything from 0.98 to 1.02 . Thus the average-sensing meter may be giving an indication which is 5% low for a distortion of 6%. If the distortion were 12%, the error could be as much as 10%.

If we were to consider the fifth harmonic we should get a term of the form $1-(h / 5) \cos \phi)$, which is not so bad, and similar forms for the higher harmonics.

It is this analysis which is used to justify the demand for testing the power supply with a meter which reads the r.m.s. voltage. It.also gives us a rather easy way of checking our simple r.m.s. indicating systems. Let us put the fundamental at 50 Hz . We add to this a small amount, 10 or 20%, of nearly third harmonic, 151 Hz . A true r.m.s. meter will give a steady reading, but since the effect of the small frequency difference is to change ϕ continuously, an average-reading meter will show the beats quite clearly.

We have seen that with an impure sinewave there is a real error in using the average value in place of the r.m.s. value. Is this of great significance in practice? A first thought is that a disadvantage of the average indication is that if the power factor of the load is varied, with the actual constituent voltages held constant, there will be a change in relative phase of the harmonic and thus a change in meter reading. I do not believe that this matters at all. The sort of load which has a significant linear phase angle is a motor, or some similar type of inductive device. We are talking, then, of current-operated systems, and the very effect which produces the deviation of the power factor from unity also reduces the flow of harmonic current. The literature is by no means agreed on the effect of even square waves on motors and my own limited experience suggests that a waveform containing no third harmonic but some 20% of fifth harmonic, together with higher harmonics, actually reduces the motor losses.

I am inclined to discount the valve heater problem. The designers of valve equipment rarely expected the precision of supply which we all seem to take for granted nowadays. In any event, they are working at constant power factor, and a once-for-all correction is all that would be needed if they were to become seriously concerned.

A good deal of the 50 Hz power we put into equipment is transformed and smartly turned into d.c. Here we really do run into some very interesting problems with the
sinewave inverters which are the main alternative source of supply. When we wish to produce a sinewave under conditions of the highest efficiency, and once the power gets up into hundreds of watts we will not be in business unless the efficiency is high, we must adopt methods which have ideally 100% efficiency. Do not be misled by the "stay in business". Even if it is just a unit you rig up to keep the heating pump running off a car battery during the next power strike, you still need to eke out your limited number of ampere-hours. So any power conversion unit from d.c. to \backslash a.c. must operate in the switching mode.
I had thought that there were two basic alternatives at this point, but I find that this is not so. Or perhaps more correctly, the two alternatives are not what one imagines.
The most usual form of switching inverter produces a square wave output. This contains 33% third harmonic, 20% fifth harmonic, and so on. We do not wish to feed these harmonics through to the load. We therefore require two sub-systems. One must reflect the harmonic energy back into the inverter, while the other converts the harmonic energy back into d.c. and stores it for re-use. A small amount of energy may be used to set up special current and voltage conditions, the commutation process involved in making thyristors switch off. There is a rule about the filter and storage element which I think goes back to work by Belevitch on switching modulators: the reactive components of the two sub-systems must be of opposite signs. In the commonest form this means that the output filter has a series inductor and there is a large capacitor to accept the reflected energy.
The most economical way of regulating the output voltage of such an inverter is to maintain all the devices switched off for part of each half-cycle. This also has a very useful effect on the harmonics. If the current only flows for $\frac{2}{3}$ of the time, the third harmonic is zero. This, then, is the form of the basic a.c. input to the filter: $+V, 0,-V, 0,+V$ and so on. Diodes, one might call them flywheel diodes, come into operation during the 0 period, maintaining the interchange of energy between the filter and the storage element which is needed to avoid wasting harmonic energy.
Notice that this is a three level system. It can be generated by binary logic elements, but only if a branch is taken off the chain and brought back in what I call push-push, though I imagine the mathematicians have a classy name for it .
When I want to slow down my motor car, nowhere in particular, I let it free-wheel to rest. So I go forward, coast, or reverse: a three-level logic system. An aircraft landing on a runway simply cannot free-wheel, and the brake shoes, or whatever they have, cannot get rid of all that energy. The answer is reverse thrust. We could have modified our square wave for regulation purposes by producing the waveform shown in Fig. 2. I have put in the reference square wave to show how at the beginning and end of each half cycle there is a reverse push. But this, you will see, is only a two-state logic system. We always have either V or $-V$, never an intermediate zero. Of course the filter con-

Fig. 1. The square wave (a) is modified to the three-level logic waveform (b) for the purpose of voltage regulation.

Fig. 2. Another way of regulating a square wave.

Fig. 3. The essentials of the filter.

Fig. 4. Typical current waveform in rectifier capacitance circuit.
tinues to refuse all this harmonic energy and may not be prepared to pass it back through the device which is switched on. The flywheel diodes are still needed.
lt is clear that in modifying the waveform we have introduced some new, higher, harmonics. I think it is also clear that if the short up-down section lasts for $\frac{1}{3}$ of half a cycle it is too fast to produce third harmonic, and averages out to the zero of Fig. (b) which gave zero third harmonic. Do the mathematics, but do not write and tell me I am wrong. The point is that something like that happens, even if the pulses are not 30 degrees.
We can add more reversals and if we time them correctly we can get rid of successively increasing harmonics. I am not going to draw any waveforms, but one way of getting just the pattern we want is an old, and I fear a long-lost friend, the class-D amplifier. All that we have done is to restrict the signal in our class-D system to a single frequency, and state that the switching frequency is to be a multiple of the signal frequency.
The essential difference between the systems really arises from the circuit detail. It would be possible to produce a three-level logic type of waveform with the many switching operations needed to synthesize a sinewave free from all low harmonics, but it is not the economical solution. The two classes of system remain distinct from one another.

The essential job of an ideal filter is to store the unwanted energy until it can be dispatched back to the source. It can do no
other, for the ideal filter has no dissipative elements, and what it cannot send back to the source it must send on to the load. The energy storage capability must be measured in terms of storing the lowest unwanted frequency for half a cycle. It is this feature which makes the practical difference between the simple waveform of Fig. 1(b) and the very complicated one of the class-D amplifier. There is a world of difference between having to reject the third harmonic and having to reject the thirtieth.

We can represent the filter in the simple form of Fig. 3. We can have additional half sections added on before the load, and we can indulge ourselves in frequency and impedance transformations until square root signs come out of our ears. None of this will alter the fact that if most of the work of cleaning up the waveform is to be done by the filter, the inductance will be biggish, whereas if we use a lot of clever switching operations the inductance will be smallish.
Now we consider that rather common load, the rectifier and capacitor. The sort of current demand this makes is shown in Fig. 4. Before the rectifier the pulses of current are alternating. Their duration depends on the ratio of source resistance to load and the value I have chosen, which gives about 0.85 times the peak input voltage, makes the pulses last about 60 degrees. The load, in fact, is demanding third harmonic.

It is at this point that the two techniques of power generation, the square wave and filter, and the waveform synthesis type, behave quite differently. If we have a filter which is designed to stop third harmonic it will also refuse to supply it. The waveform across the load will have its top clipped off, and any connection between the r.m.s. voltage and the peak voltage will be purely coincidental.

With the synthesis type of generator this does not happen. Something much more alarming does, though. I have not got the Schade results handy, but you will remember that with this type of supply unit you must always check the rectifier peak current. Well, the rectifier peak current, some 3-5 times the load current, is also, after allowing for the transformation, the device peak current. You will need some 500 W of device capability to get 100 W of d.c. supplies in the load. That small inductor just will not help to make life easier.

Of course, you will never discover this.
In exploring the problem of mobile and stand-by power supply measurement I have not really expressed any conclusions. Discussions over the years have led to two simple rules, however. The first is that the higher the professional qualifications the less dogmatic the opinion on this matter tends to be. The second is that absolute certainty is expressed by people who have one, and only one, system to sell.

I suspect that there are already readers who are licking their pencils in preparation for a letter to the editor demolishing all my ideas. Remember, as you write, that once you hand one of these units over to a user you have no control at all over the mixture of loads he will connect to it. And even if you know now, what is he going to use in the future?

New Products

Thick-film networks

Sprague now offer standardized single inline networks similar to the dual in-line range. All resistors are rated at $\frac{1}{8}$ watt and are available with a standard $\pm 5 \%$ tolerance or up to $\pm 1 \%$ on special order. Type 216C Metanet s.i.l. resistor networks for signal and data processing applications are also available especially designed for calculators, electronic clocks and gasdischarge displays. Type 206C Multi-Comp s.i.l. resistor capacitor networks are also intended for use with gas-discharge displays and for interfacing between m.o.s. logic and display drivers. Resistor ratings up to 40 V are available with a typical temperature coefficient of ± 500 p.p.m. $/{ }^{\circ} \mathrm{C}$, while the ceramic chip capacitors are rated at 200 V over the temperature range -55 to $+70^{\circ} \mathrm{C}$. Sprague Electric (UK) Ltd, 159 High Street, Yiewsley, West Drayton, Middx.
WW306 for further details

Cermet film resistors

A new cermet film resistor from AllenBradley measures 0.25 in long and 0.09 in in diameter. The resistor, type CC , is available over the range 10 ohms to 1 megohm (E96 preferred values only) at $\pm 1 \%$ selection tolerance and is rated at $\frac{1}{4}$ watt at $70^{\circ} \mathrm{C}$, or $\frac{1}{8}$ watt at $125^{\circ} \mathrm{C}$ with a temperature coefficient of ± 100 p.p.m./

WW 301
${ }^{\circ} \mathrm{C}$. The resistor is suitable for automatic insertion and can be supplied bandoliered. Allen-Bradley Electronics Ltd, Bede Industrial Estate, Jarrow, County Durham NE32 3EN.
WW304 for further details

Precision potentiometers

Beckman Instruments Ltd have introduced two single-turn precision potentiometers. Model 3371 is $1 \frac{5}{16}$ in diameter; model 6671 is 2 in diameter. Both models feature a new conductive plastics resistance element providing stability, fine independent linearity and immunity to adverse environmental conditions. Power ratings are 1 W at $65^{\circ} \mathrm{C}$ for model 3371 and 8 W at $70^{\circ} \mathrm{C}$ for model 6671. The output smoothness is 0.1% maximum for both types. In addition to model 6671 's bushing-mount type, a servo-mount version is available in model 6673. Beckman Instruments Ltd, Queensgate, Glenrothes, Fife.
WW303 for further details

Continuous wire-wrapping tool

Vero Electronics are now offering a continuous wire-wrapping tool manufactured by the OK Machine \& Tool Corporation. The model AW-8LS is a rugged, pistol grip, bare wire-strapping tool which is designed to make wire-wrapped continuous connections of gas-tight quality. The bare wire feeding through the tool permits interconnection of as many terminals as needed. The tool, which weighs $19 \frac{1}{2}$ oz, will accommodate wire sizes a.w.g. 22 and a.w.g. 24 and comes complete with a two-metre length of flexible plastic air hose. Vero Electronics Ltd, Industrial Estate, Chandler's Ford, Eastleigh, Hants.
WW301 for further details

Splash-proof panel indicator lamps

A range of splash-proof panel indicator lamps manufactured by Sloan AG of Switzerland, is available exclusively from Walmore Electronics Ltd. The lamps will withstand pressures of up to $5 \mathrm{~kg} / \mathrm{cm}^{2}$ in

WW 302

WW 309
both fresh and sea water. The lampholders, which are called the 867 , can be supplied with a variety of interchangeable nickelplated brass lens caps in either fully or partially shrouded styles with an anodized or a black finish. The four basic lens cap styles are supplied fitted with 11.6 mm diameter nylon lenses in one of six colours (blue, green, amber, red, white and clear). The body of the lampholder measures 30.1 mm long (including contacts) by 13 mm in diameter. The lampholders cost 92 p each or 72 p each for $1000+$. Walmore Electronics Ltd, 11-15 Betterton Street, Drury Lane, London WC2H 9BS.
WW302 for further details

Travelling wave tube amplifiers

EMI-Varian have introduced a new range of 17 in rack-mounted travelling wave tube amplifiers (t.w.ts) suitable for laboratory and production test applications. Frequencies from $1-18 \mathrm{GHz}$ are covered by only three amplifiers, saving capital expense. Standard frequency ranges are $1-4 \mathrm{GHz}$, $4-12 \mathrm{GHz}$ and $12-18 \mathrm{GHz}$. Power levels of $1,2,5,10$ and 20 watts are available for each frequency range. Each t.w.t. has 115 V and 220 V power supply tappings and protective circuitry including warm-up time delay, helix overload cut-out and overheating cut-out. The new range of t.w.ts has a.m. and p.m. noise levels of 50 dB below carrier and spurious non-harmonic noise levels are 80 dB below carrier. EMIVarian Ltd, Blyth Road, Hayes, Middlesex. WW310 for further details

Microwave panoramic frequency analysers

The 8011 series of panoramic frequency analysers are now available from Telonic. These instruments which cover the range $0.5-30 \mathrm{GHz}$ enable rapid analysis of spurious products of microwave signals. Using a swept y.i.g. filter no cross modulation products or spurious signals are produced. Full tuning range of the instruments, e.g. $1-18 \mathrm{GHz}$, can be covered in one sweep and controls give a choice of start/stop or centre frequency setting. The dynamic

WW 307
range of 55 dB is displayed in either log or linear modes on the 5 in display tube. The flat response of $\pm 2 \mathrm{~dB}$ over most of the tuning range enables accurate power measurements to be taken. Options available enable the y.i.g. filter to be used as an independent r.f. filter with input and output on the front panel of the analyser. Also available is a four-digit l.e.d. read-out of the centre frequency. The tuning ranges for the models are $1-18 \mathrm{GHz}$ (8011B), $1-20 \mathrm{GHz}$ (8011 C), $3-30 \mathrm{GHz}$ (8011) and $0.5-5 \mathrm{GHz}$ (8011L). Telonic Industries UK, The Summit, 2 Castle Hill Terrace, Maidenhead, Berks.
WW309 for further details

Impulse counters

A range of impulse counters, manufactured by Hopt GmbH, are now available in the UK from Radiatron Components. Two basic types make up the ZR range, the ZR3 and ZR4; both count up to 25 impulses per second d.c. or ten impulses per second a.c., displaying three, four, five and six digits. Push-button reset facilities are available on the three- and four-digit versions and all types can be rear stud or panel mounted. The ZR6 series are six-digit instruments, panel or socket mounting, and incorporate either electrical or mechanical reset options. Counting speeds up to 50 impulses per second can be achieved with a wide range of operating voltages. Additional features include elapsed-time counting functions, multi-group mounting facilities, key reset, magnified numerals, lamp and dummy modules and a step-down ratio unit. For higher speed applications a modular predetermining electronic counter with a solid-state display can be supplied. Radiatron Components Ltd, 76 Crown Road, Twickenham, Middlesex.
WW308 for further details

Twin-output modular power supplies

Two new units, designated GPT200 and GPT500, are twin-output supplies that are complementary to Coutant's existing singleoutput GP range. They are both contained in standard metalwork and offer the same

principal specifications: line regulation $0.01 \%+1 \mathrm{mV}$ for $\pm 10 \%$ mains fluctuation, $0.03 \%+3 \mathrm{mV}$ zero to full load, ripple less than 1.5 mV peak-to-peak, re-entrant auto-resetting overload protection, optional overvoltage protection and an operating temperature range of $0-50^{\circ} \mathrm{C}$. The $125 \times$ $125 \times 240 \mathrm{~mm}$ GPT 200 offers twin outputs of 2 A at $12-15 \mathrm{~V}$ and the GPT500 offers two 5 A outputs at $12-15 \mathrm{~V}$ in a $190 \times 125 \times 240 \mathrm{~mm}$ case. Prices of the two new power supplies are $£ 40$ for the GPT200 and $£ 58$ for the GPT500. Coutant Electronics Ltd, 3 Trafford Road, Reading RG1 8JR.

WW307 for futher details

Speaker matrix

Beyer Dynamic (GB) Ltd have recently introduced a four-channel synthesizer for use with loudspeakers or headphones. Up to three pairs of quadraphonic headphones may be connected to the unit, alternatively up to three stereo headphones may be used.
Headphone outputs are connected to separate three-contact jack sockets for the front and rear channels of each quadraphonic headphone. A changeover switch selects either loudspeakers or headphones, with the speakers being muted when headphones are connected.

The unit is designed to work into the following load impedances: loudspeakers, $4-16 \Omega$; four-channel headphones, $150-$ 300Ω and stereo headphones, 25Ω upwards. Power handling capacity is $60 \mathrm{~W} /$ channel and the price is $£ 20.23$ plus VAT Beyer Dynamic (GB) Ltd, 1 Clair Road, Haywards Heath, Sussex RH16 3DP.
WW 316 for further details

Illuminated push switches

From Walmore Electronics Ltd comes a range of illuminated push switches manufactured by Sloan AG of Switzerland.
They are available in on-off and momentary contact arrangements containing gold-plated silver, single-pole changeover contacts, brought out to either a printed circuit board or solder pin connections. The lamps can be either T1 base incandescent lamps, current rated from
$20-60 \mathrm{~mA}$ at $5-28 \mathrm{~V}$ or alternatively T 1 based l.e.ds can be used. Several bezel types are available and five lens colours.

The switches are rated for a maximum current of 1 A and a maximum resistive load of 100 W . Voltage limitations are 110 V a.c. and 30 V d.c. Price in small quantities is about $£ 3.14$ each falling to $£ 2.56$ eách for quantities between 100 and 999. Walmore Electronics Ltd, 11-15 Betterton Street, Drury Lane, London WC2H 9BS. WW3 15 for further details

Clip contact adaptor

A perennial problem in any electronic laboratory is the connection of electronic equipment to the mains supply on a temporary basis without using a plug. A solution offered by Rendar, called "Instapower", makes such connections possible from a 13 A socket to loads of up to 1 kW .

Looking rather like a conventional "unbreakable" 13A plug top, the interior contains three spring clips \cdot for retaining the wire ends and 5A fusing. Access to the interior is only obtained by unplugging the unit thus rendering the unit totally safe when open.

With a case moulded in flame-retardant glass-filled nylon, the clip jaws have moulded colloured push tabs to open them for connection and are marked L, E and N. The cable entry will accept up to 0.4 in dia. cables, clamping being achieved by the cover and its screw fixings. Price $£ 2$. Rendar Instruments Ltd, Victoria Road, Burgess Hill, Sussex RH15 9LE.

WW314 for further details

Two- and three-phase oscillator

This device, produced by Gearing and Watson (Electronics) Ltd, provides the source for two- or three-phase power to be generated over the frequency range 0.2 Hz 20 kHz .

Designed to be used in conjunction with suitable power amplifiers, available from the same company, from 75 W to several kilowatts can be produced.

A phase sequence switch is provided to reverse phase rotation and four outputs,

WW 312
$0^{\circ}, 90^{\circ}, 120^{\circ}$ and 240° are provided on both front and rear panels. The 90° quadrature output can be used for two-phase systems, for "Scott" connected three-phase systems and for reference purposes. The oscillator output is 1 V r.m.s. with a maximum error between phases of 5° and a distortion of less than 1%. Gearing \& Watson (Electronics) Ltd, Birch Close, Eastbourne, Sussex BN23 6PE.
WW312 for further details

Wide-band differential d.c. amplifiers

A new range of wide-band differential d.c. amplifiers is available from Datron Marketing Ltd. Called the 700 series, the range is based on a single common design which is offered with a wide range of options, resulting in a total of 510 different configurations within the range. The standard housing for all configurations is a 5.25 in high $\times 1.4$ in wide rack-mounting module. All models have their own internal power supply for operation on $105 / 220 \mathrm{~V}, 50 /$ 400 Hz . There are six fixed, switch-selectable or computer-controlled gains available, from 0 to 1000 , with a 0.01% gain accuracy and $0.003 \% /{ }^{\circ} \mathrm{C}$ gain stability. Commonmode voltage is given as $\pm 100 \mathrm{~V}$ d.c. or $\pm 300 \mathrm{~V}$ d.c. or peak a.c: to 400 Hz , according to option. The common-mode rejection is 126 dB with a bandwidth of 100 kHz and linearity $\pm 0.005 \%$ f.s. Datron Marketing Ltd, Meteor Close, Norwich Airport Industrial Estate, Norwich NOR 17B.

WW300 for further details

$3 \frac{1}{2}$-digit multimeter

D. A. Pitman have recently released details of a $3 \frac{1}{2}$-digit, bi-polar, portable multimeter from DigiTec. The d.c. ranges extend from 199.9 mV , full scale, to 1000 V , full scale, with an accuracy of 0.1% of reading. The a.c. ranges extend from 1.999 V , full scale, to 500 V , full scale, with an accuracy of 0.5% of reading. Resistances from 199.9Ω to $19.99 \mathrm{M} \Omega$ can be measured with an accuracy of 0.5% of reading, test lead resistance being balanced out using a front panel control.

All functions are selected by push-button switches and ranges by rotary switch. An l.e.d. display is used which blanks out leaving only the decimal point illuminated when overranging occurs. Price £127. D. A. Pitman Ltd, Jessamy Road, Weybridge, Surrey.

WW31 1 for further details

Small power bench supplies

Intended for use where space is at a premium, the Datoda units are available from Lawtronics. The unit is $6 \times 3 \times 2 \frac{1}{2}$ in and is available in two forms. One provides fixed output levels (Type VB1), the other has a switched output range of 5,6 , 9,12 and 15 V . Current and thermal overload protection is provided with a full load regulation of 10 mV at 1 A . The VB1 is priced at $£ 11.50$ and the VB2 at $£ 16$, in small quantities. Lawtronics, 139 High Street, Edenbridge, Kent TN8 5AX.
WW320 for further details

The names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

Avalanche photodiode

Epitaxial silicon photodiode type S30506 is a high-speed, light-sensitive detector with a circular photoactive area of approximately 0.5 mm diameter. Internal current gain is obtained by reverse biasing the detector near to the avalanche breakdown voltage which improves sensitivity to weak light signals. A short decay time for the output current, $90 \%-10 \%$ in 6 ns , after illumination with near infra-red radiation at modulation frequencies up to 100 MHz is claimed.
WW350 for further details
EMI

High-voltage rectifiers

A range of high-voltage silicon rectifier assemblies has been manufactured by Semtech. The KV-PAC PLUS series has a rating of 1 amp as a half-wave rectifier and 2 amps in a bridge circuit with a onecycle surge current capability of 50 amps at $55^{\circ} \mathrm{C}$. Peak inverse voltages are 5 to 15 kV at $55^{\circ} \mathrm{C}$ and the reverse current at p.i.v. is $1.0 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$.

WW351 for further details
Bourns

High-speed r.a.ms

Fairchild has added two new high-speed e.c.l. random access memories to its 10,000 series of integrated circuits. The new memories, F10410 and F10415, complement the previously announced F10405 r.a.m. The 10410 is organized as 256×1 bits with typical access time of less than 20 nanoseconds. The F10415 organized as 1024×1 bits has typical address times of less than 45 ns . Both memories have inputs and outputs at standard 10 k e.c.l. levels and outputs drive standard 50 -ohm line loads.
WW352 for further details
Fairchild

Cascade amplifiers

The WJ-A5 and WJ-A7 type, $5-500 \mathrm{MHz}$ cascadable amplifiers are now available from Watkins-Johnson. The amplifiers exhibit a flat frequency response, temperature stability and are unconditionally stable for any source and load conditions. The WJ-A5 and WJ-A7 are guaranteed over the temperature ranges -54 to $+100^{\circ} \mathrm{C}$ and -54 to $+71^{\circ} \mathrm{C}$ respectively. The amplifiers are supplied in four-pin TO-8 packages and have a typical performance of 14.5 dB gain with a gain flatness of
$\pm 3 \mathrm{~dB}$ and a noise figure of 4 dB (WJ-A5), 5 dB (WJ-A7). Output pówer is +9 dBm (A5) and +14 dBm (A7), phase linearity $\pm 1.0^{\circ}$ from $10-500 \mathrm{MHz}$, power supply range $8-20 \mathrm{~V}$ d.c. (A5), $15-24 \mathrm{~V}$ d.c. (A7).

Watkins-Johnson

WW354 for further details

Multi-port register file

Motorola have added the MC10143 8×2 multi-port register file to their MECL 10,000 series. This device, which falls into the l.s.i. class, is capable of simultaneously reading two bits while writing another bit. The access time is typically 10 ns or 5 ns from clock to data out. The MC10143 employs two sets of eight latches for data storage and is fully compatible with all other members of the MECL 10,000 and MECL 3 series.
WW353 for further details
Motorola

Sample and hold op-amp

A monolithic sample-and-hold op-amp has been introduced by Harris Semiconductor. Designated the HA-2425, the device has a d.t.l/t.t.l. compatible control input, 2 MHz bandwith, 50 ns aperture time and a slew rate of $5 \mathrm{~V} \mu \mathrm{~s}$. The HA02425, which is available in a 14 -pin dual-in-line package, operates from 0 to $75^{\circ} \mathrm{C}$ and has a slew rate to droop rate ratio of 5×10^{6}. Internal design consists of a high-performance op-amp with its output in series with an analogue switch providing low leakage current ($\ln \mathrm{A}$ max). The switch is then buffered with a m.o.s.f.e.t. input unity-gain amplifier.
WW355 for further details
GDS

21-stage counter using c.m.o.s.

A low-voltage c.m.o.s. 21-stage counter has been introduced by RCA. The device, designated TA6152, is a timing circuit designed for use in digital equipment where low dissipation or operation in the $1 \cdot 1-6 \mathrm{~V}$ range is required. Quiescent dissipation is $0.5 \mu \mathrm{~W}$ (typical) at $V_{D D}=1.5 \mathrm{~V}$; $2.5 \mu \mathrm{~W}$ (typical) at $V_{D D}=5 \mathrm{~V}$; operating dissipation is $75 \mu \mathrm{~W}$ (typical) at $V_{D D}=1.5 \mathrm{~V}$ and $f=1 \mathrm{MHz}$. The TA6 152 consists of 21 negative edge counter stages, two inverter output drivers and input inverters for use in a crystal oscillator. The device is supplied in a 16 -lead dual-in-line ceramic package and samples will be available in June/July.
WW356 for further details
RCA

Suppliers

EMI Electronics and Industrial Operations, Blyth Road, Hayes, Middx.
Bourns (Trimpot) Ltd, Hodford House, 17/27 High Street, Hounslow, Middx.
Fairchild Semiconductor Ltd,'Kingmaker House, Station Road, Barnet, Herts.
Motorola Semiconductor Ltd, York House, Empire Way, Wembley, Middx.
Watkins-Johnson, Shirley Avenue, Windsor, Berks.
GDS Marketing Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.
RCA Ltd, Solid State Europe, Sunbury-on-Thames, Middx.

Audio Products

A selection of new equipment seen at the concurrent Sonex 74 and Hi Fi 74 exhibitions

Electrostatic headphones

Perhaps the most remarkable sight in the Sonex exhibition were the Jecklin Float headphones. Manufactured by a Swiss company and appearing by courtesy of the Lustraphone stand, these units were being displayed in an effort to gauge public reaction prior to launching the product in the UK.

The electrostatic elements were large and rectangular in shape, reminiscent of a design published by Wireless World in November 1971. Of doublet design, the Jecklin units radiate both towards the ear and outwards and the fit of the headband is intentionally loose.

The headband and holder for the drive units is moulded from a single piece of plastic in a silver metal sheen and lined with polyurethane foam. A power supply in a black rectangular metal box is used to polarize the electrostatic elements and also provides a connecting point for loudspeakers. Designed to be driven by

WW 360
amplifiers capable of accepting $8-\Omega$ loads, the Jecklin float headphones have not yet been priced. Belcaire Trading, 59 Cheriton High Street, Folkestone, Kent.
WW360 for further details

Mini monitor loudspeaker

Several high-quality bookshelf speakers are now produced from various sources and in fact this seems to be the end of the market where most improvements are being made, a reflection made more apparent by the introduction of the new Rogers LS3/3A monitor loudspeaker. This measures only $7 \frac{1}{4} \times 6 \frac{1}{2} \times 11 \frac{3}{4}$ in and weighs $9 \frac{1}{2} \mathrm{lb}$. The speaker is necessarily inefficient but is ideal for monitoring or domestic purposes where space is lacking and high power output is not required. Two drive units are used in a sealed enclosure-a 4 in bass driver with a doped Bextrene cone and a $\frac{3}{4}$ in unit. Both units are selected to meet a BBC standard.

WW 361

Cross-over frequency is 3 kHz . Response extends from 60 Hz to $20 \mathrm{kHz} \pm 4 \mathrm{~dB}$. Price is around $£ 60$. Rogers Developments (Electronics) Ltd, 4 Barmeston Road, London SE6 3BN.

WW361 for further details

New series of speakers

The Quasar loudspeakers QS1, QS2 and QS3 comprise the new range from Eagle International. These should be followed by the introduction of a deck, cartridge, amplifiers and tuners under the Quasar name. Minimization of distortion has included consideration in the reduction of Doppler distortion in conjunction with J. Moir \& Associates.

The main specifications of the largest and highest performance loudspeaker (QS1) in the Quasar range are:

Dimensions	$11 \frac{1}{2} \times 15 \frac{1}{2} \times 26 \mathrm{in}$
Frequency response	45 Hz to 20 kHz
	$\pm 3 \mathrm{~dB}$
Impedance	80 hm
Nominal power	
capacity	50 W continuous
Drive units	$12 \mathrm{in}, 4 \mathrm{in}, 2 \mathrm{in}$ and
	1.5 in
Harmonic distortion	$100 \mathrm{~Hz} 0.7 \%, 1 \mathrm{kHz}$
	0.16% both for
	90 dB at 1 m
Doppler distortion	0.007% for 90 dB
	at 1 m, with input at
	100 Hz and 3 kHz
	simultaneously
Price (inc. VAT)	$£ 92.40$

Quasar Division Precision Centre, Heather Park Drive, Wembley, Middx HA0 1 SU. WW362 for further details

Denon amplifiers

Denon-brard hi-fi products, now imported from Nippon Columbia by Johnson's of Hendon, include two integrated ampli-

fiers, a stereo tuner, pick-up arm and directdrive turntable (see separate item). Amplifier PMA350Z has an output power of 28 watts per channel at 0.1% distortion and power bandwidth 10 Hz to 40 kHz (-1 dB , 0.1% distortion). Type PMA500 delivers 40 watts per channel at 0.1% distortion and power bandwidth of 5 Hz to 75 kHz (-3 dB). Intermodulation distortion is quoted as 0.06% at -3 dB of rated output.

PMA350Z preamplifier section has a sensitivity of 2 mV (pickup inputs) and a maximum input level of 100 mV at 1 kHz . Signal-to-noise ratio is 62 dB (pick-up inputs) with input short-circuited. Harmonic distortion is 0.08% at rated output. Filters at 9 kHZ and 40 Hz have slopes of 12 dB per octave. PMA-500 preamplifier has an harmonic distortion of 0.05% rated output and a $65 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio (pickup inputs). Both have muting, tone, dubbing, tape monitor and loudness controls. In addition, the 500 has a microphone input mixing facility. RIAA equalization accuracy is $\pm 0.5 \mathrm{~dB}$. Johnson's of Hendon Ltd, Radlett Road, Colney Street, St Albans, Herts.
WW363 for further details

SQ/RM decoder-amplifier

The new Trio KSQ-400 is a quadraphonic decoder with rear-channel amplifier and costing about £70. Phase shift circuitry, having a phase-frequency response $90 \pm$ 10° from 25 Hz to 18 kHz , is switchable to provide SQ and RM decoding. Amplifier gives 15 watts (1 kHz) in both channels for 4 -ohm loads with 0.6% harmonic distortion at rated output and 0.2% at -3 dB . B. H. Morris \& Co, Trio House, The Hyde, London NW9 6JP.
WW364 for further details

British electronic turntable

As well as a restyled version of the RD11 turntable, Ariston Audio Ltd will be marketing a two-speed electronically-governed turntable with variable speed control. With wow and flutter of 0.04% weighted r.m.s., it will cost around $£ 136$. The RD11 itself has a redesigned main bearing and the makers claim an unmeasurable rumble and hum level. The 24 -pole synchronous motor drives the $9 \frac{1}{2}$ lb table through a non-stretch belt. Ariston Audio Ltd, P.O. Box 13, Irvine, Ayrshire KA 12 8JL.
WW365 for further details

ERA amplifier

Models 5770 and 5750 are new French stereo amplifiers with output powers of 40 and 24 watts per channel respectively. A power bandwidth of 30 Hz to 30 kHz is quoted for the ST50 together with harmonic distortion at maximum output of 0.5%. (Full details of the 5770 were not available at the time of going to press.) A stereo tuner will be marketed shortly. Current products
mainly centre around a 48 -pole synchronous motor fitted to three turntables each with different pickup arms, but all with a quoted 0.04% wow and flutter (pk-pk) and a rumble level of -73 dB DIN weighted. De Banks Electronics Ltd, Market House, High Street, Tring, Herts.
WW366 for further details

Professional cassette recorder

Although Jonathan Fallowfield did not have a stand at either Sonex or the High Fidelity Exhibition at Heathrow, two of their latest imports were in evidence on several stands at Sonex. These were the new and remarkable cassette machines from the Nakamichi stable. The model 1000 is intended for professional use at the very professional price of $£ 695$ inc. VAT. It would seem that an effort has been made, in designing this recorder, to include just about every feature of advanced design ever seen on other recorders, plus one or two new ones.
The deck mechanics are solenoid operated and contain memory rewind facilities and dual capstan drive. Three magnetic heads are provided, thus optimizing the requirements of record and replay gap. The replay head is wrapped around one of the pinch wheels and fits in the same cassette entry. It is therefore extremely small and requires precise alignment and high-quality cassettes to ensure reliable performance. The electronics incorporate both Dolby B and the Philips d.n.l. together with a record amplifier limiter.

Finally, as if that were not enough, there is a unique arrangement for checking the azimuth of the record head. Using a blank cassette, a test tone is recorded from an internal oscillator and the replayed signal sampled by a phase sensitive switch. Adjustment of the head is by a knurled knob and is continued until two indicator lamps flicker alternately. Jonathan Fallowfield Ltd, Strathcona Road, North Wembley London HA9 8QL.
WW367 for further details

Capacitor cartridge

As well as showing a new CD-4 demodulator and four-channel amplifier, Toshiba announced the UK marketing of the electret capacitor cartridge, type C401S. By relying on the variation of capacitance between cantilever and two fixed electrodes, attachment of electrodes or magnets to the cantilever is avoided. Relying merely on such a small capacitor size and variation would result in poor signal-to-noise ratio so Toshiba have used an electret electrode with a charge equivalent to several hundred volts, together with builtin i.c. preamplifiers. Power for the i.c. is provided by an additional lead in the screened pickup wire. The cartridge provides 40 mV (at $5 \mathrm{~cm} / \mathrm{s}$ and 1 kHz) which is then equalized by a special amplifier, SZ-200, giving an output level of 200 mV and a distortion of 0.1% at ten times rated
output. Amplitude response extends to 35 kHz and is virtually flat over the whole audible range, and Toshiba claim an excellent phase response that is especially appropriate for playing matrixed records. Price of cartridge and equalizer is $\mathfrak{£} 70$.

A version of the cartridge that extends amplitude response to 50 kHz is fitted in the SR-510 direct-drive turntable and pickup arm. It includes the Toshiba "extend" stylus. Wow and flutter of this deck is given as 0.03% with a signal-to-noise ratio of 60 dB . Toshiba (UK) Ltd, Great South West Rd, Feltham, Middx.

WW368 for further details

Turntable with servo control

An interesting method of detecting platter speed is employed by the Denon DP 3700F direct drive turntable. The inner rim of the platter has a magnetic coating on which 1,000 pulses are recorded at accurately determined intervals. As the turntable rotates, the pulse signals are detected by a magnetic head. Comparison of the signal voltage thus generated with a reference voltage indicates any speed error. Any difference is instantly detected to produce a differential voltage which regulates the motor servo control. Wow and flutter is less than 0.03% (weighted r.m.s.) and signal-to-noise ratio is better than 60 dB . Final speed is attained in half a revolution. Johnsons of Hendon Ltd, Radlett Road, Colney Street, St Albans, Herts AL2 2EA. WW369 for further details

Amplifier with overload indicator

An amplifier with two unusual facilities was introduced at the show by Cambridge Audio. The P60 provides separate preamplifier volume and power amplifier level controls to cope with varying levels of input so that the capabilities of the power amplifier can be used to the full. Coupled with this is an l.e.d. overload indicator which doubles as a power on-off light. The l.e.d. flashes whenever either of the two power amplifiers is overloaded.

Main specifications for the P 60 are: Power output 30W continuous into 8Ω at 1 kHz
Amplitude response 25 Hz to 25 kHz $\pm 0.5 \mathrm{~dB}$
Harmonic distortion less than 0.5% at 1 kHz
Intermod. distortion less than 0.1% at any level $f, 60 \mathrm{~Hz}$, $f_{2} 7 \mathrm{kHz}$, amplitude ratio 4:1)
Signal-to-noise ratios better than 60 dB pickup, 70 dB tuner (unaffected by volume setting)
Input overioad capacity Dimensions Price (inc. VAT)

50 dB

 $16 \frac{1}{2} \times 9 \frac{5}{8} \times 2$ in Cambridge Audio Ltd, The River Mill, St Ives, Huntingdon PE17 4EP.WW370 for further details

Audio TestSet

foramplifiers, mixers taperecorders

Checks... frequency response signal/noise ratio distortion
cross-talk
wow \& flutter drift erasure sensitivity output power gain . . in one compact unit.

Auxiliary Unit provides extra facilities for Studio testing.

Send for leaflet RTS2

Ferrograph Company Limited Auriema House 442 Bath Road Cippenham Slough Buckinghamshire SL1 6BB Telephone: Burnham (062 86) 62511 Telex: 847297

FERROGRAPH

A member of the Wilmot Breeden group WW-097 FOR FURTHER DETAILS

Sinclair Project 80
 exciting

Stereo decoder
Project 80 Active Filter Unit (AFU)

only $\frac{3^{\prime}{ }^{\prime \prime}}{}$ deep $\times \mathbf{2}^{\prime \prime}$ high

Living with hi-fi takes on new meaning with Sinclair Project 80 . The electronics of these revolutionary new modules are all contained rithin elegantly designed matching cases no more than three-quarters of an inch deep. They are designed for mounting on any appropriate flat surface by means of 6BA bolts extending from the rear of each module and which pass through suitably drilled holes. Connections are taken away out of sight in a similar manner. The possibilities opened up by Project 80 are endless - superb hi-fi systems can be installed in ways hitherto only dreamed about and never before made practical. No more cutting out and shaping to put modules in position. A few holes drilled with the aid of templates supplied and the job is done. Now you need never again be faced with problems of keeping the hi-fi from clashing with carefully thought-out furnishing schemes. (That will surely please wives!) Slider controls have been introduced in place of knobs and all modules in the range incorporate new up-dated circuitry with emphasis on performance standards and built-in protection against overload and shorting. The aim was to re-think modular construction completely-to make it infinitely more versatile, even simpler and more reliable - the result - Project 80 - another triumph for Sinclair, and the most exciting construction modules ever.

the slimmest,most elegant hi.fi modules ever made

System	The Units to use	Units cost
Simple battery record player	2.40	$\begin{aligned} & \mathbf{£ 5 4 5} \\ & +54 \mathrm{p} \text { V.A.T } \end{aligned}$
Mans powered record player	Z.40, PZ.5	$\begin{aligned} & £ 1043 \\ & + \text { £ } 1.04 \vee \mathrm{~A} . \end{aligned}$
30W. RMS continuous sine wave stereo amp.	$\begin{aligned} & 2 \times Z .40 \mathrm{~s}, \text { Stereo } \\ & 80 ; \text { PZ. } 6 \end{aligned}$	$\begin{aligned} & \mathbf{£ 3 0 . 8 3} \\ & +£ 308 \vee A . T \end{aligned}$
50W (8 Ω) RMS continuous sine wave de luxe stereo amp	$\begin{aligned} & 2 \times Z .60 \mathrm{~s}, \text { Stereo } \\ & 80 ; \text { PZ.8 } \end{aligned}$	$\begin{aligned} & £ 33.83 \\ & +£ 3.38 \text { V.A.T. } \end{aligned}$
Indoor P.A.	Z.60, PZ.8	$\begin{aligned} & £ 14.93 \\ & -\quad £ 1.49 \text { V.A.T. } \\ & \hline \end{aligned}$

[^2]Mount Project 80 on a bookshelf, a loudspeaker, a lampshade base a false wall with two 0.16 loudspeakers... almost anywhere.

new thinking in modular hi.fi

Stereo 80 pre-amplifier

Each channel has its own separate tone and volume controls operated by sliders, enabling ideal environmental matching to be obtained. A virtual earth input stage forms part of the up-dated circuitry that ensures the finest possible quality from all signal sources. Generous overload margins are allowed on all inputs. Clear instructions with template are supplied. TECHNICAL SPECIFICATIONS
Size $-260 \times 50 \times 20 \mathrm{~mm}$ ($10 \frac{1}{4} \times 2 \times 3$ 3ns)
Finish - Black with white indicators and transparent sliders
Inputs - Magnetic pick-up 3mV RIAA corrected: Ceramic pick-up 300mV Radıo 300 mV : Tape 30 mV
Signal/noise ratio - 60 de
Frequency range -20 Hz to $15 \mathrm{KHz} \pm 1 \mathrm{~dB}: 10 \mathrm{~Hz}$ to $25 \mathrm{KHz} \pm 3 \mathrm{~dB}$
power requirements - 20 to 35 volts
Outputs $-100 \mathrm{mV}+A B$ monitoring for tape
Controls - Press button for tape radio and P.U. Sliders for volume.
bass (+12 dB to -14 dB at 100 Hz) treble (+11 dB to -12 dB at 10 KHz)

$$
\text { R.R.P. } £ 11.95+£ 1 \cdot 19
$$

Project 80 FM tuner

and stereo decoder
 Aic beacon.
Making the Project 80 F.M. tuner and decoder available separately gives a wider choice of systems and saves money where stereo reception may not be required. The tuner is a triumph of electronic design and assures excellent performance. The decoder gives a 40 dB channel separation with 150 mV output per channel. Both units may be used with other than Project 80 systems.
TECHNICAL SPECIFICATIONS OF TUNER
Size $-85 \times 50 \times 20 \mathrm{~mm}$ ($3 \frac{1}{2} \times 2 \times \frac{3}{3} \mathrm{ins}$)
Tuning range -87.5 to 108 MHz
Detector - I.C. balanced coincidence for good A.M. repection
One I.C. equal to 26 transistors
One I.C. equal to 26 transistors . modulation
4 pole ceramic filter in I.F. section
Aerial impedance - 75Ω or 240-300 Ω
Sensitivity -4 microvolts for 30 dB quieting
Output -300 mV for 30% modulation
Power requirements -23 to 33 volts
в.f.p. $£ 11.95$
f1-19 DECODER
 One 19 transistor I.C.

Guarantee

If within 3 months of purchasing any product direct from us, you are dissatisfied with it, your money will be refunded on production of receip of payment. Many Sinclair appointed stockists also offer this guarantee Should any defect arise in normal use, we will service it without charge For damage arising from mis-use a charge (typically $£ 1 \cdot 00$) will be made

Sinclair Radionics Ltd. London Road, St. Ives, Huntingdon PE17 4HJ Telephone St. Ives (0480) 64646
Z.40 \& Z. 60 power amplifiers totally short-circuit proof

Intended for use in Project 80 installations, these modules readily adapt to an even wider range of applications. Both incorporate built-in protection against short circuiting and risk of damage from mis-use is greatly reduced.
2.40 TECHNICAL SPECIFICATIONS

Size $-55 \times 80 \times 20 \mathrm{~mm}\left(2 t \times 3 t \times \frac{3}{4} \mathrm{~ns}\right) 9$ transistors
Input sensitivity -100 mV
Output - 15 watts RMS contınuous into $8 \Omega(35 \mathrm{v})$
Frequency response $-10 \mathrm{~Hz}-100 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Signal/noise ratio-64dB
Distortion - at 10 watts into 8Ω less than 0.1%
Power requirements - 12 to 35 volts
Z.60 TECHNICAL SPECIFICATIONS

Size $-55 \times 98 \times 15 \mathrm{~mm}\left(2 t \times 3 \frac{3}{4} \times \frac{3 i n s}{4}\right) 12$ transistors Input sensitivity $-100-250 \mathrm{mV}$
Output - 25 watts RMS continuous into $8 \Omega(45 \mathrm{~V})$.
Distortion - typically 0.03\%
Frequency response -10 Hz to more than $200 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Signal/noise ratio - better than 70dB
Buit-in protection against transient overload and short circuiting
Load impedance - $4 \Omega \mathrm{~min}$: max. safe on open circuit
Z. 40 R.R.P. $£ 5.45+0.54$ V.A.T.: $\mathbf{Z .} \mathbf{6 0}$ R.R.F. $£ 6.95+0.69$ P V.A.T.

Project 80 active filter unit

Makes a highly desirable part of any worthwhile system where inputs may be from record. radio or tape. As with Stereo 80. separate controls applied to each channel make it easter to btain ideal stereo balance.
TECHNICAL SPECIFICATIONS
Size $-108 \times 50 \times 20 \mathrm{~mm}$ ($4 \frac{1}{4} \times 2 \times \frac{3}{4} \mathrm{~ms}$)
Voltage gain - minus 0.2 dB

requency response -36 Hz to 22 KHz controls
HF cut off (scratch) -22 KHz to $5 \cdot 5 \mathrm{KHz}, 12 \mathrm{~dB}$ /oct. slope
L.F. cut off (rumble) -28 dB at $20 \mathrm{~Hz} .9 \mathrm{~dB} / 0 \mathrm{ct}$. slope

- For Scratch and rumble control
f.f.p. $£ 6.95^{+0.69}$
- Transistorised active circuitry

Power supply units

PZ. 8

Stabilised. Re-entrant current limiting makes damage from overload or ing makes damage from overload o even direct shorting impossible Normal working voltage (adjust able) 45 V .
R.R.P. $£ 7.98+0.79 p$ V.A.T Without mains transformer
PZ. 5 30V unstabilised
R.R.P. $£ 4.98+0.49$ p V.A.T

To SINCLAIR RADIONICS LTD. ST. IVES, HUNTINGDON PE17 4HJ
Please send post paid \qquad
for which I enclose Cash/Cheque for $£$ \qquad including V.A.T.

Name
Address

HART ELECTRONICS

E.. Twent

AUDIO KITS

Thie latest addition to our ranoe will be in production lafe March '74. It is desloned to offer tuning. We have taken great calre to look after the constructorg' polnt of view and there are no coits to wind, no RF circuits to wire and no alligment is required, in tact the whole unit can beady bulto and alligned morking in an evening as there are only 3 transistors, one ic and wo
reorising the active components. We have abandoned the concopt of having a tuner as laroge as the amplififer and this new unit has a trontal size of only
 Costof tuner chassig (no case) Is E22 for mono, ezs 4 t for steree.
wooden case to At tuner and amplifier will be offered shorly.
BAILEY/BURROWSJOUILTER PRE AMP.
The best englneered kit avaliable of the comblned best of three pre-amp designs. This is the kignal processing the controis, switeches or inputs. A complete and sophisticated 5 input

BAILEY \% WATT POWER AMPS.
at only ε : 14 po pow amplifier, you can't better its periormance or the quality of the kit and
METALWORK, FRONT PLATES, WOODEN CASES
These are the things that convert your hobby into cost saving professional equipment Complete metalwork for Stereo Balley 30 's, preamp and power supply $£ 54$. Metal cover $£ 1-6{ }^{\circ}$. Wooden case £4-85. Front plate $£ 1-37$.
DIGITAL MULTIMETER
Our first venture Into instruments and by the way it's selling It won't be long before we're offering others. It is of course unlque as It measures DC and AC volts, resistance, capacitance,
perlod, time and frequency. Not bad for cats's worth of parts. STUART TAPE CIRCUITS
Our printed circulte and components offer the easy way to convert any sultable quality deck Into a very high quality Stereo Tape unit. Input and output levels sult sailey pre amp.
Total cosi varies but around $£ 35$ is all you need. W. Total cosi varies but around $£ \mathbf{\varepsilon s}$ is all you need. We can offer tape heads as well if you want All above kits have fibreglasa PCB's. Prices exclude VAT but P\&P is included.
Further information is in our lists FREE if you send us a θ in. x A In. S A.E.

REPRINTS

Post tree, no VAT.
BAILEY 30W. TEp.
STUART TAPE RECORDER
3 articles under one cover 30 p.
PRE AMP clrcult and aseembly notes 95 p.

Penylan Mill, Oswestry, Salop Personal callers are always welcome, but please note we are closed all day Saturday

INHIIIPLS

MONEY BACK IF NOT SATISFIED Free fabulous NEW catalogue. Send SA.F

EI BIG¹/4 panel clip \&RED LED 28p. GREEN \&clip $59 p$ Dinitita Iispley LED $1 / 3$-.spr.ont. .11 .69
 IC DIVITRL CLDCHCHIP.
Texas etc with 4 displaysfl2. ${ }^{\text {displays }}$. chip
Mostek date $\&$ alarmchips with 6 displays

hitt:All parts \& case. National chip. 4 dig it $£$

with integrated circuits

TGIT 4469
710 35p 723 , to99 5514 pin 27p 748 33p 70921 p fimer 79 p 7 N 414 l £ 703 rf if 28 pmc mp 10 \& led $£ 2.76 \mathrm{mc} 1339 \mathrm{£I} \cdot 20$ TAD 100 \& if $£ 2$
1AMP+ REGULATOR 7805,5 (\&7-20)V.also $12 \& 15 \mathrm{~V} £ 1-49$ AUDIO AMPS:mfc4000 50p; ; \& 2W£1/19; $3 \mathrm{~W} £ 1 \cdot 29 ; 6 \mathrm{~W} .$.
 $749269 \mathrm{P} 7412149 \mathrm{P} .8 \mathrm{all} 190 \mathrm{C3P}$ NEW 16pin counter/driver $90 / 47 \mathrm{E}_{2} .25$. NEW 16pin counter/driver $90 / 47 £ 2 \cdot 25$ DALO p.cb.PEN 69pp ${ }_{\text {DIL }}$ SOCKETS Professional $/$ gold P. Pins hiorlo Profile $8,14,16$ Pin 13p
$2 M 3055$ 33p.four \&1. BC107, BC108, BC109 ill 7pea

 2N2926 Oy 7p 2N 3053 15p 2N3702/3/4/5/6/7/8/9/10/11 all 9p ea
N $3904 / 6$ I4p HEATSINKS $5 f /$ TO5 18f/T018 5p. TO3:4YL 29p TV3 14 p

TITMTVG FLUORESCENT LIGHTS,8W.13"12VOLT £2.59
GladuIDIIGS P.O. BOX 29,BRACKNELL,BERKS.

T.F.995A/1 F.M/A.M. SIGNAL GENERAcrystal calibrator. Output range: 100 mV to crystal calibrator. Output range: $1 \mu \mathrm{~V}$. F.M. or A.M. also simultaneous f.m.
o m . and a.m. 235
T.F.801D/1/S A.M. SIGNAL GENERATOR. reg. range: 10 MHz to 485 MHz . 8 uilt-in
crystal calibrator. Internal and external sine a.m. External pulse modulation. Calibration Accuracy: Using crystal calibrator, within
$\pm 0.2 \%$ over entire frequency range. R.F.
output level $0.1 \mu V$ to IV source e.m.f. 2499 .

OA. $10944 / 3$ H.F.SPECTRUM ANALYSER with L.F. extension unit type TM6448.

Freq. range: 100 Hz to 30 MHz . Measures rela| tive amplitudes up to 60 dB . Spectrum width |
| :--- |
| $0-30 \mathrm{KHz}$. Sweep duration: 0.1 Ctr |
| 3 K | 30 sec. and manual. Full spec. on request. E695.

T.F.801 B/3/S A.M. SIGNAL GENERATOR.
Freq. range: $: 12$ MHZ to 485 MHz in five bands. Freq. range: 12 MHz to 485 MHz in five bands.
Buitt-in cristal calibrator. Full spec. on Built-in crystal
request. $£ 220$.

TF. 937 F.M./A.M. SIGMAL GENERATOR.
Freg. range 85 KHz to 30 MHz . The carrier Freq. range 85 KHz to 30 MHz . The carrier
freq. can be standardized against a bult-in freq. can be standardized against a buit-1n
dual freq. crystal calibrator, which is complete
with miniature loudspeaker as an aural beat with miniarure loudspeaker as an aural beat
detector. $\mathbf{E 8 7}$. detector. $£ 87$.

OA. 1094 A S H.F.SPECTRUM ANALYSER. Freq. range: 3 MHz to 30 MHz in nine steps. $0.1,0.3 .1,3.10,30$ secs. and manual. Full spec.
on reouest. e445.

Tilf ROBAND TRANSISTORIZED $0-50 \mathrm{~V}$ at Mains input 110 V or 230 V . output cut-out. £49.

JOHN CRICHTON
Electronic Equipmerre 558 Kingston Road Reynes Park. London. S. W. 20

AVO MULTIMETER Model $7 \times$ (Panclimatic).
AVO MULTIMETER Model $8 \times$ (Panclimatic).
TF. 1066A F.M./A.M. SIGNAL GENERATOR. Freq. range: 10 MHz to 470 MHz . Carrier generated directly at output frequency. Freq.
stability: 0.0025%. Stepped as well as continuously variable. Internal modulation at 1 and 5 KHz . 2325 .
 $170 \mathrm{kc} / \mathrm{s}$. $\pm 1 \%$. $\pm 1 \mathrm{c/s}$ at ambient temp.
$0^{\circ} \mathrm{C}-45^{\circ} \mathrm{C}$ Distortion Meter: Freg. range: $20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. distortion range: 10%. 30%. approx. 500 mV to 130 V basic. range. 250 mV
to 1300 V extreme limits. Full spec . on to 1300 V ex
request.

AVO MODEL 3 VALVE TESTER. Enables comprehensive characteristics to be plotted or measures valves on a simple good/bad
basis. $\mathbf{E 5 5}$.
AVO CT 160 VALVE TESTER but in portable valise form. $\mathbf{\text { E85 }}$.
Viawing by appointment only.

Inland V.A.T. add 10\%. Pricea include Cleringe extra for oversees orders.

1
1
1
1
6
3
2
2
2

MODEL C1092 MULTIMETER Features 5.000 opv jowel moverien and a good solection of ra
functions. Edgwise ohms adjustment.
Rampos; $-20-3 / 15 / 150 /$
$30011,200 \mathrm{AC}(2,500$

 | current. $0-30004$ |
| :--- | :--- |
| sol |
| 0 |

300 mA . Rosistercice. 10 to 16 dB . Complete with battery, 1 est 1eads and
data booklet. Size: $120073 \times 28 \mathrm{~mm}$. OUR PRICE £3.75 P\&P 35p

MODEL TH 12
 selector, $0 / 0.25 / 2$ switch $50 / 150 / 1000 \mathrm{~V}$ OC. $0 / 10 /$ $50 / 250 / 1000 \mathrm{l}$ $50 / 250 / 1000 \mathrm{~V}$ AC. of $50 / 3 \mathrm{k} / 30 \mathrm{k} / 300 \mathrm{k} / 3$ Megohms. -20 to +50 olB OUR PRICE £5.95
 \section*{2

 }

HIOKI Model 720X VDM

 A wersatile, ing instrument.20,000 opv, 0 . 5/25/100/500/ $1000 \mathrm{VOC.0/10}$
50 C 501100 V AC. 0 - $500 \mathrm{~A} /$
$250 \mathrm{~mA} .0-20 \mathrm{k}$ OUR PRICE £ 5.97
P8.P 200

600 mA .
-20 to 10 Meg -20to, 46d8.
OUR PRICE 6.97 PEP 15p.

U4323 MULTIMETER

20,000 opv. Simple
unit with audiolf
oscillator. Suitable oscillator. Suitable
for general receiver tuning. Ranges:
$0.52 .50 / 10 / 50 / 250$
$500 / 10001$ $2.5 / 10 / 15 / 250 / 500 / 1000 \mathrm{~V}$ AC. 0.05 $0.5 / 5 / 50 / 500 \mathrm{~mA} \mathrm{DC}$. Resistance: $5 i$
 Bottery opprated. Size: $160 \times 97 \times$
40 mm . Supplied in carrying case complote with test teacts. OUR PRICE $£ 7.00$

6/30/60/300/800/
1200

$60 / \mu \mathrm{A}$ $30 \mathrm{~mA} / 300 \mathrm{~mA}$. $2 \mathrm{~K} / 200 \mathrm{~K} /$
 OUR PRICE $£ 7.50$ MDDEL TE300
 DUR PRICE $£ 7.50$
 4324 MULTIMETER High sonsitivity, over-
load protect tod.
200000
 $0.6 / 1.2712 / 30$
$60 / 12 / 60 / 1200 \mathrm{~V}$
$\mathrm{DC} .3 / 6 / 15 / 60 / 150 /$ DC $3 / 6 / 15 / 60 / 150 /$
$300 / 60 / 900 \mathrm{AC}$.
Current: $0.06 / \mathrm{AC}$. Current: $0.0 .6 / 600.6 /$

 $167 \times 98 \times 63 \mathrm{mmm}$. Supplied comp
1 lete with test leack, spare diode and iete
instructions.
OUR PRICE $\mathbf{£ 8 . 0 0}$ P\&P 200

TMK MDDEL TW50K

46 rangos, mirror
5 cale $50 \% / V$ OC
$50 \mathrm{k} N \mathrm{AC}$.
DC Volts: $0.125 / 10$,
$0.25 / 1.25 / 2.5 / 5 / 10 /$ $1.5 / 3 / 5 / 10 / 2$
$125 / 250 / 500$ 1000.0 C current 25/500 A/2.5/5/525/ 10A. Resistence: $10 \mathrm{k} / 100 \mathrm{k} / \mathrm{M} \mathrm{Mog}$
10 M OUR PRICE $£ 8.50 \quad$ P\&P 17 p U435 MULTIMETER FY\% 20,0000pv. Overload
frotected. Ranges

$75 \mathrm{mV} / 2.5 / 10 / 25$: 100/250/500/1000V | DC. $25 / 100 / 25 / 100 /$ |
| :--- |
| $250 / 500 / 1000 \mathrm{~V}$ |

 $25 / 100 \mathrm{~mA} A \cdot 5 / 2.5 \mathrm{~A}$
$\mathrm{DC} .5 / 25 / 100 \mathrm{~mA} / \mathrm{A}$ DC. $5 / 25 / 100 \mathrm{~mA} /$
0.52 .5 AC Resist.
ance ance: $0,3 / 3 / 301300 \mathrm{k}$ ohms. comelete with leads, crocodile
pliod

clipe and | clips and steol carrying case. |
| :--- |
| OUR PRICE $£ 8.75$ |
| P\&P 20p | U91 Clamp V0LT AMMETER For measuring $A C$ volt.

age mand current without gge and current without
breaking circuit. Ranges: breaking circuit. Rarges:
$300 / 600 \mathrm{AC}$. Current: 10/25/100/250/500A.
Accuracy 4% Size
283 Accuracy 4\%.Size $283 \times 1 \times$
94×36 mm. Complete with cares in
and
and OUR PRICE $£ 10.50$

U4312 MULTIMETER
extremaly sturdy general electrical 450. $0.311 .577 .5 / 30 /$ 601/501300/600/ $900 \mathrm{VC} \& 75 \mathrm{mV}$.
$0 / 0.3 / 1.577 .5 / 30 /$ $60,150,500 / 6001$
$900 \mathrm{VAC} .0 / 300 \mathrm{uA}$ 1.5/6/15/150/60/ OC. 0/1.5/6/15i
60/150/600.mA/ $1.5 / 6 \mathrm{AC}$. $0 / 200 / 3 \mathrm{k} / 30 \mathrm{k}$ ohms. OC accuracy 1%. AC 1.5% Knife edge pointer, mirror scale. Complete with
sturdy metal carrying ca:e, leads and instructions.
OUR PRICE £9.75 P\&P 25p

MODEL 500 30,000 opv with
overload protet tion. Mirror scale
$0 / 0.5 / 2.5 / 30 / 25$ 100/250/500/ 0/2.5/10/25/100/ AC. 0 2500 $50100 / 5 / 50 /$

0/60k/6 mag/60 megohms
DUR PRICE E $13.95 \quad$ Carr. paid
HIOKI 750X VDLT.DHM MILLIAMETER
43 r
$1.5 /$
300
$0-3$
3 mikn/30 Resistence 12/30/60/120/300/
$600 / 120010 \mathrm{c}$ Knife edge pointer.
86 mm . mirror scale. plete with leack.

$$
\begin{aligned}
& 300 \\
& 000 \\
& 300 \\
& \text { Cur } \\
& 1.5 \\
& 0-1 \\
& 000
\end{aligned}
$$

 acy $\pm 3 \%$ OC $\pm 4 \%$ AC. Sensitivity:
50,000 opy OC, 5,000 opv AC. 4 inch meter. Builr in protection. Size: $57 \times$ DUR PRICE £11.95 P\&F 40p

HIOKI MODEL 700X

$1.5 / 3 / 66 / 12 / 30 / 60 / 150 /$
$305 / 600 / 1200 \mathrm{AC}$

$2 \mathrm{k} / 200 \mathrm{k} / 2 \mathrm{M} / 20 \mathrm{MOhms}$. -20 10 +63 dB .
OUR PRICE $£ 14.95$

U4317 MULTIMETER High sensitivity
instrument for field
E.2.2 and laboratory work
Knite Rampers/10/25/50/100/250/500/1000
 1/5/10/50/250 M A/1/5A DC. ${ }^{2} 0.25 /$ $0.5 / 1 / 5 / 10 / 55 / 250 \mathrm{~mA} / 1 / 5 A \mathrm{AC}$. Re istance: $0.5 / 10 / 100 / 200$ ohms $/ 1 / 3 /$
$30 / 300 \mathrm{k}$ ohms. Dacibels: -5 to +10 dB 30/300k ohms. Decibels: -5 to +10018
Eattery operated. Size: $210 \times 115 \times$
$\times 10$ Battery, operated, Size: $210 \times 115 \times$
90mm. Supplied in carry ing case com.

DUR PRICE £15.00 P\&P 20p

MODEL U4311 Sub-standard

 Multi-range Volt-Ammeter Sensitivity 330Onms/Volt AC and DC Accuracy 0.5\% Scale length: | 165 mm |
| :--- |
| $0 / 300 / 750 \mathrm{u}$ |
| | $1.3 / 3 / 7.5 / 515 /$

$30 / 75 / 150 / 300$
3 $750 \mathrm{mAl1} .5 / 31$ 7.5A DC. $013 /$ 150/300/750mA/ 1.5/3/7.5A AC
 Fin
P\&F $40 p$
 $30 / 75 / 150 / 3 / 750 \mathrm{~m} / 1.5 / 3 / 7.5 / 15 /$ AC. Automatic cut out device Supp lied complete with test leads, manual DUR PRICE $£ 49.00$

P\&P50p
TE4O HIGH SENSITIVITY AC VOLTMETER

OUR PRICE $£ 17.50$
TE65 VALVE VOLTMETER
 OC current:- 10/250uA/2.5/25/250 to +62 dB . Operates from $2 \times 1.5 \mathrm{~V}$
batteries. Size: $180 \times 134 \times 79 \mathrm{~mm}$. OUR PRICE E15.00 P\&P 40p
MODEL AS. 1000 VOM 100,000 opv.
Mirror scale. Mirror scale.
Built-in meter protection. 0/3 12/60/120/300/ 600/1200V OC.
$0 / 6 / 30 / 120 / 300$ / 600 V AC. $0 / 10 \mu \mathrm{~A}$ $6 / 60 / 300 \mathrm{~mA} /$ $12 \mathrm{Amp} .0 / 2 \mathrm{~K} / \mathrm{M}$
$200 \mathrm{~K} / 2 \mathrm{M} / 200 \mathrm{M}$ $200 \mathrm{~K} / 2 \mathrm{M} / 200 \mathrm{M}$
$\mathrm{ohm} .-20$ to +17 OUR PRICE $£ 17.50$

£ 21.00 P\&P 30 TE ranges. OC VO
$1.5-1500 \mathrm{AC}$
volts $1.5-1500 \mathrm{~V}$ volts 1.5-1500V Resistance up to
1000 Megohms $100 / 240 \mathrm{~V}$ AC operation. Complete with probe
and instructions. OUR PRICE £17.50 P\&P 30p RF £2.12, HV £2.50

MODEL AF. 105 VON

Overload protected. Mirror scale.
 LB4 TRANSISTOR

 Ranges:-0/.06/.3$3 / 30 / 120 / 600 /$ $3 / 30 / 120 / 600 / 3$
1200 V OC. $0 / 3$ 1200 V OC. $0 / 3$
$12 / 60 / 300 / 11200$
VAC. $0 / 6 \mathrm{HA}$ $1.2 \mathrm{~mA} / 120 \mathrm{~mA} /$
$600 \mathrm{~mA} / 12 \mathrm{ADC}$ $0 / 12 \mathrm{AAC},-20$ to
$+63 \mathrm{~dB} .0 / 2 \mathrm{k} / 200 \mathrm{k} /$ 2 Meg/200 Mogohm OUR PRICE E 22.50 P\& P $30 p$
 TESTER
Tests PNP or NPN
ransistirs. Audio
indication. Operates
on two 1.5
batteries. Complete
with instructions etc. With instruction
£4.50 P\&P 20p

U4341 Multimeter $\&$ Transistor Tester 27 ranpes. $16,700 \mathrm{opv}$. Ranges: $0.3 / 1.5 / 6 \%$
$30 / 60 / 150 / 300 / 900 \mathrm{~V}$ DC. $1.5 / 7.5 / 30 / 150 /$ Current: 0.06/0.8/ $6 / 60 / 600 \mathrm{~mA}$ DC.
$0.3 / 3 / 30 / 300 \mathrm{~mA}$ Resi/25/21/80/2001
$0.6 / 2 / 6 / 201$ Battery opersted Supplien ${ }^{0}$ Mohms. with probes, loads and sted carrying cass, Size: $115 \times 215 \times 90 \mathrm{~mm}$.
OUR PRICE $£ 10.50 \quad$ P\& 20p

KAMDDEN HMG500
 -20 to +50 dB . Transistor tester measures Alpha, Beta and ICO. Complete with instructions, DUR PRICE E15.95 P\&P 25p

CI5 PULSE OSCILLOSCOPE For display of pulsed forms in electronic
circuits. VERT. AMP circuits. VERT. AMP.
Bandwidth: 10 MHz . Sensitivity at 100 kH
VRMS/mm: $0.1-25$; HOR. AMP. Band.
width: 500 K . width: 500 kHz .
Sensitivity ay 100 kHz
 Sensitivity ay 100 kHz
VRMS/mm: $0.3-25$ Preset triggered sweep is s. $1-3000$ usec. Free running 20-200 kHz in nine ranges. Calitrator pips.
$220 \times 360 \times 430 \mathrm{~mm}$. $115-230 \mathrm{VAC}$ OUR PRICE £39.00 Carr. paid

RUSSIAN CI16 Oouble Beam OSCILLOSCOPE 5 MHz pass band.
Separate Y 1 and amplifiers Rectangular $5^{\prime \prime} \times 4^{\prime \prime}$ CRT. Calibrated triggered
sweep from 0.2 usec . sweeg from 0.2 sec
to 100 milli-sec $/ \mathrm{cm}$. base running time
$50 \mathrm{~Hz}-1 \mathrm{MHz}$. Calibrator and amplitude Calibrator Supplied complete with all accessories OUR PRICE £87.00 Carr. paid

MDDEL TE15
GRID DIP METER
Transistorised. Oper
ates as Grid Dip.
Oscillator, Absorb
ion Wave Meter and
Oscillating Detector
Frequency range
$440 \mathrm{kHz}-280 \mathrm{MHz}$
in six coils. 500uA
poeration. Size:
$180 \times 80 \times 40 \mathrm{~mm}$

UR PRICE £ 19.95

SWR METER Model SWR3
Handy SWR meter for ransmitter latenna sied
ment, with built-in field strength meter. Accuracy 5%, Impodence 52^{2} Indic
ator 100 A DC. Full scale 5 section collapsib antenna. Size $145 \times 50 \times$ antenn.
60 mm.
OUR PRICE £4.25

AT201 Decade ATTENUATOR
 Frequency range 0- 200 kHz . Attenuator
 $0-111 \mathrm{~dB}, 0.1 \mathrm{~dB}$ steps. Impedence 600 ohms. Inpui gower max 50 $90 \times 55 \mathrm{~mm}$
 OUR PRICE £12.50
 P\&P 37p

Also see following pages

Aup Excluog ant

Also see previous page

TRANSISTDRISED L.C.R. A.C BR/8 MEASURING BRIDGE

A new portable exceilent range and
occuracy at low accuracy at low
cost. Resistance
ohm-11.1 megohm $\pm 1 \%$ Inductance: 6 ranges: 1 microhenry- 111
henries $\pm 2 \%$ Capacity: 6 ranges $10 \mathrm{pf}-1110 \mathrm{mfd} \pm 2 \%$ Turns Ratio: 6 ranges: 1:1/1000-1:11100 $\pm 1 \%$ Bridge Voltage at $1,000 \mathrm{cps}$. Operated from 9-valt battery. 100 microamp meter indication. Size $7 z^{\prime \prime} \times$ $5^{-} \times 2^{\prime \prime}$ OUR PRICE $£ 25.00$ P\&\& 25p.

TE16A TRANSISTORISED SIGNAL GENERATOR 5 ranges, 400
to 30 MHz . A
inexpensive inexpensive
instrument for the handy-man. battery. Wide easy to read
scale. 800 kHz
with instructions and leads.
OUR PRICE $£ 8.97 \quad$ P\&P 25p

MDDEL TE20 RF SIGNAL GENERATOR
Six bends. 120kHz-
260MHz. Dual output
RF terminals. Separate variable audio output.

楊
 OUR PRICE $£ 11.97$
PS200 Requlated POWER SUPPLY UNIT Solid state. Variable
ouput 5 - 20 V DC
up to 2 Amp. Inde.
pendent meters pendent meters to
monitor yolt monitor volitage an
current. Ou tput $220 / 240 \mathrm{~V}$ AC. Sizz: $190 \times 136 \times$
98 mm
OUR PRICE £19.95 POWER RHEOSTATS High quality ceramic
construction. Wind. construction,
ings embedded in
vitreous enamel vitreous enamel.
Heavy duty ber Heavy duty brush
wiper. Continuous $\underset{ }{\text { rating. Wide range }}$ available ex-stock. Singte hole fixing. . Y" "diam
Bulk quantities available.
25 WATT 10/25/50/100/250/500/ $1000 / 2500$ Onms $£ 1.15$ P\&P 10 p 50 WATT 10/25/50/100/250/500
f1. 62 P\&P 10p
100 WATT 1/5/10/25/50/100/250
£2.34 P\& 15 p p
AUTO TRANSFORMERS $0 / 115 / 250 \mathrm{~V}$. Step up or step down.
Fully shrouded.
80 WATTS $\quad £ 2.75$ P\&P 18 p
150 WATTS $£ 3.50$ P\&P 18p
300 WATTS $\quad £ 4.50$ P\&P23p
500 WATTS \quad £6.95 P\&P 33p 1000 WATTS $\quad £ 9.50 \quad$ P\&P 38p 1500 WATTS $£ 12.50$ P\&P43p 5000 WATTS $£ 44.95$ P\&P $£ 1$ CP110 CHASSIS PUNCH SET

for calibration. 220/240V a
Size $140 \mathrm{~mm} \times 215 \mathrm{~mm} \times 170 \mathrm{~mm}$
OUR PRICE $£ 17.50$ P\&P30p
ARF $300 \mathrm{AF} / \mathrm{RF}$ SIGNAL GENERATOR All transistoriso portbole. AF sine
wave 18 Bzz to 220 kHz . AF square
wave 18 Hz to 100 k Hz. Output Square Sine wave 10 V . P.P AF 100 kHz to
200 MHz . Output 1V maximum.
$220 / 240 \mathrm{~A}$.
with instructions and OUR PRICE $£ 29.95$ P\&PP 50p

MODEL MG 100 SINE SQUARE - W) WAVE AUDIO Range 19 -
$220.000 \mathrm{H}_{2}$ Weve 19-100,000 Hz Square Wave Output Sine or Square wave 10v. P. to Size $180 \times 90 \times 90 \mathrm{~mm}$. Operation. DUR PRICE £ 19.95

KYFON 100 mW
OUR PRICE £24.95 per pair 302 Two Channel 300 mW OUR PRICE £52.50 per pair P1003 Three Channel 1 Watt OUR PRICE $£ 71.25$ per pair P\&tP 50p per pair
NB. Licence required for use in UK

Built-in driver unit. Imperdence
16 ohms. Power 16 ohms. Power
rating 10 W . rating 10W.
Response $380-$
7000 Hz Size 7000 Hz . Size
app. $6^{\prime \prime} \times 6^{\prime \prime}$. app. $6^{\prime \prime} \times 6^{\prime \prime}$.
Weather and
OUR PRICE £4.97

P\& 4 P 30p

TRIO 9R59DS RECEIVER

Four bands covering 550 kHz to 30 spread on 10. 15, 20, 40, and 80 mtrs. 8 valve plus 7 diode circuit, 4 to 88
CW, ANL, variable BFO SMeter and
separate band spread dial. If freq-
uency 445 kHz , audio output $1 / 2$ watt Variable RF and AF gain controls.
$115 / 250 \mathrm{~V}$.
Our Price $£ 42.50$ сАА品
BELTEK W5400 CAR TRANSCEIVER

Solid state mobile transceiver for 12 volt DC neg. Transmits and receives on any 12 of 28 channels between
144 and 146 MHz . Power output 10 W
and iW swithat. and IW switchable. Controls: On/off//
volume, squelch and channel select volume, squelch
or. Internal $3^{\prime \prime}$
and channel select-
speaker. Complete with dy namic mic. PTT switch, three
sets of crystals for $144.48,144.6$ and sets of crystals for 144.48, 144.6 and
145 MHz , mounting bracket and ins145 MHz , mounting bracket and ins-
tructions. Size: $150 \times 70 \times 220 \mathrm{~mm}$. OUR PRICE E75.00 P\&P 50p HITACHI FLUORESCENT NI LANTERN L1901 A portable battery
operated lanten
ideal for home.
motoring. camping
otc. Approx. 10
tall. Provides
builliant light from 9
1.5 b batteries (not
supplied).
OUR PRICE $\mathrm{f7.90}$
PRP 250 . P\&P 25 p.

DT55G DIGITAL CLOCK
 Fastures 24

 settíng. onloff.
 and aut
 alarm 'sleep' switch. Illuminated rotary dial with hours, minutes and sec- onds. Automatically turns off radio Onds. Automatically turns off radio, ing will turn on again when required. $240 V$ AC operation. Switch rating $\mathbf{2 4 0 V}$ AC operation. Switch rating $\mathbf{2 5 0 V}-3$ Amp.
 OUR PRICE 55.95

KE630 3 Station INTERCOM

Master and two sub-stations. Can be used on desk or wall mounted. Comp DUR PRICE £5.25 P\&P 50p

LHO2S STEREO HEADPHONES

 Light werght head phanes with paadear piecos. $4 / 16$
$20-20.000 \mathrm{H}$ Complete with. lead and plug. OUR PRICE $£ 1.97$

TE1018 Deluxe Mono High Impedence Headse Sensitive magnetic headset with soft ear pads. Impedence 2,600
ohms $(600$ ohms DC$)$. Frequency resp
$200-4,000 \mathrm{~Hz}$. OUR PRICE $£ 2.25$

DH02S STEREO HEADPHONES and excellent
performance
combined. Adjus
able head band. 1 mpedence 8 oh
$20-12,000 \mathrm{~Hz}$. Complete with
lead and plug OUR PRICE £2.50

TE1035 Stere HEADPHONES

 Low cost with exc:ellent response. Foam rubber earcuss. Adjust.
able hearthand
8 mpedence. Frequency response $25 \mathrm{~Hz}-18 \mathrm{kHzy}$,
Complete with Complete with cable OUR PRICE £2.60

BH001 HEADSET and Boom Microphone Moving con
for
teachinuage teaching,
communi-
cations etc. c Headphone impedence 16 ohms. Mic-
rophone impedence 200 ohms. OUR PRICE £5.95 P\&P30p

OUR PRICE $£ 3.62$

HIGH GUALITY
CONSTRUCTION KITS
WE ARE APPOINTED STOCKIBTS AT
ALL BRIANCHES

All kits are complete with compre hiensive asoy to follow instructions and
covered by full guar coverd by tol ouaranteo. Post and Packing 15p per kit.

AF 20 Mono amptifier........

AF25 Mixer...................
AF30 Mono proamplitir AF80 0.5 W mic. amplifie AF305 Intercom...........
AF310 Mono amplifier AF310 Mono amplífier............ AT5 Automatic light contro AT30 Photo cell switch unit AT50 400W triac light dimmer/speed control ATimmer/speed controd...... AT65 3 channel light control... $£ 14.85$ GP304 Circuit board.......... for use with $2 \times A$ x A GP312 Circuit board. GU330 Tramolo unit HF61 Diode detector
HF65 FM transmitter HF75 FM receiver...
HF310 FM tuner...........
HF325 Deluxe FM tuner HF325 Deluxe FM tuner.....i
HF330 Decoder (HF310/325)
HF380 HF 395 broadband aerial ainp. LF380 Ouadraphonic device.. M191 VUU Meter
M192 Stereo balance mete M1302 Transistor tester..........
NT10 Stabilised power sipply 100 mA gV NT300 Stabitised p. supply.... $£ 12.51$
 Amateur Electronics by Josty-K the professional book for the amateur
-covers the subject from basic prin. - covers the subject from to advanced electronic techniq. UEs. Complete
OUR PRICE £3.30 (No VAT) P\&:P 25p plus VAT AE 1100 mW outpu AE3 Diode receive
AE4 Flasher
AE5 Astable multi-vibrator.....
AE7 RC generator
AEG Treble filter
AE9 Treble filter.
SPECIAL BARGAIIV !! STEREOSOUND SPEAKERS Matched pair of
stereo bookshelf speakers. Deluxe
teak vereered finish. Size: $368 \times 229 \times$ $190 \mathrm{~mm} .8 \times$ ohms. 8 watts RM. watts peak. Din lead.

OUR PRICE £12.95

SPECIAL
BARGAIN!
FERGUSON
3406 HI-FI SPEAKERS
High quality 2 way speaker systems
25 Watts. $4-8$ ohms. $40 \mathrm{~Hz}-18 \mathrm{kHz}$ Size: $560 \times 340 \times 255 \mathrm{~min}$ approx. Wood grain finish with black fronts. OUR PRICE £26.95 PR. P\& P £ 1

FM TUNER CHASSIS

Model A1018
FM TUNER
6 transistor hig
quality unit-
3IF stages and
3 IF stages and
double tuned

For use with most amplifiers. Covers
$88-108 \mathrm{MH}$ z Power by $9 V$ OUR PRICE \& 13.50 P\&P 30p

ALI PR/CES

 EXCLUDE VAT
SEW CLEAR PLASTIC PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC. Over $\mathbf{2 0 0}$ ranges in stock-other ranges to order. Ouantity discounts available. Send for fully illustrated brochure.

CLEAR PLASTIC
Size: $100 \times 80 \mathrm{~mm}$


```
    ACTIVE FILTER
Pack
Pack Fibreglass PCB (accomo-
        dates ail filters for one
        channel)
    1.05
        Set of pre-sets, solid
        lantalum capacitors, 2%
        molystyrene capacitors 4.20
    3 Set of semiconductors 2.65
2 off each pack required for stereo
system
SUITABLE ALSO FOR FEEDING
ANY OF OUR HIGH POWER
l
```

ACTIVE FILTER
1 Fibreglass PCB (accomodates all filters for one 1.05
channel) Set of pre-sets, solid metal capaciors, 2% polystyrene capacitors $\quad \mathbf{4 . 2 0}$ 2 off each pack required for stereo system
suitable Also for feeding DESIGNS

POWER SUPPLY

FOR 2OW/CHANNEL STEREO SYSTEM

Pack
1 Fibreglass PCB 50
2 Set of rectifiers, zener diode, capacitors, fuses, fuse holders 2 .
3 Toroidal transformer $\quad \mathbf{4 . 9 5}$
enquiries WELCOME
For quality sets of speakers

V.A.T. Please add 10\%* to all U.K. orders

(*or at current rate if changed)
U.K. ORDERS-Post free (mail order only) OVERSEAS—Postage at cost +50 p special packing
POWERTRAN
SEE FOLLOWING PAGE

Hi Fi News Linsley-Hood 75W Amplifier Mk 111

Full circuit description in handbook

```
1 Fibre glass printed circuit board for
    power amp.
2 Set of resistors, capacitors, pre-sets for
        power amp.
3 Set of semiconductors for power amp.
        (highest voltage version).
    Pair of 2 drilled. finned heat sinks.
5 Fibre glass printed circuit board for
        pre-amp.
6 Set of low noise resistors, capacitors.
        pre-sets for pre-amp.
7 Set of low noise, high gain semicon-
        ductors for pre-amp.
```

Price	$\begin{gathered} \text { Pack } \\ 8 \end{gathered}$	Set of potentiometers (including mains
f0.85		switch).
£1.70	9	Set of 4 push button switches, rotary mode switch.
	10	Toroidal transformer complete with
$\begin{aligned} & \text { £6.50 } \\ & \text { £ } 0.80 \end{aligned}$		magnetic screen/housing primary: 0-117-234 V, secondaries: 33-0-33 V 24-0-24 V.
f1.30	11	Fibre glass printed circuit board for power supply.
£2.70	12	Set of resistors, capacitors, secondary fuses. semiconductors for power
£2.40		supply.

Toroidal $T 20+20 \star$ with toroidal transformer
Developed from the famous Practical Wireless TEXAN.
$\left.\begin{array}{cccr}\text { Price } & \text { Pack } & \text { Price } \\ & \mathbf{1 3} & \text { Set of miscellaneous parts including DiN } \\ \text { skts. mains input skt, fuse holder. }\end{array}\right)$ $\mathbf{f 6 2 . 4 0}$ post fret u....

FREE

TEAK CASE and HANDBOOK with full kits

KIT PRICE only 42.25 POST FREE (U.K.)

Pack	Price	Pack	
1. Set of all low noise resistors	£0.80	7	Set of all semiconductors
2 Set of all small capacitors	f1.50	8	Special Toroidal Transformer
3 Set of 4 power supply capacitors	£1.40	9	Fibre Glass P.C. Panel
4 Set of miscellaneous parts including DiN sockets. fuses. fuse holders. control knobs etc.	f1.90	10 11	Complete chassis work. hardware and brackets Preformed cable/leads
5 Set of slide and pushbutton switches	£0.90	12	Handbook
6 Set of potentiometers and selector switch	£1.45	13	Teak Cabinet

SEMICONDUCTORS

2N699	0.25	2N4058	0.12	BC214L	0.14
2N1613	0.20	2N4062	0.11	BCY72	0.13
2N1711	0.25	2N4302	0.60	BD529	0.85
2N2926G	0.10	2N5087	0.42	BD530	0.85
2N3053	0.15	2N5210	0.54	BDY56	1.60
2N3055	0.45	2N5457	0.45	BF257	0.40
2N3442	1.20	2N5459	0.45	BF259	0.47
2N3702	0.11	2N5830	0.30	BFR39	0.25
2N3703	0.10	40361	0.40	BFR79	0.25
2N3704	0.10	40362	0.45	BFY50	0.20
2N3705	0.10	BC107	0.10	BFY51	0.20
2N3706	0.09	BC108	0.10	BFY52	0.20
2N3707	0.10	BC109	0.10	MJ481	1.20
2N3708	0.07	BC125	0.15	MJ491	1.30
2N3709	0.09	BC126	0.15	MJE521	0.60
2N3710	0.09	BC182K	0.10	MPSA05	0.30
2N3711	0.09	BC212K	0.12	MPSA12	0.55
2N3819	0.23	BC182L	0.10	MPSA14	0.35
2N3904	0.17	BC1 841	0.11	MPSA55	0.35
2N3906	0.20	BC2 12L	0.12	MPSA65	0.35

YATES ELECTRONICS

（FLITWICK）LTD． DEPT．WW ELSTOW STORAGEDEPOT

KEMPSTON HARDWICK BEDFORD

C．W．O PLEASE．POST AND PACKING PLEASE ADD 10 p TO ORDERS UNDER E2．

Catalogue which concains data sheets for most of the components listed will be sent free on request． 10p stamp appreciated．

CALLERS WELCOME
PLEASE ADD 10\％V．A．T．

RESISTORS

WW Iskra high scability carbon film－very low noise－capless construction．$\frac{1}{2} W$ Mullard CR25 carbon film－very small body size $7.5 \times 2.5 \mathrm{~mm}$ ．$\frac{1}{2} \mathrm{~W} 2 \%$ ELECTROSIL TR5 | $\begin{array}{lll}\text { Power } \\ \text { watts }\end{array}$ | Tolerance | Range | $\begin{array}{c}\text { Values } \\ \text { available }\end{array}$ |
| :--- | :--- | :--- | :--- |

watts	Tolerance	Range	available	1－99	$100+$
\pm	5\％	$4.7 \Omega-2.2 \mathrm{M} \Omega$	E24	Ip	$0.9 p$
家	10\％	3．3M $2-10 \mathrm{M} \Omega$	El2	Ip	0．9p
t	2\％	$10 \Omega-1 M \Omega$	E24	3．5p	3p
t	10\％	$1 \Omega-3.9 \Omega$	E12	Ip	0．9p
$\frac{1}{1}$	5\％	$4 \cdot 7 \Omega-1 M \Omega$	E12	Ip	0．9p
4	10\％	$1 \Omega-10 \Omega$	E12	${ }^{6 p}$	5．5p

Quantity price applies for any selection．Ignore fractions on total order．
5．5p

DEVELOPMENT PACK

0.5 watt 5% Iskra resistors 5 off each value 4.7Ω to IM Ω ．
E12 pack 325 resistors $£ 2.40$ ．E24 pack 650 resistors $\mathbb{\& 4 . 7 0}$ ．

POTENTIOMETERS
Carbon track $5 k \Omega$ to $2 M \Omega$ ，log or linear（ $\log \mathrm{t} W$ ，lin $\mathrm{t} W$ ）．
Single，12p．Dual gang（stereo），40p．Single D．P．switch，24p．
SKELETON PRESET POTENTIOMETERS
Linear：100，250，500 2 and decades to $5 \mathrm{M} \Omega$ ．Horizontal or vertical P．C．mounting 0.1 matrix）

Sub－miniature 0．1W，5p each．Miniature $0.25 \mathrm{~W}, 7 \mathrm{p}$ each．

TRANSISTORS									
AC107	15p	AFI26	20p	BFII5	25p	OC42	12p	2N3707	12p
ACl26	12p	AFI39	32p	BFI73	20p	OC44	12 p	2N3708	10 p
ACl27	15p	AFI78	32p	BFI77	28p	OC45	12p	2N3709	$11 p$
ACl28	15p	AFI80	40p	BFI78	32p	OC70	12p	2N3710	$11 p$
ACI31	12p	AFI81	40p	BFI79	32p	OC71	12p	2N3711	$11 p$
ACI32	12p	BCIO7	12p	BFIB0	32 p	OC72	12p	2N3819	32p
ACI76	15p	BC108	12p	BFI8I	32p	OC81	12p	2N4062	12p
AC187	22p	BC109	12p	BF194	14p	OC82D	12p	2N4286	20p
AC188	22p	BC147	12p	BF195	14p	2N2646	60p	2N4289	20p
ADI40	50p	BC148	12p	BF197	15p	2N2904	20p	40360	35p
ADI49	45p	BC149	12p	BF200	32p	2N2926	10p	40361	35p
AD161	33p	BC157	14p	BF750	20p	2N3054	58p	40362	40p
AD162	36p	BC158	14 p	BF751	20p	2N3055	60p	40408	40p
AFII4	20p	BCI59	14p	BF752	20p	2N3702	13p	ZTX108	15p
AFI 15	20p	BC187	22P	BU105	225p	2N3703	12p	ZTX300	15p
AFII6	20p	BDI31	75p	OC26	45p	2N3704	13p	ZTX302	20p
AFII7	20p	8D132	75p	OC28	50p	2N3705	12p	ZTX500	15p
AFII8	38p	BDI33	75p	OC35	50p	2N3706	IIp	ZTX503	20p

ZENER DIODES
$400 \mathrm{~mW} 5 \%$ 3．3V to 30 V ，12p．

WIRE WOUND POTS

$3 \mathrm{~W}, 10,25,50 \Omega$ and decades to $100 \mathrm{k} \Omega, 45 \mathrm{p}$ ．

DIODES

RECTIFIER

 BY127IN400
IN4002
in4002
IN4004
IN4006
N4007
BRUSHED ALUMINIUM PANELS
$12 \mathrm{in} \times 6 \mathrm{in}, 25 \mathrm{p}$ ； $12 \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}, 10 \mathrm{p}$ ；9in $\times 2 \mathrm{in}, 7 \mathrm{p}$

SLIDER POTENTIOMETERS

$86 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}$ ，length of track 59 mm DUAL GANG，IOK + IOK etc．log．or lin．60p． KNOB FOR ABOVE，12p．
FRONT PANEL，65p．
18 Gauge panel $12 \mathrm{in} \times 4 \mathrm{in}$ with slots cut for use with slider pots．Grey or matt black finish complete with fixings for 4 pors．

THERMISTORS

 VA $1055 S$VA 10665 VA 1077 R 53 $15 p$
$15 p$
$15 p$

THYRISTORS

2N5060 50V 0．8A
2N5064 200V 0．8A 106 F 50 V 4 A 106 D 400 V 4 A

MULLARD POLYESTER CAPACITORS C2\％SERIES
$400 V: 0.001 \mu F, 0.0015 \mu F, 0.0022 \mu F, 0.0033 \mu F, 0.0047 \mu F, 21 p .0 .0068 \mu F, 0.01 \mu F, 0.015 \mu F$ ， $0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{~F}, 6 \mathrm{p} .0 .22 \mu \mathrm{~F}, 7 \frac{1}{2} \mathrm{p} .0 .33 \mu \mathrm{~F}, \mathrm{I} \mathrm{p}$ ． $0.47 \mu \mathrm{~F}, 13 \mathrm{p}$
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}$
41 p． $0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p}, 0.47 \mu \mathrm{~F}, 033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F}, 34 \mathrm{p} .0 .1 \mathrm{~S} \mu \mathrm{~F}$, $\frac{1}{2}$ p． 0.22μ F， 5 p． $0.33 \mu F, 6 p .0 .47 \mu F, 7 \frac{1}{2} p .0 .68 \mu F$ ，IIp．I． $0 \mu \mathrm{FF}$ ，13p．
MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P．C．mounting： $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p}$ ． $0.1 \mu F, 4$ p． $0.15 \mu F, 0.22 \mu F, 5 p .0 .33 \mu F, 6 \frac{1}{2}$ p． $0.47 \mu F, 8 \frac{1}{2}$ p． $0.68 \mu F, 11$ p． $1.0 \mu F$ ， $13 p$ p． $1.5 \mu F, 20$ p．2．2 μ F，24p．
MYLAR FILM CAPACITORS 100 V $2 \pm \mathrm{p} .0 .04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p}$ ．

CERAMIC DISC CAPACITORS 100 pF to 10,000 pF，2p each．

ELECTROLYTIC CAPACITORS－MULLARD OI5／6／7

（ $\mu \mathrm{F} / \mathrm{v}$ ） $1 / 63,1.5 / 63,2-2 / 63,3.3 / 63,4.7 / 63,6.8 / 40,6 \cdot 8 / 63,10 / 25,10 / 63,15 / 16,15 / 40,15 / 63$ ， $22 / 10,22 / 25,22 / 63,33 / 6 \cdot 3,33,16,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,68 / 6.3,68 / 16,100 / 4$ ， $100 / 10,100 / 25,150 / 6 \cdot 3,150 / 16,220 / 4,220 / 6 \cdot 3,220 / 16,330 / 4,6 p .47 / 63,100 / 40$ ， $150 / 25$ ， $220 / 25,330 / 10,470 / 6 \cdot 3,7 \mathrm{p} .68 / 63,150 / 40,220 / 40,330 / 16,1000 / 4,10 \mathrm{p} .470 / 10,680 / 6 \cdot 3$ ， 11 p． $100 / 63,150 / 63,220 / 63,1000 / 10,12 \mathrm{p} .470 / 25,680 / 16,1500 / 6 \cdot 3,13 \mathrm{p} .470 / 40,680 / 25$ ， $1000 / 16,1500 / 10,2200 / 6 \cdot 3,18 \mathrm{p} .330 / 63,680 / 40,1000 / 25,1500 / 16,2200 / 10,3300 / 6 \cdot 3$ ， 4700／4， 21 p ．

SOLID TANTALUM BEAD CAPACITORS 12p $\begin{array}{ll}0.1 \mu \mathrm{~F} & 35 \mathrm{~V} \\ 0.22 \mu \mathrm{~F} & 35 \mathrm{~V}\end{array}$ $0.22 \mu \mathrm{~F} 35 \mathrm{~V}$ $0.47 \mu F$
$1.0 \mu F$
$\begin{array}{ll}2.2 \mu \mathrm{~F} & 35 \mathrm{~V} \\ 4.7 \mu \mathrm{~F} & 35 \mathrm{~V}\end{array}$
$22 \mu \mathrm{~F}$ 16V $33 \mu \mathrm{~F} 10 \mathrm{~V}$ $1.0 \mu \mathrm{~F} 35 \mathrm{~V}$
$4.7 \mu \mathrm{~F} \quad 35 \mathrm{~V}$
$10 \mu \mathrm{~F} 25 \mathrm{~V}$ $\begin{array}{ll}47 \mu \mathrm{~F} & 6.3 \mathrm{~V} \\ 00 \mu \mathrm{~F} & 3 \mathrm{~V}\end{array}$

VEROBOARD

EROBOARD	0.	
$2 \frac{1}{1} \times 3$ 3	22p	16p
$2 \frac{1}{2} \times 5$	24p	24p
$3{ }^{3} \times 3$ 3	24p	24p
37×5	27p	27p
$17 \times 2 \frac{1}{1}$	75p	571p
17×38	100 p	78p
17×5（plain）	－	82p
17×37（plain）	二	60 p
$17 \times 2 \frac{1}{2}$（plain）	二	42p
$2 \frac{1}{2} \times 5$（plain）	－	12p
21×37（plain）	$\bar{\square}$	$11 p$
Pin insertion tool	52p	52p
Spot face cutter	42p	42p
Pkt． 50 pins	20p	20p

JACK PLUGS AND SOCKETS Standard screened 28p 2.5 mm insulated 12 p Standard insulated $18 \mathrm{p} \quad 3.5 \mathrm{~mm}$ insulated Stereo screened $\quad 40 \mathrm{p} \quad 3.5 \mathrm{~mm}$ screened $\begin{array}{lll}\text { Standard socket } & 20 \mathrm{p} & 2.5 \mathrm{~mm} \text { socket } \\ \text { Stereo socket } & 30 \mathrm{p} & 3.5 \mathrm{~mm} \text { socket }\end{array}$
D．I．N．PLUGS AND SOCKETS 2 pin， 3 pin， 5 pin $180^{\circ}, 5$ pin $240^{\circ}, 6$ pin， 7 pin Plue 12 p．Socket 8p．
4 way screened cable， 25 p／metre．
6 way sereened cable， $30 \mathrm{p} /$／metre．
BATTERY ELIMINATOR 41．50

\section*{LARGE（CAN）ELECTROLYTICS
 | $1600 \mu \mathrm{~F}$ | 64 V | 74 p | $2500 \mu \mathrm{~F}$ | 64 V | 80 P | $4500 \mu \mathrm{~F}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2500 \mu \mathrm{~F}$ | 40 V | 74 p | $2800 \mu \mathrm{~V}$ | 100 V | $\mathrm{E3} .20$ | 450 p |
| $2500 \mu \mathrm{~F}$ | 25 V | fl .68 | | | | | $2500 \mu \mathrm{~F} 50 \mathrm{~V} 5 \mathrm{p} \quad 3200 \mu \mathrm{~F}$ 16V $50 \mathrm{P} \quad 4500 \mu \mathrm{~F} 25 \mathrm{~V}$ \＆1．4} HIGH VOLTAGE TUBULAR CAPACITORS－I，000 VOLT $0.01 \mu \mathrm{~F}$ 10p $0.047 \mu \mathrm{~F}$ 13p $\quad 0.22 \mu \mathrm{~F} \quad 20 \mathrm{p}$ POLYSTYRENE CAPACITORS 160 V 2 $\frac{1}{2} \%$

10pF to 1，000pF E12 Series Values，4p each．
SMOKE AND COMBUSTIBLE GAS DETECTOR－GDI
The GDI is the world＇s first semiconductor that can convert a concentration of gas or smoke into an electrical signal．The sensor decreases its electrical resistance when it absorbs deoxidizing or combustible gases such as hydrogen，carbon monoxide， This decrease is usually large enough to be utilized without amplification．Full details and circuits are supplied with each detector． Detector GDI， $\mathbf{C 2}$ ．Kit of parts for detectors including GDI and P．C．board but excluding case．Mains operated detector $\mathbf{6 5} \mathbf{2 0}$ ． 12 or 24V battery operated audible alarm $\mathbb{£ 7 . 3 0}$ ． As above for PP9 battery， $\mathbf{6} \cdot \mathbf{4 0}$ ．
PRINTED BOARD MARKER
Draw the planned circuit on to a copper laminate board with the P．C．Pen，allow to dry and immerse the board in the etchant．On removal the circuit remains in high relief．
 PHONE AMPLIFIER which enables you to take down lang telephone measages or converse without holding the handset．Just moisten the suction pad and stick it to one side of the telephone．A useful office aid．On／Off switch．Volume control．Operates on one $9 v$ battery．Size 3in．$\times 4$ in．Ready to operate．Complete with battery． P \＆P 27p．

This NEW，versatile De Luxe 4－ 8tation Transintorised Interoom （1 Mall mounting can solve your com－ municstion problems instantly．Effec－ tive range 300 ft ．Call／talk／listen from Mastor to 8ubs and Bubs to Manter． With Selector switch．Ideally suitable for office，shop，home or surgery． Adaptable for Mains．Complete with three 66ft．connecting wires and accessories On／Off switch volume
control．P．\＆P． 47 p ．
WEST LONDON DIRECT SUPPLIES 169 KENSIMGTON HIGH STREET，LONDON W8 6SN
TEKTRONIX 53: Oscllloscope with T \& CA plug-ins f2e5.
MAINS STABILISERS
 Carriage $\mathbf{~} 1 \cdot 50$
AMERICAN SWEEP GENERATOR IYP 52. Covers from 5 to 100 MHZ . Has bult in or in one DB steps, plus Calibrated Marker
Generator covering 5 to 100 MHZ continuous. Generator Covering 5 to 100 MHZ continuuus.
Amerlcan Government Contract, so quality American Suppled for 240 V 50 HZ operation wilh olugs and leads. Size $134 \times 9 \mathrm{i} \times 19 \mathrm{in}$. Price
AMERICAN SWEEP GENERATOR TYDE
TRM 315 to 400 MHZ. E300. AMERICAN POWER UNITS STANDARD $22 \times 16 \times$ oin. Supplied in original transit $22 \times 16 \times 1$
case ces.
AMERICAN AM GENERATOR type 497.
4 to 400 MHZ. Supplled with leads, etc., for 240 V 50 MZ operation E 35 .
PERSISTANCE TUBES
Ideal for SSTV: educational purposes.
Type 120p7A. Connectiona, voltages etc. Brand New Boxed $\mathbf{8 7}$.50 each including carriage and VAT.

```
12" LONG
12" LONG
SPECIAL 40 MHZ SCOPE SOLARTRON CD1212 ONLY \&50. Mas to be a snag. There is-no plug-in \(Y\) amps avaliable.
TB-100 nanosees per cm . to 5 secs. per cm . in
24 ctillated ranges. 20 nanosecs per cm . 24 callitrated renges. 20 nanosecs per cm . with timas 5 expansion. \(5^{\prime}\) flat faced tube.
Trace locator. \(0-2\) microsec. signal delay. Trace locator. 0-2 microsec. signal deley.
Bult in calitrator. \({ }^{\text {K }}\) KHZ suare wav. 200
micro volts to 100 volts in 18 calibrated renges. micro volts to 100 volts in 18 calibrated fenges
Tube sensitivity 3 VICM MAIN FRAM YAMP boostit this to better than 200 mV per cm . It
40 MHZ . 240 V . 50 HZ input. Complete with full manual including plug-tn circuitis. Come
and esee one working or Carrlage E 1.50 .
SOLARTRON CD 523 Single Beam Oscilloscope 3 db at 10 MHZ ; 1 mV max sensitivity
DC
coupled down to
1 DC coupled down to 1 vol, An. fiat taced microsecs. per cm . plus times 5 expansion
```


Solartron
Solartron
oscope
delay; crystal callbratori 4^{4} flat faced tube
oscope
delay; crystal callbratori 4^{4} flat faced tube
In good working condition. Carr. $£ 1.50$.
In good working condition. Carr. $£ 1.50$.

CRYSTALS

COLOUR 4.43 MHz £1.25 ea. P. \& P. 10 p .

Reduction for quantity.

MARCONI TF 1 GSM- $\rightarrow / 40$ KHZ Sine Wave must go 87.25 .
MARCONI TF ERB. AM SIGNAL GENERATOR. 12
condition E 传.
MARCONI TF 938 (CT4). Absorption Wattmeter 10 mW to 6 W Watts. Input impedance 2.5 ohms to 20 K ohms. Freq. response fiat
2 K
20 KHZ . Calibrated in volts and dbs. 5 in . at 20 KHZ . Calibrated in volts and dbs.
m rror backed mater $£ 7.50$ ea. P. \& P. 75 p . MARCONI VVM TFIOMIA E22-50.
MARCON! TF 422 C . Measures $A C$ 100MV to 150 V 20 HZ to 15 MHZ . Measures OC 40 MV operation $£ 12$-5e each.
MARCONI TFAEP. Measures 20 MV to 2 V AC. MARCONI TFBL. Measures
50 HZ to 100 MHZ . 10 each.
MARCONI VVM TF 1300 Measurat AC to 300 V . Ohms 50 to 5 Meg Ohm . In fine condition Els each.
SLOPED CASES size $9 \times 7 i n$. with 8 in . slope, $15 i n$. long. In Hammer Grey,
boxed $\mathbf{\text { fi. Packing and postage } 3 7 \mathrm { p }}$.

> E.H.T. TRANSFORMERS, e.g. 5KV at O.125Amps and others. All 240 voits input. GRAND NEW AMERICAN HIGH VOLTAGE CAPACITORRS. O. 15 mld 120 kV working. E20 each. Carriage at cost.

MODERN TELEPHONES type 706. Two tone grey Es. 75 ea. Two-tone green $E 3.75$ ea. Black £2.75 ea. P. \&P. 25 p ea.

Ideal EXTENSION Telephones with standard
GPO type dial, bell and lead coding. Ei 75 ea. P. \& P. 25p.

All telephones complete with bell and dial.
POTENTIOMETERS
COLVERN 3 watt. Brand new, 25; 50k all at 13p ea.
MORGANITE Special Brand new, 2.5; 10;
BERCO 24 Watt, Brand new, 5; 10; 50; 250; atre: 1: $2.5: 10 ; 25 ; 50 \mathrm{~K}$ at 15p ea.
STANDARD 2 meg. log pots. Current type 15p ea.
INSTRUMENT 3 in. Colvern 5 ohm 35p ear:; 50 k and 100 K 50 p ea.
BOURNS TRIMPOT POTENTIOMETERS.
20; 50; $100 ; 200 ; 500$ Ohms 20; 50; 100; 200 ; 500 ohms ${ }^{2}$ 1; $2 ; 2.5 ; 5 ; 10 ;$
25 K at 35 p ea. ALL BRAND NEW.

RELIANCE P.C.S. mounting: ${ }^{270 ;}$; ${ }^{470}$
500 ohms: 10 K at 35 p ea. ALL BRANO NEW . ALMA precision resistors $200 \mathrm{~K}: \quad 400 \mathrm{~K} ; \quad$, 497 K :
 0.1% 20p ea.

CAPACITORS. B and

RELAYS
Vorley VP4 Plastic covers 4 pole c/o. 15 K -
33 p ea. 33p ea.
CARPENTERS polarlsed Single pole c/o 20 and 65 ohm coil as new 37p each.
coil 33 p each, 45 ohm coll 33p each.
TRANSFORMERS. All standard inputs. Gard/Parm/Part. 450-400-0-400-450. 180 MA $2 \times 6.3 \mathrm{v}$. $: 3 \mathrm{ea}$.
Neptune Seriat. Multi 6.3 volts to olve 48 V at
3.5 amps etc. E .5 F Incl. P. \& P .
Large quanlity LT, HT, EHT transformers and
chokes.

Vast quantity of good quality components -NO PASSING TRADE- so we offer 3 LBS. of ELECTRONIC GOODIES for $£ 1$-50 post paid.

COLVERN TEN TURN POTS, ex eq. 100 K at ${ }^{60} \mathrm{p}$ each. Complete with dial Et 5 50 each. ع1 WORTH OF 'UFS'. SIx Brand New capacitors all between $15 V$ and $100 V$. Total capac
CAPACITOR PACK 50 Brand new compo-
nents only sip. P.\&P. 17p
POTS. 10 different values. Brand new. stp. COMPONENT PACK conslating of 5 pots various values. PA sta etc., many high stabs. A A P. 27 p .
value at 50 p per pack. P. \&
DELIVERED TO YOUR DOOR 1 cwt . of Electronic Scrap chassis., boards, etc. No Eeteciro
Ruble
extra.
P.C.B. PACK S\& D. Quantlity 2 sq . tt.-no tiny pleces 50 p plus P \& P. 20 p
FIBRE GLASS as above \&1 plus P. \& P. 20p. 5 CRYSTALS 701090 kHz . Our choice, 25p. P. \& P. 15p.

TRIMMER PACK, 2 Twin $50 / 200$ pl ceramic; 2 Twin 10160 of ceramic; 2 min sprlps with praset $5 / 20$ pf on each; 3 alr spaced preset
$30 / 100$ pf on ceramic base. ALL BRAND 301100 pf on ceramic base.
NEW 25 p the LOT. P. \& P. 10 p .

TEKTRONIX 545B OSCILLOSCOPES

From As New to well used condition. Price from $£ 275$ (Main frame).

TEKTRONIX 502A OSCILLOSCOPES

Brand New. Guaranteed. P.O.A.

ROTARY SWITCH PACK-6 Brand New switches (1 ceramic; $1-4$ pole 2 way etc.), sap. P
FLAT FACED ${ }^{40}$ Twin Beam Tube. Type
CV2193. (Cossor 89D). Green Trace Brand Now. CV2193. (Cossor 89D). Green Trace Brand New
e4 each. P 47 P . cach. C.R.T.'E $5^{\text {n }}$ type CV1385/ACR13. Brand ncw TUBE
TUBE type VCR
shields efp ea.
BASES for CV1395 or VCRI 15p.
GRATICULES. 12 cm . by $14 \mathrm{~cm} . \ln$ High Quality plastic. 15 p each. P. \& P. 5p. PANEL mounting lamp holders. Red or green, Sp ea. MLifiature.
holders-10V $15 M A$

BECKMAN MODEL A. Ten turn po
complete with dial. $100 \mathrm{k} 3 \%$ Tol 0.25% -

ELECTROSTATIC VOLTMETERS from $0-300$ Volts to $0-10 \mathrm{KV}$. S.A.E. with your FIBRE GLAES PRINTEO CIRCUIT
BOARD. Brand new. SIngle tided up to $2 j^{\circ}$ wide $\times 15^{2}$ ip per sq. In. Larger pleces 1 ip per sq. In. Double sided. Any tize ip per sq. in. Postage iop per order.
INTEGRATED CIRCUIT tate cllo by AP Inc. Gold Plated cllp-on. Brand
boxed. ©it ea. P. \& P. 10 p.
DECADE DIAL UP SWITCH-5 DIEIT. Complete with owcutcheon. Black with while

LIGHT EMAITTING DIODES (Red) from Hewloti-Packard. Brand New
Information SD.

SANGO 58 micro amp meter. 2 T" $^{\prime \prime}$ diameter. Ex-brand new radlation equlp. $\mathrm{El} \cdot \mathrm{z}$

METERS. Ennest Tumer. Modal 402. 100 micro amps. BRAND NEW. Lousy scalehence $\mathbf{2} 2.25$ ea. P. \& P. 25p.

VISCONOL EMT CAPACITORE

 $0.25 m$ fd
P. ${ }^{7.5}$ P. 15 p.
OTHER BLOCK PAPER CAPACITORE
AVALA BLE SA. Wi req
PHOTOCELL equivalent OCP 71, 13p ea.
MULLARD OCPTe 1ep each.

HEWLETT PACKARD OSCILLOSCOPES

Type 175 A . Dual $50 \mathrm{MHz} \mathbf{~} \mathbf{2 7 5}$ each.

20HZ to 200 KHZ SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine, 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required, £7.85 each. P \& P 25p. Sine Wave only f5. 85 each. P \& P 25p.

TRANSISTOR INVERTER

12 V to 1.5 KV 2 MA . Size $1 \frac{1}{2} \times 2 \frac{1}{2} \times 4 \mathrm{in}$. Multi tapped secondary and output level control makes possible large range of voltage and current output combinations without modification. Very flexible unit at $\mathbf{f} 2.95$ each. P. \& P. 25p.

NEW WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GMZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for $10 \cdot 7$ or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only f5.75. P. \& P. 25p.

Unless stated-please add $\mathbf{f 1 - 5 0}$ carriage to all units.

VALUE ADDED TAX not included in prices-please add 10\%

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
Open 9 am to 6.30 pm any day (later by arrangement.)

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

THINKING OF BUYING Srwen Tour MEGGR ?

THEN CONTACT THE APPOINTED U.K. DISTRIBUTORS:-

REPAIR AND

 RECALIBRATION SERVICE AVAILABLE ON AVO MULTIMETERS
farmell instruments limited. samdgeck way, wetherby, yorkshir LS22 4DH TEL: 09373541 TELEX 557294 LOMDOM OFFICE TEL: 01-802 5359

Marshallis

Everything you need is in our New Catalogue available now price 20pence
(100 pages of prices and data) Call in and see us $\mathcal{G}-5.30 \mathrm{Mon}-\mathrm{Fri}$ 9-5.00 Sat

A. Marshall \& Son(London) Limited

42 Cricklewood Broadway London NW2 3HD Telephone 01-452 016
\& 65 Bath Street Glasgow G2 2BX Telephone 041-332 4133

Popular

Semiconductors

New from Siemens
Liquid Crystall Type
with cha. From stock now complete
complete with holder. Ideal for battery operated Quartz clock using two of the latest CMOS ICS from Solid State Scientific. 15\% battery operated, minimum of discrete components required Send SAE for details.
Seven Segment Read Out
Minitron 3015 F
DL707 Litronix $\quad £ 1 \cdot 55$
All data in our new catalogue price 20p
Printed Circuit Marker Pen
OALO 33PC-complete with instructions
No masking! No mess! Red or blue.
Price 87p

Veroboard Largest stockist Copper			Plain	
	$\cdot 15$	1	1	$\cdot 15$
$2.5 \times 3 \%$	20	28		14
2.5×5	30	30	-	14
$3^{3 / 4} \times 3^{31 / 4}$	30	30	-	-
$33 / 4 \times 5$	35	34	-	24
$21 / 2 \times 17$	67.	89	-	49
33/4 $\times 17$	95	1.21	76	69
trade or re	plie			

	. 1.15	Face Cutter 46 p
Pins 36pc	2424	Insertion Toots 64p
200 pcc	8992	
VAT		
Please include 10\% Vat with all orders		
Prices quoted are all exclusive of Vat		
Post and Package		
13p postage and package charges		
Prices correct at July 1974		

Integrated Circuits

Each month we will show a different range of i.c.'s which are kept in stock.

Type	$\begin{gathered} \text { Price } \\ £ \end{gathered}$	Type	$\underset{\text { Price }}{ }$	Type	$\begin{gathered} \text { Price } \\ \mathbf{E} \end{gathered}$	Type	
SN7400	20p	SN7437	35p	SN748	${ }_{61} 120$	SN74154	${ }^{66}$
SN7401	20p	SN7438	$35 p$	SN7484	950	SN74155	
SN7401AN	38p	SN7440	${ }^{28 p}$	SN7485	c1. 5	SN74157 SN7460	${ }_{\text {¢ }}{ }_{\text {¢1. } 1.58}$
SN7402	20p	SN7441	85p	SN7486	45	SN74160	ع1.58
SN7403	20 p	SN7442	P	SN7490	65 p	SN	
,	24.	SN7445	¢1.59	SN7491	${ }^{61.10}$	SN74162	c1.58 c2.01
SN7405		SN7446				SN74165	
N7406	$45 p$	N744	E1.30	7493	85	SN7	c. $2 \cdot 10$
7407	45p	SN744	+1.50	SN74	80 p	SN74174	\&1.80
SN7408	25p	SN7450	20 p	SN7496	£1.00	SN74175	c1.29
SN7409	33p	SN7453	20 p	SN74100	¢2.16	SN74176	¢1.74
N7410	${ }_{250}^{200}$	SN7454	200	SN74107	43p	SN74180	¢1.44
SN7411	${ }_{28 \mathrm{p}}$	SN7460	20p	SN74118	£1.00	SN74181	E5.18
SN7413	50p	SN7470	30p	SN74119	f1.92	N74190	¢1.95
SN7416	45 p	SQ7472	38 p	SN74121	57 p	N74	${ }_{\text {¢ }}^{\text {¢ }}$
N7417	30 p	SN7473	44 p	SN74122	80 p		
SN7420	20 p	SN74	590	SN74141	£100		
	37% 37	SN7476	45	SN7414	£1.44		58
SN7427	45p	SNT480	75p	SN7415	£1.4		3.16
N7430	20p	SN7481	41.25	SN7451	c1. 10		c2. 88
17432	45p	SN7482				N	228

Diodes \& Rectifiers

PIV	50	100	200	400	600	800	1000
1.5	0.08	0.09	0.10	011	0.12	0.15	0.20
3	0.15	0.17	0.20	0.22	0.25	0.27	0.20
10	-.85	0.35	0.40	0.47	0.56	3.	2.18
35	0.84	0.92	1.18	2.15	2.52	3.65	4.20

CATHODE STUD ONLY
IN3766(35 amp 800 pv) : $\mathbf{3} .65 \mathrm{IN} 3768$ (35 amp 1000 pv) £4. 20

IN3766 (35 a			$3 \cdot$	376		000 pv)	
			0.17	BY237	0.12	OA79	8
IN914	0.07	BA142	0.17	BYZ10	0.35 0.32	OA81	O
IN916	0.07	BA144	0.12	BYZ11	0.32	OA85	-
A A119	0.07	BA145	0.17	BYZ12	0.30	OA90	
AA129	0.95	BA154	0.12	OA9	- 10	- A95	0.07
BA 100	0.15	BY100	0.95	oalo	0.25		
BA1	0.25	BY126	0.15	- A47	0.07	- A200	0.10
BA110	0.25	BY127	0.171	OA70	0.07	- A202	0.274
A115	0.07	BY14	1.00	OA73	0.10	- 210	- 27

Bridge Rectifiers

Plastic					Metal-Professional quality			
	$1 \mathrm{~A}$	2A	4 A	6A		15	25	50 A
50	0.24	0.32	0.64	0.62	2.22	2.64	336	12.30
100	0.36	0.37	0.76	0.75	2.24	3.00	3.60	12.36
200	0.30	0.41	0.75	0.80	2.82	3.78	4.32 5	
400	0.36	0.45	0.85	1.10	3.72	4.20	$5 \cdot 40$	$16 \cdot 38$
600	0.40	0.52	0.90	$1 \cdot 25$				

AB Potentiometers-carbon
Rotary type 45
Singles (Log and linear) 15 pence
Single switched (Log and finear) 21 pence Doubles (Log and linear) 38 pence
Stider type 58
Singles (Log and linear) 34 pence
Doubles (Log and linear) 50 pence
Presets (Please specify vertical or horlzontal)
0.1 watt 6 pence
0.2 watt 6 pence
0.3 watt 7 pence

Kellner Construction Kits

We are the sole distributors in U.K.
E83 3 watt Mono Transistor Amplifier Kit
E815 15 watt Hi-Fi Transistor Amplifier Kit (two for stereo) with Tone Control and Pre-Amp
E830 30 wall Mono Hi-Fi Power Amplifier
E850 50 wall Mono Hi-Fl Fower Amplifier
EV5 Distortion Compensator Pre-Ampliffer
AV7 Aerial Amplifer. LW SW. MW, VHF, TiV Channels
UH870 FM Transmitter Kit. $65 \mathrm{mHz}-145 \mathrm{mHz}$. A GPO Licence
is required
MUE7 Short Wave and VHF Receiver Kit. Companion to
MUE7 Short Wave and
UH870 $25 \mathrm{mHz}-150 \mathrm{mHz}$
UH870 $25 \mathrm{mHz}-150 \mathrm{mHz}$
EW18 Electonic Dice K
EW20 Electronic Dice with Sensor Button
Lo1000 P sychedelic Light Control, single channet
NT15 Power Supply 4 to 30 V . 1.5 W
NT85 Professional Shamed Power Supply, 5 to 70V, 2A
aligned $\quad \mathbf{£ 1 5 . 4 6}$
WT9 Transmitter VFo for 2 meters ($14 \mathrm{mHz}-140 \mathrm{mHz}$) Built E15. 46
All prices plus 10% VAT and plus $15 p$ post and packing.
All kits with easy to follow instructions and covered by a full
guarantee.
Full range of Carbon and Wirewound resistors available.

Post a
(Min.)

Lenrys
 U.KS LIRGEST RANGE OF BRANDED NND GUARANTEED
 DEVICES. (Quantity Discounts $10 \% 12+15 \%, 25+20 \% 100+1$ (Any ovie type except where guantity lisceunts shww) Min. Order $\mathbf{1 1 . 0 0}$ please, Pest10p.

INTEGRATED CIRCUITS

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{VERY IMPORTANT. ONLY branded I.C's are to the FULL manufacturers specincations. ALL othert are not. Henry's sell only branded integrated Circuite . . . From TEXAS ... I.T.T. . . . FAIRCHILD ... SICNETICE. So why buy alternatives or under spec. devices when you can purchase the genulne article from ue-ex stock... need we say morel}

\hline \& $$
11
$$ \& \& $$
m
$$ \& \&

\hline Type \& $$
\because
$$ \& Ty \& 0 \& Type \&

\hline SN7400 \& \& \& \& \&

\hline SN70 \& \& \& \& \&

\hline SN7401A \& \& \& \& \&

\hline SN7402 \& 0.20 \& \& $0 \cdot 20 \cdot 10$ \& \&

\hline \& \& \& 0.20 .140 \& SN \&

\hline 17400 \& \& \& 0.20 .160 \& SN7 \&

\hline SN7400 \& - 2 \& SN747 \& 0.350 .30 \& \&

\hline SN740 \& $0.20 .15 \cdot 15$ \& SN77 \& 0.34 .3 \& SN7 \&

\hline SN74OSAN \& $0.40 \cdot 4.3$ \& SN7473N \& 0.40 .41 \& \&

\hline SN7406 \& \& SN7474N \& 0.480 \& SN741 \&

\hline SN7407 \& \& SN7475N \& $0.500^{0.55} 0.51$ \& SN7415 \&

\hline SN740 \& 28 \& SN747 \& 0.45 \& SN74 \&

\hline \& \& \& \& SN741 \&

\hline SN7410 \& . $10^{4} \cdot 116$ \& SN7481 \& \& SN741 \&

\hline \& \& \& - 0.72 \& SN74 \&

\hline SN7412 \& -230.23 0.25 \& SN74 \& \& SN741 \&

\hline SN7412 \& 28 \& SN7486 \& \& SN74104N \&

\hline N \& 27 \& SN7 \& 4.324 .32 .3 \& SN74165N \&

\hline 17414 \& $72 \cdot 72$-4 \& N7 \& 0.758 \& SN74168N \&

\hline 7 \& 30.27 \& SN7481A \& \& SN74167N \& -

\hline N74 \& -27 \& SN7492N \& 0.75 \& SN74170 \& 2.082. 2 2.52

\hline N7 \& L \& 74 \& 0.750 .70 .03 \& SN74172N \& 5.78 5.78 5-4

\hline 17 \& $23^{4} 0.2$ \& SN7494N \& 0.850 .00 .75 \& SN74173N \& 01.681 .45

\hline 7422 \& . 1 \& SN74 \& 0.350 .40 .75 \& SN7417 \&

\hline N7423 \& $0.37 .34{ }^{-32}$ \& SN749 \& 0. 3 \& SN74175N \& 1-23 1.23 1-13

\hline SN7425N \& $0.37 .37{ }^{0.32}$ \& SN74100N \& \& SN74176N \&

\hline SN7497N \& $0.370 .37 \cdot 38$ \& SN7410 \& -60.038.45 \& SN7417N \& . 4.4

\hline N7423 \& \& SN7410 \& - 51.53 \& SN74180N \&

\hline N7430 \& . 27.18 .18 \& SN7410 \& $0.510 .51{ }^{0.45}$ \& SN74181 \& 5.18 5.18 4.53

\hline N7 \& \& \& $0^{0.57} 8.577^{0.59}$ \& SN7418 \& 1.44.44 1.24

\hline \& \& SN74111N \& \& SN7418 \& 2.18

\hline N7437N \& 0.430 .430 .37 \& SN74118N \& 1004008 \& SN74188N \&

\hline 17438N \& -43 0.43 \& SNT41 \& 1.921 .92 \& SN74190N \&

\hline SN7438AN \& - 570.57 \& SN74120N \& 1-65 1.05 \& SN74191N \&

\hline \& $0 \cdot 270$ \& SN7 \& 0.570 .57 \& SN74192N \&

\hline SNTH41AN \& - 25.8 .78 .73 \& SN7412N \& \& SN74193N \& 30 230

\hline \& 0.850 .78 .73 \& SN74123N \& 1.44 1.44 1-24 \& SN7 \& 7

\hline \& 17 \& SN74125N \& $0-40$ \& N7418 \& 1.4.4.4.28

\hline \& \& SN74128N \& 0 - 0_{0} \& N74197N \&

\hline \& 2.142.10 1.20 \& SN74132N \& 0.72 $0.72 \cdot 63$ \& SNJ4198N \&

\hline 7AN \& 57 \& \& -63 -6.63 0.55 \& SN \& -8 2.52

\hline \multicolumn{6}{|l|}{LARGER QUANTITY AND O.E.M. PRICES PHONE (01) 7233646 . PRICING OF SN740 BERIE I CALCULATED ON THE TOTAL NUMEER ORDERED RECARDLESS OF MIX. SN74.. HIGH POWER. SN74. LOW POWER SERIES IN STOCK . . SEND FOR LIST 36, FREE ON REQUEST. LOW PROFILE SOCKETS 14 PIN . . isp. 16 PIN . . . 17p. 8 PIN . . . 14 p.}

\hline \multicolumn{2}{|l|}{TRANSISTORS} \& \multicolumn{4}{|l|}{A SELECTION FOR FULL LIST SEND FOR BOOKLET 36 TODAY.}

\hline \& \& \& \& $27 \times$ \&

\hline \& BCY32 35p \& 55p \& 18 p \& ZTX300 14p \& 2N3771

\hline AC128 \& \& GET111 55p \& OC45 18p \& ZIX302 ${ }^{\text {P }}$ \& 2N377

\hline C187 \& BCY55 2.5 \& GET115 75p \& $0 \mathrm{C} 71{ }^{\text {15p }}$ \& ZTX500 15 \& 2N3790

\hline ${ }^{\text {ACY17 }}$ \& BCY74 \& 1890 55p \& P \& 2 \& ${ }_{2}^{2 N 3219}$ 50p

\hline ACY39 \& BCY71 20p \& \& ${ }^{0} \mathrm{C77}$ 55p \& ${ }^{2 N 697} 15$ \& 2N38868 75

\hline AD149 \& \& \& \& 2N70 \&

\hline A \& 31 45p \& \& OCl \& 2 N \& N4128

\hline ArF17 \& BF115 2p \& MJE340 50p \& $0 \mathrm{OC170} 25$ \& 2N1132 23p \& 2N4871

\hline 198 \& BF180 39 \& 0 esp \& $00^{0600} 55 \mathrm{p}$ \& 2N1304 22 P \& 2N5457

\hline 39 \& \& \& 0 \& ${ }^{2 N 1613}$ \& S00

\hline AF186 \& BFX13 28 \& p \& OCP71 10 \& ${ }_{2}^{2 N 1671}$ \& 25026

\hline ${ }^{39} 7$ \& BFX34
BFX 88

S20 \& \& 55 \& ${ }_{2}^{2 N 2147}$ \& S303

\hline BA1t5 \& BFY \& \& \& ${ }^{2} \mathrm{~N} 2928$ \& ${ }_{4}^{4} 8351$

\hline BAX13 \& BFY51 2tp \& OA \& TIL209 25p \& 2N3053 \& 40362

\hline BC107 \& BFY4 45p \& OA8 \& tip29a 49P \& 2 N 3054 \& 40408

\hline BC108 \& BFY90 75p \& OA200 \& T1P30A 53p \& \& \%

\hline $\mathrm{BC1O9}^{15 \mathrm{c}}$ \& BLY36 ${ }^{\text {BLP }}$ \& OA202 \& TIP31A 64p \& 2N3440 \& 40836

\hline BCtosc 1 \& BSX20 ${ }^{\text {B }}$ \& OC16 \& TIP4A 74p \& 2N3442 \& 40430 85p

\hline $8 \mathrm{BC113}$ \& BU105 22 \& $\begin{array}{ll}0 C 20 & 1.25\end{array}$ \& TIPAAA \& 2N3525 \&

\hline BC147 ${ }^{29}$ \& BY100 15p \& -25 \& TIS43 26p \& 4 \&

\hline C \& BY127 15 \& OC35 \& 405A \& 2N3702 \&

\hline
\end{tabular}

 Type P.i.v. Price Each SCISE 500V R1.05 Type P.i.v. Price is

 - amp rane trates SCC10A 100 N Ep additional Types

${ }^{3}$ Tomp
=

SILICON CONTROLLED

RECTIFIERS

\qquad ${ }_{310}^{\text {Model }}$ Radio. control recolver
$\begin{array}{ll}310 & \text { Radio control recolver } \\ 300 \\ \text {-channeel RIC tranamitter }\end{array}$

$\begin{array}{ll}120 & 12 \text { wata amplifier } \\ { }^{25} \\ 125 & \text { Storeo control unit }\end{array}$

Power supply for 2×120
Auto packino iligh
Mic. preampliffer
$570 \mathrm{~S} L \mathrm{LF}$. ${ }^{2}$ enerator $10 \mathrm{~Hz}-1 \mathrm{mHz}$

590 SWR meter
630
STAB P Power suply $0-12 v$
$0.25-0-1 A$
DC motor spoed Gov.
Electronc Chamnch
Acoustic switch
Meual Deteetcor ((electronics oniy)
Capacitlve Burolar alarm Capacitive Burg.
Gultar preamp.
Delay
car alarm Scope Callbrat
Level Indicator
$120-180 m H z \mathrm{VHF}^{2}$ tume
Photo cell switch
Electronic continuity tester
Photo timer
Acoustic Al
Acoustic Alarm for driv
Ouarta XTAL checker
Slonal 1 n
vox
Testakit
Buffer Battery Charoer
Caparitite Contact Alarm
Electronic Keyer
Electronic Keyer
Electronic Digital Clock

EXCLUSIVE-SPECIAL OFFERSI
MW/LW CAR RADIO + or - Earth with speakers and fixins. ${ }^{\text {TRACK CAR STEREO }}$
pods and fixings e12-st carripackg 40p. TA PE PLAYER
CAR LIGHTER PLUC and ADAPTOR for all caseette
 RH430 E3-30. ROTAL RA310 $15+15$ watt Stereo Amplifier (Liet 252000 ©
Stereo cassette recorder ese es carr/packg 50p.
 RECORDER E12.75
PORTABLE CASSETTE TAPE
Player-for car or carry around, 87.25 cartpacko 20p.
HAMIMAX POCKET CALCULATOR WITH KE
E33.50. HAINS UNIT for BC808, BCB1M E2-Es (state model) Hanimax H101 ETEREO COMPACT RECORD
PLAYER 2×7 watte. Complete who speakers (List
E54.50) Price 530^{5} Plus free palr of stereo phones.

NEW RANGES
BRIDGE RECTIFIERS
FEATURES SMALL SIZE AND LOW COST. Sizes are approximale
2sem/a 94

ELECTRONICS FOR EVERY PURPOSE
Seo facing page for addresses

EASY TO BUILD KITS BY AMTRON

SUL KITS OFFERED AVAILABILITY
Prices correct at time of preparation. Subject to
change without notice.

LIVINE SOUND LOW NOISE TOP OUALITY CAS
INT
FOR
REAS
CAS ROC.
RASES
CAS

A complete kit. packaged in a polystyrene confainer and faking about 3 houre to assemble-that's the Sinclair Cambridge pocket calculator from Henry's. Some of the many features include interface chip, thick-film resistor pack, printed circuit board, electronic components pack. Size $43^{\prime \prime}$ long $\times 2^{\prime \prime}$ wide $\times y^{\prime \prime}{ }^{\prime \prime}$ deep. Free of charge with the kit for the more advanced technologist is a 32-page booklet expiaining how to calculate Logs, Tangente, Sines etc. Price £19.95 + VAT Also avaliatle assembled mady to use cza-5d + VAT. LIVING SOUND LOW NOISE TOP GUALITY CA88ETTES MADE EY EMI TAPES LTD TO REC. PRICES. COMPLETE WITH HERARY casEs. Quantity and trade enquiries invited. LEARN A LANGUAGE-complete with phrate book. German-French-Spanish-Italian Ei-3 per course. ES for any 4. SELECTION OF INTERESTING ITEMS	

FREE BOOKLET All types of Transistors Rectifiers-Bridges SCR's - Triacs Integrated Circuits
 F.E.T. - Light Devices

OVER 1500 DIFFERENT DEVICES ENTIRELY NEW 1973 EDITION More Devices $\star \quad$ New Prices \star New Ranges \star This is a must for ali Semi-conductor Users. (Ask for booklet No. 3E.) SEND FOR YOUR FREE COPY TODAY
 zines (PW Jan. 73 Reprint
Ref. No. 18 for 10). E1. 29

3015F 78 EG. duta price $\begin{gathered}\text { complete } \\ \text { with } \\ \text { each }\end{gathered}$ (digital clock cliculte ret.

TILem LED 24p ea, 22p ea. per 10
BUILDYOURSELF APOCKET CALCULATOR

2EMER DIODES 400 miw Eerater
1.3 watte 5% Miniature Tubulare inachen series. From $3 \cdot 3$ volt- 33 voit 18p oach.

sILICOM RECTIFIERS
1 amp series INM001 to INH007. From the en
1.5 amp PL4001 to PL4007 from to at

3 amp PLTOOT/INste0 From 149 en

EARM YOURSELF EASY MONEY,
WITH PORTABLE DISCO EQUIPMENT
DISCO MUNI A compiete portabie diaco, Atied mixeripreamp, 2 decka alil facillition 100 watt amplifier for above
SDLsice 100 watt mixerfamplifior with slider controls citise R100 100 watt mixer/amplifier
DISCO ANP ${ }^{100}$ watt mixer/ampifier
NORTHCOURT NORTHCOURT
400,40 watt Mixer Amplifier DI: CO MDXERPREAMPLIFIERE (op up to $8-100$ watt ampififers) BDLI (rotary controis)
DISCO VOX (silder controls) the compiete disco preamp 54.5

DJ100 100 watt power amplifier for above DJ30L Mk 3 channel 3 kw sound to light DJ3OL MK III Slider Controls DJ DIsclite As 30L/il + Variable speed fiashes

MINIATURE AMPLIFIERS

AMPLIFIERS (carr. etc. 20p).

NEW SINCLAIR PROJECT 80

Stereo Pre-Amplifier
Audio Filter Unit
224015 watt Amplifier
PZ5 Mod. for 1 on 2 Z40
PZ6 Mod. (S Tab) 1 on 2 Z40
PZ8 Mod. (S Tab) 1 on 2260
TRANSFORMER F
STETREO DECODER

SPECIAL

PURCHASES

CHF TV TUMERS Brand new trancistorised geared
tuners for 625 line Rocelver IF
output. 82.54 post 20
All types offered sublect to avallablilty. Price correct at notice. 10% VAT to be added to all ordere. Export Supplied.

HENRY'S CATALOGUE
Due to rapid prico changes. shortages of paper and
raw materials, all prices in tho oxisting catalogues
raw materials, all prices in the oxisting eaptologues
no longer apply. Call or phone for latest prices, a
now catalogue will be available for Aug. Sopt 1974 .
ع11-85

FIBRE OPTICS

0.01 diam. Mono Filament $81-50$ per 25 metre reel. 0.13 diam. ©4 Fibres Sheathed. $\$ \mathrm{l} \mid$. 0 per metre.
SPRAYS 15 mm . diam. Mares Tails. Es se

POWER SUPPLIES

FOR EVERY

 PURPOSE$$
\begin{aligned}
& 470 \mathrm{C} \text { e/7t/9 volt } 300 \mathrm{MA} \text { (includes Muiti-Adaptor for } \\
& \text { C2.15 post } 20 \mathrm{p}
\end{aligned}
$$ Car Lighter Voltage Adaptors 300 mA (State voltage SC200 $38171 / 19$ volt 400 mA HC24R Stabillised version

PS50 o volt 500 mA PSco 9 volt 500 mA
P11 24 volt 500 mA (chassis)
P15 $26 / 28$ volt 1 amp (chasels) P1000 12 V 1 amp (chassis) P1081 450.9 amp (chassis)

-Henry's

SUDER COMTROLS
Comm stroke high quality controls complete with any quantity). and Lin
 250K, 500K. 1 Meg, 45 p canged Log and Lin 250\%, 25 p . 50 K .100 K, discounts availabie.)
marriot TAPE HEADS
4 TRACK MONO or 2 TRACK STEREO. 117 ' ${ }^{1} 18^{\prime}$ "Medium E2-50. '36' E5 Tmpedance Erase, low mono. Record 7 Ip par.
 Erase Head for " 83 ' 75 p .
(Post etc., 15 p any quantity)

LOW COST HI-FI SPEAKERS

\section*{SpECIAL OFFE ${ }_{20}^{20-2}$ SPAKER KITg (cant. otc. 250) ${ }^{20-3}$ | SEENALE |
| :--- |
| COVEALE |

}
 $\cdot 1$ BoTC-s ohms Twin Cone 10 watt $\mathbf{E 2 : 2 0}$
 Opmis ex. enach.

NEW REVOLUTIONARY

 SUPER TESTER 680R The complote testing system Yoits $\mathrm{DC}=13$ rangee from 100 mV to Amp $O C=12$ ranges from 500A to 10 A AmpAC=10 ranges from 2004 A to 5 A Ohm to 100 MO O Reactance $=1$ range from 0 to 10409
Capacity $=6$ rangee from o to 500 p f and from 0 to $0.5 u F$ and from 0 to $50-000 \mathrm{pF}$ Frequency $=2$ ranges from 0 to 500 Hz and from 0 to 5000 Hz
Output Voitage $=9$ ranges 10 V to 2500 V Output oitages $=9$ ranges 10 V to 2500 V
Decibels $=10$ ranges from -24 to +70 d

	PRICE 18.50

EXCLUSIVE DECCA
KELLY
SPEAKERS
TRANSISTORS/ SEMICONDUCTORS

 includez valves on roquest.
 ${ }^{\text {Sin. }}$

 Electronics Supplies

HI-FI TAPE EQUIPMENT

Specialists in electronics for more $\begin{aligned} & \text { U.K.'s largest range with discount and } \\ & \text { than } 30 \text { years. Trade and industry } \\ & \text { demonatrations for callers. Latest }\end{aligned}$
Stock lists on request (Ref. No. 17) supplies.every type of component supp equipment.

Phone 01-4ce-4736 for Barclay/Access

Samplebest Ltd 'for the amateur electronics engineer'

FULL SCIENTIFIC CALCULATOR
 OUR PRICE $\mathbf{£ 8 8 - 5 0}$ (Imc: Vat, P\&P)

7-day trial offer-Money-back guarantee

This fully portable scientific calculator is on special offer for a limited period. The Q1 1015 is a fully proven calculator with the following functions:

Arithmetic Functions
*4 standard (,,$+- x_{,} \div$) *Chain operation *Intermixed operation *Repeated operation *Constant operation *Memory operation The interchange of X and Y register $X X$ ($\mathrm{X} \underset{\mathrm{L}}{\boldsymbol{m}}$)

Trigonometric Functions

* Sine (Sin) *Cosine (Cos) *Tangent (Tan)
*Arc sine $(\operatorname{Sin}-1)$
* Arc tangent $\left(\operatorname{Tan}^{-1}\right)$
* Exponential Function (
*Natural logarithm (LN) *Reciprocal ($1 / x$)
* Power ($x y$)
*Trig facility of answers in radian or degrees
General
Display: 9 -digit light emitting diodes. Capmeity: 8 digits for all factors and results in operation. Dacimal Point: Full floating system. Magative Numbers: True value indication with minus sign at ninth digit. Overfiow and Error Indicator: sign at ninth digit. indicating the result of operation is over 8 digits, or the argument of operation is out of range. Function Mode ladicator: • (decimal point) at ninth digit indicating the scientific function mode is activated. Battery-es (SP7icator: Sign at ninth ior Poper Commpion: DC 0.30 watts. Sizs: $145 \mathrm{~mm} \times 77 \mathrm{~mm} \times 32.5 \mathrm{~mm}$. Weight: 207 grms (7.29 ozs) with batteries.
cheques should be made payable to SAMPLEBEST LTD.
ALLOW 7/10 days for delivery
127 CLAYTON ROAD CHESSINGTON SURREY tel: 01-949 2430

MK50250N-NEW MOSTEK ALARM CLOCK IC $. . . . £ 8.00+V A T=£ 8.60$ 24 hr format-Alarm-Snooze-Multiplexed 4- to 6-digit display-etc. This is a high performance clock IC from Mostek Corporation at a break-through price. BUILD AN ATTRACTIVE DIGITALALARM CLOCKWITH RADIOTURN-ON A kit of all parts except case and switches for a digital alarm clock with radio tum-on using the MK50250N and highly attractive SP352.55" displays (see above). The kits include: Building instructions, MK50250N, SP352 displays, all semiconductors. resistors and capacitors, radio tum-on relay, miniature loudspeaker for alarm, soldercon pins for IC socket, main PCB and digit mounting PCB. Both PCBs have been designed so that constructors of the 4-digit clock may easily expand their unit to 6 digits at a later date.
6 digits at a later date. \quad 4-digit kit . $\mathbf{2 6} \cdot \mathbf{0 0}$ + VAT = $\mathbf{8 2 8} \cdot \mathbf{6 0}$
4-digit kit $\mathbf{£} 31.40+$ VAT $=\mathbf{£ 3 4 . 5 4}$
Send for free information on low-cost kits using the MK50250N with LEDs, Minitrons, etc. For details of the SP352 and other Beckman Displays available from us, see our WW April or PE June ads or send for free information.
CTE001 4-FUNCTION CALCULATOR IC $\mathbf{8 5} \cdot \mathbf{0 0}+\mathbf{V A T}=\mathbf{E 5} .50$ We have designed an exciting low-cost calculator for the amateur constructor using this device-send for free information.
SLA7.33 ${ }^{n}$ RED LED DIGITAL DISPLAYS plug-in replacements for DL707

$\mathbf{E 6} \cdot \mathbf{8 0}+\mathrm{VAT}=\mathbf{E 7 . 4 8}$ $\mathbf{£ 1 0 . 2 0 + V A T = £ 1 1 . 2 2 ~}$
MM5318N ALARM CLOCK IC . f15.00 + VAT = $\mathbf{f 1 6 . 5 0}$ ACA TA8065T LIQUID CRYSTAL DISPLAY (Note: Extended delivery)
. 11 .60+VAT=£12.76 Transmissive 4 -digit clock-format, similar to AN4 132 ; supplied with socket.
MM5316N + TA8055T (Extended delivery)
tparther ONLY £21.00 + VAT $=\mathbf{£ 2 3 . 1 0}$
 N.B. CONSTRUCTORS OF THE P.E. DIGITAL CLOCK. With minormodifica tions an RCA Liquid Crystal may be substituted for the Siemens Liquid Crystal. and RCA L-Cs bought from us will include clear instructions on how this may be done.
Data supplied with all devices. Also available separately at 10p par device NO P\&P CHARGE for UK orders. Overseas p\&p 50p.

The

FORGESTONE 400 a high quality colour television receiver.

A complete and up-to-the-minute Electronic Kit*
with all these plus features . . .

9 integrated circuits
Ready-built and aligned IF module High quality components Plugs and sockets for easy panel removal Full technical

Thick film resistor units Glass epoxy printed circuit panels Fully isolated power supply Each module kit available separately LT supply regulator construction manual
*less cabinet, which can be manufactured yourself from normal DIY sources.
Send for further details of the Forgestone 400 the quality kit for the constructor of today.

Forgestone Components

FORGESTONE COLOUR DEVELOPMENTS LIMITED Ketteringham, Wymondham, Norfolk
Telephone: Norwich 810453 (STD 0603)

THE NEW NELSON-JONES FM TUNER

PUSH-BUTTON VARICAP DIODE TUNING
 (6 Position)
 ('WW" JUNE '73)

Exclusive Designer Approved Kits
What are the important features to look for in an FM tuner kit ? Naturally it must have an attractive appearance when built, but it must also embody the latest and best in circuit design such as:-

MOSFET Front end for excellent cross modulation performance and low noise.
3 GANG Tuning for high' selectivity
VARICAP tuning diodes in back to back configuation fo low distortion. CERAMIC IF filters for defined.IF response.
INTEGRATED circuit IF amplifiers for reliability and excellent limiting/AM circuit IF amplifiers for reliability and excellent limiting/AM
rejection.

PHASE LOCKED Stereo decoder with Stereo mute, see below.
LED
fine tuning indicators
PUSH BUTTON tuning (with AFC disable) over the whole FM band.
IC STABILISED and S/C protected power supply.
CABINET veneered inside and out.

The Nelson-Jones Tuner has all of these features and many more, and more importantly the design is fully proven not just with a few prototypes but with many thousands of working tuners spread across the world.
Type Specn: 20 dB quieting 0.75 uV . Image rejection -70dB.I.F. Rejection -85 dB
Basic tuner module prices start as low as $£ 10.79$, with complete kits starting at $\mathbf{£ 2 3 . 9 5}$ (mono) + PP 50p. and of course all components are available separately.
Our low cost alignment service is available to customers without access to a signal generator Please send large SAE for our latest price lists which detail all of the many options and special low prices for complete kits. All our other products remain available.
PORTUS AND HAYWOOD PHASE LOCKED DECODER (W.W. Sept. '70). Still the lowest distortion P.L. decoder available. THD typically 0.05\% (at Nelson-Jones Tuner O/P level) Supplied complete with Red LED.
 (P.P. 19p.)

PLEASE NOTE. Existing tuners are readily convertible and kits/parts are available for this purpose.
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph). Complete designer approved Texan kits are available at $\mathbf{~} 28.50$ plus p.p 50p including Teak Sleeve

Available Shortly: Varicap tuner using Mullard LP1186 module--no alignment required. Image Rejection - 40 dB . I.F. Rejection -65dB.

THE RONDO QUADRAPHONIC SYSTEM
 (20 WATTS/CHANNEL)

Complete designer approved kits for this outstanding Quadraphonic Sound System ('P.E.' Sep. '73, etc.) with the following features:-

V.A.T. Please add V.A.T. at 10% to all prices for U.K. orders.

INTEGREX LIMITED, P.O. Box 45, Derby, DEY1TW
Phone Repton (028389) 3580

G．F．MILWARD

ELECTRONIC COMPONENTS
Wholesale／Retail ：

Special Offer ！！！－From Stock－New－Boxed－AND 60\％Discount！ MULLARD ELECTROLYTIC CAPACITORS

071 and 072 Series

Type No．	Working Voltage $V d$.	$\begin{gathered} \text { Capacitance } \\ \mu \mathrm{F} \end{gathered}$	Max．Ripple Current at $50^{\circ} \mathrm{C}$	Weight	Price
07114472	10	4700	2.5 amps	102	15p
07114682	10	6800	4 amps	102	17 p
07115332	16	3300	2.4 amps	102	15p
07115472	16	4700	3.9 amps	102	170
${ }_{071}^{0715682}$	16		5.8 amps	1 1\％oz	${ }^{29}$
07114113	10	$11000+11000$	10.6 amps	302	370
07214173	10	${ }^{16500}+16500$	13.4 amps	402	489
－072 15752	16	7500 +7500	10.5 amps	302	370
－072 075113	16 25	11000 +11000	${ }^{73.8} 8.6$ amps	${ }_{4}^{4}$	439
${ }^{072} 16752$	${ }_{25}^{25}$	（5000 $7500+75000$	9．6 amps 12.6 amps		379
07118681	63	680	2.1 amps	102	150
106 and 107 Series					
10614153	10	15000	7 amps	402	57p
10617103	${ }^{40}$	10000	12 amps	${ }^{71020}$	
10710222	100	2200	10 amps	5\％\％2	74p
Type No．	Voltage	Capacitance	Weight		Price
10215163		16000			20 p
10490003	20	39000	1602		${ }^{300}$
${ }_{104}^{10290001}$	25 45	8000 2000	702 1602		S00

SMALL ELECTROLYTICS

Ref. No. $\mathrm{H} 8 / 2$	Capacity $2.2 \mu \mathrm{f}$	Voltage 25	$\underset{\substack{\text { Price } \\ 4 p}}{ }$	Ref．No． H7／3A	Capacity 6 64	Voltage 25	$\begin{array}{r} \text { Price } \\ \text { 4p } \end{array}$
H8／2A	$3 \cdot 3 \mu \mathrm{f}$	25v	4 p	H7／4	644f	15v	4 p
H8／3	3 Hf	50 V	4p	H714A	6ath	$35 v$	5 p
H8／3 A	4， 4	50 v	4 p	H7／5	80uf	16 v	4 p
H8／4	4．7uf	25 v	4 D	H717	100 f	25v	4 d
H8／4A	5 ¢	64 v	4 d	H7／8	125uf	16v	5p
H8／5	5μ	10v	4p	H718A	$100 \mu \mathrm{~F}$	35 v	${ }^{6}$
H8／5A	5ut	150	4p	H7／9	100 ${ }^{\text {f }}$	$63 v$	${ }^{6} \mathrm{p}$
H8／6A	10，4i	10 V	4 p	H7／9A	125uf	4 4	4 p
H8／7	10ıf	70 v	4 p	H7／10	125u	25.	${ }^{6}$
H818	16 $\mathrm{f}^{\text {f }}$	$35 v$	4 p	H7／10A	160山 f	2.5 v	3 p
H8／8A	16 Hi	16v	4 p	H7／11	160 ${ }^{\text {f }}$	25 v	${ }^{6 p}$
H8／9	204f	6 v	2p	H7／11A	150 ${ }^{\text {f }}$	16 v	5p
H8／9A	20 f	70v	4p	H7／13A	200） f	25 v	$8{ }^{10}$
H8／10	22uf	50 v	4 p	H7／14	220uf	50 V	10p
H8／10A	2241	100v	4 p	H7／15	220μ f	25v	5p
H8／11	25uf	12v	4 p	H7／15A	$220 \mu \mathrm{f}$	35v	10p
H8／12	32uf	$15 y$	$4 p$	H6／1A	250uf	4 V	3p
H8／12A	${ }^{30} \mathrm{mf}$	10 r	4 p	H6／3A	$320 \mu \mathrm{f}$	2.5 v	3 p
H8／13A	32uf	50 v	4 p	H6／4	320 Hf	10 v	4 p
H8／14	$40 \mu \mathrm{f}$	$25 v$	5p	H6／4A	330山f	16v	5p
H8／14A	40uf	16 v	4 p	H6／5	${ }^{330} \mathrm{f}$	${ }^{25 v}$	10 p
H8／45	47uf	50 y	4 p	H6／5A	330uf	35 v	15p
H8／15A	40ut	35 v	4 p	H6／8	470山f	${ }^{25 v}$	100
H711	50uf	6 V	3p	H618A	470uf	35 v	20p
H7／1A	50 uf	10%	4 p	H6／9A	400 Hf	40 v	29 p
H7／2A	64uf	$2 \cdot 5 \mathrm{v}$	2D	H6／13A	1000uf	25v	16p

RECTIFIERS 1 N4007 1200 peak voits， 30 amps peak current， 1 amp mean current． 100 for $£ 7 \cdot 50,1,000 £ 50$ ．

UNREPEATABLE BARGAIN BD112
TO3－NPN DIFFUSED SILICON PLANAR EPITAXIAL．
VCBO COLLECTOR TO BASE－80 VOLTS．

EiPREPAK

ADDO BARCAISS STEREO DECODER 64.95
 incl. P. \& P. and VAT

A ready built unit ready for connection to the I.F. stages of existing F.M. Radio or Tuner. A tell-tale light can be connected. The unit is a small printed circuit. no further adjustment necessary. A L.E.D. is recommended as the indicating light. suitable device available from us at $36 \frac{1}{2} \mathrm{p}$. Instructions included.

$3 W_{\text {r.м...I.C. AMI }}$ 1) 5 E $15 \begin{aligned} & \text { incl. P. \& P P. and } \\ & \text { Order Code I.C.A. } 1\end{aligned}$
 On P.C. Board with all components or These amps, are supplied with a free booklet on connecting up. specifications and easy to build

5W \& 10W AMPS

These matchbon size amplifiers have an exceptionally good tone and quality for the price. They are only $2 \frac{1}{4}$ " $\times 1 \frac{3}{4}$ ". The 5 W amp will run from a 12 V car battery making it very suitable for portable voice reinforcement such as public functions. Two amplifiers are ideal for stereo. Complete connection details and treble, bass, volume and balance control dircuit diagrams are supplied with each unit. Discounts are available for quantity orders. More details on request. Cheapest in the U.K. Built and tested.

Now available for 5 \&10W AMPS

Pre-assembled printed circuit boards $2^{\prime \prime} \times 3^{\prime \prime}$ available in stereo only. will fit .15 edge connector.
Stereo Pre-Amp 1 (Pre 1). This unit is for use with low gain crystal or ceramic pick up cartridges. $£ 1.21$. Stereo Pre-Amp 2 (Pre 2). This unit is for use with magnetic pick-up cartridges.
f1.69.
Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentiometers will give bass and treble boost and cut. $£ 1.21$. Instruction leaflet supplied with all units. Post and Packing and VAT included in Prices.

1 enclose f

Decoders/
Iow Amps.
Stereo Pri: Amps 2
(Please insert quantities and delete those not applicable) Name
Address

3W Amps/

Stereo Pre-Amps 1 Stereo Tone Controls

BI-PREPPAK
Ca. Regn Na 820919

TELEPRINTER EQUIPMENT LIMITED

Sales . . . Rentals . . . New . . . Refurbished . . . Installation . . .
Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries
teLeprinters Models 7B, 54, 75, 444

CREED EQUIPMENT

TELETYPE CORP. EQUIPMENT

SIEMENS
EQUIPMENT
OTHER
EQUIPMENT

SPECIAL

EQUIPMENT

PERFORATORS 7PN, 85/86, PR75, 25
TAPE READERS 6 S4, 6 S5 $, 6 \mathrm{~S} 6,6 \mathrm{~S} 6 \mathrm{M}, 92,35,71,72,74$ HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.
TELEPRINTERS 15, 19, 20, 28, 32, 33, 35 all configurations
PERFORATORS $14,19,28$ LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS 14, 20, 28 LBXD \& LXD TRANSMIT GROUPS, etc.
TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.
KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN. CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS.

WW-107 FOR FURTHER DETAIIS

COMMUNICATION ACCESSORIES \& EQUIPMENT
 G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300, 500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20-way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)—made to specifications
TERMINAL BLOCKS (DISTRIBUTION) - 20 -way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH 71 ($15 \times 4 \mathrm{~B}$)
POLARISED TELEGRAPH RELAYS AND UNISELECTORS—various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, 48H, 49H, 149H, 3/16, 3/216, 3/48A, 3/43A, 48J, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT. ww-108 FOR FURTHER DETAIIS

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include:

KEYBOARD PERFORATORS for offline tape preparation
AUTOMATIC TAPE TRANSMITTERS with speeds up to 250 w.p.m.
MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS
UNDULATORS for automatic record and W/T signals up to 300 w.p.m.
CODE CONVERTERS converting from 5 -unit tape to Morse and vice versa
MORSE REPERFORATORS operating up to 200 w.p.m.
TONE GENERATORS and all Students' requirements
CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANSMITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS LAMPS, etc.

ELEGTROVALIE

Present

ELECTRONIC COMPONENTS FOR THE WIDEST POSSIBLE RANGE OF APPLICATIONS

EVERYTHING BRAND NEW AND TO SPEC \star GOOD DISCOUNTS \star FREE POSTAGE (U.K.)

ELECTROVALUE "SPECIALS"

Amongst an extensive range of specialised electronic Magneto Resistors
Liquid Crystal Display
Touch Switch I.C.s
Magnetically operated I.C.s
Photo-electronic devices

FERRITE COMPONENTS

Pot cores in a wide range of useful sizes
Double Aperture Core

TRANSISTORS

Very wide range of types is shown together with grouped illustrated. and there is a full range of supporting hardware. Also near-equivalent tables are given.

I.C. 5

Here too a wide range of TTL types are shown. together with
linear and special purpose types. Over 60 circuit and connection linear and special purpose types. Over 60 circuit and connection
diagrams as well as much other useful information is included

MINITRON DIGITALINDICATOR

3015 F Seven segment filament compatible with standard logic modules. $0-9$ and decimal point: 9 mm characters in
16 lead DH . Suitable BCD decoder driver 7447

CAPACITORS

Radial leads for P.C.B. mounting. Working voltage 250 V d.c.
0.01 .0 .015 .0 .022 .0 .033 .0 .047 $0.068,0.9,0.15$
$0.22,5 p: 0.33 .7 p: 0.47,8 p: 0.68,11 p: 1.0 .14 p: 1.5$ $0.22,5 p$
$2.2,24 p$
$\begin{array}{ll}\text { TANTALUM BEAD } & \\ 0.1 .0 .22 .0 .47 .1 .0 \mathrm{mF} / 35 \mathrm{~V} & \\ 2.2 / 16 \mathrm{~V} .2 / 35 \mathrm{~V} .4 .7 / 16 \mathrm{~V} .106 .3 \mathrm{~V} & \text { ea. } 13 \mathrm{p} \\ 4.7 / 35 \mathrm{~V} .10 / 16 \mathrm{~V} .22 / 6.3 \mathrm{~V} & \text { ea. } 13 \mathrm{p} \\ & \text { ea. } 16 \mathrm{p}\end{array}$
$10 / 25 \mathrm{~V} .22 / 16 \mathrm{~V} .47 / 6.3 \mathrm{~V} .100 / 3 \mathrm{~V}$
a. 16p

POLYCARBONATE
Values in $\mathrm{mF}: 0.0047: 0.0068: 0.0082: 0.1: 0.012$

Working voltage 100 V d.c.
$0.1: 0.12: 0.154$ p:0.18
$0.277 p: 0.338 p: 0.39: 0.47$
$0.5612 p: 0.68$
SILVERED MICA

Working voltage 500 V

 4700, 5000 15p: 6800 20p: $8200,10.000$ 25p

CERAMIC DISC
$1000 \mathrm{pF} / 500,2000 / 500.5000 / 500.0 .01 \mathrm{mF} / 50,0.02 \mathrm{mF} / 50$
$0.1 \mathrm{~m} / 3-$ each $2 \mathrm{p}: 0.05 \mathrm{mF} / 50 \mathrm{~V}-3 \mathrm{p}$
CERAMIC PLATE
In a
each $2 p$

POTENTIOMETERS

ROTARY, CARBON TRACK. Double wipers for good P. 20 SINGLE linear 1000 hms to 2.2 megohms P. 20 SINGLE log. 4.7Kohms to 2.2 megohms JP. 20 DUAL GANG log. 4.7 Kohms to 2.2 megohms號 JP. 20 DUAL GANG antilog 10 K only

Skeleton Carbon Presets Type PR. in ranges above $6 p$ each

SLIDER

near or $\log .4 .7 \mathrm{~K}$ to 1 meg . in all popular values ea. 30 D
circuit 2 break contacts $S 1$,
circuit with 3 break (Not GPO) S3/SSS
circuit with 3 break (Not GPO) S3/SSS
nswitched S5/SS20p
grey
16 p
20 p
9pplugsside entry SEP1ine sockel mono 2313 circuit unscreened. black/grey/white P
circuit unscreened. black/grey/white P4
3 circuit screen top entry P3
side entry SEP3
Miniature $3.5 \mathrm{~mm} 2 \begin{aligned} & 2 \\ & \text { circuit screened } P 5 \\ & \text { Miniature } \\ & 3.5 \mathrm{~mm} \\ & \text { circuit unscreened }\end{aligned}$

INSULATED SCREW TERMINALS

in moulded polypropylene, with nickel plate in black/brown/red/yellow/green/blue/grey/white

din Connectors

2 way loudspeaker	Socket 10p	Plug 12p
3 way audio	Socket 10p	Plug 12p
5 way audio 180°	Socket 12p	Plug 15p
5 way audio 240°	Socket 12p	Plug 15p
6 way audio	Socket 13p	Plug 15p

RESISTORS

ZENER DIODES

Fult range E24 values: $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to 36 V , 14 p each
$1 \mathrm{~W}: 6.8 \mathrm{~V}$ to 82 V .21 p each: $1.5 \mathrm{~W}: 4-7 \mathrm{~V}$ to 75 V . 48 p each Clip to increase 1.5 W rating to 3 watts (type 266F). 5p 20 W 7.5 V to 75 V 69 p each

VEROBOARD

Copper clad 0.1 matrix -2.5×3.75 ins. 27 p: 3.75×3.7 dad 0.15 in. matrix 2.5×3.75 ins. $-20 p$ ins. 3.75×3.75 ins. $30 \mathrm{p}: 2.5 \times 5$ ins. $-30 \mathrm{p}: 3.75 \times 5$ ins. $\quad 36 \mathrm{p}$. Vero spot face cutter (any matrix) 43p.
0.040 pins (for 0.1 matrix) per $100-35$ p 0.052 pins (for 0.15 matrix) per 100-35p.

ELEGTROVAIUE LTD

28, ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB

Telephone Egham 3603. Telex 264475
Shop hours: 9-5.30 daily 9-1 pm Sats
NORTHERN BRANCH: 680, Burnage Lane, Burnage, Manchester M19 inA Telephone (061) 4324945
Shop hours: Daily 9-1 and 2-5.30pm; 9-1 pm Sats.
U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA. P.O. Box 27

CATALOGUE 7

SECOND PRINTING

112 pages, tholisands of items, illustra tions, diagrams, much useful technical information. The $2 n d$ printing of this cataogue has been updated as much as possible on prices. It still costs only $25 p$ post free and still includes a refund voucher for 25 p for spending when ordering goods list value f 5 or more

COVERS \& HEATSINKS
ro3 Transistor cover. clip-on
HEATSINK drilled $2 \times$ TO3
KNOBS
Kin shats in a very wide range of types from utilitarian
S-DEC
Unsurpassed for "breadiooard work" can be used indefinitely ind connectautomatically. Slot for control panel. 70 holes $\mathbf{E 1 - 9 8}$ T-DEC
For more advanced work with 208 contacts in 38 rows. Will take
ne 16 lead cartier $\mathbf{f 3} .63$. (Carrier s supplied separately.)
DESOLDERBRAID
6π strip
25 mtr reel

$\begin{aligned} & 9 F \\ & 0.47 \end{aligned}$	3 V	6.3 V	10 V	16 V	25 V	40 V	$\begin{aligned} & 63 V \\ & 11 p \end{aligned}$	$\begin{gathered} 100 \mathrm{~V} \\ 8 \mathrm{p} \end{gathered}$
1.0	-	-	-	-		11p		8 p
$2 \cdot 2$					11p		8 p	9 p
4.7				11p		8 p	9 p	8p
10				-	8p	9p	8 p	8p
22			8 p		9 p	8 p	8p	10p
47	8 p	-	9 p	8 p	8 p	8 p	10p	13p
100	9 p	8 pp	8 p	8 p	9p	10p	12p	19p
220	8 p	8 8	9 p	10p	10p	11p	$17 p$	28p
470	9p	10p	10p	11p	${ }^{13 p}$	17p	24p	45p
1.000	$11 p$	13 p	13p	17p	20p	25p	41p	
2.200	${ }^{15 p}$	18 F	23p	26p	37p	41p		
4.700	${ }_{42 p}{ }^{26}$	$30 \mathrm{p}$	39p	44p	58p	-	-	
10.000	42p	46p						

This is EV Service

GIRO ACCOUNT No. 38/671/4002 DISCOUNTS
Available on all items except those shown with NETT
PRICES. 10% on orders from $£ 5$ to $£ 14.99 .15 \%$ on orders FREE PACKING AND POSTAGE in U.K. for pre-paid mail orders. For mail orders for E 2 list
value and under there is an edditional handling charge of 10 p .

GUARANTEE OF QUALITY

ding that they conform such-re rejects. seconds' or sub-standard merchandise soffered for sale.
Prices quoted do not include V.A.T. for which 10% must be ensure the correctness of information and prices in this advertisement at time of going to press. Prices subject to treration
very effort is mads to ensure the correctness of information and prices in this actvertisement at time of going to press. t Egham address. Dept WW5 S.A.E. with enquiries requiring

RCA PHOTOMULTIPLIER C31005B Checked and tested ….. 537.50 RECTIFIER STACKS

INTEGRATED CIRCUITS

MC3544	E1.10
MC353G	c2.00
MC358AG	
MC365G	0
CA3020	.93p
CA3021	
CA3028A	97p
CA3038A	c2.14
CA3055	¢1.24
CA3085	78p
CD4035AE	¢1.91
CD4017AE	¢3.86
CD4047AD	¢3.8

THYRISTORS

CR10-101B 100v.
CR10. ${ }^{10211051 .00}$
CR10-021 10a..... 51.00
CR10-408 10a..... 8100
CR10-051 100..... 51.00
CR10-017 10a......E1.00

STC 3/40400v. 33.. . 50 D
CONNECTORS
McMurdo Red Range. Plug RP24
McMurdo Red Range. SKT RS32.
Eng. Eloct. Edge. 36 way 0.2 inc
Ultra Gold-plated Contacts. 0.1 inch Type 10 M 54631263 C 38 pair $£ 1.40$
CAPACITORS
20 way pair $£ 1.60$
Daly Electrolytic 9000 uf 40 v . 50p; Wego paper 4 uf 400 v 60p; Dubilier
Metallised Paper Type 426100 uf 150 v . DC 50 p ; R.I.C. type 12971.8 uf 440 v .
AC 35 p . TCC Visconol 0.1 f 1500 y DC 50p.
AC 35p. TCC Visconol 0.1 uf 1500 v . DC 50
MOTORS

E.E. thp 230v. 50 c 1 ph 50 c . 1443 rpm complete with cap 80/100uf 275 v 13.00

3 phase 2 HP motor $60 / 50 \mathrm{c}$.. 1800/1500 RPM. 208/220/440v.......... $\mathbf{E 2 1 . 5 0}$
FANS, CENTRIFUGAL BLOWERS Alrmax Type M1/Y3954 (3 blades) Cast Aluminium alloy Impeller \& casing (corresponds to current type 3965 7t") 230 v . 1 ph 50 c 2900 rpm Class " A " insulation 425 cfm free air weight $9 \frac{1}{2} \mathrm{lbs}$. incl. D.p. 821.00

Woods Aerofoil short casing type "S" impelier incl. p.p. £11-50.
Woods Aerofoil Code 7.5 280K 200/250v. blades incl p.p. E13.50.
Service Electric Hi-Velocity Fans, suitable for Gas combustion Systems. Steam exhausting. Pneumatic conveying, Cooling Electronic equipment, Air blast for Oil burners. Secomak Model 365 (corresponds to 575) Airblast Fan. 440 v 3 ph 50 c 0.75 hp 2850 rpm . continuous 160 cfm 12 in w.g. nett weight 441 b . ${ }_{10 \mathrm{ph}} 50 \mathrm{c} 0.966 \mathrm{hp} 2800 \mathrm{rmm}$ continuous 50 cfm 2 in w.g. net weight 34 lbs . price incl. carr, $\mathbf{£ 2 6} \mathbf{0 0}$. Air Controls type VBL4 200/250v 1ph 50c. 110 cfm free air weight $7 \frac{1}{2}$ bbs price inct. p.p. £14.50.
Type VBL5 200/250v 1 ph 50 c .172 cfm free air. Weight $10 \frac{1}{2} \mathrm{lbs}$, price incl. p.p. £18-50.
Waliam Allday Alcosa Single Stage Vacuum Pump Model HSPOB 8 HG. Rpm 1420. E.E. 3 phase induction motor $1 / 3 \mathrm{hp}$ cont $220 / 250 \mathrm{v}$. $380 / 440 \mathrm{v}$. Class E ins. $\mathbf{E 2 1 . 0 0}$ incl. carriage.
Gast MFG. Vacuum pump 0522-P702-R26X Motor 110/120v. A.C. 1 ph .80 c 1725 rpm . Class E.
635 mm Mercury. Or as compressor 10 psi int. or
15 psi cont. £ $25 \cdot 00$ incl. cerr.
Where p.p. not advised add 10 p per $£$ handling and post (in UK). Cash with order. Pe:sonal callers welcome. Open Mon.-Wed. 9.30-5.00 Fri.-Sat.

W. \& B. MACFARLANE
 126 UXBRIDGE ROAD, HANWELL, LONDON W7 35L

ROGERS

AUDIO TEST EQUIPMENT

A comprehensive, versatile range of test equipment primarily designed for the measurement of high quality audio equipment. but with additional applications in the electronics industry in general. The equipment is of audio engineer, recording studios broadcasting authorities and educational establishments.

DM344A Distortion Factor Meter. Designed to make accurate and rapid measure ments of total harmonic distortion generated within high quality audio amplifiers recording and transmission equipment. Selling Price: Chaseis - £132.50.c/w
S324 Low Distortion Oscillator. Generates a pure sine wave and has been designed
as a general purpose low distortion signal source. The primary application, used in as a general purpose low distortion signal source. The primary application, used in conjunction with the DM344A, is the measurement of total harmonic distortion
AM324 AF Mulv wit
AM324 AF Millivoltmeter. Designed for voltage measurements in the audio and low RF ranges and. principally for measuring low level signals in high impedance circuits
Selling Price: Chassis - $\mathbf{8 4} 9.00$.c/w. Case - $£ 70.00+$ VAT.

Model 'A' Noise Generator. A portable battery operated unit designed for carrying out listening tests on loudspeakers. 'Pink can be continuous or burst. Output is continuously variable. Selling Price: $\mathbb{£ 3 2 . 5 0}$ + VAT.

ROGERS DEVELOPMENTS (Electronics) LIMITED
4/14 Barmeston Road, London SE6 3BN. England
Telephone: 01-698 7424/4340

STEREO IC DECODER

HIGH PERFORMANCE PHABE LOCKED LOOP
(as in 'W.W.' Juiv' 72) MOTOROLA MC1310P EX STOCK DELIVERY

SPECIFICATION
Separation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-18 \mathrm{kHz}$. 1/P level: 560 mV rms
$0 \mathrm{k} \Omega$.
Will drive up to 75 mA stere

MiT COMPRISES FIBREGLASS PCB (Roller tinned), Resistors, I,C., Capactiors, Preset Potm. \& Comprehensive Instructions	$\begin{aligned} & \text { ONLY } \\ & 23-98 \end{aligned}$	WhY Pay MORE? post free.
LIGHT EMITTINO DIODE Suitable as stereo "on' Indicator for above	RED GREEN	28p $69 p$

MC1310P only $\mathbf{E 3} \mathbf{- 1 5}$ plus p.p. 6p

NOTE

A: the supplier of the first MC1310P decoder kit, of which we have sold literally thousande, customers can benefit from our wide experience.

Please add V.A.A.T.
 BURTON ROAD, EGEANTON, DEREY, DHE BYY

WW-111 FOR FURTHER DETAIIS

RELATS APPO TYP要 3000
BUILT TO YOUR SPECIFICATION. HIGHEST QUALITY AT COMPETITIVE PRICES WITH A GUICK DEF LIVERY SERVICE, QUOTATIONS B RETURN HOME AND OVERSEAS
B.P.O. TYPE UNISELECTORS a Level all non bridging 300 ohme $E 14 . \mathrm{we}$ ea.
11 Level 1 bridging 10 non bridging 65 ohme 11 Level 1 bridging 10 non bridging 85 ohm:
E 81.3 ea. 4 pole 50 way all non bridging 75 ohm: E17.38 en. 4
$E 11.33 \mathrm{ean}$.
LARGE STOCKS HELD OF G.E.C. MINIATURE SEALED AND ERICS-
 MINIATURE DIEITAL INDICATOR. SIze of digits \& $1 n_{\text {. }}$ illuminated by 28 volt lamps, reading 0 to 9 with decimal points, quick disconnect at rear of unit for easy lamp replacement. This miniafurized digital display operates on a rear-projection principle, when one of the
twelve lamps at the rear of the unit is lighted, the lamp projects the corresponding digit on the condensing lens through a projection lens on to the viewing screen at the front of the unit, c4.40 ea. lilustrated detalis avallabio.
 ALL PRICES BHOWN INCLUDE CARRIAEE U.K. ONLY AND 10% VAT LONGLEY RD., CROYDONO CRU JLH. Phome M-i, LOMELEY HOUSE, GRME: WILCO CROYDON

P. T. ELEGTRONTPS 267 ACTON LANE, LONDON

MAIL ORDER DEPT./REGISTERED OFFICE/COMPONENT COUNTER

semiconductors

S.C.R.	(3)
CRS1/05	40p
CRS110	${ }^{50 \mathrm{p}}$
CRS1/20	$\ldots \ldots .$. 65p
CRS1/60	. 90p
CRS3/10	. 82p
CRS3120 62 p
CRS3140	. ${ }^{\text {80p }}$
CRS71400 E1.00
CRS $16 / 100$ 85
CRS16/200	... 00p
CRS16/600 81.60
C108B.	. 45p
C106D	. 70p
40669	
TIC44	35p
2N4444	. 61.80

BRIDGE RECTIFIERS	
MDAj32/2 6A. 100V....... 300	
ZENER DIODES	
BzY8s series 400 mW .	
10 Watt range 4.p	
L.E.D.	
TIL209 23p	
HP5082MA2082R	
L.D.R. ORP 12 \qquad en	

ALUMINIUM BOXES	
AB7 2 2i $\times 5 \frac{1}{2} \times 1 \frac{13}{10}$	50p
AB8 $4 \times 4 \times 1 \mathrm{in}$	50p
AB9 $4 \times 2 \frac{1}{4} \times 11 \mathrm{in}$	50p
AB10 $4 \times 5 \frac{1}{4} \times 1 \frac{1}{1} \mathrm{in}$	50p
AB11 $4 \times 2 \mathrm{t} \times 2 \mathrm{in}$	60p
AB12 $3 \times 2 \times 1 \mathrm{in}$	44p
AB14 $7 \times 5 \times 2$ in	34p
AB15 $8 \times 6 \times 3$ in	E1.08
AB16 $10 \times 7 \times 3 \mathrm{in}$	E1-22
AB17 10×4.	E1.08
AB18 $12 \times 5 \times 3 \mathrm{in}$	E1-20
AB19 $17 \times 8 \times 3$ in	E1.80
VEROBOARD	
$0 \cdot 1$	0.15
$21 \times 3 \frac{1}{2} \times 24 \mathrm{p}$	19p
21 $\times 5$ 27p	23p
$3 \frac{1}{2} \times 3 \frac{1}{2}$ 27p	23 p
$3 \frac{1}{} \times 5$ 31p	31p
17×21 32p	68
17×3 3 6.10	87p
17×5 (plain) 98p	90p
Pininsertion tool 67p	57p
Spot face counter 46p	$46 p$
Pk 36 Pins 20p	20p
V.A.T. Unless otherwise stated all prices are EXCLUSIVE of V.A.T. Please add 10% to all orders. Carriage: orders under $£ 5+20 \mathrm{p}$. Over $\mathbf{E} 5$ post free.	

WAREHOUSE
 20-24 BEAUMONT ROAD, W.4.
 SURPLUS COMPONENTS, TEST EQUIPMENT, etc., ete
 THOUSANDS OF BARGAINS

Test Equipment \star Oscilloscopes \star Signal Generators \star Counters Cabinets \star Bridges \star Merers \star Transmitters \star Receivers \star Power Supplies \star Laboratory Equipment \star Galvanometers \star Audio

Motors \star Etc. \star Etc.

20 TONS OF ELECTRONIC EQUIPMENT

Resistors \star Relays \star Capacitors \star Switches \star Transformers Meters \star Potentiometers \star Component Panels \star Semiconductors Regret no lists available. Personal callers only. Cash and Carry only
AUDIO ACCESSORY SHOP
17 TURNHAM GREEN TERRACE,
CHISWICK, W. 4
VALVE AMPLIFIERS

REXINE COVERED SPEAKER CABINETS
Suitable for P.A. or DISCO use; takes 12 in . speaker unit. Size approx. $18 \times 18 \times$ sin. $\mathbf{\Sigma 9 \cdot 0 0}$.
SPEAKER CLOTH
Available in Black or Gre
HEADPHONES
ype H-202 Features Monolsiereo swich, Volume controls on each channe F.
$\mathbf{V} 41$ Vu meter $£ 2.5$
The V41 is cali-
brated -20 to +3
rated -20% to +3
and $0-100 \%$ mak-
ing it suitable for
use as a recording
use as a recording
level meter or as a
level meter or as a
power output indi-
Sator Sensitivity: 130 uA
Sen sitivity: 130 uA
Internal resistance: 600 ohms. Dimensions: $40 \times 40 \times$
29 mm.
Solidev 15 W
Class
B Audio Amp
thick film Circult
E3-85p.
HBA $8005 W$ Audio
I.C. $£ 1.50$. Data
10p.

$\star \star$ SPECIAL OFFERS $\star \star$

MINIATURE MAINS TRANSFORMER.
PRI. 240V. SEC. 12 V .100 mA
Manuf.: Hinchley
SIze: $36 \times 45 \times 40 \mathrm{~mm}$. F.C.
Price: $1-65 \mathrm{p}$. $100-8 \mathrm{el}$ p. ea. $1000-50$ p. ee. $10,000-40 \mathrm{p}$. en.
 0.47 mId . 50 V . MYLAR FILM CAPACITOR Size: $1 \mathrm{in} \times 0.35 \mathrm{in} \times 0.65 \mathrm{in}$

Price: 100-4-8p. ea. $1,000-5 \mathrm{p}$. ea. $10,000-4 \cdot 3 \mathrm{p}$. 0 .
POWER SUPPLY. 12V, $6.5 A$. Stablised Power Supply. Confaing 185 V ,
8.5A. sec. Transformer,
$4 \times 4000 \mathrm{HF} 25 \mathrm{~V}$. Mullard capacltors, $2 \times 2 \mathrm{~N} 3055$ on 2 8.5A. sec. Transformer, $4 \times 4000 \mu \mathrm{~F} 25 \mathrm{~V}$. Mullard capacitors, $2 \times 2 \mathrm{~N} 3055$ on
Redpoint heatsinks, 12A. 120 V . Bridge rectifier, stabllised p.c.b. circuit diagram. The parts aione are worth the asking price of $£ 13$ each inc. carriage.
240V. A.C. SOLENOID. Reversible operation; twin coil. Size: approx. $2 \frac{2}{2} \times$
人xis. Mo mach.
PHILLIPS MINIATURE TUBULAR CERAMIC U.H.F. TRIMMERS.

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

-the lowest prices!

74 Series T.T.L. I.C'S
bi-pak still lowest in price foll specification ajaranteed. all fayous manopacturers

\qquad
Pak No. Contenta

| Packs cannot be epllt. but 25 assorted pleces four mix) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

TEAK VENEERED CABINETS for:

 STEREO 20TC 20. $£ 3.95$ p\&p 30p MK 50 KIT
TC 100. £6.50 p\&p 30p
E.M.I. LEK 350 Loudspeaker E.M.I. LEK 350 Loudspeaker
Systom Enclosure kit in teak veneer, including spapkers. Hec. retail price E45.50 per hec. retail price £45.50 pos
pr. DUR SPECIAL PRICE e35.50 per pair P. \& P. E1 ONLY WHILE STOCKS LAST!

The STEREO 20

DUAL-IN-LINE SOCKETS SPECIAL COMPLETE KIT COMPRISING 2 ALS0's, I SPM 80,1 BMTBO \& I PAIOO ONLY $£ 25.30$ FREE P. EP p
 ALIO/AL20/AL30 AUDIO AMPLIFIER MODULES

FRONT PANEL 4 knobe, Headphoue socket.

on/off switch and neon for PA $100 /$ MK 50 . FPK 10 | on 2.95. |
| :--- |

TRANSFORMERS

POWER SUPPLIES

PA 12. PRE-AMPLIFIER SPECIFICATION

 \begin{tabular}{l|l|l}
AL 10, AL 20 and AL 30 Rudio power ampliflers and it \& Base controi-

can be supptied from their asaciated power aupplies. \& $\pm 12 \mathrm{~dB}$ at 60 H

There are two stereo injuts, one lias heen designell for use \& Treble control-

uith \& $\pm 14 \mathrm{~B}$

at
\end{tabular} $\mathbf{1 4 \mathrm { KHz }}$

 PThe apecfication table. The four
controls are, from left to right:

STEREO PRE-AMPLIFIER TYPE PA100

Built to a apecification and NOT a price, and yet stlll the greasest value on the market. Designed for use with the AL50 power ampliffer syatem, this quality made mult ncorporates no less than eight silicon planar tranaistors,
selected low noise NPN devices for use in the input stages
Three switched stereo inpute, and rumble and scrach fiters are features of the
PAIOO, which aligo has a STE EO/MONO switch, volume, talance and continuously PAl00, which aleo has a sTE日EO
variable bass and treble controts.
£3.25
Fat especially designed to power 2 of the AL50 Amplifiers, up to latest components and circnit techniques incorporating complete ahort
circuit protection. With the addition of the Maina Transformer MT80 the unit will provide outputs of up to 1.5 amps at 35 volts. Size:
$63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 20 \mathrm{~mm}$. These units enable you to build Audlo $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 20 \mathrm{~mm}$. These units enabie you to build Audlo
$\mathbf{S y}_{\text {yatema }}$ of the highest quelity at a hitherto unohtainable price. Also Syatema of the highest applications lneluding: Disco systenis, Public
TRANSFORMER BMT80 £2•15 p. \& p. 25p

Harmonic distortion $\quad \begin{aligned} & \text { better than } 0.1 \%\end{aligned}$
 Radio. Tunter $\quad 30 \mathrm{mV}$ into $50 \mathrm{~K} \Omega \Omega$
Magnetlc P.U. 1.5 mV Into $50 \mathrm{~K} \Omega$
voltagea are for an output of 250 mV .

$\pm 15 \mathrm{~dB}$ at 20 Hz
Basas control
Treble control
Treble control
Filters: Rumble (higb pass)
Scratch (low pasa) Signal/nolse ratio Input overload Supply
Dimensions 100 Hz
8 kHz
8
better than +65 dB
+26 dB +26 dB
+35 volte
+20 mA +35 volts at 20 mA
$292 \times 82 \times 35 \mathrm{~mm}$ only $\mathrm{f} 13 \cdot 15$

 selection of the platic power devlee has
resunteit in a
ranke oi out put jowers trom The teratility of their deaign makes them ineal for use in reconl players, tape recorders, stereo amplifers and chasette and car
tale players in the car and at home.

Parameter	Conditions	Performance
HARMONIC DIBTORTION	$\mathrm{PO}_{0}=3$ WATts $\mathrm{f}=1 \mathrm{KHz}$	0.25\%
LOAD Impedance	-	8-168
INPUT JMPEDANCE	$\mathrm{f}=1 \mathrm{KHz}$	$100 \mathrm{k} \Omega$
FREQUENCY RESPONSE $\pm 3 \mathrm{~dB}$	$\mathrm{Po}=2$ WATTS	$50 \mathrm{~Hz}-25 \mathrm{KHz}$
GENSITIVITY for Rated o/P	$\mathrm{VB}_{\mathrm{B}}=25 \mathrm{~V} . \mathrm{Kl}=8 \Omega \mathrm{f}=1 \mathrm{KHz}$	75 mV . RMS
DIMENSIONS	-	$3^{*} \times 26^{\prime \prime} \times 1^{\prime \prime}$

outllnes the differences in their working conditions.

Parameter	Aldo	A L20	Al30
Maximum Suprly voltage	25	30	30
Power outbut fur 2\% T.H.D. ($\mathrm{RL}=\boldsymbol{N}_{\Omega} \mathrm{i}=\mathbf{1} \mathrm{KHz}$) price	3 watts RMS Min. $82 \cdot 20$	5 watts RMS Min. 32.59	1t) watts tiMS Min. $83 \cdot 3$

Cinod.2
 The design of these cases permits the instrument
 to be built or serviced within their external panels. 48 shapes

Width

Width	Height	Depth	1 off	Width	Height	Depth	10 ff
A $4.5{ }^{\prime \prime}$	$3^{\prime \prime}$	6.5 "	£3.17	M 4.5"	3"	$13^{\prime \prime}$	£3.91
B 4.5 "	7"	6.5 "	£3.91	N 4.5"	$7{ }^{\prime \prime}$	$13^{\prime \prime}$	£4.79
C 4.5 "	$10^{\prime \prime}$	6.5"	£432	O 4.5"	$10^{\prime \prime}$	$13^{\prime \prime}$	£6.07
D $9^{\prime \prime}$	3 "	6.5"	f4.32	P $9^{\prime \prime}$	$3^{\prime \prime}$	$13^{\prime \prime}$	¢4.79
E $9^{\prime \prime}$	$7{ }^{\prime \prime}$	6.5"	¢479	Q $9^{\prime \prime}$	7"	$13^{\prime \prime}$	¢6-07
F 9 ${ }^{\prime \prime}$	$10^{\prime \prime}$	6.5"	f5.52	R 9*'	$10^{\prime \prime}$	$13^{\prime \prime}$	¢7.39
G 13"	$3^{\prime \prime}$	6.5"	¢4.79	S 13"	$3^{\prime \prime}$	$13^{\prime \prime}$	¢6.07
H 13"	7"	6.5"	£5.52	T 13"	7"	$13^{\prime \prime}$	¢7.39
I $13^{\prime \prime}$	$10^{\prime \prime}$	6.5"	¢6.07	$\cup 13^{\prime \prime}$	$10^{\prime \prime}$	$13^{\prime \prime}$	¢8.95
J 18"	3 "	6.5"	¢5.52	$\vee 18^{\prime \prime}$	$3^{\prime \prime}$	$13^{\prime \prime}$	¢7.39
K 18' ${ }^{\prime \prime}$	$7^{\prime \prime}$	6.5"	¢7.39	W1818	7"	$13^{\prime \prime}$	¢8.95
L 18"	$10^{\prime \prime}$	6.5"	¢8.95	$\times 18^{\prime \prime}$	$10^{\prime \prime}$	$13^{\prime \prime}$	¢10.70

Woodgrain: D@£4.79, E \& G @ f5.52, H@ £6.07.
Prices correct to
May31.
WEST HYDE DEVELOPMENTS Ltd, Ryofied Cres., Northwood Hills, Northwood, Middx HAG 1NN.
WEST HYDE DEVELOPMENTS Ltd, Ryefied Cres., Northwood Hills, Northwood, Middx HAG 1NN.
$\begin{array}{ll}\text { Ted: Northwood } 24941 / 26732 & \text { Write or 'phone for new free catalogue. Talax: } 923231\end{array}$
Available in a range of six sizes in 21-gauge exture. Front panels hite Zintec steel PVC/Aluminium
new BOLTON COVENTRY SUNDERLAND STOCKPORT DONCASTER \& PRESTON
BIRMINGHAM ${ }^{30-31}$ Gt. Western Arcade
(Closed Wed.) Tel.: 236
1279 BOLTON 23 Deansiate
ERADFORD 10 North Paraded (Closed Wed. Wed. COVENTRY 17 Shellon Square The Precinct DARLINGTON 19 Northgate (Closed Wed.) DERBY 97 St. Peter's Street
DONCASTER 3 (Cesed Wed.) Tel: 41361 EDINBURGH 101 Lothian Road (Closed Thus.). GLASGOW 326 Argyl St. (Closed Tues.) LEEDS 5-7 County (Mecca) Ar cade, Brigote LEECESTER 32 High St. (Closed. Thurs.) LIVERPO MANCHESTER 60a Oldham St.(Closed Wed MIDDLESBRO 106 Newport Rd (Closed Wed.)

HUGE DISCOUNTS ON LEADING BRAND HI-FI AKAI TAPE UNITS Rec. Price

GXC 36D	$£ 76.95$	$£ 112.75$	GXR 82D	$£ 89.95$	Rec. Price							
GXC 38D	$£ 99.95$	$£ 139.90$	4000 DS	$£ 95.95$	$£ 124.90$							
GXC 36	$£ 89.95$	$£ 125.50$	1721 L	$£ 86.95$	$£ 120.75$							
GXC 40T	$£ 135.95$	$£ 189.50$	CR 81D	$£ 69.95$	$£ 84.10$		GXC $40 T$	$£ 135.95$	$£ 189.50$	CR 81D	£69.95	£84.10
:---	:---	:---	:---	:---	:---	GOIDRING GL72T1 £160-50 £1 Carriage All Akai Models GOLDRING GL72 T/Table \& PU with G800 approx. val. £47-30 $£ 29.95$ Carr. 75p GOLDRING GL75 T/Table \& PU with G800 approx. val. £67.20 £34.95 Carr. 85p TURNTABLES with MAGNETIC CARTRIDGE, PLINTH \& COVER GARRARD SP25 MKIV with G800 or G850 SPECIALPRICE $£ 19.95$ Carr. £1						

MACDONALD MP60 with G800 or 850 SPECIAL PRICE $£ 18.95$ Carr. £ 1 GARRARD AP76 with G800 GOLDRING GL75 with G800 SPECIAL PRICE £28.95 Carr. £1 WHARFEDALE 150 DYNAMIC H/PHONES WHARFEDALE DENTON SPEAKERS WHARFEDALE LINTON SPEAKERS LEAK 150 LOUDSPEAKERS PECIAL PRICE £39-95 Carr. £1 LEAK 250 LOUDSPEAKERS E 1.95 Pair (List Price $£ 24.05$)
(List Price $£ 43.09$) £38.95 Pair (List Price £53.35) $\mathbf{£ 3 1 . 9 5}$ Pair (List Price £51.30) INEAR $£ 42.50$ Pair (List Price $£ 60.86$) WHARFEDALE DENTON TUNER AMP 24.75 (List Price £39.93) Carr. 45p WHARFEDALE DENTON TUNER AMP 559.95

Low Deposit Terms over 8 Months. Prices correct at 19.4.74.

FANE ULTRA HIGH POWER LOUDSPEAKERS

FANE SPEAKERS 'POP' 25/2
 Dep. \&2. 80 and 8 monthly paymente B.SC. MAINS TRANSFORMERS

FULLY GUARANTEED. Interleaved and Imprec
 $250-0-260 \mathrm{v} ., 60 \mathrm{~mA}, 6.3 \mathrm{v}$
FULLI SHROUDED UPRIGHT MOUNTING
$250-0-280 \mathrm{v} .60 \mathrm{mAA}, 6.3 \mathrm{v} .2 \mathrm{a} ., 0-5-6.3 \mathrm{v} .2 \mathrm{a}$.
$250-0.250 \mathrm{v}, 100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a},+0-5-6.3 \mathrm{v} .3 \mathrm{a}$

For Mullard 510 Amplider.
 $425-0-425 \mathrm{v} .200 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} . \mathrm{c}, \mathrm{t}, .5 \mathrm{v} .3 \mathrm{az} . \ldots$
 $50-00-250 \mathrm{v} 70 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a} .0 \cdot 5-6.3 \mathrm{v}$ TYPE $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .3 .5 \mathrm{~s} . \ldots$. $250-0.250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}, 2 \mathrm{a}, 6.6 .3 \mathrm{v} .1 \mathrm{l}$
 $500-0-250 \mathrm{vv} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v} .3 \mathrm{a}$.
$300-0-300 \mathrm{v}-100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} ., 0-5-6.3 \mathrm{v} .3 \mathrm{~s}$. $300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v}$. 4 a. . .t.t. 6.3 v .
Suitable for Mullard 510 Amplifier $500-0-350 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}$ Amplifier
 FILAMENT or TRANSISTOR POWER PACK Typea
$6.3 \mathrm{v} .1 .5 \mathrm{~s} .55 \mathrm{p}, 6.3 \mathrm{v}$. 2 a . $60 \mathrm{p} ; 6.3 \mathrm{v}$. 3 a . 85 p

UTO (Step UP/8itep DOWH) Transforme

Btandard Pentode $5,000 \Omega$ to $7,000 \Omega$ to 3Ω
 5,8 or 160

Puah-Pull Ulita Linear for Mullard B10, ete $6 \mathrm{~L} 6 \mathrm{KT66}$, etc., for 3 or 15Ω. wound ELa4, 6L.6, KT66, otc, to 3 or 150

HI-FI SPEAKER SYSTEMS

Audlotrine 121 K . 12 in. 15 watt. 11.000 Gause response and wide frequency range ensur Audiotrine $125 \mathrm{~K} \quad \mathrm{~K} / 95$

HI-FI SPEAKER ENCLOSURES

Acouatically lined. All sizes approx. IE8 $16 \times 11 \times 9 \mathrm{in}$. Pressures approx $8 \mathrm{ln} . \mathrm{Hi}_{1} \mathrm{Fi}$ Speal $45 \cdot 50$ ith for optimum resul 810 outstanding performance with $\mathbf{1 0}$ - 1 $10-\mathrm{in}$. speaker. $25 \frac{1}{2} \times 16 \times 9$ in. Ported. $\mathbf{E 6 . 7 5}$ $2 \mathrm{in} . \mathrm{Hi}-\mathrm{Fl}$ speater and T
67.95

FANE 807T HIGH FIDELITY SPEAKER 8" 10 WATT ound quality in suiftable enclosure Roll P.V.C. cone surround and long
throw roice coil to achieve hrow roice coil to achieve very low
fundamental resonange of 30 Hz Tweeter cone extends high note
 MODEL 803T $8^{* \prime} 15 \mathrm{w}$. Whith parasitic Tweeter.
 AUDIO FIDELITY RR1 SPEAKER KIT Response
15 kHz .
Rating 5 watts in sealed
nelosure \quad Imp. $8-15$ ohms. ${ }^{8 \prime}$ Bass Unit with aurround for ontra
ow resonance.
Pressure Tweeter. Printed Circuit. Inductive apacitive Croso-over. Damping Material SPECIAL DFFER fl4.99 pr. Carr. 50p

MRA PIDELITY SPEAKERS
AUDIOTRINE RANGE
hasnets. Plastiflex cone surrounds. "D " or " "T ndicates Tweeter cone providing frequenc range up to 15 K ow cost.
Please state Please state
mpedance required
3 or $8-15 ~ o h m . ~$

\qquad

An \square BARCLATCARD AD ACCE8 any braneh or phone

LEMANIA AIRCREW CHRONOGRAPHS. Stainless Steel case with screw back; luminous hands and markings. One fifth sec. sweep hand controlled independently of main movement by press to start, stop and return to zero button. 15 jewel mos are as Many of these watches are as new but all have been completely overhauled and checked hite face $£ 18 \cdot 55$, Black face $£ 19.50$ inc. P.\&PP. Inspectlon woelnst remittianee
G8 WATCHES all with brushed ztainiess siegi case with screw back and black faces. Wanulactured by etc. to a standard
TIMOR, GRANA, WC, RECORD, SMITHS specification. We will try to meet your reaulrements for specific manutactured and wuantity ordere wlll be of one manutac-
onder Lurer's, inc. Production. Compre We alno have limited quantitien of theas watches by OMEGA.
ONGNES. BURN. JAEGER LE COULTRE at 15 IS 50 Inc. P. \& P.

MIL SYNCHROS AVAILABLE EX-STOCK
in zizee 08, 11, 15, 16, 18 and 23 for 50,60 and 400 Hz operation.
Synchro Controi Transformers
Synchro Control Tranamitiers Transmitters
Synchro Torqua Transmitters and Recalvers Synchro Rosolvers
GAS CHROMATOGRAPHY RESEARCH OVEN
PV larsi/ cesp Acity oven of low thermal mass for use between 35 ${ }^{\text {and }} 1000$ changes of air per min. The oven has forced air cooled
 IONISATION AMPLIFIER PVAE7S
A modern high orade elow noise silld a tate ampliffer to foed a potentiometer recordier. io 100 mV . Linearity 0.1% f.s. Noiee less

 C.palis: of the available these thres and other oas chromatography (cems are
asper (C.W.O. only) Handbooks (complete) Avallable. ALL PRICES INCLUDE 10% V.A.T.

PLESSEY GROUND BASED U.H.F. GROUND/AIR TX/RX PLESSEYGROUNDBASED U.H.F. GROUND/AR TXIRX
FOR EXORT ONLYOR EALE TO LICENSED USERS. This equipment comprizes:

Cooier Unit $5880-90-932-3905$. . These asembie into a tree standing rack unit providing U.A.F.F.
communicatione over 250 to 3999 MHz, the TXAAmpliffer Unif giving 100 Wants R.F. . output into 50 Ohms. We have sufficient of these units to form 12 complete instailitions with a number
of apare sub-units. All are ouaranteed new and unu sed. Fulf of spare sub-unts.
detaile on requeat.

MANUFACTURERS!!

Servo and Electronic Sales Ltd
Poot Orders and Technical onquiries to: 24, HIGH ST., LYDD, KENT. Lydd 20252 (STD 0679) TELEX 965265

OVER 300,000 IN STOCK! Multiway and R.F. Connectors by twenty different companies! Send us your detailed requirements quoting Nato numbers if known. TELEX 965265.

 facilitioes.
TELEPRINTER PAPER. Standard rolis 1 ply e3:30 per doz.

TAPE STORAGE CANS. Brand new finlshed stoel can origigally Intended ior 18 mm fim but Ideal for storing 7 in . reele
of tape. Our last supply of these Itemi was quickly exhauated at sope each but as a result of a massive new purchase we ca
 POLARAD WIDE RANGE DISPERSION SPECTKUUM POLARAD WIDE RANGE DISPERSION SPECTRUM
ANALYER COVVring 10MHz to 40 :B8KMHz. Model SA EAW ANALYSER covering 10MHZ io to sen SHZ.E. (Foolscap) for information.
ETHER ELEECTROMETHODS LOW INERTIA INTEE-
GRATING MOTORS. AvaIlable ex-stock at extremely low GRATING mOTORS. Avallable ex-stock at extremely low Prices. Motore for b, 12 and 24. operalion Full detalls and price on application INDUCTION GENERATOR
Requires a supply yoltage of $50 \gamma 50 \mathrm{~Hz}$ and provides an out of $7 v$ per 1,000 r.p.j.m. directly proportional to speed. This instrument has a wide varicty of applications. o. s., anemmometers.
measuring shaff speed etc. In brand new col paid. paid.

DRY REED INSERTS

Overall length 1.85 in . (Body lenath 1.1 in .) Dlameter 0.14 in . to
 All car doz.; ca. 42 per
Heavydutytype(body length 2 in .) diameler 0.22 in. to switch up to 1A. at up to 259. A.C. Gold clad contacts. 81.37 per dop. ${ }^{2}$
 All carriage paid U.K.
Oparating Mapnets 51 p per doz.; $\varepsilon 4 \cdot 40$ per 100; $£ 38 \cdot 50$ per 1000. Ail cartiage paid fi.K i2v supply to accept up to four standard

Z \& I AERO SERVICES LTD.

THE MANAGEMENT ANNOUNCES WITH REGRET THAT DUE TO RISING COSTS AND STAFF SHORTAGES OUR MAIL ORDER SERVICE WILL HAVE TO BE CURTAILED. NO MAIL ORDERS WILL BE ACCEPTED BELOW £5.00 PLUS VAT, I.E. $£ 5.50$ VAT PAID. OUR EQUIPMENT WILL STILL BE AVAILABLE TO PERSONAL CALLERS ONLY AT OUR RETAIL BRANCH, 85 TOTTENHAM COURT ROAD AND TRADE COUNTER, 44A WESTBOURNE GROVE, W2, WHERE THE ABOVE LIMIT WILL NOT APPLY, MINIMUM ORDER CHARGE FOR ACCOUNT CUSTOMERS IS £10.00.

AC/DC TAUT SUSPENSION MULTIMETERS - MADE IN USSR

U4312; 39-ranges $A C / D C$ Volts and Amps Sensitivity 667 o.p.v.
Accuracy $1 / 1.5 \%$ £9.75 U4313: 31 .ranges $A C / D C$ Volts and Amps. Sensitivity 20.000 o.p.v. 2.000

$1.5 / 2.5 \%$ o.p.v. Accuracy | | |
| ---: | :--- |
| 10.50 | |

U435: 30-ranges. AC/DC Volts and Amps.
20.000 o.p.v. Accuracy $\begin{array}{lr}\text { 2.p.1. } & \text { Accuracy } \\ \text { 2.5/4\% } & £ 8.75\end{array}$
 and current coltage erage plus transistor tester giving current gain
measurements from 10 to 350 . Sensitivity $16.700 /$
3.300 o.p.v. Accur
acv $2.5 / 4 \%$ £ 10.50

U4317. 42-ranges AC DC Volts and Amps. Sensitivity
4.000 o.p.v. Mirror scale. Transistorized high-speed trigger protection. Mirror scale Accuracy $\quad 1.5 / 2.5 \%$
 U4323; 22 ranges $A C / D C$
Volts. DC Amps only. Sensitivity 20.000 o.p.v. Built.in AF/IF oscillator. giving signal at 1 KHz and 465 KHz . Accuracy 5% £7.00

DUR NEW 1973/1974 CATALOGUE DF VALVES, SEMICDNOUCTORS, PASSIVE COMPONENTS ANO TEST EQUIPMENT IS NOW READY. PLEASE SENO f0.15 FOR YOUR COPY. EXPORT PRICE LIST AVAILABLE TO BONA FIOE FOREIGN CUSTOMERS.

44a WESTBOURNE GROVE, LONDON, W. 2
Tel: 727 5641/2/3 Cables: ZAERO LONCON
Retail branch (personal callers only)
85 TOTTENHAM COURT RD.,
LONDON W.2. Tel: 5808403

WE WANT TO BUY:
special purpose valves. please offer us YOUR SURPLUS STOCK. MUST BE UNUSED.
C.A.A. Approved for inspection and klystrons, etc.

SPECIAL OFFER
 THE
 "WIRELESS WORLD WALLCHART

OF
 FREQUENCY ALLOCATIONS"
 PRICED 30p

including VAT, postage and packing in a dispatch tube.

Normal price 80p

The chart can be purchased with a coupon worth 50p and available only in the June issue or, without the coupon for 80 p including VAT, postage and packing in a dispatch tube. The electromagnetic spectrum from 3 kHz to 300 GHz is scaled on eight logarithmic bands contaińing fifteen main categories of transmissions identified by colours. All the important spot frequencies are marked as well as "special interest" frequencies. This chart is compiled from information provided by the ITU and applies specifically to the U.K. and Europe.
Cheques payable to IPC BUSINESS PRESS LTD., and should be sent to IPC ELECTRICAL ELECTRONIC PRESS LTD., GENERAL SALES DEPT., ROOM 11, DORSET HOUSE, STAMFORD ST., LONDON SE1 9LU.
THIS OFFER CLOSES JULY 1st 1974.

TRANSISTORS				${ }_{\text {Trpe }}$	$\begin{aligned} & \text { Price (t) } \\ & 0.25 \\ & 0.30 \end{aligned}$	Type BU205 BU207	$\begin{array}{r} \text { Price (} 6 \text {) } \\ 1.98 \\ 3.00 \end{array}$	$\begin{aligned} & \text { Type } \operatorname{Pr} \\ & \text { 2N33794 } \\ & \text { 2N3819 } \end{aligned}$	$\begin{aligned} & \text { Price (}() \\ & 0.20 \\ & 0.35 \end{aligned}$	DIODES		$\begin{array}{ll} \text { Type } & \text { Price }(f) \\ \text { BB105G } & 0.35 \\ \text { BR100 } & 0.50 \end{array}$	RECTIFIERS	
Type	Price (f)	Type	Price (E)	${ }^{\text {BFF } 127}$						Type	Price (t)			
AC107	0.35	BC148	0.12	${ }^{\text {BFF } 58}$	0.25	BU208	3.15	2 23823	1.45	AAII9	0.09		Type IN 4001	cice ((6) 0.05
AC117	0.24	BC149	0.14	BFF59	0.27	BU209	2.55	2N3904	0.16	AA129	0.20	BY126 0.16	IN 4002	0.06
${ }_{\text {ACl }}{ }^{\text {ACl26 }}$	0.25 0.25	${ }^{8 C 152}$	0.25	BFI60	0.22	CRS1/40	0.45	2 N 3905	0.18	AAZI3	0.30	BY127 0.17	IN4003	0.07
${ }^{\text {ACl2 }} 12$	0.25	BC153	0.20	${ }^{\text {BFFI61 }}$	0.45	ME6001	0.16	2N3906	0.15	BAIO2	0.25	$\begin{array}{ll}\text { BY133 } & 0.23\end{array}$	in 4004	0.08
AC128	0.25	BC154	0.18	${ }^{\text {BFF }} 163$	0.45	ME6002	0.17	2N4036	0.52	BAllou	0.30	0 O47 00.07	IN4005	0.09
ACI41K	0.27	BC157	0.15	${ }^{\text {BFI }} 167$	0.25	ME8001	0.18	2N4046	0.35	BA115	0.12	OA81 $\quad 0.10$	1N4006	0.11
ACl42K	0.19	BC158	0.13	${ }^{\text {BFI } 173}$	0.25	MJE340	0.68	2N4289	0.20	BA145	0.17	OA90 0.08	- N 4007	0.14
	0.20	BC159	0.15	BFI77	0.30	MJE341	0.72	2N4291	0.18	BA148	0.17	OA91 0.07	IN5400	0.15
${ }^{\text {ACl }} 176$	0.25	BC1678	0.15	${ }^{\text {BFIT8 }}$	0.33	MJE370	0.65	2 N 4292	0.20	BA154	0.13	OA95 0.07	in5401	${ }_{0}^{0.17}$
${ }^{\text {ACl }} 187$	0.25	BC168B	0.13	BF179	0.33 0.35	MJE520	0.85	2 N 5296	0.37	BA155	0.16	OA200 0.10	in5402	0.20
AC188	0.25	BC169C	0.13	BF180	0.35 0.33	MJE521	0.95	2 N 5298	0.38	BA156	0.15	IN914 0.07	ins 503	0.22
ACl93K	0.30	BC170	0.15	${ }^{\text {BFIP1 }}$	0.33 0.44	MJE2955	1.20	2 N 5457	0.30	BA157	0.25	IN4148 0.05	ins 404	0.25
ACl94K	0.32 0.68	BC 171 BCI 72	0.15 0.14	BF183 BFI 184	0.44 0.26	MJE3055	0.74 0.40	2N5458 2N6027	0.35 0.65	BAX13 BAX 16	0.25 0.07 0.07	$\begin{array}{ll}\text { IN4448 } \\ \text { I } 544 & 0.10 \\ 0.07\end{array}$	ins405	0.27 0.30
ADI40	0.50	${ }_{\text {BC173 }}$	0.20 0.20	BFI85	0.26	$\bigcirc{ }^{\circ} \mathrm{C} 28$	0.65			BA 16 BB105B	0.07 0.45	$1544 \quad 0.07$	IN5406	0.30
ADI42	0.52	BC176	0.16	BF194	0.15	OC36	0.55							
ADI49	0.50	BC177	0.20	${ }^{\text {BFI } 195}$	0.15	OC44	0.15	7ENER	D					
AD161	0.38	${ }^{\mathrm{BC} C 178}$	0.20 0.20	BFI96 BF197	0.15 0.17	OC45	0.15	ZENER	D			"SCORPIO" IGN	N KIT	
AFII4	0.38 0.25	${ }_{\text {BCI }}$	0.20 0.11	BFI98	0.20	0 C 71	0.15 0.15	400 m	W)	11 W		Modified version	is well-k	nown
AFII5	0.25 0.25	BC183	0.11	BF199	0.25	${ }^{\circ} \mathrm{C7} 2$	0.15	3.0 V	33 V	. 3 V		sion, etc. Com		
AFII6	0.25 0.20	${ }_{\text {BCI }}^{\text {BCIB4L }}$	0.11 0.13	BF20 BF22	0.35 1.08	OC75	0.25 0.25		AND	ALUES)		tors and fid	inst	
AFIIB	0.20 0.50	${ }_{\text {BC1 }} 186$	0.25	BF240	0.20	OC81D	0.30							
AFI39	0.25 0.35	${ }_{8 C 187}$	0.25	BF241	0.20	OC139	0.28	MINIA	ATURE			THIS MONTH'S		
AFI47	0.35	BC212L	0.12	BF244	0.18 0.45	$\bigcirc{ }^{\circ} \mathrm{CLI70}$	0.25	BRIDG	GE R	TIFIERS		TAAS50 i.c. $1+$		450
AFI78	0.55	${ }^{\text {BC2 }}$ 13L	0.12	BF256 BF257	0.45 0.49	OCLİ	0.30 0.65	PIV		4AFS		1.c. $100+$	500+	38p
AF180	0.50 0.40	BC214L BC261	0.15 0.28	${ }^{8 F 258}$	0.66	R2008B	2.05	50 V	0.35	0.38	6.43	PAL Chroma Delay	es:	
ALl00	1.10	${ }^{\text {BC2 }} 263$	0.28 0.25	BF259	0.93	R2010B	$2 \cdot 10$	100 V	$0 \cdot 38$	0.43	0.49	Type DLIE		
ALI 02	1.10	${ }^{\text {BC }} 300$	0.58	BF263 BF3	0.70 0.35	TIP31A	0.65 0.67	200V	0.41 0.45	0.48 0.40	0.60 0.71	RCA (UK) Deflectio	Conver	
AL103	$1 \cdot 10$	${ }^{\mathrm{BC} C 303}$	0.60	${ }^{\text {BF539 }}$	0.75 0.70	TIS ${ }_{\text {T3 }}$	0.67 0.30				0.71	Coils (19	4.85	
AU103	1.40	BC308 BC 309	0.62 0.15	BFT43	0.55	2N706	0.12	INTEG						
AUl10	1.10 0.12	BC309 BC360	0.95	BFW10	0.55	2N706A	0.15	INTEG	AT	CIRC		PLEASE ADD 10	FOR V	A.T.
BC108	1.12 0.12	BC433	0.36	BFX29 BFX 30	0.30 0.35	2N916	0.20 0.42	${ }_{\text {Type }}{ }_{\text {CA3065 }}{ }^{\text {Pr }}$	Price (t)	${ }_{\text {Tras }}^{\text {Trpe }}$ Pr ${ }^{\text {Pri }}$		P. \& P.: OVERSEAS AIR		
BC109	0.13	BD115	0.65 0.98	BFX84	0.25	2N918 2 N 1304	0.42 0.21	MC1310P	2.94	TBA5400	2.21		PER	DER
${ }_{\text {BC1 }}^{\text {BC13 }}$	0.14 0.13	- ${ }^{\text {BD } 123}$	0.98 0.80	BFX85	0.26	2N1305	0.21	MC1351P	0.75	TBA550Q	3.29	All items adverti	ex-stac	
BC114	0.20	${ }^{8 D 131}$	0.45	${ }_{\text {BFY }}$	0.24 0.25	$2 N 2646$ 2N2044	0.53 0.22	MCI358PQ	Q $\begin{aligned} & 1.80 \\ & 0.58\end{aligned}$	tBas60C	2.71	magazine copy da	rices	bject
${ }^{8 C 115}$	0.20	${ }^{\text {BDI }} 132$	0.50 0.40	BFY51	0.23	2N2904A	0.26	TAA300	1.46	TBA673	1.80	to availability. P		
BC116	0.20	BDI35 BDI 36	0.40 0.46	BFY52	0.23	2N2905	0.72	TAA320	0.94	tBA700	1.90			
BC1 BC1 25	0.20 0.22	BDI $\mathrm{BD7}$ 185	0.48	BFY90 BPX25	0.70 1.65	${ }_{2} \mathbf{N} 2 \times 2926 \mathrm{G}$	0.13 0.12	TAA350	1.54	TBA7200	2.20			
BC126	0.20	BD138	0.50 0.55	BPX 29	1.60	${ }^{2} \mathrm{~N} 3019$	0.75	TAA550	${ }_{1}^{1.39}$	TBA800	1.54 1.75			
${ }^{\mathrm{BC} C 132}$	0.15	BDI39 BDI40	0.55 0.62	BPX 52	1.75	2N3053	0.21	TAA630Q	3.29	TBA920Q	3.29			
BCl 34 BCl 35	0.20 0.15	BDI 40 BD234	0.62 0.75	BRY39	0.40	2 N 3054	0.55	TAA700	3.30	TBA990	3.29			
BCl136	0.20	BDX32	2.55	BSY56	0.30 0.80	${ }_{2}{ }^{2} \mathbf{N} 33914$	0.60 0.23	TAAB40 TAD100	1.42	TBA9900	3.29 3.30 3.			
BC137	0.20	BDY18	1.78	BT106	0.99	2N3706	0.10	TBA240A	0.88	SL9178	3.80			
BC138	0.20	BDY20	0.99	BU105/02	1.95	2 N 3771	1.70	TBA4800	1.24	PA263	1.63			
	0.30 0.35	BFIIS BFI21	0.20 0.25	BU108 BU126	3.25 1.93	2N3772	1.90 2.90	TBA5200	${ }_{2}^{2.72}$	ZN414	1.25	CALLINGT		
BC147B	0.13	${ }_{\text {BFI } 23}$	0.28	BU204	1.98	2N3790	4.15	TBA530Q	1.98	709C(TO99)	0.70 0.45	CORNWALL	178	

Tested and Guaranteed Paks

879	4	1 N4007 Sil. Rec. diodes 1.000 PIV lamp plastic	55p
881	10	Reed Switches $1^{\prime \prime}$ long $1^{\prime \prime}$ dia High speed P.O. type	55p
	100	Mixed Diodes, Germ. Gold bond etc. Marked and Unmarked	
нз8	30	Short lead Transistors. NPN Silicon Planar types	
н39	6	ntegrated circuits. 4 Gates BMC 962. 2 Flip Flops BMC 945	5 p
H41	2	Power Transistors Comp. Pair BD $131 / 132$	
H63	4	2N3055 Type NPN Sil. power tran sistors. Below spec. devices	55p
	4	40361 Type NPN Sil, transistors TO-5 can comp. to H66	55p
	4	${ }_{\text {a }}^{40362 \text { Type PNP Sil. ran }}$ T0.5 can comp.	55

Unmarked

Untested Paks

81	50	Germanium Transistors PNP, AF and RF.	55p
866	150	Germanium Diodes Min glass type	55p
884	100	Silicon Diodes DO-7 giass Equiv. to OA200. OA202	55p
886	100	Sir. Diodes sub. min IN914 and IN916 types	55p
H16	15	Experimenters Pak of Integrated Circuits. Data supplied	55p
H46	40	NPN Silicon Trans. 2N3707-11 range, low noise amp.	55p
$\stackrel{\text { H34 }}{ }$	15	Power Transistors. PNP, Germ. NPN Silicon TO-3 Can. P\&P5p extra.	55p
H67	10	3819 N Channel FETs plastic case type	55p

Make a rev counter

for your car
The TACHO BLOCK. This encapsulated block will turn aniy 0-1mA meter into a linear and accurate rev. counter

£ $1 \cdot 10$ each

Ex GPO Push-button Intercom Telephones

Exactly as internal telephone systems still in everyday
use where automatic internal exchanges have not yet taken over. Available in 5. 10 or 15 ways. Complete with circuits and instructions. Necessary 22 p per yard. Price of each instrument is independent

£2.75

Cable can be sent by Parcel Post. Post and Packing EXTENSION TELEPHONES $71 \frac{1}{2} p$ each p.p. $27 \frac{1}{2} p$. $£ 1.37 \frac{1}{2}$ for 2 p.p. $55 p$ p.
phones are extensions and do not contain bells.
Electronic Transistor Ignition £6.60 Roady buitat and tosted Unit c9.90 incel. VAT Now in kit form, we offer this "up-to-the-minute"
electronic ignition system. Simple to make. Full instructions supplied, with these outstanding features: transistor and conventional sinitchablity.
burglar-proof lock-up and automatic alarm. negative and positive compatibility.

New X-Hatch

 Our new, vastly improved Mark TwoCross-Hatch Generator is now available. Featuring plug-in ICs and more sensitive sync. pick-up
circuit. The case is virtually unbreakable-ideal for the circuit. The case is virtually unbreakable-ideal for the
engineer's tootbox-and only measures $3^{\prime \prime} \times 5 \hbar^{\prime \prime} \times 3^{n \prime}$ We have already received a large order from a major TV Rental company
Ready buith
unit only
E
Complete
kit 8.92
(includes VAT and P \& P , but no batteries)
Over 1,000,000 Transistors in stock

We hold a very large range of fully marked. tested and guaranteed Transistors. Diodes and Rectifiers at very
competitive prices. Piease send for Free Catalogue.
Our very popular 4 p Transistors
TYPE "A" PNP Silicon alloy. TO- 5 can.
TYPE " B " PNP Silicon, plastic encapsulation.
TYPE "E" PNP Germanium AF or RF,
TYPE "F" NPN Silicon plastic encaps
TYPE " "F" NPN Silicon plastic encapsulation.
TYPE "G" NPN Silicon, similar Z1X 300 rang
TYPE " ${ }^{\prime \prime}$ " PNP Silicon, similar 21×500 range

High-speed magnetic counters

Plastic Power Transistors

NOW IN TWO RANGES

These are 40W and 90W Silicon Plastic Power Transistors of the very latest design. available in NPN or
PNP at the most shatteringly low prices of all time. We have been selling these successfully in quantity to all parts of the word and we are proud to offer them under our Tested and Guaranteed terms.

$$
\begin{aligned}
& \text { RANGE } 1 \text { VCE. Min. } 15 \\
& \text { HFE. Min. } 15
\end{aligned}
$$

40 Watt
90 Watt
$\begin{array}{lll}22 \mathrm{p} & 20 \mathrm{p} & 18 \mathrm{p} \\ 26 \frac{1}{2} \mathrm{p} & 24 \frac{1}{2} \mathrm{p} & 22 \mathrm{p}\end{array}$
90 Watt 2 RANGE Min 40
RANGE 2VCE. Min 40
HFE. Mir. 40
$\begin{array}{llll} & 33 p & 31 p & 29 p \\ 90 \text { Watt } & 338 & 36 \frac{1}{2} p & 36 \frac{1}{\mathrm{p}} \mathrm{p} \\ \text { Watt } & 33 \mathrm{p}\end{array}$ Complementary pairs matched for gain at 3 amps. 11 extra per pair. Pisase state NPN or PNP on order
LM380 AUDIO I.C.
as featured in Practical Wirefess. December issue.
complete with applization data $\mathbf{E 1 . 1 0}$
INTEGRATED CIECUITS
We stock a large range of I.Cs at very competitive prices from 11 p each). These are all listed in our FREE Catalogue. see coupon below.
METRICATION CHARTS now available
This fantastically detailed conversion catculator carries thousands of classified references between metric and
British land U.S.A.) measurements of length. area. volume. liquid measure. weights etc.

```
Pocket Size 15p. Wall Chart 18p
```

LOW COST DUALIN LINEIC. SOCKETS $\left.\begin{array}{l}4 \text { pin type at } 16 \frac{1}{2} \text { peach } \\ 6 \text { pin type at } 18 p \text { each }\end{array}\right\}$ Now new low profile type.

Books
ction of Reference and Technical
Books in stock.
BUMPER BUNDLES
These parcels contain all types of surplus electronic
components. printed panels. switches, potentiometers,
2 LBS in weight for $£ 1 \cdot 10$

Our famous P1 Pak

is still leading in value
Full of Short Lead Semiconductors \& Electronic
Components. approx. 170. We guarantee at least 30 really high quality tactory marked Transistors PNP
\& NPN and a host of Diodes B_{1} Rectifiers mounted on \& NPN and a host of Diodes \& Rectifiers mounted on
Printed Circuit Panels. Identification Chart supplied Printed Circuit Panels. Identification Chart supplied 11 p \& \& P on thit Pak.
Please ask for Pak P.1.only $5 \mathbf{5}$
Please send me the FREE Bi-Pre-Pak Catalogue.

NAME
ADDRESS

MINIMUM ORDER 50p CASH WITH ORDER PLEASE Add 11ρ post and packing per order. OVERSEAS ADD

SIGNAL GENERATOR TYPE
A precislon HFIVHF slonal generator em bodying facilities seldom found or con tained $/ \mathrm{A}$ one instrument, namely
of CW/AM/PM and swoet carrler, in the
frequency range 10 to 40 MHz. Some of the features of the instrument are: AUTO.
WATIC FREQUENCY STABILISA. TION (iocks output signal to selected TROL (holds output constant $\pm 1 \mathrm{db}$ precise tuning between crystal check points) MARKERS (for S.F.M.)
BRIEF SPECIFICATION: Frequency 10 to
440 MHz, RF output 0.224 V at 50 ohms. Modes 440 MHz , RF output 0.224 V at 50 ohms. Modes
of operation $\mathrm{CW}-\mathrm{HI}, \mathrm{CW}, \mathrm{CW}$ (calibrated and stabllised), $A M-400 \mathrm{~Hz}$ and 1 kHz and
 750 \& 750 kHz dev. resp., P.M. -50 to 5000 ppe
at 1 to $30 \mu \mathrm{sec}$. width int. or ext. 150 to 5000 Hz rep rate, 3 meters for; mod. and dev.' fre-
quency discrimination pulse level output. quency discrimination pulse level output. price on application.

Sel250W MEDIUM WAVE BROAD detalis on application.

 HIGH CAPACITY CONDENSERS GENERAL ELECTRIC 25,000 MFD 25 VDC SPRAGUE 20,000 MFD 55 VDC E1.30. C surge) MALLORY 35,000 MFD 15 V (2OVDC surge) SANGAMO 20,000 MFD 50 V £ 1.30 . SCHLUMBERGER B 1200 sidb UHF SCHLUMBERGER O 500a SYNC. OSCIL. PLESSEY PR 524 DUAL DIVERSITY RECEIVER. Solld state, six pre-selected receiver selection and Indication. Complete with FSK terminal unit and spare coils for filecen RA 117 EOMMUNICATIONS RACAL RA T17E COMMUNICATIONS ROHDE \& SCHWARTZ MICROWAVE
ROWER METER. 3200 MHz , builfoin calibration, 50Ω. E120.00
TF 1102 AMPLITUDE MODULATOR Amplitude modulates at up to 80% the C.W. or $1 . M$. output of any signal generator with
a
frequency range of 100 kHz to 500 MHz . input waveforms to the modulator may be: slne, square, pulse or picture at any level
up to HI impedance. Mod level monitored
on panel meter. fel .

Open 9-12.30, 1.30-5.30 p.m. except Thursday 9-1 p.m.

TFIG4C VTVM A.C. voltage range 300 MV to 300 V in 7 ranges, $20 \mathrm{~Hz}-1500 \mathrm{MHz}$. D.C. voltage ranges 300 MV 1000 V in 8 ranges.
o. C. resistance 50 ohms to 500 ohms. Price TF 10418. Spec. as for 1041C. $£ 52 \cdot 50$.
HEWLETT-PACKARD
185A 800 MHz SAMPLING OSCILLO-
SCOPE WITH 188A DUAL TRACE
PLUG-IN. Full spec. and P.O.
175A 50MHz Dscilloscops.
5248 COUNTER FREQUENCY MEA-
SUREWENT: 10 Hz to 10.1MH2.
Accuracy : 1 count. Automatic position-
ment: $\mathrm{O}-10 \mathrm{KHz}$ reads in measure-
milliseconds or microseconds, decimal
point automatically positioned. Oisplay
on 6 neon lamp decades and 2 meters.
Complete with manual and following
plug-ins: 525A 10 to $100 \mathrm{MHz}_{1}$ 5258 100
to $220 \mathrm{MHz}, 526 A$ video amplifier. Price
on application.
6168 SHF SIGNAL GENERATOR.
Freq. range $1,75 \mathrm{GHz}-4,2 \mathrm{GHz}$, Mad.
F.M.. C.W. Pulse and Ext. A.M., output
$0.1 \mathrm{uV}-200 \mathrm{~mW}$. Price on application.

PLEASE ADD 10\% VAT

TO ALL ORDERS

TF 123A VHF SPECTRUM ANALYSER or analysis and measurement of Radar Equipment. Frequency range 190 to 230 MHz
with crystal check points. Sweep width $0-5$ o SMHys output pulse delay (a) $85-175 u \mathrm{Sec}$ b) $0.7 .1 \cdot 4$ mSec with $\times 1$ and $\times 2$ multiplle and $\dot{v}^{2}, \times 1, \times 2$ multiplier. Output $2 \mu v$ to TF 1370 R-C O\&CILLAT TF 1370 R-C OBCILLATOR:
SQUARE AND SINE WAVE. FReq.
SINEWAVE Sonewave 10 Hz . 1 Hz -10NHz, squarewave
10 Hz 100 kzz . Drect output: sinewave: $0-31.6 \mathrm{~V}$ rms., $10 \mathrm{~Hz}-1 \mathrm{MHz}$, squarewave
$0-73.2 \mathrm{pp} \quad 10 \mathrm{~Hz}-100 \mathrm{kHz}$
 appication

TELEPHONE ENQUIRIES robatinin to TEST EQUIPMENT should To view TEST EQUIPMENT please phone for appointment

BEST PRICES PAID FOR TEST AND COMMUNICATION

PLEASE NOTE

Unless offered as "as seon" ALL EQUIPMENT
hauled mechanically and electrically
in our own laboratories

FOR EXPORT ONLY TRANSMITTERS: BC 610 Hallicrafters. RCA ET 4336 also modifled version of increased output to 700 w . COLLINS TYPE 231D $4 / 5 \mathrm{kw}$, 10 channel, autotone and manual tuning. All above complete installation and spare parte. TRANECEIVERS 19, 19 HP 38,62 . C-13 TRANSMITTERS RACAL COMMUNICATIONS EQUIPMENT We are able to offer a comprehensive selection from the range of this modern high elass. equipment including, receivers, L.F. Converters, S 8 a adaptors, panoramic adaptors, diversity switches, transmitter driver units, linear amplifiers can be buitt to customers' requirements. Please send us your enquiries.

ARtif SPARES. We hold the largest atock
 20/4FT. AERIALS each consisting of ten 11it. (6-section) whip scrial-in sections. to fit the 7in. rod, insulated base, stay plate nd stay assemblies, pegs, reamer, hammer,
otc. Absolutely brand new and complete ready to erect, in cannas bag. $£ 7.50$ new or
 TELEPHONE TYPE "J""(Troplcalised) SWITCHEOARTO
t line AUTOMATIC PRIVATE
Price of each of the above on application.
COLOMOR (ELECTRONICs)
170 Goldhawk Rd., London, W. 12
Tel. 01-743 0899

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 100 ohms $100 \mathrm{mV}-1$ volt - 52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External
Modulation. Direct or via internal amplifier. A. C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$. Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$.
Consumption approx. 40 watts. Measurements $29 \times 12 t \times 10 \mathrm{in}$. Secondhand Consumption approx. 40 watts. Mea
condition. $£ 27 \cdot 50$ each, Carr. $£ 2 \cdot 00$.
condition. $£ 27 \cdot 50$ each, Carr. $£ 2 \cdot 00$.
POWER SUPPLY UNIT PN-12A: 230 V a.c. input $50-60 \mathrm{c} / \mathrm{s}, 513 \mathrm{~V}$ and 1025 V at $420 \mathrm{~m} / \mathrm{A}$ o/put. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V ard 10 Mfd 600 V . Filament transformer 230 V a.c. input. 4 Rectifying valves type $5 \mathrm{Z3}$. $2 \times 5 \mathrm{~V}$ windings at 3 Amps each and 5 V at 6 Amp and 4 V at 0.25 Amps . Mounted on steel base 19in. W $\times 1$ in. $H \times 14 \mathrm{in}$. D. (All connections at the rear.) Excellen cond
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone ray TUBE UNIT With 3inut CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour APN-1 INDICATOR METER, 270° Movement. Ideal for making rev, counter. E1.25, post 30 p
AIRCRAFT SOLENOID UNIT S.P.S.T.: $24 \mathrm{~V}, 200 \mathrm{Amps}, £ 2$ each, 30 p post. VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at 2 Amps . $\mathbf{6} 3$ each 75p post.
RACK CABINETS: (totally enclosed) for Std. 19 in. Panels. Size 6 ft . high $\times 21$ in. wide $\times 16 \mathrm{in}$. deep, with rear door. $£ 12$ each, Carr. $£ 2 \cdot 50$
INSTRUMENT CABINETS: $19^{\prime \prime} \mathrm{W} . \times 16^{\prime \prime} \mathrm{H} . \times 16^{\prime \prime} \mathrm{D}$. $\quad 65 \cdot 00+£ 1.25 \mathrm{carr}$, CLASS "D" WAVEMETER NO. 1 MK. II: Crystal controlled heterodyne frequency meter covering $2-8 \mathrm{MHz}$. Power supply 6 V d.c. Good secondhand cond
$\mathbf{6 7 5 0}$ each. Post 60 p. £7.50 each. Post 60p.
ROTARY INVERTERS: TYPE PE.218E-input 24-28V d.c., 80 Amps. $4,800 \mathrm{rpm}$. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}$. 1 Ph. P.F.9. $£ 17 \cdot 50$ each. Carr. $£ 2 \cdot 00$ REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and power supply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{~mA}$. Two stabilised valves CV 286. Centre Zero Meter $10-0-10$. Size $8 \mathrm{in} . \times 8 \mathrm{in} . \times 8 \mathrm{in}$. New condition $£ 7.50$, Carr. 75 p.
WESTON INDUSTRIAL THERMOMETER MODEL 221: 0-100 ${ }^{\circ} \mathrm{C}$. 3 in . dia. scale. Accuracy 1%. Precision made coil within-coil structure. Changes in temperature cause a rotary action of the Helix turning the shaft to which the pointer is moun FLUPMETER: U
TS 15C/AP FLUXMETER: Used to provide qualitative measurements of flux densities between pole faces of magnets. Range 1200-9600 gausses. $\pm 2 \%$. S/hand good cond. 20 + 60p post.
AUTO TRANSFORMER: $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$, 1000 watts. Mounted in strong steel case $5 \mathrm{in} . \times 6 \frac{1}{2} \mathrm{in} . \times 7 \mathrm{in}$. Bitumen impregnated. $£ 10$ each, Carr. $£ 1$.
UHF ASSEMBLY: (suitable for 1000 MHz conversion) incl. UHF valves; 2C42, 2C46, 1 B40. Complete with associated capacitors and screening; 3 manual counter TELEPRINTER TYPE 7B; Pageprinter 24 C .
TELEPRINTER TYPE 7B; Pageprinter 24 V d.c. power supply, speed 50 bauds per min. 'as new' cond, in original packing case, $£ 25$ each; or second hand cond (excellent order) no parts broken, $£ 15$ each. Cariage either type $\chi 3 \cdot 00$
INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision
for checking ionisation. $110 / 230 \mathrm{~V}$ a.c. input. $\mathrm{S} / \mathrm{hand}$ good cond. $£ 30+f 1 \mathrm{carr}$.

ALL U.K. ORDERS SUBJECT TO 10\% VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage).

APN-1 ALTIMETER TX/RX: Freq. approx. 410MHz. Complete with 28V dynamotor, 3 relays, precision resistors, 11 valves. Useful breakdown for parts. 54 each $+75 p$ carr.
AUTOMATIC VIBRATION EXCITER CONTROL UNIT TYPE 1016: Manufactured by Bruel \& Kjoer. $5-5000 \mathrm{c} / \mathrm{s}$ per sec. S/hand V. good cond. $\mathbf{f l o g}^{90}$, Carr. ${ }^{2}$.
TF-1041R VALVE VOLTMETER: Measure $25 \mathrm{mV}-300 \mathrm{~V}$, $20 \mathrm{c} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}$ a.c.

> AN/ARC-27 TRANSMITTER/RECEIVER (FOR EXPORT ONLY): Frequency $225-400 \mathrm{mc}$. 1750 channels 100 Kc apart with 18 preset channels. Modulation: am. Power output 9 watts. Receiver is superheterodyne. Max Complete transmitter with operating cables, control box, headphones, microphone. Price f 25000 each secondhand, excellent condition.
> POWER SUPPLY suitable for AN/ARC-27: 100 volts to 250 volts a.c. input. 24 v d.c. output @ 41 amps fully smoothed. $£ 45 \cdot 00$ each.

CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction with a freq. meter. ¢15. Carr. $£ 1.50$.
DELPENA RF GENERATOR TYPE E.15: 15 kW at 500 Hz ; input 440 V 3 ph . 50Hz. £275. Carr. at cost.
H.V. TRANSFORMER: $8000 / 8000$. Output 300 mA . rms. Size: $12 \mathrm{in} . \times 12 \mathrm{in} . \times$ 36 in. 230 V input. $£ 35$, Carr. $£ 400$.
COPPER WIRE AERIAL: with insulators, 100 ft . long. $£ 1$ 50. Post 40p.
TELEPHONE CABLE: (Twin) PVC covered suitable for extension speakers, burglar alarms etc. 200 yds. per roll. $£ 2 \cdot 50$ a roll. Post 50 p.
TELEPHONE CABLE: (Twin) $1,350 \mathrm{ft}$. on metal reel. $£ 5$ per reel. Carr. $£ 1$.
ANTENNA MAST 30 ft . consisting of $10 \times 3 \mathrm{ft}$. tubular screw sections ($7^{\prime \prime}$ dia.) with base, guyropes and stays etc. $£ 5$ each, Carr. $£ 2$.
ANTENNA MAST 12 ft .3 sections with suitable base to mount on the above Mast. Extends to 42 ft . $£ 1 \cdot 50$ each, Carr. $£ 1$.
APN-1 ALTIMETER TX/RX: Freq. approx. 410 MHz . Complete with 28V dynamotor, 3 relays, precision resistors, 11 valves. Useful breakdown for parts. CT. 216 STANDING WAVE METER: $\mathbf{2 - 3 0 M H z}$, complete in strong portable case. $£ 40$ each, Carr. $£ 1 \cdot 50$.
AVO VALVE TESTER CT.160: (Portable) similar to Avo Mk. 3 Characteristic Meter. Good cond. $£ 35$ each, Carr. £1-50.
MODULATOR UNIT: Complete with mod. transformer and 2×807 Valves. Mounted $19^{\prime \prime}$ chassis, $8^{\prime \prime} \times 8^{\prime \prime}$. "As new" cond. $£ 8$ each; or secondhand $£ 5$ each. Carr. both types $£ 1 \cdot 50$.
LISTS OF EQUIPMENT AVAILABLE: MOTORS; TELEPRINTERS; AR88 SPARES; TEST EQUIPMENT ETC. Send 10 p for above lists
ALL CARRIAGE QUOTES GIVEN ARE FOR 50 MILE RADIUS OF
LONDON ONLY.
If wishing to call at
stores, please etelephone
for appointment.

9 \& 10 CHAPEL ST., LONDON, N.W.I $01-7237851$

01-262 5125

CURRENT RANGE OF MEW L.T. TRANSORMES				
Type		${ }_{\text {Amps }}$	$\underset{\substack{\text { Price } \\ \text { El4.0. }}}{ }$	${ }_{7}$
滈		6	cile	cisp
${ }_{1}{ }^{\text {cic }}$		${ }^{3}$	citiso	¢00
${ }_{\substack{2 A \\ 28}}$	${ }_{4-16-2-3-32}$	${ }_{8}$	cition	600
${ }_{20}^{2 \mathrm{C}}$		$\stackrel{1}{2}$		408
${ }^{20}$	${ }^{\text {cosem }}$	10	Eteoc	${ }_{600}$
${ }^{3 B}$	${ }_{\text {che }}^{24-30-30-36 v}$	${ }_{2}^{5}$	${ }_{8}^{87.50}$	S00
${ }_{4 B}^{4}$	-	${ }_{10}^{20}$	${ }_{\substack{\text { E12 } \\ \text { ¢7.50 }}}$	750
5 5		${ }^{5}$		${ }^{400}$
¢ ${ }_{\text {sc }}^{\text {sc }}$		$\stackrel{10}{10}$	-	${ }_{\text {cos }}^{600}$
${ }_{\substack{64 \\ 68 \\ 68}}$		${ }_{1}^{2}$		(10
		${ }^{20}$	cister	(100
	coile	5	${ }_{\text {cle }}$	
$\stackrel{88}{88}$			${ }^{\text {cise }}$	300
${ }_{11} 10 \mathrm{~A}$				cois
PLEASE Ado 10% v.a.t.				
Type No. Sec.votit Tap.				
	$\substack{\text { 3-1.12-184 } \\ 6-12}$			44.95

TRANSFORMERS FOR LINSLEY HOOD AMPLIFIERS Fully shrouded, terminal block connections. Pri. 220-240v. Screen
tap. Sec. $30-25-0-25-30 \mathrm{v} ., 2$ amps. EA-75, carr. 40 p . Heavy duty type tap. Sec. $30-25-0-25-30 \mathrm{v}$. 2 amps. 84.75 , carr. 40 p . Heavy duty type
$36-25-0-25-36 \mathrm{v}$. 5 amps. 59.75 , carr. 50 p .

STEP DOWN 240/110v AUTO TRANSFORMERS

 3000 watts. Built into steel case with two American 2 pin oroundedsocket outlets. Carry handle. 6 ft. mains lead. $£ 25-50$, carr. $£ 2$.
Without Without case and titings $\$ 22 \cdot 00$, carr. $\Sigma 1.50$.
Other Types Available $80-1500$ watis fuly Other Types available. $80-1500$ watts, fully shrouded, with
American socket outtet and 6.51 . mains lead. Let us know your American so
requirements

parmero ht transformers

GRESHAM 'C' CORE 10H $350 \mathrm{M} / \mathrm{A}$ E.3.50 carr. 50 . Potted type $10 \mathrm{H} 300 \mathrm{~m} / \mathrm{a}$
63.00 carr. 50 p . $9 \mathrm{H} 500 \mathrm{~m} / \mathrm{a} 5 \mathrm{kv} \mathrm{DC}$
whg E 6.50 carr . 81.00 whg $£ 6 \cdot 50$ carr. $£ 1.00$.

PLEASE ADD 10\% VAT TO

ALL ORDERS INC. CARR.

GARDNERS. C core No. 1 Sec. 36v. 350 m/a $£ 1.00$ p.p 25p. No. 2 Sec . tapped $2.5-6 \mathrm{v}$. In iv. steps. 1.5 a and $13 \mathrm{v} .300 \mathrm{~m} / \mathrm{a} £ 1.00 \mathrm{p} . \mathrm{p} .25 \mathrm{p} . \mathrm{No} .312 .6 \mathrm{v}$. 2.5 g . and HT winding 290 v . $350 \mathrm{~m} / \mathrm{a}$ open frame table top connections \&3.00 p.p. 50 p. No. 4 Sec. 50 v . 1a. and 10 v .1 . 2 a . open frame table 10 p connec- No. 6 Sec. tapped 5-10-20v 2.5a. and 1-2-3-4v. $2 \cdot 5 \mathrm{Sa}$. Potted type $£ 3 \cdot 00 \mathrm{p} . \mathrm{p}$. $35 p$.

W-THEHIGH DEPENDABLITYY WER SUPPLY. BYO MNSTEED $24 v . D C$ at $2 a$. or simultaneously, and $24 v$. DC. Each with total drain 50p.

 watts $E 350$.

LIMTT SHADED POLEE MOTORS

 tyor. Table top comnections sio:
cart.

"SLO-SYN" 3-LEAD SYNCHRONOUS STEPPING MOTOR

Type SS15. These fine motors are easily reversed, starting and stopping in less than 5° without electrical or
mechanical braking. Simple relay circuit can be applied to give DC., to winding for a maximum holding torque of
 60 Hz . 72 rpm . STEPPING. Holding torque at 80 steps per second- 100 oz $/ \mathrm{in}$. Can be wired to

OPEN FRAME haded pole GEARED MOTORS (Dural gear case) verall size: $3 \mathbf{F}^{*} \times 3 \mathbf{x}^{4} \times$

CARTER ELECTRIC

Similar to above with alloy gear case. 60 r.p.m. This
item is ex-equipment but perfect. $£ 1,95$. P \& P 30p.
SMITHS RINGER-TIMER
Rellable 15 minute times, epring wound
(concurrent with time setting) 15×1 min divisions, approximately it between
 FEW ONLY
 Hum and ripple at full load-iess than 3MV peak to

"LABGEAR ELIMINAC'
P.S.U. $200-250 \mathrm{v}$. ${ }^{40 / 60 \mathrm{~Hz} \text {. Allernative outputs fully }}$ variabie (variac incorporated). Output 1. 12v at 5 a
D.C. fully smoothed. Output 2 , $12 r$ at 8 ai D.C. with
 0-20V D.C. m/c meter. In attractive grey hammer finish
case. In maker's carton. Eal.50. Cart. \& Pkg. E1.50.

SHADED POLE MAINS MOTOR
 soltrons bystion 240AC type MM6
 11". Travel $1^{1 " .}$ gep
each. P. 10 .

 discounts; 10- $5010 \% .50$ up-
wards 25%

MAINS

SOLENOID This little unlt glves vertical lift of ap proxi-
mately in hinoed "through
 Bracket incorporates 2 fixing screws. Length of arm 21. $240 V$ AC. Pull at coil is approximately 11
FREE P. \& P. Special quotes for quantlites.
 ELECTRO-TECH compeners so.

Tel: 01-723 5667 01-402 5580

ELECTROMIC ORGAM DIVIDER COARDS buit to high industrial/computer spec. 5 octave set E1s.
tere.

COPPER LAMINATE P.C. BOARD
$8 \frac{1}{4} \times 5 \frac{1}{2} \times 1 / 16 \mathrm{in}$. $12 \frac{1}{1} p$ sheet 5 for 80 p
$11 \times 6 \frac{1}{3} \times 1 / 16$ in. 15 p sheet, 4 for 50 p
$11 \times 8 \times 1 / 16$ in 20 p sheet. 3 for 50p
$16 \frac{1}{2} \times 4 \times 1 / 16 \mathrm{in}$. (Fibreglass), 30p sheet.
Offcut pack (smallest $4 \times 2 \mathrm{in}$.) 50 p 300 sq . in
Pap single sheet 4p. Bargain packs 20p

TELEPHONE DIALS (New) £1 ea RELAYS (G.P.O. '3000'). All types. Brand new trom 37ip ea. 10 Uo quotations only.
EXTENSIONTELEPHONES (TyPD OO6) Various Colours $£ 3$ 30. P.P. 25 p . Exellent
 Types 85 F . PP 50 .
UNISELECTORS (NEW) 25 way 12
Bank (NON Bridging) 68 ars.
Bank (Non Bridging) 68 ohms. $\mathbf{£ 6}$.
P.P. 30 .

PRECISION A.C. MILLIVOLTMETER (Solartion) $1.5 \mathrm{~m} . \mathrm{V}$ to $15 \mathrm{v}: 60 \mathrm{db}$ to 20 db . 9 fanges Excellent condition HIGH CAPACITY ELECTROLYTICS
$2200 \mu \mathrm{f} .100 \mathrm{v}$. (1t $\times 4 \mathrm{in}$.) $60 \mathrm{p} .3,150 \mu \mathrm{f}$. 40 v . ($1 \mathrm{t} \times 4 \mathrm{in}$.) $60 p$.
$\left(2 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in}.\right) \mathrm{fl} .25 \mathrm{v} .12 .000 \mu \mathrm{f}$. 40 v . ($2 \times 4 \mathrm{in}$.) 75 p . $16,000 \mu \mathrm{f}$ 16 v . $(2 \times 4 \mathrm{in}) 60 \mathrm{p}$. $21,000 \mu \mathrm{f}$. 40 v . ($2 \frac{1}{2} \times 4 \mathrm{in}$.) $£ 1$. Post and packing 5 p .
$2,800 \mu \mathrm{f} .100 \mathrm{v}$. ($4 \frac{1}{4} \times 2 \mathrm{in}$) . 80p. $15,000 \mu \mathrm{f}$. 63v ($4 \frac{1}{2} \times 2 \frac{i n}{}$.). £1.
ROTARY VACUUM PUMPS (GS10) with Motot on Bedplate. £25. P.P. E2.
HIGH VACUUM DIFFUSION PUMPS (Metrovac 093C). New condition. £40. P.P. £2. A.E.I. P10. ION Pump Control Units. E17.50.
OVERLOAD CUT-OUTS. Panel mounting ($1 \frac{7}{4} \times 1 \frac{1}{1} \times \frac{1}{i n}$.) $800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{amp} / 10 \mathrm{amp} .35 \mathrm{pe}$ ea. P.P. 5 p .
BULK COMPONENT OFFER. Resistors/Capacitors. All types and values. All new modern components. Over 500 pieces £2. (Trial order 100pcs. 50p.) We are confident you will re-order.
REGULATED POWER SUPPLY. Input $110 / 240 \mathrm{~V}$ Output 9v. DC. $1 \frac{1}{1}$ amp. 12v. D.C. $500 \mathrm{~m} / \mathrm{a}$. £4. P.P. 30 p.
U.K. ORDERS 10\% V.A.T. SURCHARGE

TRANSFORMERS

adVance "volstat" transformers. Input CV50. 38 v . at $1 \mathrm{amp}: 25 \mathrm{v}$. at $100 \mathrm{~m} / \mathrm{s} .75 \mathrm{v}$. at $200 \mathrm{~m} / \mathrm{a}$ £2 ea. P.P. 40 p.
CV75. 25 v . at 2 t amp. $\mathbf{E 2 \cdot 5 0}$. P.P. 50 p .
CV100. 50 v . at $2 \mathrm{amp}: 50 \mathrm{v}$, at $100 \mathrm{~m} / \mathrm{a}$. £3. P.P. 50 p . CV250. 25v, at $8 \mathrm{amp}: 75 \mathrm{v}$, at $\frac{1}{1} \mathrm{amp}$. £5. P.P. £1
CV500. 45 v . at $3 \mathrm{amp}: 35 \mathrm{v}$, at $2 \mathrm{amp}: 25 \mathrm{v}$. at 3 amp E7. P.P. £1.
L.T. TRANSFORMER. Prim. 240 v . Sec. 13 v . a 1.5 amp .75 p . P.P. 15 p .
L.T. TRANSFORMER. Prim. 240v. Sec. 24v. a $1 \frac{1}{2} \mathrm{amp}$. E1-20. P.P. 20 p.
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. $0 / 24 / 40 \mathrm{v}$ $1 \frac{1}{3}$ amp. (Shrouded). E1.50. P.P. 30p.
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. $28 / 0 / 28 \mathrm{v}$. at $2 \mathrm{amp}: 10 \cdot 5 \mathrm{v}$, at 1 amp . (Shrouded). £2-25. P.P. 40p. L.T. TRANSORMER. Prim. 200/250v. Sec. 20/40/60v. at 2 amp. (Shrouded). $£ 2 \cdot \mathbf{2 5}$. P.P. 40p.
L.T. TRANSFORMER (H.D.) Prim, 200/250v, Sec. 18 v , at $27 \mathrm{amp}: 40 \mathrm{v}$. at $9.8 \mathrm{amP}: 40 \mathrm{v}$, at 3.6 amp 52 V , at 1 amp: 25 V . at 3.7 gmp . £15. P.P. E2.
h.t./L.t. Transformer. Prim. 200/250v. Sec 1 p.500/0/500v. $150 \mathrm{~m} / \mathrm{a}$. Sec. 231 v . at 5 amp . £3. P.P. 75p
E.H.T. TRANSFORMER. 240V. Sec. 2.5-0. 2.5 K.V E.h.t. TRANSFORMER. 240 v . Sec. 1800 v . 50 mA . £2.50. P.P. 50p.
250W. ISOLATION TRANSFORMER. 240v. E3.25. P.P. 50p.

1000W. ISOLATION TRANSFORMER. 220/240v. 242v. (c' cote type). E12. P.P. E1-50.
2500W. ISOLATION TRANSFORMER (CONSTANT VOLTAGE). Prim. $190-260 \mathrm{v}$. 50 Hz . Sec. 230v. at 10.9 amp . $\mathbf{\text { f }} \mathbf{3 0}$. Carr. fz .
soow. STEP-DOWN TRANSFORMER. wound.) $240 \mathrm{v} .-115 \mathrm{v}$. 50 HZ . £6.50. P.P. £1.
2300W. STEP-DOWN TRANSFORMER. (Double wound.) $240 \mathrm{v} .-117 \mathrm{v}$. 50 Hz . £22-50. P.P. £2.

HIGH-SPEEDMAGFETIC COUNTERS. 4 digit (non reset) 24 V . or 48v. (state which) $4 \times 1 \times 1$ in. 40p. P.P. 5 p .
5 digit (non-resel) 6-12-24-48v.
3 digit 12 v . (Rotary Reset) $2 \frac{1}{4} \times 1 \frac{1}{2} \times 1 \ddagger \mathrm{in}$. $\mathbf{£ 1}$ өach 3 digit 12 v . (Reset) $3 \frac{1}{\overline{3}} \times 1 \times 1 \mathrm{in}$. $\mathbf{E 2} \mathbf{2 5}$. P.P. 5 p .
5 digit (Reset) 12v. E3. P.P. 5p.
MULTICORE CABLE (P.V.C.).
6 core (6 colouls) 3 screened, 14/0048. 1 Ep. yd. 100 yde. 6 core
$\mathbf{E 1 2} 50$.
20 core (2 screened) $17 \frac{1}{1 p}$ yd. 100 yds . $\mathbf{E 1 5}$. 24 core (24 colouts) 20 p . yd . 100 yds. E17.50. 34 core (17 colours) $\mathbf{2 5 p}$. yd. 100 yds. $£ 20$. Minimum order 10 yds .
mibbon cable (8 colours)
£1. 25
f10

100 m SMALL MOTOR ($1 / 50$ H.P.) 900 R.P.M. $230 / 250 \mathrm{~V}$. A.C £1.50. P.P. 30p.

helays

SIEMENS/VARLEY PLUG-IN. Complete with transparant dust covers and bases. 2 pole $c / 0$ contacts $35 p$ ea $; 6$ make contacts 40p ea. ; 4 pole c/o contacts 50p ea. 6-12-24-48v types in stock.
12 Volt h.d. Relays ($3 \times 2 \times 1$ in.) with 10 amp . silve contacts 2 pole c/o 40p ea.; 2 pole 3 way 40p. P.P. $5 p$. 24 VOLT H.D. RELAYS $(2 \times 2 \times z \mathrm{in}$.) 10 amp . contacts. 4 pole c/0. 40
240 v . A.C. RELAYS. (Plug-in type). 3 change-over 10 ump contacts. 75p (with base). P.P. 5p.
P.A.R. BISTABLE RELAY (Latching) 24v. D.C. $4 \mathrm{c} / \mathrm{o}$ contacts 65p. P.P. 5p.
SILICON BRIDGES. 100 P.I.V. 1 amp. ($\mathbf{i} \times \mathbf{i}$ in.) 30 p 200 P.I.V. 2 amp. 60p.
24 VOLT A.C. RELAYS (Plug-in)
2 2 Pole Change-over 45p.

PATTRICK \& KINNIE

191 LONDON ROAD - ROMFORD - ESSEX
ROMFORD 44473 RM7 9DD

\section*{
 Carriage extra
 \[

4 KVA (Max. 20 Amp) $$
\begin{array}{r}
£ 72.50 \\
(\text { Max. } 37.5 \text { Amp) } \\
£ 102.50
\end{array}
$$
\]

VOLTAGE CHANGING

 TRANSFORMER 15 V . Out for U.S.A. equipment. or reverse to obtain 240 V . from $115 V$. The ideal translormer tor making up solid state constant
voltage unit, by use of taps the following voltages may be
obtained. $30-40-50-70-90$ volts at 10 amps. Weight 40 bibs length 260 mm , height 190 mm ,
maker's wooden case, f8 00, carr

MINIATURE UNISELECTOR SWITCH
 As above but with 5 Bank. 12 position. Price $£ 3.50$ Post 20 .

VERY SPECIAL OFFER Miniature Rolier Micro Switch.
c/o contacts. Mig. BONNELLA. NE
10 .

HONEYWELL PUSH BUTT ASSEMBLY
Each bank comprises of a change-over
vated at 10 amps 240 volt A.C. Black
 for quantitles.

24 VOLT DC SOLENOIDS

Unit containing: 1 heavy duty solenoid approx. 25 lb . pull 1 in . travel. 2 solenolas of approx. 1 ib. pult ai \ddagger in. fravel
solenoids of approx. 4 oz . pull at $\frac{1}{2}$ in. Iravel. Plus 124 V D.C heavy duty 1 make relay. Price: $£ 2 \div 50$. Post 60 p. ABSOLUTE

57 BRIDGMAN ROAD. CHISWICK

LONDON, W4 5BE. Phone: 0f-995 1560

SThiop: Stiobe Sinder

* four easy to builo kits using xenon white * LIGHT FLASH TUBES, SOLID STATE TIMING + * TRIGGERING CIRCUITS, PROVISION FOR EX-
* EXPERIMENTERS "ECONOMY" KIT ponents including Xenon Tube + Instructions $\mathrm{ECO}^{6} \mathbf{3 0}$.

```
industrial kit
```

INDUSTRIAL KIT
Ideally suitable for schools, laboratories etc. Roller
tin printed circuit. Adjustable $1-80$ f.D.s.i approx.
output of Hy-Lyght. Price $\mathbf{~} 12.00$. Post 50 .
HY-LIGHT StROBE
Deslgned for use in large rooms, halls and utillzes a
Light output greater than many (so called 4 Joule)
strobes. Price $\mathbf{1 2} 200$. Post 50p.
'SUPER' HY.LIGHT KIT
pprox. 4 times the light output of our well proven
Rariable speed from 1-13 fassh per sec.
ATTRACTIVE, ROBUST, FULLY VENTILATED
METAL CASE tor the Super Hy-Lyght Kit including
FOR HY-LYGHT STROBE incl. reflector, 85.75 .
Post 25p.
COLOUR WHEEL PROJECTOR
Complete with oil filled
$200 / 240 \mathrm{~V}$ AC. Fearures
remely efficient optic
IR.P.M. MOTOR and
COLOUR WHEEL

A/clock. Spindle 10 mm . Long, 3 mm . dia. Motor, waty
20 mm . deep. Fixing centres 44 mm .6 inch colour whee
as unsed too Disco Ilghting effects, etc. PRICE motor
and wheel $£ 560$. Post 40 p. (Motor not available
5 INCH COLOUR WHEEL ONLY. Price E4.50. Post \neq

BIG BLACK LIGHT

BIG BLACK LIGHT

BLACK LIGHT FLUORESCENT U.V Post 25 p att. Price $\mathrm{E}^{5} 50$. POSt 30 p . 2 .V. TUBES

PROGRAMME TIMERS
$230 / 240$ Volt A.C. 15 RPM Motors. Each cam operates a e/o micr
switch. Ideal for ilghing effects animated displays etc. Ex equip ment tested.

ع2.50 post 30 p
6 cam model
12 cam model E. 25 post 30 p
ع 400 post 35 D

High Visibility
Panel Mounting
LSS
Panel Mountin
$\cdot 25$ inch mounting. 16 inch lens. Typical parameters 2 volt
$20 \mathrm{~m} . \mathrm{a}$. all types. Supplied complete with snap in mountings and data. Red 4 for $£ 1000$, Green 3 for $£ 100$, Yellow 3 for $£ 100$ Post 5 p . (Min. order $£ 1.00$,

RELAYS SIEMENS PLESSEY, etc MINIATURE RELAYS

52	4-8	6M	${ }^{60}{ }^{\circ}{ }^{\circ}$
58	5-9	$6 \mathrm{c} / \mathrm{o}$	300
150	4-9	$2 \mathrm{c} / \mathrm{O}$	70p ${ }^{\text {* }}$
185	$8-12$	6 M	$60{ }^{\circ}$
308	9-14	4 clo	$75{ }^{\circ}$
700	16-24	4 M 2 B	$60{ }^{\circ}$
700	16-24	$4 \mathrm{c} / \mathrm{O}$	$80 \mathrm{p}^{-}$

Prlce HD = Heavy Duty. All Post Paid. ("including Base)
6 VOLT D.C.

9 VOLT D.C. RELAY
12 VOLT D.C. RELAY
24 VOITD.C
24 VOLT D.C. 3 c/o 600 ohm coil 75p. Post 5 p
100 VOLT A.C
24 VOLT A.C
240 VOLT
240 V . A.C heavy duty RE LAY ITT
DIAMOND H, Heavy Duty Relay

HEAVY DUTY SEALED RELAY
110 Volt 2 c/o 20 amp contacts. $\mathbf{~ f 1 \cdot 2 5 . ~ P o s t ~} 10 \mathrm{p}$
$220 / 240$ Volt A.C. 3 c/o 5 amp cont. Sealed.
CLARE-ELLIOT Type RP 7641 G8
ITT LOW PROFILE

DRY REED RELAYS
Single clo 65 p . Post Faid. Two clo 85 p . Post Paid.
STC 280 ohm coll $6 / 12$ V D.C. 3 make contacts metal shrouded

BLOWER UNIT $200-240$ VOII A.C. BLOWER UNI Precision German built. Dynamical balanced, quiet, continuousiy rated reversible motor. Consumption 60 mA . Size 120 mm . cia. $\times 50 \mathrm{~mm}$. deep. Price $£ 3.00$. Post 300 . ROWER RHEOSTATS New ceramic construction, vitreous brush assembly, continuously rated. enamel embedded winding, heavy duty 25 WATT $10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 \mathrm{k}$ ohm $£ 115$ Pusi 10 p. 50 WATT E1 ©o. Post 10p. 100 WATT 1/5/10/25/50/100/250/500/1k/1-5k/2-5k/3-5k/5k ohm E2-35. Post 15p. Black SilverSkirted knob calibrated in Nos. 1-9. If in. dia brass bush. Ideal for above Rheostats. 22p ea.	

$230 \mathrm{~V} / 240 \mathrm{~V}$ COMPACT
SYNCHRONOUS
GEARED MOTORS
Manutactured by either Sangamo 2 RPH, 3 RPH, 6 RPH, 12 RPH.

GENERAL ELECTRIC POWERGLAS TRIACS
U.S.A. Long term reliabilify. Type SC SC. Latest device from 10 amp. 400 PIV Ef 00. Post 5p. Type SC $146 E 10$ amp. 500 PIV. E1.30. Post $5 p$.
(inclusive of data and application sheet) suitable Diac 11 p .
METERS NEW! $2 \frac{1}{2}$ in. FLUSH ROUND

	600 WATT DIMMER
	Easily fitted. Fully guaranteed by makers. Will control up to 600 watts of all lighting except fluor escent at mains voltage. Complete with simple instructions £2.75. Post 25 p
2000 WATT POWER CONTROL For Power toois. Heating, Lighting etc. incorporating 13 amp . outlet and mains lead E8.00 Post 27p.	
INSULA Test to 1. struction, w rk, cons W. $4 \ln$. 500 VOLT 60 p . 1,000 VOL Post 60p	ION TESTERS (NEW) Spec. Rugged metal conuitabie for bench or field it speed clutch. Size L. 8 in., in., welght 6 !b. 500^{\prime} megohms fere00. Post S. 1,000 megohms E34-00.

SERVICE TRADING CO.

AMPLE PARKING

810

LIMITED QUANTITY TEKTHONIX WIDE-RANEE OSGLLOSEDPES

THE WORLD

 THE WORLD the DC to 30 MHz range. Can be used to operate with Tektronix letter series plug-in unit forg virtually Tory application.annsitic $\mathbf{f 1 7 5}$ imin fiane ont
Tentrax 545 sompate mit CA Doutite Bean Thime bsse
Also available TEKTRON 255 plug-in ± 255 TEKTRONIX 535
plug-in $£ 175$

HIGHLY STABILISED POWER SUPPLIES. YOURS ATA FRACTION OF ORIGINAL COST

These modular units incor porate overload protection on both INPUT and oUTPUT. Load regulation of time Input voltage ripple and fast response ime.
$120-13050 \mathrm{~Hz}$. Available in the following types

 2 Voit 4 Amp 520

Power Supplies

28V 20A £39.50 6V 25A £25

VARIABLE VDLTAGE HIGH CURRENT HIGH STABILITY HIGH RELIABILITY These power supples were designed for continuous operation in
computer eoupment Manufactured to thighest engineeing ssiand tor ton-term reliability and stabitiv, Indiependent voltigge and current meters. Core Transformer
Manuíacurerss price probabhh in excess of $\mathbf{f 2 0 0}$.

7-TRACK DIGITAL
MAGNETIC TAPE STORAGE DECK

These machines. originall ex-computer. are multitrack recording units.
ideal for data storige ideal for data storage.

Record and Replay Heads encased in one common unit Low resistance heads. Frequency | response approximately |
| :--- |
| $0 \mathrm{kc} / \mathrm{s}$ to $50 \mathrm{kc} / \mathrm{s}$ | $0 \mathrm{KCl/s}$ to $50 \mathrm{Kc} / \mathrm{s}$. Bit

density
557
b.p.i. $10 \pm$ in. spools. 230 V vio 380 V . Capstan motor speed $1.500 \mathrm{rapt.p.m}$. rush aluminium and matt black. Size 27 in $\times 26$ in. $\times 8$ in Weight 90 lts. Price $\mathbf{£ 8 9 . 5 0}$.

WEE MEGGERS BY

 EVERSHED \& VIGNOLE100 voll 0.020-20MnSeries 3 Mk lll E 25
250 won 00010-10MOSeries 3 onlv f 16
250 volh $0.01 \Omega-20 \mathrm{M} \Omega$ Senes 3 onhy
$£ 18$

VENNER 3334 Digital Frequency
$0-1 \mathrm{MHz} \mathbf{~ 4 5} .00$.

VENNER 3336

$1 \mathrm{MHz} £ 55.00$
With 15 Meg Counter extension for above $\mathbf{£ 8 5} \mathbf{0 0}$

WANDEL \& GOLTERMANN

Distortion Measuring Set VzM-Hor colour t.v. 625 ines PAL. $\mathbf{~} 750$.
Distortion

 Voltage \& Level Meter 10 K
$8 v-40 \mathrm{uv}(+20-86 d \mathrm{Cl}) \mathbf{~} \mathbf{3 3 3 9}$ Selective Level Oscillator $10 \mathrm{KHz} \cdot 14 \mathrm{MHZ}$ TFPS 42 . $\mathbf{£ 3 4 9}$

HEWLETT PACKARD Microwave Power Meter Type 430C
Fast readings. Read power directly in mW and dem. Use 100 or 200 -ohm, positive of negative temperature
coefficient botometers. modulated opwer from 0.01 mW 10
10 mW or $\mathrm{dBm}-2010+10 \mathrm{dBm}$ 10
f 6500.

TELE EQUIPMENT D43 OSCILLOSCOPE £89.50

Sith/ripes

AVOMETERS-Few only available. These world-famous and much sought after AVOMETERS are
fully guaranteed with 1 vear tree service included Model 7 Net
Model 7
Model 7X $\mathbf{5 2 4 0 0}$ Model 8
Model 7x..........2600

AII IL: us BRANDNEMSDI

10 ChANNEL EVENT RECORDEh Designed for recording sequences up to ten different operations. e.g switching sequences. etc. Record is

MINIATURE PEN RECORDER

PORTABLE AC/DC RECORDING VOLTAMMETER Fitted with separate zero marking pen.
Accuracy 1.5% DC. 2.5% AC MeasureAccuracy 1.5% DC. 2.5\% AC Measurements ranges $-A C$ and DC: 5-15-150-
$250-500 \mathrm{~mA}$
15.5 Amps 5-15-50-150 250-500V. DC only 150 mV . Frequency range 45 to $1000 \mathrm{c} / \mathrm{s}$. Chart width 100 mm . Chart speeds $20-60-180-600$. $1800-5400 \mathrm{~mm} / \mathrm{hour}$ Weight 22 lbs .
£78.00

JUST OUT-NEW CATALOGUE ON FULL RANGE OF PEN RECORDERS. SEND READER'S CARD FOR FREE COPY (WW 117)

NEW HIGH SPEED PEN RECORDERS 3 MODELS AVAILABLE; SINGLE CHANNEL £180: THREE CHANNEL ¢310: FIVE CHANNEL EA20 Frequenty range DC to 10 Hz Recording presented in curvilinear coordinates thy meats of ink on
paper Built in solid state amplifier (one per channel) provides 8 calibrated sensitivity steps. Two marker pens are provided; one of these can be cornected to intemal time marker oscilia of providing ; second pulses This pen can also be used as a process marker to mark a desired event an the chart. Second marker pen can be used as 'zero' 'ieferencel line marker or as another event marker. Full range of chart speeds is inmediately available by means of push button control
SPECIFICATION. Basic error 4% Frequency response trom DC to 100 Hz . 2 do. Calibrated sensitivity V / cm $0.02 .0 .05,0.1,0.2$. D.5. 1. 2. 5. Width of each recording channel 40 mm . Chart speeds mmisec: $1.25 .10,25$ 50, 125.250 Intertal calibrating vollage 40 mV . Chart length: 50 meters. Voltage: $220: 250$. COM PIEMENT Of
ACCESSORIES AVAILABLE.

MINIATURISED

STRIP CHART RECORDER

 indicates the magnitude of applied urrents or voltages by a continuous distortion-iree line on pressure sensitivepaper. Moving coil movement. scale calibrated 0.1 milliamp d.c. internal resistance 100 ohms . Chart drive motor 240 V 50 Hz . Chart speed $1^{\prime \prime}$ per hour

Price $£ \mathbf{2 5 . 0 0}$

prespanted in the form of square "pulses" When energised. pen moves by approxi mately 4 mm . to the right of zero line Response time 100 millseconds. Char
width 110 mm Chart length 50th width 110 mm . Chart length 50 f $20-60-180-600-1800-5400 \mathrm{~mm} / \mathrm{hour}$. Size $160 \times 160 \times 255 \mathrm{~mm}$. Weight 9 lbs Price complete with accessories £52.00

Power supply required: 230 V 50 Hz

Applications: Ideal for recording relatively slow changing phenomena such as
Temperature: Gas or Liquid Flow Rates, Sound Levels. Speed variations. Power Demand. Rainfall
humidity, etc

PRICE $£ 25.00$ TEST EQUIPMENT (WW 118)

AM-FM GENERATOR Type AF 1065 Permits fast and accurate calibration of modern radio receivers. Suitable for calibration and testing in the laboratory,
AM frequency range: from 140 KHz AM frequency range: from 140 KHz to
46 MHz in 6 ranges expended range $430-530 \mathrm{KHz}$. FM frequency range 9.5-12 MHz: 85-110 MHz. Frequenc accuracy: better than 1%. RF output voltage: adjustable from $0.1 \mu N$ to 0.1 V . Output impedance: 75 Ohm constant. Modulation: $A M$: $F M$: $A M+F M$. Amplitude modulation: 400 Hz : from $0-$ 50% adjust. Frequency modulation
1000 Hz adjust. Deviation from 0 - 50 KHz . External modulation: A FM: from 30 Hz to 15 KHz .
£259.00

RCL BRIOGE Type P 966 For measurement of RCL and capacitor dissipation factor and inductors figure of merit Q. Consists of a system of switch-
able bridges. $a 1 \mathrm{KHz}$ generator and able bridges. a
sensitive tuned detector. Particularly suitable for testing of small production batches and selection of component parameters.
Measurement ranges
Resistance: from 0.1 Ohm to 11 MOhm Capacitance: from 1 DF to 1100 HF . Inductance from $10 \mu \mathrm{H}$ to 1100 H . Accuracy: + - 1%. Dissipation factor D: from $1 \cdot 10^{-3}$ to 50 . Quality Factor Q
from 0.02 to 1000 . internal oscillato:
1 KHz .
£245.00

OBTAINABLE ONLY FROM ELECTRONIC BROKERS SEND READER'S CARD FOR FREE CATALOGUE OF

$$
\begin{aligned}
& 5 \\
& 0
\end{aligned}
$$

T

TV SWEEP MARKER GENE RATOR TYpo VUU 167
Suitable for alignment of tuned circuits in television sets. incorporates a sweep generator, a market generator and a 5.5 MHz . Sweep frequency range $1-30$ $\mathrm{MHz}, \quad 170-260 \mathrm{MHz}$ Fund, $470-780$ MHz Harmonic. Marker frequency range 2-266 MHz. $480-800 \mathrm{MHz}$

£259.00

> Many other models available Send for list

£129.00

ADD 10% MAT TO ALL PRICES
Casriage and packing charge extra on all items, unless otherwise stated. 49-53 Pancras Road, London NW1 2QB. Telephone 01-837 7781 PROMPT DESPATCH MAIL ORDER. CALLERS WELCOME MON-FRI 9 A.M. to 5.30 P.M.

Canada calls Mult £1 Million

The Multitone Electric Company Limited have announced that their Canadian subsidiary, Multitone Electronics Limited of Toronto, have signed a contract with Bell Canada-one of the largest users of mobile communications equipment in Canada. This contract, worth approximately $£ 1$ million, is for digital selectively called communications receivers and digital base station equipment. The contract has been won against considerable international competition.

Most sophisticated equipment of its type in the world.

The equipment will form part of an area-wide paging system, believed to be the largest and most sophisticated in use anywhere in the world, operating throughout Ontario and Quebec. About 60 transmitters are co-ordinated throughout the system by two central computers which store incoming calls, automatically decide which transmitters are to be used for each outgoing call and access the correct transmitters over the public telephone system.

British technology to the fore

The Multitone group Research and Development facility in London was responsible for the design of the re-
ceivers and the associated digital equipment. Their unique expertise in designing low power-consumption RF circuitry, allied with high packaging density and rugged mechanical design has made possible the high performance receivers required by this contract. In fact, the whole package weighs only 5 ounces, including batteries and occupies a volume of 7 cubic inches.

Design Philosophy

The receiver section consists of an internal antenna, and a double conversion high performance communications receiver operating in the 150 MHz band with 25 kHz channelling. Particular care has been taken to
minimize spurious responses so that the performance is unaffected by interference in a crowded urban radiocommunications environment. C-MOS technology is used to achieve the complex decoding and internal timing requirements with a minimum of power consumption. Battery power is also conserved by a system whereby the power supply is only switched on for short periods, during which time the receiver senses whether a signal is present or not. If it is, the receiver locks on until the signal ceases.

High SpeedHigh Integrity

The address code has been developed by Multitone specifically for selective calling purposes. It combines the high traffic rate of up to 4 calls per second with virtually complete freedom from false calling. In addition to addressing the individual receivers, the code contains additional data which allows the receiver to pass up to eight messages to the user to indicate, for example, the urgency or the origin of the call. Also the code permits the calling of receivers in groups in addition to their being called individually.

one to the sound of

Bell's intentions

In the Bell system, the code is generated by special code converter units designed by Multitone. They convert incoming data from the computer terminal to the receiver address code. These code converters form a part of the existing transmitter controllers, which in turn pass the address code to the transmitters. These controllers also receive data regarding the transmitter operating status for transmission back to the terminal.

Plans for the future

The British headquarters of Multitone are naturally delighted with the success, but a spokesman for the company expressed the view that this would only generate more pressure in terms of research and development. "As an expanding company, our attitude is one of ensuring that we are always one step ahead. Naturally, this makes demands on our manpower resources, and doubtless with the confidence which has been shown in our products we shall be looking for more people to join us and apply their expertise to what is an ever-increasing market."

From the
 Managing Director

Reaffirming the point, I. H. Karten, Managing Director of Multitone Electric Company, stated, "The widearea paging market opens up broad new horizons for our company both in sales growth and product sophistication. Multitone will bring to the wide-area market, products which will
extend to this field the leadership we have already established world-wide in on-site applications."

Prospects

All in all, it looks very much as though people, particularly engineers, will be warmly welcomed at Multitone.
The world-wide explosion of the radio
paging market and the universal acceptance of this form of data transmission as a prime communications aid is leading to unique technical developments. This is a new field waiting to be exploited both by those who enjoy the challenge of innovation, and those who find satisfaction in master-minding a well designed product into large scale production.

A NEW TECHNOLOGY

Today a new technology is being developed. From small beginnings has come the possibility of real personal communications-not communications with vehicles or buildings, but directly with people.
Radio Selective Calling and Paging are being applied to a vast number of communication problems-for Public Safery. Business Efficiency. Hospital Administration etc. etc.
To develop the potential of this new activity we need engineers with a flair for innovation, engineers with a flair for project administration, engineers whose experience has brought them into close contact with radiocommunications.
Some of the tools of the trade which are making these developments possible are
\star High performance radio receiver/ $\quad \star$ C/MOS technalogy transmitter design
\star Frequencies from HF to UHF
\star Thick film development
\star Custom integrated circuit design
\star Ultra high density packaging
\star High speed data transmission
If you have experience of the design or development of radio receivers. radio
transmitters, or digital circuits why not get in touch with us?
Salaries are good. ranging from $£ 2000$ to $〔 4000$ t, and so are the prospects, because Multitone is an expanding international group of companies-British owned.
If you would like more information just ring our R \& D managerPeter Coles-on an informal basis.

APPOINTMENTS VACANT

Advertisements accepted up to 12 noon Tuesday, June 3rd for the noon Tuesday, June 3rd for the
June issue subject to space being June iss available.

Plassified Advertisemem Rates are curremly zero rared for the purpose of VAT

DOLBY SYSTEM

Noise Reduction in Recording and Communications

Dolby Laboratories manufacture professional noise reduction equipment which has been accepted by all major recording companies in the world. The same techniques have been applied to consumer products which are being built in several countries by licensees, and are now widely available.
We have vacancies in the engineering department for talented engineers to continue research and development in these fields. The department is expanding but is still small (a dozen people) in an organization of 100. We are situated in a modern building south of the river with excellent communications to the centre of London and main railway stations.

Project Engineer
Professional Products
£3,000-£4,000

Project Engineer
Licensed Product
Evaluation
£2,500-£3,000

This position is suited to an engineer inclined towards professional audio. He will work on the design of new products aimed at the recording, broadcasting and communications industry using appropriate Dolby system noise reduction techniques. He should be capable of and interested in following his design through to prototype models and later of advising the production department throughout the life of the product.
The ideal candidate will probably be about $25-35$ with an honours degree in engineering or physics, and with experience in some of the areas mentioned above, together with a personal interest in music and quality sound reproduction.
The rapid increase in licensees (now over 40) of the Dolby B-type consumer noise reduction system has resulted in a corresponding increase in our liaison activities.
Part of the continuing licensing programme involves evaluation of a wide variety of consumer products incorporating our circuit. and we are looking for an engineer to be part of the team which performs these evaluations. He will be responsible for planning and executing the testing programme. which requires some familiarity with the design and construction of consumer products. He will be $25-35$ and have a degree, together with experience of and a high level of interest in quality tape recording and sound reproduction.

Customer Engineers

As one of the largest and most successful computer manufacturers, we place particular importance on the maintenance of a high level of customer service. Our equipment is among the most advanced in the world today. Highly sophisticated hardware used by top companies and organisations in commerce, industry, science and government

Our Customer Service organisation is, therefore, immensely important to us if we are to maintain the high standards we have set ourselves over the years, during which we have pioneered much of the advanced technology in use today throughout the industry.

We're looking for Customer Engineers to carry out, to a high professional standard, all electronic and electro-mechanical work concerned with installation, modification, refurbishing, preventive and remedial maintenance on Sperry
 Univac equipment in the UK

We require men with a knowledge of electronic or mechanical
fault-finding techniques. In addition to technical competence, essential requirements are a pleasant personality and the ability to maintain a good relationship with customers. Full product training will be given.

To Engineers looking for the best in salaries, vacancies exist in most parts of the country. Conditions and fringe benefits are what you would expect when you join a company within the international Sperry Rand organisation. Future career prospects in the computer field are excellent

For vacancies in London or the South write with full personal and career details to Personnel Manager, Ref. WW. Sperry Univac. Univac House, 160 Euston Road, London NW1. Telephone 01-387 0911. For vacancies in the Midlands and North write with full personal and career details to Personnel Manager. Ref. WW. Sperry Univac, Lynnfield House, Church Street, Altrincham. 'Cheshire. Telephone 06 1-9?87731

RADIO OPERATORS JOIN THE POST OFFICE FROM AGE 19

 Maritime Service is the key to an interesting career, whether you have recently qualified and are looking for a shore-based job, or are seagoing and wish to swallow the anchor. A progressive future in the Post Office could be yours if you hold a General Certificate in Radiocommunication, issued by the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting pay at age 19 is $£ 1,450$ a year, including contributions to a compulsory pension scheme, with an additional allowance averaging $£ 300$ for shift duties. After two years, satisfactory service your pay becomes $£ 1,840$, rising to a maximum of $£ 2,450$ at age 26 years. If you are over 19 years of age your salary is dependent upon age at entry,

There are opportunities for further promotion to positions with a basic salary of $£ 3,475$ and prospects for advancement into Senior Management.

For further information, write to the Inspector of Wireless Telegraphy (L523), MRSD/ET17. 1. 1. 3, Room 643. Armour House, St. Martins-le-Grand, London EC1A1AR.

We know a lot of companies who would like to meet you.

Even if you scour the Sits Vac columns you won't find all the good jobs to fit your qualifications. Because the best jobs aren't always advertised.

More and more companies are using the Electronics Appointments Register to find qualified men and women.

Join one of our Registers and soon you could be on a short list for a better job. Our confidential service costs you nothing.

Send in the coupon-we'll mail you by return.

Graduate Appointments Register
Please send me details ol how to enrol on one of your Appointment Registers:
Name
Address

CIRCUIT DEVELOPMENT ENGINEERS TELEVISION SYSTEMS SALARY RANGE £7,000 (OPEN)

The Grass Valley Group, Inc. (USA), a leading manufacturer of television line and terminal equipment, has immediate openings for highly qualified circuit development engıneers. Specifically, we are looking for creative and resourceful people who are capable of carrying ideas through to completed products. Applicants are expected to be familiar with the latest solid state devices and techniques, and preferably should have experience in the design of video switching sys: tems, video processing systems, and possibly digital video systems. Some experience in television studio operations and techniques is also desirable. Educational requirements are a C.E. or a B.Sc. in electronic engineering. A minimum of five years' design experience is required.

If you are interested in a challenging and rewarding career with an expanding company, please airmail a resume of your educational and technical background, work experience, and personal history to William L. Rorden, Chief Engineer, The Grass Valley Group, Inc., P.O. Box 1114, Grass Valley, California 95945, USA. Resumes need not be formal; how ever, we are interested in learning as much about you and your experience as possible. Immediate consideration will be given and response made to suitable applicants, with a view toward arranging personal interviews in London in early 1974. All resumes will be treated in confidence. References will be required at or prior to the time of interview.
Grass Valley is a small town located in the foothills of the Sierra Nevada mountains in northern California, adjacent to summer resort and ski areas, and $21 / 2$ hours from San Francisco.

THE GRASS VALLEY GROUP, INC. 今人

FIELD
 SERVICE ENGIIIEERS

The Computer Division of Redifon Electronic Systems Limited is a leader in the Key-Disc market in the United Kingdom, manufacturing and selling Key-Check and See-Check.
We invite applications from experienced Field Engineers or competent factory-based System Test Engineers/Trouble Shooters, who desire a career in Field Service Engineering.
Thorough training in our factory at Crawley will be given to successful applicants, who should reside in the Home Counties or Swansea area.
We offer opportunities for overseas travel, excellent salaries, Life Assurance, Pension Scheme and other fringe benefits.
Please apply, quoting reference number; Ref:WW/21, to:
Tony Cox, Personnel Manager,
Redifon Electronic Systems Limited,
P.O.Box 2, Manor Royal, Crawley, Sussex.

A Member Company of the Rediffusion Organisation

DESIGN ENGINEER

An established Radio Company situated on the South side of Birmingham requires an enthusiastic electronics engineer to join its design and development department.
Applications are invited from engineers who have industrial experience in V.H.F. circuit design associated with communication equipment.
The successful applicant will be involved from the initial design stage to production, this providing an opportunity for considerable initiative.
Please apply in writing in the first instance to
The Employment Officer, Eddystone Radio Limited, Alvechurch Road, West Heath, Birmingham, B31 3PP.
A member of Marconi Communication Systems Ltd.

Electronics Test Engineers

Pye Telecommunications of Cambridge and Haverhill have immediate vacancies for Production Test Engineers. The work entails checking to an exacting specification VHF, UHF radio-telephone equipment before customer delivery; applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment. Formal qualifications, while desirable, are not as important as practical proficiency. Armed service experience of such work would be perfectly acceptable.
Pye Telecommunications is the world's largest exporter of radio-telephone equipment and is engaged in a major expansion programme designed to double present turnover during the next five years. There are, therefore, excellent opportunities for promotion within the company. Pye also encourages its staff to take higher technical and professional qualifications.
These are genuine career opportunities in an expansionist company, so write or telephone without delay for an application form to:

Mrs A E Darkin at
Cambridge Works, Elizabeth Way, Cambridge CB4 1DW
Telephone: Cambridge 58985
or
Mrs C Dawe at
Colne Valley Road, Haverhill,
Suffolk CB9 8DU
Telephone: Haverhill 4422

SIEMENS

We are Siemens Limited, the UK company
of the Worlds most diversified electronic and electrical engineering organisation. We are expanding rapidly and urgently require

Customer Service Engineers for Scientific Instruments

To work on analytical x-ray equipment. electron miscroscopes and chromatographs. Ideally applicants will be educated to HNC level in electronics or physics, but sufficient relevant experience would be favourably considered. If necessary training will be given to
the successful candidates. This is a unique position in a large well established multi-national concern. Excellent salary and fringe benefits. Vacancies are based in London and Glasgow, interviews can be arranged at either centre. If you are interested and feel you have the
experience and necessary qualifications then write or phone for an application form to Roger Kingsley, Personnel Manager, Siemens Limited, Great West House, Great West Road, Brentford TW8 9DG, Middlesex. Telephone 01-568 8281 Ext. 34

HAYDEN LABORATORIES LIMITED

exclusive U.K. agents for NAGRA tape recorders and SENNHEISER microphones.
A vacancy has arisen in our London Service Department for an engineer to carry out servicing work on the above prcducts. We are seeking an enthusiastic and conscientious worker with a good understanding of microphones and tape recorders and a standard of workmanship consistent with the quality and reputation of these products.
Good working conditions. Four weeks' annual holiday. Holiday arrangements will be honoured for this summer. Salary by negotiation. Interviews in London. Please apply in writing to
Managing Director, HAYDEN LABORATORIES LTD., Hayden House, 17 Chesham Road, Amersham, Buckinghamshire
\qquad

APPOINTMENTS

Installation Engineering with IAL up to $£ 3,000$ Worldwide Travel

The chance for advancement is open to ENGINEERS AND TECHNICIANS looking for a UK based job with worldwide travel opportunities.
As a member of our new installation team you may have your first job in Singapore or it could be in Dubai for IAL's contracts are in all parts of the world. For the most part your trips will be of around one month's duration but some may be extended depending on job requirement and complexity.

We have positions for ENGINEERS to head the teams whose experience covers the installation and commissioning of FDM in the VHF, UHF, and SHF spectra and/or radar and sophisticated ground based aeronautical navigational equipment.
There are also interesting positions available for TECHNICIANS who will supervise projects. Here we require experience in the installation and commissioning of single channel radio equipment in the HF and VHF spectras and with radio and telephone line communications equipment generally. A maintenance back-
ground in these areas would be useful.
The positions offer real job responsibility and satisfaction, generous overseas allowances will be paid. Other benefits include membership of a sound contributory pension and life insurance scheme and opportunities for holiday air travel at nominal rates worldwide.
Please apply by phoning or writing to Mr Rodney Radcliffe, Personnel Officer (Ref: IE/WW), International Aeradio Limited, Aeradio House, Hayes Road, Southall, Middlesex. Tel: 015742411.

SONY.

A Career with Sony

A unique opportunity to join a world-famous Company, renowned for its product Quality and Reliability.
We are looking for 6 young men aged 16-17

Apprentice Bench Service Engineers

The four-year Apprenticeship, which leads to City and Guilds Certificate, commences in September with a 13 -week full-time course at Kingston College (Surrey).
For full details of a Career with SONY tele-
years, educated to between CSE Grade 4 and "O" level standard, preferably with Maths and Physics to become

[^3]
Electronics Engineers Do something completely dififerentbecome a Lecturer.

We are looking for several Electronics Engineers whom we can train to teach the practicalities of computer servicing.

You will be based at our training centre in Letchworth, Herts - the largest of its kind in Europe. Here, you will be given a comprehensive grounding in computer technology in general and ICL equipment in particular. You will also be taught how to teach and therefore be thoroughly prepared to train Engineers to the point where they will be capable of maintaining computers at the optimum operational specification.

Ideally, you will have an HNC or Forces' training in electronic engineering. Any experience in digital electronics or computers, while not essential, will be useful.

We'll start you as an Assistant Lecturer on a salary between $£ 2200$ and $£ 2756$. You'll be encouraged and expected to progress to the position of Senior Lecturer which carries a salary of up to $£ 3840$. Relocation expenses will be considered where appropriate.

For an application form, write to
A E Turner, quoting reference WW at International Computers Limited, 85/91 Upper Richmond Road, Putney, London SW 152 TE.

International Computers
think computers-think ICL
ICL
[3681

RADIO OFFICERS

Do you have PMG I, PMG II, MPT 2 years operating experience?
Possession of one of these qualifies you for consideration for a Radio Officer post with composite signals organisation.
On satisfactory completion of a 7 month specialist training course, successful applicants are paid on a scale rising to $£ 3,096$ pa; commencing salary according to age- 25 years and over $£ 2,245 \mathrm{pa}$. During training salary also by age, 25 years and over $£ 1,724$ pa with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered.

Full details from:

ELECTRONICS TECHNICIAN

required to join a small team dealing with most aspects of medical electronics including safety, calibration, purchase, design and modifications.

The technician appointed will be expected to gain experience by working in various hospitals in South and Central Liverpool.

Salary scale will be on the Medical Physics Technician Grade III ($£ 719 £ 2,211$).

Applicants should have O.N.C. C \& G Certificates or equivalent and have experience in electronics.

Application forms and job description obtainable from the District Administrator, 80 Rodney Street, Liverpool, L1 9AP, to be returned by the 4th June 1974.

〔 3737

RALWAY SIGNAL ENGINEER

required by a firm of Consulting Engineers on the South Coast.

Applicants should be graduates and members of the Institution of Railway Signal Engineers and have had experience in a responsible position of the design and execution of modern railway signalling systems, train describers and automatic routing systems. Experience of signalling under 25 kV a.c. traction conditions is under desirable.

Duties would include the preparation of signalling and train description specifications from outline drafts, preparation of signalling schemes, analysis of tenders and technical supervision of signalling works.

Salary will be according to qualifications and experience.

Applications should be addressed to the Personnel Manager, Messrs. Preece Cardew \& Rider, Paston House, 165-167 Preston Road, Brighton, BNI 6AF, Sussex, quoting reference: GET / Pers/3080.
[3689

OPPORTUNITIES FOR EEECTRONIC TECHNICIANS IN SOUTH AFRICA

Uitenhage Municipality requires the services of a qualified electronic technician to work in the Test Section of the Electricity Department. Applicants should preferably be in possession of a H.N.C. and have had experience in digital supervisory systems as related to a distribution authority.
Uitenhage is situated 30 km from Port Elizabeth in the Cape Province and has an excellent climate which is conducive to the many outdoor amenities provided.
Benefits of employment include pension and medical schemes, housing loans at a reduced interest rate, annual bonus, six weeks annual leave and assisted passage and removal expenses for the successful applicant and family. It is expected the salary will be up to R6,498.00 per annum ($\mathrm{RI}=\mathrm{E} 0.61$).
Applicants shall, in the first instance, write to Mertz \& McLellan, Carrier House, Warwick Row, London, SWIE 5EN, giving age, marital status, qualifications and a career resume. Interviews will be held in London during June/July.

BIAS ELECTRONICS LTD.

have recently moved to larger premises and to meet the demand for our internationally acclaimed professional tape recorders require

TEST ENGINEERS

with experience on high quality audio and tape recording equipment;

JUNIOR TEST ENGINEERS

with plenty of enthusiasm and the desire to gain experience in professional audio;

ELECTRONIC WIRE
 MEN/ASSEMBLERS

capable of working to high standards and with the opportunity to progress to test and inspection.
Take this opportunity to join a dynamic expanding company where you will be regarded as one of the team and not just a number. Good rates of pay and profit sharing scheme.
For further information write or phone
BIAS ELECTRONICS LTD.
572 KINGSTON ROAD LONDON, SW20 8DR 01-540 8808 or 01-540 9818

School leaverslearn while youearn at PyeTelecom

You could train for a professional career, gain help in obtaining further qualifications - and earn good money at the same time. Pye Telecom is part of the Pye Group, leading manufacturers in the electronics industry. Joining will bring you extensive opportunity stemming from Pye Telecom's vigorous growth. You can start as either of the following:

Student Engineer

'A' level Maths and Physics plus 3 ' O ' levels including English, or ONC/OND with credits, are, essentials. You will embark on a 'thin sandwich' course (6 months' practical experience at Pye Telecom, Cambridge, alternating with 6 months at a college of your choice,) which will lead to a B.Sc, or HND in Electronic Engineering. After qualifying your career path could include Design Engineering, Systems Engineering, Production Engineering or Junior Management. If necessary, lodgings will be found for you during periods spent at Cambridge.
Trainee Technician
Entry qualifications: ' O ' level English, Maths, Physics, plus another science-based subject, preferably Engineering Drawing, or alternatively good equivalent CSE passes. A 4 -year practical training course will combine with day release to take ONC/HNC or City \& Guilds Telecommunications Technicians courses. You could become a Test Engineer, Production Engineer, Production Planner, Draughtsman, Engineering Laboratory Technician or Service Engineer. There are some opportunities to progress as a Student Engineer, and take a degree.
For further information and your application form please write immediately to Mrs. Rowan Turnbull, Training Officer,

Pye Telecommunications Ltd
Newmarket Road. Cambridge. CB5 8PD. Tel : Cambridge 61222

GLASGOW COLLEGE of TECHNOLOGY

DEGREE in ELECTRICAL AND ELECTRONIC ENGINEERING by PART-TIME STUDY
Applications are invited from holders of a good H.N.C. in Electrical or Electronic Engineering to enrol for the course:

B.Sc. in Electrical Engineering (CNAA)

This four-year part-time degree course is the first of its type to be offered in Scotland, and a start is proposed for August 1974.
Full details and application form from:

The Academic Registrar,
 Glasgow College of Technology,
 North Hanover Place, Glasgow, G40BA.

The College is only a few minutes walk from the City Centre and Queen Street Station giving easy access from the West of Scotland and Edinburgh.

APPOINTMENTS

- 1 1川! . 1 ? 1 Cs
 CONTRACTS ENGINEERS RADIO COMMUNICATIONS

required by the CROWN AGENTS for their London (Westminster) Office.
Candidates should preferably have had five year's experience as a Contracts Engineer in one or more of the areas of communications detailed below and possess ONC or equivalent in an appropriate discipline. Practical experience of the equipment desirable.
(a) Sound Navigational Aids (Radar. ILS. VOR/DME, etc)
(b) HF. VHF UHF Communication Equipment.
(c) Microwave Equipment and Systems.

The duties include the checking of specifications. preparation of tender documents, technical and commercial correspondence connected with contracts. the evaluation of tenders and the placing of contracts. Candidates must be prepared to undertake occasional visits to works and to overseas principals.
Commencing salary according to age. qualifications and experience up to $£ 2,557$ rising to $£ 2.891$. Non-contributory pension scheme.

[^4]The AGRICULTURAL RESEARCH COUNCIL require a

SCIENTIFIC

 OFFICERin the Electronics Section of their LETCOMBE LABORATORY.
Duties will involve the repair and routine maintenance of a variety of laboratory instruments, in particular equipment for the measurement of radioactive tracers used in the research programme, and also assisting with the development of new equipment. The Laboratory is well equipped with both manual and automated modern instruments.
Minimum qualifications: HNC, Pass degree or equivalent in Electronics or Applied Physics.
Salary Scale $£ 1,435-£ 2,329$ according to qualifications and experience. Superannuation Scheme with a non-pensionable allowance to offset contributions. Application forms and further particulars may be obtained from the Secretary, ref: 1/74, Agricultural Research Council, Letcombe Laboratory, Wantage, $\mathrm{O} \times 129 \mathrm{JT}$. The closing date for application is 12 June 1974.
[3716

UNIVERSITY COLLEGE CARDIFF

Applications are invited for the following post:
TECHNICIAN GRADE 3 (ELECTRONICS)
for C.C.T.Y, and Audio Studio in the Centre for
Educational Technology. educational Technology.
Salary range: $£ 1,650-£ 1,920$. Duties include maintenance and operation of T. \dot{V}., Audio and Proiection Equipment: qualification standard O.N.C. or desirable., Duties to commence as soon as possible. Closing date for applications is one week from

Applications, together with the names and
addresses of two referees. shouid be forwarded to The Registrar. University College, P.O. Box 78 .

C.C.T.V.
 JUNIOR TECHNICIAN

required to assist studio engineer in operation, maintenance and development of a 3 -camera colour CCTV system incorporating telecine and U matic videocassette copying facilities.
Basic knowledge of T.V. theory essential, experience in servicing VTR's and cameras an advantage.
Day release available if required. Salary c. $£ 1,400$ p.a. according to age and experience. Luncheon vouchers. Non-contributory pension, free life assurance.
Phone: PETER MAKOSZ
at (01) 499 0031, ext. 274.
or write with detalls of experience to:-
T.V. DEPT.,

HAMBRO LIFE ASSURANCE LTD.,
7 OLD PARK LANE,
LONDON WIY 3LJ.
[3728

Find your place in British Gas

TELECOMMUNICATIONS
 -Field Maintenance

Eastern Gas are seeking to recruit Technicians for their Communication and Instrumentation Section based at Hertford.
These posts will involve all aspects of maintenance on the Eastern Gas Integrated Communication System.

Technician II (Communications/Instrumentation)
Proven ability in Communications/Instrumentation is a prime requirement for this post. Previous experience with an appropriate equipment manufacturer or user would also be desirable.

Technician II (Message Switching)

The person appointed would specialise in the repair and maintenance of an extensive teleprinter network. He will also, on occasions, assist with the maintenance of the Communications equipment associated with this network.
The salaries for both posts will be about $£ 2,000$ per annum depending on age and experience with excellent prospects for promotion to higher grades and salaries rising to approximately $£ 2,500$ per annum. A current driving licence is essential.
Write or telephone for application forms quoting reference 3703/ 4228 to Mr. H. A. Lloyd, Personnel Officer, Eastern Gas, Star House, Potters Bar, Herts., within ten days of this advertisement.

SENIOR VIDEO ENGINEER

Senior Video Engineer wanted to operate and maintain telecine and video tape recording equipment for company in Basildon. A.C.T.T. rates honoured. 40-hour week. 18-20 working days holiday p.a. Relocation assistance given. For further particulars contact:

THE E.V.R. PARTNERSHIP
Christopher Martin Road,
Basiddon Industrial Estate, Basildon

Jointhe EMI ServiceTeam at Hayes
We urgently require

The international music electronics and leisure Group.
required for the repair and calibration of a wide range of electronic instrumentation, inciuding oscilloscopes, DVMs, pulse generators, power supplies etc.
Applicants should be aged at least I8 years and should have had at
least two years background in electronics. Further training will be

given in appropriate cases.
 Close Circuit Television Engineers

for the servicing and commissioning of CCTV, VTRs etc.
Applicants should be aged at least 99 years, and must have had some experience in television receiver servicing.
For both of these positions, starting salary will be up to $£ 2,300$ per annum according to age, experience and ability. 37! hour week, plus paid overtime.
Don't delay, for further details telephone or write to M. Ford, 01-573 3888 Ext. 2268, EMI Service, 254 Blyth Road, Hayes, Middlesex.

Were not absolutely certain that the men we're looking for even exist.

We are Racal-Mobilcal - a worldfamous name in radio communications equipment.

We are looking for seven outstanding men to take up new posts as our Technical Managers in seven Middle Eastern countries.

And frankly, the qualities we consider necessary for these positions are so demanding, we know for a fact that there can only be very few men who could make it. Each man must be qualified technically in radio communications, because he will supervise the commissioning, installation and maintenance of mobile radio systems. He will liaise with the armed services and other Government agencies of his particular country. And train their local operatives. He must have the management ability and the diplomatic presence to be able to represent the Company in discussions at the highest level with the country's government and armed services.

He will, in fact, be Racal-Mobilcal's front man, technical adviser and diplomat in residence.

And therefore, ideally, he should have a command of Arabic. (But we'll settle for at least the ability and willingness to learn something of the language rapidly).

That is what we're looking for - seven outstanding men to become RacalMobilcal in the Middle East.

In return, this is what we're offering:
An initial four year tour of duty, with generous leave arrangements.

An excellent salary which lines up with the job.

Full accommodation for each successful applicant and his family.

And very good prospects for further promotion within the Racal Group after the initial four year tour.

Joining Racal would be joining a world-famous Group which has achieved record profits for the last eighteen
successive years. A world name in electronics. And a world leader in many product areas.

Can you convince us that at least one of the seven men we're looking for does, in fact, exist?

Write in strictest confidence, giving all relevant details, to David Elsbury, Managing Director, Racal-Mobilcal Ltd, 464 Basingstoke Road, Reading, Berks, RG2 0RY, England.

Preliminary interviews will be set up at convenient locations.

The Electronics Group

FARINON ELECTRIC OF CANADA

is a leading manufacturer of Microwave Radio and Multiplex equipment located outside Montreal.
Openings presently exist in our Field Department for Commissioning Engineers.
The Job

- Installation, alignment, testing and commissioning of Microwave radio and multiplex systems.
- Involves extensive travel throughout Canada including the Northern Regions.
The Applicant
- Experienced in field system testing of solid state radio in the range 150 MHz to 12 GHz having baseband capabilities to 960 channels or video.
- Fully conversant with state of the art tests and capable of evaluating results obtained.
- Knowledgeable on Microwave propagation phenomenon such as multipath.
- Be eligible for Canadian Landed Immigrant status and driver's licence.
This is a responsible career position offering unusual benefits to the right person.

Please send complete resume to:-

Farinon Electric
 657 Orly Avenue
 Dorval, Quebec,

H9P iG1
Carada
Attention: Chas. Hemry

Computer Machinery Company Ltd

require a

Systems/Engineering Instructor

Computer Machinery Company Ltd, the leading UK manufacturer of Key-to-disk data preparation equipment are expanding their Education and Training Department at their new Education Centre, located in Hemel Hempstead, Herts.
The successful applicant witl be required to assist the training team with existing oourses, the devedopment of new courses and modern training aids.
Essential qualifications for the position include training experience, preferably with electronic digital systems and an ability to absorb new system detail quickly and create new aids and methods to meet our training objectives.
The position offers excellent career prospects and job satisfaction with some UK and Overseas travel. Salary will be negotiable according to relevant experience and relocation expenses could be given where necessary.
Apply in writing or telephone with personal career details to:

Ken Abbott,
 Education and Training Manager, Computer Machinery Company Ltd.,
 Maxted Close,
 Hemel Hempstead, Herts.

Tel: Heme Hempstead 61266 Ext. 284
[3704

APPOINTMENTS

South Africa TV Design/ Development

A well-known international group requires a capable Design/Development Engineer for its new monochrome TV factory at Pietersburg. He will be responsible for:-

- managing the development laboratory;
- establishing production quality standards;
- ensuring that the model, designed in Europe, conforms to South African design specifications, and
- new components evaluation, including supplier assessment.
Candidates, aged over 30, should have HNC Electronic Engineering with at least five years experience in modern TV development. Experience of solid-state techniques is highly desirable and a knowledge of German would be useful. Two to three months training in Europe will precede appointment to South Africa. Subsequent promotion to Chief Engineer is a possibility.
Pietersburg is a pleasant town in an area of magnificent scenic beauty. At a height of 4,000 feet, it has a superb climate and every amenity.
Please write with full details which will be sent direct to our client. Please list separately any company to whom your application should not be sent.

R. Llewellyn,

MSL ADVERTISING SERVICES LIMITED,
17 Stratton Street, London, W1X 6DB.

TELEVISION ENGINEER

required to join a small but enthusiastic team operating a

TELEVISION UNIT FOR HORSERACING

If you have an HNC, City and Guilds, or equivalent qualification and have experience in operating and maintaining outside broadcast television equipment and VTRs together with a willingness to travel and to work in a demanding field, then this Company offers you:-
1 the opportunity to join an organisation that is forward looking and is planning to develop and expand in the field of television and electronics;
2 a job that is located in varied surroundings on British racecourses;

3 a basic salary of between $£ 2,700-£ 2,900$ plus expenses when on location.

If you are interested, please write or telephone for a Company form to:-
Mr. F. T. Dixon, Racecourse Technical Services Ltd., 88 Bushey Road, London, S.W. 20

Tel: 01-947 3333

THEWMEI: SOOHA ARICA

Television transmission will commence for the first time in South Africa at the end of 1975. Electra Television, the franchise Telefunken distributors in South Africa, will be marketing Telefunken Colour and Black and White receivers during 1975. Our Service Organisation is being vastly expanded, and we are recruiting the following key personnel:-

SERVICE MANAGERS

To be in charge of Service Branches in the major cities in South Africa. Thorough knowledge of all service procedures such as budgeting, costing and invoicing, work progress, stock and staff control as well as a good technical background with particular reference to semiconductor colour receiver circuitry would be desirable. Salaries negotiable from $£ 5,500$ per annum.

T.V. INSTRUCTORS

To instruct technicians, apprentices, field service operators as well as trade staff, in the theory and practice of colour television installations and repairs at their respective required levels. Salaries negotiable from $£ 4,000$ per annum.

TELEVISION TECHNICIANS

To take charge of all repairs of colour receivers in various centres throughout the Republic of South Africa and in some instances to take charge of a smaller branch or to supervise a group of learner technicians.
Thorough knowledge of the PAL colour systems especially in respect of semi-conductor circuitry is required. Salaries negotiable from $£ 3,500$ per annum.

As Telefunken will be a major brand in the South African Market, rapid expansion is expected, leading to promotion and increase in responsibilities. The company operates a Medical Aid Scheme, a Pension Fund and other fringe benefits. Removal and, immigration assistance will be provided.

As interviews will be arranged in May and June, 1974, your application should be addressed as soon as possible to:-

Mr. R. B. Hartog,
C/o Messina (Tvl.) Development Co. Ltd., 29/30 St. James's Street,
LONDON, SW1A 1HB.

APPOINTMENTS

We want to meet Customer Engineers who understand people as well as machines

Today, IBM Computers play a vital role in industry, science, government and commerce. Just as vital are the skilled Engineers who keep them running. Because of their close involvement with the customer, we call them Customer Engineers. This could be your first step to a highly rewarding future with one of the world's most successful companies.
Your job as a Customer Engineer There are several avenues within IBM Customer Engineering. At present most of the opportunities lie with our General Systems Group. Here you will be responsible for the servicing and maintenance of medium and large scale Computer Systems. You'll receive a first class training-initial and continuous.
Qualifications
Ideally you should be educated to ONC/

HNC or equivalent. Essential requirements are a logical mind, a good mechanical aptitude, and a knowledge of electronics and a current driving licence. A Service background though not essential is desirable.

Your Prospects

Starting salaries are excellent. In addition IBM offer many fringe benefits such as a non-contributory Pension Scheme and free Life Assurance. It is also IBM policy to promote from within.

Write today

Write with details of your age, qualifications and experience to: Anne Dare, IBM United Kingdom Limited, 389 Chiswick High Road, London W. 4. quoting Ref. WW/92065.
 [3684

MARINE RADIO SERVICE ENGINEER

As one of the world's leading companies in radio communications equipment and navigational aids, and one of Britain's biggest exporters in this field, we are constantly developing, constantly expanding.
Due to this continual expansion we now require Service Engineers at our Tilbury and Grimsby depots and at our headquarters in Wandsworth to service our marine communications equipment.
Formerly an experienced radio officer, you wilt have had at least three years experience at sea in the servicing and maintaining of all types of ship borme communications equipment.
We offer an excellent salary and fringe benefits such as contributory pension scheme and sickneas benefits. Write or telephone giving details of career to date ta:

DAVID R. STMES

Personnel ${ }^{2}$ Trining Officer
Redifon Telecommunications Limited
Broomhill Road, Wandsworth
London SW18 4JQ
Tel: 01-374 7281

BRUNEL UNIVERSITY
 Dept. of Electrical Engineering and Electronlcs
 RESEARCH IN ELECTRONIC SYSTEMS DESIGN

Applications are invited from recent graduates, preferably with some industrial experience, who hold good honours defrees in Mathematics, Electrical Engineering or Physics to undertake research leading to a higher degree in the following aress:

Computer Aided Design of Digital Systems Information Processing Systems
Power Electronics Systems
Control Systems Derign
Communication Systems
Research studentships will be available for suitably qualified candidates.

Please write to Professor Douglas Lewin. Dept. of Electrical Engineering and Electronics. Brunel University, Uxbridge. Middlesex.
[3732

PROJECT \& COMMISSIONING ENGINEER

SHOULD HAVE GOOD THEORETICAL TRAINING IN ELECTRONICS PLUS ACTUAL EXPERIENCE OF PROFES SIONAL AUDIO EQUIPMENT IN BROADCASTING, RECORDING, OR WITH A SPECIALIST MANUFACTURER.

Apply in writing to
MR. R. SWETTENHAM
HELIOS ELECTRONICS LTD.
161 HIGH STREET, TEDDWGTON MADDX., TWII 8HT
[3701

WORK IN CENTRAL AMERICA
 RADIO ENGINEERS AND TECHNICIANS NEEDED IN HONDURAS AND GUATEMALA

The local Radio Stations in Guatemala and Honduras transmit classes in agriculture, adult Hiteracy, and simple health topics, to the people in the rural areas-approximately 90% of the population.

The training of local people to maintain the transmitters and to deal with the technical production of the programmes is being carried out by four Britist volunteers. We need people to replace them for a further two-year period.

Information: Firances Chadwick, Overseas volunteers/CIIR', 41.Holland Park, Landon, W.11. Tel: 01-727 3195. Visitors welcome.

ELECTRONICS TECHNICIANENGINEER

Young systems company seeks intelligent junior technician-erngineer of HNC/ONC or equivalent standard. Suitable for cold training or equivalent in one of the services.
Job involves commissioning/development on Mini-Computer based Trata in Mini-Com systems. hardware/software arranged.
Salary range $£ 1,750-£ 2,250$.
Write or telephone Steve Clifford or Peter Rogers for informal discussion.

TASK TERMINALS LTD.,

117 Cleveland Street, London, W. 1 01-637 4516

JOHN KING require

NEW WORTHING SHOP
Senior Technical Salesman for Hi-Fi, Tape Department. Terrific scope, superb facilities. Full details in confidence to

JOHN KING
71 East Street, Brighton. Tel: 25918/27674.
[3688

THE CONTINUALLY EXPANDING
 MILLBANK ELECTRONICS GROUP
 Bellbrook Estate, Uckifeld, Sussex, TN22 1PS
 Tel: Uckfleld (0825) 4166 REQUIRES A
 TEST ENGINEER

Must be experienced in the testing and servicing of audio power amplifiers, mixers and associated equipment.
This is a Staff position and carries full benefits including membership of a private medical scheme.
If you are interested please apply In writing enclosing curriculum vitae to Mr Kelth Goodsell, Production Manager.

PROFESSIONAL AND TECHNOLOGY OFFICERS

required by the Crown Agents to plan and control projects overseas. Candidates must be either M.I.E.E., or M.I.E.R.E., and must be prepared to serve abroad.

1. P. \& T.O.I.-
(Telecommunications-Radio Transmission)
Candidates must have had overseas experience of radio propagation, systems planning, high frequency microwave line of sight and tropospheric scatter systems. Experience of line carrier and cable systems traffic analysis and forecasting techniques and television requirements an advantage.

REFERENCE-MIS/OFFICE VI/I/WF

2. P. \& T.O.I.-
 (Telecommunications)

Candidates must have had overseas experience in a senior position with a Telecommunications organisation or operating company. They should have a knowledge of telecommunications administration and traffic matters, telephone, telegraph and telex operations and a knowledge of switching, transmission or radio engineering

REFERENCE-MIS/OFFICE VI/2/WF

3. P. \& T.O.I.-

(Telecommunications)
Candidates must have been responsible for the preparation of transmission network schemes and have a knowledge of some of the following:
(a) Openwire line carrier systems:
(b) Multiplex systems on coaxial cables or radio bearers:
(c) Microwave engineering including propagation studies;
(d) UHF or VHF radio systems suitable for public networks;
(e) Telegraph transmission including automatic error correction:
(f) HF radio systems including LINCOMPEX:
(g) Data transmission

REFERENCE-MIS/OFFICE VI/3/WF

4. P. \& T.O.II.-
 (Telecommunications)

Candidates must have had experience with a telecommunications administration or major manufacturer of telephone switching equipment. A knowledge of Common Control switching systems and of national and international systems is desirable.

REFERENCE-MIS/OFFICE $\mathrm{VI} / 4 / \mathrm{WF}$
Current salary scales are as follows:
P. \& T.O.I.- $£ \mathbf{3 , 4 5 1}$ to $£ 4,373$
P. \& T.O.II.- $£ 2,891$ to $£ 3,451$

Write for further details and application form to the Crown Agents, 4 Millbank, London SW1P 3JD stating brief details of qualifications and experience and quoting the relevart reference number of the post in which you are interested.

3692

telesonic marine Itd.

MARINE ELECTRONICS ENGINEER

Are you experienced in installing and servicing marine electronic equipment such as Radar. Navigation Equipment, and radio telephones? We require such a man for a fascinating job travelling to luxury yachts, etc., all round the country. If you live near London and are able to drive, a good salary awaits you working in idyllic friendly atmosphere.
Apply Telesonic Marine Ltd.
Tel: 01-387 7467
3608

APPOINTMENTS

RADIO RENTALS AUSTRALIA NEEDS COLOUR TELEVISION TECHNICIANS.

Colour television starts officially in Australia on 1st March, 1975, and Radio Rentals Pty. Ltd., Australia's largest television rental organisation, have an expansion programme which will create vacancies for suitably qualified technicians in Sydney, Melbourne, Brisbane and other centres. Radio Rentals Pty. Ltd. is a member of the Thorn Group of Companies and is associated with the British Radio Rentals organisation.

The vacancies will be of interest to experienced colour television technicians holding the City and Guilds/R.T.E.E.B. Final Servicing Certificate with colour endorsement, or equivalent qualifications, who wish to settle and obtain permanent employment in Australia. All enquiries will be carefully considered and suitable applicants interviewed by an executive of the Company who will be visiting Britain in the near future. Successful applicants will be given firm offers of employment but will make their own arrangements for migration, possibly
 through the Australian Government Assisted Passage Scheme

Applications for further information should include full details. $:$ of personal status and qualifications and be addressed to:-

Mr. H. D. Wallace, Technical Director, Radio Rentals Pty. Ltd., P.O. Box No. 395, Crows Nest, New South Wales 2065, Australia.

TECHNICIANS AND ENGINEERS FOR ST. ALBANS AND LUTON QUALIFIED OR NOT!

OPPORTUNITIES for challenging work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.
APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ExServices technicians.
HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits. Overtime normally available.
GENEROUS RE-LOCATION EXPENSES available in most instances.
CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
$37 \frac{1}{2}$ hour, 5 -day, working week.
WRITE or phone for application forms quoting reference WW

MARCONI INSTRUMENTS LTD,
Longacres, St. Albans, Herts
Tel: St. Albans 59292
Luton Airport, Luton, Beds
Tel: Luton 33866
A GEC-Marconi Electronics Company

OPPORTUNITIES in the ELECTRONICS FIELD

Men with analogue or digital qualifications/experience seeking higher paid permanent posts in: TEST - SERVICE - DESIGN - SALES.

Phone Roger Pearce, Ref WW4.

NEWMAN
APPOINTMENTS
360 Oxford St., W.1.
$01-6297306$.
3685

ELECTRONIC TECHNICIAN

required at
NORTHWICK PARK HOSPITAL and clinical research centre
To service and calibrate a wide range of equipment used for medical, surgical and engineering purposes. The successful applicant will work closely with medical and other professional staf.

II-E1,845-62,337.
The hospital will have over 800 beds by 1975 and is closely allied with the Clinical Research Centre. Good staff facilities and a pleasant
working atmosphere. Active social club. Temporary single accommodation may be available.
Furcher
Further particulars and application forms, returnable by June 14th, from Personnel
Departinent, Watford Road, Harrow, Middesex, HAI 3UJ. Tel: 01.8645311. [3740

DEVON AREA HEALTH AUTHORITY PLYMOUTH HEALTH DISTRET

ELECTRONICS TECHNICIAN

required to work on a varied and interesting range of biomedical tasks in an expanding well-equipped maintenance and development laboratory at Freedom Fields Hospital, Plymouth. The person appointed will join a small team responsible (to the Chartered Electronics Engineer) for the successful operation of a wide range of patient-orientated equipment. Development, construction and testing of special-purpose equipment is undertaken and safety and purchase decisions are made on new equipment. Some travel in South Devon and in Cornwall necessitates a current driving licence. Relevant experience is desirable and the minimum qualification is ONC (equivalent). The appointment will be in either of the following grades, depending on experience. (Salary scales are under review).
Medical Physics Technician IV- $£ 1,530$ 61,953
Medical Physics Technician III- 11,719 R2,211
Further details of the work may be obtained from Mr. L. R. Jenkin, Telephone PLYMOUTH 68000, Ext. 369.
Application forms from the Hospital Secretary, North Friary House, Greenbank Terrace, Plymouth PL4 8QQ.
[3693

QUANTEL LIMITED

an expanding electronics company specialising in the APPLICATION OF DIGITAL TECHNIQUES TO

TELEVISION requires a

GROUP LEADER

Applicants must have had at least five years' experience in the design of broadcast television experience in the design of broade and digital equipment using
The succesiful candidate will lead a team The successful candidate will lead a team
devoted to the development of large complex digital video processing equipment.
Conditions of service and salary will be commensurate with the level of responsibility inmensurate with the

DEVELOPMENT ENGINEERS

Qualified development engineers with appropriate experience in the broadcast equipment field are also required to support the current programme of work.
The company provides first class opportunities for career development in modern wellequipped laboratories situated in the centre of Newbury, Berkshire.

Please apply to:
The Personnel Officer
19 West Mills
Newbury, Berkshire
or telephone Newbury 5895

Opportunities in Telecommunications

Men with a good telecommunications knowledge are required to be responsible for the telephone switching and transmission equipment on London Transport.
The work involves shift duties and consists of maintaining, testing and fault finding on the following types of equipment:(a) Automatic Telephone Exchanges and associated equipment.
(b) Multi-channel Carrier Systems and associated equipment.

A sound knowledge and experience of one of these categories of work is required. The possession of City and Guilds Certificates (or is requivalent) in telecommunications subjects would be an added advantage.
The rate of pay, including variable bonus, averages $£ 35.00$ for a 5 day (40 hour week). Additional payments are made for overtime, night work and rostered Saturday and Sunday duties. Current weekly earnings,
including payment for rostered overtime at week-ends, average $£ 45.00$. (These rates of pay are currently under review).
These positions offer valuable free travel on and off duty, certain privilege conditions for employees and dependants, and sick pay and pensions schemes.
Please apply in writing to:-London Transport (Ref: ATL),
Chief Signal Engineer's Department, 270 Bollo Lane, Acton, W.3. or Telephone: Mr. Crowder, 01-748 9564.

BBC requires resourceful and energetic Laboratory Technicians for Equipment Department, Power Road, Chiswick (within easy reach of Gunnersbury Station).

The work is interesting and involves testing new electronic equipment made by the BBC for its colour television and stereo radio services. The work also covers analogue and digital techniques over a frequency range from d.c. to U.H.F.
Salary in the range $£ 1.575$ to $£ 1,989$, rising to a maximum of $£ 2.268$ per annum. Good opportunities for promotion to Senior Technician (salary max. £2,565) and Engineering Technician (salary max. £2,940)

Applicants lacking suitable experience may be placed initially on a training grade. Facilities available to obtain approved technical qualifications.

Good club and canteen facilities. 3 weeks annual leave initially. Pensionable posts.
Write for application form to: Engineering Recruitment Officer, BBC, Broadcasting House, London. W1A 1AA quoting reference 74E4028WW and enclosing addressed foolscap envelope. Closing date for completed application forms. 10th June 1974.

DIRECTORCOMMUNICATIONS BRANCH

Abstract

... to represent the Scottish Home and Health Department on Central Government Committees and to discuss telecommunication systems with police, fire, prison and other Services for which the Department is responsible. The successful candidate will manage a professional branch engaged in the examination of problems associated with the planning, design, progressing of installation and maintenance of such systems. These include mobile radio, message switching and telephone systems, and networks and terminals to interface with computer based data processing and command and control systems. R \& D work in these fields is also involved.

Candidates must be competent administrators with a wide knowledge of modern telecommunications practice both radio and line, and have appropriate experience of systems planning. They must be corporate members of IEE or IERE (1962 Regulations), or have equivalent academic qualifications. A broad knowledge of computer systems and peripherals an advantage.

Starting salary within the scale $£ 6,300-£ 7,141$. Non-contributory pension scheme.

For full details and an application form (to be returned by 17 June 1974) write to Scottish Oftice, Room 213, Personnel Division, 22/25 Queen Street, Edinburgh, EH2 1LY, quoting reference $T / 8617$.

Scottish Home and Health Department 13719

SITUATIONS VAOANT

CAN YOU WRITE CLEAR, concise technical

 handbooks? If you think you could, and have a thorough understanding in electronics, why not join ids as a technical author. Obviously, previous experience would be an advantage but is not necessary as tull training would be given. We have vacancies in many parts of the country. Starting salaries are high WWW excellent prospects for advancement. Box No.CLECTRONICS TECHNICIAN Grade 3 required to assist in the construction. modification and Biophysics Department electronic equipment in the work is varjed range of analogue and digital techniques. O.N.C. or equivalent minimum qualification. Salary $£ 1825$ on scale rising to £2075 per annum including LonSon Weighting. Apply in writing giving full details of experience and qualifications to The Head Clerk (R2ef: WW 118324), King's College London, Strand,
[3425
WC2R 2LS.

HI-FI AUDIO ENGINEERS. We require experi1 enced Junior and Seniors and will pay top rates

MEDICAL Physics Technician Grade III or III M1 required in a small electronics laboratory with an existing staff of three. The laboratory is responsible for the maintenance and modification of all types of measuring and recording equipment. Good opportunities exist for original work in this area. salary scale $£ 1,719$ to $£ 2,211$ or $£ 2,040$ to $£ 2,661$ p.a. plus f 126 p.a. London Weighting. Application
forms from: Mr. J. Norman, National Heart Hospital, Westmoreland Street, London, W1M 8BA.

OXFORD University. Nuclear Physics Laboratory. Electronic Technician. A vacancy exists fōr a Technician in the Electronics workshop. Duties include servicing and maintaining a wide range of digital and analogue electronic equipment used in nuclear structure research, and the development and construction of new equipment. Applicants should possess a theoretical knowledge to about H.N.C. advantage. Proven practical ability in the field is
considered essential. Salary will be within a range rising to $£ 2,382$, with eight weeks paid annual leave. Day release for relevant studies may be granted is appropriate. Applications giving full particulars of age, experience and qualificalions should be sent
to:- T. E. Green, Nuclear Physics Laboratory, to:- T. E. Green, Nuclear Physics Laboratory,
Keble Road, Oxford. (Mention reference A.15. [369e
PIANO P.C.B.'s for W.W. Electronic pianos Enquiries to Baldock Electronics, 23 Turpins
Way, Baldock, Herts. Tel: Baldock 2559.

SEPTEMBER 74, Radio \& Television Engineer with full C \& G Certificate or HNC Electrical Engineering plus Teaching Qualification and indus trial and teaching experience. Apply Principal. Ber-

YOUNG ELECTRONICS TECHNICIAN required - for the construction, testing and servicing of electronic equipment at our works in N.W.1. Very varied work. Qualifications: ONC or C\&G or exapprentice or similar desirable. Excellent opportunity for right person with a small expanding company, Please write for an application form to: Young 2LN. 2 LN .
[364]

ARTICLES FOR SALE

A ARVAK ELECTRONICS, 3-channel sound-light A converters, from £18. Strobes, $£ 25$. Rainbow Strobes, £132.-12A Bruce Grove, N17 6RA. 01-80 9096.

BUILD IT in a DEWBOX quality plastic cabine D 2 in. $x 2 \frac{1}{2}$ in, x any length. D.E.W. Ltd. (W.), Write now-Right now. Dorset. S.A.E. for leaflet

A MPEX FR 1400 14-channel Instrumentation A Tape Recorder, £375. Ekco M5024 itl Timer Counter, £27. Solartron CD1400 db Oscilloscope £125. Friden 8-hole paper tape punch \& read units. £15 pair. Hewlett Packard Series $3900 \quad 12.5 \mathrm{~mm}$ Tape Unit, £75. D.C. Amplifier, £4.50. Frider Flexowriter, programmatic, £125. Richard Totman Gayefere, East Hill, Otford, Kent. Otford 3256.

Service Engineer

for Audio/Hi-Fi Department,
Good practical knowledge of leading makes. Attractive employment terms.

Write or telephone for appointment to :
JOHN KING (FILMS),
71 East Street, Brighton
Tel: 25918/27674
[3654

Small but rapidly expanding small Marine Electronic Company based in the South West seeks two ex-Marine Radio Officers-for installation and service work on small commercial craft and yachts.
Brief resume to:
BOX NUMBER W.W. 3707

BACK NUMBERS from 1950 to 1962 of Wireless World, Practical Wireless and Radio Construc-
tor for sale. Tel: $061-9732519$
E^{1}
THERMATIC 2 Automatic test equipment for of ofuction testing of audio equipment, consisting of
D.V.M.. Hewlett Packard
565 A print out. Oscillator units. psu, etc., complete or will separate. Teleprinters $7 \mathrm{~B}, \mathrm{f}$. 2 .
Lane, Bradford.
[3419
CONSTRUCTION AIDS-Screws, nuts, spacers etc.,
in small quantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia panels etched aluminium to individual requirements. Printed circuit brards-masters, negatives and bard, one-of or Services, 29 Shelbourne Road. Stratford on Ayon Warwks. ${ }^{\text {Services. }}$ Shelbourne Road, Stratford on Avon,

FURZEHILL Spectrum Analyser. Type 14526 F 3.30 MHz . As new. Marconi Spectrum Analyser. Type OA 1094. 0-30 MHz with LF convertor. Good condition.
24
volt
transistor PSU. GREDIFON GR4 Good ${ }^{\text {SSB TX/RX }}$ condition. with
 tion. 1-TF1165 Counter. As new. 1 -TF 1246 Oscillator. 40 KHz to 50 MHz . As new. $1-$ RT264/UPX6 TX/RX. Good condition. Ofers are invited for single items, or as one lot. Please réply Levenshulme, Manchester 19. Phone: 061 1-224 4911. $9.30 \mathrm{am}-6 \mathrm{pm}$ Tues-Fri. $9 \mathrm{am}-5 \mathrm{pm}$ Sat. Closed all day Mondays.

CENEVAC EC/12/4/1 vacuum coating unit. SubStrate heater rotary work holder as new. Offers 061-428 3235 .

LADDERS 8 ft 10 in closed- 21 ft extended, $£ 23.54$. Lelivered. Home Sales Ladder Centre (WW2), Haldane (North) Halesfield (1) Telford, Shropshire. Tel: 0952-586644
[23
NIFFTY POWER SUPPLY-Ideal as a cassette recorder/radio battery eliminator-constructed in a neat plastic case, 10 er followed by a transistor sists of a mains transformer followed by a transistor regulator giving
could be adjusted by changing the zener in the regulator. Circuit and details supplied. A bargain at f1.50 including P. \& P. Mail order only. Chris Harries, ${ }^{2}$ Newlands Ave., Shirley, Southampton, SO1 SER.
[3417
PRINTED Circuit Board in 6 widths: 2 in., $2 \frac{1}{2}$ in., 3 in.. $3 \frac{1}{2}$ in., 4 in. and 5 in. x any length; $1 / 16$ in. single-sided fibreglass, $2 p$ per 3 sq. in. Double sided. Ip per sq. in. \mathbf{P} \& \mathbf{P} 5p per order. SAE quotations for other sizes and quantity discounts.CM7 6LY. Tel. Braintree 25254. Braintree, Essex.

R ADIO TELEPHONE EQUIPMENT. Expand your R radio telephone system. $12 \frac{1}{2} \mathrm{kc}$. G.P.O. approved units. PYE. COSSOR, G.E.C., ULTRA-BURNDEPT, etc., High Band. Marine. Lowband AM and FM. Exports to Africa and Middle East. Spa-Radio,
337. High Road, Cheltenham, Glos.
[3229

SUPERB Instrument Cases by Bazelli, manufactured from heavy duty PVC faced steel, choice of 30 types, send for free list. Bazelli Instrument Cases, 6LT, near Lancaster.

CLASSIFIED

TRANSISTOR APPLICATIONS ENGINEER

FERRANTI have a vacancy in the Applications Laboratory of their Electronic Components Division at Chadderton, Lancs., for an Engineer to work on the application of R.F. Power Transistors at VHF and UHF frequencies. The work involves the design of appropriate circuits, customer liaison and general technical back-up to the marketing and device development engineers.

Candidates should possess a degree or H.N.C., have previous experience in this field, and be able to work with the minimum of supervision.
Application forms may be obtained from T. J. Lunt, Staff Manager, Ferranti Limited. Hollinwood, Lancs. Please quote reference GH.

FERRANTI

13596

Abstract

A SSEMBLY, alignment and wiring work undertaken. Outworker can do up to 50 hours per week to a high standard. Cohlection and delivery by arrangement. Ian Bowden, 165 Lancaster Road, New arrangement. Barnet, Herts. $01-440$ 2979. $\mathrm{B}^{\text {ATCH Production Wiring and Assembly }}$ to B sample or drawings. Deane Electricails, 19B Station Parade, Ealing Common, London, W.5. Tel: $\mathbf{0 1 - 9 9 2} 8976$. $\lfloor 20$ CAPACITY available to the Electronic Industry. $C_{\text {Precision turned parts, engraving, milling and }}^{\text {ApAC }}$ grinding both in metals and plastics. Limited capacity available on Mathey SP33 JIG BORER. Write for lists of full plant capacity to C.B. Industrial Engineering Ltd., 1 Mackintosh Lane, E9 6AB Tel. 01-985 7057. $D^{\text {ESIGN, development, repair, test and small pro- }}$ duction of elcetronic equipment. Specialist in Electronics Ltd., 54 Lawford Road, London, NW/5 $01-2670201$. $\mathbf{S}^{\text {MALL Batch Production, wiring, assembly, to }}$ sample or drawings. Specialist in printed circuit assemblies. D. \& D. Electronics, 42 Bishopsfield Harlow. Essex. Harlow 33018 .

NEW GRAM AND SOUND EQUIPMENT

GLASGOW.-Recorders bought, sold, exchanged; Cameras, etc., exchanged for recorders or vice-versa.-Victor Morris, 343 Argyle St., Glasgow, C. 2 .

RECEIVERS AND AMPLIFIERS -
 SURPLUS:AND SECONDHAND

HRO Rx5s, etc., AR88, CR100, BRT400, G209, H S 640 , etc., etc. in stock.-R. T. \& 1. Electronics, Ltd., Ashville Old Hall, Ashville Rd., London, E. 11 .
L65
Ley. 4986 . ELECTRONIC test equipment repair service E offered on Avometers, Signal Generators Pulse/ A.M./F.M./C.W./A.F., Frequency Counters, D.V.M.s. P.S.U.s. Oscilloscopes. Production test problems? Why not try us. "Q"" Services Electronic (Camberley) Ltd., 29 Lawford Crescent, Yateley,
Camberley, Surrey. Yateley 871048 .
113
SCRATCHED TUBES. Our experienced polishing - service can make your colour or monochrome tubes as new again for only $£ 2.75$, plus carriage $75 p$, With absolute confidence sent to Retube Ltd. North
Somercote. Louth. Lines. or phone 0507-85 300 . 27 Somercote. Louth. Lines. or 'phone 0507-85 300 . 27 $\mathrm{S}_{\text {wave }}$ goltmeters, oscilloscopes, output multi-range meters, etc.. etc. in stock.-R. T. \& i. Electronics,

VALVES WANTED
 WE buy new valves, transistors and clean new components, large or small quantities, all delas,

 Wolverhampton.
SFRVICE \& REPAIRS

ELECTRONICS ENGINEER. Mid-Suffolk area. EOw test equipment offers service facilities anything considered. $B_{0 x}$ No. WW 3747.
WIRELESS WORLD bound volumes 1947-1963 inclusive. Offers to 072229926 [3754

SITUATIONS WANTED

TWO Eleotronics Engineers wishing to start smalt 1 business. initially in spare time, assembling printed circuit boards. Box No WW 3450

TECHNICAL WRITER (cx RAF Radar) available frelance basss. Write Box No. WW 3416

TAPEAREOORDING ETC.

F quality, durability matter, consult Britain's oldest 1 transfer service. Quality records from your suitable tapes. (Excellent tax-free fund raisers for schools). Modern studio facilities with Steinway Grand. Sound News, 18 Blenheim Road, London, W. 4. 01-995 1661.

ARTICLES WANTED

HITACHI WH1160-9 Cavendish Square,
H. W.I. 01.6367070.

Hitachi WH1160-9 Cavendish Square
W. $1 \quad 01-6367070$.

Wanted. To complete collection. Wireles W'orld August 1969 and January 1973 issues. Apply to Bux Nu. Ww' 3433

BOORS, INSTRUCTIONS, ETC.

COMMERCIAL RADIO INFORMATION Bulletin -Packed with facts on the 1BA local radio stations, Radio Luxembourg and the offshore stations. Send 20p fir sample copy or $£ 1.50$ for 10 issues to Com mercial Radhy News Agency, 67-69 Chancery Lane;
L. ondua WC2A 1AF

B. BAMBER EIECTRONICS
 20 Wellington St., Littleport, Cumbs. Ely
 Phone (0353) 860185 (Tues. - Sat.)

Abstract

MARCONI PULSE GENERATOR TYD ADVANCE SIGNAL GENERATOR CZ2H ADVANCE AUDIO GENERATOR Mode MARCONI SIGMAL GENERATO TP801A $10-30 \mathrm{MHz}$ 22C 0-300 volt D.C............... ${ }_{\text {E28.00 }}^{\text {TYpe }}$ AIRMEC SIGMAL EENERATOR TYDP WAYNE KERR VHF FREQUENCY STAMWAYNE KERR AJ29 WAVEFORM ANA. PYE ELECTROSTATIC EALVAMNO. BRIT, PHYS. LABS. CZOE COMPONENT COMPARATOR ${ }^{2}=0000$ ERIT. PHYS. LABS. CZASTI COMPONENT COMPARATOR, with Automator UNIT TEKTRONIX OSCILLOSCOPE Type 5900 DC-10WHZ........................$~$ ET0.00 TEKTRONIX S2AAD OSCILLOSCOPE MAGARD DOUBLE-PULSE GENERATOR AIRMEC MODULATION METER TYDE 2103-300 MARCONI SIGNAL GENERATOR TY MARCOMI SIENAL GENERATOR TYR AIRMEC SIGNAL GEMERATOR, TYDO AIRMEC SS3 WAVE ANALYSER $30 K H z-$ AIRMEC BRIDEE HETERODYNE DETEC- marconi signal generator tive 300-8000MHz TET50.00 MARCONI VIDEO OSCILLATOR TFESSJA

ROHDE \& SCHWARZ DIAGRAPH BN3561 ADVANCE J2, af SIGNAL GENERATOR, $15 \mathrm{~Hz}-50 \mathrm{kHz}$
AIRMEC 252 SIGMAL GENERATOR, 30 Hzz FRIDEN FLEXOWRITER, good condiliton FRIDEN FLEXOWRITER, less tape reader. GRESHAM LION WAVEFORM GENERA. GRESHAM LION WAVEFORM GENERAGRESHAM LION COMPOSITE WAVE-
 MARCONI TF1073, MONO STEP ATTENU. MARCONI TFIZSS, VSWR INDICATOR MARCONI TF1237, MOISE GEMERATOR BERCO MAINS VOLTAGE STABILISER PYE MF TRAMSMITTERS. $2 \times$ SR2sums in
 PSUs with elreults, brand now, carriage 52.120
20000 RACK VENTILATION UNITS, 19 in.
incorporating mains blower, carrlage 50
s. 50 SAYAGE comwatt PA mp., contains $12 \times$ KTB8, no detaiis, offers.
PHILIPS MONITOR DECODER PANELS, Type EL6818/50F, NTSC only carriage 515.00
TWIN PSU, $19 i n$. rack mount, $190-280 \mathrm{~V}$ proset at 500 mA stab.; plus $170-280 \mathrm{~V}$ preset, 6.3 Vat 3 A twice, malns input, carriage 81.50

PsU, as above but $190-280 \mathrm{~V}$ at 500 mA preset, stab., plus 8.3 V at 5A twice, mains input', MAINS ISOLATING TRANSFORMERE,
375 VA,
tapped primary, 240 V output, new

MAINS ISOLATING TRANSFORMERS, (ex equipment), in metal cases totally enclcse
tapped mains input. 110240 V etc. Output. 240 V at $3 \mathrm{~A}+12 \mathrm{~V}$ at 0.5 A , carriage $\mathrm{E}, 1$
 RADIOSPARES 50WWATT AUTO TRANSFORMERS $100-110-150-200-220-240-250 \mathrm{~V}$ tapped input and output, step up or step down
facilifa, ex new equipment, carrlage 50 .
e5.00

PHOTOMULTIPLIER TUBES, EMI CCNAC, new Bases to fit (only supplied with fubes) 50 ,
\& 30.00

PYE MIKE INSERTS, 2.4Kohm impedence,
KNOBS, black with akirt and metal insert,
EULGIN MAINS PLUGS, 3 pin each 25p
DIN PLUGS 5 pin 270 deg. 4 for...... 50p
DIN SOCKETS 5 pln 270 deg 4 for. .
22 WAY UECL sockets oniy
5 WAY ISEP plug and socket set. .
50p

CANNON RIGHT ANGLED PLUES, XLR
PABST FANS, TYPE 1200, 110127V, with uitabie start capacitor carriage 50p.. $£ 2 \cdot 00$ MULLARD TUBULAR CERAMIC CAPA CITORS, 1-18pF, new boxed, per 100, carriage
50 p
\&10.0. NEWMARKET PC2 AUDIO AMP MODULES, gV, output 150 hm at 400 mW Wtt input 1 mV Into 1 Kohm, brand new, boxed,
MAINS TRANSFORMERS EX Pye F27 Base Statlon TX. 465 V at 500 mA . 6.3 V at 8 BA
carriage 50 p
\& 5.00 40 V at2A. carriage 25peach 80p $20-0-20 \mathrm{~V}$ at $1.5 \mathrm{~A}, 60 \mathrm{p}$ each carriage 30 p 2 for E 1 $13-0-13 \mathrm{~V}$ at 100 mA . 40 p each, earringe 30 HIGH QUALITY SPEAKERS 6 in. $x 4$ in.
 $8 \frac{1}{\text { In. } x} 8$ in. eliptical, 2 in . deep, 4 ohm recese
magnet, rated up to 10 W £ 1.50 each, 2 for $£ 2 \cdot 75$

DIN SPEAKER SOCKETS 2 pin (flat and
Ind carrlage 20p 4 for.
SHEPHERD CASTORS, trolley ftting 4
wheel, rubber tyred. Brand new carriage 50 p per set of $4 . ~$
valves
QQVO3 20A (ex-equipment)......... $£ 2 \cdot 00$
DET 22 (ex-equipment)........................
2C3EA (ex-equipment)............... $£ 1 \cdot 00$
4CX2508 (ex-equipment)............. $\leqslant 2 \cdot 0$
Eziel new
EFEe new
EsscC (ex-equipment)
EasC (EC88 new) 2 for
Post \& Packing $£ 1 \cdot 50$ on all Test \& Large Equip-
PLEASE ADD 10% VAT
CALLERS WELCOME BY APPOINTMENT.
S.A.E. FOR ALL ENQUIRIES PLEASE.
\section*{TERMS OF BUSINESS:} CASH WITH ORDER.

[^5]CHITRIEC Don't be held up for them$\frac{1}{1}$ million always in stock. Wafer, micro, toggle, push button, rocker, reed, slide, relay, mercury, lever, delay, thermostatic, pressure, combination, motorised, uniselectors, sequential, time, mat, digital, etc.
Send for our latest list. J. Bull (Electrical) Ltod., 7 Park Street, Croydan, CRO IYD.

HI FIDELITY MODULES made and tested.
 Linsley Hood, D.C. coupled 75W £ 14.00^{*}
1 13.50
 Bailey Quilter, pre-amp 68.50

$$
12.00
$$ *Excl. Heat Sinks.

teleradio hifl, 325 Fore 5t., London, N. 9 OPE. $01-807$ 3719. (Closed Thursday.)

8-TRACK STEREO DECK

We have a few surplus 12 volt decks, unused and in original cartons. High grade Italian make-circuit diagrams for a complete player supplied with each deck.
Price f15 Each-Money Back Guarmntee C.w.c. to TRIMARAN, 210 Strand, London, W.C.2.
[3708
Build a mixer to your own zeroge
spec. using our easy to wire
ALJID MDDLLES
For full details contact Richard Brown at Zero 88, 115 Hatfield Road,
St. Albans. Herts, AL1 4JS Tel. 63727

WIRED TELEVISION SPARES

 AMPLIFIER type TA 902 at 66.60AMPLIFIER type RA 211 at 55.50 AMPLIFER type RA 016 at 55.50 SUBSCRUERS Tap type RE151-40, RE141-28, RE161-34. Aht at E1.10 SPLITTERS type RD501, RD502, RD503, RD504, RD505, RDIII. All at isp each GREENPAR COAXIAL CONNECTORS type

GE27517-C3. GE27519-C3, GE27574-C15, GEALECRRO AM SURMENIATURE CONNECTORS
type $3000,3002,3003,3005,3014,3024$.
$3100.3102,3103,3104,3105,3114,3124$ TEXAS Alt at 22p each
TEXAS OP-AMPS type SN 72771 at 64 each DISC ${ }^{2 t}{ }^{55}$ peach
DISC CERAMICS . 01 uf $50 \mathrm{v} . \mathrm{w}$., . $02 \mathrm{uf} 50 \mathrm{v} . \mathrm{w}$., Mo 50 p per 100
MORGANITE BIPOLAR LADDER SWITCHES \times type $241-2$ at ${ }^{\text {tin }} 15$ each MORGANITE BINARY LADDER NETWORKS
 each, type 262B-100K at \&B each
J. BRRKETT

25 The Strait, Lincoln LN2 1jF
Tel: 20767
[38

CONSTRUCTORS

AMATEURS
MANUFACTURERS
American I.C.s, Transistors. etc., with no British equivalent, supplied speedily to order. One offs
T.M.P. ELECTRONIC

3 Bryn Ciyd, Leeswood, Mold, CH7
N. Wales

JAN CRYSTALS

Fast delivery of prototype and production military quality crystals. Competitive prices all frequencies,

INTERFACE INTERNATIONAL
29 Market Street, Crewkerne, Somerset

PRECISION

 POLYCARBONATE CAPACITORSCloze tolorance. High stability. Extremely low leakage.

 TANTALUM BEAD CAPACITORE: Valuen avalable:

 BCrtez and BCFH2 Ditip each: AFiriad
new and marked. Full spec. devices.
POPULAR DIODES IMgl- sp^{2} each; 8 for 45 p ; 18 for

 $t 5 \mathrm{~mA}$. All new and marked. Price $7 p$ each; ${ }^{\circ}$ for 30 p;

RESISTORE. Carbon fim 5%. ${ }^{\circ} \mathrm{W}$ at $40^{\circ} \mathrm{C}$. $1 / 3 \mathrm{~W}$ at $77^{\circ} \mathrm{C}$. Range from 2.2Ω to $2 \cdot 2 \mathrm{M} \Omega$ in E12 serles. 1.e. 10, 12, 15. 18 ,
$22,27,33,30,47,56,68,82$ and their decad es. HIgh stabilly,

 $2 \cdot 2 \Omega$ to $2.2 \mathrm{M} \Omega$ (730 resistoris) $E 5$.

SILICON PLASTIC RECTIFIERS 1.5 Amp. Brand
 42p.

7p post and packing on all ordere below e5-00
Export Orders-please add cost of airleca mail PLEASE ADD 10% V.A.T. TO ALL ORDERS Send S.A.E. for Hsts of other ex-stock teme, L.E.D's,
disc capacitors, electrolytics etc. Wholesale price llets disc capacitore, electrolytics etc.
avaliable to bona fide companles.

MARCO TRADING

Dept. DA, THE mALTINGS, STATION ROAD, WEM,
SALOP. Tel: NANT WICH (CHESHIRE) 1329

16 mm SOUND S/H
 Fully guaranteed Bell Howell 631
 2000 cap 750/1000 W Lamp Sound/Silent Speeds. Supplied C/W Transformer £ 120 . Speaker Ex or 4
 hilton cine 7 West Hill. DARTFORD 27566

STOCK CLEARANCE BARGAINS

BELCO Signal Generator SG2030 250Hz to 150 MHz on 6 bands. 150 MHz to 300 MHz on harmonics. Accurecy $\pm 0.01 \%$ with calibretor.
KAISE Panel Meters. Multitesters and Test Instruments.
MOTWANE Voltage Stabilisers. Variable Transformers. Insulation Testers.

For full information write or telephone

F. HORSMAN \& SON

Imports \& Exports, 52 Rourton Road, Church Crookham, Aldershot, Hants. GU13 0.JH Tel : Fleet 4424 Cablea: HORSE POWER Aldershot
B.TH 16 mm 450 projector, sound, in good working order, $£ 60$. B.TH 16 mm 452 projector, $\mathbf{~} 75$ MAGNAVOX TAPE DECKS
These 3-motor 3 -speed decks were used in a language lab and are in good condition. Complete with preamp, $£ 5$ each.
NEONS, miniature wire-ended long life, 2p each or 100 for $£ 1.30$.
CHOKES. 9uH small PUC wire-ended 2A Chokes for motor suppression, etc. $2 p$ each, 100 for $£ 1.30$.
Light dimmers MK, standard plate flush fitting, E2.70.
CASSETTES, blank C45, 10 for $£ 1.50$. 6 pin din plugs, 8p each.

ELECTRO DEVICES 35 Roper Close, Rugby Warwickshire

TEKTRONIX SCOPES

453A. Dual Beam De to $60 \mathrm{MHz} £ 400$ 545 B with 1 A2 plug in Dual Beam De to 33 MHz transistorised $£ 300$.

Box No. WW. 3755

RECOROS MADE TO ORDER	
DEMO DISCS MASTERS FOR RECORD COMPANIES	VINYLITE PRESSINGS
Single discs, 1-20. Mono from your tapes. Quantit PRESSED IN VINYLITE Delivery 3-4 weeks. Sle NEUMANN STEREO/M many Studies UK/OVER po lox 3, Hawk St Tel.	delivery 4 days to 1.000 records OWN PLANT. ls. Finest quality es. We cut for E list. nforth, Lancs.

CAPACITY AVAILABLE

CAPACITY AVAILABLE
General Sheet Metal Work including Fabrication of
Chassis Panels. Boxes and Guards. Large and Small Run
ANGUS ASSOCIATES

ELECTRONIC DESIGN ASSEMBLY

Highest quality at competitive prices

Contact :

MULTIFORM ELECTRONICS LTD.
27 Ferry Roed, Teddington, Mideleesx
Tel. Ol-977

SURPLUS BARGAINS

KLEINSCHMIDT S.C.M.

 TELEPRINTER OUTFITS

Comprising. TBletypewriter (page printer) type TT-271B/FG known as Kianschmidt 160) Reperforator-Transmitter (tape printer) type TT-272A/FG with table FN-65/FG. Both units whole equipment operates on 115 or 230 V 50 cyc es invery choice condition £55. (cart £4).
ELECTRONIC TIMER KITS 0.8 sec to 100 sec comprises A.E.I. Transstorised Module. Relay and all electrical components for 115 or 240 VACoperation E 1.75 (25p) VAT 20 p . Veeder root 4 -digit resettable counters $115 \mathrm{~V} £ 1.25$ (8p). Printed Circuit Kits. E 1.25 (25 p) total with VAT $£ 1.65$. AMPEX VIDEO TAPE 2 in. $\times 1670$ NEW E9 (50p). AVO CT38 Electronic Test Meters $£ 18$ (£ 1$)$. FERRIC
CHLORIDE 25 p a lb. (16 p), 10 lb £ 2.50 (paid). Kent Chart CHLORIDE 25p a 1 b . (16p), (1050 f . Multipoint Kent Chart recorders $£ 30$ \& $£ 1.50$). TELEPRINTER Papers and Tape. $8 \frac{1}{2} \mathrm{in}$. rolls 3 -ply. carbon/buff manilla 60 p per roll (32 p). $8 \frac{1}{2} \mathrm{in}$. rolls 7 ply NCR no carbon required. white, $£ 1$ (32 p) $\frac{1}{2} .{ }^{2} 2 \mathrm{in}$. core. white. $£ 2$ per box of 8 rolls (52 p). it in.. 2 in . core. buff, $£ 2$ per box of 10 rolls (52 p). Friden Tape $£ 2$ per box of 6 rolls (52p). Loads of surplus to clear. Large SAE for List.

ALLPLUS VAT 10\%

CASEY BROS.
233-237, Boundery Rond, St. Helens, Lances. 86

ARTICLESWANTED

TOP PRICES PAID

for semiconductor and component redundant or excess inventories

P.R.S. ELECTRONICS

126 Headstone Road, Harrow, Middlesex Tel: 01-965 6864

ELECTRO-TECH COMPONENTS LTD.

Are buyers of all types of electronic components and equipment. They will be pleased to view clearance stocks anywhere in Great Britain at one or two days notice

and negotiate on the spot

ELECTRO-TECH

 COMPONENTS LTD.315/317 Edgware Road, London, W. 2 Tel: 01-723 5667. 01-402 5580

|37

MOBLE RAOIOTELEPHOME EQUIPMEIT HAMDBDON. Gives circuits data and illustrations plus some valuable modrications for amateur use for
commencial redian This impression prica 4.75 . pp. 35 p . is at prass
HOW TO MARE 2 \& 4 mETRE CONVERTERS FOR AMATEUR USE
 Fipe govermment surplus wreless eainipment hamobook.
 equinment. 3325 inctuding postope
OEALERS. Gives Govenimini suaplus mheless eaulpment

 UHF. Publushod at $E 11.50$ Specgal offer of $84-50$,

CAVERN ELECTRONICS

1974 COMPONENTS CATALOGUE

30p plus 11p Post and Packing
30 p refunded on your first order of $£ 3$ or over HUNDREDS OF COMPONENTS • ILLUSTRATIONS DATA
Details of our Credit Scheme included. Send Cheque or P.O. for 41p to:-

CAVERN ELECTRONICS

 94 Stratford Road, Wolverton MILTON KEYNES MK12 5LURetail Counter open Monday to Saturday (Closed all day Wednesday)

ELECTRONIC ORGAN KITS

There are 5 superb models in kit-form specially designed for the D-I-Y enthusiast. With our free and generous after sales service you can build in sections, and the whole project can be extended over several months. All specialised components can be purchased separately. We also stock keyboards, volume pedals, MOS master oscillators, ICs., transistors, ECT, for W/W synthesiser and W/W electronic piano. Send 50p for catalogue and vouchers worth $50 p$ or send your own parts list, enclosing SAE for quotation.

ELVINS ELECTRONIC MUSICAL INSTRUMENTS
Compenents suppliers to the music industry
12 Brett Rd., Hackney, London E8 1JP. Tel: 01-986 8455

BEDFORD ELEGTRONICS

7. PRIORY STREET, BEDFORD

TELEPHONE 023451961

SATURDAYS ONLY 9 am-5 pm June 1st, June 8th, June 15th

All stock must be cleared

Thermistors

F. J. Hyde, DSc. MSc, BSc

Provides a very comprehensive account of the properties and applications of both negative and positive temperature coefficient types of thermistors. An extremely useful reference work on this essential circuit component - thoroughly recommended as essential reading for all control engineers."
Instrument and Control Engineering.
0592028070208 pages illustrated $1971 £ 3.20$
Available from leading booksellers or:
The Butterworth Group
88 Kingsway London WC2B 6AB
Showrooms and Trade Counter 4-5 Bell Yard London WC2

involves radical departures in conception.
\star Class A performance with Class B economy.
\star T.H.D. $<0.05 \%$ at all frequencies and power levels.
\star No crossover distortion.
\star Unsurpassed stability into reactive loads.
$\mathbf{£ 7 . 2 8 + V A T . ~ £ 1 5 ~ p e r ~ s t e r e o ~ p a i r ~ i n c . ~}$
Full spec. on written request.
Sydney House, 35 Villiers Road, Watford

Samplebest Ltd
For the amateur electronics engineer

We offer the Walter
Scott Industries range of filamentary indicators on an ex-stock basis. The range now includes character height sizes:

3015	3016	3017
9 mm	12 mm	16 mm
$\mathbf{(\mathbf { ~ } 1 . 2 5 \mathbf { e a })}$	$\mathbf{(\mathbf { f } 1 . 2 5 \mathbf { e a })}$	$\mathbf{(\mathbf { £ } 2 . 0 0 \mathbf { e a })}$

All sizes are available in 0-9. ± 1 versions ($F+G$ respectively). Displays are ideal for use in calculators, digital clocks, digital meters etc.
All have life of $100,000 \mathrm{hrs}, 4-6$ volts, $4-6 \mathrm{~mA}$ per segment operation. TTL compatible, DIL package.

RESISTORS Carbon film (semi-precision)
$\frac{1}{4}$ watt 5% tolerance. $2 \Omega-1$ megohm
Pack of assorted values.
Pack of 500-£5

Cash with order. Cheques made payable to SAMPLEBESTLTD
Add 5 pper unit $P \& P($ min. $25 p$) and 10% VAT

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. SPOT CASH

CHILTMEADLTD.

7. 9. II Arthur Road, Reading. Berks. Tel: 582605

EXCLUSIVE OFFERS

NEVER BEFORE OFFERED WORLD-WIDE RANGE COMPLETE FRANSPORTABLE HPE COMMUNICATIONS CENTRE housed in AIF Conditioned TRAILER
atted two COLLINS KWT-6 500 W B.s.B. Tranmalter
Receivere Receivers and one COLLINS Receiver all fully tuneable
2 to $30 \mathrm{~m} / \mathrm{cs}$ digltal readout synthesised frequency
 conkrol, with rine amplifers and inputs, operaing
poastion and remote control facilitiee and ancill ary
equalpment. Power input 115 V or 230 V A.C. Full detaila
 RECEIVERS $2 / 30 \mathrm{~m} / \mathrm{cs}$. Ten fully tuneable channels to 0.5 kcs with synthesigers. Single and diversity reception
on $18 B$, DSB, 8 SB with 4 sub-bands to each chsnnel.

HIGHEST QUALITY 19* RACK
MOUNTING CABINETS \& RACKS MOUNTING CABINETS \& RACK
 We have a larke quanuty of "bits and pieces"
we cannot list paze send as your requirement
we ean probably help-all enquirios sumwered.

400 chanuel Putse Height Speetrum Analyzera P.U.R.		
nee 24sis L.F		
Eddystone Receiver Cabinets $\mathbf{£ 1 2 . 0 0}$		
Amper 353' Tape Recorders ${ }^{\text {2 }} 95.00$		
	Solartron $6 / 25000$ cyc. Oscillators	
Dawe 630 Phase Meters		
	Belling Lee T.V. Relay Equipment P P U R	
	Addo 8/8 track Tape Readers	
	75 foot sectional self supporting	
	CV-157 Hofiman I8B/B8B Conve	
	10 foot Triangular Lattice Mast Bections B Inch sides	
Ditto 15 feot with 15 inch rides		
	Cateilla Aemmann Electric Hygrometers	
	Racal MA-250 Decade Generators $\boldsymbol{E 1 2 5 . 0 0}$	
	Recal RA-98 S.S.B./D.S.B. Adaptors	
	Avo Geige: Counters, new	
	Bervomex 2 KYA Voitage Regulator	
	Double Co-axial Blowers 6×6220 v. A.C.	
	Amper 8.E. 10 Auto Degaussers	
	Uniselectors 10 bank 25 ray 411 wipe	
	Haynea 500 watt $230 \vee . / 115 \mathrm{v}$. Isolation	
	Muirhead D .888 Analybers	
	Laboratory Radio interference Filtery	
	Cawkell Type 1471 Variable Fitters ${ }^{\text {a }}$	
	54 in . dia. Meteorological Balloons	
	Flacm Microwave Attenuatiors 4/12	
	FREE	
	-page list of over 1,000 diferant fome avaliable-koep one by you-	stock

INSTRUMENTATION TAPE RECORDER-REPRODUCERS AMPEX FR-100B FR-600 14 tracks 6 speeds $1^{\prime \prime}$ and $\frac{1}{2}^{\prime \prime} 14$ and 7
tracks 4 speeds Trans tracks 4 speeds Trans
istorised

MINCOM

CMP-100

E.M.I.

TD-1
$\dot{L}^{E^{\prime \prime}} 4$ tracks 7 speeds Several other smaller Full details on request.
Prices of above are
from $\& 100$ to $£ 400$.

COMPUTER HARDWARE

\star CARD READER 80 col. 600 c.p.m.
*TAPE EEADER, High speed 5/8 track
Prices on Application
PLEASE ADD V.A.t. TO ABOVE
P. HARRIS

ORGANFORD - DORSET
BH166ER
BOURNEMOUTH-6505

Cabinets, for HiFI and PA., wadding, vynair etc.
Send for free booklet-'Choosing a Speaker"'
FREE with orders over E7-HiFI Loudspeaker enclosures book
All units suaranteed new and perfect. Prompt despatch
Carriage and insurance: Speakers 35p each, Kits 75 p each ($(1 \cdot 50$ pair) Tweeters and crossovers 20p each.

Telephone Wilmsiow 29599
(Discount Hifi/radio sales at 10 Swan Street
WILMSLOW AUDIO, Dept WW,
Swan Works, Bank Square, Wilmslow, Cheshire \$K9 JHF.

J. LINSLEY HOOD LOW DISTORTION AMPLIFIERS IN KIT FORM

1. 10 Watt Class $\mathrm{A} £ 5.25$
2. 20 Watt Class B $£ 20$ (Incl. P.SU)
3. 20-75 Watt Direct coupled f11-80

Also 'Texan' Amplifier Kits in pack form, Bailey, Texas, Toshiba and Sanken Systems. Send large SAE for detailed lists.

TELERADIO HI FI
325 Fore St., London N9 OPE 01-807 3719 (Closed Thursdays)

SPECIAL NOTICE

TO ALL MANUFACTURERS in the
ELECTRONIC, RADIO, TELEVISION and AlliED TRADES.
Please note that we will purchase any redundant and surplus stocks which you may have available after stocktaking. or may have available after stocktaking. or
wishing to make space for more important items. We are particularly interested in large items. We are particularly interested in large
quantities of components, raw materials, etc.

BROADFIELD \& MAYCO DISPOSALS LTD.
21 Lodge Lane, N. Finchley,
London. N12 8JG.
Telephone:
01-445 0749
01-445 $2713 \quad 01-958 \quad 7624$

DEIMOS ${ }_{\text {ti }}$
TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO single and multichannel SIMMONDS ROAD, WINCHEAP CANTERBURY, KENT 0227-68597

8 HENGSTLER GB LIMITE

NEW ROAD
BROXBOURNE. HERTS, ENIO 65X
TELEPHONE: HODDESDON 68451
TELEX: LONDON 263243

PEAK PROGRAM METERS TO BS4297

Drive circuit. $35 \times 80 \mathrm{~mm}$, for 1 mA L.H. zero meter to BBC
ED 1477 . Gold B-way edge con supplied.

PUBLIC ADDRESS : SOUND REINFORCEMENT
In any pubic-addrass system where the microphones and loudspeakers are in the same vicinity acoustic feedtack (howt shifting the audio spectrum fed to the speakers by a few Hert the tendency to nowling at room resonance frequencies is destroyed and an increase in gain of 6-8dB is possible before the onset speech and music.
SHIFTERS IN BOXES with overoad LED. shift/bypass switch finished in attractive durabie blue acrylic. Jack or XLR audio con finished in at
nectors.

SHIFTER CIRCUIT BOARDS FOR WW July 1973 article Downing a su and DESIGNER

SURREY ELECTRONICS

The Forge, Lucks Green, Cranleigh,
Surrey GU6 7BG. (STD 04866) 5997
CASH WITH ORDER. less 5\% UK post free, add VAT

BOMNON CENTRAG Readio stores

TELEPHORE CABLE. Platic ectered grey 4-core coloured coded. 7tp per Fd.
RRCORD SNORAGE UMIs. Brand new. Ant-warp. "Compact 200° stores 200 records 'Compect 100° stores 100 record PLECTRICITY BLOT 1 ETERS (5 p in alot) for A.C. mains. Fixed tarift to your requirements. Sultable for hotel. etc. 200/250v.

 5-WAY PRES8-BUTSOR MITER-COI TELIPPHOMES in Bake
 10-WAY PRESB-BUTNO DFTER-COI TELEPROMES in Bake IIte case with junction box handset. Thoroughiy overhauled,
Guaranteed. 28.75 per unit. Wiring diagram on request, send s.a.e. ${ }_{27} 75$ per unit. Wiring diagram on requeat, tend es The " 88 "' Set. This transcelver, weighs approx. Бis meacures 3 fin . $x ~ 5 / \mathrm{hm}$. I 9 jin . It is a 4 frequency channel set 41-44 rac/s.. Crystal Controlled and operates from ha dry batiery the following 14 valves. 3A4, 1 oIf; 1L4 6 off; $1 \mathrm{T4} 4,4$ off; 186, 1 onf; 1 A3, 2 of. $28-50$ plun $75 p$
Al prices subject io Anctuation
23 ISIE ST. (2386) IONOON W.C. 2
Open all day Saturday

THELINEARANDINTERFACE CIRCUITS DATA BOOK FOR DESIGN ENGINEERS

by Texas Instruments Ltd
PRICE $\mathbf{E 2} .25$
TELEPRINTER HANDBOOK by RSGB

Price 65.25
LOGICAL DESIGN OF SWITCHING CIRCUITS by D. Lewin Price 65.00 ADVANCED INDUSTRIAL ELECTRONICS by N. Morris Price $£ 3.55$ INTEGRATED ELECTRONICS by Millman Price 64.20 TEST EQUIPMENT FOR THERADIO AMATEUR by H. L. Gibsón Price E2.00 THE MAZDA BOOK OF PAL RECEIVER SERVICING by D. J. Seal Price 6400
BASIC THEORY \& APPLICATION OF TRANSISTORS by Dover Publications Inc. Price $\in 1 \cdot 10$ IMPROVING YOUR HI-FI by J. Earl

Price 63.20 WORLD RADIO \& TV HANDBOOK 1974 by J. M. Frost Price $\mathbf{6 3 . 2 0}$ SEMICONDUCTOR MEMORY DESIGN \& APPLICATION
by G. Luecke
*ALL PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS
19-21 PRAED STREET, LONDON, W2 1NP

Phone 7234185
Closed Sat. I p.m.

TRANSFORMER LAMINATIONS ENORmous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

DFFICE: 44 GREEN LANE, HENDON, NW4 2AH Tel: 01-203 1855. 01-203 3033

STORE: LESWIN ROAD, N. 16
Tel: 01-249 2260

THE ONLY
COMPREHENSIVE
RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!
Send P.O. 15p (plus 4p postagel for 48 page bookle tion on Record Care.

CECIL E. WATTS UMITED Darby House
Sunbury-on-Thames, Middx

SOWTER TRANSFORMERS

FOR SOUND RECORDING AND REPRODUCING EQUIPMENT We are suppliers to many well-known companies, studios and broadcasting muthorities and were established in 1941. Early deliveries. Competitive prices. Large or small quantities. Let us quote.

Transformer Manufacturers and Designers 7 Dedham Place, Fore Street, Ipswich IP4 IJP

Rlpple $<10 \mathrm{mV}$. Over-voltage protection on all except 24 v . 7A. unit. $120-130 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$ input. Stepdown transformer to suit about 83.

Post \& Packing £1-50			
5-6v. 8A.	$£ 12$	24 v .7 A.	
$5-6 \mathrm{v} .12 \mathrm{~A}$.	$£ 14$	£14	
$5-6 \mathrm{v} .16 \mathrm{~A}$.	$£ 16$		

PAPST FANS $4 \frac{1}{2} \times 4 \frac{1}{2} \times 21 \mathrm{n} .100 \mathrm{cfm}$. 63.50 (30p).

PAPST FANS 6in. dia. $x 2$ 雷in. deep Type 7576 £5.00 (30p)
WOODS FANS 6in. Plastic rotor 880 (36p).
ELECTROLYTICS
$4000 \mu 70 \mathrm{v} ., 3,600 \mu 40 \mathrm{v} ., 10,000 \mu 50 \mathrm{v}$.
$4 \frac{1}{2} \times 2 i n$. dia. 55 p (14 p)
$10,000 \mu 35 \mathrm{v} ., 5,000 \mu 35 \mathrm{v}$., 40p (12p)
$2,000 \mu 30 \mathrm{v} ., 1,000 \mu 16 \mathrm{v}$., wire ends 15 p (6p) $4,000 \mu 100 \mathrm{v} .4 \frac{1}{\frac{1}{2}} \times 2 \frac{1}{2} 55 \mathrm{p}$ (22p)
EX-COMPUTER PC PANELS $2 \times 4 \mathrm{In}$. min. 35 transistors with data 50p (12p). 25 boards for $£ 1$ (30p).
PANELS WITH 4 POWER TRANSIS-
TORS SIM OC28 50p (10p)
QH Bulbs, 12v. 55 w . 50 p (6p)
250 Mixed Resistors 60p (91p
250 Mixed Capacitors 200 SI Planar Diodes
200 Si Planar Diode
Microswitches....
60p (9łp)
Microswitches....
50p (7p)
Min. Glass Neons 8 for 50 p (6 p)
10-way Terminal Blocks ... 10 for 55p (15p)
Postage and package shown in brackets
Please add 10% VAT to TOTAL
KEYTRONICS
Mall Order only.
44 EARLS COURT ROAD, LONDON, W. 01-478 8499

BRAND MEW FUIL SPEC. DEVICES

U.K. CUSTOMERS ADD 10% VAT TO TOTAL

MICROCIRCuITS: 709 31p; 710 44p: 723 SEp; 741 (14 pin) 37p; 74810 ; 24p;
18N

1AMP RECTIFIERS: 50V 4ip 100 V 5p; 200V 5ip; 400 V Ep; CONS: ip per pin. DALO IC SOCKETS ${ }^{14}$ P. SOLDER Resistors: 10 of one value per 7p. PANEL MOUNTING LED with data 22p.
Pricas at 3rd April. Check our list. Discounts on SEMI-
CONDUCTORS of ONE TYPE $\rightarrow 10 \%$ ior $10+; 15 \%$ for $25+$; 20% for $100+$

JEF EEECTRONICS (W.W.5)

York House, 12 Yark Drive, Grappenhall, Warrington, Mail Order Only. C.W.O. P. \& P. 10p per order minimum, or at cost if more. LIST FREE

Satisfaction or your money back. PROMPT SERVICE

NEW—LOW PRICED 12" DISPLAY UNITS

$12^{\prime \prime}$ DISPLAY UNIT

COMPLETE WITH $X+Y$ AMPLIFIERS AND SHIFT CONTROLS. BLANK SECTION FOR HOUSING YOUR OWN CIRCUITRY.
$12^{\prime \prime}$ DISPLAY UNIT WITH BUILT-IN WOBBULATOR (USING OUR WIDE RANGE WOBBULATOR).

VERY BASIC
$12^{\prime \prime}$ DISPLAY UNIT, INPUT TERMINALS DIRECTLY LINKED TO SCAN COILS.

ALL UNITS COMPLETELY CASED; TRANSISTORISED EHT, STANDARD MAINS OPERATION. S.A.E. FOR ALL DETAILS.

INIDEX TD ADVEIRTISERS

Appointments Vacant Advertisements appear on pages 96-117

 at a price in excees of the recommended dmaxienump price show on the cover, and that it ahall not
or afixed to or as part of any poblication or mavertiang, literary or pictoria matter whatsoever.

Compare the new Bradley 200 with any 100 MHz oscilloscope and see which is better value

As you can see, the new Bradley 100 MHz oscilloscope is at least as good as the market leader. In fact, in several vital areas, the performance and specifications of the 200 are decidedly superior.
But it costs a coool $£ 200$ less-only $£ 595$ installed instead of $£ 795$.
If you would like to learn more about the value-for-money Bradley 200, please telephone Jim Clarke on extension 113 or send for a comprehensive illustrated brochure.

Comparison Table

Y AMPLIFIERS	BRADLEY 200	BRAND X
Bandwidth	100 MHz	100 MHz
Plug-in facilities	YES	NO
Sensitivity	$5 \mathrm{mV} / \mathrm{cm}-$	$5 \mathrm{mV} / \mathrm{cm}-$
	(Cascaded	(Cascaded
	$500 \mathrm{uV} / \mathrm{cm}$	$1 \mathrm{mV} / \mathrm{cm}$
	calibrated with 4\%accuracy.)	approximate. uncalibrated.)
Y Accuracy	$\pm 2 \%$	$\pm 3 \%$
Inversion facility	$\mathrm{Y} 1+\mathrm{Y} 2$	Y2only
Phase difference (X / Y piotting)	$1^{\circ} \mathrm{DC}$ to 50 kHz	$3^{\circ} \mathrm{DC}$ to 50 kHz
TIMEBASES		
Timebase accuracy	$\pm 3 \%$	$\pm 2 \%$
Input impedance	1MS into 18pF	1 MSI into 20pF
Main and delaying timebases	YES	YES
Mixed sweep	YES	YES
Timebaseranges	$\begin{aligned} & 5 \mathrm{~ns} / \mathrm{cm}- \\ & 1.0 \mathrm{~s} / \mathrm{cm} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~ns} / \mathrm{cm}- \\ & 0.5 \mathrm{~s} / \mathrm{cm} \end{aligned}$
Mixed trigger facilities	YES independent of shift controls	YES, but not independent of shift controls
Variable hold-off	YES	YES
External trigger level control range	$\pm 10 \mathrm{~V}$ with automatic	$\pm 20 \mathrm{~V}$ with manual
Automatic trigger	attenuator Preset leve\| adjustment	attenuator Manual level adjustment
GENERAL		
CRT writing ability Secondary Emission Interference	rise time pulses of low p.r.f.	
Calibrator - Voltage	$0.3 \mathrm{mV}, 30 \mathrm{mV}$ and 3 V $(\pm 0.5 \%)$	$0.3 V(\pm 1 \%)$
Time	$1 \mathrm{kHz}(\pm 1 \%)$	Approx. 1 kHz
Current	$15 \mathrm{~mA}(\pm 1 \%)$	30 mA ($\pm 2 \%$)
Probes	$\begin{aligned} & \text { E21 each } \\ & (200 \mathrm{MHz} \mathrm{BW}) \end{aligned}$	Standard (100 MHzBW)
Price	¢595	£795

G \& E BRADLEY LIMITED,
Electral House, Neasden Lane,
London, NW101RR.
Telephone : 01-450 7811
Telex: 25583
A Lucas Company

Multicore Solder preforms, a little something for automatic processes.

Multicore Preforms.

Multicore precision made solder preforms come in virtually any shape or size. Rings. washers. dises, pellets, and lengths of solder tape - in mos! soft solder alloys. Designed, with or without flux cores, to make the most of automatic soldering processes,a solder preform is simple and accurate to use. I's just positioned between the parts to be soldered and the temperature of the metal surfaces raised to about $50^{\circ} \mathrm{C}$ above the melting temperature of the solder. The solder preform does the rest. Heating techniques can include gas flame hot plate, oven conveyor. induction coils, resistance/electrode soldering hot gas and infra-red.

Multicore Solder Preforms just get on with-the job. Automatically.

Our Solder Creams, something else again...

New Multicore Solder Creams are designed for electronics assembly where quality is vital. Like manufacturing diodes, for instance, or making a tuner chassis.or soldering thickfilm circuits.

A finely graded solder alloy powder in a thixotropic organic vehicle. It's olten quicker.cheaper. easier and more reliable than other soldering techniques. It's different. It doesn't spit or need stirring. It can be applied by syringe,automatic dispenser or screen printing - giving instant soldering wilh good spread. strong joints with low contact angles. It can act as a temporary adhesive during assembly and the clear colour flux residue - without solder globules - simplifies inspection.

There are three types of Multicore Solder Cream - one of them may be just what you ve been looking for. Approved USA Federal Specification QQ-S-571E

Multicore Prorhuct Reof	X1127330	N1127298	XM127328
Alloy Composition			96/4 Sn/Ag
Belling l'uint or Liquides ${ }^{\circ}$ (:	179	188	221
Recommended flow Temperalure ${ }^{\circ} \mathrm{C}$?	239	2.30	280
Typical Application	Low Melling Paind Soldering ol silver and gold-plated surlaces	Cantal purpose joints requiring high quality soldar cream	Hisher temperature resistant joints. Lead lree. Higher joint strenglit than $\mathrm{Sn} / \mathrm{Pb}$

For full information on these or any other Multicore products. please write on your companys letterhead direct to: Multicore Solders Limited, Maylands Avenue, Hemel I lempstead. Hertfordshire [IP'2 7EP. Tel: I lemel Hempstead 3636. Telex: 82363.

[^0]: The Wayne Kerr Testmatic TM30 tests circuit boards, cableforms, and sub-assemblies. Capable of 30 separate DC measurements, which it does in seconds. For complete information, post this coupon-or call Bognor Regis (02433) 25811.

 Your name
 Company Name
 Address

 ## Wayne Kerr

 Post to Wayne Kerr, Durban Road, Bognor Regis, Sussex PO22 9RL. Telex 86120 Cables: Waynkerr Bognor.

[^1]: *From "Microwave Lenses" by J. Brown, Methuen 1953.

[^2]: Project 80 FM tuner, decoder, and A.F.U. may be added as required

[^3]: phone or write to: The Personnel Officer, SONY (UK) LIMITED. Pyrene House, Staines Rd. West, Sunbury on Thames, Middx. Telephone: Sunbury 87644.

[^4]: Write for further details and application form to the CROWN AGENTS, 4 Millbank, London SW1P 3JD stating brief details of qualifications and experience and quoting reference number MIS/OFFICE VI (RADIO COMM/ WF

[^5]: Bumper boards including
 Bumper boards inclualno trans, istors, reed relays, pot cores
 (our seloction) from unused silighly damaged units. Long
 Low-volt transformers. Pri. 240 Sec. 28v, 24v and 10v, £1.50 ea.

 Severy month. s.B. SuDoy back ouarantee. V.A.T. Inclusive.

