Tuner-amplifier survey

 Model railway control system

PORTABLE INSTRUMENTS

These highly accurate instruments incorporate many useful features, including long battery life. All A type models have $3 \frac{1}{4}$ " scale meters, and case sizes 5 " $\times 7^{\prime \prime} \times 5^{\prime \prime}$. B types have 5 " mirror scale meters and case sizes 7 " $\times 10^{\prime \prime} \times 6^{\prime \prime}$.

A.C. MICROVOLTMETERS

VOLTAGE \& db RANGES : $15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V} \ldots 500 \mathrm{~V}$ f.s.d Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 1 \mu \mathrm{~V}$ at $1 \mathrm{kHz}, 100,-90 \ldots+50 \mathrm{~dB}$ scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 600 \Omega$. RESPONSE : $\pm 3 \mathrm{~dB}$ from 1 Hz to $3 \mathrm{MHz}, \pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$. Type TM38 can be set to a restricted B.W. of 10 Hz to 10 kHz or 100 kHz . INPUTIMPEDANCE: Above $50 \mathrm{mV}:>4.3 \mathrm{M} \Omega<20$ pf. On $50 \mu V$ to $50 \mathrm{mV}:>5 \mathrm{M} \Omega<50 \mathrm{pf}$. AMPLIFIER OUTPUT: 150 mV at f.s.d

$\mathbf{f 4 9}_{\text {wixin }} \mathbf{f 6 3} \underset{\text { wixa }}{ }$

D.C. MICROVOLTMETERS

VOLTAGE RANGES: $30 \mu \mathrm{~V}, 100 \mu \mathrm{~V}, 300 \mu \mathrm{~V} . .300 \mathrm{~V}$. Acc. $\pm 1 \%, \pm 2 \%$ f.s.d., $\pm 1 \mu \mathrm{~V}$. CZscale.
CURRENT RANGES: $30 \mathrm{pA}, 100 \mathrm{pA}, 300 \mathrm{pA}, 300 \mathrm{~mA}$.
Acc. $\pm 2 \%, \pm 2 \%$ f.s.d., ± 2 pA. CZ scale.
LOGARITHMIC RANGE:
$\pm 5 \mu V$ at $\pm 10 \%$ f.s.d., $\pm 5 \mathrm{mV}$ at $\pm 50 \%$ f.s.d., $\pm 500 \mathrm{mV}$ at f.s.d. RECORDER OUTPUT: $\pm 1 \mathrm{~V}$ at f.s.d. into $>1 \mathrm{k} \Omega$

£55
ty̆pe TM10 (appearance similar to type TM9B)

D.C. MULTIMETERS

VOLTAGERANGES: $3 \mu \mathrm{~V}, 10 \mu \mathrm{~V}, 30 \mu \mathrm{~V} \ldots 1 \mathrm{kV}$
Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 0 \cdot 1 \mu \mathrm{~V}$. LZ \& CZ scales.
CURRENT RANGES : $3 \mathrm{pA}, 10 \mathrm{pA}, 30 \mathrm{pA} \ldots 1 \mathrm{~mA}$ (1 A for TM9BP) Acc. $\pm 2 \% \pm 1 \%$ f.s.d. $\pm 0 \cdot 3 p A$. LZ \& CZ scales.
RESISTANCE RANGES: $3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{kM} \Omega 2$ linear. Acc. $\pm 1 \%, \pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$.
RECORDER OUTPUT: 1 V at f.s.d. into $>1 \mathrm{k} \Omega$ on LZ ranges

£75 TM9A
 $\mathbf{f 8 9}{ }_{\substack{\text { țм9 } \\ \text { тмя }}}$
 f93

BROADBAND VOLTMETERS

H.F. VOLTAGE\&dBRANGES: $1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV}, 3 \mathrm{f} . \mathrm{s} . \mathrm{d}$.

Acc. $\pm 4 \% \pm 1 \%$ of f.s.d. at $30 \mathrm{MHz},-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB}$
to +20 dB . Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 50 \Omega . \pm 07 \mathrm{~dB}$
from 1 MHz to $50 \mathrm{MHz} . \pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz . $\pm 0.7 \mathrm{~dB}$
L.F.RANGES : As TM3 except for the omission of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$

AMPLIFIER OUTPUT : Square wave at 20 Hz on H.F. with
amplitude proportional to square of input. As TM3 on L.F.

Send for literature covering our full range of portable instruments
LEVELL ELECTRONICS LTD. Moxon Street, High Barnet, Herts. EN5 5SD

Gardne line up

Line MatchingTransformers from Standard to Super Fidelity

It's easy to choose the right Line Matching Transformer from the five Gardners ranges.

The Super Fidelity Series, with a frequency response of 10 Hz to $80 \mathrm{kHz}-0.5 \mathrm{~dB}$, gives the widest possible bandwidth for high accuracy instrumentation and recording applications.

Then there's the Wide and Extra Wide-band ranges. Outstanding performers with a frequency range 30 Hz 20 kHz or more - for the 0.5 dB points. Used a lot by broadcasting and recording companies throughout the world.

The Miniature and Standard ranges provide excellent bandwidth for most purposes, 30 Hz 22 kHz for the 1.0 dB points.

Except for the very smallest in the range, all Gardners Line Matching Transformers are fully magneti-

cally shielded, giving very high hum rejection ratios.
Prices start from $£ 3.19$ (recommended retail price) and all types are usually available from stock.

Complete technical information is given in brochure GT. 5 'Audio Frequency Transformers' which we'll be glad to send on request.

So accurate is the balancing of the windings on some of these transformers that, when used as pairs in a hybrid circuit (as illustrated) we can guarantee a rejection of better than $-55 d B$ over the frequency range 50 Hz to 10 kHz and normal rejection of up to $-75 d B$ may be expected.

Specialists in Electronic Transformers and Power Supplies

GARDNERS

TRANSFORMERS LIMITED
Gardners Transformers Limited, Christchurch, Hampshire, BH23 3PN Tel: Christchurch 2284 (STD 02015 2284) Telex: 41276 GARDNERS XCH.

is this the price you pay?

Probably if you're still using an ordinary soldering iron Ordinary soldering irons can cause damage to transistors and integrated circuits - damage which wastes time and costs money. Now, with the unique ANTEX $\times 25$ and CCN low leakage soldering irons no harm can come to the most delicate equipment, even when soldered 'Live'. (You could be making quite a saving). All prices include V.A.T. at 10%

Anotheradvanced Hi-Fi stereo tape recorder/amplifier from Philips.

3 heads.Solenoid-operated.Tip-touch controls. 2×12 watt RMS amplifier usable with the DC motors switched off. Two built-in loudspeaker enclosures.

This is the N4418, number two in the Philips range of advanced $\mathrm{Hi}-\mathrm{Fi}$ stereo tape recorders. In producing this range, Philips have drawn on decades of experience in professional tape recording installations for studios, computers and airports the world over.

Each machine easily meets the DIN 45500 standard for Hi-Fi tape recorders. Sophisticated design gives precise control, simple operation, and great reliability. Here are the main features:

4 tracks. 3 speeds $-7 \frac{1}{2}, 3 \frac{3}{4}, 1 \frac{7}{8} \mathrm{ips}$.
Suitable for stereo and mono recording and playback, multiplay, echo during recording, A-B monitoring.
2×12 watt RMS Hi-Fi amplifier usable with recorder's motors and tape transport switched off.

Three motors - two DC motors for reel drive, one DC capstan motor electronically governed to keep tape speed constant.

Tape tension comparators for constant winding torque.

Three magnetic heads - one each for recording, playback and erase.

Detachable lower head cover for easy editing and cleaning.

For control of transport functions and recording mode, illuminated tip-touch controls are linked to solenoids - giving easier, quieter and more reliable operation.

Remote control unit (extra) with
same tip-touch buttons as recorder.
Sliding switches for function selection-selected function illuminated.

Precise sliding faders for two microphones and another signal source.

Recording stand-by (level adjustable with tape stationary).

Two illuminated calibrated VU type meters for recording/playback.

4-digit counter, zero reset, and on/off Autostop to halt tape at predetermined position.

Sockets for headphones and microphones easily accessible at front, concealed under sliding lid.

Built-in acoustical boxes giving 2×6 watts via $6^{\prime \prime} \times 4^{\prime \prime}$ loudspeakers.

Reels lockable by means of metal hub locks.

Removable transparent lid.
Amplifier detachable in one unit leaving recorder functioning.
Frequency response:
$40-20,000 \mathrm{~Hz}$ at $7 \frac{1}{2} \mathrm{ips}$ $40-16,000 \mathrm{~Hz}$ at $7 \frac{1}{2} \mathrm{ips}$ with built-in stereo interference filter.

DIN 45500
$40-15,000 \mathrm{~Hz}$ at $3_{4}^{3} \mathrm{ips}$ $60-8,000 \mathrm{~Hz}$ at $1 \frac{7}{8} \mathrm{ips}$
Wow and Flutter $<0 \cdot 15 \%$ at $7 \frac{1}{2}$ ips.
See your Philips dealer for a demonstration. And for a free book on all Philips Hi-Fi stereo tape recorders, write to Philips Electrical Limited, Dept SP, Century House, Shaftesbury Avenue, London WC2H 8AS.

AnDER5 MEAIS METERS...

REGAL RANGE

- New 100° arc high quality meters at low prices.
- Rugged taut band construction - pivot and jewel available to order

Sensitivities to $10 \mu \mathrm{~A}$Very competitively priced for OEM quantities

- Modern styled meters in matt black plastic cases with flattened arc giving long scale.

TWO MODELS
R55 $2.5 \mathrm{in}(63.5 \mathrm{~mm})$ Scale length
R65 3.2in (81.3 mm) Scale length

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Vulcan Moving Iron. 4 models, $1 \cdot 5^{\prime \prime}, 1 \cdot 8^{\prime \prime}, 2 \cdot 7^{\prime \prime}$, $3 \cdot 7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Kestrel Clear Front. 7 models, 1:3"-5•25" scales. DC moving coil, AC moving coil rectified, $A C$ moving iron.

Profile 350 edgewise $4 \cdot 3^{\prime \prime}$ scale
DC moving coil and AC moving coil rectified. Horizontal or vertical mounting.

Oxford Long Scale 240°. 2 models, $5 \cdot 5^{\prime \prime}, 8^{\prime \prime}$ scales. DC moving coil and AC moving coil rectified.

Stafford Long Scale 240 6 models, $3.5^{\prime \prime}-11 \cdot 5^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, AC moving iron. Alsp 98 scale.

Models KE1 and KE2
Miniature Edgewise
Meters. Nominal scale lengths $1.2^{\prime \prime}$ and $2^{\prime \prime}$. Available in sensitivities from 50 microamps Moving Coil.

Lancaster Long Scale 240 . 2 models, $4^{\prime \prime}, 5 \cdot 5^{\prime \prime}$ scales. DC moving coil and $A C$ moving coil rectified.

RIDERS ELECTROMILS LIMITED ${ }_{48 / 56}$ Bayham Pace, Bayham Street. London, N.w.1. Telephone $01-3879092$.
Manufacturers and distributors of Electrical Measuring Instruments. Sole U.K. distributors of FRAHM Resonant Reed Frequency Meters and Tachometers. Manufacturers of purpose built electrical and electronic equipment to customers requirements.

Look out for this sign
 it's a good deal more meaningful than most

B \& W are not playing hard to get. Far from it.
We've appointed - very selectively - a national network of Authorised B \& W Dealers to demonstrate, install and service our famous loudspeakers.

You can expect our dealers to have good demonstration facilities, and installation technicians who really know their stuff. Above all, B \& W dealers will maintain the kind of after-sales service you've the right to expect.

Ask to hear B \& W speakers where you see the sign; it could be the beginning of a totally rewarding experience.

B \& W loudspeakers are in great demand abroad. So much so. we have been honoured with the Queens Award to Industry for export achievement.

Meadow Road Worthing BN11 2RX
Telephone (0903) 205611

Contact us at Mullard for all your 'communications' components... components for telecoms, broadcasting, radar and navaids. We have unique resources for their development and production, and have devoted literally millions of pounds to meeting the component needs of manufacturers of
communications equipment.
Some of our products are well-established favourites, others are at the forefront of current technology.
Some are made on an extremely large scale, some are customer specials. Please let us know of your own particular requirement.

VARACTOR

New tuning and multiplier types amnounced

Tuning Varactors
Three new silicon varactor diodes, all with a wide electronically tuned capacitance range, have been introduced by Mullard. Designated types BXY53, BXY54 and BXY55, they have total capacitance ratios of $4.0,6.5$ and 7.0 respectively. Typical capacitances at -4 V are $1.0,4.7$ and 15pF. Reverse ratings are 60 V at $10 \mu \mathrm{~A}$. Low insertion loss, another important feature, is $0.8,0.5$ and 0.25 dB for the three types respectively (this is under small signal conditions with the diode at the end of a 50Ω transmission line, and measured at 2 GHz for the BXY53 and BXY54, and at 1 GHz for the BXY55).

The new tuner and multiplier varactors come in the same type of standard microwave package.

Multiplier Varactors
Two silicon multiplier varactors have also been announced. These are high efficiency types BXY56 and BXY57, and are intended for use in both low and high order multiplier circuits with output frequencies in the range 3 to 8 GHz . Cut-off frequencies at -6 V are 160 and $140 \mathrm{GH}_{3}$ respectively. Power ratings are 5.2 and 6.6 W , and the reverse rating is 60 V for both types. For further information on all five of these new varactors please use reader enquiry service no. WW 100 .

\title{

Unique transistors-unique performance

\section*{forTV transposer

forTV transposer service

The very strict requirements that have to be met by power amplifiers in TV transposers are reflected in the performance that is expected of individual transistors.

Mullard transposer transistors are available which are unique in being designed, specified and guaranteed for this special application. The d.c. safe operating area is exceptionally large compared with earlier types, making for completely safe operation at high powers in class A and ensuring extremely low intermodulation distortion. Furthermore, they are 100% individually tested for intermodulation in the manner prescribed by transposer manufacturers.

An advanced diffusion process is employed in which arsenic is used as an emitter dopant. This allows the
depth of diffusion to be very accurately controlled and a very thin base is obtained giving a minimum f_{T} of 2 GHz . The maintenance of high performance over a long operating life is assisted by the employment of a sophisticated gold metallisation system.
At 860 MHz , the most powerful member of the Mullard transposer transistor family, the BLX98, has a power gain of typically $5 \cdot 0 \mathrm{~dB}$, giving a minimum output of 3.5 W with intermodulation distortion better than 60 dB . For data on this device please use reader enquiry service no. WW 101.

FREQUENCY AGILITY...

Radar jamming, both unintentional and deliberate, can be overcome by the use of frequency agile systems. This well-known fact has tended to obscure the many other important advantages which frequency agile radars offer.
They greatly facilitate the detection of fluctuating echoes and so give increased range. They reduce the effects of 'glint', or interference between echoes from different parts of the target, and so enhance tracking accuracy. They provide for decorrelation of the target from clutter. And they completely eliminate early or 'second-time-round' echoes.

The key components for such systems-frequency agile magnetrons and voltage-controlled local oscillators-have been developed by Mullard against the background of a thorough study of fast AFC and related system requirements.

The Mullard magnetrons are spin-tuned, the internal tuning element being rotated via a magnetic
coupling through the vacuum envelope. A rapid and truly random variation of frequency over the operating band is obtained. A typical 100 kW X-band magnetron being made at Mitcham sweeps through 450 MHz in $500 \mu \mathrm{~s}$. Other types can be supplied, including those for J-band, and preset frequency locks can also be provided.

Mullard local oscillators for this type of application are realised in the form of microstrip integrated circuits, and a typical LO comprises a linearised varactor-tuned transistor oscillator multiplier. A salient feature of the device and its control system is, of course, its ability to follow the magnetron's large and rapid frequency variations.

A good introduction to this whole subject is provided by Frequency Agile Radar-a review of techniques and advantages. Write to Dept. CMS/C14 at Mullard House for a free copy.

Mobile design... WHY DO IT THE HARD WAY?

A visitor to our Application Laboratory recently couldn't believe his eyes when we showed him one of our u.h.f. wideband amplifier modules. He held the inch-long pack in the palm of his hand, and it took a demonstration to convince him that it could be taken straight from its wrapping and cover the band 380 to 512 MHz without any tuning or 'tweaking up' whatsoever. In fact

Mullard u.h.f. modules are completely encapsulated and the question of tuning or trimming simply does not arise.

They have outputs of 2.5, 7.0 and 17 W . And if you want to couple them together there are no problems: they all have 50Ω input and output impedances. There are many other features attractive to the equipment designer. They will withstand load mismatch, they will accept input overdrive and they will remain stable even when the supply voltage sinks to 10.5 V or rises to 16.5 V .

Naturally they cost somewhat more than the sum of the discrete components, but this is more than outweighed by the time you save on design, manufacture and test. All very well for the designer, but also very well for the user and maintenance engineer. For data please use reader enquiry service no. WW 102.

> Latest broadband transistors boost performance of TV distribution systems

The excellent broadband performance of Mullard transistors such as the BFY90 and BFW16A has led to their widespread use in TV aerial amplifier and distribution systems.

These well known types are now being supplemented by a new family which, thanks to an advanced diffusiontechnology, has an eyen higher performance. It comprises types BFR90, $91,92,93,94 \& 96$ which are ideally suited for operation from 40 to 900 MHz and give an output of up to 1 V across 75Ω. All are individually tested for essential parameters such as intermodulation and crossmodulation distortion.

Using BFR94s, for instance, a push-pull amplifier can be made with a bandwidth of 40 to 300 MHz , and featuring 12 -channel cross-modulation distortion of only -98 dB at an output of 32 dBmV . The 3.5 GHz transition frequency of the BFR94 results in an amplifier with high power gain and a noise figure which is almost independent of frequency.

For data on transistors in the new family please use reader enquiry service no. WW 103.

If the answer's'yes' think Ferroxcube and contact Mullard.

Full data for RM and pot transformer cores is given in the Mullard Technical Handbook (Book 3, Part 2). Use reader enquiry service no. ... for a Handbook order form and descriptive leaflet.

FOUR ADVANCED PLUMBICON TUBES MARK 10TH ANNIVERSARY

Four new Plumbicon tubes, the most advanced yet, are being announced this year, the tenth anniversary of the introduction of this kind of TV camera tube. Plumbicon tubes are now regarded internationally as 'standard'-in fact 90% of the world's colour TV cameras are fitted with them.

The four new tubes are additions to the Mullard 1-inch XQ1080 family. They feature a unique anti-comettail gun and bias light pipe, and antihalation discs are fitted as standard. Output capacitance is low and ensures optimal signal-to-noise ratio.

All four new types have an ex-
*Registered trademark for TV camera tubes

Simplergigahertz amplifiers with new transistor

A new n-p-n silicon transistor featuring a very high transition frequency and low noise has been announced by Mullard. With a noise figure of $4 \cdot 0 \mathrm{~dB}$ at 2 GHz and a power gain of 8 dB this new device, the $551 \mathrm{BFY} / \mathrm{A}$, considerably simplifies u.h.f. and microwave repeater station design.

Broadband amplifiers with centre frequencies of up to 2 or 3 GHz can be designed relatively easily by taking advantage of the high gain of the 551BFY/A. With it microwave re-
tended red response and are intended for monochrome and red chrominance channels. The spectral response cut-off of broadcast tube XQ1083 and its industrial counterpart XQ1084 is 900 nm . Broadcast tube XQ1085 and its industrial counterpart XQ1086 are of similar construction but have infrared filters giving cut-off at 750 nm .

peaters can be made to operate on a 'straight through' basis, there being no need for conversion down to an intermediate frequency.

In radar systems, too, and ultra high-speed data communications systems operating at gigahertz bit rates the $551 \mathrm{BFY} / \mathrm{A}$ is an extremely attractive device. An interesting military application is in electronic warfare countermeasures where it can replace travelling wave tubes in octave band amplifiers.

The typical transition frequency of the $551 \mathrm{BFY} / \mathrm{A}$ (at $\mathrm{f}=500 \mathrm{MHz}$) is $5 \mathrm{GHz} . \mathrm{V}_{\mathrm{CBO}}$ max. is 20 V , and I_{C} max. 25 mA . Total permissible powerdissipation up to ambient temperatures of $60^{\circ} \mathrm{C}$ is 300 mW . A miniature ceramic encapsulation is used which is compatible with strip-line and microstrip circuits. For data please use reader enquiry service no. WW104.

Contact Colimn

AGOOD'BUYIN'
The case for buying in sub-systems or sub-assemblies instead of working with discrete components is not always indisputable. But in many areas there are clear-cut savings to be made on development and production costs and, quite frequently, there are size and performance advantages. The modules for mobile transmitters described in this 'Contact' are a case in point. The microwave field is another.
The Mullard company is particularly well placed for this kind of microwave activity. Not only does it have the resources to design and manufacture microwave sub-systems, it designs and makes the discrete components as well. There is complete vertical integration of the whole activity, and consequent economic and technical advantages.

Much of this Mullard work has in the past involved conventional 'three dimensional' components and waveguide technology, but microwave integrated circuits using microstrip technology are now assuming greater importance.

With the tremendous advances being made in discrete microwave devices, it is not surprising that thin film circuits are more appropriate for many sub-systems. A Gunn diode of micron dimensions, for instance, is incongrous when used with 3 cm waveguide plumbing. And with transistors having an f_{T} of 5 GHz allied solid-state techniques must be used for the circuitry.

However, the customer's first need is to know whether a 'subsystem approach' is viable for his particular project. This he can find out by supplying Mullard with a 'black box' specification. A technical appraisal will be prepared and sent to him in about three weeks.

By 'Electron'

Voretexínin

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio breakthrough

The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, 1 -HiZ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.S This is similar to the 4 -way version but with 5 inputs and bass cut controls on each of the three low impedance balanced line microphone stages, and a high impedance (10 meg) gram stage with bass and treble controls plus the usual line or tape input. All the input stages are protected against overload by back to back low noise, low intermodulation distortion of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16 \Omega$ output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected. The Mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output 3 V out on 600 ohms upwards.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4-channel F.E.T. mixer, $2-30 / 60 \Omega$ balanced microphone inputs. $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.

Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

200 W.ATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$ $\pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1 -low mic. balanced and 1 auxiliary input.

Every Tannoy "Monitor Gold" dualconcentric loudspeaker is individually tested and given its own serial number. Every "Monitor-Gold" has a frequency curve taken on Brüel \& Kjaer measuring equipment, and a copy of this curve will, in future, be provided with every unit.

	$10^{\prime \prime}$	$12^{\prime \prime}$	$15^{\prime \prime}$
Power Handling Capacity	25 W	35 W	50 W
Frequency Response	$27-20,000 \mathrm{HZ}$	$25-20,000 \mathrm{HZ}$	$23-20,000 \mathrm{HZ}$
Intermodulation Products	less than 2%	less than 2%	less than 2%
Impedance via Crossover network	8 ohms (5 ohms min.)	8 ohms (5 ohms min.)	8 ohms (5 ohms min.)

The whole range of Tannoy Dual-Concentric units sounds very similar, depending on the selected enclosure, and the different types are ideal for combinations in Quadraphonic systems.

Response curve of $12^{\prime \prime}$ Monitor Gold mounted on Works test Enclosure
Norwood Road, West Norwood, London SE27 9AB Tel: 01-670 1131

Electronic valves (a comprehensive range) semi-conductors (a wide variety) integrated circuits... and now a comprehensive range of Hybrid Microcircuits. Prices on request.

Teonex offers more than 3,000 devices. They are competitively priced and they are superlative in performance because the company imposes strict quality control. Teonex concentrates entirely on export and now operates in more than sixty countries on Government or private contract. All popular types in the Teonex range are nearly always available for immediate delivery. Write now for technical specifications and prices: Teonex Limited, 2a Westbourne Grove Mews, London W11 2RY, England. Cables: Tosuply London W11. Telex : 262256 \qquad AVAILABLE ONLY FOR EXPORT

New automatic digital bridge from Wayne Kerr

Wayne Kerr's new 8900 is one of the best value-for-money bridges in the world.

It is universal, has a wide range, and gives immediate digital readout of resistive and reactive terms-simultaneously.

On all ten ranges, for every type of measurement available, the displays provide a complete indication of the numerical value (up to 19999), polarity, decimal points and units-automatically and in half a second.

Direct measurements of Q, dissipation and dc volts. 2,3,\& 4-terminal. Automatic lead compensation. 4- Quadrant: + ve or - ve C, L, 1/C, G and R. Overall coverage:

$$
\begin{array}{lll}
10 \mu \Omega-200 \mathrm{M} \Omega & 1 \mathrm{nH} & -20 \mathrm{kH} \\
0.001 \mathrm{pF}-20,000 \mu \mathrm{~F} & 10 \mathrm{p} v & -200 v
\end{array}
$$ Accuracy: $0.1 \%(10 \Omega-200 \mathrm{M} \Omega), 0.3 \%(10 \mathrm{~m} \Omega-10 \Omega)$ in all quadrants. Frequency: 1 kHz Outputs: Analog and TTL.

For more information phone Bognor (02433) 25811, or fill in the coupon.

- Unilits

Nat KEF ELECTRONICS LIMITED TOVIL MAIDSTONE ME15 6QP Tel 062257258

Reg in England No 702392

Research based on the premise that loudspeakers could be made to reproduce sound more accurately by the efficient utilisation of plastics and metal alloys has enabled KEF engineers to evolve the current range of chassis speakers.

Results of research on these materials plus spin-off from other technologies has enabled KEF to achieve precise quality control in production, reliability and accurate sound reproduction under wide extremes of operating conditions.

Many of the world's leading manufacturers recognise these salient points and insist on using KEF drive units in their equipment.

Full details of chassis speakers and dividing networks are available on request.

WW-014 FOR FURTHER DETAILS

We've got something special for 98 people. (According to our calculations.)

When Advance Calculators, in conjunction with Wireless World, produced a desk-top calculator kit . . . well, it was a great success.

There were 1487 do-it-yourselfers who thought it was good value for money - and good technology. They bought; we almost sold out.

Now we've only got 98 left. And we won't produce this model in kit form ever again.

So, if you'd like to make your own calc (in less than two hours) and you've got $£ 40.00+£ 4.00$ VAT to spare, send your cheque today.

Because it's first come, first served.
After all, we don't want everyone to own a limited edition.

The Wireless World Calculator Kit. Only $£ 44.00$ including VAT, postage and packing. Four functions. Eight digits. Floating decimal point and a constant. Full, easy-to-read instructions. And real value for money.

To Advance Calculators, Raynham Road, Bishop's Stortford, Herts. Telephone: Bishop's Stortford 55155.
| Please send me immediately one of your remaining 98 Wireless World calculator kits. I enclose my cheque for $£ 44.00$.
Name
Address

No half measure!

D.C. VOLTS $100 \mu \mathrm{~V}$ to 1000 V
D.C. VOLTS $1 \mu \mathrm{~V}$ to 1000 V
A.C. VOLTS
$10 \mu \vee$ to 1000 V

EVENTS TO
1 MILLION COUNTS
PER SECOND

FREQUENCY
to 8 MHz
fREQUENCY
to 100 MHz

RESISTANCE
$.001 \Omega$ to $1,000 \mathrm{M} \Omega$

CAPACITANCE
1 pF to $10,000 \mu \mathrm{~F}$

TIME INTERVALS
0.01 mS to 1

MILLION SECONDS
D.C. CURRENT 0.1 nA to 10 A

To obtain a 16 page brochure describing this equipment contact:-

FARNELL INSTRUMENTS LIMITED,
TELECOMMUNICATIONS DIVISION.
SANDBECK WAY, WETHERBY, YORKSHIRE.
TELEPHONE 09373541 • TELEX 557294
LONDON OFFICE: TELEPHONE 01-802 5359

Numbers

Set up a QUAD 33 with +1 on the treble control, and you will obtain a response precisely defined; readily and accurately repeatable. This response has a shape rather different from most run of the mill tone controls and there are, as you may guess, good reasons for this.
Then as the listener is not expected to know just what a given response curve does to the signal off the record, we provide a

button marked "cancel". This enables him to make a direct comparison with the original and so learn just which recording defects need what correction. A QUAD user gets the best out of every record-every time-and enjoys the music to the full.
Send postcard for illustrated leaflet to Dept. (WW), Acoustical Manufacturing Co. Ltd., Huntingdon PE18 7DB.
Telephone: (0480) 52561.

QUAD

for the closest approach to the original sound
QUAD is a Registered Trade Mark
See and hear QUAD on Stand No A6 International Audio Festival \& Fair, Olympia, 22nd-29th October 1973

WW-018 FOR FURTHER DETAILS

WW- 019 FOR FURTHER DETAILS

The new home of Haltron

Haltron-International specialists supplying the widest range of electronic valves, semiconductors and integrated circuits can now give you even better service. Our modern, much larger factory provides space to expand and meet your requirements. Governments and other users worldwide specify Haltron products for their outstanding high quality and confirmed reliability. This, backed by expertise and efficient handling of export orders ensures a unique universal reputation.

Haltron

Hall Electric Limited
Electron House,
Cray Avenue, St. Mary Cray. Orpington, Kent BR5 30J
Telephone: Orpington 27099
Telex: 896141

SHIBADENS NEW TIME LAPSE RECORDER A single VTR that brings maximum FLEXIBILITY to any application
 Shibadens new Time Lapse Recorder mixes and matches recording and playback times so that whatever your requirement you can get the complete answer with this versatile new VTR unit. The SV 612 E (K) will shorten one recording and lengthen another or vice versa. And however you use the Recorder - for Traffic Systems, the study of nervous diseases, sporting events or to improve security - no matter

 what the mode, you will not be troubled with tape compatibility, because the SK $612 \mathrm{E}(\mathrm{K})$ uses tapes on any EIA - J type I format VTR.CHOICE OF FIVE RECORDINGS
Each unit offers a choice of five recordings and playback periods ranging from 1,6,12,24 or 48 hours. Reproduction quality and picture stability are maximised by the use of ferrite video heads. The SV 61.2 E (K) is equipped with AGC for video and audio output and has audio dubbing facilities.
From a standard 60 minute tape you can obtain up to 48 hours playback. The Quick Motion playback permits extensive use for such studies as flowers in bloom and metamorphasis whilst for sporting events the slow motion playback facility extends a one hour recording at normal speed to $6,12,24$ or 48 hours.

If yoư need maximum flexibility for record and playback in a single unit you need Shibadens new Time L̇apse Recorder. Write now for full technical specifications or telephone the Shibaden Techńical Service.

HITAEHI SHIBADEN (U.K.) LIMITED

 groadcast \& CCTV Equipment Manufacturers Lodge House - Lodge Road • Hendon London NW4 4DQ. Telephone: 01-203 4242/6> WW-021 FOR FURTHER DETAILS

Learn about modern TV design by building this

The new Heathkit GR-9900 portable 12" UHF Monochrome Television kit. A unique chance to double the pleasure available from any other television set because you build this yourself.

We've used the latest modular construction and advanced design concepts to produce an outstandingly high performance TV worthy of the Heathkit name. All the main electronics are mounted on two easy-toassemble printed circuit boards-this plus the use of no less than four integrated circuits perform the complex function of IF, video, sound, line frame and scan. Factory pre-aligned coils make alignment very easy and there are four presetable pushbutton controls for channel tuning-a luxury found in very few other models. The quality and fidelity is therefore excellent, and of a far higher standard than most ready-built televisions in the shops.

The GR-9900 is portable too-equally at home on
the mains or off your 12 volt battery for car, boat or caravan use. Add to this Heath's world renowned experience in the design of equipment for first-time kit builders, and you will be impressed on all counts of engineering, styling, and performance.

The instruction manual is surprisingly simple with big, clear illustrations to map out your way. Would-be TV engineer? Here's your chance to learn-by actually building a television yourself. The manual not only shows you how to get 100% personalised quality control on your own; in the event of anything going wrong, a Trouble-Shooting section enables you to find the faultand, in most cases, to put it right unaided.

The GR-9900 is a kit you'll be proud to build and own. You have a choice of fully finished cabinets in teak or modern white and the kit price, $£ 62.70$ (carriage extra), includes a FREE high performance indoor aerial.

FREE
HEATHKIT CATALOGUE
Contains something for everyone : Hi Fi Stereo Testers \& Instruments, SWL Metal Detectors . evena Battery charger Kit Mail the coupon...Today! Heath (Gloucester) Limited, Gloucester GL2 6EE

Visit the London Heathkit
Showroom at
233 Tottenham Court Road
Tel 6367349
(Prices slightly higher than mail order)

The latest colour TV tuner-

Mullard has a really advanced range of vhf, uhf and vhf/uhf electronic tuners. The latest of these is the ELC 1043/05 Varicap', designed to meet the exacting requirements of British transmission standards up until the late 1970's.

Technically, the Varicap' has many advantages;

now in quantity production at Mullard,Thornaby

a considerably reduced noise level; far greater reliability and it replaces outdated electromechanical tuning systems.

For the stylist there are new freedoms; the tuner can be sited practically anywhere on the set, it's a great deal smaller, and the buttons have a feather-like feel.

Varicaps' are coming off the production line at the Mullard Thornaby plant at the rate of many thousands a month. And increasing.

Thornaby-yet another important 'component' in Mullard's massive investment in colour television, helping to increase an already
imposing export
performance. And helping you to produce the finest, most up-to-date, colour sets in the world.

In quantity and quality. For today and tomorrow from Mullard Limited.

Mullard

WW-024 FOR FURTHER DETAILS

BIAS ELECTRONICS

Phone or write to
BIAS ELECTRONICS LTD. 01-947 3121
UNIT 8 COOMBE TRADING ESTATE 112-120 COOMBE LANE, LONDON SW20 OBA.

for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m. Descriptive Literature on Frahm Resonant Reed Tachometers and Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery.

Anders means meters

TwinStabilised
 PowerSupplies

Each comprising:
Two powerful bench supplies. Continuously variable.
Independently operable, or in series, or parallel. Fully protected against overload and ε hort circuit. In one compact robust case.

57
2×0 to 30 V 0 to 1 A .
Set by switches and fine control.
Meters switchable for volts.
0 to 100 mA and 0 to 1 A .
Re-entrant protection. Pilot
indication of overload.

2×0 to 20 V 0 to 0.5 A
with twenty 1 volt steps and fine
control.
Voltage set by controls.
Current continuously monitored.
0 to $100 \mathrm{~mA}, 0$ to 0.5 A . Current limiting protection
 urrent limiting protection.

Lenstead means a good deal in electronics

Linstead Electronics, Roslyn Works, Roslyn Road, London N155JB Telephone: 01-802 5144
pius VAT

GIGTHESE WRITE FOR THE BOOK THAT CAN CHANGE YOUR WHOLE FUTURE

The B.I.E.T. guide to success should be read by every ambitious engineer. Do you want promotion, a better job, higher pay? "New Opportunities" shows you how to get them through a low-cost B.I.E.T. home study course. There are no books to buy and you can pay-as-you-learn.
Send for this helpful 76 page FREE book now. No obligation and nobody will call on you. It could be the best thing you ever did.
CHOOSEA NEW OUT THIS COUPON
Tick or state subject of interest. Post to address below.

SEND FOR YOUR FREE BOOK NOW! BRITISH INSTITUTE of engineering technology
DEPT. BWWIO ALDERMASTON GOURT, READING RG7 4PF
ol \qquad
NAME
BLOCK CAPITALS PLEASE
ADDRESS
ADDRESS

OTHER SUBJECTS

WW - 027 FOR FURTHER DETAIS

These active filters are designed to take over the functions of passive filter networks in audio telecommunications systems. They offer several advantages, in space-saving, economy and reliability.
As a size comparison, one active filter will take up the same space as two Post Office Type 3000 relays. By using the same fixing and terminal holes as the relays, it offers an extra convenience when baseboards are being prepared. By replacing inductive components with solid state devices, filter characteristics have been obtained at less cost, without insertion loss, and with increased flexibility and economy. These new active filters have B.P.O. approval, and have wide applications, in the audio area and in signalling and control

WHITELEY ELECTRICAL RADIO CO. LTD.
Mansfield, Notts, England. Tel. Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074

Westinghouse TV colour tubes guarantee purity in both colour and black \& white

Today's Westinghouse Electric colour tubes, addition to offering recognised excellence of colour definition, have white field purity. . .vitally important to reception of black and white transmission.

Two 67 cm diagonal versions

 These improved Westinghouse tubes are made available in two configurations - the standard 90° and the 10 cm shorter profile wide-neck 110° version... permitting their compatibility to the needs of the larger portion of European TV set manufacturers.
Expanded European facilities Pacing the growing demand in Europe for Westinghouse tubes, we have made a permanent commitment to fully support our customer. ■ With trained technical sales personnel in major European cities. - With

warehousing and testing facilities in Kassel, W. Germany and Le Mans, France. - With a sustaining European oriented R\&D programme.

Customer oriented

In these ways-compatible product availability-outstanding development facilities-local technical assistance...Westinghouse Electric respond to dy-

The 110° (v) A67-140×TV colour tube is 10 cm shorter in profile than the 90° (v) A67-120X both offer superb colour definition as
namic customer requirements - here in Europe and throughout the world.

Westinghouse Electric S.A. 1 Curfew Yard, Thames Street Windsor Berks. Phone Windsor 63392. Telex 847069.

GENEVA FRANKFURT LONDON MILAN PARIS STOCKHOLM

Westinghouse Electric

Save millimetres AND money with this new BrimarTube

If you're planning an oscilloscope - or any instrument for waveform monitoring - Brimar has good news for you. The Brimar D10-230 mono-accelerator tube is a real winner where low cost and small size are important considerations.

Short in length, small around the neck, it can save you a whole lot of space . . . give you far greater freedom in your designing. The flat 4" diameter face offers minimum total scans of 80 mm and 64 mm , in X and Y directions respectively. And its voltage requirements are with in the capability of normal, low-cost, transistorised circuits.

This tube with its Standard B14G Colour tube base also allows economies to be made in Socket costs and, being round, requires no twist coil.
\star Maximum overall length: 260 m m

* Maximum neck diameter: 38 mm
* First anode voltage: Va1, 1500 V
* Second anode voltage for focus: Va2, 230 to 380 V
* Grid voltage for spot cut-off (approx.):
$\mathrm{Vg}-30$ to -65 V
* X plate deflection coefficient: $\mathrm{Dx}, 21$ to $26 \mathrm{~V} / \mathrm{cm}$
\star Y plate deflection coefficient: Dy, 13 to $16 \mathrm{~V} / \mathrm{cm}$ \star The standard phosphor is GH
(green, medium persistence).

Ask for full data, or for a sales engineer to call:-

CRT reliability

BBIMABThorn Radio Valves and Tubes Limited,
Mollison Avenue, Brimsdown, Enfield, Middlesex EN3 7 NS. Telephone: 01-804 1201

nombrex

MODEL 41 R.F.SIGNAL GENERATOR

Price $£ 35.00$.
FROM APRIL ist PLEASE ADD 10% ON TO PRICE FOR V.A.T.

* $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals.
* 8 clear scales - Total length 130 mm .
* Spin-Wheel Slow Motion Drive 11 - 1 ratio.
- Overall Accuracy - $2 \frac{1}{2} \%$.
* Modulation, Variable depth and frequency.
* Modulal Crystal Oscillator providing calibration checks throughout all
ranges.
* Mechanical scale adjustment for accurate alignment against internal
* Mechanicastal oscillator.
* Powered by 9V Battery.

Trade and Export enquiries welcome. a record ought to come out of it.

The Theory is perfectly simple.
A good cartridge should take from a record all the subtle shades of original sound that are stored there, and re-create them for your enjoyment.

The Practice is a little more difficult.
Now Goldring bring the ideal closer with the new 820 series.

A brand new family of cartridges that builds on the advances already achieved by the Goldring 800 series. Providing cartridges that are not only capable of making the most of all that good recording can offer now, but have the capacity to keep pace with new developments in the art of quality recordings.

The 820 series retains the true transparency of sound and the true transduction techniques of earlier designs.

It brings advances in every aspect of design.
The small low-mass diamond point which is mounted on a new type of specially polished lightweight aluminium tube, combined with the new visco-elastic material used for the pivot pad, makes for greater tracking ability.

A special 'tie wire' minimises fore and aft sty us movement, reducing non-linear distortion to a minimum.

The total effect is a cartridge that, other equipment being equal, can narrow almost to vanishing point the difference between the original recording and the sound that comes out of your speakers.

There are three models in the range. The 820 with spherical stylus. The 820 E and 820 Super E, both with bi-radial styli. Write for details and full specifications.

And satisfy yourself that 'what goes in comes out'.

The 820-one of the models in the new range. Performance Performance characteristics
Sensitivity Sensitivity a
$5 \mathrm{~cm} / \mathrm{sec}-1 \mathrm{khz}$
$5 \mathrm{~cm} / \mathrm{sec}-1 \mathrm{Kh}$
Separation@
$1 \mathrm{Khz}: 20 \mathrm{~dB}$.
Recommended playing w
2 grammes.
Stylus point radius: $\cdot 0006^{\prime \prime} 15 \mu$
Frequency range: $20 \mathrm{hz}-20 \mathrm{Khz}$.

The new 820 series The expert's cartridge by Goldring Θ

Goldring Limited, 10 Bayford Street, Hackney, London E8 3SE. Tel: 01.985115 ?
WW-034 FOR FURTHER DETAILS

139-141 Havant Road,

Drayton, Portsmouth, Hants
PO6 2AA.

afdec

Full member of AFDEC - the industry's association of franchised electronic component distributors.
NOW - you can get the same service and range of products normally available to industrial customers. Brand new devices from the industry leaders in component manufacture - large stocks on our shelves. Our prices include VAT at the current rate - and carriage on all goods is free.
Send for our catalogue and price list -_we'll mail that to you free, too.

A few examples of our semiconductor stocks			
AAZ 15	0.11	ZENER DIODES	
BC 107	0.11	400 mW 3.3 V to 15 V	
BC 108	0.10	$1 \mathrm{~W} \quad 4.7 \mathrm{~V}$ to 22 V	
BC 109	0.11	10W 8.2 V to 24 V	$\begin{aligned} & 0.22 \\ & 0.83 \end{aligned}$
BC 177	0.15	10W	
BC 178	0.14	THYRISTORS	
BC 179	0.15	1 A 400 V	
BCY 70	0.18	7 A 400V	0.82
BCY 71	0.22		
BCY 72	0.15	F.E.T.'s	
BDX 18	1.32	2N 3819	
BDY 53	0.88	2N 3823	
BD 135	0.33	2N 3824	0.70 0.66
BD 136	0.37	N 3824	0.66
C 424	0.16	U.J.T.'s	
C 426	0.21	MEU 21 Programmable	
ME 0412	0.15	TIS 43 (egrammable	0.36
ME 4102	0.10		
TIP 29A	0.55	TTL LOGIC I/C'S	
TIP 30A	0.66	All 74 series available	
1 N 823	0.59	7400 Gate	
1N 914	0.08	7413 Trigger	0.17 0.43
IN 4148	0.08	744 iA Decoder	0.43 1.31
1N 4001	0.07	7453 Gate	0.21
1N 4004 1N 4007	0.10	7474 Flip-Flop	0.43
1N 4007 1N 5402	0.13 0.17	7490 Counter 74.121 Monostable	0.43 0.98
1N 5406	0.21	74156 Multiplexer	0.65
1 S 920	0.08	74156 Multiplexer	1.64
1 S 922	0.09	DTL LOGIC I/C'S	
2N 2222A	0.24	All 930 series available	
2N 2369	0.16	930 Gate	
2N 2907A 2N 2926	0.26	948 Flip-Flop	$\begin{aligned} & 0.33 \\ & 0.47 \end{aligned}$
2N 2926 $2 N 3053$	0.12		
2N N 3053 2N 3054	0.22	LINEAR I/C'S	
2N N 3054 2N 3055	0.49	709/741 Op. Amp.	0.36
2N 3055 2N 3702	0.63 0.12	723 Volt Reg.	0.90
2N 3704	0.12	$\begin{array}{ll}747 & \text { Oual Op. Amp. } \\ 790 & \text { 3W A.F. Amp }\end{array}$	0.87
2N 4060	0.13	70 3W A.F. Amp	1.21

A new Loudspeaker of advanced design suitable for studio use and for home installaticns of the highest qua ity. UNITS: HF 2000 (dome 'pressure' type, MF 500 (Mid-range Dome 'pressure' type) Ulora linear 12" bass driver and $12^{\prime \prime}$ $A B R$. The crossover has resulted from considerable research and crossove- poinis are at 500 Hz and 5000 Hz 80 V vatts Maximum, 4-8 ohm. This monitor loudspeaker systemhas an exceptionally wide and flat frequency response. Very low order harmonic and inter-modulation distortion. Precise response to transients. Beaut fully maintained polar response ensures absence of unwanted directional effects and provides a highly satisfactory ste-eo image throughout the listening area. Matchec pairs.
SIZE $40 \times 15 \times 11 \frac{1}{2}$ Natural Teak or Walnut Cabinet

[^0] Amplivox Minilite.
Untouched by human ear.
New Minilite weighs a mere 50 g . Yet it combines maximum operating efficiency with absolute wearer comfort. With Minilite, Amplivox have avoided the problems of the old fashioned earplug insertsthrough ingenious useof an adjustable earpiece. An acoustic tube with sibilant filter replaces the heavier and more familiar boom microphone. Pressure pads are out too, instead there is a non-metallic headband with special bars that give stability without uncomfortable pressure.
Specified for Eurocontrol, Minilite is being widely used in air traffic control, aviation and communications control as well as other branches of industry. Minilite is, undoubtedly, the headset of the seventies. It's just one of the wide range of high-quality specialist products for civil and military use from Amplivox. No-one else offers so much for so little.
To find out more about the Amplivox range of communications products - writel today stating your application requirements to:
Racal-Amplivox Communications Limited Beresford Avenue, Wembley, Middx., England. Tel: 01-902 8991. Cables: Amplivox Wembley. Telex: 922101

The Electronics Group

GABRAPHONE invitesyou toapreview of thenew 2001series

Incorporating a high fidelity sound reproduction system that is unique in concept, character and performance.

THE CONCEPT

the system is a complete breakaway from the standard approach of expecting a single amplifier/loudspeaker combination to provide adequate reproduction of all. frequencies at any volume level.

THE CHARACTER

evolved from years of research and development into multi-frequency signal processing techniques. Integrated circuits, modular construction, electronic switching. electronic filters, equalisation of signal sources and many other'patented processes make the "2001"
series the most exciting British prodwct on the market tocay.

THE PERFORMANCE

come and hear it, on our $\operatorname{stan}-\mathrm{d}-\mathrm{G} .70$ - at the International Audio Festival and Fair. Olympia-London 22-28 October 1973.

When not in use the iron can be
safely left in the easy-location safely left in
spring holder.

Reliable joints need a clean bit. The wiping sponge is mounted on the top of the power unit just where it is needed

The iron is connected to the power unit by a 3 -core lead fitted with a 3 -way nonreversible plug, which mates with a matching socket on the power unit. Specially designed low-volt-
age power supply unit buitt into the bench stand base The output power to the iron is controlied by a transistor circuit and is completely free of sharp transients, R.F. 1 etc. which could cause damage to semi-conductors.

The power being fed to the iron is regulated from 6 watts (approx. $200^{\circ} \mathrm{C}$) to 25 watts (approx. $450^{\circ} \mathrm{C}$) by simply rotating one control on the front of the power unit.

The long-life, thermally efficient element is fully protected from physical damage by being enclosed in the stainless steel shaft. The low voltage, transient free D.C. element supply ensures absolute safety for both operators and sensitive components: no induced or leakage voltages can be present at the bit. As an additional safety measure the element shaft is earthed (the earth can easily disconnect if the bit and element shaft are required to 'float'). The element unit can be replaced simply
at low cost when necessary.

A wide range of non-seize, fully slotted bits are available in both plain copper and iron-coated 'long life' types.

In the event of a fault in the iron, the unit is protected from damage by the output fuse.

The signal lamp on top of the power unit shows when power is on, and varies in intensity with power setting. it.

YATES ELECTRONICS

(FLITWICK) LTD

DEPT. WW ELSTOW STORAGEDEPOT KEMPSTON HARDWICK BEDFORD

C.W.O PLEASE. POST AND PACKING
PLEASE ADD 10 p TO ORDERS UNDER 62.

Catalogue which contains data sheets for most of the omponents listed will be sent free on request. Op stamp appreciated

OPEN ALL DAY SATURDAYS
PLEASE ADD 10% V.A.T.

RESISTORS

WW Iskra high stability carbon film-very low noise-capless censtruction. $\frac{1}{2}$ W Mulard CR25 carbon film-very small body size $7.5 \times 2.5 \mathrm{~mm}$. $\frac{1}{2} \mathrm{~W} 2 \%$ ELECTROSIL TRS. Power
watts

atts	Tolerance	Range		-99	
$\frac{1}{\frac{1}{2}}$	5%	$\begin{aligned} & 4.7 \Omega-2.2 \mathrm{M} \Omega \\ & 3.3 \mathrm{M} \Omega-10 \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{E} 24 \\ & \mathrm{E} 12 \end{aligned}$	$\mathrm{Ip}_{\mathrm{Ip}}$	0.8 p 0.8 p
$\frac{1}{2}$	2\%	$10 \Omega-1 M \Omega$	E24	3.5p	3p
$\frac{1}{8}$	10\%	$1 \Omega-3.9 \Omega$	E12	$1 p$	0.8 p
$\frac{1}{8}$	5\%	4.7 -1M Ω	E12	Ip	0.8 p
4	10\%	$1 \Omega-10 \Omega$	E12	${ }^{6 p}$	5.5 p

DEVELOPMENT PACK

0.5 watt 5% Iskra resistors 5 off each value 4.7Ω to $1 \mathrm{M} \Omega$.

E12 pack 325 resistors $£ 2.40$. E24 pack 650 resistors $£ 4.70$

POTENTIOMETERS

Carbon track $5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$, log or linear $\left(\log \frac{1}{4} \mathrm{~W}\right.$, lin $\frac{1}{2} W$).
Single, 12 p . Dual gang (stereo), 40 p . Single D.P. switch, 24p.

SKELETON PRESET POTENTIOMETERS

Linear: 100, 250, 500Ω and decades to $5 \mathrm{M} \Omega$. Horizontal or vertical P.C. mounting 0. 1 matrix)

TRANSISTORS										
AC107	15p	AFI26	20p	BFl\| 15	25p	OC42	12p	2N3707	12p	
AC126	12p	AFI39	32p	BFI73	20p	OC44	12p	2N3708	10p	
AC. 127	15p	AFI78	32p	BFI77	28p	OC45	12p	2N3709	$11 p$	
ACl28	15p	AFI80	40p	BFI78	32p	OC70	12p	2N3710	$11 p$	
ACl31	12p	AFI81	40p	BF179	32p	OC71	12p	2N3711	$11 p$	
AC132	12p	BC107	12p	BF180	32p	OC72	12p	2N3819	32p	
ACI76	15p	BC108	12p	BFI81	32p	OC81	12p	2N4062	12p	
AC 187	22p	BC109	12 p	BF194	14p	OC82D	12 p	2N4286	20p	
AC188	22p	BC147	12p	BFI95	14p	2N2646	60 p	2N4289	20p	
ADI40	50p	BC148	12p	BF197	15p	2N2904	20p	40360	35p	
ADI49		BC149	12p	BF200	32p	2N2926	10 p	40361	35p	
ADI61		BC157	14p	BF750	20p	2N3054	58p	40362	40p	
AD162		BC158	14p	BF751	20p	2N3055	60p	40408	40p	
AFll 4		BC159	14p	BF752	20p	2N3702	13p	ZTX108	15 p	
AFII 5		BC187	22p	BU7105	225p	2N3703	12p	ZTX300	$15 p$	
AFII6		BD131	75p	OC26	45p	2N3704	13p	ZTX302	20 p	
AFII7		BD132	75p	OC28	50p	2N3705	12p	ZTX500	15p	
AFII8	38p	BDI33	75p	OC35	50p	2N3706	IIp	ZTX503	20p	
ZENER DIODES					WIRE WOUND POTS $3 \mathrm{~W}, 10,25,50 \Omega$ and decades to $100 \mathrm{k} \Omega, 35 \mathrm{p}$.					
DIODES										
RECTIF								SIG		
BY127		1250 V		IA				OA8		7p
BZYIO		800 V		6A				OA90		5p
BZil3		200 V		6A				OA9		5 P
IN400\|		50 V		IA		p		OA2		7p
IN 4004		400 V		1 A		p		IN41		5p
- N4007		-1000V		IA				BAll		8p
BRUSHED ALUMINIUM PANELS$12 \mathrm{in} \times 6 \mathrm{in}, 25 \mathrm{p} ; 12 \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}, 10 \mathrm{p} ; 9 \mathrm{in} \times 2 \mathrm{in}, 7 \mathrm{p}$							THERMISTORS			
								$1055 S$		15p
SLIDER POTENTIOMETERS										$\begin{array}{r} 15 p \\ 61.35 \end{array}$
$86 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}$, length of track 59 mm . SINGLE IOK, 25 K , IOOK log. or lin. 40p.										
DUAL GANG, IOK + loK etc. log. or lin. 60p. KNOB FOR ABOVE, 12 p . FRONT PANEL, 65p.							THY	RISTO		
								506050	0.8A	30p
18 Gauge panel 12 in $\times 4$ in with slots cut for use with								5064200	0.8A	47p
slider pots. Grey or matt black finish complete								F 50V		40p
with fixings for 4 pots.							10	D 400 V	4A	55p

MULLARD POLYESTER CAPACITORS C296 SERIES

$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{p} .0 .0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}$.022 μ F, $0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{~F}, 6 \mathrm{p} .0 .22 \mu \mathrm{~F}, 7 \frac{1}{2} \mathrm{p} .0 .33 \mu \mathrm{~F}, 11 \mathrm{p}$.
$160 V: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0 . \mathrm{C} 68 \mu \mathrm{~F}, \quad 3 \mathrm{p} .1 \mu \mathrm{~F}, 33 \mathrm{p} .0 .15 \mu \mathrm{~F}$, $4 \frac{1}{2}$ p. $0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p} .0 .47 \mu \mathrm{~F}, 73 \mathrm{p} .0 .68 \mu \mathrm{~F}$, $11 \mathrm{p} .1 .0 \mu \mathrm{~F}, 13 \mathrm{p}$.
MULLARD POLYESTER CAPACITORS C280 SERIES
50V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F},-0.068 \mu \mathrm{~F}, 31 \mathrm{p}$ $0.1 \mu \mathrm{~F}, 4 \mathrm{p}$. $0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5$ p. $0.33 \mu \mathrm{~F}, 6 \frac{1}{2}$ p. $0.47 \mu \mathrm{~F}, 83$ p. $0.68 \mu \mathrm{~F}$, 11 p. $1.0 \mu \mathrm{~F}, 13 \mathrm{p}$.5 F , 20p. $2 \cdot 2 \mu \mathrm{~F}, 24 \mathrm{p}$.
MYLAR FILM CAPACITORS 100 V
$0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}$, $2 \ddagger \mathrm{p} .0 .04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p}$.

CERAMIC DISC CAPACITORS

ELECTROLYTIC CAPACITORS—MULLARD OI5/6/7
$(\mu \mathrm{F} / \mathrm{V}) 1 / 63,1 \cdot 5 / 63,2 \cdot 2 / 63,3 \cdot 3 / 63,4 \cdot 7 / 63,6 \cdot 8 / 40,6 \cdot 8 / 63,10 / 25,10 / 63,15 / 16,15 / 40,15 / 63$,

 $1000 / 16,1500 / 10,2200 / 6 \cdot 3,18 \mathrm{p} .330 / 63,680 / 40,1000 / 25,1500 / 16,2200 / 10,3300 / 6 \cdot 3$, 4700/4, 21p.

LARGE (CAN) ELECTROLYTICS

 HIGH ${ }^{2500 \mu \mathrm{~F}} 50 \mathrm{~V}$ 58p , ${ }^{3200 \mu \mathrm{~F}} 16 \mathrm{~V} 50 \mathrm{p}$. $5000 \mu \mathrm{~F} 50 \mathrm{~V}$ fi.10 HIGH VOLTAGE TUBULAR CAPACITORS— 1,000 VOLT $0.01 \mu \mathrm{~F} \quad 10 \mathrm{p}$
0.047 pF 13 p POLYSTYRENE CAPACITORS $160 \mathrm{~V} \quad 22 \%$ 10pF to 1,000pF EI2 Series Values, 4p each.

SMOKE AND COMBUSTIBLE GAS DETECTOR-GDI

The GDI is the world's first semiconductor that can convert a concentration of gas or smoke into an electrical signal. The sensor decreases its electrical resistance when it absorbs deoxidizing or combustible gases such as hydrogen, carbon monoxide, methane, propane, alcohol, North Sea gas, as well as carbon-dust containing air or smoke. This decrease is usually large enough to be utilized without amplification. Full details and circuits are supplied with each detector.
Detector GDI, \&2. Kit of parts for detectors including GDI and P.C. board but excluding case. Mais

PRINTED BOARD MARKER

97p
and immerse the board in the etchant. On removal the circuit remains in high relief.

LARGE RANGE ITT/TEXAS IC'S NOW IN STOCK

WW- 045 FOR FURTHER DETAILS

Walter Scott Industries

7 Segment Indicator TTL Compatible

90 p
(polus V.A.T. \& post \& packing)

One-offmanship praised ata Sportscomplex in Lancashire
SNS Solved the complex problems of supplying the necessary facilities

JNS

Setting NewStandards

In Service to Distributors and Installers

Barr\&Stroud ActiveFilterModules

If you need high-pass, low-pass, band-pass or band-stop filtering, our EF-series active modules have a lot to offer. They're all solid-state, compact and lightweight, and your own external components are used for tuning and response selection. No wonder they're being used by more and more design engineers every day. Complete details appear in Pamphlets 1672 and 1700 : ask for your copies today.
EF10 Series-low pass, response down to d.c., 1 Hz 30 kHz cut-off, $12-36 \mathrm{~dB} /$ octave stop-band attenuation EF20 Series-high pass. response up to $1 \mathrm{MHz}, 1 \mathrm{~Hz}$ 30 kHz cut-off, 12-36dB/ octave stop-band attenuation EF40 and EF41 Universal -band-pass and band-stop with centre frequencies 0.1 Hz to 10 kHz -band-pass Q up to 200-band-stop Q up to 10 . Supplementary operation in low-pass, high-pass and all-pass delay modes.

BARR \& STROUD LIMITED
Anniesland, Glasgow G13 1 HZ Tel: 041-954 9601 Telex: 778114 1 Pall Mall East, London SW1Y 5AU Tel: 01-930 1541 Telex: 261877
WW-048 FOR FURTHER DETAILS

Amps-Volts-Ohms db's-Transistor Test

In fact the meter you need for general laboratory bench or field use can be found in our range of Multimeters. All are competitively priced and include unique technical features.
Deliveries are currently exstock.
For full details send for our new brochure.

COSMOCORD
Cosmocord Lid Eleanor Cross Road, Waltham Cross, Hertfordshire. Telephone: Waltham Cross 27331

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD,W.C. 1 Phone: 01/837/7937

One－offmanship

 succeeds again at aNight club in EssexSNS willentertain and solveall the problems you may have

管
Monitoring and line testing panel 6 Channel Stage Mixer with selected Reverb
䠓 Microphone and input group balancing panel
． 40 watt Paging Mixer Amplifier
－Automatic 8 track cartridge player
E Loudspeaker outout Group Selector
竪 2×100 watt Stage Power Amplifiers

JNS

Setting NewStandards

In Service to Distributors and Installers

Superstars
 HIGH-PERFORMANCE MF-HF RECEIVERS for * P \& T Stations * Civil Aviation Networks * Maritime Mobile Service

High-grade receiver designs with a choice of tuning wide enough to span the whole world of MF-HF communications.

Here is simply unbeatable performance. Outstanding frequency stability. Unyielding front-end protection. Unrivalled AGC. Plus exceptional dynamic rànge and blocking characteristics. From this great twosome:

R551 Selection of continuously variable or full frequency synthesis tuning $15 \mathrm{kHz}-30 \mathrm{MHz}$. Supplied to leading P\& T authorities. Type approved by British Ministry of $P \& T$ and overseas administrations as a ship's main receiver and in use by major shipping companies.

R499 10 switched channels, $255-525 \mathrm{kHz}$, $1.5-30 \mathrm{MHz}$. Optional filters, BFO and carrier reinsertion to provide any or all of CW, MCW, USB, LSB, ISB and DSB modes with choice of bandwidths and remote control over more than 25 km . In service with P \& T organisations, in civil aviation networks and in coast stations throughout the world.

Redifon Telecommunications Limited Radio Communications Division Broomhill Road London SW18 4JQ Tel: 01-874 7281 Telex: 264029

the new Brandenburg 812 solid state HV module has all the advantages

An Alpha Range stabilised HV supply in modular form - that's our new Model 812. a further example of Brandenburg's specialised design and engineering facilities. It is really compact has exceptional stability. can be 'built-in' or used free starding. is available in positive or negative form, and has front panel mounted controls. Solid state inverters, operating at high frequency into a ferrite cored transformer, provide the required voltage rectified by a conventional Cockroft Walton multiplier. A high stability resistor chain provides feed-back to the comparator amplifier. Send for full details now.

$$
\begin{aligned}
& \text { Input voltage } 28 \mathrm{~V} \text { d.c. } \pm 4 \mathrm{~V} \text {. } \\
& \text { Output voltage } 15 \text { to } 30 \mathrm{kV} \text { d.c. } \\
& \text { Output current } 500 \mu \mathrm{~A} \text {. } \\
& \text { Factory reversible. } \\
& \text { Output ripple }<3 \mathrm{~V} \text {. } \\
& \text { Stability } 40 \text { PPM for } 15 \mathrm{MIN} \text {. }
\end{aligned}
$$

Yet another Brandenburg piece in the high voltage game.

Brandenburg Limited, 939 London Road, Thornton Heath, Surrey CR4 6JE, England. Telephone : 01-689 0441. Telex: 946149. Agents or distributors in most principal countries.

One-offmanship

 acclaimed bya London HospitalSNS diagnosed the installers multiple problems and solved them

SNS

Setting NewStandards
In Service to Distributors and Installers

Our two new ranges of 75 ohm TV distribution cables are now made on an extrusion line unique in Western Europe.

We're one of the most technologically acvanced cable manufacturers, using new techniques to produce TV distribution cables at a consistently high standard to tolerances much closer than previously possible. At very competitive prices.

The two ranges:
Aeraxial Semi Air Spaced Polyethylene dielectric copper taped braided and polythene sheathed television distribution cables. Five cables in the range, with inner conductor sizes from 1.27 mm to 3.05 mm .

Solid Polyethylene dielectric copper taped and polyethylene sheathed television distribution cables. Five cables in the range, with inner conductor sizes from 0.73 mm to 3.65 mm .

Aerialite will specially manufacture TV distribution cables for any special TV application-also, you can make use of the Aerialite free technical advisory service to help you in the selection and application of distribution cables.

For further information, send for Aerialite's new publication giving full technical specifications of the latest range of TV Distribution Cables.

Aerialite Cables Limited, Castle Works,
Stalybridge, Cheshire SK15 2BS. Telephone: 061-338 2223
Cables: Aercables, Stalybridge. The Aerialite Cables Limited: Please send me your brochure

5

 entitled Aerialite Television Distribution Cables.NAME

POSITION

\qquad
ADDRESS

semiconocictors

* Single or Bulk orders *24 hour Service *Ex Stock
Gothic Electronic Components specialists in semiconductor selection and sales B.S. 9000 approved supplier Nember of AFDEC

Orders processed same day. Cash with order + p \& p 30p Ring 021-236 8541 for immediate attention *Prices subject to VAT.

MULLARD

BC107 General Purpose NPN
BC108 General Purpose NPN
BC109 General Purpose NPN
BCY71 General Purpose PNP
BCY72 General Purpose PNP
BF 115 RF Amp
BF 180 RF Amp
BLY33 RF Power
BLY34 RF Power
BS $\times 20$ Mixi Driver
2N706 General Purpose NPN
2N706 General Purpose NPN
2N918 General Purpose NPN
2N3866 RF Power
TAD100 AM Receive

PLESSEY

SL610C RF Amp - voltage gain 10, bandwidth 140 MHz . 50 dB AGC
SL611C RF Amp - voltage gain 20 , bandwidth 100 MHz . 50 dB AGC
SL612C IF Amp - voltage gain 50 , bandwidth 15 MHz ,

SL621C AGC Generator for SSB
SL622C AF Amp + Audio Compression + Sidetone Amp
SL623C AM Detector, AGC Amp, SSB Demodulator
SL630C Microphone/Headphone Amplifier - for use with Microph
SL620C
SL640C Double Balanced Modulators up to 75 MHz
SL641C as above, but low noise and lower power
SL645C Square Law Frequency Doubler, up to 200 MHz input
SL650C Phase Locked Loop
SL414A 3W Audio Amp
SL415A 5W Audio Amp
SP643B Prescalers - $10 / 11,350 \mathrm{MHz}$; MECL II Compatible or TTL +2 resistors
SP646B Prescalers - $10 / 11,200 \mathrm{MHz}$; TTL output
SP647B Prescalers-10/11, 250 MHz ; TTL output

FAIRCHILD

FLV110 LED, red; 1.7 V at 20 mA (other types available
FND70 7 -segment LED numeric display; $1 /{ }^{\prime \prime}$ " digit esembles $1 / 2$
(TO3)
7805 KC 5V Regulator at 1.5 A
7806 KC 6 V Regulator at 1.5 A
7808 KC 8V Regulator at 1.5 A
$7812 \mathrm{KC} \quad 12 \mathrm{~V}$ Regulator at 1.5 A
$7815 \mathrm{KC} \quad 15 \mathrm{~V}$ Regulator at 1.5 A
$7818 \mathrm{KC} \quad 18 \mathrm{~V}$ Regulator at 1.5 A
7824 KC 24V Regulator at 1.5 A
741 Op Amp; available in TO-5/DIL/Minidip 8 -lead DIL

7400PC Quad 2-input NAND
7475PC Quad Latch
7490 PC Decade Counter
74121PC One-Shot Multivibrator
7447PC BCD Decoder/Driver
9368DC 7-segment BCD Decoder/Driver + Latch for FND70
gothíc
Gothic Electronic Components Beacon House, Hampton Street, Birmingham 19.
Tel: 021-236 8541
Telex: 338731

GBran - symbol of Gothic power; purchasing and distribution across the wide field of semiconductors.

One-offmanship

The sound art of giving the customer and installer precisely what they need

SNS AUDIO POWER AMPLIFIER SYSTEMS might be bought off the shelf without systems advice, but it's unlikely. The particular needs of particular people usually demand a rack system unlike any other rack system. SNS are very good at one-off systems.
SNS can fairly claim to have the most comprehensive systems planning capability in the complex world of sound. That capability is backed by wide ranging engineering facilities which can be tailored to individual needs and by supreme electronic packaging. You need plenty of experience and expertise to produce oneoff systems. SNS have built up a first class systems engineering and design team, whose experience and ability are placed at your disposal

Give us your problem!

Place a tick in appropriate box for the facilities you require. We'll send you some interesting details by return.

1 am interested in:
\square Specially designed Power Rack \& Console Systems
Public Address Mixers/Amplifiers Crystal controlled Tuners Tuner Amplifier Systems Radio Microphone Systems
D Distinctive range of specialist Loudspeakers My specialised requirements are

Name
Address
\qquad
SNS Electronics Group, 851 Ringwood Road, Northbourne, Bournemouth, BHH 8 LN ,
Tel: Northbourne (02016) 5331/4.

INS

Setting NewStandards

In Service to Distributors and Installers

DEVONSHIRE STREET, CHELTENHAM, GLOUCESTERSHIRE, ENGLAND. GL50 3LT
WW-058 FOR FURTHER DETALS

Everything you asked for in a VOM -

 for only £26.00EXCLUDING VAT
The new RCA WY 529A "Service Special" VOM features:

- Taut-band meter movement with mirror scale for accuracy. Diode protected against burnout
- High-impact plastic case with recessed panel for rugged handling
- Measures up to 5.000 volts DC without add-on accessories to meet a broader range of servicing needs
- Input polarity reversal switch for DC voltage and current measurements Also reverses battery polarity in ohms function - aids in solid-stat servicing.
- Fuse-mounted on front panel for easy access - protects ohms circuits.
- 3-colour coded panel and mete face for faster indentification
- Convenient 3-to-1-step ranges (VTVM-type)
- One year guarantee

Try the new RCA WV-529A today and see for yourself why we believe it offers the best price/performance combination on the market. For more information on this and other electronic instruments in the range contact
RCA Limited
Sunbury-on-Thames. Middlesex,
England.
Tel: Sunbury-on-Thamies 85511
RB/T
Electronic Components

AMTRON Audio Enthusiast
 These kits have been selected from AMTRON's

 vast range of electronic kits. Each unit comes with all components; instructions, and solder.

UK187 HI-FI QUADRIC STEREO
AMPLIFIER 20+20W.
The UK 187 Hi -Fi Amplifier has an output of 20 W per channel plus a 'quadric' section feeding two groups of speakers, front and rear

UK175 STEREO PREAMPLIFIER WITH TONE CONTROLS
The UK 175 has been specially developed to be used with UK19250W per channel stereo amplifier.

FILTER 12db/OCTAVE
The UK 800 three-way cross-over filter with a 12 db / Octave roil off is a true separation for bass speaker, mid range and tweeter units

THE BIG NAME IN ELECTRONICKITS

Digital Phase Meter
Model 355
10 Hz to 2 MHz

國 Model 350 general purpose phase meter makes accurate phase measurements from $10 \mathrm{~Hz}-2 \mathrm{MHz}$ with 1 mv sensitivity, and provides high input impedance and wide measurement capability. Full resolution of 0.1° is availalble around any phase angle. Measures down to 1 millivolt without preamplifiers and has a 180° switch for greater accuracy in measuring around 180°.

- The Model 351 ($10 \mathrm{~Hz}-2 \mathrm{MHz}$) is a general purpose phase meter which measures balanced circuits such as transmission lines and employs an active RC filter circuit in the phase detector to minimize response time.
? The Model $352(0.5 \mathrm{~Hz}$ to 500 KHz$)$, in addition to being a precision high sensitivity instrument, provides extended low frequency response to 0.5 Hz and uses a 6 pole active RC filter current in the phase detector to minimize response time at low frequencies.
The Model 355 (10 Hz to 2 MHz) Digital Phase Meter is a wideband, high sensitivity instrument which provides automatic digital readout and can be connected directly into computer checkout systems for automatic measurements.
For data specifications delivery and/or quotation apply to

[^1]
Problem created!

ITN wanted to fit a high performance sound mixing desk into a small area located at the rear of a Range Rover.

MANUFACTURERS OF AUDIX LIMITED STANSTED ESSEX CM248HS SOUND SYSTEMS AND TELEPHONE: BISHOP'S STORTFORD 813132 ELECTRONICS (4 lines) (STD 0279)

Electronics of the Space Age
insilis

Present the NOVA \dagger Light Display Kit!!

At long last, the perfect complement to any home entertainment system - The NOVA psychedelic LIGHT SHOW! Take one $24^{\prime \prime} \times 12^{\prime \prime} \times 2 \frac{1}{\prime}^{\prime \prime}$ TEAK veneered cabinet, complete with its OPAL tinted display screen, hang it on a wall or free stand it on a table, plug into a mains outlet and what have you got? - you've got something absolutely UNIQUE - a psychedelic lighting unit that combines an optical display with an electronic frequency splitting unit and yet requiring no physical connection to your hi-fi, radio etc. Produces multicoloured patterns that are SOFT and SOOTHING or WILD and WONDERFUL - depending on the mood of the music being played - areat for PARTIES, SHOP DISPLAYS, or simply for relaxation.

Look at these STAR features:

* Full 3 channel, triac controlled lamps in RED. GREEN and BLUE, with a built in 'SHIMMER' mode for exciting effect.
* ABSOLUTELY no connection between your hi-fi and the display - BUILT-iN microphone picks up any sound within the room and converts it to DANCING LIGHT. (Even speak to it, and it will answer you back).
* GAIN control for setting the sensitivity to any backaround level of sound.
* Kit comes ABSOLUTELY complete down to the last screw - full instructions, pcb. components, wire, bulbs, mike, etc etc etc. All you need is solder and iron and about two to three hours for assembly. Remember XMAS is just around the corner - makes a fabulous gift.
* Price INCLUDES all packing, postage and VAT.
* COMPREHENSIVE after sales service, spares, advice.

Despatch Dept., 12 Grange Road, Romford, Essex RM3 7DU. Ingrebourne 44690,
or send SAE for further details.
LARGER MODELS AVAILABLE FOR DISCOTHEQUES

-Pat Pendina

COSMIC ELECTRONICS - Manufacturers and suppliers of high quality SOUND/LIGHT and SECURITY svstems. Electronic Consultants for Research and Development.
12 GRANGE ROAD, ROMFORD, ESSEX RM3 7DU. INGREBOURNE 44690

cavern elecironics

We have moved to:
94 STRATFORD ROAD, WOLVERTON, MILTON KEYNES, BUCKS. MK12 5LU
$\star \quad \star \quad \star$

RETAIL COUNTER NOW OPEN
Mail Order Service for those who cannot visit us Please send stamp for our Component Lists

WW-067 FOR FURTHER DETAILS

for the professional
contact 01-874 9054 or Telex 923455

LEEVERS-RICH

EQUIPMENT LIMITED

Agents in Scandinavia, Eastern and Western Europe, Middle East, Africa, Australasia and the Far. East.

LEEVERS-RICH EQUIPMENT LIMITED

319 TRINITY ROAD LONDON SW18 3SL
Telephone 018749054 Telex 923455
Cables LEEMAG LONDON

The Dymar Lynx.
 A mobile radiotelephone system so special we put our own name on it.

This Lynx has a pedigree. Since 1964 Dymar has designed and built VHF radiotelephones which have borne some of the most famous names in the industry.
Now we have something special. A complete VHF AM and FM mobile radiotelephone system. It cost $£$ ioo,000 to develop. It's different. It's our own. The name is Dymar. The brand is Lynx.
Lynx mobiles come as local control units. The entire circuitry, space for options and a 5 in elliptical speaker in a single $\cdot \mathrm{I} 5 \mathrm{ft}^{3}$ package. Or as extended control types, when the panel unit demands only $6.75 \times 3.5 \times 2.3$ in of dash space and the transmitter/receiver vanishes into the boot or under a seat.
Selective calling, if specified, is one of the options that gets built-in.
AM sets - I5/20W RF output standardare Low, Home Office, Air, Mid or High band. FM cover Low, Home Office or High at a standard $20 / 25 \mathrm{~W}$. One, six or 10 channel versions are available, with 12.5 kHz or 25 kHz channel spacing.

Before specifying a VHF mobile, check on the rest of the spec. The tough diecast aluminium construction; the clever use of ICs and FETs; the modular approach to sub-assemblies and the accessibility of components; the safety padding; the lot.

It's all in the leaflet Lynx Mobile Communication, and in a series of Data Sheets. Use the Reader Enquiry Service today, or write direct to Dymar.

DTMAT:
the name in radiotelephones
DYMAR ELECTRONICS LIMITED, Colonial Way, Radlett Road, Watford, Herts. WD2 4LA. Tel: Watford 3732 I Telex: 923035. Cables: Dymar Watford.

Purpose-built servo and actuator systems using standard components

Low
Inertia DC moto
McLennan have considerable experience in the solution of actuator and servo problems using synchronous, stepping and D.C. motor techniques as well as solonoid -powered types. An important facet of our skill lies in purpose-designing around standard components for speed and economy of building.

Typical precision gears

The illustration shows a selection of modules from the McLennan standard range which are available as individual items or can be supplied engineered to custom-built systems
Such a system could be complete in itself or form part of your own design.
Typical examples include
Camera positioning: Plotting Devices: Self-steering Systems: Sig-nal-seeking Aerial Drives: Professional Tape Drives: Automated Production Lines.
Stimulation of output position or velocity may be by optical, radio, electrical, mechanical, pneumatic or hydraulic signals

McLennan Engineering Ltd
Control Systems and Components feed up to 3 Servos Kings Road, Crowthorne, Berkshire. Tel: Crowthorne 5757/8.

WW-072 FOR FURTHER DETAILS

QUALIFY TO EARN MORE MONEY na betteriob

Exciting new career opportunities! They're just, waiting to be grasped - in the ever-growing industries of electronics, radio and television. And with ICS behind you, you can soon win the qualifications you need to assure your career success. Win them in your own time, in your own home, by starting an ICS learn-as-you-earn correspondence course now. You get personal, individual attention from really expert and experienced tutors. We teach you the theory, we teach you the practice. Books and components are provided. So is all the assistance, all the backing you need.

We also have a complete range of courses at the ready for people keen to score success in other fields. Whatever qualification you're after, we can help you get it, whether you're pushing ahead where you are or switching to something completely new.

Take your first step now towards a better paid, more assured future. Send for your FREE Careers Guide today.

Take one of these courses

Society of Engineers Graduateship (Electrical Engineering)
C \& G Telecommunications Technicians Certificates
C \& G Electrical Installation Work
C \& G Certificate in Technical Communication Techniques
C \& G Radio Amateurs
MPT General Certificate in Radio Telegraphy
Audio. Radio and TV Engincering \& Servicing
Electronic Engineering Maintenance. Engineering systems Instrumentation \& Control systems
Computer Engincering \& Technology
Electrical Engineering. Installations. Contracting. Appliances Self-build radio courses
or take one of these if your future lies in other lields

GCEO and A Level
Basic foundation for success is a thousand and one careers - recognised by every body All Boards - 64 subjects

Buildiag

Tuition for recognised teclinical
qualifications in all fields.
Builders Quantitis
Carpentry. Joinery
Draughtsmanship

- Quantily Surveyors

Clerk of Works
Heating. Ventilating
Engineering
Theoretical and practical tuition geared
either to mrofessional and technical
examinations or to vocational (non-exam)
courses.
Mechanical. Motor. Diesel. Chemical
Welding
Welding
Refrigeration
Garaghe Managem

Management, Marketing and Business Instruction in the latest proved principies and techniques used in each highly specialised area.

* Personnel
* Administrativ
- Works

Transpor
Business
Induslrial
Saics
Marketing

* Advertising
* Advertising
* Marketing
* Public Relations

Salcs
Business
Computers

- Purchasing
- Bonk-keeping

Work Study
Small Business Owners
Fire Service
Fire Service

* Promotion and Institute of Fire Engineers
Police
* Entrance and Promotion

your key to a

brighter better future
To: International Correspondence Schools, Dept. 234X, Intertext House, Stewarts Road, London, SW8 4UJ.

Name
 Address

Age Occupation

SCOPE3 4DDI

The oscilloscope anyone can use from the word go

It's so easy to use; designed to give you bandwidth and sensitivity, of course, but including those important essentials like simple triggering and trace location.

Write now, or telephone Scopex Instruments Lid. Pixmore Industrial Estate Pixmore Avenue Letchworth. Herts Tel: Letchworth 72771 (STD 04626)

Stable, easy triggering with one control*

Features:-

* Dual trace
* 5% Measuring accuracy
* DC-10MHz banowidth
* Sensitivity to $10 \mathrm{mV} / \mathrm{cm}$
* Sweep-speeds to $1 \mu \mathrm{~S} / \mathrm{cm}$
* Selectable modessingle channel, alternate or chopped
* Lightweight portability

$$
\begin{array}{cl}
\text { Trace locate brings } & \text { *Trigger control selects level } \\
\text { over-deflected traces } & \text { and polarity; simple switch } \\
\text { into centre of screen } & \text { selects int/ext source }
\end{array}
$$

CORTINA Multitester, Universal model. $20 \mathrm{~K} \Omega N-59$ ranges. DC/AC up to 5 A - DC/AC up to 1500 V . - db - 20 to $+66 \Omega 1$ ohms to $100 \mathrm{M} \Omega-\mathrm{MFD}$ 50.000 up to 1 F - Hz 50 up to 5000 Hz . Audio output 1.5 V up to 1500 V Mains input for Ohms range, 30 KV probe available - Complete with leads and carrying case. Guaranteed for one year - Price $£ 15.90$.

MINOR. For the field man, and the service engineer. $20 \mathrm{~K} \Omega / \mathrm{V}$ - 39 ranges. Pocket size £11.80.

ELECTRO. The electrician's meter, with built-in live line tester. $5 \mathrm{~K} \Omega / \mathrm{V}-19$ ranges - 1500 V AC, 1000 V DC - 30 A AC \& DC £16.90.

DINO. High impedance unit for the Research and Development field. $200 \mathrm{~K} \Omega / \mathrm{V}$ - 50 ranges F.E.T. input $£ 23.80$.

2000 SUPER. The professional engineer meter $50 \mathrm{~K} \Omega / \mathrm{V}$ - 52 ranges - Mirror scale. Protected movement. £20. 40.

LITERATURE FROM:

Prices subject to V.A.T.

MODEL 8 MK. V

BEDABP OFELECTRICAL MEASURING INSTRUMENTS
 Industrial and Precision Grade

TO SOLVE YOUR INSTRUMENT PROBLEMS CONTACT

LEDON INSTRUMENTS LTD.

DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER

BRITEC LIMITED, 17 Devonshire Road, London SE23 3EN Tel: 01-699 8844 Telex: 896161

MODEL
U-50DX

USED THROUGHOUT THE WORLD SAMWAS RELIABILITY, VERSATILITY, UNSURPASSED TESTER PERFORMANCE COMES WITH EVERY SANWA PERFORMANCE COMES WITH EVERY SANWA
6 Months Guarantee Excellent Repair'Service MODEL P2B $\quad £ 6.67$ MODEL AT45 $£ 21.52$ MODEL JP5D $\quad £ 8.00$ MODEL 380CE MODEL 360YTR E11.30 MODEL N101 MOOEL U500X E11.43 MODEL 460ED MODEL A303TRD E15.04 MODEL EM800 MODEL K30 THD E17.21 MODEL R1000CB $\begin{array}{llll} & £ 1.30 & \text { M } 29.72 \\ \text { MODEL FBOTRD } & £ 18.73 & \text { MODEL R1000CB } & £ 72.79 \\ & \text { E } 78.27\end{array}$ TO AN ADDITIONAL CHARGE OF 10% FOR VA.T deaflet of these and other specialised San separately. sole hiocilleas w uk. (1)Tili4 ELEGTRONICS LTD. 67-49 HIGH STREET,KIVGSTON-UPON-THAMES, SURREY, KT1 ILP

N-CHANNEL DUAL-GATE MOSFETS FROM STOCK.

MEM 616 series \& MEM 630 series dual gate MOSFETS with gate protection diodes available now. 20p to 29p (100 up).

Another 122 MOSFETS available. Will second source RCA, Motorola, Siliconix, and Texas types at competitive prices.
General Instrument Microelectronics Limited, 57-61 Mortimer Street, London W1N 7TD. Telephone: 01-6362022

Distributors:
Semicomps Ltd. 01-903 3161. Semicomps (Northern) Ltd. Kelso 2366
SDS Components Ltd. Portsmouth 65311. Semiconductor Specialists W. Drayton 46415
Agents in France, Germany, Italy, Belgiurr., Holland, Denmark, Sweden, Norway. Finland, Spain. Austria, Israel.

Designed to meet the requirements of equipment manufacturers. Attractively styled and incorporating several design innovations
Reliable and rugged.
3, 4 and 5 pin to DIN specifications. Crimp or solder terminations.
Your equipment deserves it
Write or phone for full literature

Push pull locking

Push to mate

 and lock
Will not

 accidentally disengage

BFLTING-LET

Belling and Lee Limited,
Components and Interconnection
Systems Division,
Gt. Cambridge Rd., Enfield, Middlesex. Telephone: 01-3635393 Telex: 263265

BEAIISM IN SOUND FOR THE HOME CONSTRUCTOR

During the past 10 years, lpudspeaker technology has advanced to a degree that it is no longer possible for the amateur to design and build a loudspeaker which matches the performance of a high quality commercial product. At one time, building a loudspeaker was simply putting a full range drive unit in a box of suitable size and shape. By present-day standards, a full range loudspeaker drive unit can no longer be considered in the high fidelity class.

The high fidelity loudspeaker started with the introduction of two-way systems, comprising bass and high-frequency drivers, and a simple frequency-dividing network. The dividing network was generally a coil in series with the bass driver, and a capacitor in series with the high-frequency driver. Although little attempt was made to ensure crossover at the best point in the frequency range, or the integration in respect of sensitivity, this was a considerable improvement over most single drive unit loudspeakers. It became apparent later, however, that the weaknesses of the single drive unit loudspeaker were still inherent to a degree in the two-unit system in respect of adequate frequency coverage. The relatively large and heavy diaphragm required for satisfactory bass response produces a poor performance above 1 kHz , and a high-frequency unit designed to have a satisfactory response to $15 / 20 \mathrm{kHz}$ is unsatisfactory below 3 kHz . Most large bass drivers have a high-frequency resonance between 1 kHz and 2 kHz . The low-frequency resonance of high-frequency drivers is between 1 kHz and 3 kHz . These resonances produce transient colouration and an irregular response characteristic in the most important part of the total frequency spectrum. Optimum performance requirements thus necessitate the use of three or more drive units together with a sophisticated frequency dividing and integrating networks.

At the time of the introduction of multi-unit systems (between 1960 and 1965) drive unit design had not developed sufficiently to make it possible to produce a loudspeaker system covering the whole frequency range from 40 Hz to 20 kHz with a satisfactory angle of radiation using three drive units, and four-unit systems were common. Frequency crossover points were approximately $500 \mathrm{~Hz}, 4 \mathrm{kHz}$ and 10 kHz . With the introduction of the dome high-frequency driver and improvements in the mid-range driver, it is now possible to produce a three-unit system having a better performance than the four-unit system, using crossover frequencies of approximately 500 Hz and 5 kHz .
Drive unit design has now reached a very advanced state. The response characteristic obtainable is virtually flat over the desired range, in that the small variations, as measured, cannot be detected by any form of listening test. The greatest advance in recent years, however, has been the elimination of transient colouration due to standing waves on the diaphragm. Recent drivers have been designed on the concept of a transmission line to ensure perfect matching from the driving force at the coil to the terminating surround, thereby eliminating the source of termination reflections.
Recent further research by Arthur Radford has shown that the colouration which still exists in the finest forward facing (90° angle radiation) loudspeakers is due to standing wave generation between the radiation boundaries. It can be demonstrated that transient colouration is a function of the radiation angle at mid-and high-frequencies, and the wider the radiation angle the greater is the realism.

Components and designs are available for constructing loudspeakers from a small forward radiating loudspeaker to a 360° direct radiating (4 high-frequency drivers, 4 mid-range drivers, and 2-12' bass drivers coupled to an acoustic line) system.

You can now build a complete loudspeaker of your own styling which will outperform any commercial loudspeaker within its classification. Write for further details to :- Dept. W.W.

RADFORD ACOUSTICS LTD Bristol BS3 2HZ

If you want the Cambridge Pot. phone Dover 202620

That's the 'phone number of Sullivan, manufacturers of the original Cambridge workshop pot that's designed for the testing and calibration of thermocouples and associated indicators and controllers.
It's completely portable. And now, fitted with the 3334 solid state dc detector, its rugged construction coupled with its ability to maintain its accuracy, makes it a must for either workshop or laboratory. And it weighs just 6.12 kg . You'll find the price is really competitive too.

Get in touch today for further detailed specification. Just telephone the number above or write to the address below.

Qulinan

H. W. Sullivan Limited, Dover, Kent. Tel: Dover (STD 0304) 202620 Telex: 96283

Thorn Measurement Control $\frac{1}{\text { moma }}$ and Automation Division.

604E DUPLEX Loudspeaker

SPECIFICATIONS

Type:
Power:
Freauency Response
Pressure Sonsitivity
Impedance:
Normal LF Cone Resonance
Voice Coil Diameters: Horizontal Distribution Vertical Distribution:
Magnets -
Tvpe:
Weight
Weicht:
Structure:
Weight:
\qquad
Flux
Crossover Network
Torminals:
Mounting Data
Weight
Finish:
Accessories

Duplex loudspeaker
35 watts (50 watts peak)
From 20 to $20,000 ~ H z$
From 20 to $20,000 \mathrm{~Hz}$
101 dB SPL at 4 feet from 1 watt or 116.4 dB SPL at 4 feet
from 35 watts
Desioned to operate from 8 ohms or 16 ohems
$25 \mathrm{H}_{2}$
$25 \mathrm{~Hz}_{2}$
(LF) 3 inches. (HF) 1 寻 inches
90°
40°
Alsico V
(LF) 4.4 pounds. (HF) 1.2 pounds
(LF) 20.31 pounds
(HF) 6.5 pounds
(LF) 13.000 Gauss. (HF) 15.500 Gauss
$1,500 \mathrm{~Hz}$ dual full-section (furnished with speaker)
Bindina
Binding post (4)
$15-5 / 16$ inches
Baffle opening - $13-3 / 4$ inches. Mta. Bolt. Cntrs. - 14-6/16
inches. (8 . eoually spaced at 45°). Depth - $11-1 / 8$ inches 34 pounds (including network)
White and grey
ALTEC 100A Bass Eneraizer

ACOUSTICO ENTERPRISES
LTD

We believe the finest instrument case in the country

 beATS ALL COMPETITORS FOR PRICE AND STRENGTHSIZES
$5^{\prime \prime} \times 3{ }^{\prime \prime} \times 1 \frac{1}{2}{ }^{\prime \prime}$
PRICE
$6^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime} \quad £ 1.30$
$9^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime} \quad £ 1.50$
$8^{\prime \prime} \times 5 \frac{1}{2}^{\prime \prime} \times 5^{\prime \prime}$
£2.20

TRADE PRICES ON APPLICATION
fibreglass press moulded in grey, supplied with 4 rubber feet, 18 SWg alloy chassis. 16 SWG alloy front panel. front panel has protective film for marking out and protection. the case has two SETS OF RUNNERS MOULDED IN WHICH WILL TAKE ALLOY OR P.C. bOARD ChASSIS. SAME DAY OFF-THE-ShELF delivery. panel punching available on 100 up. trade and quantity discounts on request.
V.A.T. ADD 10% ON TOTAL ORDER + POST AND PACKING 25p. CASH WITH ORDER. N.B. $5^{\prime \prime} \times 3^{\prime \prime} \times 1 \frac{1}{2}{ }^{\prime \prime}$ NO FEET OR CHASSIS.

E.R.NICHOLLS,

46 Lowfield Road, Stockport, Cheshire. Tel: 061-480 2179

J E S AUDIO INSTRUMENTATION

Si451 £35.00
Comprehensive Millivoltmeter
20 ranges prices plus VAT
J. E. SUGDEN \& CO., LTD. Tei. Cleckheaton (09762) 2501 CARR STREET, CLECKHEATON, YORKSHIRE.

WW- 083 FOR FURTHER DETAILS

INTERLAB ${ }^{\circ}$ Type D10
 Distortion Meter

A compact instrument for measuring total harmonic distortion down to
0.1% or less, in the range 10 Hz to 100 kHz . Input acceptance level is
200 mV to $5 \mathrm{~V} \mathrm{rms}$. . Distortion range 0.3% FSD to 10% FSD in 4 ranges.
Input impedance $10 \mathrm{k} \Omega$. Fundamental rejection better than 10,000:1.
Intrinsic distortion less than 0.05%. Together with the Interlab SQ10
Sine/Square Oscillator, the D10 provides a highly economical audio
frequency distortion measuring set. Also available ex-stock from
Authorised Distributors-1.T.T. Electronic Services, Harlow. INTERLAB
range includes also a Pulse Generator and a Frequency Meter.
4
LYONS INSTRUMENTS
Lyons Instfuments Limited
Hoddesdon, Herts EN119DX Tel: 67161 A Claude Lyons Company

TPASEMESTD integrated ciacuit pourer amplifiar

TPA 50 -D Specification
Power Output , 100 watts rms into 4 ohms
Freq Response
Total harmonic distortion
Input sensitivity
Noise
Rise time 65 watts rms in to 15 ohms $\pm 0.1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 KHz into 15 ohms. -1 dB at 150 KHz Less than 0.04% at all levels up to 50 watts rms into 15 ohms 0 dB to 100 mV -100dB

Price 2 u seconds £53 plus V. A.T.
100 V Line (C.T.) and balanced inputs available.
For full technical information contact:
hilhelectronc
CAMBRIDGE ROAD, MILTON, CANBB
TELEPHONE CAMBRIDGE 65945/6/7

TWO NEW SOLDER SIPPERS MAKE DESOLDERING QUICK \& EASY

Longs Ltd.
Hanworth Lane Trading Estate Chertsey Surrey KT169LZ.

Maxi-Super HT 1810 and Maxi-Mini HT 1800

Solder Sippers

Designed for use when working or re-working P.C. Boards. Permits removal of molten solder from Multi-leg components, enabling easy extraction. The solder is 'sipped' through the nozzle, and automatically.ejected when the instrument is next used. A Swiss precision instrument manufactured to a high degree of accuracy.
The anti-corrosive outside casing has a knurled finish for more positive grip, and encases plated internal parts.
The Maxi-Super has been designed with a 3.5 kg . spring action recoilless plunger, whilst the Maxi-Mini with its conveniently shaped operating button, has a 2.5 kg . spring action plunger, protected by a channel guard. Both models have been designed with an easy-to-replace 'dupont' teflon screw-in nozzle.

NEW STANDARD CASES from OLSON

NEW SERVICE FROM STOCK - despatched by return of post

TYPE	WIDTH	HEIGHT	DEPTH	FRONT PAN DIM.	PRICE	LEGEXTRA
21	$6 \frac{1}{2}{ }^{\prime \prime}$	$4 \frac{1}{2}{ }^{\prime \prime}$	$4 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$	$6^{\prime \prime} \times 4^{\prime \prime}$	$£ 2.65$	$60 p$
22	$8 \frac{1}{2}^{\prime \prime}$	$5 \frac{1}{2}{ }^{\prime \prime}$	$5 \frac{1}{2}{ }^{\prime \prime}$	$8^{\prime \prime} \times 5^{\prime \prime}$	$£ 3.00$	$60 p$
23	$10 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$	$6 \frac{1}{2}{ }^{\prime \prime}$	$6 \frac{1}{2}{ }^{\prime \prime}$	$10^{\prime \prime} \times 6^{\prime \prime}$	$£ 3.60$	$65 p$
24	$12 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$	$7 \frac{1}{2}^{\prime \prime}$	$7 \frac{1}{2}{ }^{\prime \prime}$	$12^{\prime \prime} \times 7^{\prime \prime}$	$£ 3.90$	$65 p$

Cases made from 20swg. zinc coated m / s. Front \& rear panels 16 swg. aluminium. Cases finished in Olive green hammertone with front panels in light straw shade 384. All cases fitted with ventilated rear panels and a very attractive chrome plated retractable leg can be fitted as an optional extra.

Our Trade Counter is open for personal callers from 9 a.m. to 5.30 p.m. Monday-Friday

Gillthe best roverormoney The D67 Dual-Trace 25MHz Osciloscope

DC-25MHz at $10 \mathrm{mV} /$ div

Vertical signal delay
Delaying sweep
3\% measuring accuracy
TV frame or line triggeringLarge, bright $8 \times 10 \mathrm{~cm}$ mesh CRT
\square Weight 25 Ib

At only $£ 295^{*}$ the D67 continues to offer the low-cost/high-performance value expected of Telequiprient. This all solid-state, dual-trace portable instrument features so many charms it has to be used to be believed. For example, the dual-trace vertical system displays either channel separately, adds channels algebraically, alternates between channels or chops between channels: The design includes regulated power supplies and FET input circuits which provide minimum drift and fast stabilisation time - and that means accuracy!
Yol must agree with the thousands of present users that the D67 is the ideal choice and not just anather 25 MHz oscilloscope ?

Be first in the queue! Write or telephone now for full specification and demonstration.

Wireless World

Electronics, Television, Radio, Audio

November 1973
Volume 79 Number 1457

This month's cover picture shows the sealing in of the "works" of a digital wristwatch, including a Monsanto l.e.d. display seen as the dark rectangle in the middle.

In our next issue

(publication date November 19)
Active filters used with loudspeakers can provide greater flexibility and overcome inherent disadvantages of the passive crossover network.
Using opto-couplers. An investigation into the noise behaviour of these devices used in conjunction with transistors.

Contents

523 Integrated Circuits in the U.K.
524 Model Railway Control System by P. Cowan
528 News of the Month
"Donald Duck" eliminators
Largest solid-state image sensor
Component tester for relay systems
529 Multi-flash Trigger Unit by R. Lewis
532 Letters to the Editor
Hi-fi equipment standards
Using c.m.o.s. devices
Radiating coaxial cables
535 Dual-polarity Digital Voltmeter - 2 by A. J. Ewins
540 November Meetings
541 Entertainment Electronics at Berlin
545 Audio Fair Preview
547 An Automatic Noise Limiter by P. Hinch
548 Sound Recorder uses P.C.M.
550 World of Amateur Radio
551 Tuners and Tuner Amplifiers by Basil Lane
557 Circards - 11: Basic logic circuits by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams

559 H.F. Predictions
560 Circuit Ideas
Adjustable current regulator
Deflection amplifier
Simulating electrolytics
561 10-2 Metre Amateur Transverter by D. R. Bowman
566 Sixty Years Ago
567 Linear Voltage-controlled Oscillator by J. L. Linsley Hood
569 Books Received
570 Which Way does Current Flow? by "Cathode Ray"
571 New Products
A116 APPOINTMENTS VACANT
A142 INDEX TO ADVERTISERS

[^2]
MORE CERAMIC TRIODES IN OUR RANGE. MORE POWER RATING CHOICE.

> EEV ceramic triodes for industrial
> heating applications range from $5 \mathrm{~kW}-500 \mathrm{~kW}$.We make the triode you want. In glazed ceramics.

The bigger the range, the closer you can get to the precise power ratings you need.

EEV make the widest range of ceramic power triodes for industrial r.f. heating applicationsfrom 5 kW right through to 500 kW .

Every tube is conservatively rated and realistically designed to ensure long and reliable service.

For industrial power triodes, you can depend on the makers who were in at the beginning - and have been the pacesetters ever since.

We shall be pleased to advise you on the most economical - and effective - tubes for your equipment. Write for details, or if you have a specific enquiry telephone our power triode engineers at Chelmsford.

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor: PHILIP DARRINGTON

Technical Editor:
GEOFFREY SHORTER, B.Sc.

Assistant Editors:
BILL ANDERTON, B.Sc.
BASIL LANE

Drawing Office:

LEONARD H. DARRAH

Production:

D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)

Phone 01-261 8339
KEITH NEWTON
Phone 01-261 8515
A. PETERS (Classified Advertisements)

Phone 01-261 8508 or 01-928 4597

Integrated Circuits in the U.K.

About six years ago we took a look at the British integrated circuits industry (Leader, Dec. 1967) and declared that 1968 may well be remembered as the year in which "the British electronics industry finally kept its national identity or became predominantly American controlled". This of course referred to control of equipment design through control of the design and marketing of integrated circuits. In fact there was not a particular critical year in which everything happened, but since 1968 we have seen the American and other foreign companies progressively increasing their hold over the U.K. integrated circuits market, until now the British i.c. manufacturers jointly have only 10-15 per cent of the market. In 1968 there were six wholly Britishowned i.c. firms in operation; now there are only three, Ferranti, G.E.C. and Plessey. The greater part of the i.cs used by British equipment manufacturers is imported from about 18 American companies (led by Texas, Motorola, Fairchild, National Semiconductor and Signetics) and four European owned companies (the Philips group which has Mullard in the U.K. Valvo in Germany and R.T.C. in France - and Siemens, SGS-ATES and SESCOSEM).

What happened after 1968 was a period of over-production of i.cs and a worldwide price war, resulting from the 1970-71 depression in trade, which caused the prices of i.cs to fall from pounds to pence. The British firms were unable to compete and only the large American companies were able to sustain the low prices. The duplication of effort on such things as the 7400 series of devices did not help matters.

There was one development after 1968, however, which we hinted would help the British i.c. industry and which did in fact take place. This was the increase in demand from equipment manufacturers for special i.cs, tailor-made for particular applications - as distinct from "off-the-shelf" devices. This type of product requires close cooperation between the i.c. and equipment makers, and in Britain this obviously works best when both parties are British, since discussions on whether to manufacture the i.cs do not have to be referred back to headquarters in some other country. It is for this kind of operation that the Government, through the D.T.I., is helping financially to support a research and development programme - up to $£ 10 \mathrm{~m}$ spread over 6-7 years. There may be additional, but probably smaller, support from the Ministry of Defence.
The trouble is that this kind of money will not go very far in present conditions. Such is the rate at which integrated circuit technology is changing - complete new classes of device appearing every few months - that any manufacturer needs a continuous injection of money into research and development just in order to stay in the race, let alone moving ahead of his competitors.

Now that we are in the Common Market it may seem inappropriate to show concern for the fate of a particular industry in a particular country: after all, we are all Europeans now. But the fact remains that our national standard of living still depends on the performance of our national manufacturing industries. Maybe we can still live by exporting woollen goods and Scotch whisky, but to neglect the huge potertialities of the world electronics market - which is expected to reach an annual $£ 40,000 \mathrm{~m}$ by about 1980 - is one way of helping the British to become what has already been suggested. "the peasants of Europe".

A two-rail layout fitted with working whistle, speed control and coach interior illumination.

by P. Cowan

The system of model train control to be described is such that any chosen function does not interact with nor is dependent on any other function. No interconnections of rolling stock are necessary. High frequency a.c. is not used, removing problems in connection with interference. All commands are operable from a trackside controller and no sequential actions are necessary.

The system uses d.c. levels for each function and in the case of the locomotive the level is switched with deliberately slow ($0.2-0.5 \mathrm{~ms}$) rising and falling edges at 100 Hz , each piece of rolling-stock and the locomotive being fitted with a simple "level sensor". The "inertia" of the system is such that the slow rising and falling edges are not evident in practice except in that they remove interference with other apparatus - a problem which is evident when high frequency a.c. is applied to a model railway layout. The use of d.c. levels enables quite high powers to be transmitted down the rails without having to resort to tuned filters and/or large capacitors. The circuits are also easy to make and set up.

Fig. 1 shows a typical train movement. Here. the whistle is allocated 3 V , the lights 6 V and the locomotive 12 V . Init ially, with a complete train at rest and all functions off at $T=0$, the whistle is sounded (a). At (b) the train moves off slowly with whistle still on and at (c) the whistle is turned off and the train continues moving forward slowly. At (d) the driver turns on the coach lights (the train still moving forward slowly), at (e) the whistle is sounded, coach lights are on and the train is picking up speed. At (f) the whistle is off, the locomotive and train are coasting, leaving only the lights turned on.

In practice it is better to arrange for the "voltage separation per function" to increase with increasing current demand from the train to make an allowance for volts dropped down the rails as the train moves away from the power connection point. The system described has worked without trouble on a Club layout 35 feet by 10 feet, including several points and crossovers with attendant contacts.

The power diagram in Fig. 2 shows how the voltage separation per function is arranged in the practical controller cir-

cuit and details of each function's operating voltage. It can be seen that each function operates over a particular range of voltage about a correct voltage level, allowing for volts dropped down the rails and, within limits, keeping the system in sync. For example, the whistle operates at 19.5 V when blown with the loco running but will still work correctly down to 16 V , giving 3.5 V safety margin. Fig. 2 also shows the voltage levels that each sensor must accept; and those that are to be rejected, together with details of the output current that the controller must supply.

Circuit description

Power supply (controller). Unregulated d.c. is derived from the a.c. mains by the transformer, the bridge rectifier and C_{1} in Fig.3. Transistors $\operatorname{Tr}_{11}, \operatorname{Tr}_{12}, T r_{9}$ and $T r_{10}$, D_{2-4} and Z_{3-6} form a simple regulator of output voltage according to the selected diodes. C_{9} and C_{10} suppress any tendency to oscillate and C_{\vee} and C_{11} control the rise and fall times of the pulsed supply. A further regulated supply line (12 V) is provided by Z_{1}, R_{3} and C_{2} to power the pulse generator which is made up of $T r_{1-3}$ as a ramp generator, and $T r_{6}$ and $T r_{7}$ as a Schmitt trigger, R_{76} controlling the mark/space ratio at the output. Transistors Tr_{4} and Tr_{5} and their attendant components enable auto-run-up to full speed and auto-rundown to stop to be selected via S_{1} or S_{2} respectively. Components S_{3} and Z_{2} form a "skid" control enabling momentary full power to be applied. A fast overload trip to safeguard the controller and associated circuitry is formed by $T h_{1}, R_{1}$ and R_{75}, D_{1}, L_{2} and R_{32}. The action of overload is indicated by $L p_{2}$. The trip should be set to not less than 5 A by R_{75}. Components

Fig. 1. A complete train movement, showing all functions operating.

Fig. 2. Switching points recognized by the sensors of the whistle (A), the lights (B) and the locomotive motor (C).

R_{80} and R_{82} are delay run up and down adjustments and are fitted to the front panel of the controller as are $S_{1}, S_{2}, S_{3}, S_{4}$, and S_{5}. Switch S_{4} is a a ganged micro-switch and is the whistle on/off. Switch S_{5} is a 3-pole change-over rotary switch operating the lights. Transistor Tr_{12} should be fitted to a heat sink of the standard finned type (6 in \times $4 \frac{1}{2}$ in) with eight $1 \frac{1}{2}$ in longitudinal fins. The resistor R_{9} causes a slight shift in frequency from approximately 100 Hz to 120 Hz as loco power output is increased, which can be used to give diesel locomotives an exhaust rate effect.

Lamps (coach illumination). From Fig. 2 it can be seen that the coach sensor should be able to command "lights on" from 5.5 to 11.5 V . This is accomplished by $T r_{14}, R_{42}, T r_{16}$ and Z_{8}, in Fig. 4, the biasing of T_{14} being set by R_{76}, R_{43}, Z_{7} and R_{4}. Turn off at 11.5 V is done by T_{13}, biased by R_{38}, R_{39} and Z_{17}. Further reference to Fig. 2 shows that lights should be on again at 21.5 V (to maximum voltage of 29.5 V), and this is done by Tr_{15} and R_{43} through biasing components R_{77}, R_{44} and Z_{9}.

Whistle sensing and regulation circuit. This circuit, shown in Fig. 5, is similar in principle to the "lights" circuit, the correct "turn on whistle" voltages being sensed by $T r_{18}$, $T r_{20}, T r_{23}$, and $T r_{26}$ and the "turn off whistle " voltages by $T r_{17}, T r_{22}$ and $T r_{24}$, The regulation of the supply to the "whiste" is achieved by dropping excess voltages across R_{50}, R_{63} and R_{64}. Components
marked with an asterisk may require small adjustments to allow for component tolerances and to achieve the correct turn on and off values as detailed in Fig. 2.

Whistle. The circuit is that of an astable multivibrator with the drive waveform to the whistle suitably "adjusted" to make the sound from the Dictaphone earpiece sound like a "whistle". If an earpiece is unobtainable a 10Ω portable radio earpiece can be used instead.

Locomotion circuit. In this circuit (Fig. 6) care has to be taken to ensure that Tr_{28} and $T r_{31}$ are able to dissipate heat, prefererably through the locomotive chassis.

In practice, about 6 W under full load conditions and 4.5 W nominal are dissipated. The average locomotive chassis is usually more than adequate and is often even painted matt black; Hornby and Trix tender drive locomotives have been modified quite successfully. In the case of the tender drive types the power transistors Tr_{28} and $T r_{31}$ were mounted on the tender chassis with the rest of the circuitry built round the propulsion motor, the whistle and sensor being mounted within the locomotive body. In addition to sensing the locomotion voltage level this circuit has to work with either polarity applied. With positive on the earth rail then $\operatorname{Tr}_{27}{ }_{28}{ }_{28}, 29$, etc are isolated by diodes D_{13} and D_{14}.

Fig. 4. Circuit diagram of the coach lights controller.

Fig. 5. Whistle level sensing and regulation circuit. Components marked with an asterisk may need adjustment to achieve the the correct switching levels.

Component list

Resistors

R_{1}	$0.5 \Omega 5 \mathrm{~W}$	$R_{\text {d2 }}$	100Ω
R_{2}	$470 \Omega 2 \mathrm{~W}$	R_{4}	100 2
R_{3}	$680 \Omega 2 \mathrm{~W}$	R_{14}	(18-27k Ω)
R_{4}	270Ω	R_{4}	$8.2 \mathrm{k} \Omega$
$R_{\text {s }}$	$3.3 \mathrm{M} \Omega$	R_{46}	$1.5 \mathrm{k} \Omega$
R_{6}	10Ω ?	R_{47}	($2.7 \mathrm{k} \Omega \frac{1}{4} \mathrm{~W}$)
R_{7}	100Ω	R_{48}	39,
$R_{\text {g }}$	$180 \mathrm{k} \Omega$	R_{89}	$2.2 \mathrm{k} \Omega$
R_{9}	$2.2 \mathrm{M} \Omega$	$R_{\text {s0 }}$	$100 \Omega \frac{1}{2} \mathrm{~W}$
R_{10}	$1.8 \mathrm{k} \Omega$	R_{51}	$2.2 \mathrm{k} \Omega$
R_{11}	$22 \mathrm{k} \Omega$	R_{52}	(470 $\left.2 \frac{1}{2} \mathrm{~W}\right)$
R_{12}	$1 \mathrm{k} \Omega$	R_{53}	$3.9 \mathrm{k} \Omega$
R_{13}	10Ω	$R_{\text {St }}$	$2.2 \mathrm{k} \Omega$
R_{1+}	$1 \mathrm{k} \Omega$	$R_{\text {s }}$	10Ω "DICTAPHONE" earpiece
R_{15}	$2.2 \mathrm{k} \Omega$	R_{56}	(1kS)
R_{16}	$47 \mathrm{k} \Omega$	R^{37}	270Ω
R_{17}	$1 \mathrm{k} \Omega$	$R_{\text {sy }}$	680Ω
R_{18}	$2.2 \mathrm{k} \Omega$	$R_{\text {s, }}$	$1.5 \mathrm{k} \Omega$
R_{19}	$47 \mathrm{k} \Omega$	R_{60}	680Ω
R_{20}	$1 \mathrm{k} \Omega$	R_{61}	($5.1 \mathrm{k} \Omega$)
R_{21}	10Ω	R_{62}	100Ω
R_{22}	$4.7 \mathrm{k} \Omega$	R_{63}	$150 \Omega \frac{1}{2} \mathrm{~W}$
$R_{2,}$	$1 \mathrm{k} \Omega$	R_{64}	$150 \Omega \frac{1}{2} \mathrm{~W}$
R_{24}	$2.2 \mathrm{k} \Omega$	R_{65}	$10 \mathrm{k} \Omega$
R_{25}	470Ω	R_{66}	$1 \mathrm{k} \Omega \frac{1}{4} \mathrm{~W}$
R_{26}	$27 \mathrm{k} \Omega$	R_{67}	$100 \Omega 2 \mathrm{~W}$
R_{27}	$33 \mathrm{k} \Omega$	R_{68}	47S
R_{28}	$10 \mathrm{k} \Omega$	R_{69}	47Ω
R_{29}	10Ω	R_{70}	47Ω
R_{30}	$4.7 \mathrm{k} \Omega$	R_{71}	47Ω 1000 $2 W$
R_{31}	$10 \mathrm{k} \Omega$	R_{72}	$100 \Omega 2 \mathrm{~W}$
R_{32}	$680 \Omega 2 \mathrm{~W}$	R_{73}	$10 \mathrm{k} \Omega$
R_{33}	$470 \Omega 2 \mathrm{~W}$	R_{74}	$1 \mathrm{k} \Omega \frac{1}{4} \mathrm{~W}$
R^{3+}	470Ω	R_{75}	220Ω pre-set
R_{35}	$1 \mathrm{k} \Omega$	R_{76}	$10 \mathrm{k} \Omega$
R_{36}	100Ω	R_{77}	$2.7 \mathrm{k} \Omega \mathrm{W}$
$R_{3}{ }^{\text {? }}$	100Ω	R_{78}	$5 \mathrm{k} \Omega, 3 \mathrm{~W}$ lin
R_{38}	10k Ω	R_{79}	500Ω pre-set
R_{39}	(5.6-10k Ω)	R_{80}	$470 \mathrm{k} \Omega$ pre-set
R_{40}	$39 \mathrm{k} \Omega$	$R_{\text {s }}$	500Ω pre-set
R_{40}	$39 \mathrm{k} \Omega$	R_{81}	500Ω pre-set
R_{4}	$4.7 \mathrm{k} \Omega$	R_{82}	$470 \mathrm{k} \Omega$ pre-set

All resistors are $\frac{1}{8} \mathrm{~W}$, unless otherwise indicated. The values of those in brackets may need adjustment, as mentioned in the text.

Capacitors

C_{1}	$\begin{aligned} & 6,600 \mu \mathrm{~F}, 50 \mathrm{~V} \\ & 4 \mathrm{~A} \text { ripple } \end{aligned}$	C_{11}	$10 \mu \mathrm{~F} 6 \mathrm{~V}$
C_{2}	$50 \mu \mathrm{~F} 15 \mathrm{~V}$	C_{12}	$50 \mu \mathrm{~F} 6.4 \mathrm{~V}$
C_{3}	$2 \mu \mathrm{~F}$ tantalum 12 V	C_{13}	$320 \mu \mathrm{~F} 6 \mathrm{~V}$
C_{4}	220 nf	C_{14}	220 nF tantalum 12 V
C	$100 \mu \mathrm{~F} 12 \mathrm{~V}$	C_{15}	100 nF
C_{6}	$100 \mu \mathrm{~F} 12 \mathrm{~V}$	C_{16}	330nF
C	$10 \sim \mathrm{~F} 12 \mathrm{~V}$	C_{1} :	220 nF tantalum
			12 V
C^{8}	$2 \mu \mathrm{~F} 12 \mathrm{~V}$	C_{18}	330 nF
C_{9}	220 nF	C_{19}	10 nF 25 V
C_{10}	100 nF metallized paper		

Diodes	
D_{1}	5D02 (International Rectifier)
D_{2-4}	1N916
D_{5-13}	5 D 02
$D_{14,15}$	30 S 1
D_{16}	5 D 02
Z_{1}	$12 \mathrm{~V}, 1 \mathrm{iW}$
Z_{2}	4 V 7400 mW
Z_{3}	$2-6 \mathrm{~V} 8400 \mathrm{~mW}$
Z_{4}	3 V 400 mW
Z_{5}	5 V 1400 mW
Z_{6}	3 V 3400 mW
Z_{7}	5 V 1400 mW
Z_{8}	5 V 1400 mW
Z_{9}	15 V 400 mW
Z_{10}	6 V 2400 mW
Z_{11}	12 V 400 mW
Z_{12}	11 V 400 mW
Z_{13}	11 V 400 mW
Z_{14}	10 V 400 mW
Z_{15}	10 V 400 mW
Z_{16}	11 V 400 mW
Z_{17}	9 V 1400 mW

Transistors

2N3702, ZTX50

2N3704, ZTX303 $\quad T r_{3}, T r_{5}, T r_{6}, T r_{7}, T r_{8}$,

TIP31A	$\begin{aligned} & \operatorname{Tr}_{33} \\ & \operatorname{Tr}_{9}, \operatorname{Tr}_{11}, \operatorname{Tr}_{16}, \operatorname{Tr}_{28} \\ & \operatorname{Tr}_{29} \end{aligned}$
TIP32A	$\operatorname{Tr}_{31}, \operatorname{Tr}_{32}$.
TIP31, TIP29	Tr ${ }_{14}$
TIS43	Tr ${ }_{2}$
ZTX107A	$T r_{10}$
2N3055	$T r_{12}$
Th	IRC10 (1A)
Switches	
S_{1}, S_{2} singl	e changeover (0.5A)
S_{3} micr	
$S_{+} \quad$ Two	changeover microswitch
$S_{5} \quad$ Thre	e rotary changeover

Miscellaneous

$L p_{1}$	12 V 60 mA
$L p_{2}$	24 V 1W
$L P_{3}$	240 V neon indicator
$L p_{4}, 5$	$5 \mathrm{~V}, 50-60 \mathrm{~mA}$ (3.5 mm dia.)
F_{1}	1 A anti-surge
$F_{2} \quad 5 \mathrm{~A}$ anti-surge	
Mains transformer. Douglas M20AT	
$L_{1} \quad$ 2A suppression choke	
Motor. "Milliperm Special Super $12 \mathrm{~V}, 5$-pole"	
(R. MARX-LUDER, 7121 Gemmrigheim,	
Neckar, Germany.)	
Earpiece. Danavox (G.B.) Ltd, "Broadlands",	
Bagshot Road, Sunninghill, Ascot, Berks.	

Fig. 6. Motor drive unit.

Transistors $\operatorname{Tr}_{32,311_{33}}$ etc are operational. With negative on the earthing rail the reverse occurs, $T r_{31}, 3_{2}, 3_{3}$ being isolated and $T r_{27,28,29}$ etc. being operational. Resistors R_{65} and R_{73} may have to be adjusted slightly to take account of component tolerances.

General Notes

When ordinary magnet-and-pole-piece locomotives are modified to take this system the pulse supply makes the locomotives noisy in operation. A simple modification is possible to stop this and consists of sawing out the armature "slot" to take a circular ferrite magnet of the type fitted to "Hornby" locomotives and other miniature electric motors. The air gap should be kept small as large air gaps cause an increase in running current and heat dissipated by the motor, although, air gaps as large as $\frac{1}{16}$ in have been found satisfactory. This modification immensely improves the slow start and running response.

Other locomotives fitted with magnet and pole pieces are best refitted with five-pole ring field motors in order to get the best from this or any other "pulse" system.

Locomotives fitted with plastic body shells will usefully augment the noise from the whistle and not so usefully augment noise from tender drive units. The tender drive units can be suitably "silenced" by lining the interior with $\frac{1}{32}$-in thick lead sheet which can be made from $\frac{1}{8}$-in roof lead by rolling or by taking the $\frac{1}{8}$-in thick lead to a sheet metal works who will usually do the job for a few pence. The imitation coal in tender drive units can usefully have small holes ($\frac{1}{32}$ in dia) drilled in the coal department in order to assist air circulation. The holes are not noticeable after drilling without very carcful examination.

The layout of components has not been found critical, most of the circuitry being made up on 0.1 -in Veroboard or similar. The power supply ramp generator should be kept clear of pulse-carrying wires and parts, and the normal good practices applied. The power supply output waveform should be checked for slow rise and

Fig. 7. Motor and control mounted in the tender.
fall times ($0.2-0.5 \mathrm{~ms}$) on an oscilloscope before use. Too fast edges will damage C_{10}, which should be metallized paper or polystyrene of at least 200 V working. All other components are uncritical. The ganged microswitch will probably have to be made up, and it is worth noting that it does not matter if both switches do not switch at exactly the same time so long as they are free in operation. (Ganged microswitches are, however, commercially available from Bulgin.) The bridge rectifiers fitted to the "coach" and whistle sensor units are there to make it immaterial which way round the coaches are placed on the rails and what polarities are placed on the rails. (Reversing
the loco by reversing the supply has no effect on lights or whistle.) When setting up the system it is best to use only one meter for all measurements. Slight adjustment to all output voltages can be made by varying R_{37} in the range 47-100!2. The coach lighting sensor regulator uansistor $T r_{4}$ should be fitted to a small heat sink ($\mathrm{in} \times$ lin) or more conveniently the mild steel ballast plate that is supplied with some commercial coaches (Trix). In practice the system adds considerable realism to the model railway "train"which, in my opinion, they sadly lack at the moment. It only remains to add an efficient load sensing smoke unit to make the system complete.

News of the Month

"Donald Duck" eliminators for U.S. Navy

The United States Navy is buying British systems capable of overcoming the "Donald Duck" effect which oxy-helium gas has on deep-sea divers' speech. The systems, worth, with spares, a total of $£ 23,000$, were developed for the Royal Navy by Marconi Space and Defence Systems Limited, a GEC-Marconi Electronics company, from Admiralty Research Laboratories designs.

The "Donald Duck" effect results from divers having to breathe an oxy-helium mixture in depths of greater than 600 feet, where air cannot be used safely. The mixture, being much less dense than air, produces changes in the speed of sound, and therefore in the pitch of a speaker's voice. This rises to an extent where it becomes completely unintelligible to the listener. In emergency situations, the lack of effective communications can mean life or death to the diver.

The Marconi system, designated the Type 023, was developed from designs started in late 1968. It has already been in service in the Admiralty Experimental Diving Unit and the Royal Naval Physiological Laboratory, and is currently being evaluated, with favourable results, in a series of medical research dives of up to 1000 feet by the Smithsonian Institute in the U.S.A. It operates on a principle where each sound is digitally analyzed, and the significant portion, typically about one third, is reconstructed at a slower rate, while the rest is rejected. This has the effect of lowering the frequency to about a third of its transmitted value, and thus creating full intelligibility.

Largest solid-state image sensor

RCA have demonstrated what is claimed to be the largest solid-state image sensor announced to date. The sensor - which is a charge coupled device (c.c.d.) - is a silicon chip the size of a small coin, containing over 120,000 electronic elements. Manufacturable c.c.d. image sensors of at least this size are essential if all-solid-state TV cameras are to have the resolution to satisfy a broad range of applications. Possible future TV cameras employing c.c.ds could be the size of a cigarette package or smaller, and would be rugged, highly reliable and potentially low in cost.

When an image is focused on the c.c.d., the sensor's electronic elements transform the picture into individual electrical charge packets. These packets are then read out very rapidly by charge transfer techniques. The resulting information can be processed and displayed as a TV picture.

Component tester for relay systems

Electronics and radio research scientists of the Measuring Systems Design Department of Bell Laboratories in the United States have developed a new kind of test set with several valuable features for use in testing components of f.m. radio relay systems.

The new test set measures delay distortion, insertion loss (or gain), and return loss. The overall shapes of all three transmission characteristics are displayed. simultaneously on two large-screen oscilloscopes. This mode of operation allows the test set to approach the accuracy of point-by-point measurement while still displaying the characteristic over the entire frequency band. An operator can adjust the component being tested and instantly observe the effect over the entire frequency band. (Previously, measurements of this accuracy were obtained by taking several measurements over the frequency band and plotting the results manually to determine the overall shape.)

The 50 to 100 MHz scanner, called the f.m. scanner, was designed primarily to measure characteristics of f.m. radio system components.

Travelling scholarship

An I.E.E.E. travelling scholarship of $£ 300$ is being offered for a visit or visits to foreign electrical or electronic research or manufacturing establishments by a postgraduate student. The purpose is to promote an exchange of research and technological ideas and to foster a closer relationship between young engineers in different countries. Candidates must submit a programme for their visit(s) by December 31, 1973, and the award will be made to the candidate whose programme is judged most likely to promote the objects of the scholarship.

The scholarship is financed by the U.K. and Republic of Ireland Section of the Institute of Electrical and Electronics

Engineers, which is acting in collaboration with the Institution of Electrical Engineers and the Institution of Electronic and Radio Engineers. Entrants must be student or graduate members of one of these three institutions. Further information and entry forms are obtainable from Prof. C. W. Turner, Dept. of Electrical \& Electronic Engineering, King's College, Strand, London WC2R 2LS.

Venture for speech recognition

EMI Limited, London, and Threshold Technology Incorporated, Cinnaminson, N.J., U.S.A., have announced their intention of forming a joint venture company in Britain to market, over much of the world, electronic systems for recognizing spoken words and converting them into signals for controlling machines or instructing computers.

A major area of Threshold's operations is in the security field. It is currently testing a system which can identify a speaker's voice and compare it with voice patterns in a memory bank of "authorized" voices.

Physics exhibition obituary

The Council of The Institute of Physics has decided that the Physics Exhibition should be discontinued. The next exhibition provisionally arranged for 1975 will not take place.

In recent years the number of exhibitors, particularly industrial firms, has fallen substantially, as has the number of visitors. This gives confirmation to a widely held belief that generalized scientific exhibitions without a unifying theme are unattractive to both exhibitors and visitors.

The Institute's knowledge and expertise in the exhibition field will now be concentrated on smaller specialized events.

The exhibition was first held by The Physical Society in 1905; the last one, in 1973, was the fifty-seventh in the series.

Briefly

B.A.S.C. gets going. The principals of five major U.K. u.h.f. aerial manufacturers met in Bristol in September to reconstitute the British Aerial Standards Council, which, although formed as long ago as 1963, confined itself primarily to technical interchange. Recent developments have prompted it to extend its activities considerably, with the object of promoting high standards of performance, design and construction in television and v.h.f. radio aerials available to the public.

Frequency change for Northern Radio 4. The Radio 4 medium-wave service in North East England, which is at present transmitted on 261 metres (1151 kHz), changed its wavelength on Saturday September 29 to 330 metres (908 kHz). The two transmitters concerned are those at Stagshaw (near Hexham) and Scarborough.

Instrument triggers up to five flash units at intervals from 11 ms to 11 s

by Ralph Lewis

There are many times when the output of commercial stroboscopic flash units is completely inadequate to deal with a particular photographic problem. I am thinking essentially of cases similar to one described by Victor Blackman in his "Cameravaria" column in Amateur Photographer when he was required to take sequence photographs of a springboard diver in flight. To have used a strobe flash, even of a power considered high for strobe circuits, would have necessitated the pool being in complete darkness, otherwise ambient illumination would have obliterated the flash images. Because it was obviously dangerous to attempt a dive under those conditions, he ended up making a montage from photographs taken during separate dives.
Stroboscopic flash design to deliver the same amount of energy per flash as the high power single flash units (often 1,000 to 5,000 joules) in use in many studios today, is impracticable because of problems encountered in cooling the flash tube and building up energy in the capacitor rapidly enough. The usual way out of this difficulty, where short sequences are required and it is not
essential for the light to issue from exactly the same point each time, is to arrange for a number of capacitors to be charged simultaneously and discharged in succession; each one through a separate flashtube; often, but not necessarily, mounted in one reflector.
A simpler and less expensive method is to make use of conventional commercial single flash units and connect them to a device that will trigger them in the required manner. Making use of standard designs means that they can be obtained as and when needed from the several firms offering equipment hire facilities.
The circuit of such a device, which will trigger up to five flash units at equal increments of time throughout periods of 11 seconds to 11 milliseconds, is illustrated in this article. The periods are continuously variable to suit the duration of the event to be photographed.

Circuit operation

Transistors $T r_{1}, T r_{2}$ and $T r_{3}$ (Fig. 1) with their associated components make up a monostable multivibrator which is switched
from the stable to the unstable state by a negative pulse applied to the base of Tr_{2}. This is provided by the closing of the camera shutter contacts which connect to the socket labelled sync. The pulse causes the collector current of Tr_{2} to rise and switch on the thyristor $S C R_{1}$, which in turn triggers the first flash of the sequence connected to FL_{1}. If C_{1} were directly connected to the collector of $T r_{2}$, it would, together with the input resistance of Tr_{3}, greatly increase the rise time of the collector potential of $T r_{2}$.

To overcome this, an emitter follower $T r_{1}$ is inserted between T_{2} collector and C_{1} which provides a much lower impedance for C_{1} and $T r_{3}$ to shunt. To begin with, C_{1} is charged to the supply voltage minus the base potential of $T r_{3}$. When $T r_{2}$ is switched on, its collector rises almost to the voltage of the positive rail carrying the emitter of $T r_{1}$ with it. Because the charge on C_{1} cannot change instantaneously, the base of Tr_{3} is taken to almost twice the potential of the positive rail above earth which cuts off its collector current until such time as the charge has sufficiently leaked away via R_{5}

Fig. I. Camera shutter contacts trigger the monostable circuit which turns on the thyristor to provide the first flash trigger. If C_{1} were directly connected to $T r_{2}$ collector, rise time would be too great. Timing circuit provides ramp output at A.
to allow it to conduct once more. The time this takes, ignoring the emitter-collector voltages of $T r_{1}$ and $T r_{2}$ and the baseemitter potential of $T r_{3}$ which are small compared to the supply voltage, is

$$
t \approx C_{1} R_{5} \log _{e}\left(2 V_{\mathrm{cc}} / V_{\mathrm{cc}}\right) \approx 0.69 C_{1} R_{5}
$$

When the base of $T r_{3}$ is biased to cut off its collector falls to earth potential and negatively biases the base of $T r_{2}$, holding it in the conducting state. When the charge on C_{1} has sufficiently leaked away to allow $T_{r_{3}}$ to conduct once more, its collector rises until it is within 0.2 volts of the positive rail, which is sufficient to cut off Tr_{2} through R_{4}. The circuit now holds this condition until another negative pulse is applied to $T r_{2}$ base.
The timing circuit is a transistor version of a Blumlein integrator, more usualiy referred to as a Miller integrator. A basic circuit is shown in Fig. 2 using an n-p-n transistor for ease of explanation although the final circuit makes use of $\mathrm{p}-\mathrm{n}$-ps so that a positive going ramp is obtained.
At the start, the switch S is open, the capacitor C is charged to a potential of $V_{c c}-V_{e b}$ and a current flows through R equal to $\left(V_{c s}-V_{c b}\right) / R$. When the switch is closed the immediate tendency is for a collector current to flow through R_{L} equal to ($V_{\text {cc }}-V_{\text {ce }}$ sat.) $/ R_{L}$, provided the current in R is large enough to cause saturation in the transistor, and for the collector to take up a position about 0.2 volts above the negative rail. If that were to happen, the collector current would be cut off because the voltage across C cannot change instantancously and any change in collector potential is immediately transferred to the base. Obviously this is impossible, so a condition develops where the base potential is just sufficiently positive to allow C to discharge through the transistor, which allows the collector voltage to fall slowly in a linear manner. This occurs for the following reason. Electron current flows away from the base via R and into the base from C. The result is a difference current which is the base current during the discharge.

The greater the current gain in the transition, the smaller the change in base current required to satisfy the voltage change at the

collector as the capacitor discharges. The base current is thus very small compared to I_{R} and changes very little during the discharge. The smaller the base current is, the smaller the difference between I_{R} and I_{C} and the more constant $V_{e b}$. A constant voltage across R produces a constant current through it; therefore the nearer I_{c} approaches I_{R} the closer it comes to constancy. As constant current flowing into or out of a capacitor raises or lowers the potential across it, according to the basic expression $V=I t / C$, it follows that the voltage across C falls linearly with respect to time. As one plate is connected to a hardly changing $V_{e h}$ and the other plate is joined to the collector, the collector voltage must fall in like manner.
When the capacitor is completely discharged, the collector potential is equal to $V_{e b}$, the base current is again provided by R only and the collector falls a fraction further to $V_{c e}$ sat.
If the switch is now opened, C recharges via the base of the transistor and R_{f}.

The time for the linear portion of the voltage ramp can be expressed essentially by

$$
\begin{aligned}
& t=\frac{V C}{I_{C}} \approx \frac{\left(V_{c c}-V_{e b}\right) C}{\left(V_{c \mathrm{c}}-V_{e b}\right) / R} \\
& \approx C R \text { seconds, as } I_{c} \approx I_{R} .
\end{aligned}
$$

Because linearity is dependent upon a high value of beta, a Darlington pair is used in the final circuit and T_{6} acts as the switch. Leakage in the capacitor, represented by R_{C} in Fig. 2, must be kept to a minimum because it provides a shunt negative feedback path, bypassing the capacitive loop; reducing the gain of the amplifier and consequently the linearity of the ramp. For this reason, tantalum capacitors are recommended for C_{3} and $C_{ \pm}$if the expense of polyester types is considered prohibitive.
Linearity also depends on a high voltage gain which is a product of $h_{F E} i_{t} R_{L}$. This makes the choice of R_{L} a compromise as $h_{F E}$ and R_{L} are interdependent. Too large a resistance could limit the collector current to a value which would seriously reduce the

Fig. 2. Basis of the timing circuit is a Blumlein (Miller) integrator, the linear portion of the ramp being about $C R$ seconds long.

Fig. 3. Four voltage-operated switches, all identical to this circuit, are set to trip at different points of the ramp waveform.
current gain factor. This is especially so in the present circuit where the collector current of $T r_{s}$ can only be a fraction of that of $T r_{4}$. The effective load resistance of $T r_{4}$ and $T r_{5}$ is made up of R_{11} and four $R_{12} \mathrm{~s}$ in parallel and works out at approximately $10.5 \mathrm{k} \Omega$, giving adequate linearity for the purpose with the transistors shown, though no doubt others would give an equal or even better performance. The ones chosen had the merit of being inexpensive and were close to hand.

The meter provides a quick check of the correct functioning (or otherwise) of the timer; enables, on the $10 \mu \mathrm{~F}$ range, the time of the ramp to be compared with the duration of the event to be photographed; and facilitates the setting up of the voltage level switches.

The circuit of a switch is shown in Fig. 3 and as four are required the components are labelled A to D. The switches are arranged to operate sequentially at equal intervals during the ramp. Transistors $T r_{8}$ and $T r_{9}$ are connected as a Schmitt trigger and the potential at A is applied to the base of $T r_{8}$ via an f.e.t. source follower which serves to isolate the switches one from another and prevents variable shunting of R_{11} by the change in input resistance of $T r_{8}$ as it changes state.

With A at zero potential, Tr_{8} is nonconducting and $T r_{9}$ is in saturation. Tr_{8} emitter potential is provided by the emitter current of $T r_{9}$ flowing through R_{16} and is normally about 2.25 volts. When the voltage at the base of $T r_{8}$ is sufficient to initiate conductance, its first effect is to raise the emitter voltage (emitter follower action), but this tends to bias off $T r_{g}$ thus reducing the current which provided the voltage in the first place. As Tr $_{8}$ base continues to rise, its collector voltage falls, reducing the base voltage of T_{r}, and consequently its emitter current. This reduces the emitter voltage of $T r_{8}$ which causes still heavier conduction until such time as saturation occurs and its collector potential is very little more than its emitter. When this state is reached, Tr_{9} base is at a lower potential than its emitter, due to the divider action of R_{17} and R_{18}, and is cut off.

Because the action is regenerative, the collector of Tr_{9}, can be raised from 2.3 volts to 19.5 volts when the base of $T r_{8}$ reaches a critical point on the ramp which is set by adjustment of R_{12}. This voltage change is converted to a current pulse by C_{6}, R_{20} and the emitter follower Tr_{10}. Gate resistor limits the current peak to a value that will reliably turn on the thyristor.

A circuit that relies for its operation upon somewhat precise voltage levels obviously requires a stable supply voltage. The circuit of the battery supply and voltage regulator is shown in Fig. 4 and follows common practice. The quiescent battery current is 16 mA rising to 21 mA during the timing period. It is left to the constructor as to whether he fits PP3s or PP6s as a lot depends on how much one plans to use it.

Construction

If tantalum capacitors are used for C_{3} and C_{4} their values should be measured as the tolerance of some of them is as wide as

Fig. 4. Stabie battery supply circuit.
electrolytics in general $(+100-10 \%)$ and can double the time of the ramp if one is not careful. If a bridge is not available, it would be advisable, though more expensive, to use polyester types if anything like the suggested times are looked for.
The period $0.70 C_{1} R_{5}$ must be longer than the period of the longest timing run, i.e. 11 seconds, for the ramp to reach maximum before $T r_{6}$ is turned off. It can with advantage be twice as long to aid the setting of the voltage level switches and the rail voltage. Because the leakage resistance of electrolytic capacitors aids their discharge, a capacitor of $200 \mu \mathrm{~F}$ is used which works out at 28 seconds but in practice gives about 20 seconds.

The circuits are made up on individual pieces of 0.15 -in Veroboard (see Fig. 5) and board wiring diagrams are available from the editorial office at $W \cdot W$.

Use is made of mounting tags broken out of a length of tag strip to secure the Veroboard to the front panel. The timer and voltage regulator assemblies are secured by means of the meter studding and the switches by the nuts and screws used to
fasten the phono sockets, see Fig. 5.
When making panels for instruments I usually make a layout on a piece of white board in black drawing ink and label it with Letraset. I then make a fine negative of it and from that, a single weight bromide enlargement to the size required. A brief exposure to a 15 -watt lamp at 6 to 7 feet is given to the paper before development and a light grey print with black lettering results. This is fixed to a piece of 14 s.w.g. aluminium with dry mounting tissue and a coat of clear polyurethane "varnish" is applied to the surface of the paper. When dry, the holes are cut out and the panel trimmed to size, but before trimming, the boundary lines of the panel are scored through to the aluminium surface with a sharp knife, so that a neat edge is obtained by filing as close to the line as possible. Holes are drilled small and enlarged to size with forward strokes of a file only, to avoid lifting the top surface of the paper. After cleaning off the swarl and filings with a cloth moistened with methylated spirit, I give it a final coat of polyurethane, paying particular attention to the edges of the panel and the insides of the holes. In this way, a neat, durable, and professional appearance is given to the finished product if a little care is taken.

Setting up

To set the rail voltage, select the $0.1-\mu \mathrm{F}$ range and press the test bution. The meter will move rapidly to full scale and hold for about 20 seconds. This gives time to adjust R_{23} so that the needle rests just short of the far stop which represents approximately 18.5 volts.

Setting up the switches is most easily done if a small electronic flash unit is used. Firstly, select the $10-\mu \mathrm{F}$ range, and to enable a more precise observation of the exact point at which the switch triggers, connect an $8-\mu \mathrm{F}$ capacitor in parallel, temporarily. Press the button and make sure that the ramp time does not exceed the turn on time of T_{6}. If

Fig. 5. Four circuit boards of voltage-operated switches are mounted vertically above the trigger sockets. Send s.a.e. to WW for board wiring diagrams.

Fig. 6. To check linearity of $0.1-\mu F$ and $1.0-\mu F$ ranges the five flash units were used to photograph a string tied between spindle and rim of a 78 rev/min turntable. For the 0.1- μ F range, R_{10} was set at min., mid. and max. settings $(a, b$ and c) and at min. and mid. settings for the $1.0-\mu F$ range (d and e).
it does, connect a value somewhat smaller than $8-\mu \mathrm{F}$.

With the flash connected to FL_{2}, initiate the ramp with the test button and observe the point at which it fires on the meter. Repeat this, adjusting R_{12}, until firing takes place at precisely 0.25 mA . Connect the flash in turn to $\mathrm{FL}_{3}, \mathrm{FL}_{4}$ and FL_{5} and adjust resistors 12 so that it fires at $0.5,0.75$ and 1.0 mA respectively.

Checking the linearity on the $10-\mu \mathrm{F}$ range can be done by inserting a microammeter in series with C_{3} and observing that the discharge current, which should be in the region of $15.5 \mu \mathrm{~A}$, is maintained with an almost imperceptible change until the 1 mA point is reached on the meter. A change
would indicate excessive leakage in C_{3} or a low beta in Tr_{4} or $T r_{5}$. In the original the change is less than 0.5% with a tantalum capacitor.

Linearity on the $0.1 \mu \mathrm{~F}$ and part of the $1.0-\mu \mathrm{F}$ ranges can be checked by connecting five flash units and photographing, at various settings of R_{10}, a string tied between the spindle and rim of a gramophone turntable rotating at $78 \mathrm{rev} / \mathrm{min}$. This of course takes into account the accuracy with which the switch trigger levels were set. See photographs in Fig. 6.

The resistor and capacitor, R_{8} and C_{2}, are to prevent a transient pulse triggering the 0.25 mA switch when $T i_{6}$ is turned on.

The voltage readings given in the diagram
are for guidance only, especially the source potential of Tr_{7} which can differ markedly from the value in Fig. 4 because of the wide spreads in the characteristics of presently available f.e.t.s. Those given were measured with a $50 \mathrm{k} \Omega / \mathrm{V}$ meter with the point A at chassis potential.

And finally; if used with flash trigger circuits in which the voltage on the sync. contacts is not extinguished upon firing, the s.c.rs will remain conducting unless the plugs are momentarily pulled from FL_{1} to FL_{5}. This doesn't happen in portable units where a capacitor is discharged through the primary of a tesla coil, directly connected to the sync. contacts, but might occur if a slave relay circuit were used.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Hi-fi equipment standards

We were interested in your editorial comment "The Educated Ear" (October issue) and disappointed that we were unable to provide you beforehand with full information on British work equivalent to DIN 455000 . BSI is in fact working on a series of specifications for domestic hi-fi equipment. The specifications which have already been issued for comment in draft form deal with equipment such as amplifiers, microphones, record players, loudspeakers, headphones and combinations of equipment. The intention is to cover as much of the field of hi-fi as can be objectively approached.

Your regret at our apparent inaction would appear to be justified since Britain is indisputably a world leader in this field. We can only comment that the industry in this country only felt the need for guidance in these matters about two years ago and BSI responded immediately.

You will be glad to know that Britain
also leads in the field of specifying, and the forthcoming British Standard has already been proposed to the International Electrotechnical Commission as the basis for an international standard.
Terry Hammond,
British Standards Institution,
London, W.1.

Your editorial of October does an extreme disservice to those representatives of the U.K. audio industry who had been working since 1968 on the preparation of a U.K. based specification for the performance of high-fidelity equipment. Organizations participating in the early work included BREMA, FBA, APAE and RECMF, who were represented on an informal body, the Audio Specification Co-ordinating Committee. In 1970 the work had advanced far enough for an approach to be made to the British Standards Institution, which resulted in the setting up of

Technical Committee TLE/26. For the record, a press release was sent by the Co-ordinating Committee to some twenty leading British electronics journals, announcing the completion of the preliminary work, but only two, not including Wireless World, felt moved to print it.

Since 1970, TLE/26 has met about thirty-six times and has prepared draft specifications for seven of the components of high-fidelity systems, viz. amplifiers, tuners, loudspeakers, microphones, record playing units, headphones and combinations. In order to further the goal of an internationally accepted specification for high fidelity equipment - infinitely preferable to a host of differing national standards - most of these drafts have been submitted to the International Electrotechnical Commission, and are under consideration by the newly set up Working Group 12 of sub-committee SC29B, which has at present one U.K. member and may have more in the future.

Most significant is the divergence of attitude between British audio engineers and the technical press to the German specification. One of the kindest descriptions applied to it by the leading "hi-fi purist" types is "a charter for mid-fi". One prominent manufacturer proclaims the ease with which its requirements may be exceeded, even with relatively modestly
priced equipment. The British audio engineer (or Dutch, French or Danish, for that matter) who is prepared to regard it, as it stands, as an acceptable criterion for the thin red line that divides highfidelity equipment from everything else, has yet to be encountered.

It really is high time that the technical press properly supported the work of British engineers in this and other fields of standardization. I have had occasion to write similarly to another journal on the same subject within the past year. A standard is useless if it is not used: it will not be used if it is not accepted by engineers and buyers in general and it will not be accepted if it is not publicized. Inaccurate editorials in the country's leading popular electronics journals nullifying the efforts of British engineers and publicizing a highly deprecated foreign standard are simply and completely unfair! J. M. Woodgate,

Chislehurst,
Kent.
Editor's note: We shall be glad to publicize the British standard when it is issued.

Radiating coaxial cables

I am writing in relation to J. R. Avery's letter (September letters) to point out that the radiating coaxial cable system he describes does not produce a "field variation of an inverse r^{4} nature". The two straight lines shown on his graph are incorrectly designated as they actually show an inverse r and an inverse r^{2} relationship of field strength with distance and not inverse r^{2} and inverse r^{4} as indicated.

With this correction in mind it seems that the fall off in radiation with increasing distance from the cable corresponds more nearly to that experienced with what is usually termed the "induction field" and the advantages claimed for radiating cable systems appear to be no more attractive at medium frequencies than those of induction loop systems. Admittedly at v.h.f. and u.h.f. the radiating cable system has its advantages, particularly in tunnel and mine applications, and where the cable can be used for both receiving and transmitting.

It is interesting to note that inexpensive coaxial cable with open-weave braiding is not very effectively screened and at m.f. produces results similar to those obtained with specially designed radiating cables, except that more r.f. power is required to provide the same field strength. This has been shown by field tests and, as a result, the cheaper coaxial cable is currently being installed experimentally for a university radio installation.
The proposed Scottish university system referred to is unlikely to produce any improvement over a well-designed induction loop system which would also not cause any significant interference beyond the perimeter of the campus. However, a radiating cable system which employs cable ducts below the ground is liable to
induce currents at r.f. into any neighbouring cables (e.g. telephone cables) and, although this may have the dubious advantage of effectively increasing the broadcast coverage, the interference potential to the telephone system may be significant.

Finally, it should be added that the experimental or permanent operation of any radiating or induction system, irrespective of the rate of attenuation of field strength with distance, requires a licence from the Minister of Posts and Telecommunications and such a licence will only be issued after careful consideration of the practical circumstances and, in particular, the potential for interference to other services. M. Goddard,

Ministry of Posts and Telecommunications, London, S.E.1.

Mr Avery replies
May 1 reply to the various points raised by Mr Goddard in his response to my letter published in the September issue on radiating coaxial cables?
He is, of course, quite correct in pointing out the error in the designation of the two straight lines in my graph. These should accurately be labelled "inverse r " and " $r{ }^{2}$ " as the ordinate of the graph is field strength. This error arose from Mr Moore's initial reference to field variations as inverse r^{2} for transverse electromagnetic fields, and inverse r^{4} for radiomagnetic fields.

The problem is one of units of measurement. If an aerial with a numeric gain ratio of G over isotropic is placed in an electromagnetic field with a field strength of E volts per metre and a wavelength of λ metres, then the power in watts available at the aerial terminals, assuming no mismatch or finite conductivity losses, is given by the expression:

$$
P=G\left(\frac{\lambda^{2}}{4 \pi}\right)\left(\frac{E^{2}}{120 \pi}\right)
$$

If the distance d from the originating source is varied then this power increases or decreases according to an inverse square law ratio given by:

$$
\left(\frac{\lambda}{4 \pi d}\right)^{2}
$$

This gives a field strength variation of an inverse d nature, not a d^{2}. However, the straight lines in my graph do correctly depict electromagnetic and magnetic induction field variations, according to Mr Moore's original definition, although the mathematical designation is as Mr Goddard points out incorrect

The similarity of coverage provided between radiating cables and induction loop systems is not difficult to explain as both propagate by a similar mechanism. The loop carries radio frequency current which sets up an induction field within and adjacent to the loop, and is fed from both ends of the loop as a closed system. The radiating coaxial cable also carries surface radio frequency currents which are continuously coupled from inside the cable to the outer surface via the coupling mechanism (holes, slots, loose braid, etc.).

However, the coaxial cable is fed from one end only, the other end being terminated in a matched load. This fundamental difference is one major attraction of radiating cables, as in some situations it is difficult to cover the desired area using loops. This is the case in the cited Scottish University system, where, due to the campus layout, approximately 20 loops, one on each building, would have been required to provide adequate coverage. Each loop has to be fed by a separate amplifier to achieve adequate coverage, and the signal distribution and impedance matching becomes very complex.

The use of a radiating cable will alleviate the problem by cutting the equipment down to one transmitter, but siting of the cable is important as the field is still inductive in nature and falls away rapidly with increasing distance from the cable. This is even more important if the coaxial cable used is of the loose braid type, as it is susceptible to the contamination effects of dirt and moisture. This may not be too important at medium wave frequencies, but at v.h.f. and u.h.f. frequencies, where only radiating coaxial cables can be used, as loops are too inefficient, the attenuation of loose braid cable increases and a better cable construction is necessary.
May I thank Mr Goddard for his valued comments, and his colleagues at the Ministry of Posts and Telecommunications, who carried out the measurements on the radiating cable from whose results my graph was compiled, for their valued assistance. Anyone interested in operating a radiating cable system at any frequency should contact the M.P.T. for approval and a technical and development licence, as radiating cable systems are still very much in the investigation phase.
J. R. Avery.

Using c.m.o.s. devices

I can quite understand Peter Seddon's trepidation after reading (Oct. Letters) the warnings about breakdown damage in c.m.o.s.; I was nearly frightened off by the apparent difficulties in handling and use, and came to the conclusion that c.m.o.s. devices were the answer to an engineer's prayer provided that one did not wish to unpack them, plug them in and switch-on!

Fortunately I was seduced, by the claims of low power consumption coupled with high noise immunity, into trying some, and would like to offer some words of comfort to Mr Seddon, based on my experiences during more than a year's use of c.m.o.s. devices.

I have come to the conclusion that, apart from a few elementary precautions, c.m.o.s. devices are more robust than the makers would have us believe. The main things to avoid are contact with plastics such as expanded polystyrene, which are capable of developing extremely high voltages due to friction (nylon lab. coats may come into this category), and the application of voltages outside the maxima specified from power supplies, unearthed soldering irons and test equipment. With the exception of these main points I have not
found any other precautions necessary (the image of Mr Seddon chained to his bench is intriguing but hardly practicable).

My prime source of device destruction was my failure to appreciate the devastating effect of floating inputs when the device was "on supply". In the case of hex buffers and inverters, e.g. R.C.A. CD4010 and CD4009, a floating input to a spare element will assume a potential of about $\frac{1}{2} V_{c c}$, causing both complementary output transistors to conduct. This quickly results in failure due to the high current so taken.

This problem is not likely to occur in the final circuit since the few spare inputs there are will, if the designer has done his job properly, be suitably tied to 0 V or $V_{\text {cc }}$ During "lash-ups", however, it is very easy to overlook the odd spare input and burn the device out (and sometimes burn one's own fingers, literally!).

In the case of a two input gate, e.g. R.C.A. CD4011, doing duty as an inverter/ buffer, I find the simplest thing to do is to strap the two inputs, thereby remaining the need to find a suitable " 0 V " or " $V_{c c}$ " point.

So far I have not experienced a failure traceable to gate breakdown and have even had devices survive reverse insertion in their sockets.

I should like to offer Mr Seddon the following advice: (1) Ensure all spare inputs are suitably tied. (2) Keep within the operating voltages recommended. (3) Check soldering iron and test gear earths. (4) Avoid contact with non-conducting plastics. (5) Plug the devices in the right way round. (6) Set power-supply current limiting to the lowest practicable level. These six points are applicable to any semiconductor device and do not make c.m.o.s. any more difficult than t.t.l.

Finally, Mr. Seddon, have a go; c.m.o.s. is fairly cheap now and the rewards are well worth the odd few bob (sorry, five new pence pieces)!
David S. Williams,
Walsall,
Staffs.

Novice licence

You are so right in asking (page 516 of W.W. Oct. 1973) "Should there be a U.K. novice licence?" There is a need for such and has been for many years. Pre-war there was the A.A. licence which put so many of today's " G " s where they are.

The radio controlled model people are also worthy of consideration. What an advantage it would be to them to use limited power communication on airfields etc. There are many such persons keen enough in this branch of radio experimenting and research but who are not in the least interested in becoming a " G " and calling someone at the other side of the world "old man", each to his own liking.

The frequency allocated will, we understand, be made unusable by misuse or at least this is the opinion of "G's" - but if we listen to some of the "amateur
bands" there is sometimes cause for concern.
I feel that at least holders of model "pulse" licences should be granted a frequency for speech communication.
Ray Williams,
Grantham,
Lincs.

Projection television

The letter from America by G. W. Tillett (September issue) and the letter from H. Ibbotson (October) bring memories to me with feelings of nostalgia.

It is a great pity that after a very promising start the development of projection television stopped. I firmly believed then and still do that a form of projection television will be evolved which will include stereo sound and 3D reproduction.

Within very restricted limitations I continued development of colour projection television. The results, although promising, will require a fair amount of work, particularly to improve brightness. The colour and picture quality is comparable with a 26 in shadow mask tube. Where projection fails is insufficient brightness, and it must be viewed in total darkness.

The main difficulty is that, of necessity. I had to use black and white MW6/2 tubes with colour filters. Mullard's did at one time produce blue, green and yellow tubes. These, with a red filter on the yellow tube, produced acceptable results; however, the loss of light was considerable.

I saw the French optical system demonstrated in Paris early in the 1950s but did not think the results as good as the Philips / Mullard unit.

In adapting the standard projection system to colour it was necessary to re-design the deflection coil assembly to accommodate convergence coils. The whole assembly is similar to that used with shadow mask tubes.

There is still a fair amount of development work to be done, so get cracking you Wireless World experimenters!
V. Valchera,

Valradio Ltd, Feltham, Middlesex.

Sale of "walkie-talkies"

I would draw your attention to the adverts for "walkie-talkies" in a popular publication. The information is attached on a separate sheet. |Extracts from Exchange and Mart sent.|

To the best of my knowledge these units operate in the $29.9-31.00 \mathrm{MHz}$ area and as such it would be most unlikely that permission to operate them in the United Kingdom would be granted by the M.P.T.
l certainly have no wish to restrict the commercial activities of the concerns
selling these items but in all fairness I do feel that some reputable authority should make some investigations into the sale and obvious use of them.

As all these units are imported it would seem that some regulation could be exercised by H.M. Customs and Excise. There already exists an import restriction covering similar units operating in the $26.1-29.7 \mathrm{MHz}$ and $88-108 \mathrm{MHz}$ bands and maybe this could be extended.

I should add that I am a radio amateur (G3LWM) and it is certainly not a case of "sour grapes" but an effort to prevent unsuspecting people becoming liable to prosecutions under the Wireless Telegraphy Act, On numbers of occasions I have been asked by the police to produce my licence. This has usually been on the tops of wind-swept hills, on misty nights to take advantage of good v.h.f. conditions!

J. D. Harris,

Bishop's Stortford,
Herts.

VAT and prices

Despite your publishing my letter in the September issue there are 41 advertisements in the October issue which have no indication whether VAT applies or not. Together with Mr Dykes (Oct. issue), I hope that the matter will improve. Perhaps some editorial guidance is necessary. These 41 firms will of course not get any of the $£ 100$ I spend monthly with your advertisers - just the same as those firms who offer long lists of transistors they do not have in stock.

Do these people think we do not remember poor deliveries, wrong items sent, poor packaging and procrastination? Those who do not quote prices at all are the worst of course; possibly they have large office staffs to answer queries -I don't have time, I merely go elsewhere.
W. B. Henniker,

Henniker \& Kerr,
Edinburgh.

Frequency shifter for "howl" suppression

Some of your readers may not be aware that the frequency shifter designed by M. Hartley Jones and described in your July issue, can be adapted to provide a very acceptable imitation of "tape phasing", much sought after in popular music. All that is required is a mixer to add direct and frequency shifted sound. The resuit is a series of nulls running through the audio spectrum at a rate determined by the frequency shift.
For best effect a frequency shift of about 0.2 Hz is required. which is not difficult to achieve with that particular circuit. A good explanation of phasing is given in the Journal of the Audio Engineering Society of America, December 1970, vol. 18, No 6, pp.674-5.
A. G. Falla,

Radcliffe on Trent,
Notts.

Dual-polarity Digital Voltmeter

2 - Construction and calibration

by A. J. Ewins

A.c./d.c. input stages. The sensitivity of the basic d.v.m. is, as already stated, 2 volts d.c., with an input impedance of $20 \mathrm{k} \Omega$. It was required that the d.v.m. should have a maximum sensitivity of 200 mV a.c. and d.c., and as high an input impedance as possible. It was also required that the a.c. response should extend up to 100 kHz so that the voltages of all signals encountered in audio circuits (tape-recorder bias and erase oscillators operate around 100 kHz) could be accurately measured. These requirements call for an input amplification stage with a voltage gain of ten, a frequency response from 0 to 100 kHz and a high input impedance. The temperature stability of the amplifier stage must also be good for d.c. measurements, because a maximum sensitivity of 200 mV implies a resolution of $100 \mu \mathrm{~V}$. To achieve these objectives it was decided to use a f.e.t. operational amplifier as the input buffer stage. The one used by the author is supplied by RS Components Ltd, the FET-OPA, which at $£ 5.80$ trade may be thought rather expensive. However, an alternative device with similar character-
istics is one supplied by Ancom Ltd. type $15 \mathrm{~A}-37$. This is priced at $£ 4.95$ retail and, though still expensive, is thought worth it. It has an input impedance of $5 \times 10^{10} \Omega$ and an offset temperature stability of $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, which is satisfactory. Although the f.e.t. op . amp provides an accurate gain of ten at d.c., its frequency response at this gain level does not extend, accurately, to 100 kHz . However, its unity gain frequency response does extend beyond 100 kHz and it was not found difficult to design a rectifying circuit with an overall voltage gain of ten and a frequency response beyond 100 kHz .

Fig. 8 shows the circuit diagram of the complete a.c./d.c. input stages of the d.v.m., including the a.c. rectifier circuit. Using this in front of the basic d.v.m. extends the ranges of the d.v.m. to $200 \mathrm{mV}, 400 \mathrm{mV}, 2 \mathrm{~V}$, $4 \mathrm{~V}, 20 \mathrm{~V}, 40 \mathrm{~V}, 200 \mathrm{~V}$ and 400 V , a.c. and d.c., and provides an input impedance of the order of $500 \mathrm{M} \Omega$ on all ranges up to, and including, 4 V , and about $10 \mathrm{M} \Omega$ in parallel with 10 pF for all ranges above 4 V . In the d.c. mode, the f.e.t. op. amp. has a voltage gain of either ten or unity. In the a.c. mode,
the op. amp. has a fixed unity voltage gain and the rectifier circuit is either connected directly to the output of the op. amp. or via $a \times 10$ attenuator. The rectifier circuit itself has a voltage gain of five and is followed by a differential-amplifier filter circuit with a voltage gain of two.

The principle of operation of the rectifier circuit is as shown in Fig. 9. A diode/ capacitor rectifying bridge circuit is used instead of a full diode bridge. In the author's opinion, this is a more useful type of rectifier circuit than the full diode bridge since it has a voltage doubling action whilst, at the same time, the capacitors provide a first order filtering action to the unwanted acc. component. For this type of circuit, V_{o} equals $R_{L} \cdot I_{m}$ where I_{m} equals I_{L} (peak) $/ \pi$. The feedback voltage, $V_{f}=V_{i n}$. Thus, the voltage gain of the circuit, V_{o} / V_{f}, equals $\left(R_{L} / R_{f}\right)\left(I_{L \text { peak }} / I_{L} \pi\right)$. If the d.v.m. is to be calibrated in terms of r.m.s. values for sinewave inputs, $I_{L \text { (peak })}=\sqrt{2 . I_{L}}$ and the voltage gain of the circuit will therefore be; $\left(R_{L} / R_{f}\right)(\sqrt{2 / \pi})$. Therefore, for a voltage gain of 5, R_{L}, equals $11.11 R_{f}$. In the circuit of Fig. 8, R_{L} is equivalent to R_{58} in series with R_{57}, paralleled by R_{59} and R_{60} (which are effectively in series), i.e. $R_{L}=24$ $(2.2+0.2) /(24+2.2+0.2) . R_{L}$ is thus adjust able from about $2 \mathrm{k} \Omega$ to $2.2 \mathrm{k} \Omega$, which, if $R_{f}=190 \Omega$, allows an adjustment to the voltage gain of the rectifier circuit from about 4.78 to 5.17 . The maximum input voltage to the a.c. rectifier circuit is 400 mV r.m.s. and therefore the output stage of the amplifier must be able to handle a peak-topeak voltage swing in excess of about 6 volts and provide a peak current of about 3 mA . An op. amp. would therefore appear to be the ideal choice for this stage. However, neither the well-known 741 or 709 have a sufficiently high frequency response. It was therefore decided to design a suitable amplifier using discrete components on the

principle that simplicity sometimes produces the best results. The output stage is made to have an extremely high output impedance by using a constant current source as the load. This, together with the large amount of negative feedback available, overcomes the non-linearity of the diodes to such an extent that the linearity of the d.v.m. to a.c. measurements is accurate to plus or minus one digit down to 1% of full-scale. The overall frequency response is also good, being flat to within $\pm 0.5 \%$ from 30 Hz to over 100 kHz .
A d.v.m. designed on the dual-slope integrating principle provides a degree of filtering action to alternating voltages by virtue of its design. It can be shown that the filtering action takes the form of an attenuation of 6 dB /octave above a frequency whose period is equivalent to the integrating time of the d.v.m. In addition, at frequencies which are an exact multiple of the integrating frequency, the attenuation is theoretically infinite. The integrating period of this design (approximately 100 ms) is equivalent to a frequency of 10 Hz . Thus frequencies of a multiple of 10 , i.e. 10,20 , 30 Hz and etc., will be infinitely attenuated and those in between by not less than 6 dB / octave above 10 Hz . Thus, the filtering action of the integrator itself, together with the filtering action of the capacitors of the diode/capacitor bridge and the differential filter amplifier, provide an attenuation greater than 60 dB to all frequencies above 30 Hz .

The output from the circuit of Fig. 9, for connection to the circuit of Fig. 3, is via the $1 \mathrm{k} \Omega$ variable resistor R_{64} in series with R_{65}, and R_{66} to earth. When the switch, S_{3}, is closed these resistors are bypassed and the ranges of the d.v.m. are $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}$, and 200 V . When S_{3} is open, the sensitivity of the basic circuit is effectively reduced by a factor of two, so that the ranges available become $400 \mathrm{mV}, 4 \mathrm{~V}, 40 \mathrm{~V}$ and 400 V . The reading indicated by the display must therefore be multiplied by two. R_{64} allows this multiplication factor of two to be precisely adjusted.
R_{46} and R_{63} allow the offsets of the f.e.t. and 741 op . amps. to zeroed. R_{47} allows the $\times 10$ attenuator to be precisely adjusted. R_{51} is included so that the d.c. potential at the junction of diodes D_{1} and D_{2} may be

Power supplies. The power supply requirements for the d.v.m. are 5 volts at about 1 amp . (for the t.t.1. logic circuits and seven segment digital indicators) and ± 12 volts at about 50 mA (for the analogue circuitry). Figs. 11 and 12 show the circuit diagrams Figs. 11 and 12 show the circuit diagrams
of the power supplies and it will be seen that these are greatly simplified by the use of monolithic voltage regulators. Types MVR5V and MVR12V have been used by
adjusted to zero, preventing the two capacitors of the rectifier bridge from becoming tors of the rectifier bridge from becoming
reverse-polarised. These capacitors, together with C_{8}, C_{9} and C_{5} are tantalum types and can accept a small reverse potential of no more than 500 mV

Fig. 10 is the circuit of the $\times 100$ attenuator. The variable resistor, R_{68}, allows the attenuator to be precisely adjusted under d.c. conditions and C_{12} allows the under d.c. conditions and C_{12} allows the
frequency response of the attenuator to be adjusted to an optimally flat condition. The
resistor R_{0} is a parallel combination of a adjusted to an optimally flat condition. The
resistor R_{69} is a parallel combination of a resistor R_{69} is a parallel combination of a
$100 \mathrm{k} \Omega$ and $3.9 \mathrm{M} \Omega$ resistor.

Fig. 9. Basic rectifier circuit

Fig. IO. Input attenuator. -
in the circuit as indicated and the 500Ω pot in series with $R_{13} . R_{5}$ (Fig. 3) and R_{6} and R_{7} need only be single-turn pots.

For the C_{1}, the author used a fairly expensive 63 V , polycarbonate type but believes that a much cheaper polyester type should be just as satisfactory.
There is nothing special about the remainder of the components of Fig. 3. Z_{2} is a standard 5.6 V zener diode from the Mullard, BZY88 range and has a temperature coeflicient of about $-0.2 \mathrm{mV} / \mathrm{C}$. This represents a change of about $-0.004 \% /{ }^{\circ} \mathrm{C}$ for the two reference voltages and should be more than adequate.

In Fig. 8, the offset adjustment for the f.e.t. op.-amp. may be either a ten-turn, $1 \mathrm{k} \Omega$ pot., or a single-turn, 100Ω pot. in series with a fixed resistor, R_{x}, of about 470 ohms, as shown. R_{51} need only be a single-turn pot., but R_{47}, R_{57} and R_{64} ideally need to be ten, or more, turn preset pots. (as does R_{68} in Fig. 10) since a resolution of about 1% is required. However, it is not impossible to achieve this resolution with single-turn pots., only tricky
Nothing has been said, so far, about the type of digital and overload indicators used. For the seven-segment digital indicators the author chose "Minitrons" because, in his opinion, these are hard to beat for a combination of size, price and low current consumption. Types 3015 F and 3015G have both been used and are widely available. The type 3015 F indicates the digits 0 to 9 and a right-hand decimal point. The type 3015G indicates " + " and " -" signs, the digit " 1 " and a right-hand decimal point. One of the many, cheap le.ds now available is probably the obvious choice for an overload indicator, although a 6.3 V filament bulb rated at 40 mA is worth considering.

Construction and adjustment of circuits

The obvious place to start on the construction of the d.v.m. is with the power supplies and if the monolithic regulators are used, as

Fig. 12. Stabilized twin $5 V$ power supply.
suggested by the author, these will present no difficulty. The circuits of Figs. 3 and 4 should then be constructed on two separate circuit boards as illustrated in Figs. 13 and 14. It is suggested that, if i.c. sockets are not used, all the i.cs should be checked for correct operation before insertion into the circuits. In particular, the input offset voltages of the 709 and 741 op.-amps. should be checked to ensure that they are within the manufacturer's tolerances. To simplify the checking and setting-up of the analogue circuit, $1 C_{6}$ should initially be left out of circuit.

When the circuit of Fig. 3 has been constructed (less $I C_{6}$) it can be checked and initially adjusted. All three power supplies should be connected and the \bar{C} and "hold" inputs should be temporarily connected to the +5 V line. With the power supplies switched on a few quick voltage checks can be made; in particular the reference voltage of Z_{2} and the output voltages from $I C_{1}$ and $I C_{5}$ can be checked. They should be approximately $+5.6 \mathrm{~V},+2 \mathrm{~V}$ and -2 V , respectively. The positive input to $I C_{2}$ and the negative inputs to $I C_{4}$ and $I C_{7}$ should also be about +2 V . If these latter voltages are correct, the emitters of $T r_{1}$ to $T r_{4}$ should be at very nearly zero volts and may be
adjusted to precisely zero, with the $V_{\text {in }}$ inputs shorted together, by means of R_{3}. The reference levels to the two comparators, $I C_{8}$ and $I C_{9}$, should now be adjusted. To do this, a small variable voltage source of between about -5 mV and +5 mV should be fed to what will be the output of $I C_{6} . R_{7}$ should be adjusted so that the output from the collector of Tr_{9} changes from about zero volts to about +5 V when the small variable voltage source is reduced just below -3 mV . The output of $T r_{9}$ collector should revert to zero volts when the variable voltage just exceeds -1 mV . Similarly, R_{6} should be adjusted so that the emitter of $T r_{6}$ undergoes identical output voltage changes when the variable voltage source exceeds about +3 mV and is reduced below about +1 mV . If all is well, the operation of the switching transistors Tr_{1} to Tr_{4} may now be checked. Adjust the small variable voltage source to some positive value in excess of +3 mV so that the emitter of $T r_{6}$ becomes +5 V . Measuring the output voltage at the junction of the emitters of $T r_{1}$ to $T r_{4}$, disconnect the \bar{C} input from the +5 V line and connect to ground. The voltage reading should change from zero volts to the +2 V reference level. Reconnect the \bar{C} input to the +5 V line and repeat the test with the variable

Fig. 13. Layout of analogue circuit.

Fig. 14. Control circuitry and display logic
voltage source adjusted to some negative value below -3 mV so that the collector of $T r_{9}$ is at about +5 V . The voltage reading should change from zero volts to the -2 V reference level. If all checks are satisfactory, disconnect the voltage supplies and insert $I C_{6}$ into the circuit No more checks or adjustments can now be made until some preliminary checks have been carried out to the digital circuit board. To do these, connect the +5 V supply to it and temporarily connect the "auto-Manual switch" input (see Fig. 14) to ground and the V_{o} input to the +5 V line. With the supply switched on, the operation of the clock oscillator, the four decade counters and the
divide-by-two counter may be checked and should be observed to be running as a normal counter. The \bar{C} output should be constant at the logical " 1 " level, i.e. about +5 V . If the digital indicators have been connected, they should be continually indicating zero and the overload indicator should be OFF.

If the switch input is now disconnected from ground, the four decade counters and the divide-by-two flip-flop should become permanently set to zero and stop counting after three complete cycles of the main counter. The "hold" output should also become logical zero. On re-connection of the switch input to ground, the main counter
should start recounting and the "hold" output become logical " 1 " again. If the V_{o} input is now disconnected from the +5 V line and connected to ground the A flip-flop should be observed dividing by two and the \bar{C} output should become constant at the logical zero level. This completes all the useful checks that can be made before interconnecting the analogue and digital circuit boards and if all the tests have proved successful, this should now be done. If not, the wiring should first be checked (this should, of course, have been done before any testing was carried out) and then an attempt made to discover any faulty components.

Fig. 15. Input circuit hyyou.

With the analogue, digital and power supply boards interconnected, the digital and overload indicators connected, the $V_{\text {in }}$ inputs shorted together and the switch input connected to ground, the power supplies should be switched on. If all is working correctly, a voltage of a few millivolts, positive or negative, will probably be indicated and should be adjustable to zero by means of R_{4} and/or R_{5}. To test that the circuits are functioning correctly, a variable voltage source of from just under -2 V to just over +2 V should be applied to the $V_{\text {in }}$ inputs. Varying this input voltage source between its limits should result in digital readings, of correct polarity, corresponding approximately to the applied voltage. Indicated readings greater in magnitude than 1999 should result in an overload indication. If reversed polarity indications are given, it is a simple matter to correct this by reversing the connections of P_{1} and P_{2} to the digital circuit board.
The auto/manual function can be checked by disconnecting the switch input from ground. If all is well, the display will become "frozen" and will not alter when the input voltage is varied. Upon reconnection of the switch input to ground, the digital readout should again follow the input voltage. Final adjustments to R_{4} and R_{5} can now be made and should be carried out in the following manner. With the $V_{i n}$ inputs shorted together, disconnect the switch input from ground to freeze the display. This effectively short circuits the output from $I C_{6}$ to its negative input. Next, connect a voltmeter between ground and the V_{o} output. When R_{4} is adjusted correctly, the V_{0} output will be at about +5 V . As the wiper of R_{4} is adjusted, positively and negatively, about this position, a point on either side will be found where the V_{o} output falls to zero volts. For a correct setting, the wiper of R_{4} should be exactly mid-way between these two points. Having adjusted R_{4}, reconnect the switch input to ground and adjust R_{5} for a zero digital readout. The V_{o} output will be observed to be indicating about +5 V with the occasional "kick" towards zero volts. The rate at which the "kicks" occur is an indication of the goodness of the zero adjustment. The less frequent the kicks, the better the adjustment. A kick once every second indicates a zero adjustment ten times better than that digitally indicated, i.e. to within $100 \mu \mathrm{~V}$ of the true zero. (Remember, the least significant digit is 1 mV .) Apart from the accurate adjustment of the two reference voltages, this completes the testing and setting-up of the basic digital voltmeter circuits. All that remains now is to construct and test the a.c./d.c. input stages. This should present no difficulty, and apart from the adjustment of R_{51}, final adjustment of the remaining preset controls should be left until the instrument is finally housed. When the circuit of Fig. 8 has been constructed, R_{51} should be adjusted for zero direct volts at the junctions of the collectors of Tr_{3} and $T r_{4}$. When the instrument is complete, R_{46} becomes the zero adjustment for direct voltages, and R_{63} becomes the zero adjustment for a.c. voltages.
Before proceeding to a discussion on the calibration of the instrument there is a detail

Specification
 Ranges. 200 mV full-scale a.c. and d.c. 2 V full-scale a.c. and d.c. 4 V full-scale a.c. and d.c. 20 V full-scale a.c. and d.c. 40 V full-scale a.c. and d.c. 200 V full-scale a.c. and d.c. 400 V full-scale a.c. and d.c. (Readings multiplied by two on $400 \mathrm{mV}, 4 \mathrm{~V}$ etc.) 400 mV full-scale a.c. and d.c. (Maximum resolution $100 \mu \mathrm{~V}$.)

Input impedance. $500 \mathrm{M} \Omega$ up to 4 V fullscale. $10 \mathrm{M} \Omega$ and 10 pF above 4 V .

Display. $3 \frac{1}{2}$ digits. Overload indication. Readings up to 2500 . Polarity indication.

Accuracy. Error less than $\pm 0.1 \%$ of reading, $\pm 0.05 \%$ full-scale on direct voltage readings. Less than $\pm 0.5 \%$ of of reading, $\pm 0.05 \%$ full-scale on alter-nating-voltage ranges.

Frequency range. 30 Hz to 100 kHz .
Mode. Continuously-sampling or manual "hold".
that has not, so far, been mentioned; it is the positioning of the display's decimal point for the various ranges. This may be easily achieved by adding an additional single-pole, four-way wafer to the range switch (S_{1}, Fig. 8). Thus as the range switch is altered, the appropriate decimal point of the four digital indicators is connected to the +5 V line.

Another, and final, point is the functioning of the polarity indicators when switched to the alternating voltage ranges. It is suggested that an additional pair of single-pole, 2 -way contacts are added to the a.c./d.c. function switch (S_{2}, Fig. 8). In the d.c. position, these two sections should connect the J and K inputs of the polarity flip-flop to the emitter of Tr_{6} and the collector of $T r_{9}$, respectively. Correct polarity will be thus indicated as previously described. In the a.c. position, these contacts should connect both J and K inputs to the +5 V line, with the result that an alternating, plus and minus polarity indication will be given. The rate of alternation will vary from 10 Hz to 5 Hz for input voltages varying from zero to full scale deflection, respectively.

Calibration

Assuming that the constructor has finally housed the circuit boards and other components, and connected them up, the first step in the calibration of the instrument is the adjustment of the two reference voltages (R_{1} and R_{2}, Fig. 3). To do this, switch the a.c./d.c. function switch to "d.c.", the range switch to " 2 V " and the display switch to " $\times 1$ ". Short circuit the inputs and adjust the d.c. zero for a zero reading. Apply an accurately known direct voltage of a little less than +2 V to the inputs and adjust the negative reference voltage until a digital reading exactly equal to the applied voltage is obtained. Reverse the polarity of the applied voltage and adjust the positive
reference voltage for a correct digital reading. The basic range of the d.v.m. has now been calibrated and the remaining calibration adjustments should be carried out in the following order.

1. Switch the display switch to " $\times 2$ " and apply a known voltage of a little less than +4 V . Adjust R_{64} (Fig. 8) for a display reading of exactly half this applied voltage.
2. Switch the range switch to " 200 mV " and the display switch to " $\times 1$ " and apply a known voltage of a little less than +200 mV . Adjust R_{47} (Fig. 8) for a display reading equal to the applied voltage.
3. Switch the range switch to " 200 V " and apply a known voltage of a little less than +200 V . Adjust R_{68} (Fig. 10) for a display reading equal to the applied voltage.
(Calibration of the $\times 100$ attenuator may be carried out on the 20 V range by applying a known voltage of just under +20 V if a known voltage of the order of +200 V is not available.)
4. Switch the range switch to " 2 V " and the a.c./d.c. switch to "a.c." and adjust the a.c. zero for a zero reading with the inputs shorted together. Apply a known a.c. voltage of just under 2 V r.m.s. at a frequency of about 1 kHz and adjust R_{57} (Fig. 8) for a display reading equal to the applied voltage.
5. Switch the range switch to " 200 V " and apply an alternating voltage of about 300 Hz , adjusting it for a digital reading of just under 200 V . Vary the frequency of the signal, maintaining a constant output voltage, to about 90 kHz and adjust the variable capacitor of the $\times 100$ attenuator until the original voltage is indicated. (As for the 200 V d.c. range, the capacitor of the $\times 100$ attenuator may be adjusted with the range switch switched to the " 20 V " range and applying a variable frequency signal of just under 20 V , should a 200 V signal not be available.)

The accuracy of the above calibration procedure depends upon the accuracy of the known test voltages and these, ideally, should be better than $\pm 0.05 \%$ for the d.c. ranges and better than $\pm 0.5 \%$ for the a.c. ranges. Possibly the ideal method is to measure these test voltages with an already calibrated d.v.m. of greater accuracy than the subject of this article. Obtaining the use of such an instrument may be difficult for the amateur constructor but, in this respect, it is thought possible that some local universities may be willing to allow access to their electronic instruments. If not, other solutions may, hopefully, present themselves to the constructor.

Component suppliers

Ancom Ltd, Devonshire St, Cheltenham, Glos. RS Components Ltd, P.O. Box 427, 13-17 Epworth St, London EC2P 2HA.
(RS Components Ltd will only supply retailers, trade service technicians, industrial or educational users. Retailers are able to order components for private buyers.)
Semiconductor Supplies, 55 Whitehorse Road, Croydon CR0 2JG.
Vero Electronics Ltd, Industrial Estate, Chandler's Ford, Eastleigh, Hants.
(Veroboard-a similar material is available from RS Components.)

November Meetings

Tickets are required for some meetings: readers are advised therefore to communicate with the society concerned

LONDON

18th Oct. RTS - "Advanced electronic editing systems ${ }^{n}$ by J. Southgate at 19.00 at London Weekend Television, South Bank TV Centre, Upper Ground, SE1.

25th Oct. SERT - "Some future trends in colour TV tubes" by G. R. Diacon at 19.00 at IBA, 70 Brompton Rd., SW7.

Ist. IEE - "The management challenge for electrical engineers" by Dr. A. C. Copisarow at 17.30 at Savoy P1., WC2.

1st. RTS - "Cable access at Bristol" by P. Lewis and colleagues at 19.00 at London Weekend Television, South Bank TV Centre, Upper Ground, SEI.

2nd. IEE/IERE-Colloquium on "Mass spectrometry at 14.30 at Savoy Pl.. WC2.
Sth. IEE/IERE - Colloquium on "Display technology" at 10.30 at Savoy Pl., WC2.

6th. IEE - "Performance of modern thyratrons" by H. Menown at 17.30 at Savoy PI., WC2.
6th. IEE - "The position of the graduate engineer in a large company" by T. Maycr at 18.30 at Imperial College, Exhibition Rd., SW7.

7th. IEE - "Some new possibilities in radar and navaids" by Prof. E. D. R. Shearman at 17.30 at Savoy Pl., WC2.

7th. BKSTS - "The changing world of the news cameraman" film at 18.15 lecture at 20.45 at the National Film Theatre. South Bank, Waterloo. SE 1
8th. SEE - "Use of dessicants in electronics and packaging" at 18.00 at Imperial College, Exhibi tion Rd., SW7.
13th. AES -- "Professional microphones their use and misuse" by Antony Askew and Angus McKenzie at 19.15 at the IEE, Savoy Pl., WC2.

14th. IERE - Colloquium on "Domestic equip ment control systems" at 14.00 at 9 Bedford Sq., WCl 1 .

14th. IEE - "Data communication by packet switching" by Prof. P. T. Kirstein at 17.30 at Savoy Pl., WC2.

15th. IEE - "Lord Kelvin and his measuring instruments" by J. T. Lloyd at 17.30 at Savoy Pl., WC2.

15 th. IEE - "Novel photo-detectors using semi conductor interfaces" by Dr. M. J. Hampshire at 18.00 at Thames Polytechnic, Riverside House Annexe. Beresford St., SE18.

16th. IEE - "The broadcasting of traffic information to road vehicles" by R. S. Sandell at 17.30 at Savoy Pl.. WC2.

20th. IEE - "High capacitance strain gauge for use at extreme temperatures" by Dr. B. E. Noltingk at 17.30 at Savoy Pl., WC2.

20th. IERE - "Developments in position measure ment techniques" by D. J. Phipps at 18.00 at 9 Bedford Sq., WCl.

22nd. IEE - "On the design of low-pass, linear phase, recursive digital filters" by Prof. S. C. Dutta Roy at 17.30 at Savoy Pl.. WC2.

22nd. RTS - Shoenberg Memorial Lecture "The Open University: a progress report and hopes for the future" by Dr. Walter Perry at 19.00 at the Royal Institution, Albemarle St., W 1.

26th. IEE - Discussion on "Measurement, test and quality control of fuses with particular reference to low voltage fuses" at 17.30 at Savoy PI., WC2.

28th IEE - Discussion on "Semiconductor devices in hostile electrical environments" at 17.30 at Savoy Pl., WC2.

28th. IERE - "Design and application of active compensation circuits for servo control systems" by Dr. D. R. Wilson at 18.00 at 9 Bedford Sq., WC1.

28th. BKSTS - "Opticals in creative art" at 19.30 at Thames Television Theatre, 308-316 Euston Rd., NWI.
29th. IEE - "The development of microwave transmission systems" by Dr. P. A. Matthews at 18.30 at King's College, Strand, WC2.

ABERDEEN

6th. IERE/IEE - "Medical and industrial electronics - from text book to shop floor" by J. G. Mitchell at 19.00 at Robert Gordon's Institute of Technology, St. Andrews St.

BELFAST

13th. IERE - "Forum on designing for reliability" at 18.30 at Main Lecture Theatre, Ashby Institute, Queen's University, Stranmillis Rd.

BIRMINGHAM

21 st. IERE - - "Pin-wheels to pulses: electronics servant of postal sorting" by S. W. Godfrey at 19.00 at City of Birmingham Polytechnic, Franchise St., Perry Barr.

BOURNEMOUTH

2Hh. IERE - "Solid state microwave sources" by H. J. Finlay at 19.00 at the Technical College.
27th. SERT - "Servicing aspects of recent Thorn colour TV receivers" by B. Hinton at 19.15 at Room B7, Bournemouth College of Technology.

BRISTOL

15th. SERT - "Television for the blind: an eye opener into the medium" by J. Rossetti at 19.30 at Cabot House, Bristol Polytechnic, Ashley Down Rd.

28th. IERE/IEE - "Video recording" by J. Jeffrey at 18.00 at Queen's Building, the University.

CARDIFF

14th IERE - "Solid state microwave power amplifiers" by G. B. Morgan at 18.30 at Dept. of Applied Physics, UWIST

CHATHAM

1st. IERE -"Electronics in the commercial vehicle industry" by G. Leonard at 19.00 at the Medway and Maidstone College of Technology

CHELMSFORD

28th. IEE - "Telephony - past; present and future" by J. B. Terry at 18.30 at King Edward VI Grammar School, Broomfield Rd.

CHELTENHAM

20th. IERE/IEE - "Value for money in project management" by T. G. Clark at 19.30 at G.C.H.Q. Oakley.

EDINBURGH

7th. IERE/IEE - "Medical and industrial elec tronics - from text book to shop floor" by J. G. Mitchell at 19.00 at Napier College of Science and Technology, Colinton Rd.

GlASGOW

8th. IERE/IEE - "Medical and industrial electronics - from text book to shop floor" by J. G. Mitchell at 19.00 at Glasgow College of Technology, Hanover St

HIGH WYCOMBE

29th. IEE - "Developments in information display systems" by R. Stafford and Dr. T. Coutts at 19.30 at High Wycombe College of Technology.

HULL

14th. SERT - "Electronics in motor cars" by L. Phoenix at 19.30 at the E. H. Bullock Lecture Theatre, College of Technology, Queens Gardens.

LIVERPOOL

14th. IERE - -The role of electronics in the movement of shipping" by K. D. Jones at 19.00 at Dept. of Electrical Engineering and Electronics, the University.

LOUGHBOROUGH

13th. IERE -"Fourier analysis of video telephone systems" by Dr. D. E. Pearson at 19.00 at Edward Herbert Building, the University.

MANCHESTER

8th. IERE - "Marconi automatic testing" by W. J. Stickland at 18.15 at Renold Building, UMIST

NEWCASTLE-UPON-TYNE

14th. IERE - "Codes and coding" by J. T. Kennair at 18.00 at Main Lecture Theatre, Ellison Building, the Polytechnic, Ellison P|

NEWPORT, l.o.W.

9th. IERE - "Colour television" by A. C Maine at 19.00 at Isle of Wight Technical College.

PLYMOUTH

7th. RTS/AES - "Quadraphonics" by Dr. Keith Barker at 19.50 at Plymouth Polytechnic.

15th IERE/IEE - "Developments in digital transmission systems" by G. H. Bennett at 19.00 at Main Hall, the Polytechnic.

PORTSMOUTH

14th. IERE - "What's new in multilayer printed wiring board manufacture" by G. C. Wilson at 18.30 at the Polytechnic.

READING

8th. IERE/IEE - "Ambisonic reproduction of sound" by Prof. P. B. Fellgett at 19.30 at the J. J. Thomson Physical Laboratory, University of Reading. Whiteknights Park.
29th. IERE -- "Digital filters" by A. R. Owen at 19.30 at the J. J. Thomson Physical Laboratory, University of Reading, Whiteknights Park.

SHEFFIELD

28th. IERE/IEE - "World wide communication" by R. T. Mayne at 18.30 at the University

SOUTHAMPTON

20th. SERT - "Television receiving aerials" by R. S. Roberts at 19.30 at the Technical College.

Entertainment Electronics at Berlin

2nd International Radio \& Television Exhibition

The motto of the second international radio and television exhibition in Berlin was 50 years of German radio broadcasting, but by far the biggest attraction was video equipment. With more than a dozen different formats on show for picture playback over television receivers, the choice between four surround-sound systems takes a decidedly back seat.

The Philips long-playing video disc (VLP) system was a major feature at the show. Philips technique allows a maximum playing time of 45 min , though when the system is marketed in 1975 it will probably use a $30-\mathrm{min}$ playing time, from a $30-\mathrm{cm}$ wear-free disc.
Because the VLP discs contain one television picture per revolution a variety of operating modes are available: fast forward play (at twice normal speed), reverse continuous still picture, frame-byframe reproduction, slow motion forward and reverse (adjustable from 40 ms to 4 s), as well as normal picture reproduction. A remote control unit allows any of 45,000 frames to be selected, amounting to almost immediate random access, and because frame-to-frame crosstalk is sufficiently low each frame can be completely different. This gives the VLP potential outside the entertainment and instructional fields.

At the exhibition details of the optical scanning, signal processing and control systems were released, but first a recap.

The disc is impressed with picture information in the form of a spiral "track" consisting of a series of $0.8-\mu \mathrm{m}$ wide, $0.16-\mu \mathrm{m}$ deep pits of variable length and at variable intervals. The repetition rate of the pits carries the brightness signal and the length of the pits conveys the colour and sound information. The rigid disc, made from a transparent vinyl polymer $1 \frac{1}{4} \mathrm{~mm}$ thick, is coated on one side with a thin metal reflecting layer and information is "read off" by a beam of plane-polarized light from a 1 mW helium-neon laser. Light is reflected by the record, picked up by a lens again and focused onto a photodiode, less light being received when a pit passes in front of the lens, due to diffraction, than when a smooth part does.

With a pitch of $2 \mu \mathrm{~m}$ (for a $30-\mathrm{min}$ disc), the track density is $500 \mathrm{turn} / \mathrm{mm}$. Half-brightness spot size is about $1 \mu \mathrm{~m}$ at the pit but is much smaller at the
transparent surface so that contamination or damage have comparatively little effect. The focused spot is located in the plane of the pits and kept there by a control system.

Another opto-electronic control system positions the beam to within $\pm 0.2 \mu \mathrm{~m}$ from the track centre and shifts the optical system radially at $50 \mu \mathrm{~m} / \mathrm{s}$, corresponding to $2 \mu \mathrm{~m} / \mathrm{rev}$. Rotational speed is $1500 \mathrm{rev} / \mathrm{min}$ for the PAL version (an $1800 \mathrm{rev} / \mathrm{min}$ machine for NTSC is due at the end of this year) or 25 rev $/ \mathrm{s}$, allowing one picture (two fields) per revolution, held to within 0.1% by a further control system.

Master records from which the moulds are made for pressing VLPs are made from glass, with a photoresist layer 100 to 160 nm thick that is cut by a high power laser. This is done in real time, with the potential that a scene can be recorded directly from a video camera. The moulds are made in the usual way from the master by electroplating.

Signal processing

The photographic process used in writing information onto the master record is highly non-linear, so a digital recording technique is the only practical way of going about things. Using the VLP coding method, it turns out that at $25 \mathrm{rev} / \mathrm{s}$ the maximum video bandwidth is 3 MHz at the inner part of the record $(10 \mathrm{~cm}$ diameter). Thus if the normal PAL video signal was used as modulation all of the colour information would be lost, this being carried either side of 4.43 MHz . So the colour subcarrier frequency is reduced to 1.46 MHz , with a bandwidth of $\pm 500 \mathrm{kHz}$. For stereo sound, two f.m. carriers are used, one at 350 kHz and one at 650 kHz , (Fig. 1) with $\pm 50 \mathrm{kHz}$ deviation.
Brightness information, limited in bandwidth to 3 MHz , frequency modulates a 6 MHz carrier with a modulation index of less than unity. This gives first-order sidebands wider than the deviation and extending $\pm 3 \mathrm{MHz}$ either side. These signals - brightness, colour and sound
are added in the amplitude ratios of $20: 4: 1$, symmetrically limited and then recorded. Limiting provides rectangular pulses in which brightness is contained as frequency modulation, while colour and sound give a symmetrical width

Fig. 1. If the normal PAL video signal modulated the VLP disc carrier directly, colour information encoded at 4.43 MHz would be lost as video bandwidth is about 3 MHz . Therefore the colour information is transposed down to 1.46 MHz , while luminance information frequency modulates the $6-\mathrm{MHz}$ carrier, only the first lower sideband being recorded.
modulation of the pulses (Fig. 2). In effect, the sound and colour signals are singlesideband modulation of the brightness signal as the carrier and symmetrical limiting produces the upper sidebands - at the expense of power in the lower sidebands, of course.
in the recording unit, the brightness information is taken from the PAL video signal by a 3 MHz low-pass filter prior to modulating the frequency of a multivibrator circuit. This gives rectangular pulses whose harmonics must then be filtered out so that the f.m. brightness signal has a sufficiently low rise time to show pulse width modulation (by the colour and sound signals) after combination and limiting.
The colour signal from the original video signal is filtered out and fed to a variable-gain amplifier to maintain constant level of colour signal, as derived from the bursts, and then reduced to 1.46 MHz .

The playback unit has several ínteresting features. Apart from demodulating the brightness and sound signals it must restore the colour subcarrier frequency to 4.43 MHz for playback on domestic TV receivers.

Originally, the recorded colour subcarrier frequency was 1 MHz , and the PAL subcarrier at 4.43 MHz was restored using a double mixing technique together with a $\div 64$ phase-locked loop to synchronize a 1 MHz oscillator to the line sync frequency. The current system is different, in that the colour carrier is changed to 1.46 MHz - to allow an increase in modulation depth - and the colour-burst
frequency is used as a reference instead of the line sync frequency. To recreate the PAL colour signal with the requisite stability, two signals are formed; one containing the required colour modulation and the other having the appropriate stability. These two signals are made 4.43 MHz different and they are both given the same frequency shift due to speed changes; thus subtractive mixing gives the reconstituted PAL colour signal.

In practice, a $1.46-\mathrm{MHz}$ oscillator is gated by the $4.43-\mathrm{MHz}$ colour burst, plus errors in frequency, and locked with a kind of flywheel sync circuit, so that the $1.46-\mathrm{MHz}$ signal takes up the errors. This is mixed with a $4.43-\mathrm{MHz}$ crystal oscillator to give a $5.89-\mathrm{MHz}$ carrier, which apart from the errors due to speed changes is otherwise stable. Finally, this is mixed with the colour signal from the record i.e. a modulated 1.46 MHz plus drift. The modulated difference signal, with no drift and the stability of the crystal, is the PAL colour signal.

A useful feature is the drop-out detection circuit. Here information below 2.5 MHz is detected for drop-out. If a pit is missing, the detector responds to the lowered frequency by operating a switch for 3μ s to allow the brightness of the preceding line to be used instead. (A 64μ s delay line holds this.) In practice this switch operates before the signal gets to the f.m. demodulation circuits. When drop-outs occur the colour information is switched out. Because of the averaging with the signal in the previous line in PAL receivers, the missing colour fragments appear at half saturation, thus preventing spikes. There is also a sample and hold circuit in the sound channel used to counteract changes in signal level during a drop-out.

Control systems

Constraints on the optical system result in a wide aperture and hence small depth of focus. As the depth of focus is $1 \mu \mathrm{~m}$ and the vertical record position may differ by up to $500 \mu \mathrm{~m}$ from a true plane, you can see the need for this to be accurately controlled!

Displacements are detected by measur ing capacitance between the metallized surface of the record and a $1 \mathrm{~cm}^{2}$ electrode bonded to the objective lens. At a distance of $100 \mu \mathrm{~m}$ an accuracy of 1% is sufficient to determine the objective position by $1 \mu \mathrm{~m}$. The lens is suspended in springs and driven by a coil in a radial magnetic field, rather like a moving coil loudspeaker. Capacitance is measured using an oscillator and f.m. ratio detector.

Two control systems are used to follow the pit track, one for slow tracking of the spiral and the other for rapidly centring the spot in presence of eccentricity. To keep the spot on the track, it can be moved radially by a mirror and coil pivoted in a magnetic field behind the objective lens. Control signals are obtained with two auxiliary light beams focused on either side of the track and reflected from the record surface onto two photodiodes. The difference between photodiode
outputs controls the pivoting mirror. For fast, slow, reversemotion and stationary pictures, a rapid movement during the field flyback period is needed. The mirror movement can behave like a ballistic galvanometer as the opened control loop has a low resonant frequency; the jump is effected therefore by opening the loop, applying an accelerating current pulse through the coil followed by retarding a pulse, and then closing the loop. The average current in the mirror coil controls the radial transport mechanism to move the optical system across the record.

Record speed is held to $25 \mathrm{~Hz} \pm 0.1 \%$ by a further control system that operates from a tachogenerator coupled to the turntable shaft.

Optical systems

In "reading out" information from the track pits, a lens is used with a numerica! aperture of 0.4 . Spot size is about the theoretical minimum at this aperture, and diffraction, together with the radial Gaussian intensity distribution at the lens entrance pupil. produces an half-intensity diameter of $0.9 \mu \mathrm{~m}$. Because the pit size is smaller than this, light is diffracted and falls largely outside the lens aperture. Maximum light is transmitted to the photodetector when pits are absent.

As the laser beam is linearly polarized, a quarter-wave plate and polarizing mirror ensure that incident and reflected light beams are effectively separated (Fig. 3).

For maximum modulation of the photodetector current, reflected light from a pit must have a phase difference of 180° from that reflected from the surface in the vicinity of the pit. This is arranged by making the pit a quarter-wavelength deep. The two intensities should be equal of course, and this is achieved by dimensioning spot and pit sizes so that the same amount of light falls outside a pit as falls into it. (Modulation depth achieved at the inner-most part of the track and at 7 MHz pit frequency, is 15\%.)

Despite this constraint, the most important thing in determining spot size is the highest recorded pit frequency, nomin ally 6.5 MHz . This can be altered by an intermediate lens (Fig. 3) which can make the Gaussian beam distribution at the entrance pupil of the main lens wider or narrower. The greater the homogeneity in the light distribution the smaller the spot and thus the higher the maximum recorded pit frequency.

The trade off is power in the laser beam and the particular compromise chosen means that 80% of laser power is used. The remaining inhomogeneity of the beam results in a bandwidth $92 \frac{1}{2} \%$ of the theoretical maximum. If 99% of laser power were used the bandwidth would be 16% smaller.

Crosstalk from neighbouring tracks is readily assessed because they have dif ferent pit frequencies. A crosstalk level of -50 dB has been measured for $1-\mu \mathrm{m}$ track widths which is said to be in good agreement with a level calculated by Fourier analysis.

With all this complexity the VLP player is not going to be cheap, about the cost of a colour receiver, Philips say. Nor do we expect two other optical (laser) systems (MCA Disco-Vision and one by Thomson-CSF) to be any cheaper. To make biggest impact, video systems will need to be much less expensive than that and even the Teldec TED player is costly at $£ 200$ (DM1148). The TED system will be sold in Germany from January, with Scandinavia and the U.K. to follow later. The TED disc catalogue lists well over 100 titles with discs priced between DM 10 and 25.

Philips are already talking with potential licensees as well as having discussions over standardization with MCA in the USA. Clearly, the existence of competing systems is going to seriously weaken video disc potential. Its quite unlike the $33 \frac{1}{3}-$ $45 \mathrm{rev} / \mathrm{min}$ situation or the surroundsound systems competition where the same mechanism is common to all systems. This situation will also hold back penetration of video cassette/cartridge systems. as many potential buyers will presumably hold back if a disc system with its attraction of lower-cost programmes is not too far off.

There would appear to be potential in the VLP for wide bandwidth sound coding. As the VLP system is digital, presumably the p.c.m. technique would be a possibility (see, for instance, page 548). Then we could have colour pictures and high quality multi-channel sound off the same mechanism; with amplitude response down to as low as you like, no wow and flutter, no rumble, no tracing distortion, and no distortion due to tracking error. Alternatively, one could use the wide bandwidth solely for frequency-division multiplexing with the capability of storing 30 programmes on one disc. Roll on ALP!

Magnetic video disc

Whether other systems being developed will offer lower-cost players remains to be seen, but another technique, using a magnetic disc, promises low-cost hardware presumably at the expense of higher disc cost as a result of the more expensive duplicating process. This is the RabeBogen magnetic disc recorder (MDR) mentioned briefly last issue. Here the idea is to make use of the turntable already present in many homes. Unlike the optical and mechanical systems, it allows home recording.

A mechanical system is used to guide the magnetic record and playback head using the stylus-in-groove system. The newly developed head, with its effective gap width of 250 to 350 nm , glides across the specially treated record surface. The magnetic material is chromium dioxide with a microstructure of the order of the recorded wavelength $(500 \mathrm{~nm})$.

A rotational speed of $156 \mathrm{rev} / \mathrm{min}$ (giving a linear velocity varying from 1.63 to $2.42 \mathrm{~m} / \mathrm{s}$ at 20 and 30 cm diameter respectively) and a track spacing of $25 \mu \mathrm{~m}$ results in a playing time of 12 min per side. Bogen are currently working to reduce this to $78 \mathrm{rev} / \mathrm{min}$ to give

24 min per side. Storage density is 1.57 $\times 10^{9}$ bits per side with a track spacing of $50 \mu \mathrm{~m}$ and 3.14×10^{9} bits per side at $25 \mu \mathrm{~m}$ - very high compared to the nominal 20,000 bits $/ \mathrm{in}^{2}$ mentioned in our video tape cassette survey (Dec. 1972 page 580). Bogen claim that turntable speed variations are not a problem as monochrome receivers have a synchroniza tion range of around $\pm 10 \%$.

How convertible existing turntable mechanisms without a $78 \mathrm{rev} / \mathrm{min}$ speed are we're not sure, but even if they are not, this method would still probably have a cost advantage. At $33 \frac{1}{3} \mathrm{rev} / \mathrm{min}$, eight audio channels become feasible, with a playing time of 56 min per side.

Video cassettes

The Electronics Industries Association of Japan has recently decided to adopt three video cassette systems as standards for video tape recorders. This is an addition to the existing CP-508 standard for cartridge video machines. This last standard covers a $1.3 \mathrm{~cm}\left(\frac{1}{2}\right.$ in) tape cartridge system (the EIAJ define a cartridge as containing one tape reel and a cassette as having two) initially developed by Matsushita in 1971. Marketing of equipment for this system has been held back until now, and as a result the standard for cartridge video recorders was agreed before market introduction. Since then National have been joined by Sanyo, Toshiba, Shiba Electric, General Corporation. Victor Company, Mitsubishi and Hitachi.
Matsushita have three variants of their NTSC machine; one for record and playback, ore including a TV tuner, and one for playback only. The NV5120E shown was a PAL version of the record/ playback model (see photograph). The 1.3 cm tape used in these machines is interchangeable with that used on openreel video tape recorders.
With cassette machines, both 1.9 cm ($\frac{3}{4} \mathrm{in}$) and 1.3 cm tape systems have been adopted. The three systems are: the 1.9 cm system* adopted by Sony, Matsushita and the Victor Company of Japan (now joined by TEAC and Nippon Electric Company); the 1.3 cm system of Philips (now adopted by 15 European manufacturers, one in the U.S.A. and Hitachi/Shibaden in Japan); and the 1.3 cm system of Sanyo.

For the 1.9 cm cassette, the reels are positioned in a similar way to an audio or digital tape cassette with the two reels in the same plane, Fig.4a. Here the tape needs to be slanted in relation to the head. As with most cassette systems the tape has to be extracted by a complex mechanism but fast winding must be done when the tape has been returned to its cassette. In the Philips 1.3 cm cassette the two reels are concentric,

- We have recently heard from Action Video Ltd that they are modifying N.T.S.C. versions of the $\frac{3}{4}$ in U-VCR Sony designed cassette recorders to the PAL system. Action Video are at 45 Great Marlborough Street, London W 1.

Fig.2. In coding the VLP, symmetrically limiting signals for luminance (a), colour (b) and sound (c), and combining in the ratios 20:4:1, produces a train of rectangular pulses whose frequency represents brightness and whose duty cycle carries colour and sound information.

Fig.3. If the VLP optical system, electromagnetic transducers are attached to the objective lens for focusing and to the mirror for centring and tracking. Laser beam is split by a diffraction grating to provide the two auxiliary spots before and after the main spot. Detectors either side of the main beam sense the reflected auxiliary beams to provide control signals for mirror movement.
(a)

(b)

(c)

(d)

Fig. 4 Four reel arrangements now standardized by the EIAJ for domestic video cassette/cartridge sustems.

Fig.4c (see also page 582 December 1972 issue). but as the tape is already slanted. the loading mechanism is simpler. In contrast to the $1.9-\mathrm{cm}$ cassette. fast winding is done around the head wheel. Both head wheel and tape move in the same direction to alleviate problems of the chromium dioxide tape sticking to the head wheel, making recorded tapes incompatible with open-reel machines.

In the Sanyo cassette, Fig.5b, tape loading is similar to the $1.9-\mathrm{cm}$ system. except that the capstan itself withdraws the tape. Fig.5d depicts the cartridge for comparison.

Bell \& Howell, who market JVC video equipment in Germany, Italy, Scandinavia and the U.K., will be selling the new 1.9 cm U-VCR machines made by JVC. Two PAL versions will be sold in Europe, the CR6000E recorder /player and the CR5000E player, both with remote control units.

RCA, who showed their MagTape SelectaVision video cassette system, have eliminated the complicated tape withdrawal mechanism used in most other cassette systems. The 1.9 cm tape remains in the cassette and when inserted into the player, contact is made with the heads by the headwheel entering the cassette, allowing a 90° tape wrap. But this simplification hasn't produced a low-cost machine. The recorder/player costing $\$ 795$, and a camera costing $\$ 300$, will be marketed early next year. The player includes receiver circuitry for recording television programmes.

Another notable video machine is the VTC 7100 Sanyo 1.3 cm cassette recorder. Weighing 5.5 kg with batteries it is a portable machine made for the C.C.I.R. norm and is accompanied by a hand-held camera weighing 2.3 kg . The cassette measures $155 \times 107 \times 25 \mathrm{~mm}$ and plays for 20 min . It uses two heads normally and four for slow-motion playback.
Sanyo will be selling a PAL version of the colour recorder VTC 7200 in August next year.
So the current total of video playback systems announced so far seems to be: five disc systems, four cassette tape systems, one cartridge tape system, four film players, as well as various open-reel tape machines. (Two systems have recently disappeared - Cartrivision and Ampex Instavideo.)

Surround sound

It was good to see Nippon Columbia publicly demonstrating their UMX system. This was devised by Duane Cooper of the University of Illinois and development of it has been taken up by Nippon Columbia. It arose out of considering which was the best way to transmit directional information, and theoretical analysis by Dr Cooper, using an harmonic synthesis approach, has turned up a universe of matrix systems, called UMX.

What comes out of the analysis is a two-channel phasor matrix system, called BMX, in which full mono compatibility is guaranteed, unlike QS and SQ, by deriving a truly omnidirectional signal (in
the horizontal plane) and in which a difference signal, of the same level, has a phase shift that lags the mono signal by an amount equal to the source angle measured from a certain norm. Simple sum and difference matrixing produces left and right signals whose amplitude coefficients are the same as for the QS system (see page 56 February 1972 issue), but the phase shifts are distributed in lots of 45° rather than zero or 90°.
The chief property of the matrix is that the phase relations between speaker outputs in four-speaker playback are rotationally symmetrical, the crosstalk components of a corner sound having a phase of -45° and $+45^{\circ}$ relative to the wanted corner sound. Experiments have shown 45° phase differences to be less "oppressive" than 90° phase differences. As well, localization is aided by this phase arrangement.

More interesting than this is the way in which the two base-band channels can be augmented by further channels to improve "directivity" and reduce sensitivity to listener position. Two supplementary channels, both phase-encoded omnidirectional channels, can be added to the base matrix at the consumers discretion, assuming they are present in the transmission media. This in fact is Nippon Columbia's proposal in essence - that the carrier channels are there for the taking, the baseband channels giving a better surround-sound capability in themselves than other basic two-channel matrix systems.

The total of four channels provides a "discrete" system, but it has been found that a discrete effect is obtained with narrow-bandwidth carrier channels of around 3 or 4 kHz . These frequencies modulate a 30 kHz carrier with a deviation of $\pm 6 \mathrm{kHz}$ and at a carrier level of $35.4 \mathrm{~mm} / \mathrm{s}$. The maximum frequency of 36 kHz means that a much wider range of pickups can be used with this system. Additionally, noise reduction techniques are not used, with the potential of cheaper decoders, and special stylus shapes and record materials are not necessary. Ordinary cutting equipment (Neumann SX68) can be used for manufacturing, according to Nippon Columbia, using half-speed cutting with tracing distortion correction. Even 17 cm (7 in) dises can be made.

It seems a great pity that this elegantly superior system is not available yet on the market, although Nippon Columbia have equipment at the ready. Maybe the uncommitted record companies, like Decca and Polygram, are looking to video disc techniques! But as there are three other surround-sound systems being marketed we think this one is deserving of at least an equal place in the market.

There is also a Qmx technique for surround-sound tape cassettes, which has a signal-to-noise ratio advantage over the proposal to divide the cassette tape into eight separate tracks. This is now more than a proposal as JVC are showing their four-channel cassette machine (noted on page 460 , September issue) which claims a 48 dB signal-to-noise ratio with
the JVC automatic noise reduction system.
Sansui were demonstrating integratedcircuit versions of their Variomatrix QS/RM circuitry. Three Hitachi chips will be available shortly in production quantities and they report considerable interest from European companies for their system. SQ is making inroads on the Continent, with Blaupunkt, Braun, Elac, Grundig, Körting, Loewe-Opta, Philips, Revox, Saba, Sharp, Siemens, Telefunken and Wega building in decoders. Connaught Equipment (Tate) announced an improved SQ automatic control technique that reportedly gives an all round 20 dB separation, but details are not being released yet.

National were demonstrating fourchannel broadcasting by distributing composite f.m. transmissions at 103.5 MHz to the Dorren Quadraplex system for reception by exhibitors. Dorren has also produced a chip for CD-4 demodulation. Claimed to be the biggest consumer i.c. produced, it is an l.s.i. 28-pin circuit with 320 transistors on the chip, and will be available in December.

But the most striking surround-sound demonstration at Berlin was the Sennheiser dummy-head stereo documentary disc. Intended for open-air headphones it sounds excellent with the closed type too. With it, one can apparently perceive sound images over three dimensions with astonishing realism using merely a dummy head containing two microphones, ordinary stereo equipment and stereo headphones. The record must be heard to be believed \dagger. There didn't seem to be any ambiguity, although the frontal images weren't quite as convincing as the back ones. During the exhibition stereo transmissions were made from RIAS, Berlin using this technique, and many press reports in Germany were calling this the sensation of the exhibition. Production of the record followed some interesting psychoacoustic work at the Heinrich-Hertz-Institut, on which we hope to report later.

Cassette machines

In this tenth year of the compact audio cassette one might have expected Philips to commemorate it in some way. Talk in recent years about four-channel, eighttrack cassettes led one to suspect that Philips may have overcome the problems associated with dividing down the track into eight sections, plus guard bands. Problems like reduced signal-to-noise ratio, worsened crosstalk, worsened tape wander and more critical tape/head alignment. But instead JVC have announced the very thing, using their automatic noise reduction system of DC-4 fame -a compatible competitor to the Dolby "B" system.

Grundig have adopted the Philips dynamic noise limiter in their CN710 and 720 machines, which both incorporate CrO_{2} tape switches, and claim a $50-\mathrm{dB}$ s / n ratio with CrO_{2} tape and d.n.l. A number of new Dolby " B " machines were seen, including the Telefunken

C2200, Trio KX-700, Sharp RT-480H, Uher CG360 with Dolby i.c. and 10-watts per channel output power, Aiwa AD- 1500 with a wow and flutter of 0.07% r.m.s. weighted (similar to Teac A-450 mechanism?) and $60 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio with GrO_{2} tape, $\mathrm{B} \& \mathrm{O}$ Beocord 1700 with a claimed $61 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio, and Dual C901 with wow and flutter of $0.09 \% \quad$ r.m.s. weighted $(0.12 \%$ DIN). Latest Dolby licensees are Garrard and Nordmende. A reported world shortage of chromium dioxide is slowing down penetration of the BASF Dolby cassettes and, while they were in evidence at Berlin. they are not expected to be marketed in the U.K. until late next year.

Hitachi have a new machine, model D-4500, with a combined record and playback head, claimed to be the first of its kind and using a three-motor, dual-capstan system. They claim the astonishingly low wow and flutter figures of 0.035 to 0.05% r.m.s. weighted. Most interesting open-reel tape recorder was the new Revox A700, which will no doubt be seen at London's Audio Fair along with their digital-readout receiver and some other products we haven't included.

To round off, here are some things that won't be at Olympia. Like television sets with headphones - one by Nordmende uses an infra-red link and many have sockets for connecting external audio amplifiers, elaborate ultrasonic remote controls, and in-line picture tubes. digital channel identification superimposed briefly on the screen on channel changing (Blaupunkt), a "stereo-quadro superthing" by Blaupunkt reportedly containing 650 transistors, 35 i.cs and 127 l.e.ds and with no moving parts; SECAM/PAL converters by Grundig and Blaupunkt; a colour projection system by Sony based on the Trinitron tube; and plenty of European-made portable colour sets.

As this report is entitled entertainment electronics we must mention the ITTShaub Lorenz Odyssee game device. This is a way of using a c.r.t. display to play games, in a similar way to the devices now appearing in some public houses. The ITT one is much better; it uses the domestic television receiver via the antenna input. The equipment includes waveform and video generators, programme cards that determine the display for one of ten games, modulator and sync circuits, vertical and horizontal movement controls for two players together with "ball" speed controls. When a "ball" and "player" meet ball direction is reversed. In some games. a coloured foil is attached to the screen to provide boundaries or tracks in the case of a track-following exercise. Options are table tennis, lawn tennis, volleyball, ice hockey, football, and five other amusements. Price is DM 400 .
+We hope to demonstrate this record on the Wireless World stand during the Audio Fair at Olympia. It is available from Sennheiser's U.K. agent Hayden Laboratories Ltd. 17 Chesham Road, Amersham, Bucks, price 50p.

International Audio Fair

Olympia, October 23rd to 28th

An increased number of exhibitors over previous years will be at the Audio Fair this year. A list of the brand names at the show is printed overleaf and some of the equipment which will be shown for the first time is also described briefly. The show is to open from 10 a.m. to $9 \mathrm{p} . \mathrm{m}$. except the final day, Sunday, from 11 a.m. to 7 p.m. Cost of admission will be 45 p . Wireless World has again organized five of the lectures which will run during the course of the show.
Admission for the lectures is free, but tickets must be obtained beforehand, either from the information kiosk or through an exhibitor.

Lecture demonstration programme

Tues. 23rd Oct.
2 p.m. Sound synthesis for the amateur by Douglas Shaw

4 p.m. Quadraphony and music by Mike Thorne

6 p.m. High fidelity loudspeakers - fact or fiction?
by Frank Jones
8 p.m. The available signal
by Angus McKenzie (W.W. presentation)

Wed. 24th Oct.

2 p.m. Multi-channel sound recording systems
by Dr. Keith Barker
4 p.m. Magazines - the technical
interpreter
b.' Basil Lane (W.W. presentation)

6 p.m. The progress of sound reproduction by Ralph West

8 p.m. Repeat of 6 p.m. lecture
Thurs. 25th Oct.
2 p.m. Keep it clean
by Donald Aldous

4 p.m. Sound waves in rooms
by Roger Driscoll
6 p.m. Test results and performance can they be related?
by Dr. Arthur Bailev (W.W. presentation)
8 p.m. What goes on in a recording studio by Adrian Hope

Fri. 26th Oct.

2 p.m. A fresh look at audio noise reduction systems
by David Rees (W.W. presentation)
4 p.m. The objective and subjective assessment of loudspeakers
by Gareth Jefferson
6 p.m. A musical programme on how a record show is produced and presented by John McGinn

8 p.m. Quadraphony and music by Mike Thorne

Sat. 27th Oct.

2 p.m. The music scene and the recording heard
by Joan Coulson
4 p.m. Audio advertising
by Rex Baldock
6 p.m. Practical limitations of audio equipment
by J. L. Linsley Hood (W.W. presentation)
8 p.m. A live concert of contemporary music presented by Capricorn

Sun. 28th Oct.

2 p.m. New motional feedback loudspeaker system
by Roger Driscoll
4 p.m. The record risibility factor
by Donald Aldous

Special Event

On Tuesday 23rd at 11 a.m. there is the annual prize giving and presenting of trophies to winners of the British Amateur Tape Recording Contest, 1973.

Exhibition Briefs

The Shure V15 Mk III cartridge, introduced earlier this year has a new laminated magnetic core structure and a stylus as sembly with a 25% reduction of tip mass.

A speaker system of interest from Eagle is a six-way system -two tweeters, two mid range and two bass units - the AA42.

The series 3400 X stereo recorder will be shown by Tandberg. This is based on the recently introduced 3300 X tape deck but includes 15 W per channel amplifiers, integral speakers and linear motion output potentiometers.

A new amplifier introduced by Sinclair is the System 4000 , providing 17 W continuous power, both channels driven into 8Ω. Varicap tuning and a four-pole ceramic filter i.f. section are incorporated in the matching 4000 tuner.

Two recently announced Garrard automatic turntable units with belt drive (available in November) are the Zero 100SB and the 86 SB . Both are powered by a screened four-pole synchronous motor fit ted with a two-step pulley. The 100SB incorporates the tangential tracking arm of the earlier model plus an automatic record counter to monitor stylus wear. A turntable unit QZ100SC with a built-in fourchannel decoder for either CD-4 or SQ recordings will also be on show.

A new company at the Audio Fair will be N.E.A.L. (North East Audio Limited) who are producing a cassette model 102 which combines the 3M Wollensak transport mechanism with circuitry incorporat ing Dolby B , solid-state switching, twin p.p.ms, separate low noise, high overload margin input amplifiers for microphone, low level line and high level line (f.e.t.) inputs and separate switched recording and playback circuits for equalization of ferric and chrome tapes. The transport features bi-peripheral drive.

Philips will be demonstrating their motional feedback loudspeaker system, the principle of which was described in Wireless World, September 1973, pp. 425 426.

New cassette recorder introduced by N.E.A.L. See overleaf exhibition brief.

Model 104 "reference" loudspeaker from KEF. The system has a new 8 in mid-range/ bass unit, the voice coil of which operates safely up to $250^{\circ} \mathrm{C}$, providing the new unit with a handling capacity of 50 . A B139 is coupled acoustically to the 8in driver.

ADC	Gabraphone	Revox
AKG	Gale	Rola Celestion
Acoustic Research	Garrard	Rotel
Agfa	Goldring	
Akai	Goodmans	
Alba Grundig		
Alpha H.M.V.		Saba Sanyo
Altec	Hacker	Scan Dyna
Amstrad	Hi Fi Aids	Securette
Arntron	Howland West	Servosound
Antiference		Sharp
Ateka	I.T.T.	Sherwood
Audio Packs	International	Shure
Audio-Technica	Artists	Siemens
Audiotronics		Sinclair
	J. Beam	Sonab
BASF	J.B.L	Sonotone
B \& 0	J.V.C.	Sony
BSR Macdonald	Josty Kit	Soundesign
B \& W	KEF	Sound-Picture
Bib	Keletron	Stax/Era
Binatone	Koss	Steepletone
Bose		
Brahms	Leak Murphy	
Braun	Learjet	Tandberg
Bush Arena	Marantz	Tannoy
	Marconiphone	Tate
	Markovits	Teac
Cambridge Audio	Metrosound	Teledyne
Connoisseur	Musitapes	Toshiba
	Musonic	Trio
		Tripletone
Darby	N.E.A.L	
Decca	National Panasonic	U.D.T.
Diamond Stylus	Nu-Way	Uher
Dynatron	Onkyo	Ultra
Eagle	Paddock Tidy Philips	Van der Molen
Electrokit	Philips	Videosonic
Empire	Plustronics	Videotone
Encore	Precision Tapes	
Era/De Banks	Pye	Weltron
Ferguson	Q.A.S.	Wharfedale
Ferranti	Quad	
Ferrograph	Quadrasonics	Yamaha

Harrogate

Audio Show

"Audio 73", housed in over four floors of the Hotel Majestic, Harrogate, from August 31st to September 2nd offered an opportunity to examine some of those products unlikely to appear at the London show.
Among these, Ampex have devised a simple solution to the problem of residual tape head magnetisation, comprising demagnetising arrangements within a cassette cleaning tape. Available from Tape Music Distributors Ltd of St. Albans, this is loaded and played through in the normal way. Prices are $£ 2.20$ and $£ 2.91$ respectively for cassette and cartridge formats.

Ariston Audio introduced a low mass (310 g) stereo headset, type HS 100 , of Japanese origin. This uses a moving coil diaphragm drive, open backed to minimize colouration, and with a sensitivity of 105 dB per mW and 0.5 W handling, produces high level sound from low power amplifiers, the matching impedance being 4 to 32Ω. Price is $£ 21$.

Richard Allan, one of the few remaining postwar firms, has added the "Academy" i.b. enclosure to their loudspeaker range. It employs $300 \mathrm{~mm}, 125 \mathrm{~mm}$ and 20 mm diameter drive units to cover the audio band, each assembled from basic parts within the Richard Allan organisation to ensure uniformity and auality of production. Costing $£ 75$, the speaker occupies 4 cu.ft and weighs 60 lb .
R.N.B.

A simple muting circuit for use with f.m. tuners

by P. Hinch, B.Tech.

In recent years the automatic noise limiter has become an increasingly common addition to high quality f.m. receivers. Such a circuit greatly simplifies tuning of the receiver by selecting a minimum signal level below which the audio output is muted. Apart from the removal of interstation noise, a squelch circuit can also ensure that only the local transmitters of the national stations are received. With high sensitivity tuners (such as the NelsonJones design ${ }^{1}$), it is not always immediately apparent when the "wrong" transmitter is being received, untii the poorer signal-to-noise-ratio becomes evident. A further bonus is the removal of tuning ambiguities in the absence of a.f.c., caused by the shape of the discriminator response curve; a high level, distorted signal is received on eithet side of the true signal due to the i.f. falling on the wrong slope of the discriminator response.

The usual method of achieving the a.n.l. function is to detect amplitude modulation of the i.f. after limiting. If noise is being received, the i.f. amplitude occasionally drops to zero due to noise cancellation. These gaps in the i.f. waveform can be
detected, and used to operate the muting circuit. However, in a circuit designed to be an add-on unit for existing tuners, it was considered undesirable to make connections into the i.f. strip of the receiver. The circuit described requires no modifications to the tuner, except, in the case of monaural reception, removal of the de-emphasis capacitor.

The circuit relies on the fact that, while the signal bandwidth is restricted to a maximum of 53 kHz (for stereo signals), the noise bandwith extends to over 100 kHz . A third order high pass filter is used to reject the signal and yet allow noise to pass through. The resultant signal is amplified and detected, so producing a d.c. output related to the amount of noise being received. This is used to operate an f.e.t. switch, which mutes the output of the receiver. For mono reception, provision is made for adding a de-emphasis capacitor at the output.

Circuit description

The first stage is an emitter follower designed to provide a high input impedance which is substantially constant with

Fig.2. A sketch graph of the f.e.t. $V_{D S}=I D S$ characteristics.
frequency. This is important in order to avoid amplitude and phase distortion of the stereo multiplex waveform when fed from a receiver having an appreciable output impedance. The input capacitor to the emitter follower has a value of 68 pF . giving a first order high-pass characteristic with a cut-off frequency of 100 kHz . The variation in amplitude at the input when fed from a source impedance of $2.2 \mathrm{k} \Omega$

Fig. 1. Complete circuit of automatic noise limiter.
(as in the Nelson-Jones design) is then only 0.3 dB from 1 to 53 kHz .

The second stage is a Sallen-Key type second order high pass filter with a cut-off of 100 kHz , presenting a low impedance drive to the voltage amplifier stage ($T r_{3}$ in Fig. 1.). The detector Tr_{4} switches when the amplifier output reaches about 1.4 volts peak-to-peak. The detector output passes through a low pass filter" (R_{13}, C_{8}) which prevents accidental muting caused by brief noise spikes on an otherwise low noise signal (for example, those. caused by badly suppressed car ignition systems). The muting action is performed by a p-channel junction f.e.t. used as a switch.

Design of the f.e.t. switch

If an f.e.t. is operated under conditions of low gate-source voltage and low drainsource voltage, it acts as a linear resistance, the value of which is controlled by the gatesource voltage (see Fig. 2). For the 2N3820 device used in this design, the minimum "on" resistance is typically around 400Ω. In order to avoid distortion it is clear that, in the "on" state, the drain-source signal voltage must be kept to a minimum, as also must the gate-source signal voltage. If either of these is allowed to rise, the drainsource resistance will vary over the cycle, and distortion will be generated. Thus an f.e.t. switch as shown in Fig. 3 was found to generate 0.5% distortion at 0.5 V r.m.s. input. For higher input levels the distortion increased drastically. This was considered unacceptable for high quality reproduction.

The solution to this is to connect the f.e.t. $\left(T r_{s}\right)$ to the virtual earth point of a feedback amplifier, as shown in Fig. 1. At this point, signal levels are very low.

Fig.3. Elements of the f.e.t. switch used to control the receiver output.

In this curcuit, distortion was found to be 0.03% at 53 kHz , and 0.5 V r.m.s. input. The distortion was almost entirely second harmonic, and at low frequencies the level was reduced still further. The attenuation in the "off" state was found to be -60 db relative to 0.5 V r.m.s.
This design has the added advantage that de-emphasis can be added for mono reception, by connecting a 2.2 nF capacitor across the base and collector of the transistor.

Constructional Details The layout is not particularly critical, but long leads should be avoided, especially to the base of $T r_{1}$. It is, of course, important to remember to remove the receiver de-emphasis capacitor if one was fitted for mono reception. In the case of the Nelson-Jones tuner the designer recommends replacing this component with 150 pF .

Performance The circuit has been in use for some time in the author's Nelson-Jones tuner. It has proved to be highly immune to transient interference, and greatly simplifies tuning of the main national and local

Components list
Resistors:
$R_{1} 1 \mathrm{k} \Omega$
$R_{2} 47 \mathrm{k} \Omega$
$R_{3} 47 \mathrm{k} \Omega$
$R_{4} 2.2 \mathrm{k} \Omega$
$R_{5} 22 \mathrm{k} \Omega$
$R_{6} 10 \mathrm{k} \Omega$
$R_{7} 15 \mathrm{k} \Omega$
$R_{\mathrm{y}} 39 \mathrm{k} \Omega$
$R_{9} 2.2 \mathrm{k} \Omega$
All 5\% carbon.
Potentiometer:
$R_{19} 1 \mathrm{k} \Omega$ lin. preset
Capacitors:
$C_{1} 68 \mathrm{pF}$ silver mica
$C_{6} 10 \mathrm{nF}$
$C_{2} 1 \mu \mathrm{~F}$
$C_{3} .150 \mathrm{pF}$ silver mica
$C_{7} 10 \mathrm{nF}$
$C_{4} 150 \mathrm{pF}$ silver mica
$C_{8} 100 \mathrm{nF}$
C 5100 nF
$C_{y} 1 \mu \mathrm{~F}$

All capacitors except C_{1}, C_{3}, C_{4}, may be $20 \% C_{1}, C_{3}, C_{4}$ should be 5%.
Transistors:
$T r_{1}$ to $\operatorname{Tr}_{8} \quad$ 2N930
$T r_{+} \quad$ BC214L
$\operatorname{Tr}_{5} \quad$ 2N3820
$T_{6} \quad$ 2N930
Diode:
$D_{1} \quad$ IN914
stations. To enable reception of distant signals a switch has been included to short the gate of $T r_{5}$ to ground and defeat the muting operation.

Reference

1. "F.M. Stereo Tuner" by L. Nelson-Jones, Wireless World, April-May 1971.

Sound Recorder uses P.C.M.

Or how to eliminate wow and flutter, crosstalk and modulation distortion

Pulse code modulation has been used by Nippon Columbia, the well-respected Japanese soft ware and hardware company, for the first time for studio master tape recordings to eliminate the conventional tape recorder with its limitations. Though other techniques, in particular that of pre-distortion to reduce playback tracing error, may possibly give greater audible improvement, the use of the p.c.m. technique is outstanding in the number of problems it removes at one go.

The p.c.m. recorder, developed by Nippon Columbia in co-operation with NHK Research Laboratories, removes ghosting. wow and flutter. crosstalk and modulation distortion, at the same time

In this eight-channel p.c.m. system for making studio master recordings, fidelity already improved over conventional tape recorders as illustrated in the graphs - can be further improved by duplicating channels where only two or four are required using digital error-correcting procedures.
reducing harmonic distortion to 0.1%, providing a dynamic range of better than 75 dB and an amplitude response extending from d.c. to 20 kHz . The p.c.m. system has eight channels, is capable of half-speed reproduction (to increase cutting capacity), features an additional head to give an advance signal for variable-pitch recordings, and is equipped for automatic editing and splicing. Records made with this system are already available in Japan and additionally feature halfspeed cutting and anti-tracing-distortion cutting.

To pulse-code modulate the eight audio channels, signals are first sampled at a rate of 47.25 kHz , three times the frequency of 525 -line, 30 -field $/ \mathrm{s}$ horizontal sync pulses (recorded waveforms are similar to television signals enabling a video tape recorder to be used together with a monitor). The sampled signals are then quantized by an a. to d. converter, see block diagram. A linear binary coder uses 13 bits to specify the quantization levels, and together with a parity check bit for error detection and a check bit for phase shift detection, makes 120 bits per sample, for the eight channels. (Low radix coding is used in p.c.m. to improve noise immunity, the price being bandwidth - hence the video recorder.)
Synchronizing information is carried on the front and back porches of the horizontal sync signal, using a clock frequency of 7.1824 MHz . The televisionlike system makes it quite different from the BBC p.c.m. transmission system, where a 14-bit code is used for each of 13 channels which, with 9 -bit sync data and 5 -bit data for transmitter switching, makes 196 bits per sample; sampling rate 32 kHz .

On playback the signals are routed into their channels, error detected and checked for drop-outs. If a sample is missing the preceding and following signals are averaged, and when more than one sample is missing, the preceding signal is maintained. Errors can be further reduced by duplicating information. If only four channels are required, samples for channels, 1 to 4 are staggered by one sample and fed to channels 5 to 8; re-ordering the signal means that larger drop-outs can be tolerated. The two samples of the same information are compared and only the correct one transmitted. If both samples are missing, the interpolation technique is used. Finally, the signals are passed through a d. to a. converter and filtered to remove the sampling frequency.

Half-speed reproduction is achieved by halving the clock frequency and low-pass filter cut-off frequency. The advantage of half-speed disc cutting was recognized some time ago (Nippon Columbia have a patent on this dating to 1956) and it's claimed that the permissible input to the cutter head can be increased by four times at h.f. This is used on Columbia* Mastersonic p.c.m. recordings

[^3]

To achieve the necessary bandwidth for p.c.m. this recorder uses a conventional 525-line video tape recorder. Editing is made easier by the provision of a $30-\mathrm{Hz}$ frame synchronizing signal on the control (audio) track.

With the p.c.m. tape recorder harmonic distortion is reduced by an order of magnitude over conventional tape recorders

As well as featuring a flat amplitude response from d.c. to 20 kHz , the p.c.m. technique shows excellent linearity of input-output level and a noise level that permits at least $75 d B$ dynamic range.
as well as "non-distortion cutting". This last-mentioned technique uses a tracing simulator at the recording stage to offset the tracing distortion due to the finite size of the playback stylus, giving a reduction in distortion of an order of magnitude.

There are clearly other applications for this technique. As well as laboratory testing it will be of value for data recording where wide dynamic range, operation down to d.c., low distortion, and high stability are important e.g. in noise and vibration work, speech and music analysis and seismic studies.

on h.f., whereas dipole-type wire aerials remain popular for c.w. operation; for beam aerials the Quad and associated Delta-loop aerials appear to be making increasing impact although the Yagi remains by far the most popular arrangement for rotary beams. And, in common with most of electronics, a trend towards greater use of integrated circuits and a wide range of semiconductor devices.

On the bands

The R.S.G.B. has appealed to its members to adhere to the I.A.R.U. Region 1 voluntary h.f. band-plan affecting the 3.5 to 28 MHz bands, stating: "The band plan is reviewed at three-yearly intervals and is considered by the national societies to be practical and worth while. However, this view is obviously not shared by a small minority . . one solution is to make the sub-division of each band apart of the licence regulations". It points out that if necessary the Society's MPT Liaison Committee will not hesitate to make such recommendations to the Ministry. The current problem is the increasing "intrusion" of phone stations into segments of the band voluntarily reserved for c.w. and r.t.t.y. operation.

According to the Cheltenham group newsletter, G. V. Farrance, G3KPT has worked 39 countries (including the United States, Canada and the Panama Canal Zone) on 7,14 and 21 MHz bands using one of the low-power (2 watts) Heath HW-7 transceivers which include a direct-conversion receiver and all-transistor transmitter, using a simple inverted-L aerial 66 ft long and between 26 ft and 6 ft high.

Contacts by means of reflections from meteor trails continue to be made by British amateurs on 144 M Hz with stations in Italy, Hungary, Sweden and so on, particularly during the periods of the major meteor showers.

In brief

An R.S.G.B. lecture on aerials is being given by Les Moxon, G6XN, at the I.E.E., Savoy Place, London WC2 on I hursday, November 8 . . . The amateur club station, G3SSO. of Government Communications Headquarters, Cheltenham, has won the R.S.G.B. h.f. contests championship for 1972-73, based on the results of six different h.f. contests. F. Cooper, G2QT, of Ashford, Kent was runner-up The annual R.S.G.B. 7 MHz contests will be held on October 20-21 (c.w.) and November 3-4 (phone) The death has occurred of Harold Jones, G5ZT of Plymouth, a founder member of the Plymouth Radio Club and one of the pioneers in this country of longdistance slow-scan television (some of his results were described and illustrated in World of Amateur Radio, September 1971)

The phone section of the "CQ world-wide contest" is on October 27 to 28 with the c.w. section on November 24 to 25 .

PAT HAWKER, G3VA

Tuners and Tuner-Amplifiers

A résumé of the techniques used in modern designs and the standards upon which specifications are based

by Basil Lane

Abstract

The purchase of a tuner or tuner-amplifier is often determined by the following factors; price, in terms of value for money; aesthetic appeal - since the new acquisition must integrate with the room décor and finally performance. The relative importance of each of these depends on the individual and the first two are purely matters of pocket and taste. The final factor should be a simple case of fixing a required specification and then comparing this with the appropriate product data. However, the solution is not so easily reached - as is described in the following article.

To attempt to review the progress in the design of tuners and tuner amplifiers over the past year is rather like taking a current model of the Morris Minor and reviewing it as something new. In general, the circuitry of receivers and tuners is fixed by an outline block schematic which has not changed for many years; the only differences can be seen in component detail, with an increasing usage of integrated circuits particularly in the i.f. stages - f.e.ts in the r.f. amplifier stage and ceramic filters. Even the trend towards using varicap diodes for the tuned r.f. amplifiers seems to have halted and perhaps even reversed.

Of course, quadraphony has been the biggest talking point of this last twelve months, but in as much as it raises the price of many receivers by quite a considerable amount, it has had very little effect upon the popular market place. To complicate the matter still further, there are several systems extant and every possibility of quite a pro longed battle before any one emerges as the victor. In almost all cases, the manufacturers that have opted to include quadraphonic decoders in their receivers have chosen to provide for all the major systems. Just to refresh the memory, these are the SQ matrix system of CBS, the QS matrix system of Sansui, the CD4 of RCA Victor and finally, as if that is not enough, some have opted to provide four channel synthesis from
conventional stereophonic recordings and broadcasts.

Although the matrix systems lend themselves to the conventional mass production of dises and replay systems, few próponents entirely own an equipment manufacturer, as do the Victor Company of Japan. The interests of RCA Victor are certainly reflected in the range of JVC Nivico receivers which are almost all fitted with CD4 system decoders. Such a situation will not prevail for very long as it is expected that at least the CBS licencees will show a considerable number of new products at the Audio Fair this year. Not mentioned so far and not included in the table, is the equipment end of Sansui who have not, as yet, provided details of products available but which are believed to have a number of quadraphonic receivers. Apart from the developing market for quadraphony, reflected in the increasing range available, novelty of circuit and user facilities are conspicuous by their absence. There are, however some "fine detail" improvements which can be commented upon; for example, the new Ferrograph tuner SFMl which has a facility for varying the muting threshold to suit signal strength for the particular conditions prevailing. In addition it includes the very unusual feature of a continuously variable separation control from full stereo to mono. permitting an optimal setting for

Fig. 1. The Nikko STA Receiver showing the additional tuning indicator on left.
minimum subjective noise.
Several tuners and receivers have been improved by the addition of a tuning meter in addition to the normal "centre of channel" meter used for f.m. stations. The tuning meter makes rather more sense since it measures actual signal strength available and so can be used to assist the correct alignment of aerial arrays. Phase-lock-loop decoders are also becoming more popular, with Armstrong, Pioneer and Fisher all having models incorporating this type of circuit.

Cambridge Audio have just produced a new tuner, the T55, which not only uses phase-lock-loop stereo decoding but also modern design techniques in all other stages. The r.f. and mixer stages utilize m.o.s. transistors, and varactor diode tuning. Although any tuner which has varactor tuning can be remote controlled. few actually have the external connection point. The Cambridge tuner has such a facility plus connections for remote signal strength indication and a.f.c. switching.

With a.m. broadcasting such a well established fact and receiver design virtually static in this area, it comes as a surprise to see some sort of innovation from Philips in the RH720 receiver. Adopted from com munications receivers, there is a control which permits the bandwidth to be varied to reduce interference or improve the frequency response of the tuner. Touch controls are also featured on this tuner, offering instant selection of up to six preset stations.

Two products which look obviously different are the Harmon Kardon Citation 15 and the Sherwood SEL 300. The first of these is perhaps one of the most innovative of modern tuners since not only is the tuning dial a drum type, more often to be found in laboratory instrumentation, but also a quieting and a tuning meter are incorporated. The really new item is the introduction of a Dolby ' B ' noise reduction unit. For some time Dr. Dolby has advocated the use of the ' B ' system as a way of increasing the area over which satisfactory stereo reception can be obtained. As yet there have been no professional broadcasts made here in the U.K. using this principle although an experiment has been made in the amateur band by G30SS, Angus McKenzie. He reported quite good results although insufficient data was obtained to determine the exact degree of improvement. However several American broadcast stations are making use of Dolby
' B ' encoding and the Citation 15 was obviously designed to exploit this to the full. This tuner is also unusual in that the design of the i.f. strip appears to be a retrograde step away from integrated circuits and ceramic or crystal filters to a complex 9 pole phase linear LC network. Although this is obviously more difficult to set up at the manufacturing stage, Harmon Kardon claim that the performance justifies the technique adopted.

The Sherwood SEL 300 would appear to be unique in displaying the tuned frequency in the form of a digital display. Seven segment incandescent lamps are used, driven from a logic circuit consisting of seventeen i.c. packages, and a crystal controlled clock oscillator. The i.f. filter is even more complex than that of the Citation 15 , being a 12 pole "Le Gendre" toroidal filter which is claimed to offer an even sharper cut off than the crystal types.

Two Trio products appear to have surprising features, the KR-5200 in particular, though it may be something which appears as a result of the terrible translation presumably from the Japanese original. The data sheet suggests that the f.m. i.f. strip uses a combination of mechanical filters (!) and other forms of filter, presumably $L C$ types, to give a really sharply defined passband. Although the mechanical filter has been a feature of communications receivers for many years, it is very surprising to find them in a domestic receiver. There has been, unfortunately, no opportunity to check this against the circuit diagram and so the accuracy of the statement is open to question.

An additional circuit feature mentioned in the brochure for the KR-5200 is the double switching stereo demodulator which uses antiphase cancellation of crosstalk to improve the stereo separation. This has echoes of the Delta 75 receiver system used by Leak, where crosscoupling can be switched in by selecting one or both "quasi-stereo" buttons on the front panel to reduce background noise on weak stereo signals.

The second of the two Trio products mentioned is the KT-8005, a tuner which, if the data sheet is anything to go by has perhaps the most outstanding performance of any of those listed in the table. With a usable sensitivity of $1.5 \mu \mathrm{~V}$, an f.m. stereo distortion of 0.3% and a capture ratio of 1.0 dB , the KT- 8005 must be quite a remarkable design.

Product data

The data sheet associated with any particular tuner or receiver is obviously designed to attract the potential purchase, and with the Trade Description Act hanging over the writers' heads, they cannot afford to make any claim which cannot be substantiated. However, in compiling the table for this survey it has become evident that the quantity and quality of the technical data referring to performance is extremely variable.

On the one hand there is ITT with the new TA-1-200 which has as data the barest information on power output and none on

Fig. 2. The latest product from Ferrograph, the SFM1 tuner.
the performance of the tuner section at all and on the other hand, Sherwood or Trio and many others that give a profusion of detail.

For buyers, it is the comparison of performance, giving in turn some idea of value for money, which would be of considerable use in making a decision on what to buy. Even worse, when plenty of information is given, the measurement methods used by different manufacturers often invalidates comparison. The Editor, in the lead editorial for last month, brought out one aspect of this when he commented that the only national standard which assists by defining a minimum quality for hi-fi, was that produced by DIN. Two interesting points arise from this, first that although many manufacturers say that their product exceeds the DIN 45500 specification, almost all of them quote measurements made to the old and rather dated American IHF standard. (IHF stands for Institute of High Fidelity.)

In some instances no indication is given of the measurement method and just bare figures are quoted. These must be, for many, useless and often confusing figures making comparison impossible. Criticism of the British Standards Institute for not taking some lead on this topic, evoked the response we see in the Letters column this month. The'fact that the BS committee TLE/26 has been working on this standard since 1968 and still has not come up with a final proposal, is an indication that it could still

Fig. 3 An internal view of the Goodmans One-Ten.
be some time before something appears and even then it may look nothing like the proposal or, if it is not publicised, that is no guarantee that it will be used. He remarks that the press is a significant factor in the acceptance of such standards, a point which cannot be denied, but even more important is its acceptance by industry, and as we have seen this is not just a matter for the press to solve.

The BS proposals for minimum quality are, it must be emphasised, still at an early stage, but in brief the details are as follows: The measurement techniques to be used are those specified in BS 4054:1966, which it is to be noted does not acknowledge the existence of stereophonic systems! The frequency ${ }^{2}$ response ${ }^{4}$ measured at 30% utilisation (the stereo term for deviation) to 1 kHz modulation should be $\pm 3 \mathrm{~dB}$ between 40 Hz and 12.5 kHz and $\pm 2 \mathrm{~dB}$ from 250 Hz to 6.3 kHz . The disparity between channels between 250 Hz and 6.3 kHz is limited to 2 dB . Details of the minimum requirements for sensitivity, distortion and so on are contained within Part 2 of these proposals which, unfortunately, were not available at the time of going to press. It is known however, that there is some similarity in these proposals with those of the DIN 45500 but the notable exception is in the test signals used. Modulation for the DIN sensitivity test is 15 kHz and the sensitivity is expressed at the 26 dB quieting point. The remainder of the test procedures relating to the tuner section of a receiver and tuners are similar. The more popular IHF standard differs in many ways from both the DIN and the proposed BS standard. Again, the test signal varies, being a carrier modulated to 100% by a 400 Hz tone and in addition, the usable sensitivity is considered to be the point which separates total distortion (including hum and noise), from the audio output of the tuner produced by the test signal, by 30 dB .
Despite the existence of the DIN and the IHF standards, some manufacturers still persist in quoting sensitivity to other levels of quieting and to other deviations. Examples of these are to be found in the table at the end of this article.

Many of these problems of comparison would be alleviated if manufacturers used a standard graphical presentation which would enable purchasers to make a total assessment of the sensitivity, noise and
harmonic distortion capability of the tuner.
Sadly, the most important aspect of good f.m. reception is often overlooked at the design stage. This relates to the ability of the r.f. amplifier to avoid overload from high level adjacent channel signals when tuning to a comparatively weak signal. This is becoming increasingly important with the number of new f.m. local radio stations coming on the air. Evidence of the poor discrimination of the r.f. amplifier is exemplified by the presence of "birdies" when switched, particularly, to stereo broadcasts. To a certain extent this can be overcome with the use of a well placed, well designed aerial and again designers are encouraging this situation because a few quite highly priced tuners have no external aerial connectors and even more, have facilities for matching into only one impedance of feeder.

Quite recent issues of the magazines Electrical and Electronic Trader and Electrical and Radio Trading have contained details of some correspondence between the BBC and the aerial manufacturers' trade association on the subject of home-made aerials. The BBC have reprinted construction details for aerials in Information Sheet 1104, available from BBC Engineering Information, and for some reason the manufacturers took exception to this and complained vociferously. What is relevant is that the BS4054:1966 contains such information already and since manufacturers are among those represented on the committees of the BS, presumably they were party to agreeing the publication of such details. However, the fact remains that an external aerial, professional or home-made, can do much to improve the quality of reception in the face of considerably disparate signal strengths for adjacent channel stations. Useful publications from the BBC on f.m. stereo reception will be described elsewhere in a later issue of Wireless World.

Finally a point on reviews on f.m./a.m. tuners and receivers. Most of the hi-fi journals available in the U.K. publish reviews from time to time which describe the performance of a typical sample supplied by the manufacturer or distributor.

Fig. 4. A Receiver from ITT, the TA-1-200.

Fig. 5. A professional a.m./f.m. tuner made by Millbank.

In many instances, details of the test techniques are not published and so it still remains a difficult problem to crossrelate and compare results from magazine to magazine. In at least one of the divisions of audio, a BS proposal has been published which does lay out a standard format and test technique for the presentation of certain performance information. Perhaps it is about time that the whole field of consumer equipment is studied and some agreement obtained on presentation of data. This could well be initiated by a measure of cooperation between journals or even an acknowledgement by British Standard committees that journals have a vital place in the chain between consumer and
designer and go on to consider including standard data presentation formats suitable for use by reviewers.

With many new products appearing at the Audio Fair this year, the possibility of announced price changes and the need to incorporate information on products not described in this table, there will be a follow-up, including manufacturers' names and addresses, in the December issue.

Maker and Model	$\begin{gathered} \text { Stereo (S) } \\ \text { or (} \mathrm{O} \text {) } \end{gathered}$	FM/AM	Tuner (T) Tuner/Amp Receiver (R)	Aerial $Z(\Omega)$	Tuner o/p into load (Ω)	Power Output ("r.m.s.")	$\begin{gathered} \text { F.M. } \\ \text { Distn(\%) } \end{gathered}$	Sensitivity (IHF or DIN)	$\begin{gathered} \text { Price } \\ \left(\dot{+}+{ }^{+}\right. \\ \text {(AT) } \end{gathered}$
ACOUSTIC RESEARCH									
AR Tuner-amp	S	FM	R			50W/8ת	0.4		
AR Tuner	S	FM	T		-		0.4	$2.0 \mu \mathrm{~V}$ IHF	110.00
ADASTRA									
A1005 (Chassis)	FM ${ }_{\text {F }}^{\text {F above but in wooden cabinet }}$			75 -					
A1018 ${ }_{\text {A1007 }}$ (Chassis)									
A1007 (Chassis)				75				Tor for 10dB	
AKAI									
AT550	S	FM/AM	T	75/300	$1.8 \mathrm{~V} /$?	-			
AT580	S	FM/AM	T	75/300	$1.8 \mathrm{~V} /$?		<0.8	$1.8 \mu \mathrm{~V} \mathrm{HF}$	91.62 143.30
AA8030	S	FM/AM	R	75/300		25W/8ת	0.8		140.48
AA8080	S	FM/AM	R	75/300	-	$40 \mathrm{~W} / 8 \Omega$	0.6	$2.5 \mu \mathrm{VIFF}$	
ALBA									
UA100D	S	FM/AM				$15 \mathrm{~W} / 8 \Omega$			
UA800	S	FM/AM	T	75	$400 \mathrm{mV} / 2 \mathrm{k}$		<1.0	$2.0 \mu \vee \mathrm{Vor}$	37.84

Maker and Model	$\begin{gathered} \text { Stereo (S) } \\ \text { or (} \mathrm{O} \text { (uad } \end{gathered}$	FM／AM	Tuner（ T ） Tuner／Amp Receiver（R）	Aerial $Z(\Omega)$	Tuner o／p into load (Ω)	Power Output （＂r．m．s．＂）	$\begin{gathered} \text { F.M. } \\ \text { Distn }(\%) \end{gathered}$	Sensitivity （IHF or DIN）	$\begin{aligned} & \text { Price } \\ & \text { VAT) } \end{aligned}$
$\begin{aligned} & \text { ALPHA } \\ & \text { FR4000 } \\ & \text { FR3000 } \\ & \text { FR2000 } \\ & \text { R150 } \\ & \text { FT150 } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$	$\mathrm{FM} / \mathrm{AM}$ FM	$\begin{aligned} & R \\ & T \\ & T \end{aligned}$	300 300 300 300 300 $300 / 75$	$\begin{aligned} & \text { - } \\ & \overline{1 \mathrm{~V} / ?} \\ & \{500 \mathrm{mV} / 10 \mathrm{k}\} \end{aligned}$	20W／8 $15 W / 8 \Omega$ $10 \mathrm{~W} / 8 \Omega$ $15 \mathrm{~W}^{*} / 8 \Omega$ \qquad －	－ － － ＜ 0.4	$2 \mu \mathrm{~V}$ IHF $3 \mu \mathrm{~V}$ IHF $2 \mu \mathrm{~V}$ IHF $3 \mu \mathrm{~V}$ IHF $2.5 \mu \mathrm{~V} \mathrm{HF}$ $1.8 \mu \mathrm{~V}$ IHF	95．50＊ 86.60^{*} 68.00^{*} 59.00° 45．00＊ 49.50°
Executive 007	S	FM		300／75	$50 \mathrm{mV} / 10 \mathrm{k}\}$	－	＜0．4	$1.8 \mu \mathrm{~V}$ IHF	
$\begin{aligned} & \text { ARMSTRONG } \\ & 623 \\ & 624 \\ & 625 \\ & 626 \end{aligned}$	$\begin{aligned} & S \\ & S \\ & S \\ & S \\ & S \end{aligned}$	$\begin{aligned} & \text { FM/AM } \\ & \text { FM } \\ & \text { FM } \\ & \text { FM/AM } \end{aligned}$	$\begin{aligned} & T \\ & T \\ & R \\ & R \end{aligned}$	$\begin{aligned} & 300 / 75 \\ & 300 / 75 \\ & 300 / 75 \\ & 300 / 75 \end{aligned}$	二	－ $40 \mathrm{~W} / 8 \Omega$ $40 \mathrm{~W} / 8 \Omega$	$\begin{aligned} & <0.2 \\ & <0.2 \\ & <0.2 \\ & <0.2 \end{aligned}$	$\begin{aligned} & 1.5 \mu V \mathrm{IHF} \\ & 1.5 \mu \mathrm{IHF} \\ & 1.5 \mu \mathrm{~V} \mathrm{HF} \\ & 1.5 \mu \mathrm{IHF} \end{aligned}$	$\begin{array}{r} 79.20 \\ 59.40 \\ 110.00 \\ 132.00 \end{array}$
ASTRONIC B2477（Single Station） B2478（Single Station） B2479（4 Station tuner） B2480（5 Station tuner）	As for B247 As for B247	AM FM 8 tuner 8 but with	T one am station	$\overline{75}$	$500 \mathrm{mV} / 5 \mathrm{k}$	－	－	$\overline{10} \mu \mathrm{~V}$ IHF	$\begin{aligned} & 39.05^{*} \\ & 39.05^{\circ} \\ & 41.58^{\circ} \\ & 60.06^{\circ} \end{aligned}$
AUDIO DECKS CT17 CR50			$\begin{aligned} & T \\ & R \end{aligned}$						$\begin{aligned} & 121.74 \\ & 167.67 \end{aligned}$
BANG \＆OLUFSEN Beomaster 901 Beomaster 1001 Beomaster 3000－2 Beomaster 4000 Beomaster 1700	$\begin{aligned} & S \\ & S+\text { Synth } 0 \\ & S \\ & S+\text { Synth } 0 \\ & S \end{aligned}$	FM／AM FM FM FM FM	$\begin{aligned} & R \\ & T \end{aligned}$	$\begin{gathered} 240 / 75 \\ 300 / 75 \\ 75 \\ 75 \end{gathered}$	－ － $1 \mathrm{~V} /$ ？	$\begin{aligned} & 20 \mathrm{~W} / 4 \Omega \\ & 15 \mathrm{~W} / 4 \Omega \\ & 30 \mathrm{~W} / 8 \Omega \\ & 55 \mathrm{~W} / 8 \Omega \end{aligned}$	$\begin{aligned} & -0.9 \\ & <0.4 \\ & <0.5 \end{aligned}$	$\begin{aligned} & 1.8 \mu \vee \mathrm{DIN} \\ & <3.5 \mu \mathrm{~V} \mathrm{HF} \\ & 2.0 \mu \mathrm{~V} \mathrm{HF} \\ & <1.4 \mu \mathrm{DIN} \\ & 2.0 \mu \mathrm{~V} \mathrm{HF} \end{aligned}$	$\begin{array}{r} 100.90 \\ 96.90 \\ 164.50 \\ 193.50 \\ 60.90 \end{array}$
$\begin{aligned} & \text { BUSH ARENA } \\ & \text { TA2700 } \\ & \text { TA2800 } \\ & \text { TA3500 } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { FM } \\ & \text { FM/AM } \\ & \text { FM } \end{aligned}$	$\begin{aligned} & R \\ & R \\ & R \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & 75 \end{aligned}$	二	$15 W / 3.2 \Omega$ $15 W / 3.2 \Omega$ $10 \mathrm{~W} / 4 \Omega$	－	$1.5 \mu \mathrm{~V}$ DIN $1.5 \mu \mathrm{~V}$ DIN $3.0 \mu \mathrm{~V}$ DIN	$\begin{aligned} & 85.67 \\ & 89.43 \\ & 74.37 \end{aligned}$
$\begin{aligned} & \text { DUAL } \\ & \text { CR50 } \\ & \text { CT17 } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \end{aligned}$	FM／AM FM／AM	$\begin{aligned} & R \\ & T \end{aligned}$	$\begin{aligned} & 240 \\ & 240 \end{aligned}$	－	$18 \mathrm{~W} / 4 \Omega$	＜1．0	$\begin{aligned} & 1.5 \mu V \text { DIN } \\ & 8 \mu V \text { DIN } \end{aligned}$	$\begin{aligned} & 167.67 \\ & 121.74 \end{aligned}$
FISHER 170 180 201 203 205 304 404	$\begin{aligned} & S \\ & S+Q \\ & S+Q \end{aligned}$	FM／AM FM／AM FM／AM FM／AM FM／AM FM／AM FM／AM	R R R R R R R R R		－ － － －	$\begin{aligned} & 16 \mathrm{~W} / 4 \Omega \\ & 21 \mathrm{~W} / 4 \Omega \\ & 20 \mathrm{~W} / 8 \Omega \\ & 25 \mathrm{~W} / 4 \Omega \\ & 35 \mathrm{~W} / 4 \Omega \\ & 15 \mathrm{~W} / 8 \Omega \\ & 22 \mathrm{~W} / 8 \Omega \end{aligned}$	0.8 0.8 0.8 0.8 0.8 0.3 0.3	$2.5 \mu \mathrm{VIHF}$ $2.5 \mu \mathrm{~V}$ IHF $3.0 \mu \mathrm{~V} \mathrm{IHF}$ $2.5 \mu \mathrm{VIHF}$ $2.5 \mu \mathrm{~V}$ IHF $1.8 \mu \mathrm{~V}$ IHF $1.8 \mu \mathrm{VIHF}$	$\begin{aligned} & 127.60 \\ & 169.40 \\ & 132.44 \\ & 216.70 \\ & 235.40 \\ & 286.00 \\ & 363.00 \end{aligned}$
GOODMANS One－ten Module 80 Module 90	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { FM/AM } \\ & \text { FM } \\ & \text { FM/AM } \end{aligned}$	$\begin{aligned} & R \\ & R \\ & R \end{aligned}$	$\begin{aligned} & 240 / 75 \\ & 300 \\ & 240 / 75 \end{aligned}$	－	$40 \mathrm{~W} / 8 \Omega$ $70 W / 4 \Omega$ $30 W / 8 \Omega$	$\begin{gathered} 0.2 \\ -0.5 \end{gathered}$	$1 \mu \mathrm{~V}$ IHF $1.5 \mu V$ DIN $1.0 \mu \mathrm{VIHF}$	$\begin{array}{r} 130.85 \\ 87.54 \\ 112.03 \end{array}$
GRUNDIG RTV800 RTV900	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \end{aligned}$	FM／AM FM／AM	$\begin{aligned} & R \\ & R \end{aligned}$	$\begin{aligned} & 240 / 65 \\ & 240 \end{aligned}$	－	$\begin{aligned} & 12.5 \mathrm{~W} / 4 \Omega \\ & 25 \mathrm{~W} / 4 \Omega \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	$1.1 \mu \mathrm{~V}$ DIN $1.8 \mu \vee \operatorname{DIN}$	$\begin{aligned} & 150.40 \\ & 195.75 \end{aligned}$
$\begin{aligned} & \text { HARMON KARDON } \\ & \text { Citation } 15 \text { (Dolby) } \\ & 50+ \\ & 75+ \\ & 100+ \\ & 150+ \\ & 330 A \\ & 630 \\ & 930 \end{aligned}$	$\begin{aligned} & S \\ & S+Q \\ & S+Q \\ & S+Q \\ & S+Q \\ & S \\ & S \end{aligned}$	FM FM／AM FM／AM FM／AM FM／AM FM／AM FM／AM	$\begin{aligned} & T \\ & R \end{aligned}$	$\begin{aligned} & 300 / 75 \\ & 300 \\ & 300 \\ & 300 \\ & 300 \\ & 300 / 75 \\ & 300 / 75 \end{aligned}$	$\min 2 \mathrm{~V} / ?$ $=$ $=$ $=$ $=$ $=$	$12 \mathrm{~W} / 8 \Omega$ $18 \mathrm{~W} / 8 \Omega$ $24 W / 8 \Omega$ $30 \mathrm{~W} / 8 \Omega$ 30W／8 $45 W / 8 \Omega$	0.35 0.9 0.7 0.7 - 0.7 0.6	$2.0 \mu \mathrm{~V}$ IHF $2.8 \mu \vee \mathrm{IHF}$ $2.0 \mu \mathrm{~V}$ IHF $1.9 \mu \mathrm{VIHF}$ $1.8 \mu \mathrm{~V}$ IHF $1.9 \mu \mathrm{~V}$ IHF $1.8 \mu \mathrm{VIHF}$	$\begin{aligned} & 279.00^{*} \\ & 159.00^{*} \\ & 259.00^{\circ} \\ & 309.00^{*} \\ & 355.00^{*} \\ & 123.00^{*} \\ & 150.00^{*} \\ & 199.00^{*} \end{aligned}$
$\begin{aligned} & \text { ITT } \\ & \text { TA-1-200 } \end{aligned}$	S	FM／AM	1 R		．	$8 W / 4.5 \Omega$			79.50
$\begin{aligned} & \text { JVC/NIVICO } \\ & \text { VR5505 } \\ & \text { VR5515(L) } \\ & \text { VR5525 } \end{aligned}$	$\begin{aligned} & S \\ & S+Q \\ & S+Q \end{aligned}$	$\begin{aligned} & \text { FM/AM } \\ & \text { FM/AM } \\ & \text { FM/AM } \end{aligned}$	$\begin{array}{ll} \Lambda & R \\ \Lambda & R \\ \Lambda & R \end{array}$	$\begin{array}{r} 300 \\ 300 \\ \hline \end{array}$	－	$\begin{aligned} & 25 \mathrm{~W} / 8 \Omega \\ & 15 \mathrm{~W} / 8 \Omega \\ & 18 \mathrm{~W} / 8 \Omega \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2.2 \mu V \text { IHF } \\ & 2.2 \mu V \text { IHF } \\ & 2.2 \mu V \text { IHF } \end{aligned}$	$\begin{array}{r} 95.50^{*} \\ 135.00^{\circ} \\ 169.50^{*} \end{array}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Maker and Model \& Stereo（S） or Quad（Q） \& ） \(\mathrm{FM} / \mathrm{AM}\) \& \begin{tabular}{l}
Tune \\
Tuner \\
Receiv
\end{tabular} \& \[
\begin{array}{ll}
\text {) } \& \text { Aerial } \\
\text { R) } \& Z(\Omega)
\end{array}
\] \& Tuner o／p into load （ \(\Omega\) ） \& Power Output （＂r．m．s．＂） \& \[
\text { , } \begin{gathered}
\text { F.M. } \\
\text { Distn(\%) }
\end{gathered}
\] \& Sensitivity （IHF or DIN） \& Price （＊ VAT） \\
\hline VR5535 \& \(\mathrm{S}+\mathrm{Q}\) \& FM／AM \& R \& － \& － \& \& \& \& \\
\hline 4VR1006 \& S＋Q \& FM／AM \& R \& 300 \& － \& \(40 \mathrm{~W} / 8 \Omega\) \& 0.8
0.4 \& \[
\begin{aligned}
\& 2.0 \mu \mathrm{~V} \text { IHF } \\
\& 2.2 \mathrm{uV} \mathrm{HFF}
\end{aligned}
\] \& \[
\begin{aligned}
\& 195.00 \text { * } \\
\& 20850
\end{aligned}
\] \\
\hline 4MM1000 \& \(\mathrm{S}+\mathrm{Q}\) \& FM／AM \& R \& 300 \& － \& \(40 \mathrm{~W} / 8 \Omega\) \& 0.4 \& \& \[
208.50
\] \\
\hline 4VR5414 \& S＋O \& FM／AM \& R \& 300 \& － \& \(15 \mathrm{~W} / 8 \Omega\) \& 1.0 \& \(2.2 \mu \mathrm{~V} / \mathrm{HF}\)
\(2.0 \mu \mathrm{lHF}\) \& \[
\begin{aligned}
\& 146.50^{*} \\
\& 20850^{*}
\end{aligned}
\] \\
\hline 4VR5436 \& \(\mathrm{S}+\mathrm{Q}\) \& FM／AM \& R \& 300 \& － \& \(17 \mathrm{~W} / 8 \Omega\) \& 1.0 \& \(2.0 \mu \mathrm{~V}\) lHF
\(2.0 \mu \mathrm{lHF}\) \& \[
\begin{aligned}
\& 208.50 \\
\& 23500
\end{aligned}
\] \\
\hline 4VR5445 \& \(\mathrm{S}+\mathrm{O}\) \& FM／AM \& R \& 300 \& － \& 21W／8s \& 1.0 \& \(2.0 \mu \mathrm{~V}\) lHF
\(2.0 \mu \mathrm{VIHF}\) \& \[
\begin{aligned}
\& 235.00^{*} \\
\& 280.00
\end{aligned}
\] \\
\hline 4VR5446 \& S＋Q \& FM／AM \& R \& 300／75 \& － \& 22W／8』 \& 1.8
0.8 \& \(2.0 \mu \mathrm{~V}\) IHF
\(2.0 \mu \mathrm{VIHF}\) \& \[
\begin{aligned}
\& 280.00 \\
\& 280.00^{*}
\end{aligned}
\] \\
\hline \multicolumn{10}{|l|}{KLINGER} \\
\hline KC91 \& S \& FM \& T \& 300／75 \& 2．0V／10k \& － \& － \& \& \\
\hline KC96 \& S \& FM \& R \& 300／75 \& 2．0V／10k \& 25W／8® \& － \& \(8.0 \mu \mathrm{~V}\) DIN \& \[
\begin{aligned}
\& 41.40^{*} \\
\& 82.20^{*}
\end{aligned}
\] \\
\hline \multicolumn{10}{|l|}{KORTING} \\
\hline T510 \& S \& FM／AM \& T \& 240 \& \& \& \& \& \\
\hline T710 \& S \& FM／AM \& T \& 240 \& － \& － \& － \& － \& \begin{tabular}{l}
47.63 \\
80.05
\end{tabular} \\
\hline 310 T \& S \& FM／AM \& R \& 240 \& 二 \& \(5 \mathrm{~W} / 8 \Omega\) \& 二 \& 二 \& 80.05
66.19 \\
\hline 4107 \& S \& FM／AM \& R \& 240 \& 二 \& \(10 \mathrm{~W} / 8 \Omega\) \& － \& 二 \& 66.19
81.51 \\
\hline 800 L \& S \& FM／AM \& \(R\) \& 240 \& \& \(16 \mathrm{~W} / 8 \Omega\) \& \& \& 81.51
140.62 \\
\hline Syntector 1600L \& S＋Synth 0 \& FM／AM \& R \& 240 \& － \& \(40 \mathrm{~W} / 8 \Omega\) \& － \& 二 \& \[
\begin{aligned}
\& 140.62 \\
\& 191.21
\end{aligned}
\] \\
\hline \multicolumn{10}{|l|}{LEAK} \\
\hline Delta FM \& S \& FM \& T \& － \& － \& － \& \(<0.5\) \& \& \\
\hline Delta FM／AM \& S \& FM／AM \& T \& － \& — \& － \& \(<0.5\) \& \& \\
\hline Delta 75 \& S \& FM \& R \& － \& 二 \& \(35 \mathrm{~W} / 8 \Omega\) \& \[
\begin{aligned}
\& <0.5 \\
\& <0.5
\end{aligned}
\] \& \[
\begin{aligned}
\& 2.5 \mu \mathrm{~V} \text { IHF } \\
\& 2.5 \mu \mathrm{IHF}
\end{aligned}
\] \& \[
\begin{array}{r}
83.79 \\
163: 83
\end{array}
\] \\
\hline \multicolumn{10}{|l|}{LUX} \\
\hline R800 \& S \& FM／AM \& R \& － \& － \& \(40 \mathrm{~W} / 8 \Omega\) \& 0.4 \& \& \\
\hline FQ990 \& S \& FM／AM \& R \& 300／75 \& － \& \(70 \mathrm{~W} / 8 \Omega\) \& 0.5 \& \(2.0 \mu \mathrm{~V}\) IHF \& \(250.00^{*}\) \\
\hline 717 \& S \& FM／AM \& T \& 300／75 \& \(1 \mathrm{~V} /\) ？ \& \& 0.6 \& \(2.2 \mu \mathrm{~V}\) IHF \& 74．00＊ \\
\hline 700 \& S \& FM／AM \& T \& 300／75 \& \(750 \mathrm{mV} / ?\) \& － \& 0.6 \& \(2.2 \mu \mathrm{~V}\)
\(2.2 \mu \mathrm{VHF}\) \& 100．00＊＊ \\
\hline 500 \& S \& FM／AM \& T \& 300／75 \& \(450 \mathrm{mV} /\) ？ \& － \& 0.5 \& \(1.7 \mu \vee \mathrm{IHF}\) \& \(160.00^{*}\) \\
\hline \multicolumn{10}{|l|}{MARANTZ} \\
\hline 2010 \& S \& FM／AM \& R \& 300／75 \& － \& 10W／8， \& \(<1.0\) \& \& \\
\hline 2220 \& S \& FM／AM \& R \& 300／75 \& － \& 20W／8® \& ＜ 0.9 \& \(2.1 \mu \mathrm{~V} \mathrm{HHF}\) \& 169.50 ＊ \\
\hline 2245 \& S \& FM／AM \& R \& 300／75 \& \& \(30 \mathrm{~W} / 8 \Omega\) \& \(<0.5\) \& \(2.0 \mu \mathrm{~V}\) IHF \& \(215.00^{*}\) \\
\hline 2245 \& S \& FM／AM \& R \& 300／75 \& \& 45W／8』 \& \(<0.3\) \& \(1.7 \mu \mathrm{~V} \mathrm{IHF}\) \& 270.00 ＊ \\
\hline 105 \& S \& FM／AM \& R \& 300／75 \& － \& 70W／8® \& \(<0.3\) \& \(1.4 \mu \mathrm{VIHF}\) \& 330.00 ＊ \\
\hline 115 \& S \& FM／AM \& T \& \(300 / 75\)
\(300 / 75\)
\(300 / 75\) \& － \& － \& \(<1.0\) \& \(2.8 \mu \mathrm{VIHF}\) \& \(95.0{ }^{*}\) \\
\hline 120 \& S \& FM／AM \& T \& \(300 / 75\)
\(300 / 75\) \& － \& － \& ＜0．3 \& \(1.7 \mu \vee \mathrm{IHF}\) \& 145．00＊＊ \\
\hline 4415 \& \(\mathrm{S}+\mathrm{Q}\) \& FM／AM \& R \& 300／75 \& － \& \(\overline{60 W} / 8 \Omega\) \& \(<0.25\)
\(<1.0\) \& \(1.4 \mu \mathrm{VIHF}\)
\(2.8 \mu \mathrm{~V}\) IHF \& \[
\begin{aligned}
\& 260.00^{*} \\
\& 245.00^{*}
\end{aligned}
\] \\
\hline \multicolumn{10}{|l|}{MILLBANK} \\
\hline Met 100k \& S \& FM／AM \& T \& 300 \& \(100 \mathrm{mV} /\) ？ \& － \& \& \& \\
\hline Met 500 fixed station \& － \& FM \& T \& 75 \& \(250 \mathrm{mV} /\) ？ \& － \& 0.2 \& －\({ }^{\text {a }}\) \& 50．60 \\
\hline \multicolumn{10}{|l|}{NIKKO} \\
\hline STA5010 \& S \& FM／AM \& \(R\) \& \& － \& \& \& \& \\
\hline STA7070 \& S \& FM／AM \& R \& 300／75 \& － \& \(34 \mathrm{~W} / 8 \Omega\) \& 0.5 \& \& \\
\hline STA8080 \& S \& FM／AM \& R \& 300／75 \& － \& 45W／8の \& 0.5
0.5 \& \(2.0 \mu \mathrm{~V} \mathrm{IHF}\)
\(2.0 \mu \mathrm{HF}\) \& \[
\begin{aligned}
\& 143.00 \\
\& 158.40
\end{aligned}
\] \\
\hline \multicolumn{10}{|l|}{ONKYO} \\
\hline 234 \& S \& FM／AM \& R \& 300 \& \& \& \& \& \\
\hline 225 \& S \& FM／AM \& \(\stackrel{R}{R}\) \& 300 \& － \& \[
\begin{aligned}
\& 12 \mathrm{~W} / 8 \Omega \\
\& 22 \mathrm{~W} / 8 \Omega
\end{aligned}
\] \& \(<0.8\)
\(<0.8\) \& \[
\begin{aligned}
\& 2.5 \mu \vee \mathrm{IHF} \\
\& 2.5 \mu \mathrm{VHF}
\end{aligned}
\] \& \[
\begin{aligned}
\& 120.00 \\
\& 160.03^{*}
\end{aligned}
\] \\
\hline \multicolumn{10}{|l|}{PHILIPS} \\
\hline RH621 \& S \& FM／AM \& T \& 300／75 \& \(600 \mathrm{mV} / 10 \mathrm{k}\) \& －＜ \& ＜1．0 \& \& \\
\hline RH690 \& S \& FM／AM \& T \& 300／75 \& \(250 \mathrm{mV} / 10 \mathrm{k}\) \& － \& ＜4．0 \& \[
7.0 \mu \mathrm{~V}(300 \Omega) \mathrm{DIN}
\] \& 110.00
47.50 \\
\hline \[
\begin{aligned}
\& \text { RH720 } \\
\& \text { R } 4720
\end{aligned}
\] \& S \& FM／AM \& R \& 300 \& － \& \& ＜1．0 \& \(3.0 \mu \mathrm{~V}\)（300ת）DIN \& 215.00 \\
\hline \multirow[t]{2}{*}{RH901} \& S \& FM／AM \& R \& 300
300 \& － \& \(15 \mathrm{~W} / 4 \Omega\) \& ＜1．5 \& \(1.6 \mu \mathrm{~V}(300 \Omega) \mathrm{DIN}\) \& 215.00
90.38 \\
\hline \& S \& FM／AM \& R \& 300 \& － \& \(8 \mathrm{~W} / 4 \Omega\) \& － \& \(1.3 \mu \mathrm{~V}\)（300 ）DIN \& 87.00 \\
\hline \& \multicolumn{9}{|r|}{，3pV（300』）Din 81.00} \\
\hline \multicolumn{10}{|l|}{PIONEER} \\
\hline Qx9900 \& \(\mathrm{S}+\mathrm{O}\) \& FM／AM \& \& －－ \& － \& \& \& \& \\
\hline Qx8000A \& \(\mathrm{S}+\mathrm{Q}\) \& FM／AM \& R \& － \& － \& 22W／8® \& 0．5 \& \(1.8 \mu \mathrm{~V} / \mathrm{HF}\)
\(2.2 \mu \mathrm{~V} / \mathrm{HF}\) \& \[
\begin{aligned}
\& 430.24^{*} \\
\& 30839^{*}
\end{aligned}
\] \\
\hline Qx4000
S \(\times 2500\) \& \(S_{S}+0\) \& FM／AM \& R \& － \& － \& \(10 \mathrm{~W} / 8 \Omega\) \& 0.8 \& \(2.2 \mu \mathrm{~V}\) IHF
\(2.2 \mu \mathrm{HF}\) \& 308.39

216.82

\hline SX2500
S $\times 9000$ \& S \& FM／AM \& R \& －－ \& － \& $58 \mathrm{~W} / 8 \Omega$ \& 0.5 \& 1．6 $\mathrm{V}^{\text {V }} \mathrm{lHF}$ \& 337.47^{*}

\hline SX6000 \& － \& － \& － \& － \& － \& － \& － \& － \& 303.26 ＊

\hline S×828 \& S \& FM／AM \& R \& \& \& 54W／80 \& 0.5 \& \& 221．44＊＊

\hline SX727 \& $\mathrm{S} \quad \mathrm{F}$ \& FM／AM \& R \& 二． \& － \& 54W／8ת \& 0.5 \& $1.7 \mu \vee 1 \mathrm{HF}$ \& 285．22＊＊

\hline SX626 \& S F \& FM／AM \& R \& － \& － \& 37W／8® \& 0.5 \& $1.2 \mu \mathrm{VIHF}$ \& 222．39＊＊

\hline SX525 \& S F \& FM／AM \& R \& － \& － \& 20W／8® \& 0.5 \& $1.3 \mu \vee 1 H F$ \& 184．74＊＊

\hline SX424 \& S F \& FM／AM \& R \& － \& － \& 13W／8的 \& 0.8
<10 \& $1.5 \mu \vee \mathrm{IHF}$ \& 134.87^{*}

\hline LX440A \& S F \& FM／AM \& R \& － \& － \& $12 \mathrm{~W} / 8 \Omega<$ \& ＜1：0 \& $1.5 \mu \mathrm{~V}$ IHF \& 106．09＊

\hline TX6200 \& S F \& FM／AM \& T \& 300／75 \& $0.775 \mathrm{~V} / 10 \mathrm{k}$ \& $14 W / 8 \Omega<$ \& <1.0 \& $2.5 \mu \mathrm{~V}$ IHF \& 127.00

\hline TX7100 \& S F \& FM／AM \& T \& 300／75 \& \& －<0 \& <0.4 \& $1.9 \mu \mathrm{~V}$ IHF \& 87．17＊

\hline TX8100 \& S F \& FM／AM \& T \& $300 / 75$ \& $0.775 \mathrm{~V} / 10 \mathrm{k}$
$0.775 \mathrm{~V} / 10 \mathrm{k}$ \& －＜ \& <0.4 \& $1.9 \mu \vee \mathrm{IHF}$ \& 117.20^{*}

\hline TX9100 \& S F \& FM／AM \& T \& 300／75 \& 0．775V／10k \& －＜ \& <0.4 \& $9.8 \mu \mathrm{VIHF}$ \& $137.64 *$

\hline TX500A \& S F \& FM／AM \& T \& $300 / 75$ \& $0.775 \mathrm{~V} / 10 \mathrm{k}$
$0.775 \mathrm{~V} / 10 \mathrm{k}$ \& －＜ \& <0.3 \& $1.5 \mu \mathrm{VIHF}$ \& 185．99＊＊

\hline \& S \& FM／AM \& T \& 300／75 \& $0.775 \mathrm{~V} / 10 \mathrm{k}$ \& －＜ \& ＜0．8 \& $2.3 \mu \vee \mathrm{IHF}$ \& 76.03°

\hline
\end{tabular}

anything II could do III can do better!

Several years ago, we decided that our next challenge would be to go beyond the best there was. Our computers told us we had taken the existing cartridge structure and stylus assembly of the V-15 Type 11 Improved as far as we could, and that hereafter, any improvement in one performance parameter would be at the expense of performance in some other parameter.
Therefore, over the past several years, a wholly new laminated cartridge structure has been developed, as was an entirely new stylus assembly with a 25% reduction in effec-
tive stylus mass! These developments have resulted in optimum trackability at light tracking forces ($3 / 4-11 / 4$ grams), a truly flat, unaccented frequency response, and more extended dynamic range than was possible even with the Type II Improved, without sacrificing output level!
If you like its sound today; you will like it even more as time goes on. In fact, to go back to any other cartridge after living with the Type III for a short while is simply unthinkable, so notable is its neutral, uncolored sound. You must hear it.

$$
\begin{aligned}
& \text { Introducng the new } \\
& \text { Super-Track "Ples" V-15 TYPE III } \\
& \text { Shono Cartridge }
\end{aligned}
$$

[^4]WW-088 FOR FURTHER DETALS

VideO from Bella Howell

In the United Kingdom Bell\&Howell Video means:-

Electrohome
 Grass Valley JVC Nivico Thomson CSF Tamron

and of course (in England and Wales)-

Monitors
Signal processing equipment
$1 / 2 \mathrm{in}$. EIAJ1 Video tape recorders and cameras
Specialised cameras and systems
Prime and zoom lenses

JVC $\frac{3^{\prime \prime}}{}{ }^{\prime \prime}$ U-type colour video cassette recorder

Bell \& Howell's team of video engineers can provide a video system to meet your needs. For further information write to:-
Video Systems Division,
Bell \& Howell A-V Ltd.
Freepost, Wembley, Middlesex, HAO 1BR
Or telephone: 01-902 8812 ww11/73

■ Belle Hव山ELL

Bell \& Howell have a team of engineers and a world of equipment at their fingertips

Circards - 11
 Basic Logic Gates

When one and one isn't two

by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams*

Logical or arithmetic processes are extensively used in systems such as industrial control, computers, electronic instrumentation and automatic telephone exchanges. These processes often involve complex functions of several variables, the desired functions being realized by switching operations in a logical manner. Although much of the design of these systems now deals with the interconnection of complex functional blocks, successful results also depend on a knowledge of the basic elements that constitute the complex functional blocks.

The basic elements of such systems are logic gates, which may perform combinational operations on their inputs. These inputs will normally be in one of two allowed states that could be, for example, two different voltages, two different currents or two different resistance values such as the limiting cases of open circuit and short circuit. Whatever form the allowed states take, a logic gate is concerned with whether certain statements about its inputs, at a given instant, are true or false. If these statements are made using normal language they become unmanageable as the number of quantities involved increases, making some form of symbolic statement highly desirable.

If a certain statement is true it is assigned the value 1 and if it is false it is given the value 0 . For example, if one of the inputs to a logic gate is called A and it can be either at 5 V or 0 V then the statement "input A is at 5 V " may be true or false. If it is true than $\mathbf{A}=$ 1 and if it is false then $\mathrm{A}=0$. If this gate has three inputs and its output, D, is only at $5 \mathrm{~V}(\mathrm{D}=1)$ when two of its inputs, \mathbf{A} and B , are at 5 V and its other input, C , is at 0 V , then $\mathrm{D}=1$ when $\mathrm{A}=1$ AND $\mathrm{B}=1$ AND $\mathrm{C}=0$.

Now $\mathrm{C}=0$ implies that C is NOT 1 i.e. $C=1$, where the bar indicates NOT or negation, so the above statement could be simply written as $\mathrm{D}=\mathrm{A}$ AND B AND C. Using the multiplication sign of normal algebra (X or .) to represent the AND operation this statement becomes $\mathrm{D}=\mathrm{A} \times \mathrm{B} \times \overline{\mathrm{C}}$, or $\mathrm{D}=\mathrm{A} \cdot \mathrm{B} \cdot \overline{\mathrm{C}}$, or even $D=A B \bar{C}$ where the "multiplication" (AND) signs are implied. This type of algebra, based on logical statements that

[^5]
TABLE 1. Properties of Boolean algebra.

1	$0+0$	$=0$	11	$\overrightarrow{\mathrm{A}} . \mathrm{A}$	$=0$	21	A. $(B+C)$	$=A \cdot B+A \cdot C$
2	0.0	$=0$	12	$\bar{A}+A$	$=1$	22	$A+A . B$	$=\mathbf{A}$
3	$1+1$	$=1$	13	$0+A$	$=\mathrm{A}$	23	$A+\bar{A} \cdot B$	$=\mathrm{A}+\mathrm{B}$
4	1.1	$=1$	14	$0 . A$	$=0$	24	$A \cdot(A+B)$	$=\mathbf{A}$
5	0.1	$=0$	15	$1+A$	$=1$	25	$(A+B) \cdot(A+C)$	$=A+B \cdot C$
6	$0+1$	$=1$	16	$1 . A$	$=\mathrm{A}$	26	$\bar{A}+\bar{B}$	$=\bar{A} \cdot \bar{B}$
7	0	$=1$	17	$A+B$	$=B+A$	27	$\bar{A} \cdot \bar{B}$	$=\overline{\mathbf{A}}+\overline{\mathrm{B}}$
8	1	$=0$	18	A. B	$=B \cdot A$	28	$\overline{\bar{A}}$	$=\mathrm{A}$
9	$A+A$	$=\mathrm{A}$	19	$(A+B)$	$=A+(B+C)$	29	$\overline{A+B}$	$=\mathrm{A}$.
10	A.A	$=\mathrm{A}$	20	(A.B) ${ }^{\text {c }}$	$=A .(B C)$	30	$\overline{\text { A.B }}$	$=A+B$

are true or false, is called Boolean algebra and it is a very useful tool in the development of logical thinking and in the design of digital circuits and systems.

As well as the AND and NOT operations it is necessary to postulate the OR operation which is represented by the (+) symbol of normal algebra. For example, if a logic gate has two inputs A and B, and its output D is in the logic 1 state when either A or B is in the logic 1 state this statement can be written as $\mathbf{D}=\mathrm{A}$ OR B which is represented by $D=A$ $+B$.

A logic gate is an example of a basic logical circuit, called a combinational circuit, the output of which at a given instant is determined by the state of its inputs. Irrespective of its complexity, certain relationships, laws and simplification rules of Boolean algebra can be used to represent or investigate the behaviour of a combinational circuit. Using up to three variables, Table 1 shows some of the properties of this algebra some of which are the same as ordinary algebra. In Boolean algebra division and subtraction have no meaning and the variables can only have the values 0 or 1. Table 2 shows the Boolean algebra theorems relating the values 0 and 1 in terms of relay contacts that are either open (logic 0) or closed (logic 1). Table 3 illustrates the Boolean algebra theorems in one variable A in similar terms, where A can have either of the states 0 (Acontact open) or 1 (A-contact closed). In Table 1 relations 26 \& 27 together are known as De Morgan's theorem and 20 \& 30 are identical with 26 \& 27 except that the variables have been negated (or inverted or complemented).

Combinational logic circuits may take many different forms, one of which employs relay contacts which is useful for illustrating some of the simple Boolean

Table 2. Boolean theorems in terms of relay contacts.

Table 3. Boolean theorems in one variable.

Fig. I. $D=1$ when contacts A AND B $A N D C$ are closed, represented by $D=$ A.B.C.

TABLE 4. Truth table for Fig. 1

A	B	C	D
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	0
0	0	1	0
1	0	1	0
0	1	1	0
1	1	1	1

Fig. 2. $D=1$ when A OR B OR C are closed, represented by $D=A+B+C$.

TABLE 5. Truth table for Fig. 2

A	B	C	D
0	0	0	0
1	0	0	1
0	1	0	1
1	1	0	1
0	0	1	1
1	0	1	1
0	1	1	1
1	1	1	1

relations. For example, in Figs $1 \& 2, A$, B and C are contacts operated by relay coils (not shown) to complete a path between input and output. Thus, we are concerned with the statement "the connection between input and output is complete".

When this statement is true $\mathrm{D}=1$ and when it is false $D=0$. In Fig 1, $\mathbf{D}=1$ only when contacts A AND B AND C are closed simultaneously so the Boolean representation is $\mathrm{D}=\mathrm{A} . \mathrm{B} . \mathrm{C}$. Hence, series-connected contacts of the same type provide the AND operation. In Fig. 2, $D=1$ when contacts A OR B or C are closed so the situation may be represented by $D=A+B+C$. If more than one contact is closed the above statement is still true, i.e. $\mathbf{D}=1$. Thus, parallel-connected contacts of the same type provide the OR (or "inclusive" OR) operation and the order in which they are wired or considered does not affect the truth of the statement.

The validity of a Boolean statement representing the behaviours of a combinational logic gate can be checked by means of a truth table. which is a tabular listing of all possible logic combinations of the variables and the resulting output logic, Tables $4 \& 5$ are the truth tables for Figs 1 \& 2 respectively and they show that a complete truth table requires $2 n$ rows to represent a gate having n variables. Table 6 is a listing of the truth tables for the commonly-used combinational logic operations and shows the names given to the logic gates used to realize these operations. The NOR (NOT OR) gate performs the complement of the OR function and the NAND (NOT AND) gate the complement of the AND function.

GATE SYMBOLS

Fig. 3. Some of the symbols used for logic gates.

Fig. 4. Logic operations of $A N D$ (a), $O R$ (b), NOR (c) and exclusive $O R(d)$, can be realized using only NAND gates.

Unlike the OR gate, the "exclusive" OR gate only makes $\mathrm{D}=1$ when either A $=1$ OR $B=1$ but not when $A=B$ $=1$. The exclusive OR operation is used so frequently that it is given the symbol + . Thus, $\mathbf{D}=\mathbf{A B}+\overline{\mathrm{A} B}=\mathbf{A}+\mathbf{B}$.

Examples have been given of basic logical operations realized by means of relay contacts but this technique can become unwieldly. A more general diagrammatic representation of logic gates is desirable as the logic diagram should be independent of the circuit techniques employed in their realization. Unforturiately, there is no universally accepted symbol* to represent a particular logic gate, some of the different types of symbols that have been used being shown in Fig. 3.

While the operation indicated by a logic gate symbol is independent of the circuitry used, it should be realized that as there are two allowed states the user must decide which state is to represent the logical 1 condition. For example, if the two states are represented by voltage levels, one may be positive and the other 0 V , one may be negative and the other 0 V , one may be positive and the other negative, both may be positive or both negative. Irrespective of the values of these voltage levels, the system is said to use positive logic if the logical 1 state is represented by the more positive level and is said to use negative logic if the logical 1 state is represented by the more negative voltage level.

[^6]TABLE 6. Truth tables for common combinational logic operations.

INPUTS		OUTPUT D =				
A	B	A. B	$A+B$	$A+B$	A. B	$A+B$
0	0	0	0	1	1	0
1	0	0	1	0	1	1
0	1	0	1	0	1	1
1	1	1	1	0	0	0
NAME OF GATE		AND	OR	NOR	NAND	$\begin{gathered} \text { EXCLUSIVE } \\ \text { OR } \end{gathered}$

Although all the combinational logic gates appearing in Table 6 are available in various forms of hardware, it is possible to build complete logic systems with either only NOR gates or only NAND gates. Fig. 4 shows how the AND, OR, NOR and exclusive-OR operations may be realized using only NAND gates and Fig. 5 shows the sole use of NOR gates to realize the AND, OR, NAND and exclusive-OR operations. These illustrations also show the application of some of the relations given in Table 1. Figs 4(a) \& 4(b) use relations 28 \& 30 respectively on the output function and relation 30 is also used on the output from the threeinput NAND gate in Fig. 4(c). In Fig. 4(d), relations $27,21 \& 11$ are used in turn on both inputs to the final gate and relation 30 used on its output function. Figs 5(a) \& 5(b) use relations 29 \& 28 respectively on the output function, relation 29 also being used on the output of the three-input NOR gate in Fig. 5(c). In Fig. 5 (d) relation 29 is used on the input to the final gate and relations $27,26,21 \&$ 11 used in turn on its output function.

These examples show that more gates of a given type are required to realize any other particular simple logic function. Although this point has been illustrated by simple Boolean expressions, in the design of more complicated systems the algebra may be cumbersome and other techniques such as Karnaugh mapping

Fig. 5. NOR gates can realize the logic operations of $A N D(a), O R(b), N A N D$ (c) and exclusive $O R$ (d).
would be used to obtain a minimal solution. To synthesize a complex system it may be advisable to use gates of one type because of their availability and cost.

Many different types of solid-state electronic logic-gate realizations are available such as resistor-transistor logic (r.t.l.), diode-transistor logic (d.t.l.), directcoupled transistor logic (d.c.t.l.), tran-sistor-transistor logic (t.t.l.), emittercoupled logic (e.c.l.) and complementary metal oxide transistor logic (c.m.o.s.) These families of gates have different characteristics and one family may prove to be more suitable than another in a particular application. For example, the prime consideration may be highest possible speed of operation or lowest power consumption or greatest immunity to external noise or the simplicity of interfacing the gates with other circuitry. The successful design of a digital system therefore requires a working knowledge of the capabilities of the various types of electronic gates available.

How to get Circards

Order a subscription by sending $£ 9$ (U.K. price; $£ 10.50$ elsewhere) for a series of ten sets to:

Circards
I.P.C. Electrical-Electronic Press Ltd General Sales Dept.
Room 11
Dorset House
Stamford Street
London SEI 9LU
Specify which set your order should start with if not the current one. One set (normally 12 cards) costs $£ 1$ U.K and $£ 1.15$ elsewhere, postage included.
Cheques should be made payable to I.P.C. Business Press Ltd.

Topics covered in Circards are
1 active filters
2 switching circuits (comparators \& Schmitts)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, tone control, filters)
6 constant-current circuits
7 power amplifiers (classes A, B, C, D) 8 astable circuits
9 optoelectronics: devices and uses 10 micropower circuits
11 Basic logic gates
Subsequent issues will cover wideband amplifiers, alarm circuits, digital counters, pulse modulators. Introductory articles in Wireless World indicate availability of Circards, which are normally ready for despatch on the 14th of the month, and the Circard concept was outlined in the October 1972 issue, pages 469/70.

H.F. Predictions for November

LUF (lowest usable frequency) curves are for reception in the U.K. of point-to-point telegraphy services using medium power and directional aerials. LUFs for domestic reception of high power broadcasting stations would be about the same, while those for the amateur service would be a few megahertz higher particularly at noon.

Commercial working frequencies are kept below FOT (optimum traffic frequency) to allow for day-to-day ionospheric variations and seasonal trend over the month. Amateur "openings" can be expected on bands up to HPF (highest probable frequency).

Circuit Ideas

Deflection amplifier

The amplifier is designed for use with an electrostatically deflected tube, and combines the frequency-response of a cascode amplifier with the linearity of a constant current-fed long-tailed pair. Adjust the
value of R to give 3 mA through each load resistor. The output transistors need small heat sinks.
G. A. Johnston,

Stechford,
Birmingham.

Two-terminal current controller

This is an adaptation of Williams' well-known ring-of-two to produce an adjustable current regulator or limiter for use in test circuits or incorporation into power supplies. Its particularly low minimum voltage drop, around 1.4 V , is obtained by combining germanium alloy transistors and forward-biased silicon diodes.

The ring-of-two uses transistors $T r_{1}$ and $T r_{2}$ drawing a nearly constant current over a wide range of voltage. If only a small controllable current is required, this may be adjusted by varying either R_{1} or R_{2} or both. It is desirable to keep the ring-of-two transistors as cool as possible, and so Tr_{3} and $T r_{4}$ are added. The current in this pair is adjusted by means of R_{3}. Transistor Tr_{4} is heavier transistor and carries the

major part of the total current whereas $T r_{3}$, like $T r_{1}$ and $T r_{2}$, operates at low current for stability.
J. P. Holland,

London SW15.

Simulating high-capacitance electrolytics

The first two circuits below are nearly equivalent, excepting that the drain of current is drastically reduced in the second. For small-scale applications, a BC107 with $h_{F E}$ of about 300 can be used, with up to 300 mW dissipation.

Either can be used to feed an a.f. preamplifier, or to partially stabilize a battery supply (e.g a car battery), but the second has very little drain on the battery. By having a capacitor of about $100 \mu \mathrm{~F}$ with a BC 107, an apparent capacitance of about $3000 \mu \mathrm{~F}$ is put across the output. The second circuit is cheaper and far less bulky than the first. I used this with certain audio equipment and it has completely eliminated the tendency of the preamp to "motor-boat".

The last two circuits are also almost exactly equivalent. Resistor R_{1} is to cut down the leakage current of the circuit, and can be a very high value. The leakage current of the second circuit is now about $10 \mu \mathrm{~A}$, using a BC 107 and $100 \mu \mathrm{~F}$.

I found the second circuit useful in switch-on-protection of loudspeakers.

Other circuits, using higher rating transistors (e.g. 2 N 3055) or p-n-p transistors, can be used. Even bearing in mind that $h_{F E}$

for 2 N 3055 is only about 30 , a cost saving of about 40% can be obtained. R. M. Brady,

Urmston,
Manchester.

10-2 Metre Amateur Transverter

Design and construction of a unit which can be used with most 100W output 10 -metre transceivers

by D. R. Bowman, G3LUB

The aim of this article is to describe the design and construction of a 10 to 2 metre transverter. This unit is compatible with the transceiver published in Wireless World ${ }^{1}$ and the two pieces of equipment combine to produce an elegant 2 metre s.s.b. transmitter/receiver. The transverter can be used with most 100W output transceivers which have the facility of operating on 10 metres. The unit can be used with all other transmission modes at a reduced power level.

Methods of generating v.h.f. s.s.b.

There are two basic methods of generating a single-sideband suppressed-carrier signal within the 2 metre band ${ }^{2}$. The first method uses a high frequency phasing system at any frequency in the $5-25 \mathrm{MHz}$ region which is then heterodyned into the 2 metre band. This technique has gained support recently and when carefully built is capable of producing a high quality signal. The second method uses a transverter (heterodyne unit) in conjunction with a commercially built h.f. band s.s.b. transceiver. It is the availability of these transceivers rather than their ultimate performance on 2 metres which has been the reason for the popularity of the transverter technique.
The second method mentioned above has some serious drawbacks. The spectral clarity of the output of an h.f. transmitter rarely exceeds 50 dB . This means that
inband spurious signals no more than 50 dB below the peak output of the required signal are present. Many h.f. transceivers do not even achieve this figure and. whereas these spurious signals cause minimal interference on the h.f. bands $(80-20 \mathrm{~m})$, on 2 metres they can be objectionable. The reason is plain when one realizes that the dynamic range of received signals at v.h.f. can be 80 dB , whereas on the congested h.f. bands the range rarely exceeds 40 dB .

There is one small mitigating effect and that is the variable amplitude of many of these spurious signals. Many of them follow the speech waveform and therefore have extremely low average signal levels. This demonstrates the point that very great care is required when operating h.f. transmitters via transverters on the v.h.f. bands. One must not be scared off by the problem, but should design to minimize it.

The transverter is equally suited for use with any of the available commercial transceivers but the spectral purity of the v.h.f. signal will of course be mainly determined by the performance of the h.f. exciter. These inband unwanted signals are 50 dB down in the case of "The Cumbrian Transceiver" at least' and there are very few of them. This situation can be further improved by introducing a selective 28 MHz pretunable filter between the exciter and the transverter in Fig. 5. It was decided that these levels
were adequate, remembering that an aerial filter (high Q break) can be expected to contribute a further 20 dB and the aerial at least 10 dB to the reduction of spurious out-of-band signals.

Transverter in principle

The transceiver circuit can be divided into two basic units. These are the receiver's 2 to 10 metre converter and the transmitter's 10 metre to 2 metre transverter with its appropriate power amplifier. The receiver's converter consists of an r.f. amplifier feeding a mixer which requires a local oscillator with a frequency of 116 MHz . The transmitter transverter consists of a balanced mixer requiring a local oscillator of the same frequency followed by a multistage power amplifier. A considerable saving can be made by using one source of local oscillator voltage for both transmit and receive mixers.

Fig. 1 shows the complete block diagram of the "Westmorland Transverter". As signal flow is in opposite directions on transmit and receive isolation is increased between the 2 metre aerial socket and the 10 metre transceiver, keeping 10 metre i.f. breakthrough to a minimum. The only drawback to this system is that two possible paths for internal self oscillation may exist. If 2 metre noise should appear at the output of the power amplifier, under certain conditions this can be amplified and frequency changed to 10 metres where it will find its way into

Transverter's circuit layout - see construction section for details.
the input of the transmitter mixer, thus setting up an oscillatory path. Good relay isolation might be enough to eliminate this effect, but there is a further danger point via the common local oscillator feed line.

The simplest method of overcoming this problem is to switch the relevant receive and transmit stages in phase with the main transmit/receive operation of the exciting transceiver, but allowing the overtone oscillator to run continuously. This also eliminates the first feedback path and avoids any necessity to use high isolation transmit/receive relays. The block diagram shows the l.o. source simply as a 116 MHz crystal oscillator.

However carefully a low-frequencyderived multiplier chain is designed, large numbers of spurious frequencies will be present in the output. One method of overcoming this problem is to use an LC oscillator phase-locked to a low frequency crystal, but this is rather complex and a more simple if less elegant system is to use an overtone oscillator with an appropriate crystal.

No mention has so far been made concerning the reasons for using 10 metres rather than any of the other bands found on most transceivers. This is simply that the 2 metre band is 2 MHz wide as in the 10 metre range. Although there is

Fig. 2. Circuitry of the transverter's receiver and local oscillator sections. See table for explanation of voltage levels shown.

some advantage in using 14 MHz (from the spurious signal reduction point of view), image problems are considerably greater.

Practical circuitry

The Receiver section

The receiver section consists of two stages, namely a 2 metre r.f. amplifier followed by a mixer which converts the received 2 metre signal to 10 metres which is compatible with the associated transceiver. It was decided to use a common-baseconnected f.e.t. in the r.f. amplifier (Tr_{1}, Fig. 2). This circuit was chosen in view of its unconditional stability at all frequencies to at least 500 MHz . The maintenance of overall stability is usually the most difficult problem for the amateur constructor and for this reason a dual gate device was not used.
The noise performance is in the region of 2 dB and the gain is adequate to mask inevitable mixer noise. The r.f. circuitry situated between the aerial relay and the source connection of $T R_{1}$ has a low value of loaded Q and the source coil tapping point should be adjusted for minimum noise. This adjustment is not critical and it may be easier to find the point of maximum signal strength, the difference in noise level being small.

The effective G_{m} of the f.e.ts varies considerable within any device type and therefore the value of R_{1} has to be found for each case. A multimeter should be connected across the resistor R_{1} the value of which is adjusted until the calculated current flow is about 5 mA .
A source current $T r_{1}=$ meter voltage $\div R_{1}$.
No special r.f. overload protection has been included in the circuit. Over a long period of time using both a high power linear amplifier as well as the transistor power amplifier to be described, no incidents of r.f. transistor damage have
occurred. With frequencies as high as 150 MHz it is difficult to design protection circuits that do not produce some performance deprivation and as junction f.e.t. devices are inherently robust no such protection is considered necessary.

Receiver mixer

The circuit of this mixer uses a dualgate m.o.s. f.e.t. (Tr_{2} type 40673 or its equivalent). This is probably an appropriate point to warn any prospective constructor against the use of the earlier unprotected dual gate devices which were particularly prone to static generated gate electrode breakdown.
The 40673 f.e.t. is extremely well suited to use as a mixer as it couples very small local oscillator drive requirements with considerable isolation between the signal and l.o. paths. It also presents a high impedance to the r.f. amplifier

Voltage table		
Circuit Point	D.C. Voltage (Volts)	R.M.S. Voltage (Volts)
Across $R_{1} 220$ S	5 mA (see text)	
Tr ${ }_{2}$ Gate 2	0.8	
Tr_{2} Source	0.6	
T_{3} across R_{19} (osc disabled).	2	
$T r_{4}$ gate 2	4	
Tr r_{5} gate 1		
		measured
		relative to
		ground.
Tr r_{6} gate 1		
r.f. in across R_{5}		$5 \mathrm{r} . \mathrm{f}$
L_{7} secondary	1.7	
T_{7} base r r f. drive		$5 \mathrm{r} . \mathrm{f}$.
Tr r_{7} emitter	1	
Tr ${ }_{8}$ base	2.4	1 r.f.
Tr r_{8} emitter	1.6	
Trg base	7 approx	2.5 r.f.
Output measured across a 50Ω dummy load		16 r.f.

16 r.f. All post mixer r.f. voltages are those measured when the transceiver is driven with an intermittent whistle i.e. the base of Tr_{r} onwards.
output, helping to maintain the Q of the r.f. tuned circuits. The transfer characteristics of these devices are substantially square-law, minimizing the generation of unwanted signals. The l.o. drive level is non-critical and any level between 0.2 to IV r.m.s. works well. As the measurement of 116 MHz r.f. voltages is rather difficult, no figure has been quoted.

Local oscillator

To achieve the correct frequency conversions a source of extremely stable 116 MHz oscillations is required. Transistor Tr_{3} is connected in an overtone crystal oscillator circuit. Almost all crystals with frequency markings in excess of 20 MHz are intended for overtone operation, but this mode must not be mistaken for harmonic operation as it is quite different. A harmonic oscillator operated on the fundamental (lowest) resonant frequency of the crystal and a resonant circuit tuned to the required (higher) frequency is incorporated in the circuit. This selects the output frequency and at the same time attenuates to some extent the other harmonics which in this context can be considered to be spurious signals. Although these other harmonics are reduced in level they are still present and are liable to generate unwanted signals in the receiver's output.

The overtone oscillator relies upon the fact that all crystals have a number of harmonically related resonances. These occur at odd multiples of the crystal's fundamental frequency and the circuit is designed to excite the crystal in the range of the required overtone. In practice the highest multiple that is usable is the seventh or possibly ninth overtone.

The oscillator is followed by an isolation amplifier which is necessary as the mixer load appearing in parallel with the oscillator output varies considerably from the
transmit to receive mode. This amplifier (T_{4}) uses a dual-gate f.e.t. which is extremely stable in operation partly as a result of the resistive input circuit.

Transmitter mixer

The transmit mixer circuit consists of two cheap junction f.e.ts ($T r_{5}$ and $T r_{6}$) 2N3819 connected in a balanced configuration. The local oscillator voltage is fed in pushpull to the two gate electrodes while the 28 MHz s.s.b. is parallel-connected to the source electrodes. This arrangement is used as the harmonics of the 10 metre s.s.b. are balanced and therefore attenuated. This helps to reduce the fifth harmonic of the input s.s.b. which tunes across the range $140-150 \mathrm{MHz}$. Variable resistor R_{15} in association with C_{25} and C_{26} should be carefully adjusted to minimize this harmonic. The local oscillator harmonics are not reduced by the balancing procedure but as these signals are harmonically related to 116 MHz , they are well clear of the 2 metre band and therefore are easily eliminated by the various resonant circuits.

Two-metre linear power amplifier

The output of the transmitter mixer is at a very low level and a linear amplifier is required to increase this level to about 5 W p.e.p. The 5 W level was determined mainly by the availability of v.h.f. power transistors. The R.C.A. overlay silicon transistors do not readily lend themselves to large signal v.h.f. linear amplification and for this reason the 2 N 3375 used is underrun. A cheaper alternative to the 2 N 3375 is the 2 N 3866 which has no mounting stud and therefore will require some heat sink arrangement. Possibly a simple pushfit heat sink over the transistor would be adequate if care is taken to limit the continuous drive tune-up periods.

The 2N3375 is forward biased and operates in what is really class B. The quiescent current is set to between 20 and 50 mA , by adjusting the resistance value of R_{31}.

The driver stage makes use of a 2 N 3866 which is forward biased only during the transmit period. This stage operates in class A and therefore its collector current should show no variations as a result of the speech waveform. The standing current of the driver stage is measured by reading the direct voltage appearing across the emitter resistor R_{28} (33 ohms) and should be set to between 50 and 80 mA by adjusting R_{25}. A small heat sink should be mounted on the transistor can to keep the collector temperature below $70^{\circ} \mathrm{C}$:
L_{9} and C_{34} constitute a series trap which should be tuned to 116 MHz . This circuit helps to reduce l.o. feedthrough that is inevitable even after careful balancing of the mixer circuit comprising Tr_{5} and Tr_{6}.
The first stage of the linear amplifier, $T r_{7}$, provides considerable gain, but its output is still at a low level. The BFY 90 common-emitter-connected class A amplifier is capable of delivering up to about 50 mW with a low level of distortion. This transistor type is notoriously unstable but as long as the circuit values are copied and the layout shown in the photograph duplicated exactly, no difficulties should be experienced. C_{31} should be adjusted for maximum 2 meter drive to the p.a. as should C_{40} and C_{41}.

Aerial changeover relay

The aerial changeover relay is a standard RS Components type 21. This relay has a 12 V d.c. coil and four changeover contacts. One of these contacts is used to switch the aerial while another connects the redundant input/output line to earth. The normal practice of using a coaxial relay is not necessary as the relay is mounted so close to the output transistor tank circuit that the spring contacts in the relay become part of the tuned output matching circuit. As a result the power losses are minimal.

Fig. 4. Power supply circuit. See components list for transformer details.

The other pair of changeover contacts is used to switch the h.t. to the appropriate sections and switch the 10 metre input/ output line from the converter/receiver to the transmitter/transverter. The control of this transmit/receive relay is via a jack socket mounted on the transverter box. A short circuit across this jack socket energizes the relay and changes the transverter from receive to the transmit mode.

Power supply

In the unit constructed by the author there was very little room left for the power supply. As a result the circuit is very simple and uses a heavily overrun transformer. This does have the advantage of increasing the reliability of the output power transistor as the h.t. voltage drops considerably when continuous high current is taken from the supply. The transformer has two 3 VA 20 V windings, one of which supplies the p.a. at +24 V and the other at +12 V .

The 12 V supply has no short-circuit protection but does incorporate a very simple series stabilizer. The 24 V supply has no stabilizer but uses a zener diode to clamp the voltage, thereby preventing a high voltage occurring at very low load currents. The use of separate secondaries helps to provide supply isolation which, in turn, makes the maintenance of stability easier. The peak current, as indicated by the p.a. meter, is about 250 mA . while the 12 V supply provides about 120 mA .

Construction

The construction technique used for the Westmorland Transverter is slightly unusual. The complete circuit is built on to a $8.5 \times 5.25 \mathrm{in}$ piece of glass-fibre copper laminate board. The circuitry is almost completely mounted on the copper side. This board is in turn mounted within a $8.75 \times 5.5 \times 2.125$ in die-cast box with only the input, output, transmit / receive control socket and mains input terminations mounted on the rear wall. The front carries a miniature meter indicating p.a. collector current and a miniature mains on /off switch. The receiver converter and overtone oscillator are mounted on a separate, copper uppermost board within a small aluminium screening box. This precaution is probably unnecessary but occurred as the converter was separately built quite a time before the rest of the transverter.

Various other screens can be seen in the photograph and, with the exception of the roughly laid out power supply, the author would suggest that any prospective constructor use a similar layout. This arrangement is in the form of a loop which follows the block diagram closely, allowing minimum path lengths between stages and helping to maintain r.f stability. The only underboard wiring is the screened lead carrying the s.s.b. from the relay to the transmit balance mixer and the r.f. bypassed h.t. lines.
The balanced mixer is symmetrically built (very important as it helps the maintenance of r.f. balance).

One important note of warning is in order. The author succeeded in destroying a number of output transistors before he realized that an intermittent short circuit on C_{41} was allowing 24 V to be directly connected to the base of $T r_{9}$. The inclusion of C_{39} avoids this difficulty.

Alignment

The alignment of the converter will be dealt with first and separately from the rest of the transverter.

It may be that a prospective constructor would like to build the converter first, allowing the 2 metre band to be monitored before the extra expense of the complete unit is contemplated. The converter circuit can be simplified by bypassing $T r_{4}$ if only the construction of a receiver converter is contemplated. The first point to align is the standing current of $T r_{1}$. This should be set to about 5 mA by adjusting the value of R_{1} in the manner that has already been described. The next step is to feed a large signal having a frequency within the 2 metre band into the converter's aerial input socket. The converter's output should be fed to an appropriately tuned 10 metre receiver. The 116 MHz overtone oscillator crystal should be inserted into its socket and C_{13} carefully adjusted until the 2 metre signal can be heard. This is the most exacting part of the alignment procedure.
It will be found that when the correct position for C_{13} has been found the oscillator will be stable and is less prone to frequency pulling when either a hand or screwdriver is brought near to the $T r_{3}$ circuitry. Next C_{3} and C_{5} are adjusted for maximum signal delivered to the receiver which is tuned to the centre of the 10 metre band. The variable inductor L_{3} is similarly peaked for maximum output. The method of adjusting the tap position on L_{1} has been dealt with earlier in this description. If Tr_{4} has been included then again C_{20} should be adjusted for maximum signal to the associated receiver. If the transmitter mixer is not connected to L_{5} it is possible that this stage may be unstable. If this does occur C_{20} should be detuned until the rest of the transverter is built. This concludes the alignment of the converter and now the completed transverter can be dealt with.

Before any attempt is made to run the transverter it is advisable to check all the direct voltages noted in the table. If any large discrepancies are noted these errors must be corrected by careful circuit checking before proceeding further.

The quiescent current of $T r_{8}$ must be adjusted to somewhere between 50 and 80 mA . (1.7 and 2.7 V as measured across R_{28}. This adjustment has also already been described and is achieved by trimming R_{25}. Variable resistor R_{5} should be roughly adjusted to the centre of its travel and the 10 metre s.s.b. from the exciting transceiver should be fed via the appropriate socket to the balance mixer. The aerial output socket must be terminated in a $50 / 70 \Omega$ dummy load. One point to note is that to set the quiescent current of $T r_{8}$

Components list

All resistors listed should be $\frac{1}{4}$ or $\frac{1}{8}$ watt composition or carbon types (not wire wound) with a $\pm 5 \%$ tolerance except where other specifications are noted.

All capacitors have their values shown in the following manner. . 1μ means $.1 \mu \mathrm{~F}, 100 \mathrm{p}$ stands for 100 pF and electrolytics are only used above $1 \mu \mathrm{~F}$. The types are designated FT stands for feed through, SM stands for silver mica, DC stands for disc ceramic or low stray inductance tubular ceramic, and "all voltage ratings must be at least 12 volts except where otherwise noted. Where electrolytics are specified the actual value is relatively unimportant and there is no reason why a prospective constructor should not substitute available types.

Resistors

esistors			
1	220 see text	18	150
2	220k	19	10k
3	470k	20	47
4	10k	21	3.3k
5	100	22	10
6	22k	23	100
7	10k	24	47
8	560	25	5k w.w.pot
9	220	26	180
10	68k	27	180
11	33k	28	two 68 in parallel (0.5W)
12	100	29	680
13	100	30	51
14	2.2 k	31	1.5 k
15	500 trimmer	32	0.25 see text
16	100	33	2.2k
17	75	34	50 or 75
			25-50W carbon
Capacitors			
1	56 MC	25	10p tubular trimmer
2	. 001 DC	26	10p tubular trimmer
3	5p tubular trimmer	27	470 DC
4	5p tubular trimmer	28	. 001 FT
5	4.7p SM	29	. 001 FT
6	.1 DC	30	. 001 DC
7	.1 DC	31	5p tubular trimmer
8	18 SM	32	10 SM
9	. 001 DC	33	. 001 FT
10	. 001 FT	34	5p tubular trimmer
11	.1 DC	35	. 1 DC
12	10 SM	36	. 001 FT
13	5p tubular trimmer	37	.1 DC
14	25 SM	38	. 001 DC
15	. 001 FT	39	50 MC
16	.5p see text	40	5 trim capacitor
17	. 001 DC	41	25 trim capacitor
18	470 DC	42	. 001 FT
19	. 5 p see text	43	.1 DC
20	$5 p$ tubular trimmer	44	25 trim capacitor
21	. 001 FT	45	$1000 \mu / 50 \mathrm{~V}$
22	5 p trim	46	$600 \mu / 20 \mathrm{~V}$
23	. 001 DC	47	2000 $\mu / 50 \mathrm{~V}$
24	. 001 DC	52	100p air spaced trim

Diodes

[^7]
Transistors

1	TIS 88	6	2N3819
2	40673	7	BFY90
3	BFY90	8	2N3866
4	40673	9	2N3375
5	2N3819	10	BFX29

Meter

lmA f.s.d. or other meter shunted by R_{18} to read 250 mA f.s.d.

Additional

20 V miniature mains transformer (e.g. RS Components), output 20V 3VA each 2A fuse and holder.
Single pole changeover toggle switch
RS Components type 21 relay - see text

Coil details

With the exception of those stated cases all coils are wound on a .25 in mandrel and mounted in a self-supporting manner.
19 turns 22 s.w.g. bare copper wire with a winding length of .5 in tapped at three turns and five turns from the ground end.
28 turns 22 s.w.g. bare copper wire with a winding length of .45 in .
310 metre i.f. transformer 22 turns 28 s.w.g. close wound on a .45 in former and tuned with an iron dust core. The secondary consists of four turns wound over L_{3}.
47 turns 22 s.w.g. bare copper wire with a winding tength of .45 in .
57 turns of 22 s.w.g. bare copper wire with a winding length of .4 in . Also two turns of 22 s.w.g. enamel covered copper wire are pushed into the centre of L_{s} for maximum coupling co-efficient. This two turn coil is coupled using twisted insulated leads to two turns similarly pushed into L_{6}.
68 turns of 22 s.w.g. bare copper wire with a winding length of .5 in and provided with a centre tap.
77 turns of 22 s.w.g. bare copper wire with a winding length of .5 in similarly with a centre tap. Also two turns of 28 s.w.g. enamel covered copper wire are coupled by pushing into the centre of L_{7}. The two turns are connected to $T r_{7}$ via a pair of insulated twisted leads.
84 turns of 22 s.w.g. bare copper wire with a winding length of 45 in .
98 turns of 22 s.w.g. bare copper wire with a winding length of .45 m .
105 turns of 18 s.w.g. bare copper wire with a winding length of 4 in .
114 turns of 18 s.w.g. bare copper wire with a winding length of .3 in .
125 turns of 16 s.w.g. bare copper wire with a winding length of .45 in , together with a centre tap.
All r.f. chokes are constructed using .25 wavelength (at 2 metres) 34 s.w.g. enamel-covered wire, wound on home made p.t.f.e. formers. i.e. 18 in of 34 s.w.g. enamel covered wire wound on these formers.

$\mathbf{2 8 M H z}$ filter (Fig. 6)

$L_{1} \quad 8$ turns 20 s.w.g. enamel self supporting $\frac{1}{1}$ in dia $\frac{1}{7}$ in long. $L_{2} 8$ turns as L_{1}. The taps on both L_{1} and L_{2} should be at one turn from the earthed end of the coil. The coupling link is one turn of $20 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamel placed in each of L_{1} and L_{2}.
$C_{1}, C_{2} \quad 10-50 \mathrm{pF}$ variable.
$C_{3} C_{4} \quad 47 \mathrm{pF}$ silver mica.
it is advisable to disable the overtone oscillator. The reason for this is that a small amount of 116 MHz energy may leak through the balanced mixer and thus inflate the standing current of Tr_{8}. Having set the quiescent current, the oscillator should now be enabled and the current of $T r_{8}$ will almost certainly increase. Careful adjustment of C_{34} should allow this 116 MHz leakage to be considerably reduced. The next step is to supply a 10 metre drive signal of a few volts to the transverter. If the exciting transceiver is a "Cumbrian" this drive will be obtained by switching on the audio tone and adjusting the drive level accordingly.

If a secondary two metre receiver happens to be available it should be tuned to receive the 2 metre output of the transverter, and C_{31}, C_{40}, C_{41} and C_{44} should be adjusted for the maximum indicated 2 metre signal. The receiver-to-transverter coupling must be progressively reduced in order that the increasing output power does not overload the auxiliary receiver. Finally C_{26} in conjunction with C_{25} can be adjusted for minimum 116 MHz output while at the same time maximizing the 2 metre signal. This process requires an amount of care but will fully justify the constructor's efforts in providing a 2 metre s.s.b. signal free from spurious signals.

There is an alternative alignment procedure for the constructor who does not have a secondary 2 metre receiver. As the trim capacitors are adjusted, three and only three signal peaks will be found. One at $116 \mathrm{MHz}-28 \mathrm{MHz}$, i.e. 88 MHz , a second at 116 MHz , and the required peak at $116 \mathrm{MHz}+28 \mathrm{MHz}$, i.e. 144 MHz . It is a simple matter to identify them. With no 10 metre drive, only the 116 MHz peak will be present and as already explained C_{34} should null this. With 10 metre drive the correct 144 MHz signal is received with minimum capacitance in circuit. As C_{31}, C_{40}, C_{41} and C_{44} are adjusted, the peak coincident with minimum capacitance should be chosen. The balance of the Tr_{5} and $T r_{6}$ circuit can be adjusted in a similar manner to that described in the previous procedure remembering that the minimumcapacitance peak must be enhanced while reducing the 116 MHz by carefully balancing C_{25} and C_{26}. As the signal increases and the alignment proceeds the 10 metre drive must be reduced so as not to overheat either Tr_{8} or $T r_{g}$.

Performance

There now follows a brief outline of the performance as measured on the author's transverter. The receiver converter exhibits a noise figure of about 2 dB and a signal gain of 30 dB . This noise performance will of course be degraded if the following receiver is either noisy or has a low sensitivity.

To improve the blocking performance, it would be necessary to change to a single conversion system where the i.f. filter is situated as close to the input of the receiver as possible. It would be an improvement to include a switchable attenuator between

Fig. 5. Signal purity of the transverter.

Fig. 6. High Q 28 MHz filter whose use depends on the exciting transceiver used (see text).

Fig. 7. Dummy load attenuator circuit. Internal layout of the transverter circuitry.
the aerial changeover relay and the r.f. amplifier.

The frequency drift is low - less than 2 kHz per hour including initial switch-on drift. There are few spurious responses and those that occur are weak - an advantage of using a single frequency overtone oscillator.

Examination of Fig. 7 shows that the aim of keeping all spurious outputs from the transmitter to at least 50 dB below the required output has been achieved. These spurious signals will be further reduced if the frequency sensitivity of the aerial is combined with a series high Q filter. This should drop the 116 MHz to at least 80 dB below the output. If the exciting transceiver is of a type other than the Cumbrian then it is advisable to include a high Q filter circuit between the transceiver and transverter (Fig. 6).

Almost any transceiver with a 10 metre output in excess of about .5 W will drive the transverter. If the transceiver used does not have an r.f. drive control then it will be necessary to attenuate the 10 metre drive using the dummy load circuit shown in Fig. 7. This can be adjusted to provide almost any level of drive out and should comfortably accept 200 W p.e.p. intermittent speech. To prevent the load becoming overheated, the period of tuning should be as short as possible.

The output power, in excess of 5 W p.e.p., is difficult to measure as the power supply regulation will not support a continuous tone. Using a Heathkit V-7AU valve voltmeter and its associated r.f. probe at least 16 V on speech peaks can be measured across a 50Ω dummy load.
power out (p.e.p.) $=\frac{V^{2}}{R}=\frac{16^{2}}{50}=5.1 \mathrm{~W}$.
R measured in ohms, V in r.f. r.m.s. voltage.

References

1. Bowman, D. R., " $10-80$ Metre Amateur Transceiver", Wireless World, June-September 1972 (four parts).
2. "Fundamentals of S.S.B.", Collins Radio Co., 2nd ed., p 1-1

Sixty Years Ago

The throwaway perceptiveness of remarks made by some of the early experimenters gives one furiously to think on the obstacles which these pioneers faced. The progress that was made in days when it was an imaginative stroke to achieve the smallest step forward was remarkable. Dr. W. Eccles, discussing atmospherics or "Xs" in our November, 1913 issue, wrote 'It is natural, but it is not scientific, to jump to the conclusion that these strays are all due to lightning strokes occurring probably at great distances somewhere on the earth's surface, or possibly in the free atmosphere between one bank of ionised air and another. This, however, ignores the possibility that the source of the strays may be far outside the earth. There is nothing unreasonable in supposing that the sun, let us say, may send us occasional electric waves. For example, in the colossal movements of matter associated with the formation of a solar prominence - movements that appear to take place with enormous velocities electric discharges may be brought about of magnitude far transcending anything that can happen on the earth. These would give rise to electric waves which might reach the earth in perceptible intensity and constitute a proportion of our strays. On the other hand, we must not forget that we on the earth's surface may be protected by our ionised atmosphere from these extra-terrestrial waves: It is just such problems as these that the British Association Committee has set itself to inquire into.

The BSR McDonald 810 costs around $£ 40$ (excluding cartridge). But you may be tempted to spend $£ 20$ more on a transcription turntable that doesn't do any more for you. In fact, the 810 offers you more sophisticated features than most other turntables at this price.
Its pre-programmed sequential cam system outdates conventional cam gear and swinging plate mechanisms to bring you a new experience in smoothness, quietness and featherlight operation The professional low mass transcription tonearm floats in a concentric gimbal arm mount, reducing tracking pressures to a minimum, and has a precise zerc balance adjustment over the full range of cartridge and stylus masses.
The $6^{3 / 2}$ lb turntable is driven by a high torque synchronous dynamically balanced 4-pole motor. The wide selection of operating modes are all featherweight push-button controlled.
Other technical innovations include an automatic tonearm lock to eliminate accidental
damage to the stylus or record, a variable pitch control, rotating stub spindle, dualrange bias compensator, stylus position gauge, stylus cleaning brush, micro-gear stylus pressure control, slide-in cartridge carrier and viscous-damped cue and pause with exclusive friction clutch to keep the tonearm cued over the exact groove.
The ADC K3E (elliptical) magnetic cartridge is recommended as an optional extra.
We'll explain all the finer details when you send for our free illustrated brochure.

Canyoutell the difference between a£40 and a 860 turntable?

The Sinclair Cambridge... no other calculator is so powerful and so compact.

Complete kit-£24•95!

The Cambridge - new from Sinclair
The Cambridge is a new electronic calculator from Sinclair, Europe's largest calculator manufacturer. It offers the power to handle the most complex calculations, in a compact, reliable package. No other calculator can approach the specification below at anything like the price - and by building it yourself you can save a further $£ 5 \cdot 50$!
Truly pocket-sized
With all its calculating capability, the Cambridge still measures just $4 \frac{1}{2}$ " $\times 2$ " $\times \frac{1}{2}$ ". That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on U16- type batteries which gives weeks of life before replacement.

Easy to assemble

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.
The cost ? Just $£ \mathbf{~} \mathbf{2 7} \mathbf{4 5}$!
The Sinclair Cambridge kit is supplied to you direct from the manufacturer. Ready assembled, it costs $£ 32.95$ - so you're saving $£ 5 \cdot 50$! Of course we'll be happy to supply you with one ready-assembled if you prefer-it's still far and away the best calculator value on the market.

Features of the Sinclair Cambridge * Uniquely handy package.
$4 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11}{16}$ ", weight $3 \frac{1}{2}$ oz.

* Standard keyboard. All you need for complex calculations.
* Clear-last-entry feature.
* Fully-floating decimal point.
* Algebraic logic.
* Four operators $(+,-, \mathbf{x}, \div)$, with constant on all four.
* Constant acts as last entry in a calculation.
* Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than $£ 30$.
* Calculates to 8 significant digits, with exponent range from 10^{-20} to 10^{78}
* Clear, bright 8-digit display.
* Operates for weeks on
four U16-type batteries.
(MN 2400 recommended).

A complete kit!

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge. Assembly time is about 3 hours.
Contents:

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor).
9. Battery clips and on/off switch.
10. Soft wallet.

This valuable book - free I

If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.
But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.

How ? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations like :

Logs	Tangents	Currency conversion
Sines	Reciprocals	Compound interest
Cosines	nth roots	and many others...

Cosines nth roots and many others...

Why only Sinclair can make you this offer

The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale.
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 60 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit !

Take advantage of this money-back, no-risks offer today

The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.

Price fully built: $£ 29.95+£ 3.00$ VAT. (Total : $\mathbf{£ 3 2 . 9 5)}$
To: Sinclair Radionics Ltd, London Road, WW 1173
St Ives, Huntingdonshire, PE174HJ

Please send me \square a Sinclair Cambridge calculator kit at

Name
$£ 24.95+£ 2.50$ VAT (Total : $£ 27 \cdot 45$)
\square a Sinclair Cambridge calculator ready built
at $£ 29.95-£ 3.00$ VAT (Total : $£ 32.95$)
*I enclose cheque for E \qquad
out to Sinclair Radionics Ltd, and crossed.
*Please debit my *Barclaycard/Access
account. Account number
*Delete as required

Listen. Philips sound is out of this world and doesn't cost the earth.

High-quality stereo headphones are usually expensive.

But not these from Philips.
They give you beautifully crisp, clear sound at a very reasonable price. And a 'sound dimension control' on the headphones lets you adjust the stereo effect to your own taste.

The frequency range is $16-20,000 \mathrm{~Hz}$. Sensitivity is 112 dB at 1 mW . And since they weigh only $160 z$, they are comfortable to wear.

These N6302 headphones fit most

Philips tape recorders and amplifiers. Hear them at your Philips dealer's.

And for a brochure on other Philips headphones and all Philips audio and recording accessories, write to Philips Electrical Ltd., Dept SP, Century House, Shaftesbury Avenue, London WC2H 8AS

A novel configuration which utilizes an i.c. transistor array and is capable of a linearity better than 1% per MHz

by J. L. Linsley Hood

The growing use of phase locked loop systems in applications such as very high quality f.m. demodulators, in which a high degree of lineariţy between input frequency and output (control) voltage is sought, has focused attention on the characteristics of the available voltage controlled oscillators (v.c.os) - the linearity of the phase locked loop is mainly determined by, and cannot be better than, that of the v.c.o. contained within it. However, although the availability of a very linear v.c.o. system would allow improvements to be made in phase locked loops built around it, the usefulness of a circuit arrangement having a linear voltage/frequency characteristic extends beyond this to such applications as r.f. telemetry, "wobbulators", f.m. broadcast transmissions, and linear f.m. signal generators.

It is convenient in practice if the v.c.o. can be constructed using some form of multivibrator circuit in that this avoids the need for inductors, and, with a regard to the potential use of such a v.c.o. in an f.m. tuner demodulator system with an i.f. of 10.7 MHz , it is desirable that the controlled frequency range of the circuit should extend some way above this. In view of the small lead inductances and stray capacitances which are demanded for satisfactory operation of any multivibrator circuit at these frequencies, it is helpful if the device can be constructed using some readily available high frequency linear integrated circuit, and the component arrangement has been chosen with this object in mind.

Circuit development

A number of multivibrator arrangements can be adapted to operate in a voltage controlled mode, but for optimum performance in high frequency applications, the non-saturating emitter-coupled systems are preferable. A suitable configuration for a free running square-wave generator is shown in Fig. 1.

In this the operation of the circuit is to switch the current available from the constant current source backwards and forwards between T_{x} and $T r_{y}$. Resistor R_{1} is the collector load of Tr_{2}. When this transistor is conducting, the voltage drop across R_{1} will always be constant and

Fig. 1. Multivibrator configuration for a free running square-wave generator.

Fig. 2. Square-wave oscillator with a high long term stability. Operation is up to at least 20 MHz .

Fig. 3. "Current mimic" circuit which can be used to substitute the timing resistor, \mathbf{R}_{2}, in Fig. 2.
independent of the h.t. voltage supply, provided that this does not alter the output of the constant current source. This arrangement offers a high degree of intrinsic frequency stability and if C_{T} or R_{2} is made variable, the "base" frequency can be altered.

A practical system is shown in Fig. 2, using a Motorola MFC6010 i.f. integrated circuit amplifier, which incorporates a long tailed pair, a constant current source and a reference voltage point. With a stabilised h.t. supply, this circuit gives a high long term frequency stability, and will operate to at least 20 MHz .

This circuit arrangement can be converted into a linear and stable voltage controlled oscillator by the substitution of a "current mimic" or "current mirror" circuit for the timing resistor R_{2} in Fig. 2.

Current mimic operation

The circuit configuration shown in Fig. 3 is widely used in integrated circuit manufacture, as for example in the Motorola MC3401P to provide a noninverting input on a Liniac type amplifier, or in the RCA CA3060/3080 micropower op-amps, to replace load resistors. Its attractiveness to the monolithic integrated circuit manufacturer arises from the ease with which identical pairs of transistors can be fabricated in this process.

If a given forward bias voltage is applied to the bases of an ideal identical pair of transistors, the same current will flow in the collector circuits of both. If, now, the bases of both of these transistors are joined to the collector of one of these (Tr_{a}), and a certain current is drawn from this, this current will be the collector current of $T r_{a}$ plus the two base currents. Since the forward base potential of $T r_{a}$ has adjusted itself to the level required to produce the collector current of $T r_{a}$, it will also have adjusted the base potential of Tr_{b} to produce the same collector current in $T r_{b}$.
This will imply that the output ("mirror") current of $T r_{b}$ will be the same as the current drawn from the input, less the two base current contributions. If the current gains of the transistors used are high enough, or if - as will be the case in integrated circuit manufacture - the
areas of the transistor junctions are trimmed to suit, the two currents (the input current and the mirror current) will be very nearly identical, and this identity will hold good over a wide current and temperature range. Although this is an integrated arrangement, discrete transistors can be used if their characteristics are reasonably closely matched.

In several circuits of the type shown in Fig. 4, the transistors used in the mimic circuit were BC184s in which the baseemitter forward voltage drop was matched by selection to about 10 mV at $50 \mu \mathrm{~A}$ forward current (i.e., say 0.58 V to 0.59 V).

This is inconvenient, but not difficult if one has a voltmeter and six or eight similar transistors to choose from. Although BCl 84 s were used, any other similar small signal silicon devices would serve just as well.

The performance of the circuit shown in Fig. 4 is given in Fig. 5. The relationship between the control voltage and the frequency had a linearity better than 1% per MHz , and the frequency stability was as good as that of the author's signal generator during a six hour measurement period.

In view of this encouraging performance,
a means was sought for avoiding the inconvenience of having to select a matched pair of "current mimic" transistors, without the expense involved in the use of a matched-pair device. The solution was found in the use of an i.c. transistor array of the type contained in the RCA CA3046, of which the internal circuitry is shown in Fig. 6. In this particular case the array contains all the active components needed to make the v.c.o. circuit, including a matched pair of transistors. The circuit arrangement is in Fig. 7, for which the necessary interconnections across the base of the CA3046 are shown in Fig. 8.

Fig. 4. Circuit of the v.c.o. using discrete transistors for the current mimic circuitry.

Fig. 5. Performance of the circuit shown in Fig. 4.

Fig. 6. Layout of transistors and pin connections for the i.c. transistor array contained in the RCA CA3046.

Fig. 8. Connections to the CA3046 which complete the circuit shown in Fig. 7. The view is from below.

Fig. 9. Control characteristic of the v.c.o. in Fig. 7.

The performance of this circuit for a timing capacitor of 5 pF , and with the other values as indicated, is shown in Fig. 9. The linearity of this arrangement is as good as that of the circuit in Fig. 4, but the long term stability of the Fig. 4 circuit is slightly better. Several CA3046 units were tried and gave identical free running operating frequencies.

Typical applications

A simple phase locked loop configuration built around this v.c.o. and suitable for use as a high quality f.m. demodulator, using an f.e.t. as a synchronous chopper type phase sensitive detector, is shown in Fig. 10. An amplitude limited input r.f. signal, of nominal 10.7 MHz frequency, and of about 500 mV amplitude is desirable for correct operation of the system. The output a.f. signal will be about 20 mV for 75 kHz deviation, with a second harmonic distortion content of about 0.07%.

An arrangement usable as a low distortion frequency modulated signal generator if a suitable low distortion sinewave modulation signal is applied, or as a "wobbulator" if a sawtooth input signal is provided, is shown in Fig. 11. Increasing the capacitance of the timing capacitor will provide a proportional reduction in operating frequency, allowing the system to be used, if required, down to audio frequencies, as a voltage controlled oscillator in electronic organ and similar applications.

As a final provocative thought, since it is possible to build voltage controlled oscillators (and phase locked loop demodulator systems containing these) whose linearity, over the 75 kHz bandwidth normally used for f.m. transmissions, is better than 0.1%, by some margin, is not the ball now in the court of the broadcasting authorities to take note of this, and improve their f.m. transmission quality?

Fig. 10. Phase locked loop configuration built around the v.c.o., suitable for use as an f.m. demodulator. The f.e.t. is used as a synchronous chopper type phase sensitive detector.

Fig. 11. Using the v.c.o. in an arrangement for a low distortion f.m. signal generator, or as a "wobbulator".

Books Received

Noise and Modulation are two books by F. R. Connor and are respectively the fifth and sixth in a series of books on introductory topics in electronics and telecommunications. They are texts designed to assist students preparing for university degree examinations or for courses at a similar level. "Noise" presents a survey of the various conditions of electrical noise followed by mathematical ideas con cerning random variables. Circuit noise, noise factor and noise temperature are then considered. Finally, there is a comparative study of some important communication systems. "Modulation" provides a broad outline of the most important methods used in practice. Analogue methods such as amplitude and
frequency modulations are first considered and this is followed by phase modulation and the various types of pulse modulation. There is a final chapter on demodulation at the receiver. The material in both books is related to modern practice and a number of worked examples are included. Both hooks cost $£ 1.10$, and have approximately 100 pages each. Edward Arnold Ltd, 25 Hill Street, London W IX 8LL.

The Directory of Instruments, Electronics \& Automation 1973 (ninth edition) contains collated information on manufacturers. trade names, equipment and components in the electroniss industry. Sections come under the headings diary of events, association addresses.
who buys, U.K. agents, trade names, manufacturers' addresses and a buyers' guide. Price £7. Pp.328. Morgan-Grampian (Publishers) Ltd., 30 Calderwood Street, London SE18 6QH.

Recent additions to the Foulsham-Tab books on electronic topics and published by W . Foulsham \& Co. Ltd., Yeovil Road. Slough, Bucks, are:

How to Solve Solid State Circuit Troubles by Wayne Lemons, Price $£ 1.75$. Pp. 304.
How to Build Solid State Audio Circuits by Mannie Horowitz. Price £1.75. Pp. 320.
How to test almost everything electronic by Jack Darr. Price £1.30. Pp. 160.

Which Way Does Current Flow?

Some thoughts arising from recent correspondence

by "Cathode Ray"

I would probably be flattering myself excessively if I imagined for one moment that, when Messrs Banthorpe, Ellis and Whitehead ${ }^{1}$ appealed for the direction of an electric current to be deemed to be the same as that of the electrons composing said current, it entered the heads of any of them to think "Well, anyway, old Cathode Ray will back us up". If, however, the question of what I would be expected to think about it had been put to them, as a minor matter of academic interest, they might confidently have claimed me as a potential ally, since in so far as I am well known at all I am well known as one who decides on circuit conventions by processes of logic and common sense rather than by what is generally accepted. They might have quoted as evidence my strong support for the heretical doctrines of M. G. Scroggie on phasor diagrams and their mass of related conventions. Beside this complex thesis, the case for abolishing the conventional direction of current flow in favour of the direction of electron flow (they would say in chorus) is simplicity itself as well as being exquisitely logical and commonsensical. So Cathode Ray could not but stand shoulder to shoulder with them.

Flows, fields and tracks

It is true that their case was severally put forward in terms that nearly brought tears to my eyes. I'm sure they meant well. And I hope they won't take it too hard when they find that their idol (self-flattery again!) has feet of clay (Daniel 2, 41-43). But it is a fact that I find myself having more in common with what Thos. Roddam divertingly proclaimed from the next bed to mine in the Geriatric Technologists' Home, as well as with the plain Yorkshire words of A. Parnham, also recorded on the p. 386 already cited. I hope this revelation of my reactionariness will not cause a mass defection from the ranks of my followers (if any) - at least, not until they have read right through to the end, which is not far distant.

Roddam argues against reversing the usual convention (i.e., "current" opposite to electron flow) on the grounds that (a) to do so would cause a great upset (at which he hints by pointing out that among other things it would make nonsense of all diode and transistor symbols), and (b) (although
one suspects that he personally might find such an upset quite amusing) there is really no need for it if only we stopped bothering our heads unnecessarily with charge carriers, which can safely be left to the electronic device makers, and dealt simply in fields and "current tracks".

But you may not be ripe for accepting such a revolutionary plan (and I wouldn't blame you). In that case you must meditate on the fact that not all electric charge carriers are electrons. In this respect electricity differs fundamentally from air and water, held up by Banthorpe as examples for it to copy. And although Ellis may not be able to satisfy his commendably inquisitive students on why there are two kinds of current (unless he has a hot line to the Creator) he cannot deny the fact. A great many carriers are holes and positive ions. So the choice of which to regard as positive for the purpose of specifyjng direction of current flow is arbitrary anyway. Even if we yielded to the entreaties of the enemies of the current (in two senses) convention and overthrew it we would not rid ourselves of the anomaly of some charge carriers flowing the wrong way.

The answer that would undoubtedly emerge from Messrs Banthorpe, Ellis and Whitehead is that, as practical current carriers, electrons are in a large majority, having in metallic circuits at least a virtual monopoly; and that should decide the matter. The sacred cause of Democracy and all that. Students would still have to face the fact of current carriers flowing in the opposite direction to the currents they carried, but less often than at present, and every little helps. Whether that little would be enough to justify reversing very nearly all the books is a big question, however.

Perhaps it would help to answer it if we went on to a point that the current revolutionaries don't seem to have considered, or if they have then not enough. Suppose we did what they said and agreed to call the positive direction of electric current the direction in which the electrons composing that current were flowing, or, if the flow was of positive carriers, the opposite direction. Would students be any less confused than they are now if they were told that the positive direction of current was the direction in which negative charges were flowing, or
opposite to the direction in which positive charges were flowing? Or that (as suggested by Banthorpe) current flows from negative (i.e., a deficit) to positive (surplus), like water doesn't flow from the bottom of a well to the top of a hill?

Too much, too late

On the reasonable assumption that the students would be even more confused by this, the revolutionaries would be driven to deciding to call electrons positive charges. That would have been an excellent idea 75 years ago when electrons were discovered. But now? The imagination boggles. As my fellow geriatric has pointed out, all rectifier, diode and transistor symbols would need to have their arrow heads reversed. The electric fields would have to be changed around too. All those + and - things in books on electronics would have to be interchanged. There would be great fun in deciding whether your car battery had been made before or after R Day and so whether red should be taken to mean black and vice versa, or not. And what about Fleming's right and left hand rules? And the corkscrew rule? Would we have to reverse magnetic field conventions? As in the administration of VAT, problems would multiply as one went along. Before we were finished, the operation of changing Britain over to the right-hand rule of the road would look simple and straightforward.

Believe me, I'm truly sorry to be numbered with the reactionaries, but in this matter (as the key worker says when he downs tools for a 50% rise) I have no alternative.

Reference

${ }^{1}$ Wireless World June, 1973, p294 and August, 1973, p. 386.

New Products

Reverberation unit

A variable decay reverberation system suitable for control room or portable use has been introduced by Feldon Audio Ltd. Manufactured by Quad-Eight Electronics of California, the RV-10 features a patented new approach to mechanical reverberation simulation which is claimed to provide a clean, transparent sound comparing favourably with existing devices or chambers.

The creation of totally new effects can be achieved by four different initial delays developed by independent transmission lines and the full delay pattern is released after 55 milliseconds. The reverberation runs in four continuous trains of multiples of the delay times with a signal to noise ratio of 60 dB . Immunity to external noise is better than 55 dB which makes the RV-10 ideal for use in control rooms under high-level monitor conditions. It also features 3 steps of low frequency roll-off which are $100 \mathrm{~Hz}, 250 \mathrm{~Hz}, 500 \mathrm{~Hz}$ at 18 dB per octave. Completely self contained, the unit is $19 \times 3 \frac{1}{2} \times 10 \frac{1}{2}$ in and 17 lb in weight.

Distortion in the drive and recovery system is under 0.25% up to full output level of +18 dBm maximum. The input sensitivity is +4 dBm and is continuously variable down to -20 dBm with internal trim pot. Input/output impedance is 600Ω, transformer isolated and floating. The effective bandpass of the RV-10 reverberation system is 100 Hz to 7 kHz which is independent of the variable decay time setting. The overall frequency response has been limited to the useful reverberation bandwidth. This is claimed to be good industry practice and in conjunction with built-in filters eliminates the need for external filtering. Input and output connections are Jones barrier strip, and power requirements are 117 V a.c. at 12 W . Professional Equipment Division, Feldon Audio Ltd, 126 Great Portland Street, London W1N 5PH.
WW 309 for further details

17in storage c.r.t.

The direct-view storage cathode-ray tube type E722A manufactured by English Electric Valve Co. Ltd., provides very bright displays of information, ranging

from single transients and recurrent waveforms to half-tone pictures. Designed primarily for use in air traffic control radars, it is equally useful for medical, tabular display or other applications involving viewing under high ambient light conditions.

A new type of annular flood gun is used in the E722A which gives a uniform high brightness level across the whole of the display area. The useful viewing screen area is 153 square inches (995 sq cm). A storage time of two to three minutes is normal with only ten per cent degradation of contrast. Storage can be extended by electronic methods to ten minutes or longer.

The image can be completely erased in a fraction of a second and selective erasure of information such as aircraft identification labels is possible. English Electric Valve Co. Ltd., Chelmsford, Essex CMI 2QU.
WW 310 for further details

TV sweep generator

A high frequency-setting accuracy of better than 1.0% combined with a broad frequency range extending from $3-860 \mathrm{MHz}$ is provided by the PM5334 Philips TV sweep generator from Pye Unicam Ltd of Cambridge. Featuring eight front-panel selected sweep ranges that employ individual oscillators, the PM5334 covers all the frequencies needed for TV-set i.f. chroma and sound alignment, those for similar f.m.-receiver i.fs and TV bands I, III, IV and V, and f.m. band II. Fixed frequency markers are employed at important frequencies (5.5, 10.7 and 38.9 MHz) and a variable one is available for use on any of the ranges.

The instrument also provides a continuously adjustable sweep width on each range with an additional control permitting the selected frequency width to be centred on the range scale. A further facility permits the sweep frequency to be adjusted in the range $8-50 \mathrm{~Hz}$.

The output on the PM5334 is stabilized and can be adjusted 80 dB down from a maximum of 200 mV , with the additional possibility of modulating this output with a 1 kHz signal. It is also possible for signals to be provided at this output which represent any of the fixed marker frequencies \pm the variable-marker frequency (modulated or unmodulated), and a further output provides just the fixed marker frequencies as carrier signals.

A further feature of this instrument is its built-in bias-voltage source ($0-30 \mathrm{~V}$ floating) which eliminates the need for a separate supply for this purpose in radio or television (both monochrome and colour) alignment work. It basically means that only the PM 5334 and a dual-trace oscilloscope, such as Philips PM3110, are needed for complete alignment of, for example, TV-set i.f. and subcarrier stages.
A front-panel colour-coding system is provided which associates a given function with its specified operation of the instrument. Pye Unicam Ltd., Cambridge. WW 311 for further details

Illuminated lever switch

The Lever Lite III, from Souriau, is a part of the Switchcraft range of illuminated switches. It is available with three switching functions with alternatives up to eight pole double throw switching and giving a different colour of lever in each position.

Non-locking and locking (momentary) types are available. The contact springs are silver plated phosphor bronze with precious metal contact and the housing and lever of moulded plastic. Souriau (U.K.) Ltd, Shirley Avenue, Vale Road, Windsor, Berkshire.
WW 312 for further details

Desoldering braid

The use of pure copper desoldering braid is accepted as an easy and effective aid to the desoldering of electronic components. But there has always been a severe disadvantage to its use because previously available desoldering braids usually contain a highly corrosive flux which is activated when used with a soldering
instrument. A new desoldering braid available from GDS Sales Ltd, does not contain a corrosive flux. Instead, a new formula flux is used which is based on resin and organic compounds. Adcola desoldering braid is available from GDS in three sizes: AA $(1.5 \times 0.4 \mathrm{~mm})$; $\mathrm{AB}(1.7 \times$ $0.7 \mathrm{~mm}) ; \mathrm{BB}(2.8 \times 0.7 \mathrm{~mm})$. Each type costs $£ 6$ per box of ten spools. GDS (Sales) Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.
WW 307 for further details

110° deflection yokes

A range of colour TV deflection yokes has been announced by General Instrument Europe. It includes the type XP7311, XP731213 and 19194 Series assembly for use with 67 mm colour picture tube type A67-150X.

Facilities for rotating the yoke within the housing are provided for picture sauaring. A deauate axial movement for the yoke is provided for "red balling" prior to clamping the yoke in its optimum position for good beam landing.

The auto wound toroidal horizontal and vertical windings are laid into grooves formed in the plastic end caps mounted on the front and rear ends. of the ferrite yoke core. This precision turns placement ensures good and consistent convergence standards comparable to those currently being obtained on 90° receivers using conventional saddle coils.

The plastic housings are moulded from self extinguishing material conforming to at least U.L. SE1 standards, whilst the terminal panels are of flame retardant s.r.b.p. material.

With the deflection vokes. G.I. has announced a radial convergence/purity panel designed for mounting on the rear of the 110° PST deflection voke type XP 7311 etc. The coil assemblies contain windings for dynamic horizontal and vertical convergence control together with additional windings for electro-magnetic static shift. These assemblies are mounted on a flame retardant etched copper clad phenolic laminated panel conforming to BS 3888 (PPCD), DIN 40802 (C) and NEMA L1-1-1971 (FR2). A self extinguishing plastic mount to UL SE1 standards secures the purity magnets. The convergence assembly can be supplied with or without the integral purity correction magnets. Where dynamic blue width correction is not reouired, use of the G.I. blue lateral/purity device type 19194-1 is recommended. This last device is mainly constructed in plastic material conforming

Auto ranging multimeter

Keithley Instruments have introduced a $3 \frac{1}{2}$ digit autoranging multimeter using l.e.d. display. The Model 165 has autorange and automatic polarity switching facilities; manual ranging is also provided for all functions.

As a d.c. voltmeter, the Model 165 covers measurements from 10 V to 1000 V with six full-scale ranges. Most d.c. voltage ranges offer $+0.1 \%$ reading accuracy plus a nominal digitization error. On the six a.c. voltage ranges, the 165 permits measurements over a frequency range of 20 Hz to 20 kHz with specified mid-band accuracies
of 0.7% to 0.9%. Useful measurements may be made beyond these limits from 10 Hz to 100 kHz .

The a.c. current ranges cover five decades from 100 nA resolution to 2 A , with the same frequency range as a.c. voltage. The d.c. current ranges span seven fullscale decades, with overall sensitivity of $\ln \mathrm{A}$ to 2 A . Full range voltage drop is only 10 mV on all except the 1 A range where it is 100 mV . Resistance ranges also cover seven decades, with 0.1Ω to $200 \mathrm{M} \Omega$ sensitivity. Keithley Instruments Ltd, 1 Boulton Road, Reading, Berks.
WW 306 for further details

to UL SEl standards. A plastic knob moves two sliding plates, containing fixed magnets, in opposite directions to control the lateral movements of the blue and red/green beams. The purity magnet rings are mounted at the rear of the main assembly, General Instrument Europe S.p.A. 20149 Milano P.22a Amendola 9. WW 301 further detalls

Panel mounting potentiometers

The T162P6 is a cermet 4 -in rectilinear potentiometer. It is fitted with an adapter manufactured from Delrin 500 and is bolted to the front panel giving accessibility to the screwhead for easier adjustment. Compared to a plain hole this mounting provides positive screwdriver location, a dust sealed panel and a much neater appearance. Other advantages of this product are said to be the high strength of the component to adapter joint with a push out minimum of 10 -lbf. and an anti-rotation threaded bush, with washer and nut which locks the component firmly to the panel. The dimensions of the basic potentiometer are increased by a minimal amount, the remainder of the specification being the same as for the basic potentiometer type T162P. Also available are the T62P6, $\frac{3}{-}$-in rectilinear and the T72P6, 1 -in rectilinear potentiometers with wirewound elements. Electrosil Ltd, Pallion Works, Sunderland, Co. Durham.
WW 305 for further details

Variable-phase generator

A low-freauency limit of 0.1 Hz is provided in the latest addition to Philips range of L.f. eauipment. available from Pye Unicam Ltd of Cambridge. Known as the PM5161, this 0.1 Hz to 1 MHz variable-phase generator also has low signal distortion, this being typically 0.06% between 100 Hz and 50 kHz .

It is intended primarily for use as a sine-wave signal source in analogue-type simulator systems, such as those employed in process control and biomedical work. and also in audio and stereo work. An important feature is its dual-output system that permits the first output to be employed as the reference for the second so that a defined phase relationship can be maintained between the two. This phase difference can be adjusted in 30° steps up to 360°. and continuous phase adjustment is possible over the range of each step.

Apart from this, the PM5161 has two outputs, one with a 50Ω impedance and the other with a 600Ω one, and both can provide a $10 \mathrm{~V}_{\text {eff }}$ output signal unloaded. The unit's outputs are short-circuit proof and each output can be attenuated using the $0 / 20 / 40 \mathrm{~dB}$ attenuation control.

Among its other characteristics the PM5161 has a stability of better than 550 p.p.m. $/ 24$ hrs long-term and better than 100 p.p.m. $/ 15 \mathrm{mins}$ short term. Its phase error is less than 3.5° up to 100 kHz and 7° to 1 MHz , and frequency accuracy better than 3% to 100 kHz and 5% to 1 MHz . Pye Unicam Ltd, Cambridge. WW 303 for further details

To receive immediately full information and the name and address of the
Stockists nearest to you, please complete this coupon and return it to us direct

Name Address

WW-093 FOR FURTHER DETAILS

THE GRAND PRIX AWARD WINNER.

adilystone Radio

Golden Jubilee Year 1923-1973

Economy! Simplicity! Reliability!

1830 Series C.W, M.C.W, A.M, S.S.B

Crystal controlled
Transistorized HF/MF general purpose receiver
$120 \mathrm{kHz}-30 \mathrm{MHz}$ in 9 ranges
Rack mounting as standard
Cabinet optional extra
AC or battery operation
British MPT approved as ships reserve receiver

Illustrated brochure from:

Eddystone Radio Limited

Alvechurch Road, Birmingham B31 3PP. Tel: 021-475 2231. Telex 337081.

ESI Nuclear =

Experiments in Physics

Measure 'C' with an LED

* No moving parts
* Accuracy better than 1\%
* Measures velocity in other media
* Easily set up on optical bench

The velocity of light is measured from the phase difference between the output of a light emitting diode modulated at 45 MHz , and the beam reflected back over a 2 m optical bench. The phase is displayed on an educational oscilloscope by beating with a reference signal 25 KHz lower. The algebra, showing that the phase is transferred to the 25 KHc beat signal is suitable for A level work.

Price $£ 98$.

See ESI at the ASE Meeting, Leeds, or call ESI Nuclear Ltd., 2 Church Road, Redhill, Surrey. Tel: Redhill 64993. An associate company of Edwards Scientific International, Mirfield, Yorkshire.

WW-096 FOR FURTHER DETAILS

Reach for the facts

The facts are never very far away when you've got the latest Hi-Fi Year Book. Because it tells you everything you need to know about the Hi-Fi equipment on the market - what it does, what it costs, who makes it and where to buy it. It's packed with all the information you need to arrive at wise buying decisions - and it will save you money and time. The 1974 edition is completely updated, with extra pages and hundreds of new illustrations and specifications. And there is a host of absorbing articles on the latest $\mathrm{Hi}-\mathrm{Fi}$ developments. Order your copy right away.

1

UNLLE OPDORTCMITME

GENERATORS

MARCONI TF867 STANDARD SIGNAL GENERATOR

Carrier Frequency Range: 1 15kc/s-
30Mc/s in
11 Calibration 11 hands.
Accur-
acy: acy: $\pm 1 \%$. 1%.
Stabity
Sty up the drift in a
minute
period
is typicalily, leess than,
0.005% for carier
one irequencies
$3-2 \mathrm{Mc} / \mathrm{l}$ and and less than
to
and 0.01% from $3 \cdot 2-2$.
300 cis . $0.4 \mathrm{H}-4 \mathrm{~V}$. Impedance: 75 ohms nominal for outputs
from $2-4$ v. 75 ohms
俍 from $2-4 \mathrm{~V} .75$ ohms
for
$4 \mu \mathrm{~V}$ outputs from
from
 $0.4 \mathrm{LV}-0.4 \mathrm{~V}$.
$3-10 \mathrm{Mc} / \mathrm{s} \quad .0 .5 \mathrm{~dB}$
 Power Supply: $100-\mathrm{T} 25 \mathrm{~V}, 200-250 \mathrm{~V} 40-100 \mathrm{c} / \mathrm{s}$. Dimensions: 18 in. high \times DOI in, wBLE PULSE GENERATOR TYPE TF 1400/S $10 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s}$. Complete with TM 6600 . Pulse adjustable between $1.5 \mu \mathrm{sec}$. before and up to $3,000 \mu \mathrm{sec}$.

PRICE $£ 145.00$
MARCONI A.M. SIGNAL GENERATOR TYPE TF801D
$10-485 \mathrm{Mc} / \mathrm{s}$ in five ranges. Output $0.1 \mu \mathrm{~V}-1$ Volt E.M.F. External Sine A.D. Frequency $30 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s}$. PRICE $£ 195$ PHILIPS SQUARE WAVE GENERATOR MODEL G M2314 Range $15 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}$. Duration of square wave pulses between $0.75 \mu \mathrm{sec}$ and $40 \mathrm{~m} / \mathrm{sec}$. Square wave voltage 10 V

PRICE $£ 75.00$
AMPLITUDE MODULATOR TF1102
$100 \mathrm{Kc} / \mathrm{s}-300 \mathrm{Mc} / \mathrm{s}$ Sine-wave from $20 \mathrm{c} / \mathrm{s}-15 \mathrm{Kc} / \mathrm{s}$ and $20 \mathrm{x} / \mathrm{s}-500 \mathrm{Mc} / \mathrm{s}$ (s . MARCONI Type TF987/1 NOISE GENERATOR $1-200 \mathrm{Mc} / \mathrm{s} \pm 0.5 \mathrm{DB} £ 20.00$
MARCONI TF2092 NOISE GENERATOR £295.00 MARCONI VHF SIGNAL GENERATOR TF 1145 $450-1900 \mathrm{Mc} / \mathrm{s} £ 295 \cdot 00$
PHILIPS VIDEO GENERATOR GM2887 £95.00
HEWLETT PACKARD SIGNAL GENERATOR 608B $10-400 \mathrm{mc}$ in five bands. Output voltage $0.1 \mathrm{mV}-0.8$ Volt 50 ohm. $£ 165$
MARCONI H.F. CIRCUIT MAGNIFICATION METER TF886A
A direct reading Q Meter $15-170 \mathrm{Mc} / \mathrm{s}$ Magnification $60-7200$ Q $£ 45 \cdot 00$
MARCONI DISTORTION FACTOR METER TF142F $100 \mathrm{c} / \mathrm{s}-8 \mathrm{Kc} / \mathrm{s} 0.05 \%-50 \%$ Measures all spurious components up to $30 \mathrm{Kc} / \mathrm{s} £ 35 \cdot 00$
MARCONI PULSE GENERATOR TF675E
Repetition Frequency $50 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s} \quad 0 \cdot 15-40 \mu \mathrm{Sec} £ 35 \cdot 00$ MARCONI WIDE RANGE R.C. OSCILLATOR TF1130
Sine-waves $10 \mathrm{c} / \mathrm{s}-\mathrm{Mc} / \mathrm{s}$, square waves $10 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s}$ Directo outputs up to $31 \cdot 6 \mathrm{~V}$. Attenuator with three impedances. $£ 120 \cdot 00$
HETERODYNE UNIT TF1221
$2 \mathrm{Kc} / \mathrm{s}-100 \mathrm{Mc} / \mathrm{s} £ 45 \cdot 00$
WAYNE-KERR NOISE GENERATOR CT410
A portable instrument for measuring the nolse factor of radio receiving equlpment, metric radar receivers, and radar wide-band i.f. amplifiers in the band $15 \mathrm{KHz}-160 \mathrm{MHz}$. $£ 75.00$ MARCONI TYPE TF801A SIGNAL GENERATOR Frequency range: 10 MHz to 310 MHz . O / P voltage: $0-100 \mathrm{db}$ relative to 200 mV into 75 ohm IV CW O/P avallable. Internal modulation: $400 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 5 kHz to 80% sine or square. $£ 45.00$ ADVANCE TYPEDI/D SIGNAL GENERATOR Frequency range: $10 \mathrm{MHz}-300 \mathrm{MHz}$. O / P voltage: Frequency range: $10 \mathrm{MHz}-300 \mathrm{MHz}$. O/P Voltage:
$\begin{aligned} & \mathrm{V}-10 \mathrm{mV} \text {. }\end{aligned}$

$£ 25.00$
 BN4105 30-300 Mc $\pm 1 \%$ Output 3 Volt. £350. 00. HEWLETT PACKARD 8690 SWEEP GENERATOR plus 8693 B Plug-in. $3 \cdot 7-8 \cdot 3 \mathrm{GHz}$. £1,695.00. MARCONT TF995A/2M
AM/FM Generator. $£ 325 \cdot 00$.

FANTASTIC VALUE IN OSCILLOSCOPES

TEKTRONIX

 535A DC-30 Meg
 545 "With CA time
 545A
 HEWLETHPACKARD1
 Sampling Oscilloscope DC 1000 Meg complete with 187 C Dual Trace AMP has 350 microsec. Rise time (1000
 MC .

COSSOR CDU 110
Dual Channel Transistorised DC-25 MHz at $5 \mathrm{mV} / \mathrm{cm}$ 0.2 microsec. $-0.5 \pm 3 \% 5 \mathrm{X}$ Magnification extends sweep speed to 40 nanosec. $/ \mathrm{cm}$. Sweep delay 180 nanosec. 249.50

COSSOR CDU 120

 Dual Channel fully transis torised $50 \mathrm{mV} / \mathrm{cm}$ to 10 V DC-60 MHz. Rise time nanosec. $1 \mathrm{mV} / \mathrm{cm}$ at 25 MHz . 0.1 microsec. $\quad £ 349.50$COSSOR CDU 150
Rugged Transistorised fully portable Dual Channel DC-35 MHz at $5 \mathrm{mV} / \mathrm{cm}$. As used by numerous government departments (c/f CT531) £375 COSSOR. The very latest Cossor 4000 Dual beam. 55 MHz at $50 \mathrm{mV} / \mathrm{cm}$ Trigger, SCOOP-ONE ONLY £425 DYNAMCO 71001 Y2 7100 1×2 Oscilloscope. Dual channel with sweep delay, suitable for computer maintenance and most laboratory applications $30 \mathrm{MHz}, 1 \mathrm{mV}$ 10ys to 5s delay. BRAND NEW .£295.

MINITRON

Type 3015F 7 Segment display showing figures 0-9 plus decimal point. Character of 9 mm height. In 16 DIL case.

NEW LOW PRICE £1•40

SN7447N BCD Decoder Driver $£ 1$-00

SINE COSINE POTENTIOMETER 47K

Precision component by Pye. Model 2002. Manufactured to rigid Mnistry speciincation. The assembly consists of three unlts
mounted In one frame. Each unit contains mounta sine and two coside potentiometer
two
sections, the sliders belng ganged together sections, the sliders belng ganged together.
Electrical connectlons.

TEKTRONIX 526 COLOUR TV VECTORSCOPE

 M00158M PAL £495.FAIRCHILD $766 \mathrm{H} / \mathrm{F}$ Dual Trace \& Delay Sweep P.O.A. MARCONI BATTERY/MAINS TF 2203 TRANSISTORISED, FULLY PORTABLE FAST RISE-TIME DE-20MEG RISE-TIME $23 \mathrm{n} . \mathrm{sec} .50 \mathrm{mV} / \mathrm{cm} . £ 135$.
DC AMPLIFIER BY ASTRODATA 885-235 $£ 49$.
SAUNDERS OSCILLATOR CLC 7-12 K/me/s £25. MUIRHEAD D880A 2 Phase Decade Oscillator $£ 75$.

TRANSISTROL TEMPERATURE

CONTROLLER TYPE 990

Completely transistorised self-contained direct deflecting units for Indicating and controling temperature accurately over a wide range.
Sultable where a signal can be converted Into dc Senstivility 10 ohms
 scale length $6-5^{\prime \prime}, 0-8000^{\circ} \mathrm{C}$. Accuracy $+1 /-1 \%$. Front panel size tad
$\times 8 t^{\prime \prime}$, weight 11 lbs . Mains suply $100-260 \mathrm{~V}$. Control switching and thermo-couple connections all at back of case. Price $£ 18 \cdot 50$ plus $£ 2: 00$ packing and carrlage.

ASCOP DIGITAL ENCODERS

Type 504A-8-001 Price £20. Type EDD8G Price £20. BY ELLIOTT

POWER SUPPLIES

POWER SUPPLIES, IBM EX-COMPUTER HIGHLYSTABILISED, TRANSISTORISED LOW VOLTAGE POWER SUPPLIES.
These modular units incorporate overload protection. on both
INPUT and OUTPUT, Load regulation of poor better Low ripple and fast response time. Input voltage $120-13050 \mathrm{~Hz}$. Avaliable in the tollowing types:

IN NEW POWER SUPPLIES. AT LESS THAN HALF MANUFACTURERS PRICES.
O/P Voltage 7.5 V -9V. Max. load current 10 Amps. Max

EX COMPUTER HIGH GRADE FULLY STABILISED POWER SUPPLIES Input 200/250V.
ADVANCE TYPE DC 207
20 Volts 9 Amps. 10 Volts 53 Amps. 20 Volts 2 Amps. 20 Volts 13 Amps. 10 Voltse 5 Amps. Volts 2.5 Amps 35 Volits 9 Amps. 24 Volts 4 Ampes.
10
Volts
8 6 Volts 7.5 Amps . 8.
Volts
9
£18 EACH. P. \& P. $£ 3.50$

LAMBDA REGULATED POWER SUPPLIES New Range just arrived! Phone for details

EVERSHED SAFETY OHMMETER
for testing the continuity and resistance of circuits, conslsts of a hand-driven generator and a direct reading ohmmeter
Range in ohms $0-4,0-5,0-10,0-100,0-300$.

IGNITION TESTER
Ideal for garages, this brand new instrument is used to displa) all 1 gnition faults. Supplied complete wlth instruction manue
showing phots. Sold complete with Isolating transter for use on 240 V 50 H supply. Display cards also availabe for garages and oth
places wishing to advertlse this equipment is in use. Made Bricites Physicial Laboratories Litd., orig Inally for use on the
Price
Cinadian market.

LOW OHMMETER MODEL RM155-B MvIII Ideal for the measurement of low resistance. Low Curren milloh at short clicult. 5% whichever is the greater. $£ 20.00$.

SODECO IMPULSE PRINTING COUNTE 4 Dlgit Decimal Counter 10 c/second Electrical Reset $\&$ Prin

PHILIPS VALVE VOLTMETER
MODEL GM6014
Max. $300 \mathrm{mV}, 1000 \mathrm{~Hz}-30 \mathrm{MHz}$
ADD 10\% VAT TO ALL PRICES

to purchase some of the World's finest calibration instruments at savings of
 PEN RECORDERS

BRAND NEW MINIATURISED STRIP CHART RECORDER BY RUSTRAK
of America, This Recorder indicates the magnitude
of applied currents or voltages by a continuous disto

Price $£ 35.00$ plus $£ 5.00$ packing and carriage.

SINGLE PEN
RECORDER
by Record Electrical. 3^{n} chart. sensitivity 1 mililiamp, chart speed 1^{10} and $\theta^{\prime \prime}$ per hour.
Size $8^{\prime \prime} \times 11^{\prime \prime} \times G^{\prime \prime}$. 0 fered complete with

LEEDS \& NORTHRUP STRIP CHART RECORDER

POTENTIOMETERS

TEN TURN 3600° ROTATION

Res Onms $\begin{gathered}\text { Linearity } \\ \text { Percent }\end{gathered}$			
Reos $100 / 100$...........	Manufacturers	Model	${ }_{\substack{\text { Price } \\ \text { 4,00 }}}^{\text {cei }}$
$100 . \ldots \ldots \ldots . . .0 .5$	Beckman		22:00
	Beckman		E22.00
500	Beckman		${ }^{\text {E2 } 2.50}$
500		25	c2.25
500	Foxes.		£2.00
5500			E2.50
5		261100011	c3.00
¢00	Relcon		${ }_{\text {c2 }}$
1K	Relcon		
${ }_{2 k}$	Beckma		
${ }_{2 k}$	Deckma		
${ }_{2 K}$	Reliance	GP	${ }^{2} 2.00$
5 5	Relcon	${ }_{07-10}$	${ }_{\text {E2 }}$
5 5	Colvern	CLR2503	${ }_{\text {E3 } 3.00}$
10k	Beckman		E3.00
10 K	Beckman		${ }^{\text {E }}$ 3.50
${ }^{10 \mathrm{~K}}$	Colvern	CLR2610	${ }^{\text {c3 }}$ 3 50
18	Colvern	CLR2402	
25k 0.5	Ceckma		
29 K0.0	Beckman	SA1244	ع4.50
33 K	Colvern	2402	£1.50
${ }_{30 \mathrm{~K}}^{30 \mathrm{~K}}$............	Beckman		
${ }_{30 \mathrm{~K}}^{30 \mathrm{~K}} \ldots \mathrm{l}$...... 0.1	Beckman.		E3.50
30 K	Beckman	SA1692	建
30 K	Coivern.	24021	${ }_{\text {E1.50 }}$
50 K	Reliance	. 07.10	${ }^{2} 2.25$
50K	Colve		c2.25
50 K	Foxes		
50 K	Beckman		${ }_{\text {E } 3.00}$
	Beckman		${ }^{83} 30$
${ }^{100 \mathrm{~K} / 100 \mathrm{~K}}$	Ford		${ }_{\text {E 5 }}$
	Beckman		${ }_{\text {E3 }}^{53} 5$
10	Beckman	${ }^{\text {A }}$	${ }_{\text {E }}^{\text {E3.00 }}$
${ }_{100 \mathrm{~K}}^{100 \mathrm{~K}}$		${ }_{2610}^{2501}$	
298K		${ }_{8}^{2610} 3002$	¢2.50
300 K	Beckman	$\begin{array}{r} 8 \text { A... } \end{array}$	E3.50
THREE TURN $780{ }^{\circ}$ ROTATION			
1001100 300	Beckman.	Type	${ }_{\text {c3 }} \times 2.00$
$\begin{aligned} & 300 . \\ & 1 K . \end{aligned}$	Fockman		${ }_{\text {E2 } 2.25}^{\text {c2 }}$
10 K	Peckman	C.ss.	${ }_{\substack{\text { c2.25 } \\ \text { c2 } 25}}$
$20 \mathrm{~K} / 2 \mathrm{OK}$	Beckman	c.	${ }_{\text {c3 }} \mathbf{2} 20$
100k/10K	Beckman		E3.00
50 K	Beckman	c.s.	${ }_{\text {E1 }} 1.75$
FIFTEEN TURN 5400° ROTATION			
	eckman B......		
46K/46K	Beckman B .	10 watts.	${ }_{\text {E } 6.50}$
FIVE TURN 1800° ROTATION			
	Relcon.....	HEL07-05	
	ve	CLR2605	± 200
FIVE-AND-A-HALF TURN			
	Colvern	405	£2.00
OUR STOCKS ARE CONSTANTLY CHANGING -PLEASE LET US KNOW YOUR EXACT			

GOMPUTER AGGESSORIES
80 COLUMN HAND PUNCHES

Ideal for stock
control, $\begin{array}{r}\text { sales } \\ \text { analysis, back-up }\end{array}$ analysis, back-up in existing co
puter installations
op
Pr puter installation
OP training ce
tres.
Nchoois,
New
 morel
carriage.

DE LUXE MODEL
Incorporating tabu-
ating mechanism
ع79-50 mechanism

ELECTRIC
HAND
VERIFIER $\underset{\text { age. }}{\text { E.50 }}$

All machines supplied with numeric keytops and dust-cover
and covered by our three month guarantee. Delivery ex-stock. and covered by our three month guarantee. Delivery ex-stock.
Optional extras alpha keytops and chip tray.
THIS MONTH'S SPECIAL MINI COMPUTER OFFER SAVE 75\% OF LIST PRICE ON THIS DEC PDP SYSTEM DEC PDP8 41.5 microsecond
ASR33 Printer available $E 200$.

E1150 ${ }^{\text {ATTENTION: PDP } 11 \text { USERS. MEMORY UPGRADES }}$ AK, BK, 12K, 1GK SAVE MONEY NOW.
WIDER RANE OF SPARES FOR THE FOLLOWING
COMPUTERE COMPUTERS ICL 1500, ICL 1900 , SYSTEM 4 , 4100 , 803 ,
AMPEX,
COSSOR VISUAL DISPLAY DID 400 . Consisting of Key-
 TELETYPE PUNCH BRPE HIgh-speed punch. Self-contained, consisis of punch
unit, base, motor unit. For use in many data communication systems. Operating speeds up to 100
characters per second. 1100 words characters per second. 1100 words per
minute). Avaiable for punction

WELMEC 7 \& 8 HOLE ELECTRO-MECHANICAL PUNCHES \& READER Models $S 110$ and R89C, 17 char, per sec. Rebuilt, avallabl
from stock. £45.

ICT KEYBOARDS

ICT KEYBOARDS
In origlnal packing-Alpha-numeric Prices from $£ 15.00$ Magnetic Tape Transporters AMPEX TM4, TM2, TM7, FR300,
IBM 7330, POTTER, ICL Magnetic Drums. From £75.
BM PUNCH CARD EQUIPMENT FULLY GUARANTEED
024 Automatic alphanumerical keypunch...... Prices from

FREQUENCY CONVERTER MODEL B. 40 Specificaton: Prowe Moverency converter. Fully overhauled.
Eiectric Moltor
Ontout: $\quad 220 \mathrm{~V} 60 \mathrm{~Hz} 3 \mathrm{ph}$
 HEWLETT PACKARD DIGITAL RECORDER MODEL 565A Data Entry, parallei to to columns Print speed 5 lines per second. $5 \mathrm{~Hz}-600 \mathrm{KHz} 10$ Volts. $£ 59 \cdot 00$.
PYE HIGH RESISTANCE OHMMETER MODEL 10B Range from $0.3-20,000$ Megohms
in 4 ranges at 500 V . Used for the in 4 ranges at 500 V . Used for the
measurment of components or circuits hav
capacitance. PRICE $£ 20 \cdot 00$

MULLARD VALVE VOLTMETER MODEL E7555/2 COLVERN DIGITAL CODERS (Shaft Digitisers) Disital Coders are electromechanlcal devices, which give a unique parallel digital code output terepesenting the anguiar position of the
shaft. The current handing shaft. The current handing capacity is sufficient to operate relay
decodes and indicators direct without intermediate stage
 WIDE RANGE OSCILLATOR TYPE 400C BY DAWE FANS BY PLANNAIR
115V-3 Phase $400 \mathrm{c} / \mathrm{s}-11,000 \mathrm{rpm}$. Type iPL41-234 PRICE E 4000 R.C. OSCILLATOR TYPE G432 by FURZEHILL SPECIAL OFFER SPECTRUM ANALYSER HEWLETT PACKARD $8551 \mathrm{~B} 10 \mathrm{MHz}-12 \mathrm{GHz}$ and 851 B Extension to 40 GHz . With W/G Mixers and very little used Ex Calibration Lab. $£ 3,950.00$.

VENNER 3334

Digital Frequency Meter $0-1 \mathrm{MHz} £ 45 \cdot 00$

VENNER 3336
Digital Counter Six Digit $0-1 \mathrm{MHz}$ £55.00
With 15 Meg Counter extension for above $£ 85.00$ AMF VENNEK 7737 DIGITAL COUNTEH 1000 MEG E150 POWER OSCILLATOR bY WANDEL \& GOLTERMAN 4.41 MHz 40-108 MHZ $170-333$ MHZ $610-960$ MHZ E 175 . . $130 £ 35$. Counter 4 Decades Counts up from zero wlth Dlgital Readout E 49.50

DYNAMCO 2001

Digital Voltmeter $50 \mu \mathrm{~V}$ 2KV 0.05% £175.00.

DYNAMCO type 2022 S

Long scale D.V.M. and Ratiometer. The 2022 is a high accuracy long scale instrument operating on the potentiometric principle. It features a very high input impedance with exceptionally low current errors, an external scaling facility, seven operating modes and digital output.
Scale
. 39999
Range
$10 \mu \mathrm{~V}$ to 2 kV
Resolution
Accuracy
Longterm $\pm 0.0025 \%$ of F.S.D. $\pm 0.01 \%$ of reading $\pm 0.0025 \%$ F.S.D. $\pm 0.0025 \%$ of reading
Inputimpedance $\quad>25,000 \mathrm{M}$ ohm C.M.R 60 dB at DC Typlcal 120 dB at 50 Hz$\}^{\text {Typlcal }}$ £275.00
MEGGER CIRCUIT TESTING OHMMETER For Measuring conductor resistance. By Evershed and Vignale. £22.50.
BELL \& HOWELL
5-12 and 18 Channel U.V. Recorder $£ 395.00$. 5-127 12 Channel £350.00.

\section*{

Fabulous TES Equipment

 All items are brandnew and $\underset{\substack{\text { couranteed } \\ \text { for } 6 \text { month }}}{ }=$國ssemem.....

THE REVOLUTIONARY

 SU PERTESTER 680RFOUR International patents - Sensitiviry
20.000 Ohms
20.000 Ohms per Voh
10 fielid do measurement
AND BORANGES.ACCURACY 1 in in D.C. 2% in A.C.
OUTSTANDING FEATUAES OUTSTANDING FEATURES
20.000 Ohm per Volt sensitivity © Fully
screened agalnst external magntic Scale width and small case dimentic fierds $95 \times 32 \mathrm{~mm}$ - Accuracy and stability $(1 \% \times$ Simpl. 2% in A.C.I of indicated reading. of accessories $\bullet 1000$ times overload \bullet Printed circuit
of board is removable without de soldering - More ranges than any other meter. VOITS A.C $=11$ ranges: $2-10-50-250-1000-2500$. Vo and $4-20-100-500$ and 2000 Vots. Voits $0 . \mathrm{C}=13$ tanges: 100mV-2V-10-50-200-
$500-1000$ Voths $200 \mathrm{mV}-4 \mathrm{~V}-20-100-400$ and 2000 Voltes AMP DC

 20. from 0 to 200 , from 0 to 2000 and tom 0 to 20.000 Micro tarad usingthe ingrouns Boid figures indicate deppress button.
£18.50

ACCESSORIES T 680R TO THE F	Ooconvent the supertester	Transistor
Amperclan	" 1 Signal	lester
	1.1 Injector	
	ciplecting	
${ }^{11} 1.95$		
Gauss		
Meter	Phase Sequence	
		Temperature
	--	couerin

othen accessories available
SHUNTS D.C. 25. 50 and 100 amps ©4.50 CURAENT TRANSFORMERS A.C. 25 and
E.H.T. PROBE

METERS, PROBES, ETC.

AC/DC MULTIMETER With taut band suspension movemen Sensitivity 20.000 ohms per volt on DC Te 4.000 ohms per volt on $A C$ Technical Dara
$0.06 \cdot 0.6-6 \cdot 60.600 \mathrm{~mA} \cdot 3 \mathrm{Amps} \mathrm{DC}$
$0.3 .3 .30 .30 \cdot 1$ 3.12.30.60.120 3 Amps AC 0.6-1.2 $3 \cdot 12 \cdot 30 \cdot 60 \cdot 120-600$ DC. 1200 Volts.
$3 \cdot 6 \cdot 15 \cdot 60 \cdot 150-600$
 AC. 45 to 20.000 Hz .
500 ${ }^{\text {ane }} 5.50-500 \mathrm{k} \Omega$ resistance Decibe range -10 to -12 dB . Accuracy 1% of
F.S. . $10-0 \mathrm{C}$ and resistance measure
ment: ments -2.5 Price with rest leads. and
$£ 8.00$

AMPERTEST
 690

NEW CLAMP TYPE AM METER
With uniqua seff: lockivirg moter system retins reading muntil releasad. enabling anginees to
obbain accurat obbain accurate results ather
tesing inaccessible place Designed for use in one hand the of the familar ammerer makes use to measure without breaking the circuit the current flowing in a conductor. It is.d. with the first division at 100 mA The ranges can be extended by
means of a 10. to-1 current transformer that is supplied with the instrument. providing ranges from 300 mA to 60 A t. . With the first division at 10 mA . 600 V f.s.d. are provided. The connactions tor voltage measurements are made by means of two leads and probes that plug into the base of the £39.50

ADD 10\% VAT TO ALL PRICES O PROMPT DESPATCH MAIL ORDER
CALLERS WELCOME MON-FRI 9 A.M. to 5.30 P.M.SAT 9-30 A.M. to 2 P.M.
Add 22 towards the cost of packing and caniage on all items for U.K
detivery lexcent where pashing and defivery fexcept where pasking and
cariage are already indirated

THE NEW NELSON-JONES FIM TUNER

PUSH-RUTTON VARICAP DIODE TUNING (6 Position)

Exclusive Designer Approved Kits
What are the important features to look for in an FM tuner kit? Naturaily it must have an attractive eppearance when built, but it must also embody
the latest and best in circuit design such as :-
MOSFET Front end for excellent cross modulation performance and low noiso.
3 GANG Tuning for high selectivity
VARICAP tuning diodes in back to back configuration for low distortion. CERAMIC IF filters for defined IF response.
INTEGRATED circuit IF amplifiers for reliability and excellent limiting/AM rejection.

PHASE LOCKED Stereo decoder with Stereo mute.
LED fine tuning indicators.
PUSH BUTTON tuning (with AFC disable) over the whole FM band. IC STABILISED and S/C protected power supply.
CABINET veneered inside and out.

The Nelson- Jones Tuner has all of these features and many more, and more importantly the design is fully proven not just with a few prototypes but with many thousands of working tuners spread across the worid.
Basic tuner module prices start as low as $£ \mathbf{1 0} \mathbf{- 7 9}$, with complete kits starting at $£ 23.95$ (mono) + PP 50p. and of course all components are available separately.
Our alignment service is available to customers without access to a signal generator.
Please send large SAE for our latest price lists which detail all of the many options and special low prices for complete kits. All our other products remain available e.g. The Portus and Haywood Phase Locked Stereo Decoder Kit.
PLEASE NOTE. Existing tuners are readily convertible and kits/parts are available for this purpose.
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph). Complete designer approved Texan kits are available at $£ 28.50$ plus p.p 50 p including Teak Sleeve.

OPTO-DEVICES

Panel mounting LED's.

RED	$1-9$	$29 p$	$10-24$	$23 p$
GREEN	$1-9$	$69 p$	$10-24$	$59 p$

7 Seg LED's
$0.325^{\prime \prime}$ RH Dec Point.
Common Anode $1-4 £ 2 \cdot 46$; 5-24 £2•10. Common Cathode 1-4 £2.33; 5-24 £1-93. 7447 Dec Driver f1-30 (C.A.)
V.A.T. Please add V.A.T. at 10% to all prices for U.K. orders.

INTEGREX LIMITED, P.O. Box 45, Derby, DE1 1TW
Phone Repton (028389) 3580

IMTECH PRODUCTS

fully
guaranteed VALVES
GENUINE MAZDA/BRIMAR EX STOCK TYPICAL PRICES AS FOLLOWS:

THE HIGHEST PERFORMANCE OIGITAL FREQUENCY COUNTERS AT THE PRICE IN THE WORLD EVERYBODY BUYS THEM

3015 OIGIT 32 MHz
STABILITY 3 pars in 10°
SENSITIVITY 50 mV
£75

4018 DIGIT. $32 \mathrm{MHz}_{2}$
STABILITY 1 part in 10^{8}
SENSITIVITY 10 mV _1?

5018 diglt. 32 MHz , STABILITY 3 parts in 10^{8} (crystal oven) SENSITIVITY 10 mV

7018 DIGIT. 50 MHz , STABILITY 3 parts in 10° SENSITIVITY 10 mV
$801 \mathrm{~A} 8 \mathrm{DIGIT}, 300 \mathrm{MHz}$, STABILITY 3 parts in 10^{8} SENSITIVITY 10 mV
prices exclusive of vat
ELECTRONIC START/STOP version PLUS $£ 10$ MEMORY version PLUS £25 DIRECTLY COUPLED ÍNPUT AND SPECIALS TO ORDER Write for illustrated leaflet
Supplied to and acclaimed by professional engineers everywhere who have purchased our electronic instruments for the past 10 years. Norwegian Agent: ELECTRO-TRADE, TRONDHEIM, NORWAY. Australian Agent: ANELCO ELECTRONICS SOUTH AUSTRALIA 5049 RCS ELECTRONICS, NATIONAL WORKS, BATH ROAD, HOUNSLOW, MIDDX. TW4 7EE Telephone: 01-572 0933/4
WW-108 FOR FURTHER DETAILS

ROGERS

AUDIO TEST EQUIPMENT

A comprehensive, versatile range of test equipment primarily designed for the measurement of high quality audio
equipment, but with additional equipment, but with additional in general. The equipment is of particular interest to the professional audio engineer, recording studios, broadcasting authorities, and educational establishments.

DM344A Distortion Factor Meter. Designed to make accurate and rapid measurements of total harmonic distortion generated within high quality audio amplifiers, recording and S324 Low Distortion Oscillator. Generates a pure sine wave and has been designed as a general purpose low distortion signal source. The primary application. used in conjunction Chassis $-f 56.50 \mathrm{c} / \mathbf{w}$. Case measurement of total harmonic distortion. Selling Price AM324 AF Millivoltmeter. Designed for vol
ranges and principally, for ranges and, principally, for measuring low level signals in high impedance circuits.
Selling Price: Chassis- $£ 64.00 . \mathrm{c} / \mathbf{w}$. Case $-£ 70.00+$ VAT.

Model ' A ' Noise Generator. A portable battery operated unit designed for carrying out listening tests on loudspeakers. 'Pink or 'White' noise can be selected and output tinuously variable. Selling Price $£ 32.50$ +VAT.

ROGERS DEVELOPMENTS (Electronics) LIMITED

4/14 Barmeston Road, London SE6 3BN, England
Telephone: 01-698 7424/4340

IRANSFORHERS

115 V 500 eased transformer, with mains lead and two 115 V outlet sockets, $£ 9.49 . \mathrm{P}$ \& P
67 p . i 20 Watt version. $£ 2.02$. P \& 22 p .

Also stocked: SEMICONDUCTORS - VALVES AVOMETERS - ELECTROSIL RESISTORS

BARIXE electronics
 3, THE MINORIES, LONDON EC3N 1BJ TELEPHONE: 01-488 3316/8
 NEAREST TUBE SIATIONS. ALDGATE \& LIVERPOOL ST.

MAGNETIC HEADS P.O.A
210028 RCA............ 9 TRACK
259019 RCA............ 8 TRACK
257124 RCA............ 8 TRACK
282812 RCA............ 7 TRACK
303489 RCA............ 7 TRACK
73927 RCA............. 7 TRACK
303464 RCA................

TRANSISTORS \& DIODES

RANSISTORS \& D				
2N457	75p	AF116	25p	2N356/OC139 ... 2 25p
2N1545	80p	AF117	.25p	Get110 25p
2N1542	50p	BC107	8p	2G106/2N711B ...43p
2N1557	50p	BC108	.8p	OA5...........20p
2N1908	£6.00	BC109	8p	OA10............ 25p
2N3054	40p	OC35	40p	RAS508AF
2N3055	45p	$0 \mathrm{C42}$	40p	800PIV50p
2N985	$f 1.05$	$0 \mathrm{C71}$.12p	RAS310AF 1000 V Av.
2N3553	£1.00	CV7006/0c72	20p	1.5a 2 for 50p
2N5322	50p	OC75	25p	STC Wire ended 400PIV
AC126	20p	0 C 77	45p	1a 4 for 50p
AC127	25p	OC83	25p	IN319313p
AC1 28	20p			IN3194 14p
AF115	25p			IN325520p

RCA PHOTOMULTIPLIER C31005
Checked and tested

RECTIFIER STACKS

GEX541旦1P2	E6.88
GEX541B1P1	£3.50
GEX541D2P1	£3.50
GEX541 NB1P1	£6.00
GEX541HP3F	

INTEGRATED CIRCUITS
MC3544
MC353G
MC358AG
MC365G
CA3020.
CA3028A
CA3038A
CA3085
CD4035AE
CD4017AE
HYRISTORS
GE2N1774 200v. 5a.E1-20 CR10-1018 100v
10a...........
CR10-40 10a
CR10-051 100.
CR10-01710a
BTX-82-300R 300
26a................00
ONNECTORS
McMurdo Red Range. Plug RP24
Eng. Elect. Edge. 36 wav 0.2 inch
Eng. Eliect. Edge. 86 way 0.2 inch
Ultra Gold-plated Contacts. 0.2 inch Type $10 M 54631263 \mathrm{C} 38$ way.
20 wsy.
£. 1.40
pair $£ 2.00$
CAPACITORS
Daly Electrolytic 9000 uf 40 v . 50p; Wego paper $4 \mu \mathrm{f} 400 \mathrm{v}$ 60p; Dubiiier Metalifed Paper Type 426100 uf 150v. DC 50p; R.t.C. type $12971.8 u f 440 \mathrm{v}$. AC 35p. TCC V13 Conol 3.1 f $\mu \mathrm{f} 1500 \mathrm{VDC} 50 \mathrm{p}$
MOTORS
GEC fractional $1 / 12$ hp $230 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 2850 \mathrm{mpm} . . . \mathrm{E} 3.50$ carr. 67 p E.E. $\frac{1}{2}$ hp 230 v .50 c 1 ph 50 c .1440 rpm compl ate with cap $80 / 100 \mathrm{uf} 275 \mathrm{v}$..... $\mathbf{\text { f. } 1 3 . 0 0}$ carr. $£ 1.00$ 76813-393 Potter Instr. 110 v . DC 4 amp 0.2 hp . Cont. flange mounting pectsion ANS, CENTRIFUGAL BLOWERS

Alrmax Type M1/Y3954 (3 blades) Cas Aluminium alloy impeller \& casing (corresponds to current type $3965{ }^{7 \frac{1}{2}}{ }^{2}$) 230 v .
1 ph 50 c 2900 rpm Class " A " ${ }^{\text {insulation }}$ 1 ph 50 c 2900rpm Class "A" insulation f.21.00.

Woods Aerofoil short casing type " S " 700rpm 220/250v 1ph 50c 6" plasti impeller incl. p.p. £11-50.
Woods Aerofoil Code 7.5280 K 200/250v. .0a 1ph 50c 2700rpm $7 \frac{1}{2}$ " impeller 14 lades inci. p.p. £13.50.
Service Electric Hi -Velocity Fans, suitable for Gas combustion Svstems. Steam exhausting. Pneumatic for Oil burners. Secomak Model 365 (corresponds © 575)'Airblast Fan, 440v 3ph 50c 0.75 hp 2850rpm. continuous 160 cfm 12 in $\mathbf{w . g}$. neit weight 44 Ib price incl. carr. £41.00. Secomak model 350250 v $1 \mathrm{ph} 50 \mathrm{c} 0 \cdot 166 \mathrm{hp}, 2800 \mathrm{rpm}$ continuous 50 cfm 2 ln w.g. net weight 34lbs, price incl. carr. £.26.00.

Air Controls type VBL4 200/250v 1 ph 50c. 110 cfm tree air welght $7 \frac{1}{2}$ lbs price incl. p.p. £.14-60.
William Allday Alcosa Two Stage Vacuum Pump Model HSPOB 8hg up to 29 in. mercury rpm 1420. $380 / 440 \mathrm{v} . \mathrm{E} .21 \cdot 00 \mathrm{incl}$ carr
Gast MFG. Vacuum pump 0522-P702-R26X Motor $110 / 120 \mathrm{~V}$. A.C. 1 ph .60 c 1725 rpm . Class E Or as compressor 10psi int. or 15 psi cont. £25.00
 incl carr.
Where p.p. not advised add 10 p per $£$ handling and post (in UK) Cash with order. Personal callers welcome. Open Mon-Wed 9.30-5.00 Fri.-Sat. 9.30-5.00. Free Car Park adjacent.

W. \& B. MACFARLANE

126 UXBRIDGE ROAD, HANWELL, LONDON W7 3SL
 K). VITCHES
Edwards High Vacuum "Speedivac" model SK1日 tange 25.760 tori contact ratings rev. $15 \mathrm{Lb} / \mathrm{sq}$ in cuge net weight 17 ozs . oelling Delay hand reset L4151•10 Stackpole min. rocker 125v. 10a. 250v. 20p 5a. . Securex 5000 press button 250 v . ac. . $£ 1-20$ IITAL COUNTERS
Veeder Root Zero Reset 6 dig. 110 v . dc£4.75 Veeder Root Mech. Reset 4 dig.50p engster Reset 6 dig. $210 \Omega 24 \mathrm{~V}$.23. H5.50 LAYS
Varley Min. $700 \Omega 12 \mathrm{v}$.
Magnetic Dev. TYoe 596 E
pp 65p YBOARDS

CL Alpha Verifier (PN7035130) $£ \mathbf{2 7}$.50 6 watt (peak) Amplifier 240v. AC, with nputs for Radio. Tape Recorder, frea. response $80-12,500 \mathrm{~Hz}$, bass and treble controls, 2 speakers. Dimensions $265 \times$ for education seminars etc. $£ 12.00$ Incl. carriage carriage.
,

BRIDGE RE

*All prices are subject to VAT ALL TAPES SUPPLIED IN AIR TIGHT CONTAINERS

Exclusive to Dixons Technical. Fantastic quality Dixtec CCTV $\frac{1}{2}{ }^{\prime \prime} 2400 \mathrm{ft} £ 5.50$ IXONS TECHNICAL LTD. 3 SOHO SQUARE, LONDON. W. 1.
 Technicallid WW:NT
WW-121 FOR FURTHER DETALS

STEREO IC DECODER
 HIGH PERFORMANCE PHASE LOCKED LOOP (as In 'W.W.' July '72)

MOTOROLA MC1310P EX STOCK DELIVERY

Separation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$ $1 / P$ level ; 560 mV rms SPECIFICATION

O/P Distortion: 0.3\% Input impedance : $50 \mathrm{k} \Omega$.

WES FIBREGLASS PCB
KIT COMPRISES FIBREGLSS PCE
(Roller tinned), Resistors,
LIGHTEMITTING DIODE (Red)
Suitable as stereo 'on' indicator. For above O/P level: 485 mV ims per channel
Power requirements: $8-16 \mathrm{~V}$ at 16 mA 'on' lamp or LED.

NOTE

As the suppiler of the first MC1310P decoder kit, of which we have sold literally our customers can benefit from our wide experience.
\qquad
FI-COMP ELECTRONICS
BURTON ROAD, EGGINTON, DERBY, DEG GGY

.

Fro
ONLY WHYPAY
f3-40 MORE?
ONLY free.
$\mathbf{2 9 p}$ plus p.p.

MC1310p only $\mathbf{f 2 . 7 7}$ plus p.p. 6p
(o) fung M

Our products are:
11 m AM Walkie-Talkies, $0-2-1-2$ and 5 Watt, up to 24 channels. 11 m AM Cartransceivers, 6 and 24 channels, $2-5$ and 10 Watt, 2 m FM 10 Watt, 12-22 channels Amateur, Industrial and Marine Transceivers, 11 m SSB 24ch. 300W, 220V/12V-Transceivers, 8-track Stereo-Recorder with built-in AM and FM Stereo-Radio.

Wanted:

Qualified dealers and wholesalers of the technical line for the sale of the above highly sought-after products.
Delivery is effected immediately from stock in Switzerland or ex factory Japan.

SOKA SRL,

CH 6903 Lugano, Box 176
Tel: 004191688543 , Telex: 79314

TELEPRINTER EQUIPMENT LIMITED

Sales . . . Rentals . . . New . . . Refurbished . . . Installation . . .
Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries
GREED EQUIPMENT
PERFORATORS 7PN, 85/86, PR75, 25
TAPE READERS 6S4, 6S5, 6S6, 6S6M, 92, 35, 71, 72, 74
HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.
TELETYPE CORP. EQUIPMENT

SIEMENS EQUIPMENT
 OTHER

EQUIPMENT

SPECIAL EQUIPMENT

TELEPRINTERS $15,19,20,28,32,33,35$
all configurations
PERFORATORS 14, 19, 28 LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS 14, 20, 28 LBXD \& LXD TRANSMIT GROUPS, etc.
TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.
KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN, CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS.

WW-114 FOR FURTHER DETAILS

COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED
 G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS—201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300,500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)—made to specifications
TERMINAL BLOCKS (DISTRIBUTION) - 20 -way up to 250 -way
LOW PASS FILTERS - type 4B and PANELS, TELEGRAPH $71(15 \times 4 B)$
POLARISED TELEGRAPH RELAYS AND UNISELECTORS—various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, $48 \mathrm{H}, 49 \mathrm{H}, 149 \mathrm{H}, 3 / 16,3 / 216,3 / 48 \mathrm{~A}, 3 / 43 \mathrm{~A}, 48 \mathrm{~J}$, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES—made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include :

[^8]
HART
 ELEC

Audio Kits

This is our Bailey／Burrows Stereo pre－amp front end．We think it is the best engineered kit of the best pre－amp circuit available，and there is a back end／tone－control unit of similar advanced design to go with it which is only $1 \frac{1}{2}$＂deep so it fits almost anywhere，but of course it＇s at its best in a Hart universal amplifier metalwork with a couple of Hart Bailey 30 watt power amps to keep it company． That＇s a recipe for real $\mathrm{Hi}-\mathrm{Fi}$ with electronics you＇ll be too proud to cover up．
Also a delight to the connoisseur are our printed circuits and components for the Stuart tape circuits．
This is a most useful high quality circuit with the record，replay and bias functions on separate boards thus giving considerable versatility of use．For instance a stereo replay channel can be built for f 6 for single speed use without external components or a switch may be added for multispeed operation．
Stuart reprints all three articles under one cover．
Stuart reprints all three
Price 30p．No V．A．T．

Penylan Mill，Oswestry，Salop．

Personal callers are always welcome，but please note we are closed all day Saturday

WEST HYDE DEVELO PMENTS LIMI

 WW－117 FOR FURTHER DETAILS

WEST HYDE（VB

 Telephone：Northwood $24941 / 26732$X．HA6 1NM． Telax： 923231 .80 A
\qquad S
U

U く ＂きく | 3 | 6.5 | $£ 3.18$ |
| :--- | :--- | :--- |
| 7 | 6.5 | $£ 3.50$ |
| 10 | 6.5 | $£ 4.32$ |
| 3 | 6.5 | $£ 4.32$ |
| 7 | 6.5 | $£ 4.80$ |
| 10 | 6.5 | $£ 5.52$ |
| 3 | 6.5 | $£ 4.80$ |
| 7 | 6.5 | $f 5.52$ |
| 10 | 6.5 | $£ 6.07$ |
| 3 | 8.5 | $£ 5.52$ |
| 7 | 8.5 | $£ 7.39$ |
| 10 | 6.5 | $£ 6.95$ |
| 3 | 13 | $£ .360$ |
| 7 | 13 | $£ 4.80$ |
| 10 | 13 | $£ 6.07$ |
| 3 | 13 | $£ 4.80$ |
| 7 | 13 | $£ 6.07$ |
| 10 | 13 | $£ 7.39$ |
| 3 | 13 | $£ 6.07$ |
| 7 | 13 | $£ 7.39$ |
| 10 | 13 | $£ 8.95$ |
| 3 | 13 | $£ 7.39$ |
| 7 | 13 | $£ 8.95$ |
| 10 | 13 | $£ 70.70$ |

felephone：Northwood 24941／26／3

WE ARE SUPPLYING

Printed Circuit Boards，Components and

D．O＇N．WADDINGTON

 DIGITAL MULTIMETERThis most interesting project fulfils the long－felt want for a Digital Multimeter with the added bonus of counter／timer functions，all at a price which makes it extremely attractive to the amateur， educational or commercial user．
Please send $9^{\prime \prime} \times 4^{\prime \prime}$ SAE for full details：

With over a year's experience behind us in marketing the original Practical Wireless Texan we are proud to announce our development from it of the -

Toroidal $T 20+20$

BY POPULAR DEMAND!
WITH SPECIALLY DESIGNED

TOROIDAL TRANSFORMER!
FREE
TEAK CASE and HANDBOOK

```
Pack
2 Set of all small capacitors
```

Price	Pack	
$£ 0.80$	7	Set of all semiconductors
$£ 1.50$	8	Special Toroidal Transformer
$£ 1.40$	9	Fibre Glass P.C. Panel
	10	Complete chassis work, hardware
		and brackets
$£ 1.90$	11	Preformed cable/leads
$£ 0.90$	12	Handbook
	13	Teak Cabinet

Price

£ 8.25
£4.95
£2.50
$£ 4.20$
£ 0.40
0.40
E. 25

E 0.25
f 2.75

KIT PRICE only
£28.25
POST FREE (U.K.)

Hi Fi News Linsley-Hood 75W Amplifier

oesinene approveo kit

Abstract

Pack Price

1 Fibre glass printed circuit board for power amp.
2 Set of resistors. capacitors, pre-sets for power amp
3 Set of semiconductors for power amp (highest voltage version)
4 Pair of 2 drilled, finned heat sinks.
5 Fibre glass printed circuit board for pre-amp.
6 Set of low noise resistors, capacitors. pre-sets for pre-amp.
7 Set of low noise, high gain semiconductors for pre-amp $£ 2.10$

METALWORK SYSTEM FOR WIRELESS WORLD AMPLIFIERS

Designed to house Bailey. Blomley or Linsley Hood Class $A B$ amplifiers with simple or regulated power supplies and Bailey Burrows pre-amp. Options of standard or hum reducing toroidal mains transformer. Also rotary control reducing toroidal mains tra
version. Details in price list

E0.75
£ 1.50
£5.50

```
Set of potentiometers (including mains switch).
Set of 4 push button switches, rotary mode switch
Toroidal transformer complete with magnetic screen/housing primary 0-117-234 V . secondaries: 33-0-33 V 24-0-24 V Fibre glass printed circuit board for power supply
2 Set of resistors. capacitors, secondary fuses. semiconductors for power supply. \(£ 3.50\)
```

Price Pack
13 Set of miscellaneous parts including DIN skts. mains input skt. fuse holder. interconnecting cable control knobs.
tof metalwork parts including silk t of metalwork parts including silk screen printed fascia panel and all brackets, fixing parts. etc
15 Handbook co 30
16 Teak cabinet packs 1.7 inclusive are required for complete stereo system.
3a Set of semiconductors for Power Amp.
(30 W version)
3b Set of semiconductors for Power Amp. $(50 \mathrm{~W}$ version)

NEW LIST
WRITE FOR YOURS NOW! For further details on the new Toroidal T20+20, Mk. 2 Linsley Hood $\overline{7} 5 \mathrm{~W}$ and Wireless World amplifiers (10-100 Watts), Stuart tape recorder circuits, slider potentiometers and low cost semiconductors

TRY OUR NEW IMPROVED SALES SERVICE TOO!
L.K. ORDERS - Post free (mail order only)

UVERSEAS - Postage at cost +50 p special packing
V.A.T. Please add 10\% to all U.K. orders

Dept. W11
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP10 3NN

FOR THE STOCKS, THE

 DISCOUNTS AND THE SERVICE YOU NEED
EIECTROVILDE Electronic Companent Specicilists

RESISTORS-10\%, 5\%, 2\%

Codes: C= carbon film, high stability, low noise.
MOS = metal oxide, Electrosil TR5, ultra low noise. Prices are in pence each for
WW $=$ wire wound, Plessey. Values: wire wound, Plesses. quantities of the same ohmic
value and power rating. NOT
 E8, 82 and their decades.
E24 denotes series: as E12 plus $11,13,16,20,24,30,36$, of resistor order.)

TRANSISTORS BY SIEMENS AND NEWMARKET

DIN CONNECTORS by Hirammann

2 way loudspeaker Socket 10p 3 way audio 180° Socket 10p 5 way audio 180° Socket 12p 5 way audio 240° Socket 12p 6 way audio

POTENTIOMETERS carbon type
long spindles. Double wipers for low noise. SINGLE GANG P20 linear 100Ω to $2 \cdot 2 \mathrm{M} \Omega$, 12 p . DUAL GANG linear $4.7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega, 42 \mathrm{p}$; Dual
gang log $4.7 \mathrm{~K} \Omega$ to $2.2 \mathrm{M} \Omega$ gang log, $4 \cdot 7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$, 42p; Log/antilog, $10 \mathrm{~K}, 22 \mathrm{~K}$, antilog, IOK only, 42p. Any antilog, tok only, 42P. Any.
of above types with $2 A$ D.P. mains switeh, $12 p$ extra.
Only decades of $10,22 \& 47$ available in ranges quoted. DUAL CONCENTRIC DP20 in any combination of
P20 values, 60 p ; with switch, 72p.
SLIDER POTS. In values from $4 K 7 \Omega$ to $1 M \Omega$, linear or log, 26p. Escutcheon, white, grey, black, SKELETON PRE-SETS. Small high quality, typ PR linear only: $100 \Omega, 220 \Omega, 470 \Omega, 1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{K7}$, YoK, $22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$. NUTS SCREWS ETC In
NUTS, SCREWS, ETC. In lors of 100 .
Nuts 2BA-41p; 4BA-28p; 6BA-26p
Screws ["-2BA-67p; 4BA-35p; 6BA-26p. 0.5 -2BA-50p; 4BA-23p; 6BA-19p. Other sizes available. Also tags, washers, spacers,

F. 14 skirt dia. 20 mm .
pack of 2 \quad 32p

Smallest size $3 \cdot 7 \mathrm{~mm} \times 12 \mathrm{~mm}$
types of capacitors stocked.

ROTARY SWITCHES

Radiospares Miniature Makaswitch (in assembly kit form). Shaft 54p.
Wafers, MBB-2P5W, IP IHW; BBMIPI2W, 2P6W, 3P4W $4 \mathrm{P} 3 \mathrm{~W}, 6 \mathrm{P} 2 \mathrm{~W}$, each 32p.

Very many $\quad 40$ Very many other types in stock-see

ZENER DIODES

Full range E24 values: each; $1 \mathrm{~W}: 6.8 \mathrm{~V}$ to $82 \mathrm{~V}, 21 \mathrm{p}$ each; $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to 75 V , 48 p anch. Clip to increase 1.5 W rating to 3 wates (type) 266 F) 4p.
SIEMENS THYRISTORS $0.8 \mathrm{~A} 400 \mathrm{~V}, 56 \mathrm{p} ; 600 \mathrm{~V} 70 \mathrm{p}$. $3 \mathrm{~A} 400 \mathrm{~V}, 60 \mathrm{p} ; 600 \mathrm{~V}$, 88p. DE-SOLDER BRAID

S-DEC

Unsurpassed for "breadboard work" can be used indefinitely without deterioration. Components just push into plug holes and connect automatically. Slot for control panel. 70 holes. $\mathrm{E1} 1.80$.
T-DEC
For more advanced work with 208 contacts in 38 rows. 630 . (Carriers supplied

BAXANDALL SPEAKER

As described originally in "Wireless Worid" and still one of the most brilliant designs in high quality low prised
peakers. You save by assembling it pourself. 10 wates save 158
Complete kit $\mathbf{1 1 4 . 9 0 + 6 0 p}$ part carr. Equaliser components $\mathbf{£ 2 . 0 0}$.
Speaker unit $£ 2 \cdot 45$.
No. 6 CATALOGUE SUPPLEMENT of matest priceadjustments and now items.

Wavechange switches
Pl2W, 2P6W, 3P4W, 4P3W, each 24p
3 New Babani Books
BP. 13 Electronic Novelties for
the Motorist; BP. Manual of Electronic Circuits for the Home; 200 Handbook of Electronic Musical Novelties: EACH 50 p (no V.A.T.).

Minitron DIGITALINDICATOR

TYPE $3015 F$ Seven segment indicator compatible with standard logic modules and power supplies. Figs. 09
will character of 9 mm height plus decimal point. Power requirement 8 mA from
number of alphabetical symbols also avail- A. $\mathbf{1 2 0 0 0}$
able, In l6 lead DiL case Suitable BCD decoder driver type FLLI21T ≤ 1.36 DIL Socket; 16 lead 30p. No. 3015 g showing + or -
and fig. I and decimal point k 200 nett

MAINS TRANSFORMERS

 MT3 30V/2A plus 4 taps $\mathbf{£ 2 . 8 5}$ MT103 50V/JA+4 taps $£ 2.55$ MTI $2760 \mathrm{~V} / 2 \mathrm{~A}+4$ taps Em .50 MT $2760 \mathrm{~V} / 2 \mathrm{~A}+4$ taps El .25 28 T05 $12+12 ; 2-0-2 V / \mathrm{t} A$
U.S.A. CUSTOMERS are invited to contact

 Electrovalue America, P.O. Box 27, SwarthmoreN3055 npn silicon power ACl53K pnp germanium low power AD161 npn germanium medium pow AD162 pnpgermanium medium power AF139 pnp germanium UHF
BC107-13p; BC108-12p; BC109-13p BC167-11p; BC168-10p; BC169-11p BCI77-21p; BCI78-19p; BCI79-22p Cland Standard groupings available.

TTL ICs

[^9]

UBF80
UBF89
UCC88
UCF80
UCH42
UCH81
UCL2
UCL83
UF80
UF89
UL91
UL84
UU5
UY41
UY85
VR105/8

0.35
0.34
0.35
0.80
0.80
0.85
0.35
0.85
0.80
0.35
0.80
0.80
0.85
0.85
0.45
0.35
30
 YR150/
2800 T

 BK
$6 K$
$6 K$
$6 I$
68
68
$68 A$
680
689
$6 B J$
681

 midysin tar Valve with

 guarantee

VALVES

VALVES AND TRANSISTORS
translstors, etc., retall 74349
trade and export 7430899.
\qquad
BEST PRICES PAID FOR TEST AND COMMUNICATION
EQUIPMENT, Single items or quantities. Private or Industrial.

MARCONI TEST EQUIPMENT
 e.g.
Bwltched
P.O.A.

TF BOTDIMS SIGNAL GENERATOR Range $10-485 \mathrm{MHz}$ In five rangeot R.F.F Outpuif

 1 mpedance. Internal modulation at 1 kHz
at up to 90% depth, aleo external sine and
TF 1400 SOUSLE PULSE GENERATOR UNITT For teisting radir, nucleonice, 'sucopes,
countert filters etc. SPEC. TF 1400 S . Rep. counters, filters otc. SPEC. TF 1400 S . Rep.
frequ. 10 Hz to 100 kHz , pulse width 0.1 to
 TF1400 ${ }^{\text {Sexect }}$ pulse wldth 0.5 to $25 \mu \mathrm{sec}$, delay 0 10 +300 sec . E_{230}.

RACAL UNIVERSAL COUNTER/
TIMER SA550 (CTM88) TiMER
$8 \mathrm{dal} / \mathrm{in}$
8 8 sing
line read-
out. out.
Faciules
lnclude:
ander Include
direct
dient dirrect
trequency
measure-measure-
ment
mo 100MH2 at up to 90% deth, ale external sine and callorator. Separate R.F. and mod. metero.

 TF 1251 A VHF SPECTRUM ANALYSER
 with cryetal check polnts. Sweep widh 0.5

 $20 \mathrm{~m} \dot{V}^{2}$ with $\times 10$ multiplier. $E 200$.
HEWLLETT-PACKARD
15SA SOO MHR SAMPLING OSCILLO.
SCOPE WITH $183 A$ DUAL TRACE SEOPE WITH 18BA DUAL TRA
SLUG.IN. FFull spee. and PO.A. 5248 COUNTER FREQUENCY
MEASUREMENT:
OHZ to
10, 1 MH Accuracy 11 count. Automatlce posi:surement: $0-0.10 \mathrm{kHz}$, reads in seconds,
millliseconds or microseconds, declmal moint automatically positioned. Dloplay on 6 neon lamp decades and 2 moters.
Complete wwith manual and followng plug-Ins: 525 A . 10 to 100 MHz , 525 B . 100
to $220 \mathrm{MHz}, 526 \mathrm{~A}$ vldeo amplifier. Price on applitcation.
5018 TRANSFER OSCILLATOR.
Extends
 counturs to trequenclea below 4 gHz with
measeures 0.5% gecuracy. $\mathbf{3 0 C}$ MICROW POWER METER. Complate with 478A bolo mount, 4758,
tunable bolo, BM18 wavagulde, 895. 205Ag AUDIO OSCILLATOR. LOw dilatortlon, 20 Hz to 200 kHz , motered and attenuated inpute and outpute enbiting a very wide range of moasure
ments to
be made on amplifers, fitere. etc. $E 125$.
${ }^{816 B}$ SHF SIGNAL GENERATOR.
 F.M.V. C.W. Pulse and Ext. A.M.. Output.
$0,1 u \mathrm{~V}-200 \mathrm{~mW}$. Price on application. TF s94 AUDIO TESTER. Combined A.F. $2 W$ ai 800, is and 3Ω, , and valve voltmeter $(0-800 \mathrm{~V})$),
tore. 600.
TELEPHONE ENQUIRIES rolating to TEST EQUIPMENT hould To view TEST EQUIPMENT Ploze phono for appoinemant

 3OLARTRON DO 905 STABILISED AM
 TF 1370 R-C OSCILATOR, SQUARE ND SINE WAVE. Trea.: Sinewave AOHz output: sinewavee 0.-31.0V rmali, 10Hz-1 MHz,
 tor range: -50 dB to +10 tag . Tmp
$75,100,600 \mathrm{\Omega}$. Price upon application.

PLEASE ADD 10\% VAT to all orders

 plifig.in units 165 weve form generator. 163 Pulse generator.

S00/250W MEDUM WAVE BROAD. CAST TRANSMITTERS. PrICe And detallo on application,

AREE BAPES W hold the largeet etock Write 1or We
3 PHAEE AUTO TRANSFORMER, wye skVA. Mude by Wentinghoues of USA. Brand now In
UK traneport.

PLEASE NOTE ALL EQUIPMENT
ordered from us is complataly ovarhauled mechanically and electr
in our own laboratories

FOK EXPORT ONLY TRAN每MITTERS: BC 610 Hallicrafters. RCA ET 4336 also modifled veralon of Increased output to 700 w . COLLINS TYPE 2310 4/6kw., 10 channel, autotone and manual tuning. All above complete Inatallation and apare parta. TRANSCEIVERS 19, $19 \mathrm{HP}, 38,62$. C-11 TRANSMITTERS C-13 TRANSMITTERS

REMSCOPE TYPE 741 STORAGE with plug-In trace enifter and two plug-In with plifiers. Eiso plus carrlage.
HARNEES "A" a "E" control unite,
junction boxee, otc.

OUR SALE FINISHES ON THE 27th OCT. The following liems are
still available FOR ERSONAL
CALLERS ONLY to at Unlgate Dairy Depot, entrance of Cromwell Rd. Ext. (Cedars Rd.) towards
London, frst left (Sutton Lane North, London, first left (Sutton
W.4) 1st entrance on left.
TF 885 A and $885 \mathrm{~A} / 1$ Video Oscillators £45. Avo CT38 Electronlc Multimeter E25, CTE2 Nolse generators $£ 2$, B48
recelver E20, Advance DVM ACID recelver E220, Advance DVM1 ACIDC
OVM $£ 40$, TR1143 TX/RX E8, als some of the items prevlously liste
R.F. METER $0-8$ amp. $2 \ddagger^{* \prime}(U . S . A) ~ £$.1.10
P. \& P. 15 D . 29/41FT. AERIALS each consisting of ten 3 3tt. Fin. ©ial to fit the 7 In . rod, Insulated bese, stay plate and stay assemblles, pegs, reamer, hammer,
etc. Absolutely brand new and complete etc. Absinely ready to erect, In canvas bag. $£ 7.50$
$\kappa 4.50$ allghtly uosa. Carrlage 50 p .
METERS Full Llat of our very large TELEPHONE TYPE "J" (Troplcalieed)
10 IIN MAONETO TELEPONE 10 IIne MAGNETO
WITCREOARD
50 IIne AUTOMATIC PRIVATE
TELEPHONE SWITCHEOARD
Price of each of the above on application. RADAR BCANNER ABEEMBLY TYPR

COLOMOR (ELECRONLCs)
170 Goldhawk Rd., London, W. 12 Tel. 01-7430899

P. F. RALFE

TELEVISION SWEEP GENERATOR
by Sweep systems type 505. Frequency coverage $450-940 \mathrm{MHz}$. (Channels $15-80$). Markers at 465
 $565 / 660 / 750 / 830$ and 900 MHz . Attenuated output in eight, five db steps and fine 0.10 db . Sweep width adjustable from 1.15 MHz . The instrument is completely solid-state using variactor diodes and transistors throughout. Dims: $19 \times 12 \times 5 \mathrm{ins}$. Wt.: 20 lbs .
Supplied in good workíng order, price $\mathbf{5 5 9 . 5 0}+50$ p carriage.

AERIAL CHANGE/OVER RELAYS of current manufacture designed especially for mobile equipments, coil voltage 12v., frequency up to $250 \mathrm{MHz}^{2}$ at 50 watts. brand new, boxed. Price $f 1.50$, inc. P. \&
'ALCAD' Sealed rechargeable Nickel-cadmium batteries. Type W3.5, $1.2 V$ at 3.5 Ah. Size as 'U2'. Offered new in packs supplying $12 \mathrm{~V}, \ldots \mid 5$. Or separately at $£ 1,25$. Automatic Constant current -lectronic battery chargers specially designed for nickel cadmium cells. Metered and fused. Up to twelve cells can be charged up to 750 mA , variable 0.750 mA . Size $7 \times 6 \times 5$ ins.
each $£ 17$.

Smiths Ltd Woight indicators, self powered, measures 0 to 20 ewts in 1 cwt divisions on a 4^{*} cirscale meter indicator, 30 feet of cable and heavy duty load cell use with bell crank or actual reading is ewtior 67.50 post 50 p

ConsorElectronic Invertors typ CRA 200. A high quality device for producing a $I 15 v 400 \mathrm{HZ}$ single phase output. Incorporating the following
features: Input 23-28V D.C

- Sine wave output.
* Remote control facilities.
- Completely Solid State (Silicon transistors).
* Built to Aircraít specifications.
- I80VA of output continuous. May be run in series operation for 3 phase requirements. Offered brand new boxed units. Price $\mathbf{£ 1 7 . 5 0}$

AUDIO OSCILLATORS AMERICAN TS-382/U

Covers $20 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}$ in four ranges. Output voltage I micro volt to 10 V . in seven ranges. Built in calibrator. Sine
wave O.P. is excellent over complete range. Supplied with transmit case, adaptors and circuits and transformer for 240 A.C. £20.

MINIATUREAEI UNISELECTORS 12 position $\times 3$ bank 250 ohm coils, I bridging and 2 non-bridging wipers available now-Type 2200A complete with bases. Price $£ 4$.

BRAND NEW DIGITAL PANEL VOLTMETERS
10MV-1.99VV. 199 Measuring points. Input impedance 100 Mohm . Automatic zeroing. Measurements: $155 \mathrm{~mm} \times$ $72 \mathrm{~mm} \times \mathrm{m}^{72 \mathrm{~mm} .} \mathrm{Lis}$
OUR PRICE 24.50.

DIGITAL MEASUREMENT Type 2003 Digital Voltmeter. 31 Digit
display. Measuring up to 1000 Volts. AS NEW E65.

Noise Generator Model CT-82 Range 15 kHz to 160 MHz very useful noise for factor measurements of the instrument is directly calibrated in noise factor and displayed on panel meter, also output meter calibrated in dbs , for $115-250$ vac operation offered in good used condition, small size low price only 68 Carr, 50 p.

H. W. SULLIVAN STANDARD

AlR SPACED CO NDENSERS
capacitance range 0 to 100 pf fully areened with engraved vernier subplete with vernier index divisions commanufacturers aser offered brand new, manufacturess seal offered brand new,
at only $£ 25$ each.

High torque geared motors. 20RPM. 6-9V. operation. Built-in gearbox. Overall size 2 ins. long by lin. diameter. Current drain at 6 V only 8 mA . These are precision, Swiss made geared motors. Original price was over 66 each. Our price each is only $£ 1.50$ (plus lOp each post and packing).

DIGITAL FREQUENCY

METER type 'FT300'—reads as frequency meter up to 99.99 KHz in three ranges or as tachometer, 99,990 RPM. Solid-state instrument. Clear read-out. Size only 8 in . by 5 in. by 2 tin. Weight 4 lbs. BCD outputs. Operating voltage 110/240 V. AC. Made by famous manufacturer. These units are brand new in original makers cartons. Our price: $\mathbf{\& 5 5}$.

Cossor Radio Telephones Type CC303

All Solid State except for O-P Valves 25 Watt A.M. offered brand new for high bond applications boot control console. Complete manual supply. Prices $£ 75$ each + V.A.T SCHOMANDL PRECISION
FREQUENCY METER TYPE FDI WITH FDMI ADAPTOR GPO approved equipment for Radio Telephone Marine servicing etc.,
offered in as new cordition with calibration certificate.
G.E.C. Uniselectors, 8-banks, 25 position full wipe. 75 ohm coil. Not new but excellent working condition. Each $£ 2$.

Brand new GEC 3 banks of 25 position uniselectors with fitted suppressor. uniselectors
E 2.50 each.

SIX Level A.E.I. Uniselectors miniature plug in type 2216A coil 125 ohms. nonbridging wipers with index. 12 position 6 bank. Absolutely brand new in makers cartons sold complete with base. $\mathbf{E 6} 50$

CAMBRIDGE PORTABLE POTENTIOMETER type 44228. The ideal tool for checking thermocouples and auxment. Accuracy $\pm 0.1 \%$ BRAND NEW. $\mathrm{E75}$.

TINSLEY type 4363D Vernier potentiomerer, Good condition. Price $£ 75$.

FRIGIDAIRE, AIR-CONDITIONING UNIT. Table-top model. 4 inch diameter pipe outlet. Complete and ready for use. Price $£ 125$.

[^10]
TEKTRONIX OSCILLOSCOPES

Type 545A with 'CA' plug-in. (Or 'L'). DC- 30 MHz . Type 56IA with 3AI and 3B3 units. DC-IOMHz. Type 535 with CA plug-in unit. DC- 15 MHz .
Type 551 . Double-beam with L\&G units. DC- 27 MHz .
 Also available:
Dynamco D7100 with IY2 and IX2 plug-ins. Portable, DC-30MHz. Hewlett-Packard 175A. 1781 and 1755A plug-ins. DC- 30 MHz . Marconi TF1300. s/b. DC-I5MHz. $\mathbf{E 7 5}$.
Roband RO50A with 5G plug-In. DC-l5MHz. Price $£ 125$. Solartron CDI400. With two CXI44I and a CXI443 units.

Extremely sensitive instrument. Twin differential inputs.

TEKTRONIX type 545A OSCILLOSCOPE. Complete with 'CA' plug-in unit. As new. Perfect condition, calibrated to manufacturers standards. Bandwidth to 30 MHz . This offer is too good to miss. Price only $£ 295$ (plus V.A.T.)

SIGNAL GENERATORS

Marconi type TF80ID. $10-485 \mathrm{MHz}$. Excellent. P.U.R.

Marconi type TF867. $15 \mathrm{KHz}-30 \mathrm{MHz} . £ 150$.
Hewlett-Packard 616A. $1780-4000 \mathrm{MHz} .675$.
Advance C 2 H . Spot-frequency production-line test instrument. 12 freqs. in bands $500 \mathrm{KHz}-30 \mathrm{MHz}$. $£ 25$.
Rohde \& Schwarz U.H.F. 990 -1900MHz. P.U.R.
Rohde \& Schwarz SMAF. A.M. \& F.M. $4-300 \mathrm{MHz}$. FM Dev. 0.100 KHz in 2 ranges. Fundamental-frequency generator ideal for radiotelephone test equipment. P.U.R.

MARCONI TEST EQUIPMENT. All items have been calibrated, reconditioned and guaranteed.
Wave Analyser TF455E. Frequency range 20 Hz . $\subset 105$.
TF893 Audio Wattmeter. Range $20 \mathrm{~Hz}-35 \mathrm{KHz}$. Power range 20uW-IOW. Impedance 2.5Ω to $20 \mathrm{~K} \Omega$ in 48 steps. Direct calibration in Watts and dbm. Price $£ 45$.
TF2600 Sensitive Valve Voltmeter ImV f.s.d. to 300 V f.s.d. Accuracy $\pm 1 \%$. Offered as new, price $\mathbf{6 5 5}$.
TFI370A Wide-range oscillator 10 Hz to 10 Mz . Squarewave up to 100 KHz . High output-up to 1 MHz 31 Volts. 75,100 or 600Ω output. List price pre VAT- $£ 308$. Offered as new at $£ 125$.
TF2 162 MF attenuator. DC-1MHz. O-111db attenuation in $\cdot 1 \mathrm{db}$ steps. Impedance 600 ohms unbalanced. Price $\mathbf{6 5 0}$.
TF2 163 U.H.F. Attenuator. DC-1 GHz. 0.142 db in 1 db steps. Z, 50 ohms. Max. power input 0.5 W . As new Price $\mathbf{£ 7 5}$.
TF80ID/I A.M. Signal Generator up to 470 MHz .
TFII06 Noise Generator $1-200 \mathrm{MHz} . £ 75$.
TFI04IB Voltmeter. $300 \mathrm{mV}-300 \mathrm{~V} .20 \mathrm{~Hz}-1500 \mathrm{MHz} . £ 45$.
TFI30I Noise Gen. $200-1700 \mathrm{MHz} .50$ ohms. $\mathbf{6 5 5}$.
TFI 109920 MHz Sweep Generator as new $\mathbf{4 7 5 .}$
OAl094AHF Spectrum Analyser $100 \mathrm{KHz}-30 \mathrm{MHz}$. As new.
TFI4I7 Counter, Frequency Meter 7 digits. Plus range extension unit TFI434/2 to 220 MHz . As new.

Available now-type '316' Jack-plugs, complete with leads. Good condition. Price $\mathbf{E 2}$ for ten.

ADVANCE AUDIO SIGNAL GENERATOR TYPE HI. $15 \mathrm{~Hz}-50 \mathrm{KHz}$ in three ranges. Sine/square wave output. Supplied in first-class working condition. ©15. Carriage $\boldsymbol{f 1}$ each.

R216 V.H.F. AM/FM Communications receivers. Coverage $19-157 \mathrm{MHz}$. Film scale dial 2 frequency crystal calibrator. Plus all other facilities. Complete with A.C. power supply connecting lead. Supplied in full working order in excellent secondhand condition,

PLEASE ADD 10% V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

B. T. ELEGBDNGBS 267 ACTON LANE, LONDON W4

MAIL ORDER DEPT./REGISTERED OFFICE/COMPONENT COUNTER
if semiconduciors

£4.10	2 N 2904	20 p
95 p	2 N 2905	25 p
Ef .10	2 N 2906	29 p

EIIIO I Watt Audio Amp.

PA230	61.10	I Watt Audio Amp.
PA234	61.25	2/3 Watt Audio Amp.
PA246	61.75	5 Watt Audio Amp.
CA3014	61.55	F.M. IF. Det. + pre amp.
CA3018	¢1.00	4 Transistor array.
CA3048	¢2.34	Stereo Pre-Amp.
MC1303L	f1.85	Stereo Pre-Amp.
MFC4000	55p	250mWatt Audio I.C.
MFC4000A	60p	
SL.403D	¢1.50	3 Watt Audio Amp.
ZN414	¢1. 25	Radio I.C.
LM309K	¢1.90	5V. IA. Voltage Reg I.C.

DIGITAL				INTEGRATED CIRCUITS	
SN7400	20p	SN7451	20 p	SN74150	35
SN7401	20p	SN7453	20 p	SN7455	E1.10
SN7402	20 p	SN7454	20p	SN74153	E1.35
SN7403	20 p	SN7460 SN7470	${ }_{30 \mathrm{p}}^{20 p}$	SN74154	£2.00
SN7404 SN705	20p	SN7470 SN7472	30p	SN74155	£1.55
SN7406	30 p	SN7473	40p	SN74156	£1.55
SN7407	30p	SN7474	40p	SN74157	E1.80
SN7408	20 p	SN7475	55p	SN7460	E2.60
SN7409 SN7410	45p 20	SN7476 SN7480	85p	SN74164	12.60 $\$ 3.40$
SN7411	23p	SN7481	£1. 25	SN74163	c.3.40
SN7412	42p	SN7482	$87 p$	SN74164	£2.75
SN7413	30 p	SN7483	£1.00	SN74165	E4.00
SN7416 SN7417	30 p 30 p	SN7484 SN7486	90p 450	SN74166	E.4.00 $\mathbf{E 6 . 2 5}$
SN747\%	30p	SN7490	${ }_{75 \text { p }}$	SN74i70	E410
SN7422	48 p	SN7491A	£1.00	SN74174	£2.00
SN7423	48 p	SN7492	$75 p$	SN74175	± 1.35
SN7425	48 p	SN7493	${ }_{80 \mathrm{p}}^{75}$	SN74176	¢1.60 ¢1.60
- ${ }^{\text {SN7427 }}$	42p	SN7495	80 p	SN74180	${ }_{\text {E1 }} \mathbf{2} .55$
SN7430	20p	SN7496	£1:00	SN74181	± 7.00
SN7432	42p	SN7497	£6.25	SN74182	± 2.00
SN7433	70 p	SN74100	¢2.50	SN74184	£2.45
SN7437	65 p	SN74104	£1.45	SN74185A	¢2.40
SN7438	${ }^{85}$	SN74105 SN74107	¢1.45	SN74190	¢1.95 ¢1.95
SN7440 ${ }^{\text {SN }}$		SN74110	${ }_{80}$	SN74192	£2.00
SN7442	75p	SN74118	£1.00	SN74193	E2.00
SN7443	£1.00	SN74119	E1.90	SN7494	E2.50
SN7445 SN748	¢2.00	SN74121	65p c1.35	SN74195	E1.65 ع1.50
SN7448 SN747	¢2.00	SN74123	£2.70	SN74197	\&1.50
SN7448 SN7450	¢1.75	SN74141	E1.00	SN74198	E.4.80
SN7450	20p	SN74145	E1.50	SN74199	E4.60
V.A.T.					
Unless otherwise stated all prices are EXCLU. SIVE of V.A.T. Please add 10% to all orders. Carriage: orders under $£ 5+20 \mathrm{p}$. Over $£ 5$ post free.					

SPECIAL OFFERS

BRIDGE RECTIFIER. 6A. IOOV. Motorola MDA952-2 65P. Supply. Contains 18,5V. 8.5A. sec. Transformer, $4 \times 4000 \mu \mathrm{~F} 25 \mathrm{~V}$. Mullard capacitors, $2 \times 2 \mathrm{~N} 3055$ on 2 Redpoint heatsinks, 12A., 120V. Bridge rectifier, stabilised p.c.b. circuit diagram. The
parts alone are worth the asking price of $£ 13$
each inc. carriage. Complete with long focus lens assembly. 4 Film Carriers. Boxed in as new condition. $£ 75$ each. HG5008 80 mA . 40 V . p.i.v. equiv. $\mathrm{OA} 47, \mathrm{f} 20$ per 1,000 . 52BN25 25A. 200V. Rectifier Diode. $\mathbf{£ 2 . 5 0}$ per 4. S6 A20 20A. 600 V . Rectifier Stack. $\mathbf{£ 3}$ each. Transistor Mounting Pads. $£ 2.50$ per 500 . Diode $\&$ Triac Mica Washer. $£ 1$ per 100 . Send s.a.e. for free circuit diagram.

COMMUNICATIONS EQUIPMENT

 POCKET V.H.F. F.M. RADIOTELEPHONE Cossor Type CC2/8 Mk. 2.in two versions:-
Low band; Freq. range $71.5-104 \mathrm{MHz}$.
Low band; Freq. range $71.5-104 \mathrm{MHz}$.
R.F. Output 500 mW . Complete with $\frac{1}{4}$ wave whip aerial, combined microphone/loudspeaker and 13.3V. rechargeable nickel-cadmium DEAC battery Price $£ 75$ + v.a.t.
U.H.F. 2 watt FIXED RADIO LINK. 24 V . dc. 240 V . ac. F.M. TRANSMITTER/Type CC RTX 4 A Mk. R.F. Output 2 W at $450-470 \mathrm{MHz}$.

RECEIVER/Type CC RR4A Mk. Full Technical and operating Price $\mathbf{6 8 0 . 0 0}$ per unit and details on request. Mains Power Pack for the above
I I CARRIER EQUIPMENTS. Cossor Type CCM2A.
Solid state multiplex installations designed for U.H.F. radio systems enabling 2 speech channels the equivalent in telemetry information, to be transmitted simultaneously over a radio system.
V.H.F. RADIOTELEPHONE BAD RASE STATION. Cossor Type CC 603 Transmitter. Simplex or duplex operation, local or remote control with talk through facilities, using double sideband a.m. modulation.
Low-band $71.5-104 \mathrm{MHz}$. or High-band $156-174 \mathrm{MHz}$. RF. Output powe
RF. Out put power 25 W . into 50 Ohms. 24V.de. Operation. Prices and details on request
OPTIONAL POWER SUPPLY Type CC 101 for type CC603 base station P.O.A.
SELECTIVE CALL SYSTEM. Coder TYpe $C C 505 / 50$ (50 way) or CC $505 / 100$ (100 way).
The Cossor selective call system may be used with The Cossor selective call system may be used with any communication system where a base station is required to call any one or all of a number of
sub-stations. Both versions available, all new and in original packing. Price: 50 way $\mathbf{6 5}+$ v.a.t DECODERS 615 ea 100 way $£ 80+$ v.a.t. DEAC RECHARGEABLE BATTERY CASSETTES $13.4 V$ (nom.) type B/SA 80351/108 Heavy duty encapsulated DEAC supply. Size $3 \frac{1}{2} \times 2 \frac{1}{2} \times 1 \frac{1}{2}$ in.
8-W PA
PATTERY CHARGER Type CC
999 Charges up to 8 of the above battery cassettes. I2-WAY BATTERY CHARGER Type CC 999 Charges up to 12 of $13.4 \vee D E A C$ batteries. Metered Charges up to 2 of 13.4 ck . ${ }^{2}$ batteries. Metered
battery condition check. $£ 35+$ v.a.t. MICROPHONES S. G. Brown Stick Microphone and
to-talk button. 300Ω. $E 5$ complete.
S. G. Brown Hand-held with push-to-talk button. 48 each.

ELECTRONIC COMPONENTS Pack BARGAIN COMPONENT PACKS
No. 500 Carbon resistors, $\frac{1}{4}, \frac{1}{2}, 1,2$ watt.
2100 Electrolytic Condensers.
3250 Ceramic, Polystyrene, Silver Mica, etc.,
Condensers.
4250 Polyester, Polycarbonate, Paper, etc., Condensers.
5.25 Potentiometers, assorted.

6250 High-stab. $1 \%, 2 \%, 5 \%$ resistors.
750 Assorted Tagstrips.
8 llb Assorted nuts, bolts, washers, spacers, etc. 25 Assorted switches, rotary, lever, micro, 10 toggle, atc.
50 Proset Potentiometers.
II Trial mixed component pack $£ 1$.
12 Jumbo mixed peck $\notin 5$.
ALL COMPONENTS AND UNUSED
$\mathrm{fl}+25 \mathrm{p}$ p.p. per pack, $\& 5$ for 5 packs p/free.
FULL RANGE OF ELECTRONIC COMPONENTS
AT OUR RETAIL SHOP. OPEN $9.30-6$ MON.-SAT.

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms 100 mV volt - 52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$ condition. $\mathbf{2} 27.50$ each, Carr. 11 1-50.
T. 1509 TRANSMITTERS (FOR EXPORT ONLY): General-purpose HF communications transmitter for use in fixed or mobile ground stations. Hand or high-speed keying. Crystal or Mre control, with temperat/re. Modulation: 100% circuit.CW, MCW and R/T. Frequency: 1.5 to Mm M/s. Modulation. Amplifier 2×813 and Modulator 2×813. Power requirements $200-250$ volts a.c., 50 cycles. Power out put 300 watts. Dimensions 2 ft . 6 in. W $\mathbb{W} \times 2 \mathrm{ft}$. D. \times

AN/ARC-27 TRANSMITTER/RECEIVER (FOR EXPORT ONLY): Frequency $225-400 \mathrm{mc} .1750$ channels 100 Kc apart with 18 preset channels Modulation: am. Power output 9 watts. Receiver is superheterodyne. Max output 2 watts. Antenna: 50 ohm impedance. Power requirements 24 v d.c. Completc transmitter with operating cables, control box, headphones, microphone. Price $\neq 250.00$ each secon and exce-27. 100 volts
input. 24 v d.c. output @ 41 amps fully smoothed. $£ 45.00$ each.
FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$, complete with origina calibration charts. Checked out, working order. $\notin 18.50+\chi_{1} 100$ cars $£ 35 \cdot 00$ Unused as

CT. 52 MINIATURE OSCILLOSCOPE: Portable. Operates from 115 V or $250 \mathrm{~V} 50-60 \mathrm{c} / \mathrm{s}$; or $180 \mathrm{~V} 500 \mathrm{c} / \mathrm{s}$. A small compact tropicalised instrument designed to meet requirements of radar and communication engineers and general electronic service. Measures 9 in . Tube 2 in in. Frequency compensated amplifier up to 38 dB gain. Bandwidth up to $1 \mathrm{Mc} / \mathrm{s}$. Single sweep facilities. Complete with test leads, metal transit case. As new $\mathbf{£ 2 7 - 5 0}$ each. Carr. $£ 1$.

TUNING UNIT: 24 V geared motor driving double 25 pf double spaced variable capacitor. One m / c relay and 2 other relays. $£ 2 \cdot 50$ each 30 p post, good condition. UHF ASSEMBLY: (suitable for $1,000 \mathrm{MHz}$ conversion) including UHF valves counters $0-999$. Valves 6 AL 5 and $8 \times 6 \mathrm{AK} 5 . £ 10.00$ plus 60 p post, good condition. MODULATOR UNIT: complete with transformer and 2×807 valves mounted in 19 in . chassis $\times 8 \mathrm{in}$. high $\times 8 \mathrm{in}$. deep. $\mathbf{£ 4} 40$ secondhand cond., or $£ 6.50$ new cond. Carriage $\times 8$
RF UNIT: suitable for use with the above unit. Complete with $2 \times 3 \mathrm{E} 29$ valves Ideal for conversion to 4 metres. $£ 5$ secondhand cond., or $£ 7.50$ new cond Carriage £1.
POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s}$. 513V and 1025V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type $5 \mathrm{Z3}$. ${ }^{2} \times 5 \mathrm{~V}$ windings @ 3 Amps each, and $5 \mathrm{~V} @ 6 \mathrm{Amp}$ and $4 \mathrm{~V} @ 0.25 \mathrm{Amp}$. Mounted $2 \times 5 \mathrm{~V}$ windings @ 3 Amps each, and 5 V @ 6 Amp and $4 \mathrm{~V} @ 0.25 \mathrm{Amp}$. Mounted

AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts, mounted in a strong steel case $5^{\prime \prime} \times 6 \frac{2^{\prime \prime}}{2^{\prime}} \times 7^{n}$. Bitumen impregnated. £7 each, Carr. 75 p . $230-115 \mathrm{~V}$, $50-60 \mathrm{c} / \mathrm{s}, 500$ watts. $7^{*} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Mounted in steel ventilated case. $\mathbf{~} 4.00$ each, Carr. 75p.
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $£ 7.50$ each, 75 p carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $£ 3 \cdot 50$ each, post 50 p. APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. ع1-25, post 30 p
AIRCRAFT SOLENOID UNIT S.P.S.T.: $24 \mathrm{~V}, 200 \mathrm{Amps}, \mathbf{\varepsilon} 2$ each, $\mathbf{3 0}$ p post. DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions 3 Gang, each, 0.9 ohms. Tolerance $\pm 1 \%$ £3 each, 25 p post. 90 ohms per step. 10
total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% £ 3.50$ each, post 30 p.

TF-1041B VALVE VOLTMETER: Measures 25 mV to $300 \mathrm{~V}, 20 \mathrm{c} / \mathrm{s}$ to 1500 Mc / s a.c. Also 10 mV to 1000 V d.c. Resistance 0.02 ohms to 500 Meg . ohms. Power requirements $200-250$ volts a.c. Secondhand, excellent con. $£ 35 \cdot 0 \mathrm{C}$. Carr. $£ 1$
VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at 2 Amps . £ 3 each 75p pos
RACK CABINETS: (totally enclosed) for Std. 19 in . Paneis. Size 6 ft . high $\times 21$ in. wide $\times 16 \mathrm{in}$. deep, with rear door. $£ 12$ each, $£ 2.50$ Ca
in. wide $\times 19 \mathrm{in}$. deep, with rear door. $£ 8.50$, each, $£ 2$ Carr
INSTRUMENT CABINETS: $19^{\prime \prime} \mathrm{W} . \times 16^{\prime \prime} \mathrm{H} . \times 16^{\circ} \mathrm{D}, £ 5.00+£ 1.25 \mathrm{carr}$. $19^{\prime \prime}$ W. $\times 10^{0} \mathrm{D} . \times 5^{\prime \prime} \mathrm{H}$. $\quad £^{2 \cdot 50}+£ 1 \cdot 00$ carr
TS-418/URM49 SIGNAL GENERATOR: Covers $400-1000 \mathrm{MHz}$ range. CW Pulse or AM emission. Power Range 0-120 dbm. £125 each. Carr. £.1.50. TN/130/APR. 9 UHF TUNING UNIT: Freq. $4300-7350 \mathrm{MHz}$. IF Output 160 MHz with bandwidth of 20 MHz and is electrically tuned by a d.c. reversible
ALL U.K. ORDERS SUBJECT TO 10% VALUE ADDED TAX. THIS

SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. $2-400 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{c} / \mathrm{s}$ per sec. External PM. Percent Mod. $0.1-100,000$ microvolts cont. variable. Impedance 50Ω. Price O/put Voltage
65 each +61.50 carr.
CLASS "D" WAVEMETER NO. 1 MK . II: Crystal controlled heterodyne cequency meter covering $2-8 \mathrm{MHz}$. Power supply 6 V d.c. Good secondhand cond $£ 7.50$ each. Post 60 p
RCA TE-149 HETERODYNE WAVEMETER: V-cut, 1 MHz crystal (0.005%) Accuracy better than 0.02%. Dial directly calibrated every 1 KHz from $2.5-5 \mathrm{MHz}$ Accuracy better than Useful harmonics up to 20 MHz . Provision for fitting internal dry batteries. "As new" complete with Manual and Spares. £14 each. Carr. 75p
POWER UNIT TYPE 24: (for R. 216 Receiver) A.C. operated 100-125V or 200-250V, 50c/s."As new" 110 each. Carr. 75p
ROTARY INVERTERS: TYPE PE.218E-input $24-28 \mathrm{~V}$ d.c., 80 Amps

POWER SUPPLY: 230 V a.c. input; 3000 V @ 2.5 mA ; 4 v @ $1 \mathrm{Amp}, 300-0-300$ 200 mA ; 6 V

ACTUATOR UNIT: With 115 V d.c. geared motor; o/put 12.5 rpm ; torque
16 ins. oz; reversible; microswitches and potentiometer. E 3.50 ea. +40 p post. 16 ins. oz; reversible; microswitches and potentiometer. 83.50 ea. +40 p post.
DALMOTORS: $24-28 \mathrm{~V}$ d.c. at $45 \mathrm{Amps}, 750$ watts (approx. 1 hp) $12,000 \mathrm{rpm}$ \& 5 each, 60 p post.
MOTOR: 240 V single phase, $2,400 \mathrm{rpm}$. $1 / 40 \mathrm{H}$.P. approx. Price $£ 1.75$ each, 30p post.
LIST OF MOTORS AVAILABLE FOR 6 .
CONDENSERS: 30 mfd 600 V wkg. d.c., $£ 3.50$ each, post 50 p .10 mfd 1000 v wkg. 80 p , post $30 \mathrm{p} .8 \mathrm{mfd} 2500 \mathrm{v} £ 5$, carr. 80 p .8 mfd 600 v 45 p , post 15 p .8 mfd $1 \% 300 \mathrm{v}$ d.c., $£ 1.25$, post 25 p .4 mfd 3000 v wkg. $£ 3$, post 50 p . $4 \mathrm{mfd} 2000 \mathrm{v} £ 2$, post $40 \mathrm{p} .4 \mathrm{mfd} 600 \mathrm{v}, 2$ for $£ 1.00$, post 30 p . Capacitor $0 \cdot 125 \mathrm{mfd} 27,000 \mathrm{v}$ wkg. $\notin 3.75$, post 50 p .225 mfd 25 Kv wkg . $£ 20$, carr. $£ 3.2 \mathrm{mfd} 12.5 \mathrm{Kv}$ wkg. TCC RI
 CONTROL PANEL: 230 v. A.C., 24 v . D.C. @ 2 amps , $\mathbf{~} 2.50$ each, carr. 75 p OHMITE VARIABLE RESISTOR: 5 ohms , $5 \frac{1}{2} \mathrm{amps}$; or 40 ohms at 2.6 amps 500 ohms, 0.55 amps. Price (either type) $£ 2$ each, 30 p post each
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with filament transformer 230 v . A.C. Mounted in 19in. panel, ©4.50 each, carr. 75p. AR88 RECEIVER: List of spares, 5 p.
REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and power supply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{~mA}$. Two stabi2 ondition $£ 7.50$, Carr. 75p.
WESTON INDUSTRIAL THERMOMETER MODEL 221: 0-100 ${ }^{\circ} \mathrm{C}$. 3 in. dia. scale Accuracy 1\%. Precision made coil within-coil structure. Changes in dia. scale. Accuracy 1\%. Precision made coil within-coil structure. Changes in is mounted. $£ 2 \cdot 80$ each 30 p post. Unused condition.
TRANSMITTER UNITS: Complete with 12 V vibrator unit QQVO3-20A and 5 other valves with modulation transformer, etc. Two crystal controlled channels. Suitable for conversion to 2 metres. $£ 5+£ 1$ carr.
THERMOCOUPLE METER: Scale 3.5 AE 2 in . square flush mounting. ${ }^{6} 2 \cdot 50+25 p$ post.
TS 15C/AP FLUXMETER: Used to provide qualitative measurements of flux densities between pole faces
good cond. $£ 25+60 \mathrm{p}$ post.
SYNCHRO DISTORTION AND MARGIN TEST SET: (Onwood Type 4A2) S/hand excellent cond. $£ 85$ each. Carr. $£^{2}$.
MASTER SYNCHRO TEST SET T. 101031 (U.S.A.): 115 volts $400 \mathrm{c} / \mathrm{s}$. S/hand cond. $£ 15$ each $+£ 1$ carr.
MAGSLIP TESTER NO. 2 MK. I: S/hand cond. $£ 25$ each $+£ 1$ carr.
SYNCHROS: and other special purpose motors available. Send for list. S.A.E. PANORAMIC ADAPTOR TYPE ALA2: Suitable for use with APR-1, APR-4, and other Receivers having an ceived frequency Power Supply 115 V a.c. $400 \mathrm{c} / \mathrm{s}$. Tube 3PB1 with nu-metal screen. $£ 8.50$ each. $£ 1$ carr. $\mathrm{S} / \mathrm{hand}$ cond.
TELEPRINTER EQUIPMENT: MUIRHEAD D-514-A TRANSMISSIONMEASURING SET: Consists of an oscillator covering audio and carrier frequencies, with suitable transmission measuring equipment. Power pack is contained in a separate case and operates from A.C. mains at various voltages, or from an $100-40,000 \mathrm{~Hz}$. Direct reading from decade dials. Accuracy $\pm 0.4{ }^{\circ}$ continuous $100-40,000 \mathrm{~Hz}$. Direct reading from decade dials. Accuracy $\pm 0 \cdot 4 \% \frac{ \pm 3 \mathrm{~Hz}}{} \mathrm{mver}$
whole range. Oscillator o/put $5 \mathrm{~mW}(+7 \mathrm{db})$ or more inot 600Ω at any freq. Meawhole range. Oscilator surement up to 50 db and down to at least 45 db . Price $£ 10$ each Carr. £1.
TELEPRINTER TYPE 7B; Pageprinter 24 V d.c. power supply, speed 50 bauds per min. 'as new' cond. in original packing case, $£ 25$ each; or second hand cond per min. as new cond. in oroginal $($ excellent order) no parts broken, $£ 15$ each. Carriage either type $£ 2$. Full list of Teleprinter equipment available for $6 p$.
AUTOMATIC VIBRATION EXCITER CONTROL UNIT TXPE 1016 Manufactured by Bruel $\&$ \& K
very good cond.
+50
+2
carr.
INSULATION TEST SETS: A.C. or D.C. $0-5 \mathrm{kV}$, $£ 22 \cdot 50$. S/hand cond. AND $0-3 \mathrm{kV}$. Positive and negat.
INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision for checking ionisation. $110 / 230 \mathrm{~V}$ a.c. input. S/hand good cond. $£ 30+£ 1$ carr BOONTON SIGNAL GENERATOR TYPE 202B A.M./F.M.: $54-216 \mathrm{MHz}$ in three bands. Deviation 24,80 and $240 \mathrm{kc} / \mathrm{s}$. Attenuator is adjustable 0.1 U to 0.2 V . As new condition. $£ 175+\varsigma^{2}$ carr
AVO FIXED ATTENUATORS: 75 ohms. $\mathbf{~} \mathbf{2} \cdot \mathbf{5 0}+20 \mathrm{p}$ post. New cond.
R.F. POWER METER: $0-30$ watts s/hand good cond. $£ 27 \cdot 50+£_{1}$ carr.
avo valve TESTER AND CHARACTERISTIC METER: S/hand good condition. $£^{35}$ each $+£^{2}$ carr.
AVO VALVE TESTER MK. III: $£ 30+£ 2$ carr
Miscellaneous Vacuum and Pressure Gauges available. Please send for list 6 p .
Miscellaneous American Test Equipment available. Please send for List 6 p

G. F. MILWARD

ELECTRONIC COMPONENTS

Wholesale/Retail:

Special Offer ! ! ! -From Slock-New-Boxed-AND 60\% Discount! MULLARD ELECTROLYTIC CAPACITORS

071 and 072 Series

Type No.	Working Voltage $V \mathrm{dc}$.	Capaclitance	Max. Ripple Current at $50^{\circ} \mathrm{C}$	Weight	Price
07114472	10	4700	2.5 mps	102	$15 p$
07114682	10	${ }^{6800}$	4 amps	102	170
${ }_{071} 15742$	${ }_{16}^{16}$	3300		102	15 p
07115682	${ }_{16}^{16}$	6800	${ }_{5}{ }_{5} .8 .8 \mathrm{ampmps}$	102	17 p
07214143	10	$11000+11000$	10.6 amps	${ }_{302}$	37p
07714173	10	$16500+16500$	13.4 amps	402	49p
8721575		17500 +7500	10.5 amps	302	37p
07215502	${ }_{25}^{16}$	11000	${ }_{9} 9.6 \mathrm{amps}$	${ }_{4}^{4}$	49p
07216752	25	${ }_{7500}+7500$	12.6 amps	302	37p
07217502	40	$5000+5000$	12.0 amps	${ }_{4}^{102}$	49p
07118681 07218172	63 63	$1650 \stackrel{680}{+1650}$		102 302	15p
106 and 107 Series					
10614453		15000	7 mps		
10617103	${ }_{43}^{40}$	10000	12 amps	7 fioz	4p
- 10710618153	${ }_{10}^{63}$	15000	${ }^{28} \mathrm{amps}$		
			10 amps	${ }^{\text {¢ }}$	74
Type No.	Voltage	Capacitance	Weight		Price
10215163	16	16000	802		20p
10490003 10216802	20 25	39000 8000	1602 702		30 p 250
10417562	40	5600	502		25p
10490001	45	20000	1607		50p

SMALL ELECTROLYTICS

$\begin{aligned} & \text { Ref. } \\ & \mathrm{H} 8 / 2 \mathrm{No} . \end{aligned}$	Capacity	$\underset{\text { Volage }}{\substack{\text { 25v }}}$	Price	Ref. No.	Capacity	Voltage	Price
H8/2A	3-3 3 ¢	25v	4 p	H714	6449	15v	$4{ }^{4}$
н8/3	зия	50 v	4 p	H7/4A	${ }^{64 \mu \mathrm{fa}}$	35v	5 5
H8/3A	4 ff	50v	4 p	H776		${ }_{\substack{16 \mathrm{~V}}}^{165 \mathrm{y}}$	${ }_{50}$
H814	4.7 \%f	$25 v$	40	${ }_{\text {H }} 777$	${ }_{1000 \mathrm{u}}$	25v	${ }_{40}$
H814A	${ }^{5} \mathrm{u}$ f	64 V	4 p	H778	${ }^{12544}$	16 v	5 p
H815	5uf	10 y	48	H778A	1004	35v	${ }^{6 p}$
${ }_{\text {H }}$		$\xrightarrow{150 \mathrm{~V}}$	${ }_{40}$	H79 + H	125ut	${ }_{4 \times}$	${ }_{60}$
H817	1041	70 V	40	H7110	${ }^{125 \mu 4}$	25 v	$6{ }_{6}$
H8, 8	16 LH	${ }^{35 v}$	4 p	H7710A	1 160ut	2.5 v	3 p
H8184	1645	${ }^{16 v}$	${ }_{4}{ }^{\text {p }}$	H7111	160ut	25v	${ }^{6 p}$
H819	${ }_{2015}^{2045}$	${ }_{70 \mathrm{~V}}^{6}$	2 p	H7711A	150uf	${ }_{\text {12v }}^{16 \mathrm{~V}}$	5 sp
H8190	22μ	50 v	4 p	H7714	22049	50v	10 p
H88111	${ }^{224 \mu}$	${ }_{12 \mathrm{l}}^{100 \mathrm{~V}}$	${ }_{40}^{4 p}$	H7715	${ }_{2}^{2204 \%}$	25v	50
H8/11A	244 f	275	4 p	H61/4	${ }^{2504}+$	4 y	$3{ }^{\text {p }}$
H8812	${ }^{3247}$	15 v 10 v	${ }_{40}^{40}$	${ }_{\text {H6/3A }}$	3320uf	2.5v	3 p
Н88i3A	${ }_{\text {324 }}$	50 v	${ }_{4 \mathrm{p}}$	${ }_{\text {H6/4A }}$	330uf		${ }^{40}$
H8/14	40 ff	25v	5p	H615	330 Hf	25v	10p
H8814A	40 Hf	16 y	4 p	H6/5A	330uf	${ }_{35}$	15 p
H8115	47 Lt	50v.	4 D	H618	4704	${ }^{25 v}$	10 p
H771	-	${ }_{6}^{35 v}$	${ }_{3 \mathrm{p}}^{4 \mathrm{p}}$	${ }_{\text {H6i9A }}$	400uf	${ }_{40 \mathrm{v}}$	${ }_{200}^{200}$
H71/	50 mf	10v	${ }_{40}$	H6110	750ut	12v	5 p
${ }^{\text {H }} 712 \mathrm{l}$ (${ }^{\text {a }}$	${ }_{6047}$	¢	${ }_{40}^{40}$	H6613A	${ }^{1000}$ uf	25v	16 p
	64	$2 \cdot 5$	2 D	H5/2A	22004	16v	15p

RECTIFIERS 1 N4007 1200 peak volts, 30 amps peak current, 1 amp mean current. 100 for $£ 7 \cdot 50,1,000 £ 50$.

UNREPEATABLE BARGAIN BD112

TO3-NPN DIFFUSED SILICON PLANAR EPITAXIAL
VCEO COLLECTOR TO EMITTER-60 VOLTS
VEBO EMITTRR TO BASE-S VOLTS.
20 WATTS- 2 AMPS -30 MHZ. FEATURES HIG
OVER WIDE RANGE OF COLLECTOR CURRENT

SUPPLIERS OF SEMICONDUCTORS TO THE WORLD

COMPLETE TELEPHONES

NORMAL HOUSEHOLD TYPE AS SUPPUED TOTHEPOSTOFFICE Ex. G.P.O
ONLY $£ 1.05 p$
TELEPHONE DIALS
Standard Post Office type Guaranteed in working order ONLY $27 \frac{1}{p} \mathrm{p} p$

TESTED AND GUARANTEED PAKS	
879	$4 \begin{array}{l}\text { IN4007 Sill Rec. diodes. } \\ 1.000 \text { PIV lamp plastic }\end{array}$

B81 $10 \begin{aligned} & \text { Reed Switches } \\ & \text { high speed P.O. type }\end{aligned}$
Mixed Capaciors Approx quantity, courted by weight. 55p
${ }^{899} 200$ P\& \& 15 p .
Mixed Resisto-s. Approx quantily, col
$P \& P 15 \mathrm{P}$.
Wirewound Resistors. Mixed
types and values
OCP71 Light Sensitiv
Photo Transistor OC200/1/2/3 PNP Silicon OC200/1/2/3 PNP
uncoded TO 5 can 1 Watt Zener Diodes. Mixed Voltages 6.8-43V
$100 \begin{aligned} & \text { Mixed Diodes. Germ Gold bond } \\ & \text { etc. Marked and Unmarked. }\end{aligned}$ Short lead Tran sisiors.
30 NPN Silicon Planar types

H39 6 | Integrated circuits. 4 Gates |
| :--- |
| BMC 962. | 20 BFY50/2.2N696, 2 N 1613 $2 \begin{aligned} & \text { Power Transistors } \\ & \text { Comp Pair BD } 131 / 132\end{aligned}$ UNMARKED UNTESTED PAKS

55p
${ }^{\text {B83 }} 200 \begin{aligned} & \text { Trans. manufacturers' rejects } \\ & \text { all types NPN. PNP. Sit and Germ. } \\ & \text { 55p }\end{aligned}$
B84 100 Silicon Diodes DO. 7 glass
-100
${ }^{\text {B }} 106 \begin{aligned} & \text { Sil. Diodes sub. min } \\ & \text { in9 } \\ & 14 \text { and IN916 types }\end{aligned}$
5
$40{ }^{250 m W}$ Zener Diodes
DO-7 Min. Glass Type
30 Top Hat Silicon Rectifiers.
15 Experimenters Pak of
Integrated Circuits, Data supplied
3 Amp Siticol Stud
NPN Silicon Trans. 2N3707-1
range, low noise amp.
$15 \begin{aligned} & \text { Power Transistors. PNP. Germ. NP } \\ & \text { Sificon } T O-3 \text { Can. } P \& P 5 p \text { extra. }\end{aligned}$
H34 15 (510.3

MAKE A REV COUNTER
FOR YOUR CAR
The 'TACHO BLOCK' This encapsulated block will turn any accurate rev counter for and
f1.10 each

OVER 1.000.000 TRANSISTORS IN STOCK

We hold a very large range of fully marked, tested and guaranteed Transistors, Power Transistors. Diodes and Rectifiers at very competitive prices. Please send for Free Catalogue.

> Silicon Planar Plastic Transistors.
> Unmarked, untested - factory clearance Audio PVP, similar to ZTX500, $2 \mathrm{~N} 3702 / 3$. 2N3708,9. BC107/8/9. BC168/9 etc. R.F NPN anc Switching NPN.
> Please state type of Transistor required when orfering.

> ALL AT 500 for $£ 3.30$. 1.000 for $£ 5.50$. 10.000 for $£ 44.00$.

> OUR VEFY POPULAR $4 p$ TRANSISTORS
> F JLly TESTED \& Guaranteed
> TYPE "A" PJP Silicon alloy. TO-5 can
> TYPE "B" PNP Silicon, plastic encapsulation.
> TYPE "E" PNP Germanium AF or RF.
TYPE F " NPP Silican plastic encaps
> TYPE "G" NPN Silicon. similar 2TX300 range
> TYPE "H" PMP Silicon, similar ZTX500 range.
> 8 RELAYS FOR f. 1 Varios Types

Our famous P1 Pak is still leading in value for money. Full of Short Laad Semiconductors \& Electronic Components. approx. 170 . We guarantee $3 t$ least 30 really high quality facton marked Transistors PNP \& NPN and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identif cation Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only $\mathbf{5 5 p}$ $11 \mathrm{p} P$ \& P on this Pak

A CROSS HATCH

 GENERATOR FOR $\mathbf{£ 3 . 8 5}$
YEs, a camplete kit of parts including Printed

Circuit Board. A four position switch gives X-hatch. Circuit Board. A four position switch gives X-hatch,
Dots, Vertical or Horizontal lines. Integrated Circuit design for easy construction and reliability. This was a project in the September 1972 edition of Practical Television.

This complete kit of parts

costs $£ \mathbf{3} .85$, post paid.
A MUST for Colour T.V. Alignment
ELECTRONIC TRANSISTOR IGNITION Now in kit form. we offer this "up to the minute" electronic ignition system. Simple to make, full instructions supplied with these outstanding features:Transistor and conventional switchability, burglar proof lock up and automatic alarm, negative and positive conpatability. This project is a "star" feature in the September edition of "Electronics Today Internation $f^{\prime \prime}$ magazine. Our kit is recommended by the E.T.I. ir agazine.

Complete kit including P \& P $£ 7.92$.
Ready buitt and tested unit £3.02 EXTRA.

Et-12 IELEPHONE: SOUTHEND (0702) 46344

TRIO TS515/PS515 TRANSCEIVER

High quality TS515 $88 \mathrm{BB} / \mathrm{CW}$ amateur band receiver covering 80, 40, 20, 15 and 10 metre
Transmit/receive frequency $3 \cdot 5 \cdot 29.7 \mathrm{MHz}$. Output 1. 5 watts. Power requirements $110-120 / 220-240 \mathrm{v}$.
A.C. Sizes: T8515 $330 \times 185 \times 340 \mathrm{~mm}$. P8515 $\begin{array}{ll}\text { OUR } \\ \text { PRICE } & \text { Carr. } \\ \text { Paid }\end{array}$

TRID JR599 RECEIVER

TRIO JR310 SSB RECEIVER

 mounting bracket. and instructions. 'Blze approx.
$170 \times 60 \times 220 \mathrm{~mm}$.
OUR
PR

GGW CLEAR PLASTIC PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVT. DEPTS., EDUCATIONAL AUTHORITIES, etc.
Over 200 ranges in stock-other ranges to order. Quantity discounts available. Send for fully illustrated brochure

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{TYPESW. $100100 \times 80 \mathrm{~mm}$}

\hline - \& $100 \mu \mathrm{~A}$...... 23.95

\hline \& 100-0-100นA ${ }^{2} 38.90$

\hline \&

\hline \& 20V. D.C. ... E33 $_{50} 60$

\hline \& 50V. D.C.

\hline \& 1 amp. D.C... $£ 3.60$

\hline \& 5 amp D.c... ${ }^{3} 3.80$

\hline \& $$
300 \mathrm{~V} \text { A.C. } \cdots \text { £3. }{ }^{2} 0
$$

\hline 80-0-50رA .. 23.85 \& VU Meter. ... £4.30

\hline \multicolumn{2}{|l|}{TYPE SD. $83082.5 \mathrm{~mm} \times 110 \mathrm{~mm}$ Fronts}

\hline \& 10 ma 89.10

\hline \& 50 mA

100

\hline \& 500 mA ….... 23.10

\hline \& $\underline{1}$ amp. ${ }^{3} 3.10$

\hline \& 5 amp. $83 \cdot 10$

\hline 50 HA 23.40 \& 5v, D.C...... $£ 3 \cdot 10$

\hline $50-0-50 \mu \mathrm{~A}$.. $£ 3.40$ \& 10V. D.C.... $£ 3 \cdot 10$

\hline $100 \mu \mathrm{~A}$ ㄱ... $£ 3.35$ \& 20V. D.C..... $£ 3.10$

\hline 100-0-100 4 A \& 50V. D.C. ${ }^{\text {co.. }}$ ¢3.10

\hline \&

\hline $1 \mathrm{~mA}{ }^{\text {a }}$. $83 \cdot 10$ \& 300 V. A.C.... $£ 3.30$

\hline \& VU Meter.... $£ 3.50$

\hline \multicolumn{2}{|l|}{TYPE SD. 640 63. $6 \mathrm{~mm} \times 85 \mathrm{~mm}$ Fronts}

\hline $50 \mu \mathrm{~A}$...... $£ 3.05$ \& 500 mA $£ 2.80$

\hline $50-0-50 \mu \mathrm{LA}$.. 23.05 \& 1 amp. $£ 2.90$

\hline \& $$
\begin{aligned}
& 5 \mathrm{amp} \quad £ 2.90 \\
& 10 \mathrm{amp} .
\end{aligned}
$$

\hline $$
\begin{array}{ll}
100-0-100 \mu \mathrm{~A} \\
200 \mu \mathrm{~A} & \ldots 3.00 \\
£ 3
\end{array}
$$ \& \[

$$
\begin{aligned}
& 10 \mathrm{amp}{ }_{52} 90 \\
& 5 \mathrm{~V} . \mathrm{D.c.} . . . \\
& £ 2.90
\end{aligned}
$$
\]

\hline $500 \mu \mathrm{~A}$ …… \& 20V. D.C..... 22.90

\hline \& 50 V. D.C..... $£ 2.90$

\hline \& 300V. D.C. ... 22.90

\hline \&

\hline 100 mA ${ }^{\text {2 }} 2.90$ \& VU Meter..... £3.15

\hline
\end{tabular}

TYPE SD. 460 46mm $\times 50.5 \mathrm{~mm}$ Fronts			
50 HA	£2.80	500 ma	
$50-0-50 \mu \mathrm{~A}$	£2.80	1 amp .	
$100 \mu \mathrm{~A}$	£2.75	5 amp .	$\underline{22} 80$
100-0-100 A A	22.75	10 ant	${ }_{5} 2.80$
$200 \mu \mathrm{~A}$	22.70	${ }^{51}$ 10v. D.C.	${ }^{2} 2.60$
$500 \mu \mathbf{A}$. ${ }^{\text {a }}$.	£2.55	20v. L.C	
$1 \mathrm{~mA}$.	£2.60	50 V . D.	
5 mA .	£2. 80	300 V . D.	22.80
$10 \mathrm{~mA} \ldots \ldots$.	£2.80	15 V . A.C	22.70
50 mA	£2.80	300 V . A	
100mA	£2.80	vu Mieter	22.90

"SEW" EDGWISE ME
TYPE P.E. 70

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{TYPE MR.85P 4 4in. $\times 4$ din fronts.}

\hline -xownem \&

\hline \&

\hline \& 500 ma

a

\hline \&

\hline \&

\hline \&

\hline \&

\hline \& 300V. D.C. ... ${ }^{\text {z3.80}}$

\hline ${ }^{50-0-5004 A}$.. ${ }^{44} 25$ \&

\hline \&

\hline \&

\hline ${ }_{500 \mathrm{uA}}$ …… 83.90 \&

\hline $500 \cdot 0 \cdot 500 \mu \mathrm{~A} . .53 .90$ \& 5 amp A.C. $\because .: 30$

\hline \&

\hline \&

\hline 5ma 23.90 \& 30 amp. A.C. 83.80

\hline \multicolumn{2}{|l|}{TYPE MR.52P 2tin. square tronts.}

\hline $50 \mu \mathrm{~A}$...... 23.50 \& 10V. D.C. 22.50

\hline 50-0-50uA .. $£ 3.05$ \& 20V.D.C. ... 22.50

\hline $100 \mu \mathrm{~A}$. . . . $£ 3.00$ \& 50V. D.C. ... £2. 50

\hline 100-0-100u A 22.95 \& ${ }^{300 \%}$ v. D.C. . 22.50

\hline \& 15 V A.C.C. \ldots £ $2 \cdot 60$

\hline \& 300 V . A.C. . 22.80

\hline $5 \mathrm{~mA} \ldots \ldots \ldots$ £2.50 \& 8 Meter 1 mA . 22.80

\hline $10 \mathrm{~mA}{ }^{\text {2 }}$ 2. 50 \& vU Meter ... $£ 3.80$

\hline 50 mA $22 \cdot 50$ \& 1 mmp . A.C.* 22.50

\hline $100 \mathrm{~mA} \ldots . .282 .50$ \& 5 amp. A.C.* 22.50

\hline $500 \mathrm{~mA} \ldots \ldots .{ }^{2} 2.50$ \& 10 amp. A.C.* £2. 50

\hline $1 \mathrm{amp} \ldots \ldots .{ }^{\text {2 }}$ 2. 50 \& 20 amp . A.C.* 22.50

\hline $6^{6} \mathrm{amp}$. £2. 50 \& 30 amp . A.C.* $£ 2.50$

\hline \multicolumn{2}{|l|}{TYPE MR.65P ${ }^{3} \mathbf{i i n . ~} \times 34 \mathrm{in}$. Fronto}

\hline \& 10V. D.C.... ¢2. 200^{0}

\hline \& 20V. D.C. ${ }^{2}$

\hline ${ }_{100-0-100 \mu A}{ }^{\text {a }}$ 23-10 \& 150V. D.C. . . ${ }^{\text {E2 } 2.60}$

\hline ${ }_{5004 \mathrm{~A}}^{2004 \mathrm{~A}} \ldots \ldots .$. \&

\hline ${ }^{300-0-500 \mu \mathrm{~A}}$ (20.60 \& 50V A.C. 82.80

\hline (1mA \& ${ }^{150 V .}$ A.C.... 28.800

\hline 10 mA …. 22.80 \&

\hline $\begin{aligned} & 60 \mathrm{~mA} \\ & 100 \mathrm{~mA}\end{aligned} \cdots \cdots . . .{ }^{\text {che }}$ \&

\hline 800 mA …… ${ }^{2} 2.80$ \& $50 \mathrm{~mA} \mathrm{A.C.*}$: $£ 2.80$

\hline \&

\hline \& 500 mA A. ${ }^{\text {a }}$. 82.80

\hline \&

\hline \& 10 amp A.C. 2 ER 20

\hline \& | 20 amp . A.C." 22.80 |
| :--- |
| |

\hline \multicolumn{2}{|l|}{"SEW" EDUCATIONAL ME}

\hline \& TYPE ED. 107

\hline \& 8ize overall 100 mm $90 \mathrm{~mm} \times 108 \mathrm{~mm}$.

\hline \& A new
quality
range
mortng $\underset{\substack{\text { of } \\ \text { coil }}}{\text { hil }}$

\hline \& crumente lideat for

\hline \& ther bench appitca.

\hline \multicolumn{2}{|l|}{easily accessible to demonstrate internal working.}

\hline \multicolumn{2}{|r|}{ranges}

\hline \& 10 V D.C. ... 25.95

\hline \multicolumn{2}{|l|}{}

\hline \multicolumn{2}{|l|}{}

\hline \multicolumn{2}{|l|}{}

\hline \&

\hline
\end{tabular}

TYPE MR. 38P $121 / 3 \mathrm{zin}$. square fronts.	
	100V. D.C. .. 22.25
	150V. D.C. . 28.25
$1 \mathrm{~mA} \ldots \ldots . .{ }^{2} 2.25$	750v. D.C. .. 2 2.25
	15V. A.C. 60V. D.C.
	150V. A.C. .. 22.30
	350 V . A.C. .. 22.30
${ }_{100 \mathrm{~mA}}^{50 \mathrm{~mA}} \ldots \ldots .$.	
TYPE MR.45P 2 in. square fronts.	
${ }_{2}^{100-0-100 \mu A}{ }^{100}$	
5004 A ….. 52.45	15V. D.C. . 22.40
	VU Meter ... 22.70
800mA 1 1 amp	
"SEW" BAKELITE PANEL METERS TYPE MR. 65 3tin. aquare tronts.	
progine	
	50 mmp . .i.. 22.60
	SV. D.C. ${ }^{\text {E2 } 2.60}$
	20V. D.C. .: 82.60
	(150V. D.C. .. 22.80
	50v. \triangle C. * $\because 28.65$
$\begin{aligned} & 50 u A \\ & 50-0-50 \mu \mathrm{~A} \end{aligned} .$	
	500 mA A.C. 22.60
${ }^{5004}$	
$500-0-500 \mu \mathrm{~A}$ 1 mA	
	20 amp A.C. 22.60
$\begin{aligned} & 80 \mathrm{~mA} \\ & 100 \mathrm{~mA} \\ & \cdots \end{aligned}$	vu Meter … 23.65
	50 mV D.C. .: 22.90

TYPE S. 8080 mm Square Fronta		
	100-0-100uA	23.30
${ }^{50-0-50 \mu 4}$ [- 83.40	${ }^{50004}$	83.05
100 A …... $3 \cdot 40$	1 mA	23.00
	${ }_{\text {sov. D. }}$ c....	${ }_{23.00}^{23.00}$
	300 V . D.C.	23.00
	1 mmp . D.C.	23.00
	$\mathrm{b}_{6} \mathrm{mmp}$. D.C.	23.00
	300 V . A.C.	23.00
	vu Meter	23.70

B.8.R. MoDONALD C114 Mini
O129 Mono C10/TPD1. 610
$610 / \mathrm{TPDI}$

$\mathrm{MP60}$
MP60
O800
MP60/TPD1
MP60/TPD2
HT70.....
HT70/TPD1
CONNOIESEUR
BD1 Chasols
BD2/8AU2/Chassi
BDR/SAU2/P
GARRARD
${ }_{2025} 025$ Stereo
${ }_{2025}^{2025}$ TCiKBHOA
SP25
SP25 III/Acos
SP25 III
III
G800
SP25 III/G800
SP25/M75-8
AR 76
865 B
$8 \mathrm{LA5B}$
8LA5B
SL72B
SL95B
401
ZERO
ZERO
100
ZERO 100 SB
GOLDRING
G999
G101P/C
${ }_{\text {GL72. }}$ GL72
GL72/P
GL75
GL78
GL758.
THORENS
TD125/II

$8+8$ watt ampllifer MP60, plinth

| |
| :--- | :--- |

$16+16$ watt amplleer, SP 25 or MP60 pllthth and cover, G800 cartridge, pair OUR
PRICE
PT2.95
Carr.
f1.25

Complete units with stereo cartridge Complete units with Stereo ca
ready wired \ln plinth and cover.
GARRARD
2025 TC/9TABCD
SP2b III/ $8800 .$.
P25 $\mathrm{IT1} / \mathrm{M} 44 \mathrm{E}$
SP25 III ModulehM75-6.
AP70/G800
AP7 / A 800 F .
AP76/M44E
AP76/M44-7
AP78/M56E.
APi日/M76ED
AFPB/M75EJ
AP76 Module Mis-6
885B Module M75
AP96 Module M75-6
ZERO 100 M Module/Mo3E
ZERO 100SB Module/M75-
B.8.R. MODONALD

MP60/G800
MP60/TPD1/G800
MP60/M44-7
HT70/TPD1/G80
GOLDRING
GL72/G800
GL72/G800
GL75/G800
GL75/G800 GL75G800E,
GOODMANB
TD100/G800E Teak,
TD100/G800E White
LEAK
Truspee d
PHILIS
GA10B/GP200
GA180/GP200 Tea
GA:308/GP400
GA308 (less cartridge).
OA212/GP400
PIONEER
PL12D (Less cartridge)
PL15C (Less cartridge)
PL41D (Less cartridge).
PL50 (Less cartidge) PL61 (Less cartridge) PLA35 (Le
TD180C/Ortofon M15E Super
TD125 AB/11 M1FF. Super.
TX25 Cover
T165/Ortofon M15E Super
WBARPEDALE
Linton/M44-7 Tea
FERGUSON EXPORT MODELS

390 Amplitio Covers FM 88-108 MHz. Five push button tunlng scalee. $8+8$ watte rmas. Inputs for stereo ceraralo cartrldge and
tape, etc. Separate bass, treble, balance tape, etc. separate
and volume controls. $\begin{array}{lr}\text { OUR } \\ \text { PRICE } & \text { Carr. } \\ 50 p\end{array}$
 Tapo Dock
 mUR, radio, gram. complete with cover.
PRICE
OU.

$2 \times \mathrm{Z30}$ stereo $80 / \mathrm{P} / \mathrm{Z5} \mathbf{2 1 6 . 9 5}$.

$$
\begin{aligned}
& \text { F. \& P. } 87 \mathrm{p} \text {. } \\
& 2 \times \mathrm{Z50/Stereo} 80 / \mathrm{Pzz8} 220 \cdot 25 . \\
& \text { P. \& P. } 37 \mathrm{p} \text {. }
\end{aligned}
$$

Tranaformer for PZ8 88.65
Active Filter Unlt $24 \cdot 45$

All other Sinclair Products in atock
2000 Amplifler 222.95. P. \& P. 50 p ,

PHILIPS IC361 AM/FM

 MAINS/PORTABLE RADIO WITH AFC

SPECIAL OFFER!
 STEREOSOUND SPEAKERS $\underset{\substack{\text { Matched } \\ \text { bookshelf } \\ \text { pair of } \\ \text { spea- }}}{\text { spen }}$ kers. Le luxe
teak veneered
fine
 peak. Complet

$\begin{array}{lr}\text { OUR } \\ \text { PRICE } & E 12.05\end{array}$| Carr |
| :---: |
| $50 p$ |

DIGITAL CLOCK MECHANISM DT.55B

switch.
nated rotary dial with hours, minutes and
seconds seconds. Automatically turn of TV
radio, light etc. and with autosetting wl
awitch on again when required. AC 240 v
 paice f5.95
BINATONE DS100 DIGITAL CLOCK

Tvory case
with large
bers for hours minuter OUR EA.E P. \& P
PRICE $\Psi 4.40$ P. \& 30 .

SUPER AKAI CASSETIE BARGAINS!

CS35 STEREO CASSETTE RECORDER

synchronous outer-rotor motor. Has paus
syan control within lock and relector for conven
tlonal or Chromium Dioxide tape 4 track record/playback. Volume and tone controck
Frequency response $40-16 \mathrm{kHz}$ (using
 wow and Hutter better than 0.2% RMS
Complete wfith pair of matching Akel CSB8 Rpeakers.
Rec. Price
E96.10 OUR
PRICE 56.50
$50.8 P$.
$50 p$

	Price
ADM MICROPHONES	AKAI CS35D STEREO
Normally 811.60	CASSETTE DEC
OUR	¢ $\begin{aligned} & 4 \text { track } \\ & \text { burcm } \\ & \text { chrom }\end{aligned}$
$£ 7 \cdot 50$	Re6. Price $\ddagger 68.30$
Pair. P. \& P. 25p	

NEWI		FM TUNER CHASSIS
SINCLAIR	\square	
CAMBRIDGE		रु ${ }^{5}$
CALCULATOR	\pm	
To build yourself.		=
Complete klt of parts uth step by step inatructions to bulld a full	a is.	

6 TRANSIBTOR HIGH QUALITY
 discriminator. Ample output to feed mots anplifiers. Operates on 9 vol battery. Coverage $88-108 \mathrm{Mc} / \mathrm{s}$, Ready
built ready for use. Fantastlc value for OUR FF. 5 P. \& P PRICE 20 p

A1018 FM TUNER

$\begin{array}{lrr}\text { OUR } \\ \text { PRICE } & \text { P. } 54 & \text { P. \& P } \\ 30 p\end{array}$
Stereo Multiplex Adaptor 84.97 .
BSR8 TRACK PLAYER CHASSIS
Famous BsR 8 track
chassis na naed in Model

$\underset{\substack{\text { OUR } \\ \text { Palce } \\ \text { P8.95 } \\ \hline}}{ }$
FANTASTIC OFFERI
PORTABLE
CASSETTE
RECORDER
CT5050
lratant recording and playyg. Plano Built in speaker. Complete with remote OUR P PRICE P. \& P
50 B

LONDON'S LARGEST STOCKS INCLUDING PRODUCTS BY-

ARMSTRONG CAMBRIDGE KEF-LUX-NIKKO SONSUY-TEAC transchiptors TRIO-UHER YAMAHA

Pricas on request or
ALL EQUIPMENT IS FULLY GUARANTEED AND COVERED BY 12 MONTHS FREE SERVICE!

PERSONAL CALLERS WELCOME AT ANY OF OUR RETAIL BRANCHES

$\begin{array}{ll} \\ \text { Tel: © } 1.5800670^{\circ} & \text { 311, Edgware Road. w. } 2\end{array}$
Tel: 01-2620387

Tel: 01-723 4194

ESSEX
86. South Street. Romford. Tel: Romford 20218
SURREY
SURREY Tel: 01-681 3027
Tel:01-545 7845 Tel: 01-545 7845
ALL BRANCHES OPEN 9 a.m.- 6 p.m. MONDAY TO SATURDAY HEAC OFFICE and MAIL ORDER DEPARTMENT
UNIT 4, THE HYDE IVDUSTRIAL ESTATE, THE HYDE, LONDON NW9 6Js TELEPHON

BENTLEY ACOUSTIC CORPORATION LTD.

7A GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. Tel. 6743 ALL PRICES SHOWN INCLUDE' V.A.T.

Abstract

ELECTRONIC ORGAN DIVIDER BOARDS bulit to high Industrial/computer spec. 5 octave set etalis. Complete with connection data and oscillator detalis.
 COPPER LAMINATE P.C. BOARD
 $8 \frac{1}{2} \times 6 \frac{1}{2} \times 1 / 16 \mathrm{ln}$. $12 \frac{1}{2} \mathrm{p}$ sheet, 5 for BOp
 $11 \times 8 \times 1 / 16$. In 20 p sheet, 3 for 50 p
 $16 \% \times 4 \times 1 / 16 \mathrm{in}$. (Fibreglass), 30 p sheet.
 P\&P single sheet Ap. 8argaln packs 10p

SPEAKERS AND CABINETS
E.M.I. $13 \times 8 \mathrm{ln}$. (10 wett) with two twoeters
over $3 / 8 / 15 \mathrm{ohm}$ models. £3.78. P.P. 25 p.
E.M.I. 20 watt ($13 \times 8 \mathrm{ln}$.) with single iweeter and 11,000 gss. £8. P.P. 40 p. 20 watt base unlt only. 28. P.P. 40p.

CAEINET8 for $13 \times 8 \mathrm{ln}$. speakers manufactured in ${ }_{4}^{5}$ es. P.P. 40p.
20W. CABINET. $18 \times 11 \times 10 \mathrm{ln}$. E6. P.P. 50p.

PRECIBION A.C. MILLIVOLTMETER (Solarition) $1.6 \mathrm{~m} . \mathrm{V}$

HIOH CAPACITY ELECTROLYTICS
$2,200 \mu \mathrm{f} .100 \mathrm{v} .\left(1 \frac{t}{2} \times 4 \mathrm{ln}.\right) 60 \mathrm{p} .3,150 \mu \mathrm{f} .40 \mathrm{v} .(1 \mathrm{t} \times 4 \mathrm{in}$.

 packing 5 p.
MINIATURE UNISELECTORS (A.E.I. 2203A.), 3 bank, Complete with base.
CD. 1220 OSCILLOSCOPE, with dualtrace Plug-in. (CX1257) DC-24MHZ. E125.
WIde band Plug-in (CX1256) DC-40MHZ, £25
SOLARTRON OS CILLATOR (CO546) $25 \mathrm{~Hz}-500 \mathrm{KHz} £ 50$. OVERLOAD CUT-OUTS. Panel mounting ($9 \frac{2}{2} \times 1 \frac{1}{4} \times \frac{1}{1}$.)
BULK COMPONENT OFFER. Resistors/Capacitors. All types and pieces $£ 2$. (Tial
you will re-order
TWIN STABILISED POWER SUPPLIES (A.P.T.) +80 v . @
U.K. ORDERS 10\% V.A.T. SURCHARGE

TRANSFORMERS

L.T. TRANSFORMER. Prim. 240v. Sec. 24v. 1 it amp. et L.T. T. 20 p . 250 WATT ISOLATION TRANSFORMER. 240v. double
WOUN. $83 \cdot 25$. P.P. 50 D . W. H.T. TRANSFORMER. Frim. $240 \mathrm{v}, \mathrm{Sec}$. $2 \cdot 5-0-2 \cdot 5 \mathrm{kV}$
12 mA ; $7.5 \mathrm{v}, 1$ amp. 2.5 v .2 amp . $£ 2.50$. P.P. 25 p . 12 mA . 7.5 v . 1 amp. 2. Jv . 2 amp . 240 v . Sec. $1800 \mathrm{v}, 50 \mathrm{~mA}$
E.H.T. TRANFORMER. PrIm. ع.2.50. P.P. 35p.
L.T. TRAN8FORMER. (Shrouded) Pilm, 200/250V Sec. 20/40/60v. 2 8mp. £2 ea. P.P. 40p.
L.T. TRANSFORMER (CONSTANT VOLTAQE), Prim. 200/240v. Sec. 1. EOv. at 2 amp . Sec. 2. 50v. at $100 \mathrm{~m} / \mathrm{a}$ E3. P.P. 50p

 L.T. TRANSFORME
1.5 amp . 65p. P.P. 15 p .
L.T. TRANSFORMER. Prlm. $115 / 240 \mathrm{v}$. Sec. 10.5 v , at 1 amp. c.t $28 \cdot 0-28 \mathrm{v}$. at 2 amp . shrouded type. $\mathbf{£ 2}$. at 18 mp
P.P. 40 p

2500 watt. ISOLATION TRANSFORMER (CON STANT VOLTAGE). PrIm. $190-260 \mathrm{v}$. 50 Hz . Sec $\mathbf{2 3 0 v}$. at 10.9 amps. £30. Carr. £2. H.D.STEP-DOWN TRANSFORMER. Prim. 200/240V Sec. 117 v at $19 \cdot 8 \mathrm{amps}$. (2,300 watt), $£ 22 \cdot 50$. Carr. $£ 2$. | H.T. TRANSFORMERS. Prim. 200/240v. Sec. |
| :--- |
| $300-0.300 v$ |
| 0 | $300-0.300 \mathrm{v} .80 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$. c.t. 2 amp . £1.80 P.P. 40

$350-0-350 \mathrm{v}$, $60 \mathrm{m.a} .6 .3 \mathrm{v}$. c.t. 2 amp. E1. P.P. 26p. $350-0-350 \mathrm{v}$. $60 \mathrm{~m} . \mathrm{B} .6 .3 \mathrm{v}$. c.t. 2 amp. E1. P.P. 26 p .
STEP-DOWN TRANSFORMERS: Prim. $22 / 240 \mathrm{v}$ Sec. 115 v . Double wound 500 w . EE. P.P. £1. 700 w . (with filters) £10. P.P. £1. 500w. (metal case socket output) and overload protection. £6.50.
AUTO-WOUND. 75 W £1. P.P. 25p. 300W. 1 . AUTO-WOUND. 75W. £1.
PP. 50 D 750 W E6. P.P. £1. P P. 50p 750W E6. P.P.E1.
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. $0 / 24 / 40 \mathrm{v}$. L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$.
$1.5 A$. (Shrouded tvpe). $£ 1 \cdot 50$. P.P. 25p. 1.5A. (Shrouded type). E1.50. P.P. 25v.
HT/LT TRANSFORMER Prim. 240v. (tapped) Sec. $500-0-500 \mathrm{v} .150 \mathrm{~m} / \mathrm{a}$. Sec. 2. 31 v .5 amp . £2.75 P.P. 50p. AUTOMATIC VOLTAGE STABILISER. $15 \% .12 \cdot 4$

PRECISION CAPACITANCE JIQs. Beautifully made with Moore \& Wright Micromatar Gauge. Type 1. 18.6 pf . to ,220pf £10 each Typo 2, $3 \cdot 5 p f$, to 11.5 pf . £6 oach MULTICORE CABLE (P.V.C.).
6 cose (6 coiours) 3 screened, 14/0048, 15p. yd. 100 yds £12-50.
24 cote (24 colours) 20p. yd. 100 yds . £17.50.
30 cove (15 colours) $22 \mathrm{tp} . \mathrm{yd} .100 \mathrm{yds} . £ 18 \cdot 50$
34 core (17 colours) 26
TELEPHONE DIALS (New) $£ 1$ ea
RELAYS (G.P.O. '3000'). All types. Brand new from 372p os. 10 up quotations only. New/Boxed. EB. 50p. NOW/BOXED. EEL
RATCHET RELAYS. TYPES BEp. PP Ep.
UNISELECTORS (8rand now) 25-wsy 75 ohm. 8 bank $\frac{1}{\frac{1}{2}}$ wipe £3.28. 10 bank
th wlpe $£ 3.75$. Other types from $£ 2 \cdot 2 \mathrm{~B}$.

BLOWER FANS (Snall type) Type 1: Housing dla, $3 \frac{1}{2}$ In.
 240v. A.C. (brand new).
PAPST TAPE" MOTORS. (LZ. 20.50) New Boxed. \&2. P.P

RELAYS

SIEMENS/VARLEY PLUQ-IN. Complete with transparani dust covers and bases. 2 pole c/o contacts 35p e日: 6 make contacts 40 p o
12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{ln}$.) with 10 amp . silver contacts 2 pole c/o 40p ea.; 2 pole 3 way 40p. P.P. $5 p$ 24 VOLT H.D. RELAYS ($2 \times 2 \times \frac{1}{4} \mathrm{ln}$.) 10 emp, contacts
40y. A.C. RELAYS. (Plug-in typa). 3 change-over 10 amp 240y. A.C, RELAYS. (Plug-in type)
SUB-MINIATURE REED RELAYS ($1 \mathrm{ln} . \times \pm \mathrm{ln}$.) Wi. t oz. 1 make $3 / 12 \mathrm{v} .40 \mathrm{p}$. ea.
SILICON BRIDGES. 100 P.I.V. 1 amp. $(\$ x+1+i n$.) 30p 200 P.I.V. 2 amp. 60p.
${ }^{4}$ VOLT A.C. RELAYS (Plug-In).
Pole Change-over 60 p .
Pole Change-over 45 p.
PATTRICK \& KINNIE
191 LONDON ROAD • ROMFORD • ESSEX
ROMFORD 44473

(IP) IL.P.P. (teatoronesile

100 WATTS!

\star NO EXTERNAL COMPONENTS
\star MECHANICALLY \& ELECTRICALLY ROBUST
\star INTEGRAL HEATSINK
\star HERMETICALLY SEALED UNIT
\star ATTRACTIVE APPEARANCE

* LOWCOST
\star BRITISH BUILT
$\star 100 \times 105 \times 25 m m$

With the development of the HY200, ILP bring you the first COMPLETE Hybrid Power Amplifier.
COMPLETE: because the HY200 uses no external components!
COMPLETE: because the HY200 is its own heatsink!
By the use of integrated circuit technique, using 27 transistors, the HY200 achieves total component integration. The use of specially developed high thermally conductive alloy and encapsulant is responsible for its compact size and robust nature.
The module is protected by the generous design of the output circuit, incorporating 25 amp transistors. A fuse in the speaker line completes protection.

Only 5 connections are provided, input, output, power lines and earth.

[^11]PRICE: $£ 14.90$ inc. VAT \& P \& P
Trade applications welcomed

CROSSLAND HOUSE•NACKINGTON•CANTERBURY•KENT
CANTERBURY 63218

IP IL. P. (Electronics)Ltd

SECOND GENERATION 25 WATT HYBRID

A brand new hybrid fabrication technique, recently perfected in our laboratories. has enabled us to achieve our latest range of completely integrated devices. We have now finally reduced the modular amplifier to a simple input/output device requiring only the addition of a basic unstabilized (split line) power supply.
The HY50 takes medium power modules to their logical conclusion by incorporating with it a heatsink, which is designed in special high conductivity alloy, sufficient for normal audio use without additional chassis sinking. All this without significantly increasing the size of the module comparable in size to a packet of 'King-size' cigarettes.
Consistent with modern thinking a triple rated output circuit with a load fuse allows for peak transient response without distortion but ensures the necessary protection.

OUTPUT POWER: LOADIMPEDANGE: INPUT SENSITIVITY: INPUT IMPEDANCE: TOTAL HARMONIC DI FREQUENCY RESPONSE SUPPLY VOLTAGE: SIZE:

25 watts RMS. 50 watts peak music power. 4-16 Ω into 8Ω.
Odb (0.775 volts RMS).
$47 \mathrm{~K} \Omega$.
Less than 0.1% at 25 watts typically 0.05 better than 75 db .
$10 \mathrm{~Hz}-50 \mathrm{KHz} \pm 1 \mathrm{db}$
± 25 volts.
$105 \times 50 \times 25 \mathrm{~mm}$.
Price $£ 5.40$ mono $£ 10.80$ stereo
Price inclusive of VAT \& P \& P.

NEW HY5 PRE-AMPLIFIER

Unchallenged for two years. the HY5, our unique multifunction preamplifier/tone hybrid, has been brought into line with the advancements in our power hybrids.
Like the HY50, the new HY5 has no external components $\&$ has been redesigned to run off a split power line with improvements in signal/noise, overload capability \& reduced distortion. The output has been increased to match the power module (Odb), and to share the same power supply.
Overall size is reduced by the use of a new thin film circuitry while the device still retains all the functions of the earlier device.
When combined with the HY50 \& power supply only potentiometers are required to complete a simple When combined with the HY 50 \& power supply only potentiometers are required to complete a simple
mono amplifier with input \& output facilities expected to be found on Hi - Fi amplifiers.
The combination of two HY5's two HY50's sharing a common power supply (PSU50) are linked by a balance control to form a complete stereo system.
INPUTS
Magnetic Pick-up 3 mV (within 1 db RIAA curve)
Ceramic Pick-up up to 3 mV .
Microphone 10 mV .
Tuner 250 mV .
Auxiliary 3.100 mV .
input impedance $47 \mathrm{k} \Omega 1 \mathrm{kHz}$
OUTPUTS
Tape 100 mV .
Main output. Odb $(0.775$ volts $)$.
ACTIVE TONE CONTROLS
Treble $\pm 12 \mathrm{db}$ at 10 kHz
Bass $\pm 12 \mathrm{db}$ at 100 Hz
OVERLOAD CAPABILITY (equalization stage) 40db on most sensitive input.
OUTPUT NOISE LEVEL (below 10 mV magnetic input) 68 db .
DISTORTION O.O5\% at 1 kHz .
SUPPLY VOLTAGE $\pm 16-25$ volts.
SUPPLY CURRENT 15 mA .
Price $\mathbf{£ 4 . 5 1}$ mono $£ 9.02$ stereo
Price inclusive of VAT \& P \& P.

POWER SUPPLY PSU50

The new PSU 50 has a low profile look being only $2 \frac{1}{4}$ inches high and can be used for either mono or stereo systems. SPEC.
OUTPUTVOLTAGE +25 volts.
INPUTVOLTAGE 210-240volts.
SIZEL. 70 D .90 H .60 mm .
Price 55.23.
Price inclusive of VAT \& P \& P.

CROSSLAND HOUSE•NACKINGTON•CANTERBURY•KENT

CANTERBURY 63218

How BOLTON COVENTRY SUNDERLAND STOCKPORT and at DONCASTER

BIRMINGHAM 30-31 G1. Western Arcade BOLTON 23 Deansgate
BRADFORD 10 (Closed Wed.) Tel: 33512 ERADFORD 10 North Parade (Closed Wed.)
COVENTRY 17 Shelton Square The Precinct Dapinen (Closed Thurs.) Tel:25983 DARLINGTON 19 Northgate (Closed Wed.) DONCASTER (Closed Wed.) Tel.: 41361 EDINBURGH 101 Cintre. EDINBURGH 101 Lothian Road (Closed Wed.) HULL 7 Whltefrlargate (Closed Thurs.) Tues.) LEEDS 5-7 County (Mecca) Arcade, Briggate LEICESTER 32 HIgh ${ }^{\text {St }}$. (Closed Thurs) 28252 EICESTER 32 HIgh St. (Closed Thurs.)
LIVERPOOL 73 Dale St. (Closed Wed.) ONDON 238 Edgware Rd., (Closed Thurs) MANCHESTER 60a Oldham St.(Closed Wed

HI-FI CEN 108 HEMCOMANL ORDERS to: Terms O.W.0. or C.O.D. Postage 28p extra under $£ 2,33 \mathrm{p}$ extra over 22 , or as atated. rade supplied. B.A.E. with enquiries. EXPORT ENQULRIES WELCOMED ARANDE8 OPERATELL DAY SATURDAYS MAL ORDERS NOT TO BE SENT TO SEOPS. MIDDLESBRO 106 Newport Rd (Closed Wed.) Shopping Centre (Closed Wed.) Tel 21469 NOTTINGHAM 19 Market St. Wed.) Tel. 21469 SHEFFIELO 13 Exchange St. (Closed Thurs.) STOCKPORT 8 Little Underbank Tel. 4800777 SUNDERLAND 5 Market Square (Closed Thurs.)

ALL PRICES INCLUDE VAT

AND FULL LABOUR AND

HUGE DISCOUNTS ON LEADING BRAND TAPE AND TURNTABLE UNITS

AKAI GXC 40D Tape Unit
AKAI 4000DS Tape Unit
AKAI 1721L Tape Unit AKAI CR810 Tape Unit f66.95 (Rec Price £93.87). £58.95 (Rec Price £84.10). GOLDRING GL72 T/Table \& P.U. £29.95 (Rec Price £37.29). Also FREE with above GL72 Goldring G800 cartridge worth over B.S.R. MACDONALD MP60 T Table \& P 10.95 (Rorth over $£ 10$ CREDIT TERMS AVAILABLE MINIMUM. £10.95 (Recom. Price £14.95). CREDIT TERMS AVAILABLE. MINIMUM DEPOSIT 10% Carr. 40p.
Above is only a selection of Discount Lines, also Leak, Wharfedale etc. Discount prices correct at time of going to préss.

COMPLETE KIT OF PARTS R.S.C. G66 MkII $6+6$ WATT STEREO AMPLIFIER High Quality Output. Rating I.H.F.M. Ind. Canged Controls Bass,
Treble, Vol. and Balauce. Solld state constr. employing 10 Trana. Treble, Vol. and Balauce. Solld state constr. employing 10 Trana,
plus diodes. Range $20-20,000 \mathrm{~Hz}$. Bass control +12 dB Treble plus
$\pm 13 \mathrm{~dB}$. Selector switch P.U. or Tape/Radio. Output for 3 , 15 ohem \pm speakers. Standard $200-250 \mathrm{v}$. 50 Hz mains operation. Attractive Black/Silver metal face plate and matching knobs.

FANG ULTRA HIGH POWER LOUDSPEAKER

 TWO NEW MODELS ${ }^{10}{ }^{10}$ " ${ }^{\prime}$ POP' 40

 BASC.MAIUS TRANSFORMERS

FOLI BHROUDED UPRIGHT MOUNTING $950-0-280 \mathrm{v}, 60 \mathrm{~mA} \cdot, 6,3 \mathrm{v}, 2 \mathrm{a}, 0-5-6.3 \mathrm{v}, 2 \mathrm{a} \ldots$.
$250-0-250 \mathrm{v}, 100 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}, 0-5-6 \mathrm{v} .3 \mathrm{a}, 3 \mathrm{a}$

 250-0-250\% 70 mED DROP-THROUGH TYPE $350-0-250 \mathrm{v}, 100 \mathrm{~m}, 6.3 \mathrm{v}, 2 \mathrm{a} ., 0.5-6.3 \mathrm{v} .2 \mathrm{a}$
 $250-0.250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a} ., \mathrm{b} 0-5.6 .3 \mathrm{v} .3 \mathrm{a}$. $300-0-300 \mathrm{~V}, 100 \mathrm{~mA}, 6.3 \mathrm{~V}, 4 \mathrm{ac} ., 0-5.6 .3 \mathrm{~V}, 3 \mathrm{a}$. 8ultable for Mullard 510 Amplifier

$0-110 / 220 \mathrm{p}$ UP/SteD DOWN) Trangiormars
 Standard TRANSFORMERS
Puandard Pentode 6,000 o to $7,000 \Omega$ to 3Ω
Push-Pull 10 Watte 6 V 0 ECL8 6 to $3,5,8$
Puah-Pull EL84 to 3 or $15010-12$ सatts.
Puah-Pull Ultra Linear for Mullard 510, etc.
Tuah-Pull $15-18$ watta, gectionBlly wound
016 KT 66 , etc., for 3 or 150.
Fash-Pull 20 watt high quality sectionaliy wound EL84.6L6. 5 T66, etc. to 3 or 160 E 83.6 BATTERY/MAINS CONVERSION UNITS

[^12]$55 p$
$85 p$

Audlotrine 121 K .12 in . Audlotrine 121 K .12 in .15
watt. 11,000 Gauas bass unlt Crossmover unit and Twester. 8mooth responge and wide allatic sound reproduction. Audiotrine 126 K with extra se
12 in . speaker.

Carr. £1.
Carr. £1. Carr. £1. Carr. £1. Carr. 75p. 14.95).

Train for television

Course commences 2nd January, 1974
This is your opportunity to train as a television and radio engineer on our full-time Two-Year College Diploma Course specially designed to cover the examinations of the City and Guilds Radio, Television and Electronics Technicians' Certificate. Full theoretical and practical instruction on all types of modern receivers - including the latest colour sets.

Minimum entrance requirements are Senior Cambridge or 'O'Level, or equivalent in Mathematics and English.

Please send free prospectus to:
Name
Address

THE PEMBRIDGE COLLEGE OF ELECTRONICS
(Dept. WW7) 34a Hereford Rd., London W3 5AJ

WEYRAD

COILS AND I.F. TRANSFORMERS IN
 LARGE-SCALE PRODUCTION FOR RECEIVER MANUFACTURERS

P. 11 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $3 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

MIL SYNCHROS AVAILABLE EX-STOCK In sizes 08, 11, 15. 16, 18 a ind 23 for 50,60 and 400 Hz operatlon.
Synchro Control Tranemitters
Synchro Control Differential Transmitters
Synchro Torque Transmittets and Recelvers
400 Hz . HIGH FREQUENCY ROTARY CONVERTERS
27.5 V . 150 A . InDut 115 V .400 Hz 2500 VA output. Not new b 27.5 V . 150 A . Input 115 V . 400 Hz 2500 VA . output. Not new but
in excellent condition: fited with control box containlng switchgear and volisge and trequency adjustment clrcuits. These
 hlgh overall Including the control box which also carries the
circuit diagram. $£ 31.90$ (C. Pd. U.K. Mainld.). Also

 $400 \mathrm{~Hz}, 0.8 \mathrm{pF}$. $£ 21.50$ (C. Pd. U.K. Mainld.). | Type $153 \mathrm{~A}, 100-118 \mathrm{~V}$. D. C. Input, output 115 V .3 phase 750 W . |
| :--- |
| 400 Hz . $0.8 \mathrm{pF}, ~$ |
| 23.50 (C. Pd. U.K Malnld | Type 8A, 24 V . DC input, output 115 V .400 Hz 3 phase 1.8 appe $\begin{aligned} & \text { 816. } 50 \text { (C. Pd. U.K. Malnld.). }\end{aligned}$ Type $100 \mathrm{~A}, 22 \cdot 5-23.5 \mathrm{~V}$. D. C. Input, output 115 V .400 Hz 3 ohase

 O.8PF, E16 50 (C. Pd. U.K. Mainld.).
Type $200,25-28 \mathrm{~V}$. D.C. input, 115 V . 1 phase $360 \mathrm{~W} .{ }^{2} 1600 \mathrm{~Hz}$.

 Type $2,24 \mathrm{~V}$. D. . Input. 40 amps. 80 V . A.C. 8.25 ohms, 5 KV .
10F 1900 Hz output. $£ 33$ (C. Pd. U.K. Mainid.). ETHER ELECTROMETHODS LOW INERTIA
INTEGRATING MOTORS
Avallable ex-stock at extremely low prices. For 1.5, 6, 12 and
PLANNAIR. A
PLANNAIR. Axial Flow Fans (with mounting) Type 6 PL
122-331 Mk. 26 in $122-331 \mathrm{Mk.2} 61 \mathrm{n} .2,800 \mathrm{r} . \mathrm{p} . \mathrm{m} .400 \mathrm{v}$. 3 ph 50 Hz . New and boxed
$£ 18.50$ (C.Pd. U.K.). Also ayailable tested but not new in $220 / 240 \mathrm{v}, 50 \mathrm{~Hz}$ version at Fenlow Electronics LOW FREQUENCY SPECTRUM ANA.
LYSER covering $0.3 \mathrm{~Hz}-1 \mathrm{kHz}$. E175.00 including carriag and LySER covering $0.3 \mathrm{~Hz}-1 \mathrm{kHz}$. 8175.00 including carriage and POLARAD WIDE DISPERSION SPECTRUM ANALYSER $10-40.880 \mathrm{mHz}$. Model S. A.-84W. P.O.A.
We hold extremely large stocks of STANTELUM and CASTA. NET TANTALUM CAPACITORS. Our current stock holding exceeds $30,000 \mathrm{pCs}$ and your enquifies for qauntity requiremen is will receive our immediate attenion.
WE HAVE ONE OF THE LARGEST STOCKS IN THE
COUNTRY OF INSTRUMENTS AND COMPONENTS MANUFACTURERS. TELEX 965265. RE AVAILABILITY. SPECIALIST STOCKISTS OF SERVOMOTORS, SYNCHROS, MAGSLIPS \& CONNECTORS Servo and Electronic Sales Ltd
Pont Orders and Technical enquiries to: "BAYS", HIGH ST., LYDD, KENT. Lydd 20252 (STD 0679) 67 LONDON ROAD, CROYDON, SURREY (Retail and Instrument Repairs). Phone: $01-6881512$ TELEX 965265

We ARE ANXIOUS TO BuY Synchro Test Equipment
manufactured by Mulirhead, Singer-Gertsch etc. Test Dials, manuactured by Murhea,
Dividing Heads. Bridges, Standards etc. to expand our testing EVERSHED AND VIGNOLES
EVERSHED AND VIGNOLES special purpose and servo motors in stock also velodynn Molor Generators and Spli
Field Mntors by other Manufacturers for immediate dellvery. RADAR CABLEFORM INSULATION TESTER for checkng Instiation between individual conductors and each other and ground at preselected voltages up to toky. Full detalis on pplication
ori lin stock Computer tape evaluation equipment, one installaADVANCE RADIO INTERFERENCE MEASURING SETS CT53. These enable the frequency and level of equipment ene ated interference to be measured. The instrument ia similar equlpment at present avaliable. $\mathbf{£ 4} 950$ (plus carriage at cost). Cover 50 kHz to 30 MHz .
VACTRIC STZE 23 PULSE GENERATORS (Shaft DIgitizers). Two outputs each of 250 square wave pulses per 360° dlsplaced STAINLESS STEEL VACUUM CONTAINERS FOR LiQulDS. Capacity 2 U.S. galls, fitted with delivery taps. Brand new in cartons- 225 (C. Pd. U.K.).
MULTICORE PVC COVERED TELEPHONE CABLE 24 per 100 yds, 4 core $£ 111$ per 200 yds, 2 core $£ 3.30$ per 100 yds. (All C.Pd. U.K. Mainiand).
HEAVY DUTY PVC INSLTD. FLEXIBLE CABLE 10 DEF 12D Type 3 in following colours: violet. yellow, white, grey
green, orange, plink, red and brown $70 / 0070^{\prime \prime}$ conductors E 3.57 per 100 yds (P.Pd.) also with $40 / 0076^{\prime \prime}$ conductors in grey, violet,
white, pink and red at $£ 2.75$ per 100 yds (P.Pd.) whlte, pink and red at $£ 2 \cdot 75$ per 100 yds (P.Pd.)
200-250V AC NIAINS

TO

27V 500mA D.C. STABILISED P.S.U
With circult. These interesting 27v 0.5 A units (will happliy provide 700 mA indefintely) are bulit into an attractive greyfinished instrument case, provision belng made for base or side mouniling. Cable entry grommets art mounted in the
base of the unil. The choke capacity smoothed output is solfd state stabillsed against vartation in input voltage and output current, and input and output tuses with spares are fitted. The outpul operates a buifi-in S.P.C.O. relay to swlich for Instance
an alarm circuit. There is adequate room for other equipment an alarme circuit. There is adequate room for other equid
within the ventilated case, which $1 \mathrm{l} 12^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime}$ deep.
f4.15 EACH (P.Pd U.K.)
DRY REED INSERTS

Overall length 1.85 in . (Body length 1.1 n .) Dlameter 0.14 in . to switch up to 500 mA at up to 250 v . D.C. Gold ciad contacts 69p per doz; © $\mathbf{£ 4 . 1 2}$ per 100; $\mathbf{£ 3 0 \cdot 2 5}$ per 1,000 ; $\mathbf{£ 2 7 5}$ per 10,000 Heavy duty type (body length 2 in .) diameter 0.22 in . to switch up to 1 A . at up to 250 V . A. C. Gold clad contacts, $£ 1.37$ per doz.; £6.88 per 100; £52.25 per 1,000 ; Changeover type $£ 2.75$ per doz. Operating Magnets 6ip per doz.; $\mathbf{\text { E }} 4.40$ per 100; $\mathbf{\text { E } 3 8 - 5 0}$ per 1000. All carriage paid.

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

KING OF THE PAKS Unequalied Value and Quality CIDFR DAKS NEW BI-PAK UNTESTED

dion guaranteed in Every Pak, or money baek.		
Pak No	O. Description	Prioe
Pak No. ${ }_{\text {U }} 120$ Glass Bub-Min. General Purpose Germ		
U2	Bn MLxed (iermanlum Transistore AF/RF	0.55
	75 Germanlum Gold Bonded Sub-MIn. Ilike	
U4	40 Germanium Tranalitors like OC81, AC128	5
	60200 ma Sub-Min. 8 gilicon Dlodes	
U 8	80 811. Planar Trane K P P like BSY95	
U 7	16 Sil Rectifers TOP-HAT 780 mA VLTG. RANG	
U8	30 Bli. Planar Dlodes Do-7 Glass 250 mA 1	
U-8	20 Mixed Yoltages, 1 Watt Zener Diodes	
U10	20 BAY 50 charge egrage Diodes D0.7 Glass	
U11		
U12	12 Billcon Rectlifere Epoxy 000 mA up to 8	
U18	30 PNP-NPN Sil. Tranmators OC200 \& 28104	
U14	150 Mixed gilicona and Germanlum Diodes	
U15	25 SPN 811. Plamar Trans. To-5 like BFY51	
	103 Amp sillean Rectifers Btud Type up to 10	
U17	30 Gerrnariliun PNP AF Transiators TO-5 llke ACY 17	
U18	8 is Amp silicon Rectiffers BYZ13 Type up to 60	
U19	23 Bllicon NPN Transistors like BC108	
	121.5 Amp Billcon Rectifiers Top Hat upy to 1000 P	
U21	30 AF. Germanlum Alloy Tranisistors 2 C 300 Series \& OC7	
	30 MADT's like M ${ }^{\text {a }}$ Serles PNP Tranistors	
U24	20 Germanium 1 Amp Rectifers GJM Series up to 300 PIV	
U25	25300 MHz SPN Sillcon Tranblators 2 N 708 , BSY 27	
U26	30 Fast Switching silicon Diodes like IN414 Micro-MIn	
U27	12 NPN Germanium AF Translstors TO-1 like AC127	
	101 Amp BCR's TO-5 cant up to 800 P1Y CRA1/25-800	
U30	15 Plastic Sllicon Planar Trans, NPN 2N2426	
U91	20 sllicon Planir Plastic NPN Trans. Low Nolse Amp 2	
U32	26 Zener Diodea f00mW Do.7 cuse 3 -18 volts milred	
U83	15 Plastlc Crae : Arip billicon Rectifera IN400n Serie	
U34	30 silicon PNP Alloy Trape. T0-5 BCY 26 28302/4	
	25 Sillcon Plarar Tramitiors PNP TO-18 2 N2906	
± 36	25 8illion Planar NPS Tranfiftora T0-5 BFY50/51/62	
	30 Sillcon Alloy Trannistors 80-2 PNP OC200, 2 s 322	
	20 Fast switchtng Allicon Trans. NPS MHz 2N:3011	
	30 RF. Germ. PNP Tranisitors 2×1303.5 TO-6	
U40		
$\overline{1411}$	25 RF' Germantum Transistors TO.b. OC45, NKT72	
4		
$\overline{\mathrm{U} 43}$	25 Sil. Trans. Pluatic TO-18 A.F. BC113/114	
U4t	20 Bil. Trans. Plastic T0-5 BC175/XPN	
U45	3 A SCR. T06t up to 60	1.10

[^13]BI-PAKS NEW COMPONENT SHOP NOW OPEN WITH A WIDE
RANGE OF ELECTRONIC COMPONENTS AND ACCESSORIES AT
COMPETITIVE PRICES-
qUALITY TESTED SEMICONDUCTORS
$\begin{array}{lllll} \\ 2 \mathrm{~N} 2217 & 0.24 & \text { 2N3053 } & 0.19 & \text { 2N4059 } \\ \text { 2N2218 } & 0.22 & 2 N 305 & 0.51 & 2 \mathrm{~N} 4050\end{array}$

ALITY TESTED SEMICONDUCTORS Pak no.

```
20 Red spot
```

16 White gpot R.F. Lransist

4 OC 75 transistors

+ AC 128 translitors PNP high gain
AC 126 tranaistors PNP
OC 81 type transiators
2 AC $127 / 128$ Complementary pairs PNP/NPN 3 AF 116 type transistors
3 AF 117 type translstors
3 OC 171 H.F. type translators
7 2N292f Bil. Epoxy trankistors mlxed colour
GET880 low nolse Germanlum t
NPV $2 \times$ BT. 141 \& $3 \times$ BT. 140
4 MADT'8 $2 \times$ MAT 100 \& $2 \times$ MAT 120
3 MADT'S $2 \times$ MAT $101 \& 1 \times$ MAT
40 OC 44 Germanlum transigtora A.F.
4 AC 127 NPN Germanium tranistor
10 NKT transistors A.F. R.F. codel

8 OADS Germanlum diodes sub-mln. IN69
10A PIV Slllcon rectifiers IB425
Billicon transistors 2×2 N696, 1×2 N 697 ,

$$
1 \times 2 \mathrm{~N} 898
$$

$$
\begin{aligned}
& \text { Silicon owitch tranifistors } 2 \times 708 \text { NPN } \\
& \text { PNP gilicon tranasistors } 2 \times 2 \mathrm{~N} 1131
\end{aligned}
$$

$$
\begin{aligned}
& \text { PNP Sill } \\
& 2 N 1132
\end{aligned}
$$

2N 1132
Slicicon NPN transistore 2 N 2969 , 500 MHz
(code P397).

$$
\begin{aligned}
& \text { (colle Par) } \mathrm{Sill} \text {) }
\end{aligned}
$$

2N2905

Q38 7 NPN transiators 4×2 N3703. $3 \times 2 \mathrm{~N} 3702 \ldots 0.66$

ELECTRONIC SLIDE-RULE

The MK slite Rule, deslgned to slmplify Electronic cal culations features the following Balas:- Conversion of Frequency and Wavelength. Calculation of L, C and fo

ituned Circuits. Reactance and Self-Inductance, Area

\qquad

NEW LOW PRICE TESTED S.C.R.'s

	NEW	N LO						
IV	14	3 A	5A	5A	7A	10 A	16A	03A
	T05	5 T066	тоб6	TOG4	TO48	TO48	T048	T048
50	$0 \cdot 26$	$6 \quad 0.28$	$0 \cdot 39$	0.39	0.52	0.55	0.69	1.27
100	0.28	$8 \quad 0.37$	0.52	0.52	0.55	0.64	0.70	1.54
200	0.39	$9{ }^{0} 0.41$	0.54	0.54	$0 \cdot 63$	0.67	0.83	1.76
400	0.48	80.52	$0 \cdot 62$	0.62	0.74	0.83	1.03	1.83
00	0.59	9 0.83	0.75	0.75	0.85	1.07	1.38	
00	0.70	0 0.77	0.88	0.88	0.99	1.32	1.65	4.40
SIL. RECTS. TESTED								
PIV		00 mA	750 mA	1 K	15A	3 A	10A	30 A
50		0.04	0.08	0.06	0.08	0.16	0.23	0.88
100		0.04	0.07	0.08	0.15	0.18	0.28	0.83
200		0.06	0.10	0.07	0.16	0.22	0.27	1.10
400		0.07	0.15	0.08	0.22	0.30	0.41	1.38
600		0.08	0.18	0.11	0.26	0.38	0.50	2.05
800		0.11	0.19	0.12	0.28	0.41	0.81	2.20
000		0.12	0.28	0.16	0.33	0.51	0.70	2.78
1200		-	$0 \cdot 37$		0.42	0.63	0.83	

POWER TRANS BONANZAI GENERAL PURPOBE GERM. PNP
Coded GP100. BRAND NEW TO-3 CABE. POSSIBLE
REPLACE:-OC25-28-29-30-35-36. NKT 401-403-404

 FREE One 50 p Pal of yoar
own ohoiee
owderse with
ordued 84 or over. BRAND NEW TEXAS
GERM. TRANBISTORS GERM. TRANSISTORS
Coded and Enarantesd

-thelowestrices

74 Series T.T.L. I.C'S
BI-PAK STELL LOWEST IN PRICE FULL SPECIFICATION GUARANTEED. ALL FAMOUS MANUFACTURERS

The AL50 HI-FI AUDIO AMPL 50W pk 25w (RMS)
0.1\% DISTORTIONI HI-FI AUDIO AMPLIFIER

- Frequency Response 16 FHz to $100,000-1 \mathrm{~dB}$.
- Load-3.4, 8 or 18 ohrns. - Supply voltage $10-35$ Volte. - Distortion-better than 0.1% at IkHz .
- Sigral to dolse ratio 80dB.
- Overall size $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 13 \mathrm{~mm}$.

Tailor made to the most stringent specifcations using top
quality componants and incorporating the lntest golid state clroultry conceired to All the need for all your A.F. amplif-FUULLYBUELLIT-TESTED-GUARANTEED. BRITISH MADE. only $£ \mathbf{£} \mathbf{5 8}$ each
 STABILISED POWER
MODULE SPM80
£3. 25
15 watt (\mathbf{r}.mas.) per channel simultaricously. Thls module latest components and circuit techniques incorporating complete shor circuit protection. With the additlon of the Mains Transformer MT80 $63 \mathrm{~mm} \times 10.5 \mathrm{~mm} \times 20 \mathrm{~mm}$. These units enable you to bultd Alid Sratems of the highest quallty- at a hitherto unobtainable price. Also ideal for many other appllcationa includlng: Disco Aysteme, Publlo
Adureas, Intercom Unite, etc. Handbook apailable, 10p. TRANSFORMER BMT80 £2.15 p. \& p. 25p

Lenrys U.K's LaRGEST RANGE OF BRANDED AND GUARANTEED DEVICES. (Quantity Discounts $10 \% 12+$, $15 \% 25+$, 20\% $100+$ +
 (Any one type excepi where quantity discounts show) Min. Order $\mathbf{f 1 . 0 0}$ please, Past $10 p$.

INTEGRATED CIRCUITS

VERY IMPORTANT. ONLY branded IV'S are 10 the FULL manufacturers specifi-
Cations. ALL others are not. Henry's seli only branded intergated Circuits. From TEXAS... 1.T.T. ... FAIRCHILD... SIGNETICS. So why buy alternatives under spec. devices
need we say more!

EASY TO BUILD KITS BY AMTRON

-EVERYTHING SUPPLIED

Radio control receiver TV sween R/C receiver
AM signal generator AM signal generator
FM signal generator 8 watt Amplifier
12 watt amplifer Stereo control unit Mono control unit
Power supply for 115
Power supply Power supply for 120
Power supply for 2×120
AM/FM aerial amplifier Auto packing ligh Electronic voltmeter
$0-72 \mathrm{v} 300 \mathrm{~mA}$ STAB, supply LF generator $10 \mathrm{~Hz}-1 \mathrm{mHz}$
$S q$. Wave generator $20 \mathrm{~Hz}-20 \mathrm{Khz}$
$S W R$ mer Ni-CAD Charger 1-2-12v DC motor speed Gov. Electronic Chaffinch Acoustic switch
Metal Detector (electronics oniy) Dynamic Compressor Guitar preamp. CAP. Discharg Scope Callbrator
 $120-160 \mathrm{mHz} V \mathrm{VF} \mathrm{ti}$ Photo cell switch Photo tImer
Slide prolecto Slide projector auto. feed control
Acoustic Alarm for diver Acoustic Alarm for driv

EXCLUSIVE SPECIAL OFFERS! MW/LW CAR RADIO
${ }^{30}$ aprack car stereo

- Earth) with speakers, In oods and fixings $£ 12.50$ HaNIMAX HC1000
Batiery cassette recorder. £10.50 carr/packg 25p.
HANIMAX HC
Battery/Malns cassette recorder. $\mathbf{£ 1 3 . 5 0}$ carr/packg 30p AKA1 GXC40
Stereo cassette recorder $£ 59.95$ carr/packg 50p. Pair Akal ADM microphones ${ }^{6695}$ carrípackg 20p
5 WAVEBAND PORTABLE TWIN SPEAKER RADIO carrjpackg 30p.
PORTABLE CASSETTE TAPE
Player-for car or carry around. e7. 25 carrjpacki 20 p .
HANIMAX POCKET CALCULATOR WITH KE £ 33 .50.

BRIDGE RECTIFIERS

 FEATURESaporoximate 230M/A QUARTER AMP

TRIACS $\begin{gathered}\text { stind. mounting } \\ \text { and }\end{gathered}$

FREE BOOKLET All types of Transistors Rectifiers-Bridges SCR's - Triacs Integrated Circuits
 F.E.T.-Light Devices OVER 1500 DIFFERENT DEVICES ENTIRELY NEW 1973 EDITION More Devices $\quad \star \quad$ New Prices \star New Ranges \star
This is a must for all Semi-conductor Users. (Ask for booklet No. 36.) SEND FOR YOUR FREE COPY TODAY

BUILD YOURSELF A POCKET CALCULATOR

A complete klt, packaged in polystyrene container and aking about
3 hours to assemble-that's the Sinclait Cambridge pocket calculator from Henry's. Some of the many features
Include Include Interface chlp ${ }^{\text {to }}$ thick-film
resistor pack, printed circult board, resistor pack, printed circult board,
electronlc components pack. Size $41^{\prime \prime}$ 10ng $\times 2^{\prime \prime}$ wide $\times H^{\prime \prime}$ "eep.
Free of charge with the kit for the more advanced technologist is a 32 -page
booklet explaining how to calculate Príce $\mathbf{1 2 4 . 9 5}$ - VAT Also available LIVING SOUND LOW NOISE TOP GUALITY STANDARDS ESPECIALLYFOR HHNRY'E.

$\begin{array}{lllll}\text { C } 90 & £ 1.33 & £ 2.57 & £ 4.20 & £ 10.25 \\ \text { C } 120 & £ 1.62 & £ 3.15 & £ 5.00 & £ 12.25\end{array}$ Quantity and trado enquirles Invited.
LEARN A LANGUAGE-complete with phrase book. German-Fr 4 for any 4.

A SELECTION OF

INTERESTING ITEMS

C3025 Compact Iransistor fester	
E1300. Mono mag. cart. preamp.	5p
E1310 Stereo mad. cart, preamp.	$4.95 p \& 0250$
O1203 Teleamp. with PU coll	3.60 p \& p 20 p
LL1 Door Intercomm. and chime	11.95 p \& p 250
Chattalife (lights as you talk)	13.90 p \& p 20 p
1 Kw Olmmericontroller	3.00 D\& ${ }^{\text {c }} 10 \mathrm{p}$
$\mathrm{g}^{\prime \prime}$ Twin sping unit For	2.75 p \& p 15p
16 " Twin spring unil Reverbs	6.50 ¢ do ${ }^{\text {25 }}$ p
Car Tachometer Electronic	7.50 p<p $15 p$
VHF 205 Marine band conv	3.95 p\&p 15 p
B2005 4 Ch. mic, mixer	$2.95 p \& 口 15 p$
B2004 2 ch . Stereo mixer	4.75 p \& p 15 p

Henryss
EDGWARE ROAD, W2

ELECTRONICS
FOR EVERY
PURPOSE
See facing page
for addresses

SILICON RECTIFIERS
ZENER DIODES
$400 \mathrm{~m} / \mathrm{w}$ BZY
Ba/BZX83. From 3.3 volt33 volts 10 p each
1.3 watts 5% Miniature Tubulars IN4700
series. From 3 .3 volt- 33 volt 180 each. S.
10 watts. Stnd. Mounting. Zs series
6.8 volts- 100 voits $5 \% 40$ each.

1 amp series $\operatorname{IN4001}$ to $\operatorname{IN4007\text {.From}6p\text {ea}}$
1.5 amp PL4001 to PL4007 from 8p ea

3 amp PL7001/1N5400. From 14p ea

Lentye
 U.K's LARGEST RANGE OF ELECTRONIC COMPONENTS AND EQUIPMENT AT BARGAIN PRICES
 Latest Catalogve price 55p post paid. Complete with Discount Vouchers

mavis

ELECTRONIC CROSS-OVER

The Mavis 3 way electronic cross-over is intended for use prim arily with music and speech amplifying systems. It enables the bass range, mid-range and treble range to be separately controlled The cross-over frequency for each range can be specified if required but will be, in the standard unit, as follows:
Bass roll-off 45 c.p.s.
Bass to mid-crossing point 800 c.p.s.
Mid to treble crossing point 5000 c.p.s.
The unit's output is balanced 600 ohm Line for each channel capable of driving six 600 ohm balance sources. The input to the cross-over is also 600 ohm balance.

GENERAL SPECIFICATION

Size
Weight
Input
Output
Power Requirements
Optional extra

PRICE - $£ 500$

WW-130 FOR FURTHER DETAILS
$19^{\prime \prime} \times 12^{\prime \prime}$ deep $\times 7^{\prime \prime}$ high (standard 19^{\prime} racking)
35 lb .
0 dbm 600 ohm balance
+10 dbm 600 ohm balance
$110 / 230$ volts $50 / 60 \mathrm{c}$. p.s. at 80 watts approx.
Sub plate

INTRODUCING THE P.A.S. 30/30

PORTABLE MIXER

This mixer has been designed for mobile use in conjunction with high quality audio systems. It has basically 15 fully equalized input channels. plus 2 high level auxiliary input channels. The mixer can be used in two configurations, either 4 track full range output or 2 track output split into 3 channels each track, each channel controlled by an electronic cross-over. The remaining 2 tracks can be used either as full range tracks or re-mixed into tracks $1 \& 2$ as sub-mixers. The mixer also has 2 fully equalized indeThe mixer also has 2 fuls equaizedidependent monitor outputs and drive faclities for an external echo system. There is also an output for use for cueing each channel through for cueing each channel.

GENERALSPECIFICATION
Size
Weight
Power Consumption
hiput Impedance
Output impecance
Input ievel 15 modules Input level auxitiary 2 inputs Output level
Cue output level
Equalisation range
$38 \times 27^{19016} \times 12$ 80 watts approximately 80 watts approximate
600 nhm halancerl 600 ohm balanced -60 dbm
-0 dbm
+10 dbm all channels
-300 milliwatts
$\pm 14 \mathrm{db}$ treble
+20 db mid
$\pm 14 \mathrm{db}$ bass
$\pm 20 \mathrm{db}$ bass peak

better than - 60 db below full output
better than
0

Overall noise
PRICE - $£ 6,000$ including freight case WW-131 FOR FURTHER DETAILS

P.A.S. 30/30

This 30 Channel Desk a development of the Mavis four Group 15 Channel Mixer to meet the growing demands of modern P.A. and with forexibility in a four channel quadraphonic setup. and for purpes of live recording it is unique in the fact a multi-track tape machine of up to 30 tracks may be directly coupled to the channels and a 4 track Tape Machine to the mains groups. The Mixer can then at a later stage be used for mixing down to a stereo or quacmaster using the main group outputs.
As a compromise between a P.A. Mixer and a conventional Studio Desk. it ditfers trom the latter in the fact that apart from the usual foldback. echo send. cueing facilities etc.. only eight sub-groups and four main groups are employed when the desk is used in total: the line drives for recording are derived direcily rom each channel. and are fully equipped for patching in an ${ }^{\text {be switched before or after the channels "Eection. }}$
be switched before or after the channels
The desk is built in threa sections. Two wings (which may be used independently in stereo for P.A.) are equipped with fitteen channels each and a complete output arrangement inchuding four groups and a stereo cross-over. The imrd section - the routing tor the two wings and all the extra equipment needed for master quad control and mixdown into four or two track. This is dealt with in Section B of the Instruction Manual.
Using an extra stereo cross-over each wing can drive a quadraphonic P.A. system.

GENERALSPECIFICATION

The $30 / 30$ Mixer is divided into tour pans. A Cente Desk contain. ing Routing, Foldback. Monitor. Talkback. Echo \& Cueing Combina, Oscillator and Master Quad and Pan facilities with 4 Master Faders. There also can be built-in remote control tacilities for Doiby's Machine Control and Auro Tape Locators. The Centre Desk has 4 group outputs. 4 machine inputs, two foldback outputs and 4 monitor outputs also group braak in and out Two input wings which are mirror images, and contain 15 input

11a SHARPLESHALL ST., LONDON, N.W. 1

Tel. 01-722 7161/2/3/4 Telex: London 27655
modules, which have input trim and equalisation, also facilites which enable the module to supply a line level drive for a tape machine with or without equalisation also 4 group outputs which may be combined There are facilities for 2 monitor or effects outputs and one echo output. The module has a switch which controls the output to group off or cue.
There is also a switch which enables a break socket on the rear panel for effects drive and inputs to be switched in and out The fourth unit is the power supply which powers the Centre Desk and two wings and provides a 48 volts Phantom Microphone supply to the thirty microphone inputs.
Wing and Centre Desk Size $\quad 101 \times 82 \times 41 \mathrm{~cm}$. approx.

Weight Wina
Cower Consumption
Input Impedance
Output Impedance
Maximum Input Sensitivity

Microphone Input

Machine Input Nominal Output Nominal Outpu: Monitor Outpur Monitor Ourput Echo Outpu:

120 Kg approx
100 Kg. app
500 watts.
500 watts. 1200 ohms. Balanced 600 ohms. Balanced
$-60 \mathrm{dbm}$
0 dbm
+10 dbm PA
Odbm Machin
0 dbm Machin
300 milliwatts
300 milliw
+10 dbm
$+10 \mathrm{dbm}$
+10 dm
+10 dbm

SERVICE TRADING CO

$0-260 \mathrm{v}$. at 2.5 amps (Post 60 p) $£ 10.10$ $0-260 \mathrm{v}$. at 5 amps (Post 75p) $£ 14.60$ $0-260 \mathrm{v}$. at 10 amps . $0-260$ v. at 15 amps . $0-260 \mathrm{y}$. at 20 amps .
 $0-260$ v. at 50 amps...........122.50

PPEN TYPE (Panel Mounting)
$\begin{aligned} & 1 \\ & \mathrm{amp} £ 8 \cdot 75 \text {. Post } 50 \mathrm{p} . 2 \frac{1}{2} \mathrm{amp} £ 10 \cdot 10 . \text { Post } 60 \mathrm{p} .\end{aligned}$
L.T. TRANSFORMERS

All prima

RING TRANSFORMERS
These multi-purpose Auto Transformers, wit large centre aperture, can be used as a Doubl 10 wound current Transtormer, Auto Transforme,
H.T. or L.T. Transtormer, by simply hand wind ing the required number of turns through the c
 give 8 V @ $12 \frac{1}{2} \mathrm{Amp}, 4 \mathrm{~V}$. @ 25 Amp or 2 V . @ 50 Amp ., etc. RT. 100 VA 3.18 turns per volt, $£ 3.00$. Post 35 p .
RT. 1 KVA 1.82 turns per volt, $£ 8.60$. Post 50 p .
RT. 2 KVA 1.5 turns per volt $£ 14.00$. Post 75 p .
RT. 3 KVA 1.5 turns per volt, $£ 19.00$. Post $£ 1$.

VOLTAGE CHANGING TRANSFORMER

M.f. to highest W.D. spec. Auto wound, and tapped $0-130$, $160-200-250$ at least $2 K V A$. Can also be used as $230-240 \mathrm{~V}$. input,
115 V . out for U.S.A. equipment, or reverse to obtain 240 V . from 115 V . The ideal transformer for making up solid state constant voltage unit, by use of taps the following voltages may be
obtained: $30-40-50-70-90$ Volts at 10 amps. Weight 40 lbs., ength 260 mm ., height 190 mm . width 230 mm . In original
maker's wooden case, $£ 8.00$, carr. $£ 1$.

240 V A.C. SOLENOID OPERATED
FLUID VALVE
Will handle liquids or gases up to 7 p.s.i. Forged b.s.p. inlet/outlet. Precision made. British PRICE: 1 1.75. Post 25p. Special
quantity. NEW in original packing.

FOOT SWITCH
Suitable for Motors, Drills, etc., etc.
5 amp. 250 Volt. Price 75 p. Post 15 p .

PARVALUX
TYPE:SDI.S/86896/0J
230/250v. A.C. 50 r.p.m. 7 lb/ins
Continuousiy rated Continuously rated, Incl. bas
Post 30 p. New and unused.

GENERAL ELECTRIC POWER

 GLAS TRIACS10 amp. Glass passivated plastic Triac. Latest device from
U. S . A. Long term reliability. Type SC 146 D 10 amp. 400 PIV (Incluslve of data and application sheet) sultable Diac 18 p .

HONEYWELL' PUSH BUTTON, PANEL MOUNTING MICRO SWITCH Each ASSEMBLY
Each bank comprises of a change-over
rated at 10 amps 240 and rated 1 in. dia. Fixing hole sin. Prices 1-bank 30p, 2-bank 40 p, 3-bank 50 p (Illustrated inc. P. \& P. Special quotes
for quantities.

for quantities

VERY SPECIAL OFFER

MICRO SWITCH
 (Min. order 20).
'HONEYWELL' LEVER
OPERATED MICRO SWITCH 15 amps 250 volt A.C. c/o contacts.
NEW in maker's carton. Price 10 for $\rightarrow-\infty$

 * FOUR EASY TO BUILD KITS USING XENON WHITE* LIGHT FLASH TUBES, SOLID STATE TIMING +
* TRIGGERING CIRCUITS PROVISION FOR EX
TERNAL TRIGGERINGG $230-250 \%$ A C OPERATION * TERGGER TRIGGERING. 230-250v. A.C. OPERATION
* EXAL * EXPERIMENTERS "ECONOMY" KIT * pone 7 ts including Xenon Tube + instructlons $£ 6.30$. * IndUSTRIAL KIT

Ideally suitable for schools, laboratories etc. Roller

- tin printed circuit. Adjustable $1-80$ f.p.s. - tin printed circuit. Adjustable 1-80 f.p.s
hy-Light strobe
Designed tor use in large roons, halls and utilizes a
Light output greater than many (so called 4 Joule)
strobes. Price $£ 1200$. Post 50 .
'SUPER' HY-LIGHT KIT
Approx. 4 times the light output of our well proven
Hy-Lyght strobe.
Variable speed from 1-13 flash per sec.
Reactor control circuit producing an
ATTRACTIVE, ROBUST, FULLY VENTILATED
 7-1NCH POLISHED REFLECTOR. Ideally suited
 RAINBOW STROBE FOUR LIGHT CONTROL
MODULE Strobes in either $1,2,3$, 4 sequence; $2+$ ior all together connection instructions. Price: $£ 1800$. Pos 50 p . Send conn.

COLOUR WHEEL PROJECTOR

 Complete with oil filled colour wheel. 100 watt lamp. tremely efficient opticasystem. $£ 18.50$. Post 50 p. 6 INCH COLOURWHEEL As used forDiscolighting eff
etc. Price $£ 500$. Post 30 p .

R.P.M. MOTOR

A/clock. Spindie. 10 mm . iong. 3 mm . dia. Motor only Suitable for above colour whe

BIG BLACK LIGHT

 Posi 402
BLACK LIGHT FLUORESCENT U.V. TUBES Post 25p. (For use in stan bit-pin fiftings. Watt 1 MI 125 . 12 in .
8 watt $£ 1.60$. Post $15 p$. 9in. 6 watt £ 1.30 . Post 15 p . Complete ballast unit and holders for eilher $g^{\prime \prime}$ or $12^{\prime \prime}$ fube.
£1.70. Fost $25 p$. (9in. $\times 12 \mathrm{in}$. measures approx.).

ELECTRONIC ORGAN KIT

Easy to build, solid state
Two Two tull octaves (less
sharps and fats). Fitted sharps and flats). Fitted
hardwood case, powered
by two penlite 11 $1 \frac{1}{2}$. batteries. Complete set of

50 in 1 ELECTRONIC PROJECT KIT 50 easy to build Projects. No soldering, no special tools required. The Kit includes Speaker, meter, Relay,
Transformer, plus a host of other components and a 56Transformer, plus a host of other components and a 56 -
page instruction leaflet. Some examples of the 50 possible page instruction leaflet. Some examples of the 50 possible
Projects are: Sound level Meter, 2 Transistor Radio, Projects are: Sound level Meter, 2 Transistor Radio,
Amplifier ets. etc. Price $£ 7.75$ post 25 p.

INSULATED TERMINALS Available in black, rad, whice,
vollow, blue and green. New yollow, blue and grean. New METER BARGAIN
BALANCE/LEVEL METERS

100-0-100 Micro Amp. Size $1 \frac{1}{2} \mathrm{In}$

METERS NEWI 2 in. FLUSH ROUND
1, 5. 10, 15, 20 Both types ${ }^{2} 2.00$. Post 15 A .
VOLTMETER 0 -300V. A.C. $£ 2.00$. Post 15

				SIEMENS PLESSEY, etc. miniature relays			
52	4-6	6M	60 p	700	35		
				700	-164	$1 \mathrm{c} / \mathrm{OH}$	
	6-12	$4 \mathrm{c} / 0$	80 p		16-24		
280	8 8-16	2 6	60	700 1250	20-30	6 clo	
410	10-18	$4 \mathrm{c} / \mathrm{O}$	70 p	2500	${ }_{36-45}$		
	12-24	2 clo	60 p	2400	30-48	4 c	
	16-24	4 M 2 B	${ }^{60} \mathrm{p}$	9000			
	16-24		80 p	15k	85-110		
9 VOLT D.C. RELAY							
3 c/0 5 amp contacts. 70 ohm coil. 75p. Post $5 p$.							
3 clo 5 amp contacts. 120 ohm coil. 75 p . Post 5 p . Similar to illustration below.							
230 VOLT A.C. 'DIAMOND H' RELAYS (Unused)							
Three sets clo contacts rated at 5 amps							
24 volt A.C. 3 c/0 55p. Post 5 p.							
230 VOLT A.C. RELAYS One set c/o contacts rated at 7.5 amps . Boxed. Price 50 p . Post 5p.							
MINIATURE RELAYS 9.12 voli D.C. operation. 2 c/o $500 \mathrm{M} . \mathrm{A}$. contacts. Slze only 1 in. $\times \frac{7}{6} \times \frac{1}{3}$ In. Price 60p. Post $5 p$. $30-36 \mathrm{v}$. D.C. operation. 2 c/o $500 \mathrm{M} . \mathrm{A}$. contacts. $3,200 \mathrm{ohm}$ coil. Size only $1 \times \frac{9}{16} \times \frac{9}{96}$ in. 40 p. Post $5 p$.							
MINIATURE LATCHING RELAY Mig. by Clare-Eiliott Lid. (Type F) 2 clo permanent latching in either direction. Coil 1150 ohm. 15-30 v. D.C. New 65p.							
BLOWER UNIT $200-240$ Volt A.C. BLOWER UNIT Precision German built. Dynamically balanced, quet, continuously rated, reversible motor. Consumption 60 mA . Size 120 mm . dia. $\times 60 \mathrm{~mm}$, deep. Price £3.00. Post 30 n .							

VENNER TIME SWITCH TYPE MSQP
 4 BANK 3 C/O PUSH BUTTON Complete with black

enamel embedded
brush assembly, continuously rated.
25 WATT
50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1.5 \mathrm{kl}$ Post 10 pm .

Black Silver Skirted knob calibrated in Nos. I-9. I
in. dia brass bush. Ideal for above Rheostats, 22 p ea
UNISELECTOR SWITCHES - NEW 4 BANK 25 WAY FULL WIPER 25 oh 6 BANK 25 WAY FULL WIPER
coil, 24 V. D.C. $£ 7,90$. Post 30 8 BANK 25 WAY FULL WIPER 24 v. D.C. operation 69.50 . Post 40 p.
BODINE TYPE N.C.I. GEARED MOTOR Type J) 71 r.p.m. torque 10 lb . In.
Reversible $1 / 70$ th h.p. cycle 38 anip. (in Reversible $1 / 80$ th h p 50 cycle 28 amp The above two precision made U.S.A. motors are offered in as new' condition. Input voltage of motor 115 v A.C. Supplied complete with transformer for 2301240 v A. C. input.
Price, elther type $\mathbf{E . 4} \mathbf{8 4}$ Post 50 p . or less transfor Post 40 p .
These motors are ideal for rotating aerlals, drawing curtains
600 WATT DIMMER SWITCH

600 WATT DIMMER SWITCH
Easily fitted. Fuly guaranteed by makers. Wil
control up to 600 watts of all lights except fuop
escent at mains voltage. Complete with simple escent at mains voltage. Com
instructions. $£ 2.75$. Post 25 D .
2000 WATT POWER CONTROL
R.S.T. VALVE MAIL ORDER CO.

This NEW, versatile De Luxe 4Station Transistorised intercom (1 Master and 3 Subs) for desk or wall mounting can solve your communication problems instanliy. Master to Subs and Subs to Master With Selector switch. Ideally suitable for office, shop, home or surgery. Adaptable for Mains. Complete with three 66ft. connecting witoh volume control. P. \& P. 47 p .

\square KELLNER-ELECTRONIC KG—BERLIN PRESENT electronic construction kits
 SOLE DISTRIBUTORS IN THE
 UNITED KINGDOM
 A. MARSHALL \& SON [LONDON] LTD. 42 CRICKLEWOOD BROADWAY, LONDON, NW2 Telephone: 01-452 0161/2/3

AMPLIFIERS

VV1 - A simple pre-amp kit-suitable for crystal receivers, microphones etc. Price £1-93. P \& P 20p.
EV3 -Distortion compensated pre-amp in accordance with R.I.A.A. standards. Operating voltage: 20 volts.
Current consumption approx. 1 mA . Amplification factor: approx. 50 db . Imput impedance: 50 k ohm.
Frequency response: $20 \mathrm{~Hz}-40 \mathrm{kHz}$. Price: £4.00. P \& P 25p.
ES3 - 3 watt amplifier kit. Suitable for record players etc.
Price: £3•70. P \& P 20p.
ES15-15 watt Hi-Fi amplifier kit. Two of these for an excellent stereo set. Complete with tone control network and pre-amp. Operating voltage: 30 V .
Max power output: 20w.
Input sensitivity: 250 mV with pick up. Output impedance: 4 ohm.
Tone control range: Bass $\pm 20 \mathrm{db}$. Treble $\pm 20 \mathrm{db}$
Price: £11.94. P \& P 25p.
ES30-30 watt Hi-Fi power amplifier kit. Can be used with most pre-amp kits. Price: £8.32. P \& P 25p
ES50-50 watt Hi-Fi power amplifier kit. A higher output version of the ES30. Price: £9-53. P \& P 25p.
AV7-An aerial amplifier kit. Connected between your aerial and receiver becomes a noise free signal booster. Operates on LW, MW, SW, VHF and T/V Channels 2-12. Requires $4-12 \mathrm{~V}$. Current consumptin: 2 mA . 2-25db amplification factor-input impedance $50-80$ ohms. Price: £1-83. P \& P 20 p.

LIGHT SHOWS

LO350-A 3 channellight show construction kit. Split the output from your amplifier into 3 coloured light channels. that blend and synchronize with your favourite mood music. Maximum load per channel 500 w . Operating voltage: 6 volts. Price: £13-50. P \& P 20p.

LO1000-A one channel Light show module. Needs only 220 V a.c. and up to a 1500 watts of lighting to translate your favourite record into synchronized light.
Price: £7.00. P \& P 20p.
ST800-Strobe light constuction kit. Transform your room into a discotheque with this 120 w strobe. Very bright and efficient. Operating volts: 220 V a.c. Price: £7-11. P \& P 20p.

DIGITAL CLOCK

HE723-Digital clock construction kit. An extremely accurate electronic digital clock using 15 integrated circuits and one power transistor. The reference frequency is in fact 50 Hz mains frequency which is an extremely accurate reference source. The estimated loss is about two seconds per year. All construction components are included and a comprehensive fault finding chart is included in the instruction booklet. The clock can be reset at any time by a push button to compensate for power cuts etc.
Price: £32.58. P \& P 60p.

RECEIVERS

MUE7 A very sensitive miniature short wave and VHF receiver kit. Frequency range 25 mHz to 150 mHz . Uses standard batteries- $7 \cdot 5-12$ volts. The ideal companion for kit no. UHS 70 or used on its own for short wave and VHF listening. Will drive a louds peaker if used with kits ES2 or ES3. Price: £2.93. P \& P 20p.
WT7 Aircraft communications tuner. Connect this tuner to your medium wave radio and receive aircraft, airports and weather stations etc. Listen to pilot to control room "talk down". Hours of entertainment. Ready assembled and aligned. Price: £14.00. P \& P 40p.

DE6 Crystal set receiver construction kit. Needs only aerial and earth to operate as a superb medium wave receiver. Requires no batteries. Can be used as a noise free tape tuner. Price: £2-28. P \& P 20p.

GAMES

EW18: Electronic Dice Construction kit. Play your games the electronic way. Uses latest integrated circuit Gives random counts from one to six. Battery operated. Price $£ 5 \cdot 91$. P \& P 20p.
EW20: A similar kit to the above EW18. This has a proximity touch button for easier operation. Simulates the rolling of a dice. 6 volt operation current consumption: 150 mA .
Price: £6.64. P \& P 20p.

[^14]
POWER SUPPLIES

NT15: Mains power supply kit. 4 to 30 volts out. max power output 1.5 w . Hum voltage under load: 30 mV . without load. 5 mV ss. internal resistance less than 100 hms . Price £6.75. P \& P 60p.
NT85: Mains power supply kit. 5 to 70 volts out. electronically stabliised with short circuit proof facilities. Output current 1-2 amps. max power output 60W. A valuable asset to any home constructors workshop. Price £11-34. P \& P 80p.

TRANSMITTERS

UHS70. An FM transmitter kit. Frequency range: $65-145 \mathrm{mHz}$. Complete with microphone pre-amp. Used with your FM radio set or kit No. MUE7, as a very sensitive radio microphone. Uses standard batteries. Range about half a mile. Price £2.52 P \& P 20p. A G.P.O. License is required.

W29. Emitter VFO for 2 meter band. 144.146 VFO incorporating FM modulator. 12 volts built and aligned. Price £14.00. P \& P 40p.

ALARMS

SL12. An ear piercing electronic siren kit. needs only a speaker and a 6-12 volt battery. Ideal for use in a home burglar alarm system. Price: £3.50. P \& P 25p
LS30. Light barrier construction kit. Can be used in a burglar alarm system or as a parking light switch etc. An extremely efficient photo-cell system. Price: £6.64. P \& P 20p.

> BG1. A 6 volt light blinker kit. Can be used in warning light systems etc.
> Price $£ 1 \cdot 18$. P \& P 20p.

D800. 800 watt light and drill speed control kit. For light dimming and light duty drill speed control. Price £2.70. P \& P 20p.

[^15]KL150. A tone control kit used with a pre-amp to give a wide variation of tone frequencies, uses a modern integrated clrcuit. Price: £4.07. P \& $P 25$.

 TEKTRONIX 538 OsellioscoDe with T \& CA plug-lns £295.
 TEKTRONIX RM17 OSCILLOSCOPE £130.
 TEKTRONIX TIME MARKERS type 181 £.35.
 ROHDE SCHWARZ SYNTHESIZER Model BN 444462. 30 HZ to 30 MHZ . Size $30 \times$
 ROHDE SCHWARZ VIDEOSCOPE BN 424101/2 6650 .
 ROHDE \& SCHWARZ Analyser BN 48302 $£ 175$.
 AMERICAN SWEEP GENERATOR type 452. Covers from 5 to 100 MHZ . Has built in display and 101 DB Push Button RF Attenuadisplay and 101 DB Push Button RF Attenua- tor tor In one DE stops. plus Callbrated Marker Generator covering 5 to 100 MHZ continuous. Generator covering 5 to 100 MHZ continuous. American Supplied for 240 V 50 HZ operatlon with plugs and leads. Size $131 \times 9 \frac{1}{2} \times 19 \mathrm{in}$. Price
 AMERICAN SWEEP GENERATOR type TRM 315 to 400 MHZ . $£ 300$.
 AMERICAN POWER UNITS STANDARD AMERICAN 24050 HZ Input $28 V 40$ AMP OUTFUT. SIze $20 \times 16 \times 9 i n$. Supplied in original transit case £25.
 AMERICAN AM GENERATOR type 497. 4 to 400 MHZ . Supplied wht 240 V 50 HZ operation E 35 .
 > JUST IN 19" TV MONITORS (Bush) Standard 200/240 AC Input. GERTCH Frequency Meters FM3. ROHDE \& SCHWARZ VHF Watt Meters. 12" Long Perslatance tubes. £12.50 ea. Incl. Carriage \&.A.T. MARCONI TF (Low frequency verslon).

 JUST IN

 JUST IN

 19" TV MONITORS (Bush) Standard 200/240 AC Input.

 19" TV MONITORS (Bush) Standard 200/240 AC Input. 200/240 AC Input. 200/240 AC Input.

 GERTCH Frequency Meters FM3.

 GERTCH Frequency Meters FM3.

 ROHDE \& SCHWARZ VHF Watt Meters.

 ROHDE \& SCHWARZ VHF Watt Meters.

 12" Long Perslstance tubes. $£ 12.50$ ea. Incl. carriage \& V.A. T.

 12" Long Perslstance tubes. $£ 12.50$ ea. Incl. carriage \& V.A. T.

 manconge V.A.T.

 manconge V.A.T.

 MARCONI TF 1028 Fr (Low frequency version).

 MARCONI TF 1028 Fr(Low frequency version).}

SPECIAL 40 MHI SCOPE SOLARTRON SPECIAL ${ }^{40}$ MHZ SCD is-no plug-in Y amps avaliable. TB-100 nanosecs per ctm, to seecs. per cm . in 24 callbrated ranges. 20 nanosecs per cm.
with times 5 expansion. 5^{n} flat faced tube. with times 5 expansion. ${ }^{5}$ flat faced tube.
Trace locstor. $0-2$ microsec. signal dela7. Bulit in calibrator, 1 KHZ squarre wave. 200 mlcro volte to 100 volte in 18 callbrated ranges.
Tube sensitivity 3 VICM MAIN FRAM Y AMP boests thls to better than 200 mV per cm . at
40 MHZ . 240 V . 50 HZ input. Complete with fulf manual Including plua-In clrcults. Come and see one working or Carriage $\boldsymbol{E}_{1.50}$

> Solartill at $\mathbf{E 4 2 . 5 0}$ Solartron CD 711 S .2 Double Beam Osclloscope DC-9 mc/s; $3 \mathrm{mv}^{2} \mathrm{~mm} ;$ trigger delay; crystal cailibrator $4^{4 \prime}$ nat faced tube.
In good working condition. Carr. $£ 1.50$.

> SOLARTRON CD 523 Single Beam Oscilloscope 3 db at 10 MHZ : 1 mV max sensitivilty. DC coupled down to 1 vol. 41n. flat faced
PDA tube. $T B$ from 1 secs. per cm , to o. 0.1 PDA tube. TB from 1 secs. per cm . io 0 o
microsecs. per cm . plus times 5 expanslon $\underset{\boldsymbol{f} 50}{ }$

MARCONI TF $185 \mathrm{M} \cdot 0 / 40 \mathrm{KHZ}$ Sine
Generator $0 / 40$ Wave
Volts output Metered. These must go $£ 7 \cdot 25$.
MARCONI TF BO1A AM GENERATOR 10 to 310 MHZ £ 45 .
MARCONI TF 601B. AM SIGNAL GEN. ERATOR. 12 to 470 MHZ . In good working condition $£ 90$
MARCONI TF 938 (CT44). Absorptlon Wattmeter 10 mW to 6 Watts. Input Impedance 2.5 ohms ${ }^{\text {to }} 20 \mathrm{~K}$ ohms. Frec, response fith
at 20 KHZ . ${ }^{\text {Callibrated in }}$ volts and dbs. 5in. at 20 KHZ , Callbrated
mirror backed meter $\& 9 \cdot 50$. P. \& P. 75 p .
MARCONI VVM TF $1041 £ 22.50$
MARCONI VVM TF 1041B $£ 30$.
MARCONI TF 428C. Measures AC 100 MV to 150 V 20 HZ to 15 MHZ . Measures DC 40 MV to 300 V . Comnlete with probe. Standard 240 V operation $\mathbf{\Sigma 1 2 \cdot 5 0}$ each.

MARCONI TF899. Measures 20MV to 2V AC 50 HZ to 100 MHZ . £ 10 each.
MARCONI VVM TF 1300. Measures AC 50 MV to $100 \mathrm{~V}, 20 \mathrm{HZ}$ to 300 MHZ , DC 100 MV
to 300 V . Ohms 50 to 5 Meg Ohm . In fine condition E 18 each
AVOTRANSISTOR AND OIODETESTER TYPE CT 537, In superb condition, in origina crates with tull instructions, clircuit diagram,
etc. New price $£ 250$ Plus. OUR PRICE $£ 40$ ea. arr. $£ 1 \cdot 25$.

EDDYSTONE 770 U. UHF RECEIVER $\mathbf{\varepsilon 8 0}$. RACAL RA17 RECEIVER from $\mathbf{f 2 3 0}$.
SSE ADAPTOR for Racal RA 17 and RA117 $£ 60$ each.
TELONIC 100 to 250 MHZ Sweep Generator. Up to 4 watts output $£ 120$.
SLOPED CASES size $9 \times 7 \mathrm{in}$. with 8 in slope, $15 \ln$. Iong, In Hammer Grey. B
boxed $\mathbf{f 1}$. Packling and postade 37p.

> BRAND NEW AMERICAN HIGH VOLTAGE CAPACITORS. $0.15 m i d$ 120kV working. $£ 20$ each. Carrlage at cost.

MODERN TELEPHONES type 706. Two tone

Also TOPAZE YELLOW $\mathbf{\varepsilon 4 . 5 0}$ ea. P. \& P. $\mathbf{2 5 p}$.
ideal EXTENSION Telephones with standard GPO type dlal, bell and lead coding. $£ 1.75$ ea
P. \& P. 25 p . STANDARD GPO DIAL TELEPHONE (black) with internal bell, 8 ,
Two for \&1:50. P. \& P. 75p. All telephones complete with bell and dlal POTENTIOMETERS
COLVERN ${ }^{3}$ watt. Brand new, $5 ; 10 ; 25 ;$
500 ohms; $1 ; 2 \cdot 5 ; 10 ; 25 ; 50 \mathrm{k}$ all at 13 pea.
MORGANITE Special Brand new, 2.5; 10 MORGANITE Speclal Brand new.
100; 250; 500 K ; 1 in . sealed, 17p ea. BERCO 24 Watt. Brand new, 5; 10; 50: 250; STANDARD 2 meg. log pots. Current type 15pea

INSTRUMENT 3 in . Colvern $5 \mathrm{ohm} \mathrm{35pea}$. 50 k and 100 K 50 p ea.
BOURNS TRIMPOT POTENTIOMETERS. $10 ; 20 ; 50 ; 100 ; 200 ; 500$ ohmsici; $2 ; 2.5 ; 5 ; 10$;
25 K at 35p ea. ALL' BRAND NEW.
 ALMA precislon resistors 200K; 400K; 497 K ; ALMA precis $-0.1 \% 27 \mathrm{p}$ ea. $3.25 \mathrm{k}, 5.8 \mathrm{k}, 13 \mathrm{k}-$ 998%
0.1% 20p ea.

MULLARD ELECTROLYTICS $2200 \mathrm{MFD} 100 \mathrm{~V} \quad 10 \mathrm{~A}\left(50^{\circ} \mathrm{C}\right)$ BRAND NEW BOXED $70 p$ each
 10 off - 60 p each
 100 off - 45p each

RELAYS

S.T.C. Sealed 2 pole clo 700 ohms (24 V), 15p ea. 2,500 ohm (okay 24V) coil 15p each.
Varley VP4 Plastic covers 4 pole c/o $5 K-$
30p ea. $15 K-33$ p ea.
CARPENTERS polarised Single pole c/o 20 and 65 ohm coil as new 37 p each. 14 ohm
coil 33 p each. 45 ohm coil 33 p each.

TRANSFORMERS. All standard inputs. STEP DOWN ISOLATING trans. Standard Neptune Serles. Mult1 6.3 volts to glve 48 V at 3.5 amps etc. $£ 3.50 \mathrm{Inc} 1$.

Large quantity LT, HT, EHT transformers and chokes.
3 TYPES ALL BRAND NEW HIGH QUALITY
(1) $3 \vee 9 \mathrm{amp}, 6 \vee 8$ amp, $12 \vee 9$ amp. Size $31 \times$ ${ }_{4}^{4} \times 5 \mathrm{p}$. 1 n . £2 each. Packing and postage
(2) As above but 5.4 amp . Slze $31 \times 34 \times 41 \mathrm{in}$.
(3) $3 \mathrm{~V} 9.8 \mathrm{amp}, 9 \mathrm{~V} 1.8 \mathrm{amp}, 27 \mathrm{~V} 1.8 \mathrm{amp}$. Size $3 \times 3 \frac{3}{2} \times 4 \mathrm{in}$. E1.50 each. Packln and postage 37p.

All above 3 types also have $0-17 \mathrm{~V}: \frac{\mathrm{amp}}{}$ and 17-0-17 \ddagger amp. All windings are separate.
S.T.C. PUSH BUTTON ATTENUATORS S.T.C. 0 go in 1 db steps. State cholce $£ 3$ ea
O. \& or P .37 p or $£ 5 \mathrm{a}$ palr P. \& P. 57 p .

MUIRHEAD Attenuator D238B. B5 dbs In 1 du steps. $¢ 3$ each. P. \& P. 37p.
COLVERN TEN TURN POTS, ex eq. 100K at ${ }^{60 p}$ each.
P. \&
. 15 p .
CAPACITOR PACK 50 Brand new compo\& P. 17p.
POTS. 10 different values. Brand new. 50 p .
P. \& P. 17 p .
COMPONENT PACK consisting of 5 pots
 galue at 50 p per pack. P. \& P. 17p.

DELIVERED TO YOUR DOOR 1 cwt . of Elactronic Serap chassla, boards, gte. No
Rubblsh. FOR ONLY \&3. 50 . N. Ireland $\mathbf{2} 2$ extra.
P.C.B. PACK $S \&$ D. Quantlity 2 sq. ft.-no tiny pleces. 50 p plus P. \& P. 20p.
FIBRE GLASS as above $£ 1$ plus P. \& P. 20p.
5 CRYSTALS 70 to 50 kHz , Our cholce, 25 p . P. $\&$ P. 15 FP .

MOTOR min. synchronous, size $17 \times 2 \times x$
BIn. 240 V Operation $3.6 \mathrm{rrm}, 25 \mathrm{p}$ each. P \& P 8in., 240 V Operation $3.6 \mathrm{rpm}, 25 \mathrm{p}$ each. P \& P .
5p.

TRIMMER PACK, 2 Twin $50 / 200$ pt ceramic 2 Twin $10 / 60$ pt ceramic; 2 min strlps with 301100 pf on ceramic base. ALL BRAND
NEW 25 p the LOT P. 10 . NEW 25p the LOT. P. \& P. 10p.
FLAT FACED 4 Twin Beam Tube. Type P. \& P. 37p.
 PANEL mounting lamp holders. Red or green. holders-10V 15 MA Sp sa.

BECKMAN MODEL A. Ten turn po
complete with dial. $100 \mathrm{k} 3 \%$ Tol $0.25 \%-$
only $£ 2 \cdot 13$ ea.

ELECTROSTATIC VOLTMETERS from $0-500$ Volts to $0-10 \mathrm{KV}$. S.A.E. with your requirements.

FIGRE GLASS PRINTED CIRCUIT BOARD. Brand new. SIngle gided up to $21^{\prime \prime}$
wide $\times 15^{\prime \prime} \nmid p$ per sq. In. Larger pleces 1p per sq. in. Double sided. Any size 1p per sq. In. Postage 10p per order
INTEGRATED CIRCUIT test cllp by AP inc. Gold plated clip-on. Brend
boxed. E1.00 ea. P. \& P. 10 p .
DECADE DIAL UP SWITCH-5 DIGIT: Complete with escutheon, Black with white

LIGHT EMITTING OIOOES (Red) from
Hewlett-Packard. Brand New 3ap ea. Information $\mathbf{5 D}$.

FIVE moving coll meters $£ 2$ P. \& P. 37p
VISCONOL EHT CAPACITORS

 $0.25 m \mathrm{mf}$. 7.5
P. \& P. 15 p .
PHOTOCELL equlvalent OCP 71; 13p ea Photo reslstor type Clare 703 (TO5 case). Two for 50p.
MULLARO OCP70 10p sach

20 HZ to 200 KHZ SINE AND SQUARE WAVE GENERATOR

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY £5.50. P. \& P. 25p.
STILL AVAILABLE our 20 MHZ version at $£ \mathbf{9} \mathbf{9 5}$. P. \& P. 25p.

TRANSISTOR INVERTER

12 V to 1.5 KV 2 MA . Size $1 \frac{1}{2} \times 2 \frac{1}{2} \times 4 \mathrm{in}$. Multi tapped secondary and output level control makes possible large range of voltage and current output combinations without modification. Very flexible unit at $\mathbf{£ 2 . 9 5}$ each. P. \& P. 25p.

NEW WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GMZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only £5-75. P. \& P. 25p. Suitable miniature transformer for 240 Volt operation $£ 1 \cdot \mathbf{2 5}$.

Unless stated-please add $\mathbf{£ 1} \mathbf{5 0}$ carriage to all units.
VALUE ADDED TAX not included in prices-please add 10\% Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

Open 9 am to 6.30 pm any day (later by arrangement.)

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

now...

Project 80-..exciing new thinking in modular hifi design

Stereo 80 pre-amplifier/control unit

Praject 80 tuner

Stereo decoder

Project 80 Active Filter Unit (AFU)
the slimmest,most elegant hi-fi modules ever made

Living with hi-fi takes on new meaning now that Project 80 is here. These amazing new modules mark a brilliant technical advance all round; their size and presentation bring exciting new opportunities to install systems in ways hitherto only dreamed about but never before made practical. You can build a Project 80 system virtually anywhere and it is unbelievably simple to install and connect up. Everything that could possibly be wanted in a top quality do-it-yourself domestic hi-fi system will be found in Project $\$ 0$ - compactness, elegantly ultra-modern styling, ease of fixing and operation, new control methods, and above all superb performance. New as well as popular established ideas on installation are featured on page four of this announcement to provide just a few examples of the system's fantastic versatility.

Project 80 new modules

Stereo 80 pre-amplifier and control unit

As with other Project 80 units, the Stereo 80 is mounted by means of two bolts fixed at the rear which pass through holes drilled in the wood or plastic on which modules are to be mounted. All the electronics are contained within the $\frac{3}{4}$ " deep front panel! Connecting leads are taken away similarly out of sight. Each channel in the Stereo 80 has its own independent tone and volume controls operated by sliders. This enables exceptionally good environmental matching to be obtained. Provision is made for magnetic and ceramic pick-ups, radio and tape in and out. A virtual earth input stage forms part of the up-dated circuitry of the Stereo 80 to ensure the finest possible quality from all signal sources. Generous overload margins are allowed on all inputs. Clear instructions with template are supplied

TECHNICAL SPECIFICATIONS
Size $-260 \times 50 \times 20 \mathrm{~mm}$ ($\left.10 \frac{1}{4} \times 2 \times \frac{3}{4} \mathrm{ins}\right)$
Finish - Black, with white markings
Inputs-Mag.P.U. 3 mV RIAA corrected; Ceramic P.U. 300 mV
Radio 300 mV : Tape 30 mV
S/N ratio - 60db
Frequency range -20 Hz to $15 \mathrm{KHz} \pm 1 \mathrm{~dB}: 10 \mathrm{~Hz}$ to $25 \mathrm{KHz} \pm 3 \mathrm{~dB}$
Power requirements -20 to 35 volts
Outputs $-100 \mathrm{mV}+\mathrm{AB}$ monitoring for tape
Controls - Press button for tape, radio and P.U selection Volume, Bass +12 dB to -14 dB at 100 Hz ; Treble +11 dB to -12 dB at 10 KHz

Project 80 FM tuner

smaller, more efficient

A truly remarkable tuner in every way - its unbelievābly compact size its original circuitry - its dependable performance - all this in a boldly designed modern case measuring $85 \times 50 \times 20 \mathrm{~mm}$ ($3 \frac{1}{2} \times 2 \times \frac{3}{3} \mathrm{ins}$). Greater adaptability (and possibly financial convenience) results from the tuner and stereo decoder section being made available separately

TECHNICALSPECIFICATIONS
Size $-85 \times 50 \times 20 \mathrm{~mm}$ (approx. $3 \frac{1}{2} \times 2 \times \frac{3}{3} \mathrm{ins}$)
Tuning range -87 to 108 MHz
Detector-1.C. balanced coincidence, for good A.M rejection
AFC - Switchable, with thermistor control to prevent from drift
One 26 transistor I.C
Twin dual varicap tuning
Distortion -0.3% at 1 KHz for 75 KHz deviation
Ceramic filter in I.F. section
Aerial impedance -75Ω or 240-300 Ω
Sensitivity - 4 microvolts for 30 dB queeting
Power requirements - 12 to 45 volts

Project 80 stereo decoder

[^16]

new constructional techniques

. . .and again Sinclair leads the world

1962 Micro-miniature power amp small enough to stand on a 10p. piece. Slimline pocket receiver smaller than a 20 cigarette pack
1963
1964
1965 Z. 12 power amplifier module: PZ. 3 power supply
1966 Stereo 25 pre-amp/control unit
1967 Micromatic: 0.14 loudspeaker; the first Neoteric
1968 IC. 10. the first ever integrated circuit for constructors' use

Project 80 active filter unit

This efficiently designed unit makes a highly desirable part of any worthwhile system where inputs may be from record, radio or tape. As with Stereo 80, separate controls are applied to each channel thereby making it easier to obtain ideal stereo balance in any kind of indoor environment

TECHNICAL SPECIFICATIONS

Size $-108 \times 50 \times 20 \mathrm{~mm}\left(4 \frac{1}{4} \times 2 \times \frac{3}{4}\right.$ ins $)$
Voltage gain-minus 0.2 dB
Frequency response -36 Hz to 22 KHz , controis minimum
Distortion - at $1 \mathrm{KHz}-0.03 \%$ using 30 V supply
HF cut off (scratch) -22 KHz to $5.5 \mathrm{KHz}, 12 \mathrm{~dB} /$ oct. slope
L.F. cut off (rumble) -28 dB at $20 \mathrm{~Hz}, 9 \mathrm{~dB} / \mathrm{oct}$. slope

Z. 40 \& Z. 60 power amplifiers totally short-circuit proof

Either of these entirely new power amplifiers is intended for use in Projec 80 installations although, of course, they are readily adaptable to an even wider range of applications. Both $Z .40$ and $Z .60$ incorporate built in protection against shortcircuiting and risk of damage arsing from mis-use is greatly reduced. Comprehensive instructions are supplied with each of the modules

Z.40 Technical Specifications

 Size $-55 \times 80 \times 20 \mathrm{~mm}$($2 \frac{1}{8} \times 3 \frac{1}{8} \times \frac{3}{4}$ ins) 9 transistors Input sensitivity -100 mV
Output -15 watts RMS continuous into $8 \Omega(35 \mathrm{~V}) .30$ watts music power into $4 \Omega(30 \mathrm{~V})$
Frequency response - 10 Hz $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Signal to noise ratio -64 dB
Distortion - at 10 watts into 8Ω
less than 0.1\%
Power requirements - $12-35$ volts

Z 60 Technical Specifications
Size $-55 \times 98 \times 20 \mathrm{~mm}$
($2 \frac{1}{8} \times 3 \frac{3}{4} \times \frac{3}{3}$ ins) 12 transistors Input sensitivity-100-250mV Output - 25 watts RMS into $8 \Omega(45 \mathrm{~V}) .50$ watts music power into $4 \Omega(50 \mathrm{~V})$
Distortion - typically 0 03\% Frequency response -10 Hz to more than $200 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Signal to noise ratio - better than 70dB
Built-in protection againsṭ transient overload and short circuit
Load impedance $-4 \Omega \min$: max safe on open circuil

Sinclair power supply units

the worlds most
advanced unit in its class
Stabilised power supply unit. Re entrant current limiting makes dam age from overload or even direct shorting impossible, a principle never before inorporated in a commercially available constructor module. Normal working voltage (adjustable) 45 V .
R.R.P. $£ 7.98+0.79$ p V.A.T

Without mains transformer PZ. 5 30V unstabilised
R.R.P. $£ 4.98+0.49$ p V.A. T

PZ. 6 35V. stabilised
R.R.P. $£ 7.98+0.79$ p V.A.T

LONDON RD., ST. IVES, HUNTINGDONSHIRE PE174 4 HJ Reg. No. 699483 England

1969 Q. 16 -improved version of Q. 14 : Systems 2000 and 3000 Project 60 launched
1970 IC. 12 : Project 605
1971 Project 60 stereo FM tuner: Z.50: PZ. 8
1972 Improvements to Project 60 with Z. 50 MK. 2 and PZ. 8 Mk. 3 The Executive Calculator: Digital multi-meter 0.30 speaker:

1973 Cambridge Calculator:
PROJECT 80 LAUNCHED
. and next?

System	The Units to use	Units cost
Simple battery record player	2.40	$\begin{aligned} & £ 5.45 \\ & +54 \mathrm{p} \vee \mathrm{~A} . \mathrm{T} . \end{aligned}$
Mains powered record player	Z.40, PZ. 5	$\begin{aligned} & £ 10.43 \\ & +£ 1.04 \text { V.A.T. } \end{aligned}$
30W. RMS continuous sine wave stereo amp	$\begin{aligned} & 2 \times Z .40 \mathrm{~s}, \text { Stereo } \\ & 80 ; P Z .6 \end{aligned}$	$\begin{aligned} & £ 30.83 \\ & +£ 3.88 \text { V.A.T. } \end{aligned}$
50W (8Ω) RMS continuous sine wave de luxe stereo amp	$\begin{aligned} & 2 \times Z .60 \text { s, Stereo } \\ & 80 ; P Z .8 \end{aligned}$	$\begin{aligned} & £ 33.83 \\ & +£ 3.38 \vee \text {.A.T. } \end{aligned}$
Indoor P.A.	Z.60, PZ.8	$\begin{aligned} & £ 14.93 \\ & +£ 1.49 \text { V.AT. } \end{aligned}$
Car Radio	$\begin{aligned} & \text { F.M. tuner, } \\ & \text { Z.40 } \end{aligned}$	$\begin{aligned} & \mathrm{£} 16.40 \\ & +£ 1.64 \mathrm{~V} . \mathrm{A} . \mathrm{T} . \end{aligned}$

From Sinclair
 the worlds most advanced hi-fi modules

Sinclair Project 80 the ultramomedern non-otrusus en hif

 a shelf could be sufficient

Two Sinclair 0.16 loudspeakers
suitably positioned together
with Project 80 could be
mounted on to a false wall.

Project 80 could be easily
mounted onto a loudspeaker cabinet

A novel application would be to build around the base of a lampshade

When you have seen for yourself how fantastically slim and cleverly designed these modules are. further ways will suggest themselves in which they can become a pleasing part of your particular demestic environment.

Guarantee

If, within 3 months of purchasing any product direct from us, you are dissatisfied with it. your money will be refunded on production of receipt of payment. Many Sinclair appointed Stockists also offer this guarantee.

Should any defect arise in normal use. we will service it without charge. For damage arising from ris-use a small charge (typically $£ 1.00$) will be made.

'SLO-SYN" 3-HEAD SYNCHRONOUS STEPPING MOTOR

Type SS15. These fine motors are easily reversed, starting and stopping in less than 5° without electrical or $300 z /$ in with $35 v$ at 0.35 amps through winding. For $A C$. (synchronous) aperation at 120 v , 50 Hz . Speed 60 rpm a $60 \mathrm{~Hz}, 72 \mathrm{rpm}$. STEPPING. Holding torque at 60 steps per second- $100 \mathrm{oz} / \mathrm{lin}$. Can be wired to give 100 or 200 step

FAN BLOWER
Precision-built in Germany
Dynamically balanced mains unit (2001240) continuous rated reversible 60 MA on
run. Size: 5 n " $^{\prime \prime}$ dia. deep. Back plate is tapped

SMITHS RINGER-TIMER Reliable 15 minute times, spring wound divislons, approximately $\frac{y^{\prime \prime}}{2 \prime}$ between divisions. Panel mounting with chrome

GEARED MOTORS "Parvalux" Reversible 100
rom geared motor. Type SD14,
2301250 v . AC. 22 lb/in. ${ }^{2}=1$
 Also limited number only as
above, BRAND NEW. $£ 12.50$
OPEN FRAME shaded pol GEARED MOTORS
Dural gear case)
40 AC. 28 rpm . NEW
verall size: $3 \frac{1}{2}$, approx
 imilar to above, 19 rpm . $£ 2.70$. P. \& P. P. 30 p . \& P. 30p 10 rpm with pressed stee gear case (sim
out slightly smaller), $£ 2.70$. P. \& P. 30 D .

SPIT MOTOR

 AMPEX 7.5v. DC MOTOR This is an ultra precision tape
motor designed for use in the mMPEX Model AG20 portable recorder. Toraue $450 \mathrm{GM} / \mathrm{CM}$.

Stall load at 500 ma . Draws | 60 ma on run. $600 \mathrm{mpm} \pm$ speed |
| :--- |
| 102 | adjustment. Internal AF/RF

suppression.
$y^{\prime \prime}$ dia. AR
 PRICE \&3. P, \& P. 25 p . Large quantities available
(special quotations.
75 p each. FREE P. P .
"CROUZET" MOTORS Type 965 3R.P.M.

REVERSIBLE Parvalux type SD19. 240v. AC
30rpm. 40 lbstin . Variable angle drive shaft. ABSO 30rpm. ${ }^{40}$ lbsfin. Variable angle drive shatt. ABSO
LUTELY AS NEW. $£ 6.30$. P. \& P. 50 p .
 "DAVENSET" MAINS SOLENOID
 $\frac{\text { P. \&P. 20p. }}{\text { MAINS SOLENOID by MAGNETIC }}$ DEVICES LTD.
A beautifully constructed solenoid at half norma

 original maker's boxes. £1. P. \& P. 200. Large number available, special price for quantity.

MAINS SOLENOID

hinged "elbow"'.
Bracket incorporates 2 fixing screws. Length of arm Bracket incorporates 2 fixing screws. Length of arm
$21^{\prime \prime}$ 240V AC. Pull at coil is approximately 11b. $£ 1$
FREE P. \& P. Special quotes for quantities.

"DECCO"
SOLENOID
 E2. P. \& P. 20 D .
7 DIGIT COUNTER b "Counting Instruments Ltd." Non re-set, robust construction
115 V AC. $£ 1-20$. P. \& P. 10 p .

3 BANK MAINS COUNTER

 by "E.N.M. NON RE-SET LTD." BRAND NEW supply.
"RECIRK IT"' Mains 10amp cut-out by "Neimman Electric"' Germany

PLUG-IN RELAYS by SCHRACK

(PERSPEX ENCLOSED)

OCTAL (2 c/o) 6 amp contacts at following voltages C. 60 A.C.' 110 D
PRICE EACH 90 p.

12 A.C. 48 D.C., 48 A.C., 60 A.C. 6 A 60 D. C. 1110 D. C., 115 A.C., 240 A.C
PRICE EACH \&1.
RA and RN Series (4 c/a) $\mathbf{3}^{3} \mathrm{amp}$ Gold Plated Contacts. Handsome
 48 D C. 60 A.C. ${ }^{1}$
PRICE EACH BOp
Base sockets for all above types 10 p .
Please add 10p towards P2P on all orders
From JAPAN. TAKAMISAWA Perspex enclosed relays. type MQ 308.24 V. DC.
socket. 80 P. P. \& P. 10 p

TANGENTIAL HEATER

pole Mycalex by shaded pole Mycalex motor, powwith aluminium impelle
 voltage PLUS matching heater unit with spiral
element. May be switched
for 500 or 1,000 . $£ 1.80$.
P.

DOUGLAS TRANSFORMERS
SILVANIA MAGNETIC SWITCH
Now complete with reference magnet! A magnetically activated switch, vacuunis sealed in a glass

 ever non-mechanical switching is required. 10 for $£ 1 \cdot 80$;
$P \& P 15 p .50$ tor $£ 8 ; 100$ for $£ 15$. FREE P. \& P. over 10 .

NORPLEX

The famous American fibre-glass copper-clad laminate. Finest quality with woven glass base of Epoxy-resin. Excellent Mech. and Elec.
conductive properties. Heat resistant, ideal for P. C .' etc. THIS IS A
SPECIA SPECIAL PURCHASE AND ONLY AVAILABLE WHILE STOCKS
LAST। Sizes: $12^{\prime \prime} \times 12^{\prime \prime} ; 24^{\prime \prime} \times 12^{\prime \prime} ; 24^{4} \times 24^{\prime \prime} ;$ FULL SHEET $43^{\prime \prime} \times 37^{\prime \prime}$ (11 sa. it.). Single-slded Copper with thickness of $1 / 32^{\prime \prime}, 3 / 64^{\prime \prime}, 3 / 32$
Also double-sided $1 / 32^{\prime \prime}, 1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}$. $£ 1$ per $s q$. ft. Cut sizes $(1-10$ sq. $\mathrm{f1}$.

'GOYEN' PRESSURESWITCH Incorporating differential adjustment between 2 " and
$12^{\prime \prime}$ water gauge (a max. of approx. it p.s.i.). A single pole change-over swlich rated 15 amps . 250 v . is

PYE MICROSWITCH
OTEHALL Type.
This swltch has a $1 \frac{11^{\prime \prime}}{6} \times 15 / 32^{\prime \prime}$ dia. column plus $\frac{1^{\prime \prime}}{2}$ plunger15p. Large stocks available.

PLEASE ADD 10\% FOR V.A.T. ON ALL

PRICES SHOWN INCLUDING P \& P
Postal or carriage charges are for G.E. only. Orders welcomed from
established companies, educational depts., etc. Alf orders under $£ 2.50$ C.W.O.. please. Company orders under $£ 2.50$, surcharge 50 p unless

RELAYS P.O.TYPE $\overline{\text { PAND }} \mathbf{3 0 0 0}$
BUILT TO YOUR SPECIFICATION. HIGHEST QUALITY AT COMPETL LIVERY SERVICE. QUOTATIONS BY RETURN HOME AND OVERSEAS.
Post Office Type Uniselectors In stock 25 way double ended wipers 8 level all no.
11 level 1 bridging 10 non-bridging.
25 WAY MINIATURE DIGITAL DISPLAY an assembly of 5 units each indicating of to 9 with decimal points, standard $\frac{5}{3}$ in. characters, 28 volt
midget lamps, sequence can be changed for midget lamps, sequence can be changed for
letters if reauired. $£ 19.25$ ea. separate units letters if required. $£ 19 \cdot 25$ ea. separate units
available as above $£ 3.85$ ea. details available. MINIATURE
BUZZERS 12 volts, with
tone adjuster 25p
each as illus. 15p each for lots of 50 ER SERIES ONE. 1,000 volts range $0 / 100$ m/ohms-infin-
ity, with resistance box O/9999 ohms £75 each. Avo power factor wattage units fitted PF sockets
$£ 7.50$ each. LONGLEY RD., CROYDONON (CROYDON) LTD LONGL
 SELENIUM CHARGING BRIDGE 24 volts 8 amps, lots of ten.
MOTORS.
sintered bionze bearings, 50 p ea, 25 p ea lots
ALL PRICES INCLUDE CARRRIGE AN
N (CROYDON) LTD. LONGLEY HOUSE

Thermistors

F. J. Hyde, DSc., Msc, BSc.

"Provides a very comprehensive account of the properties and applications of both negative and positive temperature coefficient types of thermistors. An extremely useful reference work on this essential circuit component - thoroughly recommended as essential reading for all control engineers.'
Instrument and Control Engineering.
O 592028070208 pages illustrated $1971 £ 3.20$
Avallable from leading booksellers or
The Butterworth Group
88 Kingsway London WC2B 6AB
Showrooms and Trade Counter 4-5 Bell Yard London WC2

(1) /20)

9 \& 10 CHAPEL ST., LONDON, N.W.I
$01-7237851$
01-262 5125

```
T.E.C. HEAVY DUTY L.T. TRANSFORMERS Pr. \(220-240 \mathrm{v}\). Sec. \(12 \cdot 6 \mathrm{v}\). C.T.E. 55 amps and 280 v
Open frame type table top connections \(£ 25\) carr. \(£ 2\).
```


> STEP DOWN 240/110v AUTO TRANSFORMERS 3000 watts. Bulty into steel case with two American 2 pin grounded socket outlets. Carry hande. 6 fi. mains iead. £29.50, carr. $£ 2$. Without case and fitings $£ 2200$ carr. $£ 1.50$.

SPECIAL OFFER OF MULTI-TAPPED L.T.
TRANSFORMERSVERY CONSERVATIVELYRATED Gresham Pri. 200-220-240v. Sec. 29.5 v .26 az , twice. 20 v . 5 a , twice 15 v .0 .1 a . four times. ' C' Core. Table top connections
$£ 6.95 \mathrm{carr}$. 75 p .
Pri. $200-20-240 \mathrm{v}$. Sec. 16.3 v . 1a. twice. 10v. 1 a . twice, 22.5

 Pri. $220-240 \mathrm{v}$. Sec. 18 v . 3 a .6 .3 v . 3 a . 10 v . 1a. open frame type
£ 3.25 carr. 40 p . $\mathrm{Pri} .220-240 \mathrm{v}$. Sec. tapped $5 \mathrm{v} .-6.3 \mathrm{v}$. 8 a . and 235 v . 0.5 a . 'C' Core type $£ 3.75 \mathrm{carr}$. 40 p .

ISOLATION TRANSFORMERS Pri. 230v. Sec. 230v. Very conservatively rated at 3.5 amps In steal case. Slze $13 \times 10 \times 8$ ins. $£ 15.00$ carr. $£ 2.00$
WODEN Pri, 240 v . Sec. 110 v . Centre tapped WODEN Pri. 240 v . Sec. 110 v . Centre tapped. 750 watt 110v. 50 watts. Table top connectlons. $£ 1 \cdot 75$ carr. 35 p .

TRANSFORMERS FOR LINSLEY HOOD AMPLIFIERS PrI. $220-240 \mathrm{v}$, with screen tap. Sec. $30-25 \cdot 0-25-30 \mathrm{v}, 2$ amps.
$\mathrm{E} 4 \cdot 30$ carr. 40 p . Heavy duty type $36-25-0-25-36 \mathrm{v}, 5 \mathrm{amp} . ~$
$£ 9 \cdot 40$ £. $4 \cdot 30$ carr.
carr, 50 p .

AMOS 'C' L.T. TRANSFORMERS Primaries $220-2$
$£ 3.50$ carr. 40 D
wod
WODEN Primaries $220-240 \mathrm{v}$. Sec. 10v. 2a. fully shrouded $£ 1 \cdot 25$ pp. 25 p . Sec. Tapped 6-12v. 2 a . fility shroud
2a. Twice open frame type. $\mathbf{1} 175$ p. p. 30 p .

UNIMAX SEQUENTIAL MICRO SWITCHES SWITCHES after 1st p pa Postage 5 p .

A.C. $220-240 \mathrm{v}$. SHADED POLE MOTORS
1500 r.p.m. Double spindle, Length 1500 r.p.m. Double spindle. Length fing. and in. Overall size
$3 \times 3 \frac{1}{2} \times 2$ ins. Similar to turbo fan heater motors. 50 p . P.P. 15 p . MINIATURE 24 v . D.C. GEARED MOTORS
500 r.p.m., Size $2 \times 1 / 2 \mathrm{in}$. Length of splndie 1 in ., dia. $i \mathrm{in}$.
 NEWMARK SYNCHRONOUS MOTORS $20-240 v .50 \mathrm{c}$
50 C . P.P. 10 p . revs. per hour. Size $2 \frac{1}{2} \times 2 \times 2 \mathrm{ins}$. 50 p. P.P. 10 p .
 G.P.O. RELAYS

3000 type, $100 \Omega 125 \mathrm{amp}$. make contact $60 \mathrm{p} .2000+130 \Omega 1$ normal $\mathrm{CO} 40 \mathrm{p} .7503 \mathrm{M}, 1 \mathrm{~B}, 1 \mathrm{CO}$ normal contacts 40 p . P. P on all relays
10 p . type. 600Ω 12v. D.C. 2 CO contacts 30p. Postage 5 p .

STC RELAYS TYPE $250 X C E$
 TYPE $250 \mathrm{XCE}, 2500$ ohm 2 H.D. CO contacts set to pul| in at $22 v$ whth base and cover. 60 . set to pu p.p. 5 .

G.P.O. 20-WAY JACK STRIPS Type 320 BN. Ex-equlpment. Perfect
condition. 75 p. pp 10 . Rhavididipution S.T.C. SELENIUM FW BRIDGE RECTIFIERS
Max. A.C. Input 36y. D.C. output 24 v . $5 \mathrm{a} . \mathrm{\varepsilon}_{1} .50$ p.p. 25 p .

Type BR 115 BIAMOND H RELAYS
Type BR 115 BIT-9C 4 CO Contacts. 150 ohms. 26 v ., 250 V . 15 a
Enclosed in metal case. Size $14 \times 1 \mathrm{in}$. a. 75 p . incl. post.

Amos ' C ' Core. $140 \mathrm{M} / \mathrm{H} .5 \mathrm{~T}$ THING CHOKES

 Open frame type $20 \mathrm{M} / \mathrm{H} .1 \mathrm{a}$. £1 00 carr. 25p.

REDCLIFFE Potted Type. $100 \mathrm{M} / \mathrm{H} 22$. ع 2.50 carr. 45 p . $130 \mathrm{M} / \mathrm{H}$
 H.T. SMOOTHING CHOKES
Parmeko potted types. $5 \mathrm{~h}, 50 \mathrm{~m} / \mathrm{a}$. $£ 3.00$ carr. 50 p . $10 \mathrm{~h} .300 \mathrm{~m} / \mathrm{a}$. £2.00 carr. 30 p . $10 \mathrm{~h} .180 \mathrm{~m} / \mathrm{a}$. $£ 1.50$ carr. 3 3 p. 15 h . 180 mla . $£ 2.00$ $120 \mathrm{~m} / \mathrm{a} .75 \mathrm{p}$ carr. $25 \mathrm{p}, 15 \mathrm{~h}$. $75 \mathrm{~m} / \mathrm{a} .10 \mathrm{~h} .75 \mathrm{~m} / \mathrm{a}$. $50 \mathrm{~h} .25 \mathrm{~m} / \mathrm{a}$. 50 p
carr. 20 p . carr. 20p.

H.T. TRANSFORMERS BY FAMOUS

PARMEKO PANUFACTURERS

 Sec. 1875 v . 60 mA . and 500 v . 31 mA . $£ 4.00$ carr. 50 p . Pri.
$110-220-240 \mathrm{v}$. Sec. $300-250-0-250-300 \mathrm{v}$. 80 mA . $£ 1 \cdot 75 \mathrm{carr}$. 25 p . WODEN. Pri. 230v. Sec. 890-710-0-710-890v. 120mA. Open rame type table top connectlons, troplcalised. $£ 3.00 \mathrm{carr}$.
50 p . Pri. $220-240 \mathrm{v} .5 \mathrm{Sec} .350 \mathrm{v} .150 \mathrm{~mA}$. 6.3 v .8 a .6 .3 v .3 a . C core $£ 2.50$ carr. 40 p . Pri: $220-240 \mathrm{v}$. Sec. $240-0-240 \mathrm{v}$. 90 mA .
$15 \mathrm{v} .12 .12 \cdot 6 \mathrm{v} .3 \mathrm{a}$. $£ 2.25 \mathrm{carr} .40 \mathrm{p}$. Prl. $220-240 \mathrm{v}$. Sec. tapped
$150-165 \mathrm{v}$ carr. 50 p . Pri. $220-240 \mathrm{v}$. Sec. 63 v . 1.6 a . and 24 v . 0.8 a . and
and cav. Ia. open frame type table top connections $£ .3 .00$ carr.
50 p .

GARDNERS. Pri. 220-240v. Sec. 350-290-0-290-350v.
 $£ 2.00$ carr. 50 .

GRESHAM. Pri. 220.240 v . Sec. $7100-0.710 \mathrm{v} .120 \mathrm{~mA}$. open rame type table top connections £2.75 carr. 50p. Pri. $110-1$
$230-250 \mathrm{v}$. Sec. 230 v . 200 mA . 6.3 v . 7 a . potted type $£ 3.50$ carr. 50 p.

BEDFORD ELECTRONICS

7, PRIORY STREET, BEDFORD
TEL. 51961

Colvern TEN TURN POTS. 500R. 5% Lin. 0.1\%. $\mathbf{E l} 25$ each.
MULTICORE CABLE, minlature, 35 cores of PVC 70076 screened
sheathed. $£ 2.50$ for 10 yds.
PVC equipment wires from 7/0076@ 90 50p/100
yds. to $70 j 0076$ @ \&1.50/100 yds. avallable. Colour range restricted.
Pressure transducers KDG, Type TD216.
$0-1200$ P.S.I. Complete with calibrâtion chart. $£ 5$ each.
CARPENTERS polarised relay SPCO $\times 1000 \mathrm{R}$, complete with base and retainer as new. 45p each.
POT CORES LA3. 40p each.
METERS, $3 \frac{1}{2} \mathrm{In}$. diameter, sealed,
UA/1300R,
$\mathbf{E} 2.25$
each. 1
each.
BALL RACES Type RCL ${ }^{\text {RF, Flanged }}$
lin. bore $5 / 16 \mathrm{in}$. da. Sealed Dacks, 25p
aach.
PANEL FUSE HOLDERS with indicator Pamp. The cap of these 1 tin. fuse holders is provided with an amber lens and min. flanged lampholder to allow a fuse failure
neon to be fitted, bulb not included. 20p
each.

CLEARANCE SALES of surplus equipment and components are held on NEXT SALE 3rd NOVEMBER 10am to 4pm

WW-135 FOR FURTHER DETAILS

MIGHTY MIDGET

y finest possible radio, as descrined in Practical GOOD COMPANION I.C. VERSION

We can now offer these again in 1.0
version Mersilan using Merranti 172, Cabinet

I CHIP RADIO

Ferranti's latest device ZN414-gives results betcor than circuita $£ 1$ • 38 each, 10 for $£ 11 \cdot 11$.
HI-Q TUNER COMPONENTS
Fit No. 1 Plessey Miriaturc Tuning Condenser with built LW ewith and 3in Ferrit slab and litz wound
Kit No. $2 \begin{aligned} & \text { Ar spaced tuning conlenser 6in. ferrit rod litz } \\ & \text { mound }\end{aligned}$ Fwith 94p.
Kit'No. $3 \begin{aligned} & \text { Air spaced TC with slow motion drive sin. } \\ & \text { ferrit rod with litz wound } \\ & \text { LWi and MW coils }\end{aligned}$ ferrit rod with litz wound LW and MW coils
and wave change switch $£ 1.10$. Perneability tuner with fast and slow notion
drive and LW loading coits and wave chavre Bwitch 50

12 VOLT Iİ AMP
POWER PAACK
This compriges double-wound $230 /$
240 V mains transformer with full 240 V mains transormer with fuld
wavectifier $2 \mathrm{ndl} 2000 \mathrm{~m} / \mathrm{f} / \mathrm{d}$
smoothing. Price $£ 2.20$, plus 20 p post \& packing.
Heavy Duty minas Power Pack, Output voltage adjustable irom $15-10 \mathrm{~V}$ in steps maximum load 250 W -that is
from 6 amp at 40 Y to 15 amp at 15 V . This really is a high rom 6 amp at 40 to 15 amp at ith of workahop uses power heavy duty unit with dozens quick simply inter-
Output voltage alilustment is very
change push on lead. Silicon rectifiers and smoothing ty change puah on leads. Silicon rectifi
$3,000 \mathrm{mF}$. Price $26-33$ plus 65 p post. MICRO SWITCH
MICRO SWITCH
5 amp changeover contacts, 11p each.
10 for 99 p .
MAINS OPERATED SOLENOIDS

Model 772-small but powerful

 $3 \times 24 \times 2$ in. $£ 1.98$ plus 20 p .
post and insurance. MAINS TRANSISTOR POWER PACK Designed to operate transistor sets and amplifiers. Adjustng). Takes the place of any of the following batteries:
PP1, PP3, PPP, PP6, PP7, PP9, and others. Kit comprises: mains transiormer rectifier, smoothing and hat
resistor condensers and instructions. Real bnip at only

PRESSURE SWITCH
pperated hy a diaphragm which in turn is operated by air presaure through a small

$$
\begin{aligned}
& \text { 18 opal tube. The operating presire is ad } \\
& \text { mettal } \\
& \text { justable but is set to operate in approx. }
\end{aligned}
$$

astable but is set to operate in approx. inn. of water. These simply by blowing into the inlet tube. Original use was ior washing machines to turn off water when tub has reached correct
21.38.
EDUCATIONAL KITS-all with
pictorial instructions
 THIS Balance kit le educational kits. Japanese made these
are excellent value for
money. We do not
expect to be alle to
repeat this offer ontee
stocks are pold. Brief tockg are aold. Brie
deseription of each kit
is given helow and with
3 kits or more we give
price for all 7 kits $£ 3-00$ with free balance kit
even parts, including candle one concav ravs bend as they nass thrnugh different lenpes.
KA3 Water Pump Kit. Thirteen parts. Top of purp is Small parts are brightly colourcit to be seen easily while working. Three typer of pump ray be nade: Lift pump Force Pump athd Forve Pump with regervoir and nozzle. KA4 Buzzer Kit. Eleven parts. Tran lpareit covery allow
the operation of huzzer to he seen. $1 \| u s t r a t e s ~ a n d ~ t e a c h e ~$ how electromagnetisen with an automatic suitch resulls in KA7 Electro-Magnet Kit. Fiftcen tarts, includes compass Ka7 Electro-Magnet Kit. Fiftcen tairts, includes compass.
Maken two electro-magnets, one with oue layer of wire qnd
one witli several lavers of wire. Picks up tachs, nails and any small parts showing how marnetism works. cluding bench and light bulb. Conduct intcresting an educational projects to learn the application of "OHMS different types and lengths of wire.
KAg Bell Kit. Eight parta, including bell and yuah button KA9 Bell Kit. Eight parta, including bell and puah button hammer la triggered to make the bell ring.
KA10 Morse Key buzzer and bell kit. 25 part kit, easy to
SMOKE CAN KILL, GAS CAN KILL
FIRE CAN KILL.

Gas and smoke Detector/Sensor--ref. GDI-recently referred
to as the electronic nome-- 22 each. circuit of smoke detector
alarn ineluded.

AERIALELECTRIC CAR AERIAL
with darhboard control switch fully able. Suitable for 12 y yopitive or negative earth. Supplied complet
with fitting instructions and read

AMPLIFIER IN CASE WITH

 SPEAKERMarketed by British Relay under the name Luxistor. This is in a very neat looking cabininet and is ideal around the home
 fier may be powered by an internal 9 v hattery or an external fin may be powered hy an intermal 9y hattery or an external
110 source. Speaker is an $R-A$ eliptical $6^{\circ} \times 3 \neq 10,000$ gause. The amplifier proper is a Newmarket model ref.
P.C. 4. Price $£ 385$ each, 10 for $: 31^{\prime} \overline{0} 0$. Port and insurance
SWITCH TRIGGER MATS
So thin is undetectable under carpet but For burgular alarmes, shop, doors, etc. For
$\stackrel{4}{4} 7^{*} \times 18^{\prime \prime}$
$13^{\prime \prime} \times 51$
$\times 10^{\prime \prime}$
21.10

RECORD PLAYBACK HEADS
(TRUVOX)
2 traek record playback heads 50 p . each
Grase heads are also available separately-2 track 33p 4 track 55 p.
New metal
New metal monuting sinields 39 peach
track-heads already fyed on heapy mounting plate with

特 THERMOSTAT

Continuoasly variable $30^{\circ}-90^{\circ} \mathrm{C}$. Has sensor bult
connected by $33 \mathrm{~m}_{1}$. of flexlble tubing On operation a 16 amp 250 volt switch is opened and in addition a
Yunger moves through approx. in.
Nhis coulki be used to open valve on

HIGH ACCURACY THERMOSTAT Uses differential comparator 1.C with thermister as probe egree. Coluplete kit mith power pack $£ 6.25$
6 DIGIT COUNTER Operated by 240 v . A.C. mains Made by Veeder-Root of America. Metal encised for suriac mounting. Size
10 for $\mathbf{\&} 90$.

6 DIGIT COUNTER
Resettable. 440 ohm coil up to 25 im . pulses per second. Ex-equipmerit
guaranteed periect. $£ 2.20$ each.

DRY FILM LUBRICANT Dry Film Lubricunt. In aerosol can for easy
application and for putting lubricant into places where the normal oil can cannot reach a large quantity of these from the Lituidato of the original list price. 88 p per (88 o.s.) can
or 12 canis for $\mathbf{~} 3$ post paid. The lubricant in
ICr fluon L169. SPRING COIL LEADS As fitted to telephones, 4 core 17 p each
10 for $£ 1-53$. 3 core 11 p each. 10 for $£ 1$

LARGE PANEL MOUNTIN

MOVING COIL METERS 200 micro amp. Made by gangmo Weaton. Regular price probably 28. Our price
i3. 85 . A.C. AMMETER . 5 amps. flush mounting-moving iron. Ex equipment hit SUB-MINIATURE MOVING COIL MICROPHONE
as used in behind the ear deaf aids
 probsbly ex or more. Our price di. Note these are ex A.C. CONDENSERS
lin addition to the normal uses as motor starters, power factor correction etc. These make very good voltage droppers
for working low volutige cppliances from manins. The voltage
working quoted 18 AC and condengers working quoten 18 AC and condensers are
for workig on 1 C at 2 at times the quoted AC voltage.
 $\begin{array}{lll}3.4 \mathrm{mid} & 440 \mathrm{v} 44 \mathrm{p} & 8 \mathrm{mfd} 250 \mathrm{v} \\ 3.5 \mathrm{mfd} & 550 \mathrm{p} & 33 \mathrm{p}\end{array}$ 2000W HEATING ELEMENT and bent to ary shape. Ideal to replace the element in an
old convector, or to wrap around a pipe or cylinder, make an FLUORESCENT LIGHTING KITS
for operating straight or circular tulees for shop windows, pelmet lighting etc. hach ait comprises frst qual to hold the tube, and circuit diagram.
For minature tubes, $4,6,8$ w. our Ref. FL AUI $£ 1$. 38 . For
miniature tubes, 21in., 13 w . our Rei. FL AU2 $£ 1$. 49 . For miniature tuber, 21 in ., 13 w . our Rei. FL AU2 $£ 1.49$. For
normal tubes, $30-40 \mathrm{w}$. our Ref. FL AU4. £1.65. For normal

Four types available, sill anap in fixing throughi oblong hole rocker except $\$ 3$, which is amber.
 RS 82 , puah
RS 84 , change over contacts, Iuminous rocker, 28 D D.
RS 84 ,
J. BULL (ELECTRICAL) LTD.
(Dept. W.w.) 7, Park Street, Croydon, CR0 1YD Callers to $102 / 3$. Tamworth Road. Croydon

$\sin \sin 3$ 8-PAGE DICTIONARY of AUDIO TERMS

This invaluable 8-page supplement takes you through the language of audio giving you clear concise explanations and illustrations

"PW FERRET" METAL DETECTOR Build the ingenious "PW Ferret"a new integrated circuit metal detector designed to "sniff" out buried or hidden metal objects underground, under floor boards or in walls !

Out now 20p

BRIDGE RECTIFIERS

		50 Volis	
50 Volts	25p	100 Volts	${ }_{40} \mathrm{P}^{\text {p }}$
${ }_{2} 100$ Volts		${ }_{600}^{200}$ Volis	50p
600 Volts	30 p	1000 Volts	55p
FOUR AMP		SIX AMP	
200 Volts	559	${ }^{500} \mathrm{Volts}$	${ }_{700}$
400 Volts	$65 p$	200 Volts	${ }^{80 p}$
600 Volts 800 Voits	750 E1.00		900

ELECTRONIC MAINS TIMER A reliable unit ideal for timing Bathroom / Toilet Ventilators, Stairway / Cloakroom Lighting etc
Gives up to 30
mins. delay before
switching off.
Delay: 1-30 mins. adjustable. Max Load: 400 VA or 1000 Watts resistive.
Ivory Case: $38 \mathrm{in}, \times 3$ inin. $\times 2 \mathrm{in}$. Fittings Instructions included. Trade Price: £5 80. Post 20p.

MAINS KEYNECTOR

The safe, quick, connector for electrical appliances 13 Amp rating, fused will connect number of appl ances quickly and safely to the mains, ideal for testing, demonstrating, window displays, etc., Warning Light, interlocked to prevent connecting when live.
A.S.P. LTD. BYRE HOUSE, No. 2 UNIT,

TRANSFORMERS

SAFETY ISOLATING

The above are also availa socket. "On application.

MINIATURE \& EQUIPMENT

$3-0-3$
$0-6,0-6$

$0-6,0-6$ $0-6,0-6$

$0-6,0-6$
$9-0-9$
$0-9,0-9$
$0.8,0-9$
$0-8-9,0-8-9$
$0.8-9,0-8-9$
18-0-15
$0-15,0-1$
0-20. 0-20
$0-15-20,0-15,20$
$0-15-20,0$
$0-20,0-20$
$20-12-0-12$
$0-1$
$0-1$
$0-15-27,0-1$
LOW
LOW V
PRIMARY 200/250/Volts

SECON	12	$\begin{aligned} & 24 \text { Volts. } \\ & \text { TYPE } \end{aligned}$	PRICE	POST
12 V	24 V	No.	E	p
0.5	0-25	111	1.00	22
1	0.5	213	1.23	22
2	1	71	1.60	22
4	2	18	2.25	${ }^{38}$
6	3	70	2.70	42
8	4	108	3.00	52
10	5	72	3.55	52
12	6	116	4.50	52
16	8	17	5.50	52
20	10	115	6.95	67
30	15	187	12.90	¢97
40 60	20 30	232 226	18.30 23.70	£1.00 £1.10

30 VOLT
PRIMARY 200/240
SECONDARY 12, 15, 20, 24, 30
SECONDARY 12, 15, 20, 24, 30
AMPS TYPE PRICE POST

60 VOLT

PRIMARY 200/240
SECONDARY 24, 30, 40, 48, 60
AMPS TYPE PRICE POS

	No.	$£$	p
1	124	$\mathbf{1} .60$	38
1	126	2.25	38
2	127	3.55	42
3	125	5.40	52
4	123	6.98	67
5	40	8.46	67
6	120	9.20	82
8	121	11.60	$£ 1.00$
10	122	15.25	$£ 1.00$
12	189	16.43	$£ 1.10$

Zew

保
 KT33C
KT36
1

FIRST QUALITY VALVES

Our new combined Catalogue 1973/74 is now ready. It contains usual section of valves, tubes and semi-conductors, transistors equivalent list, full illustrated Test Equipment Section and Passive Components. Please send P.O.for $£ 0.20$ to cover cost and postage.

PLEASE NOTE THAT VALVES LISTED ABOVE ARE NOT NECESSARILY OF U.K. ORIGIN
Head Office:
44a WESTBOURNE GROVE, LONDON, W. 2 5SF
Tel.: 727 5641/2/3
Cables: ZAERO LONDON
C.A.A. Approved for inspection and
release of electronic valves, tubes klystrons, etc.

WE WANT TO BUY:
SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.

APPOINTMENTS VACANT

LINE advertisements (run-on) : 55 p per line (approx. 7 words), minimum two lines.
BOX NUMBERS : 25 p extra. (Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.)
PHONE: Alian Petters on 01-261 8508 or 01-928 4597.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Advertisement accepted up to 12 noon Thursday, November 8th for the December issue subject to space being available.

HER MAJESTY'S GOVERNMENT COMMUNICATIONS CENTRE HANSLOPE PARK, MILTON KEYNES, MK19 7BH,

has vacancies in the following fields of work
(a) Microwaves
(b) HF Communications
(c) VHF/UHF Communications
(d) Acoustics
(e) General Electronic Circuit Design

Posts (a)-(f) are at Hanslope Park but posts (g) will be in London Area.
Appointments will be made within the grades of Scientific Officer, Higher Scientific Officer and Senior Scientific Officer in accordance with the following definitions:

SCIENTIFIC OFFICER

Applicants should be not more than 27 years of age and should have one of the following qualifications:
(a) A degree in a scientific or engineering subject
(b) Degree-standard membership of a Professional Institution
(c) A Higher National Certificate or Higher National Diploma in a scientific or engineering subject
(d)1 A qualification equivalent to (c) above.

Salary Scales: $£ 1318-£ 2177$ with the entry point determined by qualifications and experience.

HIGHER SCIENTIFIC OFFICER

Applicants should be under 30 years of áge but this requirement may be waived if special qualifications or experience can be offered. Formal qualifications are the same as for Scientific Officer above but in addition the following experience is required:
(a) Applicants with 1 ist or 2 nd class honours degrees-at least 2 years post-graduate experience
(b) Applicants with other qualifications -at least 5 years post qualification experience.
Salary Scale: $£ 2076-£ 2667$ with entry point dependent upon experience beyond the minimum required.

SENIOR SCIENTIFIC OFFICER

Applicants should be at least 25 and under 32 years of age, although the upper age limit may be waived if experience of special value can be offered.
Applicants should have obtained a lst or 2nd class honours degree and have had a minimum of four years appropriate postgraduate experience.

Salary Scale: £2615-£3640. Entry will normally be at the minimum of the scale but applicants with experience of special value may be entered above the minimum.

Applications stating the field of work and grade required should be made to:

ADMINISTRATION OFFICER,

HM GOVERNMENT COMMUNICATIONS CENTRE,
HANSLOPE PARK,
HANSLOPE,
MILTON KEYNES, MK19 7BH.

FIELD SERVICE ENGINEERS

Applications are invited from men who like working with the minimum of supervision and who have self discipline to make effective use of their time.
Preference will be given to those living in North London with experience of Public Address and Sound Systems. A clean driving licence is essential. Apply by letter or telephone to:

The Personnel Manager,
Goblin (B.V.C.) Ltd., Ermyn Way, Leatherhead, Surrey. Tel. Ashtead 76121

FOREMOST

 IN THE UNITED KINGDOMin constant touch with every employer of experienced electronics ENGINEERS
Our professional placement service is specialised, confidential and completely free

Phone us at any time or write quoting wW107

ELECTRONICS
APPDINTMENTS LTD
4 dayden chambers
119 OXFORD STREET. LONDON. W1R 1PA.
TEL: $01-4341861$

Experienced Radio Engineers
Continued expansion of radio communications business in Plessey Avionics \& Communications calls for engineers with some experience in the design of equipment for mobile and static applications to lead small and large teams at Plessey, Havant.
The laboratories are situated in the grounds of a country house, three miles from Chichester Harbour and close to the South Downs and several seaside resorts. The area is well placed for housing, shopping, schools, sailing, golf, flying and other recreational and cultural facilities.
A policy of controlled expansion ensures real opportunities for individual career promotion and high levels of job satisfaction.
We offer excellent salaries, conditions of employment, fringe benefits, generous relocation expenses and a stimulating environment.
If you have two or more years' experience in any of the following techniques:-

HF, VHF or UHF Medium Power Transmitter Design HF, VHF or UHF Receiver Design MODEMS Design - Digital and Analogue Digital Synthesisers
 RF Signal Switching Techniques Mobile Environment Equipment Design Radio Communications System Design

—and if you have academic qualifications equivalent to a university degree or membership of a professional institution,
Fill in the coupon or ring Havant (0701 2) 6391 Extension 200, and we will be happy to consider you for a range of appointments carrying salaries of up to $£ 4,000$ p.a. There are also opportunities for engineers with lesser experience or qualifications to take up other appointments.

There is scope, variety and responsibility as a

Radio Technician

 Join the National Air Tratfic Servicesof the Civil Aviation Authority as a
Radio Technician and you have the
prospect of a steadily developing
career in a demanding and ever
expanding field.
ENTRANCE QUALIFICATIONS
You should be 19 or over, with at least one year's practical experience in telecommunications. Preference will be given to those having ONC or qualifications in Telecommunications.
Once appointed and trained, you will be doing varied and vital work on some of the world's most advanced equipment including computers, radar and data extraction, automatic landing systems, communications and closed circuit television.
Vacancies exist at locations near London (Heathrow), London (Gatwick) and Stansted Airports and for suitably qualified people at the Signals Training Establishment, Milton Keynes, Bucks.
Salary: $£ 1383$ (at 19) to $£ 1836$ (at 25 or over) ; scale maximum $£ 2158$ (higher rates at Heathrow). Some posts attract shift-duty payments. Promotion prospects are excellent and ample opportunity and assistance is given to study for higher qualifications.

ENGINEERING OPPORTUNITIES

RANKRADIO INTERNATIONAL

We are manufacturers of the famous range of Leak and Wharfedale Hi-Fi products which include the Design Centre Award Winning Isodynamic Headphones.
The demand for our quality products, which are designed, developed and manufactured to precise published specifications is continually increasing. This Company's policy therefore is one of controlled expansion and of continuous improvement to current products and the further development of our product range.
A number of new opportunities are available for Engineers to become members of an integrated development team who play a major role in ensuring that we maintain our position as market leaders in this area of $\mathrm{Hi}-\mathrm{Fi}$ acoustics technology.
These opportunities in the Acoustics Engineering Development Division include:
Development Engineers - Branded Products
Headphones
Headphones
Advanced Development
Vacancies are also available for Circuit Engineers and Production Methods Engineers.
Candidates should idealiy have had some experience or interest in $\mathrm{Hi}-\mathrm{Fi}$.
To obtain a job description and further details. salaries etc. for any of the positions mentioned will you please apply in writing giving brief details of your educational quatifications, career to date and current salary to:

RANK RADID INTERNATIONAL
is looking for design and development engineers with a minimum of three years of experience in the field of P.C.M. equipment to be used by the telephone industry.
Areas of interest are encoders and decoders. P.C.M. multiplexers and R.F. equipment to transmit P.C.M. data.
Salary open.

Send résumé to:
NORTRON
Fernando el Católico, 63
Madrid 15
SPAIN

The continual expansion in all aspects of life in Zambia presents vacancies for qualified personnel. All the posts

Ministry of Power, Transport and Works Post Office

Equipment Technician

(Various)
For maintenance and installation work. Applicants should have minimum 4 years experience with Telecommunications Administration and City \& Guild's final certificate in Telecommunications or equivalent. Applicants from British Post Office will be taken at Technical Officer grade. Should have held a current driving licence for 2 years for driving Government transport.

Supervising Line Technician

To control staff and labour on overhead line, underground development and maintenance work. Supervise and test; also all necessary duties to maintain services anywhere in Zambia. Applicants ideally under 45 years of age with minimum 10 years Telecommunications external experience, including overhead line and underground cable construction knowledge.

Assistant
 Telecommunications

Engineer (Power \& Accommodation)
Applicants should hold Intermediate City \& Guild's Certificate in Telecommunications or equivalent. Also have equal grade of Assistant Executive Engineer or Technical Officer (A) in British Post Office and a current driving licence. To work on design of telecommunications buildings, air-conditioning systems, provision of mains and stand-by power supplies. Preparation of specifications and engineering instruction.

Telecommunications
 Engineer (H. F. Radio)

With minimum of 10 years experience, including a responsible position with Telecommunication organisation. Majority of experience in installation and maintenance of H.F. radio equipment. Should have final City \& Guilds certificate in Telecommunications and hold grade or equivalent of Assistant Executive Engineer in British Post Office. Responsible for International Radio Transmitting and Receiving Stations. Including installing and maintaining new equipment and staff supervision.
listed below offer attractive salaries, 3 year contracts, free passages for appointed candidates and their families, baggage allowances, furnished accommodation at 15% of basic salary, and in many cases substantial fringe benefits. All salaries earn 25% gratuity and generous leave allowances. This is an opportunity to widen your professional experience, to assist in the challenging work of developing a young nation - and all in the year-round sunshine.

Line Technician

For installation, maintenance and development duties of either subscribers apparatus including PABX's or jointing and laying of lead and PVC covered cables or construction and maintenance of openwire routes. Applicants should have at least 4 years suitable experience, and a current driving licence for 2 years. Two 'A' City \& Guild's certificates desirable.

Assistant
 Telecommunications Engineer

Apprenticed mechanical engineers with 5 years experience, ONC or equivalent City \& Guild's certificate. Duties involve running an organisation or GPO headquarters workshop in Ndola. General mechanical, carpentry, paint and light electrical work. Supervisory experience desirable. Emphasis on Mechanical Engineering.

Message Switching Engineer

Applicants should possess 8 years training and practical experience in the servicing and maintenance of SemiAutomatic Message Switching and Tape Relay Equipment and associated peripheral equipment, including TI00 Page Printers and Tl08 Tape Readers. Duties will include the maintenance of such equipment at Zambian Airports.

Civil Aviation

Radio Engineer

At least 8 years relevant experience plus I.C.A.O. Cert. is required. The duties will include the installation and maintenance of ground terminal radio communication equipment and navigational aids. Knowledge of medium powered H.F. transmitters and their ancillary equipment and of V.H.F. A.M. equipment is therefore essential.

Please apply by sending full personal and professional details and indrcating the position which interests you to:
Recruitment Officer,
Zambia High Commission,
7/1/ Gavendish Place, London WI.

FHDOOFINET would you come athore for 2,20010 year?

As a Radio Operator with the Post Office Maritime Service you can continue your career ashore in an interesting and expanding service. And earn over $£ 2,000$ a year, including compulsory pension contributions, at 25 years of age working only a 41-hour week of shift duties -with overtime this could rise to £2,300 and possibly more.

Post Office Radio Operators benefit from a shorter pay scale than sea-going officers. You have good opportunities for promotion to positions earning basic salaries of up to $£ 3,290$, and prospects of further advancement into Post Office Senior

Management.
To apply you need to be 21 or over and to hold a 1st class or General Certificate issued by the MPT or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

If you would like to know more, please write to the Inspector of Wireless Telegraphy, Post Office, IMTR/WTS1.1.3, Union House, St. Martin's-le-Grand, London EC1A 1AR. L53

Voice of Kenya Maintenance Engineer

(Broadcast Transmitter)
Required to introduce a revised maintenance system and assist in its implementation, to instruct staff and compile a maintenance instruction manual; to give occasional lectures on maintenance to engineering trainees.
Candidates, $30-50$ years, must hold a degree or diploma in Engineering with extensive practical experience in organising and undertaking maintenance of sound transmission equipment, medium wave, short wave and VHF transmitters. Experience as an Instructor in maintenance techniques would be an advantage.
Commencing salary including Supplement will be in the range of $\mathbf{£ 2 , 9 7 0}$ to $£ 3,280$ according to qualífications and experience. A substantial gratuity is payable on completion of engagement. Because of lower rates of Income Tax in Kenya the gross emoluments are roughly equivalent to a UK salary of $£ 4,450$ to $£ 4,650$ for a single man and $£ 4,750$ to $£ 4,950$ for a married man with two children.
Other benefits include-Subsidised Accommodation; Education Allowances; Holiday Visit Passages; Free Family Passages; AppointAllowances; Grant f100/E200. 30 Month Tour.
The post described is partly financed by Britain's programme of aid to the developing countries administered by the Overseas Development Administration of the Foreign and Commonwealth Office.
For further particulars you should apply, giving brief details of experience, to:

crown agents

M Division, 4 Millbank, London SWIP 3JD, quoting reference number M2́K/730923/WF.
[3150

SPANISH COMMUNICATIONS EQUPPMENT MANUFACTURER

Applications are invited from qualified design engineers specialized on:
a) Ground/Air Communications
b) TV Colour Transmitters
c) Side Band Transmitters

At least 5 years experience desirable. Company located in Madrid. Salary open.

Send resumé to:

NORTRON

Fernando el Católico, 63
Madrid 15
SPAIN

Are you equipped to engineer the future?

> As an experienced engineer, with a background in the electronics industry you'll be interested in the jobs listed below.
> Most are newly created positions-an indication of the progress and development which has led to our current expansion programme.
> Needless to say, all these positions carry salaries, which though negotiable, reflect the responsibilities of the task.
> Our reputation spreads to over 70 countries-a reputation for producing some of the most sophisticated electronic equipment in the world, from custom built stafflocation systems to complex radio communications installations.

Chief Systems Engineer

This is a key position and calls for a man with experience of the development, design and commissioning of telecommunications or data systems. He should have a background in telephone line or switching equipment and be capable of leading the company's systems development programme. Some mobile radio communications systems experience would be an added advantage, and the position requires qualifications to degree or HNC standard.

Receiver/ Transmitter Development Engineers

These positions involve the development of highly sophisticated communications receivers and transmitters and offer plenty of scope for creativity and challenge. Applicants should have a relevant degree or equivalent and at least 3 years experience of equipment design.

Group Leader Receiver Development

To lead a group of engineers engaged in the design and development of high performance subminiature radio receivers. At least five years experience of equipment development in the mobile radio industry or a closely related field is essential. This post would be of interest to someone who has already successfully led a team in equipment development and is now seeking to advance his career and broaden his horizons.
A degree or similar qualification is essential Engineers aged less than 30 are unlikely to have adequate experience for this, a key position.

For all these vacancies please reply with relevant details of experience and qualifications, stating which position interests you, to:

Test Equipment Development Engineer

Duties involve designing and building test equipment for our Production and Test Departments. The activities range from simple jigs for testing small components to complex automatic fault diagnosis equipment. Applicants should have a thorough knowledge of solid state circuitry and integrated circuits and be familiar with radio receivers and transmitters. They must be able to follow a project through from inception to installation, designing printed circuits etc., ensuring high product reliability.

Senior Development Engineer

We need a Senior Development Engineer to design and develop products of a very advanced and complex nature. In addition to a degree or HNC, applicants should have at least five years experience of general low frequency design, with a bias towards digital techniques.

Personnel Manager.
Multitone Eectric co. Itc.
10-28, Underwood Street.
London, N. 1.

APPOINTMENTS

CHIEF INSPECTOR

Thorn Consumer Electronics (Chigwell) Limited is the Audio division of the Thorn Group of Companies and in order to satisfy the continuing increase in demand for our products, both at home and abroad, it has become necessary to undertake an expansion programme. A new audio factory has been established at Harold Hill in Essex. which will ultimately be the largest manufacturing unit of its kind in Europe using sophisticated production techniques.

An exceptional opportunity occurs for a suitably qualified man to join the new organisation, which will be involved in quantity volume production of high wattage unit audio equipment, as Chief Inspector.

The job will be concerned with all aspects of the inspection. test and troubleshoot functions associated with the flowline production of the units. In addition. close liaison, with the Training Department in iorward planning and training requirements will be necessary.

The successful candidate will hold suitable electronics qualifications, have experience of high volume production methods, be a capable staff motivator and will possess the drive and enthusiasm which the job will demand.

Written applications. setting out brief career details to date and current salary to:

Thorn CONSUMER ELECTRONICS

Southall College of Technology
 Beaconsfield Road, Southall, Middx.

Two Laboratory Technicians

required for Intermediate \& Advanced Electronics Laboratory \& Radio/Television Laboratory. Experience in maintaining electronic equipment desirable
Salary on scale £ 1521-£1749 per annum inclusive.
Applications to be returned to the Registrar at the College by 19th October.
 exciting atmosphere of Britain's most sought after sun spot. We manufacture the finest Commercial and Entertainment audio equipment and Hotel Service Systems in Europe, and are continually expanding both our comprehensive product range and market coverage.
We are now increasing our Design and Development Team and require a number of young high calibre engineers to initiate, design and complete new products in various markets. Successful candidates will have some experience in RF or techniques (or digital/analogue switching) and should be qualified to at least HNC standard.
Self-motivation and a determination to succeed in a rapidly expanding company is of equal importance to formal qualifications. Salary will be very attractive and will be commerisurate with experience.
For full details please contact
Mr. R.C. Jones, Technical Director,
SNS Electronics Group, 851 Ringwood Road, Bournemouth, Hants.
Telephone Northbourne (02016) 5331/4 Telex 41419

LONDON BOROUGH OF HOUNSLOW

 EDUCATION DEPARTMENT
AUDIO AND VISUAL AIDS TECHNICIAN

(T. 1/3)
required at Chiswick Polytechnic, Bath Road, W.4, to join a team of two others to service five departments. Applicants should preferably have experience of modern teaching aids including closed circuit television but persons with an interest in educational technology will be considered. 36 -hour week with some evening duties required. Salary scale $\mathbf{6} 672-£ 1644$ plus fl05 London weighting.
Applications forms from The Principal, Chiswick Polytechnic, Bath Road, Chiswick, W.4. Tel: 01-995 3801, Ext. 535. Closing date: 29th October, 1973.

13117

TECHNICAL AUTHORS

With electronic, electrical, computer or mechanical experience required by Engineering and Technical Publications (Derby) Ltd., 45 Friar Gate, Derby. Telephone 0332-41261.
$[3164$

Board of Governors

King's College Hospital.

Electronics

Technician

required for an interesting project involving the application of ultrasonics to blood flow measurement. The applicant should preferably have had previous experience in prototype electronic instrument construction and will be expected to assist with clinical measurements when required.
The appointment will be tenable for one year with a good possibility of renewal. Minimum qualification are O.N.C. or final C and E in a relevant subject.
Salary as Physics Technician Grade III.
Application forms obtainable from the Personnel Office. KIng's College Hospital, Denmark Hitl, S.E.25. Tel.: 01-274 6222 Ext. 2728 (Mrs. Child) should be completed and re-
turned as soon as possible.

COMPUTER ENGINEERS

your line to success as a computer service engineer
 Vacancies exist in the London. Manchester and Liverpool areas for engineers with computer or

 electronic or electro-mechanical experience. In addition a number of senior vacancies exist for engineers (particularly with teleprocessing experience) who wish to develop their existing manage ment skills. The Company pays attractive salaries together with generous fringe benefits including bonus, car allowance and non-contributory Pension Scheme.For further details write or telephone.
COMPUTER FIELD MAINTENANCE LTD. a member of the Computer Worta Trade Group of Companies 99 Bancroft, Hitchin, Hertfordshire Telephone: Hitchin (0462) 51511

Lancashire County Council Health Department
 The Health Education Service has a vacancy for a
 TECHNICIAN (TV/PHOTOGRAPHY)

Grade Tech. 4
Salary £1,530-£1,803
Television is becoming an integral part of audio
visual aids in the provision of visual aids in the provision of health education. Health Education Service requires a technician whose duties will include the technical operation of T.V. equipment. The person appointed will, of course, be knowledgeable in the use of normal projection equip-
ment. It will be an advantage for applicants to have some expertise in camera work and photography.
The post is full time, permanent, superannable and subject to medical clearance.
Application forms obtainable from the County Medical Officer of Health, Serial No. 9693, East Cliff County Offices. Preston, to be returned by the 20th September, 1973.
[3097

KEEN YOUNG MAN

interested in electronics and music, 18-20 years, to work in London recording, studio. Must have working knowledge of audio elec. tronics. Responsible position with good prospects

Phone Tony Leather on 01-499 7173.
[3186

MEDICAL PHYSICS TECHNICIAN

 GRADE IIIwith electrical and preferably some mechanical experience required to maintain cobalt, caesium and x-ray treatment units at the Royai Marsden Hospital, Fulham Road, London, S.W.3.
The person appointed will also be responsible for the development of radiation measuring instruments and will work in association with the Electronic and Workshop Groups of the Physics and Radiotherapy Departments.
Applicants should hold O.N.C., H.N.C., or similar qualification in electrical engineering or electronics and have at least 3 years' technica! experience to obtain salary on scale $£ 1,602$. E2,076 p.a. plus 6126 London Weighting.
Applications with details of experience and names of two referees to the Deputy Administrator, Royal Marsden Hospital, Fulham Road, London, S.W.3.

New Forest and Southampton Water with Racal Thermionic Ltd

This is one of the most attractive areas in Southern England providing a variety of excellent recreational facilities.
We are a member of the world-wide RACAL Group and are currently seeking a number of

TEST ENGINEERS

to join our existing team in coping with our planned expansion. Whilst formal qualifications to O.N.C. or City and Guilds standards would be an asset, previous experience in the following areas would be equally desirable.
Analogue
Good working knowledge of Analogue/Linear Electronics to be used on up to date Communications and Instrumentation Magnetic Recording Equipment

Digital
Good working knowledge of Digital Logic Circuitry to be used on up to date Computer Peripheral Magnetic Recording Equipment.
R.F.

Good working knowledge of up to date R.F. Electronics for use on V.H.F. Transmitting Equipment using latest techniques

We offer competitive salaries, good working conditions and a friendly work atmosphere

Communicate with Racal

If you are interested in any of the above posts, please write or telephone for further information to
The Personnel Officer.
RACAL-THERMIONIC LIMITED,
Shore Road, Hythe, Southampion
Telephone Hythe (04214) 3265, Ext. 66

Electronics Test Engineers

Pye Telecommunications of Cambridge and Haverhill have immediate vacancies for Production Test Engineers. The work entails checking to an exacting specification VHF/UHF radio-telephone equipment before customer delivery; applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment. Formal qualifications while desirable, are not as important as practical proficiency. Armed service experience of such work would be perfectly acceptable. Pye Telecommunications is the world's largest exporter of radio-telephone equipment and is engaged in a major expansion programme designed to double present turnover during the next five years. There are, therefore, excellent opportunities for promotion within the company. Pye also encourages its staff to take higher technical and professional qualifications.
These are genuine career opportunities in an expansionist company, so write or telephone without delay for an application form to:
Mrs A E Darkin at
Cambridge Works, Elizabeth Way, Cambridge CB4 1DW.
Telephone: Cambridge 51351.
or Mrs C Dawe at
Colne Valley Road, Haverhill, Suffolk.
Telephone: Haverhill 4422.

THE STOCK EXCHANGE require an additional

TELEVISION SERVICE ENGINEER

to maintain information display systems.
Applicants must possess appropriate television and radio servicing certificater and must be able to prove their ability as competent Service Engineers by a suitable trade test.
An attractive starting salary is offered. In addition, there is a non-contributory pension scheme, 3 weeks holiday in a full year and Luncheon Voucehers. Applications giving brief details of qualifications and experience should be sent to:

Personnel Officer,

Council of The Stock Exchange, The Stock Exchange, London EC2N 1HP'

ELECTRONIC SERVICING

A senior electronics service engineer is required to take charge of electronic maintenance in a large teaching hospital. Wide experience in servicing electronic instrumentain the medical field. Applicants should hot be a H.N.C. or equivalent qualification.

This is a medical school appointment with a salary in the range $\mathbf{~ 2 , 2 5 1 - \{ 2 , 8 4 2 . ~ A p p l i c a . ~}$ tion forms can be obtained from the Personnel Officer, Mrs. Gray, St. Thomas' Hospital, 79 York Road, London, S.E.1.
[3185

TEST ENGINEERS

The leading U.K. manufacturer of high grade TV monitors require Test Engineers for their expanding Test Department.
Situated in the Berkshire town of Maidenhead, the Company offers pleasant working conditions, good salaries and friendly environment. Duties will cover the testing and trouble-shooting of monochrome and colour TV monitors together with other ancillary sophisticated TV broadcast equipment manufactured by the company. Previous experience of TV equipment would be an advantage. Please apply to :

PROWEST ELECTRONICS
Boyn Valley Road,
Maidenhead, Berks.
Maidenhead 29612

ELECTRONIC ENGINEERS FOR CANADA

A well-known Canadian Company designing and manufacturing computerorientated totalisators requires electronic engineers to meet their continuous expansion.
The likely candidates should be qualified to H.N.C. standards or hold a C.G.L.I. final certificate as electronic or telecommunication technicians, Candidates with equivalent qualifications will also be considered. All candidates must have experience in the development and maintenance of computer systems. Some knowledge of programming would be an advantage. The salary is negotiable depending on qualifications and experience. Interviews will be held in the U.K. Please reply in writing to:

Attention: Managing Director.
WESTERN TOTALISATOR CO. LTD., 102 Elmslie Street,
Lasalle, Montreal 650, Quebec, Canada.
[3179

The Polytechnlc of Central London
Audio Visual Aids Technician £1902-£2202
with experience in maintenance of tape recorders, amplification equipment and C.C.T.V. with the ability to operate both this and 16 mm equipment.
Appllcation form from The Establishment Qfficer, 309 Regent Street, London W1R 8AL. Please quote reference 885.

WIGGINS TEAPE RESEARCH AND

 DEVELOPMENT LTD.Butlers Court, Beaconsfield, Bucks.

SENIOR ELECTRONICS TECHNICIAN

Applications are invited for this post to lead a small team engaged in applying electronics to papermaking research and allied processes at the Central R. and D. Unit of an international papermaking group. Based at Beaconsfield the duties will include design, development, manufacture and maintenance of a wide variety of electronic, electro-mechanical and opto-electronic instrumentation.
Applicants should be of H.N.C. standard and have several years development experience with linear and digital circuits. The salary is negotiable in the range $£ 2,000$ to $£ 3,000$. The unit provides excellent working conditions, a pension scheme and luncheon vouchers.
Application forms from Mr. A. W. Massey, Personnel Department. Tel: 04945652.

GUNNY CORNWALL

LOWER COST OF HOUSING LOCAL AUTHORITY HOUSING
England's Prime Holiday Area. ideal for water sports and outdoor enthusiasts. A civilised area for Environmentalists clean seas, uncrowded roads and fresh air. Unemployed persons qualify for Government Assistance for re-settlement.
We have immediate vacancies for the following Personne in MODERN PRESTIGE LABORATORIES With Exceptional Views: 4-DAY WEEK, EXTRA HOLIDAYS.

JUNIOR MICROWAVE ENGINEER
Familiar with measurement techniques. Experience añd energy more important than qualifications. Work includes projects on millimetre wave components. Salary $£ 1200$ - $£ 1700$.
TECHNICAL SALES ENGINEER
Preferably with experience in sales on microwave instrument and component products. Strong initiative and drive, incentive scheme Leads to Sales Manager position. Salary negotiable.
JUNIOR DRAUGHT SMAN
With experience on small electro-mechanical projects. Jppartunity to learn in well-informed D.O. Accuracy and sound basic knowledge inportant. Workshop experience essential. Salary $£ 1200-£ 1500$
ELECTRONIC ENGINEER
Up to Chartered Standard, 2 vears experience in comf uter interfacing to form basis of new group. Knowledge of R.F. techniques an advantage. Salary negotiable between $£ 2500$ - $£ 3500$

Send full Resume and Salary Required to:
Dunmere Road, Bodmin, Cornwall, PL31 20L Tel: Bodmin (0208) 3161

WORK AS A RADIO TECHNICIAN

ATTACHED TO SCOTLAND YARD

You'd be based at one of the Metropolitan Police Wireless Stations. Your job would be to maintain the portable VHF 2-way radios, tape recorders, radio transmitters and other electronic equipment which the Metropolitan Police must use to do their work efficiently. We require a technical qualification such as the City \& Guilds Intermediate (telecommunications) or equivalent.
Salary scale: $£ 1415$ to $£ 1715$ according to age from 21 to 25 , to a maximum £2025 p.a. (plus a London Weighting Allowance of $£ 175$ or £90 p.a.).

Promotion to Telecommunication Technical Officer will bring you more.

For details of this worthwhile and unusual job write to: Metropolitan Police, Room 733 (RT/WW), New Scotland Yard, Broadway, London, SW1H OBG, or telephone 01-230 3122 (24-hour service).

Telecommunications

Ministry of Defence Signals Research and Development Establishment, at Christchurch, Hants require scientists and engineers for work
\square Signal processing and analysis ; optimising use of bandwidth and reducing error rate in communication channels.
\square Assessment of design and performance of communications systems.
\square Computer applications: work on systems of high integrity, and the investigation of real time software structure.
\square Satellite communications: techniques for the provision of multiple access.
\square Electro-magnetic theory : radio wave propagation and aerials.
\square Night vision: work on optical and detector components, the investigation of the man/ machine interface, and the assessment of systems.
Appointment may be made at Senior Scientific Officer. Higher Scientific Officer, or Scientific Officer level.
For Senior Scientific Officer appointment you must have a 1 st or 2 nd class honours degree with at least four years appropriate post-graduate experience. Salary scale $£ 2615-£ 3640$. At Higher Scientific Officer level, qualifications required are a degree, HND. or HNC, with at least 2 years post-graduate experience for the good honours graduate and 5 years for other candidates. Salary scale $£ 2076$ - $£ 2667$.
For Scientific Officer appointment you should have a degree. HND. or HNC and be under 27 years old. Salary scale $£ 1318-£ 2177$.

For further details,
conditions of service, and an application form please write to J. R. Mills, Director, Signals Research Establishment.
Christchurch, Hants, or telephone the Personnel Officer on Highcliffe 2361. ext. 302.

T.V. Studio Engineer

The Road Transport Industry Training Board has in operation at its Wembley Headquarters, a 3 camera broadcast-quality colour television studio with full telecine and video recording facilities which includes R.C.A. TR 50 and 1 in . Helical Scan systems. We now wish to appoint an experienced studio engineer to join a small team working on the production of training and educational television programmes.

The applicant should not be less than 24 years of age and have a good working knowledge of the above equipment. Salary will be negotiable depending on qualifications and experience. Three weeks holiday, contributory pension and life assurance scheme.
Please send all relevant personal history stating how the above requirements are met, and quoting reference ZH 335 , to:

Mrs. H. M. Brown, Personnel Manager, Road Transport Industry Training Board, Capitol House, Empire Way,
Wembley, Middlesex HA9 ONG.

LOUGHBOROUGH

TECHNICAL COLLEGE
Principal
F. Lester, B.Sc., Ph.D., F.R.I.C.

Department of Electrical Engineering
LECTURER GRADE I
The person appointed will be required to teach Radio and Television Theory and Practice to Final Certificate level in Technicians' courses. Applicants should have recent trade experience and be fully conversant with broadcast receiving equipment. They should be suitably qualified and preferably be members of a Professional or Technician Institution. Teaching experience and teacher training will be advantageous.
Salary will be in accordance with Scales for Teachers in Establishments for Further Education 1973 (under review), viz., Lecturing Grade, $£ 1,500$ E2,525 (plus $2 \times$ E81 for good Honours), with placing according to qualifications and experience.
Further particulars may be obtained from the Principal, Loughborough Technical College, Radmoor, Loughborough, Leicestershire, LEll 3BT, to whom completed applications should be returned within 14 days of the appearance of this advertisement
[3171

The Hatfield Polytechnic

TECHNICIAN for Psychological Laboratory
for maintenance and construction of
of electronic and other equipment.
The person appointed will work Senior Technician. Applicants should preferably hold an appropriate intermediate or National Certificate, or City and Guilds qualification, but this is not essential.
Salary scale: $£ 672-£ 1,242$ per annum.
Application form and further details from: The Staffing Officer, The Hatfield Polytecfinic,
P.O. Box 109, Hatfield. Herts. Quote ref: P.O. Box
$379 / W W$.

LEEDS AND BRADFORD AIRPORT RADIO/RADAR TECHNICIAN

 REQUIREDA vacancy occurs for a Radio/Radar Technician to undertake maintenance of all ground equipment, including radar, CRDF, ILS, etc., on a watchkeeping basis. Radar maintenance experience essential. Salary in accordance with Local Government Grade Technical $5 / 6$ ($£ 1,926-£ 2,535$ per annum) , commencing salary, depending upon experience and qualifications, between $£ 1,926$ and $£ 2,235$, plus enhanced payment for weekend working. Appointment subject to Local Government Superannuation Acts and medical examination.
Applications, stating age, education, and full details of experience and technical courses attended, together with the names and addresses of two people to whom reference can be made, should be sent to the Airport Director, Leeds and Bradford Airport, Yeadon, Leeds, LSI9 7TZ. Tel: 08737 3391.
[312]

University College Hospital Medical School

Neuropsychology and Metabolism Research Unit,
Friern Hospital, London, N. 11

ELECTRONICS TECHNICIAN

Electronics technician to assist in the establishment and subsequent running of a new research laboratory. Some experience with recorders, E.C.G., E.E.G. or data processing equipment would be an advantage but not essential.
Applicants should have O.N.C. in electrical or electronic engineering or a similar equivalent qualification. Salary on Whitley Council scale according to age and experience plus London weighting allowance.
Applications to the Secretary, University College Hospital Medical School, University Street, London, WC1E 6JJ. Quote reference F.C.2.
[3147

ENGINEER

to service
ELECTRONIC ORGANS B \& O AUDIO and C.T.V.
The work is interesting and varied, a Company vehicle is provided and there are vacancies in Birmingham and Manchester.
Telephone or write to:
W. Swan, Jnr. or Mr. D. C. Kay,

84-86 Oldham Streans
ham Street, Manchester M4 ILF
Tel : $061-2283821$

WALSALL AND STAFFORDSHIRE TECHNICAL COLLEGE
 JOINT EDUCATION COMMITTEE

Principal: H. Cheetham, B.Sc.(Hon.), C.Eng., M.I.Mech.E., F.I.Prod.E.,

Department of Engineering

LECTURER GRADE 1

in

RADIO AND TELEVISION

 Applicants will be expected to teach the sub-ject of Radio and Television to the Final Year ject of Radio and Television to the Final Year
of the Radio and Television Mechanics Course, of the Radio and Television Mechanics Course, vision Technicians Course, C.G.L No TeleA sound knowledge of the theory and practice of Colour Television Servicing would be very desirable. Applicants should possess appropriate qualifications with teaching and industrial experience.
Salary for the above post will be in accordance with the Burnham Further Education Scale, viz Lecturer Grade I $£ 1,500-62,525$ per annum (under review).
Application forms may be obtained from the Principal, Walsall and Staffordshire Technical College, St. Paul's Street, Walsall WSI IXN. Applications should be returned within a fortnight of the appearance of this advertise ment.
R. D. NIXON,

Secretary to the Joint Education Committee.

Nigerian Telecommunications Supervisor

The Shell-BP Petrolcum Development Company of Nigeria Limited has a vacancy for a qualified Nigerian Telecommunications Supervisor.
You should be academically qualified at C.E.I. Chartered Engineer level, be eligible for membership of the Nigerian Society of Engineers or hold any other qualifications acceptable to the Council of Registered Engineers of Nigeria. You must have a minimum of 5 years' total practical experience in at least two of the following:
(a) Multi-channel fixed communications systems
(b) Telemetry
(c) Mobile radio systems

If you are a Nigerian National returning to your country this year and are interested in this position, please telephone Pauline Ford on OI-93+2493 or write, giving details of age, qualifications and experience, to :-

Shell International Petroleum Company Ltd., Recruitment Division (GD), PNEL/4I Shell Centre, London SEi ${ }_{7 N A}$.

Are you interested in Communal Aerial Television Systems Work? Then read onfurther.....

Due to continued expansion, EMI Service, part of EMI's Electronics and Industrial Operations group of
Companies, has the following vacancies for engineers at Hayes, Middlesex.

SERVICE ENGINEERS
required for bench and field work on
Communal.Television Aerial equipment. Must be capable of diagnosing faults and repairing wide range of aerial amplifying and distribution equipment.

SYSTEMS PLANNING

ENGINEERS

for the planning of Communal Television Aerial installations. Previous experience required to be capable of producing practical plans from building details and subsequently setting to work after installation.

Attractive starting salaries. Contributory Pension Scheme. Assistance with removal expenses in appropriate cases.

WANT TO TAKE THINGS FURTHER

then write or telephone for an application form to
R. N. L. Black, Personnel Department, EMI Limited, 135 Blyth Road, Hayes, Middlesex. oI-573 3888, Ext 2887.

British Relay Communication and Call SystemsSpeech and Visual

We are acquiring an increasing volume of business in this field including many very long term contracts, and we are seeking to expand the range of our activities. Consequently, we have immediate requirements for engineers with good practical experience and ability in any of the following aspects of the work:-

System Design
Planning and Estimating Project Control Installation Supervision Test and Commissioning

Duties are varied and interesting, with frequent opportunities for travel, and for acquiring experience in new fields. Enquiries and application for interviews will be treated in strict confidence, and shoúld be sent to:-

The General Manager, British Relay (Electronics) Limited, 41 Streatham High Road, London SW16 1EP
Tel. 01-677 9681.

A REALLY WORTHWHILE JOB

(Electrical Test Technicians/Engineers)

GEC Medical Equipment Ltd., based in North Wembley, is a world-wide leader in the manufacture of a wide range of medical diagnostic X-ray apparatus which is every day helping the sick and injured throughout the world.
Because of the ever-increasing demand for our equipment both at home and overseas and in order to maintain the high standard of reliability of our product, we need additional electronic test technicians/engineers with practical electrical/electronic experience, preferably qualified to City and Guilds or National Certificate standard.

The work involves testing and faultfinding on a wide variety of medical X-ray apparatus and associated units such as closed circuit television and image intensifiers using both orthodox and specialist test equipment.
There are excellent opportunities for career development. If you would like to know more about working with this Company please write, giving brief career details, or telephone: P. B. Blackmore, Personnel Officer, GEC Medical Equipment Ltd., East Lane, North Wembley, Middlesex, Tel: 019041288.

University College of North Wales, Bangor. School of Physical and Molecular Sciences.
 ELECTRONICS TECHNICIAN GRADE 5

Applications are invited for the post of Electronics Technician Grade 5 in the above mentioned Schoo

The successful applicant will be concerned with the servicing and maintenance of existing electronic equipment for research and teaching, and with the development and construction of new specialised equipment.

Applicants should have had several years practical experience in digital and linear solid state electronics, preferably in industry or the to about HNC standard.

Salary at an appropriate point on scale: C1,881 x 72- 62,241 per annum. (Salary Scale at present under review).

Applications (two copies), giving full details of age, qualifications and experience together with the names and addresses of two referees should be submitted to the Secretary and Registrar, University College of North Wales, Bangor, by not later than the 14 th November, 1973.

【3119

ELECTRONICS ENGINEER

at

THE OPEN UNIVERSITY
A vacancy occurs due to the setting up of a Psychological Laboratory for an Electronics Engineer. Duties will include the development of equipment for teaching and research such as a mini computer and a digital reaction timer, the maintenance of laboratory collaboration with academic Psychologists and the Electronics Laboratory.
Applicants should have at least 7 years relevant experience and qualifications such as City and quilds or HNC in relevant subjects. The appointment will be made on the Technician Grade 5 scale: $\mathbf{f 1 , 8 8 1 - \{ 2 , 2 4 1}$ per annum.
Further particulars are available from the Acting Personnel Manager (EP2), The Open Kniversity, P.O. Box 75. Walton Hall, Milton Apynes, MK7 6AL. possible.

ELECTRONIC ENGINEERS

required for equipmerit maintenance and associated engineering projects. Knowledge of professional tape recording equipment, studio operations, or high speed tape duplicating systems is desirable. Salary will be according to age and experience, Please write giving details of age, qualifications, experience and present salary to Chief Engineer, Rediffusion Reditune Ltd., Cray Avenue, Orpington, Kent.

Computer

Engineer

Character Generation

Rediffusion require an Engineer to maintain the above equipment in the London area. TTL experience essential. Knowledge of video circuits preferred.
Good salary plus Company car.

Telephone:

Mr. Yates 01-385 9472

Reading Education Committee

 Highdown School, Surley Row, Emmer Green, Reading. Telephone: Reading 475022
AUDIO VISUAL AIDS TECHNICIAN

required at the above school. Salary on scale K1,644 rising to 61,926 . Extra payment for will be given Minimum age 25. Preference Visual Aids Technician's Certificate. Maintenance, servicing and operation of a wide range
of A/VA equipment including $C T / T V$ and reprographic equipment. Further details and application forms obtainable from and returnable to the Chief Education Officer. 2 Cheapthe appearance of this advertisement.

UNIVERSITIES OF DURHAM AND LEEDS

BRITISH UNIVERSITIES AIR SHOWER PROJECT

A vacancy exists for a Technician to assist with the installation and operation of a small computer at the British Universities Air Shower Project at Haverah Park near Harrogate. The successful applicant should have a knowledge of digital electronics and/or Computer hardware and should reside in or be prepared to move to the Leeds-BradfordHarrogate area.
Salary will be at an appropriate point on the University Scale for Technicians (at present under review) ($1,881-\{2,241$ according to age and experience. The appointment will be for two years commencing list December, 1973 with the possibility of renewal of contract
Applications in writing giving full details, age, education and experience together with copies of testimonial's or names and addresses of two referees to the Personnel Office, Science Laboratories, South Road, Durham by 1 st November, 1973. Interviews will be held in Leeds in November, 1973.

MARCONI INSTRUMENTS LIMITED

ELECTRONIC TECHNICIANS

are required to work on calibration. fault:finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Test Technicians. Senior Test Technicians or Technician Engineers according to experience and qualifications. Our servicing and production programme, geared to our recognised export achievement. provides employment combined with prospects of advancement. not only within these grades. but into other technical and supervisory posts within the Company at Luton and St. Albans.

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assist ance with removal may also be given in appropriate cases. Please write or telephone. quoting reference WW178 for application form to

Mr. M. Leavens, Works Manager
Telephone: Luton 33866, or
Mr P Elsip. Personnel Officer
Marconi Instruments Ltd
Longacres. St. Albans. Herts
Telephone: St. Albans 59292
Member of GEC-Marconi Electronics

Bench Service Engineers

We require engineers with previous experience in TV (Colour and Monochrome). Radio, H-Fi, Tape/Cassette Recorders and V.T.R. products, for our Ashford and Leeds Depots.
Preference will be given to holders of C. \& G. certificates, but sound practical knowledge may outweigh formal qualifications. Basic salary will be based on experience and practical ability.
Fringe benefits include a twice yearly bonus. L.V's. contributory pension scheme and staff purchase facilities. Hours of work 9.00 a.m.-5.30 p.m. Monday to Friday. We would be interested to hear from experienced engineers who wish to work with products which are renowned for their reliability and quality. Please write or telephone with details of past experience and salary to:

The Personnel Manager,
Sony (U.K.) Ltd.
Pyrene House,
Sunbury Cross,
Sunbury-on-Thames,
Middlesex
Tel: Sunbury 87644

OR
Regional Sales Manager,
Sony (U.K.) Ltd.,
Universal Estate,
Wakefield Road, Gildersome,
Morley, Leeds.
Tel: Morley 69421

RADIO OFFICERS

DO YOU HAVE PMG I PMG II MPT
 2 YEARS OPERATING EXPERIENCE

possession of one of these qualifies
YOU FOR CONSIDERATION FOR A RADIO
OFFICER POST WITH COMPOSITE SIGNALS ORGANISATION.

On satisfactory completion of a 7 -month specialist training course, successful applicants are paid on a scale rising to $£ 2.527 \mathrm{pa}$; commencing salary according to age - 25 years and over $£ 1.807$ pa. During training salary also by age, 25 and over $£ 1,350$ pa with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered.

Full details from

Recruitment Officer, Government Communications Headquarters, Room A/1105 Priors Road, Oakley, Cheltenham, Glos GL52 5AJ, Telephone: Cheltenham 21491 Ext 2270

ELECTRONICS TECHNICIAN

FOR PATIENT MONITORING

Applications are invited for a post in a small team installing and maintaining patient monitoring equipment in this newly built hospital. The successful applicant will have an excellent opportunity to acquire experience in the application of electronics in medicine. Facilities include a new well equipped workshop.

Applicants should have at least three years experience in the electronics field, preferably in the construction of Electronic Instruments and possess an ONC or equivalent qualification.

Salary on the scale $\mathbf{£ 1 , 2 0 9 - £ 1 , 5 6 3}+\mathbf{£ 1 2 6}$ London Weighting. Applications quoting the names of two referees, to Mr. C. Hill, Personnel Department, telephone $748 \mathbf{2 0 5 0}$ ext 2992 from whom application form and job description are available.

SPANISH
 COMMUNICATIONS
 EQUIPMENT
 MANUFACTURER

> Has an immediate opening for An experienced Design and Development Engineer for Audio Equipment, including Highly Professional Mixing Desks, Compressors, Limiters, Audio Monitoring Amplifiers, etc. Systems Experience is desirable. Salary open.

Send resumé to:

NORTRON

Fernando el Católico, 63
Madrid 15
SPAIN

RANK VIDEO LABORATORIES

Require a Supervisory Maintenance Engineer to take charge of a small specialist staff maintaining a wide range of sophisticated electronic broadcast equipment, including AVR-1 machines, flying spot telecine, HS100 Computer Controlled Editing equipment and Cassette Duplicating machinery. A broadcast background is desirable.
Applications should be made, in writing giving brief details of experience to :-

The Manager, Rank Video Laboratory, 142 Wardour Street, London, W1V 4BU

or telephone 01-734 2511 for application form

PERSONABLE CHEMISTS or PHYSICISTS
 Currently in the Electronics Industry TO DEVELOP SALES OF IMPORTANT CONDUCTING and INSULATING COATINGS

Applicants should be experienced in production or quality control in at least one of the applicational fields to be covered, which include:-
Cathode Ray Tubes, Capacitors, Resistors, Potentiometer Tracks, Cables, Silk Screen Printing, Screening and Anti-Static Developments.
Applicants should be qualified to at least HNC level and be in the preferred age range 26-35 years. Successful applicants will be based in the north or south of England.
Good salary subject to regular review, Ford Cortina 1600 XL, changed every 25,000 miles, modern contributory pension scheme, B.U.P.A., Life Insurance and other fringe benefits.
Applications including Curriculum Vitae marked Personal to :-

```
G. J. D. BROOKS,
ACHESON COLLOIDS COMPANY,
PRINCE ROCK,
PLYMOUTH PL4 OSP
```


ARTIFICIAL KIDNEY AND
 TRANSPLANT UNIT CHIEF TECHNICIAN

required to be responsible for the supervision of junior technical staff and control and maintenance of the artificial kidney equipment. Experience in Dialysis Unit an advantage but not essential. ONC, HNC, or HND in electrical or mechanical engineering, preferably with some electronics experience.
Starting salary $£ 2,037$ rising to $£ 2,634$ plus payment for on call and weekend rota.
Applications to: The House Governor, The London Hospital (Whitechapel), Whitechapel, London E1 1BB. Tel.: 01-247 5454 Extn. 388.
[3151

OPPORTUNITIES in the ELECTRONICS FIELD
Men with analoaue or diaital qualifications/ experience seeking hioher paid posts in: TEST - SERVICE - DESIGN - SALES. Phone Roger Pearce Ref. WW2.

EMII Electronics L.td., at Hayes Middx. can offer you a rewarding job and a career with a future.

To meet the commitments of major new contracts our Radar and Equipment Division requires authors for the preparation of handbooks and specifications.

The positions involve close liaison with a design team and cover all aspects of information required for large radar systems.

We are particularly intercsted in applicants with experience of writing handbooks to ATP standards and/or experience in the preparation of test specifications in ATLAS or ATLAS-type test language.

The advanced nature of our work requires authors who enjoy meeting the challenge of new techniques in the preparation of handbooks and specifications and who wish to make a genuine contribution to these disciplines.

Salaries will be up to $£ 2700$ dependent upon experience and ability.

Please write or telephone for an application form to:-
R.N.L. Black, Personnel Department,

EMI Electronics Ltd., 135 Blyth Road, Hayes, Middlesex.
Tel: or-573 3888 Ext. 2887.

NEWMAN APPOINTMENTS

Technician Engineer

(Solid State Circuits)

If you know about solid state circuitry read this - then ring us - but you must be experienced in maintenance, design and construction of solid state electronic circuits, preferably in communications and CCTV.
If you are the right man - preferred age range 25/40 - you will share the responsibility for the maintenance of a wide range of sophisticated electronic devices and a radio communications network. Technical competericy in your field will lead to additional design and installation responsibilities under guidance of the Company's electro-mechanical research and development group.
The job is based in Central London. If you think you can handle it, phone 01-405 5200 (reversing charges) to tell us about yourself, and to get more details.

Senior Engineer

With good practical knowledge of Electronics and experience in Broadcasting, recording studios or quality Hi -Fi, he will be responsible for the installation of professional Audio Equipment in Studios and in the Maintenance Department. This position entails considerable travelling in the U.K. and abroad. Company Car to be provided.

Junior Engineer

With good basic knowledge of Electronics and who has had some experience in Broadcasting, recording or $\mathrm{Hi}-\mathrm{Fi}$, he will be involved in the maintenance and installation of Studio Equipment. This can be a unique opportunity for the right person wanting to enter the professional Studio industry.

Please write giving full details to:
FELDON AUDIO LTD.,
126 Great Portland Street, London, W1N 5PH
Attention: Mr. W. Dyer

SOUND ENGINEER SOUTH AFRICA

Major South African Record Company are expanding their studio operations. They require an experienced Sound Recording Engineer to head up a team that will operate a new multitrack complex with the latest equipment. Salary negotiable.
Write giving full details of professional background and experience to box WW 3067.

BERRY'S RADIO

 has vacancies for(a) SENIOR SALESMEN
(b) SENIOR ENGINEERS TOP RATES OF PAY
5-DAY WEEK - PERMANENCY Apply: Mr. K. (405-6231)
319 HIgh Holborn, London WC1
[97

THE MOTOR INDUSTRY
 RESEARCH ASSOCIATION
 Electronics Maintenance Engineer

Preferably with HNC or equivalent required. Practical experience of the maintenance of digital computers, A.D. converters etc., employing integrated circuits would be an advantage.
Applications in writing to MIRA, Watling Street, Nuneaton, Warks., giving age, experience and current earnings, quoting ref. CHGM.
[3116

ELECTRONICS ENGINEER

A rapidly expanding company manufacturing Hi Fi equipment offers an exciting future for an Electronics Engineer with drive and ambition. He should be experienced in audio and capable of designing and making test modules.

Apply to:
MACDONALD ELECTRIC
Stour House,
High Street,
Wollaston,
Stourbridge.
Tel. Stourbridge 3102.

H

tele cinentr engineers

ar their
CARDIFF STUDIOS
A.C.T.T. conditions of employment will apply. career details to:

Mr. P. McGathey, Personnal Maneger.
HTV Led., Television Centre, Catdiff.

Due to further expansion
Due to further expansion
BIAS ELECTRONICS
BIAS ELECTRONICS LTD. require
the man
Test Engineers/Wiremen/Mechanical Assemblers professiona! Audio Equipment.

Phone of Write to: Unit 8, Coombe Trading Estate, 1 12/120 Coombe Lane, London. SW20. OBA. Tel: 01-947 3121 [3206

VTR ENGINEER

Required by
 COLOUR VIDEO SERVICES LTD.

to work in a small enthusiastic team providing colour film recordings to broadcasters throughout the world.
Two years' experience in broadcast VTR operations and maintenance together with a sound fundamental knowledge of colour TV systems are the essential qualifications.
Starting salary will be within the range of $£ 2,365$ to $£ 2,935$ depending upon experience.
Applications in writing should be addressed to:

> Mr. R. J. Venis Colour Video Services Ltd., 10, Wadsworth Road, Perivale, Middlesex. successful applicant must be a Service Engineer with Radio, TV and Audio background. A high degree of circuit knowledge is required together with the ability to work on own initiative. Commencing salary $£ 2000 / £ 2500$ according to age and experience. Please write or telephone Mr. A. Massing, Europhon (Radio \& Television) Ltd.; 70 Caledonian Road, London N1 9DN 01-837 3045/6
CREATIVE electronics engincer needed for búsiness venture. No capital needed. No need to relinquish your job. 01-994 6264. ${ }^{\text {GLECTRONICS }}$ TECHNCIAN required to 3192 ELECTRONICS TECHNICIAN required to join Respiratory Research Group. Work involves
development and maintenance of respiratory instrudevelopment and maintenance of respiratory instrumentation in Clinical and Physiology sections of desirable. Salary according to qualifications and experience. Applications to Secretary, Royal Postgraduate Medical School, DuCane Road, London W 120 HS , quoting reference $2 / 243 / \mathrm{WW}$. [3142

Electronics Engineers

lecture on computer servicing.

International Computers Limited, Europe's leading computer company, is looking for Electronics Engineers to teach the practicalities of computer servicing. At the largest training centre of its kind in Europe, ICL will first of all ground you in computer technology and education training, and then ask you to train customer engineers to such a standard that they will be able to maintain computers at optimum operational specification.

We are looking for a thorough electronics competence and the ability to put across your own first-rate knowledge. Ideally, you will have an HNC or Forces' training in electronic engineering and at least three years'

International Computers
think computers-think $\mid C L$
ICL

CIRCUIT DESIGNERS

The Systems Division of Redifon Electronic Systems Limited has vacancies for two circuit designers.

Linear Circuit Engineer

Several years of experience in the design of a range of circuits, willing and able to tackle any circuit problem from first principles. Quite familiar with linear integrated circuits: a working knowledge of digital networks would be useful but is not essential. Experience in line data communications, broad rather than specialised would be advantageous.
Probably the right engineer for this job will be in the region of $28-33$ years old, but age in itself is no impediment (at either end of the range)

Digital Circuit Engineer

1-2 years experience in the design of digital logic networks using integrated circuits. We have in mind computer-type applications, but not computer design as such.
These people are required for work on a new aspect of computer-based communication systems.
Above average salaries for above average applicants.
For further information and application forms contact:
Mr. A. Cox
Personnel Manager Redifon Electronic Systems Ltd.,
P.O. Box 2, Manor Royal, Crawley, Sussex. Crawley 27074

VIDEO TECHNICIAN

to locate in

CANADA

A Canadian company with several cable television systems in Southern Ontario is seeking an experienced broadcast technician who will assume the technical responsibilities of a small television broadcasting studio
This is a senior technical position requiring a formal electronics training background with a strong employment background in video and audio maintenance related to television broadcast principles.
This is a permanent position with attractive salary and opportunity for advancement within a rapidly growing industry. The successful applicant would be located in London. Ontario, a very attractive city with a population of 230,000 .
Please forward a complete resume to:
H. J. VANDER LAAN,

JARMAIN CABLE SYSTEMS LTD.,
800 York Street, London N5W 2TI, Ontario, Canada,
INTERVIEWS WILL BE CONDUCTED IN LONDON, ENGLAND, AT A LATER DATE
[3122

WEST SUFFOLK HOSPITAL MANAGEMENT COMMITTEE

EIECTRONICS TECHNICIAN

SALARY $£ 1,602-\{2,076$

(According to qualifications and experience)
Applications are invited from suitably qualified and experienced technicians based at Bury St. Edmunds, serving a number of hospitals in the South West quadrant of the East Anglian Regional Hospital Board
Candidates should possess H.N.C. (Electronics), H.N.D. or equivalent but consideration may be given to suitable candidates with O.N.C. who are proceeding to a higher qualification.
Successful candidates will be a member of a small team engaged upon the commissioning, maintenance and repair of a wide range of electronic/bio-medical engineering equipment.
Possession of a car essential.
This post offers a satisfying career in the Hospital Service and excellent experience in this field of engineering.
Application form and Job Description obtainable from the Personnel Officer, West Suffolk Hospital Management Committee, 36 Mill Road, Bury St. Edmunds, Suffolk, IP33 3NR. Telephone Bury St. Edmunds 63131.

[3124

ELECTRONICS VACANCIES

Ministry of Defence Experimental Establishment in the Lake District requires experienced electronics mechanics to install, maintain and develop a wide range of interesting equipment.
Rate of pay for 40 -hour 5 -day week $£ 28.03$ on entry rising to $£ 31.03$, depending on experitnce, plus a productivity bonus of $£ 2.65$ per week
The posts are pensionable, there is a sick pay scheme, three weeks annual paid holiday and an assisted travel scheme. There is a prospect of housing accommodation within a reasonable period for a married man, hostel accommodation is immediately available for single men.
If you have served a recognised apprenticeship or have had equivalent service training and would like to work in a beautiful part of the country, send for an application form to:

Personnel Officer
Ministry of Defence (Procurement Executive)
Eskmeals
Bootle Station
Cumberland LA19 5YR
Telephone: Ravenglass 214/5/6

H1-FI AUDIO ENGINEERS. We require experito eneed Junior and Seniors and will pay top rates UNiVERSITY COLLEGE HOSPITAL MEDICAL U SCHOOL. Applications are invited for the post of Audio-Visual Technician/Co-ordinator, to take charge of the Medical School's Lecture Theatres and audio-visual aids including CCTV, VTR and T/S equipment. Salary according to expericnce and
qualifications within the range $£ 1,077-£ 1,944$ plus $£ 126$ qualifications within the range $£ 1,077-£ 1,944$ plus $£$ the
London Weighting. Application forms and further London Weighting. Application forms and further
particulars obtainable from The Secretary, University particulars ospital Medical School, University Street, College Hospital Me
London WC1E 6JJ.

SITUATIONS VANTED

DO you require Indian representation? B.Sc. bay. Willing to act as local rep. for U.K. companies. Ref. available. Write Box WW 3035 .
EX BBC audio engineer. disillusioned by educational E CCTV, seeks work where his experience and ability with mixers and recorders etc.. will be appreciated and rewarded. Offers and suggestions welcomed. Yorkshire area preferred, but will travel. Box No.
WW 3162: RARINE RADIO OFFICER: (Aged 27), eight 1 years sea service seeks employment ashore within the electronics field in either field service, sales DTI Radar Certificate. Willing to learn new fields and DTI Radar Certificate. Willing to learn new felds and travel either at home or Boroad 3099
GURPLUS components and computer boards pur-
[3108

ARTICLES FOR SALE

A ARVAK ELECTRONICS. 3-channel sound-light
 9096.

BUILD IT in a DEWBOX quality plastic cabinet D_{2} in. $x{ }^{2 \frac{1}{2}}$ in. x any length. D.E.W. Ltd. (W.), Ringwood Rd., Fernwood, Dorset. S.A.E. for leaflet CONSTRUCTION AIDS-Screws, nuts, spacers etc. Cons in small quantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia panels etched spec. or plain sheet suminim to individual requirements. Printed circuit boards-masters, negatives and board, one-off or small numbers. Send 6 p for list. Ramar Constructor Services, 29 Shelbourne Road, Stratford on Avon,
[28 Warwk
COMPONENTS. Capacitors from tp. Resistors 25p/100. Cartridges, e.g. GP91-3SC 90p. Styl
from 20 p . Small toroidal Transformers 5 p . Hardware, from 20p. Small toroidal Transformers $5 p$. Hardware, intercoms, Cross-overs, Connectors, 5-pin plug and Intercoms, Cross-overs, Connectors, $5-$ pin plug and
socket 5 p . Valves, testing service offered. 22-page lists socket Sp. Ralves, 4 stamp. R.F. Supplies, "Down Barton," Woodham Road, Woking, Surrey. Mail Order Only. [3115 COLOUR. UHF and TV SPARES. Colour and C UHF lists available on request. New Philips G6 single standard convergence panels complete, incl 16 controls, coils, P.B. switches. leads, etc. and circuit data $\mathbf{x} 3.75$, or with yoke 2.00, P/P 30p. New Colour Scan Coils. Mullard or Plessey plus convergence yoke and blue lateral, $£ 10.00, \mathrm{P} / \mathrm{P} \quad 40$. Mullard AT1025/05 convergene Blue Laterals f1.25, P/P 25p. MrC 3000 type Scan Coils, £4.00, P/P 40 p 10p. BRC 3000 type Scan Coils, $14.00, ~$ P/P 40 p.
Delay Lines DL20, £3.50, DL1E, DL1. $£ 1.50, \mathrm{P} / \mathrm{P}$ 25p. Lum. Delay Lines, 50p, P/P 15p. EHT Colour Quadrupler for Bush Murphy CTV $25111 / 174$ series, Quadrupler for Bush Colour Tripler ITT TH25/1TH suitable most sets, $£ 2.00, \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. KB CVC1 Dual Stand. convergence panels complete incl, 22 controls, £3.75, P/P 35p. CRT Base Panel, £1.75, P/P 150. Makers Colour surplus/salvaged Philips G8 panels part complete: Decoder incl. 1/C, £2.50, IF incl. 5 modules, £2.50 T. Base, ${ }^{£ 1.00}, \underset{\mathrm{P}}{\mathbf{P} / \mathbf{P}} \mathbf{2 5 p}$. CRT base, $75 \mathrm{p}, \mathrm{P} / \mathrm{P}$ 15p. GEC 2040 panels, $£ 1.00, \mathrm{P} / \mathrm{P}$ $£ 3.50$, T. Base, $£ 1.00$, RGB and Sound, $£ 1.00$, P/P
25p. Pye CT70 Colour LOPT assembly incl. EHT 25p. Pye CT70 Colour LOPT assemb/y 35p. B9D output and Focus valve bases $10 \mathrm{p}, \mathrm{P} / \mathrm{P}$ p. VARICAP TUNERS. UHF valve bases 10p, P/P ${ }^{\text {ELC }} 1043$ NEW, $£ 4.50$, Philips VHF for Band 1 and $3, £ 2.85$ incl. data. Salvaged VHF and UHF Varicap tuners, £1.50, P/P 25p. UHF TUNERS NEW. Transistorised, $£ 2.85$ or incl. slow motion drive, $£ 3.85$. 4 position and 6 pos. push-button transistd., £4.95.
UHF/VHF basic integrated tuners, $£ 3.25$. Cyldon UHF/VHF basic integrated tuners, £3.25, Cyldon UHF valve tuners, $£ 1.50$. All tuners ${ }^{\text {P/ } / \mathbf{P}} 30 \mathrm{p}$. Transistd. UHF VHF $1 F$ panels samplete UHF Con${ }^{25 p}$ version Kits incl tuner, drive assy., 625 IF amplifier, 7 version Kivs accessories housed in cabinet plinth assembly. £7.50 P/P 50p. SOBELL/GEC 405/625 Dual standard switchable IF amplifier and output chassis incl. cct. £ 1.50 P/P 35 p . THORN 850 Dual standard time base panel, $£ 1.00 \mathrm{P} / \mathrm{P} 35 \mathrm{p}$, PHILIPS 625 IF amplifier panet incl. cct., $£ 1.00 \mathbf{P} / \mathbf{P} \quad 30 \mathrm{p}$. VHF turret tuners AT7650 incl. valves for K.B. Featherlight, Philips 19TG170, GEC 2010, etc., £2.50. PYE miniature incremental for 110 to 830 , Parm and suiniature with UHF injection suitable K.B, A.B miniature with URF injection suitable K.B Baird. Fergarconi, $£ 1.90 \mathrm{P} / \mathrm{P}$ all tuners 30p. Large selection LOPTs. Scan Coils. FOPTs available for most popular makes. PYE/LABGEAR transistd. Mast head UHF Booster. £5.75, Power Unit. £4.65 P/P 30p or Setback battery operated UHF Booster, £4.65 P/P 30p. MANOR SUPPLIES, 172 WEST END LANE, LONDON. N.W. 6 (No. 28. 59,159 Buses or W. Hampstead Bakerloo and Brivive LONDON NRDFR: T1 10 N.W.1. Tel. 01-794 8751

LADDERS 8 ft . 10 in , closed- 22 ft . 6in. extended Haldane (North), Halesfield (1), Telford, Shropshir Tel. 0952586644
MARCONI TF329 Q-Meter, good condition, £30
APPOINTMENTS-Continued on p. 138

BOOKS

ARTICLES WANTED

ESSENTIAL BOOKS!

handbook of transistor equivalents and SUBSTITUTES. Includes many thousands of British, USA and Japanese transistors. 78 pages. 40. p.p. 5 pence
HANDBOOK Of Radio V and Equivalents. 40p. p.p. 5p.
 tectinical coileges, universities and polytechnics. Fully
illustrated. 532 pages. published at F 45 Special offer of illustrated. 532 pages. Published at $£ 4.50$. Special ofter
$£ 2.25$ per copy. p.p. 30 p.〔2. 25 per copy. p.p. 30 .
CONSTRUCTORS MANUAL OF CUITS FOR THE HOME. Just published Contains man
 OPERATION. 40p. p.p. 10 p
ELECTRONIC NOVELTES FOR THE MOTORIST
50p post free of practical electronic musical
HANDBOOK NOVELTIES. 50p post free
practical transistor novelty circuits. 40 p
THE THEORY OF guided electromagnetic WAVES. R. Waldron. The most comprehensive book ever tors. Micro Waves etc. Published at $\mathbf{£ 1 1 5 0 \text { . Special offer of }}$ E6.25. p.p. 35p. A coldmine of information for the experimenter, amateur and scientist. Published by Oxford Univ. Press. E1.60. p.p. 15p.
THE GOVERNMENT SURPLUS WIRELESS EQUIPMENT HANDBOOK. Gives circuits data and illustrations. plus valuable information for British/USA receivers. transmitters trans/receivers. With modifications to sets and test equipment DIRECTORY OF GOVERNMENT SUR
EQUIPMENT DEALERS. Gives details EquIPMENT DEALERS. Gives details of surplus wireless equipment that they are likely to have available. A valuable book only 40p. p.1. 10 p.

NEW BOOKS. Publication date for these three titres is Nov. 15 Hh Order now to avoid disappointment as MOBILE RADIOTELEPHONE MOBILE RADIOTELEPHONE EQUIPMENT HANDBOOK. Gives circuits data. and illustrations plus some valuable
telephons equipment including ive commercial raciomakes. $£ 4$ including postage
HOW TO MAKE $2 \& 4$ METRE CONVERTERS FOR AMATEUR USE. 50p 10 ADVANCED BOOK OF CRYSTAL SET DESIGNS. 35 D.

A COMPREHENSIVE WORKING HANDBOOK OF SATELLITES AND SPACE VEHIGLES MANDBOOK OF provides important data both tabular and graphical en abling space scientists. technicians and telecommunication space vehićle design, launching. orbiting etc. Includes a detailed coverage of Communications in Space. An imposing book of 457 pages. Published at $£ 8.20$. Available at $£ 650$. post fire, hi-FI, PA., guitar \& discotheaue amplifier DESIGN HANDBOOK. Includes circuits yp to 1100 watts ourput. Tremolo, Vibrato. and Fuzz-BOX Etc. 75 p. post free
ANY BOOK IN PRINT OBTAINED FOR YOU. State Author. Title Publisher. SEND S.AE. FOR FREE LISTS OF RADIO TECHNICAL, SCIENTIFIC. ELECTRONICS, \& GENERAL BOOKS.
please state your interests
GERALD MYERS (w.w.)
18 SHAFTESBURY STREET, LEEDS LS12 3BT.
Bookseller 8 Publisher
new showrom \& trade counter open at OFF TOWN STREET.
ARMLEY, LEEDS 12. (near Whith Horse Inn) Calle

PRACTICAL BOOKS

World Radio and TV Handbook 1973,
Intergrated Circuit Pocketbook, 282 pp.
Intergrated Circuit Pocketbook, 282 pp .
Electronic Engineers Ref. Book, 1532 p.
Electronics Pocketbook, 314 pp. Illus... Illus.
Foundations of Wireless and Electronics, 532 pp.
110 Interarated Circ. Proj. for the Home Cons.
110 Interarated Circ. Proj. for the Home Cons.
110 Semiconductor Proj. for the Home Cons.
Intergrated Circuit Engin. for the Home Con
Intering, 406 pp . Illus Intergrated Circuit SYstems, 236 pp . Ilus.
Aerials $(P 3$) TV and FM. Loudspeakers and Loudspeaker Cabinets. 120 pp. Illu Radio Valves, 134 pp. Hllus...
Stereo Handbook, 150 pp. iliu
Transistars in Logical Circuits, 132 pp . illus...
Practical Oscilloscope Handbook, $11,8 \mathrm{pp}$. Illus.
Principles of Feedback Design, 246 pp . Hlus
Princlples of Translstor Circuits, 318 pp . Mllus.
Ques. \& Ans. on Electronics, 12 PR.
Ques. \& Ans. on Electronics, 112 pp. Illus..
Ques. \& Ans. on ransistors, 96 pp. Illus. $1 . .$.
Semiconductors: Basic theory \& devices, 272 pp . il Simplified Modern Fitter Design, 193 pp. Illus... Transistor Circuit Design Tables, 128 pp .
Transistor Pocketbook, 312 pp. Illus....
Transistirs for Technical Colleges, 210 pp. Ilius.
20 Solid state Projects for the home, 114 pD. Solid state Projects for the home, 114 pp . llius
Beginners Guide to Radio, 204 pm . Illus. Dictionary of Radio \& TV, 380 pp . Hllus. Everyman's Wireless Book, 368 pp . Illus. GM Radio Servicing Handbook 206 pp. Illus. Guide to Broadcasting Stations, 164 po.
The Hi-fiand Taperecorder Handbook. 304 pp . Mi....
Introduction to Radar and Radar Techniques, 136 . Marine Radio Manual, 62 pp . Illus............
The Practical Aerial Handbook, 232 pp. Ilius. The pracfical Aerial Handbook, 232 pp. Illus.
Practica Intergrated Circuits, 144 pp. Illus. Practlca: TV Circuits, 376 pp. Illus...... Practical Wireless Circuits, 192 pp . Illus...............
Practical Wireless Service Manual, 288 pp . Principles of Aerial Deslon, 182 pp . Illus...
Principles of PAL Colour TV Principles of PAL Colour T'V. 162 pp . Hus. Ques. \& Ans. on Audio, 104 p p. Hps. Illus. Ques. \& Ans. on Colour TV. 108 pp . illus...
Radio and Audio Serv, Handbook, 284 po. Radio and Electronic Handbook, 156 pp . Illus. Radio Valve and Transistor Data, 240 pp . Illus. Television Servicing Handbook, 358 pp, illus.. Wireless Servicing Manual, 302 pp. Illus..............
How to nake Walkie Talkies for licensed operation How to nake Walkie Talkies for licensed operation
Handbook of Trans. Equivalents \& substitutes. Handbook of Trans. Equivalents \& substitutes.
Handbook of Tested Transistor Circuits, 64 pp Sound and Loudspeaker Manual, 96 pp.....
Practical Transistor Novelty Circuits, 64. Practical Transistor Novelty Circuits, 64 pp .
Hi-f. P.A., Guitar, Discotheque Ampl. Des Ampl. Design HandElectronic Novelties for the Car Owner
2nd Bock of Trans. Equivalents \& Substitutes Radio Serviclng for Amateurs.
Radio. T.V. and Electronics Data Book.
Translstor Circuits for Rado Controlled Models
Modern Transistor Circuits Manual of Translisior Audlo Amplifiers.. Practical Car Radio Handbook.
1-2-3-4 Servicing Sterèo Amplifiers, 240 pp . ilius 101 Ques. \& Ans. about AM, FM, \& SSB. Illus 99 Ways to improve your S.W. Histening, 144 pp 99 Electronic Projects, IIlus... Transistorlsed Radio Control for Models Making and Using Electronic Oscillators, 128 pp Making and Repalring Transistor Radios, 128 pp $A B C$'s of Electrical Solderin.
Car Radio Servicing Made Easy, i
Elecrric Guitar Amplifier Handbook.
Hi-f Stereo Handbook.
Hi-fi Stereo Servicing Guide
How to repair small Appliances
Madio Spectrum Handbansistor Radios, 128 pp Servicing Digital Devices. Tape Recording Servicing Guide.
Transistor Radio Servicing Made

WHEEL PUBLICATIONS (WWA) 41a Adelaide Grove, London W12 OJH.

ARTICLESFORSALE

PRESENTING OUR NEW MII STANDARD MIXER
PLUG IN INTERCHANGEABLE MODULES \quad MONO OR STEREO - OPTIONAL AUTOFADE KIT OR READY TO USE AVAILABLE UP TO TWELVE WAYS.
FIVE WAY MONO. KIT $£ 46$ + VAT. READY TO USE $\mathbf{£ 7 1 . 5 0}+$ VAT. FOR FULL DETAILS WRITE QUOTING REF WW 10 .

23-25 HART ROAD, BENFLEET, ESSEX SS7 3PB
 PHONE SOUTH BENFLEET (STD 03745) 3256

WANTED

PLUGS AND SOCKETS
Plessey/Painton Mk. IV, Mk. VI, Mk. VII UK-AN Multicon H.D. Multicon 159 Series

Send lists to:
J. SALLIS,

Oatlands Farm, Brighton Road, Shermanbury, Horsham, Sussex. Tel: 710-515.

ELECTRO-TECH COMPONENTS LTD.

Are buyers of all types of electronic components and eauipment. They will be pleased to view clearance stocks anywhere in Great Britain at one or two days notice
and negotiate on the spot!

ELECTRO-TECH

COMPONENTS LTD.
315/317 Edgware Road, London, W. 2
Tel: 01-723 5667. 01-402 5580

> [37

WE BUY SURPLUS ELECTRONIC COMPONENTS AND TEST EQUIPMENT, IN QUANTITY.
LINWAY ELECTRONICS
42 Spencer Avenue, Hayes,
Middlesex UB4 OQY
CONTACT US - YOU'LL NOT REGRET IT!
Tel. No. 01-573 3677

WE PURCHASE
All types of Electronic Components and Test Equipment. Cash waiting:

TRANNIES

1 Dockyard, Station Road, Old Harrow, Essex. Tel No. (027-96) 37739

CAPACITY AVAILABLE

IMMEDIATE CAPACITY
Available for electronic assembly. Batch or
protoype work, cableforming, wiring and PC
assembly,
BSF INDUSTRIES
26 Goodways Drive, Bracknell, Berks.
Phone: Bracknell 28243
[3:32

COURSES

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV \& Electronics. Expert tuition for C \& G (Telecoms Techn's Cert and Radio Amateurs') RTEB, etc. Many non-exam courses including Colour TV Servicing, Numerical Control and Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career. ICS, (Dept 734 X) Intertext House, London SW8.

13000

CLASSIFIED

FOR SALE

N．Z．Forest Products Ltd．－New Zealand

Due to large expansion，existing forest radio system will be available for sale early in 1974.
All radios are V．H．F．F．M．in the band $88-108 \mathrm{MHz}$ ， 50 KHz channel spacing；deviation up to $\pm 15 \mathrm{KHz}$ ； 4 channels fitted with 3 channels．
Radios：
36 only Pye Cambridge V．H．F．F．M．type FM10D（12v DC） 90 only Edac type 28RR108（12v DC） 24 only Edac type 28RR108（24v DC）
Repeaters： 6 only Edac Receivers as for mobiles 24v DC 6 only Edac Transmitters type 28RZ104A 75 watt 24v DC

Frequencies：
Ch． 1 Tx 99.350 MHz Rx 95.425 MHz
Ch． 2 Tx 99.300 MHz Rx 95.325 MHz
Ch． 3 Tx 99.400 MHz Rx 95.375 MHz
Sundry spare parts include：Mounting trays，aerials， microphones，components etc，Handbooks and logbooks． ALSO
For disposal separately the following Standard Tele－ phone and Cables Ltd．＂Starphone＂equipment in un－ used condition：
4 only＂Starphones＂on the frequencies Ex 461.8375 MHz Tx 467.025 MHz plus sundry items．
Interested parties are requested in the first instance to write for further information to：

TURNER \＆COATES LTD．（989／890） 229／231 High Holborn，London WC1V 7DA

EAST CORNWALL COMPONENTS

Special Semiconductor Offers

$N 4148$						
100	$£ 3.50$	$(.035$	each $)$	100	$£ 1.75$	$(.0175$
500	$£ 15.00$	$(.030$,,	500	$£ 7.00$	$(.014$
1,000	$£ 25.00$	$(.025$	$,)$,			
5,000	$£ 100.00$	$(.020$	$,)$,	5,000	$£ 12.00$	$(.012$
50.00	$(.010$	$,)$,				

BZY96C8V2

1．5 Watt 8．2v Zener Diode DOI Package（＂Top Hat＂）

25	120
.	each
100	100
500	.080
1,000	.060

Cl06F
Thyristor IT（RMS）4A 50v IGT（at 25C） $200 \mu \mathrm{~A}$

\section*{| 25 | .250 |
| ---: | :--- |
| 100 | -200 |
| 500 | .150 |
| 50 | |}

BAll5
1.50 PIV $10 \mathrm{~m} /$ A Sillicon Diode

25	.055	each
100	.045	＂，
500	.040	$"$,
1,000	.030	＂，

2N4288，2N4290，2N4292
National Semiconductor
Silicon Transistors in
＂GEM＂package v－29

25	.100 each	
100	.090	$"$
500	.080	$"$
1,000	.070	\because

GERMANIUM TRANSISTORS

Glass type available to the following specification：
$\begin{array}{lll}\text { Vceo MIN 25v } & 25 & £ 1.25 \\ H F E ~ & 100 & £ 4.00\end{array}$ HFE 20－100 at Ic 5m／A VCE $3 \mathrm{r} \quad 100 \quad \mathbf{~} 4.00$ ICBO MAX $10 \mu A$ at VCBO ISV
$(.050$ each $)$
$(.040$
$(.035$
（．）
$(.030$$\quad$＂）

Special selection of HFE available of $60-100$ ．Add 30% to standard price．
All prices are subject to 10% VAT．

P．O．BOX 4，SALTASH，CORNWALL

NEW FROM ELBON

L．E．D．＇s（Red Emitting）ideally suited for panet indicators Price only：33p each or $\mathbf{C} 2.50$ for 10

Light SENSITIVE SWITCHES

Two types avallable giving wide operating vottages
LITE－IC2 11 V －20V working－ $\mathbf{\mathbf { 1 }}$ each－ $\mathbf{£ 8} \mathbf{5 0}$ tor 10
LITE－IC3 $20 \mathrm{~V}-30 \mathrm{~V}$ working $-\mathbf{£ 1}$ each－ $\mathbf{£ 8} \mathbf{5 0}$ for 10
Applications include：Relay，Triac or Logic Drive．
atomatic light switching and door control，beam／break
detection－burgiar alarm，baten counting and code reading
BARGAIN PACK！
2 LITE－IC2， 2 LITE－IC3 and 5 LED＇s all for $\mathbf{\text { L5－00 }}$
aLL PRICES INCLUDE VAT，PACKING AND CARrIAGE
Plesse send C．W．O．to：
ITE－IC．ELBON，
summerfield，tme Crescent，west wittering，sussex

HEWLETT PACKARD 983CA

 CALCULATORAre you waiting delivery？New machine
arailable immediately at 63,500 ．
Also Counter HP5300／5303B with high stability time base（aging rate
in $106 /$ year $£ 700$.

Ring Mr．Savage
LTB Press 01.3407217

13153

COMPUTER EQUIPMENT

RCA301 $\frac{1}{}$＂ 96 track 33 kHz tape decks in cabinet complete with electronlcs $£ 82.50+$ carr at cost．7lbs，assto computer
 pa x 1200ft，tape on $7^{\prime \prime}$ NAB spools 75p（25p）；抽 $\times 18001 \mathrm{tt}$ ．NAB spools In case 75p（40p）；40k 7－bit core store E44；Variacs transiormers，cabinets，etc， lènt condlition（ $£ 2$ ）； 5 MHz Xtal callbrator $£ 6$（ $£ 1$ ）： 7 lb ． Bargain parcels，contain 100＇s resistors，capacitors，switches
 4 valve amplifier in case with $7 \times 4^{\prime \prime}$ speaker and non－standard

 heat sink with $2 \times 1 \cdot 10(20 \mathrm{p})$ ；Prlces include VAT；Carrlage in
tors，all types $£ \mathbf{E}$ ． brackets；S．A．E．list．
GREENWELD（W6）， 24 Goodhart Way，West Wickham， 2009 and 38 Lower Addiscombe Road，Croydon．

Trampis alantranin

add 10% VAT to price
Money Back Guaramteed． Mitral inoicaters 7 seg．DP 5v Filament ype \＆socket E1．45．LEO TPPE \＄0 0．9 DP 14 pin 마 $\mathbf{1 2 . 4 9 . 4 + £ 2 . 2 9 \text { ва } 6 + £ 2 . 1 9 \text { ва } 1 0 + ~ + ~ + ~}$ 2．15 pa． 4 DiGit Lifo DIL／magnifier f 11 ． LIGHT EMITTING DIODES 8 data f＂DiA ape \＆panel clip REO 33p．GREEN 73p．TIL209 l＇DIA IEd 25 p ．INFRA RED E1．10．Opto UITRASONIC TRANSDUCERS E 2 ．

ic digital clach

MOS LSI chip． 28 pin． 4 or 6 digtt． 12 or 24 hr at flick of switen Chip with DIL
 $11-20 \mathrm{v} 40 \mathrm{ma}$ relay TTL dive Photo amphigger／fiver 87p aa． $10-77 \mathrm{pa}$

 Regulators
RECEIVER ferranti $\mathbf{f 1} 19$ ．Dual Pre amp $\mathbf{1 1 . 6 7}$ ．3．5W AF AMP $\mathbf{~} 1.24$ ．STERED DECOOFR IC FOR FM TUNERS MC13IDP C 2.69 ．KIT C 3.45 ．

$74 \pi \mathrm{TTL}$ BRAND NEW

WMY\％

Gates $740011 / 2 / 3 / 4 / 5 / 10 / 20 / 3040 / 50$ atc 14 p 日8 7413 27p． 744173 p

 C MOS logic in new lists DiL PLUGS $/ \mathrm{C}$ Case 10 mim high 16 pin 35 p ．
CMOS Logit in new lists
OIL SOCKETS low high profile $8 / 14 / 16$ pin $13 p 100+10 \mathrm{p}$ ea．SEMICON DUCTORS 25 －less 10% ZENERS．BZYB8 400 mW 7 p ． $\operatorname{NN4001} 3 \mathrm{3} \mathrm{p}$ ． $\operatorname{N} 8143$ p．

 13⿺．B0131／2 55p．BFY50／51／52 ${ }^{13}$ p．TIS 43 UJT 24p． $2 N 706$ 11p．2N2363 12p．2N2926 og 8p．2N3053 17p．2N3055 40p．2N3614 55p 2N3702／3／4 56 ／7／899 10／11 AH Sp．FETS 2N3819 27p．2N3823 29p．2N3886 UHF 59p

to ea．

\＆WATT with diffuser．onfort switen Fulli，buill 13 ＇＂long．TRIO and CODAR communications and Hi Fi retailera．ELECTRONIC ORGANS imponisd，fuil facilitios from c67．ELECTRONLC CAR IGNMON

FREE CATAUST SAE DATA SHEETS Bo SAE S\＆P Bp CWO to
FRE CATALIS SA．BDX 29 BRACMELL BERKS

ELECTRQNIC SUPPLIES

TERMS O．W．O．P．\＆P．P．
Bp．Ordera above 42 posit

CARBON FILM RESISTORS
High Stab．HW Of W 5% ．10．62p／100，£4．50／1000（22S－2M2）E12 RESISTOR KITS 102－1M E12 SERIES：
OE12KIT． 10 of each value（Total of 610 ）$£ 3.10$
25E12KIT． 25 of each valua ON of 1525） E 7.2 FREE CATALOGUE ON REQUEST
 W．O．P．\＆P． 10 p on orders under 45 ．Overseas extra． BH COMPONENT FACTORS ITD． Dept．WW．，

Lelohtion Buzzard，Beds．，LU7 9AO．

PYE RADIOTELEPHONE

 EQUIPMENT$12 \frac{1}{2} \mathrm{kHz}$ WESTMINSTER W15FM，Dash，Low 25 kHz band， 3 channel，as new． 666 ．Low 25 kHz WESTMINSTER 25 kHz CAMBRIDGE FMIOD．Low band， 25 kHz CAMBRIDGE FMPOD，Low band， 6 channel．633．00．

BASE STATION F60FM，Low band ES5．00．
all prices include V．A．T．，carriage at cost．
B．BAMBER，ELECTRONICS，
20 WELLINGTON STREET，
LITTLEPORT，CAMBS．，CB6 IPN．
Phone：Ely（0353） 860185 or 860363
［3178

SURPLUS BARGAINS KLEINSCHMIDT S.C.M. TELEPRINTER OUTFITS

Comprising. Teletypewriter (page printer) type T-271B/FG (known as Kleinschmidt 160) Reperforator-Transmitter (tape are supplied with change wheels for $45 \& 50$ Bauds the whole equipment operates on 115 or 230 V 50 cycles in very choice condition $£ 55$. (carr $£ 4$
VARIACS $25 a m p$ 0-270v as new less handle \& cover f22
(f2) TRANSFORMERS 240110 kVA (f2) TRANSFORMERS $240 / 110.3 \mathrm{KVA}$ New f 15 . (E1.50) (75p). FRACMO MOTORS 240 v AC th.p. 6000 rpm $f 4.50$ (37p) AVO CT38 Electronic Meters f 18 . (£1) BC 221 f 12. (f1) AMPEX VIDEO TAPE 2 in $x 1670$ new f9. (50p) SINTERED NICKEL CADMIUM ACCUMULATORS 7a.h. size $90 \times 30 \times 60 \mathrm{~mm}$ with electrolyte and instructions 80 p
(8p) PRINTED CIRCUIT KIIS (8p) PRINTED CIRCUIT KITS $£ 1.25$ (21 p). CT53 E10. ($\mathbf{~ 1} 1$). FERRIC CHLORIDE 25p a1b. (16p) 10 lbs f 2.50 (paid) KENT CHART RECORDERS 115 VAC e 20 . ($£ 1.50$) MULTI POINT £30. TF866 (Q Meter) Magnification Meter from $£ 15$. (£1). FRIEDEN FLEXOWRITERS E80 (¢4) tape to suit E 1 for 3. RACAL MA168 DUAL DIVERSITY Switch new $f 50$.
only VEEDER ROOT 4 Digit only VEEDER ROOT 4 Digit resettable counters 115
E 1.25 (8 p) ELECTRONIC
TIMER KIT. O.8secs to 1.25 (8p) ELECTRONIC TIMER KIT. O. 8 secs to 100 sec
comprises A.E.I. Transistorised Module, Relay, \& all electrical comprises A.E.I. Transistorised Module, Relay, \& all electrical
components for 115 or 240 c A. . operation $\mathrm{E} 1.75(16 \mathrm{p})$. Loads of surplus to clear. Large S. A.E. for list All PIUS V.A.T

CASEY BROS.

233-237, Boundary Road, St. Helens, Lancs.

PRINTED CIRCUITS

High Speed Prototype Service 1.10 Boards
WHELDON LIMITED
GREENFORD, WINDMILL HILL Hillfort STD 073287222 Crayf

WIRED COLOUR T.V.'s

in $£ 25$ (ideal for monitors) Colour Aerial Sets $£ 15$ All spares for Bush C.T.V. $£ 25$ and Baird 700 Second Hand Colour
Towerton Works, Oxford Road
Stokenchurch, Nr. High Wycombe, Bucks. Tel: Radnage (024 026) 3321
(End of M40 Motorway)
[30
TELEQUIPMENT D54 D.B. OsciHoscope. Perfect 7841 condition, with probes etc., £110. Tel: 01-888 PRINTED CIRCUIT BOARD large supplies of 1 glass fibre available. $1 / 16$ in single sided one ounce copper 2 p per 3 sq. inches (under 1 ft). 75p per sq. ft. (over 1 ft). $1 / 16$ in double sided one sq. ft . (over 1 ft). Please add 10 p per sq. foot postage sq. ft. (over 1 ft). Please add 10 p per sq. foot postage Solid State Lighting, (Dept. WW), 47 Hercules Rd. Norwich NOR 66 M .
DRINTED Circuit Board in 6 widths: 2 in. $2 \frac{1}{2}$ P $3 \mathrm{in} ., 3 \frac{1}{2} \mathrm{in}, 4 \mathrm{in}$. and 5 in . x any length; $1 / 16$ in. single-sided fibreglass, $2 p$ per 3 sq . in. Doublesided Ip per sq. in. P \& P pp per order. SAE quotations for other sizes and quantity discounts.J. Knopp, 11 Connaught Gardens, Braintree, Essex, CM7 6LY. Tel. Braintree 25254 .
$\mathbf{R A C A L}_{\text {This instrument }}$ Communications Receiver R.A.17L. I.F. This instrument is offered complete with RA.73A
I.Fonverter, MA. 107 B Receiver Protection Unit I.F Converter, MA. 107B Receiver Protection Unit and handbook, £290. J. Morris, 3 Astiey Road,
Bradshaw, Nr. Bolton, Lancs. $\mathrm{R}_{\text {ACAL }}$ Universal counter-timer SA535. Matching manuals $£ 50,35$ Footners Lane, Burton, Christehurch BH23 7NT. Telephone Christchurch 71943 . UHE TRANSISTOR TV TUNERS; push button, and 113. Thorn $21 / 2$. Bush Murphy Z131, all at and 113. Thorn 21/2. Bush Murphy Z131, all at Power Panel \&5 Prices include \mathbf{P} / \mathbf{P} and VAT. Thomson TV, Beith, Ayrshire. Phone Beith 3333.
VACUUM is our speciality. New and second-hand rotary pumps, diffusion outfits, accessories, coaters, etc. Silicone rubber or varnish outgassing
equipment from $£ 40$. V. B equipment from £40. V. N. Barrett (Sales) Ltd., MHF KIT $80-180 \mathrm{mHZ}$ receiver 9917. Transistorised, remarkable performance. £4 or s.a.e. for literature Johnssons (Radio), St. Martins
 Receivers. Signal and Audio outputs. Small, Toolex, Bristol RO available versions $£ 35$ and $£ 60$. Toolex, Bristol Road, Sherborne (3211), Dorset.

DIGITAL CLOCK COMPONENTS

4/6 Digit Clack Chip 49.00 ; 6 Minitron Displays $£ 6.00$; Discrete Driver Kit $£ 3.50$; Minitron Sockets 25p each; 2N 7447 Drivers 61.20 each
LOW COST LED LAMPS
Red 3 mm dia. 25p each; Red 4.45 mm dia 35p each; Green 3 mm dia. 68p each Green 4.45 mm dia. 68p each.
CALCULATOR DISPLAY
0.12 inches Character Height Flatpack $\$ 2.00$ each.
SLIDER SWITCHES
1 pole 2 position-Miniature 14p each; 2 pole 2 position 14p each; 2 pole 3 position 21p each; 1 pole 4 position 23p each. U.K. Postage and packing 10p. Overseas 25p.

ADD 10\% VAT TO ALL ORDERS
PERDIX COMPONENTS LTD. Dept. WW73
31 Green Lane, Chislehurst, Kent

PEAK PROGRAM METERS TO BS4297
Drive circuit, $25 \times 80 \mathrm{~mm}$, for 1 mA L.H. zero meters, Gold
 ERNEST TURNER PPM meters. Below scalings stocked.

* Public address. * Loudspeaker talkback. * Telephone broadcast programmes when caller leaves receiver on.
Unity gain mains powered box $190 \times 55 \mathrm{~mm}$, with bypass witch, shifts input 5 Hz up in frequency and allows $6-8 \mathrm{~dB}$ more gain bifore howi-round
* Other shift versions for weird music effects.
- Unbalanced 2 -pole jack in and out Z security.

Unbalanced 2-pole jack in and 2 -pole jack in ant $\begin{aligned} & \text { Zout }=2 \mathrm{Kohm}\end{aligned}$
600 ohm
Balanced 3-pole jack in and out Zout $=20$ or
600 ohrl
Post: Commonwealth 90 p. Europe air and foreign $£ 1.50$ £84 Shifter circuit boards for WW July ' 73 article: Complete kit and board $£ 18$ including p.s.u. and DESIGNER
Board built and aligned $£ 24$ mains transformer APPROVED

SURREY ELECTRONICS

CROSSHATCH GENERATOR

boxed 625 line (Bands 3, 4 \& 5) Crosshatch Generators for colour TV rectifier adjustment etc. Quality engineered product used by Public
Authorities. Operating
instructions Authorities Operating instructions
included. Normal price $£ 65.00$. To included. Normal price
clear at 629.70 V.A.T. included. Write or telephone for descriptive

GIFKINS ELECTRONICS,

100 Fore Street, Hartford, Herts
Tel: Hartford 7391. [3212

[^17]
PRECISION
 POLYCARBONATE CAPACITORS

0.47 F	$\pm 5 \%$	${ }^{30} \mathrm{p}$;	\pm	${ }^{40 p}$;		
	± 5	${ }_{50}^{40 p_{i}}$,		
4.74 F	$\pm 5 \%$	700	$\pm 2 \%$	${ }^{90}{ }^{\text {p }}$		
		${ }_{150}^{950}$		${ }^{115 p}$		
				140 p		

TANTALIUM BEAD CAPACITORS-Values avallable
$0.1,0.22,0.47,1.0 .2 .2,4.7,6-8 \mathrm{FF}$ at $35 \mathrm{~V}, 10 \mu \mathrm{~F} 25 \mathrm{~V}, 15 \mu \mathrm{~F} 20 \mathrm{~V}$
 6 for $45 \mathrm{p} ; 14$ for 95 p. Special pack 6 of each value (78
capacitors) $£ 4.50$.

NEW!-TRANSISTORS. BC107, BC108, BC109, All 9p each; 6 for 50 p ; 14 for $£ 1$. All brand new and marked.
Full spec. devices. May be mixed to qualify for quantity Full spec. devices. May be mixed to
prices. AF178- 35 p each or 3 for 95 p.
POPULAR DIODES IN914-6 p each; 8 for 45p; 18 for 11 for 50 p : 24 for El . All brand new and marked NEW LOW PRICE- 400 mW Zeners. Values avallable
$4.7,5 \cdot 6,6 \cdot 8,7 \cdot 5,8 \cdot 2,9.1,10,11,12,13.5$, 15 V . Tol. $\pm 5 \%$ 5 mA . All new and marked. Price 7p each; 6 for 39 p
4 for 84 p . Special offer 6 of each voltage (66 zeners £ 3.65 .
RESISTORS. Carbon flm 1 W 5%. Range from 2.2Ω to R8, 82 and their decades. High stabilify, low noise. All at p each; 8 p for 10 of any one value; 70 p for 400 of any one to $2 \cdot 2 \mathrm{M} \Omega(730$ resistors) $£ 5$.

SILICON PLASTIC RECTIFIERS 1.5 Amp. Brand new wire-ended DO27. 100PIV at 8p each or 4 for 30 p ;
400 piV at 9 p each or 4 for 34 p ; 800PIV at 14 p each or 4 for

5p posi and packing on ali orders below $£ 5$.
Please add 10\% VAT to all orders.
MARCOTRADING
Dept. D11, THE MALTINGS, STATION ROAD, WEM,

SURPLUS STOCK
800 FND 10,7 Segment L E D Displays 5. 400 FND 10A, 7 Segment LED Displays

Offers invited:-
Hengstler G.B. Ltd.,
Broxbourne, Herts.
Tel: Hoddesdon 6845
[3160

speakers. Offers with full details, age, brief specificashire LS 21 1HX WHANTED. TWO-WAY RADIO REQUIRED FOR MEASURE. G. D. HANKS. TRURO 4966 SAFETY

CAPACITY,AVAILABLE

A IRTRONICS LTD., for Coil Winding-large or plies. Smappliers to P.O., M.O.D., Etc. Export enquiries welcomed 3a Walerand Road SE13 7PE. Tel. 01-852 1706
BATCH Production Wiring and Assembly to Station Parade drawings. Deane Electricals, 19 B Station Parade, Ealing Common, London, W.5. Tel:
$01-9928976$. DESIGN, development, repair, test and small proDroduction of electronic equipment. Specialist in production of printed circuit assemblies. YOUNG 01-267 0201. ${ }_{[29}$
CAPACITY available to the Electronic Industry. Rrinding both in metals and plastics. grinding both in metals and plastics. Limited capacity available on Mathey SP33 JIG BORER. Write Engineering Ltd., 1 Mackintosh Lane, E. 96 AB . Tel. 01-985 7057
SMALL Batch Production, wiring, assembly, to sample or drawings. Specialist in printed circuit assemblies. D. \& D. Electronics, 42 Bishopsfield,
Harlow. Essex. Harlow 33018.

COURSES

R ADIO and Radar M.P.T. and C.G.L.I. Courses WY7

NEW GRAM AND SOUND

EQUIPMENT

GLASGOW,-Recorders bought, sold, exchanged; versa.-Victor Morris, 343 Argyle St., Glasgow, C. 2.

CLASSIFIEDS-Continued on p. 141

WPOINTMENTS-Continued from p. 134

PRINCIPLES OF PAL colour television

and Related Systems

H. V. SIMS, C.Eng., M.I.E.E., F.I.E.R.E.

This book discusses the principles concerning the transmission of colour as well as reception and particularly the effects due to non-linearity and its correction. Other aspects covered are the failure of constant luminance. differential phase distortion and the production of Hanover bars. The book covers City and Guilds 300 Series (Television Broadcasting).
1969 (Second Impression 1970) 154 pp. 59 illustrations
0592059448 cased $\mathbf{£ 2 . 0 0}$
0592059707 limp £1.20
obtainable from your bookseller or:
THE BUTTERWORTH GROUP
88 KINGSWAY LONDON WC2

MAINTEMACC EMGIIEER

We require a maintenance engineer for a well established private radio station. He/she must be capable of working without direct engineering supervision, and of running regular maintenance programmes. Experience of professional sound recording equipment, and the ability to drive would be definite advantages.
An attractive salary would be offered.
Please apply in writing to: Alan Brill, Sound Developments Ltd., Spencer Court, 7, Chalcot Road, London NW1 8LH.

WILMSLOW AUDIO

The firm for speakers!

Dept WW,
Swan Works, Bank Square, Wilmslow, Cheshire SK9 IHF.

CASHIMMEDIATELY AVAILABLE
for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, London, N12.
Telephone: 01-445 2713 01-445 0749 Evenings: 01-958 7624

TELERADIO SPECIAL PRODUCTS

LINSLEY HOOD AMPLIFIERS TEXAN \& TEXAS AMPLIFIERS BAILEY AMPLIFIERS SONAX QUADRAPHONIC SYSTEM DIGITAL CLOCK KIIS
POWER SUPPLY UNITS
Send 10×8 S.A.E. for further details. 325-7 Fore St., London, N9 OPE. 01-807 3719

THE ONLY COMPREHENSIVE RANGE OF RECORD MAINTENANCE EOUIPMENT IN THE WORLD!
Send P.O. 15 p, for 48 page booklet providing all necessary information on Record Care. CECIL E. WATTS LIMITED Darby House
Sunbury-on-Thames. Middx.

EXGLUSIVE OFFERS

NEVER BEFORE OFFERED
WORLD-WIDE RANGE
PHILCO HC-130 POINT-TO-POINT STRIP RADIO HF
RECEIVERS RECEIVERS $2 / 30$ m/cs. Ten fully turceble chathele to
0.5 kcs with
oynthesisers. Single and diverslty reception

INSTRUMENTATION TAPE RECORDERREPRODUCERS

COMPUTER HARDWARE
CARD READER $80 \mathrm{col}$.600 c pm PAPINTER, High speed 1000 lines p.m. APE IREADER, High speed 5/8 trach $800 \mathrm{c} . \mathrm{p} . \mathrm{m}$.
Prices on Application
TALLY 5/8 track TAl'E READERS 48 BULL 80 col. HANJ CARD PUNCHES 440

```
40-pege jist of over 1,000 different items in viocir availsble-keep oue by you.
```

HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS

	Ferrograph 3/CFN Tape	
	Ferrograph 6.200 Tape	
	Electric Carrilion	
	CF-157 Ioffman 18B/S8B Conv	
	10 foot Triangular Lattice Mast Sections	
	Casella Assmann Electric	
	Racal RA-17 Cabinets	
	Racal MA-150 Synthesisers	28
玄	Racal MA-250 Decade fiene	125.00
	Avo Ge:ger Counters, ne	¢7
$\hat{\star}$	Servomex 2 KVA Voltage Regulators	
	Solartran Cl-1018 d/b Owriloscones	
	Deuble Co-axial Blowers 6×6 220 v. A	
	Anpex S.E. 10 Auto Degauesera	245.00
	Uniselectors 70 bank 25 way full wipe	
	R.C.A. 5 element $+20 \mathrm{~m} / \mathrm{cs}$ Yagi Beams	
	11 ances 600 whtt $230 \mathrm{v} . / 115 \mathrm{v}$. Isolation	
	Transformers	
	Muirheand I. 888 Analysers	$£ 80.00$
	Laboratory Radio Interterence	
$\stackrel{\hat{\lambda}}{\star}$	Pye Scalimp Galvos	£14.00
	Caukell Type 14il Varialle Filters	$\underline{4}$
	Admell large Drafting Tables with	
	5 -in. dia. Meteurologica	
	Flam Microwave Attenuators $4 / 12$ EMC	40
EASE ADD V.A.T. TO		

P. HARRIS

ORGANFORD-DORSET
BOURNEMOUTE-65051

STUDIOELECTRONICS
 P.O.BOX No. 18 HARLOW ESSEX CM18 GSH Telephone:Harlow 25457
 SPECIALISED KISS

HIGH STANDARD

LOW FREQUENCY SOURCE

(to article by J. M. Osborne, W.W. Jan. 73)
A Phase-Locked Loop designer approved kit to profassional standards with Glass-Fibre P.C. Board, and all components including Hardware, case, etc. Full constructional details from the designer are included. Reference accurate to 2 parts in 10י1! Probably the most economic high precision signal source available Kit $\mathbf{£ 2 4 . 6 7}$ Assembled and tested version.................... $£ 32.15$ NE561B only $\mathbf{£ 3 0}+\mathbf{£ 4 . 8 8} \mathbf{~ V A T}=\mathbf{£ 3 3 . 0 0}$
DE LUXE

CBS-SO QUADRAPHONIC IC DECODER

To Motorola application for MC1312
as described by Geoflsey Shorter (WW March 73) Our complete kit of professional quality components includes a glass-fibre edge connected printed circuit board and is absolutely complete. with full assembly and application notes.
As we also design and manufacture complete stereo and Quadraphonic systems, our wide applications experience is available to you to guarantee professional results.
Complete kit as described above $\mathbf{£ 8 . 8 0}$ Assembled and tested production board......... $\mathbf{£ 1 2 . 1 0}$ 'AS USED IN P.E. RONDO

PHASE-LOCKED-LOOP

STEREO DECODER

To Motorola application for MC1310 s descrihed in Wireless World, July 1972 310 complete kit of professional quality including a glass-fibre edge connected printed circuit board and all comporients.
Complete kit which can be built in $\frac{1}{2} \mathrm{hr} . \ldots \ldots$. $\mathbf{£ 3 . 7 4}$ Assembled and tested production board........ £4.84 MA2404 Professional LED 61p extra if required. Economy LED (physically small) 37p extra if required. A current limiting resistor is supplied free upon request with al LEDS. Setf powered and special versions are available to order.

NEW PRODUCTS

1. Two tone test oscillator $1 \& 2 \mathrm{kHz}$, ideal for SSB setting up. Battery powered professional quality kit $\mathbf{£ 6 . 7 5}$ 2. Squelch board for FM tuners. Simple add-on advanced circuitry for effective muting. Tuner powered kit $\mathbf{£ 5 . 3 4}$

SPECIALIST SERVICES

Suppliers of products by Radiospares, Eagle, TTC Sonax, Teleradio and RSGB publications. We welcome enquiries, irrespective of size or nature. A full technical and after-sales-service is provided, with licensed radio amateurs on the technical staff.
Communications acknowledged normally by return. MAIN DISTRIBUTORS FOR QUADRASONICS. THE PREMIER BRITISH QUADRAPHONIC SYSTEM.

NO HIDDEN EXTRAS ALL PRICES INCLUDE VAT, CARRIAGE and INSURANCE

PLEASE SUPPLY

E . enclosed			
	kits	assembled	
$I_{\text {cbs-sa auad decooder }}$ \| pll stereo decoder $\\|_{\text {TWO TONE OSC. }}^{\text {L.F. SOURE }}$ \|sauelch boaro			
InAmE			
\| ADDRESS.			
1			
I			
		WW11	

Lodge Trading Company

For Amplifiers, Speakers with and without cabinets, Changer Units, Plinths and Covers, Tape Recorders, four and eight track for car or home, Car Radios, Colour TVs, Aerials, Flex, and Cables, Large stocks of components.

ALL AT WHOLESALE PRICES
A VISIT WILL SAVE YOU MONEY
5 Day Week 9-6. Easy Car Parking. Sorry no lists.
21 LODGE LANE, N. FINCHLEY, LONDON, N. 12 01-445 2713, 01-445 0749

QUARTZ CRYSTAL
 UNITS from
 - 1.0-60.0 M HZ
 - fast dellivery
 - high stability
 - to Oef 5271A
 WRITE FOR LEAFLET AT Mcknight CRYSTAL Co. hardiey industrial ESTATE, HYTHE SOUTHAMPTON SO4 GZY.
 TEL. HYTHE 8961

$15111 S_{\text {LTD }}$
 TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO single and multichannel SIMMONDS ROAD, WINCHEAP CANTERBURY, KENT

0227-68597
BRAND NEW FULL SPEC. DEVICES U.K. CUSTOMERS ADD 10% VAT TO TOTAL MICROCIRCUITS: 709 31p; 710 35p; $72361 p$; 741 (14 pin) 40p; 748 51p. TRANSISTORS: 2 N2926 (Brown) 8p; 2N3053 19p; 2N3055 48p; 2N3704 14p;
2N3819 30p; 2N4058 16p; BC107A 10p; BC108B 10p; BC109B 10p; BC109C 10p; BCY70 17p; BFY50/5//5 20p; OC44/45/71/72 14p; ÁF114/5/6/7 18p; AC1267/8 18p.
ZENERS: BZYBB Series IIp. I AMP. RECTIFIERS: $50 \mathrm{~V} 4 \frac{1}{2} \mathrm{p} ; 100 \mathrm{~V} 5 \mathrm{p} ; 200 \mathrm{~V} 5 \frac{1}{2} \mathrm{p} ; 400 \mathrm{~V} 6 \mathrm{p} ; 800 \mathrm{~V}$ 6 ${ }^{\frac{1}{2} \mathrm{p} ;}$ 1000 7p. 14 pin ic SOCKETS 12p. SOLDER CONS $\frac{1}{2}$ p per pin. DALO PC PEN 68p. ${ }^{\text {W }}$ W 5% Carbon Film Resistors, El2 values only: 10 of one value per 7p. Sub Min. Vertical Preset Pots (50 mW) 100 ohms to 220 K 4 p each.
LED with bush and data 24p.
ANTEX S. IRONS: $15 \mathrm{~W} \mathbf{6 1 . 7 0 ;} 25 \mathrm{~W} \notin 1.75$.
Prices at 18th September. Check our list.
Discounts start at 10% for $10+$ Semiconductors of one type.

JEF ELECTRONICS (W.W. 11) York House, 12 York Drive, Gra
Mail Order Only. C.W.O. P. \& P. 10p per order minimum, or at cost if more. List free Satisfaction or your money back.

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. SPOT CASH

CHILTMEAD LTD.
7, 9, 11 Arthur Hoad, Reading, Berks.

Tel: 582 605

SOWTER TRANSFORMERS

FOR SOUND RECORDING AND REPRODUCING EQUIPMENT
FOR SOUND RECORDING AND REPRODUCING EQURPant We are suppliers to many weli-known companies,
studios and broadcasting authorities and were estabstudios and broadcasting authorities andentive prices.
lished in
in Large or small quantities. Let us quote.
E. A. SOWTER LTD.

Transformer Manufacturers and Designers

SEMICONDUCTOR CIRCUIT DESIGN

Volume II

A Texas Instruments Publication July 1973

£5.25

THE TTL DATA BOOK FOR DESIGN ENGINEERS by Texas Instruments. Price 62.25

ELECTRONICS: CIRCUITS AND DEVICES by R. J. Smith. Price $\mathbf{£ 6 . 7 5}$
MOS INTEGRATED CIRCUIT DESIGN by E. Wolfendale. Price $£ 4 \cdot 10$ INSTALLING AND SERVICING ELECTRONIC PROTECTIVE SYSTEMS by H. Swearer. Price fl-45
HOW TO USE INTEGRATED CIRCUIT LOGIC ELEMENTS by J. W. Streater. Price f 1-60
RADIO AND ELECTRONIC LABO RATORY HANDBOOK by M. G Scroggie. Price 65.50
THE RADIO AMATEUR'S HAND-
BOOK 1973 A.R.R.L. Price $£ 2.95$
COLOUR T.V. THEORY by Hudson. Price 64.10
TRANSISTOR AUDIO AND RADIO CIRCUITS by Mullard. Price $£ 1.90$
UNDERSTANDING SOLID-STATE ELECTRONICS by Texas Instruments. Price $\boldsymbol{f l}$ - 40
ALL PRICES INCLUDE POSTAGE

THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS
19-21 PRAED STREET. LONDON, W2 1NP

Phone 7234185
Closed Sat. I p.m

PRITIED CHROUITS
 ELECTRONIC EQUIPMENT
 - LARGE 8 SMALL QUANTITIES
 IFULLDESIGN \& P.T.H. PROTOTYPE SERVICE
 DASSEMBLIES AT REASONABLE PRICES
 for full dotais contact

 K.d.EENTLEY
 \& Parthers
 18 GREENACRES ROAD. OLDHAM
 PO APPROVED
 Tel 0616240939

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16 Tel: 01-249 2260

WE PURCHASE

OSCILLOSCOPES, SIGNAL GENERATORS, PEN RECORDERS, COMPUTERS, RECEIVERS PLEASE SEND US YOUR LISTS best prices paid.
ELECTRONIC BROKERS LTD. 49 Pancras Road, London, N.W.1. 01-837 7781

Guide to
 Broadcasting Stations 17th Edition

A new edition of a title which has sold more than 250,000 copies. The bulk of the book is devoted to lists of stations broadcasting in the long, medium, short and v.h.f. bands in both frequency and geographical alphabetical order. The book also contains useful information on radic receivers, aerials and earths, propagation, signal identification and reception reports
1973206 pp., illustrated
$059200081875 p$
Illustrations in Applied Network Theory

F. E. Rogers

A hundred numerical and algebraic illustrations designed to exemplify practical circuit problems and introduce, in analysis, principles consistent with studies of synthesis that may be pursued later.
1973240 pp., illustrated
$040870425 \times$ cased $£ 5.00$
0408704268 limp $£ 2.50$
Obtainable through any bookseller or rom

The Butterworth Group

88 Kingsway, London WC2B 6AB
Showroom: 4-5 Bell Yard, WC2.

Ex-COMPUTER
 STABIILSED POWEF SUPPIIIES

RECONDITIONED, TESTED AND

 GUARANTEEDRipple $<10 \mathrm{mV}$. Over-voltage protection on ali except 24 v . 7A. unit. $120-130 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ input. Stepdown transformer to sult about £3.

PAPST FANS $4 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \mathrm{in} .100 \mathrm{cfm}$. ع3. 50 (30 p).
PAPST FANS 6in. dia. $\times 2 \frac{1}{2} / \mathrm{n}$. deep Type $7576 £ 5.00$ (30p).
WOODS FANS 6in. Plastic rotor $\mathbf{£ 6} \cdot 00$ (36p).
ELECTROLYTICS
$6,000 \mu 75 \mathrm{v} ., 4 \frac{1}{2} \times 2 \mathrm{in}$. dia. 55p (14p).
$8,000 \mu 55 \mathrm{v}$. , $4 \frac{1}{2} \times 3$ in. dia. 50p (24p).
$10,000 \mu 35 \mathrm{v} ., 5,000 \mu 35 \mathrm{v}, 40 \mathrm{p}(12 \mathrm{p})$.
$2,000 \mu 25 \mathrm{v}$. wire ends, 15 p (6 p).
EX-COMPUTER PC PANELS $2 \times 4 \mathrm{ln}$. min. 35 transistors with data 50p (12p). 25 boards for $£ 1$ (30 p).
PANELS WITH 4 POWER TRANSIS.
TORS SJM OC28 50p (10p).
QH Bulbs, 12v. 55w. 50p (6p)
250 Mixed Resistors
250 Mixed Capacitors
200 Si Planar Dlodes
Microswitches. 60p (92p) $60 \mathrm{p}\left(9 \frac{1}{2} \mathrm{p}\right)$

Min. Glass Neons
0-way Terminal Blocks $\cdots 12$ for 50p (7p)
Postage and package shown in brackets
Please add 10\% VAT to prices
KEYTRONICS
Mail Order only.
44 EARLS COURT ROAD, LONDON, W.B 01-478 8499

A DEXTER anx 1 mide

ALLOWS COMPLETE

LIGHTING CONTROL

The DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the normal light switch. It is available as a complete "ready to install" unit or "simple to assemble" kit. Two models are available controlling up to 300 W or 600 W of all lights, except fluorescents, at mains $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$. All DEXTER DIMMASWITCH models have built-in radio interference suppres600 watt $\mathbf{£ 3 . 5 2}$ Kit form $£ \mathbf{£ 2 . 9 7}$ 300 watt $\mathbf{£ 2 . 9 7}$ Kit form $\mathbf{£ 2 . 4 2}$
All plus 12 p post and packing
Prices include VAT. Please send c.w.o. to
DEXTER \& COMPANY
4 ULVER HOUSE
19 KING STREET
CHESTER CH1 2AH
Tél: 0244-25883
AS SUPPLIEO
To him. Gotrmment depantmewts, hospitals. ldCAL authorities, ETC.

CLASSIFIEDS-Continued from p. 137

> RECEIVERS AND AMPLIFIERSSURPLUS AND SECONDHAND
> HRO Rx5s, etc., AR88, CR100, BRT400, G209, d Ley. 4986 .

> SURPLUS EQUIPMENT FOR SALE: 2 Marconi Circuit Magnification Meters, Type TF329G Solotron Resolved Component Indicator, Type VP250. 1 Regulated Power Supply, Type $508 / \mathrm{S}$. Untested, all for $£ 60$. Telephone Hoddesdon 64112 j 67407.

SERVICE \& REPAIRS

BRISTOL AND DISTRICT. Service to Hi Fi and electronic equipment. Public address installations. Stereo Centre, 309 Gloucester Road, Bristol. Tel:
0272 421395.

CXPERIENCED ENGINEER offers field service facilities London area covering Electronic and CCRATCHED TUBES Our experienced polishin W service can make your colour or monochrome tubes as new again for only $\mathbf{5 2 . 7 5}$, plus carriage 75 p With absolute confidence sent to Retube Ltd. North Somercote, Louth, Lincs, or 'phone 0507-85 300. [27
SIGNAL generators, oscilloscopes, output meters, ω wave voltmeters, frequency meters, multi-range meters, etc., etc., in stock.-R. T. \& I. Electronics, Ltd., Ashville Old Hall, Ashville Rd., London, E. 11

164

VALVES WANTED

W^{E} buy new valves, transistors and clean new comquotation by return or small quantities, all details, Wolverhampton.

TAPE RECORDING. ETC

IF quality, durability matter, consult Britain's oldest transfer service. Quality records from your suitable tapes. Excellent tax-free fund raisers for schools News, 18 Blenteim Road, London W. 4 01-995 1661

WORLD RADIO TV HANDBOOK 1974 (publishe December), $£ 3.15$ inclusive. Delivered from Garva, PO Box 114 W Edinhurgh EH1 1HP Mcabout quantities, two and up. [12

Phone your classifieds to Allan Petters 01-261 8508 or 01-928 4597
or write to Wireless World Dorset House Stamford Street SE1 9LU

WANTED FOR $£ £ £$ NOTES ELECTRONIC TEST GEAR, COMPONENTS \|SCOPES

THINKING OF RE-EQUIPPING, EXCHANGING OR JUST RAISING CASH - THINK OF US. WE WANT ANY TELEQUIPMENT. ADVANCE, MOST TEKTRONIX. SOLARTRONS FROM MODEL 1014. HEWLETT PACKARD CONSIDERED AND OTHERS. PHONE US OR BRING ANY TIME.

INIEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 116-138

Page	Page	Page
Aero Electronics Lid 48	Gabraphone 34	Pattrick \& Kinnie 92
Aero Electronics Lid. Lid. 19	Gardners Transformers Lid. 2	Pembridge College of Electronics
Acoustical Mig. \& Co. Lid. Acoustico Enterprises Lid.	General Instrument Mieroelectronics Ltd. 53	Philips Electrical Ltd. 4, 5, 66
Advance Calculations Led. 17	Goldring Ltd. 31	Phoenix Electronics (Portsmouth) Lt
Aerialite Cables Ltd. 42	Gothic Electronic Components Lid. 439	Powertran Electronics 114 Practical Wireless
Amtron U.K. ${ }_{46}$	Grampian Reproducers Lid. 139	Premier Radio
Ancom Ltd. ${ }_{3}$		
A.N.T.E.X. Ltd.		
Anders Electronics Lid.6, 6 , 26	Hall Electric Ltd. (London) Lidd. ${ }_{\text {Harris Electronics }} \mathbf{3 8}$	Quality Electronics ${ }_{\text {Quartz }}^{\text {Crystal Co. Ltd. }}$ Le.................................. 139
A.S.P. Lid. Lid. ... 47	Harris Harris, P Pectronics (London) Lid. 139^{139}	
Aveley Electric Ltd. 46	Hart Electronics (London) 78	Racal Amplivox Communications Lid.
	Heath (Gloucester) Ltd. $1000{ }^{23}$	
	Henry's Radio Ltd. 100,10140	Radtord Acoustics ${ }^{\text {Radio Supplies (Comps.) Ltd. }}$. 28
	Henson. R., Ltd. 139, 140	
BSR Ltd. 63	Hi-Fi Year Book 69	RCA Ltd. 44
B. \& W. Electronics ${ }^{7}$	H.H. Electronics	RCS Electronics . 75
Bart \& Stroud Ltd. 38	Hitachi Shibaden (U.K.) Ltd. ${ }_{51}$	Redifon Telecommunications Lid. 40
Barrie Electronics Lid. 75	Hy-Q Electronics 51	Rogers Developments (Electronics) Ltd. 75
Bedford Electronics 112		Rola Celestion Lid. . ${ }^{\text {a }}$. 32
Bell \& Howell Lid. 62		R.S.C. Hi-Fi Centres Lid. 96
Belling and Lee Ltd. 54	I.C.S. (Intertext Group) ${ }^{51}$	R.S.T. Valves Lid. 104
Bentley Acoustic Corporation Ltd. 92	I.L.P. (Electronics) Ltd. 94, 95	
Bentley, K. J., \& Partners Ltd. 142	Integrex Ltd.	Samsons (Electronics) Lid.
B.I.E.T.		Scopex Instruments
Bi-Pak Semiconductors98, 99		Scott, Walker (Imtech Products) 37, 74
Bi-Pre Pak Ltd. 26	J.E.F. Electronics . 140	Service Trading Co. 103
Bias Electronics Ltd . $14.14{ }^{26}$	J. H. Associates Ltd.id. ${ }_{21}$	Servo \& Electronics Sales Ltd. 97
Bradley, G. \& E. Lid.cover iii	J. J. Lloyd Instruments Lid. 22	Shure Electronics Lid. 6510710810961
Brandenburg Ltd. 41		Sinclair Radionics Ltd. ${ }_{\text {W }}$ (Rad $64,65,107,108,109,110$
Britec Ltd. ${ }^{3}$	K.E.F. Electronics Ltd. 16	Smith, Glectronics Group \square
Bulgin, A.F.. Ltd.	K.E.F. Products Ltd. 26	SNS Electronics Group Soka SRL
Bull, J. (Electrical) Ltd. 113	Kellner-Electronic KG. 105	Sowter, E. A. Lid. 140
	Keytronics Lid. 141	Special Product Distributors Lid. 37
		Strumech Eng. Co. Ltd. 68
		Studio Electronics 140
Cambion Electronic Prods. Ltd. 48	Laskys Radio 96	Sugden, J. E., \& Co. Lid. 56
Cavern Electronics Chilmead Ltd. 106, 140, 142	Lansdowne Recruitment Ltd. 112	Sullivan, H. W., Ltd. 55
Chiltmead Ltd	Ledon Instruments Lid. ${ }_{4} 5$	
Colomor (Electronics) Lid. 82	Leevers-Rich Equipment Lid. 48	
Consumer Microcircuits Ltd. Readers Card	Levell Electronics Ltd. ${ }^{1}$	
Cosmic Electronics ${ }^{\text {an }} 48$	Light Soldering Developments Ltd. ${ }^{\text {L }}$ 56	Teleprinter Equipment Lid. Telequipment Products (Tektronix U.K.) Ltd .. 58
Cosmocord Ltd. 20,38	Lexor Dis-Boards Ltd. ${ }^{\text {Linstead }}$ 27	$\begin{array}{ll}\text { Telequipment Products (Tektronix U.K.) Lid ... } \\ \text { Teleradio Special Products } & 139\end{array}$
	Linstead Electronics .. 57	Telford Products Ltd. 50
C.T. Electronics Ltd. 84	Lyons Instruments Lid. ... 56	Teonex Ltd. 14
		Thorn Radio Valves \& Tubes Ltd. 30
Danavox (G.B.) Ltd. 45		E Flectrical
Danavox (G.B.) Ltd. ${ }_{140}^{45}$	Macfarlane, W. \& B. 76	Turner, E., Electrical
Deimos Lid. 140	Marconi Instruments Lid. cover ii	
Dexter \& Co. . . ${ }^{\text {d }}$ (16	Marshall, A., \& Sons (London) Lid. 93	Valradio Ltd. 30
Dixons Technical CCTV Lid. ${ }_{16} 76$	Mavis 102	Vortexion Ltd.
Douglas Electronic Industrier Lid. 138	McKnight Crystal Co. 140	
Dymar Electronics Ltd. 49	MeLennan Eng. Ltd. ${ }_{80}$	
	Mills, W. ${ }_{86} 85$	Watts, Cecil E., Ltd. 139
	Milward, G. F. ${ }_{140}^{86}$	Wayne Kerr, The, Co. Ltd.
Eddystone Radio Lid. 68	Modern Book Co. 140	Westinghouse Electric S.A. ${ }_{\text {West Hyde Developments Lid. } 78} 78$
Electronic Brokers Lid. 70, 71, 72, 73, 140	Mordaunt-Short Ltd. 8 9, $10,11.24,25$	West Hyde Developments Lirid 104
Electronic Mech. Sub Assembly Co. Lid. 138	Mullard Ltd. 8, 9. 10, 11, cover iv	Weyrad (Electronics) Ltd. 97
Electro-Tech. Components Lid. 111	Multicore Solders Lid. Cover iv	Whiteley Electrical Radio Co. Ltd. 28
		Wilkinson, L. (Croydon) Ltd 111
English Electric Valve Co. Lid. 68	Nicholls, E. R. 56	Wilmslow Audio . 139
Est Nuclear Ltd	Nombrex (1969) Lid. 30	Yates Electronics . 36
Farnell Instruments Ltd. 18		
Fi-Comp Electronics 76	Oison Electronics Lid. 67	Z. \& I. Aero Services Lid, 115
Future Film Developments Lid. 104	Onkyo (J. Parkar) 67	2. \& I. Aero Serv

[^18]You can't afford to ignore the Bradley 234. It's a two-channel, eight digit 100 MHz Counter Timer that offers all the facilities you would expect from an expensive instrument - but at the very realistic UK price of $£ 275$.

The 234 provides
Frequency, Totalise, Period, Period Average, Ratio, Time Interval Average down to 25 ns and Time facilities in a compact and sturdy package. The 10 MHz clock is temperature compensated alternatively, you can specify, for a moderate extra cost, a high stability clock in a temperature controlled oven And there's a third ' C ' channel for an external clock, or for ratio measurements.

Solid state circuitry incorporates an HF filter which permits low frequency measurements to be made in the presence of high frequency interference.

Other features include display storage and standby mode facility. And the Bradley 234 comes complete with a rugged
impact-resisting case and combination carrying handle and adjustable stand.

To find out more about the 234 Counter Timer, one of the new generation of precision instruments from Bradley, please telephone 01-4507811. Ask for Ashley Stokes on Ext. 113.
Or drop him a line at the address below
Price quoted does not include VAT

G \&EBRADLEY LIMITED,
Electral House, Neasden Lane,
London, NW101RR
Telephone: 01-4507811
Telex: 25583
A Lucas Company

Multicore Solder preforms, alittle something for automatic processes.

Multicore Preforms.

Multicore precision made solder preforms come in virtually any shape or size.Rings. washers, discs, pellets. and lengths of solder lape - in most soft solder alloys. Designed, with or without flux cores, to make the most of automatic soldering processes.a solder preform is simple and accurate to use. It's just positioned between the parts to be soldered and the temperature of the metal surfaces raised to about $50^{\circ} \mathrm{C}$ above the melting temperature of the solder. The solder preform does the rest. Heating techniques can include gas flame, hot plate.oven conveyor. induction coils.resistance/electrode soldering hot gas and infra-red.

Multicore Solder Preforms just get on with the job. Automatically.

Our Solder Creams,

 something else again...New Multicore Solder Creams are designed for electronics assembly where quality is vilal. Like manufacturing diodes, for instance. or making a tuner chassis. or soldering thickfilm circuits.

A finely graded solder alloy powder in a thixotropic organic. vehicle.It's often quicker, cheaper. easier and more reliable than other soldering techniques. It's different. It doesn't spit or need stirring. It can be applied by syringe, automatic dispenser or screen printing - giving instant soldering with good spread. strong joints with low contact angles. It can act as a temporary adhesive during assembly and the clear colour flux residue - without solder globules - simplifies inspection.

There are three types of Multicore Solder Cream - one of them may be just what you've been looking for.

Mulitione Product Ref.	X 1127330
Alloy Composition	62/36/2 Si/Ph:Ag
Molting Duint or Liguidus ${ }^{\circ} \mathrm{C}$	179
Recommended Flow Temperature ${ }^{\circ} \mathrm{C}$	239
Typical Application	Low Melting Puint Soldering of silver and mold-plated surfaces

XM27298	XA127328
60/40 $\mathrm{Sn}^{2} / \mathrm{Pb}$	$96 / 4 \mathrm{Sn} / \mathrm{Ag}$
188	221
250	280
General purpose joints requiring	Higher temperature resistant joints.
high quality solder cream	Lead free. Higher joint strenglh than $\mathrm{Sn} / \mathrm{Pb}$

For fullinformation on these or any other Multicore products, please write on vour company's letterhead direct to: Multicore Solders Limited, Maylands Avenue, Hemel Hempstead. Hertfordshire HP2 7EP.
Tel: Hemel Hempstead 3636. Telex: 82363.

[^0]: Celestion \square
 Loudspeakers for the Perfectionist ROLA CELESTION LTD. DITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 8JP

[^1]: AVELEY ELECTRIC LTD.

 Roebuck Road,
 Chessington, Surrey Telex: Avel London 928479

[^2]: Price 20p. (Back numbers 40p.)
 Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
 Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
 Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."
 Subscription rates: Home, $£ 4.35$ a year. Overseas, 1 year $£ 5$; 3 years $£ 12.50$ (U.S.A. \& Canada 1 year $\$ 13$, 3 years $\$ 32.50$) Student rates: Home 1 year $£ 2.18,3$ years $£ 5.55$. Overseas, 1 year $£ 2.50 ; 3$ years $£ 6.25$ (U.S.A. \& Canada 1 ycar $\$ 6.50,3$ years $\$ 16.25$).

 Distribution: 40 Bowling Green Lane, London ECIR ONE. Telephone 0I-837 3636
 Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281. Subscriters are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

[^3]: * Sold as Denon recordings outside Japan.

[^4]: Shure Electronics Limited • Eccleston Road • Maidstone ME15 6AU

[^5]: *All with Paisley College of Technology.

[^6]: - Following a majority decision of the I.E.C., the B.S.I. have opted for the rectangular logic gate symbols (not shown in Fig. 3). BS3939 section 21 is currently being amended. - Ed.

[^7]: 1-8 $\quad 100$ p.i.v. rectifiers e.g. $1 \mathrm{~N} 4002,300 \mathrm{~mA}$ or greater
 $9 \quad 12 \mathrm{~V}$ zeners, 2.5 W e.g. $\mathrm{BZX} 70-\mathrm{C} 12$
 $10-1112 \mathrm{~V}$ zeners, 400 mW e.g. BZY88 12

[^8]: KEYBOARD PERFORATORS for offline tape preparation
 AUTOMATIC TAPE TRANSMITTERS with speeds up to 250 w.p.m.
 MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS
 UNDULATORS for automatic record and W/T signals up to 300 w.p.m.
 CODE CONVERTERS converting from 5 -unit tape to Morse and vice versa MORSE REPERFORATORS operating up to 200 w.p.m.
 TONE GENERATORS and all Students' requirements
 CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANSMITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS LAMPS, etc.

[^9]: (DEPT. WW.4), 28 ST. JUDES RD, ENGLEFIELD GREEN, EGHAM, SURREY, Tw 20 OHB
 Hours: 9-5.30, 1.0 p.m. Saturdays.
 Reg. offices at above address
 Phons: Egham 3603 Telex 264476
 Business Reg. No. 1047769

[^10]: WAYNE KERR type B52I Component bridge. Accurate measurement of C \& R. 655. Excellent order throughout.

[^11]: Output Power: 100 watts RMS: 200 watts peak music power into 8Ω
 Input Impedance: $10 \mathrm{~K} \Omega$
 Input Sensitivity: ODb (0.775 volt RMS)
 Load Impedance: 4-16 Ω
 Total Harmonic Distortion: less than 0.1% at 100 watts typically 0.05%
 Signal: Noise: Better than 75 Db relative to 100 watts
 Frequency response: $10 \mathrm{~Hz}-50 \mathrm{KHz} \pm 1 \mathrm{Db}$
 Supply Voltage: ± 45 volts
 APPLICATIONS: P.A., Disco, Groups, Hi-Fi, Industrial.

[^12]: R.s.C. BMI battery elimina-
 tor completely replaces $1 . \delta \mathrm{v}$. tor completely replaces 1. 5 v .
 and
 90 v . Rad 10 batteries

[^13]: alarge range of technical
 and data books are now
 SEND FOR FREE LIST.

[^14]: TV2: Telephone amplifier klt. uses induction coil which is fused to back of telephone. Output $2 w$ into 4ohms. Battery operated. Price: £5.54. P \& P 30p.

[^15]: NF10. LF generator construction kit. A useful 1000 Hz test generator. 12 volt operation. Price: £3.91. P \& P 20 p .

[^16]: Making the Project 80 decoder separate from the F.M. tuner gives the constructor a wider choice of systems as well as saving money in cases where stereo reception may not be required. This unit gives a 40 dB channel separation with an output of 150 mV per channel. The gallium arsenide light emitting beacon automatically lights up to show when a stereo transmission is tuned in. Designed essentially as an integral part of Project 80 systems, this multiplex stereo demodulator may be used in many cases with existing single channel frequency modulated tuners to provide stereo reception
 Size- $47 \times 50 \times 20 \mathrm{~mm}$ ($1 \frac{7}{8} \times 2 \times \frac{\text { Bins }}{4}$)
 One 19 transistor I.C.

[^17]: ARTICLES WANTED
 CASH AVAILABLE for surplus semiconductor and I.C. Phone 01-452 2583 . 3195 COIL wINDING MACHINES wanted. Also capacitors, paper and polyester, 1 UF upwards, job lots
 ought. FALCON COMPONENTS, 33 Station Road Bexhill-on-Sea. Sussex.
 PLESSEY 4 or 5 button TV VHF Valve Tuners, any quantity. Also Pye Westminster (low band) Mobile. Thomson TV, Beith, Ayrshire. Phone Beith W Anted, all types of communications receivers and test equipment-Details to R. T. \& I. Electroniss, Ltd, Ashville Old Hall, Ashville Rd.
 $W_{\text {anted. Used }}^{\text {Anplifier }}$ bower in good condition audio tionab microphone feed, preferably with for convenuse switching. Also loud hailer type, all-weather

[^18]:

 at a price in excess of the recommended maximum price shown on the cover, and that it ahall not

