WirelessWorld

Sound synthesizer

Amplifier design reappraised

And they don't come any quieter than M.I.'s three low-noise signal generators - TF 2011, 2012, 2013 - for mobile radio wavebands.
These are The Quiet Ones indeed - so quiet that they're the only comparably priced instruments available capable of measuring the adjacent-channel selectivity requirements for narrow-band f.m. specified by the various national authorities. The noise level of TF 2011 and $2012(-90 \mathrm{~dB})$ is, in fact, considerably below the approved lower limit.
TF 2011 is designed for the v.h.f. band, TF 2012 for u.h.f. And TF 2013 is for the $800-960 \mathrm{MHz}$ band just recently allocated for
use for mobile radio. That's how forward-looking The Quiet Ones are!
Simple to operate, suitable for a variety of other tests in addition to adjacent-channel rejection measurement, these three M.I. newcomers with their very low noise and frequency drift are a major advance in mobile radio test technology. So get in step with The Quiet Ones ... and you'll be way, way, ahead! The full facts are yours for the asking from:

MARCONI INSTRUMENTS LTDD, Longacres, St. Albans, Herts. AL4 0jN,

England.

Telephone: St. Albans 59292. Telex: 23350.
A GEC-Marconi Electronics Company.

LOW COST TRANSISTOR TESTERS

PORTABLE INSTRUMENTS

VOLTAGE UP TO 150V. LEAKAGE DOWN TO 0.5nA.

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150V. Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at 1 mA , $10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for I_{c} / I_{B} ratios of 10,20 and 30 . The instrument is powered by a 9 V battery and a transistor D.C. to D.C. converter to produce 150 V .

TRANSISTOR RANGES (PNP OR NPN)
$I_{\text {Cbo }}$ \& I $I_{\text {ebo: }}$
$10 n \mathrm{~A}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}$, $20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}, 120 \mathrm{~V}$, and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fell at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$. Short circuit current limit 1 mA .
$B V_{C B O}$
I_{B} :
$h_{\text {FE }}$
$V_{C E(s a t)}$
hFE: $\quad 3$ inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I_{B} into h_{FE} readings
Acc. is $\pm(2+200 \div \%$ of f s.d. $) \%$ i.e. $\pm 4 \%$ at f.s.d.

VBE: $\quad 1 \mathrm{~V}$ f.s.d. acc. $\pm 20 \mathrm{mV}$ measured at conditions on h_{FE} test.
10 V or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$ Open circuit voltage limit 150 V .
$10 n \mathrm{~A}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and 100 mA acc. $\pm 1 \%$. $V_{C E}=2 \mathrm{~V}$ approx.

100 to 10 convert I into $h_{F E}$ readings

1 V f.s.d. acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or 30 acc. $\pm 20 \%$.

DIODE \& ZENER DIODE RANGES
IDR
As $I_{E B O}$ transistor ranges
V_{Z} : Breakdown ranges as $B V_{C B O}$ for transistors.
$V_{D F}: \quad 1 \mathrm{~V}$. s.d. acc. $\pm 20 \mathrm{mV}$ at I_{DF} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA acc. $\pm 1 \%$.
POWER SUPPLY
One type PP9 battery, or A.C. mains when a LEVELL Power Unit is fitted.
SIZE \& WEIGHT
$7^{\prime \prime} \times 10 \frac{1}{4}{ }^{\prime \prime} \times 5 \frac{11}{2} .8 \mathrm{lbs}$

NOTE: All prices subject to V.A.T.
${ }_{\text {vocman }} £ 65$

Send for literature covering our full range of portable instruments.
LEVELIELECTRONTGGTTD. Moxon Street, High Barnet, Herts. EN5 5SD

Vortexion

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.s.

This is a high fidelity amplifier with bass cut controls on each of the three low impedance balanced line microphone stages and a high impedance (1.5 meg.) gram stage with bass and treble controls, plus the usual line or tape input. All the input stages are protected against overload by back to back low self capacity diodes and all use F.E.Ts for low noise, low intermodulation distortion and freedom from radio breakthrough.
A voltage stabilised supply is used for the pre-amplifiers
making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16$ ohms output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected. The mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output .3 V out on 600 ohms upwards.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER

(0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio break through. The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

100 WATT ALL SILICON AMPLIFIER

A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER

With specification as above is here combined with a 4 channel F.E.T. Mixer, 2-30/60S balanced microphone inputs, $1-\mathrm{HiZ}$ gram input and 1-auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER

An all silcon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs. and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted. Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

20/30 WATT MIXER AMPLIFIER

High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced onput and HiZ gram. Outputs available $8 / 15 \mathrm{ohms}$ OR 100 volt line.

200 WATT AMPLIFIER

Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}$ $20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

F.E.T. MIXERS and PPMs

Various types of mixers available. 3, 4, 6 and 8 channel with Peak Programme Meter. 4, 6, 8 and 10 Way Mixers. Twin 3, 4, and 5 channel Stereo, also twin 4 and 5 channel Stereo with 2 PPMs.

The Japanese have a Yen for it.

in case you are not familiar with Japanese:
Our distributors in Japan are telling their their customers about the importance (when soldering I.C.'s and transistors) of the low leakage of our Model X. 25 soldering irons.
Model X.25-25 watt sells at $£ 1.75+P \& P 8 p$ VAT $18 p$ Model G -18 watt $£ 1.95+P$ \& P $5 p$ V.A.T. $20 p$ Model CCN - 15 watt miniature iron $£ 1.95+P \& P 5 p V A T 20 p$ Ask your usual wholesaler or retailer for Antex irons or if you have any difficulty, send the coupon to us direct.

From radio or electrical dealers. car accessory shops or in case of difficulty direct from: ANTEX LTD. FREEPOST PLYMOUTH PL1 $18 R$
(no stamp required) Tel 075267377.

First of a new range of all-British miniature encapsulated power supplies, the Minimod series is designed and manufactured by Gardners to provide reliable, regulated power supplies in a neat pack designed to plug into your P.C. board. Minimod simplifies development or production of equipment by providing power where you need it.

Minimod provides a choice of a standard 5 volt output (available up to 1 Amp) for digital circuits or 12-0-12 or 15-0-15 volts for linear circuits, using a 230 volt input. Each unit is fully stabilised with fold back current limiting, and in the case of 5 volt units, over voltage crowbar is provided...

Ask Gardners to tell you more about Minimod.
Standard or special models can be supplied.

Specialists in Electronic Transformers and Power Supplies

GARDNERS
 TRANSFORMERS LIMITED

Wayne Kerrintroduce low cost Digital A.T.E.

Easy to set up and operate, the Swift Digital A.T.E. checks digital printed boards containing T.T.L. circuits or T.T.L. compatible functions.

The Swift applies a rapid series of stimuli to the masterboard and, simultaneously, to the board under test.

Lights indicate any non-parity between the outputs of the reference circuit and the circuit under test. These relate to the appropriate outputs. So testing is thorough and time saving. An error light indicates incorrectly inserted boards.

For more information phone Bognor (02433) 4501, or fill in the coupon.

Post to Wayne Kerr,
Durban Road, Bognor Regis, Sussex P0229RL Cables: Waynkerr, Bognor. Telex 86120
Please send me details of the Swift Digital A.T.E.
For the attention of Mr \qquad
Company name
Address
WAYNE KERR
a member of the Wilmot Breeden Group
WW-August

TRANNIE ELECTRONICS

 I DOCKYARD, STATION ROAD,

 I DOCKYARD, STATION ROAD, OLD HARLOW, ESSEX Phone Harlow 37739 OLD HARLOW, ESSEX Phone Harlow 37739
 P/P 10p. Price list S.A.E. (Saturday callers welcome)
 all prices include vat

 P19.50 ELECTRONIC

 P19.50 ELECTRONIC DIGITAL CLOCK DIGITAL CLOCK

 (For complete kit of parts including case.)

 (For complete kit of parts including case.)

 Thit digit 24 hour clock is

 Thit digit 24 hour clock is available to readers at this special price. Parts would available to readers at this special price. Parts would special price. Parts would special price. Parts would normally cost over $£ 25$. Kit of normally cost over $£ 25$. Kit of parts includes twelve IC's, parts includes twelve IC's, case and P.C.B.

 case and P.C.B.}

Electrolytic Capacitors

4 VOLT		16 VOLT		40 VOLT	
47 $\mu \mathrm{F}$	61 P	$15 \mu \mathrm{~F}$	$6{ }_{1} \mathrm{p}$	47 $\mu \mathrm{F}$	6 6p
$100 \mu \mathrm{~F}$	$6 \frac{1}{2}$	$33 \mu \mathrm{~F}$	$6 \frac{1}{2} \mathrm{p}$	$100 \mu \mathrm{~F}$	9 p
220 F F	$6 \frac{1}{1} \mathrm{P}$	150, F	$6 \frac{1}{2}$	$68 \mu \mathrm{~F}$	10p
$330 \mu \mathrm{~F}$	$61 p$	$150 \mu \mathrm{~F}$	8p	220رF	$11 p$
1000 F	13p	220 $\mu \mathrm{F}$	9p	$470 \mu \mathrm{~F}$	19p
$4700 \mu \mathrm{~F}$	29p	680 ${ }^{\text {F }}$	17p	$680 \mu \mathrm{~F}$	25p
		$1000 \mu \mathrm{~F}$	17p	$1000 \mu \mathrm{~F}$	25
		$1500 \mu \mathrm{~F}$	25p	22004F	44p

	$\begin{aligned} & \text { Unmarked } \\ & \text { Packs } \\ & \text { Pack of } 25 \\ & \text { 1N4148 } \\ & 55 p \end{aligned}$
	Pack of 10 BC108 $65 p$ BC107 $65 p$ (Plastic can)
	Pack of 10 Plastic BClO9 65p
	Pack of 10 BC169 65p (unmarked) but tested
	$\begin{gathered} \text { 2N2646 } \\ \text { (unmarked) } \\ \text { 33p each } \end{gathered}$
	Pack of 10 2N2926G 65p unbranded but tested

Unmarked but

fully tested 2N 3055 1-9 10 plus 33p 27p	

FULLY

MARKED
TYPES
ADI61, ADI62 $\begin{array}{ll}109 & 65 p \\ 10 \text { plus } & 60 p\end{array}$

BRIDGE RECTIFIERS
P.I.V. I AMP 2 AMP 5 AMP 10 AMP 50 33p 53p 51.76 p £2.20p

THYRISTORS

$\begin{array}{llllll}\text { P.I.V. } & 50 & 100 & 200 & 300 & 400\end{array}$ 1 Amp 28p 25p 41 p 44p 53p 3 Amps 44p 50p 60p - ${ }^{66 p}$

RESISTORS

$\frac{1}{2}$ watt 5% carbon Ip each
$\frac{1}{2}$ watt 10% earbon $1 p$ each
1 watt 10% carbon $2 \frac{1}{3} p$ each
Range 10 ohms to 4.7 meg
R watt m/o 2% 3p each
Range $10-$ meg ohms

RECTIFIERS		
P.I.V.	1 AMP	I. 5 AMP
50	IN4001 4tp	PL4001 8p
100	IN4002 41p	PL4002 9p
200	IN4003 $5 \frac{1}{1} \mathrm{P}$	PL4003 10p
400	IN4004 61p	PL4004 10p
600	IN4005 8p	PL4005 13p
800	IN4006 9p	PL4006 15p
1000	IN4007 10p	PL4007 20p

58 mm . TRACK
INGLE GANGED LOG or LIN Ik to TWIN GANGE
500k. 66p each
CARBON SKELETON PRESETS
Small high quality type (linear only).
All valves $100-5$ meg ohms.
$\begin{array}{ll}-11 \text { watt } & 5 \frac{1}{2} p \text { each } \\ -2.5 \text { watt } & 6 \frac{1}{2} p \text { each }\end{array}$
$\begin{array}{lll}\text { VEROBOARD } & 0.15 & 0.1 \\ \text { Matrix } & \text { Matrix }\end{array}$
$2 \frac{1}{2} \mathrm{in} . \times 33 \mathrm{in}$.
$2 \frac{1}{2} \mathrm{in} . \times 5 \mathrm{in}$.

$3 \mathrm{in} . \times 5 \mathrm{in}$
$5 \mathrm{in} . \times 17 \mathrm{in}$
Vero Pins
Vero Pins (bag of 36), 22p
Vero cutter, 50p; Pin insertion Tools (0.1 and 0.15 matrix) at 61 p .

SLIDE SWITCH

SPST IIp each. D.P.D.T. 13p each.
MINIATURE NEON LAMPS
240 V or 110 V 1-4 5p, 5 plus $4 \frac{1}{2} p$ each.
NDITRON DIGITAL $15 F$
Reads $0-9$ and decimals
(Data Sheet on request)
ONLY 61.80 .
16 DIL Socket
Driven by 7447
$£ 1.05$

VOLUME CON

Single 13p. Dual gang (stereo) 4 Single type with D.P. switch 13p exta

MULLARD POLYESTER'S
250 V P.C mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p} .0 .33 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 4 \mathrm{p}$ $0.1 \mu \mathrm{~F}, 41 \mathrm{p} .0 .15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \frac{1}{2} \mathrm{p} .0 .33 \mu \mathrm{~F}, 7 \mathrm{p} .0 .47 \mu \mathrm{~F}$, $9 \frac{1}{2} \mathrm{p} .0 .68 \mu \mathrm{~F}, 12 \mathrm{p} .1 .0 \mu \mathrm{~F}$ 4p. $1 \cdot 5 \mu \mathrm{~F}, 22 \mathrm{p} .2 \cdot 2 \mu \mathrm{~F}, 27 \mathrm{p}$
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{P}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \frac{1}{2} \mathrm{p} .0 .15 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p}$ 60V: $0.01 \mu \mathrm{~F} \quad 0.015 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}$. $0.1 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p}$ $0.15 \mu \mathrm{~F}, 4 \frac{1}{2} \mathrm{p} \cdot 0.22 \mu \mathrm{~F}, 5 \frac{1}{2} \mathrm{p} \cdot 0.33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} \cdot 0.47 \mu \mathrm{~F}, 8 \frac{1}{2} \mathrm{p} \cdot 0.68 \mu \mathrm{~F}, 12 \mathrm{p} \cdot 1.0 \mu \mathrm{~F}, 14 \frac{1}{2} \mathrm{p}$.

it takes over where MTBF leaves off

While others talk of MTBF, we introduce a new concept-EHPL, Estimated Half-Power Life. Our 400W and 1 kW all-solid-state broadband HF linear amplifiers have over five years of it, counted in operational hours. Which, with a remarkably low Mean Time To Repair, means 99.9% up-time.
The multiple p.a. modules of these compact units, arranged in parallel for maximum reliability, ensure that even in the unlikely event of several component failures occurring together, the amplifiers go on working-long after others have stopped.

Moreover, thanks to Redifon's unique Transmit Level Control, they always deliver to any antenna-even to a badly damaged one-the maximum power that is safe, whatever the mismatch.

All of which means that the pair of transmitters in the picture represent the finest and most reliable in the world for civil and military applications. whether in fixed, mobile or containerised stations. And they are in production and service, right now.

Collect Wireless World Circards. And build a valuable dossier on

 circuit design.Circards is a new and comprehensive system, launched by Wireless World, to provide professional engineers and enthusiasts with valuable and up-to-the-minute data on circuit design. Data not available from any other single source.

Each Circard is 8 " $\times 5^{\prime \prime}$ and shows a specific circuit, a description of the circuit operation; component values and ranges; circuit limitations; circuit modifications; tested circuits; performance data and graphs.

The double-sided format enables the Circard to be filed in standard boxes for easy reference. And the plastic wallet provided keeps the cards well-protected.

Each set of circards costs $£_{\mathrm{I}}$ ($£$ I.I I overseas). A subscription to Nos. 6-15 costs $£ 9$ ($£ 10.50$ overseas) - sets published monthly.

Start your personal dossier on circuit design

Subjects already covered by Circard.
I. Basic Active Filters. 2. Switching circuits: Comparators and Schmitts.
3. Waveform Generators. 4. AC Measurements.
5. Audio Circuits: preamplifiers, mixers, filters and tone controls.
Subjects to be published during the year.
6. Power Amplifiers. 7. Constant Current circuits.
8. Opto-electronics. 9. Basic Logic Gate circuits.

Io. Astables. II. Micropower circuits.
12. Wideband Amplifiers. 13. Alarm circuits.
14. Pulse Modulators. 15. Digital counters.

To: J. Rider, Wireless World, IPC Business Press Limited, Sundry Sales Dept, 33 Bowling Green Lane, London, ECIR oNE.

Please send me set no(s)
(a)
$£_{1}(£ \mathrm{I} .15 \mathrm{o} / \mathrm{s})$ each \square^{*}
I wish to subscribe to set Nos.6-15 @
$£ 9(£ 10.50 \mathrm{o} / \mathrm{s}) \square^{*}$
I enclose cheque/money order for $£$
*Tick as required
Name

Address

Six figures in six seconds

A precision bridge that balances itself the Wayne Kerr B331

For more information, either call Bognor (02433) 4501 or write to the address below:

WAYNE KERR
Durban Road, Bognor Regis, Sussex PO22 9RL

This bridge was designed for use in Standards Laboratories, but ease of operation combined with an in-line readout giving up to 6 figure discrimination has enabled many other applications to be covered

The B331 measures directly a wide range of capacitance and conductance values to 0.01% accuracy. The three terminal faclity enables small values of capacitance and high values of resistance to be measured at the end of long cables

Automatic compensation for the series impedance of the measurement leads is given by an advanced design of Kelvin clip, and a low impedance range directly calibrated in resistence and inductance permits four termınal measurements to bemade

Up to four significant figures can be set on each measurement term with push buttons

The bridge automatically balances itself, the meters indicating the remainder of the measurement value on linear scales. As each pair of decades is introduced with these buttons, the meter sensitivity is increased by a factor of 10 giving an indication of the next figures required in the digital setting sequence. Analog output of both terms permit recording of

Precision standards are incorporated in the B331. A nitrogen filled capacitor with a temperature coefficient of less than 5 p.p.m. forms the reactive standard and loose wire wound resistors with temperature coefficients of 5 p.p.m. are connected to each set of conductance

Range (for 0.01% accuracy) derived reciprocal values

Low Impedance Range
ipF to $10 \mu \mathrm{~F}$ 10 n 于 to 100 mv
1 mH to 10 kH 10Ω to $100 \mathrm{M} \Omega$
$100 \mu \Omega$ to 10Ω
10 nH to 1 mH
derived reciprocal values $10 \mu \mathrm{~F}$ to 1 F
Frequency (internal) $1591.55 \mathrm{~Hz}\lfloor 0.5 \mathrm{~Hz}$ (100000 Hz to special order)
(external) 200 Hz to 20 kHz .

Sinclair Project 60

Now-the Z.50 Mk. 2

with built-in automatic transient overload protection

When originally introduced, the Sinclair $Z .50$ proved how it was possible to design and produce a popularly priced modular power amplifier having characteristics to challenge the world's costliest amplifiers. Many thousands of 2.50 's are now giving excellent service day in, day out. But we have also learned that constructors do not always use their 2.50 's ideally. That is why we have introduced modifications whereby risk of damage through mis-use is greatly reduced and performance further enhanced. The Z.50 Mk. 2 has improved thermal stability, more accurately regulated D.C. limiting to ensure more symetrical output voltage swing and clipping and still less distortion at lower power. Z.50 Mk. 2 is compatible with all other Project 60 modules, and may be incorporated to advantage in existing systems. Eleven silicon epitaxial plantar transistors are now used, two more than in the original $Z .50$; circuitry has been re-designed, making this versatile high performance, amplifier better than ever.

The Z.30 provides excellent facilities for the constructor requiring a high fidelity audio system of less power than that available from 2.50 's. Using a power supply of 35 volts. $Z .30$ will deliver 15 watts RMS into 8 ohms. or 20 watts RMS into 3 ohms using 30 volts. Total harmonic distortion is a fantastically low 0.02% at 15 watts into 8 ohms with signal to noise ratio better than 70 dB unweighted. Input sensitivity 250 mV into 100 K ohms. Slze $80 \times 57 \times 13 \mathrm{~mm}\left(3 \frac{1}{8} \times 2 \frac{1}{4} \times \frac{1}{2}\right)$ Z.30, Z.50 and Z.50 MK. 2 modules are compatible and interchangeable

Guarantee

If. within 3 months of purchasing any product direct from Sinclair Radionics Ltd., you are dissatisfied with it, your money will be refunded at once. Many Sinclair appointed Sinclair Radionics Ltd.
Each Project 60 module is tested before leaving our factory and is guaranteed to work perfectly. Should any defect arise in normal use, we will service it at once and without any charge to you, if it is returned within two years from the date of purchase. Outside this period of guarantee a small charge (typically $£ 1.00$) will be made. No charge is made for
postage by surface mail. Air Mail is charged at zost.

Brilliant new technical specifications

Input impedance $100 \mathrm{~K} \Omega$
Input (for 30 w into 8Ω) 400 mV
Signal to noise ratio, referred to full $0 / \mathrm{p}$ at 30 vHT 80 dB or better
Distortion 0.02% up to 20 W at 8Ω. See curve Frequency response 10 Hz to more than $200 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Max. supply voltage 45 v (4Ω to 8Ω speakers)
($50 \mathrm{v} 15 \Omega$ speakers only)
Min . supply voltage 9 v
Load impedance - minimum : $4 \Omega 2$ at 45 v HT
Load impedance - maximum : safe on open circuit

Typical Project 60 applications

System	The Units to use	together with	Units cost
Simple battery record player	Z. 30	Crystal P.U., 12V battery volume control, etc.	£4.48
Mains powered record player	Z.30. PZ. 5	Crystal or ceramic P.U. volume control, etc.	£9.45
12 W . RMS continuous sine wave stereo amp. for average needs	$\begin{aligned} & 2 \times Z .30 \mathrm{~s}, \text { Stereo } \\ & 60: \text { PZ. } 5 \end{aligned}$	Crystal. ceramic or mag, P.U., F.M. Tuner, etc.	£23.90
25W. RMS continuous sine wave stereo amp. using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } \\ & 60 ; \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U.. F.M. Tuner. Tape Deck, etc.	£26.90
80W. (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60W RMS into 8 ohms)	$2 \times Z .50 \mathrm{~s}$, Stereo 60: PZ.8, mains transformer	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic., guitar, speakers. etc., controls	£19,43

F.M. Stereo Tuner ($\mathbf{(2 5)}$ \& A.F.U. ($\mathbf{£ 5 . 9 8)}$ may be added as required

the world's most advanced high fidelity modules

Stereo 60 Pre-amp/control unit

Designed specifically for use on Project 60 systems, the Stereo 60 is equally suitable for use with any high quality power amplifier. Since silicon epitaxial planar transistors are used throughout, a really high signal-to-noise ratio and excellent tracking between channels is achieved. Input selection is by mearis of press buttons, with accurate equalisation on all input channels. The Sterec 60 is particularly easy to mount.
SPECIFICATIONS-Input sensitivities: Radio - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $+1 \mathrm{~dB}: 20$ to 25.000 Hz . Ceramic p.u. - up to 3 mV : Aux - up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB . Channel matching: within 1 dB . Tone controls: TREBLE +12 to -12 dB at 10 KHz : BASS +12 to -12 dB at 100 Hz . Front panel: brushed aluminium with black knobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$.

Built, tested and guaranteed
£9.98

Project 60 Stereo F.M. Tuner

The phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now, Sinclair have applied the principle to an F.M. tuner with fantastically good results. Other advanced features include varicap diode tuning, printed circuit coils, an I.C. in the specially designed stero decoder and switchable squelch circuit for silent tuning between stations. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with most other high fidelity systems.
SPECIFICATIONS-Number of transistors: 16 plus 20 in I.C. Tuning range: 87.5 to 108 MHz . Sensitivity: $7 \mu \vee$ for lock-in over full deviation. Squelch level: Typically $20 \mu \mathrm{~V}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}(\pm 1 \mathrm{~dB})$. Total harmonic distortion: 0.15% for 30% modulation. Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S. maximum

Built and tested. Post free
£25

Super IC. 12

Integrated circuit
high fidelity amplifier
sistor circuit contained within a 16 lead DIL package. and the finned heat sink is sufficient for all requirements. The Super IC. 12 is compatible with Froject 60 modules which would be used with the $Z .50$ and $Z .30$ amplifiers. Complete with free manual and printed circuit board

SPECIFICATIONS

Output power: 6 watts RMS continuous (12 watts peak). $6-8 \Omega$. Frequency Response: 5 Hz $10100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total Harmonic Distortion: Less than 1%. (Typical 0.1%) at all output powers and frequencies in the audio band (28V). Load Impedance: 3 to 15 ohms. Input Impedance: 250 Kohms nominal. Power Gain: 90 dB (1.000.000.000 times) after feedback. Supply Voltage: 6 to 28 V . Quiescent current: 8 mA at 28 V . Size: $22 \times 45 \times 28 \mathrm{~mm}$ in. cluding pins and heat sink.

Power Supply Units

The new
PZ. 8 Mk. 3

The most reliable power supply unit ever made available to constructors. Brilliant circuitry makes failure from over load and even direct shorting of the output impossible. This is due to an ingenious re-entrant current limiting principle which, as far as we know has never before been available in any comparable unit outside the most expensive laboratory equipment. Ripple and residual noise have been reduced to the point of almost total elimination. This is, of course, the perfect unit for Project 60 assemblies, particularly where the new Z.50 MK. 2 amplifiers are used. Nominal working voltage-45
PZ. 8 Mk.3-£7.98
(Mains transformer, if required) $£ 5.98$
PZ. 5 30v. unstabilised
(not suitable for Project 60 tuner) $£ 4.98$
PZ. 6 35v. stabilised
(not suitable for $1 C .12$) $£ 7.98$

Project 605

the easy way to buy and build
Project 60
without soldering
Project 605 in one pack contains: one PZ.5. two Z.30's, one Stereo 60 and one Masterlink, which has input sockets and output components grouped on a single module and all necessary leads cut to length and fitted with clips to plug straight on to the modules thus eliminating all soldering.
Complete with comprehensive
£29.95
All you need for a superb 30 wat high fidelity stereo amplifier

Order form

Please send
ienclose cash/cheque/money order.
Name
Address

WW 8
SINCLAIR RADIONICS LTD., LONDON ROAD, ST. IVES, HUNTINGDONSHIRE, PE17 4HJ
Business Reg. No. (England) 699483 Registered Office as above

\qquad

Anual, post free

Address

Having introduced Integrated Circuits to hi-fi constructors with the IC. 10 . the first time an IC had ever been made available for such purposes. we have followed it with an even more efficient version. the Superic.12, a most exciting advance over our original unit. This needs very few external resistors and capacitors to make an astonishingly good high fidelity amplifier for use with pick-up, F.M. radio or small P.A. set up. etc. The free 40 page manual supplied, details many Other applications which this remarkable IC. make possible. It is the equivalent of a 22 tran-

Manual available separately 15 p post free.
With FREE printed circuit board and 40 page manual
£2.98
L2.98 Post free

model
 NAUS makes a good match easy at 25 to 525 MHz

Frequency Range	,
Max. forward and reverse	35 W (Over 525 MHz 6 dB per octave)
Indicating Range	0,3/1/3/10/30 W
Smallest readable value	20 mW
Indicating error	$\leqq 4 \%^{\circ}$. rdg. $\pm 1 \%$ of F.s.d.
Variation with temp.	$\leq 0,25 \% /{ }^{\circ} \mathrm{C}$
Directivity	$\geqq 30 \mathrm{~dB}(<\mathbf{3 0 ~ M H z} \geqq 26 \mathrm{~dB})$
VSWR	§1,03
Insertion loss	$\leqq 0.1 \mathrm{~dB}(<525 \mathrm{MHz} \leqq 0.25 \mathrm{~dB})$

Directional Power Meter NAUS

Antenna matching must often be measured when servicing radiotelephone equipment, and. since in many cases the access to built-in radio sets and antennae is difficult, in situ battery-operated instruments which can be easily connected are necessary. To meet this problem. ROHDE \& SCHWARZ have developed the DIRECTIONAL POWER METER MODEL NAUS with a separate measuring head which can be connected at any test point between the antenna and transmitter. Whilst the actual measuring instrument is observed by the operator. The new model covers a frequency range from 25 to 525 MHz in one complete band and has two meters for simultaneous indication of incident and reflected power in five ranges ($0.3 / 1 / 3 / 10 / 30 \mathrm{~W}$). Available with a characteristic impedance of 50,60 or 75Ω. The NAUS is designed to achieve a high sensitivity and accuracy over the wide temperature range of 20° to $+50^{\circ} \mathrm{C}$ and is considered to be ideal for the servicing of radiotelephone equipment.

For full details and specifications apply to:

AVELEY ELECTRIC LTD.

WE AREN'T YOU KNOW!

Actually, we were thinking that you might be thinking of Indicator Lights.Voltage Selectors, Connectors, or perhaps Metal Pressings or Plastic Components. And we were thinking that, even if you only wanted a few of any or each of these, it would be a pleasure to do business with you.

And you might find it a pleasure to do business with us, especially as we can solve so many of your supply problems.

For instance, suppose you did want just a few of these or any other Cinch. Dot or FT components very quickly, we could, as stock holders, have them on the way to you the day we got your order.

Perhaps you'd like to put this promise to the test.

UNITED-CARR SUPPLIES

The single source that simplifies.

Catalogues and samples available to companies specifying their requirements

TELEPRINTER EQUIPMENT LIMITED

Sales Rentals ... New ... Refurbished ... Installation
Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries
TELEPRINTERS Models 7B, 54, 75, 444

CREED EQUIPMENT

TELETYPE CORP. EQUIPMENT

SIEMENS EQUIPMENT
OTHER
EQUIPMENT

SPECIAL EQUIPMENT

PERFORATORS 7PN, 85/86, PR75, 25
TAPE READERS 6S4, 6S5, 6S6, 6 S6M, $92,35,71,72,74$ HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.

TELEPRINTERS 15, 19, 20, 28, 32, 33, 35
all configurations
PERFORATORS $14,19,28$ LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS $14,20,28$ LBXD \& LXD TRANSMIT GROUPS, etc.
TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.
KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN, CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS.

COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED
 G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS $-201,310,316,309,404,420,609,610,1603-3201$
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300,500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD) -made to specifications
TERMINAL BLOCKS (DISTRIBUTION)-20-way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH 71 ($15 \times 4 \mathrm{~B}$)
POLARISED TELEGRAPH RELAYS AND UNISELECTORS-various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, 48H, 49H, 149H,3/16, 3/216, 3/48A, 3/43A, 48J, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES—made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include:

KEYBOARD PERFORATORS for offline tape preparation
AUTOMATIC TAPE TRANSMITTERS with speeds up to 250 w.p.m.
MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS
UNDULATCRS for automatic record and W/T signals up to 300 w.p.m.
CODE CONVERTERS converting from 5 -unit tape to Morse and vice versa
MORSE REPERFORATORS operating up to 200 w.p.m.
TONE GENERATORS and all Students' requirements
CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANSMITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS LAMPS, etc.

Were sensitive to everyone's needs.

Different people have very different requirements in $\mathrm{Hi}-\mathrm{Fi}$, so Goldring developed a comprehensive range of stereo magnetic cartridges that are superb in performance and realistic in price.

From the G800 Super E for those who seek perfection down to the G850 for systems on a budget, the Goldring range offers unsurpassed quality and value.

WW-020 FOR FURTHER DETALS

transformers

mains, audio, microphone, ferrite core and other wound components

A wide range of transformers manufactured to customers individual requirements.

Prompt Prototype
Service available

MICROPHONE TRANSFORMER IN MUMETAL CAN

TRANSFORMER WITH TWO HOLE CLAMP AND SOLDER TAG CONNECTIONS

IP) IL.P. (ctestroneselte

100 WATTS!

\star NO EXTERNAL COMPONENTS
\star MECHANICALLY \& ELECTRICALLY ROBUST

* INTEGRAL HEATSINK
\star HERMETICALLY SEALED UNIT
\star ATTRACTIVE APPEARANCE
* LOWCOST
\star BRITISH BUILT

With the development of the HY200, ILP bring you the first COMPLETE Hybrid Power Amplifier.
COMPLETE: because the HY200 uses no external components!
COMPLETE: because the HY200 is its own heatsink!
By the use of integrated circuit technique, using 27 transistors, the HY200 achieves total component integration. The use of specially developed high thermally conductive alloy and encapsulant is responsible for its compact size and robust nature.

The module is protected by the generous design of the output circuit, incorporating 25 amp transistors. A fuse in the speaker line completes protection.
Only 5 connections are provided, input, output, power lines and earth.
Output Power: 100 watts RMS; 200 watts peak music power
Input Impedance: $10 \mathrm{~K} \Omega$
Input Sensitivity: ODbm (0.775volt RMS)
Load Impedance : 4-16 Ω
Total Harmonic Distortion: less than 0.1% at 100 watts typically 0.05\%
Signal: Noise: Better than 75 Db relative to 100 watts
Frequency response: $10 \mathrm{~Hz}-50 \mathrm{KHz} \pm 1 \mathrm{Db}$
Supply Voltage : ± 45 volts
APPLICATIONS: P.A.. Disco, Groups, Hi-Fi, Industrial.
PRICE: £14.90 inc. VAT \& P \& P
Trade applications welcomed
DELIVERY FROM JULY 1st

CROSSLAND HOUSE • NACKINGTON•CANTERBURY•KENT
CANTERBURY 63218

(DP) ILR.(Electronics) Ltd

THE HY41

The HY41 supersedes the popular HY40 introduced by ILP last year. This highly improved module achieves true High Fidelity with a dramatic reduction in distortion (typically 0.05% at 1 KHz into 8 ohms!) and is electronically and mechanically compatible with the HY40.
With this important improvement the HY41 retains all of the quality characteristics found in the earlier version and P.C. board, Resistor, Capacitors, Hardware Mountings and comprehensive manual are included in the basic kit. No further components are required to construct a complete power amplifier of extremely high performance sufficiently versatile to provide power not merely for Hi -Fi but also for public address systems and industry.

The free manual gives a full circuit diagram of the HY41 and its various applications including a complete stereo amplifier.

Like its predecessor the HY41 is based on conventional and proven circuit techniques developed over recent years.
OUTPUT POWER: British Rating 40 WATTS PEAK. 20 watts
R.M.S. continuous.

LOAD IMPEDANCE: 4-16 ohms.
INPUT IMPEDANCE: 30 K ohms at 1 KHz .
VOLTAGE GAIN: 30 db at 1 KHz
TOTAL HARMONIC DISTORTION: less than 0.15\% (typical 0.05\%)
at 1 KHz .
FREQUENCY RESPONSE: $5 \mathrm{~Hz}-50 \mathrm{KHz}+1 \mathrm{db}$
SUPPLY VOLTAGE: +22.5 volts D.C
SUPPLY CURRENT: $\overline{0} .8 \mathrm{amps}$ maximum.
PRICE: inc. comprehensive manual, P.C. board, five extra components and P. \& P.:MONO: $£ 5.39$

STEREO: $£ 10.78$ This is inclusive of V.A.T. plus P. \& P.

UNIQUE HVBRID PRE-AMPLIFIER

The HY5 has rapidly established a position in the WORLD as the sole hybrid pre-amplifier to contain all feedback and equalization networks within an integrated preamplifier circuit.

Supplied with the HY5 are two stabilizing capacitors and by the addition of volume, treble and bass potentiometers it is ready for use.

Internally the HY5 provides equalization for almost every conceivable input, the desired function is achieved by use of a multi-way switch or by direct interconnection,

Two distinctive features of the HY5 are its inbuilt stabilization circuit, allowing it to be run off any unregulated power supply from 16-25 Volts and a balance circuit which, when linked by a balance control to a second hrb, forms a complete stereo pre-amplifier.

Specifically and critically designed to meet exacting Hi-Fi standards, the HY5 combines extremely low noise with a high overload capability. When used in conjunction with the HY41 and PSU45 forms a completely intergrated system.
INPUTS
Magnetic Pick-up (within $\pm 1 \mathrm{db}$ RIAA curve) $2 \mathrm{mV} .47 \mathrm{~K} \Omega$
Tape Replay lexternal components to suit head). $4 \mathrm{mV} .47 \mathrm{~K} \Omega$
Microphone (flat) $10 \mathrm{mV} .47 \mathrm{~K} \Omega$
Ceramic Pick-up (equalized and compensatable) $20-2000 \mathrm{mV}$. variable.
Tuner (flat) $250 \mathrm{mV} .100 \mathrm{~K} \Omega$
Auxiliary 1250 mV . $47 \mathrm{~K} \Omega$
Auxiliary $22-20 \mathrm{mV} \quad 100 \mathrm{~K} \Omega$

ACTIVE TONE CONTROLS (Bexendall)
Treble $\pm 12 \mathrm{db}$
Bass $+{ }^{-12 d b}$.
INTERNAL STABILIZATION
Enables the HY5 to share an unregulated supply with the Power Amplifier.
UPPPLY VOLTAGE
16-25 volts

SUPPLY CURRENT
6 mA approx
OVERLOAD CAPABILITY
better than 26 db on most sensitive input
infinite on tuner and auxlm
OUTPUT NOISE VOLTAGE: 0.5 mV .

POWER SUPPLY PSU45

The versatile P.S.U. 45 is designed to supply your HY41's +HY5's in stereo or mono format.

Specification
Input: 200-240 Volts.
Output: ± 22.5 Volts at 2 amps .
Overall Dimensions: L. $7^{\prime \prime}$; D. 3.8"; H. 3.1"
PRICE: $£ 4.95$ This is inclusive of V.A.T. plus P. \& P.

Adidystone patio (e)

\square

EC958
 series of receivers 10 kHz to 30 MHz In world-wide use

Professional high-stability receiver series for a wide variety of applications. The standard version can be used as a self-contained F.S.K. terminal, or as a dual-diversity terminal with common oscillator control. Variants are available for Lincompex terminal use, for specialized network monitoring surveillance and for marine applications.

Simplicity Reliability Economy

Your distributor's address and illustrated brochure obtainable from:

Eddystone Radio Limited

Alvechurch Road, Birmingham B31 3PP Telephone: 021-475 2231. Telex: 337081
A member of Marconi Communication Systems Limited

You could design yourself a‘ reputation around this M-OV tube . - It's the best beam tetrode you can buy.

- Offers lowest possible cost per watt. - Communications transmitters all over the world depend - and go on depending - on the famous M-OV TT21.

For more details, just ask us.

EEV AND M-OV KNOW HOW.

THE M-O VALVE CO LTD, Hammersmith, London, England W6 7PE. re Tel: 01 -603 3431. Telex: 23435 . Grams: Thermionic London. SEC. E

WW- 026 FOR FURTHER DETAILS

Abeurate and diret measurement of spari without coupling to moviny parts

 FRAMM resonant reed TACHOMFITRS

for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m. Descriptive Literature on Frahm Resonant Reed Tachometers and Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery.

anders electronics limited

Anders means meters
48/56 Bayham Place, Bayham Street, London NW1. Tel: 01-3879092
WW-028 FOR FURTHER DETAILS

and plug-in cards low cost, high performance units

Limrose's new family of low-cost universal mounting boards, plug-in cards and breadboarding systems is useful for development work. device testing and circuit evaluation.
Delivery is usually ex-stock. For prices and other information please contact

LIMROSE ELECTRONICS LIMITED
8-10 Kingsway, Altrincham,
Cheshire WA14 1PJ.
limrose
Tel. 0619288063

Imagine the thrill you'll feel! Imagine how impressed \} people will be when they're hearing a programme on a. modern radio you made yourself.

Now! Learn the secrets of radio and electronics by building your own modern transistor radio!

Practical lessons teach you sooner than you would dream possible.

What a wonderful way to learn - and help qualify yourself for a new, better-paid career! No dreary ploughing through page after page of dull facts and figures. With this fascinating Technatron Course, you learn by building!

So fast, so easy,

this personalised course will teach you even if you don't know a thing

today!

No matter how little you know now, no matter what your backnow, no matter what your background or education, we'll teach
you. Step by step, in simple you. Step by step, in simple pick up the secrets of radio and electronics.

You become a man who makes things, not just another of the millions who don't understand. And you could pave the way to a great new career, to add to the thrill and pride you receive when you and pride you receive when you
look at what you have achieved. look at what you have achieved.
Within weeks you could hold in Within weeks you could hold in
your hand your own powerful radio. And after the course you can go on to acquire highpowered technical qualifications, because B.I.E.T.'s famous courses go right up to City \& Guilds levels.

Send now for FREE

76 page book - see how

easy it is - read what

others say!

Find out more now! This is the gateway to a thrilling new career, or a wonderful hobby you'll enjoy for years. Send the coupon now. There's no obligation.
through B.I.E.T. training. through B.I.E.T. training.
You build a modern Transistor Rearn Radio and Electronics by doing actual projects you enjoy making things with your own hands that you'll be proud to own!
No wonder it's so fast and easy to learn this way. Because learning becomes a hobby! And what a profitable hobby. Because opportunities in the field of Radio and Electronics are growing faster than they can find people to fill the jobs!
No mathematics,
no soldering - yet you
learn faster than you
ever dreamed possible.
Yes! Faster than you can imagine you pick up the technical know how you need. Specially prepar step-by-step lessons show how to: read circuits - assemble components - build things experiment. You enjoy every minute of it!
You get everything you need. Tools. Components. Even a versatile Multimeter that we in the course AT NO EXTRA CHARGE! And this is a course anyone can afford. You can even pay for it in easy payments - cash fact you could make extra cash
from spare-time work when you've turned yourself into a qualified man

PDST TO: BRITISH INSTITUTE OF | ENGINEERING TECHNOLOGY QH LWWN07 |
| :--- | TODAY FOR FREE BOOK

ENGINEERING TECHMOLOGY
Aldermaston Court, Reading RG7 4PF
Yes, l'd like to know more about your course. Please send me free detalls-plus your big, 76 -page book that tells about all your courses.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

What is TELEFI?

Telefi brings you for the first time real Hi-Fi results from your existing 625 line televison.
T.V. Studios transmit superb quality but skimping in the sound section of the receiver means low-fi squand.
Celestion Telefi changes all this - simply coupled to most T.V. receivers - the first T.V. music you hear through Telefi will convince you the dramatic improvement is what you have been waiting for.
Telefi a remarkable innovation exclusive to Celestion for use in
conjunction with $\mathrm{Hi}-\mathrm{Fi}$ and Audio systems for providing high quality television sound reproduction. No direct connection to the T.V. is required, the coupling being effected by an inductive pick-up.
Telefi is complete in a handsome natural teak veneered case $71_{4}^{\prime \prime} x$ $5 \frac{1}{8}{ }^{\prime \prime} \times 2 \frac{77}{8}$ " approx.
"The Telefi is a very worth while device and will give greater overall enjoyment than the T.V. manufacturers normally provide." John Gilbert 'The Gramophone'.

Celestion \downarrow

J ES AUDIO INSTRUMENTATION

Illustrated the Si 452 Distortion Measuring Unit --low cost distortion measurement down to
$.01 \% \quad \mathbf{£ 3 0 . 0 0}$

Si451
£35.00
Comprehensive Millivoltmeter
350μ Volts
20 ranges ALL PRICES PLUS V.A.T.

Si453
$\mathbf{f 4 0 . 0 0}$

ALL PRICES PLUS V.A.T.
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (09762) 2501 CARR STREET, CLECKHEATON, YORKSHIRE.

WW- 032 FOR FURTHER DETAILS

MODEL 8 MK. V

CONTRACTORS TO H.M. GOVT. P.O. APPROVED
REPAIRS ${ }^{0 \text { efeectrical }}$ MEASURING
7-14 DAYS SERVICE
TO SOLVE YOUR INSTRUMENT PROBLEMS CONTACT

Industrial and Precision Grade

WW-1034 FOR FURTHER DETAILS

OCLI manufacture an extensive range of Infrared Filters covering -he ent re 1.0 to 30 micron spectral region.

Filters in these regions presミni aา excellent solution to filtering out righ-temperature radiation without appreciabl'y limiting the signal from the source being observed. Moreover, they have proven capability over wide operating temperatures.

OCLII. R. Filters are made to erac: Customer specifications or a range cen te supplied from stock.

Typica' fields benefitenng iron JCLI I.R. Filters include:

- gas AnAlysers/DETECTION STSTEMS
- INFRARED PASSIVE THERMAL IMLGING SYSTEMS
- FIRE DETECTION
- POLLUTION DETECTION
- OPTICAL PROXIMITY FJJES
- INFRARED SPECTROSCOPY
- INFRARED PHOTOGRAFHY
- SPACE RECONNAISSA VCE

Write for the new OCL1 cate.ozue and price list of stock I.R. Filters.

OPTICAL COAIINGE LTD.
Hillend Induscrial Estate, Dunferrline, Fife <Y11 5JE. Tel. Inverkeit ting $\$ 631$ (STD 038-34 3637).

OC-19D

6M.W.' DGIA MITLTME E
 (D. E. O'N. Waddington, March 1973)

LIST OF PARTS NOW AVAILABLE

Please send a stamp
We will also include our illustrated lists of other components

CAVERN ELECTRONICS
29 CLAREFIELD ROAD, LEICESTER LE3 6FB Tel.: Leicester (0533) 857223
(Mail Order only)
WW-038 FOR FURTHER DETAILS

WW-039 FOR FURTHER DETAILS

for the professional
contact Derek Owen at 01-874 9054 or Telex 923455

LEEVERS-RICH

EQUIPMENT LIMITED
Agents in Scandinavia, Eastern and Western Europe, Middle East, Africa, Australasia and the Far East.

Youedit the tape. We edit the prices. VDEOTAPEAT DIXONSTECHNICAL

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

Fascinating to build. Fantastic improvement to your car's performance. Complete Capacitive Discharge ignition system, fully proven, components fully guaranteed. Printed circuit design. All metalwork drilled ready. Fitted to car in 15 minutes when built

- Sustained peak performance. Up to 20\% fuel saving. - Instant all-weather starting. Faster acceleration, higher top speed. - Suitable for all engines up to 8 cyls. - Longer spark plug life. Longer battery life. Contact breaker burn eliminated. - Purer exhaust gas emission.
A new development from the manufacturers of Gunton ignition. Price: $\{9.35$ inc. V.A.T. and postage. (12 volt only. State Pos. or Neg. earth). Ready built unit also available $£ 11.55$ inc. V.A.T and postage. GUARANTEED 5 YEARS.

ORDER NOW to: electronics design associates, 82 Bath Street, Walsall WS1 3DE. Phone: 33652
Please send me one SPARKRITE Kit complete. I enclose P.O. Cheque for $£ 9 \cdot 35$. Or for ready built unit $£ 11 \cdot 55$.

NAME
ADDRESS
(Live near Walsall? Call in for an actual workshop demo. /t really is convincing).

WW8

Bishop's Stortford, Herts.
Telephone: 0279-56347 Telax: 81533 REMO STORT
WW- 047 FOR FURTHER DETAILS

reliable high performance \& practical controls individually powered modules-mains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight —realistic prices.

16 Oakham Court Preston PR1 3XP Telephone 077257560

The Jermyn Invertor provides a completely portable source of 240 v 50 Hz power, working from an ordinary car battery.

No noise. No smell. No fuel oil. No maintenance.
And much cheaper than a 2 -stroke generator150 W version (needs 12 v battery) $£ 29.00(+£ 2.90$ VAT). 300 W version (needs 24 v battery) $£ 39.00$ (+ £3.90 VAT).

The circuit includes electronic short-circuit prevention and wrong-connection protection.

And you can work it backwards; plug into the mains to recharge the battery.

Ideal for all kinds of field radio equipment, and as a stand by for the house.

Please send me
150W
300W
Jermyn Invertor(s)
I enclose cheque/PO value $£$
Name
Address
Jermyn
Jermyn Industries 98 Vestry.Estate Sevenoaks Kent

AMTRON eletronic kits including metal cabinets

AMTRON produce a range of up to 200 electronic kits, and apart from metal cabinets you can construct: power supplies, pre-amplifiers, L.F. Instruments, amateur and radio control transmitters and receivers, battery chargers, measuring instruments, tuners, receivers and I.C. digital equipment.

Prices range from $£ 1.10$ to $£ 80$ and each kit is sold in a protective blister pack with complete instructions.

Trade © Educational enquiries welcome.

AMTRON U.K. 4 \& 7 Castle Street, Hastings, Sussex, England. TN34 3DY. Telephone: Hastings 2875.

WW-050 FOR FURTHER DETAILS

244 COUNTER-TIMER
AND
FREQUENCY METER

Price $\mathbf{£ 7 9 . 0 0}$

244 is suitable for a number of Laboratory and Industrial Timing Applications, offering the same facilities as instruments costing twice the price.

For full information contact:-
ESI Nuclear Ltd
2 Church Road
Redhill
Surrey RH1 6QA
Tel: Redhill (91) 64993
An associated company of Edwards Scientific Instruments. Mirfield, Yorkshire.

Purpose-built servo and actuator systems using standard components

Low
Inertia DC motor
McLennan have considerable experience in the solution of actuator and servo problems using synchronous, stepping and D.C. motor techniques as well as solonoid -powered types. An important facet of our skill lies in purpose-designing around standard components for speed and economy of building.

Control Amplifier

The illustration shows a selection of modules from the McLennan standard range which are available as individual items or can be supplied engineered to custom-built systems.
Such a system could be complete in itself or form part of your own design.
Typical examples include
Camera positioning: Plotting Devices: Self-steering Systems: Sig-nal-seeking Aerial Drives: Professional Tape Drives Automated Production Lines. Stimulation of output position or velocity may be by optical, radio, electrical, mechanical, pneumatic or hydraulic signals.

Gearhead with
integral feed-back Potentiometer

HART ELECTRONICS

Audio Kits

This is our Bailey/Burrows Stereo pre-amp front end. We think it is the best engineered kit of the best preamp circuit available, and there is a back end/tone control unit of similar advanced design to go with it which is only $1 \frac{1}{2}$ " deep so it fits almost anywhere, but of course it's at its best in a Hart universal amplifier metalwork with a couple of Hart Bailey 30 watt power amps to keep it company. That's a recipe for real $\mathrm{Hi}-\mathrm{Fi}$ with electronics you'll be too proud to cover up.
Also a delight to the connoisseur are our printed circuits and components for the Stuart tape circuits.
This is a most useful high quality circuit with the record, replay and bias functions on separate boards thus giving considerable versatility of use. For instance a stereo replay channel can be built for $£ 6$ for single speed use without external components or a switch may be added for multispeed operation.

WE ARE SUPPLYING

Printed Circuit Boards, Components and Kits for the

D. O'N. WADDINGTON DIGITAL MULTIMETER

This most interesting project fulfils the long-felt want for a Digital Multimeter with the added bonus of counter/timer functions, all at a price which makes it extremely attractive to the amateur, educational or commercial user.

Please send $9^{\prime \prime} \times 4^{\prime \prime}$ SAE for full details:

Penylan Mill, Oswestry, Salop.

Personal callers are always welcome, but please note we are closed all day Saturday

THE NEW NELSON-JONES FM TUNER

PUSH-BUTTON VARICAP DIODE TUNING (6 Position)

Exclusive Designer Approved Kits
For the first time the Nelson-Jones Tuner is available as a complete kit with all Metalwork, Printed and anodised Front Panel and Teak veneered cabinet. A Six Position push-button unit is used with each pre-selector button fully tuneable with its own scale and pointer and incorporating AFC disable for fine tuning.

Provision is also made for a Stereo LED, Stereo Decoder, Internal PSU and Fine Tuning indication (Meter or LED type). Push-button switches are also used for Stereo Mute and Mains On/Off. All sockets, board standoffs and panel mounting fuse are supplied.
Our attention to detail is such that even our cabinets are veneered inside and out for minimum warp and attractive appearance.
The tuner is available in two gain versions, and our alignment service is available to customers without access to a signal generator.
Prices for complete kits start at $\mathbf{£ 2 3 - 7 5}$ (mono) plus p.p. 45p., and of course all components are available separately.
Please send large SAE for our latest price lists which detail all of the many options and special low prices for complete kits. All our other products remain available e.g. The Portus and Haywood Phase Locked Stereo Decoder Kit.
PLEASE NOTE. Existing tuners are readily convertible and kits/parts are available for this purpose.
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph).
Complete designer approved Texan kits are available at $\mathbf{£ 2 8 . 5 0}$ plus p.p. 45 p íncluding a Teak Sleeve.
V.A.T. Please add V.A.T. at 10% to all prices for U.K. orders.

INTEGREX LIMITED, P.O. Box 45, Derby, DE1 1TW
Phone Repton (028389) 3580

WW- 055 FOR FURTHER DETAILS

Audio Connectors

Broadcast pattern jackfields, jackcords. plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd.
90 Wardour Street.
London W1V 3LE
01-437 1892/3

The New Loudspeaker Range...

Please send me further information on your product rangeNamev3 71
Company
\qquad
Address

The sound of music. from the lowestfrequency to the highest is now brought to the connoisseur of quality in sound reproduction with the new, Vitavox Power Loudspeaker Range.
The Range blends four superb units into one matchless composite. or each element as a separate unit available for use with other systems. The range gives exceptional quality of sound reproduction and handles up to 100 watts of musical power. The four units are a High Power. High Frequency Pressure Unit and a High Power Bass Loudspeaker, each designed to give increased power handling capacity without sacrificing ether efficiency or frequency response : a High Frequency Dispersive Horn, designed for use with the Pressure Unit matching accurately the Unit's output characteristics and giving superb sound dispersion: a High Power Dividing Network for use in both high and low power systems and which ensures correct allocation of the frequency spectrum between high and low frequency units
Carrying the Vitavox stamp of quality. this is the Range which brings you

have the widest connections.

NEW/Toa 900 amplifiers

In fact, the new TOA 900 series of solid-state amplifiers can be fitted with such a wide
 range of plug-in input modules that they are suitable for almost all signalsources.
The result is versatility, flexibility and power. And a vast range of applications in offices, schools, sports grounds, industry and everywhere else where TOA's background of experience and skill can make itself felt. Plug into new TOA units - and you'll get the message very clearly indeed.

Goldring Ltd., 10 Bayford Street, Hackney,
London E8 3SE.
WW-059 FOR FURTHER DETAIIS

MODEL
U-50DX

Piogs wite to ilusite
 (1)Tiliut

USED THROUGHOUT THE WORLD SANWAS
EXPERIENCE OF 30 YEARS ENSURES ACCURACY. EXPERIENCE OF 30 YEARS ENSURES ACCURACY.
RELIABILITY. VERSATILITY, UNSURPASSED TESTER PERFORMANCE COMES WITH EVERY SANWA
6 MOnths Guarantee $\begin{array}{lll}\text { Model P-2-B } & £ 6.35 \text { Model AT-45 } & \text { M20.50 } \\ \text { Mor }\end{array}$ $\begin{array}{lrll}\text { Model JP-5D } & £ 7.62 & \text { Model 380-CE } & £ 20.81 \\ \text { Model } 360-Y T R & £ 10.77 & \text { Model N-101 } & £ 24.20\end{array}$ Model U-50DX £10.89 Model 4EO-ED £28.31 $\begin{array}{llll}\text { Model A-303TRD } £ 14.33 \text { Model EM-800 } & £ 69.32 \\ \text { Model K-30THD } & \text { E } 16.39 \text { Model R } 1000 C B & £ 71.69\end{array}$ Model F-8OTRD £ 17.84 THESE PRICES ARE SUBJECT TO AN ADOITIONAL CHARGE OF 10% FOR V.A.T. leaflet of these and other specialised Sanwa meters ESTON-UP WW - 060 FOR FURTHER DETAILS
 PHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. Just moisten the suction pad and stick it to one side of the telephone. A useful office ald. On/Off switch. Volume control. Operates on switch. Volume control. Operates on
one 9 v battery. Size $3 \mathrm{in} . \times 4 \mathrm{in}$. Ready one 9 v battery. Size $3 \mathrm{in} . \times 4 \mathrm{in}$.Ready
to operate. Complete with battery. to operate.
$P \& P 25 p$.

This NEW, versatile Do Luxe 4(1 Master and 3 Subs) intorcom wall mounting can solve your communication problems instantly. Effective range 300 ft . Call/talk/listen from Master to Subs and Subs to Mastor. With Selector switch. Ideally suitable for office, shop, home or surgery. Adaptable for Mains. Complete with three 66 ft . connecting wires and accessories. On/Off switch volume control. P. \& P. 44p.
WEST LONDON DIRECT SUPPLIES
169 KENSINGTON HIGH STREET, LONDON WE GSN

PORTABLE MIXER

This mixer has baen designed for mobile use in aniunction with bean dasignad for mobile use ins conjunction with high quality audio systems. channals, plus 2 high level auxiliary input chans, The pixer can be cused in wo conti channels. The mixer can be used in two configrations, either 4 track full range output or 2 rack output split into 3 channels sach track each channel controlied by an electronic cros ever. The remaining tus track range tracks of re-mixed into tracks $1 \& 2$ as sub-mixers. The mixer also has 2 fully equallsed independent monitor outputs and drive facilities for an external acho system There is also an output for use with head phones to listen through for cusing each channel

GENERALSPECIFICATION	
Size	$38{ }^{\prime \prime} \times 27^{\prime \prime} \times 12$ "
Weight	1901t approximately
Power Consumption	80 waths approximately
input Impedence	600 okm balanced
Output Impedence	800 ohm balanced
Imput level 15 modules	-80 dbm
thput level auxiliery 2 Inputs	-0dbm
Ourput level	+ 10 dbma alichannels
Cue output Isvel	- 300 milliwatts
Equalisation range	± 14 db trabla
	$\pm 20 \mathrm{db}$ mid
	± 14 do bass
	$\pm 20 \mathrm{db}$ bass pagk
Overall noiss	better than - 60 dut betow ful: output
Channel separation	bether than -80 dbm

PRICE - $£ 6.000$
RCLE EPEIGH: CASE

ELECTRONIC CROSS-OVER

Whas may electronic cross-over is intended for use primarily with music and , be separately controuled The cross-over trequencr
required but will be, in the standard umit, as follows:
Tequired but will be, in
Bass roll-oft 45 c.p.s.
Eass to mid-crossing point 800 c.p.s.
Mid to treble crossing point $5000 \mathrm{cp} . \mathrm{s}$
The unit's putput is batanced
Tha unit's output is batanced 600 ohm line for each channel capable of driving six 600 ohm balance sources. The input to the cross-over is also 600 ohm balance

GENERALSPECIFICATION

Size $\quad 19^{\prime \prime} \times 12^{\prime \prime}$ deep $\times 7^{\prime \prime}$ high (standard 19

Weight	$\begin{array}{l}\text { racking } \\ \\ 35 \mathrm{lb} .\end{array}$

Input
Outout
Power Requirement Optional extra

0 dbm 600 ohm balance
+10 dbm 600 ohm balance $110 / 230$ volts $50 / 60 \mathrm{cps}$ at 80 watts approx
Sub plate

PRICE - $£ 500$
All enquiries to:

سFME

11a SHAR PLESHALL ST., LONDON, N.W. 1 Tel. 01-722 7161/2/3/4 Telex: London 27655

WW- 062 FOR FURTHER DETAILS

Radio and Line Transmission, Vol. 2-2nd Edition

George L. Danielson MScTech, BSc, CEng, MIEE and Ronald S. Walker CEng, MIERE
The second in a series of three books written to meet the needs of the technician specialising in Radiocommunication in the City and Guilds Telecommunication Technicians' Course. The volume covers the revised syllabus of Radio and Line Transmission B, and is suitable for third-year students on a part-time course or for second-year full-time students. Though written primarily for students on technician courses, the work will provide a background for those engaged in more advanced studies
304pp illustrated
0592000672
1972 (2nd Impression 1972)
£1.60

Radio and Electronic Laboratory Handbook-8th Edition

M. G. Scroggie BSc, CEng, FIEE

This completely revised edition of a book which has been a standard work of reference within its field for over thirty years contains much useful new information. There are new or extended sections on microelectronics, integrated circuits and operational amplifiers and a fuller treatment of the use of transistors in instrumentation. Sl units are now used throughout the book.
628pp illustrated 05590595021971 (2nd Impression 1972) $\quad \mathbf{~} 5 \cdot 25$

110 Integrated Circuit Projects for the Home Constructor

R. M. Marston

Integrated circuits are the most important new semiconductor devices to have been developed within the last decade. They are compact, easy to use and less expensive than their discrete transistor-resistor equivalents. This work gives an entirely practical introduction to these devices by describing one hundred and ten constructional projects in which they can be used. The book will be of great value to and a fruitful source of ideas for the professional engineer, the student and the amateur constructor. Like the author's other books, such as the successful 20 Solid State Projects for the Home and 20 Solid State Projects for the Car and Garage, this volume is written in a clear and straightforward manner which makes this important subject accessible even to those with little technical knowledge.
138pp illustrated $059200063 \times$ cased $1971 \quad \mathbf{~ 1 . 8 0}$
0592000583 limp
f1. 20

Operational Amplifiers

G. B. Clayton BSc, FInstP

This text is designed to provide an insight into the capabilities and applications of the modern operational amplifier. As it is simpler and potentially more reliable to work with operational amplifiers than using only the traditional discrete components, the nonspecialist should find it easier to design his own measurement systems if he makes use of them, either in modular or in integrated circuit form. Practising instrumentation engineers and research workers using electronic instrumentation techniques will all find the insights afforded by the text of great practical help in their respective programmes.
244pp illustrated
0408702028
1971
£3.50

Available from leading booksellers or The Butterworth Group
88 Kingsway, London WC2B 6AB. Showrooms and Trade Counter, 4-5 Bell Yard, LondonWC2

THE HIGHEST PERFORMANCE DIGITAL FREQUENCY COUNTERS at THE PRICE IN THE WORLD EVERYBODY BUYS THEM

3015 DIGIT 32 MHz
STABILITY 3 parts in 10^{6}
SENSITIVITY 10 mV

4016 DIGIT, 32 MHz. STABILITY 1 part in 10^{6} SENSITIVITY 10 mV

5018 DIGIT. 32 MHz STABILITY 3 parts in 10^{8} (crystal oven)
SENSITIVITY 10 mV

7018 DIGIT,
50 MHz .
Similar to 501

Similar to 501
prices exclusive of vat
ELECTRONIC START/STOP version PLUS $£ 10$ MEMORY version PLUS £25
DIRECTLY COUPLED INPUT AND SPECIALS TO ORDER Write for illustrated leaflet.
Supplied to and acclaimed by professional engineers everywhere who have purchased our electronic instruments for the past 10 years. Norwegian Agent: ELECTRO-TRADE, TRONDHEIM, NORWAY.

| 1 | RCS ELECTRONICS, NATIONAL WORKS,
 BATH ROAD, HOUNSLOW, MIDDX. TW4 7EE
 Telephone: 01-572 0933/4 |
| :---: | :---: | :---: |

WW- 063 FOR FURTIHER DETAILS
Train for
television
Course commences 5th September, 1973
This is your opportunity to train as a television and radio engineer on our full-time Two-Year College Diploma Course specially designed to cover the examinations of the City and Guilds Radio, Television and Electronics Technicians' Certificate. Full theoretical and practical instruction on all types of modern receivers - including the latest colour sets

Minimum entrance requirements are Senior Cambridge or ' O ' Level, or equivalent in Mathematics and English.
\qquad
THE PEMBRIDGE COLLEGE OFELECTRONICS
(Dept. WW2), 34a Hereford Rd., London W2 5AJ

E

IPC Business Press Lid
33-40 Bowling Green Lane. London EC1RONE. 1 PC 116 business papers in the U.K. and 127 associate publications in Europe.

MAKE BIG REDUCTIONS WITH JACKSON

CATALOGUE NO 5870
The Jackson Friction Ball Drive Reduction Unit is unique. Simply because it's the only one of it's type and size available in the United Kingdom. It has sealed lubrication, with a hardened steel shaft and bearings to give it extra long life. And it's low in price. The unit has a 10:1 reduction ratio, with an output torque of 8 oz . ins. minimum.

Our skilled personnel can produce custom made components to suit your individual needs. And with 45 years of experience your guarantee is our reliability.

Write for fully illustrated catalogue:
JACKSON BROTHERS (LONDON) LIMITED
KINGSWAY, WADDON, CROYDON, CR9 4DG. TEL:01-681 $2754 / 7$ U.S.OFFICE:M.SWEDGAL, 258 BROADWAY, NEW YORK, N.Y. 10007 TELEX NO. 946849

The M2B based on our well tried M2A has been completely redesigned mechanically with a vertical construction that takes only $5^{\prime \prime} \times 5^{\prime \prime}$ of bench space. The carrying handle sits neatly on top of the instrument or may be used as a rest when operated in a sloping position. The A.C. frequency range is now 10 Hz to 1 MHz with amplifier output having a maximum gain of 600 times. A feedback circuit linearises the seales and readings start at 60 microvolts. Input impedance on A.C. and D.C. is 10 Megohms.

12A.C.RANGES 10 Hz to 1 MHz

 1.2mV FSD to 400V -70 dBm to +54 dBm . 8D.C.RANGES 120 mV FSD to 400 V .
(+ V.A.T. where applicable).
Further details about the new Linstead voltmeter available upon request.

Unsead meansagood deal in electronics

Linstead Electronics, Roslyn Works, Roslyn Road, London N155JB Telephone: 01-802 5144

Electronics, Television, Radio, Audio

This month's cover picture, showing the centre suspension of a Philips loudspeaker, symbolizes the reproduction and artificial production of sound - the subjects of articles on amplifier design and sound synthesis in this issue.
(Photographer Paul Brierley)

In our next issue

(publication date August 20)
Homodyne receiver. Wide bandwidth, low distortion tuner for a.m. sound broadcasts, based on an integrated circuit synchronous demodulator.
Total communications. Survey of "interactive" two-way television developed from cable distribution, and its combination with telephone systems.

August 1973
Volume 79 Number 1454

Contents

- 365 Cost-Effective Instruments

366 Electronic Sound Synthesizer - 1 by D. W. Thomas and T. Orr
372 Experiments with Operational Amplifiers - 12 by G. B. Clayton
373 Circuit Ideas
Improving tv sound
Wide-sweep function generator
Auto switch-off for radio sets
Measuring transistor gain by multimeter
Inexpensive parity switch
375 New Generation TV Tuners by P. Antoniazzi and A. Mauceri
377 Sixty Years Ago
377 Circards Announcement
378 High-quality Tone Control by J. N. Ellis
379 The Realm of Microwaves - 5 by M. W. Hosking
383 Books Received
384 Letters to the Editor
Record equalization
Blumlein 4-channel matrix
Current flow symbology
387 Amplifier Design - 1 by J. R. Stuart
391 Announcements

392 News of the Month

Laser communications
New videotelephone
Background music experiments
395 CMOS Circuits by P. A. Johnson
400 H.F. Predictions
401 Electronic Dice by G. J. Naaijer
404 World of Amateur Radio
405 Driver for Fluorescent Tubes by K. C. Johnson
407 These Fifty Years by M. G. Scroggie
408 Flat Display Tube in Colour
409 New Products
414 Real and Imaginary by 'Vector',
A69 APPOINTMENTS VACANT
A94 INDEX TO ADVERTISERS

ibpa

miefliafional Busimess
Press Asschares

I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson
© I.P.C. Business Press Ltd, 1973
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Price 20p. (Back numbers 40p.)
Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.I."
Subscription rates: Home, $£ 4.35$ a year. Overseas, 1 year $£ 5 ; 3$ years $£ 12.50$ (U.S.A. \& Canada 1 year \$13, 3 years $\$ 32.50$) Student rates: Home 1 year $£ 2.18,3$ years $£ 5.55$. Overseas, 1 year $£ 2.50 ; 3$ years $£ 6.25$ (U.S.A. \& Canada 1 year $\$ 6.50,3$ years $\$ 16.25$).

Distribution: 40 Bowling Green Lane, London ECIR ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 04445328 I.
Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

Sinthe best The D67 Dual-Trace 25MHz Osciloscope

DC-25 MHz at $10 \mathrm{mV} / \mathrm{div}$

Vertical signal delay
Delaying sweep
3\% measuring accuracy
TV frame or line triggering
\square Large, bright $8 \times 10 \mathrm{~cm}$ mesh CRT
\square Weight 25 lb

At only $£ 295^{*}$ the D67 continues to offer the low-cos $/$ ihigh-performance value expected of Telequipment. This all solid-state, dual-trace portable instrument features so many charms it has to be used to be believed. For example, the dual-trace vertical system d'splays either channel separately, adds channels algebraically, alternates between channels or chops between channels. The design includes regulated power supplies and FET input circuits which provide minimum drift and fest: stabilisation time - and that means accuracy!
You rrust agree w th the thousands of present users that the D67 is the ideal choice and not just another 25 MHz oscilloscope?

Be first ir the queue! Write or telephone now for full specificalicn and cemonstration.

TELEQUIPMENT<<

Tektronix U.K. Ltd., Beaverton House,
P.O. Box 69, Harpenden, Herts.

Tel: Harpenden 61251
Telex: 25559

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON

Technical Editor:
GEOFFREY SHORTER, B.Sc.

Assistant Editors:
BILL ANDERTON, B.Sc.
BASIL LANE

Drawing Office:
LEONARD H. DARRAH

Production:
D. R. BRAY

Advertisements:
G. BENTON ROWELL (Mmager)

Phone 01-261 8339
G. J. STICHBURY
K. NEWTON

Phone 01-261 8037
A. PETTERS (Classified Advertisements)

Phone 01-261 8508 or 01-928 4597

Cost-effective instruments

It is a natural human trait to want the fastest, biggest (or smallest), widest, brightest or, simply, most. Waste is another, less attractive characteristic of the human animal and the two are inextricably involved.

In the field of electronics it is possible, by the relinquishment of large sums of money, to obtain equipment which is able to perform feats which, if one pauses to think, are little short of miraculous. For example, consider the timebase of an oscilloscope; a sweep speed of 10 ns per centimetre (which is often available) will move the spot over one centimetre of screen in the time it takes for a beam of light to travel about ten feet, or at a speed of about two and a quarter million miles per hour. Or take a digital frequency meter with a crystal accuracy of 1 part in 10^{10}. That is about one second in 300 years. These figures mean very little in practice, of course, but they do illustrate the sort of thing that goes on without our giving it a second thought.

The point of all this is that it seems likely that some of this staggering performance is being bought and sold unnecessarily. Time was when an AVO 8 was all the voltage and current measuring equipment considered necessary in the average, workaday, laboratory and 98% was the nearest one wanted to get to the answer. Nowadays, digital voltmeters offering quite incredible accuracies (at quite incredible prices) can sometimes be seen looking at the output of a logic gate to determine whether it is up or down. Digital frequency meters with errors of quite negligible orders are used to plot the frequency/amplitude characteristics of audio amplifiers and we all know of a company who possess a bright, shiny computer which rattles off a payroll in thirty minutes flat and spends the rest of the week gazing into space.

There is some recent evidence that manufacturers of instruments are beginning to realize that not everybody needs the type of equipment which can do eight things at once when not even switched on. One or two oscilloscopes, for instance, have been introduced. designed to perform the majority of work these instruments are required to do and no more, with a very worthwhile saving in cost. One can see the manufacturer's problem; it is common to all makers of "status" equipment cars being the prime example. How can they produce instruments with reduced specifications when their whole organization is geared to produce the most advanced equipment that it is possible to make?

There is much to be said, however, for the concept of "fitness for the job", and we feel that if some of the bigger companies were to produce instruments at greatly reduced prices, and at reduced specifications, while still possessing the workmanship that made these companies' reputations, they may be surprised by the response.

Electronic Sound Synthesizer

First of three articles describing the operation and construction of a modular system with manual or electronic voltage control of synthesized waveforms

by T. Orr* \dagger B.Sc. and D. W. Thomas \dagger Ph.D., M.I.E.R.E.

The electronic sound synthesizer is an instrument that can generate a variety of complex outputs, the parameters of which are variable and are controlled by the device itself. In its most common form, the synthesizer is used as an electronic musical instrument, usually being a monophonic keyboard device. It is also to be found in more fixed purpose applications, such as animal "alarm call" generators.

Basically, the synthesizer is capable of generating and processing signals, and by employing such techniques as frequency and amplitude modulation, filtering and mixing, it is usually possible to produce a desirable output. The feature that makes the synthesizer unique from other instruments, such as organs or electric pianos, is its voltage control capability. This enables parameters such as frequency, amplitude, modulation, attack and reverberation, to be not only manually controlled, but also electronically controlled. Couple this voltage control capability to a flexible programming unit and the result is an instrument with an enormous range of possible tone colours. The versatility of the synthesizer can be further extended by the inclusion of more and more functional units, but this approach is over-sophisticated. It is better to try to analyse just what is required and how best to achieve it. For instance, what particular types of sounds should the synthesizer generate; is it for instance, going to be used as a piece of educational equipment or for quantitatively synthesizing known waveforms, for example bird calls, engine noises, spoken words etc? This is the "deep end" of synthesizer technology where a great deal of effort has been expended for few returns. Where reasonable returns have been achieved it has been, generally, with computer back up.

Sound synthesis

As a musical instrument the synthesizer is well cast. The world of qualitative descriptions is an ideal environment for a machine that continually defies a quantitative approach. The synthesizer is often used to generate special effects and

[^0]

Manual control of the synthesizer's functions is provided by a control panel, joy-stick and keyboards. The patch panel provides a means, together with voltage summing networks, of linking the internal functions.
(Below) Internal view of the synthesizer, showing the modular construction. Each board is a complete unit - the number of units can be added to or reduced according to the constructor's needs.

Fig. 1. Block schematic of the total system.
can also be used to produce pseudo-instrumental sounds via a keyboard control, or by modifying real instrument sounds. To synthesize implies the process of generating a result by the summation of many parts, and a musical synthesizer should produce a musical output by the summing of a group of semi-musical elements. Musical instruments produce sounds that have a discernible harmonic structure, the perceived sounds being the result of exciting a resonant structure by percussion, bowing, plucking or blowing. The envelope of the signal is modified by various sorts of damping and excitation, and the pitch of the fundamental is either pre-selectable or in some cases continuously variable. To make an electronic synthesis of a "pseudo-instrument", a selection of resonators (oscillators) is required. These resonators should have a variable multi-pitch control (voltage controllable) with a large dynamic range (about $2 \times 10_{3}$) and possibly a selection of different harmonic structures (sinewave, square, ramp, etc which have different harmonics; pure tones only have a limited use). Three or four of these resonators can be considered as á basic minimum for any sort of modest synthesizer arrangement. The signal amplitude from the resonators must be controllable and so a means of control (a voltage controlled amplifier, the gain varying with respect to a control voltage) and a source of control (voltage control sources such as other oscillators, joystick, keyboards, potentiometers, waveform generators etc) must be provided. Also, a means is necessary of bringing these units together so that they interact (the patch panel and the voltage summing networks).

When a rapid series of randomly distributed percussions is initiated (for
instance, brush drums), the pitch information is low. This group of "pitchless" sounds is characterized by the lack of a significant harmonic structure and can be synthesized by modifying the amplitude and spectrum of a noise source. When a musical instrument is played an amount of reverberation is always introduced, thus a means of adding a controlled amount of reverberation is provided.

The synthesizer is operated to its best advantage using a set of keyboards. However, no dynamic function - i.e. a means of generating a louder note the harder the key is pressed - has been provided as in some other synthesizers. To simulate a percussion envelope, a waveform generator having a variable exponential attack and decay has been included. Other circuit functions are included (described later) and these combine with those units already mentioned to produce a system that is capable of generating a very large range of special effects.

The total collection of units was chosen after monitoring the format of commercially available synthesizers. Such items as oscillators, voltage controlled amplifiers, noise sources, mixer, reverberation, patch panel, keyboard, voltage controlled filter, and waveform generator are common to most devices but unusual items included are a joystick, summer/ inverter, exponential transfer function, and a very low frequency noise source. These units extend the range of special effects that can be generated. Items that appear in other synthesizers, but which had to be left out due to time, space and money limitations are: the internal amplifier, loudspeaker, an input preamplifier for microphone and pickups (these provide some excellent electronic
effects), envelope followers (that try to mimic instruments and voices), electronic two-way switches and a programmable memory.

Faced with all the possible combinations of units, the newcomer to sound synthesis will probably be somewhat at a loss to make any decisions as to what units are needed to meet his requirements. Firstly, the system is going to need a power supply. If the synthesizer is likely to be built in modules, which are added when time and money permit, it is advisable to allow a more than sufficient power supply capability to enable an unhindered growth. A current-limited supply would be an improvement over the one given later in this series. The amplifier loudspeaker combination and the patch panel are also essential. The heart of the synthesizer is its oscillators; they generate nearly all of the sound that is produced.
The next most important are the voltage-controlled amplifiers. These are reasonable quality devices, but a cheap f.e.t. modulator could be used if money is tight. Such parameters as linearity and harmonic distortion will suffer from this particular economy. It now becomes more difficult to decide which particular units are most important, so they have been grouped together; the audio mixer, noise sources (coloured), voltage controlled filter, reverberation, waveform generator and keyboards. Lastly, probably the low priority units are the joystick, sample and hold, exponential transfer function, summer/inverter, white and very low frequency noise sources. Even though these last units have the lowest priority, they add considerably to the synthesizer's versatility. As a guide to cost, the synthesizer described in this article was produced for approximately $£ 100$. The
performance of the machine, as with other synthesizers, is not sufficient for it to be a main instrument for live 'performances, due mainly to speed considerations in setting up patches and pots. The only way to obtain a versatile performance entirely from the synthesizer is to use multi-track recording techniques.

The system

The synthesizer may be considered as a series of separate units, each with their own respective sub-groupings (see Fig. 1).

Voltage controlled units

This is probably the most important set of units, for it is these devices that have their parameters controlled by external electrical signals.
Voltage controlled oscillators. Each oscillator's fundamental frequency is controlled by the sum of the input control voltages and a bias voltage, there being a fixed relationship between the voltage and frequency. From three oscillators, several waveforms are simultaneously available, these being sinusoidal, square, triangular, sawtooth, variable mark/space ratio, pulse and a sequential signal. The operating ranges extend down to frequencies of a fraction of 1 Hz and to frequencies above the audio range. These oscillators perform all the frequency modulation functions of the synthesizer.
Voltage controlled amplifiers. The gain of the unit is linearly controlled by the sum of the input control voltages and a bias voltage. There are two v.c.as and these provide all of the amplitude modulation capacity.
Voltage controlled filter. This unit is a bandpass filter, the value of the resonant frequency being linearly proportional to the sum of the input control voltages and a bias voltage. The Q factor is manually adjustable and increases linearly with frequency.

Signal processors

The voltage controlled units require input control signals and produce either control or audio signals at their outputs. Note that the distinction between control and audio signals is not absolute, but as a generalization, control signals exist from d.c. up to the low frequency end of the audio spectrum. There is no physical reason against control signals extending to high frequencies, except that the effect is rarely a pleasant one! By processing audio and control signals, the range of outputs is considerably enlarged.
Audio mixer and reverberation unit. These two processors are only compatible with audio signals as they are both a.c. coupled. The mixer has three channels, each channel having its own attenuator, and there is also a master gain control. The reverberation unit also has a gain control and provides a source of reverberation up to approximately 4 kHz .
Summer/inverter and exponential transfer function. These devices were designed essentially for control signals, but audio signals may also be used. Two of each are used in the synthesizer. The summer/inverter has three inputs, two with a gain of -1 , one with a gain of -10 .

Fig. 2. Functions of voltage controlled oscillator, VCO_{1}.

Fig. 3. Oscillator VCO_{1} in block diagram form.

Sample and hold. This is the only form of analogue memory provided. Sampling is initiated by a positive input pulse that causes the unit to sample the analogue signal for a preset time. This signal is then held for an unspecified period.

Noise sources

Three different outputs are simultaneously available. The noise may be used as a control signal or as an audio signal.
White noise. The noise source provides on average a continuous flat spectrum (within certain limits and tolerances).
Coloured noise source. The output noise spectrum is arbitrarily variable and is controlled by a conventional tone control network.
Véry low frequency noise source. One of two v.l.f. outputs may be selected, the signal's function being a random control voltage.

Control voltage sources

The units of this group generate control voltages, and provide the main active link between the operator and the synthesizer.
Joy stick control. Two bias voltages are produced, one associated with each degree of freedom of the device. By physically
moving the joystick, the bias voltages change, the modified signals being linearly proportional to the stick's position.
Waveform generator. A "rectangular" waveform with an exponential attack and decay is generated, the process being initiated by a manual or electronic signal. The attack and decay time constant, and the duration are all arbitrarily variable.
Key boards. A standard four-octave keyboard is used to generate a d.c. control voltage, which is linearly proportional to the key position. As the synthesizer is essentially a monophonic instrument, then only one key may be pressed at a time. If two or more are pressed simultaneously, the highest note is automatically selected. Also a pulse is produced at the start of each new note.

Three other units must be introduced to complete the total system. The first is the patch panel which enables the rapid interconnection of units into any desired configuration. Secondly, an external amplifier and loudspeaker is required. The third requirement is an external feedback system with pattern recognition facilities and a versatile complement of servo systems - an operator. The selection of units may be varied to suit one's particular requirements.

Fig. 4. Circuit of VCO . All resistors are 5\%, $\frac{1}{}$ W unless asterisked - these are 2%.

Design in general

There are certain rules that have to be enforced if the synthesizer is to work satisfactorily. Firstly, it is essential to generate and measure all signals relative to 0 V , and this requires a reliable grounding system. A stack of star terminals was employed for this, to which were connected the ground wires from the control pots and all the 0 V supply lines from the edge connectors.

A signal level of 3 V was selected, this giving ample room for larger signal excursions. Also as there is a considerable amount of wiring between the pots, cir cuits and patch panel, the input and output impedance of the units was kept low so that unscreened wiring could be used without any serious interference or crosstalk problems occurring. The input impedances are typically 1 k 3 and the output impedances must be correspondingly lower to avoid loading. Some control signals are low frequency or even direct voltages and so a.c. coupling between units is not a practical proposition (with the exception of the audio mixer and the reverberation unit). The most significant problem with direct coupling is the fact that control signals
are never what they ought to be, but always have an offset voltage added to them. Most of these offset voltages are only a few hundred millivolts (positive), but this is enough to cause disturbing effects. However, the variable bias on the voltage controlled units should be capable of overcoming most offsets.

The general layout of the synthesizer can be seen in the photograph. Most of the circuitry was constructed on plugin boards and although the connectors increase the cost, they do provide the advantage of making the boards removeable for servicing. Also a spacious layout has been used, enabling clear access to the control pots. Even with a stabilized supply and a reasonable ground system it may prove necessary to decouple the power supply on each board. Minor transients of the supply levels can be disturbing as they can build up into a noticeable background noise, and may even cause the v.c.os to lock on to each other's harmonics.
The synthesizer bears a strong resemblance to an analogue computer, with an array of control pots to vary parameters, a patching system and a selection of functional electronic units. However,
whereas the analogue computer makes an attempt at being quantitative and accurate, this synthesizer does not, relying strongly on the qualitative perception of the operator

First voltage controlled oscillator

This oscillator ${ }^{2}$ has a linear frequency/ voltage characteristic and produces four outputs as shown in Fig. 2. These are square, triangular, sinusoidal and a variable mark/space ratio rectangular waveform. The oscillator has three frequency ranges, the top range covering the audio spectrum, the bottom two extending to subsonic frequencies. The quiescent operating point may be shifted by altering the bias level, and the input control voltages ($V C_{1}, V C_{2}$) may be attenuated by control pots. The final operating frequency is linearly proportional to the sum of the bias voltage and the attenuated control voltages, and should have a dynamic range of at least three decades.

The heart of the oscillator is a trianglesquarewave generator (Fig. 3) where a Schmitt trigger provides positive feedback around an integrator; the integrator's output thus ramps up and down inside
the hysteresis window of the Schmitt trigger. The oscillator is both self-starting and stable, having a large dynamic operating range and a defined amplitude. Two outputs are produced, a triangle at the integrator's output and a square wave from the Schmitt trigger. The ramp rate, and hence the operating frequency, may be varied by altering either the integrator's gain and/or the drive voltage.

The two voltages V and \bar{V} (Fig. 3) are alternately switched into the integrator by the electronic switch (a diode ring switch $D_{7}, 8,9,10$, Fig 4), which is controlled by the Schmitt trigger. The voltage V is produced at the output of $I C_{3}$, where the output is depressed by the forward drop across diode D_{6}. Ideally D_{6-10} should all be matched and so should resistors $R_{21},{ }_{24},{ }_{36}$, and $R_{22},{ }_{23}$, thus preserving as far as possible the linear voltage/frequency characteristic and signal symmetry. However, as matched diodes are relatively expensive, it was decided to use unmatched unselected diodes.
This had the effect of causing some nonlinearities which were only noticeable at low frequencies where the diodes were conducting very low currents. To obtain the required gain from $I C_{3}$, resistor R_{36} had to be much larger than $R_{21},{ }_{24}$, and this resulted in a loss of voltage/ frequency linearity at low frequencies. This effect is not very noticeable, but imbalance in the ring switch may cause a disturbing loss of symmetry (Fig. 7). This can be nulled by preset R_{2} (Fig. 4) which is set to cancel the offset caused by the ring switch's imbalance at its minimum operating point. To preserve as much symmetry as possible, $R_{21 \cdot 24}$ are all 2% tolerance resistors.
Diode D_{3} (Fig. 4) is included to protect $T r_{1}, T r_{2}$, against emitter-base breakdown; if for any reason the feedback loop is broken, the output of $I C_{1}$ may ramp down unhindered, with irreversible results. The Schmitt trigger used is the SN7413N, a t.t.l. integrated circuit. The whole of the circuit operation relies upon the stability of the hysteresis levels; if they alter, then the amplitude and frequency of the output will change. Thus it is particularly essential to have a stabilized and decoupled 5 V supply for $I C_{2}$ as well as for $V_{\text {cc. }}$. If this is not achieved then spikes on the power supplies will cause oscillators $V C O_{1}$ and $V \mathrm{VO}_{2}$ to have a tendency to lock onto one another's harmonics. To reduce the generation of spikes, the output of the Schmitt trigger is capacitively loaded; this however, has little effect on the square wave production at audio frequencies.

It should be pointed out that using the SN7413N for the Schmitt trigger has its drawbacks. The separation between its hysteresis levels is small, making it vulnerable to interference by other v.c.os. Its fast rise and fall times can generate significant interference and also it does not like driving long lengths of cable. These difficulties have been largely overcome, but a Schmitt trigger of discrete components would still be an improve-

Fig. 5. Diode function generator which produces a sinewave output when fed with the triangular wave output from the integrator IC in Fig. 4. All resistors are $\frac{1}{4} W, 5 \%$.

Fig. 6. Mark/space generator whose output mark/space ratio is variable from 15-85\%.

Fig. 7. Asymmetry caused by an imbalance in the diode ring switch.

Dias wrong

to much gain

optimum output a'sinewave'

Fig. 8. Output of the diode function generator with cause and effect of incorrect bias and gain adjustment.

Fig. 12. Circuit of the pulse function generator.
ment. Also, delays in the loop cause some unwanted amplitude modulation. This effect becomes apparent at frequencies above 10 kHz , but the change in amplitude and harmonic content (in the case of the piecewise generated sinewave) is not obvious to the observer. The sinewave output is generated by feeding the triangular wave at the output of $I C_{1}$ (Fig. 4) into a diode function generator (Fig. 5). Thus, by adjusting the bias, R_{2}, and the gain, R_{3}, a sinewave can be produced as shown in Fig. 8.

The mark/space signal is produced by driving the circuit shown in Fig. 6 with the "triangle" waveform. Transistor $T r_{1}$ forms a level sensitive switch, and R_{4} effectively shifts the d.c. level of the input signal. The resultant mark/space output is buffered by $T r_{2}$. Preset R_{3} is
adjusted so that Tr_{1} comes on just at the peaks of the input drive with the wiper of R_{4} set at $-V_{\text {cc }}$. This should provide a mark/space range from about 15 to 85%.

To set up $V C O_{1}$, select the highest frequency range, disconnect any inputs, set the bias to mid position and set R_{2} and R_{32} (both as in Fig. 4) to mid position. Monitor the triangle output and switch on. Turn the bias level down to zero and if the oscillations stop increase R_{32} until they start again. If the oscillations become badly asymmetric just before stopping, compensate by adjusting the offset control R_{2}. Thus by adjusting R_{2} and R_{32}, optimize the balance between minimum operating frequency and symmetry. Having done this, increase the bias pot setting to give an output frequency of about 1 kHz . The triangular
wave should now be symmetrical and the diode function generator and mark space generator presets can now be aligned.

Second voltage controlled oscillator

This oscillator is similar to $V C O_{1}$. It produces sine, square and triangular waveforms as before and also pulse and ramp waveforms (Fig. 9). The heart of the oscillator is basically the same as shown in Fig. 4, except that four frequency ranges are employed (see Fig. 10), thus giving an extended low frequency range. The sinewave generator is the same as before (Fig. 5), but two new generators, a pulse and a ramp generator are provided (Fig. 11).

The pulse generator is a monostable; it is triggered on the positive edge of the
square-wave output and produces a pulse of approximately 20μ s duration (Fig. 12).

The ramp generator is a differential amplifier with a switched gain (Fig. 13). The square-wave is used to control switching transistor $T r_{1}$, so that the differential amplifier has an alternately positive and then negative gain. As the triangle and square-wave are always phase locked, the output of the differential amplifier is a ramp. As the triangular wave will have a d.c. offset voltage associated with it, a step will be produced in the middle of the ramp, but this can be zeroed by cancelling out the offset. For this purpose, preset R_{11} in Fig. 13 has been provided. There will, however, be some distortion generated at the crossover point which cannot be removed, but this is relatively small.

In the article by R. A. Moog ${ }^{1}$, the v.c.o. described takes a different approach to the waveform synthesis. It first generates a ramp using a current-driven unijunction relaxation oscillator, and then converts this ramp into a triangle. This type of v.c.o. has a smaller dynamic range than $V C O_{1}, 2$, but has a much higher immunity to locking onto harmonics of other oscillators.

The series will be continued with details of a sweep frequency oscillator, VCO_{3}, voltage controlled amplifiers and filters, mixer and summer/inverter, sample and hold and noise sources. The final part

Fig. 13. Circuit of the ramp funcion generator.
describes the joystick control, waveform generator, keyboards, patch panel and power supply.
to be continued

References

1. Moog, R. A., "Voltage Controlled Electronic Music Modules", Journal of the Audio Engineering Society, July 1965.
2. Kindlmann and Fuge, "Sound Synthesis". IEEE Transactions on Audio and Electroacoustics, Dec. 1968.

Experiments with operational amplifiers

12. Pulse width modulation

by G. B. Clayton,* B.Sc., F.Inst.P.

A pulse width modulator allows the width of a series of pulses, occurring at the fixed frequency of a carrier signal, to be controlled by the amplitude of a modulating signal. An experimental circuit which uses an operational amplifier to perform this function is shown in Fig. 12.1.

The modulating signal (a sinusoid in this case) is applied to one input terminal of the amplifier and a triangular carrier wave is applied to the other. Both the signal sources shown in Fig. 12.1 must contain a d.c. path for amplifier bias currents. The amplifier acts essentially as a comparator. Typical circuit waveforms are illustrated in Fig. 12.2. If a

[^1]triangular wave source is not available a triangular carrier wave can be generated by integration of a square wave using an operational integrator.

Fig.12.1 Op-amp used for pulse width modulation.

Fig. 12.2 The upper traces show the two input signals to the circuit (2V/div.) and the lower trace the output of width-modulated pulses ($10 \mathrm{~V} / \mathrm{div}$.). Horizontal scale, $10 \mathrm{~ms} / \mathrm{div}$.

Circuit Ideas

Make your description of a new circuit concise and say how it is an improvement over previously-published circuits, preferably in the first sentence. We pay $£ 5$ for published circuits.

Delayed switch off for transistor radios

This circuit switches off a transistor radio after a delay of approximately 30 minutes with a small current consumption while on and negligible consumption when off. The circuit uses $T r_{1}, T r_{2}$ as an equivalent but cheaper silicon controlled switch. Resistor R_{4} determines $T r_{1}$ base current and $T r_{3}$ is used to cut off this current and hence turn off the radio. The switch is shown in the normal position. When operated the radio supply decoupling capacitor, charged, is connected across R_{1}, R_{2}. This turns on $T r_{2}, T r_{3}$ which turn on $T r_{1}$. The capacitor charges via R_{9} until $T r_{5}$ turns on (its emitter is held at half supply voltage by R_{6}, R_{7}). This turns $T r_{4}$ on, turning $T r_{3}$ off and hence $T r_{2}$ and $T r_{1}$. The only current flow now is that due to R_{7}, R_{9} and $T r_{1}, T r_{2}$ leakage currents, measured as $20 \mu \mathrm{~A}$.

The diode prevents the capacitor charging via T_{5} base/emitter junction if its reverse voltage rating is exceeded.

All transistors should have low leakage and a current gain greater than 50 at low currents except $T r_{1}$ which need only have a current gain greater than 25 with collector currents from 10 to 100 mA . (I used

2N3706 for $\operatorname{Tr}_{1}, \operatorname{Tr}_{s}$ and 2N3702 for $T r_{2}, T r_{3}, T r_{4}$.) The capacitor must also have low leakage and some experimentation may be necessary. Resistor R_{10} discharges the capacitor rapidly to permit another operation immediately. The switch requires a good insulation resistance.

Operation of the circuit was between

9 and 18 V . To enable operation from $4 \frac{1}{2}$ to 9 V , halve the values given for R_{6}, R_{7}, R_{4} and R_{5}. Also omit the diode as the maximum reverse bias for Tr_{5} will then only be 4.5 V .
S. Lamb,

Timperley,
Cheshire.

Improving television sound

Most of the distortion in television sound is introduced in the power amplifier and loudspeaker. Coupling the low-level sound signal, available at the detector or soon after, to a hi-fi system is an attractive solution to the problem, but usually founders on the requirement for a large and expensive transformer to isolate the television receiver chassis from the mains neutral. This system dispenses with this requirement.

The tunnel diode oscillator operates at a frequency within the f.m. broadcast band, at a level of a milliwatt or so, and is frequency modulated by the transistor, whose signal is derived from the volume control of the tv set. The oscillator output is inductively coupled to a coaxial line by

an air-cored transformer which provides ample power-frequency isolation. At the hi-fi system, the resulting f.m. signal can be capacitatively coupled into the aerial circuit of an f.m. radio. By suitable
screening, unwanted f.m. radiation can be kept to an insignificant level.
A. J. Smith,

Aldershot,
Hants.

Function generator mod. for wide sweep range

The simple function generator shown in the accompanying diagram may be swept over a 1000:1 frequency range by varying V_{c}. The network, composed of the two transistors with diodes in their bases, has an exponential output current versus input voltage characteristic, and replaces the usual charging resistor of the Miller integrator. The electronic switch is controlled by the Schmitt trigger alternately connecting $+V_{c}$ and $-V_{c}$ to the charging circuit.

In my unit, the control voltages are
derived from two operational amplifiers in the unity-gain inverting configuration. Input control voltage is derived from a potentiometer mechanically connected to a strip chart recorder, enabling Bode plots of audio equipment over the entire audio range to be made.

The frequency characteristic was found to be within 6% of a true exponential characteristic.
P. D. Hiscocks,

Ryerson Polytechnical Institute, Toronto.

Inexpensive b-c.d. parity switch

A parity switch can be made for about $£ 2$ per decade, using a thumbwheel switch and a b-c.d. to decimal converter such as the 7442. The outputs from up to four such switches could be connected to a four input NOR gate such as 7425 , the output from which would go high at parity.

Birch-Stolec of Hastings, Sussex, make a small switch type SM which is available with a reverse numbered drum and
extended p.c.b. Cut the copper below the number 2 (see photograph) and connect this to the 7 output of the converter. Numbers 0 and 1 need to be connected to the 9 and 8 outputs of the converter. The spare copper strip adjacent to the 0 can be used for the ground connection.
J. A. L. Fasham,
M.R.C. Laboratories,

Carshalton, Surrey.

Measuring transistor gain

This transistor checking device has the advantage of simplicity in checking silicon transistors in which leakage current is negligible and measures gain over a wide range satisfactory as it is indicated on the ohms scale of a multimeter. The meter is set to give full scale reading by adjusting R_{3} with a transistor with base and emitter only connected. (The meter is used as a voltmeter, R_{3} being such as to bring it to approximately 9 V full scale.) When the collector is connected, β will be given by the reading on the ohms scale, provided $R_{2}=\left(R_{\text {mid }}-1\right) R$, numerically. The value $R_{m i d}$ is the mid-range value of the ohms scale and R is the parallel combination of R_{1} and the total resistance in the meter circuit.

In my case $R_{1}=1 \mathrm{k} \Omega$, the meter resistance was $300 \mathrm{k} \Omega$ and could be neglected and $R_{\text {mid }}$ was 18Ω. The use of an $18 \mathrm{k} \Omega$

resistor for R_{2} was sufficiently close for practical purposes.
As an alternative, R_{3} may be adjusted with the transistor removed to give a meter indication of " -1 ohm", that is, just beyond the normal full scale reading.

Once the meter is set it does not need readjustment while similar transistors are being checked. If the ohms scale is not of a suitable range, it may, of course, be multiplied by a factor so long as R_{2} is calculated using the "scaled" $R_{\text {mid }}$. R. G. T. Bennett,

Christchurch, New Zealand.

ELECTRONIC ENGINEER FOR WIRELESS WORLD

Editorial assistant with good technical knowledge of electronics and/or radio required for Wireless World. Must have practical experience as an engineer or technician and ability to write good English. This is basically a job for an engineer interested in wideninghis experience through journalism. Preferred age: about 25. Salary in range $£ 2000$ £3000. depending on age, experience and qualifications. Applications to Editor, Wireless World, Dorset House, Stamford Street, London S.E. 1.

New Television Tuner

Reduced cross-modulation using BF479 transistor with $\mathbf{p - i}$-n diodes

by P. Antoniazzi and A. Mauceri*

With increasing density of television transmitting networks, and especially of the u.h.f. colour stations, the need has emerged for: television sets able to withstand larger input signals. Attempts to use dual-gate m.o.s. f.e.ts have so far failed because of severe u.h.f. noise and gain limitations, and because the cross-modulation reduction was not sufficiently great. Our answer is the lownoise, high-current transistor preamplifier, with a p-i-n diode variable attenuator to achieve the required a.g.c. With this approach wide dynamic range is obtained with a noise figure of only 4 dB at 800 MHz .
*SGS-Ates, Milan.

Fig. 1. Better aerial input matching is achieved in tuners using p-i-n diodes instead of gain-controlled transistors for a.g.c.

Fig. 2. Linearity of gain up to 15 mA or so of BF479 improves cross-modulation performance, the gain control function being taken over by p-i-n diodes.

The introduction of germanium mesa r.f. transistors was undoubtedly revolutionary, and their potential is by no means exhausted, especially as far as noise and gain are concerned. However, a consequence of their mode of operation is poor cross-modulation performance. The a.g.c. front-end transistors are not able to handle very strong signals. Another problem is to achieve good aerial input matching. Input v.s.w.r. in conventional tuners is unsatisfactory at the top end of the u.h.f. band. At the input of this new tuner on the other hand, p-i-n diode attenuation gives very effective matching, a standing-wave ratio smaller than two being obtained without difficulty (Fig. 1).

Cross-modulation performance of a bipolar transistor improves almost linearly with increasing collector current. Standard a.g.c. transistors are unable to take advantage of this because of their limited currenthandling characteristics with power gain collapse beyond 3 to 4 mA .

In a new transistor, type BF479, a gain curve obtains which remains linear up to 15 to 20 mA . This results in a great improvement of cross-modulation performance (Fig. 2). Gain control is provided by p-i-n diodes, handling input signals around 1 V with cross-modulation of 1%. Attenuation is negligible with weak signals, which are passed directly to the transistor. As the signal increases, so does the attenuation brought about by the p-i-n diodes and the output is kept constant.

A comparative performance analysis shows that high-frequency gain, as determined by the maximum frequency of oscillation $f_{\text {max }}$, depends mainly on transistor polarity ($\mathrm{p}-\mathrm{n}-\mathrm{p}$ or $\mathrm{n}-\mathrm{p}-\mathrm{n}$) through the term r_{b}^{\prime}. This is because minority carriers flowing through an optimized u.h.f. bipolar transistor experience most of their delay in parts of the structure other than the base quasi-neutral region (e.g. in emitter and collector depletion layers). Moreover, these delays can be reduced and thus f_{T} increased in a way which is, at a first approximation, independent of transistor polarity. However, r_{b}^{\prime}, as determined by a certain geometry and certain masking tolerances, is directly affected by the mobility of the base majority carriers, which is more than double for electrons ($\mathrm{p}-\mathrm{n}-\mathrm{ps}$) than it is for the holes (n-p-ns). Similar considerations hold good for high frequency noise figure

To reduce r_{b}^{\prime} by narrowing the emitter

Fig. 3. Lower and more constant noise figure versus temperature and current are features of the BF479 transistor.
strips is a difficult and expensive task, so it is apparent that the silicon $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor is a better choice than n-p-n. Recent progress in h.f. silicon $p-n-p$ manufacture has led to development of the BF479, a planar epitaxial device with very shallow base and emitter diffusions ($w_{b}=0.25 \mu \mathrm{~m}$).

Its lower and more constant noise figure versus temperature and current (Fig. 3), and its higher dissipation (working point $10 \mathrm{~V}, 10 \mathrm{~mA}$) are essential characteristics for modern television tuner applications.
Reliability considerations have led to an interesting design innovation, illustrated in Fig. 4. This consists in a modification of standard layout to give a "base-grid" geometry, which helps eliminate problems of aluminium migration and metal cracks. Electrical characteristics of the BF479 are summarized in the table.

Characteristics of BF479 transistor

$V_{C B U}$	30 V
$V_{\text {CEO }}$	25 V
$V_{\text {EBO }}$	3 V
$l_{\text {Cmax }}$	50 mA
$h_{\text {FE }}$	25
$P_{\text {for }}$ at $50^{\circ} \mathrm{C}$	125 mW
$C_{C B O}$	0.7 pF
f_{T}	$1: 6 \mathrm{GHz}$
$N F$ at 800 MHz	4 dB

Fig. 6. Theoretical predictions of cross-modulation versus third-order intermodulation products.

Suggested tuner circuit

Fig. 5 shows a television tuner circuit with the BF479 p-n-p silicon transistor used as both u.h.f. and v.h.f. amplifier stage. Remaining parts of the circuit are conventional, except for the a.g.c. function, where p-i-n diodes are used. A further improvement would be obtained by introducing Schottky diodes in the mixer stage, but for the moment this solution is not justified because the overall performance of the new tuners combining $p-i-n$ diodes and highcurrent silicon p-n-p transistors is more than adequate for present market requirements.

Appendix

Correlation between cross-modulation and

 third-order distortionIntermodulation analysis
From the general expression

$$
I_{i n}=a_{0}+a_{1} V_{b}+a_{2} V_{b}^{2}+a_{3} V_{b}^{3}+\ldots
$$

and with input signal

$$
V_{b}=V_{1} \sin \omega_{1} t+V_{2} \sin \omega_{2} t
$$

we obtain a third-order current

$$
I_{21}=\frac{3}{4} \cdot a_{3} V_{1}^{2} V_{2}
$$

where I_{21} is the peak value of third-order intermodulation current at the input ($f=2 f_{1}-f_{2}$). The input voltages and currents are converted to output power by using a transistor model.

For the common-emitter configuration the third-order intermodulation power is

$$
P_{21}=2 P_{1}+P_{2}+K_{21} \quad(\mathrm{dBm})
$$

where P_{1} is the output power in dBm at f_{1}, P_{2} the output power in dBm at f_{2} and K_{21} a constant in dBm associated with the device. When $P_{1}=P_{2}=P$ (standard intermodulation tests), $P_{21}=3 P+K_{21}$. Defining distortion as i.m. $._{3}=P_{21}-P$, we have i.m. $d_{3}=2 P+K_{21}$. Third-order distortion
increases by 2 dB per 1 dB of fundamental frequency signal.

Cross-modulation

Input signal is

$$
\begin{aligned}
& V_{b}=V_{s} \cos \omega_{s} t+\left(V_{p} \cos \omega_{p} t\right) \\
& \quad\left(1+m_{p} \cos \Omega_{p} t\right)
\end{aligned}
$$

where V_{s} is the useful signal at f_{s}, V_{p} the interference signal at f_{p}, m_{p} the mod. signal index V_{p} and $\Omega_{p} / 2 \pi$ the signal modulating frequency V_{p}. By replacement in the general expression, we obtain input current

$$
I_{i n}=a_{1} V_{s} \cos \omega_{5} t
$$

$$
\left[1+\left(\frac{a_{3} 3 m_{p} V_{p}^{2}}{a_{1}}\right) \cos \Omega_{p} t\right]
$$

The signal frequency is therefore modulated by Ω_{p} with cross-modulation index

$$
m K=\frac{3 a_{3} m_{p} V_{p}^{2}}{a_{1}}
$$

Correiation

A form of intermodulation commonly encountered is cross-modulation, where amplitude modulation from one carrier is transterred to a neighbouring carrier. Considering intermodulation between two signals $V_{1}=V_{p}$ and $V_{2}=V_{s}$,

$$
\begin{aligned}
I_{21} & =\frac{3}{4} a_{3} V_{p}^{2} V_{\mathrm{s}} \\
I_{2} & =a_{1} V_{\mathrm{s}}
\end{aligned}
$$

and therefore

$$
\left(\frac{P_{21}}{P_{2}}\right)^{\frac{1}{2}}=\frac{I_{21}}{I_{2}}=\frac{3 a_{3} V_{p}^{2}}{4 a_{1}} .
$$

Substituting in

$$
\begin{aligned}
m K & =\frac{3 a_{3} m_{p} V_{p}^{2}}{a_{1}} \\
\text { we have } \quad\left(\frac{P_{21}}{P_{2}}\right) & =\left(\frac{m K}{4 m_{p}}\right)
\end{aligned}
$$

$$
m K=4 m_{p} \sqrt{\frac{P_{21}}{P_{2}}}
$$

which in logarithmic form is
$20 \log m K=20 \log 4+20 \log m p+$

$$
\left(P_{21}\right)\left(-P_{2}\right) \quad(\mathrm{dBm})
$$

If $m_{p}=0.3$ (standard cross measurements)

$$
\begin{aligned}
20 \log m K & =P_{21}-P_{2}+1.5 & (\mathrm{dBm}) \\
& =2 P_{1}+K_{21}+1.5 & (\mathrm{dBm})
\end{aligned}
$$

For intermodulation

$$
\text { i.m.d. }{ }_{3}=2 P+K_{21} \quad(\mathrm{dBm})
$$

and for cross-modulation

$$
\begin{equation*}
\text { i.m.d.cross }=2 P_{1}+K_{21}+1.5 \tag{dBm}
\end{equation*}
$$

The diagram of Fig. 6 makes clear the correlation between cross-modulation and third-order intermodulation.

Sixty Years Ago

The August 1913 edition of Wireless World seemed to cater for all tastes from romantic poetry on wireless telegraphy to a historical account of the site selected in Norway for a "Transatlantic Wireless Station". The account included descriptions of the national costume and even a photograph of the Stavanger local church. Anything went to lighten the load of the usual technical and parliamentary reporting. The most unusual bit of light relief was the continuing serial "A Pawn in the Game" whose characters sounded fascinating: "Charles Summers - Inventor and engineer. Son of Vicar of Sotheby, and affianced to Gwen Thrale, daughter of the Squire. Gwen Thrale - Charles Summers' fiancee, a bright, intelligent and original girl, the idolised daughter of the squire, and secretly a member of a Fabian Society. She coaxes Summers to teach her 'wireless' and soon becomes a proficient operator and a bit of an engineer." How on earth the story got past the censors will never be known.

Circards

The next article in the Circards series, No. 9, "opto-electronics", will be published in our September issue.

High quality tone control

A low distortion design

by J. N. Ellis

It is recognized ${ }^{1.3}$ that to obtain low noise the usual one-transistor configuration ${ }^{2}$ gives generally poor results, and has a distortion level approaching 1% at about IV r.m.s. output. The signal-to-noise ratio can be greatly improved by using two transistors directly coupled, with the first device operating in common emitter and the second in common collector mode. The first stage current can now be $100_{\mu} \mathrm{A}$, giving us a much better signal-to-noise ratio. This two-transistor design is often used, but suffers from latch up on overdrive.
The author's design raises the signal level from 100 mV to 1 V r.m.s. to drive a power amplifier and uses a cascode circuit to provide a more stable operating point and lower distortion. This is because the instantaneous collector voltage of the common-base transistor does not appreciably affect the current flowing in it. With a similar transistor cascode pair, the bias resistors may be low enough to inject a noise current into the lower device. Use of a complementary cascode configuration allows the selection of reasonable values of bias resistance.

To make full use of the advantages of the design (Fig.1) the tone network is fed from an impedance equal to that presented at the output, essentially R_{16} and R_{17} in
parallel. This allows a flat response when the potentiometers R_{19} and R_{20} are mechanically central ${ }^{1}$. The buffer stage ($T r_{1}$) allows the impedance to remain constant, independent of the volume control setting.

Component values of the tone network have been selected so that maximum bass boost or cut occurs at 50 Hz , and the treble boost or cut maximum at 10 kHz . Inclusion of resistors R_{7} and R_{8} limits the treble boost or cut to only 12 dB beyond 10 kHz , as it has been found that the full 20 dB (theoretical) at 20 kHz is unnecessary, as the sensitivity of the ear is reducing rapidly at that point ${ }^{1}$. Making R_{7} and R_{8} equal to $1 \mathrm{k} \Omega$ allows the greater range to be obtained for the impressionist. The frequency response is shown in Fig. 2.

Without C_{g} the square-wave response showed slight ringing, eliminated by making $C_{9}=4.7 \mathrm{pF}$. By increasing C_{9} to 10 pF the response is made 3 dB down at 175 kHz and the low frequency 3 dB point is 5 Hz .

The design has an overall gain of 10 $(20 \mathrm{~dB})$, and for 1 volt output with $R_{\mathrm{L}}=$ 10 ks and $R_{S}=100 \mathrm{ss}$, the total harmonic distortion (measured) was less than 0.1% at 1 kHz . The signal to noise ratio could not be accurately measured on the equipment available at the time, but is

Fig. 2. Amplitude /frequency response curves of tone control circuit. 1. Bass boost max. 2. Flat response 3. Bass cut max. 4. Treble boost max. 5. Treble cut max. 6, 7. Treble boost and cut with R_{7} $\mathrm{R}_{\mathrm{g}}=1 \mathrm{ks}$.
estimated to be -110 dB and certainly greater than -100 dB using low noise transistors - an improvement of 10 to 20 dB over other designs.

References

1. "Low Distortion Tone Controls", Wireless World, April 1971.
2. For example, Mullard "Transistor Audio and Radio Circuits" - Auxiliary high quality tone control.
3. Quad 33 tone control circuit.

Fig. 1. Circuit diagram of tone control. Transistors $\operatorname{Tr}_{1}, \operatorname{Tr}_{3}, T r_{4}=B C 109, B C 114, B C 184 . T r_{2}=B C 15, B C 214, B C 309$ etc.

5. Applications of point-contact, Schottky-barrier, p-i-n and backward diodes

by M. W. Hosking* M.Sc.

It was as a mixer and detector that semiconductor materials found their first microwave application as the point-contact diode, a device still in wide usage. Now it has been joined by numerous other devices, of which the Schottky-barrier or hot carrier diode and the backward diode are the most commonly used. In 1938, Schottky put forward his theory of the metal-semiconductor rectifying junction which did much to explain the action of the point-contact diode and to indicate those areas in which improvements could be made. Present-day devices benefit from the innovation of epitaxial deposition in defining an active layer, but the basic idea has remained unchanged since the days of the cat's whisker.
The rectifying junction is formed by bringing a pointed metal wire into contact with the surface of a semiconductor wafer. In some cases, an electrical discharge is passed through the junction to alloy the metal and semiconductor together. The important properties of the device are controlled by the area of contact metal, which distorts slightly under the contact pressure, the type of metal whisker, and the exact nature of the alloyed-type contact.
Being a metal-semiconductor junction, the point-contact diode is also a Schottky barrier device, but that name is reserved for a much more recent diode which, because of improved fabrication, more closely approaches the ideal Schottky barrier. Instead of a metal whisker, a thin insulating layer of silicon dioxide is formed on top of the epitaxial semiconductor material and a series of windows etched out of it. The diameter of a window might typically be 0.0002 in.

Through this hole is deposited a metal film to form the diode junction and a bonded contact to the package is made to this film. A much better defined and controlled junction can be produced in this way, as opposed to the whisker contact and this leads to a device having a lower noise figure, particularly $1 / f$ noise, and being more rugged and reliable.

Unlike the point-contact and Schottkybarrier diodes the backward diode is a p-n junction device. As a detector, the negative resistance region of the tunnel diode characteristic is virtually suppressed and the diode is operated on the reverse portion of its $I-V$

[^2]characteristic--hence the name backward diode. Materials are n-type Ge or GaAs, with an alloyed junction being formed by the dissolution of a p-type impurity.

One of the basic parameters of a lowlevel detector is its rectification efficiency, usually expressed as the output current or voltage obtained for a certain input microwave power. Sensitivity is proportional to the $I-V$ slope at the origin and its value depends on the frequency of operation and the detector load impedance. Clearly then, the backward diode possesses a higher sensitivity than that of the other two types, particularly the Schottky-barrier diode, which is barely conducting at voltage levels which drive the backward diode into saturation. The curves of Fig. 1, however, represent the zero bias case wherein the backward diode comes out as more sensitive.

Applying a small forward bias of typically 10 to $50 \mu \mathrm{~A}$, the small-signal detection property of the point-contact diode becomes comparable with the backward diode, while that of the Schottky-barrier device can be made much better. A widely used method of comparing the low-level detection capabilities of diodes is to measure what is called their tangential signal sensitivity (t.s.s.) which is the ability to detect a signal against a noise background.

The detector is coupled to an oscilloscope through an amplifier. With no input r.f. signal and the amplifier gain turned up, the noise power is visible as "grass". An r.f. pulse is then applied to the detector and its power increased until the detected trace on the oscilloscope has increased in amplitude by an amount equal to the original background noise level. This power is then a measure of the t.s.s. and is usually expressed in dB with reference to one milliwatt (dBm). The t.s.s. is a function of the amplifier bandwidth and noise figure and should always be quoted with reference to these factors.

It is also a subjective measurement, depending on the operator's opinion as to when the pulse trace is at the correct level. In spite of this limitation, t.s.s. is still the most widely used commercial method of characterizing low-level sensitivity. At a frequency of, say, $10,000 \mathrm{MHz}$, with a 1 MHz video bandwidth and 2 dB amplifier noise figure, the backward diode would typically have a t.s.s. of -56 dBm which would not be improved by the use of a d.c. bias. The point-contact diode would have a t.s.s. of

Fig. 1. Large differences in curvature at the origin of the $I-V$ characteristics govern the behaviour of the diodes as detectors.
-52 dBm at zero bias and would become comparable with the backward diode at about $50 \mu \mathrm{~A}$ of forward bias. The Schottkybarrier diode is not used as a detector at zero bias, being up to 30 dB less sensitive, but with about $20 \mu \mathrm{~A}$ bias, the t.s.s. would be -58 dBm .

Microwave mixing

When greater detection sensitivity is required than can be obtained with the simple diode rectifier, a mixer circuit can be used. The point-contact and Schottky-barrier diodes are most commonly used in microwave mixers as the backward diode suffers from a limited dynamic range and is more susceptible to high-power burnout. However, at low intermediate frequencies, such as might be encountered in a Doppler system, the backward diode has a much lower $1 / f$ noise figure than the point-contact type and is often used, but it still faces competition from good-quality Schottky-barrier diodes. The diode requirements for a mixer are different to those for a detector, so that a diode that is best in one application is not necessarily best at the other.

Mixing is a frequency conversion wherein the low-power, high-frequency input signal is converted to a low-power, low-frequency output signal, the amplitude of which is proportional to that of the input. To perform this conversion, a relatively highpower, constant-amplitude local oscillator signal is applied to the mixer diode. The amplitude is sufficiently high to drive the
diode into the linear portion of its characteristic shown in Fig. 1, and the effect is to switch the diode's non-linear impedance between a low forward and a high reverse state, at the frequency of the l.o. drive. At the same time, the much lower-power input signal, which must be at a different frequency, amplitude modulates the l.o. signal. The result at the output terminals of the mixer is a d.c. level due to the rectification of the l.o. voltage, which is ignored, and the a.m. component, varying at the beat or difference frequency between the two original input signals.
Unfortunately, however, the process is not quite this simple and other frequencies are generated during the mixing process. In particular one is called the image frequency and can be considered as arising from the i.f. mixing with the l.o. signal to produce another difference signal. These frequencies then beat with each other and with the original two inputs to produce an infinite series with steadily diminishing amplitudes and the effects of these are usually neglected. Thus, if an r.f. signal to be detected, which might contain pulse information, had a frequency of $10,000 \mathrm{MHz}$ and the I.o. was allocated a frequency of 9500 MHz , then an i.f. containing the pulse information would be generated at 500 MHz together with an equal-amplitude image at 9000 MHz and a train of harmonics at odd and even multiples of 500 MHz apart.

A simple, yet useful, equivalent circuit for a microwave mixer and detector diode is shown in Fig. 2, together with typical Xband ($8200-12,400 \mathrm{MHz}$) diode parameters. It is essential to take into account the parasitic reactances of the diode package as well as those of the chip itself as the two sets of parameters are now similar in value and can interact to form unwanted resonances. Values L_{p} and C_{p} are the package values and depend on the method of bonding the encapsulated chip and the physical size of the package. Component R_{s} is the series resistance of the semiconductor material itself and R_{j} is the resistance of the junction, the capacitance of which is C_{j}. Both R_{j} and C_{j} are functions of the diode current, the former decreasing and the latter increasing with an increase in current.

As it is the junction resistance which provides the non-linear mixing element, the presence of C_{j} is unwelcome and detracts from the diode performance due to its shunting effect at the higher frequencies. The quality of the diode as a mixer can be expressed in terms of two quantities: noise temperature ratio t_{r} and conversion loss l_{c}, the product of which defines a noise figure for the diode. Noise temperature ratio gives a measure of the noise added by the diode in addition to that generated by its series and junction resistance and is defined as the noise power divided by the noise power from an equivalent resistance. At frequencies above about $1 \mathrm{MHz}, t_{r}$ is approximately unity, but below this value t_{r} increases as the reciprocal of frequency. Ideally, the mixer is required to convert all of the r.f. signal power to i.f. power and the conversion loss is a measure of the efficiency with which this process is carried out. It is simply r.f. input power divided by i.f. out-

Fig. 2. Most microwave semiconductors are encapsulated and the package reactances must be taken into account when calculating the terminal impedance. Shown is a typical equivalent circuit for an X-band diode.

Fig. 3. Increasing oscillator power increases conversion efficiency but also the noise temperature ratio. There is an optimum power level for minimum noise figure.
put power. Theoretically, this can never be less than 3 dB because an equal amount of i.f. power is generated at the image frequency and more is lost in the harmonics. However, in a practical mixer, it is possible to give the circuit a band-pass type of response so that the image frequency lies in the rejection band and "sees" a short or open circuit. In this way, power at the image frequency is reflected back into the mixer where, if given the right phase, it is converted to i.f. power.
This is called an image recovery mixer and in practice results in about a IdB improvement in conversion loss. The conversion loss is the sum of several individual losses, one of which is associated with the conversion efficiency of the diode junction and can be enhanced by image reflection. This loss is a function of the forward and
reverse slopes of the diode characteristic and depends on the oscillator power level.
A second loss, which can be made quite small, is due to the mismatch presented by the diode to the r.f. and i.f. signals. Thirdly, the presence of R_{s} and C_{j} serves only to impair the diode performance by reducing the power that enters the junction resistance R_{j}. Because both R_{j} and C_{j} are functions of diode current, there is an optimum value of oscillator power to minimize this particular loss and occurs when $R_{j}=1 / \omega C_{j}$.
These, then, are the various factors contributing to the noise figure of the mixer diode itself, but to evaluate them, measuring devices must be connected to the i.f. output terminals of the mixer, contributing their own noise to the system. For this reason, quoted noise figures are usually receiver noise figures and include the noise figure of an i.f. amplifier, almost invariably specified as 1.5 dB . If the mixer is viewed as the first stage of an amplifier chain and as having a less-than-unity gain equal to $1 / l_{c}$, with an i.f. amplifier of noise figure $F_{i, f}$ as the second stage, then the receiver noise figure is

$$
t_{r} l_{c}+\frac{F_{i, f_{r}}-1}{1 / l_{c}}=l_{c}\left(t_{r}+F_{i, f}-1\right) .
$$

For optimum oscillator power, an intermediate frequency between 1 and 100 MHz and $F_{i . f}$ of 1.4 (i.e. 1.5 dB), typical noise figures at $10,000 \mathrm{MHz}$ for commercially available diodes lie between 6 and 7 dB for the three types.
Besides biasing the mixer diode onto the linear portion of its characteristic and providing the frequency to mix with, the l.o. also adds its own components of a.m. and f.m. noise and can influence the noise figure of the mixer diode itself by virtue of the incident power level. In addition, the i.f. impedance of the mixer is a function of l.o. power level. At small l.o. power levels, the mixer diode is utilizing the curved portion of its characteristic and the conversion loss is high because efficiency is low. With increasing power, the loss decreases rapidly at first, but then levels off as the operating point on the diode curve moves into the linear region.
At the same time, the noise temperature of the diode steadily increases with power with the result that the overall noise figure of the mixer passes through a minimum at a particular oscillator power level. This minimum varies with diode type as shown in Fig. 3(a) for the Schottky-barrier, pointcontact and backward mixers and is an important parameter in microwave receiver design. The corresponding variation in i.f. impedance is shown in Fig. 3(b). (General design of balanced mixers in microstrip form was given in part 3, June issue.)

Uses of the $\mathrm{p}-\mathrm{i}-\mathrm{n}$ diode

The p-i-n diode finds its application mainly in control devices such as switches, modulators, attenuators, limiters and in phaseshifters. All of these components use the prime feature of this diode: the ability to change rapidly from a high impedance to a low impedance on application of bias.

The complete equivalent circuit of a packaged diode is shown in Fig. 4 and it is worth reiterating that the parasitic reactances of the package must be taken into account at microwave frequencies. At microwave frequencies C_{I}, the intrinsic region capacitance, is constant and is purely a function of the junction geometry. At zero or reverse bias, the intrinsic region of the diode is depleted of charge and thus has a relatively high resistance of typically several thousand ohms. With the application of a forward bias, electron and hole charge carriers are injected into the i-layer with the result that C_{I} disappears and the layer becomes highly conductive, with a low resistance of usually less than one ohm. This variation of resistance is shown in Fig. 5 and the minimum attainable value for the complete diode is limited by R_{S}

When using this property of the p-i-n diode, account must be taken of the operating frequency as this determines the switching efficiency and the signal distortion level. Charge carriers present in the i-region of the diode, that is holes and electrons, have a recombination lifetime τ lying typically between 10 and 300 ns .
At frequencies below the value defined by $f=1 / 2 \pi \tau$, the injection and removal of charge can follow the r.f. waveform and the diode behaves as a p-n junction giving inefficient rectification of the signal. Above this frequency the charge removal process cannot follow the reverse half cycle of the r.f. and the presence of microwave power has the same effect as a steady bias. The result is an impedance state which can be primarily determined by a d.c. bias, but which has a very small modulation component due to the r.f. signal.
A small lifetime enables a fast switching speed to be obtained but limits the lower frequency of useful operation of the diode and so a compromise must be made. Compared with other types of diode, the p-i-n diode has the advantage of a low junction capacitance and high breakdown voltage, enabling it to handle large incident power levels at high frequencies.
An important application of the p-i-n diode is as a microwave switch, for either preventing power from passing between two points or for diverting it to another part of a circuit. The diode can be mounted in series or shunt with the transmission line, as in Fig. 6, and can be classed as broadband or resonant.
Before describing these circuits, it is useful to define terminology used in referring to the two states of the switch. When the switch is on, the diode state is such that power can pass and when off, the power flow is interrupted. Referring to Fig. 6(a) where the p-i-n diode is mounted in series with the main transmission line, a zero or reverse bias to the diode produces a high impedance of about $10 \mathrm{k} \Omega$ and effectively open-circuits the line. Forward bias shortcircuits the diode junction to about 1Ω, a value which is degraded by the series resistance and inductance, but which is sufficient to allow most of the power to pass.

In the shunt-mounted case of Fig. 6(b), the same bias conditions produce opposite results: forward bias tending to produce a
short across the transmission line. When designing a switch, low insertion loss and high isolation are required and the degree to which this can be obtained depends on how the magnitude of the diode impedance compares with the characteristic impedance of the transmission line.

A simple design example that is appropriate and is based on the equivalent circuit of Fig. 4 and the graph of Fig. 6, demonstrates practical performance. Transmission
line impedance (Z_{0}) is 50Ω and the diode is series mounted and required to operate at 1000 MHz . With the diode impedance expressed as $R+j x$, the transmission loss is $10 \log _{10}\left[R^{2}+x^{2} /\left(4 Z_{0}^{2}\right)+\left(R / Z_{0}\right)+1\right](\mathrm{dB})$. Taking the forward bias case and the circuit given in Fig. 4, then at 50 mA bias, R_{F} is 1Ω, so that $R=R_{F}+R_{S}=2 \Omega$. $X_{L}=2 \pi L_{p} \times$ $10^{9}=2.5 \Omega$. (Diode reactance is mainly due to L_{p} at this frequency, so it is easier on the analysis and quite valid to ignore C_{p}). Thus

Fig. 4. Equivalent circuits for reverse and forward bias conditions of a silicon p-i-n diode. R_{S} is the series resistance associated with the contacts to the i-region of the diode and C_{i} is the intrinsic-region capacitance. Values of L and C_{p} are typical of devices used up to the end of X-band (8200 to $12,400 \mathrm{MHz}$).

Fig. 5. From zero into reverse bias, junction resistance approaches $10 k \Omega$ and in forward bias it approaches the limiting series resistance of less than 1Ω.

Fig. 6. P-i-n diode mountings to control the transmission line impedance and thus microwave power.

insertion loss is $10 \log _{10}\left[2^{2}+2.5^{2} / 4.5^{2}+\right.$ $(2150)+1]=0.2 \mathrm{~dB}$. With the switch off under zero bias and again neglecting C_{p}, $R_{F}=10 \mathrm{k} \Omega$ and some algebra indicates that the isolation provided is about 24 dB .

Junction capacitance degrades isolation by shunting R_{F}; without it isolation would be 40 dB . Ideally, there should be no reactances present and in such a case the diode performance would be independent of frequency. In real life both insertion loss and isolation get worse as the frequency is increased, but the circuits mentioned are termed broadband because the device operates at frequencies well below any circuit resonances. Frequency of operation may be increased and isolation and insertion loss improved by making the p-i-n diode part of a tuned circuit-called a resonant switch.
The idea is to form a high-impedance, parallel resonant circuit when the diode is at zero bias and a low-impedance, series resonant circuit when changing to forward bias. Referring again to Fig. 4, the required conditions are that C_{P} and L_{P} be in parallel resonance at forward bias and C_{I} and L_{p} be in series resonance at zero bias. Often this can be near enough achieved by proper selection of the diode and package alone, but can also be further tuned by adding some external circuit reactance. The penalty paid for the improved performance is a reduction in bandwidth and there is a direct trade-off between this and isolation.

Typically, resonant switches require bandwidths of less than $\pm 5 \%$ and operate at frequencies much higher than their broadband counterparts. The simple circuits of Fig. 6 are single-pole, single-throw switches, but by suitable combinations of shunt and series diodes, it is possible to construct multi-pole, multi-throw devices. If the isolation provided by a single diode is not enough, several diodes can be cascaded, although the bandwidth will be decreased.

As well as their use as switches, p-i-n diodes can be used as attenuators or modulators. If the forward bias is varied at a slower rate than the on/off used for the switch, then the transmission line attenuation can be made to vary accordingly. The power output past the diode can thus be accurately controlled and this attenuator can also be operated on a remote basis, with much saving in complexity over a mechanically varied device.

Not all tube-type r.f. generators like to be supply-voltage modulated with slowly varying waveforms and solid-state devices generally produce large quantities of f.m. noise with anything but a rectangular modulation. The requirement for modulation of some sort in a microwave system is almost always present. Even test gear, for noise and stability reasons, uses a.c. amplifiers at the detection stage with a now-universal $1-\mathrm{kHz}$ bandwidth.
The attenuating or on/off switching is effected mainly by reflecting the incident power back again towards the source, a very small fraction being dissipated within the diode. This is not always acceptable as the reflected power, if allowed to reach the r.f. source, may give rise to instability or even damage. So as a general rule, switches,

Fig. 7. Hybrid ring phase shifter makes use of directional properties of the coupler and uses p-i-n diodes to switch reactive lengths of line in and out of circuit.
attenuators and modulators are designed into a circuit which presents a constant impedance to the source, regardless of the state of the diode. Such a circuit might consist of a π or T network of diodes, or of diodes connected via a directional coupler or circulator. In these cases, unwanted power is absorbed either within the p-i-n diode or within some terminating load to which it is routed.

Phase shifting with p-i-n diodes

Another important application which makes use of the fast switching ability of the $\mathrm{p}-\mathrm{i}-\mathrm{n}$ diode is that of a phase-shifter. Besides a number of relatively minor applications for which one wishes to shift phase, there is the potential of a large-scale usage for this device in phased-array radar and this has attracted a lot of investigation into the design of low-loss circuits.

Phase shift is produced, not by the diode itself, but by switching additional lengths of transmission line in and out of circuit. If the length of a section of transmission line could be varied at will by a quarter wavelength, for example, the phase of a microwave signal could be correspondingly varied by 90°. The function of the p-i-n diode is to effect this change in line length.

A simple circuit, Fig. 7, illustrates the principle. The d.c. bias lines to the diodes, and the diode details, are omitted. Normally, with no diodes or stub-lines present, an input at arm I divides equally at the ring junction; half the power emerging from arm 2, half from arm 4 and none from arm 3. This is evident by summing the different path lengths around the coupler.
To understand the phase-shift circuit, remember that a quarter-wavelength of line acts as an impedance inverter. An impedance measured $\lambda_{g} / 4$ away from its position appears as an admittance. An open-circuit appears as a short-circuit and vice versa.
Referring again to Fig. 7, assume that both p-i-n diodes are forward biased (shortcircuit). At the stub junctions with the main lines there appear open-circuits and power flows uninterrupted along these lines.
The half-power travelling clockwise round the ring enters arm 2, where it is reflected back again from the open-circuit at the end of the line and continues round to emerge from arm 3 having travelled a
total distance of $2 \lambda_{g}+2 L$. Similarly, the other half of the power in arm I combines at arm 3 having traversed arm 4 en route, also a distance of $2 \lambda_{g}+2 L$.

If the diodes are zero or reverse biased, the stubs are open-circuited and present short-circuits at their junctions with the main lines. Power will not be reflected back again at these junctions to emerge at arm 3, but after travelling only $1 \frac{1}{2} \lambda_{g}$ in each direction. Thus, switching the diodes between on and off changes the signal phase by $180+$ $2 L 360 / \lambda_{g}^{\circ}$ and by the appropriate choice of L any phase between 0 and 360° can be produced.

Fig. 8 shows a composite phase shifter in microstrip designed for operation at about $10,000 \mathrm{MHz}$. The two hybrid rings form a 180° and 90° phase shifter and the left-hand circuit is a combined 22.5° and 45° phase shifter. This last-mentioned type of circuit is known as a loaded-line, the amount of phase-shift being a function of the susceptance present at the end of the stubs and the ratio of stub to main line admittance. The diodes are in chip form, mounted on r.f. bypass capacitors and are connected to the 50 -ohm lines by 0.001 -in bonded wires. Lumped-element r.f. chokes are in the form of spiral inductors.

In a practical circuit such as this, it is essential to take into account the finite size of the diode, the inductance of the bonding wires and the fringing effect from the opencircuit lines. The requirement for dimensional accuracy may be appreciated when one considers that, in this case, a distance along the transmission line of 0.001 in corresponds to a phase change of about $\frac{3}{4}$.

Limiting with p-i-n diodes

The purpose of an r.f. limiter is to attenuate a high-power signal to some safe level and this is generally done automatically, without any d.c. bias. The carrier lifetime of the $\mathrm{p}-\mathrm{i}-\mathrm{n}$ diode is much longer than the period of the microwave signal, so that its impedance cannot follow the r.f. waveform. When mounted in shunt across a transmission line, the forward voltage swing of a high incident power level saturates the j-region with charge, shorting the diode; this charge is not removed on the reverse voltage swing. The average impedance of the diode is thus very low, tending to short the line and thereby reflect most of the power. The response time of the diode before full limiting is several times that of the lifetime so that the diode tends to pass a leading-edge spike of power. On the other hand, the diode can cope with large quantities of power: several kilowatts in L-band ($1000-2000 \mathrm{MHz}$).

Varactor diode

As well as a frequency multiplier, varactor diodes can be used to perform the same functions as $\mathrm{p}-\mathrm{i}-\mathrm{n}$ diodes. In the case of the varactor there is no i -region-just a $\mathrm{p}-\mathrm{n}$ junction. Instead of the junction resistance varying with bias to produce high and low impedance states, it is the junction capacitance which changes to produce the same effect. This capacitance change is not brought about by charge storage as for the $\mathrm{p}-\mathrm{i}-\mathrm{n}$ diode and so the change in state of the

Fig. 8. Four-element phase shifter on 0.025 -in alumina consisting of $22.5,45,90$ and 180° sections which can be switched in any combination. (Thanks to my colleague J. E. Evans for this.)
varactor can be made to occur much faster. In switches, modulators and attenuators, this feature is a disadvantage as the diode impedance is affected by the microwave power level as well as the bias. Power handling is also reduced because of the much smaller junction thickness and the varactor is seldom used in these devices. As a low-power phase shifter the capacitive reactance of the varactor can be used to produce the change in a continuouslyvarying or analogue fashion, as opposed to the discrete variations with the p-i-n diode.
One of the main applications of the varactor is as a frequency tuner of solidstate oscillators. The diode can either be
mounted directly in the resonant circuit of the oscillator or in a separate circuit and reactively coupled to the oscillator. Usually operated in reverse bias, the corresponding increase in capacitance has the effect of making the microwave resonant cavity appear electrically longer than its physical length, thereby decreasing the frequency. Although still restricted to fairly low-power applications, varactor tuning has the advantage of speed over other methods; particularly useful in frequency-agile radar systems where it might provide to local oscillator a.f.c. With careful design, it is possible to tune a $100-\mathrm{mW}$ Gunn-diode oscillator over a 1000 MHz range in X band.

Fifty years an amateur

Douglas H. Johnson (G6DW) recently celebrated fifty years of authorized amateur radio transmitting. To mark the occasion, Mr. Johnson gave a party for over 40 people, twenty of them long-established

G6DW in a corner of his "shack", surrounded by a 50-year collection of QSL cards.

Guide to Broadcasting Stations, 17th edition, is a guide which covers the subjects of receivers, aerial and earth systems, propagation, signal identification and reception reports. The main body of the book provides information on the long- and medium-wave European broadcasting stations, short-wave stations of the world and European v.h.f. sound broadcasting stations. The information listed is transmission frequency and power, country of origin and programme identification, provided in order of frequency and also geographically. Price 75p. Pp. 201. Butterworth \& Co. Ltd, 88 Kingsway, London, WC2B 6AB.

The Radio Amateur's Handbook 1973, is the 50 th edition of an American publication which has been revised and updated each year since 1926. In this most recent edition the subjects covering solid-state devices, specialized communication techniques, transmitting and power supplies have been rewritten. Among the revised sections are digital logic devices, toroidal inductors, h.f. aerials, v.h.f. amplifiers and filter networks. Nearly 100 new drawings and charts have been included to help explain all technical facets of communications for the radio amateur. Price $\$ 6.00$ (limp). $\$ 8.00$ (hardback). Pp. 692. The American Radio Relay League, Inc., Newington, Connecticut, U.S.A. 06111

Cybernetic Engineering by John F. Young is aimed particularly at the growing body of people working towards the practical application of cybernetic engineering to the "brain" of robot devices. It presents a critical review of work in this field and considers such problems as conditional probability computers homeostates, the Lern matrix and the Perceptron. Also considered are the methods of achieving majority logic action, the simulation of nerve cell activity and the importance of such features as probability, inhibition and forgetting in the simulation of animal-like activity. Work on the Astra "associating" machines is reviewed which culminated in the successful Astra Mk 3. After considering future developments of the Astra approach, the theory and practice of information recording, methods of pulse counting in control circuits and applications of this type of work to other fields are discussed. Research and development workers and postgraduate students in the fields of cybernetics, electroniçs, physics and the behavioural sciences should find this book of great value. Price $£ 4.00$. Pp. 153. Butterworth \& Co. Ltd, 88 Kingsway, London, WC2B 6 AB .

Inter-Noise 72, Proceedings of the International Conference on Noise Control Engineering edited by Malcolm J. Crocker covers the complete papers presented at the conference held in Washington D.C. in October 1972. The subjects covered by the papers range from industrial noise criteria and control to materials for noise control. Price (post paid) $\$ 25.00$. Pp.565. Editor, Noise/News, P.O. Box 1758 , Poughkeepsie, New York 12601, U.S.A.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Record equalization

For some time past there has been controversy over what happens at the lower end of the equalization characteristic for records. To humble people such as myself this has caused a good deal of confusion.

Whilst BS 1928 calls for a lower time constant of $3180 \mu \mathrm{sec}$ corresponding to a break point of 50 Hz, J. L. Linsley Hood and others advocate the use of a larger l.f. time constant in the belief that some record companies do not provide the requisite boost below 50 Hz .
Far be it from me to question these respected people, but surely standards are standards. Everyone I have discussed this with agrees that reproduction with the "extended bass" sounds "nice" and feels cheated when listening to reproduction correct to BS 1928. However, does this confirm suspicions that record manufacturers are squeezing the last penny from their budgets through the exclusion of one additional time constant in their equipment, or is it due to an intrinsic liking for bass?

For peace of mind, if nothing else, can someone throw more light on the subject and settle this issue once and for all?
Paul S. Ewer,
Great Bookham,
Surrey.

Audio amplifier design

In his letter in the June issue Mr Linsley Hood asserts that the technique of splitting the h.f. and l.f. negative feedback loops is necessary "to meet the Otala transient intermodulation criterion".

Although a prominent worker in the field, Matti Otala appears never to have published a criterion of transient intermodulation distortion (t.i.d.), and certainly not in the paper referred to. However, this type of intermodulation distortion is of fundamental importance in audio amplifiers.

It must be made clear that t.i.d. in audio amplifiers is an entirely separate subject from that of the overshoot or ringing which may be observed when negative feedback amplifiers are terminated in reactive loads. These effects are solely a
function of stability and can, with a good design method, be handled as a totally separate issue.

At no time has it hitherto been suggested that to avoid t.i.d. separate h.f. and l.f. negative feedback loops must be used; in fact this is completely untrue and can lead to t.i.d. being generated.
Mr Linsley Hood does not make clear what he means by h.f. and l.f. feedback loops, but this is of no consequence as the only feedback path which should be considered in an analysis of t.i.d. is the overall negative feedback from the output terminal.
For correct design the only important parameters are the open loop bandwidth (-3 dB without feedback), the maximum value of the overall feedback factor and the frequency response of the preceding amplifier section. To minimize the effect of t.i.d. in an audio power amplifier it is necessary that the open-loop bandwidth be as large as possible (greater than 20 kHz), to minimize the propagation delay, and that the maximum feedback factor be as low as possible. With current technology this last factor will probably be $10-40 \mathrm{~dB}$.
An amplifier with an open loop bandwidth of 10 Hz and maximum feedback factor of 76 dB will only have, with probable component variations, between 3 dB and 8 dB of feedback at 20 kHz and with usual circuit configurations this can result in comparatively high levels of steady state distortion at high frequencies. Such an amplifier is also likely to generate large amounts of t.i.d.

The lesson is that indiscriminate loop design for feedback need not result in an amplifier which will exhibit low values of steady state and transient distortions.

Turning now to Mr Linsley Hood's reply to my letter in the July issue, I am not satisfied that any of the points have been understood, so for clarity I will summarize: 1. It is shown that the effect of finite input impedance on the closed loop gain (and hence s / n) is not very different in the shunt and series feedback connections. Of course practical amplifiers will have a finite power gain and hence require "input energy", but in both connections this is derived from the input in equal amounts for a given output; anything else conjures up notions of clairvoyant transistors!
2. Of course the input impedance of a summing junction can be shown to be $Z_{f b}(s) / A(s)$;however, this is not a "virtual earth impedance capable of generating noise". Otherwise how does the noise rise so much when a $47 \mathrm{k} \Omega$ resistor is connected in parallel with it?
3. Perhaps I did not make the calculations for the pickup amplifier clear enough; these assume a $600 \mathrm{mH}+1 \mathrm{k} \Omega$ cartridge connected to the amplifier with a $47 \mathrm{k} \Omega$ input impedance at $300^{\circ} \mathrm{K}$ and equalized to R.I.A.A. with a closed loop gain of $\gg 1$ at 1 kHz . The results, as are also shown by Mr Walker ${ }^{2}$, give s / n of 59 dB in the shunt connection and 72 dB in the series connection ref. $2 \mathrm{mV}, 1 \mathrm{kHz}$. Of course the noise is calculated in a 20 kHz bandwidth. Who listens to music band limited to 500 Hz ?
4. Point 3 was stressed because on two occasions Mr Linsley Hood has claimed a s / n of 70 dB ref. 2 mV for the shunt condition which is below the thermal noise in an audio amplifier of this type, as shown by Mr Craven.

In answer to all this, the discussion can be resolved by two statements:
(i) The s / n ratio of a series feedback amplifier will be larger than that for a shunt feedback amplifier when the source impedance is smaller than the input impedance, and vice versa.
(ii) The problems of distortion in audio amplifiers relate only to good loop design for any configuration and not the feedback connection except in the limit.
J. R. Stuart,

Lecson Audio Ltd,
St. Ives,
Huntingdon.
'Otala M. Trans I.E.E.E. Sept. 1970.
${ }^{2}$ Walker H. P. Wireless World, May 1972.

V.h.f. receiver performance

I was very surprised to read Mr Young's comment on this subject. There are hosts of parameters describing the performance of v.h.f. f.m. receivers, including those by the British Standards Institution "Methods for Expressing the Performance of Radio Receivers - for AM and FM sound broadcast transmissions" No. 4054: 1966; by I.H.F. (Institute of High Fidelity American) "Methods of Measurements for Tuners" IHFM-T-100, Dec. 1958; by DIN and others.

A v.h.f. receiver cannot be signified in terms of overall performance by a simple "figure of goodness" as there are so many parameters involved in different aspects of the performance. From the sensitivity point of view the I.H.F. usable sensitivity parameter constitutes a searching parameter since it refers the output at 100% modulation to the noise plus harmonic distortion of the receiver. the I.H.F. readout ($\mu \mathrm{V}$ p.d.) being for a 30 dB ratio. This gives a very good impression of the front-end noise figure, the limiting performance (and hence the i.f. channel design), the symmetry of the f.m. detector, etc. The test also serves to indicate the
relative freedom of the tuner from objectional distortion during periods of maximum modulation.
The I.H.F. capture ratio test shows the effect of an interfering signal of the same frequency as the desired signal and thus reveals the performance of the detector, the limiter and a.g.c.
I.H.F. selectivity indicates the inherent "goodness" of the i.f. filters, and takes account of the limiter and a.g.c.

There are other tests, of course, required to appraise the performance of the receiver or tuner in rejecting unwanted signals, such as image rejection ratio, a.m. rejection ratio, etc.
Serious receivers and tuners are fully specified in terms of these (or equivalent) parameters, and it is most certainly possible from these to determine which would be the best receiver under given reception conditions and requirements.

It is agreed that one or two parameters could do with revised attention, one being the input intermodulation/crossmodulation performance, since this is bound to assume greater importance as more v.h.f. stations go on the air, particularly the I.B.A. stations which are not likely to be co-sited with the B.B.C. stations. Thus a high signal field may prevail in a given area due to such a station, while the signal fields from the B.B.C. stations may be insufficiently strong to warrant input attenuation to remove input overloading due to the I.B.A. station!

Clearly, then, it is impossible to say that one receiver is better or worse than another from one parameter alone. Moreover, in certain reception areas, odd reception effects can result from spurious stereo multiplex beats, and these can only be detected conclusively by trying the receiver in the area concerned, so the advice "try it and see" is not as absurd as implied by Mr Young.
Gordon J. King,
Brixham,
Devon.

The Blumlein 4-channel matrix

In three years' time we shall be entitled to celebrate the centenary of the first steps taken on the road to quadraphony. This refers of course to the experiments of Lord Rayleigh in 1876, in which the role of low frequency interaural phase was established.

For matrixing techniques the locus classicus (as a colleague insists on calling it) is the November 1971 article in the Journ. A.E.S.: "Analyzing Phase-Amplitude Matrices" by Peter Scheiber. In the preamble we read:
"The stereo record or broadcast can be made to carry both left-right and front-rear information by means of matrixing techniques. This new possibility. ..."
The object of the present letter is to demonstrate that not only is this possibility not new in principle but that it has an antiquity of some forty years.

The now famous Blumlein stereo patent
(394325, 1931) has been an immense source of enlightenment on a wide range of stereo problems. A careful re-reading of the document reveals the following, in connection with a proposal to provide two-directional transmission of a vertical soundplane:
". . . vertical displacement of the source will in this arrangement give phase differences to the outputs while lateral displacements give amplitude differences, and these can be separated, the phase differences converted to intensity differences by modifying networks, as described, and the resulting impulses employed to operate four or more loudspeakers . . . The transmission in such a system occupies only two channels up to a point in the system where each of these channels is divided into two parallel channels thus providing four channels in all at this point. Two channels, one from each parallel pair . . . are connected to one modifying network adapted to deal with phase differences, and the other two channels, one from each pair, connected to another modifying network adapted to augment intensity differences.

It will be seen that in such an arrangement the transmission and/or recording may be effected over only two channels although directional sensations in two perpendicular directions are subsequently obtained. . . .

The general feature is that two transmitting channels . . . communicate impulses which can be modified and separated to provide two directional senses at right angles to one another . : . by a plurality of loudspeakers."
(page 15 of Complete Specification)
The proposal therefore relies on the possibility of separating amplitude and phase differences to obtain four different signals to feed four (or more) loudspeakers, using appropriate matrixing elements. The basic element for the phase conversion relies on a summing and differencing procedure previously developed in the text, but only for the case of signals of equal amplitude. Consequently, for the arrangement proposed, where both amplitude and phase differences may be present, the basic phase conversion circuit described would be effective for only the median vertical axis. Even following the inventor's more general observation that "it may be necessary to employ more complex circuits" we know now that ideally no more than 3 dB of separation would be possible, as is the case with the flanking outputs from an optimum 4-channel matrix.

One must note also Blumlein's tacit assumption that intensity differences are effective as cues for vertical localisation. This assumption could conceivably be circumvented by rotating the soundplane to a horizontal position with the microphone disposed vertically above the centre so as to obtain two mutually perpendicular horizontal axes.

Most noteworthy, finally, is the fact that the proposed system is conceived to generate two signals already coded and thus ready for transmission without modification. To this extent, then, it qualifies as a 2-4 system. (Blumlein seems to have been most adept at such devising. In the 2 -speaker case his MS system in a similar way produced ready-coded sum and difference signals as an alternative to the $A B$ system with matrixing. And his account of the equivalences between $45 / 45$ and hill-and-dale/lateral is a concise analysis of the coding and decoding potential in stereophonic cutting heads and pickups in relation to an orthogonal groove.)

The more one goes into the matter the
greater becomes the conviction that as far as certain basic principles are concerned progress has been more linguistic than material. Thus to say that "our usable matrixing parameters are phase difference and amplitude ratio in the transmission channels both of which may be varied without destroying audible information" is to say very little more than what Blumlein had enunciated. Examples could be multiplied readily. All this leads to the feeling that certain recent claims for novelty are perhaps wider than the circumstances could reasonably warrant, and it would be neither inaccurate nor untimely to say that recent claimants have found the family to which Blumlein's lone brainchild belongs.

It is not often that a child is born before its parents!

Is this reason enough for us to deny it? B. J. Shelley,

Rome,

Italy

Quantity names

Since Mr Baldock (Letters, July 1973) is so modest as to invite criticism of his suggested term "forbiddivity" as the counterpart of permittivity, I would offer two criticisms: forbiddivity is rather anthropomorphic, having more of a connotation of purposive instruction than has the more passive permittivity; it also has a more absolute connotation of total stoppage than the proposed use would justify. Moreover, as a word, it is an abomination!

May I, as a rank outsider, suggest "restrictivity", which has the advantage of being already an accepted English word, and whose restrictiveness appropriately balances the permissiveness of permittivity.
W. B. Broughton,

Animal Acoustics Unit,
City of London Polytechnic, London, E.C. 3 .

"Biamplifier" loudspeakers

It is interesting to see how far back the "biamplifier" approach can be traced. The Philco units of 15 years ago, mentioned by Mr. Garland (June issue), are rather young compared to the cinema amplifiers designed in 1934 for use in the B.T.H. sound film equipment. These used two separate output ampliers with an $R C$ split at 500 Hz before the driver stages to ensure that all the large low frequency signals were handled by a large push-pull stage.

Dual unit loudspeakers were used, the 1.f. output from the push-pull stage being handled by a folded horn driven by two 18in. cones. The h.f. output signals above 500 Hz were applied to a two-unit straight horn designed to have a cut-off at 200 Hz .

As might be expected there was very little intermodulation of the h.f. signal by the l.f. signals.
Though this design is now almost 40 years old, I believe that it was anticipated by an even earlier design using a split at around $1,000 \mathrm{~Hz}$ but this was not a B.T.H. product.

James Moir,
Chipperfield,
Herts.

Microphone measurements

It is only necessary to look at a survey of microphones to see the chaotic state of sensitivity measurements.

Sound levels for the measurement vary considerably and are quoted in pressure units. Electrical output may be in mV or odd mixtures based on the decibel. Most of these figures suffer from the severe disadvantage that they vary with the impedance of the microphone.

I would like to suggest a more fundamental approach leading to a much simpler unit of sensitivity.

Sound is a form of energy so, in SI terms, its intensity should presumably be measured in watts metres ${ }^{-2}$ (watts per square metre).

The output of the microphone, being electrical energy, can be measured in watts.

Sensitivity has the dimensions of an area (m^{2}) which is hardly unexpected. Why then cannot sensitivity or "effective area" be quoted in square metres?
R. V. Hartopp,

Saffron Walden,
Essex.

Current flow symbology

May I say to Mr C. H. Banthorpe (June issue Letters) "more power to your elbow".

As an instructor in radio and television one gets weary of explaining why, if electrons are current and they flow from neg. to pos. in the external circuit, does "this book say current goes from pos. to neg". "Why are there two sorts of current?" "Why is your current different from these notes?" "Why does this book say . . . ?" and so on and so, unnecessarily, blasted well on.

Unnecessary - that is what is so frustrating. If the establishment made the wrong choice in the first place why on earth can it not now be admitted and let's be done with this farce?
Whatever would people think of a jockey and trainer who entered a black horse in a race and described it as "white" so as not to confuse the steward who had got the colours mixed when they first laid down the course rules?
D. V. Ellis,

Waterhouses,
Co. Durham.
I am writing to give wholehearted support to the proposal by Mr C. H. Banthorpe that we drop the use of "conventional" current flow and refer only to electron
flow. This has been my practice in both teaching and writing since 1940. I have experienced no difficulties at all in so doing; I am sure that I would have been involved in some horrible tangles had I done otherwise. Those readers who remember the confusion that started with an article in the issue for May 1945 will also probably support Mr Banthorpe.
Roy C. Whitehead,
The Polytechnic of North London. London N. 7.

Since electrical engineering has been using the current flow symbol \rightarrow (positive to negative) for years, and most text books are written this way it would make students more confused to remove the "conventional" symbol.

What I would recommend is that one should use the following symbol (as I do) for electron flow: (negative to positive). There is then no need to write under each ... symbol "electron current" or even "-ve" or "positive current".

The idea will blend in with electrical engineering practice, leaving their \rightarrow unaltered, and so requiring no alteration to texts; the electron flow symbol can then be added for electronic circuits.

A. Parnham,
 University of Leeds

Some younger readers may be unaware that C. H. Banthorpe is an editorial invention designed to flush from their holes an aging group of correspondents. When the industry was small, and circuits full of that undoubtedly electronic device, the valve, the change he calls for might, just, have been possible. But now he calls for lots of lovely arrows, depending on whether electrons or holes are the current carriers. Now he calls for a current flow arrow pointing in just the opposite direction to the diode and transistor arrowheads. This dead horse is being flogged up the wrong, over-explored, avenue.

A more satisfactory approach is to give up the electron, which is not a useful concept in passive networks anyway. It has a deplorable habit of sauntering slowly along the wire, and we cannot tell one from t'other. Field is a more realistic concept, and if we use the term "current track" we can forget the nature of the charge carrier altogether. Device makers will need to take it into account, but they are hardly students. Device users can stick to conventional current track symbols.

The most extreme cases I can see for abandoning the electron are the transformer and the gyrator. It is possible to describe gyrator action in terms of electron movement, but I can think of few less rewarding activities.

May I suggest as Wireless World policy the setting up of a Libel Defence Fund and the publication of suitably savage reviews of texts which are considered confusing.

Thomas Roddam,

Geriatric Technologists' Home, London W. 8.

Electronics in psychokinesis

I read with interest Dr Stockman's letter "Electronics in psychokinesis" in your June issue as we have been carrying out work on psychokinesis for the last ten years, not only in England but in Russia and Czechoslovakia. Many people have in the past claimed to be able to move compass needles and we have a cine film of a Greek girl apparently accomplishing this feat in 1930.
The most important point is to establish whether the needle has moved because of normal means, e.g. concealed magnets, magnetic dust under fingernails, vibration of table, electrostatics etc. It is more interesting when the entire compass case slides along the table, which I have seen just one month ago in Leningrad. I took a cine film of this which was shown on BBC2 television, in the programme "Leap in the Dark" which also showed my colleague Miss Suzanne Padfield carrying out a psychokinetic experiment on a non-magnetic object.
The compass case in Leningrad was apparently moved at will by a Russian housewife, Madame Kulagina; she has been thoroughly investigated under laboratory conditions, not only by myself but by scientists from the U.S.A., U.S.S.R., Germany, etc., over the last ten years. I myself am a physicist and took with me a variety of equipment to test for the absence of electrostatic and magnetic fields, also any normal means of movement, such as fine invisible fibres. It is of course possible, in principle, to make an entire compass case move by bringing a very strong magnet near to it; the compass needle itself is of course only a small magnet, and if it moves it will carry the case along with it obviously. This is most effectively shown by placing the compass in a plastic dish floating in water, then bringing a strong bar magnet near to the compass. But to make the compass case slide against friction along a rough table top is a much more difficult matter; the field in fact has to be so strong that the needle becomes rigidly fixed in the direction of the field and will not depart from that direction even if the table is kicked. In other words, the presence of such a strong field is immediately betrayed by the behaviour of the needle. Now when I saw the compass case move (in zig-zag fashion) in Leningrad, the compass needle was gently oscillating about 5° on either side of the magnet north, and it was clear to me that only the earth's field was present. Kulagina, as the TV audience saw, is able to move non-magnetic materials under a glass cover, but to my mind this movement of the compass case is the most interesting as the needle gives some indication as to the direction and intensity of the field.

A large s.a.e. to the address below will bring your readers further information free of charge.
B. Herbert,

Paraphysical Laboratory,
Downton, Wilts.

An approach to audio amplifier design

by J. R. Stuart,* B.Sc. (Eng), M.Sc., D.I.C., M.I.E.E.E.

First of a series of three articles in which the fundamentals of audio amplifier design are re-examined, taking account of recent studies in psycho acoustics and circuit techniques. A recent design will be discussed and some experiments related.

In 1883 Lord Kelvin wrote, "I often say that when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot express it in numbers your knowledge is of a meagre and unsatisfactory kind; it may be the beginning of knowledge but you have scarcely in your thoughts advanced to a stage of science whatever the matter may be."
The major difference between a science and any other area of knowledge and thought is that with science, semantic errors can be avoided by reducing all concepts to a numerical form which can give a universally understood meaning, and, most important, allow a value to be predicted which can be experimentally verified.
*Lecson Audio Ltd.

Fig. 1.Percentage population acceptability for more than 95% of the time.

In evolving any theory the investigator is always left with the problem of isolating concepts and parameters, and where there is unusual complexity, as for example in interactions involving human beings, it is made difficult because of the number of ideas that must be involved, and the extreme numerical range that any investigation must produce
The state of affairs that exists in audio design is that, although certain aspects of performance can be totally described, there is no accepted method which describes the overall performance as judged by the listener.
The ideal situation is one in which the complete audio chain, be it microphone to ear or perhaps record to ear, can be given a figure of merit which relates to its acceptability by a percentage of the population

Fig. 2. Subjective quality as a function of mean recording level.

[^3](Fig. 1). However, the problems here are many, not the least that this figure of merit may be time variable due to overall rising standards.
In an earlier article ${ }^{1}$ I put forward the idea that subjective sound quality should be considered in terms of things going wrong -that is, a measure of the unpleasantness determined from a weighted sum of critical parameters.
It is fairly well accepted that overall sound quality is not equally disturbed by all the possible shortcomings and it is also accepted that there is a threshold below which a particular shortcoming may not be noticed, at least until one of the others has been improved.
These notions are of fundamental importance to the production of an effective design method, and the implications are that:

1. Linearity and hence superposition cannot be assumed in discussing degrees of aural unpleasantness.
2. The necessity for a compromise of subjective ideals, due to engineering limitations, results in the need to optimize all the parameters in a way that may not coincide with their individual maxima or minima.
In Fig. 2 I have redrawn the simple model which relates sound quality to the mean recording level in a tape recorder; here undesirable effects arise at low levels from noise and at high levels from progressive overloading. The model illustrates intuitively the way in which a trade-off is made and how the best result does not coincide with minima of the dependent variables.
Consider for a moment the record-playing chain of Fig. 3; here some of the variables affecting the final musical impression are isolated. The impression, apart from artistic considerations which can be dominant or destructive, depends on the passing of years t, temperature T, the quality of transduction by the cartridge and its impedance, tracking weight, mass and compliance of stylus. Also included is the amplifier transfer function, loudspeaker transfer function, the absolute level of the signal in the amplifier (e) and loudspeaker (E and P), the room acoustics, sound pressure level, mood m and disposition towards the listening event D. All of this is confused by the fact that the sensitivity to shortcomings in the system or its components is not constant with any individual, or between individuals. Knowing
the techniques of mathematical programming, it is possible to make useful analyses and predictions in problems of just this complexity. In a practical situation there will be a set of constraints which can demonstrate the need for a trade-off between different levels of unpleasant result. Thus a balanced result is obtained from an objective function $O(z)$, which is minimized using the empirical weightings C_{α}, C_{β} etc. This is shown in Fig. 4 in a general form. However, it would seem that the real problem is not the availability of tools to produce a design but a serious lack of psychoacoustic data and the consequent agreement on what aspect of it is important.

Constraints	Variables				
	α	β	γ		δ
$A=$	$a_{11}+a_{12}$				
$B=$		$b_{22}+b_{23}+b_{24}$			
$C=$		c_{32}			
etc.					

Min. $O(z)=C_{\alpha}+C_{\beta}+C_{y}+C_{\delta}$
Fig. 4 General form of analysis.

When a designer is faced with the problem of producing an amplifier to a price, the most important facts to be established commence with the broad defining specification, and then there is a statement about the tradeoff of distortions and other parameters in the chosen configuration. One could perhaps say that total harmonic distortion $D \%$ will reduce according to cost $£ Z$ in the following way:

$$
Z=a \exp \left[Q \cdot(D)^{-1}\right]+b \cdot D^{-2}+c \cdot D^{-1}
$$

where a and Q relate to component cost, b to testing and c to production. Similar relationships could be proposed and tested for all parameters, and interaction analysis will show an overall cost-performance relationship which can in turn be applied to known percentage population preferences. A preference function $p(D)$ representing, for example, the probability that $D \%$ of distortion is detectable by a random population selection could be tested starting out with the form

$$
p(D)=\alpha \exp (D-y) \quad D \leqslant y
$$

A starting point

So far it has been suggested that a scientific approach is needed to establish for an audio system a figure of merit which can be related to the subjective reaction. Whilst showing that a very complete analysis can be achieved, provided that the correct information is selected and applied, the problems of complexity and variability remain associated with such a project.

It seems that the only road to a useful figure of merit is to accept the concept of "collective subjectivity" as factual and then to attempt to isolate its parameters and effects, assigning, as far as possible, measures of significance.

For example, it would seem reasonable to assume that the first two propositions to establish when discussing any one parameter, e.g. noise, are the level at which it
becomes perceptible and the level at which it becomes objectionable-or impossible to neglect. Further work can then substantiate or challenge these results and in addition improve the accuracy of the curve fitting.

In these articles I discuss known parameters relating to amplifier design which can be of significance, attempting to assign to them a degree of importance based on my own work and the work of others. A more complete discussion of the figure of merit concept and a recent design experiment follow. It is not my intention to propose a finalized quality rating, but rather to make a few steps in this direction. At the same time I will point out how such a rating may be derived, in the hope of encouraging new work and discussion on this subject.

System considerations

In contemplating the reproduction of music the ideal is that the sound field, as perceived by the listener, should approach as closely as possible the original event, or at least the balance engineer's version of it.

To recreate a sound field it is necessary to produce all the essential detail of the original acoustic waveform at the appropriate loudness. Now it does seem that an accurate recreation is impossible using loudspeakers, even if they have ideal distribution characteristics. However, it is not possible or necessary in this discussion to consider reverberant sound fields set up by loudspeakers in rooms or the special problems of two or four channel systems.

Consider the problem in its simplest form; the original event is picked up, say, using the dummy-head microphone technique and conveyed through a system to a pair of headphones. In this chain there will be two or four electro-mechanical or electroacoustic transducers possibly exhibiting non-minimum phase characteristics, reson-

Fig. 5. The energy distribution (in arbitrary units) in an extended musical event.

Fig. 6. The effect of frequency range upon the reproduced quality of music.
ances etc. It is also possible that the amplifier blocks and other links in this chain will have a historical design approach.

It seems clear that the criteria will be common for any part of the chain, namely to preserve as far as possible the integrity of the original signal. This implies that the fundamental design criteria be first determined and then applied to every element to ensure success.
Such a conclusion allows a more specific concentration on single elements in the chain, in the knowledge that the general principles derived will be applicable in all instances, provided the correct assumptions are made.

Amplifier design

The current attitude to audio amplifier design is reflected in the DIN 45500 standards, and an amplifier which nowadays would be considered to be very good will have a specification as follows:

1. Output power in excess of 40 W each channel.
2. Power bandwidth $20 \mathrm{~Hz}-30 \mathrm{kHz} \pm 1 \mathrm{~dB}$.
3. Very low noise and hum, say -80 dB .
4. Total harmonic distortion less than 0.1% at all frequencies and power levels in the bandwidth.
5. Intermodulation distortion, however measured less than 0.1%.
6. Low output impedance, say $400 \mathrm{~m} \Omega$.

The starting point of a truly "scientific" design approach should be to accept the existing requirements, note the areas of weakness and if necessary build up a new design hypothesis.

For me, the practical starting point is that, say, ten amplifiers of different design all with the above specification when compared in a listening test show serious qualitative differences. Given this situation we are now interested in establishing the nature of the differences and from that evolving a figure of merit.

The bandwidth of the ear under the best possible conditions is generally a maximum of 22 kHz and since musical events are known to have energy distributions as shown in Fig. 5 it seems reasonable that a system bandwidth of $20 \mathrm{~Hz}-22 \mathrm{kHz}$ should be considered sufficient, together with an amplitude response within 0.5 dB over this range. Snow ${ }^{2}$ described experiments showing how the quality rating he had evolved varied with bandwidth (shown in Fig. 6). From his experimental results, limitation of the bandwidth became objectionable during the whole test cycle when a low frequency cut-off of 1 kHz was applied.

It may be that a quality rating based solely on this one parameter is inadequate, but, as I hope to show later, the value of quoting bandwidth as $\approx 22 \mathrm{kHz}$ or $>22 \mathrm{kHz}$ per se, is limited. What can be of overriding importance is the origin of the bandwidth limitation.

A cornerstone of the theory of sound reproduction has been Ohm's Auditory Law which states that the ear tends to analyse the components of a complex sound regardless of their phase relationships. Thus the ear is inclined to operate as an on-line Fourier analyser and this transformation of
the waveform is considered to be adequate information.
Twenty years ago the specification for an audio amplifier would suggest that it should amplify all the frequencies of a musical signal equally, without adding any new frequencies. This is, if you like, the credo of the design philosophy based on frequency response and includes the notions of total harmonic distortion (t.h.d.) and intermodulation distortion (i.m.d.).
However, it seems that the "frequency response" viewpoint is very constraining since if one starts out with an idea set in a single frame of reference-in this case the $j \omega$ plane-it is easy to lose sight of the objective. We do not necessarily want to amplify all the frequencies of music equally -especially without regard to phase. What is required is to amplify an audio waveform of acoustic origin in such a way that the ear can detect no degradation.
For many years it has been accepted in audio engineering and psycho-acoustic circles that the ear-brain combination does not perform this frequency analysis in the way Ohm suggested; but rather analyses in terms of the waveform. It has been shown ${ }^{4.5 .6}$ that the qualitative characteristics of a complex sound depend on the phase relationships of the component harmonics. In fact, more recent work has made it clear that the ear has very specific sensitivities to waveform differences ${ }^{7.8}$.

It may be thought that if an amplifier has a response $\mid F(j(\omega) \mid=$ constant, between 20 Hz and 20 kHz then it will automatically reproduce all waveforms correctly; however, this is not a sufficient performance description. It is also necessary that the system be minimum phase, making-il necessary to eliminate certain all-pass networks in common use. Helmholtz was the first to say that the "quality of musical perception of a complex tone depends solely on the number of partial tones and in no respect on their difference in phase". ${ }^{9}$

As a phase difference must be interpreted as a time delay between the component parts of a signal, it is clear by induction that sufficient phase shift in a system must eventually become audible as a result of moving these components with respect to each other in time. This can be deduced from:

1. The ear's ability to differentiate small time and amplitude differences as confirmed by directional acuity.
2. In practice such large phase shifts as occur in long telephone lines, render speech unintelligible unless phase and delay correction is introduced ${ }^{10,14}$
In addition, recent experimental findings by Madsen ${ }^{8}$ are summarized as follows.
3. The ear is sensitive to phase differences between frequency bands.
4. The sensitivity threshold is raised by a factor of three in reverberant surroundings where the sound source is a loudspeaker compared with results obtained using headphones.
5. The ear seems to prefer the frequency content of negative pressure transient wavefronts showing the significance of absolute phase.
6. In listening room conditions using a
carefully constructed test signal a 10° phase shift between extreme frequencies was detectable.
Stodolski ${ }^{7}$ suggested that an audio system which maintains a 3 dB tolerance in ampli-tude-frequency response should also maintain a 17° tolerance in phase shift; he also showed that a 180° absolute phase error is aurally equivalent to 11.5% intermodulation distortion.
Now whilst it is relatively simple for an amplifier designer to achieve a maximum phase shift of 1° in the audio band with conventional parameters being considered, when I discuss some further aspects of musical realism I will show that it is a more complex problem than that; in addition all sorts of questions are raised about tone controls and filters.

On the basis that it is better to over- rather than under-estimate the acuity of the ear, it seems reasonable in the face of so much experimental evidence to agree that a figure of merit concept should also contain a measure of both phase deviation and phase smoothness. The only remaining problem is to propose the perceptual thresholds.

These arguments tend to convey that the quality of reproduction is principally affected by the accuracy with which the original acoustic waveform is recreated at the ear, but this is a point to return to.
Linear theory shows that in minimumphase systems the steady-state function $F(j \omega)$ is related to $f(t)$ by the Laplace transform in a specific and simple way. The transfer function of an amplifier is said to be linear when complete correspondence exists between input and output and an important consequence of linearity is that superposition can be held as true.
It is customary and convenient to measure any departure from linearity as the extent to which new frequency components appear in the output of an amplifier, excited by n sinusoids where $n \geqslant 1$. The resulting measurement which is conventionally the r.m.s. sum of these new frequencies will be either t.h.d. for $n=1$ or i.m.d. $n>1$.

In 1947 it was suggested ${ }^{12}$ that a good design objective was a maximum of 0.1% harmonic distortion since, first, it represented a readily achievable goal which was better than supposed necessary and, second, it left room for a deterioration of performance in service. (tt should be pointed out that this objective referred to class A amplifiers using tetrode valves and having a moderate amount of negative feedback.) This level of performance would appear to be high, and in the light of other published work there is no ground for dismissing it. Olsen ${ }^{13}$ showed that for reproduced music in a 15 kHz bandwidth the levels of distortion necessary to produce the reactions perceptible, tolerable and objectionable were $0.75 \%, 1.8 \%$ and 2.4% respectively, in a system producing predominantly secondharmonic distortion.

However, no one can now suggest that 0.1% t.h.d. is a criterion by which the goodness of an amplifier can be judged: one only has to listen to a signal containing $0.1 \% 7$ th or 9 th harmonic to realise that this is definitely audible. More recent investigation has shown that the ear is more sensitive to
distortions according to their order, that is, 0.1% third harmonic is more significant than 0.1% second, and so on.
D. E. L. Shorter suggested ${ }^{14}$ that the best correlation between objective and subjective tests on the order of harmonic distortions was obtained using the weighting $n^{2} / 4$, thus the fifth harmonic would be 6.25 times as significant as the second harmonic. On the other hand, in a very thorough investigation Wigan ${ }^{15}$ suggested that a distortion criterion $C_{\text {t }}$ would be better defined as:

$$
C_{t}=\sum_{2}^{n} n^{2}\left(p_{n}-t\right) \text { for }\left(p_{n}-t\right)>0
$$

Here n is the harmonic number, p_{n} the percentage of the nth harmonic and t the threshold harmonic percentage in the experimental conditions. One of the problems of making use of Wigan's criterion is that it is very sensitive to the value of t, which was thought, in his experiments, to be between 0.1% and 0.5%. The two measures converge for values of $p_{n} \rightarrow t$; however, I feel that for the purposes of this discussion it will be sufficient to use Wigan's weighting with the arbitrary value for $t=0.1 \%$.

It is easy to be led astray at this point. I have said that the ear is sensitive to defects in waveform reproduction, and it is known that amplitude non-linearities can also degrade the sound. Whilst it is convenient to measure the steady generation of harmonics, it need not necessarily be this particular effect which annoys. For example, other measurements which could be applied to quantify the non-linear amplification of a waveform are

1. The "time rate of departure of the signal from normality" as proposed by Wigan.
2. The percentage of time of deviation.
3. The r.m.s. value of deviation.
4. The peak value of deviation.
5. The measurements used in p.c.m. networks e.g. par. \dagger
However, as far as possible, existing methods of measurement should be used and a starting point established by proposing values for the two thresholds of perception and total unpleasantness of 0.1% and 2% weighted t .h.d. respectively.
So far, no allowance has been made for transient phenomena, and it is in this parameter, perhaps more than any other, that differences between amplifiers can be detected. In deciding how to demonstrate at a Wireless World lecture the inadequacy of the basic specification
6. bandwidth $20 \mathrm{~Hz}-22 \mathrm{kHz} \pm 2 \mathrm{~dB}$
7. weighted t.h.d. 0.1%
8. very low noise and hum
the following system was evolved. Linearity and hence superposition suggest that there is no reason why the audio signal should be handled by one amplifier; therefore it was proposed that the signals should be carried by a triple path amplifier, the parallel sub-amplifiers approximately covering the ranges $20 \mathrm{~Hz}-990 \mathrm{~Hz}, 990 \mathrm{~Hz}-1010 \mathrm{~Hz}$, $1010 \mathrm{~Hz}-22 \mathrm{~Hz}$.
When comparing this amplifier and another, more conventional, one (both were
fed into the same very high quality power amplifier) the difference was very marked. The three-band amplifier was horrendous, with voice reproduction sounding as though it had travelled along a metal tube.

However, both amplifiers met the basic specification; my explanation for the result was that the three-band amplifier exhibited a serious transient fault at around 1 kHz , the impulse response of the middle amplifier showing ringing and overhang.

This example was chosen to illustrate the inadequacy of the outline specification and is not as exotic as it may first seem. In any audio chain resonance is inevitable and it is usual that more than one be evident at the extremes of the frequency range, although there are exceptions. It is also usual to find that an amplifier will, under some conditions, exhibit a natural frequency ring when excited by an impulse.

To many, the terms transient response and transient performance are synonymous with square-wave performance and it is necessary at the outset to carefully distinguish the point of discussion. In a linear minimum phase network of first order response the rise time t_{r} in response to a unit step input is completely related to the bandwidth B by $t_{r}=\frac{0.35}{B}$.

In general the impulse response $g(t)$ can be related to the frequency domain transfer function $F(s)$ by Laplace transformation; therefore, provided the system performs linearly, the rise time of an amplifier can be deduced

It has been thought that an audio amplifier should be designed to have as fast a rise time as possible ($<1 \mu \mathrm{~s}$). This implies a frequency response extending to several megahertz. When one is faced with the situation of being told that a response to 1 MHz improves the audible quality beyond that given by an amplifier having a response to 25 kHz , when it is known that the system reproduces signals like Fig. 5, restricted to 20 kHz by a 4 th or 5 th order roll-off, then it is clear that there are other mechanisms at work.

The value of square-wave testing of equipment is that it can show up

1. Frequency, phase and amplitude performance at a glance.
2. Transient misbehaviour, e.g. ringing or overshoots.

3. Slew-rate limiting.

Ringing and overshoots may excite similar problems in transducers or later amplifier stages and are best minimized. In a system which handles square waves in a linear fashion the best response shape to obtain minimal overshoot is also that which has a maximally flat phase response, i.e. the Bessell.

It is in vogue to measure the performance

Fig. 7. A feedback amplifier configuration.
of a power amplifier when it is delivering square waves into a reactive load which simulates a loudspeaker, and the two most common effects noted are slew-limiting and ringing. The ringing gives an indication of amplifier stability and, although there is no agreement whether or not this has an effect on the reproduced sound, it is probably best to avoid it as much as possible.

Negative feedback

It is a common assumption that all one has to do to produce an audio amplifier is to design any rough old circuit and pull the whole thing straight with negative feedback. In fact this technique could quite possibly permit an achievement of the simple specification which has been evolved so far; although obtaining good distortion figures may not be so easy. Thus to reiterate this specification:

1. Frequency response $20 \mathrm{~Hz}-22 \mathrm{kHz} \pm$ $1 \mathrm{~dB}+10^{\circ}$ phase
2. Power 40W
3. Weighted distortion less than 0.1% anywhere
4. Low noise and hum
5. Fast rise-time
6. Low output impedance.

I gain a definite impression that the words hi-fi and negative-feedback are generally accepted as being synonymous, and that enough negative feedback can reduce all undesirable effects. It is well known that using operational amplifier design techniques a $t . h . d$. of less than 0.002% is quite possible.

Consider the amplifier of Fig. 7. Classical feedback theory states that the gain will be reduced by the feedback factor F, where $F(s)=1+A(s) B(s)$. In addition any distortions and noise within the loop will be reduced by the same amount and the bandwidth increased as shown in Fig. 8.

Fig. 8. Bandwidth increase with addition of feedback.

However, as is often forgotten, classical theory makes the following provisos:

1. The transfer function $A(s), B(s)$ must be monotonically continuous and linear, which it is not in the event of clipping or crossover.
2. The feedback must be accurately negative at all times.
3. There must be no forward transfer of signal along the feedback path B.

The immediate implications are that distortion within the loop can only be reduced by the factor $F(s)$ if that distortion is already very small and hence $A(s), B(s)$ does not deviate much from its nominal value.

In addition the theory of stability of
negative feedback loops makes it clear that in a practical situation it is not possible for the feedback to be negative at all times, and hence the forward characteristics $A(s), B(s)$ may have a response dictated by stability considerations. We have therefore an indication that negative feedback is not quite the acme first suggested.

Consider, for example, an amplifier of 40 dB open loop gain at ω_{0} with a 20 dB feedback factor. It would be expected that the distortion at ω_{0} would be reduced by 20 dB or ten times. However, let us consider this statement in more detail. If a distortion occurs on any part of the waveform then v_{3}, the so-called error signal, will contain frequency components much higher than ω_{0}, so the effectiveness of the loop in reducing distortion at ω_{0} will depend very much on its ability to detect and correct errors at a faster rate than this. Thus an important parameter when designing for low weighted distortion figures would seem to be the open loop frequency response. Two conclusions arise:

1. Negative feedback only reduces distortion by the predicted amount if the feedback is accurately negative and the distortion is very small in the first place.
2. Negative feedback will only reduce distortion at ω_{0} by the predicted amount if the open-loop response has not begun to decay by ω_{0}.

Why do we use negative feedback? The usual reasons are given as a means of accurate calibration and stabilization of gain, to provide an extension of amplitude/ frequency response together with linearisation of phase response, a reduction of the effects of open-loop distortion and a way of defining input and output impedances. Admittedly it is a very powerful design tool, but the object of introducing the subject of negative feedback is to discuss its particular shortcomings as judged by the listener.

Scroggie ${ }^{16}$ gave a marvellous example of how negative feedback can make matters worse. An amplifier was considered which had a transfer characteristic:

$$
V_{\text {out }}=100 V_{\text {in }}+100 V_{\text {in }}^{2}
$$

and with a peak $V_{\text {in }}$ of 0.4 V this results in 20% 2nd harmonic distortion at a fundamental output of 40 V pk . Applying 40 dB of feedback reduced the sensitivity, reduced the maximum output to 30 V pk and the distortion became $13.2 \% 2 \mathrm{nd}, 7.4 \% 3 \mathrm{rd}, 3.3 \%$ 4th .. . a weighted distortion very much more than 20% ! Perhaps the most interesting aspect of amplifier feedback design for audio concerns the performance of the feedback loop under transient signal conditions.

A typical audio amplifier will comprise a pre-amplifier which may have three, four or more stages, of which two will normally have heavy overall feedback in the form of equalisation and tone controls. This is followed by a power amplifier which has a very high open-loop gain; that is, the maximum amount of overall negative feedback to minimize t.h.d.

One consequence of choosing a high overall loop gain is that stability requirements dictate that this gain be rolled off somewhat early in the audio band and it is
common for commercial power amplifiers to have the first pole between 100 Hz and 4 kHz . This is usually effected by lag compensation in the forward path.

Transient intermodulation distortion occurs in amplifiers which employ overall negative feedback over several stages when a large enough signal is presented to the input of the amplifier at a frequency which is above the open-loop break point but is in the audio band. This type of intermodulation distortion occurs because the feedback is not operative during the open-loop rise time of the amplifier. The result is very large overshoots appearing in the error signal and depending on the particular open-loop response and feedback factor. These overshoots can be several hundred times the value of the steady-state error signal. Unless extreme precautions are taken these overshoots will cause clipping or severe overloading of the input at intermediate stages of the amplifier, and the amplifier will produce bursts of 100% intermodulation distortion.

Because the amplifier can be clipped internally, the particular circuit arrangement used can often result in transient intermodulations lasting much longer than the open-loop rise time. This mechanism has been understood for some time ${ }^{17}$ and is analysed in some detail by Otala ${ }^{18}$. Figs. 9 and 10 show typical error signals in a power amplifier in response to an input step function. Here the open-loop response is 2 kHz and the input is restricted to 20 kHz .

It has been shown that the ear is very sensitive to this form of distortion which, in its effects, is very similar to cross-over distortion. The most rapid changes of voltage tend to occur around the zero crossing and both types of distortion produce waveform deviations in this sensitive area ${ }^{19}$.
It is interesting that transient distortion has been largely overlooked yet its effects are quite audible. In the third part of this series of articles I will describe some interesting experiments on this problem.

To reduce steady-state distortions to a minimum it has been usual to increase the amount of negative feedback. A consequence of this is that it then becomes necessary to move the open-loop pole to a lower frequency and so inevitably transient intermodulation distortion (t i.d.) becomes more and more likely.

I feel sure that this particular distortion mechanism is as much responsible for the notion of "transistor sound" as any crossover problems, as it is usual for transistor power amplifiers to have more feedback and lower open-loop bandwidth than the valve counterparts.
The immediate conclusions to be drawn are:

1. Negative feedback has a clearly defined and limited use in audio amplifiers.
2. Attention must be paid to every feedback loop in the system to ensure that it does not produce t.i.d.
3. The power amplifier should have the lowest open-loop bandwidth, so the total system frequency response must be dictated in a controlled way by the pre-amplifier.
4. For ultimate quality, the minimum open-loop bandwidth is 20 kHz and only

Fig. 9. Block diagram and response of a hypothetical audio amplifier.

Fig. I0. Error signals produced in the amplifier of Fig. 9 with an input step function.
enough negative feedback should be used to reduce steady-state distortions below the psychoacoustic thresholds or until the transient and steady-state distortions achieve the same significance.

In Part 2 I shall continue the discussion of transient distortions and return to discussions of a figure of merit in the context of predictive design.

References

1. J. R. Stuart, "Tape noise reduction", Wireless World, March 1972, pp. 104 et seq.
2. Snow, "Audible frequency ranges of music, speech and noise", Journ. Ac. Soc. Am., 1931, pp. 155.
3. J. Mantel, "Definition and measurement of fidelity of electro-acoustical components and electro-acoustical chain". Paper of 44th AES convention Rotterdam. 1973-02-20/22.
4. Chapin and Firestone, "The influence of phase on tone quality and loudness; the interference of subjective harmonics", J. Ac. Soc. Ami., Vol. 5, No. 3, 1934, p. 173.
5. Lewis and Larsen, "Concentration, reinforcement and measurement of subjective tones", Proc. Nat. Acad. Sci. Vol. 23, p. 415, 1937.
6. Stevens and Davis, "Hearing", Wiley, N.Y. 1938.
7. D. S. Stodolsky, "The standardisation of monaural phase", IEEE Trans. Aud. \& Elec. Acoust. Vol. AU-18, No. 3, Sept. 1970.
8. E. R. Madsen (et al.), "Threshold of phase detection by hearing". Paper of 44th AES convention, Rotterdam, 1973.
9. H. G. Craig and L. A. Jeffress, "Why Helmholtz couldn't hear monaural phase effects". J. Acou. Soc. Amer., Vol. 32, 1960. 10. C. E. Lane, "Phase distortion in telephone aparatus", Bell, S. T. J., 1930.
10. J. C. Steinberg, "Effects of phase distortion in telephone quality", Bell, S. T. J., 1930.
11. D. T. N. Williamson and P. J. Walker, "Amplifiers and Superlatives", Wireless World, Sept. 52, p. 352, Vol. 53.
12. H. F. Olsen, "Acoustical Engineering", Van Nostrand, 1957, p. 595.
13. D. E. L. Shorter, Electronic Engineering, April 1950, Vol. 22.
14. E. R. Wigan, "New distortion criteria", Electronic Technology, April 1961, p. 126.
15. M. G. Scroggie, "Essays in Electronics", Iliffe 1963, chapter 19.
16. D. G. Daugherty and R. A. Greiver, "Some design objectives for audio power amplifiers", IEEE Trans. Aud., Vol. AU-14, March 1966.
17. M. Otala, "Transient distortion in transistorized audio power amplifiers", IEEE Trans. Aud., Vol. AU-18, Sept. 1970.
18. H. Levitt, et al., "Perception of slope overload distortion in delta modulated signals". IEEE Trans. Aud., Vol. AU-18, Sept. 1970.

Announcements

The first class for the City \& Guilds Radio Amateurs Course (No. 765) for the 1972-1973 session begins on the 27th September 1973 at the North and West Farnborough Further Education Centre, St. John's Road, Cove, Farnborough, from where course details are available. There is also a Morse proficiency course beginning on 26th September.

The following are courses for radio and electronics enthusiasts offered at the Knaresborough Adult Education Centre, King James Road, Knaresborough, during the academic year 1973-74:

Tuesdays, beginning 18 th September, "Morse Code For Radio Amateurs"

Wednesdays, beginning 19th September, "Electronics Workshop"
Thursdays, beginning 20th September, "Radio Amateurs Examination Course". All these classes are from 7.30-9.30 p.m. at a fee of $£ 1$ per term.
The 1973-74 edition of the annual publication "A Compendium of Advanced Courses in Technical Colleges" is available from the London and Home Counties Regional Advisory Council for Technological Education, Tavistock House South, Tavistock Square, London WC 1 H 9LR, price 70p, by post in the U.K. or from any of the Regional Advisory Councils for Further Education.

QFab Ltd, Milnathort, Kinross, Scotland, sister company to Kepston Ltd, manufacturers of electric resistance atmosphere furnaces, has begun specialization in the production of magnetic screens for manufacturers of electronic equipment.

Bosch Ltd, Rhodes Way, Watford, distributors of Uher equipment in the U.K., has announced that Uher tape recording equipment purchased in any E.E.C. country and still within the guarantee period offered in the country of original purchase will be accepted for repairs under guarantee.

Datron Electronics Ltd, has announced the appoint ment of REL Equipment \& Components Ltd, Croft House, Bancroft, Hitchin, Herts., as their U.K sales representatives for the Datron range of instruments, including r.m.s. digital voltmeters and r.m.s. to d.c. converters.

EMI has acquired the cable television equipment interests of Thorn Automation Ltd. The Thorn equipment complements the c.a.t.v. product range offered by the Telecommunications Division of EMI Sound \& Vision Equipment Ltd., Hayes, Middlesex.

News of the Month

New videotelephone

Siemens have introduced a new videotelephone design, "videoset 101 ", which is now ready for series production. This device is a further development of the first European videotelephone for dial operation, which was presented by Siemens in 1967 and has been in use since 1971 for a trial service between the Deutsche Bundespost in Darmstadt and the manufacturers in Munich. The new videotelephone (see photo) is characterized by a larger screen, improved picture quality and simplified operation. It uses the internationally proposed standard video bandwidth of 1 MHz and is fully compatible with the American st andard

Consistent use of the 1 MHz bandwidth led to a noticeable improvement of the facilities. The screen, for instance, has been enlarged to $12.8 \times 14.1 \mathrm{~cm}$ (height x width). The number of lines, 267 , gives a resolution at which even small details can be distinguished. For transmission of written texts, for example, a capacity of about 500 characters can be

Siemens' new videotelephone design "videoset 101" which is now ready for series production - see accompanying news item.

obtained with the enlarged screen area. The field frequency of 60 Hz ensures a largely flicker-free picture, even in normal ambient brightness.

The picture unit is rotatable, and its camera section can be tilted by $\pm 6^{\circ}$. A mechanical scissor aperture permits the use of Plumbicon and silicon-vidicon type camera tubes, as well as the conventional vidicon. With all these types of tubes the automatic aperture control $(f=2.8$ to 22), together with the gain control (factor 16), makes it possible to control a wide brightness range with good depth of vision at all stages. An attachment box contains a power supply for the picture unit, as well as a video amplifier, a voice-switched amplifier for hands-free conversation and an associated relay assembly.

The introduction of a videotelephone service in the public telephone network of the Federal Republic of Germany is not expected before 1980. Apart from the audio-visual link between persons and the transmission of graphics, "videoset 101 " is also suitable for displaying pictorial information from central microfilm stores. Information services with moving pictures and accompanying sound are an additional possibility.

Laser communications closer

Bell Laboratories has developed a method for the fabrication of efficient light-carrying glass fibres from a single material. The new, hair-thin fibres are made with the purest known, commercially available glass. Future optical communication systems may use fibres such as these to carry information signals in a manner similar to present-day wires and cables.

The new fibre has shown light loss as low as 5 dB per kilometre (50% in 2000 feet). This would allow signal amplifiers to be placed further apart than in land cable systems now in service. Bell scientists expect the new structure to make it possible to take full advantage of the extremely low-loss light-carrying capabilities of ultra-pure glasses.

Today, glass fibres are fabricated with two different materials - one for a very narrow inner region called the core, and the other for a surrounding outer cladding.

Light in transit through a glass fibre is kept in the core region by the outer cladding. Until now, fibres made with differing glass materials may have contained undesired impurities that interfered with the passage of light and caused transmission losses.

In one design there are three components to the new fibre: a tube, a solid inner rod, and a supporting plate for the rod. All three are made of the same low-loss glass. The plate bridges the centre of the tube, supporting the glass rod. This configuration is preserved as the assembly is heated and drawn down to the diameter of a human hair.

Background music experiments

The B.B.C. has recently carried out tests on a system for transmitting subsidiary information at the same time as the normal f.m. broadcasts. Tests of the S.C.A. (Subsidiary Communications Authorization) system have been made using a 4 lkHz subcarrier on the Radio 4 v.h.f. transmission from Wrotham. In order to ensure that any reactions from listeners to the Radio 4 v.h.f. programme should be genuine and not influenced by the knowledge that the tests were taking place, they were not publicized in advance. S.C.A. transmissions, intended chiefly to provide background music in departmental stores and other places, have been broadcast by f.m. stations in the U.S.A. for several years, using a frequency modulated subcarrier in addition to the main mono or stereo programme modulation.

The parameters for the tests were as follows:

Subcarrier frequency - 41 kHz
Maximum deviation of subcarrier by subsidiary programme - $\pm 6 \mathrm{kHz}$ pk-to-pk.

Subcarrier programme nre-emnhasis time constant - 75us.

Subcarrier injection (i.e. percentage of total main-carrier deviation allocated to subcarrier) - $7.5 \%(5.625 \mathrm{kHz})$ later increased to $15 \%(11.250 \mathrm{kHz})$.

Percentage of total main-carrier deviation allocated to main-channel programme - 85\% (with the higher subcarrier injection).

Audio-frequency bandwidth of subcarrier programme $-5 \mathrm{kH}_{7}$.
In the U.S.A.. S.C.A. had been established for some time before stereo broadcasting with the Zenith-GE pilot tone system began. The subcarrier, when the main transmission is in stereo, is 67 kHz , and from the start of stereo broadcasting in the U.S.A. stereo receivers have been fitted with "storecasting traps" to suppress frequencies around 67 kHz emerging from the discriminator. On monophonic v.h.f. transmissions a lower subcarrier frequency can be used, in order to take advantage of the better signal-to-noise ratio which this offers on the S.C.A. programme.

In Europe, stereo receivers have not
generally been equipped with any low-pass filters comparable with the S.C.A. traps in American stereo sets, and it was anticipated that subcarrier broadcasting simultaneously with stereo on the main programme would not be feasible, even on the higher of the subcarrier frequencies used in the U.S.A., because of interference with stereo reception. The tests were therefore carried out using the 41 kHz subcarrier. The great majority of listeners to the main channel, including those using stereo receivers, were not affected. The tests did, however, give rise to complaints from some people, using one or other of the stereo receivers having inadequate provision for rendering the decoder circuits inoperative during mono transmissions. The trouble could be removed in most cases by "locking" the receiver to mono.
Reception of the subcarrier programme was found to be rather sensitive to crosstalk under multipath reception conditions. The audio quality was somewhat lacking in treble, but this may have been due to deficiencies in the S.C.A. receivers used for the tests.

When the tests with a 41 kHz subcarrier have been fully evaluated, a further series of tests with a higher subcarrier frequency, on or about the 67 kHz used in the U.S.A., may be carried out.

Ceefax tests

The B.B.C. has radiated written information data in a number of out-of-hours test transmissions of the Ceefax TV information data service (see May edition p. 222 "TV Information Service"). Subsequently, about 600 questionnaires were distributed and on the results obtained the B.B.C. believe that the experiment should be based on data transmission in television lines 17 and 18 (and the corresponding lines of the other field). In order to minimize any disturbance seen on a conventional receiver, it is proposed to limit the amplitude of the signal to 6 dB down on the peak white signal.

Ceramics for control and switching

A new group of ceramic materials employing barium titanate and controlled additives has been developed by the Sprague Electric Co. for use in contactless switching and temperature sensing applications. Some of the new electroceramic devices can control currents as great as 15 A at 400 V . These switching devices are basically positive temperature coefficient resistors with the special property of switching suddenly from a very low resistance to a very high resistance when the material passes its so-called "Curie point". This may be anywhere from 25° to $125^{\circ} \mathrm{C}$ and is an inherent characteristic of the specific ceramic composition used.

Flow-coat mill of Mullard's £10M television picture tube plant at Durham. The equipment in this section of the mill applies a layer of phosphor dots on the face of the tube. The dots provide the blue content of the picture. Similar equipment is used to apply the red and green phosphor dots.

Future of TV

The establishment of a nation-wide system for the distribution of television programmes by cable would involve a capital expenditure of between $£ 500 \mathrm{M}$ and $£ 1,500 \mathrm{M}$ (depending upon the system and the number of programmes) according to the Papers of the Technical SubCommittee of the 1972 Television Advisory Committee. The document states: "There appears to be no physical reason why the project should not be completed in a period of 20 to 25 years, if the public demand for wired services was sufficient to make their provision commercially attractive. The present growth rate of subscribers on cable systems is about 12 per cent per annum." It is unlikely, however, that the growth will continue at this rate because the coverage off-air is of such a high standard in most parts of the country that there are not (or will not be) many places where cable television can offer a worthwhile advantage to the viewer.

The report also covers the subject of future use of the v.h.f. bands for television services. Bands I and III for television services using 625 -line definition could be replanned for two programmes, each aimed at maximum coverage (85% of the U.K. population) or one programme could be provided to about 99% of the population using only six channels. The unserved population on the twoprogramme basis would probably be mainly in the south and east of England. An alternative use would be for local television broadcasting where many choices would be available, ranging from two or three programmes serving the large conurbation to a single programme for a very large number of small population groups. A single national coverage
programme serving 99% of the population could be accommodated, together with an additional local service to major conurbations. Alternatively, a single national coverage television programme serving 99% of the population could be coupled with a mobile service using 7 MHz of Band I or with an f.m. soundbroadcasting system using 12 MHz of Band I.

The report contains the conclusions reached by the technical sub-committee on how far Britain is likely to exploit new broadcasting technology such as cable TV, satellite broadcasting. and videorecording in the period after 1976.

Video disc launch at Berlin

The Teldec (Telefunken-Decca) video disc. now called TED for television disc and announced in 1970, will be launched on the market at the 1973 International Radio Exhibition in Berlin. At the last Berlin exhibition ($W . W .1971$ pages 486-8) the colour version of the disc was announced, but the $21-\mathrm{cm}$ disc only played for five minutes. Now, by increasing groove density to 280 per mm , playing time is brought up to 10 min . A preview of the latest development showed much better colour picture quality than was seen two years ago. Price of the player is expected to be around $£ 170$, with discs probably in the region of $£ 1.30$.

This year's exhibition, to be held 31 August to 9 September in Berlin, commemorates 50 years of German radio broadcasting, though it now covers entertainment electronics generally. The first broadcast on 15 October 1923 used a transmitter power of 250 watts! (Actually,
a fee-charging service started earlier, in September 1922.) The first German Radio Exhibition, held the next year in Berlin, had 250 exhibitors and 114,000 visitors. This year, with the same number of exhibitors, over 600,000 visitors are expected. (Of the 371 firms represented, 147 are foreign.)

A problem with such large exhibitions is finding out who's showing what, and where. To help visitors in this a computer service is provided, with "comptesse"operated terminals together with viewers and hard-copy printers located at the entrances. The system can say which firms are showing new products (location given), what innovations there are in any of 70 product groups (name, innovation and two features given), where stated firms are (most convenient visiting order given), what innovations there are by a named firm, what historical development of specified product groups was, which events are taking place and where (selected from television and other presentations, concerts, theatre, and others), and which broadcasts provide coverage and programmes about the exhibition. Queries will be analysed to provide information about visitors' interests, needs and motivation. All in all a welcome innovation. But we expect one conclusion will be a need for far more terminals.

Intelsat V satellite

An international team of 17 companies in ten counties has developed and has in operation at the Lockheed Missiles and Space Company plant in Sunnyvale, California, a full scale engineering version of a spacecraft designed as the next generation of communications satellite. The new satellite is privately funded by companies in the team and, if adopted, offers a communications capacity at least five or six times greater than present Intelsat IV satellites (see June News of the Month "New communications satellite").

The added capability will be required during the next ten to fifteer years to keep pace with the rapid growth in international telecommunications. Although growth rates have varied considerably in the past, conservative estimates show that telephone traffic between nations can be expected to increase between 20 and 25% annually during 1975 to 1985 .

The major difference between this new satellite and its predecessors is that it will be stabilized in three axes - a technique in which Lockheed have some experience from their military work. This makes it possible to use larger arrays of "solar" cells, similar to the Skylab panels, increasing available power (5 to 7 kW) and hence communication capacity. More highly directional aerials can also be used (pointing accuracy 0.16°) and according to Robert Telford, managing director of GEC-Marconi Electronics, one could conceivably get away with 10 to 12 ft ground aerials in the 12 to 14 GHz band. Existing

Intelsat spin-stabilized satellites can only use a third of the solar panels at any one time.
Although the contract, said to be worth $\$ 100 \mathrm{M}$, has not yet been awarded - contenders are expected to be TRW, Hughes, Fairchild and possibly General Electric, in addition to Lockheed the Lockheed consortium are coiffident enough to have invested $\$ 4 \mathrm{M}$ so far. Approximately 40% of the contract will be handled by Lockheed, 60% being divided among the remaining members of which GEC-Matconi Electronics the only U.K. member - has the largest chunk (10\%). The Marconi contribution covers horizon sensors (based on the Skylark programme, but new techniques improve positional accuracy to 0.05° in two axes), stripline micro wave filters and a computer-controlled automatic check-out system.

Pure metal audio tapes

For a number of years several research establishments have been looking into the possibility of using pure metal micropowders as the magnetic storage element of tape coatings. Indeed there is record of tape having been made using pure iron particles dating back to the earliest days of tape recording.
Modern audio tapes use $\mathrm{Fe}_{2} \mathrm{O}_{3}$ as the magnetic material in most cases, although two other forms of oxide have been developed for use in the Compact Cassette system. These are cobalt doped $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and CrO_{2}. In all these cases a large part of the remanence is derived from shape anisotropy,* although, in the case of the cobalt modified versions, exchange anisotropy** plays a considerable part. Making stable acicular (needle like) particles of suitably small dimensions has not proved too difficult with these oxides. However, the high theoretical values of saturation magnetization possible with pure iron particles cannot be approached in these materials.

The major difficulties in manufacturing suitable pure iron particles lie in their pyrophocity \dagger and chemical instability. These problems appear to have been overcome by Philips Research Laboratories who have just issued a pre-print of a paper describing the properties of a remarkable experimental audio tape based on the use of pure iron particles. This tape, although it requires a bias current about 9 dB higher than for $\mathrm{Fe}_{2} \mathrm{O}_{3}$ has a marked superiority over all other types currently available.

[^4]At 10 kHz signal-to-noise ratio is about 7 dB better than CrO_{2} tape, using a $70 \mu \mathrm{~s}$ equalization. Compared with $\mathrm{Fe}_{2} \mathrm{O}_{3}$ tapes the improvement is about 11 dB when the latter is played via a $120 \mu \mathrm{~s}$ equalization.

Apart from the higher coercivity, which requires greater bias and erase currents, the $70 \mu \mathrm{~s} / 3180 \mu$ s equalization permits the same level of pre-emphasis as for CrO_{2}, thus ensuring a good compatibility. Even though the experimental tape had a thinner coating than CrO_{2}, the maximum output level is higher, print-through lower and magnetic stability in humid atmospheres better.

This considerable achievement by the Philips Research Laboratories should be the precursor to some remarkable commercial developments within the next two years.

Radar plus laser for landing system

A new laser system that will be teamed with a radar to provide increased precision in evaluating automatic landing systems for aircraft is being designed and built for NASA, the U.S. space agency, by RCA's Missile and Surface Radar Division. The combined laser-radar system will track aircraft at both low altitudes and long ranges. It will be used initially as part of an experimental runway facility at NASA's Wallops Station in Virginia.

Called the Laser Tracking System, the device will provide improved capabilities in detecting and following low flying aircraft and can also be used as an automatic radar calibration aid. The laser system will operate at optical frequencies instead of in the microwave range used by conventional tracking radars. The narrow laser beam will permit the tracking of aircraft flying at very low altitudes since it is not subject to the low altitude microwave tracking problems of distortion and interference from mountains, trees, tall buildings and other obstacles. The system will be able to track aircraft equipped with special reflectors at distances beyond 20 miles under clear atmospheric conditions. The reflectors will be mounted in small, lightweight assemblies attached to the aircraft. The laser system includes its own, separate range tracker, as well as laser angle detectors to provide signals for driving the radar aerial pedestal.

Briefly

A radio service for yachtsmen has begun a six-month trial. The Post Office's 11 coastal radio stations will broadcast any urgent business or personal messages immediately following the morning and evening weather forecasts.

Calculators for Japan. Sinclair Radionics are to export more than 80,000 "Executive" pocket calculators to Japan. The order is valued at $£ 750,000$ a remarkable feat.

Surprise!

You surprised us with the overwhelming demand for our new DM1 digital multimeter - which far exceeded even our optimistic expectation.

An Apology.

The result is that many of you who have placed orders have had to wait an unacceptably long time. For this we apologise.

All present orders will be fulfilled by the end of August and shortly after we hope to supply from stock.

To remind you that the Sinclair DM1 is worth waiting for here are its salient features.

Battery operated from a standard 9 v throw away radio battery to give a service life of months-quite independent of mains supply.

Light in weigh t-only $1 \mathrm{lb} .60 z$. with battery. A compact transistorised truly portable instrument.

Robust with its tough and practical plastic case designed to put up with rough handling.

Accurate - basic accuracy of 0.4% of reading $\pm 0.2 \%$ of range on $1 v D C$

Convenient to use with digital readout shielded within a recess to avoid the reflection of ambient light, brightness adjustment, and two clip probes

Versatile - measuring AC and DC volts, AC and DC current, and resistance in a total of 23 ranges with push button selection.

Guaranteed for twelve months.
All at a price of £49

Sinclair Radionics Ltd London Road St. Ives Hunts. Telephone (0480) 64311

The Sinclair Cambridge... no other calculator is so powerful and so compact.

Complete kit-£29.95!
 (INC.VAT)

The Cambridge - new from Sinclair

The Cambridge is a new electronic calculator from Sinclair, Europe's largest calculator manufacturer. It offers the power to handle the most complex calculations, in a compact, reliable package. No other calculator can approach the specification below at anything like the price - and by building it yourself you can save a further $£ 14$!

Truly pocket-sized

With all its calculating capability, the Cambridge still measures just $4 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11}{16}$ ". That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on ordinary U1 6 batteries and gives months of life before replacement.

Easy to assemble

All parts are supplied - all you need provide is a soldering iron. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.

The cost? Just $£ 29.95$!

The Sinclair Cambridge kit is supplied to you direct from the manufacturer - you can't get it anywhere else. Ready assembled, it costs £ 43.95 - so you're saving $£ 14$! Of course we'll be happy to supply you with one ready-assembled if you prefer - it's still far and away the best calculator value on the market.

Features of the Sinclair Cambridge * Uniquely handy package.
$4 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11}{16}{ }^{\prime \prime}$, weight $3 \frac{1}{2}$ Oz

* Standard keyboard. All you need for complex calculations.
* Clear-last entry feature.
* Fully-floating decimal point.
* Algebraic logic.
* Four operators ($\boldsymbol{+},-\mathbf{x}, \div$),
with constant on all four.
* Constant acts as last entry in a calculation.
* Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than $£ 30$.
* Calculates to 8 significant digits, with exponent range from 10^{-20} to 10^{79}.
* Clear, bright 8-digit display.
* Operates for months on four U16 batteries.
(Replacement set costs about 15 p.)

Acomplete kit!

$41 / 2$ in long $x 2$ in wide $x 11 / 16$ in deep

This valuable book - free!

If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.
But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.

How ? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations like :
Logs Tangents Currency conversion Sines Reciprocals Compound interest Cosines nth roots and many others...

Sinclair Radionics Ltd, London Road, St Ives, Hunts. Reg.no: 699483 England VAT Reg no: 213817088

Why only Sinclair can make you this offer

The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale,
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 60 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit !

Take advantage of this money-back, no-risks offer today

The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.
Price in kit form : $£ 27.23+\mathbf{£ 2 . 7 2}$ VAT. (Total : $£ \mathbf{£ 2 9 . 9 5}$)
Price fully built : $£ 39.95+£ 4.00$ VAT. (Total : $£ 43.95$) St lves, Huntingdonshire, PE17 4HJ

Please send me
\square a Sinclair Cambridge calculator kit at $£ 27 \cdot 23+£ 2 \cdot 72$ VAT (Total: $£ 29 \cdot 95$)
\square a Sinclair Cambridge calculator ready built at $£ 39.95+£ 4.00$ VAT (Total : $£ 43.95$)
*) enclose cheque for $\mathbf{£}$ \qquad made out to Sinclair Radionics Ltd, and crossed.
*Please debit my *Barclaycard/Access
account. Account number
*Delete as required.

The bigger the range, the closer you can get to the precise power ratings you need.

EEV make the widest range of ceramic power triodes for industrial r.f. heating applicationsfrom 5 kW right through to 500 kW .

Every tube is conservatively rated and realistically designed to ensure long and reliable service.

For industrial power triodes, you can depend on the makers who were in at the beginning - and have been the pacesetters ever since.

We shall be pleased to advise you on the most economical - and effective - tubes for your equipment. Write for details, or if you have a specific enquiry telephone our power triode engineers at Chelmsford.

EEV AND M-OV KNOW HOW.

Complementary m.o.s. Integrated Circuits

Properties, circuits and uses of c.m.o.s. with particular reference to hybrid a. \& d. circuits

by P. A. Johnson, M.Sc., Grad.Inst.P.

Abstract

Complementary m.o.s. logic circuits distinguish themselves from other logic families in their versatility. A standard threshold gate can operate at 10 MHz with a power consumption similar to t.t.l., or at 1 kHz with a consumption of $1 \mu \mathrm{~W}$. Low threshold versions will operate at 1.5 V with $1 / 30$ of the $10-\mathrm{V}$ dissipation and still reach 1 MHz -about the same as p-m.o.s. but with $1 / 100$ of its power. Degree of integration is limited only by silicon area, not by power, and major savings are possible in power supplies.

In a p-m.o.s. invertor the upper device presents a fixed non-linear load to the lower device which may be on or off according to the gate potential. (Circuit is shown in Fig. C on page 396 and the corresponding load lines appear in Fig. 1.) With the lower device off, supply consumption is negligible as the off impedance is typically $5000 \mathrm{M} \Omega$. With the lower device on, however, the load lines intersect at a high current point leading to a significant steady power consumption. To minimize consumption, a separate supply is often used for the load device gate. The order of power consumption in the on state is 10 mW .

Using a complementary load-Fig. 2allows considerable improvements to be gained. By connecting the n -channel source to the negative supply, the p-channel source to the positive supply, the drains together, and the gates together the c.m.o.s. logic invertor is obtained. The load lines are shown in Fig. 3. When the input is at the negative supply potential, the n-channel device is off, hence appears as $5000 \mathrm{M} \Omega$ at the drain. The p-channel device is turned on, offering a resistance of typically $1 \mathrm{k} \Omega$ at its drain. The output point is thus virtually clamped to the positive rail. Similarly, with the input at the positive rail potential, the n -channel device is hard on, and the pchannel device cut off. The power consumption in either state is of the order of $0.01 \mu \mathrm{~W}$ per gate i.e. 100,000 gates would idle off 1 mW . The fact that one device is fully on, and the other cut off leads to few tolerance problems, and permits a very wide operating temperature range.

The dynamic behaviour of the gate may be understood better by referring to Fig. 4. As the gate potential is raised above the negative rail, no supply current flows until V_{l} of the lower device is reached. As the gate potential increases the turn-on of the lower device is dominant, causing the output potential to fall, and the supply current to rise. When the output is about midway between the rails, turn-off of the upper device becomes dominant and the current
diminishes in a similar pattern until it reaches zero at the threshold V_{i} of the upper device.

For a low supply voltage, at no point are both the devices well above threshold, hence the peak current for a $5-\mathrm{V}$ supply, Fig. 4(a) is only $13 \mu \mathrm{~A}$. For a $15-\mathrm{V}$ supply on the same gate Fig. 4(b), the peak current is 1.5 mA and the range of gate potential over which the output is changing is also considerably widened. The current peak falls to zero height if the supply is set to the sum of the thresholds, but the invertor may still be used with a supply voltage only just greater than the larger threshold of the two, though the speed is very low. In this case with an intermediate gate voltage, both devices would be cut off.

As modern fabrication techniques can result in thresholds well below 2 V , standard logic families may be made running off supplies as low as 3 V , and special purpose devices will operate from voltages as low as 1.3 V . If a complementary invertor is run from a $5-\mathrm{V}$ supply, the off-device behaves as a resistance of $5000 \mathrm{M} \Omega$, hence a leakage current of one nanoamp flows. Because the on-device has a resistance of $1 \mathrm{k} \Omega$, an offset voltage of the order of $\mu \mathrm{V}$ is generated. When the output state is low, it is clamped to the negative rail, and when high it is clamped to the positive rail. Inspection of Fig. 4(a) shows that the output of a gate only changes significantly for $V_{i n}=2$ to 2.6 V , hence the noise immunity of the gate is 40% of the supply voltage.

Well-regulated power supplies are quite unnecessary, and operation from rectified mains with simple R, C smoothing is satisfactory. The chief effect of varying supply voltages is to modulate the switching speeds of the gates. The input to the basic invertor is insulated from the channels and has a resistance of $10^{12} \Omega$, with a parallel capacitance of 5 pF . For low-frequency operations, the number of inputs which may be run from one output, its "fan out", may be regarded as essentially unlimited. For high speed systems it is limited by input capaci-

Fig. 1. Load lines of a p-m.o.s. inverter (Fig. C) intersect at a high-current point leading to significant power dissipation, around 10 mW , with the lower device on. Complementary m.o.s. devices avoid this.

Fig. 2. By using both p-and n-channel devices in a complementary way the high power consumption of the p-m.o.s. inverter is arrived.

Fig. 3. Load lines of c.m.o.s. device show power dissipation to be low-says 10 nW per gate-in both on and off states.
tance to around 20. To avoid failures due to destructive breakdown of the gate insulation, possible with such high impedances, nearly all gate terminal have protection diodes which are reverse biased during normal operation, but which clamp voltage spikes during handling, installation and operation to safe values.
When the input of an invertor is changed from one state to the other, it swings through the region in which both devices are on, and for a short time current is drawn from the supply. If the output is connected to further logic elements which have input capacitance, the voltage swing requires supply or removal of charge which must pass from the supply through the first invertor. The power consumption of a gate therefore tends to be proportional to the
frequency of switching, and proportional to the load capacitance, a typical value being $1 \mu \mathrm{~W}$ at 1 kHz from 10 y .

Logic gates

A section through the complementary transistors required for its implementation is shown in Fig. 5. An inverted tub of p-type material is diffused into an n-type substrate; then diffusions of opposite polarity impurity are used to produce complementary devices.

NAND and NOR gates are simply constructed and are complementary to each other. In the case of the NOR gate, if one input is high, then one of the series transistors in the upper arm is on, hence the output is guaranteed to be low, regardless
of the other inputs. If all the inputs are low, the upper arm contains only on transistors in series, the lower arm being a set of parallel off transistors, thus ensuring that the output is high.

The arrangement of transistors may be extended to virtually any number of inputs.
In the case of the invertor, the input was connected to the gates of complementary transistors, resulting in one being on and the other off. If a complementary drive voltage is generated and used as shown in Fig. 6, the transmission gate is achieved. Opposite polarity control signals are applied to the gates, and when the one transistor is on the other is also on. The input and output are connected by two parallel on devices equivalent to about $1 \mathrm{k} \Omega$. If the input voltage moves towards the positive rail, the upper

Introducing m.o.s.

The first really important active semiconductor device was the junction bipolar transistor. When the techniques for making discrete transistors was mastered, work was extended to fabricating many transistors on one semiconductor chip. The fruits of this work were firstly diode-transistor logic and subsequently transistor-transistor logic. These families suffer from three of the basic defects of the bipolar transistor.

Firstly, the finite current gain of the transistors requires a steady current consumption even when no information is being processed. Secondly, the maximum useful frequency f_{T} at which the transistor current gain (common emitter) is unity diminishes rapidly at low currents. Individual logic gates must operate at 2 mA to follow rapid input transitions. Dissipation is reduced by lowering the supply voltage as much is practicable, but at 5 V , the value often adopted, dissipation is still significant, and complex logic functions executed using many gates on one chip often become dissipation limited. Another defect is that under saturated conditions, charge is stored in the base region of the transistors in excess of the normal value, and switch off is delayed, significantly reducing operation speed, unless special provisions such as the use of Schottky diodes are made.
The junction f.e.t. has the advantages over bipolar transistors of showing no storage effects, being a majority carrier device, and has essentially infinite current gain, giving potentially very low power consumption. It requires negligible power to drive it as long as the gate junction is reverse biased. The main failing of the junction f.e.t. is the gate conduction with forward bias. A logic element may not therefore be easily constructed by using direct coupling because the gate electrode is outside of the range of the source and drain potentials.

Insulated-gate f.e.ts work by the modulation of a conducting channel by means of an insulated gate terminal (Fig. A). Such transistors exist both as depletion types which like j.f.e.ts conduct with zero gate-source bias, requiring reverse bias to cut them off, and also as enhancement devices which are cut off at zero bias, and with low forward bias until a threshold voltage V_{i} is reached, beyond which current flows.

Gate and drain characteristics for a typical n-channel enhancement insulated gate f.e.t. is shown in Fig. 4. With zero bias the n^{+}source is electrically isolated from the n^{+} drain by p-type material between. When a voltage greater than V_{t} is applied to the gate, an inversion layer forms under the gate which behaves as n-type material and provides a conducting path between source and drain. An increase in the forward gate bias extends the inversion layer farther into the p-type substrate, providing a larger crosssection of channel for increased current flow. The typical $Z_{\text {in }}$ is $10^{12} \mathrm{ohms}$.
As such devices were first constructed using a metal gate electrode insulated by a layer of silicon oxide, they have unfortunately come to be known as m.o.s.f.e.t.s, (from Metal Oxide Silicon Field Effect Transistors). Neither the metal gate which now is often replaced by conducting silicon, nor the silicon oxide insulator, which is sometimes replaced by silicon nitride, is an essential part of an i.g.f.e.t. If such are equipped with suitable resistive drain loads, and run from a single d.c. supply greater than V_{t} they may be directly coupled as shown in Fig. B to perform logic or linear functions.

The simplicity arises from the drain voltage swing being in the same region as the swing required on the gate, a feature not offered by j.f.e.ts. The circuits still suffer from the disadvantage of requiring continuous current consumption in one stage to hold the following one off. The basis of a high proportion of m.o.s. circuits is similar to Fig. B, using p-channel transistors throughout, and using active loads made of further i.g.f.e.ts, rather than resistors (Fig. C).

The final stage of evolution of a new family of circuits exploits the use of complementary devices. The polarity of the i.g.f.e.t. may be reversed by using p^{+}source and drain, and an n-type of substrate. The resulting p -channel device requires a negative drain and gate potential.

Fig. A. Insulated-gate (m.o.s.) f.e.ts that work by modulation of a conducting channel can be either a depletion type-conducting with zero bias-or an enhancement typecut off with zero bias. Illustration shows an n-channel enhancement device.

Fig. B. Linear or logical functions can be performed by this simple p-channel i.g.f.e.t. circuit, which can be directly-coupled provided the supply is greater than the threshold voltage.

Fig. C. Many m.o.s. circuits have the resistive loads replaced by transistors, as in this p-m.o.s. inverter.
transistor turns on harder because its $V_{G S}$ increases, büt the lower one increases in resistance because its $V_{G S}$ decreases. The net effect is to have a low resistance roughly independent of the input voltage. If the control input is raised to the positive rail, both transistors are cut off, behaving as a very high resistance ($1000 \mathrm{M} \Omega$) in either direction.

This device may be used with a capacitor for dynamic storage within logic elements, or in analogue multiplexing circuits. The invertor may be used as a linear amplifier as opposed to a logic element, though it loses its low standby power consumption. At supplies slightly in excess of the sum of the n- and p-channel transistor thresholds, the voltage gain is very high since the input voltage change required to swing from one device cut off to the opposite one cut off is small, but the output swings by the supply voltage. Output impedance is also very high, hence operation in this area is limited to low frequencies.

The sharpness of the transfer characteristic is evident from Fig. 4(a). An increase of supply voltage from 5 to 15 V increases the change of input necessary to change from one transistor threshold point to the other as shown in Fig. 4(a). The gain is therefore significantly lower, but the output impedance is very much lower.
The invertor may be easily biased for linear operation with one resistor, Fig. 7. The use of invertors and gates as linear amplifiers is useful for relaxation oscillators and for low voltage systems such as electronic watches which require crystal oscillators. RCA have introduced a linear circuit element like this, but it is limited in usefulness for the reasons given.

One effect which must be taken into account in some linear and switching circuits is substrate degeneration. The basic characteristics of both types of i.g.f.e.t. are measured with a connection between source and substrate. In most digital gates the on devices have this connection effectively made, If the substrate of an n-channel i.g.f.e.t. is biased one volt negative with respect to the source, the gate threshold increases by nearly a volt. The effect is much less pronounced in p-channel devices due to the differences in material constants. It may become particularly serious for an n channel device with a normal threshold of, say, +1 V . If it is desired to bias the source at +4 V , with the substrate at 0 V , the threshold voltage on the gate would be approximately +8 V . The substrate also may interfere with circuit operation by clipping when the drain-substrate isolating junction becomes forward biased. The choice of substrate bias potential must be made according to these two conflicting requirements.

Applications for c.m.o.s. elements

The chief characteristic of this family of circuits which distinguishes it from nearly all other logic families is its versatility. It can be run up to more than 10 MHz , with t ..t. .

Fig. 4. For a low supply voltage at no point are both devices well above threshold, so peak current is only $13 \mu A(a)$. But for higher supply voltages peak current can be much higher (b).

Fig. 5. In making a c.m.o.s. device p-type material is diffused into an n-type substrate, followed by diffusions of the opposite polarity.

Fig. 6. In the transmission gate an inverter must be used for the drive to one of the devices to get both devices on.

Fig. 7. Inverter circuit is biased for linear operation by a single resistor.

levels of power consumption, or at 1 kHz with less than $0.1 \mu \mathrm{~W}$. It can run from supply rails as. low as 1.3 V or as high as 18 V , with noise immunity up to 7 V . In practical systems, even though the clock frequency may be high, the power requirement is often low enough to permit major savings on power supplies leading to a lower total cost system. Degree of integration is limited only by silicon area and yield, not by power.

A comparison of powers for various logic families is shown in Fig. 8. The standard threshold gate will reach 10 MHz for a similar power consumption as t.t.1., and will idle at less than $1 \mu \mathrm{~W}$. The low threshold versions will run at 1.5 V with $1 / 30$ the dissipation of standard threshold at 10 V , and still reach 1 MHz , about the same as p-m.o.s., but with $1 / 100$ of its power.

Fig. 8. For c.m.o.s. high speed means high power and low power means low speed.

The range of power supplies which are suitable covers 1.3 to 18 V . Standard families cover 3 to 15 V operation, thus permitting mixed analogue-digital circuits without additional supplies. Battery operation is simplicity itself from 6 or $12-\mathrm{V}$ lead-acid cells or dry batteries.

The first commercial family of logic elements available used devices with fairly high thresholds-around 2.5 V . This led to high impedance devices, and operation only from voltages above 5 V . The low threshold "A" versions followed giving thresholds roughly half as high being around 1.2 V and giving lower impedances, hence faster switching. The " A " low threshold versions first announced by RCA replaced the standard family at the same price, and offered propagation delays as indicated in the table reduced by a factor of about two to 25 ns . Toggle rates for bistables were roughly doubled

More recently, the commercial availability of a new version from Harris Semiconductor has been announced. It incorporates dielectric isolation which gives propagation delays of 10 ns and toggle rates of up to 18 MHz typical. Further process improvements are promised from Harris which will give at least a five-fold improvement in speed

In the USA a $£ 1$ million contract has been placed for a c.m.o.s. logic system to provide a car interlock system which prevents the engine being started until all occupants have fastened their seat belts. The selection of c.m.o.s. is obviously on grounds of negligible power consumption enabling permanent connection to the battery, tolerance to battery voltage which may exceed 7 to 14 V range, and ambient temperature tolerance which is particularly good.

The simple interfacing of c.m.o.s. together with its good supply range, power consumption, and noise immunity combines to outperform all other logic families with very few exceptions.

One class of application for c.m.o.s. has been that of remote data systems requiring high reliability and low consumption. One such system achieved a 12 -bit code from an analogue input at 100 Hz conversion rate for $1 \mathrm{~mA}, 12 \mathrm{~V}$. At 5 kHz conversion rate the power consumption rose to $20 \mathrm{~mA}, 12 \mathrm{~V}$. This is still an order of magnitude below that of a system constructed using low * power t.t.l.

Another application which is reaching the consumer sector is the electronic wristwatch. This application demonstrates the many virtues of c.m.o.s. circuitry. A typical system is shown in Fig. 9. An input invertor functions as a linear amplifier with a feedback bias resistor providing negative feedback, and a crystal positive feedback. Crystal frequency is $65,536 \mathrm{~Hz}$. The output waveform is squared by a further invertor and then passes into a chain of bistable elements each dividing by two. A consequence of the proportionality between frequency on supply current is that a long binary chain draws less power than twice that of the first element. The output circuit uses combinational logic to generate shortphased drive pulses for a miniature motor driving the watch hands.

Fig. 9. Electronic watch system features both linear and switching operution of c.m.o.s. This circuit will operate from a 1.3 V cell at $6 \mu \mathrm{~W}$.

Fig. 10. Technique of digital-to-analogue conversion in which a resistive ladder is switched to generate a linear signal from a digital code.

Table: speed of c.m.o.s. families

Family	Prop. delay (ns)	Toggle freq (MHz)
Standard $100 / 50$ $2 / 5$ Low threshold "A" $35 / 25$ $4 / 10$ Improved isolation 10 $8 / 18$		

The whole circuit will run from 1.3 or 1:5-V batteries and consumes a total power of 6 or $8 \mu \mathrm{~W}$ respectively. Operation for a year off one tiny inexpensive single-cell battery is assured. Frequency-generation elements are integrated with the exception of the quartz crystal and the trimming capacitor. The performance achieved by the integrated circuit itself led Motorola to set up to design and manufacture crystals and motors to ensure that suitable complete sets of parts were available. Extensions of the design to direct digital readout are relatively trivial.

An application which also exploits the low power consumption is that of the pocket digital calculator. While three logic families are used for the application, c.m.o.s. gives particularly long battery life, especially when using liquid crystal readouts which also have very low power consumption. The main limitation to large logic systems is that the p-tub in the substrate needed for n channel devices uses a larger silicon area than p-channel m.o.s. systems. In some systems the higher power of p -m.o.s. is acceptable but the extra silicon area of c.m.o.s. is not.

The wide range of supply voltages, from special devices working at 1.3 V to standard families working at any supply between 3

Fig. 11. This quad bilateral switch enables switches to be fully floating.
and 15 V simplifies design of hybrid digitallinear circuits. Choice of $\pm 6 \mathrm{~V}$ rails for an analogue system using operational amplifiër permits interfacing by direct connection with c.m.o.s. gates operating from the same supply. Systems for digital to analogue conversion may be made by exploiting the zero offset properties of f.e.ts, and, using a stable precision voltage supply for the circuit, a resistive ladder may be switched to generate a linear signal corresponding to the digital code.

The general scheme is shown in Fig. 10. The resistors would be around $50 \mathrm{k} \Omega$ to
minimize switch resistance errors. Costs of such systems are very low since quad-gate packs are about 50p each. Systems requiring fully floating switches may be executed using the 4016 quad bilateral switch shown in Fig. 11. These are able to handle signals swinging over a range of up to 15 V , and offer on-resistances of 300Ω typically, with on-off ratios of 65 dB at 10 kHz .

The state-of-the-art of commercial devices using both linear and logic sections is indicated by the RCA CD4046 phaselocked loop circuit on one chip in a single 16 -lead package. The functions incorporated include an input amplifier, phase comparator, and voltage-controlled oscillator, and operation extends to 500 kHz with typical power consumptions of $200 \mu \mathrm{~W}$ at 10 kHz .

Circuits of the relaxation oscillator class also exist for astable and monostable multivibrators. These i.cs provide solutions to circuit problems at much lower prices than discrete designs, and are expected to become popular on the strength of this alone.

Circuits using c.m.o.s. elements

Straightforward logic systems are not considered here as logic design is not tied to a particular family unless the logic elements are peculiar to it. In the case of c.m.o.s. a large set of standard NAND, NOR, EXOR, bistable and shift register elements already exist and almost any logic design may be implemented with less difficulty than usual. The explosive growth of logic systems when 74 series became available at low prices led to the system being adopted as standard by many manufacturers, and consequently parts of a 74 series systems may be purchased from many different makers. This situation diminishes supply problems and leads to competitive pricing.
This situation is being repeated with 4000 series c.m.o.s. logic. Devices are now available from RCA, Motorola, and Solidev with identical functions, packages, pin connections, and similar specifications. It is expected that within 12 months, at least 20 manufacturers will be supplying c.m.o.s. devices. Another series, 74C from National Semiconductor, offering pin and functional compatibility with 74 -series t.t.l., exists, but interfacing capability from 74 C to 74 t.t.l. is limited, and 74 C has not attracted the support from other makers comparable with 4000 A series.

A circuit which exploits many of the properties of the c.m.o.s. invertor both as a logic, and a linear element is the multivibrator circuit shown in Fig. 12. Three invertors each comprising of two i.g.f.e.ts are cascaded. In the logic mode they invert the logic signal and in the linear mode they give a voltage gain of about -10 . In the absence of the capacitor the $68-\mathrm{k} \Omega$ resistor R_{1} provides negative d.c. feedback which results in all inputs and outputs settling at about half the supply. The feedback resistor should be low compared with the $r_{\text {in }}$ of $10^{12} \mathrm{ohms}$, and may be $100 \mathrm{M} \Omega$ if needed.

The capacitor connects the output of the second invertor to the input of the first, thereby providing broadband positive feedback. The result is that when the gates

Fig. 12. Multivibrator circuit with inverters operating in both linear and logic modes.

Fig. 13. Voltage-controlled adaptation of Fig. 12. Parts cost $£ 1.00$.

approach an equilibrium under the influence of the d.c. feedback the system switches to hard off when the loop gain round the first two invertors reaches unity. The feedback resistor then causes a current from point A to point D into the capacitor to move back toward the equilibrium. This results in a further regenerative switching edge in the reverse direction.

The circuit may be built with only two invertors but the timing resistor must be moved to point C from point A, and the charging current falls rapidly as the switching point approaches giving jitter. The values of components stated gave a frequency of 14 kHz with switching edges of approximately 25 ns using a high threshold CD4007E device. Current consumption of the circuit is not as low as that of pure c.m.o.s. logic because the first gate spends about 10% of its time in the linear mode, with increasing supply current until the switching point is reached. Consumption of tens of $\mu \mathrm{A}$ would be normal, though fairly strongly dependent on the supply voltage. Frequency is substantially independent of the supply voltage and temperature.

In the multivibrator circuit, the charging current is determined by the supply voltage and the timing resistor. The circuit may be simply adapted to permit control of the frequency as shown in Fig. 13. The half cycle when point A is positive is timed by the resistor in the usual way. After switching however, the series diode D_{1} prevents reverse current, hence the recovery of the capacitor voltage is provided by the additional transistor current source through D_{2}. The additional diode D_{3} draws the source current and cuts off D_{2} during the fixed half cycle ($1 \mu \mathrm{~s}$). The current source is arranged to give an logarithmic input characteristic
covering a frequency range of 5.5 Hz to 500 kHz in five decades. The parts for the circuit costs under $£ 1$ in small quantities, making the circuit useful wherever a wide range v.c.o. is needed.

The switching properties of c.m.o.s. gates are exploited in the example of Fig. 14. A three invertor multivibrator provides clock pulses for an eight-stage Johnson or "twisted ring" counter. The outputs each register stages, which are either $+V_{s}$ or zero through low switching resistances, are connected to a set of resistors. The values are calculated so that the progression of net currents to the output point corresponds to a sine wave function. The oscillogram shows a 7 Vpk -pk stepped approximation to a sinewave at 40 Hz .

Addition of an integration capacitor to the output shows how good a function may be obtained. It can be shown that the best 16-segment approximation of the sine function is free of all harmonics below the 17 th one. Total harmonic content of better than 0.01% may easily be achieved if the function amplitudes are correct, and the output is passed through a simple low-pass filter. Choice of a sinewave output was arbitrary; many periodic functions may be simulated in this way, with very low unwanted harmonic content.
The versatility of separate source and drain connections is exploited in this fre-quency-to-voltage convertor, Fig. 15. When the invertor input is high, the output is low, and the p-channel f.e.t. discharges the capacitor C fully. When the input is low, the upper f.e.t. is turned off, and the lower one turned on. The drain passes a current until the operator has changed to $+V_{s}$. The charge, equal to $C V_{s}$ passes through the source and is extracted by the summing am-

Oscillogram showing a 7-V pk-pk approximation to a $40-\mathrm{Hz}$ sine wave. An harmonic distortion of 0.01% is readily achieved.

Fig. 14. Function generator using switching approach can provide harmonic content of sine wave of $<0.01 \%$.
plifier output going negative and passing the charge through R_{f}. As a fixed quantum of charge is passed every input cycle, the current in R_{f}, hence the output voltage is proportional to the input frequency. The circuit usually is fitted with an integration capacitor to reduce the output voltage ripple.
The circuit may of course be implemented using discrete n - and p-channel enhancement i.g.f.e.ts, but the cost of these exceeds the c.m.o.s. package, and provision of an invertor to drive the gates might still be needed. The circuit is capable of very precise operation because the capacitor is switched between precisely determined volìages through the zero offset voltage ohmic f.e.ts. Charge passed must pass into the output circuit unless substrate leakage is significant. The main error is due to incomplete charge and discharge, but such errors may be held below 0.1% of f.s.d.

Future prospects

Prospects for c.m.o.s. integrated circuits are very good. The speed of advance of technology is such that by the time engineers

Fig. 15. This precision frequency-to-voltage converter is cheaper using c.m.o.s. package than with discrete i.g.f.e.ts.
start using new devices or techniques, the break-even cost point has already been passed. The publicity for the last two years on c.m.o.s., and the entry of more of the major manufacturers, is now giving a fast rising application of c.m.o.s. circuits and systems.

Taking pure logic systems, and making fair allowance for the cost of providing power supplies, the total system cost including design and development is less using c.m.o.s. in spite of the $2: 1$ cost advantage of simple gate packages in favour of t.t.I.

Growth of c.m.o.s. in some special areas is likely to be even faster. This is because the market is new rather than a replacement one, and includes calculator and watch applications.

The other major area is that of the hybrid logic/linear application area where the combination of logic with some linear sections, such as a. to d. conversion, waveform synthesis, and frequency-to-voltage conversion. The growth rate is likely to be less than the other applications but eventual penetration no less great.
Current price levels are around 50p for gate packages (NAND or NOR) in 14-pin d.i.l. packages covering -40 to $+85^{\circ} \mathrm{C}$, and guaranteed to function over 3 to 15 V supply. Complex functions are a few pounds, but are usually economic solutions because of the power of the function executed. System costs using i.cs with a low level of integration are already becoming more dependent on connector and printed circuit cost, so that the high level of integration saves money.
In two years time when we are using our $£ 25$ c.m.o.s. pocket calculators, and check the time by a $£ 15$ quartz crystal c.m.o.s. watches, we may wonder why t.t.1. ever sold so well when c.m.o.s. logic was available.

H.F. Predictions for August

The charts are based on an ionospheric index value of 30 giving HPFs and FOTs about 2 MHz lower than those for August 1972 when the index was 60 . Duration and intensity of ionospheric and magnetic disturbances have decreased fairly rapidly since reaching a peak during April/May last. Coupled with the present seasonal trend toward higher frequencies daytime working should show a noticeable improvement.

Most likely disturbed periods are from 5th to 12 th and an odd day or so around the 21 st.

Electronic Dice

Three circuits for electronic dice using integrated circuits and a seven-segment bar or numeric display

by G.J. Naaijer

This article deals with electronic solutions for that class of dice that have six sides with numerical information. Of the many dice projects already described we recall briefly four essential parts: (1) a pushbutton operated device which generates a large random number of pulses during the "throw", (2) a divide-by-six counter into which these pulses are fed, (3) a display indicating the state of the counter and therefore the result of the throw after the counter has come to rest, (4) decoding and lamp-control circuitry between counter and display, the most important differences between the various designs concerning in particular this latter part.

A drawback of the dice described hitherto is that, especially if a well-finished product is desired, their practical realisation is time and effort consuming because the total number of electronic components and indicating devices is relatively large.

Retaining, where advantageous, the interesting lines of thought exposed in previous projects and doing some original thinking, we found that, when fully exploiting the possibilities offered by t.t.l. circuits and t.t.l.-compatible devices, a very

Wireless World, June 1970. p. 268.
simple structure is possible. Apart from a single supply (5 V), an "on/off" switch, and a "throw" push-button, only three dual-inline packages are required, including the display. Of the examples to be described only one uses a few additional discrete components.

The low current consumption which, in the first two examples is between 50 and 90 mA , depending on the state of the counter, makes the use of four small (size R6 or AA) rechargeable alkaline or nickelcadmium cells an attractive proposition. The t.t.l. circuits used are relatively cheap and easy to obtain because they are very common types, and no special circuit is required for initial setting of the counter. A small seven-segment display indicator, the 3015 F Minitron is used, which is cheap and t.t.l.-compatible, and which gives a brilliant display.

The first example of a simple electronic dice will be described in some detail to permit sufficient understanding of the components used, the principles of operation and the economics of these designs. The majority of design considerations apply also to the other examples which consequently will be treated only briefly; in particular, the pulse generating principle is the same in all examples.

Fig. 1. The states adopted by the decade counter when forced reset is applied. The pattern produced by the 3015 F in the "classical" pattern is shown, together with the relevant decoder output states.

Dice with "classical" pattern

The logic employed here is easily understood from Fig. 1, the upper half of which shows the six different states a 4 -flip-flop counter is made to adopt successively

Fig.2. The layout of the circuit, seen from the component side.

(a)

(b)

Fig.3. (a) Internal circuit of the 7490 decade counter. The "throw" switch may be earthed at both contacts. (b) Circuit of the 7405 hex. inverter. (c) The 3015F Minitron display.
during a throw, the lower half indicating the six corresponding states obtained at the outputs of the decoding/lamp-drive circuitry. A segment will light up when the output controlling it is in the " 0 "-state; one will observe that output \bar{A} for instance, controls the central segment of the display. In this way the six different bar patterns shown in the middle of Fig. 1 will be obtained

Note that the four functions \bar{A} to D^{1} can also be used to control dots, for example sub-miniature low-current incandescent lamps or even light-emitting diodes, which at 1.7 V forward voltage drop and a current of some 8 mA (limited by a series resistance of suitable value) give sufficient luminous output. In that case the dot pattern of the "classical" dice is obtained and the final display, although generated by entirely different logic, is the same as the one obtained in reference 1.

Fig. 2 shows the three d.i.l.-packages used, together with a routeing scheme for the printed circuit layout necessitating only two jumpers. The Minitron 3015F has outside dimensions $22 \mathrm{~mm} \times 11.5 \mathrm{~mm}$ and there are 16 pins in d.i.l. configuration; each segment is a filament 5 mm long (the eighth filament, partially visible only, provides a decimal point). At its nominal voltage of 5 V , compatible with t.t.l. levels, each filament draws only 8 mA and lifeexpectancy is stated to exceed 50,000 hours under these conditions.
The SN7490N is a very economical and flexible high-speed t.t.l. decade counter, the four outputs of which have currentsinking capabilities of 20 mA ; in this application we found that the counter did not exhibit preferential positions if the A output was loaded by one display segment even though the cold resistance is lower than the value calculated from $5 \mathrm{~V}, 8 \mathrm{~mA}$ (inrush-current effect).

The hex. inverter SN7405 is even cheaper, and its open-collector feature makes it very versatile because wired-OR configurations are possible. Each output has again a current-sinking capability of 20 mA and it can readily, without danger of damage, drive two 8 mA -segments simultaneously; because of the buffering action the counter operation will not be upset by the inrush-currents.
Fig. 3, showing the inside of the d.i.l.packages, will be used to explain the principle of operation. The die-projects described so far have used an electronic pulse generator in combination with a pushbutton in order to feed a large random number of pulses into the counter during a throw. Most mechanical contacts, however, are never bounce- and noise-free, especially when cheap or dirty or self-fabricated. Therefore the electronic pulse geherator is entirely superfluous as the push-button contact can easily be made to generate by itself a large random number of negativegoing pulses. As the counter input responds to negative current sinking, a pull-up resistor tied to the positive supply is not necessary. At rest the counter input may be at ground (instead of open circuit) so that releasing the push-button creates another

N	0	1	2	3	4	9	
A	0	1	0	1	0	1	
B	0	0	1	1	0	0	
C	0	0	0	0	1	0	
D	0	0	0	0	0	1	
		1	1	1	1	-	-

(a)

Fig.4. (a) Logic states and patterns of the pure binary die. (b) Decoding and drive circuit.
train of pulses, but in its stationary position it should of course make a vibration-proof contact. Incidentally, the small five-pence switch we bought especially for the purpose gave such a clean, almost noise-free signal that it had to be discarded!

The decade counter, with " 0 "-set and " 9 "-set inputs at ground will go through $0,1,2 \ldots .8,9,0,1$ etc. during counting. In our case however, outputs A and C are fed back to the " 9 "-set inputs; the " 5 " will now be an astable state because A and C will then be high simultaneously and therefore force the counter immediately into the " 9 "-state. The division by six shown in Fig. 5 simplifies the decoding circuitry required. No additional circuitry is necessary to prevent incidental operation in one of the ten forbidden states as this counter will automatically return to one of its six regular states.

The decode-drive circuitry is seen to require six open-collector inverters only: one for each of the functions \bar{A} and \bar{C}, two for $D^{\prime}(=b)$ in order to provide the necessary buffer action between b and the two segments to be controlled simultaneously , and two which, with their collectors tied together, produce the function $\overline{B+C}$. It is this latter wired-OR configuration that excludes the use of t.t.l.-inverters with active pull-up such as the SN7404. None of the segments is driven directly by a counter output. The inputs to the Minitron are self-explanatory.

Die with pure binary pattern

The 7 -segment configuration of a numerical indicator such as the Minitron is admirably

(b)

Fig.5. (a) Logic states and display of the "Arabic" version, using " 0 " as " 6 ". (b) Decoder connections. (c) Patterns of improved version. (d) Method of converting " 0 " into " 6 ".
suited to a die display based on a 4-2-1 weighted function. The counter operation, together with the decode/drive logic, requiring again only two d.i.l.-devices, is represented in Fig. 4 (a). Note that the corresponding dot pattern, although obtained by completely different logical operations, is analogous to the one proposed in reference 2. It is also interesting to note that all possible correspondences (they amount to a total of six) between $A,(B+D)$ and $(B+C)$ on the one hand and the groups of one, two and four bars on the other hand produce logically correct solutions, but only two of them (A controlling the central bar) give electronically correct solutions: a counter output cannot drive directly more than one filament.

The realisation of the decode/drive logic by means of an open-collector hex. inverter is show in Fig. 4 (b). The logic functions obtained from B, C and D use wired-OR configurations and exclude therefore the use of t.t.l.-inverters with active pull-up.

Dice displaying Arabic numerals

Here we have a display method the Minitron is really intended for, as shown by Fig. 5 (a). The complicated conversion logic required poses no problem: the b.c.d./7-segment decoder SN7447 will do the job and can be directly connected between the four counter outputs and the seven Minitron inputs. The open-collector outputs of the decoder can again sink 20 mA each, so that one output may eventually control two 8 mA segments simultaneously. The test-input permits checking of the filaments by turning
them all on, while $R B_{\text {in }}$ and $R B_{\text {out }}$ are ripple-blanking controls (all three signals are normally held high or open). Here the counter should successively count through $0,1,2,3,4,5,0,1$ etc. This mode of operation is obtained if outputs B and C are connected to the " 0 "-set inputs, the " 9 "set inputs being returned to ground; the " 6 " will now be astable because B and C will then be high simultaneously and therefore force the counter immediately into the " 0 "-state.

Although this die is very simple it has the obvious drawback that the " 0 " has to be interpreted as " 6 ". Fortunately it is quite a simple matter to make a " 6 " appear instead of a " 0 " as indicated in Fig. 5 (c).

Fig. 5 (d) shows a way of realising this trick. The b-output from the SN7447 is connected to the b-segment via a small, cheap, epoxy-encapsulated $n-p-n$ transistor which at low emitter voltage is only conductive if at least one of the outputs A, B or C is positive (resistor-transistor logic). When and only when the counter is in the " 0 "-state the b-segment cannot be turned on by a low decoder b-output. Furthermore the diode with low forward voltage drop connected between the d and g-outputs (instead of a short-circuit) ensures that for " 6 " the g-segment is turned on by d (which then controls two segments simultaneously) and also prevents the d-segment from being turned on by the g-output in the case of " 4 ". This wired-OR configuration controlling the g-segment is again only possible because the decoder outputs, especially g, have no active pull-up.

World of Amateur Radio

Broadcasts from PAOAA

Listening one Friday evening on 3.6 MHz recently we came across the broadcasts from the Dutch society's headquarters station PAOAA. This station makes official transmissions each Friday evening with an ambitious schedule of news bulletins in English and Dutch, Morse practice sessions and (on the last Friday in each month) the VERON Morse code proficiency speed runs. The transmissions go out simultaneously on $3600 \mathrm{kHz}, \quad 14100 \mathrm{kHz}$ and 145.14 MHz , starting at 1900 G.M.T. and also include bulletins transmitted in r.t.t.y. (radioteleprinting) at 2030 G.M.T. at the 45 -baud rate. The code proficiency sessions begin at 21.30 G.M.T. The English news bulletins include mainly DX news.

More evidence on supermodes

The summer propagation conditions this year have generally reflected the falling slope of the sunspot cycle with appreciably shorter "openings" on 21 and 28 MHz . Nevertheless the passage of the larger sunspots still tends to result in an initial few days of enhanced conditions quickly followed by disturbed conditions of high attenuation. A noteworthy feature this year has been the prevalence of Sporadic E conditions; although this is often thought of as affecting mainly the 70 MHz v.h.f. band (and indeed has resulted in the reception of the ZB2VHF beacon on Gibraltar in the U.K.) it means also that 21 and 28 MHz have been often open for short-skip contacts into Europe.

Interest continues in the most unusual propagation conditions that existed during the summer of 1972 when for some unexplained reason the general level of sunspot activity was much higher than had been predicted. For example an extremely detailed account of the reception at Mzuzu, in the north of Malawi, of the 28 MHz beacon transmitter, GB3SX, which is located at Crowborough, Sussex has just been published in Radio Communication by A. M. Pomfret, G3LZZ, and A. Taylor, G3DME, covering the period May to August 1972. This shows that this transequatorial path was open for many more hours than expected, even when taking into account the real rather than the predicted level of sunspot activity;,certainly significantly longer and more often than can be explained by conventional multihop theory. It would seem likely that some at least of this
reception depended on supermode propagation without intermediate ground reflection, over the distance of 4800 miles. In the four months the GB3SX signals were heard during periods extending to $18 \frac{1}{2}$ hours out of the 24 hours.

One important factor, not mentioned in the report, was possibly the high site at Mzuzu, 4300 ft a.s.l. Some years ago a paper in Radio Science (Vol. 1, 1966, pp. 751-760) showed the advantages of sites up to 1000 ft a.s.l. when compared with those at around 200 ft a.s.1. in terms of the time during which longdistance paths stayed open. It is interesting to note that the advantages of high sites for the reception of low-angle supermode signals appears to exist regardless of the height of the aerial above ground: at Mzuzu this was only 33 ft .

Amateur radio-teleprinting

The British Amateur Radio Teleprinting Group now has a paid-up membership of just over 300 enthusiasts, of whom about 190 hold British amateur callsigns. At the present time r.t.t.y. operation in the U.K. is predominantly at the 45-baud rate but quite a number of 50 -baud machines are also in use. Most h.f. operation in this mode uses frequency shift keying with a carrier shift of either 850 Hz or 170 Hz , while most v.h.f. operation uses audio f.s.k. with 2125 Hz tone for "mark" and 2975 Hz for "space". One of the local r.t.t.y. nets includes a number of amateurs in Northern Ireland and Eire around 3590 kHz on Sunday mornings from 1000 G.M.T.

50 years of amateur licensing in New Zealand

Congratulations to the New Zealand Association of Radio Transmitters for its imaginative and interesting "Amateur Radio Regulation Issue" of its journal Break-In marking 50 years of official amateur licences in New Zealand. Not only are many of the happenings since 1923 reproduced fascimile from the original issues, but a number of the pioneers, including Len Spackman, ZL1AC and Tom Clarkson, ZL2AZ and others, have provided their reminiscences of the progression from the famous Ford Model T spark coils and the days of the Radiotron "UV" and Mullard "ORA" valves up to the present transistor era. They recall, for example, the American amateur station 6XAD on Catalina Island
off Los Angeles in the early 'twenties using two imported English valves with fixed silica envelopes and with the insides replaced by Western Electric 250 -watt electrodes: "Those two valves, immersed in an oil bath, cooled by a copper coil with running water and hopelessly overloaded put down a good signal in New Zealand and Australia". Len Spackman adds rather wistfully: "I am thankful that I was able to take a little part in the heyday of amateur radio when amateurs led the world in radio technology . . . they developed their own circuits and techniques and did not try to ape commercial equipment."

In brief

Professor Sir Martin Ryle, F.R.S., G3CY, The Astronomer Royal, has been made an honorary member of the R.S.G.B., the highest honour the Society can bestow on an individual. Sir Martin joined the Society in 1936. . . . During the first seven months of Oscar 6 at least 1100 different amateurs in 59 countries have put transmissions through the satellite, about half of them in the United States. One American amateur, K7BBO, has made over 3300 contacts through Oscar 6; another, Fred Merry, W2GN, has worked through Oscar 6 from a mobile station using only whip aerials. . . . The French Mirabel and Anjou balloon-carried repeaters have been proving very successful and contacts have included England to Austria (G3LQR to OE3XUA). . . . The R.S.G.B. Liaison Committe has warned amateurs not to condone or co-operate in the operation of illegal broadcasting stations and also to reduce the incidence of bad language and deliberate interference, noting that loss of respect for amateur operation by national administrations could result in loss of frequencies at the next I.T.U. conference.

Following investigations a club station entry in the 1973 Affiliated Society Contest has been disqualified and the undisclosed Club barred from entering any R.S.G.B. contest for a year. The event was won by the Cambridge University Wireless Society. . . The past season's highlights on 1.8 MHz have included the completion of "worked all continents" by 12 more stations. ... Detailed reports on the reception of the GB3LDN 23 cm beacon station located at Greenwich would be welcomed by B. W. Godwin, G8AOL, 20 Pembury Road, Bexleyheath, Kent - operation of the station is using up significant numbers of TD03-10 amplifier valves and donations of any spare valves of this type would help keep the beacon running.
R.S.G.B. National Mobile Rally is at Woburn Abbey on Sunday, August 5. ... A consortium of Midlands amateur societies is participating in the "Town and Country Festival" on August 25-27 at the Royal Showground, Stoneleigh, Kenilworth with stations (GB3TCF) on $1.8,14$ and 144 MHz (details: Ian Gobbold, G3RPJ; 184 Loxley Road, Stratford-onAvon).

PAT HAWKER, G3VA.

The seven-year search.

Since 1966, our design engineers have been relentless in their pursuit of a worthy successor to the best cartridge the world had ever heard: the Shure V-15 Type II Improved. Now after seven years of exhaustive laboratory work, they have prevailed. A new cartridge is ready for the connoisseur's stereo system. We call it the Shure V-15 Type III Super-Track"Plus." You'll call it an extraordinary listening experience.

The Type ill was designed, of course, for home stereo systems, not for laboratory exercises. The net result of our engineers' labors are these: (1) higher trackability than ever, at light tracking forces ($3 / 4-11 / 4 \mathrm{grams}$); (2) an astonishingly flat frequency response with no noticeable emphasis or de-emphasis at any frequency; and (3) a significantly extended dynamic range - beyond that of our V-15 Type II Improved. And all without loss in output level.

Paradoxically, the sound from the V-15 Type III is due in large part to an absence of a sound of its own. Its sound is so neutral and coloration-free that your finest recordings can be reproduced precisely as they were recorded, without peaks, frequency boosts and roll-offs.

Among its most notable design achievements are an entirely new laminated core structure, and an ingenious new stylus assembly that reduces the effective stylus mass of this critical sub-system by 25%. And, since Shure engineers have long known that isolated improvements in individual design parameters don't necessarily produce significant changes in the sound, these improvements were brought into perfect equilibrium with each other; ergo, each performance factor enhances every other performance factor so that the total audio effect is greater than the sum of its individual performance factors. (To science, this phenomenon is known as a synergistic reaction; therefore, we call the V-15 Type Ill The Synergistic Cartridge.)

The Shure V-15 Type III Cartridge is available now. Hear it soon, and listen carefully. You'll recognize it instantly as the finest pickup instrument we've ever built.
$\Longrightarrow \mathrm{Hen} \mathrm{H} \boldsymbol{\mathrm { H }} \mathrm{H}$
${ }^{(1)}$

NICKEL CADMIUM BATTERIES

AVAILABLE WITH CAPACITIES OF 2 TO 500 Ah FOR
EMERGENCY LIGHTING, ENGINE STARTING, TELECOMMUNICATIONS, SWITCH TRIPPING ETC.
WE ALSO OFFER COMPLETE ELECTRONIC AND DIESEL EMERGENCY POWER SUPPLIES

FOR FURTHER DETAILS CONTACT

Efficient Inverter for Fluorescent Tubes

High efficiency circuit for dry battery operation

by K. C. Johnson, m.A.

With modern semiconductor devices and ferrite cores it is easy to drive small fluorescent tubes from low-voltage d.c. power supplies and a variety of commercial circuits are available for this function. Most of these are designed for use in motor vehicles and caravans where an easily recharged accumulator is available and power is no real problem. They use a simple singletransistor single-ferrite core class C oscillator arrangement which is cheap but not particularly efficient. With dry batteries efficiency means longer battery life and a more complicated circuit may be justified if it offers an appreciably better performance.

The essential problem is to generate a source of constant-current a.c. from a direct voltage input. The defined current output characteristic is required because a fluorescent tube is a gas discharge device. It therefore develops an almost constant r.m.s. voltage when operating at any reasonable value of current, once the ionization level has settled down, and the system would tend to be unstable if such a tube were fed with a supply of defined voltage.

The frequency for the a.c. must be high enough to be beyond the range of hearing and to allow simple small transformers and inductors, but low enough to avoid trouble from transistor switching times and capacitances and to avoid the possibility of radio interference. With modern silicon devices a frequency of 25 kHz is suitable. At this frequency the standard 8 -watt size of fluorescent tube gives an adequate light when fed with 50 mA r.m.s. of current. The voltage developed is about 55 V r.m.s. and the impedance is very close to a pure resistance as the level of ionization cannot change appreciably within half a cycle.

The first job is to turn the d.c. input, which we shall assume to be at 12 V even with dry batteries, into a.c. at the designed frequency. The efficient way to do this with transistors is a class D square-wave generator. Fig. 1 shows two alternative arrangements that might be used. In each of them the two transistors are switched so as to conduct for about 50% of the time each, but in the first the two transistors are directly in series while in the second a trans-
former is used and the transistors work in push-pull. The first circuit gives a single output swinging through a voltage nearly equal to the supply while the second gives push-pull outputs each swinging through nearly double the supply voltage. Both these arrangements give high efficiency provided that the drives to the bases keep each transistor properly saturated during its conduction half-cycle and that the load current is made to be small at the moments when switching takes place.

The second part of the circuit must then be some arrangement whereby this con-stant-voltage square-wave is converted efficiently to the constant-current source that we need for driving the tube. This requires a gyrator action, but it can be obtained with nothing more complicated than a simple LC network, as shown in Fig. 2, where the two reactors are resonant at the working frequency. If the output of this network is short-circuited then the current flowing in the short is clearly fixed

Fig.1. Using the push-pull circuit (b), right, leads to a lower Q requirement for the subsequent gyrator than with the transformerless circuit (a).

Fig.2. Gyrator network to convert constant-voltage square wave to constant-current tube drive.
by just the voltage of the source and the reactance of the coil. If, however, any other reasonably low impedance is connected at this point the steady current will have just the same value, as the output has the high impedance which is characteristic of resonance. For high efficiency in this arrangement we clearly need good quality reactors and a low value of the Q factor under the working conditions.

This requirement for a low Q leads to the arrangement of Fig. 1(b) for the a.c. generator as the push-pull circuit gives an output of $\pm 24 \mathrm{~V}$ and hence allows a working Q of about two for a load which develops 55 V r.m.s. With the transformerless layout of Fig. 1(a) a Q of four times the value would have been needed and we would have had to have a transformer for the base drive in any case. With the pushpull circuit the gyrator network must be hung between the transistor collectors. It is convenient to split the inductor winding into halves which can still be wound on a single core and to use two capacitors so that this network is also fully symmetrical.

Doing this avoids having unnecessary voltage swings on the leads to the fluorescent tube and so reduces the risk of interference. The current drawn by the gyrator network from the collectors with the tube alight is almost sinusoidal and has a magnitude of about 105 mA r.m.s. Notice that if the tube connection is broken, or the load resistance is otherwise made greater, this current increases and more power is drawn from the input, as would be expected from a current driving system.
Due to the doubling action of the transformer the current at the transistors, considered as a push-pull pair, will be 210 mA r.m.s. or 300 mA peak in each. Theré is no great difficulty nowadays in finding transistors able to carry currents as large as this with no more than a few tenths of a volt drop when they are in saturation. Such devices will clearly need no cooling and will help the circuit to be efficient. There is no need either for them to have particularly high values of current gain as it is possible to drive the bases with currents as large as one-tenth of those flowing at the collectors without having to take more than about 1% of the input power.

The devices used must, of course, be rated to stand more than 24 V on their collectors, to allow a margin of safety for transients. and they must have a switching speed, defined by the ratio f_{T} / B, at least as high as the working frequency. Any transistor type, whether of silicon or germanium, $n-p-n$ or $p-n-p$, that meets these requirements should work well in this circuit. Even the old OC24 will function adequately, while the silicon "core switching"type of device is ideal.

Fig. 3 shows how the drive to the bases is obtained. Many alternative arrangements were considered, including the use of a second transformer, but this simple scheme seems to offer the most satisfactory solution. The two capacitors feeding the bases are each made to be one-quarter of the value of the main capacitors in each half of the gyrator network. They therefore carry currents which are roughly one-fifth of the total gyrator current and hence one-tenth of the collector currents.

Diodes serve to carry the unwanted reverse flows and must, of course, be connected with reversed polarity if p-n-p transistors are being used. Almost any type of switching diode can be used as the requirements are easily met. Power lost with this system is virtually all in these diodes and in the transistors themselves, and it is easy to see that just 1% of the input is taken if the total voltage swing at each base is about one-tenth of the supply voltage, as it is likely to be in practice.
There is an appreciable power loss at the collectors with this system as the base current is phase advanced by some 25° due to the working of the gyrator network. It thus goes through zero while collector current is still flowing and the volts switch over before this current is stopped. The loss here is again only a few per cent though, and no simple means of reducing it could be found. Attempts to make the transistors switch more quickly led to trouble with spurious modes of oscillation and the grounding of the centre-tap of the gyrator capacitor is also essential for preventing this kind of misbehaviour.

It is a feature of this form of base drive that the circuit draws no power if it is made to stall while the supply voltage is connected. It will not therefore restart automatically but has to be disturbed in some way such as by switching the power off and on again. In practice this is no disadvantage and such harmless stalling occurs if the output is accidentally shortcircuited. Notice that the output must never be left open-circuited for long, as the oscillation amplitude builds up and the resulting power is dissipated in the transistors as it can go nowhere else.

The last link in the chain is the fluorescent tube and we must consider the technique that is to be used for starting it off from cold. There is a problem here as these tubes can operate satisfactorily only if the heaters at each end are hot and emitting electrons. Once they are in this

Fig.3. Simple base drive circuit with gyrator inductors wound on same core. Diodes carry reverse current and must be reversed for $p-n-p$ transistors.

state the discharge current alone is adequate to maintain the situation, but if either heater is cold no electrons are available to carry the current while it is negative. Thus there is no discharge in that direction, unless a much increased voltage is available which can drive positive mercury ions across the gap. If this occurs there is still no guarantee that the heater will be warmed, as the ion current is not guided towards an emitting area as the electrons are, and the tube will certainly be damaged by the effects of ion bombardment:

To allow the tube to be started up satisfactorily two contacts are thus provided at each end. One only of these is used to carry the working current while the other connects to a heating element which can be energized before the main discharge is started.

Fig. 4 shows how a double-pole switch is arranged so that the 12 V is applied to both heaters. Fortunately this is a suitable voltage for direct application to this size of tube. The heavy loading across the output of the oscillator causes it to stall and so waste no current. This switch should, of course, be closed before the main power is turned on and the heaters should be allowed at least ten seconds to warm up.

When the starting switch is opened the oscillator will normally receive a very adequate kick and will run immediately. There will be a brief period in which the
ionization in the tube is built up and then the system should operate satisfactorily. There is clearly no problem in arranging a simple relay circuit to make this startingup procedure automatic, but it is essential that the warming period must be adequate as this circuit can run indefinitely with only one heater lit and a unidirectional current flow in the tube. If this happens the efficiency is reduced and only one of the transistors heats up.

The last figure also shows the values used for the capacitances and for the inductance for working at the frequency and power level that we have assumed. No special ratings are needed for the capacitors, but the inductor should have a Q of 100 or more. This is easily obtained with ferrite material provided that a design with a proper amount of air-gap is used. I used a pair of small E-cores, having a centre-limb cross section of $1.2 \mathrm{~cm}^{2}$, and gapped with 0.2 mm in both centre and outside limbs. This gave the required inductance with 48 turns for each half of the winding.

The transformer used another pair of the same cores (Mullard type FX1105) and exactly the same number of turns but with no gap and with the two windings wound together (bifilar) to give low leakage inductance. Wire of 24 s.w.g. is suitable for all these windings on this size of core.

These Fifty Years

Reminiscences of half a century of writing for Wireless World

by M. G. Scroggie

Perhaps it is sufficiently unusual for anyone to have written for Wireless World for 50 years to excuse my self-indulgence in calling attention to the fact, and even inflicting on its readers some of my personal reminiscences.

It began in the issue of 15th August 1923 - W.W. was weekly in those days and cost four old pence (net). The headline of this, my first excursion into radio journalism, was "Voltage Raiser for Valve Transmitters" and was given the honour of top billing on the front cover, which also informed the reader that The Wireless World and Radio Review was registered at the G.P.O. as a newspaper. Valve transmitters, note. In those days these were new-fangled contraptions, beginning to take the place of the traditional spark-generating coils and condensers. Nowadays one might suppose that even in 1923 there was nothing very newsworthy about a voltage raiser; surely the transformer had been invented by then? So it had; but it was (and is) inapplicable to d.c., which was then the norm for domestic electricity supplies. The cover and contents versions of my title did in fact say "D.C.". I see too that on this first occasion I revealed my first name, as well as a newly acquired B.Sc. and, in heavy type, my call sign 5JX (in Edinburgh).

In these affluent days one would no doubt have simply bought a motorgenerator; but not then. Present-day students, demonstrating their indignation at the total inadequacy of a mere few hundred pounds a year free grant, may hate to be reminded that in 1923 they would have had none at all. We in Scotland were grateful to the late Andrew Carnegie for paying our class fees, at least; and were unconcerned about whether the profits that had been made in Pittsburg to pay for them had or had not been excessive. And there were bursaries to be had by students who studied the small print in the University Year Book. Anyway, for this post-graduate student every penny had to be considered. The machine eventually devised was made of a disused fan motor, a few square inches of copper and ebonite, some screws, and some ex-army Mansbridge condensers (as capacitors were called). Total cost, under $£ 1$. It worked by connecting the 230 V
d.c. mains rapidly in turn across each of four capacitors in series, by means of a pair of brushes rotated by the motor, and in this way provided about 800 V . It enabled 5 JX to be heard loud and clear 650 miles away on a two-valve receiver. We amateurs were beginning to have to share our working frequencies, such as 680 and $1,500 \mathrm{kHz}$, with the upstart B.B.C. But we found that the despised "high" frequency of $2,600 \mathrm{kHz}$ was better for DX, and still using the voltage raiser and keeping within the regulation 10 watts input to the transmitting valve I managed in 1923/4 to be heard in Canada.

The financial stringency already referred to was obviously an incentive ${ }_{3}$ though not the only one, towards offering a description of the voltage raiser to W.W. The American Radio News added to the injury of reprinting the article in full without payment the insult "English 5JX". I wrote a fuller, mathematical, account for W.W.'s new sister journal, Experimental Wireless, which went through several changes of name, finishing up as Industrial Electronics.

Incidentally, on the other side of the first page of my $W . W$. article was a picture of a young man, Capt. P. P. Eckersley, gazing proudly at half a dozen little boxes festooned untidily with wires,
which comprised the equipment for relaying B.B.C. programmes from London to the regional stations. The following year I saw the inside of the B.B.C. myself, or at least the poky little office in which its General Manager, a Mr J. C. W. Reith, functioned. I had come there to solicit his influence for getting a job. (There was little chance in those days of getting one without.) He was very thin, very tall, very brusque and intimidating, and had a glass of milk and a bar of chocolate brought in for his elevenses. Finally he rang a Mr Frank Phillips, Chief Engineer of Burndept Ltd. (one of the six sponsoring firms of the British Broadcasting Company) and passed me on to him with a far from encouraging assessment. So I was delighted when Mr Phillips received me kindly and made me his Head of Research at $£ 410$ s. a week - 50% up on what I'd been getting at Creed Telegraphs. But that is by the way.

For the next eight years most of my writings appeared in E.W. and in the many periodicals that were springing up in response to the home-constructor boom. An exception, in 1927, was a contribution to W.W. showing by means of amplitude/frequency graphs the horrific distortion caused by feedback, usually positive, due to impedance in the common

Some details of Mr. Scroggie's voltage raiser, reproduced from the 15th August 1923 issue of Wireless World.
power supply to the amplifier stages. (Negative feedback, as a desirable technique, is usually dated from 1934.)

Among my treasured possessions are copies of the first issues of Radio Times and the home constructor period magazines. (I had been too young to take the first issue of The Marconigraph or even its first appearance under its new name of The Wireless World.) Looking through the home-constructor magazines again I have noted some items that may awaken nostalgia in my contemporaries and astonishment or amusement in my juniors.

In Wireless Weekly, dated 1 lth April 1923 and providing 74 pages for what is now known as $2 \frac{1}{2}$ p, there was an ad by the celebrated Mrs Raymond of Lisle Street, Soho. In it she offered "sets of parts for assembling 0.0005 mfd condensers, 29 plates" for 4 s . 3d, and added "all orders in strict rotation". Whether the condensers themselves could be rotated depended on the skill of the assembler. Other essential components of the period were screwed rod, washers, nuts, switch arms and contact studs. From this it will be gathered that making wireless sets at home was not just assembling components as we now know them; still less, of course, complete circuits; first one had to make the components. High-value resistors were made of blotting paper soaked in indian ink. Even the keen amateur was not expected to make his own headphones however; these could readily be bought complete and were the main cost of a crystal set. The set for the wireless enthusiast, as distinct from the general public who wanted merely to "listen-in" to the B.B.C., was the ex-army Mk III (or III*) Tuner. It had been manufactured at what must have been enormous expense even for those days, in the same way as scientific instruments. The tuning coils were wound with substantial litz wire on ebonite cylinders about 4 in dia. which were helically grooved to receive it. Numerous tappings were made, and selected by instrument-type multi-stud laminated-arm switches. There were two variable capacitors, one of $1,500 \mathrm{pF}$ and the other 500; again, lovely pieces of craftsmanship. I had a pair of them until very recently, when I had to move to a smaller place. The set included a buzzer as well as a crystal detector.

People were by this time beginning to go in for valves, costing about 25 s . (£1.25) each and consuming nearly 1 A at $4-6 \mathrm{~V}$ from an accumulator, and requiring besides a "high tension" (h.t.) dry battery of usually 120 V . The vastly better performance of valve sets, with much smaller and cheaper coils, was due almost entirely to positive feedback (known as "reaction") which if over-used caused self-oscillation and interference to listeners for miles around. The major part of Captain Eckersley's public relations effort was concentrated into the classic exhortation "Don't do it!"

The first issue of the monthly Modern Wireless (also edited by the ubiquitous John Scott-Taggart) contained one of the first expositions by P. G. A. H. Voigt
(whose work on sound reproduction was later to be greatly esteemed and who as far as I know is still living in Canada) of "dual" or "reflex" circuits. These made possible major economies by utilizing a single valve to amplify both at r.f. and a.f. Recently the idea has been revived for transistor sets, though why anyone should want to go to the trouble with them I can't imagine.

The same magazine reveals that the G.P.O. had not yet fully adjusted its thinking to anything so unseemly as entertainment of the public by wireless telegraphy (sic). Until the formation of the B.B.C. a few months earlier, the only receiving licence known to the G.P.O. was one authorizing the holder to install or work apparatus for carrying out experiments in wireless telegraphy. The applicant had to produce evidence of British nationality and two written references as to character, and had to satisfy the Postmaster General that he had in view some object of scientific value or general public utility ("General statements are not sufficient"). The installation, of which full details, including a dimensioned sketch of the aerial, had to be submitted, had to be approved by the P.M.G. and be open to inspection at all reasonable times. If the applicant was under 21 , the full names, nationality, etc., of parent or guardian, who would be held personally responsible for observance of the terms, had to be given. One of the many said terms was that the use of reaction on wavelengths between 300 and 500 metres was not permissible between the hours of 5 p.m. and 11 p.m. on weekdays or at all on Sundays.

Obviously broadcasting would not have got off the ground if all listeners had been obliged to go through this sort of hoop. It is perhaps an indication of the reluctance of the G.P.O. to grant alternative licences of a more appropriate kind that it retained half of every ten-shilling fee, the other half being what the B.B.C. had to live on. And this licence was restricted (de jure, if not always de facto) to the use of apparatus stamped with a circular badge having "B.B.C." in the centre, surrounded by "Type Approved by Postmaster General". A royalty on such apparatus provided supplementary income for the B.B.C.

Technical magazines and journals nowadays almost invariably include one or more postal cards on which to send for further information concerning a selection of the products advertised, and one might suppose this was quite a recent development. It is not. One of my "No. 1" wireless magazines, more than 50 years old, has such a card. The only real difference is that one had to pay postage on it, but as that was only about 0.2 p for what was at least as good as present-day first-class mail that was not a major disincentive.

Since my first written contribution to W.W., 750 others have appeared, if book reviews and letters are included. To avoid my Aberdonian name, harsh no doubt to English ears, appearing too often, and to allow me a freedom of expression that
might be considered by some to be frivolous or disrespectful coming from a professional engineer, in 1934 by a Jekyll-and-Hyde fission process I appeared alternatively as Cathode Ray; and in 1939 a further subdivision yielded Henry Farrad, who displayed exceptional virtuosity in solving technical problems, having taken care himself to invent the problems beforehand. There were also a few other and more transient emanations. Regretfully, I cannot claim to be Vector, but I would like to pre-empt the name Phasor for possible future use.

I must not end this sonata for solo trumpet without a coda consisting of a grateful tribute to successive editors - \mathbf{H}. S. Pocock; H. F. Smith; F. L. Devereux; H. W. Barnard; and now T. E. Ivall - for their tolerance, encouragement and guidance over the half century.

Flat display tube in colour

Display panels are being developed at Philips Research Laboratories in Eindhoven that might overcome the singlecolour limitation of existing gas-discharge panels. If successful, such a development would have application in areas of information display where the number of characters to be shown is between the low number used in conventional digital instrument displays and the high number that the cathode ray tube is capable of. The idea is related to the gas-discharge matrix tubes developed at Mullard Research Laboratories some years ago (W.W. 1969, page 228). Since then bigger displays have been developed at Philips. Such panels use a sandwich construction with a glass front having horizontal conductors deposited on one surface, a glass back having vertical conductors, and between them a matrix sheet with gasfilled holes aligning with the wire intersections.
The approach used to get full colour displays differs in that a positive-column discharge is used - as in fluorescent tubes, flash tubes and neon signs - as opposed to the negative glow in small cold-cathode discharge tubes. Adopting this approach opens the way to coloured displays by using different phosphors. The idea is to construct a matrix in a similar way to the glow-discharge matrix panels, but to coat the inside of the hole with a phosphor that will emit on receipt of ultra-violet radiation from the gas discharge. In practice, ignition potentials are high, 700 to 800 V with a cold cathode, so an auxiliary anode is used on the other side of the cathode, the effect of which is to reduce ignition potential to 250 V . Colour information would of course be provided by using triangles of three primary colours. With this technique a luminous efficiency of 1 to $5 \mathrm{~lm} / \mathrm{W}$ is achieved, a good improvement on negativeglow discharges.

New Products

Miniature uniselector

"Miniscan", a miniature uniselector, is now available from the Controls Division of Pye TMC Components Ltd. This ratchet-driven three-level uniselector is of unique design which satisfies present-day demands for automatic switching in confined spaces. It can be mounted in any attitude and it occupies little more than half the space of a British Post Office relay type 3000 . The mechanism requires no maintenance - even routine lubrication is not required - and it can be replaced simply by unplugging it from its jack.

The Miniscan is a ratchet-driven device of the reverse-drive type, with a minimum of moving parts. There are three main components: the basic mechanism, the bank contact assembly and the jack. The latter is designed for fitting to a mounting-plate or chassis and the Miniscan is plugged into the jack and retained in position with a nut. The design of the Miniscan provides for long life and reliability. It will perform at least 24 million steps without need of adjustment or maintenance and it has therefore been possible to provide complete protection by enclosing it in a metal casing which is spun into place. The switch has three

levels each of twelve outlets. Decade counting is possible using twelve outlets. The moving parts of the Miniscan are of low mass and enable much higher speeds to be reached than are possible with conventional switches. They will self-drive at between 85 and 130 steps per second. Pye TMC Components Ltd., Controls Division, Roper Road, Canterbury, Kent.
WW 323 for further details

Large screen display unit

The DU-1 20 is a large-screen, low-cost display oscilloscope made by Texscan. Stabilized e.h.t. and a dual f.e.t. input give a trace of high stability under all conditions. It is claimed that the bright trace shows up well in high ambient light conditions, even direct sunlight.

A 12 in display tube, vertical sensitivity of 1 mV per division of 1.5 cm , and a marker adder facility make the DU-120 a useful oscilloscope for sweep generator applications. Texscan Instruments Ltd., I North Bridge Road, Berkhamsted, Herts.
WW 325 for further details.

Digital phase-angle voltmeter

Aveley Electric Ltd., distributors for North Atlantic Industries Inc. are now introducing a line of digital phase voltmeters which provide an analysis of complex a.c. waveforms at a discrete frequency or frequencies. The parameters measured are total, fundamental, in-phase, and quadrature voltages plus phase angle, which is displayed directly in degrees from 0° to 360° with a resolution of 0.1°. A b.c.d. output is optionally available.

The digital phase-angle voltmeter can be used on the bench or in automatic test applications. Remote programming and auto-ranging allow for operation in automated test consoles. The model 220 operates in phase measurements at a single specified factory-set frequency from

30 Hz to greater than 30 kHz , whilst the Model 225 has the facility for working at two to four discrete frequencies. Both models can measure voltage over the frequency range 30 Hz to 100 kHz . A phase-lock loop allows for mid-band angle accuracy of 0.25° with in-phase and quadrature voltage accuracy of 0.1% of full scale. Additional features include greater than 60 dB rejection of voltage auto-ranging spikes $1 \mu \mathrm{~V}$ resolution on the 10 mV scale, and a reference voltage range from 0.2 V to 200 V without adjustments. Aveley Electric Ltd., Roebuck Road, Chessington, Surrey, KT9 1LP.
WW 326 for further details.

Pocket scientific calculator

A pocket-size scientific calculator has been introduced by Hewlett-Packard. The HP-45 is designed for use in science, engineering, statistics, mathematics, navigation and surveying, and permits the user to solve complex, multi-step problems with greater ease and in less time than previously possible. It has a solid-state (m.o.s.-I.s.i.) memory and is a significantly more powerful version of the HP-35 scientific calculator which has been on the market for more than a year. In addition to increased memory capacity the HP-45 is claimed to be the first pocket-size calculator with polar-rectangular coordinate conversion, metric-U.S. unit conversion constants, and the ability to operate in any of three trigonometric modes. Twenty-four of its keys can perform more than one function.

The new calculator offers a number of additional features; one of the most significant is an addressable memory system with nine separate memory registers. These memory locations permit register arithmetic and simultaneous two-dimensional vector accumulation. The user may specify which of the registers he wants to store a number in, recall it at the touch of a button, or combine it with other stored numbers or keyboard functions. Like the HP-35 the new calculator has four operational storage registers that hold intermediate answers and automatically bring them back when needed in a calculation.

The HP-45 operates in any of three trigonometric modes - degrees, radians
or grads. It provides trigonometric and logarithmic functions as well as addition, subtraction, multiplication and division. It can raise numbers to powers and calculates reciprocals simply by touching a key. A special feature is its ability to convert decimal angles to degrees, minutes and seconds, or vice versa.

Hewlett-Packard is simultaneously introducing a desk-top version of the HP 45 , which is called the HP-46. This unit incorporates an impact printer using standard adding machine paper tape and an optional 15 -character solid-state display. Price of the HP-45 will be $£ 208$ inclusive of VAT and the HP-46, £389 inclusive of VAT. Discounts for cash with order are available for both models. Hewlett-Packard, Ltd., 224 Bath Road, Slough, Bucks. SLl 4DS.
WW 327 for further details.

Low-cost portable frequency standards

Frequency standards that are compact enough to be portable, and yet stable enough for applications such as standard frequency broadcasting or laboratory use, are being marketed by Racal Instruments. Known as the Sulzer 2.5B, and manufactured by Tracor, the unit provides outputs at $5 \mathrm{MHz}, 1 \mathrm{MHz}$ and 100 KHz which are derived from fail-safe regenerative frequency dividers. The guaranteed frequency stability is 1×10^{-10} per 24 hours, with a short term stability better than 1 times 10^{-10} for one second averaging time. The oscillator when used with a suitable v.l.f. tracking receiver, such as the Tracor 900 , will provide accuracies and stabilities to atomic standard performance at much reduced cost.

A standard rack mounting (19×5.25 in.) will mount up to three frequency standards, or one standard and one power supply. Power supply units will provide up to 10 , or alternatively 20 , hours of selfpowered operation at either 115 or 230 V , $48-400 \mathrm{~Hz}$, automatically maintaining internal batteries in a fully charged condition. Changeover from line to battery supply is accomplished without loss of output or stability. Racal Instruments Ltd., Duke Street, Windsor, Berkshire SL4 1SB. WW 328 for further details.

Digital panel meter

The model DM-2000 digital panel meter from Tranchant Electronics (U.K.) Ltd. is designed with a true differential input. All inputs can sustain up to $\pm 2 \mathrm{~V}$, common mode with respect to the digital output common. Other input features include a choice of input range, $\pm 1.999 \mathrm{mV}$ or 1.999 V full scale, a common mode rejection ratio of 70 dB at 60 Hz , an input bias current of 20 nA and an input impe dance of $100 \mathrm{M} \Omega$ plus automatic polarity switching. The meter has a specified accuracy of $\pm 0.05 \%$ and can resolve to $100 \mu \mathrm{~V}$ while operating over a temperature range of 0° to $+70^{\circ} \mathrm{C}$. Input settling time is 50μ s and up to 200 readings can be made asynchronously or synchronously. An

l.e.d. $3 \frac{1}{2}$ digit solid state display is provided, together with additional 100% overrange, overflow, decimal point and polarity displays. The DM-2000 is housed in a case measuring $3 \times 1.75 \times 2.25$ in and weighs less than 6 oz . All control inputs and digital outputs are t.t.l./d.t.l. compatible. Tranchant Electronics (U.K.) Ltd, Tranchant House, 100a High Street, Hampton, Middlesex.
WW 329 for further details.

I.c. breadboarding system

A breadboarding system for integrated circuits with many unique features has been developed by Limrose Electronics Limited. The new system, PB 100, is a large, sophisticated unit with built-in power supplies for rapidly simulating complex digital, analogue or hybrid systems. It features removable patch panels each of which will accommodate up to 44 dual-in-line integrated circuits. Interconnections between i.cs are made using the Limrose multicoloured solderless patch lead and gold-plated terminal pin system.

Developed in conjunction with the Department of Electrical and Electronic Engineering of Bolton Institute of Technology, the PB 100 System will be used by both undergraduate and post-graduate students on advanced projects using digital

and linear integrated circuits. As a single patch panel can accept up to 44 dual-inline integrated circuits, this system is claimed to be extremely useful for develop ment work on large industrial control systems, computers, etc. Removable patch panels can be replaced within minutes with other patch panels with different design problems which makes this system invaluable in the multiple-user environ ment of a teaching establishment or research and development laboratory.

Integrated circuits with $8,14,16,18$ 24 or 40 pins in the dual-in-line configuration are simply plugged into sockets on the patch panels. Discrete components and other types of integrated circuits can be used with an inexpensive adaptor. The control panel has 24 input switches with contact-bounce suppression and 24 buffered light-emitting diodes used as logic indicators. A t.t.l.-compatible $1 \mathrm{~Hz}-1 \mathrm{MHz}$ clock and a manual pulse generator are also included on the control panel. The PB System can be supplied with or without built-in power supplies to suite customer requirements. Prices from $£ 225$. Limrose Electronics Limited, 8-10 Kingsway, Altrincham, Cheshire, WAl4 1PJ.
WW3 14 for further details.

In-line monitor scope

With the introduction of the Series 1200 by Fluke International Corporation, Vu-Data Corporation has brought the monitor oscilloscope to a new functional status. Presentation of seven channels on the same horizontal line is claimed to facilitate greatly comparison between any two channels, with a 2 in. high display.

In the Series 1200 all controls are on the front panel, eliminating the need to slide the instrument out to adjust position, focus, intensity, etc. Controls for these functions are located behind a small "trap door" at the bottom of each module, which also serves as a handle for removal. Absence of rack slides on the 1200 A results in smaller size and weight, eliminates cable-tangling at the rear of the instrument, and contributes to its lower price.

Seven separate modules plug into a common power supply/rack adaptor, resulting in an instrument only $3 \frac{1}{2}$ inches high. Two different module types are available, which may be used in any combination. The 1210 A Module has controls and calibrations designed specifically for tape recorder users, while the

1220A Module has controls identical to those found on laboratory scopes.

Other specifications include: d.c. to 5 MHz bandwidth. $10 \mathrm{mV} /$ div. to $50 \mathrm{~V} /$ div. sensitivity, $\mu 2 \mathrm{sec} / \mathrm{div}$. to $20 \mathrm{msec} / \mathrm{div}$. time base, two selectable inputs for each channel and internal or external triggering. Price: $£ 1,347$. Fluke International Corporation, Garnett Close, Watford WD2 4TT.
WW316 for further details.

P.c.b. supports

From PBRA Ltd is a new Series LCBS locking printed circuit board support. Four supports, one at each corner of the board, will resist up to 100 lb pull. A new arrow type locking head inserts into a 0.187 in . hole in the chassis where it expands to lock permanently into position. The circuit board snaps over the top of the tapered support where it is held firmly in position by a tension flange which, compressed

upon entry, springs back out to lap and secure the board. A squeeze of the fingers permits removal of the board from the support.

Made of natural colour nylon, the LCBS supports are available in seven spacing heights from 0.1875 in . to 0.875 in . Free samples are available. PBRA Ltd, 33 Holmethorpe Avenue, Holmethorpe Trading Estate, Redhill, Surrey.
WW302 for further details

Dual track slider potentiometers

A large range of dual-track slider potentiometers with an internal screen between the tracks has been introduced by RS Components. The bodies are moulded in glass-filled nylon with snap-on brackets for easy panel mounting. The terminations are suitable for either direct wiring or p.c.b. mounting. Maximum dissipation is 0.4 W and 0.2 W for linear and logarithmic types respectively, with better than 2 dB
track matching. The tolerance is 20% or 30% depending on the resistance value. These new pots. are available by return of post at 65 p each and there is a knob that matches at 12p. RS Components Ltd., PO Box 427, 13/27 Epworth Street, London, EC2P 2HA.
WW318 for further details

Polycarbonate capacitors

Seatronics (UK) Ltd. has expanded its range of polycarbonate capacitors with the introduction of Type CSM. Housed in flame-resistant nylon cases, this type has similar properties to the earlier polycarbonate capacitors (Type CSK). The difference is in the body size and lead configuration (CSM has axial terminations). The capacitance range is 0.01 to $10 \mu \mathrm{~F} \pm 10 \%$ with $5 \%, 2 \%$ and 1% tolerance to order, over the working voltage range of 63 to 400 V d.c. Tan delta is less than 0.003 at 1 kHz and the capacitors will withstand 150% of the working voltage for 30 s. Operating over an ambient temperature range of $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, CSM capacitors are suitable for stringent environmental performance, in particular for instrumentation and telecommunication applications. Seatronics (UK) Ltd, 22-25 Finsbury Square, London, EC 2A 1DT.
WW 319 for further details.

Miniature cermet trimmer

The RGP 10 miniature pre-set cermet potentiometer, now introduced by Guest International Ltd., is claimed to be one of the smallest devices of its kind available. Just 19 mm in diameter, the $1000+$ price of 14 p each also makes it one of the lowest-priced on the market.

The RGP 10 is rated at 0.5 W at $40^{\circ} \mathrm{C}$, resolution is infinite, and the temperature coefficient is ± 250 p.p.m. $/{ }^{\circ} \mathrm{C}$. Resistance range is 100Ω to $1 \mathrm{M} \Omega$. Featuring an integral dust cover, the device also offers standard 0.1 in grid pin spacing which, with its low price and technical specification, makes the RGP 10 a practical alternative to carbon devices. Industrial Electronic Components Division, Guest International Ltd., Redlands, Coulsdon, Surrey, CR3 2HT.
WW 320 for further details.

R.f.i. filters

A comprehensive range, consisting of approximately 150 varying types of budget priced radio interference filters is now available from Suppression Devices. Certain of these filters are specifically
designed to meet varied British and European specifications with current ratings ranging, in the mains filter series, from $300 \mathrm{~mA}, 50 \mathrm{~Hz}$ to $200 \mathrm{~A}, 50 \mathrm{~Hz}$. Also available is a series of military filters with varying ratings up to 120 A at 28.5 V .d.c. Three phase, 4 line filtering can also be adequately catered for, to a current rating of $40 \mathrm{~A}, 50 / 60 \mathrm{~Hz}$. Filter units can be modified or designed to individual requirements. Included in this range of filters is a series of single line "lead through" filters with current ratings to $200 \mathrm{~A} .50 / 60 \mathrm{~Hz}$. Varying types of " $X Y$ " star or delta capacitor suppressor networks are also available, along with more specialized individual single capacitor suppressors, for use at voltages up to $500,50 \mathrm{~Hz}$. Suppression Devices, Woodfield Works, Trafalgar Street, Burnley, Lancs.
WW321 for further details

Vacuum record cleaner

The manufacturers, R.I. Audio, claim that their new "Groovac" record cleaner is the only unit available which removes dust from records by vacuum cleaning. A tracking force of only 0.7 g has been achieved by using a lightweight design with lubricated-for-life bearings throughout. This is considerably below the 3 to 6 g force of simple brush cleaners. Low tracking force allows fine hairs to be incorporated in the Groovac cleaning nozzle which ensure efficient removal of dust from the bottom of record grooves - most brush cleaners have hairs with a diameter which is larger than the width of the record grooves.

The Groovac consists of a precision lightweight arm, and a suction unit which is acoustically isolated in a special enclosure. The suction unit has been designed to be inaudible at a distance of 2 metres; it has a mains switch and indicator, and is finished in teak. The arm is mounted by means of a magnetic base, and its height is adjustable to suit different turntables. When not in use it is simply rotated outwards and lowered on to its integral rest. Price $£ 6.90$ plus VAT. Available from hi-fi retailers or direct from R.I. Audio, Kernick Road, Penryn, Cornwall.
WW 322 for further details.

Ingenious transformer core

Our picture shows an unusual type of transformer core now available from Kent Insulations. This design has very real advantage over the traditional ' E ' lamin-
ations in that it eliminates the timeconsuming (and therefore expensive) business of inserting the individual laminations.

Once the coil has been wound, the two halves of the 'Waasner-Ready-Core' are simply pushed together. The wedging action of the centre sections ensures good magnetic continuity right through the core, while built-in clips hold the core securely together. Kent Insulations Limited, Power Road, Chiswick, London, W4 5PZ.
WW301 for further details.

Miniature rotary switch

A ten-position miniature rotary switch, 0.3 in . diameter, has just been added to the Highland /Grayhill range of electrical components. Two styles are available, the 75 AP , a screwdriver-operated switch 0.3 in . diameter, 0.6 in . long, and the 75 BP , shaft-operated 0.3 in . diameter, 1.125 in. long switch.

These have terminals suitable for mounting on printed circuit boards and are available with I pole 10 positions or 2 poles 5 positions per pole configurations. The electrical rating are 100 mA at 115 V a.c. or 30 V d.c. resistive load, for a life of 10,000 cycles. The 100 off price is $£ 1.50$ each. Highland Electronics Ltd., 33-41 Dallington Street, London ECIV OBD.

WW 304 for further details.

Low cost power unit

A low cost, regulated d.c. power supply, made by Zauie Industries Ltd, is available from PBRA Ltd. Designated Type 2005, the unit has an output range of $0-20 \mathrm{~V}$ d.c. at 0 to 0.5 A . Both line and load regulation is within $0.01 \%+1 \mathrm{mV}$. Ripple and noise at full load is less than 1 mV
peak to peak and resolution is within 50 mV . The unit has a 20μ s transient recovery time and a total drift figure of less than $0.1 \%+4 \mathrm{mV}$ over an eight hour period. Measuring only 3 $\times 6 \times 8$ in., the 2005 has its own voltmeter and separate ammeter built in, and is priced at £25. PBRA Ltd, 33 Holmethorpe Avenue, Holmethorpe Trading Estate, Redhill, Surrey.
WW 305 for further details.

Frequency-agile magnetron

Rapid tuning, a claimed long life and reliability are provided by a completely new method of frequency-agile tuning used in the latest $\mathrm{Q}(\mathrm{Ka})$-Band magnetron, type M5059, made by English Electric Valve Co. Ltd.

Tuning is obtained by applying a voltage waveform to the input of a piezo-electric transducer which, because of its high impedance, requires only a very low drive power. The agile range can be swept at frequencies up to 1 kHz . The life of the tuner is not impaired by moving surfaces in contact with each other. By mounting the tuner mechanism within the vacuum envelope, potentially unreliable mechanical bearings and vacuum bellows are eliminated.

The M5059 is designed to meet the full requirements of a modern frequencyagile $\mathrm{Q}(\mathrm{Ka})$-Band radar. It has a peak output power of 50 kW and can be operated with short pulses and high rates of rise of voltage. Each tube is tested at more than $400 \mathrm{kV} / \mu \mathrm{s}$.

Life tests have shown this tube to have an exceptionally high degree of stability from the moment full pulse voltage is applied. English Electric Valve Co. Ltd., Chelmsford, Essex.
WW306 for further details.

Colour monitors

The Tektronix 670 Series colour television picture monitor uses a 17 in . 114° Trinton (470DLB22) c.r. tube. Screen size is approximately 138 sq. in. (890sq. cm) with an aspect ratio of $3: 4$. Two inputs are provided for encoded video signals and these can be isolated from the chassis to prevent ground current induced hum and also isolated from all others. Hum is at least 50 dB down with up to $4 V$ r.m.s. mains frequency common-mode signal.

Two external composite sync inputs are provided which automatically switch between sync sources as the video input is switched. The sync inputs may be isolated from the chassis in the same manner as the encoded video inputs. Chrominance gain and phase (N.T.S.C. only), video gain and brightness controls are provided with presettable detented positions. These positions allow the monitor to be reset to its standard calibration at any time. A front panel lamp indicates non-calibrated operation. Chromaticity of the c.r. tube in the 670 Series Monitors falls within the ranges specified by C.C.I.R. recommendations for PAL and by the Canadian Television Practices Committee.
The c.r. tube is operated from a fully regulated e.h.t. supply providing 24 kV . This supply is interlocked with the horizontal and vertical deflection circuits to prevent damage to the c.r. tube in the event of deflection failure. The e.h.t. is also protected against current overload. When the current limiter is in operation, certain characteristics of the monitor are necessarily altered, therefore a front-panel "OVERLOAD" indicator lamp is provided.

Note:- Colour matrix correction in N.T.S.C.

PAL 1 display phosphors in common use today, including those in the Tektronix 650 and 670 Monitors, differ in chromaticity from those which were used as the basis for the N.T.S.C. standards. Changes were made to secure advantages in brightness, producibility and hue stability. American receivers have compensation for the resulting shifts in hue and saturation and produce a picture very much in accord with the N.T.S.C. standards. Studio monitors, and colour bar generators on the other hand, have maintained the original N.T.S.C. coding and matrixing, resulting in chrominance errors in the display which are due to the difference between the N.T.S.C. camera primaries and the present display primaries. Tektronix Limited, P.O. Box 36, St. Peter Port, Guernsey, Channel Islands.
WW 307 for further details.

Millimetre wavelength mixers

Many countries are developing low-loss trunk waveguide systems which are being designed to operate at gigabit raies with attendant high intermediate frequencies. For this purpose, and any other systems with gigahertz intermediate frequencies, EMI-Varian Ltd. has introduced the

MMC 10 series of millimetric mixers.

The mixers in this new range use a gallium arsenide Schottky barrier diode incorporated in a waveguide wafer. No sliding of this wafer is required for matching, only tuning of the short circuit being necessary. They are available in all waveguide sizes to cover the frequency range 20 GHz , to 170 GHz , and extension of the range to 300 GHz is in progress.

The typical conversion loss (including all mismatch losses and mount losses) varies from 4.5 dB at 30 GHz to 11.5 dB at 135 GHz .

Intermediate frequencies up to 14 GHz may be used for devices designed to separate above 40 GHz and up to 8 GHz for those designed to work below 40 GHz . Excellent broadband mixing is achieved with low v.s.w.r. at both r.f. and i.f. ports. Both single and balanced versions are available from EMI-Varian. In addition, there is a range of single mixers with two r.f. ports for upconverter application, and up to 1 mW may be generated in this mode at frequencies up to 90 GHz .

Tests have shown these devices are also sensitive detectors with low flicker noise characteristics. The full benefit of these low noise characteristics can be obtained in systems with extremely low intermediate frequencies, such as doppler radars.

For mixers at lower frequencies (below 20 GHz) the local oscillator level is in many cases sufficient to bring the diode into conduction. At higher frequencies this is not always the case due to the lower powers available. Thus it is advisable to apply a d.c. forward bias voltage to the diode for maximum efficiency in the mixing mode. EMI-Varian Limited, Hayes, Middiesex, England. WW 310 for further details.

Magnetic switch

A magnetic switch, claimed to be of a totally new form and designed to handle high inductive loads without any contact protection, has just been launched in the U.K. by B \& R Relays. Called the ATS-6000 (Axial Travel Switch), the new Gordos-manufactured switch complements the company's existing range of dry reed, mercury wetted and mercury tilt switches.

Initially, the switch is available in two standard lengths - 24 mm and 17 mm with a maximum diameter of 3.55 mm . Contact rating is $15 \mathrm{VA} /$ watts, one amp resistive at a maximum of 50 V , d.c. Operating temperature is be tween $12^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$.

Hermetically sealed and strongly built (the terminals are designed for fuse-clip mounting), the normally closed version meets all the normally open switch specifications with the exception of the contact rating which is 0.5 A resistive maximum - unlike its reed switch counterpart, however, it does not require any magnetic biasing. B \& R Relays, Temple Fields, Harlow, Essex.
WW311 for further details.

F.m.-a.m. signal generator

Boonton Electronics Corporation have introduced a high performance f.m.-a.m. signal generator - the Model 102A which covers the frequency range 4.3 MHz to 520 MHz .

Using a combination of fundamental only, mixing, multiplying and dividing techniques for frequency generation, the Model 102A is claimed to avoid problems inherent in systems using single generating techniques. Readout of frequency is by a 6 digit display giving 100 Hz resolution, and stability after a 2 -hour warm-up period is typically 10 p.p.m. $/ 10 \mathrm{~min}$. Internal or external modulation modes can be selected by a front panel switch with f.m. variable from 0 to 300 kHz peak calibrated, or to greater than 1 MHz uncalibrated, and a.m. variable from 0 to 100% at modulation frequencies of $400 \mathrm{~Hz}, 1 \mathrm{kHz}, 3 \mathrm{kHz}$, 10 kHz and 19 kHz . Modulation monitoring is by a panel meter.

Output levels from -130 dBm to +13 dBm can be selected by a 13 -step attenuator giving 10 dB step plus variable 13 dB calibrated on the output meter. Output levelling is better than $\pm 0.5 \mathrm{~dB}$ across each of the five bands and output impedance is 50 ohms. Euro Electronic Instruments Ltd, Shirley House, 27 Camden Road, London N.W.I. WW 308 for further details

Strobing meter

The Strobovolt produced by Physical \& Electronic Laboratories Ltd includes two completely independent multirange meters which cover a wide range of voltage and current measurement. The voltage selector switches from 0.5 V through ten ranges to 500 V and the meters have an input impedance of $1 \mathrm{M} \Omega / \mathrm{V}$ on all ranges. The eleven current ranges on each instrument extend from $1 \mu \mathrm{~A}$ full scale deflection to 0.5 A .

The type of measurement, however, differs from previous multimeters by using a strobing action which samples a repetitive waveform applied to the input for less than $0.5 \mu \mathrm{~s}$, once per cycle. By means of this narrow sampling pulse, the frequency of which is adjustable from the panel controls, it is possible to minutely examine any part of the waveform. Thus peaks, troughs, and other discontinuities on the input waveform may be accurately measured. Moreover, as the instruments
are synchronized to sample their respective input waveforms simultaneously the two meters will always indicate the relative instanteous voltages or currents applied, and will therefore accurately indicate the relative phase.

By adjusting the sampling frequency to be slightly different from the inputfrequency the sampling pulse will slowly progress through the waveform applied to the input and will produce an accurate copy of the input waveform but at a frequency which is equal to the difference between the input and sampling frequencies. Thus a low frequency copy of the input waveform is produced in the same way as a stroboscope. This low frequency waveform which is produced at the output of the integrator amplifier in the strobovolt is available at the output sockets and may be used, for instance, to drive an $x-y$ plotter which will then record accurately waveforms which occur at many thousands of times the speed at which the $x-y$ plotter could normally respond. For this use, it is convenient to use one meter for the x direction and the other for the y direction.

Uses for the Strobovolt include harmonic analysis, phase and distortion measurement, etc. and by means of the synchronizing pulse input, the device can measure voltage or current at a specific instant as required in time-division multiplex systems. Physical \& Electronic Laboratories Ltd, 28 Athenaeum Road, Whetstone, London N. 20.

WW315 for further details

Two-channel recorder

Elcomatic have recently announced their new EM 700 two-channel direct writing recorder which accepts inputs of $\pm 500 \mathrm{mV}$ for the 5 cm full deflection. Rectilinear write-out is by means of hot styli on heat sensitive paper. The temperature of each stylus can be adjusted independently to give a trace density suitable to the waveform being recorded and is automatically compensated for change in paper speed. The standard chart speeds are $30 \mathrm{~mm} / \mathrm{min}$ and $25 \mathrm{~mm} / \mathrm{sec}$, although alternative speeds are available. The recorder is available as free standing or rack mounted, and costs £395. Elcomatic Ltd, Kirktonfield Read, Neilston, Glasgow, G78 3PL.
WW324 for further details

Real and Imaginary

by "Vector"

'. . . Not a Horse, Not a Bus, but a Tram'

In a journal of the technical standing of Wireless World it's only natural that a considerable proportion of its articles and correspondence columns should be concerned with the problems of minimizing distortion in amplifiers and sound reproducers. But I sometimes wonder whether we tend to stick too closely to the conventional tram-lines of transistors (in terms of amplification) and the various woofer-tweeter combinations which serve as transducers.
"So what else is there?" comes the question from the back of the hall. That's something I haven't got the space to deal with fully here and so all I can suggest is that my inquisitors should beg, borrow or steal a copy of Blake's "History of Wireless Telegraphy and Telephony" (Chapman and Hall, 1928), and he will find enough off-beat ideas for loudspeakers to keep him going con-struction-wise for quite a while.
Flame reproducers, for instance. (No - this isn't a misprint for "flare" I really do mean "flame"!) It isn't exactly a new idea; the accord which exists between sound and flame was noted by J. Leconte in 1858 and a number of distinguished names have worked on it over the years, including Lord Rayleigh and Professor Andrade. Some five years ago a letter to Nature resurrected the topic" and I'm indebted to this for what follows: -
The simplest device described is one in which a flow of oxygen is arranged to pass over a diaphragm attached to a conventional moving-coil unit (N.B. in the authors' diagram, air is given as the medium but the text says "oxygen"). After passing over the diaphragm the air/oxygen is concentrated into a jet which blows at right angles into a natural-gas flame of the Bunsen burner type. Given a taperecorded input into the moving-coil unit, the authors state that the flame will provide a rendering which is limited in quality only by the recording and the modulation unit
This, of course (as our hi-fi enthusiasts will quickly point out if I don't get in first), makes no significant contribution to quality as all the conventional distortion-

[^5]introducers still remain in the chain. What it does do, however (claim the authors), is to provide amplification "of the order of several hundred", and that's most interesting.

But the flame can also be modulated electrically. For this approach, two tungsten electrodes are introduced into it, one at the base of its visible region and the other at the top end. The other ends of the electrodes connect to the secondary windings of an a.f. transformer, one directly and the other via a biasing supply. The recommended flame is in this instance derived from an oxy-acetylene welding torch and to assist ionisation an asbestos wick feeds an alkaline salt solution (potassium nitrate) into the flame. With audio applied via the transformer primary, the arrangement, say the authors, will fill a large room with speech or music.

So there you are, all you hi-fi enthusiasts athirst for fresh woods and pastures new. Abolish the tyranny of the cone! Mystify your friends and achieve the ultimate in one-upmanship! There may, of course, be minor obstacles; the distaff side could conceivably become a shade unreasonable about harbouring an oxyacetylene welding plant in the lounge, but don't let that discourage you. Trade her in for an arson-orientated model and press on regardless. Seriously, though, it's an interesting project and I'd be glad to hear from anybody who's actually tried it.

Coming now to less far-out amplifiers, does anybody know what became of the solid-state triode of about ten years ago? (No, I don't mean the various types of transistor.) One form of the device consisted, as I recall, of two slices of cadmium sulphide crystal with a conducting layer between them. A silver contact at the top formed the anode, the conducting layer the gate or grid, while a deposit of indium at the bottom end of the other slice was the cathode (no heater needed). The valve had a high input resistance and allegedly held promise of useful amplification at microwave frequencies.

I seem to remember that one of the bugs in the experimental device hatched from imperfections in the crystal structure of the cadmium sulphide. That problem, like the poor, is always with us, so perhaps this is what prevented the solid-state triode from getting off the ground. Or did
the f.e.t. and m.o.s.t. devices (also of high input resistance), which were being developed concurrently, kill the dielectric valve stone dead?

And, speaking of solid-state, I wonder how long the electron will remain as undisputed master in the realms of amplification and control?

Doesn't it strike you as odd that old Mother Nature doesn't use electronics for control and message-carrying? If you think that it's simply that she wasn't clever enough, I suggest you think again. Remember the human brain with its physical volume of only a relatively few cubic centimetres. If we were daft enough to build a microcircuit-based computer that would do everything a brain can do we should be lumbered with hardware that occupied the area of a fair-sized town. Furthermore, it would never be in 100% working order; the mean-time-betweenfailures situation would see to that. At any given moment, within the complex, there would be a component breaking down.

Nature has avoided solid-state electronics like the plague and opted instead for liquid-state devices of molecular size and operating at ion level. This, on the face of it, is sheer stupidity because the ion is about 10^{3} times heavier than the electron which streaks around about 10^{7} times faster. So what was the point?

If you consider even the tiniest microcircuit objectively you will see an enormous involvement of electrons in every simple operation - for instance, about 10^{9} electrons are deployed in an on-off switching application. But that's only a drop in the ocean; vastly greater numbers are merely loafing around to provide mechanical support. Think also of the relatively enormous distances over which the electron has to travel (or, more properly, over which electron-pattern disruption has to take place) in order to achieve a desired end. By contrast, Nature's liquid-state devices use under a million ions to do a similar job and these only have to diffuse across the minutest distance, so the reaction time is not nearly so sluggish as you'd think. And it's all done at low noise and power levels.

Perhaps even more important is the way Nature builds monumental redundancy and self-repairing elements into her liquid-state systems. As we're all only too well aware, when a microcircuit goes phut it stays phut; not so in biological engineering, where molecule-sized amplifiers can not only move around but also, to a large extent, repair themselves.

So don't let's ever fall into the error of supposing that the development of amplifiers, digital data transmission systems, computers and what-have-you is forever going to remain a monopoly of the electronics engineer. As long ago as 1958, liquid-state amplifiers were being devised; true, their practical value was limited because of the extremely slow transit times; but then, did Faraday's first generator show any great promise of being able to light and heat a city? The engineers of tomorrow, or the day after, may well be electro-chemists.

BOOKS

ONELECTRONICS

Basic Engineering Craft StudiesGeneral (01)

Edited by
P. H. M. Bourbousson, CIMarE, and R. Ashworth, CEng, MiMechE, MIProdE

Written for students studying for the City and Guilds of London Institute 500 Courses on Basic Engineering Craft Studies (Part I), this book together with a companion volume covers all the topics required for each of the courses. The General 01 volume contains basic material and should be used in conjunction with the appropriate complementary volume covering the syllabus relating to the required craft or trade bias. 0408000619182 pages illustrated 1971
f1.50

F.M. Radio Servicing Handbook/2nd Edition

Gordon J. King, RTech Eng, MIPRE, FSRE, MRTS, FISTC
This handbook has been written by an experienced radio engineer with the aim of providing the theoretical and practical knowledge of $F M$ radio receivers in a form helpful to all concerned with service work. The book is intended not only for professional service engineers, however, but also for amateur enthusiasts interested in the construction of FM equipment and for radio students. The style is straightforward and, as far as possible, non-mathematical.
0408000236206 pages illustrated 1970
$\mathbf{£ 3 . 0 0}$

Semiconductors: Basic Theory and Devices

 Ian Kampel

 Ian Kampel}Although this book covers a wider range of devices than is usually dealt with on any one course, it nevertheless provides a useful introductory text for students. All topics are explained in straightforward graphical terms without complicated formulae. It begins with an explanation of elementary atomic theory and gradually progresses through diodes, transistors and the more sophisticated devices that are available today. 0408000406272 pages illustrated 1971
£2.50

Electroacoustics: Microphones, Earphones and Loudspeakers

(An STC Monograph)
M. L. Gayford, BSc., CEng, MIEE, ACGI, DIC

This book gives a unique insight into the audio and electroacoustics field dealing in particular with the theory, design and practical realisation of the various types of microphones, earphones and loudspeakers used in sound reproduction, telephony, broadcasting and acoustic measurements. It will be of special value to students, engineers and research workers engaged in telecommunications, broadcasting and sound reproduction.
$0408000260 \quad 300$ pages illustrated 1970
£4:50

Colour Television Servicing

Gordon J. King, RTechEng, MIPRE, FSRE, MRTS, FISTC

This comprehensive book deals straightforwardly with the servicing of PAL receivers, using a minimum of mathematics. It is divided into three sections: the first surveys the colour TV system as a whole, the second studies the elements involved (e.g. picture tubes, conveyance systems, chroma channels) and the third is devoted exclusively to servicing.
0408000449328 pages illustrated 1971
£4.40

Solid-State Devices and Applications

Rhys Lewis, BScTech, CEng, MIEE

Since the first appearance of the transistor in 1948, the field of solid-state devices has expanded so rapidly that it has become increasingly difficult to keep abreast of new developments. This book presents a concise summary of currently available devices, their theory, manufacture and applications.
0408000503 cased 264 pages illustrated 1971 £3.00 0408000511 limp
£2.00

A Simplified Approach to Solid State Physics

M. M. Rudden, BSc, PhD, AlnstP, and J. Wilson, BSc, PhD, AlnstP
This book provides a broad survey of some of the more important concepts of solid state physics and will be suitable for first year university or technical college students. The approach throughout is essentially qualitative and the aim of the authors is to establish the fundamentals of the subject in as easy a manner as possible. To this end, frequent reference is made to experimental evidence in support of the theoretical concepts.
0408700033 cased 196 pages illustrated $1971 \mathbf{£ 2 . 9 0}$ 0408700203 limp
£1.70

Available from leading booksellers or:

The Butterworth Group

88 Kingsway London WC2B 6AB
Showrooms and Trade Counter
4-5 Bell Yard, London WC2

 SUPPLIERS OF SEMICONDUCTORS TO THE WORLD

COMPLETE TELEPHONES

NORMAL HOUSEHOLDTYPE AS SUPPLIED TOTHEPOST OFFICE EX. G.P.O.
ONLY $£ 1.05 p$

P\&P45 EACH

TELEPHONE DIALS

Standard Post Office type Guaranteed in working order ONLY $27 \frac{1}{2} p$

TESTED AND GUARANTEED PAKS

B79 $4{ }^{\text {IN } 4007 \text { Sil. Rec. diodes, }}$
$10 \begin{aligned} & \text { Reed Switches } 1 \text { " long } \frac{1}{\text { en }} \text { da. } \\ & \text { High speed } \mathrm{d} \text {. }\end{aligned}$
High speed P.O. type
B99 $200 \begin{aligned} & \text { Mixed Capaciors Approx. } \\ & \text { quantity, counted by weight }\end{aligned}$
$\mathbf{2 5 0} \begin{aligned} & P \& P 15 p \\ & \begin{array}{l}\text { Mixed Resistors Auprox } \\ \text { quantuy } \\ \text { counted by weight }\end{array}\end{aligned}$ P \& P P 15 p .

$40 \begin{aligned} & \text { Wierwound Resis } \\ & \text { types and values }\end{aligned}$

H40 $20 \begin{aligned} & \text { BFY50/2. 2N696. 2N1613 } \\ & \text { NPN Silicon uncoded TO-5 }\end{aligned}$
OCP71 Light Sensitive
OCP7 1 Light Sens
Phooo Transistor
96 Integrated circuits, 4 Gates
$20 \begin{aligned} & 1 \text { Watr Zener Diodes. } \\ & \text { Mixed Voltages } 6 \text { - } 6 \text { - } 3 \mathrm{~V}\end{aligned}$
H35 $100 \begin{aligned} & \text { Mixed Diodes, Germ. Gold bonde } \\ & \text { erc. Marked }\end{aligned}$
100 eic. Marked and Unmarked
$20 \begin{aligned} & \text { OC200 } 1 / 2 / 3 \text { PNP Silico } \\ & \text { uncoded TO } 5 \text { can }\end{aligned}$
$30 \begin{aligned} & \text { Short lead Transistors. } \\ & \text { NPN Silicon Planar types }\end{aligned}$
$2 \begin{aligned} & \text { Power Transistors } \\ & \text { Comp Pair BD } \\ & \text { 131/132 }\end{aligned}$
UNMARKED UNTESTED PAKS
${ }^{866} 1$
${ }^{883} 200$ Trans. manutacturers' rejects
$884100 \begin{aligned} & \text { Silicon Diodes } 00-7 \text { glass } \\ & \text { equii. }\end{aligned}$
886100 Sil. Diodes sub. min.
88 Sil Trans. NPN PNP equil
$50 \begin{aligned} & \text { Sil Trans. NPN. PNP equiv, to } \\ & \text { OC200/1. 2N706A, BSY95A, etc. }\end{aligned}$
$150 \begin{aligned} & \text { Germanium Transistors }\end{aligned}$
50. AF and

[^6]MAKE A REV COUNTER FOR YOUR CAR

The 'TACHO BLOCK' This en capsulated block will turn any 0. 1 mA meter into a linear and accurate rev counter for any f1.10 each

Elfrafyenktio

DEPT. B, 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX TELEPHONE: SOUTHEND (0702) 46344

MINIATURE WAFER SWITCHES
2 pele, 3 way-4 pole, 2 way- 2 poile, 3 way-
tOGGLE SWITCHES
 st 22 p
skine type.
ROCKER SWITCH
size ayproximately Sin. \times finl. 9 p prich
SLIDE SWITCHES
slide Bwitch. 2 pole change ower panel mounting

 DOUBLE LEAF CONTACT

miniature sealed relay
A1. Measures only
double change over

COMBINATION SWITCH

mexking equipunent which you don't want switched on econvider-h his can also be ubed tus a culing switch for many

 the cluth can be used as it partal preak by putury reduced

DRILL CONTROLLER Electsonically changes speed
irom approximately 10 reps.
to maximun Ful to matimulun. Full powter at al:
speeds by fingertios cont rol,
kit includes all parts, case, kit includes all parts, case,
everything and full instruc.
£1.65, plus 13, post and
. Made up model also

BAKELITE INSTRUMENT
 hrass inserts iti four cornery and bakelite
panel. This is a very atruag cave suitable
to house instruments and special rigs, etc. to house inst ruments and special rigs, etc.
I5A ELECTRICAL PROGRAMMER Learn in your yleep:
Have radio playing and
 tlecticai programmer.
Clock by fanois maker with 15 anp. on/off suiteh. Switub on time cant be set any where to stay on uy, to 1 hours.
Independent 60 minute memery foger. A beauticul unit. Independent 60 minute memory fogger A beautioul unit.
Price $£ 2.15+20 \mathrm{p} p$. N p. or with glass front ehrome

(HIGH ACCURACY
THERMOSTAT Uses differential comparator 1.C. with the promistor
is probe. Deaigner clitims temperature control to within $\mathbf{l}_{7 \text { th }}$ of a a diagrec. Compiete kit with

Complete kit Complete Kit (except wooden battens) to
make the netal det ector as the circuit in
Practical Wireless August isgue. $£ 3-30$ AUTO TRANSFORMER

CENTRIFUGAL ELOWER

ELECTRIC TIME SWITCH

Made by Smiths these atre A.C. mains operated. NOT CLOCKWORK. deal for mounting on rack or shelf or call be built into hox with 13 a socket. 2 completely adjuatable time periouds per 24 hours, 6 anmp changeover contacts will and ins., $23 p$. Additional time contacts 50 p pair.

COMPUTER TAPE

400 ft . of the Best Maknetic Tape money can huy. Some users clatin good results with Video an! sound
Spare spools and cassettes 55 p.
pare spools ath cassettes 5.5 p.

GOOD COMPANION I.C. MODEL

We can low offer this fine receiver but in I.C. veration using Ferranti $\mathrm{ZN4} 4 \mathrm{t}$ and Mullard $\mathbf{A F}$ module $1 / 72$ Cabinet size approx. 1 lin. wide $\times 8$ int. high \times 3in. deep. Cumplete with excelle
assenbly instructions 85.75 .

ERGOTROL UNITS
These unita maide ty the Mullard Group are for
opreratina and controlling d.c. Motors and equip-
nient iron A
 d.e. resulting in motor speed control and operiting
efticievency far superior to most other miethouls. The units are contained in wall mousting
cabinets with front nontrol panel on which are cabinets with iront control panel on which are
uses-push huttone for $\mathrm{cm} / \mathrm{ofi}$ aud the variable hases whin huttons for
$\begin{array}{ll}\text { makers cases: } \\ \text { Mootel } 2+10 \text { for up } \\ \text { Model } 2411 \text { for up to } 10 \text { ampr } & £ 18 \cdot 25 \\ & \mathbf{E 3 0} 25\end{array}$

THERMOSTAT WITH THERMOMETER Made by Honeywell for normal air temperatures $40^{\circ}-60^{\circ} \mathrm{F}$
$\left(5.25^{\circ} \mathrm{C}\right.$.). This is a precision instrument with a differential which ($5.25^{\circ} \mathrm{C}$.). This is a precision ingtrument with a differential which temp. rise the switch is operated by coiled bi-metal element and an adjustable heater is incorporated for heat anticipation
Elugantly styled and encased in an ivory plastic case with clear Elegantly styled and encased in an ivory plastic case with clear
 $\stackrel{\text { on condut }}{ } \mathrm{E} 12.52$.

HORSTMANN "TIME \& SET" SWITCH (A 30 Anp ssiteh.) Just the thing if you want to come home to a
warm house without it costing you a fortune. You can delay the warm house without it costing you a fortune. You can delay the
switch on time of your electric fres, ett., up to 14 hours from setting time or you can use the switch to give a boost on perioul of up to
3 hours. Equally suitable to control 1 rocessing. Fegular price
probably around

URE MICROSWITCH
 SUB. MINIATURE MICROSWITCH

SPIT MOTOR
$200-2 \overline{51}$: Induction Motor, driving a carter gear 1ox mith 1 lin. 0^{i}
output drive shafit rulnting at 5 revs. per minute. Intended for rastink rhickelns, illso suitable for driving models, wimimills, coloure
disc light ing effect. ste., etc. £2 05 plun 20 p, post ind insuranee.

DISTRIBUTION PANELS
Just what you neod for work bench or lab, 4×13 amp
sockets in metal box to take standard 13 amp fused
plugs and on/orf switch with neop warning light. Supplie

MULLARD AUDIO AMPLIFIERS

simke and corncction thits, data supplie
Moctel 115 S 500 mW power output 72 p

INSTRUMENT RACKS WITH DRAWERS
 is on hall bearings fir easy withdrawal, but in of very solid

SATCHWELL DUOTRONIC

CONTROLLER

These are bik aatinounting panela comtaning transormern apy mavilation Used for the control of hueting (through primary une of course is in air conditioning. but jo doubt 6V each. Our price E16 each. Quantity Mrice by negotiation 6V D.C. POWER MOTOR MADE BY REDMUND
or arimg a dige pump and similar applicatlons. This powerful had athough rated at fy, this operates up to
$12 y$, for short periods with very mueh increased power. (probably at least I H.P., We widerstind that from the nakers they
TRANSMITTER FOR BLEEPERS
Mains onerated, simply needs a single copper conductar to
surroumd the bleped arca then any blecp receiver may bed
called at will o only of these. Price \&15 each. Now new

RACK AND CHARGER FOR BLEEPERS

heceivers are stored in this over nipht and charyed at the orier. £10 cath.
B AMP VARIACS
8 AMP VARIACS
These are variable Voltage tranionnerm. British made ly itted with calibrateid scale alud conton) knolt. Zenith mudel
 This modet is listed at over se0. We have a minten quantion to tornmiles. 75 each
 to 500° overlwad voltage regulated son suitathe tun operate IV or instrument. In case with metal cover comtrois ont to make. Our price ony $£ 25$ each plus carriage $£ 2$ up to 150 WATT PEARL LAMPS
 POWER RHEOSTAT
61 ohme at 11.5 anins. This in a larse rleostat. 1 unty. POWER RHEOSTAT
9 V GRAMOPHONE UNIT

BUY TIME SLOT METER
Made dyy Sangetme Weston, ispes. one for radb com, 4 STATION TRANSISTORISED INTERCOM
sub station pugh hutton/press tant en ccl. mater and trec comptete with instahation accessories and 9 y . liver-ready PHOTO ELECTRIC KIT
 AC/DC MILLIAMETERS 3 RANGE
Moving iront nurror scale lahoratory hatalate. Ranges) \times.
GALVOMETER 7-0-7UA F.S.D.
Moving coil prectsion laborawry ingtrument of extremely
ACOS $\times 2 \mathrm{G}$. Price £\% 50
For ube with transducers and accelerometers. These are

 price $£ T 2$ and Auto cutout moclet (1Dool) which taas and
mbuilt ircuit with relay to tip the externail circuit (irlp
level is adjustable by a control which is virtually linear
 PARMEKO NEPTUNE SERIES C CORE TRANSFORMERS
These transformers are beantitnlly mate, stcel encased stove entmelled black, utright mounting. All have normal
50 cp, primary $230 / 240$. with primary bcreen and are new as iellows. mall quantities ouly of each type available

 Parmeko Neptane C Core Chokes. There ire encased aud

ELECTRIC CAR IGNITION
In anstins ior fiv. tars. These are not kits but matade unp and
VARIABLE INDUCTANCE CHOKE
Has three windings. Two of them tatel to carry 8 A . AC
 control curreut howing the volts itrubped acrses the AC
"indings will be high but as the control curent intereaste the reatance of the main windings hecreases and the
voltaige druped by then would hecmene leas and less. Use
 plus t'2 curiake up to 200 miles, $\in 3,300$ nites, \& 400 miles.

Where postage is not stated then orders
over $£ 5$ are post free. Below 65 add 20p
S.A.E. with enquiries please.
J. BULL (ELECTRICAL) LTD.
(Dept. W.W.) 7, Park Street, Croydon, CRO 1YD Callers to 102/3. Tamworth Road. Croydon
R.S.T. VALVE MAIL ORDER CO.

[^7] Express postage: 3p fo

WEST HYOE DEVELO PMENTS UMM

FOR THE STOCKS, THE DISCOUNTS AND THE SERVICE YOU NEED

 EleGtrovilue

 EleGtrovilue Electronic Component Electronic Component Speciclists

 Speciclists}| |
| :---: |
| | |
| | |

TRANSISTORS BY SIEMENS AND NEWMARKET

2N3055 npn silicon power	60 p	BDI35 npn medium power 37p
AC153K pnp germanium low power	32p	BDI36 pnp medium power 38p
ACl76K npn germanium low power	32p	
ADI61 non germanium medium power	42p	
ADI62 pnpgermanium medium power	40p	$\begin{aligned} & \text { OA90, OA91, OA95 each } 6 \\ & \text { OA200-9p; OA202-10p } \end{aligned}$
AFI39 pnp germanium UHF ${ }_{\text {BCl }}$	33p	
$\begin{aligned} & \mathrm{BC} 107-13 \mathrm{p} ; \mathrm{BCl} 108-12 \mathrm{p} ; \mathrm{BC109-13p} \\ & \mathrm{BC} 167-11 \mathrm{p} ; \mathrm{BCl} 68-10 \mathrm{BC} ; \mathrm{BC} 69-11 \mathrm{p} \end{aligned}$		Other semi-conductors ACI28-21p AFII7-32p
		BFY5I-19p
BC257-12p; BC258-11p; BC259-13p		
Standard groupings available.		

Very many other types listed, described and illustrated in catalogue.

SLIDER POTS. In values from $4 K 7 \Omega$ to $1 M \Omega$, linear or log, 26p. Escutcheon, white, grey, black SKELETON PRE-SETS. Small high quality, eype PR linear only: $100 \Omega, 220 \Omega, 470 \Omega, 1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K} 7$, 10K, 22K, 47K. 100K, $470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mounting, 5p each
NUTS, SCREWS, ETC. In lots of 100.
Nuts 2BA-11p; 4BA-28p; 6BA-26p.
Screws 1 - $2 B A-67 p ; 4 B A-35 p ; 6 B A-26 p . ~$ $0.5^{\prime \prime}-2 \mathrm{BA}-50 \mathrm{p}$; 4BA-23p; 6BA-19p. Screws roundheaded, cheese headed or countersunk.
Other sizes available. Also tags, washers, spacers, etc.

KNOBS

K. 30/3

Solid
aluminiu
17 mm .

ZENER DIODES

Full range E24 values:
400 mW W: 2.7 V to $36 \mathrm{~V}, 14 \mathrm{p}$ $400 \mathrm{~m} W: 2 \cdot 7 \mathrm{~V}$ to $36 \mathrm{~V}, 14 \mathrm{p}$
each; $1 \mathrm{~W}: 6.8 \mathrm{~V}$ to $82 \mathrm{~V}, 21 \mathrm{p}$ each; $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to 75 V , 48p each. Clip to inerease 1.5 W rating to 3 watts (type)
266 F) 4 p .

SIEMENS THYRISTORS 0.8A 400V, 56p; 600V 70p. $0.8 \mathrm{~A} 400 \mathrm{~V}, 56 \mathrm{p} ; 600 \mathrm{~V} 70 \mathrm{p}$.
$3 \mathrm{~A} 400 \mathrm{~V}, 60 \mathrm{p} ; 600 \mathrm{~V}, \quad 88 \mathrm{p}$. $\frac{3 A}{\text { DE-SOLDER BRAID }}$

TOGGLE SWITCHES
 19p; 409 DPDT toggle 28p. (These
are chrome plated. 2.5 A rating). 7201 2.5A rating).
Sub-miniature DPDT 250 V a.c. $/ 2 \mathrm{~A} 48 \mathrm{p}$
ELECTROLYTICS Prices in pennies

Smallest size $3.7 \mathrm{~mm} \times 12 \mathrm{~mm}$ types of capacitors stocked.

ROTARY SWITCHES
Radiospares Miniature Maka. switch (in
Shaft 48p.
Shaft 48p.
Wafers, MBB-2P5W, IP IIW
BBMIPI2W $2 P 6 W$
4P3W, 6P2W, each 32p.

Wavechange switches $1 P 12 \mathrm{~W}, 2 \mathrm{P} 6 \mathrm{~W}, 3 \mathrm{P} 4 \mathrm{~W}, 4 \mathrm{P} 3 \mathrm{~W}$ each 24p.

Minitron DIGITALINDICATOR

TYPE 3015F Seven segment indicator compatible with standard logic modules and power supplies. Figs. 09 character of 9 mm heighe plus decimal point. Power number of alphabetical symbols also avail- $\mathbf{1 2 0 0 0}$
able. In 16 lead OIL case Suitable BCD decoder driver type
FLLI21T nett
$\leq 1 \cdot 36$ OIL Socker: 16 lead 30p. No. 3015G showing + or
and fig. I and decimal poin $£ 2$-00. nett

TTL ICs ${ }_{\text {Nett Price }}$

7400 7401 7401 7402 7403 7404 7405 7408 7409 7410 7413 7420 7430 7440

DISCOUNTS
Available on all items excep chose shown with NET $f 5$ to $\mathrm{f} 15.15 \%$ on orders $f 15$ and over.
TERMS OF BUSINESS
TERMS OF BUSINESS in accordance with our standard terms of business, a copy of which is available on request. Prices subject to alteration without notice Enquiries from quantity users invited.
PACKING \& POSTAGE FREE in U.K. For mail order for 62 list value and under there is an additional hand ling charge of $10 p$

As prices shown here
DO NOT INCLUDE
Please add 10% to net value of order to meet tax requirements
Overseas orders are exempt.
(DEPT. WW.3), 28 ST. JUDES RD, ENGLEFIELD GREEN, EGHAM, SURREY, TW20 OHB
Hours: 9-5.30, 1.0 p.m. Saturdays.
Phone: Egham 3603 Telex 264475
Reg. offices at above address
Business Reg. No. 1047769

COMPONENTS FOR W.W. AMPLIFIER DESIGNS

100W AMPLIFIER (FEB. 1972)

Designer approved kit.
Semiconductor set
Resistors. capacitors, pots
F/Glass PCB
POWER SUPPLY (For IOOW Amp.) Designer approved kit.
Semiconduetors, Resistors, capacitors, pots, transformers, F/Glass PCB
30W BLOMLEY (New approach to elass B)
Semiconductor set
Resistors, capacitors, pots
3 Faw BAIL
Transistor set
Resistors. capacitors, pots
F/Glass PCB
LINSLEY-HOOD CLASS A (Dec., 1970, circuit)
Designer approved kit.
2N3055 pair, BC2I2L, 2NI7I
Resistors, capacitors, por
F/Glass PCB
LINSLEY-HOOD 20W CLASS AB
Designer approved kit.
MJ481/491, MJE52I, BC 182 L , BC2I2L, zener
Resistors, capacitors, pots
Please state
ease state 8Ω or 15Ω
REGULATED GOV POWER SUPPLY
A 5 transistor series stabiliser, suitable for a pair of Bailey or Blomley amplifiers, featuring very effective
S / C protection. All Semi/C's, R ' C 's, F / G lass $P C B$ Socter supplies for other amplifiers aiso available Power supplies for orher amplifiers aiso BAILEY/BURROWS PRE-AMP (Aug., 1971) Component Set: Mono
Each component set comprises of all specified resistors capacitors. transistors pots, including special balance control for stereo sets.
Stereo F/Glass PCB
STUART TAPE RECORDER
Set of stereo f/glass PCBs
Components sets on price ist

HI-FI NEWS 75 WATT AMPLIFIER

 BY J. L. LINSLEY-HOOD
DESIGNER APPROVED KIT

SLIMLINE STYLE CHASSIS DIMENSIONS: $17.0 \mathrm{in} . \times 2.0 \mathrm{in} . \times 12.0 \mathrm{in}$. This slimline unit has been made practical by the use of a specially designed TOROIDAL TRANSFORMER and highly compact printed circuit boards which have been fully tested and approved by Mr. Linsley-Hood.

FREE
 TEAK CASE

WITH 75 WATT PER CHANNEL COMPLETE AMPLIFIER KITS

Total cost of individually purchased packs:
£63.95

Cost of complete kit: £56.60
TRADE ENQUIRIES WELCOME

Pack

1 Fibre glass printed circuit board for power amp.
60.75

2 Set of resistors, capacitors, pre-sets for power amp. .. $\mathbf{£ 1 . 5 0}$
3 Set of semi-conductors for power amp. (highest voltage version)
65.50

4 Pair of 2 drilled, finned heat sinks
$\mathbf{6 0 . 8 0}$
5 Fibre glass printed circuit board for pre-amp............ $£ 1.10$
6 Set of low noise resistors, capacitors, pre-sets for pre-amp $\mathbf{£ 2 . 7 0}$
7 Set of low noise, high gain semi-conductors for pre-amp $\mathbf{£ 2 . 1 0}$
8 Set of potentiometers (including mains switch)
f 1.55
9 Set of 4 push button switches, rotary mode switch
63.10

10 Toroidal transformer complete with magnetic screen/ housing primary: 0-117-234 V . secondaries: 33-0-33 V . 24-0-24 V., electrostatic screen 69.15

II Fibre glass printed circuit board for power supply $\mathbf{\ell 0 . 5 5}$
12 Set of resistors, capacitors, secondary fuses, semiconductors for power supply
63.50

I3 Set of miscellaneous parts including DIN skts., mains input skt. fuse holder, interconnecting cable, contro! knobs
€ 3.25
14 Set of metal workparts including silk screen printed fascia panel and all brackets, fixing parts, etc.
6.30

15 Handbook, based on Hi-Fi News articles $\mathbf{E 0 . 3 0}$
16 Teak cabinet \quad each of packs $1-7$ inclusive are required for complete 2 each of packs
stereo system.

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE, ANDOVER : HANTS
MAIL ORDER ONLY
POST FREE TO U.K.
OVERSEAS AT COST
U.K. Orders Subject to 10\% V.A.T. Surcharge

Basic Component Set

Set of semi-conductors, resistors, capacitors, printed circuit boards for stereo power amp, pre-amp. and power supply.

$£ 31.35$

Lenrys
 Your Complete Audio-Electronic Stores

BUILD 1 AT T 20+20WATT INTEGRATED THE
 I.C. STEREO AMPLIFIER

\star FREE TEAK CABINET with com-
FEATURES. New slim design with 6 -IC's IC Sockets, 10 silicon
transistors, 4 rectifiers, 2 zeners. Special Gardeners low field slimlinetransiormer. Fibreglass PC panel. Complete chassis work. DIGEVELOPED BY TEXAS ENGINEERS FOR PERFORMANCE. FACILITIESS. Onjoff switch indicator, headphone s separate refile, bass, monolstereo switch, Input selector; Mag. P.U. Radio Tuner, Aux. Can be altered for Mic, Tape, Tape.
head, etc. (Parts' list Ref. 20 on request). Constructional head, etc. (Parts lisi
details (ret no 21) 300.

P. \& P. 45p. COMPLETE WITH FREE
TEAK CABINET Designer approved kit
by Henry's Radio Lid.

SLIM DESIGN WVTH

SILVER
all
chassis
Ris
siz

BUILD A VHF/FM TUNER
doubt about it-VHF MM FMo and stereo. There is

SINCLAIR PROJECT 60 MODULES-SAVE fff's

04090
J1000 100 watt
 Fibre Opties Lighting. Mics. Effacts. Projactors. Spots. Dimmars - Stands. Hixers. Spaakers. Everything for PA-Disco-Lighting.

PA-DISCOFLCHIUAH

D 330 L 3 Channel sound to light unit, 3 kw . $£ 29$
D J40L 3 Channel Mic. (Buiti-in) to light, 3 kw . E 3 i DJ70S 70 watt Disco amp/mixer
DISCOAMP 100 watt amp./mixer DJto5S 30 watt Disco amp./mixer D J 70070 watt
Anti-F eedback. Quality Mic.
D 1500 S0 watt

BECTIFIETS $\begin{array}{lllll}\text { Type voits } & \text { Price } & \text { B1/20 } & 200 & 30 \text { p } \\ \text { P.l.Y. }\end{array}$
 BECTIFIERS

 $\begin{array}{lll}\text { Type } & \text { Volts } & \text { Price } \\ \text { P.J.V. } \\ \text { 1-11 }\end{array}$

SL4030D PLESSEY 3 WATT R.M.s. I.C.
Complete with 8 page Da 8ooklet and Circuits ef.50.
(P.C. Board Stereo 60 : Heat (P.C. Board Stereo 60p; Heat Sink
Also Sin TH90t3P-20 watt Power Amp Module e4.57.
TH9014P-IC TH8014P-IC Preamp $£ 4.50$. DatalCircuits for above
No. No. 4210 p .
ZNA14 RADIO

NEW BRIDGE RECTIFIERS

AMPS
$\times \times \frac{3}{70}$
50
100
200
600
1000
AMP
L×
100

40 p
45 p
50 p
60 p
60 p

silicon controlled rectifiers

$\underset{\substack{\text { Larisi } \\ \text { Limion } \\ \text { CATALOGUE }}}{ }$
 AN ABSOLUTE MUST IN ELECTRONICS

 LATEST EDITION! Fully detailed and Illus plus data, circuits andinformation.
10,000
Stock Information. 10,000 Siock
lines at Special Low Prices lines at Special Low
and Fully Guaranteed. PRICE $550 \begin{gathered}\text { Post } \\ \text { Paid } \\ \text { (40p FOR CALLERS) }\end{gathered}$ POR CALL
PLUS 1 FIVE 10p VOUCHERS For use with purchases Send to this address-HENRY'S RADIO (Dept WW) 3 ALBEMARLE WAY, LONDON,
E. C.-for catalogue by post only. All other mail to E. C. 1. - for catalogue by post only.
'303' and callers to ' 404 'see beiow

can buy

 LITEEGAITED CIRCUITS!! can buy the genulne article from us at competitive prices from stock? BRANDED FROM TEXAS I.T.T. FAIRCHILD
 \qquad
 \qquad
 Ty 8N SN 8 8 8 8 8 8 8 8 8 8
 $25 / 99$ $18 p$ $16 p$ $16 p$ $16 p$ $16 p$ $16 p$ $26 p$ $25 p$ $18 p$ $35 p$ $16 p$ $20 p$ $35 p$ $25 p$ $25 p$ $25 p$ $18 p$ $40 p$ $40 p$ $35 p$ $35 p$ $42 p$ $16 p$ $35 p$ $44 p$ $50 p$ $50 p$ $18 p$ $70 p$ $70 p$ $90 p$ 81 LARGER QUANTITY PRICES PHONE 01.402 4891
 C SOCKETS 16 lead 17 g 14 lead 15p

128120 PMENT

Just a
Selec-
tion
$\begin{array}{lll}\text { SE250B } & \text { Pocket Pencil Signal Injector } \$ 1.90 \\ \text { SE500 } & \text { Pocket Pencll Signal Tracer } £ 1.50\end{array}$ $\begin{array}{ll}\text { SE500 } & \text { Pocket Pencil Signal } \\ \text { THL33D } & \text { Robust } 2 \mathrm{~K} / \text { Volt } £ 4.55 \text {. }\end{array}$

$500 \quad 30 \mathrm{~K} / \mathrm{V}$ Multimeter 50.25
$200 \mathrm{H} \quad$ With leather case $£ 10 \cdot 50$
$20 \mathrm{~K} / \mathrm{V}$ Multimeter $\mathrm{EA} \cdot 20$.

U4341 AC/DC Multimeter with transistor Tester. Steel case $£ 10-50$
RF Generator $120 \mathrm{KHz}-500 \mathrm{MHz} £ 16.50$ TE22D Carr. 35 p Audio Generator $20 \mathrm{~Hz}-200 \mathrm{KHz} £ 17.50$
 TE65 Varr. ${ }^{50 \mathrm{p}}$ Voltmeter 28 ranges $£ 17.50$ ALL NOMBREX MODELS IN STOCK

"BANDSPREAD

 PORTABLETo build MWILW Supe het Radio using Muliard
RFIIF Module, 600 mW olp. Fibre glass cabinet. TUNER
ML3-Superhet
MW/LW radio MW/LW radio
Tuner to build
Sunimg S/M Tuning, Mullard Module
ALL
ALL PARTS ALL PA. P. \&
Ef.

ZENER DIODES

$400 \mathrm{M} / \mathrm{W}_{\text {E }} 5 / \mathrm{Min}$ -
Range. All vol-
Range
tapes each.
10, $25+9 p ; 100+8 p$
$500+5 p$. $500+6.5 p$. Any
one type.

$$
\text { 32p. (Battery } 220 \text { extra.) }
$$

7 SEG \& MIXIE TUBES (Post $15 p$ per 1 to 6)
$\times N 3$, XN13, GN60-9 side view Wlth data, 55 p .
GNP. 7 GNPP
O-9 side with decimal points and data,
95p.
$3015 \mathrm{~F} 7 \mathrm{seg} . £ 2$ each, $\mathrm{\varepsilon} 7$ der 4 with data.
12 and 24
hour clock circuits. Ret. No. 31 45p.

ULTRASOMIC

Operate at $40 \mathrm{kc} / \mathrm{s}$ up to 100 yds. Ideal remote switching data and new I.C. clrcults.
PRICE PER PAIR $\$ 5 \cdot 50$. POst 10p.

QUALITY SLIDER 60 mm stroke singles and ganged. Complete with knobs.
gk Ω, $10 \mathrm{k} \Omega, \quad 25 \mathrm{k} \Omega$, $100 \mathrm{k} \Omega$ $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 100 \mathrm{kS}$,
$250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega .1 \mathrm{meg}$. Log and
 Lin ganged. 40p each. 4 TRACK MONO
of 2 TRACK STEREO
 "'18"' Med. Mopedance
"36" Med.-Low Imp.
Erase Heads for above
75 " 13 " 2 track mono- High
Impedance
" 43 " 75
Erase Head for above 75 p .

[^8]\qquad

6 days a week

PRECISIONA．C．MILLIVOLTMETER（SolartIon） $1.5 \mathrm{~m} . \mathrm{v}$ ． to 15 v ： 60 db to 20db． 9 ranges．Excellent condition． E22．50．P．P．£9．50．
V．H．F．POWER TRANSISTORS．PT4176D． 24 wat 75 MHz ，£1．50．PT4176C． 12 watt 175MHz．£1． 25. Set of 4 with Typical Circuit $£ 4$ ．
MINIATURE UNISELECTORS（A．E．I．2203A．）， 3 bank， 12 position，non－bridging wipeis． $\mathbf{£ 4} \mathbf{2 5}$ ea．Brand new． Complete with base．
CD． 1220 OSCILLOSCOPE，with dualtrace Plug－in．（CX1257） DC－24MHZ．E125．（CX1256）DC－40MHZ，£25．
SOLARTRON OSCILLATOR（CO54B） $25 \mathrm{~Hz}-500 \mathrm{KHz} £ 50$. OVERLOAD CUT．OUTS．Panel mounting $\left(1 \frac{3}{4} \times 1 \frac{1}{6} \times \frac{1}{2} \mathrm{ln}\right.$ ．）
800 M／A／1．8 amp／10 amp． 35 p ea．P．P． 5 p ． 800 M／AM． 8 amp／10 amp．35D ea．P．P． 5 p．
BULK COMPONENT OFFER．Resistors／Capacitors．All types and values．Ali new modern components．Over 500 pieces £2．（Trial order 100 pcs．50p．）We are conficent you will re－order
 spec．\＆circuit．

U．K．ORDERS 10\％V．A．T．SURCHARGE

HIGH－SPEEDMAGNETIC COUNTERS． 4 digit（non reset） 24 v or 48 v ．（state which） $4 \times 1 \times 1 \mathrm{in}$ 40 p
5 digit（non－reset）6－12－24－48v （state which）75p．P．P．5p．

5 digit（Reset）12v．£3．P．P．5p．

HIGH CAPACITY ELECTROLYTICS

$2,200 \mu \mathrm{f} .100 \mathrm{v}$ ．（ $1 \frac{\mathrm{t}}{} \times 4 \mathrm{in}$ ．） $60 \mathrm{p} .3,150 \mu \mathrm{f} .40 \mathrm{v} .\left(1 \frac{1}{4} \times 4 \mathrm{in}\right.$ ．） $60 \mathrm{p} .10,000 \mu \mathrm{f} .25 \mathrm{v}$ ．（ $1 \mathrm{t} \times 4 \frac{1}{2} \mathrm{in}$ ．） $60 \mathrm{p} .10,000 \mu \mathrm{f}$ ． 100 v ．
 packing 5p．
＂PAPST＂TAPE MOTORS．（LZ 20．50）．New Boxed．£2．P．P． 25p．

TRANSFORMERS

TRANSFORMERS
L．T．TRANSFORMER．（Shrouded）Pim．200／250v Sec．20／40／60v． 2 amp．E2 ea．P．P．40p． Sec． TRANSFORMER（CONSTANT VOLTAGE） Prim．200／240v．Sec．1．50v，at 2 amp．Sec．2．50v．a $100 \mathrm{~m} / \mathrm{a}$ £3．P．P．50p
L．T．TRANSFORMER．Prim． 1101240 v ． $\mathrm{Sec}, 2 \times 32 \mathrm{v}$ ．＠ 4 amp 20v．＠ $5 \mathrm{amp}: 15 \mathrm{v} @ 1.5 \mathrm{amp} .: 7 \mathrm{v} @ 2.5 \mathrm{amp}$ ．E．P．P．P． 50 p
L．T．TRANSFORMER．Prim 220／240v．Sec． 13 v L．T．TRANSFORME 1.5 amp．65p．P．P．15p．
L．T．TRANSFORMER L．T．TRANSFORMER．Prim． $115 / 240 \mathrm{v}$ ．Sec． 10.5 v P． 40 ．c．t $28-0.28 \mathrm{v}$ ．at 2 amp．shrouded type．$£ 2$ 2500 Watt．ISOLATION TRANSFORMER（CON STANT VOLTAGE）．Prim．190－260v． 50 Hz Se 230 v ．at 10.9 amps ．$£ 30$ ．Carr．$£ 2$ ．
H．D．STEP－DOWN TRANSFORMER．Prim．200／240v Sec． 117 v at 19.8 amps ．（ 2,300 watt）．£22． 50 ．Carr．£2 H．T．TRANSFORMERS．Prim．200／240v．Sec $300-0-300 \mathrm{v} .80 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$ ．c．t． 2 amp．£1－50 P．P． 40 p． $350-0-360 \mathrm{v}$ ． $60 \mathrm{~m} . a .6 .3 \mathrm{~V}$ c．t． 2 amp．E1．P．P． 25 p ．
STEP－DOWN TRANSFORMERS：Prim．22／240 STEP．DOWN TRANSFORMERS：Prim． $22 / 240 \mathrm{v}$
Sec． 115 v ．Double wound 500w．\＆5．P．P．$£ 1.700 \mathrm{w}$. Sec． 115 v ．Double wound 500 w ．£5．P．P．£1． 700 w
（with filters）£10．P．P．£1． 500 w ．（metal cased with （with filters）$£ 10$ ．P．P．$£ 1$ ． 500 w ．（metal cas
socket output）and overload protection．$£ 6.50$ ． AUTO－WOUND． 75 W ．£1．P．P．25p．300W．£1．50． PP．50p 750W £6．P．P．£1．
L．T．TRANSFORMER．Pim．110／240v．Sec．0／24／40v 1．5A．（Shrouded typo）．E1－50．P．P．25p． HT／LT TRANSFORMER Prim． 240 v ．（iapped）Sec． 1 ．
$500-0-500 \mathrm{v} .150 \mathrm{~m} / \mathrm{a}$ ．Sec． $2.31 \mathrm{v} .5 \mathrm{amp} . ~ £ 2.78$ 500－0－500
P．P．50p．
P．P．50p． AUTOMATIC VOLTAGE STABILISER．（Claude
Lyons）Input： $190-260 \mathrm{v}$ ．Outpuif $240 \mathrm{v} \pm .15 \% .12 \cdot 4$

PRECISION CAPACITANCE JIGS．Beautifully made with Moore \＆Wright Micrometer Gauge．Type 1．18．5pf． 10 ，220pf \＆l0 each Type 2 9.5 pf to 11.5 pf E 6 each． MULTICORE CABLE（P．V．C．）．
6 core（ 6 colours） 3 screened，14／0048． 18 p ．yd． 100 yds
f12．50． f12．50．
24 core（ 24 colours）20p．yd． 100 yds ．£17．50．
30 core（ 15 colours） 22 lp ．yd． $100 \mathrm{yds}. \mathbf{~} 18 \cdot 50$.
$\mathbf{M 4}$ core（ 17 colours）25p．yd． 100 yds．$£ 20$ ．

TELEPHONE DIALS（New）$£ 1$ ea．

RELAYS（G．P．O．＇ 3000^{\prime} ）．All types．Brand new from 37年p ea． 10 up quotations only
EXTENSION TELEPHONES（Typ 706 ） New／Boxed．£5．50p RATCHET RELAYS Types 85p．P．P．5p．
UNISELECTORS（Brand new）25－wa 75 ohm． 8 bank $\frac{1}{2}$ wipe $£ 3 \cdot 25$ ． 10 bank
$\frac{1}{2}$ wipe $£ 3.75$ ．Other types from $£ 2.25$ ．

BLOWER FANS（Snail type）Type 1 ：Housing dia． $3 \frac{1}{2}$ in Air outlet $1 \frac{1}{4} \times 1$ in．£2．25．P．P．25p．Type 2：Housing dia． 6 in ．Air outlet $2 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$ ．E4．P．P． 50 p ．Both types 115 240v．A．C．（brand new）
POT CORES LA1／LA2／LA3 50p each

RELAYS

SIEMENS／VARLEY PLUG－IN．Complete with transparen dust covers and bases． 2 pole c／o contacts 35p ea ； 6 make contacts 40p ea．； 4 pole c／o contacts 50p ea，6－12－24－48v types in stock．
12 VOLT H．D．RELAYS（ $3 \times 2 \times 1 \mathrm{in}$ ．）with 10 amp ．silver contacts 2 pole c／o 40p ea．； 2 pole 3 way 40 p．P．P． $5 p$ 24 VOLT H．D．RELAYS $\left(2 \times 2 \times \frac{3}{4} \mathrm{in}\right.$ ．） 10 amp ．contacts． 4 pole c／o． 40 p ea．P．P． $5 p$
240v．A．C．RELAYS．（Plug－in type）． 3 change－over 10 amp contacts．75p（with base）．P．P．5p
 $\frac{1}{1}$ oz． 1 make $3 / 12 v .40$ p．ea
SILICON BRIDGES． 100 P．I．V． 1 amp．（ $\frac{1}{5} \times \frac{1 \times}{} \mathrm{in}$ ．）30p 200 P．I．V． 2 amp 60p．
24 VOLT A．C．RELAYS（P／ug－in）
3 Pole Change－over 60p．

PATTRICK \＆KINNIE

191 LONDON ROAD • ROMFORD－ESSEX
ROMFORD 44473
RM7 9DD

400HZ INVERTERS． 27.5 v 150A Input． 115 v 400 Hz 2500 Y A． output．Not new but in excellent condition；fitted with control
box contalning swltchgear and voltage and frequency adjust－ ment circuits．These are extremely small freq theiry capacity only 1 in long and i3in high overall including the control box which also carries the circuit diagram． $\mathbf{\Sigma 2 9}$（C．Pd．U．K．Mainld．）．
$+10 \%$ V．A．T．Many other types avallable．S．A．E．Iist．
STAINLESS STEEL VACUUM CONTAINERS FOR LIquiDS．Capacity 2 U．S．galls．fitted with delivery taps．
Brand new in cartons－ $\mathbf{E} 22.50$（C．Pd．U．K．）$+10 \%$ V．A．T．

DOWTY ROTOL VALVES 07402YB33．We have Just recelved a tew of these difficult to obtain Items．P．O．A． VACTRIC SIZE 23 PULSE GENERATORS（Shalt DIgltizers）． Two outputs each of 250 square wave pulses per 360° displaced
by $\frac{1}{4}$ pitch．New with test chart．P．O．A．

OVER 300，000 IN STOCK！ Multiway and R．F．Connectors by twenty different companies！
Send us your detailed require－ ments quoting Nato numbers if known．We are now on TELEX．

BURGLAR ALARM SYSTEMS

The following items and those on the right have application to the construction and instailation
aiso hold iarge stocks of RELAYS etc．
TIME SWITCH Smiths type TT．10／KD．O／10 minutes．Contacts 2－pole， 250 y 50 Hz －62－25．（P．Pd）

RODENT TIMER Type 851． 110 v ．A．C．motor．O／60 seconds．
S．P，contacts． 250 v 50 Hz 5A－E．2．75．（P．Pd．）
P．V．C．INSULATED WIRES．t／024in．to DEF12C．Our chpice
of colours 70 p per 100 yds．，$£ 3.25$ per 500 yds．，$£ 6$ per 1,000 yds of colours 70p per 100 y
all C．Pd．$+10 \%$ V．A．T．
ETHER ELECTROMETHODS LOW INERTIA
Available ex－stock at extremely low prices．For $1.5,6,12$ and
24 V operation．

ADVANCE VOLTSTAT STABILISED TRANS

ADVANCE FORMERS

PLANNAIR．Axial Flow Fans（with mounting）Type 6PL－
$122-331 \mathrm{Mk} .26{ }^{\circ}, 2,800 \mathrm{r}$ r．p．m． 400 v ． 3 ph 50 Hz ．New and boxed $£ 15$ （C．Pd．U．K．）＋＇V．A．T． Also avallable tested but not new in $220 / 240 \mathrm{v}, 50 \mathrm{~Hz}$ verslon at
$\mathbf{E} 5.95$（C．Pd．U．K．）$+10 \%$ V．A．T． MULTICORE PVC COVERED TELEPHONE CABLE 24 core $£ 22$ per 100 yds， 12 core $£ 18$ per 100 yds， 8 core $£ 12$ per
100 yds， 4 core $£ 10$ per 200 yds， 2 core $£ 3$ per 100 yds．（All C．Pd： U．K．Mainland）$+10 \%$ V．A．T．
HEAVY DUTY PVC INSLTD．FLEXIBLE CABLE to DEF 12 D Type 3 in following colours：violet，yellow，white，${ }^{\text {grey }}$ ，

 A．C．MAINS to $27 V$ D．C．POWER SUPPLY
circult．These interesting
OTV
$0.5 A$
UniTS A．C．MARS
circult．These interesting 27 F 0.5 A unlts（will happily provide
700 ma indefinitely）are bullt into an attractive grey－finished 700 mA indefinitely）are bullt into an attractive grey－finished
instrument case，provision being made for base or side mount－ instrument case，provision being made for base or side mount－
Ing．Cable entry grommets are mounted in the base of the unit，The choke caracity smoothed output is solld state stabi－ Ilsed against variation in input voltage and output current，and
input and output fuses with spares are fitted．The output input and output fuses with spares are fitted．The output
operates a built－in S．P．C．O．relay to switch for instance an operates a buit－in
alarm circuit．There is adequate room tor other equipment
within the ventilated case，which is $12^{\prime \prime} \times 10^{\circ} \times 6^{\prime \prime}$ deep．

DRY REED INSERTS

Overall length $1 \cdot 85^{\prime \prime}$（Body length I I＂） Diameter $0.14^{\prime \prime}$ to switch up to 500 mA at up to 250v D．C．Gold clad contacts．63p per doz．$£ 3.75$ per $100 ; £ 27.50$ per 1,$000 ; £ 250$ per 10，000．All carriage paid U．K．$+10 \%$ V．A．T．
Heavy duty type（body length $2^{\prime \prime}$ ）diameter $0.22^{\prime \prime}$ to switch up to 1 A ．at up to $\mathbf{2 5 0 V}$ ．A．C． Gold clad contacts，$£ 1.25$ per doz．，$£ 6 \cdot 2$ per 100；$£ 47 \cdot 50$ per 1，000；£450 per 10,000 Changeover type $62 \cdot 50$ per doz．All carriage paid U．K．$+10 \%$ V．A．T．
Operating Magnets 55p per doz $£ 4$ per 100； 635 per 1000 ．All carriage paid $+10 \%$ V．A．t．

BRAND NEW

WE SUPPLY NEARLY alL the COMPONENTS FOR PROJECTS ADVERTISED IN THIS MAGAZINE

ALL PRICES EXCLUSIVE OF V.A.T.
Tel: 01-452 0161/2/3 A. MARSMALL\& \& SONLD
Telex 21492
42 CRICKLEWOOD BROADWAY, LONDON, N.W. 2

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$
volt -52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External volt $-52 \cdot 5$ ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External
Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$. Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$.
Consumption approx. 40 watts. Measurements $29 \times 12 \frac{1}{4} \times 10 \mathrm{in}$. Secondhand Consumption approx. 40 watts. Me
condition. $£ 27 \cdot 50$ each, Carr. $£ 1.50$.
T. 1509 TRANSMITTERS (FOR EXPORT ONLY): General-purpose HF communications transmitter for use in fixed or mobile ground stations. Hand or
high-speed keying. Crystal or MO control, with temperature compensated MO circuit.CW, MCW and R/T. Frequency: 1.5 to $20 \mathrm{Mc} / \mathrm{s}$. Modulation: 100% O/put impedance: 50 ohms. Audio input: 600 ohms. Valves : Power Amplifier 2×813 and Modulator 2×813. Power requirements $200-250$ volts a.c.,
50 cycles. Power out put 300 watts. Dimensions 2 ft .6 in . $\mathrm{W} . \times 2 \mathrm{ft}$. D. \dot{K} 5 ft . H. Weight: 800 lbs. Excellent condition, price $£ 225.00$ each
AN/ARC-27 TRANSMITTER/RECEIVER (FOR EXPORT ONLY): Frequency $225-400 \mathrm{mc} .1750$ channels 100 Kc apart with 18 preset channels. Modulation: am. Power output 9 watts. Receiver is superheterodyne. Max. output 2 watts. Antenna: 50 ohm impedance. Power requirements 24 v d.c. phone. Price $£^{250.00}$ each secondhand, excellent condition. input. 24 v d.c.output @ 41 amps fully smoothed. $£ 45.00$ each.

TEST SET TS-147C: Combined signal generator, frequency meter and power meter for $8500-9600 \mathrm{Mc} / \mathrm{s}$. CW or FM signals of known freq. and power or measurement of same. Signal Generator: O/put - 7 to -85 dbm. Transmission-FM, Phase Range-3-50 microsec. Pulse Repetition Rate-to 4000 pulses per sec. RF Trigger for Sawtooth Sweep-5-500 watts peak. Seep-Positive polarity $10-50 \mathrm{~V}$ peak. $0.5-20$ microsec duration at $10 \% \mathrm{max}$. amplitude, less than 0.5 microsec rise time between 90% and 10% max. amplitude points. Frequency Meter: Freq. $8470-9360 \mathrm{Mc} / \mathrm{s}$. Accuracy- $+2.5 \mathrm{Mc} / \mathrm{s}$ per sec. absolute, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec. for freq. increments of less than $60 \mathrm{Mc} / \mathrm{s}$ relative, $\pm 1.0 \mathrm{Mc} / \mathrm{s}$ per sec. a Power Merer: Input: +7 to +30 dbm . Output -7 to -85 dbm . Price: $£ 75$ each Power Meter
$+\AA 1$ carr.
SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with A portable, self-contained, general-purpose test equipment designed for use with power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq. $-1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM, Modulated Pulse $40-4000$ pulses per sec. Pulse Width-0.5-10 microsecs. Timing -Undelayed or delayed from $3-300 \mathrm{microsecs}$ from external or internal pulse. O/put-1 milliwatt max., 0 to -127 db variable. O/put Impedance- 50Ω. Price
$£ 120$ used, excellent condition. Unused as new condition $£ 150+$ carr. $£ 2$. $£ 120$ used, excellent condition. Unused as new condition $£ 150+$ carr. $£ 2$. TS-382/U AUDIO OSCILLATOR: 20 to $200,000 \mathrm{c} / \mathrm{s}$. in four ranges. Freq. meter check $60 \mathrm{c} / \mathrm{s}$. and $400 \mathrm{c} / \mathrm{s}$. Emission CW. O/put voltage: 1 uv to $10 \mathrm{~V} \pm 3 \%$ in seven ranges. Power req. 115 V AC single phase. Price $£ 20$ each, used good
condition. Unused condition $£ 30+$ carr. $£ 1.50$.
FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$, complete with original calibration charts. Checked out, working order. $£ 18 \cdot 50+£ 1.00$ carr. BC-221 Unused as new condition complete with headset, spare valves, charts. $£ 35 \cdot 00$ TS-452 F
TS 6 b2 F.M. SWEEP GENERATOR: Power supply $115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}, 5-100 \mathrm{MHz}$ in 6 bands (rf of put); $5-102 \mathrm{MHz}$ in 4 bands (freq. meter). Emission: F.M. R.F. Doltage o/put 25 V . Input impedance 470 ohms. O/put impedance 73 ohms. C2.00 carr. 64 SIGNAL GENERATOR: Freq. $900-2100 \mathrm{MHz}$. CW or pulse emission. Power o/put Zero $\mathrm{dbm}-120 \mathrm{dbm}$ continuously adjustable to 2 uy into 50 . O/put impedance 50 ohms with VSWR of $2: 1.115 \mathrm{~V}$ a.c. $50 \mathrm{c} / \mathrm{s}$. As new condition $150 \cdot 00+£ 200$ car
TS-622/URM 44 SIGNAL GENERATOR: Freq. range -7 to 11 GHz Power o/put - 10 to 127 dbm ; Emission CW, FM, Pulse. Direct reading dials for both frequency and power. Operates on 115 volts, $50-1000 \mathrm{~Hz}$. As new condition $£ 175 \cdot 00$ $+£ 2.00 \mathrm{carr}$

> CT. 52 MINIATURE OSCILLOSCOPE: Portable. Operates from 115 V or $250 \mathrm{~V} 50-60 \mathrm{c} / \mathrm{s}$; or $180 \mathrm{~V} 500 \mathrm{c} / \mathrm{s}$. A small compact tropicalised instrument designed to meet requirements of radar and communication engineers and general electronic service. Measures 9 in. $\times 8$ in. $\times 6 \frac{1}{2}$. Time base $10 \mathrm{c} / \mathrm{s}-$ $40 \mathrm{Kc} / \mathrm{s}$. Y plate sensitivity 40 V per cm. Tube 2 hin . Frequency compensated amplier up to 38 dB gain. Bandwidth up to $1 \mathrm{Mc} / \mathrm{s}$. Single sweep facilities. Complete with test leads, metal transit case. As new $\mathbf{£} 27.50$ each. Carr. £1.

TRANSFORMER HV: 228 V input $19,500-0-19,500$ 4.5KVA, Wt. 220 lbs . £30 each. Carr. $£ 4$.
TUNING UNIT: 24 V geared motor driving double 25 pf double spaced variable capacitor. One m/c relay and 2 other relays. $£ 2.50$ each 30 p post, good condition. UHF ASSEMBLY: (suitable for $1,000 \mathrm{MHz}$ conversion) including UHF valves: 2C42, 2C46, 1B40 (complete with associated capacitors and screening), 3 manual counters $0-999$. Valves 6AL5 and $8 \times 6 \mathrm{AK} 5 . £ 10 \cdot 00$ plus 60 p post, good condition. MODULATOR UNIT: complete with transformer and 2×807 valves mounted in 19 in. chassis $\times 8$ in. high $\times 8 \mathrm{in}$. deep. $\mathbf{\Sigma 4} 50$ secondhand cond., or $\mathbf{~} 6 \cdot 5$ new cond. Carriage $£ 1$
Ideal for conversion for use with the above unit. Complete with $2 \times 3 \mathrm{E} 29$ valves. Carriage conversion to 4 metres. 55 secondhand cond.,

ALL U.K. ORDERS SUBJECT TO 10% VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage)
 ST BE ADDED TO THE TOTAL PRICE (including post or carriage)

POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s} .513 \mathrm{~V}$ and 1025V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V a 1 d $\begin{aligned} & 10 \mathrm{Mfd} 600 \mathrm{~V} \text {. Filament Transformer } 230 \mathrm{~V} \text { a.c. input. } 4 \text { Rectifying Valves type } 5 \mathrm{Z3} \text {. } \\ & 2\end{aligned} \times 5 \mathrm{~V}$ windings @ 3 Amps each, and $5 \mathrm{~V} @ 6 \mathrm{Amp}$ and $4 \mathrm{~V} @ 0.25 \mathrm{Amp}$. Mounted $2 \times 5 \mathrm{~V}$ windings @ $@ \mathrm{Amps}$ each, and 5 V @ 6 Amp and 4 V @ 0.25 Amp . Mounted
on steel base $19^{\prime \prime} \mathrm{W} \times 11^{\prime \prime} \mathrm{Hx} 4^{\prime \prime} \mathrm{D}$. (All connections at the rear.) Excellent condition on steel base $19 " W \times 11$
$£ 6.50$ each, carr. $£ 1$. £6.50 cach, carr. $£$
AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts, mounted in a stron steel case $5^{\prime \prime} \times 6 \frac{1}{2 \prime}^{\prime \prime} \times 7^{\prime \prime}$. Bitumen impregnated. \&7 each, Carr. 75 p . $230-115 \mathrm{~V}$ $50-60 \mathrm{c} / \mathrm{s}, 500$ watts. $7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Mounted in steel ventilated case. 84.00 each Carr. 75p
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. 87.50 each, 75 p carr
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $\mathbf{£ 3} \cdot \mathbf{5 0}$ each, post 50 p APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter \&1 125 , post 30 p.
AIRCRAFT SOLENOID UNIT S.P.S.T.: $24 \mathrm{~V}, 200$ Amps, $£ 2$ each, 30 p post. DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \% £ 3$ each, 25 p post. 90 ohms per step. 10 positions total value 900 ohms. 3 Gang. Tolerance $\pm 1 \%$ £ 3.50 each, post 30 p .
TF-1041B VALVE VOLTMETER: Measures 25 mV to $300 \mathrm{~V}, 20 \mathrm{c} / \mathrm{s}$ to 1500 Mc / s a.c. Also 10 mV to 1000 V d.c. Resistance 0.02 ohms to 500 Meg . ohms. Power requirements $200-250$ volts a.c. Secondhand, excellent con. $£ 35 \cdot 00$. Carr. $£$
VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at 2 Amps . $\mathbf{£ 3}$ each 75p post.
RACK CABINETS: (totally enclosed) for Std, 19 in . Panels. Size 6 ft . high $\times 21$
in. wide $\times 16 \mathrm{in}$. deep, with rear door $£ 12$ each, $£ 2.50$ Carr. OR 4 ft . high $\times 23$ in. wide $\times 16 \mathrm{in}$. deep, with rear door. $£ 12$ each, $£ 2.50 \mathrm{C}$
in. wide $\times 19 \mathrm{in}$ decp, with rear door. $£ 8.50$, each, $£ 2$ Carr.
INSTRUMENT CABINETS: $19^{\prime \prime} \mathrm{W} . \times 16^{\prime \prime} \mathrm{H} . \times 16^{\prime \prime} \mathrm{D} . £ 5.00+£ 1 \cdot 25 \mathrm{carr}$ $19^{\prime \prime} \mathrm{W} . \times 10^{\prime \prime} \mathrm{D}$. $\times 5^{\prime \prime} \mathrm{H}$. $£ 2 \cdot 50+£ 1 \cdot 00$ carr.
FUEL INDICATOR Type 113R: 24 V complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in 3 in. diameter case. λ^{\prime} rice $£ 2$ each, 30p post.
TS-418/URM499 SIGNAL GENERATOR: Covers $400-1000 \mathrm{MHz}$ range. CW
Pulse or AM emission. Power Range $0-120$ dbm. £125 each Carr $£ 1$. 50 . Pulse or AM emission. Power Range $0-120 \mathrm{dbm} . £ 125$ each. Carr. $£ 1.50$.
TN/130/APR. 9 UHF TUNING UNIT: Freq. $4300-7350 \mathrm{MHz}$. IF Outpu 160 MHz with bandwidth of 20 MHz and is electrically tuned by a d.c. reversible motor. £27.50 each. Carr. £1.
APR-4 AM RADIO RECEIVER: $90-1000 \mathrm{MHz}$. This receiver is suitable for monitoring and measuring frequencies as well as relative signal strength. Power Supply $115 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$. £ 100 each. Carr, £2.
SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. 2-400 Mc/s in 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{c} /$ o/put Voltage $0 \cdot 1-100,000$ microvolts cont. variable. Impedance 50 . Price $£ 85$ each $+£ 1.50$ carr.
CLASS "D" WAVEMETER NO. 2: Crystal controlled heterodyne frequency meter cov
Post 60 p .
RCA TE-149 HETERODYNE WAVEMETER: V-cut, 1MHz crystal (0.005%) Accuracy better than 0.02%. Dial directly calibrated every 1 KHz from $2.5-5 \mathrm{MHz}$ Useful harmonics up to 20 MHz . Provision for fitting internal dry batteries. A new complete with Manual and Spares. £14 each. Carr. 75p
POWER UNIT TYPE 24: (for R. 216 Receiver) A.C. operated 100-125V or $200-250 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. "As new" 110 each. Carr. 75 p.
ROTARY INVERTERS: TYPE PE. 218E-input $24-28 \mathrm{~V}$ d.c., 80 Amps POWER SUPPLY: 230 V a.c. input; 3000 V @ $2.5 \mathrm{~mA} ; 4 \mathrm{v}$ @ 1 Amp, $300-0-300$ POWER SUPPLY: 230V a.c. input; 3000 V @ 2.5 mA ; 4v @ 1 Amp, $300-0-300$
$200 \mathrm{~mA} ; 6 \mathrm{~V} @ 7 \mathrm{Amp} ; 6 \mathrm{~V}$ @ 3 Amp . With smoothing capacitors etc. f 10.00 each 200mA; 6 V
E .50 carr .

GEARED MOTOR: 24 V D.C., current 150 mA , output 1 rpm , $\mathbf{1 1 5 0} \mathbf{e a c h}$ 30p post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and potentiometer, 3 rpm , $\mathbf{\text { E2 each }} \mathbf{3 0} \mathrm{p}$ post. SYNCHROS: and other special purpose motors available. List 3p.
ACTUATOR UNIT: With 115 V d.c. geared motor; o/put 12.5 rpm ; torque 16 ins. oz; reversible; microswitches and potentiometer. $£ 3.50$ ea. +40 p post DALMOTORS: $\mathbf{2 4 - 2 8 V}$ d.c. at $45 \mathrm{Amps}, 750$ watts (approx. 1 hp) $12,000 \mathrm{rpm}$ \&5 each, 60p post.
MOTOR: 240 V single phase, $2,400 \mathrm{rpm} .1 / 40 \mathrm{H} . \mathrm{P}$. approx. Price $£ 1.75$ each, 30p post.

CONDENSERS: 30 mfd 600 v wkg. d.c., $\mathbf{£ 3} 50$ each, post 50 p. 15 mfd 330 v a.c. wkg., 75 p each, post 25 p .10 mfd 600 v .43 p each, 25 p post. 8 mfd 2500 v . $£ 5$ each, carr. 63 p . 8 mfd 600 v .43 p each, post $15 \mathrm{p} .8 \mathrm{mfd} .1 \% 300 \mathrm{v}. \mathrm{D.C}. \mathrm{£1.25}$ $4 \mathrm{mfd} 600 \mathrm{v} ., 2$ for $£ 1.0 .01 \mathrm{mfd}$ MICA 2.5 Kv , $£ 1$ for 5 , post 10 p . Capacitor 0.125 $\mathrm{mfd}, 27,000 \mathrm{v}$. wkg. $£ 3.75$ each, 50 p post. 2.25 mfd 25 Kv . wkg. 620 each, $\langle 3 \mathrm{carr}$
 $55^{\circ} \mathrm{C}$. TCC oil filled $£ 7.50$ each, $£ 1$ carr. $5 \times 1 \mathrm{mfd} 3$
$£ 1$ carr. 12 mfd 1500 v d.c. wkg. $£ 3-50$ each, 50 p post.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps , $£ 2.50$ each, carr. 75 p OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2} \mathrm{amps}$; or 40 ohms at 2.6 amps ; 500 ohms, 0.55 amps . Price (either type) E 2 each, 30 p post each. TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with
filament transformer 230 v . A.C. Mounted in 19in. panel, $\mathrm{EA}^{2} 50$ each, carr. 75 p . filament transformer 230 v . A.C. Moun
AR88 RECEIVER: List of spares, 5 p .
TELEPRINTER EQUIPMENT, REPERFORATORS, READERS, and AUTO TRANSMITTERS ETC. Send for list, 5p
REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and powe supply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{mAA}$. Two stabilised valves CV 286. Centre Zero Meter 10-0-10. Size 8 in. $\times 8$ in. $\times 8$ in. Ne condition ${ }^{7.50}$, Carr. 75p.
WESTON INDUSTRIAL THERMOMETER MODEL 221: $0-100^{\circ} \mathrm{C}$. 3in dia. scale. Accuracy 1\%. Precision made coil within-coil structure. Changes in temperature cause a rotary action of the Helix turning
is mounted. $£ 2 \cdot 80$ each 30 p post. Unused condition.
TRANSMITTER UNITS: Complete with 12 V vibrator unit QQVO3-20A and 5 other valves with modulation transformer, etc. Two crystal controlle channels. Suitable for conversion to 2 metres. $£ 5+£ 1$ carr.
THERMOCOUPLE METER: Scale 3.5 AE 2 in . square flush mounting
$£ 2.50+25$ p post.

3-B TRULOCK ROAD, LONDON, N17 OPG
Phone: 01-808 9213 and Wilstead 605 (STD 023 044).

Wholesale/Retail :

Special Offer!! !-From Stock-New-Boxed-AND 60\% Discount! MULLARD ELECTROLYTIC CAPACITORS

071 and 072 Series

Type No.	Working Voltage V dc.	$\begin{gathered} \text { Capacitance } \\ \mu \mathrm{F} \end{gathered}$	Max. Ripple Current at $50^{\circ} \mathrm{C}$	Weight	Price
07114472	10	4700	2.5 mps	102	$15 p$
07114582	10	6800	4 amps	102	17 p
07115332	16	3300	${ }^{2} 2.4$ amps	102	15 p
07115472	${ }^{16}$	4700	${ }_{5}^{3.9} 9 \mathrm{mps}$	102	17 p
07115582	${ }^{16}$	6800	5.8 amps	${ }^{11302}$	${ }^{22 \mathrm{P}}$
07715103	${ }^{16}$	10000	${ }_{5}^{7.9} 9 \mathrm{amps}$	${ }^{2+102}$	${ }^{27 \mathrm{p}}$
07118222	${ }^{63}$	$11000{ }^{2200}+11000$	5.8 amps 10.6 amps	${ }_{3}^{302}$	30 p 37 p
- 0721414113	10	${ }_{16500}+165000$	$\underline{13.4}{ }^{\text {amps }}$	${ }_{402}$	${ }^{39 p}$
07215752	16	7500 +7500	10.5 amps	302	37 p
07215113	${ }^{16}$	$11000+11000$	${ }^{13} \cdot 8.8 \mathrm{mpss}$	4102	49 p
07116222	${ }_{25}^{25}$	${ }_{5000}^{2200}$	${ }^{2.2} \mathbf{2}$ amps	102	15P
07216502 07216752	25 25	5000 $7500+75000$	9.6 amps 12.6 mmps		${ }_{\text {49p }}$
07217342	40	$3400+3400$	9.1 amps	${ }^{3}$	37 p
07217502	${ }^{40}$	$5000+5000$	12.0 amps	${ }^{4} 102$	${ }^{49} \mathrm{p}$
$\bigcirc 0711818172$	${ }_{63}^{63}$	$1650{ }^{680}+1650$	${ }_{7}^{2.8} 8.1 \mathrm{amps}{ }^{\text {amps }}$	(102	159
106 and 107 Series					
10614153	10	15000	7 mpps	402	57p
10615103 10616223	16 25	10000 22000	${ }_{17}^{7 \mathrm{amps}}$		+ $\begin{array}{r}65 \mathrm{p} \\ \times 1.12\end{array}$
10617103	40	10000	12 amps	${ }^{\text {7 }}$ +202	94p
10618153	${ }^{63}$	15000	${ }_{18}^{28} \mathrm{amps}$	1802	¢1.79
10710222	100	2200	10 amps	5ำ2	74p
Type No.	Voltage	Capacitance	Weight		Price
10215163	16	${ }^{16000}$	802		${ }^{20 \mathrm{p}}$
10490003	25	39000	1602		${ }^{30 \mathrm{p}}$
10216802 104 17562	25 40		${ }_{502}^{702}$		
10490001	45	20000	1602		50p

SMALL ELECTROLYTICS

CLEARANCE CORNER

BAGS CONTAINING 9,000 ASSORTED DIODES SILICON/
GERMANIUMIZENER. UNTESTED BUT MAINLY O.K.

MIXED COMPONENTS, ALL NEW, UNUSED. RESISTORS. CARBON/ WIRE. POTS, DIODES, TRANSISTORS. CAPACITORS, LYTICIPAPER/CERAMICISILVER MICA
VALUE. PRICE PER $21 b$. MIXED BOX

\section*{

LINEAR OP-AMPS	
709 C TO99/DIL	35p
723C TO99/DIL	¢1.05
741 C TO99/DIL	55p
747 C TO99/DIL	\&1.10
72741 P DIL	65p
72748P DIL	65 p
723 C TO99.	f1.05

MOVING IRON AMMETERS
 $2 \frac{1}{2}$ in. SQUARE

[^9]| PA230 | fl 10 | 1 Watt Audio Amp. |
| :---: | :---: | :---: |
| PA234 | El 1.25 | 2/3 Watt Audio Amp. |
| PA246 | E1.75 | 5 Watt Audio Amp. |
| CA3014 | 61.55 | F.M. IF. Det. + pre amp. |
| CA3018 | C1.00 | 4 Transistor array. |
| CA3048 | £2.34 | Stereo Pre-Amp. |
| MCl303L | C1.85 | Stereo Pre-Amp. |
| MFC4000 | 55p | 250mWatt Audio I.C. |
| MFC4000A | 60p | 250 mWatt Audio I.C. |
| SL403D | E1.50 | 3 Watt Audio Amp. |
| ZN414 | fi. 25 | Radio I.C. |
| LM309K | 61.90 | 5V. IA. Voltage RegI.C. |

DIGITAL				INTEGRATED CIRCUITS	
SN7400	20 p	SN7451	20 p	SN74150	$£^{3} \cdot 35$
SN7401	20 p	SN7453	20p	SN74151	£1-10
SN7402	20 p	SN7454	20 p	SN74153	81.35
SN7403 SN7404	${ }_{20 \mathrm{p}}^{20}$	SN7460 SN7470	20 p 30 p	SN74154	£2.00
SN7404	${ }_{20 \mathrm{p}}$	SN7472	30 p 30p	SN74155	¢1.55
SN7406	30 p	SN7473	40p	SN74156	E1.55
SN7407	30 p	SN47474	${ }_{50}{ }^{\text {p }}$	SN74157	£1.80
SN7408	20 p	SN7475	${ }_{45 p}$	SN74160	\$2.60
SN7410	20 p	SNT7480	80 p	SN74162	£3.40
SN7411	23p	SN 7481	£1.25	SN74163	£3.40
SN7412	42p	SN7482	${ }^{87 p}$	SN74164	£2.75
SN7413	30 p	SN7483	81.00	SN74165	£. ${ }^{4} .00$
SN7416	30 p	SN7484	${ }^{90 p}$	SN74166	£4.00
SN7417 SN7420	30p	SN7486 SM7490	45p	SN74167 SN74170	56.23 E. 40
SN7422	48p	SN7491A	£1.00	SN74174	c.2.00
SN7423	48p	SN7492	75p	SN74175	£1.35
SN7425	48 p	SN7493	$75 p$	SN74176	£1.60
SN7427	42 p	SN7494	80 p	SN74177	${ }^{\text {¢ } 1.60}$
SN7428	50 p	SN7495	80 p	SN74180	E1.55
SN7430 SN7432	20p	SNT 7496 SN 7497	${ }_{\text {¢ }} \times 1.00$	SN74181	$£ 7.00$ $£ 2.00$
SN7433	70 p	SN74100	¢ 2.50	SN74184	£2.45
SN7437	65 p	SN74104	${ }^{\text {E }} 1.45$	SN74185A	£2.40
SN7438	65 p	SN74105	£1.45	SN74190	£1.95
SN7440	20 p	SN74107 SN7410	${ }^{50 \mathrm{p}}$	SN74191	£1.95
SN7441AN	${ }^{750}$	SN74110	80 p c 1.00	SN74192 SN74193	£2.00 ¢ 2.00
SN7443	¢1.00	SN7419	$\mathrm{E}^{1.90}$	SN74194	E2.50
SN7445	$\delta^{2} \cdot 00$	SN74121	${ }^{65 p}$	SN74195	£1.85
SN7446	¢2.00	SN74122	£1.35	SN74196	E1.50
SN7447 SN7448	¢1.75	SN74123 SN74i41	¢ $2 \cdot 70$ ¢ 1.00	SN7497 SN74198	E1.50 E. 4.60
SN7450	20p	SN74145	¢1-50	SN74199	E4.60

V.A.T.

Unless orherwise stated all prices are EXCLUSIVE of V.A.T. Please add 10% ro all orders. post free.

Fully transitorised transmitter/receiver available in two versions:-
Low band; Frea

R F Output 500 mW Complete with t wave whip aerial, combined microphone/loudspeaker and 13.3 V . rechargeable U.H.F. 2 watt FIXED RADIO LINK 24V. de. $/ 240 \mathrm{~V}$. ac. F.M. TRANSMITTER/Type CCRTX 4A MK. I
R.F. Output 2 W at $450-470 \mathrm{MHz}$.

RECEIVER/Type CC'RR4A Mk.
Full Technical and operating data availabler unit and details on request. Mains Power Pack for the £ 12.00 each. I + I CARRIER EQUIPMENTS. Cossor Type Solid state multiplex installations designed for U.H.F. radio systems enabling 2 speech channels each with out of band signalling, if required or transmitted simultaneously over a radio system Prices and details on request V.H.F. RADIOTELEPHONE BASE STATION. Cossor Type CC 603 Transmitter control wh thex sideband a.m. modulation
Low-band $71.5-104 \mathrm{MHz}$, or High-band $156-174 \mathrm{MHz}$. ersions available.
RF. Out put power 25 W . into 50 Ohms
OPTIONAL POWER SUPPLY Type CC reques type CC603 base station P.O.A.
SELECTIVE CALL SYSTEM. Coder Type CC 505/50 (50 way) or CC $505 / 100$ (100 way). any communication system where a base station is required to call any one or all of a number of sub-stations. Both versions available, all new and in original packing. Price: $\begin{gathered}50 \text { way } £ 65+\text { v.a.t. } \\ 100 \text { way } £ 80+\text { v.a.t. }\end{gathered}$

DECODERS El5 ea

DEAC RECHARGEABLE BATTERY CASSETTES 13.4 V (nom.) type B/SA $80351 / 108$ Heavy duty encapsulated DEAC supply.
Size $-3 \frac{1}{2} \times 2 \frac{1}{2} \times 1 \frac{1}{2}$ in. Price $\mathbf{E 5}+$ v.a.t 8-WAY BATTERY CHARGER Type CC 999 Charges up to 8 of the above battery cassettes.
Price $£ 25+$ v.a.t. 12-WAY BATTERY CHARGER Type CC 99 Charges up to 12 of 13.4 V DEAC batteries. Metered battery condition MICROPHONES
S. G. Brown Stick Microphone and Stand. Push to-talk button. 300 . 45 complete
S. G. Brown Hand-held with push-to-talk button $f 8$ each.

OSCILLOSCOPES

CAWKELL

Revscope S.O.I Storage Scopes from $£ 100$ COSSOR
CDU.110. Double beam DC-20MHz. Brand new CDU.I20. Double beam DC. 60 MHz . Brand new CDU.I20. Double beam DC-60MHz. Brand new
with manual .. 450 CDU. 150 . Double beam DC- 35 MHz . Brand new $\mathbf{£ 4 0 0}$ SOLARTRON
CDI220. With Wide-Band Plug-in. DC-40MHz . £ $£ 90$ CDI220. With Differential High-gain Plug-in.... $£ 220$ TEKTRONIX
$536 \times-Y$ Oscilloscope. DC-IIMHz $\mathbf{£ 3 0 0}$
 661 Sampling Scope. IGHZ 2 m V/cm. Dual beam. $£ 475$

ELECTRONIC COMPONENTS
Pack BARGAIN COMPONENT PACKS Pack
No.
No
I 500 Carbon resistors, $\frac{1}{4}, \frac{1}{2}$, 1, 2 watt
3250 Ceramic, Polystyrene, Silver Mica, etc. Condensers.
4250 Polyester, Polycarbonate, Paper, etc. Condensers.
525 Potentiometers, assorted
6250 High-stab. $1 \%, 2 \%, 5 \%$ resistors.
750 Assorted Tagstrips.
8 llb Assorted nuts, bolts, washers, spacers, etc. 925 Assorted switches, rotary, lever, micro, 10 toggle, etc.
II Trial mixed component pack $£ 1$. 12 Jumbo mixed pack 65 .
ALL COMPONENTS NEW AND UNUSED $\mathrm{fl}+25$ p p.p. per pack, $£ 5$ for 5 packs p/free.

SERVICE TRADING CO

MATSUNAGA YARIABLE'YOLTAGE TRANSFORMERS
 INPUT 230 v. A.C. $50 / 60$ OUTPUT VARIABLE 0/260 v. A.C. Carriage Paid BRAND NEW. All rypes.
50 0.260 v. at 1 amp
$0-260$ v. at 2.5 amps $0-260$ v. at 5 amps $0-260$ v. at 10 ampt 0.260 r . at 15 amps 0.260 v . at 20 amps $0-260$ v. at 25 amps
$0-260 \mathrm{v}$. at 37.5 amps $0-260$ v. ae 50 amps
AMP Special discount for qua

L.T. TRANSFORMERS

STRDBEI STidial STROBE!

- FOUR EASY TO bUILD KITS USING XENON White TRIGGERING CURCUIIS, PROVISION FOR EX $+{ }_{2}$
TERNAL TRIGGERING. 230-250v. A.C. OPERATION.

EXPERIMENTERS "ECONOMY" KIT

Adjustable 1 to 30 Flash per sec. All electronic com-
ponents including Xenon Tube + Instructions $£ 7.26$
NEW indUSTRIAL KIT
Ideally sultable for schools, laboratorles etc. Roller
tin printed circult. Adjustable $1-80$ f.p.s., approx. output of Hy-Lyght. Price $£ 12 \cdot 10$.
IY-LIGHT STROBE
jusloned for use In large rooms, halla and utlijzes a lillca tube, printed clrcult. Speed adjus table $1-20$ f.p.s.
iloht output greater than many (80 called 4 Joule) - toht output greater than many (so called 4 Joule)
'SUPER' HY-LIGHT KIT
Approx. 4 times the light output of our well proven
Vy-Lyght strobe.
Reackor control clrcult producing an Intense white
Ilght. ONLY \& 22.8 se .
ATTRACTIVE, ROBUST, FULLY VENTILATED
METAL CABE for the Super Hy-Lyght KIt Including
FOR HY-LYGHT STROBE incl. reflector, 84.95
7-INCH POLISHED REFLECTOR. Ideally sulted
for above Strobe Kits. Price 66p.
$\star \star \star$
RAINBOW STROBEFOUR LIGHT CONTROL
Will operate four of our Hy-Lyght or Super Hy-Lygh
Strabes in either $1,2,3,4$ sequence $+2+$ ior all together Thoroughly tested and rellable. Complete with ful connection Instructions. Price: $£ 20-35$. Send S.A.E. for detalls

COLOUR WHEEL PROJECTOR Camplete with oil filled colour wheel. 100 watt lamp. rremely efficient optical system. $\mathbf{E 2 0} \mathbf{5 7}$. O INCH COLOURWHEEL etc. Price $£ 5.72$

BLACK LIGHT FLUORESCENT U.V. TUEES
4fi. 40 watt. Price 66 -38. (For use in standard bi-pin tube, $£ 1 \cdot 65$. Complete ballast unit and holder for 9 \star tube $£ 2.09$.

ELECTRONIC ORGAN KIT

25 WATT $10 / 25 / 50 / 100 / 2505050 / 1 / \mathrm{kl1} \cdot 5 \mathrm{~K}$ ohm $£ 1 \cdot 10$.
50 50 WAT W4/10/25/51 100 W
E 2.20.
Black Silver Skirted knob calibrated in Nos. 1-9. 1_{2}^{2}
. dia brass bush. Ideal for above Rheostats, 22p ea.
UNISELECTOR SWITCHES - NEW
4 BANK 25 WAY
ODeration
6 BANK 25 WAY FULL WIPER 25 ohm oil, 24 v. D.C. $68 \cdot 14$
8 BANK 25 WAY FULL WIPER

'HONEYWELL' PUSH BUTTON, PANEL
HONEYWELL PUSH BUTT
MOUNTINGMICRO SWITCH

Each b
rated al
Each bank comprises of a change-over
ated at 10 amps 240 volt A.C. Black
knob 1 in. dia. Fixing hole $\frac{\text { in. Prices }}{}$

for quantilifes

24 HOUR TIMER

Can be adjusted to give a switching delay
of between $\frac{1}{2} \mathrm{hr}$. to 24 hrs . Driven by 200 l of between $\frac{1}{2} \mathrm{hr}$. to 24 hrs . Driven by $200 /$
250 v . A.C. synchronous motor. 15 amp . clo contacts. Mfg. Crater Controls Lid. Supplied with siale callitrated $0-10$ (20
hours per division) Brand new, $\& 2.20$
'HONEYWELL' LEVER OPERATED MICRO SWITCH 15 amps 250 volt A.C. clo contacts

ALL PRICES INCLUDE A.t. POSTAGE AND PACKING PACKING. Overseas,

METER BARGAIN

BALANCE/LEVEL METERS
100-0-100 Micro Amp. Size $1 \frac{1}{2} \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in} . \times \frac{1}{8} \mathrm{in}$.
Price only 83 p
 Price only 83
ANMETERS NEWI 2 in . FLUSH ROUND
available as D.C. Amps $1,5,15,20$ or A.C. AmPs available as D.C. Amps $1,5,15,20$ or A.C. Amps
$1,1510,15,20$. Both types $£ 1.98$ incl. P. \& P. $0-300 \mathrm{~V}$
A.C. $\mathbf{\varepsilon 2 . 0 9}$

INSULATION TESTERS (NEW) Test tol.E.E. Spec. Rugged metal construction, suitable for bench or field work, constant speed elutch. Size 500 VOLTS, 500 megohms $£ 30.80$ $i, 000$ VOLTS, 1,000 megohms $£ 37 \cdot 40$

	BLOWER UNIT 200-240 Volt A.C. BLOWER UNIT Preclsion German bultt. Dynamically balanced, quiet, continuously rated, reversible motor. Consumption 60 mA . Size 120 mm . dla. $\times 60 \mathrm{~mm}$. deep. Price $\mathrm{E}_{3} \mathbf{3 2}$.

230V FAN ASSEMBLY
Coniln uou fy rated, sp. cinl s saled bzaring.
removable aiumlrilumblades. Price $£ 1.10$.

4 BANK 3 C/O PUSH BUTTON ASSEMBLY Complate with black rectangular buttons. 5 unlts $£ 1 \cdot 10$ (5 units min.)	
COMPACT GEARED MOTORS.	
Manufactured by either Sangamo, Haydon or Smith. Built-in gearbox.	
2 RPH cw 6 RPH cw 12 RPH cw	
GEARED MOTOR	
(Type J) 71 r.p.m. torque 10 lb . in.	
Reversible $1 / 70$ th h.p. cycle -38 amp. (Type 2) 28 r.p.m, torque 20	
ib. In Reversitite $1 / 80$ th h.p. 50 cycle 28 amp.	
'as new' condition. Input voltage of motor 115 y A.C. Supplied	
complete with transformer for $230 / 240 \mathrm{v}$ A.C. Input.	
These motors are ideal for rotating 日erials, drawing curtains,	
PARVALUX TYPESD2. 200/250 YOLT	
Speed 9.000 r.p.m. approx. or 3.200 r.p.m. if used with built-in governor. or variable speed over a wide range if used in conjunction with our Dimmer Switch, illustrated below. PRICE: 12.20	
600 WATT DIMMER SWITCH Easily fitted. Fully guaranteed by makers. Will consrol up to 600 watts of all light: except fluorestent at mains voltage. Complete with simple instructions. $£ 3 \cdot \mathbf{3 0}$	

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

A large range of technical
AND data books are now vailable ex. stock send for free list.

BI-PAKS NEW COMPONENT SHOP NOW OPEN WITH A WIDE
RANGE OF ELECTRONIC COMPONENTS AND ACCESSORIES AT
COMPETITIVE PRICES-

18 BALDOCK STREET (Al0), WARE, HERTS. TEL. (STD 0920) 61593.
OPEN MON.-SAT. 9.15 a.m. to 8 p.m., FRIDAY UNTIL 8 p.m

-the lowest prices!

74 Series T.T.L. I.C'S
bi-par still lowest in price bull specification guaranteed. all famous manufacturers

The AL50 HI-FI AUDIO AMPL 50W pk 25w (RMS)

0.1% DISTORTION! HI-FI AUDIO AMP LIFIER

- Frequency Response 15 Hz to $100,000-1 \mathrm{~dB}$. - Loau-3, 4, 8 or 16 ohms. © Supply yolt - Signal to noise ratio 8odl3.
- Overall size $63 \mathrm{~mm} \times 105 \mathrm{mmn} \times 13 \mathrm{num}$. Tailor made to the most stringent specifications using top
quafity conponents and incorvorating the latest siflid state circuitry conceived to fil the need for all your A.F. amplif. cation heelsilet-TESTED-gUARAN'TEPE. BRITISH MADE. only $\mathbf{£} \mathbf{3} 58$ each

 STABILISED POWER
MODULE SPM80
£3.25

 Audress, Intercom Unite, etc. Handbook available, 10 p .
TRANSFORMER BMT80 £2•15 p. \& p. 25p

Sarreson's

9 \& 10 CHAPEL ST., LONDON, N.W.I 01.7237851

Ol-262 5125

```
PrI. DAVENSET ISOLATION TRANSFORMERS
```



``` Conservatively rated. Size \(81 \times 7 \times 8\) ins. W9t. 59 ibs. Open
frame type, terminal connections. Fraction of maker's price. £17.00 carr. \(£ 1.00\).
T.E.C. HEAVY DUTY ISOLATION TRANSFORMERS
```


RICH AND BUNDY. Pri. 220-230-240-250v. Sec. $285-270-$ $275 v .1400$ watts. Conservalively rated. Slze $8 \times 8 \times 7$ Ins. 275v. 1400 watts. Conservatively rated. Sl2e 8 Terminal block connectlons. £17.00 carr, $£ 1.00$.

440 VOLT S.P. TRANSFORMERS
 $x 0 \times 8$ Ins. Terminal block connections. Conservatively
rated. $£ 20.00$ carr $£ 2.00$. No. 2 Davenset. Pri. $415-40-525 \mathrm{v}$.

 Sec. 240 v , 40 watts. S1ze $4 \times 4 \times 4$ ins. Terminal block con-
hettons. $£ 2.50$ carr. 50 p . Drake. Pri, 440 v . Sec. $220-240 \mathrm{v}$. 100 watts. Shrouded. \&3. 25 postage 40 p .

PARMEKO ISOLATION TRANSFORMERS rl. tapped. 100-110-200-220-230-240-250v. Sec, 115v. 13.5 amps. Conservatively rated, fully shrouded. Table top con-
nections. Stze $13 \times 10 \times 8 \$$ Ins. $£ 32.50$ carr. $£ 2.00$. Prl fapped nections. Stze $13 \times 10 \times 81$ lns. $£ 32 \cdot 50$ carr. $£ 2.00$. Pri, tapped
$200-210-220-230-240-250 \mathrm{v}$. Sec. tapped $90-100-110-120 \mathrm{v}$. 7.5 s amps. Conservatively rated table top connections. Size
$9 \times 8 \times 8$ ins. $£ 22.50$ carr. $£ 1,50$.

> ADVANCED COMPONENTS CONSTANT VOLTAGE TRANSFORMERS Input 190-260v. Output 230v, 150 watts. Type 140A $£ 7.00 \mathrm{carr}$ 75p. Output $28 v .8$ amps open frame type $£ 4 \cdot 50$ carr. 75 p Output 4v. 3 watts 75 p carr. 25p. Output 240v. 30 watts on-

> BODINE ELECTRIC GEARED MOTORS HP. $1 / 35$ A.C. $115 \mathrm{v}, 50$ cycles. RPM 137 . Torque 9 in Ibs Ratio 10-1. Pulley Drive. Complete with Conirol Box contain-
ing Capacitor. On/OA Switch. Micro switch reversing con-
nectons. Ideal for electric door systems. $\& 10.00$ cart. $\& 1$.

ALL PRICES INCLUDE VAT

SMITHS 12v. D.C. VEHICLE HEATER MOTORS E_{1} carr. 25 p. With 61 In. fan $£ 1.25$ carr. 25 p . As above with twin turbe fans E 1.50 carr, 35 p .

A.C. GEARED MOTORS BY FAMOUS MAKERS

 $230 / 250 \mathrm{v}$. 50 cycles Induction type. $4.2 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Cont. rating 5 lb . ins. Right angle worm drive. Overall size 7 ins, Dia. 3 ins. SpindleIength 3 ins. Dia. $\frac{1}{2}$ In. $\& 4.75$ carr. 45 p . Gear motors 50 D D.C.
Shat drive. Overall slze 6×3 ins. dia. Spinde 1 in. $\frac{1}{6}$ in. dia. $£ 3.75$ carr. drive.
35 p .
A.C. 220-240v. SHADED POLE MOTORS 3500 r.p.m. $\times 2$ ins. Simll to turbo $\times 31 \times 2$ ins. Simllar to turbo fan heater motors. 500. P.P. 15 p .

MINIATURE 24v, D.C. GEARED MOTORS 5p. P.P. P. 15 p p. $2 \times 11 \times 1$ Ins. Length of apindle 1 In., dla, it in.

RADICON WOAM REDUCTION GEAR BOXES
 Reductlon aplinde:

NEWMARK SYNCHRONOUS MOTORS
220-240v, 50 cycles, 3 watts, 8 r.p.m. Overall size $2 \times 2 \times 2$ Ins. 50 p, P.P. 10 p .
6 reve, per hour, SIze $2 \dagger \times 2 \times 2 \mathrm{InB}, 50 \mathrm{p}$, P.P. 10 p .

Omron 24v, A.C. or 12v, D.C. 27 AA CO contacts, Size $1 \mathrm{i} \times 1 \ddagger \times 1 \mathrm{In}$, Single hole fixing. 45 . Postage 5 p .
Miniature type $6-12 \mathrm{v}$. D.C. 24 v . A.C. 1 co contact. Slze $1 \mathrm{k} \times 1 \mathrm{l} \times \mathrm{x}$
 Keyswitch 240 v . A.C. 1 7A CO contact, Size $2 \times 1 \times 1$ ins. S. hole
 fixing. 60p. Postage 5 F Roblnsons, 240 v . A.C, 25 A CO contacts, Slze $2 \mathrm{t} \times 1 \mathrm{k} \times 1 \mathrm{l}$ Ins.
S. hole fixing. 50p. Postage 5 sp . Special terms for qty. of 25 , G.P.O. RELAYS 2500 3000 type. $100 \Omega 125$ amp. make contact 60 p. $2000+130 \Omega 1$ normal
CO $40 \mathrm{p} .75 \Omega \mathrm{M} .1 \mathrm{~B} . \uparrow$ CO normal contacts 40 p . P.P. on all relays 10p.
600 type. 600Ω 12v. D.C. 2 CO contacts 30p. Postage 5p.

UNIMAX SEQUENTIAL MICRO SWITCMES 2 pole CO $15 A$ contacts, 2 nd pole actuates after 1 1t D Dole, Leaf
roller action 60 p . Poatage 5 p . Burgess type 3 BR/74 S. Poie CO 10 A contacts. $\frac{1}{3} \mathrm{in}$. ralsed plunger button type. Three for 50 p inc. post. Miniature trelephone type S. Pole CO contact. Slze $\frac{1}{x} \times \frac{5}{5} \times$ Ins. Five for 50 p Inc. Dost.

MAGNET DEVICES. A.C. 240YOIDS
size $2 \frac{1}{x} \times 1 \frac{1}{2} \times 1 \frac{1}{\mathrm{~h}} \mathrm{in} .85 \mathrm{p}$. P.P. ${ }^{2} 15 \mathrm{v}$. Plessey A. C .240 v . pull. Overall ype ipull, 12v. D.C. Size1 Ins. 85 p. P.P. 15 p . Bordon MIniature

CRESSALL TOROVOLT VARIABLE TRANSFORMERS and knob. Overall size $2 \frac{1}{1}$ ins. x amp ins. dia. Brand new: $£ 3.00$ carr. 35 D .

PARMEKO H.T. TRANSFORMERS

 60 mA . $4 \cdot 2 \mathrm{kV}$. wkg. and 500 v . 31 mA . $£ 3 \cdot 75 \mathrm{carr}$. 50 p . Type 7 . Sec. lapped $760-700 \mathrm{v}$. 50 mA . 6.3 v , $1 \cdot 5 \mathrm{a}$. $£ 1.75$ carr. 35 p .

SPECIAL OFFER OF MULTI TAPPED L.T

TRANSFORMERS VERY CONSERVATIVELY RATED Gresham Prl. 200-220-240v. Sec. $29 \cdot 5 \mathrm{v}, 2 \cdot 6 \mathrm{a}$. twice. 20v. 5 a . twice
15 v 0.1a. four times. ' C ' Core. Table top connections E 6.95
 . $200 \mathrm{~m} / \mathrm{a}$ PrI. 200-202-200v. Sec. $20-21-22-23-24-25 \mathrm{v}$. $6 \mathrm{a} .1120-21-22-23-24-25 \mathrm{v}$.
 (

HUNTS TUGULAR MOTOR START CAPACITORS HUNTS $20 \mathrm{mfd}, 275 \mathrm{v}$, A.C. 75 p . P.P. 25 p .15 mfd . 250 v , A.C. 50 p .

L.T. SMOOTHING CHOKES

 potted types 100 mh . 2 a . $£ 2.50$ carr. $50 \mathrm{p} .130 \mathrm{mh}, 1.5 \mathrm{a} . ~ £ 1.50$ carr. 35 p 150 mh . 3a, open frame type. Tropicalised $£ 3 \cdot 00$ carr. $40 \mathrm{p}, 50 \mathrm{~m} / \mathrm{h}$.
$2 \mathrm{a} . \mathbf{s h r o u d e d . ~} \mathbf{2 2 . 0 0}$ carr. 35 p . 7 mh . 5 a . ' C ' core. 75 p carr, 25 p .
H.T. SMOOTHING CHOKES
Parmeko potted types. $5 \mathrm{~h} .500 \mathrm{~m} / \mathrm{a} . ~ £ 3.00$ carr. $50 \mathrm{p} .10 \mathrm{~h} .300 \mathrm{~m} / \mathrm{a}$ $£ 2.00$ carr. $30 \mathrm{p} .10 \mathrm{~h} .180 \mathrm{~m} / \mathrm{a}$. $£ 1.50 \mathrm{carr} .30 \mathrm{p} .15 \mathrm{~h} .180 \mathrm{~m} / \mathrm{a}$. $£ 2.00$
 50p carr. 20 p .

Famous maker. Special OffersFORMERS

Nominal $12-14 \mathrm{~V}$ (650mA into 3 ohm)

* Power output into 3 ohms $=5 \mathrm{~W}$ $8 \mathrm{ohms}=2 \mathrm{~W} 15 \mathrm{ohms}=1 \mathrm{~W}$ - Distortion typically 0.5%
* Frequency response at 3 dB points 10 Hz to 30 KHz
Sensitivity / with/without
- Size only 2t" x $1 \frac{3}{4}$ "

This matchbox sized amplifier will run satisfactorily from a 12 V car battery. Can also be used for portable voice reinforcement such as public functions where mains supply is not accessible. A small mains unit kit is available.
Two amplifiers are ideal for Stereo. Complete connection details and treble, base, volume and balance control circuit diagrams are supplied with each unit.
Discounts are available for quantity orders.
Cheapest in the U.I. Built and tested.

M/FIVSORS RELAYS P.O. TYpE 3000

BUILT TOYOUR SPECIFICATION Highest quallity at competitlve prices with
quick delivery service. Quotations by return Home and Overseas Price gulde available.
Brand New Post Office Type Uniselectors In stock 25 way double ended wipers
all non-bridgingex 50 each. 11 level 1 bridaing 10 non-bridging $£ 10$ each. IMHOF BLOWER UNITS rack mounting assembly with Glass Fibre Alr
Fllter and directional Duct. Capacitor Fan Mir Filter and directional Duct. Capacitor Fan Motor
$1 / 50$ h hin. $200 / 250$ volts. or $100 / 125$ volts 2,800
r.p.m. $\mathbf{~} 17.50$, carr. $\mathbf{\Sigma 1} 1.50$.

HIGH SPEED
miniature

COUNTERS
$31 \ln . x 1$ in. 10 counts per second
with. 4 figures. The following ind whth 4 figures. The following D.C. Voltages are available. 6 v.. 12 v .
$24 \mathrm{van}, 50 \mathrm{v}$.. or 110 v . Auxilliary con-
tacts, normally open, 40 p extra normally open, 40 p extra.
BURGESS TWO CIR-
CUIT MICROSWITCH. JACK 2 point with screw on cover 15 p each. cord 20 p each.
 One Make-One Break. amps up to 250 volts $A C$. 15 amps up to 460 volts AC .

LONGLEY RD., CROYDONON £2 per box
post paid. WW- 073 FOR FURTHER DETAILS

Thermistors

F. J. Hyde, DSc., Msc, BSc.
''Provides a very comprehensive account of the properties and applications of both negative and positive temperature coefficient types of thermistors. An extremely useful reference work on this essential circuit component - thoroughly recommended as essential reading for all control engineers
Instrument and Control Engineering.
0592028070208 pages illustrated $1971 \mathbf{£ 3 . 2 0}$
Available from leading booksellers or
The Butterworth Group
88 Kingsway London WC2B 6AB
Showrooms and Trade Counter 4-5 Bell Yard London WC2

aturdy metal carrying case,
eade and ltistructions. $\mathbf{E} 8$. 50 . Post 25 p.

ALL PRICES ARE EXCLUSIVE OF 10\% V.A.T.

MODEL U43II SUB-STANDARD MULTI-RANGE VOLT AMMETER Sensitivity 330 ohrns Volt A.C. and D.C.
Accuracy 5% D.C.
$\mathbf{1 \%}$ A.C. Scale length 165 mm .
$0 / 300 / 750 \mu \mathrm{~N} / 1.5 / 3 / 3 /$
$7.6 / 15 / 30 / 75 / 150 / 300 /$ $750 \mathrm{~mA} / 1 \cdot \mathrm{~B} / 3 / 7 \cdot 5 \mathrm{Amp}$.
$\mathrm{D} . \mathrm{C} .0 / 3 / 7 \cdot 5 / 15 / 30 / 75 /$ $150 / 300 / 750 \mathrm{~mA} / 1.6 / 3$ 0/75/100/300/7
$0 / 75 / 180 / 300 / 750 \mathrm{mV} / 1 \cdot 6 / 3 / \mathrm{F} \cdot \mathrm{s} / 15 / 50 / 75 / 250 / 300$
$0 / 750 \mathrm{~m} / / 1 \cdot 5 / 3 / 7 \cdot 5 / 15 / 30 / 78 / 150 / 800 \cdot 650 \mathrm{~V}$. A.C. Automatic cut out. Supplled cornplete with teat
icads, manual and test certificateas. 349 . Poat 50 p

BELCO AF-5A SOLID STATE SINE SQUARE WAVEC.R.OSCILLATOR Output max. +10 dB (10 K ohmas). Opera. tlon internal batterles. Attractive 2 2-tone case
$7 \mathrm{fin} . \times 8 \operatorname{lin} . \times 2 \ln$.

Price 27.50
Carr. 17 p.

CI-5 PULSE
 ranges. Cailibrator pips. $220 \times 360 \times 430 \mathrm{~mm}$.
$115-230 \mathrm{~V}$. A.C. operation. $£ 39 \cdot 00$. Carr. paid. TO-3 PORTABLE OSCILLOSCOPE \mathbf{Y} amp. Sensleivity. Iv Pop/CM. Bandwidh i. 5 cps
1.5 MEZ. input imp -1.5 MHZ . toput imp.
2 meg $\Omega .25 \mathrm{PF}, \mathrm{X}$ amp
genstiv
 bandwidth lis cys $=800$
KHZ. Input inp. 20 meg Ω
20 PF. Time base. 5 ranges 20 PF . Time base. 5 ranges
$10 \mathrm{eps} 300 \mathrm{KHz} 8 \mathrm{ya-}$
ch mantzation. Internal/ex-
 ternal. Illuminated scal

RUSSIAN CI-16 DOUBLE BEAM $5 \mathrm{mc} / \mathrm{/}$ Pass
Y 1 and Y 2 Y1 and Y2 Rand. Separate tangular sin, x 4In. C.R.T.
Calimrated trggered sweep
from $2 \mu / \mathrm{sec}$. to 100 milli-sec.

 phaphtude complete urith al
piled and
accessories and
manual. 287 Carr. paid.

MODEL AT

DECADE
ATTENUATOR
Frequency range:
200KHz. 0.111 db
0.1 db . step.
Impedance 600 ohme

Max. input power
212:80. Post 37p.

ARF-300 AF/RF SIGNAL GENERATOR

All transistorlsed, com. pact,
AF sine
220 KHz .
AF gquare wave 18 Hz . to 100 KHz .
Output slne/bquare 10 .
P.P.
RF 100 KHz .
200 MHz . Output 1 lv
maximum. Operation
Complete with Instruc
tions and l
Poot 50 p .

TE-20 D RF SIGNAL

 GENERATORAccurate wide range signal $300 \mathrm{Mc} / \mathrm{s}$ on 6 bands. Dirctl atibrated Variable R.F xtenuator, audio output $20 / 240 \mathrm{~V}$. A.C. Brand Ize $140 \times 215 \times 170 \mathrm{~mm}$ £17.50. Carr. 370.

230 VOLT A.C. $50 \mathrm{c} / \mathrm{s}$ RELAYS Brand new. 3 sets of chalgeover contacts at 5 amy rating. 50 p cach
Post 10 p (100 lots 840). Quantities available.

"YAMABISHI" VARIABLE
VOLTAGE TRANSFORMERS
Excellent quallty at low cost. All modelg-lnput

AUTO TRANSFORMERS

$0 / 115 / 280 \mathrm{~V}$. Step up or step down. Fully shrouded. $80 \mathrm{~W} \quad 22.10$ P. 18
$150 \mathrm{~W} \quad 22 \%$ P.\&P. 18p
$\begin{array}{lll}300 \mathrm{~W} & 83.80 & \text { P. \& P. } 23 \mathrm{p}\end{array}$
$\begin{array}{rrr}500 \mathrm{~W} & £ 5.25 & \text { P. \& P. 33p } \\ 1000 \mathrm{~W} & 87.50 & \text { P. \& P. 38p }\end{array}$
$\begin{array}{lrl}1500 \mathrm{~W} & 27.50 & \text { P. \& P. 38p } \\ 210.20 & \text { P. \& P. 43p }\end{array}$
2250 W 217.25 P. \& P. 50p
$5000 \mathrm{~W} \quad \mathbf{8 3 5} 00 \mathrm{P} . \& \mathrm{P} . \mathrm{el}$

MCA. 220 AUTO. MATICILISER
Input 88-125 VAC or 176 .
250 VAC .
Outpat
120 VAC
or 240 VAC . 200 VA rating.
£11.97. Carr. 50p.
$230 \mathrm{v} .50 / 60 \mathrm{c} / \mathrm{s}$. Variable output $0-260 \mathrm{v}$.
MODEL S-260
-

JOSTYKIT
WE ARE APPOINTED STOCKISTS AT ALL BRANCHES HIGH QUALITY CONSTRUCTION KIT AF20 Mono Transistor Amplifier $\begin{array}{ll}\text { AF310 Mono Amplifier (ior Stereo } \\ \text { twol } \\ \text { AT5 } & \text { Automatic Light Control }\end{array}$ $\begin{array}{ll}\text { AT30 } & \text { Photo Cell Awitching Unit } \\ \text { AT50 } \\ \text { t00 Watt Triac Llght Dlmme }\end{array}$ $\begin{array}{ll}\text { AT5: } & \text { Speed Control } \\ 1,300 \text { Watt Triac I.ight Dimm }\end{array}$ $\begin{array}{ll} & \text { Speed Control } \\ \text { ATs6 } & \begin{array}{l}2.200 \text { Watt Triac Light Dimm } \\ \text { aT60 }\end{array} \\ \text { Speed Control } \\ \text { Perchedeific Light Control, Singl }\end{array}$ $\begin{array}{ll}\text { AT60 } & \text { Paychedeiic Light Control, Sin } \\ \text { AT65 } & \text { Channel } \\ \text { Paychedelic Light Control, } 3\end{array}$ HF61 Medium Wave Transistor Rad $\begin{array}{ll}\text { HF65 } & \text { F.M. Translator Transmitter } \\ \text { HF75 } & \text { F.M. Transistor Receicer }\end{array}$ HF310 F.M. Traner Unit Receiver HF330 Stereo Decoder for use with HF395 Aerial Amplifer for AM/FM
 GU330 AF310 GU330. Tremolo Unit for guitara, etc
NT10. Power Supply $100 \mathrm{~m} / \mathrm{a} 9 \mathrm{~V}$ Sta 12 V Unetab
Professional Stabilized Power
86.15

 Complete with comprehensive, easy to follow
instructions and covered by full guar

RP. 214 REGULATED P.S.U.

 Solid atate. Varisbe output 0-24V DC upto 1 amp. Dual scale meter to monitor S ——— $\begin{gathered}\text { meter to monltor } \\ \text { yoltage and current. }\end{gathered}$
 PS. 200 REG ULATED P.S.U. PS. 1000 B REGULATED P.S.U.

${ }^{2400}$ WIDEE A A NGLE

 25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000$ ohmals. 95 p . P. \& P. 10p.
50 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 2500$
5000 ohms. $21 \cdot 35$. P. \& P. 10p. 100 WATr. $15 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ 2500 ohins. £1 95. P. \& P. 15 p.

[^10]
EEW CLEAR PLASTIC PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVT. DEPTS., EDUCATIONAL AUTHORITIES, etc.

Over 200 ranges in atock-other ranges to order. Quantity discounts avallable. Send for fuliy illuatrated brochure.

"SEW" EDGWISE METERS
TYPE P.E. 70

$50 \mu \mathrm{~A}$	23.75	500 uA	23.20
$50-0-50 \mu \mathrm{~A}$	23.80	1 mA	23.20
$100 \mu \mathrm{~A}$	23.60	300 V . A.C.	£3.25
100-0-100uA	23.50	UU Meter	£3.85
$200 \mu \mathrm{~A}$. ${ }^{\text {a }}$.	£3.40		

* MOVING IRON-

ALL OTHERS MOVING COIL Please add postage

TYPE MR. 38P $121 / 32 \mathrm{in}$. square fronts.

TYPE MR.45P 2in. square fronts.

$50 \mu \mathrm{~A}$	£2.70	5
$50-0-50 \mu \mathrm{~A}$	82.65	101. D.C.
$100 \mu \mathrm{~A}$	22. 60	20 V . D.C.
100-0-100\%A	22.50	50v. D.C.
200 HA	22.50	300 V . D.C.
$500 \mu \mathrm{~A}$	22.45	15 V . D.C.
$500-0-500 \mu \mathrm{~A}$	22.40	300 y . D.C.
1 mA	22. 40	8 Meter lma
5 mA	22.40	$\bigcirc{ }^{\text {U }}$ Met
10 mA	£2.40	1 mmp . A.C.*
50 mA	£2. 40	$\overline{5} \mathrm{amp}$. A.C.*
100 mA	22.40	10 mmp A.C.*
500 mA	22. 40	20 amp . A.C.*
1 mmp .	22.40	30 amp . A.C.*

"SEW" EDUCATIONAL METERS TYPE ED. 107

Size overall 100 mm
$90 \mathrm{~mm} \times 108 \mathrm{~mm}$.
A new range oi bigh Quality moving
instruments
ideal inatruments ideal for
school experiments and
other bench other beach applica-
tions. Bin. mirror scale.
The thons. \sin. mirror scale.
The meter movement 11
onstrate internal working. easily accessible to demonstrate internal working. Available in the following ranges:-
$50 \mu \mathrm{~A}$
$\mathbf{~} \mathbf{8 6} \cdot \mathrm{VO} \mathrm{V}$. $100 \mu \mathrm{~A}$ ${ }_{50-0-50 \mu \mathrm{~A}}^{1 \mathrm{~mA}}$ $50-0-50 \mu$ 1A D.C.
5A D.C.

TYPE 5.80 80mm Square Fronts

 8 page list of Semi Conductors and Valves

SKYwOOD CX203 RECEIVER
 Solid state. 5 bands covering 200 -
420 KHz and 55 to 30 MHz . Illuminated slide rule dial. Bandspread. Aerial
tuning. BFO, AVC, ANL, " B " meter. phone sock B. Integrated speaker and $220 / 240$ v. A.C. or 12 v D.C. 8 ize $325 \times 26 . \times 150 \mathrm{~mm}$.
Complete with instructions and circuit.

OUR
PRICE
PRICE
£ $32 \cdot 50$
$\xrightarrow{\substack{\text { carr } \\ 50 \mathrm{p}}}$

10 V D.C.	25
20V D.C.	
50' D.C.	25
300 V D.C.	£5.95
Dual range	
m.s/5AD	
$5 \mathrm{~V} / 50 \mathrm{y}$.	8700

unt 30 Receiven

4 Bands covering 550 ke/8-30 me/s.
FET, S Meter. Variable BFO for SBB . FET, S Meter. Variable BFo for SBB.
Buitin Speaker, Bandspreat, Sens-
tivity Control. $220 / 240$ Y. A.C. or

Lafayette ha-600 RECEIVER

General coverage $150 \cdot 400 \mathrm{kc} / \mathrm{s} .550 \mathrm{kc} / \mathrm{s}$ $30 \mathrm{mc} / \mathrm{s}$. . FET iront end, 2 mech. Aiters,
product detector, variable B.F.O
 RF Gain. M.. A.C. or 12 . $220 / 2$. D.C. Bram
new with instructions.
 50p

IAL OFFER!

SPECIAL OFFER!			
	STEREO		
(tammen	SPEAKERS		
景			
OUR PRICE	f12:95	Carr. 50 p	

HA-10 STEREO HEADPHONE AMPLIFIER

${ }_{\text {Al }}^{\text {All }}$, ilicicon
$\begin{aligned} & \text { tranisisor am- } \\ & \text { plifier operates } \\ & \text { trom ond }\end{aligned}$
irom magnetic
ceramic
tumer

winer
with
titia
tand separate

 por balancing
and gain seiec.
tion of loud-
 headipho
swithing.
on-off gain controls, speaker ng. $\frac{2}{2}$
sockete

side. | Gin. | | |
| :--- | :--- | :--- |
| OUR | | |
| PRICE | $\mathbf{2} 2.25$ | P.\&P. |

 TUNER SRASTOR High qUality
 nost ampifiers. Operates on on volt
nattery. Coverage $88-108 \mathrm{Mc} / \mathrm{g}$. Ready OUR $\mathbf{5 5 . 9 5}$ P.\& P. PRICE Lereo Maltiplex Adaptor $\begin{aligned} & \text { 4. } 97 \text {. }\end{aligned}$

ALL PRICES ARE EXCLUSIVE OF 10\% V.A.T.

LIGER LHO2S STEREO HEADPHONES

Can be used with most hi-f amplifers.
Push button track selector and illus. trated track indicators. Attratctive
catinet uith black and eiver tirm.
Ontut
DUR
PRICE
E11.g5 P.\&P. 50
ACR. 14 BATTERY/ MAINS CASSETTE

Audiotronic Products are manufactured exclusively for the Audiotronic Group of Companies and as a member of the group we are pleased to offer you this fabulous range of high quality equipment. Made to our own specifications each item provides outstanding performance and reliability at a value for money prica!

Incorporates built-in amplifiers giving
4i+ ti watts rms output. Push button track selector, illuminated track indicstors, silder controls for volume,
balance and tone. Attractive cabinet balance and tone. Attractive cabinet
with black and silver trim. Output OUR
PRICE
F1725 AHP-8D 8 TRACK
STEREO TAPE DECK

FANTASTIC BARGAINS AKAI HI-FI EQUIPMENT

AA6300 AM/FM STEREO TUNER AMPLIFIER
$20+20$ watts rms. Mrgnetic, ceramlc
and tape inputs. FM $88-108$ MHZ. AM $535-1605 \mathrm{kHz}$. Dual stereo Bpeaker outpute Headphon
OUR PG1.
PRICE E
CASSETTE (P. \& P. 80D)
CASSETTE (P. \& P. 80 Cs35/Csss spea.
OXC40 Recorder GXC40T Deck/Recelver GXC45 Deck GXC46D Dolby Deck GXC46 Record
GXCCBDD Dolby Deck CARTRIDOE (P. \& F. 50 CR81 Deck wi
CR81D Deck
CR81T Recorder/Receiver
CR8088 4 channel Record CR80DBs 4 channel Recorde 4000 DB Deck 4000 D 8 Dust Cor
721L Recorder

X 5000 Recorde
X 201 D Deck

GX220D Deck
GX280D Deck
TAPE/CASSETTE
. $8144 \cdot 50$ GCROPHONES (P. \& P. 50p) STEREO RECEIVERS (P. \& P. 75p) AA $630020+20$ watt
A $803025+25$ watt AA $808040+40$ watt A 810082×38 or 4
A $850065+65$ or shectivilibinse ferguson export models

3408 Sterao Tunar Amplifier Covers FM $88-108$ MHz. Flve push but
ton tuminy scales. $8+8$ watta rms. In puts for stereo ceramic cartridge and tape, etc. Beparate ba $\underset{\substack{\text { OUR } \\ \text { PRIE }}}{\text { On }} \mathbf{£ 1 5}$ 3416 Stereo Tape Deck

4 track. 7t. 3t, 13 i.p.s. Stereo/mono record/play. $7^{\text {r }}$ reels. Inputs for dynamic
miken, radio, gram. Complete with cover. ${ }_{\text {PAICE }}^{\text {OUB }}$

PHILIPS IC361 AM/FM MAINS/PORTABLE RADIO WITH AFC

1025T. 4 speed autochanger unit fitted

P25 MKII. 4 speed signle record player
tted with Acos GP104 stereo ceramic OUR \&8-50 Carr \& Ins. 50p

$2 \times \mathrm{Z} 30$ Stereo 60/P/Z5 E15.95. $2 \times$ Z30/8tereo $60 /$ PZ 6818.00. $2 \times \mathrm{Z} 50 /$ Stereo $60 / \mathrm{P} 28 \mathrm{E} 20 \mathrm{O} 25$. Transtormer for PZ8 £3.65
Active Fitter Unit $24 \cdot 45$ Palr of Q16 Speakere 110.70 P. \& P. 50% Prect 60 FM Tuner $\& 14.9$
 All other. Finclair Products in stock
2000 Amplifier 222.95 . P. \&i P. 50 p . 2000 Amplifer 228.95 . P. \& \mathbf{P}. 50 p .
$2000 / 3000$ Tuner $£ 26.30$. $50 \mathrm{p} \quad 2000 / 300$ Tuner $£ 28.30$. P. \& P. $\mathbf{~ D 0 p}$

aARRAR

APP 111 Mo
APF6/G800
AP $6 / 600 \mathrm{E}$
AP78/M44E
AP76/M75ED
AP7B Module M75-6
ZERO 100 S Module/M93E
B.E.R. MoDONALD

MP60/O800
MP60/TPD1/Q800
MP60MM4-7.7.
GT70/TPD1/G
GL72/G800
GL7h/G800E
TDODMAN8
TDI00/G800 White
LEAK
PEIIIPS
GA160/GP200
GA308/GP400
GA308 (less cartridge)
GA212/GP100
PIONEER
PL12D (Less cartridge)
PLISC (Less cartridge)
PL41D (Less artige)
PL41D (Less cartridge)
PL50 (Lebs cartrldge).
PL61 (Less cartridge)
THORENS
TD160C/Ortofon M15E Buper

wharfedale
int on/M44-7 Teak

$\frac{\sqrt{9 M i(10)}}{\frac{10}{50 \%}}$
(0us $f 22.75$

MIKMO TRM50 STEREO AMPLIFIER
$17+17$ watts rms. Inputs for magraetic and crystal phono, tuner, tape etc. phone socket. Full range of controla OUR $E 39.95$ P. \& P

$16+16$ watt anplitier, B8R MP60,
plinth and cover, G800 cartridge, pair
of Denton 2 apeation and OUR \&F7.FT Carr PRICE LU/.3U f1.25

$8+8$ watt amplifier, B8R MP60, plinth
nd cover, $G \$ 70$ cartridge, pair of and cover, G85 cartridge,
Apollo speakers snd all leads.

OUR PRICE	$250 \cdot 45$

BSA 8 HMCH

TD8S 8TEREO TAPE CARTRIDGE Connects to most stereo amplifiers (output 125 m). Automatic/Manual | OUR | |
| :--- | :--- |
| PRICE | |
| 12.75 | P. 8 P | TD83V E15-25 (P. \& P. 50p)

SEND LARGE S.A.E. FOR FULL HI-FI DISCOUNT LIST

ALL MAIL DADERS TO
 UNIT '4, THE HYDE INDUSTRIAL ESTATE, THE HYDE, LONDOW NW9 GJJ

TELEPHONE 01-205 3735
personal callers welcome at any of our retail branches

ENTRAL LONDON		311. Edgware Road, W. 2.	Tel:01-2620387
257/8. Tottenham Court Rd, W.1.	Tel: 01-5800670	382. Edgware Road. w.2.	Tel:01-7234194
10. Tottenham Court Rd, w.1.	Tel:01-637 2232	152/3. Fteet Street, E.C.4.	Tel : 01-353 2833
27. Tottenham Court Rd. W.1.	Tel: 01-636 3715	379, Harrow Road. W.9.	Tel
87. Tottenham Court Rd, W.1.	Tel:01-580 3739	Essex	
21, Old Compten Street, w.1.	Tel:01-4379369	86, South Street: Romford.	al : Romford 20218
3. Lisle Street, w.C.2.	Tel : 01.4378204	SURAEY	
34. Lisle Street, W.C.2.	Tel:01-4379155	1046, Whitgift Centre. Croydon.	Tel:01-681 3027
118. Edgware Hoad, W.2.	Tel:01-7239789	27 \% 21. Eden Street, Kingston.	Tel:01-5467845
193. Edgware Foad, W.2.	Tel: 01 -7236211	32. Hill Street. Richmond.	Tel:01-9481441

CREDIT TERMS FOR
CALLERS (550 and over)

ALL EQUIPMENT IS BRANO NEW, FULLY GUARANTEEO AND OFFERED WITH FULL AFTER SALES SERVICE

All items and prices are correct at are correc
28.6 .73
but subject to change without notice. E. \& O E.

P. F. RALFE

10 CHAPEL ST. LONDON N.W.I. Phone 01-723 8753

TELEVISION SWEEP GENERATOR

by Sweep systems type 505. Frequency coverage $450-940 \mathrm{MHz}$. (Channels $15-80$). Markers at $465 /$
 $565 / 660 / 750 / 830$ and 900 MHz . Attenuated output in eight, five db steps and fine $0-10 \mathrm{db}$. Sweep width adjustable from $1-15 \mathrm{MHz}$. The instrument is completely solid-state using variactor diodes and transistors throughout. Dims: $19 \times 12 \times$ 5ins. Wt.: 201 bs . Supplied in good working order, price $\mathbf{E 5 9 . 5 0}+\mathbf{5 0 p}$ carriage.

GERALD 900B Sweep Generator with SD8A sweep driver unit. V.H.F. and U.H.F. 0.1200 MHz . centre frequency. 1,10 and 100 MHz markers. Built-in detector, attenuators etc. This instrument is probably the most comprehensive sweeper ever made. P.U.R.

TEKTRONIX OSCILLOSCOPES

Type 547 with 1 A 2 plug-in. DC- 50 MHz . With display switching.
Type 545A with 'CA' plug-in. (Or 'L'). DC-30MHz. Type 56IA with 3 AI and $3 \mathrm{B3}$ units. DC-10MHz.
 Type 535 with CA plug-in unit. DC- 15 MHz .
Type 55I. Double-beam with L\&G units. DC-27MHz. Also available:
Also arailable Dy 100 with $1 Y 2$ and 1×2 plug-ins. Portable, DC-30MHz. Hewlett-Packard 175A. 1781 and 1755A plug-ins. DC-30MHz. Philips GM5602. DC-20MHz. Price $\mathbf{£ 6 5 . 0 0}$.
Roband RO50A with 5 G plug-in. DC-I5MHz. Price $£ \mathbf{1 2 5 . 0 0}$. Solartron CDI 400. With two CX1442 and a CXI443 units.

Extremely sensitive instrument. Twin differential inputs.

SIGNAL GENERATORS

Marconi type TF8010. $10-485 \mathrm{MHz}$. Excellent. P.U.R.

Marconi type TF867. $15 \mathrm{KHz}-30 \mathrm{MHz}$. $£ 150$. Airmec type 201. $30 \mathrm{KHz}-30 \mathrm{MHz}$. 665. Hewlett-Packard 616A. 1780-4000MHz. 675.
Advance C 2 H . Spot-frequency production-line test instrument. 12 freqs. in bands $500 \mathrm{KHz}-30 \mathrm{MHz}$. $£ 25$.
Rohde \& Schwarz U.H.F. 990 -1900MHz. P.U.R.
Rohde \& Schwarz SMAF. A.M. \& F.M. $4-300 \mathrm{MHz}$. FM Dev. $0-100 \mathrm{KHz}$ in 2 ranges. Fundamental-frequency generator ideal for radiotelephone test equipment. P.U.R.

Marconi type 791D Deviation checker. 0 -1024MHz Deviation to 125 KHz .
Marconi type TFII52A R.F. Power meter. $0-25 \mathrm{~W}$. 50 ohms. $\mathbf{6 4 5 . 0 0}$. Marconi type TFI020 and 1020A RF power meters. 0.100 W .50 and 75 ohms. P.U.R.
Airmec 210 Deviation meter. $3-300 \mathrm{MHz}$. AM Mod and FM Deviation to 125 KHz .
Rohde \& Schwarz type RDI-60 R.F. Load. IKW. Excellent. One only. $\mathbf{E 5 0 . 0 0}$.

POWER TUBE BASES for $4 \times 250 \mathrm{~T} / \mathrm{X}$ Valves etc. BASES ARE BRAND NEW AND BOXED COMPLETE WITH THE CERAMIC Chimney. Only © 3.25 each p.p. 10p.

CANNON XLR AUDIO SERIES

Plugs and Sockets XL3-11 3-pole socket (free, line mounting). XL3-32 3pole plug (chassis mounting). E 1.25 per pair.
XL6-32 6-pole plug (chassis mounting). XL6-11 6 -pole socket (free, line mounting). $\mathbf{\epsilon 1} .50$ per pair.
XL3-32 3-pole plug. 75p each

BARGAIN OFFER-LOW

 VOLTAGE STABILISED POWER SUPPLIES *Voltage Range $16-24 \mathrm{~V}$.*Current Range to 6 Amps. *Full over-voltage and Current protection.
*AC Ripple content better than 5 mV . These PSUs are constructed to exacting standards and incorporate the very best of components and circuit design for long life and reliability. Employs Silicon transistors, thyristors, C-Core transformer etc. Offered in perfect condition, carefully checked before despatch. List price over $£ 125$. Our price only $\mathbf{£ 2 6 . 5 0}$. Carriage $£ 1$.

PLEASE NOTE: ALL GOODS WILL BE SUBJECT TO 10% VALUE ADDED TAX WHEN ORDERED AFTER Ist APRIL, 1973.

PO BOX 25 CANTERBURY KENT

Red L.E.D. 30 p Green L.E.D. 75 p (Approx 5 mm diam.) Minitron 7 -segment display $£ 1.50$ OR complete with a 7447 decoder-driver $£ 2.50$
Integrated circuits in 8-14 pin D.I.L. packages
741 36p 748 38p 709 36p
HI-FI Stereo pre-amps. TBA 231 £ 1.43 CA 3052 £ 1.30
555 timer (microseconds to hours) 80p

Transistors

BC 182L 9p BC 212L 11p BFY 5119p
TIP 29B 50p TIP 30B 60p TIP 41A 70p
TIP 42A 85p TIP 35C $£ 3.00$ TIP 36C $£ 4.00$
2N3055 45p 2N3053 22p BC107/8/9 8p
1N4001 10 for 40p 1 N4004 10 for 50p
Zeners $\mathbf{4 0 0} \mathbf{~ m w ~ 5 \% ~ f u l l ~ r a n g e ~ 1 2 p ~}$

Slide Switch DPDT 10p TO5 Heat Sinks 10 for $40 p$ TO3 Heat Sinks 25p

Bridge Rectifiers.

W005 50 P.I.V. 1 amp 0.23
W 02200 P.I.V. 1 amp 0.25
W 04400 P.I.V. 1 amp 0.27
P.C. Mounting Stereo Pots 100 K Lin. 100 K Log 10 K Log all at $35 p$

Miniature Toggle Switch.

S.P.C.O. at 35p

Neon, panel mounting amber, mains voltage. 15 p

W 08800 P.I.V. 1 amp 0.34
Test Equipment
Digital Frequency Meters/Counters
Multimeters - Please state requirements

Special Offer

Spend $£ 4.00$ and receive FREE a red L.E.D.
Please add $\mathbf{1 0 \%}$ V.A.T. to total cost

BEDFORD ELECTRONICS
 2, GROVE PLACE BEDFORD

OSCILLOSCOPES
 TEKTRONIX 545 . From $\mathbf{2 5 0}$. TELEQUIPMENT S54U. Complete with internal battery. Unused 6150.
 TELEQUIPMENT D43 with amplifiers B \& C. Excellent condition 680.

ADVANCE power supply Type PM16, continuously variable output voltage and current limit, SCR overvoltage protection. Regulation better than plete with manual. $0-7$ volts 1 amp. As NEW E9.50 EACH.

Colvern 9 Digit SHAFT ENCODERS Type 31 CW9, $3^{\prime \prime}$ magslip case. 512 divisions/360 degrees. Test sheet included, 66 each.

Salford Electrical MULTI TAPPED POTS. Elect. angle 340 Deg. Mech. angle 360 Deg. Resistance $150 \mathrm{~K} 5 \%$ in. 0.5% tapped every 10 Deg. 62.50 each.

Colvern TEN TURN POTS. SOOR. 5% Lin. 0.1%. $\mathbf{x} .25$ each.
Veeder Root 6 digit counters. Type LR1643. Mech. reset, 24V. Recent manufacture. As new $\leqslant 3$ each.

Pressure transducers KDG, Type TD216. 0-1200 P.S.I. Complete with calibration chart. 45 each.

FLUID LOGIC teaching sets. These following components mounted on an
engraved panel within a polished wooden box, 2 bistable, 1 and, 3 or nor logic elements, 2 press transmitters, 2 press receivers, 2 pressure regs. and gauges, 2 actuating cylinders and press. amplifiers, 4 position sensors. Supplied complete with all accessories. $£ 37.50$.
THERMISTORS Type FSI, bead at tip of $1^{\prime \prime}$ glass tube, approx. 100 K @ 25 C. $25 p$ each.
CARPENTERS polarised relay SPCO $2 \times 1000 \mathrm{R}$, complete with base and retainer, as new. 45p each.

POT CORES LAI or LA3. 40p each.
METERS, ${ }^{3 \frac{1}{2}}$ " diameter, sealed, SO-0-50 uA $/ 1300 R$, 12.25 each.
$1 \mathrm{~mA} / 130 \mathrm{R}$, 1.75 each. $1 \mathrm{~mA} / 130 \mathrm{R}$, 11.75 each.
BALL RACES Type RCL $\frac{1}{6}$. Flanged 1" bore $5 / 16^{\prime \prime}$ dia. Sealed packs,
25p each. 25p each.
PANEL FUSE HOLDERS with indicator lamp. The cap of these $1 \frac{1}{4}$ " fuse holders is provided with an amber lens and min. flanged lampholder to allow a use falure neon to be fitted, bulb not included. 20p
each.

MINIATURE
THUMBWELL SWITCHES, matt black, BCD and complement, as new, 70 p each.

V.A.t.

PLEASE ADD 10% V.A.T. TO ALL PRICES.

RING BEDFORD 51961 FOR AN APPOINTMENT TO VIEW TEST EQUIPMENT

AC/DC TAUT SUSPENSIONS

MULTIMETERS

(Made in U.S.s.R.)

Large selection of multimeters with prices ranking from 84.95 to 810.50

Pleage write for full Catalogue

ALL PRICES ARE EXCLUSIVE OF VALUE ADDED TAX. WHEN ORDERING BY POST PLEASE ADD E0.12 $\frac{1}{2}$ IN $£$ FOR HANDLING AND POSTAGE (SUBJECT TO A MINIMUM CHARGE f0.15) AND 10\% OF THE TOTAL VALUE FOR VAT.

FULL WAVE SUICON BRIDGE
100 pi.v., 10 AMPS EPOXY ENCAPSULATED ATARGING RECTLFIERS.
APECLAL PRICE OF 23.50.

PHOTO EMISSSIVE DEVICES			
OCP71	¢0. 90	BPX 25	81.00
	Photo	ductive C	
ORP12	£ 0.50	ORP90	E1-10
ORP60	20. 50	ORP93	21.00
ORP61	20.32		
Photocells			
90 AG	£2. 40	90 AV	22.50
90 CG	£2-40	90CV	£2-40

SOLDD STATE LIGBT EMITTING
TO18 outine. Brightness 500 FT-L at 50 mA . Forward voltage. 1.65 to 2 V . Diode gives bright red pinpoint of 0.170 in . PRICE 80.85.

The company will close for annual holiday on 11th August and re-open on 28th August. To avoid delay do not send any letters or orders during that period. Our retail branch will remain open.

SLITCON POWER RECTIFILRES				
Wire Ended				
By101 450 p.l.v. 1.1A				${ }_{80}^{20.15}$
BY105 800 p.t.v. 1.1A				
BY126 650 p.i.v. 1A.	\because			80.10
BY127 1250 p.i.v. 1A. ..				80.12
Stud Mounted				
kD2028 50 p.l.v. 1A.	.	.		15
${ }_{\text {KD2 }}$				
KD202G 100 p.i.v. 1 A .				coter
KD202V 100 piviv. ${ }^{\text {a }}$				${ }_{80.20}$
KD202d 200 p.i.v. 3 A	\because			${ }^{20} 3$
zener diodes				
				80.3
			5 watts $10^{\circ} \%$, series D817: 56 to 100 V .	

OUR NEW 1972/1973 CATALOGUE IS NOW READY. PLEASE SEND STAMPED AND ADDRESSED QUARTO ENVELOPE FOR YOUR FREE COPY

PLEASE NOTE THAT YALVES LISTED ABOYE ARE NOT NECESSARILY OF L.K. ORIGIN

Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2

Tel.: 727 5641/2/3
Cables: ZAERO LONCON
Retail branch (personal callers only)
85 TOTTENHAM COURT RD.,
LO NDON W.2. Tel: 5808403
C.A.A. Approved for inspection and release of electronic valves, tubes, klystrons, etc.

Fantastic value in Test Equipment

10 Channel event recorder
Designed for recording seauences of up to ten different operations, e.s
sequence of machine tool operation switching sequences. etc. Record
prespnted in the form of square "pulses prespnted in the form of scuare "pulses
When energised, pen moves by aporox men energised. pe.n moves by approxi
mately 4 mm . to the right of zero line Response time 100 milliseconds. Char width 110 mm . Chart length 50 ft , inv capacily 72 hours Chart speeds Size $180-600-1800 \times 25 \mathrm{~m}$
Pric

three channel high speed recorder Strip Chart Recorder. Chart length 1754 Footage indicator. Width of recording
channel 80 mm . Chart speeds siseleted $300-600-3000 \mathrm{~mm}$. Der minute $300-600-3000 \mathrm{~mm}$. per minute Ful
defiection current 8 mA . Internal impe dance 210 ohms. External impedance 800 ohms Dimensions $510 \times 345 \times 175$
mm . Weight 44 lis. Price complete with accessories
$\mathbf{f 9 0 . 0 0}$

portable ac/DC becording voltammeter med with separate zero-marking pen
Accuracy $1.5 \% \mathrm{DC}, 2.5 \% \mathrm{AC}$ Measure ments ranges - AC and DC. 5-15-150 $250-500 \mathrm{~mA}$ 1.5-5 Amps 5-15-50.150
$250-500 \mathrm{~V}$ DC ange 45 DC only 150 mV . Frequency 100 mm . Chart speeds $20.60 \cdot 180-600$ $1800-5400 \mathrm{~mm} /$ hour.
$\mathbf{£ 7 8 . 0 0}$

Single Channel. HIGH SPEED RECORDER Chart length 175 ft . Footage indicator
Width of recording channel 80 mm . Width of recording channel 80 mm Chart speeds (selected by push buttons)
$.2-6-12-30-60-120-300600-3000 \mathrm{~mm}$ er minute. Full deflection cuirent 8 mA ternal impedance 210 ohms. Externa

$\mathbf{£ 5 5 . 0 0}$

Supertester 680R.

Buy it for what it is. Or huy it for what it canter following

MINIATURE PEN RECORDER rovides pernanenk ecord dita r use where space is limited Separal marker pen provided. Chart width low $20.60-180 \mathrm{~mm} /$ hour Fast 600 $1800-5400 \mathrm{~mm} / \mathrm{hour}$ Dimensions 120 $20 \times 285 \mathrm{~mm}$. Weight 7.7 lbs 13.5 Kg
$£ 39.00$

GENERATORS

MARCONI TF867 STANDARD SIGNAL
 $30 \mathrm{Mc} / \mathrm{s}$ In 11 bands Calibration Accur acy: $\pm 1 \%$.
Stablity: After warm up the drift In a $10-$
minute perlod is. minute
typlcally, perlod iss than typlacally, less than
0.005% for carrier trequencies up to $3.2 \mathrm{Mc} / \mathrm{s}$ and less than
0.01% from 3.2-2. 0.01% from 3-2-2.
$30 \mathrm{Mc} / \mathrm{s}$. Output Voltage: $0.4 \mu \mathrm{~V}-4 \mathrm{~V}$.
Impedance: 75 orims lmpedance: 75 okms
nominal for outputs nomm $2-4$ v. 75 ohms
from from $2-4$ v. 75 ohms
for outputs from
duv-2V. 13 $4 \mu \mathrm{~V}-2 \mathrm{~V}$. 13
tor outputs iroms
$0.411 \mathrm{~V}-0.4 \mathrm{~V}$ 4.10

Accuracy: below $3 \mathrm{Mc} / \mathrm{s} \pm 0.25 \mathrm{~dB}$ of $\pm 0.1 \mu \mathrm{~V} .3-10 \mathrm{Me} / \mathrm{s} \pm 0.5 \mathrm{~dB}$ or
 21 in . wide $\times 14 \frac{1}{3} \mathrm{in}$. deep

Price £165.00
DOUBLE PULSE GENERATOR TYPE TF 1400/S $10 \mathrm{e} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s}$. Compiete with TM 6600. Pulse adjustable between
$1.5 \mu \mathrm{Lec}$. before and up to $3,000 \mu \mathrm{sec}$.
PRICE $£ 145.00$

MARCONI A.M. SIGNAL GENERATOR
TYPE TF801D
$10-485 \mathrm{Mc} / \mathrm{s}$ In flve rangss. Output $0.1 \mu \mathrm{~V}-1$ Volt E.M.F. External Sine
PRICE E.195
A.D. Frequency $30 \mathrm{c} / \mathrm{s}-00 \mathrm{Kc} / \mathrm{s}$.
PHILIPS SQUARE WAVE GENERATOR
MODEL GM2314
Range $15 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}$. Duratlon of square wave pulses between 0.75
μ / sec and $40 \mathrm{~m} / \mathrm{sec}$. Square wave voltage 10 V
AMPLITUDE MODULATOR TF1102
$100 \mathrm{Kc} / \mathrm{s}-300 \mathrm{Mc} / \mathrm{s}$ Sine-wave from $20 \mathrm{c} / \mathrm{s}-15 \mathrm{Kc} / \mathrm{s}$ and $20 \mathrm{x} / \mathrm{s}-500 \mathrm{Mc} / \mathrm{s}$
£35.00

MARCONI Type TF987/1 NOISE
 GENERATOR

$1-200 \mathrm{Mc} / \mathrm{s} \pm 0.5 \mathrm{DB} £ 20.00$
MARCONI TF2092 NOISE GENERATOR £295.00

MARCONI VHF SIGNAL GENERATOR TF 1145
450-1900 Mc/s $£ 295.00$
PHILIPS VIDEO GENERATOR GM2887 $£ 95 \cdot 00$

WAYNE-KERR VIDEO NOISE GENERATOR

 $\mathbf{£ 7 5 . 0 0}$MARCONI H.F. CIRCUIT MAGNIFICATION METER TF886A
A direct reading Q Meter $15-170 \mathrm{Mc} / \mathrm{s}$ Magnification 60-7200 Q £45•00

MARCONI DISTORTION FACTOR METER

 TF142F$100 \mathrm{c} / \mathrm{s}-8 \mathrm{Kc} / \mathrm{s} \mathbf{0 . 0 5 \% - 5 0 \%}$ Measures all spurious components up to $30 \mathrm{Kc} / \mathrm{s} £ 35.00$

MARCONI PULSE GENERATOR TF67SE
Repetition Frequency $50 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s} \quad 0 \cdot 15-40 \mu \mathrm{Sec}$ £35.00

MARCONI WIDE RANGE R.C. OSCILLA TOR TF130
Sine-waves $10 \mathrm{c} / \mathrm{s}-\mathrm{Mc} / \mathrm{s}$, square waves $10 \mathrm{c} / \mathrm{s}$ $100 \mathrm{Kc} / \mathrm{s}$ Directo outputs up to 31.6 V . Attenuator with three impedances. £120.00

HETRODYNE UNIT TF1221

$2 \mathrm{Kc} / \mathrm{s}-100 \mathrm{Mc} / \mathrm{s} £ 45 \cdot 00$

WAYNE-KERR NOISE GENERATOR CT410 A portable instrument for measuring the noise factor of radio receivln equipment, metric radar receivers, and radar wide-band i.f. amplifier
in the band $15 \mathrm{KHz}-160 \mathrm{MHz}$.

MARCONI TYPE TF801A SIGNAL GENERATOR
Frequency range: 10 HMz to 310 MHz . O/P voltage: $0-100 \mathrm{db}$ relative to 200 mV into 750 hm IV CW OIP avallable. Internal modulation: 400 Hz , kHz and 5 kHz to 80% sine or square.
ADVANCE TYPEDI/D SIGNAL
GENERATOR
Frequency range: $10 \mathrm{MHz}-300 \mathrm{MHz}$. O/P voltage; $1 \mathrm{~V}-10 \mathrm{mV}$. $\quad £ 25.00$
KENT CHROMALOG 1 DIGITALINTEGRATOR
For use with gas chromatography apparatus or any
thing with an output expressed as a varying direct voltage. Automatic print out and $0-10 \mathrm{~mA} O / P$ to drive recorder. Offered in excellent condition. 3 months warranty and copy of handbook. Price £150. Carriage extra.

MINITRON

K.G.M. Type 3015F 7 Segment display showing figures $0-9$ plus decimal point. Character of 9 mm height. In 16 DIL case.

NEW LOW PRICE £1-40
SN7447N BCD Decoder Driver £1-00

MUTUAL INDUCTANCE

BOX TYPE R. 7005

Speciffcation Range: $0-11.100 \mathrm{mH}$. in
 inductance in mH . set on the box. Fre-
quency range: $0-2.5 \mathrm{Kc} / \mathrm{s}$ for all decades quency range: $0-2.5 \mathrm{Kc} / \mathrm{s}$ for all decades
except $\mathrm{Xt}=0-15 \mathrm{Kc} / \mathrm{s}$. Maximum current 0.5 A for decades 1 A for vartometer (both
 primary and secondary wingings). Case: Pollshed
f 9.50 .
SINE COSINE POTENTIOMETER 47K Precislon component by Pye. Model 2002 Manufactured to rold Ministry specification The assembly consists of three unlts
mounted In one frame. Each unit contains two sine and two coside potentiometer sections, the silders being ganged together.
 and centre tap. Mechanlcal I/P: 30 r.p.m 6 in . H. 5 in . D. 7 l Im . Wt. 7 l los. Ex equip
 ment. Good conditlon. Price $£ 5$. Carriag

ROHDE \& SCHWARZ
Zg DIAGRAPHS
PLOTTER PLOT IER
These Instruments will
rapldy plot the loci of the impedance or admittance of any ltem such as antennas, transformers absorbers, filters and
other networks. Imped ance measurements are possible from $0.02 Z,{ }^{\text {ar }}$ to
$50 Z$, where $Z^{\circ}=50,60$ or

75 ohm.
Type 200
$300-2400 \mathrm{MHz}$. Price $£ 390$.

INFRA-RED

SPECTROPHOTO. METER
A single beam Instrument deeffluent from a gas chromatoBeckman Type IR-102 and fast scan capabilities make it suitable for fast reaction studies range is 2.5 to 14.5 microns. In excellent condition. The wave length

TRANSISTROL TEMPERATURE
CONTROLLER TYPE 990
Completely transistorised self-contained direct deflecting units for indicating and controlling temperature accurately Over a wlde range.
Suitable where a signal can be converted into d.c. Sensitlvity 10 ohms per MV. Minimum F.S.D. 8 MV. Cold lunction compensation. Callbrated
 thermo-couple connectlons all at back of case. Price £18.50 plus $£ 2.00$ packing and carriage.

ASCOP DIGITAL ENCODERS
Type 504A-8-001 Price \&20. Type EDD8G Price £20.
SYNCHROVERTER SWITCH TYPE G1280 BY ELLIOTT

POWER SUPPLIES

POWER SUPPLIES, IBM EX-COMPUTE HIGHLY STABILISED, TRANSISTORISEI LOW VOLTAGE POWER SUPPLIES.
These modular units Incorporate overload protection on bo
INPUT and OUTPUT. Load regulation of 1% or better. Lo ipple and fast response time. Input voltage 120-130 50 H Avallabie in the following types:
6 volt 8 Amp $£ 21.00$
6 Volt 12 Amp $£ 17.00$
8 Vol 16 Amp $£ 20.00$
12 Volt 4 Amp $£ 20.00$
12 Volt 12 Amp $£ 22.00$

IN NEW POWER SUPPLIES AT LESS THAN HALF MANUFACTURER! PRICES.
O/P Voltage $7.5 \mathrm{~V}-9 \mathrm{~V}$. Max. load current 10 Amps. Ma ipple on full load approx. 60 mV . p.p. Threshold currel
10.5 A. Overvolt protection.
OUR PRICE $£ 12$. S

EX COMPUTER HIGH GRADE FULL STABILISED POWER SUPPLIES

Input 200/250V.
ADVANCE TYPE DC 207
20 Volts 9 Amps. 10 Volts 3 Amps.
20 Volts 2 Amps. 20 Volte 13 Amps . 20 Volts 2.5 Amps DDVANCE TYPE DC 202 35 Volts 9 Amps. 10 Volts 8 Amps. ADVANCE TYPE DC $197 \quad 6$ Volts 7.5 Amps WESTINGHOUSE Fully Fused Input 200/220/240/10

6 Volte
28 Volts 9 Amps. 14 Volts 0.75 Amp 20 Volts 4 Amps. 25 Volts 2.5 Amps.
30 Volte 0.75 Amp
6 Volts 7.5 Amps . 6 Volts 11 Amps. 28 Volts 9 Amps. £18 EACH. P. \& P. \&2.

EVERSHED SAFETY OHMETER

for testing the continuity and resistance of circults, consist of a hand-driven generator and a direct reading ohmmete
Range in ohms $0-4,0-5,0-10,0-100,0-300$.

IGNITION TESTER

Ideal for garages, thls brand new instrument is used to di spla all ignition faults. Supplied complete with instruction manus
showing photorgaphs of displays, makling use very simple supply. DIsplay cards also avallable for garages and othe places wishing to advertise this equipment is in use. Made b
Britlsh Physical Laboratories Lid., originally for use on th

AVOMETERS

	Price £14 £ 19.50 ± 29-50 ${ }^{2}$ Adm that th are no EXTRA	Model 40 47A 48A ersions stance odel 40 able on	Pric E18 £.15 £16 del 0-1. e use
PHILIPS VALVE VOLTMETER			
MODEL G M6014			
Max. 300 mV ,	30 MHz .		CE

to purchase sume of the Worldis finest palibration instruments at sawings of

PEN RECORDERS

BRAND NEW MINIATURISED

 STRIP CHART RECORDER BY RUSTRAKIf America. This Recorder indicates the magnitude
of applied currents or voltages by a continuous distor tion-itee line on pressure sensitive paper. Moving coll
novement, scaie callibrated $0-1$ milliamp d.c. interna
 Chart speed 1^{*} Per hour. Complete with handbook
Price $x 35 \cdot 00$ plus $£ 5.00$ packlng and carriage.

SINGLE PEN RECORDER

A.E.I. POTENTIOMETRIC RECORDER

FOSTER CHART RECORDER TYPE 3671 RY-6 Sensitivity $0-20 \mathrm{MV},-50 \mathrm{MV}, 100 \mathrm{MV}$. Chatt speed $1.5 \mathrm{~cm} / \mathrm{hr}-6 \mathrm{~cm} / \mathrm{hr}$. DUPLEX RECORD 2 PEN RECORDER
30 day Clockwork - 5010150 m M/A DUPLEX RECORD 3 CHANNEL PEN RECORDER O-10 M/A. Sneed 1 "per hour. POTENTIOMETRIC RECORDER
PRICE £95:00.

LEEDS \& NORTHRUP STRIP CHART RECORDER This well-known instrument is fitted with a Series 60 control unit servo
amplifler 101041 BR EQ. Range: 5.571 to
18-855. Ref.

SPECIAL OFFER

ng a trace on a curvi-Inear 3 in. strip chart. Two synchronous speeds: 1 in . Fitted with high and low alarm
contacts operated by the moving contacts operated by the moving
coil. Basic movement 01 mA
DCC
coll resistance 400 ohms. Fitted with
rectifier to allow operation on AC effective
1800 ohms.
Power supply required
230 V 50 Hz .
Aplications: Ideal for recording
relallvely slow changing pehenomena such as:
Temperature: Gas or liquid Flow
Rates. Sound Levels, Speed variations. Power Demand. Rainlail
humidity, etc. PRICE $£ 25$. Clockwork version also avalable

OSCILLOSCOPES

80 COLUMN HAND PUNCHES

DE LUXE
MODEL
incorporating tabu879.5
age.

ELECTRIC HAND VERIFIER ${ }_{\text {age. }}^{\text {Eg9.50 }}$ plus carri

All machines supplied with numeric keylops and dust-cover Oplonat extras anha keylops and
Special Computer Offer! SAVE 75\% OF LIST PRICE ON THIS DEC PDP SYSTEM
PDP-12C $\quad 4 \mathrm{KPU}$ and Console
DF32
32 K Disk and Control
DWO8A $1 /$ Bus Level Converter
C12
BA12
$\begin{array}{ll}\text { ASR33 } & \text { Teletype } \\ \text { PTO8C } \\ \text { Dual Channel Interface }\end{array}$
KP12 Power Fall/festart
AFO1A
A/D Converter/Multipiexer
Fully maintained by DEC since new
DEC maintenance available on resal

- Available in our sho
$£ 5000$

TELETYPE PUNCH

, Fith. Self-contained, consists of punch systems. Operating spaeds up to 100 characters per second. (11100 words
minter
minter

WELMEC 7 \& 8 HOLE ELECTRO-MECHANICAL PUNCHES \& READER
Models S S 110 and $\mathrm{R} 82 \mathrm{C}, 17 \mathrm{char}$. per sec. Rebuilt, available
lom stock. 15.15.

ICT KEYBOARDS

I:T KEYBOARDS

In original packing-Alpha-numeric Prices from $£ 12.50$
Kagnetic Tape Transporters AMPEX TM4, TM2, TM7, FR300
IBM PUNCH CARD EQUIPMENT FULLY GUARANTEED

FREQUENCY CONVERTER MODEL B. 40 50 KVA to 60 Hz power freauency converter, Fully overhauled
Specification: Specification
Prime Mover:
$\begin{array}{ll}\text { Input: } \\ \text { In } & \text { Electric Motor } \\ 2201380 \mathrm{~V} 5 \mathrm{~Hz} \\ \text { On }\end{array}$
 HEWLETT PACKARD DIGITAL RECORDER
MODEL 565 A MODEL 565A
Data Entry, paraliel to 11 columns, Print speed 5 lines per second
PRICE \&85.00.
HEWLETT PACKARD SAMPLING OSCILLOSCOPE MODEL 185B
Including 187C. DC-100 Meg Hz
PRICE $£ 395.00$
PYE HIGH RESISTANCE OHMMETER MODEL 10B
Qange from 0,3-20,000 Megohms
in 4 ranges at 500 V . Used for the measurement of components or
circuits having high parallel capacitance. PRICE $£ 20.00$

MULLARD VALVE VOLTMETER MODEL E7555/2 PRICE $£ 20.00$
COLVERN DIGITAL CODERS (Shaft Digitisers) Digital Coders are electramechanical devices, which give a unique
paraililel digital code outpit representing the angular position of the
shate shatt. The current handling capacity is sufficient to operate relay
decodes and Indicators direct without Intermedlatg stage of a mplica-

WIDERANGE OSCILLATOR TYPE 400C by DAWE ${ }^{1} \mathrm{c} / \mathrm{s}-1,000 \mathrm{c} / \mathrm{s}$.
FANS BY PLANNAIR
115V-3 Phase $400 \mathrm{c} / \mathrm{s}-11,000 \mathrm{rpm}$. Type fPL41-234 PRICE $£ 4$-00
R.C. OSCILLATOR TYPE G432 by FURZEHILL Square and sinewave. $250 \mathrm{kc} / \mathrm{s}$.
7-TRACK DIGITAL MAGNETIC TAPE STORAGE DECK
These machines, origlnaily ex-computer, ate multi-track, recording

MEMORY PLANES

Ferrite core memory planes with wired Ferrite cores. Used for building your own
computer or as an interesting exhibit in computer or as an interesting exhibit in
the demonstration of a computer Mounted on plastic material trame $52 \mathrm{in} \times 8$. in.
Consloting of matrice $40 \times 5 \times 4$ cores.
each on each one individually addressable, and
divided Into halles wilt indenendent
sense and Inhibit wires. Price $£ 2.50$.

EAC DIGIVISOR Mk. II
DIGITAL READ-OUT DISPLAY
Heally suitable for use in conjunction witt translstorised decade counting devices. No need for amplifers or relays as only a tew milli-
watts of power are required to charge the digits. The DiGivisor incorporates a moving coil movement which moves a translucent
scale through an optical system and the resultant single plane Image scale through an optical system and the resultant single plane image
is projected on a screen. The transiucent scale is made orepesent
隹 digits $0-9$. Speclfication: 6.3 Volt, $250 \mathrm{Microamp}$. Image height $7 / 8$ in

LOW FREQUENCY RESOLVED COMPONENT INDICATOR BY
SOLARTRON
Type VP 253.2A. This instrument will indicate by means of two centre
zepo 6 in. scale meters the resolved components of a sianal voltage zero 6 in. scale meters the resolved components of a signal voltage
with respect o the apoled reference energisation. Freauency range
1.5 V

 Inpul Voltage $90 / 130$ or 2301240 V. Standard Rack Pane
New condition complete with manual. Price $£ 45 \cdot 00$.
FENLOW LOW FREQUENCY ANALYSER 0

"IMPEX" CASES - A RANGE OF 48 SIZES!

TYPE	HEIGHT	WIDTH	DEPTH	R.R.P.
AIC/P	$2 \frac{11}{}{ }^{\prime \prime}$	$33^{\prime \prime}$	$5{ }^{\prime \prime}$	f1.40
B2C/P	$3 \frac{3}{4 \prime \prime}$	$6 \frac{3}{4 \prime \prime}$	5 "	E2.20
C3C/P	5"	$10 \frac{1}{8}{ }^{\prime \prime}$	5"	¢3.33
B2D/P	$3 \frac{3}{4 \prime}$	$6 \frac{3}{4 \prime}$	$8^{\prime \prime}$	¢3.31
C3D/P	5 "	$10 \frac{118}{}{ }^{\prime \prime}$	8"	64.87
C4E/P	$5{ }^{\prime \prime}$	$13 \frac{1}{2}^{\prime \prime}$	$11 "$	¢7. 34
AND 42 MORE STANDARDS				

PRICES INCLUDE POSTAGE AND V.A.T.

AVAILABLE FROM:

N. R. Bardwell, Sellers Street, Sheffield.

Home Radio, Mitcham, London.
Garland Bros., Deptford, London.
OR DIRECT FROM:
"IMPEX" P.O. Box 2BB, Newcastle-upon-Tyne.
FREE BROCHURE ON REQUEST
Trade and Manufacturers Enquiries Welcome.

WW-076 FOR FURTHER DETAILS

CBS SQ* FOUR CHANNEL DECODERS

*Regd. CBS inc
A complete kit for the home constructor that can be built in under an hour with just a soldering iron and a pair of cutters. Just pop the components into the positions clearly marked on the fibre glass board, crop and solder.
You then have the identical decoder board we put in our latest QUADRASONICS Hi Fi equipment and the application approved by CBS as described in Wireless World, March 1973.
$\mathbf{£ 8 . 0 0}$ post free, including licence fee to $C B S+80$ p V.A.T.
If you doubt this, buy our complete and tested production board which is guaranteed ior a year.
$\mathbb{E} \| .00$ post free, including licence fee to CBS $+\boldsymbol{£ I \cdot I 0}$ V.A.T.
DESPATCH GUARANTEED WITHIN 72 HOURS, complete with lucid instructions.

PHASE LOCKED LOOP STEREO DECODER

(as in Wireless World, July 1972)

Another complete kit that takes about 30 minutes to build. No alignment problems and coils to adjust. Just four simple steps to obtain perfect stereo from your mono tuner.
(I) Connect decorder to your tuner, possibly disconnecting one or two de-emphasis components.
(2) Provide 10 to 16 volts D.C. either from your tuner or a separate power supply.
(3) Tune to a stereo broadcast.
(4) Turn a "preset") resistor until the stereo beacon lights up. You then have stereo radio.

Comprehensive instructions provided, but if you are in doubt, just ask us!
$\mathbf{\$ 3 . 4 0}$ post free +34 p V.A.T. (Beacon $\mathbf{3 4 p}+4$ p V.A.I.)
PROMPT DESPATCH GUARANTEED
Still Worried? Then buy one of our assembled and tested production boards complete with stereo beacon and guaranteed for a year.
$£ 4.40$ post free +44 p V.A.T. Why pay more?
WHY NOT CALL ON US FOR A DEMONSTRATION OF QUADRAPHONIC AND STEREO HI-FI, in the demonstration lounge at our factory.

SONAX ELECTRONICS
 SPENCER HOUSE,
 BRETTENHAM ROAD, EDMONTON, LONDON, N.I8.
 Tel.: 01-807 5544 01-807 5999
 Please send me:
 - Kit
 - CBS SQ* decoder
 $\square \quad$ Phase locked loop decoder
 Name . .. Address
 (BLOOCK CAPITAZÖ PLEASE)

Now BOLTON COVENTRY SUNDERLAND STOCKPORT

BIRMINGHAM 30-31 GI. Western Arcade BOLTON 23. Qeansgate BRADONRD 10 North Parade (Closed Wed.)
BRADENTRY 17 Shelton Sauare COVENTRY 17 Shelton Square Tel : 25983
DARLIGTTON 19 Noth
DERETe (Closed Wed.) DERBY The Spot, ${ }^{26}$ Osmastion Rd. EDINBURGH 101 Lothlan Road. (Closed Wed.)
GLASGOW 326 Argyle St. (Closed Tues.) GLASGOW ${ }^{326}$ Argle St. (Closed.) LEEDS 5-7 County (Mecca) Arcade Briggate LEICESTER 32 High Si. (Closed Thurs.) LIVERPOOL 73 Dale St. (Closed Wed.)
LONDON 238 Edgware Rd., (Closed Thurs LONDON 238 Edgware Rd., (Closed Thurs.)
MANCHESTER 60 O Oldham St. (Closed Wed.)
MIDDLESBRO 106 Newport Rd (Closed Wed.)

Be
OR-FER CENTR
108 HENCONAER ORNERS LO:

 EXPORT ENQUIBIES WELCOMED BRANCHESOEN ALL DAY 8ATURDAY8 MALL ORDERS NOT TO BE SENT TO SHOPS. NOTTINGHAM 19 Marhet St. (Closed Thurs.
SHEFFIELD 13 Exchange St. (Closed Thurs.) STOCKPORT 8 Little Underbank Tel. 202716 STOCKPORT 8 Little Underbank Tel. 480.0777
(Closed Thurs.)
SUNDERLAND 5 Market Scuare (Closed Wed.) SUNDERLAND 5 Market Scuare (Closed Wed.) R.S.C. G66 MkII $6+6$ WATT STEREO AMPLIFIER
High Quality Output. Ratiag I.H.F.M. Ind. Ganged Controls Bass
 plus diodes. Range 20-c0, 000 Hz . Bazs control ± 12 dB Treble
 Black/sliver meat race plate and matcliing innoras.
COMPLETE KIT OF PARTS INC. $\mathbf{f 1 2 \cdot 6 5}$ TEAK VACTORY BUILT IN $\mathbf{f 1 6 . 5 0}$ R.S.C. SUPER 30 MkIII HIGH FIDELITY STEREO AMPLIFIER BUILD AN AMPLIFIER WORTH APPROXIMATELY Only bigh grade components by leading manutacturers - Punh Button Selector Switching - Jack Socket for Headphones - Neon Indicator - Satin Silver Finish Metal Fasoia - Solid State Circuitry

- Twenty Silicon Transistors
- Four Diodes, Four Rectifiera Send S.A.E. for foll descriptive lestlet

rogardiens of Price
Ontput (per channel)
Frequats Ry
Frequency Response COMPLETE KIT (less CT7 5 \pm it dB Cablaet if req. 85 extra 4 FACTORY BULLT UNIT NNC. CABLEET $\mathbf{1 4 2 . 5 0}$ 9 monthly pasments $\$ 4.54$ (Total 847.80)
$\pm 42 \cdot 50$

FANE ULTRA HIGH POWER LOUDSPEAKERS

R.S.C. AIO 30 WATT HI-FI AMPLIFIER
 fnputs
 Senitivity 36 mV . For High Imp. Mile. or pror CLUPBE, De8igned to high idelity standards HALLE, DISCOTHEQUES, etc. For use with Electronic Organ, Bass or Lead Guitar. For
 monthe' guarantee- Or Dep. \&4 and θ monthly BS.C. MAINSTBANSEOBMERS YULLY GUARABTEED, Laterlesved and (mpreg-

FULLY 8EROUDED UPEAGHT MOUNTING

 For Muilard 510 Amplifier. $350-6-350 \mathrm{v}$. 1001 nA ., 6.3 vv . 4 a ., $0-5-6.3 \mathrm{v} .3 \mathrm{a}$. $360-0-350 \mathrm{v} .150 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}$, , $0-\mathrm{s}-6.3 \mathrm{v} .3 \mathrm{a}$. $425-0-425 \mathrm{v} .200 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} . .6 .3 \mathrm{v}, 3 \mathrm{a} .5 \mathrm{v} .3 \mathrm{a}$ 450-0-450v. 250mA. 6.3v. 4a., c.t., 5V. 3a... $250-0-250 \mathrm{v} 70 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a} ., 0-5-6.3 \mathrm{v}$. 2 a . $250-0-200 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}, 3.5 \mathrm{a} . \ldots$.
$250-0.250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a} .6 .3 \mathrm{v}$.
 $500-0-300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} ., 0-5-6.3 \mathrm{v} .3 \mathrm{a}$. $300-0.300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v}$. 4 a . c.t. 6.3 v .1 s . Suitable for Mullard 510 Amplifier $350-0-350 \mathrm{v} .150 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} .0 \mathrm{0}-\mathrm{b}-6.3 \mathrm{v} .3 \mathrm{a}$. $£ 2.45$. 1.0a. 55p: 0.3 v . 0 R POWER PACK Types

 8a., 22.20 .

 OUTPUT TRANSFORMERS
Btandard Pentole $5,000 \Omega$ to $7,000 \Omega$ to 3Ω
Puah-Pull 8 watte EL84 to 3Ω or 15Ω...

 Push-Pull Ultra Lidnear for Mullard 510, etc. 6 L 6 KT 66 etc., for 3 or 15Ω.
R.S.C. BM1 battery ellimina-
tor completely replaces 1.5 v
and 90 v R Radio batteries
where normal $200-250 \mathrm{v}$. AC
where normal $200-250 \mathrm{v}$. AC
mains is available. $\mathbf{\{ 4 \cdot | 5}$
Ready ior use

FANE SPEAKERS 'POP' 25/2
 HI-FI SPEAKER ENCLOSURES Tesk veneer finish. Pleasing design.
Acousticsily lined. Ali sizes approx. je8 $16 \times 11 \times 9$ in. Pressur- $\mathbf{~} \mathbf{5 . 5 0}$ with 8 in . Hi-Fi Bpeaker
 SEl0 outstanding performance with Hi-10-in. speaker. $25 \cdot \times 16 \times 9 \mathrm{in}$. F'orted. $\underset{25 t \times 16 \times 9 \text { in. Pressurised. }}{\text { in. }} \mathbf{~ H i - F i}$ speaker and Tweeter.
 FANE 807T HIGH FIDELITY SPEAKER 8 " 10 WATT A full range unit to provide excelienc.
sound quality in suitable enclosure. Roll P.V.C. eone gurround and long
throw volce coil to achieve very low throw volce coil to achieve very low
fundamental resonance of 30 Hz . Tweeter cone extends bigh note
Frequency range 25.15 . response. Frequency range $25.15,000 \mathrm{gz}$. Imp.
3 or $8 / 15 \Omega$. (state requirement.) REMARKABLE VALUE $\mathbf{\$ 3 \cdot 7 0}$ MODEL 803 T 8 16 w . with paraitic Tweeter.
Regponse 25 Hz to 15 KHz Gause
13.000 Imp 3 or $8-15$ ohms. $\mathbf{~ O N L Y}$

FANE MODE ONE HI-FI SPEAKER KIT inc. $8038^{\prime \prime}$ unit, 303 Prea.
Burs Tweeter, Printed circulh, inductive capaclitive
 $30-20,000 \mathrm{~Hz}$ K $\$ 96$
HIGH FIDELITY SPEAKERS

Please atate impedance
required. required.
3 or $8-15$ ohm.

HI-FI SPEAKER SYSTEMS

TRANSFORMERS

Secondary 240 V
ALSO AYAILABL WITY) and Earth shielded

440 V 300 V A ISOLATOR, Primary 440 V Secondary 240 V , Centre Tapped
Screened and Shrouded, $610 \cdot 37$. P of P 67 p .
AUTO SERIES (NOT ISOLATED)
Ref.
No.
113
64
66
66
64
93
73

$7.3 \times 4.3 \times$
$\times 1.4$
$\times 6.0$
$0-115-210-240$
$0-115-210-240$
$0-115-210-240$
$0-1 \mid 5-200-220-240$
6
0.93
1.82
2.20
4.28
6.35
11.54
16.72
21.82
29.70
TOTALLY ENCLOSED IISV AUTO TRANSFORMERS
115 V 500 Watt totally enclosed aut, transformer, complete with mains tead and two 115 V outlet sockets, 68.63 . P \& P 67 P
Also availatle a 20 Watt version. \&1 \&4. P \& 22p.

LOW VOLTAGE SERIES (ISOLATED)
PAIMARY 200-250 VOLTS IL AND/OR 24 VOL

REF 238 PRI 0240 SCREEN SEC 3.B $3 V$ RMS at 200 mA SI

PRIMARY $200-250$ VOLT FORCHARGHINGGORIVVOLT BATTERIES Ref. Amps. Neight Size cm.
No. lb oz

All ratings are continuous. Stāndard construction: open with solder tags and wax impregnation. Enclosed styles to order

TRANSISTORS
TO MANUFACTURERS' FULL 'SPECIFICATIONS FOR EXAMPLE
BC107/108/109 10p each
2 N 气055 68p each
AD 16 1/162 60p pai
with mica and bushe
with mica and bushes

\star Quantity prices on application

Also stocked: SEMICONDUCTORS VALVES AVOMETERS - ELECTROSIL RESISTORS PLEASE ADD 10\% FOR V.A.T

BARill electronics
3, THE MINORIES, LONDON EC3N 1BJ
TELEPHONE: 01-488 3316/8
NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOL ST.

MODERN TELEPHONES type 706. Two tone grey, $£ \mathbf{3} \cdot \mathbf{7 5}$ ea. The same but black, $£ 2.75$. P. \&'P. 25 p ea.

Also TOPAZE YELLOW E. 4.50 ea. P. \& P. $25 p$. STANDARD GPO DIAL TELEPHONE (black) with internat bet. $87 p$ ea. \&P. 50 p Two for $£ 1 \cdot 50$. P. \& P. 75 p .
All SINE TO SQUARE WAVE CONVERTOR.
5 Hz to 250 KHz 9 volt operation. Sine input 1 to 15 voli-output 0 lo 7 volts. Completely assembled with amplitude control and mark space presef, £2.25 ea. P. \& P. 15p
G.E.C. Sealed Relays HIgh S
G.E.C. Sealed Relays High Speed 24V. 2min-
S.T.C. Seated 2 pole clo 700 ohms (24 V), 15p ea.
12v 35p ea, 2,500 ohm (0kay 24v)-13p ea
S.T.C. Brand New 2 pole c/o 6800 ohm coll15p ea.
CARPENTERS polarised Single pole clo 20 and 65 ohm coll as new, complete with bas 37 pea
Single pole c/o 14 ohm coll 33p ea.; Single pole Varley VP4 Plastic covers 4 pole c/o $5 K-$ 30p ea. $15 \mathrm{~K}-\mathbf{3 3 p}$ ea.
POLARISED Relay 2 pole c/o 250 ohm and 250 ohm coils. $-2=0$ ea.
POTTER \& BRUMFIELD 24V 4 pole c/o min relays. Clear Plastic. Brand New. 50p ea P. \&P. 10p.

POTENTIOMETERS
COLVERN 3 watt. Brand new, $5 ; 10 ; 25$
500 ohms $1 ; 2.5 ; 5 ; 10 ; 25 ; 50 \mathrm{k}$ all at 13 p ea. MORGANITE Special Brand nown 25. 10 MORGANITE Special Brand new, 2.5; 10;
$100 ; 250 ; 500 \mathrm{~K} ; 2.5 \mathrm{meg} .1 \mathrm{in}$ sealed, 17 pea . BERCO 2 I Watt. Brand new, 5; 10; 50; 250; BERCO 21 Watt. Brand new 5; 10; 50; 250;
500 ohms; $1 ; 25 ; 5 ; 10 ; 25 ; 50 \mathrm{~K}$ at 15 p ea. STANDARD 2 meg. log pots. Current type 15pea.
INSTRUMENT 3 in . Colvern 5 ohm 35 p ea. d 100K 50p ea.
BOURNS TRIMPOT POTENTIOMETERS. 10; 20; 50; 100; 200; 500 ohms; 1;
25K at 35p ea. ALL BRAND NEW.
RELIANCE P.C.B. mountlng: 270; 470 ;
500 ohms; 10 K as 35 p ea. ALL BRAND NEW. ALMA precislon resistors 100K; 400K; 497K ALMA preci
$998 \mathrm{~K}_{1}$ meg
$0.1 \% 20 \mathrm{p}$ ea.

MULLARD ELECTROLYTICS
 2200MFD $100 \mathrm{~V} 10 \mathrm{~A}\left(50^{\circ} \mathrm{C}\right)$ BRAND NEW BOXED 70p each 10 off - 60 p each 100 off - 45p each

TRANSFORMERS. Ali standard inputs. STEP DOWN ISOLATING trans. Standard
$240 v A C$ to $55-0-55 \mathrm{~V} 300 \mathrm{~W}$, $£ 3$ ea. P. \& P. 35 p . 240v AC to $55-0-55 \mathrm{~V} 300 \mathrm{~W}$, £3 ea. P. \& P. 35 p .
Neptune series $460-435-0$ etc. 230 MA and 600-570-540-5 Neptune Series. Mult 6.3 volts to give 48 V at
$\mathbf{3 . 5}$ amps etc. $£ \mathbf{~} \mathbf{3} 50$ Incl. P. \&P. Gard/Parm/Part. 450-400-0-400-450. 180 MA .
 Transformer ${ }^{250-80}$
ع1 $\mathbf{5 0}$. P. \& P. 25 p.

CHOKES. $5 \mathrm{H} ; 10 \mathrm{H} ; 15 \mathrm{H}$, up to $120 \mathrm{~mA}, 42 \mathrm{p}$ ea P. \& P. 17 p

Up to 250 mA 63p. P. \& P. 35p
Large quantity LT, HT, EHT transformers. Standard 240V MOTORS by CIIENCO Also 57 r.p.m. and 114 r.p.m.

FIRST TIME at $\mathrm{E42.50}$
Solartron CD 711 SI 2 D Double Beam Oscli loscope DC- $9 \mathrm{mc/s} / 3$ mv/cm; triger delay: crystal calibrator; 4° flat faced tube.
In good working condition. Carr. $\Sigma 1.50$.
CT 316 General Purpose Oscllloscope. $3^{\prime \prime}$ tube 5 Mhz Band width DC Coupied. Standard 240 V
50 HZ input. $£ 22.50$. Carr. $£ 1.50$. COSSOR 1035 Mk 3. DOub COSSOR 1035 Mk. 3. Double Beam. Band-
wldth 7Mhz. Mk. 3 has miniature valves-has Whath 7Mhz. Mk. 3 has miniature valves-has
no internal resemblance to Mk. $1 / 2$. Very good value at $£ 40$ ea. Carr. £1.50.

OSCILLOSCOPES
HARTLEY 13A. Double Beam $5.5 \mathrm{mc} / \mathrm{s}$ HARTLEY 13A. Double Beam $5.5 \mathrm{mc} / \mathrm{s}$
with circult diagram \& mains lead $£ 20$. Complete with accessorles $£ 25$. CT436 DB-6 mc/s. £65.
SOLARTRON 643 DC-15 mc/s.
SOLARTRON DC-10 mc/s. CD513-E40

E.M.I. WM8. DC to $15 \mathrm{mc} / \mathrm{s}$. Complete
with plug in preamp, from $\mathbf{E 4 5}$. Oscllloscopes marked * suitable for Colour Teievision servicing. Many others All careful
£1-50 extra.
Nolse Gen. TF1106. $£ 40$ NI
Vacuum
Vacuum tube Voltmeter TF1041A. $£ 27.50$
1041B, $£ 35$.
Wide Rang
Weviation Me Oscillator TF 1370, £100. Deviation Meter TF934/2, £50 ea, Carriag
£1.50.
Deviation type 791, £30 ea. Carr. 75p. TF 1026 Frequency Meter $£ 12 \cdot 50$. Carr. 75p TF 329 Magnification Meter. As new con dition $£ 60$.
TF 899 Millivolt Meter up to $100 \mathrm{mc} / \mathrm{s}$. $£ 15$ ea. Carr. £1. TF 893 Out.
TF 894A Audlo Tester, £50. Carr. £1.5C AF Nol (CT44) Absorption Wattmete £15 ea, Carr. £1.50
TF 801 A Signal generator $£ 45$ ea. Carr
TF 886 Magnification Meter £45. Carr. £ 1 TF 936 N. 5 Impedance Bridge from $£ 50$ ea Carr. £1.50.
TF 144 G Signal Generator. Serviceable
Clean $\mathbf{1 5}$. Carr. $\mathbf{\Sigma 1 . 5 0}$, TF 885 Video Oscillator SinelSquare $£ 30$ TF 885 Video Oscillator SinelSquare £30 TF 885/1 £45. Carr. $£ 1.50$.
Stabilised P.U. SRS 151. £15. Carr. $£ 1 \cdot 50$ Stabilised P.U. SRS 152. £10. Carr. £1 50 Precislon Millivoltmeter VP252. £25 Carp.
Oscillator type OS 101. £30. Carr. $£ 1 \cdot 50$ Electronic Testmeter CT 38, £17. Carr. £1 AIRMEC Generator type 210, £85, Carr AIRMEC Generator type $210, ~$
$£ 1150$.
. Carr Test Gear listed is only a very small selection other items.

AVOTRANSISTOR AND DIODE TESTER
TYPECT 537. In superb condlition. c ates with full instructlons, circuit diagramal etc. New price $£ 250$ Plus. OUR PRICE $£ 40$ ea.
Carr. $£ 1.25$.
MARCONI AUDIO OSCILLATORTF 195M 40c/s to 40 Khz . Fully adjustable metered off
2 watt ofo up to 15 Khz . $£ 12.50$ ea. Carr. $£ 1.50$, SPECIAL OFFER
SELECTED B.C. 221 Recalibrated to Ministry Specification in brand new condition. complete with circult, only $£ 25$. Carr. $£ 150$.

E.H.T. TRANSFORMERS (Standard Mains) 3 KV 600 MA. $£ 20$ ea. Carr. $£ 1.50$. Mains) 3 KV 600 MA. $£ 20$ ョa. Carr. $£ 1.50$, BRAND NEW AMERICAN HIGH VOLTAGE CAPACITORS. 0.15 mid VOLTAGE CAPACITORS. 0.15 mfd

INTEGRATED CIRCUIT test clip by AP inc. Gold Plated clip-on. Brand Now Individual boxed. al 00 өa. P. \& P. 10 .

4 DIGIT RESETTABLE COUNTERS 1000 ohm coll. Size $11 \times \frac{3}{2} \times 4 \frac{\mathrm{in}}{}$. As new,
by Sodeco of Geneva. $\mathbf{x 2} 50$ ea. As above but 350 ohm . $£ 3.50$ ea.

DECADE DIAL UP SWITCH-5 DIGIT

LIGHT EMITTING DIODES (Red) from Hewlett-Packard, Brand New 380 ea. Hewlett-Packard, Brand New 38p ea Holder 1p ea Information

FIVE moving call maters $£ 2$ P. \& P. 37p. VISCONOL EHT CAPACITORS

DUBILIER 0.1 mfd 5 KV ; 0.1 mid 7.5 KV ; 0.25mfd 7.5 KV ; 0.5 mfd 5 KV all at 50 p ea. -\&म.75
PHOTOCELL equlvalent OCP 71. 13p ea.
Photo-reslst type Clare 703. (TO5 Case). Two Photo-
for 50 p
BURGESS Micro Switches V3 5930. Brand new 13 pea .

AMERICAN EQUIPMENT

FM SWEEP GENERATOR TS 452. with built in display. For allgnment of IF/RF coils/filter
strips 5 to 100 Mhz . Marker adjustable throuen entlre range. $3^{* \prime}$ CRT. Supplied for 240 V 50 Hz operatlon. £70 ea. Carr. £1:50.
RF GENERATOR TS $497.2-400 \mathrm{Mhz}$. Internal AM Mod. External AM \& PM. Variable attenua r. £. $1 \cdot 50$ OSCILLOSCOPE type USM24. A 10 meg scope-all min valves complete with clrcuit
diagram and stepdown transformer $\mathbf{£ 2 2} 50$ ea Carr. £1.50.
POWER SUPPLY. Completely self contained 27 volt 40 amp OC. 240 V 50 HZ input $£ 35$ ea Carr. $£ 1$ 1.50.
FILTER UNIT with linking cable for above
$£ 15$ ea. Carr. $£ 1 \cdot 50$.

SEEING 18 believingi

COLVERN TEN TURN POTS-ex.eq. SOK at 60 p ea. Complete wlth dial $£ 1 \cdot 50$ ea.
P. ea . 15 p . C.R.T.' $5^{\prime \prime}$ type CV1385/ACR13, Brand new with spec. sheet. 63p ealp. \& P. 35 p . BASES for above 20p ea, P. \& P. $15 p$. Genuine MULLARD Translstors/Dlodes. Tested and guaranteed, OC41, 42, 76, 77 ;
83 ; OA5, 10 . All at 3p ea. OC23-10p ea. CAPACITOR PACK-50 Brand new components ony pap.R. 5 P. Brand
POTS-10 different values. Brand new.50D. P. \& P. 17p.
COMPONENT PACK consisting of 5 pots various values, 250 resistors $\frac{d}{b}$ and inatt etc, many high stabs. All brand
new. Fine value at 50 p per pack. P. \& P. new.
$17 p$.
COMPLETE Printed Circult TRAN.
 Slze $1 \frac{1}{2} \times 4 \frac{1}{6} \times$ Jin. ONLY 75 p . P. \&P. POp. 3000 Series relays- 15 mixed values (new
and as new. no rubblsh) £1. P. \& P. 37 p . DELIVERED TO YOUR DOOR 1 cwt . of DELIVERED TO YOUR DOOR 1 cwt. O
Electronic Scrap chassis, bOards, etc. No Electronic Scrap chassR, boards, etc. No
Rubbish. FOR ONLY $£ 3.50$. N. Ireland $£ 2$ extra.
LOOSE LEAF BINDERS. Blue plastle
 P.C.B. PACK S \& D. Quantity 2 sq. ft.
-no tiny pieces. 50 p plus P. \& P. 20p. FIBRE GLASS as above E1 plus P. \& P. 20p.
5 CRYSTALS 70 to 90 kHz . Our choice,
50 p . P. \& P. 15 p . Matched palrs, 50p per pair. P. \& P. 15p. MOTOR-min. synchronous, size $1: \times 2 \times$
$z^{*}, 240 \mathrm{~V}$ Operation $3.6 \mathrm{rpm}, 25 \mathrm{p}$ ea. $\mathrm{P} . \&$ za^{*}. 240 V Operation $3.6 \mathrm{rpm}, 25 \mathrm{p}$ ea. P. \&
Q. 5 p . TRIMMER PACK-2 Twin 50/200 pif ceramic: 2 Twin $10 / 60$ of ceramlc; 2 min
strips with 4 preset $5 / 20$ pf on each; 3 alt spaced preset $30 / 100$ pf on ceramic base.
ALL BRAND NEW 25 p the LOT. P. \& P. ALL Panel switches DPDT ex eq. 10p ea, DPST
Brand new, 17p ea.; DPST twice, brand new 25 p ea.
HEAVY DUTY 6 amp. 2 pole c/o-20p ea. GRATICULES. 12 cm , by 14 cm . in HIgh

PANEL mounting lamp holders. Red or green. 9p ea. Miniature. PANEL mountling iamp wlith holders-10V $15 \mathrm{MA} 5 p$ ea

BECKMAN MODEL A. Ten turn po complete with dial. $100 \mathrm{k} 3 \%$ Tol $025 \%-$ complete with dial. $100 \mathrm{k} 3 \%$ Tol $025 \%-$

FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single sided up to $2 \mathrm{f}^{\prime \prime}$ per sq. In. Oouble sided. Any size $1 p$ per $s q$. In. Postage 10 p per order.
Single pole 3-way 250 V AC 15 amp switch,
8 p ea. P. \& P. 5 . Large discount for quantity.

2 HZ to 20 MHZ SOLID STATE BEAM SWITCH

Completely assembled P.C. Board, ready to use on any standard commercial oscilloscope. Size $4 \frac{33^{\prime \prime}}{} \times 3 \frac{1^{\prime \prime}}{4} . £ 9.25$ each. P \& P $25 p$. AS ABOVE BUT' LIMITED BANDWIDTH 8 MHz ONLY. Price $£ 5.50$ P. \& P. 25p.

20HZ to 200KHZ SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermistor stablised. Separate independent sine and square wave amplitude controls. 3 V max sine, 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. $£ 6.85$ each. P \& P 25p. Sine Wave only £ 4.85 each. P \& P 25p.

WOBBULATOR

TRANSISTOR INVERTOR

12 V to 1.5 KV 2 MAAC . Size $1 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime \prime} \times 4^{\prime \prime}$ £2.95 each P \& P 25p.

For Displaying Responses of 10.7 (FM receiver IF's) and TV IF Alignment and any receiver or IF between 5 MHz and 150 MHz with maximum deviation of 15 MHz . Requires 6.3 V , A.C. and any general purpose oscilloscope. Instructions supplied. Ready to use. (Not calibrated, not cased). $£ 9$ each. P. \& P. 25p.

VALUE ADDED TAX not included in prices-please add 10\%

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

Open 9 am to 7.30 pm any day.

Advertisements accepted up to The p.m. Thursday, August 9th for ipace being available.

Engineers-Technicians-Wiremen London,Manchester,Birmingham,Edinburgh

Rediffusion Industrial Services are looking for Engineers, Technicians and Wiremen who will be based in one of our regional Installation and Maintenance cells in London, Manchester, Birmingham and Edinburgh.
We are a national leader in the field of industrial tele-communications involuing CCTV, television distribution, audio and many peripheral system's and our many customers include Broadcasting Authorities, Universities, Airports, Hotel and Factory Groups.
We are a young and energetic Company in a large Group with an excellent growth record, and offer outstanding opporlunities to anybody displaying ability and initiative.
In many instances Company transport will be
provided. Salary will bə dependent on ability and qualifications and there is a contributory pension scheme.
We give every encolragement with regard to training and advancement; standby and overtime working opport.nities are excellent. All normal fringe benefits apply. If you would like an interesting job involving a wide engineering base and have the requisite experience in these or allied fields, please apply in writing stating the area you are interested in and giving relevant details about your career and background to date to: B. L. Hall, Esq., C.Eng., M.I.E.R.E., Rediffusion Industrial Services Ltd., Astronaut House, Hounslow Road, Feltham, Middlesex.

REDIFFUSION

Require at Head Office, Chester

THIRD ASSISTANT ENGINEER

A Third Assistant Engineer is required for commissioning and maintenance of communication equipment at offices and substations throughout the Manweb area. The equipment includes Carrier Transmission. Telegraph, PAX, PMBX, V.F. Signalling, an extensive Communications Cable System, Radio and Data Transmission Interface Equipment.
Applicants should have wide experience in the field of communications and possess technical qualifications.
Salary within the range $£ 2.511$ to $£ 3.054$ per annum (NJB Grade 9 X . Scale 10) plus $£ 60$ per annum incidental overtime allowance.
Applications, giving full details of personal history, experience etc. should be sent to the Secretary (Personnel), Manweb, Head Office, Sealand Road, Chester CH1 4 LR within 10 days.

COMPUTER ENGINEERS

your line to success as a computer service engineer
 Vacancies exist in the London, Manchester and Liverpool areas for engineers with computer or

 electronic or electro-mechanical experience. In addition a number of senior vacancies exist for engineers (particularly with teleprocessing experience) who wish to develop their existing management skills. The Company pays attractive salaries together with generous fringe benefits including bonus, car allowance and non-contributory Pension Scheme.For further details write or telephone.
COMPUTER FIELD MAINTENANCE LTD. a member of the Computer Wortd Trade Group of Companies. 99 Bancroft, Hitchin, Hertfordshire Telephone: Hitchin (0462) 51511

MINISTRY OF DEFENCE (AIR FORCE DEPT)

ROYAL AIR FORCE

SIGNALS ENGINEERING LABORATORY NORTHOLT

ASSISTANT SCIENTIFIC OFFICER

required to assist a team of qualified staff in design, construction, testing and field trials of prototype communications and data processing equipment for operational use by the RAF.
Experience not essential but a keen interest in modern electronic techniques fecessary; and candidate would be required to undertake further study for which day release can be arranged. Work will mainly be at Northolt but opportunities to visit other RAF stations in this country and abroad will be involved.
Salary $£ 765$ (at 16), $£ 1,288$ (at 21), $£ 1,487$ (at 25) rising to $£ 1,702$.
Qualifications: at least 4 GCE " O " levels (or equivalent) including English language or Science or Mathematical subject. ONC/OND in an Electrical Engineers subject would be an advantage.
Application forms from Mrs. E. Kinner, Admin, HQ No. 90 (Signal) Group, RAF, Medmenham, Marlow or telephone Marlow 6969 Extn. 294.

RENDEL, PALMER \& TRITTON require SENIOR TELECOMMUNICATIONS ENGINEER for IRAN

* Must be a graduate in electrical or telecommunications engineering and/or a Chartered Electrical Engineer.
* Must have at least 10 years experience in the planning and execution of telecommunications projects and be fully familiar with all aspects of systems design engineering and specification writing, including radio survey work, acceptance testing and commissioning.
\star To lead a team designing a major project involving microwave radio relay systems, UHF/VHF.
* Initial tour 2 years with extensions thereafter.
* Salary approximately $£ 8,000$ p.a. according to qualifications and experience. Write to:

W. J. C. Foster, Personnel Manager,

Rendel, Palmer \& Tritton
Southwark Bridge House,
61 Southwark Street, London SEI ISA.

Does the booming world

 of hi-fi and audio have you by the ears?If it does, and you know your way around the technicalities and specifications of modern hi-fi equipment, you could be the man we need as assistant on one of our hifi publications. Man under thirty could find an exciting new outlet with this job, and earn a generous

NUJ salary as well.
Ring or write to: John Houslander on 6363600 at Haymarket Publishing Ltd., Gillow House,
5 Winsley Street, London, W. 1
[2874

LONDON BOROUGH OF HILLINGDON

VISUAL AND AURAL AIDS TECHNICIAN
suitably qualified and experienced required to assist in the day to day maintenance and repair of visual and aural aids equipment in emerging comprehensive schools. Salary $£ 1,635-£ 1,908$ p.a. incl. L.W. Current clean driving licence essential.
Application forms from the Personnel Officer, Ref. E/186/65, Belmont House, 38 Market Square, Uxbridge UB8 ITR. Tel. Uxbridge 38290 Ext. 294. Closing date 27 July.
[2866

COMMUNICATIONS

Overseas

Openings exist for qualified Engineers and Technicians

TAX FREE

SALARIES

* In excess of $£ 5,200$ p.a. for Engineers
* In excess of £4,000 p.a. for Technicians
* In excess of £3,600 p.a. for Junior Technicians

PLUS
Terminal gratuity of £2,000 after 30 months

PLUS

* Free Housing * Free Vacation Travel * Liberal Holidays * Leave every 6 months

Lockheed Aircraft International and International Aeradio Limited are operating a large Electronic programme in the Gulf Area and need the following qualified personnel. All appointments will be on bachelor status for periods of 30 months.

TELECOMMUNICATIONS ENGINEERS

Experienced in all aspects of the engineering and maintenance of high-power point-to-point communications systems. Experience must include troposcatter systems, multiplexing techniques, and familiarity with high-capacity multi-channel data transmission. A degree is desirable but extensive experience is acceptable.

GROUND RADIO TECHNICIANS

Communication Technicians responsible for the maintenance of HF point-to-point and communications networks using multiplex techniques in the SHF, UHF and VHF bands.

RADIO RELAY TECHNICIANS

Personnel required to maintain Radio Relay stations employing Voice and Data Communication links. They should be experienced in the operation/maintenance of troposcatter and microwave high-capacity multichannel systems.

TELEGRAPH EQUIPMENT TECHNICIANS

Experienced in the maintenance of teleprinter equipment, tape perforators, page printers and the associated ancillaries, and have some knowledge of the maintenance of small telephone exchanges and subscribers' equipment.

Ring in or write for an application form to: The Recruitment Officer (W), International Aeradio Ltd., Aeradio House, Southall, Middx.

01-571 1808

Rando ofite:rs wauld yau tome nshore for $2,2,300$ a year?

As a Radio Operator with the Post Office Maritime Service you can continue your career ashore in an interesting and expandingservice. And earn over $£ 2,000$ a year, including compulsory pension contributions, at 25 years of age working only a 41 -hour week of shift duties -with overtime this could rise to £2,300 and possibly more.

Post Office Radio Operators benefit from a shorter pay scale than sea-going officers. You have good opportunities for promotion to positions earning basic salaries of up to $£ 3,290$, and prospects of further advancement into Post Office Senior

Management.

To apply you need to be 21 or over and to hold a 1st class or General Certificate issued by the MPT or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

If you would like to know more, please write to the Inspector of Wireless Telegraphy, Post Office, IMTR/WTS1.1.3, Union House, St. Martin's-le-Grand, London EC1A 1AR. L50

SUMLOCK COMPTOMETER LTD. ANITA

ELECTRONIC DESK CALCULATORS PROGRAMMABLE CALCULATORS VISIBLE RECORD COMPUTORS PERIPHERALS

There are vacancies in our Field Service Organisation for Engineers to service the above range of equipment installed in London and the Home Counties.

Applications are invited from:-

- Electronic Engineers qualified to Intermediate City \& Guilds Certificate or equivalent standard and
- Electro/Mechanical Engineers experienced in Triumph/Adler and/or IBM input/output typewriters, readers and punches.

Excellent training facilities and first class conditions of employment.
For further information please contact :-
Admir.istration Manager,
Sumlock Comptometer Ltd.,
Anita House,
Rockingham Road,
Uxbridge,
Middlesex.
Tel: 89-51522

Lamson Industries Group

CHIEF INSPECTOR

Thorn Consumer Electronics (Chigwell) Limited is the Audio division of the Thorn Group of Companies and in order to satisfy the continuing increase in demand for our products, both at home and abroad, it has become necessary to undertake an expansion programme. A new audio factory has been established at Harold Hill in Essex, which will ultimately be the largest manufacturing unit of its kind in Europe using sophisticated production techniques.

An exceptional opportunity occurs for a suitably qualified man to join the new organisation, which will be involved in quantity volume production of high wattage unit audio equipment, as Chief Inspector.

The job will be concerned with all aspects of the inspection, test and troubleshoot functions associated with the flowline production of the units. In addition, close liaison, with the Training Department in forward planning and training requirements will be necessary.

The successful candidate will hold suitable electronics qualifications, have experience of high volume production methods, be a capable staff motivator and will possess the drive and enthusiasm which the job will demand.

Written applications, setting out brief career details to date and current salary to:

```
The Personnel Manager,
Thorn Consumer Electronics,
62/70 Fowler Road,
Hainault,
Ilford,
Essex.
```


Test and Quality Engineers

 For our award-winning computerised $X_{\text {-ray equipment }}$The 1972 MacRobert Award of $£ 25,000$ for an outstanding contribution by way of innovation and technological achievement was won by a scientist at EMI for his invention of new X-Ray techniques applied to brain scanning equipment.

The World-Wide demand for this successful equipment - the EMI Scanner - has produced an urgent requirement for experienced TEST ENGINEERING STAFF to set-up and test our production equipments from the printed circuit board stage through to overall system testing, working to exacting specifications.

Candidates should have a good working knowledge of digital and analogue techniques and should hold HNC Electronics (minimum) or equivalent.

The positions offer the opportunity to become part of a team involved in an exciting product which is a world leader in its field.

Salaries will be between $£ \mathrm{r}, 700$ and £,2,350 commensurate with experience and ability.

Please write or telephone for an application form from: R.N.L. Black, Personnel Department, EMI
Limited, 135, Blyth Road, Hayes, Middlesex.
Tel: or-573 3888 Ext. 2887.

SPANISH FIRM NEAR MADRID

is looking for design and development engineers with a minimum of three years of experience in the field of P.C.M. equipment to be used by the telephone industry.
Areas of interest are encoders and decoders, P.C.M. multiplexers and R.F. equipment to transmit P.C.M. data:
Salary open.

Computer Commissioning Engineers

Resulting from our expansion programme, our Quality Control Department have vacancies in Letchworth and Stevenage factories for Engincers to commission and test computer equipments before delivery to the customer.

We offer attractive conditions and salaries to applicants who should have practical experience in fault finding and testing of complex electronic equipment. Whilst qualifications to ONC standard are desirable they are not essential.

Housing may be available for applicants living in the Greater London Council's area.

Write for an application form, quoting reference $W W / 41 / 2 / \mathrm{M}$ to Area Personmel Recruitment Officer, ICL House, Broadway, Letchworth, Herts SG6 ${ }_{3} \mathrm{PG}$.

International
ICL

NORTRON
Fernando el Católico, 63
Madrid 15
SPAIN

Telecommunications Technician

West Midlands Gas makes extensive use of U.H.F. radio, digital techniques and microwave for data trasmissions and telementary
A vacancy exists for a technician to assist in the commissioning and maintenance of
U.H.F., visual display and Modem equipment. Knowledge of modern testing and maintenance procedures and ability to work without direct supervision are necessary.
Initial salary will be in the range $£ 1419-£ 2055$ p.a., with possible progression to Senior Technician in that range $£ 1860-£ 2337$ p.a. on proven ability.
The post is based at Solihull, but also involves travel and work throughout the Region.
Please apply in wriling, quoling reference number WW A488, to the Senior Personnel Officer (Headquarters), West Midlands Gas, Wharf Lane, Solihull, Warwickshire, B91 2JP.
WEST MIDLANDS GAS

ENGINEER
DESIGN AND DEVELOPMENT
for transistorised converters etc.
Small company South Coast
Commencing $£ 2,500$ advancing managerial 2-3 years, with board appointment. Qualifications and and experience to

BOX No WW 2887

Electronic Service

OFFICE MACHINE COMPANY
has the following vacancy:
SENIOR SERVICE ENGINEER
to assist Workshop Manager, must have experience of repairing digital printed circuit boards, preferably electronic calculators, good electronic knowledge and experience in a Service Department. Salary $£ 2,000$ plus and L.V.'s.
Apply to:- Mr. V. Knight.
Automatic Business Machines Ltd., Wyiold Road, Fulham, S.W.6. Tel: 3853311

Leicestershire
LOUGHBOROUGH TECHNICAL

COLLEGE

Principal: F. Lester, BSc. PhD. FRIC

Department of

Electrical Engineering
Lecturer Grade I
The person appointed will be required to teach Radio and Television Theory and Practic to Final Certificate level in Technicians' courses. Applicants should have recent trade-experience and be fully conversant with broadcast receivlng equipment. They should be suitably qualified and preferably be members of a Professional or Technician Institution. Teaching experience and teacher training will be advantageous.
Salary will be in accordance with Scales for Teachers in Establishments for Further Education 1972 (under review), viz., Lecturer Grade 1, $£ 1,500-£ 2,525$; Assistant Lecturer, £ $1,160-£ 2,242$ (plus 2×681 for good Honours in both cases), with placing according to qualifications and experience.
Further particulars may be obtained from the Principal, Loughborough Technical College, Radmoor, Loughborough, Leicestershire, LE1I 3BT, to whom completed applications should be returned within 14 days of the appearance of this advertisement.

MEDICAL ELECTRONICS ENGINEER

required for development of electro-medical equipment. The successful applicant will have had previous experience in the hospital equipment field either within the N.H.S. or medical industry and will be able to work without supervision.

Apply in writing to:
Mr. D. E. OLIVER, Electro-Medical Supplies
(Greenham) Ltd.,
Wantage, Berkshire

The University of Leeds
 DEPARTMENT OF PHYSIOLOGY CARDIOVASCULAR UNIT

 Applications are invited for the post ofEXPERIMENTAL OFFICER in Electronics. A EXPERIMENTAL OFFICER in Electronics. A
degree or HNC is required. Responsibilities include PDP12 and PDP8 computers, electronic equipment in three physiological laboratories and three hospital catheter laboratories, and the supervision of four electronics technicians. Salary scale $£ 1,413-62,046$. Preliminary enquiries may be made to the Director of the Cardiovascular Unit, Department of Physiology, The University,
Leeds, LS2 9TJ.
Forms of application and further particulars from the Registrar, The University, Leeds, LS2 91T (please quote $43 / 11 / \mathrm{Cl}$).
Closing date, 31 July, 1973.
[2595

G. R. INTERNATIONAL ELECTRONICS LTD.

have a challenging position for an

ELECTRONIC DEVELOPMENTAND DESIGN ENGINEER

Applicants should have had extensive experience in the fields of design and manufacture. We have a senior position for someone capable of making a significant contribution in the creation and design of audio consumer products.

The successful applicant will receive some assistance with costs of relocation and local government housing may also be available. The Company is situated in one of the nicest parts of Scotland, with educational, sporting, and social amenities of the highest order in the immediate environment.

Please write in first instance to: the personnel manager,
G.R. INTERNATIONAL ELECTRONICS LTD., CRIEFF ROAD, PERTH
or telephone Perth 27272
for further information.

Senior Television Technician Chessington

Rediffusion are looking for a Senior Technician to join their Chessington laboratories. You will be responsible for

- Television Signal Generation Equipment
- H.F. Cable Distribution System
- V.H.F. and U.H.F. Generation and Distribution System
- Production Test Equipment for colour receivers
- High quality laboratory equipment and instrumentation
This is an ideal opportunity for a suitably qualified and experienced Technician, who is anxious to demonstrate his potential as part of a very important team. You can reasonably look forward to taking responsibility for this section, over the next two years. Please apply in writing, quoting reference EW, to:-H. Brearley, Esq., Head of Technical Services, Rediffusion Vision Limited, Fullers Way South, Chessington KT9 1 HJ , Surrey.

REDIFFUSION

WAKEFIELD HOSPITAL MANAGEMENT COMMITTEE
 Electronics Technician

(Technician II Grade)

A vacancy exists, on the staff of the Group Engineer, for a qualified and experienced Electronics Technician (new post) to take charge of a Group Department maintaining a wide range of electronic and light current electrical equipment.
The successful applicant will require, in addition to technical ability, the administrative qualities necessary to develop, in conjunction with engineering staff, maintenance policies and procedures for a wide range of medical and non-medical equipment used within this Group of 10 Hospitals.
Qualifications required are H.N.C. in Electronics or City and Guilds Final Certificate in Telecommunications or an approved equivalent. Previous Health Service experience would be advantageous.
Salary Scale $£ 1,911$ to $£ 2,508$ per annum.
Application forms can be obtained from the Group Secretary, Pinderfields General Hospital, Aberford Road, Wakefield, to whom they should be returned not later than 23rd July, 1973.

for a fixed period of 3 years, are available at the Royal Military College of Science, Shrivenham, Wiltshire, as follows:

Electrical Engineering

Investigation of the physical limitations of electrical machines (e.g. power and speed) and the way in which these limitations may be overcome by use of semi-conductor devices.

Electronic Engineering

Work on (a) active and passive antenna synthesis and design or (b) signal processing, speech coding, and feedback communication or computer simulation of communication system performance.
Appointment will be as Senior Research Fellow ($£ 2460-£ 3100$) or Junior Research Fellow (£1670-£2195) according to qualifications and experience. Accommodation in a Hall of Residence is available for a single male staff.
Candidates must have a 1 st or 2 nd class honours degree, or an equivalent qualification, in an appropriate subject and at least 2 years' postgraduate research experience (3 years' for a Senior Fellowship)
For an application form (to be returned by 3 August 1973) contact the Registrar, Royal Military College of Science, Shrivenham, Wiltshire, telephone Shrivenham 782551. Please quote SC/1/EP/6.

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

Slough College of Technology

Department of Engineering
Applicants are invited for the post of:

Lecturer 1 in Radio and T.V. Servicing ($\mathrm{E} / 1 / 5$)

Required to teach radio, television and electronic servicing in Radio. T.V. and Electronics Mechanics and Technician Courses
Applicants should hold CGLI Radio \& T.V. Servicing Certificate and have had good industrial experience. Teaching experience desirable but not essential.
Salary on Burnham Technical Scale, viz
$£ 1.500-£ 2.525$ plus additions for qualifications and training. Removal expenses up to $£ 115$ may be paid in approved cases.

Further particulars and application forms obtainable from the Vice Principal. Slough College of Technology, Wellington Street, Slough SL1 1YG. Bucks, 10 whom they should be returned within two weeks of the date of this advertisement.

2843

THE HATFIELD POLYTECHNIC Department of Humanities
 MALE OR FEMALE TECHNICIAN

required for light interesting duties in Language Laboratories, for copying and recording tapes and to assist with servicing. Must be capable of working on own initiative. Previous experience desirable but not essential.
Salary $£ 1,143-£ 1,530$ according to age and experience.
Please quote ref: 285/WW.
Application forms from the Staffing Officer P.O. Box 109, Hatfield, Herts ALIO 9AB

THE QUEEN'S UNIVERSITY OF BELFAST ELECTRONICS TECHNICIAN

Department of Pure and Applied Physics. Required to undertake design, construction and maintenance of a wide range of electronic measuring and control equipment for a large programme of research in atomic and molecular physics. Candidates should offer H.N.C. or equivalent qualifications, plus 7-9 years relevant experience. The appointment will be from Ist August 1973, or as soon after this date as can be arranged. Salary scale (Grade 5) £1,881-£2,241.
Application forms obtainable from the Personnel Department, The Queen's University of Belfast. University Road, Belfast BT7 1NN should be returned not later than 30th July, 1973.
[2592

WANTED FOR GERMANY

For Electronic Developments in the Video (Slow Scan) and Digital Field. We are looking for an Experienced Engineer who is will ing to work in Germany in the vicinity of Bonn. Knowledge of the German language is not essential if the candidate is willing to learn German in an evening school.
Please write to:

Inform GMBH,

 534, Bad Honnef, Linzer Str. 11,GERMANY.
c/o Mr. TH. Geutebrueck.
$\{2585$

GIPSY HILL COLLEGE

Kenry House, Kingston Hill
Kingston-upon-Thames, Surrey Telephone: 01-549 1141

CHIEF TECHNICIAN

To head a team in the Educational Aids Department which serves the needs of the whole College.

Good knowledge of electronic equipment, including c.c.t.v. servicing, and relevant qualifications, will be expected.

There is considerable responsibility attached to this key appointment. The salary scale is, at present, $£ 1,908-£ 2,205$ per annum, according to qualifications, plus $£ 105$ per annum London Allowance.
Details from the Senior Administrative Officer.

ELECTRONICS TECHNICIAN Grades III, IV and V

Salaries as follows:-
Grade $V £ 1,209 \times 7$ increments to $£ 1,563$
Grade IV $£ 1,422 \times 7$ increments to £1,827
Grade III $£ 1,602 \times 8$ increments to £2,007
Qualifications:
A levels for Grade V
O.N.C. or H.N.C. or Equivalent for Grade IV.
O.N.C. or H.N.C. or Equivalent for Grade III.
The Electronics Workshop is concerned with the repair and servicing of a wide range of electronic equipment, both medical and industrial. The wide variety makes for a most interesting job. Training is given to all members.
Application forms from the Group Engineer, Southampton University Hospital Management Committee, 121 Tremona Road, Shirley, Southampton.
[2847

KING'S COLLEGE HOSPITAL MEDICAL SCHOOL
(University of London)
Denmark Hill, London SE5 8RX

ELECTRONICS EXPERIMENTAL OFFICER

A vacancy exists in the Department of Biomedical Engineering for an Experimental Officer to work as part of a multi-disciplinary team on the development and construction of prototype electronic instruments for use in medical research. Salary will be in the
 and experience and the appointment will be for two years in the first instance. Candidates should have had adequate experience either in industry or in hospital and will be either in industry or in hospital and will be
expected to hold an HNC in electronics or expected to hold an HNC in electronics or
light current electronic engineering as a minimum. Applications to the Director, Department of Biomedical Engineering.
[2850

Senior Design Engineers
 Broaden your horizons

Rediffusion is expanding again and needs, for its Design Laboratory at Chessington, Surrey, Senior Engineers to specialise in:

Television Receiver Design
Test Equipment Design
Post Design Services
If you hold an Engineering Degree or H.N.C. and have several years' experience in a relevant discipline, this could be your opportunity to join a professional team in a forward looking Company. Salaries will attractively reflect the contribution you will make to our products. Relocation expenses may be paid where applicable.

If you have appropriate qualifications and wish to work in a stimulating and progressive environment, write to me today, saying which position interests you. H. Brearley, Head of Technical Services, Rediffusion Vision Ltd., Fullers Way South, Chessington, Surrey KT9 1 HJ .

BENCH SERVICE ENGINEERS

ASCOT ROAD - BEDFONT (NEAR LONDON AIRPORT)

We require Bench Service Engineers with previous experience of TV (Monochrome and colour). Radio Hi-Fi and Tape Recorders for our Central Service Division. Preference will be given to holders of City \& Guilds qualifications, though sound practical experience may outweigh formal qualifications.
Basic salary will be according to qualifications and experience.
Fringe benefits include a twice yearly bonus, L.V's, contributory pension and Staff Purchase schemes. Hours are 9.00 a.m. -5.30 p.m. Mon. to Fri.
We would be interested to hear from experienced Engineers, who wish to work with products that are renowned for quality and reliability. Please write or call with details of past experience and current salary to:
SONY (U.K.) LTD, Pyrene House, Sunbury Cross, Sunbury on Thames, Middlesex. Tel: Sunbury 87644.

TECHNICAL AUTHORS

 Senior, Junior and Trainee

 Senior, Junior and Trainee}

1. Vacancies

We are offering long term employment in an exciting, expanding industry where change is the rule rather than the exception.

2. The Job

Development of technical manuals for our customers to meet the requirements of Av P70, ATA 100 or other customer requirements.

3. Man Requirements

A good working knowledge of electronics is required, and the ability to obtain, sift and use information from all sources.

4. The Benefits

Holiday entitlement rises to four weeks after a short length of service. Salaries by negotiation and according to experience. Relocation expenses paid in suitable cases. Nomination for local housing can be made.
5. IF YOU ARE NOT ALREADY AN AUTHOR, AND YOU THINK THAT YOU HAVE POSSIBILITIES, CONTACT US AND SEE IF WE CAN COME TO AN ARRANGEMENT REGARDING SUITABLE TRAINING.

Telephone Crawley 35155 and speak to W. H. Stanbrook, The Technical Publications Manager, or Crawley 22962 in the evening.

Electronics Test Engineers

Pye Telecommunications of Cambridge and Haverhill have immediate vacancies for Production Test Engineers. The work entails checking to an exacting specification VHF/UHF radio-telephone equipment before customer delivery; applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment. Formal qualifications while desirable, are not as important as practical proficiency. Armed service experience of such work would be perfectly acceptable. Pye Telecommunications is the world's largest exporter of radio-telephone equipment and is engaged in a major expansion programme designed to double present turnover during the next five years. There are, therefore, excellent opportunities for promotion within the company. Pye also encourages its staff to take higher technical and professional qualifications.
These are genuine career opportunities in an expansionist company, so write or telephone without delay for an application form to:
Mrs A E Darkin at
Cambridge Works, Elizabeth Way, Cambridge CB4 1DW.
Telephone: Cambridge 51351.
or Mrs C Dawe at
Colne Valley Road, Haverhill, Suffolk.
Telephone: Haverhill 4422.

INSTITUTE OF
 OCEANOGRAPHIC SCIENCES
 Barry, Glamorgan
 ELECTRONICS ENGINEERS

(Professional and Technology Officers Grade IV)

Electronics Engineers with a sound knowledge and practical experience of modern electronic, analogue and digital recording techniques are needed to supplement an existing team engaged on the installation, operation and maintenance of oceanographic instruments in Research Vessels at sea. There will also be a feed-back of operating information and faults to the designers of the equipment. Sea going duty may total up to 4 months in each year. Although specialising in work afloat, successful candidates will also work in the servicing faboratories ashore as members of the base team at Barry, maintaining and modifying the various oceanographic equipment. Initia! training will be given on the more specialised sea-borne instrumentation, e.g. Gravity meters and satellite navigation systems. In addition to salaries, overtime is paid when long hours are worked over a period.
Qualifications: O.N.C. or equivalent. plus apprenticeship or equivalent training appropriat to the duties of the post. Candidates will normally be expected to have had at least three years additional experience.
Salary Range: 61.577 (age 21) - $£ 1.976$ (age 28 or over) - $\mathbb{E 2}, 226$. Superannuation arrangements. Application forms and further particulars from:

NATURAL ENVIRONMENT RESEARCH COUNCIL

TEST ENGINEERS

The leading U.K. manufacturer of high grade TV monitors require Test Engineers for their expanding Test Department.
Situated in the Berkshire town of Maidenhead, the Company offers pleasant working conditions, good salaries and friendly environment. Duties will cover the testing and trouble-shooting of monochrome and colour TV monitors together with other ancillary sophisțicated TV broadcast equipment manufactured by the company. Previous experience of TV equipment would be an advantage. Please apply to:

PROWEST ELECTRONICS
Boyn Valley Road, Maidenhead, Berks. Maidenhead 29612

SUMLOCK COMPTOMETER LTD.

ANITA Electronic Desk Calculators
Programme Calculators
Visible Record Computers Peripherals

To support an extensive Field Service Operation a Central Technical Service has been established.

There are vacancies for:Experienced Electronic Service Engineers Electro/Mechanical Service Engineers experienced in Triumph/Adler and/ or IBM input/output typewriters, readers and punches.

For further information, please contact:

```
    Mr. D. D. DAVIES,
        SUMLOCK
    COMPTOMETER
            LTD.,
    I Frogmore Road,
Apsley, Hemel Hemp-
    stead, Herts.
    Tel.: 0442-61771.

\section*{Lecturer in \\ Television Servicing}
required for September 1973.
Applicants should have Television Servicing Experience and possess R.T.E.B. Finals Certificate or equivalent. Salary: \(£ 1,600-£ 2,500\). Hours: 32 hours, 5 day week with 8 weeks holiday per year.
Applications to:
PEMBRIDGE COLLEGE
OF ELECTRONICS,
34a Hereford Road,
London W2 5AJ.

\section*{Electronics Engineers}

We are looking for experienced electronics engineers to meet a challenging forward development programme. The vacancies cover a wide variety of design and development work including:-
Low frequency receivers and transmitters for air and marine navigation.
V.H.F. mandatory air navaids.

Design and application of mini
computers for navigation and instrumentation uses.
Logic design.
Digital signal processing
Electronic and electromechanical switching.
Selected applicants will join small teams of engineers, each with its own record of successful design. They will, with other members of the team, be responsible for complete projects from initial conception to customer trials, acceptance and production. In this way, those who have real ability have every opportunity to participate and prove themselves.
Our ideal candidates will be qualified to degree level and have 2 or 3 years' experience of both digital and analogue R \& D work. However, we have a number of vacancies and would like to hear from anyone who is interested and has either more, or less, than the preferred level of experience.
Write of telephone for application form to:Mrs. M. E. Wessier
Personnel Officer
The Decca Navigator Co. Ltd.,
247 Burlington Road
NEW MALDEN
Surrey KT3 4NF
Tel. No: 01-942 7711
DEFHR d

\section*{Electronics Appointments Register}

We canget you abetteriob thanyou can get yourself.
The best jobs don't necessarily appear in the sits. vac. columns.

They are often to be found in the Electronics Appointments Register.

Our individual approach gives you a wider choice - we have lots of jobs on our specialised registers and we may well have one tailor-made for you.

The service is absolutely free to you and completely confidential.

In effect we offer you the chance to find your ideal job, all for the cost of a phone-call.

So capitalise now on your specialised knowledge.
Call 01-734 4920, or fill in the coupon and we will send you an enrolment form by return of post.

Please send me details of how to enrol on one of your Appointments Registers

Name
Address

Post to G.A.R 76 Dean Street London W1 01-7344920
Glraduate Appointments Registers

\section*{REDIFFUSION/BARLOWS TELEVISION Engineering}

\section*{Opportunity in South Africa}

Two important appointments are to be made in the field of Television Engineering by Barlows Manufacturing Co. in preparation for the start of monochrome and colour television receiver production in South Africa next year
1. Chief Development Engineer
2. Chief Test Equipment Engineer

Under licence agreement REDIFFUSION telev ision receivers will be manufactured by Barlows in New Gemany near Durban. The successful applicants will have a wide choice of excellent houses to purchase in beautiful residential areas, even very close to the laboratories.

Several years recent experience in television receiver production are necessary qualifications for these appointments and applicants by their knowledge of the product and the job title are expected to have an understanding of the responsibilities involved.
The start of this new industiy in South Africa prevides a wonderful opportunity for experienced and qualified engineers to advance into senior management.
Applications, which will be treated in strict confidence, should be addressed to:

> A. A. Kay, Chief Engineer, Rediffusion Vision Limited
Fullers Way South. Chessington. Surrey KT9 1H.J

\section*{SPANISH \\ COMMUNICAIIONS EQUIPMENT MANUFACTURER}

Applications are invited from qualified design engineers specialized on:
a) Ground/Air Communications
b) TV Colour Transmitters
c) Side Band Transmitters

At least 5 years experience desirable. Company located in Madrid. Salary open.

Send resumé to:
NORTRON
Fernando el Católico, 63
Madrid 15
SPAIN

\section*{ELECTRONIC TECHNICIAN}

\section*{for Electrical Safety Duties}

Candidates for this newly created post, must possess a qualification equivalent to at least HNC in Electrical/Electronic Engineering, and must have an extensive knowledge of electronic equipment, not necessarily in the field of medical electronics. Salary on scale \(£ 1,977-£ 2,508\) plus \(£ 126\) p.a. London Weighting.
Application form and full job description obtainable from Mr. C. J. H. Hill, Personnel Department, Charing Cross Hospital (Fulham), Fulham Palace Road, London W.6, telephone 7482050 ext. 2992, to be returned by 1st August.

\section*{OPPORTUNITIES IN VIDEO ELECTRONICS}

Rank Film Laboratories require several experienced electronics maintenance engiheers to work in Wardour Street.
Training will be given, but applicants should possess a krowledge of Solid State Electronics and modern techniques in analogue and digital circuitry. Previous occupation may have been in the field of light electromechanics; computers; tape electronics; T.V. or radio transmission equipment; video tape; telecine; audio recording or testing of light electronic manufacturing equipment.
An excellent starting salary and good prospects. Free life and accident assurance and Contributory pension scheme.
Please apply in writing, providing full details of qualifcations and previous experience to: The Personnel Manager, Rank Film Laboratories Limited, North Orbital Road, Denham, Uxbridge, Middlesex, UB9 5HQ or telephone Denham 2323 for application form.

\section*{SPANISH COMMUNICATIONS EQUIPMENT MANUFACTURER}

\section*{Has an immediate opening for} An experienced Design and Development Engineer for Audio Equipment, including Highly Professional Mixing Desks, Compressors, Limiters, Audio Monitoring Amplifiers, etc. Systems Experience is desirable. Salary open.
Send resumé to:

\section*{NORTRON}

Fernando el Católico, 63
Madrid 15
SPAIN

\section*{TELENG LIMITED \\ Europe's Leading Manufacturer of C.A.T.V. Equipment}
require

\section*{PLANNING ENGINEER}

For our Technical Sales Department.
Duties to include planning of T.V. Systems from Site Plans and/or Customer Information.
Ability to converse with Builders, Architects and Customers necessary.
City and Guilds or H.N.C. Electronics desirable.

\section*{TECHNICAL WRITER}

Alert young man, aged between \(20-30\) years, required for the preparation of all types of Technical/Sales Publications, including Manuals and Catalogues covering a wide range of Wired Television Equipment. H.N.C. or equivalent quatifications preferred, previous record of achievement in a similar capacity with a good command of English.

\section*{DESIGN DRAUGHTSMAN}

Electro Mechanical, for our Drawing Office, with previous experience in the electronics field.
Salary negotiable.
Applications in writing, stating age, experience and present salary, in confidence, to:-

> Mrs. V. Nelson-Personnel and Training Offlcer, TELENG LIMITED,
> ArIsdale Avenue, South Ockendon, Essex.

\section*{RADIO OFFICERS DO YOU HAVE \\ PMG I \\ PMG II \\ MPT \\ 2 YEARS OPERATING EXPERIENCE \\ POSSESSION OF ONE OF THESE QUALIFIES YOU FOR CONSIOERATION FOR A RAOIO OFFICER POST WITH cOMPOSITE SIGNALS ORGANISATION.}

On satisfactory completion of a 7 month specialist training course, successful applicants are paid on a scale rising to \(£ 2.527\) pa: commencing salary according to age -25 years and over \(£ 1807\) pa. During training salary also by age, 25 and over \(£ 1350\) pa with free accommadation.

The future holds good opportunities for established status. service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age ( 40 years if exceptionally well qualified) will be considered.

Full details from:

\section*{Recruitment Officer}

Government Communications Headquarters Room A/1105
Priors Road, Oakley, Chettenham, Glos GL52 5AJ
Telephone: Cheltenham 21491 Ext 2270

\title{
MARCONI INSTRUMENTS LIMITED
}

\section*{ELECTRONIC TECHNICIANS}
are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Test Technicians. Senior Test Technicians or Technician Engineers according to experience and qualifications. Our servicing and production programme, geared to our recognised export achievement, provides employment combined with prospects of advancement, not only within these grades, but into other technical and supervisory posts within the Company at Luton and St. Albans.

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please write or telephone, quoting reference WW178 for application form to:


Mr. M. Leavens, Works Manager Telephone: Luton 33866, or Mr P Elsip. Personnel Officer Marconi Instruments Ltd
Longacres, St. Albans. Herts


Telephone: St. Albans 59292
Member of GEC-Marconi Electronics

A leading Radio Manufacturer in JOHANNESBURG, SOUTH AFRICA requires several experienced

\section*{FACTORY SUPERVISORS}

AS WELL AS

\section*{RADIO TECHNICIANS}
with good knowledge of Radio \& Tape Recording circuits
For further information, please apply in writing, giving details of qualifications and résumé of career to:-

\footnotetext{
MR. G. MOSER, Factory Manager,
TELTRON INDUSTRIES (PTY.) LTD., 11, RICHARD STREET, SELBY, JOHANNESBURG, REPUBLIC OF SOUTH AFRICA.
}

\section*{LONDON BOROUGH OF HARINGEY Education Service \\ LABORATORY TECHNICIAN}
salary \(\mathbb{C} 1,41 \zeta-\{1,635\) per annum. Commencing salary according to qualifications and experience. kequired at Srationers Company's School, May. field Road, N8 to work 36 hours per week \(\times 52\) weeks per annum.
Minimum qualifications-Ordinary National Certificate or Ordinary National Dipioma, City and Guilds Laboratory Technicians Certificate. four GCE passes with two at " \(A\) ' level in appropriate subjects, membership of Institute of Science Technology or an equivalent suitable qualification OR five years suitable experience. Qualifications in electronics would be an advantage.
Candidates will be responsible for the maintenance of the language laboratory, and will be required to assist in the upkeep of Audio-Visual Aids throughout the school and help monitor a computer link line.
The post is ideal for a candidate who wishes to gain experience in the maintenance of a fairly wide range of equipment.
Application forms obtainable from Chief Education Officer, Somerset Road, NI7, to be returned by 30 July, 1973.
[2340

\section*{LEVELL ELECTRONICS LIMITED require \\ Test Engineers \\ and \\ Trainee Test Engineers}

Opportunities for young engineers to broaden their experience in an established company manufacturing portable electronic instruments.

Levell Electronics Ltd.,
Moxon Street, Barnet, Herts.
Telephone: 01-440 8686

\section*{ARTIFICIAL KIDNEY UNIT MEDICAL PHYSICS TECHNICIAN}
required for maintenance of the artificial kidney machines, both at the hospital and in patients' homes.
Experience in Dialysis Unit an advantage but not essential.
ONC, HNC or HND in electrical or mechanical engineering preferably with some electronics experience.
Salary according to qualifications and experience.
Further details from Mr. T. Fry, extn. 268.

Applications to: The House Governor, The London Hospital (Whitechapel), Whitechapel, London E1 1BB.
Tel. 01-247 5454, Extn. 388.

\section*{Test Engineers}
£1,700 p.a. to £2,100 p.a.
Competent experienced men required for rapid trouble shooting on Professional Audio Transistorised Equipment.
22 days holiday, opportunities for overtime. Phone:
Dan Bleakley for interview, 01-720 1111
DOLBY LABORATORY, 346 Clapham Road, London, S.W. 9

\section*{BERRY'S RADIO} has vacancies for
(a) SENIOR SALESMEN
(b) SENIOR ENGINEERS TOP RATES OF PAY
5-DAY WEEK * PERMANENCY
Apply: Mr. K. (405-6231)
319 High Holborn, London WC1
\([97\)

THE CITY UNIVERSITY
Dejartmant of Electrical and Electronic Engineering LABORATORY TECHNICIAN (GRADE 5)
The successful candidate will be responsible for servicing and maintaining, a wide variety of advanced electronic equipment. He should exclude applications from men with adequate background and experience in the Electronics induistry and/or H.M. Services.
The post is superannuable, subject to medical examination, and carries excellent holiday
Salary \(£ 1,881 \times \neq 72\) to \(£ 2,241\) plus \(£ 175\)
Apply by letter, stating age, qualifications and experrience to Departmental Superintendent (E.E.D.), The City University, St. Iohn Street, London, ECIV 4PB, by 20th July, 1973. [2894

\section*{ilea}

Education Television Service

Tennyson Street, London, S.W. 8

\section*{Mobile}

\section*{Section}

\section*{Engineer}
responsible for the technical operation and maintenance of one of the mobile Control Rooms, working with the Education Director and a crew of two. The MCR's are equipped with 3 moaochrome Plumbicon cameras, an eight-channel sound desk and 2 inch or 1 inch videotape recorders as necessary. All members of the crew share rigging duties and the driving of vehicles. A current driving licence should be held and training will be provided for the taking of an HGV driving test.
Applicants should possess a thorough knowledge of broadcast television engineering practices, have appropriate qualifications and experience, and sound health.
Hours within the range \(£ 2,748-£ 2,970\).
Hours of work will be in accordance with the requirements of the service but the basic week is 35 hours. Hours are, of necessity, rather irregular, of ten involving overtime, but time off in lieu will be granted or, where that does not prove possible, overtime payment will be made. Weekend working is very seldom necessary. The annual leave; after qualilying service, is 5 weeks and one day.

\footnotetext{
Applitication forms and further details from the SE1 7PB. Tel. \(633 \quad 7546\) or 6337456 .
Closing date for completed applications 3 August 1973.
}

\section*{Test Engineers enjoy more variety at Redifion}
. and one of the best-equipped electronics test departments in Britain.

You'll be working on a vast variety of solid-state devices, including - high-power transmitters, communications receivers, military pack-sets, MF beacons, mobile HF. marine VHF and teleprinter terminal equipment.

The job involves a wide area of testing operations-from GO/NO GO sub-assembly testing through to fault-diagnosis on complex systems.

Interesting work with one of the U.K. leaders in electronics expertise-located in London.
To qualify, you'll need to be thoroughly experienced in the field-with considerable knowledge of semi-conductor or logic circúitry.

We pay well-from \(£ 1,450\) to over \(£ 2,200\) p.a. (depending on experience) for a \(37 \frac{1}{4}\) hour week with ample opportunities for overtime. Additional benefits include an excellent company pension scheme and generous sickness allowances.

Please write, including full details of your past experience, to :


Wellcome

\section*{Animal}


An assistant is required to work with large and small animals and also to monitor equipment used in drug evaluation. Some experience with animals and an interest in electronics would be an advantage.

Applicants should be aged \(25+\) and have an HNC or equivalent qualification.

Write quoting reference P.A. 23 (BMP) to:
THE WELLCOME FOUNDATION LTD.,
Personnel Division,
Ravens Lane,
Berkhamsted, Herts.

\section*{The best young Engineers have computers in mind. Are you aged 21 to 25?}

Do you want a flying start to a career in computers? Here is your chance. Train as a Field Engineer with ICL, Europe's leading computer manufacturer.

\section*{Training}

You will be given thorough training on ICL electronic equipment leading to computers.

\section*{Qualifications}

You should be aged between 21 and 25 and be on your final year or have attained City \& Guilds electronic certificates or an HNC in electronics. You should have completed an electrical engineering apprenticeship or have at least two years' industrial experience on electronics.
Job satisfaction
As an ICL Field Engineer you have a high degree of responsibility for a customer's installation. You need technical expertise, tact and personality. So you are important as a representative of ICL.

There are opportunities of starting with us in several areas in the UK. Get the full details now by completing and returning this coupon today.

To: Mr A E Turner, International Computers Limited, 85/91 Upper Richmond Road, Putney,
London SW15 2TQ.
Please send me an application form for job openings in Field Engineering.

Name
Address

SITUATIONS WANTED
FULLY experienced qualified Radio Television
and eleetronics engineer required evening/weekend
empioyment in London area, business contract etc. emp.oyment in London area, bus
considered. Box No. WW. 2859.

\section*{VIn SITUATIONS VACANT}

A SSISTANT TO TECHNICAL DIRECTOR required by Italian Radio Manufacturer/Distributor. The successful applicant must be a Service Engineer with Radio, T.V. and Audio background. A high degres of circuit knowledge is required together with the ability to work on own initiative.
Commencing salary \(£ 2000 / £ 2500\) according to age and experience. Please write or telephone Mr. A. Massing, Europhen (Radio \& \({ }^{\text {or }}\) Television) Lid., 70 Caledonian Road, London N1 9BN. 01-837 3045/6.

ELECTRONIC Representative, Freelance Salesmen E or Agents with proven record, selling to Industry, Universities, Government Departments, required for revolutionary new mu:timeter and other electronic instruments. Extremely high turnover already being achieved in world markers. Full advertising back-up. Opportunity to choose area now. Apply in writing to: E.ectronic Brokers Ltd., 49 Pancras Road, London, \(\mathbf{S}^{\text {ERVICE }}\) Engineer for Audio Visual Aids equipS ment, particularly 16 mm projectors. Burgess Lane \& Co. Ltd., Thornton Works. Thornton Averi- AUDIO ENGINEERS. We require experiEnced Junior and Seniors and will pay top rates to get them. Tell us about your abilities. 01-437 4607.
R.M.S. WRAY CASTLE, College of Marine commence September 1973. M.PT. (P. M. G. Certificommence September 1973. M.P.T./P.M.G. Certifiable. Apply Principal, R.M.S. Wray Castle, Ambleside Westmorland Tel. Ambleside 2320 [2836 Side, westmoriand. Tel. Ambleside 2320. \({ }^{2836}\) TELEVISION Colour Service Enyineer, private advantage, flat available. Suit young couple, no advantage, frat avallable. Suit young couple, no
children. Full particulars. Coles, 14 Wolborough chirdren Nuto particulars. Coles,
Street. Newton Abbot, Devon. 'THE University of Manchester Hester Adrian cesses in the mentally handicapped. A vacancy exists for a Technician (Grade 3) to work on a 4 -year Government-supported project concerned with developing work skills in adults. Duties to be taken up as soon as possible include the construction and maintenance of electronic equipment and general servicing of mobile laboratories. Applicants should have O.N.C. or equivalent qualifications and have had \(3-5\) years relevant experience. Training will be ment. Own car desirable, mileage allowance paid. Commencing salary \(£ 1,539\) p.a. rising to \(£ 1,743\) p.a Applications stating age, qualifications and previous experience should be sent to Dr. E. Whelan, Hester Adrian Research Centre, The University, Manchester M13 9PL. [2835

A LARGE quantity of radio telephone fixed and
A mobile equipment is offered by East Midlands Electricity. Full list avaiable from the Purchasing Section, Eass Midlands Electricity, 398 Coppice Road, Arnold, Nottingham. NGS 7 HX . Closing date for Arnols, Noon on 16 August 1973
A UDIO Test Gear, Heathkit IG-18 oscillator \(£ 20\). A Digitest digital multimeter £35, Racal vaive frequency counter \(£ 20\), Hewlett Packard pocket calculator \(£ 130\), Advent cassette recorder \(£ 120\). All in good working order--Box No. WW 2598.
A \(_{\text {ARVAK ELECTRONICS. }}\) 3-channel sound-light £132.-12A Bruce Grove, N 17 6RA. 01-808 9096.
\begin{tabular}{|l|l}
{\([23\)} \\
\(-N O T\)
\end{tabular}
BRAND NEW fibre glass P.C. BOARD-NOT B OFFCUTS. Custom cut to your own specified sizes, up to 12 x 111 in. per piece. High quality
FLAME RETARDANT approved NEMA grade FLAME RETARDANT approved NEMA grade \(1 / 16 \mathrm{in}\). single sided one ounce copper at just \(5 \frac{1}{2} p\) per 6 sq. in. including all VAT charges. We offer a firstclass service of a quality branded product. Minimum
 ( 10 p min.). Send CWO (not stamps) to S. \&
 B UILD IT in a DEWBOX quality plastic cabinet Ringwood Rd., Fernwood, Dorset. S.A.E. for leaflet. Write now-Right now.
CONSTRUCTION AIDS-Screws, nuts, spacers etc., C in small quantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia panels etched alcminium to individual requirements. Printed circuit boards-masters, negatives and board, one-off or small numbers. Send \(6 p\) for list. Ramar Constructor Services, 29 Shelbourne Road, Stratford on Avon, 128
Warwks.
COLOUR Monitor Decoder Units by leading British maker. Designed 10 BBC standards, units consist of chrominance module, P.A.L. filter and delay module, luminance module and encoded video input module. All units brand new and manual. £30. Also complete switchable PAL/NTSC decoder by same maker built in a 19 in . Isep rack with power unit and sync separator. \(£ 75\). Philips monitor decoder panels Type EL6818/50F PAL £20. NTSC \(£ 15\). Advance stabilised power unit. Type PMS3, \(0-15\) volt at 10 amp . Brand new \(£ 35\), Savage 600 watt. P.A.amp contains \(12 \times\) KT88's no details. Offers
Littleport, Cambs. Bamber, 20 Wellington \({ }_{[2704}^{\text {St, }} 1\)

Articles For Sale-Continued
COLOUR, UHF and TV SPARES. Colour and Cingle standard convergence request. New Philips G6 single standard convergence panels complete, incl. 16 controls, coils, P.B. switches, leads, etc. and
circuit data \(£ 3.75\), or with yoke \(£ 5.00, \mathbf{P} / \mathbf{P} 30 \mathrm{p}\). New circuit data \(£ 3.75\), or with yoke \(£ 5.00\), P/P 30 p . New
Colour Scan Coils, Mullard or Plessey plus convergence yoke and blue lateral, \(£ 10.00,{ }^{2} \mathbf{P} / \mathbf{P} 40\). Mullard AT1025/05 Convergence Yoke, £2.50, P/P 25p. Mullard or Plessey Blue Laterals, £1.25, P/P 10p. BRC 3000 type Scan Coils, \(£ 4.00, \mathrm{P} / \mathrm{P}\) 40p.
Delay Lines DL20, \(£ 3.50\), DL1E, DL1. \(£ 1.50, \mathrm{P} / \mathrm{P}\) 25p. Lum. Delay Lines, 50p, P/P 15p. EHT Colour Quadrupler for Bush Murphy CTV \(25111 / 174\) series, £8.25, P/P 25p. EHT Colour Tripler ITT TH25/1TH suitable most sets, \(£ 2.00\), P/P 25 p. KB CVCl Dual Stand. convergence panels complete incl. 22 controls,
\(\mathbf{£ 3 . 7 5}, \mathrm{P} / \mathbf{P} 35 \mathrm{p}\). CRT Base Panel, \(£ 1.75, \mathbf{P} / \mathbf{P} 15 \mathrm{p}\). Makers Colour surplus/salvaged Philips G8 panels mart complete: Decoder incl. I/C, \(£ 2.50\), IF incl. \({ }_{5}\) modules, \(£ 2.50\). T. Base, £1.00, P/P 25 p . CRT base, 75p, P/P 15p. GEC 2040 panels, Decoder, 25p. Pye CT70 Colour LOPT assembly incl. EHT output and Focus Control, £3.50, P/P 35p. B9D valve bases 10p, P/P 6p. VARICAP TUNERS. UHF ELC 1043 NEW, £4.50, Philips VHF for Band 1 and 3, \(£ 2.85\) incl. data. Salvaged VHF and UHF Varicap tuners, \(£ 1.50, \mathrm{P} / \mathrm{P}\) 25p. UHF TUNERS NEW, Transistorised, \(£ 2.85\) or incl. slow motion drive, \(£ 3.85\). 4 position and 6 pos. push-button transistd., £4.95. UHF valve tuners, fi.50. All tuners \(\mathrm{P} / \mathrm{P}\) Cyldon Transistd. UHF/VHF IF panels salvaged, \(£ 2.50 \mathrm{P} / \mathbf{P}\) 25p. MURPHY 600/700 series complete UHF Conversion Kits incl. tuner, drive assy., 625 IF amplifier, 7 valves, accessories housed in cabinet olinth assembly \(£ 7.50\) P/P 50p. SOBELL/GEC 405/625 Dual standard switchable IF amplifier and output chassis incl. cet. f1.50 P/P 35p. THORN 850 Dual standard time base panel, \(£ 1.00 \mathbf{P} / \mathbf{P} 35 p\). PHILIPS 625 IF amplifier panel incl. cet., £1.00 P/P 30p. VHF turret tuners AT7650 incl. valves for K.B. Featherlight, Philips 19TG170. GEC 2010, etc., £2.50. PYE miniature incremental for 110 to 830 , Pam and Invicta, £1.95. A.B miniature with UHF injection suitable K.B, Baird, Ferguson, \({ }^{75 p}\). New fireball tuners Ferguson,
HMV, Marconi, \(\mathbf{f 1 . 9 0} \mathbf{P} / \mathrm{P}\) all tuners 30 p . Large selection LOPT', Scan Coils, FOPTs available for most popular makes. PYE/LABGEAR transistd Mor head UHF Booster, \(£ 5.75\), Power Unit, \(£ 4.65 \mathrm{P} / \mathbf{P}\) 30 p or Setback battery operated UHF Booster, £4.65 P/P 30p. MANOR SUPPLIES, 172 WEST END LANE. LONDON. N.W. 6 (No. 28, 59, 159 Buses or W. Hampstead Bakerloo and Brit. Rail). MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON, N.W.11. Tel. 01-794 8751

DIGITAL AND ANALOGUE EQUIPMENT. cabinet; E185. E.R Recorder Model 3914-09B in rack cabinet; f185. E.R.A. Solid State 400 Hz inverter. Sing.e phase. 100VA; f15. Ekco Neutron Doserate Meter Type M3147A. Transistorised; £8.50. 1.C.L. Power Supply, 25A stabilised. With twin meters and Tinsley 50 Hz Tuning Fork in case; \(\mathrm{E}^{2} .50\). Small I.B.M. memory drum; £10. Audio Generator 20 Hz \(200 \mathrm{kHz} ; £ 9.00\). 5 Range Solid State D.C. Amplifier; £4.50. Friden 8-hole paper tape punch units; \(£ 7\); read units; \(£ 7\). I.B.M. Golfball typewriter mounted on table; £55. Panel comprising \(\$ 7\) I.B.M. plug-in relays; \(£ 5.50\). Hewlett-Packard six-speed tape loop unit, type 3900; f75 (new). Digital Development Corporation magnetic memory drum, type 10425, about 5 mega-bits, complete with electronics; f300. I.B.M. printers); \(£ 125\). Friden Flexer (includes two golfbal Ekco six-digit Counter-Timer type M5024 (is) generation); £45. C.D.C. tape transport; \({ }^{2} 15\). Raymond ffoulkes, Mead Cottage, Castle St., Bletchingley, Surrey. Godstone 3106. GOR SALE. Marconi Sig. Gen 85 KHz to 25 KHz T in 8 ranges output 1 micro volt to 1 volt Internal or External Mod. \(£ 15.00\). Hartley 13 A Osciloscope \(£ 13.00\) or \(£ 25.00\) for both. Carriage to be paid by Purchaser. Seabourne Electronics Ltd., 33 Camperdown Tce, Exmouth.
FOR SALE BRAND NEW AND IMMEDIATE DELIVERY. SELENIA UHF TELEPHONE LINK SRL 123C 123C. Two racks each containing power supplies and EOW units. Crystals receivers, 401.3 MHz and 4497 MHz , six sets of handbooks extender boards, fuses etc. In addition 4 Marcon Italian MXT \(120 \quad 36\) way multiplex equipment each complete with carrier generation and signalling modules. The above is a fully duplicated 36 channel UHF link which can be used without duplication for 72 channels. £18,000. Qty. Marconi H 50002 tone VFT Transmitter and 2 H 5001 Diversity Receivers. Brand new. Immediate delivery, \(£ 8,000\). Qty. 3 Rdifon HF multicoupler MCU 6B, \(£ 120\) each. Qty. 9 R \& S URF Multicoupiers 225 to 400 MHz type NV5/400Z. \(£ 250\) each. Qty. 150 Pye Radiotelephones type AM10B S-ET. Reconditioned and 12.5 \(\mathrm{KHz}^{\text {channelling. }}{ }^{6}\) channels 12 or 24 volt 147 to all accessories). Essex Telecomms, Unit 12 Coordinated Industrial Estate. Claydons Lane, Rayleigh, Essex. Tcl: Rayleigh (03742) 79674.
IARGE quantity test equipment receivers transLeivers, meters, various P.S.U.'s; over 1,000 items for immediate disposal. S.A.E., plus 25p, refunded on purchase over \(£ 2.00\). F.J.C., Colnemill, Alvington, Glos.
[2881
DRINTED CIRCUIT BOARD large supplies of glass fibre available. \(1 / 16\) in single sided one ounce copper 2 p per 3 sq. inches (under 1 ft ). 75p per sq. ft. (over 1 ft ). \(1 / 16\) in double sided one sq. ft. (over 1 ft ). Please add 10p per sq. foot postage sq. ft. (over 1 ft ). Please add 10 p per sq. foot postage and packing, We can cut to your size at 1 p per cut. Norwich NOR 66 M .


RACAL Communications are employed in the design and manufacture of professional communications equipment, employing the most up-to-date techniques. Applicants should have previous Electronic Testing experience of sophisticated equipments and have a long term interest, and desire to progress in the field of Test Engineering.

The range of equipment covers high power Linear Amplifiers Frequency Synthesised Solid.State Receivers, Digital Instrumentation and complex communications systems.

These positions are permanent and progressive. In addition to competitive salaries you can also significantly increase your earnings by a productivity bonus. New Town Housing may be available to married men.

Applications in writing please, enclosing brief details of previous experience.

\section*{Communicate with Racal}

Mr. A. Franklin, Personnel Manager Racal Communications Limited, Western Rd, Bracknell, Berks RG12 1RG.

\section*{PROJECT ENGINEER \\ gunav noor reman ELECTRONICS}

\section*{DESIGN AND DEVELOPMENT OF ELECTRONIC CONTROLS FOR EUROPE}

We are part of an international group of companies. and to speed our progress into European markets we are expanding our product development programme and this has created staff vacancies in our Engineering and Development Department. A Project Engineer is required to generally assist in product development and to produce scheme drawings of circuits, component parts and assemblies for a range of temperature controllers and similar equipment

Experience of electronic sensing, measurement, and control techniques will be a definite advantage.
Our wide product range covers many markets from domestic central heating control through to sophisticated industrial process control, the work is both interesting and will provide useful experience plus prospects for travel.

If you would like to learn more about our company, which provides a good super annuation scheme and immediate life assurance cover, send us details of your qualifications and previous experience or ring West Drayton 44012 and ask for Mr. Clark or Mr. Constable.
DO NOT DELAY - CONTACT US TODAY IF YOU WOULD LIKE TO JOIN A COMPANY THAT IS GOING PLACES.

\section*{Drayton}

DRAYTON CONTROLS LTD., HORTON ROAD, WEST DRAYTON, MIDDX. UB7 8JW

\section*{VACANCY FOR A COMMUNICATIONS ENGINEER}


A vacancy exists for a Communications Engineer. based in Leeds,
to be employed in the Operation and Maintenance of television Outside Broadcast microwave radio-links
Transmission experience would be an advantage ACTT salary structure.
Pension \& Life Assurance Scheme
Details of age, qualifications and experience, should be forwarded as soon as possible to:
Personnel Executive, Yorkshire Television Ltd.,
Television Centre, Leeds LS3 1JS.
2880

\section*{Yorkshire Television}

\section*{Books}

\section*{PRACTICAL BOOKS}

World Radio and TV Handbook 1973.
Intergrated CIIcult Pocketbook, 282 pp

Electronics Pocketbook, 314 po Illus. 1 ..." \(5 \%\)
Foundations of Wireless and Electronics. 52 110 Intergrated Circ. Proj. For the Home Cons. \(13 .\). .
110 Semiconductor Proi. for the Home Cons. 134 .
 Aerlals \((P 3\) ) TV and FM Receivin A. Arials, 112 pp . iii Radio Valves, 134 .p. IIIus.
Stereo Handbook, 150 pp. lilus.
Transistors In Logical Circults, 132 pp. Illus.
Practical Oscll
 Oues. \& Ans. on Electronics. 12 ppo. illus.
Oues. \& Ans. on Translistors, 96 po .illus. Oues. \& Ans. on Translstors, 96 pp. Illus......
Radio \& Electronic Laboratory Handbook. 628 pp. Semiconductors: Basic theory \& devices, 272 pp .
SImplified Modern Filter Design, 193 pm . Illus.... Telecommunications Pocketbook, 152 pp . 11 Transistor Pocketbook, 312 pp . Ill Transistors for Technical Colleges, 210 pp . ilius.
20 Soild state Projects for the home, 114 pp . Illus. 20 Soild state Projects for the home, 114 p
Beginners Gulde to Radio, 204 pp. Illus...
Dictionary of Rado \& TV, 380 pp . Hus. Everyman's Wlreless Book, 368 pp p. Illus. 11 us
FM Radio Servicing Handhook FM Radlo Servicing Handbook 206 pp. ilius,
 Introductlon lo Radar and Radar Techniques,
Marine Radio Manual. 622 pp. Illus............ Practical Intergrated Circuits, 144 pp. lllus.. Practical TV Circuits. 376 pp . Illus.......
Practical WIreless Circuits. 192 po . 1 llus. Practical WIreless Service Manual, 288 pp. illus. Principles of Aerial Design, 182 po . Illus...
Principles of PAL Colour TV. 162 pp . Ilius. Principles of TV Englneering, 188 pp. Hlus.
Oues. \& Ans. on Audlo, 104 pp. Illus........ Oues. \& Ans. on Colour TV 108 pp . Illus.....
Radio and Audio Serv. Handbook, 284 pp . Ilius Radlo and Electronic Handbook, 156 pp . Illus. Radio Valve and Transistor Data, 240 pp . Illus..
Television Engineers Pocketbook. 304 pp. Illus Television ServicIng Handbook, 58 pp.ill
Wireless Servicing Manual, 302 pp. Itlus. How to make Walkle Talkies for IIcensed operation Handbook of Tested Translistor Circults, 64 pp Sound and Loudspeaker Manual, 96 pp .. Practical Transistor Novelty Circults, 64 pp............
Hi-fi, P.A., Guitar, Dlscotheque Ampl. Design Handbook
Eiectronic Novelties for the Car Owner.............
2nd Book of Trans. Equivalents \& Substitutes. Hlgh Fidelity Loudspeaker En
Radio Servicing for Amateurs..........
Radio. T.V.and Electronics Data Bool
Transistor Circults for Radio Controlled Models Modern Transistor Circuits for Beginners Practical Car Radlo Handbook. 1-2-3-4 Servicing Steren Amplifiers. 240 pp . ilius. Transistor TV Servicing Guide, 128 pp . Ilus...
101 Ques. Ans. about AM, FM, \& SSB.
Illus... 99 Electronic Projects, Illus.
Radlo Handbook, 960 pp. Illus..........
Transistorised Radlo Control for Modeis Making and Using Electronlc Oscitlators. 128 pp. Making and Repairing Tra
\(A B C\) 's of Electrical Soidering
Electric Guitar Amplifier Handbook.
FM Multiplexing for Stereo
H1-ff Stereo Handbook......
Hi-fi Stereo ServicIng Guide
How to repair small Appliances
Making and Repairing Transistor Radios, 128 pp . Radio Spectrum Handbook
Tape Recording Servicing Guide.....................
Transistor Radio Servicing Made Easy, 144 p.

\section*{E/U. ESSENTAL BOOKS!} OPERATION. Only 40p. p.D. 10 p. AMATEUR RADIO SSB GUIDE. A complete guide to the understanding. operating and maintenance of SSB equipment

THE GOVERNMENT SURPLUS WIRELESS EQUIPMENT HANDBOOK. valuable information for British/USA receivers. transmitters, trans/receivers. With modifications to sets and test equipment. DIRECTORY OF GOVERNMENT SURPLUS WIRELESS EQUIPMENT DEALERS. Gives details of surplus wireless equipment stores and deaiers including addresses and equipment that they are all how have avaliable. A valuable book only 4op.
PRTNCIPLES OF ELECTRICITY. A Handbook of Electricity and Magnetism for the student. electronics engineer and technician who wishes to improve his knowledge of the subject. Includes every aspect of this basic subject important
to the radio technician and constructor. As supplied to techto the radio technician and constructor. As supplied to tech-
nical colleges, universities and polytechnics. 532 pages. Hardback. Fully iflustrated. 4 massive reprints. Published at £3.50. Publishers permission to supply at \(£ 3.00\) to W.W
readers. RIC RADIO WAVES. Star1 a new hobby - RADIO ASTRONOMY. This big book of 444 pages is an ideal handoook for the beginner and established enthusiast. Numerous photographs and illustrations. Pubished by the Oxo
University Press. Price \(£ 2.50\) p.p. 25 p. University Press. Price £2.50 p.p. 25 p.

E BEGINNER. (Visual astronomy for the beginner) 60 p . p.p. 10 p .
THE SCATTERING AND DIFFRACTION OF WAVES. A goldmine of information for the experimenter, amateur and scientist. Profusely illustrated. Published by Oxford University HANDBOOK OFTRANSISTOR EQUIVALENTS AND SUB STITUTES. Includes many thousands of B PROBLEMS IN ELECTRONICS WITH SOLUTIONS. A must for the student. technician and electronics engineer.
Contains 349 problems, answers and how they were arrived at. Contains 349 problems, answers and how they were arrived at.
Includes all aspects of electronics, amplifiers. power supplies. ncludes all aspects of electronics, ampisiers.
computers. aerials, waveguldes, transmission lines. 307 pages, OnIy 90p. p.p. 10 .
HANDBOOK OF SATELLITES AND SPACE VEHICLES. comprehensive working handbook that provides important data both tabular and graphical enabling space scientists. greater working knowledge of satellite and space vehicle design launching. orbiting etc. Includes a detailed coverage of COMMUNICATIONS IN SPACE. An imposing book of 457 pages. Published at \(£ 8.20\). Last dozen copies avallabie al
trade price of \(£ 6.50\) post free. 9 Trade price of E6.50 post free. Essential to the S.W.L. 144 pages. F1.90 p.p. 10p. concise definitions of more than 18,000 terms in electronics concise defions. micro-electronics. fibre optics. semiconductors. computers. medical electronics. Fully illustrated. Essential to any collection of electronics reference books. \(£ 6.50\) post free.

\section*{GERALD MYERS (w.w.)} 18 SHAFTESBURY STREET, LEEDS LS 12 3BT.

\section*{Bookseller \& Publisher} 8 HARTIEYS YARD.
DFF TDWN STREET.
afmley, leeds 12. (near White Horse Inm) Callers welcome

Inner London Education Authority
LONDON COLLEGE OF PRINTING
Elephant and Castle, S.E. 1
PHOTOGRAPHY DEPARTMENT

Studio Technician
required for the college television unit. The technician will be responsible for the department's production control room, the telefor first line maintenance of all equipment. Applicants maintenance of apreque with either broadcasting or closed circuit television equipment or should have worked for a major equipment manufacturer.
Salary in accordance with qualifications and experience within the scale for Studio Technician 1, £1,599-£2,316.
Application forms from Education Officer Tel. 6337546 or 6337456.
Closing date for applications 3 August 1973.
[2899

Articles For Sale-Continued
PRINTED Circuit Board in 6 widths: 2 in., \(2 \frac{1}{2}\) in., in. single-sided fibreglass, \(2 p\) per 3 sq. in. Doubleided \(1 \mathbf{p}\) per sq . in \(\mathbf{P}\) \& \(\mathbf{P}^{2} 5 p\) per order. SAE quotations tor other sizes and quantity discounts.CM7 6LY. Tel. Braintree 25254.
TEKTRONIX Mainframes \(545 \mathrm{~A}, f 250 ; 541 \mathrm{~A}, f 200\); 1 Plug ins CA, £75; IA1, £110, Z, £120; L, £45; D. £40; K, £40; IIB2A, £205. H.P. \(1755 \mathrm{~A}, \mathrm{£} 70\);
\(525 \mathrm{~A}, £ 30\). EIMAC \(4-1000 \mathrm{~A}\), £10; J. 525A, £30. EIMAC 4-1000A, f10; Jennings vacuum variable capacitor, UCSXF-1100, ( \(10 \mathrm{kV}, 9-1100 \mathrm{pf}\) ),
£21. Wayne Kerr Bridge B801B, £21. Wayne Kerr Bridge B80IB, £75. Signal genera-
tor TS 497, \(2-400 \mathrm{MHz}, 6\) bands, AM mod. £47. All items guaranteed. Carriage extra at cost. All items guaranteed. Carriage extra at cost. Branson, 111 Park Road, Peterborough. [2837
60 KHz MSF Rugby and 75 KHz Neuchatel Radio 00 Receivers. Signal and Audio outputs. Small, Toolex, Bristol Road, Sherborne (3211), Dorset.

VacUUM is our speciality. New and second-hand rotary pumps, diffusion outfits, accessories, quipment from tilicone rubber or varnish outgassing equipment from t40. V. N. Barrett (Sales) Lid.
[ Mayo Road, Croydon. \(01-6849917\).
VHF KIT \(80-180 \mathrm{mHZ}\) receiver, tuner, convertor Transistorised, remarkable performance. £4 or s.a.e. for literature Johnssons (Radio), St. Martins
Gate. Worcester. WR1 2DT. WIRELESS World back numbers, 6-7 years Michael portable radio complet. Offers 1923 Miller. 25 Christie Road, Bedford, Beds. \({ }_{[2857}\) \(\mathbf{2 5 0 , 0 0 0} \begin{aligned} & \text { British made components to clear- } \\ & \text { mixed value resistors from } 330 \mathrm{HMS}\end{aligned}\) M-OHMS, \(\frac{1}{B} W\) to 1 W , price \(1000 / £ 2.50\), \(2000 / £ 5.00\)--Erie, Lemco and Hunts Capacitors, from 1 PF to \(8200 \mathrm{PF}, 250 \mathrm{~V} / \mathrm{W}\) or above, price tronics, 62 Bridge St., Ramsbottom. Bury, Lancs.

\section*{ARTICLES WANTED}

BATCH Production Wiring and Assembly to Station Parade, Ealing Common, London, W.5. Tel: 01-992 8976. CLLIOTT 803B SYSTEMS wanted. Also (cheap) E third-generation systems. Must be complete and working when last used. Write, giving details of configuration, accessibitity and price required. Box No. 28
WANTED. all types of communications receivers and test equipment.-Details to R. T. \& I.
Electronics, Lid., Ashvilie Old Hall, Ashville Rd. London, E.11. Ley. 4986

\section*{WE BUY SURPLUS ELECTRONIC COMPONENTS AND TEST EQUIPMENT, IN QUANTITY \\ LINWAY ELECTRONICS \\ 42 Spencer Avenue, Hayes, Middlesex UB4 OQY}

CONTACT US - YOU'LL NOT REGRET IT!
Tel. No. 01-573 3677

\section*{EUSINESS OPPORTUNITIES}

M
ARINE VHF TRANCEIVERS. Norw. man, of wide. The sets are also very attractive to the pleasure boat marked. POLAR electronics,
[2851
Horten,
Norway.

\section*{APPONTMENTS}

\section*{RADIO TECHNICAL OFFICER}

Up to \(£ 2,825\)
The P.L.A. operate a wide telecommunications network from Tower Pier to the outer Thames Estuary and a vacancy exists at Thanies House, Gallions Entrance, Royal Docks, E. 16 for a Radio Technical Officer to help maintain the necessary equipment at maximum efficiency. To ensure adequate coverage a shift system is operated.
Applicants should have at least 5 years' experience in semiconductors and in at least two of the following fields:
V.H.F. and V.H.F. Radio

Radar and Microwave Links
Telemetry and Digital
Minimum qualifications
O.N.C. Electrical Engineering \& City and Guilds Intermediate Certificate in Telecommunications Engineering plus Radio II or equivalent Service qualifications.
Salary scale
\(£ 2.305\) p.a. \(-£ 2.825\) p.a. (commencing salary depends on age, qualifications and experience).
Application forms may be obtained from:
The Personnel Manager, Manpower Directorate,
Port of London Authority, Basin South, North Woolwich, E. 16. Tel: 01-4767365.


\section*{PORT OF LONDON} AUTHORITY

\section*{ARTICLES FOR SALE}

\section*{THE \\ \(\square\) EST
UYS IN FREQUENCY COUNTERS} YAESU MUSEN
YC-355 \(30 \mathrm{MHz} £ 97\) ex-stock YC-355D \(220 \mathrm{MHz} £ 120\) ex-stock

Free delivery by Securicor in
in 24 hours normally Onerates on \(100 \cdot 120 / 200-240 \mathrm{VAC}\) and Read out to \(1 \mathrm{~Hz}(10\) 12 VDC ( \(D^{\prime}\) model only)
pre-scaler switched-in
8 digit capability
OUR CUSTOMERS
OUR CUSTOMERS SAY. "The quality of construction is as good as counters costing £1.000 + and would show many others the way home!
EAY. "For DELIVERY and AFTER-SALES SERVICE ours is the standard by which
others are judged.


SPECIFICATION
FREQUENCY Range: 5 Hz to \(30 \mathrm{MHz} \quad\) Accuracy: \(\pm\) time base stability +1 count
Gate Times: 1 milli-sec, or 1 sec . Gate Times: 1 milli-sec. or 1 sec . Stability: \(0.0005 \%\) at \(25^{\circ} \mathrm{C}\)
ohms Time Base: \({ }^{1} .000 \mathrm{KHz}\) crystal controlled Maximum Input: \(60 \mathrm{~V} p-\mathrm{p}\) less than 10 sec . 20 V p-p continuous Power Requirement: \(100 / 110 / 117 / 200 / 234 \mathrm{~V}\) AC 18 VA or \(12 \cdot 14.5 \mathrm{VDC} \AA \mathrm{A}\) As main U.K. distributors of Yaesu Musen transmitters, receivers, etc. we hold extensive Yook 'ONE STOP' hacilities
'Your 'ONE-STOP' single source of all YAESU equipment plus MASTS TOWERS
ROTATORS. ANTENNAS.
WESTERN ELECTRONICS (U.K.) LT D.,
OSBORNE ROAD, TOTTON, SOUTHAMPTON, SOG 4DN
Tel.: TOTTON 4930 or 2785
Cables: AERIAL. SOUTHAMPTON

\section*{TRAIN FOR SUCCESS WITH ICS}

Study at home for a progressive post in Radio, TV \& Electronics. Expert tuition for C \& G (Telecoms Techn's Cert and Radio Amateurs') RTEB, etc. Many non-exam courses including Colour TV Servicing, Numerical Control and Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career. ICS. (Dept 734 T) Intertext House. Lendon SW8. [2669

\section*{CAPACITY AVAILABLE}

A IRTRONICS LTD, for Coil Winding-large or A small production runs. Also PC Boards Assemplies. Suppliers to P.O.BM.O.D.. \(\begin{gathered}\text { etc. } \\ \text { encuiries } \\ \text { welcomed. } \\ \text { 3a }\end{gathered}\)

A UnIO and Speaker Cabinets produced to ManuA facturers' specifications, large or small production runs. Also available large or medium runs for wood
compunent parts for cabinets, etc. For further compunent parts for cabinets, etc. For further Nottingham. Tel. 060277658 or write 51 Shearing Hill, Gedling, Nottingham. [2864 CAPACITY' available to the Electronic Industry. grinding both in metals and plastics. Limited capacity available on Mathey SP33 JIG BORER. Write for lists of full plant capacity to C.B. Industrial Engineering Ltd., 1 Mackintosh Lane, E. 9 6AB. Tel. 01-985 7057
DESIGN, development, repair, test and small production of electronic equipment. Speciatist in production of printed circuit assemblies. YOUNG ELECTRONICS, 54 Lawford Road, London, N.W.S. 01-267 0201.
\(\mathbf{S}_{\text {Mample or }}^{\text {MALL }}\) or Production, wiring, assembly, to sample or drawings. Specialist in
assemblies. Dred circuit
D
 SUB-CONTRACTORS. We have extra capacity \(\mathbf{S}_{\text {available for any quantities on short notice }}\) assembly, cable forming. Design and manufacture if electronic equipments under customer's specification is also undertaken. Instrumentution Services, 23 Hallam Road, Clevedon,, Somerset. Tet. 2322.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Southall \\
College of Technology
\end{tabular} & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Beaconsfield Road, Southall. \\
Middlesex. \\
CEI PARTII \\
Options by PART-TIME STUDY \\
in \\
Electronics - Telecommunications etc., The Engineer in Society Apply: Head of Dept. of Electrical \& Electronic Eng,
\end{tabular}} & \\
\hline & 2861 \\
\hline
\end{tabular}

\section*{SEIVICEC R REPAIRS}

BRISTOL AND DISTRICT. Service to Hi Fi and 3 electronic equipment. Public uddress installations. Stereo Centre. 309 Gloucester Road, Bristol. Tel: 0272421395.

EXPERIENCED ENGINEER offcrs field service Efacilities London area covering Electronic and Electro-Mechanical equipment-Box No. WW 2676. EAST Anylia, North Esscx, Suffolk, Norfolk. E. Cambridgeshire. Installation. commissioning, servicing of HF, VHF communication equipment (includirig marine) disco. recording etc. First class
workmanhip. f1.50 per hour plus mileage or by horkmanship. E1.S0 per hour plus mikeage or by
arrangement. E.M.A. (Ortord), Electronics and Machanical Engineers. Orford, Near Woodbridge Suffolk HIGH-CLASS repairs to Domestic and Industrial \(\mathrm{H}^{\text {electronic equipment. Vintage immaterial. }}\) Technical Services (Luton) Lid., Cutenhoe Road, Luton, Beds. (0582-29673/27601). INSTRUMENT SERVICING-Multimeters (Avo, Taylor S.E.f., Meggers etc. Quick and competi-
tive guaranteed repairs. V. W. \& Emith, 34 Hurst Mill Lane, GLaZEBURY, Warrington. Phone Leiph 6674.

SCRATCHED TUBES. Our experienced polishing \(S\) service can make your colour or monochrome tubes as new again for only \(\mathbf{£ 2 . 7 5}\). plus carriage 75 p. With absolute confidence sent to Retube Ltd. North Somercote, Louth, Lincs, or 'phone 0507-85 300. 127 SIGNAL generators, oscilloscopes, output meters, wave voltmeters, frequency meters, multi-range meters, etc., etc., in stock.-R. T. \& i. Electronics, Lid., Ashville Oid Hall, Ashville Rd., London, E. 11. Ley. 4986.

\section*{COURSES}

R ADIO and Radar M.P.T. and C.G.L.1. Courses R Write:
FY7 8 JZ .

\section*{EDUCATION}

CIE, AMSE, City \& Guilds, etc. Thousands of exam successes. Postal courses in all branches of Engineering. Prospectus FREE. State subject of interest: BIET (Dept. ZL BWW 19). Aldermaston Court, Reading RG7 4PF. Accredited by CACC.

\section*{NEW GRAM AND SOUND EQUIPMENT}

GLASGOW.-Recorders bought, sold, exchanged. Geameras, etc, exchanged for recorders or vice-versa.-Victor Morris, 343 Argyle St., Glasgow, C.2.

\section*{RECEIVERS AND AMPLIFIERS- \\ SURPLUS AND SECONDHAND \\ HRO Rx5s, etc., AR88, CR 100, BRT400, G209, R 6640 , etc., ete, in stock - R. T, \& I. Electronics, Lid., Ashville Old Hall, Ashville Rd., London, E.I1,} Ley. 4986.

\footnotetext{
VALVES WANTED
We buy new valves, transistors and clean new components, large or small quantities, all details, quotation teturn.-Walton's, 55 Worcester St.
}

\section*{ARTICLES FOR SALE}


GEIGER COUNTERS IFDR MAINSOR PORTABLease and probably the last, of this well known Contamination Meter No I. this very usaful instrument is used for the measurement R Radio-Activity. Indicated on an Interhal Meter scaled 0.1 to 10 milli Ronlgens
Hout, a sucket is also provided for additional Hout, a sucket is also provided for adaitional
sound Monitoring on Headphones. This Instument is housed in astrong light Alloy case placed in a carring Haversack with held Prote, Instruction Card, plus the latest or 4 EverReady H.P. 7 or Equivalent makes for Mobile use anywhers. (Cost Gov approx E 70 each) Supplied Brand New in Carton only E5. 50p carr. 50 p . An Additional plug in Power Unit for Laboratory use. operating from 100 - 120 volts ar \(200-250\) volis A.C. Mains is availabie Supglied Brand New in Cartnnal only \(£ 250 \mathrm{p}\) Post 25 Headphones (hot necessany it "required \(£ 1.50 \mathrm{p}\). EDISWAN STABILISED POWER UNIT TVPE R1280. 2 indegendent adjustable outputs, (1) \(0-300 \mathrm{~V} 150 \mathrm{~m}\) a. \(1210-300 \mathrm{~V} / 5 \mathrm{~m} / \mathrm{c}\). 2 Square outouts of B .3 V at 4 amps C.T enclosed in Meal case made for Hack Mounting size 19in. \& Btin x 17in \(£ 15\). cart. \(£ 2\) REGULATED POWER SUPPLY MODEL 506. Made by at 10 amps. plus unregulated output One square Meter indicating Ourput currant and vottage. Housed in Metal Case, made for Rack Mounting. Size 19in. \(\times 10\) itin. \(\times\) 13in. Fice \(£ 15\), can. \(£ 2\)
EDDYSTONE COMMUNICATIONS RECEIVER 730/4. Just released. BFO. AF Finter, Crystal Phasing. Variable swiched Selectivity. Crystal Callbatoror etc. 15 Valves A.C. Mains operated. Range 30 mels to 480 \(\mathrm{Kc} / \mathrm{l}\) suer f Bands. Fica as reteived from Ministry. complete in good condition
\(\mathbf{£ 4 7 . 5 0 \mathrm { p }}\) or checked and tasted \(£ 55\) cart. \(£ 2.50 \mathrm{p}\).
BELL AND HOWELL 16 MM SOUND PROJECTORS MODEL 631 . Recent Home OHtica release, complete an carrying case, with
Film Reels. Speaker and Lead, Mains Transtormer In very good condition \(£ 77\). Film Aeels. Speake
ADVANCED CHASSIS MOUNTING POWER UNITS. ADVANCED CHASSIS M

JOHNS RADIO
424 Bradford Road, Batley, Yorks. Phone: Batley 7732
Enquiries SA.E. VAI. 10\%, Terms CW.W.O. or uncrossed Postal Orders as same

\section*{TV Line out-put transformers}

Replacement types ex-stock.
For "By-return" service, con
Tidman Mall Order Ltd., Dept. W. W. 236 Sandycombe Rd., Richmond, Surrey TWS 2EQ Valves, Tubes, Condensers, ResIstors, Recilfiers and CALLERS WELCOME \((90\)

\section*{ELECTRONIC SUPPLIES P.O. B0X 216 London, N.W2 7RH}
BC107
BC107B
BC108
BC108A
BC108B
BC108C
BC109
BC109B
BC109C
BC115
BC117
BC126
BC134
BC135
BC36
BC137
BC154
BCY70
BCY71
BCY72
BD137
 \(\qquad\) .40
.55
.40
1.85
1.70
1.25
\(\begin{array}{r}75 \\ .74 \\ \hline 8\end{array}\)


\section*{FOR SALE}

GEC RC 410 RECEIVER
Digital frequency read out. Good condition E375 0.n.o.
STEWART Tel. Rustington 4262 During office hours.

\section*{BOX NOs.}
should be addressed to: BOX NO. WW. WIRELESS WORLD. Room 112, Dorset House, Stamford Street, London, SE1 9LU.

PAINTON WINKLER ROTARY SWITCHES. 1 Pole RELIANCE MULTI-TURN TRIMPOTS. 1 K at 15 p each. OXLEV MINIATURE 30Df AIRSPACED TRIMMERS. 5p each
IO.7 MHx CERAMIC FILTERS for F.M. I.F. strips, with data at \({ }^{25 p}\). New Equlpmenl 400 PIV 5 amp 3 for 55 p or 7
S.C.R.E. Ex New TEXAS BRIDGES. Type 1 B10 J10, 100 PIV 1 amp at 30 p . HCsU CRYSTALS. \(3250 \mathrm{KHz}, 4250 \mathrm{KHz}, 40.500 \mathrm{KHz}\). All at FT 243 CRYSTALS. \(6200 \mathrm{KHz}, 6317 \mathrm{KHz}, 6400 \mathrm{KHz}, 6525 \mathrm{KHz}\), All it IIP each PLESSEY ELECTROLYTIC CONDENSERS. 3000 H 25v.w. SIIE 4in. X TVIN. at CONDENSERS. \(5000 \mu \mathrm{~F}\) 30v.w. SLESSEY \({ }^{\text {P }}\) ELECTROLYTIC CONDENSERS. \(2000 \mu \mathrm{~F}\) 50 V .W. Size 4 in. \(x\) tin. at 30 D
at 8 volt, untested 8 for 27 p . PEP 5 HIGH SPEED SILICON NPN TRANSISTORS. WIOP each, gIN dol Sige zin. x inin. x in.
 (TD3A) at 90 p , 1 N3718 (TD4) at 90 p . TD9 at 90 p , TD254 at E1.50, TD256 at 81.50 , TD256A at \(£ 2.50\).
 UNIJUNCTIONS: 2N489 at 70p, 2N489A at 75p, 2N489B at E2:50, 2N494 at E2, 2N1671 at 70p, 2N1671A at 90 p, 2N16718 E1, 2N2418B at 90p.
RADAR WIDE BAND I.C. AMPLIFIERS. 10 to 150 M Hz F.M. I.F. I.C. \(=\) similar to TAA570 untested with data. 5 for 55 p .
WG16 X BAND CRYSTAL HOLDERS. \(£ 5\) each.
24in. FLEXIBLE X BAND WAVE GUIDE. Round flange
4iln. FLEXIBLE X BAND WAVE GUIDE. Round flange
\(X\) BAND PRE.SET ATTENUATORS. Square flange
at £12.
FERRITE ISOLATORS. Freq. 8.425 GHz at \(\mathbf{£ 5}\).
6in. FLEXIBLEX BAND WAVE GUIDE. Round Flanges
X BAND WAVE METERS. Type 6016 at e30 each
CRYSTAL MOLDERS. Type CDI 6 with coax output at
Ef each. 2 in. \(90^{\circ}\) Twlst Type 600225 square flanges at \(£ 3.50^{2}\). MULLARD BF115 TRANSISTORS. 25p each, 5 for \(£ 1\). O1HF 50V.W. DISC CERAMICS. E1 per 100
LEADLESS DISC CERAMICS. 47 PF , 200 pF , 1000 pF . All at \(20 p\) do
 HIGH SPEED DUAL COMPARATORS. TyPE SL717 In 14 lead DIL at 40p each.
M.O.S. GENERAL PURPOSE P CHANNEL FET. 100 TEXAS DIODES
TEXAS DIODES. 1S44. 15p doz., 100 for \(\mathrm{E1}\).
ISKRA PRE-SET POTENTIOMETERS SUB-MINIATURE. \(2 K 5\) type PN198, 5K type PN10B, 50K type PN11B,
100K PN11B. MORGANITE type \(200 \mathrm{~K}, 1 \mathrm{meg}\). All at 5 p each, r 6 for 20p. Any value.
MULLARD 300 mW ZENNERS. 4.7 volt, \(5-6\) volt, 8.2 volt. TEXAS 400 m W ZENNERS. 16 volt, A.E.I. 2 Watt. 13 volt. MULLARD 2.5 F 25V.W. at 5p each.
\[
\begin{aligned}
& \text { C.W.O. Please. All Goods Post and V.A.T. pald. }
\end{aligned}
\]

25 The Stralt, Lincoln. LN2 1JF. Phone: 20787. [2691

\section*{HYDRO ELECTRIC}

SOUTH CALEDONIA AREA

\section*{Used Radio Equipment}

\section*{FOR SALE BY TENDER}

The Board offer for sale by tender a quantity of VHF radio equipment, mainly Pye Vanguard Type AM25B and Murphy Type 820.
Further details, conditions of sale, and form of tender may be obtained from the Area Manager, Blackfriars, Perth.
Offers to be returned by 12 noon on Friday 27.7.73.
\([2833\)

\section*{FREQUENCY SHIFTER FOR HOWL REDUCTION Wireless World, July 1973}

Fibreglass p.c.b. with 12 -way gold edge connector and print for \(\pm 15 \mathrm{~V}\) regulators \(£ 1.00\).
\(\left.\begin{array}{l}\text { Complete kit } \\ \text { Buitr } \& 18.00 \\ \text { a aligned } \\ £ 24.00\end{array}\right\}\) including p.s.u. and
mains transformer.
PEAK PROGRAM METERS TO BS4297 also 200 KHz version for high speed copying - same prices. Drive circuit for 1 mA L.H. zero meters. \(35 \times 80 \mathrm{~mm}\). C.W.O. further \(5 \%\) less 2 off 4 off 10 off Complete kit Built \& aligned \(\begin{array}{rrr}£ 8.00 & £ 7.60 & £ 7.20 \\ £ 12.00 & £ 11.40 & £ 10.80\end{array}\) f6. 80 \(\begin{array}{r}\text { e } 12.00 \\ \hline\end{array}\) er PPM
\(1 \times 56\) \(\times 56 \mathrm{~mm}\) 69.90: Type 643. \(102 \times 79\)
SURREY ELECTRONICS
24 High Street, Merstham, Surrey

\section*{PRECISION \\ POLYCARBONATE CAPACITORS \\ Fresh stock - Fully tested}


 Pe each; 6 for 50p; 14 for \(£ 1 \cdot 00\). Ali brand new and marked.
May be mlxed to qualify for lower price. AFi7s at 35 p each; POPULAR DIODES. IN 14 at
 SPECIAL OFFER- 000 MW ZENERS. Values avallable +16 . \(5.8,7.5\), \(8.2,9.1,10,11,12,13.5,15 \vee\). Tolerance 14 for E1-00 SPECIAL 6 off EACH Voltage ( 65 ZENERS) RESISTORS-Carbon fim \(5 \%\), watt at \(40^{\circ} \mathrm{C}\). Range from
\(2.2 \Omega\) to \(2.2 \mathrm{M} \Omega\) In E12 serles, I.e. \(10,12,15,18,22,27,33,39\) 47, \(55,68,82\) and their decades. High slablify, low nolse of any one value. Special development pack- 10 off each

\(0 \cdot 1,0 \cdot 22,0.47,1 \cdot 0,2 \cdot 2,4 \cdot 7,6 \cdot 8 \mathrm{HF}\) at \(35 \mathrm{~V}, 10 \mathrm{HF} 25 \mathrm{~V}, 15 \mathrm{HF} 20 \mathrm{~V}\)
 capacitors cap 440 A .

 75 p each
silico
SILICON PLASTIC RECTIFIERS 1.5 AMP-Brand new
wire-ended DO27. 100 PIV at Bp each or 10 . at \(3 p\) each or 4 for 34 p ; 800 PIV at 14 p each or 4 for 50 p . P.E. SCORPIO- 1 LF 440 V a.c. capacitor IIsted above as recommended by the Author for use In place of \(2 \times\)
0.47 F
1000 V d.c. discharge capacitors C 6 and C Improved rellability. Alternatively, \(2 \times 0.47 \mu \mathrm{~F} 440 \mathrm{~V}\) a.c. may be suppiled at 35p each. These capacitors are also sultable for systems recently publlshed In P.W. and W.W
\(5 p\) post and paching on all orders below \&5.

Dept. D8, THE MARCO TRADINE
ROAD, WEM
Please add \(\mathbf{1 0 \%}\) V.A.T. to \(y \sim u r\) order effective April 1284
\[
\begin{aligned}
& \text { HIgh Stab. } \ddagger \text { W or } 1 \mathrm{~W} \text { W } 5 \% .1 \mathrm{p}, 62 \mathrm{p} / 100, £ 4.50 / 1000(22 \Omega-2 \mathrm{M} 2) \text { E12 } \\
& \text { RESISTOR KITS } 10 \Omega-1 \text { M E12 SERIES: } \\
& \begin{array}{ll}
10 \mathrm{E} 12 \mathrm{KIT} \text {. } 10 \text { of each value (Total of } 610 \text { ) } & £ 3.10 \\
25 \mathrm{E} 12 \mathrm{KIT} \text {. } 25 \text { of each value (Total of } 1525 \text { ) } & \mathrm{E7.20}
\end{array} \\
& \begin{array}{c}
\text { FREE CATALOGUE ON REQUEST } \\
\text { Metal Fllim } 1 W
\end{array} \\
& \text { W.O. P. \& P. } 10 \mathrm{KP} \text { on orders under } £ 5 \text {. O. Oers } \\
& \text { C.W.O. P. \& P. } 10 \mathrm{p} \text { on orders under } £ 5 \text {. Overseas extra. } \\
& \text { Dept. WW., } 61 \text { Cheddington Road, PITSTONE, } \\
& \text { Lelghiton Buzzard, Beds., LU7 9AQ. }
\end{aligned}
\]

Sale of Radio Telephone Equipment
Offers are invited from anyone wishing to pu chase the following VHF (LB) R.T. Equipment, comprising:-
2 Base
Stations PYE Type 2702 VD .

3 RTC Units PYE
6 Vanguard Mobile Units AM 25B
8 Mobile Units, Type 220 M
Apply in writing (by 20th July 1973) to:-
Water Engineer and Manager Scarbor Water Engineer and Manager, Scarborough Nicholas Street, Scarborough.

\section*{TENDERS}

Warwickshire County Council Ambulance Service

\section*{Replacement of Mobile Radio Equipment}

Tenders are invited from firms able to supply mobile and base station radio telephone equipment in connection with the replacement of the existing equipme
Council's Ambulance Service.
Tender forms and specifications are available from the County Medical Officer of Health, Shire HaH, Warwick, to whom completed marked CONFIDENTIAL RADIO TENDER, by mot later than Friday August 3rd 1973.

The Council does not bind itself to accept the lowest, or 2my, tender.
E. Cust, Esq.

Clerk of the Council:
[2598

\title{
For EX'smore profit
} just look at these prices!


\section*{Trampus alandronin}

\section*{Money Back Guaranteed}

OIGITAL INOICATOAS 7 seg. DP 5v Filament
 £2.15 Me. 4 DIGIT LED DIL/magnifier f LIGHT EMITTING DLDOES \& data \(\frac{1}{7}\) " OIA Type \& panel clip RED 33p. GREEN 73p. ThL 209
 isolatol £2. TGS 308 Gas/smoke
ULTRASONIC TRANSOUCERS \(£ 2\). ULTRASONIC TRANSOUCERS £2.

\section*{ic digital cloch}

MOStsichip. 28 pin. 4 or 6 digit, 12 or 24 hi at flick of switch. Chip with ol socket £13. PCB E1.69 KITS. 4 digit £21.49. 6 digit f25. IC LITE SWITCH \(11-20=40 \mathrm{ma}\) relay \(/ T \mathrm{LL}\) drive. Photo amp/trigger/driver 87 p ea. \(10+77 \mathrm{p}\) ea.
Photo amp only 39 p . ic DIGITAL VOLTMETER f12. BVM UP MPX 66 . Data Photo amp only 39p. IC DIGITAL VOLTMETER f12. DVM UP MPX C6. Data




\section*{\(79 \cap T T L\) Rat}

Gates 7400 '1 2/3/4:5/10:20/30/40/50 etc 14p ea 7413 27p. \(7441 \quad 73 \mathrm{p}\)
 7492 67p. 7480 69p. 7483 f1.10. 7486 37p. 7493 73p. 7494 83p. 749583 pp. 7496 89p. 7412145 p .74141 99pp \(74190 / 9192 / 93\) E2.39. \(74196 \quad \mathrm{f} 1.59\). C MOS logic in new lists. OIL PLUGS/IC case 10 mm high 16 pin 35 p .
DIL SOCKETS low high profile \(8 / 14 / 16\) pin 13 p \(100+10 \mathrm{p}\) ea. SEMICON OUCTJRS \(25+1\) less \(10 \%\) ZENERS BZY 88400 mW 7 p . IN4001 \(3 \frac{1}{2} \mathrm{p}\). IN9 14 3p. 50 y 14 Bridge 23p. 2N 3055 4Gp. BC 107 8p. BC 1088 8p. BC109 8p. BC \(147 / 8 / 9\)
 13p. LD131/2 55p. BFY50/51/52 13p. TIS43 UJT 24p. 2N706 11p. 2 N 2369 \(5 / 6\) /7/49/1011: All \(9_{p}\). FETS 2 N 3819 27p. 2N3823 29p 2 N 3866 UHFF \(59_{p}\) SCA'S 400 v 1 A 23 p .4 A 55 p . TRANSFORMERS \(\mathrm{AA} 6 \& 12 \mathrm{y}\) f1. CAPACITORS 25 v 10 . 50 . 100 ut 5 p ea. \(50+4 \mathrm{p}\) ea. 22 p 1 to 0.1 ut 3 p . RESISTOAS \(\mathrm{i} \mathrm{W} 5 \%\) 11/p en. PRESETS 5 p. CARBON POTS 12 p ea. Oual 40 p. Swich - 12 p.


 8 WATT with diffuser. on/oly switch. Fully bull 13 " long TRIO and COOAR comminications and HI fi retailers. ELECTRONIC ORGANS imponed full facilit!s from £67. ELECTRONIC CAR IGNITION KHT PW capacitor type
VAT customers MUST ADO 10\% ( 1 in to above prices
free catalist s.a.e. data sheets ip ea. S.a
FREE CATALIST S.A.E. DATA SHEETS \(8 p\) ea. S.A.E

\section*{TVs COLOUR TVs} 19in. DECCA E110 25 in DECCA
 One month comprehensive written guarantee, These are cash and collect prices
Dellvery quotations by phone.

\section*{MONO UHF}

Fabulaus TVs. No rubbish, from good saurce Repolished cabinets. Many working, recent transistorized
models. inc. BUSH. TV 148 U. TV 166 . TV 176 PHHIIPS siyle 70 and 210; PYE and EKCO 868 chassis: THORN 950 ,
1400 G. E.C., CONCORDE 1400; G.E.C. CONCORDE from \(£ 12\) each,
Valve UHF models Inc. BUSH Push button, THORN 850 , Valve UHF models Inc. BUSH Push
SOBELL 1000 , etc. Prices stant at \(£ 5\).

\section*{UHF TUNERS}

For FERGUSON 850,900 chassis but adaptable for most
D/STD chassis \(£ 2.50\) each. C.W.O. Postage included. Send S.A.E. for lists of tubes, TVs., valves, etc. For England, Trade Disposals, 1043 Leeds Road For Scotiand, Trade Disposals, Unit 5, Peacock Cross Industrial Estate, 32 Burnbank Road, Hamilton. Tel.: Mamilton 29511/2 (89

\section*{NEW FROM ELBON}
L.E.D.'s (Red Emilting) ideally sulted for panel indicators

Price only: 33p each or \(\mathbf{\Sigma 2} .50\) for 10
Light SENSITIVE SWITCHES
wo types available giving wide operating voltages
LITE-IC2 \(11 \mathrm{~V}-20 \mathrm{~V}\) working - \(\mathbf{\Sigma 1}\) each \(-\mathbf{\Sigma 8} .50\) for 10 LITE-IC3 20 V -30V working \(-\mathbf{\Sigma 1}\) each \(-\mathbf{\Sigma 8} .50\) for 10 Applications include Relay, Triac or Logic Drive automatic light switching and door control, beam break de ection-burglar alarm. batch counting and code reading BARGAIN PACK!

2 LITE-ICT2. 2 LITE-IC3 and 5 LED's all for \(\mathbf{5} \mathbf{5} \cdot 00\) all paices include vat. Packing and carriage Please send C.W.O. to:
LITE•IC, ELBON
summerfield, the crescent, west wit tering, sussex

SURPLUS BARGAINS
KLEINSCHMIDT S.C.M. TELEPRINTER OUTFITS


Comprising, Teletypewriter (page printer) type \(\Pi-271 \mathrm{~B} / \mathrm{FG}\) Reperforator-Transmitter. Teletypewriter (tape printer) type Tr-272A/G with rable FN-65/FG. The whole equipmen operates on 115 or 230 volts 50 cvcles E55. (carr. E4)
Teleprinter \(\Pi-271 \mathrm{~B} / \mathrm{FG} \quad 115\) volts 50 cycles \(£ 35\) (f2) 25 amp Variacs as new less handle and covers \(£ 22\) (f2l \(240 / 110\) volt 3 KVA \(£ 15\). ( \(£ 1.50\) ). COSSOR 10350 scill scopes \(\subset 20\) (cars \(£ 1.50\) ). AVO Electronic Meters CT3B \(£ 18\) ( \(£ 1\) 1) TF866 Magnification Meters \(£ 25-£ 40\) ( \(£ 1\) ). Constana Voltege Transformers: 500 watt E1B (£1). 125 watt E8 (75p). BC22 L12 (E1). CTS3 E10 (E1). FRACMO 240v AC \(\frac{4}{4}\) hp 6.000 fpm E4.50 (37p). Portable Geiger Counters powero by 40 ) batreries. very senstive, new. testec £5.50 (carr 50p). Botbin Aerial Insuiators \(£ 2.50\) per 100 KENT Chart Recorders 115 V AC £20. Multi-point £30. (borh (50p) Sintered Nickel Cadmium Accumulators. 12 v 7 7ah size \(90 \times 30 \times 60 \mathrm{~mm}\), with electrolyte, charging instructions 80p only.
Printed Circuit Kits f1 25 (210) Fernc Chioride 25p a it (16p), 10 b. £2. 50

Loads of surplus to clear. Large S.A.E. for list
CASEY BROS.
233-237, Boundary Road, St. Helens, Lancs.

\section*{SPECIALISED KITS}

\section*{CBS-SQ QUADRAPHONIC IC DECODER}

To Motorola application for MC1312 ss described by Gaoffray Shorter (WW March 73)

Our complete kit of professional quality component includes a glass-fibre edge connected printed circuit boafd and is absolutely complete, with full assembly and application notes.
As we also design and manufacture complete stereo and Quadraphonic systems, our wide applications experience is available to you to guarantee professional results
Complete kit as described above \(£ 8.80\). Assemblad and tested production board \(\mathbf{£ 1 2 \cdot 1 0}\). A full logic board also using MC1314/MC1315 will shortly be available, as will all CBS-SQ records. Send for details.

\section*{PHASE-LOCKED-LOOP STEREO DECODER}

To motorola application for MC1310
as described in Wireless World, July 1972
1310 complete kit of professional quality including a glass-fibre edge connected printed circuit board and all components.
Complete kit which can be built in \(\frac{1}{2}\) hr. f3 74. Assembled and tested production hoard E4•84. MA2404 Professional LED 61p extra if required. Economy LED (physically small) 37 p extra if raquired. A current limiting resistor is suppliad frea upon request with all LEDS. Self powered and special versions are available to order.

\section*{HIGH STANDARD}

LOW FREQUENCY SOURCE
(to articte by J. M. Osborne, W.W. Jan. 73)
A Phase-Locked Loop dosigner approved kit to professional standards with Glass-Fibre P.C. Board, and all components including Hardware, case, atc. Fuil constructional details from the designer are included. Reference accurate to 2 parts in \(10^{14}\) ! Probabiy the most economic high precision signal source available. Kit \(£ 24 \cdot 67\). Assembled and testad version \(£ 32.15\). NE561B only \(\mathbf{8 4} 48\) each.

\section*{NEW PRODUCTS}
1. Two tona test oscillator \(1 \& 2 \mathrm{kHz}\), ideal for SSB satting uo. Batteny powered professional quality kit \(\mathbf{£ 6} 75\). 2. Squeich board for FM tuners. Simple add-on advanced circuitry for effective muting. Tuner powered kit \(£ 5-34\).

\section*{spectalist services}

Suppliers of products by Radiospares, Eagle, TTC, Sonax. Teleradio and RSGB publications. We welcome enquiries, irrespective of size or nature. A full technical and after-seles-service is provided, with licensed radio amateurs on the technical staff
Communications acknowledged normally by return. MAIN DISTRIBUTORS FOR QUADRASONICS, THE PREMIER BRITISH QUADRAPHONIC SYSTEM.

\section*{NO HIDDEN EXTRAS}

ALL PRICES INCLUDE VAT, CARRIAGE and INSURANCE

P.O.BOX.No. 18 HARLOW ESSEX CM18 GSH Telephone:Harlow 25457


CASH IMMEDIATELY AVAILABLE
for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, London, N12.
Telephone: 01-445 2713 01-445 0748 Evenings: \(01-9587624\)


\section*{SOWTER TRANSFORMERS}

FOR SOUND RECORDING AND REPRODUCING EQUIPMENT We are suppliers to many well-known companies, studios and broadcasting authorities and were estab
lished in 1941 . Early deliveries. Competitive prices. Large or small quantities. Let us quote.

Transformer Manufacturers and Designers
7 Dedham Place, Fore Street. Ipswich IP4 IJP Telephone 047352794

\section*{PRINCIPLES OF PAL}

\section*{COLOUR TELEVISION}

\author{
and Related Systems
}
H. V. SIMS, C.Eng., M.I.E.E., F.I.E.R.E

This book discusses the principles concerning the transmission of colour as well as reception and particularly the effects due to non-linearity and its correction. Other aspects covered are the failure of constant luminance, differential phase distortion and the production of Hanover bars. The book covers City and Guilds 300 Series (Television Broadcasting)

1969 (Second Impression 1970) 154 pp. 59 illustrations

0592059448 cased \(£ \mathbf{2} \mathbf{0 0}\)
0592059707 limp \(\mathbf{£ 1 . 2 0}\)
obtainable from your bookseller or:
THE BUTTERWORTH GROUP
88 KINGSWAY LONDON WC2 01-405 6900

\section*{J. LINSLEY HOOD LOW DISTORTION AMPLIFIERS IN KIT FORM}
1. 10 Watt Class \(A £ 5.25\)
2. 20 Watt Class B \(£ 20\) (Incl. P.SU)
3. 20-75 Watt Direct coupled \(£ 11.80\)

Send SAE for detailed information on these and other quality amplifiers to

\section*{TELERADIO HI FI}

325 Fore St., London N9 OPE
01-807 3719 (Closed Thursdays)
AGENTS FOR THE SONAX F.M. PHASE LOCKED LOOP STEREO DECODERS AT \(£ 4.30\) tax extra


\section*{THERMOCOUPLES}

Acramet and Acraspeed thermocouples, from IC are:-

Extremely accurate for fluid, gas or metal temperature measurement

Individually calibrated and carry a certificate plus a one year guaranteé

Available with immersion or contact non-earthed, multiples, boss or plug.

Details available on request.
International Combustion Limited,
Sinfin Lane,
Derby DE2 9G」


\footnotetext{
Something newl Prepare. your printed clrcult masters to
professtonal standards. Our Master Klis contain all prosessional standards. Ouf Master Klis contain al We include four sizes of spectal adheslve tape (conductors), four sizes of clrcles (pads), transistors and \(\mathrm{l/C}\)
clusters. Also metric and Imperial grids, a cutting knite and backing material. Complete with full instructions and catalogues for re-ordering.

Price es. 4 plus \(10 \%\) V.AT plus 15 p P. \& P Electronic and Mechanical Sub-Assembly Co. Ltd Hightield House, West Kingsdown, Nr. Sevenoaks, Kent
}

for ultimate reliability and coolest running


GRAMPIAN REPRODUCERS LIMITEB Hamworth Trading Estate.Fetham, Middlesex. Telephone: 01-894 9141.

\section*{TRANSFORMERS}

DOUGLAS GUARANTEED
(Prices include \(10 \%\) FAT and P. \& P.)


SAFETY ISOLATORS. \(105 / 120\) V. or 200/240 V. In. 105/120 CT


AT indicates open unlversal flxing with tags: CT is open U-clamp, interwinding screen; \(\dagger\) untapped 240 V Primary; \(\ddagger\) tapped at 210 240V; other Primaries tapped at 200-220-240
Over 200 tppes in stock through agents or direct. Send for lists. DOUGLAS ELECTROHE INDUSTRIES LTD., Ditect Sales Dept.

BRAND NEW FULL SPEC. DEVICES MIerocircuit: 70924 p ; 71036 p ; 723 . 51 p ; 741 27p; 748 37p 74 SERIES TTL: 08 18p; \(1121 \mathrm{p} ; 47 \mathrm{f1} \cdot 35\);

2N290 2N: BC10: 2N3704 10p; 2N3819 26p; 2N405B 12p; BC107A
 ACI26/778 12 p . \(100 \mathrm{v}{ }^{4 \mathrm{p}} ; 200 \mathrm{v}\). \(4 \frac{1}{3} \mathrm{p} ; 400 \mathrm{v}\). 5 p ; 800 v . 6 p ; 1000 v . 7 p . \(14{ }^{3} \mathrm{pin}\) IC Sockets 12p. Soldercons in per pin. Dalo PCP Pen 88 p . TWlue per 7 P. F.E.T. Op. Amp. E12 values only: 10 of one
val 10 . Sub Min. Vertical Preset pots ( 50 mW ) 100 ohms to 220 K 4 p each.

JEF ELECTRONICS (W.W.8) York House. 12 York Drive, Grappenhall, Warrington List P \& P .


\section*{WE PURCHASE}

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGSAND SOCKETS, MOTORS. TRANSISTORS. RESISTORS CAPACITORS POTENTIO METERS, RELAYS TRANSFORMERS ETC ELECTRONIC BROKERS LTD. 49 Pancras Road, London, N.W.1. 01-837 7781

\section*{SEMICONDUCTOR DATA LIBRARY}

MOTOROLA SEMICONDUCTOR INC.
3 vols. set \(\mathbf{6 6 . 5 0}\)

\section*{1973 THE RADIO AMATEUR'S} HANDBOOK \(£ 2.95\)

ELECTRONIC MUSIC PRODUCTION by A . Douglas \(£ 2.85\)

PRACTICAL RELAY CIRCUITS by F. J. Oliver \(£ 3 \cdot 40\)

ELECTRONICS. A COURSE BOOK FOR STUDENTS by G. H. Olsen \(\mathbf{E 2 . 7 5}\) HOW TO USE INTEGRATED CIRCUIT LOGIC ELEMENTS by J. W Streater \(£ 1.50\)

MOS INTEGRATED CIRCUITS AND THEIR APPLICATIONS by Mullard E2. 10
THYRISTOR CONTROL by F. F. Mazda £7•10
INTEGRATED ELECTRONICS by Miliman \(\mathbf{E 7} .50\)
RADIO HANDBOOK by W. I, Orr \&7.75

\section*{THE MODERN BOOK CO}

SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS 19-21 PRAED STREET LONDON, W2 1NP

Phone 7234185
Closed Sat. I p.m.

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

\section*{J. Black}

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN RDAO, N. 16 Tel: 01-249 2260

\section*{Lodge Trading Company}

For Amplifiers, Speakers with and without cabinets, Changer Units, Plinths and Covers, Tape Recorders, four and eight track for car or home, Car Radios, Colour TVs, Aerials, Flex, and Cables, Large stocks of components.

ALL AT WHOLESALE PRICES
A VISIT WILL SAVE YOU MONEY
5 Day Week 9-6. Easy Car Parking. Sorry no lists.
21 LODGE LANE, N. FINCHLEY, LONDON, N. 12 01-445 2713, 01-445 0749


\section*{EXCLUSIVE OFFERS}

\section*{INSTRUMENTATION TAPE RECORDER-} REPRODUCERS and COMPUTER PERIPHALS

\section*{AMPEX FR-100B}

1" 14 tracks 6 speeds
FR-600 FR-800
\(1^{\prime \prime}\) and \(\frac{1^{\prime \prime}}{} 14\) and 7 tracks 4 speeds Trans istorised

729
7 tracks 6 speeds MINCOM CMP-100 4" \(\frac{1}{2}^{\prime \prime} 1^{\prime \prime} 7\) tracks 6 speeds E.M.I.

TD-1
tracks 7 speeds Several other smaller Full details

Prices of above are from \(\mathbb{1} 150\) to \(£ 700\)


80 col. CARD READER \(600 \mathrm{c} . \mathrm{p} . \mathrm{m}\) High speed tape reader 5 to 8 track 800 c.p.s Prices on Application


HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS


OPEN RACKS


Full details of all above on request.
We have a large quantity of " bits and pleces"
we canzat list pleasg send na your requirementa
we can probably help-all enquifies nolwerod.
```

* 10 foot Triangular Lattice Mast Sectione
Hammarlund SP.600 Recelvers
Casella Asemann Electric Hygrometers
Mal
Hacal MA-250 Decade Generators
Avo Geiger Counters, new
Servomex 2KVA voltage Regulators
Double Co-axial Blowers \& < 6220 v. A.C.
Ampex 8.E.10 Auto Degaussers
Uniselectors 10 bank 25 way full wipe
Haynes 500 w'att 230 v 115v. Inolatio
Bulangiormers Card Hand Punch
Laboratory Radio Interference Flltera
Pye Soalamp Galvos
Ferrograph G. 200 Tape Recorders
Zeulth 3KV Insulation Tcet Sets
Adwell large Draittng Tables with
parallel motions

5in. Iia. Meteorological Balloons

PLEASE ADD V.A.T. TO ABOVE
P. HARRIS
ORGANFORD - DORSET
BH16 6ER
BOURNEMOUTH-65051

```

\begin{tabular}{|c|c|}
\hline Fane Pop 100 watt \(18^{\prime \prime} 8 / 15\) ohm. & \[
£ 21.45
\] \\
\hline Fane Pop 60 watt \(15^{\prime \prime} 8 / 15\) ohm &  \\
\hline Fane Pop 50 watt \(12^{\prime \prime} 8 / 15\) ohm & ¢10 \\
\hline Fane Pop \(25 / 225\) watt 8/15 & 55 \\
\hline Fane Pop \(1512{ }^{\prime \prime} 15\) watt 8/15 & 64.40 \\
\hline Fane 122/102 or 122/12. & 69.90 \\
\hline Fane Crescendo 15"8 or 15 & ¢27.20 \\
\hline Fane Crescendo 12"8 or 15 ohm & £24.50 \\
\hline Fane \(8^{\prime \prime}\). d/cone 808 T 8 or 15 ohm & 62.64 \\
\hline Fane 8" d/cone, roll surr. 807T 8 or 15 ohm & 63.16 \\
\hline Baker Group 25 3, 8 or 15 ohm & 66.00 \\
\hline Baker Group 35, 3, 8 or 15 oh & 67.50 \\
\hline Baker De Luxe 12" d/cone & 69.62 \\
\hline Baker Major & 67.50 \\
\hline EM1 \(13 \times 8,3,8\) or 15 ohm & 62.25 \\
\hline EMI \(13 \times 8\) type \(150 \mathrm{~d} /\) cone, 3,8 or 15 ohm & \(\underline{62.58}\) \\
\hline EMI \(13 \times 8\) type \(450 \mathrm{t} / \mathrm{w}, 3,8\) o & 63. \\
\hline EMI \(13 \times 8\) type 3508 ohm & 68.25 \\
\hline EMI \(6 \frac{1}{2}\) " 938504 or 8 ohm & 62.80 \\
\hline Elac \(9 \times 559 \mathrm{RM} 10915\) oh & ¢2.53 \\
\hline Elac \(9 \times 5\) S9RM 1148 ohm & 62.53 \\
\hline Elac 61/3 \({ }^{\prime \prime}\) d/cone 6RM220 8 & 62.59 \\
\hline Elac 61/" d/cone, roll surr. 6RM17 & ¢3.22 \\
\hline Elac 4"t weeter TW4 8 or 15 & ¢ \\
\hline Celestion PS8 for Unil & ¢2.16 \\
\hline Celestion MF 100025 watt horn 8 or & ¢10.45 \\
\hline Elac 5" 3 ohm & 61.75 \\
\hline Elac \(7 \times 4{ }^{\prime \prime} 3\) or 8 ohm & 1.52 \\
\hline Elac \(8 \times 5{ }^{\prime \prime}, 3,8\) or 15 ohm & 41.93 \\
\hline Whariedale Bronze 8 RS/DD & 63 \\
\hline Whariedale Super 8 RS/DD & 45.50 \\
\hline Wharfedale Super 10 RS/DD & 49.80 \\
\hline Goodmans 8P 8 or 15 oh & 3.80 \\
\hline Goodmans 10P 8 or 15 oh & 44.49 \\
\hline Goodmans 12P 8 or 15 & 411.55 \\
\hline Goodmans 15P 8 or 15 oh & 17 \\
\hline Goodmans 18P 8 or 15 ohm & 629.70 \\
\hline Goodmans Twinax & 66.79 \\
\hline Goodmans Twinaxiom 10 & 67.61 \\
\hline Goodmans Axent 100 & 0 \\
\hline Eagle DT33 dome tweete & 95 \\
\hline Eagle HTI5 tweeter 8 oh & 63.46 \\
\hline Eagle CTS tweeter 8 oh & 11 \\
\hline Eagle MHTIO tweeter & 63.30 \\
\hline Eagle CTIO tweet & \(¢ 1.92\) \\
\hline Eagle Xovers CN23, 28, & 61.10 \\
\hline Kef T27 & 64.67 \\
\hline Kef Tl 5 & 50 \\
\hline Kef 8110 & 66.16 \\
\hline Kef 8200 & 67.42 \\
\hline Kef B139 & \(¢ 10.72\) \\
\hline Kefkit 2 & ¢24.75 \\
\hline Richard Allan 12" d/cone 3 & 61.20 \\
\hline Richard Allan \(8^{\prime \prime} 3,8\) or 15 ohm & 62 \\
\hline \(10 \times 6{ }^{\prime \prime} 3,8\) or 15 ohm & ¢1.92 \\
\hline \(8 \times 5^{\prime \prime} 3\) or 8 ohm & ¢1.38 \\
\hline \(7 \times 4^{\prime \prime} 3\) or 8 ohm & \&1.38 \\
\hline \(3^{\prime \prime} 8\) ohm or 80 ohm & ¢0.65 \\
\hline 21" 64 ohm & \\
\hline Speaker matching transformer 3/8/15 ohm & 4 \\
\hline Adastra Hiten \(10^{\prime \prime} 10\) watt 8 or 15 ohm & 62.80 \\
\hline Adastra Top \(2012{ }^{\prime \prime} 25\) watt 8 or 15 ohm. & \\
\hline STEPHENSPEAKER KITS AND CA Send for illustrated brochure and lise mended speakers. & INETS recom- \\
\hline CAR STEREO SPEAKERS -sk & fleta \\
\hline \begin{tabular}{l}
PA/DISCO AMPLIFIERS: (carr. and in \\
Baker 100 watt. \\
Linear 30/40 \(\qquad\) \\
Linear 40/60 \\
Linear 80/100
\end{tabular} & \[
\begin{aligned}
& \$ 1.00) \\
& \$ 46.00 \\
& £ 25.00 \\
& \$ 30.00 \\
& \$ 50.00
\end{aligned}
\] \\
\hline FREE with speaker order: & 'Hi-F \\
\hline Loudspeaker Enclosures" book. & \\
\hline II units guaranteed new and per Prompt despatch & \\
\hline \begin{tabular}{l}
Carriage and insurance 25 p per spea \\
(Tweeters and Crossovers 15p eac (All prices quoted inclusive of V.A.
\end{tabular} & \\
\hline
\end{tabular}

\section*{WILMSLOW AUDIO,} Dept WW,

Swan Works, Bank Square, Wilmslow, Cheshire SK9 IHF.

\section*{Ex-COMPUTEF STABIILSED POWER SUPPIIIES} RECONDITIONED, TESTED AND GUARANTEED
Ripple \(<10 \mathrm{mV}\). Over-voltage protection on all except 24 v . 7A. unit. \(120-130 \mathrm{v} .50 \mathrm{c} / \mathrm{s}\) input. Stepdown transformer to suit about £3.
 £ 3.50 (28p).
dia. \(\times 2 \frac{1}{6} \mathrm{in}\). deep Type 7576 \&5.00 (30p).
WOODS FANS 6in. Plastic rotor \(£ 6.00\) (36p).
ELECTROLYTICS
\(25,000 \mu 25 \mathrm{v}\)., \(20,000 \mu 30 \mathrm{v} ., 5,000 \mu 90 \mathrm{v} ., 35,000 \mu\) \(15 \mathrm{v} ., 3,000 \mu 150 \mathrm{v} ., 8,000 \mu 55 \mathrm{v}\)., \(4 \frac{1}{2} \times 3 \mathrm{in}\). dia. \(50 p\) (15p).
\(68,000 \mu 16 \mathrm{v} ., 4 \frac{1}{2} \times 2 \mathrm{in}\). dia. 50 p (12p).
\(15,000 \mu 15 \mathrm{v} ., 10,000 \mu 35 \mathrm{v} ., 4 \frac{1}{2} \times 2 \mathrm{in}\). dia. 30p (10p).
2,000 \(25 \mathrm{v} ., 15 \mathrm{p}\).
20A STUD DIODES 4 for \(£ 1\) ( 6 p ).
EX-COMPUTER PC PANELS \(2 \times 4 \mathrm{in}\)., min . 35 transistors with data 50 p ( 9 p ). 25 boards for \(£ 1\) (25p).
PANELS WITH 4 POWER TRANSIS.
TORS SIM OC28 5pp (9p).
QH Bulbs, 12v. 55w. ................ 50p (5p)
250 Mixed Resistors ............... 60p (8p)
250 Mixed Capacitors \(60 \mathrm{p}(8 \mathrm{p})\)
250 Mixed Capacitors 50 p (5p)
200 SI Planar Diodes
8 for 50 p (8p)
Min. Glass Neons ...
8 for \(50 \mathrm{p}(8 p)\)
12 for \(50 \mathrm{p}(5 p)\)
10-way Terminal Blocks ..... 10 for 55p (5p)
postage and package shown in brackets
Please add \(10 \%\) VAT to prices
KEYTRONICS
Mail Order only.
44 EARLS COURT ROAD, LONDON, W. 8 \(01-4788499\)

\section*{GDNDON CENTRER Rado storde}

TELEPHONE CABLE. Plastic covered grey 4 -score coloured coded. 7tp per yd. Speeial quote for quantlty. RECORD STORAGE UNTTS. Brand new. Anti-warp, 'Compact
200' stores 200 records. \(\mathrm{E12} 58\). P.P.x1-40. 'Compact \(100^{\prime}\) etores 100 records \&5 97 . P.P. 70. Leaflets avallable, S.A.E. ELECTRICITY SLOT METERS (5p in slot) for A.C. Mains. Fixed tarifi to your requirements. Suitable for hotels, etc. \(200 / 250 \mathrm{~s}\) -
\(10 \mathrm{~A} . \& 5 \cdot 50.15 \mathrm{~A} . \mathbf{8 6} \cdot \mathbf{0 0} .20 \mathrm{~A} . \mathbf{£ 6} 50 . \mathrm{P} . \mathrm{P} .60 \mathrm{p}\). Other amperages avallable. Reconditloned as new 2 years, "kuarantee. MODERN DESK PHONES, red, green, blue or topaz, 2 tone grey or black, with interual bell and handset with 0-1 dial £4.50. S-W. AY PRESS-BUTTON INTER-COM TELEPHONES In Bakelite case with junction box handset. Thoroughly overhauled, guaranteed. Price e5.25. Whing diagram on requeat, send \&.a.e.
10-WAY PRESB-BUTTON
WTER-COM TELEPHONES In Bake-10-WAY PREB8-BUTTON NTER-COM TELEPRONES I Bake. Guaranteed. © 6.75 per unit. Wiring dlagram on requeat, send日. a.e.
20-WAY PRESS-BUTTON INTER-COM TELEPHONES
in Bakeilte case with junction box. Thoroughly overhauled. Guaranteed. e7. 75 per unit. Wiring diagram on requeat, send a.a.e. The " 88 " " Bet. This transceiver, welghs approx. 5 i lbs. and measures \(34 \mathrm{in}\).x 51 in . x 9 in . It is a 4 frequencs channel set
\(41-44\) mec/s., Cryatal Controlled and operates irom a dry battery 41-44 me./s., Cryatai C.E. Ruben Mallory Type No. 1 and empl oy the following 14 values. 3A4, 1 off; 1 LL 4.6 off; \(1 \mathrm{T4}, 4\) off: 185 . 23 IISE ST. (2359) IONOON W.C. 2

Open all day Saturdav

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. SPOT CASH
CHILTMEAD LTD.
7, 9, 11 Arthur Road, Reading, Berks.

Tel: 582605

\section*{Beginner's Guide to Colour Television}
(2nd Edition)
Gordon J. King
The reader is guided through the principles of NTSC and PAL to an understanding of the method of operation of the PAL system from aerial to display tube.

1973208 pp., illustrated \(0408001011 £ 1.95\)

\section*{Electronics}

A Course Book for Students
G. H. Olsen

A qualitative introduction with a minimum of mathematics and circuit analysis, and the maximum possible coverage of commonly used electronic devices.
1973352 pp., illustrated
0408704470 £2.60

\section*{Elements of Linear Microcircuits}

\section*{T. D. Towers}

Based on a series of articles written for Wireless World, this book gives practical information on commercially available linear microcircuit devices, and on the handling of these sensitive circuits within an assembly.
1973116 pp., illustrated \(059200077 \times\) £2.80

\section*{Sound with Vision \\ Sound Techniques for Television and Film}
E. G. M. Alkin

For the first time the methods developed by the BBC are here made available in book form for the benefit of television sound operators and production staff

1973294 pp., illustrated \(0408702362 £ 6.00\)

\section*{Television Engineers' Pocket Book}
(6th Edition)
Revised by P. J. McGoldrick
Extensively revised and updated, the sixth edition of this popular book provides a summary of all the basic facts, circuit techniques and technical data likely to be
required for servicing either colour or monochrome receivers.

1973376 pp., illustrated
\(040800102 \times £ 2.50\)
Obtainable through any bookseller or from the Publishers.

The Butterworth Group 88 Kingsway, London WC2B 6AB

Showroom: 4-5 Bell Yard,
London WC2

\section*{"W.W." HI-FI KITS}
* LINSLEY HOOD 15-20W AMPLIFIER

July 1970 latest and ultimate design. Our kit personally tested and approved by the designer.
\(\mathrm{O} / \mathrm{P}\) Tr's matched for spec'd periormance. Metalwork now available ensures simple construction of amps. and power supply.
\(\star\) BAILEY PRE-AMP (AUG. I971)
Superbly engineered kit of this established fow noise pre-amp. Uses RH \& LH fibreglass PCBs 2 enabing a stereo version to be built in \(\times 21 \times 1\) Especially recommended to drive \(15-20 \mathrm{~W} A B\) amp.

AFTER-SALES SERYICE at reasonable coit.
REPRINTS of any "WW" article Inc'g P.p.
DETAILED PRICE LISTS at 5p (Stamps
DETAILED PRICE LISTS at 5p
accepted)
*REFUND GUARANTEED ON ALL PARTS

\section*{SPECIAL OFFER}

2N3055 33p each 4 for \(\{1-10\)
2N3054 22p each 3 for 55p
Unmarked, Tested and Guaranteed. Post and packing \(10^{p}\) per order. Send S.A.E. for list of other devices. See July 1972 advert.
PERSONAL CALLERS WELCOME-AT OUR
RETAIL SHOP NOW OPEN

\section*{A. 1 FACTORS}

245, North Sherwood St.,
Nottingham NG1 4EO
Telephone: Nottingham (0602) 4605I Sole proprietor: Douglas de Havilland ( 10 a.m. -12 Midnight 7 days/week)
 Thasilicsornaidawne

Newest. neatest system ever devised for storing small parts and components: resistors, capacitors, diodes, transistors, etc. Rigid plastic units, interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots/handles on front. 1D \& 2D have removable space dividers. Build up any size cabinet for wall, bench or table top.
BUY AT TRADE PRICES!
Single units (1D) \(\mathbf{£ 1 . 2 5}\) per dozen size approx \(\left\{2 \frac{1^{\prime \prime}}{}{ }^{\prime}\right.\) high \(2 \frac{1}{4}^{\prime \prime}\) wide \(5^{\prime \prime}\) deep) 2D £2.10 per dozen, 3D £2.20 for 8 units. \(6 D 2 £ 3.25\) for 8 units (2 3D's in 1 outer) 6D1 \(£ 3.10\) for 8 units. Postage/Carriage) 35 p for orders under \(£ 10\). Carriage paid for orders over E 10 .

\section*{PLUS QUANTITY DISCOUNTS!}

Orders \(£ 6\) and over DEDUCT \(5 \%\) in the \(£\) Orders \(£ 10\) and over DEDUCT \(7 \frac{1}{2} \%\) in the \(£\) Orders £20 and over DEDUCT 10\% in the £ QUOTATIONS FOR LARGER QUANTITIES Please add \(10 \%\) V.A.T.
TIITYT (Dept. WW8). 124 CRICKLEWOOD BROADWAY, LONDON, N.W. 2 TEL: O1-4504844

\section*{A DEXTER DIMMASWIIBH}

ALLOWS COMPLETE


LIGHTING CONTROL

The DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the normal light switch. It is available as a complete "ready to install" unit or "simple to assemble" kit. Two models are available controlling up to 300 W or 600W of all lights, except fluorescents, at mains \(200-250 \mathrm{~V}, 50 \mathrm{~Hz}\). All DEXTER DIMMASWITCH models have built-in radio interference suppression. \(\quad 600\) watt \(£ 3.52\) Kit form \(\mathbf{£ 2 . 9 7}\)

300 watt \(£ 2.97\) Kit form \(\mathbf{£ 2 . 4 2}\)
All plus 12p post and packing
Prices include VAT. Please send c.w.o. to:

\section*{DEXTER \& COMPANY}

4 ULVER HOUSE
19 KING STREET
CHESTER CH1 2AH
Tel: 0244-25883
as supplieo
TO H.M. GOVERMMEMT OEPARTMENTS, MOSPITALE LOCAL AUTHORITIES. ETC.

WW- 082 FOR FURTHER DETAILS

Multi-channel Magnetic instrumentation tape recorders. which are designed to conform to the requirements of the I.R.I.G. Intermediate band recording standards, are used in industry and research establishments throughout the world The satisfactory operation of these expensive equipments depends on the correct alignment of the record and replay ampli fiers, which can be a complicated and time consuming operation using a range of test instruments which have all to be available whenever a realignment or alignment check is desirec. The D.R. Alignment unit is designed to enable the whole process to be carried out on the "Dire Record" Electronics of such recorders, by semiskilled operators, in a few minutes, with all the appropriate signals and measuring circuits being available in one compact unit which is readily

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{TEKTRONIX} & NELSON Spectrum Analyser \\
\hline STORAGE & SCOPE type 564 & Plug-in Model 023. 0/500KHZ \\
\hline with 3B3 & and 3A6 Plug-ins & (fits Tektronix 564 etc) \(£ 375\). \\
\hline £500. & & TELONIC Sweep Generator 100/ \\
\hline 545A MAIN & FRAME f320. & 250 MHZ £ 175 \\
\hline 524AD Sco & f 140 . & TELONIC MODULES type L7M \\
\hline VECTORS & PE type 526 with & £60: LA1M £60: VR2M £50. \\
\hline mod 158N & & SWEEP GENERATOR \\
\hline WAVEFORM & MONITOR type & type TRM3 NEW BOXED \\
\hline 529 with m & 188D ¢385. & £425 each. \\
\hline
\end{tabular}

529 with mod 188D \(£ 385\).
536 MAIN FRAME \(£ 365\)
Plug-ins available CA - L \(H \& T\).

MARCONI TF1094A/S with LF adaptor P 660.
MARCONI wave Analyser TF 455E £50.
MARCONI Signal Generator TF144H £ 165 each.
RACALRA 17 Receiver \(£ 340\).
RHODE \& SCHWARZ AF Wave
Analyser FTA BN48302 £280.

\section*{SPECIAL}

MARCONI TF1094 Spectrum Analyser 3-30MHZ complete, working \(£ 100\) each. MARCONI TF801B 12 470 MHZ £ 110 each.

ALL PRICES INCLUDE V.A.T. - CARRIAGE EXTRA.

\author{
7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605
}

\section*{INDEX TO ADVERTISERS}

Appointments Vacant Advertisements appear on pages 69-89


\footnotetext{

 gUPPLY. This periodical is sold sulject to the following conditions namely that it shall not without the written consent of the publishers firat given be lent re-sold, hired out or otherwise digposed of by way of Trade at a price in excess of the recommended maximum price ahown on the cover, and that it shall not be lent, re-sold, hired out or otherwise disposed of in a mutilated condilion or in any unauthorised cover by way of Trade
}


Already seven sizes of Mazda monochrome tubes have received BSI approval for conforming to the BEAB safety standards.
Rimguard construction always has given Mazda the edge. Now the new labels bearing the BSI seal of approval are additional evidence that Mazda gives top priority to salety as well as to performance.
So we'd like to ask you a question. Because the answer could make quite a difference to your business - and your future.
The question is
ARE YOUR REPLACEMENT TUBES AS SAFE AS MAZDA?

\title{
Multicore Solder preforms, a little something for automatic processes.
}

\section*{Multicore Preforms.}

Multicore precision made solder preforms come in virtually any shape or size Rings, washers. discs. pellets. and lengths of solder tape - in most soft solder alloys. Designed. with or without flux cores to make the most of automatic soldering processes.a solder preform is simple and accurale to use. It's just positioned between the parts to be soldered and the temperature of the metal surfaces raised to aboul \(50^{\circ} \mathrm{C}\) above the melting temperature of the solder. The solder preform does the rest. Heating techniques can include gas flame. hol plate oven conveyor. induction coils. resistance/electroide soldering, hot gas and infra-red.

Multicore Solder Preforms just get an with the job. Automatically.


For full information on these or any other Multicore products. please write on your company's letterhead direct to:
Multicore Solders Limited, Maylands Avenue. Hemel Hempstead. Hertfordshire HP2 7EP.
Tel: Hemel Hempstead 3636. Telex: 82363.```


[^0]:    $\dagger$ University of Southampton

    - Now with Electronic Music Studios Ltd.

[^1]:    * Department of Physics, Liverpool Polytechnic.

[^2]:    *British Aircraft Corporation.

[^3]:    $R=$ room accoustics
    $T=$ incremented time
    $W=$ tracking weight
    $m=$ tip mass
    $c=$ compliance

[^4]:    * Shape anisotropy: Crystalline magnetic particles display a preference for being magnetized in particular directions. In an acicular particle this is usually along the long axis. Such behaviour is called shape anisotropy.
    ** Exchange anistropy: Occurs in oxide coated metal particles and is an interaction of electron spins at the boundary between oxide and metal causing a lateral displacement of the $B-H$ curve.
    $\dagger$ Pyrophocity: Property possessed by certain substances or fine particles of spontaneous combustion.

[^5]:    Nature, Vol 216, 18.11.67, Babcock W. R., Baker K. L., Cattaneo A. G., Physical Sciences Laboratory, United Technology Center, Sunnyvale, California

[^6]:    $40 \begin{aligned} & 250 \mathrm{~mW} \text { Zener Diodes } \\ & \text { DO } 7 \text { Min Glass Type }\end{aligned}$
    5 Power Transistors. PNP. Germ NPN
    3 amp
    H17 $20 \begin{aligned} & 3 \text { Amp. Silicon Stud } \\ & \text { Rectifiers. Mixed volts }\end{aligned}$ Top Hat Silicon Rectifiers. Experimenters Pak of Experimenters Pak of
    Integrated Circuits. Data supplied

    | H16 | $\mathbf{1 5}$ | $\begin{array}{l}\text { Experimenters Pak of } \\ \text { integrated Circuits. Data supplie }\end{array}$ |
    | :--- | :--- | :--- |
    | H26 | $\mathbf{4 0} \begin{array}{l}\text { NPN Silicon Trans. 2N3707-11 } \\ \text { range. low noise amp }\end{array}$ |  |


    | H16 | $\mathbf{1 5}$ | $\begin{array}{l}\text { Experimenters Pak of } \\ \text { integrated Circuits. Data sup } \\ \text { H26 }\end{array}$ |
    | :--- | :--- | :--- |
    |  | $\mathbf{4 0}$ | $\begin{array}{l}\text { NPN Silicon Trans. 2N3707 } \\ \text { range. low noise amp }\end{array}$ |


    | H16 | $\mathbf{1 5}$ | $\begin{array}{l}\text { Experimenters Pak of } \\ \text { integrated Circuits. Data sup } \\ \text { H26 }\end{array}$ |
    | :--- | :--- | :--- |
    |  | $\mathbf{4 0}$ | $\begin{array}{l}\text { NPN Silicon Trans. 2N3707 } \\ \text { range. low noise amp }\end{array}$ |

    H34 $15 \begin{aligned} & \text { Power Transistors. PNP. Germ. NP } \\ & \text { Silicon TO-3 Can P \& P } 5 p \text { extra }\end{aligned}$

[^7]:    Torme of Butinese : Mon, to Sat. Open to caliera 9 a.m. to 5 p.m. Closed Sat. I p.m. to 3 p.m. Exprese postage $5 p$. for one valve; ip asch additional valve

[^8]:    All voltages. 6.8100 Volts. 20 p ea.
     2 Watt $5 /$ Plastlc.
    $2 E Z$ Range, $6.8-33$
    Volts. 25 p each.
    3 Watt Plastic. Volts. $25 p$ esch.
    3 Watt Plastic.
    Wire Ends.

[^9]:    $0-1-4$ Amp
    0-1.5-6 Amp
    $0-1.5-9 \mathrm{AmP}$
    $0-5-15$ Amp
    $0-5-30$ Amp
    $0-8-48 \mathrm{Amp}$
    $0-15-45 \mathrm{Amp}$
    $0-30-180 \mathrm{Amp}$
    All Brand New ONLY $£ 1.75$
    $0-40-240 \mathrm{Amp}$
    $0-50-300 \mathrm{Amp}$

[^10]:    ${ }_{100 \mathrm{~mW} .}$. $24.95{ }_{\text {Posit }}^{\text {Palt }} 50 \mathrm{p}$
     ${ }_{\text {shannel }}$ £71.25 ${ }_{\text {Pair }}^{\text {Pair }}$ Sattery operation. Volume and squelch
     carrying cases.

    Note: Licence required in U.K.

