WirelessWorld
 Microphone reflectors
 Varicap f.m. tuner

The TF2006Signal Generator goes onebetter...

With a new built-in synchronizer for precise bandwidth measurements at high speed!

The M.I.TF 2006/1

The M.I. TF2006/I - a brand-new variant of the established TF2006 - is fitted with a synchronizer in place of one of the oscillator units. Result : the incorporation of outstanding new facilities for working with narrow band equipment . . at speed!

The synchronizer is crystal controlled to an accuracy of 2 parts in 10^{7}. Generator frequency can be locked in 100 Hz steps over the whole range of the instrument ($10-500 \mathrm{MHz}$). Seven switches pre-set the frequency. A system of two flashing lights indicates whether the generator is tuned too high, too low - or within locking range.

For bandwidth measurements on narrow band equipment there is no need to reset the generator tuning controls at each measurement point. For variations close to the frequency to which the generator is tuned the required new frequency is
simply set with the synchronizer digital controls. Working is considerably speeded up.
An external counter with its risk of spurious radiations is completely unnecessary.

More good news . . . it costs no more than the TF2006 which will continue to be available for those who require the full 4 to 1000 MHz coverage

MARCONI INSTRUMENTS LIMITED
Longacres, St. Albans, Herts. England
A GEC-Marconi Electronics Company
Telephone: St. Albans 59292 Telex: 23350

LOW COST VOLTMETERS

POBTABLE INSTRUMENTS

NOTE: All prices subject to V.A.T.

These highly accurate instruments incorporate many useful features, including long battery life. All A type models have $3 \frac{1}{4}^{\prime \prime}$ scale meters, and case sizes $5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime}$. B types have $5^{\prime \prime}$ mirror scale meters and case sizes $7^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}$.

A.C. MICROVOLTMETERS

VOLTAGE $\& \mathrm{db}$ RANGES : $15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V} \ldots 500 \mathrm{~V}$ f.s.d.
Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 1 \mu \mathrm{~V}$ at $1 \mathrm{kHz} . \quad 100,-90 \ldots+50 \mathrm{~dB}$, scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 600 \Omega$.
RESPONSE: $\pm 3 \mathrm{~dB}$ from 1 Hz to $3 \mathrm{MHz}, \pm 0.3 \mathrm{~dB}$
from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$. Type TM3B can be
set to a restricted B.W. of 10 Hz to 10 kHz or 100 kHz .
INPUTIMPEDANCE: Above $50 \mathrm{mV}:>4.3 \mathrm{M} \Omega<20 \mathrm{pf}$.
On $50 \mu \mathrm{~V}$ to 50 mV : $>5 \mathrm{M} \Omega<50 \mathrm{pf}$.
AMPLIFIER OUTPUT: 150 mV at f.s.d

D.C. MICROVOLTMETERS

VOLTAGE RANGES: $30 \mu \mathrm{~V}, 100 \mu \mathrm{~V}, 300 \mu \mathrm{~V} \ldots 300 \mathrm{~V}$
Acc. $\pm 1 \%, \pm 2 \%$ f.s.d., $\pm 1 \mu \mathrm{~V}$. CZ scale.
CURRENT RANGES: $30 \mathrm{pA}, 100 \mathrm{pA}, 300 \mathrm{pA}, 300 \mathrm{~mA}$
Acc. $\pm 2 \%, \pm 2 \%$ is.d., $\pm 2 \mathrm{pA}$. CZ scale
LOGARITHMIC RANGE
$\pm 5 \mu \mathrm{~V}$ at $\pm 10 \%$ f.s.d., $\pm 5 \mathrm{mV}$ at $\pm 50 \%$ f.s.d., $\pm 500 \mathrm{mV}$ at f.s.d \pm RECORDER OUTPUT: $\pm 1 \mathrm{~V}$ at f.s.d. into $>1 \mathrm{k} \Omega$
£55 type TM10 (appearance similar to type TM9B)

D.C. MULTIMETERS

VOLTAGERANGES: $3 \mu \mathrm{~V}, 10 \mu \mathrm{~V}, 30 \mu \mathrm{~V} \ldots 1 \mathrm{kV}$ Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 0: 1 \mu \mathrm{~V}$. LZ \& CZ scales.
CURRENT RANGES: 3pA, 10pA, 30pA ... 1 mA (1 A for TM9BP)
Acc. $\pm 2 \% \pm 1 \%$ f.s.d. $\pm 0 \cdot 3 \mathrm{pA}$. LZ \& CZ scales.
RESISTANCERANGES: $3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{kM} \Omega$ linear Acc. $\pm 1 \%, \pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$.
RECORDER OUTPUT: 1 V at f.s.d. into $>1 \mathrm{k} \Omega$ on LZranges.

£75
 £89 type TM9
 f93 ${ }_{\text {wisin }}$ TM9BP

BROADBAND VOLTMETERS

H.F. VOLTAGE \& dB RANGES : $1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV}$... 3 V f.s.d Acc. $\pm 4 \% \pm 1 \%$ of f.s.d. at $30 \mathrm{MHz} .-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB}$ to +20 dB . Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 50 \Omega . \pm 0.7 \mathrm{~dB}$ from 1 MHz to $50 \mathrm{MHz} . \pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz .
L.F. RANGES : As TM3 except for the omission of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$ AMPLIFIER OUTPUT: Square wave at 20 Hz on H.F. with amplitude proportional to square of input. As TM3 on L.F.
$\mathbf{f 8 5}$ \% $\mathbf{f 9 9}$ \%

Send for literature covering our full range of portable instruments.
LEVELLELECTRONICS LTD. Moxon Street, High Barnet, Herts. EN5 5SD
Tel: 01-449 5028/440 8686

This is a high fidelity amplifier with bass cut controls on each of the three low impedance balanced line microphone stages and a high impedance (1.5 meg .) gram stage with bass and treble controls, plus the usual line or tape input. All the input stages are protected against overload by back to back low self capacity diodes and all use F.E.Ts for low noise, low intermodulation distortion and freedom from radio breakthrough. A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16$ ohms output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected. The mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output .3 V out on 600 ohms upwards. Price $£ 92.40$ subject to V.A.T.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER (0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line. Price $£ 84.70$ subject to V.A.T.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms. Price $£ 88.00$ subject to V.A.T.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 channel F.E.T. mixer, $2-30 / 60 \Omega$ balanced microphone inputs, 1-HiZ gram input and 1 -auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form. Price $£ 126.50$ subject to V.A.T.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced input and HiZ gram. Outputs available $8 / 15 \mathrm{ohms}$ OR 100 volt line.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms . Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available. Price $£ 148.50$ subject to V.A.T.
F.E.T. MIXERS and PPMs. Various types of mixers available. 3, 4, 6 and 8 channel with Peak Programme Meter. $4,6,8$ and 10 Way Mixers. Twin 3, 4, and 5 channel Stereo, also twin 4 and 5 channel Stereo with 2 PPMs.

iron-coated bit 1/8

2 other bits
available $3 / 32^{\prime \prime}$ and $3 / 16^{\prime}$
(5) One ceramic shaft to give you near-perfect insulation and negligible leakage current (only $3-5$ microamps) so that you can safely solder delicate and expensive integrated circuits and transistors, even when "live"

Price: $£ 1.75$
(rec. retail)
\& \& 8p

Another shaft, of stainless steel, to give you the strength required of an everyday robust general purpose iron.
Plus large volume long-life bits to store the enormous neat-capacity of the 25 watt element. Bits that do not stick (no screws or pins) and bits that slide over the element shaft to give you efficient heat transter and a capacity equivalent to irons of $2-3$ times the wat tage.

MODEL G

18 watt miniature iron, fitted with long life iron-coated bit $3 / 32^{\prime \prime}$ Voltages 240, 220 or 110. PRICE: $£ 1.83$ (rec. retail).P\&P5p miniature model CCN also has negligible leakage.
Test voltage 400 v . A.C. Totatly enclosed element in ceramic shaft Fitted long-life iron-coated bit $3 / 32^{\prime \prime}$ 4 other bits available $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 4$ and 3/64"
PRICE: $£ 1.80$ (rec. retail) OR Fitted with triple-coated, iron nickel and Chromium bit 1/8'. PRICE: $£ 1.95$ (rec. retail). P\&P5p

MODEL MES.KIT

Battery-operated 12 V 25 watt iron fitted with 15^{\prime} lead and 2 heavy clips for connection to car battery. Packed in strong plastic wallet with book. let "How to Solder"
PRICE: $£ 1.95$ (rec. retail). P\&P 12p

All prices mentioned are exclusive of V.A.T.

Contains 15 watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, heat sink, solder, stand and "How to Solder" booklet. PRICE: £2.75 (rec. retail).

P\&P 12p

MODEL CN

Niiniature 15 watt soldering iron fitted $3 / 32^{\prime \prime}$ iron-coated bit. Many other bits available from $3 / 64^{\prime \prime}$, to $3 / 16^{\prime \prime}$ Voltages $240,220,110,50$ or 24 PRICE: $£ 1.70$ (rec. retail). P\&P5p
MODEL CN2
Miniature 15 watt soldering iron fitted with nickel plated bit $3 / 32^{\prime \prime}$. Voltages 240 or 220.
PRICE: $£ 1.70$ (rec. retail).P\&P5p
MODELSK. 2 KIT
Contains 15 watt miniature iron fitted with $3 / 16^{\prime}$ bit, 2 spare
bits $5 / 32^{\prime}$
and $3 / 32^{\prime}$
heat sink. solder, and "How to
Solder"
booklet.
PRICE: $£ 2.40$
(rec. retail)
P\&P8p

Please send the ANTEX colour catalogue
Please send the following:

I enclose cheque/P.O./Cash (Giro No. 258 1000)

Reg. No: 393594

NAME
ADDRESS
\qquad
\qquad
\qquad

Anders means meters...

REGAL RANGE

- New 100° arc high quality meters at low prices.
- Rugged taut band construction - pivot and jewel available to order
- Sensitivities to $10 \mu \mathrm{~A}$
- Very competitively priced for OEM quantities
- Modern styled meters in matt black plastic cases with flattened arc giving long scale.

TWO MODELS
R55 2.5 in (63.5 mm) Scale length R65 3.2in (81.3 mm) Scale length

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Vulcan Moving Iron. 4 models, 1.5", 1.8", 2•7", $3 \cdot 7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Kestrel Clear Front. 7 models, 1:3"-5.25" scales. DC moving coil, AC moving coil rectified, $A C$ moving iron.

Profile 350 edgewise 4.3" scale

DC moving coil and AC moving coil rectified. Horizontal or vertical mounting.

Oxford Long Scale 240° 2 models, $5 \cdot 5^{\prime \prime}, 8^{\prime \prime}$ scales DC moving coil and $A C$ moving coil rectified.

Stafford Long Scale 240 6 models, $3 \cdot 5^{\prime \prime}-11 \cdot 5^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, AC moving iron. Also 98 scale.

Solicontroller Moving Coil Relay. DC moving coil and AC moving coil rectified. 1 or 2 adjustable alarm controls

Lancaster Long Scale 240. 2 models, 4", 5•5" scales. DC moving coil and AC moving coil rectified.

Westinghouse TV colour tubes guarantee purity in both colour and black \& white

Today's Westinghouse
Electric colour tubes, in addition to offering recognised excellence of colour definition, have white field purity...vitally important to reception of black and white transmission.

Two 67 cm diagonal versions These improved Westinghouse tubes are made available in two configurations - the standard 90° and the 10 cm shorter profile wide-neck 110° version. . . permitting their compatibility to the needs of the larger portion of European TV set manufacturers.

Expanded European facilities Pacing the growing demand in Europe for Westinghouse tubes, we have made a permanent commitment to fully support our customer. \quad With trained technical sales personnel in major European cities. - With
warehousing and testing facilities in Kassel, W. Germany and Le Mans, France.
\square taining European oriented R\&D programme.

Customer oriented

In these ways-compatible product availability-outstanding development facilities-local technical assistance. ..Westinghouse Electric respond to dy-

The 110° (88) A67-140XTV colour tube is 10 cm shorter in profile than the 90° (囚) A67-120X both offer superb colour definition as well as white field purity for black \& white.
namic customer requirements - here in Europe and throughout the world.

Westinghouse Electric S.A. 1 Curfew Yard, Thames Street Windsor Berks. Phone Windsor 63392. Telex 847069.

GENEVA FRANKFURTLONDON MILAN PARIS STOCKHOLM

Westinghouse Electric

What is improved?

This question is put to us frequently these days so a few words of explanation as to why and how we 'improved' our Model 3009 Series II precision pick-up arms may be helpful.

We assumed that if you choose one of our arms you will use the sort of cartridge it deserves. The field thus narrowed we were able to make them more compact and aboveallreduce the effective mass of the standard model to a mere 5.5 grams. This benefits trackability and all round definition with improved bass transients and still lower sensitivity to external shock and feedback.

Cleaning the stylus is not really a problem with a non-detachable shell as the stylus assembly itself can usually be withdrawn from the cartridge for this purpose.

Where the facility is demanded an alternative version. the Model 3009/S2 Improved is similar but has a detachable shell, its effective mass is consequently 4 grams higher.

Both models require a lot less space than their predecessor, widening their application and simplifying installation.

Following our established policy earlier arms can be updated by our Service Department from whom particulars are available.

The best pick-up arm in the world

50 Hz 300VA Square Wave Inverters

If it's produced by Gardners it must be something special, and it is! Now available, models 107A and B are precision built inverters providing 240 volts a.c. from 12 and 24 volt battery systems.
Both models offer unusually high output ratings enabling the user to operate many conventional loads such as lighting and small power tools in situations where main power supplies are not available.

Gardners inverters are designed to drive any mains operated equipment which is not unduly sensitive to the difference between sine and square waveforms. Incandescent lamps, TV sets, electric drills are typical of a wide field of possible applications . .
Both the 107A and B models are rated at 300VA (300W U.P.F.) and will accommodate reasonable short term overloads. Price $£ 61$ plus VAT. Brochure GT 26 gladly sent on request.

Specialists in Electronic Transformers

GARDNERS

TRANSFORMERS LIMITED
Gardners Transformers Limited Christchurch Hampshire BH23 3PN
Telephone 02-015 2284 TELEX 41276 GARDNERS XCH.

(A) HM 207

8 MHz Single Beam Service Scope, ideal for T.V. maintenance, teaching and field service, all at a price you can afford. £79
(B) HM312

10 MHz Single Beam, portable, ideal for production line testing, teaching establishments and servicing. £138
(C) SM111

20 MHz Dual Trace, battery powered, portable, ideal for both the laboratory and field servicing. £270
(D) SM113

35 MHz Dual Trace, battery powered, portable, high brightness version of the very successful SM111.
Only $£ 295.00$
(E) CT570/3 (NATO SM111)

20 MHz Dual Trace, rugged \& portable, chosen as first line test equipment by the British Armed Services.
From $£ 320$
(F) EM102

30 MHz True Dual Beam, battery powered, with plug-ins including High Gain Differential and Wide Band.
From $£ 320$
 sweep, battery powered, plug-ins with triggering to $>60 \mathrm{MHz}$. From $£ 360$
© -1 SM112/SM599
100 MHz Dual Trace plug-in, portable, lowest cost instrument of this performance on the market.
Only $£ 850$
(1)

SM112 /SM554
50 MHz Four Beam, plug-in, very comprehensive, ideal for time correlation and data analysis. Complete $£ 920$
Prices quoted exclude V.A.T.

HIRE For a small charge you can hire any of the instruments shown here, singly or OR as part of a system which we can design for you.
BUY If you decide later to purchase the equipment, we can refund part of the hire fee to you.
You save your capital and space. You beat obsolescence.
Why not ring our Hire Department for details?
Included in the range are Transducers, Recorders, Oscilloscopes, Digital Instruments, Data Systems, Magnetic Recorders.

回㞎 Laboratories (Engineering) Limited

North Feltham Trading Estate, Feltham Middlesex.Telephone: 01-890-1166 Telex:23995 Northern Sales Office, Bessell Lane, Stapleford, Nottingham. Telephone: Sandiacre 3255

The world's

 most universal audio bridges necessary.
Wayne Kerr's B224 and B642

Each of these bridges has ten decade ranges and can be used to measure any type of component or complex impedance. Transformer ratio-arms are used to cover a very wide range of measurement using a minimum number of standards which are set digitally. The three terminal facility provided by this type of bridge enables small values of capacitance or high values of resistance to be measured at the end of long lengths of cable. Components can also be effectively isolated electrically from a complex network allowing individual measurements to be made without disconnection from the circuit being

The B224 is a manually operated bridge,
the resistive and reactive terms being independently set to a null indicated on the meter. A rechargeable battery is fitted in order to make the instrument portable.

The B642 balances itself automatically. The meters read real and quadrature terms and highly stable analogue outputs are provided which are directly proportional to capacitance and conductance above 10Ω impedance and also to inductance and resistance below 10 n . One or two decades can be set to provide the first significant figures of the measurement, thereby increasing the meter sensitivity by 10 or 100 times. If a chart recorder is connected to the output of either term, drifts in component values to at least four significant figures can be observed.

For more information, either call Bognor (02433) 4501 or write to the address below:

SPECIFICATION

ל	B224 (Manual balance)		B642 (Autobalance)	
苞	1592 Hz (internal) $200 \mathrm{~Hz}-50 \mathrm{kHz}$ (external)		$\begin{gathered} 1592 \mathrm{~Hz} \text { (internal) } \\ 200 \mathrm{~Hz}-20 \mathrm{kHz}^{*} \text { (external) } \end{gathered}$	
Ranges for specified accuracy				
	0.1\%	0.3\%	0.1\%	0.3\%
c	100fF - 10uF	10 FF - 10 mF		10山F-10mF
G	$1 \mathrm{~ns}-100 \mathrm{~ms}$	100 me - 1 kv	$10 \mathrm{nc}-100 \mathrm{~ms}$	100ms - 100 u
L	$1 \mathrm{mH}-10 \mathrm{kH}$	$100 \mathrm{nH}-1 \mathrm{mH}$	$1 \mathrm{mH}-10 \mathrm{kH}$	$1 \mu \mathrm{H}-1 \mathrm{mH}$
R	$10 \Omega-1 \mathrm{Gn}$	1 ma - 10	$10 \Omega-100 \mathrm{~m} \Omega$	10 ma - $10 n$

NOTE: 0.1% accuracy relates to parallel component measurements above 10Ω impedance. 0.3% accuracy relates to series component measurements below 10 n impedance.
*Manual operation only.

 is now available

$10 \mathrm{~mm}, 11 \mathrm{~mm}, 12.5 \mathrm{~mm}, 14 \mathrm{~mm}, 15 \mathrm{~mm}$, $16 \mathrm{~mm}, 17.5 \mathrm{~mm}, 19 \mathrm{~mm}, 20 \mathrm{~mm}$, $21 \mathrm{~mm}, 22.5 \mathrm{~mm}, 25 \mathrm{~mm}, 27.5 \mathrm{~mm}$, $29 \mathrm{~mm}, 30 \mathrm{~mm}, 31 \mathrm{~mm}, 32.5 \mathrm{~mm}$, $34 \mathrm{~mm}, 35 \mathrm{~mm}, 37.5 \mathrm{~mm}, 40 \mathrm{~mm}, 45 \mathrm{~mm}$, $50 \mathrm{~mm}, 55 \mathrm{~mm}, 60 \mathrm{~mm}, 65 \mathrm{~mm}, 70 \mathrm{~mm}$, 75 mm .

- The "IMPERIAL" Range will be continued.

Full Lists from:
"Q-MAX" (ELECTRONICS) LTD.,

The Model A80 Audio Amplifier illustrated is representative of the range of integrated amplifiers designed and manufactured by Audix for commercial applications such as factories, hotels, conference centres etc. Facilities for two low impedance balanced microphones and one switchable input for medium impedance microphone, tape recorder or gramophone are incorporated in this 60 watt r.m.s. amplifier. Outputs at 100 V and 8 ohms are provided and are protected electrically against damage by short circuit, open circuit, inductive and capacative loads.
Power amplifiers having continuous r.m.s. ratings of 15, 30, 60,120 and 175 watts are also available and can incorporate a wide variety of input mixing modules to satisfy the different requirements of individual clients.

Join the Digital Revolution

Teach yourself the latest techniques of digital electronics

Computers and calculators are only the beginning of the digital revolution in electronics. Telephones, wristwatches, TV, automobile instrumentation - these will be just some of the application areas in the next few years.

Are you prepared to cope with these developments?

This four volume course guides you step-by-step with hundreds of diagrams and questions through number systems, Boolean algebra, truth tables, de Morgan's theorem, flipflops, registers, counters and adders. All from first principles. The only initial ability assumed is simple arithmetic.

At the end of the course you will have broadened your horizons, career prospects and your fundamental understanding of the changing world around you.

£2.95 A complete programmed learning course in 4 volumes

£2.95

including post \& packing

Designer
Manager Enthusiast Scientist Engineer Student

This course is written to meet your needs in coming to grips with the theory and practice of digital logic and electronics. The programmed instruction system ensures a high level of retention of everything you learn.

[^0]
Guarantee

If you are not entirely satisfied with Digital Computer Logic and Electronics you may return it to us and your money will be refunded in full, no questions asked.

ittakes over where
MTBF leaves off

While others talk of MTBF, we introduce a new concept-EHPL, Estimated Half-Power Life. Our 400W and 1 kW all-solid-state broadband HF linear amplifiers have over five years of it, counted in operational hours. Which, with a remarkably Iow Mean Time To Repair, means 99.9% up-time.
The multiple p.a. modules of these compact units, arranged in parallel for maximum reliability, ensure that even in the unlikely event of several component failures occurring together, the amplifiers go on working-long after others have stopped.
Moreover, thanks to Redifon's unique Transmit Level Control, they always deliver to any antenna-even to a badly damaged one-the maximum power that is safe, whatever the mismatch.
All of which means that the pair of transmitters in the picture represent the finest and most reliable in the world for civil and military applications, whether in fixed, mobile or containerised stations. And they are in production and service, right now.

Redifon Telecommunications Limited,
Radio Communications Division,
Broomhill Road, London SW18 4JQ
Tel: 018747281

QUAD

for the closest approach to the original sound

Fignteres THAT CAN CHANGE YOUR WHOLE FUTURE

The B.I.E.T. guide to success should be read by every ambitious engineer. Do you want promotion, a better job, higher pay? "New Opportunities" shows you how to get them through a low-cost B.I.E.T. home study course. There are no books to buy and you can pay-as-you-learn.
Send for this helpful 76 page FREE book now. No obligation and nobody will call on you. It could be the best thing you ever did.

CHOOSE A NEW FUTURE NOW!

rick or state subject of interest, Post to address betow.
MECHANICAL \quad Work Study $\quad \square$ CONSTRUCIONAL

MECHANICAL	Work St	CONSTRUCTION
A.M.S.E. (Mech) C \& GEng Crafts.	Works Management \square	A.M.S.E. (Civil) Architecture
C \& G Fabrication	draughtsman.	Building
Diesel Eng.	SHIP	Carpentry
Inst. Eng. \& Iech.	A.M.I.E.D. \square	Civil\&Municidal Eng
Maintenance		Construction
Mechanical Eng.	Draughtsmanship	Surveyors Institute
Sheet Metal Work	Gen.	Council Eng.
Welding	Jig \& Tool Design	Health Eng.
electaical \&	Technical Drawing	Hydraulics Inst. of Builders
(Ele	RADIO \& TELE.	Inst. Clerk of Works
A.M.	communicatio	
C \& G Elec. Inst.	C \& G Radio/TV/	
C \& G Elec. Tech		
Computer Elec.	C \& G Telecomm.	Structural Eng.
Electronic Eng.	Radio \& E	Su
Install. \& Wiring	(with kit)	GENERAL
MANAGEMENT \&	Radio Amateur	Ag
duction		Council of Eng. Inst.
Computer Pro	${ }^{\text {Radio Servicing }}$	General Education
ctronic Data		Pract. Slide Rule
Processing	TV Main \& Serv.	plie
aling	AUTO \& AE	Refrigeration
Cost \& Man	Aero Eng.	Rub
Accountants		University Ent
Inst. Marketing	A.E.C. Cert	University Ent.
anagement	Auto Engineering	
Motor rade M		G.C.E. $58{ }^{\prime} 0^{\prime}$ \&'
Network Plannin	Garage	LEVEL SUBJE
Personnel Man. Production Eng.	Garage	LEVEL SUBJE
radity Control.	M	Over 10,000
alesmanship	Or Ve	Group Passes
Storekeeping	Mechanics	

Coaching for many maior exams incluting C

SEND FOR YOUR FREE BOOK NOW! BRITISH INSTITUTE of encineering technology

DEPT. Bwwosaldermaston court, READING RG7 4PF

```
Blocka
```

block capitals please
ADDRESS

\qquad

Linstead

TwinStabilised

PowerSupplies

Each comprising:
Two powerful bench supplies.
Continuously variable.
Independently operable, or in series, or parallel. Fully protected against overload and short circuit. In one compact robust case.

2×0 to 20 V 0 to 0.5 A
with twenty 1 volt steps and fine
control.
Voltage set by controls.
Current continuously monitorec.
0 to $100 \mathrm{~mA}, 0$ to 0.5 A .
flus VAT

2×0 to 30 V 0 to 1 A .
Set by switches and fine control.
$\begin{aligned} & \text { Meters switchable for volits, } \\ & 0 \text { to } 100 \mathrm{~mA} \text { and } 0 \text { to } 1 \mathrm{~A} . \\ & \text { Re-entrant protection. Pilat } \\ & \text { indication of overload. }\end{aligned}$ plus VAT
indication of overload

Linsead meansa good deal in electronics

Linstead Electronics, Roslyn Works, Roslyn Road, London N155JB Telephone: 01-802 5144

We've written this book on kits

You can get a copy free
Below are just a few of the large selection of kits fully illustrated in the NEW HEATHKIT CATALOGUE - kits for every interest, every budget, stereo hi-fi systems and accessories, intercoms, transistor radios, tool kits, electronic calculators, automotive ignition analysers and checkers, electronic testing and measuring equipment, amateur and short-wave radio gear, metal locators - even a.powerful battery charger

SHOWROOMS: LONDON, 233 TOTTENHAM COURT ROAD. GLOUCESTER, Factory, BRISTOL ROAD, GLOUCESTER, GL2 6EE.

NEW STANDARD CASES from OLSON

NEW SERVICE FROM STOCK - DESPATCHED BY RETURN OF POST

TYPE	WIDTH	HEIGHT	DEPTH	FRONT PAN DIM.	PRICE	LEG EXTRA
21	$6 \frac{1}{2}^{\prime \prime}$	$4 \frac{1}{2}^{\prime \prime}$	$4 \frac{1}{2}^{\prime \prime}$	6. $\times 4$ "	£2.65	60 p
22	$8 \frac{1}{2}^{\prime \prime}$	$5 \frac{1}{2}{ }^{\prime \prime}$	$5 \frac{1}{2}^{\prime \prime}$	8"×5"	£3.00	60 p
23	$10 \frac{1}{2}{ }^{\prime \prime}$	$6 \frac{1}{2}{ }^{\prime \prime}$	$6 \frac{1}{2}^{\prime \prime}$	$10^{\prime \prime} \times 6^{\prime \prime}$	f3.60	$65 p$
24	$12 \frac{1}{2}^{\prime \prime}$	$7 \frac{1}{2}{ }^{\prime \prime}$	$7 \frac{1}{2}{ }^{\prime}$	$12^{\prime \prime} \times 7^{\prime \prime}$	¢ $\mathbf{3} .90$	65p

Cases made from 20swg. zinc coated m / s. Front \& rear panels 16 swg . aluminium. Cases finished in Olive green hammertone with front panels in light straw shade 384. All cases fitted with ventilated rear panels and a very attractive chrome plated retractable leg can be fitted as an optional extra.

Our Trade Counter is open for personal callers from 9 a.m. to 5.30 p.m. Monday-Friday

WW-021 FOR FURTHER DETAILS

ABEIrrite and diret mersurement of speat without coupling to moving parts

THERMOCOUPLE POTENTIOMETER

A truly well proved thermocouple POTENTIOMETER--over two thousand in daily use throughout the world

Invaluable to service engineers and all personnel concerned with the measurement of temperature, calibration of recorders, controllers, and all transducers with a $m \vee$ output. This instrument is very small $7 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times 5 \frac{33^{\prime \prime}}{} \times 3 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$, bu nevertheless has a $5 \frac{1}{4}{ }^{\prime \prime}$ diameter analogue scale, which
facilitates rapid measurement with clarity of reading. It is supplied with separate scales for all the popular types of thermocouples and will also read direct in millivolts

- WIDE RANGE
 UST DELIVERY PROMPT Supplied complete in leather case with handbook

Request full details from:

CROYDON PRECISION INSTRUMENT COMPANY

Hampton Road, CROYDON (Postal Code : CR9 2RU) Telephone: 01-684 4025 and 4094

WW- 024 FOR FURTHER DETALS

nombrex

MODEL 41

R.F.SIGNAL GENERATOR

 Price $\mathbf{£ 3 3 . 0 0}$.FROM APRIL 1st PLEASE ADD 10% ON TO PRIRE FOR V.A.T.

* $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals
* 8 clear scales - Total length 130 mm .
\star Spin-Wheel Slow Motion Drive 11 - 1 ratio.
\star Overall Accuracy - $2 \frac{1}{2} \%$.
* Modulation, Variable depth and frequency.
* Internal Crystal Oscillator providing calibration checks throughout all ranges.
* Mechanical scale adjustment for accurate alignment against internal 1 MHz crystal oscillator.
* Powered by 9V Battery.

Trade and Export enquiries welcome
Send for full technical leaflets.
Post and Packing 35p. extra.
NOMBREX (1969) LTD., EXMOUTH, DEVON. Tel: 03-952 3515

Our manufacturing resources could contribute to your success, too! We've chalked up many years of service to ministries, government departments, armed forces, and a formidable list of significant names in industry. They all come to Whiteley for the specialist knowhow and resources we have developed. Can we help you? We can build to your drawings and specification, or put our design departments at your service, as needed. From a small component to a complete system, in audio work, relay switching circuits, control systems, and many other spheres-our facilities are ready. The Whiteley organisation is self-contained. The manufacturing resources are backed by our own toolroom, sheet metal working and press shops, plating and finishing lines, coil and transformer winding shop, plastics moulding shop and a modern new cabinet factory. Capitalise on all these Whiteley facilities-call us in for a look at your next electronics need. You'll be in good company!

WHITELEY ELECTRICAL RADIO CO. LTD.
Mansfield, Notts,-England. Tel. Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074

WE AREN'T YOU KNOW!

Actually, we were thinking that you might be thinking of Sub Miniatures or other Multi-way Connectors, or even Rocker Switches, Metal Pressings or Plastic Components. And we were thinking that, even if you only wanted a few of any or each of these. it would be a pleasure to do business with you.

And you might find it a pleasure to do business with us, especially as we can solve so many of your supply problems.

For instance, suppose you did want just a few of these or any other Cinch, Dot or FT components very quickly, we could, as stock holders, have them on the way to you the day we got your order.

Perhaps you'd like to put this promise to the test.

UNITED-CARR SUPPLIES

The single source that simplifies.

We have a remarkably comprehensive catalogue and if you can make good use of it, we shall be glad to send you one, but please state possible requirements.

Cand

(F)

STOCKISTS

United-Carr Supplies Ltd.
Clifton Works, Frederick Road,

BIAS ELECTRONICS

BE1000 professsional hecoaneen

The BE 1000 is a lot of tape recorder and yet does not cost a lot of money. Designed and manufactured in London it combines rugged robust construction with ease of operation and outstanding performance.
Compare its specification and facilities with machines costing hundreds of pounds more. We have a sales and service network throughout Europe.
Just ask for a demonstration and judge for yourself. Phone or write to
BIAS ELECTRONICS LTD. 01-947 3121
UNIT 8 COOMBE TRADING ESTATE 112-120 COOMBE LANE, LONDON SW20 OBA.

WW-028 FOR FURTHER DETALLS

How much does Transit

 Damage cost you?In damaged goods. In doubled delivery charges. It need not cost you a penny. Because it needn't happen. PROTECTOMUFFS are tough, padded, weatherproof, dustproof. They are tailored to fit your product. Slipped on in seconds by unskilled staff, they provide all the packing required. And because
 they are re-useable again and again ánd again, packing costs become a non-recurring item. Be like Hoover, Ferranti, Rediffusion - use Protectomuffs and show your customers you care

PMOTETTOMOFFS

To JOHN EDGINGTON \& CO. LTD.
47 Old Woolwich Road, Greenwich, London SE10 9PU (01-858 7014-6)
Send me detalls of Protectomuffs
Name
Address

We＇re sensitive to everyone＇s needs．

Different people have very different requirements in $\mathrm{Hi}-\mathrm{Fi}$ ，so Goldring developed a comprehensive range of stereo magnetic cartridges that are superb in performance and realistic in price．

From the G800 Super E for those who seek perfection down to the G850 for systems on a budget，the Goldring range offers unsurpassed quality and value．

Your request will bring full details of these and other Goldring products．
Goldring Limited，
10 Bayford Street，Hackney，London E8 3SE．
Tel：01－985 1152 ．
Goldring＠Series 800
Stereo Magnetic Cartridges．

WW－030 FOR FURTHER DETALLS

Mumetal alloys

This is the best known and widest used Telcon group of high permeability alloys. They possess low hysteresis and total losses and are available in strip, rod, bar, wire and core form. Applications include: many types of transformers, bridge ratio arms, inductors, h.f. chokes, blocking oscillators, filter circuits, magnetic amplifiers, saturable reactors, modulators, flux gate magnometers, storage circuits, shift registers, transformers, logic switching circuits and magnetic shielding.

Radiometal alloys

These high permeability alloys, with their high saturation induction and low electrical losses, are used for transformers and chokes where operating flux density is higher than is possible with Mumetal and where a higher permeability than silicon iron is required. The six grades have applications including: relay circuits, pulse and radar transformers, transductor and convertor cores, magnetic amplifiers and saturable reactors.

Permendur alloys

Permendur has the highest saturation ferric induction of all known alloys commercially available. It also has high incremental permeability at high inductions. It is used for stator laminations, telephone diaphragms, magnetic circuits of loudspeakers and equipment operating at high temperatures. Its excellent magnetostrictive properties are used in echo sounders and ultrasonic devices. Special grades, known at 'Rotelloys', which have superior mechanical properties have also been developed for high speed rotating equipment such as aircraft generators.

Telcon Metals Ltd
Manor Royal, Crawley, Sussex Crawley: 28800

WW-033 FOR FURTHER DETAILS

Kespthase ContactsCLEAN

BY USING

DIACROM SPATULA

A factured in France

No other cleaner has all these advantages:-

1. Only 100% pure, natural diamond grains are utilised
2. Blades are treated with hard chrome to reinforce the setting of the diamond grains. to obviate toosening or breakaway during use. This process also prevents clogging of the diamonded surface by residues resulting from use.
3. All diamonded blades are rectified to ensure an absolutely smooth surface by ellminating diamond grains which may rise above the surface. This eliminates all excessive scratching during use.
4. All diamond grains are rigidly calibrated to ensure a.perfectly uniform grain size of either 200.300 or 400
5. The chrome gives a very weak co-efficient of friction and the rigidity of the nyton handle is calculated to permit puyper utilisation and yet pllant enough to avoid undue pressures on highly caticate relays.

- Grain size 200. thickness $55 / 100 \mathrm{~mm}$.. both faces diamonded. For a rick cleaning of industrial relays and switching equiss 55/100
- Gralain size 300 . thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For smaller equipments, like tele-
phone relays. computer relays, etc.
- Grain size 400 , thickness $25 / 100 \mathrm{~mm}$., one face diamonded. For sensitive relays and tiny contacts. Two close contacts tacing each other can be individually cleaned, because only one race of the spatula is abrasive.

Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (DISTRIBUTORS) LTD
81 Piccadilly, London W1V OHL. Phone: 01-629 9556 As supplied to the M.O.D., U.K.A.E.A., C.E.G.B. British Rail and other Public Authorities aiso major industrial and electronic users throughout the United Kingdom.

our BROADBAND GENERATION are designed to make a Clean Sweep <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">[10 to 18.0 Gzz</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| [10 to 18.0 Gzz |
| :--- |</table-markdown></div>

OF SOLID STATE SWEEPER/SIGNAL GENERATORS

The "Broadband Generation" product line has been de signed to meet the needs raised by the advent of increas ing sophistication of systems and satellite communications All equipment in the "Broadband" product line is de signed for applications from 1 to 18 GHz .
The concept of this approach is the etimination of artificial octave limitations which have restricted development of advanced "state-of-the-art" microwave systems.
These octave-band limitations and their associated problems have been eliminated by the development of the Narda 9500 series of Broadband Sweepers, which provides full sweep coverage of L. S. C. X and Ku frequency bands in a single range, self-contained instrument. This series of instruments now make it possible to use a single setup to test at all points of interest, and to sweep test over the total 1 to 12.4 GHz or 2 to 18 GHz range, or over any combinations of selected portions of these ranges.
Thus the 9500 series is ideally suited for military and commercial communications, telemetry and other applications where the assigned frequency range overlaps two different standard octaves or where the single range of interest straddles two octave bands or for ECM systems, where the operating range is subject to change

narda Microline

Inquiries made in response to this advertisement will receive a full set of brochures, including specifications. giving information on the full 9500 series of NARDA MICROWAVE BROADBAND SWEEP/SIGNAL GENERATORS

AVELEY ELECTRIC LTD.

Roebuck Road
Chessington, Surrey

Tel: 01-3978771 Telex: Avel London 928479

ELESTA MINIATURE PLUG-IN RELAYS

 FOR INDUSTRIAL APPLICATION

High performance 3 -pole \& 4-pole C/O reläys.

SEV tested, VDE \& DEMKO Approved.
Coil Voltage: 3 V to $240 \mathrm{~V} A C$ \& DC.
Contact Rating: 4A 250V AC resistive.

BRITEC LIMITED

17 Devonshire Road, London SE23 3EN Tel: 01-699 8844

Talex: 896161

MODEL
U-50DX

USED THROUGHOUT THE WORID. SANWA'S EXPERIENCE OF 30 YEARS ENSURES ACCURACY RELIABILITY, VERSATILITY, UNSURPASSED TESTER
PERFORMANCE COMES WITH EVERY SANWA PERFORMANCE COMES WITH EVERY SANWA
6 Months Guarantee
 $\begin{array}{llll}\text { Model JP-5D } & \text { E7.62 Model 380-CE } & £ 20.81\end{array}$ Model 360-YtR £10.77 Model N-101 £24.20 $\begin{array}{llll}\text { Model } 360 \text {-YtR } & £ 10.77 & \text { Model } & \text { N-101 } \\ \text { Model U-50DX } & £ 10.89 & \text { Model } 460 \text {-ED } & £ 28.20 \\ \text { Mol }\end{array}$ Madel A-303TRD £14.33 Model EM-800 £69.32 Model K-30THD £16.39 Model R 1000CB £71.69 Madel F-BOTRD £1784 THESE PRICES ARE SUBJECT TO AN ADDITIONAL CHARGE OF 10% FOR V.A.T Cases extre. available for most meters, but not sold separately.

quinily ELEGTiONIGS LTD.

47-49 HIGH STREET, KNGSTON-UPONTHAMES, SUAREY. KT1 11P
WW-037 FOR FURTHER DETAILS

JES AUDIO INSTRUMENTATION

Illustrated the $\$ \mathrm{i} 453$ Audio Oscillator

SPECIAL FEATURES:

* very low distortion content-less than . 05%
\star an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time
$\mathbf{£ 4 0 . 0 0}$
also available

Si451 Millivoltmeter
\& 20 ranges also with variable control permitting eas γ reading of relative frequency response

Si452 Distortion Measuring Unit

* low cost distortion measurement down to . 01% with comprehensive facilities including L.F. cut switch. etc. ALLPRICES PLUS V.A.T.

Another reason why Enthoven is No. 1 in solder

Superspeed solder wire

Enthoven's Superspeed soldering wire features an activated-rosin flux core and is ideal for those applications where a wide variety of different jobs must be handled with a single solder.

But don't forget the rest of the Enthoven range. It gives you a wide choice of high-quality products developed for use with modern techniques. It includes Flux Cored Solder Wires, Solder Pre-forms, Solid Solders. Selective Fluxes, solder specialities, materials for printed circuitry and for soldering aluminium.

And behind every Enthovén product stands a comprehensive advisory service that can solve your knottiest soldering problems.

Enthoven Solders Limited

Dominion Buildings, South Place London EC2M 2RE.
Tel: 01-628 8030 Telex: 885737
Cables: enthovenlondoneczm2Re

The SEI MINITEST has made a remarkable impact in the pocket-sized multi-range meter market, by making itself a firm favourite with discerning people in the industry. Let's look into the reasons why.
First, the appearance. Diminutive, neat, wipe-clean cycolac case with shock and magnetic field proof steel liner. Controls are simple and easy to use. Second, the range. The Minitest measures a.c. and d.c. voltages d.c. current and resistance over 20 ranges to a sensitivity of 20,000 and 2,000 ohms per volt d.c. and a.c. respectively. Third, high voltage probes. These extend the range to 25 or 30 kV d.c.

Little wonder the Minitest is preferred!

SALFORD ELECTRICAL

INSTRUMENTS LTD
Peel Works, Barton Lane, Eccles,
Manchester M30 OHL
Telephone: 061-789 5081. Telex: 667711 A member company of GEC Electrical

Components Lid.

EXI SEC

i.c. breadboards low cost, high performance units

All our i.c, breadboarding units are now even better value for money.
Our second-generation CK2 0020 I.C. Patchboard unit, still selling for only $£ 50$, has been completaly redasigned and now has many additional faatures. Light-amitting diodes are used as logic indicators and a manual pulse genarator and busbars have been added to ease your patching a little.
A chaapar "extension" unit, selling at only $£ 36$, will accommodata a further eighteen integrated circuits or can be used on its own for linear work.
For further information on these and other breadboarding units from Limrose, pleasa telephone 061.9288063 or contact

LIMROSE ELECTRONICS LIMITED.

8-10 Kingswey

Altrincham,
Chashire, WA14 IPJ

WW- 044 FOR FURTHER DETAILS

Hatfield's solution to Impedance matching problems.

,

forward thinking in electronics
HATFIELD INSTRUMENTS LIMITED
Burringion Way. Plymouth PL5 3Lz, Devon.
Burrington Way. Plymouth PL5 3LZ, Devon
Tel. Plymouth (0752) 72773/4 Grams: Sigion, Plymouth. Tulex : 45592 Hatheld Instruments (NZ) L.ıd., PO. Box 561 . Napier. New Zealand

- Threz opera-ing frequencies in ary 2 MHz segment of the $142-1: 2 \mathrm{NHz}$ range mav te selected.
- A monolithic HZn fiter produced by our own erystal division is used ir the IF arplifier. Perfo-mance and selectivity in this sing e superheterodyne set are excellent.
- A lig at emiting ziode is used to incicate the transmit ourput level and condition of the battery. This approach improves reliabilty and allows ceecks under joar lighting conditions. - Use of a posist:r eliminates the t-oublesome fuse and at leviaws maimenanse requirements.

WW- 043 FOR FURTHER DETAILS
The Linsley Hood Stereo Hi-Fi Amplifier.

So advanced it's not yet made.

Years of experimental design have gone into this unique direct-coupled Stereo preamp and power amplifier. And contrary to usual practice the circuit and component layout (critical for low hum levels) has been made public instead of being sold to one of the commercial companies.

So if you are serious about Hi - Fi and want the best amplifier in the world you're going to have to build it yourself. And obviously the components you use must be the best available. Manufacturers rejects, seconds, or anything bought from a dubious source are just not good enough.

We are offering all the semiconductors (inc. power supply), glass fibre p.c. boards ready drilled (all same size and stackable), all the capacitors including the new tantalum types and electrolytics, all to true Hi-Fi standards and all fully-approved by the designer for $£ 32.72$ for the 30 watt version and $f 39.93$ for the 50 watt version.

Specification

Pre-amplifier
Input selector: Mag p.u. Ceramic p.u. $100 \mathrm{~K} \Omega 470 \mathrm{~K} \Omega$
Mode selector Stereo. Reversed Stereo, Mono LH only Mono RH only. Mono both channels.
Filter selector:
$7 \mathrm{KH}_{\mathrm{Z}} 10 \mathrm{KH}_{\mathrm{Z}} 14 \mathrm{KHz}$
Twin volume controls
Filter 'slope' control
Treble
Bass
Balance
Separate outputs for amplifier or tape recorder

Amplifier

Low distortion, wide bandwidth, DC coupled. Max power: 30 or 50 watts per channel
T.H.D :
$<0.01 \%$ at all power levels below clipping Bandwidth:
$3 \mathrm{H}_{\mathrm{z}}-40 \mathrm{KHz} \pm 0.5 \mathrm{~dB}$ IM distortion: $<0.05 \%\left(70 \mathrm{H}_{\mathrm{z}}+7 \mathrm{KHz}_{\mathrm{Z}}\right.$ 50 W)
Unconditionally stable, S/C protected.

Send 25 p for a 12 page leaflet giving full design and constructional details.
(Free with kits)

DC-10MHz $10 \mathrm{mV} / \mathrm{cm}$ With Trace-Locate Button

Scopex Instruments Limited
Pixmore Industrial Estate Pixmore Avenue Letchworth Herts. SG6 1JJ
Tel:Letchworth 72771
Stable triggering at any sweep speed, small spot size for accuracy

ON STAND 785,ILECS, MAY 22-25

WW-046 FOR FURTHER DETALS

Barr\&Stroud Active FilterModules

If you need high-pass, low-pass, band-pass or band-stop filtering, our EF-series active modules have a lot to offer. They're all solid-state, compact and lightweight, and your own external components are used for tuning and response selection. No wonder they're being used by more and more design engineers every day. Complete details appear in Pamphlets 1672 and 1700 ; ask for your copies today.

EF10 Series-low pass. response down to d.c., 1 Hz 30 kHz cut-off, $12-36 \mathrm{~dB} /$ octave stop-band attenuation EF20 Series-high pass. response up to $1 \mathrm{MHz}, 1 \mathrm{~Hz}-$ 30 kHz cut-off, $12-36 \mathrm{~dB}$ / octave stop-band attenuation EF40 and EF41 Universal-band-pass and band-stop with centre frequencies 0.1 Hz to 10 kHz -band-pass Q up to 200-band-stop Q up to 10. Supplementary operation in low-pass. high-pass and all-pass delay modes.

BARR \& STROUD LIMITED Anniesland, Glasgow G13 1 HZ Tel: 041-954 9601 Telex: 778114 1 Pall Mall East, London SW1Y 5AU Tel:01-930 1541 Telex: 261877

(D. E. O'N. Waddington, March 1973)

LIST OF PARTS NOW AVAILABLE

Please send a stamp
We will also include our illustrated lists of other components

CAVERN ELECTRONICS 29 CLAREFIELD ROAD, LEICESTER LE3 6FB Tel. : Leicester (0533) 857223
(Mail Order only)

WW-051 FOR FURTHER DETAILS
contact Derek Owen at 01-8749054 or Telex 923455

LEEVERS-RICH
 EQUIPMENT LIMITED

Agents in Scandinavia, Eastern and Western Europe, Middle East,
Africa, Australasia and the Far East.

OCLI manufacture an extensive range of Infrared Filters sovering the entire 1.0 to 30 micron spectral region.

Filters in thes regions present an excellent solution to filter ng out high-tヨmperatıre radiation without appreciably limiting the sigral from the source being observed. Moreover, they have proven capability over wide operating temperatures.

OCLII. R. Filters are made tc exact Customer specifications or a range can be supplizd from stock.

Typical fields benefitting from OCLI I.R. Filters include.

- GAS ANALYSERSJDETECTION SYSTEMS
- ACTIVE/PASSIVE IPJTRUDER ALARM
- INFRARED PASSIVE THERMAL IMAGING SYSTE VIS
- FIRE DETECTION
- NON-CONTACT TEMPERATURE MEASURIWG
- POLLUTION DETECTION
- OPTICAL PROXIMITY FUSES
- INFRARED SPECTROSCOPY
- INFRARED PHOTJGRAPHY
- SPACE RECONNFISSANCE

Write for the rew OCLI catalogue ar a price list of stock I.R. Filters.

OPTICAL COATINGS LTD. Hillend Indus:rial Esta=e. Dunfermline, Fife KY11 5JE Tel. Inverkeithing 3631 (STD 038-34 3631)

DIECAST BOXES

WORLD-WIDE AVAILABILITY

Diecast in aluminium alloy, BS 1490 LM2

SIX SIZES

Cat. No. 7969P - $\quad 3 \frac{5}{8} \times 1 \frac{1}{2} \times 17 / 32$ in
(Illustrated) $\quad 92.1 \times 38.1 \times 31 \mathrm{~mm}$
Cat. No. $7134 \mathrm{P}-\quad 4 \frac{3}{8} \times 2 \frac{3}{8} \times 17 / 32 \mathrm{in}$
$111.1 \times 60.3 \times 31 \mathrm{~mm}$
Cat. No. 6908P- $4^{11 / 16 \times 3^{11} /{ }_{6} \times 2^{7} / 32 \text { in }}$ $119.1 \times 93.6 \times 56.4 \mathrm{~mm}$
Cat. No.6827P$7^{25} / 64 \times 4^{45} / 64 \times 2^{7}{ }_{32}$ in
$187.3 \times 119.1 \times 56.4 \mathrm{~mm}$
Cat. No. 6357P— $\quad 7^{25} / 64 \times 4^{45} / 64 \times 3^{7}{ }_{32}$ in $187.3 \times 119.1 \times 81.8 \mathrm{~mm}$
Cat. No. 7970P- $7 \frac{3}{8} \times 7 \frac{3}{8} \times 2^{21 / 32}$ in
$187.3 \times 187.3 \times 67.5 \mathrm{~mm}$
(Nominal outside dimensions)

Rugged. Corrosion resistant.
Self adhesive plastic strip available for mounting PCB's internally.
Easily Machined. Good Surface Finish.

Illustrated brochure and information on your local Distributor from:

Eddystone Radio Limited

Alvechurch Road, Birmingham B31 3PP, England Telephone: 021-475 2231. Telex: 337081

A Member of Marconi Communication Systems Limited

PARKER SHEETMETAL FOLDNG MAMHNES

EENCH MODEL
$36^{\circ} \times 18$ gauge capacity
$£ 35.00$
$24^{\circ} \times 16$ gauge capacity
¢32.00
75p
$36^{* \prime} \times 18$ gauge capacity $£ 17.00$ Carr. 50p $\mathbf{2 4} \times 18$ gauge capaciey $£ 12.00$ Carr. 38 p $18^{\boldsymbol{\prime}} \times 16$ gauge capacity $£ 12.00$ Carr. 38p

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.

One year's guarantee. Money back if not satisfied.
Send for details:
A. B. PARKER

FOLDING MACHINE WORKS, GPPER GEORGE STREET, HECKMONDWIKE, YORKS.

Telephone 3997

STEREO IC DECODER
 HIGH PERFORMANCE PHASE LOCKED LOOP (as In 'W.W.' July '72)

MOTOROLA MC1310P EX STOCK DELIVERY

Seperation: $\mathbf{4 0 d B} 50 \mathrm{~Hz}-15 \mathrm{kHz}$
$1 / P$ level: 560 mV ims
SPECIFICATION
\qquad Input impedance: $50 \mathrm{k} \Omega$ $\mathrm{k} \Omega$.

$$
\text { Will drive up to } 75 \mathrm{~mA} \text { stere }
$$

KIT COMPRISES FIBREGLASS PCB (Printed and tinned), Resistor
Preset Potm. G Instructions.

O/P level: 485 mV ims per channel Will drive up to 75 mA stereo 'on' lamp or LED. KIT COMPRISES FIBREGLASS PCB ONLY

LIGHT EMITTING DIODE (Red)
ONLY
Suitable as stereo 'on Indicator. For above
35p plus p.p.
MC1310p only e2. 77 plus p.p. 6p SPECIAL OFFER
IN4002 100V 1A RECT DIODES. Full Specification Devices.
ONLY 6p aach 709° DIL 14 PIN OP AMPS. Full Specification Devices

ONLY 34p each
From April ist add V.A.T. A. the standard rate to all prices
FI-COMP ELECTRONICS
BURTON ROAD, EGCINTON, DEAEY, DEG GOY

[^1]

WW- 059 FOR FURTHER DETAILS
Youedit the tape. We edit the prices.
VDEOTAPEAT DIXONSTECHNICAL

	RECOMMENDED PRICE	DIXONS PRICE
SCOTCH $\frac{1}{2}{ }^{\prime \prime} 2400 \mathrm{ft}$.	£10.80	£8.50
SCOTCH $\frac{1}{2}{ }^{\prime \prime} 3000 \mathrm{ft}$.	£16.82	£13.50
BASF $\frac{1}{2}{ }^{\prime \prime} 2400 \mathrm{ft}$.	£10.75	£8.50
SHIBADEN $\frac{1}{2 \prime \prime} 2400 \mathrm{ft}$.	£10.80	£9.10
RACAI ZONAI 2400 ft .	£10.25	£8.00
SCOTCH $\frac{1}{4}$ " 1200 ft .	£3.76	£3.00
BASF $\frac{1}{4}{ }^{\prime \prime} 1200 \mathrm{ft}$.	£3.75	£3.00
ZONAI $\frac{1}{4}{ }^{\prime \prime} 1200 \mathrm{ft}$.	£3.80	£3.00
AKAI $\frac{1}{4}{ }^{\prime \prime} 1200 \mathrm{ft}$.	$£ 4.00$	£3.50
DIXTEC CCTV $\frac{1}{2}{ }^{\prime \prime} 2400 \mathrm{ft}$.		£5.50

STAGGERED FINGERS LET SEMICONDUCTORS WORK HARDER IN LESS SPACE

Now you can safely operate such devices as TO-3. TO-6. TO-66. plastics, at many times their bare case power rating using our patented Staggered Finger dissipators. We've got over 70 different models with dissipation capabilities ranging from 3 to 35 watts in natural convection, up to 125 watts in forced air. Why are they better? Staggered Finger design increases dissipating surface, cuts re-radiation, and produces turbulence in forced air:

I.E.R.C. HEAT SINKS

from

SOURIAU LECTROPON LTD.
Shirley Avenue, Vale Road,
Windsor, Berks.
Telephone Windsor 69471

Discon gives you the slimmest possible chance of failure.

When you use Jackson 'Discon' Trimmers you're using the slimmest trimmers on the market. With a maximum thickness of only 2.8 mm , capacitance ranges up to 40 pF , a Discon miniature ceramic dielectric trimmer capacitor is space saving, with a high capacitance per unit of volume.

With Jackson you know you're using tried and tested components that will give perfect reliability over a long life. And you can have components custom made to suit your individual requirements.

With skilled personnel and modern equipment backed by 45 years of technical know-how, we are your guarantee of a reliable product.

[^2] (LONDON) LIMITED
KINGSWAY, WADDON, CROYDON CR9 4DG
TEL: 01-681 2754/7. TELEX: 946849.
U.S. OFFICE: M. SWEDGAL

258 BROADWAY, NEW YORK, N.Y. 10007.

WW-062 FOR FURTHER DETAILS

CHOICE OF 12 TYPES

List No. B. 7

Panel Mounting Holders are made in three sizes accepting U.7, U. 11 or U. 2 batteries. Three models are available, in each size, accepting one, two or three cells in line. List Nos are B.1-3 for U. 11 cells, B. 11 - 13 for U. 7 cells and B. 16 - 18 for U. 2 cells.

They are unique and growing
increasingly popular in a wide variety of portable electronic equip. ment. These designs include many features of novel character unob tainable in any other make. They include, easy battery changing, non crackling specially formed contacts, which make reversed connections virtually impossible.
hree Base Board mounting holders are available. B. 6 accepts one $U .2$ cell and can be inbuilt if required, B. 7 is smalier for one U. 11 cell. The $B .10$ holder will accommodate from one to four U .11 or U .2 cells in line, providing side support is given.

CUSTOMERS CAN ALWAYS RELY ON
 "THE HOUSE OF BULGIN" FOR SERVICE, QUICK DESPATCH \& GUARANTEED SUPPLIES

technical literature available on request. quote: $\mathrm{WW} / 3 / 73$

A. F. BULGIN \& CO. LTD.

ELECTRONIC COMPONENT MANUFACTURERS
byE-PASS ROAD BARKING ESSEX IG11 OAZ
TEL: 015945588 (12 lines) P.B.X. TELEX:897255
WW- 063 FOR FURTHER DETAILS

313 EDGWARE ROAD, LONDON W2 3BR.
telephone: 017232231 Cable: Omrontrols London.

OMRON

VARIABLE TRANSFORMERS
 1 amp £7.00 C. \& P. 37p $2.5 \mathrm{amp} \mathbf{f 8 . 0 5}$ $5 \mathrm{amp} f 11.75$
10 amp f 2250 $10 \mathrm{amp} £ 22.50$ 12 amp f 23.60
$20 \mathrm{amp} \mathbf{4 9 . 0 0}$ "OFF THE SHELF" delivery of all types.' *Fully shrouded. *Bench Mounting. *Panel Mounting. *Low Price. *Input 240VAC. Dutput: 0-260VAC.

PANEL MOUNTING "SYS" SYNCHRONOUS TIMER

OMRON brand Synchronous Motor driven imer with singla two timed change ver contacts. Minimum guaran and mechanical 10,000,000 opera tions.
Stocked in 110VaC 240Vac up to twenty eight hours time renge; $\frac{1}{2} \%$ repeat accuracy.
$\mathbf{£ 1 4 . 9 0}$ "one off" $£ 10$ in quantity.
PNEUMATIC OMRON TIMER UP TO 200 SECS DELAY-'ATS"

Easily adjustable from delay on The OMRON ATS works on an air damped principle and can be adjusted between 0.200 secs with screwdriver adjustment. A precision snap action switch provides a 6A contact and minimum $1,000,000$ ops life. "One off" £8.10. In quantity £5 for 110V/240VAC types.

LOW COST PANEL MOUNTING

MINIATURE TIMER-'"STPYMH"

Plug-in timer for pane mounting. Synchronous Motor driven with auto and time limit contacts rated at 5A. This timer has fixed and moving pointers.
£8.40 "one off" £5 in quantity.

HIGH ACCURACY SOLID STATE PLUG-IN TIMER-"TDS'

Genuine 1\% repeat accuracy with solid timing. Life 50 million operations minimum, instantaneous ime limit contacts.
Full time scales $0-1$ sec $0-2$ sec, $0-5$ sec, $0-10$ sec 0-30sec; 0-60sec 0-180sec.
Dual Voltage $110 / 240 \mathrm{VAC} \mathbf{f 1 8 . 5 0}$ to f 13 each.
EXCLUSIVE SOCKETS FOR OMRON TIMERS \& FLOATLESS SWITCHES

Screw terminals, with clips to hold the timer or switch firmly in place where mounted. Type 8PF for STPNH, TDS, DTS
Type 8PFI for 61FGP \& TDA.
$75 p$ "one off" and 50 peach in quantity

TIMERS SWITCHES TRANSFORMERS

VOLTAGE CONTROLS

 FOR IMMEDIATE DELIVERY|ELECTRONIC PLUG-IN SWITCH FOR LIQUID LEVEL \& ICE
 Electronic switch ${ }^{\text {6en }}$ Electronic switch senses Stainless Steel probe ussem bles or other conductive probes.
Proven use in sewage, water beer, milk ice in vending effluent, boilers and other industries $£ 5.85$ for "one off" $£ 3.50$ in quantity STAINLESS STEEL PROBE ASSEMBLY "PS31"

Length 1 metre, for use on differential and alarm control of conductive liquids with "61FGP" (illus rated above).
£1.60 "one off" $\mathbf{£ 1}$ in quantizy.
ELECTRONIC RECYCLING TIMER FOR CONTINUOUS ON/OFF OPERATION "TDA"

Electronic twin timer for contimaus recycling operations On/Dff time control, 0-6secs with 2% repeat accurac etting $0-6 \mathrm{sec}$ with transfer switeh X10.

Dual voltage 110/240VAC £28.60 but down to $\mathbf{f} 18$ each in quantity PANEL MOUNTING "NSY SYNCHRONOUS TIMER "New Square Dial" The OMRON timer type NS square fixed dial. This the coil spring type. attractive package has two tacts.
tock ranga 110/240 VAC up to 28 hrs $£ 12.50$ "one off" to $\mathrm{f8} 8$ in quantity
OMRON MICROSWITCHES Interchangeable with all British \& Continental Manufacturers
Approvals from: CSA; MIL; UL: SEVC; SAA: DEMKO ETC

VIC WITH AMP TERMINALS $\begin{array}{lll}\text { Single } & \text { Pole Changeover } & 15 \mathrm{amp} \\ \text { switch } & \text { O.F. } & 400 \mathrm{gm} \\ \text { R.F } & 114 \mathrm{gm}\end{array}$ switch 0.F. 400 gm R.F. 114 gm
M.D.O. $4 \mathrm{~mm} . \mathrm{f} 9 \mathrm{~g}$ per $100 ; \mathrm{f} 150$ per 100; $\mathbf{f 7 0 0}$ per 5000.
VV-15-1A WITH SOLDER TERMS Single Pole Changeover 15amp Switch O.F. 230 gm . R.F 50 gm M.D. 1 mm . $£ 19$ per $100: £ 150$ per 1000; f65D per 5000 .
SIA SUBMINIATURE SWITCH SIA SUBMINIATURE SWITCH Cheaper than all its competitors. Single pole changeover 5 mmp switch
$0 . F .200 \mathrm{gm}$. R.F. 40 gm . M.D. 0.1 mm . O.F. 200 gm . R.F. 40 gm . M.D. 0.1 mm . f23 per 100; f180 per 1000 f850 per 5000 .
SIAL WITH LEAF SPRING
Subminiature 5 amp microswitch
of $56-180 \mathrm{gm}$ R.F. 14 gm M.F. 0.8 mm . £27 per 100; £220 per 1000; £.10CO per 5000 .
SIAL 2 WITH ROLLERACTUATOR Subminiature 5amp microswitch. O.F. $56-180 \mathrm{gms}$ R.F. 14 gms . M.D. $0.8 \mathrm{~mm} . \mathrm{£} 33$ per $100 ; \mathrm{£} 270$ per 1000; f1250 per 5900 .
CCR-5 LOW TORQUE SWITCH CCR-5 LOW TORRUE SWITCH
Low cost microswitch for coin Low cost microswitch for coin
operated or air vane applications, operated or air vane applications,
O.T. 10 gm . R.T. 13 gm . M.D. 15°. O.T. 10 gm . R.T. 13 gm . M.D. 15°.
£31 per 100: £190 per 1000 : £ 900 per 5000 .
VAQ4 PUSHBUTTON MICROSWITCH.
15amp Microswitch with pushbutton actuator low operating force and buttons in various colours. £49 per 100: $£ 360$ per

信 me manacturers typical price is around $\mathbf{£ 3 . 5 0}$ for

WORLD'S SMALLEST SYNCHRONOUS MOTOR PLUG-IN TIMER STPNH
 AT LAST! $\pm \frac{1}{2} \%$ REPEAT ACCURACY IN A miniature plug-in timer up to 28hrs.

Only OMRON could provide a timer of such unrivalled superiority over all its competitors, anywhere in the world.
The STPNH is a synchronous motor driven timer with automatic reset function. Both instantaneous and time limit contacts are fitted and the timer is mounted on an international 8 pin octal base. Time ranges start 0.6 secs and finish $0-28 \mathrm{hrs}$ with operating voltage at 110 VAC or 240 VAC .
Up to 72 mins $\mathbf{£ 7 . 9 0}$ "one off" and $\mathbf{£ 4} \mathbf{4}$ in quantity. Long time ranges around $\mathbf{f 8}$

SOLID STATE VOLTAGE
CONTROLS 5AMP \& 10AMP MODELS
 voltages variable on output to 25 -230VAC Mo 25-230VAC. Miniature and lightweight with finned aluminium housing these units can truly replace wirewound transformers.
VP05C (5AMP) $£ 9.90$ "one off" $£ 6$ in quantity. VPIOC (10AMP) $\mathbf{1 6 . 9 0}$ "one off" f 10 in quantity
Full range available with 15 amp switching capacity Approved by CSA Authorities \& guaranteed for twelve manths.

HOTOELECTRIC SWITCHES

Reflective and "slot" type photoelectric switches. Will sense any material passing the light beam up to 3 mm and provide an output signal of 02 AMPS at 240 VAC . Reflective distance up to 25 mm on reflective surfaces, far longer with external light.
WORK DIRECT
FROM $24 V A C$ SUPPLY.
PRIDOR (Reflective) $\mathbf{£ 7 . 5 0}$ "опе off" $\mathbf{£ 4}$ in quantity. PRIOOC (slot) $£ 7.50$ "one off"' $£ 4$ in quantity.

New range of open, enclosed and plug in rolays
Approved by C.S.A.. V.D.E. and S.E.V.

Very competitive prices and delivery from stock.
Famous I.M.O. Constan Voltage Stabiliser stil only $£ 12.50$ each. FEATURES:
*200 watt rating *imput 240VAC $\pm 20 \%$ \pm Output $240 \mathrm{VAC} \pm 1 \%$.

AT LAST OMRON FRONT CONNECTION SOCKETS-
NOW SUPPLIED FROM STOCK

ALL THE PRODUCTS ILLUSTRATED HERE ARE ALSO AVAILABLE FROM THE FOLLOWING I.M.O. FRANCHISED DISTRIBUTORS.

BIRMINGHAM
blackburn BRISTOL
Leicester
LEEDS
LONDON (STH.)
LONDON (NTH.)
NEWCASTLE
SHEFFIELD
SLOUGH
I. M.O TERMS OF TRADIN

确
CASH WITH ORDER UNLESS A NETT MONTHLY ACCOUNT HAS
BEEN ESTABLISHED. TELEPHONE: 01-723 2231.

transformers

mains, audio, microphone, ferrite core and other wound components

A wide range of transformers manufactured to customers individual requirements.

Prompt Prototype
Service available

MICROPHONE
TRANSFORMER IN MUMETAL CAN

Drake Transformers Limited
Telephone:
Billericay 51155

Kennel Lane,
Billericay, Essex.

WW- 065 FOR FURTHER DETAILS

reliable high performance \& practical controls individually powered modules-mains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight —realistic prices.

£30
SPECIAL OFFER TO WN READERS

- 6-DIGIT RESISTANCE BOXES
- $1 \mathrm{~W}-1 \mathrm{MW}$ or $10 \mathrm{~W}-10 \mathrm{MW}$.
- 1 WATT 1.0\% PRECISION RESISTORS
- ATTACH THIS ADVERT TO YOUR P.ORDER OR CHEQUE TO OBTAIN SPECIAL INTRODUCTORY PRICE.
 RUGBY 73423/4.

In subminiature switching, low cost needn't mean low quality! That's the message that British-made Arrow CT series carries round the worldgaining ready acceptance wherever it goes. Those rugged little lever switches pack maximum performance into minimum size and weight. Single and double pole versions with 2 or 3 way action, give a choice of levers in bright chrome or seven colours. They meet ratings up to 2 A at 250 V ac , and with their C.S.A. and U.L. approvals they'Il help you show the flag.

Get the full data on hardy, home-grown Arrow CT sub-mins.

1 - UYIII ARROW-HART (EUROPE) LTD. UTU PLYMBRIDGE ROAD. ESTOVER. ITII PLYMOUTH PLG 7PN, ENGLAND. TEL: 0752701155 Telex: 45340 Cables: ARROWHART PLYMOUTH

Arrow switches right across the panel

Scottish Office
13 MURRAY PLACE, STIRLING FK8 1 do Telephone: 07863823
U. K. Distributors ITT ELECTRONIC SERVICES HARLOW - 027-96 26777 RENFREWSHIRE Johnstone 23457 LEIGH - Leigh 5211/2/3 SUTTON COLDFIELD -021-3554511 BRISTOL-0272 290125 C.E.S. LTD. CROYDON - 01-6860505 COMWAY ELECTRONICS BRACKNELL - 034424765 S.A.S.C.O. LTD. CRAWLEY-0293 28700 GLASGOW - 041 -2216152/3

JERMYN INDUSTRIES. SEVENOAKS - 51174

50 Years Progress 182| 1971
 - AND NOW THE
 su0serices

 STYLED TO GIVE
 AN ELEGANT APPEARANCE ON ALL PANELS
 AN ALL BRITISH PRODUCTION

Electrical instruments lid

CROPICO

RESISTANCE STANDARDS

These 10 and 50 watt, oil-filled, non-inductive standards consist of a generously designed manganin coil, carefully aged and adjusted, mounted in a grey painted metal case with a loaded ebonite top panel fitted with four copper terminals

A hand operated agitator for the oil, and a tube into which the thermometer can be inserted are provided.

The resistance error at any current up to the full rated current is less than $\pm 0.01 \%$.

Each standard is supplied with a certificate specifying the resistance at 15,20 and 25 degrees Centigrade. These figures are guaranteed ta $+0.005 \%$.

CROYDON PRECISION INSTRUMENT COMPANY HAMPTON RD., CROYDON CR9 2RU Telephone: 01-684 4025 \& 4094

WW-070 FOR FURTHER DETAILS

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

P~~~ imeteronic Portable Service Oscilloscope

TYPE 101 £80
DC- -8 MHz $50 \mathrm{mV} / \mathrm{Div}$.
($5 \mathrm{mV} /$ Div. with 155 Active Probe) 50 nS/Div Wt. 5 lb .

IDEAL FOR COLOUR TV SERVICING

$113 \mathrm{DC} /$ Battery version of 101
(Mains and battery packs extra)
155 Active Probe (Gain X 10, ×1, $\div 10 @ 10 \mathrm{M}$ Ohms)£15
310 Logic Probe (Shows Hi, Lo and Bad on 2 LEDS)f12
320 Short Pulse Detector (Shows pulses down to 40 nS) £ 12
Meteronic Ltd., 114/116 Shipbourne Road, Tonbridge, Kent. Tel: Tonbridge 61448

WW-072 FOR FURTHER DETAILS

LONDON ELECTRONIC COMPONENT SHOW

ALLOTROPE LIMITED

will be showing on

STAND 539

Condenser and Dynamic Microphones manufactured by AB Pearl Mikrofonlaboratorium, Sweden.

Audio Mixer Modules manufactured by SAIT Electronics, Belgium.
Muse Music Synthesiser manufactured by Triadex Inc., U.S.A.
Broadcasting TSV Differential Telephone Repeater System manufactured by Hes Electronics, Belgium.
Future Film Developments Range including Audio Connectors, Broadcast Pattern Jackfields, Cords and Plugs. Audio Cables, Markers, Sleeves, Wiring Accessories and Hand Tools.

ALLOTROPE LIMITED
90 WARDOUR STREET, LONDON, W1V 3LE Telephone: 01-437 1892/3

Telex: 21624

Two big advances in quality COMMERCIAL SOUND SYSTEMS

Welcome the new range of SNS PA Mixer-Amplifiers. New? They're all of that. A new flexibility, new features which incorporate 12 W . or 40 W . RMS output and the latest integrated circuits used throughout the pre-amplifier stage - in fact a new kind of finesse in medium power Commercial Sound Systems

Link them to another big new rangeSNS column and cabinet speakers. That's a seven league step forward! Put each range together or use them apart. Quality marks them both. Performance singles them out. Where else could they come from but SNS?

Of course, you need a trial to feel as confident about them as we do. Call your SNS representative soon.

SNS Communications L.td., 851 Ringwood Road, Bournemouth BH11 8LN.Tel: Northbourne (02016) 5331

FM TUNER

NELSON-JONES
Approved parts for this outstanding design (W.W. April 1971/2)

Featuring $0.75 \quad \mu V$ sensitivity. Mosfet front end. Ceramic I.F. strip. Triple gang tuning, $\frac{1}{2} V$ r.m.s. output level, suitable for phase locked decoder, as below. Designer's own P.C.B.

FURTHER PRICE REDUCTIONS
Basic Tuner Parts with Screening Box
NOW LESS THAN E11.50. Please send S.A.E. Itsts. NEW ALIGNMENT SERVICE
Details on request.
THOUSANDS NOW IN USE

SOLID STATE TUNING INDICATOR
W.W. AprII '72). Tuning is indicated by the balance of two light emilting dlodes. The kit ncludes, LED's, high gain transistors, P.C.B., resistors, mounting kit and Instruction booklet; Order T041. Price $£ 1.72$ plus P. \& P, 10 p . with two LED's (or $\mathbf{£ 1 . 0 8}$ with extra LED for 'stereo"

DIAL CHASSIS KIT

Now available-includes all dial drlve components, dial plate, decoder mounting bracket. tuning scales, decoder-tuner tagstrips, etc., 4-way $2 / 3$ pole rotary switch and instruction booklet.
Price $£ 215$ plus P. \& P. 17 ((Note: may be purchased without dlal drive components.)

PHASE-LOCKED STEREO DECODER KIT
Now with free LED 'stereo on" Ilght-complementing this superb decoder (W.W. Sept. '70). Suitable for wide variety of tuners including the NELSON-JONES TUNER. Complete kit ONLY \&7.6s. P. \& P. 16 p

NEW IC Stabilised PSU. S/C, overload protected, low ripple. £3.55. P. \& P. 14p

LIGHT EMITTING DIODES (Red)

 Improved effeleney type, mech. Identical to HP LED, panel or PCB mounting with Monsanto miniature PCB mounting with radial leads.Order LED2. Please add postage.
NOW ONLY 35p each with connection data.
Note. Tuner metalwork and case now matches TEXAN
TEXAN AMP.
Please enquire about delivery
AERIALS-3 ELEMENT VHF/FM (Outdoor)
A good aerial Is essentlal for optimum Stereo Radio reception. ONLY 82.60 . P. \& P. 40p.
Coax 5p/metre. (Masts and Flxing kits avallable)

7 SEGMENT LED Displays.

Lowest cost.

$0.325^{\prime \prime}$ characters. Continuous segments (not dotted)
GaP high efficiency Red Light Emission TTL compatible
Common anode and common cathode types available.
LOW COST
Prices:
Common anode type
$£ 2.46$ each
£1.97 $25+$
Common cathode
$£ 2.33$ each
£1.83 25 +
$\frac{1}{2}$ dig. common anode $\quad £ 2.33$ each
7447 decoder driver (for C.A.) $£ 1 \cdot 30$ each
All devices available from stock.

V.A.T.

FROM APRIL 1st ADD V.A.T. AT 10\%

 TO ALL PRICES
SPECIAL OFFER

4 function 8 digit display calculator with CONSTANT KEY, fixed or FLOATING DECIMAL, clear last entry key.
Complete with BUILT IN RECHARGEABLE CELLS, mains charging unit, AND carrying case. Full 12 months guarantee.

only $545 \cdot 00$ p. \& p. 50p.

broad-band, wide range and easy on the eyes: the NEW THRULINE•RF WATTMETER

spans 25-500 MHz, measures .02-500 watts
in eight ranges. All variable RF cy range, forward/reflected power and full scale values - are switched right on the front panel. Since it re-
quires neither AC nor battery power, quires neither $A C$ nor battery power, the lab or atop an antenna tower, at a remote base station or in a car. boat or plane.

SPECIFICATIONS:

Fonmard Power Ranges: 10, 25, 100, 500w; $\pm 5 \%$ OFS Model 4370
Reflected

 Prict incl. Line Section with N Conn: $£ 260$

SEE US ON STAND No. 933 AT THE L.E.C.S.

ELECTRONIC LIMITED
18A HIGH STREET, NORTHWOOD MIDDLESEX. PHONE NORTHWOOD 27688

The big volume linear source

If you're in computers or consumer products, industrial or military, communications or automotive, one big linear source is really 'good news'.

With more than 40 new ICs in 1972 (and we don't include package or spec. variations), and many more to come this year, our commitment to linear is real - and complete:Voltage regulators. including the exciting new MC 1568, one of 7 unique Motorola designs, and the MC 7800 CP3 terminal series.
Op Amps. like the MC 3401 and MC1456.
Multipliers. Motorola's are monolithic.

Interface IC's. A big range of sense amps, line drivers and receivers.
Consumer IC's. We're market leaders in US ...
Comparators. such as MC 3302 quad.
Monolithic D/A and A/D converters. 6 and 8 bit, including the new 8 bit MC 1508 .

You want quick delivery? Every device in this great and growing range is 'made in Europe' - and stocked by our distributors in Europe.

So telephone your Motorola distributor today. He's ready to deliver the big volume source to your doorstep.
(A) MOTOROLA Semiconductors

ELECTRONIC ORGAN KITS

* Portable - 4 octave keyboard with 10 voices, 3 pitches - vibrato, £145.29 औ Console - 5 octave keyboard with 10 voices, 3 pitches. Keyboard can be split into solo and accompaniment. Vibrato, built in amplifier and speaker $\mathbf{£ 2 5 0 . 9 3}$ „ Console - 2×4 octave keyboards and 13 note pedal board, 29 voices, Vibrato, Delay Vibrato, Sustain. Reverberation. Percussion, Wah Wah. $£ 406.00 \star$ Console - 2×5 octave keyboards and 32 note pedal board. 32 voices. Vibrato. Delay Vibrato, Sustain. Reverberation. Percussion, 3 Couplers, etc., at £572.55. V.A.T. please add 10% - show separately on order.
ALL COMPONENTS CAN BE BOUGHT SEPARATELY. SEND 50p FOR LATEST CATALOGUE, WHICH INCLUDES SPECIALIZED COMPONENTS, HI-FI EQUIPMENT, ELECTRICAL HOUSEHOLD APPLIANCES AND MUSICAL INSTRUMENTS.

ELVINS ELECTRONIC MUSICAL INSTRUMENTS

8, PUTNEY BRIDGE ROAD, LONDON, S.W. 18 TEL: 01-870 4949
12, BRETT ROAD, LONDON, E. 8
TEL: 01-9868455
WW-079 FOR FURTHER DETAILS

Audio Connectors

Broadcast pattern jackfields, jackcords. plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd.
90 Wardour Street,
London W1V 3LE
01-437 1892/3

TPASEnESनD integrated circuit power andifier

Lioo- -
CAMBRIDGE ROAD, MILTON, CAMBS TELEPHONE CAMBRIDGE 65945/6/7

WW-080 FOR FURTHER DETAILS

GUNTON ELECTRONIC IGNITION KIT
 £9.35
 wef carances

beady built unit
GUARANTEED 5 YEARS
Capactive discharge ignition is recognised as being the most efficient system and will give you

- Eontinual Peak Performance

Uontinual Peak Performance
Easier All-weather Starting
Increased Acceleration and
Longer Spark Plug Life
Increased Battery Life

- Elimination of Contact Breaker Burn
- Purer Exhaust Gas Émission

Petents Pending
12 vo't only - state pos, or neg, earth. Supplied with illustrated assembly and fitting instructions. with details for fitting all types of tachometers. Can be built in an evening and firted in 15 minutes. Spare snap-on connectors for coil, etc. Call in tor a demonstration. S.A.E. all enquiries please. Or Phone Walsall 33652 for details. Many ietters from satistied customers.
OEPT ELECTRONICS DESIGN ASSOCIATES
82 BATH STREET, WALSALL WS1 3DE WW-082 FOR FURTHER DETAILS

2,3,4,5,6 Channel Recorder*

Multi-corder 10 in. chart width Multi-channel - 2 to 6 - full range zero set Multi-pen 2 to 6 - different colour inks Multi-range input - 16 switched ranges 1 mV -200V Multi-chart speed - 12 or 6 switched speeds *Desk type potentiometric multi-pen chart recorderdesigned and produced by Watanabe Instruments Corp., Japan

ENVIRONMENTAL EQUIPMENT LTD. Eastheath Ave., Wokingham, Berkshire, RG11 2PP Tel: Wokingham 0734-784922

WW-084 FOR FURTHER DETALS

TRANNIES
(Formerly C. R. Hadley Electronics). Telephone Harlow (02796) 37739

24 WOODHILL, HARLOW, ESSEX
(No callers please)

* SUPER LOW PRICED LINEAR K's

 $\begin{array}{lll}741 \text { c TO99 } & \text { 38p } & 741 \text { c } 3 \text { pin DIL. } \\ 741 \text { c DIL } & 36 p & \\ & & 748 \text { c }\end{array}$

TTL	BARGAISS	
7400	$12 p$	AND LOTS MORE.
7401	$12 p$	See our price lise.
7410	$12 p$	Also
7475	$45 p$	Super New Conmos.
7490	$60 p$	Sup
7492	$62 p$	

SLIDE SWITCHES

Miniature NEON LAMPS
109 mA . 230 v . or 110 v . 5 p each.
10 plus, 4p.

You could design yourself a. reputation around this M-OV tube . - It's the best beam tetrode you can buy.

- Offers lowest possible cost per watt. - Communications transmitters all over the world depend - and go on depending - on the famous M-OV TT21.

For more details, just ask us.

EEV AND M-OV KNOW HOW.

THE M-O VALVE CO LTD, Hammersmith, London, England W6 7 PE .
Tel: 01.603 3431: Telex: 23435 . Grams: Thermionic London. F.E.
WW-085 FOR FURTHER DETALLS

STROBOVOLT V73

EXTEND THE RANGE OF YOUR X-Y PLOTTER TO 50 KHz . OR BEYOND.
Measures Currents from one microamp FSD to 0.5 A and Voltages from 0.5 V to 500 V

(one riegohm per volt).
The instrument contains two completely independent 21 range multimeters which by means of a novel sampling technique can reproduce as slowly as required any repetitive waveform in a similar way to the action of a stroboscope with mechanical periodic motion. The instrument can also be used for harmonic analysis and distortion measurement. Enables peaks, troughs, and other discontinuities on the input waveform to be accurately examined. Invaluable for educational purposes in demonstrating phase relationships in A.C. circuits containing reactive components.

PHYSICAL \& ELECTRONIC LABORATORIES LTD. 28 ATHENAEUM ROAD, WHETSTONE, LONDON, N. 20

Tel. 01-445 7683
WW-087 FOR FURTHER DETAILS

FOR EX STOCK DELIVERY OF:

B.P.O. COMPONENTS

Manufacturers and Trade Enquiries only, quoting BPO and/or Manufacturers Reference numbers

TELEPHONE \& WIRELESS COMPONENTS LTD.
147, The Broadway, London, NW9 7EA
Tel: 01-203 2814
Cables: Tel wirco London NW9

Beitial

Small price AlO

That's the new D61 from Telequipment.

Simple Controls
 Dual Trace
 10 mV Sensitivity at 10 MHz
 IA Automatic Triggering
 X-Y Displays
 - TV Frame and Line
 - Bright $8 \times 10 \mathrm{~cm}$ Display
 - Easy to Carry

Developed for use in the
field or on the bench, and it's smail in size too - just how
small you'll discover when placing it on the busiest of benches.
But don't imagine that performance has been precluded by its size, or the fact that it costs only $£ 110$ On the contrar $\%$, this little fellow features several facilities looked for on heftier.
higher-cost oscilloscopes.
Write or teleprone now for full specification (you won't be disappointed)

Tektronix U.K. Ltd.,
Beaverton Holse,
P.O. Box 69, Harpenden, Herts. Tel: Harpenden 61251
Telex: 25559

Wireless World

Electronics, Television, Radio, Audio

In our next issue

(publication date June 18)
Howl suppression. An inexpensive circuit which increases the stability margins of sound reinforcement systems by up to 8 dB .
A.C. voltage regulators. Techniques for regulating the mains supply to produce a constant level output at a nominal value from a $\pm 20 \%$ variable 50 Hz source.

This month's cover shows the fusing together in gas flames of the parts of a cathode-ray tube envelope at Thorn-A.E.I. Radio Valves \& Tubes Ltd. (Photographer Paul Brierley)

J une 1973
Volume 79 Number 1452

Contents

261 Shculd Integrated Circuits be Taught?
262 Microphone Reflectors by G. N. Patchett
265 Jobs for the Grads
266 News of the Month
TV data service
Collision prevention for cars
268 Seen at the Physics Exhibition
271 F.M. Tuner Design - two years later by L. Nelson-Jones
275 Experiments with Operational Amplifiers - $\mathbf{1 0}$ by G. B. Clayton
277 25-Watt Transistor Transmitter for 20 Metres by S. A. Money
280 Microwaves at the Physics Exhibition
281 Unusual Forms of Analogue Modulation by R. C. V. Macario
283 H. F. Predictions
284 Circuit Ideas
Surround-sound with 741 s
Simple current-limited stabilizer
Solid-state null indicator
Matching of complementary pairs
286 The Realm of Microwaves - $\mathbf{3}$ by M. W. Hosking
290 Announcements
291 Circards - 7: Power Amplifiers by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams
294 Letters to the Editor
297 Paris Components Exhibition
299 Magnetism and Magnetic Units by M. McCaig
301 Audio Power Amplifier by P. L. Taylor
302 Sixty Years Ago
303 Multiphonic Organ J. H. A'sbery
305 Books Received
306 World of Amateur Radio
307 New Products
312 Real \& Imaginary by "Vector"
A88 APPOINTMENTS VACANT
Al08 INDEX TO ADVERTISERS

ibpa

inlenationori Busnes
Press Associares

I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson
C) I.P.C. Business Press Ltd, 1973

Brief extracts or comments are allowed provided acknowledgement to the journal is given.

[^3]

anything II could do III can do better!

Several years ago, we decided that our next challenge would be to go beyond the best there was. Our computers told us we had taken the existing cartridge structure and stylus assembly of the V-15 Type II Improved as far as we could, and that hereafter, any improvement in one performance parameter would be at the expense of performance in some other parameter.
Therefore, over the past several years, a wholly new laminated cartridge structure has been developed, as was an entirely new stylus assembly with a 25% reduction in effec-
tive stylus mass! These developments have resulted in optimum trackability at light tracking forces ($3 / 4-11 / 4$ grams), a truly flat, unaccented frequency response, and more extended dynamic range than was possible even with the Type II Improved, without sacrificing output level!
If you like its sound today; you will like it even more as time goes on. In fact, to go back to any other cartridge after living with the Type III for a short while is simply unthinkable, so notable is its neutral, uncolored sound. You must hear it.

INTRODUCING THE NEW

Super-Track "Plus" Phono Cartridge

Shure Electronics Limited • Eccleston Road • Maidstone ME15 6AU

Wireless World

Should integrated circuits be taught?

Pity the poor teacher! Ever since electronic engineering became a recognizable subject for instruction its teachers have had the task of not only handing on the existing knowledge acquired by man over, say, a century but imparting new knowledge which is accumulating at a staggering rate with every day that passes. At the end of his three-year course a university student finds in the outside world a technology which is markedly different from what it was at the beginning. Integrated circuits are just one of the sub-technologies - like valves, transistors and computers in their day - which have hit the course planners very hard. One cannot treat them solely as functional blocks but must explain their anatomy - the active and passive devices and the circuit techniques of which they are composed. Unquestionably the student must learn about integrated circuits, but should he be taught? Should he be taught about them as integrated circuits, or should the aim of the educationalists be to ensure that his fundamental knowledge of physics, chemistry, maths, circuit elements and network theory is so secure that he can cope with i.cs - and any other sub-technology which may come along (e.g. opto-electronics) - as a matter of course?

What raises this question is a combination of two facts: (a) there is a serious shortage of circuit designers in the electronics industry, and (b) electronic engineering courses in universities and polytechnics are no longer predominantly based on circuit techniques and device fundamentals but are including more and more material on systems - communication, control, computing and so on. Of course, the universities in particular can rightly claim that it is not their function to provide vocational training for circuit designers but to educate - to develop the intellectual powers of the student rather than specific mental and/or manual skills. Even so, the requirements for electronic engineering education do often coincide with the requirements for vocational training, and in fact many students want it this way because they see a degree as a meal ticket. But the main point in question is whether the shortage of circuit designers is in any way the result of the changes taking place in electronic engineering courses. To be a good circuit designer one needs the mental flexibility which can only be obtained from a fundamental knowledge of elemental devices and circuits and their possibilities in various configurations. To acquire this knowledge takes time and there is only a limited time available in a course.

It was evident from a recent conference at Hull University on teaching electronic engineering in degree courses that some educationalists, at least, consider this time well lost for the sake of integrated circuits. In one first degree course, for example, integrated circuits have largely replaced their discrete circuit predecessors and about two-thirds of the final year is spent on digital i.cs. In another, students are given the opportunity to design and evaluate their own i.cs and obtain some experience of fabrication.

Admirable as these efforts are to tackle this sub-technology, there is perhaps a danger of throwing out the baby with the bath-water. Concentration on circuits and discrete circuit elements may be thought old-fashioned in a world of systems and building blocks, but may it not in fact serve better the long-term interests of both electronic engineering and education?

Effects of reflector material, size, focal length and microphone size and position on amplitude and polar response

by G. N. Patchett,* Ph.D., B.Sc., F.I.E.E., F.I.E.R.E., M.I.E.E.E.

A parabolic microphone reflector is often dismissed as a device which reflects the sound waves on to the microphone and hence increases its sensitivity and makes it highly directional. Unfortunately, this is a very simplified picture of a very complex problem bringing in the effects of reflection, diffraction and interference. The normal arrangement of a parabolic reflector and microphone is shown in Fig. 1 , the microphone being situated at the focal point of the reflector and facing into it. The parabola has the property that the distance $\mathrm{AB}+\mathrm{BC}$ is a constant whatever the angle $B C$ makes to the axis. Thus all sound waves travelling as a plane wave will arrive after reflection at the microphone at the same instant, i.e. in phase.

The difficulties of the reflector arise because of the large range of frequencies over which the reflector should operate e.g. 100 to $20,000 \mathrm{~Hz}$, a range of $200: 1$, and because the size of the reflector is comparable in size to the wavelength at some frequencies. Parabolic reflectors are, of course, commonly used for light and microwaves but these problems do not arise. Considering visible light, the wavelength is from, say, 400 to 700 nm , a corresponding frequency range of less than 2 to 1 . The wavelength of the light is, of course, extremely small compared with any normal reflector. Similarly, when dealing with parabolic aerials the range of frequencies is small and the wavelength of the radiation is small compared with the dimensions of the aerial.

There are many possible variations when dealing with the performance of reflectors, some being size of reflector, focal length, material, size of microphone and type of microphone, e.g. omnidirectional or unidirectional. Many statements have been made about the effect of some of these but I felt that scientific measurement of the effects of some of the variables would be valuable.

Unfortunately, acoustic measurements are difficult to make because there is no perfect sound source and one is troubled by reflections. Most of the tests have been done in an anechoic chamber but such
chambers have their limitations, and the one used was small for this purpose. Some measurements were made in the open but then difficulties arise due to wind, noise and reflections. Some errors occurred due to difficulties of aligning the reflector accurately on to the sound source.
Before reading details of the tests and results, consider what is an ideal reflector. It should have a uniform frequency response over the range concerned, a narrow polar diagram that does not change with frequency, a good forward to backward ratio and also be as small and light as possible. These factors are largely covered by considering the frequency response and polar diagram of various reflector-microphone combinations.

Frequency response

The overall frequency response does, of course, depend on the microphone, and to eliminate the frequency response of the microphone, the results given are those obtained by subtracting the response of the open microphone from the response of the same microphone in a reflector. Thus the response curves show the change in frequency response of the microphone when used with a reflector. There are a number of difficulties in making these measurements and most were made in an anechoic chamber. Unfortunately, there is no perfect sound source giving a uniform response over the whole audio range.
The normal method of overcoming this difficulty, when determining the frequency response of microphones, is to use a standard microphone to control the output of the loudspeaker, so that the sound level at the standard microphone is constant. By placing the standard microphone near to the microphone on test, it can be assumed that the sound level on the test microphone is also constant. This technique cannot be used with a microphone in a reflector because the standard microphone cannot be placed near to the test microphone, as it would be upset by the reflector.
Accordingly, a standard microphone was used, with feedback to maintain a constant level at the standard microphone, but this was placed well away from the reflector. The sound level at the test microphone could not be assumed

Fig. 1 The difficulty with a parabolic reflector arises because reflector size is comparable to wavelength at some frequencies.
constant, but provided changes were not made in the positions of the microphones, the sound radiated in the direction of the test microphone would remain the same, with or without reflector. Hence the change in frequency response by adding a reflector would be correct.
It is common practice to use a number of speakers with crossover networks to cover the whole frequency range. It was soon realized that such a sound source would not be satisfactory, as the sound at different frequencies comes from different places and when dealing with the microphone and reflector which is highly directional this would lead to errors. Hence, eventually a Tannoy speaker was used where the tweeter is situated behind the cone and the cone is used as the horn of the high frequency unit.

The first consideration was the effect of the material of the reflector. Response curves were taken on a 24 -in aluminium reflector and a 24 -in fibreglass reflector, both having a 7 -in focal length. These gave identical responses and it was concluded that changing the material from metal to fibreglass had no appreciable effect.

The effect of such a reflector, using a Grampian DP6 omnidirectional micro-
phone, is given in Fig. 2, and varies greatly with frequency. The gain is poor at low frequencies because the wavelength of the sound wave is comparable to or greater than the dimensions of the reflector. At 200 Hz the wavelength is about 5.6 feet and hence diffraction rather than reflection takes place. The large dip of about 7 dB at $600-700 \mathrm{~Hz}$ is thought to be due to cancellation of the reflected wave by the direct wave. As the microphone is omnidirectional, it will pick up the direct wave and the reflected wave, after travelling to the reflector and back. The difference in distance is twice the focal length, 14 in , corresponding to half a wavelength at a frequency of approximately 500 Hz , which does not agree exactly, probably because the microphone is not a point source.

One might expect that the gain would continue to increase at high frequencies whereas, in practice, the response drops rapidly above about 10 kHz . This is assumed to be due to interference effects when the wavelength is comparable with the size of microphone. Wavelength at 10 kHz is 1.3 in which is of the same order as the size of the microphone. Maximum gain is about 20 dB which is well worth while and occurs at about 5 kHz . If the drop in response at high frequencies is due to the size of microphone, then it can be reduced by using a smaller microphone. This was confirmed by the use of a Sony ECM50 which is only about $\frac{3}{8}$ in diameter and $\frac{3}{4}$ in long. In this case the peak was at about 10 kHz and the maximum gain was about 22 dB .

The next factor to be considered was the size of reflector, and two other fibreglass reflectors were constructed exactly similar to the 24 in reflector (i.e. 7 in focal length) but of diameter 18 and 12 in . Fig. 3 shows the change in response, using the same microphone and two reflectors. Considering first the 18 in one, the gain is now less at low frequencies as would be expected but the maximum gain is not changed much. The dip occurs at the same frequency and the magnitude of the dip is approximately the same. However, due to the low gain at low frequencies, the bottom of the dip gives a response which is less than that of the open microphone. The 12 in reflector results in still less lowfrequency response and a response at 700 Hz which is much less than that of the open microphone. The maximum response is now reduced appreciably.

The next variable to be considered was the focal length and a fibreglass reflector was made of 24 in diameter and 4in focal length. This results in a much deeper reflector which is heavier and more difficult to carry. The response, using the same DP6 microphone, is given in Fig. 4. This is similar to the 7in focal length as regards low-frequency response and maximum gain but there is no appreciable dip. If the dip is caused by interference between direct and reflected waves, then it would now occur at 900 Hz . There is some reduction at this frequency but nothing like the reduction which occurs with the reflectors of greater focal length.

Fig. 2 Frequency response of omnidirectional DP6 microphone in 24in diameter reflector of 7 in focal length.

Fig. 3 Frequency response of DP6 microphone in 18 and 12in diameter reflectors of 7 in focal length.

Fig. 4 Frequency response of DP6 microphone in 24in diameter reflector of 4 in focal length.

Fig. 5 Frequency response of M69 cardioid microphone in 24 in diameter reflector of 7 in focal length.

I do not know why. The deeper reflector therefore has the advantage of a more uniform response and it also has the advantage of protecting the microphone from the wind to a greater extent than the shallower reflector.

If the dip is due to interference between direct and reflected waves, then it should be largely removed by using a directional microphone such as one with a cardioid polar diagram. The effect of using a Beyer M69 microphone which has a cardioid polar diagram is given in Fig. 5 when used in the 24in diameter, 7 in focal length reflector. The response at low frequencies is now very poor. In the case of the omnidirectional microphone, even if there are no reflected waves, the response at low frequencies will be the same as without a reflector because of the use of the direct sound waves. With the cardioid microphone the pick up of direct waves will be negligible (say -20 to -30 dB) and hence the only output is that due to the reflected wave which is small. There is now no dip as there is no appreciable interference between direct and reflected waves, owing to its low response to direct waves.

The peak occurs at about the same frequency, namely 5 kHz , and the maximum gain is about the same as the DP6. However, the response drops off very rapidly at high frequencies for reasons not known. The same microphone was tried in the 24in diameter, 4 in focal length reflector and very similar results obtained, but with slightly greater gain at low frequencies (1 to 2 dB). A Sony ECM2 1 (Electret) microphone, which also has a cardioid response, was tried with similar results but better at high frequencies, presumably due to its smaller size.
In all the above cases the microphone was placed at the focus of the reflector. Changing the position along the axis does not alter the frequency response appreciably but, as shown later, does alter the polar diagram. In all the above cases the sound source was on the axis of the reflector and the response changes rapidly for sources off-axis. The response of the DP6 microphone in a 24in diameter 7in focal length reflector is shown in Fig. 6 when the sound source is only

Fig. 6 Frequency response of DP6 microphone in 24 in diameter reflector of 7 in focal length with sound source 10° off axis.
10° off the axis. This should be compared with Fig. 2 taken on the axis under the same conditions. The response is approximately uniform apart from the dip at 700 Hz . Maximum response is now less than that on the axis by some 10 dB . Thus the frequency response and sensitivity obtained depend greatly on the accuracy of aiming. If the reflector is used for bird recording and there are a number of birds spaced apart, then the frequency response will be different for the different birds.

Response curves were also taken in the open air and they had the same general characteristics. However, I found it impossible to obtain steady readings at the high frequencies where the reflector is very directional. This was due to the slight wind which tilts the wavefront so that, as far as the reflector is concerned, the sound appears to be coming off-axis. In practice, if there is any wind, the frequency response will change continuously and often rapidly.

Polar diagrams

Polar diagrams were obtained using the anechoic chamber and rotating the micro-phone-reflector assembly. The shape of polar diagram depends very much on the frequency at which it is taken. Diagrams at a number of frequencies are given in Fig. 7 for a DP6 microphone in a 24 -in diameter 7 -in focal length reflector. These have been drawn with the response on axis the same at all frequencies but, of course, they will be of different amplitude according to the frequency response of the microphone. These curves are actual polar diagrams and include the effect of the microphone polar response.

With the DP6 the polar response of the microphone itself is substantially omnidirectional. At low frequencies the reflector has little effect and the response is almost omnidirectional. It is not until a frequency of, say, 2 kHz is reached that the reflector-microphone combination becomes directional. At a frequency of 6 kHz the response becomes highly directional and the output drops approximately 15 dB when 10° off axis. There is generally an increase in response in the backward direction, relative to the sides, due to diffraction round the reflector.

A 24 -in diameter reflector with a focal length of 4 -in gave similar polar responses although the response in the backward direction was reduced as might be expected, the deeper reflector shielding the microphone more. The sharpness of the response in the forward direction was rather less, in general, than that of the 7 -in focal length reflector. In these diagrams all the minor lobes have not been shown but have been smoothed out, as these are likely to change with small changes of frequency and, in some cases, are too numerous to draw on small diagrams.

As the size of the reflector is reduced the polar diagrams become more omnidirectional, particularly at low frequencies, and diagrams are given for the 12 -in reflector of $7-$ in focal length in

Fig. 7 Polar diagrams of DP6 microphone in 24 in diameter reflector of 7 in focal length.

Fig. 8 Polar diagrams of DP6 microphone in 12in diameter reflector of 7 in focal length.

Fig. 9 Polar diagrams of M69 cardioid microphone in 24in diameter reflector of 7 in focal length.

Fig. 8, using the DP6 microphone. At high frequencies the differences are not as great, but the smaller reflector does not give as great a suppression in other than the forward direction or, looking at the other way, does not give as great a gain in the forward direction. This is to be expected from the frequency response curves.

In Fig. 9 are shown the polar diagrams of a cardioid microphone (M69) in a 24 -in diameter reflector of 7 -in focal length. This combination gives sharper polar diagrams, particularly at low frequencies. However, at 250 Hz and lower frequencies the response is greater in the backward direction than the forward. It must be remembered that the

Fig. 10 Polar responses of a DP6 microphone in a 24 in diameter reflector of 7 in focal length with the microphone at different distances from the reflector.
microphone is pointing in the backward direction i.e. it has its maximum response in that direction. Thus at low frequencies, where the reflector has little effect, the response tends towards that of the microphone itself. This is an obvious disadvantage if there are low frequency interfering sounds at the back of the reflector. The responses of this microphone in a 24 -in diameter, 4 -in focallength reflector were similar but with suppression of the response at the sides and back being rather better.

The effect of moving the microphone on the axis away from the focal point is large and is shown in Fig. 10. These are taken at 4 and 8 kHz for the DP6 microphone in a $24-$ in diameter, 7 -in focal-length reflector. If the microphone is not placed at the focal point, the sharp polar diagram is destroyed with the introduction of side lobes.

It is obvious that some distortion of the sound will occur when using a reflector, the amount depending very much on what is being recorded. Frequency distortion will be greatest when a large range of frequencies is involved, there being considerable loss of low and very high frequencies. How important this is depends on the application.

Reflectors are commonly used for wild life recording, particularly of birds. Many birds have a song at high frequencies and hence the loss at low frequencies is not so important but some harmonics may be lost due to the reduced response at very high frequencies. I did some tests to determine if the distortion was audible.

Recordings of birds were obtained using an open microphone. These were then played in an anechoic chamber, using a high-quality loudspeaker, and the resultant sounds were picked up by various microphones and microphonereflector combinations. The difference is only slight for birds with a high-frequency song but is very noticeable in the case of birds with a relatively low-frequency
song. One recording was made of a chaffinch and Canada geese. When a reflector is used, the relative levels change, the chaffinch song being increased relative to that of the geese, and the sound of the geese is appreciably changed and becomes much thinner.

It should be possible to correct for this response, say after recording, by rerecording through a filter with a response the opposite to that of the microphonereflector combination. I tried this and an improved result is obtained, the bird sounding more natural. However, the difficulty is that any low-frequency unwanted background noise is greatly increased and unless an original recording with very low background can be obtained, the method is not very practical. Another difficulty is that the response varies greatly if the source is off axis and hence the filter used can only be correct if the sound source was accurately on the axis. Any other sounds off axis would, of course, be distorted due to the correction filter.

It is difficult to know just how much distortion is acceptable and again this depends on the application. If the recording is of a rare bird, then a recording with some frequency distortion is presumably better than nothing or one with large background noise due to the use of an open microphone.

An alternative to the microphone and reflector, and used by broadcast authorities, is the gun microphone. This has a more uniform frequency response if designed correctly. It does not have a sharp polar diagram, although the polar diagram does not change much with frequency. The microphone does not have the inherent gain of a reflector and is very expensive.

In practice, the polar response of any directional microphone will be changed by the reflection from local objects, from the ground and by the effect of the wind.

Jobs for the Grads

When looking for jobs electronic engineering graduates are increasingly coming to regard industry as a "relatively insecure second best" according to Roland G. Hirst, Careers Adviser of Hull University. Speaking at a recent conference at Hull on electronic engineering teaching * (see Leader), Mr Hirst said that until 1970-71 few graduates had had serious difficulty in obtaining jobs, and a very high proportion of students had sought employment in the electronic engineering industry. The severe recession in graduate recruitment to the industry which took place in 1970-71 and continued into 1971-72 seemed to be largely over. Large numbers of vacancies had been notified for 197273 graduates but a strange change seemed to have taken place. The publicity given to "rationalization", redundancies, "adjustments to research budgets" and the like seemed to have penetrated the undergraduate consciousness. The result this year was that industry was rarely mentioned as a primary career aim.

Adverse publicity and the sharply reduced number of vacancies had had a considerably greater effect on student attitudes than most employers seemed to realize, went on Mr Hirst. With a virtually static output and a steadily rising demand for electronic engineers which the present economic expansion seemed to indicate, the industry would need to positively market its career opportunities if it were to achieve its recruitment targets.

An industrialist and part-time academic, Dr P. L. Kirby of Welwyn Electric Ltd, admitted that the industry tended to take a short-term view over employment. "When things get difficult down come the shutters" he said, and sandwich courses etc. were cut. The difficulty was that industrial cycles were short-term events relative to the universities' time scales. There had in fact been an electronics manufacturing boom since Christmas, particularly in the components sector, and although there was a general atmosphere of confidence prevailing the employers were not willing to commit themselves. Employment would not go up pro rata with production: it was greater productivity that they wanted.

Mr Hirst maintained that the massive publicity to "graduate unemployment" was based in part on a misconception. Graduates were the only specialist group entering employment for whom figures were available. Whether graduates suffered more or less than school leavers, holders of H.N.Ds and other groups was simply not known.

[^4]
News of the Month

TV data service

Engineers of the Independent Broadcasting Authority have recently developed and demonstrated a new television data system, "Oracle", capable of providing a continuous public information service on conventional TV transmitting networks. With this system, the public would receive up to 50 different "pages" of information "written" on their television screens, each page containing up to 880 characters, or roughly 120 words. These messages can be displayed or superimposed on the screen of a domestic TV receiver without in any way affecting the reception of normal television programmes.

The system is similar to the B.B.C's proposed "Ceefax" system (see May issue "TV Information Service") with information transmitted within the normal TV signal. The two systems are, however, not compatible and before a nationwide service could be considered it seems desirable that a standard for the transmission of such a service should be decided upon, Experimental "Oracle" transmissions have been made on the IBA's London television broadcasting station to test the experimental receiving unit which has been assembled at the Authority's London headquarters. Any kind of written information could be sent, one page at a time, with the individual pages up-dated at regular intervals. Since it takes 1.8 seconds for the transmission of one page of this material, it is possible for the 50 pages - each perhaps representing an entirely different information service to be up-dated or re-written in a period of less than two minutes. The viewer would also have the facility to "hold" indefinitely any page of this information.
Two television line periods, during field blanking, have been set aside internationally for data transmission, although not specifically for public data transmission. Two 64 -microsecond line periods repeating at the rate of 25 per second, are more than sufficient to allow the amount of data envisaged in an "Oracle" service to be transmitted. During each brief "Oracle" transmission period - that is 64 microseconds 50 times a second - one "segment" of display information representing up to ten characters, is transmitted together with its "address code". This address indicates to
the receiving unit the exact position on the screen and to which page the information relates. This signal is in the form of a run-in code (5 binary digits or bits), a start code (8 bits), a line number (5 bits) and the field or page number (6 bits), and the address (8 bits).

Collision prevention for cars

RCA have developed an experimental radar designed to prevent car collisions by responding to the distance of the car ahead and sounding a warning when the separation distance becomes unsafe. The radar, mounted on the front of a car, transmits a continuous signal which is received by a "passive reflector" on the rear of the vehicle ahead. The reflector doubles the frequency of the transmitted signal and sends it back to the radar. By measuring the time required for the signal's round trip, distance to the car in front can be calculated. A warning light and buzzer indicate when the separation distance decreases below one car length for each $10 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. of speed of the car carrying the radar. Range of the radar is 100 yards.

The radar still requires testing and refinement but RCA believe that an opera-

tional system, including both the transmitting/receiving radar and the special reflector, can be mass produced within five years. Besides safety applications, the radar could also permit a smoother traffic flow and significantly decrease travel time in congested areas.

An important feature of the radar system is its rejection of false responses created by signals returned from roadside objects. This is achieved by making the radar receiver responsive only to those signals produced by the reflector at double the transmitted frequency. Since the signals reflected by the road and roadside objects are not at this second harmonic, they are ignored by the radar. The experimental radar transmitter/ receiver measures $17 \times 8 \times 2 \frac{1}{2} \mathrm{in}$. It is mounted on the front bumper of the car, but an operational version could be smaller and concealed in the grillework or behind a non-metallic front licence plate. The radar beam is narrow, so that when a car moves out to pass a car ahead, the signal is not reflected and the car can pass without a warning being sounded.

Fast data link

The Harwell Electronics and Applied Physics Division of the U.K. Atomic Energy Authority have developed a novel system for interconnecting computers over inexpensive lines without the aid of repeaters. The system permits a rapid exchange of serial data at a low error rate over distances up to $1 \frac{1}{2}$ miles. For example, the data transfer rate over $1 \frac{1}{2}$ miles and with an error rate of 1 in 10^{10} is $880 \mathrm{kilobits} / \mathrm{sec}$. Shorter distances allow higher bit rates and vice versa.

A data-link system consists of a pair of couplers, each inter-facing a computer to line, software inter-facing with the customer's programme, and the line itself. Each coupler is connected to its computer as a typical autonomous peripheral device, i.e. it can receive command words and have its status tested under programme control, and it exchanges data with the computer in autonomous mode. The transmit channel of a coupler accepts words in parallel from the computer and converts them to a serial bit-stream for transmission. The receive channel accepts a serial bit-stream and presents data as parallel words to the computer.

The software package operates in realtime, and data links time share with the customer's other programmes. Error detection and rapid recovery facilities are included. Each data link operates over two twisted-pair wires in multi-pair telephone cables.

BSI asks for industry's view

Many people have suggested that some kind of standard code for product reference numbers is desirable and investigations are being carried out in this country and abroad. Three years ago, when the British Standards Institution circulated a-draft for comment, the replies
showed interest in the idea of a standard but little agreement on the form of numbering to be used.

In order to find out what system of numbering will be the most suitable BSI is now circulating a second draft, with a questionnaire. This draft describes three different systems of numbering and the advantages and disadvantages of each. People responsible for the allocation and use of product reference numbers are asked to obtain copies of the draft and send BSI their views in the questionnaire. The information thus collected should show what kind of standard format is likely to be the most useful.

Queen's Award to Industry

Among companies receiving the Queen's Award to Industry are EMI, Racal-Milgo, B \& W Electronics and the English Electric Valve Company.

EMI received two awards, one to the Central Research Laboratories at Hayes, Middlesex for technological innovations in the EMI-Scanner, a computerized X-ray technique for the investigation and diagnosis of brain disease. The second is to Anglo-EMI Film Distributors Ltd, the Group's film production and overseas distribution company, for export achievement. Racal-Milgo and B \& W also receive their awards for export achievements in the respective fields of data communications and loudspeakers.

The award to the English Electric Valve Company is in recognition of achievement for technical innovation in ceramic hydrogen thyratrons. These are gas-filled electron tubes used as very accurate, high voltage, high current, fast operating switches which can switch powers of many millions of watts with accuracies measured in nanoseconds.

IBC '74

The fifth International Broadcasting Convention - IBC ' 74 - will be held in London at the Grosvenor House, Park Lane, from 23rd to 27th September 1974.

Advances in all aspects of broadcasting will be highlighted both in the technical sessions and in the exhibition of broadcasting equipment, both radio and television. Among the items to be covered in the technical sessions are: automation in broadcasting; training and management; future maintenance philosophy; propagation and service planning; receivers; recording, storage and replay; satellites in broadcasting; signal distribution systems: signal sources; sound systems - stereophonic and quadraphonic; technical aspects of international programme exchange; and transmitters, transposers and aerials.

New communications satellite

A new synchronous satellite, Intelsat IV-A, will have nearly twice the capacity of the Intelsat IVs now in global service. The International Telecommunications

Based on a radar principal applied to intruder detection devices, the unit suspended above this baby provides monitoring of the life condition without any physical contact. Should movement cease, an alarm is triggered and immediate action can be taken by the nursing staff. The detector, supplied by S. E.
Laboratories, is installed at the new Nottingham City Hospital baby care unit.

Satellite Organization (Intelsat) has approved a $\$ 72$ million contract with Hughes Aircraft Company to build three of these high-capacity satellites for handling increasing international telecommunications traffic. Launch from Cape Kennedy of the first satellite in the new Intelsat IV-A series is scheduled for mid-1975.

An estimated 40 million overseas telephone calls will be made to and from the United States this year. The number is expected to rise to 200 million by 1980. To fulfil this accelerating growth, the larger and more powerful Intelsat IV-A will carry a new type of aerial able to re-use the same frequency aimed at different points on the globe. Use of the new aerial system will require no major changes or modifications in existing Intelsat ground stations. The spacecraft will provide capacity for 11,000 telephone circuits or 20 simultaneous colour TV channels, nearly double that of the present Intelsat IVs.

Tape news

Philips, the originators of the Compact Cassette tape system, celebrate the tenth anniversary of their invention this year. The cassette recorder was first introduced as a small battery portable machine at the Berlin Radio Fair in 1963 and since then the combined total sales of cassette machines have topped the ten million mark.

This year also marks their entry into the DIN "hi-f" standard range with new cassette recorders. A particularly interesting feature of these machines is a clever hysteresis clutch fitted to the feed and take-up spools in place of the more conventional felt pad clutch. Philips claim
that this clutch, unlike the felt pad version, requires no maintenance and will give the correct torque in braking and take-up modes under all conditions. If the claim proves to be well founded this one idea could go a long way towards reducing the common jamming problems experienced with many cassette machines.

Further to our March issue report on modern tape recorder heads, an increasing number of research and development papers have been reaching us on the topic of Sendust heads. This material first appeared in some experimental video heads made in Japan. It is an alloy of 85% iron, 5.5% aluminium and 9.5% silicon, the permeability falling midway between that of Mumetal and the ferrites currently employed for many audio heads. Sendust was first discovered in Japan over 20 years ago as a substitute for the nickel alloys but since it could only be made in powder form its use has been, until recently, confined to resin-bonded powder cores for r.f. coils and transformers. New techniques are being developed to produce a suitable form for the laminations of a head core. Its advantage over Mumetal is that it is considerably harder and suffers less from loss of magnetic properties when the usual finishing operations are undertaken. From the amount of interest being shown in this material it is felt that tape recorders with heads of this new material are likely to appear on the market this year. Its value is obvious in cassette recorder applications where chromium dioxide tape, now readily available, creates two unique problems. First, increased head wear, though some brands claim equal wear with the ferric oxide types and second, a higher coercivity which some ferrite heads cannot overcome without driving into saturation.

Seen at the Physics Exhibition

Display techniques c.a.d. - function generation
 node logic

Voltage-variable colour filter

The "twisted" nematic display, a liquid crystal* cell relying for its operation on polarized light, has the attractions of negligible current consumption, low threshold voltage, high contrast ratio, and dual absorption or transmission modes (black on white or white on black displays). In this kind of display a thin film of a nematic liquid crystal, or a mixture of such materials, is sandwiched between two glass plates on which conducting but transparent electrodes have been deposited, around 10 to $50 \mu \mathrm{~m}$ apart.

This type of display uses the surface of the electrodes to orient the nematic molecules (in a nematic, the ellipsoidal molecules have their long axes in the same direction) parallel to the electrodes. In a "twisted" nematic cell, WW May 1972 page 230 , the alignments on the two electrodes are at 90° to one another, the result being that the molecular alignment is twisted and follows a quarter turn of a helix. As the helix pitch is made much larger than the wavelength of light used, the helix acts as a guide for planepolarized light, rotating it through 90°.

Application of an electric field over a certain threshold value causes the induced electric dipole, and hence the molecule, to be parallel with the field. Being parallel to the optic axis, polarized light now passes unrotated. Thus, with the addition of a polarizer either side of the cell, the display can be switched from transmitting to reflecting or vice versa by making the alignment of the two polarizers 90° or 0°.
Work on this kind of device is going on at many laboratories and devices of this kind were shown by the Royal Radar Establishment, last year. A related device was shown by Standard Telephone Laboratories this year, that produces a voltagevariable colour display. In this one, molecules are again aligned parallel to the electrode surfaces, but the surfaces are arranged to be parallel, rather than twisted

[^5]by 90°. So all the molecules are constrained by the surface forces to have their long axes parallel to, and in the plane of, the electrodes. The material resembles a uniaxial crystal with its optic axis perpendicular to the light direction.

The cell is placed between "crossed" (90 -degree) polarizers, with the long molecule axis at 45° to the polarization axis of each polarizer, this giving maximum light transmission. The material is birefringent (for light not incident along the optic axis) and there is a phase difference between the ordinary and extraordinary refracted rays. Plane-polarized light is thus rotated by the crystal, the amount depending on wavelength. When the molecules are normal to the incident light, the birefringence is maximum, decreasing to zero as the applied electric field rotates the molecules to be parallel to the field, and light direction.

White plane-polarized light, transmitted by a polarizer, is rotated by the cell and only a narrow bandwidth of light, i.e. one colour, passes the second polarizer, effectively giving a voltage-controlled colour filter. The material is so birefringent that the plane of polarization is rotated by more than the 90° required for transmission through the second polarizer at low voltages. Several wavelengths are transmitted corresponding to 90,270 , 450° etc., producing mixed colours. At about 10 to 20 V pure colours are obtained and at around 30 to 40 V all molecules are aligned with the field, resulting in no birefringence and no transmission (polarizers crossed).

Response to voltage changes is fast and the display can be operated up to around 100 kHz . High-purity material can be used because no conduction is required, which apparently greatly increases operating life. Operating temperature of such devices is -15 to $+70^{\circ} \mathrm{C}$.

Computer-aided graphic circuit design

A system using existing circuit analysis programmes allows circuit designers to specify circuit connections graphically and maintain a record of the circuit for any subsequent changes which may be made. Called Circuit, this interactive graphical
system was developed by the Applied Physical Sciences department of the University of Reading, and generates the data stream required by Racal's REDAP31 programme.
In the display mode, the designer is shown a rectangular matrix of dots and a library of component symbols on a visual display unit The circuit is assembled by using a light pen to move components to suitable pairs of dots. Component values are entered by teleprinter. When the circuit has been completely built up in this way, a programme is called up which numbers the modes and lists the components with their values and mode numbers. Obvious errors are detected and appropriate error messages printed. Once this and any other data, for instance source and load impedances and frequencies of interest, has been filed, the designer telephones the system providing the circuit analysis programme and results of the analysis appear on the teleprinter. Hardware required by the system is a PDP 8 computer with a 20,000 word drum backing store, a simple terminal and, of course, a Datel link.

Non-volatile storage with m.n.o.s. transistors

Semiconductor memories based on bistable circuits are characterized by volatility of the stored information, i.e. if the supply fails the stored information is lost. The non-volatile property of the m.n.o.s.(metal nitride-oxide-silicon) transistor enables information retention over several months, typically. The m.n.o.s.t. is an insulatedgate f.e.t., similar to a conventional m.o.s. transistor, whose threshold voltage may be varied between wide limits by the application to the gate of a voltage greater than a certain critical value. As the device can be switched between two distinct threshold voltages, it has the basic requirement of a memory device

Charge is stored in deep traps within the gate dielectric so that no power is required to maintain either state. The information may be read out by sampling with a gate voltage between the two threshold voltages and detecting if the device is on or off. As long as this gate voltage is less than the critical voltage, there is no tendency to alter the storage state.
(The m.n.o.s. transistor differs from the conventional m.o.s. transistor only in the structure of its gate dielectric. In the m.o.s.t. this is a 150 nm layer of thermally grown silicon dioxide, in the m.n.o.s.t. it is a two-layer structure of silicon nitride on silicon dioxide.) Retention time depends on write time; a write time of $1 \mu \mathrm{~s}$ results in storage for a day, and a 10 ms write time will produce storage for over a century!

The Plessey Company were showing how m.n.o.s. devices were useful in measuring electron or hole mobility in inversion layers because a charge introduced between silicon and metal electrodes remains stored indefinitely, being undisturbed by a measuring potential applied to the gate. Equipment exhibited measured effective mobility over a range of gate potentials, effected by superimposing an a.c. signal on the d.c. gate supply and monitoring the transconductance. The mobility-gate potential curve is displayed directly on an $x-y$ recorder.

Waveform synthesis - 1

Analogue techniques to produce simple waveforms such as sinusoidal, rectangular, triangular and ramp shapes while being straightforward, do not lend themselves easily to generating any waveshape. A new instrument by Prosser Scientific Instruments enables the synthesis of any waveform using digital methods and with a keyboard data input, while at the same time allowing analogue control over the signal outputs.

The instrument is addressed from a keyboard, (alternatively from punched tape, resistive probe or an electrical analogue signal via an a-to-d converter) and is coded by providing rectangular cartesian coordinates of the designed waveform. In practice, the waveform is fed into the keyboard from a tabulation of co-ordinates derived either by calculation or by reading from a previously plotted graph. Only the y co-ordinate is fed in, the instrument

Prosser Scientific Instruments digital waveform synthesizer with keyboard data input.
automatically advancing to the next x space. An m.o.s. random access memory is clocked at one step intervals, a numerical display showing the current x position. Correction of wrong entries is facilitated by the register being made to clock backwards. When the entry is complete each pair of co-ordinates can be checked on the display. The generator is then ready to recall the programme waveform by emptying the store through a d-to-a converter.

In capturing natural events, the transducer would feed the a-to-d converter and the event would then be stored in the memory, to be played back at any chosen repetition rate. As the literature on the PSI3000 instrument says of this mode, it's a bit like a tape recorder with continuous tapes that can be played back at any speed. The effect of modifying the event in some way can then be investigated using the keyboard.

The waveform can be repetitively displayed at any desired rate, amplitude or phase. An additional output is available with variable delay useful for autocorrelation and possibly in other applications. One suggestion is in simulation of road surface profiles in testing vehicles the synthesized output representing the
displacement to the vehicle's front wheels and the delayed waveform representing the back wheel displacement. The two signals would then serve as inputs to a vibration simulator.

Waveform synthesis - 2

In another digital function generator, developed at the City of Leicester Polytechnic, the input ordinate information can be fed in by an inexpensive card reader or by specifying the address or number of the ordinate and its binary/octal value on two sets of switches. The operation is different in that output waveform is constructed in a ramp mode (in control engineering parlance, a first-order hold process) in which successive ordinates, taken from a 32×8 bit m.o.s. store, are connected by a staircase approximation to a straight line (see block diagram). The difference between two successive ordinates is fed to a rate multiplier whose output operates a reversible register counting up or down at a rate proportional to the difference between the two ordinates. When the second ordinate of a pair is reached, the difference is then taken between the next two. Information is stored in 8 -bit form, the output range of $\pm 5 \mathrm{~V}$ being quantized into 256 levels, spaced by about 40 mV .

In another mode, the pulse (or zeroorder hold mode), the output is held constant at the last ordinate value between any pair of ordinates. This is specially suited to generating pulse sequences with differing, well-defined amplitudes.

External mode control and clear inputs are provided and a phase-locked trigger can be used to move the starting point along the waveform.

As there is no lower frequency limit of the instrument it can be used for precision v.l.f. measurement and control applications. Upper frequency limit is 1 kHz . As the 8 -bit precision chosen corre-

One way of generating waveforms digitally, proposed at Leicester Polytechnic, which can be used with an inexpensive pencilled-card reader.
sponds to a maximum of 256 steps between ordinates, the clock drive frequency is 32×256 times the output frequency, or about 8 MHz in this case.

New technique in driving solid-state displays

New drive circuitry for solid-state displays that needs only one character generator for any number of characters, while at the same time being static, requiring only two signal leads to the display and eliminating current-limiting resistors, has been developed by ITT Central Applications Laboratory. The function of so-called drive circuits is to provide signals at the right voltage and current levels to operate the display, to route input information to the required output device, to convert binary-coded input data to the appropriate form, store the input, and to synchronize the system with a clock. These functions are currently implemented either in a static or in a dynamic, multiplexed way.

With the traditional static technique, all the functions are duplicated for each character, and with alphanumeric displays this can be costly. Further, the decode/ drive i.c. would be specific to a display and different circuits would be needed for different kinds of display.

Time sharing methods need only one decoder, the character generator and drive functions being shared among characters by multiplexing, but suffer from a lack of "modularity" or flexibility and because the displays are switched there are brightness and peak current problems, making integration complex. (With liquid crystal devices there may also be operating speed limitations.)

The new concept is to mount an m.o.s. serial-in parallel-out shift register on a substrate together with, say, the gallium arsenide phosphide elements, each output of the register being connected to one of the display. The system has the advantatage of requiring only one character generator for producing coded signals for the shift registers, which are connected in series. The output resistance of the m.o.s. circuit can be designed to provide current limiting for the l.e.ds, and outputs can be paralleled if more current is needed. Liquid crystals displays can be driven from the same i.c.

The system operates as follows. Coded data of the first digit is fed to the character generator where it is decoded and passed to the first shift register by a train of clock pulses applied to both units.

Data for the second digit are then fed into the generator and the next sequence of clock pulses shifts the information from the first register into the second and the new data into the first. With each sequence of pulses information is shifted to the left as new information is fed in from the right. When all the information has been fed into the shift registers a static display is given requiring no external memory.

By suitable choice of the number of bits, a shift register i.c. can be developed so that two chips can drive a 7×5 dot matrix and one chip with its output paralleled in pairs can drive a seven- or nine-segment numeric display.

In use each character is completely modular and, apart from supplies, the only connections required are a single input and output and a clock input. Any number of characters can be strung in series and both liquid crystal and diode displays can be mixed. There are also other applications, for instance the solid-state anologue display, described elsewhere. Seven-segment numeric displays are in production and 35 -dot alphanumeric displays are expected to be available in September from ITT Components Group, (STC) Brixham Road, Paignton, Devon TQ4 7BE.

Solid-state analogue readout

Although the solid-state digital readout using light-emitting diodes has undoubted advantages in many situations that demand high accuracy, and high reliability in the presence of vibration, it is not the answer to everybody's display problem. Where accuracy is not of prime importance, analogue readouts enable information to be read off instruments much more quickly. This is especially so in automotive and aeronautical situations, and where a large number of variables are being displayed simultaneously, as in process control plant. In these situations the robustness of solidstate systems would be beneficial.

A solution to this was presented on the Standard Telephone Laboratories' stand, where a solid-state analogue display is achieved by arranging l.e.ds in a column or row, say 50 for 2% resolution. The measured variable in the form of an analogue voltage is first converted into digital form. Then a serial-in parallel-out shift register is used to feed each dot or diode on the array. The control circuits are arranged to feed this shift register with an appropriate pulse and clock sequence to

Serial-in parallel-out shift registers enable display modules to be connected with only data wires.

produce the right indication. In one example seen, "writing" takes 3 ms followed by 30 ms of display, the input voltage being sampled and displayed 30 times a second. The m.o.s. shift register chip is that used in the display modules, described elsewhere (see "Driving solid-state displays"). The circuit arrangement permits only two signal wires to the display unit ("data" and "clock" lines), apart from power lines. The unit lends itself to low-profile fabrication, which should attract the motor manufacturers' interest, as the cost of panel cut-outs would be avoided.

Node logic

Node logic elements have been developed at the University of Reading, which are suitable for directly implementing the logic on a state diagram. The state diagram provides a method of describing the behaviour of a sequential logic system. On the state diagram, each state that the system can or must assume is represented by a node. Each transition from state to state is signified with an arrow from node to node which is labelled with the signal that causes this particular transition. Using the available range of logic elements, it is often difficult to design a reliable electronic implementation of a system although it may be quite easily defined by a state graph.

To simplify this process, a logic element has been designed which directly simulates the node on a state graph. The wiring between elements is in one-to-one correspondence with the "connections" on the state diagram, which is itself the logic diagram of the circuit implementation. In the development stage, the logic elements have been built on conventional printed circuit plug-in boards.

The state graph simulator is arranged so that the node element terminals are brought out onto patch panels allowing the direct "plug-up" of a state graph. On the patch panel, each node has a set of input sockets, a set of stimulus sockets and appropriate output sockets. To represent a state graph arrow, a jumper lead is plugged between a node output and the following node input. The stimuli which cause a state change from a node are plugged into its stimulus input sockets. The machine can then be operated by switching the stimuli as logic levels or pulses.

Should a fault occur due to the disconnection between nodes or a node malfunction then the "present state" node cannot execute its state transition procedure on receipt of a stimulus. It therefore puts a signal to a fault bus-line causing an indication. Acknowledgement of this indication by operation of a switch causes the last operative node indicator light to come up, indicating the last state the machine was in. This is helpful to an operator plugging up a system but in addition gives the challenging possibility of a system which detects its own faults and bridges them out with a spare element or circuit, a kind of "self-healing" logic system.

F.M. Tuner Design - Two Years Later

Varicap diode tuning and lower gain modifications

by L. Nelson-Jones, F.I.E.R.E.

Abstract

Many readers have asked the author for details of a modification to the f.m. tuner published in April and May 1971 (and April 1972) which will enable it to be voltage tuned. The variable-capacitance diode design subsequently produced and described in this article covers the same tuning band of 87.5 to 108 MHz . Also described is a simple modification to reduce the gain of the original tuner.

In recent years a number of types of silicon variable-capacitance diodes have appeared on the market, some having very high ratios of minimum to maximum capacitance. These diodes make use of the capacitance of the depletion layer in a reverse biased diode. All semiconductor diodes exhibit a voltage dependence of reverse biased capacitance, but the degree of variation and loss factor depend on the construction of the diode. Normal signal diodes, although exhibiting the effect, do not have a sufficient variation for tuning the f.m. band. The $87.5-108 \mathrm{MHz}$ band needs a minimum capacitance change of the order of $3: 1$. This apparently large ratio is necessary because of the relatively high stray capacitances in the circuit. In a tuner designed solely for varicap tuning these strays can be reduced somewhat, but here we are concerned with replacing a normal tuning capacitor without altering the layout.

For the design described below the BB103 diode has been chosen and the capacitance/voltage relationship for these diodes is shown in Fig 1. A wide capacitance range can be covered by the diodes (almost 5:1) if the bias can be allowed to drop to a value of some -0.3 volts. However, the range required can be obtained between approximately -2 and -27 V . A low reverse bias has to be avoided in a tuner using f.e.ts since the oscillator voltage injected is high compared with a bipolar design. The diodes must not be allowed to conduct or the law will be spoilt in the oscillator tuning section by the resultant build up of charge at the low frequency end of the band where the diode bias is lowest. To assist in the application of the bias and to obtain a suitable value of capacitance, two diodes are used in each tuning section (see Fig. 2) The diodes are "back-to-back" and the bias is applied to the centre point. In the case of
the oscillator and aerial input tuned circuits, the whole circuit is at ground potential and therefore only a high value feed resistor is needed to supply the centre point of the diodes with the necessary reverse bias. The value of the resistor must be high enough to avoid unnecessary reduction of the Q of the tuned circuits. A value of from 100 k to $1 \mathrm{M} \Omega$ is suitable. The tuned circuit coil in the drain circuit of $T r_{1}$ is at the drain potential and a blocking capacitor has therefore to be added in this circuit. This in turn means the addition of a second high value resistor to ensure that the bias is applied to both diodes.

The varicap diodes and associated components are assembled on a small p.c.b. which takes the place of the tuning capacitor. The components are all mounted on one side of the board in the usual manner together with connection leads of 22 s.w.g. tinned copper wire and the p.c.b. is then mounted on spacers. Components on the underside use the original mounting holes provided for the tuning capacitor. An external lead from this sub-board is then taken to the tuning control unit,

Fig.1. Capacitance versus voltage relationship for the variablecapacitance diode alternatives.

Varicap board showing the diodes, resistors and capacitor, together with the connecting wires. The diode cathodes face away from the six connecting wires.

which is described below. This new p.c.b. is shown mounted on a tuner. A photograph shows the underside of the board before mounting on the tuner.
The only other changes needed to the tuner for varicap diode tuning is that the coils need to be replaced with slightly modified versions (shown in the photograph). The coils are all made from 18 s.w.g. tinned copper wire, but L_{1} and L_{2} are of a different diameter to the original coils. These two coils are now wound on a $\frac{5}{16}$ in former. Inductor L_{1} is otherwise as the original design, but on L_{2} the tap has been moved to the end turn nearest the supply, and physically adjacent to the $100 \mathrm{k} \Omega$ resistor. This change reduces the interaction between the tuning of the mixer and oscillator tuned circuits when trying to "track" the tuner, and although not great this reduction in interaction does make tracking much easier. Gain is not affected to any noticeable degree. The oscillator coil L_{3} remains at $\frac{1}{4}$ in internal diameter, but differs in construction. The direction of winding has been reversed, giving approximately an extra half turn. A 22Ω anti-parasitic resistor prevents the front-end "taking-off" at u.h.f.' This "vertical" resistor replaces the tap connecting L_{1} to $G 1$ of $T r_{1}$ and is shown in the photograph just behind the $0.001 \mu \mathrm{~F}$ capacitor in the foreground. Coils are 0.1 in from the surface of the board as in the

Fig.2. Revised front end of the tuner showing the replacement of tuning capacitors by varicap diodes which provide voltage tuning.

General view of the varicap board fitted to the tuner.

original design. It must be emphasized that these new coil designs only apply to the varicap design.

Tuning control units

A tuner control unit is used with the varicap tuner which is similar to those now being fitted to most single standard u.h.f. television sets.

This particular unit has six selector buttons. Pressing any button releases the previously selected button, and turning the selected button adjusts the tuning. In these units six potentiometers with graded tracks are wired with all tracks in parallel, but with the sliders selected by the action of pushing a button. The grading of the track is such that an approximately linear relationship between potentiometer movement and frequency is achieved when used with a varicap tuner. Various manufacturers fit other extra facilities; for instance the tuning control unit has a switch made when any button is held fully in, so that when tuning a station by rotation of the control knob, and pressing it at the same time, the a.f.c. control can be shorted out. The method of connection of this switch to the tuner is shown in Fig. 3. Many of these tuning control units have such a switch, though not necessarily ganged to the selector mechanism. It is often an additional button at one end. Various values of total resistance are available but a common value is $100 \mathrm{k} \Omega$ per track, giving a sixbutton unit a resistance of around $16 \mathrm{k} \Omega$ with the six tracks in parallel.

Power supplies

The varicap tuner needs a highly stable noise free supply of around 30 V to supply the tuning control unit, and the author has therefore devised a suitable circuit, Fig. 4, giving regulated supplies of 30 V (nominal), and 12 V . An optional 6 V supply (stabilized) is also included for use with
the Portus and Haywood decoder ${ }^{2}$. The Motorola MC1310 integrated circuit decoder also works well with the tuner and may be run off the stabilized 12 V rail. The circuit of the 30 V stabilizer uses the SGS TBA271 regulator, which is itself an integrated circuit, but is equivalent to a low temperature coefficient high voltage zener diode. For as good a regulation as possible the device is fed by a constantcurrent circuit, consisting of a transistor with emitter resistor and the base-emitter voltage stabilized by a zener diode. The temperature coefficients of the forward bias of the transistor and the zener diode are approximately equal and therefore
cancel. The use of this constant current feed together with the low slope resistance of the TBA27I gives the main smoothing action of the supply, but this is augmented by the addition of a capacitor to reduce still further the ripple and noise. This capacitor is used together with the series impedance of one of the two pre-set potentiometers (used to set the span of the tuning control voltage) as a simple $R C$ filter. The result is a supply with less than $100 \mu \mathrm{~V}$ pk-to-pk noise. The 12 V supply uses an SGS TBA625B integrated circuit series regulator. This gives a very simple circuit and is current overload protected above 100 mA load.

Fig.3. Method of connecting the switches of the tuner control unit to the tuner.

Fig.4. Stable noise free power supply giving regulated 30 V and 12 V and an optional stabilized 6V supply. Voltage levels in volts are shown in brackets at appropriate points on the diagram.

The rectification circuit for the 30 V supply may seem a little odd at first until it is realized that it is a simple voltage doubler but "hung" on top of the rectified supply for the 12 V regulator. The voltage doubler only gets half-wave pulses from the side of the bridge rectifier to which it is connected, but the output of the doubler (when added to the main supply) results in a supply approximately twice that of the main supply, without the added complexity of an additional winding on the transformer.

If the 6 V supply is omitted then the capacitor between the 6 V output and the 0 V line should be omitted and replaced by a wire link so that the upper $100 \mu \mathrm{~F}$ capacitor is connected to the 0 V line.

Varicap setting-up procedure

The first stage in this procedure is to reduce the number of variables by setting the voltage limits of the tuner unit. The limits are set using the two variable resistors of the power supply circuit "set low" and "set high". The two controls interact to some extent and the adjustment must be repeated several times until both are correct. The "set low" control is set for a potential of +2.2 V with respect to the 0 V line at the bottom extreme of the tuner, and the "set high" control is set for +27.0 V at the upper extreme of the tuner control unit. (If BB103-Blue diodes are used in the tuner then the "set low" should be set to +2.7 V and the "set high" to +29.0 V .)

Following this step the normal alignment procedure is followed, and this is easiest if the first two buttons of the tuning

Fig.5. Voltage available from the tuning control unit as a function of frequency.

Fig.6. Arrangement after removal of the first stage of the i.f. amplifier for the lower gain version.

Fig. 7. Noise performance of the modified receiver compared with the original curves of the April 1971 article.
control unit are set to the two extremes of voltage. With the lowest voltage selected the inductors are set, and with the highest voltage selected the trimmer capacitors are set. Initially, it is easier to set the oscillator range in this way and then concentrate on the aerial and r.f. tuning, followed by a final check of all three tuned circuits.

It is important to state that in some tuning control units on the market there is a fixed resistor in series with the low voltage end of the potentiometers. It is therefore important to check the voltage actually available from the tuning control unit at the actual extremes of travel.

The relationship between voltage and frequency is shown in Fig.5, the voltage being plotted on a logarithmic basis.

Performance

Measurements on the prototype tuner indicate that the change to varicap tuning has had no effect on sensitivity or signal to noise ratio, though since the alterations were not made to the original prototype, it is not possible to be absolutely firm on this point. Certainly the performance is well up to the expected level and differs little from the original.

Components

Varicap diodes Siemens type BB103 Green or Blue (all six diodes must be of the same colour selection. With this proviso matching should not be necessary).
Resistors (R) any value between 100 k and $1 \mathrm{M} \Omega \frac{1}{8}$ or $\frac{1}{4} \mathrm{~W}$ carbon film.
Capacitor $0.001 \mu \mathrm{~F}$ ceramic disc, preferably 500 V low leakage type.

Mounting
${ }_{8}^{3}$ in 6 BA spacers (2) and $\frac{3}{9}$ in $\times 6$ BA cheese head screws (2) plus washers and nuts (2each).
All components for tuning board, control unit and power supplies, are available from Integrex Ltd, P.O. Box 45, Derby, DE 1 ITW. S.A.E. for details.

Lower gain version

The author has had a number of enquiries regarding the sometimes very high noise level on some tuners when tuning between stations. The optimum level of overall gain practical in a tuner with a given noise factor has been investigated. The conclusion has been that, although helpful to the long distance listener, the full gain of the original tuner does not add greatly to the practical usefulness of the receiver for listening to normal broadcast programmes at reasonable signal strength. Removing the first i.f. stage and coupling the mixer directly to the first i.f. filter provides the necessary simple modifications.

The actual noise level of a receiver is related not only to the noise factor of the receiver, but also to its gain, as even the quietest receiver will be noisy if it has sufficient gain. This is because the "noise factor" is merely a measure of the ratio of the noise output of the actual receiver, compared to that of an ideal receiver. This ratio is expressed usually in decibels. The source in both cases is resistive, and equal to the normal source impedance (in the case of this receiver an 80Ω source).

Since the turer has a number of stages all subject to normal tolerances, it has been found (not unexpectedly) that some receivers are relatively quiet and others almost reach limiting on their own noise. Only $\pm 1 \mathrm{~dB}$ variation per stage means a variation of overall gain between receivers of $4: 1$, and $\pm 2 \mathrm{~dB}$ (roughly) $\pm 20 \%$)
will give about $16: 1$ so the apparent differences in noise are hardly surprising.

A "noisy" receiver (but with a noise factor of approximately 3 dB), was therefore taken and the first stage of the i.f. amplifier (Tr_{4}) was removed leaving the arrangement shown in Fig.6. The actual modification is shown (see photograph) where the blank component locations are clearly seen together with the two added resistors and the new link between r.f. and i.f. sections (now only a single wire). The 47Ω resistor lies diagonally across the location of the previously fitted L_{4} and the 330Ω resistor is on the right of the outline of L_{4}.
The noise performance of the modified receiver is shown in Fig. 7 which also shows the original curves of the April 1971 article. The curves should merge, but it must be remembered that the figures were measured on two different receivers, and the 2 dB difference in the noise levels between 5 and $50 \mu \mathrm{~V}$ is therefore quite a good agreement between measurements taken nearly two years apart. The noise level below $3 \mu \mathrm{~V}$ should flatten off, not drop as shown. The reason for this is that a slight offset in the i.f. amplifier demodulator stages can result in one sided clipping of low noise levels and this is evident in the output waveform without any injected signal. The effect disappears as soon as the signal level rises appreciably above the basic noise level.
It has been found in this reduced gain version that the interaction between the tuning of the mixer and oscillator tuned circuits is greater though the reason is not immediately obvious. The effect is reduced to normal proportions by moving the tap on L_{2} by one turn to the end turn nearest the $100 \mathrm{k} \Omega$ resistor and $T r_{2}$, as recom-

View of the area where the missing and additional components are located in the lower gain version.
mended in the varicap tuned version of the receiver. The curves of Fig. 7 were taken with this change to L_{2}.

The actual 30 dB quieting level of the modified receiver is lower than that of the original receiver according to the curves of Fig. 7 (about $1.1 \mu \mathrm{~V}$ against $1.9 \mu \mathrm{~V}$), which only proves that anything taken out of context can prove almost anything. The performance should be more than adequate for all normal listening, and the author
has received RAD10 Bristol in Bournemouth fairly regularly on a simple loft mounted dipole.

References

1. Letters to the Editor, Wireless World, July 1972, p. 318.
2. Portus, R. T. and Haywood, A. J. "Phase locked Stereo Decoder", Wireless World, Sept. 1970, pp. 418-422.

Experiments with Operational Amplifiers 10. Precise rectification with an op-amp and diode combination

by G. B. Clayton, B.Sc., F.Inst.P.

Semiconductor diodes show pronounced non linearity at low forward voltages; in the case of a silicon diode no appreciable conduction takes place through the diode until the forward voltage across it exceeds about 0.5 V . As a result of this non linearity diodes give rise to appreciable errors when used to rectify small signals in a conventional rectification circuit. The point is illustrated by the input and output waveforms for a simple diode half-wave rectifier shown in Fig. 10.1.

A circuit which can be used to demonstrate the way in which an operational amplifier diode combination overcomes the effect of diode non linearities is illustrated in Fig. 10.2.

Typical waveforms for the circuit are shown in Fig. 10.3 in which the upper trace is a sinusoidal input voltage, the middle trace is the amplifier output voltage and the lower trace is the rectified output signal.

The offset voltage potentiometer is adjusted so as to obtain the symmetrical amplifier output waveform shown when a small amplitude input signal is applied. The input amplitude is less than 0.2 V in Fig. 10.3; a

Fig. 10.1. Simple diode rectifier.
simple diode rectifier would give no measurable output with such a small amplitude input signal. In the circuit of Fig. 10.2 the diode D_{1} is connected in the feedback path of the amplifier so that the initial forward voltage drop required to make the diode conduct is supplied by the amplifier output voltage. Before diode conduction starts the amplifier acts virtually open loop so that the signal required at the input to cause diode conduction is very small, $\frac{0.5}{A_{\text {voL }}} \mathrm{V}$.
Once the diode D_{1} is conducting the effect of its non linearities on the rectified output is effectively divided by the loop gain.
The second feedback path through diode D_{2} is included in the circuit to prevent amplifier output saturation on the input half cycles for which D_{1} is reverse biased. Note that the circuit can be used to produce gain as well as rectification, dependent upon the ratio R_{2} / R_{1}.

Precise rectifier as à.c. millivoltmeter

An operational amplifier, a diode bridge and a d.c. microammeter can be used as the basis for a precise a.c. millivoltmeter. A circuit which can be used to investigate the action and limitations of such an arrangement is given in Fig. 10.4.
The a.c. input signal is applied to the non phase-inverting input terminal of the amplifier. Feedback through the diode bridge forces the voltage across the resistor R to follow the input voltage. A current e_{i} / R must pass through the bridge, and this current, rectified by the bridge, passes through the d.c. meter. The reading of the meter indicates the average value of the fullwave rectified current. If e_{i} is the r.m.s. value of the sinusoidal input signal the rectified current through the d.c. meter is

$$
\frac{2 \sqrt{2}}{\pi} \cdot \frac{e_{i}}{R}
$$

In investigating the action of the circuit it is convenient to measure the d.c. current with a multirange current meter. The meter is initially set to one of its less sensitive ranges, the input to capacitor C is earthed and the offset balance potentiometer is adjusted for minimum current through the meter. The sensitivity of the meter is increased while making this adjustment.

An a.c. signal, of frequency say 120 Hz , is now applied. Its value is increased in steps and the reading of the d.c. meter is recorded for each value of the a.c. input signal. Suitable values for the input signal are 2 mV , $4 \mathrm{mV}, 6 \mathrm{mV}, 8 \mathrm{mV}, 10 \mathrm{mV}$, (r.m.s. values) and so on through increasing decades.
The linearity of the system can now be assessed. In making this assessment don't forget possible errors or non linearities in the test instruments. Pronounced non linearity, of course, occurs when the amplifier output saturates. The signal at the output of the amplifier should be monitored with an oscilloscope in order to detect the onset of such saturation.

The frequency response of the system may be investigated by applying an input signal of fixed amplitude, say 50 mV , and increasing the frequency until the reading of the d.c. meter falls. The reason for this fall
in response at the higher frequencies will be obvious if the output waveform of the amplifier is monitored. Amplifier output waveforms for frequencies of 50 Hz and 5 kHz are shown in Fig. 10.5.
The steps in the, upper, 50 Hz waveform occur as the amplifier output voltage takes up the diode forward voltage drops. When
the frequency is increased to 5 kHz (lower trace) the time taken by the amplifier output to overcome the diode forward voltage drops is an appreciable fraction of the period of the waveform and so the average value of the rectified current falls. The system response at the higher frequencies is thus limited by amplifier slewing rate.

Fig. 10.3. Waveforms for precise rectifier in Fig. 10.2. Horizontal time scale, $1 \mathrm{~ms} / \mathrm{div}$; vertical scale, $0.2 \mathrm{~V} / \mathrm{din}$.

Fig. 10.5. Amplifier output waveforms. Upper trace time scale, $5 \mathrm{~ms} /$ div; lower trace time scale, $50 \mu \mathrm{~s} / \mathrm{div}$. Vertical scale, 2V/div.

25-watt Transistor Transmitter for 20 metres

by S. A. Money, G3FZX

The circuit, forming a basic transmitter, contains three stages operating respectively as crystal controlled oscillator, frequency doubler and power amplifier, and is designed primarily for c.w. transmission.

For many amateurs a major interest of the hobby is that of working stations in distant countries. This can be more readily achieved by using the h.f. bands such as 14 or 21 MHz . In order to make one's signal heard above the general din on the bands in their present crowded state, it is highly desirable that the transmitter used should have a power input to the final r.f. amplifier of at least some 20-30W. With an efficient aerial system such a transmitter can provide contacts with stations in all parts of the world.

Choice of p.a. transistor

R.f. power transistors capable of operating at powers of up to 100 W have become available in the past few years. These devices are expensive, at prices varying from $£ 30$ to $£ 60$ each, and are primarily intended for use in military and commercial equipment. Transistors of this type are not readily available to the amateur so the design of this
transmitter was based on the use of cheaper and more easily obtainable types.

Many power transistors have a maximum collector voltage rating $V_{\text {cee }}$ of 60 to 80 V . When class B or C operation is used, the collector voltage can rise to twice the supply voltage due to the flywheel action of the collector tuned circuit. To allow an adequate margin of safety the supply rail should not be more than 24 to 28 V .

If we assume a power input of 25 W , the mean d.c. collector current will need to be about 1 A with a 25 V supply. In class B, the peak collector current will be roughly three times the mean d.c. value. For class C , the peak current may be as high as four times the mean value. Under these conditions therefore the p.a. transistor used must be capable of handling peak values of collector current up to 3 or 4A.
Assuming that the efficiency of the p.a. stage will be about 60%, the transistor must
be capable of dissipating about 10 W . This requirement rules out transistors in TO5 cans and implies the use of TO3, TO66 or other high power dissipation types.

In order to have reasonable power gain and to maintain stable operation, the transition frequency $\left(f_{T}\right)$ should be at least five times the frequency at which the amplifier operates. For 14 MHz operation this requires an f_{T} of at least 70 MHz .

The transistor chosen for this stage of the transmitter was the Mullard type BD123, which has a $V_{\text {ceo }}$ of 80 V . Its maximum peak collector current is 5 A and the f_{T} is 85 MHz . The BD123 is mounted in a TO3 can and will dissipate up to 35 W safely if it is mounted on a sufficiently large heat sink.

Power amplifier design

The final stage of the transmitter Tr_{3}, Fig. 1, runs at 25 W input with a BD123 transistor operating in the class B mode. Class B operation was chosen because, although it is less efficient, it produces lower harmonic output and needs less drive power than an equivalent class C stage.

To obtain optimum power transfer, this

Fig. 1. Transmitter circuit diagram.
stage must be correctly matched to the load The output impedance of this transistor is made up of a resistive component R_{p} in parallel with a capacitive component X_{p} representing the collector capacitance and circuit strays.

The value of R_{p} can be calculated from the formula,

$$
R_{p}=\frac{V_{s}^{2}}{2 P_{o}}
$$

where V_{s} is the d.c. supply voltage and P_{o} is the power output from the stage. The value for the power output is assumed to be about 60% of the power input since this is a reasonable value for the efficiency of a class B stage. With V_{s} at 25 V and P_{o} at 15 W this gives a value of roughly 20Ω for R_{p}. The capacitance of the transistor and circuit strays is abput 100 pF which, at a frequency of 14 MHz , represents a reactance of approximately 125Ω.

The matching network used to couple this amplifier stage to the load must not only match the two impedances but also provide sufficient selectivity to reduce the output of harmonics to an acceptable level. A good compromise can be obtained between power transfer and harmonic output by designing the matching circuit to have a loaded Q value somewhere between 10 and 15 . In this transmitter it was decided to aim for a Q value of 12 .

In many transmitters using valves for the output stage, the matching to the load is achieved by using a low-pass P i section network. Unfortunately this type of network is only effective if the ratio between the source and load impedances is fairly high. If the two impedances to be matched are similar in value it becomes impracticable to design a Pi network which will have the required value of working Q. In the output stage of this transmitter, the impedance ratio is only about $3: 1$ if we assume that the load is a normal 70Ω aerial feeder cable properly terminated.

It would be possible to match this ratio of impedances by using two Pi networks in cascade with one network having a very low Q value. However, a more attractive solution is to use the T type network shown in Fig. 2. This particular type of circuit is most suitable for transistor transmitters because it easily matches two similar impedances

The equivalent circuit of the transistor is shown as an impedance represented by series resistance R_{s} and capacitive reactance X_{s}. As a first step in the design of the network the parallel impedance values R_{p} and X_{p} must be converted into their equivalent series form by using the two equations
and

$$
\begin{aligned}
R_{s} & =\frac{R_{p}}{1+\left(R_{p} / X_{p}\right)^{2}} \\
X_{s} & =\frac{R_{s} R_{p}}{X_{p}}
\end{aligned}
$$

For the BD123 stage the value for R_{s} will be about 20Ω and the value for X_{s} will be around 4Ω. At this point the value of the series inductance L_{1} can be calculated from:

$$
X L_{1}=Q R_{s}+X_{s}
$$

If we are designing for a Q of 12 then $X L_{1}$

Fig. 2. A " T " matching network.
will be 240Ω which at 14 MHz represents an inductance of $2.7 \mu \mathrm{H}$. A coil to give this inductance consists of 16 turns of 16 s.w.g. enamelled wire close wound with a diameter of $\frac{3}{4} \mathrm{in}$. The coil length will be about $1 \frac{1}{4}$ in and the coil should be completely self supporting.

In order to find the values for the tuning and loading capacitors C_{1} and C_{2} two constants A and B must be calculated from

$$
\begin{aligned}
& A
\end{aligned} \quad=R_{s}\left(1+Q^{2}\right),
$$

where R_{L} is the load impedance which is assumed to be a pure resistance. If R_{L} is taken as 70Ω then the value of A will be 2900 and B will be 6.4.

At this point the reactance values for the tuning and loading capacitors can be found from:

$$
\begin{array}{ll}
& X C_{1}=\frac{A}{Q-B} \\
\text { and } & X C_{2}=B R_{L}
\end{array}
$$

which give values of $X C_{1}=480 \Omega$ and $X C_{2}=448 \Omega$. The corresponding capacitors will have values of 24 pF and 25 pF respectively at a frequency of 14 MHz . In the actual transmitter these capacitors C_{12} and C_{13} are 50 pF air-spaced variable types. In the prototype transmitter 100 pF variable capacitors were used with 100 pF fixed capacitors in series to reduce the maximum value and to make the tuning adjustment easier. It should be noted that both the stator and the rotor of capacitor C_{13} are live and this capacitor must therefore be insulated from the panel which is grounded. These two capacitors may be of the preset type since the tuning adjustment will remain correct over most of the 14 MHz band.

Since the output is taken off in parallel from the collector of the power amplifier stage an r.f. choke L_{6} is required to feed the d.c. supply voltage to the collector. This choke has an inductance of about $15 \mu \mathrm{H}$ and consists of 100 turns of 28 s.w.g. enamelled wire close wound in one layer on a 2 in length of $\frac{3}{8}$ in diameter s.r.b.p. rod. A similar choke L_{5} is used from base to ground but in this case the winding consists of 120 turns of 30 s .w.g. wire wound in one layer on a $\frac{1}{4}$ in diameter rod.

Diode D_{1} and resistor R_{5} are included in the base circuit of the transistor to protect it during the half cycle when the base is reverse biased. For a BD123 the reverse base to emitter breakdown voltage is only 5 V whereas the unloaded base drive signal may exceed 10 V peak unless a diode limiter
circuit is used. It was found that the addition of a diode limiter actually tended to increase the base drive current to the p.a.

It is essential that the inductance of the emitter to ground lead from the p.a. transistor should be kept as low as possible to prevent instability. The actual wire should be as short as practicable and of heavy gauge. All other earth returns for this stage should be connected to the chassis at the same point as the lead from the emitter.

Frequency doubler and oscillator

For the frequency doubler stage $T r_{2}$ a second BD123 transistor is used. This stage is operated in class C to obtain maximum harmonic output.

The p.a. stage has an effective power gain at 14 MHz of about 10 dB . This means that it requires an input drive signal of some 1.5 W from the doubler stage. Since the efficiency of the doubler stage is not likely to be better than 25%, its d.c. collector input power will need to be 6 to 8 W in order to produce the required drive power. The mean d.c. collector current drawn by this transistor is between 250 and 300 mA .

Matching between $T r_{2}$ and $T r_{3}$ is via a T network similar to that used at the p.a. collector. The inductance of L_{4} needs to be $3 \mu \mathrm{H}$ which is obtained by winding 20 turns of 26 s.w.g. wire in a single layer on a $\frac{3}{8} \mathrm{in}$ diameter former. This former is of the type used for television i.f. coils and is tuned by a 6 mm dust core. This dust core is adjusted in conjunction with variation of C_{7} and C_{9} to give correct tuning and matching. The r.f. choke L_{3} is made in the same way as L_{6} in the p.a. stage.

The 7 MHz drive signal from the oscillator stage $T r_{1}$ is link coupled to the base of $T r_{2}$ Resistor R_{4} and capacitor C_{6} give the reverse bias needed for class C operation.

In the interests of simplicity a crystal controlled oscillator is used for frequency control. The value of the emitter bypass capacitor C_{5} is chosen so that a large phase shift is produced in the emitter circuit. Positive feedback then occurs, the quartz crystal ensuring stable oscillation.

A switch S_{1} has been included to enable one of two alternative crystals to be selected, allowing transmitter frequency to be easily changed. Since the average amateur tends to have a collection of crystals in different types of holders, it is convenient to make sockets available for two different types.

Unless a wide selection of crystal frequencies is available, operation of the transmitter would normally be limited to one or two frequencies. To allow greater flexibility of operation, therefore, provision has been made to drive the transmitter from an external v.f.o. With S_{1} set in its third position, the v.f.o. input is applied to $T r_{1}$ which acts as a straightforward amplifier.

To ensure stable operation of $T r_{1}$ as an amplifier, the base circuit is shunted by a low resistance R_{1} and the emitter bypass capacitor is increased to $0.047 \mu \mathrm{~F}$.

Keying of the transmitter is carried out by simply breaking the d.c. feed to the emitter of $T r_{1}$. When the stage is operating as a crystal oscillator, keying is quite clean with no "chirp" or key clicks. When the oscillator is keyed-off, no drive signal is
applied to the doubler and p.a. stages so that they both remain cut-off.

Harmonic filter

In common with other amateur band transmitters this unit can cause quite severe harmonic interference on nearby television receivers unless some form of low pass filter is included in the output circuit. Details of a t.v.i. filter used in this transmitter are given in Fig. 3 which is a five section filter with constant k middle sections and m derived half sections at the ends to give better impedance matching. Nominal roll-off frequency of this filter is 20 MHz and its characteristic impedance is 70Ω.

Without a filter the transmitter harmonic radiation caused complete wipe out of Band 1 signals on a television receiver $15 f t$ from the aerial. With the filter in the circuit, interference was reduced to a slight pattern.

Construction

Layout of the transmitter does not seem to be very critical, provided that normal r.f. construction techniques are used such as keeping leads short and making use of single point earth returns for each stage.
The transistors used in the p.a. and doubler stages are required to dissipate a few watts of power when the transmitter is radiating, and to avoid overheating they must be mounted on some form of heat sink.

To avoid unwanted feedback and possible instability, it is a good idea to mount a screen between the base and collector circuits of each of the stages. It is convenient to make these screens perform a dual function as both screen and heat sink for the transistors. Mica washers are used to insulate the transistors from the screen whilst allowing conduction of heat.
To obtain good heat conduction the screens must be made of aluminium at least $\frac{1}{16}$ in thick. In the prototype transmitter the screens used were 4×2 inches of 16 s.w.g. aluminium and were solidly connected to the chassis and case of the transmitter to improve heat transfer. Under normal keyed operation, the p.a. transistor heat sink will run slightly warm after a long period of transmission.
If it is desired to run the transmitter with continuous carrier output, such as for n.b.f.m. working, the heat sink used for the p.a. stage must be made larger. A standard finned type heat sink giving about $4^{\circ} \mathrm{C} / \mathrm{W}$ should however be large enough for use under these conditions.
The t.v.i. filter must be mounted in the same case as the transmitter. Individual sections of the filter must be screened from one another to prevent direct coupling of harmonics. This is indicated in Fig. 3. To avoid mutual coupling coils in adjacent sections of the filter are mounted at right angles to one another.

Power supply

An external 24 to 28 V power supply is used for the transmitter. This supply must be either stabilized or regulated to handle the large variations in current drawn by the transmitter. With the key down the current drawn from the supply will be about 1.5 A ,

Fig. 3. Harmonic suppression filter to prevent television interference.

Fig. 4. Power supply circuit diagram.
whereas with the key up the current will be virtually zero.

An r.f. filter comprising L_{8}, C_{14} and C_{15} (Fig. 1) is included at the point where the power supply lead enters the case of the transmitter. This filter is intended to prevent leakage of r.f. signals into the power supply leads which could cause unwanted radiation.

A circuit of a suitable power supply for use with the transmitter is given in Fig. 4. A 2N3055 transistor $T r_{4}$ is used as a series regulator. The output voltage is set by the two zener diodes D_{6} and D_{7} which drive the base of the series transistor via the emitter follower Tr_{5}. The 2N3055 transistor will need to be mounted on a heat sink since it will have to dissipate about 4 to 6 W when the transmitter is radiating.

While carrying out initial tests with the transmitter it is useful to be able to supply only 12 V , which reduces the possibility of destruction of transistors due to mistuning or overloading. By tapping the base of Tr_{5} at the junction of the two zener diodes, an output of about 12 to 15 V is obtained.

Testing and tuning

Monitoring of the collector current to the p.a. stage is provided by measuring the voltage drop across the 1Ω resistor R_{6} using a 1 mA meter in series with a $1 \mathrm{k} \Omega$ resistor R_{7}.
A 70Ω dummy load will be needed when setting up. This can easily be made up from
four 68Ω carbon, or other non-inductive type, resistors which are wired in series/ parallel to give a total value of 68Ω. Each of these resistors must be rated at 2 or 3 W .

To give a visible indication of the power output a $2.5 \mathrm{~V}, 0.3 \mathrm{~A}$ torch bulb is connected in series with the dummy load. At full power output from the transmitter the current in the dummy load will be about 0.5 A . Since this level of current will overload and possibly burn out the lamp it is advisable to connect a low value resistor across the lamp during the later stages of testing.

Before starting any tests the transmitter wiring should be checked for any possible errors. Capacitors C_{7}, C_{9}, C_{12} and C_{13} should all be set at roughly half their maximum value. At this point the supply, set to 12 V , may be applied. With the key circuit open no current should flow.
To check the oscillator stage connect a voltmeter across R_{4} with the positive lead connected to ground. A 7 MHz band crystal is now plugged in the circuit and the key closed. Adjust L_{2} until a voltage is obtained across R_{4} which indicates that the oscillator is running and drive is being applied to the doubler stage.

There should at this point be some current flowing in the output stage. Adjust L_{4} to produce the maximum current on the meter M_{1}. The capacitors C_{12} and C_{13} may now be adjusted to obtain maximum current into the dummy load.
With power being delivered to the load
and the p.a. and doubler stages roughly tuned to resonance, the full supply voltage can be applied. The network L_{4}, C_{7} and C_{9} are adjusted together to produce maximum p.a. collector current which should be about 0.9 to 1.0A. Adjust C_{12} and C_{13} again to produce maximum brilliance on the dummy load indicator lamp. These adjustments will be found to be interdependent, but as a rough guide C_{13} adjusts the load coupling and C_{12} is used to tune the circuit to resonance. It will be found that if C_{13} is made too large or too small there will be a fall off in the maximum achievable output. The capacitors should be adjusted to give an optimum between these states. The settings will be fairly broad and, once set up, they should hold over a large part of the 14 MHz band.

Performance

Over the past two years two versions of this solid state transmitter have been used on the 14 MHz band. One transmitter was only run at 12 W input whilst the later unit was run at the full 25 W . In both cases the aerial used was a rather inefficient indoor dipole running NE to SW.
Contacts with all parts of Europe were found to be easily made and consistent reports of signal strengths from S-7 to S-9 were obtained. Working stations in Asia, Africa and North America is naturally a little harder but reports averaging S-5 to S-8 are regularly received during contacts with the U.S.A. and Canada. So far it has not been possible to contact Australia but this is probably due to the orientation of the aerial which does not favour Australia and the Pacific area.

Components list

Resistors

Resistors				
R_{1}	100Ω		R_{6}	1Ω
R_{2}	$33 \mathrm{k} \Omega$		3 W	
R_{3}	100Ω		R_{7}	$1 \mathrm{k} \Omega$
R_{4}	330Ω		R_{8}	330Ω
R_{5}	10Ω		R_{9}	$4.7 \mathrm{k} \Omega$
All resistors $\frac{1}{2} \mathrm{~W}$	unless otherwise stated			
Capacitors				
C_{1}	$0.002 \mu \mathrm{~F}$	paper		
C_{2}	4700 pF	ceramic		
C_{3}	$0.047 \mu \mathrm{~F}$	polyester or paper		
C_{4}	330 pF	mica		
C_{5}	330 pF	mica		
C_{6}	1000 pF	ceramic		
C_{7}	$3-40 \mathrm{pF}$	tubular trimmer		
C_{8}	22 pF	mica		
C_{9}	$3-40 \mathrm{pF}$	tubular trimmer		
C_{10}	$0.047 \mu \mathrm{~F}$	polyester or paper		
C_{11}	$0.047 \mu \mathrm{~F}$	polyester or paper		
C_{12}	50 pF	air spaced variable		
C_{13}	50 pF	air spaced variable		
C_{14}	$0.047 \mu \mathrm{~F}$	polyester or paper		
C_{15}	$0.047 \mu \mathrm{~F}$	polyester or paper		
C_{16}	68 pF	mica		
C_{17}	220 pF	mica		
C_{18}	220 pF	mica		
C_{19}	220 pF	mica		
C_{20}	68 pF	mica		
C_{21}	$10,000 \mu \mathrm{~F}$	36 V		
C_{22}	$0.47 \mu \mathrm{~F}$	polyester or paper		

Semiconductors

$T r_{1}$	BFY51	D_{1}	1N4001
$T r_{2}$	BD123	$D_{2}-D_{5}$	3A, 100-1000 p.i.v.
$T r_{3}$	BD123		silicon diodes $T r_{4}$
2N3055	D_{6}	$12 \mathrm{~V}, 400 \mathrm{~mW}$ zener $T r_{5}$	2N2219

Inductors

$L_{1} \quad 2.5 \mathrm{mH}$ r.f. choke
$L_{2} \quad$ Primary - 14 turns 26 s.w.g. enamelled Secondary-4 turns 26 s.w.g. enamelled, wound at d.c. supply end of primary
Former-Necsid 8 mm diameter with dust core
$L_{3} \quad 100$ turns 26 s.w.g. enamelled, close wound on $\frac{3}{8}$ in diameter s.r.b.p. rod
$L_{4} \quad 20$ turns 26 s.w.g. enamelled
Former-Neosid 8 mm diameter with dust core
$L_{5} \quad 120$ turns 30 s.w.g. enamelled, close wound
Former $-\frac{1}{4}$ in diameter s.r.b.p. rod
$L_{6} \quad$ Same as L_{3}
$L_{7} \quad 16$ turns $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled, close wound $\frac{3}{4}$ in diameter, self supporting $1 \frac{1}{4}$ in long
$L_{8} \quad 20$ turns 18 s.w.g. enamelled, close wound $\frac{1}{4}$ in diameter self supporting
$L_{9} \quad 12$ turns 18 s.w.g. enamelled, close wound $\frac{1}{4}$ in diameter self supporting
$L_{10} \quad 18$ turns 18 s.w.g. enamelled, close wound $\frac{1}{4}$ in diameter self supporting
$L_{11} \quad$ Same as L_{10}
L_{12} Same as L_{10}
$L_{13} \quad$ Same as L_{10}
L_{14} Same as L_{9}
$T_{1} \quad 50 \mathrm{~Hz}$ mains isolation transformer with secondary winding of $0-24 \mathrm{~V}, 2-3 \mathrm{~A}$

Microwaves at the Physics Exhibition

Impatt diode applications

The Impatt diode is challenging the travel-ling-wave-tube in many respects. An amplifier shown by S.T.L. provides an output of $1 \mathrm{~W} \mathrm{c.w}$.at 8 GHz , and requires 120 V d.c. supply, a great advantage over currently available t.w.ts. The amplifier comprises four cascaded stages, circulator coupled, and each stage is provided with its own constant-current and transient protection circuits allowing the simplest of external d.c. supplies to be used. A novel design for each amplifier circuit is used so that each of the four stages can use the same type of matching circuit to provide the optimum gain and bandwidth characteristics with reduced manufacturing problems. Overall, it provides a bandwidth of 250 MHz at 8 GHz prototype centre frequency - with 40 dB of gain but this can be increased to 400 MHz by overdriving to a reduced gain of 30 dB . Silicon Impatt diodes used in the prototype yield better than 70% operating efficiency but work is now going
on to replace these with the more efficient gallium arsenide devices, around 15%. (Overdriven Impatt diode amplifiers are necessarily non-linear and obviously not suitable for a.m. systems.)

Phase switching, usually performed by p -i-n diodes at a loss in microwave phase modulation systems, can be achieved with Impatt diodes with the advantage of power gain, as demonstrated by the Services Electronics Research laboratory. An Impatt diode, forming the termination of a transmission line, reflects signals that are incident with magnitude and phase depending on the values of the real and imaginary parts of the diode terminal admittance. Under conditions of reverse bias, where avalanche current is flowing, the diode conductance can appear negative over a wide range of frequencies and therefore can provide signal gain where the reflected wave is greater than that of the incident wave. The magnitude of the reflected wave basically depends on the real or conductive components of the diode equivalent circuit whereas the phase is associated with the imaginary or shunt reactance part of the model.

A situation can arise where at or near the avalanche transit-time frequency, the conductance component can be equal at two different levels of diode current, but because the series inductance element is a function of this current the phase delay at these two currents is different. In the demonstration, the diode current was switched alternatively between two values, chosen to give the same amplifier gain, providing phase switching of up to 180° with small-signal gains of about 10 dB with very little amplitude modulation. For further details, see Electronics Letters, vol. 8 no. 19.

Q-band communications

A lightweight Q-band communications link capable of handling data rates of up to $1 \mathrm{Mbit} / \mathrm{sec}$ has been developed by Decca Radar Ltd. Designed for shortdistance communications of up to 5 km , the link can be tuned to any frequency in the 26.5 to 40 GHz band. The demonstration link was operated with a Gunn device transmission source providing a c.w. power output of around 7 to 10 mW at approximately 34 GHz , pulse modulated at 1 MHz with a $\mathrm{p}-\mathrm{i}$-n diode circuit. The Gunn devices are apparently operating in the $n \lambda / 2$ mode in full-height waveguide and it is claimed that little trouble has been found with moding or hysteresis. Aerial gain is greater than 30 dB with parabolic reflectors of around $25-\mathrm{cm}$ diameter and the hardware is mounted in the case space behind the box-shaped aerial mounting.

The receiver uses a similar Gunn oscillator, suitably attenuated, to drive the Q-band mixer which, it is said, maintains its sensitivity figure over at least a 6 dB variation in local oscillator power very useful for long-term gain stability. The overall noise factor, with 50 MHz i.f. bandwidth, of $<12.5 \mathrm{~dB}$ allows good link range, easy tuning and a minimal drift problem.

Unusual forms of Analogue Modulation

A discussion of the importance of a.g.c.

by R. C. V. Macario*, B.Sc., Ph.D., M.I.E.E.

Some time ago the writer questioned the merits of simple diode detection and suggested that more complicated detector circuits could have advantages in the design of radio receivers. ${ }^{1}$ Many such designs have been appearing, especially in broadcast receiver technology ${ }^{23}$ and in mobile radio communication equipment. ${ }^{456}$

There is no doubt that these more complex circuits can perform some remarkable signal recovery, but one soon discovers an interesting feature in that automatic gain control (a:g.c.) prior to signal detection takes on a new importance. It is interesting to note that hardly any of the above references discuss the a.g.c. problem, yet it is an unfortunate fact that many of the detection circuits described do not operate in a practical environment unless well controlled automatic gain control is available. The great merit (or one of them at least) of the diode detector is that it provides its own a.g.c., at least on full carrier a.m. modulation.

The great merit of frequency modulation is likewise, that it provides its own form of a.g.c. by limiting, and system equipment designers are much more tempted to stay with systems where some of the circuit problems are automatically eliminated.

Other forms of modulation

If, however, a restriction is placed on channel bandwidth, or the maximum range for a given primary power is a priority, other forms of modulation become of in terest. In particular the transmission of speech is considered since this, in the main, possesses the large amplitude fluctuations which are so difficult for the automatic gain control circuits to cope with in a com pletely satisfactory manner. The speech bandwidth can take two values, (a) broadcast quality, say 40 Hz to 4000 Hz , and (b) communication quality, say 300 Hz to 3000 Hz , and this can be a restriction which may have to be noted.
The modulations to be described fall into three categories:

1. The speech signal to be transmitted is completely amplitude suppressed so that it no longer possesses any amplitude fluctuation and so a.g.c. is hardly necessary.
2. The speech signal is amplitude suppressed as in (1), but an additional coded signal is transmitted so that some of the speech amplitude fluctuations can be recovered and reinstated.
3. The speech signal is not suppressed (more than usual) but a variable carrier is transmitted so that the total signal has more or less a constant amplitude - rather like f.m.

All of these systems need a more complicated transmitter processor and a more complicated receiver detector circuit, but in all cases the a.g.c. can act on the average signal and retain the old envelope detector simplicity.

Category 1. Completely amplitude suppressed speech is identified with the infinitely clipped speech experiments of Licklider and Pollack ${ }^{7}$ who showed that the speech intelligence is maintained under
these conditions. A direct and efficient method of achieving this form of speech is shown ${ }^{8}$ in Fig. 1. The speech signal, category (b), is converted to a single sideband signal and then infinitely clipped by a limiter. The residual carrier is adjusted so that during speech pauses the remaining carrier constitutes the output and suppresses the noise. ${ }^{9}$ A simple filter, following the limiter, suppresses the harmonics of the clipped r.f. waveform.

If one listens directly (via a converter back to audio of course) the speech "quality" is surprisingly good, and one finds the improvement in talk power is at least $\pm 10 \mathrm{~dB}$. However, if one listens to the system after transmission through a radio system with some attendant distortion, the "quality" is degraded very rapidly. This appears to be a fundamental disability of infinitely clipped speech, but improvements have been reported. For in-

Fig. 1. The radio frequency method of single sideband speech clipping.

Fig. 2. Schematic of practical carrier position modulation transmitter.

stance James and Daley ${ }^{10}$ report a significant improvement if the speech band is split up into a number of smaller channels, clipped individually and then reconstituted then the quality is indeed quite remarkable.

Applied to a radio communication system this form of modulation seems to appear under two names. Thus in amateur radio circles ${ }^{11}$ it is known as infinitelyclipped phase-locked s.s.b. (p.l.s.s.b.), which is, as far as one can ascertain, identical to a General Electric mobile radio system known as carrier position modulation c.p.m. ${ }^{12}$. The transmitter arrangement for both methods may be shown as Fig. 2. It will be seen in this diagram that the speech processor of Fig. 1 precedes the carrier phase lock circuits, which in turn can be followed by class C r.f. amplifiers. During periods of speech a constant-amplitude sup-pressed-carrier signal is transmitted, during speech pauses a full carrier is transmitted; whence the name carrier position modulation, since a change only in frequency occurs, not in amplitude.

Now the main advantage from the point of view of the present discussion of carrier position modulation, or phase-locked single sideband, is that a.g.c. in the receiver is now a simple matter, if indeed necessary at all, since there is no amplitude information to be recovered from the received signal. However the "quality" of the signal under practical conditions would need careful study.

The efficiency of this form of modulation with regard to transmission range, bearing in mind class C operation of stages can be employed and it also only occupies approximately a 3 kHz signal bandwidth, is noted in Fig. 3.

This graph ${ }^{12}$ plots measured word intelligibility against received signal level in receivers having the same front end noise figure and optimum bandwidth for the modulation concerned - which is noted. Bearing in mind that +6 dB would also be equivalent to raising a transmitter power from 25 W to 100 W , the advantage of c.p.m. is noteworthy. The curve for the narrow band f.m. signal is actually some 3 dB above the theoretical ${ }^{13}$ achieved by pre-emphasis and slight bandwidth clipping.

Category 2. As mentioned, infinitelyclipped speech works well until there is some attendant distortion in the transmitterreceiver link. Therefore a number of modulation systems have been "invented" which overcome this fact by restoring amplitude information to the received signal from information received in a pilot signal transmitted alongside the main signal.

The best known system in this class of modulation is of course "Lincompex" ${ }^{14}$, and since this has been very well described no more will be said about it here.

An earlier family of similar systems are the "Frena" and "Frenac" systems" of speech transmissions. The primary purpose of these systems is to improve performance under adverse signal-to-noise conditions, and an estimate of this fact is attempted in Fig. 4. In this diagram, which has the same ordinate as Fig. 3, are

Fig. 3. Threshold intelligibility performance of amplitude modulation, single sideband, double sideband suppressed carrier, narrow band frequency modulation and carrier position modulation.

Fig. 4. Estimated threshold intelligibility performance of "Frena" compared to single sideband and carrier position modulation.
superimposed the intelligibility results given by Jagger and Greefkes for their "Frena" system. Their method of assessing intelligibility employed recognizable sounds, whereas the more recent tests (scale of Fig. 3) employ words, so one would expect a difference between the two methods especially with regard to the falloff in intelligibility. But this does not hide the significant feature that the "Frena" system does demonstrate the wanted improvement.

The feature of main interest to the discussion, however, is the question does the system assist the a.g.c. problem? The answer is yes, if the control tone (amplitude information) is an f.m. signal and the main speech channel has a constant amplitude. The total signal transmitted is then of constant amplitude. Of even greater interest is to note the nature of the "Frenac" system. Here the control tone is pulse modulated, and it is arranged that "the pilot signal has a certain constant value when speech is absent, and is zero when it is present. This amounts to saying that the frequency signal and the amplitude signal are transmitted in turn, and the obvious course is to transmit them at the same amplitude. The carrier of the single-sideband signal in the frequency channel can profitably be made to act as pilot signal."

It would therefore appear that "Frenac" p.l.s.s.b. and c.p.m. are in reality the same form of modulation, possibly constructed in different ways, but providing the same meritorious features.

Category 3. In the final category, the speech waveform is less severely processed and the systems lie between the previous systems and straightforward single sideband and double sideband suppressed carrier. Now it is common practice to provide voice operated a.g.c., especially for s.s.b. (A3J telephony) which works very well in the main if the a.g.c. circuit is sufficiently sophisticated, i.e. Plessey device SL621, but if the detector has to establish synchronization before an audio waveform is generated, as in the case of double sideband suppressed carrier ${ }^{4,13}$, this form of a.g.c. is unworkable. An a.g.c. voltage can be derived by envelope detecting the incoming signal (out of the i.f. stages), but here again the correct choice of time constant is difficult if this detector is to distinguish between, say, rapid fading and a speech waveform. Therefore systems have

Fig. 5. The waveform and spectrum of double sideband controlled carrier.

been proposed in which the carrier amplitude is made to vary inversely as the sideband amplitude ${ }^{16}$.
Fig. 5 illustrates the action of the controlled carrier on a double sideband controlled carrier signal. It will be seen that there is a gradual take over of the signal energy by either the carrier or the sidebands, depending on the amplitude of the sidebands. The waveform would be similar for two tone single sideband controlled carrier. In either example this contrasts to the almost snap change-over action of the carrier position modulation, phase locked single sideband or "Frenac" system.

A means of generating d.s.b.-c.c. is shown in Fig. 6. In effect the quick acting envelope detector of the receiver has been removed to the transmitter, allowing a slow acting envelope derived a.g.c. to be placed in the receiver. Note also that the waveform envelope of the signal is now completely constant as in modulation categories 1 and 2 , as is to be expected since, as explained, this category is an intermediate system. Also, because the carrier is amplitude modulated it will have instantaneous sidebands on either side of it at a frequency spacing dependent on the time constant chosen for the carrier control. This will necessitate restricting the audio signal bandwidth to commercial quality, as indeed needs to be the case for the previous modulation systems.

Finally, it is of interest to note a form of modulation which so intermingles the audio waveform sidebands and a carrier that a constant amplitude phase shift keyed waveform results, which of course can be transmitted with constant amplitude. In this system ${ }^{17}$ the conditioned speech waveform (the amplitude variation is restricted using pre-emphasis and compression) is converted to a suppressed clock pulse duration modulation (s.c.p.d.m.) which in turn is fairly easily converted to phase shift keying at the required r.f. frequency. Without going into details of the transmitter modulator and the receiver demodulator, the latter needing two phase lock loop detectors, the point of interest is again the avoidance of a.g.c. problems by placing more complication in the transmitter, and thereby radiating a constant amplitude signal. The only penalty paid by this particular system, however, for being able to not to have to use infinitely clipped speech, is
that the bandwidth of the signal has to be between four and eight times the audio baseband width.

References

1. "How important is detection", Wireless World, Vol. 74, April 1968, p. 52.
2. G. Wareham, "SSB on medium waves", Wireless World, Vol. 78, August 1972, p. 358. 3. L.P. Chu, "Phase-locked AM radio reveiver", I.E.E.E. Trans.BR/TV, December 1969, p. 300 . 4. P. Hawker, "Synchronous detection in radio reception", Wireless World, Vol. 78, Sept. 1972, p. 419.
3. O. G. Villard, "Sideband-operated automatic frequency control of ssb-sc voice signals", I.E.E.E. Trans.CT, October 1971, p. 729. 6. R.S. Badessa, "A communications detector with a signal synthesized reference", I.E.E.E. Trans.CT, October 1971, p. 643.
4. J. C. R. Licklider and I. Pollack, "Effects of differentiation, integration and infinite peak clipping on the intelligibility of speech", J.Acous.Soc.Amer., 20, 1948, p. 42.
5. H. G. Collins, "Ordinary and processed speech in SSB application", Single Sideband Techniques for the Amateur, R.S.G.B. publication.
6. R. A. King and J. R. James, "Some investigations into 'infinite' clipping of steady state signals and application to speech processing", I.E.E. Conf Pub., 64, 1970, p. 31 .
7. J. R. James and J. D. Daley, "The digital processing of speech signals using limiters", Conference on Digital Processing of Signals in Communications, April 1972, I.E.R.E. Con.Pub. No. 23 p. 183.
8. P. Hawker, "Technical Topics", Radio Comms., March 1972, p. 153.
9. Private communications from N. H. Shepherd, General Electric Co., Lynchberg, U.S.A.
10. R. C. V. Macario, "A v.h.f. surveillance receiver adapted for the narrow band reception of suppressed carrier double sideband transmission", J.I.E.R.E. July '73.
11. D. E. Watt-Carter and L. K. Wheeler, "The Lincompex system for the improvement of h.f. radio telephone circuits." Post Office Elec.Eng.J. Vol.59, Oct. 1966
12. F. de Jagger and J. A. Greefkes, "'Frena', a system of speech transmission at high noise levels", Philips Tech.Rev., Vol. 19, Oct. 1957, p. 73 .
13. G. W. Barnes, "A single-sideband controlled carrier system for aircraft communication", Proc.I.E.E., Vol.101, III, May 1954, p.121. 17. L. Jacobson, R. Schoolcraft and P. Hooten, "Highly efficient voice modulation for low carrier to noise density satellite communication channels", 1970 Vandenburg Space Congress, California, Oct. 1970.

H.F. Predictions for June

Conditions have been generally poor in recen months and there is no prospect of rapid improvement. In fact the lower daytime MUFs of summer season coupled with present magnetic and solar activity levels look like producing the worst month so far this year The most favourable periods are the first and last five days of the month. LUF calculations assume that ionospheric reflections will occur at all frequencies, thus the contradiction of LUF exceeding FOT (LUF curves discontinued for this condition) often arises. This does not mean that communication is impossible: the value of MUF minus LUF is an indication of ease of communication at frequencies around FOT.

Circuit Ideas

Concise descriptions of new circuits are invited for Circuit Ideas, for which $£ 5$ is paid on publication. Contributors should say how their circuit is an improvement over existing circuits, preferably in the first sentence.

D.C. matching of complementary pairs

The emitter current at which matching is required is set up by adjusting R_{b}. Current meter \mathbf{M}_{1} indicates this. Centrezero meter M_{2} now displays the difference between the collector currents of the two transistors. The direction of deflection of M_{2} shows which transistor

has the higher h_{FE}. If the base-emitter drops can be allowed for R_{b} may be calibrated in base current: this is useful information when the matched pair is transferred to a working circuit.
G. W. Short,

South Croydon,
Surrey.

Miniature null indicator

This circuit provides good sensitivity, while having the advantages of small size and ruggedness (as compared with a moving-coil indicator). The amplifier, a 709 type, is driven open loop. This means that a small change in the input voltage about one mV - will cause the output to switch from one rail to the other. This output state is indicated by one of the
bulbs. The null is indicated by both bulbs being extinguished, the initial null having been set by shorting the input and adjusting the potentiometer.
If desired, the diodes can be l.e.ds and the bulbs dispensed with. In this case the series resistance may need altering.
Brian P. Cowan,
University of Sussex, Brighton.

Surround sound with 741s and variable crosstalk

An alternative to the TA7117P matrix i.c. mentioned by Geoffrey Shorter in the March issue (page 116) uses 741 i.cs and differs from the circuit on page 3 of the January 1972 issue in that crosstalk is variable.

In the circuit shown left fixed resistors are $1 \mathrm{k} \Omega$ and ganged variable resistors $250 \mathrm{k} \Omega$. As in the TA7117P the two inputs are added and subtracted in varying proportions depending on the setting of the two variable resistors. The added signals $L+a R$ and $R+b L$ feed the front channels and the subtracted pair feed $L-c R$ and $R-d L$ feed the rear channels.

With the values as shown above, $a=b$ and $c=d$, and the crosstalk ratio will be $1 /(1+$ wiper resistance $)$ and therefore can be varied between 1 and 0.0004 .
M. D. Bamforth,

Oldham,
Lancs.

Simple current-limited stabiliser

This simple circuit fits in the gap between the simplest emitter follower stabilizer and the more expensive series stabilizers with current limit protection.

Emitter followers with zener diode stabilized input voltage are often used to provide simple stabilization and ripple reduction on transistor equipment power supplies. A simple modification can be made to provide a current-limit action, using the circuit shown. Diode D_{2} is added to the complementary transistor emitter follower and at low currents does

not affect the circuit other than to provide some temperature compensation for $V_{b e}$ changes in $T r_{1}$. The maximum $T r_{1}$ collec-
tor current is $\approx V_{z} / R$ giving a maximum $T r_{2}$ collector current of $I_{\max } \approx \beta V_{Z} / R$, where β is the d.c. current gain of $T r_{2}$. If the load impedance becomes too low diode D_{2} becomes reverse biased and the current is limited to $I_{\max }$. No component values are given as the circuit will work with a wide range of components to suit the particular application. Transistor Tr_{2} should preferably be a silicon transistor, both from the point of view of heat sink requirements and of improved currentlimit characteristic.
A. E. T. Nye,

Cranleigh,
Surrey.

Voltage-controlled two-phase sawtooth oscillator

The oscillator described is a design I am working on to investigate its possibilities for providing a waveform of any desired frequency and phase as soon as these quantities are specified. The interest of the problem lies in specifying phase, for which one voltage line is perhaps not enough while two are perhaps too many. The oscillator is a sawtooth type but at a fixed amplitude outputs can be shaped to give a sinewave. (Seefor example New techniques in function generation under "Notes from the Physics Exhibition", W.W. May 1972 p. 236). It is based on the fact that the sine and cosine functions of an angle each cross the zero line whenever the other reaches a peak or trough. For sine and cosine the sum of their squares is constant but for the twophase sawtooth oscillator the arithmetical sum of the outputs is constant.
Assume a direct voltage $V_{\text {in }}$; this is amplified as $\pm \frac{1}{2} V_{\text {in }}$ by each of the two amplifiers at the left of the diagram, depending on whether the f.e.t. is off or on in each case. Each output is integrated to give a rising or falling ramp by the two following inte-
grators. The polarity of the two resulting outputs is monitored by the last two operational amplifiers, which switch rapidly between the limits of their outputs. The top one has positive gain, the lower one negative gain. Each controls the switching f.e.t. at the beginning of the other channel. The generator has similarities in each channel with R. J. Tidey's version of G. B. Clayton's generator (W.W. May 1972 p. 239), but instead of discrimination at two definite voltage levels to trigger a bistable circuit, leading to reversal of the polarity of the input to the integrator, this reversal is caused by the zero crossings of the other channel.

Once oscillation is established, the output of one integrator is travelling toward zero, and the output of the other is travelling away from zero, with the same or opposite polarity. When the first output crosses zero the discriminator switches the f.e.t. in the input amplifier of the other channel. This reverses the polarity of the voltage to the integrator so that its output now travels toward zero. But the first output, having passed thrcugh zero, is now travelling away
from it. Each channel is now in the situation the other channel started off in, so the second channel passes through zero output from its integrator, whereupon its discriminator switches the f.e.t. in the first channel, and the action is self-perpetuating.

The Q of the system is nominally infinite, i.e. oscillations once started continue at the same level for some time, not that there is any provision for starting them. Provisionally, I would add some gating from the outputs of the two discriminator 741 s to boost the slope of one sawtooth in one quadrant, using the components shown in broken lines.

All this is happening on a time scale determined by $V_{i n}$, assumed constant. If $V_{i n}$ is reversed in polarity the oscillator repeats its past performance backwards, like a film projector switched from forward to reverse; this is "negative frequency". If $V_{\text {in }}$ becomes zero the output voltages freeze at constant values. Modulating $V_{i n}$ modulates the output frequency. This may be more useful if the outputs are shaped into sinewaves. F. B. Jones.

Crosfield Electronics Ltd, London.

Realm of Microwaves

3. Modern circuitry

by M. W. Hosking* m.Sc.

The general summaries in the preceding article of the various types of transmission line treated them simply as carriers of electromagnetic waves. No attention was given to the ways in which a transmission line can be locally modified to influence the field. As part remedy, this article commences with a description, not of the many and varied components such as frequency, power and attenuation measuring devices, but of the basic reactive elements from which they are constructed. Progress can then be made towards a description of distributedelement, microwave integrated circuits using the microstrip form of transmission line. Finally, a worked example is given of the design of a microwave receiver.

Transmission-line distributed elements

A distributed element is an inductance, capacitance, or resistance, the exact value of which is a function of frequency, and where the L, C or R is formed by a discrete length of the transmission line itself. To appreciate the significance of this, consider a few further transmission line properties. Derivation and proof of these statements is elementary, and are not given space in this text.

Firstly on the periodic nature of the line: an impedance or admittance occurring at a particular point will be repeated in value all the way down the line at half line-wavelength, $\lambda \mathrm{g}^{2}$ intervals. For example, if a shunt inductance is formed across the line at A and, say, five halfwavelengths further along at B , a shunt capacitance is placed, then the input admittance sees B superposed on A or, equivalently, A superimposed on B. The input is thus susceptive, having a value equal to the normal sum of the inductive and capacitive susceptances of the two elements.

The second important property is that a quarter line-wavelength interval acts as an impedance inverter. That is, an impedance $a+j b$ looks like an admittance $1 /(a+$ $j b)$ at all points which are odd multiples of a quarter line-wavelength away.

[^6]Strictly speaking, these two statements are true only if the transmission line has zero loss, but in most practical cases, the loss per wavelength is small enough to give negligible error. One use of these periodic relationships might be a requirement to introduce some reactance, say, at a point in a system which is not directly accessible. By choosing a part of the transmission line some distance from the required point and inserting the appropriate component value, the required effect can be produced. Again, this is strictly true at only one frequency and approximations or trade-offs have to be made if a wider bandwidth is required.

To achieve any particular value of reactance, capacitive or inductive, use is often made of the properties of an open-circuited or short-circuited length of line. No matter what form of transmission line is used, be it waveguide, coaxial or other, the following properties apply. Suppose a length of transmission line is to be short circuited at one end and the input impedance to be noted at different distances from the short. Then, at the short circuit itself, the impedance is zero but, on moving away down the line, the input impedance will appear as an inductive reactance, increasing in value until it reaches infinity at a quarter wavelength from the short. At this point the reactance reverses sign and becomes capacitive, decreasing in value from infinity to zero and then repeating. (This is also true for
a purely open-circuited line, but with a quarter wavelength phase difference; that is the first quarter wavelength is capacitive instead of inductive.)

Thus, any value of reactance can be produced from a suitably terminated length of transmission line, that is, a distributed element. Such elements can then be placed in series or parallel with the main line to influence the flow of power and can be dealt with, computationally, in the same way as for normal a.c. theory. To those brought up on dielectric capacitors, it is interesting to point out that a capacitance produced in the above fashion is not necessarily a d.c. open circuit. An example of a series T-junction in microstrip is shown in Fig. 1 and here it is possible to influence the e.m. field travelling down the main line by the impedance of the series arm; by the length of the series arm; and by the way in which the series arm is terminated.

There are really two effects at a junction like this. By the definition of "distributed" the line dimensions are comparable in size to the wavelength, the junction actually appears as a physical discontinuity to the field in the main line and will disturb it. This disturbance is equivalent to the effect of a reactance across the main line. Impedance of microstrip is a function of linewidth; the narrower the strip, the higher the impedance. This governs the value of X_{c} On top of the basic junction reactance is superposed the impedance of the series arm itself and its termination and herein

Fig. 1. Illustrating $a T$-junction in microstrip transmission line. Reactance X is a function of the stub length and can be made to vary between zero ohms and infinity.
lies great scope for influencing and controlling the transmission properties of the main line.

By way of illustration, suppose the length of the series arm was made a half microstrip-wavelength long and formed as in Fig. 1. Leaving radiation effects from the end to the dedicated reader, this is an opencircuited strip and the terminating impedance (in this case infinity) will be repeated in value at half-wavelength intervals. Thus, there will be an infinite impedance (open circuit) across the junction and the main power flow will be uninterrupted. If now the open-circuited stub is gradually shortened, the impedance presented at the junction appears as a gradually decreasing inductive reactance. At the point when the line length becomes a quarter wavelength long, the impedanceinverting property applies and the open circuit is transformed into a short circuit, effectively blocking the transmission line.

A simple application of such a quarterwave open-circuited stub is as a band-stop filter such as is often used in a superhet circuit adjacent to the mixer diode. Here, the requirement is to let the intermediate frequency (say tens of MHz) through to the rest of the circuit and suppress the signal frequency (say thousands of MHz). If the stub is made a quarter-wave long at the signal frequency, then it goes virtually unnoticed at i.f. but appears as a short circuit to the signal.

As an additional example, use can be made of this transmission line principle to construct a simple switch or modulator. The half-wave stub can be terminated in a semiconductor diode which, depending on whether forward or reverse bias is applied to it, can have a high (open circuit) or low (short circuit) impedance. The periodic nature of the half-wavelength stub then transforms the impedance across the main line and one has a simple

Fig. 2. Coupled microstrip lines showing the electric field distributions for the two analytical modes. Coupling is a function of the spacing and is much stronger for the odd-mode, making the characteristic impedance less than that of the even-mode case.

on/off switch. In practice, the stub length can be made slightly greater or less than a half wavelength and the reactance due to this deviation can be used to compensate for the electrical discontinuity introduced by the diode itself.

The foregoing illustrates one of the basic differences between the design of microwave circuits and those at lower frequencies and is worthwhile reiterating; a simple inductance or capacitance can be produced by using a physical length of the transmission line itself. Whether an element is termed inductive or capacitive depends on the way it affects the phase relationship between the electric and magnetic fields (or voltage and current); such elements can be produced by a variety of other means. In fact, any abrupt change in the dimensions of any of the transmission line forms, or any external object brought close enough to perturb the fields, will act as a reactive device.

Coupled transmission lines

If instead of using some localized element to perturb the fields a second transmission line itself were brought into close proximity with the first, so that the fringing fields could overlap, then a portion of the power could be coupled from one line into the other. Used mainly in stripline and microstrip form, coupled lines comprise a major feature of microwave integrated circuit design. Although this effect has been known ever since these circuit forms have been used, it has not been until very recently that, particularly for microstrip, the mathematical analysis has overtaken the empirical approach in the design of circuits. Even now, there is no comprehensive set of equations giving explicit values of circuit parameters, and design problems must either be left in synthesis form for computer studies or worked out using graphical solutions for the coupled lines.
To determine the properties of a section of coupled line, the overall field configuration can be resolved into two separate patterns. Each of these represents a travelling wave and are called the even and odd modes of the coupled junction. The electric field patterns are as shown in Fig. 2 with the even mode having the same field polarity on each conductor and the odd mode having opposite polarities. There is much stronger field coupling between the conductors for the odd mode.
Having thus split up the overall field, it is possible to define a separate impedance for each mode, the even mode always having a higher value than the odd. The overall impedance of the coupled section is equal to the geometric mean value of the even and odd mode impedances. In similar fashion to the single microstrip line, the mode impedance is a function of w / h increasing as w gets narrower. But, now, it is also dependent on the line spacing, s / h and the impedance of the even mode increases as the spacing becomes closer, while that of the odd
mode decreases. Also, as the spacing between lines changes, so too does the amount of power that is coupled from one to the other.

Making use of the properties of coupled transmission line sections are two very important and widely used types of component: filters and directional couplers. Virtually any microwave integrated circuit will use one or both of these. The most common filter type to be based on the coupled line is the bandpass filter having the general characteristic of Fig. 3 (a) and an equivalent circuit shown in Fig. 3 (b). Basically, such a filter consists of a number of paraliel resonant sections, coupled together with series resonant sections. Modifications are usually made to this simple circuit to improve the response, but that is another story. The width and shape of the passband, together with the stopband rejection and rate of cut-off are all functions of the number and type of resonators and of the interresonator coupling.

In microstrip or stripline form, the resonators are produced with open-circuited sections of transmission line. Such a section of line will resonate at the frequericy for which it is a half-wavelength long. For instance, if the example used in part 2 is continued and we require a 50 -ohm impedance microstrip line on 0.025 -in thick alumina, for which $\epsilon_{r}=9.7$, to be resonant at 3 GHz ; then the free space wavelength is 10 cm and the microstrip wavelength is 4 cm . So the strip will resonate at 3 GHz if it is 2 cm long.

In practice, slight corrections would have to be made to this length to compensate for fringing capacitances from the open ends. For practical convenience, opencircuited strips are used, but the foregoing would apply just the same to a halfwavelength short-circuited strip. As such, this example may also serve to illustrate the difference in size between microstrip and waveguide. To propagate 3 GHz standard waveguide has internal cross-sectional dimensions of $7.2 \mathrm{~cm} \times 3.4 \mathrm{~cm}$ and the guide wavelength will be 13.85 cm giving a resonant length of just under 7 cm . The ratio in volume of just the resonators is, thus, about $2,000: 1$.

Having chosen the resonator length, the filter itself can be constructed as in Fig. 3 (c). Each resonator has input and output coupling to it from adjacent resonators, the coupling length being a quarter wavelength. The amount of overlap of the fringing fields between strips governs the bandwidth and rate of cut-off. This is a photograph of a range of filters, designed for operation at 9 GHz and having various passband characteristics.

In similar fashion to the filter, it is possible to tap-off power from the main transmission line into a secondary line. Such a device is called a directional coupler and is one of the most commonly used microwave components. There are many possible designs suitable for stripline
and microstrip, the simplest being that of Fig. 4. Here, the main transmission line includes the section 1-2 with the secondary line 3-4 brought into close proximity. The length of the coupling section is a quarter wavelength and the amount of power tapped-off depends on the spacing between the two lines. With the input at 1 , say, the main output will be at 4 with the coupled output at 2 and a 90° phase difference between both of them. Ideally, no power should appear at 3.

Directional couplers are classified in terms of their coupling factor: defined as the ratio of the power in arm 2 to that in arm 1 and this is usually expressed in decibels. Thus, coupling is $10 \log _{10}\left(P_{3} / P_{1}\right)$ and is a negative number. The sign is usually ignored and one talks of a $3 \mathrm{~dB}, 10 \mathrm{~dB}$, 20 dB coupler, meaning that $\frac{1}{2}, 1 / 10,1 / 100$ of the mainline power is coupled into arm 3 . The particular type of coupler shown is most suitable for what is termed the "loose" coupling of power: generally $1 / 10$ th or less. For "tighter" coupling, the gap must be narrower and becomes impractically small. As an example, still using the 0.025 -in standard alumina and 50 -ohm microstrip transmission line, an equal power split of 3 dB would require a line spacing of about one tenth of a thousandth of an inch; a 10 dB coupler would require a spacing of 0.007 in and a 20 dB coupler, one of 0.033 in . The gap required for the 3 dB coupler is not achievable using the conventional microstrip etching or deposition techniques and in any case the surface finishes available on alumina would preclude such fine definition. The current practical limit on linewidth and spacing is about 0.001 in .

There are many occasions when an equal power split is required and the 3 dB directional coupler is probably the most widely used of all. It is possible to use coupled lines, but not in the form shown and not by methods which are particularly convenient in the microstrip type of circuit. Instead, the design shown in Fig. 5 is almost invariably used. The first is the hybrid ring coupler, sometimes called a "rat-race", and can also be built in waveguide or coaxial form. For an input at one arm, there is an equal power split between the two adjacent arms and ideally no output from the fourth. Suppose for instance that power enters arm 1 ; it will divide equally at the junction with the ring and the two halves will flow in opposite directions. Power arriving at arm 2 will have travelled a distance $3 \mathrm{hg} / 4$ in each direction and will be in phase and combine to give an output. Similarly, power at arm 4 will have travelled $\lambda \mathrm{g} / 4$ one way and $5 \lambda \mathrm{~g} / 4$ (which is equivalent to $\lambda_{\mathrm{g}} / 4$) the other and will combine in phase. At arm 3, however, there will be a $\lambda_{g} / 2$ phase difference and no combination will take place. In practice, this decoupled arm is typically isolated by about 20 dB from the output arms in microstrip. One further point of design is that, to provide a good match, the impedance of the line forming the ring is made $1 / \sqrt{2}$ of that of the arms.
The branch-line coupler of Fig. 5 (b)

Fig. 4. Coupled-line microstrip directional coupler. An input at 1 produces a main-line output at 2 with a coupled output at 4. The output at 4 is a function of the spacing.

Fig. 5. Two examples of microstrip directional coupler, invariably used to produce an equal power split. There is always a 90° phase difference between the two outputs due to the different path lengths involved.
works in similar fashion to the hybrid ring, an input at arm 1 producing outputs at 2 and 3. By adjusting the impedances of the branch arms it is possible to produce unequal outputs. Also, this coupler can be made to operate over a wider frequency band than the hybrid ring by increasing the number of branch arms.

Both of these couplers are readily produced in stripline or microstrip form and are used extensively. A common application is a balanced mixer circuit where, if the branch line coupler was used, the two mixer diodes would be attached to the output arms 2 and 3 and the signal and local oscillator to arms 1 and 4. In this way each diode receives an equal amount of signal and oscillator power and the signal source and oscillator are well isolated from each other.

An example of microstrip coupler
circuits appeared in the Doppler radar article by K. Holford in the November 1972 issue of $W W$ (Fig. 1, page 535). A coupled-line type can be seen at the upper left - probably 10 dB from the text - and two hybrid ring couplers appear at the centre.

To complete this article and to demonstrate how the various components can be used a worked example follows on the design of a microwave receiver. This is one of the basic units common to all radar and communication systems and its presentation here should enable useful comparisons to be made by those readers acquainted with receiver design at more "do-like" frequencies.

Microwave receiver design

The type of receiver will be a superheterodyne one for increased sensitivity, using a balanced mixer and we will arbitrarily choose a signal frequency at the centre of X -band of 10 GHz . The microwave circuitry will be in the microstrip form of transmission line and the complete circuit, as it would appear in practice, is shown in Fig. 6. The signal input would be coupled to the receiver by an external aerial and there might be the need for an impedance-matching section. Not detailed is the intermediate frequency amplifier which would be fed directly from the r.f. filter output and might need a matching section.

In detail then: the first parameter to be settled for the receiver is the i.f., as this influences the design of the local oscillator, input filter, output filter and i.f. amplifier. Most of all, it concerns the input filter, the main purpose of which is to cut out spurious signals at the image frequency. If a low i.f., say 1 MHz , was chosen, one would be asking the filter to provide an attenuation of perhaps $30-50 \mathrm{~dB}$ at a frequency 2 MHz from 10 GHz and implying Q factors of several thousand. Such a design is not really practicable, especially in microstrip and would also pose stability problems. Therefore a high i.f. is preferable - another benefit being that
fewer filter sections will be needed, as the cut-off rate is reduced and so the losses in the filter itself will be smaller. At the other end of the scale, the higher the frequency, the higher the amplifier noise figure; although with small-signal transistors currently giving only 3.5 dB or less noise figure at 4 GHz , this is not the problem it once was. It is almost always the i.f. amplifier which defines the noise bandwidth of the receiver by either an input filter or preferably by using tuned stages. Thus, an i.f. very large compared with the bandwidth presents tuning and stability problems.

So having a free hand let us choose an i.f. of 500 MHz and a 3 dB amplifier bandwidth of 50 MHz , necessitating Q-factors of up to 10 and put the image frequency at $(10,000-2 \times 500)=9 \mathrm{GHz}$ with the oscillator frequency at 9.5 GHz . Finally, assume that an extensive survey of the r.f. environment has indicated that 30 dB of image rejection is required. The parallel-coupled bandpass filter at the input to the receiver can now be designed. Its characteristic will be that of Fig. 3 (a) and it is only necessary to define the bandwidth for the number of sections to be determined. The bandwidth cannot be lower than 50 MHz and the maximum width will depend on the variation of the signal frequency; let us choose it as 100 MHz .

When several tuned circuits are coupled together, as is the case in the filter, it is possible to vary the coupling to produce a passband response which is either a smooth curve or is rippled. In particular, the ripple amplitude can be made to vary as some mathematical function and a "trade-off" made between ripple and rate of cut-off. Our requirement for cut-off rate is not particularly stringent, so we shall specify a very small allowable ripple of 0.1 dB . In this case, the 100 MHz bandwidth is measured to the 0.1 dB points at the band edges. Graphs and tables exist for determining the filter design details and from these two resonant sections will provide the 30 dB image rejection. Using

Fig. 6. Microstrip receiver with integrated local oscillator, approximately four times full size. Even when packaged, size and weight are many times smaller than waveguide circuitry.
high-purity alumina substrate with a 10 microinch surface finish and gold metallization, the passband insertion loss of this filter will be less than 1 dB .

The last article showed that the microstrip line impedance was a function of the strip width w to substrate thickness h ratio. If we adopt the usual 50 -ohm impedance then Fig. 5 of that article shows that a w / h value of unity is required. We will use standard 0.025 -in thick alumina and so the input and output lines to the filter will be this width. Because not all of the microwave field is confined to the alumina, there is an effective dielectric constant, $\epsilon_{\text {eff }}$ which is lower than the material value ϵ_{r}. From Fig. 4 of Part 2: $\epsilon_{e f f}$ in our case is 6.7, for $\epsilon_{r}=9.7$ and each half-wavelength resonator is 0.228 -in long ($\lambda_{0} / 2 \sqrt{\epsilon_{e f f}}$).

Fringing fields from the ends of these resonators make them seem electrically longer and to compensate for this effect they must be shortened. In this case, the correction would be about 0.019 in from each end, making the lengths 0.190 in . If this were not done, then the filter passband would be at a lower frequency than required.

The signal, after passing through the filter, reaches one input of a 3 dB directional coupler where it divides equally and arrives at the two mixer diodes. Each section of the coupler is made $\lambda_{\mathrm{g}} / 4=0.114$ in long, only two shunt arms being required as the operating bandwidth is fairly narrow. The impedance of the series arms in the coupler is made $1 / \sqrt{2}$ times that of the input and shunt arms which means a value of 35.4 ohms and Fig. 5 of part 2 requires $w / h=1.85$, giving a linewidth of 0.046 in . The other input to the coupler, which would be isolated from the signal input by typically 15 dB to 20 dB , carries the local oscillator signal which divides equally to the mixer diodes.

The oscillator will be a Gunn effect device, with an output power of perhaps 50 mW . Such a device is typically 2% efficient, requiring a d.c. input of $9 \mathrm{~V}, 280$ mA for full output. With 2.5 W being dissipated, good heat-sinking is essential and for this reason the Gunn device will be shunt-mounted across the microstrip line as in Fig. 7 (a). Many oscillator designs are possible in microstrip, the one chosen here being the Gunn device terminating a half-wavelength section of line which, as explained for the filter, will be resonant at the oscillator frequency. In this case adjustments to the line-length must take into account the equivalent circuit of the Gunn device and in particular the parasitic reactions of the package. The simple equivalent circuit will be as in Fig. 3(b) of Part 1.

In this example the resonant line is split into two nominal $1 \mathrm{~g} / 4$ sections and a varactor diode inserted between them. The capacitance of this diode is a function of bias voltage and so the apparent electrical length of the gap between the two sections can be varied. Under reverse bias, the diode capacitance decreases as the reverse voltage increases, thereby shorten-
ing the electrical length of the line and increasing the resonant frequency. The diode could be mounted in similar fashion to the oscillator diode but as no heat sinking is required it is preferable to do away with the complicating package and use a chip diode. Series mounting also gives a slightly greater tuning range than shunt. The output from an a.f.c. loop would be connected to the varactor which, with careful design, could provide $\pm 3 \%$ frequency tuning.

Output from this complete oscillator section is conveniently taken by means of a parallel-coupled length of line and might tap-off about 10 mW of power. There are inherent power losses in the system, some power being radiated from the Gunn end of the cavity, some lost in the bias circuitry, some dissipated in the varactor and more lost in the coupling section and 3dB Coupler.

On arrival at the two mixer diodes, the signals combine to produce the i.f., image frequency and an infinite series of intermodulation products. Most of the output power is split between the i.f. and image and the efficiency of the mixer system is considerably influenced by the way in which the image power is dealt with. If nothing were done to prevent it, the image would be reflected back from the diodes and would be lost through the oscillator and signal input lines. By reflecting this power back again into the mixer with the correct phase, the conversion efficiency can be improved. This job is done in part by the signal input filter, which looks like a short circuit to the out-of-band image. By adjusting the distance between the filter and the coupler, this short circuit can be transformed to the diodes themselves by the periodic property of the line described previously.

The type of diode most commonly used now at these frequencies is the Schottky barrier or hot carrier diode. This is a metal/semiconductor junction device which is essentially free of charge-storage
restrictions, resulting in more efficient rectification and lower noise. For microstrip applications, the diode is conveniently packaged in the beam-lead style of mount shown in Fig. 7 and thermo-compression-bonded into place. In common with other types of mixer, there is an optimum oscillator power level for lowest conversion loss, in this case about 1 to 3 mW per diode. The i.f. impedance is also a function of oscillator power, decreasing as the power increases and at the optimum level is around 180 ohm . On combining the mixer outputs, though, the diodes appear in parallel to the i.f. and so the impedance presented to the amplifier is 90 ohm , which is compatible with typical low-noise input stages.

One main advantage of the balanced mixer is the suppression it provides of the a.m. components of oscillator noise. These appear in phase at each diode while the two i.fs are out of phase; therefore the diodes are inserted with opposite polarities so that on summing the outputs the noise cancels. Finally, the $\lambda_{g} / 4$ opencircuited stubs mentioned previously are placed after the mixers to appear as short-circuits to the input r.f. signal at these points.

In practice, the complete circuit would be packaged in a metal box, the final problem being to ensure that the sides and top of this enclosure do not interfere with the microstrip fringing fields.

Having established the design and determined the components, an estimate can be made of the sensitivity of the receiver. The minimum signal that can be detected is limited by the electronic thermal noise background, given by $S=$ $k T B$, where k is Boltzmanns constant $=$ 1.38×10^{-23} joule $/ \mathrm{K}, T$ the receiver temperature (Kelvin) and B_{n} the noise bandwidth (not the 3 dB bandwidth B). Taking $T=290 \mathrm{~K}$ and $B_{n}=1.16 B$ (this assumes a three-stage amplifier), $S=2.32 \times 10^{-13} \mathrm{~W}$ for the ideal case.

Fig. 7(a). Shunt-mounted Gunn diode in microstrip. Series mounting cannot be used at even moderate power levels because of the heat-dissipation problem. Photograph shows beam-lead Schottky barrier mixer diode 77 times full size. Smaller tap is about 0.005 in wide by 0.002 in thick.

Practically, this figure is degraded by losses in the system which we can estimate as: 2 dB circuit losses in filter and coupler, 4 dB mixer noise figure and 2 dB mismatch and i.f. amplifier loss; giving a total of 8 dB . This means that the sensitivity is decreased by 6.3 times the above thermal noise power to a value of about 1.5×10^{-12}.

A receiver such as this employs a large number of individual microwave components, both active and passive and provides a good example of microwave circuit design. Although quite commonly constructed in waveguide, the modern type of circuitry is hybrid microstrip as illustrated here and is particularly suited to compact light-weight installations in aircraft and missiles.

Announcements

"Components and Small Devices" is one of a series of three-day courses dealing with production in the electronics industry. The course is to be held at Twickenham College of Technology, Egerton Road. Twickenham, Middlesex TW2 7SJ from the 5th to 7th June.

MSL Calibration Centre of Hunting Gate, Hitchin, Hertfordshire announce a new calibration service. This covers a range of instrumentation including oscilloscopes, pulse generators, frequency counters, digital voltmeters and a comprehensive range of multimeters and associated prime standards.

Henri Picard \& Frere Ltd have moved to 357/359 Kennington Lane, London SE 11 5HY. The company supplies precision hand and special-purpose tools for electronics production and servicing, micro-assembly, and laboratory use.

The Ministry of Defence has approved the MuirheadVactric Test House at Garth Road, Morden, Surrey for Part III Approval. The main facilities cover conditions simulating altitudes up to $100,000 \mathrm{ft}$, temperature variations between $-80^{\circ} \mathrm{C}$ to $350^{\circ} \mathrm{C}$ and humidity to 95%. Other conditions available are salt spray, water percolation, dust, vibration and bump tests.

The Broadband Marketing Department of Pye Telecommunications has extended its broadband u.h.f. and microwave activities by the recent award of a number of contracts, from the Post Office, for multichannel telephony and colour television systems. These are to expand a communication system between Plymouth and the Goonhilly Satellite Earth Station.

The Midlands Electricity Board, Northen Area, has placed an order worth $£ 125,000$ with Pye Telecommunications Ltd, Newmarket Road, Cambridge, for a radio communications network which will cover North Shropshire and North Staffordshire. The order includes five of the Pye Telecommunications L300 point to point radio links in the 1.5 GHz band.

Emihus Microcomponents Ltd, Clive House, 12/18 Queens Road, Weybridge, Surrey, have acquired the connector business of the Belgian company Sabca who have been manufacturing connectors under licence from Hughes Aircraft Co.

Light Soldering Developments Ltd, 28 Sydenham Road, Croydon CR9 2LL, manufacturers of the Litesold range of soldering irons have appointed Lugton \& Co. Ltd, of London, as their distributor for London and the South East.

BURNDEPT HAVE PLANS TO SPEED UPA BUSINESS ON THE MOVE

give any business a move on. Firstly, Burndept have the planning skill.
With 50 years' experience in radio communications, they'll plan a system according to your needs.
Secondly, Burndept have the equipment.
Burndept's new Personal Radio-telephone is the most versatile unit yet designed, It's small and light, and has a wide range of accessories. So it can be used by anybody anywhere-airlines, construction firms, the oil industry-all find a use for it. The Burndept mobile unit is easily installed in lorries, cars, fork lift trucks. Burndept Radio-telephones are available in the VHF frequency bands (either FM or AM) and in the UHF tand for greater penetration and clarity in urban areas. Burndept back up their systems planning with a most efficient after-sales service.

So you'll always get the best out of Burndeptand speed up your business on the move.

WITH US, SERVICE COMES FIRST. Burndept Electronics (E.R.) Ltd.
St. Fidelis Road, Erith, Kent. Tel. Erith 39121

VideO from Bellz Howell

In the United Kingdom Bell\&Howell Video means:-

\section*{Electrohome
 Grass Valley JVC Nivico Thomson CSF

Monitors
Signal processing equipment
1/2in. EIAJ1 Video tape recorders and cameras
Specialised cameras and systems

\section*{Tamron

Tamron
 Prime and zoom lenses

and of course (in England and Wales) -

IVC
1 in . colour and monochrome video recorders and cameras

Bell \& Howell's team of video engineers can provide a video system to meet your needs. For further information write to:-
Video Systems Division,
Bell \& Howell A-V Ltd.
Freepost, Wembley, Middlesex, HAO 1BR Or telephone: 01-902 8812

The new 1 in. video cassette recorder from IVC

[^7]
Power amplifiers
 Efficiencies - matching © "rms" power

by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams*

All amplifiers are power amplifiers in that the power delivered to the load is greater than that drawn from the source. Few are power amplifiers in the same sense that an operational amplifier with feedback may be said to be a voltage amplifier or a current amplifier. Thus in Fig. 1 the load voltage is defined for a given input signal and the load power is proportional to the conductance of R_{L}. For Fig. 2 feedback defines the load current while the corresponding power developed in the load is proportional to the resistance of R_{L}

This suggests that as many power amplifiers use shunt-derived feedback to define their output characteristics, they could properly be regarded as voltage amplifiers which just happen to be capable of delivering large powers to a load of sufficiently low resistance. Operating these amplifiers from a constant supply voltage in the usual way fixes an upper limit on the load voltage. Practical imperfections in the transistors together with current limiting resistors or other protective circuitry reduce this upper limit but still leave the peak output voltage broadly proportional to the supply.
Output power depends equally on the maximum current that can be supplied to the load. The mean value of this power over a complete cycle for a sinusoidal output voltage and resistance load is $\hat{V} / 2$, where \hat{V} and \hat{I} are the peak instantaneous values of voltage and current, and as $\hat{V}=\hat{I} R_{L}$ and $V_{\text {rms }}=\hat{V} / 2$, alternative expressions are $V_{I_{r m s}^{2}}^{V_{m s}} R_{L} . I_{r m s}=\hat{V}^{2} / 2 R_{L}=I^{2} R_{L} / 2=V_{r m s}^{2} / R_{L}=$
At this point, you might be asking: "what about r.m.s. power?". This, unfortunately, is on a level with the equivalent enquiry after the well-being of the workers. It can be answered in various ways none of which are useful. To interpret it properly it must be realized that, while the power developed in the load varies from instant to instant, it is the mean or average value of that power that determines, for example, the loudness of the sound produced by a given loudspeaker. The r.m.s. value of the power can be defined mathematically in the same manner as the r.m.s. value of the voltage, but it has no comparable physical significance, i.e. it would require the instantaneous power to be squared, integrated to obtain the mean value of the "power squared", and then the
square root taken of the result. The confusion arose because mean power happens to equal the product of r.m.s. voltage and r.m.s. current for certain specified conditions which commonly occur. Hence the "r.m.s." term has become firmly attached to the power measurement itself particularly in the advertising for audio equipment. It should be detached.
While the voltage term in the output power is fixed by the supply voltage, the current term is a property of the amplifier. Consider first the amplifiers based on a single transistor as shown in Fig. 3. In each case the transistor is assumed to be dealing with an a.c. signal which has equal positive and negative magnitudes, e.g. a sine wave. Thus the transistor must be biased to some quiescent voltage/current setting which will allow positive and negative-going output swings. If distortion is to be avoided the transistor must remain conducting throughout the cycle, i.e. neither the current nor the p.d. across the transistor shall fall to zero. This mode of operation, class A, may be

Figs. 1 and 2. In a collage amplifier and a current amplifier, load voltage or current is defined for a given input signal and load power is proportional to the conductance of R_{L} (Fig. I above) or the resistance of R_{L}
(Fig. 2 below), suggesting that power amplifiers using shunt-derived feedback could be looked on as voltage amplifiers, but capable of handling large powers.

defined in terms of the "angle of conduction", being the full 360° of the cycle. In class B each device conducts for precisely 180° or half the cycle and in class C conduction is for $<180^{\circ}$.

In Fig. 3 (a) if the direct current is permitted to flow in the load, equal positive and negative excursions occur for a voltage across the transistor equal to half the supply voltage (assuming an ideal transistor). Thus the peak of the a.c. component of load voltage is $\hat{V}=V / 2$. Hence the a.c. power in the load is $(V / 2)^{2} / 2 R_{L}=V^{2} / 8 R_{L}$. In the absence of signal the current drawn from the supply is $V / 2 R_{L}$ giving a supply power $V^{2} / 2 R_{L}$. This shows an efficiency of 0.25 The quiescent power splits $50 / 50$ between transistor and load resistance
It is possible to do still worse. In Fig. 3 (b) the load is capacitively coupled to the amplifier to eliminate the direct current in the load. A collector resistor is still required to allow the flow of current in the transistor, establishing the quiescent conditions for class A operation. Now the total a.c. power is split between R and R_{L} and the maximum efficiency is reduced to-0.125.
The situation can be retrieved if the collector resistor can be replaced by some constant-current stage as in Fig. 3 (c). The positive peak current in the load can then equal the quiescent current even when the collector approaches the supply voltage (assuming a constant-current stage that can function with a p.d. falling towards zero). Hence the load can have a maximum current swing simultaneously with a maximum voltage swing. In Fig. 3 (b) when the transistor current falls to zero, R and R_{L} are effectively in series and the p.d. across R limits that across R_{L}.
The constant-current stage may consist of an inductor whose reactance is high compared to the resistance of the load at all frequencies of interest; an ideal transformer that also allows the use of arbitrary load resistance by proper choice of turns ratio; a transistor biased to deliver a constant current. The disadvantage of (d) and (e) is that the amplitude-frequency response is limited unless bulky and expensive inductor/transformers are available. They do offer the possibility of higher efficiency than any of the other circuits. For example, Fig. 3 (f) allows the peak current in the load to equal the quiescent current, and the peak voltage to equal the transistor quiescent voltage,
i.e. half the supply voltage for the best operating conditions. Thus load power is $\left(I_{d c} V / 2\right) / 2$ while supply power is $V . I_{d c}$, giving an efficiency of 0.25 bringing the efficiency back to the level of Fig. 3 (a) but with the d.c. component removed from the load. In Fig. 3 (d), the peak current in the load is still equal to the quiescent current, but the inductance allows the collector voltage to swing positive with respect to the supply line as the transistor current falls-a load peak voltage equal to the supply voltage being available. The a.c. power in the load then becomes $V_{d c} / 2$ for the same supply power $\Lambda_{d c}$, and maximum efficiency is 0.5 . This is the highest efficiency possible in class A and the transformer-coupled circuit of Fig. 3 (e) has the same capabilities. It is common for practical circuits using small transformers to have efficiencies in the region of 0.25 to 0.4 .

The low efficiencies attained by these single-device circuits lead to the investigation of multiple transistor circuits. Simply operating transistors in parallel may increase the quiescent power they can dissipate and hence the available output power, but the method offers only second-order improvements in efficiency by reduction of saturation voltage etc. Before turning to other classes of amplifier, consider the natural extensions that are possible of the circuit of Fig. 3 (f). Replace the transistor used as a current source by one receiving a signal as in Figs 4 (a) to (d). The signals to the two transistors depend on the configuration used, but the aim in each case is to cause one transistor to decrease its current by the same amount as the other increases it, still assuring class A operation for each transistor individually. In this way the peak current in the load may equal twice the

Fig. 3. In a resistive-load class A amplifier (a) efficiency is only 25%; with a capacitatively-coupled load efficiency could be $12 \frac{1}{2} \%$ for equal values of resistor shown (b). Replacing collector resistor by a constant-current circuit (c) means the peak load current can equal the quiescent current. Examples of constant-current circuits are a simple inductor (d) or transformer (e) both giving maximum possible efficiencies of 50%, or at (f) using an additional transistor, efficiency 25%.

Fig. 4. Using a second for signal handling enables the peak load current to equal twice the quiescent current, with efficiencies of up to 50%.

These circuits are not restricted to class A operation. Indeed they are more commonly used as push-pull class-B amplifiers in which the bias network (not shown) is adjusted to bring both transistors to the edge of conduction. Each transistor then conducts during one half-cycle, there being no quiescent current. There is no comparable limit to the peak current that may be provided ; class B simply demands that conduction takes place in a device for 180° in the cycle. A limit will be imposed in any particular design by the current/power limitations of the transistors/power supply. In principle any basic design for a class B power amplifier using configurations such as those of Fig. 3 (c) and (d) may be extended to higher current levels by replacing the output transistors with Darlington pairs, complementary pairs etc. Thus 100 W and 100 mW amplifiers may be surprisingly similar in configuration. At high power levels the importance of protection and of maintaining stable bias leads to the addition of circuits monitoring and/or controlling the current in the output stage.
To minimize the distortion due to device non-linearity at low currents (cross-over distortion) the bias networks are set to provide some quiescent current, setting the operation intermediate between true class B and class A -often called class AB and -further subdivided into $A B_{1}, \mathrm{AB}_{2}$ according to the fraction of the cycle for which each device is non-conducting. The design of low-distortion power amplifiers is a highly specialized subject that will warrant separate treatment in a later series though outline design procedures and practical examples of simple and economical circuits are given in this series of Circards.
Quiescent power in class B is zero. Maximum output power with ideal transistors (Fig. 6) is $\hat{V}^{2} / 2 R_{L}$ where \hat{V} is $V_{s} / 2$. Therefore $P_{L \text { max }}$ is $V_{s}^{2} / 8 R_{L}$.
Under these conditions, the mean current drawn from the supply is $V_{\mathrm{s}} / 2 \pi R_{\mathrm{L}}$. This is because the current is drawn from the supply only during the positive half-cycle; the negative half-cycle results in charge being withdrawn from the large coupling capacitor, which charge is restored during the next positive half-cycle. The mean power drawn from the supply is $V_{s} I_{d c}=V_{s}^{2} / 2 \pi R_{L}$ and the corresponding efficiency is

$$
\frac{P_{L}}{P_{s}}=\frac{V_{s}^{2}}{8 R_{L}} \cdot \frac{2 \pi R_{\mathrm{L}}}{V_{s}^{2}}=\frac{\pi}{4}
$$

or 78.5%.
As the load power is proportional to the square of the output voltage while the supply power is proportional to the voltage it follows that efficiency is proportional to output voltage. It is also true that at some intermediate level of output, the load power having fallen faster than the supply power, the power in the transistors passes through a maximum. For sine wave drive the maximum dissipation in each transistor is at an output voltage where \hat{V} is V_{s} / π, and the dissipation is then about one fifth of the maximum output power derived above, i.e. a 10 W amplifier could theoretically be constructed using a pair of transistors with power ratings of only 2 W each.

Fig. 5. Optimum load for maximum signal handling is represented by load line cutting axes at $2 V_{c}, 2 I_{c}$, for Fig. $3(d)$ or (e) and depends on the quiescent condition and not transistor output resistance. In general optimum load can be calculated from peak voltage/peak current.

Fig. 6. In this typical class B stage, text shows maximum efficiency to be 78.5%.

Class C amplifiers are normally restricted to tuned amplifier systems, conduction taking place for only a small part of a cycle, and the recovery of a sinusoidal waveform then demands a high- Q circuit. The exception is the power-control circuits such as controlled rectifier and triac circuits in which only the mean value of voltage/ current/power is of interest and waveform shape is non-critical. These differ from conventional class C circuits in that the conduction has a controlled starting angle but always finishes near the end of a half-cycle; class C r.f. amplifiers are biased such that the conduction angle is symmetrical about the peak of the drive waveform.
A further difference is that the power control devices are operated as nearly as possible as perfect switches, while at the high frequencies normally associated with class \mathbf{C} stages, a very detailed design procedure is required to cope with transistor parameters. This will normally include complex conjugate matching to source and and load, to optimise performance. Efficiency can exceed that for class B, though power losses in the passive components involved in the tuning/matching processes are inevitable. A further application of class C power amplifiers is in frequency multiplication where the output circuit is tuned to a harmonic of the input frequency. These aspects are germane to more detailed later studies of r.f. circuits.
Class D is the generic term for switching circuits in which the active devices are switched multiply in and out of conduction during a single cycle of the input signal. They
are also power realizations of pulse modulation systems, the theory for which can be used to determine the spectral components of the output. As one example, circuits such as those of Fig. 4 may have their signal drive replaced by high-speed pulse waveforms whose widths are modulated by the received signal. If the load is fed via an $L C$ filter, the pulse frequency terms can be removed and the output transferred to the load is proportional to the signal
For ideal transistors the switching process allows for zero power dissipation; at all times either the transistor p.d. or its current tend to zero. If the unwanted terms are to be well outside the band of frequencies that it is required to amplify, then the pulse frequency may have to be so high that serious power losses occur during the instants of switching, while charge storage in either of the transistor base-emitter junctions can lead to excessive current spikes through the series path then provided by the two transistors. The principle is more readily applicable to small servo-motor systems than to audio amplifiers as the electromechanical properties of the load do not require very high switching frequencies. In some cases efficiencies may exceed 90% with 100% as the theoretical upper limit.
In all the above circuits an ever-present problem is that of protecting both the circuit and its load from excessive current flow. Much time and energy is expended on systems for protection against faults, but inevitably accidents happen, so often after some improvement or embellishment has been added. One can only wonder if such thoughts may have been in the mind of William Wordsworth when he wrote
I have submitted to a new control;
A power is gone which nothing can restore;
A deep distress hath humanized my soul.
A cry from the heart that will speak to all designers of power amplifiers.

How to get Circards

Order a subscription by sending £9 (U.K. price; $£ 10.50$ elsewhere) for a series of ten sets to Circards, J. Rider, IPC Business Press Ltd (Sundry Sales), 33 Bowling Green Lane, London EC1R 0NE. Specify which set your order should start with, if not the current one Per set (12 cards), price is $£ 1$ U.K. and $£ 1.15$ elsewhere.
Topics covered in Circards are active filters 1 , switching circuits (comparators and Schmitts) 2, waveform generators 3, a.c. measurement 4, audio circuits (low level) 5 , constant-current circuits 6 , and power amplifiers 7 (current issue). Subsequent Circard issues should include: use of optoelectronic devices, astable circuits, logic gate circuits, wideband amplifiers, alarm circuits, digital counters, pulse modulators, micropower circuits.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Transmitting aerial design

I would like to suggest the possibility of another method of reducing interference in addition, or alternative, to frequency allocation or use of suppressed carrier systems on the medium waves. This is associated with aerial design.

Many wavelengths from an aerial, all that is left of the composite field is a transverse one, in which the electric and magnetic vectors are perpendicular to the line of propagation, and the inverse square law applies to this radiation. However, closer to the aerial we find radial components of radiation which die away more rapidly than as r^{2}. Would it not be possible to design an aerial with strong radial components and small transverse component, so that the fields which die away inversely as r^{4} and above are used for local communication; while the field which dies away inversely with r^{2} is of sufficiently small amplitude not to cause interference over long distances at night?
Guy S. M. Moore,
University of London King's College,
London W.C. 2.

Current flow symbology

Over the years your journal, through its articles and correspondence columns, has played an important part in tidying-up thinking, terminology and conventions in our industry. I wonder if a really basic convention could be discussed and possibly one of the alternatives chosen as Wireless World policy?

I refer to the direction of current flow. Some people, I am one of them, regard electron flow as current and indicate on circuit diagrams the direction of electron flow by arrows. Other people prefer to refer to "conventional current" and indi cate its direction by arrows pointing +ve to - ve.

A brief survey of educational books showed other variations. One showed steady current flowing + ve to -ve but signal currents flowing $-v e$ to $+v e$. In another, the "two" currents are called electric current and electron current. In another, electron current is called "negative current". So long as it is made clear in the text of articles which convention is used I suppose it does not matter very
much to experienced engineers, but it does seem rather a waste of effort and it must cause confusion, particularly to students.

Pneumatic and hydraulic engineers manage without a theory which needs the belief in a "conventional" air or water current flowing in the opposite direction to the flow of air or water particles.

Is there any serious objection to dropping "conventional" current and dealing only with electron flow, calling the flow "current" or "electron current" and indicating its direction on circuit diagrams by arrows pointing - ve to +ve ?
C. H. Banthorpe,

Northwood,
Middlesex.

Measuring displacement

I was interested to read the article on "Displacement and position" in Richard Graham's series on Industrial Electronics, and in particular his comments on the susceptibility of the incremental moire fringe counting system to miscounted pulses and mains transients (April issue).

Modern chrome-on-glass or stainless steel gratings, housed in a sealed channel to prevent contamination, will provide signals of good amplitude and waveform which virtually preclude errors due to miscounting, provided that the maximum permissible speed of counting is not exceeded. Unfortunately, the effects of vibration, a fairly common hazard with machine tools in particular, can give rise to instantaneous very high counting rates and hence to counting errors.

The problem of mains transients is more serious than is commonly imagined; operation of arc welding equipment, overhead cranes, and even nearby machine tools, can cause momentary "spikes" in the mains supply and hence counting errors. Furthermore, complete failure of the mains supply, although only for a second's duration, can result in the scrapping of complex and expensive components.

One method of eliminating this problem is to power the reading heads, interpolation circuitry and counters from a "floating" battery supply: a $\mathrm{Ni}-\mathrm{Cd}$ or other storage battery, with voltage stabilizer, continuously trickle-charged from the
mains. This solution not only caters for gross breaks in the mains supply, but also smooths out even the most extreme mains transients.

An additional point, regarding radial gratings, is that any eccentricity in the rotation of the grating will frequencymodulate the output pulse train, giving rise to angular reading errors. The conventional way of avoiding this "eccentricity error" is to employ two diametrically opposed reading heads (or occasionally four heads at 90° spacing) and to combine the in-phase and quadrature signals from these heads in operational amplifiers. However, this technique is of use only when the grating eccentricity is less than one-eighth of a line spacing. For very fine gratings $(64,800$ or 72,000 radial lines) this means that the bearing must have an eccentricity of only a few micro-inches, and that the grating must be mounted to a similar accuracy both requirements possible only on equipment of the very highest accuracy.

A recent development by the Cranfield Unit for Precision Engineering is a form of digital eccentricity-reducing circuit, acting in combination with a phasedivision circuit giving typically 20 equispaced pulses for each prime fringe. The Cranfield circuit accepts signals from two diametrically opposed reading heads, and reduces the effects of any eccentricity present by the same factor as the phasedivision circuit, e.g. 20 times. The circuit will accept signals from gratings with any amount of eccentricity, and in particular a small modification enables a con tinuous display of the eccentricity present to be made even while the grating is stationary. This feature has reduced the time required to centralize gratings and bearings to a few minutes.

Finally, position servo systems have been developed at Cranfield using moiré fringe measurement, with positioning resolutions of $0.5 \mu \mathrm{~m}$ (linear) and 0.9 arcseconds (rotary).
J. Dinsdale,

Cranfield Unit for Precision Engineering, Bedford.

"Biamplifier" loudspeakers

I notice in Mr Peter Hiscocks' letter on "Loudspeaker parameters" (March) he mentions the Biamplifier approach.

Some fifteen years ago at Philco we marketed such a system. The amplifiers were quite modest with the ratio of their respective power capabilities arranged to coincide with their section of the audio spectrum. Additionally, the loudspeakers were designed into the filter characteristics. The overall aural effect certainly demonstrated a low level of intermodulation and even a direct comparison with the standard high fidelity equipment of the day failed to prove any marked inferiority, even though the price differential was very considerable.
The disastrous sounds associated with overdrive of the high feedback amplifier was of course absent and the impression was of almost unlimited power from the
system. The low-pass filter action of the bass /mid-range loudspeaker contributes to the low aural distress. Also, unlike the passive cross-over, no distortion products of mid-frequency overload are diverted into the treble loudspeaker; this remains clean until treble components of the programme material themselves overload the treble amplifier.
H. D. Garland,

Romford,
Essex.

Distortion reducer

The article "Distortion Reducer" by D. Bollen (W.W. Feb. 1973, pp. 54-57) describes a useful method of reducing distortion in power amplifiers. Since the article gives no references to earlier work in this field, it is worth pointing out that exactly the approach used by Bollen for distortion reduction has been described in detail much earlier (J. R. Macdonald, Proc. I.R. E. 43, 808, 1955). This scheme, terméd active-error feedback, preferentially makes use of a feedback, amplified error signal. Bollen shows in his Fig. 1 a realization with unity gain in the feedback path (amplifier C has unity gain), but his actual experimental circuit (Fig. 4) and text involve an error signal path with greater than unity gain, as described in 1955 and perhaps even earlier. The current availability of inexpensive i.c. operational amplifiers now makes the active error approach extremely easy to implement, but the usual precautions appropriate for negative feedback amplifiers must be observed.
J. Ross Macdonald,

Dallas,
Texas, U.S.A.

Old headphones needed

I hope you will be kind enough to allow space for this begging-letter. I need a few old headphones for children's Science lessons. The 'phones need not even be good enough to emit readable speech, so long as they "crackle" when a faint voltage is passed through their leads and diaphragms.

If headbands are present, they will be a marvellous bonus, but we do want some earpieces and leads that respond to a voltage of about 0.5 V .

My problem is that we have no money to pay for these. Your readers already know that teachers in primary schools these days ungrudgingly spend quite a bit of their own pay in supplementing their fellow ratepayers' contribution. In the present case I am saving for a secondhand 4-channel mixer so that some less articulate children may be encouraged to help make a "radio play" on my (1958 model) tape-recorder; we are therefore stumped for cash for headphones for Science.
John R. Gibson,
Sudbury Junior Mixed Primary School, Watford Road,
Sudbury,
Middlesex.

Mechanical television

I am trying to revive interest in mechanical television for recording and linetransmission, using the most modern electronic devices that have appeared since the demise of the mechanical system, circa 1934.

I feel sure that many $\boldsymbol{W} \boldsymbol{W}$. readers with a knowledge of mechanics and optics would be interested in taking part in such work as an unusual inter-disciplinary project, particularly those of a younger generation to whom the ideas are virtually unknown. I have already felt considerable warmth of enthusiasm from the older workers in this field to whom this subject has a naturally nostalgic appeal.

Having received most courteous help from the I.T.A. and the B.B.C., not to mention the local radio station, I am moved to make a wider appeal, and the use of your pages would be a great help.
D. B. Pitt,

Wollaton,
Nottingham.

Magnetic pickup loading

The origin of the myth that the $47 \mathrm{k} \Omega$ load resistor specified for most magnetic cartridges results in a h.f. cutoff is one that has always mystified me, and to see it perpetuated in the latter part of Mr Fison's letter (Wireless World March issue) puzzles me even more. It is perfectly true that if we consider a typical magnetic cartridge to be almost a pure inductive source, then a termination with the usual $47 \mathrm{k} \Omega$ load would create a simple lst-order low pass filter, with the -3 dB point obtaining when $R_{L}=X_{L}$ and thereafter increasing to the anticipated 6 dB /octave slope (Fig. 1).

But, of course, in a real circuit, this would be an incorrect assumption. The inductive component in, for example, the pickup referred to is heavily damped and a quick measurement in my lab suggests that Fig. 2 would be much nearer to the equivalent circuit. I am sure that it will be agreed that now the h.f. fall-off will be very small within the audio passband and, indeed, hardly worth working out. Let's now take the example a stage farther. It is a fact that there will certainly be a shunt C component in our equivalent circuit (Fig. 3) and, if one assumes that the amount of coupling lead is not less than 1 metre of low capacitance screened cable, then the value of the shunt C will not be less than 100 pF and may be as much as 250 pF (although this is far from desirable).

Without R_{L} the equivalent circuit now looks like an unterminated basic $\frac{1}{2}$ section low pass filter and, as one might expect, there will now be a rise at the h.f. end, reaching a well damped peak somewhere between 10 kHz and 20 kHz and dependent, naturally, upon the source inductance and the shunt capacitance. This is where the optimum load comes in, and, as we know already, the cartridge parameters

are normally tailored by the cartridge designer for an optimum load of $47 \mathrm{k} \Omega$. Please note, I have not taken into account at al the inevitable mechanical resonances in the pickup such as that which arises from the styus mass and the compliance of the record material. These will almost certainly contribute to an additional rise in amplitude at the h.f. end of the passband.

Incidentally, if I might be permitted a little aside? It might be rather interesting to discover how many of my colleagues, entrusted with the task of evaluating commercial amplifiers for the popular hi-fi press, take the precaution of inserting a simulated cartridge into the signal path when checking the characteristics of the "magnetic pickup" input stage? The results can often be quite reveaiing, since one must not overlook the fact that this reactive signal source is usually in the n.f.b. path of the input stage as we!!

Reg Williamson,
Norwich.

Loudspeaker loading

As a student of electroacoustics I have taken interest in your articles and letters on loudspeakers. It is my opinion that instead of trying to eliminate all resonances to produce systems working on one single loading principle, one should make deliberate use of as many as possible (suitably damped of course) to extend and improve bass response. After having tried out most of the available methods in my own systems, I have finally arrived at a very satisfactory design based on t.l.s., reflex and tuned pipe principles at the
same time, the effects occurring at different frequencies below about 100 Hz . This has enabled me to get a good, clean and strong response to about 30 Hz from a modest elliptical unit costing about $£ 4$ in this country mounted in a 2 cu.ft cabinet.

I would also like to add to Telfer's and Greenbank's letters on horns that I feel the ability to produce reasonably plane waves at low frequencies (also mentioned by "Toneburst" if my memory serves me right) is essential in the correct reproduction of spatial information, especially when illusions of distance are necessary. This accounts for the obvious superiority of a good horn in reproducing large orchestral works etc. Listening to chamber music or music where direct sound plays a minor role, e.g. an organ, or sitting at a distance from the speaker in a large room, all tend to reduce this difference. The only real disadvantage of the hornloaded speaker seems to be bulk, which should not be much greater than conventional systems of comparable quality in both extended response and handling capability, though the latter is hard to achieve in direct radiators.
Peik Borud,
Trondheim,
Norway.

Electronics in psycho-kinesis

An apparatus used in a psycho-kinesis experiment performed in the U.S.A. is shown in the accompanying diagram (a). It consists of a solenoid, a conventional magnetic compass, a battery and a currentlimiting resistor R. The combination of the solenoid and the compass provides a sensitive galvanometer. The experiment was performed by Professor E. M. Monahan, a parapsychology teacher at Georgia State University, Atlanta, Georgia. Professor Monahan is a well-known "psychic" or "sensitive", with many remarkable accomplishments to her credit, discussed in current magazine articles (Newsweek August 28th 1972, Atlanta Magazine August 1972).

In the author's design of the psychokinesis (p.k.) apparatus, the following four aims were pertinent. To prove that the "sensitive", in this case Professor Monahan, could (1) deviate a magnetic needle by p.k. energy, (2) similarly rotate a magnetic needle, thus for a short time providing a "mind-driven motor", (3) symbolically, at least, employ p.k. energy to inject "stimulance" (negative resistance or negative conductance) in an electric circuit, and (4) establish "energy conversion" - the fact that in this experiment mind energy can be converted to mechanical energy, electrical energy, and heat.
The circuit diagram of the complete apparatus is shown in (b), where r is the resistance of the solenoid. With the switch in position "a", the circuit is open. When the switch is in position " b ", the situation shown in (a) is established, the current i_{a} being just sufficient to cause a small deflection α°. When the switch is in position
"c", the solenoid is connected to a load resistor, provided with output terminals for the connection of a sensitive d.c. voltmeter. Experiments (1) and (2) have been performed before, and today it is a fact that "sensitives" can employ p.k. energy to deviate and rotate a magnetic needle. During October 1972, Professor Monahan successfully performed experiments (1), (2) and (3). The research model used by her did not have the particular switch arrangement with a load resistor, and experiment (4) was therefore never performed, but there is no need to perform it since Maxwell's equations assure us that rotation of the magnetic needle results in an alternating current in the load resistor.
In experiment (3) the needle moves because the p.k. force combines vectorially with the earth's magnetic field force in agreement with Newton's laws. While the "sensitive" did not change anything in the electrical circuit, the fact remains that a deflection β obtains, with a current i_{β} in excess of the current i_{α}, determined by Ohm's law. Mathematically, therefore, we may satisfy the equations by introducing a negative resistance R_{N}, writing

$$
\begin{aligned}
& i_{\alpha}=\frac{E}{r+R} ; \quad i_{\beta}=\frac{E}{r+R+R_{N}} ; \\
& R_{N}=\frac{E}{i_{\beta}}-(r+R)=(r+R)\left(\frac{i_{\alpha}}{i_{\beta}}-1\right)
\end{aligned}
$$

We are now measuring the mind action in the international unit ohm, and, as an example, $R_{N}=-100 \mathrm{ohm}$. For an experiment of this nature to actually contribute "stimulance", the p.k. action must be extended to the current carriers in the proper electrical circuit rather than being applied to a magnetic needle. Whenever a carrier is deviated from its trajectory in an electric or magnetic field, as described by Maxwell's equations, the potentiality for an increased or decreased loss exists, contributing possibilities for the design of new kinds of amplifiers, oscillators, s / n ratio

enhancers and similar devices, and it is hoped that such experiments will attract the interest by research workers in the communications field. The most valuable contribution that can ever come out of such research is an apparatus for storing of p.k. energy.

Among future research apparatus contemplated is a p.k. power meter, in which a wheel of known mass and weight is rolled up a slope by p.k. energy. The mind energy is then measured directly in the unit joule, and the mind power in watt. Professor Monahan has already succeeded to rotate a wheel by p.k. power, and to make a paper clip move on a table top. It moves in little jumps. There is a great need for refined test equipment in this new field. Of special interest is a recently developed research apparatus in which p.k. energy is applied to material or living tissues inside the capacitor of an oscillator, so that the mind action can be measured in the international unit hertz. Harry E. Stockman,
Arlington,
Mass., U.S.A.

Audio amplifier design

With reference to the letter from Messrs Vereker and Mornington-West in your May issue, I would like to point out that the amplifier unit of my design to which Mr Vereker refers, and on which he made his published measurements, was one which I had lent to him for experimental purposes and in which the harmonic distortion performance was below specification. Moreover, I had informed Mr Vereker on this point at the time.

This circumstance arose because of the unsatisfactory characteristics of the output transistor pair with which it had been fitted (these were the only pair I had spare at the time). This particular phenomenon, worsening of the t.h.d. at higher frequencies, will inevitably occur in any power amplifier design in which the h.f. and I.f. negative feedback loops are divided (which is necessary to meet the Otala transient intermodulation criterion ${ }^{1}$) if the output transistors are badly matched or if their h.f. parameters are poor, since the t.h.d. characteristics at frequencies above that of the operating range of the main l.f. feedback loop depend on the effectiveness of output stage emitter follower action. If this phenomenon is found, this cause should be suspected.
For the record, when the output devices were changed (a reasonably well matched, $\pm 20 \%$, pair of Sescosem BDY56s was used) the harmonic distortion of the same unit was lower than that of my reference standard signal generator at frequencies up to 20 kHz , i.e., better than 0.05% at 10 kHz and better than 0.1% at 20 kHz . I take the point that a shunt feedback design might be better still, but common mode failure was not the cause of the phenomenon observed
J. L. Linsley Hood.

Taunton,
Somerset.

Paris Components Exhibition

New semiconductors seen at the Sixteenth International Salon

The romantic picture of Paris in the Spring fell some way short of accuracy this year, at least during the exhibition. Rain and wind were present in full measure, although the exhibition attendance did not seem to suffer as a result.

Exhibitors were about 11% down in number on last year's figure, but the effect on the leg muscles was hardly noticeable. To report on 910 stands is impossible and we have concentrated on the subject which we thought would provide the most innovation - semiconductor devices and circuits. If we are right in this assumption, we can only say that new components in the other categories must have been very thin on the ground indeed. In the opinion of many people we spoke to, manufacturers have been caught unprepared by the welcome resurgence in the electronics industry and are having a hard time supplying the demand for established components without developing new ones. This can only be a very short-lived situation and one would expect future shows to be as fruitful in novelty as previous ones have been.

Integrated circuitry continues to develop at a remarkable rate. Equipment that was "mini" even a few months ago can now be "micro" and an equipment manufacturer who rushes into hardware with his new calculator, for instance, confident in the knowledge that his latest integrated circuit is the ultimate in I.s.i., is likely to be informed otherwise rather rapidly.

Fairchild Semiconductor, for example, have brought one stage nearer the ideal of the "computer on a chip" with the PPS 25 system. They have taken the lowcost m.o.s. 1.s.i. technology, which has revolutionized the design of calculators and, with an expected upsurge of interest in mind, have applied it to the realization of minicomputers and data-processors. A family of integrated processing units has been designed to form the nucleus of programmable digital processing systems, removing the cost barrier and making possible the development of computing equipment for use with small systems. Fairchild say that the PPS25 (programmed processor system) fills the gap between calculators and minicomputers. A basic system would consist
of an arithmetic/logic unit to provide timing and supervision in addition to arithmetic functions, a memory, consisting of three 25 -digit shift registers, a read-only memory for programme storage and input/output units - all on six chips, costing less than £25. The PPS25 uses single-polarity silicon-gate m.o.s. techniques and is compatible with t.t.l. circuitry at all interfaces.

A particularly elegant application of integrated m.o.s. circuits is the Bizerba price-computing counter weighing machine, using a pair of Siemens integrated circuits specially designed for this purpose. The arithmetical process is the reverse of that used in the count-byweight machine used in industry to count large numbers of small items, and performs the multiplication of two quantities. The weight of the goods for sale is transduced into electrical form by means of a coded, transparent dise mounted on the spindle of the mechanical weighing machine. Lamps and phototransistors continuously record the weight information, which is passed to the electronics. The price per unit weight is entered by means of a ten-digit keyboard, and the two m.o.s. packages multiply the weight
by the unit price to give selling price, which is displayed digitally. Siemens point out that one of the more significant benefits of $1 . s$. i. is the reduction in soldered joints and ensuing increase in reliability. The use of these two packages has reduced the number of joints from about 4000 , using t.t.l. and r.t.l., to 48 .

The improved C-550 calculator chip produced by General Instrument SpA offers the facilities required to make an 8 -digit, 4 -function, display calculator dissipating only 150 mW at 14 V . No under or overflow indication is provided, the lack of a decimal point in the calculated result implying that the whole number consists of more than eight digits. The exponent (up to the 79th) is obtained by dividing the result by powers of 10 until the decimal point appears.

The same company were also showing their read-only memory ic - the RO-5-5184 - which is an m.o.s. character generator for needle mosaic printers. It contains a $64 \times 9 \times 9$ matrix and an internal counter with forward/reverse control. The outputs are tri-state.

Large-scale integration is primarily for large-scale application, or, at least, it has been until now. The high cost of

E.h.t. rectifiers and multipliers for solid-state colour television in silicon by General Instrument Europe (left) and in selenium by ITT.
development of these ics has limited the use of 'purpose-designed units to longrun manufacture. In an effort to overcome this limitation, several firms are now making life easier for the small user by the introduction of circuits which contain a large number of finished, but unconnected, active and passive devices. The French firm of Sintra have given the name Monochip to their design, which comes in three versions, and which contains from 197 to 352 components (14 to 24 outputs). Bipolar transistors of $\mathrm{p}-\mathrm{n}-\mathrm{p}$ and $\mathrm{n}-\mathrm{p}-\mathrm{n}$ types are provided, with a maximum current capability of 200 mA , and resistors are between 200Ω and $90 \mathrm{k} \Omega$ in value. In addition, Schottky diodes are provided with the $n-p-n$ transistors and a Halleffect device is included to enable an external magnetic field to initiate operation. The user specifies the interconnection pattern which the manufacturer applies.
Ferranti have called their approach to this problem of cost reduction the uncommitted logic array (u.l.a.). Using their recently developed collector diffusion isolation process which produces a component density in the bipolar technology comparable to that of m.o.s. techniques, they have developed an array of 187 three-input gate cells which are complete except for the fifth mask, which is the pattern for the aluminium interconnection layer, specified by the customer. Each cell can be connected to operate as either a logic element or as part of a linear circuit such as an operational amplifier or oscillator. Gate delays are typically 35 ns and power dissipation is 2.5 mW per cell.

Motorola introduced their 1024-bit read-only memory, which is claimed to be the largest production memory in this technique. This is a complementary m.o.s. memory which is programmed by the user with the aid of punched cards or a truth table. The use of c.m.o.s. confers the benefit of extreme tolerance to power supply variations, the range 3 to 18 V being usable. The MCM14524 can therefore, be used not only in all c.m.o.s. systems but will interface with bipolar elements. Access time is 70 ns .

Also using c.m.o.s., National Semiconductor have introduced their $54 \mathrm{C} /$ $64 \mathrm{C} / 74 \mathrm{C}$ series of logic circuits performing the same functions as the wellestablished $54 / 74$ series of t.t.l. units. The two series are compatible, and lowpower t.t.l. and d.t.l. can also be interfaced with the "C" series. The advantages of c.m.o.s. are low power dissipation (dependent on supply voltage and clocking frequency), high noise immunity (45% of supply voltage), reasonably short transition times (50 ns) and a propagation delay of about 25 to 50 ns .

A clearly evident trend is the recognition by a number of firms of the need for electronics in motoring. AEGTelefunken, for instance, showed an ic, the SAJ150, which can be used to control direction indicators and hazard warning lights, as well as providing a timing function for other on-car equipment with
independently variable on and off periods. ITT presented their power pulse generator ic which serves as a central timer for direction and hazard indicators and timed wipers, and will provide an excessspeed warning signal. Both these devices indicate the presence of a lamp failure by increasing flashing speed. Thomson-CSF also had a device on show which provides the timing and warning functions, and have developed the ESM16 transistor for use in electronic ignition systems.

Industrially, special-purpose integrated circuits are now being presented, the technique of integration enabling sensors and controls to be made which, while exceeding the reliability of electromechanical devices, are lower in cost. Siemens presented a series of three units, the TCA105, TCA345 and 5059 which are inductive, light-operated and magnetic switches. The TCA105 consists of a flexible input stage, operating as

The C609 inverter thyristor from General Electric, rated at 1 kHz and 1200 A . The involuted cathode structure permits a rating of 850 A at 5 kHz , long-term di/dt of $500 \mathrm{~A} /$ microsecond and minimum $d v / d t$ of $400 \mathrm{~V} /$ microsecond.
either oscillator or Schmitt and includes a voltage regulator. Applications include phototransistor output level detection and proximity detectors using inductively coupled oscillators. Anti-phase outputs are provided, giving currents of up to 50 mA . The TCA345 is also a level detector and is notable for its low power consumption (1.8 V at $800 \mu \mathrm{~A}$ quiescent). It is primarily intended for use in photographic camera control circuitry. The SO59 is a Hall-effect circuit with Hall generators on the chip. An output is obtained in a field of 600 gauss which is t.t.l.-compatible. Application in typewriter keyboards and calculators is envisaged.

The National Semiconductor LX1600 absolute pressure transducer is capable of measuring pressure in the range $0-3$ atmospheres at temperatures of $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, is temperature-compensated and is chiefly contained in one thickfilm integrated circuit. A piezo-resistive bridge with a vacuum reference, and a diaphragm are integrated on thick film, while the amplifiers are on a separate chip in the same package. The unit is, in effect, a simple potentiometer which
is free from the loading problems imposed by an ordinary resistive type. Loading impedance is in the order of megohms, while the output is from a few kilohms. The input is over-voltage protected and the output is not damaged by shorts to earth. Applications include medical investigations, meteorological work and process control.

SGS Ates SpA mounted a working demonstration of their new voltage-and-temperature-protected amplifiers TBA810S and TC940. The former, in a 12-lead quad-in-line package with heatsink tabs, will deliver 6 W at 14.4 V into 4Ω, at which point it is completely immune to short circuits and overloads. A rise in junction temperature automatically limits output power.
The highlight of the Plessey display was their collection of Process III Bipolar circuits including the remarkable SP600 high-speed frequency divider series which is t.t.l.- or e.c.l.-compatible. This is capable of dividing a frequency of 1 GHz by four and 100 MHz by 32 , while using only 10 mA . Process III linear products include the SL360 matched transistor pair and the SL3145 array, exhibiting an f_{T} of 2.5 GHz The low-noise SL362 has a noise figure of 4 dB between 30 and 200 MHz at 50 ohms, while SL645 is a square-law device for communications use. The devices in this series exhibit f_{T} of more than 2 GHz due to the extreme thinness of the epitaxial layer (4 microns) and the emitter/base and base/collector junctions (0.25 and 0.5 microns). Plessey claim them to be the fastest monolithic integrated circuits in the world.
ITT's new v.h.f. transistors include the BFT13A, which is a low-noise beam-lead type useful up to 5.5 GHz , while the BFT16 will deliver 200 mW at 3.5 GHz . Their Schottky diode rectifier is capable of putting out 30 A of rectified current with a repetitive p.i.v. of 20 V , while dropping only 400 mV .

AEG-Telefunken introduced four new l.i.d. silicon diodes for use in microwave integrated circuits. One of these is intended for use in up-converters up to 12 GHz , while the other three are frequency multiplication types at $2 \mathrm{GHz}, 7 \mathrm{GHz}$ and 11 GHz , exhibiting rise times of 0.2 ns , reverse voltage of 36 V and junction capacitances of 0.4 pF to 2 pF .

- Twelve complementary pairs of TO220 power transistors were shown by Sescosem, ranging from 36 to 75 W at up to 90 V , and intended for medium power switching with inductive loads and servo motor applications. They also had four complementary Darlington pairs, giving between 50 and 75 W at 80 V .
ITT claim a major breakthrough with their new thermistor (HT 103/750) which is in probe form and which can be used up to $1000^{\circ} \mathrm{C}$. It is a negative temperature coefficient type, offering a resolution better than 100 ohms and a cooling time constant of three seconds. The device is much simpler to use than other hightemperature devices, such as gas and liquid-in-metal thermometers and thermocouples.

EAR-OPENER

Power Handling: 100 Watts
Dimensions: $22 \frac{1}{2} \times 12 \frac{3}{4} \times 10 \frac{1}{4}$ inches. 1.7 cubic feet $57 \times 32 \times 26$ centimetres, 47.4 litres Guarantee: unconditional, for 7 years
Origin: designed and made in Great Britain Enquiries about the Gale GS401 Loudspeaker:

Gale Electronics \& Design Limited 39 Upper Brook Street London W1Y 1PE

See how much function generator you get for £144!

Hewlett-Packard's new and astonishingly inexpensive Model 3311A generates sine, square and triangle waveforms over a 7 -decade range -0.1 Hz to 1 Mhz. A Vco-input controls frequency in a $10: 1$ range.

You also get 30 dB of voltage control and a separate pulse output suitable for synchronisation or driving TTL logic circuits. Features you'd hardly expect in an instrument at just $£ 144$, including import duty.

Advanced manufacturing techniques enable all the internal circuitry of this compact, rugged function generator to be tested automatically.

The time we save is the money you save. Finally, Model 3311 has all the style, quality and service back-up that have made Hewlett-Packard the world's largest manufacturer of advanced electronic instruments.

Sales, service and support th 172 centres in 65 countries. 224 Bath Road, Slough, Bucks SL1 4DS. Tel: Slough 33341

Magnetism and Magnetic Units

The measurement of the intensity of magnetization and its units

by M. McCaig, Ph.D., F.Inst.P.

In the January issue of Wireless World, "Cathode Ray" accused the Sheffield manufacturers of permanent magnets of blocking the introduction of SI (formerly known as m.k.s.) units. Actually the Permanent Magnet Association, comprising all the important Sheffield magnet manufacturers, published nearly twenty years ago a booklet listing permanent magnet properties in m.k.s. as well as c.g.s. units. Since then this practice has been continued in the majority of P.M.A. publications. Until recently, however, very few others have copied their example. The majority of papers on magnetism, published throughout the world, have used c.g.s. units. In 1968 I wrote a paper for a journal of international repute in the field of magnetism and electronics. The only important comment by the referee was "What does SI mean?"
I think one of the reasons for the neglect of SI units by those working in magnetism has been the tardiness of those working out the system to provide a unit and symbol for one of the most fundamental magnetic qualities. I refer to what in c.g.s. units is called the intensity of magnetization, and is usually represented by the symbol J, although some writers have used I or M. "Cathode Ray" still ignores the need for this unit. In his terms it is a measure of the number of aligned electrons circulating in orbit or spinning within the material. Practically, this quantity can be defined by the torque that unit volume of the material experiences in an external field, and it is most important not to confuse this quantity with the flux density B. If a magnetization curve J versus H is plotted, J eventually reaches a constant maximum value, the saturation magnetization; B on the other hand, continues to increase indefinitely, because it includes a component due to the applied field H. The difference between B and J is even more striking in permanent magnets. In an ideal permanent magnet it is possible to reverse the direction of B, while the magnet remains fully magnetized with J unchanged in the original direction. Many modern permanent magnet materials come surprisingly close to this ideal behaviour. The first extensive exploitation of this property was for field measuring devices using Silmanal. This is an alloy of silver, manganese and aluminium, which is only slightly magnetic, but requires a very high field to change its magnetization.

Its intrinsic coercivity, the field necessary to reverse J, is at least ten times its ordinary coercivity, the field that just reverses B. Platinum cobalt, some grades of ferrite and the new rare-earth cobalt alloys can also exist with their magnetization and flux density opposed.
Even in the c.g.s. system, workers in permanent magnetism did not find the unit provided for intensity of magnetization very convenient. They usually plotted $4 \pi J$ rather than J itself, and were in this way able to use the same scale as for B. Perhaps unwittingly, they were forestalling rationalization, which is a feature of SI units discussed by "Cathode Ray".
Publishers of textbooks as distinct from scientific journals often urged authors to use m.k.s. or later SI units. As no unit had been recommended for intensity of magnetization, the authors had to invent one. Not surprisingly, they invented two different units; some authors expressed intensity of magnetization in tesla, others in Am^{-1}. Furthermore, some authors used the symbol J others M, and all four permutations of these units and symbols have been used.
My colleagues and myself in the Permanent Magnet Association were unanimous in preferring tesla, but had an open mind on the symbol. For some years we used J and then believing we were following the consensus decided to change to M. Shortly afterwards the various international committees that consider units made a pronouncement. Both units were to be recognized with different names and symbols: thus we may speak of the polarization with symbol J and unit tesla or the intensity of magnetization with symbol M and unit Am^{-1}. In the circumstances, this was a sensible compromise, but inevitably there are many books in circulation in which these conventions are not observed.
Some misconceptions about magnetic quantities have arisen from a false belief that measuring a physical quantity in a different unit with different dimensions made it into a different physical quantity. The dimensions of a physical quantity give us very little information about the nature of that quantity. Rather they often tell us which of several alternative methods we have chosen to measure that quantity. Specific gravity is dimensionless, density has the dimensions of mass per unit volume and its numerical value depends on the units
we use for mass and volume. Whether we speak of specific gravity or density and whatever units we use, the value we assign to copper is a little over three times that of aluminium. Specific gravity and density are different ways of measuring the same physical quantity.
On the other hand, the heigit of a mountain or building can obviously be varied independently of its horizontal dimensions, but we are quite happy to measure both in the same unit, say metres or feet. We do this in spite of the fact that when we climb a mountain we realize that altitude does have a different physical significance from horizontal distance. If the same principle that some people think should apply to electrical and magnetic units had been applied to architecture and cartography, we should probably measure heights in joules per kg , the work required to raise unit mass.
SI units provide two units for what we may in general terms call magnetic fields. A distinction is made between the flux density B measured in tesla and the magnetizing force H measured in Am^{-1}. In free space, one of these quantities is redundant, because we always find that $B \equiv \mu_{o} \boldsymbol{H}$, where μ_{o} the magnetic constant or permeability of free space $=4 \pi \times 10^{-7}$ henry per metre $\left(\mathrm{Hm}^{-1}\right)$. In free space it does not matter whether we work with B or H, provided we are quite clear which we are using. Actually, all calculations from the current flowing in a coil lead directly to H in Am^{-1} and all measurements for example by means of a coil and fluxmeter lead naturally to B in tesla.
When we deal with magnetic materials we require not two but three independently variable quantities. Actually, no less than five quantities can be distinguished, but relations between them mean that only three can be varied independently. In the above statement, I should make it quite clear that I am counting the polarization J and intensity of magnetization M as only one quantity because $J \equiv \mu_{o} M$.
Perhaps it will be clearer if I enumerate these quantities. There are:
(i) B the flux density in the material which can be measured in tesla by means of a coil and fluxmeter.
(ii) The polarization J or intrinsic magnetization M of which we have already spoken.
(iii) The externally applied field that can
exert a torque on the sample. If we use the polarization J this external field should be H_{e} in Am^{-1} and if we use M the external field should be B_{e} in tesla. In other words a torque must be a product of one quantity in tesla and one in Am^{-1}, but we can choose which is which.
(iv) The self demagnetizing field H_{d}; this depends on J and the shape of the sample. For the moment we will assume that it is expressed in Am^{-1}, but sometimes we have to multiply it by μ_{o} to convert it to tesla. (v) The magnetizing force H in. Am^{-1} which determines the state of magnetization of the material and which we require for the X axis of a hysteresis loop.
The relations between these quantities to which I have referred are

$$
H=H_{d}+H_{e}
$$

and

$$
B=J+\mu_{o} H=J+\mu_{o}\left(H_{d}+H_{e}\right)
$$

or if we use M

$$
B=\mu_{0}(M+H)
$$

It should be noted that all the quantities in these equations are vectors and some of them will often need to be treated as negative.

Now I realize this may seem rather complicated, and to some extent the complications are unavoidable. Some of the complications are, however, due to trying to press the subject into a straight jacket of units that just does not fit. The idea that every quantity ought obviously to be measured in tesla or Am^{-1} just as a mass is measured in kg and a length in metres does not work. In some cases the decision is arbitrary and often we have to treat the same quantity sometimes in one unit and sometimes the other.
As I am sceptical about the deep philosophical significance of some of the schisms within the adherents of SI units (there is a battle of almost religious fervour between those who wish to use $J /$ tesla and those who believe in M / Am^{-1}) I prefer to be guided by convenience. People will only change over to SI units if they are flexible enough not to entail a large amount of extra work.

If one is measuring the hysteresis loop of an anchor ring of soft magnetic material, there is no problem. H is naturally calculated in Am^{-1} and B is naturally measured in tesla. The area of the hysteresis loop obtained gives the energy loss per cycle in joule m ${ }^{-3}$

With permanent magnets the situation is less simple; H is nowadays unlikely to be calculated; more probably it will be equated to measurement of B made just outside the magnet and the manufacturer will have calibrated the instrument in tesla or possibly gauss, but certainly not in Am^{-1}. It is also likely that the polarization J (or magnetization M) as well as B will be required; J may be deduced from B and H by calculation or by remeasurement with certain modifications to the apparatus. An inconvenient choice of units can be very expensive in time and money.

To illustrate the advantages and disadvantages of the various possibilities, Fig. 1 shows the curves for a typical rare-
earth cobalt magnet plotted (a) with B in tesla, M in Am^{-1} against H in Am^{-1} (b) with B in tesla and J in tesla against H in Am^{-1} and (c) with B in tesla J in tesla plotted against $\mu_{0} H$ also in tesla.

Method (a) is extremely inconvenient. In many cases today, the final output is an $X Y$ recorder, using standard graph paper. To record B in tesla and M in Am^{-1} directly would involve an expensive modification to standard equipment. Alternatively it can be done by laborious calculations. Method (b) is certainly an improvement although there are still difficulties if one has to use existing equipment calibrated in tesla or gauss to measure H and to calculate B from J or vice versa still involves multiplying each value of H by $4 \pi \times 10^{-7}$. Method (c) was used by several contributors to the seventeenth Conference on Magnetism and Magnetic Materials and published by the American Institute of Physics in March 1972.

(a)

(b)

(c)

Fig. 1. (a) Demagnetization curve with B in tesla and M and $A m^{-1}$ against H in $A m^{-1}$. (b) With B in tesla and J in tesla against H in $A m^{-1}$. (c) With B in tesla, J in tesla against $\mu_{o} H$ in tesla. The left curve in each case is that of $B-\mu_{o} H$.

Using a product of two quantities rather than a single quantity as the unit for one of the co-ordinate axes of a graph is a practice accepted in many branches of science and technology. There should, therefore, be no objection to using $\mu_{o} H$ for the X axis in this case, and since both μ_{o} and H are in SI units it in no way conflicts with the spirit of SI units. I believe that this method should be used when it is found to be convenient. It is more convenient in the following circum-stances-
(i) If it is necessary to use equipment already calibrated in tesla or gauss to measure H. The factor 10^{4} gauss $=1$ tesla being a simple power of 10 causes little difficulty.
(ii) If it is desired to calculate B knowing J or J knowing B, only a simple addition or subtraction of the X co-ordinate value $\mu_{o} H$ is involved.
(iii) It is easy to see whether the value of $\mu_{o} H$ which brings J to zero is greater or less than B_{r}. If it is greater the magnet can be treated as a "hard" permanent magnet. It is suitable for applications such as repulsion devices and certain types of motors and generators, in which other materials with μ_{o} times the intrinsic coercivity less than \boldsymbol{B}_{r}, would be demagnetized. It is also possible to make design calculations with the assumption that the permanent magnet is uniformly magnetized.

The objection to plotting B against $\mu_{o} H$ is that it may be necessary to divide by μ_{0} to obtain the $(B H)_{\max }$ product in Jm^{-3}. This division has only to be performed once for each curve. In any case, I advocate this course only as an optional procedure when it is clearly more convenient. The decision concerning $J /$ tesla or M / Am^{-1} is much more important. Obviously agreement is desirable, but I am convinced that those working with permanent magnets would find J much more convenient.

Paul Dirac, O.M.
Professor Paul Dirac has been awarded the Order of Merit for intellectual achievement. When he was 31, Professor Dirac gained the Nobel Prize for his work on what was then the new planetary theory of atomic structure. He devised a set of equations which required the existence of negative energy for all possible results to be true; accordingly, he predicted a new sub-atomic particle, the the short-lived positron or anti-electron, which is a positively-charged electron. A few years later, the positron was experimentally discovered by Dr Carl Anderson in America, Professor Dirac's theory thereby being substantiated. In 1930, he published his book "Quantum Mechanics", in which he asserted that nature can never be completely defined in terms of space-time happenings, as the observation required to specify natural events imposes artificial constraints upon them. This philosophy became known as the uncertainty principle of Heisenberg and Dirac.

Audio Power Amplifier

by P. L. Taylor*, M.A

In this article the author puts forward a proposal for a transistor power output stage which does not claim the best possible performance but provides an economic configuration to achieve acceptable results. A circuit diagram for a 30 W main amplifier with 0.1% distortion and a hum level of -50 dBW is presented together with a description of the design philosophy.

The current-voltage relationship of a semiconductor junction is basically an exponential form. This curve has the property that moving it horizontally along the voltage axis is equivalent to a simple change of the scale of the vertical or current axis. There is an unfortunate consequence when it comes to trying to adjust two exponential curves back-to-back to make a class B output stage, Fig. 1. No matter how one juggles the two curves relative to each other the resultant, shown dotted, always has the same shape; it merely changes in scale. It is a hyperbolic sine and is far from linear. Semiconductor junctions are evidently bad starting material for a class B design.

Matters are somewhat better if a fixed resistance R is included in series with each junction. A few moments' work with pencil and paper shows that, for the nearest approach to a linear resultant characteristic, the resistance should have a value equal to the slope resistance of the junction at the standing or quiescent current. What happens when it does not have this value has been graphically illustrated by Gibbs ${ }^{1}$.
There is an important practical consequence. If I_{0} is the standing current and V_{0} the corresponding voltage drop across the base-emitter junction, then the general equation relating current I and voltage V is,

$$
I=I_{0} \exp \left\{K\left(V-V_{0}\right)\right\} .
$$

The slope resistance is $d V / d I$, and when $I=I_{0}$, takes on the value $1 / K I_{0}$. If the series resistance has this value we get the particularly simple result that the standing voltage drop across it must be $I_{0} \times 1 / K I_{0}=$ $1 / K$. So if I_{0} is firstly chosen, the value of resistance follows and the circuit must be designed to maintain $1 / K$ volts across the resistance under quiescent conditions.

Now $K=q / k T_{\mathrm{j}}$ where q is the charge on an electron, k is Boltzmann's constant and T_{j} is junction temperature. It is the same for all transistors n-p-n or p-n-p, germanium or silicon, and has the value $40 \mathrm{~V}^{-1}$ at room temperature. Hence there is a universal rule
which defines that, for class B operation of any transistor, the standing voltage drop across each series resistor should be 25 mV at room temperature \dagger. Here lies the practical difficulty. The 25 mV is in series with the much larger, and variable, 550 mV , or so, voltage drop V_{0} across the junction. It is small wonder that temperature compensating diodes and preset adjustments are required in class B designs. Added to this are the difficulties that the adjustment is critical ${ }^{2}, K$ is temperature-dependent (so that strictly the series resistance should

[^8]vary with junction temperature) and the series resistance must include the internal emitter resistance of the transistor-about ${ }_{2}^{1} \Omega$ for type BD121. Therefore, only part of the 25 mV is available outside the transistor for monitoring the standing current. All in all, it is surprising how well class B stages have been made to perform

Class AB is a little better. Typical values are $R=1 \Omega$ and $I_{0}=100 \mathrm{~mA}$, so that the standing voltage drop is 100 mV . This voltage is still rather small compared with 550 mV but unfortunately it cannot be increased much above this figure because, as I_{0} is increased, there are problems of power dissipation in the transistors. On the other hand R is in series with the load so that if this resistance is increased, the peak voltage drop across it reduces the peak power available in the load. That is, R ideally should be small compared with the resistance of the load.
The new circuit to be described attempts to overcome these difficulties by putting the current monitoring resistor outside the main feedback loop.

Fig. 2. Basic contiguration of power output stage.

Fig. I (left). Class B cross-over characteristics consmucted from two curves of exponential form.

Fig. 3. Diagram of a 30 W main amplifier utilizing the described technique.

Circuit operation

The basic circuit ${ }^{3}$, shown in Fig. 2 has one of the output transistors, Tr_{1}, acting as a straightforward emitter follower. The current generator and the resistance R_{1} represent a transistor driving Tr_{1} and R_{2} is a collector current monitoring resistance. In the absence of signal the standing current through $T r_{1}$ is chosen to be 100 mA so the voltage drop across R_{2} is 390 mV . The polarity and magnitude of this voltage is arranged to make diode D_{1} partially conduct, but not sufficiently to pass appreciable current.

Ignoring D_{1} for the moment, there is seen to be negative feedback round the loop $T r_{2}-\operatorname{Tr}_{3}-\operatorname{Tr}_{1}$. The standing current through $T r_{1}$ and Tr_{3} (the second output transistor) is fixed in terms of the voltage drop across R_{2}, which is applied to the emitter of $T r_{2}$, and the fixed voltage applied to the base of this transistor from the chain $D_{2}-R_{3}-R_{4}$. The diode D_{2} is included to compensate for variations in the base-emitter voltage of $T r_{2}$ and the voltage across R_{3} is therefore approximately equal to the desired standing voltage drop across R_{2}.

Now suppose Tr_{1} is driven by a signal. Over positive half-cycles Tr_{1} passes more current from the positive supply to the load. The voltage drop across R_{2} rises, reducing the collector-emitter current in ${T r_{2}}$ and hence $T r_{3}$. This does not matter if the conditions are correct because Tr_{1}, provided it has sufficient drive, should be capable of supplying all the current required by the load. What is important, however, is that R_{2} has a value which is comparable with an 8Ω loudspeaker load and, if measures were not taken to counteract the voltage drop, the peak output current would severely reduce the voltage at the collector of $T r_{1}$ and would consequently restrict the positive excursions
of output voltage available across the load. In this circuit the voltage drop across R_{2} is limited to about 600 mV , when D_{1} fully conducts. Obviously D_{1} must be a small power type to carry the peak current.

Over negative half cycles Tr_{1} passes less current which reduces the voltage drop across R_{2} so that $T r_{2}$ passes more current and Tr_{3} conducts more to supply the required load current from the negative supply. Current through Tr_{1}, which is maintained by the negative feedback, still flows through the load. Thus Tr_{3} supplies the load current on negative half-cycles but $T r_{1}$ remains in conduction operating as an emitter follower to control the output voltage at all times.

Thus the circuit permits the use of a much higher current monitoring resistance than in a typical class $A B$ amplifier, the resulting voltage drop under quiescent conditions being high enough to permit pre-set adjustments io be dispensed with, but because this resistance is outside the main amplifier feedback loop the peak voltage can be limited by a shunt diode

Distortion

The distortion produced by this circuit is basically even-order and may be estimated as follows. In practice Tr_{1} is a Darlington pair with a current gain of about 2500 . On positive half-cycles, when Tr_{3} is inoperative, an 8Ω load is therefore presented as a resistance of about $8 \times 2500=20 \mathrm{k} \Omega$ across R_{1}. On negative half-cycles the extra gain round the $\operatorname{Tr}_{2}-\operatorname{Tr}_{3}$ loop makes the reflected resistance much higher. Therefore, assigning a value of $10 \mathrm{k} \Omega$ to R_{1} creates the condition where on negative half-cycles the current generator works into approximately $10 \mathrm{k} \Omega$ and on positive half-cycles it works into $10 \mathrm{k} \Omega$ in parallel with $20 \mathrm{k} \Omega$, which is
$6.7 \mathrm{k} \Omega$. The magnitudes of positive and negative half-cycle output voltage therefore differ by 33% and second-harmonic distortion is approximately half this value or 17%. A loop gain of 170 round the main amplifier loop would reduce this to the target figure of 0.1%.

A practical audio amplifier incorporating the new output stage is shown in Fig. 3. It provides 30 W into an 8Ω load and performance is as expected. Distortion is 0.1% at maximum output and is mainly second harmonic. Full output is available up to 15 kHz with an input voltage of 600 mV r.m.s. With conventional power supplies the hum is less than $10 \mu \mathrm{~W}$ with a load of 8Ω.

The following points may be of interest. A minor extravagance seems to be the use of a zener diode D_{2} to couple $T r_{1}$ to $T r_{2}$. This has the effect of defining accurately the voltage drop across R_{6} and hence the current flowing through $T r_{1}$ and R_{5}. In turn, this defines the voltage drop across R_{5} which reduces variations in the output d.c. voltage to less than 100 mV -without any pre-set adjustment. If the loudspeaker has a d.c. resistance of 8Ω, an output coupling capacitor can be eliminated. It appears that the use of D_{2} is not such an extravagance after all.

An additional point is that Tr_{2} does not need a collector load resistance connected to the negative supply. This eliminates not only a potential source of hum, but also the usual "bootstrapping" capacitor. This means that this type of output stage is ideally suited for applications requiring an output down to d.c., such as control and servo drive systems.

References

1. Gibbs, D. S. Letter to the Editor, Wireless World, August 1970, pp. 387-8.
2. Blomley, P. "A new approach to class B amplifier design", Wireless World, Feb. 1971, pp. 57-61; March 1971, pp. 127-131
3. Patent applied for.

Sixty Years Ago

The problems of obtaining what is now the basic function of a transmitter -the production of a continuous wave - were, sixty years ago, so formidable that many people were of the opinion that they just were not worth the trouble. In his evidence to the Postmaster-General's Advisory Committee, G. Marconi said ". . . there has never been submitted here or elsewhere one scintilla of evidence to prove that the continuous or undamped waves have any advantage over intermittent or feebly-damped waves for long-distance working in radiotelegraphy." In an article on methods of obtaining these waves using rotary machines, Hubert Dodell mentioned the difficulty of maintaining a constant frequency, the speed of the machine being affected by the loading due to Morse modulation. "So serious is this difficulty, that the full load is kept permanently on the machine, and the dots and dashes are produced by varying the aerial wavelength so that at times it is in tune with the receiver, and at others it is so much out of tune that the receiver is not affected."

Switching system permits use of a small number of generators (six) with a four-octave keyboard

by J. H. Asbery, B.Sc., M.I.E.R.E.

The first electronic organs to be built consisted of a single generator in which the value of one of the components was controlled by the keyboard. Fig. 1 is a block diagram of part of the usual system. If key C is pressed $R V_{1}$ is connected to the generator. $R V_{1}$ is adjusted during tuning so that thegenerator frequency is that of noteC. If key B^{b} for example is pressed $R V_{3}$ is connected to the generator and $R V_{3}$ is adjusted during tuning so that the generator pitch is that of B^{b}. If two notes are pressed at the same time only the highest note is operative. These organs are very simple and are still sold and in use today. They are called "monophonic".

In order to overcome the limitation of the monophonic organ the "polyphonic" organ was developed. Fig. 2 is a block diagram of part of a typical polyphonic organ. For each note there is an oscillator that is tuned to the pitch of that note. When any key is pressed the output of the oscillator is connected to a "busbar". The busbar is connected via filters, which shape the wave and control the tone to the amplifier. In a typical organ there may be, for example, 49 generators. This system is not only expensive but wasteful, as many organists do not use more than about four or six notes at any one time.

The "multimonophonic" organ, which is abbreviated to "multiphonic", is a compromise between the simple and cheap but very limited monophonic organ and the versatile but expensive and complicated polyphonic organ. The principle is that of the monophonic organ, but repeated with more than one generator. In circuit diagrams of multiphonic organs change over switches are not shown as in Fig. 3(a) with the contacts at the corners of a triangle but as in Fig. 3(b) with the contacts at three of the four corners of a square. This makes the diagrams easier to follow and tidier. The principle of the multiphonic organ is shown in Fig. 4 which is part of an organ shown with keys B and A^{b} pressed. Variable resistor $R V_{2}$ is connected to generator number 1 which therefore oscillates at the pitch of B and $R V_{5}$ is connected to generator 2 which therefore oscillates at the pitch of A^{b}. Generator 3
is not connected to any resistor and therefore does not oscillate. A thickened line is used to show the connection path to each generator.

The keyboard switches must be of the break-before-make type to avoid connecting a generator to two resistors at the
same time during changeover. Two types of switches are available: (1) Discrete 3-pole changeover switches. With these it is necessary to connect fixed contacts of the poles together and to wire between switches as shown on the Fig. 5 circuit diagram. (2) Integrated switching systems

Fig. 1. Principle of monophonic organ. The pitch of the single generator is changed by switching in different resistors.

Fig. 2 (left). The polyphonic organ has a generator, individually tuned and switched, for each note.

Fig. 3. Conventions for change-over switch symbols: (a) conventional switch; (b) multiphonic organ switch.

Fig. 4. Part of a multiphonic organ with two keys, A^{b} and B, pressed simultaneously. The connection paths between the variable resistors and the generators are shown by the thickened lines.

unconnected. The inductor connections are made to the ends of the primary winding (red and green leads).

When building this organ it is advisable to keep the units as small and as close together as possible and to leave as much space spare as possible, as multiphonic organs are particularly amenable to the adding of extra facilities at later dates.

Components list

Variable resistors (RV)
1 to $13-3 \mathrm{k}$ wire wound
14 to $25-1 \mathrm{k}$ wire wound
26 to $37-3 \mathrm{k}$ wire wound
38 to 49 - 1 k wire wound
Fixed resistors (R)
1 - - 22 k
2 and $26-21 \mathrm{k}$
3 and $27-20 \mathrm{k}$
4 and $28-19 k$
5 and $29-18 k$
6 and $30-17 k$
7 and $31-16 k$
8 and $32-15 k$
9 and $33-14 k$
10 and $34-13 k$
11 and $35-12.5 k$
12 and $36-12 k$
13 and $37-11 k$
14 and $38-10.5 \mathrm{k}$
15 and $39-10 k$
16 and $40-9.5 \mathrm{k}$
17 and $41-9.1 \mathrm{k}$
18 and $42-8.6 \mathrm{k}$
19 and $43-8.2 \mathrm{k}$
20 and $44-7.8 \mathrm{k}$
21 and $45-7.5 \mathrm{k}$
22 and $46-6.8 \mathrm{k}$
23 and $47-6.5 k$
24 and $48-6.2 \mathrm{k}$
25 and $49-5.9 \mathrm{k}$
All above fixed resistors, metal film 2%.
$50-7.2 \mathrm{k}$
$51-7.2 \mathrm{k}$
metal film 1%
$52-7.2 \mathrm{k}$
53 - 10k carbon 20%
$54-470$ carbon 20%
$55-2.2 \mathrm{k}$ carbon 5%
56 - 2.2 k carbon 20%
57 - 7.2 k metal film 2%
$58-15 \mathrm{k}$
$59-43 \mathrm{k}$
$\begin{array}{ll}59-2.0 \mathrm{k} & \text { metal film } 1 \% \\ 60-1.0 \mathrm{k} & \end{array}$
$62-20 \mathrm{k}$
63 to 66 - 100 k carbon 20%
$67-22 k$
$68-15 k$
$69-22 k \quad$ carbon 20%
71 - 22 k
$71-2.2 \mathrm{k}$
Capacitors
$1-8 \mu 8 \mathrm{~V}$
2 - generators 1 to $3,400 \mathrm{n}$
generators 4 to $6,100 \mathrm{n}$
2% but matched in sets to 0.5%, polycarbonate or polyester
3 - as required to match generators
4 - \ln
$5-5 n$
$6-20 \mathrm{n}$ any type 20%
$7-100 n$
$8-20 n$

Inductors

L_{1} and L_{2} - both 650 mH , see text.
All parts and components can be obtained from: J. H. Asbery, 87 Oakington Manor Drive, Wembley, Middlesex.

Books Received

Telecommunication by Speech: the transmission performance of telephone networks by D. L. Richards presents a co-ordinated account of the principles and practice of telephone communication system design from the viewpoint of transmission performance. It presents a classification of knowledge in each branch of the subject and provides a method for translating the basic requirements for speech communication into performance standards and rules for system design that not only takes account of the variety of transmission and switching systems, but also the importan economic factors involved. Price $£ 12.00 \mathrm{Pp}$. 589. Butterworth \& Co. Lid, 88 Kingsway, London, WC2B 6AB

World Radio and TV Handbook 1973; 271h edition edited by J. M. Frost contains in the first section instructive articles relating to broadcasting, and information on broadcasting and television organizations. The main section of the book contains detailed information, country by country, of the radio stations and broadcasting organizations of every country in the world. Included are names and addresses of broadcasting companies, names and titles of leading officials, lists of broadcasting stations in each country including frequencies. wavelengths, transmitter power, call signs and station names. Programme schedule information is also listed, including times, frequencies, and beam areas of the broadcasts. Price $£ 3.00 \mathrm{Pp}$. 400. Billboard Publications Inc., 7 Carnaby Street, London WIV IPG.

Electronic Display and Data Systems: Constructional Practice by C. J. Richards. Both main elements of display and data systems generation (and refinement) and display must be mounted, housed and connected, and the operators' working conditions must be such that they will be able to concentrate on making the best use of the display. There must be mechanical engineering in support of the electronic enginecring, and in value it can amount to 40% of the total cost of a system; there must therefore be co-operation between the engineers. To improve co-operation is the purpose of this book. It gives the electronic engineer an understanding of the mechanical aspects of an installation, and the non-electronic engincer an appreciation of the problems of the circuit designer. Price £9.00. Pp. 459. McGraw-Hill Book Company (U.K.) Ltd, Maidenhead, Berkshire.

Electronics: A Course Book for Students by G. H. Olson is a shortened and revised version of "Electronics: A General Introduction for the Non-Specialist". It is written specifically as a qualitative introduction with a minimum of mathematics and circuit analysis. The opening chapters introduce resistors. capacitors, inductors, transistors, diodes and their response to voltage and current changes. Subsequent chapters discuss indicating instruments, power supplies, amplifiers and oscillators. The book will be of value to all non-specialists and in addition should provide a useful text for the undergraduate in electrical or electronic engineering or to supplement more analytical books. Price £2.60. Pp. 351. Butterworth \& Co. Ltd, 88 Kingsway, London, WC2B 6AB.
M.O.S. Integrated Circuit Design edited by E Wolfendale describes the metal oxide silicon transistor with the basic design equations
derived, physical effects explained and typical values given. The basic logic elements used by the m.o.s. designer are taken in turn and translated into the dimensions necessary to create the mash for their fabrication. The layout of a fully integrated chip and the achievement of maximum density of devices are described. Checking and correction using logic simulation and an interactive graphics console form the final stage. The last chapter is an example of the design of a small chip, showing how all the techniques described are brought together to solve a practical design problem. Electronic equipment designers who are increasingly involved in the use of custom designed m.o.s. circuits will find this book a useful practical guide. It will also enable students to familiarize themselves with the techniques involved. Price $£ 4.00$ Pp. 120 Butterworth \& Co. Ltd. 88 Kingsway, London, WC2B 6AB.

Pattern Recognition Techniques by J. R Ullmann provides a broad introduction to a subject which is becoming increasingly important in the processing of data where the use of human effort may be precluded by the number of patterns to be recognized, the speed of recognition required or simply by economic considerations. Examples range from recognition of fingerprints to faces and from cars to cardiograms, but it is the recognition of written and printed characters which has been most widely investigated and applied. Many different disciplines have to be considered: optics, statistics, switching theory, graph theory and Fourier analysis - these are introduced in simple terms so that specialist knowledge is not required. The book has been written for engineers, computer scientists and biologists and all those whose work is presenting them with the problems of automation of pattern recognition. Price $£ 10.00 \mathrm{Pp}$. 412. Butterworth \& Co. Ltd, 88 Kingsway, London. WC2B 6AB

Elements of Linear Microcircuits by T. D. Towers is hased on a series of articles written by the author for Wireless World and gives practical guidance on the selection of commercially available devices. It shows how to use the wealth of circuit functions available and gives considerable attention to the practical aspects of handling these sensitive circuits in practical assemblies. The emphasis throughout is on applications and the every-day problems of designing electronic equipment rather than production technology. Chapter subjects include packaging, selection, handling, op amps, audio, i.f. and wideband amplifiers, voltage regulators, radio and TV receivers. The book should be of great value to engineers in research and development laboratories and students at ONC/HNC level upwards. Price $£ 2.80$ Pp. 108. Butterworth \& Co. Lid, 88 Kingsway, London, WC2B 6AB.

Satellite Broadcasting by Chayes, Fawcett, Ito and Kiss sets out the questions and answers to a questionnaire initiated by the International Broadcast Instifute concerned with the social, economic and legal problems that satellite broadcasting brings. Price $£ 5.00 \mathrm{Pp} .159$. Oxford University Press, 37 Dover Street, London WIX 4AH.

Making and using Electronic Oscillators by W. Oliver is a practical guide to the use of oscillators in radio, TV, telecommunications and other electronic applications. Price $£ 2.00$. Pp. 120. W. Foulsham \& Co. Ltd., Yeovil Road, Slough, Bucks SL1 4JH.

World of Amateur Radio

Power plus?

American journals from time to time take a cold look at the state of amateur radio in their country - and do not always like what they see. A recent outspoken editorial by Richard Ross, K2MGA, editor of CQ, comments severely on the apparent decline in the ethical standards of a small but growing number of amateurs; he claims that not a single day passes without examples on the amateur bands of "broadcasting, music transmissions, obscenity, false signals, unidentified communications and malicious interference" but considers that the most flagrant abuse of the regulations is in the area of excessive power.

Richard Ross recalls that only a few years ago a full 1 kW (the legal limit for amateurs in the United States) was the dream of amateurs, and for most an unattainable dream. "Technological advances and greater affluence have made a joke of that dream . . . the kilowatt amplifier is as much a part of the amateur scene as the transceiver . . . the kilowatt linear serves all too often as an exciter . . . several firms make no secret of the availability of 4,6 or even 10 kW amplifiers . . . but the galling thing is the growing number of 'amateurs' on the air with 50 or more kilowatts at their finger tips for use when the going gets tough."
"How do you begin to return to sane attitudes towards transmitter power?" he asks, adding "The strongest weapon against known violators of the legal limit is the contempt of his peers . . . treat him as an outlaw and watch him react . . . that's what our self-policing tradition is all about".

Even allowing for an element of journalistic licence, the idea of 50 kW transmitters being used with high-gain aerials on the amateur bands is something to make amateurs stop and think. The expression "Californian kilowatt" to cover the use of power a little above a kilowatt is almost traditional - but now it seems we could really be approaching the days of amateur operation with a megawatt of effective radiated power!

Satellites and special tests

Oscar 6 is now usually active for five instead of four days each week, being switched off for battery re-charging only on Tuesdays and Wednesdays. The first British amateur to gain the new A.R.R.L. Oscar 6 "1000" Award (WoAR, March) is P. J. A. Gowen, G3IOR of Hellesdon near Norwich; his 144 MHz has 12 watts output
to a "six-over-six" stacked slot-fed Yagi 33 ft high. Among his best long-distance contacts through Oscar 6 have been K7BBO (4780 miles) and W50RH (4556 miles). The French amateur Marc Tonna, F9FT at Reims has already made over 2500 contacts in more than 40 countries through Oscar 6.

The next Oscar satellite is being planned to carry three transposers: one for 432 to 144 MHz and two for 144 to 29 MHz which are being designed for an active life of the order of three years.

French amateurs are planning further balloon-carried transposer launchings this year, including the "Mirabel" which is scheduled for May 20; the transposer accepts 432.1 to 432.4 MHz and retransmits on 145.6 to 145.9 MHz . Launchings of the "Anjou" series are planned for May 31, July 4 (or June 24), July 29, August 26 and September 23 (or October 21), although it is not certain that all these launchings will prove possible.

During the total eclipse of the sun on June 30, an h.f. propagation experiment will be conducted by A. Duffau, 5T5AD who will be in Akjoujt operating the special station 5T5SOL between 1000 and 1100 UT with KWM-2 transceiver and omnidirectional aerial (it is possible the station may function as an automatically keyed beacon).

The IARU Region 1 has asked the R.S.G.B. to re-plan frequencies of the entire European network of v.h.f./u.h.f. beacon stations.

Narrow-band f.m. on 144 MHz

Karl Kanalz, G5AGX (6 Wood End, Hayes, Middx) of the U.K. FM Group (London) feels the item last month "a question of deviation" described the compatibility question of f.m. operation from the viewpoint of a.m. operators and notes that some a.m. and s.s.b. signals are equally wideband. He believes that most a.m. operators on 144 MHz in the London region are misinformed about what constitutes a specified bandwidth for a signal be it a.m., f.m. or s.s.b. - and do not have equipment capable of measuring transmitted or received bandwidths.
He says that the U.K. FM Group has set itself the task of showing newcomers to f.m. how to ensure that equipment is set up for true n.b.f.m. with deviation not greater than $\pm 3 \mathrm{kHz}$ by making available suitable test equipment for the alignment of equipment. They are also hoping to establish similar groups in other parts of
the country. He believes that it is possible to clean up any "wideband" problems since almost all transmitters can be adjusted for narrow-band operation. He admits that some present receivers will not provide optimum signal-to-noise ratio on narrow signals although the FM Group is supplying narrowband filters for receivers. He agrees that problems can arise (on all modes) from the use of wide tolerance crystals.

Certainly our earlier comments were not intended to discourage the use of true n.b.f.m. but rather to draw attention to the problems that can arise when f.m. equipment is used without understanding the implications of deviation adjustment.

In brief

The British Amateur Radio Teleprinter Group is holding its second annual convention on Saturday, June 30 at Meopham Village Hall, Meopham, near Gravesend, Kent ($11 \mathrm{a} . \mathrm{m}$. to 6 p.m.). During the afternoon lectures will be given on r.t.t.y. operation, G4ATG will operate r.t.t.y. on 14090 kHz and there will be a "teleprinter art competition" (tapes to D. Goacher G3LLZ). Further information from G. Shirville, G3VZV, 2 Orchard Close, Toddington, Dunstable (Toddington 2470) . . . A recent World Radio Club interview with the former Irene Marcuse, widow of Gerald Marcuse, G2NM, described how "Empire" broadcasting was launched informally from G2NM at Caterham in the autumn of 1927. A special licence was granted by the Post Office and the broadcasts covered a period of about two years. Apart from many musical and other "live" broadcasts there were also re-broadcasts of B.B.C. medium-wave programmes; the transmissions were the first to broadcast the chimes of Big Ben to a world audience. The station operated on 32 metres with $1 \frac{1}{2} \mathrm{~kW}$ from an excellent site with a 100 ft mast and was heard all over the world DKoIEC is a special station being set up at Munich during the meetings of the International Electrotechnical Committee from June 15 to $29 \ldots$. Mobile rallies during June include: May 30 to June 2, Bath \& West Show (Shepton Mallet, Somerset); June 10 Elvaston Castle Countryside Park, near Derby; June 17 Amateur Radio Mobile Society (RAF Cosford, 8 miles north-west of Wolverhampton); June 24 Bristol R.S .G.B. Group, Longleat, Wiltshire Hull \& District Amateur Radio Society have a mobile rally on May 27 at the East Riding College of Agriculture, Bishop Burton, near Beverley (A 1079 road) . . . the R.S.G.B. is raising its Corporate membership subscriptions from July $1 \ldots$ American amateurs WA2LTM and W9WCD have raised the 23 cm distance record from 551 to 770 miles Irish amateurs can now use an extended 70 MHz band (70125 to 70450 kHz) and consideration is being given to a telephony-only licence for v.h.f. operation The Irish Radio Transmitters Society celebrates its Diamond Jubilee in June - it was formed as the Dublin Wireless Group in June 1913.

PAT HAWKER, G3VA

First we looked at the works. Then we worked on the looks.

It's amazing the number of good-looking amplifiers there are about these days.

But that's the easy bit.
It's what's underneath that counts.
So we decided to make sure of the works before we did anything else.

And we came up with our ' C ' series.
A new range of three monitor or entertainment power amplifiers.

With the following features.
600 ohm bridging, floating, input.
8 ohm output.
Unique fully protective circuitry.
Distortion better than 0.2\%.

Available in $19^{\prime \prime}$ rack or free standirg form.
Peak reading meter is switchable between output and input.

Signal and mains inputs by XLR sockets.
MEX 301C: 30 watts, MEX 501C: 50 watts, and MEX $1001 \mathrm{C}: 100$ watts.

Quite some amplifiers:
And we finished them in stylish Havana with anodised alloy handles. After all that, they deserve to look good And they do.

Millbank
It's gat to be good.

multipliers, although it has many other obvious applications. The output is very similar to that obtained from a photomultiplier, having a 2.5 ns rise and 5 ns fall time.

Powered by a small mercury cell, if will deliver pulses continuously for over 300 hours into 50Ω before a battery change is necessary, and this, together with the long shelf-life of the battery, means infrequent battery changes. No power is used until the pulser is terminated by a load and there are no switches or moving parts.

Specification:
Output amplitude-1V $\pm 10 \%$ neg. going into 50Ω via a miniature coaxial socket (Lemo type 00250)

Risetime
$-2.5 \mathrm{~ns}$
Pulse width -5 ns
Repetition rate $-12 \mathrm{kHz} \pm 30 \%$ (fixed)
Load - 50Ω direct-coupled (Note: load must always be directcoupled)
Outputimpedance - Low impedance in series with 47 pF capacitor
Power source - Mallory Duracell TR 152R (mercury)
Dimensions -60.325×44.45 $\times 19.05 \mathrm{~mm}$
Weight
$-56.7 \mathrm{~g}$
Case material - A.B.S.
Price - 1-9. £29.50 including battery and miniature mating coaxial output connector, plus v.a.t.

Semra-Benney (Electronics) Ltd, Chandler's Ford, Hampshire SO5 3ZU. WW 309 for further details

Square wave inverter

A square wave inverter marketed by Gardners Transformers is of high power rating and will operate a wide range of $240,50 \mathrm{~Hz}$ equipment. Two versions are available - Type 107A for use from 12 V batteries and Type 107 B for 24 V d.c. systems.
The 300 W rating is claimed to be conservative and obtainable even when used with a single 12 V car battery. This continuous rating is coupled with an
adequate short-term overload capability, permitting the use of the inverter not only for resistive loads but now also for small electric motor-driven tools such as drills, polishers, and sanders which take substantially more current for starting than when running.

The frequency is aimost independent of input voltage and load, and thus the unit can be used to drive tape-recorders and similar instruments employing synchronous motors. The inverters are supplied at a price of $£ 61$ ex works. Gardners Transformers Ltd, Christchurch, Hants.

WW 322 for further details

Double-balanced mixer

Watkins-Johnson has introduced Model M1K double-balanced mixer, a highintercept, wideband unit in a hermetically sealed package. It is said to provide superior two-tone performance over the frequency range from d.c. to 4 GHz . With only +23 dBm local oscillator drive level, this mixer has $\mathrm{a}+28 \mathrm{dBm}$ (typical) input third-order intercept point. With two input tones at 0 dBm , the third order products will be typically suppressed 56 dB relative to the desired output.

The M1K is also designed for a low noise figure - typically 6 dB . In addition, +10 dBm of output power can be obtained. This is important in up-converting applications where lowfrequency amplification can be substituted for expensive microwave amplification.

Best isolation (typically greater than 30 dB) is achieved by feeding the high-level 1.o. signal to the L-port. Both L - and R-ports are a.c.-coupled and have a 1 to 4 GHz frequency response. The I-port is d.c.-coupled and has d.c. to 1 GHz frequency response.

Minimum conversion loss is achieved by providing an l.o. level of +20 dBm . At this level, conversion loss is typically 6 dB . For minimum intermodulation products, the input signal level is recommended to be as low as possible. Watkins-Johnson International, Shirley Avenue, Windsor, Berks.
WW324 for further details

L.S.I. socket with retaining cover

Jermyn Manufacturing have announced an addition to their range of specialized i.c. sockets. The main features of this socket, which is for 36 -lead I.s.i. devices, are said to be very low insertion force and extremely low contact resistance. Normally, low contact resistance means high insertion force, and vice versa, but these two conflicting requirements have been optimized by employing a hinged cover which clamps over the i.c. after it has been placed in position. The cover when fitted, applies side pressure to the contacts, forcing them against the legs of the i.c., thus achieving a contact resistance on only $10 \mathrm{~m} \Omega$.

A secondary benefit which is claimed to result from this arrangement is that i.cs. can be inserted in, and withdrawn from, the socket at high speed without fear of damage to the fragile i.c. legs. The socket, which is moulded in glass-filled polycarbonate, is fitted with gold-plated phosphor bronze contacts, to give long term reliability and resistance to erivironmental extremes. Jermyn Manufacturing, Vestry Estate, Sevenoaks, Kent. WW318 for further details

L.F. charge amplifier

B \& K Laboratories have announced a low frequency charge amplifier for use with piezoelectric force and vibration transducers. Known as the Type 2628, it is said to be particularly suitable for handling very low frequency and quasi-static signals, and, depending on its gain setting, it has time constants of up to 100,000 seconds. This corresponds to a low frequency limit of $2 \mu \mathrm{~Hz}$, the upper frequency limit being 100 kHz . These
frequency limits are adjustable by step controls of high pass and low pass filters, the active low pass filter being incorporated so that unwanted higher frequency signals can be suppressed. A 3 digit variable "sensitivity conditioner" is provided in dial form and can be used to adjust the charge amplifier to the exact sensitivity of the transducer being used. The adjustment range is between 1 and $110 \mathrm{pC} /$ unit, and the position of the decimal point is automatically indicated by signal lights. The input of the 2628 itself automatically eliminates errors due to long connecting cables. Stage gain is step controlled and allows the signal output to be varied from $0.0001 \mathrm{~V} /$ unit to $10 \mathrm{~V} /$ unit. Two signal level indicators are provided. The first indicates overload at the input or output stage and the second lights when the signal is within 20 dB of the full output, thus indicating the best output signal level for minimum noise. B \& K Laboratories Ltd, Cross Lances Road, Houslow, Middx.
WW306 for further details

P.C.B. connection system

A new technique in printed-circuit board interconnections is now available from Molex International. Called Konektcon, the system utilizes rigid wire terminal points and claims to solve design, electrical and mechanical problems commonly associated with use of copper pads as contacts on p.c. boards. The connectors in the Konektcon series are injection moulded and can be supplied in a variety of materials centre spaced on 3.962 mm and 5.08 mm with a straightforward design. Internally, each connector terminal has the same basic spring con figuration, a double cantilever. By restricting the opening in the connector and by allowing no pin larger than
2.032 mm diameter to enter, the terminal cannot be overstressed.

In addition, by restricting the connector's end wall thickness, several connectors can be placed next to each other without sacrificing a circuit. With various conbinations of $3-.4-.5$ - or 6 - circuit connector housings, for example, any number of circuits from 3 to 24 can be terminated with no more than four connectors. Maximum wire size the terminal will accept is 20 gauge. Rigid, square or round wire 1.143 mm diameter is recommended as the male terminal. but other wire sections can be used. Molex International, 14 Yeading Lane, Hayes, Middlesex.

WW308 for further details

Digital panel meters

Varian's Velonex Division introduces a range of digital panel meters of small size. These are named Impac (Instrument Meters Packaged as Components). The meters are available in models displaying $3,3 \frac{1}{2}, 4$ or $4 \frac{1}{2}$ digits. Dimensions of all models are identical: front panel area is less than 1.7 sq.in. and the volume is less than 3 cubic inches. Other major features of the meters are:

- Low power consumption; less than 0.3 W on standby and less than 1 W with all characters illuminated.
- Automatic zeroing. Before each internal measurement cycle an automatic zeroing circuit calibrates the meter against any offset or drift errors that may have occurred. There is no need for manual zeroing. In fact, the meter needs only one kind of marual adjustment, a normal, full-scale calibration, and this can be done as infrequently as twice a year.
- L.e.d. display with $\mathrm{a} \pm \operatorname{sign}$ and decimal point give long life and easy, unambiguous readings.
- Inputs and outputs necessary for the system user are standard with the Impac meters, including b.c.d., strobe, end-of-conversion, sign and overload outputs. Inputs include convert and

hold, display and sign blanking. All signals are compatible with d.t.1./t.t.l. logic. Decimal point can be placed before any digit or omitted altogether. Some salient specifications of this range of digital panel meters are:
Warmup time less than 10 seconds to stated accuracy.
Accuracy 0.1% of reading for 3 and $3 \frac{1}{2}$. digit units; 0.05% of reading for 4 and $4 \frac{1}{2}$ digit units.
Temperature coefficient, $0.01 \% /{ }^{\circ} \mathrm{C}$, $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Operating temperature range, $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Sample rate: 10 per second for 3 and 4digit meters; 7 per second for $3 \frac{1}{2}$ and $4 \frac{1}{2}$ digit models.
Weight, less than 3.5 oz .

Educational logic kit

A set of educational equipment announced by Opto Electronic Displays Ltd consists of a power supply unit, a logic tutor and an analogue/control kit.

These three pieces of equipment were developed for the Open University Technology courses and the set is now to be made available to educationalists, electronics and computer-science-based industries. The power supply gives +5 volts, and has a meter and switched ranges, also variable outputs and current limiting circuits.
The logic tutor has 18 NAND gates,

4 switches and 4 output lamps which can be wired together with plug-in leads to investigate simple or complex circuits.

The analogue/control kit was designed specifically to teach simple analogue computing and control systems. It is based on the universally accepted 741 C operational amplifier.

These units are marketed by the Open University and are available with text and course material in the form of books. Opto Electronic Displays Ltd, 269a Haydons Road, Wimbledon, London S.W.19.

WW312 for further details

F.O.B. prices - single quantity: series 30 , 3 -digit, $\$ 112$; series 35 , $3 \frac{1}{2}$ digit, $\$ 125$; series 40,4 -digit, $\$ 169$; and series $45,4 \frac{1}{2}$-digit, $\$ 225$.
Varian Benelux B.V., Postbus 9158, Maassluisstraat, 100, Amsterdam.
WW 313 for further details.

TV masthead amplifier

The new Star u.h.f. masthead amplifier from Belling-Lee increases signal levels by approximately 4 times, helping to give good quality television picture reception in fringe and secondary service areas. Three versions of the amplifier cater for reception on channels 21-34, 39-51 and 49-68. The power supply unit, moulded in flame retarding plastic, provides 15 V d.c. for the masthead amplifier via the coaxial down lead. Belling and Lee Ltd, Great Cambridge Road, Enfield, Middx. EN1 3RY.

WW303 for further details

Multipurpose test instrument

The Versatester 1 from Systron-Donner provides, in a single instrument, signal sources, power sources, a digital multimeter and a counter. Improved serviceability is claimed as the basic instrument can, in large part, be used for self-test and calibration. The major features are:
Supplies d.c. power, $+5 \mathrm{~V},+15 \mathrm{~V}$, $-15 \mathrm{~V}, \pm 30 \mathrm{~V}$

Generates 20 Hz to 20 MHz : pulses; sine waves; and square waves

Digitally measures and displays to four digits: frequency, auto ranging 20 Hz to 20 MHz ; d.c. volts, $0-500 \mathrm{~V}$ in 4 ranges; a.c. volts. $0-500 \mathrm{~V}$ in 4 ranges. and d.c. ohms, $0-5 \mathrm{M}$ in 5 ranges.
Systron-Donner Corporation. Datapulse Division, 10150 West Jefferson Blvd., Culver City, California 90230. WW302 for further details

Digital multiplex clock

Designed for use in recording studios and by those engaged in the production of audio visual presentations, the Electrosonic ES1857 digital multiplex clock records on to tape the time elapsed in minutes, seconds, and half-seconds. Each time signal is recorded as a complete piece of information so that on replay it becomes possible to see the exact time information wherever you are on the tape. It is not a counting system, so there is no need to start from a specific point on the tape and any tape recorder with reasonable bandwidth can be used. The U.K. price of the ES1857 is $£ 330.00$. Electrosonic Ltd, 815 Woolwich Road, London SE7 8LT.

Edgeblock connector

Pye Connectors announce the availability of a component they believe to be unique. Called the Edgeblock, it combines in one moulding a printed circuit board edge

connector and a screw terminal block. The Edgeblock has a single row of 12 contact positions on 5.08 mm pitch and is designed to accept p.c.b. thicknesses from 1.37 mm to 1.88 mm . The gold-plated phosphor bronze screw terminal contacts are rated at 5 A and can accommodate wire sizes ranging from $7 / 0.22 \mathrm{~mm}$ to $19 / 0.3 \mathrm{~mm}$. The dielectric moulding is grey self-extinguishing a.b.s. having a working temperature range of minus $20^{\circ} \mathrm{C}$ to plus 80°. Pye Connectors Ltd, Hitchin Street, Biggleswade, Beds.
WW301 for further details

Studio Recorder

Scully Recording Instruments, a division of Dictaphone Corporation, have announced a new professional recorder/ reproducer called the 280B. The new unit combines completely redesigned electronics and a new tape motion sensing system.

Specifications for the 280B include signal to noise ratio of 72 dB at mastering speeds. Bandwidth is essentially flat, displaying $\pm 2 \mathrm{~dB} 30 \mathrm{~Hz}$ to 18 kHz . Mother-daughter board architecture results in a "clean" electronic cabinet and all test and adjustment points are readily accessible from a comfortable working position. The electronics slide out on roller arms and the individual channel modules are easily removed.

A new motion sensing system, called OPTAC, and internal logic enable the engineer to select a new mode and activate it without touching the stop button first. It also allows the engineer to enter and leave the record mode while the transport is in play.

Selective synchronization is standard on all multi-channel machines, thus there is the inherent ability to sequentially record programming material synchronous with previously recorded tracks.

The 280B series is available in either rack or console configurations, with 1,2 and 4 channel models using most of the popular head configurations. Dictaphone Company Ltd., 14 Broadway, London S.W.1.

WW 326 for further information.

Counter timer

Racal Instruments have introduced the Model 9523 VLF Counter Timer. A reciprocal computing capability is utilized at low frequencies to improve frequency measurement resolution up to 1000 times, in four ranges covering 0.1 Hz to 1 kHz . An example of the claimed improvement in resolution is that a 50 Hz signal would be displayed as 50.00 Hz in little more than a second, or as 50.000 Hz in about ten seconds.

The instrument measures frequency, frequency ratio, time interval and totalized counts in the 0.1 Hz to 10 MHz range. The yariable digital timebase enables the instrument to be used in a variety of industrial applications where the presentation of measurements in "engineering units" is often essential, and
direct readings in terms of r.p.m., litres per minute, miles per hour etc. can be obtained by selection of the correct gate time.

Three input channels are provided, two for direct frequency and frequency ratio readings and the third for v.l.f. measurement and as a gating channel for time interval measurements. In timer applications the start/stop signals may be electrical or contact closures with incorporated circuitry, to avoid false operation due to contact bounce.

The counter timer is of half-rack dimensions, 100 mm in height, and weighs 2.7 kg . Optional additions include b.c.d. data outputs and rear mounting inputs sockets. Racal Instruments Ltd., Duke Street, Windsor, Berks. SL4 ISB.

WW323 for further details

Solid State Devices

S.D.S. Components, the distributors for a number of semiconductor manufacturers, have announced the availability of the Signetics 82S90 Schottky decade counter which features typical clock rates of up to 100 MHz . The device can be made to function as a decade counter with a b.c.d. output, as a decade counter in the bi-quinary code or as separate divide-bytwo or divide-by-five counters.

A second Signetics device also from S.D.S. is the 2533 V , a 1024 -bit static shift register. This utilizes silicon gate p-channel m.o.s. construction, is t.t.l. compatible and is available in an 8 pin d.i.l. package that is exactly one half the length of a standard 16 pin d.i.l. A guaranteed 1.5 MHz operating rate is offered for a power consumption of only 250 W per bit.

Included in this month's announcements are details of the Plessey SL440, a power control circuit consisting of a triac firing circuit, a zero crossing detector, a servo amplifier and a timing circuit in a single package. The servo amplifier can be connected as an integrator to provide for a wide range in the rate of change of power in the load. The SL440 produces a $50 \mu \mathrm{~s}, 60 \mathrm{~mA}$ pulse to fire the triac and
provides a stabilized 11.3 V power supply for external circuitry. SDS Components Ltd, Hilsea Trading Estate, Portsmouth, Hants PO3 5JW.
WW330 decade counter
WW331 static shift register
WW332 power control circuit
New from R.C.A. is a range of devices for consumer applications. The CA2111A integrated circuits contain f.m.-i.f. amplifier limiters driving a quadrature f.m. detector. They feature low a.f.c. voltage drift over the full operating-temperature range, an input limiting voltage (knee) of typically $400 \mu \mathrm{~V}$ at 10.7 MHz and $2.5 \mu \mathrm{~V}$ at 4.5 MHz and 5.5 MHz . The a.m. rejection is typically 45 dB at 10.7 MHz and finally the device represents a direct replacement for the Sprague ULN2111A and the Motorola MC1357. Suitable for use in colour or monochrome receivers is the RCA CA3120E, a signal processor incorporating a sync separator, noise inverter, a.g.c. comparator and an r.f.a.g.c. delay amplifier.

The CA3096E and CA3096AE are $\mathrm{n}-\mathrm{p}-\mathrm{n} / \mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor arrays for general purpose use. They consist of five indepen-
dent transistors, two p-n-p and three n-p-n types on a common monolithic substrate with separate connections for each transistor. The CA3096AE differs in that it has a matched n-p-n transistor pair. The devices are packaged in a di.l. 16-pin case.

Designed for u.h.f. power applications, the RCA 40970 is a silicon n-p-n epitaxial planar r.f. power transistor with internally mounted capacitors which provide an individual T matching network for each base cell. This design is said to provide a high input reistance and a low input Q to increase its broadband performance.

Three new liquid crystal display drivers that provide level shifting functions are also available on a limited sampling basis only, in 16 lead d.i.l. ceramic packages. They have preliminary designations CD 4054A, CD 4055A and CD 4056A.

The last device announced from RCA this month is a programmable power switch/amplifier integrated circuit family, types CA3094T, CA3094AT and CA3094BT. These differ only in supply voltage ratings, - up to $24 \mathrm{~V}, 36 \mathrm{~V}$ and 44 V respectively. They have a power switching capability of over 10 W peak or $3 W$ average and can be programmed to idle at microwatt power levels. R.C.A. Ltd., Solid State Europe, Sunbury-on-Thames, Middlesex.
WW333 f.m.-i.f. amplifier-limiter
WW334 signal processor i.c.
WW335 transistor arrays
WW336 u.h.f. power transistor
WW337 liquid crystal drivers
WW338 programmable power switch/ amplifier

Celdis, distributors for General Electric, General Instruments, Transitron and Mullard, announce new devices from these manufacturers.

First, from Transitron comes the 745 series high speed Schottky t.t.l. These devices offer fast switching at low power levels, the range featuring typical propagation delays of 3 ns with a power dissipation of 20 mW per gate and 100 MHz typical flip-flop clock input frequencies. Typical 100 up prices are 75p each for gates and $£ 1.74$ for flip-flops.

General Instruments have produced a new range of diodes given the generic name of Glass-amp II among which Celdis feature the 1N5059-1N5062 series. These have voltage ratings from 200 to 800 V , and an average forward current rating of 1 A at $75^{\circ} \mathrm{C}$ or 750 mA at $100^{\circ} \mathrm{C}$. Prices for the 200 V version, IN5059, are 7.5 p each and for the 800 V version 1 N 5062 are 10.3 p each (both prices at 100 up rate).

A new range of 15 W zeners from Mullard are also stocked by Celdis, these being designated the BZV15 family. The devices will withstand a 600 W surge rating and provide reference voltages from 10 to 75 V with 5% tolerance on individual device ratings. Typical price is $£ 0.284+2 \%$ each at 100 up rate.
Designed for the suppression of surge voltages and the protection of instrumenta-
tion and circuits, the metal oxide varistor (m.o.v.) is a new product from General Electric. These components are similar in size to a T05 transistor and are characterized by a response speed of 50 ns . Variations are available for use on 130,150 and 250 V a.c. applications, capable of absorbing energy surges of 1,2 or 4 joules, and, depending on type, of withstanding peak currents of 75 A or 150 A ($7 \mu \mathrm{~s}$ pulse width). Also from G.E. is a complete new family of photon coupled isolators capable of withstanding a surge voltage (input to output isolation) of 4000 V . Known as the H 15 series the devices are enclosed in a new 4 -pin plastic package with pin spacing compatible with the normal di.i.l. centres. A range of variations is available from a simple photo-transistor and solid state lamp, to types which have their output in the form of a photo-Darlington array. General Electric have also announced the introduction of the H13 series of photon coupled interruptor modules designed to accept the edge of a computer card, tape or shaft encoder between the two components of the device to interrupt the signal. Celdis Ltd., 37/39 Loverock Rd., Reading, Berks RG3 1ED.
WW339 Schottky t.t.I.
WW340 rectifier diodes
WW341 zener diodes
WW342 metal oxide varistor
WW343 photo coupled isolators
WW344 photon coupled interruptors
New products added to the catalogue of G.D.S. (Sales) include an operational amplifier from Teledyne, several devices by Harris and some new digital devices from Motorola. The Teledyne 2740 is a hybrid operational amplifier with output short circuit protection, input overvoltage and latch-up immunity, internal 6 dB / octave frequency compensation and an external offset voltage null capability. Limit parameters are quoted for a temperature range of $0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ and are as follows. Open loop gain 86 dB , offset current 5 nA , bias curretn 10 nA , and offset voltage drift 10 mV . Two new dual transistors with a $3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum baseemitter differential voltage drift have now been produced by Harris. Designated types 2N5117 (p-n-p) and 2N4044 (n-p-n) these are available in the standard 6 -pin TO-78 package. Where the high performance of these devices are not required, the 2 N 4100 (n-p-n) and 2N5118 (p-n-p) with a $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift, or the 2 N 4045 and 2N5119, with a $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift are offered as alternatives. Also from Harris are the so-called fourth generation operational amplifiers which employ dielectric isolation and vertical $\mathrm{p}-\mathrm{n}$-p transistors which provide closed loop bandwidths up to a claimed 100 times better than conventional 741 devices operated at the same gain. These new amplifiers, the HA2605 and HA2625, have typical d.c. characteristics of 5 nA offset current, $300 \mathrm{M} \Omega$ input resistance and 80,000 minimum large signal open loop again. The HA2605 is internally compensated and has a 12 MHz gainbandwidth product, full power band-
width of 75 KHz , and a $7 \mathrm{~V} / \mu$ s slew rate. The HA2625 is the uncompensated version of the HA 2605 with 100 MHz gain bandwidth product, 600 kHz full power bandwidth and a $35 \mathrm{~V} / \mu \mathrm{s}$ slew rate. A bandwidth control pin is available on both amplifiers so that bandwidth can be specified where necessary.

A further two Harris operational amplifiers are characterized by fast slew rates. The HA2525 has a $120 \mathrm{~V} / \mu$ s slew rate, 1.6 MHz full power bandwidth and a $0.1 \mu \mathrm{~s}$ settling time to 0.1%. An internally compensated version, the HA25 15 has a $60 \mathrm{~V} / \mu$ s slew rate, 1 MHz full power bandwidth and 0.25μ s settling time.

Finally three Motorola digital devices are introduced by G.D.S. The MC 14527 is a b.c.d. rate multiplier (m.o.s. type) that provides an output pulse rate based upon the b.c.d. input number. A seven-segment lateh/decoder/driver, type MC14511, represents. a new addition to the Motorola c.m.o.s. family and provides the functions of a 4 -bit storage latch, an 8421 b.c.d.-to-seven-segment decoder and an output drive capability. Also from the c.m.o.s. range of devices is the MC14528CL, a dual monostable multivibrator which may be triggered from either edge of the input pulse and will produce an output pulse with a width from 0.3 to $100 \mu \mathrm{~s}$. The device is packaged in a 16 -pin di.i.l. case and costs $£ 1.302$ in 100 plus quantities.
G.D.S. (Sales) Ltd., Michaelmas House, Salt Hill, Bath Rd., Slough, Bucks.
WW 345 hybrid op-amp
WW 346 dual transistors
WW 347 fourth generation op-amps

WW 348 fast slew op-amps

WW 349 c.m.o.s. devices
S.G.S. Ates have introduced a new range of complementary m.o.s. devices some of which are to be made available later this year. Initially, it is intended to second source the CD4000A range manufactured by R.C.A. and from whom S.G.S. Ates have purchased the technology licence. The new range is to be identically numbered with the originals.

Four new complementary pairs of silicon power transistors designated BD433/34; BD281/82; BD283/84 and BD285/86 have also been introduced. Principally intended for audio applications, they can be used for audio output stages delivering, in the case of the last two pairs of devices, up to 20 watts of power into the load.

Finally a new protected audio power amplifier, type TBA810S Ω which will deliver 6 W into a 4Ω load. Complete thermal protection is provided for by automatic limiting of output power. The device is available in a 12 -lead quad-inline plastic package with either flat, pierced tabs for the attachment of an external heat sink (TBA810AS) or bent metal tabs to solder direct to a printed circuit board. S.G.S. Ates Componenti Elebronici SpA, Via C. Olivetti, 1, 20041 - Agrate Br., Milan, Italy.

[^9]
Real and Imaginary

by "Vector"

Whatever Happened to the Likely Lads?

For what follows you can blame the recent Letters to the Editor on the subject of Marconi's 1907 patent for producing c.w. from a spark source. It seemed such an odd-ball invention that I wanted to know more about it, so I did what I always do on such occasions; I called on a friend of mine who is an ardent collector of old books on radio and kindred matters.

I didn't call in vain. He dug out a volume "Telephony Without Wires" (P. R. Coursey, Wireless Press Ltd, 1919) which is a mine of information on the subject. It seems that right from the start of wireless telegraphy lots of people had had a go at telephoning via spark-generated waves, the general approach being to connect a microphone in place of the morse key. Seeing that the original spark gaps produced heavily damped wave-trains with large chunks of nothing in between them (relatively speaking) the lack of success was predictable.

A little later some experimenters transferred allegiance to the arc system or the h.f. alternator, but others concentrated on trying to produce undamped wavetrains at faster sparking rates. The book traces the development of quenched spark, as it was termed, and devotes two chapters to methods of producing continuous waves from spark. I mustn't encroach upon the sacred ground of the correspondence columns, but there is no doubt that sparkbegotten c.w. was no myth. Incidentally, you might be interested to know of two familiar names who made important contributions to the state of the art; one was W. Dubilier and the other - wait for it! - was H. Yagi.

Why, I wondered, seeing that input/output efficiencies of up to 75% were claimed, did such methods of producing c.w. die the death? Coursey gives part of the answer in connection with the smooth-disc approach; it was apparently only suitable for low powers (and output power was particularly important then because there were no amplifiers at the receiving end). Furthermore, the disc had to run at very high speeds even to achieve radiations of the order of 30 kHz , while frequent gapcleaning operations were necessary. Nevertheless, Marconi developed the 1907 device extensively and a highly sophisticated version (the timed disc c.w. generator)
emerged which continued as the standard Marconi transmission system until the early 1920s when thermionic valves took over. P. R. Coursey's book has pictures of a 300 kW installation and it's quite a piece of ironmongery.

Marconi, of course, was primarily concerned with telegraphy for transworld communication and so introduced an audible note by means of studs on the dises to break up the pure c.w. (if pure is the right word, which it probably wasn't!). It certainly wouldn't have approached the regularity of valve-generated waves.

So that's what happened to one likely lad. I sometimes wonder, though, whether we aren't mistaken in assuming that nothing of value remains in the field of spark research. Consider, for a moment, a few unrelated facts. Spark techniques had developed into a highly efficient means of producing electromagnetic waves of all frequencies from centimetric to v.h.f. Even by 1907, rudimentary means had been found whereby c.w. could be obtained from it. And what of the oscillating crystal of 1911 in which a microscopic spark seems to have been a key feature? Remember, too, that Tesla suggested that spark-generated waves might be used for what we now call radar and, indeed, a primitive form of it was patented in 1904. Given the accumulated know-how of the past seventy years, isn't it just possible that somewhere lies the germ of, let's say, a simple, cheap sub-miniature radar transmitter for use on road vehicles in fog? Or something?

I've just mentioned Tesla. Now, there's a colourful character, if ever there was one. What was he? Charlatan? Showman? Mystic? Eccentric? Genius? Certainly he was continually bursting into the headlines with extraordinary inventions, a large proportion of which never got beyond print: automatons, communication from Mars, death-rays - you name it, Tesla had had a go at it. Yet over and beyond this, Tesla was a visionary-genius with a great number of solid patents to his credit, a pioneer of polyphase a.c. (he designed the alternators for the first Niagara Falls hydro-electric station) and a man who was years ahead of his time in matters concerning high potential, high frequency currents. A man whose worth is recognized by the bestowal of
his name upon the unit of magnetic flux density. A complex character indeed.

In 1899 Tesla set up an impressive laboratory at Colorado Springs and before long announced that he had found it practicable to send and receive telegraphy and telephony around the world: many thousands of messages could be sent simultaneously. A cheap and simple device which could be carried in one's pocket would record the message.

But this was only the beginning; in addition, Tesla claimed that he could also distribute power in unlimited amounts without the aid of wire conductors. His "magnifying transmitter", as far as he described it, was essentially a circuit of very high induction and small resistance; the mode of operation (he said) was the diametrical opposite of conventional wireless telegraphy, the electromagnetic radiations being insignificant. With proper conditions of resonance obtained, the circuit "acts like an immense pendulum, storing indefinitely the energy of the primary exciting impulses upon the earth and its conducting atmosphere".

Eventually his transmitter was to emit a wave complex of a total maximum activity of 10 million horse power (this, added Tesla, rather unnecessarily, "is obtainable only by the use of certain artifices"). As a start he proposed to distribute $10,000 \mathrm{~h} . \mathrm{p}$. under a tension of 100 million volts "which I am now able to produce and handle with safety".

One of the chief benefits of the scheme, as Tesla saw it, would be the illumination of isolated homes, each one of which would have a power collector on its roof and with the lighting derived from vacuum tubes operated by h.f. currents. Tesla added that the driving of clocks and other such apparatus would be a feature, commenting that "the idea of impressing upon the earth American time is fascinating and very likely to become popular".

As far as one can gather, then, his idea was to set the entire earth into electrical oscillation at a frequency of 150 kHz and to pump in power to be in resonance with the waves that he was sure would travel from the transmitting centre to a point diametrically opposite it on the earth's surface and then return. This travelling power could be tapped off anywhere by means of a tuned circuit, an earth connection and an elevated collecting rod. (How he proposed to stop pirating is not clear.)

Tesla built a central power plant and transmitting tower for his "World Telegraphy" at Long Island, New York. The tower was 187 ft high and topped by a hemispherical head 68 ft in diameter. The externals were completed by 1902 and some equipment installed, but by now the backers were crying off and Tesla was desperately short of money.

Tesla was forever dreaming up projects and then abandoning them, often because of lack of money. Many were undoubtedly crackpot but, on the credit side, he produced a great number of viable inventions. Isn't it possible that a careful search might reveal a few likely lads among those abandoned?

One word says our new Panel Meters are among the World's best

AVO meters always tend to become the meters by which others are judged. And it's about to happen again - in Avo's Golden Jubilee year.

For we first time ever Avo has marketed a range of completely new panel meters-the 'Dinline Fifty' range. Their quality sets a tough standard for any manufacturer to match.

The 'Dinline Fifty' range is made to conform to DIN(IEC 51) standards. This, together with extremely competitive price and delivery, makes it easier for our customers to sell in Europe. They have the 'slim' look scaled with a low arc to suit today's modular instrument presentation. They're accurate : BS89/70 Part 1 (Class Index 1 available for larger meters on request).

And they have well proven centre pole moving coil movements that give the faultless performance of your

friend and our friend, the Avometer.
There are two styles in the AVO 'Dinline Fifty' range - matt black glazed front or clear Makrolon each in four sizes - all with one universal, fit-anything 50 mm barrel diameter. Together with optional fixing stud positions (available on request), this makes possible equipment up-date without costly panel redesign.

And there are sensitivities from $10 \mu \mathrm{~A}$ to 30 A and 10 mV to 1000 V , all self-contained.

The rest of the details are in a comprehensive data sheet that's yours for the asking.

So why not tick the reader reply card?
Avo Limited, Archcliffe Rd, Dover, Kent. Phone: Dover (0304) 202620

Sinclair Project 60

Now-the Z.50 Mk. 2

with built-in automatic transient overload protection

When originally introduced, the Sinclair $Z .50$ proved how it was possible to design and produce a popularly priced modular power amplifier having characteristics to challenge the world's costliest amplifiers. Many thousands of Z.50's are now giving excellent service day in, day out. But we have also learned that constructors do not always use their $Z .50$ s ideally. That is why we have introduced modifications whereby risk of damage through mis-use is greatly reduced and performance further enhanced. The Z.50 Mk. 2 has improved thermal stability, more accurately regulated D.C. limiting to ensure more symetrical output voltage swing and clipping and still less distortion af lower power. Z.50 Mk. 2 is compatible with all other Project 60 modules, and may be incorporated to advantage in existing systems. Eleven silicon epitaxial planar transistors are now used, two more than in the original $Z .50$; circuitry has been re-designed, making this versatile high performance amplifier better than ever.
Z. 30 the power amplifier for quality and economy

The Z.30 provides excellent facilities for the constructor requiring a high fidelity audio system of less power than that available from $Z .50$ s. Using a power supply of 35 volts. $Z .30$ will deliver 15 watts RMS into 8 ohms, or 20 watts RMS into 3 ohms using 30 volts. Total harmonic distortion is a fantastically low 0.02% át 15 watts into 8 ohms with signal to noise ratio better than 70 dB unweighted. Input sensitivity 250 mV into 100 K ohms. Size $80 \times 57 \times 1,3 \mathrm{~mm}\left(3 \frac{1}{8} \times 2 \frac{1}{4} \times \frac{1}{2}\right)$ Z.30. Z.50 and $Z .50$ MK. 2 modules are compatible and interchangeable.

Guarantee

If, within 3 months of purchasing any product direct from Sinclair Radionics Ltd., you are dissatisfied with it, you money will be refunded at once. Many Sinclair appointed Stockists also offer this same guarantee in co-operation with Sinclair Radionics Lid.
end is project 60 module is lested before leaving our factory and is guatanteed to work perfectly. Should any defect arise charge to you, if it is returned within two years from the date of purchase. Outside this period of guarantee a small charge
 postage by surface mail. Air Mail is charged at cost.

Brilliant new

technical specifications
with free
manual
$£ 5.48$
Input impedance $100 \mathrm{~K} \Omega$
Input (for 30 w into 8Ω) 400 mV
Signal to noise ratio, referred to fullo/p at 30 v HT 80 dB or better
Distortion 0.02\% up to 20W at 8Ω. See curve Frequency response 10 Hz to more than $200 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Max. supply voltage $45 v$ (4Ω to 8Ω speakers)
($50 \mathrm{v} 15 \Omega$ speakers only)
Min. supply voltage 9 v
Load impedance-minimum : 4Ω at 45 vHT Load impedance - maximum : safe on open circuit

Typical Project 60 applications

System	The Units to use	together with	Units cost
Simple battery record player	2.30	Crystal P.U., 12 V battery volume control, etc.	£4.48
Mains powered record player	Z.30, PZ.5	Crystal or ceramic P.U. volume control. etc.	£9.45
12W. RMS continuous sine wave stereo amp. for average needs	$\begin{aligned} & 2 \times Z .30 \mathrm{~s} \text {, Stereo } \\ & 60 ; P Z .5 \end{aligned}$	Crystal. ceramic or mag P.U., F.M. Tuner, etc.	£23.90
25W. RMS continuous sine wave stereo amp. using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times Z .30 \mathrm{~s}, \text { Stereo } \\ & 60 ; \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U., F.M. Tuner, Tape Deck, etc.	£26.90
80W. (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60W RMS into 80 hms)	$2 \times$ Z.50s, Stereo 60; PZ.8, mains transformer	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic.. guitar, speakers. etc., Controls	$£ 19.43$

F.M. Stereo Tuner (£25) \& A.F.U. (£5.98) may be added as required.

the world's most advanced high fidelity modules

Stereo 60 Pre-amp/control unit

Designed specifically for use on Project 60 systems, the Stereo 60 is equally suitable for use with any high quality power amplifier. Since silicon epitaxial planar transistors are used throughout, a really high signal-to-noise ratio and excellent tracking between channels is achieved. Input selection is by means of press buttons, with accurate equalisation on all input channels. The Stereo 60 is particularly easy to mount.
SPECIFICATIONS-Input sensitivities: Radio - up to 3 mV . Mag. p.u. 3 mV correct to R.IA.A. curve $\pm 1 \mathrm{~dB} .20$ to 25.000 Hz . Ceramic p.u. -up to 3 mV . Aux -up to 3 mV . Output: 250 mV . Signal to noise ratio : better than 70 dB . Channel matching : within 1 dB . Tone controls: TREBLE +12 to -12 dB at 10 KHz : BASS +12 to -1208 at 100 Hz . Front panel: brushed aluminium with black knobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$

Built. tested and guaranteed.
£9.98

Project 60 Stereo F.M. Tuner

The phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now. Sinclair have applied the principle to an F.M tuner with fantastically good results. Other advanced features include varicap diode tuning. printed circuit coils, an I.C in the specially designed stero decoder and switchable squelch circuit for silent tuning between stations. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with most other high fidelity systems.
SPECIFICATIONS-Number of transistors: 16 plus 20 in I.C. Tuning range : 87.5 to 108 MHz . Sensitivity: $7 \mu \vee$ for lock-in over full deviation. Squelch level: Typically $20 \mu \mathrm{~V}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ ($\pm 1 \mathrm{~dB}$). Total harmonic distortion: 0.15% for 30% modulation Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M. S . maximum Operating voltage: $25-30 \mathrm{VDC}$. Indicators: Stereo on; tuning. Size: $93 \times 40 \times 207 \mathrm{~mm}$.

Built and tested. Post free.

Super IC 12 mearasediciout
 high fidelity amplifier

sistor circuit contained within a 16 lead DIL package. and the finned heat sink is sufficient for all requirements. The Super IC. 12 is compatible with Project 60 modules which would be used with the $Z .50$ and $Z .30$ amplifiers. Complete with free manual and printed circuit board.

SPECIFICATIONS

Output power: 6 watts RMS continuous (12 watts peak). $6-8 \Omega$. Frequency Response: 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total Harmonic Distortion: Less than 1%. (Typical $0 \cdot 1 \%$) at all output powers and frequencies in the audio band (28 V). Load Impedance: 3 to 15 ohms. Input Impedance: 250 Kohms nominal. Power Gain: 90 dB ($1,000.000 .000$ times) after feedback. Supply Voltage: 6 to 28 V . Quiescent current: 8 mA at 28 V . Size: $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink.
Manual available separately 15 p post free.
With FREE printed circuit board and 40 page manuat.
£2.98

Power Supply Units
The new PZ. 8 Mk. 3

The most reliable power supply unit ever made available to constructors. Brilliant circuitry makes failure from over load and even direct shorting of the output impossible. This is due to an ingenious re-entrant current limiting principle which, as far as we know has never before been available in any comparable unit outside the most expensive laboratory equipment. Ripple and residual noise have been reduced to the point of almost total elimination. This is, of course, the perfect unit for Project 60 assemblies, particularly where the new Z. 50 MK. 2 amplifiers are used. Nominal working voltage-45
PZ. 8 Mk.3-f7.98
(Mains transformer, if required) $£ 5.98$
PZ. 5 30v. unstabilised
(not suitable for Project 60 tuner) $£ 4.98$
PZ. 6 35v. stahilised
(not suitable for 1 C .12) £7.98

Project 605

the easy way to buy and build Project 60 without soldering
Project 605 in one pack contains one PZ.5. two Z.30's. one Stereo 60 and one Masterlink. which has input sockets and output components grouped on a single module and all necessary leads cut to length and fitted with clips to plug straight on to the modules thus eliminating al! soldering
Complete with comprehensive
£29.95
manual, post free
All you need for a superb 30 watt high fidelity stereo amplifier

Order form

Please send
lenclose cash/cheque/money order.
Name

Address

WW 6

SINCLAIR RADIONICS LTD., LONDON ROAD, ST. IVES, HUNTINGDONSHIRE, PE17 4HJ
Business Reg. No. (England) 699483 Registered Office as above

HART ELECTRONICS

Audio Kits

This is our Bailey/Burrows Stereo pre-amp front end. We think it is the best engineered kit of the best pre-amp circuit available, and there is a back end/tone control unit of similar advanced design to go with it which is only $1 \frac{1}{2}{ }^{\prime \prime}$ deep so it fits almost anywhere, but of course it's at its best in a Hart universal amplifier metalwork with a couple of Hart Bailey 30 watt power amps to keep it company. That's a recipe for real $\mathrm{Hi}-\mathrm{Fi}$ with electronics you'll be too proud to cover up.
Also a delight to the connoisseur are our printed circuits and components for the Stuart tape circuits
This is a most useful high quality circuit with the record, replay and bias functions on separate boards thus giving considerable versatility of use. For instance a stereo replay channel can be built for $£ \in$ for single speed use without external components or a switch may be added for multispeed operation.

WE ARE SUPPLYING

Printed Circuit Boards, Components and Kits for the D. O'N. WADDINGTON DIGITAL MULTIMETER

This most interesting project fulfils the long -felt want for a Digital Multimeter with the added bonus of counter/timer functions, all at a price which makes it extremely attractive to the amateur, educational or commercial user.

Please send $9^{\prime \prime} \times 4^{\prime \prime}$ SAE for full details:

Penylan Mill, Oswestry, Salop.

Personal callers are always welcome, but please note we are closed all day Saturday

Newnes Radio Engineer's
 Pocket Book 14th Edition

H. W. Moorshead

A ready reference source for formulae, tables and definitions of electrical and electronic terms, including many mathematical tables. The book is very carefully indexed for quick and accurate selection of material.
1972192 pp illustrated 0408000740 £1.20
Sound with Vision
Sound Techniques for Television and Film
E. G. M. Alkin

For the first time the methods developed by the BBC are here made available in book form for the benefit of television sound operators and production staff. The book discusses the problems of simultaneous production of sound and picture, giving practical instruction in methods of overcoming them. There are detailed discussions of operation equipment and trends which will be useful to designers and manufacturers of sound equipment.
1972288 pp illustrated $0408702362 \mathbf{£ 6 . 0 0}$

Video Recording

Record ąnd Replay Systems

GordonjWhite
This book describes the principles of video recording and discusses the various systems which are on the market or will soon make an appearance. Inevitably the book is technical, but it is designed so that people who have an interest in the subject should find no difficulty in understanding the principles, advantages and disadvantages of the various systems.
1972216 pp illustrated $0408000856 £ 3.25$
Obrainable through any bookseller or from
The Butterworth Group
88 Kingsway, London WC2B 6AB.
Trade counter: 4-5 Bell Yard, WC2.
 S type which we believe to be the smallest available.
WEST hYDE DEVELDPMENTS LIMITED, RYEFIELD CRESCENT, ndrthwood hills. nORThwood, middx. haEinm Telephone: Northwood 24941/26732.

Telex: 923231

WEST HYOE DEVELDPMERTS LTD. Telephone: Northwood 24941/26732

WEST HYDE (W) WW-102 FOR FURTHER DETALLS

AHUJA

PA. SYETEMM

NEW RANGE OF

 PRROFESSIONAL QUALITY PUBLIC ADDRESS SYSTEMS
FOR SCHOOLS • HOTELS • PLACES OF WORSHIP • PUBLIC MEETINGS \& ENTERTAINMENT

Solid State amplifiers featuring built-in protection against open or short speaker line

Also available wide range in Tube models.

- AHUJA-most trusted name in sound systems for over 30 years-offers complete line of high performance highly dependable public address systems.
- Exports to over 30 countries all over the world.
- Amazingly low prices \& prompt shipments.

For further details please write to :
AHUJA RADIOS, 215, Okhla Industrial Estate, New Delhì-110020 (India)
Issued by: Engineering Export Promotion Council, Calcutta (India):
wW- 126 FOR FURTHER DETALLS

Do you count with us?-These people do ... g.P.O., DECCA, SHELL, GOVERNMENT DEPARTMENTS, CRYSTAL MANUFACTURERS, UNIVERSITIES, TECHNICAL COLLEGES, DISCERNING CLIENTS AND MANY OTHERS THROUGHOUT THE WORLD

- to within 1 cycle in 5 million

WW- 103 FOR FURTHER DETAILS

TELEPRINTER EQUIPMENT LIMITED

Sales RentalsNew ... Refurbished ... Installation
Maintenance ... Overhauls ... Spare Parts . . . Prompt Deliveries

CREED EQUIPMENT

TELETYPE CORP. EQUIPMENT

SIEMENS EQUIPMENT
OTHER
EQUIPMENT

SPECIAL EQUIPMENT

TELEPRINTERS 15, 19, 20, 28, 32, 33, 35
all configurations
PERFORATORS 14, 19, 28 LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS $14,20,28$ LBXD \& LXD TRANSMIT GROUPS, etc.
TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.
KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS.

COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED
 G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300, 500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20 -way PO 17, Lamp Caps,
Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)—made to specifications
TERMINAL BLOCKS (DISTRIBUTION) - 20 -way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH $71(15 \times 4 B)$
POLARISED TELEGRAPH RELAYS AND UNISELECTORS—various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, $48 \mathrm{H}, 49 \mathrm{H}, 149 \mathrm{H}, 3 / 16,3 / 216,3 / 48 \mathrm{~A}, 3 / 43 \mathrm{~A}, 48 \mathrm{~J}$, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$ COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.
ww-105 for further detalls

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include:

> KEYBOARD PERFORATORS for offline tape preparation AUTOMATIC TAPE TRANSMITTERS with speeds up to 250 w.p.m.
> MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS
> UNDULATORS for automatic record and W/T signals up to 300 w.p.m.
> CODE CONVERTERS converting from $5-u n i t ~ t a p e ~ t o ~ M o r s e ~ a n d ~ v i c e ~ v e r s a ~$ MORSE REPERFORATORS operating up to 200 w.p.m. TONE GENERATORS and all Students' requirements
> CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANSMITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS LAMPS, etc.

RCA PHOTOMULTIPLIER C31005B
RECTIFIER STACKS \quad SWITCHES

6.88	Edwards High Vacuum "Speedivac" model
GEX541B1P153.50	VSK1B range 25.760 torr contact ratings
GEX541 D2P1£350	250 v . 5 a . volume $4.2 \mathrm{cu} . \mathrm{cm}$. max. working
GEX541 NB1P1F . . . £6.00	pressure $15 \mathrm{lb} / \mathrm{sq}$. in. gauge net weight
GEX541HP3F 6000	17 ozs. $\mathbf{E 6} \mathbf{6 0}$
SX751N1B1P1F...f6.00	Belling Delay hand reset L415........ $£ 110$
GITAL COUNTERS	Stackpole min. rocker 125 v .10 a .250 v
Veeder Root Zero Reset	
6 dig. 110 v . dc....£4.75	Tippalite Rocket 12 v60p
Veeder Root Mech. Reset	Securex 5000 press button 250v. ac. ¢1-20
4 dig.................. 50p	ELEPRINTERS
Hengstler Reset 6 dig.	Creed model 75 Receiver - 5 w
210 Ω 24v......... $\mathbf{f 3} 50$	with connectors handbook \& comput
Hengstler Reset 6 dig.	diagram $£ 35.00$ carr $£ 1.00$.
110 v . Type 400 with sup-	RELAYS
TEGRATED CIRCUITS	
MC3544 \qquad . $1 \cdot 10$	Siemens Min. 12/15v................ 50p
	Magnetic Dev. Type 596E.......... $£ 200$
MC353G2200	BR Type M51 240v................. $\mathbf{6 5 p}_{\text {p }}$
MC365G 500	VARIACS
CA302093p	
CA3021£1-15	115 v . Outp. 135v. at 6a...............£6.00
CA3055¢1-24	Philips Series E401 Inp. 240v. Outp. 0-270v.
CD4035AE¢191	at 8 amps $\mathbf{\pm 1 5 . 0 0}$ carr. 67p
HYRISTORS	KEYBOARDS - special sale of Limited Quantity
GE2N1774 200v. 5a.f1-20	ICT Alpha Veritier $\mathbf{6 6 . 0 0}$ carr. 50 p
CR1-021C 20v. 1 a . . 25p	ICT Numerical f3.50 casr. 350
CR10-101B 100v. 10a................ 00	
CR10-021 10a..... £1.00	'DIMMIT'' Madule PMSD-1000
CR10-40B 10a.... $£ 1.00$	1KW Dimmer used by Industry Theatre Disco
CR10-051 10a. . . . £ 100	240v Full Radio R TV intererence Suppression
CR10-01710a.... f1 00	Fibreglass PCB 60 mm 5tder pot. permits inear
BTX-82-300R 300v.	control from min. to max. power using Triac
26a............... $\mathbf{£ 2 0 0}$	Phase Control fused for O/L protection Dimen.
STC 3/40 400v. 3a. . . 50p	$12 \times 5 \times 4 \mathrm{~cm}$ knob faceplate screws supplied
ONNECTORS	f6. 50 \% 20 m

McMurdo Red Range, Plug RP24
Eng. Elect. Edge. 36 way 0.2 mm
Sylvania Edge. 48 way 0.1 mm .
Ultra Gold-plated Contacts. 0.1 mm Type 10 M 54631263 C 38 way........pair $£ \mathbf{£ 1 . 0 0}$

CAPACITORS

Dalv Electrolytic 9000 uf 40v. 50p; TCC Electrolytic 10,000 uf 70v. 50p; Dubilier Metalised Paper Type 426100 uf 150v. DC 50p; R.I.C. type 1297 1.Buf 440 v . AC 35p
MOTORS
Crompton Parkinson 240v. 1 ph 50c 0.125 hp 1400 rpm
£5.00 carr. 67p
GEC fractional $1 / 12 \mathrm{hp} 230 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 2850 \mathrm{rpm}$.
£3.50 carr. 67p
E.E. $\frac{1}{2}$ hp 230 v . 50 c 1 ph 50 c . 1440 rpm complete with cap $80 / 100 \mathrm{u}$ 275v...f 13.00
76813-393 Potter Instr. 110 v . DC 4 amp 0.2 hp . Cont. flange mounting precision tape transport motor (EBO value)
FANS, CENTRIFUGAL BLOWERS AND STARTERS
Alumax Type M1/Y3954 (3 blades) Cast Aluminium alloy impeller \& casing (Corresponds to current type $39657 \frac{1}{2}{ }^{\prime \prime}$) 230 v . 1 ph 50 c 2900 pm Class " A " insulation $\mathbf{4 2 5 c f m}$ free air weight $9 \frac{1}{2} \mathrm{lbs}$. incl. p.p £21.00
Woods Aerofoil short casing type " S "
$2700 \mathrm{rpm} 220 / 250 \mathrm{v}$ 2700rpm $220 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 6^{\prime \prime}$ plastic Woods Aerofoil Code $7.5280 \mathrm{~K} 200 / 250 \mathrm{v}$ $1.0 \mathrm{a} 1 \mathrm{ph} 50 \mathrm{c} 2700 \mathrm{rpm} 7 \frac{1^{\prime}}{}{ }^{\prime \prime}$ impeller 14 blades incl. p.p. $\mathbf{£ 1 3} 50$.
Service Electric Hi-Velocity Fans, suitable for Gas combustion Systems. Steam exhausting, Pneumatic conveying, Cooling Electronic equipment, Air blast tor 575) Airbls. Secomak Model 365 (corresponds contin 160 ctm 12 in 40 ch 0.75 hp 2850 rpm. price incl. carr. $£ 41.00$. Secomak model 350250 v $1 \mathrm{ph} 50 \mathrm{c} 0.166 \mathrm{hp}, 2800 \mathrm{rpm}$ continuous 50 cfm 2 in . w.g. net weight 34 lbs , price incl. carr. $\mathbf{£ 2 6} \mathbf{0 0}$. Alr Controls type V8L4 $200 / 250 \mathrm{v} 1$ oh 50 c .110 ctm free air weight $7 \frac{1}{2}$ lbs price incl. D.p. $£ 14.50$.
Willam Allday Alcosa Two Stage Vacuùm Pump Model HSPOB 8 hg up to 29 in . mercury rpm 1420. E.E. 3 phase induction, motor thp cont. 220/250v. Alan West Direct. $\mathbf{O n}$. Carr.
Alan West Direct-On SCF Starters 240 v . 1 ph 50 c

Where p.p. not advised add 10 p per $£$ handing and post (in UK). Cash with order. Personal callers welcome. Open Món-Wed. 9.30-5.30 Fri.-Sat. 9.30-6.00. Free Car Park adjacent.
> W. \& B. MACFARLANE

> 126 UXBRIDGE ROAD, HANWELL, LONDON W7 3SL

P. F. RALFE 10 CHAPEL ST. LONOON N.W.1. Phone 01-723 8753

TELEVISION SWEEP GENERATOR

by Sweep systems type 505. Frequency coverage $450-940 \mathrm{MHz}$. (Channels $15-80$). Markers at 465 / $565 / 660 / 750 / 830$ and 900 MHz . Attenuated output in eight, five db steps and fine $0-10 \mathrm{db}$. Sweep width adjustable from $1-15 \mathrm{MHz}$. The instrument is completely solid-state using variactor diodes and transistors throughout. Dims: $19 \times 12 \times 5$ ins. Wt.: 201 bs .
Supplied in good working order, price $\mathbf{£ 5 9 . 5 0}+50$ p carriage.
GERALD 900B Sweep Generator with SD8A sweep driver unit. V.H.F. and U.H.F. $0-1200 \mathrm{MHz}$. centre frequency. I, 10 and 100 MHz markers. Built-in detector, attenuators etc. This instrument is probably the most comprehensive sweeper ever made. P.U.R.

TEKTRONIX OSCILLOSCOPES

Type 547 with IA2 plug-in. DC- 50 MHz . With display switching.
Type 545A with 'CA' plug-in. (Or 'L'). DC-30MHz.
Type 561A with 3 Al and 3 B 3 units. $\mathrm{DC}-10 \mathrm{MHz}$.
Type 535 with CA plug-in unit. DC- 15 MHz .
Type 551 . Double-beam with L\&G units. DC- 27 MHz .
Also available:
Dynamco D7100 with 1 Y2 and 1×2 plug-ins. Portable, DC -30 MHz . Hewlett-Packard 175A. 1781 and 1755A plug-ins. DC- 30 MHz . Philips GM5602. DC- 20 MHz . Price $£ 65.00$.
Roband RO50A with 5 G plug-in. DC-15MHz. Price $£ \mathbf{1 2 5 . 0 0}$.
Solartron CD1400. With two CX1442 and a CX1443 units.
Extremely sensitive instrument. Twin differential inputs.

SIGNAL GENERATORS

Marconi type TF801D. $10-485 \mathrm{MHz}$. Excellen

 P.U.R.Marconi type TF867. $15 \mathrm{KHz} \mathbf{- 3 0 M H z} \mathbf{£ 1 5 0 .}$ Airmec type $201.30 \mathrm{KHz}-30 \mathrm{MHz} . £ 65$.
Hewlett-Packard 616A. $1780-4000 \mathrm{MHz}$. 675.
Advance C 2 H . Spot-frequency production-line test instrument 12 freqs. in bands $500 \mathrm{KHz}-30 \mathrm{MHz} . ~ £ 25$.
Rohde \& Schwarz U.H.F. 990 -I900MHz. P.U.R.
Rohde \& Schwarz SMAF. A.M. \& F.M. $4-300 \mathrm{MHz}$. FM Dev. 0.100 KHz in 2 ranges. Fundamental-frequency generator ideal for radiotelephone test equipment. P.U.R.

Marconi type 791D Deviation checker. $0-1024 \mathrm{MHz}$. Deviation to 125 KHz .
Marconi type TFII52A R.F. Power meter. 0-25W. 50 ohms. $\mathbb{4 5 . 0 0}$. Marconi type TF1020 and 1020A RF power meters. 0-100W. 50 and 75 ohms. P.U.R.
Airmec 210 Deviation meter. $3-300 \mathrm{MHz}$. AM Mod and FM Deviation to 125 KHz .
Rohde \& Schwarz type RDI-60 R.F. Load. IKW. Excellent. One only. $\mathbf{£ 5 0 . 0 0}$.

POWER TUBE BASES for 4X250 T/X Valves etc. BASES ARE BRAND NEW AND BOXED COMPLETE WITH THE CERAMIC CHIMNEY. Only $£ 3.25$ each p.p. 10 p .

CANNON XLR AUDIO SERIES

Plugs and Sockets
XL3-11 3 -pole socket (free; line mounting). XL3-32 3pole plug (chassis mounting). $£ .25$ per pair.
XL6-32 6-pole plug (chassis mounting). XL6-11 6-pole socket (free, line mounting). $\mathrm{El}: 50$ per pair.
XL3-32 3-pole plug. 75 p each

BARGAIN OFFER-LOW

 VOLTAGE STABILISED POWER SUPPLIES *Voltage Range 16.24 V .*Current Range to 6 Amps. *Full over-voltage and Current protection.
*AC Ripple content better than 5 mV . These PSUs are constructed to exacting standards and incorporate the very best of components and circuit design for long life and reliability. Employs Silicon transistors, thyristors, C-Core transformer etc. Offered in perfect condition, carefully checked before despatch. List price over $£ 125$. Our price only $\mathbf{1 2 6 . 5 0}$. Carriage El .

PLEASE NOTE: ALL GOODS WILL BE SUBJECT TO 10% VALUE ADDED TAX WHEN ORDERED AFTER 10\% VALUE ADDED Ist APRIL, 1973.

FANE ULTRA HIGH POWER LOUDSPEAKERS

 £||.99

TRANSFORMERS

Primary MAINS ISOLATING SERIES ALSO AVAILABLE WITH II5/I20V SECONDARY WINDING Ñ్Nonunawa

440 V 300 VA ISOLATOR, Primary 440 V Secandary 240V, Centre Tapped
Sereened and $\$$ hrouded, t 10.37 . P \& 67 D .
AUTO SERIES (NOT

IISV 500 Watt totally enclosed auto transformer, complete with mains lead

LOW VOLTAGE SERIES (ISOLATED)
PRIMARY $200-250$ VOLYS 12 ANDIOR 24 YOL

EQUIPMENT TRANSFORMER
REF 238 PRI 0240 SCREEN SEC $3.03 V$ RMS at 200 mA SIZE CM $2.8 \times 2.6 \times 2.0$
PRIMARY 200-250VOACTID BATTERY CHARGERTYPES
Ref. Amps. Weight Size cm.

All ratings are continuous. Standard construction: open with solder tags and wax impregnation. Enclosed styles to order. TRANSISTORS
$\mathrm{BCL} 107 / 108 / 10$
$25+7.5 \mathrm{p}$
$100+6.5 \mathrm{p}$
2 N 305560 p each
with mica and bushes
$100+6.5 p$
$500+6.0 \mathrm{p}$
Minimumord
With mica a
$25+55 \mathrm{p}$
$100+45 \mathrm{p}$
\star Quantity prices on application
Also stocked: SEMICONDUCTORS VALVES AVOMETERS ELECTROSIL RESISTORS

PLEASE ADD 10\% FOR V.A.T. inc. P.\&P.

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

107	0.22	Alliti	037
ACl13	0.22	Alltit ${ }^{\text {a }}$	
${ }_{\text {ACl }}$	0.26	${ }^{\text {dite }}$	${ }_{0}{ }^{61}$
ACHIT	0.22 0.13	ADTliti	${ }^{0} 51$
${ }^{\text {ACCl2 }}$	0.19	AFIT	027
${ }_{\text {A }} 126$	0.19	AF11	27
127	0.19	${ }^{\text {AFP14 }}$	27
128	0.19	AFH7	
232	0.18	AF118	039
3	0.16	A	33
	0.18	$\mathrm{AFP}^{2} 25$	1
	0.18		
ACldik		127	- 31
	0.18	AFP^{39}	${ }^{33}$
	0.17	AFP^{174}	055
${ }_{\text {ACL }}$	0.22	A ${ }^{\text {P180 }}$	055
AC15	0.22	A ${ }^{\text {F18181 }}$	50
	0.22	AF184	0.80
$\mathrm{ACl}^{5} 5$	0.27	F239	
AC15is		Aldu2	72
	0.22	Al.103	
ACliz	0.22	A-Y\% ${ }^{\text {a }}$. 28
	0.27	As:27	33
AC169	0.18	Ast28	0.28
$7{ }^{7}$	0.22	AsY29	$0 \cdot 28$
${ }_{4}{ }^{\text {cli }} 17$	$0 \cdot 27$	AsY50	0.28
${ }^{\text {AC178 }}$	${ }^{0.31}$	AsYal	
${ }_{\text {ACl }}$	- 0.31	AsYas	8
АС180\%	0.22	Asy3s	0.28
AC^{181}	0.19	A8>56t	8
AC181K	0.22	Asym	28
AC187	0.24	Astis	8
AC187K	0.22	Aszil	44
AC188	0.24	${ }_{\text {RC10- }}$	10
${ }^{\text {A Clis8 }}$	0.22	BCtis	11
ACY17	0.28	BCLI9	11
ACr 18	0.22	${ }_{3}$	0.11
ACMY	22	BCH_{17}	0.17
$\mathrm{ACH}^{\text {a }}$	${ }^{8} 22$	RC15	0.17
ACY22	018	$\mathrm{BCO}^{1} 17$	$0^{0.17}$
ACrer	020	${ }^{18} 118$	11
ACY28	021	BC119	33
ACY29	039	8C120	-88
ACY ${ }^{\text {a }}$	031	${ }_{\text {BCl }}$	${ }_{0}^{0.20}$
ACY,	031	BC12	0.13
${ }_{\text {ACY }}{ }_{\text {A }}$	023	BC_{13}	20
ACY'3b	031	BC12	13
$\mathrm{ACH}^{\text {¢ }}$	019		17
${ }^{\text {a CriAl }}$	020	${ }_{12 \mathrm{Cl} 39}$	${ }_{0} .44$
${ }_{\text {ADl }}$	039 042	1 Cl 140	0.33
${ }^{\text {Ald }}$ A0	- ${ }^{53}$		0.33 0.33
A1P143	${ }_{0}{ }^{4}$	1 BC 143	33
${ }_{\text {ADP }}{ }^{\text {a }} 161$	055 037		0.50 0.11

Unequalled Value and Quality NEW BI-PAK UNTESTED SEMICONDUCTORS
SUPER PAKS
Satilafaction
Description

| U | 120 | Glass Sub-Min. General Purpose Germ |
| :---: | :---: | :---: | :---: |
| U 2 | 60 Mixed | |

U10 20 BAY 50 charge storase 1 nimices $100-7$ Clase

U14 150 Mixed Silicon and Gerruanium Dimpes,
U15 25 NiN sil. Manar Trans, To-5 like BFY51, 2N697

 Code No's. mientioned ahove sre given as a guide to the
a large range of technical and data books are now

SEND FOR FREE LIST

BI-PAKS NEW COMPONENT SHOP NOW OPEN WITH A WIDE RANGE OF ELECTRONIC COMPONENTS AND ACCESSORIES AT RANGE OF ELECTRONIC COMPONENTS A
COMPETITIVE PRICES-

Is baldock street (al0), WARE, herts. TEL. (STD 0920) 61593.

-the lowest prices!

74 Series T.T.L. I.C'S

bl-pak still lowest in price full specification guaranteed. all famous manufacturers

The AL50 HI-FI AUDIO AMPL 50W pk 25w (RMS) 0.1% distortion! hi-fi audio amplifien
 - Signai to noise reation mil 1 B.

 BRITISH MADE. only $£ 3.58$ each

STABILISED POWER
MODULE SPM80
£3. 25

 TRANSFORMER BMT80 £2.15 p. \& p. 25p

integrated circuit paks

Manyiacturers "Fall Outs" which include Functional and Part-Functional Units. These are classel as out-oit Pak No. Contents

Pak No. Contents	Price	Pak No. Contents	Price	Pak No. Contents	Price
(1C $60=12 \pm$ - 400	0.55	U1C16 $=5 \times 7446$	0.55	UIC8t $=5 \times 7+86$	0.55
U1C01 $=12 \times 7401$	0.55	U1C4 $7=5 \times 7417$	0.55	UIC90 $=5 \times 7490$	0.55
U1C02 $=12 \times 7402$	0.55	UIC48 $=5 \times 7.48$	0.55	UIC91 $=5 \times 7491$	0.55
UIC0 $03=12 \times 7.403$	0.55		0.55	U1C92 $=5 \times$ - 492	0.35
UIC04-12 $\times 7404$	0.55	$\mathbf{U 1 3 5 1}=12 \times 7451$	0.55	U1C43 $=5 \times 7493$	0.55
$\mathrm{U} 1 \mathrm{CO}=12 \times \overline{5}+105$	0.55	UIC5 $3=12 \times 7453$	0.55	U1C94 $=5 \times 54.94$	0.55
UIC06i $=8 \times$ + +06	0.55	U1C54 $=12 \times 7454$	0.55	U1C95 $=5 \times$ - +95	0.55
UIC0i $=8 \times 7407$	0.55	U1C60 $=12 \times$ - 4610	0.55	UIC96 $=5 \times 74416$	0.55
UIC10 $=12 \times 7+111$	0.55	UIC $00=8 \times$ i470	0.55	Lic100 $=5 \times 7+100$	0.55
UIC $1: 3=8 \times 7413$	0.55	$\mathrm{UlC} \mathrm{T}^{2}=8 \times 7472$	0.55	U1C12 $=5 \times$ 74121	0.55
UIC20 $=12 \times 7+20$	0.55	UIC $73=8 \times 7+73$	0.55	U1C1 $+1-5 \times 7+1+1$	0.55
$\mathrm{TIC30}=12 \times 74.0$	055	ClC $74=8 \times 7474$	0.55	U1C151-5 \times 7 4151	0.55
U1C40 $=12 \times 7440$	0.55	$\mathrm{U1C75}=8 \times 7475$	0.55	U1C154 $=5 \times \overline{1 / 254}$	0.55
UIC $41=5 \times 5441$	0.55	$\mathrm{U1C76}=8 \times 7+7 \mathrm{ti}$	0.55	U1C193 $=5 \times 34193$	0.55
UIC $42=5 \times 7442$	0.55	U1C80 $=5 \times 7+80$	0.55	UIC119 $=5 \times \overline{\text { 人 }}$-149	0.55
U1C43-5x $\times 143$	0.55	UIC81 $=5 \times 7481$	0.55		
UJC44 $=5 \times 7444$	0.55	$\mathrm{U1082}=5 \times 7+8{ }^{2}$	0.55	U1CXI $=25$ Assorte	1.55
UJC45 $=5 \times 7445$	0.55	UIC83 $3=5 \times 7.883$	0.55		

STEREO PRE-AMPLIFIER TYPE PA100
Built to a speeifcation and COT a price. and vet atill the greatest value on the inarket,
the PA 100 stereo pre-anyplifier has been conceived tron Designed for use with the Also power amplifier system, this quality made minit
incorporates no Iess than eigh silicon planar transisturs, two of these are specially incorporates no leas than eight silicon phanar transistors,
selected low noise XP: devices for use in the input stures. Three switched stereo inputs, and rumble and serathe titers are features of the
PA100, which also has a STEREO/MONO switch, volune, matane amd continhously variable bass and trehle controls.
SPECIFICATION

SPECIFICATION

Freguency responise Harmonic distortion
 Lurmonic distortion better than $U \cdot 10 / \mathbf{l d B}$
 2. Raslio, Tuner $\quad 1.25 \mathrm{my}$ into 50 kg 3. Magnetic P.U. 1.5 mV into 50 KS ,

 Tape and P.U. inputs equalised towithin \pm 1,1B irom 20 Hz to 20 kHz .
SPECIAL COMPLETE KIT COMPRI
I SPM 80,1 BMT80 \& I PAIOO ONLY $£ 25.30$ FREE p. \&p
Bass contrul
Treble control
Filters: Rurnble (high pase)
Signal/noive ratio
Input overload
Suppty
Dimensiona

The STEREO 20
The 'Stereo '20' atuplfier is mounted, ready wired and teste This compict unit comes complete with on off switeli, volume
control, Dalance, hase and treble controls. Attractively pinted front panel and matching control kiohs. The "stereo 20 ' has
been designed to fit into most turntable plinths without arate cabinet,
Output jower 20 w peak \quad Input 1 (Cer.) 300 mV into 1 M Orequt res. $25 \mathrm{Hzz-200Hz}$ £13.47 freep. \& p.

SYSTEM 12 STEREO

Each Kit contains two Am-
plifier Modules. 3 watts plifier Modules, 3 watts
RMS, two loudspeakers, 15 RMS, two loudspeakers, 15
ohms, the pre-amplifier, transformer, power supply module, front panel and an Illustrated stage-by-stage anstruction booklet designed
instrated for the beginner. Further

ONLY £18.64 INTERESTEO IN ELECTRONICS ? WARE 3442

BENTLEY ACOUSTIC CORPORATION LTD.

TA GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. TEI. 6743 ALL PRICES SHOWN INCLUDE V.A.T.

\qquad

 FAY 41
GDt
GD

GD | 414.25 | |
| :---: | :---: |
| 4 | 0.28 |
| | 0.31 |
| | 0.31 |

 0.42
0.42
0.42 .42
.42
0.68
0.42 All goods are unused and subject to the manufacturers' guarantee. We do not handle manuand unreliable life. Business hours Mos. Fri. 9-5.30 p.hi, Hegret no lista thil month,
 frest chass mail. Any parcel hisured againgt lamage in transit tor $3 p$ extra per order. Conditions
of sale available on refuest. s.A.E. with all enquiries, please.

Telecommunications Systems Designs

volume one TRANSMISSION STSTEMS
 M.T.Hills \& B.G.Evans
 Department of Electrical Engineering, University of Essex

For someone who has had an introduction to the basic principles of telecommunications this book will provide an insight into the real-life design problems of transmission systems which are to be used on component parts of a large telecommunications system.
The book covers among other systems, telephone, television, telegraph, satellite, p.c.m. and f.d.m. systems.

£4.80 116 diagrams

George Allen \& Unwin

BRAND NEW
 SEMICONDUCTORS \& COMPONENTS

We supply nearly all the components for projects advertised in this magazine

[^10]
R.S.T. VALVE MAIL ORDER CO. Blackwood Hall, I6A Wellfield Road, R.S.T. London, SWI6 2 RS Tel: 01-677 2424

Terms of Business: Mon. to Sat. Open to callers $9 \mathrm{a} . \mathrm{m}$. to $5 \mathrm{p} . \mathrm{m}$. Closed Sat. 1 p.m. to 3 p.m. Express postage 5 p. for one valve; Ip. each additional valve
Express postage: ip. for each transistor, over 10 post free. All orders over 65 post free. Valves tested and released to A.R.B, specification if required.

ALL SOLID-STATE

TIMING MODULES

DT. 08 Single-shot delay 24 V. D.C., $100 \mathrm{~mA} .0-150 \mathrm{sec}$. del. on and del. off standard (1-10) $£ 3.85$
RT. 05 Recycling, 24 V. D.C. $100 \mathrm{~mA} .0 .25 \mathrm{~s}-100$ s off stand. 25ms-100s on stand (1-10) $\mathbf{~} 4.95$
 All modules totaliy encapsulated in plastics case $77 \mathrm{~mm} \times 40 \mathrm{~mm} \times$ 25 mm .

For further details and quantity prices, contact:-
SHENNANTON ELECTRONICS LTD.,
KIRKCOWAN, WIGTOWNSHIRE, SCOTLAND
DG8 OHB Tel. Kirkcowan 353

FREQUENCY COUNTER

If you want a frequency counter, either 10 MHz or 40 MHz guaranteed, you should consider our modules. Our crystal timebase has been supplled to Industry, G Universities-now we can supply everything tor measuring frequency
COUNTER GATE: This unit converts TTL decade displays into a frequency counter, using 10 MHz guaranteed, 7 -pln package, with data $£ 9.90$ each. TIMEBASE I. Our popular $\mathbf{G 8}$ timebase pives 13 simultaneous TTL 10MHz) with good stability (0005) normaily rom stock, $£ 23.00$ each. and 10 MHz , Ideal for counters or ATE, $£ 24.00$ fibreglass pcb.
Ditto, but larger pcb to take our counter-gate package. $£ 24.50$.
DISPLAYS. Our LEO displays at $E 12 \cdot 00$ each will be announced this month. They will be URESCALERS PREAMPLIFIERS will be available next month facilities.
LOGIC DETECTOR for TTL, a LED shows Loglcal 1. Operation to 12 MHz , input $150 \mathrm{k} \Omega$ with protection to mains voltage. These unts do not have to be hand-held. Supplied boxed, with
leads and clips $£ 6.50$ each. Quantity discounts 10 -up.
FOR WW multimeter builders: Drilled fibreqlass peb for Minitrons, etc., as Fig. 4 on page 178. With mountling holes, 4BA nuts, bolts, etc. E1-00. CWO on this item.

[^11]LenrysYour Complete
Audio-Electronic Stores

THE I.C. STEREO AMPLIFIER

$\underset{\substack{\text { lariss } \\ \text { E.ITIIN }}}{ }$ CATALOGUE

an Asolute must in Eiectronics

buILd A VHF/FM TUNER
 sulo Tutle vir EM 5 TRANSISTORS $300 \mathrm{kc} / \mathrm{s}$
BANDWIDTH, PRINTED
CRCUIT, HIGH FIDELITY
REPRODUCCTIN REPRODUCTION, MIDELITY
AND STEREO A popular VHF FM Tuner mono and stereo. There is
FM gives the REAL sound no doubt about it-VHF FM gives the REAL sound. Tuning meter unit $£ 1 \cdot 75$.
Mains
Unit
Mains Mains unit for Tuner and
Decoder PS6/12 $£ 3.25$. st 20

SINCLAIR PROJECT 60 MODULES-SAVE fff's

PA-DSCD-LCHITHAT

UK's Largest Range-Write, phone or call In.
DJ30L 3 Channel sound to light unit, 3 kw .

DJ40L 3 Channel Mic (Built-in) to DJ40L 3 Channel Mic. (Built-in) to light, 3 kw . | $£ 29.50$ |
| :--- |
| $£ 38.75$ |
| $£ 49.75$ |
| $\mathbf{\&}$ | DISCOAMP 100 watt amp./mlxer DJ105S 30 watt

D J700 70 watt Anti-Feedback. Quality Mic
D $J 50050$ watt D $J 70070$ watt PA Ampliffier

and demonstrations on request.			
	DJ1000 100 watt		
DJ300 150 watt rms ' 'Group' V			
5	Fibre Optics Lighting. Mics.		
Spots. Dimmers - St			
FREE Stock LIst Ref. No. 18.			
PORTABLE DISCOS-DET CREDIT TERMS FOR CAL			
(O48) 15 AMP RAMGE (TO4			
$85 \mathrm{SC50A} 100$ E1.25			
$\begin{array}{cccc}90 p & \text { SC50B } & 200 & \mathrm{ff} .35\end{array}$			
	DIAC D32		25 D
048) TRIACS ${ }^{\text {25P }}$			
95p Additional T			
ع1.45 40486 (TO			

$£ 86 \cdot 00$ Tilacs

SL4030D PLESSEY Complete with 8 page Data Booklet and Clircuits
(P.C. Board Ster
E1.50.
E9p: Heat Also Si TH9013P-20 watt Power Amp Module \&4.57.
TH9014P-IC TH9014P-IC Preamp $£ 1.50$. DatalCircuits
No. 4210 p.
ZN 414 RAD

MINIATURE 5 transis tor
300 mW olp. Fitted 3oomw olp. Fitted
volume and sen
sitivity controi.
coll volt
sil 75 eaperated
op/P

[ITEGBA

can buy the BRANDED FROM TEXAS I.T.T. FAIRCHILD

Abstract

 PRICES OF ${ }^{20 \mathrm{p}}{ }^{2} 00$ \qquad

F2STh 2 ПाDMETT Justa
$\begin{array}{lll} & \\ \text { SE250B } & \text { Pocket Pencll Signal Injector } £ 1: 90 \\ \text { SE500 } & \text { Pocket Pencil Signal Tracer } £ 1 / 50\end{array}$
$\begin{array}{lll}\text { SE250B } & \text { Pocket Pencll Signal Injector } £ 1 \cdot 90 \\ \text { SE500 } & \text { Pocket Pencli Signal Tracer } £ 1.50 \\ \text { THL33D } & \text { Robust 2K/Volt } £ 4.55 .\end{array}$

TE15 With case £4.95 $\begin{aligned} & \text { Grid Dlp Meter } 440 \mathrm{KHz}-280 \mathrm{mHz}\end{aligned}$
$\begin{array}{lll} & \text { E13.45 } \\ 500 & 30 \mathrm{~K} / \mathrm{V} & \text { Multimeter } \mathbf{£ 9 . 2 5}\end{array}$

$200 \mathrm{H} \quad 20 \mathrm{~K} / \mathrm{V}$ Muttimeter $\mathbf{£ 4} \cdot \mathbf{2 0}$.
$\begin{array}{ll}\text { AF105 } & 50 \mathrm{~K} / V \text { Multimeter } £ \mathbf{5 0} \text {. } \\ \text { With case } £ 9.50\end{array}$
U4341 AC/DC Multimeter with transistor

TE22D Carr. ${ }^{35 \mathrm{D}}$ Audio Generator $20 \mathrm{~Hz}-200 \mathrm{KHz} £ 17-50$
$\begin{array}{ll}\text { TE22D } & \begin{array}{l}\text { Audio Generator } 20 \mathrm{~Hz}-200 \mathrm{KHz} £ 17.50 \\ \text { C1-5r. } 35 \mathrm{p} \\ 3^{7} \text { Pulse Scope } 10 \mathrm{~Hz}-10 \mathrm{mHz} £ 39 \cdot 00\end{array}\end{array}$
TE65 Carr. 50p $\begin{gathered}\text { Voltmeter } 28 \text { ranges } £ 17.50 \\ \text { Carr. }\end{gathered}$
$\xrightarrow{\text { ALL Carr. }{ }^{40 \mathrm{D}} \text { NOMBREX MODELS IN STOCK }}$

"BANDSPREAD" PORTABLE
To bulld MW/LW Super-
het Radio using mullard
RFIIF Module, 600 mW
olp. Fibre glass cabinet.
All parts $\mathrm{E}^{\mathbf{7} \cdot 98}$, P. \& P.
320. (Battery 220 extra.).

MWNLW
ML3-SUR ML3-Superhet
MW/LW radio MW/LW radio
Tuner to build Tuner to build
Suming. Muliard Module
ett.
ALL PARTS ALL PARTS
150.85. P. \& P

251510103

7 SEG \& NIXIE TUBES
(Post 15 p per 1 to 6)
XN3. XN13, GN6 $0-9$ side vlew XN3. XN13, GN6 $0-9$ side view
with data, 55 SN . $0-9$ side view
GNP-7, GNP-8 GNP-7, GNP-8 0-9 side view
with decimal points and data. W5p.
9515F
3015 35 p . 7 seg. $£ 2$ each, $\mathbf{£ 7}$ per 4
with data. With data, hour clock circult
12 and 24.4115 p .

> ULTRASONIC TRANSDUCERS Operate at $40 \mathrm{kc} / \mathrm{s}$ up to 100 yds. Ideal remote switching
and signalling. Complete with and signailing. Complete with
data and new i.c. circults.

PRICE PER PAIR $£ 5.90$. Post | 10p |
| :--- |

QUALITY SLIDER
CONTROLS 60 mm stroke singles and ganged. Complete with knobs.
$5 \mathrm{k} \Omega$,
1 Nk 2,
$25 \mathrm{k} \Omega$,
$100 \mathrm{k} \Omega$
 $50 \mathrm{kS}, 100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega$, Los and MARRIOT TAPE HEAD
" or 2 TRACK STEREO

 " 43 "' Erase Head for above

[^12]MODERN TELEPHONES type 706. Two tone prey, P. $^{2.75}$ ea.
Also TOPAZE YELLOW $£ 4-50$ ea. P. \& P. 25p. STANDARD GPO DIAL TELEPHONE (black) with interna! bell, 87p ea. P. \& P. 50 p .
Two for $£ 1$. 50 . P. \& P. 75 p . Two tor $£ 1.50$. P. \& P P .75 p .
All telephomes complete with bell and dial.
SINE TO SQUARE WAVE CONVERTOR.
5 Hz to 250 KHz 9 volt 5 Hz to 250 KHz 9 volt operation. Sine input 1 to
15 volt-output 0 to 7 volts. Completely assembled with amplitude control and mark space preset. $£ 2.25$ ea. P. \& P. 15p.
G.E.C. Sealed Relays High

17p ea
S.T.C.

12v 35p ea. 2,500 ohm (okay 24 v)-13p ea
S.T.C. Brand New 2 pole c/o 6800 ohm coilS.T.C.

CARPENTERS polarised Single pole c/o 20 and 65 ohm coil as new, complete with base
37p ea. 37p ea.
Single pole c/o 14 ohm coil 33 pea.; Single pole Single pole clo 14 ohm
c/o 45 ohm coil 33 p ea.
Varley VP4 Plastic covers 4 pole clo $5 K-$ 30p ea. 15k-33p ea
POLARISED Relay 2 pole c/o 250 ohm and 250 ohm coils.-25p ea.
POTTER R BRUMFIELD 24V 4 pole c/o min
relays. Clear Plastic. Brand New. 50 p ea. relays. Clear Plastic. Brand New. 50 p ea.
P. \&P. 10p. POTENTIOMETERS
COLVERN 3 waft. Brand new, 5; 10; 25;
500 ohms; $1 ; 2 \cdot 5 ; 5 ; 10 ; 25 ; 50 \mathrm{k}$ all at 13p ea. 500 ohms; $1 ; 2 \cdot 5 ; 5 ; 10 ; 25 ; 50 \mathrm{k}$ all at 13 pea .
MORGANITE Special Brand new, $2.5 ; 10$, MORGANITE Special Brand new, $2.5 ; 10$;
100: $250 ; 500 \mathrm{~K} ; 2.5 \mathrm{meg}, 1 \mathrm{in}$. seaied, 17 p ea. BERCO $2 \frac{1}{2}$ Watt, Brand new, 5; 10; 50; 250; 500 ohms; $1 ; 2-5 ; 5 ; 10 ; 25$; 50 K at 15 p ea. STANDARD 2 meg. log pots. Current type 15p ea.
INSTRUMENT 3 in . Colvern' $5 \mathrm{ohm} \mathrm{35p} \mathrm{ea.;}$
50 k and 100 K 50 p ea. 50 k and 100 K 50 p ea.
BOURNS TRIMPOT POTENTIOMETERS.
$10 ; 20 ; 50 ; 100 ; 200 ; 500$ Ohms; $1 ; 2 ; 2 \cdot 5 ; 5 ; 10 ;$ $10 ; 20 ; 50 ; 100 ; 200 ; 500$ ohms; $1 ; 2 ; 2.5 ; 5 ; 10$;
25 K at 35p ea. ALL' BRAND NEW. RELIANCE P.C.B. mounting: 270; 470;
500 ohms; 10 K at 35 p ea. ALL BRAND NEW. ALMA precision resistors $100 \mathrm{~K} ; 400 \mathrm{~K} ; 497 \mathrm{~K}$; $998 \mathrm{~K} ; 1 \mathrm{meg}$
$0.1 \% 20 \mathrm{pea}$.

MULLARD ELECTROLYTICS 2200MFD $100 \mathrm{~V} \quad 10 \mathrm{~A}\left(50^{\circ} \mathrm{C}\right)$ BRAND NEW BOXED 70p each
 10 off - 60 p each
 100 off - 45p each

TRANSFORMERS. All standard inputs. STEP DOWN ISOLATING trans. Standard
240 V AC to $55-3-55 \mathrm{~V} 300 \mathrm{~W}$, $£ 3$ ea. \mathbf{P}. \& P. 35 p . Neptune series $460-435-0$ etc. 230 MA and
$600-570-540-0$ etc. 250 MA . $£ 3.50$ incl. post. Neptune Series. Multi 6.3 volts to give 48 V at
3.5 amps etc. $£ 3.50$ incl. P \& P. Gard/Parm/Part. 450-400-0-400-450. 180 MA. Gard/Parm/Pa
$2 \times 6.3 \mathrm{v} . \mathrm{E}$,

CHOKES. $5 \mathrm{H} ; 10 \mathrm{H} ; 15 \mathrm{H}$, up to 120 mA , 42p ea Up to 250 mA 63 p. P. \& P. 35p.
Large quantity LT, HT, EHT transformers. Standard 240 V MOTORS by CITENCO reduction gearbox to 19 r.p.m. reverslble, $\mathbf{£ 5}$ ea Also 57 r.p.m. and 114 r.p.m.

*FIRST TIME at £42.50 Sotartron CD 7115.2 Double Beam
 Solartron CD 711 S .2 Double Beam Oscil- loscope $\mathrm{DC}-9 \mathrm{mc} / \mathrm{s}: 3 \mathrm{mv} / \mathrm{m}$; trigier

 In good working condition. Carr. $£ 1.50$. CT 316 General Purpose Oscilloscope. $3^{\prime \prime}$ tube5 Mhz Band width DC Coupled. Standard 240 V
50 HZ input. $£ 22.50$. Carr. $£ 1.50$. 50 HZ input. $£ 22 \cdot 50$. Carr. $£ 1 \cdot 50$.
COSSOR 1035 Mk . 3. Double Beam. Band
width 7 Mhz . Mk. 3 has miniature valves-has width 7 Mhz . Mk. 3 has miniature valves-has
no internal resemblance to Mk . $1 / 2$. Very good value at $£ 40$ ea. Carr, $£ 1150$.

OSCILLOSCOPES

HARTLEY 13A. Double Beam $5.5 \mathrm{mc} / \mathrm{s}$
with circuit diagram \& mains with circuit diagram \& mains lead $£ 20$. CT436 DB- $6 \mathrm{mc} / \mathrm{s}$. $£ 65$. \#
SOLARTRON 643 DC-15
SOLARTRON Good condition $£ 40$. *
SOLARTRON DC- $10 \mathrm{mc} / \mathrm{s}$. CD513-£40 CD513.2-£42.50
CD523S- 500°
E.M.I. WM8. DC to $15 \mathrm{mc} / \mathrm{s}$. Complete

Oscilloscopes marked * suitable for
Colour Television servicing. Many others available.
All carefully checked and tested. Carriage
$£ 1.50$ extra.
MARCONI
F1106. £40. Carr. $£ 1.50$. Vacuum tub,
$1041 \mathrm{~B}, \mathrm{E} 35$.
Wide Range Oscillator TF 1370, £100. Deviation Meter TF934/2, $£ 50$ ea. Carriage
$£ 1.50$. E1.50.
Deviation type 791, £30 ea. Carr. 75p. TF 1026 Frequency Meter $£ 12.50$. Carr. 75p. TF 329 Mag.
dition $£ 60$.
TF 899 Millivolt Meter up to $100 \mathrm{mc} / \mathrm{s}$. $£ 15$
ea. Carr. $£ 1$.
ea. Carr. $£ 1$.
Carriage $£ 1$
TF 894A Audio Tester,
AF
Nol
(CT44). Carr.
E1-50. AF Nol (CT44) Absorption Wattmeter
TF 801 A Signal generator $£ 45$ ea. Carr. £9.50.
TF 886 Magnification Meter $\mathbf{£ 4 5}$. Carr. $\mathbf{\Sigma 1}$. TF 936 N. 5 Impedance Bridge from $£ 59$ ea. Carr. 14 I 50 .
TF 144 G Signal Generator. Serviceable,
Clean $\mathbf{~} 15$. Carr. $\mathbf{~} 1.50$.
TF 885 Video Osciltator Sine/Square $\mathbf{8 3 0}$. TF 885/1 £45. Carr. $£ 1 \cdot 50$
Stabilised P.U. SRS 151 \& 15
Stabilised P.U. SRS $151 . £ 15$. Carr. $£ 1.50$.
Stabilised P.U. SRS $152 . £ 10$. Carr. 5150. Stabilised P.U. SRS 152. £10. Carr. $£ 1.50$.
Precision Millivoltmeter VP252. $£ 25$. Precision Millivoltmeter VP252. $£ 25$.
Carr. $£ 1$. Oscillator type OS 101. £30. Carr. £1.50. AVO
Electronic Testmeter $\mathrm{CT} 38, \ldots 17$. Carr. $£ 1$. AIRMEC Generator type 210, £85. Carr. AIRM
$£ 1.50$.
Test Gear Ilsted is only a very small selection of our stock-please enquire regarding other items.

AVOTRANSISTOR AND DIODE TESTER cra es with full instructions, circuit diagram, cra es with fuli instructions, circuit diagram,
tic. New price $£ 250$ Plus. OUR PRICE $£ 40$ ea.
Cat. $£ 1.25$.
Carr. £1-25.
MARCONI AUDIO OSCILLATOR TF 195 M . 10c/s to 40 Khz . Fully adjustable metered oplp.
2 watt o/p up to 15 Khz . $£ 12.50$ ea. Carr. $£ 1.50$.

SPECIAL OFFER

SELECTED B.C. 221 Recalibrated to Ministry Specification in brand new condition, complete
with circuit, only $£ 25$. Carf. $£ 1-50$.
E.H.T. TRANSFORMERS
Mains) 3 KV 600 MA. $£ 20$ ea, Carr. $£ 1.50$. CAPACITORS

INTEGRATED CIRCUIT test clip by AP inc Gold Plated clip-on. Brand New individually
boxed. $£ 1-00$ ea. P. \& P. 10p.

4 DIGIT RESETTABLE COUNTERS. 1000 ohm coil. Size $1 \frac{1}{4} \times 2 \times 4 \frac{1}{4}$ in. As new, by Sodeco of Geneva, $£ 2.50$ ea. As above but 350 ohm. $£ 3.50$ ea.

DECADE DIAL UP SWITCH-5 DIGIT.

LIGHT EMITTING DIODES (Red) from Hewlett-Packard. Brand New 38p ea. Holder 1p ea. Information 5 p.

SANGO 50 micro amp meter, $2 \frac{1}{2}^{\prime \prime}$ diameter. EX brand new radiation equip. $£ 1$ ea. P. \& P. 17p VISCONOL EHT CAPACITORS

0.05 mfd	2.5 kV	50 p ea.
0.01 mid	5 kV	40 p ea.
0.001 mid	10kV	50p ea.
	$2 \frac{1}{1} \times 6 \frac{1}{4}$	
0.05 mfd	8 kV	50 pea .
	1 $\times 5 \frac{1}{2}$	
0.01 mfd	10kV	50p ea.
0.002 mfd	15 kV	65 p ea
0.0005 mid	20 kV	60 p ea
0.1 mfd	4 kV	35p

 O.25mid 7.5
P. \& P. 15 p .

PHOTOCELL equivalent OCP 71, 13p ea. Photo-resist type Clare 703. (TOS' Case). Two
for 50 p . for 50p.
BURGESS Micro Switches V3 5930. Brand
new 13p ea. new 13p ea

AMERICAN EQUIPMENT
FM SWEEP GENERATOR TS 452. with built in display. For alignment of IF/RF coils/filter
strips 5 to 100 Mhz . Marker adiustable through strips 5 to 100 Mhz . Marker adiustabe
entire range. $3^{\prime \prime}$ CRT. Supplied for 240 V 50 Hz entire range. 3^{n} CRT. Supplied
operation. $£ 70$ ea. Carr. $£ 1.50$.
RF GENERATOR TS 497. 2-400Mhz. Internal AM Mod, External AM \& PM. Variable attenua
tor 50 ohms. O/P Imp. $£ 55$ ea. Carr. $£ 1: 50$. OSCILLOSCOPE type USM24. A 10 meg scope-all min valves complete with circuit
diagram and stepdown transformer £22. $^{2} 50$ ea. diagram and stepdown transformer $£ 22.50$ ea
Carr. $£ 1.50$.
POWER SUPPLY. Completely self confained
27 volt 40 amp DC. 240 V 50HZ input $£ 35$ ea. 27 volt 40 a
FILTER UNIT with linking cable for above
£15 ea. Carr. $£ 1 \cdot 50$.

SEEING IS BELIEVING

COLVERN TEN TURN POTS-ex eq 50 K at 60 p ea. Complete with dial $£ 1.50 \mathrm{ea}$
P. \&P. 15 p C.R.T.'s $5^{\prime \prime}$ type CV1385/ACR13. Brand BASES for above 20p ea. P. \& P. 15p. Genuine MULLARD Transistors/Diodes Tested and guaranteed. OC41. $42,76,77$
83: OA5, 10. All at 3p ea. OC $23-10 \mathrm{p}$ ea 83: OA5, 10. All at 3p ea. OC23-10p ea CAPACITOR PACK-50 Brand new components only 50 p . P. \& P. 17 p.
POTS- 10 differ
50 p. P. \& P. 17 p .
COMPONENT PACK consisting o 5 pots various values, 250 resistors $\frac{1}{4}$ and \& watt etc., many high stabs. Al brand
new. Fine value at 50 p per pack. P. \& P. new
47p.
COMPLETE Printed Circuit TRAN
 Sire $1 \frac{2}{4} \times 4 \frac{1}{14} \times 1 \mathrm{in}$ O ONLY 75p. P. \& P. 10 p
3000 Series relays- 15 mixed values (new and as new, no rubbish) $£ 1$. P. \& P. 37 p DELIVERED TO YOUR DOOR 1 cwt . of Electronic Scrap chassis, boards, etc. No Rubbish. FOR ONLY $53-50$. N. Ireland $£ 2$

LOOSE LEAF BINDERS. Blue plastic cover. ${ }^{4}$ ring. Standard size.
P. \& .35 p. 25 for $£ 5$. Carr. $£ 1$.
P.C.B. PACK S \& D. Quantity 2 sq. ft P.C.B. PACK $S \&$ \& D . Quantity 2 sa. ft

- no tiny pieces. 50 p plus $\mathrm{P} . \& \mathrm{P}$. 20 p . FIBRE GLASS as above $£ 1$ plus P. \& P. 20 p.
5 CRYSTALS 70 to 90 kHz . Our choice
50 p . P. \& P. 15 p. Matched pairs, 50p per pair. P. \& P. 15p MOTOR-min. synchronous, size $1 \frac{2}{4} \times 2 \times$ 'ि.' 5 p.
TRIMMER PACK-2 Twin 50/200 p ceramic; 2 Twin $10 / 60$ pf ceramic; 2 min
strips with 4 preset $5 / 20$ pl on each; 3 ai spaced preset 301100 pf on ceramic base.
ALL BRAND NEW 25 p the LOT. P. \& P.
10p.

Panel switches DPDT ex eq. 10p ea.; DPST 25p ea.
HEAVY DUTY. 6 amp. 2 pole c/o-20p ea GRATICULES. 12 cm . by 14 cm . in High PANEL monting lamp holders.
PANEL mounting lamp holders. Red or green.
9p ea. Miniature. PANEL mounting lamp with holders-10V 15 MA 5 p ea.

BECKMAN MODEL A. Ten turn po complete with
only $E 2.13$ ea.

FIBRE GLASS PRINTED CIRCUIT BOARDs Brand new. Single sided up to $2 \frac{1}{1}$ wide $\times 15^{\prime \prime} \frac{1}{2}$ p per sq. in. Larger pieces 10 per sq. in. Double sided.
Single pole 3-way 250 V AC 15 amp switch
8 p ea. P. \& P. 5p. Large discount for quantity

2HZ to 20MHZ SOLID STATE BEAM SWITCH

Completely assembled P.C. Board, ready to use on any standard commercial oscilloscope. Size $4 \frac{3}{4}^{\prime \prime} \times 3 \frac{1}{4}^{\prime \prime} . £ 9.25$ each. P \& $P 25 p$.

TRANSISTOR INVERTOR
12 V to 1.5 KV 2 MA AC . Size $1 \frac{1^{\circ}}{} \times 2 \times \frac{1^{\prime \prime}}{} \times 4^{\prime \prime}$. £2.95 each P \& P 25p.

WOBBULATOR

For displaying response of 10.7 MHZ (FM receiver I.F.'s) and $30-40 \mathrm{MHZ}$ (TV I.F. alignment). Requires $6.3 \vee \mathrm{VC}$ and any general purpose oscilloscope. Instructions supplied. Completely assembled P.C. Board. $£ 9.00$ each P \& P 25p

VALUE ADDED TAX not included in prices-please add 10\% Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

Open 9 am to 7.30 pm any day.

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

El-PREPAK
 SUPPLIERS OF SEMICONDUCTORS TO THE WORLD

COMPLETE TELEPHONES
NORMAL HOUSEHOLD TYPE AS SUPPLIED TOTHEPOSTOFFICE EX. G.P.O ONLY 95p

P \& P 35P EACH

TELEPHONE DIALS

Standard Post Office type Guaranteed in working order ONLY 25p

OVER 1,000,000 TRANSISTORS IN STOCK

We hold a very large range of fully marked, tested and guaranteed Transistors, Power Transistcrs, Diodes and Rectifiers at very competitive prices. Please send for Free Catalogue.

600,000 Silicon Planar Plastic Transistors. clearance Audio PNP. similar to ZTX500 2N3702/3. BCY70 etc. Audio NPN, similar to ZTX300. $2 \mathrm{~N} 3708 / 9, \mathrm{BC} 10^{\prime} 8 / 9, \mathrm{BC} 168 / 9$ etc. R.F. NPN and Switching NPN.
Please state type of Transistor required when ordering.
ALL AT 500 for $£ 3.00$. 1.000 for $£ 5.00$ 10,000 for $£ 40.00$

OUR VERY POPULAR 3p TRANSISTORS
FULLY TESTED \& GUARANTEED
TYPE "A" PNP Silicon alloy. TO-5 can.
TYPE "B" PNP Silicon. plastic encapsu
TYPE "E"PNP Germanium AF or RF.
TYPE "E" PNP Germanium AF or RF,
TYPE .F" NPN Silicon plastic encapsuration
TYPE " "F" NPN Silicon plastic encapsuiation.
TYPE "G" NPN Silicon, simiar ZTX $\times 300$ range
TYPE "H" PNO Silicon, similiar $\mathbb{Z T X 5 0 0}$ range

8 RELAYS FOR

Value
Added
Toyou
On orders of £4 or over. See below

Mease read very carelutly:-
We will give a discount to customers who send in anorder hor $£ 4$ or over. This discoum will be equal to the VAT T, rate current at this time. If your order does amount to $£ 4$ or over all vou need to send is the total cost of goods and postage as stated in this advenisement. No addition for C AT, is
needed needed
A.T. for ordiers under 54 :-

If the total cost of goods plus postage and packing is less than $£ 4$. kindly add $10 \%\left(100_{p}\right.$ in the $\left.f\right)$
remitrance. Incorrecta moums will delay your of er

A CROSS HATCH GENERATOR FOR $\mathbf{£ 3 . 5 0}$
YES, a complete kit of parts including Printed Circuit Board. A four position switch gives X -hatch Dots, Vertical or Horizontal lines. Integrated Circuit design for easy construction and reliability. This is a project in the September edition of Practical Television.

This complete kit of parts costs $\mathbf{f} \mathbf{3} 50$, post paid. A MUST for Colour T.V. Alignment.

Our famous P1 Pak is still leading in value for money. Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P,1. Only 50p

G. F. MILWARD

ELECTRONIC COMPONENTS

Wholesale/Retail :
369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339

Special Offer!!!

S MALL ELECTROLYTICS									MULLARD ELECTROLYTIC CAPACITATORS					
$\begin{aligned} & \text { Ref. No } \\ & \text { H8/1. } \end{aligned}$	$\underset{\substack{\text { Capacity } \\ 1 \mu!}}{ }$	$\begin{gathered} \text { Voltage } \\ \substack{500} \end{gathered}$	$\underset{{ }_{4 p}}{\text { Price }}$	Ref. No. H7/4A	Capacity	$\begin{aligned} & \text { Voltage }{ }_{355}, ~ \end{aligned}$	Price 50 5p		071 and	72 Series				
$\mathrm{H}^{81} 1{ }^{\text {a }}$	${ }_{2}^{2.4}$	-150V	${ }_{40}^{2 p}$	H775	80.4 100 ut		9p			Working	Capacitance	Max. Ripple		
${ }_{\text {H8/2A }}$	${ }_{3.3 \mu \mathrm{t}}^{2.2}$	${ }_{25 v}^{25 v}$	${ }_{40}$	H7764	100 Hf	15 v	${ }_{40}$		Type No.	$\frac{\text { voltage }}{16}$	${ }_{3}^{\text {号 }}$	$\frac{\text { Current }{ }^{\text {at } 50^{\circ} \mathrm{C}} \text {.4amps }}{\text { a }}$	$\frac{\text { Weight }}{102}$	$\frac{\text { Price }}{150}$
${ }^{48 / 3}$	3 3uf	50v	${ }_{40}$	H777		${ }^{25 v}$	${ }_{50}^{4 p}$		07115472	16	${ }_{4700}$	3.9 amps	102	17 p
${ }_{4814}$	4.7 ¢	25v	${ }_{4}{ }^{\text {P }}$	H718A	1004f	35v	${ }_{6 p}$		07115682 07115103	16 16 16	6800 10000	7.8 amps		${ }_{27 \mathrm{p}}^{22 \mathrm{p}}$
H8/4a	54f	${ }^{640}$	${ }_{40}{ }^{\text {p }}$	${ }_{\text {H779 }}$	${ }_{1254}^{1204}$	${ }_{4}{ }_{4}$	${ }_{40}^{60}$		07118222	63	2200	5.8 amps	302	30 p
H815A	5uf	150%	4_{40}	H7710	125uf	$25 v$	${ }_{6 p}$		-072 15752	${ }_{16}^{16}$	$7500+7500$	- \quad10.5 mpss 13.2	302	37 P
H8/6A	104t	10v	$4{ }_{40}$	H7710A	160ut	- ${ }_{\text {2.5v }}$	$3{ }^{3 p}$		07116222	25	${ }_{2200}$		${ }_{1}$	${ }^{150}$
H817	${ }^{1045}$	70 v	4 4	H7711			${ }_{50}$		07916472	25	4700	5.4 amps	1102	${ }^{220}$
${ }_{\text {H }}^{\text {H818 }}$	${ }^{164 \mathrm{f}} 1$	35 V 16 v	${ }_{40}$	H7713A	${ }_{200 \mu}$		${ }_{80}$		07216502	25	$5000+5000$	${ }^{9} 9.6$ amps	$3 \frac{1}{102}$	37 p
H819	2041	6 V	${ }^{20}$	H7714	2204 f	50 y	10 D		-072 07217342	${ }_{40}$	7590 $3400+3400$	${ }^{12.6}{ }^{\text {a mps }}$	${ }_{3}{ }^{3} 102$	379
H899a H	${ }_{22 \mu 4}^{2047}$	50v	${ }_{48}^{40}$	${ }^{4} 77114 \mathrm{~A}$	${ }_{220 \mu}$	25v	$5{ }_{50}$		${ }^{0771} 17502$	${ }_{40}^{40}$	$5000+50000$	12.0 amps	$4 \frac{1}{102}$	49 p
H8110 A	22μ	100v	4 p	H7715A	${ }^{2204 t}$	$35 v$	10 D		$\bigcirc 07218172$	${ }_{63}^{63}$	$1650+1650$	${ }_{7.8}^{2.8} \mathrm{amps}$	302	15p
H8811A	${ }_{24}^{254}$	275v	${ }_{4 p}$	${ }_{\text {H6/2 }}$	${ }_{250 \mu}$	25 v	${ }_{3 \mathrm{p}}$							
H8112	32uf	15v	4 p	H6/3A	$320 \mu \mathrm{f}$	2.5 v	3 D		106 and	07 Series				
H812 ${ }^{\text {a }}$	304 t	fov	${ }_{4}$	${ }^{\text {H6/4 }}$		10V	${ }_{50}^{40}$		\$06 15103	16	10000	7 amps	$2{ }^{\text {2 }}$ O2	${ }^{65}$
H8813A	${ }_{4}^{32 \mu 4}$	55v	${ }_{5 p}$	${ }_{\text {H6 }}$	${ }_{3}^{330 u f}$	${ }_{25 v}$	108		+10616223	25	22000	17 amps	1002	${ }_{81.12}$
H8/14A	40 ut	16 V	${ }^{40}$	H615A	330 ut	${ }^{35 v}$	15 p		${ }^{1061818153}$	63	10000 15000	12 amps 28 amps	${ }^{7} 8802$	¢179
H8115	47 H	${ }^{50 \mathrm{~V}}$	4	${ }^{4617}$	${ }_{4}^{400 u f}$	15v	5p		${ }^{10710222}$	100	2200	10 mpss	$5{ }_{5}^{102}$	74 p
${ }_{\text {H }}$	${ }_{50}{ }_{504}$	35v	${ }_{3 \mathrm{p}}$	${ }_{\text {H6/8A }}$	470 Hf	${ }_{35 \mathrm{v}}$	20.		Type No.	Voltage	Capacitance	Weight		Price
H771A	50uf	10v	40	${ }^{\text {H6/9 }}$	500	15v	4 P		10215163	16	16000	802		20 p
H77/2 H	5014f	${ }_{2}^{50.5 v}$	${ }_{20}^{4 p}$	H6/109	${ }_{75014}^{40047}$	${ }_{12 \%}$	${ }_{50}$		10490003	20	39000	1602		${ }^{300}$
H773A	644 f	25v	${ }_{40}$	H6/13A	1000 uf	25 V	${ }^{165}$			25 40	${ }_{5600}^{8000}$	${ }_{502}$		25p
H7/4	6441	15v	4 p	H5/2A	2200 Hf	16v	15p		10490001	45	20000	${ }_{1602}$		500
									10418332	63	3300	50%		25p
									further 10	discount on	f any	one typ		
Please calculate the weight of your order and include appropriate postage.														
	Parcels					Ordinary					$\begin{aligned} & \text { Parcels } \\ & 37 \mathrm{p} \end{aligned}$		Ordinary	
				4ib			(29p		1016			$\begin{aligned} & 18 \mathrm{bib} \\ & 221 \mathrm{~b} \end{aligned}$	(in	
21 b			${ }_{210}^{16 p}$	616					1416		170			

REMEMBER!
ALL GOODS PLUS 10\% V.A.T.

ATTRACTIVE

 DISCOUNTSON VERY MANY ITEMS WHEN YOU BUY FROM US

Electroviluie Electronic Component Specielists

TRANSISTORS BY SIEMENS AND NEWMARKET

2N3055 npn silicon power
ACl53K pnp germanium low power ADI61 npn germanium low power AD162 pnp germanium medium power AFI39 pnp germanium UHF BC107-13p; BC108-12p; BC109-13p BC167-10p; BC168-9p; BC169-10p BC177-15p; BC178-14p; BC179-15p BC257-9p; BC258-8p; BC259-9p Standard groupings available.
Very many other types listed, described and illustrated in catalogue

POTENTIOMETER carbon type

long spindles. Double
wipers for low noise. SINGLE GANG R2O linear 100Ω to $2.2 \mathrm{M} \Omega 12 \mathrm{p}$ JP20 Log, $4.7 \mathrm{~K} \Omega$, to $2.2 \mathrm{M} \Omega$

DUAL GANG linea 4.7K Ω to $2 \cdot 2 \mathrm{M} \Omega$, 42p; Dual gang log. $4.7 \mathrm{~K} \Omega$ to $2.2 \mathrm{M} \Omega$ 42p; Log/antilog. $10 \mathrm{~K}, 22 \mathrm{~K}$ 47 K , $1 \mathrm{M} \Omega$ only 42p; Dual antilog, 10 K only, 42p. Any type with 2A D.P. mains Only decades of $10,22 \& 47$ available in ranges quoted DP20 in any combination P20 values, 60p; with switch, 72p.
SLIDER POTS. In values from $4 K 7 \Omega$ to IM Ω, linear or log, 26p each. Escutcheon, light grey, 10p. Knobs, flat, grip type, in 7 colour, 5 p each.
SKELETON PRE-SETS. Small high quality, type PR linear only: $100 \Omega, 220 \Omega, 470 \Omega, 1 \mathrm{~K}, 2 \mathrm{~K}, 4 \mathrm{K7}$,
$10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 47 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$. $10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}$
Vertical or horizontal mounting, 5 p each.
NUTS, SCREWS. ETC. In pence per 100. Nuts 2BA-51p; 4BA-35p; 6BA-32p. Screws I" $-28 A-85 p$; 48A-43p; 6BA-32p. $0.5^{\prime \prime}-2 \mathrm{BA}-62 \mathrm{p} ; 4 \mathrm{AA}-29 \mathrm{p} ; 6 \mathrm{BA}-24 \mathrm{p}$.
Screws roundheaded, cheese headed or Other sizes available. Also tags, washers, countersunk

KNOBS

K.30/3

Solid
aluminiu
17 mm .

ary many

Zener diodes

Full range E24 values:
$400 \mathrm{~m} W: 2.7 \mathrm{~V}$ to $36 \mathrm{~V}, 14 \mathrm{p}$ $400 \mathrm{~m} W: 2.7 \mathrm{~V}$ to 36 V , 14 p
each; $1 \mathrm{~W}: 6.8 \mathrm{~V}$ to $82 \mathrm{~V}, 21 \mathrm{p}$ each; IW: 6.8V to 82V, 21p 48p each. Clip to increase 48 each . Clip to increase 266F) 4p.

SIEMENS THYRISTORS $0.8 \mathrm{~A} 400 \mathrm{~V}, 48 \mathrm{p}$; 600 V 66p. AESOLDER BRAD' 76 p

S-DEC

Unsurppased for "breadboard fork can be used indeComponents just push into plug holes and connect autonatically. Slot for control panel. 70 holes. $£ 1 \cdot 44$.
T-DEC
For more advanced work with 208 contacts in 38 rows. E2.88. (Carriers supplied

MAINS

TRANSFORMERS
MT3 30V/2A plus 4 taps $\mathbf{£ 2 . 8 5}$ MT 103 50V/lA plus 4 taps MT $10450 \mathrm{~V} / 2 \mathrm{~A}$ plus 4 taps $\mathbf{\$ 3 . 5 0}$ MT12760V/2A plus 4 taps
 $13 T 0513 V / \frac{1}{2} A, C T$
$28 T 0512+12 ; 2-0-2 V / \frac{1}{2} A$

40p

Minitron DIGITALINDICATOR

TYPE 30ISF Seven segment indicator compatible with standard logic modules and power supplies. Figs. 09 from well illuminated filament segments to give
character of 9 mm height plus decimal point. Power requirement 8 mA from 5 V D.C. per segment. A limited
number of alphabetical symbols also avail- $\mathbf{0} 000$ number of alphabetical symbols also avail-
able, in 16 lead DIL case Suitable BCD decoder driver type \quad FLLI2IT nett $\{1 \cdot 36$ DIL Socket; 16 lead 30p. No. 3015G showing + or -
and fig. I and decimal poin $\mathrm{E2} \cdot 0.00$ nett

TOGGLE SWITCHES

1011C SPST roggle

Available on all items excep PRICES. 10% on orders from $£ 5$ to $£ 15.15 \%$ on orders $£ 15$

TERMS OF BUSINESS
All items are offered for sal in accordance with our standard terms of business, a copy of which is available on request. Prices subject to Enquiries from quantity users Envired.
PACKING \& POSTAGE FREE in U.K. For mail order or $\mathrm{E2}$ is an additional hand ling charge of 10p.
V.A.T

Pricesshown here DO V.A.T
Orders from U.K. customers must be accompanied by an for V.A.T.

IT SAVES YOU 25p TO START WITH

That's the price of the 96 page Electrovalue Catalogue (No. 6) and with it we one you a 25p refund exchange ore The Catalogue is packed with bargains in brand new guaranteed to makers spec. items plus I.C. circuit and schematic dagrams, transistor diagrams and specs VAT when operative) for Catalogue by

BDI 35 npn medium power 30p BDI36 pnp medium power 33p DIODES
OA90, OA91. OA95 each 6p OA200-9p; OA202-10p AC128-21p AFII7-24p BFY5I-19p

TTL ICs

	TTL I	Cs Nett Prise
FLHIOI	(7400)	20p
FLH201	(7401)	20p
FLHI91	(7402)	20p
FLH291	(7403)	20p
FLH21I	(7404)	25p
FLH27I	(7405)	25p
FLH381	(7408)	25p
FLH391	(7409)	25p
FLHIII	(7410)	20 p
FLH351	(7413)	35p
FLHI2I	(7420)	20p
FLHI31	(7430)	20p
FLHI4I	(7440)	24p
FLLIO1	(74141)	(16) $¢ 1.22$
FLH281	(7442)	(16) ¢1.16
FLH361	(7443)	(16) $¢ 1.45$
FLH371	(7444)	(16) $¢ 1.45$
FLHI5I	(7450)	20p
FLHI6I	(7451)	20p
FLHI7I	(7453)	20p
FLHI8I	(7454)	20p
FLYIOI	(7466)	20p
FLJIOI	(7470)	45p
FLJIII	(7472)	32p
FLJ 21	(7473)	45p
FLJ 141	(7474)	45p
FLJ151	(7475)	(16) 45p
FLJ31	(7476)	(16) 45p
FLH221	(7480)	68 p
FLH231	(7482)	$87 p$
FLH241	(7483)	(16) $£ 1.32$
FLH341	(7486)	33p
FLJ 161	(7490)	80p
FLJ221	(7491AN)) $\mathbf{\$ 1} \cdot 28$
FLJI71	(7492)	85p
FLJ81	(7493)	80p
FLJ23!	(7494)	(16) $£ 1.13$
FLJI91	(7495)	87p
FLJ261	(7496)	(16) $£ 1.48$
FLJ301	(74100)	(24) $£ 1.64$
FLJ281	(74104)	43p
FLJ271	(74107)	52p
FLKIOI	(74121)	48p
FLJ201	(74190)	(16) 1 ± 880
FLJ211	(74191)	(16) $£ 1.80$
FLJ241	(74192)	(16) $£ 1.74$
FLJ251	(74193)	(16) $£ 1.74$

20p
20 p
20 p
COMPONENTS FOR W.W. AMPLIFIER DESIGNS
I00W AMPLIFIER (FEB. 1972)
Designer approved ki
Semiconductor set
Resistors. capacitors, pots
Resistors. Cap
$\mathrm{F} / \mathrm{Glass}$ PCB
POWER SUPPLY (For loow Amp.)
Desizner approved kit.
Semiconductors, Resistors, capacitors, pots, transformers, F/Glass PCB
30W BLOMLEY (New approach to class B)
Semiconductor set
Resistors, capacitors, pots
F/Glass PCB
30W BAILEY (Single power rail)
Transistor set
Resistors, capacitors, pots
FIGlass PCB
LINSLEY-HOOD CLASS A (Dec., 1970, circuit)
Designer approved kit
2N3055 pair, BC212L, 2N17।।
Resistors, capacitors, pot
F/Gláss PCB
Glass PCB
LINSLEY-HOOD 20W CLASS AB
Designer approved kit.
MJ481/491, MJE521, BCI $82 \mathrm{~L}, \mathrm{BC} 212 \mathrm{~L}$, zener
Resistors, capacitors, pots
FIGlass PCB
Please state 8Ω or 15Ω
REGULATED 60V POWER SUPPLY
A 5 transistor series stabiliser, suitable for a pair of Bailey or Blomley amplifiers, featuring very effective S/C protection. All Semi/C's, R's, C's, F/Glass PCB
Power supplies for other amplifiers also available
BAILEY/BURROWS PRE-AMP (Aug., 1971)
Component Set: Mono
Component set: Stereo
Each component set comprises of all specified resistors, capacitors, transistors pots, including special balance control for stereo sets.
STUART TAPE RECORDER
Set of stereo f/glass PCBs
Set of stereo fglass pris !ist.

SEMICONDUCTORS

2N699	0.25	BCI84L	0.11
2N1613	0.20	BC212L	0.12
2N1711	0.25	BC214L	0.14
2N2926G	0.10	BCY72	0.13
2N3053	0.15	BF257	0.40
2N3055	0.45	BF259	0.47
2N3442	1.20	BFR 39	0.25
2N3702	0.11	BFR79	0.25
2N3703	0.10	BFY50	0.20
2N3704	0.10	BFYSI	0.20
2N3705	0.10	BFY52	0.20
2N3706	0.09	M1481	1.20 1.30
2N3707	0.10	MJE521	0.60
2N3708	0.07	MPSA05	0.30
2N3709	0.09	MPSA12	0.55
2N3710	0.09	MPSA14	0.35
2N3711	0.09	MPSA55	0.35 0.35
2N3819	0.23	MPSA66	0.35 0.40
2N3904	0.17	MPSU05	0.60
2N3906	0.20	MPSUS5	0.70
2N4058	0.12	SN72741P	0.58
2N4062	0.11	SN72748P	0.58
2N4302	0.60	THB11	1.10
2N5087	0.42	TIP30A	0.50 0.60
2N5210	0.54	TIP3IA	0.60
2NS457	0.30	TIP32A	0.70
2N5830	0.30	TIP33A	1.00
40361	0.40	TIP34A	1.50
40362	0.45	TIP41A	0.74 0.90
BCI07	0.08	TIP3055	0.60
BC108	0.08	1808720	0.50
BC109	0.08	1840K20	1.40
BC125	0.15	1N914	0.07
BC126	0.15	IN916	0.07
BCI82K	0.10	iS44	0.05 0.10
BC212K	0.12	153062	0.25
BC182L	0.10	5B05	$1 \cdot 20$

HI-FI NEWS 75 WATT AMPLIFIER BY J. L. LINSLEY-HOOD

Published Nov. 1972 to Feb. 1973

DESIGNER APPROVED KIT

SLIMLINE STYLE CHASSIS DIMENSIONS: $17.0 \mathrm{in} . \times 2.0 \mathrm{in} . \times 12.0 \mathrm{in}$. This slimline unit has been made practical by the use of a specially designed TOROIDAL TRANSFORMER and highly compact printed circuit boards which have been fully tested and approved by Mr. Linsley-Hood.

FREE
 TEAK CASE

WITH 75 WATT PER CHANNEL COMPLETE AMPLIFIER KITS

Total cost of individually purchased packs:
£63.95
Cöst of complete kit: £56.60
TRADE ENQUIRIES WELCOME

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE, ANDOVER : HANTS

MAIL ORDER ONLY
POST FREE TO U.K.
OVERSEAS AT COST
U.K. Orders Subject to 10\% V.A.T. Surcharge

* 75 WATTS PER CHANNEL * BANDWIDTH (3dB) 3HZ-40KHZ \star DISTORTION LESS THAN 0.01% Ł UNCONDITIONAL STABILITY COMPONENT PACKS

Pack
1 Fibre glass printed circuit board for power amp. $\mathbb{£ 0 . 7 5}$
2 Set of resistors, capacitors, pre-sets for power amp. .. \&l.50
3 Set of semi-conductors for power amp. (highest voltage version)
65.50

4 Pair of 2 drilled, finned heat sinks $\mathbf{£ 0 . 8 0}$
5 Fibre glass printed circuit board for pre-amp............ . 1.10
6 Set of low noise resistors, capacitors, pre-sets for pre-amp $£ 2.70$
7 Set of low noise, high gain semi-conductors for pre-amp $£ 2.10$
8 Set of potentiometers (including mains switch) \& 1.55
9 Set of 4 push button switches, rotary mode switch $£ 3.10$
10 Toroidal transformer complete with magnetic screen/ housing primary: $0-1 \mid 7-234 \mathrm{~V}$. secondaries: $33-0-33 \mathrm{~V}$. 24-0-24 V., electrostatic screen
69.15

II Fibre glass printed circuit board for power supply ©0.55
12 Set of resistors, capacitors, secondary fuses, semiconductors for power supply
63.50

13 Set of miscellaneous parts including DIN skts., mains input skt. fuse holder, interconnecting cable, control knobs
63.25

14 Set of metal workparts including silk screen printed fascia panel and all brackets, fixing parts, etc. $\mathbf{6 6 . 3 0}$
15 Handbook, based on Hi-Fi News articles 60.30
16 Teak cabinet .. $\mathbf{6 5}$ 2 each of packs 1-7 inclusive are required for complete stereo system.

Basic Component Set

Set of semi-conductors, resistors, capacitors, printed circuit boards for stereo power amp, pre-amp. and power supply.
VALVES

VALVES AND TRANSISTORS Telephone enquiries
transistors, etc. retail 743
valves
4946 trade and expoít 7430899.

 2
2.00
1.80
0.65
0.30
0.37
0.35
0.30
0.48
0.75
0.32
0.25
0.25
0.45
0.25
0.30
0.13
0.35
0.25
0.45

LT60I MULTIMETER

New- style 20,000

o.p.r. pocket
multimeter.

$5 / 25 / 50 / 250 /$
2500 V . D.C.
$10150 / 10000100$
$10150 / 100.500 / 1000 \mathrm{~V}$. A.C.
$50 \mathrm{~mA} / 250 \mathrm{~mA} .6 \mathrm{~K} / 6 \mathrm{meg}$.
$50 \mathrm{uA} / 250 \mathrm{~mA} .6 \mathrm{~K} / 6 \mathrm{meg}$ ohms. -20 to +22 db .
HIOKI MODEL 720X 20.000 O.P.V. Overload protec. $10 / 50 / 250 / 1000$ VAC. $50 \mu \mathrm{~A} / 250$ $\mathrm{mA} .20 \mathrm{~K} / 2 \mathrm{meg}$ ohm. -5 to +
$62 \mathrm{db} .55 \cdot 97$. Post 15 p .

RUSSIAN 22 RANGE MULTIMETER

Model 437870,000 o.p.v.
A frrst class veraatile instrument mannfacturee
in U.s.S. R to the highes in U.S.S.R. to the higheat
atandards. Ranges: 2.5 !
 D.C. ${ }^{2.5 / 10 / 50 / 250 / 500}$ 1000 A. A.C. D.C. Current
10/10/100 mA/1A Reaistance 300 ohme $3 / 30 / 300 \mathrm{~K} / 3 \mathrm{M} \Omega$
plete with batteries, te
Com plcte with batteries, ten aturdy ${ }_{\text {steel }}^{\text {cortying }}$
Case.
Our Price 25.97 . Post 25 p

HIOKI MODEL 730X 30,000 O.P.V. Overload pro ection. $6 / 30 / 60 / 300 / 600 / 1200$
VDC.
$12 / 60 / 120 / 600 / 1200$ \checkmark AC. $60 \mu \mathrm{~A} / 30 \mathrm{~mA} / 300 \mathrm{~mA}$ $2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{meg}$ mhm. 10 to
$+63 \mathrm{db} .26 \cdot 50$. Post 15 p .

U3312 MULTIM	METER
${ }^{\text {and }}$	
为	
tead and matrectiones. 99.50.	Pote 25s.
CES	
EXCLUSIVEOF 1	0\% V.A.T.

MODEL C- 7080 EN giant 6 in. mirror scale.
20,000 o.p.
$0 /-25 / 1 / 2 \cdot / 10 / 50 / 250 / 1000 /$ $0 / 2.5 / 10 / 50 / 250 / 1000$
5000 v. A.C. $0 / 50 \mu \mathrm{~mA} / 1 / 10 / 100 / 500 \mathrm{~mA}$ $0 / 2 \mathrm{k} / 200 \mathrm{k}$ ${ }^{+50}{ }^{+53} \mathrm{db}$. Post 35

413.85. Post 35̄p.
 215. Poat 2 sp .

MODEL U4311 SUB-STANDARD MULTI-RANGE VOLT AMMETER Sensitivity 330 ohme/
Volt A.C. and D.C. Accuracy -5% D.C. 1% A.C. Scale length 185mi.
$0 / 300 / 750 \mu \mathrm{~A} / 1 \cdot 5 / 3 /$
$75 / 15 / 30 / 75 / 150 / 300 /$ $75 / 15 / 30 / 75 / 150 / 300 /$
$750 \mathrm{ma} / 1 \cdot 5 / 3 / 7 \cdot 5$ Amp. D.C. 0/3/7.5/15/30/75. 7.5 Amp . A.C.
$0 / 75 / 150 / 300 / 750 \mathrm{mV} / 1 \cdot 5 / 3 / 7 \cdot 5 / 15 / 30 / 75 / 160 / 300$ 770V. D.C.
$0 / 750 \mathrm{mV} / 1-5 / 3 / 7 \cdot 5 / 15 / 30 / 75 / 150 / 300 / 650 \mathrm{~V}$. A.C. suromatic cut out. Bupplied coraplete with tear
leade, manual and test certificates. $£ 48$. Pokt 50 p

BELCO AF-5A SOLID STATE SINE SOUARE WAVE C.R. OSCILLATOR sine $18-200,000 \quad \mathrm{H}_{2}$; square $18-50,000 \quad \mathrm{~Hz}$ Output max. +10 dB

TO-3 PORTABLE OSCILLOSCOPE Jin. TUBE
 ternal. Lluminated seale.
$140 \times 215 \times 3,0 \mathrm{~mm}$. Weight 15$\} \mathrm{lbs}$. $220 / 240 \mathrm{~V}$ $140 \times 215 \times 330 \mathrm{~mm}$. Welght 15 flbs . $220 / 240 \mathrm{~V}$.
A.C. Cupplled brand new with handbook
947.50 . Cart. 50 p .

RUSSIAN CI-16 DOUBLE BEAM

TE-65 VALVE VOLTMETER High quality inatrument Fith 28 ranges. \quad. 1,500 D.C. Volts $1.5-1,500$
A.C. volte $1.5-1,500$
Renistance up to 1,000
ver megohme.
Complete A.C. operation Complete with probe and
nstructions. 217 . 50 . Poat
${ }^{30}$ Additions. Probes available:
82.50 .

 LB4 TRANSISTOR TESTER
 Teets PNP or NPN translstora Audio indication. Operates on two 1.5 v batteries. Complete with al instructions etc. £4.50. Post 20p

 $5 \mathrm{mc} / \mathrm{s}$ Pase Band. Separate Y 1 and Y2 amplifers. Rec
tangulsr $5 \mathrm{in} . \times \quad$ im. C.R.T Yangular 5 in . \times fin. C.R.T.
Callibrated triggered sweep
from $2 \mathrm{~m} / \mathrm{sec}$. to 100 milli.aec. $\begin{array}{ll}\text { per cm. Free rinning time } \\ \text { base } 50 & \mathrm{c} / \mathrm{s}-1 \\ \mathrm{mc} / \mathrm{s} & \text { Buitt-in }\end{array}$ base 50 c/s-1 mels. Built-in
time base califratior and
amplitude calibrator. sup-
plied complete uith all plied complete uith al acessories and instruction
manual. e87 Carr. paid.

MODEL AT201 ATTENUATOR Frequency range:
$0-200 \mathrm{KHz}$. Attenuator: 0.111 db . Impedance 600 ohtns.
max. input
power

TE-20 D RF SIGNA GENERATOR
Accurate wide range signsl
generator covering $120 \mathrm{Kc} / \mathrm{s}-$ generator covering $120 \mathrm{Kc} / \mathrm{s}-$
$500 \mathrm{Mc} / \mathrm{s}$ on 6 bands. Directly calibrated Variable R. F attenuator, audio output Xtal socket for calibration
$220 / 240 \mathrm{~V}$. A.C. Brand new

KAMODEN HMG-500
INSULATION RESISTANCE TE

ohms.
N 16.95 . Post 30 p
 $0 / 10 \mathrm{~K} / 1 \mathrm{MEG} / 100 \mathrm{MEG}$

$$
20 \text { to }+50 \mathrm{db} \text {. } 0.01-2 \text { mfd. }
$$ Complete with batteries, instructiona and leads. £13.50. Post 25 p

"YAMABISHI" VARIABLE
Excellent quality at low cost. AII models-Irpu

PS. 200 REGULATED P.S.U

 Solid state. Variable output Independent 20 volt D.C. up to 2 amp .to monitor voltage and cur
ment. Output $220 / 240 \mathrm{v}$ ent. Output $220 / 240$ V

Industrial quality in robust metal cases.
Battery operation. Volume and squeleh controls. Call button and press to talk button. Telescopic aerial. Complete with

EBTH CLEAR PLASTIC PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVT. DEPTS., EDUCATIONAL AUTHORITIES, etc. Over 200 ranges in atock-other ranges to order. Quantity discounts available. Send for fully illustrated brochure.

TYPE SW. $100100 \times 80 \mathrm{~mm}$	
	$100 \mu \mathrm{~A}$ ….. 83.80
	50V. D.C. $\cdots .$.
	300 V. D.C.
	300 V. A.C. ... 23.40
$50-0-50 \mu \mathrm{~A}$ … 83.80	
E SD. $830 \quad 82.5 \mathrm{~mm} \times 110 \mathrm{~mm}$ Fronts	
	${ }_{50 \mathrm{~mA}}^{10 \mathrm{~mA}}$ … $\mathrm{E}_{\mathbf{8 2} 2.50}^{50}$
	100 mA … ${ }^{\text {c. }}$. 22.50
	500 mA 82.50
	1 amp
50 uLA .	
$50-0-50 \mu \mathrm{~A}$ … $£ 2.70$	10V. D.C. $£ 2.50$
100 MA (20v. D.C. £2.50
100-0-1004 A . $£ 2.70$	50V. D.C. ... £2.50
	300 V . D.C. ... $£ 2.50$
$500 \mu \mathrm{~A}$ … ${ }^{\text {c }}$ 22.55	
$1 \mathrm{mLA}22 .50$	300 V. A.C. ... 22.75
ธmA ¢2.50	VU Meter £3.00
TYPE SD. $640 \quad 63.5 \mathrm{~mm} \times 85 \mathrm{~mm}$ Fronts	
50 HA $\mathbf{2 2} \mathbf{6 0}$	500 mA $£ 2.35$
50-0-504A ... 22.55	$1 \mathrm{amp}$. . $\mathrm{E2} 2.35$
1004 A ….. ${ }^{22.55}$	5 amp. $\mathrm{fl2:35}^{\text {a }}$
100-0-100uA. . 22.55	
200uA …... 2.25	5V. D.C. \ldots... $£ 2.35$
500 uA 22.35	20V. D.C. ... $£ 2.35$
	50V. D.C. ... \&2. 35
5 mA 22.35	300 V . D.C. ... $£ 2.35$

TYPE SD. 460 48mm $\times 58.5 \mathrm{~mm}$ Fronts			
50 MA	£2.40	500 mA	22.15
50-0-50, A	22.35	1 mmp .	£2.15
100 mA	22-35	5 anp.	£2-15
$100-0-100 \mu \mathrm{~A}$	22.35	10 amp	
2004 A	22.35	10v. D.C.	\&2.15
$500 \mu \mathrm{~A}$	£2-20	20V. D.C.	22-15
1 mA	22.15	50 V . D.C.	22.15
5 mma	£2.15	3005 . D.C	$\underline{1215}$
10 mA	£2.15	15 V . A.C.	
50 mA	22.15	300 V . A.C	22.30
100 mA	22.15	vU Meter	\&2.55

${ }_{50-0.50}^{50 \mathrm{HA}}$ 100 HA $100-0 \cdot 100 \mathrm{AA}$ 2004 A		500 uA 1 mA 300 V . A.C. VU Meter	
* MOVING IRONALL OTHERS MOVING COIL			
Please add postage			

$50 \mu \mathrm{~A}$	£2. 50		£1.85
$50-0.50 \mu \mathrm{~A}$	22.30	10V. D.C.	£1.85
$100 \mu \mathrm{~A}$	£2. 30	20V. D.C.	£1.85
100-0-100 LA	22.05	50 V . D.C.	21.85
$200 \mu \mathrm{~A}$	22.05	300 V . D.C.	£1.85
500 uA	21.95	15 V . D.C.	$\underline{2} .00$
$500-0-500 \mu \mathrm{~A}$	21.85	300V. D.C.	£2. 00
1 mA	£1.85	8 Meter lmA	£2.05
5 mA	21.85	VU Meter	22.50
10 ma	21.85	1 amp . A.C.*	21.85
50 mA	21.85	5 mmp . A.C.*	£1.85
100 mA	£1.85	10 amp . A.C.*	$\underline{125}$
500 mA	£1.85	20 amp A.C.*	E1.85
1 amp .	£1.85	30 amp A.C.*	£1.85

"SEW" BAKELITE PANEL METERS TYPE MR. 65 3/in. aquaro tronte

TYPE	- 80 mm Square Fronts		
50 uA	83.50	$100-0-100 \mu \mathrm{~A}$.	£3.30
50-0-50 $\mu \mathrm{A}$	23.40	$500 \mu \mathrm{~A}$	23.05
10014 A	23.40	1 mA	£2.85
-		20V. D.C.	£2.85
		50V. D.C.	22.85
		300 V . D.C.	22.85
		1 mmp . D.C.	22.85
		5 mmp. D.C.	22.85
		300 V. A.C.	22-86
		vu Meter. .	83.70

Send SAE for list of Semi Conductors and Valves

B. Bands covering $550 \mathrm{kc} / \mathrm{s}-30 \mathrm{mc} / \mathrm{s}$.
$\begin{aligned} & \text { B.F.O. Buit }-\mathrm{in} \\ & \text { Speaker } 220.240 \\ & \text { Brand new with instructione. }\end{aligned}$

4 Bands covering $550 \mathrm{kc} / \mathrm{s}-30 \mathrm{mc} / \mathrm{s}$,
FET, g Meter, Variable BFO for 88 B . FET, S Meter, Variable BFO for 88B.
Puilt-in Speaker, Bandspread, Senid-
tivity Control. $220 / 240$ v. A.C. or
 OUR PRIC

LAFAYETTE HA-600

 RECEIVER

General coverage $150-400 \mathrm{kc} / \mathrm{s} .550 \mathrm{kc} / \mathrm{s}$ $30 \mathrm{mc} / \mathrm{s}$. FET front eni, 2 mech. filters, product detector, variable B.F.O.
 new with instructions.
OUR
PRICE 501015
$50 p$

CASSETTE P. \& P. 50p) CS35D Deek
C835/CSS8 Speakers
(XC 401) Deck.
© XC 40 hecorder
$\mathrm{aXC}^{2}+0 \mathrm{~T}$ Deek/heee
GXCts Deck
GXC +6 Recoruer
a
a 60 D
Deck.
($\mathrm{XXC60D}$ Deck.
CARTRIDGE (P. \& P. 50p)
CRH1D Deck
CR81T Recorder/Receiver CR8038 4 channel Recorder
CR80DSS 4 channel Record TAPE (P. \& P. 75p)
tooods Deck
400 DDS Dust Cove
1721 L Recortler
$\times 5000$ Recorder
$\times 201 \mathrm{D}$ beck
(1) 2220 D Deek
${ }^{\text {GX2280D }}$ Deck
TAPE/CASSETTE (P. \& P. 75
GX1900D beck
TAPE CARTRIDGE (P. \& P. 75 TAPE/CASSETTE/CARTRIDGE
${ }^{(\mathbf{P} .}$ \& $\mathbf{P} .75 \mathrm{p}$)
X2000si Recorder MICROPHONES (P. d P. 50p) ADM. 11 Dynamic (pair) 444.85
557.75
 157.75
867.95
$\mathbf{8 1 0 1 . 2 5}$ 267.95
81078.25

88 \begin{tabular}{l}
£78.25

$\mathbf{8 8 4} \cdot 30$

\hline

884.30

$\mathbf{8 9 0} 75$

\hline 8
\end{tabular} 487.65

$\mathbf{4} 93.40$ $\begin{array}{r}866.20 \\ 554.10 \\ 883.70 \\ \hline 114.75\end{array}$ 89370
$\varepsilon 114.25$
294.95 259.95

5 $259 \cdot 95$
$23 \cdot 95$
$200 \cdot 35$
882.50 $460 \cdot 35$
482.50
$2108 \cdot 20$ 282.30
2108.20
1123.95 $2138 \cdot 40$
$2196 \cdot 50$
2211.50 $£ 144.50$ £138.40 2180.75 57EPEO 87.50 AA6300 $20+20$ watt AAB0:30 $25+25$ watt AA8080 $+0+40$ watt AABPEO APLTTEPS … $\$ 150.50$ STERE0 AMPLIFIERS (P. \& P. 50p) AA5500 $30+30$ watt AAis800 $4 \overline{3}+45$ watt
STEREO TUNERS (P. \& P. 50p) AT550 AM/FM
4-CHANNEL UNIT (P. \& P. 50p) 481 Syntheaiser SPEAKERS (P SW 155 (each) \cdots ASE 11 ASE 20

BSR 8 TRTCM baigalis!

tD8s stereo tape cartridge DECK
Conuecte to most
(output 125
nt) OUR P17.75 P. \& P. PRICE LIL. H 50p
TD83V 215-25 (1P. d. P. 50p)

$20+20$ watts rms. Magnetic, ceramic
and tape finputs. FM 88.108 MHz . AM and tape inputs. FM 88.108 MHz . AM
$5: 55-1605 \mathrm{kHz}$ 1mal stereo speaker
outputa. Heail) List Price
Rell
L17.46).
$\begin{array}{lll}\underset{\text { OURCE }}{\text { OUR }} & \mathbf{f 6 1 . 9 5} & \text { P. \& P. } \\ 75 \mathrm{p}\end{array}$
 STEREO CASSETTE DECK
High quality \ddagger track record/play hack
deck. Accepts chrone/regular tatye cassettes. Two VU meters and stider
controls for recurding level. Photo/Din output/input sockets. Headphone socket

OUR
PRICE
E4. 45
P. \&P.
$50 p$

NIKKO TRM5O STEREO AMPLIFIER
$17+17$ watts rms. Inputs for magnetic
and
crystal phono, tuner, tape ete. Dual stereo speaker outputs. Head.
phore socket. Full range of controls. OUR $F 39.95 \quad$ P. \& P. PRICE 254.45 50p

$\begin{array}{l}\text { OUR } \\ \text { PRICE }\end{array}$

AM/FM STEREO RECEIVERA
 2X400 $20 \sim 20$ uatt $\because \quad \therefore \quad 257.50$ Ali prices are subject to
Order with confidence by
post - but remember to add
10\% vat (10p in the E) to
total value of goods
including carriage/packing
and send cash with order.
PLEASE PRINT NAME Z
ADDRESS CLEARLY.

$8+8$ watt ampliffer. BRR MP60. plinth and cover, 0800 cartridge, palt o $\begin{array}{lll}\text { OUR } \\ \text { PRICE } & \text { Carr. } \\ \text { f } 1.50\end{array}$

plinthand cover. $\mathbf{G 8 0 0} \mathrm{E}$ cartridg AP76. OUR COT: Carr

$17+17$ watt amplifier, Garrard AP76,
plinth and cover. GRoo cartridge, pair of Wharidale Linton 2 speakerg and at। OUR
PRICE
886.95
Carr. $81 \cdot 50$
Ins. Matehing
Tuner 237.50.
Liz00
AM/FM

RUDIOTRONIC PRODUCTS

ACP-8 8 TRACK

Attractive black and silver finish $12 v$ neg. earth. Slider controis for Volume, Tone and Balance. pilof lamp. Complete with speakers, mounting brackets and ONLY £12.50 ${ }_{40 \mathrm{p}}^{\mathrm{pq}}$

ACR 3500° CAR RADID
Manual tuning of Medium neg. earth. Complete with speaker, mounting brackets and instructions.

- CAR AADIO
Push button tuning of one your choice. 12 v pos. of nes. earth. Complete with spea-
ker, mounting brackets and ker, mounting brackets and
instructions. $\begin{array}{ll}\text { OUR } \\ \text { PRICE } \\ \text { E.95 } & \text { P\&P } \\ 50 p\end{array}$
ABASEEEEQTRIG

AGR1 PUSH BUTION

Push button tuning of on
ch sse electila -

5 section. Fully auExtends to approx. witch, all leads OUR PRICE $\pm 5 \cdot 95$

SEND LARGE S.A.E. FOR FULL HI-FI DISCOUNT LIST

ALL MAIL ORDERS TO
11-12, PADDINGTON GREEN, LONDON W2 1LG. Tel: 01-262 6562
PERSONAL CALLERS WELCOME AT ANY OF OUR RETAIL BRANCHES
10. Tottenham C1. Rd, WIP 9EP. Tel 01-637 2232 152/3, Fleet Street, EC4A 200. Tel: 01-353 2833 27, Tottenham Gt. Rd, WIP SRA. Tol: 01.6363715 118, Edgware Road, W2 20L. Tel: 01-723 9788 87. Tottenham GI. Rd, WIP 9H1. Tel: 01-580 3739 I93, Edgware Road, W2 IET. \quad Tel: 01-723621I 257. Tottenham GI. Rd, WIP 9AO. 3. Lisle Street. WC2H 7B6. Tel: 01-580 0670 Tel: 01-437 0204

382, Edgware Road W2 IEB.
Tel 01-262 0387
Tel: 01.7234184
Tet: $01-2869530$
ALL BRANCHES OPEN 9 a.m. $-6 \mathrm{p} . \mathrm{m}$. MONDAY TO SATURDAY

All items and prices are correct at 7.5.73
but subject to change without notice. E. \& O. E.

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental : $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 micro volt to 1 volt. Output Impedance : 1 microvolt to 100 millivolts, 10 ohms 100 mV volt - $52 \cdot 5$ ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 7500 depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}$, $40-100 \mathrm{c} / \mathrm{s}$. condition. $£ 27 \cdot 50$ each, Carr. $£ 1.50$.
T. 1509 TRANSMITTERS (FOR EXPORT ONLY): General-purpose HF communications transmitter for use in fixed or mobile ground stations. Hand or high-speed keying. Crystal or MO control, with temperature compensated 100% /put impedance. 50 ohms. Audio input: 600 ohms. Valves : Power Amplifier O put impedance : 50 ohrns. Audio input. 60 requirements $200-250$ yolts a c 50 cycles. Power out put 300 watts. Dimensions 2 ft . 6 in . W. $\times 2 \mathrm{ft}$. D. 50 cycles. Power out put 300 watts. Dimensions 2 fl .
AN/ARC-27 TRANSMITTER/RECEIVER (FOR EXPORT ONLY): Frequency $225-400 \mathrm{mc} .1750$ channels 100 Kc apart with 18 preset channels Modulation: am. Power output 9 watts. Receiver is superheterodyne. Max output 2 watts. Antenna: 50 ohm impedance. Power requirements 24 v d.c. Complete transmitter with operating cables, control box, headphones, micro-
phone. Price $£ 250.00$ each secondhand, excellent condition. phone. Price $£ 250.00$ each secondhand, excellent condition.
OWER SUPPLY suitable for AN ARC- 100 volts to 250 vols a.c.
EST SET TS-147C: Combined signal generator, frequency meter and power meter for $8500-9600 \mathrm{Mc} / \mathrm{s}$. CW or FM signals of known freq. and power or measure ment of same. Signal Generator: O/put -7 to -85 dbm . Transmission-FM M, CW. Sweep Rate-0-6 Mc/s per microsec. Deviation- $0-40 \mathrm{Mc} / \mathrm{s}$ per sec Phase Range- $3-50$ microscc. Pulse Repetition Rate-to 4000 pulses per sec RF Trigger for Sawtooth Sweep-5-500 watts peak. $5.2-6$ microsec. duration $10-50 \mathrm{~V}$ peak. $0.5-20$ microsec duration at $10 \% \mathrm{max}$. amplitude, less than 0.5 $10-50 \mathrm{~V}$ peak. 0.5-20 microsec duration at 10% max. amplitude points. Frequency Meter Freq. $8470-9360 \mathrm{Mc} / \mathrm{s}$. Accuracy- $+2.5 \mathrm{Mc} / \mathrm{s}$ per sec . absolute, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec. for freq. increments of less than $60 \mathrm{Mc} / \mathrm{s}$ relative, $\pm 1.0 \mathrm{Mc} / \mathrm{s}$ per sec . a $9310 \mathrm{Mc} / \mathrm{s}$ per sec. Calibration point. Accuracy measured at $25^{\circ} \mathrm{C}$ and 60 humidity Power Meter: Input: +7 to +30 dbm . Output -7 to -85 dbm . Price: $£ 75$ each fl carr.
SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, selt-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are ins. FM on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq.- $1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM Modulated Pulse $-40-4000$ pulses per sec. Pulse Width- $0.5-10$ microsecs. Timing 0 put-1 milliwatt max., 0 to -127 db variable. O/put Impedance- 50Ω. Price O/put-1 milliwatt max., 0 to -127 db variable. O/put Impedance-50
TS-382/U AUDIO OSCILLATOR: 20 to $200,000 \mathrm{c} / \mathrm{s}$. in four ranges. Freq. meter check $60 \mathrm{c} / \mathrm{s}$. and $400 \mathrm{c} / \mathrm{s}$. Emission CW. O/put voltage: 1 uv to $10 \mathrm{~V} \pm 3 \%$
 in seven ranges. Power req. 15 AC single p
FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$, complete with original alibration charts. Checked out, working order. $£ 18-50+\chi 1.00$ carr. BC-22 nused as new condition complete with headset, spare valyes, charts. $£ 35 \cdot 00$ C2.00 carr
TS-452 F.M. SWEEP GENERATOR: Power supply $115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}, 5-100 \mathrm{MHz}$ in 6 bands (rf o/put); $5-102 \mathrm{MHz}$ in 4 bands (freq. meter). Emission: F.M.R.F. Voltage o/put 25 V . Input impedance 470 ohms. O/put impedance 73 ohms Displays band pass characteristics on 3in. C.R.T.S/hand good condition $£ 95 \cdot 00$ $£ 2.00 \mathrm{carr}$
TS-419/URM 64 SIGNAL GENERATOR: Freq. $900-2100 \mathrm{MHz}$. CW of pulse emission. Power o/put Zero dbm-120dbrn continuously adjustable to $\cdot 2 \mathrm{u}$ into 50 . O/put impedance 50 ohms with VSWR of $2: 1$. 115 V a.c. $50 \mathrm{c} / \mathrm{s}$. As new ondition $£ 150.00+£ 2.00$ carr.
TS-622/URM 44 SIGNAL GENERATOR: Freq. range -7 to 11 GHz Powe put -10 to 127 dbm , Emission Cw, FM, Pise. Direct reading dials for both frequency and power. Operates on 115 volts, $50-1000 \mathrm{~Hz}$. As new condition $£ 175 \cdot 00$ E2-00 carr

CT.52 MINIATURE OSCILLOSCOPE: Portable. Operates from 115V or

 $250 \mathrm{~V} 50-60 \mathrm{c} / \mathrm{s}$; or $180 \mathrm{~V} 500 \mathrm{c} / \mathrm{s}$. A small compact tropicalised instrument esigned to meet requirements of radar and communication engineers and eneral electronic service. Measures 9 in . $\times 8 \mathrm{in}$. $\times 6$ in. Time base $10 \mathrm{c} / \mathrm{s}-$ $40 \mathrm{Kc} / \mathrm{s}$. Y plate sensitivity 40 V per cm . Tube 2 in. Frequency compensated俍
TRANSFORMER HV: 228 V input 19,500-0-19,500 4.5KVA, Wt. 220 lbs

 30 each. Carr. E4TS-683 CRYSTAL IMPEDANCE METER: $10-140 \mathrm{MHz}$ secondhand good ondition. $£ 75 \cdot 00$ each $+£ 1.00$ carr
TUNING UNIT: 24 V geared motor driving double 25pf double spaced variable apacitor. One m/c relay and 2 other relays. $£ 2.50$ each 30 p post, good condition UHF ASSEMBLY: (suitable for $1,000 \mathrm{MHz}$ conversion) including UHF valves $2 \mathrm{C} 42,2 \mathrm{C} 46,1 \mathrm{B4} 0$ (complete with associated capacitors and screening), 3 manua counters 0-999. Valves 6AL5 and 8×6 AK5. $£ 10 \cdot 00$ plus 60 p post, good condition MODULATOR UNIT: complete with transformer and 2×807 valves mounted in 19 in . chassis $\times 8$ in. high $\times 8$ in, deep. $£ 4.50$ secondhand cond., or $\mathbf{£ 8 . 5 0}$ new cond. Carriage $£ 1$.

RF UNIT: suitable for use with the above unit. Complete with $2 \times 3 \mathrm{E} 29$ valves deal for conversion to 4 metres. $£ 5$ secondhand cond., or $£ 7.50$ new cond Carriage $£ 1$.
POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s}$. 513 V and 1025 V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V a 1 ld 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type 5 Z 3 $2 \times 5 \mathrm{~V}$ windings @) 3 Amps each, and 5 V @ 6 Amp and $4 \mathrm{~V} @ 0.25 \mathrm{Amp}$. Mounted on steel base $19^{\prime \prime} \mathrm{W} \times 11$ " $\mathrm{Hx} 14^{\prime \prime} \mathrm{D}$. (A)! connections at the rear.) Excellent condition $\mathbf{6} 6.50$ each, carr. $£ 1$
AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts, mounted in a strong steel case $5^{\prime \prime} \times 61^{\prime \prime} \times 7^{\prime \prime}$ Bitumen impregnated. £7 each, Carr. 75p. 230-115V $50-60 \mathrm{c} / \mathrm{s}, 500$ watts. $7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Mounted in steel ventilated case. $£ 4 \cdot 00$ each Carr. 75p.
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transtormers etc. $\mathbf{£ 7} \mathbf{5 0}$ each, 75p carr.
CATHODE RAY TUBE UNIT: With 3in, tube, Type 3EG1 (CV1526) colour reen, medium persistence complete with nu-metal screen, 23.50 each, post 50 p. APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter $1 \cdot 25$, post 30 p.
AIRCRAFT SOLENOID UNIT S.P.S.T.: $24 \mathrm{~V}, 200 \mathrm{Amps}$, $\mathbf{£ 2}$ each, 30p post. DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each
 otal value 900 ohms. 3 Gang. Tolerance $+1 \% £ 3.50$ each, post 30 p .
TF-1041B VALVE VOLTMETER: Measures 25 mV to $300 \mathrm{~V}, 20 \mathrm{c} / \mathrm{s}$ to 1500 Mc/s a.c. Also 10 mV to 1000 V d. Resistance 0.02 ohms to 500 Meg . ohms. Power requirements $200-250$ volts a.c. Secondhand, excellent con. $£ 35 \cdot 00$. Carr. £1. VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at 2 Amps, $£ 3$ each 75 p post. Input 115 V , output 135 V at 5 Amps . 5 each, 75 p post.
RACK CABINETS: (totally enclosed) for Std. 19 in . Panels. Size 6 ft . high $\times 21$. wide $\times 16$ in. deep, with rear doors 50 each, $£ 2$
INSTRUMENT CABINETS: $19^{\prime \prime} \mathrm{W} . \times 16^{\prime \prime} \mathrm{H} . \times 16^{\prime \prime} \mathrm{D} . \quad £ 5 \cdot 00+£ 1 \cdot 25 \mathrm{carr}$
FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counter -9999, with locking and reset controls mounted in 3in. diameter case. Price £2 each, 30p post.
TS-418/URM49 SIGNAL GENERATOR: Covers $400-1000 \mathrm{MHz}$ range. CW Pulse or AM emission. Power Range $0-120 \mathrm{dbm}$. $£ 125$ each. Carr. £1-50.
TN/130/APR. 9 UHF TUNING UNIT: Freq. $4300-7350 \mathrm{MHz}$. IF Output 60 MHz with bandwidth of 20 MHz and is electrically tuned by a d.c. reversible motor. £27-50 each. Carr. £1.
APR-4 AM RADIO RECEIVER: $90-1000 \mathrm{MHz}$. This receiver is suitable for monitoring and measuring frequencies as well as relative signal strength. Power upply $115 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$. £100 each. Carr. £2
SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. $2-400 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{c} / \mathrm{s}$ $0 /$ put Voltage $0.1-100,000$ microvalts cont variable. Impedance 50Ω. Price £85 each $+£ 1.50$ carr.
CLASS "D" WAVEMETER NO. 2: Crystal controlled heterodyne frequenc neter covering $2-8 \mathrm{MHz}$. Power supply 6V dc. Good secondhand cond. $\mathbf{8 7} .50$ each Post 60 p .
RCA TE-149 HETERODYNE WAVEMETER: V-cut, 1 MHz crystal (0.005%) Accuracy better than 0.02%. Dial directly calibrated every 1 KHz from $2 \cdot 5 \cdot 5 \mathrm{MHz}$ Accuracy better than $0 . \%$. Dial directy can for fing internal dry batteries "A new" complete with Manual and Spares. £14 each. Carr. 75p.
R. 216 RECEIVER: High grade HF and VHF Receiver for reception of CW MCW AM or FM signals. Freg range $20-156 \mathrm{MHz}$. Secondhand good condition complete with power supply) $£ 65 \cdot 00$ each $+£ 1 \cdot 00$ carr. POWER UNIT TYPE 24: (for R. 216 Receiver) A.C. operated $100-125 \mathrm{~V}$ or 200-250V 50c/s "As new" £10 each Carr. 75p
ROTARY INVERTERS: TYPE PE.218E-input 24-28V d.c., 80 Amps 4,800 rpm. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}$. 1 Ph. P.F.9. $£ 17.50$ each. Carr. $£ 1 \cdot 50$. POWER SUPPLY: 230V a.c. input; 3000V @ 2.5mA; 4v @ 1 Amp, 300-0-300 200mA; 6V @ $7 \mathrm{Amp} ; 6 \mathrm{~V}$ @ 3 Amp . With smoothing capacitors etc. $£ 10 \cdot 00$ each. 200mA; 6 . 1.50 carr

GEARED MOTOR: $24 V$ D.C., current 150 mA , output $1 \mathrm{rpm}, \boldsymbol{£ 1 . 5 0}$ each, 30 p post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and potentiometer, 3 rpm,
purpose motors available. List 3 p.
ACTUATOR UNIT: With 115 V d.c. geared motor; o/put 12.5 rpm ; torque 16 ins. oz; reversible; microswitches and potentiometer. £3.50 ea. +40 p pos DALMOTORS: $\mathbf{2 4 - 2 8 V}$ d.c. at 45 Amps , 750 watts (approx. 1 hp) $12,000 \mathrm{rpm}$ £5 each, 60p post.
MOTOR: 240 V single phase, $2,400 \mathrm{rpm} .1 / 40 \mathrm{H} . \mathrm{P}$. approx. Price £1 75 each, 30p post.

CONDENSERS: 30 mfd 600 v wkg. d.c., $£ 3 \cdot 50$ each, post 50 p .15 mfd 330 v a.c., kkg., 75p each, post 25p. 10 mfd 600 v .43 p each, 25 p post. 8 mfd 2500 v . 2. ach, carr. 63p. 8 mfd 600 v .43 p each, post 15 p. $8 \mathrm{mfd} .1 \% 300 \mathrm{v}$. D.C. 125 , post $25 \mathrm{p}, 4 \mathrm{mfd} 3000 \mathrm{v}$. wkg. £3 each, post 37 p . 4 mfd 2000 v . £2 each, post 25 p . mfd, $27,000 \mathrm{v}$. wkg. $£ 3.75 \mathrm{each}, 50 \mathrm{p}$. $2 \cdot 5 \mathrm{Kv}, \notin 1$ for 5, post 10 p . Capacitor 3 carr mfd 12.5 Kv wkg. TCC RL' $7002-97.58 .50 \mathrm{mach} \mathrm{carr}$. 1.10 mfd 3 Kv wkg $55^{\circ} \mathrm{C}$. TCC oil filled $£ 7.50$ each, $£ 1$ carr. $5 \times 1 \mathrm{mfd} 3 \mathrm{Kv}$ wkg. $55^{\circ} \mathrm{C} . £ 6.50$ each f 1 carr .12 mfd 1500 v d.c. wkg. $\mathbf{6} \mathbf{3} \cdot 50 \mathrm{each}, 50 \mathrm{p}$ post
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ $2 \mathrm{amps}, £ 2 \cdot 50$ each, carr. 75p. OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2} \mathrm{amps}$; or 40 ohms at 2.6 amps ; 500 ohms, 0.55 amps. Price (either type) $£ 2$ each, 30 p post each
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with flament transformer 230 v . A.C. Mounted in 19 in . panel, $\mathbf{~} 4 \cdot 50$ each, carr. 75 p .
AR88 RECEIVER: List of spares, 5p. AUTO TRANSMITTERS ETC. Send for list, 5p
REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and power upply 200-250 a.c. Polarised relay type 3SE10. So- 80 Li . ondition $£ 7$.
WESTON INDUSTRIAL THERMOMETER MODEL 221: 0-100 ${ }^{\circ} \mathrm{C}$. 3in. dia. scale. Accuracy 1%. Precision made coil within-coil structure. Changes in emperature cause a rotary action of the Helix turning the shaft to which the pointer s mounted. $£ 2.50$ each 30 p post. Unused condition
All U.K. orders subject to $\mathbf{1 0} \%$ Value Added Tax. This must be added to the total price (including postage or carriage).

NOW! THE ONE-MAN TELEVISION STUDIO, ATTHIS AMAZING DIXONS TECHNICAL PRICE. E775: $^{\text {. }}$

Call into Dixons Technical. Our CCTV experts will show you a video revolution from National Panasanic.

The National one-man TV studio comprises a light-weight camera, a playback/recorder unit in a shoulder pack, plus mains unit and battery recharger. It's easy to carry and operate, and presents in one small unit, all you need for your own TV productions.

Once you've shot your subject. playback is instant. The picture appears on the screen incorporated in the camera. It records sound live or you can dub voiceovers, music and effects later. The whole unit is battery operated. And costs $£ 775$.

Not only are we offering it at an amazing price, but you don't even have to pay cash. At Dixons Technical we'll gladly arrange a hire purchase
*Plus 10% VAT of $£ 77.50$
agreement to suit your pocket. Or, if you prefer, you can lease.

Aswell as the low price, Dixons Technical also offer you a superb service.

Our CCTV experts will demonstrate the equipment to you. Answer all your questions. Even arrange delivery. And in the unlikely event of anything needing attention, then our after-sales service will see it's soon put right.

So come to Dixons Technical. And see the National Panasonic one-man studio for yourself today.

CBS SQ* FOUR CHANNEL DECODERS

*Regd. CBS inc.
A complete kit for the home constructor that can be built in under an hour with just a soldering iron and a pair of cutters. Just pop the components into the positions clearly marked on the fibre glass board, crop and solder.
You then have the identical decoder board we put in our latest QUADRASONICS Hi Fi equipment and the application approved by CBS as described in Wireless World, March 1973.
$\mathbf{£ 8 . 0 0}$ post free, including licence fee to $C B S+80$ p V.A.T.

If you doubt this, buy our complete and tested production board which is guaranteed for a year.
$\boldsymbol{\ell \| . 0 0}$ post free, including licence fee to CBS $+\ell \mid \cdot 10$ V.A.T.
DESPATCH GUARANTEED WITHIN 72 HOURS, complete with lucid instructions.

PHASE LOCKED LOOP STEREO DECODER

(as in Wireless World, July 1972)

Another complete kit that takes about 30 minutes to build. No alignment problems and coils to adjust. Just four simple steps to obtain perfect stereo from your mono tuner.
(I) Connect decorder to your tuner, possibly disconnecting one or two de-emphasis components.
(2) Provide 10 to 16 volts D.C. either from your tuner or a separate power supply.
(3) Tune to a stereo broadcast.
(4) Turn a "preset" resistor until the stereo beacon lights up. You then have stereo radio.

Comprehensive instructions provided, but if you are in doubt, just ask us!
$£ \mathbf{3 . 4 0}$ post free $+\mathbf{3 4}$ p V.A.T. (Beacon $\mathbf{3 4 p}+4$ p V.A.T.)
Still Worried? Then buy one of our assembled and tested production boards complete with stereo beacon and guaranteed for a year.
$\mathbf{£ 4 . 4 0 \text { post free } + \mathbf { 4 4 } \text { p V.A.T. Why pay more? }}$
Why not call on us for a demonstration of quadraphonic and stereo hi-fi. The demonstration lounge in our new factory will be open on MAY Ist.

SONAX ELECTRONICS
SPENCER HOUSE,
BRETTENHAM ROAD, EDMONTON, LONDON, N. 18.
Tel.: 01-807 5544 01-807 5999

I enclose cheque/postal order for \mathcal{E}.
Name
Address
(BLOCK CAPITALS PLEASE)

Thermistors

F. J. Hyde, DSc., Msc, BSc.

Provides a very comprehensive account of the properties and applications of both negative and positive temperature coefficient types of thermistors. An extremely useful reference work on this essential circuit component - thoroughly recommended as essential reading for all control engineers.
Instrument and Control Engineering.
0592028070208 pages illustrated $1971 £ 3.20$
Available from leading booksellers or
The Butterworth Group
88 Kingsway London WC2B 6AB
Showrooms and Trade Counter 4-5 Bell Yard London WC2

$\text { PO BOX } 25 \text { CAN }$	Ltd ERBURY KENT
Red L.E.D. 30p	D.P.D.T. 10p
Green L.E.D. 75p	Stereo Phono
Minitron	Sockets 5p
3015 F ¢ 1.50	TO5 HEATSINKS
72748 DIL. 40p	10 for 40p
TBA231	TO3 HEATSINKS
Low noise stereo preamp £1.43	25p
BC107/8/9 8p	SPECIAL!
BFY50/1/2 19p	P.C. Mounting
TIP35C £3.00	Stereo Pots.
TIP36C £4.00	$100 \mathrm{~K}+100 \mathrm{~K}$
TIP41A 70p	Lin 35p
TIP42A 85p	$100 K+100 K$
2N3055 45p	Log 35p
1N4001 10 for 40p	$\begin{aligned} & 10 K+10 K \\ & \text { Log } \end{aligned}$
1N4004 10 for	
SLIDE SWITCH	Please add 10\% V.A.T. to total cost

EAC DIGIVISOR Mk. II DIGITAL READ-OUT DIS PLAY

Ideally suitable for use in conjunction with transistorised decade counting devices. No need for amplifiers or relays as only a few incorporates a moving required to charge the digits. The DIGIVISOR scala through an optical system and the which moves a translucent is projected on a screse. The translucent scale is male plane image digits $0-9$. Specification: 6.3 Volt. 250 Microamp. Image height

LOW FREQUENCY RESOLVED COMPONENT

INDICATOR BY SOLARTRON
centre zero 6 in . scale meters the will indicate by means of two voltage with respect to the applied reference energisation. Fre, quency range $0.5 \mathrm{c} / \mathrm{s}-1 \mathrm{Kc} / \mathrm{s}$. Signal voltage ranges: 50 MV $150 \mathrm{MV}, 500, \mathrm{MV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V} .50 \mathrm{~V}$. and 150 V . with either unbalanced. $20 \mathrm{M} \Omega$ bed $230 / 240$ V. Standard Rack Panel 19 in . $\times 12 \mathrm{t}$ in. Now condition complete with manual. Price $\mathbf{£} \mathbf{\$ 5} .00$.

VHF ADMITTANCE BRIDGE

Capacitance 0.230 pF and 0.230 p
Aiso B901. Indicates parallel components of conductance and positive or negative capacitance for lines, antennas and feeders. 2% up to 250 MHz . Price £78.00.

FENLOW LOW FREQUENCY ANALYSER

06:0.3:1.5: Power density $0-10$

MARCONI A.M. SIGNAL GENERATOR

TYPE TF B01D

$10.485 \mathrm{Mc} / \mathbf{s}$ in five ranges. Ourput $0.1 \mu \mathrm{~V}-1$ Volt E.M.F | External Sine A.D. Frequency $30 \mathrm{c} / \mathrm{s}-50 \mathrm{~K} / \mathrm{s}$ | |
| :--- | :--- |
| | |

HONEYWELL EIECTRONIC

POTENTIOMETRIC RE CORDER

1. Model Y15301.115-01-01-0.(150)-01-002-202. Range
G00-1300 C. R. PRICE 600-1300 C. R. PRICE E95.OO.
2. Modei Y153X18-NAH/-11-111-118/P8/DN2 Range

BRAND NEW MINIATURISED STRIP CHART RECORDER BY RUSTRAK nitude of applied currents or voltages magcontinuous distortion-fres line on pressure sensitive paper. Moving coil movement. scale alibrated 0.1 milliamp d.c. internal resistance 100 ohms. Chart drive motor 240 V 50 Hz

> Chart speed 1 per hour. Complete with hand-
> took. Price $\mathbf{£ 3 5 . 0 0}$ plus $£ 5.00$ packing and carriage.

SINGLE PEN RECORDER by Record Electrical. 3" chart. 1° and $6^{- \text {. }}$ per hour . chart speed $\times 6$. assembly and spare chart. Listed at over $£ 100$ - this month's special price due to bulk purchase.
$\mathbf{£ 3 9 . 5 0}$ plus $£ 5.00$ $\underset{\text { carriage }}{ } \mathbf{£ 3 9 . 5 0}$ plus $\mathbf{£ 5 . 0 0}$ packing and

TRANSITROL TEMPERATURE CONTROLLER TYPE 990 Completely transistorised self-contained direct deflecting units for ndicating and controlling temperature accurately over a wice range. Suitable where a signal can be converted Coid duncrion compentitity 10 ohms per MV. Minimum F.S.D. B MV. $0-800^{\circ} \mathrm{C}$. ficcuracy $+1 \%$. Calibrated scale length 6.5 weight
$1:$ Ibs. Mains supply $100-260 \mathrm{~V}$. Control switching and thermocouple connections all at back of case. Price £18.50 pluz. $\mathbf{£ 2 . 0 0}$ packing and carriage.

POWER SUPPLIES, IBM EX-COMPUTER HIGHLY STABILISED, TRANSISTORISED LOW VOLTAGE OWER SUPPLIES
These modular units incorporate overload protection on both
INPUT and OUTPUT. Load regution INPUT and OUTPUT. Load regulation of 1% or better. Low 50 Hz . Available in the following types:
6 volt 8 Amp $£ 12.00$ 6 Volt 12 Amp $£ 17.00$ 12 Volt 4 Amp $£ 20.00$ 12 Volt 12 Amp $£ 22.00$ 12 Volt $20 \mathrm{Amp} \mathbf{£ 2 4 . 0 0}$
30 Volt 7 Amp $\mathbf{£ 1 9 . 0 0}$

VIBRON ELECTROMETER MODEL338 An exceptionally stable laboratory
instrument for the measurement of very small d.c. voltages and currents derived from a high impedance. The Vibron Electrometer has in-
put ranges of 10 MV 30 MV put ranges of $10 \mathrm{MV}, 30 \mathrm{MV}$.
$100 \mathrm{MV}, 300 \mathrm{MV}$ and 9 V . output is 1 mA . Full scale on all ranges. The drift does not Axceed 100 microvolts in 12 hours and the input resistance packing and carriag

PRECISION POTENTIOMETERS

Res. Ohms	Percemt	Manufacturers
$100 / 100 / 100$	0.5	Beckman
100	0.5	Beckman
200	0.5	Beckman

Price
\mathbf{E}
7.00
7.00
2.00 Beckman Beckman Colvern
Foxes Colvern Colvern Relcon
Relcon Beckman Beckman Reliance
General Controls Gelcon
Colvern Beckman Beckman X
Beckman X Beckman
Colvern Colverri
Beckman Beckman
Helipot Beckman Coivern Beckman Beckman
Beckman Beckman
Beckman Colvern
Reliance Reliance
Coivern
Foxes Foxes
Beckman Beckman Ford
Beckman Beckman Colvern
Colvern Colvern
Beckman Beckman
Beckman

Beckman
Beckman Beckman
Bockman
Fox
Beckman
Beckman
Beckman
Beckman
Beckman

Beckman \mathbf{B}
Beckman
5.50
5.00

SPECIAL OFFER!
 SINGLE PEN RECORDER - ELLIOTT

TYPE 230

A most versatile pen recorder Producing a trace on a curvi-
linear 3 In . atrlp chart, Two inear inch . strip chart. Two 6 in. per hour. Fitted with high and low alarm contact operated by the moving
coll. Babic movement 0.1 mA DC coll resistance 400 ohms. Fitted With rectifler to allow operstion on AC effective coll
at 60 Hz 1800 ohmb. ${ }_{230}{ }_{20}{ }^{\text {Power supply }} 60 \mathrm{~Hz}$ required: ${ }^{2300}$ Applications: Applications: Idesl for recordlng
relatlvely mens such as: Temperature; Cas or liquld Flow $\underset{\text { Rates, sound }}{\text { Ratiang, }}$ Levels, Speed Rainfall, humdity, etc PRICE E25.00 PRICE 229.50

Sameson's

 9 \& 10 CHAPEL ST., LONDON, N.W.I$01-723-7851$

01-262-5 125
CURRENT RANGE OF BRAND NEW L.T. TRANS. FORMERS. FULLY SHROUDED (excepted) TERMINAL
BLOCKCONNECTIONS. ALL PRIMARIES 220/240V.

Note: By using the intermediate taps many other voltages Example: $\begin{aligned} & \text { No. } 1 \\ & \text { No. } 2\end{aligned}$ I. \quad 7-8-10-15-17-25-33-40-50v.
N.
$\begin{array}{lll}\text { No. } 2 & \text {.. } & \text { 4-8-12-16-20-24-32 } \\ \text { No. } 5 & \text {.. } & 3-6-9-12-15-18 v .\end{array}$

30-25-0-25-30v. 28. with Screen £4.30, carr. 35p. 36-0-36v. 5a. £8.40, carr. 50p. Ais recommended for Linsiey Hood Amplifiers.

HEAVY DUTY UNSHROUDED TYPE \mathcal{O} INCH FLYING LEADS ALL PRIMARIES 240V

DTL DAVNSET ISOLATION TRANSFORMERS

rame type, termin
$\kappa 17.00 \mathrm{carr} . \AA 1.00$.
STEP DOWN 240/110V. AUTO TRANSFORMERS FOR AMERICAN EQUlPMENT. Fltted with 2 or 3 pin Americen IIst. American sockets, plugs, adaptors also available.
T.E.C. MEAVY DUTY ISOLATION TRANSFORMERS PrI. 240 v . Sec. 150
$\mathrm{f} 22.50 \mathrm{carr} . \mathrm{£} .00$

RICH AND BUNDY. PFI. 220-230-240-250v. Sec. 265-270R1CH. 1400 wats. Conservatively rated. Slze 8
275 v .
Terminal block connections. f 17.00 carr. $£ 1.00$.

No. 1 T.E.C. Pri. ${ }^{430}$ VOLT S.P. TRANSFORMERS
No. 1 T.E.C. Pri. $333-403-415-443 \mathrm{v}$. Sec. $33 \quad 60$ amps. Size $9 \times 9 \times 8$ ins. Terminal block connections. Conservallvely
rated. $£ 20.00$ carr. $£ 2.00$. No. 2 Davenset. Pri. $415-440-525 v$,

ISOLATION TRANSFORMERS
 Pri. 230v. Sec. 230 v . Very conservatively rated at 3.5 amps Pristel case, Sise i $3 \times 10 \times 8$ ins. $£ 15 \cdot 00$ carr. $£ 2.00$. In ster WODEN. Prl. 240 v . Sec. 110 v . Centre tapped 750 WODEN. Prl. 240 v . Sec. 110 v . Centre tapped. 750 watts Unshrouded. $£ 9.00$ carr. $£ 1.00$. DRAKE. Pr. 220240 v . Sec

PARMEKO ISOLATION TRANSFORMERS Prl. tapped. $100-110-200-220-230-240-250 \mathrm{v}$. Sec. 195v. 13.5 amps. Conservailvely raed, fully shrouded. Table top con'nections, SIze $13 \times 10 \times 8 \frac{1 \mathrm{lns} \text {. } £ 32.50 \mathrm{carr} \text {. } £ 2 \cdot 00 \text {. Prl. tapped }}{}$ $200-210-220-230-240-250 \mathrm{v}$. Sec. tapped $90-100-110-120 \mathrm{v}$. 7.5 amps. Coneervatively rated table top connections. Slze $8 \times 8 \times 8$ Іns. $£ 22 \cdot 50$ carr. $£ 1.50$.

ADVANCED COMPONENTS CONSTANT VOLTAGE


```
CRESBALL TOROVOLT VARIABLE Input 115 Bv , Output 0 - 13 Bv .1 .2 Famp . Completo with callbrated dial and control knob. Size \(24 \times 3 \neq \mathrm{ins}\). dia. E3.00 carr. 25 p Brand new.
```


ALL PRICES INCLUDE VAT

© MITHS 12v. D.C. VEHICLE HEATER MOTORS
 1 c carr. 25 p . With 811 n ,
urbo fans E 1.50 carr . 35 p .

irlve. 35 p.

$1500 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Double splndle. Length f In. and in. Overall size $3 \times 3 \frac{1}{2} \times 2$ ins. Similar to turbo fan heater motors. 50 p . P.P. 15 p .

 MINIATURE 24v. D.C. GEARED MOTORS 300 r.p.m. ${ }^{\text {Sip. }}$RADICON WORM REDUCTION GEAR BOXES Size 11 Ins. Ratio $44.5 / 1$. Drive splndie: length 11 ins.., dia. $\frac{1}{2}$ Reductlon spindle.
ins. $£ 2.00$ carr. 50 p

NEWMARK SYNCHRONOUS MOTORS j0p. P.P. 10p. 6 revs. per hour. Slze $2 \frac{1}{2} \times 2 \times 2$ ins. 50p. P.P. 10p.

Omron 24 v . A.C. or 12v. D.C. 27 A CO contacts. Slze $1 \mathrm{f} \times 1 \mathrm{i} \times 1 \mathrm{ln}$ Miniature type 6 -12v. D.C. 24 v . A.C. 1 CO contact. Size $1 \frac{1 \mathrm{a}}{} \times 1 \frac{1 \mathrm{~d}}{\mathrm{x}}$ In. S. hole fixing. 35p. Postage 5p.
Keyswitch 240v. A.C. 17 AA CO contact. Size $2 \times 1 \times 1 \mathrm{Ins}, \mathrm{S}$. hole
 8 fing. sop. Postage BD,
Roblinsons. 240. A.C. $25 A$ CO contacts. Slize $24 \times 1 t \times 1+$ ins
Sty S. hole fixing. 50p. Postage 5 p . Speclal terme for aty. of 25 . 3000 type. $100 \Omega 125$ amp. make contact $50 \mathrm{p} .2000+130 \Omega 1$ normal
CO $40 \mathrm{p} .75 \Omega 3 \mathrm{M} .1 \mathrm{~B}, 1 \mathrm{CO}$ normal contacto 40 p . P.P. On all relaye 10 p . $\mathrm{type} .600 \Omega$ 12v. D.C. 2 CO contacte 30p. Postage 8p.

UNIMAX SEQUENTIAL MICRO SWITCHES
 post. Minlature telephone type S . P
MAGNET DEVICES. ACLENOIDS

CRESHAM POTTED OIL-FILLED
9 henries $500 \mathrm{~m} / \mathrm{a}$. 5 ky . wkg. E 7.50 carr. E1:50.
AMOS L.T. CHOKES 50p.
G.E.C. LT TRANSFORMERS Pri. 200-220-240v. Three separate Secs. 27v. 9A., 9v. 9A.. 3v. 9A. obtained: 3-9-12-27-30-36-39v. 9A. Open frame. Fully tropicallsed. Table top connectlons. £4.50 carr. 50 p . As above at 1.8 A . conservatively rated £1-35. P.P. 35p.

H.T, TRANSFORMERS

 $250 \mathrm{v} .50 \mathrm{~m} / \mathrm{a} .6-3 \mathrm{v} .1 \mathrm{a} . £ 1 \cdot 25$. P.P. 35p. E1.50. P. P. 35p.
A.C.i, Pri. $240 \mathrm{v}, \mathrm{Sec} .250 \mathrm{v} .60 \mathrm{~m} / \mathrm{a}$
.
.

PARMEKO

 POTTED TRANSFORMERSBRAND NEW. FRACTION OF MAKER'S PRICE
 Type 2: Pri, 110-220-240v. Sec. 13.5y

 outpu
$-3{ }^{3}$
60p.

SPECIAL OFFER OF MULTI TAPPED L.T. TRANSFORMERS VERY
CONSERVATIVELY RATED

Gresham Pri. 200-220-240v, Sec. 29.5v.

 E4.95 carr. 75p.
Pri. 200-220-240v. Sec. 20-21-22-23-24-25v,
 $100-0.100 \mathrm{v}$. $150 \mathrm{~m} / \mathrm{a}$ ' C ' Core.
PrI. 200-220-240y. Sec, tapped 63-68-74v. . pen rame terminal block Pri. 200-220-240v. Sec. 37-40-43v. 5a., $105 \mathrm{~s} .300 \mathrm{~m} / \mathrm{a}$. Wwice. Oll-filied potted type. 6.50 carr. 50 p

 TTP Pri. ${ }^{200.3 v .3 a . ~ t w i c e, ~ o p e n ~ f r a m e ~}$ $\frac{\text { type } T \text {. top connections \& } 4.25 \text { carr. 75p. }}{\text { Woden Pri. } 220-240 \mathrm{v} \text {. Sec. } 10 \mathrm{v} \text {. } 2 \mathrm{a} \text {. fully }}$ shrouded $£ 1 \cdot 60$ carr, 30 p . Pri. 220-240v. Sec. tapped 6-12v. 2a.
shrouded $£ 1.95$ carr. 25 p .
Pit por frame. T. top connections $\mathrm{E} \cdot 25$
Open
 $\frac{C^{\prime} \text { ' Core. } \mathrm{T} \text {. top connectlons £1.65 ca. 25p. }}{\text { Pri. } 200-220-240 \mathrm{v} \text {. Sec. } 11-0-14 \mathrm{v}, 176 \mathrm{~m} / \mathrm{a} .}$ C^{\prime} core. T . top connectione 75p, carr. 25 p . PARMEKO HT TRANSFORMERE
NRPTUNE OIL-FILLED TYPE. PrI.
 RICH AND EUNDY TRANBFORMERE Pri, 220-380-415-440v, Sac. 250v, 50 watte
consarvativaly rated, Opon rame typ.
Tarminal biock connections, R2.05 cart.

(DP) H.E. . (Electronics)Ltd

100 WATTS!

* NO EXTERNAL COMPONENTS
\star MECHANICALLY \& ELECTRICALLY ROBUST
\star INTEGRAL HEATSINK
\star HERMETICALLY SEALED UNIT
\star ATTRACTIVE APPEARANCE
* LOWCOST
\star BRITISH BUILT

With the development of the HY200, ILP bring you the first COMPLETE Hybrid Power Amplifier.
COMPLETE: because the HY200 uses no external components!
COMPLETE: because the HY200 is its own heatsink!
By the use of integrated circuit technique, using 27 transistors, the HY200 achieves total component integration. The use of specially developed high thermally conductive alloy and encapsulant is responsible for its compact size and robust nature.

The module is protected by the generous design of the output circuit, incorporating 25 amp transistors. A fuse in the speaker line completes protection.
Only 5 connections are provided, input, output, power lines and earth.
Output Power: 100 watts RMS; 200 watts peak music power
Input Impedance: $10 \mathrm{~K} \Omega$
Input Sensitivity: ODbm (0.775 volt RMS)
Load Impedance: 4-16 Ω
Total Harmonic Distortion: less than 0.1\% at 100 watts typically 0.05%
Signal: Noise: Better than 75 Db relative to 100 watts
Frequency response: $10 \mathrm{~Hz}-50 \mathrm{KHz} \pm 1 \mathrm{Db}$
Supply Voltage : ± 45 volts
APPLICATIONS: P.A., Disco, Groups, Hi-Fi, Indiustrial.
PRICE: $\mathbf{f 1 4 . 9 0 \text { inc. VAT \& P \& P }}$
Trade applications welcomed
DELIVERY FROM JULY 1st

CROSSLAND HOUSE - NACKINGTON CANTERBURY•KENT
CANTERBURY 63218

Elertronim Brakers Itd.

becording voltammeter Fitted with separate zero-marking pen ments ranges AC and DC. 5-15-150 $250.500 \mathrm{~m}{ }^{A}$. $1.5-5$ Amps $5 \cdot 15-50-150$$250-500 \mathrm{~V}$. DC only 150 mV . Frequenc range 45 to 1000 a/s. Chart width100 mm . Chart speeds $20-60-180-600$. 1800-5400 mm/hour. Weight 22 ibs

 temperatures up to $500^{\circ} \mathrm{C}$. The main design obiectives were tor an easy-to.
use. tobust instrument sutrabie for use in the laborary and in the field. The
fout ranges are $0^{\circ} \mathrm{C}$. $50^{\circ} \mathrm{C}$. $100^{\circ} \mathrm{C}$ and tour rannes. are $10^{\circ} \mathrm{C}$. $50^{\circ} \mathrm{C}$. $100^{\circ} \mathrm{C}$ and
$500^{\circ} \mathrm{C}$. These are selected by push buttons allowing full use of the $3^{\prime \prime}$
wide chart $T w o$ chart speeds $y^{n \prime 2}$ and wide chart. Two chart speeds ${ }^{6}$ and
$6^{\prime \prime}$ per hour are provided by the 240 V 50 Hz synchronous chart dive
The 3\% basic accuracy of the instrument, which is adeauatiet for most appications.
has been achieved wing sabiity problems in the d.c amplifier. making the recordei ideal for use in schools. colleges and universities and by Unskilied personnel The recorder complete with N1ChNiAl thermo
comple and mains lead This product capiple and mains tead. This. product is
brand new and manutactured in our own

$\mathbf{£ 9 5 . 0 0}$

phus 55.00 packing and caririge.

This insiument basically consists of a transistorized amplifier voltmeter which measures the voltage across a specified losd It is provided with 40 load values ranging from 2.50 hm to 20 KOhm As the loads are purely resistive. their
value keeps constant with verying frequency A special negative feedback loop allows a nearly linear scale to be obtained. No damages to the instrument result from errors in presetting the load values or the power ranges.
Power measuring range
(in 4 ranges)
Level maesuring range from 1 mW to 10 W Reff. imw
Froquancy renge Accurecy Load input resistences Resistanses accuracy from $-3 \mathrm{~dB} \mathrm{to}+40 \mathrm{~dB}$ from 20 Hz to 50 KHz Within 0.5 dB 40 Values
better than 5% better then 5%

Wheatstone bridge and cable fault locator Measurement of resistance in the range
of 0.005 to 9 megohm. Location of cable faults using Varley loop method Location of cable faults using M urray loop method Measurement of asymmetry of wires.
Use of four-decade section as a resis tance box. The bridge consists of four decade switches giving a range from 1 to 9999 ohms 10 ohm steps. Accuracy to - 9999 ohms 15% from 100 k to megohm 5.0\%. from 0.005 to 00999 ohms 5.0%. Dimensions: $300 \times 230 \mathrm{x}$ 150 mm . Weight: Approx. 12 lb
Price complete with connecting leads.
three channel high speed recorder

Strip Chart Recorder Chart length 175 ft Footage indicator Width of recording | channel 80 mm . Chart speeds iselected | |
| :--- | :--- |
| pushbuttons) | $1.212-30-60-120$ | 300-600-3000 mm . per minute. Full deflection current 8 mA . Internal impedance 210 ohms External impedance 800 ohms. Dimensions $510 \times 345 \times 175$ mm . Weight 44 lbs Price complete with accessories

$£ 90.00$

AC/DC MULTIMETER
Wi
Se Sensitivity 2
and 4.000 oh
Technical Da
$0.06-0.6 \cdot 6-60-600 \mathrm{~mA}-3$ Amps DC .3.3-30-300mA. 3 Amps AC. 0.6-1.2 $3 \cdot 12 \cdot 30-60 \cdot 120-600$ DC. 1200 Volts.
$3 \cdot 6 \cdot 15-60-150-1300-600 \cdot 900$ AC. 45 to 20.000 Hz 500 2 . $5-50-500 \mathrm{k} \Omega$ resistance. Decibel range F.S.D.- -DC and resistance measurements ± 2.5. Price with test leads. and ments
storage case

3" Single beam PUISE OSCILLOSCOPE For display of pulsed and periodic wave forms in Blectronic circuits. Vertica
amplifier: Bandwidth 10 MHz . Sensitivity at 100 KHz V RMS/mm.. 1-25 Horizontal Amplifier: Bandwidth 500 KHz . Sensitivity at 100 KHz VRMS/mm sec. Fres runпing $20-200.000 \mathrm{~Hz}$ in .3-25. Preset triggered sweep $1-3000 \mu$ nine ranges. Calibrator pips. Dimensions $220 \times 360 \times 430 \mathrm{~mm}$. Weight 40 lbs $115-230 \mathrm{~V}$ AC operation.
\& 39.00

10 CHANNEL EVENT RECORDER

Designed for recording seouences
up to ten different operations, eg sequence of machine tool operation switching seauences, etc. Record is presented in the form of square "pulses When energised. per roves by approxi Response time 100 milliseconds Chan width 110 mm . Chart length 50 ft Inv. capacity 72 hours. Chart speeds 20-60-180-600-1800-5400 mm/hour Size $160 \times 160 \times 255 \mathrm{~mm}$. Weight 9 lbs
£52.00
£10.50
acclamp voitammeter Clamp-on Voltammeter is used for
measurements of $A C$ voltages and currents without breaking circuits. Specification
Measurement
10-25-100-250-500
ranges:-
Amps. 300. 600 V . Accuracy 4\%. Scale length 60 mm . Overall dimensions $283 \times 94 \times 36 \mathrm{~mm}$. Weight 1.5 lbs

dOUble beam oscilloscope Designed tor investigation and measure ment of pulsed and periodic waveforms deflection ampliflers permits the display deflection amplifers permits the display simultaneously. Dísplay area $35 \times 90 \mathrm{~mm}$ Repetition rates of investigated wave forms 50 Hz to 1 MHz . Range of pulse length $0.35 \mu \mathrm{~s}$ to 1 sec . Range of ampli tudes 0.04 to 400 V . Maximum amplitud without external attenuator 100 V Characteristics of vertical amplifiers: Amplifier passband at $1 \mathrm{db} D \mathrm{C}$ to 1 mH Sensitivity at medium frecuencies broad passband $500 \mathrm{~mm} / \mathrm{N}$. Size o undistorted pulse display 40 mm . Input impedance $0.5 \quad 015$ Megohm shunted by 45 pF . Input Impedance with external attenuator 5 Megohms shunted by 13 pF . Voltage attenuation ratios o the built-in attenuator 1:1:1:10, 1:100 1:1000. Time Base: Preset calibrated $\begin{array}{lll}\text { sweep } & \text { durations:--micraseconds } \\ \mathrm{cm} & 0.2 ; 0.5 ; 1: 2: 5 ; 10 ; 20 ; 50 ; 100\end{array}$ Milliseconds per $\mathrm{cm} 0.2: 0.5 ; 1: 2: 5$ 10: 20; 50: 100. Free-running time base Siveep sync. voltage and trigger voltage 0.5 V . Maximum trigger pulse repetition rate 10 kHz . Built-in amplitude call brator: Amplitude of test pulses with duration of $0.35 / \mathrm{sec}$ or longer $0.04-100 \mathrm{~V}$ Fundamental error of the calibrato calibrator 100 kHz . Overshoot of pulse top for pulses with rise time not below $0.1 \mathrm{isec} 10 \%$. Instrument warm-up time 30 min . Power inputs $220 / 250+50 \mathrm{~Hz}$ Overall dimensions $260 \times 550 \times 376 \mathrm{~mm}$
f87.00

MULTIMETER
250-5.10-100-1000mA. 2.5-10.20. and $D C$ all ranges except $10 \mathrm{~V}-10.000$ $0 \mathrm{hm} / \mathrm{V}$. Dimensions $212 \times 118 \times 75 \mathrm{~mm}$. Weight 2.9 lbs. Price complete with £4.95

ELECTRONIC TIME DELAY SWITCH.

Specification:

Delay poriod 1.25 minutes adjustable, oad 1000 watts maxiwum. Operating Voltage $180-250 \mathrm{~V}$ a.c. 50 Hz . Size $31 \times 31 \times$ it Standard \times vory Surface
mounting Box. Trade Price $\mathbf{E 5 . 8 0}$

ALL EQUIPMENT BRAND NEW AND GUARANTEED FOR 6 MONTHS Add friowards he costo pack ADD 10\% VAT TO ALL PRICES O PROMPT DESPATCH MAIL ORDER for U.K. delivery lexcept where CALLERSWELCOME MON-FRI 9 A.M. to 5-30 P.M. SAT 9-30 A.M. To 2 P.M. packing and carriage is already indicated).

Surely the best value in variable filters!

Look, for instance, at these three features of the Barr \& Stroud solid state EF2.
\square Two independent lowpass/highpass filter channels Attenuation slope 36 or $72 \mathrm{~dB} /$ octave 6th order response through computer-aided design Then add all these other features and we think you will agree the EF2 is worth a closer look.
\square Frequence range from 0.1 Hz to 100 kHz in five decades
\square Frequency tolerance $\pm 5 \%$ except at range limits
\square Maximum attenuation greater than 75 dB
\square Combined channels provide band pass, band stop or band separation modes
\square Mode switching without use of external links
\square Digital selection of cut-off frequency giving accurate repeatability
\square Response switchable to 'normal', 'narrow', or 'damped' condition
\square Up to 20 dB gain available in 'narrow' condition
\square Operation from internal power supply or external batteries
Output protected against short circuit

Price: $£ 450+$ VAT

Further details in pamphlet 1652 available on request.
Barr and Stroud also design and build special filters to individual customer requirements. Extensive use of computer facilities ensures economical and accurate realisation of the desired characteristics.

BARREAND

 \because ①-30 0
BARR \& STROUD LIMITED

Anniesland, Glasgow, G131 HZ. Telephone: 041-954 9601 Telex: 778114
Kinnaird House, 1 Pall Mall East, London, SW1P 1RT. Tel: 01-930 1541 Telex: 261877

ELECTRONIC ORGAN DIVIDER BOARDS built to

 hloh industrial/computer spec. 5 octave set fis.COPPER LAMINATE P.C. BOARD
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 16$ in. $12 \frac{1}{2}$ p sheet, 5 for 50p
$11 \times 6 \frac{1}{2} \times 1 / 16$ in. $15 p$ sheet, 4 for 50p
$11 \times 8 \times 1 / 16$ in 20 p sheet, 3 for 50 p
Offcut pack (smallest 4×2 in.) 50 p 300 sq . in
$P \& P$ single sheet 4 p . Bargain packs 10 p

SPEAKERS AND CABINETS

E.M.I. 13×8 in. (10 watt) with two tweeters and crossover $\mathbf{3 / 8 / 1 5}$ ohm models. $£ 3.75$. P.P. 25 p.
E.M.I. 13×8 in. base units (10 watt) $3 / 8 / 15$ ohm models £2.25. P.P. 25p
E.M.I. $6 \frac{1}{2}$ in. ind. 10 watt Woofers. 8 ohm. 3,000 gss £2.25. P.P. 15 p .
E.M.I. 20 watt ($13 \times 8 \mathrm{in}$.) with single tweeter and "X-over" 20 Hz to 20.000 Hz . Ceramic magnet $11,000 \mathrm{gss}$. £B. P.P. 40 p. 20 watt base unit only. £6. P.P. 40 p.

CABINETS for $13 \times 8 \mathrm{in}$. speakers manufactured in $\frac{3}{4}$ in. teak-finished blockboard. Size $14 \times 10 \frac{1}{4} \times 9$ in. f5 ea. P.P. 40p.
20W. CABINET. $18 \times 11 \times 10 \mathrm{in}$. E6. P.P. 50p.

PRECISIONA.C. MILLIVOLTMETER (Solartron) $1.5 \mathrm{~m} . \mathrm{v}$. to $15 \mathrm{v}: 60 \mathrm{db}$ to 20 db .9 ranges. Excellent condition. f1-50.
V.H.F. POWER TRANSISTORS TYPE PT4176D (2N4128). 24 watt 175 MHz . $£ 150$ ea. S.A.E. for spec MINIATURE UNISELECTORS (A.E.I. 2203A.), 3 bank, 12 position, non-bridging wipers. $\mathbf{£ 4 . 2 5}$ ea. Brand new Complete with base.
CD. 1220 OSCILLOSCOPE, with dualtrace Plug-in. (CX1257)

SOLARTRON OSCILLATOR (CO546) $25 \mathrm{~Hz}-500 \mathrm{KHz} £ 50$.
OVERLOAD CUT-OUTS. Panel mounting ($1 \frac{1}{3} \times 1 \frac{1}{3} \times \frac{1}{2} \mathrm{in}$.) $800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{amp} / 10 \mathrm{amp}$. 35 p ea. P.P. 5 p .
BULK COMPONENT OFFER. Resistors/Capacitors. Ali types and vaiues. All new modern components. Over 500 pieces $£ 2$. (Trial order 100 pcs . 50 p .) We are confident you will re-order
TWIN STABILISED POWER SUPPLIES (A.P.T.) +80 V . @ 500 MIA. -80 v . Q $500 \mathrm{M} / \mathrm{A}(9 \times 6 \times 51 \mathrm{in}$.) New. $£ 8.50$ with spec. \& circuit.

HIGH GAPACITY ELECTROLYTICS
$2,200 \mu \mathrm{~F} .100 \mathrm{v}$. ($1 \frac{1}{4} \times 4 \mathrm{in}$.) $60 \mathrm{p} .3,150 \mu \mathrm{f} .40 \mathrm{v}$. ($1 \frac{1}{4} \times 4 \mathrm{in}$.) $60 \mathrm{p} .10,000 \mu \mathrm{f} .25 \mathrm{v}$. ($1 \frac{1}{4} \times 4 \frac{1}{\left.\frac{1}{2} \mathrm{in} .\right)} 60 \mathrm{p} .10,000 \mu \mathrm{f} .100 \mathrm{v}$. $2 \frac{1}{2} \times 4 \frac{1}{2}$ in.) 1 . 1200μ. 21 . $6 \mathrm{v} .\left(2 \times 4 \mathrm{in}\right.$.) 60p. 21,000 f. 40v. ($2 \frac{1}{2} \times 4 \mathrm{in}$.) £1. Post and packing 5 p .
"PAP
$25 p$.
TRANSFORMERS
L.T. TRANSFORMER. (Shrouded) Prim. 200/250y L.T. TRANSFORMER. (Shrouded) Pri Sec. $20 / 40 / 60 \mathrm{v} .2$ amp. $\mathbf{E 2} 2$ ea. P.P. 40 p . L.T. TRANSFORMER (CONSTANT VOLTAGE) $100 \mathrm{~m} / \mathrm{a}$ £3. P.P. 50 p .
L.T. TRANSFORMER. Prim. $1101240 \mathrm{v} . \mathbf{S e c} .2 \times 32 \mathrm{v}$ @ 4 amp . 20v.@5 amp.: 15v.@1.5 amp.: 7v.@ 2.5 amp . £3. P.P. 50 p . L.T. TRANSFORMER. Prim $220 / 240 \mathrm{v}$. Sec. 13 v 1.5 amp. 65 p. P.P $15 p$
L.T. TRANSFORMER. Prim. $115 / 240 \mathrm{v}$. Sec. $10 \cdot 5 \mathrm{v}$ at 1 amp. c.t $28-0-28 \mathrm{v}$ at 2 amp . shrouded type. $\mathbf{£ 2}$ P.P. 40p

STAN watt. ISOLATION TRANSFORMER (CONSTANT VOLTAGE). Prim. 190-260v. 50 Hz . Sec 230 v . at $10 \cdot 9$ amps. £ 30 . Carr, £2.
H.D.STEP-DOWN TRANSFORMER. Prim. 200/240v Sec. 117 v at $19 \cdot 8 \mathrm{amps}$. (2,300 watt), $£ 22 \cdot 50$. Cart. $£ 2$ H.T. TRANSFORMERS. Prim. 200/240v. Sec $300-0-300 \mathrm{v} .80 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$. c.t. 2 amp. $£ 1.50$ P.P. 40 p $350-0-350 \mathrm{v} .60 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$ c.t. 2 amp . £1. P.P. 25 p . STEP-DOWN TRANSFORMERS: Prim. $22 / 240 \mathrm{v}$ Sec .115 v . Double wound 500 w . £5. P.P. £1. 700 w (with filters) £10. PP. $£ 1.500 \mathrm{w}$. (metal
socket output) and overload protection. $£ 6.50$. socket output) and overload protection. £6.50.
AUTO-WOUND. 75 W . £1. P.P. 25 p . 300 W . 1.50. PP. 50p 750W £6. P.P.f1 L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. $0 / 24 / 40 \mathrm{v}$. $1.5 A$. (Shrouded type). £1.50. P.P. 250. HT/LT TRANSFORMER Prim. 240v. (tapped) Sec. 1 $500-0-500 \mathrm{v}$. $150 \mathrm{~m} / \mathrm{a}$. Sec. 2.31 v .5 amp. £2.75 P.P. 50p.

HEAVY DUTY E.H.T. TRANSFORMER. Prim $0 / 110 / 240 \mathrm{v}$. Sec. 1800 v . $3.1 \mathrm{~K} . \mathrm{V} . \mathrm{A} . £ 28$. Carf. £2 $4 \mathrm{~K} . \mathrm{V} . \mathrm{A}$. model £33. Cafr $£ 2$

PRECISION CAPACITANCE JIGS. Beautifully made with Moore \& Wright Micrometer Gauge. Type 1. 18.5pf. to $1220 \mathrm{pf} £ 10$ each Type 2, 9.5pf.to 11.5 pt . f6 each
MULTICORE CABLE ($P \vee C$.).
6 core (6 colours) 3 screened, $14 / 0048$. 15p. yd. 100 yds. f12.50.
24 core (24 colours) 20p. yd. 100 yds. $\mathbf{£ 1 7 . 5 0}$.
30 core (15 colours) 22 1p. yd. $100 \mathrm{yds}. \mathbf{£ 1 8 \cdot 5 0}$
Minimum order 10 yds .

TELEPHONE DIALS (New) £1 ea.

RELAYS (G.P.O. '3000'). All types. Brand hew from 371 ${ }^{\frac{1}{2} p \text { ea. } 10 \text { up quotations only. }}$ EXTENSION TELEPHONES (Type 706) New/Boxed. f 5.50 p. RATCHET RELAYS Types 85p. PP 5p.
75 (Brand new) 25-way 75 ohm. 8 bank $\frac{1}{2}$ wipe £3.25. 10 bank

BLOWER FANS (Snail type) Type 1 : Housing dia. $3 \frac{1}{2}$ in. Air outlet $1 \frac{1}{4} \times 1$ in. £2.25. P.P. 25p. Type 2: Housing dia 6 in . Air outlet $2 \frac{1}{2} \times 2 \frac{1}{2}$ in. £4. P.P. 50p. Both types 115 240 CORES LA1 LA2
POT CORES LA1/LA2/LA3 50p each
RELAYS
SIEMENS/VARLEY PLUG-IN. Complete with transparent dust covers and bases. 2 pole c/o contacts 35p ea ; 6 make contacts 40 p ea. ; 4 pole c/o contacts 50p ea. 6-12-24-48y types in stock.
2 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$.) with 10 amp. silve contacts 2 pole clo 40 p ea.; 2 pole 3 way 40p. P.P. 5 p 24 VOLT H.D. RELAYS ($2 \times 2 \times \frac{3}{4} \mathrm{in}$.) 10 amp . contacts. 4 pole c/o. 40 p ea. P.P. $5 p$
240v. A.C. RELAYS. (Plug-in type). 3 change-over 10 amp 240v. A.C. RELAYS. (Plug-in type)
SUB-MINIATURE REED RELAYS (1 in $x, i n$) Wt oz. 1 make $3 / 12 \mathrm{v} .40 \mathrm{p}$. ea
SILICON BRIDGES. 100 P.I.V. 1 amp. ($3 \times \frac{5}{6} \times \frac{3}{\frac{3}{2}} \mathrm{in}$.) 30p. 200 P.I.V. 2 amp. 60p.
24 VOLT A.C. RELAYS (Plug-in).
3 Pole Change-over 60p.
2 Pole Change-over 45 p .

PATTRICK \& KINNIE

ROMFORD 44473

SINIATURE WAFER SWITCHES
2 pole, 2 way-4 pole, 2 way- 2 pole 3 way
4 pole 3 way-2 pole 4 way- 3 pole, 4 way 2 pole, 6 way. 1 pole, 12 way. ail at 22 p

TOGGLE SWITCHES

 ROCKER SWITCH
 SLIDE SWITCHES

Slide Bwitoh. 2 pole chaing over panel mounting

10 for 63 g .
Sub
Sub Miniature Slide Switch. DPDT 19 min (a*
approx.) between fixing centres. 14 p each or 10 for 21 26.

DOUBLE LEAF CONTACT

LIGHT CELL

ght, epoxy resin sealed. Size approx.

Miniature sealed relay

American made. Our Rei. No. REL Al, Measures onts Wide $\times \ddagger^{*}$ thick and $z^{\prime \prime}$ high and it's a double change over amps. The coil resistance is 600 ohms and 9 -12 volt will clos
it. Ideal for models and miniaturised equipment. It's a plug t. Ideal for moiels and miniaturised equipment. It's a plus

COMBINATION SWITCH
This cotuprises of 12 millature change-over micro suitches humbered thumb wheels and a removable tever for locking fie thumin whee!-the thumb wheel operates is banks. Ove connectione underneath thent thousands rewing the switepossible. Ii you are making equipnent which you don 't want awitehed on acculentally or without authonity then this in a switch to consider-this can also be ueed as a coling switch or many other operations. Very neat and compact mint MAGNETIC CLUTCH
XEROX $1215494-J / \mathrm{N} 10-1110$ PN866-10. Wt have no
nfornation on this but it a ppears that the main section nfornation on this but it appears that the main section contact plate to fit on it stationary part. It appears also that The clutch can be used is a partial break by puttink reduce emergency stop by putting increased voltage into it
Americun made and very well nade at that. Price $£ 1.65$.

DRILL CONTROLLER Electronically changes spee
from aporoximately I0 to maximum. Full poweratall Kit includes all patts, case everything and parts, case
tions instruc-
insurance. Matus 13 p post nate np model also
available $£ 2.50$ alis BAKELITE INSTRUMENT
Size approx. $64^{* *} \times 39^{*} \times 2^{*}$ deep with bize appros in our cormers and bakelite
banel. This is a very strong case suitable to house instruments and special rigs, et

Learn Heve Hat

15A ELECTRICAL PROGRAMMER
 mous maker with 15 andy, on/of switch. Switch andependent 60 minute memory jogger. A beautiful unit

HIGH ACCURACY

Uses differential comparator 1.C. with thermistor probe. Designer clainis temperature contro wer pach

REASURE TRACER
make the metal deptector as the circuit in
Hractical Wireless August issue. $£ 3 \cdot 30$ 1
3
y

NUMICATOR TUBES

CENTRIFUGAL BLOWER

ELECTRIC TIME SWITCH

Hate by smiths these are A.C. mains onerated. No' CLOCKWORK. Ideal for mounting rack or shelf or ca he hith into box switch circuit on or off during these periods. £2.75 poet and ins., 23 p. Additional time contacts 50 p pair.

COMPUTER TAPE

2.400ft, oi the Best Magnetic Tape moner can buy. Some users elain coud results with Video and so
"Scotch tape. Brand new. Suits moat wideo recorderg. £3. $\mathbf{3 0}$ ior 3 b00it.

CAR PANEL SWITCH. Our Ref. No.
So1. Areo made. Hay long tlat ended

A ated at 45p. Out price 24p each.
CAR PANEL AUTO. SWITCB. Rei. No. so3. Again a Hal ended toggle. Made by Arrow. A 3 position double pole
change over suitch centre off for auto aeriak, reverslng notory etc. 33p each.
PIN PLUG AND SOCKET. Our Rei. No. PBO1. Fla pins, American style rated at 10A. 250v. Socket pane mounting. Plug is white and intended for fex. Useful where speaker leads, etc., etc. Price 28p per pair.
3 PIN REVERSE PLUG AND SOCKET. Our Ref. PSO2解 R.P.H. MOTOR. Smithe 240 v .50 cycle malns working Ideal thotor to drive clock mechanlsmis. Price $£ 1 \cdot 10$ each
13 AMP JUNCTION BOXES. Made to take 7024 cable
so ideal ior ring maing. Price $9 p$ each or 10 for 81 p .

PORCELAIN FUSE AND CARRIER. 20 A 250 v . MEM Rei. Ao. $151 \mathrm{BB} / 15 \mathrm{CRH}$

 250w.Mike
per pisir

aUto TRANSFORMER. Primary 220

3 BANK CONTACTORS. Coil clusing voltage only $24 V$ AC Just the thint ior switching heaters with the Honeywell contilalso he use for thiase working. These have two tuain switch contacts rated at 30 A bio0 N and auxiliary contact RElays by keyswitch. Makerb kei. kmk3. Our changer REL. AB. Open type mains onerated coil- 3 paire serew. Shlter tag cunections. Price 60 p each. Dito but instant start units. For wift. tubes. Philip's or smar

SPTT MOTOR. $200-250 \mathrm{v}$. Induction

WIRE ENDED FUSES. Useful wher
youl want a quick solder-in inse. Rated
24. 250v. Thiese are alout the Bize oi
MII PANEL NEON INDICATOR. Our Ref. No. Ploi for $204,250 \mathrm{v}$. Price 15 p eaeh.
 10its. probe br approx. 40 in . of caphlary
fixing. Normai control spindle, 94 p each.
THERMOSTAT WITH PROBE, Our Ref. No. THO2. A H01 hut the range is $0.121^{\circ} \mathrm{C}$. and the capillary tube is FUORESCENT TUBES. Standin
deal pelmet lighting as well as for standari repace ncutg- 18 in .15 watt, 24 in .40 watt, 36 in .40 watt, 39 gln 10 watt. All first grave tubee offered at one price - $\mathbf{£ 3 . 9 0}$
per box oil $24-\mathrm{i}$. . less than 15 p each. If not collecting the per box of 24 -i.e. less than 15 peach.
pease add 50 per box per 200 miles.

DIGITAL DISPLAY

Panel monnting unit measuring

 and in
DIGITAL SWITCEES. Small type s.T.c. number 4 H2/1 noob engraved 0 - 9 . Cold wated contacts a pole 10 war Thumb wheel operation. These are clesigied so that they may be stacked in rows. Price 83 p each.
6 DIGIT COUNTER. Operated by 240 v . A.C. maina through
resibtar or direct from 115 v . A.C. or frona 80 v . D.C. Made . mounting. Size
10 for $£ 9.90$. COLOURED is AMP SOCKETS. Standart Fluah mountiuk
 made by Ward and Gollifotone. Useinl on control patela Price 20p eath, 10 ior £1- 98.
REED SWITCH COILS. These are solenolds wound on moulded formers of the correct shape and dimensions to
take standard reed swithes. They have printen circuit board mounting. Six types availathe:- 33 p .

 RC5 takes 1 reed-Operates $45-70 \mathrm{v}$. 6500 olius. 39 p .
RC 6 takes 2 reeds- Operates $45-70 \mathrm{v} .3500$ ohme 44 p . RC takes 2 reeds-Operates 457.7 VV . 3500 ohms. 44D.
Studard reed switches available 11 p each or 10 for 98 p ROCKER SWITCE. Our Ref. Rso2. 13 ahmp. selif fixhug into hole approx. lin. x in. Made by the Carr Fastene PHOTO TRANSISTOR. OCP70-ideal for burglar auran EXIT SIGNS One of our customers has pointed ou

EX\|T $\begin{aligned} & \text { having a } 2018 \text { illuorescent lamp with } \\ & \text { associated } \\ & \text { very thick clear plastic. The front is }\end{aligned}$

 ery thick clear plastic. Directly ontothis youn eath stick down the letters vatlable at most stationers. There is room inside the bos for attery and low volt lamp in the case on !ower iailure made from sheet steel and hammer thished in ellame MUTUAL INDUCTANCE COIL Lathoratory type. M

(Dept. W.W.) 7, Park Street, Croydon, CR0 1YD Callers to 10213. Tamworth Road. Croydon

SERVICE TRADING CO ALL PRICES INCLUDE PACKING TAGE AND PACKING. Overseas

MATSUNAGA YARIABLE YOLTAGE TRANSFORMERS INPUT 230 v. A.C. 50/60
OUTPUT YARIABLE 0/260 v.A.C. Carriage Paid
BRAND NEW. All types.
50 0-260 v. at I amp
£7.70
$0-260$ v. at 2.5 amps
$0-260 \mathrm{v}$. at 5 amps $0-260 \mathrm{v}$. at 10 amps $0-260$ v. at 15 amps $0-260$ v. at 20 amps $0-260 \mathrm{v}$. at 25 amps $0-260$ v. at 50 amps OPEN TYPE (Panel Mounting)

36 volt 30 amp. A.C. or D.C Variable L.T. Supply Unit Input $220 / 240$
tinuously varia \qquad C. Out
 case with Voltmeter, Ammeter, Panel Indicator and chrome handles. Input and Output fully fused
Ideally suited for Lab. Or Industrlal use. \& 17 inci. p. \& c.

MOTOROLA MACII/6 PLASTIC
TRIAC 400 PIV 10 AMP
Now available EX STOCK supplied complete with full data and applications sheet. Price $\mathrm{fl} \cdot 23$ incl. P. \& P.

240 V A.C. SOLENOID OPERATED
240VIA.C. SOL
WIIl hande llauids
Wall handle llauids or gases up to 7 o.s.i. Forged brass body, stalnless steel core and spring. in 1 in
b.s.p. Inletioutlet. Precision made. British migg b.s.p.
PRICE: E2.15 Incl. Precision made. British mig.
I Speclal quotation for quantity. NEW in orlglnat packing.

FOOT SWITCH
Suifable for Motors, Drllls. Sewing
Machines etc., etc. 5 amp. 250 Volt Machines,
Price $£ 1 \cdot 0$

2
 en
 New ceramic construction, vifreous enamel embedded winding, heavy duty brush assembly, contlnuously rated. 25 WATT 10/25/50/10/20/20/500/1/k/1.5k ohm $£ 1.13$. 50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1.5 \mathrm{k} / 2.5 \mathrm{k} / 5 \mathrm{k}$ ohm ${ }^{\mathbf{E 1} 1 \cdot 57}$ WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1 \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k} / 3 \cdot 5 \mathrm{k}$ ohm
 £2.23. Black Silver Skirted knob calibrated in Nos, 1-9. $1 \frac{1}{2}$
 in. dia brass bush. Ideal for above Rheostats, 20p ea.

UNISELECTOR SWITCHES - NEW
4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v. D. BANK
coil, 24 Y. D.C 67.43 Inc P
8 BANK 25 WAY FULL WIPER

VERY SPECIAL OFFER
 MICRO SWITCH

'HONEYWELL' LEVER
OPERATED MICROSWITCH
 $\underset{\text { N } 2.09}{ }$ in maker's carton. Price 10 for

SIROBEI STROBE! STROBE!

FOUR EASY TO BUILD KITS USING XENON WHITE TRIGGERING CIRCUITS, PROVISION FOR EX. TERNAL TRIGGERING. 230-250V. A.C. OPERATION. EXPERIMENTERS "ECONOMY" KIT Adjustable 1 to 30 Flash per sec. All electronic com-
 NEW INDUSTRIAL KIT
Ideally sultable for schools, laboralorles etc. Roller Adjustable tircult. New trigger coll, plasilc thyristor. Price £12.10. Incl. P. \&
HY-LIGHT STROBE
Deslgned for use in large rooms, halls and the photographic niecta and ulllizes a slica tube, printed circult
and a speclal trigger coil,
apeed adjustable 1-20 f.p.s. Light output greater than many (so called 4 Joule)
strobes. Price E.13.75. Incl. P. \& P. strobes. Price E13.75. Incl.
'SUPER' HY-LIGHT KIT 'SUPER' HY-LIGHT KIT
Approx. 4 tlmes the light output of out well proven k
Incorporating, Heavy duty power supply.
Variable speed from $1-13$ flash per sec.
Reactor control clicuit producing an intense whlte
Never before a Strobe KIt with so HIGH an output at so LOW a prlce. ONLY £22:83, Incl. P, \&P. ATTRACTIVE, ROBUST, FULLY VENTILA-Hy-Lyght Kit Including reflector, $£ 8 \cdot 20$ incl. P, \& P.
FOR HY-LYGHT STROBE Incl. reflector, $\& 4 \cdot 90$ 7-INCH POLISHED REFLECTOR. Ideally sulted for above Strobe Kits. Price 73p Incl. P. \& P. RAINBOW STROBE FOUR LIGHT CONTROL
will operate four of our Hy-Lyght
Strobes In et then $1,2,3,4$ sequence $; 2+$ io or all Hy-Lyght
Stogether. Strobes in et therr 1,2 and sequence; $2+$ ior all together connection Instructions.
Send S.A.E. for details.

COLOUR WHEEL PROJECTOR Complete with oil filled colour wheel. 100 watt lamp. tremely efficient optical system. $220 \cdot 74$, incl. P. \& P.
6 INCH COLOURWHEEL As used forDiscolighting effects

BIG BLACK LIGHT

 BLACK LIGHT FLUORESCENT U.V. TUBES 4 ft .40 waft. Price $£ 6.38$ incl. P. \&P. (For use In standar
bi-pin fluorescent fittlngs). MiN1 9 inch 6 watt biack ligh U.V. tube. $£ 1$. 60 incl. P. \& P. Complete ballest unit and

HONEYWELL PROGRAMME TJMERS
240 V. A.C. 5 r.p.m. motor. Each cam
operating a clo micro switch. Cams re Individually varlable, allowing numerable comblnations. Ideally
sulted for machinnery control, automation etc. Also In the field of
entertalnment, for chaser lights, entertalnment, for chaser llghts
anlmated displays, etc.
 10 cam model $£ 550 \mathrm{Incl}$. \mathbf{P}. \&P. P .
2 cam model with $15 \mathrm{r} . \mathrm{p} . \mathrm{m}$. motor

20 incl. P. \& P
and 8 that may 12 PAM PROGRAMMER wlth 4 adjustable cams and 8 that may be profiled to Individual requirements. Avall-
able with 15 or $13 \mathrm{r} . \mathrm{D} \cdot \mathrm{m}$. motor $£ 4 \cdot 13$ incl. P. \& P.

24 HOUR TIMER

Can be adjusted to glve a swlithing delay
of between $i \mathrm{hr}$. to 24 hrs . Driven by $200 /$ 250 v . A. C. synchronous motor. 15 amp. c/o contacts. Mig. Crater Controls Ltd.
Supplied wlt scale calibrated $0-10$ (2
hours per divislon) Brand new. $£ 2.20$ Incl. P. \& P P.

VENNER ELECTRIC TIME SWITCH 200/250 volt. Ex-GPO. Tested, perfect con-
dition. Two ON, two OFF, every 24 hrs . at
 £3. $80.20 \mathrm{amp}, \mathrm{EA}^{4.35 \text {. Incl. P. \& P. Also avall }}$
able with Solai Dlal ON at dusk, OFF at dawn.
Prices as above.

INSULATED TERMINALS Available in black, red, white, 11p wach. Incl. P. \& P. Minimum
order 6 .

BALANCE/LEVEL METERS
100-0-100 Mlcro Amp. Size $1 \frac{1}{i} \mathrm{in}$.

AMMETERS NEWI 2 jln. FLUSH ROUND avallable as D.C. Amps $1,5,15,20$ or A.C. Amps
$1,5,10,15,20$. Both types $£ 1 \cdot 93$ incl. P. \& P. $0-300 \mathrm{~V}$
 INSULATION TESTERS (NEW) Test to I.E.E. Spec. Rugged metal con-
struction, suitable for bench or field work, constant speed clutch. Size 500 VOLTS, 500 megohms $630 \cdot 80$
 1,000 VOLTS, 1,000 megohms $\mathbf{6 3 7 \cdot 4 0}$ carriage paid $230 V / 240 V$ COMPACT SYNCHRONOUS GEARED MOTORS Manufactured by either Sangamo, Haydon
or Smith. Built-in gearbox.
 $\mathrm{cw}=$ Clockwles. $\mathrm{A}^{6} / \mathrm{CW}=$ Anti-clockwise $\quad 12 \mathrm{CW} \quad$ All at 33p
REVERSIBLE SPLIT PHASE MOTOR
$250 \mathrm{r} . \mathrm{p} . \mathrm{m} .100-115 / 210-240 \mathrm{~V}$ AC. 2 in . \times I in. Ideal for rim-drive models, display etc. Extremely powerful fo size 83p. incl. P. \& P. (including small capacitor.)

PARVALUX
Type: SDI.S/86896/0」 2301250v. A.C. 50 r.p.m. 7 Ibllns.
Continuousiy rated. Less base $£ 6.30$ TYPE: SDI.S/89400/OM
 230/250v, A.C. 50 r.p.m. $22 \mathrm{lb} / \mathrm{ins}$.
Continuously rated. Incl., base $8: 03$ The above motors are new and unused

BODINE TYPE N.C.I.

(Type J) 71 r.p.m. torque 10 lb . In. Reversible 1/70th h.p. cycle 38
amp. (Type 2) 28 r.p.m. torque 20 Ib. In Reversible $1 / 80$ th h.p. 50 cycle 28 amp The above two preclsion made U.S. A. motors are offered In
as new' condition. Input voltage of motor $115 v ~ A . C . ~ S u p i l e d ~$ complete with transiormer for 230/240v A.C. Input.
Price. either type \&4.81 incl. P. \& P. or less transformer £2.77 These motors are Ideal for rotating aerials, drawing curtalns,
display stands, vending machines, etc, tc

PARVALUX TYPE SD2. 200/250 VOL
A.C. D.C. HIGH SPEED MOTOR A.C. D.C. HIGH SPEED MOTOR speed
if wed with built-in approx. or sovernor, or yariable
speed over a wide with our Dimmer Switch, illustrated below. PRICE: $£ 2 \cdot 20$ Incl. P. \& P.

600 WATT DIMMER SWITCH
Easily fitted. Fully guaranteed by makers.
Will control up to 600 watts of all lights
except fluorescent at mains voltage. Complete
with simple instructions. $£ 3.30$ including P. $\& P$ P

AC/DC TAUT SUSPENSIONS

mULTIMETERS
(Made in $\mathbf{0}$.S.S.S.R.)
Large selection of multimeters with prices ranging from $£ 4.95$ to $£ 10.50$.

Please write ior full Catalogue.

all prices are exclusive of VALUE ADDED TAX. WHEN ORDERING BY POST PLEASE ADD £0.12 $\frac{1}{2}$ IN f FOR HANDLING AND POSTAGE (SUBJECT TO A MINIMUM CHARGE £0.15) AND 10%, OF THE TOTAL VALUE FOR VAT.

FULL WAVE SILICON BRIDGE
RECTIFIERS 1 B 100 M 10
100 pi.jíg 10 AMPS EPOXY ENCAPSULATED CHARGING RECTIFIERS.

AT A SPECIAL PRICE OF 23.50 .
PHOTO EMISSIVE DEVICES

OCP71.	$20 \cdot 90$	BPX25	21.00
ORP12.	20.50	$0 \mathrm{OP9} 0$	21.10
ORP60.	20.50	ORP93	21.00
ORP61	20.32		
Photocells			
90 AG	22.40	90 AV	22.50
90CG	22.40	90 CV	22.40

SOLID STATE LIGET EMITTNG
 DIODES MV10B

T018 outline. Brightness 500 FT-L at 50 mA . Forward voltage. 1.65 to 2 V . Dlode gives bright red plnpoint of 0.170 in . PRICE 10.85.

																		$\begin{gathered} s \\ \text { PCF200 } \\ 0.75 \end{gathered}$		$\left\|\begin{array}{cc} \text { PY801 } & 0^{*} \cdot 50 \\ 0 \end{array}\right\|$	$\text { UBLI } \begin{array}{ll} 0.70 \end{array}$	
0.48	5W4GT 0-55	$\begin{aligned} & 6 \mathrm{BX} \times \quad 0.25 \\ & 6 \mathrm{BX} 7 \mathrm{GT} \end{aligned}$		FULIEY							FIRST QUALITY							PCF201	0-75	PZ30 0 0-38	UBL21	0.70
OA4G 1.00	6x8 0.70																	PCF80	1-00	QQV02-6	UC92	0.45
$\mathrm{OB}^{\mathrm{OB}}{ }^{0.40}$	5Y 3GT 0.45	${ }_{68 \mathrm{BZ}} 6$	0.45	GUARANTEED														PCFF80	0.50 0.50	QQV03-10	UCC85	0.45
$\begin{array}{ll}\text { B3 } & 0.70 \\ \text { C2 } & 1.00\end{array}$	$\begin{array}{ll} 5 Z 3 & 0.75 \\ 5 Z 4 \mathrm{~B} & 0.45 \end{array}$	6C4 6CBSA	0.35															PCF88		-1.25	UCF80	0.70
$\begin{array}{ll} \\ \mathrm{C} 3 & 1.00 \\ 0.40\end{array}$	$\begin{aligned} & 5 \mathrm{Z4G} \\ & 6 / 30 \mathrm{~L} 2 \\ & 0.45 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 6 \mathrm{CBSA} \\ & 6 \mathrm{CB} 6 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 0.40 \end{aligned}$				\square				VALVES							Cr	0.75	$3-20 \mathrm{~A}$	UCH21	$0 \cdot 80$
$1 \begin{array}{ll}13 & 0.45\end{array}$	6 ASB 0	6						\triangle BRAND										C		QS83/3 $\begin{aligned} & \text { O.05 } \\ & 0.50\end{aligned}$	UCE8	70
$\begin{array}{ll}\text { AASGT } \\ 1 \mathrm{ABE} & 0.45 \\ 0.50\end{array}$	$\begin{array}{ll}\text { 6AB4 } & 0.45 \\ 6 \text { 6.7 } 7 & 0.50\end{array}$	8CO7	1.30 0.60																. 70	QU37 6.50	UCL81	0.60
183GT 0.45	6aF4a $0 \cdot 60$	${ }^{6} \mathrm{CH} 6$	0.60	68A7 0.45	12AV6 0.45	$30 \mathrm{FL12} 1 \cdot 10$	725A 95.00	CL4	7.50	EB91	0.22	ECLI 82	0.35	EL822	50	EF94	0.45	PCL81	0.50	V03	UCL82	- 8.65
$1{ }^{1050} 0.45$	6AG5 0.25	6 C		0.80	12AV7 0.70	30 FL 140.90	$805 \quad 11.00$	CL33	50		0.60	ECL83	0.70	ELLs0	0.85	HK90	0.50		0.35	QY3-125		0.65 0.88
1649 T 0.80	6AG7	6 CL 8	0.80	$\begin{array}{lll}8897 & 0.45\end{array}$	X4GTB	$30 \mathrm{~L} 1 \quad 0.40$	$807 \quad 0.50$	CY31	0.50	EBC41	65	ECL84	0.55	Em71	80	HL23	0.80	PCLE84	0.65 0.45	00	UF11	0.68 0.80
$1 \mathrm{G6GT} 0.60$	6AH6 0.60	6CU6		68470	0.70	$30 \mathrm{L15} 50.95$	812A 3.50	DAF91	0.30	EBC81	0.33	ECL85	0.55 0.40	EM80	0.45	HL23DD		PCL88	0.45 0.50	QY4-250A	UF4i	0.60 0.88
1H5GT 0.55	6AJ88 0.30	6 CW 4	0.70	$6 \mathrm{SS} 7 \quad 0.50$	12 AX 70.33	30 L 17 0.85	$813 \quad 4.00$	DAF92	0.75	EBC90	0.38	ECL86		EM84	0.35	HL42D		PCL86		14.50	UF42	
$1 \mathrm{L4} 0.25$	6AK5 0.40	${ }^{6 C Y 5}$		68K7	12AY7 0.75	$\begin{array}{ll}30 \mathrm{P} 13 & 0.80\end{array}$	$829 \mathrm{~B} \quad 4.00$	DAF96	0.50	EBC91	0.40			EM85		HL+20	0.70	PCLA8		100A	UF43	0.65
1N5GT 0.55	$\begin{array}{ll}\text { 6AK6 } & 0.60 \\ 6 \mathrm{AL} 3 & 0.43\end{array}$	${ }_{6 \mathrm{CY} 7}$	0.75	68L7GT	12B4A 0.85	${ }_{30 \mathrm{Pl1}}^{3} 10.05$	833A 17.00	DC90	60	EBF80	0.40 0.40	EF9	3.20 0.90	EM87	${ }_{0}^{1.70}$	HL82	$0 \cdot 60$	PCL200		18.50	UF80	0.35
$\begin{array}{lll}124 & 0.50\end{array}$	6AL5 02	${ }^{\text {6Da }}$ - 6	0.80	68N7GT ${ }^{0.45}$	$\begin{array}{ll}\text { 12BA6 } & 0.45 \\ \text { 12BA7 } & 0.80\end{array}$	${ }^{30 \mathrm{PLL}}$ 30PL13 1.95	$\begin{array}{ll}837 & 1.00 \\ 866 & 1.00\end{array}$	DF92	- 25	EBF89	0.32	EF36	0.60	EN10	6.00	HL94	0.60	PCL8	$1 \cdot 10$	$0 \cdot 60$	UP85	
1250.45	6AMb 0.37	6DE7	0.70	0.	12BE6 0.80	30PL14 1-25	$884 \quad 0.75$	DF96	0.50	EBL21	0.60	EF37A	0.85	EN11	5.00	KT8	2.50	PCL801	10.95	${ }_{0} 0.85$	UF89	0.40 0.85
184	6AN8 0.60	6DK6	$0 \cdot 60$	Q7 0.60	12BH7 0.50	30PL15 1.25	$927 \quad 4.00$	DH76	0.50	EBL31	1-50	EF40	0.50	EN32	${ }^{1.50}$	KT36	${ }^{1.20}$	PD ${ }^{\text {P }}$		RL18 00.50	UL41	0.68 0.48
185	6AQ5	${ }^{60} 9$	0.7	${ }^{68 R} 70.50$	12BY7 $0 \cdot 65$	${ }^{3585} 50.65$	$9314 \quad 5.00$	${ }^{\text {DH81 }}$	0.70	EC53	0.50	EF41	0.85 0.70	EN9	0.40 0.40	KT45	1.70 2.00	PEN		$8130 \quad 1.75$	UM4	0.48 0.60
1T5GT 0.50	${ }_{6}^{61}$	6D8	- 0.70	188	$\begin{array}{ll}12 \mathrm{C} & 0.40 \\ 12 \mathrm{EI}\end{array}$	${ }_{35}^{35}$	$\begin{array}{ll}953 & 0.40 \\ 991 & 0.50\end{array}$	DK 40	${ }_{0}^{0.65}$	EC8	0.60	EF80	0.2	EY80	0.75	KT86	$2 \cdot 35$		0.70	${ }^{\text {S1 }}$	UM84	0.80
0.40	6ARE 0-65	6EA8		AUGGT 0.70	$12 \mathrm{El4} 4 \cdot 30$	$\begin{array}{ll}35 \mathrm{~W} & 4 \\ 0.40\end{array}$	4378 2.00	DK91	0.45	8	0.80	EF83	$0 \cdot 60$	EY81	0.40	KT71	0.80	PEN		$\begin{array}{ll}\text { SP2 } & 0.85 \\ \mathbf{3 P 4} & 0.70\end{array}$	UUS	0
1050.75	6AR11	6EH7	0	${ }^{605} 0.75$	$12 \mathrm{H} 6 \quad 0 \cdot 35$	$35 \mathrm{Z3} 00.75$	$4687 \quad 2.90$	DK92	0.70	9	$0 \cdot 35$	EF85	0.35	EY83	0.55	${ }^{\text {KT }} 76$				$\begin{array}{ll}\text { 3P61 } & 0.75\end{array}$		
${ }_{1 \times 2}^{19} 0$	${ }^{\text {6as5 }} 0.0 .50$	${ }_{6}^{6 E J} 7$	0.35	6U8A 0.48	$12.55 \mathrm{GT} 0 \cdot 35$	$35 \mathrm{Z4G} \quad 0 \cdot 40$	${ }_{58514} 18.00$	DK96	0.60	EC92	0.45	EF88	${ }_{0}^{0.3}$	EY84	0.80 0.40	KT7	${ }_{8}^{1.25}$			TP12 0.80	UY41	${ }_{0} 1.48$
$\begin{array}{ll}1 \mathrm{X} 2 \mathrm{~B} & 0.55 \\ 2 \mathrm{~A} 3 & 0.50\end{array}$	6A86 $\quad 0.45$	6EW	70	6GT 0.45	12J7GT0.60	$36 \mathrm{Z5GT} 0.70$	55575.60	DL66	${ }^{1} .25$	${ }_{\text {EC80 }}^{\text {EC83 }}$	${ }^{0.65}$	${ }_{\text {EF91 }}$	0.37	EY87	0.43	ME91	0.65		0.75	TP25	UY82	0.50
3.00	6AT6 0.38	${ }_{6}{ }^{6} 6$	0.45	0.40	12 K 51.00	${ }_{50 \mathrm{~A}}$	$\begin{array}{ll}56 \% 1 & 0.68 \\ 5781 & 0.70\end{array}$	DL91.	${ }_{0} .30$	ECC34	0.50	EF92	0.35	EY88	0.43	ME140		PEN	0.60	TT21	UY85	
$2 \mathrm{C} 26 \mathrm{~A} 0 \cdot 60$	baUbgta	$6 \mathrm{Fl1}$		0.65	0	5085 00.70	5763 0.80	DL92	0.40	ECC40	0.70	EF93	0.28	EZ35	0.45		1.30	PE		${ }_{\text {TY }}$		
2 C 40	1.25	${ }^{6} 13$	0.50	8Y6G 0.80		50 C 50.60	579612.00	DL93	0.45	ECC70	1-25	EF9	$0 \cdot 30$	EZ40	0.50	MH4			0.76		${ }^{\text {VP }}$	0.75 1.00
${ }_{2}^{2051}$		${ }^{6 F 14}$	0.70	$\begin{array}{ll}674 & 0.50\end{array}$	0.4	50CD6G	5814 A	DL95	0.60	ECC81	0.40	EF95	0.40 0.25	${ }_{\text {EZ880 }}^{\text {EZ41 }}$	0.75 0.28					U18/20 0.75	VP76	1.00
2 CW 40	TA		0.65	$\begin{array}{ll}\text { 7B5 } & 0.75\end{array}$	12 ECC 70.45	1.20	$5842 \quad 3.00$	DL96	0.55	ECC82	$0 \cdot 3$	EF96	0.65	EZ881	$\begin{aligned} & 0.28 \\ & 0.28 \end{aligned}$	PEN/				U19 4 -50	VR76	
	0.00	17	75	786	12 SG 70.45	50EH5 0.88	$6072 \quad 0.90$	DM770	${ }^{0.60}$	ECC83	0.33	EF97	0.65 0.75	${ }_{\text {E2890 }}^{\text {ER81 }}$	0.28 0.40				$\begin{array}{r} 3 D D \\ 0.75 \end{array}$	U20 0.76		
${ }_{2}{ }^{2} 24$	6AV6 $6 A W 8 A$ 0.650	${ }_{6}^{6 F}$	0.50 0.30	${ }^{787}{ }^{\text {788W }}$ - 0.70			$\begin{array}{ll}6080 & 1.75 \\ 6146 & 1.60\end{array}$	DM71	0.55	${ }_{\text {ECC }}$	0.30 0.40		${ }_{0} .30$	FG17	5.50	MU12/		PF86	0.70	$\begin{array}{ll}\text { U25 } & 0.85\end{array}$		0.40
2X2 0.60	6AX4GTB	${ }_{6} \mathrm{~F}^{23}$		${ }_{7 F 7} 1.00$	12SL7GT	52 KU	$6146 \pm \quad 2 \cdot 00$	DY86	$0 \cdot 35$	ECC8		EF184	0.35	FW4/50			0.75	PF818	1.00	$\begin{array}{ll}\text { U26 } & 0.85 \\ \mathrm{U} 31 & 0.70\end{array}$		
$3{ }^{34} 4$	0.70	6 F 24	0.80	$\begin{array}{ll}7 \mathrm{Z} 4 & 0.75\end{array}$	0.55	$53 \mathrm{KU} \quad 0.75$	6146B $2 \cdot 50$	DY87	0.36	ECC88	0.40	EF804	1-25		0.75	N7	1.80	PFL20				
$\begin{array}{ll}3 \mathbf{4} 5 & 0.75 \\ 3 \mathbf{3} 28 & 3.00\end{array}$	$6 \mathrm{AX5GT}$	${ }^{6525}$		10 C 2	12SN7GT	$75 \mathrm{Bl} \quad 0.50$	$6360 \quad 1 \cdot 25$	E80CC		ECC89	0.50	EF811	1.00 0.80			N8P1				U50 0.45	vu39	
31.60 .35	6B4G 1.00	${ }_{6}{ }^{6}$		$\begin{array}{ll}10 \mathrm{D} 1 & 0.60 \\ 10 \mathrm{D} 2 & 0.55\end{array}$	0.55 0.50	$\begin{array}{ll}750 & 0.50 \\ 80 & 0.80\end{array}$	6883 692 0.70 0.7	${ }_{\text {ESOF }}$	1.35	${ }_{\text {ECC189 }}$	0.30	EF814	0.80	GC10	4.50	B		PL38	0.65	$\begin{array}{ll}\text { U52 } & 0.40 \\ 0.40\end{array}$	vull	0.75
3D21A 3.50	,	6GK	0.80	$\begin{array}{ll}10 \mathrm{~F} 1 & 0.75\end{array}$	$\begin{array}{ll}12887 & 0.50\end{array}$	${ }_{83} 1$	69392.25	E83F	1.10	ECC200		EH90	0.50	GN4	1.50		40	PL81	0.50	$\begin{array}{ll}\text { U76 } & 0.40 \\ \text { U78 } & 0.40\end{array}$	VO120	1.00
0.	6B8G 0.30	6 J 4	0.80	10 Fg 0.85	12 X 40.50	85 A2 0.55	$7025 \quad 0.50$	E84L	0.80		1.50	EK32	$0^{0.60}$	GR10m	1.50	${ }^{\text {PC88 }}$	$0 \cdot 60$	${ }_{\text {PL82 }}$	0.45	$\begin{array}{ll}\text { U191 } & 0.75\end{array}$	W72	
3 ESGT 0 0.	6 BAB	6 JJ	0	$10 \mathrm{Fl} 8 \quad 0.60$	20DI 0.60	85 A 3080	$\begin{array}{ll}7199 & 0.85\end{array}$	${ }^{\text {E 86C }}$	1.90	ECC807	1.00	EK90	0.32 0.60	GS10C	8.60	${ }_{\text {PC8 }}$		${ }_{\text {PL884 }}$	0.40	U201 0.50	$\times 65$	
$\begin{array}{ll}4 & 0.40\end{array}$	${ }^{68 \mathrm{BF} 6}$	${ }^{6}$ 6J6	$0 \cdot 30$	$\begin{array}{ll}10 \mathrm{Ll} \\ 10 \mathrm{LD} 11 & 0.60 \\ 0.70\end{array}$	$\begin{array}{ll}20 \mathrm{~L} 1 & 0.70 \\ 1.10\end{array}$	90AG $2 \cdot 40$ 90 av 2.50 90	$\begin{array}{ll}7360 & 3.00 \\ 7651 & 2.00\end{array}$	${ }_{\text {E88CC }}$			1.50	EIL12	1.00	G810H	4-50	PC96	045	PL302	.	$\begin{array}{ll}\mathrm{U} 281 & 0.55\end{array}$	$\times 66$	0.60
4-125	8BH6 $\quad 0.75$	8K6G	0.75	10P13 0.75	20P1 0.50	90C1 0.75	76914100	E88CC/	01	ECF80	0.35	EL34	0.50	GS12D	8.00	PC97	0.50	PL504	0.75	$\begin{array}{ll}\mathrm{U} 282 & 0.55\end{array}$	X76M	60
4-250A	6BJ6 0.55	6 K 7	0.43	11D3 0.60	20 P 30.60	$\begin{array}{ll}90 \mathrm{CG} & 2.40\end{array}$	78950		1.10	ECF82	0.35	EL35	0.50	G837X	4.00	PC900	0.4	PL508	0	5	${ }^{\mathrm{XCl11}}$	60
14.50	8BK4B 1.25	6K8G	0.45	11150	20P4 1.10	90CV 2.40	$\begin{array}{ll}9002 & 0.45\end{array}$	E90CC	0.45	ECF88	0.70	${ }_{\text {EL3 }}$ EL37	0.60 1.70	GU50	3.00 3.00	${ }_{\text {PCC84 }}$	0.40	PL509		U403 $0 \cdot 70$	${ }^{\text {XC15 }}$	
4-400A	6BK7A 0.75	6K89	0.50	${ }^{11 \mathrm{E} 2} 84.00$	${ }_{20 \mathrm{~Pb}}{ }^{\text {20,20 }}$	$108 \mathrm{Cl} \mathrm{l}^{10.40}$	9003	E91H		ECF200					3.00 0.70	$\begin{aligned} & \text { PCC85 } \\ & \text { PCC8B } \end{aligned}$	0.55	PLL 80	${ }_{0}^{0.70}$	$\begin{array}{lll}\text { U404 } & 0.70\end{array}$	${ }^{1} \mathrm{C} 23$	0.50 0.80
16.50	1.	$\begin{aligned} & 6 K 23 \\ & 6 \mathrm{~K} 25 \end{aligned}$	0.75	$\begin{array}{ll}11 \mathrm{ES} & 4.80 \\ 12 \mathrm{AB} & 0.70\end{array}$	${ }^{2516 G T ~}{ }_{0.50}$	$\begin{array}{ll}150 \mathrm{~B} 2 & 0.70 \\ 150\end{array}$	$\begin{array}{ll}\text { A1834 } \\ \text { A2900 } & 0.85 \\ 3.00\end{array}$	E180 E182CC				EL41	0.55	GZ30	0.45	PCC89	0.50	PM84	0-85	U801	XC25	0.40
4THA 0.80	BBN6 ${ }_{0}^{1.6}$	$\begin{aligned} & 6 \mathrm{~K} 25 \\ & 6 \mathrm{~L} 7 \end{aligned}$	0.7 0.4	$\begin{array}{ll}12 A B X & 0.70 \\ 12 A C 6\end{array} 0.60$	0.50 0.35	${ }_{150 \mathrm{Cl}}^{150 \mathrm{C}}$	A2900 ${ }^{\text {A }}$ (290	E18			0.70	E1. 83	0.50	G231	0.40	PCC18	0.60	PY31	0.35	UABC80		
5AR4 0.60	6BQ5 0.25	${ }_{6 L 18}$	0.50	12AC6 60.60	$25 Z 6$ GT0.70	$\begin{array}{ll}150 \mathrm{C} 4 & 0.65\end{array}$	AC/HL/DD	E183CC				EL84	0.26	GZ32	0.50	PCC800	0.95	PY33	$0 \cdot 63$	0.40		2.00
5B/254M	6BQ6GTB	6LID20	0.50	12AH79T	$30 \mathrm{A5} 50.60$	$305 \quad 0.75$	0.70	E810F			1.65	ELB5	0.43	OZ33	0.75	PCC80	0.85	PY80	0	UAF41 0.70	270	
2.80	0.80	6M11	1.50	0.4	30AE3 0.40	310A 1-75	TH1	EA50	0.25	ECH42	0.75	EL86	0.40	GZ34	0.60	PCE8				UAF42 0.60		
5B255M 3.20	6BQ7A 0.55	${ }^{6 N 7} 8$	0.56	12ALL5 0.65	$\begin{array}{ll}30 \mathrm{Cl} & 0.30\end{array}$	3114	0.50			ECH81	$0 \cdot 30$	EL90	0.42	HA		,		PY82		UB41 0 -85	2719	0.25 0.30
$\begin{array}{lll}5 \mathrm{CP1} & 5.00\end{array}$	$\begin{array}{ll}\text { 6BR7 } & 0.60 \\ 6 \mathrm{BR8} & 0.75\end{array}$	$\begin{aligned} & 6 \mathrm{P} 28 \\ & 6 \mathrm{Q} 7 \end{aligned}$	0.85 0.50	12AQ5 0.50	$\begin{array}{ll}30 \mathrm{C} 15 & 1.00 \\ 30 \mathrm{C} 17 & 1.10\end{array}$		$\begin{array}{ll}\text { AZ31 } & 0.55 \\ \text { BT5 } & 9.00\end{array}$	EAF42		ECH83	0.45	EL91	0.40		0.55	POF82		PY83 PY88		UBC41 0.55	27849	0.90
5 D 21.600	$\begin{array}{ll}\text { 6B87 } & 1.35\end{array}$	6 R 7	${ }_{0} 0.55$	$\begin{array}{ll}12 A T 7 & 0.40 \\ 12 A T\end{array}$	$\begin{array}{ll}30 \mathrm{C} 17 & 1.10 \\ 30 \mathrm{Cl} & 0.90\end{array}$	729A 715 8.00	C1166 2800	EAF801		ECH84	0.45	EL95	0.35 1.15	HBC90		PCF\% ${ }^{\text {P6 }}$	0.80 0.80			$\begin{array}{ll}\text { URC81 } \\ \text { UBF80 } & 0.45 \\ 0.40\end{array}$		
5R4GY 0.75	6BW6 0.90	66^{2}	0.40	12AU6 0.45	30 F 51	$715 \mathrm{C} \quad 6.00$	CBL1 0.90		0.60	ECL80	0.5	El360	1.15	BCs		PCF88	1.80 1.10			UBF80		2.00 1.85
0.40	6BW7	6S4A	0.70	0	$30 \mathrm{FL1} 0$	723A/B 7	CBL31 1.0	Eb34	0.25	ECL8		El82		HF93		F87	1.10	PY800		UBF89 ${ }^{\text {0- }}$	\%803U	1.85

1A8029 1000 p.i.v.., $1.5 \mathrm{~A}, 1$ surge 125 A . RAB310AF 1000 p.i.v., 1.5A, I surge 40A

RA 508 AF 960 p.i.v., $6 \mathrm{~A}, \mathrm{I}$ surge 100 A . | 20.30 |
| :--- |
| ± 0.35 |
| 20.40 |

HIGH CURRENT THYRISTORS BTX $47-1000 \mathrm{R} ; 1000 \mathrm{~V} 11.5 \mathrm{~A}$.
22.00
22.50 BTX47-1200R; 1200V 11.5A.
$\$ 2.50$

SLLICON POWER RECTIFIERS
Wire Ended

BY101 450 p.i.v. 1.1A. .	.		.	20-16
BY106 800 p.i.v. 1.1A...	.	\cdots	\cdots	20.20
BY126 650 p.i.v. 1A.	$20 \cdot 10$
BY127 1250 p.i.w. 1A.	..	\cdots	..	20.12
Stud Mounted				
KD202B 50 p.i.v. 1A.	\cdots	.	\cdots	80.15
KD202A 50 p.i.v. 3A.	.	.	\cdots	20.25
KD202G 100 p.l.v. 1A...	.	\cdots	\cdots	20.15
KD202V 100 p.i.v. 3A.	\ldots	.	.	
KD202E 200 p.t.v. 1A...	\cdots	\cdots	\cdots	80.20
KD202D 200 p.i.v. 3A...	,	..	\cdots	
ZENER DIODES				
1 watt 5\%, series BZX61: 7.5 to 68 V . .. $£ 0.20$				
2 watts 5\%, series BZX70: 10 tp 27V. .. 20.25				
5 watts 10%, series D816: 22 to 47V. .. ${ }^{\text {40.35 }}$				
5 watts 10\%, serles D817: 56 to 100V. . $\quad 30.35$				
8 watts 10%, series D815:	to 1		.	80.35

[^13]
APPOINTMENTS VACANT

Advertisements accepted up to 12 p.m. Thursday, June 7th for the juling available. Racal Group of Companies are the responsibility of a central organisation based in Wokingham, Berkshire.

An opportunity now exists for an additional Technical Copywriter to join a team involved in the preparation of data sheets, brochures, articles and advertisements for advanced radio communication equipment.

Applicants must have a sound electronics background with a genuine interest in modern radio communications. Previous writing experience, while preferable, is not essential as full in-house training can be provided.

The work is varied, exciting and progressive, as would be expected of a young growth company whose annual turnover is now in excess of $£ 25,000,000$. Own car required for which mileage allowance is payable.

If your experience is compatible with our requirements, this could be your chance to join a dynamic publicity organisation.

Communicate with Racal

Please apply in writing, énclosing brief details of qualifications, experience and present salary to : L. A. Jemmett, Personnel Manager, Racal Group Services Limited, The Elms, Broad Street, Wokingham, Berks.

Middlesex Polytechnic at Hornsey

Technical Assistant

[^14]
AUDIO-VISUAL TECHNICIAN

to be responsible for the repair and malintenance of our expanding range of audio and projection control equipment in the Hire and Presentation Departments.
Electrosonic Ltd, are responsible for the design, manufacture and hire of complex electronic units and systems in the sound, light ing. projection and control fields.
We offer the opportunity to work In a youns expanding and rewarding environment,
Whilst qualifications are desirable, preferably H.N.C., careful consideration will be given to practical experience, although it is unlikely that suitable applicants will be under 26 years of age.
Please write stating qualifications, age, experience and salary expected to :

The Personnel Officer,
ELECTROSONIC LIMITED,
815 Woolwich Road, London, SE7 8LT

AUDIO PRODUCTS PRODUCTION; TEST; INSPECTION

Thorn Consumer Electronics are one of Europe's largest manufacturers of unit audio equipment and a continued increase in demand for our products, both at home and abroad. creates staff opportunities at all levels of the production, test and inspection functions.

Applications are invited for a wide range of positions from trainee technical and supervisory through to qualified senior management levels. The vacancies occur on any of three sites situated in Essex.,

Experience and qualifications required will depend on the level of enquiry but senior appointments will be offered to applicants conversant with high volume flow line production. test and inspection methods in the radio/hi fi audio equipment field. Alternatively, applicants capable of team motivation and sound administration in the electronics industry should also apply.

Written applications, setting out career details to date and current salary level to:-

The Personnel Manager,
 Thorn Consumer Electronics Ltd., 62/70 Fowler Road,
 Hainault,
 Ilford,
 Essex.

Granada Television

Electronic Engineers for Operational Television

Expansion has created further vacancies at the TV Centre in Manchester for electronic engineers to work in ell espects of Granada's broadcasting operations, covering studio vision, videotape, telecine, transmission switching and maintenance of sound and vision equipment.

Vacancies exist at all levels from 1 st year Engineer to Substantive Grade (6th year) Engineer at salaries between $£ 1992$ and £2944 per annum. Entry point will depend on experience. Candidates who lack experience in broadcast engineering will need a minimum of two years experience in communications engineering and preferably an ONC or equivalent. Shift work, including weekends. Generous Granade Group pension and life assurance benefits. Four weeks holiday,

Applications, stating full details of education and experience to:
Robert Connell Granada Television MANCHESTER M60 9EA

TECHNICIAN VACANCIES

Senior Laboratory Technicians at Research Department, Kingswood Warren, Surrey. (Ref: 73.E 4039)/WW

The work will involve field strength measurement and planning work associated with the development of the sound and television transmitter networks. Candidates should have a good knowledge of basic electronic circuits and of radio propagation theory, and preferably be qualified to O.N.C. or an equivalent level. Following a brief period of training, they will be expected to work with a minimum of supervision. Applicants must be prepared to travel and work for periods anywhere in the United Kingdom, including working some weekends. Starting salary in the range $£ 1908$ to $£ 2118$ rising by annual increments of $£ 105$ to $£ 2433$ p.a. Inexperienced candidates may initially be appointed at a lower grade and salary.

Laboratory Technicians at Equipment Department, Chiswick, London W.4. (Ref: 73.E.2098)/WW

Work will involve the checking and alignment of new electronic systems which are being made for the colour television and radio services. Applicants should have some knowledge of basic electronic circuits and be able readily to familiarise themselves with the test techniques employed on audio and video equipment. After gaining experience, Laboratory Technicians are encouraged to apply for vacancies which occur from time to time for Senior Laboratory Technicians. Starting salary £1674 to $£ 1860$ p.a., rising by annual increments of $£ 93$ to $£ 2139$ p.a. for Laboratory Technicians. Senior Laboratory Technicians rise to a maximum salary of $£ 2433$.

Receiver Technician at Equipment Department, Balham, London, S.W.12. (Ref: 73.E.4040)/WW

Duties include the overhaul, maintenance and installation of colour television and stereo sound receivers which are used for the critical appraisal of technical quality and programme content. Candidates should have a good general scientific education and have or be studying for an appropriate technical qualification. They must have had considerable experience in radio and television receiver servicing and be physically fit and be capable of undertaking roof work. Candidates must possess a current driving licence. Starting salary in the range $£ 1674$ to $£ 1860$ rising by annual increments of $£ 93$ to $£ 2139$. There are opportunities for progression to a higher grade with a roof salary of £2433.

[^15]
HER MAJESTY'S GOVERNMENT COMMUNICATIONS CENTRE HANSLOPE PARK, MILTON KEYNES, MK19 7BH

has vacancies in the following fields of work
(a) Microwaves.
(b) HF Communications.
(c) VHF/UHF Communications.
(d) Acoustics.
(e) General Electronic Circuit Design.
(f) Operational Analysis. For these posts applicants should be experienced scientists/engineers who have moved into Operational Analysis rather than the inverse.

Most of the posts are at Hanslope Park but some will be in the London Area.
Appointments will be made within the grades of Scientific Officer, Higher Scientific Officer and Senior Scientific Officer in accordance with the following definitions:

SCIENTIFIC OFFICER

Applicants should be not more than 27 years of age and should have one of the following qualifications:
(a) A degree in a scientific or engineering subject.
(b) Degree-standard membership of a Professional Institution.
(c) A higher National Certificate or Higher National Diploma in a scientific or engineering subject.
(d) A qualification equivalent to (c) above. Salary Scales: $£ 1206-£ 2043$ with the entry point determined by qualifications and experience.

HIGHER

 SCIENTIFIC OFFICERApplicants should be under 30 years of age but this requirement may be waived if special qualifications or experience can be offered. Formal qualifications are the same as for Scientific Officer above but in addition the following experience is required:
(a) Applicants with 1 st or 2 nd class honours degrees-at least 2 years postgraduate experience.
(b) Applicants with other qualificationsat least 5 years post qualification experience.
Salary Scale: $£ 1946$ - $£ 2515$ with entry point dependent upon experience.

SENIOR
 SCIENTIFIC OFFICER

Applicants should be at least 25 and under 32 years of age, although the upper age limit may be waived if experience of special value can be offered.
A 1st or 2 nd class honours degree with at least 4 years post-graduate experience is the normal requirement for this grade although applicants with the other qualifications given above may be considered if they have had at least 7 years appropriate experience.
Salary Scale: £2464-£3483. Entry will normally be at the minimum of the scale but applicants with experience of special value may be entered above the minimum.

Applications stating the field of work and grade required should be made to:

ADMINISTRATION OFFICER,

The Polytechnic was established in 1972 as an autonomous institution controlled by a Board of Governors and financed by the Hongkong Government through the Universities and Polytechnic Grants Committee. A six year period of expansion is planned from an existing Technical College with 1.800 full-time students to the equivalent of 8,000 full-time and 20.000 part-time students.

Applications are invited from candidates with extensive teaching and industrial experience for appointment as

SUMLOCK COMPTOMETER LTO. ANITA

ELECTRONIC DESK CALCULATORS PROGRAMMABLE CALCULATORS VISIBLE RECORD COMPUTORS PERIPHERALS

There are vacancies in our Field Service Organisation for Engineers to service the above range of equipment installed in London and the Home Counties.

Applications are invited from :-

Head of Department of Electronic Engineering

to be responsible for the development of full-time and parttime courses up to final professional level.

SALARY not less than HK\$6,750 per month (approximately $£ 6.338$ p.a.). Appoilutments on contract, with 25% gratuity for not less than 4 y aars in the first instance with probability of transfer to superannuabu service. Subsidised furnished flats. Free passages, including dipendants, on appointment and overseas leave.

Application forms and further information from the Appointments Officer. Council for Technical Education and Training for Overseas Countries (TETOC), 35/37 Grosvenor Gardens, London, SW1W OBS quoting ref: TET/HP/WW. Closing date for receipt of applications 22nd June 1973.

- Electronic Engineers qualified to Intermediate City \& Guilds Certificate or equivalent standard and
- Electro/Mechanical Engineers experienced in Triumph/Adler and/or IBM input/output typewriters, readers and punches.

Excellent training facilities and first class conditions of employment.
For further information please contact :-

Administration Manager,

Sumlock Comptometer Ltd.,
Anita House,
Rockingham Road,
Uxbridge,
Middlesex.
Tel: 89-51522

wauld vau rome nshare for $2,2,300$ a year?

As a Radio Operator with the Post Office Maritime Service you can continue your career ashore in an interesting and expandingservice. And earn over $£ 2,000$ a year, including compulsory pension contributions, at 25 years of age working only a 41 -hour week of shift duties -with overtime this could rise to £2,300 and possibly more.

Post Office Radio Operators benefit from a shorter pay scale than sea-going officers. You have good opportunities for promotion to positions earning basic salaries of up to $£ 3,290$, and prospects of further advancement into Post Office Senior

Management.
To apply you need to be 21 or over and to hold a 1st class or General Certificate issued by the MPT or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

If you would like to know more, please write to the Inspector of Wireless Telegraphy, Post Office, IMTR/WTS1.1.3, Union House, St. Martin's-le-Grand, London EC1A 1AR. L48

SPANISH COMMUNICAIIONS EQUIPMENT MANUFACTURER

Applications are invited from qualified design engineers specialized on:
a) Ground/Air Communications
b) TV Colour Transmitters
c) Side Band Transmitters

At least 5 years experience desirable. Company located in Madrid. Salary open.

Send resumé to:

NORTRON

Fernando el Católico, 63
Madrid 15
SPAIN

Timefor VHF/UHF Testers to start going places!

Like Cambridge or Haverhill. Why? Just consider. What are the chances you'll be doing more or less the same as now in 18 months/2 years? Nil - if you join Pye Telecom! You'll have learned a lot - and be ready to start going places in a more sophisticated field like systems design/development.
Which is simply why Pye Telecom are always after more Testers!
Pay and benefits include a great many relocation allowances including temporary accommodation. At Haverhill, you may get housing assistance through the local Council too.
So it's well worth looking further into this chance to accumulate substantial experience, to move up fast with the U.K. leaders in the UHF/VHF radio communications field - and to live in either of two exceptionally attractive locations. Detail your background (formal qualifications not essential, experience is) in your letter to:
Mrs. Audrey Darkin, Pye Telecommunications Ltd., Cambridge Works, Elizabeth Ray, Cambridge CB4 1DW or
Mrs. Cath Dawe, Pye Telecommunications Ltd., Colne Valley Road, Haverhill, Suffolk.

MARCONI INSTRUMENTS LIMITED

ELECTRONIC TECHNICIANS

are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Test Technicians. Senior Test Technicians or Technician Engineers according to experience and qualifications. Our servicing and production programme, geared to our recognised export achievement, provides employment combined with prospects of advancement. not only within these grades but into other technical and supervisory posts within the Company at Luton and St. Albans.

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assist ance with removal may also be given in appropriate cases. Please write or telephone, quoting reference WW 177 for application form to

Mr. M. Leavens, Works Manager Telephone: Luton 33866, or MrP Elsip. Personnel Officer Marconi Instruments Ltd Longacres. St. Albans. Herts Telephone: St. Albans 59292
Member of GEC-Marconi Electronics

Engineers and Technicians

For Cable TV and Aerial Systems

The Telecommunications Division of EMI Sound and Vision Equipment Ltd., the largest British exporters of Cable-TV Equipment and major U.K. suppliers of transmitting aerial equipment requires additional engineers to meet the demands of its expanding business.

In the field of broadband UHF \& VHF active and passive devices we require all grades of development \& test engineers and technicians. Applicants should have some knowledge of transistor circuits at these frequencies and a degree or equivalent qualification will be necessary for senior positions.

In the field of Aerial Systems we are seeking engineers with knowledge of transmission line techniques to join the development and project teams engaged in U.K. and overseas UHF \& VHF

Transmitting Aerial projects. Preference will be given to engineers willing to climb mast structures and be free to travel in U.K. and abroad for short periods.

Good salary-related to qualifications and ability will be paid. Assistance in re-location and good pension scheme.

We will arrange an interview to suit you. Please write or telephone: C. W. T. Mott, Chief Recruitment Officer, EMI Limited, 135 Blyth Rd., Hayes, Middlesex.
Tel. or-573 3888, Ext. 3099.
EMI

International laders in Electronics, Records and Entertainment.

The NEVE GROUP OF COMPANIES specialise in the design, manufacture and specialise in the design, manufacture and
sale of sound control equipment for the sale of sound control equipment for the
recording, broadcasting, television and recording, broadcasting, television and
film industries. The product has an film industries. The product has an international reputation and is an acknowledged leader for quality, reliability and flexibility.
In order to meet the needs of our full and steadily growing order book we need additional personnel in the following categories :

SALES ENGINEERS
 SERVICE/INSTALLATION ENGINEERS
 PROJECT ENGINEERS TEST ENGINEERS

Applicants for the above vacancies should be suitably qualified in electronics and preference will be given to those who have had experience in the audio in dustry, or who are knowledgeable and keenly interested in the audio field.
Working conditions are excellent and the modern factory has a pleasant rural setting in the village of Melbourn, on the Al0 between Cambridge and Royston
Apply to: Mrs. J. P. Wythe, Personnel Manager, The Neve Group of Companies, Melbourn, Royston, Herts Tel: Royston 60776.

Telesonic Marine Limited

Radio-Telephone SSB. D.F. F. 3.? Radar, Auto-Pilots (on boats) mean anything to you?
If so you live near London, you can drive, you can work on your own, you are the
MARINE FIELD ENGINEER

we are looking for

Apply TELESONIC MARINE LIMITED 243 Euston Road, London, NWI 2BT 01-387 7467/8

DESIGN DRAUGHTSMEN

Electrical and Instrumentation and Control TBA Industrial Products Limited require an Electrical Design Draughtsman and an Electrical Detail Draughtsman with a minimum H.N.C. and O.N.C.
respectively, who have practical and technical ex. respectively, who have practical and technical ex-
perience in the field of industrial and electrical disperibution and control. The work involves the de-
tribut sign and detaling respectively, of electrical controls on a wide range of special purpose machines, pro. cesses and related services, including lighting within the company's factories. Cost estimation and participation in commissioning of installations is also involved. The successful applicants will preferably have served a recognised apprenticeship and will be responsible to a Senior Design
Engineer.

Instrumentation and Control Design Draughtsman
Applicants should have a minimum H.N.C. in an appropriate subject with at least 3 years experience in the design of both electronic and pneu-
matic industrial process control systems. The work matic industrial process control systems. The work
involves preparation of designs and drawings for involves preparation of designs and drawings for the construction and installation of new systems and supervision of detail draughtsmen. He will assist wations and with anvestigational work using both data logging and conventional recording equipment.
Salaries for the above positions will be commensurate with age, qualifications and experience Scheme, 26 days holiday per year and recreational facilities.

Applications should be addressed to:-
Mr. R. Law, Assistant Manager, Personnel Department, TBA Industrial Products Ltd., P.O. Box 40 , ROCHDALE. OL12 7EQ. Lancs.

Electronics

in

Medicine

A technical assistant is required in the Medical Electronics Department, St. Thomas' Hospital. Applicants should be less than 26 years of age, and have some experience in electronics and workshop practice. Duties will include construction and testing experimental electronics equipment and servicing existing apparatus. Salary will be in the range of $£ 1,206$ - $£ 2.043$ plus £175 L.W., point of entry dependent upon experience. This is a medical school appointment but applicants should write in the first instance to the

> Personnel Officer, 79 York Road, London, S.E.

12668

Electro-Medical Service Department

 requires
ENGINEERS

for testing and servicing electronic apparatus. Applicants should be aged 20-30, and should be of O.N.C. standard.

Apply in first instance in writing to:SIEREX LTD.,
Electro-Medical Department, Heron House, Wembley Hill Road, Wembley, Middlesex, HA9 8BZ

VICTORIA HOSPITAL, BLACKPOOL
CHIEF
PHYSIOLOGICAL MEASUREMENT TECHNICIAN (CARDIOLOGY),
required at this modern acute hospital of 566 beds which is a sub-regional cardiac centre. There is a staff of 5 excluding the Chief Technician. In addition to providing an E.C.G. service to the wards and out-patients clinics, the work includes cardiac catheterisation, open-heart surgery, coronary care and an out-patient pacemaker clinic. The salary scale is $£ 1,656$ per annum rising to $£ 2,076$ per annum. Applications in writing giving the names of two referees to the Hospital Secretary.

ELECTRONICS TECHNICIANS

South Africa

The Departmen of Audiology at the Tygerberg Hospital, Tierulei, Cape Town, now has vacancies for the following qualified personnel:

SENIOR TECHNICIAN

$\mathfrak{£} 2395 \times \mathfrak{f 8 5}-\mathbf{£ 2 7 3 7}$ approx + annual vacation savings bonus
with a minimum of 4 years training and at least 3 years appropriate experience. A degree. H.N.C. or other academic qualification is desirable but candidates with exceptional experience in Audiology and Acoustics may apply.

TECHNICIAN

$£ 1300-£ 1368 \times £ 85-£ 2395$ approx + annual vacation savings bonus
with a minimum of 4 years appropriate training.
Both positions call for a good background in electronics. both theoretical and practical and a knowledge of acoustic measurements and techniques. Preference will be given to candidates with experience in the Audiological field who are conversant with the installation, calibration and maintenance of Audiological and allied equipment.

The successful applicant for the senior post will take charge of a new, fully equipped electronics workshop which functions in co-operation with electrical, mechanical and other workshops in the hospital, under the control of the Senior Hospital Engineer. He will also be responsible for the maintenance, calibration and, where necessary. the installation of a wide range of equipinent. Other duties will include the development of new equipment and research work in the Audiological /Acoustics fields.

Applications must be made, in duplicate, on the prescribed form. Staff 23, which is obtainable from the Chief Migration Officer, South African Embassy. Trafalgar Square. London WC2N 5DP, and should be forwarded as follows: (a) Senior Technician; to the Director of Hospital Services, P.O. Box 2060, Cape Town, South Africa. (b) Technician; to the Medical Superintendent of the hospital concerned

Applications must please be received by 31 May 1973.

RADIO OFFICERS

\(\left.\begin{array}{l}PO

YOU

PMG 1

PMG 11

MPT

2 YEARS QPERATING EXPERIENCE\end{array}\right\}\)| POSSESSION OF ONE OF IHESE |
| :--- |
| QUALIFIES YOU FOR CONSIOERATION |
| FOR A RADIO OFFICER POST WITH THE |
| COMPOSITE SIGNALS ORGANISATION |

On satisfactory completion of a 7-month specialist training course. successful applicants are paid on scale rising to $£ 2.365$ p.a. commencing salary according to age - 25 years and over $£ 1.664$ p.a During training salary also by age, 25 and over E 1.238 p.a. with free accommodation

The future holds good opportunities for established status. service overseas and promotion.
Training courses commence at intervals throughout the year. Earliest possible application advised.
Application only from British-born UK residents up to 35 years of age 40 years if exceptionally well qualified) will be considered.

Full details from:
Recruitment Officer (TRO.2.)
Government Communications Headquarters

Electronics Ingineers

for today's career using tomorrow's fechnology.

As a Field Engineer with ICL, Europe's premier computer company, you can build yourself a rewarding and profitable career, with excellent prospects
We start you off with a paid training course of up to six months that adds the necessary computer knowledge to your electronics experience. You learn how to use computers, deal with their operational problems, and maintain them and keep them running smoothly

Then you go out into the field--to consolidate your training and become a complete professional working unsupervised, with the most sophisticated equipment in the best possible conditions. And you'll be highly involved with our customersright up to top management. Often, you will be the principal day-to-day contact.

The money is really attractive. You can pick up 40% extra for any work done after 6 pm and before 8 am-without even having to do any overtime

Aged over 21, you'll need to have HNC or $C \& G$ in electronic engineering, coupled with some ind 1 'strial experience, or a Forces training in electronics. We will also be looking for important personal qualities like tact, adaptability, resourcefulness.

There are opportunities of starting with us in several areas in the UK. Get the full details now by completing and returning this coupon today

To: Mr A E Turner, International Computers Limited, To: Mr A E Turner, International Computers Limited,
85/91 Upper Richmond Road, Putney, London SW 152 TQ Please send me an application form for job openings Please send me an app.
Name
Address

International Computers

SECTIONAL ENGINEER EAST AFRICAN COMMUNITY

* Salary up to $£ 2860$
* Low taxation
* 24 Month tour
* Appointment Grant
£ 100/£200 normally payable*
* 25% Gratuity on total salary drawn
* Subsidised accommodation
* Education Allowances
* Free family passages * Holiday visit passages

Required for the maintenance and installation of equipment in the Telecommunications Section of the Meteorological Department, including facsimile, SSBs, transmitters, teetype and converters, meteorological radars and switching equipment.
Candidates must possess either:-
(i) A Degree in Electrical Engineering with specialisation in Electronics plus one year's practical experience.
(ii) City and Guild "C" passes in Mathematics, Telecommunications, Principles and Radio plus five years' practical experience
Apply to:

cribun agents

M. Division, 4, Millbank, London. SW1P 3JD for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/730367/WF

Wandsworth
Technical College
IBEA

Wandsworth $\begin{gathered}\text { High } \\ \text { SW18 } \\ \text { 2PP }\end{gathered}$
TELEVISION STUDIO Senior
Technician
up to $£ 1,209$
to be responsible for the general management of a large new well equipped Television Studio and Control Room
He will be assisted by a Technician and will be responsible to the Vice-Principal. The Senior Technician will be required to become fully conversant with all the equipment and to assist users to operate it. Post Ref. IST.

Technician
 up to $£ 1,788$

Senjor Technician-on a scale within the range $£ 1,629$ - $£ 2,019$ with starting point and maximum dependant on qualifications and experience (plus $£ 90$ London Allowance). Technician-on a scale within the range £1,248-£1,698 with starting point and maximum dependant on age, qualifications and experience (plus $£ 90$ London Allowance). Conditions include a basic $36 \frac{1}{3}$ hours per week with possibly some evening and overtime Furk
Senior details and application form from the Semior Administrative Officer; completed publication of this advertisement. Post Ref. 2T. [2659

TECHNICIAN TRAINEE

ntelligent young man $16-18$ yrs old offered opportunity to
train ultimately as a Publlc Address and Sound Pecording Engineer. Must be of smart appearance and live with parents In Central London area. Write for Interview to

Managing Director,
GRIFFITHS HANSEN (RECORDINGS) LTD
12, Balderton Street, London WIY 1 TF

BROMLEY GROUP HOSPITAL MANAGEMENT COMMITTEE

ELECTRONICS MAINTENANCE TECHNCIAN

for the acceptance, testing and maintenance of a variety of electronic control and communication
Salary $\mathbb{£ 1 8 9 6}$ by increments to $\mathbf{£ 2 4 4 8}$
Applicants must hold, as a minimum, O.N.C. or O.N.D, in Electronics or Light Current Electrical Engineering or the City \& Guilds Final Certificate in Telecommunications Engineering. Practical experience in industry or the armed services is essential; hospital experience an advantage but training with which mileage is payable, essential which mileage is payable, essential.
Applications, with details of training, experience, age, etc., and naming two referees, to
reach the Group Engineer "Bassetts", Starts reach the Group Engineer Bassetts Hill Road, Farnborough, Kent (Tel: Farnborough 53333), not later than 31st May. 1973.

No accommodation available for married applicants.
[2655

Production Engineer

We are well established with our Leak and Wharfedale range of equipment as quality brand leaders in the expanding hi-fi market. We shall be introducing shortly a new range of products into our Electronics factory and now wish to appoint an additional Production Engineer. He will liaise between the Development and Production departments, and his job will be to construct document and test electronic prototypes according to specifications and thus ensure that production standards are maintained throughout the pre-production phase.
This is a most interesting position and would be suitable for a man aged 25-40 with qualifications in Electronics and who has a sound knowledge of production methods and experience of similar work on radio and amplifier manufacture and testing.
Terms and conditions of employment are most attractive and prospects are good with this expanding company.
Please write to:
Mr. J. S. Bateman
Personnel Manager
Rank Radio International
Bradford Road
Idie
Bradford BD 10 8SF
RANK RADIO INTEANATIONAL
[2605

A leading Radio Manufacturer in JOHANNESBURG, SOUTH AFRICA requires several experienced

FACTORY SUPERVISORS

AS WELL AS

RADIO TECHNICIANS

with good knowledge of Radio \& Tape Recording circuits
For further information, please apply in writing, giving details of qualifications and résumé of career to:-

> MR. G. MOSER, Factory Manager,
> TELTRON INDUSTRIES (PTY.) LTD., 11, RICHARD STREET, SELBY, JOHANNESBURG, REPUBLIC OF SOUTH AFRICA.

WORK AS A

RADIO TECHNICIAN

ATTACHED TO SCOTLAND YARD

You'd be based at one of the Metropolitan Police Wireless Stations.
Your job would be to maintain the portable VHF 2-way radios, tape recorders, radio transmitters and other electronic equipment which the Metropolitan Police must use to do their work efficiently.
We require a technical qualification such as the City \& Guilds Intermediate (telecommunications) or equivalent.
Salary scale :
$£ 1,415$ to $£ 1,715$ according to age from 21 to 25 , to a maximum £2,025 p.a. (plus a London Allowance of $£ 175$ or $£ 90$ p.a.).
Promotion to Telecommunications Technical Officer will bring you more.

For details of this worthwhile and unusual job write to: Metropolitan Police, Room 733 (RT/WW), New Scotland Yard, Broadway, London SW1H OBG or telephone 01-230 3122 (24 hour service).

ELECTRONIC ENGINEERS

CBS Records, part of the largest recorded music company in the world, are continuing their expansion into the pre-recorded tape market with their manufacture of cassettes and cartridges at Aylesbury, Bucks.

We now require Engineers with electro-mechanical or electronic experience for the maintenance of various types of machinery in the tape audio field.
There is an attractive salary, four weeks holiday, a good canteen, social club and pension scheme
Interested? Please write or phone R. J. Black, Personnel Officer. for an interview.

CHAMBERLAIN ROAD, AYLESBURY. TELEPHONE : AYLESBURY 84331

ELECTRONICS ENGINEER

Required at the central research laboratories of the Wiggins Teape Group of Papermakers in Beaconsfield, Bucks. Applicants should be aged $21-27$ and qualified to H.N.C. or equivalent. To work on the development of Electronic systems and instruments both digital and analogue.
A further post for a Technician is also available. Candidates should be aged 18-20 with O.N.C. (Engineering). Previous experience in an electronics laboratory desinable but applicants with an amateur interest considered.
Staff appointments with excellent salaries and conditions.
Please apply to: The Head of Personnel Service, Wiggins Teape Research and Development Ltd., Butler's Court, Beaconsfield, Bucks.

```
NORTH BIRMINGHAM \& DISTRICT HOSPITAL MANAGEMENT COMMITTE GOOD HOPE DISTRICT GENERAL
```


MEDICAL PHYSICS

TECHNICIAN II

A post is being created at the above hospital within the Group Engineer's Department to electro-medical, laboratory and other scientific equipment.
The successful candidate will possess an HNC. HND in electronics or equivalent. preferably with hospital experience.
Ability to organise servicing programmes for Electronic equipment, supervise activities of other technical personnel together with ability to liaise with medical staff is essential. reliabitity, capability and safety of all electro reliability, capabilaty and safety of all electromepartment there will be opportunities for promotion. Some travelling between centre and peripheral hospitals will be involved, travelling allowances will be paid at standard rates.
Basic salary commences at $\{1.911$ increasing by eight increments to $£ 2,508 \mathrm{p.a}$.

Application form, job specification and conditions of service may be obtained from: | The Group Engineer, Holly Lodge, St. Michael's |
| :--- |
| Hospitali Lichfield. |
| 2652 |

[2652

HEARING AID SERVICE MECHANIC
 (experienced) required. Top rates. Tel:- Mr. Allen $01-5492611$

[2854

DESIGN ENGINEER

20-30 year old General Electronic Design Engineer with some experience in Antenna design required for small expanding Company.
Must be capable of working by himself.
He should be willing to assist on test supervision and occasional visits to customers.
Please apply to:
Mr. D. A. R. Wallace - Managing Director, Antenna Specialists UK Limited,
Thame Industrial Estate, Bandet Way.
Thame, Oxfordshire. Tel: Thame 3621/2

Wandsworth Technical College

up to $£ 2,109$

To be responsible to the Vive-Principle for the Closed Circuit T.V. system in the College (including operation, use and lst line maintenance of equipment, and also for organisVisual Equipment in the College. He will be assisted by a Technician.
This is a new job, full of interest and requires a person with sufficient technical background but also with clear thinking and organising ability. Post Ref. 3ST.

Technician
 up to $£ 1,788$

to assist the Senior Technician and to have a prime interest in Aural-Visual Aids. Post Ref.
Salary:
Senior Technician-on a seale within the range $£ 1,629-£ 2,019$ with starting point and maximum dependant on qualifications and experience (plus $£ 90$ London Allowance) Technician-on a scale within the range $£ 1,248-£ 1,698$ with starting point and maximum dependant on age, qualifications experience (plus $\begin{aligned} & \text { Conditions include a basic } 36^{\frac{3}{3}} \text { hours per }\end{aligned}$ week with possibly some evening and overtime work.
Further details and application form from the Senior Administrative Officer; completed forms to be returned within' 2 weeks of publication of this advertisement. Please quote post Ref. 4T . [2660

SOUND ENGINEER

Experienced man with high standards required in the Public Address and Sound Recording Field, capable of organising and operating temporary P.A. Systems covering Conferences etc.-Knowledge of Electronics, tape edlting and recording desirable.
Smart Appearance Essentlal-Salary negotiableFull written details to:
GRIFFITHS HANSEN (Recordings) LTD.
12, Balderton Street, London WIY ITF
[2640

VIDEO ENGINEER

to take charge of operation and maintenance of B \& W CCTV system Apply:
P. Sowerby. Tel: 01-240 5354

LONDON BOROUGH OF BRENT Willesden College of Technology
Danzll Road, London, N.W. 10 2XD DEPARTMENT OF ELECTRICAL ENGINEERING Required
LECTURER GRADE I to teach on C \& G Radio, Television and Electronic Technicians and Mechanics courses. Applicants should be well qualified and have appropriate practical experience. SALARY: LI- $£ 1,618$ to $£ 2,643$. incl London Allowance with increments for London Allowance with incre.
qualifications and experience.
Fualifications and experience. from the Registrar, to be returned within two weeks from the appearance of the advertisement.

Test Engineers enjoy more variety at Redifion

. . and one of the best-equipped electronics test departments in Britain.

You'll be working on a vast variety of solid-state devices, including - high-power transmitters, communications receivers, military pack-sets, MF beacons, mobile HF, marine VHF and teleprinter terminal equipment.
The job involves a wide area of testing operations-from GO/NO GO sub-assembly testing through to fault-diagnosis on complex systems.

Interesting work with one of the U.K. leaders in electronics expertise-located in London.
To qualify, you'll need to be thoroughly experienced in the field-with considerable knowledge of semi-conductor or logic circuitry.

We pay well-from $£ 1,450$ to over $£ 2,200$ p.a. (depending on experience) for a $37 \frac{1}{4}$ hour week with ample opportunities for overtime. Additional benefits include an excellent company pension scheme and generous sickness allowances.

Please write, including full details of your past experience, to :

Chief of Test

Redifon Telecommunications Lid.,
Broomhill Road, Wandsworth, SW18 4JO.

ASSISTANT ENGINEERS Grade I/II BOTSWANA

 up to $£ 3070-\mid-$ Gratuity* Gratuity 25% of total baslc salary
\star Subsidised accommodation
$\star 24 / 36$ month tour
- Appointment Grant $£ 100-£ 200$
normally payable
\star Low taxation
\star Hollday Visit Passages * Education Allowances \star Free family passages

Required by the POSTS AND TELECOMMUNICATIONS Department tolnstall open-wire carrier and VFT systems, VHF/UHF and microwave systems up to 300 channel capacity at 2 GHz .

Candidates for the GRADE \| post must possess the City and Guilds Telecommunications Final Certificate and for the GRADE 11 post, the Intermediate Certificate, or equivalent quallications. For either post candidates must be aged $25 / 45$ years and have hao five years' experlence, excluding training, of the above mentioned equlpment. Experience of single channel HF and VHF systems is also required.

Apply to:
M. Division, 4, Millbank, London, SWIP 3JD for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/720470/WF

ELECTRONICS ENGINEER

International company requires Electronic Field Service Engineer to install and maintain analogue computers supplying a service to the colour printing industry. Applicants must have sound electronic knowledge, fault finding experience and mechanical aptitude. Successful applicants will receive training in U.K. on completion of which they will be expected to take up residence in northern Italy (or Holland) although travel in Western Europe can be anticipated.

BOX WW 2693

Technician c.c.т.v.

Required to take charge of small studio in West London for industrial training productions using 1" VTR's.
The Company operates a fully equipped training centre and distributes video tape programmes to regional and overseas branches.
The successful applicant will be required to produce programmes with the assistance of instructional staff and carry out maintenance of equipment.
Some travel is involved and salary is negotiable. Experience in C.C.T.V. or allied fields preferred. Interest or experience in photographic work also an advantage.

EXPERIENCED REPAIR AND CALIBRATION ENGINEERS EARN UP TO £2,700 P.A. ATCSL
Our premium rates for nonstandard working hours make these earnings possible without excessive overtime.
We are one of the leading Repair and Calibration Companies with a consistently good growth record and in the process of still further expansion.
We offer stimulating and rewarding work to Engineers with a sound knowledge of circuitry and with some experience of one or more types of equipment in the range d.c. to microwaves, analogue or digital.
To find out more about job opportunities in our Company contact
The Technical Manager,
CALIBRATION SYSTEMS LTD.
Blackwater Station Estate, Camberley, Surrey Tel. Camberley 28121

SPANISH COMMUNCATIONS EQUIPMENT MANUFACTURER

Has an immediate opening for
An experienced Design and Devel-
opment Engineer for Audio Equip-
ment, including Highly Professional
Mixing Desks, Compressors, Limit-
ers, Audio Monitoring Amplifiers,
etc. Systems Experience is desirable.

Send resumé to:
NORTRON
Fernando el Católico, 63
Madrid 15
SPAIN transmitters up to 10 KW is required to lead a small tearn engaged in new designs. Minimum qualifications will be salary negotiable up to $£ 3,500$ p.a. Assistance will be given with re-location expenses. Company is situated South West of London. Apply in writing to Box No. WW 2629
A UDIO ELECTRONICS DESIGNER required to equipment for the development of sound recording equipment for the nim and television industry. Previous experience in this tield an advantage. For P.A.G. Films Ltd., 492 Kingston Road Powell-Evans, S.W.20. Tel. 01-542' 1171. Kingston Road, London,
[2601 EXPERIENCED ENGINEER offers field service Efacilities London area covering Electronic and Electro-mechanical equipment,-Box No. WW2676. HI-FI AUDIO ENGINEERS. We require experiHenced Junior and Seniors and will pay top rates to get them. Tell us about your abilities. 01-437 4607.
PART-TIME INSTRUMENT SALES. Expanding company seeks part-time Sales Engineers. High commission paid. Write with full particulars to Box No. WW 2637.
T PLEVISION COLOUR SERVICE ENGINEER. Private Firm Glorious Devon. Some audio experience advantage. Pleasant Flat available suit young couple, no chiddren.-Full particulars, Colles, 14. Wolborough Street. Newton Abbot. [2683

A UTO
UTOMATIC, audio frequency response plotter. 'Radiometer" B.F.O. and chart recorder. Excellent condition, $£ 450$. Heath 1018 U oscilloscope, as new, £40. Roband 0-50V 2 Amp power supply transistorised, £20. Box No. WW 2621 .
A ARVAK ELECTRONICS, 3-channel sound-light A converters, £18. Strobes, £16. Rainbow Strobes,
$£ 132 .-12 A$
Grove
Grove, £132.-12A Bruce Grove, N17 6RA. 01-808 9096 BUILD IT in a DEWBOX quality plastic cabinet ${ }^{2} 2$ in. $x{ }^{2 \frac{1}{2}}$ in. x any length. D.E.W. Ltd. (W.), Ringwood Rd., Fernwood, Dorset. S.A.E. for leaflet. Drite now-Right now.
BRAND NEW FIBRE GLASS P.C. BOARD specified sizes, up to $12 \times$ ustom cut to your own quality FLAME RETARDANT approved NEMA grade $1 / 16 \mathrm{in}$. single sided one ounce copper at just 5 grade $1 / 16 i n$. single sided one ounce copper at just offer a first-class service of a quality branded product. Minimum order value 50 p . Add $10 \mathrm{p} p$. and p. per sq. foot. (10p min.). Send CWO (not stamps) to S. \& D. Systems Ltd., The Ridgeway, Trading Estate Iver, Bucks., SLO 9HWW. SERYICE SPA [2663 COLOUR, UHF " and TV SERVICE SPARES. Colour and UHF lists available on request. Varicap/Varactor UHF Tuners ELC1043 £4.50, VHF Varicap Tuners for Band 1 and Band 3 £2.85, Salvaged Varicap Tuners £1.50, incl. Connection Data, P/P 25p. Delay Lincs DL20 £3.50, DL1 £1.50, P/P 25p. Luminance Delay Line $50 \mathrm{p} . \quad$ P/P 15 p .
PHILIPS G6 Convergence Control PHILIPS G6 Convergence Control Panel, Single Standard, 16 Controls Switches, etc. £5.00, P/P 25p. £6.50, P/P 30p. G8 Decoder Panels, almost com$\begin{array}{ll}\text { 26.50, P/P } \\ \text { plete, incl. } I / \mathrm{C}, ~ £ 2.50, ~ \mathrm{P} / \mathrm{P} & 25 \mathrm{p} \text {. BUSH CTV25 }\end{array}$ surplus Time Base Units, Frame, Line \& EHT, £3.95, P/P 80p. GEC 2040 surplus Panels suitable for parts, Decoder $£ 3.50$, Time Base $£ 1.00$, RGB $£ 1.00$, \mathbf{P} / \mathbf{P} $\mathbf{2 5 p}$. Mullard type colour Scan Coils plus latest convergence coils for electronic control of static convergence $£ 5.25, \mathrm{P} / \mathrm{P}$ 35p. PYE CT70 Colour LOPT assy. incl. EHT output and focus control $£ 3.50, \mathbf{P} / \mathbf{P} 35 \mathrm{p}$. Integrated transistd. decoder unit incl. circuits $£ 1.25$, P/P 10p. Colour Crt. Base 25p, P/P 25p. B9D valve bases for colour valves and PL500 series 10 p , P/P 5 p .
UHF tuners transistd. $£ 2.85$, incl. slow motion drive, indicator £3.95. 6 Position transistd. push button $£ 4.95$ UHF/VHF basic integrated tuner $£ 3.25$. Cyldon UHF valve tuners $£ 1.50$; all tuners \mathbf{P} / P 25p. Transistd. 25p. MURPHY $600 / 700$ series complete UHF conversion kits incl. tuner, drive assy., 625 IF amplifier, 7 valves, accessories housed in cabinet plinth assembly £7.50 P/P 50p. SOBELL/GEC 405/625 Dual standard
 panel $f 100^{30 p}$. THORN 850 Dual standard time base panel £1.00 P/P 30p. PHILIPS 625 IF amplifier panel incl. cct. £1.00 P/P 25p. VHF turret tuners AT7650 GEC 2010 etc. $£ 2.50$, PYE miniature increment 51 for 110 to 830 , Pam and Invicta $£ 1.95$, A.B. miniature with UHF injection suitable KB, Baird, Ferguson, 75 p Ekco, Ferranti, Plessey push button with UHF injection $£ 1.00$, all tuners $\mathbf{P} / \mathbf{P} 25 \mathrm{p}$. New fireball tuners Ferguson, HMV, Marconi £1.90 P/P 25p. Large selection LOPTs, 'Scan coils, FOPTs available for most popular makes. PYE/LABGEAR transistd. Masthead UHF Booster $£ 5,25$, Power unit $£ 4.25 \mathrm{P} / \mathrm{P} 25 \mathrm{p}$, or setback battery operated UHF booster £4.25 P/P 25p. LONDON, N.W. 6 (No. 28, 59, 159 Buses or W LONDON, N.W. 6 (No. 28, 59, 159 Buses or W. 64 GOLDERS MANOR DRIVE LONDON NWER 64 GOLDERS MANOR DRIVE, LONDON, N.W. 11. CLOSED CIRCUIT TV CAMERA Shiba HV-14 C and Video Tape Recorder Shibaden SY 700 E in nearly new condition for sale together $£ 300$. Contact Jersey Central 24809 or write Arkay Music 16 York Street, St. Helier, Jersey. [2610 COSSOR 1035 Double Beam Scope, good condition, C space needed hence bargain at $£ 12.50$.-.'Phone $01-4498409$ after 6.30 p.m.
[2679 C componen WANTED with outlet for high quality urplus tuners, components, transistors, caps, resistors, tuners, audio from W. German sources, could be House, Thames Street, Sunbury on Thames, Midd House, Thames Street, Sunbury on Thames, Middx.

ELECTRONICS TECHNICIAN

We require a specialist to join a small team engaged on the design and construction of transistorised and integrated-circuit equipment for electro-hydraulic control. In order to contribute to our product development effort the successful candidate will
either: have a minimum of 3 years experience covering the use of electronic instrumentation, and circuit checking, together with formal instruction, such as City \& Guilds, or training with the Armed Forces.
or: be qualified to HNC level and have approximately 1 year's experience in this field.
We are a major international company offering secure employment and good working conditions. Benefits include 4 weeks annual vacation. subsidised canteen. life assurance and pension scheme.
[2645

TECHNICIANS

FOR
PRODUCTION ENGINEERING (ELECTRICAL) DEPARTMENT
Good Remuneration \& Prospects. Preference will be given to those with experience in design, construction and maintenance of T.V. test gear.
Write with experience details to
Personnel Manager
Pye Ltd: Manufacturing Division
Oulton Works, School Lane
Lowestoft, Suffolk

TV Studio Engineer

The Road Transport Industry Training Board has in operation at its Wembley Headquarters, a 3-camera broadcast-quality colour television studio with full telecine and video recording facilities, which includes R.C.A. TR 50 and $1^{\prime \prime}$ Helical Scan systems. We now wish to appoint an experienced studio engineer to join a small team working on the production of training and educational television programmes.
The applicant should not be less than 24 years of age and have a good working knowledge of the above equipment. Salary will be negotiable depending on qualifications and experience. Three weeks' holiday, contributory pension and life assurance scheme.
Please send all relevant personal history stating how the above requirements are met and quoting reference ZH. 297 to:

T
Mrs. H. M. Brown, Personnel Manager,
Road Transport Industry Training Board,
Capitol House, Empire Way,
Wembley, Middlesex, HA9 ONC.

OFFICER COMMANDING Force Electronic Workshop Brunei

\author{

- Salary up to $£ 4500$
 $\star 12 \frac{1}{2} \%$ gratuity
 \star Tour of 24 months with prospect of renewal \star Free family passages
}
* NO INCOME TAX
\star Free accommodation
\star Education Allowances
\star School children's visit passages

Required by the ROYAL BRUNEI MALAY REGIMENT to run the air conditioned Workshop, which will include equipment repair and the implementation of a scheduled inspection and testing programme; administration of personnel under his command; part-time training of small numbers of local technicians.

Candidates, $38-45$ years, must be ex-Services, Technical Branch (e.g. R. Signals, REME) and possess at least 15 years' experience in Service Communications with a good record of man-management and administrative ability. They need possess no formal qualifications although AMBIM or equivalent, AMIEE or AMIERE would be an advantage. Previous experience of the Far East is desirable.
For further particulars you should apply, giving brief details of experience to:
M. Division, 4, Millbank, London, SWIP, quoting reference number
M2K/730414/WF.

TEST ENGINEERS

The leading U.K. manufacturer of high grade TV monitors require Test Engineers for their expanding Test Department.
Situated in the Berkshire town of Maidenhead, the Company offers pleasant working coniditions, good salaries and friendly environment.
Duties will cover the testing and trouble-shooting of monochrome and colour TV monitors together with other ancillary sophisticated TV broadcast equipment manufactured by the company. Previous experience of TV equipment would be an advantage. Please apply to:

PROWEST ELECTRONICS

Boyn Valley Road, Maidenhead, Berks.
Maidenhead 29612

ABILITY

IS THAT YOUR MIIDDLE NAME? Then come and join us at TELENG, we need you.

JUNIOR AND SENIOR ELECTRONIC DEVELOPMENT ENGINEERS

are urgently required for our expanding UHF/VHF Television Distribution Laboratory:
Write or phone for an immediate interview (which can be arranged outside normal working hours if necessary)
Mrs. V. NELSON,
Personnel \& Training ófficer,
ARISDALE, AVENUE, SOUTH OCKENDON, ESSEX
Tel. South Ockendon 3477.

Broadcast Video Tape Engineer

required for expanding company near London Airport. To have good knowledge of TV Broadcasting and use of Tele-Recording equipment would be useful. Excellent salary for man with right experience. The Company operate a length of service incremental scheme and pay London weighting allowance.

Phone: Ol-759 5432

ask for Mr. R. Hallen or write:

THE VIDTRONICS CO. (U.K.) LIMITED,
Bath Road, Harmondsworth, West Drayton, Middlesex.
D^{1} IODES SILICON RECT GLASS Iamp lou to 800PIV. Otters for 2,600 complete stock. Box
WW2597 No WW2597.
EARPHONES. ZA-Can 0842, with matching earE cushions. About 125 pairs, as new, to be sold in one lot. Buyer collects. Phone: Littler, Woodbridge (Suffolk) 2647.

ELECTRIC WIRE: 3 core rubber covered cable, E28/0076, ${ }^{4} 4.00$ per ro. 1 , plus p.\&p. 75p; 3 core pve black cable, $14 / 0076, £ 3.50$ per roll, plus p.ep. Sop; single core black pvc, 14,0076 , 60p per r31, per poll, plus, pid. 50 p ; single core pve black $14 / 36,60 \mathrm{p}$ per roll, plus p.\&p. 20p. Fhat Instrument Case Braid $5 / 16 \mathrm{in}$. wide, 50 p per roll, plus p.\&p. 20 p . (All the above in 100 yds. rolls.) Plastic (Rigid) Sheet, ABS brown 38 in . x 40 in . x 10 thick, 25p each, plus p.\&p. 10p; 1/20 hp Fracmo motor, fitted with W51 gearbox, complete with capacitor $\mathfrak{E 4 . 5 0}$ each, plus p.\&p. 50 p. Plastic sheet (grey), 54 in . wide x 100 yds . rolls, $£ 12.50$ per roll, plus $\mathrm{p} . \& \mathrm{p}$. $£ 2$ or $£ 1.00$ per 3 yds., plus p.\&p. 30 p. Broxbourne Eng. Co., Salisbury Road, Hoddesdon, Herts. $\quad 2554$ ERIE CERAMICS-PRICES $1 / 3 \mathrm{p} .10 / 25 \mathrm{p}, 100 / \mathrm{f1}$. | E Values In PF:- | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3.9, | 4 | $1.2, ~$ | 1.5, | 1.8 .8 | 2.2. |
| 4.4 | 2.5, | 2.7. | 3.3. | | | 15, $16.18,18.5,22,33,43,47,50.60,68,70$. $82,120,175,390,470.550,656,700,8220,1000$. 8200 PF. Postage 10 p . ELECTRONIC MAILORDER. Ramsbottom. Bury, Lancs. F^{R} 'S 10 in . Wave Flowsolder Machine complete 50 with Stand and Motorised conveyor $230 / 250 \vee$, 50 cycle, filled with solder. Good working condition. Clark, telephone Lodge Hill 3441, ext 34 . 2562 FOR SALE: 8 Pye Westminsters W15 and excommercial, recent, band-A $148-174 \mathrm{MHZ}$, in Aldridge, Staffs. Tel: Aldridge 51551 . ${ }^{2622}$

[2622
Glass FIBRE P.C. BOARD large supplies avail2 p per 3 sq. inches (under $1 / 16$ it). 75 p per copper 2 p per ${ }^{3}$ sq. inches (under 1 it . 75 p per sq. ft . ip per sq. inch (under 1 ft) $f 1$ per sq ft (over 1 ft). Please add 10 p per sq foot postage and pack. ing. We can cut to your size at ip per cut. Solid State Lighting, The Firs, Smallworth Lane, Garboldisham, Diss, Norfolk. LARGE Quantity test equipment. Receivers, transfor immediate disposal. S.A.E. plus 25 p, refunded for immediate disposal.S.A.E. plus

on purchase over $£ 2.00$. F. J. C. Colne Mill, Alvington, Gloucs. 2475 LABGEAR LSM 100p mobile transmitter receiver accept copies if complete urgent. Box No. 2543 WW. $\mathrm{O}^{\text {SCILLOSCOPES. Tektronix }} 515 \mathrm{~A}$. Frequency| DC to $15 \mathrm{MC}, 2$ cycles to $15 \mathrm{MC.A.C}$. Rise |
| :--- |
| time |
| 023 microselonds. 22 Calierated time bases | .2 H SEC/CM to $2 \mathrm{SEC} / \mathrm{CM}$. Sweep manifer to 04u SEC/CM. Offers. Solariron double beam C.C. 1014-2 £50. Complete with manuais. Phone Coventry 414047 atter 2.30 p.m. 2598 PRINTED Circuit Exposure Unit, 30×40, Fully $£ 900$ o.n.o. Cost $£ 1,800$ new. Ring 01-534 4123. PRINTED Circuit Board in 6 widths: 2 in., $2 \frac{1}{2}$ in. P 3 in . $3 f$ in. 4 in . and 5 in . x any length; $1 / 16$ in. single-sided fibreglass, $2 p$ per 3 sq . in. Doublesided 1 p per sq. in. \mathbf{P} \& $\mathbf{P} 5 \mathrm{p}$ per order. SAE quotations for other sizes and quantity discounts.J. Knopp, 11 Connaught Gardens, Braintree, Essex, CM7 6LY. Tel. Braintree 25254.

R EGUNNING equipment for sale. Surplus to our $\mathbf{R}^{\text {pegramme }}$ of re-equipping. Training also available in right circumstances. Box No. WW 2634
TELEVISION VALLVES PRICES any $1 / 11 \mathrm{p}, 5 / 50 \mathrm{p}$, I. 20/£1.50, 50/E3-EF80, EF183 FF184, PC97. PCC89, PCC84. PCC189, PCF80, PCF86. PCF801 PCL82, PCL85, EH90, PL36, PL504. PY81/800, PY801, ECC82. EY86. 30C 15, 30L15. PC86. PC88. And many other types. Postage 10p. ELECTRONIC MAILORDER, Ramsbottom. Bury, Lancs. 12684 VaCUUM is our speciality. Ncw and second-hand rotary pumps, diffusion outfits, accessories, coaters, etc. Silicone rubber or varnish outgassing equipment from $£ 40$. V. N. Barrett (Sales) Ltd. 1 Mayo Road, Croydon. 01-684 9917 . [24
VHF KIT $80-180 \mathrm{mHZ}$ receiver, tuner, convertor Transistorised, remarkable performance. $\mathrm{f}^{f 4}$ or s.a.e. for literature Johnssons (Radio), St. Martins
Gate, W 7 OO-ZOO MFD capacitors $25 \mathrm{~V} / \mathrm{W}$, unused, $£ 3$ per L_{200}, postage 50 p . overseas $\mathrm{f1}$. Velco Electronics.
[2623
500 VOLT 12 amp S.C.R. 2 N 3669 T.O.3, 30p 500 Crystal Filter $10,7 \mathrm{MHZ} 25 \mathrm{KHZ}$ bandwidth. £2.50. Send S.A.E. for free lisis. "Q" Services, 29 Lawford Crescent, Yateley, Camberley, Surrey. 12545 $60{ }^{\mathrm{KHz}} \mathrm{MSF}$ Rugby and 75 KHz Neuchatel Radio Receivers. Signal and Audio outputs. Small, compact units. Two available versions ± 35 and $£ 60$ Toolex, Bristol Road, Sherborne (3211), Dorset. 121 N-2 Channel J FETs type 3819 E for $\mathrm{f1}$. Full -2 spec. devices complete with circuit details for building voltmeter, timer, ohm-meter, etc. Send 10n for full list of fets and other top quality transistors available at bargain prices REDHAWK SALES LTD., 45 STATION ROAD, GERRARDS CROSS. BUCKS. MAIL ORDER ONLY. [2495 10,000 ${ }_{10}^{\text {BZY88 }} 10.000$ BC $107 / 8 / 9$ Type unmarked untested diodes. tested transistors. 1000 marked IN4007 rectifiers Offers J. FULTON. Derrymaster. Dromore Co Tyrone.

\star * ARTICLES FOR SALE

For 8 \&'s more profit

 just look at these prices!
"AGENTS FOR TOSHIBA"

TVs COLOUR TVs

9 in . DECCA $£ 110$ 25in. DECCA
9in. G.E.C. 2028 …. $\begin{array}{llll} & \text { £115 } & \text { 25in. RBM PHILIPS } & \text { £125 } \\ \text { £ } 130\end{array}$ THORN 2000 f120 251 n . THORN 2000
One month comprehensive written guarantes hese are cash and collect prices
Delivery quotations by phone.

MONO UHF

Fabulous TVs. No rubbish, from good source. Repolished cabinets. Many working, recent transistorized
models, inc. BUSH TV 148 UU, TV 166 , TV 176 ; PHILIPS style 70 and 210; PYE and EKCO 868 chassis; THORN 050 1400; G.E.C., CONCORDE from $£ 12$ each.
Valve UHF models Inc. BUSH Push bution, THORN 850 , SOBELL 1000 , etc. Prices start at $£ 5$.

UHF TUNERS

FOI FERGUSON 850, 900 chassis but adaptable for mosi
D/STD chassis f2.50 each. C.W.O. Postage Included.
Send S.A.E. for lists of tubes, TVs., valves, etc.
For England, Trade Dlsposals, 1043 Leeds Road,
For Scotland, Trade Disposals, Unit 5, Peacock Crose Industrial Estate, 32 Burnbank Road, Hamilton. (89
Tel.: Hamilton 29511/2

PPM . VU

COMPARISON EXHIBIT

Come play with sine waves, square waves, pulsed tones, music and speach feeding both types of mater.

PEAK PROGRAM METERS TO BS 4297
The most sensible way of matering sudio and avoiding distortion. Drive circuit for 1 mA L.H. zero meters
C.W. 0 . further 5% lass

Completa kit
20 ff 4 off 10 off $\begin{array}{lllll}\text { Complete kit } & £ 8.00 & £ 7.60 & £ 7.20 & £ 6.80\end{array}$ Built \& aligned $\quad £ 12.00 \quad £ 11.40$ £10.80 £10.20 Ernest Turner PPM matars. scaled -22 to +4 OR 1 to 7 Type 642. $71 \times 56 \mathrm{~mm}$ £ 9.90 : Type $643.102 \times 79 \mathrm{~mm}$ £ 11.77 .

SURREY ELECTRONICS
24 High Street, Merstham, Surrey 2662

Trantipus alantronin

M oney Back Guaranteed.
DIGital indicators 7 seg. DP 5 VV Filament type \& socket E1.45. LEO TYPE ${ }^{\prime \prime}$ " 0.9 DP 14 pin DIL $\mathrm{C2} 249.4+\mathrm{f} 2.29$ ea $6+£ 2.19$ ea $10+$ £2.15 ва. 4 DIGIT LED OH/magnitier $£$
 the isolator $\mathrm{E} 2 . \mathrm{TGS308}$ Gas/smoke detector f 1.69 UITRASONIC TRANSQUCERS f

ic digital cloch

MOS LSI chip, 28 pin. 4 or 6 digit. 12 or 24 hr at flick of switch Chip with DIL
 Photo amp only 39 p . IC DIGITAL VDITMETEA f 12 . DVM I/P MPX $\mathbf{f 6}$. Oats bookle9 39 p . 744 DIL 8 pin 28 p. $70919 p$ p. dil 29 p. 71033 p .74829 p . REGULATORS $1+45$ to $20 v$ E1.49. 723 57p. 555 TIMER 89p. ZN414 AECEIVER Farranti f1.19. Oual Pre amp £1.67. 3.5W AF AMP £1.24. STEAEO
OECOOER IC FOA FM TUNERS MC131OP $£ 2.69$. KIT $£ 3.45$.

Gates $7400 / 1 / 2 / 3 / 4 / 5 / 10 / 20 / 30 / 40 / 50$ etc 14 p 昍. 7413 27p. 7441 73p. 7447 99p. 7470.7472 28p. 7473747438 p .747560 p .7476 32p. 749059 p. 7492 67p. 748121 p 74141 99p $74190 / 91 / 92 / 93$. 740 C MOS logic in new lists. DIL. pluss/ic cass 10 mm high 18 plin 35 p.
OIL SOCKETS low/high profill $\varepsilon / 14 / 16$ pin $13 p 100+10$ p ea. SEMICON DUCTORS 25 + less 10\%. ZENERS. BZY88 400 mW 7 p . IN4001 $3 \frac{1}{2} \mathrm{p}$. IN 914 3p. 50 v 1A Bridge 23p. 2N 305540 p. BC107 Bp. BC108 8p. BC109 8p. BC147/8/9 10p. BC187/8/9 13p. BC $177 / 8 / 915$ p. BC $182 / 3 / 4$ TOn. BC212/3/4 1/p. BCY70/72 13p. $80131 / 255$ p. BFY $50 / 51 / 52$ 13p. TIS43 UJT 24p. 2N706 11p. $2 N 2369$ 12p. 2N2926 of 8p. 2 N 3053 17p. 2 N 3055 40p. $2 \mathrm{~N} 3614 \mathrm{55p}$. 2N3702/3/4 5/6/7/8/9/10/11 All 9p. FETS 2N3819 27p. 2N3823 29p. 2N3886 UHF 59p.

All DIN plugs 13 p. sockets 9 P . Vero at normal prite. DAIO PCB resist
pen 69p. Copper board $12^{\prime \prime} \times$ B $^{\prime \prime}$ SRBP 40p. FeC atchPAK 19p. All Antax irans at RRP

8 watt with difluser, ondoff switch. Fuly built $13^{3 \prime}$ long. TRIO and CODAR communications and hi Fi retailers. ELECTRONIC ORGANS impontad, futi facilities from CA7. ELECTRONIC CAR IGNITIDN KIT PW capacitor type f6.67. VAT customers MUST ADD $10 \times\left(\frac{1}{1}\right)$ to above prices
E., P\&P $8 p$ CWO to

SURPLUS BARGAINS

Cossor 1035 Oscifloscopes 620 . carr. $£ 1.50$. Aerial Tuning Unit T7180 $£ 2$. carr. 50 p . Shackman Oscilloscope Cameras type AC2/25 240 yac 50 cycles 100 va. ©8. carr. \&1. Tasco Student Microscopes with superior quality lenses at unrepeatable prices. Tasco single Objective $100 x$ with $10 x$ Price $£ 10$ p. \&p. 29p Tasco 3 Objective turret 300x. © 18 . p. \& p 29 p. AVO Electronic Meters CT38. \&18. Carr. Carr fl Oil-coled Triodac (Variac) 0.35 mp car carr. 500 watt Constant Volta f28. carr. 62 . 500 watt Constant Voltage carr 75 p . $240 / \mathrm{il} 0$ volt transformers 3 KVA £15. carr. $£ 1.50$. CT53. \&10. carr. £1. BC221 f12. carr. 61. Fracmo 240 vole motors AC $\frac{1}{2} \mathrm{hp}$. $6,000 \mathrm{rpm}$. 64.50 . carr. 37 p . Portable Gieger Counters (Contamination Meter No 1 powered by $4 \mathrm{HP7}$ batteries, very sensitive new, tested. $\mathbf{5 5 . 5 0}$. carr. 50 p . Printed Circui Kits. ©1.25. p. \& p. 21 p. Ferric Chloride 25p 1lb. packs post pp. 10ib. 2.5
Loads of surplus to clear. Large S.A.E. for list.
(Dealer offers invited)
CASEY BROS.
233-237, Boundary Road, St. Helens, Lancs. ALL PLUS V.A.T.
[2675

L.E.D.'s

* Low Cost
* Very high speed
* High Intensity wide angle visibility
* Easy panel mounting
* Compatible with IC^{\prime} 's

Price: 25 p each. Please odd 10% VAT
Minimum order value $£ 2.85$ for 10 includes
VAT, packing and carriage.
Please send C.W.O. to
Integrated Photomatrix Limited
The Grove Trading Estate, Dorchester, Dorset DTI ISY

APPOINTMENTS

3,500 BURGESS DOUBLE BREAK TWO 250 volt E 15 per 100 . 250 Bell Sets G.P.O. type 25 $\mathfrak{f 1 8 0}$ the lot. 500 Speakers Elac $5 " 3$ ohms e200 the lut. 3,600 Miniature Precision Mutor 12 volts DC 7,000 r.p.m. load 200 mA size $1 \frac{1}{2} \times 1 \mathrm{f}$, weighs 2 ozs . totally enclosed, three position switch, forward, stop self lubricating $£ 50$ per $100, ~ £ 1,440$ the 1ot. 200 G.E.C. $1 / 6$ th H.P. Motors, $230 / 250$ volts AC, single phase, t inch shaft $1 t$ inch tong, resilient base, split phase, start, induction run, fitted manual reset overload switch; $£ 5$ each or $£ 4.50$ each in lots of 50 . 350 Immersion Thermostat adjustable $40-80$ degrees F, 0/440 volt $20 \mathrm{amp}, 11$ inch stem, complete one hole fixing sheath, $£ 315$ the lot. 1,800 Thermostat Glass enclosed $2 \frac{1}{2} \times \frac{1}{2}$ inch $30 / 31$ degrees C., $£ 180$ the lot. 40 Portable Lead Acid Batteries 6 volt 125 ampere hours, metal case $16 \times 8 \times 11$ inch with handles, new, uncharged, $£ 5$ each or $£ 180$ the 10 . 56 Battery Chargers American Input $105 / 125$ volts AC , Output 12 volts 5 amps DC with circuit breaker, trickle charge, f100 the lot. 26 Battery Chargers
Westinnthouse Westinghouse Input $200 / 250$ vols AC, Output 6 control, $£ 10$ each or $£ 221$ the lot. 5 Westinghouse Three Phase Rectifier Units Output 240 volts 21 amps DC, when used with suitable iransformer, $£ 20$ each 500 Selenium Reclifiers full wave bridge 24 volts 8 amp., $£ 250$ the lot. 100,000 Selenium Rectifiers halt wave, voltage doubler, full wave bridge types, make us an offer, list ayailable. 1,600 Solenoid Operated Relays 24 volts DC, 4 make, 4 break heavy duty contacts, dust cover, $£ 800$ the lot. Many thousands of different types Ericsson G.E.C. Sealed Ralays, send for list. Prices include VAT. L. Wilkinson (Croydon) Ltd., Longley House, Longley Road,
Croydon. $01-6840236$ Croydon. 01-684 0236 COURSES
R ADIO and Radar M.P.T. and C.G.L.I. Courses. FY7 8 JZ .

[^16]W ANTED urgently Bleeper system preferably with operation transmitter for minimum one mile radius operation, to handle up to 12 bleepers. Any make
considered. Offers with full details to Ogden, Otley, Yorkshire LS2 11 HX . Tel. 094344531.
$W_{\text {and }}^{\text {ANTED, all types of communications recelvers }}$ Electronics, Ltd., Ashville Old Hall, Ashville Rd., Electronics, Lid, Ashville
London, E.11. Ley. 4986, London, E.11. Ley. ${ }^{4986}$ CAPACITY AVAMLABLE 63

PRINTED CIRCUITS, quick service, competitive prices, roller tinning, drilling etc. Short runs welcomed Jamieson's Ltd., $1-5$ Westgate, Bridlington, | YO16 4QB Yorkshire. Tel' (0262) 4738/77877. $[2633$ |
| :--- |
| $W E$ PURCHASE |

> Electronic and Telephone Equipment and Components. TOP PRICES PAID
> for your redundant and surplus stock
> T.W.C. LTD

> 147 The Broadway, London, NW9 7EA
> Telephone: 01-203 2814

CAPACITY available to the Electronic Industry Precision turned parts, engraving, milling and grinding both in metals and plastics. Limited capacity available on Mathey SP 33 JIG BORER. Write for lists of full plant capacity to C.B. Industrial Engineering Ltd., 1 Mackintosh Lane, E. 9 6AB. SCAN ELECTRONICS for design and development service. 125 London Road, North End, Ports.
mouth, Hants. Tel 61414 Mouth, Hants. Tel. 61414 . wiring, assembly ${ }^{[2512}$ $\mathbf{S}^{M A L L}$ Batch Production, wiring, assembly, to assemblies. D. \& D. Electronics, 42 Bishopsfield, Harlow, Essex
EDUCATION
CIE, AMSE, City \& Guilds, etc. Thousands of Engineering. Prospectus FREE. State subject of Engineering. Prospectus FREE. State subject of nterest: BIET (Dept. 2L BWW 16), Aldermaston

NEW GRAM AND SOUND:

 EQUIPMENTGUSGOW.-Recorders bought, sold, exchanged; cameras, etc., exchanged for recorders or vice

[^17]MURThy 820, 960 and some 802 's. Mobiles Free Servicing and Spares available, send valve. Stevenage, Herts. Tel. T, 0438 - $51132 / 55875$.

SERVICE \& REPAIRS
 B^{R}
 RISTOL AND DISTRICT. Service to Hi Fi and

 Stereo Centre equipment. Pubilic address installations. 0272421395EXPORT Agency Services - Marketing, Shipping E Banking, Documentation.-Marlow 2340 . 2677 INSTRUMENT SERVICING-Multimeters (Avo, Taylor S.E.I.), Meggers etc. Quick and competitive guaranteed repairs. V. W. \& E. Smith, 34 Hurst Mill_{6674} Lane, GLAZEBURY, Warrington. Phone Leigh $\mathbf{S}_{\text {SRATCHED TV }}$ TUBES. Our experienced polishing tubes as new again for only $£ 2.75$, plus carriage 50 p With absolute confidence sent to Retube Ltd Somercote, Louth, Lincs, or 'phone 0507-85 300 . I 30 $\mathbf{S}_{\text {wave }}$ IGNAL generators, oscilloscopes, output meters, waitmeters, frequency meters, multi-rang Ltd A shvile Oid Hall, Ashville Rd I Electronics Ley. 4986.
TRADE WORK. Have you got more work than I you can cope with. Why not send your trade work to an experienced engineer. Televisions, Tap
recorders, radiograms, etc. $363 \quad 7369$ [2573

IF quality, durability matter, consult Britain's oldes transfer service. Quality records from your suitable tapes. (Excellent tax-free fund raisers for schools. Modern studio facilities with Steinway Grand.-Sound News, 18 Blenheim Road, London, W.4. 01-995 ${ }_{26}^{1661}$

VALVES WANTED

\mathbf{W}^{E} buy new valves, transistors and clean new components, large or small quantities, all details, quotation by return.- Walton's, 55 Worcester ${ }^{\text {St }}$ [62
Wolverhampton.

MISCELLANEOUS

ALL TYPES OF P/C WORK UNDERTAKEN
Components Assembley-Etching-Artwork Soldering-Boards designed from theoretical Circults-Prototype work undertaken-quick turnround.
E. R. D. LTD.

18 Hart Road, Harlow, Essex.
Phone Waltham Cross 23538 .
Phone Waltham Cross 23538.
12609

"W.W." HI-FI KITS

* LINSLEY HOOD 15-20W AMPLIFIER

July 1970 latest and ultimate design. Our kit personally tested and approved by the designer work now available ensures simple construction of amps. and power supply.
\star BAILEY PRE-AMP (AUG. 1971)
Superbly engineered kit of this established low noise preamp. Uses RH \& LH fibreglass PCBs enabling a stereo version to be built in $8 \times 2 \frac{1}{2} \times$
$2 \frac{1}{2}$ in. or $8 \times 1 \frac{1}{2} \times 5 \frac{1}{2}$ in. Basic metalwork ex-stock. Especially recommended to drive $15-20 \mathrm{~W}$ AB amp.

AFTER-SALES SERVICE at reasonable cost.
REPRINTS of any "WW" article
at 30 p (Stamps)
DETAILED PRICE LISTS at 5p
*REFUND GUARANTEED ON ALL PARTS

SPECIAL OFFER

2N3055 30p each 4 for $£ 1$
2N3054 20p each 3 for 50p
Unmarked, Tested and Guaranteed. Post and packing 10p per order. Send S.A.E. for list of other
devices. See July 1972 advert.
PERSONAL CALLERS WELCOME-ATOUR
RETAIL SHOP NOW OPEN

A. 1 FACTORS

245, North Sherwood St. Nottingham NG1 4EO
Telephone: NottIngham (0602) 46051 Sole proprletor: Douglas de Havilland (10 a.m.-12 Midnight 7 days/week)

PRACTICAL RELAY CIRCUITS

is a comprehensive and up-to-date reference manual. by F. J. Oliver $£ 3.40$

ELECTRONICS IN MUSIC by F. C Judd. Price $£ 3.30$
TRANSMISSION SYSTEMS VOL. I by M. T. Hills. Price $£ 4.95$

MOS INTEGRATED CIRCUITS by American Micro Systems, Inc. Price $\mathbf{E 9}$
DESIGN OF MAN COMPUTER DIALOGUES by James Martin. Price £8.40
LASER THEORY by F. S. Barnes. Price Ł4
TRANSISTOR AUDIO AND RADIO CIRCUITS by Mullard. Price $\mathbf{£ 1 . 9 5}$
THE MAZDA BOOK OF PAL RECEIVER SERVICING by D. J. Seal. Price $\mathbf{E 3 . 9 5}$
ELECTRONIC PUZZLES AND GAMES by M. Mandl. Price $£ 1 \cdot 30$ WORLD RADIO AND TV HANDBOOK 73. Price $£ 3 \cdot 12$
SCR MANUAL 5th EDITION by General Electric. Price fl .65
*ALL PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS 19-21 PRAED STREET, LONDON, W2 1NP

Phone 7234185
Closed Sat. 1 p.m.

ADEXTER DIMWISTIIBH

ALLOWS COMPLETE

The DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the normal light switch. It is available as a complete "ready to install" unit or "simple to assemble" kit. Two models are available controlling up to 300 W or 600 W of all lights, except fluorescents, at mains $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$. All DEXTER DIMMASWITCH models have built-in radio interference suppression. $\quad 600$ watt $£ 3.52$ Kit form $£ 2.97$

300 watt $£ 2.97$ Kit form $£ 2.42$
All plus 12 p post and packing
Prices include VAT. Please send c.w.o. to
DEXTER \& COMPANY

PRACTICAL BOOKS

Handbook of Transistor Equivalents and Substi-
tutes, covers many 1000's of Transistors of G.B., U.S.A., Japan, etc...............................
Handbook of Simple Translstor Circuits. Radio Handbook: tells how to design, build and
operate the latest types of amateur transmitters, receivers, transceivers, amplifiers, etc. (8969p) 99 Ways to Improve your S.W. 99 Ways to Improve your Hi-Fi 99 Ways to Improve your Electronic Projects 101 Easy Ham Radio Projects t-2-3-4 Servicing Stereo Amplifiers (240 pp How to Build Speaker Enclosures Radio, T.V. \quad and Electronics Data Book
Sound and Loudspeaker Manual (96 pp) Transistor-T.V. Servicing Guide (128 ρp) 101 Q. \& A. about AM, FM and SSB. ABC's of Electronics.
ABC's of Electrical Soldering.
ABC's of Intergrated Circuits.
Colour T.V. Servicing Made Easy
Hi-Fi Projects for the Hobbyist (128 pp) Hi-Fi Stereo Servicing Guide. Practical Transistor Servicing.
and Packing
$[31$
WHEEL (WWJ)
41a Adelaide Grove, London, W12

TRAIN FOR SUCGESS WITH ICS

Study at home for a progressive post in Radio, TV \& Electronics. Expert tuition for C \& G (Telecoms Techn's Cert and Radio Amateurs') RTEB, etc. Many non-exam courses including Colour TV Servicing, Numerical Control and Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career. ICS, (Dept 734 P) Intertext House, London SW8.
[2669

Department of Applied Physics M.Sc./DIPLOMA COURSE IN ELECTRONICS
Applications are invited for piaces in the full-time -one-year M.Sc./Diploma course in Electronics commencing 1st October. 1973
Further defails may be obtained from the Academic Registrar,
UwIST, Cardiff CFi 3NU
Applications forms should be completed and returned to the College as soom as possible.

Airline Radio Technicians

We require fully-trained and highly-skilled Radio Technisians to work on the repair and overhaul of radio/radar equipment at Heathrow Airport (London). A high standard of theoretical knowledge is essential and at least 5 years' experience in radio maintenance. An approved apprenticeship is desirable.
Pay is $£ 36.74$ per week plus shift allowance.
Additional benefits include a contributory pension scheme, sports and social facilities and opportunities for holiday air travel.
Applications giving details of age and experience, quoting reference $31 / \mathrm{WW} / T S$, to:
Manager Selection Services

BOAC

PO Box 10
Heathrow Airport (London)
Hounslow, TW6 2JA

COURSES

M.Sc. Course in Electrical Engineering

Electrical Machines, Power Systems, Communication Systems, Electronic Instrumentation Systems, Control Engineering and Digital Electronic Systems, Design of Pulse and Digital Circuits and Systems,
The Course, which commences in Ccrober 1973, may be taten on a Ful! Time, Part Time, sandwich or Block Release basis, and is epen to applicants who will have graduated in Engineering or Science or who will hold equivalent qualifications, by that date. The Science Research Council has accepted the Course as suitable for the tenure of its
Advanced Course Studenrships.

Research in Electrical Engineering

Applications are also invited from similarly qualified persons who wish
to pursue a course of research leading to the Degree of M.Fhil. or Ph.D. in any of the above subjects.
Application forms and further particulars from the Head of the Department of Electrical Engineering (Ref: M.Sc. 5), The Un versity of Aston in Birmingham, BIRMINGHAM B4 7PB.

THE UNIVERSITY
OF ASTON
IN BIRMINGHAM

ELECTRONIC TEST EQUIPMENT

NEW EQUIPMENT
ALL ITEMS GUARANTEED FOR 3 MONTH unlesg otherwise b
GRESEAM LION
GFT. 15
GFT. 15
6 Digit 15 MHz TIMER/COUNTER. Using IC Billicon Planar Transistors, is capable of measu ng Frequeney, Puise Width, Reriog, Mutt Scaling Mark Space, Totalise. Complete with Handlooks. Normally soid at $£ 325.00$
OUR PRICE $£ 165 \cdot 00$

HONEYWELI.
5 Jigit Automatic Frequency TIMER/ ycled counting outputa. Complete with Handlook,
Normally sold at \& 375.00 OUR PRICE 2250.00

HONEYWELL
4 Digit MULTIMETER with print out of

d.c. and a.c. anaper
and external triggering.
Normally sold at $£ 750.00$ OUR PRICE $\mathbf{~} 485.00$
$\stackrel{\text { AVO }}{\mathrm{Mk}} \mathrm{II}$
 Trameider Analyer. Po
HEWLET-PACERRD
Bled ${ }_{\mathrm{Hghg}}^{\mathrm{Hz}} \mathrm{Frequency} \mathrm{Wave} \mathrm{Analyser}. \mathrm{Freq}$. generator. Sold with Calibration Certificate and guaranteed for 6 months
ADVANCE
TT1S
Translstor Tester. Portable. Probes and Hand-
brook supplled. WAYE BRIDGES WA YNE KERR
B701
V.F.F. Admittance Brtdge.
B901
Admittance Bridge. $50-250 \mathrm{MHz}$. R.F. Bridge. 13 kH G $\operatorname{smF}-10 \mathrm{pF}: \mathrm{L} 1 \mathrm{nH}-850 \mathrm{~m}$. $1 \mathrm{mObm}-10 \mathrm{Mohm}$: MARCONI
Universal Component Bridge. $\quad \therefore 60.00$ $\underset{522 \mathrm{~B}}{\text { HEWLTM-PACKARD }}$
${ }_{120 \mathrm{kHz}}$ Electronic Timer/Counter. $5 \mathrm{digit}$. . 45.00 VENNER
T8A3834
4 Digit 0-1-2MHz. Counter.
VOLTMETERS

ROBAND

$\underset{\text { RDV42 }}{4} \mathbf{D}$ Digit Voltmeter. 0.05%. 1-1000V in 4 ranges.
Rack mounted. LM1426
D.C. Integrating D.V.M. Scale: 9909. Accuracy: $+0.02 \%$. Range: $2.5 u \mathrm{~V}-1000 \mathrm{~V}$. Instrument 9
months old hut never used. Supplied with Thonths old hut never used. Supplied with

DAWES
 \section*{DAW 612 A

}$\begin{array}{ll}\text { True R.M.S. Voltmeter. } \\ \text { MARCOMI } & \text { £30.00 }\end{array}$
MARCONI
TF1300
Vacuum Tube Voltmeter AIRESC
Phase Meter. Dire
with Handbook and $\frac{\text { Reading }}{1 / \mathrm{p} \text { leads }} 0$.

USED EQUIPMENT

MARTIN ASSOCIATES

MYRORIAN, GREENSWARD LANE, NR. READING, BERKS. TELEPHONE ARBORFIELD CROSS 610 OR WEST FOREST 4896.
2658

HIgh Stab. $\begin{aligned} & \text { CARBON FILM RESISTORS } \\ & \text { Or } \\ & \text { IW } 5 \%-1 p, 55 p / 100, ~ \\ & 4\end{aligned}$ RESISTOR KITS 10S $2-1 \mathrm{M}$ E12 SERIES
 FREE CATALOGUE ON REQUEST FREE CATALOGUE ON REQUES
Metal FIMT W 5% 1 $1 / £ 1 / 100 ; £ 7-50 / 100$
$15 E 12$ Kit $(10 \Omega-1 \mathrm{M})$ Total of $915 £ 7-25$ C.W.O. P. \& P. 10p on orders under 85 . Overseas extra. BH COMPONENT FACTORS LTO. Dept. WW, 61 Cheddington Road, PITSTONE
Lelghton Buzzard, Beds., LU7 9AQ.

FOR SALE

New Sony CRF230 23 band FM-SW-LW-MW 48 transistor, 32 diode portable radio with FM stereo adapter, also new Sony TC330 stereo tape and cassette recorder. Write for to 17 Highlands. Way, Sandford Park, Beaulieu Road, Hythe, Hampshire
[2600
1 9in. Transcriptor Fluid Arm f 18 2 Goodman Axiom 301, 8 Ohms, $£ 10$ 3 Peerless D120FM, 12in. Coaxial, 115,000 Maxwell, 8 Ohms, FR 40 Hz , 12 watts, 65 All brand new goods surplus to requirements. P. A. HAMILTON, Templewaod House, Templewood Lane, Stoke Poges, Slough, Bucks. SL2 4AP

TV Line out-put transformers

Replacement types ex-stock.

$$
\begin{gathered}
\text { For "By-return" service, contact: } \\
\text { London: 01-948 } 3702
\end{gathered}
$$

236 Sandycombe Rd., Richmond, Surrey Tiw9 2EQ Valves, Tubes, Condensers, Reslstors, Rectiflers and put Transformers also stocked. CALLERS WELCOME

CASED AMPLIFIERS 13

$2 \times E C C 83$, EL84, EZ80 with tone and vol. controls giving about 3 watts $0 / \mathrm{p}$ into $7 \times 14 \mathrm{in}$. 3Ω speaker. In cabinet $14 \times 13 \times 9$ in. with nonstandard tape deck. Mains operated, tested, with circuit $£ 3$ ($£ 1$ up to 200 miles, $£ 1.20$ over). Special cassettes fi($25 p$). Spare heads 40 p . Ferric Chloride IIb 40p (15p). l01bs 43.50 (50 p) Wideband matching units, $72-2000$ ohms, 300 kHz 40 MHz f3. TFl44G sig, gens from $£ 12$. 650
asstd, carbon resistors $i l$
$(25 p)$. Thermocouple asstd, carbon resistors $\mathrm{ammeters,0} 0=15 \mathrm{~A}$ with shunt, 3×2 in. $f 1$ (10 p) 7 lb Bargain Parcel containing many hundreds of capacitors. resistors, switches, pots, xtals, PC capacitors. resistors, switches, pots, xtals, PC
boards etc. $\mathrm{f1.65}(35 \mathrm{p})$. 2 N 3055 35p. 741 C 28 p (T099 or 8 pin DIL). 5 MHz Xtal calibrator $£ 6$. TS127U Freq. meter 375.725 MHz 612. $8 u F / 2500 \mathrm{~V}$ caps $t 2(40 \mathrm{p})$. Freq. standard in i9in. rack containg 200 kHz Rx comparator HF Xtal osc. 100 kHz xtal osc, and multivibrator. $£ 25$. 9. amp AC voltage stabilizer by Servomex. $f 15$. Advance Voltstat, fixed and variable outputs E18. TFl168 high discrimination oscillator CARRIAGE IN BRACKETS VAT EXCIUSIVE SAE LIST GREENWELD (W3) 24 Goorhart Way W GREENWELD (W3) 24 Goodhart Way, West Wickham, Kent. Shop at: 21 Deptfo
SE8. Tel. $01-6922009$

GIEGER COUNTERS (FOR MAINSOR POIT ABLE BATTERY USE) Latest Home Office releass and protably the last of this well
known Contemination Meter No 1 , this very useful instrument is used for the measurement of Radio-Activity. Indicated on an In"ernal Mater scaled 0.3 to 10 milli Rontgens Hour, a socket is also provided for additional
sound Manitoring on Headghones This sound Manituring on Headophones This Instrument is housed in a strong light Alloy
case, placed in a carrying Haversack witt shoulder strap. Containg Haversack with held Probe. instruction Card Clus the latest plug in Vibrater Power Unit. Which uses current small Transistor Radio Banteries (14 Mallory Lang Lite RM12 or 4EvarReay HP. 7 or Equivalent makesi) for Mobile uss 50 . An Additional plup in Power Unit for Laboratory use, opeating trom $100-120$ volts or $200-250$ wolts A.C. Mains is available. Supplied Brand New in Carrnral only $£ 2.50 \mathrm{p}$ Post 25 p Headphonses (mot necessary) it required $£ 1.5$ [p. EDISWAN STABILISED POWER UNIT TYPE R1280. 2 independent adjustable outputs. (1) O-300V $150 \mathrm{~m} / \mathrm{a}$. $2270-300 \mathrm{~V} 75 \mathrm{~m} / \mathrm{a}, 2$ Squale Type Meters used, one tor each output. on additional output of 200V. plus 2 LT outputs of 6.3 V at 4 amps C.I. enciosed in Metal case made for Rack Mornting size 19in. $\times 8$ \& in $\times 17$ in $£ 15$ car. $£ 2$
REGULATED POWER SUPPLY MODEL 506. Made by All Power Transformers Ltd. output adiustable $200 / 500 \mathrm{~V}$ O.C. $350 \mathrm{~m} / \mathrm{a}$, and 6, V
at 10 amps, plus unregulated output. One square- Metert indicating Dutpul curreat and voltage, Housed in Metal Casse. made for fack Mounting. Size $1 \operatorname{Sin} \times 10_{\frac{1}{2}}^{1} \times$ 13in. Pirise f 15 , c841. f 2
EDDYSTONE COMMUNICATIONS RECEIVER 730/4, Just relaased. BFO. AF Filter. Crystal Phasing. Variable swithed Selectivit.
Crystal Callbrator etc. 15 Valves. A.C. Mains operated. Range 30 mels to 480 Ke / s over 5 Bands Rice as received from Ministry, complete in good coadititun 47. 50 p or checked and tested $£ 55$ carr. $£ 2.50$ p.

BELL AND HOWELL 16 MM SOUND PROJECTORS MODEL 631. Recent Home Office release, complete in carrying case, with Film Reels, Speaker and Lead. Mains Transtormer. in very good condition $£ 77$ 50 p carr. $\mathbf{E 2} .50 \mathrm{p}$.
ADVANCED CHASSIS MOUNTING POWER UNITS.
JOHNS RADIO
424 Bradford Road, Batley, Yorks.
Phone: Batley 7732
uncrossed Postal Orders as same

 The firm for speakers!

Loudepaker Enclowuren" boók.
All unite guaranteed now and perfect. Prompt despatch
Carriage and insurance 25p per speaker
(Tweeters and Crossovers 15p aech)
(All prlees quoted incluaive of V.A.T.)
WILMSLOW AUDIO,

Dept WW,

Swan Workn, Bank Square, Wiimslow, Cheshire SK9 IHF.

BUY AT TRADE PRICES!

Single units (1D) E1.25 per dozen size approx ($2 \frac{1}{4}$ " high $2 \frac{1}{4}$ " wide $5^{\prime \prime}$ deep) 2D $£ 2.10$ per dozen. 3D $£ 2.20$ for 8 units. 6D2 $£ 3.25$ for 8 units (230 's in 1 outer) 6D1 $£ 3.10$ for 8 units. Postage/Carriage) 35 p for orders under $£ 10$. Carriage paid for orders over £ 10 .

PLUS QUANTITY DISCOUNTS!

Orders $£ 6$ and over DEDUCT 5% in the $£$ Orders $£ 10$ and over DEDUCT $7 \frac{1}{2} \%$ in the $£$ Orders $£ 20$ and over DEDUCT 10% in the $£$ quotations for larger quantities Please add 10% V.A.T
TVITYGT) (Dept. ww6). 124 CRICKLEwooo broadway. LDNDON,N.W. 2 TEL: O1-4504844

SOLDER WITH

ONE HANDI

ANEXTRA hand solder feed

 flts most lronsWith reel of wolder 53.75 post free, c.w.o. U.K. or 1. . .e. Ieaflof ANIXTRA LTD., Chilforn Worka rear of 77178 Chiltern Viow Rod, Uxbridge, Mddx.

EXCLUSIVE OFFERS

INSTRUMENTATION TAPE RECORDERREPRODUCERS

FR-100B

FR-100
$1^{\prime \prime} 14$
14
AMPEX
FR-600 tracks 6 speeds $1^{\prime \prime} 14$
I.B.M.
${ }^{729}{ }^{1 \prime}$
7 tracks 6 speeds MINCOM
CMP-100
$4^{\prime \prime} \frac{1}{2}{ }^{\prime \prime} 1^{\prime \prime} 7$ tracks 6 speeds
E.M.I.

TD'1 ${ }_{\text {í }} 4$ tracks 7 speeds
Several other smaller Full details on request

Prices of above are from $\mathbb{1} 50$ to $£ 700$.

HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS

cabinets					
	Heigh	Widit	Depth	${ }_{\text {Ruack }} P^{\text {a }}$	
		ins inches	(n inchen		
$\mathrm{CO}^{\text {c }}$	80	${ }_{24}^{22}$	${ }_{26}^{20}$	71	212.50
${ }_{\text {OD }}$	${ }^{119}$	21	13	88	210.00
CE	89	${ }_{23}^{22}$	$2{ }_{2}$	77	214.00
	87	${ }^{23}$	$2{ }^{26}$	80	12
CH	83	24	30	70	214.00
c	88	${ }^{24}$	24	78	
CK	88	2	${ }_{36}$	${ }_{42}$	212.50
$\mathrm{CM}^{\text {a }}$	${ }^{30}$	${ }^{20}$	18	17	${ }^{2} 5.00$
${ }_{\text {OP }}$	89	24	$2{ }^{16}$	61	$\underline{13.00}$
CR		30			¢24.00
CT	70	69	27	60	E45.00
CU	87	28	17		20.00
CY	${ }^{59}$	24	${ }^{2+}$	52	220.00
cz	${ }_{88}^{88}$	22	${ }_{28}^{26}$	${ }_{80}$	
${ }_{\text {da }}$	${ }_{83}^{80}$	22	2	47	\%55.00
DC	${ }^{84}$	22	27	57	£1\%.00
DE	${ }^{62}$	40	24	91	230.00
DF	75	22	26	68	
DH	70	23	24	122	220.00
DK	88	22	${ }^{26}$	79	± 20.00
DL	${ }^{54}$	$2+$	$1{ }^{19}$	69	21800
${ }_{\text {DP }}$	74	24	${ }^{24}$	${ }^{68}$	18.00
DR	$1{ }^{1}$	21	12	10	2\% 00

A Ho Consoles twin and inultl-way Cabinete
OPEN RACKS

Full details of all above on request

BOURNEMOUTK-AEOE

OVERNIGHT

Prototype Printed Circuits
Fastest in London Area
48 hour and Overnight Services
Electronic \& Mechanical Sub-Assembly Co. Lid., Highfield House, West Kingsdown Nr. Sevenoaks, Kent.
Tel: Weat Kingsdown 2344

EMSAC. P.C. MASTER KITS
Something new! Prepare your printed clrcult masters to materials necessary to design complete taped masters. We Include four sizes of speclal adheslve tape (conductors), four sizes of elrcles (pads), transistors and $1 / \mathrm{c}$ clusters. Also metric and Imperial grids, a cutting knife
and backing material. Complete with full instructions and catalogues for re-ordering.
Price $£ 8.64$ plus 10% V
Price $£ 8.64$ plus 10% V.A.T. plus 15 p P. \& P. Electronic and Mechanical Sub-Assembly Co. Ltd.
Highfleld House, West Kingsdown, Nr. Sevenoaks, Kent. HIghfleld House, West Kingsdown, Nr. Sevenoaks, Kent.

Thanks to bulk purchase we can offer BRAND NEW P.I.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythen good as any other on the market, in no way are the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded.
S.P. $\left\{\begin{array}{llllll}3 \mathrm{in} . & 160 \mathrm{ft} . & 10 \mathrm{p} & 5 \mathrm{in} . & \text { 600ft. } & 30 \mathrm{p} \\ 5 \text { 3 in. } & 900 \mathrm{ft} . & 40 \mathrm{p} & 7 \mathrm{in} . & 1,200 \mathrm{ft} . & 45 \mathrm{p}\end{array}\right.$

Postage on all orders $7 \frac{1}{3} p$
COMPACT TAPE CASSETTES AT HALF PRICE
60,90 , and 120 minutes playing time, in original plastic library boxes.

STARMAN TAPES

28 LINKSCROFT AVENUE, ASHFORD, MIDDX. Ashford 52136

WW-123 FOR FURTHER DETAILS

SOWTER TRANSFORMERS

FOR SOUND RECORDING AND REPRODUCING EQUIPMENT We are suppliers to many well-known companies studios and broadcasting authorities and were estab lished in 194. Early deliveries. Competitive Large or smal quantities. Let us quate.

Transformer Manufacturers and Designers 7 Dedham Place, Fore Street, Ipswich IP4 IJP

THE ONLY COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!

Send P.O. $15 p$, for 48 page booklet providing all necessary information on Record Care.

CECIL E. WATTS LIMITED Darby House Sunbury-on-Thames, Middx.
 3000 AND 600 BUILT TO YOUR SPECIFICATION Contacts up to 8 changeover

\star QUICK DELIVERY

* KEEN PRICES
* QUOTATIONS BY RETURN

WILKINSON (CROYDON)
LONGLEYRD., CROYDON LONGLEY HOUSE,

WW-124 FOR FURTHER DETAILS

WANTED

RELAYS

GEC 12v 180, 4K, Type M1574. 011-9258 2. Elliott 9M/16-350. Plug-in base B9A. 954-0422 3. $350 \Omega+350 \Omega$, flying leads. 10F/16243: 580-6752. 4. 12v 160, 4M, 011-9903 (Ericsson or Plassey) $5.24 v 700$, 2 CO unsealad STC
5. 24 v 700 . 2 CO , unsealed STC.
6.24 v 700 . 2CO, sealed, 011-9881.
7. Miniature 7v 60, Elliott or Plessey, 970-8470
8. Plassey or Ericsson Cylindrical type:
(a) $12 v 105$, HD 2 M 2 B or $4 \mathrm{CO}, 011-9172$
(b) $24 \mathrm{v} 440, \mathrm{HD} 2 \mathrm{M} 2 \mathrm{~B}$ or $4 \mathrm{CD}, 932-0971$
c) $48 \mathrm{v} 165 \mathrm{D}, 4 \mathrm{CD}, 012-0306$
(d) $48 \mathrm{v} 1650,2 \mathrm{CO} 2 \mathrm{~K}, 012-0307$

All Relays must be now and unused
PHONE ANY TIME: 021-454 8305

TRANSFORMER LAMINATIONS enor mous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, NW4 2 AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16

Tel: 01-249 2260

CASH IMMEDIATELY AVALLABLE
for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, London, N12.
Telephone: 01-445 2713 01-445 0749 Evenings: 01-958 7624

THERMOCOUPLES

Acramet and Acraspeed thermocouples,
from IC are:-
Extremely accurate for fluid, gas or metal temperature measurement,

Individually calibrated and carry a certificaté plus a one year guarantee.

Available with immersion or contact,
non-earthed, multiples, boss or plug.
Details available on request.
International Combustion Limited,
Sinfin Lane,
Derby DE2 9GJ
WW-125 FOR FURTHER DETAILS
QUARTZ CRYSTAL
UNITS from

- 1.0-60.0 M HZ
- fast delivery - high. Stability - TO DEF 5271-A

WE PURCHASE

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS, RESISTORS, CAPACITORS, POTENTIOMETERS, RELAYS TRANSFORMERS ETC.
ELECTRONIC BROKERS LTD.
49 Pancras Raad, London, N.W.1. 01-831 7181

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTMEAD LTB.
7, 9, 11 Arthur Road, Reading,
Berks.
Tel: 582605

SPECIALISED KIIS

CBS-SQ QUADRAPHONIC IC DECODER

To Motorola application for MC1312 as described by Geoffrey Shorter (WW March 73)

WE supply the complete kit of parts including glass-fibre edge-connected P.C. board, and all components down to the very last "bit", with lucid instructions and manufacturer's application notes. ADOITIONALLY, you may draw upon our wealth of experience relating to all ancillary circuitry, and guarantee yourself the results that only the professionals achievel Complete kit as described, including postage and packing $\mathbf{8 8} 8 \mathbf{8 0}$. Built and tested $\mathbf{1 1 2 \cdot 1 0}$.

PHASE-LOCKED-LOOP STEREO DECODER

To Motorola application for MC1310 as described in Wireless World, July 1972

1310 complete kit to the last detail, including edgeconnected glass fibre board, and all components of connected glass fibre board, and at components of anywhere! Kit Price £3.74. Built and tested f6.05. MA2502 Professional LED 60p Extra. (The usual cheap LEDs at 37p if you insist!) Self-powered or zenered versions to order.

HIGH STANDARD LOW FREQUENCY SOURCE

(to article by J. M. Osborne, W.W. Jan. 73)
A Phase-Locked Loop designar approved kit to professional standards with Glass-Fibre P.C. Board, and all components including Hardware. case, etc. Full constructional details from the designer are included. Reference accurate to 2 parts in $10^{\prime \prime} 1$ Probably the most economic high precision signa! source available. Kit $\mathbf{£ 2 2 \cdot 6 5}$. Extra for built and tested only $\mathbf{£ 6} \mathbf{5 5}$.
NE5618 only $\mathbf{£ 4 . 8 8}$ each.

SPECIAL RELEASE-HRO RECEIVERS!

HRO. Clean. Tested and Working $\mathbf{f 1 9 . 8 0}$. HRO Variant. Condition as above $£ \mathbf{2 7} \cdot \mathbf{5 0}$. Both the above include coil $\mathrm{JC}, 3.5-7.3 \mathrm{MHz}$. Carriage by BRS and V.A.T. paid. Additional LF coils $\mathbf{£ 1} \cdot \mathbf{6 5}$. HF coils $£ \mathbf{£} \cdot \mathbf{2 0}$. New purpose built plinth power units to match. with speaker $\mathbf{£ 9} 90$. HRO HF sat $£ \mathbf{3 5} \cdot \mathbf{2 0}$. HRO Variant set $£ 42 \cdot 35$. Circuits are supplied and manuals available at $\mathrm{f} 1 \cdot 65$. Delivery by private carrier, at our risk, add $£ 2 \cdot 20$ (U.K. mainland).

R1475-Regret all sets sold. Manuals £2.85. GUARD UNITS-near mint $£ 2 \cdot 52$. Others $£ 1.75$.

SPECIALIST SERVICES

Suppliers of Sonax. Teleradio: Eagle Products and RSGB pubs. Enquiries welcomed irrespective of size or nature. Send large S.A.E. for full lists.
Communications acknowledged by return.

ALL PRICES INCLUDE Y.A.T. \& CARRIAGE

Send coupon for lists

DECADE TTLL COUNTERUNIT

COMPLETE OR IN KIT FORM

COMPLETE UNIT

Decade TTL Unit on fibreglass PCB using 74 series TTL to count up to 18 MHz with Nixie tube display. These units may be coupled to provide a multi-digit readout for Frequency Counters, Timers, DVM's Batch Counters etc
(Application details not available) Requires 200/ 250 V D.C. \& 5 V D.C. reg KIT PRICE: $£ 5.06$ plus $10 p$ p\&p ASSEMBLED AND TESTED £5.40 plus 10p p\&p
TRANSFORMER, 200/250V to $6 \mathrm{~V}, 1 \mathrm{~A} \& 250 \mathrm{~V}$ for decade power supply, with circuit using 5 V Regulator $1 / \mathrm{C}$: $\mathbf{£ 2 . 2 0}$ plus 20 p p\&p COMPONENTS
$400 \mathrm{~V}, 8$ A Triac isolated tab type 1 L48, 125A surge 85 p 32V Diac Type D30 suitable for triggering 1 L48 23p 5 V Voltage Regulator $1 / \mathrm{C}$. T03 case $600 \mathrm{~m} / \mathrm{A}$ output from $7.5 \mathrm{~V}-15 \mathrm{~V}$ D.C. input, with instructions $£ 1.98$ Heat Sink. T03, twistedvane, $8^{\circ} \mathrm{C} /$ Wfor 5 VRegulator 20 p BC 107, BC 108

6p
(Alt plus 6 p p\&p)
Prices include VAT. Please send c.w.o to:
DEXTER \& COMRANY 4 ULVER HOUSE 19 KING STREET CHESTER CH1 2AH Tel: 0244-25883

WW-127 FOR FURTHER DETALS

Bampon cenitial Rapio stoless

TELEPHONE CABLE. Plastic covered grey 4 -score coloured coded. 7 tp per yd. Bpecial quote for quantity. RECORD STORAGE UNITS.' Brand new, Anti-warf. 'Compact 200' вtores 200 records. \&12. 58. P.P.ef1.4. 'Compact 100 stores 100 records. e5.g7. Y.P.
ELECTRICITY SLOT METERS (5 in in slot) for A.C. mains. Tixed tariff to your requirements. Suitable for hotels, etc. 200/250v. 10 A . $£ 5 \cdot 50$. 15 A . £6.00. 20 A . $£ 6 \cdot 50$. P.P. 60 p. Other amp
ages avalable. Reconditloned is new 2 years, guarautee. ages available. Reconditioned as new 2 years, guarantee.
MODER DESK PHONES, red, green, bjue or topaz, 2 tone gre ${ }^{\text {pr P }}$ black, with internal bell and handet with 0.1 dial $\mathbf{8} 4.50$ P.P. 37tp. lite case with junction box handset. Thoroughly overhauled guaranteed. Price 25.25. Wiring diagram on requeat, send s.a.e 10-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakeiite case with junction box handset. Thoroughly overhauled
Guaranteed. $£ 6.75$ per unit. Wiring diagram on request, send
20-WAY PRESS-BUTTON INTER-COM TELEPEONES in Bake 20-WAY PRESS-BUTTON INTER-COM TELEPEONES in Bake lite case with junction box. Thoroughy overhauled. Gua
$£ 775$ per unit. Wiring diagrann on request, send s.a.e. The "88'" Set. This trangceiver, weighs approx. 5it ibs. and measures 34 in . $x f \mathrm{in}$. I 9in. It is ay qretuency channel se $41-44$ me/8., Crystal Controlled and operate firom a dry battery
H.T./L.T. $94 / 1.3 \mathrm{v}$ I.E. Ruben Mallory Type No. 1 and employe the followidg t valves. $3 \mathrm{~A} 4,1$ off; $1 \mathrm{~L}+6$ ofri; $1 \mathrm{~T} 4,4$ off; 185 ,
 23 IISIE ST. (2389) IONOON W.C. 2 Open all day Saturday

THE QUARTZ CBYSTAL CO. LTD. Q.C.C. WORKS, WELLINGTON CRESCENT,
NEW MALDEN. SURREY. 01-942-0334 \& 2988

Beginner's Guide to Colour Television
(2nd Edition)
Gordon J. King
The reader is guided through the principles of NTSC and PAL to an understanding of the method of operation of the PAL system from aerial to display tube.

1973208 pp., illustrated

0408001011 £1.95

Electronics
 A Course Book for Students

G. H. Olsen

A qualitative introduction with a minimum of mathematics and circuit analysis, and the maximum possible coverage of commonly used electronic devices.

1973352 pp., illustrated 0408704470 £2.60

Elements of Linear Microcircuits

T. D. Towers

Based on a series of articles written for Wireless World, this book gives practical information on commercially available linear microcircuit devices, and on the handling of these sensitive circuits within an assembly
1973116 pp., illustrated
$059200077 \times £ 2.80$

Sound with Vision

Sound Techniques for Television and Film
E. G. M. Alkin

For the first time the methods developed by the BBC are here made available in book form for the benefit of television sound operators and production staff.

1973294 pp., illustrated 0408702362 £6.00

Television Engineers' Pocket Book

(6th Edition)
Revised by P. J. McGol drck Ex, ut elyeda revised andensivipdt
the sixth edition of this popular book provides a summary of all the basic facts, circuit techniques and technical data likely to be required for servicing either colour or monochrome receivers.

1973376 pp., illustrated $040800102 \times$ £ 2.50

Obtainable through any bookseller or from the Publishers.

The Butterworth Group 88 Kingsway, London WC2B 6AB

Showroom : 4-5 Bell Yard, London WC2

AVO TRANSISTOR AND DIODE TESTER TYPE CT537

The tester is a compact, simple to operate, direct reading instrument. Provision is made for the rapid and accurate measurement of transistor $h_{f e}$ up to 1500 at a frequency of $1 \mathrm{kc} / \mathrm{s}$ and the measurement of leakage current between $1 \mu \mathrm{~A}$ and 400 mA for both p.n.p. and n.p.n. Iow and medium power germanium or silicon transistors.

In Superb Condition, in original crates with full instructions, circuit diagram. New Price $£ 250$ Plus OUR PRICE $\mathbf{£ 4 0 . 0 0}$ each . Carriage $£ 1.25$

7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605

INDEX TO ADVERTISERS
 Appointments Vacant Advertisements appear on pages 88-104

[^18] or affixed to or as part of any publication or advertising, ilterary or pictorial matter whateoever.

G \& E BRADLEY LIMITED Electral House, Neasden Lane, London, NW10 1 RR
Telephone: 01-4507811
Telex: 25583
A Lucas Company

Most people think of Bradley Electronics as a manufacturer of precision electronic instrumentation. And they're quite right, of course. We've built a fine reputation for quality at competitive prices during the past 20 years.

But there's another important aspect of Bradley's business - we're also experts on other people's products Since 1954, our Technical Services Division has operated a first-class, comprehensive repair and calibration service for all types and makes of electronic test and measuring equipment. Customers include government departments, the armed services, and many commercial concerns.

The Division has its own 20,000 sq. ft. facilities next door to the main Bradley works in north-west London. It maintains a comprehensive stock of spares and an expert staff capable of handling any type of instrument or system. The frequency spectrum covered is DC to 18 GHz

In addition, it's supported by a Standard Laboratory approved by the British Calibration Service. This is able to supply authenticated calibration certificates for AC, DC and RF measurements which are directly traceable to the National Physical Laboratory and/or the National Bureau of Standards.

So next time your calibrator won't calibrate or your simulator won't simulate, don't scrap it. Let Bradley repair and re-calibrate it. You'll find it's a lot cheaper than buying a new instrument.
WW-002 FOR FURTHER DETAILS

You don't take chances on quality when you're dealing in spacecraft. Absolute predictability in all systems, particularly those concerned with orbital attitt des, is a must. A fact fully recognised by British Aircraft Corporation when they desizned and supplied the attitude sensing sysjem and allied electronics for the ESRO' HEOS-AZ satellite, now successfully returning data on magnetic felds and plasma densities from deep space.
Tholsands of connections were made using Ersin Multiccre solders. High-class, totally reliable connections that could withstand the rigours and temperature flustuations of space travel. Yet one mare tribute to the time-proved, unmatched quality of these 5 -cose flux solders specified and used today by the world's top manufacturers of electrenic ecuipment. Technical information? We'll send ycu all you need: on Ersi . Multicore solders, solder chemicals - and Extrusol, for machine soldering. Wriṭe on your Company's letterhead please, to:

Multicore Solders Ltd.
Maylands Averue
Hernel HempsteadHerts.HP2 7EP
Te: H. Hempstead 3636
Telex 82363

* European Space Rezearch Organisation

[^0]: To: Cambridge Learning, 8a Rose Crescent, Cambridge
 Please send me set(s) of Digital Computer Logic and Electronics at $£ 2.95$ for which I enclose cheque/PO/money order value

 ## Name

 Address

[^1]: WW-056 FOR FURTHER DETAILS

[^2]: Catalogue No. 10,000

[^3]: Price 20p. (Back numbers 40p.)
 Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
 Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
 Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables. "Ethaworld, London S.E.1."
 Subscription rates: Home, £4.35 a year. Overseas, 1 year £5; 3 years $£ 12.50$ (U.S.A. \& Canada 1 year \$13,
 3 years $\$ 32.50$) Student rates: Home 1 year $£ 2.18,3$ years $£ 5.55$. Overseas, 1 year $£ 2.50 ; 3$ years $£ 6.25$ (U.S.A. \& Canada 1 year $\$ 6.50,3$ years $\$ 16.25$).

 Distribution: 40 Bowling Green Lane, London ECIR ONE. Telephone $01-8373636$.
 Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH 16 3DH. Telephone 044453281.
 Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

[^4]: *Copies of the Proceedings can be obtained from Dr F. W. Stephenson, Department of Electronic Engineering. University of Hull, price $£ 2.50$ including postage.

[^5]: *The liquid crystal state, shown in a small percentage of organic compounds, is intermediate between the melting point of a solid crystal and the isotropic liquid, with the optical and electrical anisotropy of a solid crystal but the flow properties of a liquid.

[^6]: -British Aircraft Corporation.

[^7]:

[^8]: By a similar argument one obtains another universal rule which defines the transfer conductance of all transistors to be $40 \mathrm{~mA} / \mathrm{V}$ per mA of emitter current at room temperature. It is strange that not many textbooks mention this valuable and easily-remembered fact

[^9]: WW 350 m.o.s. range
 WW 351 complementary power transistors WW 352 audio power amplifier

[^10]: ALL PRICES EXCLUSIVE OF V.A.T.

[^11]: Send for further details (private enquiries: 3p stamp, please).

[^12]: A// stores within 200 yards - call in and see for yoürself
 404-406 Electŕonic Components and Equipment 01.4028381 354-356 High Fidelity and Tape Equipment 01-4025854 309 PA-Disco-Lighting High Power Sound. 01-723 6963 303 Special offers and bargains store

[^13]: OUR NEW 1972/1973CATALOGUE IS NOW READY. PLEASE SEND STAMPED AND ADDRESSED QUARTO ENVELOPE FOR YOUR FREE COPY
 PLEASE NOTE THAT VALVES LISTED ABOVE ARE NOT NECESSARILY OF U.K. ORIGIN
 Head Office:

 44a WESTBOURNE GROVE, LONDON, W. 2
 Tel.: 727 5641/2/3
 Cables: ZAERO LONDON
 Retail branch (personal callers only) 85 TOTTENHAM COURT RD.,
 LONDON W.2.Tel: 5808403
 A.R.B. Approved for inspection and
 A.R.B. Approved
 release of electronic valves, tubes,
 klystrons, etc.

 WE WANT TO BUY:
 SPECIAL PURPOSE VALVES. PLEASE OFFER US SPECIAL PURPOSE VALVES. PLEASE OFFER US
 YOUR SURPLUS STOCK. MUST BE UNUSED.

[^14]: Required to work in educational film and television unit based in Alexandra Palace Badminton Suite. A knowledge of electronics and experience of lighting and sound work essential, film editing an advantage. The post involves working with staff and students on CCTV studio production and on filming.
 Salary on Technical T3 scale- $£ 1,416$ to $£ 1,635$-entry point according to experience and qualifications.
 The appointment is initially for six months only, but there is a real prospect of a permanent appointment for a suitable candidate. The Polytechnic works a 36 hour 5-day week.

 Application forms from The Bursar (Ref. WW/6), Middlesex Polytechnic at Hornsey, Crouch End Hill, London, N8 8DG, to whom they should be returned within fourteen days of this advertisement.

[^15]: All the above vacancies are pensionable and dav release facilities for higher education will be considered in appropriate cases. Requests for application forms to the Engineering Recruitment Officer, BBC, Broadcasting House, London WIA IAA, quoting the appropriate reference number and enclosing an addressed foolscap envelope. The closing date for completed application forms is the 11 th June 1973.

 2691

[^16]: AIRTRONICSTICLES WANTED ald production., funs Also PC Boards Assem plies. Suppliers to P.O. M.O.D., etc. Export enquiries welcomed. 3 a Walerand Road, London,
 SE13 7PE. Tel. $01-852$ 1706. $B_{\text {sample }}^{\text {ATCH }}$ Or draction Wings. Deane Elestricals, $19 B$ Stample or drawings. Deane Electricals, 190 B 01-992 8976.
 TACHO Calibrator EX-A.M. Maxwell Bridge 1 Ref. $6 \mathrm{C} / 869600-5,000$ r.p.m. or similar. Or spares. Brooks \& Sons, 1 Black West Avenue, Gos-
 forth. Newcastle-upon-Tyne, NE3 4ES. WIRELESS WORLD Back Nos. wanted, 1971 : WIRELESS WORLD Back Nos. wanted, 1971 August - Box No. WW 2680

[^17]: RECEIVERS AND AMPLIFIERS?
 SURPLUS ANDISECONDHAND
 $\mathrm{H}^{R O}$ Rx5s, etc., AR88, CR100, BRT400, G209 Ltd., Ashville Old Hall, Ashville Rd., London, E11 Ley. 4986.

[^18]:

 at a price in excess of the recommended naximum price shown on the cover, and that it shatil not be fent, re-sold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade

